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Abstract

In this thesis we consider elliptic curves with complex multiplication from three di�erent angles:
diophantine, algebraic and arithmetic statistical.

• Diophantine point of view: We study certain integrality properties of singular moduli
i.e. of 9-invariants of elliptic curves with complex multiplication. We prove various
e�ective �niteness statements concerning di�erences of singular moduli that are (-units
(Chapter 2).

• Algebraic point of view: For every CM elliptic curve � de�ned over a number �eld � ,
we analyze the Galois representation associated to the action of the absolute Galois group
of � on the torsion points of �. This includes an investigation of the entanglement in the
family of ?∞-division �elds of � for ? prime (Chapter 3 and Chapter 4).

• Arithmetic statistical point of view: Given an elliptic curve � over a number �eld � ,
we look at the density of the set of primes p ⊆ � of good reduction for which the point
group on the reduced elliptic curve � mod p is cyclic. We detail both the CM and the
non-CM case, outlining di�erences and similarities (Chapter 5).

Some of the material contained in the thesis has been used to write the following manuscripts:
[Cam21b], [CS19], [CP21] and [Cam21a]. The article [CS19] has been written in collaboration
with Peter Stevenhagen while the article [CP21] has been written in collaboration with Riccardo
Pengo.
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Resumé

I denne afhandling ser vi på elliptiske kurver med kompleks multiplikation fra tre forskellige
vinkler: diophantin, algebraisk og aritmetisk-statistisk.

• Diophantint synspunkt: Vi studerer visse heltallighedsegenskaber af singulære mod-
uli, dvs. af 9-invarianter af elliptiske kurver med kompleks multiplikation. Vi beviser
forskellige e�ektive endelighedssætninger omkring forskelle i singulære moduli, som er
(-enheder (Chapter 2).

• Algebraisk synspunkt: For enhver KM elliptisk kurve � de�neret over et tallegeme � ,
analyserer vi Galois repræsentationen associeret med virkningen af den absolutte Galois
gruppe af � på torsionspunkterne på �. Dette inkluderer en undersøgelse af entaglement i
?∞-divisionslegemer associeret til � for primtal ? (Chapter 3 og Chapter 4).

• Aritmetisk-statistisk synspunkt: Givet en elliptisk kurve � over et tallegeme � , ser vi
på densiteten af sættet af primidealer p ⊆ � af gode reduktioner, for hvilke punktgruppen
på den reducerede elliptiske kurve � mod p er cyklisk. Vi præsenterer i detaljer både KM
og ikke-KM tilfældet og opridser forskellene og lighederne (Chapter 5).

Noget af materialet indeholdt i denne afhandling er brugt til at skrive følgende manuskripter:
[Cam21b], [CS19], [CP21] og [Cam21a]. Artiklen [CS19] er skrevet i samarbejde med Peter
Stevenhagen mens artiklen [CP21] er skrevet i samarbejde med Riccardo Pengo.
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Prolegomena

Hic Rhodus, hic saltus

The �rst person to have intuited the phenomenon of complex multiplication seems to be,
perhaps not surprisingly, Carl Friedrich Gauss. In the introduction to the celebrated Sectio
Septima of his Disquisitiones arithmeticae (1801), the same section where he provides criteria for
a regular polygon to be constructible with straightedge and compass, he enigmatically writes:

Ceterum principia theoriae, quam exponere aggredimur, multo latius patent, quam
hic extendentur. Namque non solum ad functiones circulares, sed pari successu ad
multas alias functiones transcendentes applicari possunt, e.g. ad eas quae ab integrali∫
1/
√
1 − G4 pendent...

In brief, it seems to Gauss that his approach to the study of classical trigonometrical functions may
be extended to investigate other kinds of transcendental functions such as the aforementioned
arcsl(C) =

∫ C
0 1/
√
1 − G4 dG , nowadays known as the lemniscate arcsine. Here the mathematician

is probably hinting to the fact that his theorem on the constructibility of =-th roots of unity
using ruler and compass alone could be generalized to a theorem on the =-division points on
the Bernoulli lemniscate (see Figure 0.1), whose arc length is precisely parametrized by arcsl(C).
This clue did not go unnoticed, and thirty years later Abel [Abe28] managed to prove that the
lemniscate could be divided into< equal parts using straightedge and compass if< is a power
of 2 or if its odd prime factors ? are of the form ? = 2= + 1. Using Abel’s words: “Ce thèorème est,
comme on voit, précisément le même que celui de M. Gauss, relativement au cercle”.

Figure 0.1: Bernoulli lemniscate (G2 + ~2)2 = G2 − ~2 and the 6-division points on it. These divide the
lemniscate into six arcs of equal length.
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The heart of Abel’s proof lies in the theory of complex multiplication for elliptic curves, even
if the mathematician could not know it at the time. If we denote by i (I) the inverse function of
arcsl(C), then i extends to a doubly periodic meromorphic function on the complex plane. The
association I ↦→ (i (I), i ′(I)) gives a parametrization of the curve� : ~2 = 1−G4, whose Zariski
closure in P2

C
has a unique singular point at in�nity. Its desingularization � turns out to be an

elliptic curve with complex multiplication by Z[8], where multiplication by 8 is induced by the
morphism (G,~) ↦→ (8G,~) on � . Then proving Abel’s theorem becomes essentially equivalent
to studying the Galois groups Gal( </Q(8)), where  < are the �elds obtained by adjoining to
Q(8) the coordinates of the (8 + 1)<-torsion points of � for< odd. From the nice description
of these Galois groups given by the inclusion Gal( </Q(8)) ⊆ (Z[8]/<Z[8])×, one can easily
deduce the desired result. A modern proof can be found in [Cox12, Chapter 15].

Abel’s treatise Recherches sur les fonctions elliptiques, where the theorem on the lemniscate is
contained, marks the beginning of the theory of complex multiplication (CM). Since then, several
prominent mathematicians like Eisenstein, Kronecker, Weber, Deuring and many others have
spent much e�ort in understanding, formalizing and systematizing this theory. Its consequences
are so rich that CM elliptic curves even nowadays constitute an active area of research. This
is why two hundred years after the publication of Abel’s work you, reader, �nd in your hands
yet another monograph on elliptic curves with complex multiplication (whose purposes are
undoubtedly more modest than Abel’s).

In this thesis we look at elliptic curves with complex multiplication from di�erent perspectives.
The �rst main characters to appear on the scene are 9-invariants of CM elliptic curves over C,
classically known with the name of singular moduli. The word “modulus” comes from Latin
and it means “unit of measurement”. With time, in mathematics modulus became a synonym of
“parameter” as for instance in the expression “moduli space”, even if the original connotation is
still used in some contexts (think to the modulus of a complex number). The term “singular”
here has the signi�cation of “unusual, unexpected”. Hence singular moduli are literally unusual
parameters of elliptic curves. What is so unusual about them? First of all, singular moduli are
always algebraic integers. This is not a trivial statement, and is related with the fact that CM
elliptic curves can be de�ned over number �elds where they have everywhere good reduction. A
second, even more surprising property of singular moduli is that they generate abelian extensions
of imaginary quadratic �elds. For instance, if an elliptic curve � has complex multiplication by
the ring of integers of an imaginary quadratic �eld  , then the �eld obtained by adjoining the
9-invariant of � to  is precisely the Hilbert class �eld of  .

Since singular moduli satisfy these strong number theoretical properties, they cannot possibly
be random algebraic integers, and this is con�rmed by their prime ideal factorization. For
example, among the thirteen singular moduli belonging to Q, eleven are cubes, and this is
no coincidence. Also di�erences of singular moduli seem to show special patterns in their
factorizations, as was already noticed by Berwick (see the beginning of Section 2.1). The
question that we pose in Chapter 2 of this thesis concerns precisely prime factorizations of
di�erences of singular moduli and can be formulated as follows: given a �xed singular modulus
90 ∈ Q and a �xed set ( of rational primes, how many singular moduli 9 exist such that 9 − 90 is
an (-unit? Here, being an (-unit means that the primes appearing in the ideal factorization of
9 − 90 lie all above primes belonging to ( . We manage to give a complete answer to the above
question for some singular moduli 90 and some sets ( that are in�nite.

Theorem 0.0.1. Let 90 be a singular modulus of discriminant Δ and let  := Q(
√
Δ). Fix ( to be

the set of rational primes that are split in  . If {2, 3, 5, 7} * ( , then for every singular modulus
9 ∈ Q the di�erence 9 − 90 is never an (-unit.
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See Theorem 2.2.1 for a proof of this result. In the statement, a singular modulus of discriminant
Δ is simply the 9-invariant of an elliptic curve with complex multiplication by an order of
discriminant Δ, cfr. Chapter 1 for the terminology. Under certain assumptions, we can prove
�niteness statements also in cases where, using the notation of the above theorem, the chosen
set ( contains primes that are non-split in  . As an example, we prove in Theorem 2.6.3 that if 9
is a singular modulus of discriminant Δ then 9 + 3375 can be a {13, 17}-unit only if |Δ| ≤ 1084.
Note that 90 = −3375 is the 9-invariant of any elliptic curve with CM by Z

[
1+
√
−7

2

]
.

Starting from Chapter 3, the focus of the thesis shifts to Galois representations attached to
CM elliptic curves. If � is a number �eld with algebraic closure � and �/� is an elliptic curve
with complex multiplication by an imaginary quadratic order O, then we can associate to � a
continuous representation

d� : �� := Gal(�/� ) → AutZ (�tors)

using the natural action of�� on the group �tors = � (� )tors of torsion points on the elliptic curve
�. Vaguely speaking, our goal in Chapters 3 and 4 is to understand as much as possible the
image of d� . The important point here is that we develop the theory for elliptic curves having
complex multiplication by general orders, and not only by maximal ones.

The �rst thing to notice is that, contrarily to the non-CM case, d� (�� ) is not open in
AutZ (�tors). Thus, if we want to recover an analogue of the celebrated Serre’s Open Image
Theorem in this setting, we need to de�ne a smaller and, in some sense, canonical subgroup
G(�/� ) ⊆ AutZ (�tors) in which the image of d� is actually open. For example, if O ⊆ � we
could take G(�/� ) = AutO (�tors), the group of automorphisms of �tors as O-module. Once this
task is performed, we will try to understand how the Galois representation d� is related to the
Class Field Theory of the CM �eld of �. This will lead in Section 3.3 to the de�nition of ray class
�elds for orders, a generalization of the classical ray class �elds where the moduli can be taken
to be ideals (not necessarily invertible) of some order inside a �xed number �eld. The discussion
in Chapter 3 culminates with the proof, in Theorem 3.5.2, of an explicit formula for the index
|G(�/� ) : d� (�� ) | which generalizes upper bounds previously proved by Lombardo [Lom17,
Theorem 6.6] and Bourdon and Clark [BC20, Corollary 1.5].
Theorem 0.0.2. Let � be a number �eld and let �/� be an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld  . Then we have

|G(�/� ) : d� (�� ) | = [(� ) ∩  ab : �O] ·
#O×

[� (�tors) : (� ab)]

where �O is the ring class �eld relative to O and  ab is the maximal abelian extension of  .

After having obtained a fairly good understanding of the representation d� , in Chapter 4 we
turn to a more detailed study of its image d� (�� ). This is intimately related with the entanglement
problem in the family of division �elds of �, by which we mean the following. If for every prime
? ∈ N we denote by � (� [?∞]) the �eld obtained by adjoining to � all the ?-power torsion points
of �, then classical Galois theory yields a natural map

] : Gal(� (�tors)/� ) ↩→
∏
?

Gal(� (� [?∞])/� )

which is simply de�ned by restricting morphisms in Gal(� (�tors)/� ) to the various ?∞-division
�elds � (� [?∞]). When the map above is an isomorphism, we say that the ?∞-division �elds of
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� are linearly disjoint over � . Otherwise, we say that they are entangled, and the entanglement
problem asks to precisely pin down the image of ]. We study this problem assuming that the
CM order O is contained in the �eld of de�nition � (but this hypothesis is not too restrictive,
see Theorem 5.6.2), in which case we obtain various explicit results. As an example, we state
here the following theorem, which is proved in Corollary 4.4.7.

Theorem 0.0.3. Let O be an order of discriminant ΔO < −3 in an imaginary quadratic �eld
 ≠ Q(8). Denote by�O the ring class �eld of O and �x 9 ∈ �O to be the 9-invariant of any elliptic
curve with complex multiplication by O. Then there exist in�nitely many elliptic curves �/�O with
9 (�) = 9 but non-isomorphic over �O , and such that

• �O (�tors) =  ab;

• The family {�O (� [?∞])}? is linearly disjoint over �O .

Moreover, one can provide an explicit algorithm to determine a Weierstrass equation for these curves.

In Section 4.5 we also manage to classify all the possible entanglement scenarios that can
occur in the family of ?∞-division �elds of a CM elliptic curve over Q and base-changed over
the corresponding CM �eld, provided that the CM order has discriminant Δ < −4. See Theorem
4.5.2 for details.

Our entanglement investigations are not an end in themselves, but they can actually be applied
to questions that at �rst sight seem of di�erent nature. An example is provided by the cyclic
reduction problem for elliptic curves, discussed in Chapter 5. Given an elliptic curve � de�ned
over a number �eld � , the problem asks to determine, if it exists, the natural density X (�) of
the set of primes p in � for which � has good reduction �̃ and such that the point group of �̃
over the residue �eld at p is cyclic. It turns out that if the curve � has complex multiplication,
this density exists, and it can be expressed as an in�nite inclusion-exclusion sum involving the
degrees of the squarefree division �elds of � over � . This sum unfortunately converges rather
slowly and it is not even clear when it vanishes. Obtaining a more enlightening expression
for X (�) from which, for instance, one could deduce vanishing criteria for the cyclic reduction
density requires an understanding of the entanglement in the family of ?-division �elds of � for
?-prime. This is almost the same topic we tackled in Chapter 4, and it may come as no surprise
that our results therein allows us to obtain the desired expressions for X (�). As a byproduct, we
get the following result, which is a consequence of Theorem 5.6.3.

Theorem 0.0.4. Let � be an elliptic curve with complex multiplication de�ned overQ( 9 (�)). Then
the cyclic reduction density X (�) never vanishes.

Using the work done in Section 4.5 we are also able to compute all the possible cyclic reduction
densities for CM elliptic curves �/Q with 9 (�) ≠ 0, 1728. The results are summarized in Table 5.1.
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Notation and conventions

From time to time, we may omit to recall in the text some standard notation or convention that
we are tacitly adopting. This page collects the main potential sources of confusion.

Unless otherwise stated, we work inside a �xed algebraic closure Q of the rational numbers.
This enables us to take composita, intersections, etc. of number �elds without particular worries.
For a number �eld � we denote by O� its ring of integers. The compositum of � with any other
number �eld ! is denoted by �!. When we say that an elliptic curve � de�ned over a number
�eld � has good reduction modulo a certain prime p of � we mean that � admits an integral
model over O� with good reduction at p.

Given a ring �, we denote by �× its group of units. If � and � are two groups with � ⊆ � ,
we write |� : � | for the index of � in � . For the cardinality of a set ( we will not be strict, and
we will use alternatively #( or |( | according to graphical beauty.

We also adopt the usual Vinogradov notation: if 5 , 6 : - ⊆ R → R are two functions, we
write 5 = $ (6) or 5 � 6 to mean that there exists a constant 2 ∈ R>0 such that |5 (G) | ≤ 26(G)
for all G ∈ - .

The set N of natural numbers contains 0.

xiii





1Preliminary definitions and
results

To use a culinary metaphor, this chapter contains the ingredients to make a tasty pizza but it
does not tell the secrets behind its preparation. In other words, the reader will �nd here the
foundational de�nitions and results over which this entire thesis is built but they will not �nd a
description of the more speci�c techniques used to attack the various problems treated. These
techniques are instead described further in the text, when they will be more needed. For instance,
in Section 1.2 of this chapter we discuss the de�nition and the main properties of quaternion
algebras, but the theory of optimal embeddings will appear only in Section 2.4 where it will
have an immediate application to the problem of singular (-units.

Having made this disclaimer, we now outline the content of this chapter. In Section 1.1
we discuss the theory of orders in number �elds. After a completely general discussion on
conductors and Picard groups, the focus will shift to the case of quadratic orders. In Section 1.2
we explain the needed concepts from the theory of quaternion algebras. In Section 1.3 we
present some basic results on the theory of complex multiplication. These are complemented in
Section 1.4 by some old and new theorems on the reduction theory of CM elliptic curves.

1.1 Orders in number fields
De�nition 1.1.1. Let � be a number �eld. An order in � is a subring O ⊆ � that is �nitely
generated as Z-module and such that O ⊗Z Q = � .

Example 1.1.2. The ring of integers O� of a number �eld � is always an order. It is usually
called the maximal order in � because any other order in � is contained in O� , as it is shown in
Lemma 1.1.4.

Example 1.1.3. Let � be a number �eld and a ⊆ O� a non-zero ideal. Then O = Z + a is
an order. In the special case when � is a quadratic �eld with ring of integers O� = Z[l] and
a = 5 O� with 5 ∈ Z>0, we obtain O = Z[5 l]. One can prove that in the quadratic case all the
orders have this form.

Lemma 1.1.4. For every number �eld � and every order O we have O ⊆ O� .

Proof. This follows from the fact that O is �nitely generated as Z-module, see [AM69, Chapter
5, Proposition 5.1]. �

De�nition 1.1.5. Let O be an order in a number �eld � . The conductor of O is the set

fO := {G ∈ � : GO� ⊆ O}.

It is easy to see that the conductor fO is an ideal of O which is trivial if and only if O is
maximal. Moreover, fO is also the largest ideal of O� that is contained in O.

1



Example 1.1.6. Let � be a number �eld and let O = Z + a, where a ⊆ O� is a non-zero ideal.
Then a computation shows that

fO = 3Z + a

where 3 is the exponent of O� /O. In particular, if � is a quadratic �eld with ring of integers
O� = Z[l], then for every 5 ∈ Z>0 the order O = Z[5 l] has conductor 5O = 5 O� .

Non-maximal orders in number �elds are not Dedekind domains since they are not integrally
closed. In particular, unique factorization of ideals does not hold in general. However, unique
factorization can be recovered by restricting to those ideals that are coprime with the conductor.

Theorem 1.1.7. Let O be an order in a number �eld � and denote by fO its conductor. Then every
ideal a ⊆ O that is coprime to fO , i.e. such that a + fO = O, can be written uniquely as a product of
invertible prime ideals of O. In particular, every ideal of O coprime with the conductor is invertible.

Proof. See [Con, Theorem 3.6] and [Con, Corollary 3.11]. �

Remark 1.1.8. Note that being coprime with the conductor fO of the order O is su�cient but
not necessary to imply invertibility, since all principal ideals are invertible. However, for prime
ideals this condition is indeed su�cient: a prime ideal p ⊆ O is invertible if and only if it is
coprime with fO [Con, Theorem 6.1].

For an order O and an ideal c ⊆ O, we denote by �O (c) the group generated by the ideals
of O that are coprime to c. Theorem 1.1.7 implies that �O (fO) is a subgroup of the group �O of
invertible fractional ideals of O. Denote also by %O the group of principal fractional ideals of O
and by %O (c) the group generated by the principal ideals of O that are coprime to c.

Theorem 1.1.9. Let O be an order in a number �eld � with conductor fO . Then for all ideals
a ⊆ O and b ⊆ O� coprime with fO the associations

a ↦→ aO� and b ↦→ b ∩ O

are each other inverses and induce a group isomorphism between �O (fO) and �O� (fO). Moreover,
the natural maps

O/a → O� /aO� and O/(b ∩ O) → O� /b

are isomorphisms for every pair of integral ideals a ∈ �O (fO) and b ∈ �O� (fO).

Proof. See [Con, Theorem 3.8]. �

As in the case of Dedekind domains, one can also associate to every order O an ideal class
group. In order to obtain a group, one has to disregard the non-invertible ideals of O.

De�nition 1.1.10. Let O be an order in a number �eld � . The class group (or Picard group) of O
is the quotient

Pic(O) = �O/%O .

Theorem 1.1.11. The natural map

�O (fO)/%O (fO) → Pic(O)

is an isomorphism.

Proof. See [LD15, Theorem 3.11]. �
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Theorem 1.1.11 allows to interpret Pic(O) as a generalized ideal class group modulo fO .
Indeed, under the isomorphism �O (fO) � �O� (fO) given by Theorem 1.1.9, the subgroup %O (fO)
corresponds to the group % (O) ⊆ �O� (fO) generated by the principal ideals UO� such that U ∈ O
and UO + fO = O. It is readily seen that % (O) is a congruence subgroup modulo fO , since for
every V ∈ O� such that V ≡ 1 mod fO we have V ∈ 1 + fO ⊆ O. In particular, there exists an
abelian extension � ⊆ �O corresponding to % (O) such that Gal(�O/� ) � Pic(O). We call �O
the ring class �eld of � relative to the order O. Note that, since by de�nition �O is contained
in the ray class �eld modulo fO , in � ⊆ �O the only possibly rami�ed primes are the ones
dividing the conductor of O. We will give an idelic characterization of �O in Section 3.3. In
the quadratic case, the congruence subgroup % (O) admits an alternative description that will
appear in Theorem 1.1.12.

We conclude our discussion on class groups by remarking that for every order O in a number
�eld � , one always has an exact sequence

1→ O× → O×� → (O� /fO)
× /(O/fO)× → Pic(O) → Pic(O� ) → 1

see [Neu99, Chapter I, Propositions 12.9 and 12.11]. In particular, the order of the Picard group
of O can be related to the order of the class group of � by means of the formula

#Pic(O) = #Pic(O� )
|O� : O|

# (O� /fO)×

# (O/fO)×
.

1.1.1 Orders in quadratic number fields
In this thesis, a major role is played by orders in imaginary quadratic number �elds, since

these occur as endomorphism rings of elliptic curves with complex multiplication. Hence, in
this subsection we study the quadratic case in detail, collecting the relevant facts that will be
used in the sequel. We �x a quadratic number �eld  of discriminant Δ and ring of integers
O = Z[l].

As explained in Example 1.1.3, the orders in  have all the form O = Z[5 l] for some 5 ∈ Z>0.
Moreover, we saw in Example 1.1.6 that the conductor of the order Z[5 l] is given by the ideal
fO = 5 O . For these reasons, in the quadratic case it is customary to call the integer 5 (rather
than the ideal 5 O ) the conductor of O. We will adopt this convention as well. Note also that
5 = |O� : O|.

Fix then 5 ∈ Z>0 and let O ⊆  be the order of conductor 5 . Its discriminant ΔO can be
obtained by computing the discriminant of any Z-basis of O. If 5 = 1, i.e. if O is a maximal
order, we call ΔO = Δ a fundamental discriminant. In general, one always has ΔO = 5 2Δ and,
in particular, it follows that ΔO ≡ 0, 1 mod 4. Viceversa, for every integer Δ ≡ 0, 1 mod 4 the
order OΔ = Z

[
Δ+
√
Δ

2

]
has discriminant Δ and it is contained in the �eld Q(

√
Δ). We obtain a

one-to-one correspondence between integers Δ ≡ 0, 1 mod 4 and quadratic orders O. Clearly,
if an order has negative discriminant then it is contained in an imaginary quadratic �eld and
we call it an imaginary quadratic order. With the only exceptions of ΔO = −3,−4, an imaginary
quadratic order O always satis�es O× = {±1}. If ΔO = −3 (resp. ΔO = −4) the units in O are
exactly the primitive 6-th (resp. 4-th) roots of unity in Q

In the quadratic case, more can be said also about the Picard group of an order. For instance,
at the end of the previous section we have shown that Pic(O) can be seen as a generalized
ideal class group modulo 5 , and we have also provided a corresponding congruence subgroup
% (O) ⊆ �O (5 ). One can give an alternative description of % (O), as in the following theorem.
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Theorem 1.1.12. Let O be an order of conductor 5 in a quadratic �eld  . Then there are natural
isomorphisms

Pic(O) � �O (5 )/%O (5 ) � �O (5 )/%O ,Z (5 )

where %O ,Z (5 ) is the subgroup of �O (5 ) generated by the principal ideals UO such that

U mod 5 ∈ Im
(
(Z/5 Z)× → (O /5 O )×

)
.

Proof. This is [Cox13, Theorem 7.22]. The proof therein is valid also in the real quadratic case.
We again point out that the �rst isomorphism above is given by Theorem 1.1.11 while the second
isomorphism is induced by the one in Theorem 1.1.9. �

We conclude this subsection by describing Pic(O) in the imaginary quadratic case. Assume
that  is an imaginary quadratic �eld and O ⊆  an imaginary quadratic order. Consider a
non-zero fractional O-ideal a ⊆  . Since O is a quadratic order, the ideal a is a free Z-module
of rank 2 and, in particular, can be written as a = Z0 ⊕ Z1 for some 0, 1 ∈  . After choosing
an embedding  ↩→ C, we can then see a as a lattice in the complex plane. If moreover a is
invertible, then its class [a] in the class group Pic(O) corresponds to the homothety class of the
lattice Λ = Z0 +Z1 ⊆ C. In particular, there exists a unique lattice Λ′ = Z+Zg that is homothetic
to Λ and such that g ∈ C belongs to the fundamental domain

F :=
{
I ∈ C : −1

2
< Re(I) ≤ 1

2
and |I | > 1

}
∪

{
I ∈ H : 0 ≤ Re(I) ≤ 1

2
and |I | = 1

}
(1.1)

where H = {I ∈ C : Im(I) > 0} denotes the Poincaré half plane. The following theorem,
attributed to Gauss, provides a complete set of representatives of the ideal classes in Pic(O)
containing only ideals of the form Z + Zg with g ∈ F .

Theorem 1.1.13. Let O be an imaginary quadratic order of discriminant Δ. De�ne )Δ as the set
of triples of integers (0, 1, 2) such that

gcd(0, 1, 2) = 1, Δ = 12 − 402,
either − 0 < 1 ≤ 0 < 2 or 0 ≤ 1 ≤ 0 = 2.

and let

� =

{
1 +
√
Δ

20
: (0, 1, 2) ∈ )Δ

}
⊆ F .

Then the set of ideals {Z + Zg : g ∈ �} is a complete set of representatives of the ideal classes in
Pic(O).

Proof. See [Cox13, Theorems 2.8 and 7.7]. �

1.2 Rudiments on quaternion algebras
Let � be a �eld of characteristic char(� ) ≠ 2 and �x an algebraic closure � .

De�nition 1.2.1. An algebra B over � is a quaternion algebra if there exist 8, 9 ∈ B such that
1, 8, 9, 8 9 is an � -basis of B and

82 = 0, 92 = 1, 8 9 = − 98 (1.2)

for some 0, 1 ∈ �×.
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It is clear that the relations (1.2) completely determine the multiplication on B. For 0, 1 ∈ �×

we then denote by
(
0,1
�

)
the quaternion algebra with basis {1, 8, 9, 8 9} satisfying (1.2).

Every quaternion algebra B (over � ) comes equipped with a natural anti-commutative involu-
tion

U = 0 + 18 + 2 9 + 38 9 ↦→ U := 0 − 18 − 2 9 − 38 9, 0, 1, 2, 3 ∈ �

called the standard involution on B. It allows to de�ne the two maps

trd(U) := U + U, nrd(U) := UU, U ∈ B

called, respectively, the reduced trace and the reduced norm on B. It is easy to verify that
trd(U), nrd(U) ∈ � for all U ∈ B. We deduce that every element U ∈ B, being a root of the
polynomial

5U (G) = G2 − trd(U)G + nrd(U) ∈ � [G], (1.3)

generates a �eld extension of � that is at most quadratic. The polynomial 5U (G) in (1.3) is called
the reduced characteristic polynomial of U . The reduced trace also allows to de�ne a bilinear
pairing on B as follows:

〈U, V〉 := trd(UV) = UV + VU (1.4)

for all U, V ∈ B. It is readily veri�ed that the pairing in (1.4) is bilinear symmetric, hence the map

U ↦→ 1
2
〈U, U〉 = nrd(U)

makes B into a 4-dimensional quadratic space.
Quaternion algebras are closely related to matrix algebras, as the following proposition

explains.

Proposition 1.2.2. Let B be a division algebra over � . The following are equivalent:

1. B is a quaternion algebra;

2. B is a central simple algebra;

3. B ⊗� � is isomorphic to the ring"2 (� ) of 2 × 2 matrices with coe�cients in � .

Proof. See [Voi21, Proposition 7.6.1]. �

If a quaternion algebra B over � is isomorphic to "2 (� ) we say that B is split.

Example 1.2.3. By Proposition 1.2.2 every quaternion algebra de�ned over an algebraically
closed �eld is split.

Example 1.2.4. The quaternion algebra
(
0,1
R

)
is split if and only if either 0 > 0 or 1 > 0, see

[Voi21, Chapter 1, Exercise 4 (c)].

Clearly, being non-split is a necessary condition for a quaternion algebra to be a division ring.
As a consequence of the Artin-Weddeburn Theorem, this condition turns out to be also su�cient
(see [Voi21, Proposition 7.6.2]). We also point out that in a split quaternion algebra the reduced
trace and norm correspond respectively to the matrix trace and determinant. This follows from
the uniqueness of the standard involution [Voi21, Corollary 3.4.4].
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Assume for the rest of this section that � is a number �eld and denote byM� =M0
�
∪M∞

�

the union of the sets of �nite and in�nite places of � respectively. For every E ∈ M� denote by
�E the completion of � at E . In particular, �E = R if E is real and �E = C if E is complex.

De�nition 1.2.5. We say that a quaternion algebra B de�ned over � is rami�ed at the place
E ∈ M� if B ⊗� �E is a division algebra. Otherwise, we say that B is split at E . We also call B
(totally) de�nite if B is rami�ed at all archimedean places of � .

Example 1.2.6. By Example 1.2.3 quaternion algebras over � are split at all the in�nite complex
primes of � . In particular, if there exist a de�nite quaternion algebra over � then � must be
totally real.

Not only the set Ram� (B) of rami�cation places for a quaternion algebra B over � is �nite,
but it also determines B up to isomorphism, as explained in the following theorem.

Theorem 1.2.7. Let � be a number �eld. The map B ↦→ Ram� (B) is a bijection between the set
of quaternion algebras over � up to isomorphism and the set of �nite subset of non-complex places
of � with even cardinality.

Proof. See [Voi21, Main Theorem 14.6.1]. �

Example 1.2.8. By Theorem 1.2.7, for every prime ? ∈ N there exist a unique (up to isomor-
phisms) de�nite quaternion algebra over Q with disc(B) = ? . If ? ≡ 2 mod 3 it can be veri�ed
(for instance using Hilbert symbols, see [Voi21, Section 12.4]) that a representative for this
isomorphism class is given by B =

(
−3,−?
Q

)
.

De�nition 1.2.9. Let B be a quaternion algebra de�ned over a number �eld � . The discriminant
of B is the ideal

disc(B) =
∏

p∈Ram� (B)\M∞�

p ⊆ O� .

We conclude this section by recalling some useful facts on the integral theory of quaternion
algebras. We continue to assume that � is a number �eld.

De�nition 1.2.10. Let B be a quaternion algebra over � . An order O ⊆ B is a subring that is
�nitely generated as O� -module and such that O ⊗O� � = B.

Remark 1.2.11. Then reader has certainly noticed the similarity between De�nition 1.1.1 and
De�nition 1.2.10. In fact, we can consider quaternion orders as the non-commutative analogue of
the usual orders in number �elds. As such, many classical constructions (such as Picard groups,
zeta functions, etc.) can be performed also in the quaternionic setting, with some additional
complication arising from the lack of commutativity.

Similarly to the number �eld case (cfr. Lemma 1.1.4), also quaternion orders satisfy the basic
property that their elements are integral over the base �eld. More precisely, if O ⊆ B is a
quaternion order, then for every U ∈ O we have trd(U), nrd(U) ∈ O� (see [Voi21, Corollary
10.3.6]), and, in particular, the reduced characteristic polynomial 5U (G) in (1.3) has integral
coe�cients.

Given an order O in a quaternion algebra B over � , we can de�ne in the standard way its
discriminant ideal with respect to the bilinear form (1.4). More speci�cally, for everyU1, ..., U4 ∈ O
we set

3 (U1, ..., U4) := det(trd(U8U 9 ))1≤8, 9≤4
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and we de�ne the discriminant of O as the O� -submodule disc(O) ⊆ � generated by the set
{3 (U1, ..., U4) : U1, ..., U4 ∈ O}. Since every element of an order is integral, we see that actually
disc(O) is an ideal in O� . If in addition the ring of integers O� is a principal ideal domain, then
the order O is also free over O� (being �nitely generated by de�nition and clearly torsion-free)
and one has

disc(O) = 3 (U1, ..., U4)O�
for any O� -basis {U1, ..., U4} ⊆ O. We remark that when � = Q, we will often confuse the
discriminant of the order O with its positive generator.

The reader may at this point wonder what is the relation between the discriminant of a
quaternion algebra B de�ned over a number �eld � as in De�nition 1.2.9 and the discriminant of
the various orders O ⊆ B. To answer this question, we need to introduce a couple of de�nitions.

De�nition 1.2.12. Let B be a quaternion algebra over � and let O1,O2 ⊆ B be two orders. The
index module of O2 in O1 is the O� -module |O1 : O2 | generated by the set

{detq : q ∈ End� (B), q (O1) ⊆ O2}

where End� (B) is the set of endomorphisms of B as � -vector space.

We remark that if � = Q and O2 ⊆ O1 then the index module is principal, generated by
#(O1/O2). In this case, for convenience we will identify |O1 : O2 | with its positive generator,
recovering in this way the usual notion of index.

De�nition 1.2.13. An order O ⊆ B is maximal if it is not properly contained in any other order.

Theorem 1.2.14. Let � be a number �eld and B a quaternion algebra over � .

1. If O ⊆ B is a maximal order, then disc(O) = disc� (B)2.

2. If O2 ⊆ O1 are two orders in B then disc(O2) = |O1 : O2 |2 · disc(O2).

Proof. For the �rst part of the theorem see [Voi21, Theorem 15.5.5]. The second part is proved
in [Voi21, Lemma 15.2.15]. �

1.3 Basic facts on elliptic curves with complex
multiplication

De�nition 1.3.1. Let : be a �eld with �xed algebraic closure : and let �/: be an elliptic curve.
We say that � has complex multiplication (or that � is a CM elliptic curve) if the geometric
endomorphism ring End

:
(�) is isomorphic to an order O in an imaginary quadratic �eld. In this

case, we also say that � has complex multiplication by O.

Remark 1.3.2. Note that in our de�nition an elliptic curve can have complex multiplication even
if not all its geometric endomorphisms are de�ned over the base �eld.

If the reader seeks an explanation for the term complex multiplication in De�nition 1.3.1,
they have to turn to the analytic theory of elliptic curves over the complex numbers. By the
uniformization theorem [Sil94, I, Corollary 4.3], every elliptic curve �/C admits a complex
parametrization

b : C/Λ→ � (C)
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where Λ ⊆ C is a lattice. This establishes a one-to-one correspondence between the set of
lattices in C up to homothety and the set of complex elliptic curves up to isomorphism. This
correspondence is functorial, in the sense that to every holomorphic homomorphism C/Λ1 →
C/Λ2 corresponds a unique isogeny �1 → �2, where �1, �2 are elliptic curves corresponding
to the lattices Λ1,Λ2 under the uniformization theorem. Now, by [Sil09, VI, Theorem 4.1] any
holomorphic homomorphism C/Λ1 → C/Λ2 has the form I ↦→ UI for some U ∈ C such that
UΛ1 ⊆ Λ2. In particular, the endomorphisms of an elliptic curve � corresponding to a quotient
C/Λ correspond to multiplications by complex numbers sending Λ to itself. Clearly, for every
integer = ∈ Z we have =Λ ⊆ Λ, and this corresponds to the fact that on every abelian group
one has a multiplication-by-= morphism. On the other hand, if there exists U ∈ C \ Z such that
UΛ ⊆ Λ then it is not di�cult to see that U must be an imaginary quadratic number. In particular,
the elliptic curve � possesses a complex multiplication, whence the name.

This etymological digression triggers the following question: how do we �nd a lattice Λ for
which E := {U ∈ C : UΛ ⊆ Λ} ≠ Z? There is an easy way: �x O ⊆ C to be an imaginary
quadratic order and let a ⊆ O be an invertible ideal. This assumption implies in particular that
O = {U ∈ C : Ua ⊆ a}, see [Cox13, proposition 7.4]. Since a can be regarded as a complex lattice,
we see that the quotient C/a corresponds to an elliptic curve with complex multiplication by O.
It may come as a surprise the fact that this construction gives all the complex elliptic curves
with complex multiplication by O.

Theorem 1.3.3. Let O ⊆ C be an order in an imaginary quadratic �eld  . Then the map
[a] → C/a gives a bijection between Pic(O) and the set of isomorphism classes of elliptic curves
�/C with complex multiplication by O.

Proof. See [Cox13, Corollary 10.20]. �

The C-isomorphism class of a complex elliptic curve � is determined by the 9-invariant 9 (�).
The 9-invariant of a CM elliptic curve de�ned over C is called a singular modulus. For instance,
90 = 0 is a singular modulus, since it is the 9-invariant of the elliptic curve � : ~2 = G3 + 1,
which has complex multiplication by the maximal order in Q(

√
−3). By Theorem 1.3.3, for every

imaginary quadratic order O of discriminant Δ ∈ Z<0 there are exactly �Δ singular moduli,
where�Δ = #Pic(O) denotes the class number of the order O. It turns out that these�Δ singular
moduli are actually all algebraic integers, and they form a full Galois orbit over Q (see [Cox13,
Theorem 11.1] and [Cox13, Proposition 13.2]). We call them singular moduli of discriminant Δ or
singular moduli relative to the order O. Reversing subject and complements, we will sometimes
also speak of discriminant, CM order, CM �eld, etc... associated to 9 . Moreover, when we talk
about the class number of a singular modulus we are referring to the class number of the order
relative to the singular modulus in question. Given a singular modulus of discriminant Δ, we
call its minimal polynomial over Q the Hilbert class polynomial of discriminant Δ, and we denote
it by �Δ (G). By the above discussion, �Δ (G) has integer coe�cients, degree �Δ and its roots
in Q are precisely all the singular moduli of discriminant Δ. Hilbert class polynomials play a
fundamental role in the class �eld theory of imaginary quadratic �elds because of the following
result.

Theorem 1.3.4. Let O be an order of discriminant Δ in an imaginary quadratic �eld  . Then
�Δ (G) is irreducible over  and  [G]/(�Δ (G)) is isomorphic to the ring class �eld �O of  relative
to the order O. In particular, �O is generated over  by any singular modulus of discriminant Δ.

Proof. See [Cox13, Theorem 11.1]. �
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Since singular moduli are algebraic numbers, every CM elliptic curve �/C admits a model
de�ned over some number �eld � ⊆ Q. We are then naturally led to consider the reduction
theory of elliptic curves �/Q with complex multiplication. Historically, this theory has its roots
in the works by Deuring and its essential points will be recalled in Section 1.4. Here we content
ourselves to show the following consequence of the integrality properties of singular moduli.

Theorem 1.3.5. Let � be a number �eld and �/� an elliptic curve with complex multiplication.
Then � has potential good reduction at every prime of � .

Proof. It follows from [Sil09, VII, Proposition 5.5] and the fact that singular moduli are algebraic
integers. �

The minimal possible number �eld of de�nition for � is � = Q( 9 (�)), and this is often called
the �eld of moduli of �. However, in general the elliptic curve � will not have everywhere good
reduction over its �eld of moduli.

We conclude this section by discussing the concept of normalized isomorphisms for CM elliptic
curves. Given a number �eld � and an elliptic curve �/� with complex multiplication by an order
O in an imaginary quadratic number �eld , there exist exactly two isomorphismsO → End

�
(�).

One is obtained from the other by precomposing with the unique non-trivial ring automorphism
of O. However, one can make a canonical choice among these two isomorphisms: this is done
by looking at the pullbacks of the invariant di�erentials on � via elements of End

�
(�), as the

following proposition explains.

Proposition 1.3.6. Let � be a number �eld, �x an algebraic closure � ⊆ � and let �/� be an
elliptic curve with complex multiplication by an imaginary quadratic order O ⊆ � . Then there is a
unique isomorphism [·]� : O → End

�
(�) such that [U]∗

�
l = Ul for all invariant di�erentials l

on � and all U ∈ O, where [U]∗
�
l denotes the pull-back of l via [U]� .

Proof. Fix an embedding i : � ↩→ C. Then, for the base-change �/C via i , we can use [Sil94, II,
Proposition 1.1] to see that there exists a unique isomorphism [·] : i (O) → EndC (�) such that
for any invariant di�erential l we have

[i (U)]∗l = i (U)l

for all U ∈ O. Since i induces an isomorphism between End
�
(�) and EndC (�), we can de�ne

[·]� by means of the following diagram

i (O) EndC (�)

O End
�
(�)

[ ·]

i

[ ·]�

∼

and the proposition follows. �

De�nition 1.3.7. Let � be an elliptic curve with complex multiplication by an order O and
de�ned over a number �eld � . We call the unique isomorphism [·]� : O → End

�
(�) appearing

in Proposition 1.3.6 the normalized isomorphism associated to �. We also call the pair (�, [·]�)
normalized.

With the above de�nition, we can now state the following useful theorem.
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Theorem 1.3.8. Let � be a number �eld and �/� an elliptic curve with complex multiplication by
an order O ⊆ Q. Then for every f ∈ Gal(Q/Q) and U ∈ O we have

f ( [U]�) = [f (U)]�f

where [·]� and [·]�f are respectively the normalized isomorphisms of � and of the conjugate elliptic
curve �f .

Proof. See [Sil94, II, Theorem 2.2 (a)]. �

1.4 Deuring’s reduction theory and beyond
Let : be a �eld of characteristic char(:) = ? > 0 with algebraic closure : ⊇ : and let �/: be

an elliptic curve. We say that � is supersingular if the unique ?-torsion point of � de�ned over :
is the identity $ ∈ � (:). If this is the case, then the endomorphism ring End

:
(�) is isomorphic

to a maximal order in the unique (up to isomorphism) quaternion algebra over Q rami�ed only
at ? and∞ (see [Deu41] or [Voi21, Theorem 42.1.9] for a modern exposition). On the other hand,
if � possesses a non-trivial ?-torsion point then the endomorphism ring End

:
(�) is isomorphic

to an order in an imaginary quadratic �eld. In this case, we say that � is ordinary.
Consider now an elliptic curve � de�ned over a number �eld � and given by a �xed model

over O� . For how many primes of good reduction p ⊆ O� , the reduced elliptic curve � mod p

is ordinary? Supersingular? Do these set have a natural density? These apparently harmless
questions turn out to be very hard if the elliptic curve � does not have complex multiplication.
For instance, while it is relatively easy to see that there are in�nitely many primes of ordinary
reduction (see [Sil09, V, Exercise 5.11] for the case � = Q) the existence of in�nitely many primes
of supersingular reduction is still unknown in general. Serre shows in [Ser89, IV–13, Exercise
1] that the natural density of the set of supersingular primes is 0 and, thanks to the relatively
recent works of Elkies [Elk87], [Elk89], we now know that there are in�nitely many primes of
supersingular reduction for � if the �eld of de�nition � has odd degree over Q or if it has at
least one real embedding. Even in these cases, the asymptotic behaviour of the supersingular
primes counting function is still unknown at present.

On the other hand, if the elliptic curve � has complex multiplication, a complete characteriza-
tion of ordinary and supersingular primes has been known since the �rst half of the twentieth
century, thanks to the work of Deuring [Deu41]. It can be summarized in the following theorem.

Theorem 1.4.1. Let � be an elliptic curve de�ned over a number �eld ! and with complex
multiplication by an order O = Z + 5 O of conductor 5 in an imaginary quadratic �eld  . Let p
be a prime of ! lying over a rational prime ? where � has good reduction �̃. Then the reduction
mod p induces an injective homomorphism End! (�) ↩→ EndF? (�̃). Moreover:

1. if ? is rami�ed or inert in Q ⊆  , then �̃ is supersingular;

2. if ? is split in Q ⊆  , then �̃ is ordinary and EndF? (�̃) � Z + 5
′O where 5 = 5 ′?= with

gcd(5 ′, ?) = 1;

Proof. This is a combination of [Sil94, II, Proposition 4.4] and of [Lan87, Chapter 13, Theorem
12]. �

Fix now a rational prime ? ∈ N and let J? be the set of singular moduli relative to and order
O such that ? is split in  = Frac(O) and does not divide the conductor of O. By Theorem
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1.4.1, for every prime p ⊆ Q lying above ? (by which we mean a compatible system of primes
lying above ?), the reduction modulo p gives a map from J? to the set Jord (F? ) of ordinary
9-invariants in F? .

Theorem 1.4.2. For every prime p ⊆ Q lying above a rational ? ∈ N, the reduction modulo p is a
bijection between J? and Jord (F? ).

Proof. See [Lan87, Chapter 13, Theorem 13]. �

Instead of investigating the various reduction types of elliptic curves de�ned over number
�elds, one can start with an elliptic curve �̃ de�ned over a �nite �eld of characteristic ? and
ask whether there exists an elliptic curve � de�ned over a number �eld � , and a prime p ⊆ O�
lying above ? , such that � mod p � �̃ over F? . Clearly, stated in this way the question has a
trivial answer: it su�ces to take any curve �/Q whose 9-invariant is a lift in characteristic 0 of
9 (�̃) ∈ F? . However, the discussion at the beginning of this section tells us that every elliptic
curve �̃/F? satis�es EndF? (�̃) ≠ Z, while a random elliptic curve � obtained by lifting 9 (�̃) will
not have this property in general. We can then be more demanding and ask: can we lift �̃ to an
elliptic curve �/Q that has complex multiplication? Truth is, we can do even more. Not only we
can lift �̃ to an elliptic curve over Q, but also any �xed endomorphism U0 ∈ EndF? (�̃). This is
the content of the so-called Deuring lifting theorem which we now formally state.

Theorem 1.4.3. Let �̃ be an elliptic curve de�ned over a �nite �eld of characteristic ? ∈ N and let
U0 ∈ EndF? (�̃) be a non-trivial endomorphism. Then there exists an elliptic curve � de�ned over a
number �eld � , an endomorphism U ∈ End� (�) and a prime p ⊆ O� of good reduction for � such
that � mod p �F? �̃ and the endomorphism U corresponds to U0 under this isomorphism.

Proof. See [Lan87, Chapter 13, Theorem 14]. �

Despite what may be suggested by the above discussion, there are still many unanswered
questions revolving around the reduction theory of CM elliptic curves. For instance, let us
formulate a problem that naturally arises form Deuring’s theorems and that has been the object
of recent works by Michel [Mic04] and Aka, Luethi, Michel, Wieser [Aka+20].

Let ? ∈ N be a rational prime and �x a prime p ⊆ Q lying above it. Let O be an order in an
imaginary quadratic �eld  and assume that ? is inert in  . We denote by Ell(O) the set of
Q-isomorphism classes of elliptic curves with complex multiplication by O and by Ellss (F? ) the
set of isomorphism classes of supersingular elliptic curves over F? . Both sets are �nite: indeed,
we have #Ell(O) = #Pic(O) by Theorem 1.3.3 and subsequent discussion, while Ellss (F? ) is �nite
by [Sil09, V, Theorem 4.1]. Moreover, by Theorem 1.3.5 every class in Ell(O) can be represented
by an elliptic curve � that has good reduction at p. Using now Theorem 1.4.1, the reduction
modulo p induces a map

Ψp,O : Ell(O) → Ellss (F? ), [�]Q ↦→ [� mod p]F? (1.5)

that is well-de�ned by [Sil94, II, Proposition 4.4]. The map Ψp,O is not injective in general, since
the class number of imaginary quadratic orders tends to in�nity as their discriminant grows in
absolute value, while the cardinality of the set Ellss (F? ) is �xed from the beginning. On the other
hand, this same argument makes it reasonable to expect that the map Ψp,O becomes surjective
when the discriminant of the order O is large enough. However, understanding the surjectivity
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of Ψp,O does not seem an easy task, and the only known results on the topic follow from deep
equidistribution statements concerning Heegner points. We summarize these results in the
statement of the following theorem.

Theorem 1.4.4. Let ?, @1, @2 ∈ N be distinct odd primes. Then there exists a constant � =

� (?, @1, @2) ≥ 0 such that the following holds: for every prime p ⊆ Q lying above ? and for every
imaginary quadratic order O of discriminant Δ satisfying:

1. |Δ| ≥ � ;

2. ? is inert in Q(
√
Δ);

3. ? does not divide Δ;

4. @1 and @2 are split in Q(
√
Δ);

the supersingular reduction map Ψp,O in (1.5) is surjective. Moreover, for every prime ? ∈ N there
exists a constant � ′ = � ′(?) > 0 such that for every for every prime p ⊆ Q lying above ? and for
every imaginary quadratic �eld  of discriminant |Δ | ≥ � ′, the map Ψp,O is surjective.

Proof. The �rst part of the theorem is a corollary of [Aka+20, Theorem 7.1]. The second part is
a corollary of [Mic04, Theorem 3]. �

Remark 1.4.5. The constants appearing in the statement of Theorem 1.4.4 are not explicit.
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2Singular moduli and S-units

We have seen in Chapter 1 that the set of singular moduli, that is, the set of 9-invariants of elliptic
curves over Q with complex multiplication, is contained in the ring of algebraic integers. A
careful inspection reveals many regularities in their prime factorization, and since the beginning
of the last century much e�ort has been made in order to formalize this regularity into precise
formulas. In this chapter we look at integrality properties of singular moduli from a diophantine
point of view and we ask the following questions: given a set ( of rational primes and a �xed
singular modulus 90 ∈ Q, what can we say about the set of singular moduli 9 ∈ Q such that
9 − 90 is an (-unit? Is this set �nite? If so, can we bound its cardinality?

In the �rst part of this chapter we frame the above problems both in a historical and in a
mathematical context. In particular, we describe in Section 2.1 the progress that has been made
towards their solution and we show how these results �t into a modular analogue of a conjecture
by Su-ion Ih, originally formulated for abelian schemes. In the second part of this chapter, we
prove some e�ective �niteness results concerning di�erences of singular moduli that are (-units
for certain sets ( of primes. In Section 2.2 we deal with some special in�nite sets ( for which one
can provide complete answers to the above questions, see Theorem 2.2.1. This will naturally lead
to the apparently unrelated problem, addressed in Section 2.3, of understanding when primes
that are congruent to 1 modulo 3 can divide the norm of a singular modulus.

In order to deal with set of primes that are di�erent from the ones considered above, we need
to build some more machinery. For this reason, we discuss optimal embeddings in quaternion
orders and their relation with the reduction theory of CM elliptic curves in Section 2.4, while
in Section 2.5 we prove Theorem 2.5.1, which allows to bound the ℓ-adic absolute value of
di�erences of singular moduli for certain primes ℓ . This will be used in Section 2.6 to provide
other e�ective bounds on the number of (-di�erences 9 − 90 with 90 ≠ 0, 1728, for some new
sets ( of cardinality at most 2. For instance, we will see in Theorem 2.6.3 that the discriminant
Δ of any singular modulus 9 such that 9 + 3375 is an {13, 17}-unit satis�es |Δ| ≤ 1084. Similar
theorems also hold in the case 90 = 1728 (Theorem 2.7.1) and 90 = 0 (Theorem 2.7.2, under GRH),
as we will see in Section 2.7. In Section 2.8 the optimality of the bounds found in Theorem 2.5.1
in the case 90 = 0 is discussed. Finally in Section 2.9 we provide numerical evidence for some
uniformity conjectures concerning di�erences of singular moduli that are (-units.

2.1 The problem of singular (-units
The fact that prime factorizations of singular moduli seem to follow certain patterns and

are not completely random was noticed at the beginning of the 20th century by the British
mathematician William Edward Hodgson Berwick. In 1928, Berwick published an article [Ber28]
where he computed the factorization of all singular moduli of class numberℎ ≤ 3. His calculations
organize and expand Weber’s computations of CM 9-invariants contained in the monumental
work Lehrbuch der Algebra [Web28]. Given the fact that there are 146 singular moduli of class
number smaller than 3, the computation must have certainly undergone to the same amount of
tricks and numerical observations already used by Weber in his book. We have to keep in mind
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that computers were not available at the time, and the mathematician was only helped by the
use of a Trinks-Brunsviga calculating machine, a precursor of the modern calculators appeared
for the �rst time in the 1893 World’s Fair in Chicago.

At the end of his paper (see [Ber28, §10]), Berwick formulates a series of conjectures relating
the appearance of some rational primes dividing di�erences of singular moduli with certain
congruence conditions satis�ed by the corresponding discriminants. For instance, an inspection
of his tables suggests him that for every singular modulus 9 of discriminant Δ ≡ 5 mod 8 one
has 9 ≡ 0 mod 215. As an illustration, Berwick computes

9−35 = −(25
√
5Y4)3 9−59 = −215\ 12 (\ − 1)3 (2\ − 1)3

where 9Δ denotes a singular modulus of discriminant Δ (recall that singular moduli relative to the
same discriminant are all Galois conjugate), Y = 1

2 (1 +
√
5) is a fundamental unit in Q(

√
5) and

\ ∈ Q satis�es \ 3 − 2\ 2 − 1 = 0. These conjectures, nowadays known with the name of Berwick
congruences, were proved only more than 50 years later by Gross and Zagier [GZ85]. Actually,
their work does much more: it also provides explicit formulas for the prime factorization of
the absolute norm # ( 91 − 92) where 91, 92 are singular moduli relative to coprime fundamental
discriminants. These formulas have been recently generalized to arbitrary singular moduli by
Lauter and Viray [LV15].

At this point, the reader may be tempted to think that, since we have explicit formulas, we
then know everything about the factorization of singular moduli. However, they would be
too quick in jumping to conclusions. For instance, suppose we ask the seemingly innocent
question: is it possible for a singular modulus to have norm ±1? In other words, is it possible
for a singular modulus to be an algebraic unit? In all probability the warned reader wouldn’t
inspect the formulas in [GZ85] and [LV15] with much enthusiasm, and we believe with good
reason. Indeed, these formulas seem (at least in our opinion) too complicated to be used as a
tool in the solution of this problem, since they require a very precise knowledge on the prime
factorization of certain integers which, a priori, do not satisfy any nice arithmetical property.
This makes Gross-Zagier and Lauter-Viray formulas easy to apply in order to compute speci�c
examples but seemingly di�cult to use in the proof of general statements.

If the curious reader is now wondering when and why someone became interested in singular
moduli that are algebraic units, here is where our story begins.

2.1.1 The beginnings: a question and an answer
A theorem of André [And98, Théorème] asserts that, apart from some “obvious” exceptions,

equations of the form 5 (G,~) = 0 for 5 ∈ C[G,~] have �nitely many solutions ( 91, 92) with 91
and 92 both singular moduli. More precisely, the theorem establishes the validity of André-
Oort conjecture for . (1)2

C
� A2

C
, where . (1)C is the classical modular curve of level 1 and the

isomorphism is given by applying the modular 9-function on both components. Call a point of
the form ( 91, 92), with 91, 92 ∈ C singular moduli, a special point. Then Andrè-Oort conjecture in
this context asserts that an irreducible algebraic curve - ⊆ A2

C
contains in�nitely many special

points if and only if - is itself special, i.e. of the form A1
C
× {G}, {G} ×A1

C
with G ∈ C a singular

modulus, or Φ# (-,. ) = 0, where Φ# denotes the classical modular polynomial of level # .
The proof of André’s result is not e�ective, meaning that, given a non-special curve - ⊆ A2

C
,

it does not yield an explicit bound on the number of special points on - . In recent years, many
e�orts have been done in order to obtain e�ective results for special families of curves, see for
instance [BMZ13], [Küh12] and [Küh13]. In particular, in [BMZ13] it is shown that the equation
G~ = 1 has no solution in singular moduli. Motivated by this result, Masser asked whether it is
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possible that a singular modulus can be a unit in the ring of algebraic integers. Such a singular
modulus will be herein called a singular unit. A �rst, partial answer to this question has been
given by Habegger in [Hab15], where it is proved the following theorem.

Theorem 2.1.1. There exist at most �nitely many singular units.

Since it will be useful for the subsequent sections, in what follows we will try to give an
overview of the proof of this result. The idea is, given a singular unit G of discriminant Δ, to
provide an upper and a lower bound for its Weil height ℎ(G) which contradict each other when
|Δ| is su�cently large. The (logarithmic) Weil height is de�ned, for every G ∈ Q, as

ℎ(G) = 1
[ : Q]

∑
E∈M 

[ E : QE] log+ |G |E (2.1)

where  := Q(G) is the �eld generated by G over the rationals,M is the set of all places of  ,
the integer [ E : QE] is the local degree at the place E and log+ |G |E := logmax{1, |G |E}. Here,
for every non-archimedean place E corresponding to the prime ideal pE lying above the rational
prime ?E , the absolute value | · |E is normalized in such a way that

|G |E = ?
−EpE (G)/4E
E

4E being the rami�cation index ofpE over ?E . From some results of Colmez [Col98] and Nakkajima-
Taguchi [NT91] on the stable Faltings height of a CM elliptic curve one gets the lower bound

ℎ(G) ≥ 21 log |Δ| − 22 (2.2)

for some constants 21, 22 > 0 (whose precise knowledge is not really needed for this proof).
As far as the upper bound is concerned, the author proceeds as follows: since G−1 is also an
algebraic integer, the �nite places do not contribute to the computation of its Weil height. Hence
we can write:

ℎ(G) = ℎ(G−1) = 1
�Δ

∑
1≤:≤�Δ

log+ |G−1
:
| (2.3)

where �Δ denotes the class number of the unique order of discriminant Δ and for every : =

1, ...,�Δ, the G: are the Galois conjugates of the singular modulus G . We have then to control the
conjugates that are small in absolute value. Fix 0 < Y < 1 and let F be the usual fundamental
domain for the action of SL2 (Z) on the Poincaré half plane de�ned in (1.1). Note that for every
: = 1, ...,�Δ there is a unique g: ∈ F for which G: = 9 (g: ). De�ne the “cat’s ears” as

*Y := {I ∈ F : min{|I − Z6 |, |I − Z3 |} < Y}

where Z6 = 4
2c8
6 and Z3 = 4

2c8
3 . Notice that the g: ∈ *Y give rise to singular moduli G: of small

absolute value since Z6 and Z3 are zeros of the 9-function. By splitting the sum in formula (2.3) as

ℎ(G) = 1
�Δ

∑
g: ∈*Y

log+ |G−1
:
| + 1

�Δ

∑
g:∉*Y

log+ |G−1
:
|

and by estimating separately the two sums, the author gets

ℎ(G) ≤ �Δ,Y

�Δ
23 log |Δ| + 3 log Y−1 + 24 (2.4)
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where�Δ,Y = #({g1, ..., g: }∩*Y) and 23, 24 are positive real constants. Hence, in order to conclude,
one has to bound the quantity �Δ,Y

�Δ
. Here Habegger uses Duke-Clozel-Ullmo equidistribution

(see [CU04] and [Duk88]) to prove that, for |Δ| su�ciently large, one has

�Δ,Y

�Δ
� Y2.

With this estimate, for |Δ| su�ciently large, the height ℎ(G) can be bounded from below and
from above by

21 log |Δ| − 22 ≤ ℎ(G) ≤ 2Y2 log |Δ| + 3 log Y−1 + 24
and, by choosing Y properly, one gets a contradiction for |Δ| large enough. This implies that
there are at most �nitely many singular units.

2.1.2 No singular modulus is a unit
As we have just seen, the proof of the �niteness of singular units is not e�ective since it relies

on an equidistribution result. However, in the subsequent paper [BHK20], Yu. Bilu, P. Habegger
and L. Kühne managed to prove the following theorem.

Theorem 2.1.2. Singular units do not exist.

Roughly speaking, this result is achieved by carrying out an e�ective version of the proof
contained in [Hab15] and by improving the obtained bounds in order to be able to use computer
assisted techniques.

The �rst step is to explicitly describe those g ∈ F such that 9 (g) is a singular modulus of �xed
discriminant Δ. This can be achieved by means of Theorem 1.1.13 which in particular implies
that, if we de�ne )Δ as the set of triples of integers (0, 1, 2) such that

gcd(0, 1, 2) = 1, Δ = 12 − 402
either − 0 < 1 ≤ 0 < 2 or 0 ≤ 1 ≤ 0 = 2.

then the set

{g1, ..., g<} =
{
1 +
√
Δ

20
: (0, 1, 2) ∈ )Δ

}
is precisely equal to the set of complex numbers g in F such that 9 (g) is a singular modulus of
discriminant Δ. In this setting< = �Δ and the number �Δ,Y is precisely the number of triples
(0, 1, 2) ∈ )Δ such that g = g (0, 1, 2) satis�es min{|g − Z6 |, |g − Z3 |} < Y}.

By using the explicit description above, the authors manage to prove that

�Δ,Y ≤ |Δ|
1
2+o(1) · Y + |Δ|o(1) . (2.5)

Combining this estimate with the inequality (2.4) and optimizing Y, they deduce that the height
of a singular modulus G of discriminant Δ is e�ectively bounded by

ℎ(G) � |Δ|
o(1)

�Δ
+ log |Δ|

1
2

�Δ
+ o(log |Δ|) (2.6)

all the implicit constants being explicitly computable. This removes the ine�ectivity of the upper
bound that was present in Habegger’s proof.
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As far as the lower bounds for ℎ(G) are concerned, the authors prove the following two
inequalities:

(HL) ℎ(G) ≥ 3√
5
log |Δ| − 9.79.

(EL) ℎ(G) ≥ c |Δ |
1
2 −0.01
�Δ

.

The �rst estimate is an improvement of inequality (2.2), improvement needed due to numerical
purposes. The second estimate follows essentially from the de�nition of Weil height and from
the explicit description of singular moduli seen above.

By combining (2.6)+(HL) when�Δ is big, while using (2.6)+(EL) when�Δ is small, the authors
conclude that, if a singular unit exists, its discriminant must be bounded by |Δ| < 1015. However,
this bound is still too big to allow numerical computations and for this reason the rest of
the proof is dedicated to its re�nement. First, the range 1010 ≤ |Δ| < 1015 is ruled out by
sharpening estimate (2.5) on �Δ,Y ; the techniques used in this step are a combination of analytic
number theory and numerical computations. The range |Δ| < 1010 is then studied by further
computer-assisted arguments. The conclusion is that singular units do not exist.

2.1.3 Singular (-units and effectivity problems
Theorem 2.1.2 opened the way to a number of interesting questions. For instance one may ask,

inspired by the work of Gross-Zagier [GZ85] and Lauter-Viray [LV15], whether there exist pairs
91, 92 ∈ Q of singular moduli whose di�erence is a unit. After noticing that 91 − 92 = Φ1 ( 91, 92),
where Φ# (-,. ) ∈ Z[-,. ] denotes the classical modular polynomial of level # ∈ N>0, one may
push this question a bit further.

Question 2.1.3. Are there �nitely many pairs of singular moduli ( 91, 92) such that Φ# ( 91, 92) is a
unit for some # ∈ N>0?

We remark that Question 2.1.3 makes sense, since the classical modular polynomials always
have integer coe�cients, so that Φ# ( 91, 92) is an algebraic integer for every pair of singular
moduli ( 91, 92) and for every level # ∈ N>0. If we �x 92 = 0 and # = 1, we recover the problem of
singular units considered in the previous section. A complete answer to Question 2.1.3 has been
very recently found by Li in [Li21], where he proves the following generalization of Theorem
2.1.2.

Theorem 2.1.4. For every pair ( 91, 92) of singular moduli and every # ∈ N>0, the algebraic
integer Φ# ( 91, 92) is not a unit.

The tools used by Li in the proof of Theorem 2.1.4 come into the frame of the so-called Kudla
program, and are very di�erent from the ones used by Bilu, Habegger and Kühne in [BHK20].

Question 2.1.3 could be reformulated by asking whether there exist only �nitely many pairs
of singular moduli ( 91, 92) such that the norm of Φ# ( 91, 92) is not divisible by any rational prime.
Being phrased in this way, one may also wonder what happens if we relax a bit our requirements
by asking the norm of Φ# ( 91, 92) to be divisible only by a �xed set ( of primes. This leads us to
consider the problem of singular (-units.

Recall that if  is a number �eld and ( is a set of rational primes, we say that an element
G ∈  is an (-unit if, for every prime ? ∉ ( and for every prime p of  lying over ? , the element
G is a unit in the ring of integers of  p, where  p denotes the completion of  at the prime p.
In other words G is an (-unit if and only if G ≠ 0 and all the primes appearing in the prime
ideal factorization of GO lie above primes in ( . If G is an algebraic integer, this is equivalent to
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requiring that all the primes dividing its absolute norm over Q are in ( . Hence, the last question
above can be rephrased as follows:

Question 2.1.5. Let ( be a �xed set of rational primes (not necessarily �nite). Are there �nitely
many pairs of singular moduli ( 91, 92) such that Φ# ( 91, 92) is an (-unit for some # ∈ N>0?

Clearly the answer to Question 2.1.5 depends on the chosen set ( . If we take ( to be the set of
all rational primes, this answer is trivially no. Less trivially, Theorem 2.1.4 shows that for ( = ∅
there are no such pairs at all. However, for di�erent choices of the set ( , it is not clear a priori
what the answer to Question 2.1.5 should be. We will show in Proposition 2.2.10 that if ( has
a �nite complement in the set of all rational primes, then there exist in�nitely many pairs of
singular moduli ( 91, 92) such that Φ# ( 91, 92) is an (-unit for some # ∈ N>0. In all the remaining
cases however, the problem is completely open.

To simplify a bit the setting, let us restrict to the case # = 1 and 92 �xed. If for instance 92 = 0,
we are looking for the number of singular moduli that are (-units, or, in short, for the number of
singular (-units. By Theorem 2.1.2, if ( = ∅ there is no singular (-unit. However, if ( ≠ ∅ there
can certainly exist singular moduli that are (-units. For instance, for ( = {2, 3}, the integers
123,−323 and −963 are three singular moduli that are {2, 3}-units (they are the 9-invariants of
elliptic curves having complex multiplication by Z[

√
−1],Z[ 1+

√
−11
2 ] and Z[ 1+

√
−19
2 ] respectively).

We are then looking for some �niteness statement that will in general depend on the choice of
the set ( . Very recently Herrero, Menares and Rivera-Letelier proved in [HMR21b] that for every
�xed singular modulus 90 ∈ Q and for every �nite set of primes ( , the set of singular moduli
9 such that 9 − 90 is an (-unit is �nite. Their argument follows the lines of Habegger’s proof
outlined in Section 2.1.1, but they replace the use of Duke’s equidistribution of Heegener points
[Duk88] by the use of analogous equidistribution statements in the ?-adic setting, proved by the
authors themselves in [HMR20] and [HMR21a]. In particular, as in [Hab15], their argument is
not e�ective. We have reached the fundamental question of this entire chapter: is it possible,
for some non-empty sets of primes ( and for some �xed singular moduli 90, to give an explicit
bound on the number of singular moduli 9 for which 9 − 90 is an (-unit? In the second part of
the chapter we are going to answer positively to this question for in�nitely many choices of (
and 90.

2.1.4 A connection with abelian varieties
The problems described so far have interesting analogues in the world of abelian varieties. Or,

we should rather say, the problem of singular di�erences that are (-units could be considered as
the modular analogue of certain integrality questions previously asked in the context of abelian
varieties and algebraic groups in general. An example is probably the best way to highlight this
connection.

Assume that � is an elliptic curve de�ned over a number �eld  and given by an integral
Weierstrass model

� : ~2 + 01G~ + 03~ = G3 + 02G2 + 04G + 06
with 08 ∈ O . Fix a point& ∈ � ( ) and a �nite set ( of non-archimedean primes of  containing
the primes of bad reduction for �. Notice that for every prime p ⊆  not lying above primes in
( the reduction of & modulo p will be a torsion point on the reduced elliptic curve � mod p. We
then ask the following question: how many torsion points % ∈ � ( )tors do not have the same
reduction as & modulo all the prime ideals p ⊆  , except possibly for primes above (? This
question has a more captivating (and shorter) formulation as follows.

Question 2.1.6. How many torsion points in � ( ) are (-integral with respect to &?
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There is a very laconic answer to this question: it depends on & .

• Suppose �rst that & = $ ∈ � ( )tors is the zero element in �. By Cassels’ generalization of
Nagell-Lutz Theorem [Sil09, VII, Theorem 7.1] every torsion point whose order is not a
prime power has coordinates that are algebraic integers. Hence for any set ( of primes as
above there are in�nitely many % ∈ � ( )tors that are (-integral with respect to $ .

• Let now& ∈ � ( )tors with order# ≥ 2 and let again ( be any set of primes of containing
the places of bad reduction for �. Then, for every % ∈ � ( )tors of order " coprime with
# and every prime ideal p ⊆  not lying above ( , we have % ≡ & mod p if and only if
% ≡ & ≡ $ mod p. However, since gcd(", # ) = 1, by [Sil09, VII, Proposition 3.1 (b)] at
most one among % and & can reduce to$ modulo p. This shows once again that there are
in�nitely many % ∈ � ( )tors that are (-integral with respect to & .

• If �nally & ∉ � ( )tors answering Question 2.1.6 requires much more work than the
previous two cases: it is a theorem of Baker, Rumely and Ih [BIR08, Theorem 0.2] that,
under this assumption, for every �nite set ( of non-archimedean primes of  containing
the places of bad reduction for � there are �nitely many torsion points that are (-integral
with respect to & .

Motivated by results of this nature, Ih proposed the following conjecture (see [BIR08, Conjec-
ture 3.2]).

Conjecture 2.1.7. Let �/ be an abelian variety, ( a �nite set of non-archimedean primes of  
and let A( → Spec(O ,( ) be a model for � over the ring of (-integers of  . Fix � a non-zero
e�ective divisor on� de�ned over , at least one of whose irreducible components is not the translate
of an abelian subvariety by a torsion point, and let Cl(�) be its Zariski closure in A( . Then the set
of torsion points % ∈ �( )tors whose closure in A( is disjoint from Cl(�) is not Zariski dense in �.

In the theory of Unlikely Intersections, torsion points on abelian varieties are also called
special points. This is because abelian varieties are special types of Shimura varieties, where
a precise notion of special points can be de�ned. The latter specializes exactly to the notion
of torsion points when our Shimura variety is also an abelian variety. One now notices that
modular curves are also particular instances of Shimura varieties, and in this context special
point is a synonym for CM point. If we try to rewrite our example above with the elliptic curve �
replaced by the simplest modular curve - (1), something familiar makes it appearance. Namely,
if we consider as a model for - (1) the projective line P1

Q
, so that special points correspond to

9-invariants of CM elliptic curves over Q (singular moduli!) then the analogue of Question 2.1.6
becomes the following: for a �nite set ( of rational primes and a given G ∈ P1

Q
(Q) are there

�nitely many singular moduli 9 such that 9−G is an (-unit? The “torsion counterexamples” given
in the elliptic curve case would correspond to choosing G to be itself a singular modulus. And
all the discussion developed in the previous sections shows that these choices are not sources of
counterexamples anymore! In other words, it is true that the problem of singular di�erences
that are (-units could be regarded as the modular analogue of the integrality problems addressed
in [BIR08], but the solutions in these two cases do not need to be necessarily the same. It is
nevertheless very likely that a modular analogue of Ih’s conjecture could hold also in this case. In
this direction, Schmid [Sch] proved that for every non-CM point G ∈ P1

Q
(Q), the set of singular

moduli 9 for which 9 − G is a unit is �nite. A similar statement with ( ≠ ∅ does not seem to
appear in the literature yet.
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2.2 Finiteness statements for infinite (
In this section we begin our study of (-units of the form 9 − 90 with 9, 90 ∈ Q singular moduli.

If 90 = 0 is the unique singular modulus of discriminant Δ = −3, we speak of singular (-units.
For ease of notation, for every algebraic number U ∈ Q we will denote by # (U) the absolute
norm #Q(U)/Q (U). The following theorem is the main result of this section.

Theorem 2.2.1. Let 90 be a singular modulus of discriminant Δ0 and let  := Q(
√
Δ0). Fix (0 to

be the set of rational primes that are split in  . If {2, 3, 5, 7} * (0, then for every singular modulus
9 ∈ Q the di�erence 9 − 90 is never an (0-unit.

Note that the sets (0 considered in the statement above are in�nite, so that even an e�ective
version of [HMR21b] would not be able to recover the result. To prove the theorem, we need the
following auxiliary lemma.

Lemma 2.2.2. Let O1 and O2 be orders in imaginary quadratic �elds  1 and  2 of conductors
51, 52 respectively. For 8 ∈ {1, 2} let 98 be a singular modulus relative to the order O8 and assume
that 91 ≠ 92. Suppose that ! is a number �eld containing 91 and 92, and let p be a prime of ! lying
over a rational prime ? . For 8 ∈ {1, 2} write 58 = 5 ′8 ?

=8 with ? - 5 ′8 . If 91 ≡ 92 mod p then either
 1 =  2 and ? divides 51 52 or ? is non-split (inert/rami�ed) in  1 and  2. Moreover, in the �rst case
we have 5 ′1 = 5 ′2 .

Proof. For 8 = 1, 2 let �8 be an elliptic curve de�ned over ! with complex multiplication by O8
and 9-invariant 98 . After base-changing to a �nite �eld extension, we can assume without loss of
generality that the elliptic curves �8 have good reduction at p and that all their endomorhisms
are de�ned over the base �eld. The hypothesis 91 ≡ 92 mod p then implies that the reduced
elliptic curves �̃1 and �̃2 are isomorphic over F? . In particular their endomorphism rings over
F? must be isomorphic. By Theorem 1.4.1 these rings are either both isomorphic to an order in a
quaternion algebra or to an order in an imaginary quadratic �eld. In the �rst case, ? is non-split
in  1 and in  2. In the second case, ? splits in both  1 and  2, and we have

EndF? (�̃8 ) � Z + 5
′
8 O 8 for 8 = 1, 2

where O 8 is the ring of integers of the �eld  8 . Since the two endomorphism rings must be
isomorphic, we must have  1 =  2 and 5 ′1 = 5 ′2 . If ? divides one among 51 and 52 we are done.
Suppose on the contrary that ? - 51 52; then, by the discussion above, we have 51 = 52. But then
91 and 92 cannot be congruent modulo p by Theorem 1.4.2. This contradiction concludes the
proof. �

Proof of Theorem 2.2.1. Let 9 ∈ Q be a singular modulus such that 9 − 90 is an (0-unit. We are
going to prove that this di�erence is in fact a unit. The result will then follow from a direct
application of Theorem 2.1.4.

Assume then by contradiction that ? ∈ (0 divides the absolute norm # ( 9 − 90). In particular,
there exists a prime p ⊆ Q lying above ? such that 9 ≡ 90 mod p. Since ? is split in  , by Lemma
2.2.2 this implies that the order O9 relative to the singular modulus 9 is contained in  . Now, we
know that at least one among 2, 3, 5, 7 does not belong to (0, say ℓ . Choose a number �eld ! and
two elliptic curves � 9 /! and �0/! with singular invariants 9 and 90 respectively, such that there
exists a prime l ⊆ ! above ℓ which is of good reduction for both the curves. Since ℓ is non-split
in  , the reduced elliptic curves � 9 mod l and �0 mod l are both supersingular by Theorem 1.4.1.
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But there exists only one isomorphism class [�ℓ ]Fℓ of supersingular elliptic curves over Fℓ . More
precisely, we can choose

�2 : ~2 + ~ = G3, �3 : ~2 = G3 + G, �5 : ~2 = G3 + 1, �7 : ~2 = G3 + G .

as representatives for these classes for the di�erent values of the prime ℓ . In particular, the
two elliptic curves � 9 mod l and �0 mod l must be isomorphic over Fℓ , so that 9 ≡ 90 mod l. We
deduce that ℓ divides the norm of any di�erence 9 − 90 for 9 singular modulus relative to an
order in  . Hence, these di�erences cannot be (0-units. This contradiction shows that 9 − 90 is
an algebraic unit, as we wanted to show. �

By specializing 90 in Theorem 2.2.1, one can get several di�erent results concerning singular
di�erences that are (-units. For instance, for 90 = 0 we obtain the following result.

Corollary 2.2.3. Let ( be the set of primes congruent to 1 modulo 3. Then no singular modulus is
an (-unit.

Proof. This is an immediate consequence of Theorem 2.2.1, where we take 90 = 0. Notice that
the set ( consists precisely of the primes splitting in  = Q(

√
−3) and does not contain any of

the primes 2, 3, 5. �

Remark 2.2.4. Primes congruent to 1 mod 3 do appear in the norm factorizations of singular
moduli. More precisely, the techniques used in the proof of Theorem 2.2.1 yield the following
statement: a prime ℓ ≡ 1 mod 3 divides the norm of a singular modulus 9 if and only if 9 is a
singular modulus relative to an order of discriminant −3ℓ2= for some = ∈ N. Moreover, in this
case ℓ is the only prime 1 mod 3 that divides the norm of 9 . The exact power of ℓ that divides
this norm will be studied in Section 2.3.

In the same way, taking 90 = 1728 in Theorem 2.2.1, we have the following corollary.

Corollary 2.2.5. Let ( be the set of primes congruent to 1 modulo 4. Then for every singular
modulus 9 ∈ Q the di�erence 9 − 1728 is not an (-unit.

Similar statements can be made for every singular di�erence 9 − 90 with 90 singular modulus
of class number 1, since for these there is always at least one prime among 2, 3, 5, 7 which is
non-split in the corresponding imaginary quadratic �eld.

One may be tempted to think that Theorem 2.2.1 holds without any assumption on the set of
split primes (0. It is very di�cult to test this numerically, since the �rst imaginary quadratic
�eld where 2, 3, 5, 7 are all split has discriminant Δ = −311, with corresponding Hilbert class
polynomial having degree 19 and huge coe�cients. We have here managed to prove a weaker
result, thus providing some evidence for the stronger claim. In order to state it, let us de�ne for
every pair of negative discriminants Δ1,Δ2 ∈ Z<0 the quantity

� (Δ1,Δ2) =
∏

disc 98=Δ8

( 91 − 92).

Note that � (Δ1,Δ2) ∈ Z for every pair of discriminants Δ1,Δ2.

Theorem 2.2.6. Let Δ0 ∈ Z<0 be the discriminant of an imaginary quadratic order and let
 := Q(

√
Δ0). Fix (0 to be the set of rational primes that are split in  . Then there are only �nitely

many discriminants Δ ∈ Z<0 such that � (Δ,Δ0) is an (0-unit.
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Proof. Let Δ ∈ Z<0 be a discriminant such that � (Δ,Δ0) is an (0-unit. Let OΔ and OΔ0 be the
orders of discriminant Δ and Δ0 and denote by 5Δ and 5Δ0 the corresponding conductors.

First of all, note that � (Δ,Δ0) cannot be an algebraic unit. Indeed, for every pair 9, 90 of singular
moduli of discriminants Δ,Δ0 respectively, we have # ( 9 − 90) | � (Δ,Δ0) and # ( 9 − 90) ≠ ±1
by Theorem 2.1.4. This argument also implies, using Lemma 2.2.2, that OΔ ⊆  and that there
exist ℓ ∈ (0 and<,=, 5 ∈ N with ℓ - 5 such that 5Δ = ℓ< 5 and 5Δ0 = ℓ

= 5 . Therefore we see that
the order OΔ belongs to the set A of orders in  whose conductors are of the form 2 = @: 5

for some @ ∈ (0 and : ∈ N. Fix now ? ∈ N to be an odd prime that is inert in  and does not
divide 5Δ0 . We claim that for all but �nitely many orders O ∈ A of discriminant Δ(O) we have
? | � (Δ(O),Δ0). This claim clearly implies the theorem.

Choose a prime p ⊆ Q lying above ? . By Theorem 1.4.4, applied with the choice of any two
odd primes @1, @2 ∈ N splitting in  , we see that the supersingular reduction map Ψp,O in (1.5)
is surjective for all orders O ⊆  whose discriminant is large enough and coprime with ? . In
particular, Ψp,O is surjective for all but �nitely many orders O ∈ A. Since any elliptic curve
�0/Q with complex multiplication by OΔ0 has supersingular reduction modulo p, we deduce
that for all the orders O ∈ A for which Ψp,O is surjective, there exists at least one singular
modulus 9 relative to O such that Ψp,O ( 9) ∈ Im(Ψp,OΔ0 ). Hence, there exists a singular modulus
90 of discriminant Δ0 such that 9 ≡ 90 mod p. This in particular implies that ? divides # ( 9 − 90),
which in turn is a divisor of � (Δ(O),Δ0). The claim is thus proved. �

In the spirit of the arguments used in Theorems 2.2.1 and 2.2.6, we now give some remarks on
singular (-units. As we mentioned in Section 2.1.3 Herrero, Menares and Rivera-Letelier recently
proved [HMR21b] that, for every �nite set of primes ( , there are at most �nitely many singular
(-units. The proof of this result appears very deep, and relies on some ?-adic equidistribution
theorems proved in [HMR20] and [HMR21a]. We give here a much weaker statement than the
one mentioned above, which however uses only elementary reduction theory for CM elliptic
curves and was obtained before [HMR21b] was made publicly available. Proposition 2.2.7 can
be considered as a weak converse to Theorem 2.1.2.

Proposition 2.2.7. Let ( = {?1, ..., ?=} be a �nite set of rational primes. Then there exist in�nitely
many singular moduli of fundamental discriminant that are not (-units.

Proof. We know by Theorem 2.1.2 that no singular modulus is a unit. In particular there is
always a rational prime that divides the norm of any singular modulus. If 9 is a singular modulus
of fundamental discriminant −� < −3 and ? divides #Q( 9)/Q ( 9), then by Lemma 2.2.2 the prime
? cannot split in Q(

√
−�). The idea for the proof of the proposition is then to �nd in�nitely

many fundamental discriminants −� such that all the primes in ( split in Q(
√
−�). In this way

the set of primes dividing the norm of any singular modulus of discriminant −� (this set is
nonempty by the above discussion) has trivial intersection with ( .

Let @ be a prime number such that

• @ ≡ −1 mod ?8 for every ?8 ∈ ( .

• @ ≡ −1 mod 8.

We know that there are in�nitely many primes satisfying these conditions by Dirichlet’s theorem
on primes in arithmetic progression and the Chinese reminder theorem. We claim that in
Q(√−@) all the primes of ( are split. First of all notice that discQ(√−@) = −@ because clearly @
is squarefree and −@ ≡ 1 mod 4 by assumption. To prove that every prime in ( splits in this
�eld we compute the Kronecker symbols (−@/?8 ). We have two cases:
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• If ?8 = 2 for some 8 then
( −@
2
)
= 1 because −@ ≡ 1 mod 8.

• If ?8 > 2 then (
−@
?8

)
=

(
−1
?8

) (
@

?8

)
= (−1)

?8−1
2 ·

(
@

?8

)
= (−1)

?8−1
2 ·

(
−1
?8

)
= 1

because (−1/?8 ) = (−1)
?8−1
2 for every odd prime ?8 .

Since the Kronecker symbols above are equal to 1, we deduce that all the primes in ( are split in
Q(√−@). This proves the proposition. �

Remark 2.2.8. Using the same strategy, one can actually prove that for every �nite set ( of
rational primes there exist a positive proportion of negative fundamental discriminants whose
corresponding singular moduli are not (-units. Here is a sketch of the argument: as explained
in the proof of Proposition 2.2.7, it su�ces to consider the set of fundamental discriminants
−� for which every prime in ( is split in Q(

√
−�). The map 3 ↦→ Q(

√
−3) gives a bijection

between the set of squarefree positive integers and the set of imaginary quadratic �elds. Under
this bijection, the imaginary quadratic �elds where every prime in ( splits correspond to the
squarefree integers 3 such that the equality of Kronecker symbols (3/?) = (−1/?) = (−1)

?−1
2

holds for all odd ? ∈ ( and satisfying 3 ≡ 7 mod 8 if 2 ∈ ( . We are then reduced to �nd the
proportion X( of all the positive squarefree numbers 3 satisfying these congruence conditions.
By the Chinese Reminder Theorem, this is equivalent to studying the asymptotic distribution of
squarefree numbers in the residue classes mod # := 4 ·∏?∈( ? .

For 0, : ∈ N we denote by & (G ;0, :) the number of squarefree positive integers 3 ≤ G such
that 3 ≡ 0 mod : . The study of the asymptotic behaviour of the function& (G ;0, :) dates back to
Landau [Lan53, pp. 633-636]. An equivalent formulation of his results is given in [Sch62, Lemma
8], which in particular yields

& (G ;0, :) ∼ 6
c2G · X (0, :) as G →∞,

where
X (0, :) := 1

:

∏
? |:

1
1 − ?−2 ·

∏
? | (0,:),
(?2,:) |0

(
1 − (?

2, :)
?2

)
. (2.7)

In the above formula ? always denotes a prime number and for every pair of integers D, E ∈ Z
we have set (D, E) := gcd(D, E). Since the natural density of the set of squarefree positive integers
is 6/c2 (see [MV07, Theorem 2.2 pag. 36]) the number X (0, :) in (2.7) represents the proportion
of squarefree positive integers 3 ≡ 0 mod : . Notice that for every 0 ∈ N the arithmetic function
X (0, ·) is multiplicative. Moreover, one has

X (0, ?) = ?

?2 − 1 for all ? ≠ 2 and ? - 0,

X (0, 8) = 1
6

for all 0 . 0, 4 mod 8
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and from this it is easy to deduce that X( =
∏
?∈( X(,? with

X(,? =
?

2? + 2 if ? ≠ 2, X(,2 =
1
6
.

In particular X( > 0, as we wanted to show.

Remark 2.2.9. If ( does not contain the primes 2, 3 or 5, Proposition 2.2.7 could be proved by
considering imaginary quadratic �elds where these primes do not split. For instance, if 2 ∉ ( we
may consider the fundamental discriminants −� ≡ 0 mod 4: then 2 rami�es inside Q(

√
−�)

and by Theorem 1.4.1 it is a prime of supersingular reduction for any elliptic curve with complex
multiplication by the ring of integers in Q(

√
−�). Since 0 is the only supersingular 9-invariant

modulo 2, we deduce that singular moduli of discriminant � cannot be (-units.

We now prove a statement “dual” to Proposition 2.2.7, with which we also ful�ll our promise
of answering Question 2.1.5 in the case ( has in�nite complement in the set of all rational primes.

Proposition 2.2.10. Let ( be a set of rational primes that has �nite complement in the set of all
primes. Then there are in�nitely many pairs ( 91, 92) of singular moduli such that Φ# ( 91, 92) is an
(-unit for some # ∈ N.

Proof. We will prove the stronger statement that there are in�nitely many pairs ( 91, 92) of
singular moduli such that Φ1 ( 91, 92) = 91 − 92 is an (-unit. Let {?1, ..., ?=} be the complement of
( in the set of all rational primes. An application of Dirichlet’s theorem on primes in arithmetic
progression similar to the one appearing in the proof of Proposition 2.2.7 shows that there
exists an imaginary quadratic �eld  where ?1, ..., ?= are all split. Let 91 ∈ Q be a singular
modulus relative to the maximal order O in  . Then we claim that for every singular modulus
92 relative to an order O *  the di�erence 91 − 92 is an (-unit. To see this, it su�ces to show
that no prime in the set {?1, ..., ?=} divides the norm # ( 91 − 92), and this in turn follows from the
techniques that have been extensively used in this section. Let us be more precise: suppose by
contradiction that ? = ?8 divides # ( 91 − 92) for some 8 = 1, ..., =. By Theorem 1.3.5 there exists
a number �eld � , a prime p ⊆ � lying above ? and two elliptic curves (�1)/� and (�2)/� such
that the following holds: the elliptic curves �1, �2 have 9-invariants 91, 92 respectively and have
good, geometrically isomorphic reduction at p. Since ? splits in  , the reduction �1 mod p is
ordinary and its geometric endomorphism ring is isomorphic to O by Theorem 1.4.1. On the
other hand, �1 mod p and �2 mod p are isomorphic over F? , and we deduce that �2 has ordinary
reduction modulo p with geometric endomorphism ring isomorphic to O . However, since we
are assuming that �2 has complex multiplication by an order not contained in  , this contradicts
Theorem 1.4.1 and we are done. �

2.3 Norms of singular moduli and primes 1 mod 3
We have seen in Remark 2.2.4 that a prime ? ≡ 1 mod 3 divides the absolute norm of a singular

modulus 9 if and only if 9 is relative to a CM order O ⊆ Q(
√
−3) with conductor a power of ? .

For instance, for ? ∈ {7, 13, 19} we have:

|# ( 9−3·72 ) | = 230 · 39 · 56 · 7 · 173

|# ( 9−3·132 ) | = 266 · 321 · 512 · 116 · 13 · 233

|# ( 9−3·192 ) | = 293 · 327 · 518 · 116 · 19 · 296 · 413 · 533
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where 9Δ is any singular modulus of discriminant Δ and, as in the previous section, # (·) denotes
the absolute norm of an algebraic number. The attentive reader has certainly noticed that in
the above factorizations the prime ? always appears with exponent 1. This does not seem a
coincidence, and, actually, it is not even a phenomenon involving only primes 1 mod 3. Indeed,
by taking ? = 5 we get the following norms:

|# ( 9−3·52 ) | = 230 · 36 · 5 · 113

|# ( 9−3·54 ) | = 2156 · 348 · 5 · 119 · 176 · 236 · 476 · 593 · 713

|# ( 9−3·56 ) | = 2810 · 3150 · 5 · 1154 · 1748 · 2324 · 2930 · 4118 · 5312 · 5912 · 7118 · 8312 · 8912 · 1076 · 1136

· 1316 · 1676 · 1799 · 2276 · 2516 · 2636 · 3113 · 3476 · 3593

and we see that 5 again appears with exponent 1 in these factorizations. Similar computations
with orders of conductor 5 = ?= for di�erent odd primes ? ∈ N show the same pattern. If ? = 2
a di�erent regularity can be observed:

|# ( 9−3·22 ) | = 24 · 33 · 53

|# ( 9−3·24 ) | = 24 · 39 · 56 · 113

|# ( 9−3·26 ) | = 24 · 312 · 512 · 116 · 176 · 233

|# ( 9−3·28 ) | = 24 · 342 · 524 · 116 · 176 · 233 · 296 · 416 · 473

|# ( 9−3·210 ) | = 24 · 348 · 548 · 1124 · 176 · 2312 · 2912 · 479 · 536 · 596 · 713 · 836 · 896.

Stimulated by these numerical �gures, we decided to investigate further the norm factorizations
of singular moduli relative to orders in Q(

√
−3), even if this is only distantly related with the

topic of singular (-units. Our main result con�rms what the above computations only suggest.

Theorem 2.3.1. Let 9 be a singular modulus of discriminant Δ = −35 2, i.e. a singular modulus
relative to an order O9 ⊆ Q(

√
−3) of conductor 5 . Assume that 5 = ?= is a perfect prime power

with = a positive natural number.

• If ? ≠ 3 is odd then ? divides exactly #Q( 9)/Q ( 9).

• If ? = 2 then 24 divides exactly #Q( 9)/Q ( 9).

Remark 2.3.2. We conjecture that if 9 is a singular modulus relative to an order O9 ⊆ Q(
√
−3) of

conductor 5 = 3= with = ∈ N>0 then 3 divides exactly #Q( 9)/Q ( 9). Our proof of Theorem 2.3.1
does not work in this case.

Proof. The proof of the theorem will rely on the formulas proved by Lauter and Viray in [LV15].
Following the same notation of their paper, set for = positive even

31 = −3, 51 = 1, 32 = −3?2=, 52 = ?=

so that 92 = 9 is a singular modulus of discriminant 32 and 91 = 0 is the only singular modulus of
discriminant 31. Then

� (31, 32) =
∏

disc 98=38

( 91 − 92) = ±#Q( 9)/Q ( 9)
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since all the singular moduli of the same discriminant are conjugated. If now F8 denotes the
number of units in the order O38 for 8 = 1, 2, then by our assumptions we have F1 = 6 and
F2 = 2. By [LV15, Theorem 1.1] we get

|#Q( 9)/Q ( 9) |2/3 =
∏

G2≤9?2=
G2≡9?2= mod 4

�

(
9?2= − G2

4

)
(2.8)

where � is a function that takes non-negative integers of the form 9?2=−G2
4 to possibly fractional

prime powers. The precise de�nition of the function � (·) is somewhat involved and not needed
for the proof of the theorem. For completeness of exposition, we decided however to incude it
in the next paragraph. Our treatment follows closely the proof of [LV15, Theorem 1.1], where
the function � (·) is de�ned.

Let !/Q be the minimal �nite �eld extension containing Q(
√
−3) with the property that, for

every rational prime ℓ and every singular modulus 9 relative to the order O9 , there exist elliptic
curves �0 and � 9 de�ned over the ring of integers O! such that 9 (�0) = 0, 9 (� 9 ) = 9 and which
have good reduction at every prime ` ⊆ ! above ℓ . Such an extension can always be found by
[ST68, Sections 5 and 6]. For a �xed prime ` ⊆ ! let !unr

` be the maximal unrami�ed extension
of the `-completion of ! and denote by � ⊆ !unr

` its ring of integers. Then for every = ∈ N
and every isomorphism 5 ∈ Iso�/`= (�0 mod `=, � 9 mod `=) between the reduced elliptic curves
mod `= , there is a canonical isomorphism of rings

8 5 : End�/`= (�0 mod `=) ∼−→ End�/`= (� 9 mod `=)
6 ↦→ 5 ◦ 6 ◦ 5 −1

which allows to write

Z[ 1+
√
−3

2 ] � End� (�0) End�/`= (�0 mod `=) End�/`= (� 9 mod `=)

O9 � End� (� 9 )

∼
85

where the non-labelled inclusions are induced by the reductions mod `= . Let '5 be the order
generated by the image of Z[ 1+

√
−3

2 ] and O9 in End�/`= (� 9 mod `=), and denote by � 5 its
discriminant. It is possible to prove that the discriminant � 5 of the order '5 is of the form

� 5 =

(
9?2= − G2

4

)2
for some G ∈ Z with G2 ≤ 9?2= and G2 ≡ 9?2= mod 4. Then for every prime ideal ` ⊆ ! and
every integer< of the form 9?2=−G2

4 we de�ne

#<,` :=
1
3�

∑
9

∑
=≥1

#{5 ∈ Iso�/`= (�0 mod `=, � 9 mod `=) : � 5 =<2}
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where the �rst sum is taken over all singular moduli 9 relative to the order O9 and� ∈ Z is such
that � = 1 if G = 0 and � = 2 otherwise. We �nally de�ne

� (<) :=
∏̀
⊆!
`#<,`

where the product is taken over all the prime ideals ` ⊆ !. One can prove that, if � (<) is
non-trivial, there exists a unique rational prime ℓ such that � (<) is supported only at prime
ideals above ℓ . Since the conditions de�ning � (<) are Galois invariant, one can consider � (<)
to be a fractional power of the prime ℓ .

Identity (2.8) shows that in order to understand the factorization of #Q( 9)/Q ( 9) one should
study the function �

(
9?2=−G2

4

)
for di�erent values of G . We begin by studying the case G = ±3?= ,

i.e. the factorization of � (0). We denote by E? (·) the usual ?-adic valuation. Then by the �nal
part of [LV15, Theorem 1.5], since 51 = 1 and 32 = 31?2= we have

E? (� (0)) =
2
6
#Pic(O31 ) =

1
3

because Z[ 1+
√
−3

2 ] is a principal ideal domain. Combining this with (2.8) gives

|#Q( 9)/Q ( 9) |2/3 = ?2/3 ·
∏

G2<9?2=
G2≡9?2= mod 4

�

(
9?2= − G2

4

)
. (2.9)

In what follows we will distinguish between the cases ? odd and ? = 2. In the �rst case we will
have to prove that none of the factors appearing in the product on the right-hand side of (2.9) is
a power of ? . In the second case we shall prove that there are exactly two factors in the same
product that are equal to 2.
Case 1: ? ≠ 3 odd. We are now supposing that G ≠ ±3?= , i.e. that< =

9?2=−G2
4 > 0. By the �nal

part of [LV15, Theorem 1.1] we can have E? (� (<)) ≠ 0 only if ? divides<. Hence we only have
to study the values of � (<) with ? | <. By de�nition of< this implies that ? divides G and we
can then write G = ?A: , 0 < A ≤ = (here we use the fact that ? is odd), : coprime with ? . Hence
< can be factored as

< =
9?2= − :2?2A

4
= ?2A�, � =

9?2(=−A ) − :2
4

.

Notice that ? does not divide �.

By [LV15, Theorem 1.5] (which we can apply since 51 = 1) we have that

E? (� (<)) = d (<)A
(
<

?1+=

)
(2.10)

where d (·) and A(·) are two functions de�ned for every integer<, # as follows:

d (<) =


0 if (−3,−<)3 = −1
1 if 3 -<
2 otherwise
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A(# ) = #
{
A ⊆ Z

[
1 +
√
−3

2

]
ideals : # (A) = #

}
.

where (·, ·)3 denotes the usual Hilbert symbol at 3. Notice that for a prime p ⊆ Z
[
1+
√
−3

2

]
we

have

#Q(Z3)/Q (p) =
{
? if p lies above a prime ? ≡ 1 mod 3 or ? = 3
?2 if p lies above a prime ? ≡ 2 mod 3

In particular, if # is a natural number in whose factorization appears a prime ? ≡ 2 mod 3 raised
to an odd power, there cannot be any ideal A of Q(Z3) of norm # , so A(# ) = 0 in this case.

We now want to prove that E? (� (<)) = 0 by showing that at least one among the two factors
appearing in (2.10) is 0. We may assume that</?1+= is an integer, otherwise A(</?1+=) = 0.
Write then � = 3V�̃, with 3 - �̃ and V ≥ 0. Then we have

(−3,−<)3 = (−1)V
(
−1
3

)V (
−?2A �̃

3

)
=

(
−?2A �̃

3

)
=

(
−�̃
3

)
.

Now, if (−3,−<)3 = −1 we have d (<) = 0 and we are done. Otherwise, we have(
−�̃
3

)
= 1⇒ �̃ ≡ 2 mod 3.

Hence �̃ has at least a prime factor congruent to 2 mod 3 appearing with odd exponent in its
factorization. Since � is coprime with ? , we have

A

(
<

?1+=

)
= A(?2A−1−=�) = 0

which is what we wanted to prove.
Case 2: ? = 2. As in the previous case, we have that E2 (� (<)) can be nonzero only if 2 divides

<, and this leads us to consider integers< of the form

< =
22=9 − 22A:2

4
> 0 (2.11)

where : is either 0 or coprime with 2. Again in this case we have

E2 (� (<)) = d (<)A
( <

21+=
)
. (2.12)

First we study what happens for : = 0. In this case we have< = 22=−29 and as above

E2 (� (<)) = d (<)A
( <

21+=
)

where the quantity on the right-hand side is again zero if either <
21+= is not an integer or

E2 ( <21+= ) ≡ 1 mod 2. But we see that <
21+= = 2=−39 and since = is even by assumption, we deduce

that E2 (� (<)) = 0 in this case. Hence we may assume : ≠ 0 and coprime with 2. Notice that
(2.11) implies A ≤ = + 1. We consider two cases.
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(i) Suppose that A ≤ =. In this case we can write

< =
22A (22(=−A )9 − :2)

4
= 22A−2 (22(=−A )9 − :2).

As in the previous case we have

E2 (� (<)) = d (<)A
( <

21+=
)

and we need to study
<

21+=
= 22A−=−3 (22(=−A )9 − :2).

Notice now that, since : is coprime with 2, the quantity inside the parenthesis cannot be
divided by 2 unless = = A and : ∈ {±1}. Suppose �rst that = ≠ A : then

E2

( <

21+=
)
= 2A − = − 3 ≡ 1 mod 2

since = is even by assumption. Using [LV15, Theorem 7.12] we deduce that E2 (� (<)) = 0
in this case.
Suppose now that = = A and : = ±1: under these hypotheses we have< = 22=+1 and

E2

( <

21+=
)
= E2 (2=) = = ≡ 0 mod 2

by our assumptions on =. To compute the value of this valuation we have to use the full
strength of [LV15, Theorem 7.12]: using the same notation of that theorem we have

E2 (� (<)) = Y2 (2=)
∏
@ |2=
@≠2

(∗)

where we see that the product on the right is empty, hence equal to 1, and by de�nition of
Y2 (·) we have Y2 (2=) = 1. Hence for : = ±1, we have E2 (� (<)) = 1.

(ii) Suppose now that A = = + 1 and : = ±1. In this case < = 22=−25 and we see that
E2

(
<
2=+1

)
= E2 (2=−35) = = − 3 is odd. As before we conclude that E2 (� (<)) = 0 in this case.

To sum up, if ? = 2 the only integers< of the form< =
9?2=−G2

4 for which � (<) is a power of 2
are< = 0 (G = ±2=3) and< = 22=+1 (G = ±22=), in which cases we obtain

� (0) = 21/3, � (22=+1) = 2.

Combining these results with (2.8) we get

|#Q( 9)/Q ( 9) |2/3 = 22/3 · 22 · �

where � is an integer coprime with 2. This concludes the proof. �
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2.4 Supersingular elliptic curves and optimal
embeddings

After the short interlude in the previous section, we now go back to the study of di�erences
of singular moduli, or singular di�erences, that are (-units for some set ( ⊆ N of primes. In
Section 2.2 we �xed an appropriate singular modulus 90 and a set ( of primes splitting completely
in the imaginary quadratic �eld  90 corresponding to 90. We now want to analyze what happens
if we choose ( to contain some primes that are inert in  90 . Looking at Theorem 1.4.1, one can
certainly imagine that this study is intimately related to the theory of supersingular elliptic
curves and, in turn, of quaternion algebras. Hence, in this section we hone the theory explained in
Section 1.4 by introducing the more sophisticated concept of optimal embedding in a quaternion
algebra and by explaining how this relates to the deformation theory of CM elliptic curves
de�ned over certain complete non-archimedean �elds.

Let B be a quaternion algebra over Q and let ' ⊆ B be an order. Let Q ⊆  be a quadratic
�eld extension and let O ⊆  also be an order. Any ring homomorphism i : O → ' can be
naturally extended, after tensoring with Q, to a ring homomorphism  → B that we still denote
by i , with abuse of notation. We say that an injective ring homomorphism ] : O ↩→ ' is an
optimal embedding if

] ( ) ∩ ' = ] (O)

where the above intersection takes place in B. There is a simple criterion which allows to
determine whether a given imaginary quadratic order optimally embeds into a quaternionic
order. In order to state it, let us denote by trd, nrd : B→ Q respectively the reduced trace and
the reduced norm in the quaternion algebra B, see Section 1.2.

Lemma 2.4.1. Let ' be an order in a quaternion algebra B and O an order of discriminant Δ in
an imaginary quadratic �eld  . Let + ⊆ B be the subspace of pure quaternions

+ := {G ∈ B : trd(G) = 0}.

Then O embeds (resp. optimally embeds) in ' if and only if |Δ| is represented (resp. primitively
represented) by the ternary quadratic lattice

'0 := + ∩ (Z + 2')

endowed with the natural scalar product induced by the reduced norm on B.

Remark 2.4.2. This lemma has been proved for non-optimal embeddings and for maximal orders
' in [Gro87, Proposition 12.9]. Probably for this reason, the lattice '0 is sometimes called the
Gross lattice associated to '. The argument in loc. cit. easily generalizes to our situation. We
provide a full proof for completeness.

Proof. We �rst prove that O embeds in ' if and only if it is represented by '0, and we discuss
conditions on the optimality of this embedding at a second stage.

Write O = Z
[
Δ+
√
Δ

2

]
and suppose �rst that 5 : O ↩→ ' is an embedding. Let 1 := 5 (

√
Δ) so

that trd(1) = 0 and nrd(1) = |Δ|. Since

5

(
Δ +
√
Δ

2

)
=
Δ + 1
2
∈ '
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we see that 1 ∈ '0 so that |Δ| is represented by this lattice. Suppose conversely that there exists
1 ∈ '0 such that nrd(1) = |Δ|. Since trd(1) = 0, we see that 12 = Δ. By writing 1 = 0 + 2A with
0 ∈ Z and A ∈ ', one has

12 = (0 + 2A )2 = 02 + 4A 2 + 40A = Δ

and this immediately implies that 0 ≡ Δ mod 2, so that Δ+1 ∈ 2'. Hence we have (Δ+1)/2 ∈ '
and we obtain an embedding 5 : O ↩→ ' by setting

5

(
Δ +
√
Δ

2

)
=
Δ + 1
2

. (2.13)

We now discuss optimality. Fix {U1, U2, U3} to be a basis of '0 as a Z-module and let& (-,., / )
be the ternary quadratic form induced by the reduced norm with respect to this basis.

Assume that 5 : O ↩→ ' is an optimal embedding. By the proof above, we know that
1 := 5 (

√
Δ) ∈ '0 is such that nrd(1) = |Δ|. Suppose by contradiction that 1 = 01U1 + 02U2 + 03U3

with 01, 02, 03 ∈ Z not coprime, so that 2 := gcd(01, 02, 03) > 1 (we adopt the convention that
the greatest common divisor is always positive). Then 1̃ := 1/2 ∈ '0 satis�es

1̃2 =
Δ

22
∈ Z and

1
2

(
Δ

22
+ 1̃

)
∈ '.

in the same way as above. Thus 1
2

(√
Δ
2
+ Δ
22

)
∈  is an algebraic integer and the order Õ :=

Z
[
1
2

(√
Δ
2
+ Δ
22

)]
, which strictly contains O, also embeds in ' through the extension 5 :  ↩→ B.

This contradicts the optimality of 5 : O ↩→ '.
Suppose now that |Δ| is primitively represented by '0 i.e. that there exist 01, 02, 03 ∈ Z coprime

such that nrd(01U1 + 02U2 + 03U3) = |Δ|. We want to show that, setting 1 := 01U1 + 02U2 + 03U3,
the embedding 5 de�ned by (2.13) is optimal. We will equivalentely prove that, if 2 ∈ N is such
that Õ := Z

[
1
2

(√
Δ
2
+ Δ
22

)]
is an order, then

5 ( ) ∩ ' = 5

(
Õ

)
(2.14)

implies Õ = O. Since 1 = 5 (
√
Δ), equality (2.14) entails 1

2

(
1
2
+ Δ
22

)
∈ ' so that 1/2 ∈ '0. But

now
1/2 = 01

2
U1 +

02

2
U2 +

03

2
U3 ∈ '0

and all the coe�cients 08/2 must be integral since '0 is a lattice. By assumption, the 08 ’s are
coprime, so we must have 2 = 1. Hence Õ = O and this concludes the proof. �

Remark 2.4.3. The proof of Lemma 2.4.1 actually establishes a bijection between the set of
embeddings 5 : O ↩→ ' and the set of elements 1 ∈ '0 such that nrd(1) = |Δ|. Under this
bijection, the embedding 5 corresponds to the element 5 (

√
Δ) ∈ '0.

In order to carry out our study of singular di�erences that are (-units, it is fundamental to
understand what is the biggest exponent with which a prime ideal can appear in the factorization
of such a di�erence. Roughly speaking, saying that a di�erence of singular moduli 9 − 90 has
a certain `-adic valuation = = E` ( 9 − 90) for some prime ideal ` ⊆ Q( 9 − 90), is equivalent to
saying that the CM elliptic curve � 9 with 9 (� 9 ) = 9 is isomorphic to the elliptic curve � 90 with
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9 (�0) = 90 when reduced modulo `= . Therefore, in order to understand the exponents appearing
in the prime ideal factorization of a singular modulus, it is crucial to determine when such
isomorphisms can occur. With this goal in mind, we conclude this section by outlining some
aspects of the deformation theory of CM elliptic curves de�ned over number �elds. We refer the
reader to [Con04], [Gro86], [GZ85] and [LV15] for further discussions on the topic.

Let O be an order of discriminant Δ in an imaginary quadratic �eld  and let ℓ - Δ be a prime
inert in  . Consider an elliptic curve � with complex multiplication by the order O and de�ned
over the ring class �eld �O :=  ( 9 (�)). After completing with respect to any prime above ℓ , we
can consider �O as a sub�eld of the maximal unrami�ed extension Qunr

ℓ of Qℓ . This is because
the extension Q ⊆ �O is unrami�ed at ℓ by the assumption ℓ - Δ, see the end of Section 1.1. Let
! := Q̂unr

ℓ
be the completion of Qunr

ℓ with ring of integers, and uniformizer c . Then by [ST68,
Theorems 8 and 9] and Theorem 1.4.1 there exists an elliptic scheme E → Spec, such that:

• the generic �ber E×, Spec! is isomorphic over ! to �. Since the CM order O is contained
in, , all the endomorphisms of � are de�ned over !;

• the special �ber �0 := E×, Spec, /c is a supersingular elliptic curve since, by assumption,
ℓ does not split in  . Note that, /c � Fℓ , the algebraic closure of the �nite �eld with ℓ
elements.

For all = ∈ N, set �= := E ×, Spec, /c=+1. We are interested in understanding the endomor-
phisms rings �ℓ,= := End, /c=+1 (�=). When = = 0, we have already seen that the ring �ℓ,0 is
isomorphic to a maximal order in Bℓ,∞, the unique (up to isomorphism) de�nite quaternion
algebra over the rationals which rami�es only at ℓ and ∞. All the other rings �ℓ,= can be
recovered from �ℓ,0, as explained in the following theorem.

Theorem 2.4.4. Let O be an order of discriminant Δ in an imaginary quadratic �eld  and let
ℓ - Δ be a prime inert in  . Set ! := Q̂unr

ℓ
to be the completion of the maximal unrami�ed extension

of Qℓ , with ring of integers, and uniformizer c . Let E → Spec(, ) be an elliptic scheme whose
generic �ber � := E ×, Spec! ha complex multiplication by O. For every = ∈ N, denote by

�= := E ×, Spec, /c=+1 and �ℓ,= := End, /c=+1 (�=)

respectively the reduction of E modulo c=+1 and its endomorphism ring. Then:

(a) for every = ∈ N≥1 the ring End, /c= (�=) is isomorphic to a quaternion order in Bℓ,∞ and the
natural reduction map

O � End, (�) −→ End, /c=+1 (�=)

induced by the reduction modulo c=+1 is an optimal embedding;

(b) for every = ∈ N we have
�ℓ,= � O + ℓ=�ℓ,0

where the sum takes place in �ℓ,0.

The above theorem is a combination and a reformulation of various results already appearing
in the literature. We give a brief overview of the proof and point out at the relevant references.

Proof of Theorem 2.4.4. We begin with the proof of (0). The �rst statement follows from the fact
that ℓ is a prime of supersingular reduction for � 9 and by Serre-Tate theory, see for instance
[Con04, Theorem 3.3]. Reductions modulo c and c= give the following diagram
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O End, /c= (� 9 )

End, /c (� 9 )

i=−1

i0

which clearly commutes. Since ℓ does not divide the conductor of the order O, the embedding
i0 is optimal by [LV15, Proposition 2.2]. It follows from the commutativity of the diagram above
that also the embedding i=−1 is optimal, and the point (a) is proved. Part (b) of the proposition
is a special case of [LV15, Formula 6.6]. �

2.5 The ℓ-adic valuation of differences of singular
moduli

The goal of this section is to prove, under certain hypotheses, an upper bound for the exponents
appearing in the prime factorization of a di�erence of singular moduli. Our bounds will be
crucially used in the next section in order to provide new bounds on singular di�erences that
are (-units. In what follows, we will always use Fℓ to denote the �nite �eld with ℓ elements,
where ℓ ∈ N is a prime number, and Fℓ to denote an algebraic closure of this �eld.

Theorem 2.5.1. Let 90 ∈ Q be a singular modulus relative to an order O90 of discriminant Δ0 and
let ℓ ∈ Z be a prime not dividing Δ0. For any singular modulus 9 ∈ Q relative to an order O9 of
discriminant Δ ≠ Δ0, denote by � the compositum of the ring class �elds relative to O90 and O9 .
Let ` ⊆ � be a prime ideal lying above ℓ and assume that:

1. the prime ` ∩ Q( 90) has residue degree 1 over ℓ ;

2. there exists an elliptic curve (�0)/Q( 90) with 9 (�0) = 90 and having good reduction at `.

Then, if E` (·) denotes the normalized valuation associated to `, we have

E` ( 9 − 90) ≤
{
30
2

(
log(Δ2

0 |Δ |)
2 log ℓ + 1

2

)
if ℓ - Δ and O90 * O9 ,

30
2 if ℓ | Δ

(2.15)

where 30 is the number of automorphisms of any elliptic curve �/Fℓ with 9 (�) = 90 mod `.

Remark 2.5.2. Note that we have 30 = 2 in all cases except if 90 ≡ 0 or 90 ≡ 1728 mod `. In these
two cases, the value of 30 also depends on ℓ , see [Sil09, III, Theorem 10.1].

The dichotomy in the conclusion of Theorem 2.5.1 is re�ected by its proof, which we divide
according to the conditions displayed in (2.15). In all cases, everything boils down to the study of
optimal embeddings of the order O9 in a family of nested orders contained in the endomorphism
ring of a certain supersingular elliptic curve de�ned over Fℓ . One of the main issues is that for
a supersingular elliptic curve �/Fℓ , explicitely computing its endomorphism ring is a di�cult
problem in general. An explicit parametrization of the endomorphism rings of supersingular
elliptic curves over Fℓ has been achieved by Lauter and Viray in [LV15, Section 6]. However,
we found these parametrizations somehow di�cult to use for explicit estimates. Therefore, in
order to achieve our results, we adopted a di�erent strategy. The idea is that, since we are only
interested in providing estimates for the `-adic valuation of singular di�erences and not in
precisely determining their prime ideal factorization, we do not need the full knowledge of the
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supersingular endomorphism rings of the elliptic curves involved. We instead “approximate”,
when possible, the unknown quaternion orders with quaternion orders whose properties are
less mysterious. The next proposition is the cornerstone of this strategy.

Proposition 2.5.3. Let 9 ∈ Q be a singular modulus of discriminant Δ and let �/Q( 9) be an
elliptic curve with 9 (�) = 9 . Choose a degree 1 prime p ⊆ Q( 9) lying above a rational prime
? ∈ Z not dividing Δ and suppose that � has good supersingular reduction �̃ modulo p. Denote
by i ∈ EndF? (�̃) the Frobenius endomorphism (G,~) ↦→ (G? , ~? ). Then there exists a morphism

k ∈ EndF? (�̃) such that

k 2 + |Δ|k + Δ2 + |Δ|
4

= 0 and k ◦ i = i ◦k

where · : EndF? (�̃) ⊗Z Q→ EndF? (�̃) ⊗Z Q denotes the standard involution.

Remark 2.5.4. Recall that the standard involution on the quaternion algebra EndF? (�̃) ⊗Z Q
correspond to taking the dual isogeny when restricted to EndF? (�̃). This essentially follows
from the uniqueness of the standard involution on quaternion algebras, see [Voi21, Corollary
3.4.4].

Proof. Let O be the order of discriminant Δ and  ⊆ Q be its �eld of fractions. For an element
V ∈  we denote also by V its conjugate through the unique non-trivial automorphism of  /Q
(this will not cause confusion with the standard involution on EndF? (�̃) ⊗Z Q, as we explain
below). We also �x a normalized isomorphism

[·]� : O ∼−→ EndQ (�)

as in De�nition 1.3.7. Let U := Δ+
√
Δ

2 ∈ O. Since by [Shi98, Chapter II, Proposition 30], all the
endomorphisms of � are de�ned over the compositum�O :=  ( 9), which is a degree 2 extension
of Q( 9), after �xing an a�ne Weierstrass model for � with coordinates -,. , we can write

[U]� (-,. ) =
(
% (-,., U)
& (-,., U) ,

'(-,., U)
( (-,., U)

)
for some polynomials %,&, ', ( ∈ OQ( 9) [-,., / ], where OQ( 9) denotes the ring of integers of
Q( 9). Moreover, since U2 + |Δ|U + Δ2+|Δ |

4 = 0, also [U]� satis�es the same relation.
Let P ⊆ �O be a prime lying above p. Since � has supersingular reduction modulo p, the

latter has degree 1 and ? is unrami�ed in  , by Theorem 1.4.1 we must have 5 (P/p) = 2, where
5 (P/p) denotes the inertia degree of P over p. In particular, we see that the decomposition
group of P over p is precisely Gal(�O/Q( 9)). We �x f ∈ Gal(�O/Q( 9)) to be the unique
non-trivial element. Then one has

f ( [U]�) = [f (U)]�f = [U]�
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where the �rst equality follows from Theorem 1.3.8 and in the second equality we are using
the fact that � is de�ned over Q( 9) and f is non-trivial. Translating the above equality using
coordinates, we get

[U]� (-,. ) =
(
% (-,., U)
& (-,., U) ,

'(-,., U)
( (-,., U)

)
.

Let now k := ( [U]� mod P) ∈ EndF? (�̃). For V ∈ O the association [V]� ↦→ [V]� de�nes a
standard involution on on EndQ (�), in the sense of [Voi21, De�nition 3.2.4]. Since reduction
mod P de�nes an embedding of EndQ (�) ↩→ EndF? (�̃), by the uniqueness of the standard

involution on quadratic Q-algebras (see [Voi21, Lemma 3.4.2]) we have [U] mod P = k , where
now the conjugation abovek denotes the usual standard involution on the quaternion algebra
EndF? (�̃) ⊗Z Q. As f is a generator of the decomposition group of P over p, it must act as the
?-power Frobenius element over the residue �eld modulo P. In particular we have

k (-,. ) =
(
%̃ (-,., Ũ? )
&̃ (-,., Ũ? )

,
'̃(-,., Ũ? )
(̃ (-,., Ũ? )

)
where %̃, &̃, '̃, (̃ ∈ F? [-,., / ] are the reductions modulo P of the polynomials %,&, ', ( and
Ũ = U mod P. Now we see that

(k ◦ i) (-,. ) = k (-? , .? ) =
(
%̃ (-? , .? , Ũ)
&̃ (-? , .? , Ũ)

,
'̃(-? , .? , Ũ)
(̃ (-? , .? , Ũ)

)
= (i ◦k ) (-,. ).

Moreover,k is a root of the same minimal polynomial as U , since reduction modulo P is a ring
homomorphism and this shows thatk is the sought element. �

We are now ready to begin the proof of Theorem 2.5.1. Let us �x the notation that will be in
force during the entire argument. Given the orders O9 = Z

[
Δ+
√
Δ

2

]
and O90 = Z

[
Δ0+
√
Δ0

2

]
as in

the statement of Theorem 2.5.1, we denote by  9 and  90 the corresponding imaginary quadratic
�elds containing them. We then set � 9 and � 90 to be the ring class �elds of  9 and  90 relative to
the orders O9 and O90 respectively. Using this notation, the �eld � in the statement of Theorem
2.5.1 is the compositum in Q of � 9 and � 90 .

2.5.1 First case of Theorem 2.5.1
Assume that �0 in the statement of the theorem is given by an integral model over Q( 90) with

good reduction at `. Let (�0)/� be the base-change to � of the elliptic curve (�0)/Q( 90) , and let
(� 9 )/� be an elliptic curve with 9 (� 9 ) = 9 . We can always choose an integral model of � 9 that
has good reduction at all prime ideals above ℓ by [ST68, Theorems 8 and 9], which we can apply
since ℓ - Δ by assumption. With this choice, � 9 will have good reduction at the prime `. We will
always identify O9 and O90 with the endomorphism rings of � 9 and � 90 respectively.

Let �` be the completion of � at the prime `. The extension Q ⊆ � is unrami�ed at ℓ
because ℓ - ΔΔ0 (see Section 1.1), hence �` is contained in Q̂unr

ℓ
, the completion of the maximal

unrami�ed extension of Qℓ . Denote by , the ring of integers in Q̂unr
ℓ

and let c ∈ , be a
uniformizer. The base-changed elliptic curves (�0)/, and (� 9 )/, have good reduction modulo
c . Note also that, by our choices, �0 mod c is de�ned over Fℓ .
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Lemma 2.5.5. In the notation above, we have

E` ( 9 − 90) ≤
30

2
·max{= ∈ N≥1 : Iso, /c= (� 9 , �0) ≠ ∅}

where, for every = ∈ N, we denote by Iso, /c= (� 9 , �0) the set of isomorphisms between � 9 mod c=

and �0 mod c= .

Proof. Notice �rst of all that the normalized valuation on Q̂unr
ℓ

, i.e the valuation E satisfying
E (c) = 1, extends the `-adic valuation E` on � because E` (ℓ) = 1. Since, is a complete discrete
valuation ring whose quotient �eld has characteristic 0 and whose residue �eld Fℓ is algebraically
closed of characteristic ℓ > 0, we can apply [GZ85, Proposition 2.3] which gives

E` ( 9 − 90) =
1
2

∞∑
==1

# Iso, /c= (� 9 , �0).

Now, certainly Iso, /c=+1 (� 9 , �0) ≠ ∅ implies Iso, /c= (� 9 , �0) ≠ ∅ for every = ∈ N>0, since
reduction of isomorphisms are isomorphisms. Moreover, whenever the set Iso, /c= (� 9 , �0)
is non-empty, its cardinality equals the order of the automorphism group Aut, /c= (�0) of
�0 mod c= . By [Con04, Theorem 2.1 (2)], we always have the inclusions

End, (�0) ↩→ End, /c= (�0) ↩→ End, /c (�0)

induced respectively by the reduction modulo c= and modulo c . This means that

#Aut, (�0) ≤ #Aut, /c= (�0) ≤ Aut, /c (�0) = 30 (2.16)

so, setting " := max{= ∈ N≥1 : Iso, /c= (� 9 , �0) ≠ ∅}, we obtain

E` ( 9 − 90) =
1
2

∞∑
==1

# Iso, /c= (� 9 , �0) =
1
2

"∑
==1

#Aut, /c= (�0) ≤
30

2
·"

which proves the lemma. �

By Lemma 2.5.5, in order to estimate the valuation at ` of the di�erence 9 − 90, we need to
bound the biggest index = such that the reduction modulo c= of the elliptic curves � 9 and �0
are isomorphic. If this maximum is 0, then the two elliptic curves are not even isomorphic over
Fℓ �, /c , so the prime ` cannot divide 9 − 90 and there is nothing to prove. Hence, from now
on we suppose that ` divides 9 − 90 so that �0 mod c � � 9 mod c over Fℓ . Since ℓ does not divide
the conductor of the orders O9 and O90 by assumption, and the two orders are di�erent, Theorem
1.4.1 ensures that ℓ is a prime of supersingular reduction for both � 9 and �0. In particular, the
ring ' := End, /c (�0) is isomorphic to a maximal order in Bℓ,∞ � ' ⊗Z Q.

Suppose now that Iso, /c=+1 (� 9 , �0) is non-empty. Our goal is to �nd a bound on the exponent
= + 1. A choice of 5 ∈ Iso, /c=+1 (� 9 , �0) induces an isomorphism

5̃ : End, /c=+1 (� 9 ) → End, /c=+1 (�0), U ↦→ 5 ◦ U ◦ 5 −1

which, precomposed with the reduction map O9 ↩→ End, /c=+1 (� 9 ), gives rise to an optimal
embedding

k=+1 : O9 ↩→ End, /c=+1 (�0) (2.17)
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by Theorem 2.4.4 (a). For growing =, Theorem 2.4.4 (b) shows that the endomorphism ring
of �0 mod c=+1 becomes more and more "ℓ-adically close" to the order O90 . Intuitively, this
must imply that having an embedding as in (2.17) should not be possible for = large enough,
yielding the desired bound on = + 1. This intuition is correct, as we show below. The main
obstacle to make this idea precise is that, as we already said, it is not easy to explicitly compute
the endomorphism rings End, /c=+1 (�0) for a generic elliptic curve �0/, . To circumvent this
problem, we "approximate" the rings End, /c=+1 (�0) with smaller orders where we are able to
perform the relevant computations. The hypotheses on the prime ` and on the elliptic curve �0
will make this strategy successful.

Recall that O90 = Z
[
Δ0+
√
Δ0

2

]
and let k ∈ ' be the image of Δ0+

√
Δ0

2 via the reduction map
modulo c . Denote also by i ∈ End, /c (�0) the Frobenius endomorphism (G,~) ↦→ (G ℓ , ~ℓ ). By
Proposition 2.5.3 and using the fact that �0 mod c is a supersingular elliptic curve de�ned over
Fℓ , we have

i2 + ℓ = 0, k 2 + |Δ0 |k +
Δ2
0 + |Δ0 |
4

= 0 and k ◦ i = i ◦k . (2.18)

Hence, the ring '̃ := Z[k,i] ⊆ ' is a rank-4 order inside Bℓ,∞ with basis B = {1,k, i,ki}
satisfying the relations (2.18). Notice that the reduction map O90 ↩→ ' identi�es O90 with the
subring Z[k ] ⊆ Z[k,i]. The matrix of the bilinear pairing 〈U, V〉 = trd(UV) computed on the
basis B is given by

� =

©­­­­«
2 Δ0 0 0
Δ0

Δ2
0+|Δ0 |
2 0 0

0 0 2ℓ Δ0ℓ

0 0 Δ0ℓ
Δ2
0+|Δ0 |
2 ℓ

ª®®®®¬
so the discriminant of the order '̃ equals det� = Δ2

0ℓ
2. Hence, from Theorem 1.2.14 we see

that '̃ has index |Δ0 | inside any maximal order containing it, so in particular |' : '̃ | = |Δ0 |. Now,
since we are in the hypotheses of Theorem 2.4.4 (2), we have

End, /c=+1 (�0) � Z[k ] + ℓ=' ⊇ Z[k ] + ℓ='̃

and we shall show that the index of the latter inclusion is also bounded by |Δ0 |.

Lemma 2.5.6. For all = ∈ N the index
���(Z[k ] + ℓ=') : (Z[k ] + ℓ='̃)��� divides |Δ0 |.

Proof. Since '̃ ⊆ ', we have Z[k ] + ℓ=' = Z[k ] + ℓ=' + ℓ='̃. Hence

Z[k ] + ℓ='
Z[k ] + ℓ='̃

=
Z[k ] + ℓ=' + ℓ='̃
Z[k ] + ℓ='̃

�
ℓ='

(Z[k ] + ℓ='̃) ∩ ℓ='

as abelian groups. Now, the containment ℓ='̃ ⊆ (Z[k ] + ℓ='̃) ∩ ℓ=' gives an epimorphism

ℓ='

ℓ='̃
�

ℓ='

(Z[k ] + ℓ='̃) ∩ ℓ='
.

and, since ' is non-torsion, we have ℓ='/ℓ='̃ � '/'̃. Since the latter has cardinality |Δ0 |, the
lemma is proved. �
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Corollary 2.5.7. The embedding (2.17) induces an injection

O9, |Δ0 | := Z


Δ2
0Δ +

√
Δ2
0Δ

2

 ↩→ Z[k ] + ℓ='̃. (2.19)

Proof. By Lemma 2.5.6, for every G ∈ Z[k ] + ℓ=' we have |Δ0 |G ∈ Z[k ] + ℓ='̃. Since the order
O9, |Δ0 | has index |Δ0 | in O9 , the corollary follows. �

Combining Corollary 2.5.7 with Lemma 2.4.1, we see that | disc(O9, |Δ0 |) | = Δ2
0 |Δ| must be

represented by the Gross lattice Λℓ,= of the order Z[k ] + ℓ='̃. Note that the this representation is
not necessarily primitive, because the embedding (2.19) is not necessarily optimal. A computation
shows that

Λℓ,= = 〈|Δ0 | + 2k, 2ℓ=i, 2ℓ=ki〉Z
i.e. {|Δ0 | + 2k, 2ℓ=i, 2ℓ=ki} is a Z-basis for the Gross lattice of Z[k ] + ℓ='̃. The reduced norm
restricted to the lattice Λℓ,= induces the ternary quadratic form

&ℓ,= (-,., / ) = |Δ0 |- 2 + 4ℓ2=+1. 2 + ℓ2=+1 (Δ2
0 + |Δ0 |)/ 2 + 4ℓ2=+1Δ0./ . (2.20)

After setting
-̃ = -, .̃ = . + 1

2
Δ0/, /̃ = /

we get the diagonal quadratic form

&̃ℓ,= (-̃ , .̃ , /̃ ) = |Δ0 |-̃ 2 + 4ℓ2=+1.̃ 2 + ℓ2=+1 |Δ0 |/̃ 2.

Suppose now that &ℓ,= (-,., / ) = Δ2
0 |Δ| has an integral solution (G,~, I) ∈ Z3 corresponding to

the embedding (2.19). We �rst claim that at least one among ~ and I is non-zero. This follows
from our assumptions on O9 and on the following proposition.

Proposition 2.5.8. If ~ = I = 0 then O90 ⊆ O9 .

Proof. Let G ∈ Z>0 be such that &ℓ,= (G, 0, 0) = Δ2
0 |Δ|. By the proof of Lemma 2.4.1, this equality

corresponds to the embedding

Z

[
1
2

(
Δ2
0Δ +

√
Δ2
0Δ

)]
↩→ Z[k ] + ℓ='̃, 1

2

(
Δ2
0Δ +

√
Δ2
0Δ

)
↦→ 1

2
(
Δ2
0Δ + G ( |Δ0 | + 2k )

)
(2.21)

of the order O9, |Δ0 | ⊆  := Q(
√
Δ) into Z[k ] + ℓ='̃. The injection (2.21) is not optimal if G ≠ ±1.

Indeed, using again Lemma 2.4.1 we get the optimal embedding

Z


1
2
©­«
Δ2
0
G2

Δ +

√
Δ2
0
G2

Δ
ª®¬
 ↩→ Z[k ] + ℓ='̃, 1

2
©­«
Δ2
0
G2

Δ +

√
Δ2
0
G2

Δ
ª®¬ ↦→ 1

2

(
Δ2
0
G2

Δ + (|Δ0 | + 2k )
)

(2.22)
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determined by the equality &ℓ,= (1, 0, 0) = (Δ2
0 |Δ|)/G2. Moreover, recall that we also have

embedding (2.17), that can be rewritten as

O9 = Z
[
Δ +
√
Δ

2

]
↩→ Z[k ] + ℓ='. (2.23)

We remind the reader that the above injection (2.23) is again optimal, and that (2.21) is originally
induced by (2.23). It is then clear that the injections (2.21), (2.22) and (2.23) are all compatible
between each other, meaning that, after tensoring with Q, one gets the same map  ↩→ Bℓ,∞.
Note also that the images of (2.21) and (2.22) are contained in Frac(Z[k ]) � Q(

√
Δ0). This

implies that  = Q(
√
Δ) = Q(

√
Δ0) so that the orders O90 and O9 are contained in the same

imaginary quadratic �eld. For ease of notation, set

O := Z

1
2
©­«
Δ2
0
G2

Δ +

√
Δ2
0
G2

Δ
ª®¬
 .

We �rst claim that G divides Δ0. Suppose by contradiction that this is not the case, and write
G = 3 · : with 3 := gcd(G,Δ0), so that : ≠ ±1 and gcd(:,Δ0/3) = 1. Since (Δ2

0 |Δ|)/G2 must
be an integer, we deduce that :2 | |Δ|. Write Δ = −5 2� with −� = disc ∈ Z a fundamental
discriminant and 5 ∈ Z>0. Then we are going to show that :2 actually divides 5 2.

For every odd prime ? ∈ N with ? | : , the fact that ?2 divides −5 2� and that ?2 cannot divide
� since the latter is a fundamental discriminant, easily implies that ?2 | 5 2. This shows that the
odd part of :2 divides 5 2. On the other hand, suppose that 2 | : . If � is odd there is nothing else
to prove. If � is even instead, � is exactly divisible by either 4 or 8. Hence we can write the
discriminant of the order O as

disc(O) =
Δ2
0Δ

G2
= −

(
Δ0

3

)2
·
(
5

:/2

)2
· �
4
∈ Z

where all the factors of the product are integers by the above discussion. Since O is an order
in  , its discriminant should be of the form −� · 02 for some 0 ∈ N. Together with the fact
that Δ0/3 is odd (because : is even) this implies that (5 /(:/2))2 is divisible by 4, which in turn
means that :2 | 5 2, as wanted.

We are now ready to prove that G | Δ0. The map (2.22), composed with the natural inclusion
Z[k ] + ℓ='̃ ⊆ Z[k ] + ℓ=', gives an embedding of the order O inside Z[k ] + ℓ='. On the other
hand, in the latter ring lies also the image of O9 through (2.23). This implies that Z[k ] + ℓ='
must contain the image of the order in  whose conductor is the greatest common divisor of
the two conductors 5O and 5 of the orders O and O9 respectively. Let 5 ′ := gcd(5O, 5 ). The fact
that : | 5 gives

5O =
|Δ0 |
3
· 5
:

and we deduce that 5 ′ ≠ 5 , since otherwise we would have 5O/5 ∈ N and then gcd(:,Δ0/3) > 1.
Hence Z[k ] + ℓ=' contains (the image of) an order of  whose conductor strictly divides the
conductor of O9 . However, this contradicts the optimality of the embedding (2.23) and proves
that G | |Δ0 |.
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In order to conclude the proof of the proposition, write G = |Δ0 |/< for some integer< dividing
Δ0. Then equality &ℓ,= (G, 0, 0) = Δ2

0 |Δ| reads

|Δ0 |G2 = Δ2
0 |Δ|

which implies

|Δ| = G2

|Δ0 |
=
|Δ0 |
<2 .

Since O90 and O9 are contained in the same imaginary quadratic �eld, we deduce that O90 ⊆ O9
and this concludes the proof. �

Since at least one among ~ and I is non-zero, we also have that at least one among ~̃ :=
~ + (Δ0I)/2 and Ĩ = I is non-zero. Note that ~̃ ∈ 1

2Z and Ĩ ∈ Z. Then we have

Δ2
0 |Δ| = &̃ℓ,= (G̃, ~̃, Ĩ) = |Δ0 |G̃2 + 4ℓ2=+1~̃2 + ℓ2=+1 |Δ0 |Ĩ2 ≥ max{4ℓ2=+1~̃2, ℓ2=+1 |Δ0 |Ĩ2} ≥ ℓ2=+1

which implies

= + 1 ≤
log(Δ2

0 |Δ|)
2 log ℓ

+ 1
2
. (2.24)

Combining now (2.24) with Lemma 2.5.5 concludes the �rst case of the proof of Theorem 2.5.1.

2.5.2 Second case of Theorem 2.5.1
For this part of the proof, we are going to heavily rely on [LV15], of which we have kept the

notation. We again assume that the elliptic curve �0 is given by an integral model over Q( 90)
that has good reduction at `.

Suppose initially that ℓ divides the conductor of the order O9 . Let � 9 ⊆ � be the minimal
extension of the ring class �eld � 9 such that there exists an elliptic curve � 9 /� with 9 (� 9 ) = 9

and having good reduction at all primes of � lying above ℓ . Fix such an elliptic curve � 9 and
base-change it to the compositum ! = � · � 90 . Consider also a prime `! ⊆ ! lying above ` ⊆ �
and denote by � the ring of integers in the completion of the maximal unrami�ed extension of
!`! , with maximal ideal `!� ⊆ �. The elliptic curves � 9 and �0 have good reduction over � and,
since � is a complete discrete valuation ring of characteristic 0 with algebraically closed residue
�eld of characteristic ℓ > 0, we can use the same proof of Lemma 2.5.5 to see that

E` ( 9 − 90) ≤ E`! ( 9 − 90) ≤
30

2
·max{= ∈ N≥1 : Iso�/`=

!
� (� 9 , �0) ≠ ∅}. (2.25)

Since ℓ - Δ0, we can now apply [LV15, Proposition 4.1] with � = �0, O31 = O90 and O32 = O9 .
This proposition, used together with the fact that ℓ divides the conductor of O9 , implies that
Iso�/`=

!
� (� 9 , �0) = ∅ if = > 1. Combined with (2.25), this gives

E` ( 9 − 90) ≤
30

2

as desired. This yields the theorem in the case that ℓ divides the conductor of O9 .
Assume now that ℓ divides Δ but does not divide the conductor of the order O9 . Then, if again

� 9 is an elliptic curve with 9 (� 9 ) = 9 , we can choose � = � 9 as a �eld where � 9 has a model with
good reduction at all primes dividing ℓ . This follows from [ST68, Theorem 9]. If we complete
� at `, and we take � to be the ring of integers in the completion of the maximal unrami�ed
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extension of �` and, to be the ring of integers in the completion of the maximal unrami�ed
extension of Qℓ , then Frac(, ) ⊆ Frac(�) is a rami�ed degree 2 �eld extension because the
rami�cation index 4 (`/ℓ) = 2 by our assumptions. Again by [LV15, Proposition 4.1], since we
are assuming that ℓ does not divide the conductor of O9 , for every = ∈ N>0 we have

# Iso�/`= (�0, � 9 ) ≤ � · #(Lie
= (�0/�) (2.26)

where � = � ( 9) ≤ 6 is a positive constant depending on 9 and (Lie
= (�0/�) is the set of all

endomorphisms i ∈ End�/`= (�0) satisfying the following three conditions (cfr. [LV15, pag.
9218]):

1. i2 − Δi + 1
4 (Δ

2 − Δ) = 0;

2. The inclusion Z[i] ↩→ End�/`= (�0) is optimal at all primes ? ≠ ℓ , see [LV15, De�nition
2.1];

3. As endomorphism of Lie(�0 mod `=) we have i ≡ X mod `= , where X ∈ � is a �xed root
of the polynomial G2 − ΔG + 1

4 (Δ
2 − Δ).

The set (Lie
= (�0/�) can be partitioned as

(Lie
= (�0/�) =

⋃
<∈N

(Lie
=,< (�0/�)

where (Lie
=,< (�0/�) consists of all the endomorphisms i ∈ (Lie

= (�0/�) such that

disc
(
O90 [i]

)
=<2 .

We �rst claim that, under our assumptions, the sets (Lie
=,0 (�0/�) are empty for all = ∈ N>0.

Indeed, let i ∈ (Lie
=,0 (�0/�) so that disc

(
O90 [i]

)
= 0. Since a quaternion algebra does not contain

suborders of rank 3, this in particular implies that O90 [i] has rank 2 as Z-module, so that
Z[i] is isomorphic to an order in  90 , not necessarily contained in O90 . By the de�nition of
(Lie
= (�0/�), the order Z[i] has discriminant Δ, and we deduce that Z[i] � O9 ⊆  90 . However,

by assumption ℓ divides Δ but does not divide the conductor of O9 . Hence ℓ must divide the
discriminant of  90 which in turn implies ℓ | Δ0, contradicting our hypotheses. This proves the
claim.

On the other hand, in the second paragraph of [LV15, pag. 9247] it is proved that, when ℓ
divides Δ but does not divide the conductor of O9 , and ℓ - Δ0, then for every< > 0 and = > 1,
the set (Lie

=,< (�/�) is empty. We deduce that (Lie
= (�/�) = ∅ for all = > 1, and combining this with

inequality (2.26) we obtain Iso�/`= (�0, � 9 ) = ∅ for all = > 1. Finally, using [GZ85, Proposition
2.3] (or Lemma 2.5.5) we obtain

E` ( 9 − 90) =
1
2
# Iso�/` (�0, � 9 ) ≤

30

2

and this concludes the proof of Theorem 2.5.1.
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2.6 Other effective bounds on differences of
singular moduli that are (-units

It is �nally time to provide, for a given singular modulus 90 and for speci�c sets of primes
( , new e�ective bounds on the cardinality of the set of singular moduli 9 such that 9 − 90 is an
(-unit. In order to better state our main results, we introduce the following de�nition.

De�nition 2.6.1. Let 9 ∈ Q be a singular modulus of discriminant Δ and let ( ⊆ N be a �nite set
of prime numbers. We call the pair ( 9, () a nice Δ-pair if the following two conditions hold:

1. every prime ℓ ∈ ( splits completely in Q( 9);

2. we have ℓ - #Q( 9)/Q ( 9)#Q( 9)/Q ( 9 − 1728)Δ for all ℓ ∈ ( , where #Q( 9)/Q (·) denotes the norm
map from Q( 9) to Q.

The goal of this section is to prove the following theorem.

Theorem 2.6.2. Let ( 90, () be a nice Δ0-pair with Δ0 < −4 and #( ≤ 2. Then there exists an
e�ectively computable bound � = �( 90, () ∈ R≥0 such that the discriminant Δ of every singular
modulus 9 ∈ Q for which 9 − 90 is an (-unit satis�es |Δ| ≤ �. Moreover, if the extension Q ⊆ Q( 90)
is not Galois, then the discriminant Δ of any singular modulus 9 such that 9 − 90 is an (-unit is of
the form Δ = ?=Δ0 for some prime ? ∈ ( .

The reason why Theorem 2.6.2 only deals with sets ( containing at most two primes will
be apparent from its proof, which we now sketch. Our strategy follows the same idea used in
[Hab15] and [BHK20]: given a singular modulus 9 ∈ Q such that 9 − 90 is an (-unit, we compute
the (logarithmic) Weil height ℎ( 9 − 90). As one can see from its de�nition (2.1), the logarithmic
Weil height naturally decomposes into an "archimedean" and "non-archimedean" part. Since
9 − 90 is an algebraic integer, the non-archimedean part of its Weil height vanishes. In order to
exploit the fact that the above di�erence is an (-unit, we rather compute the height of ( 9 − 90)−1.
Using standard properties of the Weil height, we obtain

ℎ( 9 − 90) = ℎ(( 9 − 90)−1) = (archimedean part) + (non-archimedean part)

with
(non-archimedean part) = log ℓ

[Q( 9 − 90) : Q]
∑
p

5p · Ep ( 9 − 90)

where the sum is taken over the prime ideals of Q( 9 − 90) lying above the rational primes
contained in ( . Our goal is to e�ectively bound this height from above and from below in such a
way that the two bounds contradict each other when the absolute value of the discriminant of
the singular modulus 9 becomes large. This will give the desired e�ective bound.

An upper bound for the archimedean part has been already studied in [BHK20] and [Cai21].
In order to estimate from above the non-Archimedean part, we will use Theorem 2.5.1 proved
in the previous section. Concerning the lower bound for the Weil height, we compare it to the
stable Faltings height of the elliptic curve with complex multiplication having 9 as singular
invariant. Using work of Colmez [Col98] and Nakkajima-Taguchi [NT91] it is possible to relate
this Faltings height to the logarithmic derivative of the !-function corresponding to the CM
�eld evaluated in 1. The known lower bounds on this logarithmic derivative become strong
enough for our purposes only if we restrict to sets ( containing no more than two primes.
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Proof of Theorem 2.6.2. Let ( 90, () be a nice Δ0-pair with Δ0 < −4 and #( ≤ 2. We can assume
without loss of generality that #( = 2, since if ( contains fewer than two elements the statement
of the theorem becomes weaker. Hence we can write ( = {ℓ1, ℓ2} with ℓ1, ℓ2 ∈ N two distinct
primes.

In order to prove Theorem 2.6.2, we follow the strategy used in [BHK20] to prove the emptiness
of the set of singular units. Let 9 be a singular modulus of discriminant Δ such that 9 − 90 is
an (-unit, and let ℎ(·) denote the logarithmic Weil height on algebraic numbers. By the usual
properties of height functions [BG06, Lemma 1.5.18], we have

ℎ( 9 − 90) = ℎ(( 9 − 90)−1) =
1

[Q( 9 − 90) : Q]
∑

E∈MQ( 9−90 )

3E log+ | ( 9 − 90)−1 |E = � + # (2.27)

where 3E := [QE ( 9 − 90) : QE] is the local degree of the �eld Q( 9 − 90) at the place E and

� :=
1

[Q( 9 − 90) : Q]
∑

E∈M∞
Q( 9−90 )

3E log+ | ( 9 − 90)−1 |E,

# :=
1

[Q( 9 − 90) : Q]
∑
E |ℓ1ℓ2

3E log | ( 9 − 90)−1 |E

are, respectively, the archimedean and non-archimedean components of the height. Notice
that the expression for # follows from our assumption on 9 being an (-unit. We study these
two components separately, starting with the archimedean one. From now on, we assume
|Δ| > max{|Δ0 |, 1015}.

Denote by �0 and �Δ the class numbers of the orders associated to 90 and to 9 respectively.
Then by [Cai21, Corollary 4.2 (1)] we have

� ≤ 8� log |Δ| ·�0

[Q( 9 − 90) : Q]
+ log

(
� log |Δ| ·�0 · |Δ|1/2
[Q( 9 − 90) : Q]

)
+ 4 log |Δ0 | + 0.33 (2.28)

where � := max{2l (0) : 0 ≤ |Δ|1/2} andl (=) denotes the number of prime divisors of an integer
= ∈ N. Using [FR18, Theorem 4.1] we have

[Q( 9 − 90) : Q] = [Q( 9, 90) : Q] ≥ [Q( 9) : Q] = �Δ

which, combined with (2.28), gives

� ≤ 8� log |Δ| ·�0

�Δ
+ log

(
� log |Δ| ·�0 · |Δ|1/2

�Δ

)
+ 4 log |Δ0 | + 0.33. (2.29)

As far as the non-archimedean part is concerned, we have

# =
1

[Q( 9 − 90) : Q]
∑
E |ℓ1ℓ2

3E log | ( 9 − 90)−1 |E =
1

[Q( 9 − 90) : Q]
∑
p |ℓ1ℓ2

Ep ( 9 − 90) log ℓ
5p
8

(2.30)

=
log ℓ1

[Q( 9 − 90) : Q]
∑
p |ℓ1

Ep ( 9 − 90) 5p +
log ℓ2

[Q( 9 − 90) : Q]
∑
p |ℓ2

Ep ( 9 − 90) 5p
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where 5p denotes the residue degree of the primep ⊆ Q( 9− 90) lying above ℓ . For every suchp, we
choose a prime ideal ` ⊆ � that divides p, where � denotes the compositum inside Q of the ring
class �elds relative to 9 and 90. Note that this makes sense, since we haveQ( 9− 90) ⊆ Q( 9, 90) ⊆ �
(the �rst inclusion is actually an equality by [FR18, Theorem 4.1]). We wish now to use Theorem
2.5.1 to bound E` ( 9 − 90) for all these primes `. Let’s check that the hypotheses of the theorem
are veri�ed in our context:

• since we are assuming |Δ0 | < |Δ|, certainly we have Δ ≠ Δ0;

• since ( 90, () is a nice Δ0-pair, for 8 ∈ {1, 2} the prime ℓ8 splits completely in Q( 90). In
particular, ` ∩ Q( 90) has residue degree 1, as required;

• since ( 90, () is a nice Δ0-pair, for 8 ∈ {1, 2} the prime ℓ8 does not divide both Δ0 and
#Q( 90)/Q ( 90 ( 90 − 1728)). In particular, this last condition implies that 90 ≠ 0, 1728 and that
the elliptic curve

�0/Q( 90) : ~
2 + G~ = G3 − 36

90 − 1728
G − 1

90 − 1728

with 9 (�0) = 90, has good reduction at `.

This discussion shows that we can apply Theorem 2.5.1 to bound E` ( 9− 90). Notice that under our
assumptions we have, in the notation of the theorem, that30 = 2 since ℓ8 - #Q( 90)/Q ( 90 ( 90−1728))
for 8 ∈ {1, 2}. Moreover, the imaginary quadratic order associated to 9 cannot contain the order
associated to 90 because |Δ| > |Δ0 |. Thus we obtain

Ep ( 9 − 90) ≤ E` ( 9 − 90) ≤ max
{ log(Δ2

0 |Δ|)
2 log ℓ8

+ 1
2
, 1

}
for all primes p | ℓ8 . Combining this with (2.30) we obtain

# ≤ max
{ log(Δ2

0 |Δ|)
2 log(min{ℓ1, ℓ2})

+ 1
2
, 1

}
log(max{ℓ1, ℓ2})
[Q( 9 − 90) : Q]

∑
p |ℓ1ℓ2

5p (2.31)

≤ 2max
{ log(Δ2

0 |Δ|)
2 log(min{ℓ1, ℓ2})

+ 1
2
, 1

}
· log(max{ℓ1, ℓ2})

where we have used the fact that, for every number �eld  and any prime @ ∈ N, we always
have

∑
q |@ 5q ≤ [ : Q] (here the sum is taken over the prime ideals of  lying above @). For

ease of notation, set ! := max{ℓ1, ℓ2} and ℓ = min{ℓ1, ℓ2}. Using now together (2.29) and (2.31)
we obtain the following upper bound

ℎ( 9 − 90) ≤
8� log |Δ| ·�0

�Δ
+ log

(
� log |Δ| ·�0 · |Δ|1/2

�Δ

)
+ 4 log |Δ0 | + 0.33 (2.32)

+max
{
log(Δ2

0 |Δ|) ·
log!
log ℓ

+ log!, 2 log!
}

for the Weil height of 9 − 90. We now look into lower bounds.
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In order to �nd a lower bound for ℎ( 9 − 90), we �rst reduce to the problem of �nding a lower
bound for ℎ( 9) by means of the elementary inequality

ℎ( 9 − 90) ≥ ℎ( 9) − ℎ( 90) − log 2

see [BG06, Proposition 1.5.15]. As for bounding ℎ( 9), we use the lower bound [BHK20, Proposi-
tion 4.3]

ℎ( 9) ≥ 3
√
5
log |Δ| − 9.79

together with [BHK20, Proposition 4.1]

ℎ( 9) ≥ c |Δ|1/2 − 0.01
�Δ

(2.33)

which generally holds for |Δ| ≥ 16. Combining (2.6) with (2.33), and adding 1 on both sides, we
obtain

. (Δ) := max
{
3
√
5
log |Δ| − 9.78, c |Δ|

1/2

�Δ

}
≤ ℎ( 9 − 90) + ℎ( 90) + log 2 + 1. (2.34)

Concatenating now (2.34) with (2.32), and dividing both sides by . (Δ), yields the inequality

1 ≤ �(Δ) + �(Δ) +�Δ + � (Δ) (2.35)

where

�(Δ) = 8� log |Δ| ·�0

. (Δ)�Δ
,

�(Δ) = log (� log |Δ|) + 4 log |Δ0 | + ℎ( 90) + 1.33 + log 2
. (Δ) ,

� (Δ) = 1
. (Δ) log

(
|Δ|1/2
�Δ

)
� (Δ) = 1

. (Δ) ·max
{
log(Δ2

0 |Δ|) ·
log!
log ℓ

+ log!, 2 log!
}
.

We want to show that (2.35) cannot hold if |Δ| is su�ciently large. As far as estimating the
�rst three terms of (2.35) is concerned, we �nd ourselves in the same situation as Cai in [Cai21,
Sections 6.1-6.4], and we can directly use the bounds therein obtained. More precisely from
[Cai21, Section 6.2] we have, since |Δ| > 1015, that

�(Δ) ≤ 8� log |Δ| ·�0

c |Δ|1/2
≤ 8�0

c
|Δ|−0.1908

so for every Y� > 0,

�(Δ) ≤ 8�0

c
|Δ|−0.1908 < Y� (2.36)
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holds for |Δ| su�ciently large. Moreover, using

log(� log |Δ|) ≤ log 2
2
· log |Δ|
log log |Δ| − 21 − log 2

+ log log |Δ|

which is [BHK20, Inequality (5.8)] (here 21 ∈ R is an e�ectively computable absolute constant
de�ned in [BHK20, Section 5.2]), we have that, for every Y� > 0, the inequality

�(Δ) ≤ 1
(3/
√
5) log |Δ| − 9.78

(
log 2
2
· log |Δ|
log log |Δ| − 21 − log 2

+ log log |Δ| +  
)
< Y� (2.37)

where  := 4 log |Δ0 | + ℎ( 90) + 1.33 + log 2, holds for |Δ| su�ciently large. Finally, using the fact
that G ↦→ log(G)/G is a decreasing function when G ≥ 4, for every Y� > 0 one has

�Δ ≤
1

. (Δ) log
(
c−1. (Δ)

)
≤ 1
(3/
√
5) log |Δ| − 9.78

log
(
c−1

(
3
√
5
log |Δ| − 9.78

))
< Y� (2.38)

for |Δ| su�ciently large. We are then left with bounding� (Δ) from above. For |Δ| ≥ (log ℓ)/|Δ0 |2
we have

� (Δ) = 1
. (Δ) · log(Δ

2
0 |Δ|) ·

log!
log ℓ

+ log!

≤ 1
3√
5
log |Δ| − 9.78

·
(
log |Δ| + log!

( logΔ2
0

log ℓ
+ 1

))
=

√
5
3
+ 1

3√
5
log |Δ| − 9.78

·
(√

5
3
· 9.78 + log!

( logΔ2
0

log ℓ
+ 1

))
so for every Y� > 0 we obtain

� (Δ) ≤
√
5
3
+ Y� ≤ 0.75 + Y� (2.39)

for |Δ| su�ciently large (depending on Δ0 and ℓ1, ℓ2). We can now combine (2.36), (2.37), (2.38),
(2.39) with (2.35) to obtain

1 ≤ Y� + Y� + Y� + Y� + 0.75 (2.40)

which holds for |Δ| �ℓ1,ℓ2,Δ0,Y�,Y� ,Y� ,Y� 0. Choosing Y�, Y�, Y� , Y� small enough, the inequality
cannot be veri�ed for arbitrary large |Δ|. This proves that there are �nitely many singular
moduli 9 such that 9 − 90 is an (-unit, and concludes the proof of the �rst part of Theorem 2.6.2.

We now begin the proof of the second part of Theorem 2.6.2. Suppose Q ⊆ Q( 90) is not Galois.
We �rst claim that every prime in ( must be split in Q(

√
Δ0). Indeed, assume by contradiction

that a prime ℓ ∈ ( is inert in Q(
√
Δ0) (it cannot ramify by de�nition of nice Δ0-pair). Let

�O := Q( 90,
√
Δ0) which is a semidihedral Galois extension of Q, and let

� := Gal(�O/Q( 90)) ⊆ Gal(�O/Q) =: �

with generator f ∈ � . Consider the set S of left cosets of � in � . Since ℓ splits completely in
Q( 90) and is inert in Q(

√
Δ0), there exists an element of� which does not restrict to the identity
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on Q ⊆ Q(
√
Δ0) and such that its left-multiplication action on S is trivial. The only possible

automorphism which satis�es these two conditions is f ∈ � . On the other hand, for every g ∈ �
with g ∉ � , we must have fg� = g� . This implies that either fg = g or fg = gf . Since f ≠ 1
by assumption, the �rst possibility cannot hold, and we deduce that f commutes with every
element of � . Hence � must be abelian, and we reach the desired contradiction.

Let now 9 ∈ Q be a singular modulus of discriminant Δ such that 9 − 90 is an (-unit. Since
9 − 90 cannot be a unit by Theorem 2.1.4, there exists a prime ℓ ∈ ( dividing the norm of 9 − 90.
This implies that there exists a number �eld  , a prime ` ⊆  lying above ℓ and two elliptic
curves �0, � 9 de�ned over  with good reduction at ` such that 9 (� 9 ) = 9 , 9 (�0) = 90 and
�0 mod ` �Fℓ � 9 mod `. Moreover, since ℓ splits in Q(

√
Δ0) by the discussion above, both �0

and � 9 have ordinary reduction modulo ` by Theorem 1.4.1. From the same theorem and the
fact that ℓ - Δ0, we deduce that Δ = ℓ=Δ0, as wanted. �

The bound �( 90, () in the statement of Theorem 2.6.2 can be made explicit from its proof. To
give an idea of what kind of bounds one can get, we take 90 = −3375, the 9-invariant of any
elliptic curve with complex multiplication by Z[(1 +

√
−7)/2], and choose ( to be any subset of

at most two elements in {13, 17, 19}. We get the following result.

Theorem 2.6.3. Let 9 ∈ Q be a singular modulus of discriminant Δ, and let ( := {13, 17}. If
9 + 3375 is an (-unit, then |Δ| ≤ 1084. The same holds with ( ′ = {13, 19} and ( ′′ = {17, 19}.

Proof. Choose the nice (−7)-pair (−3375, {13, 17}) and |Δ| > 1084. A combination of the inequal-
ities (2.36), (2.37), (2.38) and (2.39) gives

Y� + Y� + Y� + Y� < 0.2482

and this violates inequality (2.40). The same happens with the other choices of primes in the
theorem. �

2.7 Round 2: more automorphisms enter the ring
In the statement of Theorem 2.6.2 we have excluded the discriminants Δ0 ∈ {−3,−4}, i.e. the

singular moduli 90 ∈ {0, 1728}. In these cases, the same techniques also lead to similar �niteness
results, but one has to be more careful to the extra automorphisms possessed by the complex
elliptic curves having 90 as singular invariant. This is indeed a problem, and will force us to
resort to the Generalized Riemann Hypothesis (GRH) in the case 90 = 0. Here are the results
that we obtain in these two cases.

Theorem 2.7.1. Let (0 be the set of rational primes congruent to 1 modulo 4, let ℓ ≥ 5 be
an arbitrary prime and set (ℓ := (0 ∪ {ℓ}. Then there exists an e�ectively computable bound
� = �(ℓ) ∈ R≥0 such that the discriminant Δ of every singular modulus 9 ∈ Q for which 9 − 1728
is an (ℓ -unit satis�es |Δ| ≤ �.

Theorem 2.7.2. Let (0 be the set of rational primes congruent to 1 modulo 3, let ℓ ≥ 5 be an
arbitrary prime and set (ℓ := (0 ∪ {ℓ}. If the Generalized Riemann Hypothesis holds for the
Dirichlet !-functions attached to imaginary quadratic number �elds, then there exists an e�ectively
computable bound � = �(ℓ) ∈ R≥0 such that the discriminant Δ of every singular (ℓ -unit 9 ∈ Q
satis�es |Δ| ≤ �.
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The proofs of Theorems 2.7.1 and 2.7.2, after a preliminary reduction step, become analogous to
the proof of Theorem 2.6.2. We have chosen to only sketch the proofs of the two aforementioned
theorems, outlining with all the details only the parts in which they di�er from the proof of
Theorem 2.6.2. We begin with Theorem 2.7.1.

Proof of Theorem 2.7.1. First of all, we show that it is su�cient to prove that, under the assump-
tions of the theorem, the set of singular moduli 9 such that 9 − 1728 is an {ℓ}-unit is �nite and
its cardinality can be e�ectively bounded. Indeed, suppose that 9 − 1728 is a singular (ℓ -unit
and assume that ? ∈ (0 is a prime dividing its norm #Q( 9)/Q ( 9 − 1728). It has been proved in
Theorem 2.2.1 that in this case, there are at least other 3 primes not congruent to 1 modulo 4
dividing this norm. In particular, 9 − 1728 cannot be a singular (ℓ -unit.

Hence we are reduced to bound the number of singular moduli 9 such that 9 − 1728 is an
{ℓ}-unit for ℓ ≥ 5 a prime congruent to 3 modulo 4. Let then 9 ∈ Q be a singular modulus such
that 9 − 1728 is an {ℓ}-unit. In the same way as in the previous section, we compute the Weil
height

ℎ( 9 − 1728) = ℎ(( 9 − 1728)−1) = 1
[Q( 9) : Q]

∑
E∈MQ( 9 )

3E log+ | ( 9 − 1728)−1 |E = � + # (2.41)

where, again, 3E := [QE ( 9) : QE] is the local degree at the place E and

� :=
1

[Q( 9) : Q]
∑

E∈M∞
Q( 9 )

3E log+ | ( 9−1728)−1 |E and # :=
1

[Q( 9) : Q]
∑
E |ℓ
3E log+ | ( 9−1728)−1 |E

are, respectively, the archimedean and non-archimedean components of the height. For |Δ| big
enough, we can bound the archimedean component using again the work of Cai [Cai21]. More
precisely, [Cai21, Corollary 4.2] gives for |Δ| ≥ 1014

� ≤ 4� log |Δ|
�Δ

+ 2 log � |Δ|
1/2 log |Δ|
�Δ

− 2.68 (2.42)

where �Δ is the class number of the order of discriminant Δ and � = max{2l (0) : 0 ≤ |Δ|1/2} as
in the previous section. The non-archimedean component can be rewritten as

# =
1

[Q( 9) : Q]
∑
p |ℓ

Ep ( 9 − 1728) log ℓ 5p =
log ℓ

[Q( 9) : Q]
∑
p |ℓ

Ep ( 9 − 1728) 5p (2.43)

where the sum runs over primes p of Q( 9) lying above ℓ , and 5p denotes the residue degree of p
over ℓ . To estimate the valuation above, we can apply Theorem 2.5.1 since all the hypotheses are
met also in this case: ℓ has certainly degree 1 in Q(1728) = Q and is coprime with −4 = discQ(8).
Moreover, the elliptic curve �1728/Q : ~2 = G3 + G has 9 (�1728) = 1728 and good reduction at all
primes ℓ ≠ 2, 3. We deduce that for all p | ℓ we have

Ep ( 9 − 1728) ≤ max
{
log(16|Δ|)

log ℓ
+ 1, 2

}
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where in the application of Theorem 2.5.1 one has 30 = 4 since ℓ ≥ 5 (see [Sil09, III, Theorem
10.1]). Combining the above estimate with (2.43) we obtain

# ≤ max{log(16|Δ|) + log ℓ, 2 log ℓ} (2.44)

so putting together (2.42) and (2.44) we get

ℎ( 9 − 1728) ≤ 4� log |Δ|
ℎΔ

+ 2 log � |Δ|
1/2 log |Δ|
ℎΔ

− 2.68 +max{log |Δ| + log ℓ, 2 log ℓ} (2.45)

for |Δ| ≥ 1014. Now the lower bound (2.34) allows to conclude exactly in the same way as in the
proof of Theorem 2.6.2. �

As the reader may have noticed, the intimate reason why the proofs of Theorems 2.6.2 and
2.7.1 work out, is that the lower bound (2.34) is su�ciently good to prevail on the estimates
(2.31) and (2.44) for the non-archimedean parts of the relevant Weil heights. This will not be the
case for 90 = 0, since in this case one has to take 30 ≥ 6 in the inequalities of Theorem 2.5.1. This
is the reason why the proof of Theorem 2.7.2 is conditional under GRH. However, Theorem 2.7.2
does not need the full strength of the Generalized Riemann Hypothesis to be proved, but only
that a weaker condition on the Dirichlet !-functions associated to imaginary quadratic �elds
holds. The goal of the subsequent discussion is to introduce this condition, and to deduce from
its assumption a lower bound for the Weil height of a singular modulus that is sharp enough to
prove Theorem 2.7.2 with our methods.

Recall that non-principal real primitive Dirichlet characters are precisely the Kronecker
symbols attached to quadratic �eld extensions of Q. We say that such a Dirichlet character has
discriminant � ∈ Z if it is the Kronecker symbol attached to a quadratic �eld of discriminant � .

De�nition 2.7.3. Let : ∈ R be a non-negative real number. A non-principal real primitive
Dirichlet character j of discriminant � is said to satisfy property % (:) if

!′(j, 1)
!(j, 1) ≥ −0.2485 log |� | − :

where the left-hand side of the inequality is the logarithmic derivative of the Dirichlet !-function
!(j, B) associated to j .

Remark 2.7.4. The inequality appearing in De�nition 2.7.3 may seem a bit arbitrary, and indeed
it is. Actually for our purposes, we could take any inequality of the form

!′(j, 1)
!(j, 1) ≥ −2 log |� | − :

with 2 < 0.25 as a de�nition for the property % (:), and all the following proofs would work in
the same way.
Remark 2.7.5. It is proved in [MK13] that the logarithmic derivative of Dirichlet !-functions
attached to Kronecker symbols of imaginary quadratic �elds is actually positive for in�nitely
many negative fundamental discriminants. In particular, property % (0) holds for in�nitely many
real primitive Dirichlet characters of negative discriminant.

Let now 9 ∈ Q be a singular modulus relative to an order in the imaginary quadratic �eld
 . Under the assumption that the Legendre symbol associated to  satis�es property % (:) for
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some non-negative : ∈ R, we are able to provide a lower bound for the Weil height of 9 in
terms of its discriminant Δ. In order to make this assertion precise, we introduce some notation.
For an elliptic curve � de�ned over a number �eld !, denote by ℎ� (�) its stable Faltings height
[Fal83, pag. 354] with Deligne’s normalization [Del85]. We continue writing ℎ : Q→ R for the
logarithmic Weil height of an algebraic number.

Proposition 2.7.6. Let 9 be a singular modulus of discriminant Δ = 5 2Δ , where Δ is the
discriminant of the imaginary quadratic �eld  relative to 9 . If for some : ∈ R≥0 property % (:)
holds for the non-principal real primitive Dirichlet character j of discriminant Δ , then

ℎ( 9) ≥ 1.509 log |Δ| +�

for some absolute constant � = � (:) ∈ R.

Proof. Let �/Q( 9) be an elliptic curve with 9 (�) = 9 . Using [GR14, Lemma 7.9], the logarithmic
Weil height of 9 can be bounded from below by the stable Faltings height of � as follows:

ℎ( 9) ≥ 12ℎ� (�) + 8.64. (2.46)

The stable Faltings height of � can be explicitely computed using the well-known results of
Colmez [Col98] and Nakkajima-Taguchi [NT91]. One has

ℎ� (�) =
1
4
log( |Δ|) + 1

2
!′(j, 1)
!(j, 1) −

1
2
©­«
∑
? |5

45 (?) log?
ª®¬ − 1

2
(W + log(2c))

where j is the Kronecker symbol relative to the CM �eld ,W is the Euler-Mascheroni constant,
5 is the conductor of the CM order and for a prime ?

45 (?) :=
1 − j (?)
? − j (?)

1 − ?−E? (5 )
1 − ?−1 .

Using property % (:) we then get

ℎ� (�) >
1
4
log( |Δ|) + 1

2
(−0.2485 log |Δ | − :) −

1
2
©­«
∑
? |5

45 (?) log?
ª®¬ − 1

2
(W + log(2c))

=
1
4
log( |Δ|) + 1

2
(−0.2485 log |Δ| − 0.2485 log 5 −2 − :) − 1

2
©­«
∑
? |5

45 (?) log?
ª®¬ − 1

2
(W + log(2c))

= 0.12575 log |Δ| + 0.2485 log 5 − 1
2
©­«
∑
? |5

45 (?) log?
ª®¬ − 1

2
(W + log(2c) + :).

We want to bound from below the quantity

�(5 ) := 0.2485 log 5 − 1
2
©­«
∑
? |5

45 (?) log?
ª®¬ .
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To do this, one can proceed exactly as in [BHK20, Section 4]. First, one notices that

45 (?) ≤
2

? + 1 ·
1 − ?−E? (5 )
1 − ?−1

by considering all the possible values of the Dirichlet character j (?). Setting now for all = ∈ N>0

X (=) := 0.2485 log= − ©­«
∑
? |=

log?
? + 1 ·

1 − ?−E? (=)
1 − ?−1

ª®¬ ,
one notices that X (=) is an additive function and satis�es X (?:+1) ≥ X (?: ) for all primes ? ∈ N
and integers : > 0. Since one has X (2), X (3) < 0 and X (?) > 0 for all primes ? ≥ 5, we deduce
that X (=) ≥ X (2) + X (3) for all = ∈ N>0. We then have

�(5 ) ≥ X (5 ) ≥ X (2) + X (3) = 0.2485(log 2 + log 3) −
(
log 2
3
+ log 3

4

)
≥ −0.0605.

In conclusion, we obtain
ℎ� (�) > 0.12575 log |Δ| −�0 (2.47)

where we set
�0 =

1
2
(W + log(2c) + :) + 0.0605.

Combining now (2.46) with (2.47) we obtain

ℎ( 9) > 1.509 log |Δ| − 12�0 + 8.64

and this concludes the proof. �

We now state and prove a stronger version of Theorem 2.7.2, whose proof relies on the use of
property % (:) rather than on the use of GRH. We then show how Theorem 2.7.2 follows from
this stronger statement.

Theorem 2.7.7. Let (0 be the set of rational primes congruent to 1 modulo 3, let ℓ ≥ 5 be an
arbitrary prime and set (ℓ := (0 ∪ {ℓ}. Assume that all the Kronecker symbols j� attached to an
imaginary quadratic �eld of discriminant � satisfy property % (:) for some �xed : ∈ R≥0. Then
there exists an e�ectively computable bound � = �(ℓ, :) ∈ R≥0 such that the discriminant Δ 9 of
every singular (ℓ -unit 9 ∈ Q satis�es |Δ 9 | ≤ �. In particular, the set of singular moduli that are
(ℓ -units is �nite and its cardinality can be e�ectively bounded.

Proof. The proof is essentially identical to the proof of Theorem 2.7.1, and we only sketch
the argument. First of all, it is again su�cient to prove that, under the assumptions of the
theorem, the set of singular {ℓ}-units is �nite and its cardinality can be e�ectively bounded.
This follows in the same way as done at the beginning of the proof of Theorem 2.7.1, again
appealing to Theorem 2.2.1. Hence we are reduced to bound the number of singular {ℓ}-units
for ℓ ≥ 5 a prime congruent to 2 modulo 3. Let 9 be a singular {ℓ}-unit relative to the order O of
discriminant Δ. Again, one decomposes its logarithmic Weil ℎ( 9) height into a sum ℎ( 9) = �+#
of an archimedean and a non-archimedean component.
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The archimedean component � has been studied in [BHK20, Corollary 3.2]. Here it is proved
that, for |Δ| ≥ 1014, we have

� ≤ 12� log |Δ|
�Δ

+ 3 log � |Δ|
1/2 log |Δ|
�Δ

− 3.77 (2.48)

where �Δ is the usual class number of the order of discriminant Δ and � = max{2l (0) : 0 ≤
|Δ|1/2}. The non-archimedean part can be written as

# =
log ℓ

[Q( 9) : Q]
∑
p |ℓ

Ep ( 9) 5p (2.49)

where 5p denotes the residue degree of the prime p ⊆ Q( 9) lying above ℓ . Using Theorem
2.5.1 with the elliptic curve �0/Q : ~2 = G3 + 1 with 9 (�0) = 0 and noticing that 30 = 6 because
ℓ ≥ 5 we have

Ep ( 9) ≤ max
{
3
(
log 9|Δ|
2 log ℓ

+ 1
2

)
, 3

}
and, combining this estimate with equality (2.49), we get

# ≤ max
{
3
2
(log 3|Δ| + log ℓ), 3 log ℓ

}
. (2.50)

A lower bound for the height ℎ( 9) can be obtained by combining the conditional Proposition
2.7.6 with (2.33). The conclusion of the proof can be then carried out in the same way as the
proof of Theorem 2.7.2. �

Proof of Theorem 2.7.2. The fact that the Dirichlet !-functions attached to imaginary quadratic
�elds satisfy GRH implies in particular that for every non-principal real primitive Dirichlet
character j of discriminant � we have

!′(j, 1)
!(j, 1) = $ (log log |� |),

where the implied constant is absolute (see for instance [GS00, Section 3.1]). In particular, there
exists : ∈ R≥0 such that property % (:) holds for all Kronecker symbols attached to imaginary
quadratic �elds. Now one concludes by applying Theorem 2.7.7. �

2.8 An unsuccessful attempt at making Theorem
2.7.2 unconditional

The goal of this section is to show that the naive attempt at making Theorem 2.7.2 uncondi-
tional by improving the bounds obtained in Theorem 2.5.1 is fruitless. Namely, we will prove
that the order of magnitude of the bounds appearing in Theorem 2.5.1 cannot be improved in
general, at least in the case 90 = 0. Under the condition that the considered prime ℓ divides
the discriminant of the order O9 corresponding to the singular modulus 9 , it is easy to provide
examples in which the second upper-bound of (2.15) is reached. For instance, each of the singular
moduli 9 of discriminant Δ = −7 · 52 is divided by the unique prime p5 ⊆ Q( 9) above 5 and
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we have Ep5 ( 9) = 3 (note that 30 = 6 in this case). On the other hand, if ℓ does not divide the
discriminant of O9 the claimed optimality follows from the following theorem.

Theorem 2.8.1. Let ℓ ≥ 5 be a prime with ℓ ≡ 2 mod 3. There exists an in�nite family of singular
moduli 9 whose corresponding discriminant Δ 9 is coprime with ℓ and which satisfy

E` ( 9) ≥ 3
(
log( |Δ 9 | − 3)

2 log ℓ
+ 1
2
− log 2

log ℓ

)
for some prime ideal ` ⊆ �O lying above ℓ .

To prove the theorem, we need two preliminary results.

Proposition 2.8.2. Let ℓ ≥ 5 be a prime with ℓ ≡ 2 mod 3. Then the elliptic curve �0 : ~2 = G3 + 1
over Fℓ has complex multiplication by the order

Z + ZZ3 + Z
2 + Z3 + 2i + Z3i

3
+ Z−1 + Z3 − i − 2Z3i

3

in the quaternion algebra Bℓ,∞. Here, if Z ∈ Fℓ denotes a �xed 3-rd root of unity, the endomorphisms
Z3, i ∈ EndFℓ are such that Z3 : (G,~) ↦→ (ZG,~) and i : (G,~) ↦→ (G ℓ , ~ℓ ).

Proof. One could directly verify that the given order is a maximal order in Bℓ,∞ whose elements
represent endomorphisms of the elliptic curve �0. We outline a possible strategy leading to the
computation of this endomorphism ring, kindly suggested to the author by John Voight.

Let O�0 := EndFℓ (�0) and notice that O�0 contains the order O := Z[Z3, i] having Z-basis
{1, Z3, i, Z3i}. Then O�0 ⊆ Bℓ,∞ is a maximal order and O ⊆ O�0 with index 3. Hence, O�
contains an element of the form

U =
� + �Z3 +�i + �Z3i

3
, �, �,�, � ∈ Z

with 3 - gcd(�, �,�, �). Since U is an element of a quaternion order, it is in particular integral.
This implies that its reduced trace and norm must both be integers. One has

trd(U) = 2� − �
3

nrd(U) = −ℓ�� −�� +�
2 + �2 + ℓ (�2 + �2)
9

,

where trd(·) and nrd(·) denote respectively the reduced trace and the reduced norm in the
quaternion algebra Bℓ,∞. Note now that, since O ⊆ O�0 , the integers �, �,�, � could be deter-
mined modulo 3. Hence there is just a �nite number of possibilities to check. A computation
shows that the possible options for the tuple (�, �,�, �) are the following four:

(1, 2, 1, 2) (1, 2, 2, 1) (2, 1, 1, 2) (2, 1, 2, 1).
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By adding the corresponding U ’s to the order O we get the following possibilities:

(1, 2, 1, 2), O1 : Z + ZZ3 + Z
(
1
3
− 1
3
Z3 +

1
3
i + 2

3
Z3i

)
+ Z

(
−2
3
− 1
3
Z3 −

2
3
i − 1

3
Z3i

)
(1, 2, 2, 1), O2 : Z + ZZ3 + Z

(
1
3
− 1
3
Z3 +

2
3
i + 1

3
Z3i

)
+ Z

(
−2
3
− 1
3
Z3 −

1
3
i − 2

3
Z3i

)
(2, 1, 1, 2), O3 : Z + ZZ3 + Z

(
2
3
+ 1
3
Z3 +

1
3
i + 2

3
Z3i

)
+ Z

(
−1
3
+ 1
3
Z3 −

2
3
i − 1

3
Z3i

)
(2, 1, 2, 1), O4 : Z + ZZ3 + Z

(
2
3
+ 1
3
Z3 +

2
3
i + 1

3
Z3i

)
+ Z

(
−1
3
+ 1
3
Z3 −

1
3
i − 2

3
Z3i

)
.

Looking at the generators of these orders, we see that O1 = O4 and O2 = O3, so we discard
the �rst two and we only consider O3 and O4. We need to decide which of these two rings is
the "correct one". Indeed, the desired order must be identi�ed to the endomorphism ring of
the elliptic curve �0. An element of the form 1

3V , with V ∈ EndFℓ (�0), is an endomorphism of
�0 if and only if the endomorphism V factors through the multiplication-by-3 morphism. This
happens if and only if the 3-torsion points of �0 are in the kernel of V . The idea is then to
compute the generators of the group of 3-torsion points of �0 and to test which order contains
the "right" elements. The 3-division polynomial of �0 is

Φ3 (G) = 3G (G3 + 4),

so we can choose as generators of the full 3-torsion subgroup �0 [3] (Fℓ ) the points

% = (0, 1), & = (− 3√4,
√
−3)

for �xed choices of 3√4,
√
−3 ∈ Fℓ as follows. Observe that for a prime ℓ ≥ 5 and ℓ ≡ 2 mod 3, all

elements in Fℓ are cubes and −3 is not a square modulo ℓ . In view of this remark, we choose &
in such a way that the �rst coordinate lies in Fℓ . Instead the second coordinate of & de�nes in
any case a quadratic extension of Fℓ , so that

(
√
−3)ℓ = −

√
−3.

We are ready to verify that O4 is the correct order. Let

Φ = 2 + Z3 + 2i + Z3i ∈ O�
Ψ = −1 + Z3 − i − 2Z3i ∈ O� .

Then, using the fact that 2% = −% and 2& = −& we get that Φ = Ψ on the 3-tosion points, so

Φ(%) = [2] (0, 1) + (0, 1) + [2] (0, 1) + (0, 1) = 0

Φ(&) = (− 3√4,−
√
−3) + (−Z 3√4,

√
−3) + [2] ((− 3√4)? , (

√
−3)? ) + (Z (− 3√4)? , (

√
−3)? ) = 0
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which shows that � [3] ⊆ kerΦ and � [3] ⊆ kerΨ. One can also verify that

(2 + Z3 + i + 2Z3i) (&) ≠ 0.

This proves the proposition. �

Proposition 2.8.3. Let O be an order in an imaginary quadratic �eld  and ℓ ∈ N be a prime
inert in  that does not divide the conductor of O. Let, be the ring of integers in the completion
Q̂unr
ℓ

of the maximal unrami�ed extension of Qℓ , with uniformizer c ∈ , . Fix = ∈ N and let
�0 → Spec(, /c=) be an elliptic scheme such that the reduction modulo c is supersingular. If
5 : O ↩→ End, /c= (�0) is an optimal embedding, then there exists an elliptic curve �/, such that

• � mod c= � �0;

• End, (�) � O.

Proof. This is an application Gross and Zagier’s generalization [GZ85, Proposition 2.7] of Deur-
ing’s lifting Theorem (see Theorem 1.4.3). Note that the proof of Gross and Zagier’s result in the
supersingular case does not require, in their notation, the ring Z[U0] to be integrally closed but
only ℓ not dividing its conductor.

Write O = Z[g] for some imaginary quadratic g ∈  and let U0 := 5 (g). The endomorphism
U0 induces on the tangent space Lie(�0) the multiplication by an element F0 ∈, /c= which
is a root of the minimal polynomial 6(G) = G2 + �G + � ∈ Z[G] of g over Q. In order to apply
[GZ85, Proposition 2.7], we need to show that there existsF ∈, such thatF mod c= = F0.
Let V := F0 mod c ∈ Fℓ . Then V is a root of 6(G) mod c lying in Fℓ . If 6′(V) = 0, then V would
actually lie in Fℓ . However, since ℓ is inert in O and does not divide its conductor, the polynomial
6(G) is irreducible over Fℓ by the Kummer-Dedekind Theorem [Neu99, Proposition 1.8.3], and
this implies that the derivative of 6(G) does not vanish on V (the same argument holds for ℓ = 2
by choosing appropriately g in such a way that its trace is odd). Then by Hensel’s lemma there
exists a uniqueF ∈, lifting V . ThisF satis�esF mod c= = F0 by construction.

We now apply [GZ85, Proposition 2.7] to deduce that there exists an elliptic curve �/, and
an endomorphism U ∈ End, (�) such that � mod c= � �0 and U mod c= = U0. In principle, the
ring End, (�) could strictly contain the order Z[U]. However, the reduction map identi�es Z[U]
with O, and the latter optimally embeds in End, /c= (�0). Since the reduction map also embeds
End, (�) ↩→ End, /c= (�0), we deduce that End, (�) = Z[U] � O, as wanted. �

Proof of Theorem 2.8.1. Let, be the ring of integers in the completion Q̂unr
ℓ

of the maximal
unrami�ed extension of Qℓ , with uniformizer c ∈, . For every = ∈ N let '= := End, /c=+1 (�0)
be the endomorphism ring of the reduction of �0/, modulo c=+1. By Theorem 2.4.4 (b) we know
that '= = Z[Z3] + ℓ='0, where '0 is the order appearing in the statement of Proposition 2.8.2. A
computation similar to the one carried out during the proof of Theorem 2.5.1 shows that the
ternary quadratic form induced by the reduced norm on the Gross lattice of '= is given by

&ℓ,= (-,., / ) = 3- 2 + ℓ2= 4ℓ + 1
3

. 2 + 4ℓ2=+1/ 2 + 2ℓ=-. − 4ℓ2=+1./ ∈ Z[-,., / ] (2.51)

for all = ∈ N. Proposition 2.8.3 combined with Lemma 2.4.1 implies in particular that, for any
primitive triple of integers (G,~, I) ∈ Z3 such that −� := &ℓ,= (G,~, I) is not divisible by ℓ , there
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exists an elliptic curve � ′/, with complex multiplication by the order of discriminant � and
which is isomorphic to � : ~2 = G3 + 1 modulo c=+1. The primitive triple (1, 0, 1) gives

&ℓ,= (1, 0, 1) = 3 + 4ℓ2=+1

which is not divisible by ℓ . The j-invariant of the corresponding elliptic curve � with CM by the
order of discriminant � will satisfy, by [GZ85, Proposition 2.3], the inequality

E` ( 9) ≥ 3(= + 1) = 3
(
log( |� | − 3)

2 log ℓ
+ 1
2
− log 2

log ℓ

)
for some prime ` ⊆ �O lying above ℓ . This concludes the proof of the theorem. �

2.9 A uniformity conjecture for singular moduli
In this �nal section we make some speculations, based on computer-assisted numerical

calculations, concerning di�erences of singular moduli that are (-units. The starting point of our
discussion is the following observation (compare also with [HMR21b, Question 1.2]): numerical
computations seem to show that 9−11 = −215, which is the unique singular modulus relative to
the order of discriminant Δ = −11, may also be the only singular modulus that is an {ℓ}-unit
for some prime ℓ . In other words, it seems that the set J1 of singular moduli that are (-units
for some set of primes ( of cardinality 1, contains only one element, namely 9−11. It appears
then natural to ask what happens if we increase the cardinality of the set ( . Motivated by this
question, we have performed some computations, whose results are displayed in Table 2.1. Let
us describe the notation and the content of this table.

If a singular modulus of discriminant Δ is an (-unit for some set ( of rational primes, then
actually all singular moduli of discriminant Δ are singular (-units since, as we discussed in
Section 1.3, the set of singular moduli relative to the same discriminant form a full Galois orbit
over Q. For every B, � ∈ N denote then by JB the set of Galois orbits of singular moduli that
are (-units for some set ( of rational primes satisfying #( = B and by JB (�) the subset of JB
consisting of those orbits whose corresponding singular moduli have discriminant Δ satisfying
|Δ| ≤ �. Similarly, denote by Δmax,B (resp. Δmax,B (�)) the biggest (in absolute value) imaginary
quadratic discriminant such that there exists a singular modulus of discriminant Δmax,B whose
Galois orbit belongs to JB (resp. to JB (�)). If JB is an in�nite set, we put Δmax,B = −∞. Clearly,
for every pair of natural numbers �1 ≤ �2 we have

|Δmax,B (�1) | ≤ |Δmax,B (�2) | ≤ |Δmax,B |.

In Table 2.1 we have computed, with the help of SAGE [SAGE], the cardinality of JB (50000)
for B ∈ {1, ..., 7}, and the corresponding Δmax,B (50000). Moreover, in the last column we have
collected all the primes appearing in the norm factorizations of 9 ∈ JB (50000).

The results displayed in Table 2.1 show, for small values of B ∈ N, that Δmax,B (50000) is much
smaller compared to the bound |Δ| ≤ 50000 up to which we have performed our computations.
For instance, we see that among all the Galois orbits of singular moduli with discriminant
|Δ| ≤ 50000, only 9 orbits contain singular (-units for some set ( with #( ≤ 2. Moreover, the
biggest discriminant associated to a singular modulus belonging to one of these 9 orbits is
Δ = −83. All this seems to suggest that Δmax,B (�) will remain constant for all � ≥ 50000 i.e. that
Δmax,B (50000) = Δmax,B for B ∈ {1, ..., 7}, which would mean that the number of primes dividing
the norm of a singular modulus must increase as the absolute value of its discriminant gets
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B #JB (50000) Δmax,B (50000) primes appearing in the factorizations

1 1 −11 2

2 9 −83 2, 3, 5, 11

3 28 −227 2, 3, 5, 11, 17, 23, 29, 41

4 67 −523 2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89

5 119 −987 2, 3, 5, 7, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89,
101, 107, 113, 131, 137, 149, 167, 173, 179, 281, 317

6 195 −2043

2, 3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89,
101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197,

227, 233, 239, 251, 257, 263, 269, 281, 293,
311, 317, 353, 383

7 291 −2587

2, 3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89,
101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197,
227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317,
347, 353, 359, 383, 389, 419, 431, 449, 467, 491,

509, 521, 557, 569, 617, 641, 653, 677

Table 2.1: The table displays for B ∈ {1, ..., 7} the number of imaginary quadratic discriminants up to 5 · 104
for which the corresponding singular moduli are (-units with #( = B (second column). The third
column shows the biggest among the found discriminants and the fourth column shows all the
primes appearing in the factorizations of the norms of the corresponding singular moduli.

bigger. If this were actually true, then the last column of Table 2.1 would show which primes
a set ( of cardinality B must contain in order for the set of singular (-units to be non-empty
(but not all the possible B-tuples are possible). For example, it seems from these computations
that the set of singular {17, 23}-units does not contain any singular modulus. All this discussion
leads to the formulation of the following conjecture.

Conjecture 2.9.1 (Uniformity conjecture for singular (-units). For every B ∈ N, the set JB is
�nite.

We could have equivalently formulated the above conjecture by saying that for every �nite
set ( of rational primes, the set of singular (-units is �nite and its cardinality can be bounded
only in terms of the cardinality of ( , regardless from the primes contained latter set. The fact
that this statement is equivalent to Conjecture 2.9.1 can be seen as follows: suppose that for
every B ∈ N there exists a constant � (B) ≥ 0 such that the set of singular (-units has cardinality
bounded by � (B) whenever ( is a set of rational primes satisfying #( = B . Since being an (-unit
is Galois invariant, this implies that � (B) also bounds the size of the Galois orbit of any such
singular (-unit, hence the class number of the corresponding imaginary quadratic order. By the
Brauer-Siegel Theorem [Lan94, Chapter XIII, Theorem 4] this entails a bound on the discriminant
of any singular (-unit with #( = B . Hence any such singular modulus must lie in a �nite set and
Conjecture 2.9.1 follows.

Inspecting the computations displayed in Table 2.1, one could also try to be more precise on
the cardinality of the sets JB . For instance, we may ask the following:
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B #JB (50000) Δmax,B (50000) primes appearing in the factorizations

1 0 / /
2 3 −8 2, 3, 7

3 14 −52 2, 3, 7, 11, 19, 23, 31, 43

4 31 −139 2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 79, 83,
103, 127, 139

5 54 −259 2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83,
103, 107, 127, 139, 151, 163, 211, 223

6 93 −571
2, 3, 5, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83,
103, 107, 127, 131, 139, 151, 163, 167, 179, 191,

199, 211, 223, 271, 283, 307, 331, 571

7 145 −835

2, 3, 5, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83,
103, 107, 127, 131, 139, 151, 163, 167, 179, 191,
199, 211, 223, 227, 239, 251, 271, 283, 307, 311,
331, 367, 379, 383, 439, 463, 487, 499, 523, 547,

571, 631, 691

Table 2.2: The table displays for B ∈ {1, ..., 7} the number of imaginary quadratic discriminants up to
5 · 104 for which the corresponding singular moduli 9 are such that 9 − 1728 is an (-unit for
some ( with #( = B (second column). The third column shows the biggest among the found
discriminants and the fourth column shows all the primes appearing in the factorizations of the
corresponding norms of 9 − 1728.

Question 2.9.2. Is it true that there exists only 1 singular modulus which is an (-unit for #( = 1,
and 9 Galois orbits of singular moduli that are (-units for #( = 2?

We �nd it more di�cult to formulate precise conjectures on how the number of primes
dividing the norm of a singular modulus increases with respect to its discriminant.

Of course, there is no reason to restrict our attention to singular (-units. One can make similar
conjectures for di�erences of the form 9 − 90 with 90 a �xed singular modulus. For instance,
Table 2.2 shows how the above considerations seem to hold true also for di�erences of the form
9 − 1728. The notation is the same used for Table 1, but with the necessary modi�cations: JB
is the set of Galois orbits of singular moduli 9 such that 9 − 1728 is an (-unit for some set ( of
rational primes satisfying #( = B , etc. Further computations with other di�erences 9 − 90 would
probably shed more light on whether it is possible that for every B ∈ N, there is only a �nite
number of singular di�erences 91 − 92 that is an (-unit for some set ( of cardinality B . But we do
not want to enter this territory here.
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3Galois representations attached
to CM elliptic curves

In this chapter we study the theory of Galois representations associated to elliptic curves with
complex multiplication, and its relations with the class �eld theory of imaginary quadratic �elds.
The purpose is double: �rst of all, we want to set the ground for the subsequent Chapter 4 and
Chapter 5, where most of this material is heavily used. Secondly, we want to create a reference
for a topic that does not seem to have a proper representation in the literature. The non-expert
tends to treat and use the theory of CM Galois representations only in the case of complex
multiplication by maximal orders, since the presence of non-integrally closed number rings
brings several technical complications. It wouldn’t be true to say that there are no general
expositions for the general theory of complex multiplication: one can certainly consult, for
instance, Lang [Lan87] and Shimura [Shi94; Shi98] to see that this is not the case. However,
none of these references seems to give much space to the topic of Galois representations for
elliptic curves with complex multiplication. Moreover, on the one hand Shimura’s works treat
generic CM abelian varieties and one has thus to dig in heavy notation in order to translate the
needed results into the easier one-dimensional setting. On the other hand, Lang’s book focuses
only on elliptic curves, but using a somehow di�cult exposition, which stands in the tradition
of the classical works by Weber [Web28], Söhngen [Söh35], Deuring [Deu41], and many others.
It seems that the lack of a modern account of the general theory of CM Galois representations
has been recently noticed by some mathematicians. We mention here, by way of illustration,
the two recent works of Bourdon and Clark [BC20] and Lozano-Robledo [Loz19]. The �rst one
does not study Galois representations per se, but rather uses them as a tool to obtain results on
torsion points and isogenies of CM elliptic curves. The second one investigates the possible
ℓ-adic images of Galois representations attached to elliptic curves with complex multiplication
de�ned over their �eld of moduli. The topic is here addressed in a matrix-based style and, in the
parts focusing on Class Field Theory, by using a classical approach that can be traced back to
Söhngen.

Di�erently from these two aforementioned works, this chapter is of foundational nature. It
consists essentially of an exposition of old and new results on the theory of Galois representations
attached to elliptic curves with complex multiplication by general imaginary quadratic orders.
Of course, we have no pretence of completeness. We make use of the idelic language for class
�eld theory, as in the case of Section 3.3, where we generalize and reformulate the theory of ray
class �eld for orders �rst introduced by Söhngen in [Söh35] with a classical language. We also
show how the classical main theorems of complex multiplication allow to understand the “size”
of the image of a CM Galois representation in terms of the arithmetic properties satis�ed by the
division �elds of the considered elliptic curve. As a byproduct, we improve in Corollary 3.5.4
the announced [Loz19, Theorem 1.3].

The outline of the chapter is the following: in Section 3.1 we recall the general theory of Galois
representations attached to CM elliptic curves, with an eye towards the di�erence with the
non-CM case. Section 3.2 is motivational, and treats the relation between Galois representations
attached to elliptic curves with complex multiplication by maximal orders and the class �eld
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theory of the corresponding imaginary quadratic �elds. In Section 3.3 we introduce the concept
(for any number �eld) of ray class �elds associated to orders that are not necessarily maximal
and in Section 3.4 we study the relationship between this theory and the theory of CM elliptic
curves. Finally, in Section 3.5 we study how big images of CM Galois representations can be
with respect to certain precise subgroups of GL2 (Ẑ).

3.1 General theory of CM Galois representations
Let � be an elliptic curve de�ned over a number �eld � , and let � ⊇ � be a �xed algebraic

closure. The absolute Galois group Gal(�/� ) acts on the group �tors := � (� )tors of all torsion
points of �, giving rise to a Galois representation

d� : Gal(� (�tors)/� ) ↩→ AutZ (�tors) � GL2 (Ẑ) (3.1)

where � (�tors) is the compositum of the family of �elds {� (� [?∞])}? for ? ∈ N prime. Each
extension � ⊆ � (� [?∞]) is in turn de�ned as the compositum of the family {� (� [?=])}=∈N,
where, for every # ∈ N, we denote by � (� [# ]) the division �eld obtained by adjoining to � the
coordinates of all the points belonging to the # -torsion subgroup � [# ] := � [# ] (� ). Note that
the last isomorphism appearing in (3.1) is non-canonical and depends on the choice of a Ẑ-basis
of the Tate module)∞ (�) := lim←−−# ∈N � [# ]. Moreover, after restricting the automorphisms in the
absolute Galois group of � to � (�tors) we get a Galois representation Gal(�/� ) → AutZ (�tors)
that will be also called d� with abuse of notation. For an elliptic curve � without complex
multiplication, Serre’s Open Image Theorem [Ser71, Théorème 3] asserts that the image of
d� is open, hence of �nite index, in GL2 (Ẑ). The situation is very di�erent if � has complex
multiplication, as we are going to explain.

Suppose that �/� is an elliptic curve with complex multiplication by an orderO in an imaginary
quadratic �eld  , and �x the normalized isomorphism [·]� : O → End

�
(�) described in

De�nition 1.3.7. The CM setting allows to consider not only # -torsion points for # ∈ N but
also torsion points relative to an ideal � ⊆ O. More precisely, for any �eld extension � ⊆ ! ⊆ �
and any ideal � ⊆ O we write

� (!) [� ] := {% ∈ � (!) : [U]� (%) = 0 for all U ∈ � }

for the set of � -torsion points of � de�ned over !. The group � (!) [� ] is naturally a module
over O/� , using the action of complex multiplication. When � = UO for some U ∈ O we write
� (!) [U] := � (!) [UO] and � [U] := � (� ) [U]; more generally, we write � [� ] := � (� ) [� ]. Note
that by taking � = # · O with # ∈ N the set � [� ] becomes the familiar set of # -torsion points
de�ned over � , so our notation is consistent. Moreover, all the de�nitions make sense also if the
number �eld � is replaced by the �eld of complex numbers.

Lemma 3.1.1. Let �/C be an elliptic curve with complex multiplication by an order O in an
imaginary quadratic �eld. If � ⊆ O is an invertible ideal then � [� ] is a free O/� -module of rank 1.

Proof. See [BC20, Lemma 2.4]. �

In order to study Galois representations, it is convenient to separate the discussion according
to whether the �eld of de�nition � contains the endomorphism algebra of � or not. Suppose
initially that �/� has complex multiplication by an order O in an imaginary quadratic �eld ⊆ � .
This assumption implies in particular that all the endomorphisms of � are already de�ned over � ,
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as proved in [Shi98, Chapter II, Proposition 30]. For every invertible ideal � ⊆ O the Galois group
Gal(�/� ) acts on � [� ] in similar way as above. However, in this case the action of the absolute
Galois group of � is not only an action by Z-automorphisms but also by O-automorphisms.
This follows from the fact that all the endomorphisms of � are already de�ned over � and thus
the Galois action commutes with the CM action by Theorem 1.3.8. In particular, we obtain an
injective Galois representation

d�,� : Gal(� (� [� ])/� ) ↩→ AutO (� [� ]) � (O/� )× (3.2)

where the last isomorphism follows from Lemma 3.1.1. It is worth noting that the isomorphism
AutO (� [� ]) � (O/� )× is canonical, that is, it does not depend on the speci�c basis of AutO (� [� ])
used to describe it. For every pair of invertible ideals � ⊆ � ⊆ O we have a commutative diagram

Gal(� (� [� ])/� ) (O/� )×

Gal(� (� [� ])/� ) (O/� )×

d�,�

d�,�

where the left vertical map is the canonical restriction map induced by the inclusion � [� ] ⊆ � [� ]
and the right vertical map is the canonical projection. By taking inverse limits in the above
diagram, we obtain the adelic Galois representation

d� : Gal(� (�tors)/� ) ↩→ AutO (�tors) � Ô× (3.3)

Ô = lim←−−# ∈N O/#O being the pro�nite completion of the order O (taking inverse limits on all
the invertible ideals of O or over all the positive integers gives rise to isomorphic rings). Note
that the map in (3.3) has the same name as the map in (3.1): this is because the two maps are
really the same morphism and all we have done so far could be rephrased by saying that, in the
case �/� is a CM elliptic curve whose �eld of de�nition � contains the corresponding CM order
O, the image of Gal(� (�tors)/� ) under (3.1) is contained in the abelian subgroup AutO (�tors)
of AutZ (�tors). Since GL2 (Ẑ) does not contain abelian subgroups of �nite index, we obtain as
a corollary that the image under (3.1) of Gal(� (�tors)/� ) is not open in AutZ (�). Nevertheless,
Serre’s Open Image Theorem has a CM analogue.

Theorem 3.1.2. Let � be an elliptic curve with complex multiplication by an order in an imaginary
quadratic �eld  and de�ned over a number �eld � ⊇  . Then the image of Gal(� (�tors)/� ) under
the Galois representation (3.3) is open in AutO (�tors).

Proof. See [Ser71, § 4.5]. �

We have seen that the isomorphism AutO (�tors) � Ô× is canonical, in the sense that it does
not depend on any choice of bases for torsion points. On the other hand, the choice of a Ẑ-basis
for )∞ (�) gives an isomorphism AutZ (�tors) � GL2 (Ẑ) that, via

Ô× � AutO (�tors) ↩→ AutZ (�tors) � GL2 (Ẑ),

identi�es Ô× with a subgroup of GL2 (Ẑ) in a non-canonical way. Explicitly describing the image
of the morphism above may be di�cult at �rst glance. However, after astutely choosing the
basis for )∞ (�), one obtains an easy characterization of the image of Ô× inside GL2 (Ẑ).
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Lemma 3.1.3. Let �/C be an elliptic curve with complex multiplication by the imaginary quadratic
order O. There exists a sequence P = {%# }# ∈N of points on � (C) such that:

1. The points %# are a basis for � [# ] as free O/#O-module i.e. O · %# = � [# ];

2. For all", # ∈ N with" | # we have (# /") · %# = %" .

Proof. Choose an embedding O ↩→ C and let �0/C be an elliptic curve for which there exists an
analytic parametrization

b : C/O → �0 (C).

Then for �0 the statement is easy, since the points &# := b
( 1
#
+ O

)
∈ �0 (C) satisfy conditions

(1) and (2) of the lemma. To pass from �0 to � we remark �rst of all that, since singular moduli
are all conjugated over Q, there exists f ∈ Aut(C) such that 9 (�f0 ) = 9 (�), where f acts on the
coe�cients of a �xed Weierstrass equation for �0. Noticing that f induces a ring automorphism
on O and using Theorem 1.3.8 it is easy to deduce that the sequence {f (&# )}# ∈N of points on
�f0 (C) still satis�es conditions (1) and (2) above. Finally, choosing an isomorphism q : �f0 → �,
an application of [Sil94, II, Corollary 1.1.1] shows that {%# }# ∈N := {q (f (&# ))}# ∈N gives the
desired sequence of torsion points. �

Taking a sequenceP as described in Lemma 3.1.3 corresponds to �xing a basis of)∞ (�) as a free
Ô-module of rank 1. In particular we have an isomorphism of Ô-modules )∞ (�) � Ô, P ↦→ 1.
Writing O = Z[l] with l2 = 0l + 1 and 0, 1 ∈ Z we have

Ô = O ⊗Z Ẑ = Ẑ[l]

and since Ẑ[l] � Ẑ2 (as Ẑ-modules), we see that B := {P, lP} with lP = {l · %# }# ∈N is a
basis of )∞ (�) as a Ẑ-module. With respect to this basis, we obtain an embedding

Ô× ↩→ GL2 (Ẑ), G + l~ ↦→
(
G ~1

~ G + ~0

)
(3.4)

for all G,~ ∈ Ẑ such that G2 + 0G~ − 1~2 ∈ Ẑ×. If Δ ∈ Z is the discriminant of the order O, then
one can choose l = Δ+

√
Δ

2 as a generator for O over Z and with this choice, the map (3.4) reads

G + l~ ↦→
(
G ~ Δ−Δ2

4
~ G + ~Δ

)
for all G,~ ∈ Ẑ as above. We have proved the following theorem.

Theorem 3.1.4. Let � be a number �eld and let �/� an elliptic curve with complex multiplication
by an order of discriminant Δ in an imaginary quadratic �eld  ⊆ � . Then there exists a Ẑ-basis
for the Tate module )∞ (�) such that the image of Gal(� (�tors)/� ) under the Galois representation
(3.1) corresponding to this basis is contained in

�∞ (�) :=
{(
G ~ Δ−Δ2

4
~ G + ~Δ

)
: G,~ ∈ Ẑ, G2 + ΔG~ + Δ2 − Δ

4
~2 ∈ Ẑ×

}
.

We now turn to the study of Galois representations attached to elliptic curves with complex
multiplication whose �eld of de�nition does not contain the corresponding CM �eld. The crucial
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di�erence from the previous setting is that in this case, if �/� is an elliptic curve with CM by
O and O * � , then the absolute Galois group of � does not act by O-automorphisms on �tors,
since the geometric endomorphisms of � are not de�ned over � (see again [Shi98, Chapter II,
Proposition 30]). Let us be more precise.

If [·]� : O → End
�
(�) is the normalized isomorphism described in De�nition 1.3.7 and U ∈ O,

then an automorphism f ∈ Gal(�/� ) acts on [U]� (%) as

f ( [U]� (%)) = [f (U)]� (f (%))

using Theorem 1.3.8. Hence, f acts as O-module automorphisms on �tors if and only if f restricts
to the identity on the CM �eld  relative to �. We then see that for a �xed g ∈ Gal(�/� )
that restricts to the unique non-trivial element in Gal(� /� ) either f or fg acts as O-module
automorphisms on �tors. We deduce that

d�

(
Gal(�/� )

)
⊆ 〈AutO (�tors), d� (g)〉 =: N∞ (�). (3.5)

Note that our notation is validated by the fact that the de�nition of N∞ (�) does not actually
depend on the choice of g : for any other g ′ ∈ Gal(�/� ) that restricts to the non-trivial element
in Gal(� /� ), the same arguments displayed above imply that

d�

(
Gal(�/� )

)
⊆ 〈AutO (�tors), d� (g)〉 ∩ 〈AutO (�tors), d� (g ′)〉 .

Since the image under d� of absolute Galois group of � is not contained in AutO (�tors) we must
have

〈AutO (�tors), d� (g)〉 ∩ 〈AutO (�tors), d� (g ′)〉 = 〈AutO (�tors), d� (g)〉 = 〈AutO (�tors), d� (g ′)〉

because d� (g) normalizes AutO (�tors), and, since d� (g) ∉ AutO (�tors) but d� (g)2 ∈ AutO (�tors),
the group AutO (�tors) has index 2 inside N∞ (�) (similarly with d� (g ′)). However, we remark
that N∞ (�) has in�nite index in the normalizer of AutO (�tors) in AutZ (�tors), and this can be
seen for instance as follows: under the canonical isomorphisms

AutO (�tors) � Ô× �
∏
ℓ prime

Oℓ

the groupsOℓ := O⊗ZZℓ are naturally identi�ed withAutO (� [ℓ∞]), where� [ℓ∞] = lim−−→=∈N
� [ℓ=]

is the ℓ-primary component of �tors. We then have the inclusions

Oℓ � AutO (� [ℓ∞]) ⊆ AutZ (� [ℓ∞]) � GL2 (Zℓ )

and, by choosing again an appropriate basis for the latter isomorphism above, it is proved in
[Lom17, Lemma 6.8] that Oℓ has index 2 inside its normalizer in GL2 (Zℓ ). By taking products,
one deduces that AutO (�tors) has in�nite index inside its normalizer in AutZ (�tors), as we wanted
to show.

Similarly to what we did in Theorem 3.1.4, one can explicitly describe the groupN∞ (�) in terms
of matrices. The idea is to �nd an element 2 ∈ N∞ (�) \ AutO (�tors) which can be easily written
down after choosing an appropriate Ẑ-basis of )∞ (�). Let P = {%# }# ∈N be a basis of )∞ (�) as
Ô-module, as constructed in Lemma 3.1.3. The unique non-trivial automorphism f ∈ Gal( /Q)
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of the CM �eld  induces an involution on O which in turn induces a compatible system of
involutions O/#O → O/#O. Every point %# ∈ P determines an isomorphism � [# ] � O/#O
for all # ∈ N, thus we also obtain a compatible system of involutions 2# : � [# ] → � [# ] that
gives rise to an element 2 = 2P ∈ AutZ (�tors). Explicitly, for every # ∈ N and every & ∈ � [# ],
writing & = [U]� (%# ) for some U ∈ O we have

2 (&) = 2 ( [U]� (%# )) = [f (U)]� (%# )

and in particular 2 ∉ AutO (�tors). As before, we deduce that

d�

(
Gal(�/� )

)
⊆ 〈AutO (�tors), 2〉

and the latter group contains AutO (�tors) with index 2. Since we also have

d�

(
Gal(�/� )

)
⊆ N∞ (�), d�

(
Gal(�/� )

)
* AutO (�tors)

we obtain that N∞ (�) = 〈AutO (�tors), 2〉. This allows also to conclude that, even if the very
de�nition of 2 depends on the choice of P, the subgroup generated by 2 and AutO (�tors) inside
AutZ (�tors) does not. Let now Δ ∈ Z be the discriminant of the order O. If we takel = Δ+

√
Δ

2 ∈ O
and B = {P, lP} as a Ẑ-basis of )∞ (�) (this is the same basis that is considered in Theorem
3.1.4), then the image of 2 under the isomorphism AutZ (�tors) � GL2 (Ẑ) is given by the matrix(

1 Δ
0 −1

)
.

We have proved the following theorem.

Theorem 3.1.5. Let � be a number �eld and let �/� an elliptic curve with complex multiplication
by an order of discriminant Δ in an imaginary quadratic �eld  * � . Then there exists a Ẑ-basis
for the Tate module )∞ (�) such that the image of Gal(� (�tors)/� ) under the Galois representation
(3.1) corresponding to this basis is contained in

#∞ =

{(
G ~ Δ−Δ2

4
~ G + ~Δ

)
,

(
G ΔG + ~ Δ2−Δ

4
~ −G

)
: G,~ ∈ Ẑ, G2 + ΔG~ + Δ2 − Δ

4
~2 ∈ Ẑ×

}
.

3.1.1 Who is scared of non-invertible ideals?
Several times in the previous section we have imposed the assumption of considering � -torsion

points of a certain CM elliptic curve only for ideals � that were invertible in the corresponding
endomorphism ring. The main problem that arises when considering � -torsion points for non-
invertible ideals � ⊆ O is that the groups � [� ] are not free O/� -modules of rank 1 in general
(cfr. Lemma 3.1.1), so the map (3.2) does not necessarily exist. To give an example of what can
happen in these cases, this section is dedicated to study in detail the structure of the � -torsion of
certain CM elliptic curves �/C for some speci�c non-invertible ideals � ⊆ EndC (�).

Let  ⊆ C be an imaginary quadratic �eld, ? ∈ N a prime number and O ⊆  an order
of conductor 5 divisible by ? . Let �/C be an elliptic curve for which there exists a complex
uniformization

b : C/O → � (C)

64 Chapter 3 Galois representations attached to CM elliptic curves



so that � has complex multiplication by O, as explained at the beginning of Section 1.3. Since ?
divides the conductor of O, there exists a unique maximal ideal p ⊆ O lying above ? , containing
the principal ideal ?O with index ? . If we write O = Z[l ] for somel ∈  then O = Z[5 l ]
and the ideal p can be explicitly described as p = (?, 5 l ), see [Con, Theorem 3.15]. It is easy
to prove that p is not invertible in O: for instance, one can verify that (5 /?)l · p ⊆ p and then
apply [Con, Corollary 4.4]. For every = ∈ N>0 we are interested in understanding the O-module
structure of the p=-torsion subgroup of �. The analytic parametrization b induces an O-module
isomorphism

� [p=] � ($ : p=)/O

where (O : p=) := {G ∈  : G · p= ⊆ O}, hence it su�ces to study the right-hand side of this
isomorphism. We begin with an easy lemma.

Lemma 3.1.6. For every = ∈ N we have p= = (?=, ?=−1 5 l ).

Proof. We have already seen the result for = = 1 and we can then proceed by induction on =.
Suppose that p=−1 = (?=−1, ?=−2 5 l ). Then we have

p= = p=−1 · p = (?=, ?=−1 5 l , ?=−2 5 2l2
 ).

Since l ∈ O , there exist 0, 1 ∈ Z such that l2
 
= 0l + 1. Hence

?=−2 5 2l2
 = ?=−2 5 2 (0l + 1) =

05

?
· ?=−1 5 l +

(
5

?

)2
1 · ?= ∈ (?=, ?=−1 5 l )

so the third generator can be obtained from the �rst two and we are done. �

We can now explicitly describe the group (O : p=) for all = ∈ N>0.

Proposition 3.1.7. Writing O = Z[l ] with l ∈  , for all = ∈ N>0 we have

(O : p=) = 1
?=−1
Z + 1

?=
Z5 l 

and, in particular, (O : p) is the unique imaginary quadratic order containing O with index ? .

Proof. Let D + El ∈ (O : p=) with D, E ∈ Q and write p= = (?=, ?=−1 5 l ) using Lemma 3.1.6.
By de�nition we have that ?= (D + El ) ∈ O and ?=−1 5 l (D + El ) ∈ O. The �rst containment
readily implies that there exist* ,+ ∈ Z such that

D =
*

?=
and E =

5

?=
+ .

Using these equalities and writing l2
 
= 0l + 1 with 0, 1 ∈ Z we obtain

?=−1 5 l (D + El ) =
*

?
5 l +

5

?
+0 · (5 l ) +

5 2

?
+1 ∈ O .

Since 5 is divisible by ? , we conclude that ? | * . Hence D = * ′/?=−1 for some * ′ ∈ Z and we
deduce that (O : p=) ⊆ 1

?=−1Z +
1
?=
Z5 l . The other inclusion is clear using once again Lemma

3.1.6. �
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Using Proposition 3.1.7 we now have

� [p=] � 1
?=−1Z +

1
?=
Z5 l /O =

1
?=−1Z +

1
?=
Z5 l 

/
Z + Z5 l (3.6)

for all = ∈ N>0, where again l ∈  is such that O = Z[l ] (notice, en passant, that
#� [p=] = ?2=−1). We claim that � [p=] is a free O/p=-module of rank 1 if and only if = = 1.

First of all, if = = 1 it is clear from (3.6) that � [p=] = � [p] is a free O/p-module of rank 1
generated by the preimage of 1

?
5 l + O under the complex uniformization b (one could also

notice that the quotient O/p is actually a �eld, hence the module must be certainly free). Suppose
now that = > 1, and assume by contradiction that there exist�, � ∈ Z such that �

?=−1 +
�
?=
5 l +O

is a generator of � [p=] as O/p=-module. For every G,~ ∈ Z a direct computation shows that

(G + ~ · 5 l )
(
�

?=−1
+ �

?=
5 l 

)
=

1
?=−1

(
G� + ~�

?
5 21

)
+ 1
?=
(G� + ~�? + ~�5 0) · 5 l 

where 0, 1 ∈ Z are such that l2
 

= 0l + 1. By de�nition of �
?=−1 +

�
?=
5 l + O, there exist

G,~ ∈ Z such that {
G� + ~�

?
5 21 ≡ 1 mod ?=−1

G� + ~�? + ~�5 0 ≡ 0 mod ?=
(3.7)

and similarly there exist G̃, ~̃ ∈ Z such that{
G̃� + ~̃�

?
5 21 ≡ 0 mod ?=−1

G̃� + ~̃�? + ~̃�5 0 ≡ 1 mod ?= .
(3.8)

Reducing the �rst identity in (3.8) modulo ? and using the fact that ? divides the conductor 5 ,
we see that one among G̃ and � must be divisible by ? . If ? | G̃ then the second equation in (3.8)
cannot have solutions, since again 5 is divisible by ? . Similarly if ? | �, the �rst equation in (3.7)
cannot have solutions. This yields a contradiction, and we deduce that � [p=] cannot be free of
rank 1 over O, as claimed.

3.2 Galois representations and Class Field
Theory

The theory of complex multiplication for elliptic curves is intimately related to the class �eld
theory of imaginary quadratic �elds. More precisely, elliptic curves with complex multiplication
by maximal orders allow to give a complete answer to Hilbert’s twelfth problem, i.e. the problem
of explicitly describing generators for the ray class �elds of a given number �eld, in the imaginary
quadratic case. In this section we want to review this connection with Class Field Theory and
what is the relationship with the theory of Galois representations studied in the previous section.
Hence, we momentarily pause from treating complex multiplication for general orders, and we
focus on elliptic curves whose endomorphism ring is isomorphic to the ring of integers of some
imaginary quadratic �eld. This will serve as springboard towards the more general theory that
will be introduced in the sequel of this chapter.
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Let  be an imaginary quadratic �eld with ring of integers O and Hilbert class �eld � . We
begin by reviewing the class �eld theoretical description of the Galois group Gal( ab/� ) of the
maximal abelian extension  ⊆  ab over � . Let

A× :=
∏′

p

 ×p =

{
(Bp)p : Bp ∈ O× p

for almost all p
}

be the idèle group of  . It consists of those elements in the cartesian product of the multiplicative
groups  ×p over all completions (including the in�nite ones)  p of  whose p-components lie in
the unit group O×

 p
for almost all p (for the in�nite component this unit group is simply C×).

The idèle group is a topological group with the restricted product topology, see [Neu99, pag.
361]. Class Field Theory asserts the existence of a continuous surjective homomorphism

[·,  ] : A× � Gal( ab/ )

sending a local uniformizer cp ∈  p, for p ⊆  �nite prime, to an element f ∈ Gal( ab/ ) that
restricts to the Frobenius element at p in Gal(!/ ) for every �nite abelian extension  ⊆ !
unrami�ed at p. By Artin reciprocity, this map factors through the idèle class group A×

 
/ ×,

giving rise to the idelic Artin map that we denote again by [·,  ] : A×
 
/ × → Gal( ab/ ). For

any modulus (ideal) m ⊆ O , denote by Clm the ray class group modulo m and by �m the ray
class �eld modulo m. Then by [CS08, Lemma 3.4] there is a surjective homomorphism

A× / × � Clm (3.9)

such that, ifk ,m : Clm → Gal(�m/ ) indicates the “classical” Artin isomorphism sending the
class of a prime not dividing m to its corresponding Frobenius element, the following diagram

A×
 
/ × Gal( ab/ ) Gal(�m/ )

Clm

[ ·, ] res

k ,m

(3.10)

commutes. Using the map (3.9) with m = (1) = O we obtain an exact sequence

1→ O× → Ô× × C× → A× / × → Cl( ) → 1 (3.11)

where Ô×
 
:=

∏
p �nite O× p

and C× can be viewed as subgroups of A×
 

. As a reference, one can
look at [CS08, Equation (3-2)] with the caveat that, in their notation, one should replace the unit
group Z×

 
with its topological closure inside Ẑ×

 
×∏

p real〈−1〉. In our setting it is not necessary
to take any topological closure since the unit group of an imaginary quadratic �eld is always
�nite.

Let � ⊆ A×
 
/ × be the kernel of the Artin map, which is equal to the connected component

of the identity in the idèle class group (see [AT09, Chapter IX]). In the imaginary quadratic case
one has

� =  ×C×/ ×

so that, using the commutativity of diagram (3.10) and the exact sequence (3.11) one obtains the
isomorphism

Gal( ab/� ) � (Ô× × C×) ×/� � Ô× /O× . (3.12)
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Of course, since the kernel of the Artin map is equal to the image in the idèle class group of
( ⊗Q R)× = C×, one could have more conveniently worked with the �nite idèles A×

 ,�n :=∏′
p �nite  

×
p . Then the above discussion could be summarized by saying that the diagram

A×
 ,�n A×

 ,�n/ 
× Gal( ab/ )

Ô×
 

Ô×
 
/O×

 
Gal( ab/� )

[ ·, ]

∼

commutes.
Fix now an elliptic curve �/� with complex multiplication by the ring of integers O . We

have already seen in Theorem 1.3.4 that � can be constructed by adjoining to  the singular
modulus 9 (�). Likewise, using the elliptic curve � one can explicitly construct for any modulus
m ⊆ O the ray class �eld modulo m of  . In order to do so, it su�ces to �x a Weber function
h� : � → �/Aut(�) for � (see [Sil94, Page 134]) and to compute its values at the torsion points
in � [m]. Then one always has �m = � (h� (� [m])), as proved for instance in [Sil94, II, Theorem
5.6]. If the elliptic curve � is given by a short Weierstrass model � : ~2 = G3 + �G + � with
�, � ∈ � and 9 (�) ≠ 0, 1728 then we may take as Weber function h� simply the G-coordinate on
�. In the two exceptional cases 9 (�) = 0 or 9 (�) = 1728 one has to “normalize" the G-coordinate
to account for the extra automorphisms possessed by �, see [Sil94, II, Example 5.5.1]. Hence we
�nd that for every ideal m ⊆ O there is always an inclusion �m ⊆ � (� [m]) and, in particular,
we have the containment  ab ⊆ � (�tors).

As we have studied in Section 3.1, the Galois representation (3.3) allows to identify the group
Gal(� (�tors)/� ) with a subgroup of Ô×

 
. On the other hand, we have seen in (3.12) that the

Artin map induces an isomorphism Gal( ab/ ) � Ô /O× . Since we have both a restriction
map Gal(� (�tors)/� ) → Gal( ab/ ) and a projection map Ô×

 
� Ô×

 
/O×

 
, it seems natural

to ask if and how all these map are related between each other. The answer is given by the
following theorem.

Theorem 3.2.1. Let  be an imaginary quadratic �eld with ring of integers O ⊆  and Hilbert
class �eld � . Let �/� be an elliptic curve with complex multiplication by O . Then the following
diagram

Gal(� (�tors)/� ) Gal( ab/� )

Ô×
 

Ô×
 
/O×

 

d� 1/[ ·, ]

commutes, where 1/[·,  ] : Ô×
 
/O×

 
→ Gal( ab/� ) denotes the reciprocal of the Artin map (i.e.

the Artin map followed by inversion).

We will prove a more general version of this result in Theorem 3.4.2. Here we content ourselves
to give some comments on the statement. In particular, the reader may be a bit surprised by the
appearance of the reciprocal of the Artin map in a place where it seems more natural to �nd
the classical idelic Artin map. However, we want to show that such a phenomenon is not so
shocking, since it already occurs when studying the class �eld theory of the rational numbers.
Let us see how.
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By the Kronecker-Weber Theorem, the maximal abelian extension Qab of Q is obtained by
adjoining to the �eld of rational numbers the group Z∞ ⊆ Q of all the roots of unity in the
algebraic closure of Q. In particular, we have a Galois representation

d : Gal(Qab/Q) ↩→ AutZ (Z∞) � AutZ (Q/Z) = AutZ

(
lim−−→
# ∈N

1
#
Z/Z

)
� Ẑ×

and it is easy to see that d is actually an isomorphism. The inverse d−1 sends an element
B = (B# )# ∈N ∈ Ẑ× to the �eld automorphism Z# ↦→ Z

B#
#

for every # ∈ N, where Z# denotes
any primitive # -root of unity. On the other hand, the idelic Artin map gives a surjection
A×
Q
/Q× � Gal(Qab/Q). Since every idèle B = ((B? )? , B∞) can be uniquely written as a product

of a rational number and a unit idèle DB ∈ Ẑ× × R>0, we have an isomorphism

A×Q/Q
× � Ẑ× × R>0

and we see in particular that the connected component of the identity element is given by
{1} × R>0. Hence, also the Artin map induces an isomorphism

[·,Q] : Ẑ× � A×Q/(Q
× · R>0) → Gal(Qab/Q).

However, this is not the same isomorphism induced by d−1, i.e. the diagram

Ẑ× Ẑ×

A×
Q
/(Q× · R>0) Gal(Qab/Q)

id

∼ d−1

[ ·,Q]

does not commute. The right diagram to consider is rather

Ẑ× Ẑ×

A×
Q
/(Q× · R>0) Gal(Qab/Q)

−1

∼ d−1

[ ·,Q]

(3.13)

where the map labelled with −1 denotes the inversion. This new diagram is instead commutative.
To see it, notice that the prime ℓ ∈ Q×ℓ ⊆ A×Q is sent by the Artin map to the Frobenius at
ℓ , which raises roots of unity of order coprime to ℓ to the ℓ-th power. On the other hand, a
representative in Ẑ× of the class of ℓ in A×

Q
/(Q× · R>0) is given by B = ((B? )? , B∞) with B? = ℓ−1

if ? ≠ ℓ and Bℓ = 1. We then have that [ℓ,Q] = d−1 (B−1), thus proving the commutativity of
(3.13). The reciprocal of the Artin map in Theorem 3.2.1 arises in the same way as in (3.13). The
proof of the more general Theorem 3.4.2 will make use of (one form of) the Main Theorem of
Complex Multiplication which can be thought of as the imaginary quadratic version of the above
discussion.

How does the exposition of this section change if we consider elliptic curves with complex
multiplication by non-maximal orders? The �rst thing to understand is what kind of class �elds
one obtains after adjoining the values of Weber functions at torsion points of these elliptic
curves to the corresponding ring class �elds. It turns out that these extensions, that will be
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called ray class �elds for orders, can be described idelically and one obtains a theory that is very
similar to the theory of the usual ray class �elds. This will allow to cast the situation considered
in this section into a more general setting, and we will see that all the described results hold
analogously in the world of non-maximal orders.

3.3 Ray class fields for orders
We have recalled in the previous section that, for an elliptic curve � with complex multiplica-

tion by the ring of integers O of an imaginary quadratic �eld  and de�ned over the Hilbert
class �eld � of  , the division �eld � (� [� ]) always contains the ray class �eld modulo � for
every ideal � ⊆ O . The situation is similar when � has complex multiplication by an order
that is non-maximal. Also in this case the division �elds associated to � contain some special
abelian extensions of  , which are completely analogous to the ray class �elds above. Since the
construction of these �elds can be performed in quite a general setting, in this chapter we will
not restrict ourselves to the case of imaginary quadratic orders. Our goal is then to de�ne, for
every ideal � contained in a general order O of a number �eld � , an abelian extension � ⊆ �� ,O
which we call the ray class �eld modulo � for the order O. Our de�nition generalises the one
given by Söhngen in [Söh35] and Stevenhagen in [Ste01, § 4], who restrict their attention to
imaginary quadratic �elds.

Let � be a number �eld. For a placeF ∈ "� denote by �F the completion of the number �eld
� atF and by O�F its ring of integers. Let A� be the adèle ring of � , de�ned by the restricted
product

A� :=
∏′

F∈"�
�F =

{
B = (BF)F∈"� ∈

∏
F∈"�

�F

����� BF ∈ O�F for almost allF ∈ "�

}
.

The discussion on [Neu99, Page 371] shows that A� can be obtained from the rational adèle ring
by extending scalars, i.e. there is a ring isomorphism A� � AQ ⊗Q � . This enables us to talk,
for a place ? ∈ "Q, of the ?-component B? ∈ �? := Q? ⊗Q � of an adèle B ∈ A� ; in particular if
? = ∞ is the unique in�nite place of Q we have the in�nity component B∞ ∈ R ⊗Q � . Hence
B ∈ A� can be alternatively written as

B = (BF)F∈"� or B = (B? )?∈"Q (3.14)

and of course the same is true if B belongs to the idèle group A×
�

. In what follows, we will often
confuse �nite places ? ∈ "0

Q
and rational primes ? ∈ N.

Using the language introduced above, we are now able to de�ne the ray class �elds �� ,O .

De�nition 3.3.1. Let � be a number �eld, let O ⊆ O� be an order and let � ⊆ O be a non-zero
ideal. Then we de�ne the ray class �eld of � modulo � relative to the order O as

�� ,O := (� ab) [*� ,O ,� ] ⊆ � ab (3.15)

where [·, � ] : A×
�
� Gal(� ab/� ) is the idelic Artin map and*� ,O ⊆ A×� is the subgroup

*� ,O :=
{
B ∈ A×�

��� B? ∈ (
O×? ∩ (1 + � · O? )

)
for all rational primes ? ∈ N

}
(3.16)
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de�ned using the decomposition (3.14), where

O? := lim←−−
=∈N

O
?=O � O ⊗Z Z? (3.17)

denotes the completion of O with respect to the ideal ? O.

When � = # · O for some # ∈ Z≥1 we denote *� ,O by *#,O , and we write *O := *1,O .
Analogously, we will write �#,O in place of �# ·O,O , and we will denote by �O := �1,O the ring
class �eld of O.

Remark 3.3.2. When O = O� is the ring of integers, the ray class �elds �� ,O� coincide with the
usual ray class �elds of � modulo � (see [Neu99, Chapter VI, De�nition 6.2]). Moreover, when
� =  is an imaginary quadratic �eld, the ray class �elds �� ,O have been de�ned by Söhngen in
[Söh35]. This work is exposed in great detail by Schertz in [Sch10, §3.3], and if � = # · O for
some # ∈ N the construction of �� ,O = �#,O has been reformulated using an adelic language
by Stevenhagen in [Ste01, § 4]. Finally, the ring class �elds �O have been studied for general
number �elds � by Lv and Deng in [LD15] and by Yi and Lv in [YL18].

Remark 3.3.3. It is clear from the de�nition that for every pair of ideals � ⊆ � ⊆ O we have
that *� ,O ⊆ * � ,O , which implies that �� ,O ⊇ � � ,O . In particular, �O ⊆ �� ,O for every ideal
� ⊆ O. Similarly, for every pair of orders O1 ⊆ O2 ⊆ � and every ideal � ⊆ O1 we have
that *� ,O1 ⊆ *� ·O2,O2 using the fact that Z? is a �at Z-module. This gives the containment
�� ,O1 ⊇ �� ·O2,O2 and we recover the Anordnungssatz explained in [Ste01, Page 169]. Finally, for
every ideal � ⊆ O we have*� ·fO ·O� ,O� ⊆ *� ,O where fO ⊆ O is the conductor of the order O (see
De�nition 1.1.5). The situation can be summarized by the following diagram

�� ·O� ,O� �� ,O �� ·fO ·O� ,O�

� �O� �O �fO ,O�

⊆ ⊆

⊆

⊆

⊆ ⊆

⊆ ⊆

which, among other things, shows that the extension � ⊆ �� ,O is unrami�ed outside the set of
primes dividing � · fO · O� .

We now describe the Galois groups of the abelian extensions � ⊆ �� ,O .

Lemma 3.3.4. Let � be a number �eld, O ⊆ O� be an order and � ⊆ O be a non-zero ideal. Then
�× ·*� ,O ⊆ A×� is a closed subgroup of �nite index and, after identifying the group

�×∞ := (� ⊗Q R)× �
∏
E∈"∞

�

�×E

with its image under the natural inclusion �×∞ ↩→ A×
�
, one has

�× · �×∞ ⊆ ker( [·, � ]) ⊆ �× ·*� ,O = �× · N�� ,O/� (A
×
�� ,O
)

where N�� ,O/� : A
×
�� ,O
→ A×

�
denotes the idelic norm map. Moreover, there is an isomorphism

Gal(�� ,O/� ) �
A×
�

�× ·*� ,O
(3.18)
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induced by the global Artin map.

Proof. The fact that �× ·*� ,O is closed of �nite index follows from [Neu99, Chapter VI, Propo-
sition 1.8], because *� ·fO ·O� ,O� ⊆ *� ,O . Moreover, by de�nition �×∞ ⊆ *� ,O , so the inclusions
�× · �×∞ ⊆ ker( [·, � ]) ⊆ �× ·*� ,O follow from the fact that �× ·*� ,O is closed inA×

�
and ker( [·, � ])

is the closure of �× · �×∞ inside A×
�

, as explained in [AT68, Chapter IX]. The global reciprocity law
[Neu99, Chapter VI, Theorem 6.1] now gives (3.18) and shows that �× · N�� ,O/� (A×�� ,O ) ⊆ A

×
�

is
also a closed subgroup of �nite index containing the kernel of the Artin map and �xing precisely
the �eld �� ,O . Then by Galois theory we must have �× · *� ,O = �× · N�� ,O/� (A×�� ,O ) and this
concludes the proof. �

The previous description can be made more explicit by dividing the extension � ⊆ �� ,O in the
two sub-extensions � ⊆ �O and �O ⊆ �� ,O .

Proposition 3.3.5. Let O be an order inside a number �eld � . Then

Gal(�O/� ) � Pic(O)

where Pic(O) denotes the class group of the order O.

Proof. Combine [YL18, Theorem and De�nition 2.11] and [YL18, Theorem 4.2]. �

Theorem 3.3.6. Let � be a number �eld, O ⊆ O� be an order and � ⊆ O be a non-zero ideal.
Then the Artin map gives an isomorphism

Gal(�� ,O/�O) �
(O/� )×
c×
�
(O×)

where c×
�
: O× → (O/� )× is the morphism induced by the projection c� : O � O/� . In particular,

if � is totally complex, after taking inverse limits we obtain an isomorphism

Gal(� ab/�O) � Ô×/O×

where O× is the topological closure of O× in Ô×.

Proof. First of all, we see that

Gal(�� ,O/�O) = ker
(
Gal(�� ,O/� ) � Gal(�O/� )

) (0)
� ker

(
A×
�

�× ·*� ,O
�

A×
�

�× ·*O

)
�

�
�× ·*O
�× ·*� ,O

�
�× ·*O/�×
�× ·*� ,O/�×

(1)
�

*O/(�× ∩*O)
(*� ,O · (�× ∩*O))/(�× ∩*O)

�

�
*O

*� ,O · (�× ∩*O)
(2)
=

*O
*� ,O · O×

where (0) comes from Lemma 3.3.4, (1) holds because*� ,O ⊆ *O and (2) follows from the fact
that �× ∩*O = O×.

Now, observe that �×∞ ⊆ *O , where �∞ := � ⊗Q R �
∏
F |∞ �F ↩→ A� . Moreover, we have

*O
�×∞

�
∏
?∈N
O×? �

∏
?∈N

lim←−−
=∈N

(
O
?=O

)×
� lim←−−
# ∈Z≥1

(
O
#O

)×
� Ô× (3.19)
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where the products run over the rational primes ? ∈ N, and O? is the ring de�ned in (3.17). In
the chain of isomorphisms (3.19) the ring Ô is the pro�nite completion of O, i.e.

Ô := lim←−−
# ∈Z≥1

O
#O �

∏
?∈N
O? �

∏
p⊆O
Op (3.20)

where the second product runs over all the non-zero prime ideals p ⊆ O and Op := lim←−−=∈N O/p
=

is the completion of O at the prime p. The second isomorphism appearing in (3.20) can be
obtained by applying [Eis95, Corollary 7.6] to ' = Z? and � = O? . This gives the decomposition

O? �
∏
p⊇?
Op

where the product runs over all primes p ⊆ O lying above ? .

Under the isomorphism (3.19) the subgroup *� ,O/�×∞ ⊆ *O/�×∞ � Ô× is identi�ed with the
kernel of the map ĉ�× : Ô× → (Ô/� Ô)× induced by the projection ĉ� : Ô � Ô/� Ô. Hence

Gal(�� ,O/�O) �
*O

*� ,O · O×
�

*O/�×∞
(*� ,O · O×)/�∞×

�
Ô×

ker(ĉ�×) · O×
�
(Ô/� Ô)×

ĉ�
× (O×)

because ĉ�× is surjective. This surjectivity is shown by the factorisation

Ô×
(
Ô/� Ô

)×
∏
p⊇�
O×p

ĉ�
×

where the �rst map Ô× �∏
p⊇� O×p is surjective as follows from (3.20), and the second map

∏
p⊇�
O×p �

∏
p⊇�

( Op
�Op

)×
�

(
Ô
� Ô

)×
is surjective by [Che, Corollary 2.3], which can be applied since the ring

∏
p⊇� Op has �nitely

many maximal ideals.

To �nish our proof we need to show that

(Ô/� Ô)×

ĉ�
× (O×)

�
(O/� )×
c×
�
(O×) .
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To do this recall that c� and ĉ� are related by the commutative diagram

O O/� ∏
p⊇�

O(p)
�O(p)

Ô Ô/� Ô ∏
p⊇�

Op
�Op

c� W

V

ĉ� U
∼

where U is the isomorphism coming from the decomposition (3.20), and V and W are the maps
induced by the natural inclusions O ⊆ O(p) ⊆ Op. Moreover the products run over all the prime
ideals p ⊆ O such that p ⊇ � , and O(p) denotes the localisation of O at the prime p.

Hence to conclude it is su�cient to observe that W is an isomorphism by [Neu99, Chapter I,
Proposition 12.3], and V is an isomorphism because O is a one-dimensional Noetherian domain
(see [Neu99, Chapter I, Proposition 12.2]). More explicitly, for any prime p ⊆ O such that p ⊇ �
we have that p · O(p) =

√
� · O(p) because O(p) is a one-dimensional local ring. Hence [Bou89,

Chapter II, § 2.6, Proposition 15] shows that O(p)/�O(p) is complete with respect to pO(p) . Thus
we can conclude that O(p)/�O(p) is isomorphic to Op/�Op using the exactness of completion,
which holds because O(p) is Noetherian (see [Eis95, Lemma 7.15]). �

3.4 Ray class fields for orders and elliptic curves
Since the de�nition of the ray class �elds �� ,O is somehow implicit, a natural question would

be to provide an explicit set of generators for the extension � ⊆ �� ,O . This can be done when
� =  is an imaginary quadratic �eld, and � ⊆ O is invertible, as we will see in Theorem 3.4.1.
In order to show this, we now introduce some notation concerning lattices in number �elds,
following [Lan87, Chapter 8].

Let � be a number �eld. A lattice Λ ⊆ � is an additive subgroup of � which is free of rank
[� : Q] over Z. Given a pair of lattices Λ1,Λ2 ⊆ � we can form their sum Λ1 + Λ2 ⊆ � , their
product Λ1 · Λ2 ⊆ � and their quotient (Λ1 : Λ2) := {G ∈ � | G · Λ2 ⊆ Λ1} ⊆ � . Moreover, it
is possible to de�ne an action of the idèle group of � on the set {Λ ⊆ � : Λ lattice}, as we are
going to describe.

For a lattice Λ ⊆ � and a prime ? ∈ N, denote by Λ? := Λ ⊗Z Z? the completion of the lattice
Λ at ? . Given an idèle B = (B? )?∈"Q ∈ A×� there exists a unique lattice B ·Λ ⊆ � with the property
that (B · Λ)? = B? · Λ? for every prime ? ∈ N. This de�nes an action of the idèle group A×

�
on the

set of lattices in � , given by (B,Λ) ↦→ B ·Λ. We remark that the notation B ·Λ, although evocative
of a multiplication between an idèle and a lattice, is purely formal and should not be confused
with the notation Λ1 · Λ2 for the usual product of lattices. Nevertheless, it is easy to see from
the de�nitions that (B · Λ1) · Λ2 = B · (Λ1 · Λ2) for every pair of lattices Λ1,Λ2 ⊆ � . Using the
action just described, it is also possible to de�ne a multiplication by B map �/Λ B ·−→ �/(B · Λ) by
means of the following commutative diagram

�

Λ

�

B · Λ

⊕
?∈"0

Q

�?

Λ?

⊕
?∈"0

Q

�?

B?Λ?

B ·

∼ ∼

(B? · )?
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where the vertical maps are the obvious isomorphisms induced by the inclusions � ↩→ �? and
the bottom map is given by (G? )? ↦→ (B? G? )? .

The case of lattices inside an imaginary quadratic �eld is of particular interest for us. Indeed,
if O ⊆  is an order, any �nitely generated O-module Λ ⊆  is a lattice inside  . Moreover, if
we �x an embedding  ↩→ C, the quotient C/Λ can be canonically identi�ed with the complex
points � (C) of an elliptic curve �/C having complex multiplication by O. For any invertible
ideal � ⊆ O, the following Theorem 3.4.1 shows that the extension �O ⊆ �� ,O can be obtained
by adjoining to the ring class �eld �O the values of a Weber function h� : � � �/Aut(�) � P1
at torsion points I ∈ � [� ] := � (C) [� ].

Theorem 3.4.1. Let O be an order inside an imaginary quadratic �eld  ⊆ C, and let � ⊆ O be
an invertible ideal. Then we have that

�� ,O = �O (h� (� [� ])) =  ( 9 (�), h� (� [� ]))

for any elliptic curve �/C such that End(�) � O. In particular, if � is an elliptic curve de�ned over
a number �eld � such that End� (�) � O then �� ,O ⊆ � (� [� ]).

Proof. By the discussion in Section 3.2, we can assume that 9 (�) ∉ {0, 1728}, because in this case
O = O . Recall that, since � ⊆ O is an invertible ideal, � [� ] is a free O/� -module of rank one (see
Lemma 3.1.1). Fix a generator % of � [� ] as a module over O/� . Then�O (h� (� [� ])) = �O (h� (%)),
as one can see by writing every endomorphism of � in the standard form described in [Was08,
§ 2.9] and applying [Lan87, Chapter I, Theorem 7].

Let now b : C/a → � (C) be a complex parametrisation, where a ⊆ O is an invertible ideal
(see Theorem 1.3.3). Fix moreover I ∈ (a : � ) ⊆  ⊆ C such that b (I) = % , where I := (I + a)/a
denotes the image of I in the quotient  /a ⊆ C/a. Then [Shi94, Theorem 5.5] shows that

�O (h� (%)) = ( ab) [,% , ]

where,% ⊆ A× is the subgroup de�ned by,% :=
{
B ∈ A×

 

�� B · a = a, B · I = I
}
. In particular,

we recall that for any B ∈ A×
 

such that B ·a = a the notation B · I stands for the image of I ∈  /a
under the multiplication-by-B map /a →  /a. This map is de�ned by the commutative diagram

 

a

 

B · a
 

a

⊕
?∈"0

Q

 ?

a?

⊕
?∈"0

Q

 ?

B?a?

⊕
?∈"0

Q

 ?

a?

B ·

∼ ∼

=

∼

(B? · )?
=

where a? := a ⊗Z Z? = a O? for any rational prime ? ∈ N. Since �O =  ( 9 (�)) the theorem will
follow from the equality,% = *� ,O , where*� ,O ⊆ A× is the subgroup de�ned in (3.16).

To prove the inclusion *� ,O ⊆ ,% take any B ∈ *� ,O . Then B · a = a because B?a? = a? for
every rational prime ? ∈ N, since by de�nition B? ∈ O×? . Moreover, B · I = I because I ∈ (a : � )
and B? ∈ 1 + �O? for every rational prime ? ∈ N, which implies that (B? − 1)I ∈ a? . This shows
that*� ,O ⊆,I
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To prove the opposite inclusion,% ⊆ *� ,O �x any rational prime ? ∈ N and take B ∈,% , so
that B · a = a and B · I = I. Since a ⊆ O is invertible we have that a · (O : a) = O and

B · O = B · (a · (O : a)) = (B · a) · (O : a) = a · (O : a) = O

which shows that B? ∈ O×? . Let us now prove that B? ∈ 1+ � · O? . Since � ⊆ O and a ⊆ O are both
invertible we have that � · (O : a) · (a : � ) = O, so that we can write 1 =

∑�

9=1 U 9V 9g 9 with U 9 ∈ � ,
V 9 ∈ (O : a) and g 9 ∈ (a : � ). Notice that B · g 9 = g 9 for every 9 ∈ {1, . . . , � } because B · I = I and
% = b (I) generates � [� ] as a module over O/� . Hence B? − 1 ∈ � · O? because we can write

B? − 1 =
�∑
9=1

U 9 V 9 (B? g 9 − g 9 )

where B? g 9 − g 9 ∈ a? = a O? and V 9 (B? g 9 − g 9 ) ∈ O? since V 9 ∈ (O : a) for every 9 ∈ {1, . . . , � }.
Thus we have shown that B? ∈ O×? and B? ∈ 1 + � · O? for every prime ? ∈ N, which gives
,% ⊆ *� ,O as we wanted to prove. �

In particular, Theorem 3.4.1 shows that for every invertible ideal � ⊆ O one has the contain-
ment �� ,O ⊆ �O (� [� ]). Using the Anordnungsatz, this yields the containment  ab ⊆ �O (�tors).
We then �nd ourselves in the analogous situation described in Section 3.2 for classical ray
class �elds: we have both a Galois representation Gal(�O (�tors)/�O)) ↩→ Ô× and the Artin
isomorphism Gal( ab/�O) � Ô×/O× appearing in Theorem 3.3.6. The relation between these
two maps is given by the following theorem, which generalizes Theorem 3.2.1.

Theorem 3.4.2. Let O be an order in the imaginary quadratic �eld  , with corresponding ring
class �eld�O , and let �/�O be an elliptic curve with complex multiplication by O. Denote by 1/[·,  ]
the reciprocal of the Artin map [·,  ] : A×

 
/ × → Gal( ab/ ). Then the following diagram

Gal(�O (�tors)/�O) Gal( ab/�O)

Ô× Ô×/O×

d� 1/[ ·, ]

commutes.

The proof of Theorem 3.4.2 relies on the so-called Main Theorem of Complex Multiplication,
which we recall here for the reader’s convenience.

Theorem 3.4.3. Let � ⊆ C be a number �eld, �/� be an elliptic curve such that End� (�) � O
for some order O inside an imaginary quadratic �eld  ⊆ � . Then there exists a unique group
homomorphism U = U�/� : A×

�
→  × ⊆ C× such that for every lattice Λ ⊆  ⊆ C, for every

analytic isomorphism b : C/Λ → � (C) and for every B ∈ A×
�
we have (U (B) · #�/ (B)−1)Λ = Λ

and the following diagram

 /Λ  /Λ

� (� ab) � (� ab)

b

U (B) ·N� / (B)−1 ·

b

[B,� ]

commutes.
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Proof. See [Lan87, Chapter 10, Theorem 8]. �

Proof of Theorem 3.4.2. Consider the diagram

A×
�O

Gal(�O (�tors)/�O)

Ô×
(U ( ·)#�O/ ( ·)

−1)�n

[ ·,�O ]

d� (3.21)

where U : A×
�O
→  × is the homomorphism appearing in Theorem 3.4.3, the horizontal map is,

with a slight abuse of notation, the composition of the Artin map with the natural restriction
Gal(� ab

O /�O) → Gal(�O (�tors)/�O), and the subscript (·)�n appearing in front of an idéle
denotes its �nite part. We claim the following two facts concerning diagram (3.21):

• The diagonal arrow is well de�ned i.e. for every B ∈ A×
�O

we have (U (B)#�O/ (B)−1)�n ∈
Ô×. To see this, suppose we have an embedding �O ⊆ C and choose an invertible ideal
a ⊆ O for which there exists a complex analytic isomorphism b : C/a → � (C). Then
Theorem 3.4.3 ensures that (U (B)#�O/ (B)−1) · a = a for every B ∈ A×

�O
. Since a is

invertible, this easily implies (as we have already seen in the proof of Theorem 3.4.1) that
(U (B)#�O/ (B)−1) · O = O so that (U (B)#�O/ (B)−1)? ∈ O×? for all ? primes. This proves
the �rst claim;

• Diagram (3.21) commutes. This immediately follows from Theorem 3.4.3, which says that
the O-module automorphism induced by [B, �O] on torsion points of � corresponds to
multiplication by U (B)#�O/ (B)−1 on  /a.

The proof can now be concluded essentially by looking at the diagram

A×
�O

Gal(�O (�tors)/�O) Gal( ab/�O)

Ô× Ô×/O×

[·,�O ]

(U ( ·)#�O/ ( ·)
−1)�n

d� 1/[ ·, ]

which can easily be shown to commute (the left triangular part already does by the above
discussion). Indeed, let f ∈ Gal(�O (�tors)/�O) and let B ∈ A×

�O
be such that [B, �O] = f . Then

by Class Field Theory we have f
��
 ab = [#�O/ (B),  ]. On the other hand, the commutativity of

(3.21) shows that d� (f) = (U (B)#�O/ (B)−1)�n and by the properties of the Artin map we have

[(U (B)#�O/ (B)
−1)�n mod O×,  ] = [U (B)#�O/ (B)

−1,  ] = [#�O/ (B)
−1,  ]

where the last equality follows from the fact that U (B) ∈  ×. Since the Artin map is a group
homomorphism, this concludes the proof. �
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3.5 A formula for the index of a CM Galois
representation

Let � be a number �eld with absolute Galois group �� := Gal(�/� ) and let �/� be an elliptic
curve with complex multiplication by an order O in an imaginary quadratic �eld  . Set

G(�/� ) :=
{
AutO (�tors) if  ⊆ �,
N∞ (�) if  * �

where N∞ (�) is de�ned as in (3.5). We have seen in Section 3.1 that the image of the Galois
representation d� : �� → AutZ (�tors) described in (3.1) is not open in AutZ (�tors), as we always
have the containment d� (�� ) ⊆ G(�/� ). On the other hand, Theorem 3.1.2 asserts that if  ⊆ �
then d� (�� ) is open in G(�/� ). Since AutO (�tors) � Ô× is pro�nite, we deduce that the index
|G(�/� ) : d� (�� ) | is �nite in this case. A similar result holds in the case � does not contain the
CM �eld.

Proposition 3.5.1. Let �/� be an elliptic curve with complex multiplication by an order O in
an imaginary quadratic �eld  , and assume that � is a number �eld not containing  . Then the
following holds:

1. The group N∞ (�) is pro�nite and d� (�� ) is open (in particular of �nite index) in it;

2. If � ′ := �� denotes the base-change of � to the compositum � , then

|N∞ (�) : d� (�� ) | =
��AutO (� ′tors) : d�′ (�� )�� .

Proof. To prove thatN∞ (�) is a pro�nite group, note �rst of all that AutO (�tors) is closed inside
AutZ (�tors) because

AutO (�tors) =
⋂
=∈N

res−1= (AutO (� [=]))

where res= : AutZ (�tors) → AutZ (� [=]) denotes the natural restriction map. Since we have
|N∞ (�) : AutO (�tors) | = 2, the group #∞ (�) is the union of two closed subsets, hence it is itself
closed. As AutZ (�tors) is a pro�nite group, this proves that also N∞ (�) is pro�nite.

Now, AutO (�tors) is closed and of �nite index in N∞ (�), so it is also open in the same
group. Moreover by Theorem 3.1.2 the inclusion d�′ (�� ) ⊆ AutO (� ′tors) is open and clearly
d�′ (�� ) = d� (�� ) and AutO (� ′tors) = AutO (�tors). Thus we see that d� (�� ) is an open
subgroup of d� (�� ) and we conclude that the latter is open in N∞ (�).

We �nally turn to the proof of (2). By [BCS17, Lemma 3.15] (that will be reproved in
Theorem 5.6.2 of this thesis) we know that � ⊆ � (�tors). Since d� induces an injective Galois
representation Gal(� (�tors)/� ) ↩→ N∞ (�), we have |d� (�� ) : d� (�� ) | = 2. Now the index
computation

|N∞ (�) : d� (�� ) | =
1
2
|N∞ (�) : d� (�� ) | = |AutO (�tors) : d� (�� ) |

allows to conclude. �

For a generic non-CM elliptic curve � de�ned over a number �eld � , computing the index
|AutZ (�tors) : d� (�� ) | is a di�cult problem that nowadays constitutes an active area of research.
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On the other hand, the corresponding problem for CM elliptic curves is much easier, and one
can even obtain a closed formula for the index |G(�/� ) : d� (�� ) |.

Theorem 3.5.2. Let � be a number �eld and let �/� be an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld  . Then we have

|G(�/� ) : d� (�� ) | = [(� ) ∩  ab : �O] ·
|O× |

[� (�tors) : (� ab)]
(3.22)

where  ab denotes the maximal abelian extension of  and �O ⊆  ab is the ring class �eld of  
relative to the order O.

Remark 3.5.3. We remark that formula (3.22) makes sense: the �rst factor appearing on the right
hand side is well de�ned because �O is always contained in � by Theorem 1.3.4, and we will
show in the course of the proof that the second factor is actually an integer.

Proof. By Proposition 3.5.1 we can assume without loss of generality that  ⊆ � . The exact
same proof of Theorem 3.4.2 shows that the diagram

Gal(� (�tors)/� ) Gal(� ab/� ) Gal( ab/� ∩  ab)

AutO (�tors) � Ô× Ô×/O× Gal( ab/�O)

d�

1/[ ·, ]

(3.23)

commutes, where 1/[·,  ] denotes again the isomorphism given by the reciprocal of the Artin
map and the upper horizontal morphisms are the natural restrictions. Letk� : AutO (�tors) →
Gal( ab/�O) be the surjection obtained by composing the maps appearing in the lower hori-
zontal line of diagram (3.23). Then we obtain an induced commutative diagram

1 Gal(� (�tors)/� ·  ab) Gal(� (�tors)/� ) Gal( ab/� ∩  ab) 1

1 Aut� (�) AutO (�tors) Gal( ab/�O) 1

]′ d� (3.23) ]

k�

whose rows are exact. This shows in particular that the degree of the extension � · ab ⊆ � (�tors)
is �nite and divides |Aut� (�) | = |O× |. Moreover, the snake lemma gives:

|G(�/� ) : d� (�� ) | = |coker(d�) | = |coker(]) | · |coker(] ′) | = [� ∩ ab : �O] ·
|O× |

[� (�tors) : � ·  ab]

which allows us to conclude. �

Corollary 3.5.4. Let O be an order in an imaginary quadratic �eld  with corresponding ring
class �eld �O . Then for an elliptic curve �/�O with complex multiplication by O we have:

��AutO (�tors) : d� (��O )�� = {
1 if �O (�tors) ≠  ab

|O× | otherwise.
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Proof. If 9 (�) ≠ 0, 1728 then O× = {±1} and we conclude using Theorem 3.5.2. If instead
9 (�) = 0 or 9 (�) = 1728 then �O =  . In particular, we always have �O (�tors) =  ab and using
again Theorem 3.5.2 the result follows. �

Hence, for all CM elliptic curves �/Q the above corollary and Proposition 3.5.1 imply that
we always have

��G(�/Q) : d� (�Q)�� = |O× |. This improves [Loz19, Theorem 1.3], whose proof
is bounded to appear in a follow-up paper. We will see in Theorem 4.4.6 that there exists an
in�nite family of imaginary quadratic orders O for which every elliptic curve �/�O with complex
multiplication by O satis�es

��G(�/�O) : d� (��O )�� = 1.
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4Entanglement problems for
division fields of CM elliptic
curves

This chapter constitutes a natural continuation of the previous Chapter 3. The starting point of
the whole discussion is the Galois representation (3.1)

d� : Gal(� (�tors)/� ) ↩→ AutZ (�tors) � GL2 (Ẑ)

associated to an elliptic curve � de�ned over a number �eld � . As we have already explained
in Section 3.1, if � does not have complex multiplication then Serre’s Open Image Theorem
[Ser71, Théorème 3] implies that the image of d� has �nite index in GL2 (Ẑ). However, explicitly
describing this image is a non-trivial problem in general which is connected to the celebrated
Uniformity Conjecture [Ser71, § 4.3]. A �rst step in this direction is to study the entanglement
in the family {� (� [?∞])}? for ? prime, i.e. to describe the image of the natural inclusion

Gal(� (�tors)/� ) ↩→
∏
?

Gal(� (� [?∞])/� ) (4.1)

where the product runs over all primes ? ∈ N. This problem can be very di�cult in general, and
in recent years much e�ort has been done to understand the possible entanglement situations
that can occur for elliptic curves de�ned over Q. In this chapter we study the map (4.1) in the
case � has complex multiplication and � contains the corresponding CM �eld. If 9 (�) ∉ {0, 1728}
and � = �O is the ring class �eld relative to the CM order O, the results in Chapter 3 imply
that the entanglement in the family of ?∞-division �elds of � can be at most quadratic, meaning
that the image of (4.1) has index at most 2 in its codomain. When and for what reasons is this
index exactly equal to 2? Do CM elliptic curves with entangled division �elds satisfy special
properties? These are just some of the questions over which we want to shed some light. Having
to deal with quadratic entanglement makes the study easier than the general case, but this does
not prevent to come across some surprises. For instance, we will see in Theorem 4.4.6 that if an
elliptic curve � has complex multiplication by an order O ⊆ Q(8) of conductor divisible only by
primes ? ≡ 1 mod 4 and is de�ned over the corresponding ring class �eld �O then the family of
?∞-division �elds {�O (� [?∞])}? is always linearly disjoint over �O (see De�nition 4.1.1).

We begin by shortly contextualizing the entanglement problem in Section 4.1, where we
provide some recent references on the topic. In Section 4.2 we introduce the concept of formal
group law attached to an elliptic curve. The properties of the formal group laws attached to
elliptic curves with complex multiplication play a crucial role in Section 4.3, where we study the
�rst rami�cation and entanglement properties of the family of ?∞-division �elds of a CM elliptic
curve. In Section 4.4 we restrict our attention to elliptic curves with complex multiplication
de�ned over the ring class �eld relative to their endomorphism order and we investigate when
division �elds are minimal i.e. when they are equal to the corresponding G-coordinate �eld.
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This investigation has many important consequences for the entanglement problem. Finally,
in Section 4.5 we classify all the possible entanglement scenarios that can occur for elliptic
curves �/Q that have complex multiplication by orders of discriminant Δ < −4 and that are
base-changed to their CM �eld.

4.1 Entanglement problems for division fields of
elliptic curves

De�nition 4.1.1. Let � be a �eld and let F = {�=}=∈- a family of Galois extensions of � inside
an algebraic closure of � . We call F linearly disjoint over � if for the compositum ! of the �elds �= ,
the natural inclusion map

Gal(!/� ) ↩→
∏
=∈-

Gal(�=/� ) (4.2)

is an isomorphism. If this is not the case, we call the family F entangled over  .

A family as in De�nition 4.1.1 is linearly disjoint over � if and only if for every individual
�eld �= ∈ F , the �eld �= and the compositum of the �elds �< with< ≠ = are linearly disjoint
over � . Note that the �elds �= ∈ F are not required to be �nite extensions of � .

Example 4.1.2. For ℓ ∈ N prime denote by

Q(Zℓ∞ ) =
⋃
:∈N
Q(Zℓ: ) ⊆ Q

the �eld obtained by adjoining to Q all the ℓ-power roots of unity, and consider the family
F = {Q(Z?∞ )}? for ? prime. Then the family F is linearly disjoint over Q since each �eld
Q(Z?∞ ) is totally rami�ed at ? and unrami�ed at all primes ℓ ≠ ? . Note, however, that the linear
disjointness of the family F is not preserved if we “base-change” it to a number �eld � ≠ Q. For
instance, let ! = Q(

√
−15) and consider the family F! = {!(Z?∞ )}? . Since !(Z3) ⊆ !(Z5), we see

that the family F! is entangled over !.

Let now � be an elliptic curve de�ned over a number �eld � , and consider the adelic Galois
representation

d� : Gal(� (�tors)/� ) ↩→ GL2 (Ẑ)

associated to a �xed basis of the Tate module )∞ (�), as described in (3.1). A crucial problem,
that has been concisely called “Program B” by Mazur [Maz77, pag. 109], consists in classifying
the possible images of the morphism d� . Ideally, this program should be realized in two steps:
�rst of all one has to determine, for every prime ? ∈ N, the possible images of the ?-adic Galois
representation

d�,? : Gal(� (�tors)/� ) → GL2 (Z? )

associated to the Galois action on the group � [?∞] of ?-power torsion points of �; this is the same
map that one would obtain by composing d� with the natural projection GL2 (Ẑ) � GL2 (Z? ).
Secondly, one has to work out all the possible ways in which the various maps d�,? can “glue
together” to give a single adelic representation d� . Concretely, this means understanding the
entanglement in the family of division �elds F� = {� (� [?∞])}? for ? ∈ N prime, and this can be
thought of as a generalization of Example 4.1.2, where the multiplicative group G<,� is replaced
by the elliptic curve �/� . However, already for � = Q, the situation is far more complicated than
its cyclotomic analogue.
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Suppose that �/Q is an elliptic curve given by a short Weierstrass model

� : ~2 = G3 +�G + �, �, � ∈ Q

with discriminant Δ� ∈ Q×. Then the 2-division �eld Q(� [2]) is the splitting �eld of the
Weierstrass polynomial 5 (G) = G3 + �G + � and thus it contains Q(

√
Δ�) as a sub�eld. If the

discriminant Δ := discQ(
√
Δ�) is odd, the inclusions Q(

√
Δ�) ⊆ Q(Z |Δ |) ⊆ Q(� [Δ]) show that

the family F� is entangled over Q. It can be proved [Jon10] that for almost all (in a sense which
can be made precise) elliptic curves over the rationals, the image of the map (4.1) has index at
most 2 in the codomain. In other words, for almost all elliptic curves �/Q either the family F�
is linearly disjoint over Q or the quadratic intersection between two di�erent division �elds is
the only source of entanglement. However, this does not apply to all elliptic curves over Q. For
example, Jones and Brau describe in [BJ16] an in�nite family of elliptic curves �/Q for which
[Q(� [2]) : Q] = 6 and Q(� [2]) ⊆ Q(� [3]), while more recently Jones and McMurdy [JM20,
Theorem 5.7] found an in�nite family of elliptic curves �/Q for which [Q(� [2]) : Q] = 6 and
Q(� [2]) ⊆ Q(� [5]).

Despite the potentially rich zoological diversity of the various entanglement scenarios sug-
gested by the above discussion, one can try to put some order in the chaos. For instance, for
every number �eld � and for every elliptic curve �/� without complex multiplication, Serre’s
Open Image Theorem implies that the entanglement in the family F� is �nite. This means that
there exists a �nite set of primes (� ⊆ N such that, if � (� [(∞

�
]) denotes the compositum of all

the �elds � (� [?∞]) for ? ∈ (� , the family {� (� [(∞
�
])} ∪ {� (� [?∞]}?∉(� is linearly disjoint over

� . We will make the set (� explicit in Theorem 5.4.3. On the other hand, if an elliptic curve
�/� has complex multiplication, the analogue of this result is false in general (cfr. Theorem
5.6.2). However, the presence of extra endomorphisms in End

�
(�) makes the entanglement

problem easier than the non-CM case, to the point that, at least over Q, one can reach almost
complete classi�cation of the possible entanglement scenarios, see Theorem 4.5.2. However, in
this chapter we focus primarily on the entanglement problem for CM elliptic curves de�ned
over general number �elds, and this classi�cation theorem will come only as a byproduct of our
investigations.

4.2 Formal groups and elliptic curves
Our declared goal is to study the entanglement in the family of ?∞-division �elds of an elliptic

curve with complex multiplication. As Example 4.1.2 suggests, the knowledge of the rami�cation
properties of these �elds may help to understand also their behaviour in terms of entanglement.
Rami�cation in division �elds of elliptic curves turns out to be strictly related to the theory of
formal groups. For this reason we dedicate this section to recall some of the main points from
that theory (mainly following [Sil09, Chapter IV]) and to deduce some easy but useful results.

4.2.1 Formal groups
Roughly speaking, a formal group is a power series F ∈ 'ÈI1, I2É for which the association

G +F ~ := F (G,~) behaves like an abelian group law. Here is the rigorous de�nition.

De�nition 4.2.1. Let ' be a ring. A (one-parameter commutative) formal group F over ' is a
power series � (I1, I2) ∈ 'ÈI1, I2É satisfying the following properties:

• � (I1, 0) = I1 and � (0, I2) = I2;

• � (� (I1, I2), I3) = � (I1, � (I2, I3)) (associativity);
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• � (I1, I2) = � (I2, I1) (commutativity).

Given a formal group F ∈ 'ÈI1, I2É we denote the set of endomorphisms of F by

End' (F ) := {5 ∈ C'ÈCÉ | 5 (G +F ~) = 5 (G) +F 5 (~)}

which is a ring under the operations (5 +F 6) (C) := F (5 (C), 6(C)) and (6 ◦ 5 ) (C) := 6(5 (C)).
We write Aut' (F ) for the unit group End' (F )× and we denote by [·]F the unique ring ho-
momorphism Z → End' (F ). For every q ∈ End' (F ) one has that q ∈ Aut' (F ) if and only
if q ′(0) ∈ '× where q ′(C) ∈ 'ÈCÉ denotes the formal derivative (see [Sil09, IV, Lemma 2.4]).
Moreover, every q ∈ End' (F ) is uniquely determined by q ′(0) whenever ' is torsion-free as an
abelian group. More precisely, there exist two power series expF, logF ∈ (' ⊗Z Q)ÈCÉ such that

q (C) = expF (q ′(0) · logF (C)) (4.3)

as explained in [Sil09, IV, § 5].
Let us now recall that if (',m) is a complete local ring there is a well de�ned map

m ×m
+F−−→ m

(G,~) ↦→ F (G,~)

endowing the set m with the structure of an abelian group, which will be denoted by F (m).
We will sometimes refer to F (m) as the group of m-points of F . Every q ∈ End' (F ) induces
an endomorphism qm : F (m) → F (m), and for every subset Φ ⊆ End' (F ) we de�ne the
Φ-torsion subgroup F (m) [Φ] ⊆ F (m) as

F (m) [Φ] :=
⋂
q ∈Φ

ker(qm).

These Φ-torsion subgroups generalise the usual# -torsion subgroups F (m) [# ] ⊆ F (m) de�ned
for every # ∈ Z. The following lemma provides some information about the behaviour of
F (m) [?=] under �nite extensions of local rings with residue characteristic ? .

Lemma 4.2.2 (see [Sil09, IV, Exercise 4.6] and [Sil15, Page 15]). Let ' ⊆ ( be a �nite extension of
complete discrete valuation rings of characteristic zero with maximal ideals m' ⊆ m( and residue
�elds :' ⊆ :( . Let ? := char(:') > 0 be the residue characteristic of ' and ( , and suppose that
m' = ?'. Then for every formal group F ∈ 'ÈI1, I2É and every G ∈ F (m( ) [?=] \ F (m( ) [?=−1]
with = ∈ Z≥1 we have that

E( (G) ≤
E( (?)

?ℎ (=−1) · (?ℎ − 1)
where E( denotes the normalised valuation on ( , and

ℎ = ht(F ) := max
{
= ∈ N

��� [?]F ∈ :'ÈC?=É }
is the height of the reduced formal group F ∈ :'ÈI1, I2É.

Proof. Using that ℎ = ht(F ) and that m' = ? · ' we see that there exist 5 , 6 ∈ 'ÈCÉ such that
[?]F = 5 (C?ℎ ) + ? 6(C). We can assume that 5 , 6 ∈ C 'ÈCÉ and 6′(0) = 1 because [?]F ∈ C 'ÈCÉ
and [?] ′F (0) = ? . Now �x G ∈ F (m( ) [?=] \ F (m( ) [?=−1] and proceed by induction on = ∈ Z≥1.
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If = = 1 then 5 (G?ℎ ) + ? 6(G) = [?]F (G) = 0, hence E( (?) + E( (6(G)) = E( (5 (G?
ℎ )). Now

E( (6(G)) = E( (G) because 6(0) = 0 and 6′(0) = 1, and E( (5 (G?
ℎ )) ≥ E( (G?

ℎ ) = ?ℎ E( (G) because
5 (0) = 0. Hence E( (?) ≥ (?ℎ − 1) · E( (G), which is what we wanted to prove.

If = ≥ 2 we know by induction that

E( (?)
?ℎ (=−2) · (?ℎ − 1)

≥ E( ( [?]F (G)) = E( (5 (G?
ℎ ) + ? 6(G)) ≥ min(E( (G?

ℎ ), E( (?G))

because [?]F (G) ∈ F (m( ) [?=−1] \ F (m( ) [?=−2]. This implies that min(E( (G?
ℎ ), E( (?G)) =

E( (G?
ℎ ). Otherwise we would get the contradiction E( (?) ≥ ?ℎ (=−2) · (?ℎ − 1) · E( (?G) > E( (?)

because = ≥ 2, E( (G) > 0 and ℎ ≥ 1. Hence we have that

E( (G) =
E( (G?

ℎ )
?ℎ

≤ E( (?)
?ℎ · (?ℎ (=−2) · (?ℎ − 1))

=
E( (?)

?ℎ (=−1) · (?ℎ − 1)

which is what we wanted to prove. �

4.2.2 Formal groups and elliptic curves
Given an elliptic curve � de�ned over a number �eld � by an integral Weierstrass equation

one can construct, following for example [Sil09, Chapter IV], a formal group �̂ ∈ O�ÈI1, I2É
which can be thought of as the formal counterpart of the addition law on �. The association
� ↦→ �̂ is functorial and in particular induces a map

End� (�) → End� (�̂)

q ↦→ q̂
(4.4)

between the endomorphism rings of � and �̂. The power series lying in the image of (4.4) have
integral coe�cients, as proved in the following theorem, due to Streng.

Theorem 4.2.3. Let � be an elliptic curve de�ned over a number �eld � and let �̂ ∈ O�ÈI1, I2É
be the formal group law associated to a Weierstrass model of � with coe�cients 01, . . . , 06 ∈ O� .
Then for every q ∈ End� (�) we have that q̂ ∈ O�ÈCÉ.

Proof. This is [Str08, Theorem 2.9]. �

Example 4.2.4. Let � be the elliptic curve given by the Weierstrass equation ~2 = G3 + G . Then
� has complex multiplication by O = Z[8], and we take � = Q(8) as �eld of de�nition for the
curve. If [·]� : O → End� (�) denotes the normalized isomorphism described in De�nition 1.3.7,
then we have [8]� (G,~) = (−G, 8~) for all (G,~) ∈ � (� ). In order to compute the formal group
associated to � we operate the change of variables I = −G/~ andF = −1/~, bringing the point
at in�nity on � to the origin of the a�ne plane A2 = A2 (I,F). In these new coordinates we
have � : F = I3 + IF2 and the morphism [8]� is now given by (I,F) ↦→ (8I,−8F). One can then
compute the �rst few terms of the formal formal group associated to �:

�̂ (I1, I2) = I1 + I2 − 2I41I2 − 4I31I22 − 4I21I32 − 2I1I42 + ...

To obtain the power series [̂8]� (C) ∈ End� (�̂) it su�ces to compute the formal expansion of the
pull-back [8]∗

�
(I) := I ◦ [8]� . In this case we simply get [̂8]� (C) = 8C , and this explains why every
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monomial appearing in the power series �̂ (I1, I2) has degree congruent to 1 modulo 4. One can
perform similar calculations for every U ∈ End� (�). For instance, we have�[1 + 8]� = �̂ (C, 8C) = (1 + 8)C + 2(1 + 8)C5 + 6(1 + 8)C9 +$ (C10).

Let now P ⊆ O� be a prime of � with residue �eld :P and corresponding maximal ideal
mP ⊆ O�P , where �P denotes the completion of � at P. Then [Str08, § 2] shows that there is a
unique injective group homomorphism ]P : �̂ (mP) → � (�P) making the following diagram

�̂ (mP) � (�P)

�̂ (mP) � (�P)

q̂P

]P

q

]P

(4.5)

commute for every q ∈ End�P (�), where q̂P := (q̂)mP
(see Section 4.2.1).

Suppose now that � has good reduction at P. Then [Sil09, VII, Proposition 2.1 and Proposi-
tion 2.2] imply that ]P �ts in the following exact sequence

0→ �̂ (mP)
]P−→ � (�P)

cP−−→ �̃ (:P) → 0

in which �̃ denotes the reduction of � modulo P and cP : � (�P) � �̃ (:P) is the canonical
projection. Taking torsion and using (4.5) we get a left-exact sequence

0→ �̂ (mP) [Φ̂]
]P−→ � (�P) [Φ]

cP−−→ �̃ (:P) [Φ] (4.6)

for every ideal Φ ⊆ End�P (�). Here � (�P) [Φ] ⊆ � (�P) is the Φ-torsion subgroup

� (�P) [Φ] :=
⋂
q ∈Φ

ker(q)

and �̃ (:P) [Φ] is de�ned analogously, noting that the map End�P (�) → End:P (�̃) is injective
(see [Sil94, II, Proposition 4.4]). We remark that �̂ (mP) [Φ̂] is well de�ned since Φ̂ ⊆ O�ÈCÉ by
Theorem 4.2.3. Sequence (4.6) will be extensively used in the next section.

4.3 Division fields of CM elliptic curves:
ramification and entanglement

In this section we are initially concerned with rami�cation properties of division �elds of
CM elliptic curves. This investigation, besides being of independent interest, will also naturally
lead to Theorem 4.3.4, a �rst general result on the entanglement properties of division �elds of
elliptic curves with complex multiplication which will �nd its non-CM analogue in Theorem
5.4.3. As a major tool, we will heavily use the theory of formal groups outlined in Section 4.2.

Let � ⊆ Q be a number �eld and let �/� be an elliptic curve with complex multiplication by an
order O in an imaginary quadratic �eld  . For our purposes, it is not very restrictive to assume
(as we will do in the rest of this chapter) that there is an inclusion  ⊆ � . Indeed, if  * � , one
can prove (see Theorem 5.6.2) that  ⊆ � (� [# ]) for every # > 2. In particular, in this case the
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study of the entanglement in the family of ?∞-division �elds of �/� is essentially equivalent to
the same study for the base-changed elliptic curve � � (we may possibly miss what happens for
the 2-division �eld, but this situation will be studied in Chapter 5). Note also that, as we already
recalled in Section 3.1, the hypothesis  ⊆ � implies that all the geometric endomorphisms of �
are actually de�ned over � .
We will also always �x the normalized isomorphism [·]� : O → EndQ (�) appearing in De�nition

1.3.7. With this choice, it follows from [Sil09, IV, Corollary 4.3] that [̂U]
′
� (0) = U for every U ∈ O,

where [̂U]� ∈ EndQ (�̂) denotes the endomorphism of the formal group �̂ associated to [U]� by
(4.4).

Our �rst result consists in �nding an explicit �nite set of prime ideals outside which the
extensions � ⊆ � (� [� ]), for invertible ideals � ⊆ O, are unrami�ed.

Proposition 4.3.1. Let � be a number �eld and �/� an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld  ⊆ � . Denote by fO := |O : O| the conductor of
the order O and by f� ⊆ O� the conductor ideal of the elliptic curve �. Then for every ideal � ⊆ O
coprime with fO the extension � ⊆ � (� [� ]) is unrami�ed at all primes not dividing (� · O� ) · f� .

Proof. Since � is coprime with the conductor of the order O, it can be uniquely factored into
a product of invertible prime ideals of O (see [Cox13, Proposition 7.20]). The �eld � (� [� ]) is
then the compositum of all the division �elds � (� [p=]) with p= the prime power factors of � in
O. Hence it su�ces to prove that for every invertible prime ideal p ⊆ O and = ∈ N, the �eld
extension � ⊆ � (� [p=]) is unrami�ed at every prime of � not dividing (p O� ) · f� .

Fix an invertible prime p ⊆ O and write ! := � (� [p=]). Let q - (p O� ) · f� be a prime of � and
�x a prime Q ⊆ O! lying above q, with residue �eld : . Since q does not divide the conductor f�
of the elliptic curve, � has good reduction �̃ modulo q and we then denote by c : � (!) → �̃ (:)
the reduction modulo Q. Take f ∈ � (Q/q), where � (Q/q) ⊆ Gal(!/� ) denotes the inertia
subgroup of q ⊆ Q, and �x a torsion point& ∈ � [p=] = � (!) [p=]. By de�nition of inertia f acts
trivially on the residue �eld : , hence

c (&f −&) = c (&f ) − c (&) = c (&) − c (&) = 0 (4.7)

i.e. the point &f − & is in the kernel of the reduction map c . We are going to use the exact
sequence (4.6) to show that the only p=-torsion point contained in this kernel is 0. To this
aim, we embed ! in its Q-adic completion !Q with ring of integers O!Q and maximal ideal
mQ . Notice that the set (p= ∩ O) \ (Q ∩ O) is non-empty because p - fO and q - (p O� ).
Consider then the formal group �̂ ∈ O�ÈI1, I2É associated to an integral Weierstrass model
of �, and let U ∈ (p= ∩ O) \ (Q ∩ O). The endomorphism [̂U]� ∈ End� (�̂) corresponding
to [U]� ∈ End� (�) via (4.4) becomes an automorphism over !Q , because [̂U]

′
� (0) = U ∈ O×!Q .

Hence taking Φ = [p=]� in (4.6) shows that � [p=] ∩ ker(c) ⊆ � [U] ∩ ker(c) = {0}, where the
last equality holds because �̂ (mQ) [̂U]� = 0. Combining this with (4.7) we see that &f = & for
every & ∈ � [p=] and f ∈ � (Q/q). Since ! is generated over � by the elements of � [p=], we
deduce that the inertia group � (Q/q) is trivial. In particular, � ⊆ ! is unrami�ed at every prime
not dividing (p · O� ) f� , as wanted. �

We now turn to the study of the primes which ramify in � ⊆ � (� [� ]). To do this it su�ces to
restrict our attention to the case � = p= for some prime p ⊆ O and some = ∈ N, as we do in the
following proposition.
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Proposition 4.3.2. Let � be a number �eld and �/� an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld  ⊆ � . Denote by �� := fO Δ� #�/Q (f�) the product
of the conductor fO := |O : O| of the order O, the absolute discriminant Δ� ∈ Z of the number
�eld � and the norm #�/Q (f�) := |O� /f� | of the conductor ideal f� ⊆ O� . Then for any = ∈ N and
any prime ideal p ⊆ O coprime with �� O the extension � ⊆ � (� [p=]) is totally rami�ed at each
prime dividing p O� . Moreover, the Galois representation

d�,p= : Gal(� (� [p=])/� ) ↩→ (O/p=)×

de�ned in (3.2) is an isomorphism.

Proof. The statement is trivially true if = = 0, hence we assume that = ≥ 1. Fix �̂ ∈ O�ÈI1, I2É to
be the formal group associated to an integral Weierstrass model of �, and let p ⊆ O be as in the
statement. The hypothesis of coprimality with �� O implies that p is invertible in O and that it
lies above a rational prime ? ∈ N that is unrami�ed in  . We divide the proof according to the
splitting behaviour of ? in O, which is the same as the splitting behaviour in  , since ? - fO .

First, assume that ? is inert in  , so that p = ?O. In this case, ! := � (� [p=]) coincides with
the ?=-division �eld � (� [?=]). The injectivity of the Galois representation

d�,?= : Gal(!/� ) ↩→ (O/?=O)× � (O /?=O )×

shows that the degree of the extension � ⊆ ! is bounded as

[! : � ] ≤ |(O /?=O )× | = ?2(=−1) (?2 − 1).

Let p ⊆ O! be a prime of ! lying above ? and denote by !p the p-adic completion of ! with ring
of integers O!p , maximal ideal mp and residue �eld :p. We want to determine the rami�cation
index 4 (p/(p ∩ O� )).

Since ? is inert in  , the reduced elliptic curve �̃ is supersingular by Theorem 1.4.1, hence
�̃ (:p) [?=] = 0. Taking Φ = [?=]� in (4.6), we see that the group �̂ (mp) contains a non-zero
point of exact order ?= . We can now use Lemma 4.2.2 and the hypothesis ? - Δ� to get

?ℎ (=−1) (?ℎ − 1) ≤ E!p (?) = 4 (p/?) = 4 (p/(p ∩ O� )) ≤ [! : � ] ≤ ?2(=−1) (?2 − 1). (4.8)

where ℎ ∈ N denotes the height of the reduction modulo P of the formal group �̂. Since the
latter is precisely the formal group associated to �̃, we have that ℎ = 2 by [Sil09, V, Theorem 3.1].
Thus all the inequalities appearing in (4.8) are actually equalities, and we see at once that
4 (p/(p ∩ O� )) = [! : � ] = ?2(=−1) (?2 − 1), which implies that d�,?= is an isomorphism and that
p ∩ O� is totally rami�ed in !. This concludes the proof of the inert case.

Suppose now that ? splits in  , so that ?O = pp, where p is the image of p under the unique
non-trivial automorphism of  . If we put again ! := � (� [p=]), the injectivity of d�,p= gives

[! : � ] ≤ |(O /?=O )× | = ?=−1 (? − 1).

It is convenient in this case to work inside the bigger division �eld " := � (� [?=]), which
contains both ! and !′ := � (� [p= ]). We then �x p,p ⊆ O" two primes of " lying respectively
above pO and pO , and we denote by P := p ∩ O! and P := p ∩ O! the corresponding primes
in !. For every prime ideal q ∈ {p,p} we denote by "q the q-adic completion of " with ring of
integers O"q

and residue �eld :q , and by �̃q the reduction of �/" modulo q. We use analogous
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notation for P and P. The goal is to compute the rami�cation index 4 (P/P ∩ O� ), and we
divide our argument in three steps.

Step 1 First of all, we prove that � (") [p=] ∩ ker(c
P
) = 0, where c

P
: � (") → �̃

P
(:

P
)

denotes the reduction modulo P. Since � (") [p=] ⊆ � (!) ⊆ � (!P), this is equivalent to say
that � (!P) [p

=] ∩ ker(cP) = 0, where

cP : � (!P) � �̃P (:P) ⊆ �̃P(:p)

denotes the reduction moduloP. Since ? is coprime with the conductor of the order O by assump-
tion, it is possible to �ndU ∈ p= such thatU ∉ p. The endomorphism [̂U]� ∈ End� (�̂) correspond-
ing to [U]� ∈ End� (�) via (4.4) becomes an automorphism over !P , because [̂U]

′
� (0) = U ∈ O×!P .

Hence taking Φ = [p=]� in (4.6) shows that

ker(cP) ∩ � (!P) [p
=] ⊆ ker(cP) ∩ � (!P) [U] = 0

where the last equality holds because �̂ (mP) [̂U]� = 0. In exactly the same way, using !′ in place
of !, one shows that � (") [p=] ∩ ker(cP) = 0.

Step 2 We now claim that � (") [?=] ∩ ker(cp) = � (") [p=] where cp : � (") → �̃p (:p)
denotes the reduction modulop. Since ?=O = p=p

= withp= +p= = O, there is a decomposition of
the group � (") [?=] into the direct sum of � (") [p= ] and � (") [p= ], which are cyclic groups
of order ?= by Lemma 3.1.1. In particular, there exists � ∈ � (") [p=] and � ∈ � (") [p=] such
that every ?=-torsion point & ∈ � (") [?=] can be written as

& = [0] (�) + [1] (�)

for unique 0, 1 ∈ {0, . . . , ?= − 1}. If cp (&) = 0 then

cp ( [1] (�)) = cp ( [−0] (�)) ∈ �̃P(:p) [p= ] ∩ �̃P(:p) [p= ] = {0}

where the last equality follows from the fact that p= and p
= are coprime in O. In particular,

[1] (�) ∈ ker(cP) ∩ � (") [p=], and the latter is trivial by Step 1. Hence we have & = [0] (�) ∈
� (") [p=], and this shows the inclusion ker(cp) ∩ � (") [?=] ⊆ � (") [p=]. To prove the other
inclusion �rst notice that the restriction of cp to � (") [?=] gives rise to a surjection

� (") [?=] � �̃P(:p) [?=]

because � (") [p=] → �̃P(:p) [?=] is injective and the elliptic curve �̃p is ordinary by Theorem
1.4.1. This gives

� (") [?=]
ker(cp) ∩ � (") [?=]

� �̃P(:p) [?=]

which in turn shows that

|ker(cp) ∩ � (") [?=] | =
|� (") [?=] |
|�̃P(:p) [?=] |

=
?2=

?=
= ?= = |� (") [p=] |.

We conclude that ker(cp) ∩ � (") [?=] = � (") [p=].
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Step 3 Using (4.6) with Φ = [?=]� and Step 2, after recalling that p lies over P, one can
see that the group �̂ (mP) contains a point of exact order ?= . We now apply Lemma 4.2.2 and
the hypothesis ? - Δ� to get

?ℎ (=−1) (?ℎ − 1) ≤ E!P (?) = 4 (P/?) = 4 (P/(P ∩ O� )) ≤ [! : � ] ≤ ?=−1 (? − 1). (4.9)

where ℎ ∈ N denotes the height of the reduction modulo P of the formal group �̂. Since the latter
is precisely the formal group associated to the ordinary elliptic curve �̃P , we have that ℎ = 1
by [Sil09, V, Theorem 3.1]. Thus all the inequalities appearing in (4.9) are actually equalities,
and we see at once that 4 (P/(P ∩ O� )) = [! : � ] = ?=−1 (? − 1), which implies that d�,p= is an
isomorphism and that P ∩ O� is totally rami�ed in !. This concludes the proof. �

Remark 4.3.3. Let �/� be any elliptic curve (not necessarily with complex multiplication) which
has good supersingular reduction at a prime p ⊆ O� lying above a prime ? ∈ N which does
not ramify in Q ⊆ � . Then one can use the same argument provided in the �rst part of the
proof of Proposition 4.3.2 to show that the rami�cation index 4 (P/p) is bounded from below by
?2(=−1) (?2 − 1), where P ⊆ � (� [?=]) is any prime lying above p. This result has already been
proved by Lozano-Robledo in [Loz16, Proposition 5.6] and by Smith in [Smi18, Theorem 2.1].

With the above rami�cation results at our disposal, we can now prove our �rst main theorem
concerning entanglement in division �elds of CM elliptic curves.

Theorem 4.3.4. Let � be a number �eld and �/� an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld  ⊆ � . Denote by �� := fO Δ� #�/Q (f�) ∈ Z the
product of the conductor fO := |O : O| ∈ N of the order O, the absolute discriminant Δ� ∈ Z of
the number �eld � and the absolute norm #�/Q (f�) := |O� /f� | ∈ N of the conductor ideal f� ⊆ O�
of �. Then the map (4.1) induces an isomorphism

Gal(� (�tors)/� ) Gal(� (� [(∞])/� ) ×
∏
?∉(

Gal(� (� [?∞])/� )∼ (4.10)

for any �nite set of primes ( ⊆ N containing the primes dividing �� .

Proof. The family {� (� [?∞])}@∉( ∪ {� (� [(∞])} appearing in the statement of Theorem 4.3.4
is linearly disjoint over � if and only if � (� [?=]) ∩ � (� [<]) = � for every prime ? ∉ ( , every
= ∈ N and every< ∈ Z coprime with ? . To prove this latter statement, we �rst show that every
non-trivial subextension of " := � (� [?=]) is rami�ed at some prime dividing ? .

When ? is inert in  , this follows immediately from Proposition 4.3.2. Suppose then that ?
is split in  , with ?O = pp. The division �eld " is the compositum over � of the extensions
! := � (� [p=]) and !′ := � (� [p=]). By Proposition 4.3.2 the extension � ⊆ ! (respectively
� ⊆ !′) is totally rami�ed at every prime of � lying over p (resp. p). Let p be a prime of � lying
above p, and denote by � (p) ⊆ Gal("/� ) its inertia group and by 4 (p) its rami�cation index in
the extension � ⊆ " . If � ( �̃ is a subextension of � ⊆ " in which p does not ramify, then
�̃ must be contained in the inertia �eld ) = (")� (p) relative to p. Notice that the latter also
contains !′, since by Proposition 4.3.1 the extension � ⊆ !′ is unrami�ed at p. On the other
hand, the fact that � ⊆ ! is totally rami�ed at p gives the chain of inequalities

[!′ : � ] ≤ [) : � ] = [" : � ]
|� (p) | =

[" : � ]
4 (p) ≤

[! : � ] · [!′ : � ]
4 (p) ≤ [!′ : � ]
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which shows that ) = !′. Hence Proposition 4.3.2 implies that any extension � ⊆ �̃ which is
unrami�ed at every prime above p is totally rami�ed at every prime above p.

Now it is easy to conclude that" ∩ � (� [<]) = � , since otherwise � ⊆ � (� [<]) would ramify
at some prime of � dividing ? , contradicting Proposition 4.3.1. �

The description of the set of primes ( in Theorem 4.3.4 is actually redundant, since all the
primes ? dividing the conductor fO , with the possible exception of ? = 2, also divide the absolute
discriminant Δ� of the �eld of de�nition of �. This can be seen as follows: since  ⊆ � , the
�eld � always contains the �eld  ( 9 (�)), obtained by adjoining to  the 9-invariant 9 (�) of the
elliptic curve �. By Theorem 1.3.4 this is precisely the ring class �eld �O relative to the CM
order O. The initial assertion now follows from the following proposition, which is a weaker
form of [Cox13, Exercise 9.20].

Proposition 4.3.5. Let O be an order of conductor fO := |O : O| in an imaginary quadratic �eld
 . Then the extension Q ⊆ �O is rami�ed at all the odd primes dividing fO . Moreover if 4 | fO the
same extension is also rami�ed at 2.

Proof. If fO = 1 there is nothing to prove. Otherwise let fO = ?
01
1 · · · ?

0=
= be the prime factorisa-

tion of fO , and observe that, for every 8 ∈ {1, . . . , =}, one has the chain of inclusions

 ⊆ �O ⊆ �O8 ⊆ �O

given by the Anordnungsatz for ring class �elds (see Remark 3.3.3), where O8 denotes the order
of conductor ?08

8
. Now, the class number formula [Cox13, Theorem 7.24] yields

[�O8 : �O ] =
[�O8 :  ]
[�O :  ]

=
ℎO8
ℎ 

=
?
08
8

|O×
 
: O×

8
|

(
1 −

(
Δ 
?8

)
1
?8

)
. (4.11)

where ℎO8 := [�O8 :  ] = |Pic(O8 ) | and analogously ℎ := [�O :  ] = |Pic(O ) |. If ?8 ≥ 3
or ?8 = 2 and 08 ≥ 2, we see from (4.11) that �O8 ≠ �O except when ?8 = 3, 08 = 1 and
 = Q(

√
−3). In this last case the extensionQ ⊆  is rami�ed at ?8 = 3. Otherwise the extension

�O ( �O8 is rami�ed at some prime dividing ?8 . Indeed, �O ( �O8 is rami�ed at some prime
because  ⊆ �O8 is abelian and �O is the Hilbert class �eld of  , and this su�ces to conclude
because  ⊆ �O8 can ramify only at primes lying above ?8 . �

Remark 4.3.6. If 2 | fO but 4 - fO the extension Q ⊆ �O could still be unrami�ed at 2. This
happens, for instance, if fO = 2 and 2 splits in  , because in this case the ring class �eld �O is
equal to the Hilbert class �eld �O .

Proposition 4.3.5 shows that the set ( in Theorem 4.3.4 could be replaced by the set ( ′ of
primes dividing 2 · Δ� · N�/Q (f�), even if this results in a slightly weaker statement. However,
choosing the set ( ′ instead of the set ( allows to draw a comparison with a result of Lombardo
on the image of ?-adic Galois representations attached to CM elliptic curves, which is shown in
[Lom17, Theorem 6.6]. In this paper Lombardo proves the isomorphism

Gal(� (� [?∞])/� ) � (O ⊗Z Z? )× = O×?

for every prime ? - Δ� · N�/Q (f�). If moreover ? ≥ 3, i.e. ? ∉ ( ′, this isomorphism follows also
from Proposition 4.3.2 by taking inverse limits. The methods used in [Lom17] are di�erent from
ours and generalise also to higher dimensional abelian varieties.
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4.4 Minimality of division fields
We have seen in Proposition 4.3.2 and Theorem 4.3.4 that for every CM elliptic curve � de�ned

over a number �eld � with End� (�) � O for some order O in an imaginary quadratic �eld
 ⊆ � , the division �elds � (� [# ]) are maximal for all integers # coprime with a �xed integer
�� ∈ Z. This is to say that the associated Galois representation d�,# given by (3.2) is surjective.
When � is de�ned over the ring class �eld �O of  relative to O, the division �elds �O (� [# ])
always contain the ray class �eld�#,O ⊆  ab, as we have shown in Theorem 3.4.1. If the division
�eld �O (� [# ]) is maximal and # > 2 then the containment �#,O ⊆ �O (� [# ]) is strict. In
this section we want to study for which integers # the division �elds are minimal, in the sense
that �O (� [# ]) = �#,O . At �rst glance this investigation may appear completely unrelated
to the entanglement problems studied in this chapter. Its importance is nonetheless readily
explained: suppose that the family of division �elds {�O (� [?∞])}? is entangled over the ring
class �eld. This in particular implies, using Theorem 4.3.4, that there exists a �nite set of primes
?8 ∈ N and a �nite set of integers =8 ∈ N for 8 ∈ {1, ..., :} such that the family {�O (� [?=88 ])}8
is entangled over �O . Hence the compositum of the �elds �O (� [?=88 ]), i.e. the division �eld
�O (� [# ]) with # :=

∏:
8=1 ?

=8
8

, does not have the maximal possible degree over �O . However,
if 9 (�) ∉ {0, 1728}, every division �eld must contain the corresponding ray class �eld with index
at most 2. Therefore we see that, under the above conditions on 9 (�), the entanglement in the
family {�O (� [?=88 ])}8 entails the equality �O (� [# ]) = �#,O .

Prompted by this discussion, we begin the section by studying how the maximality of division
�elds changes upon twisting. Given an elliptic curve � de�ned over a number �eld � and an
element U ∈ �×, we denote by � (U) the quadratic twist of � by U , as described in [Sil09, X, § 5].
We recall that two twists � (U) and � (U′) are isomorphic over � if and only if U and U ′ represent
the same class in �×/(�×)2, i.e. if and only if � (

√
U) = � (

√
U ′).

Proposition 4.4.1. Let O be an order of discriminant ΔO < −4 in an imaginary quadratic �eld
 , and let �O be the ring class �eld of  relative to the order O. Consider an elliptic curve �/�O
with complex multiplication by O and �x U ∈ �×O . Then for every invertible ideal � ⊆ O such that
� ∩Z = #Z with # > 2, the surjectivity of the Galois representation d�,� de�ned in (3.2) determines
the surjectivity of d� (U ) ,� as follows:

1 if d�,� is surjective, then d� (U ) ,� is surjective if and only if

�O (� [� ]) ≠ �� ,O (
√
U)

where �� ,O is the ray class �eld of  modulo � relative to O;

2 if d�,� is not surjective, then d� (U ) ,� is surjective if and only if �O (
√
U) ≠ �O and

�O (� [� ]) ∩ �O (
√
U) = �O .

Proof. First of all, we claim that d�,� (respectively d� (U ) ,� ) has maximal image if and only if
there exists f ∈ Gal(Q/�O) such that d�,� (f) = −1 ∈ (O/� )× (respectively d� (U ) ,� (f) = −1).
Indeed, �O (� [� ]) contains the ray class �eld �� ,O , which is generated over �O by the values
of the Weber function h� : � � �/Aut(�) � P1 at � -torsion points (see Theorem 3.4.1). Since
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h� ( [Y] (%)) = h� (%) for every % ∈ � [� ] and Y ∈ {±1} = O× � Aut(�), we see that d�,� induces
the identi�cation

Gal(�O (� [� ])/�� ,O) � Im(c×� ) ∩ Im(d�,� ) = {±1} ∩ Im(d�,� ) ⊆ (O/� )× (4.12)

where c×
�
: O× → (O/� )× denotes the map induced by the quotient c� : O � O/� . Hence d�,� is

surjective if and only if −1 ∈ Im(d�,� ), and the same holds for d� (U ) ,� . Moreover d� (U ) ,� is linked
to d�,� , after choosing compatible generators of � [� ] and � (U) [� ] as O/� -modules, by the formula

d� (U ) ,� = d�,� · jU (4.13)

where jU : Gal(Q/�O) → {±1} ⊆ (O/� )× is the quadratic character associated to �O (
√
U).

To prove 1 suppose that d�,� has maximal image. First, assume that �O (� [� ]) ≠ �� ,O (
√
U).

Then, either �O (
√
U) ∩ �O (� [� ]) = �O or we have �O (

√
U) ⊆ �� ,O . In the �rst case, we can

certainly �nd f ∈ Gal(Q/�O) acting trivially on �O (
√
U) and such that d�,� (f) = −1. Hence we

can use (4.13) to see that d� (U ) ,� (f) = d�,� (f) · jU (f) = −1. This implies, by the initial discussion,
that d� (U ) ,� has maximal image. In the second case, any f ∈ Gal(Q/�O) with d�,� (f) = −1 will
act trivially on �� ,O ⊇ �O (

√
U) by (4.12). As before, we can use (4.13) to conclude that d� (U ) ,�

has maximal image.
Assume now that �O (� [� ]) = �� ,O (

√
U). This implies that the extensions �O ⊆ �O (

√
U) and

�O ⊆ �� ,O are linearly disjoint over �O , because d�,� has maximal image. In particular

Gal(�O (� [� ])/�O) � Gal(�� ,O/�O) × Gal(�O (
√
U)/�O).

We deduce that any f ∈ Gal(Q/�O) with d�,� (f) = −1, being the identity on �� ,O by (4.12),
must act non-trivially on �O (

√
U). Then (4.13) gives

d� (U ) ,� (f) = d�,� (f) · jU (f) = 1

and this su�ces to see that d� (U ) ,� is non-maximal. This concludes the proof of 1 .
The proof of 2 can be carried out in a similar fashion. First of all, notice that the non-

maximality of d�,� and (4.12) imply that �� ,O = �O (� [� ]). Now, by (4.13) the only possibility for
d� (U ) ,� to be surjective in this case is to �nd an automorphism f ∈ Gal(Q/�O) with d�,� (f) = 1
and jU (f) = −1, which is clearly impossible if �O (

√
U) ⊆ �O (� [� ]) = �� ,O . On the other hand,

if �O (� [� ]) ∩�O (
√
U) = �O one can certainly �nd f ∈ Gal(Q/�O) such that jU (f) = −1 and

d�,� (f) = 1, which shows by (4.13) that d� (U ) ,� has maximal image. �

In order to apply Proposition 4.4.1 to entanglement questions, it is essential to identify elliptic
curves having an in�nite family of minimal division �elds. A �rst step in this direction is given
by Theorem 4.4.4, which provides a su�cient condition on an elliptic curve �, ensuring the
existence of an explicit set of invertible ideals � ⊆ O for which the corresponding division �elds
�O (� [� ]) are minimal. The proof of this result crucially relies on the subsequent Theorem 4.4.2,
which describes the action of complex automorphisms on torsion points of a CM elliptic curve in
terms of its analytic parametrisation. The statement of the result involves the global Artin map
[·, � ] : A×

�
� Gal(� ab/� ) and the notion of Hecke character. We recall that an Hecke character

on a number �eld � is a continuous group homomorphism

k : A×� → C×
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such thatk (�×) = 1. Given a Hecke characterk we denote by fk ⊆ O� its conductor, as de�ned
in [Hus04, Chapter 16, De�nition 5.7]. For every placeF ∈ "� we denote bykF : �×F → C× the
group homomorphismkF := k ◦ ]F , where ]F : �×F ↩→ A×

�
is the natural inclusion. Similarly, for

every rational prime ? ∈ N we denote byk? : �×? → C× the group homomorphismk? := k ◦ ]?
where ]? : �×? ↩→ A×

�
is the analogous inclusion induced by the decomposition (3.14).

Theorem 4.4.2. Let � ⊆ C be a number �eld, �/� be an elliptic curve such that End� (�) � O for
some order O inside an imaginary quadratic �eld  ⊆ � . Let  ⊆ " ⊆ � be a sub�eld such that
� (�tors) ⊆ "ab · � . Then there exist ["ab ∩ � : "] group homomorphisms U : A×

"
→  × ⊆ C×

such that:

1. the map i : A×
"
→ C× de�ned as i (B) := U (B) · N"/ (B)−1∞ is a Hecke character, where

N"/ : A×" → A× is the idelic norm map;

2. for every lattice Λ ⊆  ⊆ C, every analytic isomorphism b : C/Λ → � (C) and every
B ∈ "× · N�/" (A×� ) ⊆ A×" we have that (U (B) · N"/ (B)−1) · Λ = Λ and the following
diagram

 /Λ  /Λ

� ("ab · � ) � ("ab · � )

b

(U (B) ·N"/ (B)−1) ·

b

g

commutes, where g ∈ Gal("ab · �/� ) is the unique automorphism such that g
��
"ab = [B, "].

Proof. Combine [Shi94, Proposition 7.40] and [Shi94, Proposition 7.41] when " = � and use
[Shi94, Theorem 7.44] for the general case. Notice that, by class �eld theory, for every B ∈
"× · N�/" (A×� ) the restriction [B, "]

��
"ab∩� is trivial. This gives a unique g ∈ Gal("ab · �/� )

such that g
��
"ab = [B, "]. Moreover, �xing an embedding � ⊆ C automatically �xes an embedding

"ab · � ⊆ C, hence � ("ab · � ) ⊆ � (C), which gives a meaning to the vertical arrows in the
diagram. �

Remark 4.4.3. If  ⊆ " ⊆ " ′ ⊆ � and � (�tors) ⊆ "ab then " ⊆ � is abelian and Theorem 4.4.2
gives us ["ab∩� : "] = [� : "] Hecke charactersi : A×

"
→ C× and [(" ′)ab∩� : " ′] = [� : " ′]

Hecke characters ĩ : A×
"′ → C×. We can observe that

["ab ∩ � : "]
[(" ′)ab ∩ � : " ′]

=
[� : "]
[� : " ′] = ["

′ : "] ∈ N

and that for every Hecke character ĩ : A×
"′ → C× given by Theorem 4.4.2 there are exactly

[" ′ : "] Hecke characters i : A×
"
→ C× such that ĩ = i ◦ N"′/" . If  = " and � = " ′ then

we have a unique Hecke character ĩ : A×
�
→ C× which coincides with the usual Hecke character

associated to elliptic curves with complex multiplication, de�ned for example in [Sil94, II, § 9]
and [Lan87, Chapter 10, Theorem 9].

We can now state Theorem 4.4.4, recalling that for every order O contained in an imaginary
quadratic �eld  and every ideal � ⊆ O we denote by �� ,O the ray class �eld of  modulo �
relative to the order O (see Section 3.3).

Theorem 4.4.4. Let � ⊆ C be a number �eld and let �/� be an elliptic curve such that End� (�) �
O for some order O inside an imaginary quadratic �eld  ⊆ � . Suppose that � (�tors) ⊆  ab. Let
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� := �O the ring class �eld of O, and �x U : A×
 
→ C× as in Theorem 4.4.2, with" =  . Then we

have that � (� [� ]) = � ·�� ,O for every invertible ideal � ⊆ O such that � ⊆ fi ∩ O, where fi ⊆ O 
is the conductor of the Hecke character i : A×

 
→ C× de�ned by i (B) := U (B) · B−1∞ .

We remark that Theorem 4.4.4 has been proved by Coates and Wiles (see [CW77, Lemma 3])
if O = O is a maximal order of class number one. Their result has been generalised in the PhD
thesis of Kuhman (see [Kuh78, Chapter II, Lemma 3]) to maximal orders O = O , under the
hypothesis that � ⊆ �� ,O .

Proof of Theorem 4.4.4. The containment �� ,O ⊆ � (� [� ]) is given by Theorem 3.4.1. Observe
moreover that  ⊆ � is an abelian extension, since � ⊆ � (�tors) ⊆  ab by assumption. Hence
to prove that � (� [� ]) ⊆ � · �� ,O it is su�cient to show that every � -torsion point of � is �xed
by [B,  ], for any B ∈ A×

 
such that [B,  ]

��
�� ,O

= Id. Moreover, it su�ces to consider only those
B ∈ A×

 
such that B∞ = 1 and B ∈ *� ,O , where*� ,O ≤ A× is the subgroup de�ned in (3.16). This

follows from the fact that [*� ,O,  ] = Gal( ab/�� ,O) and  ×∞ ⊆ ker( [·,  ]) ∩*� ,O by De�nition
3.3.1 and Lemma 3.3.4.

Fix then B ∈ *� ,O with B∞ = 1. To study the action of [B,  ] on � [� ], we �x an invertible
ideal a ⊆ O ⊆ C and a complex uniformisation b : C/a → � (C), which exists by [Shi94,
Proposition 4.8]. Take a torsion point % ∈ � [� ], and let I ∈ (a : � ) be any element such that
b (I) = % , where I ∈ (a : � )/a denotes the image of I in the quotient. Since B ∈  × · N�/ (A×� ),
we have that

% [B, ] = b (I) [B, ] = b
(
(U (B) B−1) · I

)
which follows from applying Theorem 4.4.2 with " =  . This can be applied because

B ∈ *� ,O ⊆ *O ⊆  × ·*O =  × · N�/ (A×� )

where the last equality is given by Lemma 3.3.4.
To conclude, it su�ces to show that B−1 · I = I and U (B) = 1. Notice that B−1 · a = a because

a ⊆ O is invertible and B? ∈ O×? for every rational prime ? ∈ N. The equality B−1 · I = I then
follows from the fact that, for every prime ? ∈ N, we have B−1? I − I ∈ a? because I ∈ (a : � ) and
B−1? ∈ 1 + � O? . To prove the equality U (B) = 1, notice that for every prime ? ∈ N we have

1 + � O? ⊆
∏
F |?
F∈"0

 

(1 + fi O F )

since � ⊆ fi ∩ O by assumption. This implies that i? (B? ) = 1 for every prime ? ∈ N. Indeed
B? ∈ 1 + � O? by the de�nition of*� ,O and for everyF ∈ "0

 
we have that iF (1 + fi O F ) = 1

because fi is the conductor of i . Since B∞ = 1 we get that U (B) = i (B) = 1, as was to be
shown. �

Theorem 4.4.4 has a partial converse, as we show in the following proposition.

Proposition 4.4.5. Let O be an order in an imaginary quadratic �eld  and � ⊇  be an abelian
extension. Let �/� be an elliptic curve with complex multiplication by the order O. Suppose that
there exists an invertible ideal � ⊆ O such that � (� [� ]) ⊆  ab and � ∩ Z = #Z with # > 2 if
9 (�) ≠ 0 or # > 3 if 9 (�) = 0. Then � (�tors) =  ab.

Proof. It is su�cient to prove that � (�tors) ⊆  ab, since the other inclusion follows from the
class �eld theory of imaginary quadratic �elds and the fact that  ⊆ � is abelian.

4.4 Minimality of division fields 95



Fix an embedding  ↩→ C and let b : C/Λ→ � (C) be a complex parametrization for �, where
Λ ⊆  is a lattice. Take f ∈ Aut(C/ ab). By [Shi94, Theorem 5.4] with B = 1, there exists a
complex parametrization b ′ : C/Λ→ � (C) such that the following diagram

� (C) � (C)

 /Λ

f

b b′

commutes. This means that f acts on �tors as an automorphism W = b ′ ◦ b−1 ∈ Aut(�) � O×. In
particular, for any point % ∈ � [� ] we have

W (%) = f (%) = % (4.14)

since by assumption � (� [� ]) ⊆  ab. Notice now that if 9 (�) ≠ 0, 1728 we have Aut(�) = {±1}
and equality (4.14) can occur for W = −1 only when � ∩ Z = 2Z. Similarly, if 9 (�) = 1728 or
9 (�) = 0 one sees that a non-trivial element of Aut(�) can possibly �x only points of � [2] or
points of � [2] ∪ � [3], respectively. Our assumptions on � allow then to conclude that W must be
the identity on �.

We have shown that every complex automorphism which �xes the maximal abelian extension
of  �xes also the torsion points of �. We conclude that � (�tors) ⊆  ab and this �nishes the
proof. �

We now want to connect the above discussion to the entanglement problems we are interested
in this chapter. More speci�cally, our goal in the �nal part of this section is to try to give an
answer to the following three questions:

Q1. Let O be an order in an imaginary quadratic �eld  with corresponding ring class �eld�O
and let 9 be a singular modulus relative to the order O. Is it true that there are in�nitely
many elliptic curves �/�O with 9 (�) = 9 (but non �O-isomorphic) for which the family
{�O (� [?∞])}? is linearly disjoint over �O?

Q2. Does the answer to Q1 change if we further impose the condition that the elliptic curves
� must satisfy �O (�tors) =  ab?

Q3. In case of a�rmative answer to Q1 or Q2, can the construction of the relevant elliptic
curves be made explicit?

As a starting point, it seems natural to ask whether, for a �xed order O in an imaginary quadratic
�eld  , there exists any elliptic curve � with complex multiplication by O and de�ned over
the ring class �eld �O with the property that �O (�tors) =  ab. To the best our knowledge,
this question was �rst discussed by Shimura in [Shi94, Page 217] and subsequently studied
by various authors, including Shimura himself [Shi71, § 5], Robert [Rob83] and more recently
Gurney [Gur, § 4]. One of the main outcomes of these investigations is the following: for every
order O in an imaginary quadratic �eld  ≠ Q(8), there exists an elliptic curve �/�O satisfying
�O (�tors) =  ab. Moreover, the same is true for orders O ⊆ Q(8) if and only if either O = Z[8]
or the conductor fO := |Z[8] : O| is divisible by at least one prime ? . 1 mod 4. However, none
of the available arguments seems to provide a way of �nding, when possible, an explicit elliptic
curve �/�O satisfying the property �O (�tors) =  ab. We therefore decided to give a di�erent
proof of the above result, which yields an explicit construction of in�nitely many such elliptic
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curves. As a bonus, in many cases the family of ?∞-division �elds associated to these elliptic
curves will be linearly disjoint over the ring class �eld.

Theorem 4.4.6. Let O be an order of discriminant ΔO ∈ Z inside an imaginary quadratic �eld  ,
and let 9 ∈ �O be the 9-invariant of any elliptic curve with complex multiplication by O. Then:

(a) if ΔO ≠ −45 2 for every 5 ∈ Z≥2 which is only divisible by primes ? ≡ 1 mod 4, there exist
in�nitely many elliptic curves �/�O , pairwise non-isomorphic over �O , with 9 (�) = 9 and
such that �O (�tors) =  ab;

(b) if ΔO = −45 2 for some 5 ∈ Z≥2 which is a product of primes ? ≡ 1 mod 4, then �O (�tors) ≠
 ab for every elliptic curve �/�O with 9 (�) = 9 .

Proof. We begin by proving (a). When O has class number 1 the statement is trivially true. We
may then assume that Pic(O) ≠ {1}, and in particular that ΔO < −4. We �x moreover �0/�O to
be any elliptic curve with 9 (�0) = 9 .

Suppose �rst of all that  ≠ Q(8), where 82 = −1. Let ? ∈ N be a prime satisfying

1 ? ≡ 3 mod 4, i.e. ? is inert in Q(8);

2 ? does not divide fO ·#�O/Q (f�0 ), where fO := |O : O| denotes the conductor of the order
O and f�0 ⊆ O�O is the conductor ideal of the elliptic curve �0;

3 ? splits completely in  .

Since we are assuming that  ≠ Q(8), there are in�nitely many such primes by Dirichlet’s
theorem on primes in arithmetic progression.

Let p ⊆ O be a prime ideal lying over ? and note that p is invertible by condition 2 . We
de�ne a new elliptic curve �p over �O , as follows. By Proposition 4.3.2 there is an isomorphism

Gal(�O (�0 [p])/�O) � (O/pO)× � F×?

where the last isomorphism follows from the fact that ? splits in  . In particular, the group
Gal(�O (�0 [p])/�O) is cyclic of order ?−1, so�O ⊆ �O (�0 [p]) contains unique sub-extensions
of degree (? − 1)/2 and of degree 2 over �O . The �rst one is necessarily the ray class �eld �p,O
(see Theorem 3.4.1), the second one is of the form �O (

√
U) for some element U = Up ∈ �×O .

By condition 1 , the integer ? − 1 is not divisible by 4, hence these two extensions must be
linearly disjoint over �O . We deduce that �O (�0 [p]) = �p,O (

√
U). We set �p := � (U)0 , where

�
(U)
0 denotes the twist of �0 by U ∈ �×O .
By Proposition 4.4.1, the Galois representation

d�p,p : Gal(�O (�p [p])/�O) ↩→ (O/pO)×

is not surjective. This in particular implies that �O (�p [p]) = �p,O . It follows then from
Proposition 4.4.5 that �O ((�p) tors ) =  ab.

We claim that the in�nitely many elliptic curves �p with p ⊆ O chosen as above, are pairwise
non-isomorphic over �O . To show this, it su�ces to prove that the �elds �O (

√
Up) associated to

the quadratic twists are pairwise distinct. But this follows from Proposition 4.3.1 and Proposition
4.3.2, which show that the extension �O ⊆ �O (

√
Up) is rami�ed at all primes of �O lying above

p and unrami�ed at all primes of �O which do not divide p · f�p · O�O , because �O (
√
Up) ⊆

�O (�0 [p]).
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Suppose now that  = Q(8). We show �rst of all how to obtain from �0 an elliptic curve
�1/�O such that �O ((�1)tors) = Q(8)ab. If there exists an integer # ∈ N such that # > 2
and �O (�0 [# ]) = �#,O , then Proposition 4.4.5 shows that we can take �1 = �0. Suppose on
the contrary that �O (�0 [# ]) ≠ �#,O for every # ∈ Z≥3, which implies by Lemma 3.1.1 and
Theorem 3.4.1 that

�# := Gal(�O (�0 [# ])/�O) � (O/#O)×

for every # ∈ Z≥3. Then we distinguish two cases:

• if the conductor fO := |Z[8] : O| is even, the isomorphism

O
4O �

Z[G]
(G2 + f2O, 4)

�
(Z/4Z) [G]
(G2)

holds. Hence the group�4 contains a subgroup & ⊆ �4 of index two, corresponding via
the following isomorphism

�4 �

(
O
4O

)×
�

(
(Z/4Z) [G]
(G2)

)×
�

{(
0 1

0 0

) ����� 0 ∈ (Z/4Z)×1 ∈ Z/4Z

}
⊆ GL2 (Z/4Z)

to the group of matrices of the form
( 1 1
0 1

)
with 1 ∈ Z/4Z. Therefore the sub-extension of

�O ⊆ �O (�0 [4]) �xed by & is given by �O (
√
U) for some U ∈ �O . Moreover �O (

√
U) ∩

�4,O = �O , because & does not contain the subgroup Gal(�O (�0 [4])/�4,O), since the
latter corresponds via the previous isomorphism to the group of matrices

{
±
( 1 0
0 1

)}
. Hence

�O (�0 [4]) = �4,O (
√
U), and Proposition 4.4.1 shows that the twisted elliptic curve �1 :=

�
(U)
0 has the property that �O (�1 [4]) = �4,O . Therefore, Proposition 4.4.5 shows that
�O ((�1)tors) = Q(8)ab;

• if fO is odd, our assumptions on O imply that there exists a prime ? | fO such that
? ≡ 3 mod 4. Then the group

�? �

(
O
?O

)×
�

(
F? [G]
(G2)

)×
�

{(
0 1

0 0

) ����� 0 ∈ F×?1 ∈ F?

}
⊆ GL2 (F? )

contains a subgroup of index two, corresponding to the group of matrices of the form(
02 1
0 02

)
with 0 ∈ F×? and 1 ∈ F? . The sub-extension of �O ⊆ �O (�0 [?]) �xed by this

subgroup is given by �O (
√
U) for some U ∈ �O . Moreover �O (

√
U) ∩ �?,O = �O , since

the degree [�?,O : �O] = ? (? − 1)/2 is odd. Hence �O (�0 [?]) = �?,O (
√
U), and again

Proposition 4.4.1 shows that the twisted elliptic curve �1 := � (U)0 has the property that
�O (�1 [?]) = �?,O . Therefore, Proposition 4.4.5 shows that �O ((�1)tors) = Q(8)ab.

Finally, we construct, by suitably twisting �1, in�nitely many elliptic curves �/�O which
are pairwise non-isomorphic over �O and share the property that �O (�tors) = Q(8)ab. To do
this, �x an integer < ∈ Z≥3 such that < | ΔO and �O (�1 [<]) = �<,O , which exists by the
previous discussion. Now, observe that for every prime ideal p ⊆ O which is coprime with
N�O/Q (f�1 ) · ΔO , the Galois group

Gal(�p,O/�O) �
(O/p)×
O× �

(Z[8]/pZ[8])×
{±1}
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is cyclic, and its order is even. Thus the extension �O ⊆ �p,O contains a unique quadratic
sub-extension, of the form �O (

√
Up) for some Up ∈ �O . Since p is invertible in O, Theorem

3.4.1 shows that �p,O ⊆ �O (� [p]), and Proposition 4.4.1 shows that the twisted elliptic curve
�p := � (Up)1 has the property that �O (�p [<]) ∩ �O (�p [p]) = �O (

√
Up). Thus �O (�p [<p]) =

�<p,O , and Proposition 4.4.5 shows that �O ((�p)tors) = Q(8)ab. To conclude our proof of (a), we
observe that the elliptic curves �p are pairwise non-isomorphic over �O , by the same argument
used in the case  ≠ Q(8).

We now prove (b). Fix a non-maximal order O ⊆ Z[8] whose conductor fO ∈ Z≥2 is divided
only by primes ? ≡ 1 mod 4. Then Ô =

∏
? (O ⊗Z Z? ) � Ẑ[8], because for each prime ? - fO

one evidently has that O ⊗Z Z? � Z? [8], and for each prime ? | fO , since ? ≡ 1 mod 4 by our
assumptions, one has that Z[8] ⊆ Z? , which shows that O ⊗Z Z? � Z? [8] also in this case. In
particular, for every # ∈ N we have that −1 ∈ (O/#O)× is a square.

Suppose now by contradiction that there exists an elliptic curve �/�O such that �O (�tors) =
Q(8)ab. Then Theorem 4.4.4 shows that �O (� [# ]) = �#,O for some integer # ∈ Z≥3. Using the
Galois representation d�,# de�ned in (3.2), one gets an embedding

] :
(O/#O)×
O×

(†)
� Gal(�#,O/�O) = Gal(�O (� [# ])/�O) ↩→ (O/#O)×

where (†) is the reciprocal of the isomorphism given by Theorem 3.3.6. Hence ] : (O/#O)×/O× ↩→
(O/#O)× is a section of the quotient map (O/#O)× � (O/#O)×/O×, and the short exact
sequence

1→ O× → (O/#O)× → (O/#O)×/O× → 1

splits. Thus there exists a map ℎ : (O/#O)× � O× which is a retraction of the inclusion
O× ↩→ (O/#O)×. In particular, one has that ℎ(−1) = −1, which yields a contradiction because
−1 ∈ O× = {±1} is not a square. This concludes the proof of (b). �

We can now give a partial answer to Question Q2.

Corollary 4.4.7. Let O be an order of discriminant ΔO < −3 in an imaginary quadratic �eld
 ≠ Q(8) and �x 9 ∈ �O to be the 9-invariant of any elliptic curve with complex multiplication by
O. Then there exist in�nitely many elliptic curves �/�O with 9 (�) = 9 but non-isomorphic over �O ,
and such that

• �O (�tors) =  ab;

• The family {�O (� [?∞])}? is linearly disjoint over �O .

Proof. The in�nitely many elliptic curves �p/�O with 9 (�p) = 9 obtained in the �rst part of the
proof of Theorem 4.4.6 are such that the corresponding p-division �eld is minimal. Since p ⊆ O
is a prime ideal and 9 (�p) ≠ 0, 1728, this means that the family {�O (�p [?∞])}? for ? prime
cannot be entangled over �O , since otherwise there would exist a division �eld �O (�p [# ])
such that [�O (�p [# ]) : �O] < #(O/#O)×/2, contradicting Theorem 3.4.1 (one could have
equivalently argued by applying Corollary 3.5.4). �

For any order O ⊆ Q(8) whose conductor is divided only by primes ? ≡ 1 mod 4 the statement
of Corollary 4.4.7 cannot hold true for any singular modulus relative to O, as it follows from
Theorem 4.4.6 (b). On the other hand, if O ⊆ Q(8) but its conductor is divisible by at least one
prime not splitting in Q(8), it is unclear to us whether the statement of the corollary remains
valid in this case. Certainly the proof of Theorem 4.4.6 explicitly constructs in�nitely many
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elliptic curves �/�O satisfying�O (�tors) =  ab. However, the construction shows that for almost
all these elliptic curves the family {�O (� [?∞])}? is entangled over �O . Finally, we remark that
the proof of Theorem 4.4.6 gives an explicit way of �nding the elliptic curves in the statement
of Corollary 4.4.7, thus answering a�rmatively to Question Q3 in this case.

If we now try to not impose anymore the assumption that torsion points should generate
abelian extensions of the CM �eld, we reach the following result.

Theorem 4.4.8. Let O be an order in an imaginary quadratic �eld  with Pic(O) ≠ {1} and �x
9 ∈ �O to be the 9-invariant of any elliptic curve with complex multiplication by O. Then there
exist in�nitely many elliptic curves �/�O with 9 (�) = 9 but non-isomorphic over �O , for which the
family {�O (� [?∞])}? is linearly disjoint over �O .

Proof. As we have already noticed at the beginning of the section, if an elliptic curve �/�O has
?∞-division �elds that are entangled over the ring class �eld, then by Proposition 4.4.5 the
curve � must satisfy �O (�tors) =  ab. Thus it is su�cient to show that, under the assumption
Pic(O) ≠ {1}, there are in�nitely many elliptic curves �/�O as in the statement of the theorem
with �O (�tors) ≠  ab.

If O is an order of discriminant ΔO = −45 2O whose conductor 5O ∈ Z≥2 is only divisible by
primes ? ≡ 1 mod 4, then by Theorem 4.4.6(b) all elliptic curves �/�O with complex multiplication
by O satisfy �O (�tors) ≠  ab. Hence the statement is trivially true in this case.

Suppose now that O is not as above. Fix an elliptic curve �0 de�ned over �O such that
9 (�0) = 9 and �O ((�0)tors) =  ab. We know that in�nitely many such elliptic curves �0 exist by
Theorem 4.4.6. We observe now that for every U ∈ �×O such that the extension  ⊆ �O (

√
U) is

not abelian, we have that
�O ((� (U)0 )tors) ≠  ab

where � (U)0 denotes the quadratic twist of �0 by U ∈ �×O . Indeed, Theorem 4.4.4 shows that
�O (�0 [# ]) = �#,O for some # ∈ N, and this combined with Proposition 4.4.1, implies that
�O (� (U)0 [# ]) = �#,O (

√
U) *  ab.

In order to conclude the proof it is thus su�cient to show that there exist in�nitely many
U ∈ �×O such that

√
U ∉  ab and the elliptic curves � (U)0 are pairwise not isomorphic over �O .

This is equivalent to say that there exist in�nitely many distinct quadratic extensions of �O
which are not abelian over  . This can be shown, for instance, as follows.

Since Pic(O) ≠ {1} we have that  ≠ �O . Hence the Chebotarëv density theorem shows
that there exists A ∈ Z≥2 and an in�nite set of prime ideals Λ0 = {p9 ⊆ O } 9 ∈N such that for
every index 9 ∈ N we have that 2 ∉ p9 and p9 · O�O = P1, 9 · · ·PA,9 where P1, 9 , . . . ,PA, 9 ⊆ O�O
are distinct prime ideals. Fix now an index 90 ∈ N (e.g. 90 = 0), and take any element U0 ∈
P1, 90 \ (P2

1, 90 ∪ P2, 90 ). Now, elementary rami�cation theory of quadratic extensions (see for
instance [Gra03, Chapter I, Theorem 6.3]) shows that the extension �O ⊆ �O (

√
U0) rami�es

at P1, 90 but not at P2, 90 . This implies that the extension  ⊆ �O (
√
U0) is not Galois, hence in

particular not abelian. Now, let Γ0 be the �nite set of prime ideals of O dividing N�O/ (U0)
and put Λ1 := Λ0 \ Γ0, which is still an in�nite set. Fix an index 91 ∈ N such that p91 ∈ Λ1 and
take any element U1 ∈ P1, 91 \ (P2

1, 91 ∪P2, 91 ). Again  ⊆ �O (
√
U1) is a non-abelian extension.

Moreover we have that �O (
√
U0) ≠ �O (

√
U1) since the prime P1, 91 rami�es in the extension

�O ⊆ �O (
√
U1), but the same prime does not ramify in �O ⊆ �O (

√
U0). Repeating this process,

we construct an in�nite set of pairwise distinct quadratic extensions {�O ⊆ �O (
√
U 9 ) : 9 ∈ N}

that are non-abelian over  . This concludes the proof. �
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Here is a summary of the entanglement investigations carried out in this section. Let O be
an order of discriminant ΔO ∉ {−3,−4,−16} in an imaginary quadratic �eld  and �x 9 ∈ Q
to be a singular modulus relative to O. Then there exist in�nitely many elliptic curves �/�O
with 9 (�) = 9 but non-isomorphic over �O , for which the family {�O (� [?∞])}? is linearly
disjoint over �O . This gives a partial answer to Question Q1. Moreover, if O * Q(8), there are
in�nitely many such elliptic curves satisfying the additional condition �O (�tors) =  ab. This
gives a partial answer to Question Q2. Finally, the construction of the aforementioned elliptic
curves is explicit, thus giving an answer to question Q3.

4.5 Entanglement in the family of division fields
of CM elliptic curves over Q

Let �/Q be an elliptic curve with complex multiplication by an order in an imaginary quadratic
�eld  . The aim of this section is to explicitly determine the image of the natural map

Gal( (�tors)/ ) ↩→
∏
@

Gal( (� [@∞])/ ) (4.15)

where the product runs over all rational primes @ ∈ N and  (� [@∞]) denotes the compositum of
the @-power division �elds of �/ . In other words, we want to analyse the entanglement in the
family of Galois extensions { (� [@∞])}@ over  . The conclusion of this study will be Theorem
4.5.2, which provides a complete description of the image of (4.15) for all CM elliptic curves �/Q
such that 9 (�) ∉ {0, 1728}. Observe that there is essentially no di�erence in considering the
division �elds of the elliptic curve �/Q and of its base change �/ , because Q(� [=]) =  (� [=])
for every = > 2 as we will prove in Theorem 5.6.2. In particular, the family of division �elds
{Q(� [@∞])}@ is always entangled over Q, but there are elliptic curves for which it is linearly
disjoint over  , as we will see in Theorem 4.5.2.

We brie�y outline the strategy of our proof: since � is de�ned over Q we have that |Pic(O)| =
[Q( 9 (�)) : Q] = 1 (see [Cox13, Proposition 13.2]) which implies that the elliptic curve � has
complex multiplication by one of the thirteen imaginary quadratic orders O of class number
1, listed in [Cox13, Theorem 7.30]. For each of these orders O, we �rst �nd an elliptic curve
�0/Q with complex multiplication by O such that |f�0 | ∈ N is minimal among all the conductors1

of elliptic curves de�ned over Q which have complex multiplication by O. We then proceed
to compute the full entanglement in the family of division �elds of �0/ , using Theorem 4.3.4,
Theorem 4.4.4, and Proposition 4.5.1. Since O is an order of class number 1 and 9 (�) ∉ {0, 1728},
we have that � is a quadratic twist of �0. We then use Proposition 4.4.1, which describes
how Galois representations attached to CM elliptic curves behave under quadratic twisting, to
determine the complete entanglement in the family of division �elds of �/ .

We begin by deriving some consequences of Proposition 4.4.1 when Pic(O) = 1 and the elliptic
curve �/ is the base change to the imaginary quadratic �eld  = �O of an elliptic curve de�ned
over Q. To do this, we need a formula originally due to Deuring that relates the conductor of a
CM elliptic curve de�ned over Q to the conductor of the unique Hecke character i : A×

 
→ C×

associated to its base change over  by Theorem 4.4.2.

Proposition 4.5.1 (Deuring). Let O ⊆  be an order inside an imaginary quadratic �eld  .
Let � be an elliptic curve de�ned over Q( 9 (�)) with complex multiplication by O. Denote by

1The symbol |f� | ∈ N denotes the positive generator of the conductor ideal f� ⊆ Z of an elliptic curve �/Q
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i : A×
�O
→ C× the unique Hecke character associated by Theorem 4.4.2 to the base change of � over

 ( 9 (�)) = �O . Then, letting 9 = 9 (�), one can write the conductor f� ⊆ OQ( 9) of � as

f� = N ( 9)/Q( 9) (fi ) · X ( 9)/Q( 9)

where N ( 9)/Q( 9) (fi ) ⊆ OQ( 9) denotes the relative norm of the conductor fi ⊆ O ( 9) of the
Hecke character i and X ( 9)/Q( 9) ⊆ OQ( 9) denotes the relative discriminant ideal associated to the
quadratic extension Q( 9) ⊆  ( 9).

Proof. A modern proof of this formula can be obtained using [Mil72, Theorem 3] and [ST68,
Theorem 12]. This is detailed in [Pen20, Appendix A]. �

We go back to study the consequences of Proposition 4.4.1. Let �/ be the base change to an
imaginary quadratic �eld  = �O of an elliptic curve �/Q of conductor f� ⊆ Z and with complex
multiplication by an order O of class number one and discriminant ΔO < −4. Fix also U ∈ Q×.
Under these assumptions we may assume that U = Δ where Δ = Δ� ∈ Z is the fundamental
discriminant associated to some quadratic extension Q ⊆ � . Since � (UV) = (� (U) ) (V) for any
U, V ∈ Q×, we reduce the study of the Galois representation d� (Δ) ,?= for any prime ? ∈ Z≥1 and
any = ∈ N to the following cases:

T.1 Δ = (−1) (@−1)/2 @ for some prime@ ∈ Z≥3 with@ - ? f� . In this case (
√
Δ)∩ (� [?=]) =  .

Indeed any prime q ⊆ O such that q | @O does not ramify in  ⊆  (� [?=]), as follows
from Proposition 4.3.1 because @ - ? f� . On the other hand, any prime q | @O rami�es
in  ⊆  (

√
Δ) since Proposition 4.5.1 shows that @ - Δ , where Δ ∈ Z<0 denotes the

absolute discriminant of the imaginary quadratic �eld  . Thus Proposition 4.4.1 implies
that d� (Δ) ,?= will have maximal image independently from the behaviour of d�,?= ;

T.2 ? ≥ 3 and Δ = (−1) (?−1)/2 ? . In this case class �eld theory shows that

Q(
√
Δ) ⊆ Q(`? ) ⊆ �?=,O

where for every< ∈ N we let `< ⊆ Q denote the group of<-th roots of unity. Hence
Proposition 4.4.1 implies that d� (Δ) ,?= has maximal image if and only if d�,?= does;

T.3 Δ ∈ {−4,−8, 8} and 2 - ? f� . In this case  (
√
Δ) ∩  (� [?=]) =  , as in T.1 , hence

Proposition 4.4.1 shows that d� (Δ) ,?= will have maximal image independently from the
behaviour of d�,?= ;

T.4 Δ ∈ {−4,−8, 8} and ? = 2. In this case Q(
√
Δ) ⊆ Q(` |Δ |) ⊆ � |Δ |,O by class �eld theory.

Hence Proposition 4.4.1 implies that for every = ∈ N such that 2= ≥ |Δ| the representation
d� (Δ) ,2= has maximal image if and only if d�,2= does, similarly to what we proved in T.2 .

We are now ready to study the entanglement of division �elds of CM elliptic curves � de�ned
over Q such that 9 (�) ∉ {0, 1728}.

First of all, assume that � has complex multiplication by an order O with gcd(ΔO, 6) = 1. Here
ΔO := f2O Δ denotes the discriminant of O, where Δ ∈ Z denotes the absolute discriminant of
 and fO := [O : O] denotes the conductor of O. Since Pic(O) = {1} we have that O = O and
ΔO = Δ = −? where ? ∈ N is a prime number such that ? ≥ 7 and ? ≡ 3 mod 4 (see [Cox13,
Theorem 7.30]). Moreover � = �

(Δ)
0 for some fundamental discriminant Δ ∈ Z, where �0 is one
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of the two elliptic curves with 9 (�0) = 9 (�) appearing in Table 4.1, which lists the CM elliptic
curves de�ned over Q whose conductor |f� | ∈ N is minimal among their twists.

Let us study the division �elds of �0, as a �rst step towards the analysis of the division �elds
of �. Theorem 4.3.4 provides a decomposition

Gal( ((�0)tors)/ ) �
∏
@

Gal( (�0 [@∞])/ ) (4.16)

where the product runs over all the rational primes@ ∈ N. Indeed in this case the set (�0 appearing
in Theorem 4.3.4 consists of the single prime ? because |f�0 | = ?2 as follows from an inspection
of Table 4.1. The isomorphism (4.16) shows that the family of division �elds { (�0 [@∞])}@ is
linearly disjoint over  , where @ ∈ N runs over all the rational primes. Proposition 4.3.2 implies
also that Gal( (�0 [@<])/ ) � (O/@<O)× for every prime @ ≠ ? and every < ∈ N. On the
other hand we have that Gal( (�0 [?<])/ ) � (O/?<O)×/{±1} for every< ∈ N. Indeed, it
follows from Proposition 4.5.1 that fi0 = p, where p ⊆ O is the unique prime lying above ?
and i0 : A× → C× is the unique Hecke character associated to �0 by Theorem 4.4.2. Hence
Theorem 4.4.4 shows that  (�0 [?<]) = �?<,O for every< ∈ N, where �?<,O is the ray class
�eld of  modulo ?< because O = O . Hence we can conclude that Gal( (�0 [?<])/ ) �
(O/?<O)×/{±1} using Theorem 3.3.6.

Let us now go back to the division �elds of � = �
(Δ)
0 . We can assume that ? - Δ because

otherwise Δ = −? Δ′ for some fundamental discriminant Δ′ ∈ Z, hence � � �
(Δ′)
0 since

√−? ∈  . Here the symbol � means that the two elliptic curves � and � (Δ
′)

0 , which are de�ned
over Q, become isomorphic when base-changed to  . Observe that |f� | = (? Δ)2, which follows
from (4.13) and [Ulm16, § 10, Proposition 1] because |f�0 | is coprime with Δ. Now, Theorem
4.3.4 gives

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ )
with the product running over the rational primes @ ∈ N such that @ ∉ ( , where in this case
the �nite set ( = (� ⊆ N appearing in Theorem 4.3.4 consists uniquely of the primes dividing
|f� | = (? Δ)2. Moreover, Gal( (� [ℓ<])/ ) � (O/ℓ<O)× for every prime ℓ ∈ N and every
< ∈ N, since T.1 and T.3 show that for every < ∈ N the Galois representation d�,ℓ< has
maximal image. On the other hand, Proposition 4.4.1 shows that  (� [?<]) = �?<,O (

√
Δ) and

 (� [?<]) ∩  (� [Δ]) =  (
√
Δ)

for every< ∈ Z≥1. Hence the family of division �elds { (� [@∞])}@∈( is entangled over  , and
for every collection of integers {0@}@∈( ⊆ Z≥1 such that 02 ≥ 3 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}

where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .
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Let us now consider orders O such that gcd(ΔO, 6) ≠ 1. The analysis of the division �elds of
an elliptic curve �/Q having complex multiplication by O proceeds similarly to what happened
before, with the only exception of the order O = Z[

√
−3]. Indeed if

O ∈ {Z[3Z3],Z[28],Z[
√
−2],Z[

√
−7]}

where Z3 := (−1 +
√
−3)/2 and 8 :=

√
−1, then all the elliptic curves �0 appearing in Table 4.1

with complex multiplication by O share the property that |f�0 | is a power of the unique rational
prime ? ∈ N which rami�es in the quadratic extension Q ⊆  . Hence Theorem 4.3.4 provides a
decomposition

Gal( ((�0)tors)/ ) �
∏
@

Gal( (�0 [@∞])/ )

where the product runs over all rational primes @ ∈ N, because in this case the �nite set
(�0 ⊆ N appearing in Theorem 4.3.4 consists of the single prime ? . This shows that the
division �elds of �0 are linearly disjoint over  . Moreover, Proposition 4.3.2 implies that
Gal( (�0 [@<])/ ) � (O/@<O)× for every rational prime @ ≠ ? and every< ∈ N. On the other
hand, Proposition 4.5.1 shows that fi0 = p: is a power of the unique prime ideal p ⊆ O lying
over ? , with : ≤ 2 if O ∉ {Z[28],Z[

√
−2]} and : ≤ 6 otherwise. Hence Theorem 4.4.4 and

Theorem 3.3.6 give Gal( (�0 [?<])/ ) � (O/?<)×/{±1} for every< ∈ N such that< ≥ 1 if
O ∉ {Z[28],Z[

√
−2]} and< ≥ 3 otherwise.

Let now �/Q be any elliptic curve with complex multiplication by O. Since 9 (�) = 9 (�0) ∉
{0, 1728} we know that � = �

(Δ)
0 for some fundamental discriminant Δ ∈ Z. If O = Z[3Z3] or

O = Z[
√
−7] we can assume that ? - Δ because √−? ∈  . Hence Theorem 4.3.4 shows that

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ )
with the product running over the rational primes @ ∈ N such that @ ∉ ( , where in this case the
�nite set ( = (� ⊆ N appearing in Theorem 4.3.4 consists uniquely of the primes dividing |f� | =
(? Δ)2. Exactly as before T.1 and T.3 show that Gal( (� [ℓ<])/ ) � (O/ℓ<O)× for every
prime ℓ ∈ N and every< ∈ N. Moreover, Proposition 4.4.1 shows that  (� [?<]) = �?<,O (

√
Δ)

and  (� [?<]) ∩  (� [Δ]) =  (
√
Δ) for every < ∈ Z≥1. Hence the family of division �elds

{ (� [@∞])}@∈( is entangled over  , and for every collection of integers {0@}@∈( ⊆ Z≥1 with
02 ≥ 3 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}
where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .

Studying the entanglement in the family of division �elds of � becomes slightly more compli-
cated if O ∈ {Z[28],Z[

√
−2]}. First of all, note that there exists a unique Δ2 ∈ {1,−4,−8, 8} such

that Δ = Δ2 Δ
′ where Δ′ ∈ Z is an odd fundamental discriminant. We can now write � = �

(Δ′)
1

where �1 := � (Δ2)
0 . One can check that if O = Z[

√
−2] then �1 is isomorphic to one of the four
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elliptic curves with complex multiplication by Z[
√
−2] appearing in Table 4.1. On the other

hand, if O = Z[28] then �1 can be either one of the two elliptic curves

~2 = G3 − 44G − 112
~2 = G3 − 44G + 112 (4.17)

or one of the two elliptic curves with complex multiplication by Z[28] appearing in Table 4.1. In
each case it is not di�cult to see that |f�1 | ∈ N is a power of 2, which shows that the division
�elds of �1 behave similarly to the division �elds of �0. More precisely, Theorem 4.3.4 gives

Gal( ((�1)tors)/ ) �
∏
@

Gal( (�1 [@∞])/ )

where the product runs over all the rational primes @ ∈ N. This shows that the division �elds of
�1 are linearly disjoint over  . Moreover, Proposition 4.3.2 shows that Gal( (�1 [@<])/ ) �
(O/@<O)× for every rational prime @ ≥ 3 and every< ∈ N, and a combination of Proposition
4.5.1 and Theorem 4.4.4 gives Gal( (�1 [2<])/ ) � (O/2<O)×/{±1} for every< ∈ N such that
< ≥ 3. This concludes the analysis of the division �elds of � = �1 if Δ′ = 1. On the other hand,
if Δ′ ≠ 1 then |f� | = |f�1 | (Δ′)2 where |f�1 | is a power of 2. Hence Theorem 4.3.4 shows that

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ )
with the product running over the rational primes @ ∈ N such that @ ∉ ( where ( = (� denotes
the �nite set appearing in Theorem 4.3.4, which in this case consists of the primes dividing 2 ·Δ′.
Similarly to what happened before, T.1 and T.4 show that Gal( (� [ℓ<])/ ) � (O/ℓ<O)× for
every prime ℓ ∈ N and every< ∈ N. Moreover, Proposition 4.4.1 gives  (� [2<]) = �2<,O (

√
Δ′)

and  (� [2<]) ∩  (� [Δ′]) =  (
√
Δ′) for every < ≥ 3. Hence the family of division �elds

{ (� [@∞])}@∈( is entangled over  , and for all {0@}@∈( ⊆ Z≥1 with 02 ≥ 3 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}

where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .

We are left with the analysis of the entanglement between the division �elds of an elliptic
curve � de�ned over Q which has complex multiplication by O = Z[

√
−3]. As usual � = �

(Δ)
0 for

some fundamental discriminant Δ ∈ Z, where �0 is one of the two elliptic curves with complex
multiplication by Z[

√
−3] appearing in Table 4.1. In contrast to what we have seen before, here

|f�0 | = 22 32 is not a prime power. This forces us to study separately the division �elds (�0 [2∞])
and  (�0 [3∞]). First of all, one can compute that for any of the two possibilities for �0, given by
the Weierstrass equations ~2 = G3 − 15G + 22 and ~2 = G3 − 135G − 594, the representation d�0,3
is not surjective, i.e.  (�0 [3]) = �3,O =  ( 3√2). This clearly shows that d�0,3= is not surjective
for every = ∈ Z≥1. Moreover, d�0,2= is surjective for every = ∈ Z≥1. Indeed, Theorem 3.3.6 and
Theorem 3.4.1 imply that����( O2=O )×���� = [�2= 3,O :  ]

[�3,O :  ]
=
[�2= 3,O :  ]
[ (�0 [3]) :  ]

≤ [ (�0 [2
= 3]) :  ]

[ (�0 [3]) :  ]
≤ [ (�0 [2=]) :  ]
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hence Lemma 3.1.1 shows that every inequality is actually an equality, and d�0,2= is surjective.
This gives that  (�0 [2=]) ∩ (�0 [3<]) =  for every =,< ∈ Z≥1. These considerations together
with Theorem 4.3.4 and Proposition 4.3.2 give a decomposition

Gal( ((�0)tors)/ ) �
∏
@

Gal( (�0 [@∞])/ )

where the product runs over all rational primes @ ∈ N. Moreover, for every< ∈ N we get

Gal( (�0 [@<])/ ) �
{
(O/@<O)×, if @ ≠ 3
(O/3<O)×/{±1}, if @ = 3

and the family of division �elds { (� [@∞])}@ is linearly disjoint over  .

Let us go back to the division �elds of � = �
(Δ)
0 , where we can assume that 3 - Δ because√

−3 ∈  . Write now Δ = Δ2 Δ
′ as above, where Δ2 ∈ {1,−4,−8, 8} and Δ′ ∈ Z an odd

fundamental discriminant, and let �1 := �
(Δ2)
0 . Then T.4 implies that d�1,2= is surjective for

every = ≥ 3. Moreover, d�1,3= is surjective for every = ≥ 1, which follows from Proposition 4.4.1
after observing that  (�0 [3]) ∩  (

√
Δ2) =  because [ (�0 [3]) :  ] = 3. These considerations,

together with Theorem 4.3.4, show that

Gal( ((�1)tors)/ ) �
©­«
∏
@∉(

Gal( (�1 [@∞])/ )
ª®¬ × Gal( (�1 [(∞])/ )

with the product running over the rational primes @ ∈ N such that @ ∉ ( where ( = {2, 3} and
 (�1 [(∞]) denotes the compositum of the division �elds  (�1 [2∞]) and  (�1 [3∞]). Moreover,
T.1 , T.2 and the previous considerations show that Gal( (�1 [ℓ<])/ ) � (O/ℓ<O)× for every

prime ℓ ∈ N and every< ∈ N. Now, Proposition 4.4.1 shows that  (�1 [3<]) = �3<,O (
√
Δ2) and

 (�1 [3<]) ∩  (�1 [Δ2]) =  (
√
Δ2) for every< ∈ Z≥1. Hence  (�1 [2∞]) and  (�1 [3∞]) are

entangled over  , and for every pair of integers 0, 1 ∈ Z≥1 with 0 ≥ 3 we have that

Gal(!/ ) � (O/2
0O)× × (O/31O)×
{±1}

where ! denotes the compositum of  (�1 [20]) and  (�1 [31]).

To conclude our analysis of the division �elds of � = �
(Δ)
0 we can observe that � = �

(Δ′)
1 and

that gcd(Δ′, f�1 ) = gcd(Δ′, 6) = 1. Hence Theorem 4.3.4 gives the decomposition

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ )
with the product running over the rational primes @ ∈ N such that @ ∉ ( where ( ⊆ N denotes
the �nite set of primes dividing 6Δ′. Now, T.1 and T.2 show that Gal( (� [ℓ<])/ ) �
(O/ℓ<)× for all rational primes ℓ ∈ Z and all< ∈ N. Moreover, Proposition 4.4.1 shows that
 (� [3<]) ∩  (� [Δ]) =  (

√
Δ) and  (� [3<]) = �3<,O (

√
Δ) for every < ∈ Z≥1. Hence the
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family { (� [@∞])}@∈( is entangled over  , and for every collection of integers {0@}@∈( ⊆ Z≥1
such that 02 ≥ 3 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}
where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .

The following theorem summarises the previous discussion. Recall that, for every rational
prime @ ∈ N, we denote by  (� [@∞]) the compositum of all the division �elds { (� [@=])}=∈N
associated to an elliptic curve �, and for every �nite set of primes ( ⊆ N we denote by  (� [(∞])
the compositum of all the �elds { (� [@∞])}@∈( .

Theorem 4.5.2. Let O be an order inside an imaginary quadratic �eld  such that Pic(O) = 1
and ΔO < −4. We introduce the following notation:

= = =(O) :=
{
4, if O ∈ {Z[28],Z[

√
−2]}

2, otherwise
and

? ∈ N the unique prime ramifying in Q ⊆  ,
p ⊆ O the unique prime lying above ?.

Label all the elliptic curves de�ned over Q which have complex multiplication by O as {�A }A ∈Z≥1
in such a way that |f�A | ≤ |f�A+1 | for every A ∈ Z≥1. Then |f�= | < |f�=+1 | and the properties of the
division �elds associated to the elliptic curve �A depend on A as follows:

A ≤ = Disjointness the family { (�A [@∞])}@ , where @ ∈ N runs over all the rational primes,
is linearly disjoint over  ;

Maximality Gal( (�A [@<])/ ) � (O/@<O)× for every prime @ ≠ ? and every< ∈ N;

Minimality Gal( (�A [?<])/ ) � (O/?<O)×/{±1} for every< ≥ = − 1;
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A > = Twist there exists a unique A0 ≤ = and a unique fundamental discriminant ΔA ∈ Z
coprime with ? such that �A = �

(ΔA )
A0 ;

Disjointess there is a decomposition

Gal( ((�A )tors)/ ) �
©­«
∏
@∉(A

Gal( (�A [@∞])/ )
ª®¬ × Gal( (�A [(∞])/ )

where (A ⊆ N denotes the �nite set of primes dividing ? · ΔA and the product runs
over the rational primes @ ∈ N such that @ ∉ (A . This shows that the family

{ (�A [(∞A ]) } ∪ { (�A [@∞]) }@∉(A

is linearly disjoint over  ;

Entanglement for every< ∈ N such that< ≥ = − 1 we have that

 (�A [?<]) = �?<,O (
√
ΔA ) and  (�A [?<]) ∩  (�A [ΔA ]) =  (

√
ΔA )

which shows that the family { (�A [@∞])}@∈(A is entangled over  ;

Maximality Gal( (�A [@<])/ ) � (O/@<O)× for every prime @ ∈ N and every< ∈ N;

Minimality for every collection of integers {0@}@∈(A ⊆ Z≥1 with 02 ≥ 3 we get

Gal(!/ ) �
∏
@∈(A (O/@0@O)

×

{±1}

where ! is the compositum of all the division �elds  (�A [@0@ ]) for @ ∈ (A .

Notice that Theorem 4.5.2 implies that the isomorphism (4.10) appearing in Theorem 4.3.4
does not hold in general if the set ( does not contain all the primes dividing the integer �� :=
fO Δ� #�/Q (f�) ∈ Z. To see this, �x an imaginary quadratic order O having trivial class group
Pic(O) = {1}, conductor fO ≠ 2 and discriminant ΔO < −4. Let = = =(O) ∈ {2, 4} be as in
Theorem 4.5.2. Then, if we take � = �A for any A > =, Theorem 4.5.2 shows that (4.10) does not
hold for any set ( which does not contain the set (A appearing in Theorem 4.5.2. Since this set
(A coincides with the set of primes dividing the integer �� = ��A , this proves our claim.

We conclude with the following immediate consequence of Theorem 4.5.2.

Corollary 4.5.3. Let O be an order of discriminant ΔO < −4 inside an imaginary quadratic �eld
 , and suppose that Pic(O) = {1}. Let �/Q be an elliptic curve with complex multiplication by
O. Then the family of division �elds { (� [?∞])}? , where ? runs over the rational primes ? ∈ N,
is linearly disjoint over  if and only if � is isomorphic over  to one of the thirty elliptic curves
appearing either in Table 4.1 or in (4.17).
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Δ fO 9 (�) |f� | Equations

−3 1 0 33 ~2 + ~ = G3 − 7
~2 + ~ = G3

2 24 33 53 2232 ~2 = G3 − 15G + 22
~2 = G3 − 135G − 594

3 −215 3 53 33 ~2 + ~ = G3 − 30G + 63
~2 + ~ = G3 − 270G − 1708

-4 1 26 33 25 ~2 = G3 − G
~2 = G3 + 4G

2 23 33 113 25 ~2 = G3 − 11G − 14
~2 = G3 − 11G + 14

-7 1 −33 53 72 ~2 + G~ = G3 − G2 − 2G − 1
~2 + G~ = G3 − G2 − 107G + 552

2 33 53 173 72 ~2 + G~ = G3 − G2 − 37G − 78
~2 + G~ = G3 − G2 − 1822G + 30393

-8 1 26 53 28
~2 = G3 − G2 − 3G − 1
~2 = G3 + G2 − 3G + 1
~2 = G3 − G2 − 13G + 21
~2 = G3 + G2 − 13G − 21

-11 1 −215 112 ~2 + ~ = G3 − G2 − 7G + 10
~2 + ~ = G3 − G2 − 887G − 10143

-19 1 −215 33 192 ~2 + ~ = G3 − 38G + 90
~2 + ~ = G3 − 13718G − 619025

-43 1 −218 33 53 432 ~2 + ~ = G3 − 860G + 9707
~2 + ~ = G3 − 1590140G − 771794326

-67 1 −215 33 53 113 672 ~2 + ~ = G3 − 7370G + 243528
~2 + ~ = G3 − 33083930G − 73244287055

-163 1 −218 33 53 233 293 1632 ~2 + ~ = G3 − 2174420G + 1234136692
~2 + ~ = G3 − 57772164980G − 5344733777551611

Table 4.1: Minimal Weierstrass equations of CM elliptic curves de�ned over Q having the smallest con-
ductor |f� | amongst all their twists, where |f� | ∈ N denotes the unique positive generator of
the conductor ideal f� ⊆ Z.
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5Cyclic reduction of elliptic curves

Let � be an elliptic curve de�ned over a number �eld � , and p a prime of � for which � has good
reduction. Then the point group �p (:p) of the reduced curve over the residue class �eld :p is a
�nite abelian group on at most two generators [Sil09, III, Corollary 6.4]. If one generator su�ces,
we call p a prime of cyclic reduction of �. The question considered in this chapter is whether
the set (�/� of primes of cyclic reduction of � is in�nite and, if so, whether it has a (natural)
density inside the set of all primes of � . Serre [Ser78] observed in 1977 that this problem is
very similar to Artin’s primitive root problem, which asks for the density of the set of primes
? ∈ N for which a �xed element 0 ∈ Q× is a primitive root modulo ? . In this situation, these
primes are (up to �nitely many primes of “bad reduction” for 0) the primes ? that do not split
completely in any of the �elds �ℓ := Q(Zℓ , ℓ

√
0) = SplitQ (- ℓ − 0) for ℓ ∈ Z prime. We review in

more details this problem and its conjectural solution given by Artin in Section 5.1. From a
correspondence between Artin and the Lehmer’s family [ALL] we learn that in the very �rst
formulation of his heuristics, Artin overlooked an important point: for some values of 0 ∈ Q×,
the family {�ℓ }ℓ can be entangled over Q and this means that the splitting conditions at the
various �elds �ℓ may not be independent. In order to �nd the exact heuristic, one has to multiply
Artin’s “naive density” by a rational correction factor depending on 0. This situation is not an
hapax legomenon but occurs in many similar density questions, including the cyclic reduction
problem considered in this chapter. A general conceptual way of dealing with correction factors
to primitive-root densities has been found in [LSM14] and goes under the name of character-sum
method. We review a special case of this method in Section 5.2. Having prepared the ground,
in Section 5.3 we �nally begin to discuss the cyclic reduction problem after which this chapter
is named. We prove that, under the assumption of the Generalized Riemann Hypothesis, the
density of the set (�/� exists, and it can be written as an inclusion-exclusion sum involving the
degrees of the # -division �elds of �. However, this way of expressing the density is in many
ways unsatisfactory as, for instance, it does not even allow to tell when this density vanishes.
We then seek for alternative expressions and, to this aim, it is convenient to divide the discussion
according to whether the elliptic curve � has complex multiplication or not. The non-CM case is
studied in Section 5.4 and is accompanied by several numerical illustrations. If � does not have
complex multiplication, the density of the set (�/� can be expressed as a corrected naive density
in a way that is reminiscent of Artin’s primitive root conjecture. We begin the investigation
of the CM case in Section 5.5, where we show that the density of (�/� exists unconditionally.
Unlike the non-CM case however, the inclusion-exclusion sum representing this density cannot
be expressed as a corrected in�nite product in general. We detail upon this in Section 5.6 where
it is proved, among other things, that the density of (�/� never vanishes if � = Q( 9 (�)) is the
�eld of moduli of �. Finally, in Section 5.7 we reap the fruits of the work done in Chapter 4
and we compute the cyclic reduction densities of all the CM elliptic curves de�ned over Q with
9 (�) ≠ 0, 1728.
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5.1 Artin’s primitive root conjecture
As a motivation, we begin the chapter by describing Artin’s primitive root problem and the

heuristic argument that led to Artin’s primitive root conjecture. For an account of the rich and
interesting story that brought to the formulation of the present form of the conjecture the reader
can consult [Ste03, Section 2].

Given a prime number ? ∈ N, we say that a rational number 0 ∈ Q is a primitive root modulo
? if ? does not divide neither the numerator nor the denominator of 0 and 〈0 mod ℓ〉 = F×ℓ . For
instance, 2 is a primitive root modulo 5 but not modulo 7, and for every prime number ? one
can decide in a �nite amount of steps whether 2 is a primitive root modulo ? or not. After
seeking for a certain number of primes for which 2 is a primitive root, one is certainly led to the
following natural, but highly non-trivial, question: is it true that 2 is a primitive root modulo
in�nitely many primes? Since 2 does not have any particular role as an integer, we can replace
it by any 0 ∈ Q. Then the primitive root problem for 0 asks whether there exist in�nitely many
primes ? ∈ N such that 0 is a primitive root modulo ? . Of course, if 0 = ±1 or 0 is a square then
0 can be a primitive root only modulo ? = 2. With the exception of these trivial cases, it is not
known at present an unconditional answer to the primitive root problem for any other 0 ∈ Q.

In 1927 Artin [Art65, pp. viii-ix] formulated some heuristics suggesting that the set of primes
? for which a given rational number 0 is a primitive root modulo ? has a natural density, and
he even proposed an explicit conjectural density for this set. His argument goes as follows: �x
0 ∈ Q\ {0,±1} and let ? be a prime non dividing neither the numerator nor the denominator of 0.
The number0 being a primitive root modulo ? means by de�nition that �? := |F×? : 〈0 mod ?〉| = 1.
On the other hand, a prime ℓ divides the index �? if and only if 0 belongs to the group of ℓ-th
powers in F×? , in which case there are exactly ℓ elements whose ℓ-th power is equal to 0. In
other words, ℓ divides �? if and only if the polynomial - ℓ − 0 ∈ F? [- ] has all its roots in F? .
It follows that 0 is a primitive root modulo ? if and only if ? does not split completely in any
extension Q ⊆ �ℓ := SplitQ (- ℓ − 0) = Q(Zℓ , ℓ

√
0) for every prime ℓ < ? . Therefore, we want to

understand whether the set (0 of primes ? that do not split completely in any of the extensions
Q ⊆ �ℓ has a density X ((0). If one looks at a �xed prime ℓ ∈ N, then by the Chebotarëv’s density
theorem the density of the set of primes that do not split completely in Q ⊆ �ℓ equals

Xℓ = 1 − 1
[�ℓ : Q]

and, assuming that the splitting conditions at the various primes ℓ are independent, it seems
reasonable to expect the heuristic density

X ((0) =
∏
ℓ

Xℓ =
∏
ℓ

(
1 − 1
[�ℓ : Q]

)
. (5.1)

Note that, with only �nitely many exceptions, we have [�ℓ : Q] = ℓ (ℓ − 1), so the expected
density (5.1) is a rational multiple of the universal Artin constant

�∞ =
∏
ℓ

(
1 − 1

ℓ (ℓ − 1)

)
≈ 0.3739558. (5.2)

We need however to be careful with the above reasoning, since the assumption on the indepen-
dence of the splitting conditions in Q ⊆ �ℓ is not always satis�ed. This is better explained with
an example (due to Artin himself).
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Suppose 0 = 5. Then the �eld �2 = Q(
√
5) is contained in the cyclotomic �eld Q(Z5), and so

we have the inclusion �2 ⊆ �5. This means that in the moment we impose the condition of not
splitting completely in �2, we automatically impose the condition of not splitting completely
in �5. In order to take this containment into account, we need to scale the density in (5.1) by a
factor 25 = 20/19. This adjustment is numerically very visible, as Artin himself noticed (“So I
was careless, but the machine caught up with me”).

The moral of this example is that in expression (5.1) we have to introduce a correction factor
which takes into account the entanglement in the family F = {�ℓ }ℓ . One can prove that the
family F is entangled over Q if and only if the discriminant Δ = Δ(�2/Q) is odd, in which case
the only source of entanglement is given by the inclusion �2 ⊆ � |Δ | . We will see in Section 5.2
that this yields the corrected heuristic density

X ((0) = �0 ·
∏
ℓ

(
1 − 1
[�ℓ : Q]

)
where �0 =

{
1 +∏

ℓ |2Δ
−1

[�ℓ :Q]−1 if Δ ≡ 1 mod 4,
1 if Δ ≡ 0 mod 4.

(5.3)

Hooley [Hoo67] proved in 1967 that, under the assumption of the Generalized Riemann Hypoth-
esis for the Dedekind zeta function of the �elds �? , the primitive root density X ((0) exists and
we have

X ((0) =
∞∑
==1

` (=)
[�= : Q] (5.4)

where ` (·) denotes the Möbius function. It is not di�cult to see (cfr. Theorem 5.4.4) that this
sum is equal to the product appearing in (5.3).

There are many variants of the primitive root problem. We mention some of them here:

• Primes in arithmetic progression with prescribed primitive root: for a given 0 ∈
Q the problem asks for the density of the set of primes ? lying in a given arithmetic
progression such that 0 is a primitive root modulo ?;

• Near-primitive roots: given a natural number C ∈ N and 0 ∈ Q the problem asks for the
density of the set of primes ? such that 0 mod ? generates a subgroup of index exactly C
in F×? (in this sense 0 is a near-primitive root);

• Higher rank Artin densities: given a �nite set {01, ..., 0=} ⊆ Q the problem asks for the
density of the set of primes ? such that 01 mod ?, ..., 0= mod ? generate the group F×? ;

• Arbitrary combinations of the above problems, also formulated over more general number
�elds.

In all these cases, an heuristic argument à la Artin can be applied and the resulting conjectural
densities has a shape very similar to (5.3), in the sense that they can be written as a product of a
“naive density” Xnaive and a rational correction factor� . The character-sum method, described in
a special case in the following section, allows to compute the constant � in a fairly mechanical
way (see [LSM14]).

Also the cyclic reduction problem for elliptic curves involves the study of the splitting be-
haviour of prime ideals of a number �eld � in a family of Galois extensions � ⊆ �ℓ for ℓ prime.
However, the heuristic density has a very di�erent shape according to whether the considered
elliptic curve has complex multiplication or not. In the �rst case, a factorization as in (5.3) for
the density may not exist, as we will show in Section 5.5.
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5.2 Frobenius densities and the character-sum
formula

Very often, when dealing with Artin-like problems, one is given a family F = {�ℓ }ℓ of �nite
Galois extensions of a �xed number �eld � indexed by prime numbers ℓ ∈ N and, for each
such prime ℓ , a non-empty subset (ℓ ⊆ �ℓ := Gal(�ℓ/� ) which is stable under conjugation.
The problem is then to determine, if it exists, the natural density of the set P of primes p ⊆ �
such that Frob�ℓ (p) ⊆ (ℓ for all primes ℓ for which the Frobenius class Frob�ℓ (p) ⊆ �ℓ is
well-de�ned (i.e. for all primes ℓ for which the prime p does not ramify in �ℓ ). Heuristically,
one can proceed as follows: for a �xed = ∈ N, let �= be the compositum of all the �elds �ℓ for
ℓ | =. Then �= := Gal(�=/� ) is naturally identi�ed as a subgroup of the product

∏
ℓ |= �ℓ and

by the Chebotarëv’s density theorem the natural density of the set of primes p ⊆ � such that
Frob�ℓ (p) ⊆ (ℓ for all ℓ | = (we can disregard the �nitely many primes ramifying in �=) is given
by

X= (P) =
#((= ∩�=)

#�=
where (= :=

∏
ℓ |= (ℓ . By taking the limit as = goes to in�nity by divisibility one obtains the

heuristic density

X (P) = ` (( ∩�)
` (�) (5.5)

where � := Gal(�∞/� ) is the Galois group of the compositum �∞ of the family {�ℓ }ℓ and ` is
the normalized Haar measure on � =

∏
ℓ �ℓ , obtained as the product measure of the various

normalized counting measures on the �ℓ ’s. Making this heuristic precise is usually very hard,
and even for the classical primitive root problem this is known only under the assumption of
GRH.

Example 5.2.1. For every prime ℓ ∈ N consider the Kummer extension Q ⊆ �ℓ := Q(Zℓ , ℓ
√
2)

where Zℓ ∈ Q denotes a primitive ℓ-root of unity, and let (ℓ := �ℓ \ {1}. Then the family {�ℓ }ℓ
is linearly disjoint over Q, hence � = Gal(�∞/� ) =

∏
ℓ �ℓ = � and the heuristic density (5.5)

becomes
X (P) = ` (()

` (�) =
∏
ℓ

#(ℓ
#�ℓ

=
∏
ℓ

(
1 − 1
[�ℓ : Q]

)
.

The fact that we �nd back the heuristic Artin’s primitive root density should not be of any
surprise since for a prime ? ∈ Z that is unrami�ed in �ℓ imposing the condition Frob�ℓ (?) ∈ (ℓ
is equivalent to requiring that ? does not split completely in �ℓ .

The previous example should not deceive the reader. In general, the family {�ℓ }ℓ does not
have any reason to be linearly disjoint over the base �eld � and this means that the computation
of the heuristic density X (P) may be very involved a priori. However, besides the case of
linear disjointness, there is another situation where X (P) can be easily determined. It is when
the entanglement in F is �nite quadratic, i.e. when there exists < ∈ N such that the family
{�<} ∪ {�ℓ }ℓ-< is linearly disjoint over � and the inclusion�< ⊆

∏
ℓ |< �ℓ is of index 2. In order

to explain how to compute X (P) in this case, let us place in a slightly more general setting,
whose notation has been chosen to be evocative of the context described so far.

For every 8 ∈ N, let�8 be a pro�nite group and� :=
∏
8∈N�8 . Each�8 is a compact topological

group and thus comes naturally endowed with a Haar measure `8 , which we normalize in
such a way that `8 (�8 ) = 1. With this choice, the product measure ` =

∏
8∈N `8 is also a
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normalized Haar measure on �. For each 8 ∈ N choose a `8-measurable subset (8 ⊆ �8 . Fix
j =

∏
8∈N j8 : � → {±1} to be a non-trivial quadratic character obtained from a family of

continuous quadratic characters j8 : �8 → {±1} that are trivial for almost all 8 ∈ N. If we let
� := ker j , then the integer

Xj (() =
` (� ∩ ()
` (�) . (5.6)

represents the proportion of elements of � that are contained in ( .

Theorem 5.2.2. If `8 ((8 ) > 0 for all 8 ∈ N then

Xj (() =
(
1 +

∏
8∈N

X8

)
` (()
` (�)

where

X8 =

{
1 if �8 ⊆ �
− 1
`8 ((8 )

∫
�8\(8

j8 3`8 otherwise.
(5.7)

Proof. We can assume that ` (() = ∏
8∈N `8 ((8 ) is non-zero, since the theorem trivially holds

otherwise. Let 1� : �→ R be the indicator function of the group� . We have 1� =
1+j
2 because

� equals the kernel of j . Hence we can write

Xj (() =
1

` (�)

∫
(

1� 3` =
1

` (�)

∫
(

1 + j
2

3` =
1

2` (�)

∫
(

(1 + j) 3`.

Since j is non-trivial and the total space has measure ` (�) =
∏
8∈N `8 (�8 ) = 1, we have

` (�) = 1/2 and so

Xj (() =
∫
(

(1 + j) 3` = ` (() +
∫
(

j 3` = ` (()
(
1 + 1

` (()

∫
(

j 3`

)
=
` (()
` (�)

(
1 + 1

` (()

∫
(

j 3`

)
.

In order to conclude, we need to study the integral appearing in the �nal equality. By Tonelli’s
theorem [Rud87, Theorem 8.8 (b), (c)], which we can apply because the characters j8 are trivial
for almost all 8 ∈ N and the total space has bounded measure, we have∫

(

j 3` =
∏
8∈N

∫
(8

j8 3` hence
1

` (()

∫
(

j 3` =
∏
8∈N

1
`8 ((8 )

∫
(8

j8 3`8

by the de�nition of product measure. We de�ne X8 = 1
`8 ((8 )

∫
(8
j8 3`8 and we claim that this is

the same quantity appearing in the statement of the theorem. To see this, it su�ces to write

1
`8 ((8 )

∫
(8

j8 3`8 =
1

`8 ((8 )

(∫
�8

j8 3`8 −
∫
�8\(8

j8 3`8

)
and apply the orthogonality relations∫

�8

j8 3`8 =

{
`8 (�8 ) = 1 if j8 is trivial on �8 ,
0 otherwise
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as in [Bum13, Theorem 2.5]. Since j8 is trivial on �8 if and only if �8 ⊆ � , this concludes the
proof. �

We now go back to our initial number �eld setting and notation, but we further assume that the
entanglement in the family F = {�ℓ }ℓ is �nite quadratic. In this case, we see that� = Gal(�∞/� )
is obtained as the kernel of a non-trivial quadratic character j =

∏
8∈N jℓ : �→ {±1} which is

the product of a family of continuous quadratic characters jℓ : �ℓ → {±1} that are trivial for
almost all primes ℓ ∈ N. Noticing now that X (P) as in (5.5) is equal to Xj (() as de�ned in (5.6),
we can apply Theorem 5.2.2 and obtain

X (P) =
(
1 +

∏
ℓ

Xℓ

)
· ` (()
` (�) = �F · Xnaive (5.8)

where Xℓ is de�ned in (5.7). We call Xnaive =
` (()
` (�) =

∏
ℓ
#(ℓ
#�ℓ the naive density of P because it is the

density one would obtain if the family F were linearly disjoint over � . The rational number �F
is the correction factor to the naive density, and takes into account the quadratic entanglement
in F . We note that an expression of the form (correction factor)×(naive density) is always valid
as long as the entanglement in F is �nite. However, computing the correction factor may be
more involved in the case the entanglement in the family F is not quadratic anymore.

If for every prime ℓ ∈ N the set #ℓ := �ℓ \ (ℓ is a subgroup of �ℓ , then one has

Xℓ =


1 if �ℓ ⊆ �
0 if #ℓ * �
− ##ℓ

#(ℓ if �ℓ * � and #ℓ ⊆ �

as follows immediately from Theorem 5.2.2 and from the usual orthogonality relations for
characters. In the special case where we take (ℓ = �ℓ \ {1} for all primes ℓ ∈ N equality (5.8)
reads

X (P) =
(
1 +

∏
ℓ

−1
[�ℓ : � ] − 1

) ∏
ℓ

(
1 − 1
[�ℓ : � ]

)
. (5.9)

We call (5.9) the character-sum formula for the density X (P).

5.3 Cyclic reduction of elliptic curves
Let � be an elliptic curve de�ned by an integral Weierstrass equation ~2 = G3 +�G + � with

coe�cients�, � in the ring of integers O� of a number �eld � . To � we associate its discriminant

Δ� = −16(4�3 + 27�2) ∈ O� \ {0}. (5.10)

The primes p of � coprime to Δ� are the primes of good reduction of �. For such p, reduction
modulo p yields an elliptic curve �p over the residue class �eld :p. Note that with this model of
�, primes p of � over 2 are never primes of good reduction.

We begin by formally stating the criterion for a prime p of good reduction of (the given model
of) � to be a prime of cyclic reduction of �, i.e., a prime for which the �nite group �p (:p) is cyclic.

Lemma 5.3.1. For a prime p of good reduction of �, the following are equivalent:

1. p is a prime of cyclic reduction of �;
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2. for no prime number ℓ coprime to p, the prime p splits completely in � ⊂ �ℓ , with �ℓ :=
� (� [ℓ]) the ℓ-division �eld of �.

Proof. Let p be a prime of good reduction for �. Then �p (:p) is a cyclic group if and only if for
no prime ℓ , its ℓ-torsion subgroup �p [ℓ] (:p) has order ℓ2. For ℓ = char(:p), it is a generality
on elliptic curves in positive characteristic that the group �p [ℓ] (:p) is cyclic, so we further
assume ℓ ≠ char(:p). Then p is unrami�ed in the Galois extension � ⊂ �ℓ as it is a prime of
good reduction of � coprime to ℓ .

The group � [ℓ] (�ℓ ) has order ℓ2 by de�nition of �ℓ , and at every prime q |p of �ℓ , the natural
reduction map � [ℓ] (�ℓ ) → �q (:q) is injective as q - ℓΔ� is a prime of good reduction of � in �ℓ .
Thus �q [ℓ] (:q) has order ℓ2. Now :q is generated over :p by the coordinates of the points in
�q [ℓ] (:q), as � ⊂ �ℓ is generated by the coordinates of the ℓ-torsion points of �. It follows that
the natural inclusion :p ⊂ :q is an equality for all q |p in �ℓ , i.e., p splits completely in � ⊂ �ℓ , if
and only each of the natural inclusions �p [ℓ] (:p) ⊂ �q [ℓ] (:q) is an equality. As �q [ℓ] (:q) has
order ℓ2, this proves the lemma. �

If p is a prime of good reduction of � of characteristic ? coprime to the discriminant Δ� of � ,
thenp can not split completely in the division �eld �? , as it is totally rami�ed in the subextension
� ⊂ � (Z? ) of degree ? − 1 > 1 of �? that is generated by a primitive ?-th root of unity Z? . This
shows that, for primes p coprime to both Δ� and Δ� , being in the set (�/� of primes of cyclic
reduction of � is tantamount to not splitting completely in any division �eld extension � ⊂ �ℓ at
a rational prime ℓ .

Corollary 5.3.2. For a prime p - Δ�Δ� , we have p ∈ (�/� if and only if p does not split completely
in any of the division �elds �ℓ , with ℓ ∈ Z prime.

The proof of Lemma 5.3.1 shows that if a prime p - Δ�Δ� splits completely in � ⊂ �ℓ , then
�p (:p) has complete ℓ-torsion, so we have ℓ ≤

√
#�/Q (p) + 1 by the Hasse-Weil bound. For a

squarefree integer< and a prime p - Δ�Δ� , we similarly obtain

p - Δ�Δ� splits completely in �< = � (� [<]) =⇒< ≤
√
#�/Q (p) + 1. (5.11)

Using the characterization of the primes of cyclic reduction given by Corollary 5.3.2, we want
to show that under GRH the set (�/� has a natural density X�/� that, at least typographically, is
identical to Artin’s primitive root density appearing in (5.4).

Theorem 5.3.3. Let � be an elliptic curve de�ned over a number �eld � . Under GRH, the set (�/�
of primes of � of cyclic reduction has the density X�/� de�ned by

X�/� =

∞∑
<=1

` (<)
[�< : � ] . (5.12)

Remark 5.3.4. For � = Q, Serre showed that, under GRH, the set (�/Q does have density X�/Q as
in (5.12). His proof, which is along Hooley’s lines, was published in 1983 by Murty [Mur83].

In order to count the cardinality #(�/� (G) of primes p in the set (�/� of good reduction of
norm #�/Q (p) ≤ G ∈ R>0, we introduce the counting function

c� (G, �<) = #{p - Δ�Δ� : #�/Q (p) ≤ G and p splits completely in � ⊆ �<}.
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The function c� (G, � ) counts primes p - Δ� of good reduction of � of norm at most G , and,
disregarding the primes p|Δ� in (�/� , Corollary 5.3.2 and inclusion-exclusion yield

#(�/� (G) =
∞∑
<=1

` (<)c� (G, �<). (5.13)

Note that by (5.11), the function c� (G, �<) vanishes for < >
√
G + 1, so the in�nite sum of

integers in (5.13) is actually �nite, and therefore convergent.

In order to obtain the desired asymptotic relation #(�/� (G) ∼ X�/� ·G/logG claimed in Theorem
5.3.3, we want to use the asymptotic relations c� (G, �<) ∼ 1

[�< :� ] · G/logG . Dividing both sides
in (5.13) by G/logG , proving the theorem comes down to interchanging the in�nite sum and the
limit G →∞ in the right hand side of (5.13). This requires GRH to bound the error terms in these
asymptotic relations, and a variant of Hooley’s argument in [Hoo67]. Murty [Mur83, Theorem
1] has shown that in this setting, one can prove under GRH that the inclusion-exclusion density
is correct if [�< : � ] grows su�ciently rapidly with< (as it does in our case) and two conditions
are satis�ed. The �rst condition is that the root discriminant of the division �elds �< does not
grow too rapidly with<, as follows.

Proposition 5.3.5. For< ∈ Z>0 tending to in�nity, we have

1
[�< : � ] log |Δ�< | = O(log<)

Note that the quantity in the Proposition is [� : Q] times the logarithm of the ordinary root
discriminant |Δ�< |1/[�< :Q] .

The second condition is that ‘not too many’ primes p of � split in the division �elds �ℓ for
‘large’ primes ℓ , in the following sense.

Proposition 5.3.6. The number of primes p of � of norm #�/Q (p) ≤ G that split completely in
� ⊂ �ℓ for some prime ℓ > G1/2

log2 G is o( G
logG ) for G →∞.

Proof of Proposition 5.3.5. Bounding absolute root discriminants already dates back to Hensel
[Ser79, pag.58]. For the relative extension � ⊂ �< we can use the version found in [MM97, pag.
44]. It states that for a �nite Galois extension of number �elds � ⊂ ! with relative discriminant
Δ!/� of norm � (!/� ) = #�/Q (Δ!/� ) ∈ Z>0, we have

log� (!/� ) ≤ ([! : Q] − [� : Q])
∑

? |� (!/� )
log? + [! : Q] log( [! : � ]). (5.14)

As the absolute discriminant of ! equals |Δ! | = � (!/� ) |Δ� | [!:� ] , the identity

log� (!/� ) = log |Δ! | − [! : � ] log |Δ� |

can be combined with the inequality (5.14) in the case ! = �< to obtain, after division by
=(<) = [�< : � ], the estimate
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1
=(<) log |Δ�< | − log |Δ� | ≤

[�< : Q] − [� : Q]
=(<)

∑
? |� (�</� )

log? + [�< : Q]
=(<) log=(<)

≤ [� : Q] ·
( ∑
? |� (�</� )

log? + log=(<)
)
.

The primes ? |� (�</� ) either divide<, or they lie under one of the �nitely many primes of bad
reduction of �, so we have

∑
? |� (�</� ) log? ≤ �� + log< for some constant �� depending only

on �. We obtain

1
=(<) log |Δ�< | ≤ [� : Q] ·

(
log |Δ� | +�� + log< + log=(<)

)
.

As we have =(<) = O(<4), this yields the desired asymptotic relation. �

Proof of Proposition 5.3.6. When showing that the cardinality of the set of primes p of � of norm
#�/Q (p) ≤ G that split completely in � ⊂ �ℓ for some prime ℓ > G1/2

log2 G is asymptotically o( G
logG ),

we may disregard primes p|Δ�Δ� , as they are �nite in number, and primes p that are not of
degree 1, as there are no more than o(

√
G) of them.

Suppose now that p - Δ�Δ� is of prime norm #�/Q (p) = ? ≤ G , and that p splits completely
in an ℓ-division �eld �ℓ with ℓ > 2. By (5.11), this implies ℓ ≤

√
G + 1. As p - Δ� necessarily

splits completely in the subextension � ⊂ � (Zℓ ), we have p - ℓ , and p lies over a rational prime
? ≡ 1 mod ℓ . Any such ? gives rise to at most [� : Q] primes p in � of norm ? . Thus, the number
�(G) of such p can be bounded by

�(G) ≤ [� : Q] ·
∑

G1/2
log2 G

<ℓ<G1/2+1

c (G, 1, ℓ), (5.15)

with c (G, 1, ℓ) denoting the number of primes ? ≤ G satisfying ? ≡ 1 mod ℓ . By the Brun-
Titchmarsh theorem, we have

c (G, 1, ℓ) ≤ 2G
i (ℓ) log( G

ℓ
) �

G

ℓ log( G
ℓ
) ,

so we obtain
�(G) �

∑
G1/2
log2 G

<ℓ<G1/2+1

G

ℓ log( G
ℓ
) �

G

log(G) ·
∑

G1/2
log2 G

<ℓ<G1/2+1

1
ℓ
.

It now su�ces to show that ∑
G1/2
log2 G

<ℓ<G1/2

1
ℓ

tends to zero for G →∞. This follows from the well-known estimate [Apo76, Theorem 4.12]∑
ℓ≤-, ℓ prime

1
ℓ
= log log- +� + O

(
1

log-

)
(5.16)
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with � some absolute positive constant. Applying (5.16) for - = G1/2 and - = G1/2

log2 G and
subtracting, we do obtain a quantity tending to zero for G →∞:∑

G1/2
log2 G

<ℓ<G1/2

1
;
= log logG1/2 − log log

(
G1/2

log2 G

)
+ O

(
1

logG1/2

)

= log

(
1
2 logG

1
2 logG − 2 log logG

)
+ O

(
1

logG

)
. �

Proof of Theorem 5.3.3. By [Mur83, Theorem 1], this follows from Propositions 5.3.5 and 5.3.6. �

The number X�/� in (5.12) is de�ned by a series that converges rather slowly, and it is unclear
when it vanishes. We thus seek for a representation as an in�nite product in the spirit of (5.3).
This will not always be possible, as we will show in the subsequent sections, and the existence of
a product representation for X�/� crucially depends on whether the elliptic curve � has complex
multiplication or not. We will discuss the two cases separately.

5.4 Non-CM cyclic reduction densities
The �rst goal of this section is to show that the cyclic reduction density X�/� associated to a

non-CM elliptic curve � de�ned over a number �eld � can be expressed as a product of a naive
density ��/� and an entanglement correction factor U�/� . This result, which is analogous to the
factorization (5.3) in Artin’s primitive root conjecture, follows from a study of the entanglement
in the family {�ℓ }ℓ of ℓ-division �elds of � for ℓ ∈ N prime. We keep the notation as in the
previous section.

Theorem 5.4.1. Let � be a number �eld, �/� an elliptic curve without complex multiplication,
and # = # (�, � ) ∈ Z>0 be the product of all prime numbers ℓ satisfying one of

1. ℓ | 2 · 3 · 5 · Δ� ;

2. ℓ lies below a prime of bad reduction of �;

3. the Galois group Gal(�ℓ/� ) is not isomorphic to GL2 (Fℓ ).
Then for any # ′ ∈ N which is divisible by # , the family consisting of �# ′ and {�ℓ }ℓ-# ′ is linearly
disjoint over � .

The proof of Theorem 5.4.1 relies on a group theoretical result on the Jordan-Hölder factors
that can occur in subgroups of � ⊂ GL2 (Z/#Z).
Lemma 5.4.2. Let # ∈ Z>0 be an integer and � ⊂ GL2 (Z/#Z) a subgroup. Suppose ( is a
non-abelian simple group that occurs in � . Then ( is isomorphic to either �5 or PSL2 (Fℓ ), with ℓ a
prime dividing # .

Proof. We may assume � ⊂ SL2 (Z/#Z) =
∏
ℓ |# SL2 (Z/ℓZ) as we only care about non-abelian

simple Jordan-Hölder factors. In addition, we may assume that # is squarefree, i.e., equal to its
own radical #0 = rad(# ); indeed, the natural map A : SL2 (Z/#Z) → SL2 (Z/#0Z) has a solvable
kernel that is a product of ℓ-groups, and the groups � and �/(� ∩ ker A ) ⊂ SL2 (Z/#0Z) have
the same non-abelian simple Jordan-Hölder factors. Thus, every non-abelian simple group that
occurs in � occurs in a subgroup of some SL2 (Z/ℓZ), so we can reduce to the case that # = ℓ is
prime. In this case the statement is a classical result that can be found in [Ser89, p. IV-23]. �
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Proof of Theorem 5.4.1. It su�ces to show that for a number # ′ divisible by # (�, � ) and ℓ - # ′
a prime number, we have �# ′ ∩ �ℓ = � . Take such # ′ and ℓ . Then ℓ - # ′ is unrami�ed in the
tower Q ⊂ � ⊂ �# ′ by (2), and since � ⊂ � (Zℓ ) is totally rami�ed over ℓ of degree ℓ − 1 > 1
by (1), the �elds �# ′ and � (Zℓ ) are � -linearly disjoint. It now su�ces to prove that the normal
extensions � (Zℓ ) ⊂ �ℓ and � (Zℓ ) ⊂ �# ′ (Zℓ ) are linearly disjoint.

We have Gal(�ℓ/� (Zℓ )) � SL2 (Fℓ ) by (3), and for ℓ ≥ 5 this group has a unique non-trivial
normal subgroup {±idℓ } with simple quotient PSL2 (Fℓ ). If �ℓ ∩ �# ′ (Zℓ ) is not equal to � (Zℓ ), we
�nd that the non-abelian simple group PSL2 (Fℓ ), which is not �5 as we assume ℓ ≠ 5 by (1), is
a Jordan-Hölder factor of Gal(�# ′ (Zℓ )/� (Zℓ )) � Gal(�# ′/� ). As we can view Gal(�# ′/� ) as a
subgroup of GL2 (Z/# ′Z), this contradicts Lemma 5.4.2, since we have ℓ - # ′. �

For the purposes of this chapter, we only need to apply Theorem 5.4.1 for squarefree values
of # . We can however strengthen its conclusion a bit and reformulate it in the following way,
as a non-CM analogue of Theorem 4.3.4.

Theorem 5.4.3. Let � be a number �eld, �/� an elliptic curve without CM, and ( the set of prime
numbers ℓ satisfying one of

1. ℓ | 2 · 3 · 5 · Δ� ;

2. ℓ lies below a prime of bad reduction of �;

3. the Galois group Gal(�ℓ/� ) is not isomorphic to GL2 (Fℓ ).

Write �ℓ∞ for the compositum of all ℓ-power division �elds of � over � , and �( for the compositum
of the �elds �ℓ∞ with ℓ ∈ ( . Then the family consisting of �( and {�ℓ∞ }ℓ∉( is linearly disjoint over
� .

Proof. It su�ces to show that for # an integer divisible by all primes in ( and ℓ - # prime, we
have �# ∩ �ℓ= = � for every = ∈ Z>0. For = = 1, this is Theorem 5.4.1.

As � ⊂ �# is unrami�ed over ℓ - # by condition (2), the intersection is � -linearly disjoint
from � (Zℓ= ) by the condition ℓ - Δ� in (1), and it is � -linearly disjoint from �ℓ by Theorem 5.4.1.
It therefore corresponds to a subgroup of Gal(�ℓ=/� ) ⊂ GL2 (Z/ℓ=Z) that maps surjectively to
Gal(�ℓ/� ) = GL2 (Fℓ ) by (3) and has surjective image (Z/ℓ=Z)∗ under the determinant map. By
a result of Serre [Ser89, p. IV-23, Lemma 3], valid for ℓ ≥ 5, such a group is the full group
GL2 (Z/ℓ=Z), proving �# ∩ �ℓ= = � . �

We are now ready to prove the factorization theorem for non-CM cyclic reduction densities.

Theorem 5.4.4. Let �/� be an elliptic curve without CM. If # = # (�, � ) ∈ Z>0 is the integer
appearing in Theorem 5.4.1, then X�/� can be factored as

X�/� = U�/� · ��/� (5.17)

where

U�/� =
©­«
∑
< |#

` (<)
[�< : � ]

ª®¬ and ��/� =
∏

ℓ-#, ℓ prime

(
1 − 1
[�ℓ : � ]

)
.

Remark 5.4.5. In the spirit of Section 5.2 we call ��/� the naive density associated to � and U�/�
the entanglement correction factor.
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Proof. First of all, notice that X�/� is the limit of the �nite sums

X�/� (=) =
∑
< |=

` (<)
[�< : � ] (5.18)

for = tending to in�nity under the partial ordering of divisibility. Under this ordering, we have

< |= =⇒ X�/� (<) ≥ X�/� (=) ≥ 0, (5.19)

so the limit exists and is non-negative. We now simply note that the quantity X�/� (=) in (5.18)
is the inclusion-exclusion fraction of elements in the Galois group Gal(�=/� ) that have non-
trivial restriction on every sub�eld �ℓ with ℓ |# . Thus, if =1 and =2 are coprime numbers for
which the division �elds �=1 and �=2 are � -linearly disjoint, we have an equality X�/� (=1=2) =
X�/� (=1)X�/� (=2). If # ′ is any squarefree multiple of the number # = # (�, � ) in Theorem 5.4.1,
this yields

X# ′ (�) = X# (�) ·
∏

ℓ |# ′/#, ℓ prime

(
1 − 1
[�ℓ : � ]

)
.

Taking the limit # ′→∞ with respect to the divisibility ordering yields Theorem 5.4.4. �

As almost all division �elds �ℓ for � without CM have maximal degree (ℓ2 − 1) (ℓ2 − ℓ), it
follows from Theorem 5.4.4 that, just as for X ((0) in (5.2), the number X�/� can be written as a
product

X�/� = 2�/� · �∞ (5.20)

of a rational number 2�/� ∈ Q≥0 and a universal non-CM elliptic Artin constant

�∞ =
∏
ℓ prime

(
1 − 1
(ℓ2 − 1) (ℓ2 − ℓ)

)
≈ 0.8137519. (5.21)

We have 2�/� = 1 when the division �elds �ℓ for ℓ prime all assume the maximal degree and
they form a linearly disjoint family over � . The �rst condition is often not satis�ed, and for this
reason Theorem 5.4.4 gives a more satisfactory decomposition than (5.20).

From the factorization (5.17), it is clear that there are two possible causes for the vanishing of
X�/� . If the naive density ��/� vanishes, at least one ℓ-division �eld �ℓ is equal to � . For such
ℓ , the full ℓ-torsion of � is de�ned over � , and therefore over almost all residue class �elds :p,
making (�/� �nite. We call this the trivial vanishing of the density. Note that � = �ℓ can only
occur for primes ℓ |2Δ� .

The more subtle cause of vanishing of X�/� that we refer to as non-trivial vanishing occurs
when we have

X�/� = 0 and ��/� > 0, (5.22)

i.e., when the naive density��/� is positive but the entanglement correction factor U�/� vanishes.
In this case all �ℓ are di�erent from � , but the non-splitting conditions in the various �ℓ cannot
be satis�ed simultaneously. Murty proved [GM90, Theorem 1] that non-trivial vanishing does
not happen for � = Q: we have X�/Q = 0 if and only if � has full 2-torsion over Q. Over a general
number �eld � , non-trivial vanishing of X�/� is a rare occurrence, but we can make it happen by
base changing elliptic curves � de�ned over a small �eld such as Q to a well-chosen number
�eld.
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The underlying idea is the following: one starts with a non-CM elliptic curve �/� and considers
it over an extension � ⊂ � ′ for which the ℓ-division �elds � ′ℓ of � over � ′ for primes ℓ1, ℓ2, and ℓ3
are di�erent quadratic extensions of � ′, but with compositum � ′ℓ1ℓ2ℓ3 a multi-quadratic extension
of � ′ of degree 4, and not 8. In this case, no prime of � ′ can be inert in all three subextensions
� ′ℓ , and almost all reduced curves at primes of � ′ will have complete ℓ-torsion for at least one
value ℓ ∈ {ℓ1, ℓ2, ℓ3}, implying that (�/� ′ is �nite. The construction has many degrees of freedom,
leading to in�nitely many di�erent curves and number �elds for which non-trivial vanishing as
in (5.22) occurs.

Theorem 5.4.6. Let � be an elliptic curve without CM de�ned over a number �eld � , with naive
density��/� > 0. Then for any �nite normal extension � ⊂ !, there exists a linearly disjoint normal
extension � ⊂ � ′ for which X�/� ′ vanishes non-trivially.

Proof. Let # = # (�, � ) be as in Theorem 5.4.1. Then the # -division �eld �# and the ℓ-division
�elds �ℓ at ℓ - # of � form a linearly disjoint family over � . Now let � ⊂ ! be a �nite normal
extension, and replace �# by the compositum !�# . Then the family may no longer be � -linearly
disjoint, but it becomes � -linearly disjoint again after leaving out �nitely many well-chosen �ℓ
from the family. This is because any �nite extension of � contained in the compositum of some
� -linearly disjoint family of division �elds �ℓ is contained in the compositum of �nitely many
�ℓ , and these are the ones that we leave out.

Now pick any set {ℓ1, ℓ2, ℓ3} of primes that have not been left out. Then the ℓ1ℓ2ℓ3-division
�eld �ℓ1ℓ2ℓ3 of � is Galois over � with group

� = GL2 (Z/ℓ1ℓ2ℓ3Z) =
3∏
8=1

GL2 (Fℓ8 ).

Every GL2 (Fℓ8 ) contains a normal subgroup 〈−1〉 generated by −idℓ8 ∈ GL2 (Fℓ8 ), so the center
of � contains an elementary abelian 2-group � ′ =

∏3
8=1〈−1〉 ⊂ � of order 8. We let � ⊂ � ′ be

the ‘norm-1-subgroup’ of order 4 consisting of elements (48 )38=1 ∈ � with 414243 = 1. Then � is
normal in � , and we take for � ′ the invariant �eld � ′ = ��ℓ1ℓ2ℓ3 .

We now view � as an elliptic curve over the �nite normal extension � ′ of � , and note that the
division �eld � ′ℓ1ℓ2ℓ3 = �ℓ1ℓ2ℓ3 is by construction Galois over � ′ with group isomorphic to the Klein
four-group � . As every non-trivial element of � is the identity on exactly one of the division
�elds � ′ℓ8 , the three intermediate quadratic extensions of � ′ ⊂ � ′ℓ1ℓ2ℓ3 are the division �elds � ′ℓ8 ,
and no prime of � ′ will be inert in all three of them. This implies that we have X�/� ′ = 0.

As the naive density ��/� ′ di�ers from ��/� > 0 only in the three factors corresponding to
the primes ℓ8 , with the degree [�ℓ8 : � ] = #GL2 (Fℓ8 ) being replaced by [� ′ℓ8 : �

′] = 2, we still
have ��/� ′ > 0, so the vanishing of X�/� ′ is non-trivial. �

Remark 5.4.7. Our proof of Theorem 5.4.6 only uses the fact that−idℓ8 is contained inGal(�ℓ8 /� ) ⊂
GL2 (Fℓ8 ), and that the Klein four-group � in the proof is contained in � = Gal(�ℓ1ℓ2ℓ3/� ) ⊂∏3
8=1 GL2 (Fℓ8 ). This observation is useful when constructing an explicit example of an elliptic

curve � over a “small” normal number �eld � ′ for which X�/� ′ vanishes non-trivially. If one does
not insist on � ′ being normal over � = Q, one can use any element of order 2 in Gal(�ℓ8 /� ) ⊂
GL2 (Fℓ8 ) instead of −idℓ8 , and use small primes ℓ8 for which �ℓ8 is of small degree.

Example 5.4.8. The elliptic curve � de�ned over � = Q by the minimal Weierstrass equation

~2 + G~ + ~ = G3 − 76G + 298
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has discriminant Δ� = −25 · 58 and, according to [LMFDB], its mod ℓ Galois representations are
maximal at ℓ ≠ 3, 5. The division �eld �3 is non-abelian of degree 6, smaller than the generic
degree 48 = #GL2 (Q3), and at ℓ = 5 it is Galois with group �20 = �5 o Aut(�5), the a�ne group
over Q5 of order 20, much smaller than the generic group GL2 (Q5) of order 480. As the division
�elds �2 and �3 are non-abelian of degree 6 with di�erent quadratic sub�eldsQ(

√
Δ�) = Q(

√
−2)

and Q(Z3), they are linearly disjoint over � = Q. As �6 and �5 are solvable extensions of Q with
maximal abelian sub�elds Q(

√
−2, Z3) and Q(Z5) that are linearly disjoint over Q, the division

�elds �2, �3 and �5 are Q linearly disjoint of even degree, so Gal(�30/Q) � (3 × (3 × �20 does
contain an elementary abelian 2-subgroup � ′ of order 8 as in the proof of Theorem 5.4.6. We
can therefore �nd a non-normal �eld � ′ of degree [� ′ : Q] = 6 · 6 · 20/4 = 180 inside �30 for
which X�/� ′ vanishes non-trivially.

We do not know whether there exist examples of non-trivial vanishing over number �elds of
degree less than 180. We also do not know if there are non-CM examples that do not arise by
base change, i.e., an example in which X�/� vanishes non-trivially for � = Q( 9 (�)) and � without
complex multiplication. On the other hand, if � has complex multiplication and is de�ned over
Q( 9 (�)), we will see in Section 5.6 that X�/� never vanishes trivially.

5.4.1 Some numerical examples
In order to compute X�/� = U�/� · ��/� for a non-CM elliptic curve �/� as in (5.17), one starts

by �nding [�ℓ : � ] at all primes ℓ where �ℓ has non-maximal degree. This easily can be done for
small examples using [LMFDB], which provides a list of non-maximal degrees [�ℓ : � ]. This
enables us to �nd the naive density ��/� as a rational multiple of the universal constant �∞
from (5.21). Typically, ��/� has a value close to X�/� , and its approximate correctness can be
con�rmed by a computer count of the fraction of primes of cyclic reduction among primes of
norm below some modest bound. Finding the exact entanglement correction factor U�/� can be
more complicated. It typically involves group theory and rami�cation arguments. This section
provides some easy examples.

We treat the �ve non-CM elliptic curves �/Q listed in the table below. There are 78,498 rational
primes below 106, and the table lists the number of them that give rise to cyclic reduction, and
the fraction 3 (�) this represents. The computations have been performed using [SAGE].

� ? < 106 of cyclic reduction 3 (�)
~2 = G3 − 3G + 1 51,105 0.6510
~2 = G3 + 2G + 3 38,383 0.4889

~2 = G3 − 12096G − 544752 32,652 0.4159
~2 = G3 + G + 3 63,910 0.8141

~2 = G3 − 13392G − 1080432 48,026 0.6118

Example 5.4.9. For the elliptic curve �/Q with LMFDB label 1296.e1 de�ned by

� : ~2 = G3 − 3G + 1
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we have Δ� = 24 · 34, and �2, the splitting �eld of the polynomial G3 − 3G + 1 of discriminant
34, is the real sub�eld of Q(Z9), which is cubic, and not of maximal degree 6. All other division
�elds �ℓ have maximal degree, so the naive density equals

��/Q =
∏
ℓ prime

(
1 − 1
[�ℓ : Q]

)
=
2
3
· 6
5
· �∞ ≈ 0.6510015.

The cyclic cubic �eld �2 is not a sub�eld of �3 as Gal(�3/Q) � GL2 (F3) has no quotient of order
3, so �6 is a linearly disjoint compositum of �2 and �3. We have �6 ∩ �5 = � as the intersection is
solvable over � , but does not contain

√
5 ∉ �6. As we can take # (�,Q) = 2 · 3 · 5 in Theorem

5.4.1, we �nd that the family of ℓ-division �elds �ℓ is Q-linearly disjoint. In this case there is no
entanglement correction, and X�/Q is equal to the naive density ��/Q. The numerical agreement
is excellent.

Example 5.4.10. The elliptic curve �/Q with LMFDB label 880.e2 de�ned by

� : ~2 = G3 + 2G + 3 = (G + 1) (G2 − G + 3)

of discriminant Δ� = −24 ·52 ·11 has a unique rational torsion point of order 2, and �2 = Q(
√
−11).

For ℓ > 2, the degree of �ℓ is maximal, so the naive density equals

��/Q =
1
2
· 6
5
· �∞ ≈ 0.48825114.

We can take # (�,Q) = 2 · 3 · 5 · 11 in Theorem 5.4.1. As �2 is not the unique quadratic sub�eld
Q(Z3) of �3, the extension �6 is a linearly disjoint compositum of �2 and �3. Again, �6 is solvable
and does not contain

√
5, so it is linearly disjoint from �5.

We now know that the family of division �elds {�ℓ }ℓ≠11 is linearly disjoint over Q. As
�11 contains the quadratic �eld �2 = Q(

√
−11) ⊂ Q(Z11), any rational prime that does not

split completely in �2 automatically does not split completely in �11, making the non-splitting
condition in �11 for primes of cyclic reduction super�uous. Thus, the entanglement correction
in this case amounts to leaving out the factor 1− 1/[�11 : Q] = 13199

13200 from the naive density. The
resulting value X�/Q = 13200

13199��/Q ≈ 0.4882881 is so close to the naive density that the correction
is not easily detected numerically. Our value of 3 (�) obtained by checking less than 80,000
primes is less than .15% away from either of these values: a good match.

Example 5.4.11. The elliptic curve �/Q with LMFDB label 19.a2 de�ned by

� : ~2 = G3 − 12096G − 544752

of discriminant Δ� = −212 · 312 · 193 has division �elds �ℓ of maximal degree at all primes ℓ ≠ 3,
and a minimal 3-division �eld �3 = Q(Z3). This makes the naive density equal to

��/Q =
48
47
· 1
2
�∞ ≈ 0.4155329.

We can take # (�,Q) = 2 · 3 · 5 · 19 in this case. The quadratic sub�eld Q(
√
−19) of �2 is di�erent

from �3 = Q(Z3), and again �2, �3 and �5 are linearly disjoint as we have
√
5 ∉ �6. This time

{�ℓ }ℓ≠19 a linearly disjoint family overQ, and �2 has a non-trivial intersection �2∩�19 = Q(
√
−19),

but not an inclusion �2 ⊂ �19.
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This is a very common form of entanglement over � = Q: if the quadratic sub�eld Q(
√
Δ�)

of �2 has odd discriminant � , it is a sub�eld of the cyclotomic �eld Q(Z |� |), and therefore of
the compositum � |� | of the division �elds �ℓ with ℓ |� . If this quadratic intersection between
�2 and � |� | is the only entanglement between the �elds �ℓ , then � = Gal(�2 |� |/Q) ⊂ � ′ =∏
ℓ |2� Gal(�ℓ/Q) is a subgroup of index 2 arising as the kernel of a quadratic character on� ′. In

this case we can apply the character-sum formula (5.9), which gives an entanglement correction

U�/Q = 1 +
∏

ℓ |2�, ℓ prime

−1
[�ℓ : Q] − 1

. (5.23)

For � = −19 we obtain U�/Q = 615596
615595 and X�/Q = 0.4155335, a �gure which is not noticeably

di�erent from the naive density from a numerical point of view.

Example 5.4.12. Let � be the elliptic curve with LMFDB label 1976.a1 de�ned by

� : ~2 = G3 + G + 3

with discriminant Δ� = −24 · 13 · 19. In this case the mod ℓ Galois representation associated to �
has maximal image GL2 (Fℓ ) for all primes ℓ , so the naive density is equal to �∞. We can take
# (�,Q) = 2 · 3 · 5 · 13 · 19 in Theorem 5.4.1. One can check that the only entanglement here
comes from the quadratic sub�eld Q(

√
−13 · 19) of discriminant −13 · 19 = −247 of �2, which is

contained in the compositum of �13 and �19. The entanglement correction factor given by the
character sum formula (5.9) is

U�/Q = 1 +
∏

ℓ |2·13·19

−1
[�ℓ : Q] − 1

≈ 0.999999999938,

making X�/� numerically indistinguishable from �∞.

Example 5.4.13. The �nal elliptic curve in our table, which has LMFDB label 11.a2 and is
de�ned by

~2 = G3 − 13392G − 1080432,

has discriminant Δ� = −212 ·312 ·115 and is special for having minimal 5-division �eld �5 = Q(Z5)
of degree 4. At primes ℓ ≠ 5 the degree of �ℓ is maximal, so the naive density equals

��/Q =
3
4
· 480
479
· �∞ ≈ 0.6115881,

very close to the fraction 3 (�) we computed. We take # (�,Q) = 2 · 3 · 5 · 11 and check easily
that the only entanglement comes from the non-trivial intersection �2 ∩ �11 = Q(

√
−11). As in

the previous example, the entanglement correction factor

U�/Q = 1 +
∏
ℓ |2·11

−1
[�ℓ : Q] − 1

= 1 + 1
5 · 13199

yields X�/Q = 0.6115973, and is too small to be observed numerically.
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5.5 An unconditional result in the complex
multiplication setting

In this section we turn to the case where the considered elliptic curves �/� in the cyclic
reduction problem have complex multiplication. In this case it possible to prove unconditionally
that (�/� has density X�/� using explicit versions of the Chebotarëv density theorem. For � = Q,
this has been written down in [Coj03], and the proof given there extends without essential
changes to arbitrary number �elds � . For completeness, we give some details here, neglecting
the parts where the arguments are equal to the ones presented in [Coj03].

Theorem 5.5.1. Let � be a number �eld and �/� an elliptic curve with complex multiplication.
Then the density X�/� of the set of primes of cyclic reduction for � always exists and equals

X�/� =

∞∑
<=1

` (<)
[�< : � ] . (5.24)

The proof relies on the following e�ective version of the Chebotarëv’s density theorem.

Proposition 5.5.2. Let !/ be a Galois extension of number �elds and set Δ! to be the absolute
discriminant of !/Q and =! := [! : Q]. Then there exists an absolute constant � > 0 such that for
every G ∈ R satisfying √

logG
=!
≥ � ·max{log |Δ! |, |Δ! |

1
=! }

we have

c (G, !) = li(G)
[! :  ] +$

©­«G exp ©­«− 1
99
·

√
logG
=!

ª®¬ª®¬
where c (G, !) is the number of prime ideals p ⊆  such that # /Q (p) ≤ G and p splits completely
in !. The constant implied in the symbol $ is absolute.

Proof. The statement of this result for  = Q is already contained in [Ram84, Lemma 2]. To
prove the more general version of the proposition, we use [Win13, Théorème 1.1] which gives����c (G, !) − 1

[! :  ] li(G)
���� ≤ 1
[! :  ] li(G

V ) +�0G exp
©­«− 1

99

√
logG
=!

ª®¬ (5.25)

where the inequality holds for every G ≥ exp(8=! log(150867|Δ! |44/5)2) and �0 is an explicit
absolute constant. Moreover by [Sta74, pag. 148], there exists an e�ectively computable absolute
constant � such that

V < 1 − 1
� |Δ! |1/=!

. (5.26)

Notice �rst of all that we can substitute the condition G ≥ exp(8=! log(150867|Δ! |44/5)2) with
the weaker condition √

logG
=!
≥ 60 log |Δ! | (5.27)
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and that, under this condition on G , we can write (5.25) as

c (G, !) = 1
[! :  ] li(G) +$

(
li(GV )
[! :  ]

)
+$ ©­«G exp ©­«− 1

99

√
logG
=!

ª®¬ª®¬ . (5.28)

Now (5.26) gives

li(GV )
[! :  ] ≤ li(GV ) ≤ GV = exp(V logG) ≤ exp

((
1 − 1

� |Δ! |1/=!

)
logG

)
= G exp

(
− logG
� |Δ! |1/=!

)
and one has

− logG
� |Δ! |1/=!

≤ − 1
99

√
logG
=!

⇐⇒

√
logG
=!
≥ �

99=!
|Δ! |1/=! .

Hence for √
logG
=!
≥ max{60 log |Δ! |,

�

99
|Δ! |1/=! }

we have
li(GV )
[! :  ] = $

©­«G exp ©­«− 1
99

√
logG
=!

ª®¬ª®¬
and the proposition follows. �

Remark 5.5.3. In the following, if we want to emphasize the base �eld we will also write c (G, !/ )
in place of c (G, !).

Proof of Theorem 5.5.1. Let ( be the set of primes of � that do not split completely in any �ℓ and
let

6(G, � ) := #{p ⊆ � : #�/Q (p) ≤ G, deg(p) = 1,p - Δ� · Δ� and p ∈ (}.

We have to prove that

lim
G→∞

6(G, !)
G/logG

exists, since then this limit is also equal to X�/� by Corollary 5.3.2 and by the fact that the density
of any set of primes A of � is equal to density of the set of primes of degree 1 contained in
A. Notice also that, by ignoring �nitely many primes and by the implication (5.11), we can
substitute the function 6(G, � ) in the limit above with the function

5 (G, � ) := #{p ⊆ � : #�/Q (p) ≤ G, deg(p) = 1,p ∈ ( (
√
G + 1)}

where, for every 0 ∈ R, we set ( (0) to be the set of primes of � that do not split completely in
any �ℓ with ℓ ≤ 0.
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Let now 0 ≤ ~ ≤
√
G + 1 to be �xed later, and set

# (G,~) := #{p ⊆ � : #�/Q (p) ≤ G, deg(p) = 1,p ∈ ( (~)}
" (G,~,

√
G + 1) := #{p ⊆ � : #�/Q (p) ≤ G, deg(p) = 1, p splits completely in �ℓ

for some prime ~ < ℓ ≤
√
G + 1}.

Since # (G,~) −" (G,~,
√
G + 1) ≤ 5 (G, � ) ≤ # (G,~) we can write

5 (G, � ) = # (G,~) +$
(
" (G,~,

√
G + 1)

)
and bound the two terms appearing in the above equality separately. We start by bounding
# (G,~). We have

# (G,~) =
∑

` (:)c (G, �:/� )

where the sum is taken over all integers : ≤
√
G + 1 (squarefree) whose prime factors are all ≤ ~.

To bound the terms c (G, �:/� ) appearing in the sum, we would like to use the e�ective version
of the Chebotarëv density theorem given by Proposition 5.5.2. In order to apply the proposition,
we need to verify the following two hypotheses:

(a) =�: (log |Δ�: |)2 � logG ;

(b) =�: |Δ�: |2/=�: � logG ,

where =�: = [�: : Q] and the implied constants must be absolute. In this process, we will also
need to choose the parameter ~ in a clever way.

Using the proof of Proposition 5.3.5 one has

1
[�: : � ] log |Δ�: | − log |Δ� | ≤ [� : Q] ©­«

∑
? |#� /Q (Δ�: /� )

log? + log[�: : � ]ª®¬
and dividing both sides of the inequality above by [� : Q] we get

1
=�:

log |Δ�: | −
1

[� : Q] log |Δ� | ≤
∑

? |#� /Q (Δ�: /� )
log? + log[�: : � ] ≤

∑
? |: ·#�

log? + log[�: : � ]

≤ log(: · #�) + log[�: : � ]
= log(: · #� · [�: : � ])

where #� denotes the norm of the conductor of the elliptic curve �. Using the fact that [�: :
� ] � :2 we �nally obtain

1
=�:

log |Δ�: | � log(:3#�) (5.29)

and from this inequality it is easy to deduce that

=�: (log |Δ�: |)2 � :6 (log(:3#�))2 and =�: |Δ�: |2/=�: � :8# 2
�

so that in particular
max{=�: (log |Δ�: |)2, =�: |Δ�: |2/=�: } � :8# 2

� .
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Since now : is the squarefree product of primes ≤ ~ we have : ≤ 42~ , so by choosing

~ =
1
16
(log logG − 2 log#�) (5.30)

we get
:8# 2

� ≤ 416~# 2
� = 4 log logG−2 log#�# 2

� = logG .

Hence the choice of ~ as in (5.30) allows us to apply Proposition 5.5.2 and obtain

# (G,~) =
∑

` (:)c (G, �:/� ) =
(∑ ` (:)

[�: : � ]

)
li(G) +$

(∑
` (:)G exp

(
− 1
99

√
logG
=�:

))
and using the same estimate of [Coj03] (compare the expression above with [Coj03, Formula
(7)]) we obtain

# (G,~) =
∑

` (:)c (G, �:/� ) =
(∑ ` (:)

[�: : � ]

)
li(G) +$

(
G

#
1/4
�
(logG)�

)
(5.31)

for any positive constant �.
We now proceed to bound " (G,~,

√
G + 1). We split this quantity in two terms

" (G,~,
√
G + 1) = "o (G,~,

√
G + 1) +"ss (G,~,

√
G + 1) (5.32)

where

• "o (G,~,
√
G+1) is the cardinality of the set of degree 1 primesp ⊆ � which split completely

in some �ℓ for ~ < ℓ ≤
√
G + 1 and which are primes of good ordinary reduction for the

elliptic curve �;

• "ss (G,~,
√
G+1) is the cardinality of the set of degree 1 primesp ⊆ � which split completely

in some �ℓ for some ~ < ℓ ≤
√
G + 1 and which are primes of good supersingular reduction

for the elliptic curve �.

In what follows, for a given prime p ⊆ � we denote by �̃ the reduction of � modulo p and by 0p
the trace of the Frobenius endomorphism cp of �̃. We estimate the two terms in (5.32) separately.
We begin with "o (G,~,

√
G + 1), which we brutally estimate by

"o (G,~,
√
G + 1) ≤

∑
~<ℓ≤

√
G+1

co (G, �ℓ/� )

where in the sum above ℓ denotes a prime number and co (G, �ℓ/� ) counts the degree 1 primes
p ⊆ � which split completely in � ⊆ �ℓ and which are of good ordinary reduction for �. Notice
that for every such prime, the reduced elliptic curve �̃ is ordinary and de�ned over F? , with
? = #�/Q (p). Moreover, we always have an embedding

 = End
�
(�) ⊗Z Q ↩→ EndF? (�̃) ⊗Z Q

where  is the CM-�eld of �/� . Since �̃ is ordinary, we have EndF? (�̃) ⊗Z Q = Q(cp), and
this yields  = Q(cp). Now, p splits completely in �ℓ , which means that the group of points
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�̃ (F? ) contains the full ℓ-torsion of the elliptic curve �̃, and this in particular implies that
ker[ℓ] ⊆ ker(cp − 1). By the factorization theorem for isogenies, we have

cp − 1
ℓ
∈ EndF? (�̃) ⊆ O .

Suppose for a moment that the absolute discriminant Δ of  satis�es Δ ≡ 2, 3 mod 4 so that
O = Z[

√
Δ ]. Then

cp − 1
ℓ
∈ O ⇔ # /Q (cp) = (0ℓ + 1)2 + |Δ |12ℓ2

for some 0, 1 ∈ Z. Since p has degree 1, one has # /Q (cp) = #�/Q (p) = ? and we get

co (G, �ℓ/� ) ≤ #{p ⊆ � : #�/Q (p) ≤ G, degp = 1,
cp − 1
ℓ
∈ O }

≤ [� : Q] · #{? ≤ G prime : ? = (0ℓ + 1)2 + |Δ |12ℓ2 for some 0, 1 ∈ Z}.

Now [� : Q] is �xed, so one can apply exactly the same arguments contained in [Coj03, pag.
2659] to obtain

"> (G,~,
√
G + 1) = $

(
G log logG

logG · (log logG − 2 log#�) · (log log(logG/# 2
�
))

)
. (5.33)

The same conclusion is reached if Δ ≡ 1 mod 4.
We now estimate "ss (G,~,

√
G + 1). A prime p counted by this function is a prime of degree

1 and of supersingular reduction for � which splits completely in some �ℓ for ~ < ℓ ≤
√
G + 1

prime. In particular, the reduced elliptic curve �̃ is de�ned over F? with ? := #�/Q (p), and it is
supersingular. The fact that p splits completely in �ℓ implies on the one hand that ℓ2 | #�̃ (F? ) =
? + 1 (since �̃ is supersingular) and on the other hand that F×? contains a primitive ℓ-th root of
unity, which in particular means that ℓ | ? − 1. We deduce that ℓ = 2. Since ~ > 2 by (5.30), we
conclude that

"ss (G,~,
√
G + 1) = 0. (5.34)

Now the proof of the theorem can be concluded by putting together the estimates (5.31), (5.33)
and (5.34), as done by Cojocaru in [Coj03, pag. 2660]. �

5.6 CM cyclic reduction densities
We now want to investigate whether the cyclic reduction density X�/� associated to an elliptic

curve �/� with complex multiplication can be factored as a product of a naive density ��/� and
an entanglement correction factor U�/� , in a similar fashion to (5.4.4).

If � contains the CM-�eld  , the situation is structurally reminiscent of the non-CM-case,
but, as we explained in Proposition 4.3.2, this time the ℓ-division �elds have Galois group
Gal(�ℓ/� ) � (O/ℓO)× for almost all primes ℓ , instead of the group GL2 (Fℓ ) that we had before.
Again, the �elds �ℓ form a linearly disjoint family over � for ℓ ranging over the prime numbers
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outside the �nite set)�/� of critical prime numbers described in Theorem 4.3.4 (in the statement
of the theorem, these are the primes dividing the integer �� ). To ease notation, we de�ne

�O,ℓ = 1 − 1
#(O/ℓO)× =


1 − (ℓ − 1)−2 if

(
�
ℓ

)
= 1

1 − (ℓ2 − 1)−1 if
(
�
ℓ

)
= −1

1 − (ℓ2 − ℓ)−1 if
(
�
ℓ

)
= 0

(5.35)

and call �O =
∏
ℓ prime�O,ℓ the Artin constant of the order O. We then have the following result,

completely analogous to Theorem 5.4.4, with the only di�erence that we now know that the
density of the set of primes of cyclic reduction for � is equal to X�/� by Theorem 5.5.1.

Theorem 5.6.1. Let �/� be a CM-elliptic curve with CM-order O ⊂ � . Then the set of primes of
cyclic reduction of � has density

X�/� =
©­«

∑
< |)�/�

` (<)
[�< : � ]

ª®¬ ·
∏
ℓ∉)�/�

�O,ℓ . (5.36)

In particular, we have X�/� = 2�/� · �O for some 2�/� ∈ Q≥0.

Proof. By Theorem 4.3.4 the family of division �elds {�)�/� } ∪ {�ℓ }ℓ-)�/� is linearly disjoint over
� . Hence the same proof of Theorem 5.4.4 carries over to this case and allows to write

X�/� =
∑

< |)�/�

` (<)
[�< : � ] ·

∏
ℓ∉)�/�

(
1 − 1
[�ℓ : � ]

)
.

On the other hand, Proposition 4.3.2 implies that for ℓ - )�/� we have an isomorphism
Gal(�ℓ/� ) � (O/ℓO)× and this su�ces to conclude. �

When the �eld of de�nition � of the elliptic curve � does not contain the CM �eld, the situation
is somehow di�erent since, in this case, it is not true anymore that the family of division �elds
{�ℓ }ℓ for ℓ prime becomes linearly disjoint after removing a �nite set of �elds.

Theorem 5.6.2. Let �/� be an elliptic curve with complex multiplication by an order in an
imaginary quadratic �eld  . Then �ℓ contains  for all primes ℓ ≥ 3.

Proof. If � already contains  there is nothing to prove, so we assume � +  . In this case the
compositum � is a quadratic extension of � , so if there exists a prime ℓ such that �ℓ does not
contain � , then the two �elds are linearly disjoint over � . By the Chebotarëv Density Theorem,
there is a degree 1 prime ideal p ⊆ � coprime with ℓ that is inert in � and splits completely
in �ℓ . If we denote by ? ∈ N the rational prime lying below p, the �rst condition implies, by
Theorem 1.4.1, that the reduced curve �̃ := � mod p is a supersingular elliptic curve de�ned
over F? . In particular, #�̃ (F? ) = ? + 1. On the other hand, the fact that p splits completely in �ℓ
implies that �̃ (F? ) contains the full ℓ-torsion of �̃ (F? ), so that ℓ | ? + 1. Since � (Zℓ ) ⊆ �ℓ , we
also have that ℓ | ? − 1. We conclude that ℓ = 2, and the theorem follows. �

Theorem 5.6.2 shows that the entanglement in the family of division �elds {�ℓ }ℓ is not �nite
anymore if the base-�eld � does not contain the CM �eld  . However, we can always recover
the more familiar quadratic entanglement setting after base-changing � to the compositum � .
This allows us to prove the following analogue of Theorem 5.6.1.
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Theorem 5.6.3. Let � be an elliptic curve with complex multiplication by an order O of discrim-
inant ΔO < −4 in an imaginary quadratic �eld  and de�ned over � +  . Write �2,O for the
ray class �eld modulo 2 relative to the order O. Then there exists a non-negative rational number
2�/� ∈ Q≥0 such that:

1. If ΔO ≡ 0 mod 4 then either � is linearly disjoint from �2,O over Q( 9 (�)) and

X�/� =
1
4
+
2�/�
2
· �O

or � ∩ �2,O ) Q( 9 (�)) and we have

X�/� =

{
0 if � = �2
1
2 otherwise

2. If ΔO ≡ 5 mod 8 then
X�/� =

1
2
+
2�/�
2
· �O .

3. If ΔO ≡ 1 mod 8 then X�/� = 1/2.

Proof. Let ( be the set of primes of � that do not split completely in any division �eld �ℓ with ℓ
prime. By Corollary 5.3.2 and Theorem 5.5.1, the natural density X (() of the set ( equals X�/� . In
order to compute the former density, we need to understand the behaviour of the �eld �2 since
by Theorem 5.6.2 all the other division �elds contain the compositum � .

Let ! := Q( 9 (�)) and let � ′/! be any elliptic curve with 9 (� ′) = 9 (�). Following the notation
adopted in this chapter, we denote by !2 := !(� ′[2] (Q)). Then we have the following diagram
of �elds:

�2,O

!2 �O

! �

Q

2

2

where �2,O is the the compositum of the ring class �eld �O with the 2-division �eld !2, since
9 (�) ≠ 0, 1728 by hypothesis. The extension ! ⊆ �2,O is Galois and one has

Gal(�2,O/�O) � (O/2O)×, Gal(�2,O/!) � Gal(�2,O/�O) o 〈f〉

where the �rst isomorphism is given by the Artin map and f is the unique non-trivial element
of Gal(�O/!) whose action on Gal(�2,O/�O) is induced by the natural Galois action on O. We
notice now that � ⊇ ! since 9 (�) ∈ � , and that !2� = �2 since � is a twist of the base-change of
� ′ to � and the 2-division �eld is generated by the values of a Weber function for � (resp. � ′) at
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2-torsion points. Moreover � ∩ �O = ! because by assumption � does not contain the CM �eld
 . Hence [� · �O : � ] = 2 and we write ( = (1 t (2 where

(1 := {p ∈ ( : p does not split in � · �O},
(2 := {p ∈ ( : p splits in � · �O},

so that X (() = X ((1) + X ((2). We now divide the proof according to the di�erent cases appearing
in the statement of the theorem.

Case 1: Assume that ΔO ≡ 0 mod 4. Under this assumption, either 2 rami�es in  or 2 divides
the conductor of O or both. Suppose �rst that 2 is coprime with the conductor of O. Then we
have

Gal(�2,O/�O) = (O/2O)× � (O /2O )× �
(
F2 [G]/(G2)

)×
� �2

where�# denotes the cyclic group of order # . On the other hand, if 2 divides the conductor of O
there exists a unique prime ideal p2,O ⊆ O lying over 2 for which the inclusions 2O ⊆ p2,O ⊆ O
have at each step index 2. Again one has

(O/2O)× �
(
F2 [G]/(G2)

)×
� �2

showing that in any case [�2,O : �O] = 2. This implies that ! ⊆ �2,O is a Klein extension
obtained as compositum of the two disjoint quadratic extensions ! ⊆ !2 and ! ⊆ �O .

Suppose now that � ∩�2,O = Q( 9 (�)). Then we also have that �2 and � ·�O are two quadratic
linearly disjoint extensions of � . Since � · �O is contained in all the ℓ-division �elds with ℓ ≥ 3,
the set (1 is equal to the set of primes of � that do not split neither in �2 nor in � · �O . Since
these two �elds are linearly disjoint over � , we have

X ((1) =
(
1 − 1
[�2 : � ]

) (
1 − 1
[� · �O : � ]

)
=
1
4
.

On the other hand, if a prime p ⊆ � splits in � · �O , then p does not split in �2 if and only if all
the primes of � · �O lying above p do not split in � · �2,O . So we have

X ((2) =
1
2
· X ((̃)

where (̃ is the set of primes of � · �O that do not split completely in any (� · �O) (� [ℓ]) for ℓ
prime. But this is equal to the density X�/� ·�O of the set of primes of cyclic reduction of the
base-change �/� ·�O . Theorem 5.6.1 then gives

X ((2) =
1
2
· X�/� ·�O =

1
2
· 2�/� · �O

with 2�/� the entanglement correction factor to the Artin constant �O .

Suppose now that � ∩�2,O ) Q( 9 (�)). Since � ⊅ �O , the intersection � ∩�2,O is either equal
to !2 or is a quadratic extension of ! that is distinct from both !2 and �O . In the �rst case, we
have � = �2 and X�/� = 0. In the second case, �2 = � · !2 = � · �2,O = � · �O , so by Theorem
5.6.2 the set ( consists precisely of the primes of � that do not split completely in � · �O . Hence
we have X�/� = 1

2 and this concludes the study of Case 1.
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Case 2: Suppose now that ΔO ≡ 5 mod 8. Under this assumption, the prime 2 is inert in O
and we then have

(O/2O)× � (O /2O )× � F×4 � �3

from which we get

Gal(�2,O/!) � Gal(�2,O/�O) o Gal(�O/!) � �3 o�2 � (3

where (3 denotes the symmetric group with 6 elements. This implies that the degree [!2 : !]
can be either 3 or 6. However, the �rst possibility is cannot hold, since otherwise the �elds !2
and �O would be linearly disjoint over ! and Gal(�2,O/!) would then be abelian. We deduce
that !2 = �2,O ⊇ �O . After composing with � , we obtain the analogous inclusion �2 ⊇ � · �O .
Hence by Theorem 5.6.2 all the ℓ-division �elds of �/� contain � ·�O . After using Theorem 5.6.1
we obtain

X ((1) =
1
2
, X ((2) =

1
2
· X�/� ·�O =

1
2
· 2�/� · �O

with 2�/� the entanglement correction factor to the Artin constant �O for the division �elds of
�/� ·�O . This concludes the study of this case.

Case 3: We �nally suppose that ΔO ≡ 1 mod 8. Under this assumption, the prime 2 splits in
O and we have

O/2O � O /2O � F2 × F2.

The group of units of this ring is trivial and we deduce that �2,O = �O . In particular, we have
the inclusions ! ⊆ !2 ⊆ �O with [�O : !] = 2, so either !2 = ! or !2 = �O . We claim that the
�rst possibility cannot hold.

To see this, choose an embedding �O ↩→ C under which 9 (�) corresponds to 9 (O), the
modular 9-function computed on the image of O through the embedding itself. This can be
done, since all the 9-invariants of elliptic curves with complex multiplication by the same order
form a full Galois orbit over Q. Since 9 (O) ∈ R, as can be veri�ed by acting with complex
conjugation f ∈ Aut(C), we see that the image of ! under the above embedding is contained in
R. Hence, if we show that f acts non-trivially on !2 ⊆ C the claim follows. Over C, the curve
� ′ is isomorphic to an elliptic curve of the form � ′′ : ~2 = 4G3 + 62G + 63 where 62 = 62 (O) and
63 = 63 (O) are the usual normalized Eiseinstein series computed on the lattice O. We have a
complex analytic isomorphism

C/O → � ′′(C), I ↦→ (℘(I;O), ℘′(I;O))

where ℘(I;O) denotes the Weierstrass ℘-function relative to the lattice O. Then !2 is obtained
by adjoining to ! the values of the Weber functions

h1� (I) =
62 (O)63 (O)

Δ(O) ℘(I;O)

at torsion points 1
2O/O, where Δ(·) is the modular discriminant. Since complex conjugation

stabilizes O, we see that for every I ∈ C one has f (h1
�
(I)) = h1

�
(f (I)), and h1

�
(f (I)) = h1

�
(I) if

and only if f (I) = ±I in C/O. For a 2-torsion point I ∈ 1
2O/O this happens if and only if ΔO is

even, which is not the case under our hypotheses. This proves the claim.
To conclude the study of this case, observe that �2 = � · !2 = � · �O , so that, by Theorem

5.6.2, the density X (() is precisely equal to the density of the set of primes of � that do not split
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completely in the quadratic extension � ⊆ � · �O . We conclude that X (() = 1
2 and the proof of

the theorem is complete. �

For elliptic curves with complex multiplication by orders O of discriminant ΔO ∈ {−3,−4}
one can argue similarly to the proof of Theorem 5.6.3 . One obtains the following results.

Theorem 5.6.4. Let � be a number �eld such that Q(8) * � , let 0 ∈ �× and consider the elliptic
curve � : ~2 = G3 − 0G with complex multiplication by O = Z[8].

1. If 0 ∈ (�×)2 then X�/� = 0;

2. If −0 ∈ (�×)2 then X�/� = 1
2 ;

3. If ±0 ∉ (�×)2 then
X�/� =

1
4
+ ��,�

2
· �O .

Theorem 5.6.5. Let � be a number �eld such that Q(Z3) * � , let 0 ∈ �× and consider the elliptic
curve � : ~2 = G3 − 0 with complex multiplication by O = Z[Z3].

1. If 0 ∈ (�×)3 then X�/� = 1
2 ;

2. If 0 ∉ (�×)3 then
X�/� =

1
2
+ ��,�

2
· �O .

In particular, the results proved in this section show that for a CM elliptic curve � de�ned over
a �eld � not containing the CM �eld the cyclic reduction density X�/� never vanishes trivially,
in the sense of Section 5.4.

5.7 Cyclic reduction densities for CM elliptic
curves defined over Q

In this �nal section we put together the results in Chapter 4 with the results in Section 5.6.
The outcome is a computation, for every elliptic curve � de�ned over the rationals and with
complex multiplication by an order O of discriminant ΔO < −4, of the exact cyclic reduction
density X�/Q. We achieve this by means of a two-step strategy.

As a �rst step, we determine the density X�/ for the base-change of � to the CM �eld  .
By Theorem 5.6.1, this amounts to study the entanglement in the family of division �elds
F = { ℓ }ℓ for ℓ prime. Since the entanglement in this family is at most quadratic as we know
from Chapter 4, one can make use of the character-sum formula (5.9) to determine the exact
correction factor to the naive density over  . Notice, however, that in order to avoid trivial
terms in the character-sum formula it is necessary to precisely pin down the minimal squarefree
integer ( ∈ N for which the family { ( , �ℓ }ℓ-( is linearly disjoint over  . In Theorem 4.5.2 we
have studied the entanglement in the family F ′ = { (� [ℓ∞])}ℓ for ℓ prime. More precisely, we
have classi�ed all the possible images of the natural map

Gal( (�tors)/ ) ↩→
∏

ℓ prime
Gal( (� [ℓ∞])/ )

for any given elliptic curve �/Q with CM by an order of discriminant ΔO < −4. This unfortunately
is not enough for our purposes. Indeed, as we will see, it is possible that the family F ′ is entangled
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over  while the family F is linearly disjoint over the same �eld. This situation will be studied
in detail. Once the density X�/ has been explicitly computed, the second step is to determine
the density X�/Q for the initial elliptic curve �/Q. This density can be obtained from a direct
application of Theorem 5.6.3, which allows to descend over Q by looking at the congruence
class of the discriminant of the CM order modulo 8.

A similar discussion could in principle be carried out also for elliptic curves with CM by
the two orders of discriminant ΔO ∈ {−3,−4}. However, for such an elliptic curve � the
entanglement in the family F can be respectively sextic and quartic, thus leading to considerably
more complicated general formulas for the density X�/Q. Rather than writing out all the details
of a possible comprehensive computation in these cases, we have decided to focus on speci�c
examples, which are in many ways more illuminating and give the �avour of what can happen
in these particular situations.

Before stating our results, we recall some facts, proved in Section 4.5, concerning CM elliptic
curves de�ned over the rationals. A CM elliptic curve � de�ned over Q can have complex
multiplication only by an imaginary quadratic order O of class number 1, whose discriminant
ΔO then belongs to the list

ΔO ∈ {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163}.

For every such order O in an imaginary quadratic �eld , there exist at most 4 non-isomorphic
elliptic curves de�ned over Q with CM by O and whose conductor is minimal (in absolute value)
among all their twists, see Table 4.1. From now on we consider only elliptic curves with complex
multiplication by orders O of discriminant ΔO < −4. By Theorem 4.5.2, for every such elliptic
curve �/Q, there exist a unique elliptic curve (�0)/Q with CM by O and minimal conductor (if
O = Z[28] minimal means divisible by the smallest amount of primes), and there exists a unique
fundamental discriminant Δ ∈ Z coprime with the absolute discriminant Δ of the CM �eld  
such that � is the quadratic twist of �0 by the quadratic �eld Q(

√
Δ). We denote this quadratic

twist by � (Δ)0 and we call the unique pair (�0,Δ) as above the twist type of �, the integer Δ
being the twisting discriminant. Note that if the twist type of the elliptic curve � has twisting
discriminant Δ = 1, then � is Q-isomorphic to one of the elliptic curves with minimal conductor
appearing in Table 4.1.

Before being completely ready to dive into our study of cyclic reduction densities, we need to
prove a technical class-�eld theoretical result that will be repeatedly used in our analysis.

Proposition 5.7.1. Let O be an order of discriminant ΔO < −4 inside an imaginary quadratic
�eld  . For every odd integer" ∈ N we have

�2",O = �2,O · �",O

where, for every # ∈ N, we denote by �#,O the ray class �eld modulo # of � relative to O.
Proof. For " = 1 the result is trivially true, so we assume " > 1. Class Field Theory always
implies the inclusion �2,O · �",O ⊆ �2",O , but a priori this may not be an equality. The
functoriality of the Artin isomorphism Gal( ab/�O) � Ô×/Im(O×) = Ô×/{±1} (see Theorem
3.3.6) gives, for every odd integer " ∈ N>1, the commutative diagram

Gal(�2",O/�O) Gal(�2,O/�O) × Gal(�",O/�O)

(O/2"O)× /{±1} (O/2O)× × (O/"O)× /{±1}

� �
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where the upper horizontal map is the restriction of �eld automorphisms, the lower horizontal
map is given by the pair of natural projections on the two factors and the vertical isomorphisms
are induced by the Artin map. The proposition now follows after noticing the the lower horizontal
map is precisely the isomorphism given by the Chinese Reminder Theorem. �

We now have all the tools to carry out the said explicit densities computations. While
performing this study, one soon notices that some of the elliptic curves share a similar behaviour
in terms of cyclic reduction densities. We formulate and divide our statements accordingly. In
all the displayed numerical computations we have used SAGE [SAGE] and the results obtained
in this section are summarized in Table 5.1.

Theorem 5.7.2. Let �/Q be an elliptic curve with complex multiplication by an order O of dis-
criminant ΔO ∈ {−11,−19,−27,−43,−67,−163} and denote by (�0,Δ) the twist type of �. Let �O
be the Artin constant relative to the order O and let ? = −Δ be the unique prime dividing the
discriminant of the CM �eld  .

• If Δ ≡ 1 mod 4 then

X�/Q =
1
2
+ 1
2
©­«1 +

∏
ℓ |?Δ

−1
#(O/ℓO)× − 1

ª®¬�O
• If Δ ≡ 0 mod 4 then

X�/Q =
1
2
+ 1
2
�O .

Proof. Assume �rst of all that Δ = 1, so that the elliptic curve � has minimal conductor among
all its twists. Let �/ be the base-change of � to the CM �eld  . Then by Theorem 4.5.2, the
family F ′ of ℓ∞-division �elds of �/ is linearly disjoint over  , and the �eld  ? is equal to the
ray class �eld �?,O . In particular,

[ ? :  ] = [�?,O :  ] = 1
2
· # (O/?O)× = 1

2
· ? (? − 1)

which implies that we have to correct the naive cyclic reduction density �O over  taking into
account the minimality of the ?-division �eld. This yields

X�/ =

(
1 − 2

? (? − 1)

) (
1 − 1

? (? − 1)

)−1
· �O =

(
1 − 1

? (? − 1) − 1

)
�O .

Since now ΔO ≡ 5 mod 8, Theorem 5.6.3 gives

X�/Q =
1
2
+ 1
2

(
1 − 1

? (? − 1) − 1

)
�O

concluding the proof in this case.
Suppose now that Δ ≠ 1 and Δ ≡ 1 mod 4, so that Δ = ±?1 · ... ·?= with ?8 ∈ N odd primes. By

Theorem 4.5.2 the entanglement in the family F ′ is given by the intersection  |Δ | ∩ ? =  (
√
Δ),

and in particular the family FΔ,? = { ?1 , ...,  ?= ,  ? } is entangled over  . We want to show
that FΔ,? is the smallest possible entangled subfamily of F , i.e. that for every ( ( {?, ?1, ..., ?=}
the family { ℓ }ℓ∈( is linearly disjoint over  . Since the family { ?1 , ...,  ?= } is linearly disjoint
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over  (because the entanglement in the family of ℓ-division �elds of � is at most quadratic),
it su�ces to prove that  # ∩  ? =  for every integer # =

∏
ℓ∈( ℓ with ( ( {?1, ..., ?=}. Fixed

such an integer # = ? 91 · ... · ? 9A , we show that  (
√
Δ) is not contained in the division �eld  # .

Let �#,O ⊆  # be the ray class �eld of  modulo # relative to the order O. The extension
 ⊆ �#,O can be rami�ed only at primes dividing ?# . On the other hand, the extension
 ⊆  (

√
Δ) is certainly rami�ed at some prime p ⊆  not dividing ?# since, by de�nition of

twist type, Δ is coprime with ? and, by assumption, there is at least one prime that divides Δ
but that does not divide # . Hence  (

√
Δ) ∩ �#,O =  .

Let us now consider the intersection �#,O (
√
Δ) ∩  # . Since [ # : �#,O] ≤ 2, if this

intersection is not equal to �#,O , we must have  # = �# (
√
Δ). Suppose by contradiction that

this is the case. Then the mod # Galois representation for �/ has maximal image. On the other
hand, also the mod # Galois representation of �0 has maximal image, as follows from Theorem
4.5.2 and from the fact that # is coprime with ? . However, since �0 = � (Δ) , this contradicts
Proposition 4.4.1 1 . We deduce that �#,O (

√
Δ) ∩  # = �#,O , so that

 (
√
Δ) ∩  # =  (

√
Δ) ∩ �#,O (

√
Δ) ∩  # =  (

√
Δ) ∩ �#,O =  

which proves the minimality of the family FΔ,? .
We can now use the character sum formula (5.9) to deduce that

X�/ =
©­«1 +

∏
ℓ |?Δ

−1
#(O/ℓO)× − 1

ª®¬�O
and use Theorem 5.6.3 to get the wanted statement over Q.

Suppose �nally that Δ ≡ 0 mod 4, so that we can write Δ = ±20 · ?1 · ... · ?= with 0 ∈ {2, 3}.
Again by Theorem 4.5.2 we know that  ? ∩ |Δ | =  (

√
Δ), and that this is the only entanglement

in the family F ′. Nevertheless, we are going to prove that the family { 2,  ?1 , ...,  ?= ,  ? } is
linearly disjoint over  . To this aim, it is again su�cient to prove that, if # := 2 · ?1 · ... · ?= ∈ N,
then  (

√
Δ) ∩  # =  .

Certainly the �elds  (
√
Δ) and �# /2,O are linearly disjoint over  since by assumption every

prime above 2 rami�es in  ⊆  (
√
Δ) but cannot ramify in  ⊆ �# /2,O . Furthermore, we have

�# /2,O (
√
Δ) ∩ �#,O = �# /2,O since, by Proposition 5.7.1, we have

[�#,O : �# /2,O] = [�2,O :  ] = #(O/2O)× = 3

where the last equality follows from the fact that ΔO ≡ 5 mod 8. Finally, again by Proposition
4.4.1 1 applied as in the previous case, one also has �#,O (

√
Δ) ∩  # = �#,O . All this implies

that  (
√
Δ) ∩ # =  , thus proving that the family { 2,  ?1 , ...,  ?= ,  ? } is linearly disjoint over

 . This means that X�/ is equal to the naive density �O in this case. By applying Theorem
5.6.3, we obtain

X�/Q =
1
2
+ 1
2
�O

and the proof is concluded. �

Example 5.7.3. Let �0 be the elliptic curve with LMFDB label 27.02, de�ned by the Weierstrass
equation

�0 : ~2 + ~ = G3 − 30G + 63.
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Then �0 has complex multiplication by the order O = Z[3Z3] and it has minimal conductor
among all its twists, hence its twist type is (�0, 1). According to Theorem 5.7.2, the expected
cyclic reduction density is

Xexp =
1
2
+ 2
5
�O ≈ 0.7004

and a numerical computation of the fraction of primes up to 106 that are of cyclic reduction for
�0 gives

Xnum ≈ 0.7012

an excellent numerical agreement. Consider now the elliptic curve � de�ned by the Weierstrass
equation

� : ~2 = G3 − 480G − 4048

with LMFDB label 432.42 and twist type (�0,−4). Then according to Theorem 5.7.2, the expected
cyclic reduction density is

Xexp =
1
2
+ 1
2
�O ≈ 0.7505

and a numerical computation as above gives

Xnum ≈ 0.7518

again a good agreement.

The proof of the subsequent results is very similar to the one just presented for Theorem 5.7.2,
so we decided to sketch only the parts where the arguments di�er from the ones above.

Theorem 5.7.4. Let �/Q be an elliptic curve with complex multiplication by the order O ⊆  
of discriminant ΔO ∈ {−12,−28} and denote by (�0,Δ) the twist type of �. Let �O be the Artin
constant relative to the order O and let ? = −Δ be the unique prime dividing the discriminant of
the CM �eld  .

• If Δ ≡ 1 mod 4 or Δ ≡ 4 mod 8 then

X�/Q =
1
4
+ 1
2
©­«1 +

∏
ℓ |?Δ

−1
(O/ℓO)× − 1

ª®¬�O
• If Δ ≡ 0 mod 8 then

X�/Q =
1
4
+ 1
2
�O .

Proof. First of all we consider the case ΔO = −28. If Δ ≡ 1 mod 4 then the proof works out,
mutatis mutandis, in the same way as the proof of the analogous case in Theorem 5.7.2. Suppose
then that Δ ≡ 0 mod 4, so that we can write Δ = ±20?1 · ... · ?= with ?8 ∈ N odd primes and
0 ∈ {2, 3}. In this case Theorem 4.5.2 implies that  ? ∩  |Δ | =  (

√
Δ), and this intersection

explains all the entanglement in the family F ′.
If Δ ≡ 4 mod 8 then, using the fact that �2,O =  (8), one sees that  (

√
Δ) ⊆  # , where

# =
∏
ℓ |Δ ℓ is the radical of Δ. Moreover, with the same strategy used in the proof of Theorem
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5.7.2, it is possible to show that { 2,  ?1 , ...,  ?= ,  7} is the minimal family of ℓ-division �elds
which is entangled over  . This gives the density

X�/ =
©­«1 +

∏
ℓ |7Δ

−1
(O/ℓO)× − 1

ª®¬�O
and the desired density over Q can be obtained using Theorem 5.6.3.

On the other hand, if Δ ≡ 0 mod 8, one can prove by means of Proposition 5.7.1 that the
family { 2,  ?1 , ...,  ?= ,  7} is linearly disjoint over  . The proof is similar to the proof of the
analogous statement in Theorem 5.7.2, and we omit it.

In the case ΔO = −12 one can mimic the same arguments, after noticing that the 3-division �eld
of the elliptic curve �0 is equal to �3,O =  ( 3√2) = Q(Z3, 3√2) while �2,O =  (8) = Q(Z3, 8). �

Example 5.7.5. Let �0 be the elliptic curve with LMFDB label 36.02, de�ned by the Weierstrass
equation

�0 : ~2 = G3 − 15G + 22.

The curve �0 has complex multiplication by the order O = Z[
√
3] and it has minimal conductor

among all its twists, so that its twist type is (�0, 1). According to Theorem 5.7.4, the expected
cyclic reduction density is

Xexp =
1
4
+ 2
5
�O ≈ 0.4003

while a numerical computation of the fraction of primes up to 106 of cyclic reduction for �0 gives

Xnum = 0.4006

an excellent agreement. Consider now the elliptic curve � de�ned by the Weierstrass equation

� : ~2 = G3 − 60G + 176

with LMFDB label 576.42 and twist type (�0, 8). Then according to Theorem 5.7.4, the expected
cyclic reduction density is

Xexp =
1
4
+ 1
2
�O ≈ 0.4379

and a numerical computation as above gives

Xnum ≈ 0.4377

again a good agreement.

Theorem 5.7.6. Let �/Q be an elliptic curve with complex multiplication by the order O of
discriminant ΔO = −7. Then X�/Q = 1

2 .

Proof. This is an immediate application of Theorem 5.6.3. �

Theorem 5.7.7. Let �/Q be an elliptic curve with complex multiplication by an order O ⊆  of
discriminant ΔO ∈ {−8,−16}. Let �O be the Artin constant relative to the order O. Then

X�/Q =
1
4
+ 1
2
�O ≈

{
0.4201 if ΔO = −8
0.4443 if ΔO = −16
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and in particular the density does not depend on the twist type of �.

Proof. Let (�0,Δ) be the twist type of �. If Δ = 1 then by Theorem 4.5.2 the family F is
linearly disjoint over  . On the other hand, if Δ ≠ 1 we have again by Theorem 4.5.2 that
 8 ∩  |Δ | =  (

√
Δ) and this is the only cause of entanglement in the family F ′. We claim that

the family F is linearly disjoint over  . This amounts to show that  2 ∩  |Δ | =  .
Since in the hypotheses of the theorem we have [ 2 :  ] = 2, if the previous intersection

were non-trivial we would obtain  2 =  (
√
Δ). However  2 = �2,O is the ray class �eld modulo

2 for  , which can only ramify at primes above 2. Since by de�nition of twist type Δ must be
odd, this is a contradiction and we obtain  2 ∩  |Δ | = � , as we wanted to show. Therefore, over
 we always have X�/ = �O , and we obtain the corresponding density over Q using Theorem
5.6.3. �

Example 5.7.8. Let �0, �1, �2 be the three elliptic curves with complex multiplication by Z[
√
−2]

given by

�0 : ~2 = G3 − G2 − 3G − 1, LMFDB label: 256.32, twist type: (�0, 1)
�1 : ~2 = G3 − 30G + 56, LMFDB label: 2304.ℎ2, twist type: (�0,−3)
�2 : ~2 = G3 + G2 − 83G − 287, LMFDB label: 6400.02, twist type: (�0, 5).

Then a numerical computation shows that, for the three elliptic curves, the fraction of primes
up to 106 of cyclic reduction is respectively

X�0,num ≈ 0.4197, X�1,num ≈ 0.4196, X�2,num ≈ 0.4199

in accordance with Theorem 5.7.7.

We conclude this section by discussing what happens for elliptic curves �/Q with complex
multiplication by an order O of discriminant ΔO ∈ {−3,−4} i.e. with O = Z[Z3] or O = Z[8]
respectively. Such an elliptic curve admits a Weierstrass model over the rationals of the form

� : ~2 = G3 + 3, if ΔO = −3,
� : ~2 = G3 + 3G, if ΔO = −4,

with 3 ∈ Z a non-zero integer. Studying the cyclic reduction density of these elliptic curves is
more involved, and ultimately the main reason is to be found in the fact that the unit group O×
has order = > 2. This implies, on the one hand, that the entanglement in the family F may be
not quadratic anymore, and, on the other hand, that there are more possibilities for twisting the
elliptic curve �, in principle all leading to di�erent expressions for the seeked densities. Another
important di�erence with the cases ΔO < −4 is that for such an elliptic curve � the 2-division
�eld does not need to be equal to the ray class �eld modulo 2 for the order O, and thus it is not
invariant under twisting. However, since the 2-division �eld can be easily read from the given
model of �, this is more a bothering complication than a substantial problem.

For all these reasons, we decided not to provide general formulas for the density X�/Q in these
cases, but rather to give explicit examples which are signi�cant of the possible situations that
can arise.

Example 5.7.9. In this example we consider some elliptic curves de�ned over Q with complex
multiplication by O = Z[8] ⊆ Q(8) =:  . For simplicity, we denote by �# the ray class �eld
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modulo # of  and by conductor of an elliptic curve de�ned overQwe always mean the positive
generator of its conductor ideal.

As a �rst example, we study the cyclic reduction density of the elliptic curve

�−2/Q : ~2 = G3 − 2G

with conductor f�−2 = 28. Its 2-division �eld Q(
√
2) is linearly disjoint from the CM �eld  , so

that [ 2 :  ] = 2 = #(O/2O)×. By Theorem 5.6.2, all the other division �elds over Q contain  ,
so for our purposes we can reduce to study the family of division �elds  # , with # squarefree,
associated to the base-change �/ . By Theorem 4.3.4 this family is linearly disjoint over  and
by Proposition 4.3.2 all the division �elds  # with squarefree # > 3 have maximal degree
[ # :  ] = #(O/#O)×. Using Theorem 5.6.4 we obtain

X�−2/Q =
1
4
+ 1
2
�O ≈ 0.4443

and a numerical computation provides an approximate density of 0.4445.
We now twist the elliptic curve �−2 by Q( 4√3). A representative for the Q-isomorphism class

of this twist is given by
�−6/Q : ~2 = G3 − 6G

with conductor f�−6 = 2832. Again the 2-division �eld Q(
√
6) is quadratic over the rationals and

we can reduce to study the division �elds of �/ . By Theorem 4.3.4 the family { 6,  ℓ }ℓ>3 prime
is linearly disjoint over  . On the other hand, the extension  ⊆ �3 is cyclic and can contain
at most one quadratic subextension. By the properties of the Weil pairing [Sil09, III, Corollary
8.1.1], this extension is given by  (Z3) =  (

√
−3) and we deduce that  2 ∩  3 =  , so that

already the family { ℓ }ℓ prime is linearly disjoint over  . We remark that it is not true that the
family { ℓ∞ }ℓ prime is linearly disjoint over  : one can see that  8 ∩  3 =  ( 4√3). As in the �rst
case, the expected cyclic reduction density in this case is

X�−6/Q =
1
4
+ 1
2
�O ≈ 0.4443

which agrees with the numerical datum 0.4447.
The elliptic curve

�−1/Q : ~2 = G3 − G

has X�−1/Q = 0 since its 2-torsion is all de�ned over the rationals. We consider its twist by Q( 4√3)
given by the model

�−3/Q : ~2 = G3 − 3G

of conductor f�−3 = 2632. Also in this case the 2-division �eld Q(
√
3) is quadratic over the

rationals and we can reduce to study the division �elds of �/ . By Theorem 4.3.4 the family
{ 6,  ℓ }ℓ>3 prime is linearly disjoint over  . On the other hand, we see that the �eld  2 =  (

√
3)

is equal to the ray class �eld �3 =  (Z3), and the latter is contained in  3. We conclude that
 2 ∩  3 =  2 =  (

√
3). Using the character-sum formula (5.9), we deduce that the expected

density in this case is given by

X�−3/Q =
1
4
+ 4
7
�O ≈ 0.4721

while a numerical computation gives an approximate density of 0.4724. An excellent agreement.
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ΔO Approximate �O Twisting discriminant Δ X�/Q

−7 0 any Δ 1
2

−8 0.3403 any Δ 1
4 +

1
2�O

−11 0.4445 Δ ≡ 1 mod 4 1
2 +

1
2

(
1 +∏

ℓ |11Δ
−1

#(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 4 1
2 +

1
2�O

−12 0.3758 Δ ≡ 1 mod 4 1
4 +

1
2

(
1 +∏

ℓ |3Δ
−1

(O/ℓO)×−1

)
�O

Δ ≡ 4 mod 8 1
4 +

1
2

(
1 +∏

ℓ |3Δ
−1

(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 8 1
4 +

1
2�O

−16 0.3887 any Δ 1
4 +

1
2�O

−19 0.5142 Δ ≡ 1 mod 4 1
2 +

1
2

(
1 +∏

ℓ |19Δ
−1

#(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 4 1
2 +

1
2�O

−27 0.5011 Δ ≡ 1 mod 4 1
2 +

1
2

(
1 +∏

ℓ |3Δ
−1

#(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 4 1
2 +

1
2�O

−28 0.3960 Δ ≡ 1 mod 4 1
4 +

1
2

(
1 +∏

ℓ |7Δ
−1

(O/ℓO)×−1

)
�O

Δ ≡ 4 mod 8 1
4 +

1
2

(
1 +∏

ℓ |7Δ
−1

(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 8 1
4 +

1
2�O

−43 0.5288 Δ ≡ 1 mod 4 1
2 +

1
2

(
1 +∏

ℓ |43Δ
−1

#(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 4 1
2 +

1
2�O

−67 0.5301 Δ ≡ 1 mod 4 1
2 +

1
2

(
1 +∏

ℓ |67Δ
−1

#(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 4 1
2 +

1
2�O

−163 0.5306 Δ ≡ 1 mod 4 1
2 +

1
2

(
1 +∏

ℓ |163Δ
−1

#(O/ℓO)×−1

)
�O

Δ ≡ 0 mod 4 1
2 +

1
2�O

Table 5.1: Cyclic reduction densities for elliptic curves over Q with CM by an order of discriminant < −4.
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