
C A U S A L I N F E R E N C E
A N D

M A C H I N E L E A R N I N G

P H D T H E S I S

L A S S E P E T E R S E N

A P R I L 2 0 2 1

T H I S T H E S I S H A S B E E N S U B M I T T E D T O T H E P H D S C H O O L O F T H E F A C U L T Y O F S C I E N C E ,

U N I V E R S I T Y O F C O P E N H A G E N



LASSE PETERSEN
LASSEPETERSEN@PROTONMAIL.COM

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF COPENHAGEN

UNIVERSITETSPARKEN 5
2100 COPENHAGEN, DENMARK

Principal supervisor: Professor Niels Richard Hansen
University of Copenhagen

Assessment committee: Professor Alexandra Carpentier
Otto-von-Guericke-Universität Magdeburg

Professor Stéphane Gäıffas
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Abstract

This thesis is concerned with the problem of performing causal graphical structure learning. The unifying

approach to the problems studied throughout the thesis is the use of nonparametric machine learning

techniques in order to relax distributional and functional assumptions on the data generating processes

under consideration. The contribution of the thesis are four distinct manuscripts that are each concerned

with different aspects of structure learning, which can be divided into two overall themes. The first

theme is structure learning of graphical models for multivariate time series. Here we consider detecting

the edges of a graphical model by posing regression models of the time series and reading the graph

structure off the fitted models. The second theme is nonparametric hypothesis tests for constraint-

based structure learning. Here we develop novel tests for conditional independence and conditional local

independence. Our test for conditional independence is based on a generalized correlation in the partial

copula, where we estimate nonparametric residuals using quantile regression. Our test for conditional

local independence is based on a stochastic integral, which is a zero-mean local martingale under the

hypothesis, and where the test statistic process requires nonparametric estimation of an intensity function

and a predictable projection process. For both tests we utilize techniques from double machine learning

to perform inference on a test statistic of a dependence measure in the presence of infinite dimensional

nuisance parameters.
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Resumé

Emnet for denne afhandling er strukturlæring for kausale grafiske modeller. Den overordnede til-

gangsvinkel til problemerne, som vi studerer i afhandlingen, er brugen af ikke-parametriske machine

learning teknikker til at lempe p̊a fordelingsantagelser og funktionelle antagelser vedrørende de in-

volverede data genererende processer. Afhandlingen bidrager med fire manuskripter, som beskræftiger

sig med forskellige aspekter af strukturlæring. Disse bidrag kan inddeles i to overordnede temaer. Det

første tema er strukturlæring af grafiske modeller for tidsrækker. Her antager vi at tidsrækken er gener-

eret af en regressionsmodel, og vi løser strukturlæringsproblemet ved at træne regressionsmodellen til

data og derefter aflæse strukturen fra den trænede model. Det andet tema er ikke-parametriske hy-

potesetest til brug i strukturlæringsalgoritmer. Her udvikler vi nye test for betinget uafhængighed og

lokal uafhængighed. Vores test for betinget uafhængighed er baseret p̊a en generaliseret korrelation i det

partielle copula, hvor vi estimerer ikke-parametriske residualer ved brug af fraktilregression. Vores test

for lokal uafhængighed er baseret p̊a et stokastisk integral, som er en centreret, lokal martingal under hy-

potesen, og hvor vores teststatistik process kræver ikke-parametrisk estimation af en intensitetsfunktion

og en forudsigelig projektionsprocess. Til begge test bruger vi teknikker fra dobbelt machine learning

til at drage inferens om en teststatistik af et afhængighedsmål, som kræver yderligere estimation af en

uendeligdimensionel støjparameter.
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Chapter 1

Introduction

Graphical models [Lauritzen, 1996] are statistical models that encode the conditional independencies

among random variables into graphs in order to give a compact representation of their dependence

structure. Given a collection of random variables X = (X1, . . . , Xp) assumed to be Markov with respect

to a directed acyclic graph D = (V,E), the joint density factorizes according to the graph as a series of

successive regressions f(x) =
∏
j∈V f(xj | paD(xj)). Hence, by restricting X to be Markov with respect

to D we achieve a decomposition of the problem of conducting statistical inference on the joint distri-

bution into a series of subproblems of (hopefully) lower complexity. However, aside from the inferential

benefits, this factorization also provides a useful intuition about the data generating mechanism of X,

in the sense that it provides a recipe for simulation. We initialize by simulating the random variables

represented by the source nodes of D, and then continue simulating random variables given the value of

their parents until we have reached the sink nodes of D. This intuition, where a random variable is gen-

erated as an effect of causes, has popularized graphical models, in particular directed acyclic graphical

models, as a language for reasoning about causality.

In the field of causal inference [Pearl, 2009, Spirtes et al., 2000, Peters et al., 2017] this simulation

scheme is not merely seen as a way of building a probability distribution by successive conditional

distributions, but more explicitly as a series of ordered structural assignments that describe the causal

generating mechanism in terms of causes and their effects. Most importantly, the structural assignments

and the associated causal graph provides a language for discussing interventions in a system — namely

by replacing a structural assignment according to the intervention of interest. If we assume that the

random variable X = (X1, . . . , Xp) is causally generated according to a graphical model, one is able to

use the graph structure to, for example, identify interventional distributions, determine the presence of

confounding, choose valid adjustment sets and discuss mediation.

However, as with most statistical methodology, causal inference is a two-step procedure. For some

applications the causal graph can be determined by expert knowledge, but for many problems the graph

is (at least partially) unknown. Hence, the first step of a causal analysis is determining the causal graph,

and secondly carrying out the inference of interest. This can be seen as a causal model selection, known

as causal structure learning or causal discovery.

The main inspiration for the work presented in this thesis are problems arising in causal structure

learning. In particular, scrutinizing the assumptions underlying the existing methodology, where the vast

majority focuses on parametric models, either in terms of distributional assumptions or the functional

form of the structural assignments. Here our primary motivation has been how to utilize nonparametric

methods from machine learning to relax distributional and functional assumptions. In other words —

1



2 CHAPTER 1. INTRODUCTION

and perhaps put a bit boldly — how can we automate the process of going from data to graph with as

few assumptions and as little human decision-making as possible?

1.1 Contributions and organization

Let us outline the contributions of this thesis and how we intend to present them. The contributions can

be divided into four distinct parts. Firstly, in Chapters 2 to 4 we present the three published papers:

• Lasse Petersen. Sparse Learning in Gaussian Chain Graphs for State Space Models. In Proceedings

of the Ninth International Conference on Probabilistic Graphical Models, volume 72 of Proceedings

of Machine Learning Research, pages 332–343, Prague, Czech Republic, 11–14 Sep 2018. PMLR.

• Sebastian Weichwald, Martin E. Jakobsen, Phillip B. Mogensen, Lasse Petersen, Nikolaj Thams,

and Gherardo Varando. Causal structure learning from time series: Large regression coefficients

may predict causal links better in practice than small p-values. In Proceedings of the NeurIPS 2019

Competition and Demonstration Track, volume 123 of Proceedings of Machine Learning Research,

pages 27–36, Vancouver, CA, 08–14 Dec 2020. PMLR.

• Lasse Petersen and Niels Richard Hansen. Testing Conditional Independence via Quantile Re-

gression Based Partial Copulas. Journal of Machine Learning Research, 22(70):1–47, 2021b.

Each of Chapters 2 to 4 contains a paper followed by a discussion of its content and directions of

further research. In addition to these papers representing finished work, Chapters 5 and 6 contains the

current status of ongoing work. In Chapter 5 we present the manuscript:

• Lasse Petersen and Niels Richard Hansen. Nonparametric conditional local independence testing.

2021a.

Finally, in Chapter 6 we present a software implementation on intensity estimation with recurrent

neural networks that is being developed in connection with this manuscript, which we believe is of

independent interest.

The remainder of this introduction will be used to motivate the individual problems studied through-

out the thesis. We will not spend time on giving a formal introduction to the fields of graphical models,

causal inference nor any specific machine learning technique. Each of the manuscripts listed above are

self-contained in the sense that they introduce the concepts that are needed to understand them. Instead,

we will focus on giving the reader motivation for the problems studied in the thesis.

1.2 Model selection by regression

Consider a response Y ∈ R and a set of covariates X ∈ Rp such that

Y = XTβ + ε (1.1)

where β ∈ Rp and ε ∼ N (0, σ2). A popular method for performing simultaneous model selection and

parameter estimation in the model (1.1) given a set of i.i.d. observations (Yi, Xi)
N
i=1 is the lasso estimator
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X1 X2 X3 X4 X5

Y

Z1

Z2 Z4

Z3

Figure 1.1: Left: An estimated directed acyclic graph, where the lasso estimator has chosen β̂1, β̂2, β̂4 6= 0
and β̂3 = β̂5 = 0. Right: An estimated concentration graph, where the graphical lasso estimator has
chosen Θ̂12, Θ̂13, Θ̂23 6= 0 and Θ̂14 = Θ̂24 = Θ̂34 = 0.

[Tibshirani, 1996], which performs maximum likelihood estimation with an || · ||1-penalty by carrying

out the optimization problem

β̂ = arg min
β∈Rp

{
1

2N

N∑
i=1

(Yi −XT
i β)2 + λ||β||1

}
(1.2)

where λ ≥ 0 is a tuning parameter. The penalty function ||β||1 =
∑p
j=1 |βj | induces a sparsity in the

parameter vector β, which is responsible for the automatic model selection of the estimator, namely that

β̂j = 0 is interpreted as the covariate Xj not being included in the model (1.1). This can be seen as a

graphical model selection procedure in the directed acyclic graph, where Y is the sink node, X1, . . . , Xp

are source nodes, and there is a directed edge Xj → Y for each j = 1, . . . , p if and only if its regression

parameter βj is non-zero. See Figure 1.1 where we deliberately ignore a possible dependence between

the covariates X1, . . . , Xp.

The idea of model selection by penalization of parameters was utilized for structure estimation of

undirected Gaussian graphical models by Banerjee et al. [2008] and Friedman et al. [2008]. Here Z is

assumed to follow a multivariate Gaussian distribution N (0,Σ), where the conditional independencies

are encoded in the concentration matrix Θ = Σ−1 such that Zi ⊥⊥ Zj | Z{i,j}c if and only if Θij = 0.

This means that Z is Markov with respect to its so-called concentration graph which has an undirected

edge between Zi and Zj if and only if Θij 6= 0. This correspondence between conditional independence

and zeros of the concentration matrix is exploited in the graphical lasso estimator, which performs

maximum likelihood estimation of the concentration matrix Θ with ||·||1-penalization given i.i.d. samples

Z1, . . . , ZN by solving

Θ̂ = arg min
Θ∈S++

p

{tr(ΘS)− log det Θ + λ||Θ||1} (1.3)

where S = 1
N

∑N
i=1 ZiZ

T
i is the empirical covariance matrix of the sample and S++

p are the positive

definite symmetric matrices. Again the penalty function ||Θ||1 =
∑
i 6=j |Θij | induces sparsity in the

concentration matrix, which in turn gives a sparse estimated concentration graph. See Figure 1.1.

Now consider the situation where the response in model (1.1) is multidimensional Y ∈ Rq such that

we can write the multivariate linear Gaussian model

Y = BX + E (1.4)

where B ∈ Rq×p is a matrix of regression coefficients and E ∼ N (0,Σ). We could then be interested

in examining the dependence structure between the components Y1, . . . , Yq by an undirected graphical
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1 2 6 7

3 8 9

4 5 10

{1, 2, 3} {6, 7, 8, 9}

{4, 5} {10}

Figure 1.2: Left: a chain graph. Right: its directed acyclic graph of chain components.

model, since the symmetric nature of this graphical model type treats the variables as being “on equal

footing”, i.e., neither of the components are believed to be a response of the others. At the same time,

we wish to be able to adjust this associative modeling of Y for the influence of the covariates X, and for

this purpose a directed acyclic graphical model is natural due to the asymmetric nature where edges are

directed from covariates to responses.

Graphs that contain both directed and undirected edges such that there are no semi-directed cycles,

i.e., cycles where all directed edges point in the same directed, are called chain graphs. The chain

components of a chain graph are the connected components after deleting all directed edges, and the

chain components can themselves be considered nodes of a directed acyclic graph. See Figure 1.2. It

turns out that there are multiple different Markov properties that one can associate with chain graphs,

where the most common are the Lauritzen-Wermuth-Frydenberg (LWF) Markov property [Frydenberg,

1990, Lauritzen and Wermuth, 1989] and the Andersson-Madigan-Perlman (AMP) Markov property

[Andersson et al., 2001].

Under a Gaussian chain graph model the two different Markov properties give different relations

between sparsity of the model parameters and the presence of edges. The model (1.4) can be represented

as a chain graph model, where the responses Y = (Y1, . . . , Yq) and the covariates X = (X1, . . . , Xp) are

chain components and the directed acyclic graph of chain components is given by X → Y . Under the

model (1.4) it holds that

Y | X = x ∼ N (Bx,Θ−1)

and one can show that if (X,Y ) is AMP Markov with respect to a chain graph, then the absence of

directed edges from X1, . . . , Xp to Y1, . . . , Yq gives zeros in the regression matrix B, while the absence

of undirected edges among Y1, . . . , Yq gives zeros of the concentration matrix Θ = Σ−1. One can also

reparametrize the model in terms of its exponential family representation as

Y | X = x ∼ N (Θ−1Λx,Θ−1)

where Λ = ΘB and Θ are the canonical parameters. Under the LWF Markov property, one can show

that the absence of directed edges from X1, . . . , Xp to Y1, . . . , Yq implies zeros of Λ, and the absence of

undirected edges between Y1, . . . , Yq implies zeros of Θ (as with the AMP Markov property).

In the paper Petersen [2018], presented in Chapter 2, we adapt this relationship between chain

graphical models and the multivariate linear Gaussian model to state space models. A state space model

is a time series model, where there is an underlying continuous state space Markov chain (Xt) that is

hidden, and we observe a noisy version (Yt). The linear Gaussian state space model that we consider in

the paper is given by

Xt | Xt−1 = xt−1 ∼ N (Bxt−1,Σ) and Yt | Xt = xt ∼ N (xt, ρ
2I)
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Figure 1.3: Left: a 3-dimensional time series. Right: its summary graph.

for t = 1, . . . , N where (Xt) is latent and (Yt) is observed. The research questions underlying this

paper are 1) how can we represent this model in a chain graphical framework under the AMP and LWF

Markov properties, and 2) how can we perform simultaneous graphical model selection and parameter

estimation by using penalized regression techniques. The contributions of the paper are two Expectation-

Maximization-algorithms — one for each Markov interpretation of chain graphs — for estimating the

parameters in the model, where penalization is applied in the M-step. Moreover, we demonstrate how

these M-steps can be solved by using the lasso estimator (1.2) and the graphical lasso estimator (1.3).

This part of the thesis stand out from the rest, since we assume a completely parametric model in

terms of distributional and functional assumptions. In return, we obtain a procedure for performing

both the model selection and the parameter estimation simultaneously. Furthermore, the chain graph

models give us a tool for assessing any conditional independence statement among the variables.

Sometimes such a fine-grained representation of the dependence structure of a time series is not

required, but a more coarse representation is sufficient. Consider the time series (X
(1)
t , X

(2)
t , X

(3)
t )

that is generated by the directed acyclic graph in Figure 1.3. In this multivariate time series there

is dependence between several lags of the components, and such a graphical structure might be hard

to learn from data without parametric assumptions. A more pragmatic approach to the problem is to

assume time-homogeneity of the time series, and then represent the overall dependence structure between

the time series in a so-called summary graph. For a p-dimensional time series, the summary graph is

given by a p×p adjacency matrix A such that Aij = 1 if and only if X
(i)
t depends on X

(j)
s for some s < t.

See Figure 1.3. In other words, the summary graph describes the Granger-causality relations in the time

series [Granger, 1969]. The summary graph is not a graphical model per se, since we cannot read of

conditional independencies from the graph using a Markov property. Moreover, it contains strictly less

information than the full directed acyclic graph.

In the paper Weichwald et al. [2020], presented in Chapter 3, we consider nonparametric estimation

of summary graphs of time series. The origin of the paper was the Climate 4 Causality competition1, in

connection with the competition and demonstration track of the 2019 NeurIPS conference. The purpose

was causal structure learning in time series, and the inferential target of the competition was summary

graphs of time series. In the competition the teams were given training data from a number of different

simulated time series, where the underlying data generating graphical structure was withheld. The

teams could then perform queries to an online platform, which provided feedback on the performance of

the prediction without revealing the true summary graph in order to avoid overfitting. In the end, the

1https://causeme.uv.es/neurips2019

https://causeme.uv.es/neurips2019
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teams were evaluated by the predictions on a test data set. We participated in the competition with a

team of PhD students and post docs from the Copenhagen Causality Lab, and ended up winning the

competition, and were given the opportunity to submit a paper on our findings.

Our approach to the problem of estimating a summary graph of a time series was the following.

We assume that the time series (Xt) is time-homogeneous and generated from a differentiable function

F = (F1, . . . , Fp) : Rp×L → Rp such that

Xt+1 = F (Xt, Xt−1, . . . , Xt−L+1) +Nt

where (Nt) are i.i.d. zero-mean noise terms, and L ≥ 1 is a pre-defined number of lags of the time series.

For a fixed lag 1 ≤ ` ≤ L we let

D`
ij(x) = ∂zFji(xL, . . . , x`+1, z, x`−1, . . . , x1)|z=x

denote the partial derivative of the part of F that describes the functional dependency of X
(j)
t on X

(i)
t−`.

We then consider the parameter

θ`ij = E|D`
ij(X

(i)
t−`)|

which quantifies the expected effect of X
(i)
t−` on X

(j)
t with respect to the distribution of X

(i)
t−`. If X

(j)
t

does not depend on X
(i)
t−`, then Fj is constant in the `-lag of X(i), and therefore D`

ij(x) is zero. However,

if there is a functional dependence, then we expect θ`ij to be non-zero.

In Weichwald et al. [2020] we use this idea to approximate θ`ij by using linear regression methods,

to detect whether the (possibly non-linear) regression function F has regions where it is non-constant.

If we detect a lag 1 ≤ ` ≤ L such that θ`ij is non-zero, then we let Aij = 1 in the summary graph. Note

that the parameters (θ`ij)i,j=1,...,p,`=1,...,L provide no information about the functional form of F , nor

can it be used to predict X(j) from X(i). It is a purely exploratory model selection tool for determining

the presence of dependence. However, we can use it as a justification to use linear regression methods

to detect for the presence of non-linear functional relationships in time series.

The approaches to perform graphical structure learning of time series in Petersen [2018] and Weich-

wald et al. [2020] are quite different, but they are also achieving different goals under different assump-

tions. In Petersen [2018] we assume a fully parametric model and use penalized regression techniques

to perform graphical model selection. In return, we estimate a proper chain graphical model that can

be used to analyze the conditional independencies of the time series. The approach of Weichwald et al.

[2020] is more heuristic, and the estimated summary graph does not contain as much information as the

chain graph model, however, it does not make parametric nor distributional assumptions.

Note that there is nothing intrinsically causal about the models presented in this section nor the

models presented in the rest of the thesis. In order to draw causal conclusions from statistical models, one

needs to make causal assumptions such as the regressions of a directed acyclic graph being structural

assignments, that there is no unmeasured confounding and that the system remains invariant under

interventions. See Chapter 2 of Peters et al. [2017]. Nevertheless, the graphical structure learning is

relevant during the statistical part of the analysis, while the causal conclusions based on this graph must

be justified by making the relevant causal assumptions.

1.3 Constraint-based structure learning

Consider a target random variable Y and another set of random variables X1, . . . , Xp that are potentially

related to Y . In Section 1.2 we considered Y to be a response and X1, . . . , Xp to be covariates such
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X2 X3

X1 Y X4

X5 X6

Figure 1.4: The Markov blanket of Y is given by mb(Y ) = {X2, X3, X4, X5}.

that it was natural to consider X1, . . . , Xp to be potential parents of Y in a directed acyclic graph or

chain graph. However, in some situations it might be that (Y,X1, . . . , Xp) is simply assumed Markov

with respect to an acyclic directed graph, where Y might be the child of some variables and a parent of

others.

The graph can then be used to guide a model selection on a regression model of Y on X1, . . . , Xp.

In a graphical model the Markov blanket [Pearl, 1988] of a node Y is the minimal set of nodes M

such that Y is independent of remaining variables given M . In the case of acyclic directed graphs, the

Markov blanket of a node are the parents, the children and the parents of the children. See Figure 1.4.

Consequently, we know that the conditional distribution of Y given X1, . . . , Xp only depends on the

Markov blanket, and so the graph structure gives a dimensionality reduction and model selection tool.

Conversely, the graph structure can be (partially) reconstructed from the conditional independencies

of the distribution that it represents. Recall that a collection of random variables X = (X1, . . . , Xp) are

said to satisfy a global Markov property with respect to a graph G if

A ⊥G B | C =⇒ XA ⊥⊥ XB | XC (1.5)

where A,B,C ⊂ {1, . . . , p} and ⊥G denotes separation relative to the type of graph G [Lauritzen, 1996].

If G is a directed acyclic graph, then we usually consider d-separation [Pearl, 2009]. That X is globally

Markov with respect to a graph can be quite an empty statement, since X is always globally Markov

with respect to a fully connected undirected graph, where there are no separations. Thus, we need

a requirement saying that the conditional independencies of X should be present in the graph G as

separations. This reverse statement of the global Markov condition (1.5) is called faithfulness:

XA ⊥⊥ XB | XC =⇒ A ⊥G B | C. (1.6)

The faithfulness assumption is the backbone of the causal structure learning paradigm known as constraint-

based structure learning [Spirtes et al., 2000]. The basic intuition is that under faithfulness each sepa-

ration corresponds to a conditional independence statement, and that the graph can be reconstructed

from its separations. Therefore, we can learn the graph by making conditional independence queries to

the distribution of interest. However, this is only partially true, since many graphs can entail the same

separations.

Two graphs are called Markov equivalent, if they induce the same conditional independencies under

the global Markov property. In the case of acyclic directed graphs, two graphs are Markov equivalent if

they have the same skeleton and the same v-structures, i.e., subgraphs of the form X → Z ← Y , where

there is no edge between X and Y [Verma and Pearl, 1990]. The Markov equivalence class M(D) of a
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X

Y Z

W

X

Y Z

W

X

Y Z

W

Figure 1.5: Left and middle: two Markov equivalent directed acyclic graphs. They have the same
skeleton, and the same v-structures, namely Y → W ← Z. Right: the CPDAG representing their
Markov equivalence class. Note that we cannot orient Y → X and Z → X at the same time, since this
would create a new v-structure.

directed acyclic graph D can be represented by a so-called completed partially directed acyclic graph C
(CPDAG). The CPDAG C representingM(D) has a directed edge X → Y between two nodes, if this is

present in all members of M(D), and it has an undirected edge X − Y between two nodes, if there is a

member of M(D) where X → Y and another where X ← Y . The undirected edge can be interpreted

as an uncertainty about the orientation of that edge, since it can be oriented in either direction and still

the graph has the same separations. Here one should be aware of not creating new v-structures when

orienting undirected edges of the CPDAG. See Figure 1.5.

One of the most popular constraint-based structure learning algorithms is the PC-algorithm [Spirtes

et al., 2000], which assumes that the distribution of X is Markov and faithful to a directed acyclic graph

D, and furthermore that causal sufficiency is satisfied, i.e., that there are no latent confounders. The

algorithm is a two-step procedure. In the first step, the skeleton is reconstructed by making conditional

independence queries to the distribution of X, which produces an undirected graph. In the second step,

as many edges of the skeleton as possible are oriented using a set of orientation rules [Meek, 1995], and

the final output is a CPDAG representing the Markov equivalence class of the true graph D. For a full

description of the PC-algorithm and the orientation rules see, e.g., Kalisch and Bühlmann [2007], who

consider learning high-dimensional sparse directed acyclic graphs under a Gaussian assumption. Even

though the PC-algorithm only outputs a CPDAG this can still be used to carry out causal inference by,

e.g., the IDA algorithm [Maathuis et al., 2009], which provides bounds on interventional effects based

on a CPDAG under a Gaussian assumption.

The PC-algorithm has several variations and extensions. For example the Fast-Causal-Inference

(FCI) algorithm allows for latent and selection variables [Spirtes et al., 2000, Colombo et al., 2012],

and estimates a so-called partial ancestral graph (PAG) that represent the Markov equivalence class of

a directed acyclic graph with latent and selection variables. We will not go into further details about

how these algorithms work, since this thesis does not contribute directly to this part of the literature.

However, the motivation for the paper Petersen and Hansen [2021b], presented in Chapter 4, is the

statistical inference part of constraint-based structure learning algorithms, where the skeleton estimation

requires a hypothesis test for conditional independence.

Let X,Y ∈ R be random variables and Z ∈ Rp a random vector, and assume for simplicity that they

have a joint density function with respect to Lebesgue measure on Rp+2. In what follows we will use f

to denote a generic density function. Recall that we say that X and Y are conditionally independent

given Z if the density factorizes as

f(x, y | z) = f(x | z)f(y | z) (1.7)
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for almost all x, y ∈ R and z ∈ Rp with f(z) > 0. An equivalent characterization is that

f(y | x, z) = f(y | z) (1.8)

for almost all x, y ∈ R and z ∈ Rp with f(z) > 0. These two definitions gives rise to (at least) three

different strategies for testing conditional independence.

If we were to assume that Z was categorical, then the hypothesis (1.7) can be tested by stratification

according to Z, i.e., testing the unconditional independence X ⊥⊥ Y for each stratum of Z. This strategy

can also be used when Z is continuous by applying a binning or unsupervised clustering to Z. However,

in order to combine the tests we need to adjust the significance level for multiple testing, and if Z

has many categories, then this will lead to a severe loss of power of the conditional independence test.

Moreover, if Z is high-dimensional, then each stratum contains few or no samples, which makes the

individual independence tests infeasible.

Another approach is to use the characterization (1.8), which treats Y as a response and X and

Z as covariates, where the interpretation is that X is irrelevant for predicting Y in the presence of

Z under conditional independence X ⊥⊥ Y | Z. Here we could propose conditional mean models

g1(x, z) = E(Y | X = x, Z = z) and g2(z) = E(Y | Z = z) and test the fitted model ĝ1 against ĝ2 for

the significance of X. However, in order to employ this strategy for testing conditional independence,

we would need to propose a parametric model for the part of g1 that depends on X in order to test the

significance of parameters. Moreover, it is not given that the dependence of Y on X lies in the conditional

mean. Here we could choose a more nonparametric approach by performing density estimation f̂(y | x, z)
and compare this to f̂(y | z), but this is a difficult problem under high-dimensionality of Z due to the

curse of dimensionality. A third complicating feature of this approach is the asymmetry in X and Y , since

we are not guaranteed that using this test strategy will yield the same result with X and Y switched.

The third strategy is residualization. To explain the intuition of this approach, assume first that

(X,Y, Z) is multivariate Gaussian and write

X = ZTβ1 + ε1 and Y = ZTβ2 + ε2

where β1, β2 ∈ Rp and ε1 ∼ N (0, σ2
1) and ε2 ∼ N (0, σ2

2). Then the partial correlation of X and Y given

Z can be defined as

ρXY |Z = Corr(ε1, ε2) = Corr(X − ZTβ1, Y − ZTβ2)

and ρXY |Z = 0 if and only if X ⊥⊥ Y | Z. To carry out the test we estimate the residuals ε̂1,i = ZTi β̂1

and ε̂2,i = ZTi β̂2 for a sample (Xi, Yi, Zi)
n
i=1, and then test for vanishing correlation in (ε̂1,i, ε̂2,i)

n
i=1.

The basic idea is that we perform a residualization by removing the marginal dependence of X on Z and

Y on Z such that ε1 ⊥⊥ Z and ε2 ⊥⊥ Z, and then look for remaining dependence between the residuals.

This idea was generalized by Shah and Peters [2020] who proposed to perform nonparametric con-

ditional mean regressions of

f(z) = E(X | Z = z) and g(z) = E(Y | Z = z) (1.9)

and test for vanishing correlation between the residuals R1,i = Xi − f̂(Zi) and R2,i = Yi − f̂(Zi). They

call their test the Generalised Covariance Measure (GCM), and their test is nonparametric in the sense

that the conditional means (1.9) can be estimated using any machine learning technique, as long as

they are consistently estimated with sufficiently fast rates [Shah and Peters, 2020, Theorem 6]. Note
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that without a Gaussian assumption we only know that the residuals R1 and R2 are uncorrelated under

conditional independence, but not necessarily independent.

Our motivation in Petersen and Hansen [2021b] was to develop a nonparametric conditional inde-

pendence test similar to the GCM by using a different residualization approach. Let FX|Z(· | z) and

FY |Z(· | z) denote the conditional distribution functions of X | Z = z and Y | Z = z respectively. Then

we can consider the transformations

U1 = FX|Z(X | Z) and U2 = FY |Z(Y | Z).

The joint distribution of (U1, U2) is called the partial copula, and it was suggested as a device for

testing conditional independence in Bergsma [2004, 2011], which comes from the fact that U1 ⊥⊥ U2

when X ⊥⊥ Y | Z without any functional nor distributional assumptions. This can be considered a

residualization approach since the variables U1 and U2 always satisfy U1 ⊥⊥ Z and U2 ⊥⊥ Z [Rosenblatt,

1952], and U1 and U2 were termed nonparametric residuals by Patra et al. [2016]. Analogously to the

GCM, a partial copula based conditional independence test is a two-step procedure:

(1) Estimate the conditional distribution functions F̂X|Z and F̂Y |Z given a sample (Xi, Yi, Zi)
n
i=1.

(2) Compute estimated nonparametric residuals

Û1,i = F̂X|Z(Xi | Zi) and Û2,i = F̂Y |Z(Yi | Zi)

for i = 1, . . . , n and test for independence in (Û1,i, Û2,i)
n
i=1.

Our research goals were the following. Firstly, to propose a nonparametric estimator of the con-

ditional distribution functions that can utilize nonparametric techniques from machine learning, and

quantifying the rate of convergence of the estimator. Secondly, to control the nested estimation uncer-

tainty involved with first estimating the nonparametric residuals and thereafter plugging them into a

test for independence. In particular, to find a class of test statistics for independence such that we can

transfer the convergence rates of the conditional distribution function estimator into asymptotic level

and power properties of the conditional independence test.

Both the GCM and a partial copula based conditional independence test can be seen as examples of

double machine learning procedures [Chernozhukov et al., 2018]. The target parameter of interest is a

dependence measure between the residuals R1 and R2 or nonparametric residuals U1 and U2. However,

in order to estimate this parameter, we first need to estimate an infinite dimensional nuisance parameter,

which for the GCM are the conditionals means f and g, while for a partial copula based test it is the

conditional distribution functions FX|Z and FY |Z . In the paradigm of double machine learning these

nuisances are estimated using nonparametric machine learning techniques, and then the estimates are

plugged back into an estimator of the target parameter. The main challenge is to control the nested

estimation uncertainty error, which is further complicated by the fact that the nuisance parameters might

be estimated at a slow rate due to the nonparametric estimation. In Chernozhukov et al. [2018] this

problem is solved by the use of Neyman-orthogonal score functions, sample splitting and cross-fitting.

While we do not formally cast our hypothesis test in Petersen and Hansen [2021b] in the language of

score functions and Neyman-orthogonalization, we were still heavily inspired by the ideas and techniques

of double machine learning.
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1.4 Testing dependence in dynamical systems

Until this point we have considered the situation, where we have a real valued (and possibly multidimen-

sional) target variable Y and a set of potential real valued covariates X1, . . . , Xp. We will now shift our

focus to the setup, where the response is a positive random variable τ , which is interpreted as an event

time, e.g., time until death or failure of a machine. We can represent this response by a counting process

Nt = 1(τ ≤ t), which also gives the opportunity to effortlessly incorporate recurrent events, but for the

sake of this introduction, we will stick with a single event. Instead of having real valued covariates, we

will now consider a set of caglad (Xd
t )d=1,...,p covariate processes, i.e. processes that are left continuous

with right limits.

In this framework, we would like to be able to describe the dependence structure between the

stochastic processes (Nt, X
d
t )d=1,...,p. One possibility is to choose a discretization 0 ≤ t1 < t2 < · · ·

and consider modeling the time series (Ntj , X
d
tj )d=1,...,p,j∈N by a directed acyclic graph. However, this

solution is unsatisfactory, since it depends on the discretization, and it does not truly capture the

infinitesimal dependence structure in a continuous time dynamical system.

In order to study the dependence structure of stochastic processes, Schweder [1970] introduced the

concept of conditional local independence. Let us describe it in the current context. Let C ⊂ {1, . . . , p}
and b ∈ {1, . . . , p} with b /∈ C. Denote by F the filtration generated by N and XC = (Xc)c∈C , and

let G be the filtration generated by N and (Xb, XC). Then we say that N is conditionally locally

independent of Xb given XC if the F-compensator of N is also a G-compensator of N . The intuition is

that the history of Xb is irrelevant for predicting N in the presence of the history of XC , and one can

think of conditional local independence of stochastic processes as a continuous time version of Granger

non-causality [Granger, 1969].

X1 X2 X3

N

Figure 1.6: Example of local independence graph. If the system (Nt, X
d
t )d∈{1,2,3} satisfies the global

Markov property defined by δ-separation with respect to this local independence graph, then X1 is
conditionally locally independent of X2 without conditioning on additional processes, and (Nt) is condi-
tionally locally independent of (X3

t ) given (X1
t , X

2
t ). The loops represent feedback from the individual

stochastic processes with itself.

Didelez [2006, 2008] considered representing the conditional local independence relations using di-

rected graphs, where she introduced a global Markov property based on δ-separation, which is a general-

ization of d-separation in directed acyclic graphs. Such graphs are called local independence graphs. See

Figure 1.6. This concept was generalized by Mogensen et al. [2018] and Mogensen and Hansen [2020] who

considered partially observed systems, where there can be processes acting as unmeasured confounders.

They introduced a graphical representation by directed mixed graphs that have both directed and bi-
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directed edges, and they introduced a global Markov property by µ-separation, which is a generalization

of m-separation in directed acyclic mixed graphs. Mogensen et al. [2018] also developed a constraint-

based structure learning algorithm of local independence graphs, where the skeleton reconstruction uses

a conditional local independence oracle.

The motivation for the manuscript Petersen and Hansen [2021a], presented in Chapter 5, was to

contribute to the statistical inference part of the structure learning of local independence graphs, by

developing a nonparametric test for the hypothesis of conditional local independence. The manuscript

presented here is the current status of ongoing work.

The setup of the manuscript is as follows. We still consider a counting process N , which we assume

is adapted to a filtration F , which may contain additional information on covariate processes. We let Z

be an auxiliary caglad stochastic process, and we let G be the filtration generated by F and Z. Our goal

is then to test whether N is conditionally locally independent of Z given F . Let λ denote the F-intensity

of N , such that with Λt =
∫ t

0
λsds being the F-compensator of N , then the process M defined by

Mt := Nt − Λt,

is a zero-mean F-martingale. Then the hypothesis can be equivalently stated by saying that N is

conditionally locally independent of Z given F if the F-martingale M is also a G-martingale, i.e., the

additional information augmented to F by the process Z is indeed irrelevant for N .

The initial research question of the manuscript Petersen and Hansen [2021a] was how to construct

a hypothesis test for conditional local independence from the property of M being a martingale with

respect to G under the hypothesis. Furthermore, a requirement of the proposed test was to make it

nonparametric in the sense that it does not assume that the stochastic processes involved belong to a

certain family of processes other than N being a counting process.

This last point is crucial since many model classes of stochastic processes are non-collapsable, i.e.,

the model classes are not closed under marginalization. For example, a multivariate Hawkes process is

no longer a Hawkes process if we marginalize over one of the coordinates. Thus, we cannot consider the

full dynamical system to be a multivariate Hawkes process, and then consider subsets of the coordinates

without misspecifying the model. In Section 1.1 of the manuscript we give a more detailed example in

terms of a Cox model with time varying covariates.

Our basic construction is as follows. First we let Πt = E(Zt | Ft−) be the predictable projection

process of Z onto F , such that the difference Z−Π is G-predictable since Z is assumed caglad. We then

consider the process I defined as the stochastic integral

It =

∫ t

0

(Zs −Πs)dMs =

∫ t

0

(Zs −Πs)d(Ns − Λs).

Under the hypothesis of conditional local independence, M is a zero-mean G-martingale, so the process

I is also a zero-mean G-martingale. On the contrary, if conditional local independence is not satisfied,

then M is not a G-martingale, so I is not (necessarily) a G-martingale, and we expect the process I to

have a drift. Consequently, the function t 7→ γt = E(It) is identically zero under the hypothesis, and

we expect it to be different from zero under the alternative. Our approach to perform the test is to use

ideas from double machine learning [Chernozhukov et al., 2018], which was also a theme in Petersen and

Hansen [2021b]. We consider nonparametric estimators of the nuisance parameters λ and Π, which we

plug back into an estimator Î(n) of I. A novelty in our setup, compared to the usual double machine

learning setup, is that both our nuisance parameters λ and Π and our target parameter t 7→ γt are

infinite dimensional. Hence, in order to develop asymptotic theory we need the entire weak limit of our

test statistic Î(n) as a stochastic process.
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As part of our current work on this hypothesis test, we are also developing new nonparametric

estimators of the intensity λ and the predictable projection Π. In Chapter 6 we present a software

implementation for estimation of intensity functions based on recurrent neural networks, in the case

where the filtration F is entirely generated by counting processes. We include this since we believe that

the implementation is of independent interest and state-of-the-art.
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Abstract
The graphical lasso is a popular method for estimating the structure of undirected Gaussian graph-
ical models from data by penalized maximum likelihood. This paper extends the idea of structure
estimation of graphical models by penalized maximum likelihood to Gaussian chain graph models
for state space models. First we show how the class of linear Gaussian state space models can be
interpreted in the chain graph set-up under both the LWF and AMP Markov properties, and we
demonstrate how sparsity of the chain graph structure relates to sparsity of the model parameters.
Exploiting this relation we propose two different penalized maximum likelihood estimators for re-
covering the chain graph structure from data depending on the Markov interpretation at hand. We
frame the penalized maximum likelihood problem in a missing data set-up and carry out estimation
in each of the two cases using the EM algorithm. The common E-step is solved by smoothing, and
we solve the two different M-steps by utilizing existing methods from high dimensional statistics
and convex optimization.
Keywords: state space models; chain graph models; high dimensional statistics; sparse learning;
EM algorithm; convex optimization.

1. Introduction

The graphical lasso (Banerjee et al., 2008; Friedman et al., 2008) produces a sparse estimate of
the concentration matrix Θ = Σ−1 of a regular multivariate Gaussian distribution by penalized
maximum likelihood from independent samples x1, . . . , xN ∼ N (0,Σ). The estimator is given by

Θ̂ = arg min
Θ∈S++

p

{tr(ΘS)− log det Θ + ||W ◦Θ||1} (1)

where S++
p are the real, symmetric, positive definite p× p matrices, S = 1

N

∑N
i=1 xix

T
i is the em-

pirical covariance matrix, ||A||1 =
∑

ij |Aij | for a matrix A, ◦ denotes elementwise multiplication
and W is a matrix of non-negative tuning parameters, e.g. W = λ1p×p for λ ≥ 0. This is related to
undirected Gaussian graphical models through the fact that if X = (Xv)v∈V ∼ N (0,Σ), then X is
Markov w.r.t. its concentration graph G = (V,E) with edges E = {(u, v) | u 6= v,Θuv 6= 0}. See
Lauritzen (1996). Hence a sparse estimated concentation matrix Θ̂ gives rise to a sparse associated
concentration graph Ĝ, which gives simple model interpretations.

This paper is concerned with exploiting the principle of penalized maximum likelihood for
structure estimation in Gaussian chain graph models. This has previously been studied in a multi-
variate regression framework, Y = BX + ε with Y ∈ Rd, X ∈ Rp and ε ∼ N (0,Θ−1), which
corresponds to a chain graph with two chain components — one for covariates and one for re-
sponses. Rothman et al. (2010) and Lin et al. (2016) consider sparse estimation of B and Θ in
this set-up, which results in an estimated chain graph in the Andersson-Madigan-Perlman (AMP)
Markov interpretation (Andersson et al., 2001). However, this estimator gives rise to a non-convex
optimization problem for which there are no guarenties of convergence to a global optimum.
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Lee and Liu (2012) and McCarter and Kim (2014) also consider multivariate regression, but
in an exponential family parametrization with sparsity inducing penalties on the canonical param-
eters Θ = Σ−1 and Λ = ΘB, which gives an estimated chain graph in the Lauritzen-Wermuth-
Frydenberg (LWF) Markov interpretation (Frydenberg, 1990; Lauritzen and Wermuth, 1989). Here
the estimator gives rise to a convex optimization problem as a result of the exponential family
parametrization.

The purpose of this paper is to extend the existing methodology to Gaussian chain graphs for
state space models. This extends the usage from multivariate regressions to time series data and
allows for the case where the observations are corrupted by additive noise. State space models
with sparsity inducing penalties has previously been considered in Noor et al. (2012) and Hasegawa
et al. (2014), and our inference approach is similar to what is employed in their work. However, we
further give the problem a graphical modeling framework, and we relate the penalization strategy
to the chain graph Markov interpretation at hand. The main contributions of this paper are two EM
algorithms for performing simultaneous parameter estimation and structure learning of a state space
model and its associated chain graph under both the LWF and AMP Markov interpretation.

The paper is organized as follows. First we introduce linear Gaussian state space models and
motivate the necessity of chain graphs for giving a detailed description of conditional independence
for this model class. Next we give a brief introduction to chain graphs and their Markov properties,
and we demonstrate how state space models can be viewed in a chain graph framework. We then
develop an E-step and two different M-steps according to the Markov interpretation at hand.

2. Model Formulation

Let us begin by introducing our model class of interest.

Definition 1 We define a linear Gaussian state space model (LGSSM) to be a pair of discrete time
stochastic processes (Xt, Yt) with Xt and Yt both taking values in Rp such that

Xt | Xt−1 = xt−1 ∼ N (Bxt−1,Σ) and Yt | Xt = xt ∼ N (xt, ρ
2Ip) (2)

for t = 1, . . . , N where X0 is degenerate at x0 ∈ Rp. Here Σ ∈ S++
p is a covariance matrix,

B ∈ Rp×p is a matrix of regression coefficients and ρ2 ≥ 0. The process (Xt) is assumed to be
latent, while the process (Yt) is observable.

From the distributional specification (2) we have the following factorization of the density of
(X1, Y1, . . . , XN , YN ) conditional on the initial value X0 of the latent process:

f(x1, y1, . . . , xN , yN | x0) =

N∏

t=1

f(xt | xt−1)

N∏

t=1

f(yt | xt). (3)

Therefore the conditional independence structure of the process can be described by a directed
acyclic graphical model as in Figure 1. From this DAG we can read of conditional independen-
cies between the variables X1, Y1, . . . , XN , YN by using, e.g., d-separation. However, the DAG
does not give information about conditional independencies between single coordinates of the pro-
cesses, e.g., whether there are conditional independencies among Xt,1, . . . , Xt,p when conditioning
on Xt−1,1, . . . , Xt−1,p. In order to provide such a detailed description of the conditional indepen-
dence structure of the model, we will describe the model in a chain graph setting.
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X1
//

��

X2
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· · · // Xt
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��

· · · // XN

��
Y1 Y2 Yt YN

Figure 1: Directed acyclic graphical model for (X1, Y1, . . . , XN , YN ) | X0 = x0.

3. Chain Graph Models

We now introduce the basic definition of a chain graph, the two different Markov properties that are
usually associated with such graphs and their parametric restrictions in the Gaussian case.

Definition 2 Let G = (V,E) be a graph whereE is allowed to contain both undirected and directed
edges. If G has no semi-directed cycles, i.e., cycles where all directed edges point in the same
direction, then we call G a chain graph. Associated with a chain graph G we form the directed
graph D = (T , E), where T are the connected components of G after deleting all directed edges,
and τ → τ ′ ∈ E for τ, τ ′ ∈ T if there exists u ∈ τ and u′ ∈ τ ′ such that u → u′ ∈ E. We call D
the associated graph of chain components of G and note that the absence of semi-directed cycles
in G ensures that D is a DAG.

Chain graphs can be endowed with (at least) two different Markov interpretations, namely the
AMP and LWF interpretation, which we will now describe. Let Z = (Zv)v∈V be a collection of
random variables indexed by the vertices of a chain graph G = (V,E). For a subset of vertices
A ⊂ V , we denote by paG(A) and nbG(A) the parents and neighbors of A relative to the graph G.
Consider the following four properties that Z can potentially fulfill w.r.t. G:

C1) The distribution of Z satisfies the directed local Markov property w.r.t. D.

C2) For each τ ∈ T , the distribution of Zτ | ZpaD(τ) = zpaD(τ) is globally Markov w.r.t. Gτ .

C3) For each τ ∈ T and σ ⊂ τ we have σ ⊥⊥ (paD(τ) \ paG(σ)) | paG(σ) ∪ nbG(σ).

C4) For each τ ∈ T and σ ⊂ τ we have σ ⊥⊥ (paD(τ) \ paG(σ)) | paG(σ).

Here A ⊥⊥ B | C is shorthand for ZA ⊥⊥ ZB | ZC for disjoint A,B,C ⊂ V . From these conditions,
we can formulate the two Markov properties that we will associate with chain graphs.

Definition 3 Let Z = (Zv)v∈V and G = (V,E) be as above. If Z satisfies C1, C2 and C3, then we
say it has the LWF Markov property w.r.t. G. If Z satisfies C1, C2 and C4, we say it has the AMP
Markov property w.r.t. G.

As with undirected Gaussian graphical models, the LWF and AMP Markov properties impose
certain parametric restrictions for the Gaussian distribution. To describe these, assume further that
Z follows a regular multivariate Gaussian distribution N (0,Σ) on RV . If Z satisfies C1, which is
common to the LWF and AMP Markov property, then the distribution of Z is determined by the
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conditional distributions of Zτ | ZpaD(τ) = zpaD(τ) for τ ∈ T , because the density of Z factorizes
according to D. We can write each of these conditional distributions as a multivariate regression

Zτ | ZpaD(τ) = zpaD(τ) ∼ N
(
BτzpaD(τ),Στ

)
(4)

whereBτ is a matrix of regression coefficients. Alternatively we can introduce the parametersKτ =
Σ−1
τ and Λτ = KτBτ , which are the canonical parameters in an exponential family representation

of the distribution, such that

Zτ | ZpaD(τ) = zpaD(τ) ∼ N
(
K−1
τ ΛτzpaD(τ),K

−1
τ

)
. (5)

We then have the following description of the parametric restriction implied by the LWF and AMP
Markov properties. See Andersson et al. (2001) for details.

Proposition 4 Let Z = (Zv)v∈V and G = (V,E) be as above with Z satisfying C1. Then it holds
for any chain component τ ∈ T that

i) if Z satisfies C2, then (Kτ )uv = 0 for all u, v ∈ τ with u− v /∈ E,

ii) if Z satisfies C3, then (Λτ )uv = 0 for u ∈ τ and v ∈ paD(τ) \ paG(u),

iii) if Z satisfies C4, then (Bτ )uv = 0 for u ∈ τ and v ∈ paD(τ) \ paG(u).

In conclusion, the AMP Markov property encodes zeros in Bτ and Kτ of the regressions (4),
while the LWF Markov property implies zeros in the canonical parameters Λτ and Kτ correspond-
ing to the parametrization (5).

4. Chain Graphs for State Space Models

Let us now describe how LGSSMs can be viewed in the chain graph model setting. Naturally, we
associate the vertices V of our chain graph G = (V,E) with the random variables in our LGSSM,
and the chain components of our chain graph are the variables X1, Y1, . . . , XN , YN . Due to the
property C1 and the factorization (3), the graph in Figure 1 must necessarily be the DAG of chain
components of the chain graph. Now introduce the canonical parameters Θ = Σ−1 and Λ = ΘB
such that we can reparametrize our model as an exponential family:

Xt | Xt−1 = xt−1 ∼ N (Θ−1Λxt−1,Θ
−1) and Yt | Xt = xt ∼ N (ρ−2xt, (ρ

−2Ip)
−1). (6)

With inspiration from concentration graphs for undirected Gaussian graphical model and the prop-
erties i), ii) and iii) we can define the following chain graphs to associate with a LGSSM.

Definition 5 Let (Xt, Yt) follow a LGSSM with parameters Λ (B resp.) ∈ Rp×p, Θ ∈ S++
p and

ρ2 ≥ 0. Then we define the LWF (AMP resp.) concentration graph G = (V,E) associated with
these parameters to have D in Figure 1 as its associated DAG of chain components and edges E as
follows. If Θuv 6= 0, then we include the undirected edge Xt,u −Xt,v ∈ E for each t = 1, . . . , N .
If ρ2 > 0, then we let Xt,u → Yt,u ∈ E for each t = 1, . . . , N and u = 1, . . . , p. Lastly, if Λuv
(Buv resp.) 6= 0, then we include the directed edge Xt−1,v → Xt,u ∈ E for each t = 2, . . . , N .
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Example 1 Consider a LGSSM in the LWF interpretation with parameters

Λ =



∗ 0 0
∗ 0 ∗
0 ∗ 0


 , Θ =



∗ ∗ ∗
∗ ∗ 0
∗ 0 ∗


 and ρ2 > 0 (7)

where ∗ refers to some non-zero value. The subgraph of the LWF concentration graph G containing
the latent process (Xt) can be seen in Figure 2. The undirected graphical structure within each

· · · X1
t−1

//

&&

X1
t

//

&&

X1
t+1 · · ·

· · · X2
t−1

&&

X2
t

&&

X2
t+1 · · ·

· · · X3
t−1

88

X3
t

88

X3
t+1 · · ·

Figure 2: LWF concentration graph G associated with the parameters (7) restricted to (Xt).

chain component is constructed from Θ analogously with undirected Gaussian graphical models,
while the directed edges between chain components are drawn using the zero-pattern of Λ. The
full chain graph G simply has a directed edge from each coordinate of Xt to the corresponding
coordinate of Yt, since there is a non-trivial noise term in this particular example.

It is not hard to show that if (Xt, Yt) follows a LGSSM with parameters Λ (B resp.) ∈
Rp×p,Θ ∈ S++

p and ρ2 ≥ 0, then (X1, Y1, . . . , XN , YN ) | X0 = x0 will be LWF (AMP resp.)
Markov with respect to its associated LWF (AMP resp.) concentration graph.

In conclusion, sparse parameters give rise to sparse chain graphs, which, in turn, give simple
model interpretations through the properties C1-C4. In practise the parameters — and thus the graph
structure — are unknown and must be estimated from data. However, we cannot expect to estimate
entries of the parameters to be exactly zero, and so the need for sparse estimation procedures arise.

5. Sparse Learning via EM Algorithm

Given data x0, y1, . . . , yN from a LGSSM we will carry out estimation by penalized maximum
likelihood with sparsity inducing `1-penalties on Λ and Θ orB and Θ depending on the chain graph
interpretation at hand.

We frame the estimation problem in a missing data set-up and perform inference using the
EM algorithm. In this context, the complete data is x0, x1, y1, . . . , xN , yN , the missing data is
x1, . . . , xN while the observed data is x0, y1, . . . , yN . We will here use a penalized version of
the EM algorithm, where penalization is applied in the M-step (Green, 1990). First we derive the
E-step, which involves computing the conditional expectation of the complete data log-likelihood
given data and current EM estimate.
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Proposition 6 Let x0, y1, . . . , yN be data from a LGSSM and θ(k) = (Λ(k),Θ(k), (ρ2)(k)) the pa-
rameter estimate in the current EM iteration. Then the expected complete data log-likelihood given
data and current parameter estimate is given by

Q(θ | θ(k)) = log det Θ− tr(ΘM1) + 2tr(ΛM2)− tr(ΛTΘ−1ΛM3)− p log ρ2 − 1

ρ2
M4

where M4 ∈ R and M1,M2,M3 ∈ Rp×p depends on data and θ(k) and are given by

M1 =
1

N

N∑

t=1

E(XtX
T
t | Y1:N = y1:N , θ

(k)),

M2 =
1

N

N∑

t=1

E(Xt−1X
T
t | Y1:N = y1:N , θ

(k)),

M3 =
1

N

N∑

t=1

E(Xt−1X
T
t−1 | Y1:N = y1:N , θ

(k)),

M4 =
1

N

N∑

t=1

yty
T
t − 2yTt E(Xt | Y1:N = y1:N , θ

(k)) + E(XT
t Xt | Y1:N = y1:N , θ

(k)),

where we use the shorthand notation Y1:N = (Y1, . . . , YN ).

Proof Due to the factorization (3) we can write the complete data log-likelihood as

`(Λ,Θ, ρ2 | x, y) =
N

2
log det Θ− 1

2

N∑

t=1

(xt −Θ−1Λxt−1)TΘ(xt −Θ−1Λxt−1)

− Np

2
log ρ2 − 1

2ρ2

N∑

t=1

(yt − xt)T (yt − xt)

where we have ignored additive constants. By rescaling with 2/N and using the cyclic property of
the matrix trace, i.e. tr(AB) = tr(BA) for conformable matrices, we obtain

`(Λ,Θ, ρ2 | x, y) ∝ log det Θ− 1

N

N∑

t=1

tr(ΘxtxTt )− 2tr(Λxt−1x
T
t ) + tr(ΛTΘ−1Λxt−1x

T
t−1)

− p log ρ2 − 1

ρ2

1

N

N∑

t=1

yTt yt − 2yTt xt + xTt xt.

Taking conditional expectation with respect to data and current EM estimate and using linearity of
the trace we obtain the wanted result.

Note that we have formulated the E-step in terms of the canonical parameters, but it is always
possible to re-parametrize using Λ = ΘB, and θ is simply a placeholder for the parameters under
consideration in what follows. The conditional expectations that are needed when computing the
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quantities M1, . . . ,M4 are the topic of smoothing in hidden Markov models, and one can use, e.g.,
the Rauch-Tung-Striebel smoother. See, e.g., Särkkä (2013) for details.

We now turn to the M-step. In the LWF interpretation we parametrize the expected complete
data log-likelihood using canonical parameters and put sparsity inducing `1-penalties on Λ and Θ.
The next EM iteration is produced by carrying out the optimization:

θ̂(k+1) = arg min
(Λ,Θ,ρ2)∈Rp×p×S++

p ×R+

{
f1(Λ,Θ) + f3(ρ2) + λ1||Λ||1,off + λ2||Θ||1,off

}
. (8)

Here the function f1 is the part of the negative expected complete data log-likelihood that depends
on the parameters Λ and Θ,

f1(Λ,Θ) = tr(ΘM1)− 2tr(ΛM2) + tr(ΛTΘ−1ΛM3)− log det Θ,

and f3(ρ2) = p log ρ2 + M4/ρ
2 is the part that depends on ρ2. We let ||Λ||1,off =

∑
i 6=j |Λij |, i.e.

we choose not to penalize the diagonal. The numbers λ1, λ2 ≥ 0 are tuning parameters determining
the sparsity level of the estimates.

In the AMP interpretation we parametrize the expected complete data log-likelihood using the
regression matrix and put `1-penalties on B and Θ. The M-step is then the optimization:

θ̂(k+1) = arg min
(B,Θ,ρ2)∈Rp×p×S++

p ×R+

{
f2(B,Θ) + f3(ρ2) + λ1||B||1,off + λ2||Θ||1,off

}
. (9)

Here f2 is the part that depends on the parameters B and Θ,

f2(B,Θ) = tr(ΘM1)− 2tr(ΘBM2) + tr(BTΘBM3)− log det Θ,

and f3(ρ2) = p log ρ2 +M4/ρ
2 as before.

Note that in both (8) and (9) there is variation independence between ρ2 and the remaining
parameters. Hence the optimization regarding ρ2 can be performed separately, and is given by the
conditional expectation of the empirical residual variance of the regression from Xt to Yt:

(ρ̂2)(k+1) =
1

Np

N∑

t=1

E
(

(Yt −Xt)
T (Yt −Xt) | Y1:N = y1:N , θ

(k)
)

=
1

p
M4. (10)

Next we turn to the problem of performing the optimization in (8) regarding Λ and Θ. As we
shall see, this task can be re-formulated into an equivalent optimization problem. Let the 2p × 2p
matrices T(Λ,Θ) and M be given by

T(Λ,Θ) =

(
T11 T12

TT12 T22

)
=

(
Θ −Λ
−ΛT Ip + ΛTΘ−1Λ

)
and M =

(
M1 MT

2

M2 M3

)
.

Consider the optimization problem

min
(Λ,Θ)∈Rp×p×S++

p

{tr(T(Λ,Θ)M)− log det T(Λ,Θ) + ||W ◦ T(Λ,Θ)||1} (11)

where W is the 2p× 2p matrix

W =

(
λ2E

1
2λ1E

1
2λ1E 0p×p

)

where E is the p× p matrix given by Ekk = 0 for k = 1, . . . , p and Eij = 1 for i 6= j.
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Proposition 7 Performing the optimization in (8) regarding Λ and Θ is equivalent with solving
the optimization problem (11). Furthermore, (11) can be solved by applying graphical lasso (1)
with optimization variable T, empirical covariance matrix S = M and penalization matrix W , and
afterwards extracting Θ̂(k+1) = T̂11 and Λ̂(k+1) = −T̂12.

Proof We show the equivalence by simply writing out the objective function of (11) and compare
with (8). First we see that the trace term of (11) can be written

tr(T(Λ,Θ)M) = tr(ΘM1 − ΛM2 − ΛTMT
2 +M3 +M3ΛTΘ−1Λ)

= tr(ΘM1)− 2tr(ΛM2) + tr(ΛTΘ−1ΛM3) + tr(M3),

and the determinant of T(Λ,Θ) is equal to

det T(Λ,Θ) = det Θ det(Ip + ΛTΘ−1Λ− (−ΛT )Θ−1(−Λ)) = det Θ det Ip = det Θ.

Lastly, we clearly have ||W ◦ T(Λ,Θ)||1 = λ1||Λ||1,off + λ2||Θ||1,off . Comparing to the part of the
objective function of (8) concerning Λ and Θ, we see that the two objective function are equal up
to the additive constant tr(M3). This constant is computed using the current EM estimate θ(k), but
does not depend on the optimization variable θ, so it does not affect the optimization.

Let us argue that (11) can be solved by graphical lasso. First we note that the objective function
has the correct functional form when comparing to (1). Secondly, we have T(Λ,Θ) ∈ S++

p if and
only if Θ ∈ S++

p so that the optimization domains are in fact equal. This is realized by using
the Schur complement characterization of positive definiteness, i.e. that T ∈ S++

p if and only if
T11 ∈ S++

p and T/T11 ∈ S++
p . Since T11 = Θ and T/T11 = Ip we conclude the wanted.

Input: Data x0, y1, . . . , yN , initial parameter values θ(0) and λ1, λ2 ≥ 0.
Output: Sparse parameter estimates Λ̂, Θ̂ and ρ̂2.
begin

k ← 0;
repeat

Compute M1, . . . ,M4 by smoothing using data and current estimate θ(k);
Update ρ2 using (10);
Solve the optimization (11) using graphical lasso to obtain T̂;
Update Λ and Θ using estimate T̂ as described in Proposition 7;
k ← k + 1;

until convergence criterion is met;
return (Λ(k),Θ(k), (ρ2)(k));

end
Algorithm 1: EM algorithm for sparse estimation of Λ,Θ and ρ2 in a LGSSM.

We now turn to the optimization (9) regarding the parameters B and Θ. First note that the
optimization problem (8) is convex, which is due to f1 being the (expected) negative log-likelihood
of an exponential family and that the `1-penalty is convex. However, the function f2 is not jointly
convex in B and Θ, but it is bi-convex, i.e. B 7→ f2(B,Θ0) and Θ 7→ f2(B0,Θ) are convex for
fixed Θ0 ∈ S++

p and B0 ∈ Rp×p respectively. See Lee and Liu (2012) for a discussion. Therefore,
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we will perform the optimization regarding B and Θ using an alternating convex search. More
specifically, set B(0)

∗ := B(k) and Θ
(0)
∗ := Θ(k), and then perform the optimizations

Θ
(i+1)
∗ = arg min

Θ∈S++
p

{
f2(B

(i)
∗ ,Θ) + λ2||Θ||1,off

}
, (12)

B
(i+1)
∗ = arg min

B∈Rp×p

{
f2(B,Θ

(i+1)
∗ ) + λ1||B||1,off

}
(13)

for i = 0, 1, . . . until convergence. Then set B(k+1) := B
(∞)
∗ and Θ(k+1) := Θ

(∞)
∗ at convergence.

The following proposition gives a way of solving (12) using existing methods.

Proposition 8 The optimization (12) can be solved with graphical lasso with empirical covariance
matrix S = M1 − 2B

(i)
∗ M2 +B

(i)
∗ M3(B

(i)
∗ )T and penalty matrix W = λ2E where E is as before.

Proof We observe that

f2(B
(i)
∗ ,Θ) = tr(ΘM1)− 2tr(ΘB(i)

∗ M2) + tr((B(i)
∗ )TΘB

(i)
∗ M3)− log det Θ

= tr(Θ(M1 − 2B
(i)
∗ M2 +B

(i)
∗ M3(B

(i)
∗ )T ))− log det Θ

such that the objective function of (12) matches that of the graphical lasso problem (1) with S =

M1− 2B
(i)
∗ M2 +B

(i)
∗ M3(B

(i)
∗ )T . Note that this is a valid empirical covariance matrix since in fact

S = E

(
1

N

N∑

t=1

(Xt −B(i)
∗ Xt−1)(Xt −B(i)

∗ Xt−1)T | Y1:N = y1:N , θ
(k)

)
,

i.e. S is the conditional expectation of the empirical covariance of the fitted residuals for the regres-
sion from Xt−1 to Xt given data and current EM estimate.

Just as (12) turned out to be solvable by applying graphical lasso, also (13) can be solved by
existing methods, namely the lasso estimator (Tibshirani, 1996). The lasso estimates β ∈ Rp in the
general linear model y = Aβ + ε, where A is a N × p design matrix and ε ∼ N (0, σ2Ip), by

β̂ = arg min
β∈Rp

{
1

2N
(y −Aβ)T (y −Aβ) + ||λ ◦ β||1

}
(14)

with λ ∈ Rp a vector of non-negative tuning parameters.

Proposition 9 The optimization (13) can be solved by applying lasso regression in the following
way. Let β̂ be the result of a lasso regression with design matrix A and response vector y given by

A =
√

2N(M3 ⊗Θ
(i+1)
∗ )1/2 and y =

√
2N(M3 ⊗Θ

(i+1)
∗ )1/2vec(MT

2 M
−1
3 ),

and tuning parameter λ = λ1R where R ∈ Rp2 with R1 = Rp+2 = R2p+3 = · · · = Rp2 = 0 and
all other entries are 1. Here⊗ denotes the Kronecker product, vec denotes vectorization of matrices
and C1/2 denotes the square root of a matrix C. Then B(i+1)

∗ is given by setting vec(B
(i+1)
∗ ) := β̂.
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Proof Writing out the lasso objective function yields

1

2N
(y −Aβ)T (y −Aβ) + λ1||β||1 = const. +

1

2N
βTATAβ − 1

N
yTAβ + λ||β||1, (15)

while writing out the objective function of (13) gives

f2(B,Θ
(i+1)
∗ ) + λ1||B||1,off = const. + tr(BTΘ

(i+1)
∗ BM3)− 2tr(Θ(i+1)

∗ BM2) + λ1||B||1,off .

First note the useful relation between the matrix trace and the kronecker product and vectorization
of matrices, tr(ABCD) = vec(AT )T (DT ⊗ B)vec(C), where A,B,C and D are conformable
matrices. Using this relation we can write

tr(BTΘ
(i)
∗ BM3) = vec(B)T (M3 ⊗Θ

(i+1)
∗ )vec(B)

and also

2tr(Θ(i)
∗ BM2) = 2tr(M−1

3 M2Θ
(i+1)
∗ BM3) = 2vec(MT

2 M
−1
3 )T (M3 ⊗Θ

(i+1)
∗ )vec(B).

LettingA and y be as in the proposition and pluggin into the lasso objective function (15) we recover
the objective function of (13) written in terms of vec and ⊗ as proposed.

Input: Data x0, y1, . . . , yN , initial parameter values θ(0) and λ1, λ2 ≥ 0.
Output: Sparse parameter estimates B̂, Θ̂ and ρ̂2.
begin

k ← 0;
repeat

Compute M1, . . . ,M4 by smoothing using data and current estimate θ(k);
Update ρ2 using (10);
Set B(0)

∗ ← B(k), Θ
(0)
∗ ← B(k) and i← 0;

repeat
Update Θ

(i+1)
∗ using Proposition 8;

Update B(i+1)
∗ using Proposition 9;

i← i+ 1;
until convergence criterion is met;

Set B(k+1) ← B
(∞)
∗ , Θ(k+1) ← Θ

(∞)
∗ and k ← k + 1;

until convergence criterion is met;
return (B(k),Θ(k), (ρ2)(k));

end
Algorithm 2: EM algorithm for sparse estimation of B,Θ and ρ2 in a LGSSM.

6. Simulations

In this section we evaluate convergence of our proposed algorithms by means of simulation. For the
case p = 40 and N = 200 we simulate valid true parameters for the LWF and AMP model such
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that each of the matrices Θ,Λ and B has 75% zero entries, and ρ2 is chosen to be 0.1 times the
average of the diagonal of Σ = Θ−1. We then simulate 100 independent data set from each of the
two LGSSMs and perform estimation using Algorithm 1 for LWF-data and Algorithm 2 for AMP-
data. For tuning parameters λ1, λ2 we choose values ad hoc that do not produce neither completely
sparse nor completely dense solutions. For each variable, say Θ, we track the relative difference
from one EM iteration to the next by computing RDΘ(k) := ||Θ(k)−Θ(k−1)||F ·||Θ(k−1)||−1

F , where
|| · ||F is the Frobenious norm. The results can be seen in Figure 3. We observe that the relative

Θ Λ ρ2 B

A
lgorithm

 1 (LW
F)

A
lgorithm

 2 (A
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P)
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EM Convergence Behaviour

Figure 3: Selected quantiles of log10 RD(k) computed for each variable at each iteration k based on
100 runs of Algorithm 1 and Algorithm 2 on simulated data with fixed true parameters.
The algorithms were terminated when each relative difference dropped below 10−6.

difference decreases approximately linearly on log10-scale. Moreover, the convergence behaviour
is stable over the 100 runs. On average Algorithm 1 took 22.23 iterations before convergence, while
Algorithms 2 needed 22.61 iterations on average before convergence. On average Algorithm 2 took
11.23 times longer than Algorithm 1 before convergence.

7. Conclusion

The purpose of this paper was to give a chain graph model framework for linear Gaussian state space
model and develop algorithms for performing parameter estimation and structure learning from
empirical data. We have proposed two different EM algorithms for performing this task depending
on the chain graph interpretation (LWF or AMP) at hand, and we have justified convergence of the
algorithms empirically through simulation. Next steps include developing methods for choosing the
tuning parameters of the algorithms. This will enable us to consider edge-recovery properties of the
algorithms and, moreover, make the algorithms useful in real world applications of the models.
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2.1 Causal interpretation of the models

Let us discuss the interpretation of chain graph models in terms of the data generating distributions

that they represent. The directed edges of a chain graph model can be interpreted as direct causal links,

however, it is less obvious how to interpret the undirected edges. A heuristic argument is to say that

they represent non-causal association, however, it remains unclear what the source of this association

is. Lauritzen and Richardson [2002] argues that the undirected edges of LWF chain graphs represent

feedback in continuous time dynamical systems that are observed discretely.

a c

(G)

b d

a c

(D1) L

b d

a c

(D2) S

b d

Figure 2.1: Left: A chain graph G. Middle: Directed acyclic graph D1 where L is an latent confounder
of c and d. Right: Directed acyclic graph D2 where S is a selection variable that is implicitly being
conditioned on.

Consider the chain graph G and the two acyclic directed graphs D1 and D2 in Figure 2.1. Under the

LWF Markov property, G encodes the conditional independencies:

a ⊥⊥ b, a ⊥⊥ d | {b, c} and b ⊥⊥ c | {a, d}. (2.1)

Now let us examine whether we can explain the association between c and d in G by a directed acyclic

graph. In D1 we attempt to attribute the association to the presence of a latent confounder L causing

c and d. However, this opens a d-connecting path from a to d when conditioning on the collider c, such

that a 6⊥⊥ d | {b, c} in D1, which is not compatible with the conditional independencies (2.1) of G under

the LWF Markov property. In D2 we attempt to explain the association between c and d by a selection

variable S, which is implicitly being conditioned upon. This indeed opens a d-connecting path, which

gives the association between c and d. However, it also opens a d-connecting path from a to b, such that

a 6⊥⊥ b in D2, which is again not compatible with (2.1). Thus, neither D1 nor D2 are causal explanations

for the association between c and d.

Xt1 Xt2

Yt1 Yt2

Figure 2.2: LWF chain graph for stochastic processes (Xt) and (Yt) observed discretely.

The potential causal explanation for the association given in Section 6.3 of Lauritzen and Richardson

[2002] is the following. Consider the situation where the nodes a, b, c, d represent measurements of two

continuous time stochastic processes (Xt) and (Yt) at discrete time points t1 < t2. See Figure 2.2. Under

the LWF Markov property the density of (Xt1 , Xt2 , Yt1 , Yt2) factorizes as

f(xt1 , xt2 , yt1 , yt2) = f(xt1)f(yt1)f(xt2 , yt2 | xt1 , xt1)
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which suggests that (Xt2 , Yt2) can be realized by a structural assignment

(Xt2 , Yt2)← G(Xt1 , Yt1).

We can then choose to represent the data generating mechanism G as a Gibbs sampler as follows. The

inputs are the realizations (xt1 , yt1) of (Xt1 , Yt1) and some initial points x(0), y(0) ∈ R. Then for k ≥ 1

we update the values x(k) and y(k) by drawing realizations from the conditional distributions

x(k) ∼ fXt2
|Yt2

,Xt1
,Yt1

(xt2 | y
(k−1), xt1 , yt1)

y(k) ∼ fYt2
|Xt2

,Xt1
,Yt1

(yt2 | x
(k), xt1 , yt1)

until the Gibbs sampler has converged after k′ steps, and then we set Xt2 = x(k′) and Yt2 = y(k′).

Proposition 6 of Lauritzen and Richardson [2002] show that the distribution realized by this scheme

has exactly the conditional independencies (2.1). The interpretation is that we observe the dynamical

system (Xt, Yt) at t1, and then the stochastic processes interact through feedback until they reach an

equilibrium distribution, which we observe at t2. This can heuristically be interpreted as the infinite

directed acyclic graph in Figure 2.3, where (Xt2 , Yt2) are realized as the stationary distribution in the

limit k →∞.

Xt1

X(0) X(1) X(2) ... X(k) X(k+1) ...

Y (0) Y (1) Y (2) ... Y (k) Y (k+1) ...

Yt1

Figure 2.3: Infinite directed acyclic graph depicting the causal generating mechanism by a feedback
between the stochastic processes (Xt) and (Yt).

In conclusion, the canonical interpretation of LWF chain graph models is that they represent dy-

namical systems with feedback, where we observe the equilibrium distribution at discrete time points.

It is less obvious how to interpret AMP chain graph models. The conditional independencies implied by

G in Figure 2.1 under the AMP Markov properties are the following:

a ⊥⊥ b, a ⊥⊥ d | b and c ⊥⊥ b | a.

These conditional independencies are consistent with D1 where L is a latent confounder. However, not all

AMP chain graphs are Markov equivalent to a directed acyclic graph, and to the best of our knowledge

there is no data generating mechanism analogous to the Gibbs sampler presented here, which in general

explains the meaning of the undirected edges in AMP chain graphs. Nonetheless, AMP chain graph

models are still valid statistical models that can represent a set of conditional independencies regardless

of whether they can be given a causal interpretation.
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Abstract

In this article, we describe the algorithms for causal structure learning from time series
data that won the Causality 4 Climate competition at the Conference on Neural Informa-
tion Processing Systems 2019 (NeurIPS). We examine how our combination of established
ideas achieves competitive performance on semi-realistic and realistic time series data ex-
hibiting common challenges in real-world Earth sciences data. In particular, we discuss a)
a rationale for leveraging linear methods to identify causal links in non-linear systems, b)
a simulation-backed explanation as to why large regression coefficients may predict causal
links better in practice than small p-values and thus why normalising the data may some-
times hinder causal structure learning. For benchmark usage, we detail the algorithms
here and provide implementations at github.com/sweichwald/tidybench. We propose the
presented competition-proven methods for baseline benchmark comparisons to guide the
development of novel algorithms for structure learning from time series.

Keywords: Causal discovery, structure learning, time series, scaling.

1. Introduction

Inferring causal relationships from large-scale observational studies is an essential aspect of
modern climate science (Runge et al., 2019a,b). However, randomised studies and controlled
interventions cannot be carried out, due to both ethical and practical reasons. Instead, sim-
ulation studies based on climate models are state-of-the-art to study the complex patterns
present in Earth climate systems (IPCC, 2013).

Causal inference methodology can integrate and validate current climate models and
can be used to probe cause-effect relationships between observed variables. The Causality 4
Climate (C4C) NeurIPS competition (Runge et al., 2020) aimed to further the understand-
ing and development of methods for structure learning from time series data exhibiting
common challenges in and properties of realistic weather and climate data.

© 2020 S. Weichwald, M.E. Jakobsen, P.B. Mogensen, L. Petersen, N. Thams & G. Varando.
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Structure of this work Section 2 introduces the structure learning task considered. In
Section 3, we describe our winning algorithms. With a combination of established ideas, our
algorithms achieved competitive performance on semi-realistic data across all 34 challenges
in the C4C competition track. Furthermore, at the time of writing, our algorithms lead
the rankings for all hybrid and realistic data set categories available on the CauseMe.net
benchmark platform which also offers additional synthetic data categories (Runge et al.,
2019a). These algorithms—which can be implemented in a few lines of code—are built
on simple methods, are computationally efficient, and exhibit solid performance across
a variety of different data sets. We therefore encourage the use of these algorithms as
baseline benchmarks and guidance of future algorithmic and methodological developments
for structure learning from time series.

Beyond the description of our algorithms, we aim at providing intuition that can explain
the phenomena we have observed throughout solving the competition task. First, if we only
ask whether a causal link exists in some non-linear time series system, then we may sidestep
the extra complexity of explicit non-linear model extensions (cf. Section 4). Second, when
data has a meaningful natural scale, it may—somewhat unexpectedly—be advisable to
forego data normalisation and to use raw (vector auto)-regression coefficients instead of
p-values to assess whether a causal link exists or not (cf. Section 5).

2. Causal structure learning from time-discrete observations

The task of inferring the causal structure from observational data is often referred to as
‘causal discovery’ and was pioneered by Pearl (2009) and Spirtes et al. (2001). Much
of the causal inference literature is concerned with structure learning from independent
and identically distributed (iid) observations. Here, we briefly review some aspects and
common assumptions for causally modelling time-evolving systems. More detailed and
comprehensive information can be found in the provided references.

Time-discrete observations We may view the discrete-time observations as arising from
an underlying continuous-time causal system (Peters et al., 2020). While difficult to con-
ceptualise, the correspondence between structural causal models and differential equation
models can be made formally precise (Mooij et al., 2013; Rubenstein et al., 2018; Bongers
and Mooij, 2018). Taken together, this yields some justification for modelling dynamical
systems by discrete-time causal models.

Summary graph as inferential target It is common to assume a time-homogeneous
causal structure such that the dynamics of the observation vector X are governed by
Xt := F (Xpast(t), N t) where the function F determines the next observation based on
past values Xpast(t) and the noise innovation N t. Here, structure learning amounts to iden-
tifying the summary graph with adjacency matrix A that summarises the causal structure

in the following sense: the (i, j)th entry of the matrix A is 1 if X
past(t)
i enters the struc-

tural equation of Xt
i via the ith component of F and 0 otherwise. If Aij = 1, we say that

“Xi causes Xj”. While summary graphs can capture the existence and non-existence of
cause-effect relationships, they do in general not correspond to a time-agnostic structural
causal model that admits a causal semantics consistent with the underlying time-resolved
structural causal model (Rubenstein et al., 2017; Janzing et al., 2018).
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Time structure may be helpful for discovery In contrast to the iid setting, the
Markov equivalence class of the summary graph induced by the structural equations of a
dynamical system is a singleton when assuming causal sufficiency and no instantaneous ef-
fects (Peters et al., 2017; Mogensen and Hansen, 2020). This essentially yields a justification
and a constraint-based causal inference perspective on Wiener-Granger-causality (Wiener,
1956; Granger, 1969; Peters et al., 2017).

Challenges for causal structure learning from time series data Structure learning
from time series is a challenging task hurdled by further problems such as time-aggregation,
time-delays, and time-subsampling. All these challenges were considered in the C4C com-
petition and are topics of active research (Danks and Plis, 2013; Hyttinen et al., 2016).

3. The time series discovery benchmark (tidybench): Winning algorithms

We developed four simple algorithms,

SLARAC Subsampled Linear Auto-Regression Absolute Coefficients (cf. Alg. 1)

QRBS Quantiles of Ridge regressed Bootstrap Samples (cf. Alg. 2)

LASAR LASso Auto-Regression

SELVAR Selective auto-regressive model

which came in first in 18 and close second in 13 out of the 34 C4C competition categories and
won the overall competition (Runge et al., 2020). Here, we provide detailed descriptions of
the SLARAC and QRBS algorithms. Analogous descriptions for the latter two algorithms and
implementations of all four algorithms are available at github.com/sweichwald/tidybench.

All of our algorithms output an edge score matrix that contains for each variable pair
(Xi, Xj) a score that reflects how likely it is that the edge Xi → Xj exists. Higher scores
correspond to edges that are inferred to be more likely to exist than edges with lower
scores, based on the observed data. That is, we rank edges relative to one another but do
not perform hypothesis tests for the existence of individual edges. A binary decision can be
obtained by choosing a cut-off value for the obtained edge scores. In the C4C competition,
submissions were compared to the ground-truth cause-effect adjacency matrix and assessed
based on the achieved ROC-AUC when predicting which causal links exist.

The idea behind our algorithms is the following: regress present on past values and
inspect the regression coefficients to decide whether one variable is a Granger-cause of
another. SLARAC fits a VAR model on bootstrap samples of the data each time choosing a
random number of lags to include; QRBS considers bootstrap samples of the data and Ridge-
regresses time-deltas X(t) − X(t − 1) on the preceding values X(t − 1); LASAR considers
bootstrap samples of the data and iteratively—up to a maximum lag—LASSO-regresses
the residuals of the preceding step onto values one step further in the past and keeps
track of the variable selection at each lag to fit an OLS regression in the end with only
the selected variables at selected lags included; and SELVAR selects edges employing a hill-
climbing procedure based on the leave-one-out residual sum of squares and finally scores
the selected edges with the absolute values of the regression coefficients. In the absence of
instantaneous effects and hidden confounders, Granger-causes are equivalent to a variable’s
causal parents (Peters et al., 2017, Theorem 10.3). In Section 5, we argue that the size of
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the regression coefficients may in certain scenarios be more informative about the existence
of a causal link than standard test statistics for the hypothesis of a coefficient being zero.
It is argued that for additive noise models, information about the causal ordering may be
contained in the raw marginal variances. In test statistics such as the F- and T-statistics,
this information is lost when normalising by the marginal variances.

4. Capturing non-linear cause-effect links by linear methods

We explain the rationale behind our graph reconstruction algorithms and how they may
capture non-linear dynamics despite being based on linearly regressing present on past
values. For simplicity we will outline the idea in a multivariate regression setting with
additive noise, but it extends to the time series setting by assuming time homogeneity.

Let N,X(t1), X(t2) ∈ Rd be random variables such that X(t2) := F (X(t1)) + N for
some differentiable function F = (F1, . . . , Fd) : Rd → Rd. Assume that N has mean zero,
that it is independent from X(t1), and that it has mutually independent components. For
each i, j = 1, . . . , d we define the quantity of interest

θij = E |∂iFj (X(t1))| ,

such that θij measures the expected effect from Xi(t1) to Xj(t2). We take the matrix
Θ =

(
1θij>0

)
as the adjacency matrix of the summary graph between X(t1) and X(t2).

In order to detect regions with non-zero gradients of F we create bootstrap samples
D1, . . . ,DB. On each bootstrap sample Db we obtain the regression coefficients Âb as es-
timate of the directional derivatives by a (possibly penalised) linear regression technique.
Intuitively, if θij were zero, then on any bootstrap sample we would obtain a small non-zero
contribution. Conversely, if θij were non-zero, then we may for some bootstrap samples
obtain a linear fit of Xj(t2) with large absolute regression coefficient for Xi(t1). The values
obtained on each bootstrap sample are then aggregated by, for example, taking the average

of the absolute regression coefficients θ̂ij = 1
B

∑B
b=1

∣∣∣(Âb)ij
∣∣∣.

This amounts to searching the predictor space for an effect from Xi(t1) to Xj(t2), which
is approximated linearly. It is important to aggregate the absolute values of the coefficients
to avoid cancellation of positive and negative coefficients. The score θ̂ij as such contains
no information about whether the effect from Xi(t1) to Xj(t2) is positive or negative and
it cannot be used to predict Xj(t2) from Xi(t1). It serves as a score for the existence
of a link between the two variables. This rationale explains how linear methods may be
employed for edge detection in non-linear settings without requiring extensions of Granger-
type methods that explicitly model the non-linear dynamics and hence come with additional
sample complexity (Marinazzo et al., 2008, 2011; Stramaglia et al., 2012, 2014).

5. Large regression coefficients may predict causal links better in
practice than small p-values

This section aims at providing intuition behind two phenomena: We observed a consider-
able drop in the accuracy of our edge predictions whenever 1) we normalised the data or
2) used the T-statistics corresponding to testing the hypothesis of regression coefficients
being zero to score edges instead of the coefficients’ absolute magnitude. While one could
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Algorithm 1: Subsampled Linear Auto-Regression Absolute Coefficients (SLARAC)

Input : Data X with T time samples X(1), . . . ,X(T ) over d variables.
Parameters : Max number of lags, L ∈ N.

Number of bootstrap samples, B ∈ N.
Individual bootstrap sample sizes, {v1, . . . , vB}.

Output : A d× d real-valued score matrix, Â.

Initialise Afull as a d× dL matrix of zeros and Â as an empty d× d matrix;
for b = 1, . . . , B do

lags← random integer in {1, . . . , L};
Draw a bootstrap sample {t1, . . . , tvb} from {lags +1, . . . , T} with replacement;

Y (b) ← (X(t1), . . .X(tvb));

X
(b)
past ←




X(t1 − 1) · · · X(t1 − lags)
...

. . .
...

X(tvb − 1) · · · X(tvb − lags)


;

Fit OLS estimate β of regressing Y (b) onto X
(b)
past;

Zero-pad β such that dimβ = d× dL;
Afull ← Afull + |β|;

end

Aggregate (Â)i,j ← max((Afull)i,j+0·d, . . . , (Afull)i,j+L·d) for every i, j;

Return: Score matrix Â.

Algorithm 2: Quantiles of Ridge regressed Bootstrap Samples (QRBS)

Input : Data X with T time samples X(1), . . . ,X(T ) over d variables.
Parameters : Number of bootstrap samples, B ∈ N.

Size of bootstrap samples, v ∈ N.
Ridge regression penalty, κ ≥ 0.
Quantile for aggregating scores, q ∈ [0, 1].

Output : A d× d real-valued score matrix, Â.

for b = 1, . . . , B do
Draw a bootstrap sample {t1, . . . , tv} from {2, . . . , T} with replacement;

Y (b) ← (X(t1)−X(t1 − 1), . . . ,X(tv)−X(tv − 1));

X(b) ← (X(t1 − 1), . . . ,X(tv − 1));

Fit a ridge regression of Y (b) onto X(b): Âb = arg minA ‖Y (b) −AX(b)‖+ κ‖A‖;
end

Aggregate Â← qth element-wise quantile of {|Â1|, . . . , |ÂB|};
Return Score matrix Â.
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try to attribute these phenomena to some undesired artefact in the competition setup, it is
instructive to instead try to understand when exactly one would expect such behaviour.

We illustrate a possible explanation behind these phenomena and do so in an iid set-
ting in favour of a clear exposition, while the intuition extends to settings of time series
observations and our proposed algorithms. The key remark is, that under comparable noise
variances, the variables’ marginal variances tend to increase along the causal ordering. If
data are observed at comparable scales—say sea level pressure in different locations mea-
sured in the same units—or at scales that are in some sense naturally relative to the true
data generating mechanism, then absolute regression coefficients may be preferable to T-test
statistics. Effect variables tend to have larger marginal variance than their causal ancestors.
This helpful signal in the data is diminished by normalising the data or the rescaling when
computing the T-statistics corresponding to testing the regression coefficients for being zero.
This rationale is closely linked to the identifiability of Gaussian structural equation models
under equal error variances Peters and Bühlmann (2014). Without any prior knowledge
about what physical quantities the variables correspond to and their natural scales, nor-
malisation remains a reasonable first step. We are not advocating that one should use the
raw coefficients and not normalise data, but these are two possible alterations of existing
structure learning procedures that may or may not, depending on the concrete application
at hand, be worthwhile exploring. Our algorithms do not perform data normalisation, so
the choice is up to the user whether to feed normalised or raw data, and one could easily
change to using p-values or T-statistics instead of raw coefficients for edge scoring.

5.1. Instructive iid case simulation illustrates scaling effects

We consider data simulated from a standard acyclic linear Gaussian model. Let N ∼
N
(
0,diag(σ21, . . . , σ

2
d)
)

be a d-dimensional random variable and let B be a d × d strictly
lower-triangular matrix. Further, letX be a d-valued random variable constructed according
to the structural equation X = BX + N , which induces a distribution over X via X =
(I −B)−1N . We have assumed, without loss of generality, that the causal order is aligned
such thatXi is further up in the causal order thanXj whenever i < j. We ran 100 repetitions
of the experiment, each time sampling a random lower triangular 50× 50-matrix B where
each entry in the lower triangle is drawn from a standard Gaussian with probability 1/4
and set to zero otherwise. For each such obtained B we sample n = 200 observations from
X = BX + N which we arrange in a data matrix X ∈ R200×50 of zero-centred columns
denoted by Xj .

We regress each Xj onto all remaining variables X¬j and compare scoring edges Xi → Xj

by the absolute values of a) the regression coefficients |̂bi→j |, versus b) the T-statistics |t̂i→j |
corresponding to testing the hypothesis that the regression coefficient b̂i→j is zero. That is,
we consider

|̂bi→j | =
∣∣∣(X>¬jX¬j)−1X>¬jXj

∣∣∣
i

versus

|t̂i→j | = |̂bi→j |
√

v̂ar(Xi|X¬i)
v̂ar(Xj |X¬j)

√√√√ (n− d)(
1− ĉorr2(Xi, Xj |X¬{i,j})

) (1)
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where v̂ar(Xj |X¬j) is the residual variance after regressing Xj onto the other variables X¬j ,
and ĉorr(Xi, Xj |X¬{i,j}) is the residual correlation between Xi and Xj after regressing both
onto the remaining variables.

We now compare, across three settings, the AUC obtained by either using the absolute
value of the regression coefficients |̂bi→j | or the absolute value of the corresponding T-
statistics |t̂i→j | for edge scoring. Results are shown in the left, middle, and right panel of
Figure 1, respectively.
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Figure 1: Results of the simulation experiment described in Section 5.1. Data is generated
from an acyclic linear Gaussian model, in turn each variable is regressed onto all
remaining variables and either the raw regression coefficient |̂bi→j | or the corre-
sponding T-statistics |t̂i→j | is used to score the existence of an edge i → j. The
top row shows the obtained AUC for causal link prediction and the bottom row
the marginal variance of the variables along the causal ordering. The left panel
shows naturally increasing marginal variance for equal error variances, for the
middle and right panel the model parameters and error variances are rescaled to
enforce equal and decreasing marginal variance, respectively.

In the setting with equal error variances σ2i = σ2j ∀i, j, we observe that i) the
absolute regression coefficients beat the T-statistics for edge predictions in terms of AUC,
and ii) the marginal variances naturally turn out to increase along the causal ordering.
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When moving from |̂bi→j | to |t̂i→j | for scoring edges, we multiply by a term that compares
the relative residual variance of Xi and Xj . If Xi is before Xj in the causal ordering it
tends to have both smaller marginal and—in our simulation set-up—residual variance than
Xj as it becomes increasingly more difficult to predict variables further down the causal
ordering. In this case, the fraction of residual variances will tend to be smaller than one
and consequently the raw regression coefficients |̂bi→j | will be shrunk when moving to |t̂i→j |.
This can explain the worse performance of the T-statistics compared to the raw regression
coefficients for edge scoring as scores will tend to be shrunk when in fact Xi → Xj .

Enforcing equal marginal variances by rescaling the rows of B and the σ2i ’s, we
indeed observe that regression coefficients and T-statistics achieve comparable performance
in edge prediction in this somewhat artificial scenario. Here, neither the marginal variances
nor the residual variances appear to contain information about the causal ordering any more
and the relative ordering between regression coefficients and T-statistics is preserved when
multiplying by the factor highlighted in Equation 1.

Enforcing decreasing marginal variances by rescaling the rows of B and the σ2i ’s,
we can, in line with our above reasoning, indeed obtain an artificial scenario in which the
T-statistics will outperform the regression coefficients in edge prediction, as now, the factors
we multiply by will work in favour of the T-statistics.

6. Conclusion and Future Work

We believe competitions like the Causality 4 Climate competition (Runge et al., 2020) and
causal discovery benchmark platforms like CauseMe.net (Runge et al., 2019a) are important
for bundling and informing the community’s joint research efforts into methodology that is
readily applicable to tackle real-world data. In practice, there are fundamental limitations to
causal structure learning that ultimately require us to employ untestable causal assumptions
to proceed towards applications at all. Yet, both these limitations and assumptions are
increasingly well understood and characterised by methodological research and time and
again need to be challenged and examined through the application to real-world data.

Beyond the algorithms presented here and proposed for baseline benchmarks, different
methodology as well as different benchmarks may be of interest. For example, our methods
detect causal links and are viable benchmarks for the structure learning task but they do
not per se enable predictions about the interventional distributions.
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3.1 Score matrix as a causal estimand

In this section we will briefly explain the evaluation method of the Causality 4 Climate competition1,

and discuss how to meaningfully evaluate causal structure learning methodology.

Given data from a multivariate time series, the inferential target of interest in the competition was

the summary graph of the underlying time series represented by an adjacency matrix A such that Aij = 1

if and only if there is a directed edge X
(i)
s → X

(j)
t for some s < t in the graph representing the entire

time series. However, instead of reporting an adjacency matrix A, the task for the competition was to

provide a score matrix S, such that a large value of Sij corresponds to high confidence that Aij = 1 in

the summary graph.

The evaluation method given a score matrix S based on data from the times series was as follows.

First the entries are scaled to range from 0 to 1 such that each score is interpreted as a probability

score. The summary graph reconstruction problem is then treated as a binary classification problem:

each edge in the summary graph is represented by a 0 or 1 in the adjacency matrix A, and the entries of

the (scaled) score matrix S are the probability predictions of that classification problem. The evaluation

metric of a score matrix S is then the AUC score of those predictions. More precisely, a threshold t is

varied from 0 to 1 converting the scaled score matrix into 0–1 predictions of the presence of an edge

in the summary graph, Âij(t) = 1(Sij/maxS ≥ t), and the false positive rate (FPR) and true positive

rate (TPR) of the predictions are computed as a functions of the threshold. The AUC is then the area

under the curve {(FPR(t),TPR(t)) | t ∈ [0, 1]}, where AUC ∈ [0, 1] and a score close to 1 is good. In the

case of, e.g., a 5-dimensional time series, the AUC is based on 52 − 5 = 20 predictions (there is assumed

always to be dependence within each coordinate on itself).

However, there are several issues with using this as a metric to evaluate causal structure learning.

Firstly, reporting a score matrix is insufficient for a real world application of structure learning, since

one must make a binary decision on whether to include an edge in the summary graph. Moreover, a

high AUC value only ensures the existence of a threshold with a low FPR and a high TPR, but this

threshold cannot be determined without the true summary graph. In a normal classification problem,

this threshold can be determined by choosing it according to the performance on a test data set with

available labels. However, outside a simulation setup, we can never obtain a “data set” consisting of a

true adjacency matrix of a summary graph of a causal problem.

In this sense, the score matrix is problematic, since there is no principled way to choose the threshold.

However, this is a valid critique of constraint-based causal structure learning algorithms in general. In the

skeleton estimation of, e.g., the PC algorithm, one must choose a significance level of the conditional in-

dependence tests. The significance level for each individual test has a meaningful interpretation in terms

of type I error control, but when performing a sequence of dependent conditional independence tests,

where edge inclusions or exclusions determines which subsequent tests are performed, the significance

level looses its interpretation as a type I error control in relation to the estimated skeleton. Therefore,

the significance level of a constraint-based structure learning algorithm is a threshold parameter, in the

same way as the threshold of the score matrix of the summary graph in this application.

In general, it can be argued that an estimator should be evaluated according to how it is going to

be used in practice. If the goal is simply graph reconstruction, then a measure such as the structural

Hamming distance, which measures the distance between graphs in terms of edge insertions or deletions

and flips, is a more appropriate metric. In the case of causal inference, the goal is typically to predict

the effect of interventions. Here the structural intervention distance [Peters and Bühlmann, 2015], which

1https://causeme.uv.es/neurips2019

https://causeme.uv.es/neurips2019
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measures the distance from one directed acyclic graph H to another G by the number of incorrectly

inferred interventional distribution there are in H relative to G, is another choice which directly reflects

the use of the graph for causal inference.

In the sense of real world usability, the score matrix can be regarded as an exploratory tool. The

summary graph cannot be used to predict the effect of interventions, since Aij = 1 only ensures the

existence of a directed edge Xs
i → Xt

j for some s < t. Therefore, its role as a causal estimand is rather

as an exploratory tool for causal hypothesis generation, which can afterwards be further investigated by

a practitioner.
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Abstract

The partial copula provides a method for describing the dependence between two random
variables X and Y conditional on a third random vector Z in terms of nonparametric
residuals U1 and U2. This paper develops a nonparametric test for conditional independence
by combining the partial copula with a quantile regression based method for estimating
the nonparametric residuals. We consider a test statistic based on generalized correlation
between U1 and U2 and derive its large sample properties under consistency assumptions
on the quantile regression procedure. We demonstrate through a simulation study that
the resulting test is sound under complicated data generating distributions. Moreover,
in the examples considered the test is competitive to other state-of-the-art conditional
independence tests in terms of level and power, and it has superior power in cases with
conditional variance heterogeneity of X and Y given Z.

Keywords: Conditional independence testing, nonparametric testing, partial copula,
conditional distribution function, quantile regression

1. Introduction

This paper introduces a new class of nonparametric tests of conditional independence be-
tween real-valued random variables, X ⊥⊥ Y | Z, based on quantile regression. Conditional
independence is an important concept in many statistical fields such an graphical models
and causal inference (Lauritzen, 1996; Spirtes et al., 2000; Pearl, 2009). However, Shah
and Peters (2020) proved that conditional independence is an untestable hypothesis when
the distribution of (X,Y, Z) is only assumed to be absolutely continuous with respect to
Lebesgue measure.

More precisely, let P denote the set of distributions of (X,Y, Z) that are absolutely
continuous with respect to Lebesgue measure. Let H ⊂ P be those distributions for which
conditional independence holds. Then Shah and Peters (2020) showed that if ψn is a

c©2021 Lasse Petersen and Niels Richard Hansen.
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hypothesis test for conditional independence with uniformly valid level α ∈ (0, 1) over H,

sup
P∈H

EP (ψn) ≤ α,

then the test cannot have power greater than α against any alternative P ∈ Q := P \ H.
This is true even when restricting the distribution of (X,Y, Z) to have bounded support.
The purpose of this paper is to identify a subset P0 ⊂ P of distributions and a test ψn that
has asymptotic (uniform) level over P0 ∩ H and power against a large set of alternatives
within P0\H.

Our starting point is the so-called partial copula construction. Letting FX|Z and FY |Z
denote the conditional distribution functions of X given Z and Y given Z, respectively, we
define random variables U1 and U2 by

U1 := FX|Z(X | Z) and U2 := FY |Z(Y | Z).

Then the joint distribution of U1 and U2 is called the partial copula and it can be shown
that X ⊥⊥ Y | Z implies U1 ⊥⊥ U2. Thus the question about conditional independence can
be transformed into a question about independence. The main challenge with this approach
is that the conditional distribution functions are unknown and must be estimated.

In Section 3 we propose an estimator of conditional distribution functions based on
quantile regression. More specifically, we let T = [τmin, τmax] be a range of quantile levels
for 0 < τmin < τmax < 1, and let Q(T | z) denote the range of conditional T -quantiles
in the distribution X | Z = z. To estimate a conditional distribution function F given a
sample (Xi, Zi)

n
i=1 we propose to perform quantile regressions q̂k,z = Q̂(n)(τk | z) along an

equidistant grid of quantile levels (τk)
m
k=1 in T , and then construct the estimator F̂ (m,n) by

linear interpolation of the points (q̂k,z, τk)
m
k=1. The main result of the first part of the paper

is Theorem 5, which states that we can achieve the following bound on the estimation error

‖F − F̂ (m,n)‖T ,∞ := sup
z

sup
t∈Q(T |z)

|F (t | z)− F̂ (m,n)(t | z)| ∈ OP (gP (n))

where gP is a rate function describing the OP -consistency of the quantile regression pro-
cedure over the conditional T -quantiles for P in a specified set of distributions P0 ⊂ P.
This result demonstrates how pointwise consistency of a quantile regression procedure over
P0 can be transferred to the estimator F̂ (m,n), and we discuss how this can be extended to
uniform consistency over P0. We conclude the section by reviewing a flexible model class
from quantile regression where such consistency results are available.

In Section 4 we describe a generic method for testing conditional independence based

on estimated conditional distribution functions, F̂
(n)
X|Z and F̂

(n)
Y |Z , obtained from a sample

(Xi, Yi, Zi)
n
i=1. From these estimates we compute

Û
(n)
1,i := F̂

(n)
X|Z(Xi | Zi) and Û

(n)
2,i := F̂

(n)
Y |Z(Yi | Zi),

for i = 1, . . . , n, which can then be plugged into a bivariate independence test. If F̂
(n)
X|Z and

F̂
(n)
Y |Z are consistent with a sufficiently fast rate of convergence, properties of the bivariate

test, in terms of level and power, can be transferred to the test of conditional independence.

2
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The details of this transfer of properties depend on the specific test statistic. The main
contribution of the second part of the paper is a detailed treatment of a test given in terms
of a generalized correlation, estimated as

ρ̂n :=
1

n

n∑

i=1

ϕ
(
Û

(n)
1,i

)
ϕ
(
Û

(n)
2,i

)T

for a function ϕ = (ϕ1, . . . , ϕq) : [0, 1] → Rq satisfying certain regularity conditions.
A main result is Theorem 14, which states that

√
nρ̂n converges in distribution toward

N (0,Σ⊗Σ) under the hypothesis of conditional independence whenever F̂
(n)
X|Z and F̂

(n)
Y |Z are

OP -consistent with rates gP and hP satisfying
√
ngP (n)hP (n)→ 0. The covariance matrix

Σ depends only on ϕ. We use this to show asymptotic pointwise level of the test when
restricting to the set of distributions P0 where the required consistency can be obtained.
We then proceed to show in Theorem 18 that

√
nρ̂n diverges in probability under a set

of alternatives of conditional dependence when we have OP -consistency of the conditional
distribution function estimators. This we use to show asymptotic pointwise power of the

test. We also show how asymptotic uniform level and power can be achieved when F̂
(n)
X|Z

and F̂
(n)
Y |Z are uniformly consistent over P0. Lastly, we provide an out-of-the-box proce-

dure for conditional independence testing in conjunction with our quantile regression based
conditional distribution function estimator F̂ (m,n) from Section 3.

In Section 5 we examine the proposed test through a simulation study where we assess
the level and power properties of the test and benchmark it against existing nonparametric
conditional independence tests. All proofs are collected in Appendix A.

2. Related Work

The partial copula and its application for conditional independence testing was initially in-
troduced by Bergsma (2004) and further explored by Bergsma (2011). Its use for conditional
independence testing has also been explored by Song (2009), Patra et al. (2016) and Liu
et al. (2018). Moreover, properties of the partial copula was studied by Gijbels et al. (2015)
and Spanhel and Kurz (2016) among others. A related but different approach for testing
conditional independence via the factorization of the joint copula of (X,Y, Z) is given by
Bouezmarni et al. (2012). Common for the existing approaches to using the partial copula
for conditional independence testing is that the conditional distribution functions FX|Z and
FY |Z are estimated using a kernel smoothing procedure (Stute et al., 1986; Einmahl and
Mason, 2005). The advantage of the approach is that the estimator is nonparametric, how-
ever, it does not scale well with the dimension of the conditioning variable Z. This is partly
remedied by Haff and Segers (2015) who suggest a nonparametric pair-copula estimator
whose convergence rate is independent of the dimension of Z. This estimator requires the
simplifying assumption, which is a strong assumption not required for the validity of our
approach. Moreover, it is not obvious how to incorporate parametric assumptions, such as
a certain functional dependence between response and covariates, using kernel smoothing
estimators, since there is only the choice of a kernel and a bandwidth. Furthermore, a
treatment of the relationship between level and power properties of a partial copula based
conditional independence test, and consistency of the conditional distribution function esti-

3
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mator is lacking in the existing literature. In this work we take a novel approach to testing
conditional independence using the partial copula by using quantile regression for estimat-
ing the conditional distribution functions. This allows for a distribution free modeling of
the conditional distributions X | Z = z and Y | Z = z that can handle high-dimensionality
of Z through penalization, and complicated response-predictor relationships by basis ex-
pansions. We also make the requirements on consistency of the conditional distribution
function estimator that are needed to obtain level and power of the test explicit. A similar
recent approach to testing conditional independence using regression methods is given by
Shah and Peters (2020), who propose to test for vanishing correlation between the residuals
after nonparametric conditional mean regression of X on Z and Y on Z. See also Ramsey
(2014) and Fan et al. (2020). This approach captures dependence between X and Y given
Z that lies in the conditional correlation. However, as is demonstrated through a simulation
study in Section 5.5, it does not adequately account for conditional variance heterogeneity
between X and Y given Z, while our partial copula based test captures the dependence
more efficiently.

3. Estimation of Conditional Distribution Functions

Throughout the paper we restrict ourselves to the set of distributions P over the hypercube
[0, 1]2+d that are absolutely continuous with respect to Lebesgue measure. Let (X,Y, Z) ∼
P ∈ P such that X,Y ∈ [0, 1] and Z ∈ [0, 1]d. When we speak of the distribution of X given
Z relative to P we mean the conditional distribution that is induced when (X,Y, Z) ∼ P .
In this section we consider estimation of the conditional distribution function FX|Z of X
given Z using quantile regression. Estimation of FY |Z can be carried out analogously.

3.1 Conditional distribution and quantile functions

Given z ∈ [0, 1]d we denote by

FX|Z(t | z) := P (X ≤ t | Z = z)

the conditional distribution function of X | Z = z for t ∈ [0, 1]. We denote by

QX|Z(τ | z) := inf{t ∈ [0, 1] | FX|Z(t | z) ≥ τ}
the conditional quantile function of the conditional distribution X | Z = z for τ ∈ [0, 1] and
z ∈ [0, 1]d. We will omit the subscript in FX|Z and QX|Z when the conditional distribution
of interest is clear from the context.

In quantile regression one models the function z 7→ Q(τ | z) for fixed τ ∈ [0, 1]. Es-
timation of the quantile regression function is carried out by solving the empirical risk
minimization problem

Q̂(τ | ·) ∈ arg min
f∈F

n∑

i=1

Lτ (Xi − f(Zi))

where the loss function Lτ (u) = u(τ − 1(u < 0)) is the so-called check function and F is
some function class. For τ = 1/2 the loss function is L1/2(u) = |u|, and we recover median
regression as a special case. One can also choose to add regularization as with conditional
mean regression. See Koenker (2005) and Koenker et al. (2017) for an overview of the field.

4
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3.2 Quantile regression based estimator

Based on the conditional quantile function Q we define an approximation F̃ (m) of the
conditional distribution function F as follows. We let τmin and τmax denote fixed quantile
levels satisfying 0 < τmin < τmax < 1, and we let qmin,z := Q(τmin | z) > 0 and qmax,z :=
Q(τmax | z) < 1 denote the corresponding conditional quantiles.

Let T = [τmin, τmax] denote the set of potential quantile levels. A grid in T is a sequence
(τk)

m
k=1 such that τmin = τ1 < · · · < τm = τmax for m ≥ 2. An equidistant grid is a grid

(τk)
m
k=1 for which τk+1 − τk is constant for k = 1, . . . ,m− 1. Also let τ0 = 0 and τm+1 = 1

be fixed.
Given a grid (τk)

m
k=1 we let qk,z := Q(τk | z) for k = 1, . . . ,m and define q0,z := 0 and

qm+1,z := 1. For each z ∈ [0, 1]d we define a function F̃ (m)(· | z) : [0, 1] → [0, 1] by linear
interpolation of the points (qk,z, τk)

m+1
k=0 :

F̃ (m)(t | z) :=

m∑

k=0

(
τk + (τk+1 − τk)

t− qk,z
qk+1,z − qk,z

)
1(qk,z ,qk+1,z ](t). (1)

Let Q(T | z) = [qmin,z, qmax,z] be the range of conditional T -quantiles in the conditional
distribution X | Z = z for z ∈ [0, 1]d, and define the supremum norm

‖f‖T ,∞ = sup
z∈[0,1]d

sup
t∈Q(T |z)

|f(t, z)|

for a function f : [0, 1] × [0, 1]d → R. Note that this is a norm on the set of bounded
functions on {(t, z) | z ∈ [0, 1]d, t ∈ Q(T | z)}. Then we have the following approximation
result.

Proposition 1 Denote by F̃ (m) the function (1) defined from a grid (τk)
m
k=1 in T . Then

it holds that

||F − F̃ (m)||T ,∞ ≤ κm
where κm := maxk=1,...,m−1(τk+1 − τk) is the coarseness of the grid.

Choosing a finer and finer grid yields κm → 0, which implies that F̃ (m) → F in the
norm ‖ · ‖T ,∞ for m→∞.

By an estimator of the conditional distribution function F we mean a mapping from a
sample (Xi, Zi)

n
i=1 to a function F̂ (n)(· | z) : [0, 1]→ [0, 1] such that for every z ∈ [0, 1]d it

holds that t 7→ F̂ (n)(t | z) is continuous and increasing with

F̂ (n)(0 | z) = 0 and F̂ (n)(1 | z) = 1.

Motivated by (1) we define the following estimator of the conditional distribution function.

Definition 2 Let (τk)
m
k=1 be a grid in T . Define q̂

(n)
0,z := 0 and q̂

(n)
m+1,z := 1, and let q̂

(n)
k,z :=

Q̂(n)(τk | z) for k = 1, . . . ,m be the predictions of a quantile regression model obtained from
an i.i.d. sample (Xi, Zi)

n
i=1. We define the estimator F̂ (m,n)(· | z) : [0, 1]→ [0, 1] by

F̂ (m,n)(t | z) :=

m∑

k=0


τk + (τk+1 − τk)

t− q̂(n)k,z

q̂
(n)
k+1,z − q̂

(n)
k,z


 1(

q̂
(n)
k,z ,q̂

(n)
k+1,z

](t) (2)

for each z ∈ [0, 1]d.

5
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Note that the estimator is not monotone in the presence of quantile crossing (He, 1997).
In this case we perform a re-arrangement of the estimated conditional quantiles in order
to obtain monotonicity for finite sample size (Chernozhukov et al., 2010). However, the
estimated conditional quantiles will be ordered correctly under the consistency assumptions
that we will introduce in Assumption 1, that is, the re-arrangement becomes unnecessary,
and the estimator becomes monotone with high probability as n→∞ for any grid (τk)

m
k=1

in T .

3.3 Pointwise consistency of F̂ (m,n)

We will now demonstrate how pointwise consistency of the proposed estimator over a set
of distributions P0 ⊂ P can be obtained under the assumption that the quantile regression
procedure is pointwise consistent over P0.

We will evaluate the consistency of F̂ (m,n) according to the supremum norm || · ||T ,∞
introduced in Section 3.2, that is, we restrict the supremum to be over t ∈ Q(T | z) and
not the entire interval [0, 1]. We do so because quantile regression generally does not give
uniform consistency of all extreme quantiles, and in Section 4 we show how consistency of
F̂ (m,n) between the conditional τmin- and τmax-quantiles is sufficient for conditional inde-
pendence testing.

First, we have the following key corollary of Proposition 1, which is a simple application
of the triangle inequality.

Corollary 3 Let F̃ (m) and F̂ (m,n) be given by (1) and (2), respectively. Then

‖F − F̂ (m,n)‖T ,∞ ≤ κm + ‖F̃ (m) − F̂ (m,n)‖T ,∞

for all grids (τk)
m
k=1 in T .

The random part of the right hand side of the inequality is the term ‖F̃ (m)−F̂ (m,n)‖T ,∞,
while κm is deterministic and only depends on the choice of grid (τk)

m
k=1. Controlling

the term ‖F̃ (m) − F̂ (m,n)‖T ,∞ is an easier task than controlling ‖F − F̂ (m,n)‖T ,∞ directly

because F̃ (m) and F̂ (m,n) are piecewise linear, while F is only assumed to be continuous
and increasing.

Consistency assumptions on the quantile regression procedure will allow us to show
consistency of the estimator F̂ (m,n). Let the random variable

D(n)
T := sup

z∈[0,1]d
sup
τ∈T
|Q(τ | z)− Q̂(n)(τ | z)|

denote the uniform prediction error of a fitted quantile regression model, Q̂(n), over the
set of quantile levels T = [τmin, τmax]. Below we write Xn ∈ OP (an) when Xn is big-O in
probability of an with respect to P . See Appendix B for the formal definition.

6
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Assumption 1 For each P ∈ P0 there exist

(i) a deterministic rate function gP tending to zero as n→∞ such that D(n)
T ∈ OP (gP (n))

(ii) and a finite constant CP such that the conditional density fX|Z satisfies

sup
x∈[0,1]

fX|Z(x | z) ≤ CP

for almost all z ∈ [0, 1]d.

Assumption 1 (i) is clearly necessary to achieve consistency of the estimator. Assumption
1 (ii) is a regularity condition that is used to ensure that qk+1,z − qk,z does not tend to zero
too fast as κm → 0. We now have:

Proposition 4 Let Assumption 1 be satisfied. Then

‖F̃ (m) − F̂ (m,n)‖T ,∞ ∈ OP (gP (n))

for each fixed P ∈ P0 and all equidistant grids (τk)
m
k=1 in T .

Consider letting the number of grid points mn depend on the sample size n. By com-
bining Corollary 3 and Proposition 4 we obtain the main pointwise consistency result.

Theorem 5 Let Assumption 1 be satisfied. Then

‖F − F̂ (mn,n)‖T ,∞ ∈ OP (gP (n))

for each fixed P ∈ P0 given that the equidistant grids (τk)
mn
k=1 in T satisfy κmn ∈ o(gP (n)).

This shows that F̂ (mn,n) is pointwise consistent over P0 given that the quantile regression
procedure is pointwise consistent over P0. Moreover, we can transfer the rate of convergence
gP directly. In Section 4.4 we will use this type of pointwise consistency to show asymptotic
pointwise level and power of our conditional independence test over P0.

Note that we can estimate conditional distribution functions in settings with high di-
mensional covariates to the extend that the quantile regression estimation procedure can
deal with high dimensionality. An example of such a procedure is given in Section 3.5.

We chose to state Proposition 4 and Theorem 5 for equidistant grids only, but in the
proof of Proposition 4 we only need that the ratio κm/γm between the coarseness κm and
the smallest subinterval γm = mink=1,...,m−1(τk+1 − τk) must not diverge as m → ∞. This
is obviously ensured for an equidistant grid. Moreover, for an equidistant grid, κm =
(τmax − τmin)/(m − 1), and κmn ∈ o(gP (n)) if mn grows with rate at least gP (n)−(1+ε)

for some ε > 0. Since the rate is unknown in practical applications we choose m to be
the smallest integer larger than

√
n as a rule of thumb, since this represents the optimal

parametric rate.

7
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3.4 Uniform consistency of F̂ (m,n)

The pointwise consistency result of Theorem 5 can be extended to a uniform consistency
over P0 by strengthening Assumption 1 to hold uniformly. Below we write Xn ∈ OM(an)
when Xn is big-O in probability of an uniformly over a set of distributions M. We refer to
Appendix B for the formal definition.

Assumption 2 For P0 ⊂ P there exist

(i) a deterministic rate function g tending to zero as n→∞ such that D(n)
T ∈ OP0(g(n))

(ii) and a finite constant C such that the conditional density fX|Z satisfies

sup
x∈[0,1]

fX|Z(x | z) ≤ C

for almost all z ∈ [0, 1]d.

With this stronger assumption we have a uniform extension of Proposition 4.

Proposition 6 Let Assumption 2 be satisfied. Then

‖F̃ (m) − F̂ (m,n)‖T ,∞ ∈ OP0(g(n)).

for all equidistant grids (τk)
m
k=1 in T .

We can now combine Corollary 3 with the stronger Proposition 6 to obtain the following
uniform consistency of the estimator F̂ (m,n).

Theorem 7 Suppose that Assumption 2 is satisfied. Then

‖F − F̂ (mn,n)‖T ,∞ ∈ OP0(g(n))

given that the equidistant grids (τk)
mn
k=1 in T satisfy κmn ∈ o(g(n)).

This shows that our estimator F̂ (m,n) can achieve uniform consistency over a set of
distributions P0 ⊂ P given that the quantile regression procedure is uniformly consistent
over P0. In Section 4.5 we show how this strenghtened result can be used to establish
asymptotic uniform level and power of our conditional independence test over P0.

3.5 A quantile regression model

In this section we will provide an example of a flexible quantile regression model and esti-
mation procedure where consistency results are available. Consider the model

Q(τ | z) = h(z)Tβτ (3)

where h : [0, 1]d → Rp is a known and continuous transformation of Z, e.g., a polynomial or
spline basis expansion to model non-linear effects. Inference in the model (3) was analyzed
by Belloni and Chernozhukov (2011) and Belloni et al. (2019) in the high-dimensional

8
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setup p � n. In the following we describe a subset of their results that is relevant for
our application. Given an i.i.d. sample (Xi, Zi)

n
i=1 and a fixed quantile regression level

τ ∈ (0, 1), estimation of βτ ∈ Rp is carried out by penalized regression:

β̂τ ∈ arg min
β∈Rp

n∑

i=1

Lτ (Xi − h(Zi)
Tβ) + λτ‖β‖1 (4)

where Lτ (u) = u(τ − 1(u < 0)) is the check function, ‖ · ‖1 is the 1-norm and λτ ≥ 0 is a
tuning parameter that determines the degree of penalization. The tuning parameter λτ for
a set Q of quantile regression levels can be chosen in a data driven way as follows (Belloni
and Chernozhukov, 2011, Section 2.3). Let Wi = h(Zi) denote the transformed predictors
for i = 1, . . . , n. Then we set

λτ = cλ
√
τ(1− τ) (5)

where c > 1 is a constant with recommended value c = 1.1 and λ is the (1− n−1)-quantile
of the random variable

sup
τ∈T

‖Γ−1 1
n

∑n
i=1 (τ − 1(Ui ≤ τ)Wi) ‖∞√

τ(1− τ)

where U1, . . . , Un are i.i.d. U [0, 1]. Here Γ ∈ Rp×p is a diagonal matrix with Γkk =
1
n

∑n
i=1(Wi)

2
k. The value of λ is determined by simulation.

Sufficient regularity conditions under which the above estimation procedure can be
proven to be consistent are as follows.

Assumption 3 Denote by fX|Z the conditional density of X given Z. Let c > 0 and C > 0
be constants.

(i) There exists s such that ‖βτ‖0 ≤ s for all τ ∈ Q := [c, 1− c].

(ii) fX|Z is continuously differentiable such that fX|Z(QX|Z(τ | z) | z) ≥ c for each τ ∈ Q
and z ∈ [0, 1]d. Moreover, supx∈[0,1] fX|Z(x | z) ≤ C and supx∈[0,1] ∂xfX|Z(x | z) ≤ C.

(iii) The transformed predictor W = h(Z) satisfies c ≤ E((W T θ)2) ≤ C for all θ ∈ Rp
with ‖θ‖2 = 1. Moreover, (E(‖W‖2q∞))1/(2q) ≤Mn for some q > 2 where Mn satisfies

M2
n ≤

δnn
1/2−1/q

s
√

log(p ∨ n)

and δn is some sequence tending to zero.

Assumption 3 (i) is a sparsity assumption, (ii) is a regularity condition on the conditional
distribution, while (iii) is an assumption on the predictors. Examples of distributions for
which Assumption 3 is satisfied are given in Belloni and Chernozhukov (2011) Section 2.5.
This includes location models with Gaussian noise and location-scale models with bounded
covariates, which in our setup with Z ∈ [0, 1]d means all location-scale models.

The following result (Belloni and Chernozhukov, 2011, Section 2.6) regarding the esti-
mator β̂τ then holds.

9

54 CHAPTER 4. CONDITIONAL INDEPENDENCE TESTING



Petersen and Hansen

Theorem 8 Assume that the tuning parameters {λτ | τ ∈ Q} have been chosen according
to (5). Then

sup
τ∈Q
‖βτ − β̂τ‖2 ∈ OP

(√
s log(p ∨ n)

n

)

under Assumption 3.

As a corollary of this consistency result we have the following.

Corollary 9 Let Q̂(τ | z) = h(z)T β̂τ be the predicted conditional quantile using the esti-
mator β̂τ . Then

sup
z∈[0,1]d

sup
τ∈Q
|Q(τ | z)− Q̂(n)(τ | z)| ∈ OP

(√
s log(p ∨ n)

n

)

under Assumption 3.

This shows that Assumption 1 is satisfied under the model (3) whenever Assumption 3
is satisfied with T ⊂ Q and

√
s log(p ∨ n)/n→ 0, which is the key underlying assumption

of Theorem 5. Note also that Assumption 1 (ii) is contained in Assumption 3 (ii). Theorem
8 and Corollary 9 can be extended to hold uniformly over P0 ⊂ P by assuming that the
conditions of Assumption 3 hold uniformly over P0. This then gives the statement of
Assumption 2 that is required for Theorem 7.

4. Testing Conditional Independence

In this section we describe the conditional independence testing framework in terms of the
so-called partial copula. As above we let (X,Y, Z) ∼ P ∈ P such that X,Y ∈ [0, 1] and
Z ∈ [0, 1]d where P are the distributions that are absolutely continuous with respect to
Lebesgue measure on [0, 1]2+d. Also let f denote a generic density function. We then say
that X is conditionally independent of Y given Z if

f(x, y | z) = f(x | z)f(y | z)
for almost all x, y ∈ [0, 1] and z ∈ [0, 1]d. See e.g. Dawid (1979). In this case we write that
X ⊥⊥P Y | Z, where we usually omit the dependence on P when there is no ambiguity. By
H ⊂ P we denote the subset of distributions for which conditional independence is satisfied,
and we let Q := P \ H be the alternative of conditional dependence.

4.1 The partial copula

We can regard the conditional distribution function as a mapping (t, z) 7→ F (t | z) for
t ∈ [0, 1] and z ∈ [0, 1]d. Assuming that this mapping is measurable, we define a new pair
of random variables U1 and U2 by the transformations

U1 := FX|Z(X | Z) and U2 := FY |Z(Y | Z).

This transformation is usually called the probability integral transformation or Rosenblatt
transformation due to Rosenblatt (1952), where the transformation was initially introduced
and the following key result was shown.

10
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Proposition 10 It holds that U` ∼ U [0, 1] and U` ⊥⊥ Z for ` = 1, 2.

Hence the transformation can be understood as a normalization, where marginal de-
pendencies of X on Z and Y on Z are filtered away. The joint distribution of U1 and U2

has been termed the partial copula of X and Y given Z in the copula literature (Bergsma,
2011; Spanhel and Kurz, 2016). Independence in the partial copula relates to conditional
independence in the following way.

Proposition 11 If X ⊥⊥ Y | Z then U1 ⊥⊥ U2.

Therefore the question about conditional independence can be transformed into a ques-
tion about independence. Note, however, that U1 ⊥⊥ U2 does not in general imply that
X ⊥⊥ Y | Z. See Property 7 in Spanhel and Kurz (2016) for a counterexample

The variables U` were termed nonparametric residuals by Patra et al. (2016) due to the
independence property U` ⊥⊥ Z which is analogues to the property of conventional residuals
in additive Gaussian noise models. Note that the entire conditional distribution function
is required in order to compute the nonparametric residual, while conventional residuals
in additive noise models are computed using only the conditional expectation. In return,
Proposition 10 provides the distribution of the nonparametric residuals without asumming
any functional or distributional relationship between X (Y resp.) and Z, whereas the
distribution of conventional residuals is not known without further assumptions. Moreover,
the nonparametric residuals U1 and U2 are independent under conditional independence,
while conventional residuals are only uncorrelated unless we make a Gaussian assumption,
say.

4.2 Generic testing procedure

Suppose (Xi, Yi, Zi)
n
i=1 is a sample from P ∈ P0 where P0 is some subset of P. Also let

H0 := P0∩H andQ0 := P0∩Q be the distributions in P0 satisfying conditional independence
and conditional dependence, respectively. Denote by

U1,i := FX|Z(Xi | Zi) and U2,i := FY |Z(Yi | Zi)

the nonparametric residuals for i = 1, . . . , n. Let ψn : [0, 1]2n → {0, 1} denote a test for
independence in a bivariate continuous distribution. The observed value of the test is

Ψn := ψn((U1,i, U2,i)
n
i=1)

with Ψn = 0 indicating acceptance and Ψn = 1 rejection of the hypothesis. By Proposition
11 we then reject the hypothesis of conditional independence, X ⊥⊥ Y | Z, if Ψn = 1.
However, in order to implement the test in practice, we will need to replace the conditional
distribution functions FX|Z and FY |Z by estimates.

Given some generic estimators of the conditional distribution functions we can formulate
a generic version of the partial copula conditional independence test as follows.

11
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Definition 12 Let (Xi, Yi, Zi)
n
i=1 be an i.i.d. sample from P ∈ P0. Also let ψn be a test

for independence in a bivariate continuous distribution.

(i) Form the estimates F̂
(n)
X|Z and F̂

(n)
Y |Z based on (Xi, Yi, Zi)

n
i=1.

(ii) Compute the estimated nonparametric residuals

Û
(n)
1,i := F̂

(n)
X|Z(Xi | Zi) and Û

(n)
2,i := F̂

(n)
Y |Z(Yi | Zi)

for i = 1, . . . , n.

(iii) Let Ψ̂n := ψn

(
(Û

(n)
1,i , Û

(n)
2,i )ni=1

)
and reject the hypothesis X ⊥⊥ Y | Z of conditional

independence if Ψ̂n = 1.

This generic version of the conditional independence test is analogous to the approach
of Bergsma (2011), but here we emphasize the modularity of the testing procedure. Firstly,
one can use any method for estimating conditional distribution functions. Secondly, any
test for independence in a bivariate continuous distribution can be utilized.

We note that under the assumptions of Theorem 5 it holds that

|(Û (n)
1,i , Û

(n)
2,i )− (U1,i, U2,i)|T ,1 P→ 0

where |u− v|T ,1 = |u1 − v1|1(u1, v1 ∈ T ) + |u2 − v2|1(u2, v2 ∈ T ). That is, each estimated
pair of nonparametric residuals has the partial copula as asymptotic distribution – except
perhaps on the fringe part of the unit square outside of T × T . This is a priori only
a marginal result for each i, but it suggests that tests based on the estimated residuals
behave as if they were i.i.d. observations from the partial copula.

Once we have chosen the test for independence, ψn, we can establish rigorous results
on the properties of the test over the space of hypotheses H0 and alternatives Q0, but how
exactly to transfer the consistency of the estimated residuals to results on level and power
depends on the specific test statistic. We will in the following sections demonstrate this
transfer for one particular class of test statistics.

4.3 Generalized measure of correlation

We will now introduce a generalized measure of correlation that will form the basis for an
independence test between the nonparametric residuals U1 and U2.

Definition 13 The generalized correlation, ρ, between U1 and U2 is defined in term of a
multivariate function ϕ = (ϕ1, . . . , ϕq) : [0, 1]→ Rq as

ρ = EP (ϕ(U1)ϕ(U2)
T ) (6)

such that ρ is a q × q matrix with entries ρk` = EP (ϕk(U1)ϕ`(U2)) for k, ` = 1, . . . , q.

We will assume that the function ϕ = (ϕ1, . . . , ϕq) defining the generalized correlation
satisfies the following assumptions for the remainder of the paper.

12
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Assumption 4

(i) The support Tk of each coordinate function ϕk is a compact subset of (0, 1).

(ii) Each coordinate function ϕk : [0, 1]→ R is Lipschitz continuous.

(iii)
∫ 1
0 ϕk(u)du = 0 and

∫ 1
0 ϕk(u)2du = 1 for each k = 1, . . . , q.

(iv) The coordinate functions ϕ1, . . . , ϕq are linearly independent.

Let us provide some intuition about the interpretation of the generalized correlation ρ and
explain the role of the assumptions on ϕ in Assumption 4.

Each entry ρk` can be interpreted as an expected conditional correlation, and it can be
understood in terms of the partial and conditional copula (Patton, 2006). Let C(u1, u2 | z) =
F (U1 ≤ u1, U2 ≤ u2 | Z = z) denote the conditional copula of X and Y given Z = z. Then
the partial copula is the expected conditional copula, i.e., Cp(u1, u2) = EP (C(u1, u2 | Z))
(Spanhel and Kurz, 2016). The conditional generalized correlation, ρk`(z), between X and
Y given Z = z can be expressed in terms of the conditional copula by

ρk`(z) := EP (ϕk(U1)ϕ`(U2) | Z = z) =

∫
ϕk(u1)ϕ`(u2)C(du1, du2 | z).

By the tower property of conditional expectations, ρk` can be represented as an expected
generalized correlation

ρk` = EP (ρk`(Z)) =

∫
ϕk(u1)ϕ`(u2)Cp(du1, du2).

Hence ρk` measures the expected conditional generalized correlation of X and Y given Z
w.r.t. the distribution of Z. Importantly, Assumption 4 (iii) implies that

ρ = EP (ϕ(U1)ϕ(U2)
T ) = EP (ϕ(U1))E(ϕ(U2)

T ) = 0

whenever X ⊥⊥ Y | Z due to Proposition 11.
The purpose of Assumption 4 (i) is twofold. Firstly, letting the supports Tk and T` of

ϕk and ϕ` be subsets of (0, 1) implies that ρk` focuses on dependence in the compact region
Tk×T` ⊂ (0, 1)2 of the outcome space [0, 1]2 of (U1, U2). For q ≥ 2 the generalized correlation
ρ thus summarizes dependencies in different regions of the outcome space. See Figure 1 for
an illustration of this idea. Secondly, the supports (Tk)qk=1 will play the role as subsets of
the possible quantile levels T = [τmin, τmax], when we choose the conditional distribution
function estimators based on quantile regression from Section 3.2. This connection will be
made clear in Section 4.4.

The functional form of ϕk and ϕ` determines the kind of dependence measured by ρk`.
Ignoring Assumption 4 (i), consider letting ϕk(u) = ϕ`(u) =

√
12(u − 1/2) for u ∈ [0, 1].

Then ρk` measures the expected conditional Spearman correlation between X and Y given
Z with respect to the distribution of Z. In Section 4.6 we describe a choice of functions ϕk
that leads to a trimmed version of expected conditional Spearman correlation which satisfies
Assumption 4 (i). As we shall see in Section 4.4, Assumption 4 (ii), i.e., that the coordinate
functions ϕk are Lipschitz continuous, is crucial for deriving asymptotic properties for the
empirical version of the generalized correlation ρ. Lastly, we assume that ϕ1, . . . , ϕq are
linearly independent in Assumption 4 (iv) to avoid degeneracy of its empirical version,
which we introduce in Section 4.4.

13
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Figure 1: A sample from a copula (U1, U2) with clear dependence, but where the overall
sample correlation is close to zero. The dependence is captured by considering
sample correlation of observations in different regions of the outcome space.

4.4 Test based on generalized correlation

In this section we will analyze in depth the conditional independence test resulting from
basing the test ψn in Definition 12 on the generalized correlation ρ. We will formulate the
results in terms of a generic method for estimating conditional distribution functions in
order to emphasize the generality of the method and illustrate the abstract assumptions
needed for the test to be sound. Along the way we will explain when the assumptions are
satisfied for the quantile regression based estimator F̂ (m,n) that we developed in Section 3.

With ρ the generalized correlation between U1 and U2 defined in terms of a function ϕ
satisfying Assumption 4 we let ρn : [0, 1]2n → Rq×q be its corresponding empirical version:

ρn((ui, vi)
n
i=1) :=

1

n

n∑

i=1

ϕ(ui)ϕ(vi)
T . (7)

Soundness of a test based on ρn depends on consistency of the estimators F̂
(n)
X|Z and F̂

(n)
Y |Z .

Recall that we by T1, . . . , Tq denote the supports of ϕ1, . . . , ϕq. Let τmin := inf(T1∪· · ·∪Tq) >
0 and τmax := sup(T1 ∪ · · · ∪ Tq) < 1, and then define T := [τmin, τmax]. As in Section 3.2
we let the norm ‖ · ‖T ,∞ be given by

‖f(t, z)‖T ,∞ = sup
z∈[0,1]d

sup
t∈QX|Z(T |z)

|f(t, z)|

when X given Z is the conditional distribution of interest. Similarly define ‖ · ‖′T ,∞ by

‖f(t, z)‖′T ,∞ = sup
z∈[0,1]d

sup
t∈QY |Z(T |z)

|f(t, z)|.
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Then we have the following assumption on our estimators.

Assumption 5 For each distribution P ∈ P0 there exist deterministic rate functions gP
and hP tending to zero as n→∞ and functions ξ, ξ′ : [0, 1]× [0, 1]d → R such that

(i) ‖FX|Z − F̂ (n)
X|Z‖T ,∞ ∈ OP (gP (n)) and ‖FY |Z − F̂ (n)

Y |Z‖′T ,∞ ∈ OP (hP (n)).

(ii) ||ξ − F̂ (n)
X|Z ||T c,∞ ∈ OP (gP (n)) and ||ξ′ − F̂ (n)

Y |Z ||′T c,∞ ∈ OP (hP (n)).

Assumption 5 (i) states that our estimators F̂
(n)
X|Z and F̂

(n)
Y |Z are consistent with rates gP

and hP over the conditional T -quantiles in their respective conditional distributions. This
is the result of Theorem 5 regarding our quantile regression based estimator F̂ (m,n) when
T as above is taken as the set of potential quantile regression levels.

Assumption 5 (ii) is an assumption on the behavior of our estimator in the tails of the
conditional distribution, i.e., over the conditional T c-quantiles. Here we do not assume
consistency, but we do assume that the limit for n→∞ exists, and that our estimators are
convergent to their limits with rates gP and hP respectively. This assumption is satisfied
by our quantile regression based estimator F̂ (m,n) whenever it satisfies Assumption 5 (i).

With this assumption we first establish the asymptotic distribution of the test statistic

ρ̂n := ρn

(
(Û1,i, Û2,i)

n
i=1

)
=

1

n

n∑

i=1

ϕ(Û1,i)ϕ(Û2,i)
T (8)

under the hypothesis of conditional independence. Below we use⇒P to denote convergence
in distribution with respect to P .

Theorem 14 Suppose that Assumption 5 is satisfied with rate functions gP and hP such
that

√
ngP (n)hP (n) → 0 as n → ∞ for each P ∈ P0. Then the statistic ρ̂n given by (8)

satisfies

√
nρ̂n ⇒P N (0,Σ⊗ Σ)

for each fixed P ∈ H0. The asymptotic covariance matrix is given by

Σk,s =

∫ 1

0
ϕk(u)ϕs(u)du

for k, s = 1, . . . , q and does not depend on P .

If the rate functions are gP (n) = n−a and hP (n) = n−b, then we require that a+b > 1/2.
Thus convergence slightly faster than rate n−1/4 for both estimators is sufficient, but there
can also be a tradeoff between the rates. Interestingly, Theorem 14 does not require sample
splitting for the estimation of the conditional distribution function and computation of
the test statistic. This is due to the fact that we are only interested in the asymptotic
distribution under conditional independence. A similar phenomenon was found by Shah
and Peters (2020), when they proved asymptotic normality of their Generalised Covariance
Measure under conditional independence.
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According to Corollary 9, the requirement
√
ngP (n)hP (n) → 0 is satisfied for our

quantile regression based estimator F̂ (m,n), if the quantile regression model (3) of Sec-
tion 3.5 is valid for both X given Z and Y given Z for some continuous transforma-
tions h1 : [0, 1]d → Rp1 and h2 : [0, 1]d → Rp2 and Assumption 3 is satisfied with
s1, s2, p1, p2, n→∞ such that

√
n ·
√
s1 log(p1 ∨ n)

n
·
√
s2 log(p2 ∨ n)

n
=

√
s1s2 log(p1 ∨ n) log(p2 ∨ n)

n
→ 0

where s1 = supτ∈T ‖β1,τ‖0 and s2 = supτ∈T ‖β2,τ‖0 are the sparsities of the model param-
eters.

With the test statistic

Tn := ‖Σ−1/2ρ̂nΣ−1/2‖2F , (9)

where ‖ · ‖F denotes the Frobenius norm, we have the following corollary of Theorem 14.

Corollary 15 Let the condition of Theorem 14 be satisfied and let Tn be given by (9). Then
it holds that

nTn ⇒P χ
2
q2

for each fixed P ∈ H0.

In view of Theorem 14 and Corollary 15 we define the following conditional independence
test based on the generalized correlation.

Definition 16 Let α ∈ (0, 1) be a desired significance level and Tn the test statistic (9).
Then we let Ψ̂n be the test given by

Ψ̂n = 1(Tn > n−1z1−α)

where z1−α is the (1− α)-quantile of a χ2
q2-distribution.

Control of the asymptotic pointwise level is then an easy corollary of Corollary 15.

Corollary 17 Suppose that Assumption 5 is satisfied with rate functions gP and hP such
that

√
ngP (n)hP (n)→ 0 as n→∞ for each P ∈ P0. Then the test Ψ̂n given by Definition

16 has asymptotic pointwise level over H0, i.e.,

lim sup
n→∞

EP (Ψ̂n) = α

for each fixed P ∈ H0.

This shows that the test achieves correct level given consistency of the estimators F̂
(n)
X|Z

and F̂
(n)
Y |Z with suitably fast rates. To obtain results on power of the test Ψ̂n we only need

to understand how ρ̂n converges in probability and not its entire asymptotic distribution.
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Theorem 18 The test statistic ρ̂n given by (8) satisfies

ρ̂n
P−→ ρ

for each fixed P ∈ P0 under Assumption 5.

One may note that the theorem does not require that the rate functions gP and hP
converge to zero at a certain rate. Let A0 ⊆ Q0 be the subset of alternatives for which
ρk` 6= 0 for at least one combination of k, ` = 1, . . . , q. Then we have the following corollary
of Theorem 18, which exploits that nTn diverges in probability whenever P ∈ A0.

Corollary 19 For each level α ∈ (0, 1) the test Ψ̂n given by Definition 16 has asymptotic
pointwise power against A0, i.e.,

lim inf
n→∞

EP (Ψ̂n) = 1

for each fixed P ∈ A0 under Assumption 5.

Let us discuss the alternatives the test has power against. Firstly, note that we always
have the implications

X ⊥⊥ Y | Z ⇒ U1 ⊥⊥ U2 ⇒ ρ = 0

However, none of the reverse implications are in general true. We do, however, have the fol-
lowing result stating a sufficient condition for the reverse implication of the first statement.

Proposition 20 Assume that (U1, U2) ⊥⊥ Z. Then X ⊥⊥ Y | Z if and only if U1 ⊥⊥ U2.

This means that if Z only affects the marginal distributions of X and Y , then inde-
pendence in the partial copula implies conditional independence. This is known as the
simplifying assumption in the copula literature (Gijbels et al., 2015; Spanhel and Kurz,
2015). Naturally, U1 6⊥⊥ U2 always implies X 6⊥⊥ Y | Z, so the simplifying assumption is
not a necessary condition for our test to have power, but it does give some intuition about
a subset of distributions for which the partial copula completely characterizes conditional
independence. However, an unavoidable limitation of the method is that it can never have
power against alternatives for which U1 ⊥⊥ U2 but X 6⊥⊥ Y | Z.

Turning to the second implication, Corollary 19 tells us that we have power against al-
ternatives for which ρk` 6= 0 for some k, ` = 1, . . . , q. However, not all types of dependencies
can be detected in this fashion, and it is possible that ρ = 0, while U1 6⊥⊥ U2. A test based
on ρ will not have power against such an alternative. For an abstract interpretation of the
generalized correlation ρ we refer to Section 4.3. In Section 4.6 we introduce a concrete
generalized correlation and elaborate on its interpretation.

Finally, basing the test on values of Tn is natural since the asymptotic behaviour is
readily available through Theorem 14, but other transformations of ρ̂n could be consid-
ered such as taking the coordinatewise absolute maximum maxk,l |(Σ−1/2ρ̂nΣ−1/2)k,l| =
‖Σ−1/2ρ̂nΣ−1/2‖∞.
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4.5 Uniform level and power results

The level and power results of Section 4.4 are pointwise over the space of hypotheses and
alternatives, i.e., they state level and power of the test when fixing a distribution P . In this
section we describe how these results can be extended to hold uniformly by strengthening
the statements in Assumption 5 to hold uniformly.

Assumption 6 For P0 ⊂ P there exist deterministic rate functions g and h tending to
zero as n→∞ and functions ξ, ξ′ : [0, 1]× [0, 1]d → R such that

(i) ‖FX|Z − F̂ (n)
X|Z‖T ,∞ ∈ OP0(g(n)) and ‖FY |Z − F̂ (n)

Y |Z‖′T ,∞ ∈ OP0(h(n)).

(ii) ||ξ − F̂ (n)
X|Z ||T c,∞ ∈ OP0(g(n)) and ||ξ′ − F̂ (n)

Y |Z ||′T c,∞ ∈ OP0(h(n)).

As before we note that Assumption 6 (i) is the result of Theorem 7 regarding our quantile
regression based estimator F̂ (m,n). Moreover, Assumption 6 (ii) is valid for F̂ (m,n) whenever
it satisfies Assumption 6 (i).

We will now describe the extensions of Theorem 14 and Theorem 18 that can be obtained
under Assumption 6. Below we write ⇒M to denote uniform convergence in distribution
over a set of distributionsM, and we use→M to denote uniform convergence in probability
over M. We refer to Appendix B for the formal definitions.

Theorem 21 Let ρ̂n be the statistic given by (8). Then we have:

(i) Under Assumption 6 with rate functions satisfying
√
ng(n)h(n)→ 0 it holds that

√
nρ̂n ⇒H0 N (0,Σ⊗ Σ)

where Σ is as in Theorem 14.

(ii) Under Assumption 6 it holds that ρ̂n →P0 ρ.

As a straightforward corollary of Theorem 21 (i) we get the following uniform level
result.

Corollary 22 The test Ψ̂n given by Definition 16 has asymptotic uniform level over H0,
i.e.,

lim sup
n→∞

sup
P∈H0

EP (Ψ̂n) = α,

given that Assumption 6 is satisfied with
√
ng(n)h(n)→ 0 as n→∞.

The pointwise power result of Theorem 19 does not extend directly to a uniform version
in the same way as the level result. For λ > 0 we let Aλ ⊂ Q0 be the set of alternatives for
which |(ρP )k`| > λ for at least one combination of k, ` = 1, . . . , q, where we emphasize that
ρP depends on the distribution P . We then have the following uniform power result as a
corollary of Theorem 21 (ii).
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Corollary 23 For all fixed levels α ∈ (0, 1) the test Ψ̂n given by Definition 16 has asymp-
totic uniform power against Aλ for each λ > 0, i.e.,

lim inf
n→∞

inf
P∈Aλ

EP (Ψ̂n) = 1,

under Assumption 6.

The reason we need to restrict to the class of alternatives Aλ for a fixed λ > 0 is the
following. If the infimum is taken over A0, then there could exist a sequence (Pm)∞m=1 ⊂ A0

of distributions such that (ρPm)k` 6= 0 for each m ≥ 1 but (ρPm)k` → 0 as m → ∞. As a
consequence nTn will not necessarily diverge in probability, which is crucial to the proof of
the corollary. However, when restricting to Aλ we are ensured that infP∈Aλ |(ρP )k`| ≥ λ > 0
for at least one combination of k, ` = 1, . . . , q.

We note that these uniform level and power results are not in contradiction with the
impossibility result of Shah and Peters (2020) mentioned in Section 1 because our results
apply to a restricted set of distributions, P0, where the conditional distribution functions
are estimable with sufficiently fast rate.

4.6 Trimmed Spearman correlation

We will now define a specific family of functions ϕ defining the generalized correlation that
can be shown to satisfy Assumption 4, which results in trimmed versions of the expected
conditional Spearman correlation. As mentioned in Section 4.3, ignoring Assumption 4 (i),
we could consider

ϕk(u) = ϕ`(u) =
√

12

(
u− 1

2

)
(10)

for u ∈ [0, 1] which results in ρk` being the expected conditional Spearman correlation of
X and Y given Z with respect to the distribution of Z. Drawing inspiration from (10) we
define a class of functions ϕ : [0, 1]→ Rq by letting

ϕk(u) = ck(u−mk)σk(u) (11)

such that each ϕk : [0, 1]→ R is determined by a Lipschitz continuous function σk : [0, 1]→
R with the support Tk of σk a compact interval in (0, 1),

∫ 1
0 σk(u)du = 1 and

mk =

∫
uσk(u)du and ck =

(∫
(u−mk)

2σk(u)2du

)−1/2
.

The choice (11) satisfies Assumption 4 (i) – (iii) by construction, and if e.g. Tk \∪` 6=kT` 6= ∅
the functions are also linearly independent. We call the resulting generalized correlation ρ
a trimmed Spearman correlation, and we refer to the functions σk as trimming functions.
Note that if the supports (Tk)qk=1 of (σk)

q
k=1 are choosen to be disjoint, then the covariance

matrix Σ of Theorem 14 is the identity matrix.
A starting point for choosing a trimming function σ is the normalized indicator

u 7→ (λ− µ)−11[µ,λ](u) (12)
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for u ∈ [0, 1] where 0 < µ < λ < 1 are trimming parameters. However, (12) is not a
valid trimming function, since it is not Lipschitz. Therefore, we consider a simple linear
approximation σ : [0, 1]→ R given by

σ(u) = Kf(u) and f(u) =





1, u ∈ [µ+ δ, λ− δ]
0, u ∈ [µ, λ]c

δ−1(u− µ), u ∈ [µ, µ+ δ)

δ−1(λ− u), u ∈ (λ− δ, λ]

(13)

and K = (λ − µ − δ)−1. Here 0 < δ < (λ − µ)/2 is a fixed parameter that determines
the accuracy of the approximation. It is elementary to verify that σ given by (13) is a
valid trimming function, i.e., σ is Lipschitz continuous with

∫
σ(u)du = 1 and support

[µ, λ] ⊂ (0, 1).

The interpretation of a generalised correlation ρ based on ϕ of the form (11) with
trimming function σ of the form (13) is as follows. The entry ρk` is an approximation
of the expected conditional Spearman correlation between the observations of X and Y ,
respectively, that lie in the Tk-quantile range of the distribution of X given Z and the T`-
quantile range of the distribution of Y given Z, respectively, with respect to the distribution
of Z. The matrix ρ then summarizes this type of dependence within different quantile ranges
of X and Y given Z.

4.7 Practical considerations

Throughout Sections 4.4 and 4.5 we have analyzed our proposed test for conditional inde-
pendence with an emphasis on modularity of the method regarding the choice of estimators

F̂
(n)
X|Z and F̂

(n)
Y |Z of the conditional distribution functions and the choice of the function

ϕ that defines the generalized correlation ρ of Section 4.3. This focus on the conceptual
assumptions displays the generality of the method, but it also leaves the practitioner of
conditional independence testing with a number of choices to be made. In this section we
summarize a set of choices to make the method work out-of-the-box.

Throughout the paper we have assumed that all random variables take values in the
unit interval, i.e., (X,Y, Z) ∈ [0, 1]d+2. This is not a restriction, since if e.g. X ∈ R we
can always apply a strictly increasing, continuous transformation t : R → [0, 1] to obtain
a new random variable X ′ = t(X) with values in [0, 1]. Moreover, the initial conditional
independence structure of (X,Y, Z) is preserved since the transformation is marginal on X
and bijective. The transformation t can be chosen to be e.g. the logistic function.

In principle, an arbitrary and fixed marginal transformation could be used for all vari-
ables, but we recommend to transform data to the unit interval via marginal empirical
distribution functions. This results in transformed variables known in the copula literature
as pseudo copula observations. The transformation creates dependence, similar to the de-
pendence created by other common preprocessing techniques such as centering and scaling,
which the theoretical analysis has not accounted for. We suggest, nevertheless, to use this
preprocessing technique in practise, and in the simulation study in Section 5 we use pseudo
copula observations since it reflects how a practitioner would transform the variables.
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To estimate the conditional distribution functions F̂
(m,n)
X|Z and F̂

(m,n)
Y |Z using Definition 2,

we suggest choosing τmin = 0.01 and τmax = 0.99 and form the equidistant grid (τk)
m
k=1 in

T = [τmin, τmax] with the number of gridpoints m = d√ne. We then suggest using a model
of the form (3) for both the quantile regression model QX|Z(τk | ·) and QY |Z(τk | ·) for each
k = 1, . . . ,m, where the bases h1 and h2 can be chosen to be e.g. an additive B-spline basis
for each component of Z.

To test the hypothesis of conditional independence we suggest using the Ψ̂n from Def-
inition 16 based on the estimated nonparametric residuals (Û1,i, Û2,i)

n
i=1. To this end we

choose q ≥ 1 and let τmin = λ0 < · · · < λq = τmax be an equidistant grid in T . We then
define the trimming function σk to have the form (13) with trimming parameters λk and
λk+1 and approximation parameter δ = 0.01 · (λk+1 − λk) for each k = 0, . . . , q − 1. We
then define (σk)

q
k=1 according to (11), compute the test statistic ρ̂n using (8) and compute

Ψ̂n as in Definition 16 using a desired significance level α ∈ (0, 1).

There are two non-trivial choices remaining. The first is the choice of bases h1 and h2
for the quantile regression models QX|Z(τk | z) = h1(z)

Tβτk and QY |Z(τk | z) = h2(z)
Tβτk .

Here the practitioner needs to make a qualified model selection. We recommend using a
flexible basis such as an additive B-spline basis, and perform penalized estimation using
(4) to avoid overfitting. The second choice is the dimension of the generalized correlation
q ≥ 1, which corresponds to a choice of independence test in the partial copula. Note that
the generalized correlation ρ as above is defined for any q ≥ 1, and there is conditional
dependence, X 6⊥⊥ Y | Z, if there exists q ≥ 1 for which ρ 6= 0. We suggest trying one or a
few, small values, e.g. q ∈ {1, . . . , 5}, and reject the hypothesis of conditional independence
if one of the tests rejects the hypothesis, but of course be aware of multiple testing issues.

5. Simulation Study

In this section we examine the performance of our conditional independence test Ψ̂n of
Definition 16, when combining it with the quantile regression based conditional distribution
function estimator F̂ (m,n) from Definition 2. Firstly, we verify the level and power results
obtained in Section 4.4 and Section 4.5 empirically. Secondly, we compare the test with
other conditional independence tests. The test was implemented in the R language (R Core
Team, 2021) using the quantreg package (Koenker, 2021) as the backend for performing
quantile regression. The implementation and code for producing the simulations can be
obtained from https://github.com/lassepetersen/partial-copula-CI-test.

5.1 Evaluation method

We will evaluate the tests by their ability to hold level when data is generated from a dis-
tribution where conditional independence holds, and by their power when data is generated
from a distribution where conditional independence does not hold. In order to make the
results independent of a chosen significance level we will base the evaluation on the p-values
of the tests.

If a test has valid level, then we expect the p-value to be asymptotically U [0, 1]-distributed.
In Sections 5.3 and 5.4 we evaluate the level by a Kolmogorov-Smirnov (KS) statistics as a
function of sample size n, which is independent of any specific significance level. A small KS
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statistic is an indication of valid level. To examine power we consider in Sections 5.3 and
5.4 the p-values of the test as a function of the sample size, where we expect the p-values
to tend to zero under the alternative of conditional dependence. Here a small p-value is an
indication of large power. In Section 5.5 we evaluate the power against a local alternative,
which shrinks with the sample size n toward the hypothesis of conditional independence
with rate n−

1
2 .

5.2 Data generating processes

This section gives an overview of the data generating processes that we use for benchmarking
and comparison. The first category consists of data generating processes of the form

X = f1(Z) + g1(Z) · ε1 and Y = f2(Z) + g2(Z) · ε2 (H)

where f1, f2, g1, g2 : Rd → R belong to some function class and ε1, ε2 are independent errors.
For data generating processes of type (H), conditional independence is satisfied. The second
category consists of data generating processes of the form

X = f1(Z) + g1(Z) · ε1 and Y = f2(Z,X) + g2(Z,X) · ε2 (A)

where again f1, g1 : Rd → R and f2, g2 : Rd+1 → R belong to some function class and
ε1, ε2 are independent errors. Under data generating processes of type (A), conditional
independence is not satisfied. We will consider four different data generating processes
corresponding to different choices of functions f1, g1, f2 and g2 and error distributions.

(1) For data generating processes H1 and A1 we let

fk(w1, . . . , wd) =
d∑

j=1

β1,k,jwj + β2,k,jw
2
j

gk(w1, . . . , wd) = exp


−

∣∣∣∣∣∣

d∑

j=1

α1,k,jwj + α2,k,jw
2
j

∣∣∣∣∣∣




for k = 1, 2 and real valued coefficients (α`,k,j , β`,k,j)`=1,2,k=1,2,j=1,...,d. Here each
Zj ∼ U [−1, 1] independently, ε1 follows an asymmetric Laplace distribution with
location 0, scale 1 and skewness 0.8, and ε2 follows a Gumpel distribution with location
0 and scale 1.

(2) For data generating processes H2 and A2 we let g1 = g2 = 1 and

fk(w1, . . . , wd) =

d∑

j=1

βk,jwj

for k = 1, 2 and real valued coefficients (βk,j)k=1,2,j=1,...,d. Here each Zj ∼ U [−1, 1]
independently and both ε1 and ε2 follow a N (0, 1)-distribution independently.
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(3) For data generating processes H3 and A3 we let g1 = g2 = 1 and

fk(w1, . . . , wd) =
d∑

j=1

β1,k,jwj + β2,k,jw
2
j

for k = 1, 2 and real valued coefficients (β`,k,j)`=1,2,k=1,2,j=1,...,d. Here each Zj ∼
U [−1, 1] independently and both ε1 and ε2 follow aN (0, 1)-distribution independently.

(4) For data generating processes H4 and A4 we let f1 = f2 = 0 and

gk(w1, . . . , wd) =

d∑

j=1

β1,k,jwj + β2,k,jw
2
j

for k = 1, 2 for real valued coefficients (β`,k,j)`=1,2,k=1,2,j=1,...,d. Here each Zj ∼
U [−1, 1] independently and both ε1 and ε2 follow aN (0, 1)-distribution independently.

Each time we simulate from data generating processes H1, . . . ,H4 we first draw the
coefficients of the functions fk, gk from a N (0, 1)-distribution in order to make the results
independent of a certain combination of parameters. When we simulate from the data
generating processes A1,A2 and A3 we first draw the coefficients of fk, gk to be either −1
or 1 with equal probability in order to fix the signal to noise ratio between the predictors
and responses. When simulating from A4 we simulate the coefficients of gk to be either −5
or 5, because the conditional dependence lies in the variance for A4, and a stronger signal
is needed to compare the power of the tests using the same samples sizes as for A1,A2 and
A3.

The data generating processes H2,H3,H4,A2,A3 and A4 can be shown to satisfy As-
sumption 3 that is needed for Corollary 9, since they are linear (in the parameters) location-
scale models with bounded covariates (Belloni and Chernozhukov, 2011, Section 2.5). The
processes H1 and A1 are not of this form, since g1 and g2 are nonlinear in the parameters.
However, we include these in the simulation study to test the robustness of the test.

5.3 Level and power of partial copula test

In this section we examine the level and power properties of the test Ψ̂n. We examine the
performance of the test on data generating processes H1 and A1 for dimensions d ∈ {1, 5, 10}
of Z. The test is performed as described in Section 4.7. As the quantile regression model we
use an additive model with a B-spline basis of each variable with 5 degrees of freedom, and
we try q ∈ {1, . . . , 5}. The result of the simulations can be seen in Figure 2. We observe
that for d = 1 all five tests obtain level asymptotically under H1, while for higher dimension
d ∈ {5, 10} the test with q = 4 has minor problems holding level. We also see that the p-
values for all five tests tend to zero as the sample size increases under A1. The convergence
rate of the p-value depends on the dimension d such that a higher dimension gives a slower
convergence rate. In conclusion we observe that our test holds level under a complicated
data generating distribution (H1), where there is a nonlinear conditional mean and variance
dependence and skewed error distributions with super-Gaussian tails. Moreover, the test
has power against the alternative of conditional dependence (A1), however, for d = 1 we
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Figure 2: Top: KS statistic for equality with a U [0, 1]-distribution of the p-values of the
two tests computed from 500 simulations from H1 for each combination of n
and d. Bottom: Average p-values of the two tests separately computed over
200 simulations from A1 for each combination of n and d. Dashed line indicates
the common significance level 0.05. For visual purposes all p-values have been
truncated at 10−10.

see that q = 5 gives the best power, while q = 1 gives the best power for d ∈ {5, 10}. The
testing procedure also displays robustness to the fact that the quantile regression models
are misspecified.

5.4 Comparison with other tests

We now compare the partial copula based test Ψ̂n with other nonparametric tests. We will
compare with a residual based method, since this is another class of conditional indepen-
dence test based on nonparametric regression. In order to describe this test we let

R1,i = Xi − f̂(Zi) and R2,i = Yi − ĝ(Zi)

for i = 1, . . . , n be the residuals obtained when performing conditional mean regression f̂ of
f(z) = E(X | Z = z) and ĝ of g(z) = E(Y | Z = z) obtained from a sample (Xi, Yi, Zi)

n
i=1.

We compare the following conditional independence tests:
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• GCM: The Generalised Covariance Measure which tests for vanishing correlation
between the residuals R1 and R2 given as above (Shah and Peters, 2020).

• NPN correlation: Testing for vanishing partial correlation in a nonparanormal dis-
tribution (Harris and Drton, 2013). This is a generalization of the partial correlation,
which assumes a Gaussian dependence structure, but allows for arbitrary marginal
distributions.

• PC: Our partial copula based test Ψ̂n for q ∈ {1, 3, 5} as described in Section 4.7.

We consider the behavior of the tests under H2,A2,H3,A3,H4 and A4. For fairness of
comparison we choose our quantile and mean regression models to be the correct model
class such that the tests perform at their oracle level, e.g., for H3 we fit additive models
with polynomial basis of degree 2. We fix the dimension d of Z to be 3 in all simulations
for simplicity. The results of the simulations can be seen in Figure 3.

Under H2 all five tests hold level, and we see that the NPN test has greatest power
against A2 followed by the GCM and Ψ̂n with q = 1, while Ψ̂n with q ∈ {3, 5} does not
have much power against A2. In order to intuitively understand the effect of q see Figure
4. We see that in the estimated partial copula the dependence is captured by the overall
correlation, while dividing [τmin, τmax] × [τmin, τmax] into subregions does not reveal finer
dependence structure. Hence q = 1 is suitable to detect the dependence for A1.

Under H3 both the GCM test and Ψ̂n with q ∈ {1, 3, 5} hold level, but the NPN test
does not hold level under H3, which is due to the nonlinear response-predictor relationship.
However, since both the GCM and Ψ̂n test takes the nonlinearity into account, they can
effectively filter away the Z-dependence. The NPN test has greatest power against the
alternative A3 following by Ψ̂n with q = 1 and the GCM test. In Figure 4 we again see
that the dependence in the estimated partial copula is described by the overall correlation,
while dividing into subregions results a generalized correlation with elements that are close
to zero, i.e., here q = 1 is suitable for capturing the dependence.

Under H4, all test hold level. Note that the NPN test holds level even though there is a
nonlinear conditional variance relation, since this is still a nonparanormal distribution. We
also see that neither the GCM test nor the NPN test has power against A4, while Ψ̂n has
some power against A4 with the greatest power for q = 3. In Figure 4 we see that there is a
clear dependence in the estimated partial copula, but that the overall correlation is close to
zero. However, when dividing into subregions the generalized correlation is able to detect
the dependencies in the tails of the distributions.

5.5 Power under local alternatives

Though GCM did not have power against the specific alternative A4, it maintains level
and it has power against a broad class of alternatives. To understand better when Ψ̂n can
be expected to have greater power than GCM, we consider a simulation, which is a small
variation of the simulations presented in Section 5.2.

The dimension is fixed as d = 1, Z ∼ U([0, 1]) is uniformly distributed on [0, 1], ε1, ε2
and W are independent and N (0, 1)-distributed, and

X = (βZ2 + 1)ε1 + γW and Y = (βZ2 + 1)ε2 + γW (A)
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Figure 3: Left column: KS statistic for equality with a U [0, 1]-distribution of the p-values of
the five tests computed from 500 simulations from H2,H3 and H4, respectively, for
each sample size n. Right column: Average p-values of the five tests separately
computed over 200 simulations from A2,A3 and A4, respectively, for each sample
size n. For all simulations the dimension is fixed at d = 3. Dashed line indicates
the common significance level 0.05. For visual purposes all p-values have been
truncated at 10−10.

for parameters β, γ ∈ R. Conditionally on Z, the distribution of (X,Y ) is a bivariate
Gaussian distribution, and X and Y are conditionally independent if and only if γ = 0. We
examine level and power by simulating 500 data sets for sample sizes n ∈ {100, 400, 1600}
and all combinations of parameters β ∈ {0, 1, 5, 10, 15, 20}, and local alternatives

γ2 =
γ20√
n

for γ20 ∈ {0, 50, 100, 150}. Note that f(z) = E(X | Z = z) = 0 and g(z) = E(Y | Z = z) = 0,
which is exploited for GCM instead of estimating f and g. This should only increase the
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Figure 4: Estimated partial copula (Û1,i, Û2,i)
n
i=1 from one realization from each of the data

generating processes A2,A3 and A4 for d = 3 and n = 500.

power of GCM relative to fitting any model of the conditional expectations. We perform
the test Ψ̂n as described in Section 4.7 using q = 1, and the quantile regression model is
fitted using a polynomial basis of degree 2.

Figure 5 shows the results of the simulation. Both GCM and Ψ̂n maintain level for
γ20 = 0. Ψ̂n has comparable or superior power relative to GCM in all other cases. Both
tests have decreasing power as a function of β, but Ψ̂n maintains power even for large values
of β, where GCM has almost no power. The power of Ψ̂n against the local alternatives
increases with the sample size, which shows how the increased precision for larger samples
of the quantile regression based distribution functions improves power. We do not see the
same for GCM, partly because no mean value model is fitted.

As β quantifies the conditional variance heterogeneity of X and Y given Z, we conclude
that though GCM remains a valid test under conditional variance heterogeneity, its test
statistic does not adequately account for the heterogeneity, and GCM has inferior power
under local alternatives when compared to Ψ̂n.

6. Discussion

The first main contribution of this paper is an estimator of conditional distribution func-
tions F̂ (m,n) based on quantile regression. We have shown that the estimator is pointwise
(uniformly) consistent over a set of distributions P0 ⊂ P given that the quantile regres-
sion procedure is pointwise (uniformly) consistent over P0. Moreover, we showed that the
convergence rate of the quantile regression procedure can be transferred directly to the
estimator F̂ (m,n).

The second main contribution of this paper is an analysis of a nonparametric test for
conditional independence based on the partial copula construction. We introduced a class
of tests given in terms of a generalized correlation dependence measure ρ with the lead-
ing example being a trimmed version of the Spearman correlation. We showed that the
test achieves asymptotic pointwise (uniform) level and power over P0 given that the con-
ditional distribution function estimators are pointwise (uniformly) consistent over P0 with
rate functions gP and hP satisfying

√
ngP (n)hP (n)→ 0. The partial copula has previously
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Figure 5: Average p-values of the three tests separately computed over 500 simulations for
different values of the parameters β and γ0 and different sample sizes n. The
value γ20 = 0 is equivalent to conditional independence. Other values correspond
to the local alternatives γ2 = γ20/

√
n. The values of β determine the amount

of heterogeneity of the mean regression residual variances with β = 0 meaning
constant residual variance and β = 20 meaning substantial heterogeneity. Dashed
line indicates the common significance level 0.05. For visual purposes all p-values
have been truncated at 10−10.

been considered for conditional independence testing in the literature, however, to the best
of our knowledge, the results presented here are the first to explicitly connect the consis-
tency requirements of the conditional distribution function estimators to level and power
properties of the test.

Lastly, we established through a simulation study that the proposed test is sound under
complicated data generating distributions, and that it has power comparable to or even
better than other state-of-the-art nonparametric conditional independence tests. In partic-
ular, we demonstrated that our test has superior power against alternatives with variance
heterogeneity between X and Y given Z when compared to conditional independence tests
based on conventional residuals. We note that due to Daudin’s lemma, tests based on con-
ventional residuals can obtain power against any alternative if suitable transformations of
X and Y are considered. In particular, if X2 and Y 2 were used in our simulation study,
GCM would have power against A4. We tested the use of GCM in combination with X2

and Y 2 in all our simulations (data not shown), and though it had some power against
A4, it was comparable to or inferior to just using GCM in all other simulations. Thus to
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obtain good power properties, the specific choice of transformation appears important and
to depend on the data generating distribution.

An important point about the test is the rate requirement
√
ngP (n)hP (n) → 0 needed

to achieve asymptotic level. The product structure means that the test is sound under
quantile regression models with slower consistency rates than the usual parametric n−1/2-
rate. This opens up the methodology to nonparametric machine learning models. An
interesting direction of research would be to empirically assess the performance of the test
using machine learning inspired quantile regression models, such as deep neural networks,
where explicit consistency rates are not available. We hypothesize that the method will still
perform well in these scenarios due to the weak consistency requirement.

In this paper we have considered univariate X and Y . A possible extension of the
test is to allow X ∈ [0, 1]r1 and Y ∈ [0, 1]r2 with r1, r2 ≥ 1, and then consider the non-
parametric residual U1 ∈ [0, 1]r1 of X given Z by performing coordinatewise probability
integral transformations U1,k = FXk|Z(Xk | Z) for k = 1, . . . , r1, and similarly for con-
structing the nonparametric residual U2 ∈ [0, 1]r2 of Y given Z. Conditional independence
X ⊥⊥ Y | Z then implies pairwise independence of U1,k and U2,l for each k = 1, . . . , r1
and l = 1, . . . , r2. Combining our proposed test statistics for each such pair yields an
r1r2q

2-dimensional test statistic, whose distribution under the hypothesis of conditional in-
dependence will be asymptotically Gaussian with mean 0. Its covariance matrix will only
be partially known, though, due to the potential dependence between the pairs, but the
unknown part could be estimated from the estimated nonparametric residuals. The mul-
tivariate statistic could be aggregated into a univariate test statistic in various ways, e.g.
by a quadratic transformation as in (9), or by the maximum of the absolute values of its
coordinates. In the low-dimensional case for fixed r1 and r2 our results would carry over
immediately, and we expect that using the maximum could lead to high-dimensional results
similar to Theorem 9 by Shah and Peters (2020).

A key property of the partial copula is that the nonparametric residuals U1 and U2 are
independent under conditional independence and not only uncorrelated, which is the case
for conventional residuals in additive noise models. Therefore, an important question is
whether asymptotic level and power guaranties can be proven, when combining the partial
copula with more general independence tests. In this paper we have focused on dependence
measures of the form ρ = EP (ϕ(U1)ϕ(U2)

T ) and tests based on

ρ̂n =
1

n

n∑

i=1

ϕ(Û1,i)ϕ(Û2,i)
T

because it gives a flexible and general test for independence in the partial copula, it can be
computed in linear time in the size of data, and most importantly its asymptotic theory is
standard and easy to establish and apply. It also clearly illustrates the transfer of consistency
of the conditional distribution function estimators to properties of the test. It is ongoing
work to establish a parallel asymptotic theory for dependence measures of the form θ =
EP (h(U1, U2)), where h is a kernel function, and whose estimators are U -statistics. This
could potentially yield more powerfull tests against complicated alternatives of conditional
dependence, but at the prize of increased computational complexity.
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Appendix A. Proofs

This appendix gives proofs of the main results of the paper. Throughout the proofs we will
ignore the dependence of certain terms on the sample size to ease notation, e.g. we write

Û1,i instead of Û
(n)
1,i and q̂k,z instead of q̂

(n)
k,z .

A.1 Proof of Proposition 1

We need to bound the supremum

||F − F̃ (m)||T ,∞ = sup
z∈[0,1]d

sup
t∈Q(T |z)

|F (t | z)− F̃ (m)(t | z)|.

First we fix z ∈ [0, 1]d and inspect the inner supremum. By construction we have

F (qk,z | z) = F̃ (m)(qk,z | z) = τk

for k = 1, . . . ,m. Furthermore, since both F and F̃ (m) are continuous and increasing in
t ∈ [0, 1] we have that

sup
t∈[qk,z ,qk+1,z ]

|F (t | z)− F̃ (m)(t | z)| ≤ τk+1 − τk

for each k = 1, . . . ,m−1. Since Q(T | z) = [qmin,z, qmax,z] =
⋃m−1
k=1 [qk,z, qk+1,z] we now have

sup
t∈Q(T |z)

|F (t | z)− F̃ (m)(t | z)| = max
k=1,...,m−1

sup
t∈[qk,z ,qk+1,z ]

|F (t | z)− F̃ (m)(t | z)|

≤ max
k=1,...,m−1

(τk+1 − τk) = κm.

The result now follows from taking supremum over z ∈ [0, 1]d as the right hand side of the
inequality does not depend on z. �

A.2 Proof of Proposition 4

We need to bound the supremum

‖F̃ (m) − F̂ (m,n)‖T ,∞ = sup
z∈[0,1]d

sup
t∈Q(T |z)

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|.

Our proof strategy is the following. First we evaluate the inner supremum over t ∈ Q(T | z)
analytically to obtain a bound in terms of the quantile regression prediction error. Then
we will evaluate the outer supremum over z ∈ [0, 1]d and use the assumed consistency from
Assumption 1. First define the two quantities

A(m,n, z) := κm ·
maxk=1,...,m |qk,z − q̂(n)k,z |

mink=1,...,m−1(qk+1,z − qk,z)
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and

B(m,n, z) := κm ·
maxk=1,...,m |qk,z − q̂(n)k,z |

mink=1,...,m−1(q̂
(n)
k+1,z − q̂

(n)
k,z )

.

We then have the following key result regarding the inner supremum over t ∈ Q(T | z).

Proposition 24 Let Assumption 1 (i) be satisfied. Then for all P ∈ P0 and ε > 0 there
exists N ≥ 1 such that for all n ≥ N ,

sup
t∈Q(T |z)

|F̃ (m)(t | z)− F̂ (m,n)(t | z)| ≤ max{A(m,n, z), B(m,n, z)}

for all z ∈ [0, 1]d and all grids (τk)
m
k=1 in T with probability at least 1− ε.

We need a number of auxilliary results before proving Proposition 24. We start by prov-
ing the following key lemma that reduces the number of distinct cases of relative positions
of the true conditional quantiles qk,z and the estimated conditional quantiles q̂k,z.

Lemma 25 Let Assumption 1 (i) be satisfied. Then for each P ∈ P0 and ε > 0 there exists
N ≥ 1 such that for all n ≥ N we have that q̂k,z ∈ (qk−1,z, qk+1,z) for each k = 1, . . . ,m
and z ∈ [0, 1]d and for all grids (τk)

m
k=1 in T with probability at least 1− ε.

Proof Fix a distribution P ∈ P0. Let G be the set of all grids (τk)
m
k=1 in T . Then

sup
G

sup
z∈[0,1]d

max
k=1,...,m

|qk,z − q̂(n)k,z | ≤ sup
z∈[0,1]d

sup
τ∈T
|Q(τ | z)− Q̂(n)(τ | z)| P→ 0

under Assumption 1 (i). Since qk,z ∈ (qk−1,z, qk+1,z) for each k = 1, . . . ,m and z ∈ [0, 1]d

for all grids (τk)
m
k=1 in T the result follows.

Next we have some lemmas giving the supremum of certain functions over certain in-
tervals that will be useful in the main proof.

Lemma 26 Let a ≤ b < c ≤ d and f(t) = t−a
c−a− t−b

d−b . Then supt∈[b,c] f(t) = max{ b−ac−a ,
d−c
d−b}.

Proof Note that f is a linear function. Thus the supremum is obtained in one of the
intervals endpoints, i.e., supt∈[b,c] f(t) = max{f(b), f(c)}. We see that

f(b) =
b− a
c− a and f(c) = 1− c− b

d− b = 1− c− d+ d− b
d− b =

d− c
d− b ,

which shows the result.

Lemma 27 Let a < b ≤ c < d and f(t) = α + β · t−bd−b − α · t−ac−a where α, β > 0. Then we

have supt∈[b,c] f(t) = max{α · c−bc−a , β · c−bd−b}.
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Proof The function f is a linear function, and hence the supremum is obtained in one of
the interval endpoints. We see that

f(b) = α− α · b− a
c− a = α · c− b

c− a and f(c) = β · c− b
d− b ,

which shows the claim.

Lemma 28 Let a ≤ b < c < d and f(t) = |g(t)| where g(t) = t−b
c−b − t−a

d−a . Then we have

that supt∈[b,c] f(t) = max{ b−ad−a ,
d−c
d−a}.

Proof Note that f(t) is a convex function. Therefore the supremum of f(t) is obtained in
one of the interval endpoints. We see that

f(b) =

∣∣∣∣
b− b
c− b −

b− a
d− a

∣∣∣∣ =

∣∣∣∣−
b− a
d− a

∣∣∣∣ =
b− a
d− a

and

f(c) =

∣∣∣∣
c− b
c− b −

c− a
d− a

∣∣∣∣ =

∣∣∣∣1−
c− a
d− a

∣∣∣∣ =

∣∣∣∣1−
c− d+ d− a

d− a

∣∣∣∣ =
d− c
d− a

which was what we wanted.

We are now ready to show Proposition 24.

Proof [Proof (of Proposition 24)]

We will compute the supremum over t ∈ Q(T | z) = [qmin,z, qmax,z] as the maximum of
the suprema over the intervals [qk,z, qk+1,z] for k = 1, . . . ,m− 1, i.e.,

sup
t∈Q(T |z)

|F̃ (m)(t | z)− F̂ (m,n)(t | z)| = max
k=1,...,m−1

sup
t∈[qk,z ,qk+1,z ]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|.

This is useful since on each interval of the form [qk,z, qk+1,z] we have that F̃ (m)(· | z) is a

linear function, while F̂ (m,n)(· | z) is a piecewise linear function.

First fix a distribution P ∈ P0 and ε > 0. Using Lemma 25 we choose N ≥ 1 such
that q̂k,z ∈ (qk−1,z, qk+1,z) for k = 1, . . . ,m − 1 and z ∈ [0, 1]d for each grid (τk)

m
k=1 in T

with probability at least 1 − ε. Now fix a k = 1, . . . ,m − 1 such that we will examine
the supremum on [qk,z, qk+1,z]. The relative position of the true and estimated conditional
quantiles can be divided into four cases:

1) qk,z ≥ q̂k,z and qk+1,z ≥ q̂k+1,z.

2) qk,z ≥ q̂k,z and qk+1,z < q̂k+1,z.

3) qk,z < q̂k,z and qk+1,z ≥ q̂k+1,z.

4) qk,z < q̂k,z and qk+1,z < q̂k+1,z.

32

77



Testing Conditional Independence via Quantile Regression

We start with case 1). First we compute the supremum over t ∈ [qk,z, q̂k+1,z] and then over
t ∈ [q̂k+1,z, qk+1,z]. We have that

|F̃ (m)(t | z)− F̂ (m,n)(t | z)| = (τk+1 − τk)
(

t− q̂k,z
q̂k+1,z − q̂k,z

− t− qk,z
qk+1,z − qk,z

)

for t ∈ [qk,z, q̂k+1,z]. Hence we can compute the supremum as

sup
t∈[qk,z ,q̂k+1,z ]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= (τk+1 − τk) max

{
qk,z − q̂k,z
q̂k+1,z − q̂k,z

,
qk+1,z − q̂k+1,z

qk+1,z − qk,z

}

≤ κm max

{
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(q̂k+1,z − q̂k,z)
,

maxk=1,...,m |qk,z − q̂k,z|
mink=1,...,m−1(qk+1,z − qk,z)

}

where we have used Lemma 26. Now we see that

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= (τk+1 − τk) + (τk+2 − τk+1)
t− q̂k+1,z

q̂k+2,z − q̂k+1,z
− (τk+1 − τk)

t− qk,z
qk+1,z − qk,z

for t ∈ [q̂k+1,z, qk+1,z]. We compute the supremum to be

sup
t∈[q̂k+1,z ,qk+1,z ]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= max

{
(τk+1 − τk)

q̂k+1,z − qk+1,z

qk+1,z − qk,z
, (τk+2 − τk+1)

q̂k+1,z − qk+1,z

q̂k+2,z − q̂k+1,z

}

≤ κm max

{
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(q̂k+1,z − q̂k,z)
,

maxk=1,...,m |qk,z − q̂k,z|
mink=1,...,m−1(qk+1,z − qk,z)

}

where we have used Lemma 27. This covers case 1).

Now let us proceed to case 2). Here we can evaluate the supremum over t ∈ [qk,z, qk+1,z]
directly. We have that

|F̃ (m)(t | z)− F̂ (m,n)(t | z)| = (τk+1 − τk)
∣∣∣∣

t− qk,z
qk+1,z − qk,z

− t− q̂k,z
q̂k+1,z − q̂k,z

∣∣∣∣ .

The supremum can now be evaluated using Lemma 28 to be

sup
t∈[qk,z ,qk+1,z ]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= (τk+1 − τk) max

{
qk,z − q̂k,z
q̂k+1,z − q̂k,z

,
q̂k+1,z − qk+1,z

q̂k+1,z − q̂k,z

}

≤ κm
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(q̂k+1,z − q̂k,z)
.
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In case 3) we need to divide into three cases, namely when t ∈ [qk,z, q̂z,k], t ∈ [q̂k,z, q̂k+1,z]
and t ∈ [q̂k+1,z, qk+1,z]. In the first case we have

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= (τk − τk−1) + (τk+1 − τk)
t− qk,z

qk+1,z − qk,z
− (τk − τk−1)

t− q̂k−1,z
q̂k,z − q̂k−1,z

for t ∈ [qk,z, q̂k,z]. Therefore we have

sup
t∈[qk,z ,q̂z,k]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

≤ max

{
(τk − τk−1)

q̂k,z − qk,z
q̂k,z − q̂k−1,z

, (τk+1 − τk)
q̂k,z − qk,z
qk+1,z − qk,z

}

≤ κm max

{
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(q̂k+1,z − q̂k,z)
,

maxk=1,...,m |qk,z − q̂k,z|
mink=1,...,m−1(qk+1,z − qk,z)

}

where we have used Lemma 27. In the second case we have

|F̃ (m)(t | z)− F̂ (m,n)(t | z)| = (τk+1 − τk)
∣∣∣∣

t− qk,z
qk+1,z − qk,z

− t− q̂k,z
q̂k+1,z − q̂k,z

∣∣∣∣ ,

for t ∈ [q̂k,z, q̂k+1,z] and therefore we obtain

sup
t∈[q̂k,z ,q̂k+1,z ]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

≤ (τk+1 − τk) max

{
q̂k,z − qk,z
qk+1,z − qk,z

,
qk+1,z − q̂k+1,z

qk+1,z − qk,z

}

≤ κm ·
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(qk+1,z − qk,z)

where we have used Lemma 28. In the third case we have

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= (τk+1 − τk) + (τk+2 − τk+1)
t− q̂k+1,z

q̂k+2,z − q̂k+1,z
− (τk+1 − τk)

t− qk,z
qk+1,z − qk,z

for t ∈ [q̂k+1,z, qk+1,z]. So we obtain

sup
t∈[q̂k+1,z ,qk+1,z ]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= max

{
(τk+1 − τk)

q̂k+1,z − qk+1,z

qk+1,z − qk,z
, (τk+2 − τk+1)

q̂k+1,z − qk+1,z

q̂k+2,z − q̂k+1,z

}

≤ κm max

{
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(q̂k+1,z − q̂k,z)
,

maxk=1,...,m |qk,z − q̂k,z|
mink=1,...,m−1(qk+1,z − qk,z)

}

where we have used Lemma 27.
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Let us now examine case 4). Here we have the two sub cases t ∈ [qk,z, q̂k,z] and t ∈
[q̂k,z, qk+1,z]. First we see that

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= (τk − τk−1) + (τk+1 − τk)
t− qk,z

qk+1,z − qk,z
− (τk − τk−1)

t− q̂k−1,z
q̂k,z − q̂k−1,z

for t ∈ [qk,z, q̂k,z]. Thus we have

sup
t∈[qk,z ,q̂z,k]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

≤ max

{
(τk − τk−1)

q̂k,z − qk,z
q̂k,z − q̂k−1,z

, (τk+1 − τk)
q̂k,z − qk,z
qk+1,z − qk,z

}

≤ κm max

{
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(q̂k+1,z − q̂k,z)
,

maxk=1,...,m |qk,z − q̂k,z|
mink=1,...,m−1(qk+1,z − qk,z)

}

where we have used 27. Now in the second case we have

|F̃ (m)(t | z)− F̂ (m,n)(t | z)| = (τk+1 − τk)
(

t− qk,z
qk+1,z − qk,z

− t− q̂k,z
q̂k+1,z − q̂k,z

)

for t ∈ [q̂k,z, qk+1,z]. From this we get the supremum to be

sup
t∈[q̂k,z ,qk+1,z ]

|F̃ (m)(t | z)− F̂ (m,n)(t | z)|

= (τk+1 − τk) max

{
q̂k,z − qk,z
qk+1,z − qk,z

,
qk+1,z − q̂k+1,z

q̂k+1,z − q̂k,z

}

≤ κm max

{
maxk=1,...,m |qk,z − q̂k,z|

mink=1,...,m−1(q̂k+1,z − q̂k,z)
,

maxk=1,...,m |qk,z − q̂k,z|
mink=1,...,m−1(qk+1,z − qk,z)

}

where we have used Lemma 26. Taking maximum of all cases and sub cases yields the
desired result.

We will now move on to tackling the problem of controlling the outer supremum over z ∈
[0, 1]d. First we prove the following technical lemma that gives control over the denominators
in A(m,n, z) and B(m,n, z).

Lemma 29 Let Assumption 1 be satisfied. Let γm := mink=1,...,m−1(τk+1 − τk) denote the
finest subinterval of the grid. Then for each P ∈ P0 we have

min
k=1,...,m−1

(qk+1,z − qk,z) ≥
γm
CP

for almost all z ∈ [0, 1]d for each grid (τk)
m
k=1 in T . Also for all ε > 0 there is N ≥ 1 such

that for all n ≥ N we have

min
k=1,...,m−1

(q̂k+1,z − q̂k,z) ≥
γm

3CP

for almost all z ∈ [0, 1]d for each grid (τk)
m
k=1 in T with probability at least 1− ε.
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Proof Fix a distribution P ∈ P0. We see that

τk+1 − τk = F (qk+1,z | z)− F (qk,z | z)

=

∫ qk+1,z

qk,z

f(x | z)dx ≤ CP · (qk+1,z − qk,z)

for each k = 1, . . . ,m− 1 and almost all z ∈ [0, 1]d for each grid (τk)
m
k=1 in T . Here we have

used Assumption 1 (ii). Rearranging and taking minimum, we have that

min
k=1,...,m−1

(qk+1,z − qk,z) ≥ min
k=1,...,m−1

τk+1 − τk
CP

=
γm
CP

for almost all z ∈ [0, 1]d and each grid (τk)
m
k=1 in T . Now let ε > 0 be given. Choose N ≥ 1

such that for all n ≥ N we have

P

(
q̂k,z ∈

(
qk,z −

γm
3CP

, qk,z +
γm
3C

))
≥ 1− ε

for all k = 1, . . . ,m and all z ∈ [0, 1]d for each (τk)
m
k=1 in T , which is possible due to

Assumption 1 (i). In this case

q̂k,z ≤ qk,z +
γm

3CP
and q̂k+1,z ≥ qk+1,z −

γm
3CP

for all k = 1, . . . ,m− 1 and z ∈ [0, 1]d with probability at least 1− ε. Thus for n ≥ N ,

min
k=1,...,m−1

(q̂k+1,z − q̂k,z) ≥ min
k=1,...,m−1

(
qk+1,z −

γm
3CP

−
(
qk,z +

γm
3CP

))

= min
k=1,...,m−1

(
qk+1,z − qk,z −

2γm
3CP

)

≥ γm
CP
− 2γm

3CP
=

γm
3CP

for all z ∈ [0, 1]d and each grid (τk)
m
k=1 in T with probability at least 1− ε.

We are now ready to prove the main result.
Proof [Proof (of Proposition 4)]

Fix a distribution P ∈ P0. Let ε ∈ (0, 1) be given. Firstly, we use Proposition 24 to
choose N1 ≥ 1 such that the event

E1 =

(
sup

t∈Q(T |z)
|F̃ (m)(t | z)− F̂ (m,n)(t | z)| ≤ max{A(m,n, z), B(m,n, z)}

)

has probability at least 1 − ε/3 for all n ≥ N1 and every grid (τk)
m
k=1 in T . Secondly,

according to Lemma 29 we have that

min
k=1,...,m−1

(qk+1,z − qk,z) ≥
γm
CP
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and we can choose N2 ≥ 1 such that the event

E2 =

(
min

k=1,...,m−1
(q̂k+1,z − q̂k,z) ≥

γm
3CP

)

has probability at least 1− ε/3 for all n ≥ N2 and every grid (τk)
m
k=1 in T . Thirdly, we can

choose N3 ≥ 1 and M ′P > 0 such that the event

E3 =

(
supz∈[0,1]d maxk=1,...,m |qk,z − q̂k,z|

gP (n)
≤M ′P

)

has probability at least 1− ε/3 for all n ≥ N3 and every (τk)
m
k=1 in T using Assumption 1

(i). Now we note that on the event E := E1 ∩ E2 ∩ E3 we have

‖F̃ (m) − F̂ (m,n)‖T ,∞ ≤ sup
z∈[0,1]d

max{A(m,n, z), B(m,n, z)}

= 3CP ·
κm
γm

sup
z∈[0,1]d

max
k=1,...,m

|qk,z − q̂k,z|

≤ 3CP ·M ′P · gP (n)

with probability P (E) ≥ 1 − ε for all n ≥ N and every grid (τk)
m
k=1 in T where N :=

max{N1, N2, N3}. Here we have used that κm/γm = 1 due to the grids being equidistant.
We can now set MP := 3CP ·M ′P such that

P

(
‖F̃ (m) − F̂ (m,n)‖T ,∞

gP (n)
> MP

)
< ε

whenever n ≥ N . This shows that ‖F̃ (m) − F̂ (m,n)‖T ,∞ ∈ OP (gP (n)) for every equidistant
grid (τk)

m
k=1 in T as wanted.

A.3 Proof of Theorem 5

According to Corollary 3 we have

‖F − F̂ (mn,n)‖∞ ≤ κmn + ‖F̃ (mn) − F̂ (mn,n)‖∞.

Here ‖F̃ (mn)− F̂ (mn,n)‖∞ ∈ OP (gP (n)) for each equidistant grid (τk)
mn
k=1 in T due to Propo-

sition 4. Since we have assumed that κmn ∈ o(gP (n)) we have the result. �

A.4 Proof of Proposition 6

The proof follows immediately from the proof of Proposition 4 and the stronger Assumption
2 in the following way. Note that the statement of Lemma 25 holds uniformly over P ∈ P0
under Assumption 2 (i). Therefore Proposition 24 also holds uniformly over P ∈ P0.
Furthermore, the result of Lemma 29 also holds uniformly in P ∈ P0 under Assumption
2. Therefore the probability of the events E1, E2 and E3 can be controlled uniformly over
P ∈ P0 from which the result follows. �
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A.5 Proof of Theorem 7

The corollary follows from Proposition 6 using the same argument as in the proof of Theorem
5. �

A.6 Proof of Corollary 9

Using Theorem 8 we have that

sup
z∈[0,1]d

sup
τ∈Q
|Q(τ | z)− Q̂(τ | z)| = sup

z∈[0,1]d
sup
τ∈Q
|h(z)T (βτ − β̂τ )|

≤ sup
z∈[0,1]d

‖h(z)‖2 sup
τ∈Q
‖βτ − β̂τ‖2

∈ OP
(√

sn log(p ∨ n)

n

)

since supz∈[0,1]d ‖h(z)‖2 <∞ because [0, 1]d is compact and h is continuous. �

A.7 Proof of Proposition 11

Assume that X ⊥⊥ Y | Z. Then it also holds that (X,Z) ⊥⊥ (Y,Z) ⊥⊥ Z and thus
U1 ⊥⊥ U2 | Z. Letting f denote a generic density function, we now have that

f(u1, u2) =

∫
f(u1, u2 | z)f(z)dz =

∫
f(u1 | z)f(u2 | z)f(z)dz

=

∫
f(u1)f(u2)f(z)dz = f(u1)f(u2)

for all u1, u2 ∈ [0, 1], where we have used Proposition 10. �

A.8 Proof of Theorem 14

Before proving the theorem, we will supply a lemma that will aid us during the proof.

Lemma 30 Let F̂
(n)
X|Z and F̂

(n)
Y |Z satisfy Assumption 5. Then

‖ϕk ◦ FX|Z − ϕk ◦ F̂ (n)
X|Z‖∞ ∈ OP (gP (n)) and ‖ϕk ◦ FY |Z − ϕk ◦ F̂ (n)

Y |Z‖∞ ∈ OP (hP (n))

for each k = 1, . . . , q given that ϕ satisfies Assumption 4.

Proof We only show the first statement. Fix k = 1, . . . , q. We need to control the
supremum

sup
z∈[0,1]d

sup
t∈[0,1]

|ϕk(FX|Z(t | z))− ϕk(F̂ (n)
X|Z(t | z))|.

We will divide the supremum over t ∈ [0, 1] into two cases. Namely, when t ∈ Q(T | z) =
[qmin,z, qmax,z] and when t ∈ Q(T c | z) = [qmin,z, qmax,z]

c. First we see that

sup
z∈[0,1]d

sup
t∈Q(T |z)

|ϕk(FX|Z(t | z))− ϕk(F̂ (n)
X|Z(t | z))|

≤ Lk · ‖FX|Z − F̂ (n)
X|Z‖T ,∞ ∈ OP (gP (n))
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where Lk is the Lipschitz constant of ϕk under Assumption 4 (ii). Here we have used the
consistency in Assumption 5 (i). Next we examine the supremum over t ∈ Q(T c | z). First
note that FX|Z(t | z) ∈ [τmin, τmax]c whenever t ∈ Q(T c | z). Also recall that the support
of ϕk is Tk ⊂ T = [τmin, τmax]. Therefore ϕk(FX|Z(t | z)) = 0 for t ∈ Q(T c | z). Hence we
have

sup
z∈[0,1]d

sup
t∈Q(T c|z)

|ϕk(FX|Z(t | z))− ϕk(F̂ (n)
X|Z(t | z))| = sup

z∈[0,1]d
sup

t∈Q(T c|z)
|ϕk(F̂ (n)

X|Z(t | z))|.

By Assumption 5 (i) we know that

F̂
(n)
X|Z(qmin,z | z) P→ τmin and F̂

(n)
X|Z(qmax,z | z) P→ τmax

for all z ∈ [0, 1]d. Since F̂
(n)
X|Z(· | z) is increasing we thus know that the limit ξ(t, z) from

Assumption 5 (ii) must satisfy ξ(t, z) ∈ [τmin, τmax]c for t ∈ Q(T c | z) and z ∈ [0, 1]d.
Again, since the support of ϕk is Tk ⊂ T = [τmin, τmax] we have that ϕk(ξ(t, z)) = 0 when
t ∈ Q(T c | z) and z ∈ [0, 1]d. Therefore we have that

sup
z∈[0,1]d

sup
t∈Q(T c|z)

|ϕk(F̂ (n)
X|Z(t | z))| = sup

z∈[0,1]d
sup

t∈Q(T c|z)
|ϕk(ξ(t, z))− ϕk(F̂ (n)

X|Z(t | z))|

≤ Lk · ‖ξ − F̂ (n)
X|Z‖T c,∞ ∈ OP (gP (n)),

where we have used Assumption 5 (ii). Putting the two cases together we have that

‖ϕk ◦ FX|Z − ϕk ◦ F̂ (n)
X|Z‖∞ ∈ OP (gP (n))

which was what we wanted.

We can now prove the main theorem.
Proof [Proof (of Theorem 14)] Fix a distribution P ∈ H0. The key to proving the theorem
is the decomposition

ρ̂n = αn + βn + γn + δn

where αn, βn, γn and δn are given by

αn =
1

n

n∑

i=1

ϕ(U1,i)ϕ(U2,i)
T ,

βn =
1

n

n∑

i=1

(
ϕ(Û1,i)− ϕ(U1,i)

)(
ϕ(Û2,i)− ϕ(U2,i)

)T

γn =
1

n

n∑

i=1

ϕ(U1,i)
(
ϕ(Û2,i)− ϕ(U2,i)

)T
,

δn =
1

n

n∑

i=1

(
ϕ(Û1,i)− ϕ(U1,i)

)
ϕ(U2,i)

T
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The term αn will be driving the asymptotics of the test statistics, while βn, γn and δn are
error terms that we wish to show converge to zero sufficiently fast.

Let us start by examining αn. Under Assumption 4 (iii) we see that

EP (ϕ(U1,i)ϕ(U2,i)
T ) = EP (ϕ(U1,i))EP (ϕ(U2,i))

T = 0

because P ∈ H0 and furthermore we see that

CovP (ϕk(U1,i)ϕ`(U2,i), ϕs(U1,i)ϕt(U2,i)) = EP (ϕk(U1,i)ϕ`(U2,i)ϕs(U1,i)ϕt(U2,i))

= EP (ϕk(U1,i)ϕs(U1,i))EP (ϕ`(U2,i)ϕt(U2,i))

=

∫ 1

0
ϕk(u)ϕs(u)du

∫ 1

0
ϕ`(u)ϕt(u)du

= ΣksΣ`t = (Σ⊗ Σ)k`,st

for k, `, s, t = 1, . . . , q. Observe that Σk,k = 1. Since αn is the average of i.i.d. terms with
zero mean and covariance Σ⊗ Σ, the central limit theorem states that

√
nαn ⇒P N (0,Σ⊗ Σ)

for each P ∈ H0.
Now let us examine the term

√
nβn. Fix k, ` = 1, . . . , q. Then we have

|√nβk`,n| ≤
1√
n

n∑

i=1

∣∣∣ϕk(Û1,i)− ϕk(U1,i)
∣∣∣ ·
∣∣∣ϕ`(Û2,i)− ϕ`(U2,i)

∣∣∣

≤ n√
n
‖ϕk ◦ F̂ (n)

X|Z − ϕk ◦ FX|Z‖∞ · ‖ϕ` ◦ F̂
(n)
Y |Z − ϕ` ◦ FY |Z‖∞

∈ OP (
√
ngP (n)hP (n))

where we have used Lemma 30, which is valid due to Assumption 5. Since we have assumed
that the rate functions satisfy

√
ngP (n)hP (n) → 0 we can conclude that |√nβk`,n| →P 0

for each k, ` = 1, . . . , q. Hence
√
nβn →P 0.

Now we turn to the cross terms γn and δn. The two terms are dealt with analogously,
so we only examine γn. Fix k, ` = 1, . . . , q and consider writing

γk`,n =
1

n

n∑

i=1

Ci where Ci = ϕk(U1,i)
(
ϕ`(Û2,i)− ϕ`(U2,i)

)
.

We will compute the mean and variance of
√
nγk`,n conditionally on (Yj , Zj)

n
j=1 in order to

use Chebyshev’s inequality to show that it converges to zero in probability. Observe that

EP (Ci | (Yj , Zj)nj=1) = EP

(
ϕk(U1,i)

(
ϕ`(Û2,i)− ϕ`(U2,i)

)
| (Yj , Zj)nj=1

)

=
(
ϕ`(Û2,i)− ϕ`(U2,i)

)
EP
(
ϕk(U1,i) | (Yj , Zj)nj=1

)
a.s.

Here we have exploited that ϕ`(U2,i) and ϕ`(Û2,i) = ϕ`(F̂Y |Z(Yi | Zi)) are measurable
functions of (Yj , Zj)

n
j=1. Now since P ∈ H0 we have ϕk(U1,i) ⊥⊥ Yi | Zi and ϕk(U1,i) ⊥⊥ Zi

due to Proposition 10. Therefore

EP
(
ϕk(U1,i) | (Yj , Zj)nj=1

)
= EP (ϕk(U1,i)) = 0 a.s.
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where we have used Assumption 4 (iii). Hence EP (Ci | (Yj , Zj)
n
j=1) = 0 a.s. From the

tower property we also obtain that EP (Ci) = 0 and therefore
√
nγk`,n has mean zero. Let

us turn to the conditional variance. Conditionally on (Yj , Zj)
n
j=1 the terms (Ci)

n
i=1 are i.i.d.

because ϕ` ◦ F̂Y |Z is (Yj , Zj)
n
j=1-measurable as exploited before. So we have

VP (
√
nγk`,n | (Yj , Zj)nj=1) =

1

n

n∑

i=1

VP (Ci | (Yj , Zj)nj=1) = VP (Ci | (Yj , Zj)nj=1).

We compute the conditional variance to be

VP (Ci | (Yj , Zj)nj=1) = EP

(
ϕk(U1,i)

2
(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
| (Yj , Zj)nj=1

)

=
(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
EP
(
ϕk(U1,i)

2 | (Yj , Zj)nj=1

)

=
(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
EP
(
ϕk(U1,i)

2
)

=
(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
a.s.

where we have used Assumption 4 (iii). We can use the the law of total variance to see that

VP (
√
nγk`,n) = EP (VP (

√
nγk`,n | (Yj , Zj)nj=1)) + VP (EP (

√
nγk`,n | (Yj , Zj)nj=1))

= EP

(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
+ 0 = EP

(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
.

By Lemma 30 we have that
(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
→P 0 with similar arguments as before.

Note that ϕ` : [0, 1] → R is bounded due to continuity of ϕ` and compactness of [0, 1].
Hence each term in the sequence

((
ϕ`(Û2,i)− ϕ`(U2,i)

)2)

i=1,...,n

is bounded. Therefore we also have EP

(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
→ 0. For given ε > 0 we

have by Chebyshev’s inequality that

P (|√nγk`,n| > ε) ≤ VP (
√
nγk`,n)

ε2
=

1

ε2
· EP

(
ϕ`(Û2,i)− ϕ`(U2,i)

)2
→ 0

for each P ∈ H0. This shows
√
nγn →P 0. By the same argument it can be shown that√

nδn →P 0. By Slutsky’s lemma we now have that

√
nρ̂n =

√
nαn +

√
nβn +

√
nγn +

√
nδn ⇒P N (0,Σ⊗ Σ)

for each P ∈ H0. This shows the theorem.
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A.9 Proof of Corollary 15

First note that Σ is a positive definite matrix as ϕ1, . . . , ϕq are assumed linearly independent.
It thus has a positive definite matrix square root Σ−1/2 satisfying Σ−1/2ΣΣ−1/2 = I, and
we have that

√
nΣ−1/2ρ̂nΣ−1/2 ⇒P N (0, I ⊗ I)

for P ∈ H0 where we have used Theorem 18. The test statistics Tn is therefore well defined
and

nTn = ‖√nΣ−1/2ρ̂nΣ−1/2‖2F ⇒P χ
2
q2

for P ∈ H0 by the continuous mapping theorem. �

A.10 Proof of Corollary 17

Under Assumption 5 we have by Corollary 15 that nTn ⇒P χ
2
q2 . Therefore

lim sup
n→∞

EP (Ψ̂n) = lim sup
n→∞

P (nTn > z1−α) = lim sup
n→∞

(1− (FnTn(z1−α)) = 1− (1− α) = α.

because FnTn(t) → Φ(t) as n → ∞ for all t ∈ R where Φ is the distribution function of a
χ2
q2-distribution and z1−α is the (1− α)-quantile of a χ2

q2-distribution. �

A.11 Proof of Theorem 18

The proof uses the same decomposition as in the proof of Theorem 14, i.e., ρ̂n = αn + βn +
γn + δn. Let us first comment on the large sample properties of αn. Since αn is the i.i.d.
average of terms with expectation ρ for all P ∈ P0 we have that αn →P ρ for all P ∈ P0.
The term β̂n is dealt with similarly as in the proof of Theorem 14. For fixed k, ` = 1, . . . , q
we have that

|βk`,n| ≤
1

n

n∑

i=1

∣∣∣ϕk(Û1,i)− ϕk(U1,i)
∣∣∣
∣∣∣ϕ`(Û2,i)− ϕ`(U2,i)

∣∣∣

≤ ‖ϕk ◦ F̂ (n)
X|Z − ϕk ◦ FX|Z‖∞ · ‖ϕ` ◦ F̂

(n)
Y |Z − ϕ` ◦ FY |Z‖∞ ∈ OP (gP (n)hP (n))

where we have used Lemma 30. From Assumption 5 we get that βk`,n →P 0 for each
k, ` = 1, . . . , q, and so βn →P 0 for all P ∈ P0. The terms γn and δn are analyzed similarly,
so we only look at γn. We see that for k, ` = 1, . . . , q,

|γk`,n| ≤
1

n

n∑

i=1

|ϕk(U1,i)||ϕ`(Û2,i)− ϕ`(U2,i)|

≤ ‖ϕk‖∞ · ‖ϕ` ◦ F̂ (n)
Y |Z − ϕ` ◦ FY |Z‖∞ ∈ OP (hP (n))

where we have used that ‖ϕk‖∞ <∞ since ϕk : [0, 1]→ R is continuous and [0, 1] is compact.
Here we have used Lemma 30, and we conclude that γk`,n →P 0 due to Assumption 5, which
shows that γn →P 0 for all P ∈ P0. Conclusively, we have ρ̂n →P ρ for all P ∈ P0. �
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A.12 Proof of Corollary 19

Assume that P ∈ A0 such that ρk` 6= 0 for some k, ` = 1, . . . , q. Then we have

Tn = ‖Σ−1/2ρ̂nΣ−1/2‖2F
P→ ‖Σ−1/2ρΣ−1/2‖2F > 0

for all P ∈ A0 because ρ 6= 0. Here we have used Theorem 18. Therefore we obtain that

nTn = n‖Σ−1/2ρ̂nΣ−1/2‖2F
P→∞

for all P ∈ A0. This means that

P (nTn > c)→ 1

as n→∞ for all c ∈ R. From this we obtain that

lim inf
n→∞

EP (Ψ̂n) = lim inf
n→∞

P (nTn > z1−α) = 1

for all α ∈ (0, 1) whenever P ∈ A0. �

A.13 Proof of Proposition 20

Assume (U1, U2) ⊥⊥ Z and U1 ⊥⊥ U2. Then it also holds that U1 ⊥⊥ U2 | Z, which gives
(U1, Z) ⊥⊥ (U2, Z) | Z. More explicitly we have

(FX|Z(X | Z), Z) ⊥⊥ (FY |Z(Y | Z), Z) | Z.

Transforming with the conditional quantile functions gives

QX|Z(FX|Z(X | Z) | Z) ⊥⊥ QY |Z(FY |Z(X | Z) | Z) | Z.

Since we assume throughout the paper that the conditional distributions X | Z = z and
Y | Z = z are continuous for each z ∈ [0, 1]d we get that (X,Z) ⊥⊥ (Y,Z) | Z which reduces
to X ⊥⊥ Y | Z. �

A.14 Proof of Theorem 21

We start by showing (i). Again we consider the decomposition ρ̂n = αn + βn + γn + δn
introduced in the proof of Theorem 14. By the stronger condition of Assumption 6 we
immediately have that

√
nβn →P0 0,

√
nγn →P0 0 and

√
nδn →P0 0 by following the

same arguments as in the proof of Theorem 14. The fact that
√
nαn converges uniformly in

distribution to a N (0,Σ⊗Σ)-distribution over H0 follows from the fact that the distribution
of (U1,i, U2,i)

n
i=1 is unchanged whenever P ∈ H0. By Lemma 37 we have that
√
nρ̂n =

√
nαn +

√
nβn +

√
nγn +

√
nδn ⇒H0 N (0,Σ⊗ Σ)

which shows part (i) of the theorem. Next we turn to part (ii) of the theorem. Analogously to
the proof of Theorem 18 we have that βn →P0 0, γn →P0 0 and δn →P0 0 under Assumption
6. Now consider writing

αk`,n =
1

n

n∑

i=1

Ai where Ai = ϕk(U1,i)ϕ`(U2,i)
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for k, ` = 1, . . . , q. Then (Ai)
n
i=1 are i.i.d. with EP (Ai) = ρk` and

VP (Ai) = EP (ϕk(U1,i)
2ϕ`(U2,i)

2)− ρ2 ≤ ‖ϕk‖∞‖ϕ`‖∞ <∞

for all P ∈ P0. Therefore, for given ε > 0, we have by Chebyshev’s inequality that

sup
P∈P0

P (|αk`,n − ρk`| > ε) ≤ sup
P∈P0

VP ( 1
n

∑n
i=1Ai)

ε2
= sup

P∈P0

VP (Ai)

nε2
≤ ||ϕ1||2∞||ϕ2||2∞

nε2
→ 0

for n→∞ which shows that αn →P0 ρ. From this we get ρ̂n →P0 ρ as wanted.

A.15 Proof of Corollary 22

Note that due to Theorem 21 (i) we have that nTn ⇒H0 χ
2
q2 under Assumption 6 using the

same argument as in the proof of Corollary 15. Then the result is obtained by the same
argument as in the proof of Corollary 17 by noting that supP∈H0

|FnTn(t) − Φ(t)| → 0 as
n→∞ for all t ∈ R. �

A.16 Proof of Corollary 23

Let λ > 0 be fixed. By Theorem 21 (ii) we have ρ̂n →Aλ ρ where |ρk`| > λ > 0 for some
k, ` = 1, . . . , q. Therefore infP∈Aλ |ρk`| ≥ λ > 0 and so

Tn = ‖Σ−1/2ρ̂nΣ−1/2‖2F →Aλ ‖Σ−1/2ρΣ−1/2‖2F > 0

since infP∈Aλ |ρPk`| > 0 and Σ−1/2 is positive definite. Therefore nTn →Aλ ∞, and so we
have

inf
P∈Aλ

P (nTn > c) = inf
P∈Aλ

(1− P (nTn ≤ c))

= − sup
P∈Aλ

(P (nTn ≤ c))− 1)→ 1

as n→∞ for all c ∈ R. From this we have

lim inf
n→∞

inf
P∈Aλ

EP (Ψ̂n) = lim inf
n→∞

inf
P∈Aλ

P (nTn > z1−α) = 1

for all α ∈ (0, 1). �

Appendix B. Modes of Stochastic Convergence

Let M denote some class of distributions. We start by defining the notions of small and
big O in probability.

B.1 Small and big-O in probability

All sequences (an) and (bn) below are assumed to be non-zero.
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Definition 31 Let (Xn) and (an) be sequences of random variables in R. If for every ε > 0

sup
P∈M

P (|Xn/an| > ε)→ 0

for n→∞ then we say that Xn is small O of an in probability uniformly over M and write
Xn ∈ oM(an). If for every ε > 0 there is M > 0 such that

sup
n∈N

sup
P∈M

P (|Xn/an| > M) < ε

then we say that Xn is big O of an in probability uniformly overM and write Xn ∈ OM(an).

When Xn ∈ OM(an) we also say that Xn is stochastically bounded by an uniformly
over M. When Xn ∈ oM(1) we will typically write Xn →M 0.

Lemma 32 Let (Xn), (an) and (bn) be sequences of random variables in R such that Xn ∈
OM(an). Then it holds that bnXn ∈ OM(anbn).

Lemma 33 Assume that Xn ∈ OM(an) and Yn ∈ OM(bn). Then XnYn ∈ OM(anbn).

Lemma 34 Assume Xn ∈ OM(an) and that an ∈ o(1). Then Xn ∈ oM(1).

Lemma 35 Assume that Xn ∈ oM(1) and that |Xn| ≤ C for all n ≥ 1 for a constant C
that does not depend on P . Then supP∈MEP |Xn| → 0 for n→∞.

We now turn to uniform convergence in distribution.

B.2 Uniform convergence in distribution

We follow Kasy (2019) and Bengs and Holzmann (2019).

Definition 36 Let X,X1, X2, . . . be real valued random variables with distribution deter-
mined by P ∈M. If it holds that

sup
P∈M

|EP (f(Xn))− EP (f(X))| → 0

for n → ∞ for all functions f : R → R that are bounded and continuous, then we say that
(Xn) converges uniformly in distribution to X over M. In this case we write Xn ⇒M X.

Lemma 37 (Uniform Slutsky’s Lemma) Assume that Xn ⇒M X and that Yn →M 0.
Then Xn + Yn ⇒M X.

Proof See Bengs and Holzmann (2019) Theorem 6.3.
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4.1 The role of uniform level and power

Let us discuss the role of the asymptotic uniform level and power results presented in Section 4.5 of

the paper. In the context of constraint-based causal structure learning, this is related to the notion of

uniform consistency in causal inference discussed in Robins et al. [2003]. Here the authors argue that

asymptotic uniform level and power is necessary in order to link large sample properties of the test to

finite sample properties.

More specifically, let P be a set of distributions, H ⊂ P a hypothesis and A ⊂ P \ H a set of

alternatives. Also let Ψn denote the observed value of a test based on a sample of size n ≥ 1. Assuming

that Ψ has asymptotic uniform level over H and power against A, then for every ε > 0 there exist a

sample size n0(ε) such that P (Ψn = 1) ≤ ε for all P ∈ H and P (Ψn = 0) ≤ ε for all P ∈ A for all

n ≥ n0(ε). In other words, we are guaranteed the existence of a sample size for which we can bound

the probability of wrongly rejecting a true hypothesis or wrongly accepting a false hypothesis. On the

contrary, if we only have asymptotic pointwise level over H and power against A, then the sample size

nP (ε) for which we can bound the probability of making a wrong decision depends on the distribution

P . Since the true distribution Pn could potentially depend on the sample size, we could be in a situation

where Pn ∈ H for each n ≥ 1 but Pn → P∞ ∈ A as n → ∞. Thus, even for large sample size, we are

not guaranteed to have control over the probability of accepting a false hypothesis.

Since constraint-based causal structure learning algorithms use conditional independence tests to

construct the skeleton of the Markov equivalence class of interest, asymptotic uniform level and power of

the conditional independence test is necessary for uniform consistent estimation of the equivalence class.

The way we ensure asymptotic uniform level and power of our test can be compared to the λ-strong

faithfulness condition given in Zhang and Spirtes [2002]. Let X be a random variable which follows

a multivariate Gaussian distribution P . Let ρab|C denote the partial correlation of Xa and Xb given

XC = (Xc)c∈C . Then P is called λ-strong faithful to a directed acyclic graph G if for all a, b /∈ C with

a 6= b it holds that Xa and Xb are d-connected given XC in G if and only if |ρab|C | > λ. Note that

0-strong faithfulness just corresponds to usual faithfulness of a multivariate Gaussian distribution to a

directed acyclic graph, so it is a strengthening of the notion of faithfulness. Our restriction to the set of

alternatives Aλ, defined in Section 4.5 of the paper, where the generalized correlation ρ has an element

which is bounded away from zero, i.e., |ρk`| > λ for some k, ` = 1, . . . , q, is analogous to the λ-strong

faithfulness condition.

Zhang and Spirtes [2002] prove that a uniformly consistent estimator for the Markov equivalence

class exists given that the true distribution is Markov and λ-strong faithful to a directed acyclic graph

and that causal sufficiency is satisfied. Kalisch and Bühlmann [2007] extends this result to a high

dimensional setting, where they assume sparsity of the true graph, but additionally allows for the λ in

the λ-strong faithfulness condition to depend on the sample size, such that λn → 0 at a slow rate.

We hypothesize that it will be possible to show uniform consistency of a PC-algorithm that uses

our partial copula based conditional independence test by assuming that the true distribution P belongs

to P0 where the quantile regressions are uniformly consistent, as given in Assumption 2 of the paper,

and P is Markov, faithful and causally sufficient with respect to a directed acyclic graph G such that

whenever Xa and Xb are d-connected given XC in G then the joint distribution (Xa, Xb, XC) belong to

Aλ for some λ ∈ (0, 1). However, this is the topic of future research.
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4.2 Implementation of the test

An implementation of the test as described in Section 4.7 of the paper in the R programming language [R

Core Team, 2021] is available at https://github.com/lassepetersen/partial-copula-CI-test. Here

we will briefly showcase the functionality of the implementation and discuss further possible improve-

ments. The core of the implementation is the function test CI, which is implemented as described in

Section 4.7 of the paper. At the time of writing the available quantile regression models include linear

models, polynomial basis models and B-spline basis models. Example usage of the function can be seen

below:

set.seed(1)

N <- 100

Z <- rnorm(N)

eps1 <- rnorm(N)

eps2 <- rnorm(N)

X <- 2 * Z + eps1

Y <- 5 * Z + eps2

test_results <- test_CI(X = X, Y = Y, Z = Z, alpha = 0.05,

q = c(1, 2, 3), quantile_reg = 'B-Spline', bspline_df = 3)

print(test_results)

---------------------------------------------------------------------------------------

$statistic

[1] 0.6104795 4.3223138 4.1058109

$p_value

[1] 0.4346073 0.3641393 0.9043112

$test_decision

[1] 0 0 0

$q_vals

[1] 1 2 3

The test returns the test statistics, p-values and test decisions based on the chosen significance

level α for each provided value of q. One can also tell the function to return all information related

to performing the test. Setting return_all = TRUE , test CI also returns the predicted values of

the quantile regression models for doing model diagnostics, and the estimated nonparametric residuals

(Û1,i, Û2,i)
n
i=1. Having direct access to the estimated nonparametric residuals, one can visually inspect

the dependence between them. Also, one can experiment with using alternative tests for independence

in the partial copula.

test_results <- test_CI(X = X, Y = Y, Z = Z, alpha = 0.05,

q = c(1, 2, 3), quantile_reg = 'B-Spline', bspline_df = 3,

https://github.com/lassepetersen/partial-copula-CI-test
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return_all = TRUE)

head(cbind(test_results$U1, test_results$U2), n=10)

---------------------------------------------------------------------------------------

[,1] [,2]

[1,] 0.5001913 0.52318487

[2,] 0.5658928 0.99000000

[3,] 0.2584495 0.88111111

[4,] 0.7289587 0.22777778

[5,] 0.1921994 0.08003584

[6,] 0.9900000 0.98649876

[7,] 0.8047336 0.89497542

[8,] 0.8201127 0.82772475

[9,] 0.6325964 0.55444444

[10,] 0.8811111 0.69203920

Further work on the implementation includes the opportunity to add penalization to the quantile

regression as described in Section 3.5 of the paper, and also performing quantile regression using non-

parametric machine learning models such as neural networks. Moreover, since the intended use of the test

is for constraint-based causal structure learning, we plan on writing wrappers for the test CI functions

such that they can be used together with popular structure learning packages such as pcalg [Kalisch

et al., 2012] and bnlearn [Scutari, 2010].

4.3 More general independence tests

Throughout the paper we restrict our attention to measures of dependence in the partial copula of the

form ρ = EP (ϕ(U1)ϕ(U2)T ) with test statistic given by

ρ̂n =
1

n

n∑
i=1

ϕ(Û
(n)
1,i )ϕ(Û

(n)
2,i )T , (4.1)

where ϕ : [0, 1] → Rq satisfies Assumption 4 of the paper. We always have that U1 ⊥⊥ U2 implies

ρ = 0, but as we emphasize throughout the paper, the reverse implication does not always hold true. In

this section we empirically examine the performance of the partial copula conditional independence test

if we combine it with more general independence tests, while still using our quantile regression based

conditional distribution function estimator.

Hoeffding’s independence test [Hoeffding, 1948] and the Hilbert-Schmidt Independence Criterion

(HSIC) test [Gretton et al., 2008, Pfister et al., 2018] are independence tests that both have power

against general alternatives of independence. Let us briefly review the ideas behind these two tests.

Let X and Y be continuous real valued random variable, and let FX , FY and FX,Y denote the

conditional distribution functions of X,Y and (X,Y ) respectively. Define

∆ =

∫
D(x, y)2dF (x, y) where D(x, y) = FX,Y (x, y)− FX(x)FY (y).

Here the integral is a Lebesgue-Stieltjes integral. The test exploits that FX,Y = FXFY under indepen-

dence, and one can show that ∆ = 0 if and only if X ⊥⊥ Y . Note that this is not necessarily true if (X,Y )
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has discontinuities. See e.g. Blum et al. [1961] for an extension to random variables with discontinuities.

However, for our application the standard Hoeffding’s independence test suffices. The dependence mea-

sure ∆ is estimated using a U -statistic, which has a known asymptotic distribution under independence.

We will use the implementation given in the DescTools R package [Andri et mult. al., 2021].

The HSIC test is more involved to describe. The HSIC dependence measure is defined as the Hilbert-

Schmidt norm of the so-called cross-covariance operator Cxy : G → F between reproducing kernel Hilbert

spaces F and G on the outcome spaces of X and Y respectively. The full description is technical, so we

refer to Gretton et al. [2008] for details. Most importantly, the HSIC dependence measure is zero if and

only if X and Y are independent. The HSIC dependence measure is estimated using a V -statistic, and

its asymptotic distribution under independence can be approximated by a Γ-distribution. Alternatively,

the test can be carried out as a permutation test at a greater computational cost. An extension to test

for joint independence of multiple random variables X1, . . . , Xd, known as the dHSIC test, is given in

Pfister et al. [2018]. We will use the implementation given in the dHSIC R package [Pfister and Peters,

2019] even though we are only dealing with the case d = 2.

We will evaluate the soundness of using Hoeffding’s independence test and the HSIC test with the

partial copula by repeating the simulation studies in Sections 5.4 and 5.5 of the paper. In addition to

the two partial copula based test, we also examine the effect of applying the Generalised Covariance

Measure (GCM) with squared responses X ′ = X2 and Y ′ = Y 2, since this could potentially increase the

power of the test against alternatives with variance heterogeneity. Here we make sure to fit the correct

mean regression models f(z) = E(X ′ | Z = z) and g(z) = E(Y ′ | Z = z) of the transformed responses

given Z for a fair comparison. We also include the results of the partial copula test with generalized

correlation Ψ̂n studied throughout the paper with q ∈ {1, 3} for reference.

First consider the simulation results seen in Figure 4.1, where we assess the asymptotic level and

power of the tests using the same methodology as in Section 5.4 of the paper. First we observe that the

partial copula test with Hoeffding’s independence test has power against all alternatives A2,A3 and A4,

but that it fails to maintain level over H2,H3 and H4. Second, we see that the partial copula test with

the HSIC independence test has power against all A2,A3 and A4, and has valid level over H2 and H3,

while having some issues maintaining level over H4. Finally, the GCM with squared responses maintains

level in all cases, and has power against A2 and A3, however, it does not increase the power compared

to the standard GCM. It does not have power against A4.

Next we consider the simulation results seen in Figure 4.2, where we investigate the power of the

tests against the local alternative described in Section 5.5 of the paper. We observe that the partial

copula test with Hoeffding’s independence test and the HSIC test provide better low sample power than

Ψ̂n with q = 1, while holding level under conditional independence γ = 0. Since we are now fitting mean

regression models in order to apply the GCM with squared responses, the power of the test improves

with increasing sample size. However, we observe that transforming the responses still does not yield

power against the local alternative, when there is a large degree of variance heterogeneity between X

and Y given Z. We cannot rule out another transformation of the responses, which could yield a greater

power, but choosing such a transformation adds a layer of ad-hoc decisions to be made when performing

the GCM.

In conclusion, our simulation study suggests that the partial copula conditional independence test

can be combined with more general independence tests to yield greater power, but that it can come at the

expense of loss of level. Here we saw that the partial copula test did not maintain level when combining

it with Hoeffding’s independence test, while it had minor problems holding level when combining it

with the HSIC test under H4. The explanation lies in the more complicated U - and V -statistic used
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Figure 4.1: The result of repeating the simulation study in Section 5.4 with the addition of applying
GCM to squared responses (GCM squared) and combining the partial copula test with Hoeffding’s
independence test (PC Hoeffding) and the HSIC test (PC HSIC). Note that the p-values of Hoeffding’s
independence test is truncated at 10−8, which is due to its implementation in the DescTools R package.

for estimating the dependence measures, which do not have a representation of the form (4.1). The

challenge is to control the nested estimation uncertainty involved with estimating the nonparametric

residuals (U1,i)
n
i=1 and (U2,i)

n
i=1, and then plugging these estimates (Û1,i)

n
i=1 and (Û2,i)

n
i=1 into the test

statistics for the dependence measure. The representation (4.1) has several advantages in this regard.

Consider the decomposition of the test statistic,

ρ̂n = αn + βn + γn + δn,
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Figure 4.2: A repetition of the simulation study described in Section 5.5. In addition, we have applied
GCM to squared responses (GCM squared) and combining the partial copula test with Hoeffding’s
independence test (PC Hoeffding) and the HSIC test (PC HSIC). Note that the p-values of Hoeffding’s
independence test is truncated at 10−8, which is due to its implementation in the DescTools R package.

where

αn =
1

n

n∑
i=1

ϕ(U1,i)ϕ(U2,i)
T ,

βn =
1

n

n∑
i=1

(
ϕ(Û1,i)− ϕ(U1,i)

)(
ϕ(Û2,i)− ϕ(U2,i)

)T
,

γn =
1

n

n∑
i=1

ϕ(U1,i)
(
ϕ(Û2,i)− ϕ(U2,i)

)T
,

δn =
1

n

n∑
i=1

(
ϕ(Û1,i)− ϕ(U1,i)

)
ϕ(U2,i)

T ,

which we used in the proof of Theorem 14 of the paper. The first advantage of this decomposition is the

separation into a term, αn, which does not involve estimation uncertainty of the nonparametric residuals

and drives the asymptotic distribution of the test statistic, and remainder terms, βn, γn and δn, which

do involve estimation uncertainty, but only need to converge to zero in probability (at rate faster than



4.3. MORE GENERAL INDEPENDENCE TESTS 99

1/
√
n). Secondly, the product structure of the test statistic gives a product structure of the remainder

term βn, which is responsible for the rate condition
√
ngP (n)hP (n) → 0 of the theorem. The product

structure of the test statistic and the decomposition above lie at the heart of the technique used for

analyzing double machine learning estimators.

Since U - and V -statistics do not have this product structure, we cannot control the nested estimation

uncertainty in the same way. As we mention in the discussion, it is ongoing work to establish an analogous

asymptotic theory for more complicated test statistics, but our simulations suggest that it cannot in

general be proved about all U -statistics under the same conditions as in Theorem 14 of the paper, due

to our negative simulation results regarding Hoeffding’s independence test. However, our simulations

also suggest that it could be safe to combine the partial copula with the HSIC independence test, but

we cannot provide a theoretical guarantee of this statement.
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NONPARAMETRIC CONDITIONAL LOCAL

INDEPENDENCE TESTING

LASSE PETERSEN AND NIELS RICHARD HANSEN

Abstract. Conditional local independence is an independence relation among continuous

time stochastic processes. It describes how the infinitesimal evolution of one process is un-

affected by another process given the histories of additional processes, and it is important
for the description and learning of causal relations among processes. This paper proposes a

nonparametric test for conditional local independence based on double machine learning. We

construct a stochastic process as a stochastic integral, which is a zero-mean, local martingale
under the hypothesis of conditional local independence. We derive the weak limit of its test

statistic process under the hypothesis, which we show is a Gaussian martingale with a vari-

ance function that can be estimated from data. Based on the limiting Gaussian martingale, we
propose test statistics for the hypothesis as finite dimensional functionals of the test statistic

process.

1. Introduction

Conditional local independence was introduced by Schweder (1970) for continuous time com-
posable Markov processes. It is a formalization of how the evolution of one stochastic process
depends on the past of other processes in a dynamical system. As such, it is closely related to
Granger causality (Granger 1969), which has been popular in econometrics and for the analysis
of time series data.

In words, a process Nt is conditionally locally independent of a process Zt given a history Ft (a
filtration) if Zt does not add any predictable information to Ft about the infinitesimal evolution of
Nt. Moreover, with a structural assumption about the stochastic processes, a causal interpretation
of conditional local independence is possible (Aalen 1987, Aalen et al. 2012, Commenges &
Gégout-Petit 2009). Being able to test conditional local independence is therefore an important
tool for investigating causal relations. In the context of time series analysis, such a test is known
as a test of Granger non-causality.

A systematic investigation of algebraic properties of conditional local independence was initiated
by Didelez (2006, 2008, 2015). She introduced graphical representations of conditional local
independence using directed graphs and studied the semantics of such local independence graphs.
This work was extended further by Mogensen & Hansen (2020) to graphical representations of
partially observed systems, which is of importance for causal representations of systems with e.g.
unobserved confounders.

A constraint based learning algorithm of local independence graphs was given by Mogensen
et al. (2018) in terms of a conditional local independence oracle, and the learning of models for
multivariate dynamic event systems with a causal interpretation has also caught some attention
in the machine learning community, (Xu et al. 2016, Achab et al. 2017, Xiao et al. 2019). In
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practice, conditional local independence is then discovered from data by either sparsity inducing
learning algorithms or statistical tests.

One challenge is that any particular model class may be misspecified. For the popular class of
linear Hawkes processes, conditional local independence is equivalent to a kernel being zero, and a
statistical test can readily be based on parametric or nonparametric estimation of kernels within
this model class. However, model misspecification will generally invalidate tests of conditional
local independence based on the model. This is compounded by the model class of Hawkes
processes not being closed under marginalization (also known as non-collapsability), which means
that even within a subsystem of a linear Hawkes process, conditional local independence cannot
be tested correctly using a Hawkes process model.

A simple example of how model misspecification affects conditional local independence testing
is presented in Section 1.1 based on Cox’s survival model. The non-collapsability of that model
illustrates the need of a completely nonparametric test of conditional local independence.

We propose a new test based on the ideas of double machine learning (Chernozhukov et al.
2018). The main novelty is that within our time-dynamic framework the test is based on an
infinite dimensional parameter – a function of time. We model the target process Nt as well
as the covariate process Zt conditionally on Ft. As we show, we need to learn the predictable
projection of Zt onto Ft to achieve the orthogonalization at the core of double machine learning.
If we can learn this model at rate g(n) and the model of Nt at rate h(n), the main result states
that our test statistic converges under conditional local independence to a Gaussian martingale
at rate n−

1
2 if
√
ng(n)h(n)→ 0 for n→∞.

1.1. A Cox model with a partially observed covariate process. To motivate the impor-
tance of nonparametric local independence testing and the benefits of our proposed solution,
we consider an example based on Cox’s survival model with time dependent covariates. In this
example, we consider a model of death time τ , which depends on three time-dynamic processes
X, Y and Z.

An interpretation of the processes is as follows:

X = BMI

Y = Blood pressure

Z = Pension savings

Periods of overweight or obesity may have long-term effects on blood pressure, and due to e.g.
job market discrimination, high BMI could also affect pension savings negatively. Death risk
is affected directly by BMI and blood pressure but not the size of your pension savings. Fig-
ure 1 illustrates the dependence structure among the processes and the death time as a local
independence graph.

We assume that τ ∈ [0, T ] for a fixed T > 0 and that X, Y and Z have continuous sample paths.
The Cox model of death is given via the intensity

(1) λfull
t = 1[0,τ)(t)λ

0
t e
β1Xt+Yt

with λ0
t a baseline intensity. Let also

FXt = σ(τ > t,Xs; s ≤ t)
denote the filtration generated by τ and the X-process, and similarly for other processes and

combinations of processes. That is, FX,Y,Zt is the filtration generated by τ and all three X-, Y -,

103



NONPARAMETRIC CLI TESTING 3

X

BMI

Y Blood
pressureZ

Pension
savings

τ

death

Figure 1. Local independence graph illustrating how the three processes X,
Y , and Z affect each other and time of death in the toy example. Death is
conditionally locally independent of Z given X in this example.

and Z-processes. By definition, λfull
t is the FX,Y,Zt -intensity based on the full history of all three

processes. It is not important that λfull
t is a Cox model for our general procedure, but it allows

for certain theoretical computations in this example.

The fact that λfull
t does not depend upon Z means that death is conditionally locally independent

of Z given FX,Yt . We ask if death is conditionally locally independent of Z given only FXt ?
That is, with Y unobserved we want to know if the intensity of death given the history of the

X-process depends on Z. The intensity given the observed history FX,Zt is

λmarg
t = E(λfull

t | FX,Zt ),

and the hypothesis we are interesting in can be formulated as

(2) H0 : λmarg
t does not depend on Z.

We could investigate the hypothesis H0 via a marginal Cox model

(3) λmarg-cox
t = 1[0,τ)(t)λ

0
t e
β1Xt+β2Zt

and test if β2 = 0, but the Cox model is non-collapsable, even if Z is not a confounder (Marti-
nussen & Vansteelandt 2013), and this semi-parametric model is quite likely misspecified. Con-
sequently, the test of β2 = 0 is not equivalent to a test of conditional local independence.

Knowledge about the joint distribution of the processes beyond (1) is needed to decide if death
is conditionally locally independent of Z given FXt . The local independence graph in Figure 1
encodes such knowledge in terms of the node X blocking the paths between the node Z and the
nodes Y and τ .

With the Cox model given by (1), a sufficient additional condition for (2) to hold is that

(4) σ(Ys; s ≤ t) ⊥⊥ σ(Zs; s ≤ t) | FXt ,
that is, knowing the entire history of the X-process (and whether τ > t), the Z- and Y -process
histories are independent. To see this, note that (4) implies

E(eYt | FX,Zt ) = E(eYt | FXt ),

thus the FX,Zt -intensity is

λmarg
t = E(λfull

t | FX,Zt ) = 1[0,τ)(t)λ
0
t e
β1XtE(eYt | FXt ),

and since it does not depend on Z, we conclude that death is conditionally locally independent
of Z given FXt .
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The factor E(eYt | FXt ) in λmarg
t indicates that the dependence on the X-history is not only

via Xt but via its entire history. If Zt 6⊥⊥ Yt | Xt, which can be true even when (4) holds, Zt is
predictive of Yt conditionally on Xt, and Zt will act as a proxy of Yt in the marginal Cox model
(3). This illustrates the non-collapsability of the Cox model.

With our toy interpretation of the three processes, the Cox model (1) implies that BMI at time
t has a direct effect on the risk of death at time t, but the entire history of BMI has an indirect
effect mediated via blood pressure at time t. In the absence of measuring blood pressure, and
conditioning on the value of BMI at time t only, pension savings act as a proxy of blood pressure
– via its dependence on blood pressure through the history of BMI. When (4) holds, meaning
that blood pressure and pension savings are independent given the full BMI-history, conditioning
on the BMI-history will render death conditionally locally independent of pension savings.

Instead of testing H0 within a parametric model of λmarg
t , we will consider a nonparametric test.

We introduce

λt = E(λfull
t | FXt )

as the FXt -intensity, and H0 is then equivalent to λt = λmarg
t . A test of conditional local inde-

pendence can then be based on the parameter

γ = E

(
Zτ −

∫ T

0

Zsλsds

)
,

which under H0 is zero, see Proposition 2.2. Whence conditional local independence implies
γ = 0.

With i.i.d. observations (τ1, X1, Z1), . . . , (τn, Xn, Zn) and (nonparametric) estimates, λ̂j,t, based
on (τ1, X1), . . . , (τn, Xn), we can compute the plug-in estimate

γ̂plug-in =
1

n

n∑

j=1

(
Zj,τj −

∫ T

0

Zj,sλ̂j,sds

)
.

However, it is well known that to achieve
√
n-rate convergence of this estimator, we generally need

Donsker class conditions on the model of the intensity, and low variance but biased estimators
of λ can lead to severe bias of γ̂plug-in, see e.g. Chernozhukov et al. (2018).

Our proposal is based on the double machine learning idea by Chernozhukov et al. (2018).
Defining Πs = E(Zs | FXs−), we show that

γ = E

(
Zτ −Πτ −

∫ T

0

(Zs −Πs)λsds

)
,

which follows from Π being FXt -predictable by construction, see Section 2.1. Plugging in two
nonparametric estimators gives the estimator

γ̂double =
1

n

n∑

j=1

(
Zj,τj − Π̂j,τj −

∫ T

0

(Zj,s − Π̂j,s)λ̂j,sds

)
.

To achieve a small bias and a
√
n-rate of convergence, we will use data splitting. With e.g. a

total of 2n observations, the nonparametric estimates Π̂j and λ̂j will be based on the second half
only, and be independent of the first half of the sample used for testing. The details are given in
Section 2.2.
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1.2. Organization. The organization of the paper is as follows. In Section 2 we introduce the
mathematical framework for formulating the basic hypothesis of conditional local independence.
We introduce a test statistic as a stochastic process and describe how sample splitting is to be
used for its computation via the estimation of two unknown components. In Section 3 we state
the main result of the paper, which is a functional CLT of the test statistic process under weak
rate conditions on the estimators. Section 4 elaborates on the motivating Cox model example
above. Proofs and auxiliary results are in Appendix A.

2. Setup

We consider a counting process N = (Nt) and another caglad real value process Z = (Zt), both
defined on the probability space (Ω,F , P ). All processes considered are assumed to have their
time index in the compact interval [0, T ] for a fixed T > 0 unless otherwise specified. We will
assume that N is adapted w.r.t. a right continuous and complete filtration Ft, and we denote by
Gt the right continuous and complete filtration generated by Ft and Zt.

In the survival example of the introduction, Nt = 1(τ ≤ t) is the indicator of whether death
has happened by time t, and there can only be one event per individual observed. Furthermore,

Ft = FXt and Gt = FX,Zt . Our general setup works for any counting process, thus it allows for
recurrent events, and the filtration Ft can contain the histories of any number of processes in
addition to the history of N itself.

2.1. The hypothesis of conditional local independence. The counting process N is as-
sumed to have an Ft-intensity λt, that is, λt is Ft-predictable and with

Λt =

∫ t

0

λsds

being the compensator of N then

(5) Mt := Nt − Λt

is a local Ft-martingale. With this framework we can define the hypothesis of conditional local
independence precisely.

Definition 2.1 (Conditional local independence). We say that N is conditionally locally inde-
pendent of Z given Ft if the local Ft-martingale M defined by (5) is also a local Gt-martingale.

For simplicity, we will refer to this hypothesis as simply local independence and write

(6) H0 : M is a local Gt-martingale.

As argued in the introduction, the hypothesis of local independence is the hypothesis that ob-
serving Z on [0, t] does not add any information to Ft− about whether an N -event will happen
in an infinitesimal time interval [t, t+ δ).

A test of the hypothesis of local independence could be based on the stochastic integral
∫ t

0

ZsdMs,

which under the hypothesis is a local martingale. We can also introduce

(7) γt = E

(∫ t

0

ZsdMs

)
,

provided that the expectation is well defined. If the stochastic integral is a martingale under H0,
γt = 0 for all t ∈ [0, T ].

106 CHAPTER 5. LOCAL INDEPENDENCE TESTING



NONPARAMETRIC CLI TESTING 6

However, for the reasons presented in Section 1.1, we will base the test on the process

(8) It =

∫ t

0

(Zs −Πs) dMs

where

(9) Πs = E(Zs | Fs−)

is the predictable projection of the caglad process Zs, see Theorem VI.19.2 in (Rogers & Williams
2000).

Proposition 2.2. Under H0, that is, when N is conditionally locally independent of Z given
Ft, the process I = (It) with I0 = 0 is a local Gt-martingale. If it is a martingale, E(It) = 0 for
t ∈ [0, T ].

Note that if Z is Ft-adapted, then Gt = Ft and N is trivially locally independent of Z. In this
case, we also have that Π = Z and It = 0. The hypothesis is only of interest when Gt is a strictly
larger filtration than Ft, that is, when Z provides information not already in Ft.
Since the predictable projection Π by definition is Ft-predictable and M is a local Ft-martingale,

∫ t

0

ΠsdMs

is a local Ft-martingale. If it is a martingale and the expectation in (7) is well defined,

γt = E

(∫ t

0

(Zs −Πs)dMs

)
+ E

(∫ t

0

ΠsdMs

)
= E(It).

Thus the function t 7→ γt quantifies deviations from the hypothesis H0, and our proposal is
effectively to test if γt is constantly equal to 0 for t ∈ [0, T ].

2.2. The test statistic. We will consider the setup where we have observed n i.i.d. replica-
tions of the processes, (N1,F1, Z1), . . . , (Nn,Fn, Zn), where observing Fj = (Fj,t) signifies that
anything adapted to the j-th filtration is computable from observations. We randomly split the

data into Jn ⊆ {1, . . . , n} and Jcn, and we let λ̂(n) and Π̂(n) denote nonparametric estimates of
the intensity and the predictable projection, respectively, based on Jcn only. See Section 4 for an
example of nonparametric estimators. Then we define the estimator

(10) Î
(n)
t =

1

|Jn|
∑

j∈Jn

∫ t

0

(
Zj,s − Π̂

(n)
j,s

)
dM̂

(n)
j,s

where M̂
(n)
j,t = Nj,t −

∫ t
0
λ̂

(n)
j,s ds.

We can regard Î
(n)
t as a double machine learning estimator of γt, with the observations indexed

by Jcn used to learn models of λ and Π, and with observations in Jn used to estimate γt based on

these two models. The test statistic that we will use to test H0 is the process
√
|Jn|Î(n), whose

asymptotic distribution under H0 is derived below.

We note that by an estimate, λ̂(n), of λ we mean a function that can be computed on the basis
of Fj,t for any j, and similarly for Π̂(n). That is, based on data in Jcn the functional forms of

these processes is determined, and these are then applied to compute Π̂
(n)
j,s and λ̂

(n)
j,s , that enter

into the computation of Î(n), for j ∈ Jn.
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3. The asymptotic distribution of the test statistic

In this section we will derive the asymptotic weak limit of
√
|Jn|Î(n) defined by (10) as a sto-

chastic process. In order to do so, we will need the decomposition
√
|Jn|Î(n) = U (n) +R

(n)
1 +R

(n)
2 +R

(n)
3(11)

where the processes U (n) and R
(n)
k , k = 1, 2, 3, are given by

U
(n)
t =

1√
|Jn|

∑

j∈Jn

∫ t

0

(Zj,s −Πj,s) dMj,s(12)

R
(n)
1,t =

1√
|Jn|

∑

j∈Jn

∫ t

0

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

)
ds(13)

R
(n)
2,t =

1√
|Jn|

∑

j∈Jn

∫ t

0

(
Πj,s − Π̂

(n)
j,s

)
dMj,s,(14)

R
(n)
3,t =

1√
|Jn|

∑

j∈Jn

∫ t

0

(
Πj,s − Π̂

(n)
j,s

)(
λj,s − λ̂(n)

j,s

)
ds.(15)

We now proceed to show that U (n) drives the asymptotic limit of
√
|Jn|Î(n), and that the

processes R
(n)
k can be considered remainder terms, which we will show converge weakly to the zero

process. Before doing so, we introduce regularity conditions on the data generating distribution,

and consistency assumptions on the estimators λ̂(n) and Π̂(n). Define also

σ2(t) := E

(∫ t

0

(Zs −Πs)
2dNs

)
= E

(∫ t

0

(Zs −Πs)
2λsds

)
.(16)

From this end we will assume the following on the data generating distribution and its interplay
with our choice of auxiliary process Z.

Assumption 3.1.

i) The Ft-intensity λ of N is caglad with sup0≤t≤T λt ≤ C almost surely.
ii) The process Z is caglad with sup0≤t≤T |Zt| ≤ C ′ almost surely.

iii) σ2(t) <∞ for each t ∈ [0, T ].
iv) E((Zt −Πt)

2λt) <∞ for each t ∈ [0, T ].

For a caglad process X ∈ L2(Ω× [0, T ]) we let |||·|||2∞,T denote the norm

|||X|||2∞,T = E

((
sup

0≤t≤T
|Xt|

)2
)
.

We then make the following consistency assumptions on λ̂(n) and Π̂(n).

Assumption 3.2. Let

g(n) =
∣∣∣
∣∣∣
∣∣∣Π− Π̂(n)

∣∣∣
∣∣∣
∣∣∣
∞,T

,

h(n) =
∣∣∣
∣∣∣
∣∣∣λ− λ̂(n)

∣∣∣
∣∣∣
∣∣∣
∞,T

,

k(n) =

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
λ− λ̂(n)

)2
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞,T

.
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Then it holds that
√
|Jn|g(n)h(n)→ 0 and g(n), h(n), k(n)→ 0 as n→∞.

Let G̃t denote the smallest filtration that has the filtrations {Gj,t | j ∈ Jn, n ∈ N} as subfiltrations.

First we have the following proposition about the weak limit of the process U (n), where we write
=⇒ to denote weak convergence in D[0, T ], the space of cadlag function [0, T ] → R, endowed
with the Skorokhod topology.

Proposition 3.3. Assume H0 and that Assumption 3.1 holds. Then

U (n) =⇒ U

where U = (Ut)t∈[0,T ] is a zero-mean Gaussian martingale with respect to G̃t with variance

function σ2 given by (16).

Next we turn our attention to the remainder terms R
(n)
k , k = 1, 2, 3.

Proposition 3.4. Under H0 and Assumptions 3.1 and 3.2 it holds that

R
(n)
k =⇒ 0

for k = 1, 2, 3 where 0 is the zero-process.

By combining the two proposition, we have the following theorem, which is a simple consequence
of the continuous mapping theorem.

Theorem 3.5. Assume H0 and Assumptions 3.1 and 3.2. Then
√
|Jn|I(n) =⇒ U

where U = (Ut)t∈[0,T ] is a zero-mean Gaussian martingale with respect to G̃t with variance

function σ2 given by (16).

Hence we have established the weak asymptotic limit of our test process
√
|Jn|Î(n). However,

the variance function σ2 of the limiting Gaussian martingale is unknown and must be estimated
from data, e.g. using the estimator

σ̂2
n(t) =

1

|Jn|
∑

j∈Jn

∫ t

0

(Zj,s − Π̂
(n)
j,s )2dNj,s

=
1

|Jn|
∑

j∈Jn

∑

τ≤t:∆Nj,τ=1

(Zj,τ − Π̂
(n)
j,τ )2.

We can now construct test statistics for conditional local independence as finite dimensional
functionals of Î(n) that quantifies the deviance of the parameter t 7→ γt from the zero-function.
As a simple example consider the following.

Corollary 3.6. Under H0 and Assumptions 3.1 and 3.2 it holds that
√
|Jn|
σ̂2
n(T )

Î
(n)
T

D−→ N (0, 1)(17)

as n→∞ if σ̂2
n(T )

P−→ σ2(T ).

The intuition behind the test statistic is as follows. Since I is a zero-mean, local martingale under
H0, we expect the fluctuations of its estimator process Î(n) to be well-behaved. On the contrary,
under the alternative the process I is not necessarily a zero-mean, local martingale, and could
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have a drift. Therefore, we expect its estimator Î(n) to have a drift, which makes the fluctuations
more extreme than what we expect under the null hypothesis. However, the test statistic in (17)
does not fully make use of this idea, since it only considers the end point of the process, and not
the fluctuations of the entire sample path of Î(n) over [0, T ]. In order to fully leverage this idea,
consider the test statistic

T̂n = sup
0≤t≤T

∣∣∣Î(n)
t

∣∣∣ .(18)

We then have the following result, which exploits the Dubins-Schwarz theorem, which states that
a continuous, local martingale can be represented by a time-changed Brownian motion.

Theorem 3.7. Let T̂n be given by (18). Under H0 and Assumptions 3.1 and 3.2 we have that

√
|Jn|T̂n D−→ S

where S has the distribution of the supremum of the absolute value of a Brownian motion on
[0, σ2(T )].

In practice, the p-value for the test can be determined by bootstrapping by plugging in the
estimate σ̂2

n(T ) for σ2(T ), and then simulate a large number of sample paths from a Brownian
motion on [0, σ̂2

n(T )].

4. Cox Example continued

With the setup as in Section 1.1, we let X = (Xt)0≤t≤T be a stochastic process with continuous
sample path and values in [0, C0]. In terms of X we let

Yt =

∫ t

0

Xsβ(s, t)ds+ Vt

Zt =

∫ t

0

Xsρ(s, t)ds+Wt

where β and ρ are two functions and V = (Vt)0≤t≤T and W = (Wt)0≤t≤T are two bounded
stochastic processes with continuous sample paths and mean 0. The processes X, V and W
are assumed independent, which implies (4). The functions β and ρ are defined on the triangle
T = {(s, t) ∈ [0, T ]2 | s ≤ t} and are assumed suitably smooth. By the boundedness of X and
hence λ and Z it follows that Assumption 3.1 is fulfilled.

Within this framework,

(19) Πs = E(Zs | FXs−) =

∫ t

0

Xsρ(s, t)ds,

and on (τ > t)

E(eYt | FXt ) = e
∫ t
0
Xsβ(s,t)dsE(eVt | τ > t)

= eβ̃0(t)+
∫ t
0
Xsβ(s,t)ds,

where β̃0(t) = log(E(eVt | τ > t)). Since

λt = 1[0,τ)(t)λ
0
t e
β1XtE(eYt | FXt )
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it follows that on (τ > t),

log(λt) = log(λ0
t ) + β̃0(t) + β1Xt +

∫ t

0

Xsβ(s, t)ds

= β0(t) + β1Xt +

∫ t

0

Xsβ(s, t)ds,(20)

where the two baseline terms depending only on time have been merged into β0. The functional
forms of how Π and log(λ) depend on the history of the X-process are thus similar and known
as the historical functional linear model in functional data analysis (Malfait & Ramsay 2003).
We can therefore use standard methods and implementations for nonparametric estimation of ρ
and β, and thus Π and λ, such as boosting (Brockhaus et al. 2017, 2020).

5. Discussion

Our proposed test statistic, its decomposition and the strategies used to bound the three remain-
der terms, e.g. data splitting, follow the general pattern used for deriving properties of double
machine learning procedures. The functional limit of the leading term, U (n), is likewise not sur-
prising, see e.g. Section V.4 in (Andersen et al. 1993) for similar nonparametric test statistics in
the context of survival analysis. However, targeting the infinite dimensional parameter t 7→ γt
requires several novel ideas.

First, the orthogonalization is based on a model of Zt for each t given the history up to time t,
and here it is important that we model the predictable projection, E(Zt | Ft−). This will ensure
the necessary martingale properties used for deriving the asymptotic limit.

Second, we need to control the remainder terms uniformly over t. The third term, R
(n)
3 is simple to

bound, and R
(n)
2 can also be bounded fairly easily by exploiting Doob’s submartingal inequality.

However, for the first term, R
(n)
1 , we need to establish stochastic equicontinuity via an exponential

tail bound and the use of the chaining lemma. It is this argument that requires most of the strong
assumptions made, e.g. uniform bounds on λ and Z.

A major practical question is whether we can estimate λ and Π with sufficient rates, e.g. n−
1+ε
4 .

This is, of course, possible with parametric models, but of much greater interest if it can be
achieved with nonparametric estimators. The example in Section 4 makes it plausible that this
is, indeed, possible with somewhat strong assumptions about the structure of λ and Π. The rate
results by Yao et al. (2005) for function-on-function regression suggest that good rates can be
achieved if e.g. Z, X and ρ are sufficiently smooth and sampled on a sufficiently fine grid. Though
the results by Yao et al. (2005) are not for the historical model, but a slightly different model,
we conjecture that similar results can be obtained for the historical model in Section 4. Whether
it is possible to achieve good rates with weak assumptions about the structure of the λ and Π
processes remains an open question.

Appendix A. Proofs

This appendix contains proofs of the results of the paper.

A.1. Proof of Proposition 2.2. The process Z is preditable since it is caglad, and Π is pre-
dictable by construction. Thus Z −Π is predictable, and the process I = (It) being a stochastic
integral of Z−Π w.r.t. a local Gt-martingale is likewise a local Gt-martingale under the hypothesis.
By definition, I0 = 0, and if I is a martingale, E(It) = E(I0) = 0. �
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A.2. Proof of Proposition 3.3. For simplicity of notation we write

U
(n)
t =

∑

j∈Jn

∫ t

0

H
(n)
j,s dMj,s where H

(n)
j,s =

Zj,s −Πj,s√
|Jn|

.

We will use the functional martingale central limit theorem, Theorem B.1, described in Appendix
B on the sequence (U (n))n≥1 to show the result. In the following we let G̃t be the smallest right
continuous and complete filtration having the filtrations {Gj,t | j ∈ Jn, n ≥ 1} as subfiltrations.

First note that each compensator Λj is continuous and bounded, since its intensity λj is caglad
and bounded by Assumption 3.1 (i). Therefore, Mj is a square integrable, zero-mean, local

G̃t-martingale under the hypothesis of conditional local independence. Secondly, every H
(n)
j is

bounded and G̃t-predictable, since Zj is bounded and caglad by Assumption 3.1 (ii). Therefore,

under the hypothesis of conditional local independence, (U (n))n≥1 is also a sequence of square

integrable, zero-mean, local G̃t-martingales. Now we see that

〈
U (n), U (n)

〉
(t) =

∑

j∈Jn

∫ t

0

(
H

(n)
j,s

)2

dΛj,s

=
∑

j∈Jn

∫ t

0

(
H

(n)
j,s

)2

dNj,s −
∑

j∈Jn

∫ t

0

(
H

(n)
j,s

)2

dMj,s.

By the law of large numbers we have that

∑

j∈Jn

∫ t

0

(
H

(n)
j,s

)2

dMj,s =
1

|Jn|
∑

j∈Jn

∫ t

0

(Zj,s −Πj,s)
2dMj,s

P−→ 0

as n → ∞ for each fixed t ∈ [0, T ], since the integrals are i.i.d. zero-mean local martingales.
Similarly, we have that

∑

j∈Jn

∫ t

0

(
H

(n)
j,s

)2

dNj,s =
1

|Jn|
∑

j∈Jn

∫ t

0

(Zj,s −Πj,s)
2dNj,s

P−→ E

(∫ t

0

(Zs −Πs)
2dNs

)
= σ2(t)

as n → ∞ for each fixed t ∈ [0, T ]. Here we note that σ2(t) < ∞ for each t ∈ [0, T ] by
Assumption 3.1 (iii). All in all we have

〈
U (n), U (n)

〉
(t)

P−→ σ2(t) <∞

as n→∞ for t ∈ [0, T ]. Using the notation of Theorem B.1 we have that

〈
U (n)
ε , U (n)

ε

〉
(t) =

∑

j∈Jn

∫ t

0

(
H

(n)
j,s

)2

1
(
|H(n)

j,s | ≥ ε
)

dΛj,s

=

∫ t

0

1

|Jn|
∑

j∈Jn
(Zj,s −Πj,s)

2
1

(∣∣∣∣∣
Zj,s −Πj,s√
|Jn|

∣∣∣∣∣ ≥ ε
)
λj,sds

for each t ∈ [0, T ] and ε > 0. We will show that this integral converges to zero in probability by
showing that it converges to zero in expectation. Let Wn(s) = E(Fn(s)) where

Fn(s) =
1

|Jn|
∑

j∈Jn
(Zj,s −Πj,s)

2
1

(∣∣∣∣∣
Zj,s −Πj,s√
|Jn|

∣∣∣∣∣ ≥ ε
)
λj,s
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for s ∈ [0, t] and ε > 0. Firstly, we note that

E

(∫ t

0

Fn(s)ds

)
≤ E

(∫ t

0

(Zj,s −Πj,s)
2
λj,sds

)
= σ2(t) <∞

by Assumption 3.1 (iii), where we have used that the observations j ∈ Jn are i.i.d. Tonelli’s
theorem therefore gives

E

(∫ t

0

Fn(s)ds

)
=

∫ t

0

Wn(s)ds.

Now secondly, we have by Assumption 3.1 (iv) that

Wn(s) ≤ E
(

(Zj,s −Πj,s)
2
λj,s

)
<∞,

and because Fn(s) → 0 a.s. for n → ∞ we have by dominated convergence that Wn(s) → for
n→∞. All in all this gives that

E
(〈
U (n)
ε , U (n)

ε

〉
(t)
)

=

∫ t

0

Wn(s)ds→ 0(21)

as n→∞. By Theorem B.1 we conclude that

U (n) =⇒ U

where U is a zero-mean, Gaussian martingale with respect to G̃t with variance function σ2, which
was what we wanted. �

A.3. Proof of Proposition 3.4. We will divide the proof into lemmas concerning each of

the remainder terms R
(n)
1 , R

(n)
2 and R

(n)
3 . Our proof strategy is as follows. Instead of directly

showing weak convergence to the zero-process, we will show uniform convergence in probability
to the zero-process, since this implies the former. For a general discussion of the relation between
weak convergence and uniform convergence in probability see Newey (1991). Throughout the

following we let G̃t be the smallest right continuous and complete filtration having the filtrations
{Gj,t | j ∈ Jn, n ∈ N} as subfiltrations. Analogously, we let G̃ct be the smallest right continuous
and complete filtration having the filtrations {Gj,t | j ∈ Jcn, n ∈ N} as subfiltrations. We start by

considering R
(n)
3 , since this is the easiest case.

Lemma A.1. Under Assumption 3.2 it holds that R
(n)
3 =⇒ 0.

Proof. We will show the result by showing that

E

(
sup

0≤t≤T
|R(n)

3,t |
)
→ 0

as n→∞. Using that the collection of random variables

(
sup

0≤t≤T

∣∣∣Πj,t − Π̂
(n)
j,t

∣∣∣ · sup
0≤t≤T

∣∣∣λj,t − λ̂(n)
j,t

∣∣∣
)

j∈Jn
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is identically distributed for each fixed n ≥ 2 we have that

E

(
sup

0≤t≤T
|R(n)

3,t |
)

= E


 sup

0≤t≤T

∣∣∣∣∣∣
1√
|Jn|

∑

j∈Jn

∫ t

0

(
Πj,s − Π̂

(n)
j,s

)(
λj,s − λ̂(n)

j,s

)
ds

∣∣∣∣∣∣




≤ E


 T√
|Jn|

∑

j∈Jn
sup

0≤t≤T

∣∣∣Πj,t − Π̂
(n)
j,t

∣∣∣ · sup
0≤t≤T

∣∣∣λj,t − λ̂(n)
j,t

∣∣∣




= T ·
√
|Jn|E

(
sup

0≤t≤T

∣∣∣Πj,t − Π̂
(n)
j,t

∣∣∣ · sup
0≤t≤T

∣∣∣λj,t − λ̂(n)
j,t

∣∣∣
)

≤ T ·
√
|Jn|

√√√√E

((
sup

0≤t≤T

∣∣∣Πj,t − Π̂
(n)
j,t

∣∣∣
)2
)√√√√E

((
sup

0≤t≤T

∣∣∣λj,t − λ̂(n)
j,t

∣∣∣
)2
)

= T ·
√
|Jn|g(n)h(n)→ 0

as n→∞ by Assumption 3.2. Therefore, we also have uniform convergence in probability to the
zero process. �

Next we proceed to the remainder process R
(n)
2 .

Lemma A.2. Under H0 and Assumptions 3.1 and 3.2 it holds that R
(n)
2 =⇒ 0.

Proof. Note that

R
(n)
2,t =

1√
|Jn|

∑

j∈Jn

∫ t

0

(
Πj,s − Π̂

(n)
j,s

)
dMj,s

is a mean-zero, local G̃t-martingale conditionally on G̃cT under the hypothesis of conditional local

independence since then each Mj is a mean-zero, local G̃t-martingale and each Πj − Π̂
(n)
j is

G̃t-predictable. Therefore, the squared process (R
(n)
2 )2 is a local G̃t-submartingale. By Doob’s

submartingale inequality we have that

P

(
sup

0≤t≤T
|R(n)

2,t | ≥ ε
)

= P

(
sup

0≤t≤T

(
R

(n)
2,t

)2

≥ ε2

)

= E

(
P

(
sup

0≤t≤T

(
R

(n)
2,t

)2

≥ ε2 | G̃cT
))

≤
E
(
V
(
R

(n)
2,T | G̃cT

))

ε2

for ε > 0. The collection of random variables
(∫ T

0

(
Πj,s − Π̂

(n)
j,s

)
dMj,s

)

j∈Jn

114 CHAPTER 5. LOCAL INDEPENDENCE TESTING



NONPARAMETRIC CLI TESTING 14

are i.i.d. conditionally on G̃cT . Therefore,

V
(
R

(n)
2,T | G̃cT

)
=

1

|Jn|
∑

j∈Jn
V

(∫ T

0

(
Πj,s − Π̂

(n)
j,s

)
dMj,s | G̃cT

)

= E

(∫ T

0

(
Πj,s − Π̂

(n)
j,s

)2

d〈Mj〉s | G̃cT

)

= E

(∫ T

0

(
Πj,s − Π̂

(n)
j,s

)2

λj,sds | G̃cT

)

≤ T · E
(

sup
0≤t≤T

(
Πj,s − Π̂

(n)
j,s

)2

λj,t | G̃cT
)

≤ T · C · E
(

sup
0≤t≤T

(
Πj,s − Π̂

(n)
j,s

)2

| G̃cT
)

where we have used that λj is bounded by Assumption 3.1 (i). Thus

E
(
V
(
R

(n)
2,T | G̃cT

))
≤ T · C · E

(
sup

0≤t≤T

(
Πj,s − Π̂

(n)
j,s

)2
)

= T · C · g(n)2,

and we conclude that

P

(
sup

0≤t≤T
|
√
|Jn|R(n)

2,t | ≥ ε
)
≤ T · C

ε2
g(n)2 → 0

as n→∞ by Assumption 3.2. �

Before proving that R
(n)
1 converges weakly to the zero-process, we will need an auxiliary lemma.

For s, t ∈ [0, T ] with s < t define

Xs,t =
1

t− s

∫ t

s

(Zu −Πu)(λu − λ̂(n)
u )du.

Recall that a random variable S is called sub-Gaussian with variance factor ν if

logE(eλS) ≤ λ2ν

2
for all λ ∈ R.

Lemma A.3. Let Assumption 3.1 hold true. There exists ν > 0 such that for all s < t it holds
that Xs,t is sub-Gaussian conditionally on G̃cT with variance factor ν, that is,

logE(eλX
s,t | G̃cT ) ≤ λ2ν

2
for all s < t and λ ∈ R.

Proof. This follows from Boucheron et al. (2013) Lemma 2.2, which states that bounded random
variables are sub-Gaussian. Indeed, we have that

|Xs,t| ≤ 1

t− s

∫ t

s

|(Zu −Πu)||(λu − λ̂(n)
u )|du

≤ sup
0≤u≤T

|(Zu −Πu)| sup
0≤u≤T

|(λu − λ̂(n)
u )| ≤ 4CC ′

by Assumption 3.1. Therefore, there exists ν > 0 such that Xs,t is sub-Gaussian with variance
factor ν for all s < t. As the bound on |Xs,t| does not depend on s, t or G̃cT , the variance factor

ν can be chosen uniformly in s, t, and sub-Gaussianity holds conditionally on G̃cT . �
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Then we have the following regarding R
(n)
1 .

Lemma A.4. Under H0 and Assumptions 3.1 and 3.2 it holds that R
(n)
1 =⇒ 0.

Proof. The proof consists of two parts. First we show that for each t ∈ [0, T ] it holds that

R
(n)
1,t

P−→ 0

for n→∞. Then we show stochastic equicontinuity of the process R
(n)
1 , and by Theorem 2.1 in

Newey (1991) it follows that

sup
t∈[0,T ]

|R(n)
1,t |

P−→ 0.

The collection of random variables
(

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

))
j∈Jn

are i.i.d. conditionally on G̃cT . Therefore,

E(R1,t | G̃cT ) = E


 1√
|Jn|

∑

j∈Jn

∫ t

0

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

)
ds | G̃cT




=
√
|Jn|

∫ t

0

E
(

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

)
| G̃cT

)
ds

=
√
|Jn|

∫ t

0

E
(
E
(

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

)
| Fj,s− ∨ G̃cT

)
| G̃cT

)
ds

=
√
|Jn|

∫ t

0

E
(

(E (Zj,s | Fj,s−)−Πj,s)
(
λj,s − λ̂(n)

j,s

)
| G̃cT

)
= 0,

where we have used that λj,t − λ̂(n)
j,t is Fj,t-predictable conditionally on G̃cT , that Πj,t is Fj,t-

predictable, and that E (Zj,s | Fj,s−) − Πj,s = 0 per definition. Whence E(R
(n)
1,t ) = 0, and

V (R
(n)
1,t ) = E(V (R

(n)
1,t ) | G̃cT ), so

V (R
(n)
1,t ) = E


 1

|Jn|
∑

j∈Jn
V

(∫ t

0

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

)
ds | G̃cT

)


= E

(
E

((∫ t

0

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

)
ds

)2

| G̃cT

))

= E

((∫ t

0

(Zj,s −Πj,s)
(
λj,s − λ̂(n)

j,s

)
ds

)2
)

≤ E
(

sup
0≤t≤T

(Zj,t −Πj,t)
2 sup

0≤t≤T
(λj,t − λ̂(n)

j,t )2

)

≤
∣∣∣∣∣∣(Zj −Πj)

2
∣∣∣∣∣∣
∞,T

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
λj − λ̂(n)

j

)2
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞,T

≤ K
∣∣∣∣
∣∣∣∣
∣∣∣∣
(
λj − λ̂(n)

j

)2
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞,T

,
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where we have used the Cauchy-Schwartz inequality and Assumption 3.1 (ii). Hence by Cheby-
chev’s inequality,

P (|R(n)
1,t | > ε) ≤

V (R
(n)
1,t )

ε2
≤ K

ε2

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
λj − λ̂(n)

j

)2
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞,T
→ 0

as n → ∞ for all ε > 0 by Assumption 3.2. This completes the first part of the proof. For the
second part, we use a chaining argument based on the exponential inequality in Lemma A.3.
Again we consider

Xs,t
j =

1

t− s

∫ t

s

(Zj,u −Πj,u)
(
λj,u − λ̂(n)

j,u

)
du

such that

S =
1√
|Jn|

∑

j∈Jn
Xs,t
j =

1

t− s (R
(n)
1,t −R

(n)
1,s ).

Using that (Xs,t
j )j∈Jn are i.i.d. conditionally on G̃cT we have by Lemma A.3 that

logE
(
eλS
)

= logE
(
E
(
eλS | G̃cT

))

= logE


∏

j∈Jn
E

(
e

λ√
|Jn|

Xs,tj | G̃cT
)


≤ logE
(
e
λ2ν
2

)

=
λ2ν

2
.

So S is also sub-Gaussian with variance factor ν. This implies that

P (|S| > η) ≤ 2e−
η2ν
2

for all η > 0. Rephrased in terms of R
(n)
1 this bound reads

P
(
|R(n)

1,t −R
(n)
1,s | > η(t− s)

)
≤ 2e−

η2ν
2

for all η > 0 and s < t. It now follows from the chaining lemma, Pollard (1984) Lemma VII.9, that

R
(n)
1 is stochastic equicontinuous (the covering numbers and integral are bounded by standard

arguments for [0, T ]). This completes the second part of the proof. �

Proposition 3.4 now follows from combining the three lemmas above.

A.4. Proof of Corollary 3.6. Under H0 and Assumptions 3.1 and 3.2 we know by Theorem 3.5
that √

|Jn|Î(n) =⇒ U

as n→∞, and therefore we have convergence of all finite dimensional distributions. In particular,
we have that

√
|Jn|Î(n)

T
D−→ UT ∼ N (0, σ2(T ))

as n→∞. As σ̂2
n(T )

P−→ σ2(T ), Slutsky’s lemma now implies that
√
|Jn|
σ̂2
n(T )

Î
(n)
T =

√
σ2(T )

σ̂2
n(T )

√
|Jn|
σ2(T )

Î
(n)
T

D−→ 1 · UT√
σ2(T )

∼ N (0, 1)
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as n→∞. �

A.5. Proof of Theorem 3.7. According to Theorem 3.5 we have that
√
|Jn|Î(n) =⇒ U

where U is a Gaussian process with variance function σ2. By the Dubins-Schwarz theorem, we
can represent

Ut = Bσ2(t)(22)

where Bu is a Brownian motion on [0, σ2(T )]. See Revuz & Yor (2013) Chapter V Theorems 1.6
and 1.7 and the surrounding discussion. Therefore, we have that

√
|Jn|T̂n D→ sup

0≤t≤T
|Ut| = sup

0≤t≤T
|Bσ2(t)| = sup

0≤u≤σ2(T )

|Bu|

where we have used that t 7→ σ2(t) is increasing. �

Appendix B. Martingale functional central limit theorem

In this appendix we provide a functional central limit theorem for martingales following Chapter
5 of Fleming & Harrington (2011).

Let N
(n)
j be a counting process on (Ω,F , P ) adapted to the filtration (Ft) with continuous

compensator Λ
(n)
j and associated locally square integrable martingale M

(n)
j = N

(n)
j − Λ

(n)
j for

j = 1, . . . , n. Also let H
(n)
j be a locally bounded Ft-predictable process for each j = 1, . . . , n.

Define the process U (n) by

U
(n)
t =

n∑

j=1

∫ t

0

H
(n)
j,s dM

(n)
j,s

and for ε > 0 define the process U
(n)
ε ,

U
(n)
ε,t =

n∑

j=1

∫ t

0

H
(n)
j,s 1

(
|H(n)

j,s | ≥ ε
)

dM
(n)
j,s ,

which contains all the jumps of U (n) of size at least ε. It can then be noted that U (n) and U
(n)
ε

are themselves locally square integrable martingales and that

〈
U (n), U (n)

〉
(t) =

n∑

j=1

∫ t

0

(
H

(n)
j,s

)2

dΛ
(n)
j,s

and similarly that

〈
U (n)
ε , U (n)

ε

〉
(t) =

n∑

j=1

∫ t

0

(
H

(n)
j,s

)2

1
(
|H(n)

j,s | ≥ ε
)

dΛ
(n)
j,s

according to Theorem 2.4.1 and Theorem 2.4.3 of Fleming & Harrington (2011). We then have
the following functional martingale central limit theorem (Fleming & Harrington 2011, Theorem
5.3.3), where we use =⇒ to denote convergence in D[0,∞), the space of cadlag functions [0,∞)→
R, endowed with the Skorokhod topology.
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Theorem B.1. Let t 7→ σ2(t) be a nonnegative measurable function. Assume that
〈
U (n), U (n)

〉
(t)

P−→ σ2(t) and
〈
U (n)
ε , U (n)

ε

〉
(t)

P−→ 0

as n→∞ for each t > 0. Then it holds that

U (n) =⇒ U

as n→∞ where U is a Gaussian martingale with variance function σ2.
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5.1 Regularity and rate assumptions

Let us discuss the regularity and rate assumptions that are required for the results of the manuscript

in its current form. The main regularity assumptions are Assumption 3.1 (i) and (ii). Note that both

Assumption 3.1 (iii) and (iv) are redundant, since they follow from the boundedness of Z and λ in (i)

and (ii). We have included them to make it explicit what is required for the results to hold, since we

need these to hold even if we relax (i) and (ii) at a future point.

The assumption that the intensity λ is caglad is required in two aspects. Firstly, we need λ to

be Ft-predictable, and since an F-adapted and left continuous process is F-predictable, it is natural

to assume λ to be caglad. Secondly, a requirement for the functional martingale central limit theorem

in Theorem B.1 is that the compensators are continuous, and this is ensured by the intensity λ being

caglad, which is therefore a natural smoothness condition. The fact that Z is assumed caglad is also

natural, since the stochastic integral construction of I is only a G-martingale under conditional local

independence if the integrand is G-predictable, which is ensured by Z being caglad since it is G-adapted

by construction. For these reasons we consider the caglad assumptions on λ and Z to be natural and

unproblematic.

The more restrictive assumptions are the almost sure uniform boundedness of λ and Z. The impor-

tance of Z being bounded is partly due to the functional martingale central limit theorem in Theorem

B.1, where it is required that the integrand is locally bounded. This suggests that we might be able to re-

lax the assumption to Z being locally bounded, however, we do not consider the boundedness assumption

to be problematic, since we are typically free to choose Z ourselves in practice. Let us explain.

An intended use case of the hypothesis test is when (Nd)d=1,...,p is assumed to be a multivariate

counting process, and we wish to test whether Na is conditionally locally independent of Nb given NC

for some a ∈ {1, . . . , p} and C ⊂ {1, . . . , p} with b /∈ C. This can be cast in the setup of our manuscript as

follows. We let F be the filtration generated by N{a}∪C such that Na is F-adapted, and then we choose

Z to be a bounded, caglad process that depends on Nb. For example, we could choose Zt = ϕ(Nb
t−)

where ϕ is continuous and bounded, or we could choose

Zt = ϕ

(∫ t−

0

k(t− s)dNb
s

)
(5.1)

where ϕ is bounded and continuous, and k is some kernel function. Thus, the boundedness of Z is

unproblematic, since we are free to choose it to be bounded as long as it depends on Nb such that the

filtration G is strictly larger than F .

The importance of the boundedness of λ is (together with boundedness of Z) to obtain the sub-

Gaussianity in Lemma A.3, which is crucial for proving Lemma A.4, which states that the remainder

term R
(n)
1 converges weakly to the zero process. Here we use Pollard’s chaining lemma to establish

stochastic equicontinuity, which is a rather strong result which requires an exponential tail bound. It

remains an open question whether the boundedness of λ can be relaxed to, e.g., local boundedness, and

whether stochastic equicontinuity of R
(n)
1 can be shown directly without using the chaining lemma.

Besides the regularity conditions of Assumption 3.1, we also assume consistency of nonparametric

estimators of λ and Π according to the norm

|||X|||2∞,T = E

((
sup

0≤t≤T
|Xt|

)2
)
.

in Assumption 3.2. The strongest assumption is that

k(n) =
∣∣∣∣∣∣∣∣∣(λ− λ̂(n))2

∣∣∣∣∣∣∣∣∣
∞,T
→ 0



5.2. DIRECTIONS OF FURTHER RESEARCH 123

as n → ∞ which is used in the proof of Lemma A.4. We hypothesize that this can be relaxed to the

assumption that

kα(n) =
∣∣∣∣∣∣∣∣∣(λ− λ̂(n))α

∣∣∣∣∣∣∣∣∣
∞,T
→ 0

as n → ∞ for some 0 < α ≤ 2 by the use of Hölder’s inequality. However, the details are the topic

of further research. The requirement that
√
|Jn|g(n)h(n) → 0 as n → ∞ is standard in the context of

double machine learning, and we only need a n−
1+ε
4 -consistency rate for some ε > 0 for both λ̂(n) and

Π̂(n) for this to hold. If this rate condition is not satisfied, a possible solution is to dedicate a larger

portion of data to estimation of λ̂(n) and Π̂(n) than the computation of Î(n) by choosing Jn ⊂ {1, . . . , n}
such that |Jn| grows at a slower than linear rate, e.g., |Jn| =

√
n. Of course this comes at the expense

of slower weak convergence of
√
|Jn|Î(n) to the Gaussian martingale U .

Note that we do not postulate that these consistency requirements are always satisfied for non-

parametric models of λ and Π. The purpose of the manuscript is to provide a nonparametric test for

conditional local independence in the case where the consistencies are believed to be true, and this must

be justified or assumed for a specific application.

5.2 Directions of further research

Besides exploring the opportunity to relax the regularity conditions as stated above, there are several

directions of further research regarding both theory and implementation of the proposed conditional

local independence test. Firstly, in order to carry out the test using the finite dimensional functional T̂n

used in Theorem 3.7, we need to be able to estimate the variance function σ2 of the limiting Gaussian

martingale. In the manuscript we propose an estimator σ̂2
n, but do not show consistency. We believe

that it is possible to show consistency by expanding σ̂2
n as

σ̂2
n(t) =

1

|Jn|
∑
j∈Jn

∫ t

0

(
Zj,s −Πj,s + Πj,s − Π̂

(n)
j,s

)2

dNj,s

and separate the integral into a term not involving estimation uncertainty and a remainder term. From

this we believe that it will be possible to use Assumption 3.2 to show consistency.

Secondly, we have not carried out an analysis of power of the tests, i.e., it is an open question which

alternatives of conditional local dependence the test has power against. One possible starting point of

such an analysis, would be to consider Z-processes given by (5.1), and then study the power of the test

under different parametrized kernel functions by simulation.

Thirdly, we consider our testing procedure to be an example of double machine learning, where

both the nuisances Λ and Π and the target parameter t 7→ γt are infinite dimensional. We believe

that the subtraction of the predictable projection Π in the integrand of I can be seen as a Neyman-

orthogonalization. However, the Neyman-orthogonal score functions described in Chernozhukov et al.

[2018] only consider finite dimensional target parameters. It would be of independent theoretical interest

to generalize this notion to infinite dimensional target parameters and develop a theory of Neyman-

orthogonal score processes, which, to the best of our knowledge, is unexplored.

Lastly, in order to carry out the test in practice we need nonparametric estimators of λ and Π. In

Chapter 6 we present the current status of a nonparametric estimator of intensity functions by using

recurrent neural networks.





Chapter 6

Intensity Estimation using Neural
Networks

6.1 Introduction

This chapter introduces a Python library for modelling intensities of marked point processes using

recurrent neural networks. More specifically, we present an efficient implementation of the marked

point process negative log-likelihood function as a loss function for training neural network models of

intensities in the Keras [Chollet et al., 2015] high level API to the TensorFlow [Abadi et al., 2015] library

for building and training neural network models.

Modeling intensities using neural networks has been considered by e.g. Xiao et al. [2019] and Zhang

et al. [2020]. However, the focus of previous work has been on a fixed architecture of the neural network,

and there are no publicly available implementations. The purpose of this work is to provide a toolbox

for experimenting with neural networks for intensity estimation leveraging the modularity of Keras

for specifying the network architecture and the automatic differentiation capabilities of TensorFlow for

training the models. The implementation and code for reproducing the simulations of this chapter is

available at https://github.com/lassepetersen/IntensityRNN.

The implementation presented here is ongoing work, and its motivation is for nonparametric intensity

estimation in connection with the test for conditional local independence presented in Chapter 5. There

we were given a counting process N adapted to a filtration F , and for our test statistic process we needed

to be able to estimate the F-intensity of N . Here we consider the situation where the filtration F is

generated by a multivariate counting process with N being one of its coordinates.

The organization of the chapter is as follows. In Section 6.2 we describe the setup more precisely

in terms of marked point processes. In Section 6.3 we describe the proposed recurrent neural network

modeling framework, and the loss function we will use to train the models. In Section 6.4 we describe

in details how to use the module intensitymodel, which contains a model class for fitting intensities

with neural network models. In Section 6.5 we show the performance of the model on renewal processes.

Lastly, in Section 6.6 we discuss the future development of the module.
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6.2 Setup

Let (τj , zj)j≥1 be a marked point process with finite mark space M such that τj denotes the j’th event

time and zj ∈M denotes the event type or mark. We assume that 0 < τ1 < · · · < τk < T where T is an

independent censoring time. For each mark d ∈M we associate a counting process

Nd
t =

∞∑
j=1

1(τj ≤ t)1(zj = d).

For a subset of marks D ⊂ M we let FD = (FDt )t≥0 be the right continuous and completed filtration

generated by the counting processes (Nd)d∈D. Given a fixed mark d ∈ M and a subset D ⊂ M with

d ∈ D, we assume that Nd has an FD-intensity λd,D, that is, λd,D is an FD-predictable, non-negative

stochastic process such that, with Λt =
∫ t

0
λsds being the FD-compensator of Nd, then

Md,D
t := Nd

t − Λd,Dt

is an FD-martingale. The FD-intensity λd,D of Nd is interpreted as the instantaneous rate of an event

with mark d ∈ D occurring given the D-history, i.e.,

λd,Dt = lim
δ→0+

P (Nd
t+δ −Nd

t = 1 | FDt−)

δ
. (6.1)

In what follows we will assume that d ∈ D ⊂ M are fixed, and will omit the superscripts from the

notation when it eases notation without causing confusion.

The goal is to estimate the intensity λ from data. Let (τi,j , zi,j)j≥1,i=1,...,n denote i.i.d. copies

of the marked point process, and let (Ti)i=1,...,n be the corresponding i.i.d. censoring times such that

0 < τi,1 < · · · < τi,ki < Ti for each i = 1, . . . , n. The negative log-likelihood of λ given the observations

is then given by

`(λ) =

n∑
i=1

(∫ Ti

0

λsds−
ki∑
j=1

Ii,j · log λτi,j

)
(6.2)

where Ii,j = 1(zi,j = d). A model of λ can then be fitted to data using maximum likelihood.

6.3 Recurrent neural network model

Note that λ needs to be F-predictable, that is, for each t ≥ 0, λt should be Ft−-measurable. The

predictable σ-algebra Ft− is generated by the events strictly prior to t,

Ft− = σ((τj , zj) | τj < t, zj ∈ D),

thus λt is a function of (τ1, z1), . . . , (τmt , zmt) where mt = max{j ∈ N | τj < t} and zj ∈ D. Since the

input sequence length mt dynamically varies with t, and the inputs are temporally ordered, it is natural

to consider modelling λ using recurrent neural networks. To this end, we consider modelling λ as

λt = 1(t < T )ϕθ(t, (τj , zj)
mt
j=1) (6.3)

where ϕθ(t, (τj , zj)
mt
j=1) is the output of a recurrent neural network parametrized by a parameter θ ∈ Θ.

To ease notation we will write ϕθ(t) := ϕθ(t, (τj , zj)
mt
j=1), but keep in mind its dependence on the
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history. In (6.3) we have chosen to explicitly model the censoring mechanism using an at-risk-indicator

Yt = 1(t < T ), while we nonparametrically model the intensity prior to censoring.

The only restriction for the architecture of the neural network is that the first layer is compatible with

the input dimension after a potential pre-transformation of (τj , zj)
mt
j=1, and that the output activation

needs to be non-negative, since the intensity needs to be non-negative. Once an architecture of the

neural network is chosen, we can consider the negative log-likelihood as a function of θ ∈ Θ,

`(θ) =

n∑
i=1

(∫ Ti

0

ϕθ(s)ds−
ki∑
j=1

Ii,j · logϕθ(τi,j)

)
. (6.4)

In order to leverage the automatic differentiation capabilities of TensorFlow, the loss function needs to

be expressed in terms of differentiable functions. The integral term of (6.4) does not in general have an

analytically closed form, and therefore cannot be automatically differentiated. Therefore, we consider a

discretization of the integral in the following way. For each i = 1, . . . , n, let (δi,`)
L
`=0 be an equidistant

grid 0 = δi,0 < δi,1 < · · · < δi,L = Ti with grid coarseness ∆i = δi,1 − δi,0. Then we define the

approximated negative log-likelihood function as

˜̀(θ) =

n∑
i=1

(
∆i ·

L∑
`=1

ϕθ(δi,`)−
ki∑
j=1

Ii,j · logϕθ(τi,j)

)
. (6.5)

This function approximates (6.4) for large values of L and is expressed solely in terms of differentiable

functions of θ. Hence, we will consider training the model (6.3) using ˜̀as loss function for a user specified

value of L. Computation of ˜̀ for a batch I ⊆ {1, . . . , n} requires |I| · L +
∑
i∈I ki forward passes from

the network ϕθ.

6.4 Module usage

The module intensitymodel contains a function for transforming raw sequence data to a Keras com-

patible data set, two custom preprocessing layers, and a model class for training neural network models

for intensities. We will now showcase the functionality of the module. We will spend some time on

explaining the data preparation and data input form, since this knowledge is required for a practitioner

to use our module for specifying custom neural network architectures.

Data preparation

As an example we will consider simulated data from a multivariate Hawkes process with exponentially

decreasing kernel functions, that is, the FD-intensity of the counting process Nd, d ∈ D, is given by

λd,Dt = µdt +
∑
h∈D

∫ t

0

fdh(t− s)dNh
s = µdt +

∑
h∈D

∑
τj<t,zj=h

fdh(t− τj) (6.6)

where µdt are baseline intensities and fdh are kernel functions describing how Nd depends on Nh. Here

we consider simulating from a 2-dimensional Hawkes process with

µ1
t = µ2

t = 0.25, f11(t) = f12(t) = f22(t) = 0.5 · exp(−3t) and f21(t) = 0 (6.7)

such that N1 depends on itself and N2, and N2 only depends on itself. We simulate the data using the

Python library tick [Bacry et al., 2017].
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import numpy as np

from tick.hawkes import SimuHawkesExpKernels

n_nodes = 2

adjacency = 0.5 * np.ones((n_nodes, n_nodes))

adjacency[1, 0] = 0

decays = 3 * np.ones((n_nodes, n_nodes))

baseline = 0.25 * np.ones(n_nodes)

hawkes = SimuHawkesExpKernels(adjacency=adjacency,

decays=decays,

baseline=baseline,

verbose=False,

seed=123)

hawkes.end_time = 100

hawkes.track_intensity(0.01)

N = 100

raw_data = []

for i in range(N):

hawkes.max_jumps = int(np.random.randint(5, 10, size=1))

hawkes.simulate()

events = hawkes.timestamps

T = 5

raw_data.append([T, events])

hawkes.reset()

The raw data format is a list of observation. Each observation is itself a list, where the first element

is the censoring time, and the subsequent elements are 1-dimensional numpy arrays of event times. The

raw data can be turned into a tf.data.Dataset using intensitymodel.create dataset, which contains

functionality for splitting into training and validation data.

from intensitymodel import create_dataset

TRAIN_SIZE = 0.8

data = create_dataset(raw_data)

data_train = data.take(int(TRAIN_SIZE * N))

data_valid = data.skip(int(TRAIN_SIZE * N))

A single sample returned by the data object is a rank 2 tensor, where the first column are the event

times and the second column are event types. The first row is reserved for the censoring time, which is

not associated with a mark.

x = next(data.batch(1).as_numpy_iterator())[0]

print(x)

---------------------------------------------------------------------------------------

[[5. nan]
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[0.75142485 2. ]

[1.822723 1. ]

[6.5150847 2. ]

[6.6051927 2. ]

[6.6147637 2. ]

[7.234427 2. ]

[7.2759256 1. ]

[ nan nan]

[ nan nan]]

Note that all samples are padded to be the same length. This is in order to optimize the data

input pipeline, and the padding is removed when the sample is passed through the network by using our

pre-processing layers.

Pre-processing layers

The module contains two pre-processing layers that transforms samples as part of the forward pass of the

neural network. Let us first describe the structure of data used for the forward pass. The censoring time

T is used for computing the loss function (6.5), but is not a part of the forward pass, and is therefore

removed. In addition to the event times and marks, we need to provide the time point at which the

intensity should be evaluated, which is appended to the end of the data. This is done automatically

during training, but here we do it manually to make things explicit. A generic data point has the

following structure, where we intend to evaluate the intensity at t = 7:

x = np.vstack((x, np.array([7.0, 0.0])))

print(x)

---------------------------------------------------------------------------------------

[[0.75142485 2. ]

[1.82272303 1. ]

[6.51508474 2. ]

[6.60519266 2. ]

[6.61476374 2. ]

[7.23442698 2. ]

[7.27592564 1. ]

[ nan nan]

[ nan nan]

[7. 0. ]]

The pre-processing layer intensitymodel.LaggedSequence creates lags of the event times prior

to t and removes the padding, i.e.,

(t, (τj)j≥1) 7→ (t− 0, t− τ1, t− τ2, . . . , t− τmt).

The first element t− 0 is then associated with the mark 0, which represent the time since trial start. By

adding the event τ0 = 0 with mark z0 = 0 we ensure that the forward pass is well-defined for t ≤ τ1.



130 CHAPTER 6. INTENSITY ESTIMATION USING NEURAL NETWORKS

from intensitymodel import LaggedSequence

lagged_sequence = LaggedSequence()

print(lagged_sequence(x))

---------------------------------------------------------------------------------------

tf.Tensor(

[[[7. ]

[6.248575 ]

[5.177277 ]

[0.48491526]

[0.39480734]

[0.38523626]]], shape=(1, 6, 1), dtype=float32)

The output is a tensor of shape (batch_size, time_steps, num_features) , which can then be

processed by any standard recurrent layer.

We also provide a pre-processing layer intensitymodel.EmbeddingWithNAN, which does a

standard embedding of the marks into RM , where M is user specified, while removing the padding and

only considering events prior to t. In other words each mark zj is one-hot-encoded using a dummy

variable z∗j ∈ {0, 1}|M|+1, and then linearly transformed by a matrix B with trainable parameters:

(t, (τj , zj)j≥1) 7→ (Bz∗0 , Bz
∗
1 , Bz

∗
2 , . . . , Bz

∗
mt

)

In this way each column of B corresponds to a dense representation of the event marks, and this dense

representation is trainable.

from intensitymodel import EmbeddingWithNAN

embedding_layer = EmbeddingWithNAN(input_dim=3, output_dim=4)

print(embedding_layer(x))

---------------------------------------------------------------------------------------

tf.Tensor(

[[[-0.02994033 0.01735939 -0.01852044 0.04576658]

[ 0.03496361 -0.01699029 0.04163836 0.03269113]

[ 0.02381103 -0.01881518 0.00110693 -0.00490152]

[ 0.03496361 -0.01699029 0.04163836 0.03269113]

[ 0.03496361 -0.01699029 0.04163836 0.03269113]

[ 0.03496361 -0.01699029 0.04163836 0.03269113]]], shape=(1, 6, 4), dtype=float32)

Both pre-processing layers are subclasses of keras.layers.Layer, and inherits the functionality of

this class.

Specifying the network architecture

We will now show how the network architecture can be specified by using the Keras functional model

API. Here one build an acyclic directed graph of computational layers that are compiled into a com-

putational graph by specifying the leaf nodes. Below we see an example of this with our intensity-

model.IntensityRNN class together with our custom pre-processing layers.



6.4. MODULE USAGE 131

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from intensitymodel import IntensityRNN, LaggedSequence, EmbeddingWithNAN

input = layers.Input(shape = (None, 2))

x1 = LaggedSequence()(input)

x2 = EmbeddingWithNAN(input_dim = 3, output_dim = 4)(input)

x = tf.concat([x1, x2], axis = -1)

x = layers.LSTM(units = 64, activation = 'tanh', return_sequences = True)(x)

x = layers.LSTM(units = 32, activation = 'tanh')(x)

x = layers.Dense(units = 16, activation = 'tanh')(x)

x = layers.ActivityRegularization(l2 = 0.1)(x)

x = layers.Dense(units = 8, activation = 'tanh')(x)

x = layers.ActivityRegularization(l2 = 0.1)(x)

x = layers.Dense(1, activation = 'softplus')(x)

output = layers.ActivityRegularization(l2 = 0.1)(x)

model = IntensityRNN(inputs = input, outputs = output)

First we specify the input shape, which is (None, 2) since we allow input sequences of arbitrary

length with 2 features – the events times and marks. The inputs are then pre-processed using our

custom pre-processing layers, and the results are concatenated into a single tensor of shape (None, 5) ,

since the embedding dimension is set to 4. The processed sequences are then passed to a stacked pair

of recurrent LSTM layers [Hochreiter and Schmidhuber, 1997], and the last recurrent output is passed

to three stacked dense layers with || · ||2-regularization of the outputs. The activation of the output

layer is 1-dimensional, and we specify a non-negative activation function to ensure non-negativity of the

estimated intensity function. Lastly, we build the computational graph from the directed acyclic graph

of layers with our intensitymodel.IntensityRNN class, which is a subclass of keras.Model.

Naturally, the above is only an example of an architecture of the neural network, and one can

experiment with different layers, units, activations, regularizers, etc. However, we recommend using the

following template for specifying the architecture.

input = layers.Input(shape = (None, 2))

x1 = LaggedSequence()(input)

x2 = EmbeddingWithNAN(input_dim, output_dim)(input)

x = tf.concat([x1, x2], axis = -1)

...

...

...

output = layers.Dense(1, activation = 'softplus')(x)

model = IntensityRNN(inputs = input, outputs = output)
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Model training

We use the built-in functionality of Keras for training neural network models, which has numerous

optimizers and stopping criteria built in. Below is an example which uses the Adam optimizer with user

specified learning rates, and an early stopping criterion based on the loss of the validation data.

opt = keras.optimizers.Adam(lr=0.002, decay=0.0005)

early_stop = tf.keras.callbacks.EarlyStopping(

monitor = 'val_loss',

patience = 3,

min_delta = 2,

restore_best_weights = True

)

model.compile(optimizer = opt, L = 50, d = 1)

BATCH_SIZE = 20

MAX_EPOCHS = 5

model.fit(x = data_train.batch(BATCH_SIZE),

validation_data = data_gen_valid.batch(int((1-TRAIN_SIZE) * N)),

callbacks = [early_stop],

epochs = MAX_EPOCHS)

---------------------------------------------------------------------------------------

Epoch 1/5

4/4 [==================] - 18s 2s/step - train_loss: 89.0038 - val_loss: 3.5268

Epoch 2/5

4/4 [==================] - 6s 2s/step - train_loss: -52.3426 - val_loss: -1.2048

Epoch 3/5

4/4 [==================] - 6s 2s/step - train_loss: -130.3572 - val_loss: -3.9064

Epoch 4/5

4/4 [==================] - 6s 2s/step - train_loss: -176.5087 - val_loss: -5.4356

Epoch 5/5

4/4 [==================] - 6s 2s/step - train_loss: -205.7987 - val_loss: -6.3774

When compiling the models, we specify the approximation accuracy L of the approximated negative

log-likelihood function (6.5), and we also specify the mark point of interest d, which in this case is 1,

i.e., we are telling the model that we are interested in fitting λ1,{1,2}. The loss function is directly

implemented into the model class, so we do not have to pass a loss function to the compile method.

As mentioned previously, to compute the loss function (6.5) for a batch I ⊂ {1, . . . , n} with approx-

imation accuracy L requires |I| · L +
∑
i∈I ki forward passes of the network. In the above example we

used batches of size 20, where one forward pass of the batch and one gradient step of the Adam optimizer

took 2 seconds on a standard laptop.

We have implemented the loss function such that all forward passes are computed in parallel for

efficiency. Furthermore, the loss function is written entirely using TensorFlow, such that we can make

use of TensorFlow’s built-in tools for converting an eager computational graph to a static computational



6.5. SIMULATIONS 133

graph for significant computational speedup.1 In the training example above, the first epoch takes 12

seconds more than the following. This is the time used for making one forward pass of a batch in the

eager graph. Based on this one eager forward pass, TensorFlow builds a static graph for the subsequent

forward passes, which take 2 seconds on average. In other words, the time used for one forward pass of

the network is reduced 83% in this concrete example due to the efficiency of the implementation.

Extracting results

The estimated intensity λ̂t = 1(t < T )ϕθ̂(t) and compensator Λ̂t =
∫ t

0
λ̂sds can be extracted from the

IntensityRNN class by providing a history (τj , zj)j≥1 and censoring time T .

intensity = model.intensity(history=data, T=T)

compensator = model.compensator(history=data, T=T, approx=1000)

print(intensity(3.2))

print(compensator(3.2))

---------------------------------------------------------------------------------------

tf.Tensor(1.5482968, shape=(), dtype=float32)

tf.Tensor(3.0606036, shape=(), dtype=float32)

The compensator is computed using a time discretization of the integral, where the approximation

accuracy is determined by the user. In this case we pre-compute 1000 values of the estimated intensity

over a grid from 0 to T , which are used to compute the integral when calling the function.

6.5 Simulations

In this section we will consider applying our modeling framework to simulated data. We will consider

three classes of point processes. First we will consider renewal processes, where the waiting time between

events is i.i.d., and where the intensity only depends on the most recent event. Next we will consider

1-dimensional Hawkes processes, where the intensity depends on the entire event history. Lastly, we will

consider the 2-dimensional Hawkes process that we described in Section 6.4.

Renewal processes

Renewal processes are point processes (τj)j≥0 where the waiting times (τj+1 − τj)j≥0 are i.i.d. In this

case there is only one mark M = {1}, so we are modeling the F{1}-intensity λ1,{1} of the counting

process N1
t =

∑
j≥1 1(τj ≤ t) We consider three different waiting time distributions:

• Exponentially distributed τj+1 − τj ∼ Exp(1).

• Log-normally distributed τj+1 − τj ∼ Lognormal(3, 0.2).

• Uniformly distributed τj+1 − τj ∼ U([3, 10]).

In each case we will use the following architecture of the neural network, where we note that there is no

use for an embedding layer, since we only have one mark.

1For details see https://www.tensorflow.org/guide/function.

https://www.tensorflow.org/guide/function
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Figure 6.1: Left column: Predicted intensity functions for each of the three waiting time distributions
evaluated on an independent test sample not used for training. Red points indicate event times. Right
column: Martingale residuals for each of the three models for 10 test samples not used for training.

input = layers.Input(shape=(None, 2))

x = LaggedSequence()(input)

x = layers.LSTM(64, activation='tanh')(x)

x = layers.Dense(32, activation='tanh')(x)

x = layers.Dense(16, activation='tanh')(x)

x = layers.Dense(8, activation='tanh')(x)

output = layers.Dense(1, activation='softplus')(x)

model = IntensityRNN(inputs = input, outputs = output)
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For each waiting time distribution we simulate n = 500 point processes that we use for training.

The network is fitted using an Adam optimizer with learning rate 0.002 and decay 0.0005, and an

approximation of the negative log-likelihood loss function with L = 50. We used a batch size of 20,

and fitted the models using 10 epochs. Both the architecture of the network and the training related

hyperparameters were chosen ad-hoc without any tuning.

We will evaluate the performance of the model on an independent test data set not used for training.

By this we mean that the parameters of the neural network are obtained by fitting the model on a training

data set to determine its functional form. When we evaluate the models on a test data set, we consider

the parameters as fixed, but plug in the event history of the test point processes.

In Figure 6.1 we consider the predicted intensity on a test sample, and also the martingale residuals

M̂t = Nt − Λ̂t,

for 10 test samples, which are approximately zero-mean Gaussian processes if the model fits. Firstly,

when the waiting time distribution is exponentially distributed with scale 1, we know that the intensity

is λt = 1(t < T ). We see that the predicted intensity lies almost constantly around 1, so that the

recurrent neural network has captured the functional form of the true intensity. We also see that the

martingale residuals are centered around 0 with a slight tendency of underestimation. Secondly, for

the log-normally distributed waiting times, we see that the predicted intensities has captured that the

intensity drops almost to zero after an event, but increases after a while. The martingale residuals

lie nicely around zero without any noticeable outliers. Lastly, for the uniformly distributed waiting

times, the intensity drops to zero after an event, which is natural since the waiting times are U([3, 10])-

distributed, so an event cannot occur within 3 time units after the last event. In this case the martingale

residuals also lie around zero without major outliers.

We conclude that our recurrent neural network model for the intensity fits the renewal process data

well. Furthermore, we note that we used the same neural network architecture without any tailoring for

each of the waiting time distributions. However, one might argue that renewal processes are too simple,

since the intensity is independent of the history given the most recent event time. On the other hand,

the recurrent neural network effectively learns to ignore the irrelevant information.

1-dimensional Hawkes process

Next we will consider 1-dimensional Hawkes processes, where the intensity depends on the entire event

history. We simulate 500 point processes from the Hawkes process with intensity

λ1
t = 0.25 +

∑
τj<t

0.5 · e−3(t−τj). (6.8)

We use the same architecture, optimizer, batch size and number of training epochs as for the renewal

processes.

Predicted intensity for an independent test sample, and martingale residuals for 10 independent test

samples can be seen in Figure 6.2. First we note that the models captured the excitatory nature of the

Hawkes process, where an event increases the intensity of a new event. Moreover, we see that the intensity

exponentially decreases after an event, and that the baseline intensity of 0.25 is well predicted by our

neural network model. We see that the martingale residuals are well centered around zero, and there

is no sign of over- or underestimation of the intensity. We conclude that our recurrent neural network

models captures the functional form of the intensity of the Hawkes process well. It also efficiently models
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Figure 6.2: Left: Predicted intensity function on an independent sample from a 1-dimensional Hawkes
process given by (6.8). Red points indicate event times. Right: Martingale residuals for 10 independent
test samples.

the entire history of the process. Again we note that we have not tailored the architecture of the neural

network to the specific functional form (6.8) of the Hawkes process.

2-dimensional Hawkes process

Finally, we consider the 2-dimensional Hawkes process (6.6) with parameters (6.7) where the process N1

depends on its own history and the history of N2, and N2 only depends on its own history. Here the

task is to estimate the F{1,2}-intensity λ1,{1,2} of N1. In this case we have two marks, so we add an

embedding layer to the model, which has the following architecture.

input = layers.Input(shape=(None, 2))

x1 = LaggedSequence()(input)

x2 = EmbeddingWithNAN(input_dim=3, output_dim=5)(input)

x = tf.concat([x1, x2], axis = -1)

x = layers.LSTM(128, activation='tanh')(x)

x = layers.Dense(64, activation='tanh')(x)

x = layers.Dense(32, activation='tanh')(x)

x = layers.Dense(16, activation='tanh')(x)

output = layers.Dense(1, activation='softplus')(x)

model = IntensityRNN(inputs = input, outputs = output)

Again we simulate n = 500 samples, and we use the same optimizer, batch size and number of epochs

as in the two previous cases. The results can be seen in Figure 6.3.

We see that the predicted intensity correctly models the excitatory nature of the Hawkes process,

where we have exhibition of both events of N1 and N2, with an exponentially decreasing intensity

between events of either process. The baseline is also correctly estimated to approximately 0.25. From

the martingale residual plot we see that the intensity function is fairly well estimated with a single outlier

in this particular case.

In conclusion our neural network model correctly captures the functional form of the intensity

function in the presence in the case of a 2-dimensional Hawkes process, where the coordinate of interest
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Figure 6.3: Left: Predicted intensity function on an independent sample from a 1-dimensional Hawkes
process given by (6.8). Red points indicate event of N1, while black squares indicate events of N2. times.
Right: Martingale residuals for 10 independent test samples.

depends on the second coordinate. As before, we emphasize that the network architecture has not been

chosen according to the functional form of the Hawkes process.

6.6 Discussion

In this chapter we have presented a Python module for estimating intensity functions of marked point

processes using recurrent neural networks. Our implementation uses the Keras high level API to the

TensorFlow neural network library. We have made a highly efficient implementation of the marked

point process negative log-likelihood function as a loss function for training recurrent neural network

models. The advantage of the implementation is that it gives the practitioner full freedom to choose the

architecture of the neural network as well as the training procedure via the Keras API.

Recurrent neural networks have previously been considered for estimating intensity functions, but

to the best of our knowledge, this implementation is the first that does not rely on a fixed architecture

and training procedure. In this regard we consider our contribution to be novel.

Our simulation study suggests that a fairly standard and non-specialized architecture is able to

flexibly model the intensity function of various point processes without tailoring it to a known functional

form. Here we have showcased our implementation on renewal processes, and 1- and 2-dimensional

Hawkes processes with exponential kernels.

We note that this framework for modeling intensity functions is limited in the sense that is does not

give interpretability of the influence of past events on the future. In this sense it is a black box model.

However, for our intended usage of the model in connection with nonparametric intensity estimation for

our conditional local independence test in Chapter 5 a black box model is sufficient.

Future development of the implementation includes the opportunity to perform a more principled

architecture selection based on a validation data set, and automatic procedures for doing hyperparam-

eter calibration. Furthermore, even though the martingale residuals give an impression of whether the

intensity is under- or overestimated, it would be beneficial to be able to compare with bootstrapped

martingale residuals under the true model in a simulation setting.
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