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Abstract

In this thesis we present results arising from either quantile regression, functional data
analysis or a combination of the two fields.

First of all, we study quantile regression for clustered data in the cases when the
number of clusters is much larger than the observations per cluster. Via simulation
studies we demonstrate that some classical estimators for the population-level quantile
regression parameters exhibit bias when considering heteroskedastic models at quantile
levels different from the median. We propose an estimator whose bias adjustment is based
on bootstrap, which we also rely on in order to build confidence intervals. We apply the
new estimation methods to data arising from a clinical study concerning AIDS.

We analyze the aforementioned framework further when functional covariates are
introduced and data has a longitudinal structure. In particular, we establish the modelling
setting, we propose an estimation method for the approximation of the functional coeffi-
cient, and we clearly outline how to implement estimation relying on existing software.
Our work is motivated by an application in animal science, in which we study the impact
of temperature, considered as functional, on low quantiles of feed intake of lactating sows,
whose daily conditions were recorded several times over the lactating days, which we take
as longitudinal time points.

Our last contribution concerns functional data analysis and revolves around the
analysis of learning curves of mice undergoing memory-involving tasks repeatedly. We
rely on existing methods that study bivariate functional objects constituted by amplitude
and phase components arising from the registration of a collection of curves. The
multivariate functional principal component analysis of such objects gives us an insight
on the differences and similarities of the learning behaviors of two groups of mice, one
where the animals were induced with a brain lesion similar to that observed in patients
affected by psychiatric disorders such as schizophrenia, and a control group.
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Resumé

I denne afhandling præsenterer vi resultater fra fraktilregression, funktionel dataanalyse
eller en kombination af de to områder.

Første studie handler om fraktilregression for grupperede data i situationer hvor antallet
af grupper (eller klynger) er meget større end antallet af observationer per gruppe. Vi
undersøger estimation af populationsparametrene i en regressionsmodel for fraktilerne og
påviser i simulationsstudier at flere metoder fra litteraturen fører til estimatorer med bias
når data simuleres med heteroskedasticitet og analysen foretages på et andet fraktilniveau
end 50% svarende til medianen. Vi udvikler og undersøger en ny estimationsmetode der
justerer for bias ved hjælp af bootstrap, og de samme bootstrapdata bruges til at beregne
konfidensintervaller. Vi benytter den nye estimationsmetode på data fra et klinisk studie
vedrørende AIDS.

Andet studie udvider rammerne fra første studie til dels at omfatte funktionelle kovari-
ater og dels at omfatte longitidinale data. Vi undersøger en klasse af regressionsmodeller
for fraktilregression og viser hvordan modellen kan estimeres med eksisterende software.
Artiklen er motiveret af data fra husdyrvidenskab om søer der giver die. Det ønskes
undersøgt om og hvordan temperaturen i grisestien, målt kontinuerligt henover døgnet,
påvirker søernes indtag af føde i den periode hvor de giver die.

Tredje studie er et studie i funktionel dataanalyse og omhandler estimation og sam-
menligning af indlæringskurver for forsøgsmus der udfører hukommelseskrævende opgaver
gentagne gange. Analysen består i først først at registrere (tidsforskyde) kurverne således
at fase- og amplitudevariation separares og estimeres og dernæst udførse todimensional
principalkomponentanalyse af fase- og amplitudekomponenterne. Principalkomponent-
analysen giver os indsigt i forskelle og ligheder i indlæring mellem to grupper af mus,
nemlig kontrolmus og mus med en induceret hjernelæsion der svarer til hvad man kan
observere hos patienter med psykiatriske sygdomme som fx skizofreni.
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Chapter 1

Introduction

The aim of this chapter is two-fold. First of all, it contains an overview of the essential
mathematical ingredients used in the following chapters. In particular, this thesis has its
foundation on two topics of statistics: quantile regression and functional data analysis,
presented in Sections 1.1 and 1.2, respectively. Secondly, it summarises the contributions
of our work to the aforementioned areas in Section 1.3.

1.1 Quantile regression

Quantile regression, first introduced by Koenker and Bassett Jr (1978), is a well-established
mathematical tool used in econometrics and statistics. In this section we first of all present
the derivation of the loss function used in such regression framework. Afterwards, an
overview of quantile regression is given for independent observations. Finally, quantile
regression for clustered data, which is a key topic for the work in Chapters 2 and 3, is
discussed.

1.1.1 Origins of loss function
The loss function is a central feature to every regression framework. In what follows, we
take inspiration from Koenker (2005a, Chapter 1) to explain what is the loss function
used in quantile regression.
Consider a continuous random variable Y ∼ f taking values in R. It’s Cumulative
Distribution Function (CDF) F is defined as

F (y) = P (Y ≤ y),

with y ∈ R. Moreover, the quantile of level τ ∈ (0, 1) of Y is

Q(τ) = F−1(τ) = inf{y : F (y) ≥ τ}.

From a probabilistic point of view, the quantiles of Y can be found by minimizing an
expected loss function. First of all, for fixed τ ∈ (0, 1), consider

ρτ (v) = v(τ − I(v<0)). (1.1.1)

This is called check function, and it is the essential pillar of quantile regression. The loss
function that one aims at optimizing in order to find the τth quantile of Y is

E[ρτ (Y − ŷ)], (1.1.2)

which is minimized with respect to ŷ ∈ R. In particular, (1.1.2) corresponds to∫
R
ρτ (y − ŷ)dF (y) =

[
(τ − 1)

∫ ŷ

−∞
(y − ŷ)dF (y) + τ

∫ ∞

ŷ

(y − ŷ)dF (y)
]
.

1



2 CHAPTER 1. INTRODUCTION

Taking

d

dŷ
E[ρτ (Y − ŷ)] = −(τ − 1)

∫ ŷ

−∞
dF (y) − τ

∫ ∞

ŷ

dF (y) =
∫ ŷ

−∞
dF (y) − τ = F (ŷ) − τ,

and imposing d
dŷE[ρτ (Y − ŷ)] = 0, the solution is ŷ = F−1(τ) when F is strictly mono-

tone, otherwise, by convention, it is the infimum of the interval of values minimizing (1.1.2).

In practice, one observes independent realizations Y1, . . . , YN of Y , and hence relies
on the empirical CDF

FN (y) = 1
N

N∑
i=1

I(Yi ≤ y).

In such case, the empirical version of (1.1.2) becomes∫
R
ρτ (y − ŷ)dFN (y) = 1

N

N∑
i=1

ρτ (Yi − ŷ).

Hence, the problem we consider is the minimization of
N∑

i=1
ρτ (Yi − ŷ) (1.1.3)

with respect to ŷ to estimate τth quantiles of Y .
The aforementioned preliminaries are particularly important to quantile regression, which
we review in the next paragraphs.

1.1.2 Quantile regression for independent observations

Consider data (Yi, xi)N
i=1, with response Yi ∈ R and vector of covariates xi ∈ Rp−1.

Relying on (1.1.3), it is possible to build a regression framework to estimate the quantile
of the distribution of the response given the independent variables. Assuming a linear
structure of such quantile, we consider the following model for the ith observation and
fixed level τ :

QYi|Xi
(τ) = XT

i β
τ , (1.1.4)

with XT
i = (1, xT

i ) and βτ = (βτ,1, . . . , βτ,p) ∈ Rp. The estimator β̂τ of the quantile
regression coefficients is thus obtained by minimizing

N∑
i=1

ρτ (Yi −XT
i β

τ ), (1.1.5)

with respect to βτ . Due to the non-differentiability of (1.1.1) at v = 0, the minimization of
the loss function in quantile regression has to be handled with caution. The optimization
problem can be solved computing the directional derivatives and then evaluate them in β̂.
If for every direction they are non-negative, then β̂ minimizes the loss function (Koenker,
2005a, Chapter 1) .

The minimization of a loss function that is not everywhere differentiable is not the
only challenge in quantile regression. We take the opportunuty of introducing the problem
of quantile crossing with the following example.
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Example 1.1 (Location and location-shift models). Consider data (Yi, xi)N
i=1, with

Yi, xi ∈ R and
Yi = β0 + β1xi + (1 + γxi)ϵi, i = 1, . . . , N,

with γ ≥ 0 , (1 + γxi) > 0 for every i = 1, . . . , N and ϵ
iid∼ fϵ. In order to find the

corresponding quantile at level τ , we start from

P (Yi ≤ QYi|Xi
(τ)) = τ,

which, explicitly expressing the response in terms of the independent variable and isolating
the error term, becomes

P

(
ϵi ≤

QYi|Xi
(τ) − β0 − β1xi

1 + γxi

)
= τ.

The, the quantity we are looking for is

QYi|Xi
(τ) = β0 + β1xi + F−1

ϵ (τ)(1 + γxi) = βτ
0 + βτ

1xi,

where F−1
ϵ (·) is the quantile distribution of the error term. In the quantile model we call

the coefficients βτ
0 = β0 + F−1

ϵ (τ) and βτ
1 = βτ

1 + F−1
ϵ (τ)γ. In the case in which γ = 0,

the only coefficient that varies with quantile level τ is the intercept, while βτ
1 = β1. In this

case, the model has a location shift effect. On the other hand, when γ > 0 both regression
coefficients depend on the quantile level, and hence we refer to such model as having
location-scale shift effect.

In our work, we consider γ a measure of heteroskedasticity in the model. Notice
that we imposed (1 + γxi) > 0. Such restriction makes sure that map τ 7→ QYi|Xi

(τ) is
non-decreasing. If we were working in a framework free of the restriction on the sign of
(1 + γxi), in order to insure the monotonicity of QYi|Xi

(τ) we would have to consider a
piece-wise linear instead of linear shape of the quantile model, namely

QYi|Xi
(τ) =

{
β0 + β1xi + F−1

ϵ (τ)(1 + γxi) if (1 + γxi) > 0
β0 + β1xi + F−1

ϵ (1 − τ)(1 + γxi) otherwise,

since the quantile of −ϵi in τ is −F−1(1 − τ). From this example we see that, even when
we consider a rather simple model, not taking care of the monotonicity of quantiles may
produce erroneous results due to quantile crossing. Quantile crossing is an issue one has
to be aware of, especially when analysing quantiles at multiple levels. Several methods are
available in the literature to tackle such problem, from simultaneous quantile estimation
with non-crossing constraints (Bondell et al., 2010; Liu and Wu, 2011) to monotonization
techniques to be applied either directly on the estimated quantile function (Chernozhukov
et al., 2010) or on the estimated CDF that is then inverted (Dette and Volgushev, 2008).

1.1.3 Quantile regression for clustered observations
We now turn to a more complex data structure, namely a clustered one. In particular, for
each cluster i = 1, . . . , N consider observations (Yij , xij)ni

j=1, with Yij ∈ R and xij ∈ Rp−1.
We assume within-cluster dependence, but independence between clusters. For each
cluster i = 1, . . . , N the linear quantile model at level τ is

Qi
Yij |Xij

(τ) = XT
ijβ

τ
i ,
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with XT
ij = (1, xT

ij) and βτ
i = (βτ,1

i , . . . , βτ,p
i ) ∈ Rp. Adopting the classical formulation of

linear mixed effects (Laird and Ware, 1982), one can assume that only some covariates
carry cluster-specific effects, while others only act on a population level. Hence, without
loss of generality, assume that the first q ≤ p components of Xij , which we call Zij , vary
with clusters, while the remaining p − q solely have a mean effect. With an abuse of
notation, denote the latter as Xij , in order to be faithful to the classical linear mixed
models notation. Then, the quantile model at level τ for cluster i is

Qi
Yij |Xij

(τ) = XT
ijβ

τ + ZT
iju

τ
i , (1.1.6)

where we split coefficient βτ
i into βτ , effect at the population level, and uτ

i , effect at
the ith cluster level. As in the literature of linear mixed effects models, we assume
(uτ

1 , . . . , u
τ
N ) to be random elements whose mean is zero, such that on average their effect

on the population level vanishes. The loss function to be minimized in this case is
N∑

i=1

ni∑
i=j

ρτ (Yi −XT
ijβ

τ − ZT
iju

τ
i ). (1.1.7)

Before presenting possible approaches for the estimation of regression parameters βτ ,
it is important to be aware that there are different interpretations of the quantile model
at the population level. We show this with the following example.

Example 1.2 (Conditional and marginal models). For each cluster i = 1, . . . , N , consider
data (Yij , xij)ni

j=1, with Yij , xij ∈ R, and the generating model scale-shift model

Yij = ui + β0 + β1xij + (1 + γxij)ϵij , i = 1, . . . , N, j = 1, . . . , ni,

with γ > 0, (1 + γxij) > 0, ϵij
iid∼ N(0, σ2

ϵ ) and ui
iid∼ N(0, σ2

u) independent of the error
terms. The design matrix is Xij = (1, xij). Two quantile models could be adopted, namely
one where we condition the response with respect to both Xij and ui or solely with respect
to Xij . We refer to the first model as conditional while to the latter as marginal. The τ th
conditional quantile model corresponding to the generating data in the example is

QYij |Xij ,ui
(τ) = ui + β0 + β1xij + Φ−1(τ)(1 + γxij)σϵ,

where the computations were carried out similarly to the case of the independent observa-
tions. In order to obtain the marginal quantile QYij |Xij

(τ) we first write

P (Yij ≤ QYij |Xij
(τ)) = τ.

By substituting the generating model formula and normalizing by the standard deviation
of the linear combination ui + (1 + γxi)ϵij we obtain

P

(
ui + (1 + γxi)ϵij√
σ2

u + (1 + γxi)2σ2
ϵ

≤
QYij |Xij

(τ) − β0 − β1xij√
σ2

u + (1 + γxi)2σ2
ϵ

)
= τ.

Hence, the τ th marginal quantile corresponding to the generating model is

QYij |Xij
(τ) = β0 + β1xij + Φ−1(τ)

√
σ2

u + (1 + γxij)2σ2
ϵ ,

where Φ−1(·) is the quantile function of the standard Gaussian distribution. One can see
that QYij |Xij ,ui

(τ) and QYij |Xij
(τ) have in general different shapes, the latter not even
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being linear. However, notice that the two models coincide when σ2
u = 0, namely the

case in which data is generated without subject-specific effects, while the population-level
quantile regression coefficients are the same in the two models, namely β0 and β1, when
τ = 0.5.

As shown in the previous example, conditional and marginal models are in general dif-
ferent, especially for extreme quantile levels. When aiming at estimating (1.1.6), namely
the quantile for each cluster i, it is important to account for the dependence within
clusters by including cluster-specific effects (Koenker, 2004; Reich et al., 2009). In case
one was interested in estimating the quantile on the population level, then the marginal
model can be employed, provided that the within-cluster dependence is accounted for in
the covariance structure (see for instance, Bossoli and Bottai (2017), and Marino and
Farcomeni (2015) for an overview on the topic). We focus on conditional models, and in
our work presented in Chapter 2 we demonstrated that aiming at estimating quantile
regression coefficients of a conditional model with a marginal approach can lead to severe
bias.

When it comes to the estimation of the population level quantile regression coefficient
βτ in (1.1.6), several methods are available in the literature. For instance, one possible way
of dealing with the problem is by treating the cluster-specific effects as fixed effects, like
Kato et al. (2012) and Galvao and Kato (2016). In a somewhat similar way, Canay (2011)
presented an estimation procedure of parameters βτ in two steps: first estimating the
cluster-specific effects, considered as fixed, from a mean regression model, and then using
them as offsets in a standard quantile regression for independent observations, having
dealt with the structural dependence in the previous step. Another possible approach
relies on the shrinkage of loss function (1.1.7), especially in those cases with an increasing
number of clusters N . Among these works we count Koenker (2004), Lamarche (2010),
Harding and Lamarche (2017) and Gu and Volgushev (2019). Finally, a broad class of
estimation methods rely on an Asymmetric Laplace Distribution (ALD) working model.
The ALD distribution (Yu and Zhang, 2005) is particularly suitable in such framework,
given the equivalence between minimizing (1.1.5) at fixed level τ ∈ (0, 1) and maximizing
the likelihood of an ALD distribution with location and skewness parameters equal to
(1.1.4) and τ respectively. One possibility is to consider a linear quantile working model
(LQMM) assuming a fully-specified working model where responses Yij are, conditionally
to both Xij and ui, ALD-distributed, and the distribution of the cluster-specific effects
is specified. In such context, Geraci and Bottai (2007) and Geraci and Bottai (2014)
considered maximizing the marginalised joint distribution of responses and cluster-specific
effects in order to estimate βτ . On the other hand, Galarza et al. (2017) suggested an
EM algorithm for the same model, exploiting an equivalence result of the stochastic
representation of the ALD distribution. In a different perspective, Fasiolo et al. (2020)
relied on a Bayesian approach aimed at minimizing the penalized Extended Lof-F (ELF)
loss function, which consists in a smooth generalization of (1.1.7). In particular, the ELF
loss is strongly linked to a class of distributions which the ALD is nested in.

We reviewed as well as tested a selection of estimators of quantile regression coefficients
in a conditional model framework in our manuscript in Chapter 2. Moreover, the approach
from Fasiolo et al. (2020) plays an important role in our work in Chapter 3.
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1.2 Functional data analysis

Functional data analysis deals with stochastic processes that arise from smooth curves.
Unlike the subject of the previous section, functional data analysis addresses the interpre-
tation of data, rather than being a specific mathematical tool. One can hence imagine
that the topic is rather broad, with several statistical techniques defined to deal with such
type of observations. In the following paragraphs we overview those tools of functional
data analysis that are particularly relevant in Chapters 3 and 4, taking Ramsay and
Silverman (2005) as main theoretical reference.

1.2.1 Characteristics of functional data
Assume we observe W1, . . . .,WH ∈ R. The decision to model those as values taken by an
underlying function observed at H points rather than a sequence of scalar observations
is based on the interpretation given to the data. In particular, one might want to treat
W1, . . . .,WH as part of one functional observation if Wh and Wh+1, with h = 1, . . . .,H−1,
are believed not to vary too much from one another, as well as if every single Wh is
assumed to be linked to the point it is observed at. In such case the single observation
Wh is interpreted as

Wh = X(sh) + εh, (1.2.1)
where X(·) is a smooth L2(S) function, the underlying true functional observation. The
domain of X(·) is S, and in practice it is discretized into a grid of points (s1, . . . ., sH).
Without loss of generality, we assume S ⊂ R. Moreover, ε1, . . . ., εH are independent
and identically distributed, drawn from a distribution with mean equal to zero. Hence,
we interpret W1, . . . ,WH as observations of the values of the true smooth underlying
function X(·) over a discrete grid with some measurement noise. These characteristics
differentiate functional data from multivariate observations, which are not assumed to be
smooth and can be shuffled without the risk of loosing information from their ordering.

Given the underlying smooth nature of functional data, one is usually interested in
recovering a smooth estimate X̂(·) of X(·) from the noisy observations. When ε1 = · · · =
εH = 0, namely when no measurement error occurs, mere interpolation of the observed
values would be sufficient. However, that is not feasible in the presence of measurement
noise. As a matter of fact, interpolating the values of the noisy observations would bring
high point-wise variation to X̂(·) as a result of overfitting. In such case, one has to adopt
some smoothing technique, and several options in the literature are available, from kernel
to local polynomials smoothing (Ramsay and Silverman, 2005, Chapters 3, 4 and 5). A
popular way of dealing with the task is by setting known basis functions φ1, . . . , φK and
represent X̂(·) with a linear combination of them, namely

X̂(s) =
K∑

k=1
ckφk(s). (1.2.2)

The quality of the approximation depends on several factors, such as the shape and
the number K of the basis functions, as well as coefficients c1, . . . , cK . Regarding the
first matter, a common choice of φ1, . . . , φK are B-splines, since they are very flexible
and hence can well approximate a wide variety of functional characteristics. Moreover,
one would usually choose K high enough to be able to represent the characteristics of
X(·), while avoiding nuisance sources of variation. In practice the estimates ĉ1, . . . , ĉK

for the coefficients in (1.2.2) are obtained by fitting a penalized least squares criterion.



1.2. FUNCTIONAL DATA ANALYSIS 7

Penalization is a way of imposing smoothness to the estimated curves and a common
penalty term is ∫

S

(
d2

ds2 X̂(s)
)2

ds.

The integrand in the above formula, namely the square of the second derivative of X̂(·),
is often called curvature, given the fact that it would be equal to zero for a straight line.

Notice that the aforementioned smoothing method can be applied to single curves. In
the case one has access to a collection of functional observations, another possible choice
of φ1, . . . , φK are the eigenfunctions arising from the eigendecomposition of the estimated
covariance function of the available curves, and we are going to overview it in the next
paragraph. Both of the two mentioned choices of basis functions are used in Chapter 3
and the former is used in the preprocessing of Chapter 4.

1.2.2 Univariate and Multivariate Functional Principal Component
Analysis

Functional principal component analysis (FPCA) consists in an extension of principal
component analysis from a multivariate to a functional setting. More specifically, consider
the case in which we had access to the true curves X1(·), . . . , XN (·) ∈ L2(S), and without
loss of generality assume E[Xi(s)] = 0 for i = 1, . . . , N . Then, the sample covariance
function can be then defined as

v(s, s̃) = 1
N − 1

N∑
i=1

Xi(s)Xi(s̃). (1.2.3)

The pivotal step of FPCA consists in carrying out the spectral decomposition on covariance
operator

(Vψ)(·) =
∫

S

v(·, s̃)ψ(s̃)ds̃.

From the decomposition, one may extract eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0, orthonormal
eigenfunctions ψ1, ψ2, . . . as well as scores defined as

ξik =
∫

S

Xi(s)ψk(s)ds, i = 1, . . . , N, k = 1, 2, . . . .

Notice that, as long as X1(·), . . . , XN (·) are linearly independent, than the covariance
operator has rank N − 1, and thus the decomposition brings λ1, . . . .λN−1 > 0. Moreover,
any of the functions in the sample can be expressed by means of Karhunen-Loéve
representation

Xi(s) =
∞∑

k=1
ξikψk(s). (1.2.4)

The idea behind (1.2.4) is the fact that the eigenfunctions represent the main sources of
variation of the sample, and hence all together they should fully capture the nature of each
one of the collected curves. It is common to truncate the Karhunen-Loéve representation
so as to perform dimension reduction on the curves. The number of eigenfunctions to use
is usually established by means of Percentage of Variance Explained (PVE), namely

KP V E = min
{
K ∈ {1, . . . , P} :

∑K
k=1 λk∑P
k=1 λk

≥ p

}
, (1.2.5)
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where P is the maximum number of K allowed. Then, every functional observation can
be approximated by

X̂i(s) =
KP V E∑

k=1
ξikψk(s). (1.2.6)

As mentioned in the previous section, representation (1.2.6) is also particularly relevant
when in practice we observe discrete values of the underlying smooth functions. Specifically,
the simplest case one can encounter in applications is when every underlying curve is
observed on the same regular and dense grid of points (s1, . . . , sH), and we have access
to observations

Wih = Xi(sh).

One can hence build N×H matrix X, such that [X]ih = Wih, as well as covariance matrix
V = 1

N−1 XXT . It is then straightforward to compute the spectral decomposition on V ,
given the singular value decomposition UDWT of X and recognizing that (N − 1)V =
WD2WT . This corresponds to a multivariate principal component analysis, from which
one obtains estimated eigenvalues λ̂1 ≥ . . . ≥ λ̂P ≥ 0, eigenvectors which can be
interpolated to obtain eigenfunctions ψ̂1, . . . , ψ̂P , and consequently scores {ξ̂ik}. In
order to recover an estimate of the smooth underlying functions one can use (1.2.6),
first establishing KP V E using the estimated eigenvalues, and then employing estimated
eigenfunctions and scores in the representation. In more complex cases in which grid
(s1, . . . , sH) is possibly irregular and

Wih = Xi(sh) + εih, (1.2.7)

where measurement errors {εih} are iid samples from a zero-mean density, extra compu-
tational actions to carry out the eigendecomposition are needed. For instance, penalized
splines-based smoothers can be applied to the discretized covariance matrix arising from
noisy observations, either in the presence of a dense grid (Xiao et al., 2016) or a sparse
one (Xiao et al., 2018). In particular, we use the former approach, named FACE, in
Chapter 3, and we illustrate the truncated Karhunen-Loéve representation based on such
approach in Example 1.3. Another possibility is to embed the estimation problem in a
mixed model framework, where the scores are used as random effects and the off-diagonal
elements of the estimated covariance matrix are smoothed (Yao et al. (2003), Yao and
Lee (2006) and Goldsmith et al. (2013)). Moreover, smoothing techniques to be directly
applied to the observed curved have been suggested, for instance by Huang et al. (2008)
and Ramsay and Silverman (2005, Chapter 8).

Example 1.3 (Smoothing via truncated Karhunen-Loéve representation). To show the
result of smoothing via FPCA we show an example in Figure 1.1, where the underlying
smooth curves are simulated and available in package fdasrvf (Tucker, 2020), and were
also used in Srivastava and Klassen (2016). Consider true curves X1(·), . . . , XN (·), with
N = 21 and S = [−3, 3], shown in the top left panel. The observed values are as in (1.2.7),
where εi

iid∼ N(0, 0.022) and dense regular grid (s1, . . . , sH) with sh+1 − sh = 0.06, for
h = 1, . . . ,H − 1, shown in the top right panel. The bottom panels show the reconstructed
functions X̂1(·), . . . , X̂N (·) via FACE algorithm (Xiao et al., 2016) when the chosen
PVE is 0.95 and 0.9999, in the left and right panels respectively. In the two truncated
Karhunen-Loéve representations the selected number of eigenfunctions were K = 4 and
K = 11 respectively. It is possible to notice how even when employing a low number
of eigenfunctions the true curves are estimated quite faithfully, most probably due to
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Figure 1.1: Example of smoothing via eigenfunctions.

the simple structure of X1(·), . . . , XN (·). However, when imposing larger PVE the true
underlying functions are reconstructed completely.

In some situations, one might be interested in studying the sources of simultaneous
variation of two or more sets of functions. Consider for instance the case in which we
have access to functions XA

1 (·), . . . , XA
N (·) ∈ L2(S) and XB

1 (·), . . . , XB
N (·) ∈ L2(S), and

without loss of generality assume that E[XA
i ] = E[XB

i ] = 0 for i = 1, . . . , N . For both the
two sets we can define the covariance functions vAA(·, ·) and vBB(·, ·) as in (1.2.3), as well
as the cross-covariance functions vAB(·, ·) and vBA(·, ·), such that vAB(s, s̃) = vBA(s̃, s).
Then, we can consider bivariate objects X1(·), . . . , XN (·) ∈ L2(S) × L2(S), where

Xi(s) = (XA
i (s), XB

i (s)).

One can endow space L2(S) × L2(S) with inner product ⟨⟨·, ·⟩⟩ = ⟨·, ·⟩2 + ⟨·, ·⟩2, namely
the sum of the two L2 inner products, such that for any Xi(·), Xj(·) ∈ L2(S) × L2(S)
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their inner product corresponds to

⟨⟨Xi, Xj⟩⟩ =
∫

S

XA
i (s)XA

j (s)ds+
∫

S

XB
i (s)XB

j (s)ds.

Once such metric is defined, the spectral decomposition in this case is carried out on the
system of operators

(VAψ)(·) =
∫

S

vAA(·, s̃)ψA(s̃)ds̃+
∫

S

vAB(·, s̃)ψB(s̃)ds̃,

(VBψ)(·) =
∫

S

vBA(·, s̃)ψA(s̃)ds̃+
∫

S

vBB(·, s̃)ψB(s̃)ds̃.

The results are, as in the univariate case, eigenvalues λ1 ≥ λ2 ≥ . . . . ≥ 0 and eigenfunc-
tions ψ1, ψ2, . . . ∈ L2(S) × L2(S), with ψk(s) = (ψA

k (s), ψB
k (s)). Moreover, scores are

defined as
ξik = ⟨⟨Xi, ψk⟩⟩ =

∫
S

XA
i (s)ψA

i (s)ds+
∫

S

XB
i (s)ψB

i (s)ds,

and a bivariate version of Karhunen-Loéve representation (1.2.4) holds.
In practice, in case the two sets of curves are observed on a dense grid of points

(s1, . . . , sH), namely

WA
ih = XA

i (sh),
WB

ih = XB
i (sh),

then one can carry out estimation as in the univariate case, considering the linked vectors
(WA

i1 , . . . ,W
A
iH ,W

B
i1 , . . . ,W

B
iH) as observations. Once the principal component analysis is

computed, it is possible to separate components A and components B of the eigenfunctions
so as to return to a bivariate setting. Methods based on such concatenation were presented
by Ramsay and Silverman (2005, Chapter 8), Berrendero et al. (2011), Jacques and
Preda (2014) and Chiou et al. (2014). More recently, Happ and Greven (2018) proposed
a flexible estimation method based in the eigendecomposition of the covariance matrix
of the scores arising from univariate FPCA of the single components of the multivariate
functional objects. Moreover, their approach can be extended to more general frameworks
where the different components have different domains. We used this approach in the
work presented in Chapter 4, in combination with phase-amplitude separation, which
is overviewed in the next section. Finally, the methods used in univariate FPCA for
observations with errors, on either dense or sparse grid, can be used in this multivariate
setting.

1.2.3 Registration of functional data
Registration is a tool that allows to extract and separate two characteristics of a collection
of curves, namely their amplitude and their phase variations. Generally speaking, these
two components can be thought as the vertical and horizontal "shifts" of the curves
respectively, usually with respect to a reference function. In the literature of functional
data registration is often regarded as a preprocessing technique which allows to compare
curves’ features, such as peaks, more directly, discarding the possible phase variation in
the occurrence of such features. To give a concrete example, if functional coordinate s
varied with time, then it would be possible to regard the horizontal shift as "delay".
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Consider curves X1(·), . . . , XN (·) ∈ F(S) ⊂ L2(S), with S = [S0, S1] ⊂ R and where
F(S) is the space of absolutely continuous functions on S. Even though there are several
methods to carry out registration, the results of such analysis would generally bring
warpings γ1(·), . . . , γN (·) ∈ ΓS . These functions correspond to the deformations to be
applied to X1(·), . . . , XN (·) in order for them to be aligned, namely having characteristics
as peaks and valleys occurring at similar points. For instance, Srivastava and Klassen
(2016) considered a flexible class of warping functions, namely boundary-preserving
diffeomorphisms, defined as

ΓS = {γ : S → S | γ(S0) = S0, γ(S1) = S1, γ diffeomorphism}.

As mentioned earlier, the objective of group alignment is to find those warpings such that
curves

X̃i = Xi ◦ γi i = 1, . . . , N

are aligned with each other. We consider γ1(·), . . . , γN (·) to be phase representatives,
while X̃1(·), . . . , X̃N (·) are usually taken as amplitude representatives. These two sets of
curves are the results of the phase-amplitude separation. With their work, Srivastava and
Klassen (2016) gave two main contributions. The first one was setting up a framework in
which amplitude is regarded as an equivalence class, in light of the desirable property that
amplitude should not be changed by warpings. Their second contribution was establishing
a notion of distance for the space of equivalence classes, or orbits. This is vital for the
estimation of phase and amplitude components, since it is based on the optimization of a
criterion measuring the optimal distance between a deformed function and the template
it is aligned to. Specifically, they showed that the Fisher-Rao (FR) metric is appropriate
since it has several desirable properties such as the invariance under warpings, namely
the registration of two or more functions should remain the same if they are all warped
with the same γ ∈ ΓS . Moreover, they proved that the FR metric corresponds to the
L2 metric when functions X1(·), . . . , XN (·) are transformed into the square root velocity
functions (SRVFs). The template used for group alignment is the center of the orbit
corresponding to the Karcher mean of the equivalence classes generated by the SVRFs.
These are the foundations for their proposed algorithm for registration, which we employ
in our work in Chapter 4 as well as in Example 1.4.

Several other approaches to achieve phase-amplitude separation have been proposed
in the literature. For instance, Ramsay and Silverman (2005, Chapter 7) presented
landmark registration, where curves are aligned for some given features. The warping
functions are the result of the interpolation of the points corresponding to the set of
aligned landmarks. Moreover, s likelihood-based approach was proposed by Wrobel et al.
(2019). Finally, approaches that rely on the functional characteristics of data are also
available. Kneip and Ramsay (2008) suggested a methodology that is FPCA-based, while
Tang and Müller (2008) adopted a two-step procedure in which they first perform pairwise-
alignment among all the curves and then use the results to build the global registration.
Moreover, Gervini and Gasser (2004) proposed a functional regression framework to
estimate phase components, and Sangalli et al. (2010) suggested an algorithm to detect
clusters of amplitude and phase representatives based on functional features. For an
overview of phase-amplitude separation theory and existing methods, see Marron et al.
(2015).

Example 1.4 (Phase-amplitude separation). Assume we have access to the collection
of curves X1(·), . . . , XN (·) represented in the upper left panel of Figure 1.1. Figure 1.2
shows the registered curves X̃1(·), . . . , X̃N (·) and the corresponding warping functions
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γ1(·), . . . , γN (·). The phase-amplitude separation was carried out with the method from
Srivastava and Klassen (2016). In the first plot one can see how features like local maxima
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Figure 1.2: Aligned curves (on the left) and warping functions (on the right) from the
registration of the curves shown in Example 1.3, with the same colour convention.

and minimum take place at the same functional coordinates for all the aligned curves. It
is possible to observe, for instance, that the blue and green curves take the same value in
the local minimum in s = 0, which was not so clear looking at Figure 1.2. In the second
plot the warping functions are shown. The dashed line represents γid, the identity element
of ΓS. The blue line is above γid, which indicates that the corresponding original function
is delayed with respect to the template. On the other hand, the green curve is slightly
below γid, which means that the corresponding original curve is a bit anticipated compared
to the template.

1.2.4 Regression with functional covariates and scalar response

Consider independent data (Yi, X̂i(·))N
i=1, where Yi ∈ R and X̂i(·) are smooth estimates of

the underlying functions Xi ∈ L2(S), with i = 1, . . . , N . For instance, in mean regression
a common model is

E[Yi|Xi] =
∫

S

β(s)Xi(s)ds, (1.2.8)

in which we assume that the response for the ith observations is explained by the integral
of the product between the ith functional covariate and the functional coefficient β(·).
Given the infinite dimension of coefficient β(·), any regression framework in which we
aimed at studying some characteristic of the conditional distribution of the response given
the observed functional covariates would have infinite degrees of freedom. In practice,
apart from employing smooth estimates X̂1(·), . . . ., X̂N (·) as functional covariates, one
can consider representing the functional coefficient by means of linear combination of



1.2. FUNCTIONAL DATA ANALYSIS 13

known basis functions. More specifically, taking β(s) ≈
∑D

d=1 bdϕd(s), with known basis
functions ϕ1, . . . , ϕD, (1.2.8) can be approximated by

D∑
d=1

bd

∫
S

ϕd(s)X̂i(s)ds =
D∑

d=1
bdZid, (1.2.9)

where Zid correspond to the integral of the product between covariate X̂i(·) and basis
function ϕd(·). With such representation one shifts the estimation problem from an infinite
dimensional functional setting to a finite dimensional one with standard covariates. The
choice of the basis functions ϕ1, . . . , ϕD is arbitrary. One possibility is to adopt B-splines,
and eventually penalize coefficients b1, . . . , bD for smoothing purposes (Cardot et al., 2003;
Goldsmith et al., 2011a). Another option is to rely on the first D eigenfunctions arising
from the FPCA carried out on the functional observations, and in such case, we would
use the score as standard covariates since Zid = ξid, for every observation i = 1, . . . , N
and every basis function d = 1, . . . , D (Cardot et al., 1999a).
For this overview we used mean regression model (1.2.8). However, the different approaches
to the representation of β(·) hold for a broad class of regression models. Given the central
role of quantile regression Chapter 3, in the following example we show how estimation of
the functional coefficient can be carried out in such context.

Example 1.5 (Quantile regression with functional covariates). Consider data (Yi, X̂i(·))N
i=1

and the true generating model with the underlying smooth functions X1(·), . . . , XN (·)

Yi =
∫

S

β(s)Xi(s)ds+
(
γ

∫
S

Xi(s)ds
)
ϵi, i = 1, . . . , N

with γ ≥ 0, γ
∫

S
Xi(s)ds > 0 and ϵi

iid∼ fϵ with mean 0. For fixed level τ ∈ (0, 1), the
corresponding quantile model is

QYi|Xi
(τ) =

∫
S

(
β(s) + γF−1

ϵ (τ)
)
Xi(s)ds =

∫
S

βτ (s)Xi(s)ds.

Using the smooth approximations of the functional covariates and representing βτ (·) with
basis functions ϕ1, . . . , ϕd, the quantile model can be approximated by

QYi|Xi
(τ) ≈

D∑
d=1

bτ
dZid,

where we used the same notation as in (1.2.9). For instance, if we choose to represent
the βτ (·) with B-splines with penalty on the coefficients of the expansion, then estimates
b̂τ = (b̂τ

1 , . . . , b̂
τ
D) are computed as

b̂τ = arg min
bτ

[
ρτ

(
Yi −

D∑
d=1

bτ
dZid

)
+ γ ∥bτ ∥2

B

]
,

with ∥bτ ∥2
B = (bτ )TBbτ , where B is the penalty matrix of choice, and penalty parameter

γ > 0.

Finally, when dealing with smoothed functional covariates one should be aware of
the identifiability issues that come with it. In particular, when employing approxima-
tion (1.2.2) for every single estimated covariate curve, then

∫
S

(β(s) + β̃(s))X̂i(s)ds =
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∫
S
β(s)X̂i(s)ds, for every β̃ ∈ span({φ1, . . . , φK})⊥, so that β(·) cannot be distinguished

from β(·) + β̃(·). In light of the fact that the functional coefficient is identifiable only
up to elements belonging to the orthogonal complement of span({φ1, . . . , φK}), extra
caution should be given to its interpretation in a regression framework.
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1.3 Contribution of this thesis

This section is dedicated to an overview of the motivations and results shown in the
following chapters. More specifically, manuscript A focuses on estimation and inference
in quantile regression when considering clustered-structured data. In manuscript B, we
study the same framework while also considering functional covariates, and our motivating
application arises from data with a longitudinal design. Finally, we present a data analysis
relying on functional data techniques, such as registration and MFPCA, in manuscript C.

1.3.1 Manuscript A
In Chapter 2 we present our work regarding quantile regression applied to conditional
linear quantile models for clustered scalar data. The focus of the manuscript lies in
the estimation of the population-level coefficients in those cases in which the number of
clusters is much larger than the number of observations per clusters. To give an example,
the reference scenario in our simulation study is characterized by N = 500 clusters and
n = ni = 6 observations per cluster, and as data application we present our analysis on
an ACTG study with N = 1187 patients whose CD4 counts was recorded ni ∈ {2, . . . , 9}
times over the study.

Our first objective is to demonstrate that, in the above described framework, a
selection of estimation methods in the literature fail at providing unbiased estimators
of the population-level quantile regression coefficients. In particular, some of these
approaches consider cluster-specific effects as fixed, and this is known to lead to the
"incidental parameters problem" in mean regression (Neyman and Scott, 1948; Lancaster,
2000). However, we demonstrated that the bias related to the coefficients’ estimation
also occurred for methods that consider cluster-specific effects as random elements. In
light of this, our second aim is to introduce a novel estimator with better properties.
In particular, we propose a two-step estimator that relies on the best linear unbiased
predictions (BLUPs) of subject-specific effects, treated as random, arising from the LQMM
framework (Geraci and Bottai, 2007, 2014), then used as offsets in a quantile regression
setting for independent observations. Even though the bias of the coefficients’ estimates
is improved with our estimator, our third and final contribution is to provide a bias
adjustment for it. We test several bootstrap schemes, and we find that a combination of
resampling of subject-specific effects combined with wild bootstrap (Wu, 1986; Liu, 1988)
for the residuals is the most successful to build bias adjusted estimates and inference for
the population-level coefficients. Our findings are based on extensive simulation studies,
where we devoted special attention to location-scale shift heteroskedastic models (γ > 0)
when estimation is carried out at a single quantile level as low as τ = 0.1. Such setting is
not commonly studied in the literature of quantile regression, where results are usually
presented for homoscedastic models and/or the estimation is carried out at the median.
Finally, we compare estimation and inference results of our suggested method and those
from the LQMM setting in our application.

1.3.2 Manuscript B
The work presented in Chapter 3 is motivated by a longitudinal study from animal science.
We are interested in studying the physical conditions of sows living in a commercial farm
right after giving birth and along their lactation period (Park et al., 2019; Staicu et al.,
2020). The surroundings of the animals, such as the temperature in the stables, can
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impact their daily quantity of food intake, and scarce nutrition can severely affect the
sows as well as their litter. Since those sows that eat the least are those most at risk,
it comes naturally to consider a low level quantile regression model for the food intake
conditional on the external temperature, adding a sow-specific shift that accounts for the
longitudinal structure of the measurements as well as a smooth effect of lactation days.
Moreover, since temperature was recorded frequently and regularly during each day, it is
possible to regard it as a functional effect. The model we aim at is rather complex, as it
requires techniques from both quantile regression and functional data analysis applied to
longitudinal designs. To our knowledge there are no other works in the literature that
adopt a similar framework.

First of all, we outline the aforementioned modelling setting. In particular, we consider
two different approximation approaches of the functional effects, namely via splines and
eigenfunctions. For the latter we propose a method for the selection of the number of basis
K inspired by Kato (2012) and based on BIC. We give precise computational directions on
how to implement the model of interest relying on ready available software. In particular,
we adopt the flexible estimation framework proposed by Fasiolo et al. (2020), available in
R package qgam, which relies on the methods developed by Wood (2017) for generalized
additive models. We then test such estimation framework for different scenarios in our
simulation section. Finally, in our application section we study the behavior of young and
old sows for "low" and "high" temperature profiles, namely the 20% and 80% point-wise
quantiles of the overall functional temperature recordings respectively. We show that later
in the lactation period the temperature effect is indeed significant, and we apply bootstrap
adjustments for estimation and inference inspired by Battagliola et al. (2021). Moreover,
with model selection based on AIC we conclude that including both a functional and
longitudinal effect is the most suitable setting for the application.

1.3.3 Manuscript C
Chapter 4 presents an analysis embedded in the functional data framework concerning
neuroscience. More specifically, we base our work on that of Benoit et al. (2020), whose
interest was studying working memory impairment in patients affected by psychiatric
disorders. In our manuscript we analyze the learning curves of mice performing memory-
involving tasks repeatedly. In particular, we compare the performances of a group of
animals with an induced brain lesion aimed at emulating a similar damage of psychiatric
disorders patients, and a control group.

For our study we adopt the framework outlined by Happ et al. (2019), who proposed
carrying out MFPCA on bivariate functional objects whose univariate elements are the
amplitude and phase components obtained by phase-amplitude separation of a collection
of functions. With such analysis we are able to compare the different sources of variation,
namely amplitude, phase and a combination of the two, of the two groups of mice across
several stages of the overall experiment while accounting for the simultaneous variation
of phase and amplitude components. In our application of interest both amplitude and
phase variations carry interesting information, namely whether mice can reach a high
probability of completing the tasks with success and, if so, how fast they reach such
results compared to the chosen template curve. From the results we obtain, it is possible
to conclude that there are indeed differences in the way the two groups of mice behave,
as well as some behaviors that are common in both groups.
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Abstract

The manuscript discusses how to incorporate random effects for quantile regression
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2.1 Introduction

Quantile regression has been introduced by Koenker and Bassett Jr (1978) as a way to
describe the association between covariates and quantiles of the response distribution
at pre-set quantile levels. See the comprehensive monographs by Koenker (2005a) and
Koenker et al. (2017) on quantile regression. In recent years, quantile regression has for
example been employed in econometrics and finance (Bayer, 2018; Wang et al., 2018b;
Maciak, 2021a,b).In this article we consider linear quantile regression for clustered data,
such as longitudinal data, and discuss estimation approaches that properly account for
the inherent dependence of the observations within the same cluster. Research in this
area has been very active, especially in econometrics, but existing methods for quantile
regression estimation are proved to be asymptotically consistent only when both the
number of clusters and cluster size increase to infinity. This assumption is rather strong
in practice, where the common scenario is that there are many clusters of moderate to
small sizes. When the cluster size is small, numerical investigations show (see Figure
2.2) that the popular quantile regression estimators may exhibit severe bias, even if there
are many clusters. This represents a gap in the literature, as data settings that involve
many clusters of small to moderate sizes are ubiquituos in medicine and animal science,
to name a few.

Existing approaches to account for dependence in parameter estimation of quantile
regression for clustered (repeated measures) data treat the cluster-specific parameters
either as fixed or random. For example, Kato et al. (2012) and Galvao and Kato (2016)
use cluster-specific intercepts and estimate them as fixed effects parameters together with
the quantile regression parameters using the so-called fixed effects quantile regression
(FE-QR) and fixed effects smoothed quantile regression (FE-SQR), respectively, while
Galvao and Wang (2015) and Galvao et al. (2017) develop minimum-distance-based
estimation for the same purpose. Some approaches consider shrinkage to deal with an
increasing number of clusters, in the presence of cluster-specific parameters. Penalized
quantile regression for longitudinal data is discussed by Koenker (2004), Lamarche (2010),
Harding and Lamarche (2017) and Gu and Volgushev (2019). Canay (2011) proposes a
two-step estimator, relying on mean regression estimates of cluster-specific intercepts,
see also Besstremyannaya and Golovan (2019). Geraci and Bottai (2007) and Geraci
and Bottai (2014) introduce a pseudo likelihood approach, where a linear quantile mixed
model (LQMM) with random cluster parameters is used as a working model, and Galarza
et al. (2017) develop an EM-based estimation methodology for the LQMM framework.
Abrevaya and Dahl (2008) discuss estimation in a model with correlated random effects
(CRE), and Luo et al. (2012) consider a fully Bayesian quantile inference using Markov
Chain Monte Carlo, to account for correlated random effects. We consider a frequentist
perspective and propose a novel two-step estimation approach and associated inference
that rely on the LQMM framework.

When the cluster-specific parameters are treated and estimated as fixed effects param-
eters, estimation suffers from what is known in the literature as the “incidental parameters
problem” (Neyman and Scott, 1948; Lancaster, 2000): the number of (nuisance) parame-
ters grows with the number of clusters, leading to inconsistent joint estimation, when the
cluster size is small. Not surprisingly, only asymptotic scenarios where both the number
of clusters and the cluster size increase to infinity have been studied (Koenker, 2004; Kato
et al., 2012; Galvao and Kato, 2016; Canay, 2011; Besstremyannaya and Golovan, 2019).
To bypass the issues caused by the incidental parameter problem, the cluster-specific
parameters can be modeled as random effects; however, asymptotic properties are not
studied for the LQMM-based estimator (Geraci and Bottai, 2007, 2014).
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Different solutions have been suggested for bias-adjustment in the case of small
clusters: Galvao and Kato (2016) introduce an analytical adjustment for FE-SQR based
on asymptotic analysis, nonetheless the approach requires an optimal bandwidth selection,
which is challenging in practice. The authors also adapt the half-panel jackknife method
(Dhaene and Jochmans, 2015) to longitudinal quantile regression. We consider the
use of half-panel jackknife for bias correction in our numerical investigation. Usually,
bootstrap methods have been used for construction of confidence intervals in models
with cluster-specific effects (Galvao and Montes-Rojas, 2015; Canay, 2011; Geraci and
Bottai, 2014), and for marginal models (without cluster-specific effects), see for example
Karlsson (2009) and Hagemann (2017). We introduce a non-standard bootstrap technique
for both bias-adjustment and inference of quantile regression parameters, in the context
of clustered (longitudinal) data.

This paper makes three main contributions. First, we numerically demonstrate that
Koenker’s penalized estimator, Canay’s two-step estimator and the LQMM estimator
can be severely biased when clusters are small or of moderate size. Although no papers
have claimed the opposite, we are the first to raise this issue. Second, we propose a new
estimation methodology and associated inference for the quantile regression parameters.
The point estimator is computed in two steps: (i) an LQMM framework is used to
predict the cluster-specific parameters; and (ii) the predictions are used as offsets in a
standard quantile regression. The two-step estimator is furthermore adjusted for bias
using bootstrap, and the third contribution is the novel combination of wild bootstrap and
ordinary resampling, that reduces bias and allows to construct confidence intervals that
have good coverage performance. Numerical studies show that the proposed estimator
has considerably smaller bias than the existing competitors, when the cluster size is small.

The structure of the paper is as follows: we set up the model framework in Section 2.2.
In Section 2.3 we summarize some of the existing estimation methods in quantile regression
for repeated measures data and then present the proposed estimation method. The
estimation method is evaluated numerically in a thorough simulation study in Section 2.4
(with additional results in the appendix) and applied to a clinical trial regarding HIV
treatments in Section 2.5. The paper concludes with Section 2.6, which discusses the
main findings.

2.2 Regression framework

Let (Yij , xij)ni
j=1 be the observed data for the ith cluster (i = 1, . . . , N), where xij ∈ Rp−1

is the vector of covariates corresponding to the jth observation of the ith cluster and
Yij ∈ R is the respective response. Here ni denotes the cluster size and the responses are
assumed independent across different clusters but expected to be correlated within the
same cluster. Let τ ∈ (0, 1) be a fixed quantile level of interest, and let Qi

Yij |xij
(τ) be

the τth quantile of the conditional distribution of Yij given xij for cluster i. Consider a
linear quantile regression model

Qi
Yij |Xij

(τ) = XT
ijβ

τ
i , (2.2.1)

where XT
ij = (1, xT

ij) and βτ
i = (βτ,1

i , . . . , βτ,p
i ) is an unknown vector regression parameter

that quantifies the association between the covariates and the τ -quantile of the response
for cluster i. Due to the definition of XT

ij , the first component of βτ
i is the intercept; by

an abuse of notation we refer to Xij as the vector of covariates.
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This model formulation allows for cluster-level effects for every scalar component of
Xij ; an equivalent formulation is to represent the cluster-level effect as the sum of a
population level effect and a cluster-specific deviation. Such formulation is standard in the
mixed effects model representation (Laird and Ware, 1982), and we adopt it here as well.
As for mean regression, all covariates are not necessarily modeled with cluster-specific
levels, and the selection of variables without cluster-specific effects can be based on
interpretational as well as computational arguments. Without loss of generality, assume
that only the first q ≤ p components of Xij have cluster-varying effects; denote by Zij

the vector formed by the first q elements of Xij . The remaining p− q components of Xij

have only population level effect. The effects corresponding to Zij are used to account for
the dependence of the observations within the same cluster; for example, Koenker (2004),
Canay (2011), and Galvao and Kato (2017) used a random intercept only (q = 1) to
model this dependence. Using the terminology from linear mixed effects we can re-write
model (2.2.1) as

Qi
Yij |Xij

(τ) = XT
ijβ

τ + ZT
iju

τ
i , (2.2.2)

by separating the quantile regression parameters that describe a population level effect,
βτ = (βτ,1, . . . , βτ,p−q), from the ones that describe cluster-specific deviations, uτ

i =
(uτ,1

i , . . . , uτ,q
i ). Just like in linear mixed models, it is assumed that uτ

i are zero mean
random quantities. Our primary interest lies in the estimation of βτ in situations with
many clusters (large N) but modest cluster sizes (small nis).

Let uτ = (uτ
1 , . . . , u

τ
N ) denote the collection of (unobserved) cluster-specific parameters.

Moreover, let Y be the vector of the (observed) responses Yij . Consider the loss function

L(βτ ,uτ ; Y) =
N∑

i=1

ni∑
j=1

ρτ (Yij −XT
ijβ

τ − ZT
iju

τ
i ), (2.2.3)

where ρτ (v) = v(τ − 1(v<0)) is the check function (Koenker and Bassett Jr, 1978). If the
values of the cluster-specific effects, uτ

i , were observed, a natural estimator would be the
linear quantile regression estimator corresponding to the covariates Xij and the modified
responses Yij − ZT

iju
τ
i . We call this the oracle estimator,

β̂τ
oracle = arg min

βτ

L(βτ ,uτ ; Y); (2.2.4)

evidently the estimator β̂τ
oracle enjoys the asymptotic properties of a standard quantile

regression estimator (Koenker, 2005a). However, β̂τ
oracle is an unattainable estimator,

as uτ
i s are not observed, and the question we consider in this paper concerns the effect

of uncertainty in the cluster-specific effects on estimating the population level quantile
regression parameter.

One way to address the estimation problem is to treat uτ
i s in (2.2.2) as fixed effects

parameters and have them estimated jointly with βτ using a standard quantile regression
framework. The FE-QR estimation of Kato et al. (2012) minimizes the loss function
(2.2.3) with respect to both βτ and uτ . With this approach, the number of parameters
grows at the same rate as the number of clusters, so the estimator of βτ is only consistent
in asymptotic scenarios where ni grows faster than N (Kato et al., 2012).

We will instead pursue an approach to estimate βτ , when uτ
i s are treated as random.

Similar to the generalized linear mixed effects framework, there are two interpretations
of the covariates’ effects on the response distribution quantile. On one hand, we have
the conditional perspective, following from the definition (2.2.2) that P (Yij ≤ XT

ijβ
τ +
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ZT
iju

τ
i |Xij , u

τ
i ) = τ , which states that βτ is the quantile regression parameter associated

with the covariates Xij , conditional on the cluster-specific effects. On the other hand,
we have the marginal perspective that P (Yij ≤ XT

ij β̃
τ |Xij) = τ , which describes the

covariates’ effect on the τ -quantile of the marginal distribution of Yij . The two quantile
regression parameters (βτ and β̃τ ) are generally different in the same manner that a
fixed effects parameter of a generalized linear mixed model has a different interpretation
than its counterpart in a marginal or population average approach (Zeger et al., 1988;
Neuhaus et al., 1991). The difference between the conditional and marginal quantile
models is discussed more thoroughly in Reich et al. (2009), see also the simulation model
in Section 2.4.

As a consequence, also pointed out in Koenker (2004), it is vital for the estimation of
βτ of a conditional perspective that the cluster-specific parameters uτ

i are not ignored.
Indeed, we illustrate in Section 2.4.2 that the simple marginal quantile regression estima-
tor β̂τ

marg = arg minβτ L(βτ ,0; Y) = arg minβτ

∑
i,j ρτ (Yij − XT

ijβ
τ ) based on standard

quantile regression (where all uis are replaced by zero) may be severely biased for βτ .
The conditional perspective implies that

P (Yij − ZT
iju

τ
i ≤ XT

ijβ
τ |Xij) = τ,

where the probability is taken with respect to the joint distribution of Yij and ui. Inspired
by this equality, we propose to first predict the cluster-specific effects and then use these
predictions as offset in a standard linear quantile regression model using a transformed
response.

2.3 Estimation

2.3.1 Review of selected methods for estimation and bias-adjustment

Penalization of cluster-specific parameters

The model (2.2.2) was first introduced in the literature by Koenker (2004) in a simpler
form, where the term ZT

iju
τ
i is replaced by only a cluster-specific intercept, call it ui0,

which is assumed to be quantile-invariant. For fixed quantile level τ , both the parameter
βτ and the cluster-specific intercepts, ui0, are estimated by minimizing the penalized loss
function

L(βτ ,u0; Y) + λ

N∑
i=1

|ui0|, (2.3.1)

where λ ≥ 0 is a regularization parameter. Koenker (2004) uses ℓ1 penalty in (2.3.1)
due to its computational convenience; in our numerical investigation of the estimators in
Section 2.4, we also use ℓ2 penalty and find minor differences. While (2.3.1) focuses on a
single quantile level, Koenker (2004) describes the estimation of the quantile regression
parameters simultaneously at multiple quantile levels, by introducing quantile-level weights
and minimizing a weighted penalized likelihood.

The ℓ1-penalized estimator for βτ is consistent and asymptotically normal, provided
that Na/n → 0 for some a > 0 (where ni = n); see Koenker (2004). Nonetheless, when
the cluster size, ni, is small the estimator may not enjoy these theoretical properties and
can be seriously biased, especially for extreme quantile levels; see Section 2.4.
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Canay’s two-step estimator

Canay (2011) assumes a cluster-specific intercept, ui0, too, but considers a two-step
procedure to estimate the linear quantile regression parameter βτ of (2.2.2). First, ui0
are estimated as part of the fixed parameters in a mean regression framework. Second,
the quantile regression parameter βτ is estimated using a standard quantile regression
framework (Koenker and Bassett Jr, 1978) applied to adjusted responses Ỹij = Yij − ûi0,
where ûi0 denotes the estimated cluster-specific effects from the previous step. Equivalently,
βτ is estimated by minimizing the loss function (2.2.3) with Z0i = 1 and uτ replaced by
û0, the vector containing the ûi0s:

β̂τ
Canay = arg min

βτ

L(βτ , û0; Y).

Canay (2011) and Besstremyannaya and Golovan (2019) discuss asymptotic properties
for β̂τ

Canay in scenarios where both the number of clusters and cluster size increase.
The use of the mean regression in the first step is justified in Canay’s set-up because

only intercepts are allowed to be cluster-specific, and the deviations from the average are
assumed to be constant over quantile levels. In such case, the random effects correspond to
location shifts; their estimation is quantile-invariant, which may be restrictive. Moreover,
while treating ui0s as fixed parameters as opposed to random may lead to negligible
differences, in terms of estimation, for large clusters, the correct approach for small
clusters is to treat them as random parameters. To address this issue, we propose a new
quantile regression estimator in Section 2.3.2, which is inspired by Canay (2011).

Marginalization over random effects in a working model (LQMM)

Geraci and Bottai (2007, 2014) propose to embed the problem in a fully specified working
model, a linear quantile mixed model (LQMM), using the duality between the quantile
loss (check function) and the asymmetric Laplace distribution (ALD, Yu and Zhang
(2005)). Specifically, assume ui ∼ f(·;φ) for some density f that is parameterized by
a scale parameter φ and posit the following joint model for the responses Yijs and the
cluster-specific uis:

Yij |ui, Xij
ind∼ ALD(XT

ijβ
τ + ZT

ijui, σ, τ), j = 1, . . . ., ni

ui
iid∼ f(·, φ),

(2.3.2)

for i = 1, . . . ., N , where σ is a scale parameter for the residual distribution. The
conditional τ -quantile function associated to the working model is given by (2.2.2), and
the conditional likelihood of Yijs given Xijs and uis takes the form (2.2.3); with uτ

i = ui.
Estimation of model parameters (βτ , σ, φ) is based on maximizing the pseudo likelihood

of Y obtained by integrating the joint density of (Yi1, . . . , Yini , ui) with respect to the
distribution of latent random effects ui. In practice, the random effects are assumed
to be drawn either from a Gaussian distribution N(0, φ2) or a Laplace distribution
ALD(0, φ, 1/2), see Geraci (2014) for details about the computations. In the special case
of random intercepts only, when the Laplace distribution is used for the cluster-specific
parameters ui0s, maximizing the joint model (2.3.2) is equivalent to minimizing Koenker’s
penalized loss function, while if the Gaussian distribution is used, then maximizing
the joint model (2.3.2) is equivalent to minimizing the ℓ2-penalized criterion. From
this perspective, the tuning parameters using Koenker’s penalization approach are scale
parameters in the joint model framework and thus can be estimated with increased



2.3. ESTIMATION 23

computational efficiency. Finally, once the parameters βτ , σ and φ are estimated, the
random effects can be predicted using best linear predictors (BLPs), see equation (12)
in Geraci and Bottai (2014). These predictions are essential ingredients for the new
estimator suggested in Section 2.3.2; note that the computed predictions vary with the
level τ even though ui in the model (2.3.2) does not.

Geraci and Bottai (2007) and Geraci and Bottai (2014) do not discuss asymptotics for
the LQMM estimator, but if the working assumptions are true (ALD for the within-cluster
distribution and Gaussian or Laplace distribution for the random effects), then the LQMM
estimator is the maximum likelihood estimator, and the usual asymptotic results hold.
On the other hand, the bias of the LQMM estimator may be non-negligible, even when
N is large, if the data generating process does not coincide with the working model. This
will be illustrated in Section 2.4.2.

Jackknife-based bias-adjustment for an existing estimator

Since the estimators above show bias when used for clustered data, a bias reduction
adjustment would be appropriate. There are various ways to do this; one approach to
reduce the bias of an estimator is by using a jackknife bias-adjustment. The half-panel
jackknife was first introduced in Dhaene and Jochmans (2015) as a method for bias
correction for mean regression in longitudinal settings with many subjects and fixed panel
size. Later, it was applied to the FE-SQR estimator for longitudinal quantile regression
(Galvao and Kato, 2016); we describe it here for clustered data.

We randomly split the dataset into two sub-datasets, each containing half of the
observations from every cluster. Denote the quantile regression estimator from the two
sub-datatsets by β̂τ

1 and β̂τ
2 , respectively, and let β̂τ be the estimator from the full dataset.

Then, the half-panel jackknife estimator β̂τ
jackknife is defined as

β̂τ
jackknife = β̂τ −

(
1
2(β̂τ

1 + β̂τ
2 ) − β̂τ

)
= 2β̂τ − (β̂τ

1 + β̂τ
2 )

2 . (2.3.3)

To gain some intuition about the bias reduction of this estimator, assume that all clusters
have equal size n and that the asymptotic bias of the initial estimator β̂τ is of the form
C/n+ o(n−1) for some constant C. Then the asymptotic bias of the jackknife estimator
β̂τ

jackknife is of order o(n−1), so the order of the bias is reduced. Nonetheless, empirical
studies indicate that while the adjustment indeed reduces the bias, the resulting variance
of the estimator is increased; see Galvao and Kato (2016).

2.3.2 Proposed quantile estimation with reduced bias

A new two-step estimator (unadjusted)

We propose to estimate the linear quantile regression parameter βτ using a new approach,
which is inspired by the LQMM estimation framework and Canay (2011). It consists of
two steps:

Step 1: Use the LQMM framework to predict the cluster-specific random effects by the
best linear predictors (BLPs) and center them; denote the centered prediction for
cluster i by ũτ

i ;

Step 2: Transform the responses to Ỹij = Yij − ZT
ij ũ

τ
i and use the standard quantile

regression framework for the new responses Ỹij and covariates Xij to estimate βτ .
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There are two key differences between the proposed approach and Canay (2011): 1)
Canay estimates the cluster-specific effects using a mean regression framework, whereas
we use a quantile regression model, and 2) Canay estimates the cluster-specific effects
by treating them as fixed parameters; in contrast we view and estimate them as random
parameters. We illustrate in Section 2.4 that these differences have a large impact in
terms of the estimation quality of quantile regression parameters.

Figure 2.1 shows a comparison between true random effects (x-axis) and their predicted
values (y-axis) for the first cluster from 200 simulated data sets representing the benchmark
scenario in Section 2.4. The BLPs capture the variation among clusters quite well, but it
is clear that some degree of shrinkage takes place as more extreme random effects are
drawn towards zero.
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Figure 2.1: Comparison of the true random effects (on x-axis) and centered BLP predictions (on
y-axis) for the first cluster from 200 simulated datasets from the standard scenario in Section 2.4.
The red line is the line with slope one through the origin.

The second step consists of standard quantile regression applied to Yij − ZT
ij ũ

τ
i ;

equivalently the quantile regression parameter is estimated by minimizing the loss function
(2.2.3), with u fixed at value ũτ , the vector containing ũτ

i s:

β̂τ
two-step = arg min

βτ

L(βτ , ũτ ; Y).

Our two-step estimator turns out to have considerably smaller bias than the LQMM
estimator; yet, the deviation between the true and estimated random effects introduces
some bias. To bypass this issue, we propose a bias-corrected adjustment based on
bootstrap as explained below. The second step can be carried out with standard software,
which typically provides standard errors for each component of the vector βτ . However,
it is important to recognize that these uncertainty estimates are not necessarily reliable,
as they only account for the sampling variability of β̂τ

two-step conditional on the random
effects, not for the extra variation due to the uncertainty in predicting the random effects.
We propose to use bootstrap to estimate the total variation of β̂τ

two-step. We describe
the bootstrap procedures used for bias-adjustment and estimation of variability in the
following.

Bootstrap sampling for bias-adjustment

We propose a semi-parametric-type of bootstrap, which combines non-parametric boot-
strap and wild bootstrap and relies on the linearity of the quantile regression model.
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Let U = {ũτ
1 , . . . , ũ

τ
N } be the sample of predicted cluster-specific effects obtained with

two-step estimation procedure and for each i and j denote the observed residuals by
εij = Yij −XT

ij β̂
τ
two-step − ZT

ij ũ
τ
i .

We define the bootstrap sample as {(Y ∗
ij , Xij , Zij)ni

j=1, u
τ,∗
i }N

i=1 where uτ,∗
i s are obtained

by resampling with replacement from U and Y ∗
ij is defined by

Y ∗
ij = XT

ij β̂
τ
two-step + ZT

iju
τ,∗
i + ε∗

ij , i = 1, . . . ., N, j = 1, . . . ., ni, (2.3.4)

where ε∗
ijs are attained by wild bootstrap; see Wu (1986) and Liu (1988) who introduced

this method in the context of mean regression. Specifically, let ε∗
ij = wij |εij |, where wijs

are drawn independently from the following distribution:

w =
{

2(1 − τ), with probability 1 − τ
−2τ, with probability τ (2.3.5)

which has the τ -quantile equal to 0. The idea of scaling the residuals by weights drawn
from an asymmetric distribution was proposed by Feng et al. (2011); as Wang et al.
(2018a) also recognized, the wild bootstrap captures asymmetry and homoscedasticity
better than ordinary resampling of residuals. Notice that the coupling between covariates
and residuals is maintained in the equation (3.3.12) in the sense that each residual is used
to generate a bootstrap value for its own observation.

Bootstrap methods have been used for inference on quantile regression for longitudinal
data. Most of the approaches rely on non-parametric resampling where complete clusters
are sampled with replacement, by sampling the covariates and the outcomes jointly
(Canay, 2011; Kato et al., 2012; Galvao and Montes-Rojas, 2015; Geraci and Bottai, 2014;
Karlsson, 2009). This method is useful for evaluation of an estimator’s variation, and
thus for computation of standard errors and confidence intervals. However, we expect
such bootstrap estimators to be centered around the estimate from the observed data,
and they would therefore not be useful for bias-adjustment. In contrast, our bootstrap
procedure ensures that the resampled observations are generated from a distribution
with β̂τ

two-step as the “true” parameter; therefore, we can measure bias as the deviation
between β̂τ

two-step and the bootstrap estimates. Details are given below. Our proposed
bootstrap method (abbreviated RW, for standard Resampling and Wild) is compared
with resampling of complete clusters and two additional approaches in Section 2.4.

The RW bootstrap sampling procedure ensures that, conditional on the resampled
random effects, the model assumption about the association between the covariates and
the quantile at level τ is satisfied with βτ = β̂τ

two-step (obtained from the observed data).
Furthermore, if the random effects were known then all observations were independent,
and the distribution of the bootstrap estimators obtained with wild bootstrap would
represent the sampling distribution of β̂τ

two-step (Feng et al., 2011; Wang et al., 2018a).
However, due to the potential deviation between the working model in LQMM and the
true data generating model, the empirical distribution of LQMM predictors of the random
effects may not fully represent the cluster-to-cluster variation, and since this variation
is driving the bias, the proposed estimator does not completely remove the bias of the
initial estimator asymptotically.

Once a bootstrap sample is available, the quantile regression estimator is obtained
by using the proposed two-step estimation approach. At this part, information about
the resampled cluster-specific effects are ignored; nonetheless these terms are used in a
subsequent step, when we estimate the estimator’s variability. The bootstrap estimate
of the quantile regression parameter is obtained by averaging the estimates in B such
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bootstrap samples. If β̂τ,∗
two-step,b denotes the bth bootstrap replicate then the overall

bootstrap estimate of the quantile regression parameter is β̄τ,∗
two-step =

∑B
b=1 β̂

τ,∗
two-step,b/B.

The deviation β̄τ,∗
two-step − β̂τ

two-step between the overall bootstrap estimate and the original
estimate is regarded as an estimate of the bias, so an adjusted estimator (Efron and
Tibshirani, 1993, Chapter 10.6) is defined by

β̂τ
adj = β̂τ

two-step −
(
β̄τ,∗

two-step − β̂τ
two-step

)
= 2β̂τ

two-step − β̄τ,∗
two-step. (2.3.6)

As illustrated by numerical studies, this quantile regression estimator has reduced bias
compared to the (unadjusted) two-step estimator.

Confidence intervals

An important advantage of using a bootstrap-based estimator is that it allows to study the
variability of the estimator, and we now discuss construction of the confidence intervals for
the quantile regression parameter for each component k of the p-dimensional parameter
βτ . We consider two approaches: the first approach is based on the so-called basic
bootstrap method to construct confidence intervals and the second approach capitalizes
on the availability of the bootstrap sample of the cluster-specific effects, which is obtained
at each step of the bootstrap procedure.

The basic bootstrap 100(1 − α)% confidence intervals (Davison and Hinkley, 1997, eq.
5.6) for βτ

k are defined as(
2β̂τ

two-step,k − βτ,∗
1−α/2,k ; 2β̂τ

two-step,k − βτ,∗
α/2,k

)
, k = 1, . . . , p,

where βτ,∗
α/2,k and βτ,∗

1−α/2,k are the α/2 and (1 − α/2) quantiles, respectively, in the
bootstrap sample of β̂τ,∗

two-step,k.
The second approach to construct confidence intervals relies on a normal asymptotic

distribution for the quantile regression estimator and the bootstrap-based estimate of the
variance of the quantile regression estimator. However, in contrast to most bootstrap-
based confidence intervals constructed this way, the bootstrap standard error alone,
SDtwo-step,k =

√∑B
b=1(β̂τ,∗

two-step,k,b − β̄τ,∗
two-step,k)2/(B − 1), fails to accurately quantify

the full variability of the quantile regression estimator of βτ . This is due to the shrinkage
phenomenon of the LQMM predicted cluster-specific effects, which is further perpetuated
in the bootstrap samples of uτ,∗

i s and incorporated in the bootstrap replicates β̂τ,∗
two-step,b.

To bypass this issue, we consider an adjustment. In this regard, denote by SEobs,k

the estimated standard error of the kth component of β̂τ
two-step reported by the standard

quantile regression (Koenker and Bassett Jr, 1978) with the cluster-specific effects set to
the LQMM predicted values and using the accordingly transformed data (step 2 of our
procedure). Recall that this quantity ignores the variability of the cluster-specific effects,
and thus underestimates the true variability of the regression estimator. Fortunately,
our bootstrap algorithm, by resampling from the empirical distribution of the predicted
cluster-effects, allows us to track the variability of the regression estimator induced by the
uncertainty in predicting these effects. Let β̂τ,∗

oracle,b denote the oracle-type quantile regres-
sion estimator based on the bth bootstrap sample, i.e. the Y ∗b

ij s, and by using the “true”
values of the cluster-specific effects, i.e. the uτ,∗b

i s. As before, for each component k denote
by β̄τ,∗

oracle =
∑B

b=1 β̂
τ,∗
oracle,b/B and SDoracle,k =

√∑B
b=1(β̂τ,∗

oracle,k,b − β̄τ,∗
oracle,k)2/(B − 1)
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the mean and standard deviation, respectively, of the oracle-type quantile regression
estimator.

We define the adjusted standard error of the kth component of the two-step quantile
regression estimator as

SEadj,k = SDtwo-step,k
SEobs,k

SDoracle,k
k = 1, . . . , p.

Since both terms of the ratio are based on keeping the cluster-specific constant, the
ratio is used to account for the shrinkage phenomenon. Another way to understand the
adjusted standard error is to view it as a multiplicative factor to the standard error that
is reported in our step 2, SEobs,k: in this case the ratio SDtwo-step,k/SDoracle,k measures
the extra variation of the quantile regression estimator due to estimation of the random
cluster-specific effects.

The 100(1 − α)% confidence intervals for βτ
k based on the adjusted standard errors

are computed as
β̂τ

adj,k ± q1−α/2 · SEadj,k, (2.3.7)

where q1−α/2 is the (1 − α/2) quantile of N(0, 1). These confidence intervals will later be
referred to as SE-adjustment confidence intervals.

We summarize our procedures for estimation and inference in Algorithm 1.

2.3.3 Software
The two-step quantile regression estimator is computed using two different R (R Core
Team, 2020a) packages. For the first step, the LQMM estimation method is implemented
by the lqmm() function from the package lqmm (Geraci, 2014; Geraci and Bottai, 2014).
For the second step, we use standard quantile regression implemented by the function rq()
from the quantreg package (Koenker, 2020). Bootstrap datasets are generated with
standard sampling functions. An R function for the complete estimation and inference
process is available from the corresponding author’s website.

2.4 Simulations

2.4.1 Data generating model
We consider a data generating model inspired by the simulation designs in Koenker (2004)
and Geraci and Bottai (2014). Specifically,

Yij = β0 + β1xij + ui + (1 + γxij)eij , i = 1, . . . ., N, j = 1, . . . ., ni, (2.4.1)

where ui
iid∼ N(0, σ2

u), eij
iid∼ N(0, σ2

e), xij are uniformly distributed on (0, 1) and γ ≥ 0 is
a homoscedasticity-departure parameter. Notice that 1 + γxij is always positive. When
γ ̸= 0, the covariate has both a location shift and a scale effect (Koenker, 2004). In the
homoscedastic case (i.e. γ = 0), the correlation between observations from the same
cluster is σ2

u

σ2
u+σ2

e
. With a slight abuse of notation, we refer to this ratio as the interclass

correlation coefficient (ICC) even when γ > 0.
Model (2.4.1) implies the following quantile regression model

QYij |xij ,ui
(τ) = βτ

0 + βτ
1xij + ui, (2.4.2)
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Consider data {(Yij , Xij , Zij)ni
j=1 : i = 1, . . . , N};

Using LQMM framework, obtain the centered BLPs of the random effects: {ũi
τ };

Use data {(Ỹij , Xij)ni
j=1 : i = 1, . . . , N}, where Ỹij = Yij − ZT

ij ũi
τ and get the

(unadjusted) estimate, β̂τ
two-step, and its estimated standard error, SEobs;

For all i, j compute residuals as εij = Yij −XT
ij β̂

τ
two-step − ZT

ij ũ
τ
i ;

forall b = 1 : B do
Draw weights wij from the weight distribution (2.3.5);
Use wild bootstrap on εij : ε∗b

ij = wij |εij | ;
Resample ũτ

i with replacement to get uτ,∗b
i ;

Construct the bootstrap sample: [{(Y ∗b
ij , Xij , Zij)ni

j=1, u
τ,∗b
i } : i = 1, . . . , N ]

where Y ∗b
ij = ZT

iju
τ,∗b
i +XT

ij β̂
τ
two-step + ε∗b

ij ;
Use data {(Ỹ ∗b

ij , Xij)ni
j=1 : i = 1, . . . , N}, where Ỹ ∗b

ij = Y ∗b
ij − ZT

iju
τ,∗b
i and

standard linear quantile regression estimation to get β̂τ,∗
oracle,b;

Use data {(Y ∗b
ij , Xij , Zij)ni

j=1 : i = 1, . . . , N} and the proposed two-step
estimation to get β̂τ,∗

two-step,b;
end
Compute the two-step bootstrap mean, β̄τ,∗

two-step;
For each component k = 1, . . . , p, calculate the standard deviation for the
two-step and oracle estimators, SDtwo-step,k and SDoracle,k, respectively;

For specified α, for each component k = 1, . . . , p in part calculate:
– 100(1 − α)% basic confidence interval:(

2β̂τ
two-step,k − βτ,∗

1−α/2,k ; 2β̂τ
two-step,k − βτ,∗

α/2,k

)
– 100(1 − α)% SE adjusted confidence interval: β̂τ

adj,k ± q1−α/2 · SEadj,k, where
SEadj,k = SDtwo-step,k

SEobs,k

SDoracle,k

Algorithm 1: Pseudo code for implementation of the bootstrap adjusted two-step
estimator and related confidence intervals.

where βτ
0 = β0 + σeΦ−1(τ) and βτ

1 = β1 + γσeΦ−1(τ), with Φ denoting the cumulative
distribution function for the N(0, 1) distribution. In particular, the quantiles are of the
same form as (2.2.2), with Xij = (1, xij) and Zij = 1,and with uτ

i not depending on
τ . When γ = 0 the slope parameter of the quantile is constant across τ , i.e., βτ

1 = β1,
while the covariate effect differs between quantile levels when γ ̸= 0. Irrespective of the
choice of γ, the regression parameter for the median, β0.5

1 , does not depend on γ, since
Φ−1(0.5) = 0.

Notice that the data generating model implies that the marginal-type quantile at level
τ of Yij given xij (but not conditional on ui) is given by

β0 + β1xij + Φ−1(τ)
√
σ2

u + (1 + γxij)2σ2
e . (2.4.3)

In the heteroscedastic setting (γ > 0) this expression is not linear in xij , in contrast with
(2.4.2), and a linear approximation has parameters that are different from βτ

0 and βτ
1 .

This shows that a marginal estimation approach aims at different parameters compared
to those in (2.4.2).
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We are going to compare our proposed estimators to the marginal estimator and the
other estimation methods discussed in Section 2.3. To implement the approaches we use
the function rq() of the quantreg package (Koenker, 2020) to perform standard quantile
regression and the lqmm() function of the package lqmm (Geraci, 2014) to perform LQMM.
More specifically, we use Gauss-Hermite quadrature (option lqmmType=”normal” in
lqmm) with 15 quadrature points (nK=15) and derivative-free optimisation (lqmmMethod=”df”).
Quantile regression with ℓ1 and ℓ2 penalization and cross validation for selection of the
penalty parameter is implemented in the function cv.hqreg() of the hqreg package (Yi,
2017). We use five-fold cross validation. Finally, we use B = 100 bootstrap replications
for bias-adjustment, where applicable.

2.4.2 Comparison of estimation methods

Overall comparison for a benchmark scenario

In the model (2.4.2), we consider true (mean) parameters β0 = β1 = 1, homoscedasticity
departure parameter γ = 0.4, variances σ2

u = σ2
e = 1, and thus ICC = 0.5. The main

focus is on the quantile level τ = 0.1 that is somewhat extreme; then true parameter
values amount to βτ

0 = −0.281 and βτ
1 = 0.487. Define the “benchmark scenario” by the

case with N = 500 clusters of size ni = 6 (i = 1, . . . ., N); we use this scenario to study
the performance of the estimators in the situation with N ≫ ni.

Figure 2.2 shows the boxplots of the bias for βτ
0 (left) and βτ

1 (right) corresponding to
quantile levels τ = 0.5 (top) and τ = 0.1 (bottom), based on 200 Monte Carlo simulations.
We compare the proposed two-step estimator and its adjusted version (twostep and adj,
respectively), the estimator from Canay (2011) (canay), the LQMM estimator (lqmm)
and its jackknife-based adjustment (jackknife), the estimators arising from penalized
quantile regression, both with ℓ1 and ℓ2 penalties (l1pen and l2pen, respectively), the
marginal estimator arising from standard quantile regression (marg), and the estimator
from (2.2.4) where the actual random effects are used in the computations (oracle).
The oracle estimator is unfeasible in practice, but is used as a reference to study the effect
of random effects being latent.

All nine estimators have similar distributions for τ = 0.5, except the jackknife-
adjusted estimator, which has slightly larger variation for both parameters. The results
are more interesting for τ = 0.1. Focusing first on the methods developed in this paper,
the unadjusted two-step estimator has a smaller bias (component-wise) than the other
estimators studied; yet, there is still some bias left compared to the oracle estimator. The
bias-adjusted estimator, on the other hand, has a very small bias (for each component)
and variance that is slightly larger than that of the oracle estimator, but comparable to
the other competitors.

The estimator proposed by Canay (2011) has a comparable bias to the other estimators
when it comes to the slope, but it shows positive (but small) bias for the intercept. The
variance is small for both components of the quantile regression parameters. Results for
the LQMM estimators and the estimators from Koenker (2004) based on ℓ1 penalisation
are similar and show a small bias for both components. The estimator based on ℓ2
penalisation has the same properties for the slope, but has a larger bias for the intercept.
The jackknife-based adjustment of the LQMM estimator reduces the bias for the slope
parameter, but not for the intercept, and generally, it has large variation.

As expected, the standard quantile regression estimator, which completely ignores the
cluster structure, leads to increased bias. The bias is particularly severe for the intercept,
whereas the bias for the slope is comparable to that of Canay’s estimator, the LQMM
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Figure 2.2: Bias for different estimators of βτ
0 (left) and βτ

1 (right) for 200 datasets from the
benchmark scenario. The quantile level is 0.5 (top) and 0.1 (bottom). The true parameter values
are β0.5

0 = β0.5
1 = 1 and β0.1

0 = −0.281, β0.1
1 = 0.487, respectively.

estimator, and the penalization-based estimators. This is interesting, as it indicates that
these latter estimators effectively estimate the slope coefficient in (a linearized version of)
a marginal quantile model rather than in the conditional quantile model.

Additional simulation results are included in the appendix; Tables 2.4–2.7 show results
for settings where (N,ni) differ from the benchmark scenario, and for quantile levels
τ = 0.1, 0.5. The conclusions from Figure 2.2 are confirmed; in particular an advantage of
the proposed estimators is observed for τ = 0.1 (Tables 2.5 and 2.7). In passing, we note
that the ℓ1-penalized estimator is preferable to the ℓ2-penalized estimator in all settings,
and that the jackknife estimator reduces bias for β̂τ

1 but increases bias for β̂τ
0 and has

larger variance. For those reasons we do not study the ℓ2-penalized and the jackknife
estimators any further. The remaining estimators are discussed in more detail in the next
section.
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The average computing time per simulated dataset for the bootstrap-adjusted two-
step estimator was 18.83 seconds. By comparison, the computation time for the LQMM
estimator was 0.15 seconds. The difference reflects the additional B = 100 iterations
involving LQMM estimation and the construction of the confidence intervals that are
required by the proposed method. The average computation time for Canay’s estimator
was 0.58 seconds. The average computation time for the ℓ1-penalized estimator was
72.29 seconds, partly due to the cross-validation step. The computation time for the
ℓ2-penalized estimator was close to that of the ℓ1-penalized, and computations for the
jackknife adjusted estimator took about three times longer than computations for LQMM.
Computations were run on a commodity PC with 2.9 GHz Dual–Core Intel Core i5
processor 5287U.

Bias for LQMM, ℓ1-penalized, and Canay’s estimator for extreme quantile
levels

For quantile level 0.1, the bias of the LQMM, ℓ1-penalized, ℓ2-penalized and Canay’s
estimators in the bottom of Figure 2.2 is quite large. This flaw is reported for Canay’s
estimator in a simulation study with N much larger than ni and varying quantile levels
(Canay, 2011); however, to the best of our knowledge, the bias has not been documented
thoroughly in the literature for the other estimators. The ℓ1-penalized estimation is
carried out in Koenker (2004) for a simulation model similar to ours, but only for the
median (τ = 0.5) where all estimators are unbiased. LQMM estimation is analyzed in
Geraci and Bottai (2014) in many simulation scenarios with good overall performance,
but the dependence on bias of sample size (N and ni) is not studied in the presence of
heteroscedasticity.

Figure 2.3 shows boxplots of the bias for the LQMM, the ℓ1-penalized, and Canay’s
estimator for various number of clusters, N , cluster sizes, ni, and at different quantile
levels, τ ; results are based on 200 replications. We vary one factor at a time, while keeping
the others fixed at their benchmark values (N = 500, ni = 6, τ = 0.1). As a consequence,
the benchmark scenario appears in each panel. The top plots show the results for the
intercept, while the bottom row shows results for the slope.

Generally, the magnitude of the bias decreases as the number of observations per
cluster increases for fixed N (central panels): this confirms the existing asymptotic results
(Koenker, 2004; Canay, 2011). However, when the cluster size, ni, is fixed (left most
panels), there is non-negligible bias for these estimators, as the sample size, N , increases.
The results are valid for both parameter components, but in particular for the slope
(bottom panel). In other words, the estimators are not consistent for βτ

1 in the asymptotic
scenario with a fixed (and small) number of repeated measurements and increasing the
number of clusters. The bias behavior is worse for quantile levels closer to the boundaries,
τ = 0.1 or τ = 0.9, than for levels closer to the median, τ = 0.5 (right panels).

The three methods are comparable for estimation of βτ
1 whereas there are subtle

differences for βτ
0 : LQMM and ℓ1-penalized estimators behave similarly, except for small

values of N ; Canay’s estimator has bias of opposite sign and of smaller size as well as
smaller variation compared to the two other methods. Further simulation scenarios are
presented in Tables 2.4 and 2.5 in the appendix, showing similar results.
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Figure 2.3: Boxplots for estimators of βτ
0 (top) and βτ

1 (bottom) for 200 datasets from a
selection of the traditional methods with varying N (left panels), ni (middle panels) and τ (right
panels). The factors that do not vary are kept fixed at benchmark values: N = 500, ni = 6,
τ = 0.1.

2.4.3 Performance of the proposed estimators

Bias and variation

We now turn to a more detailed study of our proposed estimators. Figure 2.4 has the
same structure as Figure 2.3, but now includes the oracle estimator (as an infeasible
point of reference), the LQMM estimator (as a representative of the existing methods,
cf. Figure 2.3, and as starting point of our two-step procedure), and the unadjusted and
adjusted two-step estimators. Results are based on 1000 replications. The benchmark
scenario (N = 500, ni = 6, τ = 0.1) was also considered in Figure 2.2, but notice that
the results of Figure 2.4 summarize performance in 1000 simulations, while only 200
simulations were considered in Figure 2.2, due to the increased computational burden
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required by some of the alternative methods.
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Figure 2.4: Boxplots for estimators of βτ
0 (top) and βτ

1 (bottom) for 1000 datasets from the
oracle estimator, the LQMM estimator and the adjusted two-step estimator with varying N (left
panels), ni (middle panels) and τ (right panels). Parameters that do not vary are kept fixed at
benchmark values: N = 500, ni = 6, τ = 0.1.

For the slope quantile regression parameter, βτ
1 (bottom panels), the bias is reduced

for the two-step estimator compared to the LQMM estimator and is almost completely
removed in all scenarios for the bias-adjusted estimator. The variability is only slightly
larger than the variability of the oracle estimator. For the intercept quantile regression
parameter, βτ

0 , the bias is considerably reduced for the proposed two-step estimators
compared to the LQMM estimator when the cluster size is small (top left panel). For
large clusters the unadjusted two-step estimator shows the best performance in terms of
both bias and variance (top central panel).

Results for more combinations of N , ni and τ are reported in the appendix. For
the median, τ = 0.5 (Table 2.6), all three estimators are unbiased and show similar
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variability. For τ = 0.1 (Table 2.7), the situation is more complex. Nonetheless, the
proposed two-step estimators (without adjustment) yields a smaller RMSE than the
LQMM counterpart. Consider the estimation of the slope parameter βτ

1 : all estimators
seem to show similar variability, however the two-step estimators indicate a considerably
improved bias behavior compared to the LQMM estimator. The numerical studies show
that the cluster size has a larger impact on estimation performance than the number of
clusters; compare the RMSE when the number of observations is kept fixed to say 3000
composed by 1) N = 1000 clusters of size ni = 3 and 2) N = 500 clusters of size ni = 6.

Figure 2.5 compares the two-step estimators with the oracle and LQMM for three
extra scenarios that have larger heteroscedasticity (γ = 1) or larger within-cluster relative
variance (σ2

u = 1.5, σ2
e = 0.5 yielding ICC = 0.75), or larger total variation (σ2

u = σ2
e = 1.5)

compared to the benchmark scenario. All other simulation parameters are kept fixed to
the values from the bechmark setting. The changed parameter settings have larger impact
on the distribution of the LQMM estimator than on the distribution of the two-step
estimators. In particular, the two-step estimation results in improved bias performance
compared to the LQMM estimator, irrespective of the setting.
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Figure 2.5: Boxplots of the estimates of βτ
0 (left) and βτ

1 (right) obtained using oracle method,
LQMM, and the two-step estimators with and without adjustment for two-step estimation for the
benchmark scenario and scenarios with larger homoscedasticity, larger ICC, and larger variance.
All the other simulation factors are kept constant to their values of the benchmark scenario.
Results are based on 200 simulations.

Confidence intervals and comparison of bootstrap strategies

Next, we turn to evaluating the proposed bootstrap scheme for decreasing the estimator’s
bias and construction of confidence intervals. We compare the proposed mixture of
standard and wild resampling (denoted by RW) with other types of data resampling, with
respect to bias-adjustment in estimating the parameters, as well as the actual coverage
and average length of the confidence intervals.

Resample random effects and residuals (RRR) A bootstrap sample takes the form
{(Y ∗b

ij , Xij , Zij)ni
j=1, u

τ,∗b
i }N

i=1 where Y ∗b
ij = ZT

iju
τ,∗b
i + XT

ij β̂
τ
two-step + ε∗b

ij , with ε∗b
ij
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obtained from a standard sampling with replacement procedure from the observed
residuals, {εij}i,j , and uτ,∗b

i is sampled from U . In contrast to RW sampling, there is
no coupling between covariates and residuals. Carpenter et al. (2003) has proposed
the method for mean regression for multilevel data. Notice that residuals could
also be sampled cluster-wise in order to maintain within-cluster dependence not
accounted for by the random effect, but we do not consider this.

Resample clusters (RC) The clusters are sampled with replacement in a completely
non-parametric way. More specifically, i∗1, . . . , i∗N are sampled with replacement from
{1, . . . , N}, and a bootstrap dataset consists of (Y ∗

ij , X
∗
ij , Z

∗
ij) = (Yi∗

i
j , Xi∗

i
j , Zi∗

i
j),

i = 1, . . . , N, j = 1, . . . , ni. Within-cluster dependence is maintained because
complete clusters are sampled. The method, also known in the literature as cross-
sectional resampling (Galvao and Montes-Rojas, 2015), is used by Canay (2011) and
Geraci and Bottai (2014) to construct confidence intervals. Karlsson (2009) uses
RC in an attempt to correct for estimation bias in a nonlinear quantile regression
for longitudinal data, using a marginal perspective, but experienced limited gain.

Cluster-wise wild bootstrap (CW) The idea is to use wild bootstrap for the sum
of random effects and error terms. Specifically, let rij = Yij − XT

ij β̂
τ
two-step be

the residuals corresponding to the two-step estimation, and let wis be a random
sample from (2.3.5). The bootstrap sample is {(Y ∗b

ij , Xij , Zij)ni
j=1}N

i=1, where Y ∗b
ij =

XT
ij β̂

τ
two-step + wi|rij |. In contrast to the residuals εij used for RW, rij are defined

without subtraction of predicted random effects (often referred to as “level zero
residuals”). Also, same weight wi is used for all the observations within cluster i
in order to preserve dependence within clusters. This resampling scheme is used
by Modugno and Giannerini (2015) in the context of multilevel models for mean
regression, but does not appear to have been used for quantile regression.

The RW and RRR sampling schemes use bootstrap to approximate the joint distribu-
tion of (uτ

i , Yij), whereas the other two bootstrap methods approximate the distribution
of Yij only. As RC- and CW-based approaches do not involve generation of random
effects, SE-adjustment confidence intervals are only applicable for RW and RRR. The
bias-adjusted estimator and basic confidence intervals, on the other hand, can be computed
for any of the four bootstrap schemes.

Table 2.1 shows bias and actual coverage rates for confidence intervals with an intended
level of 95%. We employ the benchmark scenario, except for a varying number of clusters
(same simulated data as in the left part of Figure 2.4). Results are based on 1000 simulated
datasets. SE-adjustment confidence intervals generated with the RW bootstrap method
give the best coverage rates, close to the nominal 95% in all scenarios. Basic confidence
intervals with RW bootstrap are also good for βτ

0 when N is large, whereas coverage
rates are below 0.90 for βτ

1 . RRR and RW produce similar coverage rates for βτ
1 , but

no bias-adjustment is obtained with RRR (bias is equivalent to bias for the unadjusted
two-step estimator, not reported). For βτ

0 the coverage rates are slightly smaller for RRR
compared to RW. As expected, bootstrap method RC gives no bias reduction, neither for
βτ

0 nor βτ
1 , and coverage rates are consequently never above 0.90. The CW bootstrap

method has poor coverage rates. For βτ
1 the main reason is that the adjusted estimator

has large variability which is not properly taken into account, whereas the explanation
for βτ

0 is that CW introduces a large bias such that the confidence interval is located far
from the true value.

In summary, the semi-parametric bootstrap sampling methods using the additive
model structure for the quantiles (RW and RRR) with SE-adjusted confidence intervals
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βτ
0 βτ

1
N RW RRR RC CW RW RRR RC CW

Bias -0.01 -0.03 0.03 -0.94 0.01 0.05 0.05 -0.03
50 Coverage, basic 0.87 0.90 0.88 0.10 0.86 0.90 0.86 0.42

Coverage, SE-adj. 0.95 0.93 — — 0.95 0.96 — —
Bias -0.02 -0.03 0.03 -0.9 0.03 0.07 0.07 < 0.01

100 Coverage, basic 0.89 0.90 0.90 0.02 0.88 0.90 0.89 0.39
Coverage, SE-adj. 0.95 0.92 — — 0.94 0.95 — —
Bias -0.02 -0.03 0.03 -0.92 0.02 0.06 0.06 -0.03

500 Coverage, basic 0.94 0.90 0.90 < 0.01 0.89 0.89 0.88 0.36
Coverage, SE-adj. 0.96 0.91 — — 0.93 0.92 — —
Bias -0.03 -0.02 0.03 -0.91 0.02 0.05 0.05 -0.04

1000 Coverage, basic 0.94 0.88 0.86 < 0.01 0.89 0.88 0.89 0.31
Coverage, SE-adj. 0.95 0.89 — — 0.93 0.90 — —

Table 2.1: Bias and coverage rates of 95% confidence intervals for the adjusted two-step method
for different bootstrap schemes (RW, CW, RC, RRR) for 1000 datasets. Basic confidence intervals
are used for all bootstrap schemes, whereas SE-adjusted confidence intervals are only defined for
RW and RRR. Cluster size is fixed at ni = 6 and the quantile level is τ = 0.1.

show the best coverage properties. Nonetheless, the proposed two-step with RW-based
adjustment results in the greatest bias reduction.

Geraci and Bottai (2014) and Canay (2011) use RC bootstrap for construction of
confidence intervals (Canay also uses asymptotic results), and Table 2.2 compares coverage
rates and average lengths for their confidence intervals and our SE-adjusted confidence
intervals based on RW sampling. The simulated data are the same as those used for
Table 2.1. Geraci and Bottai (2014) and Canay (2011) present estimation and inference
results regarding different settings than the ones considered here, but our results are well
in line with theirs. The LQMM and Canay confidence intervals loose coverage for large
N because the estimators are biased. For small N the coverage is close to the nominal
level (bias plays a minor role because variation is large), and the confidence intervals
are shorter than those based on SE-adjustment, most likely because extra variability is
introduced with the bias adjustment.

2.4.4 Additional simulation studies
At the suggestion of an anonymous reviewer, we further investigate the proposed method
when the errors eij are generated from a non-Gaussian distributions. Specifically, we
use a scaled t3-distribution and an ALD(0, σ0, τ0) with τ0 = 0.1 and σ0 = (1−τ0)τ0√

1−2τ0+2τ2
0

=
0.09939. Both distributions are scaled to have unit variance in order to make fair the
comparison with the standard normal errors scenarios considered previously. When
sampling from the ALD distribution, we consider both the benchmark scenario and a
departure from it, corresponding to γ = 0. Notice that the true values of βτ

0 and βτ
1

change compared to the standard normal case. The results are shown in Table 2.8 in the
appendix and should be compared to the relevant scenarios in Table 2.7.

In the case of scaled t-distributed errors, the bias is reduced for the two-step estimator,
compared to the LQMM estimator, but it is not completely removed. The RW bootstrap
correction reduces the bias even further for βτ

1 , but surprisingly it increases the bias for
βτ

0 . This may be due to the inflated residuals that are obtained with the wild bootstrap
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βτ
0 βτ

1
N adj (RW) lqmm Canay adj (RW) lqmm Canay

Bias -0.01 -0.16 0.07 0.01 0.15 0.13
50 Coverage 0.95 0.93 0.93 0.95 0.94 0.93

Av. Length 1.29 1.21 0.98 2.11 1.67 1.55
Bias -0.02 -0.13 0.07 0.03 0.17 0.13

100 Coverage 0.95 0.90 0.93 0.94 0.93 0.91
Av. Lengtvh 0.88 0.93 0.70 1.38 1.22 1.09
Bias -0.02 -0.07 0.07 0.02 0.15 0.13

500 Coverage 0.96 0.90 0.84 0.93 0.83 0.81
Av. Length 0.42 0.52 0.31 0.56 0.57 0.48
Bias -0.03 -0.05 0.07 0.02 0.15 0.13

1000 Coverage 0.95 0.90 0.73 0.93 0.70 0.69
Av. Length 0.30 0.40 0.22 0.38 0.41 0.34

Table 2.2: Bias, coverage rates of 95% confidence intervals and average length of confidence
intervals for our adjusted two-step method as well as LQMM and Canay’s methods for 1000
datasets. Cluster size is fixed at ni = 6 and the quantile level is τ = 0.1.

scheme, as they can be large in the situation of heavy-tailed errors, and therefore have
large impact on the estimation of bias for the intercept.

In the case of heteroscedastic ALD errors (γ > 0), the bias of the LQMM estimator for
βτ

1 is reduced considerably compared to the Gaussian case (Table 2.7). The estimators’
variability is also reduced in this setting, in spite of the error variance remaining fixed,
because quantiles are generally estimated with higher precision when the model is ALD
than when it is Gaussian. The two-step estimator and the adjusted two-step estimator
have almost the same distributions as the LQMM estimator. For estimating the intercept,
the performance of the proposed estimators is superior to that of the LQMM, in terms of
reduced bias and variability.

When the errors come from a homoscedastic ALD (γ = 0), the working distribution
for the LQMM estimation approach coincides with the data generating mechanism. As
expected, the LQMM estimator of βτ

1 has a very good performance: no bias and small
variance. The two-step estimators are also unbiased, but have slightly larger variance. For
estimating the intercept parameter, surprisingly, the LQMM estimator shows a behavior
comparable to the heteroscedastic ALD case; in contrast the two-step estimators have a
much smaller bias and variance.

Finally, we also consider a quantile regression model involving both a random intercept
and a random slope. To be specific, the data are generated from the model Yij =
β0 + ui + (β1 + vi)xij + (1 + γxij)eij , where ui is generated as described in (2.4.1) and
vi

iid∼ N(0, σ2
v). Out of the existing methods, only LQMM allows to incorporate random

slopes in the quantile regression; thus we compare the results of the two-step estimation
with LQMM solely. Table 2.3 shows the results. We see that irrespective of the sample
size or cluster size, the two-step estimation without adjustment improves or maintains
the RMSE compared to LQMM estimation. The adjusted two-step estimator generally
shows the smallest bias, but at the expense of increased variability; for the estimation of
the intercept parameter in the case of ni = 12 the unadjusted two-step estimator has the
smallest bias and variance.
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βτ
0 βτ

1
N ni lqmm two-step adj (RW) lqmm two-step adj (RW)

Bias -0.03 -0.01 0.00 0.15 0.14 0.04
500 6 SD 0.13 0.09 0.12 0.18 0.17 0.24

RMSE 0.14 0.09 0.12 0.24 0.22 0.24
Bias -0.03 -0.02 -0.02 0.18 0.17 0.07

1000 6 SD 0.08 0.08 0.11 0.15 0.15 0.21
RMSE 0.09 0.08 0.11 0.23 0.22 0.22
Bias -0.07 -0.02 -0.05 0.06 0.10 0.04

500 12 SD 0.12 0.07 0.08 0.14 0.11 0.13
RMSE 0.14 0.07 0.10 0.15 0.15 0.14

Table 2.3: Bias, standard deviation, and RMSE for the LQMM estimator (lqmm), the two-step
estimator (two-step), and bootstrap-adjusted two-step estimator (adj) where bootstrap samples
are generated with the RW method, and we consider the model with random intercept as well as
random slope.The quantile level is τ = 0.1, and results are from 200 replications.

2.5 Data application

AIDS Clinical Trial Group (ACTG) Study 193A (Henry et al., 1998) is a randomized and
double-blinded study of patients affected by AIDS at severe immune suppression stage,
with CD4 counts of less than 50 cells/mm3. There are 1309 patients, who were assigned
to one of four treatments, namely: 600 mg of zidovudine daily alternating monthly with
400 mg of didanosine (double treatment 1); 600 mg of zidovudine as well as 2.25 mg of
zalcitabine, both daily (double treatment 2); 600 mg of zidovudine as well as 400 mg of
didanosine, both daily (double treatment 3); the combination of 600 mg of zidovudine,
400 mg of didanosine and 400 mg of nevirapine, all of them daily (triple treatment).
The CD4 counts were recorded at a baseline visit and at the follow-up visits during the
subsequent 40 weeks. The measurements were intended to be taken every eight weeks, but
occasionally there were dropouts or skipped medical appointments; see Figure 2.6. After
excluding the subjects with a single measurement (baseline), there are N = 1187 subjects
remaining in the study; their number of repeated measurements, ni, varies between two
and nine with a median of four. The data has been previously used as an illustrative
application for mean regression frameworks in Fitzmaurice et al. (2012) and it is available
at the associated webpage (https://content.sph.harvard.edu/fitzmaur/ala2e/).

Our aim is to study the progression of the infection under the four treatment regimes
for patients at different stages of immune suppression. Since CD4 counts are proxies for
the stage of suppression—with lower CD4 counts corresponding to later stages—this can
be obtained by studying the time trend for each treatment at different quantile levels.
More specifically, an effective treatment reduces the decrease in CD4 counts, yielding a
time trend closer to zero than a less effective treatment, and the effect may be different
for early-stage patients (corresponding to high quantile levels) than late-state patients
(corresponding to low quantile levels). Figure 2.6 shows that subjects tend to have low or
high CD4 counts throughout, suggesting incorporation of subject-specific intercepts in
the model.

As it is common in the literature, we log-transform the observed values and denote
by Yij the log(CD4 count + 1) for patient i at the jth hospital visit and by tij the time
of the jth visit, which is recorded by the number of weeks since the patient’s baseline
visit. We use dummy variables Treath (h = 1, . . . , 4) to indicate the assigned treatment,
where Treat1 corresponds to the triple therapy, and Treat2, Treat3 and Treat4 correspond

https://content.sph.harvard.edu/fitzmaur/ala2e/
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Figure 2.6: Transformed CD4 counts for 200 patients, showing the records of 50 random
subjects from each of the four treatment groups. Observations from the same patients are
connected with lines.

to the three double treatments. We account for age at baseline (variable Age) and sex
(variable Sex, zero for females and one for males) as well. For simplicity of notation,
we collect covariates relative to the ith patient at the jth follow-up visits into Xij such
that XT

ij = (Treat1,i,Treat2,i,Treat3,i,Treat4,i,Agei,Sexi, tij). To study the time-varying
effect of treatment at quantile level τ of the response, let uτ

i be a subject-specific random
effect associated with the quantile level τ and posit the following linear quantile regression
model:

QYij |Xij ,uτ
i
(τ) =

4∑
h=1

βτ
0,h ·Treath,i+

4∑
h=1

βτ
1,h ·Treath,i ·tij +βτ

2 ·Agei+βτ
3 ·Sexi+uτ

i . (2.5.1)

The slope parameters βτ
1,1, . . . , β

τ
1,4 describe the behavior of CD4 counts over time,

conditional on subject, and represent the main object of interest. As our interest is in the
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time varying effect of each treatment we are using the so-called “explicit parameterization”;
as a result, the model specification does not require a common intercept parameter.
Estimation and inference are carried out using the proposed two-step estimation with
adjustment; the results are compared with LQMM.

The estimated slope parameters for each treatment in part are plotted in Figure 2.7
for varying quantile levels. The left panels show the two-step estimates with adjustment
and the corresponding 95% confidence intervals for quantile levels τ ∈ {0.1, 0.15, . . . , 0.9}
(separate analyses). We used 100 RW bootstrap samples for the computations. The top
panels concern the triple treatment: since the confidence band, corresponding to the
two-step estimator, includes zero at all the quantile levels, it indicates that this therapy
maintains an almost constant CD4 count during the study for subjects at any stage of
their condition. For the other three treatments the situation is different. As depicted in
the remaining panels, the two-step estimated coefficients β̂τ

1,2, β̂τ
1,3 and β̂τ

1,4 are negative
and significant at all the quantile levels, indicating that patients treated with either one
of the double therapies must expect to see their CD4 count decrease over time. Notice
that there is a slight increase in the estimated β̂τ

1,2 over quantile levels, which indicates
that double treatment 1 makes the CD4 counts decrease faster for patients in the most
severe conditions (lower quantile levels), whereas double treatments 2 and 3 appear to
have more homogenous effects across patient groups.

In order to compare the treatments more directly we consider contrasts of the form
β̂τ

1,h − β̂τ
1,1, which describe the difference in the effects between each double treatment

and the triple treatment at quantile level τ . The middle panels in Figure 2.7 show
the estimated contrasts and the corresponding 95% confidence intervals. Except for a
single quantile level for double treatment 3, confidence intervals exclude zero, showing
that the triple therapy is the most efficient treatment for patients in all infection stages.
Fitzmaurice et al. (2012) reported similar results for the mean.

For comparison, the LQMM estimates and confidence intervals for the contrasts are
shown in the right panels of Figure 2.7. Confidence intervals are based on 100 RC
bootstrap samples. LQMM estimates are in the same range as the adjusted two-step
estimates, albeit in general closer to zero. Moreover, the confidence bands are much
wider, implying that the LQMM method does not find evidence for significant treatment
differences for double treatments 2 and 3. This should not be surprising, since our
numerical investigation showed that LQMM confidence intervals are wider (and coverage
lower) than those corresponding to the adjusted two-step estimator, when the number of
subjects is much larger than the number of repeated measurements; recall Table 2.1.

While these results are interesting, we acknowledge one aspect of the data that our
analysis does not account for: missing data. Out of the 1187 patients in the study, only 795
of them have measurements past the 30th week since their baseline. Missing data is not
uncommon in ACTG studies and previous quantile regression analyses with longitudinal
data have approached the problem by incorporating weights into the estimating equations
(Lipsitz et al., 1997), employing hierarchical Bayesian models (Huang and Chen, 2016;
Feng et al., 2011), or by considering a linear quantile mixed hidden Markov model with a
missing data indicator (Marino et al., 2018). Incorporation of such methods falls beyond
the scope of this paper, but could be an interesting avenue for future research.

2.6 Discussion

We have identified a gap in the literature concerning mixed effects models for quantile
regression for clustered data: existing estimation methods may yield severely biased
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Figure 2.7: Estimated coefficients and pointwise 95% confidence bands at varying τ for model
(2.5.1). The left panels show results for slope coefficients βτ

1,h (h = 1, . . . , 4, adjusted two-step
method) whereas the central and right panels show results for contrasts with triple therapy as
reference (adjusted two-step method in the centre, LQMM to the right).

estimators for fixed effects parameters in situations with many, but small clusters. In
this paper, we propose a new estimation method that relies on predicted random effects
computed by using an LQMM working framework (in particular, at the quantile level of
interest), standard quantile regression with offsets, and a bias-adjustment by means of
a novel bootstrap sampling technique. In the simulation study, the proposed estimator
shows considerably smaller bias compared to the available competitors, especially in
situations with small clusters. The RW adjustment appears to be particularly beneficial
for estimating slope parameters, while the results are less clear for the intercept and
could be studied further. The two-step estimation procedure may be seen as the onset in
an iterative procedure alternating between estimation of the regression parameters for
fixed random effects and prediction of random effects for fixed regression parameters. An
ALD working model with random effects only (no fixed effects) can be used in the second
step, and this requires minor modifications of the current implementation of the lqmm()
function.

Hitherto, the literature for quantile regression for clustered data has focused on
studying asymptotics for increasing both the number of clusters and the cluster size
(Koenker, 2004; Kato et al., 2012; Canay, 2011; Besstremyannaya and Golovan, 2019). In
such case, the cluster-specific parameters are asymptotically “eliminated” as stated by
Canay (2011) or “concentrated out” as stated by Kato et al. (2012) and act as known
quantities for the asymptotics of βτ . On the other hand, the theoretical study of the
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estimators is inherently challenging, when cluster size is fixed, and only the number of
clusters increases to infinity. Results from (generalized) linear mixed models do not carry
over for primarily two reasons. First, the criterion functions constructed from the check
function is not differentiable. Second, the distributional assumptions are typically held
to the minimum and focus on the relationship between the covariates and the quantile
of interest. In particular, Geraci and Bottai (2007, 2014) do not mention any attempts
to derive asymptotic results for the LQMM estimator and rely on bootstrap methods
for inference. Neither do we provide asymptotic results for our estimators, nor claim
that bias is removed asymptotically. The main difficulty lies in the prediction accuracy
of the random effect predictors, which are used as one of the main ingredients in the
bootstrap sampling procedure. If the predicted random effects do not accurately capture
the variation of the cluster-specific random effects, then the estimated bias may not
represent the bias of the unadjusted estimator. Therefore, when we are neither assuming
an increasing cluster size nor considering a specific data generating model, then it is
difficult to prove asymptotic results for our estimators, and we leave this for future
research.

Mean regression models for longitudinal data often incorporate more complex within-
subject dependence structures than the one modeled by random intercepts alone (com-
pound symmetry). Similar attempts do not seem to exist for quantile regression. The
two-step estimator is not readily modified to take a serial dependence into account, but
the RW bootstrap sampling could be easily adapted such as by sampling the weights
for wild bootstrap at the subject level rather than at the measurement level. Moreover,
longitudinal studies may involve drop-outs and occasional missing data, with data not
missing at random, and how to incorporate such missingness in quantile regression in an
appropriate way remains an open research problem.

One direction that the proposed methodology opens up is to consider quantile regression
for time series data (one long series rather than many shorter series), see Xiao (2017).
In such case, the quantile model would be QYt|Xt

(τ) = XT
t β

τ + uτ
t where Yt and Xt

denote the response and covariate, respectively, at time t (t = 1, . . . , T ), and {uτ
t }t=1,...,T

is a latent series which describes (random) fluctuations of quantiles over time. Another
direction is to extend the approach to multi-level data with multiple levels of nested
random effects or data with several, but non-nested random effects. The ideas behind the
methods from this paper (existing as well as our proposed method) would carry over to
such situations, but a rigorous investigation of this extension is left for future research.
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2.8 Appendix

The appendix contains additional numerical results from the simulation study with data
generated from model (2.4.1). The results are discussed in the main text. Tables 2.4
and 2.5 compare various existing approaches when both the number of clusters and the
cluster size vary; other simulation parameters are specified by their level at the benchmark
scenario. Estimation is carried out for quantile levels τ = 0.5 (Table 2.4) and τ = 0.1
(Table 2.5), respectively, with results based on 200 replications. It is not possible to
compute the jackknife estimator when ni = 3 because clusters cannot be split into two
subsets with several observations per cluster. Furthermore, in the scenario with N = 1000,
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ni = 12 and τ = 0.1 there were convergence problems for the ℓ1-penalized estimator for
two datasets, and the results for this estimator are based on the remaining 198 replications.
Table 2.6 and Table 2.7 have the same structure as described above and consider the same
scenarios; they evaluate the performance of the LQMM estimator and our two proposed
methods in 1000 replications. Notice the difference in the number of replications; as
mentioned in Section 2.4.2 it is due to the computational burden of some of the traditional
estimators. Finally, Table 2.8 summarizes the results for the case when the error terms in
(2.4.1) are either sampled from a scaled t-distribution in the benchmark scenario, from an
ALD distribution in the benchmark scenario or an ALD distribution when γ = 0. Results
correspond to the quantile level τ = 0.1 and are based on 200 replications.
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Table 2.4: Bias, standard deviation, and RMSE for the oracle, Canay’s, the jackknife, the
ℓ1-penalized, the ℓ2-penalized and the marginal estimators. The quantile level is τ = 0.5, and
results are based on 200 replications.



2.8. APPENDIX 45
β

τ 0
β

τ 1
N

n
i

or
ac

le
C

an
ay

’s
ja

ck
kn

ife
ℓ 1

-p
en

ℓ 2
-p

en
m

ar
g

or
ac

le
C

an
ay

’s
ja

ck
kn

ife
ℓ 1

-p
en

ℓ 2
-p

en
m

ar
g

Bi
as

<
0.

01
0.

16
—

-0
.4

2
-0

.4
8

-0
.5

1
<

0.
01

0.
23

—
0.

10
0.

10
0.

09
50

0
3

SD
0.

10
0.

10
—

0.
14

0.
12

0.
13

0.
18

0.
17

—
0.

21
0.

20
0.

23
R

M
SE

0.
10

0.
19

—
0.

44
0.

50
0.

53
0.

18
0.

29
—

0.
23

0.
23

0.
25

Bi
as

<
0.

01
0.

16
—

-0
.3

8
-0

.4
6

-0
.5

2
<

0.
01

0.
24

—
0.

11
0.

12
0.

11
10

00
3

SD
0.

07
0.

07
—

0.
10

0.
09

0.
10

0.
14

0.
13

—
0.

15
0.

16
0.

18
R

M
SE

0.
07

0.
18

—
0.

40
0.

47
0.

53
0.

13
0.

27
—

0.
19

0.
20

0.
21

Bi
as

0.
01

0.
07

-0
.1

5
-0

.1
0

-0
.3

6
-0

.5
3

-0
.0

1
0.

11
0.

05
0.

09
0.

10
0.

12
50

0
6

SD
0.

07
0.

08
0.

22
0.

13
0.

09
0.

10
0.

13
0.

13
0.

21
0.

14
0.

14
0.

16
R

M
SE

0.
07

0.
11

0.
27

0.
17

0.
37

0.
54

0.
13

0.
17

0.
22

0.
17

0.
17

0.
20

Bi
as

<
0.

01
0.

07
-0

.1
4

-0
.0

2
-0

.3
4

-0
.5

3
<

0.
01

0.
13

0.
03

0.
09

0.
10

0.
12

10
00

6
SD

0.
04

0.
06

0.
19

0.
10

0.
06

0.
07

0.
09

0.
10

0.
16

0.
10

0.
10

0.
12

R
M

SE
0.

04
0.

09
0.

23
0.

10
0.

35
0.

53
0.

09
0.

16
0.

17
0.

14
0.

14
0.

17
Bi

as
<

0.
01

0.
03

-0
.0

6
-0

.0
4

-0
.3

4
-0

.5
2

<
0.

01
0.

06
-0

.0
1

0.
07

0.
10

0.
12

50
0

12
SD

0.
05

0.
07

0.
21

0.
09

0.
08

0.
09

0.
10

0.
09

0.
15

0.
09

0.
10

0.
12

R
M

SE
0.

05
0.

08
0.

22
0.

10
0.

35
0.

53
0.

09
0.

11
0.

15
0.

12
0.

14
0.

17
Bi

as
<

0.
01

0.
04

-0
.0

4
-0

.0
3

-0
.3

4
-0

.5
2

<
0.

01
0.

06
<

0.
01

0.
07

0.
10

0.
12

10
00

12
SD

0.
03

0.
05

0.
16

0.
08

0.
06

0.
06

0.
07

0.
07

0.
10

0.
07

0.
07

0.
09

R
M

SE
0.

03
0.

06
0.

17
0.

08
0.

34
0.

52
0.

06
0.

09
0.

10
0.

10
0.

12
0.

15

Table 2.5: Bias, standard deviation, and RMSE for the oracle, Canay’s, the jackknife, the
ℓ1-penalized, the ℓ2-penalized and the marginal estimators. The quantile level is τ = 0.1, and
results are based on 200 replications.
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βτ
0 βτ

1
N ni lqmm two-step adj (RW) lqmm two-step adj (RW)

Bias < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
500 3 SD 0.09 0.09 0.09 0.14 0.15 0.15

RMSE 0.09 0.09 0.09 0.14 0.15 0.15
Bias < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

1000 3 SD 0.07 0.06 0.07 0.10 0.11 0.11
RMSE 0.07 0.06 0.07 0.10 0.11 0.11
Bias < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

500 6 SD 0.07 0.06 0.07 0.10 0.10 0.10
RMSE 0.07 0.06 0.07 0.10 0.10 0.10
Bias < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

1000 6 SD 0.06 0.05 0.05 0.07 0.07 0.07
RMSE 0.06 0.05 0.05 0.07 0.07 0.07
Bias < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

500 12 SD 0.09 0.06 0.06 0.07 0.07 0.07
RMSE 0.09 0.06 0.06 0.07 0.07 0.07
Bias < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

1000 12 SD 0.06 0.04 0.04 0.05 0.05 0.05
RMSE 0.06 0.04 0.04 0.05 0.05 0.05

Table 2.6: Bias, standard deviation, and RMSE for the LQMM estimator (lqmm), the two-step
estimator (two-step), and bootstrap-adjusted two-step estimator (adj) where bootstrap samples
are generated with the RW method. The quantile level is τ = 0.5, and results are based on 1000
replications.

βτ
0 βτ

1
N ni lqmm two-step adj (RW) lqmm two-step adj (RW)

Bias 0.02 0.09 0.06 0.25 0.10 0.05
500 3 SD 0.16 0.11 0.14 0.21 0.20 0.23

RMSE 0.16 0.15 0.15 0.33 0.22 0.23
Bias 0.04 0.09 0.05 0.26 0.10 0.05

1000 3 SD 0.11 0.08 0.10 0.15 0.14 0.16
RMSE 0.12 0.12 0.12 0.30 0.18 0.17
Bias -0.07 0.03 -0.02 0.15 0.06 0.02

500 6 SD 0.13 0.08 0.10 0.15 0.14 0.15
RMSE 0.15 0.09 0.10 0.21 0.15 0.16
Bias -0.05 0.03 -0.03 0.15 0.05 0.02

1000 6 SD 0.10 0.06 0.07 0.10 0.09 0.11
RMSE 0.11 0.07 0.08 0.18 0.11 0.11
Bias -0.06 0.01 -0.05 0.08 0.03 < 0.01

500 12 SD 0.12 0.07 0.07 0.10 0.10 0.11
RMSE 0.13 0.07 0.09 0.12 0.10 0.11
Bias -0.05 0.01 -0.05 0.07 0.03 < 0.01

1000 12 SD 0.09 0.05 0.05 0.07 0.07 0.08
RMSE 0.11 0.05 0.07 0.10 0.07 0.08

Table 2.7: Bias, standard deviation, and RMSE for the LQMM estimator (lqmm), the two-step
estimator (two-step), and bootstrap-adjusted two-step estimator (adj) where bootstrap samples
are generated with the RW method. The quantile level is τ = 0.1, and results are based on 1000
replications.
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βτ
0 βτ

1
eij N ni lqmm two-step adj (RW) lqmm two-step adj (RW)

Bias -0.27 -0.04 -0.15 0.14 0.00 0.00
t3 500 6 SD 0.14 0.08 0.10 0.12 0.11 0.14

RMSE 0.30 0.09 0.18 0.18 0.12 0.14
Bias -0.25 -0.05 -0.16 0.15 0.06 0.01

t3 1000 6 SD 0.11 0.06 0.07 0.09 0.09 0.12
RMSE 0.28 0.07 0.17 0.17 0.11 0.12
Bias -0.18 -0.05 -0.15 0.10 0.04 0.02

t3 500 12 SD 0.13 0.07 0.08 0.08 0.09 0.11
RMSE 0.22 0.08 0.17 0.13 0.10 0.11
Bias -0.12 -0.10 -0.05 0.06 0.05 0.04

ALD 500 6 SD 0.13 0.06 0.07 0.06 0.08 0.09
RMSE 0.17 0.12 0.09 0.08 0.09 0.10
Bias -0.08 -0.10 -0.06 0.05 0.05 0.04

ALD 1000 6 SD 0.10 0.04 0.05 0.05 0.05 0.06
RMSE 0.12 0.11 0.07 0.07 0.07 0.07
Bias -0.08 -0.07 -0.03 0.03 0.03 0.02

ALD 500 12 SD 0.12 0.05 0.05 0.04 0.04 0.05
RMSE 0.15 0.09 0.06 0.05 0.05 0.05
Bias -0.13 -0.06 -0.04 0.00 0.00 -0.01

ALD 500 6 SD 0.14 0.05 0.06 0.05 0.06 0.07
(γ = 0) RMSE 0.19 0.08 0.07 0.05 0.06 0.07

Bias -0.07 -0.07 -0.04 0.00 0.00 0.00
ALD 1000 6 SD 0.11 0.04 0.05 0.04 0.04 0.05

(γ = 0) RMSE 0.13 0.08 0.06 0.04 0.04 0.05
Bias -0.07 -0.05 -0.02 0.00 0.00 0.00

ALD 500 12 SD 0.13 0.05 0.05 0.03 0.04 0.04
(γ = 0) RMSE 0.14 0.07 0.06 0.03 0.04 0.04

Table 2.8: Bias, standard deviation, and RMSE for the LQMM estimator (lqmm), the two-step
estimator (two-step), and bootstrap-adjusted two-step estimator (adj) where bootstrap samples
are generated with the RW method. The residuals are sampled from a scaled t3 when γ = 0.4
(top part), and from an ALD when either γ = 0.4 (central part) or γ = 0 (bottom part). The
quantile level is τ = 0.1, and results are based 200 replications.
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Quantile regression for longitudinal
functional data with application to
feed intake of lactating sows

Maria Laura Battagliola, Helle Sørensen, Anders Tolver & Ana-Maria
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Abstract

Our work is motivated by a study on lactating sows, where the main interest is about
the influence of temperature, measured throughout the day, on the lower quantiles
of the feed intake. We propose a model framework and estimation methodology for
quantile regression in scenarios with clustered or longitudinal data and functional co-
variates. The proposed quantile regression model includes subject-specific intercepts
to incorporate within-subject dependence, and it allows for time-varying coefficient
functions. Estimation relies on basis representations of the unknown coefficient
functions, either with a spline basis or a data-driven basis, and can be carried out
with existing software. The proposed method is studied numerically in a simulation
study that covers a wide range of situations, and we introduce bootstrap procedures
for bias adjustments and computation of standard errors. Analysis of the lactation
data indicates, among others, that the influence of temperature increases during the
lactation period.

Keywords: Bootstrap; Clustered data; Functional principal component analysis;
Penalized splines, Subject-specific effects
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CHAPTER 3. QUANTILE REGRESSION FOR LONGITUDINAL
FUNCTIONAL DATA WITH APPLICATION TO FEED INTAKE OF

LACTATING SOWS3.1 Introduction

This paper studies quantile regression for clustered or longitudinal data in the presence of
functional covariates. It is motivated by data on the feed intake of lactating sows, where
the aim is to study how temperature in the stable, or cell, during the day affects the feed
intake, in particular for sows that eat scarcely. This is of interest because poor nutrition
in the lactation period may lead to health downsides, both for the sows and the piglets,
and production inefficiency. Temperature is measured every fifth minute and is therefore
naturally treated as a functional covariate, and the study is longitudinal since since feed
intake and temperature is registered over up to 21 days for each sow.

Quantile regression, first introduced by Koenker and Bassett Jr (1978), is a well-
established framework from statistics and econometrics. It is suitable when the analysis
aims at describing and quantifying the association between covariates and quantiles of
the distribution of the response variable. In particular, it allows to robustly target not
only the central parts of the response distribution, but also the more extreme regions.
For overviews, see the seminal monograph by Koenker (2005b) and Koenker et al. (2017)
for more recent developments.

Analyses of longitudinal data, including quantile regression, must account for the
dependence between observations from the same subject in order to provide valid results.
A common approach is to include subject-specific effects in the model for the quantiles
and use penalization, see for example Koenker (2004), Lamarche (2010), Harding and
Lamarche (2017), Gu and Volgushev (2019), and Fasiolo et al. (2020), and we adopt the
same approach for this paper. Alternatives include Kato et al. (2012) and Galvao and
Kato (2016), who treated subject-specific parameters as fixed effects without penalization,
and Canay (2011), who used a two-step procedure where subject-specific parameters
are first estimated as fixed effects and then plugged in as offsets in a standard quantile
regression (see also Besstremyannaya and Golovan (2019)). The close link between the
loss function used in quantile regression and the log-density for the asymmetric Laplace
distribution (ALD, Yu and Zhang (2005)) has been used to define a working model
where subject-specific effects could be integrated out (Geraci and Bottai, 2014), for
hierarchical Bayesian models (Luo et al., 2012), or for an EM algorithm (Galarza et al.,
2017). Moreover, Battagliola et al. (2021) proposed a bias-adjustment to the estimator
from (Geraci and Bottai, 2014), and we use the same idea in the application.

Quantile regression for functional covariates, similar to scalar-on-function mean re-
gression, quantifies the association with the functional covariate involving the integral∫
β(s)X(s) ds for an unknown coefficient function β(·). As it is common in nonparametric

regression, we approximate the function using finite basis representations for β(·), and
thus the infinite-dimensional estimation problem is converted to a finite-dimensional one.
Pre-specified spline functions and eigenfunctions obtained from the spectral decomposition
of the functional covariates’ covariance operator are the most popular choices for selecting
the basis functions, and they have both been used for quantile regression. For example,
Cardot et al. (2005) and Park et al. (2019) used splines, whereas Kato (2012), Chen and
Müller (2012) and Li et al. (2016) used eigenfunctions. A related research area is additive
quantile regression where the effect of a scalar covariate is modeled via a smooth function
(Fenske et al., 2013; Greven and Scheipl, 2017; Geraci, 2019; Fasiolo et al., 2020).

In this paper we propose functional quantile regression for scalar response and func-
tional covariates, which are both observed repeatedly for multiple clusters or subjects. To
the best of our knowledge no papers in the literature are devoted to this situation. We
first consider a set-up with clustered data, and then extend to a longitudinal set-up, where
we account for the time at which the repeated measures are made and furthermore by
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using a coefficient function that evolves over time. We contrast the spline approach and
the eigenfunction approach to handle the functional covariates and use penalized cluster-
or subject-specific intercepts to account for the dependence within clusters or subjects.
The resulting model can be represented in a framework that can be easily implemented
using existing software (Fasiolo et al., 2020).

The main contributions of the paper are threefold: First, we develop modeling
and associated estimation methodology for quantile regression in the complex sampling
situation involving scalar response and functional covariates, both observed repeatedly.
The proposed method is studied numerically in simulation studies that cover a wide range
of situations. Second, we point out bias and variance issues of the estimators and propose
adjustments obtained with bootstrap, using resampling techniques from Battagliola et al.
(2021) for bias adjustment and from Galvao and Montes-Rojas (2015) for computation of
standard errors. Third, with the new methodology we are able to give further insight
to the eating behavior of lactating sows in the application. In particular, the analysis
indicates that the association between temperature in the stable becomes stronger as
time goes by after delivery.

The paper is structured as follows: In Section 3.2 we introduce the model framework,
in particular the model with cluster-specific intercepts for clustered data. We describe the
estimation methodology in Section 3.3 and the practical implementation in Section 3.4.
We study the estimation methods on simulated data in Section 3.5, and devote Section
3.6 to the analysis of the lactation data. Finally, we summarise and discuss finding in 3.7,
Additional material can be found in Section 3.9.

3.2 Framework

3.2.1 Quantile regression model
In this paper we focus on quantile regression for clustered (and longitudinal) data as well
as on the inclusion of functional covariates. We consider scalar responses and functional
predictors {(Yij , Xij(·))}ij , where i = 1, . . . , N denote clusters, and j = 1, . . . , ni denote
repeated measurements within cluster i. Covariates Xij(·) are square-integrable functions
with domain S ⊂ R, i.e., Xij(·) ∈ L2(S).

We model covariate effects through integrals
∫

S
βτ (s)Xij(s) ds for an unknown coeffi-

cient function βτ : S → R. We assume that a change in the functional covariates affect
all clusters in the same way, but allow for cluster-specific terms such that all observations
within a cluster can have a higher/lower quantile compared to an average cluster. For
a fixed quantile level τ ∈ (0, 1), we therefore consider the following quantile regression
model:

QYij |Xij ,uτ
i
(τ) = uτ

i + ατ +
∫

S

βτ (s)Xij(s) ds, i = 1, . . . , N, j = 1, . . . , ni. (3.2.1)

Similar to mixed models, the cluster-specific terms uτ
i are considered as random variation

between clusters. This is also indicated by the notation: QYij |Xij ,uτ
i
(τ) is the quantile

in the conditional distribution of Yij given Xij(·) and uτ
i . From this point of view, the

cluster-specific intercepts introduce correlation between repeated measures from the same
cluster, while clusters are assumed to be independent.

The primary interest lies in the quantile regression coefficient βτ (·) which determines
the predicted effect of a change in the functional covariate on the level τ quantile common
to all clusters. In terms of an intervention study the target parameter allows us to
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determine the causal effect on the level τ quantile for all subjects/clusters in response to a
change of the functional covariate. Importantly, this may be different from the population
averaged marginal change of the level τ quantile. We elaborate on this point in Section
3.2.2.

The regression coefficient βτ (·) is identifiable only up to an additive component in the
orthogonal complement of the vector space spanned by the functional covariates Xij(·).
Further, equation (3.2.1) does not specify the full conditional distribution of Yij , only its
τ -quantile. We are going to use it for one or a few quantiles levels of particular interest,
but further restrictions could be imposed to avoid crossing quantiles if necessary. In
particular, a common uτ

i across all τ would correspond to shifts of the whole distributions
between clusters.

Our simplest scenario consists of model (3.2.1) in combination with observations
Xij(sh) of the covariate functions on a dense grid {s1, . . . , sH} ⊂ S for a large H. Further
complexity is introduced when data are longitudinal, such that the repeated measurements
for each cluster (subject) are observed in a chronological order along time. We introduce
dependence of time into the ατ and βτ (·) coefficients of (3.2.1), and the added complexity
allows us to predict quantiles along the longitudinal time. This is vital for our application.
Moreover, in most real world applications we only have access to covariates observed
with noise and/or covariates that are incomplete. Then, we perform smoothing before
proceeding with estimation.

3.2.2 Comparison between conditional and marginal quantile models
Before we move on to estimation, we emphasize the distinction between conditional and
marginal quantile models, in particular that the marginal quantiles may not inherit the
linear structure from the conditional ones. This is important to bear in mind if we aim at
the conditional model, since a marginal estimator, ignoring dependence within cluster,
may lead to bias.

We illustrate the point with the following example, which generalizes a model from
Battagliola et al. (2021) to include a functional covariate. Assume that the response is
generated as

Yij = ui + α+
∫

S

β(s)Xij(s)ds+
(

1 + γ

∫
S

Xij(s)ds
)
eij ,

where γ ≥ 0 and 1 + γ
∫

S
Xij(s)ds > 0 with probability one, and ui

iid∼ N(0, σ2
u) are

mutually independent of eij
iid∼ N(0, σ2

e). Then, the level τ conditional quantile of Yij

given both Xij(·) and ui takes the form (3.2.1) with intercept ατ = α+ σeΦ−1(τ) and
functional coefficient given by βτ (s) = β(s) +σeγΦ−1(τ). On the other hand, the quantile
of Yij only conditional on Xij(·), is

mQYij |Xij
(τ) = α+

∫
S

β(s)Xij(s)ds+ σeΦ−1(τ)

√
σ2

u

σ2
e

+
(

1 + γ

∫
S

Xij(s)ds
)2
. (3.2.2)

We will refer to this as the marginal quantile even though it is conditional on Xij(·),
and thus distinguish between conditional and marginal quantiles depending on whether
conditioning with respect to ui takes place or not.

If there is no dependence across repeated measurements (σ2
u = 0 and all uis equal to

zero) then the conditional and the marginal quantile coincide. Moreover, the coefficient
functions in the conditional and marginal model coincide at the median (τ = 0.5), and
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equal β from the data generating model, since Φ−1(0.5) = 0. However, if σ2
u > 0 and

τ ̸= 0.5, then the dependence of Xij(·) takes a different functional form in the marginal
quantiles; it is not even a functional linear relationship.

A linearization of the square root in (3.2.2) as a function of
∫

S
Xij(s)ds can give

an indication of the target value for the marginal linear quantile regression model. In
particular, if σ2

u/σ
2
e is large compared to the variation of (1 + γ

∫
S
Xij(s)ds)2, then

the regression coefficient function from the linearised marginal model differs from the
regression coefficient function from the conditional model; the deviation is constant over
S with the sign depending on Φ−1(τ).

Thus, a marginal analysis, that ignores the cluster structure, has a different target
than the conditional model, and that it is therefore important to incorporate the cluster
structure in the estimation process if we aim at the conditional quantile. We return to
the model in Section 3.5.2.

3.3 Estimation methodology

Two main challenges arise for the estimation of the model (3.2.1) compared to classical
quantile regression for independent data with scalar covariates: how to handle the cluster-
specific intercepts uτ

i and how to represent the functional coefficient βτ (·) appearing in
the integral. We manage the cluster-specific effects by regularization and penalize the
uτ

i s with an ℓ2 penalty (corresponding to ridge regression). For the coefficient function
βτ (·) we use basis representations of the form

βτ (s) ≈
D∑

d=1
bτ

dφd(s) (3.3.1)

and present two strategies for this approximation: one in terms of penalized splines and
one using eigenfunctions from the eigendecomposition of the covariance operator of the
functional covariates. Thereafter, we extend the model and the estimation approaches to
the more complex situation with longitudinal data. For all approximations the quantile
regression model involves terms of the form∫

S

βτ (s)Xij(s)ds ≈
D∑

d=1
bτ

d

∫
S

φd(s)Xij(s)ds.

If Xij(·)s are observed at a dense grid the integrals are well approximated by Riemann
sums or by quadrature rules.

3.3.1 Representing the functional coefficient with a pre-specified basis
Our first proposal is to use a spline representation for the functional coefficient βτ (·).
We therefore let {φd}D

d=1 in (3.3.1) denote a predefined spline basis, and introduce the
notation Zd,ij =

∫
S
φd(s)Xij(s) ds. Then the expression (3.2.1) for the quantile is

Qspline
Yij |Zij ,uτ

i
(τ) = uτ

i + ατ +
D∑

d=1
bτ

dZd,ij (3.3.2)

Hereby, the infinite-dimensional estimation problem has been turned into a finite-
dimensional estimation problem with the coefficients bτ

1 , . . . , b
τ
D as the unknown pa-

rameters. The number of basis functions used in the approximation should be large
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enough to guarantee a proper approximation of βτ (·), but a large D could lead to overfit-
ting. In order to handle this problem, coefficients bτ

1 , . . . , b
τ
D are penalized as is common

in functional regression (Marx and Eilers, 1999; Cardot et al., 1999b; Goldsmith et al.,
2011b), see details below.

In standard quantile regression, parameters are estimated by minimizing an objective
function defined as an empirical loss

∑
i,j lτ (Yij −Qτ

ij) where Qτ
ij is short for the level

τ quantile for observation j of cluster i and depends on the model parameters, and lτ
is an appropriate loss function, typically the check function loss v 7→ v(τ − 1(v<0)). We
modify this approach in two ways, following Fasiolo et al. (2020). First, we use a smooth
approximation of the check function loss, namely

lτ,λ,σ(v) = τ − 1
σ

v + λ log
(

1 + exp
( v

σλ

))
. (3.3.3)

where λ determines the degree of smoothing, and the check function is recovered as λ → 0.
The loss function in (3.3.3) will be referred to as the Extended log-F (ELF) loss because
v 7→ exp(−lτ,λ,σ(v)) is proportional to the density of an extended log-F distribution.
Second, we penalize the subject-specific intercepts and the spline coefficients, and estimate
the parameters by minimizing the penalized empirical loss

Lspline,τ (ατ , bτ ,uτ ) =
N∑

i=1

ni∑
j=1

lτ,λ,σ(Yij−Qspline
Yij |Zij ,uτ

i
(τ))+ 1

2γu||uτ ||2+ 1
2γb||bτ ||2B (3.3.4)

with uτ = (uτ
1 , .., u

τ
N )T ∈ RN , ατ ∈ R, bτ = (bτ

1 , .., b
τ
D)T ∈ RD and penalty parameters

γu, γb > 0. The penalty matrix B defining the norm ||bτ ||2B = (bτ )TBbτ is of size D×D,
positive semi-definite, and selected by the analyst. Importantly, and in contrast to the
approach to be discussed in Section 3.3.2, the idea is to use a rich basis for βτ (·), i.e. a
large D, and avoid overfitting by penalization of the coefficients.

We adopt the Bayesian approach for additive quantile regression proposed by Fasiolo
et al. (2020). The method works with a belief-update principle (Bissiri et al., 2016).
The ELF loss is differentiable and thus allows for common computational optimizers
like the Newton method. In particular, this loss function is proportional to the negative
log-density of the Gibbs posterior from the belief-update framework when imposing priors
uτ ∼ N(0, γ−1

u IN ), where IN is the N×N identity matrix, and bτ ∼ N(0, (γbB)−), whose
covariance matrix is an appropriate generalized inverse of γbB. Hence, the estimated
coefficients ûτ , α̂τ , and b̂τ obtained by minimizing (3.3.4) correspond to the maximum
a posteriori estimates. Notice that, apart from the penalty parameters γu and γb, the
function (3.3.4) depends on two additional tuning parameters: σ> 0 and λ > 0 are the
inverse of the learning rate and the smoothing level of the ELF loss function, respectively.
Selection of the tuning parameters is based on a marginal loss criterion with integration
over βτ (for γu and γb), calibration using a Bayesian sandwich covariance estimator (for
σ), and minimization of an asymptotic mean squared error of the estimated quantile
regression coefficients (for λ). The selection procedures are implemented as part of the R
package qgam accompanying Fasiolo et al. (2020).

3.3.2 Representing the functional coefficient with a data-driven basis
A common alternative to using a fixed, pre-specified basis for βτ (·) is to use a data-driven
basis designed to capture the primary modes of variation for the covariates. Functional
principal component analysis (FPCA) provides an algorithm to obtain such a basis, see
for example Ramsay and Silverman (2005).
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Consider a distribution on L2(S). The eigendecomposition of the covariance operator
provides eigenvalues {λk}∞

k=1 satisfying λk−1 ≥ λk and λk ≥ 0 for all k, and orthonormal
eigenfunctions {ϕk(·)}∞

k=1. Any random function from the distribution can be reproduced
as X(s) = µ(s) +

∑∞
k=1 ξkϕk(s) where µ(s) = EX(s) is the pointwise mean function

and ξk =
∫

S

(
X(s) − µ(s)

)
ϕk(s) ds. The eigenfunctions, usually referred to as principal

components, describe the main directions of variation, and the eigenvalue λk quantifies the
fraction of variance explained by ϕk. The coefficients ξk are called principal component
scores.

In practice the mean function, eigenvalues, and eigenfunctions must be estimated
from the data, in our case from {Xij(sh)}ijh. We borrow methods from standard FPCA
for independent data despite the cluster/longitudinal structure (but correlation within
clusters/subjects will partly carry over as correlation among scores). The same approach
was used by Goldsmith et al. (2012) for mean regression for longitudinal functional data
and is not inappropriate since regression is carried out conditionally on the covariate
functions. As an alternative, implementations of FPCA specially targeted at multilevel
and longitudinal data exist (Di et al., 2009; Greven et al., 2010; Park and Staicu, 2015).
With slight abuse of notation, we leave out “hats” from the notation even though the
objects are estimated rather than known. The scores, denoted ξij,k, are computed by
numerical integration (when observations are dense as we assume), and moreover truncated
representations X̂K

ij (s) = µ(s) +
∑K

k=1 ξij,kϕk(s) with only the first K terms are used.
We consider the value of K fixed for now, but discuss the selection of it below.

When K is large enough, then the major part of the variation of the Xij(·)s is
also present in the truncated representations X̂K

ij (·), and since
∫

S
X̂K

ij (s)β̃(s) ds = 0
for β̃(·) in the orthogonal complement of Φ = span({ϕ1, . . . , ϕK}), it is natural to
consider representations of βτ (·) that belong to Φ. Therefore, as alternative to the spline
representation, our second proposal is to consider βτ (s) =

∑K
k=1 c

τ
kϕk(s) for unknown

coefficients cτ
1 , . . . , c

τ
K . Due to orthonormality of ϕ1, . . . , ϕK , the quantile in (3.2.1) is

now approximated by

Qfpca,K
Yij |Xij ,uτ

i
(τ) = uτ

i + γτ +
K∑

k=1
cτ

kξij,k. (3.3.5)

It is natural here to think of the intercept γτ as an approximation to ατ +
∫

S
βτ (s)µ(s) ds

such that it incorporates the mean function, and an estimate of the original intercept
parameter is computed from γ̂τ and β̂τ (·).

As for the spline approach, we adopt the estimation procedure of Fasiolo et al. (2020)
and minimize the ELF loss function with ℓ2 penalty on random effects:

Lfpca,τ (γτ , cτ ,uτ |K) =
N∑

i=1

ni∑
j=1

lτ,λ,σ(Yij −Qfpca,K
Yij |Xij ,uτ

i
(τ)) + 1

2γu||uτ ||2 (3.3.6)

where cτ = (cτ
1 , .., c

τ
K)T . Expressions (3.3.2) and (3.3.5) for the quantiles are equivalent,

except for the scalar values Zij,d and ξij,k, constructed using spline basis functions and
eigenfunctions, respectively (and the notation for the unknown parameters). The objective
functions (3.3.4) and (3.3.6) are also similar but differ in an important way: there is no
penalty on cτ

1 , . . . , c
τ
K in (3.3.6). This is because regularization is carried out through the

choice of K; a smaller K implies a more smooth estimate of βτ (·).
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We now turn to selection of K. In FPCA, the percentage of variance explained (PVE),

as determined by the eigenvalues, is often used as the criterion. More specifically,

KPVE = min
{
K ≥ 1 :

∑K
k=1 λk∑∞
k=1 λk

≥ p

}
,

where p is for example 0.95, 0.99 or even larger if only a small degree of smoothing is
wanted. The PVE criterion is based on the functional covariates only. However, as a
prevention towards poor predictive performance caused by overfitting, we consider the
interplay with the outcome. One possible approach for model based selection of K is to
use information criteria. Kato (2012) studied and compared Akaike’s and the Bayesian
information criterion (AIC and BIC) and the generalized approximate cross-validation
criterion (GACV) from Yuan (2006) for quantile functional regression for independent
data. He found that BIC was the most stable. Lee et al. (2014) studied model selection for
quantile regression for high-dimensional data (many scalar covariates) and demonstrated
that an adjusted version of the BIC was more appropriate; hence we decided to adopt it
in our algorithm.

For speed of computation we carry out the BIC comparison in a marginal model, i.e.,
without cluster-specific effects. More specifically, for a fixed K the FPCA based marginal
model approximation is given by

mQfpca,K
Yij |Xij

(τ) = γ̃τ +
K∑

k=1
c̃τ

kξij,k.

Notice, that the interpretation of coefficients (γ̃τ , c̃τ
1 , . . . , c̃

τ
K) is different from the in-

terpretation of (γτ , cτ
1 , . . . , c

τ
K), cf. Section 3.2.2. We use an objective function given

by

Lmarg,τ (γ̃τ , c̃τ |K) =
N∑

i=1

ni∑
j=1

lτ,λ,σ(Yij −mQfpca,K
Yij |Xij

(τ))

where c̃τ = (c̃τ
1 , . . . , c̃

τ
K), which does not include cluster-specific parameters and is therefore

much faster to compute (and minimize) than Lfpca(γ̃τ , c̃τ ,uτ |K).
Recall that the objective function is constructed from ELF loss, so there is a (pseudo)

log-likelihood value associated to the minimizers of Lmarg(·, ·|K). We denote this value
LLmarg(K), and base our BIC criteria on this value. Without correction for high-
dimensional data, the BIC value is defined as

BICτ (K) = −2 · LLmarg(K) + (K + 1) log(M)

where M =
∑N

i=1 ni is the total number of observations and K + 1 is the number of
parameters (excluding tuning parameters λ and σ), while the adjusted version of BIC
from Lee et al. (2014) amounts to

BICadj,τ (K) = −2 · LLmarg(K) + (K + 1) log(K + 1) log(M).

The adjusted version, with the logarithm of the number of covariates multiplied to the
usual penalization term, was demonstrated to give good results in the simulation studies
and data analysis in Lee et al. (2014). Notice that they used the penalization term in
combination with the log-likelihood from an ALD working model, whereas we use it
together with the ELF log-likelihood.
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In practice we use the median for selection of K, i.e. minimize BICadj,0.5, and we
suggest to minimize over the set {2, 3, . . . ,KPVE}. Using the median (instead of the level
of interest, τ) makes the evaluation more robust, and using a model without cluster-specific
parameters makes the selection faster since there is a considerable computational cost of
including the many (penalized) extra parameters. We emphasize that these simplifications
are used only in the preliminary step for selection of an appropriate number of scores
to include in the model. As soon as K is selected we fit the model with penalized
cluster-specific effects at the quantile level of interest. The complete estimation procedure
is described in Algorithm 2.

Consider data {(Yij , Xij(sh))}ijh;
Perform FPCA and select KPVE according to the PVE criterion for a prespecified
p;

forall K = 2 : KPVE do
Take the first K scores for each observation: ξij,1, . . . , ξij,K ;
Compute BICadj,0.5(K);

end
Set K̂ = arg minK BICadj,0.5(K);
Minimize Lfpca,τ (γτ , cτ ,uτ | K̂) from (3.3.6), and get (γ̂τ , b̂

τ
, ûτ ).

Algorithm 2: Pseudo code for implementation of model selection with the adjusted
BIC criterion when the the functional coefficient is approximated with eigenfunctions.

3.3.3 Quantile regression with time-varying coefficients
The approaches for clustered data presented in Sections 3.3.1 and 3.3.2 are now extended
to longitudinal data, where Xij(·) is assumed to correspond to a time point tij varying in
a time range T ⊂ [0,∞). Hence, data consist of {(Yij , Xij(sh), tij)}ijh.

It is natural to consider time-varying coefficients, i.e. allow for both the intercept and
the coefficient function to change with longitudinal time, and consider

QYij |tij ,Xij ,uτ
i
(τ) = uτ

i + ατ (tij) +
∫

S

βτ (s, tij)Xij(s)ds (3.3.7)

as an extension of (3.2.1). We assume that t 7→ ατ (t) and (s, t) 7→ βτ (s, t) are smooth
functions, and therefore use tools from additive models (Wood, 2017). More specifically,
we approximate the smooth intercept as ατ (t) ≈

∑L
l=1 a

τ
l ψl(t), where ψ1, . . . , ψL are L

basis functions of choice. In practice, we use cubic splines. Similarly to Section 3.3.1, we
add an extra term to the loss function to address the penalization of coefficients aτ

1 , .., a
τ
L.

For the coefficient function βτ (·, ·), we can go in either of two direction as in Sec-
tions 3.3.1 and 3.3.2 and represent it with penalized splines or eigenfunctions. In the
penalized splines approach we model βτ (·, ·) with a tensor product smooth; it is often
preferred over a simple multivariate smooth when coordinates have rather different scales.
To be specific, we choose separate bases for the s-direction and the t-direction, and then
consider

βτ (s, t) ≈
L∑

l=1

D∑
d=1

δτ
dlψl(t)φd(s).
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Notice that we use the same basis for ατ (·) and the t-direction in βτ (·, ·) although not
strictly necessary. The extended version of (3.3.2) becomes

Qspline,τ
Yij |tij ,Xij ,uτ

i
(τ) = uτ

i +
L∑

l=1
aτ

l ψl(tij) +
L∑

l=1

D∑
d=1

δτ
dlψl(tij)Zd,ij(s) (3.3.8)

where Zd,ij(s) =
∫

S
φd(s)Xij(s) ds as previously. A penalty term for the scalar coefficients

δτ
dl is added to the loss function, accounting for a tradeoff of wiggliness in the two directions,

see Wood (2017, Chapter 5) for details about tensor product smooths.
For the FPCA approach, recall that eigenfunctions ϕk(·) and scores ξij,k are available,

and Xij(s) is approximated by X̂K
ij (s) = µ(s) +

∑K
k=1 ξij,kϕk(s). For fixed K we use

the eigenfunctions in the s-direction in a tensor smooth construction for βτ (·, ·), i.e.
βτ (s, t) ≈

∑L
l=1
∑K

k=1 θ
τ
klψl(t)ϕk(s). Then, the approximation of (3.3.7) becomes

Qfpca,τ
Yij |tij ,Xij ,uτ

i
(τ) = uτ

i +
L∑

l=1
ãτ

l ψl(tij) +
K∑

k=1

L∑
l=1

θτ
klψl(tij)ξij,k. (3.3.9)

In terms of the parametrisation used in (3.3.7) the intercept term should be interpreted as∑L
l=1 ã

τ
l ψl(t) =

∑L
l=1 a

τ
l ψl(t) +

∫
S
β(s, t)µ(s) ds and thus incorporates the mean µ(·) of

the covariate functions. The intercept function ατ (·) can be estimated from estimates of
ãτ

l s and βτ (·, ·) in a straightforward way. The BIC or BICadj criterion for the associated
marginal model is used for selection of K, with the modification that ELF loss and
likelihood now includes penalty terms for {aτ

l }l and {θτ
kl}kl and that the sum of effective

degrees of freedom associated to {aτ
l }l and {θτ

kl}kl is used instead of K + 1 as in the
simpler case.

3.3.4 Covariates observed with noise
In the above sections we assumed that the covariate functions were observed without
measurement noise, but this happens rarely in practice. Therefore, assume instead that
we observe

Wij,h = Xij(sh) + ϵij,h h = 1, . . . ,H, (3.3.10)
where {ϵij,h}ijh are iid. random variables with mean zero, and mutually independent
of the underlying functions. We propose to carry out a preliminary smoothing step
and proceed with the analysis with the unobserved values Xij(sh) replaced by their
fitted/predicted values. There are many smoothing techniques available for functional
data, e.g. kernel-based methods, smoothing splines, and smoothing with data-driven bases,
see for example Ramsay and Silverman (2005).

We use FPCA and thus the truncated representation X̂K
ij (sh) = µ(s)+

∑K
k=1 ξij,kϕk(sh)

where K is selected with the PVE criterion as the prediction of Xij(sh), see Section 3.3.2.
Estimation of the principal components and scores requires extra attention when the
true underlying function values Xij(sh) are not available. There is large variety of FPCA
implementations devoted to different sampling patterns of the functional data (dense or
sparse, same or different sampling locations, missing values), see e.g. Yao et al. (2003) and
Xiao et al. (2018), and references therein. We use the fast covariance estimation (FACE)
method from Xiao et al. (2016) in this work. It is based on a sandwich estimator for the
covariance function of the true underlying functions and smoother matrices constructed by
penalized splines and is particularly useful for very dense observation due to its efficiency.
It allows for missing values which is relevant for our application, but ignores potential
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dependence among functions (see the references in Section 3.3.2 for alternatives in this
direction).

3.3.5 Bootstrap procedures for variance assessment and bias
adjustment

In the application we are mainly interested in estimation and inference for quantiles and
differences between quantiles in certain directions of the functional covariate. It is known
from the literature on quantile regression for longitudinal data with scalar covariates,
that estimators may be biased and that it is difficult to properly assess the sampling
variability of the estimators without resampling methods (Kato et al., 2012; Galvao and
Montes-Rojas, 2015; Battagliola et al., 2021). Therefore, it comes as no surprise that we
experience the same problems in our simulation experiments for the more complicated
framework with functional covariates. We propose to use bootstrap strategies for variance
estimation and bias adjustment.

Recall the quantile model (3.3.7) with repeated measurements of functional covariates
and responses for each subject. To be specific about the targets, consider a fixed time
point t and a function X(·) ∈ L2(S) and the corresponding linear predictor Qτ,0 =
ατ (t) +

∫
β(s, t)X(s) ds. Notice that the linear predictor is computed without random

effect and is therefore interpreted as the τth quantile for an average subject (with
uτ = 0). The function X(·) may or may not be one of the functions in the dataset.
Furthermore, consider two functional covariates XA(·), XB(·) ∈ L2(S) with pointwise
difference, ∆X(s) = XA(s) − XB(s). For a fixed cluster, i.e. a fixed uτ and a fixed
measurement time t, the corresponding difference in the τth quantile is

∆Qτ = QY |XA,t,uτ (τ) −QY |XB ,t,uτ (τ) =
∫

S

βτ (s, t)∆X(s) ds, (3.3.11)

so ∆Qτ is the difference in quantile for a fixed subject when X(·) is changed in direction
∆X(·). In the following we talk about Qτ,0 or ∆Qτ as targets T of interest and let
T̂ denote the corresponding estimate with β̂τ (·, ·) and α̂τ (·) (in the case of Qτ,0) and
inserted for βτ (·, ·) and ατ (·).

The estimates of coefficients in our models, e.g. {âτ
l }l and {δ̂τ

dl}dl in equation (3.3.8),
are accompanied with a variance-covariance matrix which can be used for computation of a
standard error for the estimated target T̂ . We refer to these standard errors as model-based
standard errors. However, penalization of random effects is likely to cause underestimation
of the true sampling variation. We follow the suggestion from Galvao and Montes-Rojas
(2015) and use cross-sectional resampling (or block resampling), meaning that complete
subject data are sampled with replacement. More specifically, i∗1, . . . , i∗N are sampled
with replacement from {1, . . . , N}, and the bootstrap dataset is {(Yi∗j , Xi∗j(sh), ti∗j)}ijh.
In this way, within-subject dependence is maintained. For a target of interest, T , we
proceed as follows: Draw a bootstrap sample as just described, carry out estimation, and
compute the estimated target. Repeat this B times, and compute the standard deviation
sdboot(T̂ ) =

√
1

B−1
∑B

b=1(T̂ b − T̄ )2 where T̂ b is the estimated target from iteration b, and
T̄ = 1

B

∑B
b=1 T̂

b. The same method was used by Canay (2011) and Geraci and Bottai
(2014).

As documented by Battagliola et al. (2021), bias can occur even for large samples,
caused by a combination of the incidental parameter problem (the number of parameters
increase with sample size, Neyman and Scott (1948); Lancaster (2000)), non-linearity
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of quantiles, and penalization of the subject-specific intercepts. Unfortunately, cross-
sectional resampling cannot be used for bias adjustment because the target parameter
of interest is not computable under the bootstrap distribution. See also Karlsson (2009)
who obtained little or no effect in an attempt to adjust for bias in a nonlinear quantile
regression for longitudinal data. Instead we propose to use the technique developed by
Battagliola et al. (2021).

The idea is to generate bootstrap dataset where T̂ (the estimate obtained from the
observed data) is the true value of T , such that the bias can be estimated from the boot-
strap estimates. More specifically, a bootstrap dataset consists of {(Y ∗

ij , Xij(sh), tij)}ijh

where
Y ∗

ij = u∗
i + α̂(tij) +

∫
S

β̂τ (s, tij)Xij(s) ds+ ε∗
ij . (3.3.12)

The estimates α̂τ (·) and β̂τ (·, ·) are those obtained from the observed data, and the
integral is computed numerically. Notice that the values of Xij(sh) and tij from the
observed data are used unchanged. The subject-specific intercepts u∗

1, . . . , u
∗
N are drawn

with replacement from the estimates û1, . . . , ûN obtained from the observed data, and the
residual terms {ε∗

ij}ij are generated via wild bootstrap. This means that ε∗
ij = wij |εij |,

where εij = Yij − α̂(tij) −
∫

S
β̂τ (s, tij)Xij(s) ds− ûi are residuals from the model, and

wijs are drawn independently as

wij =
{

2(1 − τ), with probability 1 − τ
−2τ, with probability τ .

Wild bootstrap was introduced by Wu (1986) and Liu (1988) for mean regression, and
adapted to quantile regression by Feng et al. (2011). Results in Feng et al. (2011),
Wang et al. (2018a) and Battagliola et al. (2021) indicate that wild bootstrap captures
asymmetry and heteroskedasticity better than ordinary resampling of residuals. Data
generated as in (3.3.12) satisfy equation (3.3.7), with parameters ατ (·) = α̂τ (·) and
βτ (·, ·) = β̂τ (·, ·), and the true value (in the bootstrap data) of the target is therefore T̂ .
Let T̃1, . . . , T̃B be estimated values of T for B bootstrap datasets, then bias is estimated
as bias(T̂ ) = 1

B

∑B
b=1(T̃ b − T̂ ).

The two bootstrap sampling schemes differ in several ways. While the cross-sectional
sampling methods is completely non-parametric, the wild bootstrap method relies on the
model used for estimation. Another important difference is that the covariate functions
are resampled (together with the responses) by the cross-sectional method whereas they
are kept exactly as in the dataset for the wild bootstrap methods. As a consequence, the
procedure based on wild bootstrap would underestimate the variance of the estimator T̂ .
Our suggested solution is to combine the estimated bias and estimated standard deviation
from the two bootstrap sampling methods, respectively, to construct confidence intervals
for the target T . If the distribution of T̂ is well approximated by a normal distribution,
T̂ ∼ N(T + BT , σ

2
T ), then T̂ − BT ± q1−α/2σT , where q1−α/2 is the 1 − α/2 quantile of

N(0, 1), is an approximate 1 − α confidence interval for T . Estimating the bias and
standard deviation as described above leads to the confidence interval

T̂ − bias(T̂ ) ± q1−α/2 sdboot(T̂ ). (3.3.13)

Battagliola et al. (2021) demonstrated in a wide variety of simulation settings with
clustered data and scalar covariates that bias was removed or reduced with the above
bootstrap sampling process combining resampled cluster-specific intercepts and wild
bootstrap for the residuals, and Galvao and Montes-Rojas (2015) demonstrated that
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sampling variation of estimators is measured appropriately with cross-sectional resampling.
Nevertheless, we admit that the construction of confidence intervals in (3.3.13) is ad hoc
and that its properties should be investigated theoretically or by simulation, but this is
left for future research. In this paper we apply the techniques and study their effects in
the application.

3.4 Implementation

We used the software environment R (R Core Team, 2020b) for the computations. The
FACE method is implemented in the function fpca.face, which is part of package
refund (Goldsmith et al., 2019). It can handle functional data observed on a dense or a
sparse grid, and values can be missing. One specifies either the selected PVE (pve) or
the number of principal components (npc) of choice. The resulting eigenfunctions, the
functional mean, and the predicted/smoothed functions are evaluated and returned at a
dense grid.

The method developed by Fasiolo et al. (2020) is implemented in the package qgam.
It includes the qgam function, which is a wrapper of the function gam (Wood, 2017;
Wood and Scheipl, 2020). The call to qgam has the following structure:

qgam(y ~ formula, qu=tau, data=data)

where y is the response and formula specifies any ordinary covariates, smooth effects,
and random effects to include in the model. The quantile level of interest τ is passed to
qu, and the entry data specifies the data frame of interest. To introduce more flexibility
in the estimation, one can employ the following formulation of qgam:

qgam(list(y ~ formula, ~ formula), qu=tau, data=data)

which allows the learning rate σ to vary with the covariates.
For the framework presented in this paper, recall that M is the total number of

observations in the dataset and H is the length of the dense grid of points over which
functional covariates are observed. We consider the situation with measurement noise and
let Xhat be the M ×H matrix containing the predictions {X̂K

ij (sh)} from FACE with
K = KPVE. If the values Xij(sh) are observed without noise, then Xhat is replaced by
the matrix with observed values in the following. Furthermore, let sGrid be the M ×H
matrix whose rows contain (s1, . . . , sH).

Consider first the situation from Sections 3.3.1 and 3.3.2 with a scalar intercept ατ

and a functional coefficient βτ (·). Minimization of the loss function (3.3.4), now with
Xij(·) replaced by X̂ij(·), is carried out with

formula = s(sGrid, by=Xhat, bs=’cr’) + s(id, bs=’re’)

The option bs=’cr’ implies that a cubic spline basis is used for βτ (·), with a default of
ten basis functions. The corresponding penalty matrix B penalizes the integrated squared
second derivative, sometimes called “curvature“, of β̂τ (·). As default, if no smoothing
basis bs is supplied, then gam and thus qgam use thin plate regression splines. Moreover,
gam allows to choose cyclic cubic regression splines (bs=’cc’), for example, when it is
desirable for the smooth term to take the same values at the boundaries of its domain,
and we apply this for the application. The cluster-specific intercepts uτ

i are included in
the model with the s function, too, in which we specify bs=’re’ (’re’ for random
effects) as well as id, the grouping level factor associated to clusters. We refer to Wood
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(2017) for more details about possibilities with smooth terms in gam. When we use
eigenfunctions as the basis for βτ (·), minimizing (3.3.6) with K = 2, for instance, then
we use

formula = xi1 + xi2 + s(id, bs=’re’)

where xi1 and xi2 are vectors of length M containing the principal component scores
{ξij,1} and {ξij,2}.

With the introduction of longitudinal time as in (3.3.7), we need to include a smooth
intercept in time as well as the bivariate functional coefficient. For the tensor smooth
approximation in (3.3.8), we employ

formula = s(tgrid, bs=’cr’) + te(sGrid, tGrid, by=Xhat)
+ s(id, bs=’re’)

where tgrid is the vector of length M whose ijth entry is tij , and tGrid is the M ×H
matrix whose columns are copies of tgrid. By default, the chosen marginal basis
functions for both directions are five penalized cubic regression splines (bs="cr"), but
both the type and the size of the bases can be changed, and it is also possible to use
different sets of basis functions in the s- and t-directions. For estimation of the coefficients
{θτ

kl} in equation (3.3.9), the syntax (for K = 2) is

formula = s(tgrid, bs=’cr’) + s(tgrid, by=xi1)
+ s(tgrid, by=xi2) + s(id, bs=’re’)

because the scores are multiplied onto the unknown coefficients.
The output of qgam is a gamObject, which stores several quantities related to the

model and the estimation process, such as the twice the log-likelihood (logLik) and
the estimated effective degrees of freedom (edf2). Both are used for the computation
of BICadj,0.5(K) in the presence of smooth effects, i.e. for model (3.3.9), while only
the log-likelihood is needed for the simpler model (3.3.5). The values are also used for
computation of AIC values in the application. Moreover, Vp, the variance-covariance
matrix of all estimated coefficients, is available, and can be used to compute model-
based standard errors and confidence bands for functions of the parameters, such as the
targets mentioned in Section 3.3.5. Predicted quantiles for new covariate functions can
be computed with the function predict.gam, and the function allows to exclude one or
more terms from the model, such as the subject-specific intercepts, in the prediction.

3.5 Simulations

In this section we are going to examine the performance of the estimation methods
described in Section 3.3 by means of simulation studies. Firstly, we consider the case
in which the functional coefficient solely depends on the functional coordinate s ∈ S.
Afterwards, we consider longitudinal data where the functional coefficient also depends
on longitudinal time.

We intended to compare our proposed methods to the estimation method proposed by
Brockhaus et al. (2017), which allows to perform scalar-on-function quantile regression
with computations based on boosting (Bühlmann and Hothorn, 2007; Schmid and Hothorn,
2008) and is available in the R package FDboost. However, despite many attempts with
different options in the R functions we never managed to get reliable results, and we
refrain from showing the results.
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3.5.1 Data generation
We simulate data {(Yij , Xij(·),Wij,h, ui, tij)}ij , with i = 1, . . . , N denoting subject and
j = 1, . . . , n denoting observation number within subject. For simplicity we use the same
number of repeated measures for all subjects and furthermore let the longitudinal time
stamps be equally spaced in T = [0, 1] for all subjects.

Inspired by simulation studies in Goldsmith et al. (2012) and Kundu et al. (2016) the
functional covariates are generated as

Xij(s) = c0,ij + c1,ijϕ1(s) + c2,ijϕ2(s) + c3,ijϕ3(s) + c4,ijϕ4(s) + c5,ijs (3.5.1)

where ϕ1(s) = sin(2πs), ϕ2(s) = cos(2πs), ϕ3(s) = sin(4πs), ϕ4(s) = cos(4πs), and
s ∈ S = (0, 1]. We use coefficients c0,ij , c5,ij

iid∼ N(3, 1), while c1,ij
iid∼ N(0, 2) , c2,ij

iid∼
N(0, 1), c3,ij

iid∼ N(0, 0.5) and c4,ij
iid∼ N(0, 0.25). The covariate functions are observed

with Gaussian noise on an equally-spaced dense grid of H = 100 points,

Wij,h = Xij(sh) + ϵij,h,

where ϵij,h
iid∼ N(0, 0.252). The response Yij is constructed as

Yij = ui + α(tij) +
∫

S

Xij(s)β(s, tij)ds+
(

1 + γ

∫
S

Xij(s)ds
)
eij (3.5.2)

where ui
iid∼ N(0, σ2

u) is a subject-specific intercept, α(t) = log(5t + 1) is the smooth
intercept with respect to the longitudinal time tij ∈ T = [0, 1], γ ≥ 0 is a heteroskedasticity
parameter, and eij

iid∼ N(0, σ2
e), where σe > 0. The coefficient function β(·, ·) is specified

later. Importantly, the response is generated by means of the true underlying X(·) rather
than the observations Wij,h, so a preliminary smoothing step is carried out as described
in Section 3.3.

For τ ∈ (0, 1) the implied quantile model is

QYij |Xij ,tij ,ui
(τ) = ui + α(tij) + σeΦ−1(τ) +

∫
S

(
β(s, tij) + γσeΦ−1(τ)

)
Xij(s)ds

= ui + ατ (tij) +
∫

S

βτ (s, tij)Xij(s)ds

(3.5.3)

where Φ is the CDF of the standard Gaussian distribution, and the definitions of the
functions ατ (·) and βτ (·, ·) appear from the formula. In particular, the expression for the
quantile in (3.5.3) has the same form as in (3.3.7). Notice that ατ (·) differs from α(·)
unless τ = 0.5, and that βτ (·, ·) differs from β(·, ·) unless τ = 0.5 and/or γ = 0. The
random intercepts ui are independent of τ .

We study four scenarios in most detail; here N = 200, ni = n = 10, σ2
e = 0.5,

σu/σe = 1.5, either γ = 0 (the homoskedastic case) or γ = 0.5 (the heteroskedastic case),
and the quantile level of interest is either τ = 0.1 or τ = 0.5. The combinations of τ and
γ give four scenarios: A (τ = 0.5, γ = 0), B (τ = 0.5, γ = 0.5), C (τ = 0.1, γ = 0), and D
(τ = 0.1, γ = 0.5). Notice that ατ (·) = α(·) in scenarios A and B, and βτ (·, ·) = β(·, ·)
in scenarios A–C. In the literature is it common to focus on homoskedastic data and/or
median regression, but we will we pay special attention to scenario D since it is the most
difficult one. Scenarios E–J are modifications of scenario D, all with γ = 0.5 and τ = 0.1:
see the overview in Table 3.1. For each scenario we consider 200 replications.
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τ γ N n σ2

e σu/σe eij

A 0.5∗ 0∗ 200 10 0.5 1.5 Normal
B 0.5∗ 0.5 200 10 0.5 1.5 Normal
C 0.1 0∗ 200 10 0.5 1.5 Normal
D 0.1 0.5 200 10 0.5 1.5 Normal
E 0.1 0.5 300∗ 10 0.5 1.5 Normal
F 0.1 0.5 200 15∗ 0.5 1.5 Normal
G 0.1 0.5 200 10 0.5 1.5 ALD∗

H 0.1 0.5 200 10 0.5 1.5 t∗3
I 0.1 0.5 200 10 0.5 0∗ Normal
J 0.1 0.5 200 10 0.5 2∗ Normal

Table 3.1: Description of quantile level and parameter values used in the simulation scenarios.
Asterisks (∗) denote values or error distributions where the scenario differs from scenario D.

3.5.2 Time-invariant regression coefficient
We first analyze the case in which data is generated with β(s, t) = β(s) in (3.5.2).
Specifically, we will adopt two possible functional coefficients, namely β1(s) =

√
2 cos(2πs)

and β2(s) = s.
As a first step, we smooth the noisy observations {Wij,h} with FACE at a PVE of

0.9999 in order to get X̂ij(·) as described in Section 3.3.2. We use this large PVE in order
to avoid oversmoothing and to get relatively many terms that can potentially be included
in the quantile regression driven by eigenfunctions. Figure 3.1 shows 50 realizations of
observed curves and the corresponding estimated functions from a dataset generated from
the benchmark scenario. Despite the large PVE, the random noise is removed because it
is not common to the curves.
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Figure 3.1: Fifty observed (left panel) and smoothed (right panel) functional covariates from a
realization of functional data in our simulation setup. The curves are in grey and five of them
are in purple to better show the features of the simulated functions.

Comparison of spline and eigenfunction approaches

We start a comparison of the results from the spline methods and the eigenfunction
method. We use ten cubic regression splines for ατ (·). Furthermore, we employ ten cubic
regression splines for βτ (·) for the spline approach, while for the eigenfunction approach
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we compare values of BICadj,0.5(K) for the number of included eigenfunctions, K, ranging
from K1 = 2 to K2 = KPVE. We also used the BIC criterion without adjustment for
high-dimensional data and got similar results for predicted quantiles and the smooth
intercept. However, a much larger K was usually selected resulting in severe overfitting
of βτ (·). Furthermore, we experimented with variations of the BIC criterion for selection
of K, relying on the asymmetric Laplace distribution as in Kato (2012), both with the
classical formulation of BIC as well as its adjusted version for high dimensions (Lee et al.,
2014). They both gave very similar results to those using BICadj,0.5 so we will not discuss
this any further.
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Figure 3.2: Estimated functional coefficients, β̂τ (·), in scenario D when data are simulated
with β(s) = β1(s) (top row) and β(s) = β2(s) (bottom row). We show the results for the
approximation with splines (left column) and with eigenfunctions (right column). The red curves
represent the true coefficient functions, βτ (·).

We start with a comparison of the spline and the eigenfunction approach for the
estimated coefficient function in scenario D. Figure 3.2 shows the estimated coefficients (in
black) and the true coefficients (in red) for both choices of β(s). For β1(s), the estimates
from the spline representation have higher variation than the ones from the representation
by means of eigenfunctions, especially close to the borders of the functional domain. The
spline estimates do not bend off like the true function, and this generates a bias for s around
0.15 and 0.85. The eigenfunction approximation captures the true shape of the coefficient
for every replication. This is because the eigendecomposition essentially reconstructs
sines and cosines in our simulation set-up. The representation via eigenfunctions is less
suitable when the true function is β2(s), while the spline approximation reproduces a
straight line for most of the replications. This is likely because non-linearity is penalized
in the spline approach.

Estimation of ατ (·) and βτ (·) is summarized for the four scenarios in the first two
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columns in Figure 3.3 for β1(s) (top) and β2(s) (bottom). For each replicate we compute
the integrated squared errors, ISE(α̂τ ) =

∫
(α̂τ (t) − ατ (t))2 dt, and ISE(β̂τ ) =

∫
(β̂τ (s) −

βτ (s))2 ds, and the panels show boxplot over the 200 replicates. The differences from
Figure 3.2 between the spline and the eigenfunction representation for β̂τ (·) in scenario
D are clearly recognized as ISE(β̂τ ) differ between methods, and in opposite directions
for β1(s) and β2(s). The same conclusions hold for the scenarios A–C, but with smaller
ISE(β̂τ ). Notice that the variation in ISE(β̂τ ) is larger for the spline approximation than
for the eigenfunction approximation in all eight cases. For α̂τ (·), there are hardly any
differences between the two estimation approaches.
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Figure 3.3: Comparison of results for the spline (blue) and the eigenfunction (red) approximation
in four scenarios. Boxplots of the ISE of the estimated functional coefficient β̂τ (·) and of the
smooth intercept α̂τ (·) (first and second column, respectively) and boxplots of the RMSE and
bias of the linear predictor Q̂τ,0 (third and fourth column, respectively) when data are simulated
with β(s) = β1(s) (first row) and β(s) = β2(s) (second row). See Table 3.1 for a detailed
explanation of the scenarios.

All that being said about estimation of βτ (·), one should be careful to pay too much
attention to differences in the estimated coefficient functions, since identifiability of
coefficient functions is an issue in functional regression. The identifiable component is
the integral

∫
βτ (s)X(s) ds for X belonging to the space of observable functions, not

necessarily βτ (·) itself. A fitted model may be good at reconstructing the integrals, and
thus the quantiles, even if β̂τ (·) does not reconstruct βτ (·) well.
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We therefore turn our attention to the linear predictor Qτ,0
ij = ατ (tij)+

∫
β(s)Xij(s) ds

and the corresponding estimates Q̂τ,0
ij = α̂τ (tij) +

∫
β̂(s)Xij(s) ds. Notice that quantiles

are computed without random effects and is therefore interpreted as the τth quantile
for an average subject (with uτ

i = 0). For each replicate we compute a root mean
squared error, i.e. RMSE(Q̂τ,0) =

√
1

M

∑
i,j(Q̂τ,0

ij −Qτ,0
ij )2 where M = nN is the total

number of observations. Boxplots of the RMSE over the 200 simulated datasets are
shown in the third column in Figure 3.3 for scenarios A–D, and for β1(s) (top) and
β2(s) (bottom)., respectively. The last columns show boxplots over the average bias:
bias(Q̂τ,0) = 1

M

∑
i,j(Q̂τ,0

ij − Qτ,0
ij ). The most striking observation is that the spline

approach and the eigenfunction approach give extremely similar results when it comes to
prediction of the linear predictors even if the estimated coefficients can be quite different
as illustrated in Figure 3.2. Moreover, the complexity of the four scenarios is clearly
reflected in the results: The linear predictor is estimated without bias when τ = 0.5, but
with non-negligible bias when τ = 0.1, and the RMSE is larger when γ = 0.5 compared
to γ = 0.

More details concerning estimation of the linear predictor is provided in Table 3.3 in
the appendix for the spline approach for β1(s). In particular the average bias, average
standard deviation and average RMSE (average over the 200 bootstrap replicates) are
reported to give an indication of the contributions of mean and variation, respectively,
to the RMSE. The table also reports the average RMSE of the linear predictor for
out-of-sample prediction: For each of the 200 replicates, we simulated extra data (test
data) consisting of 200 subjects with 10 repeated measures each, and compared the true
and estimated linear predictor. The in-sample and out-of-sample RMSE do not differ.
Finally, the table lists reports the RMSE for a marginal estimator and for more scenarios;
these results are commented on below.

In summary, the two estimation methods behave similarly when it comes to estimation
of the quantiles. The spline approach has larger flexibility for the functional form of the
estimated coefficient function (but at the expense of larger variation) and is faster to
run because the eigenfunction approach requires the preliminary step with selection of
K. Therefore, we focus on spline approximations in the following. Moreover we focus on
scenario D and variations of it since it is the most difficult and thus interesting case.

Effect of changing sample size or error distribution

We now study the effect of changing the number of subjects, the number of repeated
measures, or the error distribution one at a time. Apart from those changes, the setting
is as in scenario D; in particular we use τ = 0.1 as the target quantile level. We use the
coefficient function β1(s). Figure 3.4 is organized like each row in Figure 3.3 and shows
the distributions of ISE(α̂τ ), ISE(β̂τ ), RMSE(Q̂τ,0), and bias(Q̂τ,0).
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Figure 3.4: Boxplots of the ISE of the estimated functional coefficient β̂τ (·) and of the smooth
intercept α̂τ (·) (first and second column, respectively) and boxplots of the RMSE and bias of
the linear predictor Q̂τ,0 (third and fourth column, respectively) when data are simulated with
β(s) = β1(s), and estimation is carried out with the spline approximation. See Table 3.1 for a
detailed explanation of the scenarios.

For scenarios E and F, we increase the number of subjects from 200 to 300, and the
number of repeated measurements for each subject from 10 to 15, respectively, so they
share the number of total observations (3000, 50% more than in scenario D). Comparison
of the first three boxplots in Figure 3.4 shows that this has little effect on the average
level of the error terms, but the variation over datasets decreases slightly when the total
sample size increases.

Next, we consider two more settings in which we either sample the residual terms eij in
equation (3.5.2) independently from an ALD centred in 0 with skewness parameter τ = 0.1
(equal to the target quantile) and scale parameter ρ > 0 (scenario G) or independently
from a scaled Student t-distribution with three degrees of freedom (scenario H). In both
cases we scale the distributions such that their variance is equal to 0.5 (σ2

e from the
benchmark setting), such that relative level of variation between subject-specific effects
and error terms is preserved. More specifically, for the ALD we imposed ρ = σe(τ(1−τ))√

1−2τ+2τ2

(Yu and Zhang, 2005). Notice that the definitions of ατ (·) and βτ (·) are also changed
compared to scenario D with Gaussian residual terms.

The boxplots for scenario G in Figure 3.4 shows that estimation errors are smaller for
ALD residuals compared to Gaussian errors. This is expected since the (unpenalized)
criterion based on the check function corresponds to the log-likelihood function (with a
minus) for data sampled from the ALD; therefore, our estimators based in the smooth ELF
generalization of the check function can be considered approximate maximum likelihood
estimates in case of ALD residuals. On the other hand, the boxplots for scenario H shows
that estimation errors are larger when the error distribution is heavy-tailed. For more
details, see Table 3.3 in the appendix.
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Conditional vs. marginal quantile regression

We now illustrate the effect of ignoring the longitudinal structure in the data, i.e. of fitting
a functional linear quantile regression without random effects. More specifically, as a
supplement to the usual model, we also fit a linear marginal model (without subject-specific
terms)

mQlin
Yij |Xij ,tij

(τ) = ατ
m(tij) +

∫
S

βτ
m(s, tij)Xij(s)ds (3.5.4)

with unknown coefficients ατ
m(·) and βτ

m(·, ·); subscript m is used to stress that these are
coefficients in a marginal model for the quantiles. We use the same approach as for the
conditional model, with the exception that there are no subject-specific parameters in
the model (this, by the way, makes estimation much faster).

Recall the true association (3.2.2) between the covariate Xij and the quantile in the
marginal distribution. When τ = 0.5 and/or σu = 0 then the marginal and the conditional
models coincide, and we therefore expect the marginal and the conditional estimation
approaches to give similar results. When γ = 0 then equation (3.5.4) has the correct
functional form but ατ (·) and ατ

m(·) differ, so the two estimation methods have different
targets. For other values of τ, σu, and γ, equation (3.5.4) does not even have the correct
functional form. In other words, the model is misspecified, and there are no true values
of ατ

m(·) and βτ
m(·, ·).

Nevertheless, it is still possible to check the misspecified model’s ability to esti-
mate the quantiles and thus compare the estimated quantiles from the model fits
corresponding to the conditional and the (misspecified) marginal model, respectively.
More specifically, we compute the average bias, i.e. bias(Q̂τ,0

m ) = 1
M

∑
i,j(Q̂τ,0

ij,m −Qτ,0
ij ),

and the corresponding RMSE, i.e. RMSE(Q̂τ,0
m ) =

√
1

M

∑
i,j(Q̂τ,0

ij,m −Qτ,0
ij )2, where

Q̂τ,0
ij,m = α̂m(tij) +

∫
β̂m(s)Xij(s) ds using estimates from the marginal estimation.

Figure 3.5 shows boxplots over 200 replicates of the results for scenarios A–H as well
as two extra scenarios, all with β(s, t) = β(s) = β1(s). The extra scenarios are identical
to scenario D except that σu = 0 (scenario I) and σu/σe = 2 (scenario J). The average
RMSE(Q̂τ,0

m ) is listed in Table 3.3 in the appendix. As expected the results are similar
for the conditional and the marginal estimation approach when τ = 0 (scenarios A and
B) or σu = 0 (scenario I). In all other cases the estimates from the marginal approach
have larger bias and RMSE compared to the estimates from the conditional approach.
This is also to be expected since the conditional approach is targeted towards estimation
of Qτ,0

ij = ατ (tij) +
∫

S
βτ (s)Xij(s) ds, whereas the marginal approach is targeted towards

the quantiles in the marginal distribution. In summary, if one is interested in the quantiles
Qτ,0

ij , then is is of great importance to take the within-subject dependence into account
in the estimation procedure.
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Figure 3.5: Boxplots of the RMSE (left) and the bias (right) of the linear predictor Q̂τ,0 when
data are simulated with β(s) = β1(s), and estimation is carried out with the spline approximation,
either using the correct conditional model or a marginal model. See Table 3.1 for a detailed
explanation of the scenarios.

Assessment of model-based standard errors

The output from qgam() includes an estimated variance-covariance matrix for the set of
model parameters, which can be used to compute model-based standard errors (SEs) for
quantities of interest such as the targets mentioned in Section 3.3.5. We now check the
validity of these SEs in scenario D with β(s) = β1(s).

We consider targets ∆Qτ for a variety of ∆X(·) functions; in particular, ∆X(s) =
ϕ1(s), ∆X(s) = ϕ2(s) and ∆X(s) = s corresponding to the primary directions in the
generation of Xij(·)s, see equation (3.5.1), and ∆X = X80 −X20 where X20 and X80 are
the pointwise 20% and 80% quantiles in the distribution of Xij(·). The actual standard
deviation over the 200 replicates, i.e. SD(∆̂Q

τ

r ) =
√∑200

r=1
(
∆̂Q

τ

r − mean(∆̂Q
τ

r )
)2
/199 is

about a factor 1.3 larger than the average of the standard errors computed from the
variance-covariance matrix from qgam() for all the tested choices of ∆X(·), meaning
that the standard errors underestimate the actual variation of the estimators. Moreover,
we experience bias in the estimation of ∆Qτ for some, but not all ∆X(·) functions. This
comes as no surprise considering the simulation results already reported. As a consequence,
we implement the two bootstrap strategies from Section 3.3.5 in the application, one
aiming at bias adjustment and one aiming at reliable estimation of the variability.
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3.5.3 Time-varying regression coefficient
In this section we show the results from simulations where the functional coefficient is
allowed to vary with longitudinal time. Specifically, we generate data as in equation
(3.5.2) with either β(s, t) = β1(s, t) =

√
2 cos(2πs)t or β(s, t) = β2(s, t) = st. In both

cases the functional coefficients is zero at t = 0, increases linearly in t and match those
considered in Section 3.5.2 at t = 1. We consider scenarios A–D from above, i.e the
four combinations of γ ∈ {0, 0.5} and τ ∈ {0.5, 0.1}. For the representation of βτ (·, ·) we
employ a tensor product smooth with five marginal cubic regression splines in the s as
well as the t direction, and for the representation of α(·) we use ten thin plate regression
splines, which brought similar results compared to cubic regression splines; apart from
this we proceed as in Section 3.5.2. Two-hundred replications are considered.
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Figure 3.6: Estimated functional coefficients in scenario D when data are simulated with
β(s, t) = β1(s, t) (top row) and when β(s, t) = β2(s, t) (bottom row). We show the results for
fixed longitudinal time points, namely t = 0.1 (left column), t = 0.5 (central column) and t = 0.9
(right column). The red curves represent the true functional coefficients β̂τ (·, t).

Figure 3.6 illustrates the estimated functional coefficients for scenario D (γ = 0.5,
τ = 0.1) when data was generated with β1(s, t) (top row) and β2(s, t) (bottom row) The
estimated coeffcient functions take (s, t) as arguments; in order to compare to Figure 3.2
we show s 7→ β̂τ (s, t) for t = 0.1 (left), t = 0.5 (middle) and t = 0.9 (right). The true
functional coefficients are displayed in red. Estimation at the boundaries of T is inherently
difficult; therefore we chose interior point of T , and we also see that variation is smaller
at t = 0.5 compared to t = 0.1 and t = 0.9. Overall, the estimation reproduces that
association between functional covariates and quantiles become stronger as t increases,
and also roughly the correct shape of the coefficient.
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Figure 3.7: Boxplots of the ISE of the functional coefficient β̂τ (·, ·) and of the smooth intercept
α̂τ (·) (first and second columns respectively), as well as of the RMSE and the bias of the linear
predictor Q̂τ,0 (third and fourth column respectively) in the cases where data are simulated
with β(s, t) = β1(s, t) (first row) and β(s, t) = β2(s, t) (second row). See Table 3.1 for a detailed
explanation of the scenarios, but notice that data are now simulated with time-varying coefficients.

Similarly to Figure 3.3, in Figure 3.7 we compare the RMSE of the estimated linear
predictor from (3.5.3) (first row), the ISE for the estimated smooth intercept α̂τ (·) (second
row) and the ISE for the estimated functional coefficient at separate longitudinal time
points (third row) for the four different scenarios corresponding to the combinations of
γ ∈ {0, 0.5} and τ ∈ {0.1, 0.5}. As in Section 3.5.2 we see that scenario D with γ = 0.5
combined with estimation at τ = 0.1 is the more difficult one, in particular when it
comes to estimation the quantiles. As it was already visible in Figure 3.6, the variation
in the distribution of the error is higher at the boundaries than in the middle point of the
longitudinal time interval in all cases. Finally, notice how the distributions of the RMSE
of the linear predictor are comparable with those in Figure 3.3, although with slightly
increased variation, whereas the ISE of the smooth intercept and functional coefficients
are generally much higher in the complex model compared to the simple model. We
conclude that, even though the increased complexity of the model affects the estimation
of the ingredients in the model, there is no dramatic change in the quality of the estimates
of the quantiles themselves.
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3.6 Application

Our ultimate goal is to study the impact of thermal conditions on the daily food intake
for lactating sows, taking into account the progression of food intake over lactation days.
A low food intake is an indicator of a high stress and has consequences for the sow itself
(compromised reproductive system) as well as for the litter. In particular, low food intake
may lead to increased body weight loss and reduced milk production implying slower and
poorer weight gain of the litter (see Park et al. (2019), Staicu et al. (2020) and references
therein). As a consequence, we are interested in the relation between quantiles of daily
food intake at low quantiles levels and cell temperature along the hours, allowing for the
association to vary over time.

The data comes from a commercial research unit in Oklahoma, where 480 sows
were monitored from July to October 2013. The animals were divided into 21 groups
approximately 5 days after giving birth and then assigned to cells, where they were
kept under observations for the lactation period of up to 21 days. For each sow at each
lactation day, the food intake (in kg) is available, as well as the cell temperature (in
°C), measured every five minutes for 24 hours from 2.00 pm to 1.59 pm. Moreover, the
parity of each sow is registered, i.e. the number of pregnancies the animal had before
the current one. We will consider parity as a measure of age: a sow is “young” if it is at
its first pregnancy and it is “old” otherwise. Previous studies have shown that younger
and older sows behave differently (Staicu et al., 2020), so we analyze data from young
and older sows separately. Finally, in our analysis the total number of animals is 475,
237 young sows and 238 old ones as a few unreliable observations were discarded by the
experimenters.

The data are illustrated in Figure 3.8. Feed intake curves with three randomly selected
animals from each age group are plotted in the left part of the figure. Although there
is large within-sow variation over lactation days, it is also clear that some sows tend be
have low (or high) feed intake throughout, calling for a subject-specific level of each sow.
In a preprocessing step we smoothed the temperature curves with FACE (see Section
3.2), using a PVE as high as 0.9999; then the features of the curves are maintained and
missing values can be replaced by the smoothed function values, while variation on small
time-scale is partly smoothed away. The smoothed temperature curves are illustrated in
the right part of Figure 3.8, and the corresponding pointwise 20% and 80% quantiles are
shown in blue and red, respectively. We use these curves, denoted Temp20 and Temp80
respectively, when we report the results from our analyses below. In the same plot we
show pointwise 50% quantile (in green) as well.

Staicu et al. (2020) used a longitudinal dynamic functional regression framework for
mean regression for the same data with emphasis on prediction of response trajectories.
Park et al. (2019) carried out separate quantile regression analyses for a derived variable at
three selected lactation days. For each day, the CDF was first estimated and then inverted,
hence estimated quantiles were extracted. In contrast, we carry out quantile regression for
all lactation days simultaneously with the framework and methods introduced in Sections
3.2 and 3.3, and with focus on estimation and inference for the temperature effect on
quantiles of feed intake.
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Figure 3.8: Descriptive plots of data. To the left, daily feed intake profiles over lactation days
of young sows (upper panel) and of old sows (lower panel) with three randomly selected profiles
(black) in each group. On the right, smoothed temperature curves (grey), as well as the pointwise
temperature quantiles curves at quantile levels 0.2 (blue), 0.5 (green) and 0.8 (red) based on the
whole dataset.

3.6.1 Estimated quantiles of feed intake
We consider data {(FIij ,Tempij(·), tij)}ij . For each sow i = 1, . . . , N (N = 475) and
repeated measurement j = 1, . . . , ni (nj ranging from 7 to 21), FIij refers to the daily feed
intake expressed in kg, Tempij(·) to the smoothed temperature function in °C recorded
over a day and tij to the lactation day. We allow for a subject specific intercept uτ

i to
account for the correlation of observations from the same sow. For each age group, we
consider the model

QFIij |Tempij ,tij ,uτ
i
(τ) = uτ

i +ατ (tij)+
∫

S

βτ (s, tij)Tempij(s)ds, i = 1, . . . , N, j = 1, . . . , ni

(3.6.1)
where S represents a whole day from 2.00 pm to 1.59 pm. We approximate the smooth
intercept ατ (·) by means of ten cubic splines, and for coefficient function βτ (·, ·), we
compare representations in terms of splines and eigenfunctions. For the spline approach
we employ ten cyclic cubic splines and ten cubic splines for the s- and t- directions of
βτ (·, ·) respectively. We choose a cyclic basis in the s-direction since both end-points in
S represent the same time of day (except for five minutes). We use Algorithm 2 for the
eigenfunction approach and the BICadj criterion selects 2 and 9 eigenfunctions for the
sub-datasets of the young and old sows, respectively.
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Figure 3.9: Predicted quantiles corresponding to the 20% and 80% pointwise temperature
profiles when using splines and eigenfunctions approximations (solid lines in blue and red for
the former and grey for the latter). Bootstrap-adjusted estimates are shown with dotted curves
for spline approximations. The left column refers to sows at their first pregnancy, while right
one refers to the older sows. Results at quantile levels τ = 0.1 and τ = 0.5 are shown in the top
and bottom row, respectively. Notice that predicted quantiles at different levels are plotted on
different scales.

Figure 3.9 shows estimated quantile profiles for young/old sows (left/right), at quantile
levels 0.1/0.5 (top/bottom), and for the pointwise 20% and 80% temperature curves
Temp20 and Temp80 (colours are explained below). More specifically, the graphs show

Q̂τ
20(t) = α̂τ (t) +

∫
S

Temp20(s)β̂τ (s, t)ds, Q̂τ
80(t) = α̂τ (t) +

∫
S

Temp80(s)β̂τ (s, t)ds,

plotted over t, for each age group and for τ = 0.1, 0.5 where α̂τ (·) and β̂τ (·, ·) are
estimated with either the spline or eigenfunction approach. Notice that no random effects
are included in the predictions such that their interpretation is for an “average sow” (with
uτ

i = 0).
The solid blue and red curves are estimated profiles obtained by the spline method,

and we see a clear distinction between low (blue) and high (red) temperatures, at least
from around lactation day five. High temperatures negatively influence the appetite of
the animals—they tend to eat more in cooler conditions—and this difference increases
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over time, particularly at the 0.1 level. The group of young and old sows have similar 10%
quantiles of feed intake at the beginning of their stay in the cells, but develop slightly
different eating habits over lactation days. The 10% quantile stabilises around 4.5 kg for
older sows when the environment is warm and around 5 kg when it is cold, whereas the
quantile for sows at their first pregnancy has a lower plateau, which is reached later in
time, and takes values of approximately 3.5 kg and 4 kg for high and low temperature
profile, respectively. At quantile level 0.5 these trends are preserved, with plateaus at
6 kg and 7 kg for young and old animals, respectively, in the lower temperature profile,
and at 5.5 kg and 6.5 kg for the higher temperature profile. The dashed curves show the
bias-adjusted estimates. Although the bias-adjustment is hardly visible, it is actually
significantly different from zero at many instances at a 5% significance level (based on
pointwise one-sample t-tests).

Turning to the eigenfunction approach, the difference between Q̂τ
20(t) and Q̂τ

80(t) is
negligible meaning that no temperature effect has been identified. The profiles, which
cannot the distinguished from one another, are plotted in grey in Figure 3.9, and fall in
between the estimates from the spline method; as an average over temperature curves. It
is interesting that only one of the approximation methods is able to identify a temperature
effect, and not even inclusion of more eigenfunctions than suggested by the BICadj criterion
makes the estimated temperature effect non-negligible. We only use the spline approach in
the following, and compare results for model (3.6.1) to results for simpler models without
temperature effects (Section 3.6.2).

In order to illustrate the estimated temperature effects from the spline approach more
clearly, Figure 3.10 plots differences between the estimated feed intake quantile profiles for
low and high temperatures, i.e. D̂τ (t) = Q̂τ

20(t) − Q̂τ
80(t). The black curve and confidence

bands show the estimates without adjustment and the corresponding model-based 95%
pointwise confidence interval based on the variance-covariance matrix reported from the
analysis, and the orange curve and confidence bands show the bias adjusted estimates and
confidence bands obtained by bootstrap, cf. equation (3.3.13). We used 100 bootstrap
samples for each of the two bootstrap procedures. Bias adjustment is most prominent for
young sows at the 0.1 quantile, with all pointwise P -values smaller than 0.00015. For the
other three cases, P -values are below 0.01 for all except 3–4 lactation days. The bootstrap
generated confidence bands are always wider than the model-based. Since the simulation
results indicated that the model based standard errors underestimate the actual variation,
we are in favour of the bootstrap generated confidence intervals. The profiles obtained
from the 100 bootstrap datasets are shown in Figure 3.12.

No matter which methods we use for construction of confidence bands and no matter
whether we adjust for bias or not, the overall conclusion is the same: No temperature effect
is found early in the lactation period (up to around day five), but at later days quantiles
of feed intake are negatively affected by high temperature at 0.1 and 0.5 quantile levels. In
general, the influence of temperature on the quantiles becomes more prominent along the
lactation period, but there are certain differences between age groups and between quantile
levels. At quantile level 0.1 the difference in predictions has an increasing trend along
lactation days for both groups of sows, while at the median the difference in predictions
reaches a maximum of approximately 0.5 around lactation day 10–13 and then flattens
out (or even decreases sligthly). This might indicate that the sows that eat less are those
particularly sensible to the environmental temperature.
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Figure 3.10: Estimated differences in quantiles between the pointwise 20% and 80% temperature
curves, both without (solid black) and with (solid orange) bias adjustment. The corresponding
pointwise confidence intervals, based on the model solely or on bootstrap, are illustrated with
dashed curves. The left column refers to sows at their first pregnancy, while the right column
refers to the older sows. Results at levels τ = 0, 1 and τ = 0.5 are shown in the top and bottom
row respectively.

3.6.2 Comparison with simpler models
Now, let us turn to a comparison of the model (3.6.1), with three modifications which
all have simpler specifications of the effect of temperature. The first modification has
β(s, t) = βA(s) such that the temperature curves still have functional effects, but with
same effect across lactation days; this would correspond to profiles of differences in
Figure 3.10 being constant. The second modification has β(s, t) = βB(t). Then the model
(3.6.1) becomes

QFIij |Tempij ,tij ,uτ
i
(τ) = uτ

i + ατ (tij) + βτ
B(tij)

∫
Tempij(s) ds (3.6.2)

such that the quantile depends on the temperature curve only through its integral or,
equivalently, the average temperature over the day, and it is no longer a functional quantile
regression model. The third modification combines the two previous sub-models; it has
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β(s, t) = βC , such that

QFIij |Tempij ,tij ,uτ
i
(τ) = uτ

i + ατ (tij) + βC

∫
Tempij(s) ds (3.6.3)

and the temperature effect is the same across days and depends on the average temperature
over the day only.

We measure goodness-of-fit with the AIC values based on the log-likelihood corre-
sponding to the ELF distribution (Fasiolo et al., 2020) and the effective degrees of freedom
(EDF) known from additive models (Wood, 2017), but it would also be possible to rely
on other criteria, for instance the BIC, which penalizes a model more for its complexity.
The EDF is partitioned into two parts; the effective degrees of freedom for the smooth
coefficients (ατ (·) and βτ (·, ·)), denoted EDFα,β , and the degrees of freedom corresponding
to the subject-specific intercepts (uτ

i ), denoted EDFu. Table 3.2 displays the AIC values
and also the EDFs for the four models, with the smallest AIC value emphasized in each
line.

β(s, t) βA(s) βB(t) βC

τ AIC EDFα,β EDFu AIC EDFα,β EDFu AIC EDFα,β EDFu AIC EDFα,β EDFu

Yo
un

g 0.1 18527 19 191 18769 13 188 18724 13 189 18790 10 188

0.5 15937 19 206 15947 14 206 15934 14 206 15946 11 206

O
ld 0.1 18483 24 201 18769 15 198 18633 13 199 18802 11 198

0.5 16044 26 206 16048 15 207 16047 14 206 16060 11 207

Table 3.2: AIC and sum of effective degrees of freedom for young and old animals when adopting
model (3.6.1) (first column), model (3.6.1) with β(s, t) = βA(s) (second column), model (3.6.2)
(third column) and model (3.6.3) (fourth column).

For both groups the AIC values corresponding to the most complex model are the
smallest by a reasonably wide margin when for quantile level τ = 0.1, while the values are
closer among the models at the median. This indicates that it is particularly important
to allow for time-varying coefficients and functional effects at lower quantiles. At level
τ = 0.5 the most complex model is still selected for old sows, but for younger animals the
smallest AIC is the one from model (3.6.2). Furthermore, in all cases, the AIC values
from the model with βB(t) are smaller than the AIC value from the model with βA(s),
indicating that it is more important to account for the temperature variation in the
development along the lactation period than over the day.

For the EDFs, we notice that both EDFp, as expected, is the highest for the model
(3.6.1) since it describes variation in both the s and t direction. Both EDFα,β and EDFu

are larger when estimation is carried out at the median rather than at the 10% level;
most likely because there is more information in the data about the median and thus
more room for flexibility in the estimation. Finally, notice that EDFu is always between
188 and 207, and thus smaller than 237 and 238, the number of young and old sows,
respectively, so random effects are penalized effectively.

3.6.3 The estimated effect of temperature

Finally, we turn the attention to the estimated coefficient function β̂τ (·, ·) in model (3.6.1),
while having in mind that the function is not identified in the full space of functions.
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Figure 3.11 shows β̂τ (·, ·) for each age group and at quantile levels 0.1 and 0.5, respectively.
In each panel, s 7→ β̂τ (·, t) is plotted for t fixed at each lactation day, on a colour scale that
ranges from orange to green as the longitudinal time goes by. Recall that, by construction,
the development in both s and t direction is smooth, and the functions are cyclic over
day.
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Figure 3.11: Illustration of the estimated coefficient function β̂τ (·, ·) estimated by means of a
tensor smooth for level τ = 0.1 (top row) and τ = 0.5 (bottom row), for both young (left column)
and older sows (right column). Curves show s 7→ β̂τ (·, t) for each lactation days t.

The estimated coefficient functions are predominantly, although not everywhere, negative
corresponding to the overall negative effect of temperature illustrated in Figure 3.8. With
the risk of overinterpretation, we see that the impact of temperature on feed intake is most
prominent in the morning hours (from about 8 am to about 12, a bit later at late lactation
days for young sows at the median). This is also the time of the day with the largest
differences in temperature effects between lactation days. Sensitivity against temperature
appears to increase over lactation days, but stabilizes earlier for young compared to older
sows.

3.7 Discussion

Our ultimate aim was to study how heat stress affects the health, monitored in terms of
daily food intake, of lactating sows. To achieve this, we proposed a model and estimation
framework for scalar-on-function quantile regression for clustered or longitudinal data. In
particular, dependence within cluster/subject is taken into account by including cluster- or
subject-specific intercept parameters. Estimation relies on basis expansions, using either
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penalized splines or eigenfunctions for the functional covariates’ covariance operator, and
existing software can be applied to the new framework. We compared the estimation
methods with simulations, and although the results were similar, we prefer the spline
approach for its flexibility and because the eigenfunction approach requires as extra
step where the level of truncation is selected. Simulations also revealed the importance
of taking the within-subject dependence into account in the estimation process, and
that estimates of quantiles can be biased and standard errors underestimated. The last
observation inspired us to also consider bootstrap-based methods for bias adjustment and
estimation of uncertainty.

Regarding the data application, our analysis offered some interesting insights. First,
quantiles are similar for younger and older sows close to giving birth, but increase faster
and to a higher level for older than younger sows, suggesting that sows at their second or
later pregnancy acclimatise faster to the environment. Second, a high temperature in
the stable affects feed intake negatively except for the early days in the lactation period;
this is the case for both younger and older sows, and both at the median and at the 0.1
quantile levels. At early lactation days, the temperature effect is not significant, and
also similar for both groups of sows. Third, the estimated temperature effect is generally
larger at the 0.1 level compared to the 0.5 level, suggesting that sows that eat less are
more sensible to temperature changes than the majority of sows; however this should
be investigated further. Fourth, there is an increasing trend of the temperature effect
throughout the lactation period at the 0.1 quantile level, and steeper for the older sows.
This is confirmed by model comparisons where models with time-varying temperature
effect are preferred over models with constant temperature effects. Fifth, for both groups
and at the 0.1% quantile level, the model with functional effect of temperature over the
day is preferred over a model which includes the average temperature only.

We have focused on models with a single functional covariate, but they could be
extended to include more than one functional covariates or a mixture of functional and
scalar covariates in a straight-forward way. Moreover, several grouping levels could be
included as random effects; this could be relevant in the application because sows were
kept together in the stables. It remains to study the robustness of estimates in such more
complex models. The proposed models have similar flavor as models from Brockhaus
et al. (2017), but we were not able to get reliable estimates with the software.

We adjusted our estimates and the corresponding standard errors with bootstrap
methods. The sampling schemes have been used and studied in simpler models (Galvao
and Montes-Rojas, 2015; Battagliola et al., 2021); yet the approach is ad hoc and further
examination would be useful in future studies. Another topic for future research is
hypothesis testing for functional effects. With inspiration from Abramowicz et al. (2018)
and Pini et al. (2021), our preliminary ideas are based on permutation tests, where
test statistics are computed as integrals over the domain S of pointwise test statistics,
and their null distribution evaluated by bootstrap. The main challenge lies in designing
appropriate permutation schemes that comply with the dependence structures in the
data.
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3.9 Appendix

Extra results from simulation studies
Table 3.3 shows results from simulations in Section 3.5.2 with time-invariant coefficient
function. Data are simulated with β(s) = β1(s), and estimation is carried out with the
spline approximation. The numbers reported in the table are averages over 200 simulated
datasets.

Scenario bias(Q̂0,τ ) SD(Q̂0,τ ) RMSE(Q̂0,τ ) RMSE(Q̂0,τ
oos) RMSE(Q̂0,τ

marg)
A -0.00 0.06 0.09 0.09 0.11
B 0.00 0.14 0.16 0.16 0.17
C -0.09 0.08 0.13 0.14 0.76
D -0.24 0.21 0.33 0.33 0.42
E -0.23 0.18 0.30 0.30 0.38
F -0.24 0.18 0.30 0.31 0.41
G -0.11 0.09 0.16 0.16 0.64
H -0.32 0.19 0.38 0.38 0.56
I -0.03 0.20 0.22 0.22 0.22
J -0.26 0.22 0.36 0.36 0.63

Table 3.3: Mean values (over the 200 replications) of bias, standard deviation and RMSE of
linear predictor computed in-sample (second, third, and fourth columns, respectively) as well as
the RMSE of the linear predictor computed out-of-sample (fifth column) and the RMSE of the
linear predictor obtained with the marginal model (sixth column).

Extra results from the application

Recall that D̂τ (·) is the estimated difference in quantile between the pointwise 20% and
80% temperature curves. Figure 3.12 shows estimated differences D̂τ,∗(·) obtained from
bootstrap data, for the young sows and at quantile level τ = 0.1. For the left plot
bootstrap data are sampled by cross-sectional resampling (block resampling), resampling
sows, whereas for the right plot data are resampled by the wild bootstrap method explained
in Section 3.3.5. One-hundred datasets are generated in both cases. The estimate from
the observed data, D̂τ (·), is shown in black.

The bootstrap estimates vary around the data estimate for the cross-sectional boot-
strap, whereas the bootstrap estimates are on average larger than the data estimate
for the wild bootstrap. Since the wild bootstrap data are generated such that D̂τ (·) is
the true value, the deviation measures the bias, and we use it for bias correction, see
the upper left part of Figure 3.10. It is also clear from the graphs that the variation of
estimates is larger for cross-sectional bootstrap than for wild bootstrap.
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Figure 3.12: Estimated differences in quantiles between the pointwise 20% and 80% temperature
curves, obtained from 100 bootstrap datasets generated by cross-sectional (block) resampling
(left) and wild bootstrap (right) for young sows at quantile level 0.1. The black curves represent
the estimate obtained from the observed data.
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Abstract

The manuscript presents an analysis of learning curves of mice recorded when the
animals were trained and then tested on how to successfully complete a working
memory-challenging task multiple times. In particular, we are interested in the
comparison between the behavior of mice in a control group and mice with an induced
brain lesion that resembles one that is common in patients affected by psychiatric
disorders. We rely on existing methods in order to analyze bivariate functional
objects composed of amplitude and phase components arising from registration of
the learning curves. We compare the results corresponding to the two groups in
different scenarios, each characterized by a different level of difficulty of the task.

Keywords: Learning curves; Registration; Square root velocity functions; Multi-
variate functional principal component analysis

4.1 Introduction

This work is motivated by the study of working memory impairment that might affect
patients with psychiatric disorders. In particular, our analysis is based on the data
presented by Benoit et al. (2020). In their paper they studied the behavior of mice when
undergoing a task designed to challenge their memory. In particular, they considered a
control group of mice and a group characterized by mice with an induced brain lesion
that resembles one that can be detected in psychiatric patients affected by, for instance,
schizophrenia. Every animal belonging to both groups was first trained to complete the
task and then tested on completing the same task, but when delays were introduced.
In particular, the task was considered successfully completed if the animal was able to
remember in the second half of the task what happened in the first half. In the acquisition,
when mice were trained, there was no delay between the first and second parts of the task.
Afterwards, a delay of either 2, 4, 8 or 16 seconds was randomly chosen and introduced
between the two halves of the task. During both acquisition and test, every animal
undertook trials of such task multiple times a day over several days, and successes and
failures were recorded.

Benoit et al. (2020) analyzed multivariate data arising from averaging the binary
results of the trials at each day of the experiment. We decided to work instead with
learning curves, with the idea that such framework could bring a more nuanced analysis
of the data. In such context, we relied on tools from functional data analysis (see for
instance Ramsay and Silverman (2005) for an overview on the topic). When a collection
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of curves is available, it can be of interest to perform phase-amplitude separation on them.
Such analysis allows to estimate the amplitude and phase components that play a key
role in the registration, or alignment, of the curves. Registration is sometimes regarded
as a pre-processing analysis, and several methods are available in the literature (see for
instance Ramsay and Silverman (2005, Chapter 7), Gervini and Gasser (2004), Sangalli
et al. (2010), Kneip and Ramsay (2008), Tang and Müller (2008), and Marron et al.
(2015) for an overview). However, amplitude and phase components can bring precious
information about the underlying trends of the observed curves. In our data application,
studying the amplitude variability can bring an insight on how good the performance
of the mice can be in terms of probability of completing a trial with success, while the
phase variability gives an idea on how fast the animals make progress. Happ et al. (2019)
proposed a multivariate functional principal component analysis (MFPCA) performed
on the bivariate functional objects whose univariate elements are amplitude and phase
components, so as to account for the simultaneous sources of variation between the these
two functions. In this manuscript we rely on the findings and methods outlined by Happ
et al. (2019) to give an insight into our data application.

In what follows, Section 4.2 outlines the mathematical framework we use, and Section
4.3 presents our analysis of the learning curves of the two groups of mice. Finally, in
Section 4.4 we summarize our findings and discuss possible further developments.

4.2 Methods

This section is dedicated to the description of the mathematical framework we use for our
data analysis. As mentioned in Section 4.1, our work is based on the methods suggested
by Happ et al. (2019).

4.2.1 Registration via SRVF
Registration is an important tool in functional data analysis when it comes to the study of
a collection of curves. In general, such analysis allows to quantify the warpings, or phase
components, which deform functions so as to make them "aligned". The resulting aligned
curves are regarded as amplitude components and such curves in general have features
such as peaks and valleys occurring at similar coordinate point. Several approaches for
phase-amplitude separation are available in the literature, from landmark to model-based
registration methods. We rely on the work presented by Srivastava and Klassen (2016,
Chapters 4, 7, 8) (see Wu and Srivastava (2014) for a concise yet complete description of
the framework), and we briefly outline it in what follows.

Without loss of generality, consider time domain T = [0, 1] and function f ∈ F(T ),
where F(T ) ⊂ L2(T ) is the set of almost everywhere differentiable curves on T such
that f(t) = f(0) +

∫ t

0
df(s)

ds ds, with t ∈ T . The square root velocity function (SRVF)
corresponding to f is q : L2(T ) → R and it is defined as

q(t) = sign
(
df(t)
dt

)√∣∣∣∣df(t)
dt

∣∣∣∣.
Notice that q ∈ L2(T ) and we can always recover any f from its SRVF transformation q
and f(0) by

f(t) = f(0) +
∫ t

0
q(s)|q(s)|ds, (4.2.1)
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with t ∈ T . In particular, the Fisher-Rao (FR) metric for f ∈ F(T ) becomes the L2

metric for the corresponding SRVF q. Furthermore, consider

ΓT = {γ : T → T | γ(0) = 0, γ(1) = 1, γ diffeomorphism},

the set of boundary-preserving diffeomorphisms of T . Such functions are smooth and
invertible, and their inverse is smooth as well. We call ΓT the set of the warping
functions, which deform any f ∈ F(T ) by right composition. We call such composition
the warped version of f , and we denote it as f ◦ γ. Moreover, the corresponding SRVF
transformation of the warped function is (q, γ) = (q ◦ γ)

√
dγ
dt , where q is the SRVF of

f . Broadly speaking, registration is an analysis that allows to estimate the warping
functions that deform curves so as to make them aligned. From a mathematical point of
view, in order to be able to estimate the warping functions, it is important to adopt a
proper criterion to be optimized. A possible choice could be taking the L2 norm of the
difference between two functions in order to measure the distance between them. However,
taking f1, f2 ∈ F(T ) and any γ ∈ ΓT , such criterion would lack isometry under warping,
namely ||f1 ◦ γ − f2 ◦ γ||2 ̸= ||f1 − f2||2. This entails that the L2 norm is not suitable
in this framework, since it does not preserve the distance between two functions when
deformed in the same way. The main strength of working with the SRVF transformations
q1, q2 ∈ L2(T ) of the original functions is that they guarantee that the isometry under
warping hold true, namely ||(q1, γ) − (q2, γ)||2 = ||q1 − q2||2. This property is important
when defining a metric for more complex spaces.

Another desirable property of the registration setting is that the amplitude of a
function is left unchanged when it undergoes different warpings. Regarding amplitude as
an "absolute" characteristic of a function, Srivastava and Klassen (2016, Chapters 4, 7,
8) considered it as an equivalence class, or orbit, and combined such assumption with
the SRVF transformation framework. In particular, the amplitude of function f ∈ F(T )
corresponds to all its warpings given by set ΓT and their limit points:

[f ] = closure{f ◦ γ | γ ∈ ΓT }.

A similar definition of amplitude holds for q, the SRVF transform of f , namely

[q] = closure{(q, γ) | γ ∈ ΓT }

with [q] ⊂ L2, and S the set of all orbits [q]. When one is interested in the pairwise
alignment of function f2 to function f1, with f1, f2 ∈ F(T ) whose corresponding SRVF
transforms are q1 and q2 respectively, then the amplitude distance is defined as

da([q1], [q2]) = min
γ∈ΓT

||q1 − (q2, γ)||2. (4.2.2)

The phase and amplitude components of the phase-amplitude separation are the warping
function γ that achieves the minimum in (4.2.2) and the warped f2 that is aligned to f1,
namely

f̃2 = f2 ◦ γ,

respectively.
When it comes to the registration of a group of functions f1, . . . , fN ∈ F(T ) the

procedure is similar, but instead of choosing one function from the collection to align all
the others to, one usually aligns f1, . . . , fN to a template that captures the characteristics
of all the curves. Consider the corresponding SRVF transforms q1, . . . , qN of the collection
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of curves. Srivastava and Klassen (2016, Chapter 8) suggested taking the Karcher mean,
namely

[µ] = arg min
[q]∈S

N∑
i=1

da([q], [qi])2,

which corresponds to a generalization of mean in a metric space. Then, the template to
align the functions to is µq, the center of orbit [µ]. In particular, the warping functions
γ1, . . . , γN that align q1, . . . , qN to µq have the identity γid(t) = t as the sample Karcher
mean under the FR metric (see Srivastava and Klassen (2016, Chapter 7)). Similarly
as in the pairwise alignment, the phase components of the phase-amplitude separation
are γ1, . . . , γN , while the amplitude components are f̃1, . . . , f̃N , with f̃i = fi ◦ γi for
i = 1, . . . , N . The two collections of phase and amplitude representatives are the first
building block of the analysis carried our by Happ et al. (2019) and used in our application
section.

4.2.2 MFPCA on amplitude and transformed phase components
Once the amplitude and phase components from the registration of f1, . . . , f2 are available,
it would be desirable to study them with classical functional data analysis tools, such as
functional principal components analysis (FPCA). However, due to the non-convexity of
ΓT (Lee and Jung, 2016; Srivastava and Klassen, 2016, Chapter 4) it is not possible to
carry out FPCA directly on the collection of warping functions γ1, . . . , γN . To overcome
this drawback one needs to transform the phase components by some map ψ such that

ψ : ΓT → S2(T ), (4.2.3)

where S2(T ) is some convex subspace of L2(T ), and hence conduct FPCA on ψ(γ1), . . . , ψ(γN ).
An important feature that map ψ should have is to be a bijection, since we wish to
transform the findings of any analysis back to ΓT using ψ−1 : S2(T ) → ΓT . Happ
et al. (2019) reviewed several possible choices for ψ and, out of preservation of geometric
structure and computational stability arguments, they recommend relying on the centred
log-ratio transformation (Egozcue et al., 2006; Hron et al., 2016), that we explain in what
follows.

Given the characteristics of the elements of ΓT , warping functions γ1, . . . , γN can be
interpreted as cumulative distribution functions of continuous random variables that take
values in T . In such framework, their first derivatives D(γ1) = γ′

1, . . . , D(γN ) = γ′
N , where

D is the differential operator, are then the corresponding probability density functions.
The Hilbert Bayes space B2(T ) is the vector space formed by the equivalence classes
of such functions, and both a definition of norm as well as operations are defined in
B2(T ) (see Happ et al. (2019) and references within). It is possible to transform functions
γ′

1, . . . , γ
′
N ∈ B2(T ) by means of the centred log-ratio transformation ψB : B2(T ) → S2

B(T ),
bijective isometric isomorphism defined as

ψB(γ′)(t) = log(γ′(t)) −
∫

T

log(γ′(s))ds (4.2.4)

where S2
B(T ) = {g ∈ L2(T ) :

∫
T
g(s)ds = 0}. The corresponding inverse transformation is

then
ψ−1

B (g)(t) = exp(g(t))∫
T

exp(g(s))ds . (4.2.5)
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As recommended by Happ et al. (2019), we choose (4.2.3) as

ψ = ψB ◦D, (4.2.6)

namely a composition of bijective maps.

Having now established a suitable transformation for the phase component that allows
to easily compute mean and covariance functions, we come back to the analysis of the
curves arising from phase-amplitude separation. As we mentioned earlier, it is possible
to run FPCA separately on amplitude and adequately transformed phase components.
However, such approach does not take into account the sources of simultaneous variation
that amplitude and phase representatives naturally inherited from the fact that they are
generated from the same functional observations. A joint FPCA approach was proposed
by Lee and Jung (2016), who in the same paper suggested that the use of MFPCA might
be more appropriate to study the joint variation of phase and amplitude representatives.

Such analysis was studied and implemented by Happ et al. (2019), who relied on
the findings on MFPCA presented by Happ and Greven (2018). Specifically, consider
f̃1, . . . , f̃N and γ1, . . . , γN , the phase and amplitude components arising from the regis-
tration of f1, . . . , fN respectively. Happ et al. (2019) worked with bivariate functional
objects h1, . . . , hN ∈ H = F(T ) × S2

B(T ), where hi ∈ H, with i = 1, . . . , N , is such that

hi(t) = (f̃i(t), ψ(γi)(t)),

with phase transformation ψ(·) as in (4.2.6). Taking for instance h1, h2 ∈ H, the inner
product we endow H with is

⟨⟨h1, h2⟩⟩ = ⟨f̃1, f̃2⟩2 + ⟨ψ(γ1), ψ(γ2)⟩2, (4.2.7)

where ⟨·, ·⟩2 is the inner product of L2. It is also possible to weigh the two L2 inner
products in (4.2.7), especially if the variability of the two components is very different
(Happ and Greven, 2018; Happ et al., 2019). In order to proceed with MFPCA analysis,
one first has to find equivalence between the mean and variance in H and those in
G = F(T ) × ΓT , namely the space of the bivariate objects where the phase component
has not been transformed. Happ et al. (2019) suggested a valid metric to endow G with,
and this allows to establish equivalence results between mean and variance notions in H
and G. In such way, no information is lost in the transformation of the phase components,
and that one can hence work in H, which has a geometric structure that can be handled
with the tools of functional data analysis.

It is possible now to perform MFPCA on a collection of bivariate functional objects
h1, . . . , hN ∈ H, with hi = (f̃i, ψ(γi)), i = 1, . . . , N . The work developed by Happ
and Greven (2018) is based on theoretical results that allow to find en equivalence
between MFPCA of h1, . . . , hN and separate FPCA of f̃1, . . . , f̃N and ψ(γ1), . . . , ψ(γN ).
In particular, they presented an estimation method based on merging the scores arising
from the univariate FPCA of the components of the multivariate objects. The resulting
quantities from MFPCA of h1, . . . , hN are the eigenvalues ν1 ≥ ν2 ≥ . . . . ≥ 0 and the
multivariate eigenfunctions φ1, φ2, . . . ∈ H, with φj = (φA

j , φ
P
j ), j = 1, 2, . . ., where the

superscripts indicate either the amplitude (A) or the phase (P ) univariate components
respectively. Scores are computed as

ξi,j = ⟨⟨hi, φj⟩⟩ i = 1, . . . , N, j = 1, 2, . . . (4.2.8)

In practice, the total number of principal components is truncated at a number K large
enough such that most of the sources of variation are included in the analysis while
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discarding the possible measurement noise. A common way of choosing K is by imposing
that the Percentage of Variance Explained (PVE)

∑K
j=1 νj/

∑∞
j=1 νj is as high as 0.95 or

0.99.

In order to interpret the results, it is possible to transform the findings back to the
space of the original functions f1, . . . , fN . For instance, take the estimated average of the
phase components γ = ψ−1(ψ(γ)), where ψ(γ) is the point-wise mean of ψ(γ1), . . . , ψ(γN ),
and the estimated point-wise mean of the amplitude components, namely ¯̃f . One can
then compute the estimated mean of the original curves as

f = ¯̃f ◦ γ−1. (4.2.9)

In a similar fashion, it is also possible to compute the perturbations of the mean in
terms of amplitude and phase variations characterizing a selected principal component.
For instance, consider the jth eigenvalue νj and eigenfunction φj and define γVj

=
ψ−1(ψ(γ) +C

√
νjφ

P
j ) and f̃Vj

= ¯̃f +C
√
νjφ

A
j , where C ∈ {−1, 1}. Such elements define

the perturbation of the mean amplitude component and the perturbation of the mean
phase component respectively. We can then consider deforming f̃Vj

with γ−1
Vj

, accounting
for both amplitude and phase sources of variation, namely

fDVj = f̃Vj ◦ γ−1
Vj
, (4.2.10)

where the subscript indicates the double source of variation. Function fDVj can be
then directly compared to f1, . . . , fN . In a similar fashion, one can also consider the
perturbations of the mean function with only one of the two sources of variation. For the
amplitude variation we deform f̃Vj

with γ−1:

fAVj = f̃Vj ◦ γ−1, (4.2.11)

while for the phase variation we deform ¯̃f with γ−1
Vj

:

fP Vj
= ¯̃f ◦ γ−1

Vj
. (4.2.12)

Notice how, for C = 0, the variations (4.2.10), (4.2.11) and (4.2.12) all correspond to
mean (4.2.9). In Section 4.3.2 we let C take values in [−1, 1] so as to illustrate how the
mean function reaches its perturbations while the standard deviation gradually increases.

4.3 Analysis of learning curves

As mentioned in Section 4.1, the motivating application of this work regards the conse-
quences of memory loss in mice (Benoit et al., 2020). In the experimental set-up animals
were first divided into a control group and a group in whose brain was induced a lesion
that should cause a similar memory loss as the one witnessed in patients affected by
psychiatric disorders such as schizophrenia. Our aim is to compare the behavior of 17
lesioned mice and 16 mice injected with placebo in the same memory-involving task.
Specifically, after an acquisition phase when they had been trained on how to successfully
complete the task, both groups of mice undertook several sequential trials a day of a
test that required them to remember a previous action for different periods of time. In
particular, to each trial a delay of time of either 2, 4, 8 or 16 seconds was assigned
randomly. During the acquisition, mice were train for 18 or 19 consecutive days, with a
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number of trials per day that went from 70 to 158, and an overall median of 118 trials.
Then, when delays were introduced, both groups of mice were tested with 107 to 160 daily
trials, with median 155, over either 5 or 8 consecutive days. During acquisition around
30 seconds would pass between the beginning of the two trials, while when delays were
introduced that time span would be slightly longer. The results of trials were deemed
inconclusive, and hence removed from the dataset, if mice were inactive for some time
during the task.

4.3.1 Preprocessing and registration
First of all, we converted the collection of successes and failures of the trials into smooth
learning curves, so that the functions take values corresponding to the probabilities of
success over the experiment. We achieved that by means of logistic regression, taking
for each subject the binary outcomes as responses and the time of experiment as smooth
predictor approximated by means of penalised cubic splines. Computationally, we relied
on function gam() available in the R-package mgcv (Wood et al., 2016) and we used six
penalised cubic splines to represent a smooth effect in time. Since our ultimate goal is the
comparison of the curves from the two groups in the different scenarios, we considered
the binary outcomes as if recorded on a regular grid of points, and then smoothed them
to take values on the same dense grid, constituted of 100 points distributed over T . Time
interval T was chosen for interpretation purposes, so as to its extremes correspond to the
start and the end of the overall experiment, which was conducted over several days.

Figure 4.1 shows the smoothed learning curves of the 33 animals in both the acquisition
and test scenarios. The latter are displayed depending on the length of delay introduced
in the test. We take probability 0.5 (horizontal black line) as reference of mice acting out
of chance. Firstly, notice that the curves are not always nondecreasing. This might be
due to the fact that the learning processes were recorded over several days, so there is a
chance that the animals needed some adaptation after some time off of the experiment.
However, in general the trend of these curves is increasing over time. Secondly, it is
possible to notice some differences in the learning curves of the acquisition and of the
test parts. In the former, there is no striking difference between the curves of the two
groups, both in terms of variation as well as of learning achievements at the end of
the experiment. On the other hand, when it comes to the test scenarios, one can see
that the behaviors of the two groups differs for different delay lengths. In particular,
when it comes to the 2 and 4 seconds delays, there seems to be a larger variation in the
learning curves of the lesioned mice, who achieve rather different results by the end of
the experiment. Mice in the control group seem to reach final high learning probabilities,
ranging from around 0.7 to 1 for both types of delay. Regarding the test with 8 and 16
seconds delays, there is no evident distinction between the two groups of functions. Even
though the final learning probabilities are generally lower than in the cases of shorter
delay, the amount of variation for the two groups of mice is comparable in both pictures.
In particular, notice that for the 16 seconds delays the learning curves belonging to
both groups are somewhat flatter than in the other cases, as well as closer to 0.5 for
the first half of the experiment. This might indicate the fact that 16 seconds is too
long a delay for the animals to remember something, regardless of the group they belong to.
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Figure 4.1: Learning curves of lesioned (orange) and sham (green) mice groups for the acquisition
and test parts of the experiment. For the latter, we report the learning curves related to different
delays introduced in the task, either 2, 4, 8 or 16 seconds long.

In light of the results in Figure 4.1, in the following analysis we decide to study three
scenarios: the acquisition, and the test with 2 and 16 seconds delays. The reason for this
choice is that curves related to the 4 and 8 seconds delays resemble those arising from
the 2 and 16 seconds delays respectively. Moreover, we consider the chosen scenarios as
representatives of three different activities the mice go through, namely learning how to
successfully complete a trial, and remembering what they shall do both after a short and
after a rather long time lag respectively.

In the following sections we rely on the results from the phase-amplitude separation
described in Section 4.2.1. We used function time_warping() function of package
fdasrvf (Tucker, 2020) with default setting, except for MaxItr=500, the parameter
controlling the maximum iterations of the algorithm. Moreover, function MFPCA() is
available in the R-package MFPCA (Happ-Kurz, 2020) to carry out the MFPCA procedure
from Happ and Greven (2018).

4.3.2 Perturbation of the mean by amplitude and phase components
on separate data

As mentioned in Section 4.2, the advantage of analysing the amplitude and phase compo-
nents of a collection of curves with MFPCA is to gain knowledge on the main sources of
variation in the data, while accounting for the simultaneous variation between the two
components. In this section we consider the results from the separate registration of the
learning curves of lesioned mice and mice injected with placebo in the three scenarios
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we are interested in, namely acquisition, test with 2 seconds delay and with 16 seconds
delay. This corresponds to performing phase-amplitude separation on six collections
of curves, namely two groups in three scenarios, and then carrying out MFPCA on
each one of them using the corresponding amplitude and phase components. In all of
these cases we used K = 15 principal components in total. In Table 4.1 we show the
eigenvalues ν1, ν2, ν3 corresponding to the first three principal components, as well as the
corresponding percentages of variance explained, computed as

PV Ej = νj∑K
j=1 νj

, j = 1, 2, 3.

The first principal component explains a high percentage of the data in all three scenarios
and for both groups of mice. The highest percentages of variance explained are those
corresponding to the MFPCA carried out on the 16 seconds delay data, probably due to
a simpler structure of the curves.

PV E1 PV E2 PV E3 ν1 ν2 ν3

Acquisition Sham 0.51 0.40 0.06 0.53 0.41 0.06
Lesion 0.58 0.25 0.11 0.46 0.19 0.9

2 seconds delay Sham 0.44 0.33 0.17 0.19 0.14 0.07
Lesion 0.61 0.26 0.09 0.90 0.39 0.14

16 seconds delay Sham 0.63 0.24 0.07 0.37 0.15 0.04
Lesion 0.89 0.10 0.01 2.38 0.27 0.03

Table 4.1: Percentage of variance explained and eigenvalues by the first three principal
components for both groups of animals in the scenarios considered.

For each of the three scenarios, we are interested in comparing the two groups of mice
when it comes to the variations of the mean in both amplitude and phase, only amplitude
and only phase, as in equations (4.2.10), (4.2.11) and (4.2.12) respectively. As mentioned
in Section 4.2, for all of the three types of variation we take C ∈ [−1, 1] (the extremes of
the interval are coloured in blue and red respectively), where C = 0 (in grey) corresponds
to the mean function (4.2.9). By showing all the three types of variations we aim at
understanding how phase and amplitude play a role in the overall perturbations of the
mean. Since the first principal component explains at least half of the overall variation in
almost all the scenarios as shown in Table 4.1, we only show the results concerning the
first principal component in this section, while the ones regarding the second are in the
appendix.
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Figure 4.2: Double variation (4.2.10) (first column), amplitude variation (4.2.11) (second
column) and phase variation (4.2.12) (third column) relative to the first principal component of
MFPCA on sham and lesioned mice acquisition data (first and second row respectively). The
mean functions, corresponding to C = 0, are marked with a black dashed line.

In Figure 4.2 we show the results for the first principal component of the acquisition data
for both groups of animals. We can first of all notice that for two groups of animals the
mean function is rather similar, but the variability in amplitude and phase are different.
Mice in the sham group have more variability in amplitude in the beginning of the
experiment, while lesioned mice show larger amplitude variability towards the end of the
experiment. This might indicate that the animals in the sham group manage to reach
high scores no matter how well they start the experiment, while mice in the lesioned group
actually achieve different results at the end of the experiment. There is also a difference
in the phase variation: for animals in the sham group there is variability throughout the
experiment, while for lesioned it is from around 0.6 until the end. In the overall variation,
we can see that sham mice either start the learning curve at a probability of success larger
than 0.5 and plateau at high scores from the middle of the experiment (in red) or their
initial score is lower than 0.5 and they reach their final score later (in blues). On the
other hand, for lesioned mice there is very low variability both in phase and amplitude in
the first half of the experiment, and then they either reach a higher score faster than the
mean (in blue) or a lower score more slowly than the mean (in red).
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Figure 4.3: Double variation (4.2.10) (first column), amplitude variation (4.2.11)(second
column) and phase variation (4.2.12) (third column) relative to the first PC of MFPCA on sham
and lesioned mice 2 seconds delay data (first and second row respectively). The mean functions,
corresponding to C = 0, are marked with a black dashed line.

The results for delays of short length are shown in Figure 4.3. The mean function of the
sham group is smooth and it reaches 0.9, while the one for the lesioned mice in piecewise
increasing, reaching 0.8. For the mice in the sham group there is larger variation both
in amplitude and phase in the beginning of the experiment. This brings conclusions
similar to those drawn for the acquisition in the double variation case. On the other hand,
for the lesioned mice there is variability in amplitude especially in the first part of the
experiment, while there is more variability in phase in the second half. This results in
profiles of the overall variation that either progress more slowly and then reach a higher
probability of success (in blue) or that progress seemingly faster, then have an abrupt
drop in the performance in the middle of the experiment, then get back on track and
stabilize a bit below 0.8 (in red).
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Figure 4.4: Double variation (4.2.10) (first column), amplitude variation (4.2.11) (second
column) and phase variation (4.2.12) (third column) relative to the first PC of MFPCA on sham
and lesioned mice 16 seconds delay data (first and second row respectively). The mean functions,
corresponding to C = 0, are marked with a black dashed line.

When it comes to 16 seconds delay, the results are reported in Figure 4.4. On average,
the final learning achievements at the end of the experiment of both groups are lower
than for short delays, being a bit above and below 0.65 for the sham and lesioned groups
respectively. For the mice in the sham group the variation in phase is mostly in the
beginning of the experiment, while for the amplitude it is either in the very beginning
or in the very end of it. The double variation plot shows two behaviors: mice either
start at a lower probability of success and they slowly reach the end the experiment at
higher results (blue), or they start their learning curve at higher probabilities and end up
faster at poorer results. For lesioned mice the amplitude variation is predominantly at
the extremes of the time interval too, but the phase variation is in the first and second
half of the experiment. The results for the double variation are somewhat similar to
those related to short delays: one profile is piecewise increasing, starting from a lower
probability of success and reaching higher results than the mean function (in blue), and
the other starts from higher probability of success and ends in poorer results than the
mean function, with a drop in the middle of the experiment (in red).

We point out that, in the analysis carried out in this section, the sizes of the variations
are not directly comparable between the two groups since they are the result of two separate
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phase-amplitude separations and MFPCAs. However, it is still possible investigate in
what way the behavior of the two groups differs. From this analysis we see that, while
for the acquisition the mean function is comparable between the two groups, in those
scenarios with delays the average learning curve for mice in the sham group is generally
smooth, while the one for the lesioned animals is piecewise increasing, with a general flat
trend in the middle of the experiment. This might indicate that lesioned mice seem to
have problems at remembering the task from one session to the other, and they need some
re-adjustment period before starting to improve again, while the sham group is better
at remembering from one day to the other. Moreover, the modes of overall variation of
acquisition and test with 2 seconds delay for mice in the sham group are more similar
than for lesioned mice. A possible conclusion is that even short time delays are more
challenging for animals on the lesioned group rather than in the sham group. Finally,
even though it seems like the learning behaviors of the two groups are still different, in
the test with 16 seconds delay both groups of mice reach on average comparable results
at the end of the experiment.

4.3.3 Analysis of scores on joint data
With the analysis in the previous section we showed that there are some differences in
the way mice in the sham and lesioned groups behave, and the conclusions are based
on results arising from separate registrations and MFPCAs. In this section, for each of
the three scenarios, we align the learning curves together, regardless if they are from the
sham and the lesioned group of mice, and then we perform the MFPCA on the resulting
amplitude and phase components. Notice that the collections of curves we consider are
not independent, since we are ignoring the underlying grouped structure of the samples.
This entails that we do not carry out a proper principal component analysis, and that
the resulting sources of variations should not be addressed as eigenfunctions. However,
the analysis is still useful to extract basis functions common to the two groups. With an
abuse of notation, we refer to the elements resulting from the analysis withe the same
names of those arising from MFPCA. We ran k-means algorithm (Hartigan and Wong,
1979) on the scores, computed as in (4.2.8), of the two first principal components for each
scenario, in order to find four clusters for each one of them. Again, we chose K = 15
principal components of the MFPCA.

In the first column of Figure 4.5 we display the scores with the different colours
denoting the four different clusters. In Table 4.2 we report the percentage of variance
explained by the first two principal components, whose sum is bigger than 75% in all
scenarios. Moreover, even though we processed the learning curves jointly, we distinguish
the scores by treatment group by using different point shapes. There does not seem to be
distinct pattern in the composition of the clusters in terms of observations from either
the two groups of mice. This might indicate that the behavior of the animals cannot be
solely explained by the treatment they underwent.

In order to further look into the difference between the clusters detected, in Figure 4.5
we also plot the warping functions (central column) as well as the original learning curves
(last column) coloured according to the cluster they belong to. First of all, one needs to
bear in mind that the clusters are not directly comparable across the three scenarios, since
we performed three separate MFPCAs. Moreover, remember that the scores account for
a combination of amplitude and phase characteristics, so detecting specific cluster trend
for either solely amplitude or phase might be challenging. Nevertheless, it is possible
to see some interesting patterns. As far as the acquisition is concerned, the clusters of



96
CHAPTER 4. ANALYSIS OF LEARNING CURVES OF MICE BY

PHASE-AMPLITUDE SEPARATION

scores are quite distinct. This results in particular in four different trends of the warping
functions: warping functions above (in light green) and below (in dark green) the identity
line, corresponding to learning curves that reach the plateau after and before the template
respectively, as well as warping functions below the identity line in the first half of the
experiment and then above in the second one (in brown), and vice versa (in yellow).
On the other hand, apart from the fact that the the light green curves seem to be the
smoothest, the differences between the learning curves of different clusters is not as clear.
When it comes to the task with 2 seconds delay, the negative and positive scores of
the first principal component are especially distinct. It is possible to notice that these
two groups correspond to smooth (in dark purple and light cyan) and wiggly (in light
purple and dark cyan) learning curves respectively, while it is more difficult to interpret
the differences among the warping functions belonging to different clusters. A similar
interpretation can be given to the scores and learning curves arising from the 16 seconds
delay task, where the beige and light blue curves are somewhat more wiggly than the
dark blue and chocolate ones.
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Figure 4.5: Scores from MFPCA (first column), warping functions (second column) and original
learning curves (third column) coloured according to the different score clusters. Each row
contains results related to one of the three scenarios, namely acquisition (first row), test with
2 seconds delay (second row) and test with 16 seconds delay (thirs row). The scores show the
group the specific animal belongs to (Sham or Lesioned) via different point shapes.



4.4. DISCUSSION 97

PV E1 PV E2

Acquisition 0.58 0.25
2 seconds delay 0.54 0.24

16 seconds delay 0.70 0.23
Table 4.2: Percentage of variance explained by the first and the second principal components
(first and second columns respectively) for the different scenarios.

In summary, the analysis of the clusters of scores suggests that the two groups of
animals share some similar behaviors, which are different across different scenarios. In
particular, different clusters detect especially well different learning speed trends in the
acquisition. On the other hand, for the tests with delays the most noticeable difference
among clusters is the smoothness of the corresponding learning curves. This can can be
interpreted as the difference between mice that can easily remember from the previous
day of the experiment and those that need to re-adjust after some time off performing
the task.

4.4 Discussion

This work is based on the framework discussed by Benoit et al. (2020). We compared
the performance of two groups of mice, namely a control group and a group of animals
with brain lesion, when it came to performing a memory-involving task repeatedly. In
particular, we considered three scenarios: the acquisition, when the animals learn how to
do the task, the test when short delays are introduced and the test when longer delays
are introduced. We relied on the estimation methods described by Happ et al. (2019).
Our findings in Section 4.3.2 indicate that, when the learning curves of the two groups
are registered and analyzed with MFPCA separately, on average they differ less in the
acquisition, reaching high probabilities of success in both cases, rather than when the
delays are introduced. In particular, for the latter cases, even though the overall learning
results are comparable at the end of the experiment for the 16 seconds delay, the mice
in the sham group seem to have a smooth average learning curve, while it is piece-wise
linear for lesioned mice. This might indicate that, even though the two groups of mice
can learn equally well how to perform the task, once the short delays are introduced the
lesioned mice need some re-adjustment periods in order to improve, while the mice in
the sham group seem to remember better how to complete the task successfully. This is
also the case for longer delays. Looking at the variations brought by the first principal
component, it is interesting to notice how mice in the control group seem to reach equally
high success probabilities with low overall variation in the acquisition and 2 seconds delay
scenarios, no matter how much variability in amplitude and phase they exhibit in the
first half of the experiment. This is not the case for lesioned mice, which show different
behaviors in the acquisition and when short delays are introduced.

On the other hand, when registering and carrying out MFPCA on the joint collections
of learning curves without accounting for the groups as in Section 4.3.3, we showed that
the clustering of the scores resulted in the identification of behaviors that are shared across
the two groups, rather than clusters of animals belonging to the same group. In particular,
in the acquisition different learning speeds were identified, while in the scenarios where
delays were introduced the smooth learning curves were separated from the wiggly ones.
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Overall, our work suggests that the available data is rich and complex, and further
analysis might be needed to model the learning behaviors of the two groups of mice. For
instance, since Benoit et al. (2020) found out that the scenario in which there is the most
significant difference between the two groups of mice is the one with 4 seconds delay,
our plan is to include such scenario in our analysis. Moreover, it would be interesting to
compare the results in Section 4.3.3 with those arising from separate FPCAs of amplitude
and phase components, so as to check whether with those analysis clusters of scores
corresponding only to observations from either sham or lesioned groups can be detected.

Other statistical tools could be employed as well. For instance, one could combine the
method for cluster detection of multivariate objects proposed by Schmutz et al. (2020)
with phase-amplitude separation. Another possible direction could be the development of
tests aimed at comparing univariate amplitude and phase components of the two groups
of mice, as well as the multivariate objects we considered for MFPCA.

Finally, when it comes to the pre-processing of data, we relied on smoothing techniques,
somewhat similarly to the work of Wu and Srivastava (2014), who smoothed spike train
data prior to performing registration. More recently, Wrobel et al. (2019) presented a
registration approach that is likelihood-based, not requiring pre-smoothing of discrete
data, and their data application consisted of sequences of binary data for every subject,
similarly to what we handle in Section 4.3. It could be interesting to compare the results
we obtained with those based on such phase-amplitude analysis, so as to verify how much
information, if any, was lost in smoothing the discrete data.
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4.6 Appendix

Further results of perturbations of the mean by amplitude and phase
components on separate data
In this section we show the results related to the second principal component from the
analysis carried out in Section 4.3.2.
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Figure 4.6: Double variation (4.2.10) (first column), amplitude variation (4.2.11) (second
column) and phase variation (4.2.12) (third column) relative to the second PC of MFPCA on
sham and lesioned mice acquisition data (first and second row respectively). The mean functions,
corresponding to C = 0, are marked with a black dashed line.
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Figure 4.7: Double variation (4.2.10) (first column), amplitude variation (4.2.11) (second
column) and phase variation (4.2.12) (third column) relative to the second PC of MFPCA on
sham and lesioned mice 2 seconds delay data (first and second row respectively). The mean
functions, corresponding to C = 0, are marked with a black dashed line.
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Figure 4.8: Double variation (4.2.10) (first column), amplitude variation (4.2.11) (second
column) and phase variation (4.2.12) (third column) relative to the second PC of MFPCA on
sham and lesioned mice 16 seconds delay data (first and second row respectively). The mean
functions, corresponding to C = 0, are marked with a black dashed line.
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