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Abstract

This Ph.D. thesis contains several contributions to the field of statistical
causal modeling. Statistical causal models are statistical models embed-
ded with causal assumptions that allow for the inference and reasoning
about the behavior of stochastic systems affected by external manip-
ulation (interventions). This thesis contributes to the research areas
concerning the estimation of causal effects, causal structure learning,
and distributionally robust (out-of-distribution generalizing) prediction
methods. We present novel and consistent linear and non-linear causal
effects estimators in instrumental variable settings that employ data-
dependent mean squared prediction error regularization. Our proposed
estimators show, in certain settings, mean squared error improvements
compared to both canonical and state-of-the-art estimators. We show
that recent research on distributionally robust prediction methods
has connections to well-studied estimators from econometrics. This
connection leads us to prove that general K-class estimators possess dis-
tributional robustness properties. We, furthermore, propose a general
framework for distributional robustness with respect to intervention-
induced distributions. In this framework, we derive sufficient conditions
for the identifiability of distributionally robust prediction methods and
present impossibility results that show the necessity of several of these
conditions. We present a new structure learning method applicable in
additive noise models with directed trees as causal graphs. We prove
consistency in a vanishing identifiability setup and provide a method
for testing substructure hypotheses with asymptotic family-wise error
control that remains valid post-selection. Finally, we present heuristic
ideas for learning summary graphs of nonlinear time-series models.
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Resumé

Denne Ph.D. afhandling indeholder flere bidrag til forskningsomr̊adet for
statistisk kausal modellering. Statistiske kausale modeller er statistiske
modeller med kausale antagelser, som muliggør inferens og ræson-
nement omkring stokastiske systemers adfærd under ekstern manipula-
tion. Denne afhandling bidrager til forskningsomr̊aderne vedrørende
estimering af kausale effekter, kausale strukturer og fordelingsrobuste
prædiktionsmetoder. Vi præsenterer nye estimatorer for lineære og
ikke-lineære kausale effekter i modeller med instrumentelle variabler.
Disse estimatorer anvender dataafhængig regulering og viser forbedret
gennemsnitlig kvadratfejl sammenlignet med anerkendte metoder. Vi
viser, at nyere forskning, om fordelingsrobuste forudsigelsesmetoder har
forbindelser til velkendte estimatorer fra økonometri. Vi beviser, at
generelle K-klasse estimatorer besidder fordelingsrobuste prædiktions
egenskaber. Vi foresl̊ar endvidere en kausal tilgang til fordelingsrobuste
prædiktionsmetoder. Vi udleder tilstrækkelige betingelser for identi-
ficering af fordelingsrobuste prædiktionsmetoder og viser endvidere
nødvendigheden af flere af disse betingelser. Vi præsenterer en ny
metode til at estimere kausale strukturer, der kan anvendes i modeller
med additiv støj og orienterede træer som kausale grafer. Vi beviser,
at metoden er konsistent, og fremstiller metoder til at teste hypoteser
omkring den kausale struktur. Endelig præsenterer vi heuristiske ideer
til at lære opsummeringsgrafer for ikke-lineære tidsseriemodeller.
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Summary of Contributions
This thesis consists of one introductory and four main chapters. The main

chapters aim to advance various areas of research within the field of statistical
causal modeling. Chapter 1 contains a general introduction to causal modeling and
reasoning in the mathematical framework of statistical causal models. We, further-
more, introduce the research topics of later chapters and discuss and summarize
our contributions in more detail. The main chapters and their corresponding ap-
pendices consist (up to minor corrections and aesthetic modifications) of previously
published, forthcoming, or submitted papers. The four main chapters correspond
to the following papers:

Chapter 2: Jakobsen, M. E. and Peters, J. Distributional Robustness of K-class
Estimators and the PULSE. The Econometrics Journal (forthcoming), 2021.
DOI: 10.1093/ectj/utab031.

Chapter 3: Christiansen, R., Pfister, N., Jakobsen, M. E., Gnecco, N., and Peters,
J. A causal framework for distribution generalization. IEEE Transactions
on Pattern Analysis and Machine Intelligence (forthcoming), 2021. DOI:
10.1109/tpami.2021.3094760.

Chapter 4: Jakobsen, M. E., Shah, R., Bühlmann, P., and Peters, J. Structure
Learning for Directed Trees. arXiv preprint arXiv:2108.08871, 2021.

Chapter 5: Weichwald, S., Jakobsen, M. E., Mogensen, P. B., Petersen, L., Thams,
N., and Varando, G. Causal structure learning from time series: Large
regression coefficients may predict causal links better in practice than small p-
values. In Escalante, H. J. and Hadsell, R., editors, Proceedings of the NeurIPS
2019 Competition and Demonstration Track, volume 123 of Proceedings of
Machine Learning Research, pages 27–36. PMLR, 08–14 Dec 2020.

Chapter 2 proposes a novel estimator, called the p-uncorrelated least squares
estimator (PULSE), for linear causal effects in instrumental variable (IV) setups.
The PULSE can be viewed as a data-dependent mean squared prediction error
regularization of the two-stage least squares estimator. We prove that the esti-
mator is consistent, and through simulations studies, we show that in, e.g., weak
instrument settings, it is MSE superior to other competing IV causal effect esti-
mators. Furthermore, we establish a connection between K-class estimators from
econometrics and the recently proposed anchor regression estimators from the field
of out-of-distribution generalizing prediction methods. Prediction methods are
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said to be distributionally robust (or out-of-distribution generalizing) with respect
to a class of test distributions if it minimizes the worst-case risk over said class.
We show that K-class estimators are distributionally robust prediction methods
with respect to bounded interventions on exogenous system variables.

In Chapter 3, we propose a general framework for analyzing distributional
robustness with respect to test distributions generated by interventions. We
provide sufficient conditions for out-of-distribution generalization and present
several impossibility results showing the necessity of certain conditions. We propose
a nonlinear instrumental variable estimator that uses the previously mentioned
data-dependent mean squared prediction error regularization. A simulation study
shows that it, in specific setups, is MSE superior to various state-of-the-art
nonparametric instrumental variable estimators.

In Chapter 4, we contribute to the field of causal structure learning. We propose
a method for learning the causal structure of systems with directed trees as
causal graphs. We strengthen established identifiability results of causal graphs
for restricted structural causal models. Furthermore, we provide an alternative
analysis that proves that for Gaussian noise models, the identifiability of the
causal graph is a purely local property of the underlying model. Our learning
method does not require heuristic optimization algorithms to recover the causal
graph, something that plagues virtually all structure learning methods that do not
search for Markov equivalent structures. Furthermore, we prove consistency in an
asymptotic setup with decreasing identifiability. We propose a method for testing
causal substructure hypotheses. The proposed method has asymptotic family-wise
error rate control that remains valid post-selection.

Chapter 5 presents the approaches for learning summary graphs of time-series
that won the NeurIPS Causality 4 Climate competition. We articulate our heuristic
learning approaches and discuss artifacts of simulated DAG models.
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Chapter 1

Introduction
In many applications, we are interested in reasoning about the behavior of a

stochastic system that is affected by external manipulation. For example, in a
prediction setup, we may anticipate future external manipulation of the system
of interest, such that differences emerge between training and test distributions.
Alternatively, we may be interested in the expected changes to a system when
we intervene (apply external manipulation) on a system variable. Statistical and
probabilistic models are insufficient for such purposes, as they do not possess
the formal language and tools to quantify such changes. For such purposes, we
need to consider statistical causal models. These are statistical models embedded
with causal assumptions that allow us to model and reason about how external
manipulation affects the behavior of stochastic systems.

This chapter serves as an introduction to causal modeling and inference. We
discuss certain fundamental causal concepts and problems, which hopefully will
ease the reading of later chapters for the causally uninitiated reader. We summarize
the contributions of the later chapters and explain how they fit within established
research in the statistical causal literature.

In Section 1.1, we discuss the difference between the statistical and causal
models and introduce some graph terminology used in later chapters. Furthermore,
we define structural causal models and introduce the concept of interventions in
connection with the assumption of autonomy. In Section 1.2, we discuss the general
difficulties with causal inference and explain the necessity of unfalsifiable causal
assumptions when inferring causal quantities from observational data. Section 1.3
introduces the independence-based (also called constraint-based) and score-based
approaches to causal structure learning and discusses the causal assumptions
these approaches need. Section 1.4 introduces the concept of causal effects. Here,
we discuss how sufficient knowledge of the underlying causal structure enables
the inference of causal effects from observational data. We also introduce the
instrumental variable method for inferring causal effects in the presence of hidden
variables. In Section 1.5, we introduce the concept of generalizing prediction
functions.

1.1. Causal Models
Causal or statistical causal models are enhanced statistical (probabilistic) models
which first and foremost specify a probability distribution over a system of random
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1. Introduction

variables exactly as regular statistical models do. Furthermore, these models
are enhanced with a preconceived notion of how the system acts under external
manipulation. We further highlight the fundamental differences between statistical
and causal models in the next section.

In the rapidly increasing literature on statistical causal modeling, different
frameworks exist for defining and manipulating causal models. Some of the
more popular frameworks are structural causal models (Pearl, 2009; Peters et al.,
2017), causal graphical models (Spirtes et al., 2000), and the potential outcomes
framework (Rubin, 1974, 2005). They all render interventional and counterfactual
questions well-defined, but since their construction differs, the underlying causal
assumptions needed to infer answers to such questions also differs. Thus, depending
on the application, one framework may present the causal assumptions in a manner
that is more easily digested compared to other frameworks. In this thesis, we work
under the framework of structural causal models. We define these models formally
in Section 1.1.3.

1.1.1. Statistical and Causal Models
First, consider a statistical model over the random variables X and Y . For example,
a typical specification of the association between X and Y in a linear regression
model is given by

Y = γX + ε, (1.1)

for some γ ∈ R with X and ε being mutually independent standard normal
distributed random variables. This statistical model specifies a simultaneous
distribution over (X, Y ) given by(

X
Y

)
∼ N

((
0
0

)
,

(
1 γ
γ 1 + γ2

))
.

Given independent and identically distributed (i.i.d.) data generated in accordance
with the above specified statistical model, we may consistently estimate the
statistical parameter γ by, for example, the ordinary least squares estimator.
Knowledge of the statistical model and the statistical parameter γ fully specifies
the simultaneous distribution over (X, Y ), allowing us to derive predictions for new
i.i.d. observations. For example, we may derive the probability that Y is positive
given that we have observed that X is positive, or the conditional expectation of
Y given an observed value of X, i.e., E[Y |X = x] = γx.

The specification of the statistical model in Equation (1.1) may look as if
Y is generated by a process that adds noise to γX. In which case, a natural
interpretation is that if we were to increase X artificially, we would see an increase
in Y if γ is positive. Such interpretations are not valid as a statistical model only
specifies an observational distribution. More specifically, the above interpretation
relies on a causal assumption of the observed system, i.e., a causal physical
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1.1. Causal Models

mechanism that outputs Y from the input X and that this physical mechanism
does not change when artificially intervening on the input X.

Statistical causal models give us the language and tools to specify and analyze
such extended interpretations of statistical models. However, it is worth noting
that causal interpretations always require causal assumptions. Without agreeing
to certain unfalsifiable causal assumptions, one can never infer causal effects or
relations from observational data.

1.1.2. Graphs
Before we define structural causal models, we introduce some graph terminology
used throughout this thesis. Graphs are vital in causal reasoning and inference;
they allow us to analyze and visualize the causal relations between variables in a
system.

A directed graph G = (V, E) consists of p ∈ N>0 vertices (nodes) V = {1, . . . , p}
and a collection of directed edges E ⊆ {(j → i) ≡ (j, i) : i, j ∈ V, i ≠ j}. We let
paG(i) := {v ∈ V : ∃(v, i) ∈ E} and chG(i) := {v ∈ V : ∃(j, v) ∈ E} denote the
parents and children of node i ∈ V and we define root nodes rt(G) := {v ∈ V :
paG(i) = ∅} as nodes with no parents (that is, no incoming edges). Two nodes
are adjacent if there exists an edge between them and a v-structure consists three
nodes where one node is a child of two non-adjacent nodes. A path in G between
two nodes i1, ik ∈ V consists of a sequence (i1, i2, ..., ik) of adjacent nodes, i.e.,
a sequence of pairs of nodes such that for all j ∈ {1, . . . , k − 1}, we have either
(ij → ij+1) ∈ E or (ij+1 → ij) ∈ E . A directed path in G between two nodes
i1, ik ∈ V consists of a sequence (i1, i2, ..., ik) of pairs of nodes such that for all
j ∈ {1, . . . , k− 1}, we have (ij → ij+1) ∈ E . Furthermore, we let anG(i) and deG(i)
denote the ancestors and descendants of node i ∈ V , consisting of all nodes j ∈ V
for which there exists a directed path to and from i, respectively.

A directed acyclic graph (DAG) is a directed graph that does not contain any
directed cycles, i.e., directed paths visiting the same node twice. We say that a
graph is connected if a path exists between any two nodes. A directed tree is a
connected DAG in which all nodes have at most one parent. More specifically,
every node has a unique parent except the root node, which has no parent. The
root node rt(G) is the unique node such that there exists a directed path from
rt(G) to any other node in the directed tree. A directed tree is also called an
arborescence, a directed rooted tree and a rooted out-tree in graph theory. We let
Tp denote the set of all directed trees of p ∈ N>0 nodes. A graph G ′ = (V ′, E ′) is a
subgraph of another graph G = (V, E) if V ′ ⊆ V , E ′ ⊆ E . A subgraph is spanning
if V ′ = V .

An undirected graph G = (V, E) consists of p ∈ N>0 nodes (vertices) V =
{1, . . . , p} and a collection of undirected edges E ⊆ {{j, i} : i, j ∈ V, i ̸= j} and
a partially directed graph or mixed graph G = (V, Eu, Ed) has both a collection of
undirected edges Eu ⊆ {{j, i} : i, j ∈ V, i ≠ j} and a collection of directed edges
Ed ⊆ {(j, i) : i, j ∈ V, i ̸= j}.

3



1. Introduction

1.1.2.1. D-separation

Pearl’s d-separation (Pearl, 2009) is a graphical notion that will allow us to
deduce conditional and unconditional independence statements concerning system
variables generated by a structural causal model by analyzing the corresponding
causal graph. For now, we introduce it as a purely graphical definition concerning
directed acyclic graphs. Suppose that we have a directed acyclic graph G = (V, E).
We say that a path (i1, ..., ik) in G between two nodes i1 and ik is blocked by a
collection of nodes C ⊆ V \ {i1, ik} if either

(i) there exists m ∈ {2, ..., k − 1} such that im ∈ C and the path contains a
subpath of the form im−1 → im → im+1, im−1 ← im ← im−1 or im−1 ← im →
im+1, or

(ii) there exists m ∈ {2, ..., k − 1} for which neither the node im nor any of its
descendants are in C, i.e., ({im} ∪ deG(im)) ∩ C = ∅, and the path contains
the subpath im−1 → im ← im+1.

Definition 1.1 (d-separation). Consider a directed acyclic graph G = (V, E). Let
A,B,C ⊆ V be three distinct subsets of nodes. A and B are d-separated by C in
G, written A⊥⊥GB |C if and only if all paths between any two nodes in A and B
are blocked by C.

1.1.3. Structural Causal Models
Causal models allow one to specify an observational probability distribution over
a system of variables (i.e., a statistical model) but also enable one to reason
about interventional and counterfactual questions. This section introduces models
with these properties from the framework of structural causal models (SCMs).
Later in this section, we introduce interventions, but we refrain from introducing
counterfactual reasoning since this thesis does not contribute to this area of
research.

Definition 1.2 (Structural causal models). A structural causal model M = (Q,S)
of dimension p ∈ N>0 consists of a noise distribution Q on Rp with mutually
independent marginals and p structural assignments S:

1 ≤ i ≤ p : Xi := fi(XPA(i), Ni),

where XPA(i) ⊆ X = (X1, ..., Xp) denotes the parents or direct causes of Xi and
N = (N1, ..., Np) ∼ Q.

The collection of functions (fi)1≤i≤p and variables N = (N1, ..., Np), present in
the structural assignments, are called the causal functions and the noise innovations,
respectively. Structural causal models are also known as structural equation
models or simultaneous equation models in statistics and econometrics (applied
with varying degrees of causal interpretation, see, e.g., Pearl, 2012).

4



1.1. Causal Models

We distinguish between two fundamentally different SCM structures; those that
are cyclic and those that are acyclic. Whether or not an SCM is cyclic or acyclic
plays an essential role in constructing a solution, i.e., the induced random system
of variables satisfying the structural assignments.

Definition 1.3 (Acyclic and cyclic SCMs). A p-dimensional SCM M = (Q,S) is
acyclic if there exists a causal order π, i.e., a permutation π : {1, ..., p} → {1, ..., p},
satisfying π(j) < π(i) whenever j ∈ PA(i) for all 1 ≤ i ≤ p. An SCM called cyclic
if it is not acyclic.

Let M = (Q,S) be an SCM and let N : (Ω,F)→ Rp and X : (Ω,F)→ Rp be
defined on a common probability space (Ω,F, P ) such that N ∼ Q. We say that
the pair (X,N) solves M if

X
a.s.= f(X,N),

where f(x, n) := (f1(xPA(1), n1), ..., fp(xPA(p), np)) are the structural assignments
S of M . We say that a random vector X is induced or generated by an SCM
M = (Q,S) whenever there exists an N ∼ Q such that (X,N) solves the SCM.
An SCM-induced random vector is therefore only uniquely defined up to a P -null
set.

It is, in general, not guaranteed that solutions exist to cyclic a SCM; see Bongers
et al. (2021) for further information on the theoretical foundations of cyclic SCMs.
An acyclic SCMs M = (Q,S) is, however, always solvable. Suppose that we
have a random vector N = (N1, ..., Np) : (Ω,F) → Rp with N ∼ Q and that π
is the causal order of the acyclic SCM. We can now define the random vector
X : (Ω,F)→ Rp in increasing order of i ∈ {1, ..., p},

Xπ−1(i) := fi(XPA(π−1(i)), Ni),

which by definition solves the SCM.

Example 1.1. Consider the acyclic structural causal model given by a noise
innovation distribution Q and structural assignments

X1 := f1(N1),
X2 := f2(X1, N2),
X3 := f3(X1, X2, N3),

where N = (N1, N2, N3) ∼ Q. This SCM has a causal order given by

(π(1), π(2), π(3)) = (1, 2, 3),

so we can given a noise innovation N iteratively define X1, X2 and finally X3. ◦
We define the induced or observational distribution of a solvable SCM M by

the push-forward measure PX = X(P ) on Rp for any solution X. Sometimes we
also denote the observational distribution by PM . The observational distribution
is always uniquely defined.
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X1

X2 X3

Figure 1.1: The causal graph of the common confounder structural causal model
in Example 1.1.

Example 1.2. Consider the SCM of Example 1.1. Now suppose that Q denotes
the 3-dimensional standard multivariate normal distribution N ∼ Q = N (0, I3)
and that the structural assignments are linear and given by

X1 := f1(N1) ≡ N1, X2 := f2(X1, N2) ≡ αX1 +N2,

X3 := f3(X1, X2, N3) ≡ γX1 + βX2 +N3.

By subsitution we find that X1 = N1, X2 = αN1 + N2 and X3 = (γ + βα)N1 +
βN2 +N3, from which the induced distribution of M is easily found to be given
by (X1, X2, X3) ∼ N (0,Σ) where

Σ :=

 1 α γ + βα
α α2 + 1 α(γ + βα) + β

γ + βα α(γ + βα) + β (γ + βα)2 + β2 + 1

 .
◦

Henceforth, we assume that all solvable structural causal models have structurally
minimal assignments. That is, for any structural assignment Xi := fi(XPA(i), Ni)
there does not exist a j ∈ PA(i) and a measurable map f̃i such that fi(XPA(i), Ni) =
f̃i(XPA(i)\{j}, Ni) almost surely.

Definition 1.4 (Causal graph). The causal directed graph G = (V, E) of an SCM
M = (Q,S) is given by the vertex set V := {1, ..., p} and direct edges drawn from
each j ∈ PA(i) to i for all i ∈ V , i.e.,

E = {(j → i) : i ∈ V, j ∈ PA(i)}.

That is, the causal graph is determined by letting paG(i) := PA(i) for all i ∈ V .

The causal graph of an acyclic SCM is, therefore, always a DAG. In Figure 1.1, we
have illustrated the causal graph of the acyclic structural causal model M = (Q,S)
from Example 1.1.

In this thesis, we are mainly concerned with linear cyclic SCMs and general
acyclic SCMs. Example 1.3 highlights sufficient conditions for the existence and
construction of solutions to linear cyclic SCMs.

6
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Example 1.3 (Linear cyclic SCMs.). A linear cyclic SCM M = (Q,S) satisfies
linear structural assignments. That is, for each 1 ≤ i ≤ p, the structural assignment
is given by

Xi := fi(XPA(i), Xi) ≡ b⊺iXPA(i) +Ni,

for some bi ∈ R|PA(i)|. Now let B ∈ Rp×p be a constant matrix such that x = Bx+n
conforms with the above structural assignments. If ρ(B), the spectral radius of
B, is strictly less than one, then we know that (I − B) is invertible. Hence,
x = (I −B)−1n. Thus, given a noise innovation N : (Ω,F, P )→ Rp with N ∼ Q,
define X = (I −B)−1N and note that (X,N) solves the SCM, since X = BX +N
holds P -almost surely. ◦

For any structural causal model, the induced observational distribution satisfies
the global Markov property with respect to the causal graph — a one-way con-
nection between the d-separation statements in the causal graph and conditional
independencies in the induced distribution.

Theorem 1.1 (Pearl, 2009, Theorem 1.4.1). Let X = (X1, ..., Xp) ∈ Rp be random
vector induced by an acyclic structural causal model M with acyclic causal graph
G = (V, E). The induced distribution PX satisfies the global Markov property with
respect to the causal graph. That is,

A ⊥⊥G B |C =⇒ XA ⊥⊥ XB |XC ,

for all disjoint subsets A,B,C ⊆ V = {1, ..., p}.
Thus, the causal graph yields through d-separation a visual representation

of conditional independence statements in the observational distribution of a
structural causal model.

1.1.3.1. Interventions

So far, the structural causal models only induce an observational distribution,
i.e., a statistical model which only allows us to ask and answer questions about
probabilistic associations. The main difference between a statistical model and
a causal model is the ability to explain the behavior of a stochastic system of
variables under external manipulation (intervention). In the search for a tractable
behavior of systems under manipulation, one usually assumes autonomy, also called
modularity, of the causal (physical) mechanisms of the system we are modeling.

Assumption 1.1 (Autonomy of causal mechanisms; Peters et al., 2017). The
causal generative process of a system’s variables is composed of autonomous modules
that do not inform or influence each other.

The assumption of autonomous causal mechanisms yields the ability to conduct
external manipulations of the generative process in selected parts of a system
without affecting the generative processes of the remaining system.

7
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Example 1.4 (Autonomy in a cause-effect system). Consider a bivariate cause-
effect system where X causes Y . Suppose that f is the mechanism that produces
Y given the cause/input X, i.e., Y := f(X). Assumption 1.1 translates to
independence between cause and mechanism. The assumption of autonomous
causal mechanisms stipulates that any external manipulation of X does not affect
the mechanism f , which produces Y . ◦

The assumption of autonomous causal mechanisms allows us to analyze the
behavior of a system under external interventions in a tractable fashion.

Definition 1.5. An intervention i is a map between structural causal models

M = (Q,S) i7→ (Qi,S i),

where Qi and S i are the post-intervention noise distribution and structural as-
signments. We let M(i) = (Qi,S i) denote the post-intervention structural causal
model.

In this introduction, we only concern ourselves with fairly simple interventions.
Later chapters will introduce more general interventions as needed. For example,
an intervention on a single system variable amounts, by Assumption 1.1, to only
changing the structural assignment of said variable; see Example 1.5 below.

Example 1.5. Consider the SCM M = (Q,S) of Example 1.1. Let i be an inter-
vention that randomizes X2, i.e., forces it to obey a distribution P i independently
of the outcome of its original direct cause X1. That is, we change the structural
assignments in the following way:

S =


X1 := f1(N1),
X2 := f2(X1, N2),
X3 := f3(X1, X2, N3),

i7−→ S i =


X1 := f1(N1),
X2 := Ñ2,
X3 := f3(X1, X2, N3),

where (N1, N2, N3) ∼ Q = Q1 ×Q2 ×Q3 and (N1, Ñ2, N3) ∼ Qi = Q1 × P i ×Q3.
In Figure 1.2, we have illustrated the corresponding changes to the causal graph.
The edge from X1 to X2 is removed due to the effect breaking intervention. ◦

Interventions need not break the direct link of the original causes; it can also
simply change the causal mechanism which produces the variable from its causes.
We denote such interventions on single system variables, say, Xi, by

do(Xi := f̃i(XP̃A(i), Ñi)),

where f̃ is a (possibly) new causal mechanism taking the new direct causes P̃A(i)
and noise innovation Ñi as inputs. For example, the intervention in Example 1.5 is
denoted by do(X2 := Ñ2) with Ñ2 ∼ P i. In the upcoming chapters, we use slightly
different notations for intervention-induced distributions, i.e., the post-intervention
simultaneous distribution of the system. For example, the intervention-induced
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X1

X2 X3

i7−→

X1

X2 X3

Figure 1.2: Illustration of the original and post-intervention causal graph for the
structural causal model and intervention considered in Example 1.5.

distribution for the intervention i = do(X2 := Ñ2) in an SCM M may be denoted
by

PM(i), or P
do(X2:=Ñ2)
M , or P do(X2:=Ñ2),

depending on whether or not the underlying SCM M and intervention i is clear from
the context. In the example below, we derive an intervention-induced distribution.

Example 1.6. Consider the SCM M = (Q,S) of Example 1.2. Suppose that
we conduct the intervention i = do(X2 := Ñ2) with Ñ2 ∼ N (0, 1) independent
from the original noise innovations of the system. The post-intervention structural
assignments are now given by

X1 := N1, X2 := Ñ2, X3 := γX1 + βX2 +N3.

Thus, X1 = N1, X2 = Ñ2 and X3 = γN1 + βÑ2 +N3, so the intervention-induced
distribution is given by PM(i) = N (0,Σ) where

Σ :=

 1 0 γ
0 1 β
γ β γ2 + β2 + 1

 .
◦

1.2. The Difficulties of Causal Inference
Inferential targets in causal models can be statistical or causal quantities. For
example, we may be interested in statistical targets, i.e., quantities defined in terms
of the joint distribution of the system variables. Statistical targets include, for
example, the correlation between variables, conditional probabilities, or conditional
expectations between certain variables. Causal targets are non-statistical quantities
defined in terms of a causal model (Pearl, 2009). Common causal targets include
the causal graph (or parts thereof, e.g., the direct causes of a specific variable),
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Establish causal assumptions that
render the causal target τ identified,
i.e., represent τ by a functional of the
observational distribution τ = g(PM )

Identifiability
Construct a computationally feasible
and consistent estimator τ̂ of g(PM )
using finite data. That is, τ̂

P→ τ as
the sample size tends to infinity.

Learning methods

Figure 1.3: Flowchart of causal inference from observational data.

causal effects, and general post-interventional probabilistic quantities of system
variables, i.e., the post-intervention distribution or a derivative thereof.

However, as causal quantities are not defined in terms of the system’s obser-
vational distribution, their inference from observational data will instead rely
on causal assumptions about the system of interest. Such assumptions are, by
definition, not falsifiable by observational data and therefore purely rests on the
practitioner’s expert judgment (Pearl, 2009).

There are two main aspects to learning causal targets: identifiability and
learning methods; see the flowchart in Figure 1.3. First, we have the aspect of
identifiability; see Section 1.2.1. Here we are concerned with the theoretical ability
to infer the target from the observational distribution of the system. Second, in the
affirmation of identifiability, we have the aspect of constructing learning methods
(identification); see Section 1.2.2. Here we are concerned with estimating the causal
target from finite data, similar to regular inference of statistical quantities.

1.2.1. Identifiability
In practice, most causal targets can be recovered by conducting specific interven-
tions in a system and analyzing the observed changes. For example, it is possible
to recover the average treatment effect of a drug by conducting a randomized
controlled trial (Peirce, 1883) where one randomly assigns a patient the treatment
or a placebo. The random assignment can be seen as an intervention in which
the treatment indicator (i.e., whether the patients get the drug or a placebo) is
externally manipulated to follow the outcome of a binary random variable that is
independent of other system variables (e.g., patient covariates, etc.). However, due
to either ethical, monetary or practical reasons, we may not be able to conduct
the preferred system interventions that would enable us to quantify the causal
targets. In this thesis, we are mainly concerned with the latter scenario where
interventions are not possible.

In theory, there could be several distinct data-generating processes (causal
models) that are observationally equivalent (induces identical observational distri-
butions) but differ on the causal quantity of interest. Hence, an essential aspect of
causal modeling is specifying causal assumptions that allow us to infer the causal
targets from the observational distribution alone. A causal target is said to be
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identified if we can theoretically infer it from the observational distribution.
A lot of causal targets become identified once the causal graph of the causal

model is known. Thus, we either have to resort to expert judgment on the causal
structure or infer the structure from data. In Section 1.3, we highlight some
standard structure learning methods and detail the causal assumptions they rely
on.

1.2.2. Learning Methods
The next problem in causal inference is inferring or learning the causal target of
interest from finite data in a consistent and computationally feasible way. In the
affirmation of identifiability, we know that the observational distribution uniquely
determines the causal target. Thus, in theory, we could infer the causal target
given complete knowledge of the observational distribution.

Under appropriate causal assumptions, some causal targets are given by quanti-
ties of the observational distribution (distributional features) for which inference
has been well-studied in the statistical literature, e.g., conditional expectations or
linear regression coefficients. In such cases, inference can be achieved by simply
applying established statistical inference methods. However, sometimes the causal
target is not a commonly studied quantity of the observational distribution. In
these cases, inference requires new methods with accompanying theoretical large
sample guarantees.

1.3. Learning Causal Graphs
The causal graph of a causal model is often of interest to practitioners due to
the intrinsic value of knowing what system components cause a specific variable.
Alternatively, one is interested in the causal structure since other causal targets
become identified from the observational distribution once the causal graph is
known; see, e.g., Section 1.4.

We focus on the problem of inferring the causal structure from observational
data. However, as we have previously mentioned, inference of causal quantities
from observational data necessitates causal assumptions on the system of interest.
That is, we need causal assumptions that make it theoretically possible to infer
the causal graph of an acyclic SCM from its induced distribution.

Standard structure learning methods are classified as independence-based (also
known as constraint-based), score-based, or mixed. Structure learning methods
that are independence-based rest on the nonparametric causal assumption of
faithfulness; see Definition 1.6. Faithfulness renders parts of the causal structure
identified through the independence constraints encoded in the observational
distribution. On the other hand, score-based methods rest on causal assumptions
on the causal mechanisms and noise innovations of the system of interest.

In Section 1.3.1, we introduce the causal assumptions for independence-based
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structure learning and briefly discuss established methods for inference. Sec-
tion 1.3.2 introduces score-based approaches to causal structure learning, which is
also the topic of Chapter 4.

1.3.1. Independence-based Structure Learning
Independence-based structure learning methods infer parts of the causal graph by
utilizing (conditional) independence constraints encoded in observational distribu-
tion. We have previously seen that the induced distribution of an acyclic SCM
is Markov with respect to the causal graph. However, for learning the structure
itself, this is a useless property as, for example, any SCM induced distribution is
also Markov with respect to the fully connected graph. In general, without further
causal assumptions, the (conditional) independence constraints encoded in the
observational distribution do not yield any causal graph information. This problem
leads us to the fundamental causal assumption on which independence-based
structure learning methods rests; the assumption of faithfulness with respect to
the causal graph.

Definition 1.6 (Faithfulness). Let X = (X1, ..., Xp) ∈ Rp be a random vector with
distribution PX and let G be a DAG with nodes V = {1, ..., p}. The distribution
PX is said to be faithful with respect to the graph G if

XA ⊥⊥ XB|XC =⇒ A⊥⊥GB |C

for all disjoint subsets A,B,C ⊆ V = {1, ..., p}.
Thus, if we assume that the induced distribution of an acyclic SCM is faithful

to the causal graph, then by the global Markov property, we have a one-to-
one correspondence between d-separations in the causal graph and conditional
independence constraints encoded by the induced distribution. Independence-
based structure learning methods exploit this correspondence: utilizing conditional
independence testing, one draws inference on conditional independence statements
that allow one to draw inference about the causal graph through the faithfulness
assumption.

Faithfulness implies causal minimality (Peters et al., 2017, Proposition 6.35),
i.e., if PX is faithful with respect to the causal graph G, then PX it is not Markov
with respect to any proper subgraph of G. Faithfulness is a causal assumption
that is not satisfied in general; see Example 1.7 below.

Example 1.7. Consider the linear Gaussian SCM of Example 1.2, with causal
graph is illustrated in Figure 1.1. The structural assignments are given by

X1 := N1, X2 := αX1 +N2, X3 := γX1 + βX2 +N3,

where N = (N1, N2, N3) ∼ N (0, I). If αβ = −γ, then X2 ⊥⊥ X3. However, X2 is
not d-separated from X3 given the empty set, so faithfulness is not satisfied with
respect to the causal graph. ◦
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X1

Causal DAG

X2 X3 X2

X1

CPDAG

X3

Figure 1.4: The causal graph from the SCM of Example 1.1 and the corresponding
CPDAG representing its Markov equivalence class.

Let us discuss what parts of the causal structure the assumption of faithfulness
identifies. That is, we will discuss what it entails that we can infer all d-separation
statements of a causal graph. To this end, we say that two graphs G and G̃
are Markov equivalent if every probability distribution that is globally Markov
with respect to G is also globally Markov with respect to G̃ and vice versa. The
Markov equivalence class (MEC) of a graph G, MEC(G), consists of all graphs that
are Markov equivalent to G. It has been shown that MEC(G) = {G̃ is a DAG :
G̃ and G share the same d-separations} (Verma and Pearl, 1990b), so faithfulness
implies that the Markov equivalence class of the causal graph is identified. Finally,
the following theorem quantifies the shared structure of all DAGs in the Markov
equivalence class.

Theorem 1.2 (Verma and Pearl, 1990a). Two DAGs are Markov equivalent if
and only if they share the same skeleton and v-structures.

Thus, it is possible to represent the Markov equivalence class of a DAG G by a
unique partially directed acyclic graph (PDAG) known as the completed PDAG
(CPDAG) with the skeleton and directed edges that make up v-structures shared
by all members. In Figure 1.4, we have illustrated the causal graph and the
corresponding CPDAG representing its Markov equivalence class of the SCM from
Example 1.1.

As for learning the CPDAG, we can use the popular PC-algorithm (Spirtes
et al., 2000). The contributions in this thesis do not add to the literature on
independence-based structure learning, so we refer to Spirtes et al. (2000) for
further details on the algorithm. Nevertheless, given oracle knowledge on condi-
tional independence statements, the PC-algorithm recovers the CPDAG whenever
faithfulness is satisfied. However, when inferring the CPDAG from finite data, the
conditional independence statements have to be inferred by successive conditional
independence tests. One usually chooses a fixed significance level for the tests, but
due to the successive testing, one loses the error quantification of the method as a
whole. Furthermore, conditional independence tests can not have power against
any alternative (Shah and Peters, 2020) unless specific distributional assumptions
are made, such as joint Gaussianity. Type I errors of the conditional independence
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tests can lead to the removal of causal edges and the inclusion of non-causal edges
in the resulting CPDAG (Spirtes et al., 2000).

1.3.2. Score-based Structure Learning
Score-based approaches to causal structure learning use (parametric) assumptions
on the structural causal model that allow for the construction of a scoring function
for causal structures. That is, in the affirmation of identifiability of the causal
graph (or parts thereof), we define a (population) score function ℓ that only attains
its minimum in the causal graph

G = arg min
G̃ : G̃ is a DAG

ℓ(G̃). (1.1)

The greedy equivalence search (GES, Chickering, 2002) assumes faithfulness which
renders the MEC identified. Under the additional assumption of joint Gaussianity
of the observed distribution, GES minimizes a BIC-penalized likelihood score
function directly on the space of Markov equivalence classes.

Causal system assumptions that guarantee identifiability of the causal graph
itself have also been studied. For example, in SCMs with additive Gaussian noise
and nonlinear causal functions, the causal graph is identified; see the introduction
of Chapter 4 for an overview. However, in the pursuit of the causal graph, we
stumble onto new computationally problematic issues. Even though the optimiza-
tion problem in Equation (1.1) is guaranteed to have a unique minimum, the
optimization problem is a combinatorial problem with a search space cardinality
that grows super-exponentially in the number of system variables. Thus, for even
moderately large systems, brute-force optimization (exhaustive search) becomes
computationally infeasible.

At the current state of the literature, no optimization procedure guarantees to
solve the problem with computationally feasible time complexity for large systems.
However, several heuristic optimization procedures have been proposed. For
example, Bühlmann et al. (2014) propose a greedy search technique on the space of
DAGs, and Zheng et al. (2018) propose an equivalent continuous albeit non-convex
representation of the optimization problem in Equation (1.1). These approaches
do not guarantee to recover the causal graph. For example, the non-convex
continuous optimization problem representation necessitates naive optimization
approaches with no guarantees of not getting stuck in a local minimum. Moreover,
it is currently being discussed whether the seemingly remarkable performance in
simulation studies of Zheng et al. (2018) is due to the exploitation of simulated
DAG artifacts rather than successful naive optimization; see Reisach et al. (2021)
and Section 1.3.3.1 below. In Section 1.3.2.2, we show an example where the
greedy search of Bühlmann et al. (2014) fails. Hence, there is currently no practical
method that guarantees the recovery of the actual causal graph with probability
tending to one in the large sample limit.
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1.3.2.1. Causal Structure Learning for Directed Trees

In Chapter 4, we take a slightly different approach to the computational problems
associated with recovering the actual causal graph in score-based approaches.
Instead of proposing another heuristic optimization procedure, we look at what
relaxations in the system complexity allow for exact score-function minimization.

In particular, we restrict our attention to less complex systems with causal graphs
given as directed trees and additive noise. While brute-force minimization over
the space of directed trees is still computationally infeasible, i.e., the search space
still grows super-exponentially in the system size, we show that the optimization
is possible with polynomial time complexity. More specifically, we show that
Chu–Liu–Edmonds’ algorithm (proposed independently by Chu and Liu, 1965;
Edmonds, 1967) from graph theory solves the optimization problem.

We show that the proposed method, called causal additive trees (CAT), is
consistent under weak conditions. Moreover, due to the reasonably simple causal
structure, we provide inference results to test causal substructure hypotheses. Our
proposed hypothesis testing procedure retains its level-guarantees under post-
selection hypothesis generation and multiple testing. Furthermore, we investigate
the identifiability gap, i.e., the minimum score difference between the causal graph
and any alternative graph. For Gaussian noise innovations, we provide a lower
bound that depends only on local dependence properties. That is, the identifiability
of the causal graph reduces to a purely local property for Gaussian additive noise
models.

1.3.2.2. When Greedy Searches Fail

Greedy search techniques do not, in general, come with theoretical guarantees.
We now present an example where the greedy search of Bühlmann et al. (2014),
called CAM, consistently fails to recover the causal graph, while our method
CAT successfully recovers the causal graph as the sample size increases. The
following model is taken from Peters et al. (2022). Consider the following three
node Gaussian additive structural causal model with causal graph (X → Y → Z):

X := NX , Y := X3

Var(X3) +NY , Z := Y +NZ , (1.2)

where NX ∼ N (0, 1.5), NY ∼ N (0, 0.5) and NZ ∼ N (0, 0.5) are mutually indepen-
dent. Our method CAT has two variants: CAT.G and CAT.E using a Gaussian
and entropy scoring function, respectively. We simulate data from this model and
estimate the causal graph by CAT.G, CAT.E and CAM. Figure 1.5 illustrates the
results. Even with increasing sample size, CAM does not converge to the correct
answer. The reason is that it selects the wrong edge in the first step of the greedy
search algorithm.
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Figure 1.5: Structural hamming distance (SHD, Tsamardinos et al., 2006) per-
formance of CAT.G, CAT.E and CAM in the three node setup of
Equation (1.2). The solid and dashed lines represent the mean and
median SHD, respectively, based on 200 repetitions.

We now highlight why the greedy search fail. The following explanation relies
on the theory presented in Chapter 4, but for now it suffices to know that the
score function evaluated in a graph G̃ = (Ẽ , V ) is given by the sum of certain
edge weights wG(j → i) for all edges in the graph. The greedy search technique
of CAM iteratively selects the lowest scoring directed edge under the constraint
that no cycles is introduced in the resulting graph. Figure 1.6 shows the estimated
Gaussian edge weights. The smallest edge weight is given by the wrong edge
(Z → Y ) so the greedy search erroneously picks this edge. However, Chu–Liu–
Edmonds’ algorithm used by CAT correctly realizes that the full score of the
correct graph X → Y → Z is smaller than the full score of Z → Y → X which is
recovered by CAM.

1.3.3. Learning Summary Graphs of Time Series
In Chapter 5, we consider the problem of learning summary graphs of time-homoge-
neous stochastic processes. The paper is the culmination of the authors’ participa-
tion and victory in the NeurIPS 2019 Causality 4 Climate (C4C) competition.1
Here, teams were given finite sample data of different simulated d-dimensional
time series and then tasked with inferring the underlying summary graph. The
summary graph is a simplification of the (infinite) causal graph. It consists of d
nodes with an edge from node j to node i if and only if any past values of the j’th
coordinate process enter the structural assignment of the i’th coordinate process.
For each data set, the participants could upload a weighted adjacency matrix A
corresponding to the summary graph where each entry held the belief or score
that an edge is present. The online platform, to which the weighted adjacency
matrix was uploaded, then scored the method by the area under the curve of the
receiver operating characteristic (AUC-ROC) metric.

1https://causeme.uv.es/neurips2019
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Figure 1.6: Visualization of the edge weights of the experiment in Section 1.3.2.2.
Each edge label is the estimated Gaussian edge weight as produced
by the CAM scoring method based on 1000000 i.i.d. observations
generated from the structural causal system of Equation (1.2). The
red edges are recovered by the greedy search of CAM and the blue
edges are recovered by Chu–Liu–Edmonds’ algorithm of CAT. We see
that −1.41 = ŵG(X → Y ) + ŵG(Y → Z) < ŵG(Z → Y ) + ŵG(Y →
X) = −1.28.

The receiver operating characteristic is a function ROC : [0, 1]→ [0, 1]2 which
for a binary classifier system takes a threshold t ∈ [0, 1] and yields ROC(t) =
(FPR(t),TPR(t)) where FPR(t) and TPR(t), are the false positive rate and true
positive rate of the classifier system using a threshold of t. In our setting, for a
fixed threshold t ∈ [0, 1], we convert the weighted adjacency matrix A to a binary
adjacency matrix A∗(t), where A∗(t)ji = 1[Aji/ maxji Aji,1](t). The true positive rate
(TPR) using the threshold t is then given by calculating the fraction of correct
edges in A∗(t) over the number of true edges in the underlying summary graph.
The false positive rate (FPR) is given by the number of incorrect edges in A∗(t)
over the total number of absent edges in the underlying summary graph.

In the paper, we detail our algorithms and present heuristic justifications for
our choices. Two important observations are that: 1) our methods using linear
regression to capture causal effects seems to work well even though the true
causal mechanisms are nonlinear, and 2) the size of the estimated linear coefficients
seemed to work better than using an associated test-statistics for a test of vanishing
linear effect. We now present a heuristic justification for why linear methods can
still be used to discover nonlinear causal effects. In Section 1.3.3.1, we discuss
why using the size of linear regression coefficients can outperform methods using
corresponding test sizes for tests of vanishing linear effect.

Consider a simple (single-lag) time-homogeneous discrete-time stochastic process
(X(t))t∈N+, where for each time step t ≥ 1 the process X(t) ∈ Rd is driven by
past values according to X(t) := F (X(t − 1)) + N(t), for t ≥ 1, some fixed
function F = (F1, ..., Fd) : Rd → Rd, noise innovations (N(t))t≥1 and some initial
distribution X0. As such consider the parameter θji(t) = E|∂jFi(X(t))|. When
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the process (X(t))t∈N+ is strictly stationary, this parameter does not depend on t,
and it is clear that when there is an edge in the summary graph from j to i, then
θji > 0 and θji = 0 otherwise. In order to detect regions with non-zero gradients
of F , we create random bootstrap samples D1, ...,DB of the observed time series.
We then obtain (possibly penalized) linear regression coefficients each bootstrap
sample. The idea is that, if there is no link in the summary graph, then all the
bootstrap coefficients are likely small. On the other hand, if θji > 0, then there
might be at least one large absolute coefficient. We then use the average of the
absolute regression coefficients over the B bootstrap samples as a proxy for θji.
We average the absolute coefficients to avoid possible cancellation. This estimate
does not contain any information about whether there is a positive or negative
effect from Xj(t− 1) to Xi(t), nor can it be used for prediction purposes. It solely
serves as a score or belief in the existence of a cause-effect mechanism between
past values of Xj onto Xi.

1.3.3.1. Artifacts in DAG Models

In the above learning framework we were only interested in the belief of a causal
link, i.e., only quantifying that a linear coefficient is nonvanishing. An immediate
question is now: why do we not use, for example, the T-statistic corresponding to
the test for the hypothesis that the regression coefficients are zero instead of the
absolute size of the corresponding coefficient? The answer is that our proposed
algorithms are to some extend tailored towards maximizing the AUC-ROC on
the simulated time series data. We explicitly saw a drop in performance when
changing to test statistics or p-values. As shown in the simulation experiment,
such behavior is also seen in general DAG models where the marginal variance
tends to increase the further down the causal order we go.

We exploited this in our methods, but this is not a desirable feature of general-
purpose structure learning algorithms, since we generally have no evidence or a
priori belief that real-world systems exhibit such behavior. Reisach et al. (2021)
further investigated these observations. They argue that for simulated linear
additive noise DAG models, it is very easy to, unknowingly, construct models
for which the marginal variance increases with the causal order. For example,
they show that the benchmark setup of, e.g., Zheng et al. (2018) and Ng et al.
(2020) is highly affected by this increasing variance artifact. The problem with
such benchmarking setups is that heuristic score-based approaches like Zheng et al.
(2018) can exhibit remarkable performance that is superior to other more canonical
and well-studied structure learning methods. This performance superiority is
immediately lost when data is properly standardized.

1.4. Learning Causal Effects
The previous section discussed causal structure learning methods that enable
us to learn the existence of cause-effect relationships in stochastic systems. We
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may also be interested in knowing how a system variable behaves under external
manipulation (interventions) on the causes of said variable.

Consider, for example, a binary treatment indicator T ∈ {0, 1} indicating
whether a patient is administered a specific treatment or not. Suppose that we
want to quantify the effect of said treatment on a response variable Y , e.g., a
post-treatment indicator of a specific disease or some other biochemical marker
of interest. One way to quantify this effect is to consider the treatment’s average
causal effect (or average treatment effect) on the response variable. That is, we
may consider the difference in the expected response variable under two different
interventions:

ATE := Edo(T :=1)[Y ]− Edo(T :=0)[Y ].

We may also be interested in quantifying how much a response variable Y is
affected by interventions on a continuous system variable X. For example, the
expected behavior of Y under interventions that fix X at specific values, i.e., the
function x 7→ Edo(X:=x)[Y ] or its derivative x 7→ Dx Edo(X:=x)[Y ]. These quantities
provide information about whether the response, on average, will decrease or
increase due to applying external manipulation, which artificially increases the
continuous variable X.

For certain models where X is a direct cause of the response Y the inferential
target quantifying the causal effects becomes the causal coefficients (in linear
SCMs) and causal functions (in nonlinear SCMs) appearing in the structural
assignments of Y ; see Example 1.8 and Example 1.9 below.

Example 1.8 (Causal effects in linear models). Consider a linear additive
structural causal model (Q,S) over (Y,X,H) with Y ∈ R, X ∈ Rd and H ∈ Rr

with structural assignments given by[
Y X⊺ H⊺

]
:=

[
Y X⊺ H⊺

]
B +N⊺,

for some strictly lower triangular constant matrix B and noise innovation vector
N ∼ Q with zero mean. Assume w.l.o.g. that the first column of B is given by
(0, γ, δ) such that the structural equation of Y becomes Y := γ⊺X + δ⊺H +NY .
Since B is strictly lower triangular, we know that the variables H act as possible
confounders of the causal effect from X to Y , i.e., the causal effect is not mediated
by H. As such, they are unaffected by interventions on X. Now consider the
intervention do(X := x) for some constant x ∈ Rd and note that Edo(X:=x)[Y ] =
Edo(X:=x)[γ⊺x+ δ⊺H +NY ] = γ⊺x. Hence, the causal effect Dx Edo(X:=x)[Y ] = γ,
is constant and given by the structural parameters γ. ◦
Example 1.9 (Causal effects in nonlinear additive models). Consider a possibly
nonlinear structural causal model (Q,S) over (Y,X,H) with Y ∈ R, X ∈ Rd and
H ∈ Rr with the structural assignments given by

Y := f(X) + g1(H,NY ), X := g2(H,NX), H := NH ,
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for some functions f : Rd → R, g1 : Rr → R, g2 : Rr → Rd. Now notice that
Edo(X:=x)[Y ] = f(x) + E[g1(H,NY )] from which we get that DxEdo(X:=x)[Y ] =
Dxf(x). Thus, the problem reduces to finding x 7→ Dxf(x) or x 7→ f(x), i.e., the
causal function f .

◦

Causal effects (and other causal targets) are given by distributional features of
post-interventional distributions. Hence, inference should be possibly by observing
said interventions and analyzing the resulting data. However, given sufficient
knowledge of the causal structure it is possible, in certain settings, to infer the
interventional distribution (and derivatives thereof) from the observational distri-
bution. For example, if we in Example 1.9 have that X := g2(NX), i.e., that X
and Y are not confounded, then intervening coincides with conditioning. That is,
the inferential target reduces to Edo(X:=x)[Y ] = E[Y |X = x], for which inference
from observational data is a well-studied statistical problem. The next section
introduces adjustment formulas that allow for a similar translation when X and
Y are confounded.

1.4.1. Adjustment Formulas
Adjustment formulas allow one to derive intervention distributions in terms of
the observational distribution, given that we have sufficient knowledge of the
underlying causal structure of the system. The adjustment formulas are known in
the different causal modeling frameworks as truncated factorization (Pearl, 2009),
the G-computation formula (Robins, 1986), and the manipulation theorem (Spirtes
et al., 2000). If all relevant densities exist, we say that a set of variables Z is a
valid adjustment set for the causal effect from X to Y if it holds that

p
do(X:=x)
Y (y) =

∫
pY |X,Z(y|x, z)pZ(z) dz,

where pdo(X:=x)
Y is the post-intervention density of Y under the intervention do(X :=

x), pZ is a density of Z and pY |Z,X is a conditional density of Y given Z and X,
both under the observational distribution. Thus, a valid adjustment set allows
for the interventional distribution to be represented solely by the observational
distribution. Various graphical criteria exist to check whether a set Z is a valid
adjustment set for the causal effect from X to Y . For example,

• Parent adjustment: Suppose that Y is not a parent of X, Y ̸∈ PA(X).
It holds that the collection of all parents of X, Z := PA(X), is a valid
adjustment set.

• Backdoor adjustment: Suppose that Z does not contain X or Y and that (i)
Z contains no descendant of X and (ii) Z blocks (see, Section 1.1.2.1) all
paths between X and Y with an edge incoming edge into X.
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Figure 1.7: Specifications of two linear structural causal models with the same
causal graph but different causal coefficients and noise innovation
variances; see Example 1.10. In the two linear SCMs, the causal effect
from X to Y differs, but the induced observational distributions over
(X, Y ) coincide.

See Peters et al. (2017) for further characterizations of valid adjustment sets.
However, whenever there are hidden (latent) variables, i.e., variables present in
the system but not observed, we might not be able to find a valid adjustment set.
We discuss this further in the next section.

1.4.2. Inference in the Presence of Hidden Variables
Latent variables further complicates the inference of causal effects. That is, the
valid adjustment sets may overlap with the latent variables rendering the use of
adjustment formulas to compute causal effects infeasible. In fact, the presence
of hidden variables might render the causal effect unidentified. Even when the
causal structure and the form of the structural assignments are known a priori,
there might be multiple distinct structural causal models that generate identical
observational distributions over the observed variables; see Example 1.10.

Example 1.10 (Hidden confounding models). Consider a linear SCM M over
(Y,X,H) with Y ∈ R, X ∈ R and H ∈ R where the H denotes a hidden variable,
i.e., a variable which can not be observed. Suppose that the structural assignments
are given by

Y := γX + δ1H +NY , X := δ2H +NX , H := NH

NY , NX , NH being mutually independent noise innovations. In Figure 1.7, two
structural causal models with the above structural assignments are specified. They
induce the same observational distribution over X and Y , but the causal effects
from X to Y differ. This example clearly illustrates that the causal effect γ is not
identified, as it is impossible to infer it from the observational distribution. ◦

In the presence of hidden confounding, we may still be able to identify causal
effects by the instrumental variable method.
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Figure 1.8: The causal graph of the one-dimensional instrumental variable setup.

1.4.2.1. The Instrumental Variable Method

The instrumental variable method (Theil, 1953; Wright, 1928) is a method for
identifying and estimating causal effects in the presence of hidden confounding.
Suppose that we want to estimate the causal effect from X to Y . The method
assumes the existence of system variables A, called instruments, which satisfies
the following two criteria (Pearl, 2009):

(i) Relevance: A is dependent on the predictors X.

(i) Exogeneity: A is independent of all variables (including noise innovations)
that influence Y which is not mediated by X. That is, A is independent of
Y when X is held fixed: A ⊥⊥ Y under distributions induced by interventions
of the form do(X := x) that breaks the dependence between A and X.

For simplicity we introduce the method of instrumental variables in a linear setting.
Suppose that (A,X,H, Y ), with H unobserved, is generated by a linear SCM of
the form

A := NA, H := NH ,

X := ξ⊺0A+ δ⊺0H +NX ,

Y := γ⊺0X + η⊺0H +NY

for some mutually independent noise innovations NA, NH , NX , NY and structural
coefficients ξ0, δ0, η0, γ0 ≠ 0. The causal graph for this setup, corresponding to
A,H,X, Y ∈ R, is illustrated in Figure 1.8

Suppose, furthermore, that the covariance matrices Var(A) and Var(X) are pos-
itive definite. For notational simplicity, let U := η⊺0H +NY denote the unobserved
variables entering the structural assignment of Y . Note that A satisfies the criteria
of relevancy and exogeneity for being instruments for the causal effect from X to
Y . The ordinary least squares method, in general, fails to be a consistent estimator
of the causal effect γ from X to Y , i.e., the population OLS coefficient given by

γOLS := E[XX⊺]−1E[XY ] = γ0 + E[XX⊺]−1E[XU⊺] ̸= γ0,

as E[XU ] ̸= 0 due to the hidden confounding. On the other hand, if E[AX⊺] is of
full column rank (known as the rank condition for identification which requires
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that |A| ≥ |X|), then we realize that the population two-stage least squares (TSLS)
coefficient

γTSLS := (E[XA⊺]E[AA⊺]−1E[AX⊺])−1E[XA⊺]E[AA⊺]−1E[AY ]
= γ0 + (E[XA⊺]E[AA⊺]−1E[AX⊺])−1E[XA⊺]E[AA⊺]−1E[AU ] = γ0,

coincides with the causal effect from X to Y , as E[AU ] = 0 by exogeneity. Thus,
under the existence of instruments, the causal effect becomes identified from
the observational distribution in the presence of hidden confounding. The name
two-stage least squares come from the empirical counterpart to the population
two-stage least squares coefficient coincides with the estimate resulting from a
two-stage ordinary least squares procedure, where one first regresses X on A
followed by a regression of Y on the first stage predicted values of X. The TSLS
estimator can also be seen as a special case of the generalized method of moments
(GMM), exploiting the moment restriction E[A(Y −γ⊺X)] = 0 if and only if γ = γ0
(see, e.g., Hall, 2005).

The instrumental variable method is also applicable in nonlinear structural causal
models; In Chapter 3, we, for example, utilize that the existence of instruments
can identify nonlinear causal functions. See Appendix B.2 for further discussion
and references on nonlinear and nonparametric instrumental variable regression.

1.4.2.2. The P-Uncorrelated Least Squares Estimator

In Chapter 2, we propose a novel estimator in the linear instrumental variable
setting called the p-uncorrelated least squares estimator (PULSE), which has the
intuitive interpretation of minimizing the mean squared prediction error over a
confidence region for the causal parameter. We show through simulation studies
that our estimator, which can also be seen as a data-driven regularized TSLS
regression, suffers from less variability than TSLS and other competing estimators
while maintaining consistency. We continue our summary of the PULSE using the
linear SCM setup of Section 1.4.2.1.

The two-stage least squares estimator is very unstable, especially in weak
instrument settings (the effect from A to X is weak; see Appendix A.10 for
further details). The TSLS estimator does not have moments of any order in the
just-identified setup (|A| = |X|); see, e.g., Mariano (2001).

Under certain identifiability conditions, the null-hypothesis

H0(α) : Corr(A, Y −Xα) = 0,

is only satisfied by the causal coefficient, i.e., the causal effect from X to Y . The
TSLS estimator sets the sample covariance between instruments and the regression
residuals to zero in the just-identified setup. Intuitively, this restriction might be
too strong as the sample covariance, even for the true causal coefficients, is likely
to be small but non-zero. On the other hand, the OLS estimate is known to be
biased but fairly stable with moments of any order for sufficiently large sample
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sizes (see, e.g., Mariano, 1972). The idea of the p-uncorrelated least squares
estimator (PULSE) is to minimize the mean squared prediction error constrained
to a finite-sample acceptance region An of a test for uncorrelatedness, H0(α). That
is, we propose an estimator of the form

γ̂n
PULSE := arg minγ

1
n

∑n
k=1(Yk − γ⊺Xk)2

subject to γ ∈ An.
(1.1)

In Chapter 2, we propose a class of asymptotically valid hypothesis tests for H0(α).
While the test has desirable properties the resulting minimization in Equation (1.1)
becomes a non-convex optimization problem. However, through careful analysis
and dual theory, we show that the estimator can be efficiently computed as

γ̂n
PULSE :=lnOLS(γ) + λ∗lnIV(γ), (1.2)

where lnOLS and lnIV(γ) is the empirical ordinary and two-stage least squares loss func-
tions (i.e., the OLS and TSLS estimators minimizes these functions, respectively)
and λ∗ is a data-dependent regularization parameter that can be approximated
with arbitrary precision. This representation also reveals that the PULSE estimator
belongs to a special class of estimators known as K-class estimators (Theil, 1953).

In an identified setup, the PULSE estimator consistently estimates the causal
coefficient γ0. In other words, the data-dependent λ∗ is guaranteed to tend
to infinity as the sample size increases. Hence, the data-driven mean squared
prediction error (MSPE) regularization vanishes in the large sample limit. The
PULSE estimator is also well-defined in the under-identified setup (|A| < |X|),
which renders the causal effect unidentified. In the under-identified setup, the
empirical objective is still to find the best predictive model among all coefficients
that do not reject uncorrelatedness. Here, however, the target is not the causal
coefficient but the coefficient in the TSLS solution space (all coefficients that
render the instruments independent of residuals), which minimizes the MSPE.

Extensive simulation studies show that there are settings where the PULSE
estimator indeed outperforms the TSLS and other competing instrumental variable
estimators in terms of mean squared error (MSE). Weak instruments and weak
endogeneity roughly characterize these settings. The MSPE regularization increases
the bias in these settings, but the corresponding decrease in variance yields an MSE
superior estimator. Furthermore, in Chapter 3, we extend this data-dependent
MSPE regularization idea to nonlinear instrumental variable setups. The proposed
estimator NILE likewise shows an MSE performance gain compared to various
state-of-the-art nonparametric instrumental variable estimators.

1.5. Learning Generalizing Functions
Suppose that we are interested in learning prediction methods that minimize
a particular loss function over the observational distribution. For example, it
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is common to construct a prediction method that minimizes the mean squared
prediction error (MSPE) over the observational distribution arg minf⋄ E[(Y −
f⋄(X))2], which we know coincides with the conditional expectation function of Y
given X, but other loss functions may be reasonable too.

However, in many applications, one may wish to employ the prediction method
on future system instances. For some systems, it may be reasonable to expect
that future instances are subject to change. Alternatively, one may wish to
employ a prediction method to entirely new systems known to differ from the
system on which the method was trained. These problems are known under slight
variations as, for example, covariate shift, domain generalization/adaption, and
out-of-distribution generalization/prediction. We refer the reader to Section 3.1
of Chapter 3 for numerous references in this area of research. Common to these
research areas is that the distribution of the training instance Ptrain differs from
the class of possible test distributions P on which the prediction method is to be
applied.

If one has a priori knowledge of the likelihood that each possible test distribution
is to appear, one could, for example, try to minimize a weighted average of the
MSPE over all possible test distributions. Alternatively, we may consider the
problem of learning a prediction method f∗ that seeks to minimize the worst-case
MSPE;

f∗ ∈ arg min
f⋄

sup
Ptest∈P

EPtest[(Y − f⋄(X))2],

where EPtest denotes the expectation with respect to the distribution Ptest. In this
thesis, we concentrate on the latter objective. We say that a prediction method
f∗ is distributionally robust, a generalizing function, or a minimax solution with
respect to a class of distributions P if it minimizes the worst-case prediction risk
over all distributions in P

In order to learn such a generalizing prediction method, we first must specify
the class P of possible test distributions. A common approach is to say that the
test distributions are slight variations of the training distribution in the sense
that Ptest ∈ Bρ(Ptrain, ε), i.e., that the test distribution lies within an ε-ball of the
training distribution Ptrain, for some metric ρ on the space of probability measures,
e.g., the Wasserstein metric. While this framework aims to guard against test
distributions that arise from small perturbations in training distribution with
respect to some probability metric, one may argue that it may be more natural
for many applications that the test distributions arise from external manipulation
of the original system.

In Chapter 3, we consider the problem of learning generalizing functions with
respect to test distributions that are induced by interventions. That is, the set of
possible test distributions P = {PM(i) : i ∈ I} are given by intervention-induced
distributions in the underlying structural causal model M . Here, I denotes a class
of interventions. We consider a framework where M belongs to a fairly general
class of models M which both contains the response variable Y , predictors X,
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latent variables H, and exogenous variables A. We allow for certain well-behaved
interventions on X and A and aim to find generalizing prediction functions within
some pre-specified function class F . That is, we aim to learn

f∗ ∈ arg min
f⋄∈F

sup
i∈I

EM(i)[(Y − f⋄(X))2],

where EM(i) denotes the expectation with respect to the interventional distribution
induced by the intervention i in the model M . Such generalizing prediction
functions depend, among other things, on the function class F , the model class
M and the class of interventions I.

It is well-known that when I contains all possible hard interventions of the form
I = {do(X := x) : x ∈ Rd} then the causal function f solves the minimax problem
(see, e.g., Rojas-Carulla et al., 2018a). Conversely, we may also consider I to be
a singleton consisting of the trivial intervention which does nothing, in which case
x 7→ E[Y |X = x] is a minimax solution.

We show, for example, that the causal function is a minimax solution even
for singleton interventions that are confounding-removing, i.e., interventions that
break the confounding between the predictors X and the target Y . Furthermore,
we show that minimax solutions that differ from the causal function are highly
susceptible to misspecifications of the intervention class. While the causal function
is minimax whenever I contains at least one confounding-removing intervention,
alternative non-causal minimax solutions may perform worse than the causal
function if the intervention class is misspecified.

In practical scenarios, the underlying model M is unknown, and we do therefore
not have access to the intervention induced-distributions PM(i) for i ∈ I. Thus,
similar to the hurdles plaguing the inference of causal effects from observational
data, we can not identify and learn generalizing functions from observational
data without further causal assumptions. There may exist an alternative model
M̃ ∈ M with identical observational distribution, PM̃ = PM but which differs
on intervention distributions. As such, we say that distribution generalization is
possible if there exists a function f∗ which is minimax optimal for all observationally
equivalent models within the model class M.

We present sufficient conditions for distribution generalization in terms of
restrictions on the observational distribution PM , the intervention class I, and the
model class M. Furthermore, we provide several impossibility theorems which
illustrate the necessity of some of these restrictions.

1.5.1. PULSE and NILE
We know that when the intervention class contains arbitrarily strong interventions
on X or at least one confounding-removing intervention then the causal function
is a generalizing function. As such, any learning method for the causal function is
equivalently learning a generalizing prediction function. The PULSE estimator,
for example, consistently estimates a generalizing linear prediction function.
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Similar considerations hold for nonlinear and nonparametric instrumental vari-
able estimators as long as the intervention class is not support extending. That
is, as long as the interventions do not extend the support of X. Since instrumen-
tal variable estimators can only recover the causal function on the support of
the observational distribution this restriction is necessary without further causal
assumptions. If, however, the interventions are support extending, then further
causal assumptions are needed to extrapolate the estimate outside the support of
X.

In Chapter 3, we present a nonlinear instrumental variable estimator which
explicitly incorporates causal assumptions that the causal functions extrapolate
linearly outside the support of observational distribution. We call this the nonlinear
intervention-robust linear extrapolator (NILE). The linear extrapolation is not
of importance — any extrapolation scheme which is uniquely determined by the
on-support behavior works equally well. The NILE also uses the data-driven MSPE
regularization ideas introduced for the PULSE.

1.5.2. Anchor Regression and K-class Estimators
For linear SCMs Rothenhäusler et al. (2021) show that among linear prediction
functions, there exist functions that are minimax solutions but do not coincide
with the causal functions whenever the intervention class I consists of bounded
interventions on exogenous variables. That is, they show that for linear SCMs with
exogenous variables A (called anchors), endogenous variables X, and a target Y ,
the anchor regression coefficient with regularization parameter λ is distributionally
robust. More specifically, this linear prediction of Y from X is distributionally
robust with respect to interventions on the exogenous variables A up to a certain
strength that depends on λ.

The results of Chapter 2 shows that anchor regression is closely related to K-class
estimators (Theil, 1953), which are parameterized by a real-valued parameter κ.
The K-class estimators contain several well-known linear effect estimators: the
ordinary least squares estimator for κ = 0, the two-stage least squares estimator
for κ = 1, and for specific data-driven κ one can recover the limited information
maximum likelihood (Anderson and Rubin, 1949) and Fuller estimators (Fuller,
1977).

Using the ideas of Rothenhäusler et al. (2021), we extend the distributional
robustness property of anchor regression to general K-class estimators with fixed
κ ∈ [0, 1). Namely, we show that for a fixed κ ∈ [0, 1) the K-class estimator
α̂n

K(κ, Y, Z,A) for regressing Y onto Z ⊆ (X,A) using that A are exogenous
variables, converges in probability towards a population quantity that is minimax
prediction optimal among all linear predictors. That is,

α̂n
K(κ, Y, Z,A) P−→n arg min

α
sup

v∈C(κ)
Edo(A:=v)[(Y − α⊺Z)2],

as the sample size n tends to infinity, where the intervention class is given by
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C(κ) := {v : Ω→ Rq : E[vv⊺] ⪯ (1− κ)−1E[AA⊺]}.
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Chapter 2

Distributional Robustness of K-class
Estimators and the PULSE

Joint work with

Jonas Peters

Abstract
While causal models are robust in that they are prediction optimal under

arbitrarily strong interventions, they may not be optimal when the interven-
tions are bounded. We prove that the classical K-class estimator satisfies
such optimality by establishing a connection between K-class estimators and
anchor regression. This connection further motivates a novel estimator in
instrumental variable settings that minimizes the mean squared prediction
error subject to the constraint that the estimator lies in an asymptotically
valid confidence region of the causal coefficient. We call this estimator PULSE
(p-uncorrelated least squares estimator), relate it to work on invariance, show
that it can be computed efficiently as a data-driven K-class estimator, even
though the underlying optimization problem is non-convex, and prove con-
sistency. We evaluate the estimators on real data and perform simulation
experiments illustrating that PULSE suffers from less variability. There are
several settings including weak instrument settings, where it outperforms
other estimators.

Keywords: Causality, distributional robustness, instrumental variables

2.1. Introduction
Learning causal parameters from data has been a key challenge in many scientific
fields and has been a long-studied problem in econometrics (e.g. Goldberger, 1972;
Simon, 1953; Wold, 1954). Many years after the groundbreaking work by Fisher
(1935) and Peirce (1883), causality plays again an increasingly important role in
machine learning and statistics, two research areas that are most often considered
part of mathematics or computer science (e.g., Imbens and Rubin, 2015; Pearl, 2009;
Peters et al., 2017; Spirtes et al., 2000). Even though the current developments in
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mathematics, computer science on the one and econometrics on the other hand do
not forego independently, we believe that there is a lot of potential for more fruitful
interaction between these two fields. Differences in the language have emerged,
which can make communication difficult, but the target of inference, the underlying
principles, and the methodology in both fields are closely related. This paper
establishes a link between two developments in these fields: K-class estimation
which aims at estimation of causal parameters with good statistical properties and
invariance principles that are used to build methods that are robust with respect to
distributional shifts. This connection allows us to prove distributional robustness
guarantees for K-class estimators and motivates a new estimator, PULSE. We
summarize our main results in Section 2.1.2.

2.1.1. Related Work
Given causal background knowledge, causal parameters can be estimated when
taking into account confounding effects between treatment and outcome. Several
related techniques have been suggested to tackle that problem, including variable
adjustment (Pearl, 2009), propensity score matching (Rosenbaum and Rubin, 1983),
inverse probability weighting (Horvitz and Thompson, 1952) or G-computation
(Robins, 1986).

If some of the relevant variables have not been observed, one may instead use
exogenous variation in the data to infer causal parameters, e.g., in the setting
of instrumental variables (e.g., Imbens and Angrist, 1994; Newey, 2013; Wang
and Tchetgen, 2018; Wright, 1928). Limited information estimators leverage
instrumental variables to conduct single equation inference. An example of such
methods is the two-stage least squares estimators (TSLS) developed by Theil
(1953). Instead of minimizing the residual sum of squares as done by the ordinary
least square (OLS) estimator, the TSLS minimizes the sample-covariance between
the instruments and regression residuals. TSLS estimators are consistent, but are
known to have suboptimal finite sample properties, e.g., they only have moments
op to the degree of over-identification (Mariano, 1972). Kadane (1971) shows that
under suitable conditions, the mean squared error of TSLS might even be larger
than the one of OLS if the sample size is small (more precisely and using the
notation introduced below, if 0 ≤ n− q ≤ 2(3− (q2 − d1)), where q2 − d1 is the
degree of overidentification). This result is another indication that under certain
conditions, it might be beneficial to use the OLS for regularization. Another
method of inferring causal parameters in structural equation models is the limited
information maximum likelihood (LIML) estimator due to Anderson and Rubin
(1949). Theil (1958) introduced K-class estimators, which contain OLS, TSLS and
the LIML estimator as special cases. This class of estimators is parametrized by a
deterministic or stochastic parameter κ ∈ [0,∞) that depends on the observational
data. Under mild regularity conditions a member of this class is consistent and
asymptotically normally distributed if (κ−1) and

√
n(κ−1) converge, respectively,

to zero in probability when n tends to infinity; see, e.g. Mariano (1975), Mariano
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(2001). While the LIML does not have moments of any order, it shares the same
asymptotic normal distribution with TSLS. Based on simulation studies, Anderson
(1983) argues that, in many practically relevant cases, the normal approximation to
a finite-sample estimator is inadequate for TSLS but a useful approximation in the
case of LIML. Using Monte Carlo simulations, Hahn et al. (2004) recommend that
the no-moment estimator LIML should not be used in weak instrument situations,
where Fuller estimators have a substantially smaller MSE. The Fuller estimators
(Fuller, 1977) form a subclass of the K-class estimators based on a modification
to the LIML, which fixes the no-moment problem while maintaining consistency
and asymptotic normality. Kiviet (2020) proposes a modification to the OLS
estimator that makes use of explicit knowledge of the partial correlation between
the covariates and the unobserved noise in Y . Andrews and Armstrong (2017)
propose an unbiased estimator that is based on knowledge of the sign of the first
stage regression and the variance the reduced form errors and that is less dispersed
than TSLS, for example. Judge and Mittelhammer (2012) consider an affine
combination of the OLS and TSLS estimators, which, again, yields a modification
in the space of estimators. We prove that our proposed estimator, PULSE, can
also be written as a data driven K-class estimator. As such, it minimizes a convex
combination of the OLS and TSLS loss functions and can, in general, not be
written as a convex combination of the estimators.

All of the above methods exploit background knowledge, e.g., in form of exogene-
ity of some of the variables. If no such background knowledge is available, it may
still be possible, under additional assumptions, to infer the causal structure, e.g.,
represented by a graph, from observational (or observational and interventional)
data. This problem is sometimes referred to as causal discovery. Constraint-based
methods assume that the underlying distribution is Markov and faithful with
respect to the causal graph and perform conditional independence tests to infer
(parts of) the graph; see, e.g. Spirtes et al. (2000). Score-based methods assume
a certain statistical model and optimize (penalized) likelihood scores; see, e.g.
Chickering (2002). Some methods exploit a simple form of causal assignments,
such as additive noise (e.g., Peters et al., 2014, and Shimizu et al., 2006) and
others are based on exploiting invariance statements (e.g., Meinshausen et al.,
2016; Peters et al., 2016). Many of such methods assume causal sufficiency, i.e.,
that all causally relevant variables have been observed, but some versions exist
that allow for hidden variables; see, e.g. Claassen et al. (2013) and Spirtes et al.
(1995).

Recent works in the fields of machine learning and computational statistics (e.g.
Heinze-Deml and Meinshausen, 2021; Pfister et al., 2019; Schölkopf et al., 2012)
investigate whether causal ideas can help to make machine learning methods more
robust. The reasoning is that causal models are robust against any intervention
in the following sense. Consider a target or response variable Y and covariates
X1, . . . , Xp. If we regress Y on the set XS, S ⊆ {1, . . . , p}, of direct causes, then
this regression function x 7→ E[Y |XS = x] does not change when intervening on any
of the covariates (which is sometimes referred to as ‘invariance’). This statement
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can be proved using the local Markov property (Lauritzen, 1996), for example, but
the underlying fundamental principle has been discussed already several decades
ago; most prominently using the terms ‘autonomy’ or ‘modularity’ (Haavelmo,
1944, and Aldrich, 1989). As a result, causal models of the form x 7→ E[Y |XS = x]
may perform well in prediction tasks, where, in the test distribution, the covariates
have been intervened on. If, however, training and test distributions coincide,
a model focusing only on prediction and the estimand x 7→ E[Y |X = x] may
outperform a causal approach.

The two models described above (OLS and the causal model) formally solve
a minimax problem on distributional robustness. Consider therefore an acyclic
linear structural equation model (SEM) over (Y,X) with observational distribution
F . Details on SEMs and interventions can be found in Appendix A.1. Assume
that the assignment for Y equals Y = γ⊺0X + εY for some γ0 ∈ Rd. The variables
corresponding to non-zero entries in γ⊺0X are called the parents of Y , and εY is
assumed to be independent of these parents. Then, the mean squared prediction
error when considering the observational distribution is not necessarily minimized
by γ0, that is, in general, we have γ0 ̸= γOLS := arg minγ EF

[
(Y − γ⊺X)2

]
. Intu-

itively, we may improve the prediction of Y by including other variables than the
parents of Y , such as its descendants. When considering distributional robustness,
we are interested in finding a γ that minimizes the worst case expected squared
prediction error over a class of distributions, F , that is,

arg min
γ

sup
F ∈F

EF

[
(Y − γ⊺X)2

]
. (2.1)

If we observe data from all different distributions in F (and know which data
point comes from which distribution), we can tackle this optimization directly
(Meinshausen and Bühlmann, 2015). But estimators of Equation (2.1) may be
available even if we do not observe data from each distribution in F . The true
causal coefficient γ0, for example, minimizes Equation (2.1) when F is the set
of all possible (hard) interventions on X (e.g., Rojas-Carulla et al., 2018b). The
OLS solution is optimal when F only contains the training distribution. In this
sense, the OLS solution and the true causal coefficient constitutes the end points
of a spectrum of estimators that are prediction optimal under a certain class of
distributions.

Intuitively, models trading off causality and predictability may perform well in
situations, where the test distribution is only moderately different from the training
distribution. Anchor regression by Rothenhäusler et al. (2021), see Section 2.2.2
for details, is one approach formalizing this intuition in a linear setup. Similarly to
an instrumental variable setting, one assumes the existence of exogenous variables
that are called A (for anchor) which may or may not act directly on the target Y .
The proposed estimator minimizes a convex combination of the residual sum of
squares and the TSLS loss function and is shown to be prediction optimal in the
sense of Equation (2.1) for a class F containing interventions on the covariates
up to a certain strength; this strength depends on a regularization parameter:
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the weight that is used in the convex combination of anchor regression. Other
approaches (Magliacane et al., 2018; Pfister et al., 2021; Rojas-Carulla et al., 2018b)
search over different subsets S and aim to choose sets that are both invariant and
predictive.

2.1.2. Summary and Contributions
This paper contains two main contributions: A distributional robustness property
of K-class estimators with fixed κ-parameter and a novel estimator for causal coef-
ficients called the p-uncorrelated least squares estimator (PULSE). The following
two sections summarize our contributions.

2.1.2.1. Distributional Robustness of K-class Estimators.

In Section 2.2 we show that anchor regression is closely related to K-class estimators.
In particular, we prove that for a restricted subclass of models K-class estimators
can be written as anchor regression estimators. For this subclass, this directly
implies a distributional robustness property of K-class estimators. We then prove
a similar robustness property for general K-class estimators with a fixed penalty
parameter, and show that these properties hold even if the model is misspecified.

Consider a possibly cyclic linear SEM over the variables (Y,X,H,A) of the form[
Y X⊺ H⊺

]
:=

[
Y X⊺ H⊺

]
B + A⊺M + ε⊺,

subject to regularity conditions that ensure the distribution of (Y,X,H,A) is
well-defined. Here, B and M are constant matrices, the random vectors A and ε
are defined on a common probability space (Ω,F , P ), Y is the endogenous target
for the single equation inference, X are the observed endogenous variables, H are
hidden endogenous variables and A are exogenous variables independent from the
unobserved noise innovations ε.

SEMs allow for the notion of interventions, i.e., modeling external manipulations
of the system. In this work, we are only concerned with interventions on the
exogenous variables A of the form do(A := v). Because A is exogeneous, these
interventions can be defined as follows: they change the distribution of A to that
of a random vector v. The interventional distribution of the variables (Y,X,H,A)
under the intervention do(A := v) is given by the simultaneous distribution of
(Xv, Yv, Hv, v) generated by the SEM

[
Yv X⊺

v H⊺
v

]
:=

[
Yv X⊺

v H⊺
v

]
B + v⊺M + ε.

Thus, the intervention does not change any of the original structural assignments of
the endogenous variables. Instead, the change in the distribution of the exogeneous
variable propagates through the system. We henceforth let Edo(A:=v) denote the
expectation with respect to the interventional distribution of the system under the
intervention do(A := v). More details on interventions can be found Appendix A.1
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Let (Y,X,H,A) consist of n row-wise independent and identically distributed
copies of the random vector (Y,X,H,A) and consider the single equation of interest

Y = Xγ0 + Aβ0 + Hη0 + εY = Xγ0 + Aβ0 + ŨY .

The K-class estimator with parameter κ using non-sample information that only
Z∗ ⊆ [X A] have non-zero coefficients in the target equation of interest is given by

α̂n
K(κ) = (Z⊺

∗(I − κP⊥
A)Z∗)−1Z⊺

∗(I − κP⊥
A)Y,

where P⊥
A is the projection onto the orthogonal complement of the column space

of A. For a fixed κ ∈ [0, 1) K-class estimators can be represented by a penalized
regression problem α̂n

K(κ) = arg minα l
n
OLS(α)+κ/(1−κ)lnIV(α), where lnOLS and lnIV

are the empirical OLS and TSLS loss functions, respectively. This representation
and the ideas of Rothenhäusler et al. (2021) allow us to prove that K-class estimator
converges to a coefficient that is minimax optimal when considering all distributions
induced by a certain set of interventions of A. More specifically, we show that for
a fixed κ and regardless of identifiability,

α̂n
K(κ) P−→

n→∞
arg min

α
sup

v∈C(κ)
Edo(A:=v)

[
(Y − α⊺Z∗)2

]
,

where C(κ) := {v : Ω → Rq : Cov(v, ε) = 0, E[vv⊺] ⪯ 1
1−κE[AA⊺]}. The argmin

on the right-hand side minimizes the worst case prediction error when considering
interventions up to a certain strength (measured by the set C(κ)). This objective
becomes relevant when we consider a response variable with several covariates
and aim to minimize the mean squared prediction error of future realizations of
the system of interest that do not follow the training distribution. The above
result says that if the new realizations correspond to (unknown) interventions on
the exogenous variables that are of bounded strength, K-class estimators with
fixed κ ∈ (0, 1) minimize the worst case prediction performance and, in particular,
outperform the true causal parameter and the least squares solution (see also
Figure A.2 in Section A.8.1). For κ approaching one, we recover the guarantee of
the causal solution and for κ approaching zero, the set of distributions contains
the training distribution. The above minimax property therefore adds to the
discussion whether non-consistent K-class estimators with penalty parameter not
converging to one can be useful; see, e.g. Dhrymes (1974).

2.1.2.2. The PULSE Estimator

Section 2.3 contains the second main contribution in this work. We propose
a novel data driven K-class estimator for causal coefficients, which we call the
p-uncorrelated least square estimator (PULSE). As above, we consider a single
endogenous target in an SEM (or simultaneous equation model) and aim to predict
it from observed predictors that are with a priori (non-sample) information known
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to be either endogenous or exogenous. The PULSE estimator can be written in
several equivalent forms. It can, first, be seen as a data-driven K-class estimator

α̂n
K(λ⋆

n/(1 + λ⋆
n)) = arg min

α
lnOLS(α) + λ⋆

nl
n
IV(α),

where

λ⋆
n := inf

{
λ > 0 : testing Corr(A, Y − Zα̂n

K(λ/(1 + λ))) = 0
yields a p-value ≥ pmin

}
,

for some pre-specified level of the hypothesis test pmin ∈ (0, 1). In words, the
PULSE estimator outputs the K-class estimator closest to the OLS while maintain-
ing a non-rejected test of uncorrelatedness. In principle, PULSE can be used with
any testing procedure. The choice of test, however, may influence the difficulty
of the resulting optimization problem. In this paper, we investigate PULSE in
connection with a specific class of hypothesis tests that, for example, contain the
test of Anderson and Rubin (1949). For these hypothesis tests we develop an
efficient and provably correct optimization method, that is based on binary line
search and quadratic programming.

We show that our estimator can, second, be written as the solution to a con-
strained optimization problem. To that end, define the primal problems

α̂n
Pr(t) := arg minα lnOLS(α)

subject to lnIV(α) ≤ t.

For the choice t⋆n := sup{t : testing Corr(A, Y − Zα̂n
Pr(t)) = 0 yields a p-value ≥

pmin}, we provide a detailed analysis proving that α̂n
K(λ⋆

n/(1 + λ⋆
n)) = α̂n

Pr(t⋆n).
For the testing procedure proposed in this paper, we show that, third, PULSE

can be written as
argminα lnOLS(α; Y,Z)
subject to α ∈ An(1− pmin),

where An(1− pmin) is the non-convex acceptance region for our test of uncorrelat-
edness.

This third formulation allows for a simple interpretation of our estimator: among
all coefficients (not restricted to K-class estimators) that do not yield a rejection
of uncorrelatedness, we choose the one that yields the best prediction. If the
acceptance region is empty it outputs a warning indicating a possible model
misspecification or an assumption violation to the user (in that case, one can
formally output another estimator such as TSLS or Fuller, yielding PULSE well-
defined).

In the just-identified setup, the TSLS estimator solves a normal equation which
is equivalent to setting a sample covariance between the instruments and the
resulting prediction residuals to zero; it then corresponds to t = 0. For this (and
the over-identified) setting, we prove that PULSE is a consistent estimator for the
causal coefficient.
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The TSLS does not have a finite variance if there is insufficient degree of
overidentification, for example. In particular for weak instruments, this usually
comes with poor finite sample performance. In such cases, however, the acceptance
region of uncorrelatedness is usually large. This yields a weak constraint in the
optimization problem and the PULSE will be closer to the OLS, which in certain
settings suffers from less variability (see, e.g., Hahn and Hausman, 2005; Hahn
et al., 2004). In simulations we indeed see that, similarly to other data-driven
K-class estimators that are pulled towards the OLS, such as Fuller estimators,
the PULSE comes with beneficial finite sample properties compared to TSLS and
LIML.

Unlike other estimators such as LIML or the classical TSLS, the PULSE is
well-defined in under-identified settings, too. Here, its objective is still to find the
best predictive solution among all parameters that do not reject uncorrelatedness.
Uncorrelatedness to the exogeneous variable is sometimes referred to as invariance.
The idea of choosing the best predictive among all invariant models has been
investigated in several works (e.g. Magliacane et al., 2018; Pfister et al., 2021;
Rojas-Carulla et al., 2018b) with the motivation to find models that generalize well
(in particular, with respect to interventions on the exogenous variables). Existing
methods, however, focus on selecting subsets of variables and then consider least
squares regression of the response variable onto the full subset. PULSE can recover
such type of solutions if they are indeed optimal. But it also allows to search over
coefficients that are different from least squares regression for sets of variables.
Consequently, PULSE allows us to find solutions in situations, where the above
methods would not find any invariant subsets, which may often be the case if there
are hidden variables (see Section A.8.3 for an example).

We show in a simulation study that there are several settings in which PULSE
outperforms existing estimators both in terms of MSE ordering and several one-
dimensional scalarizations of the MSE. More specifically, we show that PULSE
can outperform the TSLS and Fuller estimators in weak instrument situations, for
example, where Fuller estimators are known to have good MSE properties; see,
e.g. Hahn et al. (2004) and Stock et al. (2002).

Implementation of PULSE and code for experiments (R) are available on
GitHub.1

2.2. Robustness Properties of K-class Estimators
In this section we consider K-class estimators (Theil, 1958, and Nagar, 1959)
and show a connection with anchor regression of Rothenhäusler et al. (2021).
In Section 2.2.3.1 we establish the connection in models where we use a priori
information that there are no included exogenous variables in the target equation
of interest. In Section 2.2.3.2 we then show that general K-class estimators can be
written as the solution to a penalized regression problem. In Section 2.2.3.3 we

1https://github.com/MartinEmilJakobsen/PULSE
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utilize this representation and the ideas of Rothenhäusler et al. (2021) to prove
a distributional robustness guarantee of general K-class estimators with fixed
κ ∈ [0, 1), even under model misspecification and non-identifiability. Proofs of
results in this section can be found in Appendix A.3.

2.2.1. Setup and Assumptions
Denote the random vectors Y ∈ R, X ∈ Rd, A ∈ Rq, H ∈ Rr and ε ∈ Rd+1+r by
the target, endogenous regressor, anchors, hidden and noise variables, respectively.
Let further (Y,X,H) be generated by the possibly cyclic structural equation model
(SEM) [

Y X⊺ H⊺
]

:=
[
Y X⊺ H⊺

]
B + A⊺M + ε⊺, (2.1)

for some random vectors ε ⊥⊥ A and constant matrices B and M . Let (Y,X,H,A)
consist of n ≥ min{d, q} row-wise independent and identically distributed copies
of the random vector (Y,X,H,A). Solving for the endogenous variables we get the
structural and reduced form equations [ Y X H ] Γ = AM + ε and [ Y X H ] =
AΠ + εΓ−1, where Γ := I −B and Π := MΓ−1. Assume without loss of generality
that Γ has a unity diagonal, such that the target equation of interest is given by

Y = Xγ0 + Aβ0 + Hη0 + εY = Zα0 + ŨY , (2.2)

where (1,−γ0,−η0) ∈ R(1+d+r), β0 ∈ Rq and εY are the first columns of Γ, M and
ε ∈ Rn respectively, Z := [X A], α0 = (γ0, β0) ∈ Rd+q and ŨY := Hη0 + εY .

The possible dependence between the noise ŨY and the endogenous variables, i.e.,
the influence by hidden variables, generally, renders the standard OLS approach
for estimating α0 inconsistent. Instead, one can make use of the components in
A that have vanishing coefficient in Equation (2.2) for consistent estimation. In
the remainder of this work, we disregard any a priori (non-sample) information
not concerning the target equation. The question of identifiability of α0 has been
studied extensively (Frisch, 1938; Haavelmo, 1944; Koopmans et al., 1950) and
more recent overviews can be found in, e.g., Didelez et al. (2010), Fisher (1966),
and Greene (2003).

We will use the following assumptions concerning the structure of the SEM:

Assumption 2.1 (Global assumptions). (a) (Y,X,H,A) is generated in accor-
dance with the SEM in Equation (2.1); (b) ρ(B) < 1 where ρ(B) is the spectral
radius of B; (c) ε has jointly independent marginals ε1, . . . , εd+1+r; (d) A and ε
are independent; (e) No variable in Y , X and H is an ancestor of A, that is, A is
exogenous; (f) E[∥ε∥2

2], E[∥A∥2
2] <∞; (g) E[ε] = 0. (h) Var(A) ≻ 0, i.e., the

variance matrix of A is positive definite; (i) A⊺A is almost surely of full rank;

Assumption 2.2 (Finite sample assumptions). (a) Z⊺
∗Z∗ is almost surely of full

rank; (b) A⊺Z∗ is almost surely of full column rank. (c) X⊺X is almost surely of
full rank;
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Assumption 2.3 (Population assumptions). (a) Var(Z∗) ≻ 0, i.e., the variance
matrix of Z∗ is positive definite; (b) E[AZ⊺

∗ ] is of full column rank.

We will henceforth assume that Assumption 2.1 always holds. This assumption
ensure that the SEM and that the TSLS objectives are well-defined. In the
above assumptions, Z∗ and Z∗ are generic placeholders for a subset of endogenous
and exogenous variables from [X⊺ A⊺]⊺ and [X A], respectively, which should
be clear from the context in which they are used. Both Assumption 2.1.(i) and
Assumption 2.2.(c) hold if X and A have density with respect to Lebesgue measure,
which in turn is guaranteed by Assumption 2.1.(d) if A and ε have density with
respect to Lebesgue measure. Assumption 2.1.(h) and 2.1.(i) implies that the
instrumental variable objective functions introduced below is almost surely well-
defined and Assumption 2.2.(c) yields that the ordinary least square solution is
almost surely well-defined. Assumption 2.1.(f) implies that Y,X and H all have
finite second moments. For Assumption 2.3.(b) and 2.2.(b) it is necessary that
q ≥ dim(Z∗), i.e., that the setup must be just- or over-identified; see Section 2.3.1
below.

2.2.2. Distributional Robustness of Anchor Regression
Rothenhäusler et al. (2021) proposes a method, called anchor regression, for
predicting the endogenous target variable Y from the endogenous variables X.
The collection of exogenous variables A, called anchors, are not included in that
prediction model. Anchor regression trades off predictability and invariance by
considering a convex combination of the ordinary least square (OLS) loss function
and the two-stage least square (IV) loss function using the anchors as instruments.
More formally, we define

lOLS(γ;Y,X) := E(Y − γ⊺X)2, (2.3)
lIV(γ;Y,X,A) := E(A(Y − γ⊺X))⊺E(AA⊺)−1E(A(Y − γ⊺X)),
lnOLS(γ; Y,X) := n−1(Y −Xγ)⊺(Y −Xγ), (2.4)

lnIV(γ; Y,X,A) := n−1(Y −Xγ)⊺PA(Y −Xγ), (2.5)

the population and finite sample versions of the loss functions. Here PA =
A(A⊺A)−1A⊺ is the orthogonal projection onto the column space of A. To
simplify notation, we omit the dependence on Y , X, A, A, X or Y when they are
clear from a given context. For a penalty parameter λ > −1, the anchor regression
coefficients are defined as

γAR(λ) := arg min
γ∈Rd

{lOLS(γ) + λlIV(γ)},

γ̂n
AR(λ) := arg min

γ∈Rd

{lnOLS(γ) + λlnIV(γ)}. (2.6)

The estimator γ̂n
AR(λ) consistently estimates the population estimand γAR(λ) and

minimizes prediction error while simultaneously penalizing a transformed sample
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covariance between the anchors and the resulting prediction residuals. Unlike the
TSLS estimator, for example, the anchor regression estimator is almost surely
well-defined under the rank condition of Assumption 2.2.(c), even if the model is
under-identified, that is, there are less exogenous than endogenous variables. The
solution to the empirical minimization problem of anchor regression is given by

γ̂n
AR(λ) = [X⊺(I + λPA)X]−1X⊺(I + λPA)Y, (2.7)

which follows from solving the normal equation of Equation (2.6).
The motivation of anchor regression is not to infer a causal parameter. Instead,

for a fixed penalty parameter λ, the estimator is shown to possess a distributional
or interventional robustness property: the estimator is optimal when predicting
under interventions on the exogenous variables that are below a certain intervention
strength. By Theorem 1 of Rothenhäusler et al. (2021) it holds that

γAR(λ) = arg min
γ∈Rd

sup
v∈C(λ)

Edo(A:=v)
[
(Y − γ⊺X)2]

,

where C(λ) := {v : Ω→ Rq : Cov(v, ε) = 0, E(vv⊺) ⪯ (λ+ 1)E(AA⊺)} .

2.2.3. Distributional Robustness of K-class Estimators
We now introduce the limited information estimators known as K-class estima-
tors (Theil, 1958, and Nagar, 1959) used for single equation inference. Sup-
pose that we are given non-sample information about which components of γ0
and β0, of Equation (2.2), are zero. We can then partition X = [X∗ X−∗] ∈
Rn×(d1+d2), A = [A∗ A−∗] ∈ Rn×(q1+q2) and Z = [Z∗ Z−∗] = [X∗ A∗ X−∗ A−∗]
with Z ∈ Rn×((d1+q1)+(d2+q2)), where X−∗ and A−∗ corresponds to the variables
for which our non-sample information states that the components of γ0 and β0
are zero, respectively. We call the variables corresponding to A∗ included ex-
ogenous variables. Similarly, we write γ0 = (γ0,∗, γ0,−∗), β0 = (β0,∗, β0,−∗) and
α0 = (α0,∗, α0,−∗) = (γ0,∗, β0,∗, γ0,−∗, β0,−∗). The structural equation of interest
then reduces to Y = X∗γ0,∗ + X−∗γ0,−∗ + A∗β0,∗ + A−∗β0,−∗ + ŨY = Z∗α0,∗ + UY ,
where UY = X−∗γ0,−∗ + A−∗β0,−∗ + Hη0 + εY . In the case that the non-sample
information is indeed correct, we have that UY = ŨY = Hη0 + εY . When well-
defined, the K-class estimator with parameter κ ∈ R for a simultaneous estimation
of α0,∗ is given by

α̂n
K(κ; Y,Z∗,A) = (Z⊺

∗(I − κP⊥
A)Z∗)−1Z⊺

∗(I − κP⊥
A)Y, (2.8)

where I − κP⊥
A = I − κ(I − PA) = (1− κ)I + κPA.

Comparing Equations (2.7) and (2.8) suggests a close connection between anchor
regression and K-class estimators for inference of structural equations with no
included exogenous variables. In the following subsections, we establish this
connection and subsequently extend the distributional robustness property to
general K-class estimators.
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2.2.3.1. K-class Estimators in Models with no Included Exogenous Variables

Assume that, in addition to Assumption 2.1, we have the non-sample information
that β0 = 0, that is, no exogenous variable in A directly affects the target variable
Y . By direct comparison we see that the K-class estimator for κ < 1 coincides
with the anchor regression estimator with penalty parameter λ = κ/(1 − κ),
i.e., γ̂n

K(κ) = γn
AR

(
κ

1−κ

)
. Equivalently, we have γn

AR (λ) = γn
K (λ/(1 + λ)) for any

λ > −1. As such, the K-class estimator, for a fixed κ, inherits the following
distributional robustness property:

γK(κ) = γAR

(
κ

1− κ
)

= arg min
γ∈Rd

sup
v∈C(κ/(1−κ))

Edo(A:=v)
[
(Y − γ⊺X)2]

, (2.9)

where C(κ/(1 − κ)) = {v : Ω → Rq : Cov(v, ε) = 0, E[vv⊺] ⪯ 1
1−κE[AA⊺]}. This

statement holds by Theorem 1 of Rothenhäusler et al. (2021).
In an identifiable model with P limn→∞ κ = 1 we have that γ̂n

K(κ) consistently
estimates the causal parameter; see e.g. Mariano (2001). For such a choice of κ,
the robustness above is just a weaker version of what the causal coefficient can
guarantee. However, the above result in Equation (2.9) establishes a robustness
property for fixed κ < 1, even in cases where the model is not identifiable.
Furthermore, since we did not use that the non-sample information that β0 = 0
was true, the robustness property is resilient to model misspecification in terms of
excluding included exogenous variables from the target equation which generally
also breaks identifiability.

2.2.3.2. The K-class Estimators as Penalized Regression Estimators

We now show that general K-class estimators can be written as solutions to
penalized regression problems. The first appearance of such a representation is,
to the best of our knowledge, due to McDonald (1977) building upon previous
work of Basmann (1960a,b). Their representation, however, concerns only the
endogenous part γ. We require a slightly different statement and will show that the
entire K-class estimator of α0,∗, i.e., the simultaneous estimation of γ0,∗ and β0,∗,
can be written as a penalized regression problem. Let therefore lIV(α; Y,Z∗,A),
lnIV(α; Y,Z∗,A) and lOLS(α; Y,Z∗), lnOLS(α; Y,Z∗) denote the population and
empirical TSLS and OLS loss functions as defined in Equations (2.3) to (2.4).
That is, the TSLS loss function for regressing Y on the included endogenous and
exogenous variables Z∗ using the exogeneity of A and A−∗ as instruments and
the OLS loss function for regressing Y on Z∗. We define the K-class population
and finite-sample loss functions as an affine combination of the two loss functions
above. That is,

lK(α;κ, Y, Z∗, A) = (1− κ)lOLS(α;Y, Z∗) + κlIV(α;Y, Z∗, A), (2.10)
lnK(α;κ,Y,Z∗,A) = (1− κ)lnOLS(α; Y,Z∗) + κlnIV(α; Y,Z∗,A). (2.11)
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Proposition 2.1. Consider one of the following scenarios: 1) κ < 1 and 2.2.(a)
holds, or 2) κ = 1 and 2.2.(b) holds. The estimator minimizing the empirical loss
function of Equation (2.11) is almost surely well-defined and coincides with the
K-class estimator of Equation (2.8). That is, it almost surely holds that

α̂n
K(κ; Y,Z∗,A) = arg min

α∈Rd1+q1
lnK(α;κ,Y,Z∗,A). (2.12)

Assuming κ ̸= 1, we can rewrite Equation (2.12) to

α̂n
K(κ; Y,Z∗,A) = arg min

α∈Rd1+q1
{lnOLS(α; Y,Z∗) + κ

1− κl
n
IV(α; Y,Z∗,A)}. (2.13)

Thus, K-class estimators seek to minimize the ordinary least squares loss for
regressing Y on Z∗, while simultaneously penalizing the strength of a transform on
the sample covariance between the prediction residuals and collection of exogenous
variables A.

In the following section, we consider a population version of the above quantity.
If we replace the finite sample Assumption 2.2 with the corresponding population
Assumption 2.3, we get that the minimization estimator of the empirical loss
function of Equation (2.11) is asymptotically well-defined. Furthermore, we now
prove that whenever the population assumptions are satisfied, then, for any fixed
κ ∈ [0, 1], α̂n

K(κ; Y,Z∗,A) converges in probability towards the population K-class
estimand.

Proposition 2.2. Consider one of the following scenarios: 1) κ ∈ [0, 1) and
Assumption 2.3.(a) holds, or 2) κ = 1 and Assumption 2.3.(b) holds. It holds
that (α̂n

K(κ; Y,Z∗,A))n≥1 is an asymptotically well-defined sequence of estimators.
Furthermore, the sequence consistently estimates the well-defined population K-class
estimand. That is,

α̂n
K(κ; Y,Z∗,A) P−→

n→∞
αK(κ;Y, Z∗, A) := arg min

α∈Rd1+q1
lK(α;κ, Y, Z∗, A).

2.2.3.3. Distributional Robustness of General K-class Estimators

We are now able to prove that the general K-class estimator possesses a robustness
property similar to the statements above. It is prediction optimal under a set
of interventions, now including interventions on all exogenous A up to a certain
strength.

Theorem 2.1. Let Assumption 2.1 hold. For any fixed κ ∈ [0, 1) and Z∗ = (X∗, A∗)
with X∗ ⊆ X and A∗ ⊆ A, we have, whenever the population K-class estimand is
well-defined, that

αK(κ;Y, Z∗, A) = arg min
α∈Rd1+q1

sup
v∈C(κ)

Edo(A:=v)
[
(Y − α⊺Z∗)2

]
,

where C(κ) :=
{
v : Ω→ Rq : Cov(v, ε) = 0, E[vv⊺] ⪯ 1

1−κE[AA⊺]
}
.
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2. Distributional Robustness of K-class Estimators and the PULSE

Here, Edo(A:=v) denotes the expectation with respect to the distribution entailed
under the intervention do(A := v) (see Section 2.1.2.1 and Appendix A.1) and
(Ω,F , P ) is the common background probability space on which A and ε are
defined.

In words, among all linear prediction methods of Y using Z∗ as predictors, the
K-class estimator with parameter κ has the lowest possible worst case mean squared
prediction error when considering all interventions on the exogenous variables A
contained in C(κ). As κ approaches one, the estimator is prediction optimal under
a class of arbitrarily strong interventions in the direction of the variance of A.
(Here, κ is arbitrary but fixed; the statement does not cover data-driven choices
of κ, such as LIML or Fuller.) The above result is a consequence of the relation
between anchor regression and K-class estimators. The special case A∗ = ∅ is
a consequence of Theorem 1 by Rothenhäusler et al. (2021). Our proof follows
similar arguments but additionally allows for A∗ ̸= ∅.

The property in Theorem 2.1 has a decision-theoretic interpretation (see Cham-
berlain (2007) for an application of decision theory in IV models based on another
loss function). Consider a response Y , covariates Z∗ and a distribution (specified
by θ) over (Y, Z∗), and the squared loss ℓ(Y, Z, α) := (Y −α⊤Z∗)2. Then, assuming
finite variances, for each distribution the risk Eθ[(Y − α⊤Z∗)2] is minimized by
the (population) OLS solution α = αθ := covθ(Z∗)−1covθ(Z∗, Y ). In the setting of
Theorem 2.1, we are given a distribution over (Y, Z∗), specified by θ, but we are
interested in minimizing the risk Eθ,v[(Y − α⊤

θ Z∗)2] for another distribution that
is induced by an intervention and specified by (θ, v). The above result states that
the K-class estimator minimizes a worst-case risk when considering all v ∈ C(κ).

Theorem 2.1 makes use of the language of SEMs in that it yields the notion of
interventions.2 As such, the result can be rephrased using other causal frameworks.
The crucial assumptions are the exogeneity of A and the linearity of the system.
Furthermore, the result is robust with respect to several types of model misspecifi-
cations that breaks identifiability of α0, such as excluding included endogenous
or exogenous predictors or the existence of latent variables; see Remark A.1 in
Appendix A.7.

2.3. The P-Uncorrelated Least Square Estimator
We now introduce the p-uncorrelated least square estimator (PULSE). As discussed
in Section 2.1.2, PULSE allows for different representations. In this section we start
with the third representation and show the equivalence of the other representations
afterwards.

Consider predicting the target Y from endogenous and possibly exogenous
regressors Z. Let therefore H0(α) denote the hypothesis that the prediction
residuals using α as a regression coefficient is simultaneously uncorrelated with
every exogenous variable, that is, H0(α) : Corr(A, Y −α⊺Z) = 0. This hypothesis is

2In particular, we have not considered the SEM as a model for counterfactual statements.

42



2.3. The P-Uncorrelated Least Square Estimator

in some models under certain conditions equivalent to the hypothesis that α is the
true causal coefficient. One of these conditions is the rank condition Assumption 2.8
introduced below, also known as the rank condition for identification; Wooldridge
(2010).

The two-stage least square (TSLS) estimator exploits the equivalence be-
tween the causal coefficient and the zero correlation between the instruments
and the regression residuals. Here, one minimizes a sample covariance between
the instruments and the regression residuals: we can write lnIV(α; Y,Z,A) =
∥Ĉovn(A, Y − α⊺Z)∥2

(n−1A⊺A)−1 when A is mean zero.3 In the just-identified setup
the TSLS estimator yields a sample covariance that is exactly zero and is known
to be unstable, in that it has no moments of any order. Intuitively, the constraint
of vanishing sample covariance may be too strong.

Let T (α; Y,Z,A) be a finite sample test statistic for testing the hypothesis
H0(α) and let p-value(T (α; Y,Z,A)) denote the p-value associated with the test
of H0(α). We then define the p-uncorrelated least square estimator (PULSE) as

α̂n
PULSE(pmin) = argminα lnOLS(α; Y,Z)

subject to p-value(T (α; Y,Z,A)) ≥ pmin,
(2.1)

where pmin is a pre-specified level of the hypothesis test. In words, we aim to
minimize the mean squared prediction error among all coefficients which yield a
p-value for testing H0(α) that does not fall below some pre-specified level-threshold
pmin ∈ (0, 1), such as pmin = 0.05. That is, the minimization is constrained to the
acceptance region of the test, i.e., a confidence region for the causal coefficient
in the identified setup. Among these coefficient, we choose the solution that is
‘closest’ to the OLS solution.4

Thus, PULSE allows for an intuitive interpretation. We will see in the ex-
perimental section that it has good finite sample performance, in particular for
weak instruments. Unlike other estimators, such as LIML, the above estimator
is well-defined in the under-identified setup, too.5 In such cases, PULSE extends
on existing literature that aims to trade-off predictability and invariance but that
so far has been restricted to search over subsets of variables (see Section 2.1.2.2
and Section A.8.3). To maintain consistency of the estimator the chosen test must
have asymptotic power of one.

In this paper, we propose a class of significance tests, that contains, e.g., the
Anderson-Rubin test (Anderson and Rubin, 1949). While the objective function in

3∥ · ∥(n−1A⊺A)−1 is the norm induced by the inner product ⟨x, y⟩ = x⊺(n−1A⊺A)−1y.
4Here, closeness is measured in the OLS distance: We define the OLS norm via ∥α∥2

OLS :=
ln
OLS(α + α̂n

OLS)− ln
OLS(α̂n

OLS) = α⊤ZT Zα, where α̂n
OLS is the OLS estimator. This defines a

norm (rather than a semi-norm) if ZT Z is non-degenerate. Minimizing ln
OLS(α) = ∥Y−Zα∥2

2 =
(α− α̂n

OLS)⊺Z⊺Z(α− α̂n
OLS) + ∥Y− Zα̂n

OLS∥2
2 is equivalent to minimizing ∥α− α̂n

OLS∥2
OLS.

5The PULSE estimator is defined for finite samples, but the following deliberation may help to
build intuition: In an under-identified IV setting, minimizing lOLS(γ) under the constraint that
lIV(γ) = 0, can be seen as choosing, under all causal models compatible with the distribution,
the model with the least amount confounding – when using E(Y − γ⊤X)2 −E(Y − γ⊤

OLSX)2

as a measure for confounding.
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Equation (2.1) is quadratic in α, the resulting constraint is, in general, non-convex.
In Section 2.3.5, we develop a computationally efficient procedure that provably
solves the optimization problem at low computational cost. Other choices of tests
are possible, too, but may result in even harder optimization problems.

In Section 2.3.1, we briefly introduce the setup and assumptions. In Section 2.3.2,
we specify a class of asymptotically consistent tests for H0(α). In Section 2.3.3
we formally define the PULSE estimator. In Section 2.3.4, we show that the
PULSE estimator is well-defined by proving that it is equivalent to a solvable
convex quadratically constrained quadratic program which we denote by the
primal PULSE. In Section 2.3.5, we utilize duality theory and derive an alternative
representation which we denote by the dual PULSE. This representation yields
a computationally feasible algorithm and shows that the PULSE estimator is a
K-class estimator with a data-driven κ. Proofs of results in this section can be
found in Appendix A.5 unless stated otherwise.

2.3.1. Setup and Assumptions
In the following sections we again let (Y,X,H,A) consist of n ≥ min{d, q} row-
wise independent and identically distributed copies of (Y,X,H,A) generated in
accordance with the SEM in Equation (2.1). The structural equation of interest is
Y = γ⊺0X + η⊺0H + β⊺

0A+ εY . Assume that we have some non-sample information
about which d2 = d− d1 and q2 = q− q1 coefficients of γ0 and β0, respectively, are
zero. As in Section 2.2, we let the subscript ∗ denote the variables and coefficients
that are non-zero according to the non-sample information but to simplify notation,
we drop the ∗ subscript from Z, Z and α0; that is, we write Z = [X⊺

∗ A
⊺
∗]⊺ ∈ Rd1+q1 ,

Z = [X∗ A∗] ∈ Rn×(d1+q1) and α0 := (γ⊺0,∗, β
⊺
0,∗)⊺ :∈ Rd1+q1 . That is, Y = α⊺

0Z+UY ,
where UY = α⊺

0,−∗Z−∗ + η⊺0H + εY . If the non-sample information is true, then
UY = η⊺0H + εY .

We define a setup as being under- just- and over-identified by the degree of
over-identification q2 − d1 being negative, equal to zero and positive, respectively.
That is, the number of excluded exogenous variables A−∗ being less, equal or larger
than the number of included endogenous variables X∗ in the target equation.

We assume that the global assumptions of Assumption 2.1 from Section 2.2.1
still hold. Furthermore, we will make use of the following situational assumptions

Assumption 2.4. (a) A ⊥⊥ UY ; (b) E[A] = 0.

Assumption 2.5. ε has non-degenerate marginals.

Assumption 2.6. (a) Z⊺Z is of full rank; (b) A⊺Z is of full rank.

Assumption 2.7. [Z Y] is of full column rank.

Assumption 2.8. E[AZ⊺] is of full rank.

Assumption 2.4.(a) holds if our non-sample information is true, and the instru-
ment set A is independent of all unobserved endogenous variables Hi which directly
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affect the target Y . This holds, for example, if the latent variables are source
nodes, that is, they have no parents in the causal graph of the corresponding SEM.
Assumption 2.4.(b) can be achieved by centering the data. Strictly speaking, this
introduces a weak dependence structure in the observations, which is commonly
ignored. Alternatively, one can perform sample splitting. For more details on this
assumption and the possibility of relaxing it, see Remark 2.1. Assumption 2.6.(a)
ensures that K-class estimators for κ < 1 are well-defined, regardless of the over-
identification degree. In the under-identified setup, Assumption 2.6.(b) yields
that there exists a subspace of solutions minimizing lnIV(α). In the just- and
over-identified setup this assumption ensures that lnIV(α) has a unique minimizer
given by the two-stage least squares estimator α̂n

TSLS := (Z⊺PAZ)−1Z⊺PAY. As-
sumption 2.7 is used to ensure that the ordinary least square objective function
lnOLS(α; Y,Z) is strictly positive, such that division by this function is always
well-defined. Assumptions 2.5 and 2.8 ensure that various limiting arguments are
valid. In the just- and over-identified setup Assumption 2.8 is known as the rank
condition for identification.

2.3.2. Testing for Vanishing Correlation
We now introduce a class of tests for the null hypothesis H0(α) : Corr(A, Y −
Zα) = 0 that have point-wise asymptotic level and pointwise asymptotic power.
These tests will allow us to define the corresponding PULSE estimator. When
Assumption 2.7 holds we can define T c

n : Rd1+q1 → R by

T c
n(α) := c(n) l

n
IV(α)
lnOLS(α) = c(n)∥PA(Y − Zα)∥2

2
∥Y − Zα∥2

2
,

where c(n) is a function that will typically scale linearly in n. Let us denote the
1− p quantile of the central Chi-Squared distribution with q degrees of freedom
by Qχ2

q
(1 − p). By standard limiting theory we can test H0(α) in the following

manner.

Lemma 2.1 (Level and power of the test). Let Assumptions 2.4, 2.5 and 2.7
hold and assume that c(n) ∼ n as n → ∞. For any p ∈ (0, 1) and any fixed α,
the statistical test rejecting the null hypothesis H0(α) if T c

n(α) > Qχ2
q
(1− p), has

point-wise asymptotic level p and point-wise asymptotic power of 1 against all
alternatives as n→∞.

Remark 2.1. Assumption 2.4.(b), E[A] = 0, is important for the test statistic
to be asymptotic pivotal under the null hypothesis, that is, to ensure that the
asymptotic distribution of T c

n(α) does not depend on the model parameters except
for q. We can drop this assumption if we change the null hypothesis to H0(α) :
E[A(Y − Z⊺α)] = 0 and add the assumption that E[UY ] = 0. Furthermore, if we
are in the just- or over-identified setup and Assumption 2.8 holds, both of these
hypotheses are under their respective assumptions equivalent to H̃0(α) : α = α0.
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That is, the test in Lemma 2.1 becomes an asymptotically consistent test for the
causal coefficient. ◦

Depending on the choice of c(n), this class contains several tests, some of which
are well known. With c(n) = n − q + Qχ2

q
(1 − pmin), for example, one recovers

a test that is equivalent to the asymptotic version of the Anderson-Rubin test
(Anderson and Rubin, 1950). We make this connection precise in Remark A.2 in
Appendix A.7. The Anderson-Rubin test is robust to weak instruments in the
sense that the limiting distribution of the test-statistic under the null-hypothesis
is not affected by weak instrument asymptotics; see, e.g. Staiger and Stock (1997)
and Stock et al. (2002).6 For weak instruments, the confidence region may be
unbounded with large probability; see Dufour (1997). Moreira (2009) show that
the test suffers from loss of power in the over-identified setting.

To simplify notation, we will from now on work with the choice c(n) = n and
define the acceptance region with level pmin ∈ (0, 1) as An(1 − pmin) := {α ∈
Rd1+q1 : Tn(α) ≤ Qχ2

q
(1− pmin)}, where Tn(α) corresponds to the choice c(n) = n.

2.3.3. The PULSE Estimator
For any level pmin ∈ (0, 1), we formally define the PULSE estimator of Equa-
tion (2.1) by letting the feasible set be given by the acceptance region An(1− pmin)
of H0(α) using the test of Lemma 2.1. That is, we consider

α̂n
PULSE(pmin) := arg minα lnOLS(α)

subject to Tn(α) ≤ Qχ2
q
(1− pmin). (2.2)

In general, this is a non-convex optimization problem (Boyd and Vandenberghe,
2004) as the constraint function is non-convex, see the blue contours in Fig-
ure 2.1(left). From Figure 2.1(right) we see that in the given example the problem
nevertheless has a unique and well-defined solution: the smallest level-set of lnOLS
with a non-empty intersection of the acceptance region {α : Tn(α) ≤ Qχ2

q
(1−pmin)}

intersects with the latter region in a unique point. In Section 2.3.4, we prove
that this is not a coincidence: Equation (2.2) has a unique solution that coin-
cides with the solution of a strictly convex, quadratically constrained quadratic
program (QCQP) with a data-dependent constraint bound. In Section 2.3.5, we
further derive an equivalent Lagrangian dual problem. This has two important
implications. (1) It allows us to construct a computationally efficient procedure to
compute a solution of the non-convex problem above, and (2), it shows that the
PULSE estimator can be written as K-class estimators.

Estimators with similar constraints albeit different optimization objective have
been studied by Gautier et al. (2018). In Remark A.3 in Appendix A.7 we
briefly discuss the connection to pre-test estimators. Furthermore, any method

6Weak instrument asymptotics is a model scheme where the instrument strength tends to zero
at a rate of n−1/2, i.e., the reduced form structural equation for the endogenous variables is
given by X = An−1/2ΠX + εΓ−1

X .
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for inverting the test, see, e.g., Davidson and MacKinnon (2014), yields a valid
confidence set including the proposed point estimator (given that the method
outputs the point estimator when the acceptance region is empty).

2.3.4. Primal Representation of PULSE
We now derive a QCQP representation of the PULSE problem, which we call the
primal PULSE. For all t ≥ 0 define the empirical primal minimization problem
(Primal.t.n) by

minimizeα lnOLS(α; Y,Z)
subject to lnIV(α; Y,Z,A) ≤ t.

(2.3)

We drop the dependence of Y, Z and A and refer to the objective and constraint
functions as lnOLS(α) and lnIV(α). The following lemma shows that under suitable
assumptions these problems are solvable, strictly convex QCQP problems satisfying
Slater’s condition.
Lemma 2.2 (Unique solvability of the primal). Let Assumption 2.6 hold. It holds
that α 7→ lnOLS(α) and α 7→ lnIV(α) are strictly convex and convex, respectively.
Furthermore, for any t > infα l

n
IV(α) it holds that the constrained minimization

problem (Primal.t.n) has a unique solution and satisfies Slater’s condition. In
the under- and just-identified setup the constraint bound requirement is equivalent
to t > 0 and in the over-identified setup to t > lnIV(α̂n

TSLS), where α̂n
TSLS =

(Z⊺PAZ)−1Z⊺PAY.
We restrict the constraint bounds to DPr := (infα l

n
IV(α), lnIV(α̂n

OLS)]. Considering
t that are larger than infα l

n
IV(α) ensures that the problem (Primal.t.n) is uniquely

solvable and furthermore that Slater’s condition is satisfied (see Lemma 2.2 above).
Slater’s condition will play a role in Section 2.3.5 when establishing a sufficiently
strong connection with its corresponding dual problem for which we can derive a
(semi-)closed form solution. Constraint bounds greater than or equal to lnIV(α̂n

OLS)
yield identical solutions. Whenever well-defined, let α̂n

Pr : DPr → Rd1+q1 denote
the constrained minimization estimator given by the solution to the (Primal.t.n)
problem

α̂n
Pr(t) := arg minα lnOLS(α)

subject to lnIV(α) ≤ t.
(2.4)

We now prove that for a specific choice of t, the PULSE and the primal PULSE
yield the same solutions. Define t⋆n(pmin) as the data-dependent constraint bound
given by
t⋆n(pmin) := sup{t ∈ (inf

α
lnIV(α), lnIV(α̂n

OLS)] : Tn(α̂n
Pr(t)) ≤ Qχ2

q
(1− pmin)}. (2.5)

If t⋆n(pmin) > −∞ or equivalently t⋆n(pmin) ∈ DPr we define the primal PULSE
problem and its solution by (Primal.t⋆n(pmin).n) and α̂n

Pr(t⋆n(pmin)). The following
theorem yields conditions for when the solutions to the primal PULSE and PULSE
problems coincide.

47



2. Distributional Robustness of K-class Estimators and the PULSE

Theorem 2.2 (Primal representation of PULSE). Let pmin ∈ (0, 1) and As-
sumptions 2.6 and 2.7 hold and assume that t⋆n(pmin) > −∞. If it holds that
Tn(α̂n

Pr(t⋆n(pmin))) ≤ Qχ2
q
(1− pmin), then the PULSE problem has a unique solution

given by the primal PULSE solution. That is, α̂n
PULSE(pmin) = α̂n

Pr(t⋆n(pmin)).

In the proof of Theorem 2.3, we show that t⋆n(pmin) > −∞ is a sufficient to
guarantee that Tn(α̂n

Pr(t⋆n(pmin))) ≤ Qχ2
q
(1 − pmin). The sufficiency of t⋆n(pmin) >

−∞ is postponed to the latter proof as it easily follows from the dual representation.
Hence, we have shown that finding the PULSE estimator, i.e., finding a solution
to the non-convex PULSE problem, is equivalent to solving the convex QCQP
primal PULSE for a data dependent choice of t⋆n(pmin).7 However, t⋆n(pmin) is
still unknown. Figure 2.1 shows an example of the equivalence in Theorem 2.2.
Figure 2.1(right) shows that the level set of lIV(α) = t⋆(pmin) intersects the optimal
level curve of lnOLS(α) in the same point given by minimizing over the constraint
Tn(α) ≤ Qχ2

q
(1− pmin).

The set of solutions to the primal problem {α̂n
Pr(t) : t ∈ DPr} can in the

just- and over-identified setup be visualized as an (in general) non-linear path
in Rd1+q1 between the TSLS estimator (t = lnIV(α̂n

TSLS)) and the OLS estimator
(t = lnIV(α̂n

OLS)) (see also Rothenhäusler et al., 2021). Theorem 2.2 yields that
the PULSE estimator (t = t⋆n(pmin)) then seeks the estimator ’closest’ to the
OLS estimator along this path that does not yield a rejected test of simultaneous
vanishing correlation between the resulting prediction residuals and the exogenous
variables A, see Figure 2.1. The path of possible solutions is not necessarily a
straight line (see black line); thus, in general, the PULSE estimator is different
from the affine combination of OLS and TSLS estimators studied by e.g. Judge
and Mittelhammer (2012).

In the under-identified setup, the TSLS end point corresponding to t = minα l
n
IV(α)

is instead given by the point in the IV solution space {α ∈ Rd1+q1 : lnIV(α) = 0}
with the smallest mean squared prediction residuals.

2.3.5. Dual Representation of PULSE
In this section, we derive a dual representation of the primal PULSE problem
which we will denote the dual PULSE problem. This specific dual representation
allows for the construction of a binary search algorithm for the PULSE estimator
and yields that PULSE is a member of the K-class estimators with stochastic
κ-parameter.

For any penalty parameter λ ≥ 0 we define the dual problem (Dual.λ.n) by

minimize lnOLS(α) + λlnIV(α). (2.6)

Whenever Assumption 2.6.(a) holds, i.e., Z⊺Z is of full rank, then for any λ ≥ 0 the
solution to (Dual.λ.n) coincides with the K-class estimator with κ = λ/(1 + λ) ∈

7Given that value, we can use a numerical QCQP solver to calculate the PULSE estimate.
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Figure 2.1: Illustrations of the level sets of lnOLS (red contours), the proposed test-
statistic Tn (blue contours) and lnIV (green contours) in a just-identified
setup. The example is generated with a two dimensional anchor
A = (A1, A2), one of which is included, and one included endogenous
variable X, i.e., Y = α1X+α2A1 +H+εY with (α1, α2) = (1, 1). Both
illustrations show level sets from the same setup, but they use different
scales. The black text denotes the level of the test-statistic contours.
In this setup, the PULSE constraint bound, the rejection threshold
of the test with pmin = 0.05, is Qχ2

2
(0.95) ≈ 5.99. The blue level sets

of Tn are non-convex. The sublevel set of the test, corresponding to
the acceptance region, is illustrated by the blue area. In the right
plot, we see that the smallest level set of lnOLS that has a non-empty
intersection with the Qχ2

q
(1 − pmin)-sublevel set of Tn is a singleton

(black dot, t∗(p)). This shows that in this example the PULSE problem
is solvable and has a unique solution. The lnIV level set that intersects
this singleton is exactly the t⋆n(pmin)-level set of lnIV, illustrating the
statement of Theorem 2.2 in that the primal PULSE with that choice
of t solves the PULSE problem. The black line visualizes the solutions
{α̂n

Pr(t) : t ∈ DPr}. The black points and corresponding text labels
indicates which constraint bound t yields the specific point. In general,
the class of primal solutions does not coincide with the class of convex
combinations of the OLS and the TSLS estimators.

[0, 1), see Proposition 2.1. That is,

α̂n
K(κ) = (Z⊺(I + λPA)Z)−1Z⊺(I + λPA)Y

solves (Dual.λ.n). Henceforth, let α̂n
K(λ) denote the solution to (Dual.λ.n), i.e.,

in a slight abuse of notation we will denote the solution to (Dual.λ.n) by α̂n
K(λ),
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2. Distributional Robustness of K-class Estimators and the PULSE

such that α̂n
K(λ) = α̂n

K(κ) for κ = λ/(1 + λ). We refer to these two representations
as the K-class estimator with penalty parameter λ and parameter κ, respectively.
The usage of κ or λ as argument should clarify which notation we refer to.

Under Assumption 2.6.(b) we have that the minimum of lnIV(α) is attainable
(see the proof of Lemma 2.2). Hence, let the solution space for the minimization
problem minα l

n
IV(α) be given by

MIV := arg min
α

lnIV(α) = {α ∈ Rd1+q1 : lnIV(α) = min
α′

lnIV(α′)}. (2.7)

In the under-identified setup (q2 < d1), MIV is a (d1 − q2)-dimensional subspace
of Rd1+q1 and in the just- and over-identified setup it holds that MIV = {α̂n

TSLS}.
We now prove that, in the generic case, K-class estimators for λ ∈ [0,∞) are

different from the TSLS estimator. This result may not come as a surprise, but
we include it as we need the result later and have not found it elsewhere.

Lemma 2.3 (K-class estimators and TSLS differ). Assume that we are in the
just- or over-identified setup and n > q. Furthermore, assume that ε has density
with respect to Lebesgue measure and that the coefficient matrix B of the SEM in
Equation (2.1) is lower triangular. If the rank conditions of Assumption 2.6 hold
almost surely, then it almost surely holds, that all K-class estimators with penalty
parameter λ ∈ [0,∞) differ from the TSLS estimator, i.e., α̂n

TSLS ̸∈ {α̂n
K(λ) : λ ≥

0}.

We conjecture that the corresponding statement holds in the under-identified
setup and without the lower triangular assumption on B, too. That is, MIV ∩
{α̂n

K(λ) : λ ≥ 0} = ∅ holds almost surely. We therefore introduce this as an
assumption.

Assumption 2.9. No K-class estimator α̂n
K(κ) with κ ∈ [0, 1), is a member of

MIV.

Furthermore, when imposing that Assumption 2.9 holds we also have that the
K-class estimators differ from each other.

Corollary 2.1 (K-class estimators differ). Let Assumptions 2.6 and 2.9 hold. If
λ1, λ2 ≥ 0 with λ1 ̸= λ2, then α̂n

K(λ1) ̸= α̂n
K(λ2).

The above corollary is proven as Corollary A.1 in Appendix A.4. We now show
that the class of K-class estimators with penalty parameter λ ≥ 0 , i.e., κ ∈ [0, 1),
coincides with the class of constrained minimization-estimators that minimize the
primal problems with constraint bounds t > minα l

n
IV(α).

Lemma 2.4 (Connecting the primal and dual). If Assumptions 2.6, 2.7 and 2.9
hold, then both of the following statements hold. (a) For any t ∈ DPr, there
exists a unique λ(t) ≥ 0 such that (Primal.t.n) and (Dual.λ(t).n) have the same
unique solution. (b) For any λ ≥ 0, there exists a unique t(λ) ∈ DPr such that
(Primal.t(λ).n) and (Dual.λ.n) have the same unique solution.
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Lemma 2.4 tells us that, under appropriate assumptions, {α̂n
K(κ) : κ ∈ [0, 1)} =

{α̂n
K(λ) : λ ≥ 0} = {α̂n

Pr(t) : t ∈ DPr}. In words, we have recast the K-class
estimators with κ ∈ [0, 1) as the class of solutions to the primal problems previously
introduced. That the minimizers of lnIV(α) are different from all the K-class
estimators with penalty λ ≥ 0 (or κ ∈ [0, 1)) guarantees that when representing a
K-class problem in terms of a constrained optimization problem it satisfies Slater’s
condition.

We are now able to show the main result of this section. The PULSE estimator
α̂n

PULSE(pmin) solves a K-class problem (Dual.λ.n) and can therefore be seen as
a K-class estimator with a data-dependent parameter. To see this, let us define
the dual PULSE penalty parameter, i.e., the dual analogue of the primal PULSE
constraint t⋆n(pmin) as

λ⋆
n(pmin) := inf{λ ≥ 0 : Tn(α̂n

K(λ)) ≤ Qχ2
q
(1− pmin)}. (2.8)

If λ⋆
n(pmin) <∞, we define the dual PULSE problem by (Dual.λ⋆

n(pmin).n) with
solution α̂n

K(λ⋆
n(p)) = arg minα∈Rd1+q1 l

n
OLS(α) + λ⋆

n(pmin)lnIV(α).

Theorem 2.3 (Dual representation of PULSE). Let pmin ∈ (0, 1) and Assump-
tions 2.6, 2.7 and 2.9 hold. If λ⋆

n(pmin) < ∞, then it holds that t⋆n(pmin) > −∞
and α̂n

K(λ⋆
n(pmin)) = α̂n

Pr(t⋆n(pmin)) = α̂n
PULSE(pmin).

Thus, the PULSE estimator seeks to minimize the K-class penalty λ, i.e., to
pull the estimator along the K-class path {α̂n

K(λ) : λ ≥ 0} as close to the ordinary
least square estimator as possible. Furthermore, the statement implies that the
PULSE estimator is a K-class estimator with data-driven penalty λ⋆

n(pmin) or,
equivalently, parameter κ = λ⋆

n(pmin)/(1 + λ⋆
n(pmin)). Given a finite dual PULSE

penalty parameter λ⋆
n(pmin) we can, by utilizing the closed form solution of the

K-class problem, represent the PULSE estimator in the following form:

α̂n
PULSE(pmin) = α̂n

K(λ⋆
n(pmin))

= (Z⊺(I + λ⋆
n(pmin)PA)Z)−1Z⊺(I + λ⋆

n(pmin)PA)Y.

However, to the best of our knowledge, λ⋆
n(pmin) has no known closed form, so the

above expression cannot be computed in closed-form either. In Section 2.3.5.1,
we prove that the PULSE penalty parameter λ⋆

n(pmin) can be approximated with
arbitrary precision by a simple binary search procedure.

The following lemma provides a necessary and sufficient (in practice checkable)
condition for when the PULSE penalty parameter λ⋆

n(pmin) is finite.

Lemma 2.5 (Infeasibility of the dual representation). Let pmin ∈ (0, 1) and
Assumptions 2.6, 2.7 and 2.9 hold. In the under- and just-identified setup we
have that λ⋆

n(pmin) < ∞. In the over-identified setup it holds that λ⋆
n(pmin) <

∞ ⇐⇒ Tn(α̂n
TSLS) < Qχ2

q
(1− pmin). This is not guaranteed to hold as the event

that An(1− pmin) = ∅ can have positive probability.
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Thus, under suitable regularity assumptions Lemma 2.5 yields that our dual
representation of the PULSE estimator always holds in the under- and just-
identified setup. It furthermore yields a sufficient and necessary condition for the
dual representation to be valid in the over-identified setup, namely that the TSLS
is in the interior of the acceptance region. Furthermore, this condition is possibly
violated in the over-identified setup with non-negligible probability.

2.3.5.1. Binary Search for the Dual Parameter

The key insight allowing for a binary search procedure for λ⋆
n(pmin) is that the

mapping λ 7→ Tn(α̂n
K(λ)) is monotonically decreasing.

Lemma 2.6 (Monotonicity of the losses and test statistic). When
Assumption 2.6.(a) holds the maps [0,∞) ∋ λ 7→ lnOLS(α̂n

K(λ)) and [0,∞) ∋ λ 7→
lnIV(α̂n

K(λ)) are monotonically increasing and monotonically decreasing, respectively.
Consequently, if Assumption 2.7 holds, we have that the map [0,∞) ∋ λ 7→
Tn(α̂n

K(λ)) is monotonically decreasing. Furthermore, if Assumption 2.9 also holds,
these monotonicity statements can be strengthened to strictly decreasing and strictly
increasing.

The above lemma is proven as Lemma A.1 in Appendix A.4. If the OLS solution
is not strictly feasible in the PULSE problem, then λ⋆

n(pmin) indeed is the smallest
penalty parameter for which the test-statistic reaches a p-value of exactly pmin;
see Lemma A.2 in Appendix A.4.

We propose the binary search algorithm presented in Algorithm A.1 in Ap-
pendix A.2, that can approximate a finite λ⋆

n(pmin) with arbitrary precision. We
terminate the binary search (see line 2) if λ⋆

n(pmin) is not finite, in which case
we have no computable representation of the PULSE estimator. It is possible
to improve this algorithm in the under- and just-identified setup, by initializing
ℓmax as the quantity given by Equation (A.28) in the proof of Lemma 2.5. This
initialization removes the need for the first while loop in (lines 4–6). We now prove
that Algorithm A.1 achieves the required precision and is asymptotically correct.

Lemma 2.7. Let pmin ∈ (0, 1) and Assumptions 2.6 and 2.7 hold. If it holds that
λ⋆

n(pmin) <∞, then λ⋆
n(pmin) can be approximated with arbitrary precision by the

binary search Algorithm A.1, that is, Binary.Search(N, pmin)− λ⋆
n(pmin)→ 0, as

N →∞.

2.3.6. Algorithm and Consistency
The dual representation of the PULSE estimator is not guaranteed to be well-
defined in the over-identified setup. In particular, it is not well-defined if the TSLS
is outside the interior of the acceptance region (which corresponds to a p-value of
less than or equal to pmin). In this case, we propose to output a warning. This can
be helpful information for the user since it may indicate a model misspecification.

52



2.4. Simulation Experiments

For example, if the true relationship is in fact nonlinear, and one considers an over-
identified case (e.g., by constructing different transformations of the instrument),
even the TSLS may be rejected when erroneously considering a linear model;
see Keane (2010) and Mogstad and Wiswall (2010). For any pmin ∈ (0, 1) we
can still define an always well-defined modified PULSE estimator α̂n

PULSE+(pmin)
as α̂n

PULSE(pmin) if the dual representation is feasible and some other consistent
estimator α̂n

ALT (such as the TSLS, LIML or Fuller estimator) otherwise. That is,
we define

α̂n
PULSE+(pmin) :=

{
α̂n

PULSE(pmin), if Tn(α̂n
TSLS) < Qχ2

q
(1− pmin)

α̂n
ALT, otherwise.

Similarly to the case of an empty rejection region, we also output a warning for
the case when the OLS estimator is accepted. This may, but does not have to,
indicate weak instruments. Thus, we have the algorithm presented as Algorithm A.2
in Appendix A.2 for computing the PULSE+ estimator.

We now prove that the PULSE+ estimator consistently estimates the causal
parameter in the just- and over-identified setting. Assume that we choose a
consistent estimator α̂n

ALT (under standard regularity assumptions, this is satisfied
for the TSLS).8 We can then show that, under mild conditions, the PULSE+
estimator, too, is a consistent estimator of α0.

Theorem 2.4 (Consistency of PULSE+). Consider the just- or over-identified
setup and let pmin ∈ (0, 1). If Assumptions 2.4 and 2.6 to 2.9 hold almost surely for
all n ∈ N and α̂n

ALT consistently estimates α0, then α̂n
PULSE+(pmin) P−→ α0, when

n→∞.

We believe that a similar statement also holds in the under-identified setting,
see Section A.8.3.

2.4. Simulation Experiments
In Appendix A.8 we conduct an extensive simulation study investigating the finite
sample behaviour of the PULSE estimator. The concept of weak instruments is
central to our analysis. An introduction to weak instruments can be found in
Appendix A.10. Here we give a brief overview of the study and the observations.

2.4.1. Distributional Robustness
The theoretical results on distributional robustness proved in Section 2.2 translate
to finite data. The experiments of Section A.8.1 shows that even for small sample
sizes, K-class estimators outperform both OLS and TSLS for a certain range of
interventions, matching the theoretical predictions with increasing sample size. In
Section A.8.3, we furthermore consider an under-identified setting.

8Since α̂n
TSLS = α0 + (n−1Z⊺A(n−1A⊺A)−1n−1A⊺Z)−1n−1Z⊺A(n−1A⊺A)−1n−1A⊺UY .
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2.4.2. Estimating Causal Effects
When focusing on the estimation of a causal effect in an identified setting, our
simulations show that there are several settings where PULSE outperforms the
Fuller and TSLS estimators in terms of mean squared error (MSE). In univariate
simulation experiments, such settings are characterized by weakness of instruments
and weak confounding (endogeneity). The characterization becomes more involved
in multivariate settings, but is similar in that PULSE outperforms all other
methods for small confounding strengths, an effect amplified by the weakness of
instruments. Below we detail the univariate simulation setup and refer the reader
to Appendix A.8 for further details and the multivariate simulation experiments
mentioned above.

2.4.2.1. Univariate Model.

We first compared performance measures of the estimators in a univariate instru-
mental variable model. As seen in Hahn and Hausman (2002) and Hahn et al.
(2004), we consider structural equation models of the form

A := A ∈ Rq, X := A⊺ξ̄ + UX ∈ R, Y := Xγ + UY ∈ R,

where A ∼ N (0, I) and A ⊥⊥ (UX , UY ) with
(

UX
UY

)
∼ N

(
( 0

0 ),
(

1 ρ
ρ 1
))
. Furthermore,

we let γ = 1 and ξ̄⊺ = (ξ, ...., ξ) ∈ Rq, where ξ > 0 is chosen according to the theo-
retical R2-coefficient. We consider the following simulation scheme: for each q ∈
{1, 2, 3, 4, 5, 10, 20, 30}, ρ ∈ {0.1, 0.2, ..., 0.9}, R2 ∈ {0.0001, 0.001, 0.01, 0.1, 0.3}
and n ∈ {50, 100, 150}, we simulate n-samples from the above system and calculate
the OLS, TSLS, Fuller(1), Fuller(4) and PULSE (pmin = 0.05) estimates; see
Section A.8.2.1.

Figure 2.2 contains illustrations of the relative change in square-root mean
squared error (RMSE) estimated from 15000 repetitions. On the horizontal axis we
have plotted the average first stage F-test as a measure of weakness of instruments;
see Appendix A.10 for further details. A test for H0 : ξ̄ = 0, i.e., for the relevancy
of instruments, at a significance level of 5%, has different rejection thresholds in
the range [1.55, 4.04] depending on n and q. The vertical dashed line corresponds
to the smallest rejection threshold of 1.55 and the dotted line corresponds to the
‘rule of thump’ threshold of 10. Note that the lowest possible negative relative
change is −1 and a positive relative change means that PULSE is better.

In Appendix A.11, further illustrations of e.g. the relative change in mean bias
and variance of the estimators are presented. We also conducted the simulations
for setups with combinations of γ ∈ {−1, 0}, components of ξ̄ chosen negatively,
with random flipped sign in each coordinate and for negative ρ (not shown but
available in the folder ’Plots’ in the code repository). The results with respect to
MSE are similar to those shown in Figure 2.2, while the bias comparison changes
depending on the setup.
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Figure 2.2: Illustrations of the relative change in RMSE.

We observe that there are settings, in which the PULSE is superior to TSLS,
Fuller(1) and Fuller(4) in terms of MSE. This is particularly often the case in
weak instrument settings (ÊN (Gn) < 10) for low confounding strength (ρ ≤ 0.2).
Furthermore, as we tend towards the weakest instrument setting considered, we
also see a gradual shift in favour of PULSE for higher confounding strengths. In
these settings with weak instruments and low confounding we also see that OLS is
superior to the PULSE in terms of MSE. However, for large confounding setups
PULSE is superior to OLS in terms of both bias and MSE and this superiority
increases as the instrument strength increases. The PULSE is generally more
biased than the Fuller and TSLS estimators but less biased than OLS. However, in
the settings with weak instruments and low confounding the bias of PULSE and
OLS is comparable. In summary, the PULSE is in these settings more biased but
its variance is so small that it is MSE superior to the Fuller and TSLS estimators.

2.5. Empirical Applications
We now consider three classical instrumental variable applications (see Albouy
(2012) and Buckles and Hungerman (2013) for discussions on the underlying
assumptions).

(i) “Does compulsory school attendance affect schooling and earnings?” by
Angrist and Krueger (1991). This paper investigates the effects of education
on wages. The endogenous effect of education on wages are remedied by
instrumenting education on quarter of birth indicators.

(ii) “Using geographic variation in college proximity to estimate the return
to schooling” by Card (1993). This paper also investigates the effects of
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2. Distributional Robustness of K-class Estimators and the PULSE

education on wages. In this paper education is instrumented by proximity to
college indicator.

(iii) “The colonial origins of comparative development: An empirical investigation”
by Acemoglu et al. (2001). This paper investigates the effects of extractive
institutions (proxied by protection against expropriation) on the gross domes-
tic product (GDP) per capita. The endogeneity of the explanatory variables
are remedied by instrumenting protection against expropriation on early
European settler mortality rates.

We have applied the different estimators OLS, TSLS, PULSE, and Fuller to the
classical data sets Acemoglu et al. (2001), Angrist and Krueger (1991) and Card
(1993). All models considered in Angrist and Krueger (1991) and Card (1993),
where we estimate the effect on years of education on wages, using quarter of
birth and proximity to colleges as instruments, respectively, the OLS estimates
are not rejected by our test statistic and PULSE outputs the OLS estimates; see
Appendix A.9 for futher details. This may be either due to weak endogeneity (weak
confounding), or that the test has insufficient power to reject the OLS estimates
due to either weak instruments or severe over-identification.

2.5.1. Acemoglu et al. (2001)
The dataset of Acemoglu et al. (2001) consists of 64 observations, each corre-
sponding to a different country for which mortality rate estimates encountered
by the first European settlers are available. The endogenous target of interest is
log GDP per capita (in 1995). The main endogenous regressor in the dataset is
an index of expropriation protection (averaged over 1985–1995), i.e., protection
against expropriation of private investment by the respective governments. The
average expropriation protection is instrumented by the settler mortality rates.
We consider eight models M1–M8 which correspond to the models presented in
column (1)–(8) in Table 4 of Acemoglu et al. (2001). Model M1 is given by the
reduced form structural equations

log GDP = avexpr · γ + µ1 + U1, avexpr = log em4 · δ + µ2 + U2,

where avexpr is the average expropriation protection, em4 is the settler mortality
rates, µ1 and µ2 are intercepts and U1 and U2 are possibly correlated, unobserved
noise variables. In model M2 we additionally introduce an included exogenous
regressor describing the country latitude. In model M3 and M4 we fit model
M1 and M2, respectively, on a dataset where we have removed Neo-European
countries, Australia, Canada, New Zealand and the United States. In model M5
and M6 we fit model M1 and M2, respectively, on a dataset where we have removed
observations from the continent of Africa. In model M7 and M8 we again fit model
M1 and M2, respectively, but now also include three exogenous indicators for the
continents Africa, Asia and other.
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Table 2.1 shows the OLS and TSLS estimates (which replicate the values from
the study), as well as the Fuller(4) and PULSE estimates for the linear effect of the
average expropriation protection on log GDP. In model M1, for example, we see
that the PULSE estimate suggests that the average expropriation risk linear effect
on log GDP is 0.6583 which is 26% larger than the OLS estimate but 34% smaller
than TSLS estimate. In models M5–M8, the OLS estimates are not rejected by the
Anderson-Rubin test, so the PULSE estimates coincide with the OLS estimates.

We can also use this example to illustrate the robustness property of K-class
estimators; see Theorem 2.1. Even though interventional data are not available, we
can consider the mean squared prediction error when holding out the observations
with the most extreme values of the instrument. Depending on the degree of
generalization, we indeed see that the PULSE and Fuller tend to outperform OLS
or TSLS in terms of mean squared prediction error on the held out data; see
Section A.9.3 for further details.

Table 2.1: The estimated return of expropriation protection on log GDP per capita.

Model OLS TSLS FUL PULSE Message Test Threshold
M1 0.5221 0.9443 0.8584 0.6583 – 5.991 5.991
M2 0.4679 0.9957 0.8457 0.5834 – 7.815 7.815
M3 0.4868 1.2812 0.9925 0.7429 – 5.991 5.991
M4 0.4709 1.2118 0.9268 0.6292 – 7.815 7.815
M5 0.4824 0.5780 0.5573 0.4824 OLS Acc. 1.180 5.991
M6 0.4658 0.5757 0.5476 0.4658 OLS Acc. 1.155 7.815
M7 0.4238 0.9822 0.7409 0.4238 OLS Acc. 10.772 11.071
M8 0.4013 1.1071 0.7059 0.4013 OLS Acc. 9.755 12.592

Note: Point estimates for the return of expropriation protection on log GDP per capita. The
OLS and TSLS values coincide with the ones shown in Acemoglu et al. (2001). The right columns
show the values of the test statistic (evaluated in the PULSE estimates) and the test rejection
thresholds. The ‘–’ indicates that OLS is not accepted and TSLS is not rejected.

2.6. Summary and Future Work
We have proved that a distributional robustness property similar to the one shown
for anchor regression (Rothenhäusler et al., 2021) fully extends to general K-class
estimators of possibly non-identifiable structural parameters in a general linear
structural equation model that allows for latent endogenous variables. We have
further proposed a novel estimator for structural parameters in linear structural
equation models. This estimator, called PULSE, is derived as the solution to
a minimization problem, where we seek to minimize mean squared prediction
error constrained to a confidence region for the causal parameter. Even though
this region is non-convex, we have shown that the corresponding optimization
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problem allows for a computationally efficient algorithm that approximates the
above parameter with arbitrary precision using a simple binary search procedure.
In the under-identified setting, this estimator extends existing work in the machine
learning literature that considers invariant subsets or the best predictive sets among
them: PULSE is applicable even in situations when no invariant subsets exist. We
have proved that this estimator can also be written as a K-class estimator with
data-driven κ-parameter, which lies between zero and one. Simulation experiments
show that in various settings with weak instruments and weak confounding, PULSE
outperforms other estimators such as the Fuller(4) estimator. We thus regard
PULSE as an interesting alternative for estimating causal effects in instrumental
variable settings. It is easy to interpret and automatically provides the user
feedback in case that the OLS is accepted (which may be an indication that the
instruments are too weak) or that the TSLS is outside the acceptance region (which
may indicate a model misspecification). We have applied the different estimators
to classical data sets and have seen that, indeed, K-class estimators tend to be
more distributionally robust than OLS or TSLS.

There are several further directions that we consider worthwhile investigating.
This includes better understanding of finite sample properties and for the identified
setups, the study of loss functions other than MSE. It would be helpful, in particular
with respect to real world applications, to understand to which extent similar
principles can be applied to models allowing for a time structure of the error terms.
We believe that the simple primal form of PULSE could make it applicable for
model classes that are more complex than linear models (see also Christiansen et al.,
2021). Our procedure can be combined with other tests and it could furthermore
be interesting to find efficient optimization procedures for tests that are robust
with respect to weak instruments, such as Kleibergen’s K-statistic (Kleibergen,
2002), for example. In an under-identified setting, the causal parameters are not
identified but the solutions obtained by optimizing predictability under invariance
might be promising candidates for models that generalize well to distributional
shifts.
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Chapter 3

A Causal Framework for Distribution
Generalization

Joint work with
Rune Christiansen, Niklas Pfister, Nicola Gnecco,
and Jonas Peters

Abstract
We consider the problem of predicting a response Y from a set of covariates

X when test and training distributions differ. Since such differences may have
causal explanations, we consider test distributions that emerge from interventions
in a structural causal model, and focus on minimizing the worst-case risk. Causal
regression models, which regress the response on its direct causes, remain unchanged
under arbitrary interventions on the covariates, but they are not always optimal in the
above sense. For example, for linear models and bounded interventions, alternative
solutions have been shown to be minimax prediction optimal. We introduce the
formal framework of distribution generalization that allows us to analyze the above
problem in partially observed nonlinear models for both direct interventions on X and
interventions that occur indirectly via exogenous variables A. It takes into account
that, in practice, minimax solutions need to be identified from data. Our framework
allows us to characterize under which class of interventions the causal function is
minimax optimal. We prove sufficient conditions for distribution generalization
and present corresponding impossibility results. We propose a practical method,
NILE, that achieves distribution generalization in a nonlinear IV setting with linear
extrapolation. We prove consistency and present empirical results.

Keywords: Distribution generalization, causality, worst-case risk, distributional
robustness, invariance, domain adaptation

3.1. Introduction
Large-scale learning systems, particularly those focusing on prediction tasks,
have been successfully applied in various domains of application. Since inference
is usually done during training time, any difference between training and test
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distribution poses a challenge for prediction methods (Arjovsky et al., 2019;
Csurka, 2017; Pan and Yang, 2010; Quionero-Candela et al., 2009). Dealing with
these differences is of great importance in several fields such as environmental
sciences, where methods need to extrapolate both in space and time. Tackling
this problem requires restrictions on how the distributions may differ, since,
clearly, generalization becomes impossible if the test distribution may be arbitrary.
Given a response Y and some covariates X, several existing procedures aim to
find a minimax function f which minimizes the worst-case risk supP ∈N EP [(Y −
f(X))2] across distributions contained in a small neighborhood N of the training
distribution. The neighborhood N should be representative of the difference
between the training and test distributions, and often mathematical tractability
is taken into account, too (Abadeh et al., 2015; Sinha et al., 2018). A typical
approach is to define a ρ-ball of distributions Nρ(P0) := {P : D(P, P0) ≤ ρ}
around the (empirical) training distribution P0, with respect to some divergence
measure D, such as the Kullback-Leibler divergence (Bagnell, 2005; Hu and Hong,
2013). While some divergence functions only consider distributions with the same
support as P0, the Wasserstein distance allows for a neighborhood of distributions
around P0 with possibly different supports (Abadeh et al., 2015; Blanchet et al.,
2019; Esfahani and Kuhn, 2018; Sinha et al., 2018).

In our analysis, we do not start from a divergence measure, but instead model the
difference between training and test distribution using the concept of interventions
(Pearl, 2009; Peters et al., 2017). We believe that for many problems this provides
a useful description of distributional changes. We will see that, depending on the
considered setup, this approach allows to find models that perform well even on test
distributions which would be considered far away from the training distribution in
any commonly used metric. For this class of distributions, causal regression models
appear naturally because of the following well-known observation. A prediction
model, which uses only the direct causes of the response Y as covariates, is invariant
under interventions on variables other than Y : the conditional distribution of
Y given its causes does not change (this principle is known, e.g., as invariance,
autonomy or modularity) (Aldrich, 1989; Haavelmo, 1944; Pearl, 2009). Such a
causal regression model yields the minimal worst-case risk when considering all
interventions on variables other than Y (e.g., Rojas-Carulla et al., 2018a, Theorem 1,
Appendix). It has therefore been suggested to use causal models in problems of
distributional shifts (Arjovsky et al., 2019; Heinze-Deml and Meinshausen, 2021;
Magliacane et al., 2018; Meinshausen, 2018; Pfister et al., 2021; Rojas-Carulla et al.,
2018a; Schölkopf et al., 2012). In practice, however, not all relevant causal variables
might be observed. One may further argue that causal methods are too conservative
in that the interventions which induce the test distributions may not be arbitrarily
strong. Instead, methods which focus on a trade-off between predictability and
causality have been proposed for linear models (Pfister et al., 2019; Rothenhäusler
et al., 2021), see also Section 3.5.1. Anchor regression (Rothenhäusler et al., 2021)
is shown to be predictive optimal under a set of bounded interventions.

In this work, we introduce the general framework of distribution generalization,
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which permits a unifying perspective on the potentials and limitations of applying
causal concepts to the problem of generalizing regression models from training to
test distribution. In particular, we use it to characterize the relationship between
a minimax optimal solution and the causal function, and to classify settings under
which the minimax solution is identifiable from the training distribution.

3.1.1. Further Related Work
The field of distributional robustness or out-of-distribution generalization aims
to develop procedures that are robust to changes between training and test dis-
tribution. This problem has been actively studied from an empirical perspective
in machine learning research, for example, in image classification by using adver-
sarial attacks, where small digital (Goodfellow et al., 2014) or physical (Evtimov
et al., 2017) perturbations of pictures can deteriorate the performance of a model.
Arguably, these procedures are not yet fully understood theoretically. A more
theoretical perspective is given by the previously mentioned minimization of a
worst-case risk across distributions contained in a neighborhood of the training
distribution, in our case, distributions generated by interventions.

Our framework includes the problems of multi-task learning, domain general-
ization and transfer learning (Baxter, 2000; Caruana, 1997; Mansour et al., 2009;
Quionero-Candela et al., 2009) (see Section 3.2.4 for more details), with a focus
on minimizing the worst-case risk. In settings of covariate shift (e.g., Shimodaira,
2000; Sugiyama and Müller, 2005; Sugiyama et al., 2008), one usually assumes
that the training and test distribution of the covariates are different, while the
conditional distribution of the response given the covariates remains invariant
(Ben-David et al., 2010; Bickel et al., 2009; Daume III and Marcu, 2006; Muandet
et al., 2013). Sometimes, it is additionally assumed that the support of the training
distribution covers that of the test distribution (Shimodaira, 2000). In this work,
the conditional distribution of the response given the covariates is allowed to
change between interventions, due to the existence of hidden confounders, and we
consider settings where the test observations lie outside the training support.

Data augmentation methods have become successful techniques, e.g. in image
classification, to adapt prediction procedures to such types of distribution shifts.
These methods increase the diversity of the training data by changing the geometry
and the color of the images (e.g., by rotation, cropping or changing saturation)
(Shorten and Khoshgoftaar, 2019; Zhang et al., 2018). This allows the user to
create models that generalize better to unseen environments (e.g., Volpi et al.,
2018). We view these approaches as ways to enlarge the support of the covariates,
which, as our results show, comes with theoretical advantages, see Section 3.4.

Minimizing the worst-case risk is considered in robust methods (El Ghaoui et al.,
2003; Kim et al., 2006), too. It can also be formulated in terms of minimizing the
regret in a multi-armed bandit problem (Auer et al., 2002; Bartlett et al., 2008; Lai
and Robbins, 1985). In that setting, the agent can choose the distribution which
generates the data. In our setting, though, we do not assume to have control over
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the interventions, and, hence, neither over the distribution of the sampled data.

3.1.2. Contribution and Structure
This work contains four main contributions: (1) A novel framework for analyzing
the problem of generalization from training to test distribution, using the notion of
distribution generalization (Section 3.2). (2) Results elucidating the relationship
between a causal function and a minimax solution (Section 3.3). (3) Sufficient
conditions which ensure distribution generalization, along with corresponding
impossibility results (Section 3.4). (4) A practical method, called NILE (‘Non-
linear Intervention-robust Linear Extrapolator’), which learns a minimax solution
from i.i.d. observational data (Section 3.5).

Our framework describes how structural causal models can be used as technical
devices for modeling plausible test distributions. It further allows us to formally
define distribution generalization, which describes the ability to identify generalizing
regression models (i.e., minimax solutions) from the observational distribution.
While it is well known that the causal function is minimax optimal under the
set of all interventions on the covariates (e.g., Rojas-Carulla et al., 2018a), we
extend this result in several ways, for example, by allowing for hidden variables
and by characterizing more general sets of interventions under which the causal
function is minimax optimal. We further derive conditions on the model class, the
observational distribution and the family of interventions under which distribution
generalization is possible, and present impossibility results proving the necessity
of some of these conditions. For example, we show that strong assumptions on the
functional relationship between X and Y are needed whenever the interventions
extend the training support of X. An example of such an assumption is to consider
the class of differentiable functions that linearly extrapolate outside the support
of X. For that model class, we propose the explicit method NILE, which obtains
distribution generalization by exploiting a nonlinear instrumental variables setup.
We show that our method learns a minimax solution which corresponds to the
causal function. We prove consistency and compare our algorithm to state-of-the
art approaches empirically.

We believe that our results shed some light on the potential merits of using
causal concepts in the context of generalization. The framework allows us to make
first steps towards answering when it can be beneficial to use non-causal functions
for prediction under interventions, and what might happen under misspecification
of the intervention class. Our results also formalize in which sense methods that
generalize in the linear case – such as IV and anchor regression (Rothenhäusler
et al., 2021) – can be extended to nonlinear settings. Further, our framework
implies impossibility statements for multi-task learning that relate to existing
results (Ben-David et al., 2010).

Our code is available as an R-package at https://runesen.github.io/NILE;
scripts generating all our figures and results can be found at the same url. Addi-
tional supporting material is given in the online appendix. Appendix B.1 shows
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how to represent several causal models in our framework. Appendix B.2 sum-
marizes existing results on identifiability in IV models. Appendix B.3 provides
details on the test statistic that we use for NILE. Appendix B.4 contains additional
experiments. All proofs are provided in Appendix B.5.

3.2. Framework
For a real-valued response Y ∈ R and predictors X ∈ Rd, we consider the problem
of identifying a regression function that works well not only on the training data,
but also under perturbed distributions that we will model by interventions.

3.2.1. Modeling Intervention-induced Distributions
We require a model that is able to model an observational distribution of (X, Y ) (as
training distribution) and the distribution of (X, Y ) under a class of interventions
on (parts of) X (as test distribution). We will do so by means of a structural
causal model (SCM) (Bollen, 1989; Pearl, 2009). More precisely, denoting by
H ∈ Rq some additional (unobserved) variables, we consider the SCM

H := εH , X := h2(H, εX), Y := f(X) + h1(H, εY ), (3.1)

where the assignments for H, X and Y consist of q, d and 1 coordinate(s),
respectively. Here, f , h1 and h2 are measurable functions, and the innovation
terms εX , εY and εH are independent vectors with possibly dependent coordinates.
Two comments are in order. First, the joint distribution of (X, Y ) is constrained
only by requiring that X and h1(H, εY ) enter the assignment for Y additively.
This constraint affects the allowed conditional distributions of Y given X, but does
not make any restriction on the marginal distributions of either X or Y . Second,
we only use the above SCM as a technical device for modeling training and test
distributions, by considering interventions on X or A (introduced in Section 3.2.3),
for which we are analyzing the predictive performance of different models – similarly
to how one could have considered a ball around the training distribution. We
therefore only require the SCM to correctly (a) model the training-distribution,
and (b) induce the test-distributions through interventions. Any other causal
implications of the SCM, such as causal orderings between variables, causal effects
or counterfactual statements, are not assumed to be correctly specified. As such,
our framework includes a wide range of cases, including situations where training
and test distribution come from interventions in an SCM with a different structure
than (3.1), where, for example, some of the variables in X are not ancestors but
descendants of Y . To see whether our framework applies, one needs to check if
the considered training and test distributions can be equivalently expressed as
interventions in a model of our form. If the structure of the true data generating
SCM is known, this can be done by directly transforming the SCM and the
interventions. The following remark shows an example of such a transformation
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and may be interesting to readers with a special interest in causality. It can be
skipped at first reading.

Remark 3.1 (Transforming causal models). Assume that the training distribu-
tion is induced by the following SCM

X1 := ε1, X2 := k(Y ) + ε2, Y := f(X1) + ε3,

with (ε1, ε2, ε3) ∼ Q, and that we consider test distributions arising from shift
interventions on X2. This set of training and test distributions can be equivalently
modeled by the reduced SCM

H := ε3, X := h2(H, (ε1, ε2)), Y := f(X1) +H,

with (ε1, ε2, ε3) ∼ Q, and where h2 is defined by

h2(H, (ε1, ε2)) := (ε1, k(f(ε1) +H) + ε2).

Both SCMs induce the same observational distribution over (X1, X2, Y ) and shift
interventions on X2 in the original SCM correspond to shift interventions on X =
(X1, X2) in the reduced SCM (where only the second coordinate is shifted). Our
framework can then be used, for example, to give sufficient conditions under which
generalization (formally defined below) is possible, see Proposition 3.7 and 3.8.

It is not always possible to transform an SCM into our reduced form, and it
might also happen that the transformed interventions are not covered by our
framework. For example, we do not allow for direct interventions on Y in the
original model. In other cases, where the original SCM may contain additional
hidden variables, even interventions on (parts of) X in the original SCM may
translate into interventions on H in the reduced SCM, and are therefore not
covered. Details and a more general treatment are provided in Appendix B.1. ◦

Sometimes, the vector of covariates X contains variables, which are independent
of H, that enter into the assignments of the other covariates additively and cannot
be used for the prediction (e.g., because they are not observed during testing).
If such covariates exist, it can be useful to explicitly distinguish them from the
remaining predictors. We will denote them by A and call them exogenous variables.
Such variables are interesting for several reasons. (i) We will see that in general,
interventions on A lead to intervention distributions with desirable properties for
distribution generalization, see Section 3.4.4. (ii) Some of our results rely on the
function f being identifiable from the observational distribution, see Assumption 3.1
below. The variables A can be used to state explicit conditions for identifiability.
Under additional assumptions, for example, they can be used as instrumental
variables (e.g., Bowden and Turkington, 1985; Greene, 2003), a well-established
tool for recovering f from the observational distribution of (X, Y,A). (iii) The
variable A can be used to model a covariate that is not observed under testing. It
can also be used to index tasks (which we discuss at the end of Section 3.2.4). In
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the remainder of this work, we therefore consider a slightly larger class of SCMs
that also includes exogenous variables A. It contains the SCM (3.1) as a special
case.1 We derive results for settings with and without exogenous variables A.

3.2.2. Model
Formally, we consider a response Y ∈ R1, covariates X ∈ Rd, exogenous variables
A ∈ Rr, and unobserved variables H ∈ Rq. Let further F ⊆ {f : Rd → R}, G ⊆
{g : Rr → Rd}, H1 ⊆ {h1 : Rq+1 → R} and H2 ⊆ {h2 : Rq+d → Rd} be fixed sets
of measurable functions. Moreover, let Q be a collection of probability distributions
on Rd+1+r+q, such that for all Q ∈ Q it holds that if (εX , εY , εA, εH) ∼ Q, then
εX , εY , εA and εH are jointly independent, and for all h1 ∈ H1 and h2 ∈ H2 it
holds that ξY := h1(εH , εY ) and ξX := h2(εH , εX) have mean zero.2 Let M :=
F×G×H1×H2×Q denote the model class. Every modelM = (f, g, h1, h2, Q) ∈M
then specifies an SCM by3

A := εA

H := εH

X := g(A) + h2(H, εX)
Y := f(X) + h1(H, εY ) YX

H

A

f

h2 h1
g

with (εX , εY , εA, εH) ∼ Q, where the assignments for A, H , X and Y consist of r,
q, d and 1 coordinate(s), respectively. For each model M = (f, g, h1, h2, Q) ∈M,
we refer to f as the causal function (for the pair (X, Y )), and denote by PM

the joint distribution over the observed variables (X, Y,A). We assume that this
distribution has finite second moments. If no exogenous variables A exist, one can
think of the function g as being constant. A model M that correctly models the
training and test distributions will be referred to as the ‘true model’.

3.2.3. Interventions
Each SCM M ∈M can now be modified by the concept of interventions (e.g., Pearl,
2009; Peters et al., 2017). An intervention corresponds to replacing one or more of
the structural assignments of the SCM (see Section 3.4.2 for details on the types of
interventions considered in this paper). For example, we intervene on some of the
covariates X by replacing the corresponding assignments with, e.g., a Gaussian
random vector that is independent of the other noise variables. Importantly, an

1This follows from choosing A as an independent noise variable and a constant g.
2This can be assumed w.l.o.g. if F and G are closed under addition and scalar multiplication,

and contain the constant function.
3For an appropriate choice of h2, the model includes settings in which (parts of) A directly

influence Y .
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intervention on some of the variables does not change the assignment of any other
variable. In particular, an intervention on X does not change the conditional
distribution of Y , given X and H (this is an instance of the invariance property
mentioned in Section 3.1) but it may change the conditional distribution of Y ,
given X.

The problems addressed in this work require us to simultaneously consider several
different SCMs that are all subject to the same (set of) interventions. Formally,
we therefore regard an intervention i as a mapping from the model class M into a
(possibly larger) set of SCMs, which takes as input a model M ∈M and outputs
another model M(i) over variables (X i, Ai, Y i, H i), the intervened model. We do
not need to assume that the intervened model M(i) belongs to the model classM,
but we require that M(i) induces a joint distribution over (X i, Y i, Ai, H i)4 with
finite second moments. We denote the corresponding distribution over the observed
(X i, Y i, Ai) by PM(i), and use I for a collection of interventions. In our work,
the test distributions are modeled as distributions generated by these types of
intervened models, and the set I therefore indexes the set of test distributions. We
will be interested in the mean squared prediction error on each test distribution i,
formally written as EM(i)[(Y − f(X))2]. (In this work, we consider a univariate Y ,
but writing E[∥Y − f⋄(X)∥2

Rd] = ∑d
j=1 E[(Yj − f⋄,j(X))2], most our results extend

straight-forwardly to a d-dimensional response.)
The support of random variables under interventions will play an important role

for the analysis of distribution generalization. Throughout this paper, suppM (Z)
denotes the support of the random variable Z ∈ {A,X,H, Y } under the distri-
bution induced by the SCM M ∈M. Moreover, suppM

I (Z) denotes the union of
suppM(i)(Z) over all interventions i ∈ I. We call a collection of interventions on
Z support-reducing (w.r.t. M) if suppM

I (Z) ⊆ suppM(Z) and support-extending
(w.r.t. M) if suppM

I (Z) ̸⊆ suppM (Z). Whenever it is clear from the context which
model is considered, we may drop the indication of M altogether and simply write
supp(Z).

3.2.4. Distribution Generalization
Let M be a fixed model class, let M = (f, g, h1, h2, Q) ∈M and let I be a class
of interventions. In this work, we aim to find a function f∗ : Rd → R, such that
the predictive model Ŷ = f∗(X) has low worst-case risk over all test distributions
induced by the interventions I in model M . We therefore consider, for the true
M , the optimization problem

arg min
f⋄∈F

sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]
, (3.2)

where EM(i) is the expectation in the intervened model M(i). In general, this
optimization problem is neither guaranteed to have a solution, nor is the solution,

4If the context does not allow for any ambiguity, we omit the superscript i.
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if it exists, ensured to be unique. Whenever a solution f∗ to (3.2) exists, we refer
to it as a minimax solution (for model M w.r.t. (F , I)).

Depending on the model class M, there may be several models M̃ ∈ M that
induce the observational distribution PM , that is, the same distribution over the
observed variables A, X and Y , but do not agree with M on all intervention
distributions induced by I. Thus, each such model induces a potentially different
minimax problem with different solutions. Given knowledge only of PM , it is
therefore generally not possible to identify a solution to (3.2). In this paper, we
study conditions on M, PM and I, under which this becomes possible. More pre-
cisely, we aim to characterize under which conditions (PM ,M) admits distribution
generalization to I.

Definition 3.1 (Distribution generalization). (PM ,M) is said to admit distribu-
tion generalization to I, or simply to admit generalization to I, if for every ε > 0
there exists a function f∗

ε ∈ F such that, for all models M̃ ∈M with PM̃ = PM , it
holds that∣∣∣∣∣sup

i∈I
EM̃(i)

[
(Y − f∗

ε (X))2
]
− inf

f⋄∈F
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣∣ ≤ ε. (3.3)

Distribution generalization does not require the existence of a minimax solution
in F (which would require further assumptions on the function class F) and instead
focuses on whether an approximate solution can be identified based only on the
observational distribution PM . If, however, there exists a function f∗ ∈ F which,
for every M̃ ∈M with PM̃ = PM , is a minimax solution for M̃ w.r.t. (F , I), then,
in particular, (PM ,M) admits generalization to I.

Our framework also includes several settings of multitask learning (MTL) and
domain adaptation (Quionero-Candela et al., 2009), where one often assumes
to observe different training tasks. In MTL, one is then interested in using the
different tasks to improve the predictive performance on either one or all training
tasks – this is often referred to as asymmetric and symmetric MTL, respectively.
In our framework, such a setup can be modeled using a categorical variable X.
If, however, one is interested in predicting on an unseen task or if one does not
know which of the observed tasks the new test data come from, one may instead
use a categorical A with support-extending or support-reducing interventions,
respectively.

3.3. Minimax Solutions and the Causal Function
To address the question of distribution generalization, we first study properties of
the minimax optimization problem (3.2). In the simplest case, where I consists
only of the trivial intervention, that is, PM = PM(i), we are looking for the best
predictor on the observational distribution. In that case, the minimax solution
is attained at any conditional mean function, f∗ : x 7→ E[Y |X = x] (provided
that f∗ ∈ F). For larger classes of interventions, however, the conditional mean
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may become sub-optimal in terms of prediction. To see this, it is instructive to
decompose the risk under an intervention. Since the structural assignment for Y
remains unchanged for all interventions that we consider in this work, it holds for
all f⋄ ∈ F and all interventions i on either A or X that

EM(i)[(Y − f⋄(X))2] =EM(i)[(f(X)− f⋄(X))2] + EM [ξ2
Y ]

+ 2EM(i)[ξY (f(X)− f⋄(X))].

Here, the middle term does not depend on i since ξY = h1(H, εY ) remains fixed.
We call the intervention i

confounding-removing if for all models M ∈M it holds that
X |= H, under M(i).

For such an intervention, we have that ξY |= X under PM(i), and hence, since
EM [ξY ] = 0, the last term in the above equation vanishes. Therefore, if I consists
only of confounding-removing interventions, the causal function is a solution to
the minimax problem (3.2). The following proposition shows that an even stronger
statement holds: The causal function is already a minimax solution if I contains
at least one confounding-removing intervention on X.

Proposition 3.1 (Confounding-removing interventions on X). Let I be a set of
interventions on X or A such that there exists at least one i ∈ I that is confounding-
removing. Then, the minimal worst-case risk is attained at a confounding-removing
intervention, and the causal function f is a minimax solution.

We now prove that, in a linear setting, the causal function is also minimax
optimal if the interventions create unbounded variability in all directions of the
covariance matrix of X.

Proposition 3.2 (Unbounded interventions on X with linear F). Let F be the
class of all linear functions, and let I be a set of interventions on X or A s.t.
supi∈I λmin

(
EM(i)

[
XX⊤

])
=∞, where λmin denotes the smallest eigenvalue. Then,

the causal function f is the unique minimax solution.

The unbounded eigenvalue condition above is satisfied if I is the set of all shift
interventions on X. These interventions, formally defined in Section 3.4.2.2, appear
in linear IV models and recently gained further attention in the causal community
(Rothenhäusler et al., 2021; Sani et al., 2020). The proposition above considers a
linear function class F ; in this way, shift interventions are related to linear models.

Even if the causal function f does not solve the minimax problem (3.2), the dif-
ference between the minimax solution and the causal function cannot be arbitrarily
large. The following proposition shows that the worst-case L2-distance between f
and any function f⋄ that performs better than f (in terms of worst-case risk) can
be bounded by a term which is related to the strength of the confounding.
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Proposition 3.3 (Difference between causal function and minimax solution). Let
I be a set of interventions on X or A. Then, for any function f⋄ ∈ F which
satisfies that

sup
i∈I

EM(i)[(Y − f⋄(X))2] ≤ sup
i∈I

EM(i)[(Y − f(X))2],

it holds that
sup
i∈I

EM(i)[(f(X)− f⋄(X))2] ≤ 4 VarM [ξY ].

Even though the difference can be bounded, it may be non-zero, and one may
benefit from choosing a function that differs from the causal function f . This
choice, however, comes at a cost: it relies on the fact that we know the class
of interventions I. In general, being a minimax solution is not entirely robust
with respect to misspecification of I. In particular, if the set I2 of interventions
describing the test distributions is misspecified by a set I1 ≠ I2, then the considered
minimax solution with respect to I1 may perform worse than the causal function
on the test distributions.

Proposition 3.4 (Properties of the minimax solution under mis-specified inter-
ventions). Let I1 and I2 be any two sets of interventions on X, and let f∗

1 ∈ F be
a minimax solution w.r.t. I1. Then, if I2 ⊆ I1, it holds that

sup
i∈I2

EM(i)
[
(Y − f∗

1 (X))2
]
≤ sup

i∈I2

EM(i)
[
(Y − f(X))2

]
.

If I2 ̸⊆ I1, however, it can happen (even if F is linear) that

sup
i∈I2

EM(i)
[
(Y − f∗

1 (X))2
]
> sup

i∈I2

EM(i)
[
(Y − f(X))2

]
.

The second part of the proposition should be understood as a non-robustness
property of non-causal minimax solutions. Improvements on the causal function are
possible in situations, where one has reasons to believe that the test distributions
do not stem from a set of interventions that is much larger than the specified set.

3.4. Distribution Generalization
As described in Section 3.2.4, we consider a fixed model classM containing the true
(but unknown) model M , and let I be a class of interventions. By definition, the
optimizer of the minimax problem (3.2) depends on the true model M . Section 3.3
relates this optimizer to the causal function f , whose knowledge, too, requires
knowing M . In practice, however, we do not have access to the true model M , but
only to its observational distribution PM . This motivates the notion of distribution
generalization, see (3.3). In words, it states that approximate minimax solutions
(which depend on the intervention distributions PM(i), i ∈ I) are identified from
the observational distribution PM . This holds true, in particular, if the intervention
distributions themselves are identified from PM .
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Intervention on suppI(X) Assumptions Result

X (well-behaved) ⊆ supp(X) Ass. 3.1 Proposition 3.7
X (well-behaved) ̸⊆ supp(X) Ass. 3.1 and 3.2 Proposition 3.8

A ⊆ supp(X) Ass. 3.1 and 3.3 Proposition 3.12
A ̸⊆ supp(X) Ass. 3.1, 3.2 and 3.3 Proposition 3.12

Table 3.1: Summary of conditions under which generalization is possible. Cor-
responding impossibility results are shown in Propositions 3.6, 3.11
and 3.13.

Proposition 3.5 (Sufficient conditions for distribution generalization). Assume
that for all M̃ ∈M it holds that

PM̃ = PM ⇒ P(X,Y )
M̃(i) = P(X,Y )

M(i) ∀i ∈ I,

where P(X,Y )
M(i) is the joint distribution of (X, Y ) under M(i). Then, (PM ,M) admits

generalization to I.

Proposition 3.5 provides verifiable conditions for distribution generalization,
and can be used to prove possibility statements. It is, however, not a necessary
condition. Indeed, we will see that, under certain types of interventions, distribution
generalization becomes possible even in cases where the interventional marginal
of X is not identified.

In this section, we study conditions onM, PM and I which ensure generalization,
and present corresponding impossibility results proving the necessity of some of
these conditions. Two aspects will be of central importance. The first is related to
causal identifiability, i.e., whether the causal function f is sufficiently identified
from the observational distribution PM (Section 3.4.1). The other aspect is related
to the types of interventions (Section 3.4.2). We consider interventions on X in
Section 3.4.3 and interventions on A in Section 3.4.4. Parts of our results are
summarized in Table 3.1.

3.4.1. Identifiability of the Causal Function
For specific types of interventions, the causal function f is itself a minimax
solution, see Propositions 3.1 and 3.2. If, in addition, these interventions are
support-reducing, generalization is directly implied by the following assumption.

Assumption 3.1 (Identifiability of f on the support of X). For all M̃ = (f̃ , . . . ) ∈
M with PM̃ = PM , it holds that f̃(x) = f(x) for all x ∈ supp(X).

Assumption 3.1 will play a central role in proving distribution generalization
even in situations where the causal function is not a minimax solution. We use
it as a starting point for most of our results. The assumption is violated, for
example, in a linear Gaussian setting with a single covariate X (without A). Here,
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3.4. Distribution Generalization

in general, we cannot identify f and distribution generalization does not hold.
Assumption 3.1, however, is not necessary for generalization. In Section, 3.4.4
we discuss a linear setting where distribution generalization is possible, even if
Assumption 3.1 does not hold.

The question of causal identifiability has received a lot of attention in the
literature. In linear instrumental variables settings, for example, one assumes
that the functions f and g are linear and identifiability follows if the product
moment between A and X has rank at least the dimension of X (e.g., Wooldridge,
2010). In linear non-Gaussian models, one can identify the function f even if
there are no instruments (Hoyer et al., 2008b). For nonlinear models, restricted
SCMs can be exploited, too. In that case, Assumption 3.1 holds under regularity
conditions if h1(H, εY ) is independent of X (Peters et al., 2014, 2017; Zhang and
Hyvärinen, 2009) and first attempts have been made to extend such results to
non-trivial confounding cases (Janzing et al., 2009). The nonlinear IV setting
(e.g., Amemiya, 1974; Newey, 2013; Newey and Powell, 2003) is discussed in more
detail in Appendix B.2, where we give a brief overview of identifiability results
for linear, parametric and non-parametric function classes. Assumption 3.1 states
that f is identifiable, even on PM -null sets, which is usually achieved by placing
further constraints on the function class, such as smoothness. Even though this
issue seems technical, it becomes important when considering hard interventions
that set X to a fixed value, for example.

3.4.2. Types of Interventions
Whether distribution generalization is admitted depends on the intervention class
I. In this work, we only consider interventions on the covariates X and A. Each
of these types of interventions can be characterized by a measurable function
ψi, which determines the structural assignment of the intervened variable, and
a (possibly degenerate) random vector I i, which serves as an independent noise
innovation. More formally, for an intervention on X, the pair (ψi, I i) defines
the intervention which maps the input model M = (f, g, h1, h2, Q) ∈ M to the
intervened model M(i) given by the assignments

Ai := εi
A, H i := εi

H ,

X i := ψi(g, h2, A
i, H i, εi

X , I
i),

Y i := f(X i) + h1(H i, εi
Y ).

Similarly, for an intervention on A, (ψi, I i) specifies the intervention which outputs

Ai := ψi(I i, εi
A), H i := εi

H ,

X i := g(Ai) + h2(H i, εi
X),

Y i := f(X i) + h1(H i, εi
Y ).

In both cases, (εi
X , ε

i
Y , ε

i
A, ε

i
H) ∼ Q and I i |= (εi

X , ε
i
Y , ε

i
A, ε

i
H). We will see below

that this class of interventions is rather flexible. It does, however, not allow for
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3. A Causal Framework for Distribution Generalization

arbitrary manipulations of M . For example, it does not allow for changes in
the structural assignments for Y or H, or for the noise variable εi

Y to enter the
assignment of the intervened variable. As the following section highlights, further
constraints on the types of interventions are necessary to ensure distribution
generalization.

3.4.2.1. Impossibility of Generalization Without Constraints on the
Interventions

Let Q be a class of product distributions on R4, such that for all Q ∈ Q, the
coordinates of Q are non-degenerate, zero-mean with finite second moment. Let
M be the class of all models of the form

A := εA, H := σεH , X := γA+ εX + 1
σH, Y := βX + εY + 1

σH,

with γ, β ∈ R, σ > 0 and (εA, εX , εY , εH) ∼ Q ∈ Q. Assume that PM is induced by
some model M = M(γ, β, σ,Q) from the above model class (here, we slightly adapt
the notation from Section 3.2). The following proposition shows that, without
constraining the set of interventions I, distribution generalization is not always
ensured.
Proposition 3.6 (Impossibility of generalization without constraining the class of
interventions). Assume thatM is given as defined above, let I ⊆ R>0 be a compact,
non-empty set and define the interventions on X by ψi(g, h2, A

i, H i, εi
X , I

i) =
iH, for i ∈ I. Then, (PM ,M) does not admit generalization to I (even if
Assumption 3.1 is satisfied). In addition, any prediction model other than the
causal model may perform arbitrarily bad under the interventions I. That is, for
any b ̸= β and any c > 0, there exists a model M̃ ∈M with PM̃ = PM , such that∣∣∣∣sup

i∈I
EM̃(i)

[
(Y − bX)2

]
− inf

b⋄∈R
sup
i∈I

EM̃(i)

[
(Y − b⋄X)2

]∣∣∣∣ ≥ c.

We now give some intuition about the above result. By definition, distribution
generalization is ensured if there exist prediction functions that are (approximately)
minimax optimal for all models which induce the same observational distribution
as M . Since, in the above example, the distribution of (X, Y,A) does not depend
on σ, this includes all models of the form Mσ̃ = M(γ, β, σ̃, Q) for some σ̃ > 0.
However, while agreeing on the observational distribution, each of these models
induces fundamentally different intervention distributions (under Mσ̃(i), (X, Y ) is
equal in distribution to (iεH , (βi+ 1

σ̃ )εH)) and results in different (approximate)
minimax solutions. Below, we introduce two types of interventions which ensure
distribution generalization in a wide range of settings by constraining the influence
of H on X.

3.4.2.2. Interventions Which Allow for Generalization

In Section 3.3, we already introduced confounding-removing interventions, which
break the dependence between X and H. For an intervention set I which contains
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3.4. Distribution Generalization

at least one confounding-removing intervention, the causal function f is always
a minimax solution (see Proposition 3.1) and, in the case of support-reducing
interventions, distribution generalization is therefore achieved by requiring As-
sumption 3.1 to hold. The intervention i with intervention map ψi is called

confounding-preserving if there exists a map φi, such that
ψi(g, h2, A

i, H i, εi
X , I

i) = φi(Ai, g(Ai), h2(H i, εi
X), I i).

Confounding-preserving interventions contain, e.g., shift interventions on X, which
linearly shift the original assignment by I i, that is,

ψi(g, h2, A
i, H i, εi

X , I
i) = g(Ai) + h2(H i, εi

X) + I i.

The name ‘confounding-preserving’ stems from the fact that the confounding
variables H only enter the intervened structural assignment of X via the term
h2(H i, εi

X), which is the same as in the original model. (This property fails to hold
true for the interventions in Proposition 3.6.) If I consists only of confounding-
preserving interventions, the causal function is generally not a minimax solution.
However, we will see that, under Assumption 3.1, these types of interventions lead
to identifiability of the intervention distributions PM(i), i ∈ I, and therefore ensure
generalization via Proposition 3.5.

Some interventions are both confounding-removing and confounding-preserving,
but not every confounding-removing intervention is confounding-preserving. For ex-
ample, the intervention ψi(g, h2, A

i, H i, εi
X , I

i) = εi
X is confounding-removing but,

in general, not confounding-preserving. Similarly, not all confounding-preserving
interventions are confounding-removing. We call a set of interventions I well-
behaved either if it consists only of confounding-preserving interventions or if it
contains at least one confounding-removing intervention.

3.4.3. Generalization to Interventions on X

We now formally prove in which sense the two types of interventions defined above
allow for distribution generalization. We will see that this question is closely linked
to the relation between the support of PM and the support of the intervention
distributions. Below, we therefore distinguish between support-reducing and
support-extending interventions on X.

3.4.3.1. Support-reducing Interventions

For support-reducing interventions, Assumption 3.1 is sufficient for distribution
generalization even in nonlinear settings, under a large class of interventions.

Proposition 3.7 (Generalization to support-reducing interventions on X). Let I
be a well-behaved set of interventions on X, and assume that suppI(X) ⊆ supp(X).
Then, under Assumption 3.1, (PM ,M) admits generalization to the interventions
I. If one of the interventions is confounding-removing, then the causal function is
a minimax solution.
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3. A Causal Framework for Distribution Generalization

In the case of support-extending interventions, further assumptions are required
to ensure distribution generalization.

3.4.3.2. Support-extending Interventions

If the interventions in I extend the support of X, i.e., suppI(X) ̸⊆ supp(X),
Assumption 3.1 is not sufficient for ensuring distribution generalization. This is
because there may exist a model M̃ ∈M which agrees with M on the observational
distribution, but whose corresponding causal function f̃ differs from f outside
of the support of X. In that case, a support-extending intervention on X may
result in different dependencies between X and Y in the two models, and therefore
potentially induce a different set of minimax solutions. The following assumption
on the model class F ensures that any f ∈ F is uniquely determined by its values
on supp(X).

Assumption 3.2 (Extrapolation of F). For all f̃ , f̄ ∈ F with f̃(x) = f̄(x) for all
x ∈ supp(X), it holds that f̃ ≡ f̄ .

We will see that this assumption is sufficient (Proposition 3.8) for generalization
to well-behaved interventions on X. Furthermore, it is also necessary (Proposi-
tion 3.11) if F is sufficiently flexible. The following proposition can be seen as an
extension of Proposition 3.7.

Proposition 3.8 (Generalization to support-extending interventions on X). Let I
be a well-behaved set of interventions on X. Then, under Assumptions 3.1 and 3.2,
(PM ,M) admits generalization to I. If one of the interventions is confounding-
removing, then the causal function is a minimax solution.

Because the interventions may change the marginal distribution of X, the
preceding proposition includes examples, in which distribution generalization is
possible even if some of the considered joint (test) distributions are arbitrarily far
from the training distribution, in terms of any reasonable divergence measure over
distributions, such as Wasserstein distance or f -divergence.

Proposition 3.8 relies on Assumption 3.2. Even though this assumption is
restrictive, it is satisfied by several reasonable function classes, which therefore
allow for generalization to any set of well-behaved interventions. Below, we give
two examples of such function classes.

Sufficient conditions for generalization Assumption 3.2 states that every func-
tion in F is globally identified by its values on supp(X). This is, for example,
satisfied if F is a linear space of functions with domain D ⊆ Rd which are linearly
independent on supp(X). More precisely, F is linearly closed, i.e.,

f1, f2 ∈ F , c ∈ R, =⇒ f1 + f2 ∈ F , cf1 ∈ F , (3.1)
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and F is linearly independent on supp(X), i.e.,

f1(x) = 0 ∀x ∈ supp(X) =⇒ f1(x) = 0 ∀x ∈ D. (3.2)

Examples of such classes include (i) globally linear parametric function classes,
i.e., F is of the form

F1 := {f⋄ : D → R | ∃γ ∈ Rk s.t. ∀x ∈ D : f⋄(x) = γ⊤ν(x)},
where ν = (ν1, . . . , νk) consists of real-valued, linearly independent functions
satisfying that EM [ν(X)ν(X)⊤] is strictly positive definite, and (ii) the class of
differentiable functions that extend linearly outside of supp(X), that is, F is of
the form

F2 :=
{
f⋄ : D → R

∣∣∣∣∣ f⋄ ∈ C1 and ∀x ∈ D \ supp(X) :
f⋄(x) = f⋄(xb) +∇f⋄(xb)(x− xb)

}
where xb := arg minz∈supp(X)∥x− z∥ and supp(X) is assumed to be closed with

non-empty interior. Clearly, both of the above function classes are linearly closed.
To see that F1 satisfies (3.2), let γ ∈ Rk be s.t. γ⊤ν(x) = 0 for all x ∈ supp(X).
Then, it follows that 0 = EM [(γ⊤ν(X))2] = γ⊤EM [ν(X)ν(X)⊤]γ and hence that
γ = 0. To see that F2 satisfies (3.2), let f⋄ ∈ F2 and assume that f⋄(x) = 0 for
all x ∈ supp(X). Then, f⋄(x) = 0 for all x ∈ D and thus F2 uniquely defines the
function on the entire domain D.

By Proposition 3.8, generalization with respect to these model classes is possible
for any well-behaved set of interventions. In practice, it may often be more realistic
to impose bounds on the higher order derivatives of the functions in F . We
now prove that this still allows for what we will call approximate distribution
generalization, see Propositions 3.9 and 3.10.

Sufficient conditions for approximate generalization For differentiable func-
tions, exact generalization cannot always be achieved. Bounding the first derivative,
however, allows us to achieve approximate generalization. We therefore consider
the following function class

F2 := {f⋄ : D → R | f⋄ ∈ C1 with ∥∇f⋄∥∞ ≤ K} (3.3)

for some fixed K < ∞, where ∇f⋄ denotes the gradient and D ⊆ Rd. We then
have the following result.
Proposition 3.9 (Approx. generalization with bdd. derivatives (confounding-re-
moving)). Let F be as defined in (3.3). Let I be a set of interventions on X
containing at least one confounding-removing intervention, and assume that As-
sumption 3.1 holds true. (In this case, the causal function f is a minimax solution.)
Then, for all f∗ with f∗ = f on supp(X) and all M̃ ∈M with PM̃ = PM , it holds
that ∣∣∣∣sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣
≤ 4δ2K2 + 4δK

√
VarM (ξY ),
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3. A Causal Framework for Distribution Generalization

where δ := supx∈suppM
I (X) infz∈suppM (X)∥x− z∥.

If I consists only of confounding-removing interventions, the same statement
holds when replacing the bound by 4δ2K2.

Proposition 3.9 states that the deviation of the worst-case generalization error
from the best possible value is bounded by a term that grows with the square of δ.
Intuitively, this means that under the function class defined in (3.3), approximate
generalization is reasonable only for interventions that are close to the support of
X. We now prove a similar result for cases in which the minimax solution is not
necessarily the causal function. The following proposition bounds the worst-case
generalization error for arbitrary confounding-preserving interventions. Here, the
bound additionally accounts for the approximation to the minimax solution.
Proposition 3.10 (Approx. generalization with bdd. derivatives (confounding-p-
reserving)). Let F be as defined in (3.3). Let I be a set of confounding-preserving
interventions on X, and assume that Assumption 3.1 is satisfied. Let ε > 0 and
let f∗ ∈ F be such that,∣∣∣∣∣sup

i∈I
EM(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]∣∣∣∣∣ ≤ ε.

Then, for all M̃ ∈M with PM̃ = PM , it holds that∣∣∣∣sup
i∈I

EM̃(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣
≤ ε+ 12δ2K2 + 32δK

√
VarM (ξY ) + 4

√
2δK
√
ε

where δ := supx∈suppM
I (X) infz∈suppM (X)∥x− z∥.

We can take f∗ to be the minimax solution if it exists. In that case, the terms
involving ε disappear from the bound, which then becomes more similar to the
one in Proposition 3.9.

Impossibility of generalization without constraints on F If we do not constrain
the function class F , generalization is impossible. Even if we consider the set of all
continuous functions F , we cannot generalize to interventions outside the support
of X. This statement holds even if Assumption 3.1 is satisfied.
Proposition 3.11 (Impossibility of extrapolation). Assume that F = {f⋄ : Rd →
R | f⋄ is continuous}. Let I be a well-behaved set of support-extending inter-
ventions on X, such that suppI(X) \ supp(X) has non-empty interior. Then,
(PM ,M) does not admit generalization to I, even if Assumption 3.1 is satisfied.
In particular, for any function f̄ ∈ F and any c > 0, there exists a model M̃ ∈M,
with PM̃ = PM , such that∣∣∣∣sup

i∈I
EM̃(i)

[
(Y − f̄(X))2

]
− inf

f⋄∈F
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣ ≥ c.

The above impossibility result is visualized in Figure 3.1 (left).
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3.4.4. Generalization to Interventions on A

We will see that, for interventions on A, parts of the analysis simplify. Since A
influences the system only via the covariates X, any such intervention may, in
terms of its effect on (X, Y ), be equivalently expressed as an intervention on X
in which the structural assignment of X is altered in a way that depends on the
functional relationship g between X and A. We can therefore employ several
of the results from Section 3.4.3 by imposing an additional assumption on the
identifiability of g.

Assumption 3.3 (Identifiability of g). For all M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈ M with
PM̃ = PM , it holds that g̃(a) = g(a) for all a ∈ supp(A) ∪ suppI(A).

Since g(A) is a conditional mean for X given A, the values of g are identified from
PM for PM -almost all a. If suppI(A) ⊆ supp(A), Assumption 3.3 therefore holds
if, for example, G contains continuous functions only. The pointwise identifiability
of g is necessary, for example, if some of the test distributions are induced by
hard interventions on A, which set A to some fixed value a ∈ Rr. In the case
where the interventions I extend the support of A, we additionally require the
function class G to extrapolate from supp(A) to supp(A)∪suppI(A); this is similar
to the conditions on F which we made in Section 3.4.3.2 and requires further
restrictions on G. Under Assumption 3.3, we obtain a result corresponding to
Propositions 3.7 and 3.8.

Proposition 3.12 (Generalization to interventions on A). Let I be a set of
interventions on A and assume Assumption 3.3 is satisfied. Then, (PM ,M) admits
generalization to I if either suppI(X) ⊆ supp(X) and Assumption 3.1 is satisfied
or if both Assumptions 3.1 and 3.2 are satisfied.

As becomes clear from the proof of this proposition, in general, the causal
function does not need to be a minimax solution. Further, Assumption 3.1 is
not necessary for generalization. In the case where F , G, H1 and H2 consist of
linear functions, Rothenhäusler et al. (2021) (anchor regression) and Jakobsen
and Peters (2021) (K-class estimators) consider certain sets of interventions on
A which render minimax solutions identifiable (and estimate them consistently)
even if Assumption 3.1 does not hold. Similarly, if for a categorical A, we have
suppI(A) ⊆ supp(A), it is possible to drop Assumption 3.1.

3.4.4.1. Impossibility of Generalization Without Constraining G
Without restrictions on the model class G, generalization to interventions on A
is impossible. This holds true even under strong assumptions on the true causal
function (such as f is known to be linear). Below, we give a formal impossibility
result for hard interventions on A, which set A to some fixed value, and where G
is the set of all continuous functions.
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Proposition 3.13 (Impossibility of generalization to interventions on A). Assume
that F = {f⋄ : Rd → R | f⋄ is linear} and G = {g⋄ : Rr → Rd | g⋄ is continuous}.
Let A ⊆ Rr be bounded, and let I denote the set of all hard interventions which
set A to some fixed value from A. Assume that A \ supp(A) has nonempty
interior. Assume further that EM [ξXξY ] ̸= 0 (this excludes the case of no hidden
confounding). Then, (PM ,M) does not admit generalization to I. In addition,
any function other than f may perform arbitrarily bad under the interventions in
I. That is, for any f̄ ̸= f and c > 0, there exists a model M̃ ∈M with PM̃ = PM

such that ∣∣∣∣sup
i∈I

EM̃(i)

[
(Y − f̄(X))2

]
− inf

f⋄∈F
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣ ≥ c.

The above impossibility result is visualized in Figure 3.1 (right). This proposition
is part of the argument showing that the distribution generalization of anchor
regression (Rothenhäusler et al., 2021) can be extended to nonlinear settings
only under strong assumptions; the setting of a linear class G and a potentially
nonlinear class F is covered in Section 3.4.3.2, by rewriting interventions on A as
interventions on X.

An impossibility result similar to the proposition above can be shown if A is
categorical. As long as not all categories have been observed during training it is
possible that the intervention which sets A to a previously unseen category can
result in a support-extending distribution shift on X. Using Proposition 3.11, it
therefore follows that generalization can become impossible. Since a categorical
A can encode settings of multi-task learning and domain generalization (see
Section 3.2.4), this result then complements well-known impossibility results for
these problems, even under the covariate shift assumption (e.g., Ben-David et al.,
2010).

3.5. Learning Generalizing Models from Data
So far, our focus has been on the possibility to generalize, that is, we have in-
vestigated under which conditions it is possible to identify generalizing models
from the observational distribution. In practice, generalizing models need to be
estimated from finitely many data. This task is challenging for several reasons.
First, analytical solutions to the minimax problem (3.2) are only known in few
cases. Even if generalization is possible, the inferential target thus often remains a
complicated object, given as a well-defined but unknown function of the observa-
tional distribution. Second, we have seen that the ability to generalize depends
strongly on whether the interventions extend the support of X, see Propositions 3.8
and 3.11. In a setting with a finite amount of data, the empirical support of the
data lies within some bounded region, and suitable constraints on the function
class F are necessary when aiming to achieve empirical generalization outside this
region, even if X comes from a distribution with full support. As we show in our
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Figure 3.1: Plots illustrating the straight-forward idea behind the impossibility
results in Proposition 3.11 (left) and Proposition 3.13 (right). Both
plots visualize the case of univariate variables. Under well-behaved in-
terventions on X (left; here using confounding-removing interventions)
which extend the support of X, generalization is impossible without
further restrictions on the function class F . This holds true even if
Assumption 3.1 is satisfied. Indeed, although the candidate model
(blue line) coincides with the causal model (green dashed curve) on
the support of X, it may perform arbitrarily bad on test data gener-
ated under support-extending interventions. Under interventions on A
(right) generalization is impossible even under strong assumptions on
the function class F (here, F is the class of all linear functions). Any
support-extending intervention on A shifts the marginal distribution of
X by an amount which depends on the (unknown) function g, resulting
in a distribution of (X, Y ) which, in general, cannot be identified from
the observational distribution. Without further restrictions on the
function class G, any candidate model apart from the causal model
may result in arbitrarily large worst-case risk.
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model class interventions suppI(X) ass. algorithm

F linear on X or A
of which at least one

is
confounding-removing

– Ass. 3.1 linear IV
(e.g., two-stage least
squares, K-class or

PULSE Jakobsen and
Peters (2021); Theil

(1958))

F , G linear on A bounded
strength

– anchor regression
Rothenhäusler et al.

(2021) and
K-class Jakobsen and

Peters (2021)

F smooth on X or A
of which at least one

is
confounding-removing

support-
reducing

Ass. 3.1 nonlinear IV
(e.g., NPREGIV

Racine and Hayfield
(2018), Deep IV

(Hartford et al., 2017),
Sieve IV (Chen and
Christensen, 2018;
Newey and Powell,
2003), Kernel IV

(Singh et al., 2019))

F smooth
and linearly
extrapolates

on X or A
of which at least one

is
confounding-removing

– Ass. 3.1 NILE
(Section 3.5.2)

Table 3.2: List of algorithms to learn the generalizing function from data, the con-
sidered model class, types of interventions, support under interventions,
and additional model assumptions. Sufficient conditions for Assump-
tion 3.1 are given, for example, in the IV literature by generalized rank
conditions, see Appendix B.2.

simulations in Section 3.5.2.4 (see figures), constraining the function class can also
improve the prediction performance at the boundary of the support.

In Section 3.5.1, we survey existing methods for learning generalizing models.
Often, these methods assume either a globally linear model class F or are completely
non-parametric and therefore do not generalize outside the empirical support
of the data. Motivated by this observation, we introduce in Section 3.5.2 a
novel estimator, which exploits an instrumental variable setup and a particular
extrapolation assumption to learn a globally generalizing model.

3.5.1. Existing Methods
As discussed in Section 3.1, a wide range of methods have been proposed to guard
against various types of distributional changes. Here, we review methods that fit
into the causal framework in the sense that the distributions that in the minimax
formulation the supremum is taken over are induced by interventions.

For well-behaved interventions on X which contain at least one confounding-

80



3.5. Learning Generalizing Models from Data

removing intervention, estimating minimax solutions reduces to the well-studied
problem of estimating causal relationships. One class of algorithms for this task
is given by linear instrumental variable (IV) approaches. They assume that F is
linear and require identifiability of the causal function (Assumption 3.1) via a rank
condition on the observational distribution, see Appendix B.2. Their target of
inference is to estimate the causal function, which by Proposition 3.1 will coincide
with the minimax solution if the set I consists of well-behaved interventions with
at least one of them being confounding-removing. A basic estimator for linear IV
models is the two-stage least squares (TSLS) estimator, which minimizes the norm
of the prediction residuals projected onto the subspace spanned by the observed
instruments (TSLS objective). TSLS estimators are consistent but do not come
with strong finite sample guarantees; e.g., they do not have finite moments in
a just-identified setup (e.g., Mariano, 2001). K-class estimators (Theil, 1958)
have been proposed to overcome some of these issues. They minimize a linear
combination of the residual sum of squares (OLS objective) and the TSLS objective.
K-class estimators can be seen as utilizing a bias-variance trade-off. For fixed and
non-trivial relative weights, they have, in a Gaussian setting, finite moments up to
a certain order that depends on the sample-size and the number of predictors used.
If the weights are such that the OLS objective is ignored asymptotically, they
consistently estimate the causal parameter (e.g., Mariano, 2001). More recently,
PULSE has been proposed (Jakobsen and Peters, 2021), a data-driven procedure
for choosing the relative weights such that the prediction residuals ‘just’ pass a
test for simultaneous uncorrelatedness with the instruments.

In cases where the minimax solution does not coincide with the causal function,
only few algorithms exist. Anchor regression (Rothenhäusler et al., 2021) is a
procedure that can be used when F and G are linear and h1 is additive in the noise
component. It finds the minimax solution if the set I consists of all interventions
on A up to a fixed intervention strength, and is applicable even if Assumption 3.1
is not necessarily satisfied.

In a linear setting, where the regression coefficients differ between different
environments, it is also possible to minimize the worst-case risk among the observed
environments (Meinshausen and Bühlmann, 2015). In its current formulation, this
approach does not quite fit into the above framework, as it does not allow for
changing distributions of the covariates. A summary of the mentioned methods
and their assumptions is given in Table 3.2.

If F is a nonlinear or non-parametric class of functions, the task of finding
minimax solutions becomes more difficult. In cases where the causal function
is among such solutions, this problem has been studied in the econometrics
community. For example, Newey (2013); Newey and Powell (2003) treat the
identifiability and estimation of causal functions in non-parametric function classes.
Several non-parametric IV procedures exists, e.g., NPREGIV (Racine and Hayfield,
2018) contains modified implementations of Horowitz (2011) and Darolles et al.
(2011), which we will refer to as NPREGIV-1 and NPREGIV-2, respectively.
Other procedures include Deep IV (Hartford et al., 2017), Sieve IV (Chen and

81



3. A Causal Framework for Distribution Generalization

Christensen, 2018; Newey and Powell, 2003) and Kernel IV (Singh et al., 2019).
Identifiability and estimation of the causal function using nonlinear IV methods in
parametric function classes is discussed in Appendix B.2. Unlike in the linear case,
most of the methods do not aim to extrapolate and only recover the causal function
inside the support of X, that is, they cannot be used to predict interventions
outside of this domain. In the following section, we propose a procedure that is
able to extrapolate when F consists of functions which extend linearly outside
of the support of X. In principle, any other extrapolation rule may be employed
here, as long as all functions from F are uniquely determined by their values on
the support of X, that is, Assumption 3.2 is satisfied.

In our simulations, we see that our method can improve the prediction per-
formance on the boundary of the support and outperforms other methods when
comparing the estimation on the support.

3.5.2. NILE
We have seen in Proposition 3.11 that in order to generalize to interventions which
extend the support of X, we require additional assumptions on the function class
F . In this section, we start from such assumptions and verify both theoretically
and practically that they allows us to perform distribution generalization in the
considered setup. Along the way, several choices can be made and usually several
options are possible. We will see that our choices yield a method with competitive
performance, but we do not claim optimality of our procedure. Several of our
choices were partially made to keep the theoretical exposition simple and the
method computationally efficient. We first consider the univariate case (i.e., X and
A are real-valued) and comment later on the possibility to extend the methodology
to higher dimensions. Unless specific background knowledge is given, it might
be reasonable to assume that the causal function extends linearly outside a fixed
interval [a, b]. By additionally imposing differentiability on F , any function from
F is uniquely defined by its values within [a, b], see also Section 3.4.3.2. Given an
estimate f on [a, b], the linear extrapolation property then yields a global estimate
on the whole of R. In principle, any class of differentiable functions can be used.
Here, we assume that, on the interval [a, b], the causal function f is contained in
the linear span of a B-spline basis. More formally, let B = (B1, ..., Bk) be a fixed
B-spline basis on [a, b], and define η := (a, b, B). Our procedure assumes that the
true causal function f belongs to the function class Fη := {fη(·; θ) : θ ∈ Rk},
where for every x ∈ R and θ ∈ Rk, fη(x; θ) is given as

fη(x; θ) :=


B(a)⊤θ +B′(a)⊤θ(x− a) if x < a

B(x)⊤θ if x ∈ [a, b]
B(b)⊤θ +B′(b)⊤θ(x− b) if x > b,

(3.1)

where B′ := (B′
1, . . . , B

′
k) denotes the component-wise derivative of B. In our

algorithm, η = (a, b, B) is a hyper-parameter, which can be set manually, or be
chosen from data.
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3.5.2.1. Estimation Procedure

We now introduce our estimation procedure for fixed choices of all hyper-parameters.
Section 3.5.2.2 describes how these can be chosen from data in practice. Let
(X,Y,A) ∈ Rn×3 be n i.i.d. realizations sampled from a distribution over (X, Y,A),
let η = (a, b, B) be fixed and assume that supp(X) ⊆ [a, b]. Our algorithm aims to
learn the causal function fη(·; θ0) ∈ Fη, which is determined by the linear causal
parameter θ0 of a k-dimensional vector of covariates (B1(X), . . . , Bk(X)). From
standard linear IV theory, it is known that at least k instrumental variables are
required to identify the k causal parameters, see Appendix B.2. We therefore
artificially generate such instruments by nonlinearly transforming A, by using
another B-spline basis C = (C1, . . . , Ck). The parameter θ0 can then be identi-
fied from the observational distribution under appropriate rank conditions, see
Section 3.5.2.3. In that case, the hypothesis H0(θ) : θ = θ0 is equivalent to the
hypothesis H̃0(θ) : E[C(A)(Y − B(X)⊤θ)] = 0. Let B ∈ Rn×k and C ∈ Rn×k be
the associated design matrices, for each i ∈ {1, . . . , n}, j ∈ {1, . . . , k} given as
Bij = Bj(Xi) and Cij = Cj(Ai). A straightforward choice would be to construct
the standard TSLS estimator, i.e., θ̂ as the minimizer of θ 7→ ∥P(Y − Bθ)∥2

2,
where P is the projection matrix onto the columns of C; see also Hall (2005).
Even though this procedure may result in an asymptotically consistent estimator,
there are several reasons why it may be suboptimal in a finite sample setting.
First, the above estimator can have large finite sample bias, in particular if k is
large. Indeed, in the extreme case where k = n, and assuming that all columns
in C are linearly independent, P is equal to the identity matrix, and θ̂ coincides
with the OLS estimator. Second, since θ corresponds to the linear parameter
of a spline basis, it seems reasonable to impose constraints on θ which enforce
smoothness of the resulting spline function. Both of these points can be addressed
by introducing additional penalties into the estimation procedure. Let therefore
K ∈ Rk×k and M ∈ Rk×k be the matrices that are, for each i, j ∈ {1, . . . , k}, de-
fined as Kij = ∫

B′′
i (x)B′′

j (x)dx and Mij = ∫
C ′′

i (a)C ′′
j (a)da, and let γ, δ > 0 be the

respective penalties associated with K and M. For λ ≥ 0 and with µ := (γ, δ, C),
we then define the estimator

θ̂n
λ,η,µ := arg min

θ∈Rk

∥Y −Bθ∥2
2 + λ∥Pδ(Y −Bθ)∥2

2 + γθ⊤Kθ, (3.2)

where Pδ := C(C⊤C + δM)−1C⊤ is the ‘hat’-matrix for a penalized regression
onto the columns of C. By choice of K, the term θ⊤Kθ is equal to the integrated
squared curvature of the spline function parametrized by θ. The regularization
induced by the second summand in (3.2) is similar to the one from K-class
estimators in linear settings (Theil, 1958). The function class (3.1) enforces linear
extrapolation. In principle, the above approach extends to situations where X and
A are higher-dimensional, in which case B and C consist of multivariate functions.
For example, Fahrmeir et al. (2013) propose the use of tensor product splines,
and introduce multivariate smoothness penalties based on pairwise first- or second
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order parameter differences of basis functions which are close-by with respect to
some suitably chosen metric. Similarly to (3.2), such penalties result in a convex
optimization problem. However, due to the large number of involved variables,
the optimization procedure becomes computationally burdensome already in small
dimensions.

Within the function class Fη, the above defines the global estimate fη(x; θ̂n
λ,η,µ),

for every x ∈ R, given by

fη(x; θ̂n
λ,η,µ) :=


B(a)⊤θ̂n

λ,η,µ +B′(a)⊤θ̂n
λ,η,µ(x− a) if x < a

B(x)⊤θ̂n
λ,η,µ if x ∈ [a, b]

B(b)⊤θ̂n
λ,η,µ +B′(b)⊤θ̂n

λ,η,µ(x− b) if x > b.

(3.3)

We deliberately distinguish between three different groups of hyper-parameters
η, µ and λ. The parameter η = (a, b, B) defines the function class to which the
causal function f is assumed to belong. To prove consistency of our estimator,
we require this function class to be correctly specified. In turn, the parameters λ
and µ = (γ, δ, C) are algorithmic parameters that do not describe the statistical
model. Their values only affects the finite sample behavior of our algorithm,
whereas consistency is ensured as long as C satisfies certain rank conditions, see
Assumption (B2) in Section 3.5.2.3. In practice, γ and δ are chosen via a cross-
validation procedure, see Section 3.5.2.2. The parameter λ determines the relative
contribution of the OLS and TSLS losses to the objective function. To choose λ
from data, we use an idea similar to the PULSE (Jakobsen and Peters, 2021).

3.5.2.2. Algorithm

Let for now η, µ be fixed. In the limit λ → ∞, our estimation procedure be-
comes equivalent to minimizing the TSLS loss θ 7→ ∥Pδ(Y −Bθ)∥2

2, which may
be interpreted as searching for the parameter θ which complies ‘best’ with the
hypothesis H̃0(θ) : E[C(A)(Y −B(X)⊤θ)] = 0. For finitely many data, following
the idea introduced in (Jakobsen and Peters, 2021), we propose to choose the value
for λ such that H̃0(θ̂n

λ,η,µ) is just accepted (e.g., at a significance level α = 0.05).
That is, among all λ ≥ 0 which result in an estimator that is not rejected as
a candidate for the causal parameter, we chose the one which yields maximal
contribution of the OLS loss to the objective function. More formally, let for every
θ ∈ Rk, T (θ) = (Tn(θ))n∈N be a statistical test at (asymptotic) level α for H̃0(θ)
with rejection threshold q(α). That is, Tn(θ) does not reject H̃0(θ) if and only if
Tn(θ) ≤ q(α). The penalty λ⋆

n is then chosen in the following data-driven way

λ⋆
n := inf{λ ≥ 0 : Tn(θ̂n

λ,η,µ) ≤ q(α)}.

In general, λ⋆
n is not guaranteed to be finite for an arbitrary test statistic Tn. Even

for a reasonable test statistic it might happen that Tn(θ̂n
λ,η,µ) > q(α) for all λ ≥ 0;

see Jakobsen and Peters (2021) for further details. We can remedy the problem by
reverting to another well-defined and consistent estimator, such as the TSLS (which
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minimizes the TSLS loss above) if λ⋆
n is not finite. Furthermore, if λ 7→ Tn(θ̂n

λ,η,µ)
is monotonic, λ⋆

n can be computed efficiently by a binary search procedure. In our
algorithm, the test statistic T and rejection threshold q can be supplied by the user.
Conditions on T that are sufficient to yield a consistent estimator fη(·, θ̂λ⋆

n,µ,η),
given that Fη is correctly specified, are presented in Section 3.5.2.3. Two choices
of test statistics which are implemented in our code package can be found in
Appendix B.3.

For every γ ≥ 0, let Qγ = B(B⊤B + γK)−1B⊤ be the ‘hat’-matrix for the
penalized regression onto B. Our algorithm then proceeds as follows.

Algorithm 3.1 NILE (“Nonlinear Intervention-robust Linear Extrapolator”)
1: input: data (X,Y,A) ∈ Rn×3

2: options: k, T , q, α
3: begin
4: a← miniXi, b← maxiXi

5: construct cubic B-spline bases B = (B1, . . . , Bk) and C = (C1, . . . , Ck) at
equidistant knots, with boundary knots at respective extreme values of X and
A

6: define η̂ ← (a, b, B)
7: choose δn

CV > 0 by 10-fold CV to minimize the out-of-sample mean squared
error of Ŷ = PδY

8: choose γn
CV > 0 by 10-fold CV to minimize the out-of-sample mean squared

error of Ŷ = QγY
9: define µn

CV ← (δn
CV, γ

n
CV, C)

10: approx. λ⋆
n = inf{λ ≥ 0 : Tn(θ̂n

λ,µn
CV,η̂) ≤ q(α)} by binary search

11: update γn
CV ← (1 + λ⋆

n) · γn
CV

12: compute θ̂n
λ⋆

n,µn
CV,η̂ using Equation (3.2)

13: end
14: output: f̂n

NILE := fη̂( · ; θ̂n
λ⋆

n,µn
CV,η̂) defined by Equation (3.3)

The penalty parameter γn
CV is chosen to minimize the out-of-sample mean

squared error of the prediction model Ŷ = QγY, which corresponds to the
solution of (3.2) for λ = 0. After choosing λ⋆

n, the objective function in (3.2)
increases by the term λ⋆

n∥Pδn
CV

(Y−Bθ)∥2
2. In order for the penalty term γθ⊤Kθ

to impose the same degree of smoothness in the altered optimization problem,
the penalty parameter γ needs to be adjusted accordingly. The heuristic update
in our algorithm is motivated by the simple observation that for all δ, λ ≥ 0,
∥Y −Bθ∥2

2 + λ∥Pδ(Y −Bθ)∥2
2 ≤ (1 + λ)∥Y −Bθ∥2

2.
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3.5.2.3. Asymptotic Generalization (consistency)

We now prove consistency of our estimator in the case where the hyper-parameters
(η, µ) are fixed (rather than data-driven), and the function class Fη is correctly
specified. Fix any a < b and a basis B = (B1, . . . , Bk). Let η0 = (a, b, B)
and let the model class be given by M = Fη0 × G × H1 × H2 × Q, where
Fη0 is as described in Section 3.5.2. Assume that the data-generating model
M = (fη0( · ; θ0), g, h1, h2, Q) ∈M induces an observational distribution PM such
that suppM(X) ⊆ (a, b). Let further I be a set of interventions on X or A, and
let α ∈ (0, 1) be a fixed significance level.

We prove asymptotic generalization (consistency) for an idealized version of the
NILE estimator which utilizes η0, rather than the data-driven values. Choose any
δ, γ ≥ 0 and basis C = (C1, ..., Ck) and let µ = (δ, γ, C). We will make use of the
following assumptions.

(B1) For all M̃ ∈M with PM = PM̃ it holds that supi∈I EM̃(i)[X2] <∞ and
supi∈I λmax(EM̃(i)[B(X)B(X)⊤]) <∞.

(B2) The product moment matrices EM [B(X)B(X)⊤], EM [C(A)C(A)⊤], and
EM [C(A)B(X)⊤] have full rank.

(C1) T (θ) has uniform asymptotic power on any compact set of alternatives.

(C2) λ⋆
n := inf{λ ≥ 0 : Tn(θ̂n

λ,η0,µ) ≤ q(α)} is almost surely finite.

(C3) λ 7→ Tn(θ̂n
λ,η0,µ) is weakly decreasing and θ 7→ Tn(θ) is continuous.

Assumptions (B1)–(B2) ensure consistency of the estimator as long as λ⋆
n tends to

infinity. Intuitively, in this case, we can apply arguments similar to those that prove
consistency of the TSLS estimator. Assumptions (C1)–(C3) ensure that consistency
is achieved when choosing λ⋆

n in the data-driven fashion described in Section 3.5.2.2.
In Assumption (B1), λmax denotes the largest eigenvalue. In words, the assumption
states that, under each model M̃ ∈M with PM = PM̃ , there exists a finite upper
bound on the variance of any linear combination of the basis functions B(X),
uniformly over all distributions induced by I. The first two rank conditions of (B2)
enable certain limiting arguments to be valid and they guarantee that estimators are
asymptotically well-defined. The last rank condition of (B2) is the so-called rank
condition for identification. It guarantees that θ0 is identified from the observational
distribution in the sense that the hypothesis H0(θ) : θ = θ0 becomes equivalent
with H̃0(θ) : EM [C(A)(Y −B(X)⊤θ)] = 0. (C1) means that for any compact set
K ⊆ Rk with θ0 ̸∈ K it holds that limn→∞ P (infθ∈K Tn(θ) ≤ q(α)) = 0. If the
considered test has, in addition, a level guarantee, such as pointwise asymptotic
level, the interpretation of the finite sample estimator discussed in Section 3.5.2.2
remains valid (such level guarantee may potentially yield improved finite sample
performance, too). (C2) is made to simplify the consistency proof. As previously
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discussed in Section 3.5.2.2, if (C2) is not satisfied, we can output another well-
defined and consistent estimator on the event (λ⋆

n =∞), ensuring that consistency
still holds.

Under these conditions, we have the following asymptotic generalization guaran-
tee.

Proposition 3.14 (Asymptotic generalization). Let I be a set of interventions on
X or A of which at least one is confounding-removing. If assumptions (B1)–(B2)
and (C1)–(C3) hold true, then, for any M̃ ∈M with PM̃ = PM , and any ε > 0, it
holds that

PM

(∣∣∣ sup
i∈I

EM̃(i)

[
(Y − fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
− inf

f⋄∈Fη0

sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣ ≤ ε

)

tends to one, as n→∞. In the above event, only θ̂n
λ⋆

n,η0,µ is stochastic.

3.5.2.4. Experiments

We now investigate the empirical performance of our proposed estimator, the
NILE, with k = 50 spline basis functions. To choose λ⋆

n, we use the test statistic
T 2

n , which tests the slightly stronger hypothesis H̄0, see Appendix B.3. In all
experiments use the significance level α = 0.05. We include two other approaches
as baseline: (i) the method NPREGIV-1 (using its default options) introduced in
Section 3.5.1, and (ii) a linearly extrapolating estimator of the ordinary regression
of Y on X (which corresponds to the NILE with λ⋆ ≡ 0). In all experiments, we
generate data sets of size n = 200 as independent replications from

A := εA, H := εH , X := αAA+ αHH + αεεX ,

Y := f(X) + 0.3H + 0.2εY ,
(3.4)

where (εA, εH , εX , εY ) are jointly independent with Uniform(−1, 1) marginals.
To make results comparable across different parameter settings, we impose the
constraint α2

A + α2
H + α2

ε = 1, which ensures that in all models, X has variance
1/3. The function f is drawn from the linear span of a basis of four natural
cubic splines with knots placed equidistantly within the 90% inner quantile range
of X. By well-known properties of natural splines, any such function extends
linearly outside the boundary knots. Figure 3.2 (left) shows an example data
set from (3.4), where the causal function is indicated in green. We additionally
display estimates obtained by each of the considered methods, based on 20 i.i.d.
datasets. Due to the confounding variable H, the OLS estimator is clearly biased.
NPREGIV-1 exploits A as an instrumental variable and obtains good results within
the support of the observed data. Due to its non-parametric nature, however, it
cannot extrapolate outside this domain. The NILE estimator exploits the linear
extrapolation assumption on f to produce global estimates.

We further investigate the empirical worst-case risk across several different
models of the form (3.4). That is, for a fixed set of parameters (αA, αH , αε), we
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Figure 3.2: A sample dataset from the model (3.4) with αA =
√

1/3, αH =
√

2/3,
αε = 0. The true causal function is indicated by a green dashed line.
For each method, we show 20 estimates of this function, each based on
an independent sample from (3.4). For values within the support of
the training data (vertical dashed lines mark the inner 90% quantile
range), NPREGIV-1 correctly estimates the causal function well. As
expected, when moving outside the support of X, the estimates become
unreliable, and we gain an increasing advantage by exploiting the linear
extrapolation assumed by the NILE.

construct several models M1, . . . ,MN of the form (3.4) by randomly sampling
causal functions f1, . . . , fN (see Appendix B.4 for further details on the sampling
procedure). For every x ∈ [0, 2], let Ix denote the set of hard interventions which
set X to some fixed value in [−x, x]. We then characterize the performance of
each method using the average (across different models) worst-case risk (across
the interventions in Ix), i.e., for each estimator f̂ , we consider

1
N

N∑
j=1

sup
i∈Ix

EMj(i)
[
(Y − f̂(X))2

]
= E[ξ2

Y ] + 1
N

N∑
j=1

sup
x̃∈[−x,x]

(fj(x̃)− f̂(x̃))2, (3.5)

where ξY := 0.3H + 0.2εY is the noise term for Y (which is fixed across all experi-
ments). In practice, we evaluate the functions f̂ , f1, . . . , fN on a fine grid on [−x, x]
to approximate the above supremum. Figure 3.3 plots the average worst-case risk
versus intervention strength for varying degree of confounding (αH). The optimal
worst-case risk E[ξ2

Y ] is indicated by a green dashed line. The results show that the
linear extrapolation property of the NILE estimator is beneficial in particular for
strong interventions. In the case of no confounding (αH = 0), the minimax solution
coincides with the regression of Y on X, hence even the OLS estimator yields good
predictive performance. In this case, the hypothesis H̄0(θ̂n

λ,δn
CV,γn

CV
) is accepted

already for small values of λ (in this experiment, the empirical average of λ⋆
n equals

0.015), and the NILE estimator becomes indistinguishable from the OLS. As the
confounding strength increases, the OLS becomes increasingly biased, and the
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Figure 3.3: Predictive performance under confounding-removing interventions on
X for different confounding- and intervention strengths (see alpha
values in the grey panel on top). The right panel corresponds to the
same parameter setting as in Figure 3.2. The plots in each panel are
based on data sets of size n = 200, generated from N = 100 different
models of the form (3.4). For each model, we draw a different function
f , resulting in a different minimax solution (see Appendix B.4 for
details on the sampling procedure). The performances under individual
models are shown by thin lines; the average performance (3.5) across all
models is indicated by thick lines. In all considered models, the optimal
prediction error (green dashed line) is equal to E[ξ2

Y ] (by consistency,
for any fixed function f , NILE’s worst-case risk converges pointwise
to this value for increasing sample size). The grey area indicates the
inner 90 % quantile range of X in the training distribution; the white
area can be seen as an area of generalization.
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Figure 3.4: Predictive performance for varying instrument strength. If the in-
struments have no influence on X (αA = 0), the second term in the
objective function (3.2) is effectively constant in θ, and the NILE
therefore coincides with the OLS estimator (which uses λ = 0). This
guards the NILE against the large variance which most IV estimators
suffer from in a weak instrument setting. For increasing influence of A,
it clearly outperforms both alternative methods for large intervention
strengths.

NILE objective function differs more notably from the OLS (average λ⋆
n of 2.412

and 5.136, respectively). The method NPREGIV-1 slightly outperforms the NILE
inside the support of the observed data, but drops in performance for stronger
interventions. We believe that the increase in extrapolation performance of the
NILE for stronger confounding (increasing αH) might stem from the fact that,
as the λ⋆

n increases, also the smoothness penalty γ increases, see Algorithm 3.1.
While this results in slightly worse in-sample prediction, it seems beneficial for
extrapolation (at least for the particular function class that we consider). We do
not claim that our algorithm has theoretical guarantees which explain this increase
in performance.

Figure 3.4 shows the worst-case risk for varying instrument strength (αA). In
the case where all exogenous noise comes from the unobserved variable εX (i.e.,
αA = 0), the NILE coincides with the OLS estimator. In such settings, standard
IV methods are known to perform poorly, although also the NPREGIV-1 method
seems robust to such scenarios. As the instrument strength increases, the NILE
clearly outperforms OLS and NPREGIV-1 for interventions on X which include
values outside the training data.

We further compare NILE’s ability to estimate the causal function on the
support of the covariate X in a nonlinear IV setting and compare it with the
results from other state-of-the-art procedures for nonlinear IV estimation, following
the experimental setup by Singh et al. (2019). Here, the authors consider a predictor
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variable X ∼ Uniform(0, 1) which causally influences the target variable Y via the
structural assignment Y := f(X) + ξY , where f is the nonlinear causal function
f(x) = log(|16x− 8|+ 1) · sgn(x− 1/2), and ξY is an additive error term which
is correlated with X. They compare their proposed procedure Kernel IV to
the methods NPREGIV-2 (Singh et al. (2019) refer to this method as ‘Smooth
IV’), Sieve IV and Deep IV (see Section 3.5.1). As a baseline, they also include
a method for standard kernel ridge regression (‘Kernel Reg’) (Saunders et al.,
1998), which ignores the existence of hidden confounders. Each procedure yields
a different estimator f̂ . Based on 40 independent simulations, the estimators
are then compared in terms of the average squared distance between f and f̂
across 1000 equidistant points in the interval [0, 1]. We refer to (Singh et al., 2019,
Appendix A.11) for a precise description of the experimental setup. Figure 3.5
shows the results of the above experiment (corresponding to Figure 2 in (Singh
et al., 2019)), where we have also included the NILE. Our method outperforms all
other procedures, in particular for large sample sizes. There is slight difference
in the way the different algorithms use the available data. In order to reduce
finite sample bias, Singh et al. (2019) use sample splitting, where the first and
second step of the two-stage-least-squares procedure are performed on disjoint
data sets. The NILE, in contrast, uses all of the data at once. However, even
when running our procedure on only half of the data, we still outperform the other
procedures by a distinct margin, see Figure B.3. We believe that the superior MSE
performance of NILE could be due to the different approaches of regularization.
For example, NILE uses causal regularization similar to that of PULSE, i.e., a
data-driven K-class regularization; in linear IV settings, this type of regularization
often yields a smaller MSE than standard IV methods such as TSLS (Jakobsen
and Peters, 2021).

3.6. Discussion and Future Work
In many real world problems, the test distribution may differ from the training
distribution. This requires statistical methods that come with a provable guarantee
in such a setting. It is possible to characterize robustness by considering predictive
performance for distributions that are close to the training distribution in terms of
standard divergences or metrics, such as KL divergences or Wasserstein distance.
As an alternative view point, we have introduced a novel framework that formalizes
the task of distribution generalization when considering distributions that are
induced by a set of interventions. Based on the concept of modularity, interventions
modify parts of the joint distribution and leave other parts invariant. Thereby,
they impose constraints on the changes of the distributions that are qualitatively
different from considering balls in the above metrics. As such, we see them as a
useful language to describe realistic changes between training and test distributions.

Our framework is general in that it allows us to model a wide range of causal
models and interventions, which do not need to be known beforehand. We
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Figure 3.5: Comparison between the NILE and several alternative procedures for
learning a nonlinear causal function, based on the same experimental
setup as in Singh et al. (2019). The estimated functions are evaluated
on the support (no generalization). NILE outperforms the competing
methods.

have proved several generalization guarantees, some of which show robustness
for distributions that are not close to the training distribution by considering
almost any of the standard metrics. Here, generalization can be obtained by causal
functions, but also by non-causal functions; in general, however, the minimizer
changes when the intervention class is altered (or misspecified). We have further
proved impossibility results that indicate the limits of what is possible to learn from
the training distribution. In particular, in nonlinear models, strong assumptions
are required for distribution generalization to a different support of the covariates.
As such, methods such as anchor regression cannot be expected to work in nonlinear
models, unless strong restrictions are placed on the function class G.

Our work can be extended into several directions. It may, for example, be
worthwhile to investigate the sharpness of the bounds we provide in Section 3.4.3.2
and other extrapolation assumptions on F . Our results make use of the form of the
squared loss and it remains an open question to which extent they hold for general
convex loss functions. While our results can be applied to situations where causal
background knowledge is available, via a transformation of SCMs, our analysis
is deliberately agnostic about such information. It would be interesting to see
whether stronger theoretical results can be obtained by including causal background
information. We showed that the type of the interventions play a crucial role in
determining whether the causal function is a minimax optimal solution. Building
on this, it would be interesting to find empirical procedures which test whether an
intervention is confounding-removing, confounding-preserving or neither. Finally,
it could be worthwhile to investigate whether NILE, which outperforms existing
approaches with respect to extrapolation, can be combined with non-parametric
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methods to further improve in-sample performance. While our current framework
already contains certain settings of multi-task learning and domain generalization,
it could be instructive to additionally include the possibility to model unlabeled
data in the test task. Finally, our results concern the infinite sample case, but we
believe that they can form the basis for a corresponding analysis involving rates
or even finite sample results.

We view our work as a step towards understanding the problem of distribution
generalization. We hope that considering the concepts of interventions may help
to shed further light into the question of generalizing knowledge that was acquired
during training to a different test distribution.
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Chapter 4

Structure Learning for Directed
Trees

Joint work with
Rajen Shah, Peter Bühlmann and Jonas Peters

Abstract
Knowing the causal structure of a system is of fundamental interest in many areas

of science and can aid the design of prediction algorithms that work well under
manipulations to the system. The causal structure becomes identifiable from the
observational distribution under certain restrictions. To learn the structure from
data, score-based methods evaluate different graphs according to the quality of
their fits. However, for large nonlinear models, these rely on heuristic optimization
approaches with no general guarantees of recovering the true causal structure. In
this paper, we consider structure learning of directed trees. We propose a fast and
scalable method based on Chu–Liu–Edmonds’ algorithm we call causal additive
trees (CAT). For the case of Gaussian errors, we prove consistency in an asymptotic
regime with a vanishing identifiability gap. We also introduce a method for testing
substructure hypotheses with asymptotic family-wise error rate control that is valid
post-selection and in unidentified settings. Furthermore, we study the identifiability
gap, which quantifies how much better the true causal model fits the observational
distribution, and prove that it is lower bounded by local properties of the causal
model. Simulation studies demonstrate the favorable performance of CAT compared
to competing structure learning methods.

Keywords: Causality, restricted causal models, structure learning, directed trees,
hypothesis testing.

4.1. Introduction
Learning the underlying causal structure of a stochastic system involving the
random vector X = (X1, . . . , Xp) is an important problem in economics, industry,
and science. Knowing the causal structure allows researchers to understand whether
Xi causes Xj (or vice versa) and how a system reacts under an intervention.
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However, it is not generally possible to learn the causal structure (or parts thereof)
from the observational data of a system alone. Without further restrictions on
the system of interest there might exist another system with a different causal
structure inducing the same observational distribution, i.e., the structure might
not be identifiable from observed data.

Common structure learning methods using observational data are constraint-
based (e.g., Pearl, 2009; Spirtes et al., 2000), score-based (e.g., Chickering, 2002), or
a mix thereof (e.g., Nandy et al., 2018). Each of these approaches requires different
assumptions to ensure identifiability of the causal structure and consistency of
the approach. In structural causal models, one assumes that there are (causal)
functions f1, . . . , fp such that for all

1 ≤ i ≤ p : Xi := fi(XPA(i), Ni),

for subsets PA(i) ⊆ {1, ..., p} and jointly independent noise variables N =
(N1, ..., Np) ∼ PN (see Definition 4.1 for a precise definition including further
restrictions). The causal graph is constructed as follows: for each variable Xi one
adds directed edges from its direct causes or parents PA(i) into i. For such models,
system assumptions concerning the causal functions can make the causal graph
identified from the observational distribution. Specific assumptions that guarantee
identifiability of the causal graph have been studied for, e.g., linear Gaussian mod-
els with equal noise variance (Peters and Bühlmann, 2014), linear non-Gaussian
models (Shimizu et al., 2006), nonlinear additive noise models (Hoyer et al., 2008a;
Peters et al., 2014), partially-linear additive Gaussian models (Rothenhäusler et al.,
2018) and discrete models (Peters et al., 2011).

Score-based structure learning usually starts with a function ℓ assigning a
population score to causal structures. Depending on the assumed model class,
this function is minimized by the true structure. For example, when considering
directed acylic graph (DAGs), the true causal DAG G satisfy

G = arg min
G̃ : G̃ is a DAG

ℓ(G̃). (4.1)

The idea is then to estimate the score from a finite sample and minimize the
empirical score over all DAGs. As the cardinality of the space of all DAGs
grows super-exponentially in the number of nodes p (Chickering, 2002), brute-
force minimization becomes computationally infeasible even for moderately large
systems.1

For linear Gaussian models, assuming the Markov conditions and faithfulness,
one can recover the correct Markov equivalence class (MEC) of G, which can be
represented by a unique completed partially directed acyclic graph (CPDAG) (Pearl,
2009). The optimization can be done greedily over MECs or DAGs (Chickering,
2002; Tsamardinos et al., 2006) and in the former case, the method is known to
be consistent (Chickering, 2002). In the nonlinear case, Bühlmann et al. (2014)

1For example, there are over 10275 distinct directed acyclic graphs over 40 nodes (Sloane, 2021).
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show that nonparametric maximum-likelihood estimation consistently estimates
the correct causal order. However, the greedy search algorithm minimizing the
score function does not come with any theoretical guarantees. Recently, methods
have been proposed that perform continuous, non-convex optimization (Zheng
et al., 2018) but such methods are without guarantees and it is currently debated
whether they exploit some artifacts in simulated data (Reisach et al., 2021). Thus,
for nonlinear models, there is currently no score-based method that guarantees
recovery of the true causal graph with high probability.

This paper focuses on models of reduced complexity, namely models with directed
trees as causal graphs. We will show that this complexity reduction allow for
computationally feasible minimization of the score-function using the Chu–Liu–
Edmonds’ algorithm (proposed independently by Chu and Liu, 1965; Edmonds,
1967). Our method is called causal additive trees (CAT). The method is easy to
implement and consists of two steps. In the first step, we employ user-specified
(univariate) regression methods to estimate the pairwise conditional means of each
variable given all other variables. We then use these to construct edge weights
as inputs to the Chu–Liu–Edmonds’ algorithm. This algorithm then outputs a
directed tree with minimal edge weight, corresponding to a directed tree minimizing
the score in Equation (4.1).

4.1.1. Contributions
We now highlight four main contributions of the paper:

(i) Computational feasibility: Assuming an identifiable model class, such as
additive noise, allows us to infer the causal DAG by minimizing Equation (4.1)
for a suitable score function. However, even for trees, the cardinality of the
search space grows super-exponentially in the number of variables p. Hence, brute-
force minimization (exhaustive search) in Equation (4.1) remains computationally
infeasible for large systems. We propose the score-based method CAT and prove
that it recovers the causal tree with a run-time complexity of O(p2).

(ii) Consistency: We prove that CAT is pointwise consistent in an identified
Gaussian noise setup. That is, we recover the causal directed tree with probability
tending to one as the sample size increases. Consistency only requires that the
regression methods for estimating the conditional mean functions have mean
squared prediction error converging to zero in probability. This property that is
satisfied by many nonparametric regression methods such as nearest neighbors,
neural networks, or kernel methods (see e.g. Györfi et al., 2002). Moreover, the
vanishing estimation error is only required for causal edges for which the conditional
means coincide with the causal functions. We also derive sufficient conditions
that ensure consistency in an asymptotic setup with vanishing identifiability.
Specifically, we show that consistency is retained even when the identifiability gap
decreases at a rate qn with q−1

n = o(
√
n) as long as the conditional expectation

mean squared prediction error corresponding to the causal edges vanishes at a rate
op(qn).

97



4. Structure Learning for Directed Trees

(iii) Hypothesis testing: We provide an algorithm for performing hypothesis
tests concerning the presence and absence of substructures, such as particular
edges, in the true causal graph. The type I error is controlled asymptotically
when the mean squared prediction error of the regression corresponding to the
true causal edges decays at a relatively slow op(n−1/2) rate. The tests are valid
post-selection, that is, the hypotheses to be tested may be chosen after the graph
has been estimated, and when multiple tests are performed, the family-wise error
rate is controlled for any number of tests. In the non-identified setting where
multiple minimizers of the population score exist, the inferences derived are valid
for the set of minimizers, so one can for instance test whether a particular edge is
present in all graphs minimizing the score.

(iv) Identifiability analysis: We analyze the identifiability gap, that is, the
smallest population score difference between an alternative graph and the causal
graph. The reduced system complexity, due to the restriction to trees, allows
us to derive simple yet informative lower bounds. For Gaussian additive models,
for example, the lower bound can be computed using only local properties of the
underlying model: it is based on a first term that considers the minimal score gap
between individual edge reversals and a second term involving the minimal mutual
information of two neighboring nodes, when conditioning on another neighbor of
the parent node.

4.1.2. Related Constraint-based Approaches
As an alternative to score-based methods, constraint-based methods such as PC
or FCI (Spirtes et al., 2000) test for conditional independences statements in
PX and use these results to infer (parts of) the causal structure. Such methods
usually assume that PX is both Markov and faithful with respect to the causal
graph G. Under these assumptions, the Markov equivalence class of the causal
graph G is identified. In a jointly Gaussian setting, consistency of constraint-based
approaches relies on faithfulness, whereas uniform consistency requires strong
faithfulness (see, e.g., Kalisch and Bühlman, 2007; Zhang and Spirtes, 2002) – a
condition that has been shown to be strong (Uhler et al., 2013). In nonlinear
settings, corresponding guarantees do not exist. This may at least partially be due
to the fact that conditional independence testing is known to be a hard statistical
problem (Shah and Peters, 2020).

Constraint-based methods have also been studied for polytrees. A polytree is
a DAG whose undirected graph is a tree. Polytrees, unlike directed trees, allow
for multiple root nodes as well as nodes with multiple parents. Rebane and Pearl
(1987), inspired by the work of Chow and Liu (1968), propose a constraint-based
structure learning method for polytrees over discrete variables that can identify the
correct skeleton and causal basins, structures constructed from nodes with at least
two parents. More precisely, the skeleton is determined by the maximum weight
spanning tree (MWST) algorithm with mutual information measure weights, while
the directionality of edges is inferred by conditional independence constraints
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implied by the observed distribution. In the case of causal trees this constraint-
based structure learning method cannot direct any edges because causal basins do
not exist (Rebane and Pearl, 1987). Dominguez et al. (2013) and Ouerd (2000)
extend the Rebane and Pearl (1987) algorithm for causal discovery to multivariate
Gaussian polytree distributions. In this work, we employ Chu–Liu–Edmonds’
algorithm, a directed analogue of the MWST algorithm, to not only recover the
skeleton but also the direction of all edges in the causal graph. This is possible
since we consider restricted causal models, e.g., nonlinear additive Gaussian noise
models. (When discarding information that allows us to infer directionality of the
edges, one recovers the mutual information weights of Rebane and Pearl (1987),
see Remark C.1 in Appendix C.2 for details.)

4.1.3. Organization of the Paper
In Section 4.2, we define the setup and relevant score functions. We further
strengthen existing identifiability results for nonlinear additive noise models. In
Section 4.3, we propose CAT, an algorithm solving the score-based structure learn-
ing problem that is based on Chu–Liu–Edmonds’ algorithm. We prove consistency
of CAT for a fixed distribution and for a setup with vanishing identifiability. In
Section 4.4, we provide results on asymptotic normality of the scores, construct
confidence regions and propose feasible testing procedures. Section 4.5, we ana-
lyzes the identifiability gap. Section 4.6 shows the results of various simulation
experiments. All proofs can be found in Appendix C.4.

4.2. Score-based Learning and Identifiability of Trees
In the remainder of this work we use of the following graph terminology (a more
detailed introduction can be found in Appendix C.1, see also Koller and Friedman,
2009). A directed graph G = (V, E) consists of p ∈ N>0 vertices (or nodes) V =
{1, . . . , p} and a collection of directed edges E ⊆ {(i→ j) ≡ (i, j) : i, j ∈ V, i ̸= j}.
A directed acyclic graph (DAG) is a directed graph that does not contain any
directed cycles. A directed tree is a connected DAG in which all nodes have at
most one parent. The unique node of a directed tree G with no parents is called
the root node and is denoted by rt(G). We let Tp denote the set of directed trees
over p ∈ N>0 nodes.

4.2.1. Identifiability of Causal Additive Tree Models
We now revisit and strengthen known identifiability results on restricted structural
causal models. Consider a distribution that is induced by a structural causal model
(SCM) with additive noise. Then, there are only special cases (such as linear
Gaussian models) for which alternative models with a different causal structure
exist that generate the same distribution (see Peters et al., 2017, for an overview).
To state and strengthen these results formally, we introduce the following notation.
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For any k ∈ N we define the following classes of functions from R to R: M denotes
all measurable functions, Dk denotes the set of all k times differentiable functions
and Ck denotes the k times continuously differentiable functions. We let P denote
the set of mean zero probability measures on R that have a density with respect
to Lebesgue measure. P+ ⊆ P denotes the subset for which a density is strictly
positive. For any function class F ⊆ {f |f : R→ R}, PF ⊆ P denotes the subset
with a density function in F . As a special case, we let PG ⊆ P+C∞ := P+ ∩ PC∞

denote the subset of Gaussian probability measures. For any set P of probability
measures, Pp denotes all p-dimensional product measures on Rp with marginals in
P .

We now define structural causal additive tree models as SCMs with a tree
structure.
Definition 4.1 (Structural causal additive tree models). Consider a class Tp ×
Mp × Pp. Any tuple (G, (fi), PN) ∈ Tp ×Mp × Pp induces a structural causal
model over X = (X1, . . . , Xp) given by the following structural assignments

Xi := fi(XpaG(i)) +Ni, for all 1 ≤ i ≤ p,

where frt(G) ≡ 0 and N = (N1, . . . , Np) ∼ PN , which we call a structural causal
additive tree model. By slight abuse of notation, we write Q ∈ Tp×Mp×Pp for a
probability distribution that is induced by a structural causal additive tree model.

Furthermore, we define the set of restricted structural causal additive tree models.
We will see later that for these models, the causal graph is identifiable from the
observable distribution of the system. When the causal graph of a sufficiently nice
additive noise SCM is not identifiable, then certain differential equations must
hold (see the proof of Proposition 4.1 for details). The definition of restricted
structural causal additive tree models ensures that this does not happen.
Definition 4.2 (Restricted structural causal additive tree models). The collection
of restricted structural causal additive tree models (or causal additive tree models, for
short) ΘR ⊆ Tp×Dp

3×Pp
+C3 is given by all models θ = (G, (fi), PN ) ∈ Tp×Dp

3×Pp
+C3

satisfying the following conditions for all i ∈ {1, . . . , p} \ {rt(G)}: (i) fi ∈ D3,
(ii) fi is nowhere constant, i.e., it is not constant on any open set, and (iii) the
induced log-density ξ of XpaG(i), noise log-density ν of Ni and causal function fi

are such that for all x, y ∈ R such that ν ′′(y − fi(x))f ′
i(x) ̸= 0 it holds that

ξ′′′ ̸= ξ′′
(
f ′′

i

f ′
i

− ν ′′′f ′
i

ν ′′

)
− 2ν ′′f ′′

i f
′
i + ν ′f ′′′

i + ν ′ν ′′′f ′′
i f

′
i

ν ′′ − ν ′(f ′′′
i )2

f ′ , (4.1)

where the derivatives of ξ, ν and fi are evaluated in x, y− fi(x) and x, respectively.
The following lemma, due to Hoyer et al. (2008a), shows that for additive

Gaussian noise models, the differential equation constraints of Definition 4.2
simplify.2 We obtain identifiability (by Proposition 4.1) if the causal functions are
nonlinear.

2For completeness, we include the proof of Lemma 4.1 in Appendix C.4, using the approach of
Zhang and Hyvärinen (2009) but expressed in our notation.
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Lemma 4.1. Let θ = (G, (fi), PN) ∈ Tp × Dp
3 × Pp

G. Assume that for all i ∈
{1, . . . , p} \ {rt(G)} the following three conditions hold (a) fi ∈ D3, (b) fi is
nowhere constant and (c) fi is not linear. Then, θ ∈ ΘR.

Existing identifiability results for causal graphs in restricted SCMs (Hoyer
et al., 2008a; Peters et al., 2014) are stated and proven in terms of the ability to
distinguish the induced distributions of two restricted structural causal models:
For all θ = (G, . . .) ∈ ΘR and θ̃ = (G̃, . . .) ∈ ΘR, if G ̸= G̃, then L(Xθ) ̸= L(Xθ̃),
that is, Xθ and Xθ̃ do not have the same distribution. We now prove a stronger
identifiability result that does not assume that θ̃ is a restricted causal model.

Proposition 4.1 (Identifiability of causal additive tree models). Suppose that Xθ

and Xθ̃ are generated by the SCMs θ = (G, (fi), PN ) ∈ ΘR ⊆ Tp ×Dp
3 × Pp

+C3 and
θ̃ = (G̃, (f̃i), P̃N ) ∈ Tp ×Dp

1 × Pp
C0, respectively. It holds that

L(Xθ) = L(Xθ̃) =⇒ G = G̃.

We prove Proposition 4.1 using the techniques by Peters et al. (2014). While
we prove the statement only for causal additive tree models, which suffices for this
work, we conjecture that a similar extension holds for restricted structural causal
DAG models. The extension of Proposition 4.1 is important for the following
reason. Given a finite data set, practical methods usually assume that the true
distribution is induced by an underlying restricted SCM. One can then fit different
causal structures and output the structure that fits the data best. The above
extension accounts for the fact that regression methods hardly represent all such
restrictions: e.g., most nonlinear regression techniques can also fit linear models.

4.2.2. Score Functions
We now define population score functions which are later used to recover the
causal tree. We henceforth assume that X : (Ω,F , P )→ (Rp,B(Rp)) is a random
vector with distribution PX = X(P ) generated by a causal additive tree model
θ = (G, (fi), PN) ∈ ΘR ⊆ Tp × Dp

3 × Pp
+C3 with G = (V, E) ∈ Tp such that

E∥X∥2
2 < ∞. Thus, G denotes the causal tree. We use G̃ ∈ Tp to denote an

arbitrary, different (directed) tree. For the remainder of this paper, we assume that
for any i ̸= j it holds that Xi − E[Xi|Xj] has a density with respect to Lebesgue
measure.3 We often refer to one of the following two scenarios: either, (i), we
have limited a priori information that PN ∈ Pp

+C3, or, (ii), we know that the noise
innovations are Gaussian, that is, PN ∈ Pp

G. Whenever the data-generating noise
distributions are Gaussian, we refer to this model as a Gaussian setup (or setting
or model), even though the full distribution is not.

Definition 4.3. For any graph G̃ ∈ Tp we define for each node i ∈ V the
3This ensures that the entropy score function introduced in Definition 4.3 below is well-defined

and that the analysis of the identifiability gap in Section 4.5 is valid.
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(i) local Gaussian score as ℓG(G̃, i) := log
(
Var

(
Xi − E

[
Xi|XpaG̃(i)

]))
/2,

(ii) local entropy score as ℓE(G̃, i) := h
(
Xi − E

[
Xi|XpaG̃(i)

])
,

(iii) local conditional entropy score as ℓCE(G̃, i) := h
(
Xi|XpaG̃(i)

)
.

Here, we use the convention that E(Xi|∅) = 0 and h(Xi|∅) = h(Xi); the functions
h(·), h(·|·), and h(·, ·) (used below) denote the differential entropy, conditional
entropy, and cross entropy, respectively. The Gaussian, entropy and conditional
entropy score of G̃ are, respectively, given by the sum of local scores:

ℓG(G̃) :=
p∑

i=1
ℓG(G̃, i), ℓE(G̃) :=

p∑
i=1

ℓE(G̃, i), ℓCE(G̃) :=
p∑

i=1
ℓCE(G̃, i).

(See Polyanskiy and Wu (2019) or Cover and Thomas (2006) for the basic
information-theoretic concepts used in this paper.)

The following lemma shows that the Gaussian score of the graph G̃ ∈ Tp arises
naturally as a translated infimum cross entropy between PX and all Q induced
by Gaussian SCMs. Similarly, the entropy score can be seen as an infimum cross
entropy between PX and all Q induced by another class of SCMs.
Lemma 4.2. For any G̃ ∈ Tp it holds that

ℓG(G̃) = inf
Q∈{G̃}×Dp

1×Pp
G

h(PX , Q)− p log(
√

2πe).

Furthermore, with F(G̃) := (Fi(G̃))1≤i≤p, where

Fi(G̃) := {x 7→ E[Xi|XpaG̃(i) = x]},
for all 1 ≤ i ≤ p, it holds that

ℓE(G̃) = inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q).

Score-based methods identify the underlying structure by evaluating the score
functions (or estimates thereof) on different graphs and choosing the best scoring
graph. The difference between the score ℓ·(G) of the true graph and the score ℓ·(G̃)
of the best scoring alternative graph G̃ is an important property of the problem:
e.g., if it would be zero, we could not identify the true graph from the scores.
We, therefore, refer to expressions of the form minG̃∈Tp\{G} ℓ·(G̃) − ℓ·(G) as the
identifiability gap.

In the remainder of this paper, we work under the assumption that the identifi-
ability gap is strictly positive (see also Section 4.5).
Assumption 4.1. If θ ∈ ΘR ⊆ Tp × Dp

3 × Pp
G or θ ∈ ΘR ⊆ Tp × Dp

3 × Pp
+C3 it

holds that

min
G̃∈Tp\{G}

ℓG(G̃)− ℓG(G) > 0 or min
G̃∈Tp\{G}

ℓE(G̃)− ℓE(G) > 0, (4.2)

respectively.
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Assumption 4.1 does not trivially follow from the results further above. By
arguments similar to those in Lemma 4.2 we have that, if the true data-generating
model is a restricted Gaussian additive tree model, θ ∈ ΘR ⊆ Tp ×Dp

3 × Pp
G, then

ℓG(G) = h(PX)− p log(
√

2πe). Hence, the Gaussian score gap between G̃ and the
causal graph G equals

ℓG(G̃)− ℓG(G) = inf
Q∈{G̃}×Dp

1×Pp
G

h(PX , Q)− h(PX)

= inf
Q∈{G̃}×Dp

1×Pp
G

DKL(PX∥Q),

where DKL denotes the Kullback-Leibler divergence measure. Proposition 4.1
implies that

∀G̃ ̸= G, ∀Q ∈ {G̃} × Dp
1 × Pp

G : DKL(PX∥Q) > 0.

However, this does not immediately imply that the identifiability gap (where we
take the infimum over such Q) is strictly positive. Similar considerations 4 hold
for the entropy score gap

ℓE(G̃)− ℓE(G) = inf
Q∈{G̃}×F(G̃)×Pp

DKL(PX∥Q).

In Section 4.5 we derive informative lower bounds on the Gaussian and entropy
score gaps (i.e., the infimum KL-divergence) of Equation (4.2). It is also possible
to enforce Assumption 4.1 indirectly by the assumptions and modifications detailed
in the following remark.

Remark 4.1. If θ ∈ ΘR ⊆ Tp × Dp
3 × Pp

G, such that for all i ̸= j it hold that
x 7→ E[Xi|Xj = x] has a differentiable version, then the Gaussian identifiability
gap is strictly positive, so the first part of Assumption 4.1 holds. If θ ∈ ΘR ⊆
Tp ×Dp

3 × Pp
+C3 and, in addition to the above condition it holds that for all i ̸= j,

Xi − E[Xi|Xj] has a continuous density, then then the entropy identifiability gap
is strictly positive, so the in second part of Assumption 4.1 holds.

Assumption 4.1 can also be enforced by adopting the model restrictions of
Bühlmann et al. (2014). Assume that ΘR ⊆ Tp × Dp

3 × Pp
G satisfies the further

restriction that for all causal edges (j → i) ∈ E the causal functions fi are
contained within a function class Fi ⊆ D1 that is closed with respect to the
L2(PXj )-norm. Now consider a modified Gaussian score function ℓG.mod : Tp → R
that coincides with ℓG except that the conditional expectation function is replaced
with arg minf ′∈Fi

E[(Xi − f ′(Xj))2] ∈ Fi. It now follows that

ℓG.mod(G̃)− ℓG.mod(G) = inf
Q∈{G̃}×(Fi)1≤i≤p×Pp

G

DKL(PX∥Q) > 0,

4In fact, Proposition 4.1 does not immediately imply that DKL(PX∥Q) > 0 for Q ∈ {G̃} ×
F(G̃)×Pp as it does not necessarily hold that the causal functions in F(G̃) are differentiable
or that the noise innovation densities in Pp are continuous.
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where the strict inequality follows from Proposition 4.1 as the infimum is attained
for some Q∗ ∈ {G̃} × (Fi)1≤i≤p × Pp

G. Our theory and subsequent results transfer
effortlessly to these modifications. ◦

We can now use the score functions to identify the true causal graph of a
restricted structural model. In the Gaussian case, for example, we have, by virtue
of Assumption 4.1,

G = arg min
G̃∈Tp

ℓG(G̃). (4.3)

In practice, we consider estimates of the above quantities and optimize the corre-
sponding empirical loss function. Solving Equation (4.3) (or its empirical counter-
part) using exhaustive search is computationally intractable already for moderately
large choices of p.5 We now introduce CAT, a computationally efficient method
that solves the optimization exactly.

4.3. Causal Additive Trees (CAT)
We introduce the population version of our algorithm CAT in Section 4.3.1 and dis-
cuss its finite sample version and asymptotic properties in Sections 4.3.2 and 4.3.3.

4.3.1. An Oracle Algorithm
Similarly as for the case of DAGs, the problem in Equation (4.3) is a combinatorial
optimization problem, for which the cardinality of the search space grows super-
exponentially with p. Indeed, the number of undirected trees on p labelled nodes
is pp−2 (Cayley, 1889) and therefore pp−1 is the corresponding number of labelled
trees. For the class of DAGs (which includes directed trees), existing structure
learning such as Bühlmann et al. (2014) propose a greedy search technique that
iteratively selects the lowest scoring directed edge under the constraint that no
cycles is introduced in the resulting graph. In general, greedy search procedures
do not come with any guarantees and there are indeed situations in which they fail
(Peters et al., 2022). By exploiting the assumption of a tree structure, we will see
that the optimization problem of Equation (4.3) can be solved computationally
efficiently without the need for heuristic optimization techniques.

Provided with a connected directed graph with edge weights, Chu–Liu–Edmonds’
algorithm finds a minimum edge weight directed spanning tree, given that such
a tree exists. That is, for a connected directed graph H = (V, EH) on the nodes

5In the context of linear Gaussian models, Chickering (2002) proves consistency of greedy
equivalent search towards the correct Markov equivalence class. This, however, does not
imply that the optimization problem in Equation (4.3) is solved: for a given sample, the
method is not guaranteed to find the optimal scoring graph (but the output will converge to
the correct graph).
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4.3. Causal Additive Trees (CAT)

V = {1, . . . , p} with edge weights w := {w(j → i) : j ≠ i}, Chu–Liu–Edmonds’
algorithm recovers a minimum edge weight spanning directed tree subgraph of H,

arg min
G̃=(V,Ẽ)∈Tp∩H

∑
(j→i)∈Ẽ

w(j → i),

where Tp ∩H denotes all directed spanning trees of H. The runtime of the original
algorithms of Chu and Liu (1965) and Edmonds (1967) for a pre-specified root
node is O(|EH| · p) = O(p3). Tarjan (1977) devised a modification of the algorithm
that for dense graphs H and an unspecified root node has runtime O(p2). In our
experiments, we use the C++ implementation of Tarjans modification by Tofigh
and Sjölund (2007) which is contained in the R-package RBGL (Carey et al., 2021).

The causal graph recovery problem in Equation (4.3) is equivalently solved
by finding a minimum edge weight directed tree, i.e., a minimum edge weight
directed spanning tree of the fully connected graph on the nodes V . For example,
finding the minimum of the Gaussian score function is equivalent to minimizing a
translated version of the Gaussian score function

arg min
G̃∈Tp

ℓG(G̃)

= arg min
G̃∈Tp

p∑
i=1

1
2 log(Var(Xi − E[Xi|XpaG̃(i)]))−

p∑
i=1

1
2 log(Var(Xi))

= arg min
G̃∈Tp

p∑
i=1

1
2 log

Var(Xi − E[Xi|XpaG̃(i)])
Var(Xi)

 .
Because the summand for the root note equals zero, we only need to sum over all
nodes with an incoming edge in G̃:

G = arg min
G̃∈Tp

ℓG(G̃) = arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

wG(j → i),

for a Gaussian data-generating model. That is, the causal directed tree is given by
the minimum edge weight directed tree with respect to the Gaussian edge weights
wG := {wG(j → i) : j ̸= i} given by

wG(j → i) := 1
2 log

(
Var(Xi − E[Xi|Xj])

Var(Xi)

)
(4.1)

for all j ≠ i. Similarly, the minimum of the entropy score function is given by
the minimum edge weight directed tree with respect to the entropy edge weights
wE := {wE(j → i) : j ≠ i} given by wE(j → i) := h(Xi − E[Xi|Xj]) − h(Xi),
for all j ̸= i. We will henceforth denote the method where we apply Chu–Liu–
Edmonds’ algorithm on Gaussian and entropy edge weights as CAT.G and CAT.E,
respectively.
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4.3.2. Finite Sample Algorithm
Given an n× p data matrix Xn, representing n i.i.d. copies of X = (X1, . . . , Xp),
we estimate the edge weights by simple plug-in estimators. Let us denote the
conditional expectation function and its estimate by

φji(x) := E[Xi|Xj = x], φ̂ji(x) := Ê[Xi|Xj = x], (4.2)

for any j ̸= i. The estimated Gaussian edge weights are then given by

ŵG(j → i) := 1
2 log

V̂ar(Xi − φ̂ji(Xj))
V̂ar(Xi)

 , (4.3)

for all i ≠ j, where V̂ar(·) denotes a variance estimator using the sample Xn. We
now propose to combine the Chu–Liu–Edmonds’ algorithm described above with
the Gaussian score as detailed in Algorithm 4.1.

Algorithm 4.1 Causal additive trees (CAT)
1: procedure CAT(Xn, regression method)
2: For each combination of (i, j) with j ̸= i, run regression method to obtain
φ̂ji.

3: Compute empirical edge weights ŵG := (ŵG(j → i))j ̸=i, see Equation (4.3).
4: Apply Chu–Liu–Edmonds’ algorithm to the empirical edge weights.
5: return minimum edge weight directed tree Ĝ.
6: end procedure

By default we suggest to use the estimated Gaussian edge weights as described
in Algorithm 4.1. However, it is also possible to run Chu–Liu–Edmonds’ algorithm
on estimated entropy edge weights given by

ŵE(j → i) := ĥ(Xi − φ̂ji(Xj))− ĥ(Xi),

for all j ≠ i, where ĥ(·) denotes a user-specific entropy estimator using the observed
data Xn. Estimating differential entropy is a difficult statistical problem but we
will later in Section 4.6 demonstrate by simulation experiments that it can be
beneficial to use the estimated entropy edge weights when the additive noise
distributions are highly non-Gaussian.

Under suitable conditions on the (possibly nonparametric) regression technique,
we now show that the proposed algorithm consistently recovers the true causal
graph in Gaussian settings using estimated Gaussian edge weights.

4.3.3. Consistency
We study a version of the CAT.G algorithm applied to a Gaussian noise model where
the regression estimates are trained on auxiliary data, simplifying the theoretical
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analysis. We believe that consistency, with careful analysis, is achievable without
sample splitting. As such, we only view the sample splitting as a theoretical device
for simplifying proofs but we do not recommend it in practical applications. For
each n we let Xn = (X1, . . . , Xn) and X̃n = (X̃1, . . . , X̃n) denote independent
datasets each consisting of n i.i.d. copies of X ∈ Rp. We suppose that the regression
estimates φ̂ji have been trained on X̃n and then compute the edge weights using
Xn as in step 3 of Algorithm 4.1:

ŵG(j → i) := ŵji(Xn, X̃n) := 1
2 log

 1
n

∑n
k=1 (Xk,i − φ̂ji(Xk,j))2

1
n

∑n
k=1X

2
k,i − ( 1

n

∑n
k=1Xk,i)2

 . (4.4)

The following result shows pointwise consistency of CAT.G whenever the condi-
tional mean estimation is weakly consistent.

Theorem 4.1 (Pointwise consistency). Suppose that for all j ̸= i the following
two conditions hold:

(a) if (j → i) ∈ E, E[(φ̂ji(Xj)− φji(Xj))2|X̃n] P−→n 0;

(b) if (j → i) ̸∈ E , E[(φ̂ji(Xj)−φ̃ji(Xj))2|X̃n] P−→n 0 for some fixed φ̃ji : R→ R.

Here, φji and φ̂ji are defined in Equation (4.2). In the large sample limit, we
recover the causal graph with probability one, that is

P (Ĝ = G)→n 1,

where ŵG(j → i) is given by Equation (4.4).

The assumptions of Theorem 4.1 only require weakly consistent estimation of the
conditional means for edges that are present in the causal graph; these represent
causal relationships and are often assumed to be smooth. This distinction allow us
to employ regression techniques that are consistent only for those function classes
that we consider reasonable for modeling the causal mechanisms. For non-causal
edges, (j → i) ̸∈ E , the estimator φ̂ji only needs to converge to a function φ̃ji,
which does not necessarily need to be the conditional mean.

4.3.3.1. Consistency under Vanishing Identifiability

We now consider an asymptotic regime involving a sequence (θn)n∈N of a sequence
of SCMs with potentially changing conditional mean functions φji and a vanishing
identifiability gap. We have the following result.

Theorem 4.2 (Consistency under vanishing identifiability). Let (θn)n∈N be a
sequence of SCMs on p ∈ N nodes all with the same causal directed tree G = (V, E)
such that

(i) for qn := minG̃∈Tp\{G} ℓG(G) − ℓG(G̃) (the gap of model θn), we have q−1
n =

o(
√
n);
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(ii) for all (j → i) ∈ E and ε > 0,

Pθn

(
q−1

n Eθn

[
(φji(Xj)− φ̂ji(Xj))2|X̃n

]
> ε

)
→n 0;

(iii) for all j ̸= i and ε > 0,

Pθn

(
q−2

n

n
Eθn

[
(φji(Xj)− φ̂ji(Xj))4|X̃n

]
> ε

)
→n 0; and

(iv) there exists C > 0 such that for all j ̸= i

inf
n
Pθn(Varθn(Xi|Xj) ≤ C) = 1 and sup

n
Eθn∥X∥4

2 <∞.

Then it holds that

P (Ĝ = G)→n 1.

Condition (i) asks that the identifiability gap qn goes to zero more slowly than
the standard convergence rate 1/

√
n of estimators in regular parametric models.

Such a requirement would be necessary in almost any structure identification
problem. Condition (ii) requires the mean squared error of the regression estimates
corresponding to true causal edges to be oP (qn). We regard this as a fairly mild
assumption: indeed, the minimax rate of estimation of regression functions in
Hölder balls with smoothness β is n−2β/(2β+1) (Tsybakov, 2009). Thus, we can
expect that if the causal regression functions have smoothness β ≥ 1/2 and all
lie in a Hölder ball, (ii) can be satisfied for any qn satisfying (i). Condition (iii)
allows the fourth moments of the estimation errors to increase at any rate slower
than nq2

n →∞; of course, we would typically expect this error to decay, at least
for the causal edges.

4.4. Hypothesis Testing
This section presents a procedure to test any substructure hypothesis regarding
the causal directed tree of a Gaussian additive noise model. We continue our
analysis using the sample split estimators of Equation (4.4), where the conditional
expectations are estimated on an auxiliary dataset. Our approach makes use of the
fact that the estimated weights in Equation (4.4) are logarithms of ratios of i.i.d.
quantities, and thus the joint distribution of the estimated edge weights should,
with appropriate centering and scaling, be asymptotically Gaussian; see Lemma C.4
in Appendix C.4 for the precise statement. This allows us to create a (biased)
confidence region of the true edge weights, which in turn gives a confidence set for
the true graph. This confidence set of graphs is not necessarily straightforward to
compute and list. However, we show that it can be queried to test hypotheses of
interest, such as the presence or absence of a particular edge. As these hypothesis
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tests are derived from a confidence region, they are valid even when the hypothesis
to test has been chosen after examining the data.

Similar to the results in the previous sections, we avoid making assumptions
on the performance of regressions corresponding to non-causal edges. Unlike
the consistency analysis, however, here we do not require identifiability of the
true graph, but in the non-identified case all assumptions and conclusions below
involving the ‘true graph’ should be interpreted as involving the set of all population
score minimizing graphs.

In order to state our results we introduce the following notation. For a collection
(Kji)j ̸=i, we let Ki := (K1i, . . . , K(i−1)i, K(i+1)i, . . . , Kpi)⊺ ∈ Rp−1, furthermore, for
any collection (Ki)1≤i≤p, we let K := (K1, . . . , Kp)⊺. With this notation, let the
vectors of squared residuals and squared centered observations be given by

M̂k := {(Xk,i − φ̂ji(Xk,j))2}j ̸=i ∈ Rp(p−1),

V̂k :=
{(

Xi,k −
1
n

n∑
k=1

Xi,k

)2}
1≤i≤p

∈ Rp.

Further let
µ̂ := 1

n

n∑
k=1

M̂k, ν̂ =: 1
n

n∑
k=1

V̂k.

Note that with this notation, the estimated Gaussian edge weight for j → i is
given by log(µ̂ji/ν̂i)/2. Let us denote by Σ̂M ∈ Rp(p−1)·p(p−1), Σ̂V ∈ Rp·p and
Σ̂MV ∈ Rp(p−1)·p, the empirical variances of the M̂k and V̂k and their empirical
covariance respectively, so(

Σ̂M Σ̂MV

Σ̂⊺
MV Σ̂V

)
:= 1

n

n∑
k=1

(
M̂kM̂

⊺
k − µ̂µ̂⊺ M̂kV̂

⊺
k − µ̂ν̂⊺

V̂kM̂
⊺
k − ν̂µ̂⊺ VkV

⊺
k − ν̂ν̂⊺

)
.

With this, we may now present our construction of confidence intervals for the
edge weights. (For simplicity, all proofs in this section assume the variables to
have mean zero.)

4.4.1. Confidence Region for the Causal Tree
We use the delta method to estimate the variances of the ŵji, and a simple
Bonferroni correction to ensure simultaneous coverage of the confidence intervals
we develop. Writing zα for the upper α/{2p(p− 1)} quantile of a standard normal
distribution, we set

ûji, l̂ji := 1
2 log

(
µ̂ji

ν̂i

)
± zα

σ̂ji

2
√
n
,

where

σ̂2
ji := Σ̂M,ji,ji

µ̂2
ji

+ Σ̂V,i,i

ν̂2
i

− 2Σ̂MV,ji,i

µ̂jiν̂i
.
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We treat [l̂ji, ûji] as a confidence interval for the true edge weight wG(j → i) and
define the following region of directed trees formed of minimizers of the score with
edge weights in the confidence hyperrectangle:

Ĉ :=
{

arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

w′
ji, : ∀j ̸= i, w′

ji ∈ [l̂ji, ûji]
}
.

We have the following coverage guarantee for Ĉ.

Theorem 4.3 (Confidence region). Suppose the following conditions hold:

(i) there exists ξ > 0 such that E∥X∥4+ξ <∞;

(ii) there exists ξ > 0 such that for all j ≠ i, E[|φ̂ji(Xj) − φji(Xj)|4+ξ|X̃n] =
Op(1);

(iii) Var((M̂⊺
1 , V̂

⊺
1 )⊺|X̃n) P−→n Σ, where Σ is constant with strictly positive diago-

nal;

(iv) for (j → i) ∈ E,
√
nE[(φ̂ji(Xk,j)− φji(Xk,j))2|X̃n] P−→ 0.

Then

lim inf
n→∞

P
(
G ∈ Ĉ

)
≥ 1− α.

The second condition requires little more than 4th moments for the absolute
errors in the regression (they do not need to converge to zero). Condition (iv)
requires that the mean squared prediction errors corresponding to the true causal
edges decay faster than a relatively slow 1/

√
n rate. If the causal graph is

unidentifiable, then when (iv) holds for all edges corresponding to population score
minimizing graphs, Ĉ will cover every such graph with a probability of at least
1− α.

4.4.2. Testing of Substructures
Whilst the confidence region Ĉ has attractive coverage properties, it will typically
not be possible to compute it in practice. We now introduce a computationally
feasible scheme for querying whether Ĉ satisfies certain constraints such as con-
taining or not containing a given substructure. A substructure R = (ER, Emiss

R , r)
on the nodes V contains specified sets ER and Emiss

R of existing and missing edges,
respectively, and/or a specific root node r; for example, this could be a specific
directed tree or a single edge (such as X1 → X2) or a single missing edge (such as
X1 ̸→ X2). Our approach allows us to report with certainty that at least one of
the constraints in R does not hold for the true graph. More precisely, we propose
a test for the null hypothesis

H0(R) : ER \ E = ∅, E \ Emiss
R = ∅, r = rt(G),
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i.e, that all constraints in R are satisfied in the causal graph.
In order to present our method, we introduce some notation. Let s(w) be the

score attained by the minimum edge weight directed tree recovered by Chu–Liu–
Edmonds’ algorithm with input edge weights w := (wji)j ̸=i. Let T (R) ⊆ Tp

be the set of all directed trees satisfying the constraints R. Furthermore, let
sT (R)(w) be the score attained by the minimum edge weight directed tree in
T (R). Now suppose that the causal directed tree G satisfies the constraints R. If
[l̂, û] := ∏

j ̸=i[l̂ji, ûji] is an asymptotically valid confidence region for the Gaussian
population edge weights wG defined in Equation (4.1), we have with probability
tending to 1− α that

sT (R)(l̂) ≤ sT (R)(wG) = s(wG) ≤ s(û).

We may thus set as our test function

ψR = 1{sT (R)(l̂)>s(û)}.

The expressions sT (R)(l̂) and s(û) can be computed from the data. For sT (R)(l̂),
we perform the following steps: we apply Chu–Liu–Edmonds’ algorithm on the
edge weights l̂ where, for any (j → i) ∈ ER, we remove all other edges into i from
the edge pool (or set the corresponding edge weight to sufficiently large values)
while for a specified root node r ∈ R we remove all incoming edges into r from
the edge pool. Edges (j → i) ∈ Emiss

R are removed from the edge pool, too.
Formalizing a line of reasoning similar to the above, taking into account that

[l̂, û] is in fact a biased confidence region that may not necessarily contain the
population edge weights with increasing probability, we have the following result.

Theorem 4.4 (Pointwise asymptotic level). Suppose that the conditions of The-
orem 4.3 are satisfied and let R1,R2, . . . be any collection of potentially data-
dependent constraints. For any level α ∈ (0, 1), we have that

lim sup
n→∞

P

 ⋃
k : H0(Rk) is true

{ψRk
= 1}

 ≤ α.

4.5. Bounding the Identifiability Gap
We have seen that the identifiability gap, that is, the smallest score difference
between the causal tree G and any alternative graph G̃ ∈ Tp \ {G}, plays an
important role when identifying causal trees from data. It provides information
about whether the causal graph is identifiable by means of the corresponding
score function, and it affects how quickly the estimation error needs to vanish in
order to guarantee consistency, see Theorem 4.2. E.g., for the entropy score, the
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identifiability gap is given by

min
G̃∈Tp\{G}

ℓE(G̃)− ℓE(G) = min
G̃∈Tp\{G}

p∑
i=1

ℓE(G̃, i)− ℓE(G, i)

= inf
Q∈{G̃}×F(G̃)×Pp

DKL(PX∥Q), (4.1)

see Section 4.2.2.
We now analyze the identifiability gap for the entropy score and the Gaussian

score in more detail. More specifically, we will derive a lower bound for the
identifiability gaps that is based on local properties of the underlying structural
causal models (such as the ability to reverse edges). We first consider the special
cases of bivariate models (Section 4.5.1) and multivariate Markov equivalent trees
(Section 4.5.2) and then turn to general trees (Section 4.5.3). However, before
we venture into the derivation of the specific lower bounds we first examine the
connection between the identifiability gaps associated with the different score
functions.

In this section, we assume that X ∼ PX is generated by a structural causal
additive tree model with E∥X∥2 < ∞ such that the local Gaussian, entropy
and conditional entropy scores are well-defined. We neither assume that θ is a
restricted structural causal additive model, i.e., θ ∈ ΘR, nor strict positivity of the
identifiability gap, i.e., Assumption 4.1. The following result shows that the local
node-wise score gaps associated with the different score functions are ordered.

Lemma 4.3. For any G̃ ∈ Tp and for all i ∈ V

ℓCE(G̃, i)− ℓCE(G, i) ≤ ℓE(G̃, i)− ℓE(G, i). (4.2)

If the underlying model is a Gaussian noise model, then

ℓE(G̃, i)− ℓE(G, i) ≤ ℓG(G̃, i)− ℓG(G, i). (4.3)

It follows that the full graph score gaps and identifiability gaps associated
with the different score functions satisfy a similar ordering. Thus, given that
the underlying model is Gaussian, a strictly positive entropy identifiability gap
implies that the Gaussian identifiability gap is strictly positive. It is, however,
not possible to establish strict positivity of the conditional entropy identifiability
gap; see Remark C.1 in Appendix C.2. Therefore, we focus on establishing a lower
bound for the entropy identifiability gap that is tighter than that given by the
conditional entropy identifiability gap.

In general, we cannot use node-wise comparisons of the scores of two graphs to
bound the identifiability gap (the reason is that in general a node receives a better
score in a graph, where it has a parent, compared to a graph, where it does not;
see Example C.1 in Appendix C.2 for a formal argument). We start by analyzing
the identifiability gap in models with two variables.
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4.5.1. Bivariate Models
We now consider two nodes V = {X, Y }, and graphs T2 = {(X → Y ), (Y → X)}.
Without loss of generality assume that (X, Y ) ∈ L2(P ) is generated by an additive
noise SCM θ = (G, (fi), PN) with causal graph G = (X → Y ) ∈ T2 to which the
only alternative graph is G̃ = (Y → X). That is,

X := NX , Y := f(X) +NY , (4.4)

where (NX , NY ) ∼ PN ∈ P2. The bivariate entropy identifiability gap, which we
will later refer to as the edge reversal entropy score gap, is defined as

∆ℓE(X −→L99 Y ) : = ℓE(G̃)− ℓE(G)
= h(Y ) + h(X − E[X|Y ])− h(X)− h(Y − E[Y |X]),

where the fully drawn arrow symbolizes the true causal relationship and the
dashed arrow the alternative. The following lemma simplifies the bivariate entropy
identifiability gap to a single mutual information between the effect and the residual
of the minimum mean squared prediction error regression of cause on the effect.

Lemma 4.4. Consider the bivariate setup of Equation (4.4) and assume that f(X)
has density. It holds that

∆ℓE(X −→L99 Y ) = I(X − E[X|Y ];Y ) ≥ 0.

Thus, the causal graph is identified in a bivariate setting if one maintains
dependence between the predictor and minimum mean squared error regression
residual in the anti-causal direction. This result is in accordance with the previous
identifiability results. For example, in the linear Gaussian case, I(X−E[X|Y ];Y ) =
0. Consequently, the causal graph is not identified from the entropy score function.

Whenever the conditional mean in the anti-causal direction vanishes, e.g., with
symmetric causal function and symmetric noise distribution, it is possible to
derive a more explicit lower bound with more intuitive sufficient conditions for
identifiability of the causal graph.

Proposition 4.2. Consider the bivariate setup of Equation (4.4) and assume that
f(X) has density. If the reversed direction conditional mean E[X|Y ] almost surely
vanishes (e.g., because f , X and NY are symmetric), then

∆ℓE(X −→L99 Y ) = I(X; f(X) +NY ),

which is strictly positive if and only if X ̸⊥⊥ f(X) +NY . In addition, we have the
following statements.

(a) Let f(X)G and NG
Y be independently normal distributed with the same mean

and variance as f(X) and NY , respectively. If

DKL(f(X)∥f(X)G) ≤ DKL(NY ∥NG
Y ),
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then

∆ℓE(X −→L99 Y ) ≥ 1
2 log

(
1 + Var(f(X))

Var(NY )

)
.

(b) If the density of f(X) +NY is log-concave, then

∆ℓE(X −→L99 Y ) ≥ 1
2 log

(
2
πe

+ 2
πe

Var(f(X))
Var(NY )

)
.

This lower bound is non-trivial only if

Var(f(X)) > (πe/2− 1)Var(NY ) ≈ 3.27Var(NY ).

Thus, if the conditional mean E[X|Y ] in the anti-causal direction vanishes, then
under certain conditions, the causal direction is identified by the entropy score
function (as long as Var(f(X)) is sufficiently large relative to Var(NY )). The edge
reversal score gap for the Gaussian score is given by

∆ℓG(X −→L99 Y ) := 1
2 log

(
Var(X − E[X|Y ])

Var(X)

)
− 1

2 log
(

Var(Y − E[Y |X])
Var(Y )

)

= 1
2 log

(
Var(X − E[X|Y ])

Var(X)

)
+ 1

2 log
(

1 + Var(f(X))
Var(NY )

)
,

which reduces to the lower bound in point (a) of Proposition 4.2 if the conditional
mean E[X|Y ] in the anti-causal direction vanishes.

4.5.2. Multivariate Markov Equivalent Trees
Two Markov equivalent trees differ in precisely one directed path that is reversed
in one graph relative to the other.6 The entropy score gap of Markov equivalent
trees therefore reduces to the binary case.
Proposition 4.3. Consider any G̃ ∈ Tp \ {G} that is Markov equivalent to the
causal tree G. Let c1 → · · · → cr be the unique directed path in G that is reversed
in G̃. Then

ℓE(G̃)− ℓE(G) =
r−1∑
i=1

∆ℓE(ci −→L99 ci+1) ≥ min
1≤i≤r−1

∆ℓE(ci −→L99 ci+1).

Thus, a lower bound of the entropy score gap that holds uniformly over the
Markov equivalence class is given by the smallest possible edge reversal in the
causal directed graph:

min
G̃∈MEC(G)\{G}

ℓE(G̃)− ℓE(G) ≥ min
(j→i)∈E

∆ℓE(j −→L99 i).
6To see this, note that any two directed trees are Markov equivalent if and only if they satisfy

the exact same d-separations or equivalently they share the same skeleton (there are no
v-structures in directed trees). Distinct directed trees sharing the same skeleton must have
distinct root nodes. Consequently, there exist a directed path in G from rt(G) to rt(G̃) that
is reversed in G̃; see also Lemma C.6
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anG̃R(D) anG̃R(Z)

deG̃R(Y ) deG̃R(O1) deG̃R(Ok)

subgraph of G̃R

Figure 4.1: Schematic illustration of parts of two reduced graphs produced by the
graph reduction technique described in Section 4.5.3. Consider a sink
node L in GR. Its parent (in GR) must either be a parent in G̃R, too, it
must be a child in G̃R, or it is unconnected to L in G̃R. Thus, exactly
one of the sets Z, Y , and W is non-empty. This case distinction is used
to compute the three bounds in Theorem 4.5. D, O1, . . . , Ok denote
further (possibly existing) nodes in G̃R.

4.5.3. General Multivariate Trees
We now derive a lower bound of the entropy identifiability gap, i.e., a lower bound
of the entropy score gap that holds uniformly over all alternative trees Tp \{G}. To
do so, we exploit a graph reduction technique (introduced by Peters et al., 2014)
which enables us to reduce the analysis to three distinct scenarios. This graph
reduction works as follows. Fix any alternative graph G̃ ∈ Tp \ {G}, and iteratively
remove any node (from both G and G̃) that has no children and the same parents
in both G and G̃. The score gap is unaffected by the graph reduction.7

Applying this iteration scheme, until no such node can be found, results in two
reduced graphs GR = (VR, ER) and G̃R = (VR, ẼR). These reduced graphs cannot
be empty, for that would only happen if G̃ = G. Further, they have identical
vertices but different edges. And they can be categorized into one of three cases.
To do so, consider a node L that is a sink node, i.e., a node without children,
in GR and consider its parent in GR. Now, considering G̃R, one of the following
conditions must hold: the parent is also a parent of L in G̃R (we then call it Z),
the parent is not connected to L in G̃R (we then call it W ), or the parent is a child
of L in G̃R (we then call it Y ). Figure 4.1 visualizes these three scenarios.

7All removed nodes V \ VR have identical incoming edges in both graphs and therefore have
identical local scores. That is, for any loss function l ∈ {ℓCE, ℓE, ℓG} we have that l(G̃)−ℓ(G) =∑

i∈VR
ℓ(G̃, i)− ℓ(G, i) +

∑
i∈V \VR

ℓ(G̃, i)− ℓ(G, i) =
∑

i∈VR
ℓ(G̃, i)− ℓ(G, i) = ℓ(G̃R)− l(GR).
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We can now obtain bounds for each of the three case individually. For the case
with a node Z (a ‘staying parent’), define

ΠZ(G) :=
{
(z, l, o) ∈ V 3 s.t. (z → l) ∈ E and o ∈ ndG(l) \ {z, l}

}
.

The score gap can then be lower bounded by min(z,l,o)∈ΠZ(G) I(Xz;Xo|Xl) (see
Lemma C.7). Intuitively, I(Xz;Xo|Xl) quantifies the strength of the connection
between z and o, when conditioning on l (which does not lie on the path between
z and o). This is a non-local bound in that it does not constrain the length of the
path connecting z and o. Analyzing or bounding this term might be difficult. We
will see in 4.5.4 that this part is not needed in the Gaussian case.

For the case with a node W (‘removing parent’), define

ΠW (G) :=
{
(w, l, o) ∈ V 3 s.t. (w → l) ∈ E , o ∈ (chG(w) \ {l}) ∪ paG(w)

}
.

This case results in the lower bound min(w,l,o)∈ΠW (G) I(Xw;Xl|Xo) (see Lemma C.8).
Here, w is a parent of l and o is directly connected to w. Intuitively, I(Xw;Xl|Xo)
quantifies the strength of the edge w → l. We condition on o but that node is not
directly connected to l (only via w). For the first two cases, faithfulness (Spirtes
et al., 2000) implies that these terms are non-zero and bounding them away from
zero reminds of strong faithfulness (Zhang and Spirtes, 2002). However, in the
second case, one considers individual edges, which reminds more of a strong version
of causal minimality (Peters et al., 2017; Spirtes et al., 2000).

For the case with a node Y (‘parent to child’), a lower bound is given by the
minimal edge reversal score gap min(j→i)∈E ∆ℓE(j −→L99 i) (see Lemma C.9). The
term ∆ℓE(j −→L99 i) measures the identifiability of the direction of an individual
edge. It is zero in the linear Gaussian case, for example. We provide more details
on the reduced graphs and on the arguments in the three cases in Section C.4.4.2
of Appendix C.4.

Combining the three bounds from above, we obtain the following theorem.

Theorem 4.5. It holds that

min
G̃∈Tp\{G}

ℓE(G̃)− ℓE(G) ≥ min
{

min
(z,l,o)∈ΠZ(G)

I(Xz;Xo|Xl),

min
(w,l,o)∈ΠW (G)

I(Xw;Xl|Xo),

min
(j→i)∈E

∆ℓE(j −→L99 i)
}
. (4.5)

This result lower bounds the identifiability gap using information-theoretic
quantities. Corresponding results for the Gaussian score follow immediately by
Lemma 4.3. The last two terms are local properties of the underlying structural
causal model; the first term is not. As seen in Section 4.5.2, the last term on the
right-hand side is required when considering only Markov equivalent trees; if it
is non-zero, it allows us to orient all edges in the skeleton. The first two terms
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(non-zero under faithfulness) are additionally required when the considered trees
are not Markov equivalent.

We now turn to the case of Gaussian trees. Here, the first term is not needed;
the bound then depends only on local properties of the structural causal model.

4.5.4. Gaussian Multivariate Trees
The score gap lower bound in Equation (4.5) consists of local dependence properties
except for the node tuples ΠZ(G) (Lemma C.7) that arise when considering
alternative graphs that yield in reduced graphs with a node Z (‘staying parents’).
However, we show that in the Gaussian case, the score gap for such alternative
graphs can be lower bounded by the score gaps already considered in alternative
graphs with a node Y (‘parent to child’) and a node W (‘removing parent’). Thus,
we have the following theorem, with a bound consisting only of local properties of
the model.

Theorem 4.6 (Gaussian localization of the identifiability gap). In a Gaussian
setting (see Section 4.2.2), we have

min
G̃∈Tp\{G}

ℓG(G̃)− ℓG(G)

≥ min
{

min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo), min
(j→i)∈E

∆ℓE(j −→L99 i)
}
.

4.6. Simulation Experiments
In this section, we investigate the finite-sample performance of CAT and perform
simulation experiments investigating the identifiability gap and its lower bound.
In Section 4.6.1 we compare the performance of CAT to CAM of Bühlmann et al.
(2014) for Gaussian and non-Gaussian additive noise models with causal graphs
given by directed trees. In Section 4.6.2 we perform simulation experiments that
highlight the behavior of the identifiability gap and its corresponding lower bound
derived in Section 4.5. In Section 4.6.3 we compare the CAT and CAM for causal
discovery on non-tree DAG models (CAT always outputs a directed tree). The
code scripts (R) for the simulation experiments and an implementation of CAT is
available on GitHub.8

4.6.1. Causal Structure Learning for Trees
In this section, we compare the performance of the structure learning methods
CAT and CAM when employed on additive noise models with causal graphs given
by directed trees.

8https://github.com/MartinEmilJakobsen/CAT
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Type 1 Type 2

Figure 4.2: Illustration of Type 1 (many leaf nodes) and Type 2 (many branch
nodes) directed trees over p = 100 nodes. The green nodes are leaf
nodes, the brown nodes are branch nodes, and the black nodes are root
nodes. The Type 1 tree contains 70 leaf nodes, while the Type 2 tree
only contains 49 leaf nodes.

4.6.1.1. Tree Generation Schemes

We employ two different random directed tree generation schemes: Type 1 (many
leaf nodes) and Type 2 (many branch nodes). In Figure 4.2 we have illustrated
two directed trees generated in accordance with the two generation schemes. For
more details, see Algorithms C.1 and C.2 in Section C.3.1 of Appendix C.3.

4.6.1.2. Gaussian Experiment

In this experiment, we generate data similarly to the experimental setup of
Bühlmann et al. (2014). For any given directed tree we generate causal functions
by sample paths of Gaussian processes with radial basis function (RBF) kernel
and bandwidth parameter of one. Sample paths of Gaussian processes with
radial basis function kernels are almost surely infinitely continuous differentiable
(e.g., Kanagawa et al., 2018), non-constant and nonlinear, so they satisfy the
requirements of Lemma 4.1. See Figure C.1 in Section C.3.2 of Appendix C.3 for
illustrations of random draws of such functions. Root nodes are mean zero Gaussian
variables with standard deviation sampled uniformly on (1, 2). Furthermore, for
each fixed tree and set of causal functions, we introduce at each non-root node
additive Gaussian noise with mean zero and standard deviation sampled uniformly
on (1/5,

√
2/5).

We first compare our method CAT with Gaussian score function (CAT.G)
against the method CAM of Bühlmann et al. (2014) on the previously detailed

118



4.6. Simulation Experiments

Type: 1

p: 16

Type: 1

p: 32

Type: 1

p: 64

Type: 1

p: 128

50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

0

50

100

0

20

40

60

0

10

20

30

0

5

10

15

Type: 2

p: 16

Type: 2

p: 32

Type: 2

p: 64

Type: 2

p: 128

50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

0

25

50

75

100

125

0

20

40

60

0

10

20

30

0

5

10

15

Method

CAM

CAT.G

Sample Size

S
H

D
 to

 tr
ue

 g
ra

ph

Figure 4.3: Gaussian setting: Boxplots of the SHD performance of CAM and
CAT.G (Gaussian score) for varying sample sizes, system sizes, and
tree types. CAT.G outperforms CAM in a wide range of scenarios.

nonlinear additive Gaussian noise tree setup. We implement CAT.G without
sample-splitting and use the R-package GAM (Generalized Additive Models, Hastie,
2020) with default settings to construct a thin plate regression spline estimate of
the conditional expectations. We use the implementation of Chu–Liu–Edmonds’
algorithm from the R-package RBGL.9 CAM is employed with a maximum number
of parents set to one (restricting the output to directed trees), without preliminary
neighborhood selection and subsequent pruning. We measure the performance of
the methods by computing the Structural Hamming Distance (SHD, Tsamardinos
et al., 2006) and Structural Intervention Distance (SID, Peters and Bühlmann,
2015) to the causal tree.

For each system size p ∈ {16, 32, 64, 128} we generate a causal tree, corresponding
causal functions and noise variances and sample data of size n ∈ {50, 100, 200, 500}.
This is repeated 200 times and the SHD results are summarized in the boxplot
of Figure 4.3. Both methods perform better on trees of Type 2 than on trees of
Type 1. CAT.G outperforms CAM in terms of SHD to the true graph both in

9The RBGL implementation finds maximum edge weight directed trees and requires all positive
edge weights. As such, we take the negative of our edge weights and shift them all by the
absolute value of smallest edge-weight. If an edge weight is set to zero this edge can not be
chosen.
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median distance and IQR length and position for all sample sizes, system sizes and
tree types. Considering the SID to the causal tree yields similar conclusions; see
Figure C.2 in Section C.3.2 of Appendix C.3. In their default versions, CAM and
CAT.G use different estimation techniques of the conditional expectations, but this
does not seem to be the source of the performance difference: Figure C.3 in Section
C.3.2 of Appendix C.3 illustrates a similar SHD performance difference when
forcing CAT.G to use the edge weights produced by the CAM implementation.

4.6.1.3. Non-Gaussian Experiment

We now compare the performance of CAM and CAT with Gaussian (CAT.G) and
entropy (CAT.E) score functions in a setup with varying noise distributions. The
entropy edge weights used by CAT.E are estimated with the differential entropy es-
timator of Berrett et al. (2019) as implemented in the CRAN R-package IndepTest
(Berrett et al., 2018). We use the same simulation setup as in Section 4.6.1.2
but now we only consider trees of Type 1 and parameterize the setup by α > 0,
which controls the deviation of the additive noise innovations from a Gaussian
distribution. More precisely, we generate the additive noise variables Ni(α) as

Ni(α) = sign(Zi)|Zi|α,
where Zi ∼ N (0, σ2

i ) with σi sampled uniformly on (1/5,
√

2/5) or uniformly on
(1, 2) if i = rt(G). For α = 1 this yields Gaussian noise, while for alpha α ̸= 1
the noise is non-Gaussian. We conduct the experiment for all combinations of
α ∈ {0.1, 0.2, . . . , 2, 2.5, 3, 3.5, 4} and sample sizes n ∈ {50, 500} for a fixed system
size of p = 32. Each setting is repeated 500 times and the results are illustrated in
Figure 4.4.

For Gaussian noise, both CAM and CAT.G outperform CAT.E. This can (at
least) be attributed to two factors: (i) CAT.E does not, unlike CAM and CAT.G,
explicitly use the Gaussian noise specification and (ii) differential entropy estimation
is a difficult statistical problem (see, e.g., Han et al., 2020; Paninski, 2003) For
small and moderate deviations from Gaussianity, CAT.G outperforms both CAM
and CAT.E. For larger deviations, CAT.E outperforms both CAT.G and CAM in
terms of median SHD. Finally, we note that CAT.G always outperforms CAM in
terms of median SHD.

4.6.2. Identifiability Gap
We now investigate the behavior of the identifiability gap in bivariate models
(Section 4.6.2.1) and evalute the lower bound derived in Section 4.5 empirically for
multivariate models (Section 4.6.2.2).

4.6.2.1. Bivariate Identifiability Gap

In this experiment, we investigate the behavior of the bivariate identifiability gap
and analyze both a Gaussian and a non-Gaussian setup. Let us consider an additive
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Figure 4.4: Deviations from Gaussianity: The parameter α controls the noise
deviation from the Gaussian distribution. CAT.G and CAT.E are
instances of CAT with edge weights derived from Gaussian and entropy
score functions, respectively. The solid lines represent the median
SHD and the shaded (dashed) region represents the interquartile range.
Using the entropy score yields better results for noise distributions
that deviate strongly from Gaussian noise.

noise model over (X, Y ) with causal graph X → Y . The causal functions will be
chosen from the following function class. For any λ ∈ [0, 1], define fλ : R→ R as

fλ(x) = (1− λ)x3 + λx.

That is, λ 7→ fλ interpolates between a cubic function x 7→ x3 and a linear
function x 7→ x. For any (α, λ) ∈ (0,∞)× [0, 1] we consider the following bivariate
structural causal additive model

X := sign(NX)|NX |α, Y := fλ(X) +NY ,

where NX , NY are independent standard normal distributed random variables.
Recall that the bivariate identifiability gap is given by

ℓE(Y → X)− ℓE(X → Y ) =h(X − E[X|Y ]) + h(Y )− h(X − E[X|Y ], Y )
= I(X − E[X|Y ];Y ), (4.1)

by Lemma 4.4. Thus, the causal graph X → Y is identified by the entropy score
function if I(X − E[X|Y ];Y ) > 0.
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Figure 4.5: Heatmap of the identifiability gap for varying λ and α. Tiles with a red
boundary correspond to the models for which the mutual information
based independence test cannot reject the null hypothesis of a vanishing
identifiability gap.

For any fixed λ and α we now estimate the identifiability gap; we also calculate
the p-value associated with the null hypothesis that the identifiability gap is
zero (based on 50000 observations). Similarly to the previous experiment, we
estimate the conditional expectations using GAM. We estimate (without sample
splitting) the identifiability gap and construct p-values using the CRAN R-package
IndepTest (Berrett et al., 2018). More specifically, we use the differential entropy
estimator of Berrett et al. (2019) and the mutual information based independence
test of Berrett and Samworth (2019), respectively.

The heatmap of Figure 4.5 illustrates the behavior of the identifiability gap for
all combinations of λ ∈ {0, 0.05, . . . , 1} and α ∈ {0.3, 0.4, . . . , 1.7}. It suggests that
the identifiability gap only tends to zero when we approach the linear Gaussian
setup. Only in the models closest to the linear Gaussian setup are we unable to
reject the null-hypothesis of a vanishing identifiability gap.

This is also what the theory predicts, namely that for bivariate linear Gaussian
additive models, the causal direction is not identified. It is known that for linear
models, non-Gaussianity is helpful for identifiability. The empirical results indicate
that the same holds for nonlinear models, i.e., that the identifiability gap increases
with the degree of non-Gaussianity.

4.6.2.2. Multivariate Identifiability Gap

In this experiment, we investigate the identifiability gap and its relation to the
lower bounds established in Theorem 4.6. For a Gaussian additive noise tree model,
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it holds that

min
G̃∈Tp\{G}

ℓG(G̃)− ℓG(G)

≥ min
{

min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo), min
i→j∈E

∆ℓE(i −→L99 j)
}
.

In other words, the identifiability gap is lower bounded by the minimum of the
smallest local faithfulness measures and the smallest edge-reversal score difference.
We now investigate empirically how important the first term is for the inequality
to hold. More specifically, for a given model generation scheme, we quantify
how often the minimum edge reversal is sufficiently small to establish the lower
bound without the conditional mutual information term, that is, how often the
identifiability constant minG̃∈Tp\{G} ℓG(G̃)− ℓG(G) is larger than the minimum edge
reversal.

The minimum edge reversal can be estimated using the same conditional ex-
pectation and entropy estimators of the experiment in Section 4.6.2.1. However,
estimating the identifiability gap between the second-best scoring tree and the
causal tree needs further elaboration. We know that the best scoring (causal)
tree can be found by Chu–Liu–Edmonds’ (a directed MWST) algorithm. The
second-best scoring tree differs from the best scoring tree in at least one edge. Thus,
given the best scoring graph, we remove one of the p− 1 edges of the best scoring
tree from the pool of possible edges and rerun Chu–Liu–Edmonds’ algorithm. We
do this for each of the p− 1 edges in the best scoring tree which leaves us with
p− 1 possibly different sub-optimal trees of which the minimum score is attained
by the second-best scoring graph.

For the experiment, we randomly sample data generating models similarly to
the experiment in Section 4.6.1.2. However, we change the causal functions from
explicit sample paths of a Gaussian process to a GAM model estimating the sample
paths due to memory constraints when generating large sample sizes. Figure 4.6
illustrates, for p ∈ {8, 16}, boxplots of the difference between the identifiability
gap and the minimum edge reversal for 100 randomly generated Gaussian additive
noise tree models. For each model, the identifiability gap and corresponding
minimum edge reversal is estimated from 200000 independent and identically
distributed observations. The illustration suggests that it is in general necessary
to also consider the conditional mutual information term in order to establish a
lower bound. However, it also shows that in the majority (90%) of the models,
the minimum edge reversal is indeed a lower bound for the identifiability gap.

4.6.3. Robustness: CAT on DAGs
This experiment analyzes how CAT performs compared to CAM when applied
to data generated from a Gaussian additive model with a non-tree DAG as
a causal graph. More specifically, we analyze the behavior on single-rooted
DAGs. For any fixed p ∈ N we generate a directed tree of Type 1 and for
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Figure 4.6: Empirical analysis of the lower bound on the identifiability gap, see
Section 4.6.2.2. In most of the simulated settings, we see that the
estimated identifiability gap is larger than the smallest edge-reversal
score difference. This suggests that in many cases, the latter term is
sufficient for establishing a lower bound on the identifiability gap.

each zero in the upper triangular part of the adjacency matrix we add an edge
with 5% probability. The causal functions and Gaussian noise innovations are
generated according to the specifications given in the experiment of Section 4.6.2.2.
The structural assignment for each node is additive in each causal parent, i.e.,
for all i ∈ {1, . . . , p}, Xi := ∑

j∈paG(i) fji(Xj) + Ni, with (N1, . . . , Np) mutually
independent Gaussian distributed noise innovations. For each p ∈ {16, 32, 64} and
sample size n ∈ {50, 250, 500} we randomly generate 100 single-rooted Gaussian
additive models according to the above specifications.

As CAT.G outputs trees, we do not expect it to output the correct graph.
Figure 4.7 illustrates the performance of CAT.G and CAM in terms of ancestor
relations. For this experiment, we employ CAM with preliminary neighborhood
selection and subsequent pruning. For small systems, CAM slightly outperforms
CAT.G in terms of true positive rate (TPR) when classifying causal ancestors.
However, for large systems and large sample sizes, CAT.G outperforms CAM in
that metric. On the other hand, CAM is not limited to trees which allows it to
find a more significant proportion of the true ancestor, as seen by the fraction
of correctly classified ancestors over actual ancestors. CAT.G seems to be a
viable alternative for practical non-tree applications where the true positive rate
of estimated ancestors is more important than finding all ancestor relations.

In Figure C.4 of Section C.3.2 of Appendix C.3 we have illustrated similar
comparisons when focusing on recovered edges. The true positive rate of the
recovered edges for CAT.G is larger than CAM only for small sample sizes, while
the opposite is true for large sample sizes. As expected, and as for the ancestor
relationships, the fraction of correctly predicted edges over total causal edges is
significantly higher for CAM.

Finally, while both methods are relatively efficient, CAT has a slightly lower
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Figure 4.7: Estimating ancestor relations in non-tree DAGs, see Section 4.6.3.
CAT.G slightly outperforms CAM in terms of true positive rates for
large graphs (top) but finds less ancestor relationships (bottom) due
to fitting a tree.

runtime than the greedy search algorithm of CAM. The average runtime of CAM
and CAT.G in this experiment for p = 64 and n = 500 was 193 and 139 seconds,
respectively. For both methods, the most time consuming part is estimating of
the conditional expectations that are used to compute the edge weights.

4.7. Summary and Future Work
This paper shows that exact structure learning is possible for systems of lesser
complexity, i.e., for restricted structural causal models with additive noise and
causal graphs given by directed trees. We propose the method CAT, which is guar-
anteed to consistently recover the causal directed tree in a Gaussian noise setting
under mild assumptions on the regression methods used to estimate conditional
means. Furthermore, we argue that CAT is consistent in an asymptotic setup
with vanishing identifiability. We present a computationally feasible procedure
to test substructure hypotheses and provide an analysis of the identifiability gap.
Simulation experiments show that CAT outperforms other (more general) structure
learning methods for the specific task of recovering the causal graph in additive
noise structural causal models when the causal structure is given by directed trees.
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The proof of Proposition 4.1 is based on the fact that the causal functions of
alternative models are differentiable and that the noise densities are continuous.
We conjecture that it is possible to get even stronger identifiability statements
under weaker assumptions; proving such a result necessitates new proof strategies.
Furthermore, it should be possible to bootstrap a unbiased simultaneous hypercube
confidence region for the Gaussian edge weights. This, however, requires a suffi-
ciently fast convergence rate of the estimation error of the conditional expectations
corresponding to non-causal edges. Compared to the Bonferroni correction, this
approach could increase the power of the test.
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Chapter 5

Learning Summary Graphs of Time
Series and Artifacts in DAG Models
Joint work with

Sebastian Weichwald, Phillip Bredahl Mogensen, Lasse Petersen,
Nikolaj Thams and Gherardo Varando

Abstract
In this article, we describe the algorithms for causal structure learning from

time series data that won the Causality 4 Climate competition at the Conference
on Neural Information Processing Systems 2019 (NeurIPS). We examine how our
combination of established ideas achieves competitive performance on semi-realistic
and realistic time series data exhibiting common challenges in real-world Earth
sciences data. In particular, we discuss a) a rationale for leveraging linear methods
to identify causal links in non-linear systems, b) a simulation-backed explanation
as to why large regression coefficients may predict causal links better in practice
than small p-values and thus why normalising the data may sometimes hinder causal
structure learning.

For benchmark usage, we detail the algorithms here and provide implementations
at github.com/sweichwald/tidybench. We propose the presented competition-proven
methods for baseline benchmark comparisons to guide the development of novel
algorithms for structure learning from time series.

Keywords: Causal discovery, structure learning, time series, scaling.

5.1. Introduction
Inferring causal relationships from large-scale observational studies is an essential
aspect of modern climate science Runge et al., 2019a,b. However, randomised
studies and controlled interventions cannot be carried out, due to both ethical and
practical reasons. Instead, simulation studies based on climate models are state-of-
the-art to study the complex patterns present in Earth climate systems (IPCC,
2013).

Causal inference methodology can integrate and validate current climate models
and can be used to probe cause-effect relationships between observed variables.
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The Causality 4 Climate (C4C) NeurIPS competition (Runge et al., 2020) aimed
to further the understanding and development of methods for structure learning
from time series data exhibiting common challenges in and properties of realistic
weather and climate data.

Structure of this work Section 5.2 introduces the structure learning task con-
sidered. In Section 5.3, we describe our winning algorithms. With a combination
of established ideas, our algorithms achieved competitive performance on semi-
realistic data across all 34 challenges in the C4C competition track. Furthermore,
at the time of writing, our algorithms lead the rankings for all hybrid and realistic
data set categories available on the CauseMe.net benchmark platform which also
offers additional synthetic data categories (Runge et al., 2019b). These algorithms—
which can be implemented in a few lines of code—are built on simple methods,
are computationally efficient, and exhibit solid performance across a variety of
different data sets. We therefore encourage the use of these algorithms as baseline
benchmarks and guidance of future algorithmic and methodological developments
for structure learning from time series.

Beyond the description of our algorithms, we aim at providing intuition that
can explain the phenomena we have observed throughout solving the competition
task. First, if we only ask whether a causal link exists in some non-linear time
series system, then we may sidestep the extra complexity of explicit non-linear
model extensions (cf. Section 5.4). Second, when data has a meaningful natural
scale, it may—somewhat unexpectedly—be advisable to forego data normalisation
and to use raw (vector auto)-regression coefficients instead of p-values to assess
whether a causal link exists or not (cf. Section 5.5).

5.2. Causal Structure Learning from Time-discrete
Observations

The task of inferring the causal structure from observational data is often referred
to as ‘causal discovery’ and was pioneered by Pearl (2009) and Spirtes et al. (2000).
Much of the causal inference literature is concerned with structure learning from
independent and identically distributed (iid) observations. Here, we briefly review
some aspects and common assumptions for causally modelling time-evolving
systems. More detailed and comprehensive information can be found in the
provided references.

Time-discrete observations We may view the discrete-time observations as
arising from an underlying continuous-time causal system (Peters et al., 2020).
While difficult to conceptualise, the correspondence between structural causal
models and differential equation models can be made formally precise (Bongers
and Mooij, 2018; Mooij et al., 2013; Rubenstein et al., 2018). Taken together, this
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yields some justification for modelling dynamical systems by discrete-time causal
models.

Summary graph as inferential target It is common to assume a time-homogeneous
causal structure such that the dynamics of the observation vector X are governed
by X t := F (Xpast(t), N t) where the function F determines the next observation
based on past values Xpast(t) and the noise innovation N t. Here, structure learning
amounts to identifying the summary graph with adjacency matrix A that sum-
marises the causal structure in the following sense: the (i, j)th entry of the matrix
A is 1 if Xpast(t)

i enters the structural equation of X t
i via the ith component of F

and 0 otherwise. If Aij = 1, we say that “Xi causes Xj”. While summary graphs
can capture the existence and non-existence of cause-effect relationships, they do
in general not correspond to a time-agnostic structural causal model that admits
a causal semantics consistent with the underlying time-resolved structural causal
model (Janzing et al., 2018; Rubenstein et al., 2017).

Time structure may be helpful for discovery In contrast to the iid setting,
the Markov equivalence class of the summary graph induced by the structural
equations of a dynamical system is a singleton when assuming causal sufficiency and
no instantaneous effects (Mogensen and Hansen, 2020; Peters et al., 2017). This
essentially yields a justification and a constraint-based causal inference perspective
on Wiener-Granger-causality (Granger, 1969; Peters et al., 2017; Wiener, 1956)

Challenges for causal structure learning from time series data Structure
learning from time series is a challenging task hurdled by further problems such as
time-aggregation, time-delays, and time-subsampling. All these challenges were
considered in the C4C competition and are topics of active research (Danks and
Plis, 2013; Hyttinen et al., 2016).

5.3. The Time-series Discovery Benchmark
(tidybench): Winning Algorithms

We developed four simple algorithms,

SLARAC Subsampled Linear Auto-Regression Absolute Coefficients
(cf. Alg. 1)

QRBS Quantiles of Ridge regressed Bootstrap Samples (cf. Alg. 2)
LASAR LASso Auto-Regression

SELVAR Selective auto-regressive model

which came in first in 18 and close second in 13 out of the 34 C4C competition
categories and won the overall competition (Runge et al., 2020). Here, we provide
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detailed descriptions of the SLARAC and QRBS algorithms. DYAnalogous descriptions
for the latter two algorithms and implementations of all four algorithms are available
at github.com/sweichwald/tidybench.

All of our algorithms output an edge score matrix that contains for each variable
pair (Xi, Xj) a score that reflects how likely it is that the edge Xi → Xj exists.
Higher scores correspond to edges that are inferred to be more likely to exist
than edges with lower scores, based on the observed data. That is, we rank edges
relative to one another but do not perform hypothesis tests for the existence of
individual edges. A binary decision can be obtained by choosing a cut-off value for
the obtained edge scores. In the C4C competition, submissions were compared to
the ground-truth cause-effect adjacency matrix and assessed based on the achieved
ROC-AUC when predicting which causal links exist.

The idea behind our algorithms is the following: regress present on past values
and inspect the regression coefficients to decide whether one variable is a Granger-
cause of another. SLARAC fits a VAR model on bootstrap samples of the data
each time choosing a random number of lags to include; QRBS considers bootstrap
samples of the data and Ridge-regresses time-deltas X(t)−X(t−1) on the preceding
values X(t−1); LASAR considers bootstrap samples of the data and iteratively—up
to a maximum lag—LASSO-regresses the residuals of the preceding step onto values
one step further in the past and keeps track of the variable selection at each lag to
fit an OLS regression in the end with only the selected variables at selected lags
included; and SELVAR selects edges employing a hill-climbing procedure based on
the leave-one-out residual sum of squares and finally scores the selected edges with
the absolute values of the regression coefficients. In the absence of instantaneous
effects and hidden confounders, Granger-causes are equivalent to a variable’s causal
parents (Peters et al., 2017, Theorem 10.3). In Section 5.5, we argue that the size
of the regression coefficients may in certain scenarios be more informative about
the existence of a causal link than standard test statistics for the hypothesis of
a coefficient being zero. It is argued that for additive noise models, information
about the causal ordering may be contained in the raw marginal variances. In test
statistics such as the F- and T-statistics, this information is lost when normalising
by the marginal variances.

5.4. Capturing Nonlinear Cause-Effect Links by
Linear Methods

We explain the rationale behind our graph reconstruction algorithms and how
they may capture non-linear dynamics despite being based on linearly regressing
present on past values. For simplicity we will outline the idea in a multivariate
regression setting with additive noise, but it extends to the time series setting by
assuming time homogeneity.
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Algorithm 1: Subsampled Linear Auto-Regression Absolute Coeffi-
cients (SLARAC)

Input : Data X with T time samples X(1), . . . ,X(T ) over d
variables.

Parameters : Max number of lags, L ∈ N.
Number of bootstrap samples, B ∈ N.
Individual bootstrap sample sizes, {v1, . . . , vB}.

Output : A d× d real-valued score matrix, Â.

Initialise Afull as a d× dL matrix of zeros and Â as an empty d× d
matrix;

for b = 1, . . . , B do
lags← random integer in {1, . . . , L};
Draw a bootstrap sample {t1, . . . , tvb} from {lags+1, . . . , T} with
replacement;

Y (b) ← (X(t1), . . .X(tvb));

X
(b)
past ←




X(t1 − 1) · · · X(t1 − lags)
... . . . ...

X(tvb − 1) · · · X(tvb − lags)


;

Fit OLS estimate β of regressing Y (b) onto X
(b)
past;

Zero-pad β such that dimβ = d× dL;
Afull ← Afull + |β|;

end
Aggregate (Â)i,j ← max((Afull)i,j+0·d, . . . , (Afull)i,j+L·d) for every i, j;
Return: Score matrix Â.

Let N,X(t1), X(t2) ∈ Rd be random variables such that

X(t2) := F (X(t1)) +N

for some differentiable function F = (F1, . . . , Fd) : Rd → Rd. Assume that N has
mean zero, that it is independent from X(t1), and that it has mutually independent
components. For each i, j = 1, . . . , d we define the quantity of interest

θij = E |∂iFj (X(t1))| ,

such that θij measures the expected effect from Xi(t1) to Xj(t2). We take the
matrix Θ =

(
1θij>0

)
as the adjacency matrix of the summary graph between X(t1)

and X(t2).
In order to detect regions with non-zero gradients of F we create bootstrap

samples D1, . . . ,DB. On each bootstrap sample Db we obtain the regression
coefficients Âb as estimate of the directional derivatives by a (possibly penalised)
linear regression technique. Intuitively, if θij were zero, then on any bootstrap
sample we would obtain a small non-zero contribution. Conversely, if θij were
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Algorithm 2: Quantiles of Ridge regressed Bootstrap Samples (QRBS)
Input : Data X with T time samples X(1), . . . ,X(T ) over d

variables.
Parameters : Number of bootstrap samples, B ∈ N.

Size of bootstrap samples, v ∈ N.
Ridge regression penalty, κ ≥ 0.
Quantile for aggregating scores, q ∈ [0, 1].

Output : A d× d real-valued score matrix, Â.

for b = 1, . . . , B do
Draw a bootstrap sample {t1, . . . , tv} from {2, . . . , T} with
replacement;
Y (b) ← (X(t1)−X(t1 − 1), . . . ,X(tv)−X(tv − 1));
X(b) ← (X(t1 − 1), . . . ,X(tv − 1));
Fit a ridge regression of Y (b) onto X(b):
Âb = argminA ∥Y (b) −AX(b)∥+ κ∥A∥;

Aggregate Â← qth element-wise quantile of {|Â1|, . . . , |ÂB |};
Return Score matrix Â.

non-zero, then we may for some bootstrap samples obtain a linear fit of Xj(t2)
with large absolute regression coefficient for Xi(t1). The values obtained on each
bootstrap sample are then aggregated by, for example, taking the average of the
absolute regression coefficients θ̂ij = 1

B

∑B
b=1

∣∣∣(Âb)ij

∣∣∣.
This amounts to searching the predictor space for an effect from Xi(t1) to Xj(t2),

which is approximated linearly. It is important to aggregate the absolute values
of the coefficients to avoid cancellation of positive and negative coefficients. The
score θ̂ij as such contains no information about whether the effect from Xi(t1)
to Xj(t2) is positive or negative and it cannot be used to predict Xj(t2) from
Xi(t1). It serves as a score for the existence of a link between the two variables.
This rationale explains how linear methods may be employed for edge detection
in non-linear settings without requiring extensions of Granger-type methods that
explicitly model the non-linear dynamics and hence come with additional sample
complexity (Marinazzo et al., 2008, 2011; Stramaglia et al., 2012, 2014).

5.5. Large Regression Coefficients May Predict
Causal Links Better in Practice Than Small
P-values

This section aims at providing intuition behind two phenomena: We observed a
considerable drop in the accuracy of our edge predictions whenever 1) we normalised
the data or 2) used the T-statistics corresponding to testing the hypothesis of
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regression coefficients being zero to score edges instead of the coefficients’ absolute
magnitude. While one could try to attribute these phenomena to some undesired
artefact in the competition setup, it is instructive to instead try to understand
when exactly one would expect such behaviour.

We illustrate a possible explanation behind these phenomena and do so in an iid
setting in favour of a clear exposition, while the intuition extends to settings of time
series observations and our proposed algorithms. The key remark is, that under
comparable noise variances, the variables’ marginal variances tend to increase
along the causal ordering. If data are observed at comparable scales—say sea level
pressure in different locations measured in the same units—or at scales that are in
some sense naturally relative to the true data generating mechanism, then absolute
regression coefficients may be preferable to T-test statistics. Effect variables tend
to have larger marginal variance than their causal ancestors. This helpful signal in
the data is diminished by normalising the data or the rescaling when computing
the T-statistics corresponding to testing the regression coefficients for being zero.
This rationale is closely linked to the identifiability of Gaussian structural equation
models under equal error variances Peters and Bühlmann (2014). Without any
prior knowledge about what physical quantities the variables correspond to and
their natural scales, normalisation remains a reasonable first step. We are not
advocating that one should use the raw coefficients and not normalise data, but
these are two possible alterations of existing structure learning procedures that
may or may not, depending on the concrete application at hand, be worthwhile
exploring. Our algorithms do not perform data normalisation, so the choice is up
to the user whether to feed normalised or raw data, and one could easily change
to using p-values or T-statistics instead of raw coefficients for edge scoring.

5.5.1. Instructive IID Case Simulation Illustrates Scaling Effects
We consider data simulated from a standard acyclic linear Gaussian model. Let
N ∼ N

(
0, diag(σ2

1, . . . , σ
2
d)
)

be a d-dimensional random variable and let B be
a d × d strictly lower-triangular matrix. Further, let X be a d-valued random
variable constructed according to the structural equation X = BX +N , which
induces a distribution over X via X = (I −B)−1N . We have assumed, without
loss of generality, that the causal order is aligned such that Xi is further up in the
causal order than Xj whenever i < j. We ran 100 repetitions of the experiment,
each time sampling a random lower triangular 50× 50-matrix B where each entry
in the lower triangle is drawn from a standard Gaussian with probability 1/4 and
set to zero otherwise. For each such obtained B we sample n = 200 observations
from X = BX+N which we arrange in a data matrix X ∈ R200×50 of zero-centred
columns denoted by Xj.

We regress each Xj onto all remaining variables X¬j and compare scoring edges
Xi → Xj by the absolute values of a) the regression coefficients |b̂i→j|, versus b)
the T-statistics |t̂i→j| corresponding to testing the hypothesis that the regression

133



5. Learning Summary Graphs of Time Series

coefficient b̂i→j is zero. That is, we consider

|b̂i→j| =
∣∣∣(X⊤

¬jX¬j)−1X⊤
¬jXj

∣∣∣
i

versus

|t̂i→j| = |b̂i→j|
√√√√ v̂ar(Xi|X¬i)

v̂ar(Xj|X¬j)

√√√√√ (n− d)(
1− ĉorr2(Xi, Xj|X¬{i,j})

) (5.1)

where v̂ar(Xj|X¬j) is the residual variance after regressing Xj onto the other
variables X¬j, and ĉorr(Xi, Xj|X¬{i,j}) is the residual correlation between Xi and
Xj after regressing both onto the remaining variables.

We now compare, across three settings, the AUC obtained by either using the
absolute value of the regression coefficients |b̂i→j| or the absolute value of the
corresponding T-statistics |t̂i→j| for edge scoring. Results are shown in the left,
middle, and right panel of Figure 5.1, respectively.

In the setting with equal error variances σ2
i = σ2

j ∀i, j, we observe that i) the
absolute regression coefficients beat the T-statistics for edge predictions in terms
of AUC, and ii) the marginal variances naturally turn out to increase along the
causal ordering.

When moving from |b̂i→j| to |t̂i→j| for scoring edges, we multiply by a term that
compares the relative residual variance of Xi and Xj. If Xi is before Xj in the
causal ordering it tends to have both smaller marginal and—in our simulation set-
up—residual variance than Xj as it becomes increasingly more difficult to predict
variables further down the causal ordering. In this case, the fraction of residual
variances will tend to be smaller than one and consequently the raw regression
coefficients |b̂i→j| will be shrunk when moving to |t̂i→j|. This can explain the worse
performance of the T-statistics compared to the raw regression coefficients for edge
scoring as scores will tend to be shrunk when in fact Xi → Xj.

Enforcing equal marginal variances by rescaling the rows of B and the σ2
i ’s,

we indeed observe that regression coefficients and T-statistics achieve comparable
performance in edge prediction in this somewhat artificial scenario. Here, neither
the marginal variances nor the residual variances appear to contain information
about the causal ordering any more and the relative ordering between regression
coefficients and T-statistics is preserved when multiplying by the factor highlighted
in Equation 5.1.

Enforcing decreasing marginal variances by rescaling the rows of B and
the σ2

i ’s, we can, in line with our above reasoning, indeed obtain an artificial
scenario in which the T-statistics will outperform the regression coefficients in
edge prediction, as now, the factors we multiply by will work in favour of the
T-statistics.
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Figure 5.1: Results of the simulation experiment described in Section 5.5.1. Data is
generated from an acyclic linear Gaussian model, in turn each variable
is regressed onto all remaining variables and either the raw regression
coefficient |b̂i→j| or the corresponding T-statistics |t̂i→j| is used to score
the existence of an edge i→ j. The top row shows the obtained AUC
for causal link prediction and the bottom row the marginal variance of
the variables along the causal ordering. The left panel shows naturally
increasing marginal variance for equal error variances, for the middle
and right panel the model parameters and error variances are rescaled
to enforce equal and decreasing marginal variance, respectively.

5.6. Conclusion and Future Work
We believe that competitions like the C4C competition (Runge et al., 2020) and
causal discovery benchmark platforms like CauseMe.net (Runge et al., 2019b) are
important for bundling and informing the community’s joint research efforts into
methodology that is readily applicable to tackle real-world data. In practice, there
are fundamental limitations to causal structure learning that ultimately require us
to employ untestable causal assumptions to proceed towards applications at all.
Yet, both these limitations and assumptions are increasingly well understood and
characterised by methodological research and time and again need to be challenged
and examined through the application to real-world data.

Beyond the algorithms presented here and proposed for baseline benchmarks,
different methodology as well as different benchmarks may be of interest. For
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example, our methods detect causal links and are viable benchmarks for the
structure learning task but they do not per se enable predictions about the
interventional distributions.
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Appendix A

Distributional Robustness of K-class
Estimators and the PULSE

A.1 Structural Equation Models and Interventions
A.2 Algorithms
A.3 Proofs of Results in Section 2.2
A.4 Proofs of Selected Results in Section 2.3
A.5 Proofs of Remaining Results in Section 2.3
A.6 Auxiliary Lemmas
A.7 Additional Remarks
A.8 Simulation Study
A.9 Empirical Applications

A.10 Weak Instruments
A.11 Additional Simulation Experiments

A.1. Structural Equation Models and Interventions
Structural equation models and simultaneous equation models are causal models.
That is, they contain more information than the description of an observational
distribution. We first introduce the notion of structural equation models (also
called structural causal models) and use an example to show how they can be
written as in the form of simultaneous equation models (SIM) commonly used in
econometrics, see Section A.1.2.

A.1.1. Structural equaton models and interventions
A structural equation model (SEM) (e.g. Bollen, 1989, and Pearl, 2009) over
variables X1, . . . , Xp consists of p assignments of the form

Xj := fj(XPA(j), εj), j = 1, . . . , p,
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where PA(j) ⊆ {1, . . . , p} are called the parents of j, together with a distribution
over the noise variables (ε1, . . . , εp), which is assumed to have jointly independent
marginals. The corresponding graph over X1, . . . , Xp is obtained by drawing
directed edges from the variables on the right-hand side to the variables on the
left-hand side. If the corresponding graph is acyclic, the SEM induces a unique
distribution over (X1, . . . , Xp), which is often called the observational distribution.
Section A.1.2 below discusses an example of linear assignments, which also allows
for a cyclic graph structure. The framework of SEMs also models the effect of
interventions: An intervention on variable j corresponds to replacing the jth
assignment. For example, replacing it by Xj = 4, called a hard intervention, or,
more generally, by Xj = g(XP̃A(j), ε̃j) induces yet another distribution over X
that is called an interventional distribution and that we denote by P do(Xj=4) or
P

do(Xj=g(X
P̃A(j)

,ε̃j)), respectively. A formal introduction to SEMs, in the general
case of cyclic assignments is provided by Bongers et al. (2021), for example. In
an SEM, we call all X variables endogenous and, in addition, all variables Xj, for
which we have PA(j) = ∅, will be called exogenous. A subset of variables is called
exogenous relative to another subset if it does not contain a variable that has a
parent belonging to the other set.

In the paper, we are mostly interested in one of these equations and we denote
the corresponding target variable as Y . Furthermore, some of the other X variables
may be unobserved, which we indicate by using the notation H (denoting a vector
of variables). In linear models, hidden variables can equivalently be represented
as correlation in the noise variables; see e.g. Bongers et al. (2021), and Hyttinen
et al. (2012). Finally, we let A denote a collection of variables that are known to
enter the system as exogenous variables, relative to (Y,X,H).

A.1.2. Example of a Linear Structural Equation Model
Let the distribution of (Y,X,H,A) be generated according to the possibly cyclic
SEM, [

Y X⊺ H⊺
]

:=
[
Y X⊺ H⊺

]
B + A⊺M + ε⊺. (A.1)

Here, B is a square matrix with eigenvalues whose absolute value is strictly smaller
than one. This implies that I − B is invertible ensuring that the distribution
of (Y,X,H) is well-defined since (Y,X,H) can be expressed in terms of B,M,A
and ε as (I − B⊺)−1(M⊺A + ε). We denote the random vectors Y ∈ R, X ∈
Rd, A ∈ Rq, H ∈ Rr and ε ∈ Rd+1+r by target, endogenous regressor, anchor,
hidden and noise variables, respectively. We assume that ε ⊥⊥ A rendering the
so-called anchors as exogenous variables but the coordinate components of A may
be dependent on each other. As above, we assume joint independence of the noises
ε1, . . . , ε1+d+r. Let Y ∈ Rn×1,X ∈ Rn×d,A ∈ Rn×q,H ∈ Rn×r and ε ∈ Rn×(1+d+r)

be data-matrices with n ∈ N row-wise i.i.d. copies of the variables solving the
system in Equation (2.1). Transposing the structural equations and stacking them
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vertically by row-wise observations, we can represent all structural equations by

[Y X H] := [Y X H]B + AM + ε.

We can solve the structural equations for the endogenous variables and get the
so-called structural and reduced form equations, commonly seen in econometrics,[

Y X H
]
Γ = AM + ε and

[
Y X H

]
= AΠ + εΓ−1, (A.2)

respectively, where Γ := I − B and Π := MΓ−1. Note that the equations in
Equation (A.2) differ from the standard representations of simultaneous equation
models as we have unobserved endogenous variables H in the system. In this setup,
identifiability of the full system parameters Γ and M in general breaks down due
to the dependencies generated by the unobserved endogenous variables. We now
assume without loss of generality that Γ has a unity diagonal, such that the target
equation of interest, corresponding to the first column of Equation (A.2), is given
by

Y = Xγ0 + Aβ0 + Hη0 + εY = Zα0 + ŨY , (A.3)

where (1,−γ0,−η0) ∈ R(1+d+r), β0 ∈ Rq and εY are the first columns of Γ, M and
ε respectively, Z := [X A], α0 = (γ0, β0) ∈ Rd+q and ŨY := Hη0 + εY .

The parameter of interest, α0, can be derived directly from the corresponding
entries in the matrices B and M . It carries causal information in that, for example,
after intervening on all variables except for Y , that is, considering an intervention
Z := z, and H := h, Y has the mean zα0 + hη0 + Eε1, see Equation (2.1).

In Equation (A.3) we have represented the target variable in terms of a linear
combination of the observable variables Z = (X⊺, A⊺)⊺ and some unobservable
noise term ŨY . In contrast to Equation (2.1), Equation (A.3), which is more
commonly used in the econometrics literature, models the influence of the latent
variables using a dependence between endogenous variables and the noise term ŨY ;
this equivalence is well-known and described by Bongers et al. (2021) and Hyttinen
et al. (2012), for example. The construction in Equation (2.1) can be seen as
a manifestation of Reichenbach’s common cause principle (Reichenbach, 1956).
This principle stipulates that if two random variables are dependent then either
one causally influences the other or there exists a third variable which causally
influences both.

A.2. Algorithms
In this section we present two algorithms. Algorithm 1 details a binary search
procedure for the dual PULSE parameter λ⋆

n(pmin) and Algorithm 2 details the
algorithmic construction and output messages of the PULSE estimator.
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Algorithm A.1 Binary.Search with precision 1/N .
1: input pmin, N
2: if Tn(α̂n

TSLS) ≥ Qχ2
q
(1− pmin) then terminate procedure end if

3: ℓmin ← 0; ℓmax ← 2
4: while Tn(α̂n

K(ℓmax)) > Qχ2
q
(1− pmin) do

5: ℓmin ← ℓmax; ℓmax ← ℓ2
max

6: end while
7: ∆← ℓmax − ℓmin
8: while ∆ > 1/N do
9: ℓ← (ℓmin + ℓmax)/2

10: if Tn(α̂n
K(ℓ)) > Qχ2

q
(1− pmin) then ℓmin ← ℓ else ℓmax ← ℓ end if

11: ∆← ℓmax − ℓmin
12: end while
13: return(ℓmax)

Algorithm A.2 PULSE+
1: input pmin, precision 1/N , α̂n

ALT
2: if Tn(α̂n

TSLS) ≥ Qχ2
q
(1− pmin) then

3: Warning: TSLS outside interior of acceptance region.
4: α̂n

PULSE+(pmin)← α̂n
ALT

5: else
6: if Tn(α̂n

OLS) ≤ Qχ2
q
(1− pmin) then

7: Warning: The OLS is accepted.
8: λ⋆

n(pmin)← 0
9: else

10: λ⋆
n(pmin)← Binary.Search(N, pmin)

11: end if
12: α̂n

PULSE+(pmin)← (Z⊺(I + λ⋆
n(pmin)PA)Z)−1Z⊺(I + λ⋆

n(pmin)PA)Y
13: end if
14: return(α̂n

PULSE+(pmin))

A.3. Proofs of Results in Section 2.2

Proof of Proposition 2.1: The minimizations of Equation (2.10) and Equa-
tion (2.11) are unconstrained optimization problems. We know that there exists
a unique solution if the problems are strictly convex. Thus, it suffices to ver-
ify the second order condition for strict convexity of the objective functions, i.e.,
D2lnK(α;κ) ≻ 0. To this end, note thatDlnOLS(α; Z∗,X) = 2(α⊺Z⊺

∗Z∗−Y⊺Z∗)/n and
DlnIV(α; Y,Z∗,A) = 2(α⊺Z⊺

∗PAZ∗ −Y⊺PAZ∗)/n. Thus, the first order derivative
of the K-class regression loss function is given by the κ-weighted affine combination
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of these two, that is,

DlnK(α;κ,Y,Z∗,A)
= 2n−1 ((1− κ) (α⊺Z⊺

∗Z∗ −Y⊺Z∗) + κ (α⊺Z⊺
∗PAZ∗ −Y⊺PAZ∗))

= 2n−1 (α⊺ (Z⊺
∗ ((1− κ)I + κPA) Z∗)− (Y⊺ ((1− κ)I + κPA) Z∗))

= 2n−1 (α⊺ (Z⊺
∗ (I− κ (I− PA)) Z∗)− (Y⊺ (I− κ (I− PA)) Z∗))

= 2n−1
(
α⊺
(
Z⊺

∗
(
I− κP⊥

A
)

Z∗
)
−
(
Y⊺

(
I− κP⊥

A
)

Z∗
))
,

where P⊥
A = I− PA. The second order derivative is given by

D2lnK(α;κ,Y,Z∗,A) = 2n−1Z⊺
∗(I − κP⊥

A)Z∗,

The second derivative is and is proportional to the matrix we need to invert in order
to solve the normal equation that yields the K-class estimator. As a consequence,
we have that the K-class estimator is guaranteed to exist and be unique if the
second derivative is strictly positive definite, i.e., invertible.

Let us first consider κ < 1. To see that D2lnK(α;κ,Y,Z∗,A) ≻ 0, take any
y ∈ Rd1+q1 \ {0} and assume that Assumption 2.2.(a) holds. That is, we assume
that rank(Z⊺

∗Z∗) = rank(Z∗) = d1 + q1 almost surely such that z = Z∗y ∈ Rn \ {0}
almost surely. Without Assumption 2.2.(a), choosing y ∈ ker(Z∗) \ {0} yields a
zero in the following quadratic form with positive probability. However, with this
assumption (disregarding 2n−1) we get that

y⊺D2lnK(α;κ)y ∝ (1− κ)y⊺Z⊺
∗Z∗y + κy⊺Z⊺

∗PAZ∗y = (1− κ)∥z∥2
2 + κ∥PAz∥2

2

≥
{

(1− κ)∥z∥2
2 + κ∥z∥2

2 = ∥z∥2
2, if κ ∈ (−∞, 0),

(1− κ)∥z∥2
2, if κ ∈ [0, 1), > 0.

Here, we used that PA = P ⊺
A = A(A⊺A)−1A⊺ is an orthogonal projection matrix,

hence PA = P ⊺
APA and 0 ≤ ∥PAw∥2

2 ≤ ∥w∥2
2 for any w ∈ Rq.

Let us now consider the case κ = 1. The quadratic form is now given by

y⊺D2lnK(α;κ)y = ∥PAz∥2
2 = y⊺Z⊺

∗A(A⊺A)−1A⊺Z∗y.

If rank(A⊺Z∗) < d1+q1 with positive probability, then any y ∈ ker(A⊺Z∗)\{0} ≠ ∅
yields a zero quadratic value, showing that lnK(α;κ) is not strictly convex with
positive probability. However, if Assumption 2.2.(b) holds, i.e., that A⊺Z∗ ∈
Rq×(d1+q1) satisfies rank(A⊺Z∗) = d1 + q1 almost surely, then D2lnK(α;κ) is also
guaranteed to be positive definite almost surely.

Thus, we have shown sufficient conditions for D2lnK(α;κ) to be almost surely
positive definite, ensuring strict convexity of the lnK(α;κ), hence almost sure
uniqueness of a global minimum. The unique global minimum is then found
as a solution to the normal equation DlnK(α;κ) = 0 which is given by α̂n

K(κ) =
(Z⊺

∗(I − κP⊥
A)Z∗)−1Z⊺

∗(I − κP⊥
A)Y. We conclude that under the above condi-

tions the K-class estimator α̂n
K(κ) solves the unconstrained minimization problem

arg minα∈Rd1+q1 l
n
K(α;κ) almost surely. □
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Proof of Proposition 2.2: We first prove that the population estimand that
minimizes the population loss function is well-defined. It suffices to show strict
convexity of the population loss function. Let Assumption 2.3.(a) hold, i.e., that
Var(Z∗) is positive definite, and consider κ ∈ [0, 1). For any y ∈ Rd1+q1 \ {0} we
see that

y⊺D2lK(α;κ)y = (1− κ)y⊺E(Z∗Z
⊺
∗ )y + κy⊺E(Z∗A

⊺)E(AA⊺)−1E(AZ⊺
∗ )y

≥ (1− κ)y⊺E(Z∗Z
⊺
∗ )y

= (1− κ) (y⊺Var(Z∗)y + y⊺E(Z∗)E(Z∗)⊺y)
≥ (1− κ)y⊺Var(Z∗)y > 0, (A.4)

proving strict convexity of the K-class penalized loss function. Now let κ = 1
and let Assumption 2.1.(h) and Assumption 2.3.(b) hold, i.e., Var(A) is positive
definite and E(AZ⊺

∗ ) is of full column rank (which implicitly assumes we are in
the just- or over-identified case). First note that by the above considerations
this implies that E(AA⊺) and its inverse E(AA⊺)−1 are positive definite. For any
y ∈ Rd1+q1 \ {0} we note that z := E(AZ⊺

∗ )y ̸= 0 by injectivity of E(AZ⊺
∗ ), and

hence
y⊺D2lK(α;κ)y = z⊺E(AA⊺)−1z > 0,

by the positive definiteness of E(AA⊺)−1. Proving strict convexity.
In both setups the minimization estimator of the population loss function solves

the normal equation 0 = DlK(α;κ) = (1 − κ)DlOLS(α) + κDlIV(α) which by
rearranging the terms yields that

αK(κ) =
(
(1− κ)E(Z∗Z

⊺
∗ ) + κE(Z∗A

⊺)E(AA⊺)−1E(AZ⊺
∗ )
)−1

·
(
(1− κ)E(Z∗Y ) + κE(Z∗A

⊺)E(AA⊺)−1E(AY )
)
.

We now prove that the estimators are asymptotically well-defined if the population
conditions of Assumption 2.3.(a) and Assumption 2.3.(b) hold. For κ ∈ [0, 1), we
know from Proposition 2.1 that

P

[
arg min
α∈Rd1+q1

lnK(α;κ,Y,Z∗,A) is well-defined
]

≥ P [Z⊺
∗Z∗ is positive definite] ,

So it suffices to show that the lower converges to one in probability. By the weak
law of large numbers we have, for any ε > 0 that P (∥Z⊺

∗Z∗ − E(Z∗Z
⊺
∗ )∥ < ε)→ 1.

Note that by Assumption 2.3.(a), i.e., that Var(Z∗) is positive definite, we also
have that E(Z∗Z

⊺
∗ ) is positive definite; see Equation (A.4) above. Note that the set

of positive definite matrices S+ is an open set in the space of symmetric matrices S
of the same dimensions. Hence, there must exist an open ball B(E(Z∗Z

⊺
∗ ), c) ⊆ S+

with center E(Z∗Z
⊺
∗ ) and radius c > 0, fully contained in the set of positive definite

matrices. By virtue of the above convergence in probability, we have that
P [Z⊺

∗Z∗ is positive definite] ≥ P (Z⊺
∗Z∗ ∈ B(E(Z∗Z

⊺
∗ ), c))

≥ P (∥Z⊺
∗Z∗ − E(Z∗Z

⊺
∗ )∥ < c)→ 1,
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proving that the estimator minimizing the K-class penalized regression function
is asymptotically well-defined. In the case of κ = 1 the argument for asymptotic
well-definedness follows by almost the same arguments. Arguing that A⊺A is
positive definite with probability converging to one since Var(A) is assumed positive
definite follows from the same arguments as above. To see that A⊺Z∗ is of full
column rank with probability converging to one, we use that E(AZ⊺

∗ ) is assumed
full column rank. If q = d1 +q2, then follows from the above arguments. Otherwise,
if q > d1 + q1, then we modify the above arguments using that the set of injective
linear maps from Rd1+q1 to Rq is an open set of all linear maps from Rd1+q1 to Rq.

Finally, by the law of large numbers, Slutsky’s theorem and the continuous
mapping theorem, one can easily realize that α̂n

K(κ) P−→ αK(κ). □

Proof of Theorem 2.1: Let (Y,X,H,A) be generated by the SEM given by

[Y X⊺ H⊺]⊺ := B[Y X⊺ H⊺]⊺ +MA+ ε, (A.5)

where ε satisfies ε ⊥⊥ A and has jointly independent marginals ε1 ⊥⊥ · · · ⊥⊥
εd+1+r with finite second moment E∥ε∥2

2 < ∞ and mean zero E(ε) = 0. The
distribution of A is determined independently of Equation (A.5) and with the only
requirement that E∥A∥2

2 <∞. Note that we have transposed B and M for ease
of notation. This implies that (Y,X,H) satisfies the reduced form equations given
by [Y X⊺ H⊺]⊺ = ΠA+ Γ−1ε, where Γ = I −B and Π = Γ−1M .

Now let X∗ ⊆ X and A∗ ⊆ A be our candidate predictors of Y , regardless of
which variables directly affect Y and let Z∗ = [X⊺

∗ A
⊺
∗]⊺. By the reduced form

structural equations we derive the marginal reduced forms as

Y = ΠYA+ Γ−1
Y ε and X∗ = ΠX∗A+ Γ−1

X∗ε, (A.6)

where ΠY ,ΠX∗,Γ−1
Y ,Γ−1

X∗ are the relevant sub-matrices of rows from Π and Γ−1. Fur-
thermore, let (Y v, Xv, Hv) be generated as a solution to the SEM of Equation (A.5)
under the intervention do(A := v), where v ∈ L2(Ω,F , P ) is any fixed stochastic
element uncorrelated with ε. Under the intervention and by similar manipulations
as above, we arrive at the following marginal reduced forms Y v = ΠY v+ Γ−1

Y ε and
Xv

∗ = ΠX∗v + Γ−1
X∗ε. For a fixed γ and β, with A−∗ being A \ A∗, we have that

Y − γ⊺X∗ − β⊺A∗ = (ΠY − γ⊺ΠX∗)A+ (Γ−1
Y − Γ−1

X∗)ε− β⊺A∗

= (δ⊺1 − β⊺)A∗ + δ⊺2A−∗ + w⊺ε = ξ⊺A+ w⊺ε,

where δ1, δ2 are such that (ΠY − γ⊺ΠX∗)A = δ⊺1A∗ + δ⊺2A−∗, ξ is such that
ξ⊺A = (δ⊺1 − β⊺)A∗ + δ⊺2A−∗ and w⊺ := (Γ−1

Y − Γ−1
X∗). Similar manipulations yield

that the regression residuals under the intervention are given by Y v−γ⊺Xv
∗−β⊺v∗ =

ξ⊺v + w⊺ε. Since A ⊥⊥ ε and ε has mean zero, we have that

E(Y − γ⊺X∗ − β⊺A∗|A) = ξ⊺A+ w⊺E(ε) = ξ⊺A, (A.7)
Y − γ⊺X∗ − β⊺A∗ − E(Y − γ⊺X∗ − β⊺A∗|A) = w⊺ε. (A.8)
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By construction E(vε⊺) = 0, so

Edo(A:=v)
[
(Y − γ⊺X∗ − β⊺A∗)2] = E

[
(ξ⊺v + w⊺ε)2]

= E
[
(ξ⊺v)2]+ E

[
(w⊺ε)2]+ ξ⊺E(vε⊺)w

= E
[
(ξ⊺v)2]+ E

[
(w⊺ε)2]

. (A.9)

We investigate the terms of Equation (A.9) and note by Equation (A.8) that

E
[
(w⊺ε)2] = E

[
(Y − γ⊺X∗ − β⊺A∗ − E(Y − γ⊺X∗ − β⊺A∗|A))2]

= E
[
(Y − γ⊺X∗ − β⊺A∗)2]+ E

[
E (Y − γ⊺X∗ − β⊺A∗|A)2] (A.10)

− 2E [(Y − γ⊺X∗ − β⊺A∗)E(Y − γ⊺X∗ − β⊺A∗|A)] .

In Equation (A.7) we established that E(Y − γ⊺X∗ − β⊺A∗|A) is a linear function
of A, so it must hold that

E(Y − γ⊺X∗ − β⊺A∗|A) = arg min
Z∈σ(A)

∥Y − γ⊺X∗ − β⊺A∗ − Z∥2
L2(P )

= A⊺ arg min
c∈Rq

∥Y − γ⊺X∗ − β⊺A∗ − A⊺c∥2
L2(P )

= A⊺E(AA⊺)−1E [A (Y − γ⊺X∗ − β⊺A∗)] ,

almost surely. In the first equality we used that the conditional expectation is the
best predictor under the L2(P )-norm and in the third equality we used that the
minimizer is given by the population ordinary least square estimate. An immediate
consequence of this is that the second term of Equation (A.10) equals

E
[
E (Y − γ⊺X∗ − β⊺A∗|A)2] = E[(Y − γ⊺X∗ − β⊺A∗)A⊺]E(AA⊺)−1

· E[A(Y − γ⊺X∗ − β⊺A∗)],

which is seen to be of the same form of the third term in Equation (A.10),

E [(Y − γ⊺X∗ − β⊺A∗)E(Y − γ⊺X∗ − β⊺A∗|A)]
=E [(Y − γ⊺X∗ − β⊺A∗)A⊺]E(AA⊺)−1E [A(Y − γ⊺X∗ − β⊺A∗)] .

Thus, we conclude that the second term of Equation (A.9) is given by

E
[
(w⊺ε)2] = E

[
(Y − γ⊺X∗ − β⊺A∗)2]− E [

E (Y − γ⊺X∗ − β⊺A∗|A)2]
= lOLS(α;Y, Z∗)− lIV(α;Y, Z∗, A).

Taking the supremum over all v ∈ C(κ) of the first term of Equation (A.9) we
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obtain

sup
v∈C(κ)

E
[
(ξ⊺v)2] = sup

v∈C(κ)
ξ⊺E [vv⊺] ξ

= 1
1− κξ

⊺E [AA⊺] ξ

= 1
1− κE

[
(ξ⊺A)2]

= 1
1− κE

[
E (Y − γ⊺X∗ − β⊺A∗|A)2]

= 1
1− κlIV(α;Y, Z∗, A),

where the second last equation follows from Equation (A.7) and the second
equation follows from the following argument. For any v ∈ C(κ) we have that
E(vv⊺) ⪯ 1

1−κE(AA⊺), that is, for all x ∈ Rq it holds that 1
1−κx

⊺E(AA⊺)x ≥
x⊺E(vv⊺)x, which implies that the upper bound is attained for any v such that
E(vv⊺) = 1

1−κE(AA⊺). Thus, we have that

sup
v∈C(κ)

Edo(A:=v)
[
(Y − γ⊺X∗ − β⊺A∗)2

]
= sup

v∈C(κ)
E
[
(ξ⊺v)2]+ E

[
(w⊺ε)2]

= lOLS(α;Y, Z∗) + κ

1− κlIV(α;Y, Z∗, A).

By the representation in Equation (2.13) it therefore follows that the population
K-class estimate with parameter κ ̸= 1 is given as the estimate that minimizes the
worst case mean squared prediction error over all interventions contained in C(κ),
that is,

αK(κ;Z∗, A) = arg min
γ∈Rd,β∈Rq1

sup
v∈C(κ)

Edo(A:=v)
[
(Y − γ⊺X∗ − β⊺A∗)2

]
.

□

A.4. Proofs of Selected Results in Section 2.3

Corollary A.1 (K-class estimators differ). Let Assumptions 2.6 and 2.9 hold. If
λ1, λ2 ≥ 0 with λ1 ̸= λ2, then α̂n

K(λ1) ̸= α̂n
K(λ2).

Proof of Corollary A.1: Let Assumptions 2.6 and 2.9 hold. α̂n
K(λ) is well-defined

for all λ ≥ 0 by Proposition 2.1. Let λ1, λ2 ≥ 0 with λ1 ̸= λ2 and note that the
orthogonality condition derived in the proof of Lemma 2.3 also applies here. That
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is, ⟨Y − Zα̂n
K(λi), (I + λiPA)z⟩ = 0, for all z ∈ R(Z) and i = 1, 2. Assume for

contradiction that α̂n
K(λ1) = α̂n

K(λ2). This implies that

0 = ⟨Y − Zα̂n
K(λ1), (I + λ1PA)z − (I + λ2PA)z⟩

= ⟨Y − Zα̂n
K(λ1), (λ1 − λ2)PAz⟩ = (λ1 − λ2)⟨Y − Zα̂n

K(λ1), PAz⟩,

for any z ∈ R(Z). Thus, by symmetry and idempotency of PA we have that for
all z ∈ R(Z),

⟨PAY − PAZα̂n
K(λ1), PAz⟩ = ⟨Y − Zα̂n

K(λ1), PAz⟩ = 0.

That is, PAZα̂n
K(λ1) is the orthogonal projection of PAY onto R(PAZ). This is

equivalent with saying that α̂n
K(λ1) ∈ MIV as the space of minimizers of lnIV are

exactly the coefficients in Rd1+q1 which mapped through PAZ yields this orthogonal
projection. See the proof of Lemma 2.3 for further elaboration on this equivalence.
This is a contradiction to Assumption 2.9, hence α̂n

K(λ1) ̸= α̂n
K(λ2). □

Lemma A.1 (Monotonicity of the losses and the test statistic). ,
When Assumption 2.6.(a) holds the maps [0,∞) ∋ λ 7→ lnOLS(α̂n

K(λ)) and [0,∞) ∋
λ 7→ lnIV(α̂n

K(λ)) are monotonically increasing and monotonically decreasing, re-
spectively. Consequently, if Assumption 2.7 holds, we have that the map [0,∞) ∋
λ 7−→ Tn(α̂n

K(λ)) is monotonically decreasing. Furthermore, if Assumption 2.9
also holds, these monotonicity statements can be strengthened to strictly decreasing
and strictly increasing.

Proof of Lemma A.1: Let Assumption 2.6.(a) hold, such that α̂n
K(λ) is well-

defined for all λ ≥ 0; see Proposition 2.1. Let λ2 > λ1 ≥ 0 and note that

lnOLS(α̂n
K(λ1)) + λ1l

n
IV(α̂n

K(λ1)) ≤ lnOLS(α̂n
K(λ2)) + λ1l

n
IV(α̂n

K(λ2))
= lnOLS(α̂n

K(λ2)) + λ2l
n
IV(α̂n

K(λ2)) + (λ1 − λ2)lnIV(α̂n
K(λ2))

≤ lnOLS(α̂n
K(λ1)) + λ2l

n
IV(α̂n

K(λ1)) + (λ1 − λ2)lnIV(α̂n
K(λ2)),

where we used that α̂n
K(λ) minimizes the expressions with penalty factor λ. Thus,

(λ1 − λ2)lnIV(α̂n
K(λ1)) ≤ (λ1 − λ2)lnIV(α̂n

K(λ2)),

which is equivalent with

lnIV(α̂n
K(λ1)) ≥ lnIV(α̂n

K(λ2)),

proving that λ 7→ lnIV(α̂n
K(λ)) is monotonically decreasing.

If λ2 > λ1 = 0, then we note that

lnOLS(α̂n
K(λ1)) = min

α
{lnOLS(α)} ≤ lnOLS(α̂n

K(λ2)).

For any λ > 0,

α̂n
K(λ) = arg min

α
{lnOLS(α) + λlnIV(α)} = arg min

α
{λ−1lnOLS(α) + lnIV(α)}.
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Thus, if λ2 > λ1 > 0, we have that

λ−1
1 lnOLS(α̂n

K(λ1)) + lnIV(α̂n
K(λ1))

≤λ−1
1 lnOLS(α̂n

K(λ2)) + lnIV(α̂n
K(λ2))

=λ−1
2 lnOLS(α̂n

K(λ2)) + lnIV(α̂n
K(λ2)) + (λ−1

1 − λ−1
2 )lnOLS(α̂n

K(λ2))
≤λ−1

2 lnOLS(α̂n
K(λ1)) + lnIV(α̂n

K(λ1)) + (λ−1
1 − λ−1

2 )lnOLS(α̂n
K(λ2)),

hence lnOLS(α̂n
K(λ1)) ≤ lnOLS(α̂n

K(λ2)), so λ 7→ lnOLS(α̂n
K(λ)) is monotonically increas-

ing.
When Assumption 2.7 holds, the map

λ 7→ Tn(α̂n
K(λ)) = n

lnIV(α̂n
K(λ))

lnOLS(α̂n
K(λ)) ,

is well-defined and monotonically decreasing, as it is given by a positive, mono-
tonically decreasing function over a strictly positive and monotonically increasing
function.

Furthermore, when Assumption 2.9 holds, Corollary 2.1 yields that for λ1, λ2 ≥ 0
with λ1 ̸= λ2 it holds that α̂n

K(λ1) ̸= α̂n
K(λ2). As a consequence, the above inequal-

ities become strict, since otherwise (Dual.λ.n) has two distinct solutions which
contradicts Proposition 2.1. Replacing the above inequalities with strict inequali-
ties yields that the functions are strictly increasing and decreasing, respectively.
□

Lemma A.2. Let pmin ∈ (0, 1) and let Assumption 2.6.(a) and Assumption 2.7
hold. If λ⋆

n(pmin) <∞, it holds that

Tn(α̂n
K(λ⋆

n(pmin))) ≤ Qχ2
q
(1− pmin). (A.11)

If the ordinary least square estimator satisfies Tn(α̂n
OLS) < Qχ2

q
(1 − pmin), then

Equation (A.11) holds with strict inequality, otherwise it holds with equality.

Proof of Lemma A.2: Let pmin ∈ (0, 1) and let let Assumption 2.6.(a) and
Assumption 2.7 hold, such that α̂n

K(λ) for all λ ≥ 0 and Tn(α) for all α ∈ Rd1+q1

are well-defined, by Proposition 2.1.
Assume that λ⋆

n(pmin) < ∞, so we know that Tn(α̂n
K(λ)) ≤ Qχ2

q
(1 − p) for all

λ > λ⋆
n(pmin) by the monotonicity of Lemma 2.6. Thus, the first statement follows

if we can show that λ 7→ Tn(α̂n
K(λ)) is a continuous function. Since α 7→ Tn(α) is

continuous it suffices to show that [0,∞) ∋ λ 7→ α̂n
K(λ) is continuous. Recall that

α̂n
K(λ) = (Z⊺(I + λPA)Z)−1Z⊺(I + λPA)Y, for any λ ≥ 0. Note that the functions

Inv : Sd1+q1
++ → Sd1+q1

++ given by M Inv7→M−1, λ 7→ Z⊺(I+λPA)Z, λ 7→ Z⊺(I+λPA)Y
and (B,C) 7→ BC are all continuous maps, where Sd1+q1

++ is the set of all positive
definite (d1 + q1)× (d1 + q1) matrices. We have that λ 7→ α̂n

K(λ) is a composition of
these continuous maps, hence it itself is continuous. This proves the first statement.
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In the case that OLS is strictly feasible in the PULSE problem, Tn(α̂n
OLS) <

Qχ2
q
(1− pmin), we have that

λ⋆(pmin) = inf
{
λ ≥ 0 : Tn(α̂n

K(λ)) ≤ Qχ2
q
(1− pmin)

}
= 0,

since α̂n
K(0) = α̂n

OLS, hence

Tn(α̂n
K(λ⋆

n(pmin))) = Tn(α̂n
K(0)) = Tn(α̂n

OLS) < Qχ2
q
(1− pmin).

Similar arguments show that, if the OLS is just-feasible in the PULSE problem,
Tn(α̂n

OLS) = Qχ2
q
(1− pmin), then Tn(α̂n

K(λ⋆
n(pmin))) = Qχ2

q
(1− pmin).

In the case that the OLS estimator is infeasible in the PULSE problem, Qχ2
q
(1−

pmin) < Tn(α̂n
OLS), continuity and monotonicity of λ 7→ Tn(α̂n

K(λ)) entail it must
hold that Tn(α̂n

K(λ⋆
n(pmin))) = Qχ2

q
(1− pmin), as otherwise

Tn(α̂n
K(λ⋆

n(pmin))) < Qχ2
q
(1− pmin) < Tn(α̂n

K(0)),

implying that there exists λ̃ < λ⋆
n(pmin) such that Tn(α̂n

K(λ̃)) ≤ Qχ2
q
(1 − pmin),

contradicting λ⋆
n(pmin) = inf{λ ≥ 0 : Tn(α̂n

K(λ)) ≤ Qχ2
q
(1− pmin)}. □

A.5. Proofs of Remaining Results in Section 2.3

Proof of Lemma 2.1: We want to show an asymptotic guarantee that type I
errors (rejecting a true hypothesis) occur with probability p. That is, if H0(α) is
true, then P (T c

n(α) > Qχ2
q
(1− p)) n→∞−→ p. Furthermore, we want to show that for

any fixed alternative, the probability of type II errors (failure to reject) converges to
zero. That is, if P is such that H0(α) is false, then P (T c

n(α) ≤ Qχ2
q
(1− p)) n→∞−→ 0.

Fix any α ∈ Rd1+q1. It suffices to show that under the null-hypothesis T c
n(α) is

asymptotically Chi-squared distributed with q degrees of freedom and that T c
n(α)

tends to infinity under any fixed alternative. Without loss of generality assume
that c(n) = n for all n ∈ N and recall that

T c
n(n) = Tn(α) = n

lnIV(α)
lnOLS(α) = n

∥PA(Y − Zα)∥2
2

∥Y − Zα∥2
2

.

By the idempotency of PA the numerator can be rewritten as

∥PA(Y − Zα)∥2
2 = ∥(A⊺A)−1/2A⊺R(α)∥2

2,

while the denominator takes the form ∥R(α)∥2
2. Here, R(α) := Y − Zα and

R(α) := Y − Z⊺α denotes the empirical and population regression residuals,
respectively. Assumption 2.7 ensures that Tn is well-defined on the entire domain
of Rd1+q1 as the denominator is never zero. Furthermore, note that both R(α) for
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any α ∈ Rd1+q1 and Ai for any i = 1, ..., q have finite second moments by virtue of
Assumption 2.1.(f).

Assume that the null hypothesis of zero correlation between the components of A
and the regression residuals R(α) holds. First we show that the null hypothesis, un-
der the stated assumptions, implies independence between the exogenous variables
A and the regression residuals R(α). It holds that E(AR(α)) = E(A)E(R(α)) = 0
by Assumption 2.4.(b), the mean zero assumption of A. Assumption 2.4.(a), i.e.,
A ⊥⊥ UY , yields that

0 = E(AR(α)) = E(AZ⊺)(α0 − α) + E(AUY ) = E(AZ⊺)(α0 − α), (A.12)

proving that α− α0 = w for some w ∈ kern(E(AZ⊺)). Recall that the marginal
structural equation of Equation (A.6) states that X∗ = ΠX∗A + Γ−1

X∗ε. Thus, Z
has the following representation

Z =
[
X∗
A∗

]
=
[
ΠX∗A+ Γ−1

X∗ε
A∗

]

=
[
Π(∗)

X∗ Π(−∗)
X∗

I 0

] [
A∗
A−∗

]
+
[
Γ−1

X∗

0

]
ε =: ΛA+ Ψε,

where ΠX∗ = [Π(∗)
X∗ Π(−∗)

X∗ ] ∈ Rd1×(q1+q2) and Λ, Ψ are the conformable block-
matrices. Since A ⊥⊥ ε by Assumption 2.1.(d) we have that E(Aε⊺) = 0, hence

0 = E(AZ⊺)w = E(AA⊺)Λ⊺w + E(Aε⊺)Ψ⊺w = E(AA⊺)Λ⊺w.

This proves that Λ⊺w = 0 as E(AA⊺) is of full rank by Assumption 2.1.(h). Hence,

R(α) = Y − Z⊺α = Z⊺(α0 − α) + UY = Z⊺w + UY

= A⊺Λ⊺w + ε⊺Ψ⊺w + UY = ε⊺Ψ⊺w + UY .

Furthermore, UY = α⊺
0,−∗Z−∗ + η⊺0H + εY can be written as a linear function of

A plus a linear function of ε. To realize this, simply express Z−∗ and H by their
marginal reduced form structural equations. Hence, the assumptions that A ⊥⊥ UY

must entail that A vanishes from the expression of UY . As a consequence we have
that R(α) is a linear function only of ε, from which the assumption that A ⊥⊥ ε
yields that A ⊥⊥ R(α). That is, the null hypothesis of zero correlation implies
independence in the linear structural equation model, under the given assumptions.
Thus, E∥AR(α)∥2

2 = E∥A∥2
2E∥R(α)∥2

2 <∞, so the covariance matrix of AR(α) is
well-defined.

By the established independence and Equation (A.12), the covariance matrix of
AR(α) has the following representation

Cov(AR(α)) = E(AA⊺)E(R(α)2) ≻ 0.

The positive definiteness follows from the facts that E(AA⊺) ≻ 0 and E(R(α)2) > 0
for any α ∈ Rd1+q1 . E(AA⊺) ≻ 0 follows by Assumption 2.1.(h) and E(R(α)2) > 0
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for any α ∈ Rd1+q1 follows by Assumption 2.1.(b), Assumption 2.1.(c) and
Assumption 2.5; non-degeneracy and mutual independence of the marginal noise
variables in ε. To see this, expand R(α) in terms of the marginal reduced form
structural equations of Y and Z and use that (I − B⊺) is invertible to see that
ε does not vanish in the expression R(α). The multi-dimensional Central Limit
Theorem yields that

1√
n

A⊺R(α) =
√
n

1
n

n∑
i=1


Ai,1R(α)i

...
Ai,qR(α)i


 D−→ N (0,Cov(AR(α))).

Furthermore, note that regardless of whether or not the null-hypothesis is true,
we have that √

n(A⊺A)−1/2 P−→ E(AA⊺)−1/2,

and
1√
n
∥R(α)∥2 =

√√√√1
n

n∑
i=1

R(α)2
i

P−→
√
E(R(α)2) > 0,

by the law of large numbers and the continuity of the matrix square root operation
on the cone of symmetric positive-definite matrices. We can represent the test-
statistic as Tn(α) := ∥√nWn(α)∥2

2 with

Wn(α) := (A⊺A)−1/2A⊺R(α)/∥R(α)∥2,

and have that
√
nWn(α) D−→ W ∼ N (0, I), by Slutsky’s theorem and linear

transformation rules of multivariate normal distributions. Hence, the continuous
mapping theorem yields that

Tn(α) =
∥∥∥√nWn(α)

∥∥∥2

2
D−→ ∥W∥2

2 =
q∑

i=1
W 2

i ∼ χ2
q,

where χ2
q is the Chi-squared distribution with q degrees of freedom, since W1 ⊥⊥

· · · ⊥⊥ Wq. This proves that the test-statistic Tn has the correct asymptotic
distribution under the null-hypothesis.

Now fix a distribution P , for which the null hypothesis of simultaneous zero
correlation between the components of A and the residuals R(α) does not hold.
That is, there exists an j ∈ {1, ..., q} such that E(AjR(α)) ̸= E(Aj)E(R(α)) = 0.
Note that ∥∥∥n−1/2(A⊺A)1/2

∥∥∥2

op
Tn(α)

=
∥∥∥n−1/2(A⊺A)1/2

∥∥∥2

op

∥∥∥∥∥∥
√
n(A⊺A)−1/2 1√

n
A⊺R(α)

1√
n
∥R(α)∥2

∥∥∥∥∥∥
2

2

≥
∥∥∥∥∥∥

1√
n
A⊺R(α)

1√
n
∥R(α)∥2

∥∥∥∥∥∥
2

2

≥
∣∣∣∣∣∣

1√
n
A⊺

j R(α)
1√
n
∥R(α)∥2

∣∣∣∣∣∣
2

= n

∣∣∣∣∣∣
1
nA⊺

j R(α)
1√
n
∥R(α)∥2

∣∣∣∣∣∣
2

,
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where A⊺
j := (Aj)⊺ and Aj is the j’th column of A corresponding to the i.i.d.

vector consisting of n copies of the j’th exogenous variable Aj and ∥ · ∥op is the
operator norm. The lower bound diverges to infinity in probability as the latter
factor tends to |E(AjR(α))/

√
E(R(α)2)|2 > 0 in probability by the law of large

numbers and Slutsky’s theorem. Hence, it holds that Tn(α) P−→∞, as∥∥∥n−1/2(A⊺A)1/2
∥∥∥

op
→

∥∥∥E(AA⊺)1/2
∥∥∥

op
∈ (0,∞).

This concludes the proof. □

Proof of Lemma 2.2: Let Assumption 2.6 hold, i.e., that Z⊺Z and A⊺Z are
of full rank. That α 7→ lnIV(α; Y,Z,A) is a convex function and α 7→ lnOLS(α) is
a strictly convex function can be seen from the quadratic forms of their second
derivatives, i.e.,

y⊺D2lnIV(α)y = 2n−1y⊺Z⊺A(A⊺A)−1A⊺Zy = 2n−1∥(A⊺A)−1/2A⊺Zy∥2
2 ≥ 0,

and
y⊺D2lnOLS(α)y = 2n−1y⊺Z⊺Zy = 2n−1∥Zy∥2

2 > 0,

for any y ∈ Rd1+q1 \{0}. Here, we also used that A⊺A is of full rank by Assumption
2.1.(i) and that Z ∈ Rn×(d1+q1) is an injective linear transformation as d1 + q1 =

rank(Z⊺Z) = rank(Z).
Suppose that there exists two optimal solutions α1, α2 to the (Primal.t.n) prob-

lem. By the convexity of the feasibility set any convex combination is also feasible.
However,

lnOLS (α1/2 + α2/2) < lnOLS(α1)/2 + lnOLS(α2)/2 = lnOLS(α1),

since lnOLS(α1) = lnOLS(α2). This means that α1/2 + α2/2 has a strictly better
objective value than the optimal point α1, which is a contradiction. Hence, there
cannot exist multiple solutions to the optimization problem (Primal.t.n).

Regarding the claim of solvability, note that Z⊺Z is positive definite and as a
consequence the smallest eigenvalue λmin(Z⊺Z) is strictly positive. Thus, using the
lower bound of the symmetric quadratic form α⊺Z⊺Zα ≥ λmin(Z⊺Z)∥α∥2

2, we get
that

lnOLS(α) = Y⊺Y + α⊺Z⊺Zα− 2Y⊺Zα ≥ Y⊺Y + λmin(Z⊺Z)∥α∥2
2 − 2|Y⊺Zα|

≥ Y⊺Y + λmin(Z⊺Z)∥α∥2
2 − 2∥Y⊺Z∥op∥α∥2 →∞, (A.13)

as ∥α∥2 →∞, where we used that for the linear operator Y⊺Z : Rd1+q1 → R the
operator norm is given by ∥Y⊺Z∥op := inf{c ≥ 0 : |YZv| ≤ c∥v∥2,∀v ∈ Rd1+q1},
obviously satisfying |Y⊺Zv| ≤ ∥Y⊺Z∥op∥v∥2 for any v ∈ Rd1+q1.

Now assume that t > infα l
n
IV(α). This implies that there exists at least one

point α̃ ∈ Rd1+q1 such that lnIV(α̃) ≤ t, hence we only need to consider points α
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such that lnOLS(α) ≤ lnOLS(α̃) as possible solutions of the optimization problem. By
the considerations in Equation (A.13) above, there exists c ≥ 0 such that is suffices
to search over the closed ball B(0, c). Indeed, for a sufficiently large c ≥ 0 we know
that α ̸∈ B(0, c) implies that lnOLS(α) > lnOLS(α̃) by Equation (A.13). Furthermore,
as the inequality constraint function α 7→ lnIV(α) is continuous, the set of feasible
points (lnIV)−1((−∞, t]) is closed. Hence, our minimization problem is equivalent
with the minimization of the continuous function α 7→ lnOLS(α) over the convex
and compact set B(0, c) ∩ (lnIV)−1((−∞, t]). By the extreme value theorem, the
minimum exist and is attainable. We conclude that the primal problem is solvable
if t > infα l

n
IV(α).

By definition, Slater’s condition is satisfied if there exists a point in the relative
interior of the problem domain where the constraint inequality is strict (Boyd and
Vandenberghe, 2004). Since the problem domain is Rd1+q1, we need the existence
of α ∈ Rd1+q1 such that lnIV(α) < t. This is clearly satisfied if t > infα l

n
IV(α). Let

us now specify the exact lower bound for the constraint bound as a function of the
over-identifying restrictions. Under- and just-identified case: q2 ≤ d1 (q ≤ d1 + q1).
Assumption 2.6.(b) yields that A⊺Z ∈ Rq×(d1+q1) satisfies rank(A⊺Z) = q. That
is, A⊺Z is of full row rank, hence surjective. Thus, we are guaranteed the existence
of a α̃ ∈ Rd1+q1 such that A⊺Zα̃ = A⊺Y, implying that lnIV(α̃) = 0. Over-identified
case: d1 < q2 (d1 + q1 < q). Note that the constraint function lnIV(α) : Rd1+q1 → R
is strictly convex as the second derivative D2lnIV(α; Y,Z,A) ∝ Z⊺A(A⊺A)−1A⊺Z
is positive definite by the assumption that A⊺Z ∈ Rq×(d1+q1) has full (column)
rank. The global minimum of lIV is therefore attained in the unique stationary
point. Furthermore, the stationary point is found by solving the normal equation
DlnIV(α; Y,Z,A) = 0. The solution to the normal equation is given by α̂n

TSLS =
(Z⊺PAZ)⊺Z⊺PAY, which is the standard TSLS estimator. □

Proof of Theorem 2.2: Let pmin ∈ (0, 1) and let Assumption 2.6 and Assump-
tion 2.7 hold. That is, A⊺Z and Z⊺Z are of full rank and [Z Y] is of full column rank.
Furthermore, assume that t⋆n(pmin) > −∞ and Tn(α̂n

Pr(t⋆n(pmin))) ≤ Qχ2
q
(1− pmin).

First assume that α̂n
Pr(t⋆n(pmin)) = α̂n

OLS. We note that

Tn(α̂n
OLS) = Tn(α̂n

Pr(t⋆n(pmin))) ≤ Qχ2
q
(1− pmin),

hence the global minimizer α̂n
OLS of α 7→ lnOLS(α) is unique, feasible and necessarily

optimal in the PULSE problem, so α̂n
Pr(t⋆n(pmin)) = α̂n

OLS = α̂n
PULSE and we are

done.
Now assume that α̂n

Pr(t⋆n(p)) ̸= α̂n
OLS. Consider the PULSE problem of interest

minα lnOLS(α)
subject to Tn(α) ≤ Qχ2

q
(1− pmin), (PULSE)

which is, in general, a non-convex quadratically constrained quadratic program.
First we argue that the problem is solvable, i.e., the optimum is attainable.

To see this, let p = pmin, Q = Qχ2
q
(1 − pmin) and note that by the

assumption t⋆n(pmin) > −∞ we have that the feasible set of the PULSE
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problem is non-empty. By the assumptions that [Z Y] is of full column
rank we have that Tn(α) is well-defined for any α ∈ Rd1+q1, as the
denominator is never zero. By continuity of Rd1+q1 ∋ α 7→ Tn(α) we
have that the feasible set F := T−1

n ((−∞, Q]) , is closed and non-empty,
since it is the continuous preimage of a closed set. Applying the same
arguments as seen earlier in the proof of Lemma 2.2, we know that
lnOLS(α)→∞ when ∥α∥ → ∞. Hence, for a sufficiently large c > 0 we
know that if α ̸∈ B(0, c), where B(0, c) ⊆ Rd1+q1 is the closed ball with
centre 0 and radius c, then we only get suboptimal objective values
lnOLS(α) > lnOLS(α̂n

Pr(t⋆n(p))). That is, we can without loss of optimality or
loss of solutions restrict the feasible set to F ′ = T−1

n ((−∞, Q])∩B(0, c)
a closed and bounded set in Rd1+q1. Hence, by the extreme value
theorem the minimum over F ′ is guaranteed to be attained. That is,
the PULSE problem is solvable.

However, by the non-convexity of Tn, the preimage T−1
n ((−∞, Q]) is in general not

convex, so the minimum is not yet guaranteed to be attained in a unique point.
We will show that the minimum of the PULSE problem is attained in a unique
point, that exactly coincides with the primal PULSE solution. Fix any solution α̂
to the PULSE problem and realize that the PULSE constraint is active in α̂,

Tn(α̂) = Q. (A.14)

This is seen by noting that α̂n
Pr(t⋆n(p)) ̸= α̂n

OLS by assumption, so α̂n
OLS

is not feasible in the PULSE problem, that is, α̂n
OLS ̸∈ F . If α̂n

OLS was
feasible, then t⋆n(p) = sup{t ∈ DPr : Tn(α̂n

Pr(t)) ≤ Qχ2
q
(1 − pmin)} =

lnIV(α̂n
OLS), since

Tn(α̂n
Pr(lnIV(α̂n

OLS)) = Tn(α̂n
OLS) ≤ Q,

hence
α̂n

Pr(t⋆n(p)) = arg min
α:ln

IV(α)≤ln
IV(α̂n

OLS)
lnOLS(α) = α̂n

OLS,

which is a contradiction. That the optimum must be attained in a
point, where the PULSE inequality constraint is active then follows
from Lemma A.4 of Appendix A.6 and the conclusion above that the
only stationary point of lnOLS, α̂n

OLS, is not feasible.

Thus,

Tn(α̂) = n
lnIV(α̂)
lnOLS(α̂) = Q ⇐⇒ lnIV(α̂) = Q

n
lnOLS(α̂). (A.15)

Furthermore, the assumption that Tn(α̂n
Pr(t⋆n(p))) ≤ Q means that the solution

to the primal PULSE, α̂n
Pr(t⋆n(p)), is feasible in the PULSE problem. That is,

α̂n
Pr(t⋆n(p)) ∈ F . As a consequence of this we have that

lnOLS(α̂n
Pr(t⋆n(p))) ≥ min

α∈F
lnOLS(α) = lnOLS(α̂). (A.16)
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Now we show that the PULSE solution α̂ is feasible in the primal PULSE problem
(Primal.t∗n(p).n).

To see this, Note that the feasibility set of the PULSE problem can be
shrunk in the following manner

F =
{
α ∈ Rd1+q1 : lnIV(α) ≤ Q

n
lnOLS(α)

}

=
{
α ∈ Rd1+q1 : lnIV(α) ≤ Q

n
lnOLS(α), lnOLS(α) ≥ lnOLS(α̂)

}

⊇
{
α ∈ Rd1+q1 : lnIV(α) ≤ Q

n
lnOLS(α̂), lnOLS(α) ≥ lnOLS(α̂)

}
=
{
α ∈ Rd1+q1 : lnIV(α) ≤ lnIV(α̂), lnOLS(α) ≥ lnOLS(α̂)

}
=
{
α ∈ Rd1+q1 : lnIV(α) ≤ lnIV(α̂)

}
=: F̂(α̂),

where the third equality follows from Equation (A.15). The only claim
above that needs justification is that:

lnIV(α) ≤ lnIV(α̂) =⇒ lnOLS(α) ≥ lnOLS(α̂). (A.17)

For now we assume that this claim holds and provide a proof later. Thus,
we have that F̂(α̂) ⊆ F and we note that α̂ ∈ F̂(α̂). An important
consequence of this is that the PULSE solution α̂ is also the unique
solution to the primal problem (Primal.lnIV(α̂).n). That is,

α̂ = α̂n
Pr(lnIV(α̂)) = argminα lnOLS(α)

subject to lnIV(α) ≤ lnIV(α̂).

We will now prove that lnIV(α̂) ∈ E := {t ∈ [minα l
n
IV(α), lnIV(α̂n

OLS)] :
Tn(α̂n

Pr(t)) ≤ Qχ2
q
(1− p)}. This follows from the following two observa-

tions: (1) minα l
n
IV(α) ≤ lnIV(α̂) < lnIV(α̂n

OLS) and (2) Tn(α̂n
Pr(lnIV(α̂))) ≤

Qχ2
q
(1 − p). (1) follows because α̂n

OLS ̸∈ F , which implies, by the
above inclusion, that α̂n

OLS ̸∈ F̂(α̂). (2) follows because α̂ solves
(Primal.lnIV(α̂).n) and thus α̂n

Pr(lnIV(α̂)) = α̂; Tn(α̂) ≤ Qχ2
q
(1− p) holds

because α̂ is feasible for the PULSE problem.
Now, since t⋆n(p) = sup(E\{minα l

n
IV(α)}) ∈ R implies t⋆n(p) = sup(E), it

follows that lnIV(α̂) ≤ t⋆n(p). In other words, any solution α̂ to the PULSE
problem is feasible in the primal PULSE problem (Primal.t∗n(p).n).

Hence,

lnOLS(α̂) ≥ lOLS(α̂n
Pr(t⋆n(p))). (A.18)

Equation (A.16) and Equation (A.18) now yield that lnOLS(α̂n
Pr(t⋆n(p))) = lnOLS(α̂)

for any PULSE solution α̂. Thus, any solution α̂ to the PULSE problem is feasible
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in the primal PULSE problem (Primal.t∗n(p).n) and it attains the optimal primal
PULSE objective value. We conclude that α̂ solves the primal PULSE problem.
Furthermore, it must hold that α̂ = α̂n

Pr(t⋆n(p)), by uniqueness of solutions to the
primal PULSE problem(see Lemma 2.2). This implies two things: solutions to the
PULSE problem are unique and the PULSE solution coincides with the primal
PULSE solution.

It only remains to prove the claim of Equation (A.17), which ensures F̂(α̂) ⊆ F .
Assume for contradiction that there exists an α such that lnIV(α) ≤ lnIV(α̂) and
lnOLS(α) < lnOLS(α̂), that is, we assume that

A := {α ∈ Rd1+q1 : lnOLS(α) < lnOLS(α̂)}︸ ︷︷ ︸
=:B

∩ {α ∈ Rd1+q1 : lnIV(α) ≤ lnIV(α̂)}︸ ︷︷ ︸
=:C

̸= ∅.

DefineMIV := {α : lnIV(α) = minα′ lnIV(α′)} as the solution space to the generalized
method of moments formulation of the instrumental variable minimization problem.
We now prove that MIV ∩ A = ∅.

That is, we claim that in the just- and over-identified setup α̂n
TSLS ̸∈ A

and in the under-identified setup none of the infinitely many solutions
in the solution space of the instrumental variable minimization problem
lies in A. These statements follow by first noting that MIV ⊆ F in
any identification setting. In the under- and -just identified setup this
is seen by noting that lnIV(α) = 0 for any α ∈ MIV, which implies
Tn(α) = 0 ≤ Q, hence MIV ⊆ F . In the over-identified setup, where
MIV = {α̂n

TSLS}, we will now argue that MIV ⊆ F follows from the
assumption that t⋆n(p) <∞. We first prove that DPr ∋ t 7→ Tn(α̂n

Pr(t))
is weakly increasing. If t1 < t2 are two constraint bounds for which
the primal problem is solvable, then lnOLS(α̂n

Pr(t1)) ≥ lnOLS(α̂n
Pr(t2)) as

the feasibility set for t2 is larger than the one for t1. Furthermore,
the solution α̂n

Pr(t2) either equals α̂n
Pr(t1) or is contained in the set

{α ∈ Rd1+q1 : t1 < lnIV(α) ≤ t2}; in the latter case we have lnIV(α̂n
Pr(t1)) ≤

t1 < lnIV(α̂n
Pr(t2)) ≤ t2. Thus, we have in both cases that lnIV(α̂n

Pr(t1)) ≤
lnIV(α̂n

Pr(t2)). Combining the two observations above we have that

Tn(α̂n
Pr(t1)) = n

lnIV(α̂n
Pr(t1))

lnOLS(α̂n
Pr(t1)) ≤ n

lnIV(α̂n
Pr(t2))

lnOLS(α̂n
Pr(t2)) = Tn(α̂n

Pr(t2)).

Hence, as −∞ < minα l
n
IV(α) = lnIV(α̂n

TSLS) < t⋆n(p) <∞ are two points
for which the primal problem is solvable we get that

Tn(α̂n
TSLS) = Tn(α̂n

Pr(lnIV(α̂n
TSLS))) ≤ Tn(α̂n

Pr(t⋆n(p))) ≤ Q.

This proves that MIV ⊆ F in the over-identified setup. Now, if
MIV ∩ A ̸= ∅, there exists an α ∈ MIV ∩ A ⊆ F ∩ A such that α
is feasible in the PULSE problem (α ∈ F) and α is super-optimal
compared to α̂, lnOLS(α) < lnIV(α̂) (α ∈ A), contradicting that α̂ is an
solution to the PULSE problem. We can thus conclude thatMIV∩A =
∅.
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This allows us to fix two distinct points ᾱ ̸= α′ such that ᾱ ∈ A and α′ ∈ MIV.
Consider the proper line segment function between ᾱ and α′, f(t) : [0, 1]→ Rd1+q1

given by f(t) := tα′ + (1− t)ᾱ. A multivariate convex function is convex in any
direction from any given starting point in its domain, so both lnIV ◦ f : [0, 1]→ R+
and lnOLS ◦ f : [0, 1]→ R+ are convex. Since MIV ∩ A = ∅ it is obvious that the
function f will for sufficiently large t ’leave’ the set A. We will now prove that
f actually leaves the superset B ⊃ A. More precisely, we will prove that there
exists a t1 ∈ (0, 1] such that for all t′ ∈ [0, t1) it holds that f(t′) ∈ B and for all
t′ ∈ [t1, 1] it holds that f(t′) /∈ B (which implies f(t′) /∈ A).

Because lnIV(α′) = minα l
n
IV(α) we have that α′ ∈ C = {α : lnIV(α) ≤

lnIV(α̂)}. By convexity of lnIV (Lemma 2.2) the sublevel set C is convex
and thus contains the entire line segment between ᾱ and α′. As a
consequence a′ ̸∈ B. It therefore suffices to construct a t1 ∈ (0, 1] such
that for all t′ ∈ [0, t1) it holds that f(t′) ∈ B and for all t′ ∈ [t1, 1] it
holds that f(t′) /∈ B. We now consider the set {t ∈ [0, 1] : lnOLS(f(t)) <
lnOLS(α̂)} = f−1(B). This set contains 0 because ᾱ ∈ A ⊆ B; it does
not contain 1 because α′ ̸∈ B; it is convex, as it is a sublevel set of a
convex function (lnOLS ◦ f); it is relatively open in [0, 1] because it is a
pre-image of an open set under a continuous function (lnOLS ◦ f). Thus,
the set must be of the form [0, t1) for some t1 ∈ (0, 1]. This t1 satisfies
the desired criteria.

We constructed t1 above such that for all t′ ∈ [0, t1) it holds that lnOLS(f(t′)) <
lnOLS(α̂) and for all t′ ∈ [t1, 1] it holds that lnOLS(f(t′)) ≥ lnOLS(α̂). By continuity
of lnOLS ◦ f we must therefore have that lnOLS(f(t1)) = lnOLS(α̂). Since f(1) = α′

is a global minimum for lnIV, we have that 1 must also be a global minimum for
lnIV ◦ f , implying that the convex the function lnIV ◦ f : [0, 1]→ R+ is monotonically
decreasing. It must therefore hold that

lnIV(f(t1)) < lnIV(f(0)) = lnIV(ā) ≤ lnIV(α̂).

The first inequality is strict because if lnIV(f(t1)) = lnIV(f(0)) = lnIV(ᾱ), then
convexity of lnIV implies that

lnIV(f(t1)) = lnIV(t1α′ + (1− t1)ᾱ) ≤ t1l
n
IV(α′) + (1− t1)lnIV(ᾱ),

which happens if and only if lnIV(ᾱ) ≤ lnIV(α′) contradicting the already established
fact that lnIV(ᾱ) > lnIV(α′), which holds since α′ ∈MIV but ᾱ ̸∈ MIV. We conclude
that lnIV(f(t1)) < lnIV(α̂).

Thus, we have argued that MIV ∩ A = ∅ implies the existence of an α̃ :=
f(t1) = t1α

′ + (1− t1)ᾱ such that lnIV(α̃) < lnIV(α̂) and lnOLS(α̃) = lnOLS(α̂). We have
illustrated the above considerations in Figure A.1. It follows that

Tn(α̃) = n
lnIV(α̃)
lnOLS(α̃) = n

lnIV(α̃)
lnOLS(α̂) < n

lnIV(α̂)
lnOLS(α̂) = Q,
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Figure A.1: Illustration of the described procedure in the just- or over-identified
setup with d1 + q1 = 2, where we show that A ≠ ∅ leads to a
contradiction. Here, Lg(c) := {α : g(α) ≤ c} is the c sublevel set of
the function g and A◦ denotes the interior of a set A. The illustration is
simplified, e.g., because the sublevel sets are convex but not necessarily
Euclidean balls. Note that the position of α̂n

OLS is not specified, as
it can possibly be in either A or Lln

OLS
(lnOLS(α̂)) \ A. In the under-

indentified setup α′ would lie in the d− q2 = 1 dimensional subspace
MIV and the level sets would be slabs around this line.

implying that α̃ is strictly feasible in the PULSE problem and, in fact, a solution
as the objective value is optimal. We argued earlier in Equation (A.14) that any
solution to the PULSE problem must be tight in the inequality constraint, hence
we have arrived at a contradiction. We conclude that A = ∅, which implies that
Equation (A.17) must hold. □

Proof of Lemma 2.3: Assume that we are in the just- or over-identified setup
and that Assumption 2.6 are satisfied. That is, Z⊺Z, A⊺Z and A⊺A are almost
surely of full rank. In particular we have that Z, A⊺Z and PAZ are almost surely
of full column rank (injective linear maps). Furthermore, let ε have density with
respect to the Lebesgue measure and let B be lower triangular. Fix λ ≥ 0 and
ω ∈ Wλ, where

Wλ :=(α̂n
K(λ) = α̂n

TSLS) ∩ (rank(Z⊺Z) = d1 + q1)
∩ (rank(A⊺Z) = d1 + q1) ∩ (rank(A⊺A) = q),
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satisfying P (α̂n
K(λ) = α̂n

TSLS) = P (Wλ). By Equation (2.13) we have that

α̂n
K(λ) = arg min

α
{lnOLS(α) + λlnIV(α)}

= arg min
α
{(Y − Zα)⊺(Y − Zα) + λ(Y − Zα)⊺PA(Y − Zα)}

= arg min
α

(Y − Zα)⊺(I + λPA)(Y − Zα)

= arg min
α
∥(I + λPA)1/2(Y − Zα)∥2

2

= arg min
α
∥Y − Zα∥2

(I+λPA),

where ∥ · ∥(I+λPA) is the norm induced by the inner product ⟨x, y⟩(I+λPA) = x⊺(I +
λPA)y. The solution Zα̂n

K(λ) is well-known to coincide with the orthogonal
projection of Y onto R(Z), the range of Z, with respect to the inner product
⟨·, ·⟩(I+λPA). Hence, Zα̂n

K(λ) is the unique element in this closed linear subspace
such that for all z ∈ R(Z) it holds that

⟨Y − Zα̂n
K(λ), z⟩(I+λPA) = ⟨Y − Zα̂n

K(λ), (I + λPA)z⟩ = 0,

or equivalently,

⟨Y − Zα̂n
K(λ), z⟩ = −λ⟨Y − Zα̂n

K(λ), PAz⟩, ∀z ∈ R(Z). (A.19)

We note that if λ = 0 then α̂n
K(λ) = α̂n

OSL, seen either by directly inspecting the
closed form solution of α̂n

K(λ) or concluding the same from Equation (A.19).
Furthermore, when λ > 0 we have that α̂n

K(λ) = α̂n
TSLS implies that, again,

α̂n
K(λ) = α̂n

OSL. To see this, we note that

α̂n
TSLS = arg min

α
lnIV(α) = arg min

α
∥PAY − PAZα∥2

2,

so PAZα̂n
TSLS is the orthogonal projection of PAY ontoR(PAZ). That is, PAZα̂n

TSLS
is the unique element in R(PAZ) such that

⟨PAY − PAZα̂n
TSLS, s⟩ = 0,

for all s ∈ R(PAZ), i.e.,

⟨PAY − PAZα̂n
TSLS, PAz⟩ = 0,

for all z ∈ R(Z). Thus, if α̂n
K(λ) = α̂n

TSLS for some λ > 0 we have that

0 = ⟨PAY − PAZα̂n
TSLS, PAz⟩

= ⟨PAY − PAZα̂n
K(λ), PAz⟩

= ⟨Y − Zα̂n
K(λ), PAz⟩

= −λ−1⟨Y − Zα̂n
K(λ), z⟩,
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hence ⟨Y − Zα̂n
K(λ), z⟩ = 0 for all z ∈ R(Z), where we used Equation (A.19)

and in the third equality we used that PA is idempotent and symmetric. This
implies that α̂n

K(λ) = α̂n
OLS, as it satisfies the uniquely determining condition for

the ordinary least square estimator.
Hence, for any λ ≥ 0, whenever α̂n

K(λ) = α̂n
TSLS we know that α̂n

TSLS = α̂n
K(λ) =

α̂n
OLS. Thus, for any λ ≥ 0 it holds that

P (α̂n
K(λ) = α̂n

TSLS) ≤ P (α̂n
TSLS = α̂n

OLS).

Recall that the reduced form equations of our system are given by [Y X H] =
AΠ + εΓ−1 where Γ := I − B. When B is lower triangular, so is Γ and Γ−1.
By selecting the relevant columns of Π and Γ−1 we may express the marginal
reduced form structural equations of S that consist of any collection of columns
from [Y X H] by S = AΠS + εΓ−1

S for conformable matrices ΠS and Γ−1
S . In

particular, we have that the marginal reduced form structural equations for Y and
X∗ are given by Y = AΠY + εΓ−1

Y and X∗ = AΠX∗ + εΓ−1
X∗, where ΠY ,ΠX∗,Γ−1

Y

and Γ−1
X∗ are matrices conformable with the following block representation

Π = [ ΠY︸︷︷︸
q×1

ΠX∗︸ ︷︷ ︸
q×d1

ΠX−∗︸ ︷︷ ︸
d×q2

ΠH︸︷︷︸
q×r

] ∈ Rq×l,

and

Γ−1 = [ Γ−1
Y︸︷︷︸

l×1

Γ−1
X∗︸︷︷︸

l×d1

Γ−1
X−∗︸ ︷︷ ︸

l×d2

Γ−1
H︸︷︷︸

l×r

] ∈ Rl×l,

where l := 1 + d+ r. Note that by the lower triangular structure of Γ−1 we have
that the only matrix among Γ−1

Y , Γ−1
X∗, Γ−1

X−∗ and Γ−1
H that has a non-zero first row

is Γ−1
Y .

Now assume without loss of generality that the first row of Γ−1 is given by the
first canonical Euclidean basis vector (1, 0, ..., 0) ∈ R1×l such that we have the
following partitionings

ε = [ εY︸︷︷︸
n×1

ε−Y︸ ︷︷ ︸
n×(d+r)

] ∈ Rn×l, Γ−⊺
Y = [ 1 Γ−⊺

−Y,Y︸ ︷︷ ︸
1×(d+r)

] ∈ R1×l,

Γ−⊺
X∗ = [ 0d1×1 Γ−⊺

−Y,X∗︸ ︷︷ ︸
d1×(d+r)

] ∈ Rd1×l, Γ−⊺
X1 = [ 0 Γ−⊺

−Y,X1︸ ︷︷ ︸
1×(d+r)

] ∈ R1×l,

where X1 is the first column of X. Hence, we note that εΓ−1
Y = εY + ε−Y Γ−1

−Y,Y ,
such that the marginal reduced form structural equation for Y has the following
representation

Y = AΠY + εΓ−1
Y = AΠY + ε−Y Γ−1

−Y,Y + εY =: fy(A, ε−Y ) + εY .
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We can also represent Z in terms of these structural coefficient block matrices by

Z =
[
X∗ A∗

]
=
[
AΠX∗ + εΓ−1

X∗ A∗
]

=
[
AΠX∗ A∗

]
+ ε

[
Γ−1

X∗ 0l×q1

]
= A

[
ΠX∗

[
Iq1×q1

0q2×q1

]]
+
[
ε−Y Γ−1

−Y,X∗ 0l×q1

]
=: fz(A, ε−Y ).

Assumption 2.1.(d) and Assumption 2.1.(c) together with the assumption that
the data matrices consist of row-wise i.i.d. copies of the system variables, yield
that A ⊥⊥ εY and ε−Y ⊥⊥ εY . This implies that the conditional distribution of
εY given A and ε−Y satisfies PεY |A=A,ε−Y =e = PεY

for PA,ε−Y
-almost all (A, e) ∈

Rn×q × Rn×(d+r). Hence, conditional on A = A and ε−Y = e we have that
Y|(A = A, ε−Y = e) a.s.= fy(A, e) + εY , and Z|(A = A, ε−Y = e) a.s.= fz(A, e). Now
let (PAZ)+ = (Z⊺PAZ)−1Z⊺PA and Z+ = (Z⊺Z)−1Z⊺ denote the pseudo-inverse
matrices of the almost surely full column rank matrices PAZ and Z. Furthermore,
note that the pseudo-inverses are unique for all matrices, i.e., if PAZ ̸= Z, then
(PAZ)+ ̸= Z+. We realize that α̂n

TSLS = (Z⊺PAZ)−1Z⊺PAY = (PAZ)+Y and
α̂n

OLS = (Z⊺Z)−1Z⊺Y = Z+Y. Thus, with slight abuse of notation we let Z :=
fz(A, e) for any A, e, and note that

P (α̂n
TSLS = α̂n

OLS)
= P ((PAZ)+Y = Z+Y)

=
∫
P
(
[(PAZ)+ − Z+]Y = 0|A = A, ε−Y = e

)
dPA,ε−Y

(A, e)

=
∫
P
(
[(PAZ)+ − Z+](fy(A, e) + εY ) = 0

)
dPA,ε−Y

(A, e)

=
∫
1(PAZ ̸=Z)P

(
[(PAZ)+ − Z+](fy(A, e) + εY ) = 0

)
dPA,ε−Y

(A, e), (A.20)

where PA = A(A⊺A)−1A⊺ ∈ Rn×n. The last equality is due to the claim that
1(PAZ ̸=Z) = 1 for PA,ε−Y

almost all (A, e), or equivalently∫
1(PAZ=Z) dPA,ε−Y

(A, e) =
∫
1(PAZ=Z) dP = P (PAZ = Z) = 0.

We prove this claim now.

We now prove that P (PAZ = Z) = 0. First we note that PAZ = Z
implies that R(Z) ⊆ R(A). Since Z = [X∗ A∗] with A = [A∗ A−∗]
it must hold that R(X∗) ⊆ R(A). Assume without loss of generality
that X1, the first column of X, is also a column of X∗. Note that
R(X∗) ⊆ R(A) implies that X1 can be written as a linear combination
of the columns in A, i.e., there exists a b = (b1, ..., bq) ∈ Rq such that
X1 = b1A1 + · · ·+bqAq = Ab, namely b = (A⊺A)−1AX1. The marginal
reduced form structural equation for X1 is given by X1 = AΠX1 +
εΓ−1

X1 = AΠX1 + ε−Y Γ−1
−Y,X1 = AΠX1 + ε̃, where ε̃ := ε−Y Γ−1

−Y,X1. These
two equalities are only possible if ε̃ ∈ R(A). Note that ε̃ has jointly
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independent marginals (i.i.d. observations). Each coordinate is an
independent copy of a linear combination of 1+d+r independent random
variables ε1, ..., ε1+d+r all with density with respect to Lebesgue measure.
We conclude that ε̃ has density with respect to the n-dimensional
Lebesgue measure as the linear combination is non-vanishing. This
holds because Γ−1

−Y,X1 ≠ 0 by virtue of being a column of the invertible
matrix Γ−1, where we have removed the first entry (which was a zero
element). Furthermore, since A ⊥⊥ ε, we also have that A ⊥⊥ ε̃. Hence,
the conditional distribution of ε̃ given A satisfies Pε̃|A=A = Pε̃ for
PA-almost all A ∈ Rn×q. We conclude that

P (PAZ = Z) ≤ P (ε̃ ∈ R(A))

=
∫
P (ε̃ ∈ R(A)|A = A) dPA(A)

=
∫
P (ε̃ ∈ R(A)) dPA(A)

= 0.

The last equality follows from the fact that q = rank(A⊺A) = rank(A) <
n implies that R(A) is a q-dimensional subspace of Rn. Hence, for
PA-almost all A ∈ Rn×q it holds that R(A) is a q-dimensional subspace
of Rn. The probability that ε̃ lies in a q-dimensional subspace of Rn is
zero, since it has density with respect to the n-dimensional Lebesgue
measure.

Thus, it suffices to show that

P
(
[(PAZ)+ − Z+](fy(A, e) + εY ) = 0

)
= 0,

for any A ∈ Rn×q and Z = fz(A, e) ∈ Rn×(d1+q1) with PAZ ≠ Z. Therefore,
let A ∈ Rn×q and Z = fz(A, e) ∈ Rn×(d1+q1) with PAZ ̸= Z. It holds that
(PAZ)+ ̸= Z+, which implies that (PAZ)+ − Z+ ̸= 0. Furthermore, we have that

[(PAZ)+ − Z+](fy(A, e) + εY ) = 0,

if and only if

εY ∈ ker((PAZ)+ − Z+)− [(PAZ)+ − Z+]fy(A, e),

so it suffices to show that εY has zero probability to be in the affine (translated)
subspace

ker((PAZ)+ − Z+)− [(PAZ)+ − Z+]fy(A, e) ⊆ Rn.

This affine subspace has dimension n if and only if (PAZ)+ − Z+ = 0, which we
know is false. Hence, the dimension of the affine subspace is strictly less than n.
As εY has density with respect to the n-dimensional Lebesgue measure, we know
that the probability of being in a N < n dimensional affine subspace is zero.
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Hence, we have shown that P (α̂n
TSLS = α̂n

OLS) = 0. Combining all of our
observations we get that P (α̂n

K(λ) = α̂n
TSLS) ≤ P (α̂n

TSLS = α̂n
OLS) = 0. We conclude

that
P (α̂n

TSLS ̸= α̂n
K(λ)) = 1, for all λ ≥ 0.

However, we can easily strengthen this to P (∩λ≥0(α̂n
TSLS ̸= α̂n

K(λ))) = 1. To
this end, let ω be a realization in the almost sure set ∩λ∈Q+Wλ. Then, ω ∈⋂

λ≥0 (α̂n
TSLS ̸= α̂n

K(λ)). Otherwise, there exists an λ̃ ∈ R+ \Q+ such that α̂n
TSLS =

α̂n
K(λ̃). By Lemma 2.6 we have that λ 7→ lnIV(α̂n

IV(λ)) is monotonically decreas-
ing, but since α̂n

K(λ̃) already minimizes the lnIV function, so will all α̂n
K(λ) for

all λ ≥ λ̃. As α̂n
TSLS is the unique point that minimizes lnIV we conclude that

α̂n
TSLS = α̂n

K(λ) for all λ ≥ λ̃, which yields a contradiction. We conclude that
P (∩λ≥0 (α̂n

TSLS ̸= α̂n
K(λ))) = 1.

□

Proof of Lemma 2.4: Let Assumption 2.6 and Assumption 2.7 hold, i.e., that
Z⊺Z and A⊺Z are of full rank and [Z Y] is of full column rank. Furthermore, let
Assumption 2.9 hold, i.e., that α̂n

K(λ) ̸∈ MIV for all λ ≥ 0. It holds that (Primal.t.n)
has a unique solution and satisfies Slater’s condition for all t > minα l

n
IV(α)

(Lemma 2.2). Furthermore, (Dual.λ.n) has a unique solution for all λ ≥ 0
(Proposition 2.1).

First consider an arbitrary t ∈ DPr and note that the dual problem of (Primal.t.n),
not to be confused with the problem (Dual.λ.n), is given by

maximizeλ gt(λ)
subject to λ ≥ 0. (A.21)

However, (Dual.λ.n) is equivalent with the infimum problem in the definition of
gt : R+ → R given by

gt(λ) := inf
α
{lnOLS(α) + λ(lnIV(α)− t)}.

Now consider α̂n
Pr(t) solving the primal (Primal.t.n). Slater’s condition is satisfied,

so there exists a λ(t) ≥ 0 solving the dual problem and strong duality holds,
lnOLS(α̂n

Pr(t)) = gt(λ(t)). We will now show that α̂n
Pr(t) also solves to the K-

class penalized regression problem (Dual.λ(t).n). That is, we will show that
α̂n

Pr(t) = argmin
α

lnOLS(α) + λ(t)lnIV(α). To that end, note that

gt(λ(t)) = inf
α
{lnOLS(α) + λ(t)(lnIV(α)− t)} = inf

α
{lnOLS(α) + λ(t)lnIV(α)} − λ(t)t

≤ lnOLS(α̂n
Pr(t)) + λ(t)(lnIV(α̂n

Pr(t))− t) = lnOLS(α̂n
Pr(t)) = gt(λ(t)),

where in the last equality we used strong duality and the second last equality we
used that for any constraint bound t ∈ DPr the inequality constraint of (Primal.t.n)
is active in the solution α̂n

Pr(t), i.e., lnIV(α̂n
Pr(t)) = t; see Lemma A.4 of Appendix A.6.
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Thus, it holds that

inf
α
{lnOLS(α) + λ(t)(lnIV(α)− t)} = lnOLS(α̂n

Pr(t)) + λ(t)(lnIV(α̂n
Pr(t))− t)

⇐⇒ inf
α
{lnOLS(α) + λ(t)lnIV(α)} = lnOLS(α̂n

Pr(t)) + λ(t)lnIV(α̂n
Pr(t)),

proving that α̂n
Pr(t) coincides with the unique solution α̂n

K(λ(t)) to the K-class
problem (Dual.λ(t).n) as it attains the same objective. Furthermore, there can
only be one λ(t) solving the dual problem in Equation (A.21). If there are two
distinct solutions λ′, λ′′ ≥ 0 with λ′ ̸= λ′′, then by the above observations we get
that α̂n

Pr(t) = α̂n
K(λ′) = α̂n

K(λ′′), in contradiction to Corollary 2.1.
Conversely, fix λ ≥ 0 and recall that α̂n

K(λ) solves the penalized K-class regression
problem (Dual.λ.n), that is, α̂n

K(λ) = arg minα{lnOLS(α)+λlnIV(α)}. Now consider a
primal constraint bound t(λ) := lnIV(α̂n

K(λ)) and consider the corresponding primal
optimization problem (Primal.t(λ).n) and its dual form given by

Primal : minimize lnOLS(α)
subject to lnIV(α) ≤ t(λ) Dual : maximize gt(λ)(γ)

subject to γ ≥ 0, (A.22)

where gt(λ) : [0,∞) → R is given by gt(λ)(γ) = infα{lnOLS(α) + γ[lnIV(α) − t(λ)]}.
Here we note that the proposed primal problem satisfies Slater’s condition. To see
this note that α̂n

K(λ) ̸∈ MIV, by Assumption 2.9, hence infα l
n
IV(α) = minα l

n
IV(α) <

t(λ) = lnIV(α̂n
K(λ)). Furthermore, we conclude that t(λ) ∈ (minα l

n
IV(α), lIV(α̂n

OLS)] =
DPr as λ 7→ lIV(α̂n

K(λ)) is monotonically decreasing and α̂n
K(0) = α̂n

OLS; see
Lemma 2.6.

Let p⋆ and d⋆ denote the optimal objective values for the above primal and dual
problem in Equation (A.22), respectively. It holds that α̂n

K(λ) is primal feasible
since it satisfies the inequality constraint of the primal problem in Equation (A.22).
This implies that p⋆ ≤ lnOLS(α̂n

K(λ)) since p⋆ is the infimum of all attainable
objective values. By the non-negative duality gap we also have that

p⋆ ≥ d⋆

= sup
γ≥0

gt(λ)(γ)

≥ gt(λ)(λ)
= inf

α
{lnOLS(α) + λ[lnIV(α)− t(λ)]}

= inf
α
{lnOLS(α) + λlnIV(α)} − λt(λ)

= lnOLS(α̂n
K(λ)) + λ[lnIV(α̂n

K(λ))− lnIV(α̂n
K(λ))]

= lnOLS(α̂n
K(λ)),

implying that lnOLS(α̂n
K(λ)) = p⋆. This proves that strong duality holds and that

the solution to the K-class regression problem αn
K(λ) solves the primal optimization

problem (Primal.t(λ).n), since it attains the unique optimal objective value while
also satisfying the inequality constraint. □
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Proof of Theorem 2.3: Fix any pmin ∈ (0, 1) and let Assumptions 2.6 and 2.7
hold, i.e., that Z⊺Z and A⊺Z are of full rank and [Z Y] is of full column rank.
Furthermore, let Assumption 2.9 hold, i.e., that α̂n

K(λ) ̸∈ MIV for all λ ≥ 0.
It holds that (Primal.t.n) has a unique solution and satisfies Slater’s condition
for all t > minα l

n
IV(α) (Lemma 2.2), that (Dual.λ.n) has a unique solution for

all λ ≥ 0 (Proposition 2.1) and that {α̂n
Pr(t) : t ∈ DPr} = {α̂n

K(λ) : λ ≥ 0}
(Lemma 2.4). Finally, we assume that λ⋆

n(pmin) < ∞. To simplify notation, we
write Q = Qχ2

q
(1− pmin).

We claim that the PULSE estimator can be represented in the dual form of
the primal PULSE problem. That is, as a K-class estimator α̂n

PULSE(pmin) =
α̂n

K(λ⋆
n(pmin)) with stochastic penalty parameter given by λ⋆

n(pmin) := inf{λ ≥
0 : Tn(α̂n

K(λ)) ≤ Qχ2
q
(1 − pmin)}. We show this by proving that α̂n

K(λ⋆
n(pmin)) =

α̂n
Pr(t⋆n(pmin))), which by Theorem 2.2 implies that the claim is true, if the conditions
t⋆n(pmin) > −∞ and Tn(α̂n

Pr(t⋆n(pmin))) ≤ Q can be verified from the assumption
that λ⋆

n(pmin) <∞. First, we note that if λ⋆
n(pmin) <∞, then t⋆n(pmin) > −∞.

This follows by noting that, with t(λ) := lnIV(α̂n
K(λ)), proof of Lemma 2.4

ii) yields that α̂n
K(λ) = α̂n

Pr(t(λ)) for any λ ≥ 0 which yields λ⋆
n(pmin) =

inf {λ ≥ 0 : Tn(α̂n
Pr ◦ t(λ)) ≤ Q} . Hence, if λ⋆

n(pmin) < ∞ we know
there exists a λ′ ≥ 0 such that Tn(α̂n

Pr ◦ t(λ′)) ≤ Q, i.e., there ex-
ists a t′ = t(λ′) ∈ (minα′ lnIV(α′),∞) such that Tn(α̂n

Pr(t′)) ≤ Q. We
have excluded that t′ = minα′ lnIV(α′) as t′ = lnIV(α̂n

K(λ′)) > minα′ lnIV(α′)
since α̂K(λ′) ̸∈ MIV. Furthermore, we can without loss of generality
assume that t′ ∈ (minα′ lnIV(α′), lnIV(α̂n

OLS)] because if t′ > lnIV(α̂n
OLS),

then it holds that Tn(α̂n
Pr(lnIV(α̂n

OLS))) ≤ Q as α̂n
Pr(lnIV(α̂n

OLS)) = α̂n
Pr(t′)

since the ordinary least square solution solves all (Primal.t.n) with
constraints bounds larger than lnIV(α̂n

OLS). As a consequence, the set
for which we take the supremum over in the definition of t⋆n(pmin) is
non-empty, such that t⋆n(pmin) > −∞.

Next we show that α̂n
K(λ⋆

n(pmin)) = α̂n
Pr(t⋆n(pmin))). When this equality is shown,

then the remaining condition that Tn(α̂n
Pr(t⋆n(pmin))) ≤ Q follows by Lemma A.2

and we are done. For any constraint bound t ∈ DPr = (minα l
n
IV(α), lnIV(α̂n

OLS)],
consider the primal and corresponding dual optimization problems

Primal : minimize lnOLS(α)
subject to lnIV(α) ≤ t

Dual : maximize gt(λ)
subject to λ ≥ 0, (A.23)

with dual function gt : R≥0 → R given by gt(λ) := infα{lnOLS(α) + λ(lnIV(α)− t)}.
The proof of Lemma 2.4 yields that there exists a unique λ̃(t) ≥ 0 solving the dual
problem of Equation (A.23) such that

α̂n
Pr(t) = α̂n

K(λ̃(t)).

We now prove that DPr ∋ t 7→ λ̃(t) is strictly decreasing.
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Note that by the definition of gt and Proposition 2.1 (or equivalently
the discussion in the beginning of Section 2.3.5) we have that

gt(λ) = inf
α
{lnOLS(α) + λlnIV(α)} − λt

= lnOLS(α̂n
K(λ)) + λlnIV(α̂n

K(λ))− λt. (A.24)

For any t1, t2 with 0 ≤ minα l
n
IV(α) < t1 < t2 ≤ lnIV(α̂n

OLS) we have that
gt1(λ̃(t1)) ≥ gt1(λ̃(t2)) and gt2(λ̃(t2)) ≥ gt2(λ̃(t1)) as λ̃(t) maximizes gt.
Hence, by bounding the first term we get that

gt1(λ̃(t1))− gt2(λ̃(t2)) ≥ gt1(λ̃(t2))− gt2(λ̃(t2)) (A.25)
= λ̃(t2)(t2 − t1),

where the last equality follows from the representation in Equation (A.24).
Similarly, by bounding the other term we get that

gt1(λ̃(t1))− gt2(λ̃(t2)) ≤ gt1(λ̃(t1))− gt2(λ̃(t1)) (A.26)
= λ̃(t1)(t2 − t1).

Combining the inequalities from Equations (A.25) and (A.26) we con-
clude that λ̃(t2)(t2 − t1) ≤ λ̃(t1)(t2 − t1) which implies λ̃(t2) ≤ λ̃(t1),
proving that DPr ∋ t 7→ λ̃(t), the dual solution as a function of
the primal problem constraint bound, is weakly decreasing. We now
strengthen this statement to strictly decreasing. For any constraint
bound t ∈ DPr = (minα l

n
IV(α), lnIV(α̂n

OLS)] we have that the solution
α̂n

Pr(t) yields an active inequality constraint in the (Primal.t.n) problem,
i.e., lnIV(α̂Pr(t)) = t; see Lemma A.4 of Appendix A.6. Therefore, for
any minα l

n
IV(α) < t1 < t2 ≤ lnIV(α̂n

OLS) we get that lnIV(α̂n
K(λ̃(t1))) =

lnIV(α̂n
Pr(t1)) = t1 < t2 = lnIV(α̂n

Pr(t2)) = lnIV(α̂n
K(λ̃(t2))), proving that

λ̃(t1) ̸= λ̃(t2), which implies that DPr ∋ t 7→ λ̃(t) is strictly increasing.

Recall, by Lemma 2.4 that the K-class estimators for κ ∈ [0, 1) coincides with the
collection of solutions to every primal problem satisfying Slater’s condition. That
is,

{α̂n
K(λ) : λ ≥ 0} = {α̂n

Pr(t) : t ∈ DPr} = {α̂n
K(λ̃(t)) : t ∈ DPr}, (A.27)

where λ̃ is as introduced above.
It now only remains to show that λ̃(t⋆n(pmin)) = λ⋆

n(pmin), which implies the
wanted conclusion as α̂n

Pr(t⋆n(pmin)) = α̂n
K(λ̃(t⋆n(pmin))) = α̂n

K(λ⋆
n(pmin)). We know

that α̂n
K ◦ λ̃(t) = α̂n

Pr(t), hence for all t ∈ DPr, (Tn ◦ α̂n
K ◦ λ̃)(t) = (Tn ◦ α̂n

Pr)(t), and
that for any A ⊆ [0,∞) it holds that λ̃(λ̃−1(A)) = A∩R(λ̃), where R(λ̃) = {λ̃(t) :
t ∈ DPr} ⊆ [0,∞) is the range of the reparametrization function λ̃ : DPr → [0,∞).
In fact, λ̃ is surjective. To see this, note that [0,∞) ∋ λ 7→ α̂n

K(λ) is injective
by Corollary 2.1. Thus, R(λ̃) = [0,∞) must hold, for otherwise Equation (A.27)
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would not hold. Hence, by surjectivity of λ̃ we get that for A ⊆ [0,∞) it holds
that λ̃(λ̃−1(A)) = A.

Now consider α̂n
Pr : DPr → Rd1+q1, α̂n

K : [0,∞) → Rd1+q1 and λ̃ : DPr → [0,∞)
as measurable (which follows by continuity and monotonicity) mappings such that

t⋆n(pmin) = sup{(Tn ◦ α̂n
Pr)−1(−∞, Q]} = sup{(Tn ◦ α̂n

K ◦ λ̃)−1(−∞, Q]}.

Since t 7→ λ̃(t) is strictly decreasing, we get that

λ̃(t⋆n(pmin)) = λ̃(sup{(Tn ◦ α̂n
K ◦ λ̃)−1(−∞, Q]})

= inf
{
λ̃
(
(Tn ◦ α̂n

K ◦ λ̃)−1(−∞, Q]
)}

= inf{λ̃(λ̃−1((Tn ◦ α̂n
K)−1(−∞, Q]))}

= inf
{
(Tn ◦ α̂n

K)−1(−∞, Q]
}

= inf {λ ≥ 0 : Tn(α̂n
K(λ)) ≤ Q}

= λ⋆
n(pmin),

□

Proof of Lemma 2.5: Let pmin ∈ (0, 1) and let Assumptions 2.6, 2.7 and 2.9
hold. We have that

lnOLS(α̂n
K(λ)) ≥ lnOLS(α̂n

OLS) = n−1∥Y − Zα̂n
OLS∥2

2 = n−1∥Y − PZY∥2
2 > 0,

as PZY ̸= Y (by Assumption 2.7 we have that Y ̸∈ span(Z), such that the
projection of Y onto the column space of Z does not coincide with Y itself). Hence,
Tn : Rd1+q1 → R is well-defined, and the following upper bound

Tn(α̂n
K(λ)) = n

lnIV(α̂n
K(λ))

lnOLS(α̂n
K(λ)) ≤ n

lnIV(α̂n
K(λ))

lnOLS(α̂n
OLS) ,

is valid for every λ ≥ 0. In the under- and just-identified setup we know that there
exists an α̃ ∈MIV ⊆ Rd1+q1 such that 0 = lnIV(α̃). Now let Λ > 0 be given by

Λ := n
lnOLS(α̃)

lnOLS(α̂n
OLS)Qχ2

q
(1− pmin) . (A.28)

For any λ > Λ we have by the non-negativity of lnOLS(α)/λ that

lnIV(α̂n
K(λ)) ≤ λ−1lnOLS(α̂n

K(λ)) + lnIV(α̂n
K(λ)) = min

α
{λ−1lnOLS(α) + lnIV(α)}

≤ λ−1lnOLS(α̃) + lnIV(α̃) < lnOLS(α̃)
Λ =

lnOLS(α̂n
OLS)Qχ2

q
(1− pmin)

n
,

This implies
Tn(α̂n

K(λ)) ≤ n
lnIV(α̂n

K(λ))
lnOLS(α̂n

OLS) < Qχ2
q
(1− pmin),
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whenever λ > Λ, proving that λ⋆
n(pmin) = inf{λ ≥ 0 : Tn(α̂n

K(λ)) ≤ Qχ2
q
(1 −

pmin)} < ∞. Now consider the over-identified setup (q > d1 + q1). We claim
that λ⋆

n(pmin) < ∞ if and only if Tn(α̂n
TSLS) < Qχ2

q
(1 − pmin). If Tn(α̂n

TSLS) <
Qχ2

q
(1− pmin), then by continuity of λ 7→ α̂n

K(λ) and α 7→ Tn(α) it must hold that
λ⋆

n(pmin) <∞. This follows by noting that

Tn(α̂n
K(λ)) ↓ Tn( lim

λ→∞
α̂n

K(λ)) = Tn(α̂n
TSLS) < Qχ2

q
(1− pmin),

when λ→∞, as λ 7→ Tn(α̂n
K(λ)) is strictly decreasing (Lemma 2.6) Here, we also

used that

lim
λ→∞

α̂n
K(λ) = lim

λ→∞
(Z⊺(I + λPA)Z)−1Z⊺(I + λPA)Y

= lim
λ→∞

(Z⊺(λ−1I + PA)Z)−1Z⊺(λ−1I + PA)Y

= (Z⊺PAZ)−1Z⊺PAY
= α̂n

TSLS.

Hence, there must exist a λ ∈ [0,∞) such that Tn(α̂n
K(λ)) < Qχ2

q
(1−pmin), proving

that λ⋆
n(pmin) <∞. Furthermore, note that the above arguments also imply that

Tn(α̂n
K(λ)) > Tn(α̂n

TSLS), for any λ ≥ 0, as λ 7→ Tn(α̂n
K(λ)) is strictly decreasing

and Tn(α̂n
TSLS) is the limit as λ→∞.

Conversely, assume that λ⋆
n(pmin) <∞, which implies that there exists a λ′ ∈

[0,∞) such that Tn(α̂n
K(λ′)) ≤ Qχ2

q
(1− pmin). Thus,

Tn(α̂n
TSLS) < Tn(α̂n

K(λ′)) ≤ Qχ2
q
(1− pmin),

proving that the converse implication also holds.
We furthermore note that, if the acceptance region is empty, that is

An(1− pmin) := {α ∈ Rd1+q1 : Tn(α) ≤ Qχ2
q
(1− pmin)} = ∅,

then it obviously holds that λ⋆
n(pmin) = {λ ≥ 0 : Tn(α̂n

K(λ)) ≤ Qχ2
q
(1− pmin)} =∞.

The possibility of the acceptance region being empty, follows from the fact that the
Anderson-Rubin confidence region can be empty; see Remark A.2. To realize that
the Anderson-Rubin confidence region can be empty we refer to the discussions
and Monte-Carlo simulations of Davidson and MacKinnon (2014).

□

Proof of Lemma 2.7: Assume that λ⋆
n(pmin) <∞ and that Assumption 2.6.(a)

and Assumption 2.7 hold. Consider Algorithm A.1 for any fixed N ∈ N. The first
‘while loop’ guarantees that λmin and λmax are such that λ⋆ ∈ (λmin, λmax]. This
is seen by noting that λ 7→ Tn(α̂n

K(λ)) is monotonically decreasing (Lemma 2.6)
and that λ⋆

n(pmin) <∞. Hence, Tn(α̂n
K(λmax)) eventually drops below Qχ2

q
(1− p).

The second ‘while loop’ keeps iterating until the interval (λmin, λmax], which is
guaranteed to contain λ⋆

n(pmin), has a length less than or equal to 1/N . Let λmin
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and λmax denote the last boundaries achieved before the procedure terminates.
Then 0 ≤ Binary.Search(N, p)−λ⋆

n(pmin) = λmax−λ⋆
n(pmin) ≤ λmax−λmin ≤ 1/N .

Hence, Binary.Search(N, p)− λ⋆
n(pmin)→ 0, as N →∞. □

Proof of Theorem 2.4: Consider the just- or over-identified setup (q ≥ d1 + q1),
let Assumption 2.4 hold. We furthermore assume that the population rank condi-
tion, Assumption 2.8, i.e., E(AZ⊺) is of full rank, are satisfied. We furthermore
work under the finite-sample conditions of Assumptions 2.6 and 2.7, i.e., that
A⊺A and Z⊺A are of full rank and Y ̸∈ span(Z) for all sample-sizes n ∈ N almost
surely. The first two of these are not strictly necessary as the population version
of these rank assumptions guarantee that A⊺A and Z⊺A are of full rank with
probability tending to one; see proof of Proposition 2.2. Likewise, we can drop the
last finite-sample assumption as it is almost surely guaranteed if we assume that
the distribution of εY has density with respect to Lebesgue measure. The proof
below is easily modified to accommodate these more relaxed assumptions, but
for notational simplicity we prove the statement under the stronger finite-sample
assumptions. We also let Assumption 2.9 hold which in addition with the previous
assumptions guarantees that the dual representation of the PULSE holds whenever
λ⋆

n(pmin) < ∞; see Theorem 2.3. Furthermore, many of the previous theorems
and lemmas were shown for a specific realization that satisfies the finite sample
assumptions. Hence, we may only invoke the conclusions of these theorems almost
surely. Note that the assumptions guarantee that the TSLS estimator is consistent,
i.e., α̂n

TSLS
P−→ α0.

Fix any pmin ∈ (0, 1) and let an arbitrary ε > 0 be given. We want to prove
that P (∥α̂n

PULSE+(pmin) − α0∥ > ε) → 0. To that end, define the events (An)n∈N
by An := (Tn(α̂n

TSLS) < Qχ2
q
(1− pmin)), such that

P (∥α̂n
PULSE+(pmin)− α0∥ > ε) =P ((∥α̂n

PULSE(pmin)− α0∥ > ε) ∩ An) (A.29)
+ P ((∥α̂n

ALT − α0∥ > ε) ∩ Ac
n), (A.30)

for all n ∈ N. The last term, Equation (A.30), tends to zero as n→∞,

P ((∥α̂n
ALT − α0∥ > ε) ∩ Ac

n) ≤ P (∥α̂n
ALT − α0∥ > ε)→ 0,

by the assumption that α̂n
ALT

P−→ α0 as n → ∞. In regards to the first term,
the right-hand side of Equation (A.29), we note that An = (λ⋆

n(pmin) < ∞), by
Lemma 2.5. Formally, this event equality only holds when intersecting both sides
with the almost sure event that the finite sample rank condition holds. However,
we suppress this intersection for ease of notation. Thus, on An, it holds that
α̂n

PULSE(pmin) = α̂n
K(λ⋆

n(pmin)), by Theorem 2.3, implying that

P ((∥α̂n
PULSE(pmin)− α0∥ > ε) ∩ An) = P ((∥α̂n

K(λ⋆
n(pmin))− α0∥ > ε) ∩ An).

Furthermore, Lemma A.2 yields that on An, it holds that

Tn(α̂n
K(λ⋆

n(pmin))) ≤ Qχ2
q
(1− pmin),
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or equivalently

lnIV(α̂n
K(λ⋆

n(pmin)) ≤ n−1Qχ2
q
(1− pmin)lnOLS(α̂n

K(λ⋆
n(pmin)).

On An, the stochastic factor in the upper bound above, is further bounded from
above by

lnOLS(α̂n
K(λ⋆

n(pmin))) ≤ sup
λ≥0

lnOLS(α̂n
K(λ))

= lim
λ→∞

lnOLS(α̂n
K(λ))

= lnOLS( lim
λ→∞

α̂n
K(λ))

= lnOLS(α̂n
TSLS),

where we used continuity of α 7→ lnOLS(α), that λ 7→ lnOLS(α̂n
K(λ)) is weakly

increasing (Lemma 2.6) and that limλ→∞ α̂n
K(λ) = α̂n

TSLS. Recall that the TSLS
estimator is consistent α̂n

TSLS
P−→ α0, where α0 is the causal coefficient of Z onto

Y . Hence, Slutsky’s theorem and the weak law of large numbers yield that

lnOLS(α̂n
TSLS) = n−1(Y − Zα̂n

TSLS)⊺(Y − Zα̂n
TSLS)

= n−1Y⊺Y + (α̂n
TSLS)⊺n−1Z⊺Zα̂n

TSLS − 2n−1Y⊺Zα̂n
TSLS

P−→ E(Y 2) + α⊺
0E(ZZ⊺)α0 − 2E(Y Z⊺)α0

= E[(Y − Zα0)2].

Thus, on the event An, we have that

0 ≤ lnIV(α̂n
K(λ⋆

n(pmin)) ≤ n−1Qχ2
q
(1− pmin)lnOLS(α̂n

TSLS) =: Hn,

where the upper bound Hn converges to zero in probability by Slutsky’s theorem.
Furthermore, note that

lnIV(α0) = ∥n−1/2(A⊺A)−1/2A⊺(Y − Zα0)∥2
2

= ∥(n−1A⊺A)−1/2n−1A⊺UY ∥2
2

P−→ ∥E(AA⊺)−1/2E(AUY )∥2
2

= ∥E(AA⊺)−1/2E(A)E(UY )∥2
2

= 0,

where we used that Y = Z⊺α0+UY , Assumption 2.4.(a): A ⊥⊥ UY , and Assumption
2.4.(b): E(A) = 0 (Alternatively, E(UY |A) = 0).

Now define a sequence of (everywhere) well-defined estimators (α̃n)n∈N by

α̃n := 1Anα̂
n
K(λ⋆

n(pmin)) + 1Ac
n
α0,

for each n ∈ N. We claim that the loss function lnIV evaluated in this estimator
tends to zero in probability, i.e., as n→∞ it holds that

lnIV(α̃n) = ∥(n−1A⊺A)−1/2n−1A⊺(Y − Zα̃n)∥2
2

P−→ 0. (A.31)
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This holds by the above observations as for any ε′ > 0 we have that

P (|lnIV(α̃n)| > ε′) = P ((|lnIV(α̂n
K(λ⋆

n(pmin)))| > ε′) ∩ An)
+ P ((|lnIV(α0)| > ε′) ∩ Ac

n)
≤ P ((|Hn| > ε′) ∩ An) + P ((|lnIV(α0)| > ε′) ∩ Ac

n)
≤ P (|Hn| > ε′) + P (|lnIV(α0)| > ε′)→ 0,

when n→∞. Now define the random linear maps gn : Ω× Rd1+q1 → Rq by

gn(ω, α) := (n−1A⊺(ω)A(ω))−1/2n−1A⊺(ω)Z(ω)α,

for all n ∈ N. The maps (gn) converge point-wise, that is, for each α, in probability
to g : Rd1+q1 → Rq, given by g(α) := E(AA⊺)−1/2E(AZ⊺)α, as n→∞. The map
g is injective. This follows by Assumption 2.1.(h) and Assumption 2.8, which
implies and state that E(AA⊺) ∈ Rq×q and E(AZ⊺) ∈ Rq×(d1+q1) are of full rank,
respectively, hence rank(E(AA⊺)−1/2E(AZ⊺)) = rank(E(AZ⊺)) = d1 + q1, since
we are in the just- and over-identified setup, where q ≥ d1 + q1. We conclude that
g is injective, as its matrix representation is of full column rank. Furthermore,
by Equation (A.31) it holds that gn(α̃n) P−→ E(AA⊺)−1/2E(AY ). Hence, we have
that

gn(α̃n)− gn(α0) P−→ E(AA⊺)−1/2E(AY )− E(AA⊺)−1/2E(AZ⊺)α0

= E(AA⊺)−1/2E(AUY )
= 0,

as n → ∞. Lemma A.3 of Appendix A.6 now yields that α̃n
P−→ α0. Finally,

note that as α̂n
K(λ⋆

n(pmin)) = α̃n on An we have that

P ((∥α̂n
K(λ⋆

n(pmin))− α0∥ > ε) ∩ An) = P ((∥α̃n − α0∥ > ε) ∩ An)
≤ P (∥α̃n − α0∥ > ε)
→ 0,

proving that α̂n
PULSE+(pmin) P−→ α0, as n→∞. □

A.6. Auxiliary Lemmas

Lemma A.3. Suppose that gn : RG → RK are random linear maps converging
point-wise in probability to a non-random linear map g : RG → RK that is injective.
If

gn(β̂n − β0) P−→
n→∞

0,

then β̂n is a consistent estimator of β0. That is, β̂n
P−→

n→∞
β0.
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Proof of Lemma A.3: As g is injective, we have that rank(g) = G, and as
such rank(g⊺g) = (g) = G which implies that g⊺g is invertible. Furthermore, by
Slutsky’s theorem we get that gn

P−→ g =⇒ g⊺ngn
P−→ g⊺g, as n→∞, that is, for

any ε > 0,
P (||g⊺ngn − g⊺g∥ ≤ ε) = P (g⊺ngn ∈ B(g⊺g, ε)) →

n→∞
1.

Here ∥ · ∥ is any norm on the set of G × G matrices and B(g⊺g, ε) is the closed
ball around g⊺g with radius ε with respect the this norm. Now note that the set
NSG of all non-singular G×G matrices is an open subset of all G×G matrices,
which implies that there exists an ε > 0, such that B(g⊺g, ε) ⊆ NSG. Hence, g⊺ngn

is invertible with probability tending towards 1, that is, P (g⊺ngn ∈ NSG) →
n→∞

1.
Let hn : Ω→ NSG be given by

hn(ω) := 1(g⊺
ngn∈NSG)g

⊺
n(ω)gn(ω) + 1(g⊺

ngn∈NSG)cI.

Then hn
P−→

n→∞
g⊺g, since for any ε > 0

P (∥hn − g⊺g∥ > ε) = P ((∥g⊺ngn − g⊺g∥ > ε) ∩ (g⊺ngn ∈ NSG))
+ P ((∥I − g⊺g∥ > ε) ∩ (g⊺ngn ∈ NSG)c)

≤ P (∥g⊺ngn − g⊺g∥ > ε) + P (g⊺ngn ∈ NSG)c)
→

n→∞
0,

Continuity of the inverse operator and the continuous mapping theorem, yield
that ∥h−1

n ∥op
P−→ ∥(g⊺g)−1∥op ∈ R and ∥g⊺n∥op

P−→ ∥g⊺∥op ∈ R as n tends to
infinity, where ∥ · ∥op is the operator norm induced by the Euclidean norm ∥ · ∥2.
Furthermore,

∥g⊺ngn(β̂n − β0)∥2 ≤ ∥g⊺n∥op∥gn(β̂n − β0)∥2
P−→

n→∞
∥g⊺∥op · 0

= 0,
by the assumptions and Slutsky’s theorem. Hence, for any ε > 0
P (∥hn(β̂n − β0)∥2 > ε) = P ((∥g⊺ngn(β̂n − β0)∥2 > ε) ∩ (g⊺ngn ∈ NSG))

+ P ((∥β̂n − β0∥2 > ε) ∩ (g⊺ngn ∈ NSG)c)
≤ P ((∥g⊺ngn(β̂n − β0)∥2 > ε)) + P ((g⊺ngn ∈ NSG)c)
→

n→∞
0.

Thus,
∥β̂n − β0∥2 = ∥h−1

n hn(β̂n − β0)∥2

≤ ∥h−1
n ∥op∥hn(β̂n − β0)∥2

P−→
n→∞

∥(g⊺g)−1∥op · 0
= 0,
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by Slutsky’s theorem, yielding that β̂n is an consistent estimator of β0. □

Lemma A.4. Let α̂ be a solution to a constrained optimization problem of the
form

minimize
α∈Rk

f(α)
subject to g(α) ≤ c,

where f is an everywhere differentiable strictly convex function on Rk for which a
stationary point exists, g is continuous and c ∈ R. If the stationary point of f is
not feasible, then the constraint inequality is tight (active) in the solution α̂, that
is, g(α̂) = c.

Proof of Lemma A.4: Since α̂ feasible and the stationary point of f is not
feasible, we know that α̂ is not a stationary point of f , hence Df(α̂) ̸= 0. Now
assume that the constraint bound is not tight (active) in the solution α̂, that is
g(α̂) < c. By continuity of g, we know that there exists an ε > 0, such that for all
α ∈ B(α̂, ε), it holds that g(α) < c. Furthermore, since Df(α̂) = 0, we can look
at the line segment going through α̂ in the direction of the negative gradient of f
in α̂. That is, l : R→ Rk defined by l(t) = α̂− tDf(α̂). Note that

D(f ◦ l)(0) = Df(l(0))Dl(0) = −Df(α̂)Df(α̂)⊺ = −∥Df(α̂)∥ < 0,

meaning that the derivative of f ◦ l : R→ R is negative in zero. Therefore, there
exists a δ > 0, such that for all t ∈ (0, δ) it holds that f ◦ l(t) < f ◦ l(0), i.e.,

f(α̂− tDf(α̂)) < f(α̂).

Thus, for sufficiently small t′, is it holds that t′ < δ and α̂− t′Df(α̂) ∈ B(α̂, ε). We
conclude that α̃ := α̂− tDf(α̂) is feasible, g(α̃) < c, and super-optimal compared
to α̂, f(α̃) < f(α̂), which contradicts that α̂ solves the optimization problem. In
words, if the solution is not tight we can take a small step in the negative gradient
direction of the objective function and get a better objective value while still being
feasible. □

A.7. Additional Remarks

Remark A.1 (Model misspecification). Theorem 2.1 still holds under the fol-
lowing three model misspecifications, which may arise from erroneous non-sample
information and unobserved endogenous variables (these violations may break the
identification of α0,∗ and generally render the K-class estimators inconsistent even
when P-lim κ = 1).
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(a) Exclude included endogenous variables. Consider the setup where no hidden
variable enters the target equation given by Y = γ⊺0X + β⊺

0A + εY , with
εY ⊥⊥ A. If we erroneously exclude an endogenous variable that directly
affects Y , i.e., γ0,−∗ ̸= 0, this is equivalent to drawing inference from the
model Y = γ⊺0,∗X∗ + β⊺

0,∗A∗ + U , where U = εY + γ⊺0,−∗X−∗. If E(A−∗U) =
E(A−∗X

⊺
−∗)γ0,−∗ ̸= 0, we have introduced dependence that renders at least

some of the instruments A−∗ invalid, breaking identifiability.

(b) Exclude included exogenous variables. Consider again the setup from (a)
where there is no hidden variables entering the target equation. If we
erroneously exclude a exogenous variable that directly affects Y , i.e., β0,−∗ ̸=
0, then this is equivalent with drawing inference from the model Y =
γ⊺0,∗X∗ + β⊺

0,∗A∗ + U , where U = εY + β⊺
0,−∗A−∗. It holds that E(A−∗U) =

E(A−∗A
⊺
−∗)β0,−∗ ̸= 0, again rendering the instruments invalid.

(c) Possibility of hidden endogenous variables. Consider the case with included
hidden variables that are directly influenced by the excluded exogenous
variables, i.e., A−∗ → H → Y . This implies that the excluded exogenous
variables A−∗ are correlated with the collapsed noise variable in the structural
equation Y = α⊺

0,∗Z∗ +U , where U = εY + η⊺0H with η0 ̸= 0. In the case that
E(A−∗U) = E(A−∗H

⊺)η0 ̸= 0 the instruments are invalid.

◦

Remark A.2 (Connection to the Anderson-Rubin Test). Our acceptance re-
gion Ac

n(1 − pmin) := {α ∈ Rd1+q1 : T c
n(α) ≤ Qχ2

q
(1 − pmin)}, is closely related

to the Anderson-Rubin (Anderson and Rubin, 1949) confidence region of the
simultaneous causal parameter α0 = (γ0, α0) in an identified model. When
the causal parameter α0 is identifiable, i.e., in a just- or over-identified setup
(q ≥ d1 + q2) and Assumption 2.8 holds, only the causal parameter yields regres-
sion residuals Y − α⊺

0Z that are uncorrelated with the exogenous variables A.
In this restricted setup, our null hypothesis is equivalent with H̃0(α) : α = α0.
The hypothesis H̃0(α) can be tested by the Anderson-Rubin test and all non-
rejected coefficients constitute the Anderson-Rubin confidence region of α0, which is
given by CRex,n

AR (1− pmin) :=
{
α ∈ Rd1+q1 : TAR

n (α) ≤ QF (q,n−q)(1− pmin)
}
, where

QF (q,n−q)(1− pmin) is the 1− pmin quantile of the F distribution with q and n− q
degrees of freedom and the Anderson-Rubin test-statistic TAR

n (α) is given by

TAR
n (α) := n− q

q

(Y − Zα)⊺PA(Y − Zα)
(Y − Zα)⊺P⊥

A(Y − Zα) = n− q
q

lnIV(α)
lnOLS(α)− lnIV(α) .

The confidence region CRex,n
AR is exact whenever several regularity conditions are

satisfied, such as deterministic exogenous variables and normal distributed errors
(Anderson and Rubin, 1949, Theorem 3). In a general SEM model the regularity
conditions are not fulfilled, but changing the rejection threshold to Qχ2

q/q(1− pmin),
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we obtain an asymptotically valid confidence region. That is,
CRas,n

AR (1− pmin) :=
{
α ∈ Rd1+q1 : TAR

n (α) ≤ Qχ2
q/q(1− pmin)

}
,

is an asymptotically valid approximate confidence region (Anderson and Rubin,
1950, Theorem 6). This relies on the fact that TAR

n (α) D−→ χ2
q/q under the null

and TAR
n diverges to infinity under the general alternative. The test-statistic T c

n(α)
can be seen as a scaled coefficient of determination (R2-statistic) for which TAR

n (α)
is the corresponding F -statistic. That is, one can realize that

TAR
n (α) = n− q

q

T c
n(α)/c(n)

1− T c
n(α)/c(n) ≤ Qχ2

q/q(1− pmin),

is equivalent to
n− q +Qχ2

q
(1− pmin)

c(n) T c
n(α) ≤ Qχ2

q
(1− pmin).

Thus, if Qχ2
q
(1−pmin) ≥ q, then An(1−pmin) ⊇ CRas,n

AR (1−pmin) and An(1−pmin) ⊆
CRas,n

AR (1 − pmin) otherwise, where An(1 − pmin) is the acceptance region when
using the scaling scheme c(n) = n. Furthermore, Ac

n(1 − pmin), the acceptance
region under a general scaling scheme c(n) ∼ n, is asymptotically equivalent
to the Anderson-Rubin approximate confidence region CRas,n

AR (1 − pmin). If we
choose the specific scaling to be c(n) = n− q +Qχ2

q
(1− pmin), then they coincide,

CRas,n
AR (1 − pmin) = Ac

n(1 − pmin) for each n ∈ N. Whenever the Anderson-
Rubin confidence region is exact, we could change the rejection threshold from
Qχ2

q
(1 − pmin) to c(n)QB(q/2,(n−q)/2)(1 − pmin) and also get an exact acceptance

region, where B(q/2, (n − q)/2) is the Beta distribution with shape and scale
parameter q/2 and (n− q)/2 respectively. ◦
Remark A.3 (Connections to pre-test estimators). It has been suggested to
use pre-test for choosing between the TSLS and OLS estimator. When using the
Hausman test for endogeneity (Hausman, 1978) one considers the pre-test estimator
studied by, e.g., Chmelarova and Hill (2010) and Guggenberger (2010). If H denotes
the Hausman test-statistic that rejects the hypothesis of endogeneity when H ≤ Q,
the pre-test estimator is given by αn

pretest = 1(H≤Q)α
n
OLS + 1(H>Q)α

n
TSLS. The

PULSE estimator can be seen as a pre-test estimator using the Anderson-Rubin
test as a test for endogeneity. However, PULSE differs from the above in the
sense that when endogeneity is not rejected we do not revert to the TSLS estimate
but rather to the coefficient within the Anderson-Rubin confidence region that
minimizes the mean squared prediction error. ◦

A.8. Simulation Study

A.8.1. Distributional Robustness
We first illustrate the distributional robustness property of K-class estimators
discussed in Section 2.2.3.3 in a finite sample setting. We consider the model given
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by

X := A+ UX , Y := γX + UY ,

where γ = 1 and A ∼ N(0, 1) independent of
(

UX
UY

)
∼ N (( 0

0 ), ( 1 0.5
0.5 1 )). We

estimate γ from n = 2000 observations generated by the above system and estimate
γ̂n

K(κ) for all κ ∈ {0, 3/4, 1} for which the corresponding population coefficients
are given by γK(0) = γOLS = 1.25, γK(3/4) = 1.1 and γK(1) = γTSLS = 1. We
repeat the simulation 50 times and save the estimated coefficients. Figure A.2
illustrates the distributional robustness property of Theorem 2.1. For all estimated
coefficients γ̂ of γ we have plotted the analytically computed worst case mean
squared prediction error (MSPE) under all hard interventions of absolute strength
up to x given by

sup
|v|≤x

Edo(A:=v)[(Y − γ̂X)2] = x2(1− γ̂)2 + γ̂2 + 3(1− γ̂) (A.32)

against the maximum intervention strength x for the range x ∈ [0, 6]. The plot
also shows results for the population coefficient as seen in Rothenhäusler et al.
(2021, Figure 2).

In all 50 repetitions the K-class estimator for κ = 3/4 outperforms both OLS
and TSLS in terms of worst case MSPE for maximum intervention strength of 2.
This is in line with the theory presented in Section 2.2.3.3. In terms of population
coefficients our theoretical results predict that κ = 3/4 is worst case MSPE superior,
relative to OLS and TSLS, for all maximum intervention strengths in the range
[1.37, 3]. Among the 50 repetitions we find the outcomes for which the superiority
range of κ = 3/4 has the shortest and longest superiority range length. The
shortest superiority range is [1.27, 2.15] and the longest is [1.46, 5.54]. Clearly,
these numbers vary with changing sample size and number of repetitions. For
example, with 50, 200, 500, 2000, 5000 and 10000 observations and 50 repetitions,
the median lengths of the MSPE superiority range for κ = 3/4 equal 0.82, 1.16,
1.44, 1.74, 1.58 and 1.63, respectively (1.63 is also the length of the theoretically
computed interval [1.37, 3]).

A.8.2. Estimating causal effects
In this subsection we investigate the finite sample behaviour of the PULSE esti-
mator by simulation experiments. We look at how the PULSE estimator fairs in
comparison to other well-known single equation estimators in terms of different
performance measures. We generate n ∈ N realizations of the SEM in question and
construct the estimators of interest based on these n observations. This is repeated
N ∈ N times, allowing us to estimate different finite sample performance measures
of the estimators of interest. The characterization of weak instruments through the
minimum eigenvalue of Gn, a multivariate analogue to the first stage F -statistic,
as introduced in Stock and Yogo (2002) is important for some of our experimental
findings. We refer the reader to Appendix A.10 for a brief introduction.
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Figure A.2: Distributional Robustness of K-class estimators. The plot shows the
worst case MSPE against the maximum intervention strength cond-
sidered. Each of the 50 repetitions corresponds to three lines (green,
red, blue), corresponding to the three estimates using κ ∈ {0, 3/4, 1},
respectively. The solid black line corresponds to the population coeffi-
cients. The OLS is optimal for small interventions but yields a large
loss for strong interventions; the TSLS is optimal for large interventions
but yields a relatively large loss for small interventions. Choosing a κ
different from zero and allows us to trade off these two regimes. The
dashed and the dotted lines correspond to the two samples, for which
the interval on which the κ = 3/4 estimator outperforms TSLS and
OLS in terms of worst case MSPE is shortest and longest, respectively.

A.8.2.1. Benchmark Estimators and Performance Measures

We compare the PULSE(5) estimator, that is PULSE with pmin = 0.05, to
four specific K-class estimators that are well-known to have second moments (in
sufficiently over-identified setups). This will allow us to conduct both bias and
mean squared error analysis of estimators. Most importantly, we benchmark
against Fuller estimators. The κ-parameter of the Fuller estimators are given
by κn

FUL(a) = κn
LIML − a

n−q , where n − q is the degrees of freedom in the first
stage regression, a > 0 is a hyper parameter and κn

LIML is the stochastic κ-
parameter corresponding the to LIML estimator. One way to represent the
κ-parameter of the LIML estimator is κLIML = λmin(W1W

−1) where λmin denotes
the smallest eigenvalue, W1 and W are defined as W = [Y X]⊺P⊥

A [Y X] and
W1 = [Y X]⊺P⊥

A∗[Y X], and P⊥
A = I−A(A⊺A)−1A⊺; see, e.g., Amemiya (1985).

We choose to benchmark the PULSE estimator against the following K-class
estimators: OLS (κ = 0), TSLS (κ = 1), Fuller(1) (κ = κn

FUL(1)) and Fuller(4)

178



A.8. Simulation Study

(κ = κn
FUL(4)).

The Fuller(1) estimator is approximately unbiased in that the mean bias is zero up
to O(n−2) (Fuller, 1977, Theorem 1) and Fuller(4) exhibits approximate superiority
in terms of MSE compared to all other Fuller estimators (Fuller, 1977, Corollary
2). As we shall see below the PULSE estimator has good MSE performance when
instruments are weak and therefore we especially benchmark against Fuller(4)
which has shown better MSE performance than TSLS in simulation studies when
instruments are weak; see e.g. Hahn et al. (2004). In the over-identified setup we
let the PULSE estimator revert to Fuller(4) whenever the dual representation is
infeasible.

We compare the estimators in terms of bias and mean squared error (MSE),
which for an n-sample estimator α̂n with target α ∈ Rd1+q1 are given by Bias(α̂n) =
E(α̂n) − α ∈ Rd1+q1, MSE(α̂n) = E[(α̂n − α)(α̂n − α)⊺] ∈ R(d1+q1)×(d1+q1). The
empirical quantities, estimated from N independent repetitions are denoted by
B̂ias(α̂n) and M̂SE(α̂n). In the multivariate setting, we compare biases by compar-
ing their Euclidean norms. When comparing MSEs, we call α̂n MSE superior to α̃n

if they are ordered in the partial ordering generated by the proper cone of positive
semi-definite matrices (that is, M̂SE(α̃n)− M̂SE(α̂n) is positive semi-definite). We
also consider the ordering of its scalarizations given by the determinant and trace
(the latter satisfies trace(M̂SE(α̂n)) = trace(V̂ar(α̂n)) + ∥B̂ias(α̂n)∥2

2).
We conduct the simulation experiments even though it is not proved that the

PULSE estimator has finite second moments. In the simulations, the empirical
estimates of the mean squared error were stable, possibly even more so than for
the Fuller estimators for which we know that second moments exists in settings
where the noise is Gaussian; see e.g., Chao et al. (2012); Fuller (1977).

Below we describe two multivariate simulation experiments and refer the reader
to Section 2.4.2.1 in the main paper for a univariate simulation experiment.

A.8.2.2. Varying Confounding Multivariate Experiment.

In this simulation scheme we consider just-identified two-dimensional instrumental
variable models with the SEM and causal graph illustrated in Figure A.3. Since
we want to compare MSE statistics that require estimators with second moments
we drop comparisons with the TSLS estimator.

Here, ξ, δ ∈ R2×2, µ ∈ R2 and (NA, NX , NX , NY ) are independent noise innova-
tions. We let γ = (0, 0) and let the noise innovations for A,H, Y have distribution
(NA, NH , NY ) ∼ N (0, I).

We randomly generate 10000 models by letting NX ∼ N
(

( 0
0 ),

(
σ2

1 0
0 σ2

2

))
, where

the standard deviations is drawn by σ2
1, σ

2
2 ∼ Unif(0.1, 1) and all other model

coefficients are drawn according to

ξ11, ξ12, ξ21, ξ22, δ11, δ12, δ21, δ22, µ1, µ2 ∼ Unif(−2, 2).

The hidden confounding induces dependence between the collapsed noise variables
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A := NA ∈ R2,

H := NH ∈ R2,

X := ξ⊺A+ δ⊺H +NX ∈ R2,

Y := γ⊺X + µ⊺H +NY ∈ R.

A1 X1

Y

H1

A2 X2

H2

ξ11

β1

δ11

µ1

ξ22

β2

δ22

µ2

ξ21

ξ12

δ12

δ21

Figure A.3: The SEM and graph representation used for simulating data in the
experiments described in Section A.8.2.2.

UX = δ⊺H + NX and UY = µ⊺H + NY , which we capture by a normalized
cross covariance vector ρ := Σ−1/2

UX
ΣUXUY

Σ−1/2
UY

∈ R2, where ΣUX
= Var(UX),

ΣUXUY
= Cov(UX , UY ) and ΣUY

= Var(UY ). As such, the degree of confounding
can be explained by the norm of ρ given by ∥ρ∥2

2 = ΣUY UX
Σ−1

UX
ΣUXUY

/ΣUY
=

µ⊺δ(δ⊺δ+diag(σ2
1, σ

2
2))−1δ⊺µ/(µ⊺µ+1). For each of the 10000 generated models we

simulate n = 50 observations and compute the PULSE and benchmark estimators
and repeat this N = 5000 times to estimate the performance measures.

Figure A.4 shows the relative change in the determinant and trace of the MSE
matrix and the Euclidean norm of the bias vector. Similarly to the univariate
setup, PULSE seems to perform better than Fuller(1) and Fuller(4) in terms of
the determinant and trace for settings with weak confounding (small ∥ρ∥2) and
weak instruments (small λmin(ÊNGn)). Most of the MSE matrices do not allow
for an ordering: PULSE is MSE superior to Fuller(1), Fuller(4), and OLS in 9.2%,
4.6% and 1% of the cases, while the MSE matrices are not ordered in 90.8%,
95.4% and 95.8% of the cases. Note that both Fuller(1) and Fuller(4) is never
MSE superior to PULSE. In contrast to the univariate setup, there are models
with very weak instruments for which Fuller outperforms PULSE; these models
seems to be exclusively with strong confounding. We also see models with strong
confounding and moderate to strong instrument strength where the PULSE is
superior and models with weak confounding where PULSE is inferior. Hence,
the degree of confounding ∥ρ∥2 does not completely characterize whether or not
PULSE is superior to the Fuller estimators in terms of MSE performance measures
in the multi-dimensional setting. In regards to the bias we see that both Fuller
estimators are less biased than PULSE for all but a few models with very weak
instruments. Furthermore, PULSE is for models with strong confounding less
biased than OLS but has comparable bias for models with small to moderate
confounding.

We also conducted the above simulation experiment for γ = (1, 1) and γ =
(−1, 1). The results (not shown but available in the folder ’Plots’ in the code
repository) are similar to the case γ = (0, 0) and the above observations still apply.
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Figure A.4: Illustrations of the relative change in the determinant (left) and trace
(middle) of the MSE matrix and the Euclidean norm of the bias
vector (right) (a positive relative change means that PULSE is better).
Each of the 10000 models corresponds to a point which is color-
graded according the the value of ∥ρ∥2 (which indicates the strength
of confounding), see Section A.8.2.2. PULSE tends to outperform the
Fuller estimators for weak instruments and weak confounding. The
vertical dotted line at log(15.5) corresponds to a rejection threshold for
weak instruments based on relative change in bias for Fuller estimators
(Stock and Yogo, 2002, Table 5.3). Note that the lowest possible
negative relative change is −1.

Appendix A.11 shows the results of additional experiments, where we consider,
e.g., PULSE with pmin = 0.1.

A.8.2.3. Fixed Confounding Multivariate Experiment.

In the varying confounding experiment, we saw that when ∥ρ∥2 is small then the
majority of the simulated models had PULSE superior to Fuller(1) and Fuller(4) in
terms of the determinant and trace of MSE. However, we also saw models with large
∥ρ∥2 where PULSE was still superior and models with small ∥ρ∥2 where PULSE
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was inferior. In this experiment, we will investigate this further by fixing the
confounding strength ∥ρ∥2 and investigating other model aspects that affect which
estimator is superior. That is, we consider models with structural assignments
given by

A := NA ∈ R2, X := ξ⊺A+ UX ∈ R2, Y := γ⊺X + UY ∈ R,

for some ξ ∈ R2×2 and independent noise innovations (NA, (UX , UY )). We let
γ = (0, 0) and fix the noise innovations for A with distribution NA ∼ N (0, I). We
let

(
UX

UY

)
∼ N


0

0
0

 ,
 1 η φ1
η 1 φ2
φ1 φ2 1


 ,

for some η, φ1, φ2 ∈ [0, 1). With this noise structure we have that ∥ρ∥2
2 = (φ2

1 +
φ2

2 − 2ηφ1φ2)/(1− η2), and when φ = φ1 = φ2 it holds that ∥ρ∥2
2 = 2φ2/(1 + η).

We randomly generate 5000 copies of ξ with each entry drawn by Unif(−2, 2)
distribution. For each model, that is, each combination of selected noise-parameter
values and ξ, we simulate n = 50 observations and compute the estimators. This
is repeated N = 5000 times to estimate the performance measures.

In Figure A.5 we have illustrated the relative change in the performance measures
when comparing PULSE to Fuller(4). For setups with weak confounding (∥ρ∥2 =
0.2), it is seen that if instruments are sufficiently weak (λmin(ÊN(Gn)) ≤ 15.5),
then PULSE is superior to Fuller(4) in terms of both the determinant and trace
performance measures. For setups with larger confounding there are still models
where PULSE is superior but the characterization of superiority by weakness of
instruments is no longer valid.

In Table A.1 the percentage of models for which PULSE is superior to Fuller(4)
in terms of the MSE partial ordering, determinant and trace performance measures
is presented. It is seen that setups with identical ∥ρ∥2 does not yield similar
comparisons between PULSE and Fuller(4).

For any two setups with identical confounding strength ∥ρ∥2 we see that decreas-
ing η yields a larger percentage of models for which PULSE is superior in terms of
the determinant and trace. Furthermore, we see that decreasing ∥ρ∥2 (for fixed η)
has a similar effect. Thus, it seems that both ρ and η negatively influences the
size of the parameter space of ξ for which PULSE is superior to Fuller(4) in terms
of both the determinant and trace performance measures. However, superiority
with respect to the partial ordering of the MSE matrices does not exhibit similar
behaviour. Decreasing ∥ρ∥2 (for fixed η) still leads to a percentage increase but
decreasing η (for fixed ∥ρ∥2) leads to a percentage decrease, of models for which
PULSE is superior to Fuller(4).
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Table A.1: MSE superiority

Model Parameters PULSE Superiority (%)
∥ρ∥2 η φ1 φ2 MSE determinant trace
0.20 0.80 0.19 0.19 48.46 85.52 86.74
0.20 0.20 0.15 0.15 32.34 98.66 92.16
0.50 0.80 0.47 0.47 1.60 13.04 19.80
0.50 0.20 0.39 0.39 0.76 19.86 27.86
0.80 0.80 0.76 0.76 0.14 7.48 12.80
0.80 0.20 0.62 0.62 0.06 7.64 15.50

Note: The rows show different noise-parameter values for the different experimental setups.
The last three columns describe the percentage of models (out of the 5000 randomly generated
models) for which PULSE (with pmin = 0.05) is superior to Fuller(4) in terms of the MSE partial
ordering, determinant and trace performance measures. Whenever PULSE is not superior to
Fuller(4) in terms of the MSE partial ordering the MSE matrices are not comparable.

A.8.3. Under-identified setup
In an under-identified setup the causal parameter is not identified by instru-
mental variable methods. Instead the usual two stage least square procedure,
arg minα lIV(α), yields an entire linear solution space of coefficients that renders the
regression residuals uncorrelated with the instruments. The causal coefficient lies
within this solution space but we are unable to identify it. In the under-identified
setup, the population PULSE coefficient is the point in the solution space which
provides the best mean squared prediction error. That is, the population PULSE
coefficient is given by

α∗ = arg min
α:E[A(Y −Zα)]=0

E[(Y − Zα)2] = arg min
α:lIV(α)=0

lOLS(α).

The PULSE estimator in the under-identified setup remains unchanged from the
exposition in the main paper. Here, the function lnIV does not have a unique
solution but we can define a modified TSLS estimator

α̂n
TSLS.mod := lim

κ↑1
αn

K(κ) = arg min
α:ln

IV(α)=0
lnOLS(α).

The modified TSLS estimator is the minimum of a quadratic function subject to a
feasible linear constraint, and can be computed efficiently using QP solvers.

A.8.3.1. Under-indentified Example

Consider an under-identified setup with structural assignments given by
A := εA, H := εH , X1 := ηA+ δ1H + ε1,

Y := βX1 + δ2H + εY , X2 := γY + ε2,
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Figure A.5: Illustrations of the relative change from PULSE to Fuller(4) in the
determinant and trace of the MSE matrix and the Euclidean norm of
the bias vector. The vertical dotted line at log(15.5) corresponds to a
rejection threshold for weak instruments based on relative change in
bias for Fuller estimators (Stock and Yogo, 2002, Table 5.3).

with (εA, εH , εY , ε1, ε2) ∼ N (0, I5). The causal graph of this structural equation
model is illustrated in Figure A.6. In general, the causal parameter β is not
identifiable. Existing methods (e.g., Peters et al., 2016; Pfister et al., 2021; Rojas-
Carulla et al., 2018b) propose to look for invariant sets that yield residuals which
are uncorrelated with A after regressing Y on that set. In general, because of the
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A X1 Y

H

X2η β

δ1 δ2

γ

Figure A.6: Causal graph of the under-indentified setup in Section A.8.3.1 Here,
H is hidden and the causal parameter β is, in general, not identifiable
from the distribution over (A,X1, X2, Y ). Existing methods in machine
learning try to find invariant sets of covariates (i.e., sets S that, after
regressing Y on XS, yield residuals which are uncorrelated with A). In
this example, no such set exists. PULSE finds a solution and outputs
a vector with non-zero coefficients for X1 and X2.

hidden variable H, no such sets exist either. The best predictive model under
all invariant models, however, is still well-defined. To see this, let us derive the
population PULSE coefficient

α∗ = arg min
α:lIV(α)=0

E[(Y − α1X1 − α2X2)2].

We know that a necessary and sufficient condition for lIV(α) = 0 is that Corr(Y −
α1X1 − α2X2, A) = 0. We have

Y − α1X1 − α2X2 = Y − α1X1 − α2(γY + ε2)
= (1− α2γ)(βX1 + δ2H + εY )− α1X1 − α2ε2

= (β − α1 − α2γβ)X1 + (1− α2γ)δ2H

+ (1− α2γ)εY − α2ε2.

As η ̸= 0, the regression residuals are uncorreleted with A if and only if α1 =
(1− α2γ)β. Hence,

α∗ = arg min
α:α1=(1−α2γ)β

E[((1− α2γ)δ2H + (1− α2γ)εY − α2ε2)2]

= arg min
α:α1=(1−α2γ)β

(1− α2γ)2δ2
2Var(H) + (1− α2γ)2Var(εY ) + α2

2Var(ε2).

The latter function is convex in α2, so the minimum is attained in a stationary
point. We have that

∂

∂α2
(1− α2γ)2δ2

2Var(H) + (1− α2γ)2Var(εY ) + α2
2Var(ε2)

= 2
[
α2(Var(ε2) + γ2δ2

2Var(H) + γ2Var(εY ))− γδ2
2Var(H)− γVar(εY )

]
= 0,
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if and only if

α2(Var(ε2) + γ2δ2
2Var(H) + γ2Var(εY ) = γδ2

2Var(H) + γVar(εY ).

Hence,

α∗
2 = (Var(εY ) + δ2

2Var(H))γ
Var(ε2) + (Var(εY ) + δ2

2Var(H))γ2 = (1 + δ2
2)γ

1 + (1 + δ2
2)γ2 ; (A.33)

α∗
1 = (1− α∗

2γ)β. (A.34)

We now generate models by randomly drawing the model coefficients using
α ∼ Unif(1, 2), δ1 ∼ Unif(1, 2), δ2 ∼ Unif(1, 2), γ ∼ Unif(1, 2) and η ∼ Unif(0.1, 1)
and compute the corresponding population quantities according to Equation (A.33).

For different sample sizes, we then simulate data sets from such models and
compute the PULSE estimator. Figure A.7 shows the trace of the estimated MSE
of the PULSE estimator (with pmin = 0.05) when comparing to the population
quantity derived above. For each model and sample size, the MSE is estimated
based on 100 repetitions. As sample size increases, the MSE indeed approaches
the population quantity.
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Figure A.7: Illustration of the trace of the estimated MSE matrix of the PULSE
estimator in the under-identified setup based on 100 repetitions.
PULSE converges towards the population quantities computed in
Equation (A.33).

As a comparison, we also implemented the TSLS modification from Equa-
tion (A.33). Similarly to the identified setups, the TSLS modification may come
with poor finite sample properties, in particular for weak instruments and small
sample size. Indeed, in this example we observe that PULSE has superior MSE
properties for small sample sizes. For example, the trace MSE for the PULSE
estimator is on average (over 1000 random models) 50% lower than the trace MSE
of the modified TSLS estimator for a sample size of 50.
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A.9. Empirical Applications

We now consider three classical instrumental variable applications (see Albouy
(2012) and Buckles and Hungerman (2013) for discussions on the underlying
assumptions).

A.9.1 “Does compulsory school attendance affect schooling and earnings?” by
Angrist and Krueger (1991). This paper investigates the effects of education
on wages. The endogenous effect of education on wages are remedied by
instrumenting education on quarter of birth indicators.

A.9.2 “Using geographic variation in college proximity to estimate the return
to schooling” by Card (1993). This paper also investigates the effects of
education on wages. In this paper education is instrumented by proximity to
college indicator.

A.9.3 “The colonial origins of comparative development: An empirical investigation”
by Acemoglu et al. (2001). This paper investigates the effects of extractive
institutions (proxied by protection against expropriation) on the gross domes-
tic product (GDP) per capita. The endogeneity of the explanatory variables
are remedied by instrumenting protection against expropriation on early
European settler mortality rates.

For each study, we replicate the OLS and TSLS estimates of these studies and
provide in addition the corresponding Fuller(4) (see Section A.8.2.1) and PULSE
estimates. Since we do not have access to interventional data, we cannot directly
test the distributional robustness properties discussed in Section 2.2.3. For the
third study, however, the exogenous variable is continuous, which allows us to
investigate distributional robustness empirically by holding out data points with
extreme values of the exogenous variable and predict on these held-out data.

For the remainder of this section we use the PULSE estimator with pmin = 0.05
and the test scaling-scheme that renders the test equivalent to the asymptotic
version of the Anderson-Rubin test (see Section 2.3.2). Code replicating this
analysis is available on GitHub.1

A.9.1. Angrist and Krueger (1991)
The dataset of Angrist and Krueger (1991) consists, in part, of 1980 US census
data of 329,509 men born between 1930–1939. The endogenous target of interest
is log weakly wages and the main endogenous regressor is years of education is
instrumented on year and quarter of birth indicators. We consider four models
M1–M4 corresponding to the models presented in column (1)–(8) in Table 5 of

1https://github.com/MartinEmilJakobsen/PULSE/tree/master/Empirical_
Applications
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Angrist and Krueger (1991). Model M1 is given by the structural reduced form
equations

log weakly wage = educ · γ +
∑

i

YRi · βi + U1,

educ =
∑

i

YRi · δi +
∑
i,j

YRi ·QOBj · δi,j + U2,

where educ is years of education, (YRi) is year of birth indicators and (QOBj) is
quarter of birth indicators. Model M2 is given by M1 with the additional included
exogenous regressors of age and age-squared. Models M3 and M4 are given by
model M1 and M2, respectively, with additional included exogenous indicators
describing race, marital status, metropolitan area and eight regional indicators.
All models are over-identified, instrumenting education on a total of 30 binary
instruments.

Table A.2 shows the OLS and TSLS estimates, as well as the Fuller(4) and
PULSE estimates for the linear effect of education on log weakly wages. In all
models the PULSE estimates coincide with the OLS estimates.

Table A.2: The estimated return of education on log weakly wage.

Model OLS TSLS FUL PULSE Message Test Threshold
M1 0.0711 0.0891 0.0926 0.0711 OLS Acc. 26.92 55.76
M2 0.0711 0.0760 0.0739 0.0711 OLS Acc. 23.15 55.76
M3 0.0632 0.0806 0.0835 0.0632 OLS Acc. 23.79 68.67
M4 0.0632 0.0600 0.0555 0.0632 OLS Acc. 19.59 68.67

Note: Point estimates for the return of education on log weakly wage. The OLS and TSLS
values coincide with the ones in Table V of Angrist and Krueger (1991). The right columns
show the values of the test statistic (evaluated in the PULSE estimates) and the test rejection
thresholds. For all models, the OLS is accepted and the PULSE coincides with the OLS.

A.9.2. Card (1993)
The dataset of Card (1993) consists of a US National Longitudinal Survey of
Young Men spanning from 1966 to 1981. The subset of interest consists of 3010
observations for which there is recorded a valid wage and education level in a
1976 interview. The endogenous target of interest is log hourly wages and the
main endogenous regressor is years of education. Proximity to a four year college,
recorded in 1966, is used as an instrument. We consider two models, M1 and M2,
corresponding to models in Panel B, column (5) and (6) of Table 3 (Card, 1993),
respectively. Model M1 is given by regressing the target, log hourly wages, on
included exogenous indicators of race, metropolitan area and region; the included
endogenous regressors are years of education, work-experience and work-experience-
squared. The endogenous regressors are instrumented by the excluded exogenous
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variables age, age-squared and indicator of proximity to college. In model M2,
we have model M1 with the addition of several exogenous indicators of parents
education level.

Table A.3 shows the OLS and TSLS estimates, as well as the Fuller(4) and
PULSE estimates for the linear effect of education on log hourly wages. Again, in
all models the OLS estimates are not rejected by the Anderson-Rubin test. Hence,
all PULSE estimates coincide with the OLS estimates.

Table A.3: The estimated return of education on log hourly wages.

Model OLS TSLS FUL PULSE Message Test Thresh.
M1 0.0747 0.1224 0.1156 0.0747 OLS Acc. 1.22 26.30
M2 0.0726 0.1324 0.1283 0.0726 OLS Acc. 1.71 43.77

Note: Point estimates for the return of education on log hourly wage. The OLS and TSLS
values coincide with the ones shown in Table 3 of Card (1993). The right columns show the
values of the test statistic (evaluated in the PULSE estimates) and the test rejection thresholds.
For all models, the OLS is accepted and the PULSE coincides with the OLS.

A.9.3. Acemoglu et al. (2001)
In Section 2.5.1 of the main paper we describe the data and models of Acemoglu
et al. (2001). Furthermore, we replicate the OLS and TSLS estimates and presented
the corresponding Fuller(4) and PULSE estimates.

To investigate distributional robustness, we conduct an out-of-sample mean
squared prediction error (MSPE) analysis on a mean-centered dataset of the just-
identified identified model M1. This is the simplest model proposed in Acemoglu
et al. (2001) but the MSPE robustness property of Theorem 2.1 is robust to model
misspecifications; see Remark A.1. We do not have access to interventional data.
Instead, for different values of ntest ∈ N, that is, for each ntest ∈ {4, 8, ..., 32}, we
remove the data points with the ntest/2 lowest and ntest/2 highest settler mortality
rates. We then fit the OLS, TSLS, PULSE and Fuller(4) on the remaining
64− ntest observations and compute the out-of-sample MSPE on the ntest held-out
observations, measuring the model’s ability to generalize.

The instrument has a larger variance on the held-out data and the population
robustness property of K-class estimators (see Theorem 2.1) suggests that PULSE
and Fuller(4) might generalize slightly better than OLS or TSLS.2 The results of
this analysis is summarised in Table A.5. Indeed, we see that the OLS is optimal
for a small number of held-out data points (when little generalization is required)
and that for an increasing number of held-out data points, PULSE and FULLER(4)
outperform the other estimators in terms of MSPE.

2Here, we consider a just-identified model, so the Fuller(4) K-class parameter κ ∈ (0, 1).
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For comparison, we also consider random sample splits, i.e., taking out a random
subset of the dataset rather. Here, no generalization is required and as expected,
OLS performs better than the other estimates, see Table A.4. The MSPE is
minimized by OLS, PULSE, Fuller(4), and TSLS in 65.9%, 21.8%, 6.1%, and 6.2%
of the cases, respectively.

Table A.4: log GPD MSPE orderings on random sample splits.

MSPE Outperforms
OLS PULSE FUL TSLS

OLS ✗ 65.9% 79.7% 85.3%
PULSE 34.1% ✗ 87.7% 90.5%

FUL 20.3% 12.3% ✗ 93.8%
TSLS 14.7% 9.5% 6.2% ✗

Note: The table shows generalization performance for different estimators on model M1 of
Acemoglu et al. (2001). The data set is split randomly into a subset of 90% of the data (that is,
58 observations) and the MSPE for the OLS, PULSE, Fuller(4), and TSLS are calculated on the
remaining 10% of the data. This procedure is repeated 1000 times. The table shows how often
the estimators outperform each other. E.g., OLS has lower MSPE than TSLS in 85.3% of the
cases. Here, no generalziation is needed and, as expected, the OLS performs best.
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A.10. Weak Instruments

There is a wide variety of attempts to quantify weakness of instruments, see e.g.
Andrews et al. (2019) and Stock et al. (2002) for an overview. Heuristically, the
presence of weak instruments in a instrumental variable setup refers to the notion
that the causal effects of the instruments onto regressors are weak relative to the
noise variance of the regressors. This strength of the instruments has direct effects
on the finite sample behavior of instrumental variable estimators. For simplicity
consider a mean zero collapsed causal structural model with no included exogenous
variables entering the equation of interest, that is,

Y = γ⊺X + UY , X = ξ⊺A+ UX , (A.35)

where A ∈ Rq are the collection of exogenous variables and the noise variables
UX and UY are possibly correlated. Let A,X,Y be a n-sample data matrices
of i.i.d. realizations of the system in Equation (A.35). A key statistic used to
quantify weakness of instruments is the concentration matrix given by µn =
Σ−1/2

UX
ξ⊺A⊺AξΣ−1/2

UX
, where ΣUX

is the variance matrix of UX . This statistic turns
up in numerous different aspect of the finite sample properties of the two-stage least
square estimator. Rothenberg (1984) argues that the one-dimensional analogue
of µn under deterministic instruments and normal distributed noise variables
directly influences the goodness of approximating a finite sample standardized
two-stage least square estimator by its Gaussian asymptotic distribution. He
argues that for large concentration parameters the Gaussian approximation is
good. The concentration parameter can also be connected to approximate bias of
the two-stage least squares estimator. Under assumptions similar to the above,
Nagar (1959) showed that an approximate (to the order of O(n−1)) finite sample
bias of the two-stage least square estimator is inversely proportional to µn. Note
that the concentration matrix µn is not observable, but may be approximated
by µ̂n = Σ̂−1/2

UX
X⊺PAXΣ̂−1/2

UX
, where Σ̂UX

= 1
n−q X⊺P⊥

AX is an estimator of the
variance matrix of UX and PAX is the ordinary least square prediction of Aξ.
Now define

Gn := µ̂n

q
=

Σ̂−1/2
UX

X⊺PAXΣ̂−1/2
UX

q
,

which can be seen as a multivariate first-stage F -statistic for testing the hypothesis
H0 : ξ = 0. That is, when X ∈ R, then Gn = n−q

q
X⊺PAX

X⊺X−X⊺PAX is recognized as the
F-test for testing H0. Stock and Yogo (2002) propose to reject the hypothesis of a
presence of weak instruments if the test-statistic λmin(Gn), the smallest eigenvalue
of Gn, is larger than a critical value that, for example, depends on how much
bias you allow your estimator to have. Prior to this Gn had been used to test
under-identifiability in the sense that the concentration matrix is singular (Cragg
and Donald, 1993), while the former uses a small minimum eigenvalue of Gn as a
proxy for the presence of weak instruments in identified models. From the work
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of Staiger and Stock (1997) a frequently appearing rule of thumb for instruments
being non-weak is that the F -statistic Gn (λmin(Gn) in higher dimensions) is larger
than 10. A more formal justification of this rule is due to Stock and Yogo (2002)
who showed (under weak-instrument asymptotics) that it approximately (in several
models) corresponds to a 5% significance test that the bias of TSLS is at most
10% of the bias of OLS.

We can, under further model simplification, strengthen the intuition on how the
concentration matrix Gn and especially the minimum eigenvalue λmin(Gn) governs
the weakness of instruments. To this end assume that Var(UX) = ΣUX

= I and note
that µ̂n is approximately proportional to the Hessian of the two-stage least squares
objective function. That is, µ̂n ≈ Σ−1/2

UX
X⊺PAXΣ−1/2

UX
= X⊺A(A⊺A)−1A⊺X ∝

H(lnIV). Hence, we have that λmin(Gn) is approximately proportional to the
curvature of two-stage least squares objective function in the direction of least
curvature. Thus, if λmin(Gn) is small, then, heuristically, the objective function lnIV
has weak identification in the direction of the corresponding eigenvector. That is,
changes to the point estimate of β away from the two-stage least square solution in
this direction does not have a strong effect on the objective value. Finally, the weak
instrument problem is a small sample problem. To this end note that n−1Gn =
n−1Σ̂−1/2

UX
X⊺PAXΣ̂−1/2

UX

P−→ Var(UX)−1/2ξ⊺Var(A)−1ξVar(UX)−1/2, hence by the
continuity of the minimum eigenvalue operator, we have that λmin(Gn) P−→∞.
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Figure A.8: Illustrations of the relative change in the absolute value of the mean
bias (a positive relative change means that PULSE is better). The
vertical dotted line corresponds to the rule of thumb for classifying
instruments as weak, i.e., an F-test rejection threshold of 10. The
first stage F-test for H0 : ξ̄ = 0, i.e., for the relevancy of instruments,
at a significance level of 5%, has different rejection thresholds in the
range [1.55, 4.04] depending on n and q. The vertical dashed line
corresponds to the smallest rejection threshold of 1.55. Note that the
lowest possible negative relative change is −1. For the comparison
with the TSLS estimator we have removed the case q = 1 to ensure
existence of first moments. TSLS, Fuller(1) and Fuller(4) outperforms
PULSE while PULSE outperforms OLS.
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A.11. Additional Simulation Experiments

A.11.1. Additional Illustrations for the Univariate Experiment
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Figure A.9: Illustrations of the relative change in variance (a positive relative
change means that PULSE is better). The vertical lines are identical
to those of Figure A.8. For the comparison with the TSLS estimator
we have removed the case q ∈ {1, 2} to ensure existence of second
moments. We have removed two observations with relative change
above 100, in the very weak instrument setting, for aesthetic reasons.
PULSE outperforms TSLS, Fuller(1) and Fuller(4), especially for low
confounding and weak instruments. We also see that OLS outperforms
PULSE with the largest decrease in variance for the large confounding
cases.
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Figure A.10: Illustrations of the relative change in interquartile range (a positive
relative change means that PULSE is better). The vertical lines are
identical to those of Figure A.8. We see that PULSE is superior to
Fuller(1), Fuller(4) and TSLS except in very few cases with very large
confounding. Furthermore, OLS outperforms PULSE with relatively
small difference for low confounding and larger difference for large
confounding.
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A.11.2. Additional Illustrations for the Multivariate Experiment
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Figure A.11: There are two illustrations, both illustrating relative changes in
performance measures as in Figure A.4 except that the points are
color-graded according to MSE superiority when comparing Fuller(4)
and PULSE (top 3×3) and confounding strength ∥ρ∥2 (bottom 3×3)
. Among the 10000 randomly generated models there are 461 models
where PULSE is MSE superior to Fuller(4). In the remaining 9539
models the MSE matrices are not comparable. For the 461 models
where PULSE was MSE superior the simulations were repeated with
N = 25000 repetitions to account for possible selection bias. Of
the 461 models 445 were still superior when increasing N from 5000
to 25000. The bottom 3 × 3 grid is an illustration of the relative
change in performance measure for the 445 models that remained
superior, each model color-graded according to confounding strength.
We see that in almost all of these models there is weak to moderate
confounding. The exception being a few models in the very weak
instrument setting where the confounding is strong.
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Performance Measure Superiorty - Fuller(4) vs PULSE(05) Ful4 PULSE

Figure A.12: This figure shows the same results as in Figure A.4 except that the
points are color-graded according to performance measure superiority
when comparing Fuller(4) and PULSE(05). That is, the models have
fixed column-wise color-grading according to the comparison between
Fuller(4) and PULSE(05).
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Figure A.13: This figure shows the same results as in Figure A.4 except that we
here compare PULSE with pmin = 0.1 to the benchmark estimators.
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Appendix B

A Causal Framework for Distribution
Generalization

B.1 Transforming Causal Models
B.2 Sufficient Conditions for Assumption 1 in IV Settings
B.3 Choice of Test Statistic
B.4 Addition to Experiments
B.5 Proofs

B.1. Transforming Causal Models
As illustrated in Remark 3.1, our framework can also be applied in situations where
training and test distributions are generated from an SCM with a different structure
than (3.1). Below, we show that a general class of SCMs can be transformed into
our reduced setting. To this end, assume the true underlying causal structure is
given by the SCM

A := εA X := w(X, Y ) + g(A) + h2(H, εX)
H := εH Y := f(X) + h1(H, εY ),

(B.1)

where, as before, f, g, w, h1 and h2 are measurable functions. First, we show how
to transform the above SCM into the reduced form (3.1) without changing the
induced observational distribution. In Appendix B.1.1, we then discuss how to
transform interventions in (B.1) to interventions in the reduced model.

Throughout this appendix, we assume that (B.1) is uniquely solvable in the sense
that there exists a unique function F such that (A,H,X, Y ) = F (εA, εH , εX , εY )
almost surely, see Bongers et al. (2021) for more details. Denote by FX the
coordinates of F that correspond to the X variable (i.e., the coordinates from
r+ q+ 1 to r+ q+ d). We further assume that there exist functions g̃ and h̃2 such
that

FX(εA, εH , εX , εY ) = g̃(εA) + h̃2((εH , εY ), εX). (B.2)
This decomposition is not always possible, but it exists in the following settings, for
example: (i) There are no A variables. In these cases, the additive decomposition
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(B.2) becomes trivial. (ii) There are further constraints on the original SCM. The
additive decomposition (B.2) holds if, for example, w is a linear function or A
only enters the structural assignments of covariates X which have at most Y as a
descendant.

Using the decomposition in (B.2), we can define the following reduced SCM

A := εA X := g̃(A) + h̃2(H̃, εX)
H̃ := εH̃ Y := f(X) + h1(H̃),

(B.3)

where εH̃ has the same distribution as (εH , εY ) in (B.1). This model fits the
framework from Section 3.2.1, where the noise term in Y is now taken to be
constantly zero. Both SCMs (B.1) and (B.3) induce the same observational
distribution and the same function f appears in the assignments of Y .

If one intends to use interventions in the original SCM (i.e., (B.1)) to model the
test distributions, one needs to also transform these interventions. We discuss how
this can be done in the following subsection.

B.1.1. Transforming Interventions
For SCMs of the form (B.1) (and which satisfy (B.2)), any distribution arising from
an intervention on a subset of covariates from X can be equivalently expressed
using an intervention on all of X in the corresponding reduced model (B.3). To
see this, let i be such an intervention in the original SCM, and let Pi be the
induced interventional distribution over (X, Y,A). We can then generate the
same intervention distribution in (B.3) using the intervention X := εi

X , where the
distribution of εi

X coincides with the marginal of X in Pi. Note, however, that
this type of transformation may fail for some model classes, for example, this may
happen if the original SCM contains a hidden variable which is a descendant of
some (intervened) X variables and a cause of Y . Also, even in situations where
the above transform is possible, the interventions can change their intervention
targets, become non-well-behaved or change their support. In order to apply the
developed methodology, one needs to check whether the transformed interventions
are a well-behaved (this is not necessarily the case, even if the original intervention
was well-behaved) and how the support of all X variables behaves under that
specific intervention.

Intervention type First, we consider which types of interventions in (B.1)
translate to well-behaved interventions in (B.3). A simple example is given by
interventions on A in the original SCM, which result in the same interventions
on A also in the reduced SCM. Similarly, performing hard interventions on all
components of X in the original SCM leads to the same intervention in the
reduced SCM, which is in particular both confounding-removing and confounding-
preserving. For interventions on subsets of the X, this is not always the case. To
see that, consider the following example
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A := εA

X1 := ε1

X2 := Y + ε2

Y := X1 + εY

transform−−−−−→
A := εA

H := εY

X := (ε1, H + ε1 + ε2)
Y := X1 +H,

with εA, ε1, ε2, εY i.i.d. noise innovations. Here, the left hand side represents the
original SCM and the right hand side corresponds to the reduced SCM fitting in
our framework. Consider now, in the original SCM, the intervention X1 := i, for
some i ∈ R. In the reduced SCM, this intervention corresponds to the intervention
X = (X1, X2) := (i,H + i + ε2), which is neither confounding-preserving nor
confounding-removing.1 On the other hand, any intervention on X2 or A in the
original SCM model corresponds to the same intervention in the reduced SCM.
We can generalize these observations to the following statements

• Interventions on A: If we intervene on A in the original SCM (B.1) (i.e., by
replacing the structural assignment of A with ψi(I i, εi

A)), then this translates
to the same intervention on A in the reduced SCM (B.3).

• Shift intervention on Xj which are not ancestors of Y : If we perform a shift
intervention on Xj in the original SCM (B.1) (assuming no confounding H)
and Xj is not an ancestor of Y , then this corresponds to a confounding-
preserving intervention in the reduced SCM (B.3).

• Hard interventions on all X: If we intervene on all X in the original SCM
(B.1) by replacing the structural assignment of X with an independent
random variable I ∈ Rd, then this translates to the same intervention in the
reduced SCM (B.3) which is confounding-removing.

• No X is a descendant of Y and there is no unobserved confounding H: If we
intervene on X in the original SCM (B.1) (i.e., by replacing the structural
assignment of X with ψi(g, Ai, εi

X , I
i)), then this translates to a potentially

different but confounding-removing intervention in the reduced SCM (B.3).
This is because the reduced SCM (B.3) does not include unobserved variables
H in this case.

• Hard interventions on a variable Xj which has at most Y as a descendant: If
we intervene on Xj in the original SCM (B.1) by replacing the structural as-
signment of Xj with an independent random variable I, then this intervention
translates to a potentially different but confounding-preserving intervention.

Other settings may yield well-behaved interventions, too, but may require more
assumptions on the original SCM model (B.1) or further restrictions on the
intervention classes.

1This may not come as a surprise since, without the help of an instrument, it is impossible to
distinguish whether a covariate is an ancestor or a descendant of Y .
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Intervention support A support-reducing intervention in the original SCM
can translate to a support-extending intervention in the reduced SCM. Consider
the following example

X1 := ε1

X2 := X1 + 1{X1 = 0.5}
Y := X2 + εY

transform−−−−−→ X := (ε1, ε1 + 1{ε1 = 0.5})
Y := X2 + εY ,

with ε1, εY
i.i.d.∼ U(0, 1). As before, the left hand side represents the original SCM,

whereas the right hand side corresponds to the reduced SCM converted to fit our
framework. Under the observational distribution, the support of X1 and X2 is
equal to the open interval (0, 1). Consider now the support-reducing intervention
X1 := 0.5 in original SCM. Within our framework, such an intervention would
correspond to the intervention X = (X1, X2) := (0.5, 1.5), which is support-
extending. This example is rather special in that the SCM consists of a function
that changes on a null set of the observational distribution. With appropriate
assumptions to exclude similar degenerate cases, it is possible to show that support-
reducing interventions in (B.1) correspond to support-reducing interventions within
our framework (B.3).

B.2. Sufficient Conditions for Assumption 1 in IV
Settings

Assumption 3.1 states that f is identified on the support ofX from the observational
distribution of (Y,X,A). Whether this assumption is satisfied depends on the
structure of F but also on the other function classes G,H1,H2 and Q that make
up the model class M from which we assume that the distribution of (Y,X,A) is
generated.

Identifiability of the causal function in the presence of instrumental variables is
a well-studied problem in econometrics literature. Most prominent is the literature
on identification in linear SCMs (e.g., Fisher, 1966; Greene, 2003). However,
identification has also been studied for various other parametric function classes.
We say that F is a parametric function class if it can be parametrized by some
finite dimensional parameter set Θ ⊆ Rp. We here consider classes of the form

F := {f(·, θ) : Rd → R |Θ ∋ θ 7→ f(x, θ) ∈ C2,∀x ∈ Rd}.

Consistent estimation of the parameter θ0 using instrumental variables in such
function classes has been studied extensively in the econometric literature (e.g.,
Amemiya, 1974; Jorgenson and Laffont, 1974; Kelejian, 1971). These works
also contain rigorous results on how instrumental variable estimators of θ0 are
constructed and under which conditions consistency (and thus identifiability) holds.
Here, we give an argument on why the presence of the exogenous variables A yields
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identifiability under certain regularity conditions. Assume that E[h1(H, εY )|A] =
0, which implies that the true causal function f(·, θ0) satisfies the population
orthogonality condition

E[l(A)⊤(Y − f(X, θ0))] = E
[
l(A)⊤E[h1(H, εY )|A]

]
= 0, (B.4)

for some measurable mapping l : Rq → Rg, for some g ∈ N>0. Clearly, θ0 is
identified from the observational distribution if the map θ 7→ E[l(A)⊤(Y −f(X, θ))]
is zero if and only if θ = θ0. Furthermore, since θ 7→ f(x, θ) is differentiable for
all x ∈ Rd, the mean value theorem yields that, for any θ ∈ Θ and x ∈ Rd, there
exists an intermediate point θ̃(x, θ, θ0) on the line segment between θ and θ0 such
that

f(x, θ)− f(x, θ0) = Dθf(x, θ̃(x, θ, θ0))(θ − θ0),

where, for each x ∈ Rd, Dθf(x, θ) ∈ R1×p is the derivative of θ 7→ f(x, θ) evaluated
in θ. Composing the above expression with the random vector X, multiplying
with l(A) and taking expectations yields that

E[l(A)(Y − f(X, θ0))]− E[l(A)(Y − f(X, θ))]
= E[l(A)Dθf(X, θ̃(X, θ, θ0))](θ0 − θ).

Hence, if E[l(A)Dθf(X, θ̃(X, θ, θ0))] ∈ Rg×p is of rank p for all θ ∈ Θ (which
implies g ≥ p), then θ0 is identifiable as it is the only parameter that satisfies the
population orthogonality condition of (B.4). As θ0 uniquely determines the entire
function, we get identifiability of f ≡ f(·, θ0), not only on the support of X but
the entire domain Rd, i.e., both Assumptions 3.1 and 3.2 are satisfied. In the case
that θ 7→ f(x, θ) is linear, i.e. f(x, θ) = f(x)T θ for all x ∈ Rd, the above rank
condition reduces to E[l(A)f(X)T ] ∈ Rg×p having rank p (again, implying that
g ≥ p). Furthermore, when (x, θ) 7→ f(x, θ) is bilinear, a reparametrization of the
parameter space ensures that f(x, θ) = xT θ for θ ∈ Θ ⊆ Rd. In this case, the rank
condition can be reduced to the well-known rank condition for identification in a
linear SCM, namely that E[AXT ] ∈ Rq×p is of rank p.

Finally, identifiability and methods of consistent estimation of the causal function
have also been studied for non-parametric function classes. The conditions for
identification are rather technical, however, and we refer the reader to Newey
(2013); Newey and Powell (2003) for further details.

B.3. Choice of Test Statistic
By considering the variables

B(X) = (B1(X), . . . , Bk(X)) and C(A) = (C1(A), . . . , Ck(A)),

as vectors of covariates and instruments, respectively, our setting in Section 3.5.2
reduces to the classical (just-identified) linear IV setting. We could therefore use
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a test statistics similar to the one propsed by the PULSE (Jakobsen and Peters,
2021). With a notation that is slightly adapted to our setting, this estimator tests
H̃0(θ) using the test statistic

T 1
n(θ) = c(n)∥P(Y −Bθ)∥2

2
∥Y −Bθ∥2

2
,

where P is the projection onto the columns of C, and c(n) is some function with
c(n) ∼ n as n → ∞. Under the null hypothesis, T 1

n converges in distribution
to the χ2

k distribution, and diverges to infinity in probability under the general
alternative. Using this test statistic, H̃0(θ) is rejected if and only if T 1

n(θ) > q(α),
where q(α) is the (1− α)-quantile of the χ2

k distribution. The acceptance region
of this test statistic is asymptotically equivalent with the confidence region of
the Anderson-Rubin test Anderson and Rubin (1949) for the causal parameter
θ0. Using the above test results in a consistent estimator for θ0 (Jakobsen and
Peters, 2021, Theorem 3.12); the proof exploits the particular form of T 1

n without
explicitly imposing that assumptions (C1) and (C2) hold.

If the number k of basis functions is large, however, numerical experiments
suggest that the above test has low power in finite sample settings. As default, our
algorithm therefore uses a different test based on a penalized regression approach.
This test has been proposed in Chen et al. (2014) for inference in nonparametric
regression models. We now introduce this procedure with a notation that is
adapted to our setting. For every θ ∈ Rk, let Rθ = Y −B(X)⊤θ be the residual
associated with θ. We then test the slightly stronger hypothesis

H̄0(θ) : ∃σ2
θ > 0 s.t. E[Rθ |A] a.s= 0 and Var[Rθ |A] = σ2

θ

against the alternative that E[Rθ |A] = m(A) for some smooth function m. To see
that the above hypothesis implies H̃0(θ) (and therefore H0(θ), see Section 3.5.2.1),
let θ ∈ Rk be such that H̄0(θ) holds true. Then,

E[C(A)(Y −B(X)⊤θ)] = E[C(A)Rθ]
= E[E[C(A)Rθ |A]]
= E[C(A)E[Rθ |A]]
= 0,

showing that also H̃0(θ) holds true. Thus, if H̃0(θ) is false, then also H̄0(θ) is false.
As a test statistic T 2

n(θ) for H̄0(θ), we use (up to a normalization) the squared
norm of a penalized regression estimate of m, evaluated at the data A, i.e., the
TSLS loss ∥Pδ(Y −Bθ)∥2

2. In the fixed design case, where A is non-random, it
has been shown that, under H̄0(θ) and certain additional regularity conditions, it
holds that

∥Pδ(Y −Bθ)∥2
2 − σ2

θcn

σ2
θdn

d−→ N (0, 1),
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where cn and dn are known functions of C, M and δ (Chen et al., 2014, Theorem 1).
The authors further state that the above convergence is unaffected by exchanging
σ2

θ with a consistent estimator σ̂2
θ , which motivates our use of the test statistic

T 2
n(θ) :=

∥Pδ(Y −Bθ)∥2
2 − σ̂2

θ,ncn

σ̂2
θ,ndn

,

where σ̂2
θ,n := 1

n−1
∑n

i=1∥(In−Pδ)(Y−Bθ)∥2
2. As a rejection threshold q(α) we use

the 1−α quantile of a standard normal distribution. For results on the asymptotic
power of the test defined by T 2, we refer to Section 2.3 in Chen et al. (2014).

In our software package, both of the above tests are available options.

B.4. Addition to Experiments
B.4.1. Sampling of the Causal Function
To ensure linear extrapolation of the causal function, we have chosen a function
class consisting of natural cubic splines, which, by construction, extrapolate linearly
outside the boundary knots. We now describe in detail how we sample functions
from this class for the experiments in Section 3.5.2.4. Let qmin and qmax be the
respective 5%- and 95% quantiles of X, and let B1, . . . , B4 be a basis of natural
cubic splines corresponding to 5 knots placed equidistantly between qmin and qmax.
We then sample coefficients βi

iid∼ Uniform(−1, 1), i = 1, . . . , 4, and construct f as
f = ∑4

i=1 βiBi. For illustration, we have included 18 realizations in Figure B.1.

B.4.2. Violations of the Linear Extrapolation Assumption
We have assumed that the true causal function extrapolates linearly outside the
90% quantile range of X. We now investigate the performance of our method
for violations of this assumption. To do so, we again sample from the model
(3.4), with αA = αH = αε = 1/

√
3. For each data set, the causal function is

sampled as follows. Let qmin and qmax be the 5%- and 95% quantiles of X. We first
generate a function f̃ that linearly extrapolates outside [qmin, qmax] as described in
Section B.4.1. For a given threshold κ, we then draw k1, k2

iid∼ Uniform(−κ, κ) and
construct f for every x ∈ R by

f(x) = f̃(x) + 1
2k1((x− qmin)−)2 + 1

2k2((x− qmax)+)2,

such that the curvature of f on (−∞, qmin] and [qmax,∞) is k1 and k2, respectively.
Figure B.2 shows results for κ = 0, 1, 2, 3, 4. As the curvature increases, the ability
to generalize decreases.
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Figure B.1: The plots show independent realizations of the causal function that is
used in all our experiments. These are sampled from a linear space of
natural cubic splines, as described in Appendix B.4.1. To ensure a fair
comparison with the alternative method, NPREGIV, the true causal
function is chosen from a model class different from the one assumed
by the NILE.

B.4.3. Running NILE on Half of the Available Data
In Section 3.5.2.4, we compared the NILE to several alternative procedures for
estimating a non-linear causal function. As mentioned, these procedure use a
sample-splitting strategy, where the two steps of the the two-stage-least-squares
procedure are run on disjoint data sets. The NILE, on the other hand, uses all
of the available data for the model fitting. Figure B.3 shows that, even when
using only half of the available data, the NILE still outperforms the other methods
considerably.

B.5. Proofs
Proof of Proposition 3.1: Assume that I is a set of interventions on X with at
least one confounding-removing intervention. Let i ∈ I and f⋄ ∈ F , then we have
the following expansion

EM(i)[(Y − f⋄(X))2] = EM(i)[(f(X)− f⋄(X))2] + EM(i)[ξ2
Y ] (B.5)

+ 2EM(i)[ξY (f(X)− f⋄(X))],
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Figure B.2: Worst-case risk for increasingly strong violations of the linear extrapo-
lation assumption. The grey area marks the inner 90 % quantile range
of X in the training distribution. As the curvature of f outside the
domain of the observed data increases, it becomes difficult to predict
the interventional behavior of Y for strong interventions. However,
even in situations where the linear extrapolation assumption is strongly
violated, it remains beneficial to extrapolate linearly.

where ξY = h1(H, εY ). For any intervention i ∈ I the causal function f always
yields an identical loss. In particular, it holds that

sup
i∈I

EM(i)[(Y − f(X))2] = sup
i∈I

EM(i)[ξ2
Y ] = EM [ξ2

Y ], (B.6)

where we used that the distribution of ξY is not affected by an intervention on X.
The loss of the causal function can never be better than the minimax loss, that is,

inf
f⋄∈F

sup
i∈I

EM(i)[(Y − f⋄(X))2] ≤ sup
i∈I

EM(i)[(Y − f(X))2] = EM [ξ2
Y ]. (B.7)

In other words, the minimax solution (if it exists) is always better than or equal
to the causal function. We will now show that when I contains at least one
confounding-removing intervention, then the minimax loss is dominated by any
such intervention.

Fix i0 ∈ I to be a confounding-removing intervention and let (X, Y,H,A) be
generated by the SCM M(i0). Recall that there exists a map ψi0 such that
X := ψi0(g, h2, A,H, εX , I

i0) and that X ⊥⊥ H as i0 is a confounding-removing
intervention. Furthermore, since the vectors A, H, εX , εY and I i0 are mutually
independent, we have that (X,H) ⊥⊥ εY which together with X ⊥⊥ H implies
X,H and εY are mutually independent, and hence X ⊥⊥ h1(H, εY ). Using this
independence we get that EM(i0)[ξY (f(X) − f⋄(X))] = EM [ξY ]EM(i0)[(f(X) −
f⋄(X))]. Hence, (B.5) for the intervention i0 together with the modeling assumption
EM [ξY ] = 0 implies that for all f⋄ ∈ F ,

EM [ξ2
Y ] ≤ EM(i0)[(f(X)− f⋄(X))2] + EM [ξ2

Y ] = EM(i0)[(Y − f⋄(X))2].
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Figure B.3: Same results as shown in Figure 3.5, except that here, NILE is run
only on half of the available data.

This proves that the smallest loss at a confounding-removing intervention is
achieved by the causal function. Denoting the non-empty subset of confounding-
removing interventions by Icr ⊆ I, this implies

EM [ξ2
Y ] = inf

f⋄∈F
EM(i0)[(Y − f⋄(X))2] ≤ inf

f⋄∈F
sup
i∈Icr

EM(i)[(Y − f⋄(X))2]

≤ inf
f⋄∈F

sup
i∈I

EM(i)[(Y − f⋄(X))2]. (B.8)

Combining (B.7) and (B.8) it immediately follows that

inf
f⋄∈F

sup
i∈I

EM(i)[(Y − f⋄(X))2] = sup
i∈I

EM(i)[(Y − f(X))2],

and hence
f ∈ arg min

f⋄∈F
sup
i∈I

EM(i)[(Y − f⋄(X))2],

which completes the proof of Proposition 3.1. □

Proof of Proposition 3.2: Let F be the class of all linear functions and let I
denote the set of interventions on X that satisfy

sup
i∈I

λmin
(
EM(i)

[
XX⊤

])
=∞.

We claim that the causal function f(x) = b⊤x is the unique minimax solution of
(3.2). We prove the result by contradiction. Let f̄ ∈ F (with f̄(x) = b̄⊤x) be such
that

sup
i∈I

EM(i)[(Y − b̄⊤X)2] ≤ sup
i∈I

EM(i)[(Y − b⊤X)2],
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and assume that ∥b̄− b∥2 > 0. For a fixed i ∈ I, we get the following bound

EM(i)[(b⊤X − b̄⊤X)2] = (b− b̄)⊤EM(i)[XX⊤](b− b̄)
≥ λmin(EM(i)[XX⊤])∥b− b̄∥2

2.

Since we assumed that the minimal eigenvalue is unbounded, this means that we
can choose i ∈ I such that EM(i)[(b⊤X − b̄⊤X)2] can be arbitrarily large. However,
applying Proposition 3.3, this leads to a contradiction since supi∈I EM(i)[(b⊤X −
b̄⊤X)2] ≤ 4 VarM(ξY ) cannot be satisfied. Therefore, it must holds that b̄ = b,
which moreover implies that f is indeed a solution to the minimax problem
arg minf⋄∈F supi∈I EM(i)[(Y − f⋄(X))2], as it achieves the lowest possible objective
value. This completes the proof of Proposition 3.2. □

Proof of Proposition 3.3: Let I be a set of interventions on X or A and let
f⋄ ∈ F with

sup
i∈I

EM(i)[(Y − f⋄(X))2] ≤ sup
i∈I

EM(i)[(Y − f(X))2]. (B.9)

For any i ∈ I, the Cauchy-Schwartz inequality implies that

EM(i)[(Y − f⋄(X))2] = EM(i)[(f(X) + ξY − f⋄(X))2]
= EM(i)[(f(X)− f⋄(X))2] + EM(i)[ξ2

Y ]
+ 2EM(i)[ξY (f(X)− f⋄(X))]
≥ EM(i)[(f(X)− f⋄(X))2] + EM [ξ2

Y ]

− 2
(
EM(i)[(f(X)− f⋄(X))2]EM [ξ2

Y ]
) 1

2 .

A similar computation shows that the causal function f satisfies

EM(i)[(Y − f(X))2] = EM [ξ2
Y ].

So by condition (B.9) this implies for any i ∈ I that

EM [ξ2
Y ] ≥EM(i)[(f(X)− f⋄(X))2] + EM [ξ2

Y ]

− 2
(
EM(i)[(f(X)− f⋄(X))2]EM [ξ2

Y ]
) 1

2 ,

which is equivalent to

EM(i)[(f(X)− f⋄(X))2] ≤ 2
√
EM(i)[(f(X)− f⋄(X))2]EM [ξ2

Y ],

i.e. EM(i)[(f(X)− f⋄(X))2] ≤ 4EM [ξ2
Y ]. As this inequality holds for all i ∈ I, we

can take the supremum over all i ∈ I, which completes the proof of Proposition 3.3.
□

Proof of Proposition 3.4: As argued before, we have that for all i ∈ I1,

EM(i)
[
(Y − f(X))2

]
= EM(i)

[
ξ2

Y

]
= EM

[
ξ2

Y

]
.
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Let now f∗
1 ∈ F be a minimax solution w.r.t. I1. Then, using that the causal

function f lies in F , it holds that

sup
i∈I1

EM(i)
[
(Y − f∗

1 (X))2
]
≤ sup

i∈I1

EM(i)
[
(Y − f(X))2

]
= EM

[
ξ2

Y

]
.

Moreover, if I2 ⊆ I1, then it must also hold that

sup
i∈I2

EM(i)
[
(Y − f∗

1 (X))2
]
≤ EM

[
ξ2

Y

]
= sup

i∈I2

EM(i)
[
(Y − f(X))2

]
.

To prove the second part, we give a one-dimensional example. Let F be linear
(i.e., f(x) = bx) and let I1 consist of shift interventions on X of the form

X i := g(Ai) + h2(H i, εi
X) + c,

with c ∈ [0, K]. Then, the minimax solution f∗
1 (where f∗

1 (x) = b∗
1x) with respect

to I1 is not equal to the causal function f as long as Cov(X, ξY ) is strictly positive.
This can be seen by explicitly computing the OLS estimator for a fixed shift
c and observing that the worst-case risk is attained at c = K. Now let I2 be
a set of interventions of the same form as I1 but including shifts with c > K
such that I2 ̸⊆ I1. Since F consists of linear functions, we know that the loss
EM(i)

[
(Y − f∗

1 (X))2
]

can become arbitrarily large, since

EM(i)
[
(Y − f∗

1 (X))2
]

= (b− b∗
1)2EM(i)[X2] + EM [ξ2

Y ] + 2(b− b∗
1)EM(i)[ξYX]

= (b− b∗
1)2(c2 + EM [X2] + 2cEM [X]) + EM [ξ2

Y ]
+ 2(b− b∗

1)(EM [ξYX] + EM [ξY ]c),

and (b− b∗)2 > 0. In contrast, the loss for the causal function is always EM [ξ2
Y ], so

the worst-case risk of f∗
1 becomes arbitrarily worse than that of f . This completes

the proof of Proposition 3.4. □

Proof of Proposition 3.5: Let ε > 0. By definition of the infimum, we can find
f∗ ∈ F such that∣∣∣∣∣sup

i∈I
EM(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]∣∣∣∣∣ ≤ ε.

Let now M̃ ∈M be s.t. PM̃ = PM . By assumption, the left-hand side of the above
inequality is unaffected by substituting M for M̃ , and the result thus follows. □

Proof of Proposition 3.6:
We first show that the causal parameter β is not a minimax solution. Let

u := sup I < ∞, since I is bounded, and take b = β + 1/(σu). By an explicit

212



B.5. Proofs

computation we get that

inf
b⋄∈R

sup
i∈I

EM(i)
[
(Y − b⋄X)2

]
≤ sup

i∈I
EM(i)

[
(Y − bX)2

]
= sup

i∈I
EM(i)

[
(εY + 1

σH − 1
σuiH)2

]
= sup

i∈I

[
1 +

(
1− i

u

)2]
<2
= sup

i∈I
EM(i)

[
(Y − βX)2

]
,

where the last inequality holds because 0 < 1 + (1− i/u)2 < 2 for all i ∈ I, and
since I ⊆ R>0 is compact with upper bound u. Hence,

sup
i∈I

EM(i)
[
(Y − βX)2

]
− inf

b⋄∈R
sup
i∈I

EM(i)
[
(Y − b⋄X)2

]
> 0,

proving that the causal parameter is not a minimax solution for model M w.r.t.
(F , I). Recall that in order to prove that (PM ,M) does not generalize with respect
to I we have to show that there exists an ε > 0 such that for all b ∈ R it holds
that

sup
M̃ :PM̃ =PM

∣∣∣ sup
i∈I

EM̃(i)

[
(Y − bX)2

]
− inf

b⋄∈R
sup
i∈I

EM̃(i)

[
(Y − b⋄X)2

]∣∣∣ ≥ ε.

Thus, it remains to show that for all b ̸= β there exists a model M̃ ∈ M with
PM = PM̃ such that the generalization loss is bounded below uniformly by a
positive constant. We will show the stronger statement that for any b ≠ β, there
exists a model M̃ with PM̃ = PM , such that under M̃ , b results in arbitrarily large
generalization error. Let c > 0 and i0 ∈ I. Define

σ̃ := sign ((β − b)i0)
√

1 + c− 1
(β − b)i0

> 0,

and let M̃ := M(γ, β, σ̃, Q). By construction of the model class M, it holds that
PM̃ = PM . Furthermore, by an explicit computation we get that

sup
i∈I

EM̃(i)

[
(Y − bX)2

]
≥EM̃(i0)

[
(Y − bX)2

]
=EM̃(i0)

[
((β − b)i0H + εY + 1

σ̃H)2
]

=EM̃(i0)

[
([(β − b)i0σ̃ + 1]εH + εY )2

]
=[(β − b)i0σ̃ + 1]2 + 1
= ((β − b)i0σ̃)2 + 2(β − b)i0σ̃ + 2
= (sign ((β − b)i0)

√
1 + c− 1)2

+ 2 sign ((β − b)i0)
√

1 + c

= c+ 2.

(B.10)
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Finally, by definition of the infimum, it holds that

inf
b⋄∈R

sup
i∈I

EM̃(i)

[
(Y − b⋄X)2

]
≤ sup

i∈I
EM̃(i)

[
(Y − βX)2

]
= 2. (B.11)

Combining (B.10) and (B.11) yields that the generalization error is bounded below
by c. That is,∣∣∣ sup

i∈I
EM̃(i)

[
(Y − bX)2

]
− inf

b⋄∈R
sup
i∈I

EM̃(i)

[
(Y − b⋄X)2

]∣∣∣ ≥ c.

The above results make no assumptions on γ, and hold true, in particular, if γ ̸= 0
(in which case Assumption 3.1 is satisfied, see Appendix B.2). This completes the
proof of Proposition 3.6.

□

Proof of Proposition 3.7: Let I be a well-behaved set of interventions on X.
We consider two cases; (A) all interventions in I are confounding-preserving and
(B) there is at least one intervention in I that is confounding-removing.

Case (A): In this case, we prove the result in two steps: (i) We show that
(A, ξX , ξY ) is identified from the observational distribution PM . (ii) We show that
this implies that the intervention distributions (X i, Y i), i ∈ I, are also identified
from the observational distribution, and conclude by using Proposition 3.5. Some
of the details will be slightly technical because we allow for a large class of
distributions (e.g., there is no assumption on the existence of densities).

We begin with step (i). In this case, I is a set of confounding-preserving interven-
tions onX, and we have that suppI(X) ⊆ supp(X). Fix M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈M
such that PM̃ = PM and let (X̃, Ỹ , H̃, Ã) be generated by the SCM of M̃ . We
have that (X, Y,A) D= (X̃, Ỹ , Ã) and by Assumption 3.1, we have that f ≡ f̃ on
supp(X), hence f(X) a.s= f̃(X). Further, fix any B ∈ B(Rp) (i.e., in the Borel
sigma-algebra on Rp) and note that

EM [1B(A)X|A] = EM [1B(A)g(A) + 1B(A)h2(H, εX)|A]
= EM [1B(A)g(A)|A] + 1B(A)E[h2(H, εX)] = 1B(A)g(A),

almost surely. Here, we have used our modeling assumption E[h2(H, εX)] = 0.
Hence, by similar arguments for EM̃(1B(Ã)X̃|Ã) and the fact that (X, Y,A) D=
(X̃, Ỹ , Ã) we have that

1B(A)g(A) a.s= EM (1B(A)X|A)
D= EM̃ (1B(Ã)X̃|Ã)
a.s= 1B(Ã)g̃(Ã).

We conclude that 1B(A)g(A) D= 1B(Ã)g̃(Ã) for any B ∈ B(Rp). Let P and P̃
denote the respective background probability measures on which the random
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elements (X, Y,H,A) and (X̃, Ỹ , H̃, Ã) are defined. Fix any F ∈ σ(A) (i.e., in the
sigma-algebra generated by A) and note that there exists a B ∈ B(Rp) such that
F = {A ∈ B}. Since A D= Ã, we have that,∫

F
g(A) dP =

∫
1B(A)g(A) dP

=
∫
1B(Ã)g̃(Ã) dP̃

=
∫
1B(A)g̃(A) dP

=
∫

F
g̃(A) dP.

Both g(A) and g̃(A) are σ(A)-measurable and they agree integral-wise over every set
F ∈ σ(A), so we must have that g(A) a.s= g̃(A). With η(a, b, c) = (a, c−f̃(b), b−g̃(a))
we have that

(A, ξY , ξX) a.s= (A, Y − f̃(X), X − g̃(A))
= η(A,X, Y )
D= η(Ã, X̃, Ỹ )
= (Ã, ξ̃Y , ξ̃X),

so (A, ξY , ξX) D= (Ã, ξ̃Y , ξ̃X). This completes step (i).
Next, we proceed with step (ii). Take an arbitrary intervention i ∈ I and let

φi, I i, Ĩ i with I i D= Ĩ i, I i ⊥⊥ (εi
X , ε

i
Y , ε

i
H , ε

i
A) ∼ Q and Ĩ i ⊥⊥ (ε̃i

X , ε̃
i
Y , ε̃

i
H , ε̃

i
A) ∼ Q̃ be

such that the structural assignments for X i and X̃ i in M(i) and M̃(i), respectively,
are given as

X i := φi(Ai, g(Ai), h2(H i, εi
X), I i),

X̃ i := φi(Ãi, g̃(Ãi), h̃2(H̃ i, ε̃i
X), Ĩ i).

Define ξi
X := h2(H i, εi

X), ξi
Y := h1(H i, εi

Y ), ξ̃i
X := h̃2(H̃ i, ε̃i

X) and ξ̃i
Y := h̃1(H̃ i, ε̃i

Y ).
Then, it holds that

(Ai, ξi
X , ξ

i
Y ) D= (A, ξX , ξY ) D= (Ã, ξ̃X , ξ̃Y ) D= (Ãi, ξ̃i

X , ξ̃
i
Y ),

where we used step (i), that (Ai, ξi
X , ξ

i
Y ) and (A, ξX , ξY ) are generated by identical

functions of the noise innovations and that (εX , εY , εH , εA) and (εi
X , ε

i
Y , ε

i
H , ε

i
A)

have identical distributions. Adding a random variable with the same distribution,
that is mutually independent with all other variables, on both sides does not
change the distribution of the bundle, hence

(Ai, ξi
X , ξ

i
Y , I

i) D= (Ãi, ξ̃i
X , ξ̃

i
Y , Ĩ

i).

Define κ(a, b, c, d) := (φi(a, g̃(a), b, d), f̃(φi(a, g̃(a), b, d)) + c). As shown in step (i)
above, we have that g(Ai) a.s= g̃(Ai). Furthermore, since supp(X i) ⊆ supp(X) we
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have that f(X i) a.s= f̃(X i), and hence

(X i, Y i) a.s= (X i, f̃(X i) + ξi
Y )

= (φi(Ai, g(Ai), ξi
X , I

i), f̃(φi(Ai, g(Ai), ξi
X , I

i)) + ξi
Y )

a.s= (φi(Ai, g̃(Ai), ξi
X , I

i), f̃(φi(Ai, g̃(Ai), ξi
X , I

i)) + ξi
Y )

=κ(Ai, ξi
X , ξ

i
Y , I

i)
D=κ(Ãi, ξ̃i

X , ξ̃
i
Y , Ĩ

i)
=(X̃ i, Ỹ i).

Thus, P(X,Y )
M(i) = P(X,Y )

M̃(i) , which completes step (ii). Since i ∈ I was arbitrary, the
result now follows from Proposition 3.5.

Case (B): Assume that the intervention set I contains at least one confounding-
removing intervention. Let M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈ M be such that PM̃ = PM .
Then, by Proposition 3.1, it follows that the causal function f̃ is a minimax
solution w.r.t. (M̃, I). By Assumption 3.1, we further have that f̃ and f coincide
on supp(X) ⊇ suppI(X). Hence, it follows that

inf
f⋄∈F

sup
i∈I

EM̃(i)[(Y − f⋄(X))2] = sup
i∈I

EM̃(i)[(Y − f̃(X))2]

= sup
i∈I

EM̃(i)[(Y − f(X))2],

showing that also f is a minimax solution w.r.t. (M̃, I). This completes the proof
of Proposition 3.7. □

Proof of Proposition 3.8: Let M̃ ∈ M be such that PM̃ = PM . By Assump-
tions 3.1 and 3.2, it holds that f ≡ f̃ . The proof now proceeds analogously to that
of Proposition 3.7. □

Proof of Proposition 3.9: By Assumption 3.1, f is identified on suppM (X) by
the observational distribution PM . Let I be a set of interventions containing at
least one confounding-removing intervention. For any M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈M,
Proposition 3.1 yields that the causal function is a minimax solution. That is,

inf
f⋄∈F

sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]
= sup

i∈I
EM̃(i)

[
(Y − f̃(X))2

]
= sup

i∈I
EM̃(i)[ξ2

Y ] = EM̃ [ξ2
Y ], (B.12)

where we used that any intervention i ∈ I does not affect the distribution of ξY =
h̃2(H, εY ). Now, assume that M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈M satisfies PM̃ = PM . Since
(PM ,M) satisfies Assumption 3.1, we have that f ≡ f̃ on suppM (X) = suppM̃ (X).
Let f∗ be any function in F such that f∗ = f on suppM (X). We first show that
∥f̃ − f∗∥I,∞ ≤ 2δK, where ∥f∥I,∞ := supx∈suppM

I (X) ∥f(x)∥. By the mean value
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theorem, for all f⋄ ∈ F it holds that |f⋄(x)− f⋄(y)| ≤ K∥x− y∥, for all x, y ∈ D.
For any x ∈ suppM

I (X) and y ∈ suppM (X) we have∣∣∣f̃(x)− f∗(x)
∣∣∣ =

∣∣∣f̃(x)− f̃(y) + f∗(y)− f∗(x)
∣∣∣

≤
∣∣∣f̃(x)− f̃(y)

∣∣∣+ ∣∣∣f∗(y)− f∗(x)
∣∣∣

≤ 2K∥x− y∥,

where we used the fact that f̃(y) = f(y) = f∗(y), for all y ∈ suppM(X). In
particular, it holds that

∥f̃ − f∗∥I,∞ = sup
x∈suppM

I (X)

∣∣∣f̃(x)− f∗(x)
∣∣∣

≤ 2K sup
x∈suppM

I (X)
inf

y∈suppM (X)
∥x− y∥

= 2δK.

(B.13)

For any i ∈ I we have that

EM̃(i)

[
(Y − f∗(X))2

]
=EM̃(i)

[
(f̃(X) + ξY − f∗(X))2

]
=EM̃

[
ξ2

Y

]
+ EM̃(i)

[
(f̃(X)− f∗(X))2

]
+ 2EM̃(i)

[
ξY (f̃(X)− f∗(X))

]
. (B.14)

Next, we can use Cauchy-Schwarz, (B.12) and (B.13) in (B.14) to get that∣∣∣∣∣ sup
i∈I

EM̃(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣∣
= sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− EM̃ [ξ2

Y ]

= sup
i∈I

(
EM̃(i)

[
(f̃(X)− f∗(X))2

]
+ 2EM̃(i)

[
ξY (f̃(X)− f∗(X))

])
≤ 4δ2K2 + 4δK

√
VarM (ξY ), (B.15)

proving the first statement. Finally, if I consists only of confounding-removing
interventions, then the bound in (B.15) can be improved by using that E[ξY ] = 0
together with H ⊥⊥ X. In that case, we get that EM̃(i)

[
ξY (f̃(X)− f(X))

]
= 0 and

hence the bound becomes 4δ2K2. This completes the proof of Proposition 3.9. □

Proof of Proposition 3.10: By Assumption 3.1, f is identified on suppM(X)
by the observational distribution PM . Let I be a set of confounding-preserving
interventions. For a fixed ε > 0, let f∗ ∈ F be a function satisfying∣∣∣ sup

i∈I
EM(i)

[
(Y − f∗(X))2)

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2)

]∣∣∣ ≤ ε. (B.16)

Fix any secondary model M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈M with PM̃ = PM . The general
idea is to derive an upper bound for supi∈I EM̃(i)[(Y − f∗(X))2] and a lower bound
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for inff⋄∈F supi∈I EM̃(i)[(Y − f⋄(X))2] which will allow us to bound the absolute
difference of interest.

Since (PM ,M) satisfies Assumption 3.1, we have that f ≡ f̃ on suppM(X) =
suppM̃ (X). We first show that

∥f̃ − f∥I,∞ ≤ 2δK,

where ∥f∥I,∞ := supx∈suppM
I (X) ∥f(x)∥. By the mean value theorem, for all f⋄ ∈ F

it holds that |f⋄(x)− f⋄(y)| ≤ K∥x− y∥, for all x, y ∈ D. For any x ∈ suppM
I (X)

and y ∈ suppM (X) we have∣∣∣f̃(x)− f(x)
∣∣∣ =

∣∣∣f̃(x)− f̃(y) + f(y)− f(x)
∣∣∣

≤
∣∣∣f̃(x)− f̃(y)

∣∣∣+ ∣∣∣f(y)− f(x)
∣∣∣

≤ 2K∥x− y∥,

where we used the fact that f̃(y) = f(y), for all y ∈ suppM(X). In particular, it
holds that

∥f̃ − f∥I,∞ = sup
x∈suppM

I (X)

∣∣∣f̃(x)− f(x)
∣∣∣

≤ 2K sup
x∈suppM

I (X)
inf

y∈suppM (X)
∥x− y∥

= 2δK.

(B.17)

Let now i ∈ I be fixed. The term ξY = h1(H, εY ) is not affected by the intervention
i. Furthermore, P(X,ξY )

M(i) = P(X,ξY )
M̃(i) since i is confounding-preserving (this can be

seen by a slight modification to the arguments from case (A) in the proof of
Proposition 3.7). Thus, for any f⋄ ∈ F we have that

EM̃(i)

[
(Y − f⋄(X))2

]
= EM̃(i)

[
(f̃(X) + ξY − f⋄(X) + f(X)− f(X))2

]
= EM̃(i)

[
ξ2

Y

]
+ EM̃(i)

[
(f(X)− f⋄(X))2

]
+ EM̃(i)

[
(f̃(X)− f(X))2

]
+ 2EM̃(i)

[
ξY (f(X)− f⋄(X))

]
+ 2EM̃(i)

[
(f̃(X)− f(X))(f(X)− f⋄(X))

]
+ 2EM̃(i)

[
ξY (f̃(X)− f(X))

]
= EM(i)

[
ξ2

Y

]
+ EM(i)

[
(f(X)− f⋄(X))2

]
+ EM(i)

[
(f̃(X)− f(X))2

]
+ 2EM(i)

[
ξY (f(X)− f⋄(X))

]
+ 2EM(i)

[
(f̃(X)− f(X))(f(X)− f⋄(X))

]
+ 2EM(i)

[
ξY (f̃(X)− f(X))

]
= EM(i)

[
(Y − f⋄(X))2

]
+ Li

1(f̃) + Li
2(f̃ , f⋄) + Li

3(f̃), (B.18)
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where, we have made the following definitions
Li

1(f̃) := EM(i)
[
(f̃(X)− f(X))2

]
,

Li
2(f̃ , f⋄) := 2EM(i)

[
(f̃(X)− f(X))(f(X)− f⋄(X))

]
,

Li
3(f̃) := 2EM(i)

[
ξY (f̃(X)− f(X))

]
.

Using (B.17) it follows that
0 ≤ Li

1(f̃) ≤ 4δ2K2, (B.19)
and by the Cauchy-Schwarz inequality it follows that∣∣∣Li

3(f̃)
∣∣∣ ≤ 2

√
VarM (ξY )4δ2K2 = 4δK

√
VarM (ξY ). (B.20)

Let now f⋄ ∈ F be any function such that
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2)

]
≤ sup

i∈I
EM̃(i)

[
(Y − f̃(X))2)

]
, (B.21)

then by (B.17), the Cauchy-Schwarz inequality and Proposition 3.3, it holds for
all i ∈ I that

Li
2(f̃ , f⋄) = 2EM(i)

[
(f̃(X)− f(X))(f(X)− f⋄(X))

]
= 2EM̃(i)

[
(f̃(X)− f(X))(f(X)− f⋄(X))

]
= − 2EM̃(i)

[
(f̃(X)− f(X))2

]
(B.22)

+ 2EM̃(i)

[
(f̃(X)− f(X))(f̃(X)− f⋄(X))

]
≥ − 8δ2K2 − 2

√
4δ2K2

√
4 VarM (ξY )

= − 8δ2K2 − 8δK
√

VarM (ξY ), (B.23)

where, in the third equality, we have added and subtracted the term 2EM̃(i)

[
(f̃(X)−

f(X))f̃(X)
]
. Now let

S := {f⋄ ∈ F : sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]
≤ sup

i∈I
EM̃(i)

[
(Y − f̃(X))2

]
}

be the set of all functions satisfying (B.21). Due to (B.18), (B.19), (B.20) and
(B.23) we have the following lower bound of interest

inf
f⋄∈F

sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]
= inf

f⋄∈S
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]
= inf

f⋄∈S
sup
i∈I

{
EM(i)

[
(Y − f⋄(X))2

]
+ Li

1(f̃) + Li
2(f̃ , f⋄) + Li

3(f̃)
}

≥ inf
f⋄∈S

sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]
− 8δ2K2 − 8δK

√
VarM (ξY )

− 4δK
√

VarM (ξY ) (B.24)

≥ inf
f⋄∈F

sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]
− 8δ2K2 − 12δK

√
VarM (ξY ). (B.25)
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Next, we construct the aforementioned upper bound of interest. To that end, note
that

sup
i∈I

EM̃(i)

[
(Y − f∗(X))2

]
= sup

i∈I

{
EM(i)

[
(Y − f∗(X))2

]
+ Li

1(f̃) + Li
2(f̃ , f∗) + Li

3(f̃)
}
, (B.26)

by (B.18). We have already established upper bounds for Li
1(f̃) and Li

3(f̃) in
(B.19) and (B.20), respectively. In order to control Li

2(f̃ , f∗) we introduce an
auxiliary function. Let f̄∗ ∈ F satisfy

sup
i∈I

EM(i)
[
(Y − f̄∗(X))2)

]
≤ sup

i∈I
EM(i)

[
(Y − f(X))2)

]
, (B.27)

and ∣∣∣∣∣ sup
i∈I

EM(i)
[
(Y − f̄∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]∣∣∣∣∣ ≤ ε. (B.28)

Choosing such a f̄∗ ∈ F is always possible. If f is an ε-minimax solution, i.e., it
satisfies (B.28), then choose f̄∗ = f . Otherwise, if f is not a ε-minimax solution,
then choose any f̄∗ ∈ F that is an ε-minimax solution (which is always possible).
In this case we have that

sup
i∈I

EM(i)
[
(Y − f̄∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]
≤ ε,

and

sup
i∈I

EM(i)
[
(Y − f(X))2

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]
≥ ε,

which implies that (B.27) is satisfied. We can now construct an upper bound on
Li

2(f̃ , f∗) in terms of Li
2(f̃ , f̄∗) by noting that for all i ∈ I∣∣∣Li

2(f̃ , f∗)
∣∣∣ = 2

∣∣∣EM(i)
[
(f̃(X)− f(X))(f(X)− f∗(X))

]∣∣∣
≤ 2

∣∣∣EM(i)
[
(f̃(X)− f(X))(f(X)− f̄∗(X))

]∣∣∣
+ 2EM(i)

∣∣∣(f̃(X)− f(X))(f̄∗(X)− f∗(X))
∣∣∣

=
∣∣∣Li

2(f̃ , f̄∗)
∣∣∣+ 2EM(i)

∣∣∣(f̃(X)− f(X))(f̄∗(X)− f∗(X))
∣∣∣

≤ 2
√
EM(i)

[
(f̃(X)− f(X))2

]
EM(i)

[
(f̄∗(X)− f∗(X))2

]
+
∣∣∣Li

2(f̃ , f̄∗)
∣∣∣ (B.29)

≤
∣∣∣Li

2(f̃ , f̄∗)
∣∣∣+ 4δK

√
EM(i)

[
(f̄∗(X)− f∗(X))2

]
, (B.30)
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where we used the triangle inequality, Cauchy-Schwarz inequality and (B.17).
Furthermore, (B.17) and (B.27) together with Proposition 3.3 yield the following
bound

|Li
2(f̃ , f̄∗)| = 2

∣∣∣EM(i)
[
(f̃(X)− f(X))(f(X)− f̄∗(X))

]∣∣∣
= 2

√
EM(i)

[
(f̃(X)− f(X))2

]
EM(i)

[
(f(X)− f̄∗(X))2

]
≤ 2
√

4δ2K2
√

4 VarM (ξY )

= 8δK
√

VarM (ξY ), (B.31)

for any i ∈ I. Thus, it suffices to construct an upper bound on the second term in
the final expression in (B.30). Direct computation leads to

EM(i)
[
(Y − f∗(X))2

]
=EM(i)

[
(Y − f̄∗(X))2

]
+ EM(i)

[
(f̄∗(X)− f∗(X))2

]
+ 2EM(i)

[
(Y − f̄∗(X))(f̄∗(X)− f∗(X))

]
.

Rearranging the terms and applying the triangle inequality and Cauchy-Schwarz
results in

EM(i)
[
(f̄∗(X)− f∗(X))2

]
=EM(i)

[
(Y − f∗(X))2

]
− EM(i)

[
(Y − f̄∗(X))2

]
− 2EM(i)

[
(Y − f̄∗(X))(f̄∗(X)− f∗(X))

]
≤
∣∣∣EM(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]∣∣∣
+
∣∣∣ inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]
− EM(i)

[
(Y − f̄∗(X))2

]∣∣∣
+ 2EM(i)

∣∣∣(Y − f̄∗(X))(f̄∗(X)− f∗(X))
∣∣∣

≤ 2ε+ 2
√
EM(i)

[
(Y − f̄∗(X))2

]√
EM(i)

[
(f̄∗(X)− f∗(X))2

]
≤ 2ε+ 2

√
VarM (ξY )

√
EM(i)

[
(f̄∗(X)− f∗(X))2

]
,

for any i ∈ I. Here, we used that both f∗ and f̄∗ are ε-minimax solutions with
respect to M and that f̄∗ satisfies (B.27) which implies that

EM(i)
[
(Y − f̄∗(X))2)

]
≤ sup

i∈I
EM(i)

[
(Y − f(X))2)

]
= sup

i∈I
EM(i)

[
ξ2

Y

]
= VarM (ξY ),

for any i ∈ I, as ξY is unaffected by an intervention on X. Thus, EM(i)
[
(f̄∗(X)−

f∗(X))2
]

must satisfy ℓ(EM(i)
[
(f̄∗(X) − f∗(X))2

]
) ≤ 0, where ℓ : [0,∞) → R is
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given by ℓ(z) = z − 2ε− 2
√

VarM (ξY )
√
z. The linear term of ℓ grows faster than

the square root term, so the largest allowed value of EM(i)
[
(f̄∗(X) − f∗(X))2

]
coincides with the largest root of ℓ(z). The largest root is given by

C2 := 2ε+ 2 VarM (ξY ) + 2
√

VarM (ξY )2 + 2εVarM (ξY ),

where (·)2 refers to the square of C. Hence, for any i ∈ I it holds that

EM(i)
[
(f̄∗(X)− f∗(X))2

]
≤ C2. (B.32)

Hence by (B.30), (B.31) and (B.32) we have that the following upper bound is
valid for any i ∈ I. ∣∣∣Li

2(f̃ , f∗)
∣∣∣ ≤ 8δK

√
VarM (ξY ) + 4δKC. (B.33)

Thus, using (B.26) with (B.19), (B.20) and (B.33), we get the following upper
bound

sup
i∈I

EM̃(i)

[
(Y − f∗(X))2

]
≤ sup

i∈I
EM(i)

[
(Y − f∗(X))2

]
+ 4δ2K2 + 4δKC + 12δK

√
VarM (ξY ). (B.34)

Finally, by combining the bounds (B.25) and (B.34) together with (B.16) we get
that ∣∣∣∣∣ sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣∣
≤ sup

i∈I
EM(i)

[
(Y − f∗(X))2

]
− inf

f⋄∈F
sup
i∈I

EM(i)
[
(Y − f⋄(X))2

]
+ 4δ2K2 + 4δKC + 12δK

√
VarM (ξY )

+ 8δ2K2 + 12δK
√

VarM (ξY )

≤ ε+ 12δ2K2 + 24δK
√

VarM (ξY ) + 4δKC. (B.35)

Using that all terms are positive, we get that

C =
√

VarM (ξY ) +
√

VarM (ξY ) + 2ε ≤ 2
√

VarM (ξY ) +
√

2ε

Hence, (B.35) is bounded above by

ε+ 12δ2K2 + 32δK
√

VarM (ξY ) + 4
√

2δK
√
ε.

This completes the proof of Proposition 3.10. □

Proof of Proposition 3.11: Let f̄ ∈ F and c > 0. By assumption, I is a well-
behaved set of support-extending interventions on X. Since suppM

I (X)\suppM (X)

222



B.5. Proofs

has non-empty interior, there exists an intervention i0 ∈ I and ε > 0 such that
PM(i0)(X ∈ B) ≥ ε, for some open subset B ⊊ B̄, such that dist(B,Rd \ B̄) > 0,
where B̄ := suppM

I (X) \ suppM (X). Let f̃ be any continuous function satisfying
that, for all x ∈ B ∪ (Rd \ B̄),

f̃(x) =
f̄(x) + γ, x ∈ B
f(x), x ∈ Rd \ B̄,

where γ := ε−1/2
{
(2EM̃ [ξ2

Y ] + c)1/2 + (EM̃ [ξ2
Y ])1/2

}
.

Consider a secondary model M̃ = (f̃ , g, h1, h2, Q) ∈ M. Then, by Assump-
tion 3.1, it holds that PM = PM̃ . Since I only consists of interventions on X, it
holds that PM(i0)(X ∈ B) = PM̃(i0)(X ∈ B) (this holds since all components of M̃
and M are equal, except for the function f , which is not allowed to enter in the
intervention on X). Therefore,

EM̃(i0)

[
(Y − f̄(X))2

]
≥ EM̃(i0)

[
(Y − f̄(X))2

1B(X)
]

= EM̃(i0)

[
(γ + ξY )2

1B(X)
]

≥ γ2ε+ 2γEM̃(i0)

[
ξY 1B(X)

]
≥ γ2ε− 2γ

(
EM̃

[
ξ2

Y

]
ε
)1/2

= c+ EM̃ [ξ2
Y ], (B.36)

where the third inequality follows from Cauchy–Schwarz. Further, by the definition
of the infimum it holds that

inf
f⋄∈F

sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]
≤ sup

i∈I
EM̃(i)

[
(Y − f̃(X))2

]
= EM̃ [ξ2

Y ]. (B.37)

Therefore, combining (B.36) and (B.37), the claim follows. □

Proof of Proposition 3.12: We prove the result by showing that under As-
sumption 3.3 it is possible to express interventions on A as confounding-preserving
interventions on X and applying Propositions 3.7 and 3.8. To avoid confusion, we
will throughout this proof denote the true model by M0 = (f0, g0, h0

1, h
0
2, Q

0). Fix
an intervention i ∈ I. Since it is an intervention on A, there exist ψi and I i such
that for any M = (f, g, h1, h2, Q) ∈M, the intervened SCM M(i) is of the form

Ai := ψi(I i, εi
A), H i := εi

H ,

X i := g(Ai) + h2(H i, εi
X),

Y i := f(X i) + h1(H i, εi
Y ),

where (εi
X , ε

i
Y , ε

i
A, ε

i
H) ∼ Q. We now define a confounding-preserving intervention

j on X, such that, for all models M̃ with PM̃ = PM , the distribution of (X, Y )
under M̃(j) coincides with that under M̃(i). To that end, define the intervention
function

ψ̄j(h2, A
j, Hj, εj

X , I
j) := g0(ψi(Ij, Aj)) + h2(Hj, εj

X),
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where g0 is the fixed function corresponding to model M , and therefore not an
argument of ψ̄j. Let now j be the intervention on X satisfying that, for all
M = (f, g, h1, h2, Q) ∈M, the intervened model M(j) is given as

Aj := εj
A, Hj := εj

H ,

Xj := ψ̄j(h2, A
j, Hj, εj

X , I
j),

Y j := f(Xj) + h1(Hj, εj
Y ),

where (εj
X , ε

j
Y , ε

j
A, ε

j
H) ∼ Q and where Ij is chosen such that Ij D= I i. By definition,

j is a confounding-preserving intervention. Let now M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) be such
that PM̃ = PM , and let (X̃ i, Ỹ i) and (X̃j, Ỹ j) be generated under M̃(i) and M̃(j),
respectively. By Assumption 3.3, it holds for all a ∈ supp(A) ∪ suppI(A) that
g̃(a) = g0(a). Hence, we get that

(X̃ i, Ỹ i) D=(g̃(ψi(I i, ε̃i
A)) + h̃2(ε̃i

H , ε̃
i
X), f̃(g̃(ψi(I i, ε̃i

A))
+ h̃2(ε̃i

H , ε̃
i
X)) + h̃1(ε̃i

H , ε̃
i
Y ))

=(g0(ψi(I i, ε̃i
A)) + h̃2(ε̃i

H , ε̃
i
X), f̃(g0(ψi(I i, ε̃i

A))
+ h̃2(ε̃i

H , ε̃
i
X)) + h̃1(ε̃i

H , ε̃
i
Y ))

D=(g0(ψi(Ij, ε̃j
A)) + h̃2(ε̃j

H , ε̃
j
X), f̃(g0(ψi(Ij, ε̃j

A))
+ h̃2(ε̃j

H , ε̃
j
X)) + h̃1(ε̃j

H , ε̃
j
Y ))

D=(ψ̄j(h̃2, ε̃
j
A, ε̃

j
H , ε̃

j
X , I

j), f̃(ψ̄j(h̃2, ε̃
j
A, ε̃

j
H , ε̃

j
X , I

j))
+ h̃1(ε̃j

H , ε̃
j
Y ))

D=(X̃j, Ỹ j),

as desired. Since i ∈ I was arbitrary, we have now shown that there exists a
mapping π from I into a set J of confounding-preserving (and hence a well-behaved
set) of interventions on X, such that for all M̃ with PM̃ = PM , P(X,Y )

M̃(i) = P(X,Y )
M̃(π(i)).

Hence, we can rewrite Equation (3.3) in Definition 3.1 in terms of the set J . The
result now follows from Propositions 3.7 and 3.8. □

Proof of Proposition 3.13: Let b ∈ Rd be such that f(x) = b⊤x for all x ∈ Rd.
We start by characterizing the error EM̃(i)

[
(Y − f⋄(X))2

]
. Let us consider models

of the form M̃ = (f, g̃, h1, h2, Q) ∈ M for some function g̃ ∈ G with g̃(a) = g(a)
for all a ∈ suppM (A). Clearly, any such model satisfies that PM̃ = PM . For every
a ∈ A, let ia ∈ I denote the corresponding hard intervention on A. For every
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a ∈ A and b⋄ ∈ Rd, we then have

EM̃(ia)

[
(Y − b⊤

⋄ X)2
]

= EM̃(ia)

[
(b⊤X + ξY − b⊤

⋄ X)2
]

= (b− b⋄)⊤EM̃(ia)[XX⊤](b− b⋄)
+ 2(b− b⋄)⊤EM̃(ia)[XξY ] + EM̃(ia)

[
ξ2

Y ]
= (b− b⋄)⊤ (g̃(a)g̃(a)⊤ + EM [ξXξ

⊤
X ])︸ ︷︷ ︸

=:KM̃ (a)

(b− b⋄)

+ 2(b− b⋄)⊤EM [ξXξY ] + EM

[
ξ2

Y ],

(B.38)

where we have used that, under ia, the distribution of (ξX , ξY ) is unaffected.
We now show that, for any M̃ with the above form, the causal function f does
not minimize the worst-case risk across interventions in I. The idea is to show
that the worst-case risk (B.38) strictly decreases at b⋄ = b in the direction u :=
EM [ξXξY ]/∥EM [ξXξY ]∥2. For every a ∈ A and s ∈ R, define

ℓM̃,a(s) : = EM̃(ia)

[
(Y − (b+ su)⊤X)2

]
= u⊤KM̃ (a)u · s2 − 2u⊤EM [ξXξY ] · s+ EM

[
ξ2

Y ].

For every a, ℓ′
M̃,a

(0) = −2∥EM [ξXξY ]∥2 < 0, showing that ℓM̃,a is strictly decreasing
at s = 0 (with a derivative that is bounded away from 0 across all a ∈ A). By
boundedness of A and by the continuity of a 7→ ℓ′′

M̃,a
(0) = 2u⊤KM̃ (a)u, it further

follows that supa∈A|ℓ′′
M̃,a

(0)| < ∞. Hence, we can find s0 > 0 such that for all
a ∈ A, ℓM̃,a(0) > ℓM̃,a(s0). It now follows by continuity of (a, s) 7→ ℓM̃,a(s) that

sup
i∈I

EM̃(i)

[
(Y − b⊤X)2

]
= sup

a∈A
ℓM̃,a(0)

> sup
a∈A

ℓM̃,a(s0)

= sup
i∈I

EM̃(i)

[
(Y − (b+ s0u)⊤X)2

]
,

showing that b+ s0u attains a lower worst-case risk than b.
We now show that all functions other than f may result in an arbitrarily large

error. Let b̄ ∈ Rd \ {b} be given, and let j ∈ {1, . . . , d} be such that bj ̸= b̄j. The
idea is to construct a function g̃ ∈ G such that, under the corresponding model
M̃ = (f, g̃, h1, h2, Q) ∈M, some hard interventions on A result in strong shifts of
the jth coordinate of X. Let a ∈ A. Let ej ∈ Rd denote the jth unit vector, and
assume that g̃(a) = nej for some n ∈ N. Using (B.38), it follows that

EM̃(ia)

[
(Y − b̄⊤X)2

]
=n2(b̄j − bj)2 + (b̄− b)⊤EM [ξXξ

⊤
X ](b̄− b)

+ 2(b̄− b)⊤EM [ξXξY ] + EM

[
ξ2

Y ].
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By letting n→∞, we see that the above error may become arbitrarily large. Given
any c > 0, we can therefore construct g̃ such that EM̃(ia)

[
(Y − b̄⊤X)2

]
≥ c+EM

[
ξ2

Y ].
By carefully choosing a ∈ int(A \ suppM(A)), this can be done such that g̃ is
continuous and g̃(a) = g(a) for all a ∈ suppM(A), ensuring that PM̃ = PM . It
follows that

c ≤ EM̃(ia)

[
(Y − b̄⊤X)2

]
− EM

[
ξ2

Y ]

= EM̃(ia)

[
(Y − b̄⊤X)2

]
− sup

i∈I
EM̃(i)

[
(Y − b⊤X)2]

≤ EM̃(ia)

[
(Y − b̄⊤X)2

]
− inf

b⋄∈Rd
sup
i∈I

EM̃(i)

[
(Y − b⊤

⋄ X)2]

≤ sup
i∈I

EM̃(i)

[
(Y − b̄⊤X)2

]
− inf

b⋄∈Rd
sup
i∈I

EM̃(i)

[
(Y − b⊤

⋄ X)2],

which completes the proof of Proposition 3.13. □

Proof of Proposition 3.14: By assumption, I is a set of interventions on X or
A of which at least one is confounding-removing. Now fix any

M̃ = (fη0(x; θ̃), g̃, h̃1, h̃2, Q̃) ∈M,

with PM = PM̃ . By Proposition 3.1, we have that a minimax solution is given by
the causal function. That is,

inf
f⋄∈Fη0

sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]
= sup

i∈I
EM̃(i)

[
(Y − fη0(X; θ̃))2

]
= EM [ξ2

Y ],

where we used that ξY is unaffected by an intervention on X. By the support
restriction suppM (X) ⊆ (a, b) we know that

fη0(x; θ0) = B(x)⊤θ0,

fη0(x; θ̃) = B(x)⊤θ̃,

fη0(x; θ̂n
λ⋆

n,η0,µ) = B(x)⊤θ̂n
λ⋆

n,η0,µ,

for all x ∈ suppM (X). Furthermore, as Y = B(X)⊤θ0 + ξY PM -almost surely, we
have that

EM [C(A)Y ] = EM

[
C(A)B(X)⊤θ0

]
+ EM [C(A)ξY ]

= EM

[
C(A)B(X)⊤

]
θ0, (B.39)

where we used the assumptions that E [ξY ] = 0 and A ⊥⊥ ξY by the exogeneity of
A. Similarly,

EM̃ [C(A)Y ] = EM̃

[
C(A)B(X)⊤

]
θ̃.
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As PM = PM̃ , we have that EM [C(A)Y ] = EM̃ [C(A)Y ] and EM [C(A)B(X)⊤] =
EM̃ [C(A)B(X)⊤], hence

EM

[
C(A)B(X)⊤

]
θ̃ = EM

[
C(A)B(X)⊤

]
θ0 ⇐⇒ θ̃ = θ0,

by assumption (B2), which states that E[C(A)B(X)⊤] is of full rank (bijective). In
other words, the causal function parameterized by θ0 is identified from the observa-
tional distribution. Assumptions 3.1 and 3.2 are therefore satisfied. Furthermore,
we also have that

sup
i∈I

EM̃(i)

[
(Y − fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
= sup

i∈I

{
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
+ EM̃(i)

[
ξ2

Y

]
+ 2EM̃(i)

[
ξY (fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))

]}
≤ sup

i∈I

{
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
+ EM̃(i)

[
ξ2

Y

]
+ 2

√
EM̃(i)

[
ξ2

Y

]
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))2

]}
≤ sup

i∈I
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
+ EM

[
ξ2

Y

]
+ 2

√
EM

[
ξ2

Y

]
sup
i∈I

EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
,

by Cauchy-Schwarz inequality, where we additionally used that EM̃(i)[ξ2
Y ] = EM [ξ2

Y ]
as ξY is unaffected by interventions on X. Thus,∣∣∣ sup

i∈I
EM̃(i)

[
(Y − fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
− inf

f⋄∈Fη0
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣
≤ sup

i∈I
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
+ 2

√
EM

[
ξ2

Y

]
sup
i∈I

EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
.

For the next few derivations let θ̂ = θ̂n
λ⋆

n,η0,µ for notational simplicity. Note that,
for all x ∈ R,

(fη0(x; θ0)− fη0(x; θ̂))2 ≤ (θ0 − θ̂)⊤B(x)B(x)⊤(θ0 − θ̂)
+ (B(a)⊤(θ0 − θ̂) +B′(a)⊤(θ0 − θ̂)(x− a))2

+ (B(b)⊤(θ0 − θ̂) +B′(b)⊤(θ0 − θ̂)(x− b))2.
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The second term has the following upper bound

(B(a)⊤(θ0 − θ̂) +B′(a)⊤(θ0 − θ̂)(x− a))2

= (θ0 − θ̂)⊤B(a)B(a)⊤(θ0 − θ̂)
+ (x− a)2(θ0 − θ̂)⊤B′(a)B′(a)⊤(θ0 − θ̂)
+ 2(x− a)(θ0 − θ̂)⊤B′(a)B(a)⊤(θ0 − θ̂)

≤λm(B(a)B(a)⊤)∥θ0 − θ̂∥2
2

+ (x− a)2λm(B′(a)B′(a)⊤)∥θ0 − θ̂∥2
2

+ (x− a)λm(B′(a)B(a)⊤ +B(a)B′(a)⊤)∥θ0 − θ̂∥2
2,

where λm denotes the maximum eigenvalue. An analogous upper bound can be
constructed for the third term. Thus, by combining these two upper bounds with
a similar upper bound for the first term, we arrive at

EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂))2

]
≤λm(EM̃(i)[B(X)B(X)⊤])∥θ0 − θ̂∥2

2

+ λm(B(a)B(a)⊤)∥θ0 − θ̂∥2
2

+ EM̃(i)[(X − a)2]λm(B′(a)B′(a)⊤)∥θ0 − θ̂∥2
2

+ EM̃(i)[X − a]λm(B′(a)B(a)⊤ +B(a)B′(a)⊤)∥θ0 − θ̂∥2
2

+ λm(B(b)B(b)⊤)∥θ0 − θ̂∥2
2

+ EM̃(i)[(X − b)2]λm(B′(b)B′(b)⊤)∥θ0 − θ̂∥2
2

+ EM̃(i)[X − b]λm(B′(b)B(b)⊤ +B(b)B′(b)⊤)∥θ0 − θ̂∥2
2.

Assumption (B1) imposes that supi∈I EM̃(i)[X2] and supi∈I λm(EM̃(i)[B(X)B(X)⊤])
are finite. Hence, the supremum of each of the above terms is finite. That is, there
exists a constant c > 0 such that

∣∣∣∣∣sup
i∈I

EM̃(i)

[
(Y − fη0(X; θ̂n

λ⋆
n,η0,µ))2

]
− inf

f⋄∈Fη0
sup
i∈I

EM̃(i)

[
(Y − f⋄(X))2

]∣∣∣∣∣
≤ c∥θ0 − θ̂n

λ⋆
n,η0,µ∥2

2 + 2
√
EM

[
ξ2

Y

]
c∥θ0 − θ̂n

λ⋆
n,η0,µ∥2.

It therefore suffices to show that

θ̂n
λ⋆

n,η0,µ
P−→

n→∞
θ0,

with respect to the distribution induced by M . To simplify notation, we henceforth
drop the M subscript in the expectations and probabilities. Note that by the
rank conditions in (B2), and the law of large numbers, we may assume that the
corresponding sample product moments satisfy the same conditions. That is, for

228



B.5. Proofs

the purpose of the following arguments, it suffices that the sample product moment
only satisfies these rank conditions asymptotically with probability one.

Let B := B(X), C := C(A), let B and C be row-wise stacked i.i.d. copies of
B(X)⊤ and C(A)⊤, and recall the definition Pδ := C

(
C⊤C + δM

)−1
C⊤. By

convexity of the objective function we can find a closed form expression for our
estimator of θ0 by solving the corresponding normal equations. The closed form
expression is given by

θ̂n
λ,η,µ : = arg min

θ∈Rk

∥Y −Bθ∥2
2 + λ∥Pδ(Y −Bθ)∥2

2 + γθ⊤Kθ

=
(

B⊤B
n

+ λ⋆
n

B⊤PδPδB
n

+ γK
n

)−1 (B⊤Y
n

+ λ⋆
n

B⊤PδPδY
n

)
,

where we used that λ⋆
n ∈ [0,∞) almost surely by (C2). Consequently (using

standard convergence arguments and that n−1γK and n−1δM converges to zero
in probability), if λ⋆

n diverges to infinity in probability as n tends to infinity, then

θ̂n
λ⋆

n,η0,µ
P→
(
E
[
BC⊤

]
E
[
CC⊤

]−1
E
[
CB⊤

])−1
E
[
BC⊤

]
E
[
CC⊤

]−1
E [CY ]

= θ0.

Here, we also used that the terms multiplied by λ⋆
n are the only asymptotically

relevant terms. These are the standard arguments that the K-class estimator (with
minor penalized regression modifications) is consistent as long as the parameter
λ⋆

n converges to infinity, or, equivalently, κ⋆
n = λ⋆

n/(1 + λ⋆
n) converges to one in

probability.
We now consider two cases: (i) E[BξY ] ̸= 0 and (ii) E[BξY ] = 0, corresponding

to the case with unmeasured confounding and without, respectively. For (i) we
show that λ⋆

n converges to infinity in probability and for (ii) we show consistency
by other means (as λ⋆

n might not converge to infinity in this case).
Case (i): The confounded case E[BξY ] ̸= 0. It suffices to show that

λ⋆
n := inf{λ ≥ 0 : Tn(θ̂n

λ,η0,µ) ≤ q(α)} P−→
n→∞

∞.

To that end, note that for fixed λ ≥ 0 we have that

θ̂n
λ,η0,µ

P−→
n→∞

θλ, (B.40)

where

θλ :=
(
E
[
BB⊤

]
+ λE

[
BC⊤

]
E
[
CC⊤

]−1
E
[
CB⊤

])−1

×
(
E [BY ] + λE

[
BC⊤

]
E
[
CC⊤

]−1
E [CY ]

)
. (B.41)
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Recall that (B.39) states that E [CY ] = E
[
CB⊤

]
θ0. Using (B.39) and that

Y = B⊤θ0 + ξY PM -almost surely, we have that the latter factor of (B.41) is given
by

E [BY ] + λE
[
BC⊤

]
E
[
CC⊤

]−1
E [CY ]

= E
[
BB⊤

]
θ0 + E [BξY ] + λE

[
BC⊤

]
E
[
CC⊤

]−1
E
[
CB⊤

]
θ0

=
(
E
[
BB⊤

]
+ λE

[
BC⊤

]
E
[
CC⊤

]−1
E
[
CB⊤

])
θ0 + E [BξY ] .

Inserting this into (B.41) we arrive at the following representation of θλ

θλ = θ0 +
(
E
[
BB⊤

]
+ λE

[
BC⊤

]
E
[
CC⊤

]−1
E
[
CB⊤

])−1
E [BξY ] . (B.42)

Since E [BξY ] ̸= 0 by assumption, the above yields that

∀λ ≥ 0 : θ0 ̸= θλ. (B.43)

Now we prove that λ⋆
n diverges to infinity in probability as n tends to infinity.

That is, for any λ ≥ 0 we will prove that

lim
n→∞

P(λ⋆
n ≤ λ) = 0.

We fix an arbitrary λ ≥ 0. By (B.43) we have that θ0 ̸= θλ. This implies that
there exists an ε > 0 such that θ0 ̸∈ B(θλ, ε), where B(θλ, ε) is the closed ball in
Rk with center θλ and radius ε. By the consistency result (B.40), we know that
the sequence of events (An)n∈N, for every n ∈ N, given by

An := (|θ̂n
λ,η0,µ − θλ| ≤ ε) = (θ̂n

λ,η0,µ ∈ B(θλ, ε)),

satisfies P(An)→ 1 as n→∞. By assumption (C3) we have that

λ̃ 7→ Tn(θn
λ̃,η0,µ), and θ 7→ Tn(θ),

are weakly decreasing and continuous, respectively. Together with the continuity
of λ̃ 7→ θ̂n

λ̃,η0,µ
, this implies that also the mapping λ̃ 7→ Tn(θ̂n

λ̃,η0,µ
) is continuous. It

now follows from Assumption (C2) (stating that λ⋆
n is almost surely finite) that

for all n ∈ N, P(Tn(θ̂n
λ⋆

n,η0,µ) ≤ q(α)) = 1. Furthermore, since λ̃ 7→ Tn(θn
λ̃,η0,µ

) is
weakly decreasing, it follows that

P(λ⋆
n ≤ λ) =P({λ⋆

n ≤ λ} ∩ {Tn(θ̂n
λ⋆

n,η0,µ) ≤ q(α)})
≤P({λ⋆

n ≤ λ} ∩ {Tn(θ̂n
λ,η0,µ) ≤ q(α)})

=P({λ⋆
n ≤ λ} ∩ {Tn(θ̂n

λ,η0,µ) ≤ q(α)} ∩ An)
+ P({λ⋆

n ≤ λ} ∩ {Tn(θ̂n
λ,η0,µ) ≤ q(α)} ∩ Ac

n)
≤P({λ⋆

n ≤ λ} ∩ {Tn(θ̂n
λ,η0,µ) ≤ q(α)} ∩ {|θ̂n

λ,η0,µ − θλ| ≤ ε})
+ P(Ac

n).
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It now suffices to show that the first term converges to zero, since P(Ac
n)→ 0 as

n→∞. We have

P({λ⋆
n ≤ λ} ∩ {Tn(θ̂n

λ,η0,µ) ≤ q(α)} ∩ {|θ̂n
λ,η0,µ − θλ| ≤ ε})

≤ P
(
{λ⋆

n ≤ λ} ∩
{

inf
θ∈B(θλ,ε)

Tn(θ) ≤ q(α)
}
∩ {|θ̂n

λ,η0,µ − θλ| ≤ ε}
)

≤ P
(

inf
θ∈B(θλ,ε)

Tn(θ) ≤ q(α)
)

P→ 0,

as n→∞, since B(θλ, ε) is a compact set not containing θ0. Here, we used that
the test statistic (Tn) is assumed to have compact uniform power (C1). Hence,
limn→∞ P(λ⋆

n ≤ λ) = 0 for any λ ≥ 0, proving that λ⋆
n diverges to infinity in

probability, which ensures consistency.
Case (ii): the unconfounded case E[B(X)ξY ] = 0. Recall that

θ̂n
λ,η0,µ = arg min

θ∈Rk

∥Y −Bθ∥2
2 + λ∥Pδ(Y −Bθ)∥2

2 + γθ⊤Kθ

= arg min
θ∈Rk

lnOLS(θ) + λlnTSLS(θ) + γlPEN(θ), (B.44)

where we defined lnOLS(θ) := n−1∥Y −Bθ∥2
2, lnTSLS(θ) := n−1∥Pδ(Y −Bθ)∥2

2, and
lPEN(θ) := n−1θ⊤Kθ. For any 0 ≤ λ1 < λ2 we have

lnOLS(θ̂n
λ1,η0,µ) + λ1l

n
TSLS(θ̂n

λ1,η0,µ) + γlPEN(θ̂n
λ1,η0,µ)

≤ lnOLS(θ̂n
λ2,η0,µ) + λ1l

n
TSLS(θ̂n

λ2,η0,µ) + γlPEN(θ̂n
λ2,η0,µ)

= lnOLS(θ̂n
λ2,η0,µ) + λ2l

n
TSLS(θ̂n

λ2,η0,µ) + γlPEN(θ̂n
λ2,η0,µ)

+ (λ1 − λ2)lnTSLS(θ̂n
λ2,η0,µ)

≤ lnOLS(θ̂n
λ1,η0,µ) + λ2l

n
TSLS(θ̂n

λ1,η0,µ) + γlPEN(θ̂n
λ1,η0,µ)

+ (λ1 − λ2)lnTSLS(θ̂n
λ2,η0,µ),

where we used (B.44). Rearranging this inequality and dividing by (λ1−λ2) yields

lnTSLS(θ̂n
λ1,η0,µ) ≥ lnTSLS(θ̂n

λ2,η0,µ),

proving that λ 7→ lnTSLS(θ̂n
λ,η0,µ) is weakly decreasing. Thus, since λ⋆

n ≥ 0 almost
surely, we have that

lnTSLS(θ̂n
λ⋆

n,η0,µ) ≤ lnTSLS(θ̂n
0,η0,µ) = n−1(Y −Bθ̂n

0,η0,µ)⊤PδPδ(Y −Bθ̂n
0,η0,µ). (B.45)

Furthermore, recall from (B.40) that

θ̂n
0,η0,µ

P−→
n→∞

θ0 = θ0, (B.46)
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where the last equality follows from (B.42) using that we are in the unconfounded
case E[B(X)ξY ] = 0. By expanding and deriving convergence statements for each
term, we get

(Y −Bθ̂n
0,η0,µ)⊤PδPδ(Y −Bθ̂n

0,η0,µ)
P−→

n→∞
(E[Y C⊤]− θ0E[BC⊤])E[C⊤C]−1(E[CY ]− E[CB⊤]θ0)

= 0, (B.47)

where we used Slutsky’s theorem, the weak law of large numbers, (B.46) and
(B.39). Thus, by (B.45) and (B.47) it holds that

lnTSLS(θ̂n
λ⋆

n,η0,µ) = n−1∥Pδ(Y −Bθ̂n
λ⋆

n,η0,µ)∥2
2

P−→
n→∞

0.

For any z ∈ Rn we have that

∥Pδz∥2
2 = z⊤C(C⊤C + δM)−1C⊤C(C⊤C + δM)−1C⊤z

= z⊤C(C⊤C + δM)−1(C⊤C)1/2(C⊤C)1/2(C⊤C + δM)−1C⊤z

= ∥(C⊤C)1/2(C⊤C + δM)−1C⊤z∥2
2,

hence

∥Hn −Gnθ̂
n
λ⋆

n,η0,µ∥2
2 = ∥n−1/2(C⊤C)1/2(C⊤C + δM)−1C⊤(Y −Bθ̂n

λ⋆
n,η0,µ)∥2

2
P→ 0, (B.48)

where for each n ∈ N, Gn ∈ Rk×k and Hn ∈ Rk×1 are defined as

Gn := n−1/2(C⊤C)1/2(C⊤C + δM)−1C⊤B, and
Hn := n−1/2(C⊤C)1/2(C⊤C + δM)−1C⊤Y.

Using the weak law of large numbers, the continuous mapping theorem and
Slutsky’s theorem, it follows that, as n→∞,

Gn
P→ G := E[CC⊤]1/2E[CC⊤]−1E[CB⊤], and

Hn
P→ H := E[CC⊤]1/2E[CC⊤]−1E[CY ]

= E[CC⊤]1/2E[CC⊤]−1E[CB⊤]θ0

= Gθ0,

where the second to last equality follows from (B.39). Together with (B.48), we
now have that

∥Gnθ̂
n
λ⋆

n,η0,µ −Gθ0∥2
2 ≤ ∥Gnθ̂

n
λ⋆

n,η0,µ −Hn∥2
2 + ∥Hn −Gθ0∥2

2
P−→

n→∞
0.
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Furthermore, by the rank assumptions in (B2) we have that Gn ∈ Rk×k is of full
rank (with probability tending to one), hence

∥θ̂n
λ⋆

n,η0,µ − θ0∥2
2 = ∥G−1

n Gn(θ̂n
λ⋆

n,η0,µ − θ0)∥2
2

≤ ∥G−1
n ∥2

op∥Gn(θ̂n
λ⋆

n,η0,µ − θ0)∥2
2

P→ ∥G−1∥2
op · 0

= 0,

as n→∞, proving the proposition.
□
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Appendix C

Structure Learning For Directed
Trees

C.1 Graph Terminology
C.2 Further Details on Section 4.5
C.3 Further Details on the Simulation Experiments
B.5 Proofs

C.1. Graph Terminology
A directed graph G = (V, E) consists of p ∈ N>0 vertices (nodes) V = {1, . . . , p}
and a collection of directed edges E ⊆ {(j → i) ≡ (j, i) : i, j ∈ V, i ̸= j}. For
any graph G = (V, E) we let paG(i) := {v ∈ V : ∃(v, i) ∈ E} and chG(i) := {v ∈
V : ∃(j, v) ∈ E} denote the parents and children of node i ∈ V and we define
root nodes rt(G) := {v ∈ V : paG(i) = ∅} as nodes with no parents (that is, no
incoming edges). A path in G between two nodes i1, ik ∈ V consists of a sequence
(i1, i2), . . . , (ik−1, ik) of pairs of nodes such that for all j ∈ {1, . . . , k − 1}, we have
either (ij → ij+1) ∈ E or (ij+1 → ij) ∈ E . A directed path in G between two nodes
i1, ik ∈ V consists of a sequence (i1, i2), . . . , (ik−1, ik) of pairs of nodes such that
for all j ∈ {1, . . . , k − 1}, we have (ij → ij+1) ∈ E . Furthermore, we let anG(i)
and deG(i) denote the ancestors and descendants of node i ∈ V , consisting of all
nodes j ∈ V for which there exists a directed path to and from i, respectively.
A directed acyclic graph (DAG) is a directed graph that does not contain any
directed cycles, i.e., directed paths visiting the same node twice. We say that a
graph is connected if a (possibly undirected) path exists between any two nodes.
A directed tree is a connected DAG in which all nodes have at most one parent.
More specifically, every node has a unique parent except the root node, which has
no parent. The root node rt(G) is the unique node such there exists a directed
path from rt(G) to any other node in the directed tree. In graph theory, a directed
tree is also called an arborescence, a directed rooted tree, and a rooted out-tree. A
graph G = (V ′, E ′) is a subgraph of another graph G = (V, E) if V ′ ⊆ V , E ′ ⊆ E
and for all (j → i) ∈ E ′ it holds that j, i ∈ V ′. A subgraph is spanning if V ′ = V .
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C.2. Further Details on Section 4.5
Remark C.1. The conditional entropy score gap is not strictly positive when
considering the alternative graphs G̃ that are Markov equivalent to the causal
graph G, G̃ ∈ MEC(G). A simple translation of the conditional entropy score
function reveals that

ℓCE(G̃) + C =
∑

(j→i)∈Ẽ
h(Xi|Xj)− h(Xi) = −

∑
(j→i)∈Ẽ

I(Xi;Xj),

for a constant C ∈ R. By symmetry of the mutual information, it holds that
ℓCE(G̃) = ℓCE(G), for any G̃ ∈ MEC(G), since G̃ and G share the same skeleton.
Thus, the conditional entropy score function can, at most, identify the Markov
equivalence class of the causal graph. In fact, the polytree causal structure learning
method of Rebane and Pearl (1987) uses the above translated conditional entropy
score function to recover the skeleton of the causal graph. ◦

Example C.1 (Negative local Gaussian score gap). Consider two graphs G and
G̃ with different root nodes, i.e., rt(G) ̸= rt(G̃). If x 7→ E[Xrt(G)|XpaG̃(rt(G)) = x] is
not almost surely constant, then it holds that

ℓG(G̃, rt(G))− ℓG(G, rt(G)) = E[(Xrt(G) − E[Xrt(G)|XpaG̃(rt(G))])
2]

− Var(Xrt(G))
= E[Var(Xrt(G)|XpaG̃(rt(G)))]− Var(Xrt(G))
= −Var(E[Xrt(G)|XpaG̃(rt(G))])
< 0.

◦

C.3. Further Details on the Simulation Experiments
This section contains further details on the simulation experiments.

C.3.1. Tree Generation Algorithms
The following two algorithms, Algorithm C.1 (many leaf nodes) and Algorithm C.2
(many branch nodes), details how the Type 1 and Type 2 trees are generated,
respectively.

C.3.2. Additional Illustrations
This section contains some additional illustrations of the simulation experiments.

236



C.3. Further Details on the Simulation Experiments

Algorithm C.1 Generating type 1 trees
procedure Type1(p)

A := 0 ∈ Rp×p

for j ∈ {1, . . . , p} do
for i ∈ {j + 1, . . . , p} do

if ∑p
k=1Aki = 0 then

if i = j + 1 then
Aji := 1

else
Aji := Binomial(success = 0.1)

end if
else

Aji := 0
end if

end for
end for
return A

end procedure

Algorithm C.2 Generating type 2 trees
procedure Type2(p)

for i ∈ {2, . . . , p} do
j := sample({1, . . . , i− 1})
Aji := 1

end for
return A

end procedure
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Figure C.1: Four causal functions as modeled by the RBF kernel Gaussian Process.
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Figure C.2: Boxplot illustrating the SID performance of CAM and CAT for vary-
ing sample sizes, system sizes and tree types in the experiment of
Section 4.6.1.2. CAT.G is CAT with edge weights derived from the
Gaussian score function.
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Figure C.4: Boxplot of edge relations for the experiment in Section 4.6.3.
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Figure C.5: Boxplot of SHD for the experiment in Section 4.6.3.
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C.4. Proofs
This section contains the proofs of all results presented in the main text.

C.4.1. Proofs of Section 4.2
Proof of Lemma 4.1: Fix i ∈ {1, . . . , p} \ rt(G) and assume that PN ∈ Pp

G.
Furthermore, let fi ∈ D3 and nowhere constant and nonlinear. Assume for
contradiction that each fi satisfy does not satisfy Equation (4.1). Recall that the
additive noise is Gaussian, so

ν(x) = −1
2 log(2πσ2)− x2

2σ2 , ν ′(x) = − x

σ2 , ν ′′(x) = − 1
σ2 , ν ′′′(x) = 0.

Hence, the negation of Equation (4.1) reduces to

ξ′′′(x)− ξ′′(x)f
′′(x)
f ′(x) −

2f ′′(x)f ′(x)
σ2 = −y − f(x)

σ2

(
f ′′′(x)− (f ′′(x))2

f ′(x)

)
, (C.1)

for any (x, y) ∈ J = {(x, y) ∈ R2 : f ′(x) ̸= 0}. Furthermore, f is nowhere
constant, so f ′(x) = 0 for at most countably many x ∈ R. As the left-hand side of
Equation (C.1) is constant in y it must hold that

0 = f ′′′(x)− (f ′′(x))2

f ′(x) =
∂f ′′(x)

∂x f ′(x)− f ′′(x)∂f ′(x)
∂x

(f ′(x))2 = ∂

∂x

(
f ′′(x)
f ′(x)

)
,

i.e., f ′′(x)/f ′(x) is constant for all x ∈ R such that f ′(x) ̸= 0. Now note
that there exists a countable collection of disjoint open intervals (Ok) that
covers R almost everywhere such f ′(x) ̸= 0 on each Ok. Assume for contra-
diction that f ′′(x)/f ′(x) = ck,1 ̸= 0 on some Ok. On each Ok we have that
∂/∂x log(sign(f ′(x))f ′(x)) = ck,1 ⇐⇒ log(sign(f ′(x))f ′(x)) = ck,1x + ck,2 ⇐⇒
sign(f ′(x))f ′(x) = exp(ck,1x + ck,2) ⇐⇒ f ′(x) = ± exp(ck,1x + ck,2). Assume
without loss of generality that f ′(x) = exp(ck,1x + ck,2) for all x ∈ Ok and k.
By the assumed continuous differentiability of f ′ we need to stitch these func-
tions together in a continuously differentiable way. That is, we require that
for any k that tk = sup(Ok) = inf(Ok+1) and limx↑tk

f ′(x) = limx↓tk
f ′(x) and

limx↑tk
f ′′(x) = limx↓tk

f ′′(x). These conditions impose the restrictions (ck,1 −
ck+1,1)tk = ck+1,2− ck,2 and log(ck,1/ck+1,1) + (ck,1− ck+1,1)tk = ck+1,2− ck,2 which
entails that ck,1 = ck+1,1 and ck,2 = ck+1,2. This proves that there exists c1, c2 ∈ R
such that f ′(x) = ± exp(c1x + c2) for all x ∈ R. Thus, the differential equation
holds for all x ∈ R,

0 = ξ′′′(x)− ξ′′(x)f
′′(x)
f ′(x) −

2f ′′(x)f ′(x)
σ2 = ∂

∂x

(
ξ′′(x)
f ′(x)

)
− 2f

′′(x)
σ2 ,
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by division with f ′(x). By integration this implies that 0 = ξ′′(x)/f ′(x) −
2f ′(x)/σ2 + c3 such that ξ′′(x) = 2 exp(2c1x + 2c2)/σ2 − c3 exp(c1x + c2) and
ξ′(x) = exp(2c1x+ 2c2)/c1σ

2 − c3 exp(c1x+ c2)/c1 + c4 and

ξ(x) = exp(2c1x+ 2c2)
2c2

1σ
2 − c3 exp(c1x+ c2)

c2
1

+ c4x+ c5.

We see that ξ(x) → ∞ ⇐⇒ pX(x) → ∞ as x → sign(c1) · ∞, in contradiction
with the assumption that pX is a probability density function. Thus, it must hold
that f ′′(x)/f ′(x) = 0 or equivalently that f is a linear function, a contradiction.
This proves that whenever fi ∈ D3 is a nowhere constant and nonlinear function
and the additive noise is Gaussian then Equation (4.1) holds. □

Proof of Proposition 4.1: First, we consider the bivariate setting. Let (X, Y )
be generated by an additive noise SCM θ ∈ ΘR ⊆ T2×D2

3×P2
C3 given by X := NX

and Y := f(X) + NY with PX = pX · λ and PNY
= pNY

· λ having three times
differentiable strictly positive densities and f is a three times differentiable nowhere
constant function such that Equation (4.1) holds.

Assume for contradiction that we do not have observational identifiability of
the causal structure G = (V = {X, Y }, E = {(X → Y )}). That is, there exists
θ̃ ∈ Tp×Dp

1×Pp
C0 with causal graph G̃ ̸= G or, equivalently, a differentiable function

g and noise distributions PÑX
= pÑX

·λ and PÑY
= pÑY

·λ with continuous densities
such that structural assignments Ỹ := ÑY and X̃ := g(Ỹ )+ÑX induces an identical
distribution, i.e., that

PX,Y = PX̃,Ỹ . (C.2)

By the additive noise structural assignments we know that both PX,Y and PX̃,Ỹ

have densities with respect to λ2 given by

pX,Y (x, y) = pX(x)pNY
(y − f(x)),

pX̃,Ỹ (x, y) = pÑX
(x− g(y))pỸ (y),

for all (x, y) ∈ R2. By the equality of distributions in Equation (C.2) and strict
positivity of pX and pNY

we especially have that for λ2-almost all (x, y) ∈ R2

0 < pX,Y (x, y) = pX̃,Ỹ (x, y). (C.3)

However, as both pX,Y and pX̃,Ỹ are continuous we realize that Equation (C.3) holds
for all (x, y) ∈ R. If they were not everywhere equal there would exists a non-empty
open ball in R2 on which they differ in contradiction with λ2-almost everywhere
equality. Furthermore, by the assumption that f is three times differentiable and
pX , pNY

are three times continuously differentiable we have that ∂3π/∂x3 and
∂3π/∂x2∂y are well-defined partial-derivatives of π(x, y) := log pX,Y (x, y) given by

π(x, y) = log pX(x) + log pNY
(y − f(x)) =: ξ(x) + ν(y − f(x)),
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With π̃(x, y) := log pX̃,Ỹ we have that

π̃(x, y) = log pÑX
(x− g(y)) + log pỸ (y) =: ξ̃(x− g(y)) + ν̃(y).

Since it holds that π = π̃ by Equation (C.3) the partial-derivatives ∂3π̃/∂x3 and
∂3π̃/∂x2∂y are also well-defined. Now note that for any x, y ∈ R

0 = lim
h→0
|π̃(x+ h, y)− π̃(x, y)|/h = lim

h→0
|ξ̃(x− g(y) + h)− ξ̃(x− g(y))|/h,

implying that ξ̃ is differentiable in x− g(y) for any x, y ∈ R or, equivalently, ξ̃ is
everywhere differentiable. Similar arguments yield that ξ̃ is at least three times dif-
ferentiable. We conclude that ∂2π̃(x, y)/∂x2 = ξ̃′′(x− g(y)) and ∂2π̃(x, y)/∂x∂y =
−ξ̃′′(x − g(y))g′(y) and for any (x, y) ∈ R2 such that ∂2π̃(x, y)/∂x∂y ̸= 0 or,
equivalently,

∀(x, y) ∈ J :=
{

(x, y) : ∂
2π(x, y)
∂x∂y

= −ν ′′(y − f(x))f ′(x) ̸= 0
}
,

it holds that

∂

∂x

 ∂2

∂x2 π̃(x, y)
∂2

∂x∂y π̃(x, y)

 = ∂

∂x

( −1
g′(y)

)
= 0.

It is worth noting that J ≠ ∅ to ensure that the following derivations are not
void of meaning. This can be seen by noting that f is nowhere constant, i.e.,
f ′(x) ̸= 0 for λ-almost all x ∈ R. Hence, J = ∅ if and only if pNY

is a density
such that {(x, y) ∈ R2 : f ′(x) ̸= 0} ∋ (x, y) 7→ ν ′′(y − f(x)) is constantly zero or
equivalently R ∋ y 7→ ν ′′(y) is constantly zero. This holds if and only if pNY

is
either exponentially decreasing or exponentially increasing everywhere, which is a
contradiction as no continuously differentiable function integrating to one has this
property. On the other hand, for any (x, y) ∈ J we also have that

∂

∂x

 ∂2

∂x2π(x, y)
∂2

∂x∂yπ(x, y)


= ∂

∂x

(
ξ′′(x) + ν ′′(y − f(x))f ′(x)2 − ν ′(y − f(x))f ′′(x)

−ν ′′(y − f(x))f ′(x)

)

= −2f ′′ + ν ′f ′′′

ν ′′f ′ −
ξ′′′

ν ′′f ′ + ν ′′′ν ′f ′′

(ν ′′)2

− ν ′′′ξ′′

(ν ′′)2 −
(f ′′)2ν ′

ν ′′(f ′)2 + f ′′ξ′′

ν ′′(f ′)2 ,

which implies that

ξ′′′ = ξ′′
(
f ′′

f ′ −
f ′ν ′′′

ν ′′

)
− 2ν ′′f ′′f ′ + ν ′f ′′′ + ν ′′′ν ′f ′′f ′

ν ′′ − ν ′(f ′′)2

f ′ , (C.4)
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in contradiction with the assumption that Equation (4.1) holds. We conclude that
PX,Y ̸= PX̃,Ỹ .

Now consider a multivariate restricted causal model over X = (X1, . . . , Xp) with
causal directed tree graph G = (V, E). Assume for contradiction that there exists
an alternative model θ̃ ∈ Tp × Dp

1 × Pp
C0 inducing X̃ = (X̃1, . . . , X̃p) with causal

graph G̃ = (V, Ẽ) ̸= G, such that PX = PX̃ . As PX is Markovian with respect to
both G and G̃, i.e., the graphs are Markov equivalent. We know by Lemma C.6
that there exists a directed path in G that is reversed in G̃. We especially have
that there exists i, j ∈ V such that (j → i) ∈ E and (i → j) ∈ Ẽ . That is, the
following structural equations hold for (Xi, Xj) and (X̃i, X̃j)

Xi = fi(Xj) +Ni, with Xj ⊥⊥ Ni, (C.5)
X̃j = f̃j(X̃i) + Ñj, with X̃i ⊥⊥ Ñj, (C.6)

with PXj ,Xi = PX̃j ,X̃i
. We can apply the exact same arguments as in the bivariate

setup if we can argue that pXj is three times differentiable and that pX̃i
is a

continuous density.
To this end, note that the density pXj is given by the convolution of two densities

pXj (y) =
∫ ∞

−∞
pfj(XpaG(j))(t)pNj (y − t) dt, (C.7)

as Xj := fj(XpaG(j)) +Nj with XpaG(j) ⊥⊥ Nj. Here we used that fj(XpaG(j)) has
density with respect to the Lebesgue measure. To realize this note that fj ∈ C3
and it is nowhere constant. This implies that f ′(x) = 0 at only countably many
points (dk). Now let (Ok) be the collection of disjoint open intervals that cover R
except for the points (dk). By continuity of f ′ we know that f ′(x) is either strictly
positive or strictly negative on each Ok. That is, f is continuously differentiable
and strictly monotone on each Ok. Thus, f has a continuously differentiable inverse
on each Ok by, e.g., the inverse function theorem. This ensures that fj(XpaG(j))
has density with respect to the Lebesgue measure whenever XpaG(j) does. By
starting at the root node Xrt(G) = Nrt(G) which by assumption has density, we can
iteratively apply the above argumentation down the directed path from rt(G) to j
in order to conclude that any Xj for j ∈ {1, . . . , p} has density with respect to the
Lebesgue measure. Since pNj is assumed strictly positive three times continuous
differentiable, the representation in Equation (C.5) furthermore yields that pXj is
three times differentiable; see, e.g., Theorem 11.4 and 11.5 of Schilling (2017).

Now we argue that pX̃i
is continuous, or more specifically that it has a continuous

version. First note that PXi at least has a continuous density pXi by arguments
similar to those applied for Equation (C.7). By the assumption that PX = PX̃ we
especially have that PXi = PX̃i

which implies that also X̃i has a continuous density.
By virtue of the arguments for the bivariate setup we arrive at a contradiction, so
it must hold that PX ̸= PX̃ . □

Proof of Lemma 4.2: Consider any SCM θ̃ = (G̃, (f̃i), PÑ) ∈ {G̃} × Dp
1 × Pp

G
with G̃ ̸= G and let Qθ̃ be the induced distribution. As Qθ̃ is Markov with respect
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to G̃ and generated by an additive noise model the density qθ̃ factorizes as

qθ̃(x) =
p∏

i=1
qθ̃(xi|xpaG̃(i)) =

p∏
i=1

qÑi
(xi − f̃i(xpaG̃(i))).

The cross entropy between PX and Qθ̃ is then given by

h(PX , Qθ̃) = E [− log (qθ̃(X))]

=
p∑

i=1
E
[
− log

(
qÑi

(
Xi − f̃i(XpaG̃(i))

))]

=
p∑

i=1
h
(
Xi − f̃i(XpaG̃(i)), Ñi

)
.

As Qθ̃ is generated by a Gaussian noise structural causal model, we know that
Ñi ∼ N (0, σ̃2

i ) for some σ̃2
i > 0 for all 1 ≤ i ≤ p. Hence

h
(
Xi − f̃i(XpaG̃(i)), Ñi

)

=E

− log

 1√
2πσi

exp

−
(
Xi − f̃i(XpaG̃(i))

)2

2σ̃2
i





= log(
√

2πσ̃i) +
E
[(
Xi − f̃i(XpaG̃(i))

)2]
2σ̃2

i

,

for all 1 ≤ i ≤ p. Thus, for given set of causal functions (f̃i) we get that the noise
variances that minimizes the term-wise cross entropy is given by

σ̃i =
√
E
[(
Xi − f̃i(XpaG̃(i))

)2]
,

and attains the value

inf
σ̃i>0

log(
√

2πσ̃i) +
E
[(
Xi − f̃i(XpaG̃(i))

)2]
2σ̃2

i


= log

(√
2π
)

+ 1
2 log

(
E
[(
Xi − f̃i(XpaG̃(i))

)2])
+ 1

2 .

We conclude that

inf
Q∈{G̃}×Dp

1×Pp
G

h(PX , Q)

= p log(
√

2π) + p

2 +
p∑

i=1

1
2 log

(
inf

f̃i∈D1
E
[(
Xi − f̃i(XpaG̃(i))

)2])
.
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Finally, note that as D1 is dense in L2(PX
paG̃(i)

), we have that

inf
f̃i∈D1

E
[(
Xi − f̃i(XpaG̃(i))

)2]
= E

[(
Xi − E[Xi|XpaG̃(i)])

)2]
+ inf

f̃i∈D1
E
[(
E[Xi|XpaG̃(i)]− f̃i(XpaG̃(i))

)2]
= E

[(
Xi − E[Xi|XpaG̃(i)])

)2]
.

Here we used that XpaG̃(i) has density with respect to the Lebesgue measure,
PX

paG̃(i)
≪ λ, and that the density is differentiable (see proof of Proposition 4.1).

This concludes the first part of the proof.
For the second statement, we note that for any Q ∈ {G̃} × F(G̃) × Pp there

exists some noise innovation distribution PÑ ∈ P such that Q is the distribution
of X̃ generated by structural assignments

X̃i := f̃i(XpaG̃(i)) + Ñi = E[Xi|XpaG̃(i)] + Ñi,

for all 1 ≤ j ≤ p and mutually independent noise innovations Ñ = (Ñ1, . . . , Ñp) ∼
PÑ ∈ Pp. Let q denote the density of Q with respect to the Lebesgue measure λ
and let qÑi

denote the density of Ñi for all 1 ≤ i ≤ p. As Q is Markov with respect
to G̃ and generated by an additive noise model the density factorizes as

q(x) =
p∏

i=1
q(xi|xpaG̃(i)) =

p∏
i=1

qÑi
(xi − E[Xi|XpaG̃(i) = xpaG̃(i)]).

The cross entropy between PX and Q is given by
h(PX , Q) = E [− log (q(X))]

=
p∑

i=1
E
[
− log

(
q(Xi|XpaG̃(i))

)]

=
p∑

i=1
E
[
− log

(
qÑi

(
Xi − E

[
Xi|XpaG̃(i)

]))]

=
p∑

i=1
h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)
.

Note that h(P,Q) = h(P ) +DKL(P∥Q) ≥ h(P ) with equality if and only if Q = P .
Thus, the infimum is attained at noise innovations that are equal in distribution
to Xi − E[Xi|XpaG̃(i)] (which has a density by assumption). That is,

inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q) =
p∑

i=1
inf

Ñj∼PÑj
∈P
h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)

=
p∑

i=1
h
(
Xi − E

[
Xi|XpaG̃(i)

])
= ℓE(G̃).

□
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C.4.2. Proofs of Section 4.3
Proof of Theorem 4.1: For simplicity of the proof we assume that E[X] = 0
such that the edge weight estimators simplify to

ŵG(j → i) := ŵji(Xn, X̃n) := 1
2 log

 1
n

∑n
k=1 (Xk,i − φ̂ji(Xk,j))2

1
n

∑n
k=1X

2
k,i

 .
We assume that θ = (G, (fi), PN ) ∈ ΘR with G = (V, E), which by Assumption 4.1
implies that there exists an m > 0 such that

min
G̃∈Tp\{G}

ℓG(G̃)− ℓG(G) = m > 0. (C.8)

Let l∗G auxiliary population score function such that ℓ∗
G(G̃) ≥ ℓG(G̃) for all G̃ ∈ Tp.

For any G̃ ∈ Tp \ {G} it holds that

ℓG(G) + m

2 ≤ ℓG(G̃)− m

2 ≤ ℓ∗
G(G̃)− m

2 ,

by the identifiability assumption of Equation (C.8). Thus, we have that

P

arg min
G̃∈Tp

l̂n(G̃) = G


≥P
(|ℓ̂G(G)− ℓG(G)| < m

2

)
∩

⋂
G̃∈Tp\{G}

(
|ℓ̂G(G̃)− l∗G(G̃)| < m

2

) ,
so it suffices to show that

l̂G(G) P−→ ℓG(G) and ∀G̃ ∈ Tp \ {G} : ℓ̂G(G̃) P−→ ℓ∗
G(G̃), as n→∞.

We let ℓ∗
G : Tp → R be given by

l∗G(G̃) =
∑

(j→i)∈Ẽ\E

1
2 log

(
E[(Xi − φ̃ji(Xj))2]

E[X2
i ]

)

+
∑

(j→i)∈Ẽ∩E

1
2 log

(
E[(Xi − φji(Xj))2]

E[X2
i ]

)
,

for any G̃ = (V, Ẽ) ∈ Tp. As the conditional expectation minimizes the MSPE
among measurable functions, i.e., φi,j = arg minf :R→R E[(Xi − f(Xj))2], we espe-
cially have that E[(Xi − φ̃ji(Xj))2] ≥ E[(Xi − φji(Xj))2] for any i, j ∈ V with
i ̸= j. This construction entails that both l∗G(G̃) ≥ ℓG(G̃) for any G̃ ∈ Tp and that
l∗G(G) = ℓG(G). We conclude that it suffices to show that

sup
G̃∈Tp

|ℓ̂G(G̃)− ℓ∗
G(G̃)| P−→n 0.
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To this end, let E∗ = {(j → i) : i, j ∈ V, i ̸= j} \ E and note that

sup
G̃∈Tp

|ℓ̂G(G̃)− ℓ∗
G(G̃)|

≤ sup
G̃∈Tp

( ∑
(j→i)∈Ẽ\E

∣∣∣∣∣ŵG(j → i)− 1
2 log

(
E[(Xi − φ̃ji(Xj))2]

E[X2
i ]

)∣∣∣∣∣
+

∑
(j→i)∈Ẽ∩E

∣∣∣∣∣ŵG(j → i)− 1
2 log

(
E[(Xi − φji(Xj))2]

E[X2
i ]

)∣∣∣∣∣
)

≤
∑

(j→i)∈E∗

∣∣∣∣∣ŵG(j → i)− 1
2 log

(
E[(Xi − φ̃ji(Xj))2]

E[X2
i ]

)∣∣∣∣∣
+

∑
(j→i)∈E

∣∣∣∣∣ŵG(j → i)− 1
2 log

(
E[(Xi − φji(Xj))2]

E[X2
i ]

)∣∣∣∣∣ . (C.9)

Now consider a fixed term (j → i) ∈ E in the second sum of Equation (C.9). We
can upper bound the difference by∣∣∣∣∣ŵG(j → i)− 1

2 log
(
E[(Xi − φji(Xj))2]

E[X2
i ]

)∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣log
1
n

n∑
k=1

(Xk,i − φ̂ji(Xk,j))2
− log

(
E[(Xi − φji(Xj))2]

)∣∣∣∣∣∣
+ 1

2

∣∣∣∣∣∣log(E[X2
i ])− log

1
n

n∑
k=1

X2
k,i

∣∣∣∣∣∣ . (C.10)

In the upper bound of Equation (C.10) the last two terms vanish in probability
due to the law of large numbers and the continuous mapping theorem. The two
first terms also vanishes by the following arguments:

0 ≤ 1
n

n∑
k=1

(Xk,i − φ̂ji(Xk,j))2

= 1
n

n∑
k=1

(Xk,i − φji(Xk,j))2 + 1
n

n∑
k=1

(φji(Xk,j)− φ̂ji(Xk,j))2

+ 2
n

n∑
k=1

(Xk,i − φji(Xk,j)) (φji(Xk,j)− φ̂ji(Xk,j)) .
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Hence, it holds that∣∣∣∣∣∣1n
n∑

k=1
(Xk,i − φ̂ji(Xk,j))2 − 1

n

n∑
k=1

(Xk,j − φji(Xk,j))2
∣∣∣∣∣∣

=
∣∣∣∣∣1n

n∑
k=1

(φji(Xk,j)− φ̂ji(Xk,j))2

+ 2
n

n∑
k=1

(Xk,j − φji(Xk,j)) (φji(Xk,j)− φ̂ji(Xk,j))
∣∣∣∣∣

≤ 1
n

n∑
k=1

(φji(Xk,j)− φ̂ji(Xk,j))2

+ 2
√√√√1
n

n∑
k=1

(Xk,j − φji(Xk,j))2
√√√√1
n

n∑
k=1

(φji(Xk,j)− φ̂ji(Xk,j))2
, (C.11)

by Cauchy-Schwarz inequality. By the law of large numbers, we have that the
first factor of the second term of Equation (C.11) converges in probability to a
constant,

1
n

n∑
k=1

(Xk,j − φji(Xk,j))2 P−→n E[X1,i − φi,j(X1,j))2].

The first term and latter factor of the second term of Equation (C.11) vanishes in
probability by assumption. That is, for any ε > 0 we have that

P

∣∣∣∣∣∣1n
∑
k=1

(φji(Xk,j)− φ̂ji(Xk,j))2
∣∣∣∣∣∣ > ε


= P

∣∣∣∣∣∣1n
∑
k=1

(φji(Xk,j)− φ̂ji(Xk,j))2
∣∣∣∣∣∣ ∧ ε > ε


≤

E
[(

1
n

∑n
k=1 (φji(Xk,j)− φ̂ji(Xk,j))2) ∧ ε]

ε

≤
E
[
E
[
(φji(X1,j)− φ̂ji(X1,j))2 ∣∣∣X̃n

]
∧ ε

]
ε

→n 0,

using that x 7→ xmin ε is concave and the dominated convergence theorem. This
proves that

1
n

n∑
k=1

(Xk,j − φ̂ji(Xk,j))2 P−→n E[X1,i − φi,j(X1,j))2].

Similar arguments also show that the second term of Equation (C.10) also converges
to zero in probability. Thus, we have shown that the second term of Equation (C.9)
converges to zero in probability. Finally, the above arguments apply similarly to
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the first term of Equation (C.9) by exchanging every φji with φ̃ji. We have shown
that supG̃∈Tp

|ℓ̂G(G̃)− ℓ∗
G(G̃)| P−→n 0, which concludes the proof.

□

Proof of Theorem 4.2: For simplicity of the proof, we assume that E[X] = 0
such that the edge weight estimators simplify to

ŵG(j → i) := ŵji(Xn, X̃n) := 1
2 log

 1
n

∑n
k=1 (Xk,i − φ̂ji(Xk,j))2

1
n

∑n
k=1X

2
k,i

 .
Let ℓ := ℓG and ℓ̂ := ℓ̂G for notational simplicity. We know that for each SCM θn

it holds that

ℓ(G) + qn ≤ ℓ(G̃),

for all G̃ ∈ Tp \ {G}. Thus, it suffices to show that

Pθn

 arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

ŵji = G


= Pθn

(|ℓ̂(G)− ℓ(G)| < qn

2

)
∩

⋂
G̃∈Tp\{G}

(
ℓ̂(G̃) ≥ ℓ(G̃)− qn

2

)→n 1.

For any G̃ = (V, Ẽ) ∈ Tp we have that

ℓ̂(G̃)− ℓ(G̃) =
∑

(j→i)∈Ẽ∩E
ŵji − wji +

∑
(j→i)̸∈Ẽ\E

ŵji − wji,

where ŵji and wji denotes the estimated and population Gaussian weights for the
edge (j → i). Hence, it suffices to show that

∀(j → i) ∈ E ,∀ε > 0 : Pθn(|ŵji − wji| < qnε)→n 1,
∀(j → i) ̸∈ E ,∀ε > 0 : Pθn (ŵji − wji ≥ −qnε)→n 1.

To see this, note that in the affirmative, then

Pθn

(
|ℓ̂(G)− ℓ(G)| < qn

2

)
≥ Pθn

 ∑
(j→i)∈E

|ŵji − wji| <
qn

2


≥ Pθn

 ⋂
(j→i)∈E

(
|ŵji − wji| <

qn

2(p− 1)

)
→n 1,
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and for any G̃ = (V, Ẽ) ∈ Tp

Pθn

(
ℓ̂(G̃)− ℓ(G̃) ≥ −qn

2

)

= Pθn

 ∑
(j→i)∈Ẽ∩E

ŵji − wji +
∑

(j→i)∈Ẽ\E
ŵn

ji − wji ≥ −
qn

2


≥ Pθn

 ⋂
(j→i)∈Ẽ∩E

(
|ŵji − wji| ≤

qn

2(p− 1)

)

⋂
(j→i)∈Ẽ\E

(
ŵji − wji ≥ −

qn

2(p− 1)

)
→n 1,

hence the probability of the intersections also converges to one.

The causal edges: Now fix (j → i) ∈ E , we want to show that for all ε > 0 it
holds that

Pθn(|ŵji − wji| < qnε)→n 1.

First note that

|ŵji − wji| ≤
1
2

∣∣∣∣∣∣log
1
n

n∑
k=1

(Xk,i − φ̂ji(Xk,j))2
− log

(
E[(Xi − φji(Xj))2]

)∣∣∣∣∣∣
+ 1

2

∣∣∣∣∣∣log(E[X2
i ])− log

1
n

n∑
k=1

X2
k,i

∣∣∣∣∣∣ ,
and note that it is clear that it suffices to show the wanted convergence in
probability for each of the above terms. Furthermore, for a sequence of positive
random variables (Zn) and positive constant c > 0 then for all ε > 0 there exists
δ > 0 such that

Pθ(q−1
n | log(Zn)− log(c)| > ε) ≤ Pθ(q−1

n |Zn − c| > δ),

for sufficiently large n. To see this, note that if q−1
n (log(Zn) − log(c)) > ε, then

Zn > exp(log(c)+qnε) = c exp(qnε) ≥ c(1+qnε), so q−1
n (Zn−c) > cε. On the other

hand, if q−1
n (log(Zn)− log(c)) < −ε, then Zn < c exp(−εqn) ≤ c(1− εqn + ε2q2

n),
so q−1

n (Zn − c) < −cε + cε2qn. In summary, if q−1
n | log(Zn) − log(c)| > ε, then

q−1
n |Zn − c| > cε − cε2qn > cε(1 −M) =: δ where 1 > M > εqn for sufficiently

large n. We conclude that it suffices to show that for all ε > 0 it holds that

Pθn

∣∣∣∣∣∣1n
n∑

k=1
(Xk,i − φ̂ji(Xk,j))2 − E[(Xi − φji(Xj))2]

∣∣∣∣∣∣ ≥ qnε

→n 0 (C.12)
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and that

Pθn

∣∣∣∣∣∣1n
n∑

k=1
X2

k,i − E[X2
i ]
∣∣∣∣∣∣ ≥ qnε

→n 0, (C.13)

Equation (C.13) is easily seen to be satisfied as the terms are mean zero i.i.d. such
that

Wn := 1
n

n∑
k=1

X2
k,i − E[X2

i ],

where Eθn[q−1
n Wn] = 0 and that Eθn[q−2

n W 2
n ] = q−2

n

n Eθn[(X2
i − E[X2

i ])2], hence

Pθn(q−1
n Wn ≥ ε) ≤ q−2

n

Eθn[W 2
n ]

ε2

≤ q−2
n

n

supn∈N Eθn[(X2
i − E[X2

i ])2]
ε2

→n 0,

for any ε > 0 as supn∈N Eθn∥X∥4
2 <∞ and q−1

n = o(
√
n).

Now we show Equation (C.12). First, we simplify the notation by letting
Zk := Xk,i, Yk := Xk,j f := φji and f̂ := φ̂ji. Note that we have suppressed the
dependence of f = φji on θn. We have that

1
n

n∑
k=1

(
Zk − f̂(Yk)

)2
= 1
n

n∑
k=1

(Zk − f(Yk))2 + 1
n

n∑
k=1

(f(Yk)− f̂(Yk))2

+ 2
n

n∑
k=1

(Zk − f(Yk))(f(Yk)− f̂(Yk))

=: T1,n + T2,n + T3,n,

and note that it suffices to show that for all ε > 0 it holds that

(a) Pθn

(
|T1,n − E[(Z1 − f(Y1))2]| ≥ qnε

)
→n 0,

(b) Pθn (|T2,n| ≥ qnε)→n 0,

(c) Pθn (|T3,n| ≥ qnε)→n 0.

First we show (a). We note that each term in the sum of T1,n − E[(Z1 − f(Y1))2]
is mean zero and i.i.d., i.e.,

q−1
n Eθn[(Zk − f(Yk))2 − Eθn[(Z1 − f(Y1))2]] = 0.
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Furthermore,

Varθn(q−1
n (T1,n − E[(Z1 − f(Y1))2]))

=Varθn

q−1
n

n

n∑
k=1

(Zk − f(Yk))2 − Eθn[(Z1 − f(Y1))2]


=q
−2
n

n2

n∑
k=1

Varθn

(
(Zk − f(Yk))2 − Eθn[(Z1 − f(Y1))2]

)

≤q
−2
n

n
sup
n∈N

Varθn

(
(Z1 − f(Y1))2)

→n0,

since q−1
n = o(

√
n) and that supn∈N Eθn∥X∥4

2 <∞. Hence,

Pθn

(
|q−1

n (T1,n − E[(Z1 − f(Y1))2])| ≥ ε
)

≤ Varθn(q−1
n (T,n − E[(Z1 − f(Y1))2]))

ε2

→n 0.

by Markov’s inequality, proving (a).
Now we show (b). To that end, simply note that the terms of T2,n is i.i.d.

conditional on X̃n, hence fix ε > 0 and note that

Pθn

(
|q−1

n T2,n| ≥ ε
)

= Eθn

[
Pθn

(
q−1

n T2,n ≥ ε|X̃n

)
∧ 1

]
≤

Eθn

[
Eθn

[
q−1

n T2,n|X̃n

]
∧ 1

]
ε

=
Eθn

[
q−1

n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1

]
ε

,

where we used the conditional Markov’s inequality. Now let δ > 0 and define
An,δ := (q−1

n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
> δ) and note that by assumption there

exists an Nδ ∈ N such that ∀n ≥ Nδ : Pθn(An,δ) < δ. Hence, for n ≥ Nδ we have
that

Eθn

[
q−1

n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1

]
= Eθn

[
1An,δ

q−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1

]
(C.14)

+ Eθn

[
1Ac

n,δ
q−1

n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1

]
≤ Eθn

[
1An,δ

q−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1

]
+ Eθn

[
1Ac

n,δ
δ
]

≤ Eθn

[
1An,δ

]
+ δ

= Pθn(An,δ) + δ < 2δ, (C.15)
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hence lim supn→∞ Pθn

(
|q−1

n T2,n| ≥ ε
)
< 2δ/ε, i.e., Pθn

(
|q−1

n T2,n| ≥ ε
)
→ 0 as δ > 0

was chosen arbitrarily, proving (b).
Now we prove (c). To this end, recall that

T3,n := 2
n

n∑
k=1

(Zk − f(Yk))(f(Yk)− f̂(Yk)),

is, conditional on X̃, an i.i.d. sum with conditional mean zero

Eθn[T3,n|X̃n] = 2Eθn[(Zk − f(Yk))(f(Yk)− f̂(Yk))|X̃n]
= 2Eθn[(Eθn[Zk|Yk, X̃n]− f(Yk))(f(Yk)− f̂(Yk))|X̃n]
= 2Eθn[(f(Yk)− f(Yk))(f(Yk)− f̂(Yk))|X̃n] = 0,

and conditional second moment given by

Eθn[T 2
3,n|X̃n] = 4

n2

n∑
k=1

Eθn[(Zk − f(Yk))2(f(Yk)− f̂(Yk))2|X̃n]

= 4
n
Eθn

[
(Zk − f(Yk))2(f(Yk)− f̂(Yk))2|X̃n

]
= 4
n
Eθn

[
Eθn

[
(Zk − f(Yk))2|X̃n, Yk

]
(f(Yk)− f̂(Yk))2|X̃n

]
= 4
n
Eθn

[
Varθn(Zk|Yk)(f(Yk)− f̂(Yk))2|X̃n

]
≤ C

n
Eθn

[
(f(Yk)− f̂(Yk))2|X̃n

]
Pθn-almost surely. Hence, the conditional Markov’s inequality yields that

Pθn(q−1
n T3,n ≥ ε) = Eθn[Pθn(q−1

n T3,n ≥ ε|X̃n) ∧ 1]

≤ 1
ε2Eθn

[
Eθn

[
q−2

n T 2
3,n|X̃n

]
∧ 1

]
(C.16)

≤ C

ε2Eθn

[
q−2

n

n
Eθn

[
(f(Yk)− f̂(Yk))2|X̃n

]
∧ 1

]
.

By conditional Jensen’s inequality, we have that

Eθn

[
(f(Yk)− f̂(Yk))2|X̃n

]
] ≤ 1 + Eθn

[
(f(Yk)− f̂(Yk))2|X̃n

]2
≤ 1 + Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
.

Fix δ > 0 and let An,δ :=
(

q−2
n

n Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
> δ

)
and note that

Pθn(An,δ)→n 0, hence there exists an Nδ ∈ N such that ∀n ≥ Nδ : Pθn(An,δ) < δ.
Furthermore, as q−1

n = o(
√
n) there exists an N ∈ N such that q−2

n /n < δ for all

254



C.4. Proofs

n ≥ N . Similar to the arguments in Equation (C.15) we then have that

ε2

C
Pθn(q−1

n T3,n ≥ ε) ≤ Eθn

[
q−2

n

n

(
1 + Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

])
∧ 1

]

≤ q−2
n

n
+ Eθn

[
q−2

n

n
Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
∧ 1

]

≤ q−2
n

n
+ Eθn[1An,δ

] + E[1Ac
n,δ
δ]

< δ + Pθn(An,δ) + δ < 3δ,

for any n ≥ Nδ ∨N , so Pθn(q−1
n T3,n ≥ ε)→n 0, proving (c).

The non-causal edges: Now fix (j → i) ̸∈ E , we want to show, for any ε > 0
that

Pθn(ŵji − wji ≥ −qnε)→n 1,

where

ŵji − wji = 1
2

log
1
n

n∑
k=1

(Xk,i − φ̂ji(Xk,j))2
− log

(
E[(Xi − φji(Xj))2]

)

+ log(E[X2
i ])− log

1
n

n∑
k=1

X2
k,i

 =: 1
2(D1,n −D2,n).

We have that Pθn(ŵji−wji ≥ −qnε) ≥ Pθn ((D1,n ≥ −qnε) ∩ (|D2,n| < qnε)), where
the second event have already been show to have probability converging to one.
Thus, it suffices to show that

Pθn (D1,n ≥ −qnε)→n 1.

By similar arguments as above we have for any sequence of positive random
variables (Kn)n≥1 and a positive constant K that for all ε > 0 there exists an
δ > 0 such that Pθn (log(Kn)− log(K) < −qnε) ≤ Pθn(Kn − K < −qnδ), for
sufficiently large n ∈ N. To see this, note that if log(Kn)− log(K) < −qnε, then
Kn < K exp(−εqn) ≤ K(1 − εqn + ε2q2

n), so q−1
n (Kn − K) < −Kε + Kε2qn <

−Kε(1−M) =: −δ where 1 > M > εqn for sufficiently large n as qn ↓ 0. Thus, it
suffices to show that for any ε > 0 it holds that

Pθn

1
n

n∑
k=1

(Xk,i − φ̂ji(Xk,j))2 − Eθn[(Xi − φji(Xj))2] ≥ −q−1
n ε

→n 1.
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Again, we simplify the notation Zk := Xk,i, Yk := Xk,j , f = φji and f̂ := φ̂ji. Now
define the following terms

1
n

n∑
k=1

(
Zk − f̂(Yk)

)2 − Eθn[(Z1 − f(Y1))2]

= 1
n

n∑
k=1
{(Zk − f(Yk))2 − Eθn[(Z1 − f(Y1))2]}

+ 1
n

n∑
k=1
{(f(Yk)− f̂(Yk))2 − δ2

n,θn
}

+ 2
n

n∑
k=1
{(Zk − f(Yk))(f(Yk)− f̂(Yk)) + δ2

n,θn
/2}

=: T̃1,n + T̃2,n + T̃3,n,

where δ2
n,θn

:= Eθn[(f(Y1)− f̂(Y1))2|X̃n] = Eθn[(φji(Xj)− φ̂ji(Xj))2|X̃n] and note
that it suffices to show that for all ε > 0 it holds that

(d) Pθn

(
|T̃1,n − E[Z1 − f(Y1)]| ≥ qnε

)
→n 0,

(e) Pθn

(
|T̃2,n| ≥ qnε

)
→n 0,

(f) Pθn

(
T̃3,n ≥ −qnε

)
→n 1.

Condition (d) holds by arguments similar to (a) for the causal edges.
Now we prove (e). To see this, note that it is, conditional on X̃n, a sum of mean

zero i.i.d. terms, hence

Eθn

(
q−2

n T̃ 2
2,n

∣∣∣ X̃n

)
= q−2

n

n
Eθn

[
{(f(Yk)− f̂(Yk))2 − δ2

n,θn
}2|X̃n

]
= q−2

n

n
Eθn

[
(f(Yk)− f̂(Yk))4 + (δ2

n,θn
)2 − 2(f(Yk)− f̂(Yk))2δ2

n,θn
|X̃n

]
= q−2

n

n

(
Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
− (δ2

n,θn
)2
)

≤ q−2
n

n
2Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
.

Here we used the Conditional Jensen’s inequality, i.e., that we have

(δ2
n,θn

)2 ≤ Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
.

Fix δ > 0 and let An,δ :=
(

q−2
n

n Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
> δ

)
and note that there

exists an Nδ ∈ N such that ∀n ≥ Nδ : Pθn(An,δ) < δ. Similar to the previous
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arguments we have for any ε > 0 and n ≥ Nδ that

Pθn

(∣∣∣T̃2,n

∣∣∣ ≥ qnε
)

= Eθn

[
Pθn

(∣∣∣q−1
n T̃2,n

∣∣∣ ≥ ε
∣∣∣ X̃n

)
∧ 1

]
≤ 1
ε2Eθn

[
Eθn

[
q−2

n T̃ 2
2,n|X̃n

]
∧ 1

]
≤ 2
ε2Eθn

[
q−2

n

n
Eθn

[
(f(Yk)− f̂(Yk))4|X̃n

]
∧ 1

]

≤ 2
ε2

(
Eθn[1An,δ

] + Eθn[1Ac
n,δ
δ]
)
<

4δ
ε2 ,

by the conditional Markov’s inequality. Since δ > 0 was chosen arbitrarily, we
conclude that (e) holds.

Finally we show (f). Recall that from the analysis of the causal edges, we defined

T3,n := 2
n

n∑
k=1

(Zk − f(Yk))(f(Yk)− f̂(Yk)).

Hence, we have that T̃3,n = T3,n + δ2
n,θn

. We realize that

Pθn(T̃3,n < −qnε) ≤ Pθn(T3,n + δ2
n,θn
≤ −qnε)

= Pθn

(
T3,n ≤ −

(
qnε+ δ2

n,θn

))
≤ Pθn

(
T 2

3,n ≥
(
qnε+ δ2

n,θn

)2)
≤ Pθn

(
T 2

3,n ≥ (qnε)2)
= Pθn

(
q−2

n T 2
3,n ≥ ε2

)
= Eθn

[
Pθn

(
q−2

n T 2
3,n ≥ ε2|X̃n

)
∧ 1

]
≤ 1
ε2Eθn

[
Eθn

[
q−2

n T 2
3,n

∣∣∣ X̃n

]
∧ 1

]
→n 0,

where we used the convergence shown in the proof of (c); see Equation (C.16).
To see that the former arguments apply to non-causal edges, simply note that
the former arguments did not use any conditions restricted to causal edges. This
concludes the proof.

□

C.4.3. Proofs of Section 4.4
Lemma C.1. Consider an i.i.d. sequence (Xm)m≥1 of random variables with
Xm ∈ Rd independent from a random infinite sequence X̃ ∈ ∏∞

i=1 Rd. Let (ψn)n≥1
be a sequence of measurable functions with ψn : Rd × (∏∞

i=1 Rd)→ Rq for all n ≥ 1
satisfying the following conditions:
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(a) E[ψn(Xm, X̃)|X̃] = 0 almost surely,

(b) ∑n
m=1 Var(ψn(Xm, X̃)|X̃) P−→n Σ,

(c) ∑n
m=1 E[∥ψn(Xm, X̃)∥2+ε

2 |X̃] P−→n 0 for some ε > 0.

It holds that
n∑

m=1
ψn(Xm, X̃) D−→ N (0,Σ),

Proof of Lemma C.1: Let the random sequences be defined on a common
probability space (Ω,F , P ) and define

Anm := E[ψn(Xm, X̃)|X̃],

Bn := Σ−
n∑

m=1
Var(ψn(Xm, X̃)|X̃),

Cn :=
n∑

m=1
E[∥ψn(Xm, X̃)∥2+ε

2 |X̃].

By assumption we have that P (∩n,m(Anm = 0)) = 1, Bn
P−→ 0 and Cn

P−→ 0 as
n → ∞. First, note that for any subsequence (nk)k≥1 of the positive integers,
there exists a further subsequence (nkl

)l∈N such that

( lim
l→∞

Bnkl
= 0) := {ω ∈ Ω : lim

l→∞
Bnkl

(ω) = 0}, with P ( lim
l→∞

Bnkl
= 0) = 1.

and

( lim
l→∞

Cnkl
= 0) := {ω ∈ Ω : lim

l→∞
Cnkl

(ω) = 0}, with P ( lim
l→∞

Cnkl
= 0) = 1.

Thus, define

G := (∩n,m(Anm = 0) ∩ ( lim
l→∞

Bnkl
= 0) ∩ ( lim

l→∞
Cnkl

= 0) ⊆ Ω, with P (G) = 1.

Now fix x̃ ∈ X̃(G) = {X̃(ω) ∈ ∏∞
j=1 Rp : ω ∈ G} and note that for l ≥ 1 we have

that

∀1 ≤ m ≤ nkl
: E[ψnkl

(Xm, x̃)] = 0,
nkl∑

m=1
Var(ψnkl

(Xm, x̃))→ Σ,
nkl∑

m=1
E[∥ψnkl

(Xm, x̃)∥2+ε
2 ]→ 0.

Furthermore as

ψnkl
(X1, x̃) ⊥⊥ · · · ⊥⊥ ψnkl

(Xnkl
, x̃),
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for any l ≥ Nx̃ we have by Lyapunov’s central limit theorem for triangular arrays
(see, e.g., Van der Vaart, 2000, Proposition 2.27, and recall that Lyapunov’s
condition implies the Lindeberg–Feller condition) that

nkl∑
m=1

ψnkl
(Xm, x̃) D−→ Z ∼ N (0,Σ).

The above convergence in distribution is equivalent to the following: for any
continuous bounded function g : Rp2 → R it holds that

lim
v→∞

E
g
 nkl∑

m=1
ψnkl

(Xm, x̃)
 = E [g(Z)] .

Fix a continuous and bounded g and note that the above convergence holds for all
x̃ ∈ X̃(G) with P (G) = 1. Thus, it must hold that

E
g
 nkl∑

m=1
ψnkl

(Xm, X̃)
 ∣∣∣X̃

 a.s.−→ E [g(Z)] .

Finally, as (nkl
)l≥1 was chosen as a further subsequence of an arbitrary subsequence

of positive integers, we have that

E
[
g

(
n∑

m=1
ψn(Xm, x̃)

) ∣∣∣X̃] P−→ E [g(Z)] ,

and since g is bounded the dominated convergence theorem yields that

E
[
g

(
n∑

m=1
ψn(Xm, X̃)

)]

=E
[
E
[
g

(
n∑

m=1
ψn(Xm, X̃)

) ∣∣∣X̃]]→ E [g(Z)] .

As g was chosen arbitrarily, the above convergence holds for any continuous
bounded g. We conclude that

n∑
m=1

ψn(Xm, X̃) D−→ N (0,Σ),

proving the theorem. □

Lemma C.2 (Shah and Peters, 2020, Lemma 19). Let P be a family of distributions
for a random variable ζ ∈ R and suppose ζ1, ζ2, . . . are i.i.d. copies of ζ. For each
n ∈ N let Sn = n−1∑n

i=1 ζi. Suppose that for all P ∈ P we have EP (ζ) = 0 and
EP

(
|ζ|1+η

)
< c for some η, c > 0. We have that for all ε > 0,

lim
n→∞

sup
P ∈Pn

PP (|Sn| > ε) = 0.
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Lemma C.3. Let U be a random element and let (Zn)n≥1 be an i.i.d. sequence of
random variables such that U ⊥⊥ (Zn)n≥1 and let ((Wnm)m≥n)n≥1 be a triangular
array of random variables and (gn)n≥1 be measurable mappings with the following
properties:

1. for each n,m, Wnm := gn(Zm, U),

2. for some η > 0,E
(
|Wn1|1+η | U

)
= Op(1)

Then writing W̄n := ∑n
i=1Wni/n, we have∣∣∣W̄n − E (Wn | U)

∣∣∣ p→ 0.

Proof of Lemma C.3: Denote

jn(Zm, U) := gn(Zm, U)− E[gn(Z1, U)|U ],

for any m ≤ n and n ≥ 1. Let δ > 0 be given. Pick M > 0 and N ∈ N such that
the events

Ωn :=
{
E
[
|gn(Zn1, U)|1+η | U

]
≤M

}
,

satisfy P (Ωc
n) < δ for n ≥ N . Notice that

U(Ωn) =
{
ũn : E

[
|gn(Z1, ũn)|1+η

]
≤M

}
,

and that

P
(∣∣∣W̄n − E (Wn | U)

∣∣∣ > ε
)

= P

(∣∣∣∣∣1n
n∑

m=1
jn(Zm, U)

∣∣∣∣∣ > ε

)

< E
[
P

(∣∣∣∣∣1n
n∑

m=1
jn(Zm, U)

∣∣∣∣∣ > ε | U
)

1Ωn

]
+ δ.

By the dominated convergence theorem, the first term on the RHS will converge
to 0 if

sup
ω∈Ωn

P

(∣∣∣∣∣1n
n∑

m=1
jn(Zm, U)

∣∣∣∣∣ > ε | U
)

(ω)

= sup
ũn∈U(Ωn)

P

(∣∣∣∣∣1n
n∑

m=1
jn(Zm, ũn)

∣∣∣∣∣ > ε

)
→ 0,

which implies the desired conclusion as δ > 0 was chosen arbitrarily. Now note
that for any ũn ∈ U(Ωn) it holds that

E[|jn(Zi, ũn)|1+η] ≤M, and E[jn(Zi, ũn)] = 0,
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for all i ∈ N. Now let (Yi)i≥1 be a sequence of i.i.d. random variables such that
for each background probability measure P ′ ∈ Pn is holds that Y1

D= jn(Z1, ũn) for
some ũn ∈ U(Ωn) such that E|Y1|1+η ≤M and E[Y1] = 0. Thus,

sup
ũn∈U(Ωn)

P

(∣∣∣∣∣1n
n∑

m=1
jn(Zm, ũ)

∣∣∣∣∣ > ε

)
= sup

P ′∈Pn

P ′
(∣∣∣∣∣1n

n∑
i=1

Yi

∣∣∣∣∣ > ε

)

≤ sup
P ′∈∪Pn

P ′
(∣∣∣∣∣1n

n∑
i=1

Yi

∣∣∣∣∣ > ε

)
→n 0,

by the weak uniform law of large numbers, Lemma C.2. □

Lemma C.4 (Asymptotic normality of edge weight components). Let φ̂n
ji denote

the estimated conditional mean function φji based on the sample X̃n. For any
j ̸= i and m ≤ n, define

R̂nm,ji := {Xm,i − φ̂n
ji(Xm,j)}, µ̂n,ji := 1

n

n∑
m=1

R̂2
nm,ji,

Rm,ji := {Xm,i − φji(Xm,j)}, µji := E[R2
1,ji],

V̂m,i :=
Xm,i −

1
n

n∑
k=1

Xk,i

2

, ν̂n,i := 1
n

n∑
m=1

V̂m,i

νi := Var(X1,i), δ2
n,ji := E[(φ̂ji(X1,j)− φji(X1,j))2|X̃n].

and

Σ̂n :=
[

Σ̂n,R Σ̂n,RV

Σ̂⊺
n,RV Σ̂n,V

]
:= 1

n

n∑
m=1

[
R̂2

nm(R̂2
nm)⊺ − µ̂nµ̂

⊺
n R̂2

nmV̂
⊺

m − µ̂nν̂
⊺
n

V̂m(R̂2
nm)⊺ − ν̂nµ̂

⊺
n V̂mV̂

⊺
m − ν̂nν̂

⊺
n

]
,

denote an p2 × p2 matrix empirical covariance matrix, where the squared vectors
denote that each entry is squared. Suppose there exists ξ > 0 such that for all
j ̸= i, the following three conditions hold:

(i) E∥X∥4+ξ <∞.

(ii) E[|φ̂ji(Xj)− φji(Xj)|4+ξ|X̃n] = Op(1), as n→∞.

(iii) Var
([
R̂2

n1 − δ2
n − µ

V̂1 − ν

] ∣∣∣∣∣X̃n

)
P−→n Σ, where Σ is constant.

Then we have that Σ̂n
P−→ Σ ∈ Rp2×p2 and that

1√
n

n∑
m=1

[
R̂2

nm − δ2
n − µ

V̂m − ν

]
=
√
n

[
µ̂n − δ2

n − µ
ν̂n − ν

]
D−→ N (0,Σ), (C.17)
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Proof of Lemma C.4: We prove the lemma under the assumption that E[X] = 0
for which we can simplify the variance estimator by V̂m,i := X2

m,i and ν̂n,i :=
1
n

∑n
m=1 V̂m,i for all 1 ≤ i ≤ p. The proof only gets more notionally cumbersome

without this assumption. I.e., it should follow in all generality by applying
expansion techniques and Slutsky’s theorem similar to the standard arguments
showing asymptotic normality of the regular sample variance.

Note that when conditioning φ̂n
ji on X̃ it is equivalent to conditioning on X̃n by

the i.i.d. structure of X̃ and that φ̂n
ji only depends on X̃n, the first n coordinates

of X̃.
First, we define for all j ̸= i, m ≤ n and n ∈ N the following conditional

expectation regression error δ̂nm,ji := {φji(Xm,j)− φ̂n
ji(Xm,j)}. Furthermore, for

each n ∈ N and m ≤ n define

Ψn(Xm, X̃) :=
[
R̂2

nm − δ2
n − µ

V̂m − ν

]
∈ Rp2

,

where only X̃n (the first n coordinates of X̃) is used, and

ψn(Xm, X̃) := 1√
n

Ψn(Xm, X̃).

Note that the desired conclusion of Equation (C.17) follows by verifying condition
(a), (b) and (c) of Lemma C.1. First, we show (a), the conditional mean zero
condition. To that end, note that for any i ∈ {1, . . . , p} and j ∈ {1, . . . , p} \ {i} it
holds that

R̂2
nm,ji = (Xm,i − φji(Xm,j) + φji(Xm,j)− φ̂n

ji(Xm,j))2

= (Rm,ji + δ̂nm,ji)2

= R2
m,ji + δ̂2

nm,ji + 2Rm,jiδ̂nm,ji.

Hence, we have that

R̂2
nm,ji − µji − δ2

n,ji = (R2
m,ji − µji) + (δ̂2

nm,ji − δ2
n,ji) + 2Rm,jiδ̂nm,ji. (C.18)

The terms of Equation (C.18) are mean zero conditionally on X̃, since E[R2
m,ji|X̃] =

E[R2
m,ji] = µji, E[δ̂2

nm,ji|X̃] = δ2
n,ji and

E[Rm,jiδ̂nm,ji|X̃] = E[E[Rm,jiδ̂nm,ji|X̃, Xm,j]|X̃]
= E[E[Xm,i − φji(Xm,j)|X̃, Xm,j]δ̂nm,ji|X̃]
= E[(E[Xm,i|Xm,j]− φji(Xm,j))δ̂nm,ji|X̃]
= 0,

as φji(Xm,j) = E[Xm,i|Xm,j] almost surely. Furthermore,

E[X2
m,i − Var(Xi)|X̃] = E[X2

m,i]− Var(Xi) = 0.
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We conclude that

E[ψn(Xm, X̃)|X̃] = 1√
n
E
[[
R̂2

nm − δ2
n − µ

V̂m − ν

] ∣∣∣∣∣X̃
]

= 0,

almost surely. With respect to (b), convergence of the sum of variances, we by
assumption have that

Σn :=
[

Σn,R Σn,RV

Σ⊺
n,RV Σn,V

]
:= Var

(
Ψn(X1, X̃)|X̃

)
P−→n Σ, (C.19)

where as Σ is a positive semi-definite matrix. Furthermore, we have that (Xm)m≥1
is an i.i.d. sequence independent of X̃. Therefore,

n∑
m=1

Var(ψn(Xm, X̃)|X̃) =
n∑

m=1

1
n

Var(Ψn(Xm, X̃)|X̃)

=
n∑

m=1

1
n

Σn

= Σn

P−→ Σ.

Finally, we show that condition (c), a conditional Lindeberg-Feller condition, is
fulfilled. To this end, note that with ε = ξ/2 > 0 we have that

E
[
∥ψn(Xm, X̃)∥2+ε

2

∣∣∣X̃]
= E

∥∥∥∥∥ 1√
n

[
R̂2

nm − δ2
n − µ

V̂m − ν

]∥∥∥∥∥
2+ε

2

∣∣∣∣∣X̃
 (C.20)

= 1
n

2+ε
2
E
∥∥∥∥∥
[
R̂2

nm − δ2
n − µ

V̂m − ν

]∥∥∥∥∥
2+ε

2

∣∣∣∣∣X̃


≤ 1
n

2+ε
2

2( 2+ε
2 −1)

(∑
i ̸=j

E
[
|R̂2

nm,ji − µji − δ2
n,ji|2+ε|X̃

]

+
p∑

i=1
E|X2

m,i − Var(Xi)|2+ε

)
, (C.21)

by the cr and quadratic form inequalities. We now realize that the latter factor of
Equation (C.21) is stochastically bounded. To see this, note that for any j ̸= i it
holds that

E
[
|R̂2

nm,ji − µji − δ2
n,ji|2+ε|X̃

]
≤ 21+ε(E[|R̂nm,ji|4+2ε|X̃] + µ2+ε

ji

+ E[|δ2
n,ji(X̃)|2+ε|X̃]). (C.22)
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The first term of the upper bound in Equation (C.22) is Op(1),

E[|R̂nm,ji|4+2ε|X̃]
= E[|Xm,i − φ̂n

ji(Xm,j)|4+2ε|X̃]
≤ 23+2ε(E|Xm,i − φji(Xm,j)|4+2ε + E[|φji(Xm,i)− φ̂n

ji(Xm,j)|4+2ε|X̃])
= 23+2ε(E[|Rm,ji|4+ξ] + E[|δ̂nm,ji|4+ξ|X̃]) = Op(1),

as E∥X∥4+ξ
2 < ∞ and E[|δ̂nm,ji|4+ξ|X̃] = Op(1). That is, Rm,ji = {Xm,i −

E[Xm,i|Xm,j ]} of which both terms are in L4+ξ(P ) if Xm,i ∈ L4+ξ(P ) which is guar-
anteed as E∥X∥4+ξ

2 <∞. For the thid term in the upper bound of Equation (C.22),
we note that by the conditional Jensen’s inequality, we have that

E[|δ2
n,ji|2+ε|X̃] ≤ E[|φji(Xm,i)− φ̂n

ji(Xm,j)|4+2ε|X̃]
= E[|δ̂nm,ji|4+ξ|X̃]
= Op(1),

by assumption. Therefore, since n 2+ε
2 = n1+ε/2 > n we have that

n∑
m=1

E
[
∥Ψn(Xm, X̃)∥2+ε

2

∣∣∣X̃] ≤ n

n
2+ε

2
Op(1) = n−ε/2Op(1) P−→ 0,

proving the conditional Lindeberg-Feller condition. By Lemma C.1 it holds that

1√
n

n∑
m=1

ψn(Xm, X̃) D−→ N (0,Σ).

Now it only remains to prove that

∥Σ̂n − Σn∥ P−→ 0,

or, equivalently, that each entry converges to zero in probability. For example, for
the entries of the first block matrix with j ̸= i and l ̸= r we prove that

|Σ̂n,R,ji,lr − Σn,R,ji,lr| P−→ 0.

Now note that the observable estimated covariance matrix entry is given by

Σ̂n,R,ji,lr = 1
n

n∑
m=1

R̂2
nm,jiR̂

2
nm,lr − µ̂n,jiµ̂n,lr,

while the unobservable conditional covariance matrix is given by

Σn,R,ji,lr = E[(R̂2
nm,ji − µji − δ2

n,ji)(R̂2
nm,lr − µlr − δ2

n,lr)|X̃]
= E[R̂2

nm,jiR̂
2
nm,lr|X̃]− (µn,ji + δ2

n,ji)(µn,lr + δ2
n,lr)

= E[R̂2
nm,jiR̂

2
nm,lr|X̃]− E[R̂2

nm,ji|X̃]E[R̂2
nm,lr|X̃],
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Note that the second term of the feasible covariance matrix estimator expands to

µ̂n,jiµ̂n,lr =
(

1
n

n∑
m=1

R̂2
nm,ji

)(
1
n

n∑
m=1

R̂2
nm,lr

)

=
(

1
n

n∑
m=1

R̂2
nm,ji − E[R̂2

nm,ji]
)(

1
n

n∑
m=1

R̂2
nm,lr − E[R̂2

nm,lr]
)

− E[R̂2
nm,ji]E[R̂2

nm,lr]

+ 1
n

n∑
m=1

R̂2
nm,jiE[R̂2

nm,lr]

+ 1
n

n∑
m=1

R̂2
nm,lrE[R̂2

nm,ji],

Thus

|Σn,R,ji,lr − Σ̂n,R,ji,lr|

=
∣∣∣∣∣1n

n∑
m=1

(R̂2
nm,jiR̂

2
nm,lr − E[R̂2

nm,jiR̂
2
nm,lr|X̃])

−
(

1
n

n∑
m=1

R̂2
nm,ji − E[R̂2

nm,ji|X̃]
)(

1
n

n∑
m=1

R̂2
nm,lr − E[R̂2

nm,lr|X̃]
)

− 1
n

n∑
m=1

(R̂2
nm,jiE[R̂2

nm,lr|X̃]− E[R̂2
nm,ji|X̃]E[R̂2

nm,lr|X̃])

− 1
n

n∑
m=1

(R̂2
nm,lrE[R̂2

nm,ji|X̃]− E[R̂2
nm,ji|X̃]E[R̂2

nm,lr|X̃])
∣∣∣∣∣. (C.23)

Each of these terms tends to zero in probability by Lemma C.3. For example, for
the first term of Equation (C.23) it suffices to show that

E
[
|R̂2

nm,jiR̂
2
nm,lr|1+ε|X̃

]
= Op(1),

for some ε > 0. Fix ε = ξ/4 and note that

R̂2
nm,jiR̂

2
nm,lr = (Xm,i − φ̂n

ji(X̃)(Xm,j))2(Xm,r − φ̂n
lr(X̃)(Xm,l))2

≤ 4(R2
m,ji + δ̂2

nm,ji)(R2
m,lr + δ̂2

nm,lr).

Thus, by the cr-inequality and the conditional Cauchy-Schwarz inequality we have
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that

E[|R̂2
nm,jiR̂

2
nm,lr|1+ε|X̃]

≤4E[(R2
m,ji + δ̂2

nm,ji)1+ε(R2
m,lr + δ̂2

nm,lr)1+ε|X̃]
≤422εE[(|Rm,ji|2+2ε + |δ̂nm,ji|2+2ε)(|Rm,lr|2+2ε + |δ̂nm,lr|2+2ε)|X̃]
≤E[|Rm,ji|2+2ε|Rm,lr|2+2ε|X̃] + E[|Rm,ji|2+2ε|δ̂nm,lr|2+2ε|X̃]

+ E[|δ̂nm,ji|2+2ε|Rm,lr|2+2ε|X̃] + E[|δ̂nm,ji|2+2ε|δ̂nm,lr|2+2ε|X̃]
≤E[|Rm,ji|4+ξ]E[|Rm,lr|4+ξ] + E[|Rm,ji|4+ξ]E[|δ̂nm,lr|4+ξ|X̃]

+ E[|δ̂nm,ji|4+ξ|X̃]E[|Rm,lr|4+ξ] + E[|δ̂nm,ji|4+ξ|X̃]E[|δ̂nm,lr|4+ξ|X̃]
=Op(1),

as E[|δ̂nm,ji|4+ξ|X̃] = Op(1) for all j ≠ i by assumption and E[|Rm,ji|4+ξ] < ∞
since E∥X∥4+ξ

2 <∞.
Similar arguments show convergence in probability of the entries in the other

block submatrices of Σ̂n less Σn, yielding the desired conclusion.
□

Proof of Theorem 4.3: We prove the theorem under the simplifying assumption
that E[X] = 0 for which we can simplify the variance estimator by V̂m,i := X2

m,i

and ν̂n,i := 1
n

∑n
m=1 V̂m,i for all 1 ≤ i ≤ p.

First, note (using the notation introduced in Lemma C.4) that M̂1 = {R̂2
n1,ji}j ̸=i

for which the conditional mean given X̃n is given by

E[M̂1|X̃n] = E[{R̂2
n1,ji}j ̸=i|X̃n] = µ+ δ2

n,

see Equation (C.18). Similarly we have that E[V̂1|X̃n] = E[V̂1] = ν. Subtracting a
constant (conditional on X̃n) does not change the conditional variance, hence

Var
([
R̂2

n1 − δ2
n − µ

V̂1 − ν

] ∣∣∣∣∣X̃n

)
= Var

(
(M̂⊺

1 , V̂
⊺

1 )⊺
∣∣∣∣∣X̃n

)
P−→n Σ,

where Σ is constant and positive semi-definite. As such, we satisfy the conditions
of Lemma C.4 which yields that

1√
n

n∑
m=1

[
R̂2

nm − δ2
n − µ

V̂m − ν

]
=
√
n

[
µ̂− δ2

n − µ
ν̂ − ν

]
D−→ N (0,Σ), (C.24)

and that

Σ̂ =
[

Σ̂M Σ̂MV

Σ̂⊺
MV Σ̂V

]
P−→ Σ =:

[
ΣM ΣMV

Σ⊺
MV ΣV

]
∈ Rp2×p2

.
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For any j ̸= i we denote

ŵji = 1
2 log

(
µ̂ji

ν̂i

)
, w̃ji = 1

2 log
(
µ̂ji − δ2

n,ji

ν̂i

)
, wji = 1

2 log
(
µji

νi

)
,

where the latter is simply a shorthand notation for the Gaussian edge weight
wG(j → i). Fix α ∈ (0, 1). First, consider (j → i) ∈ E and note that

√
n

([
µ̂ji − µji

ν̂i − νi

]
−
[
µ̂ji − δ2

n,ji − µji

ν̂i − νi

])
=
√
n

[
δ2

n,ji

0

]

=
√
n

[
E[δ̂2

nm,ji|X̃n]
0

]
P−→n 0.

Hence, the delta method yields that
√
n(log(µ̂ji)− log(µji)− log(ν̂i) + log(νi))

=
√
n

(
log

(
µ̂ji

ν̂i

)
− log

(
µji

νi

))
D−→n N (0, σ̃2

ji),

where

σ̂2
ji := Σ̂M,ji

µ̂2
ji

+ Σ̂V,i

ν̂2
i

− 2Σ̂MV,ji,i

µ̂jiν̂i

P−→ σ2
ji := ΣM,ji

µ2
ji

+ ΣV,i

ν2
i

− 2ΣMV,ji,i

µjiνi
≥ 0.

Here Σ̂M,ji and Σ̂V,i and their limits use a shorthand notation that denote the
corresponding diagonal element, e.g., Σ̂M,ji := Σ̂M,ji,ji.

An asymptotically valid marginal confidence interval for wji with level α is, by
virtue of the above convergence in distribution, given by

ŵji ± σ̂ji
q(1− α

2 )
2
√
n

,

where q(1− α
2 ) is the 1− α/2 quantile of the standard normal distribution. That

is,
P

(
ŵji − σ̂ji

q(1− α
2 )

2
√
n
≤ wji ≤ ŵji + σ̂ji

q(1− α
2 )

2
√
n

)
P−→ 1− α.

On the other hand, for any (j → i) ̸∈ E we have, by similar arguments, except
that no assumption guarantees that

√
nδ2

n,ji vanishes, that

P

(
w̃ji − σ̃ji

q(1− α
2 )

2
√
n
≤ wji ≤ w̃ji + σ̃ji

q(1− α
2 )

2
√
n

)
P−→ 1− α,
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where

σ̃2
ji := Σ̂M,ji

(µ̂ji − δ2
n,ji)2 + Σ̂V,i

ν̂2
i

− 2 Σ̂MV,ji,i

(µ̂ji − δ2
n,ji)ν̂i

P−→ σ2
ji := ΣM,ji

µ2
ji

+ ΣV,i

ν2
i

− 2ΣMV,ji,i

µjiνi
≥ 0.

Note that σ̃2
ji is not observable since δ2

n,ji is not observable. Thus, we have the
following Bonferroni corrected simultaneous confidence interval for the Gaussian
edge weights

lim inf
n→∞

P

 ⋂
(j→i)∈E

wji ∈
ŵji ± σ̂ji

q
(
1− α

2p(p−1)

)
2
√
n




⋂
j→i ̸∈E

wji ∈
w̃ji ± σ̃ji

q
(
1− α

2p(p−1)

)
2
√
n



 ≥ 1− α.

The above confidence region has the correct asymptotic level, but it is infeasible
as w̃ji, σ̃ji and E are not observable. Let, for all j ̸= i, l̂α,ji, ûα,ji and l̃α,ji, ũα,ji

denote the lower and upper bounds of the confidence intervals using ŵji, σ̂ji and
w̃ji, σ̃ji, respectively. To see this, note that

C(l̂α, l̃α, ûα, ũα) :=
{

arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

w′
ji :∀(j → i) ∈ E , w′

ji ∈ [l̂α,ji, ûα,ji],

∀(j → i) ̸∈ E , w′
ji ∈ [l̃α,ji, ũα,ji]

}
,

is an unobservable confidence region for the causal graph. That is,

lim inf
n→∞

P (G ∈ C(l̂α, l̃α, ûα, ũα))

≥ lim inf
n→∞

P

 ⋂
(j→i)∈E

(wji ∈ [l̂α,ji, ûα,ji])
⋂

(j→i)̸∈E
(wji ∈ [l̃α,ji, ũα,ji])


≥ 1− α.

On the other hand, our proposed confidence region has the form

Ĉ := Ĉ(l̂α, ûα) :=
{

arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

w′
ji :∀j ̸= i, w′

ji ∈ [l̂α,ji, ûα,ji]
}
,

which corresponds to the biased but feasible confidence region

∏
j ̸=i

ŵji ± σ̂ji

q
(
1− α

2p(p−1)

)
2
√
n

 =:
∏
j ̸=i

[l̂α,ji, ûα,ji].
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for the Gaussian edge weights. The biased confidence region ∏
j ̸=i[l̂α,ji, ûα,ji] does

not necessarily contain the population Gaussian edge weights with a probability
of at least 1− α in the large sample limit. However, it can be used to construct a
conservative confidence region for the causal graph. To see this, note that it is
clear that by further penalizing the wrong edge weights, the causal graph will still
yields the minimum edge weight spanning directed tree. Hence,

lim inf
n→∞

P (G ∈ Ĉ(l̂α, ûα))

≥ lim inf
n→∞

P

( ⋂
(j→i)∈E

(wji ∈ [l̂α,ji, ûα,ji])
⋂

(j→i)̸∈E
(wji ∈ [l̃α,ji, ũα,ji])

⋂
(j→i)̸∈E

(ũα,ji ≤ ûα,ji)
)

≥1− α,
as P (ũα,ji ≤ ûα,ji)→ 1 for all (j → i) ̸∈ E by Lemma C.5. □

Lemma C.5. Suppose that the assumptions of Lemma C.4 hold. It holds that
∀(j → i) ̸∈ E ,∀α ∈ (0, 1) : P (ũα,ji ≤ ûα,ji)→n 1.

Proof of Lemma C.5: Fix any (j → i) ̸∈ E and α ∈ (0, 1) and note that we
want to show that

ũα,ji ≤ ûα,ji

⇐⇒ w̃ji + c
σ̃ji√
n
≤ ŵji + c

σ̂ji√
n

⇐⇒ 0 ≤ log (µ̂ji) + c
σ̂ji√
n
− log

(
µ̂ji − δ2

n,ji

)
− c σ̃ji√

n
,

holds with probability converging to one, where c is a strictly positive constant. It
suffices to show that an even smaller quantity is positive with increasing probability.
That is,

0 ≤ log (µ̂ji) + c
σ̂ji√
n
− log

(
µ̂ji − δ2

n,ji

)
− c σ̃

∗
ji√
n
,

with increasing probability, where

σ̃∗
ji :=

√√√√ Σ̂M,ji

(µ̂ji − δ2
n,ji)2 + Σ̂V,i

ν̂2
i

+ 2 |Σ̂MV,ji,i|
(µ̂ji − δ2

n,ji)ν̂i
≥ σ̃ji.

with σ̃∗
ji > 0 (with increasing probability). Let dn(t) : [0,∞) → R denote the

random function given by

dn(t) := log (µ̂ji) + c
σ̂ji√
n
− log (µ̂ji − t)

− c√
n

√√√√ Σ̂M,ji

(µ̂ji − t)2 + Σ̂V,i

ν̂2
i

+ 2 |Σ̂MV,ji,i|
(µ̂ji − t)ν̂i

.
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It holds that dn(0) = 0 surely, so by the mean value theorem, the desired conclusion
holds if it with increasing probability (as n tends to infinity) holds that d′

n(t) ≥ 0
for all t ∈ [0, δ2

n,ji].
Now fix η > 0 and choose Mη, ε1, . . . , ε5 > 0 such that the lower bounds in the

following inequalities is positive

Ωn(1) : = (µ̂ji ≤Mη),
Ωn(2) : = (ΣM,ji − ε1 ≤ Σ̂M,ji ≤ ΣM,ji + ε1),
Ωn(3) : = (ΣV,i − ε2 ≤ Σ̂V,i ≤ ΣV,i + ε2),
Ωn(4) : = (0 ≤ |Σ̂MV,ji,i| ≤ |ΣMV,ji,i|+ ε3),
Ωn(5) : = (µji − ε4 ≤ µ̂ji − δ2

n,ji ≤ µji + ε4),
Ωn(6) : = (νi − ε5 ≤ ν̂i ≤ νi + ε5),

and that lim infn→∞ P (Ωn(1)) > 1− η. This is possible as µ̂n,ji − δ2
n,ji

P−→ µji > 0
and that

δ̂2
n,ji = E[|δ̂nm,ji|2|X̃] = E[|δ̂nm,ji|

4+ξ
2+ξ/2 |X̃]

≤ E[|δ̂nm,ji|4+ξ|X̃]
1

2+ξ/2 = Op(1),

by the conditional Jensen’s inequality and concavity of [0,∞) ∋ x 7→ x
1

2+ξ/2 , which
implies that µ̂ji = µ̂ji − δ̂2

n,ji + δ̂2
n,ji = op(1) +Op(1) = Op(1). Furthermore, note

that as

Σ̂M,ji
P−→ ΣM,ji > 0, Σ̂V,i

P−→ ΣV,i > 0,

|Σ̂MV,ji,i| P−→ |ΣMV,ji,i| ≥ 0, ν̂i
P−→ νi > 0,

it holds that

lim sup
n→∞

P

 ⋃
1≤k≤6

Ωn(k)c

 ≤ ∑
1≤k≤6

lim sup
n→∞

P (Ωn(k)c)

= lim sup
n→∞

P (Ωn(1)c) ≤ η.

Here we used that the diagonal elements of the limit covariance matrix is strictly
positive. The fact that µji, νi > 0 follows from the fact that Xi − E[Xi|Xj] is
assumed to have density (w.r.t. Lebesgue measure) and that the variables are
non-degenerate νi = Var(Xi) > 0. Thus, we have that

lim inf
n→∞

P

 ⋂
1≤k≤6

Ωn(k)
 ≥ 1− η.

Now consider a fixed ω ∈ ⋂1≤k≤6 Ωn(k) and note that with gn : [0, δ2
n,ji]→ R given

by gn(t) = µ̂ji − t we have that gn is decreasing and that

gn([0, δ2
n,ji]) ⊆ [µji − ε4, µ̂ji] ⊆ (0,Mδ]
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We have that for any t ∈ [0, δ2
n,ji] that

d′
n(t) = 1

µ̂ji − t
− 2c√

n

 Σ̂M,ji

(µ̂ji − t)2 + Σ̂V,i

ν̂2
i

+ 2|Σ̂MV,ji,i|
(µ̂ji − t)ν̂i

−1/2

×
 Σ̂M,ji

(µ̂ji − t)3 + |Σ̂MV,ji,i|
(µ̂ji − t)2ν̂i

 ,
hence,

d′
n(t) = 1

µ̂ji − t
− 2c√

n

 Σ̂M,ji

gn(t)2 + Σ̂V,i

ν̂2
i

+ 2|Σ̂MV,ji,i|
gn(t)ν̂i

−1/2

×
 Σ̂M,ji

gn(t)3 + |Σ̂MV,ji,i|
gn(t)2ν̂i


≥ 1
µ̂ji
− 2c√

n

Σ̂M,ji

µ̂2
ji

+ Σ̂V,i

ν̂2
i

−1/2

×
 Σ̂M,ji

(µ̂ji − δ2
n,ji)3 + |Σ̂MV,ji,i|

(µ̂ji − δ2
n,ji)2ν̂i


≥ 1
Mη
− 2c√

n

(
ΣM,ji − ε1

M2
η

+ ΣV,i − ε2

(νi + ε5)2

)−1/2

×
(

ΣM,ji + ε1

(µji − ε4)3 + |ΣMV,ji,i|+ ε3

(µji − ε4)2(νi − ε5)

)

=: 1
Mη
− CMη,ε1,ε2,ε3,ε4,ε5√

n

≥ 0,

for n ≥ (CMη,ε1,ε2,ε3,ε4,ε5/Mη)2. We conclude that

P (ũα,ji ≤ ûα,ji) = P

(
0 ≤ log (µ̂ji) + c

σ̂ji√
n
− log

(
µ̂ji − δ2

n,ji

)
− c σ̃ji√

n

)
≥ P

(
∀t ∈ [0, δ2

n,ji] : d′
n(t) ≥ 0

)
≥ P

 ⋂
1≤k≤6

Ωn(k)
 ,

for n ≥ (CMη,ε1,ε2,ε3,ε4,ε5/Mη)2. Hence,

lim inf
n→∞

P (ũα,ji ≤ ûα,ji) ≥ lim inf
n→∞

P

 ⋂
1≤k≤6

Ωn(k)
 ≥ 1− η,

and as η > 0 was chosen arbitrarily, we finally have the desired conclusion

P (ũα,ji ≤ ûα,ji)→ 1.
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□

Proof of Theorem 4.4: Consider a collection of arbitrary and possibly data-
dependent substructures R1,R2, ... and level α ∈ (0, 1). First, we note that the
score associated with two sets of edge weights w1 and w2 is weakly monotone,
that is, s(w1) ≤ s(w2) if w1 and w2 satisfy the component-wise partial ordering
w1 ≤ w2. Furthermore, the restricted score function w 7→ sT (R)(w) is also weakly
monotone for any set of restrictions R.

Let k ∈ N and suppose that the null hypothesis

H0(Rk) : ERk
\ E = ∅, E \ Emiss

Rk
= ∅, rk = rt(G),

corresponding to the restriction Rk = (ERk
, Emiss

Rk
, rk) is true.

It is clear that, if there is a graph in Ĉ := Ĉ(l̂α, ûα) satisfying the restrictions
imposed by the substructure Rk, then there exist l̂α ≤ w′ ≤ ûα such that s(w′)
attains its minimum value in a graph satisfying Rk. Now note that further
penalizing (or removing) edges that are not present in the minimum edge weight
directed tree does not affect the score of the minimum edge weigh directed tree.
Hence, it holds that

sT (Rk)(w′) = s(w′).

Monotonicity of sT (Rk) and s in the edge weights imply that

sT (Rk)(l̂α) ≤ sT (Rk)(w′) = s(w′) ≤ s(ûα).

Hence, sT (Rk)(l̂α) > s(ûα) entails that no graph in Ĉ satisfies the restrictions of Rk.
This is a slightly conservative criterion as sT (Rk)(l̂α) ≤ s(ûα) does not necessarily
guarantee that a graph in Ĉ satisfies the restrictions of Rk.

Therefore, if ψRk
= 1, then we know that there is no graph in Ĉ satisfying the

restrictions of Rj. As the causal graph G satisfies the restriction Rk we conclude
that G is not contained in Ĉ. Thus for any true Rk we have that

(ψRk
= 1) ⊆ (G ̸∈ Ĉ).

Since this holds for any true Rk, the conclusion follows by noting that

lim sup
n→∞

P

 ⋃
j:H0(Rj) is true

{ψRj = 1}
 ≤ lim sup

n→∞
P (G ̸∈ Ĉ) ≤ α,

where we used Theorem 4.3.
□
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C.4.4. Proofs of Section 4.5
C.4.4.1. Proofs of first results in Section 4.5

Proof of Lemma 4.3: As conditioning reduces entropy we always have that

ℓCE(G̃, i) = h(Xi|XpaG̃(i)) = h(Xi − E[Xi|XpaG̃(i)]|XpaG̃(i))
≤ h(Xi − E[Xi|XpaG̃(i)])
= ℓE(G̃, i).

Furthermore, note that when conditioning we throw out dependence information
captured through the mutual information I(Xi − E[Xi|XpaG̃(i)];XpaG̃(i)), which is
zero if and only if Xi − E[Xi|XpaG̃(i)] ⊥⊥ XpaG̃(i). This is especially the case for the
true graph, i.e., Xi − E[Xi|XpaG(i)] ⊥⊥ XpaG(i), implying that ℓCE(G, i) = ℓE(G, i).
Consequently, we have that the local conditional entropy score gap lower bounds
the local entropy score gap,

ℓCE(G̃, i)− ℓCE(G, i) ≤ ℓE(G̃, i)− ℓE(G, i).

Furthermore, from the arguments in the proof of Lemma 4.2 we have that

ℓE(G̃, i) = inf
Ñi∼PÑi

∈P
h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)
≤ inf

Ñi∼PÑi
∈PG

h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)
= ℓG(G̃, i) + log(

√
2πe).

If X is generated by a Gaussian noise model, i.e., with generating SCM θ =
(G, (fi), PN) with PN ∈ Pp

G, then ℓE(G, i) = h(Xi − E[Xi|XpaG(i)]) = h(Ni) =
log(
√

2πeσi) = log(
√

2πe) + 1
2 log(E[N2

i ]) = log(
√

2πe) + lG(G, i), in which case
the local entropy score gap lower bounds the local Gaussian score gap

ℓE(G̃, i)− ℓE(G, i) ≤ ℓG(G̃, i)− ℓG(G, i).

□

Proof of Lemma 4.4: Note that E[Y |X] = E[f(X)+NY |X] = f(X)+E[NY |X] =
f(X) +E[NY ], since NY ⊥⊥ NX = X. Hence, the score difference can be written as

ℓE(G̃)− ℓE(G) = ℓE(G̃, X)− ℓE(G, X) + ℓE(G̃, Y )− ℓE(G, Y )
=h(X − E(X|Y ))− h(X) + h(Y )− h(Y − E(Y |X))
=h(X − E(X|Y ))− h(X) + h(Y )− h(NY + E[NY ])
=h(X − E(X|Y ))− h(X) + h(Y )− h(NY ),
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as the differential entropy is translation invariant. Now note that as NY ⊥⊥ NX it
holds that NY ⊥⊥ f(X), so conditioning on f(X) yields that

h(Y ) = h(Y |f(X)) + I(Y ; f(X))
= h(f(X) +NY |f(X)) + I(Y ; f(X))
= h(NY ) + I(Y ; f(X)).

Similarly, conditioning on X yields that

h(Y ) = h(Y |X) + I(Y ;X)
= h(NY ) + I(Y ;X),

which proves that

I(Y ; f(X)) = I(Y ;X).

This equality is normally derived by restricting f to be bijective, but here it holds
regardless by the structural assignment form, as Y is only dependent on X through
f(X). Furthermore, we have that

h(X − E[X|Y ]) = I(X − E[X|Y ];Y ) + h(X − E[X|Y ]|Y )
= I(X − E[X|Y ];Y ) + h(X|Y ).

Hence,

h(X − E[X|Y ])− h(X) = I(X − E[X|Y ];Y ) + h(X|Y )− h(X)
= I(X − E[X|Y ];Y )− I(Y ;X).

Thus

ℓE(G̃)− ℓE(G) = h(X − E[X|Y ])− h(X) + h(Y )− h(NY )
= I(X − E[X|Y ];Y )− I(Y ;X) + h(NY ) + I(Y ; f(X))− h(NY )
= I(X − E[X|Y ];Y )− I(Y ;X) + I(Y ; f(X))
= I(X − E[X|Y ];Y ),

proving the claim. □

Proof of Proposition 4.2: As the conditional mean E[X|Y ] vanishes, we have
that

ℓE(G̃)− ℓE(G) = I(X − E(X|Y );Y )
= I(X;Y )
= I(Y ;X)
= I(Y ; f(X)),
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where the last equality was derived in the proof of Lemma 4.4. Alternatively, if we
start with the entropy score gap definition we get by directed calculation that

h(NX − E[NX |f(NX) +NY ])− h(NX) + h(f(NX) +NY )− h(NY )
=h(NX)− h(NX) + h(f(NX) +NY )− h(NY )
=h(f(NX) +NY )− h(NY )
=h(f(NX) +NY |NX) + I(f(NX) +NY ;NX)− h(NY )
=h(NY |NX) + I(f(NX) +NY ;NX)− h(NY )
=h(NY ) + I(f(NX) +NY ;NX)− h(NY )
=I(f(NX) +NY ;NX)
=I(Y ;X) = I(Y, f(X)).

Now let f(X)G and NG
Y be independent normal distributed random variables with

the same mean and variance as f(X) and NY . That is,

f(X)G ∼ N (E[f(X)],Var(f(X))), and NG
Y ∼ N (E[NY ],Var(NY )),

with NG
Y ⊥⊥ f(X)G such that f(X)G + NG

Y ∼ N (E[f(X)] + E[NY ],Var(f(X)) +
Var(NY )).

(a) If DKL(f(X)∥f(X)G) ≤ DKL(NY ∥NG
Y ) then by Lemma C.1 of Silva (2009)

we have, since X ⊥⊥ NY , that

I(Y ; f(X)) = I(f(X) +NY ; f(X)) ≥ I(f(X)G +NG
Y ; f(X)G),

Note, we have equality if and only if f(X) and NY are jointly Gaussian.
Furthermore,

I(f(X)G +NG
Y ; f(X)G)

= h(f(X)G +NG
Y )− h(f(X)G +NG

Y |f(X)G)
= h(f(X)G +NG

Y )− h(NG
Y )

= log(
√

2π(Var(f(X)) + Var(NY )))− log(
√

2πVar(NY ))

= 1
2 log

(
Var(f(X)) + Var(NY )

Var(NY )

)

= 1
2 log

(
1 + Var(f(X))

Var(NY )

)
.

(b) If f(X) +NY is log-concave distributed, then by Theorem 3 of Marsiglietti
and Kostina (2018) we have that

h(f(X) +NY ) ≥ 1
2 log (4Var(f(X) +NY ))

= 1
2 log (4(Var(f(X)) + Var(NY )) .
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Furthermore, it is well known that for fixed variance, the normal distribution
maximizes entropy, hence

h(NY ) ≤ h(NG
Y ) = 1

2 log (2πVar(NY )) .

Therefore, we get that

I(Y ; f(X)) = I(f(X) +NY ; f(X))
= h(f(X) +NY )− h(f(X) +NY |f(X))
= h(f(X) +NY )− h(NY )

≥ 1
2 log (4(Var(f(X)) + Var(NY ))− 1

2 log (2πeVar(NY ))

= 1
2 log

(
2
πe

+ 2
πe

Var(f(X))
Var(NY )

)
,

which yields a strictly positive lower bound if and only if

2
πe

+ 2
πe

Var(f(X))
Var(NY ) > 1 ⇐⇒ Var(f(X))

Var(NY ) >
πe

2 − 1 ≈ 3.27.

□

Lemma C.6. Two different but Markov equivalent trees G̃ and Ĝ share the exact
same edges except for a single reversed directed path between the two root nodes of
the graphs,

Ĝ : c1 → c2 → · · · → cr−1 → cr,
G̃ : cr → cr−1 → · · · → c2 → c1,

with c1 = rt(Ĝ) and cr = rt(G̃).

Proof of Lemma C.6: First, note that there always exists a unique directed
path in Ĝ from rt(Ĝ) to rt(G̃)

Ĝ : rt(Ĝ) = c1 → · · · → cr−1 → cr = rt(G̃).

Since G̃ and Ĝ are Markov equivalent, they share the same skeleton, so in G̃ the
above path must be reversed. That is, there exists a unique directed path in G̃
from rt(G̃) to rt(Ĝ) given by

G̃ : rt(G̃) = cr → cr−1 → · · · → c1 = rt(Ĝ),

If r = p we are done, so assume r < p. As Ĝ is a directed tree there must exists a
node z2 which is not a part of the above path but is a child of a node in the path.
That is, there exists a node z1 ∈ {c1, . . . , cr} such that Ĝ contains the edge

Ĝ : z1 → z2.
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Furthermore, by equality of skeleton, this edge must also be present in G̃,

G̃ : z1 − z2.

Assume for contradiction that z2 → z1 in G̃. As such, it must hold that z1 = cr =
rt(G̃) for otherwise if z1 ∈ {c1, . . . , cr−1} then z1 would have two parents in G̃, a
contradiction since G̃ is a directed tree. However, if z1 = cr = rt(G̃) then there
is an incoming edge into the root node, a contradiction. We conclude that the
directed edge z1 → z2 also is present in G̃.

Any paths further out on this branch will coincide in both graphs for otherwise
there exists nodes with two parents. These arguments show that any paths
branching out from the main reversed path will coincide in both Ĝ and G̃. Thus,
the two graphs coincide up to a directed path between root nodes that is reversed.

□

Proof of Proposition 4.3: By Lemma C.6 there exists a path reversal

G : rt(G) = c1 → c2 → · · · → cr−1 → cr = rt(G̃),
G̃ : rt(G̃) = cr → cr−1 → · · · → c2 → c1 = rt(G),

while all other edges in G = (V, E) and G̃ = (V, Ẽ) coincide. The entropy score gap
is therefore only concerning the root nodes and the reversed edges in the above
path. That is

ℓE(G̃)− ℓE(G) = h(Xc1)− h(Xcr) +
∑

(j,i)∈E
h(Xi − E[Xi|Xj])

−
∑

(j,i)∈Ẽ
h(Xi − E[Xi|Xj])

= h(Xc1)− h(Xcr) +
r−1∑
i=1

h(Xci − E[Xci|Xcc+1])

−
r∑

i=2
h(Xci − E[Xci|Xci−1]).

For easy of notation let X1 = Xc1, . . . , Xr = Xcr and note that by Lemma 4.4 it
holds that

h(Xi+1) + h(Xi − E[Xi|Xi+1]) = I(Xi − E[Xi|Xi+1];Xi+1)
+ h(Xi) + h(Xi+1 − E[Xi+1|Xi]).
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Thus,

ℓE(G̃) +
r−2∑
i=1

h(Xi+1)

=
(

r−1∑
i=1

h(Xi − E[Xi|Xi+1])
)

+ h(Xr) +
r−2∑
i=1

h(Xi+1)

=
r−1∑
i=1

h(Xi − E[Xi|Xi+1]) + h(Xi+1)

≥
r−1∑
i=1

I(Xi − E[Xi|Xi+1];Xi+1) +
r−1∑
i=1

h(Xi+1 − E[Xi+1|Xi])

+ h(Xi)

=
r−1∑
i=1

I(Xi − E[Xi|Xi+1];Xi+1) +
r∑

i=2
h(Xi − E[Xi|Xi−1])

+ h(Xi−1)

=
r−1∑
i=1

I(Xi − E[Xi|Xi+1];Xi+1) +
(

r∑
i=2

h(Xi − E[Xi|Xi−1])
)

+ h(X1) +
r∑

i=3
h(Xi−1)

=
r−1∑
i=1

I(Xi − E[Xi|Xi+1];Xi+1) +
(

r∑
i=2

h(Xi − E[Xi|Xi−1])
)

+ h(X1) +
r−2∑
i=1

h(Xi+1)

=
r−1∑
i=1

I(Xi − E[Xi|Xi+1];Xi+1) + ℓE(G) +
r−2∑
i=1

h(Xi+1),

proving that

ℓE(G̃)− ℓE(G) ≥
p−1∑
i=1

I(Xi − E[Xi|Xi+1];Xi+1)

=
r−1∑
i=1

∆ℓE(ci −→L99 ci+1)

≥ min
1≤i≤r−1

∆ℓE(ci −→L99 ci+1).

□

C.4.4.2. Proof of Theorem 4.5

We first describe the graphs that result from the reduction technique described in
4.5.3. To do so, define

L(G, G̃) := {L ∈ VR : chGR(L) = ∅ ∧ (paGR(L) ̸= paGR(L) ∨ chGR(L) ̸= ∅)},
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containing the sink nodes in GR (these are either not sink nodes in G̃R or are
sink nodes in G̃R with different parents: paGR(L) ̸= paG̃R(L)). Now fix any
L ∈ L(G, G̃) ⊆ VR and note that its only parent in GR, paGR(L), is either also a
parent of L, a child of L or not adjacent to L, in G̃R. That is, one and only one of
the following sets is non-empty

Z(L) : = paGR(L) ∩ paG̃R(L), (‘staying parents’)
Y (L) : = paGR(L) ∩ chG̃R(L), (‘parents to children’)
W (L) : = paGR(L) ∩ (V \ {L ∪ chG̃R(L) ∪ paG̃R(L)}) (‘removing parents’).

We define the G̃R parent and children of L that are not adjacent to L in GR as

D(L) : = paG̃R(L) ∩ (V \ {L ∪ chGR(L) ∪ paGR(L)}), and
O(L) : = chG̃R(L) ∩ (V \ {L ∪ chGR(L) ∪ paGR(L)}),

respectively. All such sets contain at most one node and by slight abuse of notation,
we use the same letters to refer to the nodes. We will henceforth suppress the
dependence on L if the choice is clear from the context. Figure 4.1 visualizes the
above sets.

Now partition Tp \ {G} into the three following disjoint partitions for which
there exists a reduced graph sink node L ∈ L(G, G̃) such that W (L), Y (L) and
Z(L) is non-empty, respectively. That is, we define

Tp(G,W ) : = {G̃ ∈ Tp \ {G} : ∃L ∈ L(G, G̃) s.t. W (L) ̸= ∅},
Tp(G, Y ) : = {G̃ ∈ Tp \ {G} : ∃L ∈ L(G, G̃) s.t. Y (L) ̸= ∅} \ Tp(G,W ),
Tp(G, Z) : = {G̃ ∈ Tp \ {G} : ∃L ∈ L(G, G̃) s.t. Z(L) ̸= ∅}

\ (Tp(G,W ) ∪ Tp(G, Y )).

Using that Tp(G,W )∪Tp(G, Y )∪Tp(G, Z) = Tp(G), we can now find a lower bound
for the score gap that holds uniformly over all alternative directed tree graphs
Tp \ {G}:

min
G̃∈Tp\{G}

ℓE(G̃)− ℓE(G)

= min
{

min
G̃∈Tp(G,Z)

ℓE(G̃)− ℓE(G),

min
G̃∈Tp(G,W )

ℓE(G̃)− ℓE(G), min
G̃∈Tp(G,Y )

ℓE(G̃)− ℓE(G)
}
.

We now turn to each of these three terms individually and first consider alternative
graphs in the partitioning Tp(G, Z). The following lower bound consists of possibly
highly non-localized conditional dependence properties of observable distribution
PX .
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Lemma C.7. Let ΠZ(G) denote all tuples (z, l, o) ∈ V 3 of adjacent nodes (z →
l) ∈ E for which there exists a node o ∈ ndG(l) \ {z, l}. It holds that

min
G̃∈Tp(G,Z)

ℓE(G̃)− ℓE(G) ≥ min
(z,l,o)∈ΠZ(G)

I(Xz;Xo|Xl).

The next result proves a lower bound that holds uniformly over all alternative
graphs in Tp(G,W ). The lower bound consists only of local conditional dependence
properties. That is, for any subgraph of the causal graph G of the form Xo →
Xw → Xl or Xo ← Xw → Xl we measure, by means of conditional mutual
information, the conditional dependence of the two adjacent nodes Xw and Xl

conditional on Xo, I(Xw;Xl|Xo). The lower bound consists of the smallest of all
such local conditional dependence measures.

Lemma C.8. Let ΠW (G) denote all tuples (w, l, o) ∈ V 3 of adjacent nodes (w →
l) ∈ E and o ∈ (chG(w) \ {l}) ∪ paG(w). It holds that that

min
G̃∈Tp(G,W )

ℓE(G̃)− ℓE(G) ≥ min
(w,l,o)∈ΠW (G)

I(Xw;Xl|Xo).

A uniform lower bound of the score gap over all alternative graphs in the final
partition Tp(G, Y ) is given by the smallest edge-reversal of any edge in the causal
graph G.

Lemma C.9. It holds that

min
G̃∈Tp(G,Y )

ℓE(G̃)− ℓE(G) ≥ min
(j→i)∈E

∆ℓE(j −→L99 i).

An immediate consequence of Lemmas C.7 to C.9 is that the entropy identifia-
bility gap is given by the smallest of the lower bounds derived for each partition,
see Theorem 4.5. Thus, it only remains to prove Lemmas C.7 to C.9.

Proof of Lemma C.7: Let G̃ ∈ ΠZ(G) such that Z ̸= ∅. This implies that
Y = W = ∅ as L can only have one parent in G. Furthermore, D = ∅ as L can
only have one parent in G̃ and O ̸= ∅ for otherwise L would have been deleted
by the deletion procedure in Section 4.5. Assume without loss of generality that
O = {O1, . . . , Ok} for some k ∈ N. The two subgraphs are illustrated in Figure C.6.
For ease of notation, fix any 1 ≤ i ≤ k and denote O := Oi. We note that in G̃
the following d-separation holds

Z ⊥⊥G̃O |L.

Thus, we have for all probability measures Q ∈ {G̃} × F(G̃)× Pp over nodes V
it holds that Z ⊥⊥ O |L as the path between Z and O is blocked by L and all
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V1 = {Z,L}c

Z L

GR

Ṽ1 = {Z,L,O,A1, . . . ,Ak}c

Z L ...

O1

Ok

A1

Ak

G̃R

Figure C.6: Illustration of the reduced form graphs GR and G̃R for the case G̃ ∈
ΠZ(G). A1, . . . ,Ak are possibly empty sets of nodes, and dashed
rectangle nodes denotes a possibly multi-node subgraph over the
variables enclosed. The bi-directed edges means that the edge can
be directed in both directions. An edge pointing into the multi-node
subgraph, can possibly be multiple edges into distinct nodes of the
subgraph.

probability measures generated in accordance with an SCM are automatically
Markovian with respect to the generating graph G̃. Recall from Lemma 4.2 that

ℓE(G̃)− ℓE(G) = inf
Q∈{G̃}×F(G̃)×Pp

DKL(PX∥Q)

= inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− h(PX).

Now fix Q = q · λp ∈ {G̃} × F(G̃) × Pp and note that it factorizes as Q =
QA|Z,O,LQZ|LQO|LQL, i.e., the density q factorizes as

q(x) = qA|Z,O,L(a|z, o, l)qZ,O,L(z, o, l)
= qA|Z,O,L(a|z, o, l)qZ|L(z|l)qO|L(o|l)qL(l),

for λp-almost all x = (a, z, o, l) ∈ Rp where A = V \ {Z,O, L}. Hence, the cross
entropy is splits additively into

h(PX , Q) ≥ E[− log(qA|Z,O,L(A|Z,O, L))]
+ E[− log(qZ|L(Z|L))]
+ E[− log(qO|L(O|L))]
+ E[− log(qL(L))]. (C.25)

Now note, e.g., that for a conditional distribution (Markov kernel) QZ|L it holds
that

0 ≤ DKL(PZ|LPL∥QZ|LPL) = E
[
− log

(
qZ|L(Z|L)pL(L)
pZ|L(Z|L)pL(L)

)]
= E[− log(qZ|L(Z|L))]− E[− log(pZ|L(Z|L))],
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proving that
E[− log(qZ|L(Z|L))] ≥ E[− log(pZ|L(Z|L))].

By similar arguments, we get that the three other terms in the lower bound of
Equation (C.25) is bounded below by

E[− log(qA|Z,O,L(A|Z,O, L))] ≥ E[− log(pA|Z,O,L(A|Z,O, L))],
E[− log(qO|L(O|L))] ≥ E[− log(pO|L(O|L))],

E[− log(qL(L))] ≥ E[− log(pL(L))].

This implies that

inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q) ≥ h(PX , Q
∗),

where Q∗ = PA|Z,O,LPZ|LPO|LPL. On the other hand, we know that PX factorizes
as PX = PA|Z,O,LPZ,O|LPL. Thus we have the following entropy score gap lower
bound

ℓE(G̃)− ℓE(G) ≥ h(PX , Q
∗)− h(PX)

= DKL(PX∥Q∗)
= DKL(PA|Z,O,LPZ,O|LPL∥PA|Z,O,LPZ|LPO|LPL)
= DKL(PZ,O|LPL∥PZ|LPO|LPL)
= DKL(PZ,O|L∥PZ|LPO|L|PL)
= I(Z;O|L).

Let ΠZ(G) denote all tuples (z, l, o) ∈ V 3 of adjacent nodes (z → l) ∈ E for which
there exists a node o ∈ ndG(l) \ {z, l}. For any graph G̃ ∈ Tp(G, Z) we can, by the
above considerations, find a tuple (z, l, o) ∈ ΠZ(G) such that

ℓE(G̃)− ℓE(G) ≥ I(Xo;Xz |Xl).

We conclude that

min
G̃∈Tp(G,Z)

ℓE(G̃)− ℓE(G) ≥ min
(z,l,o)∈ΠZ(G)

I(Xo;Xz|Xl).

□

Proof of Lemma C.8: Fix any G̃ ∈ Tp(G,W ) and L with W ̸= ∅ such that
Z = Y = ∅. We have illustrated the subgraph GR in Figure C.7 and the possible
subgraphs G̃R in Figure C.8. .

Note that for any of the three possible local graph structures presented in
Figure C.8 there exists anA ∈ {O1, . . . , Ok, D} such that L⊥⊥G̃R

W |A, i.e., A blocks
the path between L and W . Thus, for all probability measures Q ∈ {G̃}×F(G̃)×Pp
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{W,L}c W L

GR

Figure C.7: Illustrations of the GR subgraph for for G̃ ∈ Tp(G,W ).

L ...

O1

Ok

A1

Ak

G̃R: D = ∅, O ̸= ∅

{L,D}c D L

G̃R: D ̸= ∅, O = ∅

{D,L,O,A1, . . . ,Ak}c D L ...

O1

Ok

A1

Ak

G̃R: D ̸= ∅, O ̸= ∅

Figure C.8: Illustrations of the possible G̃R subgraphs for G̃ ∈ Tp(G,W ).

over nodes V = {1, .., p} it always holds that L ⊥⊥ W |A. By arguments similar to
those in the proof of Lemma C.7, we note that

ℓE(G̃)− ℓE(G) = inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− h(PX).

and that
inf

Q∈{G̃}×F(G̃)×Pp
h(PX , Q) ≥ h(PX , Q

∗),

for PX = PK|W,L,APW,L|APA and Q∗ = PK|W,L,APL|APW |APA where K = V \
{W,L,A}. To that end, we now have that

ℓE(G̃)− ℓE(G) ≥ h(PX , Q
∗)− h(PX)

= DKL(PX∥Q∗)
= DKL(PK|W,L,APW,L|APA∥PK|W,L,APL|APW |APA)
= DKL(PW,L|APA∥PL|APW |APA)
= DKL(PW,L|A∥PL|APW |A|PA)
= I(W ;L|A).

Let Π̂W (G) denote all tuples (w, l, a) ∈ V 3 of adjacent nodes (w → l) ∈ E for which
there exists a node a ∈ ndG(l) \ {w}. Now note that for any graph G̃ ∈ Tp(G,W )
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{Y, L}c Y L

GR

Figure C.9: Illustrations of the GR subgraph for G̃ ∈ Tp(G, Y ).

we can, by the above considerations, find a tuple (w, l, a) ∈ Π̂W (G) such that

ℓE(G̃)− ℓE(G) ≥ I(Xw;Xl |Xa). (C.26)

Conversely for any tuple (w, l, a) ∈ Π̂W (G) we can construct a graph G̃ ∈ Tp(G,W )
such that Equation (C.26) holds. To see this, fix (w, l, a) ∈ Π̂W (G) and construct
G̃ such that the subtree with root node l is identical in both G and G̃ and a blocks
the path between l and w in G̃. Therefore, the following lower bound holds and it
is not unnecessarily small.

min
G̃∈Tp(G,W )

ℓE(G̃)− ℓE(G) ≥ min
(w,l,a)∈Π̂W (G)

I(Xw;Xl |Xa).

For any (w, l, a) ∈ Π̂W (G) it either holds that a ∈ (chG(w) \ {l}) ∪ paG(w) or that
there exists an o ∈ (chG(w) \ {l})∪paG(w) blocking the path between a and l such
that Xl ⊥⊥ Xa|Xo. Furthermore, we note that as Xl ⊥⊥ (Xo, Xa) |Xw we have that

I(Xw;Xl|Xa) = h(Xl|Xa)− h(Xl|Xa, Xw)
= h(Xl|Xa)− h(Xl|Xw)
= h(Xl|Xa)− h(Xl|Xo, Xw)
≥ h(Xl|Xa, Xo)− h(Xl|Xo, Xw)
= h(Xl|Xo)− h(Xl|Xo, Xw)
= I(Xw;Xl |Xo),

as further conditioning reduces conditional entropy. Let ΠW (G) denote all tuples
(w, l, o) ∈ V 3 of adjacent nodes (w → l) ∈ E and o ∈ (chG(w) \ {l}) ∪ paG(w). By
the above considerations we conclude that

min
G̃∈Tp(G,W )

ℓE(G̃)− ℓE(G) ≥ min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo).

□

Proof of Lemma C.9: Fix G̃ ∈ Tp(G, Y ) and L such that Y ≠ ∅. It holds that
W = Z = ∅. We have illustrated the GR in Figure C.9 and the three possible
subgraphs G̃R in Figure C.10.

Note that for any of the three possible local graph structures of G̃R illustrated
in Figure C.10 we have that for all probability measures Q ∈ {G̃} × F(G̃)× Pp
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{Y, L,O}c

LY O

G̃R: D = ∅, O ̸= ∅

{Y, L,D}c D L Y

G̃R: D ̸= ∅, O = ∅

{D,L, Y,O,A,B}c

D L

Y

O

A

B

G̃R: D ̸= ∅, O ̸= ∅

Figure C.10: Illustrations of the possible G̃R subgraphs for G̃ ∈ Tp(G, Y ).

factorizes as QA|L,YQL,Y , where A = V \ {L, Y }. It always holds that QL,Y is the
simultaneous distributions of (L̃, Ỹ ) generated in accordance with a structural
equation model of the form

Ỹ := f̃Y (L̃) + ÑY , (C.27)

where f̃Y (l) = E[Y |L = l] for all l ∈ R, and any L(ÑY ),L(L̃) ∈ P with ÑY ⊥⊥ L̃.
Now recall that

ℓE(G̃)− ℓE(G) = inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− h(PX),

and notice that by arguments similar to those in the proof of Lemma C.7 we get

h(PX , Q) = h(PX , QA|L,YQL,Y )
= E[− log(qA|L,Y (A|L, Y ))] + h(PL,Y , QL,Y )
≥ E[− log(pA|L,Y (A|L, Y ))] + h(PL,Y , QL,Y ),

and that h(PX) = E[− log(pA|L,Y (A|L, Y )] + h(PL,Y ). Thus, we have that

ℓE(G̃)− ℓE(G) ≥ inf
Q∈{G̃}×F(G̃)×Pp

h(PL,Y , QL,Y )− h(PL,Y ).

For any Q = QA|L,YQL,Y ∈ {G̃} × F(G̃) × Pp we have that QL,Y is uniquely
determined by a marginal distribution QL ∈ P and the noise distribution of
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ÑY ∼ qÑY
·λ ∈ P from the additive noise structural assignment in Equation (C.27)

for Ỹ . Thus, the density qL,Y of QL,Y is given by

qL,Y (l, y) = qY |L(y|l)qL(l) = qÑY
(y − f̃Y (l))qL(l) = qÑY

(y − E[Y |L = l])qL(l).

Hence,

h(PL,Y , QL,Y ) = E [− log (qL,Y (L, Y ))]
= E

[
− log

(
qY |L(Y |L)

)]
+ E [− log (qL(L))]

= E
[
− log

(
qÑY

(Y − E[Y |L])
)]

+ h(PL, QL)
= h(Y − E[Y |L], ÑY ) + h(PL, QL)
≥ h(Y − E[Y |L]) + h(L),

where we used that h(P,Q) = DKL(P,Q) + h(P ) ≥ h(P ). Thus, we have that

ℓE(G̃)− ℓE(G) ≥ inf
Q∈{G̃}×F(G̃)×Pp

h(PL,Y , QL,Y )− h(PL,Y )

≥ h(Y − E[Y |L]) + h(L)− h(L− E[L|Y ])− h(Y )
= ∆ℓE(Y −→L99 L).

We conclude that

min
G̃∈Tp(G,Y )

ℓE(G̃)− ℓE(G) ≥ min
(i→j)∈E

∆ℓE(j −→L99 i).

□

C.4.4.3. Remaining proof of Section 4.5

Proof of Theorem 4.6:
Consider a graph G̃ ∈ Tp(G, Z) and let GR,1 = (ER,1, VR,1) and G̃R,1 = (ẼR,1, VR,1)

be the reduced graphs after the initial edge and node deletion procedure of
Section 4.5.3. The deletion procedure does not change the score gap, that is,

ℓG(G̃)− ℓG(G) = ℓG(G̃R,1)− ℓG(GR,1).

For any i ≥ 1 and fixed GR,i and G̃R,i we define

LR,i := {L ∈ VR,i : chGR,i(L) = ∅ ∧ (paGR,i(L) ̸= paGR,i(L) ∨ chGR,i(L) ̸= ∅)}.

Now fix L1 ∈ LR,1 such that Z1 ̸= ∅, where Y1, Z1,W1, D1 and O1 is defined
similarly to the variables in Section 4.5. Let O1 = {O1,1, . . . , O1,k1}, for some
k1 ∈ N.

Assume that there exists an i ∈ {1, . . . , k1} such that (Z1 → O1,i) ∈ ER,1 in
which case we have the following two paths in GR,1 and G̃R,1

GR,1 : O1,i ← Z1 → L1, and G̃R,1 : Z1 → L1 → O1,i.
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Since O1,i ⊥⊥ G̃R,1
Z1 |L1 an entropy score gap lower bound is given by

ℓG(G̃R,1)− ℓG(GR,1) ≥ ℓE(G̃R,1)− ℓE(GR,1) ≥ I(O1,i;Z1|L1),

by infimum cross entropy and factorizing arguments similar to those from the
proof of Lemma C.8. Now note that (Z1, O1,i, L1) ∈ ΠW (GR,1) ⊆ ΠW (G) as
(Z1 → O1,i) ∈ ER,1 and L1 ∈ chGR,1(Z1)\{O1,i} ⊆ (chGR,1(Z1)\{O1,i})∪paGR,1(Z1).
Hence,

ℓG(G̃R,1)− ℓG(GR,1) ≥ min
(w,l,o)∈ΠW (G)

I(Xw;Xl|Xo). (C.28)

Conversely, assume for all i ∈ {1, .., k1} that (Z1 → O1,i) ̸∈ ER,1. Let ĜR,1 =
(ÊR,1, VR,1) denote an intermediate graph where ÊR,1 is identical to ẼR,1 except the
edges {(L1 → O1,i) : 1 ≤ i ≤ k1} ⊆ ẼR,1 is exchanged for the edges {(Z1 → O1,i) :
1 ≤ i ≤ k1}. It holds that

ℓG(G̃R,1)− ℓG(GR,1) = ℓG(G̃R,1)− ℓG(ĜR,1) + ℓG(ĜR,1)− ℓG(GR,1)
≥ ℓG(ĜR,1)− ℓG(GR,1).

Note that this score gap lower bound is still strictly positive as ĜR,1 ̸= GR,1. To
realize the last inequality, simply note that as O1,i ⊥⊥ L1 |Z1 we have for all
i ∈ {1, . . . , k1} that

2ℓG(G̃R,1, O1,i) = logE[(O1,i − E[O1,i|L1])2]
≥ logE[(O1,i − E[O1,i|Z1, L1])2]
= logE[(O1,i − E[O1,i|Z1])2]
= 2ℓG(ĜR,1, O1,i). (C.29)

Now since all edges in G̃R,1 and ĜR,1 coincide except the incoming edges into
O1,1, . . . , O1,k1 we get that

ℓG(G̃R,1)− ℓG(ĜR,1) =
k1∑

i=1
ℓG(G̃, O1,i)− ℓG(G, O1,i) ≥ 0,

where the inequality follows from Equation (C.29). Now both ĜR,1 and GR,1 have
a childless node L1 with the same parent Z1 so we let G̃R,2 and GR,2 denote these
two graphs where the node L1 and its incoming edge are deleted. This deletion
does not change the graph scores, i.e.,

ℓG(ĜR,1)− ℓG(GR,1) = ℓG(G̃R,2)− ℓG(GR,2).

Now fix L2 ∈ LR,2 and define Y2, Z2,W2, D2 and O2 = {O2,1, . . . , O2,k2} accordingly.
If either Y2 or W2 is non-empty, we use the score gap lower bound previously

discussed in Lemma C.8 and Lemma C.9. If Z2 is non-empty, we can repeat the
above procedure and iteratively move edges and delete nodes until the we arrive
at the first i ∈ N with G̃R,i and GR,i being the iteratively reduced graphs and
LR,i ∈ LR,i where either
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i) Yi or Wi is non-empty and we get that ℓG(G̃)− ℓG(G) is lower bounded by a
bound similar to the form of Lemma C.8 or Lemma C.9. That is,

ℓG(G̃R,i)− ℓG(GR,i) ≥ ℓE(G̃R,i)− ℓE(GR,i)

≥ min
{

min
j→i∈E

∆ℓE(i −→L99 j)

, min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo)
}
.

ii) Zi is non-empty and there exists a j ∈ {1, . . . , ki} such that (Zi → Oi,j) ∈
GR,i. As previously argued, the score gap lower bound of Equation (C.28)
applies. That is

ℓG(G̃R,i)− ℓG(GR,i) ≥ ℓE(G̃R,i)− ℓE(GR,i)
≥ min

(w,l,o)∈ΠW (G)
I(Xw;Xl |Xo).

Note that whenever we do not meet scenario i) or ii) we remove a node in both
graphs that is a sink node in the reduced true causal graph GR,i and the intermediate
graph ĜR,i. After at most p − 2 graph reduction iterations of not encountering
scenario i) or ii) we are left with two different graphs on two nodes, in which case
the score gap is an edge reversal. We conclude that

ℓG(G̃)− ℓG(G) ≥ ℓG(G̃R,i)− ℓG(GR,i)
≥ ℓE(G̃R,i)− ℓE(GR,i)

≥ min
{

min
i→j∈E

∆ℓE(j −→L99 i), min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo)
}
.

□
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