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Abstract

This thesis studies graphical modeling of local independence in stochastic processes. By applying a separation criterion to
graphs, we can obtain a graphical representation of a local independence structure which describes how the system evolves
over time. We describe a class of graphs which facilitates graphical modeling of partially observed stochastic processes
driven by correlated error processes.

Within this graphical framework, we prove some Markov properties for specific classes of stochastic processes which
provides a link between a graph and the local independence structure of a stochastic process. Graphs that encode the
same independence structure are said to be Markov equivalent. Characterizations of Markov equivalence are interesting
as they allow us to understand which graphical structures are indistinguishable in terms of the separation models that they
encode. We prove several results relating to Markov equivalence in different classes of graphs. We also consider various
computational problems and show that many of the naturally occuring problems are hard in these classes of graphs.

We consider structure learning in the case of partially observed stochastic processes, i.e., the task of recovering a
graphical representation from an observational distribution. Exact structure learning based on tests of local independence
is also hard and we suggest an approximation algorithm which is computationally feasible.
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Resumé

Denne afhandling beskriver grafiske modeller af lokal uafhængighed for stokastiske processer. Ved hjælp af et sepa-
rationskriterium kan vi anvende grafer som en repræsentation af lokal uafhængighed, der beskriver, hvordan et system
udvikler sig over tid. Vi beskriver en klasse af grafer, som gør det muligt at lave grafiske modeller af delvist observerede
stokastiske processer, der drives af korrelerede fejlprocesser.

Inden for denne familie af grafer beviser vi nogle Markovegenskaber for specifikke klasser af stokastiske processer,
hvilket skaber en forbindelse mellem graferne og lokal uafhængighed af stokastiske processer. Grafer, der repræsenterer
den samme uafhængighedsstruktur, siges at være Markovækvivalente. Karakteriseringer af Markovækvivalens er interes-
sante, da de giver os en forståelse for, hvilke grafiske strukturer vi ikke er i stand til at skelne ud fra de separationsmodeller,
som de repræsenterer. Vi beviser adskillige resultater vedrørende Markovækvivalens i forskellige klasser af grafer. Vi
undersøger også flere beregningsmæssige problemer og viser, at mange af de naturligt forekommende problemer i disse
klasser af grafer er beregningsmæssigt svære.

Vi undersøger strukturlæring af delvist observerede stokastiske processer, altså hvordan man kan lære en grafisk
repræsentation ud fra en observationel fordeling. Eksakt strukturlæring ved hjælp af tests af lokal uafhængighed er også
beregningsmæssigt svært, og vi foreslår en approksimativ algoritme, som er beregningsmæssigt hensigtsmæssig.
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Chapter 1

Introduction

Stochastic processes are often used as formal means of reasoning about the evolution of a dynamical system. In complicated
systems with many components one needs some type of sparsity assumption to easily make sense of the behavior of
the system. In multivariate stochastic processes, we can induce such a sparsity structure by using local independence
(Schweder, 1970; Aalen, 1987). In words, a set of coordinate processes, B, is locally independent of another set, A, given
a third set, C, if the prediction of what happens in B at any time point does not improve when learning about the past of
A whenever the past of C is already known. This allows us to describe a certain sparsity in the evolution of the system as
at any time point a coordinate process need not depend on the past of every other coordinate process. Local independence
can be used as a formalization of the notion that in a large, sparse system, the influence of some processes (A) on others
(B) is mediated entirely through some third set of processes (C). Starting from the notion of local independence, we can
ask for representations of local independence structure, for instance, a graph representing this structure (Didelez, 2000).

Local independence can be thought of as a dynamical version of classical conditional independence of random vari-
ables. There is a rich literature on graphical models of conditional independence (Lauritzen, 1996; Maathuis et al., 2018)
which allows, e.g., modeling marginal distributions and systems with correlated errors. Much of this thesis is concerned
with finding analogous concepts and methods to use in models of local independence. While the starting point for graphical
modeling has most often been conditional independence of random variables, our starting point will be local independence
of stochastic processes, building on work by, e.g., Schweder (1970); Aalen (1987); Didelez (2000); Eichler (2013). This
will naturally lead to a theory that differs from the classical one, even though it is analogous in many ways. A central
difference is the fact that conditional independence of random variables, A is conditionally independent of B given C, is
symmetric in arguments A and B. This is not the case for local independence and taking this step away from symmetry
we will also see that some problems become more difficult in the asymmetric case, while others become easier. We aim to
contribute to a general theory which can be applied to any, discrete-time or continuous-time, stochastic process in which
local independence can be defined. On the other hand, continuous-time processes have been the motivating case for us and
where we have invested most of our efforts.

While the first part of the thesis describes a graphical framework and relates this framework to local independence, the
second part of the thesis looks into structure learning in this framework. Instead of considering a known graph and relating
it to local independences of a stochastic process, we will attempt to choose a graph from a set of candidate graphs based on
the observed local independences of a system. This is mostly interesting if we actually believe that the ‘connections’ that
we recover when doing so are causal, e.g., in the sense that they would remain the same under interventions in the system.

Notes to the reader
This thesis builds on work by many other people. We reference that work by (authors, year) or by [number]. The papers
that are a part of the thesis are referenced by capital letters.

A Søren Wengel Mogensen and Niels Richard Hansen. Markov equivalence of marginalized local independence
graphs. The Annals of Statistics, 48(1), 2020a

B Søren Wengel Mogensen and Niels Richard Hansen. Graphical modeling of stochastic processes driven by correlated
errors. 2020b

C Søren Wengel Mogensen, Daniel Malinsky, and Niels Richard Hansen. Causal learning for partially observed
stochastic dynamical systems. In Proceedings of the 34th conference on Uncertainty in Artificial Intelligence (UAI),
2018
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2 CHAPTER 1. INTRODUCTION

α β

γ

δ

α β

γ

δ

Figure 1.1: Examples of an undirected graph (left) and a directed graph (right). Both graphs have node sets {α,β, γ, δ}.

D Søren Wengel Mogensen. Causal screening in dynamical systems. In Proceedings of the 36th Conference on
Uncertainty in Artificial Intelligence (UAI), 2020. (to appear)

Within each paper, references to other work are made to bibliographies at the end of the paper. In the rest of the thesis,
references are made to the bibliography at the end of the thesis. When referencing results in the papers, we prepend the
paper letter, i.e., Definition A.3.1 refers to Definition 3.1 in Paper A. If the entire thesis is read, we suggest reading Papers
A-D when they appear as subsequent parts of the thesis will assume knowledge of the contents of the papers. The papers
themselves are self-contained.

Structure
We give here a short description of the central topics and objects that we will study in the subsequent chapters.

Graphs and separation A graph is a discrete, mathematical structure consisting of a node set and an edge set. In Figure
1.1, we give an example of an undirected graph (the nodes are α,β, γ, and δ and the edges are drawn as connections
between pairs of nodes) and a directed graph. A graph often represents some other object, e.g., a multivariate distribution
of random variables, interconnected tasks of a project, or a physical network. In this chapter, we describe the classes of
graphs that we will be using in the thesis. We also introduce some computational problems relating to graphs. This chapter
contains many graph-theoretical details without revealing what the purpose of any of this really is. The impatient reader
may want to only skim this chapter and return if needed.

Directed mixed graphs While directed mixed graphs are introduced in Chapter 2, this chapter dives deeper into the
theory of this class of graphs. We will use them to represent local independences in partially observed systems of stochastic
processes. We study equivalence classes of directed mixed graphs, and we study algorithms for working with these graphs.

Directed correlation graphs Directed graphs can be used to represent local independence structure when the error
processes driving the system are independent. In this chapter, we relax this assumption to allow correlated error processes.
In this case, we can use directed correlation graphs to represent the local independences of such processes. We prove a
global Markov property in a specific model class and study equivalence classes of these graphs.

Structure learning In the above graphical framework, where a directed mixed graph represents the local independences
of a multivariate stochastic process (admittedly, in a sense that we still have not made precise), one can ask if it is possible
to learn a graphical representation from testing local independence. This chapter studies this problem. The problem is
computationally hard, and a learning algorithm which attempts to recover only parts of the structure is also introduced.

A motivating example
Caenorhabditis elegans (C. elegans) is a roundworm and a particularly well-studied organism. It was the first multicellular
organism to have its entire genome sequenced. As of April 2020, it is also the only organism to have had its entire
connectome mapped (White et al., 1986; Achacoso et al., 1989; Varshney et al., 2011; Cook et al., 2019). The connectome
describes the neural connections in a nervous system and, at a microscopic level, provides the entire topology of neurons
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(computational ‘units’) and synapses (their connections). This particular roundworm has approx. 300 neurons and through
anatomical studies, synapses between these neurons have been mapped.

Mathematically, we can describe the neuronal activity as a stochastic process Xt = (X1
t , . . . ,X

n
t ). A neuron is the

basic building block of this system and each neuron corresponds to a single coordinate process, Xi
t . We will relate the

multivariate process to a graph, and in this case each coordinate process will be identified with a node (see Figure 1.1).
The activity of each neuron depends on the activity of other neurons, and this will be represented by edges between nodes.
Local independence can be used to describe dependence and independence between processes in the system. It will also
give us a clear interpretation of the graphical structure and will serve as a testable implication of this structure.

When we turn to structure learning, one may ask why recovering a graph is interesting. In this example, the answer
is straightforward. If we, from data, can recover a graph that correctly describes where the synapses are found, then we
have in fact learned something about the real world. In the case of a nervous system, we may have reason to believe that
these connections are stable under interventions. If we were to intervene on a particular neuron this signal would propagate
through the system via the same synapses as when we are not intervening. Much of the contents of this thesis revolves
around using graphs to represent local independence of stochastic processes and in many applications there is as such no
reason to expect that the graphs are also causal or structural as in the case of neuronal connectivity. In some cases, they
may be, though, and this motivates the structure learning endeavor. Learning the connectome of C. elegans from data is,
of course, prohibitively difficult. For one reason, because data describing single-neuron activity is not available. Paper D
returns briefly to C. elegans to use the topology of this system as an example of a large, real-world system. While most
readers will probably agree that not every page of this thesis seems to bring us closer to a data-driven unraveling of the C.
elegans connectome, we hope that this system can serve as an example of an application where our contributions may offer
new perspectives.





Chapter 2

Graphs and separation

Graphs are convenient as mathematical representations of structure and are used throughout the sciences (Gross et al.,
2013). In statistics, the field of graphical modeling relates properties of graphs to properties of probabilistic models
(Maathuis et al., 2018). We will use graphs to represent data-generating mechanisms and as representations of local
independence structures. In this section, we will give various graph-theoretical definitions and introduce the classes of
graphs that we will need in subsequent chapters. Other graph-theoretical notions are introduced in Papers A-D as we need
them.

Graph-theoretical prerequisites
A graph is a pair G = (V,E) where V is a finite set of nodes (or vertices) and E is a finite set of edges. One could also
consider infinite node and edge sets which could be relevant for applications in time series. However, in this thesis we will
avoid this complication and settle for the finite case. A graph can have edges of several types as introduced below. Every
edge is between a pair of nodes (not necessarily distinct), that is, there is a known map which assigns an edge to a pair of
nodes.

Edges, types and orientations We will consider graphs with undirected (—), directed (→), blunt (xx), bidirected (↔),
and semidirected (z→), edges, and we say that these are five edge types. The typography of the edges show if they are
symmetric or not in the following sense. Let α and β be nodes in a graph. Undirected, blunt, and bidirected edges are
symmetric in that α — β, α xxβ, α ↔ β equal the edges β — α, β xxα, β ↔ α, respectively. On the other hand, the
edge α → β is different from the edge α ← β, and analogously for semidirected edges. We say that, e.g., edges α → β
and α ← β are of the same type, but have different orientations. We will throughout use α ∼ β to denote a generic edge of
any type (or of a context-specific, allowed subset of types). In the classes of graphs that we will consider, multiple edges
between a pair of nodes can be allowed, however, only if they are of different types or orientations. Self-edges are also
allowed. When G = (V,E) is a graph, α,β ∈ V , we use α ∼G β to denote that this edge is in E, and α /∼G β to denote that
it is not. We say that α ∼ α is a loop, or a self-edge.

Walks and paths A walk in a graph (V,E) is an alternating sequence of nodes and (oriented) edges,

α1
e1∼ α2

e2∼ . . . en−1∼ αn
en∼ αn+1,

such that αi ∈ V for all i = 1, . . . , n + 1 and ej ∈ E for all j = 1, . . . , n. We say that α1 and αn+1 are endpoints or endpoint
nodes. A path is a walk such that no node is repeated. A walk is directed if every edge is directed and points towards the
same endpoint. A directed cycle is a directed path α → . . .→ β along with an edge β → α.

Classes of dynamical graphs
We define the following classes of graphs that we will use to represent dynamical systems. In this thesis, we say that a
graph is dynamical if it is a member of one of the following classes. Note that these are all subclasses of directed mixed
correlation graphs (Definition 2.4).

In the next subsection, we describe some classes of graphs that we will say are nondynamical. These are really
subclasses of dynamical classes so this distinction is somewhat artificial. We only use it to distinguish between classes of
graphs that are meant to represent dynamical systems and classes of graphs that are not.

5



6 CHAPTER 2. GRAPHS AND SEPARATION

All these classes of graphs have been used in the literature on graphical models, some more than others, and we will
give relevant references to previous work in subsequent sections and chapters.

Definition 2.1 (Directed graph, DG). Let G = (V,E) be a graph. We say that G is a
directed graph if every edge in E is directed.

Definition 2.2 (Directed correlation graph, cDG). The graph G is a directed corre-
lation graph if every edge is directed or blunt.

Definition 2.3 (Directed mixed graph, DMG). We say that a graph is a directed
mixed graph if every edge is directed or bidirected.

We could equivalently define a DMG as a graph such that every pair of nodes are
connected by a subset of the edges {α → β,α ← β,α ↔ β}. The following is the
largest class of graphs that we will consider in this thesis. In a sense which will be
made mathematically precise in subsequent chapters, we will use directed edges to
describe a direct influence of one process on another, bidirected edges to describe an
unobserved confounding process, and blunt edges to describe a correlation between
error processes. We will return to the interpretation of semidirected edges. The
class of directed mixed correlation graphs combines all of these edge types and will
allow us to represent partially observed dynamical systems driven by correlated error
processes.

Definition 2.4 (Directed mixed correlation graph, cDMG). We say that G is a di-
rected mixed correlation graph if its edges are directed (→), bidirected (↔), semidi-
rected (z→), or blunt (xx).

Again, one can equivalently define the class of cDMGs as the graphs such that
every pair of nodes {α,β} is joined by a subset of the edges {α → β,α ← β,α ↔
β,α z→ β,α ←x β,α xxβ}. Note that Definitions 2.1-2.4 all allow both the absence
and presence of loops, α ∼ α, of the appropriate types. In applications, it may be
natural to impose restrictions on these classes of graphs, e.g., on loops that they may
or must contain.

Classes of nondynamical graphs
In the literature, it is not common to say that the following classes of graphs are non-
dynamical. However, we only use them for comparison with the above dynamical
classes, and in this context the terminology seems befitting.

Definition 2.5 (Undirected graph). Let G = (V,E) be a graph. We say that G is
undirected if every edge in E is undirected.

While undirected graphs are interesting in their own right, we will mostly use
them as technical tools, derived from other graphs. The two following definitions
are restrictions of DGs and DMGs to disallow directed cycles and loops.

Definition 2.6 (Directed acyclic graph, DAG). A directed acyclic graph is a DG
with no directed cycles.

Note that by considering a trivial path directed, it follows that a loop, α → α,
creates a directed cycle from α to α, and therefore the definition of a DAG also
excludes loops.

Definition 2.7 (Acyclic directed mixed graph, ADMG). An acyclic directed mixed
graph is a DMG with no directed cycles and no loops.

α β

γ

Figure 2.1: A directed graph on
nodes {α,β, γ}.

α β

γ

Figure 2.2: A directed correlation
graph on nodes {α,β, γ}.

α β

γ

Figure 2.3: A directed mixed graph
on nodes {α,β, γ}.

α β

γ

Figure 2.4: A directed mixed corre-
lation graph on nodes {α,β, γ}.
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cDMGs

cDGs

DMGs

DGs

ADMGs

DAGs

DMGs1

DMGs0

Figure 2.5: A Hasse diagram of classes of graphs. Con-
sider a fixed node set V . Let cDMGs denote the set of
cDMGs on nodes V , and similarly for the other classes
of graphs. Edges denote set inclusion such that the set
of graphs at the lower endpoint is a subset of the set of
graphs at the upper endpoint. DMGs0 and DMGs1 are
reachable and reduced DMGs and will be introduced
in Chapter 3.

Separation
The graphs introduced above are all used for encoding an independence structure using a separation criterion.

Definition 2.8 (Separation criterion). A separation criterion is a function which maps a graph, G = (V,E), and three sets
A,B,C ⊆ V (possibly under some restrictions on the sets) to true or false. We write a class of graphs, G, with a separation
criterion, s, as a pair (G, s).

Separation is defined for a graph and three subsets of its node set. When A or B are singletons, A = {α},B = {β}, we
will often write α instead of {α} and β instead of {β}.

Definition 2.9 (Separation model). Let G be a graph and s a separation criterion. We let I(G, s), or just I(G), denote the
collection of triplets of sets such that s(G,A,B,C) is true.

Definition 2.10 (Markov equivalence). Consider a class of graphs with a separation criterion, s. We say that graphsG1 = (V,E1) and G2 = (V,E2) are s-Markov equivalent (or simply Markov equivalent) if for all allowed triplets of
subsets, (A,B,C), it holds that (A,B,C) ∈ I(G1, s) if and only if (A,B,C) ∈ I(G2, s). If (A,B,C) ∈ I(G, s), we
say that B is s-separated from A by (or given) C in the graph G. Note that separation does not need to be symmetric in
arguments A and B.

Any separation criterion makes Markov equivalence an equivalence relation on a set of graphs with node sets V as it
is reflexive (a graph is Markov equivalent with itself), symmetric, and transitive. However, one needs to fix the class of
graphs within which one considers Markov equivalence. As an example, if we let D denote the complete DG on nodes V ,
i.e., α →D α for every α ∈ V , we will later argue that no other DG is Markov equivalent with D when using the relevant
notion of separation. However, within the class of DMGs, this is no longer the case as there exist DMGs that are Markov
equivalent with D. Most often the class within which to consider Markov equivalence will be obvious from the context.

Let G1 = (V,E1) and G2 = (V,E2). If E1 ⊆ E2, then we say that G1 is a subgraph of G2, and if E2 ⊆ E1, then
we say that G1 is a supergraph of G2. In case of proper inclusion, we say that G1 is a proper subgraph and a proper
supergraph, respectively. The separation criteria we will consider are monotone in the sense that more edges will lead to
fewer separations. Under such monotonicity, we define the following.

Definition 2.11 (Maximality). Let (G, s) be a class of graphs endowed with a separation criterion. We say that a graph,G = (V,E), is maximal within G if for any proper supergraph of G, G+ = (V,E+) ∈ G,

I(G+, s) ⊊ I(G, s)
where ⊊ denotes proper set inclusion.

We can think of an equivalence class of graphs as a partially ordered set in which the partial order is induced by
set inclusion of the edge sets. Using standard terminology of partially ordered sets, a greatest element is a graph in the
Markov equivalence class which is a supergraph of all graphs in the equivalence class. A least element is a graph which is
a subgraph of all elements in the equivalence class. A maximal element is a graph which is not a proper subgraph of any
element in the equivalence class, and a minimal graph is not a proper supergraph of any element in the equivalence class.
Greatest and least elements need not exist in every equivalence class. When these do exist, they are the unique maximal
and minimal elements, respectively. We prove that equivalence classes of DMGs have a greatest element which we in that
case call the maximal element without ambiguity.
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Definition 2.12 (Simple graph). We say that a graph G = (V,E) is simple if it has no loops and for each pair of nodes
α,β ∈ V , there is at most one edge between α and β.

When G is a graph, we let GA = (A,EA) denote the subgraph induced by the set A ⊆ V where EA = {e ∈ E ∣ α e∼
β, α, β ∈ A}.

Definition 2.13 (Separability). Let G = (V,E) be a graph, α,β ∈ V , and let s be a separation criterion. We say that β is
s-separable from α if there exists C ⊆ V ∖ {α} such that (G,{α},{β},C) is in the domain of s and s(G,{α},{β},C) is
true, and otherwise we say that β is (s-)inseparable from α.

Definition 2.14 (Adjacency). Let G = (V,E) be a graph, and let α,β ∈ V . We say that α and β are adjacent if there exists
e ∈ E such that e is between α and β.

Definition 2.15 (Skeleton). The skeleton of G = (V,E) is the undirected graph U = (V,F ) such that for α,β ∈ V , the edge
α — β is in F if and only if α and β are adjacent in G (Definition 2.14). We denote the skeleton of G by sk(G).

µ-separation
In dynamical graphs, we will mostly apply µ-separation. Before defining it, we need some more definitions. WhenG = (V,E), α, γ ∈ V , we let γ → . . .→ α denote the existence of a directed path from γ to α. We define

anG(α) = {γ ∈ V ∶ γ → . . .→ α}
and anG(C) = ∪α∈CanG(α). At times we omit the subscript and write simply an(C). We say that γ ∈ an(α) is an ancestor
of α, and we use the convention that a trivial path (a path with no edges) is directed which means that C ⊆ an(C). We say
that δ → ε has a tail at δ and a head at ε. Consider a walk in a cDMG,

α ∼ . . . e1∼ γ e2∼ . . . ∼ β.
We say that a nonendpoint node, γ, is a noncollider if e1 or e2 has a tail at γ, and otherwise we say that γ is a collider.
Note that these properties are really properties of instances of a node on a walk. A node may be repeated on a walk and
may both be a collider and a noncollider on a walk, as well as both an endpoint node and a nonendpoint node. We say that
edges α → β, α z→ β, and α↔ β have a head at β.

Definition 2.16 (µ-separation, A.3.2). Let G = (V,E) be a cDMG, and α,β ∈ V . We say that a walk

α
e1∼ γ1

e2∼ . . . en−1∼ γn−1
en∼ β

is µ-connecting from α to β given C ⊆ V if it is nontrivial, α ∉ C, no noncollider is in C, every collider is in anG(C),
and the edge en has a head at β. We say that B is µ-separated from A by C, or in shorthand A ⊥µ B ∣ C, if there is no
µ-connecting walk from any α ∈ A to any β ∈ B in G. Alternatively, we write A ⊥µ B ∣ C [G] to emphasize which graph
the statement applies to.

µ-separation builds on the notions of δ-separation (Didelez, 2000, 2008) and δ∗-separation (Meek, 2014). We discuss
the exact relationship in Appendix A of Paper A. In that paper, µ-separation is described in the class of DMGs, however,
the extension to cDMGs is straightforward.

δ-, δ∗-, and µ-separation are not symmetric notions of separation. From the definition of µ-separation we see that a
walk which is µ-connecting from α to β given C is not necessarily µ-connecting from β to α given C. This is the central
difference between these notions of separation and d- and m-separation which are often used in nondynamical classes
of graphs. We will see that this asymmetry allows us to model so-called local independence in multivariate stochastic
processes as this independence relation is also asymmetric.

Graphical marginalization
We will be interested in using graphs to describe independence structure in systems where we only have partial observation
in the sense that some coordinate processes are fully unobserved. For this purpose, we use graphical marginalization. Let(G, s) be a pair such that G is class of graphs and s is a separation criterion. For a graph G = (V,E) ∈ G and a subset
O ⊆ V , we can ask if there exists a graph GO = (O,EO) such that for all A,B,C ⊆ O

A ⊥s B ∣ C [G]⇔ A ⊥s B ∣ C [GO].
In this case, we say that GO is a marginal graph of G over O, or a marginalization of G over O. If it is possible for anyG = (V,E) ∈ G and any O ⊆ V to find such GO ∈ G satisfying the above, then we say that the pair (G, s) is closed under
marginalization.
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Directed graphs

Directed graphs (Definition 2.1) are the fundamental graphical objects of this thesis and much of the theory revolves around
this class of graph. Let us consider a fixed node set V . It is clear that knowing the edge set uniquely determines the µ-
separations of the graph. The following proposition shows that the opposite also holds true, and we say that the separation
model identifies the DG. The proposition is similar to Proposition 3.6 in Paper A.

Proposition 2.17. Let D = (V,E) be a DG such that α,β ∈ V . Then α ⊥µ β ∣ V ∖ {α} if and only if there is no directed
edge from α to β.

Proof. Assume first that there is no directed edge from α to β and consider a walk from α to β. This walk must have
length at least two, α ∼ . . . ∼ γ → β, and γ ≠ α. We see that this walk is closed as γ is in the conditioning set. On the other
hand, if there is a directed edge, then α → β is a µ-connecting walk from α to β given V ∖ {α}.

Corollary 2.18. If D1 = (V,E1) and D2 = (V,E2) are DGs, then they are Markov equivalent if and only if they are equal.

The corollary is a simple consequence of Proposition 2.17. It follows that every Markov equivalence class of a DG
is a singleton within the class of DGs. However, if we consider a DG as a DMG, then this will not hold anymore. For
instance, the complete DG on nodes V and the complete DMG on nodes V (i.e., the graph such that α → β and α↔ β for
all α,β ∈ V ) are Markov equivalent. The class of DGs are in many ways, as we will see, analogous to DAGs. Corollary
2.18 is a simple result, however, a similar statement does not hold for DAGs equipped with d-separation.

Directed mixed correlation graphs

α β

γ

Figure 2.6: There is a µ-connecting
route from α to β given ∅, but no µ-
connecting path.

In this section, we will look further into the large class of directed mixed correla-
tion graphs (cDMGs) and describe various properties of these graphs. In the next
chapter, we will look at the subclass of directed mixed graphs (DMGs) in which
we can obtain some interesting and stronger results that do not hold in the class of
cDMGs.

The set of walks in a cDMG, G, uniquely determines the µ-separation model of
the graph, I(G, µ). However, this set is infinite unless the graph has no edges. One
can ask if there exists a true subset of walks that also identifies the separations. To
show that this is the case, we can use routes.

Definition 2.19 (Route, Paper A). A route from α to β is a walk

α ∼ γ1 ∼ . . . ∼ γk ∼ β
such that no node different from β is repeated on the walk and such that β occurs at most twice.

If we let P(G),R(G),W(G) denote the paths, routes, and walks, respectively, of a cDMG, G, then

P(G) ⊊R(G) ⊊W(G)
unless G has no edges. The following proposition shows that routes completely characterize the µ-separations in a cDMG.
Paper A states the same result in the class of DMGs (Proposition A.3.5).

Proposition 2.20 (µ-connecting routes). Let G = (V,E) be a cDMG, and let α,β ∈ V,C ⊆ V . There is a µ-connecting
route from α to β given C if and only if there is a µ-connecting walk from α to β given C.

Proof. The proof of this is identical to the proof in the case of DMGs (proof of Proposition A.3.5 in the supplementary
material of Paper A).

The example in Figure 2.6 shows that paths cannot be used for characterizing µ-separation models. This is different
from the nondynamical graphs where d- and m-separation can be defined using either paths or walks. Note that an edge
can be repeated on a route, but only in the configuration γk−1

e1∼ γk e2∼ β such that e1 and e2 is the same edge and γk−1 = β.
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Maximality and adjacency
For some classes of graphs and separation criteria, one can show that in a maximal graph (Definition 2.11) every pair
of inseparable nodes are adjacent, and this has also been used as a definition of maximality of a graph (Richardson and
Spirtes, 2002). In the case of ancestral graphs (with m-separation) it is then a theorem that an ancestral graph is maximal
if and only if no edges can be added Markov equivalently (Richardson and Spirtes, 2002). In the case of cDMGs with
µ-separation a graph may be maximal, i.e., no edge can be added without changing the independence model, yet there
exists a pair of nonadjacent nodes, (α,β), such that β is not separable from α (see Example A.4.12).

Properties of cDMGs
In this section, we will see that the class of cDMGs is closed under marginalization and that, loosely speaking, the fact
that cDMGs contain cDGs as a subclass lead to semidirected edges, z→, via marginalization. We start, however, by noting
that there is a certain hierarchy between edges of the types α↔ β,α ↦ β, and α xxβ such that adding edges lower in the
hierarchy will not change the separation model.

Proposition 2.21. Let G = (V,E) be a cDMG, and let α,β ∈ V . If α↔G β, then adding α z→ β gives a Markov equivalent
graph.

Proposition 2.22. Let G = (V,E) be a cDMG, and let α,β ∈ V . If α z→G β, then adding α xxβ gives a Markov equivalent
graph.

Proof of Propositions 2.21 and 2.22. Let G+ = G + e denote the larger graph. We just need to argue that if there is a µ-
connecting walk from α to β given C in G+, then we can also find a µ-connecting walk from α to β given C in G. If e is
not on the walk, then it is also connecting in G as e does not change the ancestry. If e is on the graph, then substitute it in
each instance with α↔ β or α ↦ β to obtain a connecting walk.

In cDMGs, the tip (closest to α) of an edge can either be a tail α → β, a head α ← β, α↔ β, α ←x β, or a stump α xxβ,
α z→ β. Jointly, we call tails, heads, and stumps edge marks. We say that walks

α
eα1∼ γ1

1 ∼ . . . γk11

eβ1∼ β
α
eα2∼ γ1

2 ∼ . . . γk22

eβ2∼ β
are endpoint-identical if eα1 and eα2 have the same edge mark at α and eβ1 and eβ2 have the same edge mark at β. We say
that an edge, e, between α and β, is endpoint-identical with a walk, ω, from α to β, if ω is endpoint-identical with the walk

α
e∼ β.

Latent projection is a form of graphical marginalization that has been used in different classes of graphs (Verma and
Pearl, 1991; Koster, 1999; Sadeghi, 2013; Richardson et al., 2017). Paper A uses it in DMGs and below we define a latent
projection in cDMGs. Eichler (2012) studies a class of graphs very similar to cDMGs and defines a latent projection in
this class of graphs.

Definition 2.23 (Latent projection). Let G = (V,E) be a cDMG, and let O ⊆ V . The latent projection of G on O is the
cDMG (O,F ) such that for all α,β ∈ O, the edge α e∼ β is in F if and only if there is an endpoint-identical (and nontrivial)
walk between α and β in G with no colliders and such that every nonendpoint node is in V ∖ O. We denote the latent
projection of G on O by m(G,O).

Note that the latent projection is always a cDMG. The cDMGs are therefore closed under latent projection, and we will see
that they can represent independence structure in partially observed dynamical systems that are driven by correlated noise.
Eichler (2013) used them for the same purpose.

The following theorem justifies thinking about the latent projection as a graphical marginalization of a cDMG and a
similar result was provided by Eichler (2013). We will provide a proof, though, as the formalism we use is somewhat
different.

Theorem 2.24. Let G = (V,E) be a cDMG and let O ⊆ V . LetM =m(G,O) denote the latent projection of G on O. For
all A,B,C ⊆ O,

A ⊥µ B ∣ C [G]⇔ A ⊥µ B ∣ C [M].
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Proof. Theorem A.3.12 gives this result in case of a DMG, G. The same proof applies to this more general case. The proof
in the supplementary material of Paper A uses Propositions A.3.3 and A.3.11. Those results also hold in cDMGs, and the
same proofs apply.

Loops in cDMGs We argue that directed loops, α → α, and bidirected loops, α ↔ α, are interchangeable in DMGs,
but not in cDMGs in general. In the case of DMGs, we can first note that directed loops never change the ancestry of the
graph (which holds in general cDMGs as well). µ-separation is characterized by routes, so consider a route in a DMG. If
a loop is present on the route, then it must be the final edge. This means that either the route has length 1, in which case it
is immaterial if the loop is directed or bidirected, or

α ∼ . . . γ e∼ β ∼ β.
If e has a head at β, then the subroute from α to the first instance of β is connecting. If it has a tail instead, then the type
of loop at β does not matter for the connectivity. This means that whenever there is a directed loop at β in a DMG, we can
Markov equivalently add a bidirected loop at β, and vice versa. This is no longer true in general cDMGs. Consider simply
the graph

α xxβ.
If we add a directed loop at β, then α ⊥µ β ∣ β. This is not true if we add a bidirected loop. On the other hand, if we add a
bidirected loop at β, then α ⊥µ β ∣ ∅, and this is not true if we add a directed loop.

Computational complexity
In this section, we give a short and informal introduction to the computational complexity theory that we need in this thesis.
We also relate this topic to the graphs described above and the questions that graphical modeling asks about such graphs,
especially in relation to separation and Markov equivalence. More background can be found in Garey and Johnson (1979);
Goldreich (2010); Sipser (2013).

Complexity classes We say that an algorithm is of polynomial time if we can bound its worst-case running time by a
polynomial function in the size of the input. A decision problem is a computational problem such that the answer is yes
or no, in contrast to, e.g., optimization problems. The complexity class P consists of the decision problems that can be
solved by a deterministic Turing machine (an abstract computer) in polynomial time. NP is the set of decision problems
such that the yes-instances have certificates that can be verified in polynomial time by a deterministic Turing machine. As
an example of a problem in NP, we can take separability; given nodes α and β in a DMG, does there exists a C ⊆ V ∖ {α}
such that β is µ-separated from α by C? This problem is seen to be in NP: in a yes-instance (i.e., they are separable) there
exists a separating set C0, and given this (polynomially sized) certificate, C0, we will show later that we can verify that β
is µ-separable from α by testing α ⊥µ β ∣ C0 in polynomial time. In fact, this problem is also in P.

coNP is the set of decision problems such that the no-instances have certificates that can be verified in polynomial
time. As an example of a problem in coNP, we can consider Markov equivalence; given two DMGs, are they Markov
equivalent? In a no-instance, there is some triplet (A,B,C) such that B is µ-separated from A given C in one graph, but
not in the other. Given a certificate indicating these three sets, we can again easily (i.e., in polynomial time) verify that
this is a no-instance. On the other hand, in a yes-instance, there is no obvious certificate which allows us to verify Markov
equivalence in polynomial time.

Encodings Above we have tacitly used a size of the input without specifying what this means. In our case, the input will
often be a graph in which case we can think of the size of the input as simply the number of nodes. Formally, it is the
size of a string over some alphabet, however, the precise encoding is not important and any ‘reasonable’ encoding will do
(Sipser, 2013, Chapter 7).

Reductions A reduction is a function that transforms one problem, A, into another, B. If this transformation is easily
computable, i.e., in polynomial time, and yes/no instances are preserved under the transformation, then we can use an
algorithm for solvingB to also solveA. Assume we have access to an oracle for the problemB, i.e., a mechanism that will
provide us with the correct answer to an instance of problem B. A many-one reduction (also known as a Karp reduction)
is a particularly simple type of polynomial-time reduction which transforms an instance of problem A into an instance of
problem B and returns the solution (yes/no) to problem B as obtained from the oracle. A Turing reduction (also known
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as a Cook reduction) is a more general reduction which as a subroutine can query the oracle multiple times, though only
polynomially many, and which is a polynomial-time algorithm outside the calls to the oracle.

In the supplementary material of Paper A, it is shown that one can decide µ-separation in a DMG by deciding separation
in an auxiliary undirected graph. Similar results hold in other classes of graphs (Lauritzen, 1996; Didelez, 2000; Richardson
and Spirtes, 2002; Richardson, 2003). This transformation can be done in polynomial time, and it gives an example of a
many-one reduction, reducing the problem of deciding µ-separation in DMGs to deciding separation in an undirected
graph.

Hardness We say that a problem is NP-hard if it is as hard as any problem in NP, more precisely, if any problem in NP
can be reduced in polynomial time to this problem using a many-one reduction. If any problem in NP is reducible to a
problem using a Turing reduction then we say that the problem is Turing NP-hard. We say that a problem is NP-complete if
it is in NP and NP-hard. Analogously, we define a problem to be coNP-hard if it is at least as hard as the hardest problems
in coNP, and to be coNP-complete if it is coNP-hard and also in coNP. The class P is a subclass of NP and of coNP. It is
generally believed (though not proven) that P ≠ NP and P ≠ coNP and this would imply that there are no polynomial-time
algorithms for solving NP- and coNP-hard problems.

Computational problems We end this section by defining the problems that we will consider later in the thesis. First,
the following decision problem for a class of graphs G and a separation criterion s.

Markov equivalence in (G, s)
Instance: G1 = (V,E1), G2 = (V,E2) ∈ G
Question: Is I(G1, s) = I(G2, s)?

Similarly, we define the following search problems.

Minimal Markov equivalent graph in (G, s)
Instance: G = (V,E) ∈ G
Question: Find a minimal G− such that G− ∈ [G]
Maximal Markov equivalent graph in (G, s)
Instance: G = (V,E) ∈ G
Question: Find a maximal G+ such that G+ ∈ [G]
Learn maximal Markov equivalent graph in (G, s)
Instance: An oracle for I(G) such that G = (V,E) ∈ G
Question: Find a maximal graph G+ such that I(G+) = I(G)
Smallest Markov equivalent graph in (G, s)
Instance: G = (V,E) ∈ G
Question: Find a G− = (V,E−) ∈ [G] such that for all G̃ = (V, Ẽ) ∈ [G], it holds that ∣E−∣ ≤ ∣Ẽ∣
Smallest Markov equivalent subgraph in (G, s)
Instance: G = (V,E) ∈ G
Question: Find a G− = (V,E−) ∈ [G], G− ⊆ G, such that for all G̃ = (V, Ẽ) ∈ [G], G̃ ⊆ G, it holds that ∣E−∣ ≤ ∣Ẽ∣

For these search problems, we can define analogous decision problems by asking if there exists a solution with less/more
than k edges. As the very last step in this chapter, we introduce two well-known hard problems. Let X = {x1, . . . , xn}
be a set of Boolean variables. A literal is either a variable, xl, or its negation, ¬xl. A term is a set of literals {z1, . . . , zk}
which represents their conjunction,

z1 ∧ . . . ∧ zk.
A 3-term is a term consisting of at most three literals. A Boolean formula which is a disjunction of 3-terms,

(z1
1 ∧ z1

2 ∧ z1
3) ∨ . . . ∨ (zN1 ∧ zN2 ∧ zN3 ),

is said to be in 3-disjunctive normal form (3DNF). N is the number of terms.

3DNF tautology
Instance: A disjunction of 3-terms over variables X
Question: Does the formula evaluate to 1 for all inputs?
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3DNF tautology is known to be coNP-complete (Garey and Johnson, 1979). We will also use the following problem.
We consider a universe, U = {u1, . . . , un}, that is, a finite set, and a family, F , of subsets of U such that ∪S∈FS = U . We
say that C ⊆ F is a covering if ∪S∈CS = U . The size of C = {S1, . . . , Sm} is its cardinality, m.

Set-covering problem
Instance: A universe, U , and a collection, F , of subsets of U such that ∪S∈FS = U , k ∈ N
Question: Does there exists a covering of size at most k?

The set-covering problem is NP-complete (Cormen et al., 2009).





Chapter 3

Directed mixed graphs

This chapter goes into depth with directed mixed graphs (DMGs). We use these graphs to represent local independence in
stochastic processes in which we only have partial observation, that is, some coordinate processes are unobserved. Local
independence is an asymmetric independence relation which will also be introduced in this chapter. We first compare
DMGs with the larger class of cDMGs. Paper A then describes DMGs in more details and proves a central result on
Markov equivalence in this class of graphs. Some more results are presented after the paper, including a description of
reduced directed mixed graphs that constitute simpler graphical means for representing the independence models encoded
by the class of DMGs.

Definition 3.1 (Canonical DMG). Let G = (V,E) be a cDMG. The canonical DMG of G, B(G) = (V,EB), is the DMG
obtained by changing every blunt or semidirected edge to a bidirected edge. That is, for all α,β ∈ V ,

α →B(G) β if and only if α →G β,
α↔B(G) β if and only if α↔G β,α z→G β,α ←xG β, or α xxG β.

α β

γ

α β

γ

Figure 3.1: A cDG (top) and its
canonical DMG (bottom). See Ex-
ample 3.3.

The canonical DMG is a coarser description of the separation model in the follow-
ing sense.

Proposition 3.2. Let G be a cDMG, and let B(G) be its canonical DMG. It holds
that I(B(G), µ) ⊆ I(G, µ).

Proof. Propositions 2.21 and 2.22 give the result as we can add blunt and semidi-
rected edges Markov equivalently to the canonical DMG to obtain a supergraph ofG.

Example 3.3. We illustrate that not every independence encoded in a cDMG is
retained in its canonical DMG. We consider the cDG in Figure 3.1 and its canonical
DMG. The two are not Markov equivalent as β is µ-separated from α by {β, γ} in
the cDG whereas this is not the case in the canonical DMG. We can ask if there is
any DMG on nodes {α,β, γ} which is Markov equivalent with this cDG. If so, then
α and β cannot be adjacent in this DMG as this would make one of them inseparable
from the other. Similarly, for α and γ. In the cDG, α is not separated from γ given{β}, and this means that β must be a collider on a path between α and γ. In this
case, β is inseparable from α in the DMG. This is a contradiction, and it shows that
no such Markov equivalent DMG exists. In conclusion, the independence models
of cDGs are not contained in the independence models of DMGs and therefore it
follows that the independence models of cDMGs are a proper superset of those of
DMGs.

The above example illustrates that the restriction to DMGs is in fact reducing
the expressive power of the graphs in terms of which µ-separation structures they

may represent. However, this restriction also enables stronger results. Paper A studies directed mixed graphs and the
central result shows that every equivalence class has a greatest element. This is useful as this fact allows us to visualize and
understand some aspects of the entire equivalence class very easily. This result does not hold in the larger class of cDMGs,
and in fact, it does not even hold for cDGs as shown in Paper B.

15
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Symmetric independence relations are often studied using graphical rep-
resentations. Ancestral graphs or acyclic directed mixed graphs with m-
separation provide classes of symmetric graphical independence models that
are closed under marginalization. Asymmetric independence relations appear
naturally for multivariate stochastic processes, for instance, in terms of lo-
cal independence. However, no class of graphs representing such asymmetric
independence relations, which is also closed under marginalization, has been
developed. We develop the theory of directed mixed graphs with μ-separation
and show that this provides a graphical independence model class which is
closed under marginalization and which generalizes previously considered
graphical representations of local independence.

Several graphs may encode the same set of independence relations and
this means that in many cases only an equivalence class of graphs can be
identified from observational data. For statistical applications, it is therefore
pivotal to characterize graphs that induce the same independence relations.
Our main result is that for directed mixed graphs with μ-separation each
equivalence class contains a maximal element which can be constructed from
the independence relations alone. Moreover, we introduce the directed mixed
equivalence graph as the maximal graph with dashed and solid edges. This
graph encodes all information about the edges that is identifiable from the
independence relations, and furthermore it can be computed efficiently from
the maximal graph.

1. Introduction. Graphs have long been used as a formal tool for reasoning with in-
dependence models. Most work has been concerned with symmetric independence models
arising from standard probabilistic independence for discrete or real-valued random vari-
ables. However, when working with dynamical processes it is useful to have a notion of
independence that can distinguish explicitly between the present and the past, and this is a
key motivation for considering local independence.

The notion of local independence was introduced for composable Markov processes by
Schweder [37] who also gave examples of graphs describing local independence structures.
Aalen [1] discussed how one could extend the definition of local independence in the broad
class of semimartingales using the Doob–Meyer decomposition. Several authors have since
then used graphs to represent local independence structures of multivariate stochastic process
models, in particular for point process models; see, for example, [4, 11–13, 35]. Local inde-
pendence takes a dynamical point of view in the sense that it evaluates the dependence of the
present on the past. This provides a natural link to statistical causality as cause must necessar-
ily precede effect [1, 2, 28, 37]. Furthermore, recent work argues that for some applications it
can be important to consider continuous-time models, rather than only cross-sectional mod-
els, when trying to infer causal effects [3].
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Local independence for point processes has been applied for data analysis (see, e.g., [2, 23,
44]), but in applications a direct causal interpretation may be invalid if only certain dynami-
cal processes are observed while other processes of the system under study are unobserved.
Allowing for such latent processes is important for valid causal inference, and this motivates
our study of representations of marginalized local independence graphs.

Graphical representations of independence models have also been studied for time series
[14–17]. In the time series context—using the notion of Granger causality—Eichler [15]
gave an algorithm for learning a graphical representation of local independence. However,
the equivalence class of graphs that yield the same local independences was not identified,
and thus the learned graph does not have any clear causal interpretation. Related research has
been concerned with inferring the graph structure from subsampled time series, but under the
assumption of no latent processes; see, for example, [9, 22].

In this paper, we give a formal, graphical framework for handling the presence of unob-
served processes and extend the work on graphical representations of local independence
models by formalizing marginalization and giving results on the equivalence classes of such
graphical representations. The graphical framework that we propose is a generalization of that
of Didelez [11–13]. This development is analogous to work on marginalizations of graphical
models using directed acyclic graphs, DAGs. Starting from a DAG, one can find graphs (e.g.,
maximal ancestral graphs or acyclic directed mixed graphs) that encode marginal indepen-
dence models [8, 18, 19, 25, 33, 34, 36, 39]. One can then characterize the equivalence class
of graphs that yield the same independence model [5, 45]—the so-called Markov equivalent
graphs—and construct learning algorithms to find such an equivalence class from data. The
purpose of this paper is to develop the necessary theoretical foundation for learning local in-
dependence graphs by developing a precise characterization of the learnable object: the class
of Markov equivalent graphs.

The paper is structured as follows: in Section 2, we discuss abstract independence models,
relevant graph-theoretical concepts and the notion of local independence and local indepen-
dence graphs. In Section 3, we introduce μ-separation for directed mixed graphs, which will
be used to represent marginalized local independence graphs, and we describe an algorithm
to marginalize a given local independence graph. In Sections 4 and 5, we develop the the-
ory of μ-separation for directed mixed graphs further, and we discuss, in particular, Markov
equivalence of such graphs. All proofs of the main paper are given in the Supplementary
Material [29]. Sections A to F are in the Supplementary Material.

2. Independence models and graph theory. Graphical separation criteria as well as
probabilistic models give rise to abstract conditional independence statements. Graphical
modeling is essentially about relating graphical separation to probabilistic independence. We
will consider both as instances of abstract independence models.

Consider some set S . An independence model, I , on S is a set of triples (A,B,C) where
A,B,C ∈ S , that is, I ⊆ S × S × S . Mathematically, an independence model is a ternary
relation. In this paper, we will consider independence models over a finite set V which means
that S = P(V ), the power set of V . In this case, an independence model I is a subset of
P(V ) × P(V ) × P(V ). We will call an element s ∈ P(V ) × P(V ) × P(V ) an independence
statement and write s as 〈A,B |C〉 for A,B,C ⊆ V . This notation emphasizes that s is
thought of as a statement about A and B conditionally on C.

Graphical and probabilistic independence models have been studied in very general set-
tings, though mostly under the assumption of symmetry of the independence model, that is,

〈A,B | C〉 ∈ I ⇒ 〈B,A | C〉 ∈ I;
see, for example, [7, 10, 26] and references therein. These works take an abstract axiomatic
approach by describing and working with a number of properties that hold in, for example,
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models of conditional independence. In this paper, we consider independence models that do
not satisfy the symmetry property as will become evident when we introduce the notion of
local independence.

2.1. Local independence. We consider a real-valued, multivariate stochastic process

Xt = (
X1

t ,X
2
t , . . . ,X

n
t

)
, t ∈ [0, T ]

defined on a probability space (�,F,P ). In this section, the process is a continuous-time
process indexed by a compact time interval. The case of a discrete time index, corresponding
to X = (Xt) being a time series, is treated in Section C in the Supplementary Material. We
will later identify the coordinate processes of X with the nodes of a graph; hence, both are
indexed by V = {1,2, . . . , n}. As illustrated in Example 2.3 below, the index set may be
chosen in a more meaningful way for a specific application. In that example, XI

t ≥ 0 is a
price process, XL

t ∈ N0 is a counting process of events, and the remaining four processes
take values in {0,1} indicating if an individual at a given time is a regular user of a given
substance. Figure 1 shows examples of sample paths for three individuals.

To avoid technical difficulties, irrelevant for the present paper, we restrict attention to right-
continuous processes with coordinates of finite and integrable variation on the interval [0, T ].
This includes most nonexplosive multivariate counting processes as an important special case,
but also other interesting processes such as piecewise-deterministic Markov processes.

To define local independence below, we need a mathematical description of how the
stochastic evolution of one coordinate process depends infinitesimally on its own past and
the past of the other processes. To this end, let FC,0

t denote the σ -algebra generated by
{Xα

s : s ≤ t, α ∈ C} for C ⊆ V . For technical reasons, we need to enlarge this σ -algebra, and
we define FC

t to be the completion of
⋂

s>t FC,0
s w.r.t. P . Thus (FC

t ) is a right-continuous
and complete filtration which represents the history of the processes indexed by C ⊆ V until
time t . Figure 2 illustrates, in the context of Example 2.3, the filtrations FV

t , F {L,M,H }
t and

F {T ,A,M,H }
t .
For β ∈ V and C ⊆ V , let �C,β denote an FC

t -predictable process of finite and integrable
variation such that

E
(
X

β
t | FC

t

) − �
C,β
t

FIG. 1. Sample paths for three individuals of the processes considered in Example 2.3. The price process (I) is
a piecewise constant jump process and the life event process (L) is illustrated by the event times. The remaining
four processes are illustrated by the segments of time where the individual is a regular user of the substance.
The absence of a process, for example, the hard drug process (H) in the left and middle samples, means that the
individual never used that substance.
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FIG. 2. Illustration of the past at time t as captured by different filtrations for a single sample path of processes

from Example 2.3. The filtration FV
t (left) captures the past of all processes, while F {L,M,H }

t (middle) captures

the past of L, M and H only, and F {T ,A,M,H }
t (right) captures the past of T , A, M and H .

is an FC
t martingale. Such a process exists (see Section E for the technical details), and is

usually called the compensator or the dual predictable projection of E(X
β
t | FC

t ). It is in
general unique up to evanescence.

DEFINITION 2.1 (Local independence). Let A,B,C ⊆ V . We say that XB is locally
independent of XA given XC if there exists an FC

t -predictable version of �A∪C,β for all
β ∈ B . We use A � B | C to denote that XB is locally independent of XA given XC .

In words, the process XB is locally independent of XA given XC if, for each time point,
the past up until time t of XC gives us the same predictable information about E(X

β
t | FA∪C

t )

as the past of XA∪C until time t . Note that when β ∈ C, E(X
β
t | FC

t ) = X
β
t .

Local independence was introduced by Schweder [37] for composable Markov processes
and extended by Aalen [1]. Local independence and graphical representations thereof were
later considered by Didelez [11–13] and by Aalen et al. [4]. Didelez [12] also discussed local
independence models of composable finite Markov processes under some specific types of
marginalization. Commenges and Gégout-Petit [6, 21] discussed definitions of local indepen-
dence in classes of semimartingales. Note that Definition 2.1 allows a process to be separated
from itself by some conditioning set C, generalizing the definition used, for example, by
Didelez [13].

Local independence defines the independence model

I = {〈A,B | C〉 | XB is locally independent of XA given XC}

such that the local independence statement A � B | C is equivalent to 〈A,B | C〉 ∈ I in
the abstract notation. We note that the local independence model is generally not symmetric.
Using Definition 2.1, we introduce below an associated directed graph in which there is no
directed edge from a node α to a node β if and only β is locally independent of α given
V \ {α}.

DEFINITION 2.2 (Local independence graph). For the local independence model deter-
mined by X, we define the local independence graph to be the directed graph, D, with nodes
V such that for α,β ∈ V ,

α �D β ⇔ α � β | V \ {α}
where α �D β denotes that there is no directed edge from α to β in the graph D.
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Didelez [11] gives almost the same definition of a local independence graph, however, in
essence always assumes that there is a dependence of each process on its own past. See also
Sections A and B.

The local independence graph induces an independence model by μ-separation as defined
below. The main goal of the present paper is to provide a graphical representation of the
induced independence model for a subset of coordinate processes corresponding to the case
where some processes are unobserved. This is achieved by establishing a correspondence,
which is preserved under marginalization, between directed mixed graphs and independence
models induced via μ-separation. We emphasize that the correspondence only relates local
independence to graphs when the local independence model satisfies the global Markov prop-
erty with respect to a graph.

The local independence model satisfies the global Markov property with respect to the
local independence graph if every μ-separation in the graph implies a local independence.
This has been shown for point processes under some mild regularity conditions [13] using
the slightly different notion of δ-separation. Section A discusses how δ-separation is related
to μ-separation, and Section B shows how to translate the global Markov property of [13]
into our framework. Moreover, general sufficient conditions for the global Markov property
were given in [30] covering point processes as well as certain diffusion processes. Section C
provides, in addition, a discussion of Markov properties in the context of time series.

To help develop a better understanding of local independence and its relevance for appli-
cations, we discuss an example of drug abuse progression.

EXAMPLE 2.3 (Gateway drugs). The theory of gateway drugs has been discussed for
many years in the literature on substance abuse [24, 40]. In short, the theory posits that
the use of “soft” and often licit drugs precedes (and possibly leads to) later use of “hard”
drugs. Alcohol, tobacco and marijuana have all been discussed as candidate gateway drugs
to “harder” drugs such as heroin.

We propose a hypothetical, dynamical model of transitions into abuse via a gateway drug,
and more generally, a model of substance abuse progression. Substance abuse is known to be
associated with social factors, genetics and other individual and environmental factors [43].
Substance abuse can evolve over time when an individual starts or stops using some drug.
In this example, we consider substance processes Alcohol (A), Tobacco (T ), Marijuana (M)
and Hard drugs (H ) modeled as zero-one processes, that is, stochastic processes that are
piecewise constantly equal to zero (no substance use) or one (substance use). We also include
L, a process describing life events, and a process I , which can be thought of as an exogenous
process that influences the tobacco consumption of the individual, for example, the price of
tobacco which may change due to changes in tobacco taxation. Let V = {A,T ,M,H,L, I }.

We will visualize each process as a node in a graph and draw an arrow from one process to
another if the first has a direct influence on the second. We will not go into a full discussion
of how to formalize “influence” in terms of a continuous-time causal dynamical model as this
would lead us astray; see instead [13, 27, 38]. The upshot is that for a (faithful) causal model,
there is no direct influence if and only if α � β | V \ {α}, which identifies the “influence”
graph with the local independence graph.

Several formalizations of the gateway drug question are possible. We will focus on the
questions “is the use of hard drugs locally independent of use of alcohol for some condition-
ing set?” and “is the use of hard drugs locally independent of the use of tobacco for some
conditioning set?” Using the dynamical nature of local independence, we are asking if, for
example, the past alcohol usage changes the hard drug usage propensity when accounting
for the past of all other processes in the model. This is one possible formalization of the
gateway drug question as a negative answer would mean that there exist some gateway pro-
cesses through which any influence of alcohol usage on hard drug usage is mediated. If the
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FIG. 3. The directed graph of Example 2.3 illustrating a model where marijuana (M) potentially acts as a
gateway drug, while alcohol (A) as well as tobacco ( T ) do not directly affect hard drug use.

visualization in Figure 3 is indeed a local independence graph in the above sense we see that
conditioning on all other processes, H is indeed locally independent of A and locally inde-
pendent of T . In this hypothetical scenario, we could interpret this as marijuana in fact acting
as a gateway drug to hard drugs. If the global Markov property holds, we can furthermore use
μ-separation to obtain further local independences from the graph. We return to this example
in Section 5.5 to illustrate how the main results of the paper can be applied. In particular, we
are interested in what conclusions we can make when we do not observe all the processes but
only a subset.

2.2. Marginalization and separability.

DEFINITION 2.4 (Marginalization). Given an independence model I over V , the
marginal independence model over O ⊆ V is defined as

IO = {〈A,B | C〉 | 〈A,B | C〉 ∈ I;A,B,C ⊆ O
}
.

Marginalization is defined abstractly above, though we are primarily interested in the
marginalization of the independence model encoded by a local independence graph via μ-
separation. The main objective is to obtain a graphical representation of such a marginalized
independence model involving only the nodes O . To this end, we consider the notion of
separability in an independence model.

DEFINITION 2.5 (Separability). Let I be an independence model over V . Let α,β ∈ V .
We say that β is separable from α if there exists C ⊆ V \ {α} such that 〈α,β | C〉 ∈ I , and
otherwise we say that β is inseparable from α. We define

s(β,I) = {γ ∈ V | β is separable from γ }.
We also define u(β,I) = V \ s(β,I).

We show in Proposition 3.6 that if I is the independence model induced by a directed
graph via μ-separation, then α ∈ u(β,I) if and only if there is a directed edge from α to
β . In this case, the graph is thus directly identifiable from separability properties of I . That
is, however, not true in general for a marginalization of I , and this is the motivation for
developing a theory of directed mixed graphs with μ-separation.

2.3. Graph theory. A graph, G = (V ,E), is an ordered pair where V is a finite set of
vertices (also called nodes) and E is a finite set of edges. Furthermore, there is a map that to
each edge assigns a pair of nodes (not necessarily distinct). We say that the edge is between
these two nodes. We consider graphs with two types of edges: directed (→) and bidirected
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(↔). We can think of the edge set as a disjoint union, E = Ed ∪̇ Eb, where Ed is a set of
ordered pairs of nodes (α,β) corresponding to directed edges, and Eb is a set of unordered
pairs of nodes {α,β} corresponding to bidirected edges. This implies that the edge α ↔ β is
identical to the edge β ↔ α, but the edge α → β is different from the edge β → α. It also
implies that the graphs we consider can have multiple edges between a pair of nodes α and
β , but they will always be a subset of the edges {α → β,α ← β,α ↔ β}.

DEFINITION 2.6 (DMG). A directed mixed graph (DMG), G = (V ,E), is a graph with
node set V and edge set E consisting of directed and bidirected edges as described above.

Throughout the paper, G will denote a DMG with node set V and edge set E. Occasionally,
we will also use D and M to denote DMGs. We use D only when the DMG is also a directed
graph, that is, has no bidirected edges. We use M to stress that some DMG is obtained as a
marginalization of a DMG on a larger node set. We will use notation such as ↔G or →D to
denote the specific graph that an edge belongs to.

If α → β , we say that the edge has a tail at α and a head at β . Jointly tails and heads are
called (edge) marks. An edge e ∈ E between nodes α and β is a loop if α = β . We also say
that the edge is incident with the node α and with the node β and that α and β are adjacent.

For α,β ∈ V , we use the notation α ∼ β to denote a generic edge of any type between α

and β . We use the notation α ∗→ β to indicate an edge that has a head at β and may or may
not have a head at α. Note that the presence of one edge, α → β , say, does not in general
preclude the presence of other edges between these two nodes. Finally, α ∗�G β means that
there is no edge in G between α and β that has a head at β and α �G β means that there
is no directed edge from α to β . Note that α �G β is a statement about the absence of an
edge in the graph G and to avoid confusion with local independence, α � β | C, we always
include the conditioning set when writing local independence statements, even if C = ∅ (see
also Definition 2.2).

We say that α is a parent of β in the graph G if α → β is present in G and that β is a child
of α. We say that α is a sibling of β (and that β is a sibling of α) if α ↔ β is present in the
graph. The motivation of the term sibling will be explained in Section 3. We use pa(α) to
denote the set of parents of α.

A walk is an ordered, alternating sequence of vertices, γi , and edges, ej , denoted ω =
〈γ1, e1, . . . , en, γn+1〉, such that each ei is between γi and γi+1, along with an orientation of
each directed loop along the walk (if ei is a loop then we also know if ei points in the direction
of γ1 or in the direction of γn+1). Without the orientation, for instance, the walks α → β →
β → γ and α → β ← β → γ would be indistinguishable. See Figure 4 for examples. We
will often present the walk ω using the notation

γ1
e1∼ γ2

e2∼ . . .
en∼ γn+1,

where the loop orientation is explicit. We will omit the edge superscripts when they are not
needed.

FIG. 4. A directed mixed graph with node set {α,β, γ, δ}. Consider first the walk α → β . This is different from
the walk β ← α as walks are ordered. Consider instead the two walks β ↔ γ ← γ ← δ and β ↔ γ → γ ← δ.
These two walks have the same (ordered) sets of nodes and edges but are not equal as the loop at γ has different
orientations between the two walks. Furthermore, one can note that for the first of the two walks, γ is a collider in
the first instance, but not in the second. The walks α → β → α and α → β ← α are both cycles, and the second
is an example of the fact that the same edge can occur twice in a cycle.
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We say that the walk ω contains nodes γi and edges ej . The length of the walk is n, the
number of edges that it contains. We define a trivial walk to be a walk with no edges and,
therefore, only a single node. Equivalently, a trivial walk can be defined as a walk of length
zero. A subwalk of ω is either itself a walk of the form 〈γk, ek, . . . , em−1, γm〉 where 1 ≤ k <

m ≤ n + 1 or a trivial walk 〈γk〉, 1 ≤ k ≤ n + 1. A (nontrivial) walk is uniquely identified by
its edges, and the ordering and orientation of these edges, hence the vertices can be omitted
when describing the walk. At times, we will omit the edges to simplify notation, however, we
will always have a specific, uniquely identified walk in mind even when the edges and/or their
orientation is omitted. The first and last nodes of a walk are called endpoint nodes (these could
be equal) or just endpoints, and we say that a walk is between its endpoints, or alternatively
from its first node to its last node. We call the walk ω−1 = 〈γn+1, en, . . . , e1, γ1〉 the inverse
walk of ω. Note that the orientation of directed loops is also reversed in the inverse walk such
that they point toward γ1 in the inverse if and only if they point toward γ1 in the original
walk. A path is a walk on which no node is repeated.

Consider a walk ω and a subwalk thereof, 〈α, e1, γ, e2, β〉, where α,β, γ ∈ V and e1, e2 ∈
E. If e1 and e2 both have heads at γ , then γ is a collider on ω. If this is not the case, then γ

is a noncollider. Note that an endpoint of a walk is neither a collider, nor a noncollider. We
stress that the property of being a collider/noncollider is relative to a walk (see also Figure 4).

Let ω1 = 〈α, e1
1, γ

1
1 , . . . , γ 1

n−1, e
1
n,β〉 and ω2 = 〈α, e2

1, γ
2
1 , . . . , γ 2

m−1, e
2
m,β〉 be two (non-

trivial) walks. We say that they are endpoint-identical if e1
1 and e2

1 have the same mark at α

and e1
n and e2

m have the same mark at β . Note that this may depend on the orientation of di-
rected edges in the two walks. Assume that some edge e is between α and β . We say that the
(nontrivial) walk ω1 is endpoint-identical to e if it is endpoint-identical to the walk 〈α, e,β〉.
If α = β and e is directed, this should hold for just one of the possible orientations of e.

Let ω1 be a walk between α and γ , and ω2 a walk between γ and β . The composition of
ω1 with ω2 is the walk that starts at α, traverses every node and edge of ω1, and afterwards
every node and edge of ω2, ending in β . We say that we compose ω1 with ω2.

A directed path from α to β is a path between α and β consisting of edges of type →
only (possibly of length zero) such that they all point in the direction of β . A cycle is either a
loop, or a (nontrivial) path from α to β composed with β ∼ α. This means that in a cycle of
length 2, an edge can be repeated. A directed cycle is either a loop, α → α, or a (nontrivial)
directed path from α to β composed with β → α. For α ∈ V , we let An(α) denote the set of
ancestors, that is,

An(α) = {γ ∈ V | there is a directed path from γ to α}.
This is generalized to nonsingleton sets C ⊆ V ,

An(C) = ⋃

α∈C

An(α).

We stress that C ⊆ An(C) as we allow for trivial directed paths in the definition of an ancestor.
We use the notation AnG(C) if we wish to emphasize in which graph the ancestry is read, but
omit the subscript when no ambiguity arises.

Let G = (V ,E) be a graph, and let O ⊆ V . Define the subgraph induced by O to be the
graph GO = (O,EO) where EO ⊆ E is the set of edges that are between nodes in O . If
G1 = (V ,E1) and G2 = (V ,E2), we will write G1 ⊆ G2 to denote E1 ⊆ E2 and say that G2 is
a supergraph of G1.

A directed graph (DG), D = (V ,E), is a graph with only directed edges. Note that this
also allows directed loops. Within a class of graphs, we define the complete graph to be the
graph which is the supergraph of all graphs in the class when such a graph exists. For the class
of DGs on node set V , the complete graph is the graph with edge set E = {(α,β) | α,β ∈ V }.

A directed acyclic graph (DAG) is a DG with no loops and no directed cycles. An acyclic
directed mixed graph (ADMG) is a DMG with no loops and no directed cycles.
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3. Directed mixed graphs and separation. In this section, we introduce μ-separation
for DMGs which are then shown to be closed under marginalization. In particular, we obtain
a DMG representing the independence model arising from a local independence graph via
marginalization.

The class of DMGs contains as a subclass the ADMGs that have no directed cycles [19,
32]. ADMGs have been used to represent marginalized DAG models, analogously to how
we will use DMGs to represent marginalized DGs. ADMGs come with the m-separation
criterion which can be extended to DMGs, but this criterion differs in important ways from
the μ-separation criterion introduced below. These differences also mean that our main result
on Markov equivalence does not apply to, for example, DMGs with m-separation, and thus
our theory of Markov equivalence hinges on the fact that we are considering DMGs using the
asymmetric notion of μ-separation.

3.1. μ-separation. We define μ-separation as a generalization of δ-separation introduced
by Didelez [11], analogously to how m-separation is a generalization of d-separation; see,
for example, [33]. In Section A, we make the connection to Didelez’s δ-separation exact and
elaborate further on this in Section B.

DEFINITION 3.1 (μ-connecting walk). A nontrivial walk

〈α, e1, γ1, . . . , γn−1, en, β〉
in G is said to be μ-connecting (or simply open) from α to β given C if α /∈ C, every collider
is in An(C), no noncollider is in C, and en has a head at β .

When a walk is not μ-connecting given C, we say that it is closed or blocked by C. One
should note that if ω is a μ-connecting walk from α to β given C, the inverse walk, ω−1,
is not in general μ-connecting from β to α given C. The requirement that a μ-connecting
walk be nontrivial, that is, of strictly positive length, leads to the possibility of a node being
separated from itself by some set C when applying the following graph separation criterion
to the class of DMGs.

DEFINITION 3.2 (μ-separation). Let A,B,C ⊆ V . We say that B is μ-separated from
A given C if there is no μ-connecting walk from any α ∈ A to any β ∈ B given C and
write A ⊥μ B | C, or write A ⊥μ B | C [G] if we want to stress to what graph the separation
statement applies.

The above notion of separation is given in terms of walks of which there are infinitely
many in any DMG with a nonempty edge set. However, we will see that it is sufficient to
consider a finite subset of walks from A to B (Proposition 3.5).

Given a DMG, G = (V ,E), we define an independence model over V using μ-separation,

I(G) = {〈A,B | C〉 | (A ⊥μ B | C)
}
.

Definition 3.1 implies A ⊥μ B | C whenever A ⊆ C and, therefore, I(G) �= ∅.
Below we state two propositions that essentially both give equivalent ways of defining

μ-separation. The propositions are useful when proving results on μ-separation models.

PROPOSITION 3.3. Let α,β ∈ V , C ⊆ V . If there is a μ-connecting walk from α to β

given C, then there is a μ-connecting walk from α to β that furthermore satisfies that every
collider is in C.
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DEFINITION 3.4. A route from α to β is a walk from α to β such that no node different
from β occurs more than once, and β occurs at most twice.

A route is always a path, a cycle or a composition of a path and a cycle that share no edge
and only share the vertex β .

PROPOSITION 3.5. Let α,β ∈ V , C ⊆ V . If ω is a μ-connecting walk from α to β given
C, then there is a μ-connecting route from α to β given C consisting of edges in ω.

If there is a μ-connecting walk from A to B given C, it does not in general follow that
we can also find a μ-connecting path or cycle from A to B given C. As an example of
this, consider the following DMG on nodes {α,β, γ }: α ← β ← γ . There is a μ-connecting
walk from α to β given ∅, and a μ-connecting route, but no μ-connecting path from α to β

given ∅.

3.2. Marginalization of DMGs. Given a DG or a DMG, G, we are interested in finding
a graph that represents the marginal independence model over a node set O ⊆ V , that is,
finding a graph M such that

(3.1) I(M) = (I(G)
)O

.

It is well known that the class of DAGs with d-separation is not closed under marginaliza-
tion, that is, for a DAG, D = (V ,E), and O � V , it is not in general possible to find a DAG
with node set O that encodes the same independence model among the variables in O as did
the original graph. Richardson and Spirtes [33] gave a concrete counterexample and in Exam-
ple 3.7 we give a similar example to make the analogous point: DGs read with μ-separation
are not closed under marginalization. In this example, we use the following proposition which
gives a simple characterization of separability in DGs.

PROPOSITION 3.6. Consider a DG, D = (V ,E), and let α,β ∈ V . Then β is μ-
separable (see Definition 2.5) from α in D if and only if α �D β .

EXAMPLE 3.7. Consider the directed graph, G, in Figure 5. We wish to show that it is
not possible to encode the μ-separations among nodes in O = {α,β, γ, δ} using a DG on
these nodes only. To obtain a contradiction, assume D = (O,E) is a DG such that

A ⊥μ B | C [D] ⇔ A ⊥μ B | C [G](3.2)

for A,B,C ⊆ O . There is no C ⊆ O \ {α} such that α ⊥μ β | C [G] and no C ⊆ O \ {β}
such that β ⊥μ γ | C [G]. If D has the property (3.2), then it follows from Proposition 3.6
that α →D β and β →D γ . However, then γ is not μ-separated from α given ∅ in D. This
shows that there exists no DG, D, that satisfies (3.2).

We note that marginalization of a probability model does not only impose conditional
independence constraints on the observed variables but also so-called equality and inequal-
ity constraints; see, for example, [18] and references therein. In this paper, we will only be

FIG. 5. The directed graph of Example 3.7 which exemplifies that DGs are not closed under marginalization.
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concerned with the graphical representation of local independence constraints, and not with
representing analogous equality or inequality constraints.

In the remainder of this section, we first introduce the latent projection of a graph (see also
[41] and [34]), and then show that it provides a marginalized DMG in the sense of (3.1). At
the end of the section, we give an algorithm for computing the latent projection of a DMG.
This algorithm is an adapted version of one described by Sadeghi [36] for a different class of
graphs. Koster [25] described a similar algorithm for ADMGs.

DEFINITION 3.8 (Latent projection). Let G = (V ,E) be a DMG, V = M ∪̇O . We define
the latent projection of G on O to be the DMG (O,D) such that α ∼ β ∈ D if and only if there
exists an endpoint-identical (and nontrivial) walk between α and β in G with no colliders and
such that every nonendpoint node is in M . Let m(G,O) denote the latent projection of G
on O .

The definition of latent projection motivates the graphical term sibling for DMGs, as one
way to obtain an edge α ↔ β is through a latent projection of a larger graph in which α and
β share a parent.

To characterize the class of graphs obtainable from a DG via a latent projection, we
introduce the canonical DG of the DMG G, C(G), as follows: for each (unordered) pair
of nodes {α,β} ⊆ V such that α ↔G β , add a distinct auxiliary node, m{α,β}, add edges
m{α,β} → α, m{α,β} → β to E and then remove all bidirected edges from E. If D is a DG,
then M = m(D,O) will satisfy

α ↔M β ⇒ α ↔M α for all α,β ∈ O(3.3)

for all subsets of vertices O . Conversely, if G = (V ,E) is a DMG that satisfies (3.3), then G
is the latent projection of its canonical DG; m(C(G),V ) = G. The class of DMGs that sat-
isfy (3.3) is closed under marginalization (Proposition 3.9) and has certain regularity proper-
ties (see, e.g., Proposition 3.10). These result provide the means for graphically representing
marginals of local independence graphs. However, the theory that leads to our main results
on Markov equivalence does not require the property (3.3) and, therefore, we develop it for
general DMGs.

PROPOSITION 3.9. Let O ⊆ V . The graph M = m(G,O) is a DMG. If G satisfies (3.3),
then M does as well.

PROPOSITION 3.10. Assume that G satisfies (3.3) and let α ∈ V . Then α has no loops if
and only if α ⊥μ α | V \ {α}.

We also observe directly from the definition that the latent projection operation preserves
ancestry and nonancestry in the following sense.

PROPOSITION 3.11. Let O ⊆ V , M = m(G,O) and α,β ∈ O . Then α ∈ AnG(β) if and
only if α ∈ AnM(β).

The main result of this section is the following theorem, which states that the marginal-
ization defined by the latent projection operation preserves the marginal independence model
encoded by a DMG.

THEOREM 3.12. Let O ⊆ V , M = m(G,O). Assume A,B,C ⊆ O . Then

A ⊥μ B | C [G] ⇔ A ⊥μ B | C [M].
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input : a DMG, G = (V ,E) a subset M ⊆ V over which to marginalize
output : a graph M = (O, Ē), O = V \ M

Initialize E0 = E, M0 = (V ,E0), k = 0;
while �M(Mk) �= ∅ do

Choose θ = θ (α,m,β) ∈ �M(Mk);
Set ek+1 to be the edge α ∼ β which is endpoint-identical to θ ;
Set Ek+1 = Ek ∪ {ek+1};
Set Mk+1 = (V ,Ek+1);
Update k = k + 1

end
return (Mk)O

Algorithm 1: Computing the latent projection of a DMG

3.3. A marginalization algorithm. We describe an algorithm to compute the latent pro-
jection of a graph on some subset of nodes. For this purpose, we define a triroute, θ , to be
a walk of length 2, 〈α, e1, γ, e2, β〉, such that γ �= α,β . We suppress e1 and e2 from the no-
tation and use θ (α, γ,β) to denote the triroute. We say that a triroute is colliding if γ is a
collider on θ , and otherwise we say that it is noncolliding. This is analogous to the concept
of a tripath (see, e.g., [26]), but allows for α = β .

Define �M(G) to be the set of noncolliding triroutes θ (α,m,β) such that m ∈ M and such
that an endpoint-identical edge α ∼ β is not present in G.

PROPOSITION 3.13. Algorithm 1 outputs the latent projection of a DMG.

4. Properties of DMGs.

DEFINITION 4.1 (Markov equivalence). Let G1 = (V ,E1) and G2 = (V ,E2) be DMGs.
We say that G1 and G2 are Markov equivalent if I(G1) = I(G2). This defines an equivalence
relation and we let [G1] denote the (Markov) equivalence class of G1.

EXAMPLE 4.2 (Markov equivalence in DGs). Let D = (V ,E) be a DG. There is a di-
rected edge from α to β if and only if β cannot be separated from α by any set C ⊆ V \ {α}
(Proposition 3.6). This implies that two DGs are Markov equivalent if and only if they are
equal. Thus, in the restricted class of DGs, every Markov equivalence class is a singleton and
in this sense identifiable from its induced independence model. However, when considering
Markov equivalence in the more general class of DMGs not every equivalence class of a DG
is a singleton as the DG might be Markov equivalent to a DMG. As an example of this, con-
sider the complete DG on a node set V which is Markov equivalent to the complete DMG
on V .

DEFINITION 4.3 (Maximality of a DMG). We say that G is maximal if it is complete, or
if any added edge changes the induced independence model I(G).

4.1. Inducing paths. Separability of nodes can be studied using the concept of an induc-
ing path which has also been used in other classes of graphs [33, 41]. In the context of DMGs
and μ-separation, it is natural to define several types of inducing paths due to the asymmetry
of μ-separation and the possibility of directed cycles in DMGs.
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FIG. 6. Examples of inducing paths in a DMG: the path β → α is a unidirected inducing path from β to α,
and also a directed inducing path. The path β ↔ γ is a bidirected inducing path. The path β ↔ γ ↔ δ is a
bidirected inducing path from β to δ (and by definition its inverse is a bidirected inducing path from δ to β). The
path δ → γ ↔ β is both a unidirected and a directed inducing path from δ to β , whereas the path α → β ↔ γ is
a unidirected inducing path from α to γ , but not a directed inducing path.

DEFINITION 4.4 (Inducing path). An inducing path from α to β is a nontrivial path or
cycle, π = 〈α, . . . , β〉, which has a head at β and such that there are no noncolliders on π

and every node is an ancestor of α or β . The inducing path π is bidirected if every edge on
π is bidirected. If π is not bidirected, it has one of the forms α → β or

α → γ1 ↔ ·· · ↔ γn ↔ β.

and we say that it is unidirected. If, furthermore, γi ∈ An(β) for all i = 1, . . . , n (or it is on
the form α → β) then we say that it is directed.

Note that an inducing path is by definition either a path or a cycle. An inducing path
is either bidirected or unidirected. Some unidirected inducing paths are also directed; see
Figure 6 for examples. Propositions 4.7 and 4.8 show how bidirected and directed inducing
paths in a certain sense correspond to bidirected and directed edges, respectively.

PROPOSITION 4.5. Let ν be an inducing path from α to β . The following holds for any
C ⊆ V \ {α}. If α �= β , then there exists a μ-connecting path from α to β given C. If α = β ,
then there exists a μ-connecting cycle from α to β given C. We call such a path or cycle a
ν-induced open path or cycle, respectively, or simply a ν-induced open walk to cover both
the case α = β and the case α �= β . If the inducing path is bidirected or directed, then the
ν-induced open walk is endpoint-identical to the inducing path.

The following corollary is a direct consequence of Proposition 4.5, showing that β is in-
separable from α if there is an inducing path from α to β irrespectively of whether the nodes
are adjacent.

COROLLARY 4.6. Let α,β ∈ V . If there exists an inducing path from α to β in G, then
β is not μ-separated from α given C for any C ⊆ V \ {α}, that is, α ∈ u(β,I(G)).

The following two propositions show that for two of the three types of inducing paths
there is a Markov equivalent supergraph in which the nodes are adjacent. This illustrates
how one can easily find Markov equivalent DMGs that do not have the same adjacencies.
Example 4.12 shows that for a unidirected inducing path it may not be possible to add an
edge without changing the independence model.

PROPOSITION 4.7. If there exists a bidirected inducing path from α to β in G, then
adding α ↔ β in G does not change the independence model.

PROPOSITION 4.8. If there exists a directed inducing path from α to β in G, then adding
α → β in G does not change the independence model.

We say that nodes α and β are collider-connected if there exists a nontrivial walk between
α and β such that every nonendpoint node is a collider on the walk. We say that α is directedly
collider-connected to β if α and β are collider-connected by a walk with a head at β .
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FIG. 7. A maximal DMG in which δ is inseparable from β , though no edge is between the two. See Example
4.12. We will in general omit the bidirected loops from the visual presentations of DMGs; see also the discussion
in Section 5.4.

DEFINITION 4.9. Let α,β ∈ V . We define the set

D(α,β) = {
γ ∈ An(α,β) | γ is directedly collider-connected to β

} \ {α}.

Note that if α �G β , then pa(β) ⊆ D(α,β), and if the graph is furthermore a directed
graph then pa(β) = D(α,β).

PROPOSITION 4.10. If there is no inducing path from α to β in G, then β is separated
from α by D(α,β).

EXAMPLE 4.11 (Inducing paths). Consider the DMG on nodes {α,γ } and with a single
edge γ → α. In this case, there is no inducing path from α to α and α is μ-separated from
α by D(α,α) = {γ }. Now add the edge α ↔ γ . In this new DMG, there is an inducing path
from α to α and therefore α is inseparable from itself.

EXAMPLE 4.12 (Nonadjacency of inseparable nodes in a maximal DMG). Consider the
DMG in Figure 7. One can show that this DMG is maximal (Definition 4.3). There is an
inducing path from β to δ making δ inseparable from β , yet no arrow can be added between
β and δ without changing the independence model. This example illustrates that maximal
DMGs do not have the property that inseparable nodes are adjacent. This is contrary to MAGs
which form a subclass of ancestral graphs and have this exact property [33].

5. Markov equivalence of DMGs. The main result of this section is that each Markov
equivalence class of DMGs has a greatest element, that is, an element which is a supergraph
of all other elements. This fact is helpful for understanding and graphically representing such
equivalence classes, and potentially also for constructing learning algorithms. We will prove
this result by arguing that the independence model of a DMG, G = (V ,E), defines for each
node α ∈ V a set of potential parents and a set of potential siblings. We then construct the
greatest element of [G] by simply using these sets, and argue that this is in fact a Markov
equivalent supergraph. As we only use the independence model to define the sets of potential
parents and siblings, the supergraph is identical for all members of [G], and thus a greatest
element. Within the equivalence class, the greatest element is also the only maximal element,
and we will refer to it as the maximal element of the equivalence class.

5.1. Potential siblings.

DEFINITION 5.1. Let I be an independence model over V and let α,β ∈ V . We say that
α and β are potential siblings in I if (s1)–(s3) hold:

(s1) β ∈ u(α,I) and α ∈ u(β,I),
(s2) for all γ ∈ V , C ⊆ V such that β ∈ C,

〈γ,α | C〉 ∈ I ⇒ 〈γ,β | C〉 ∈ I,
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(s3) for all γ ∈ V , C ⊆ V such that α ∈ C,

〈γ,β | C〉 ∈ I ⇒ 〈γ,α | C〉 ∈ I.

Potential siblings are defined abstractly above in terms of the independence model only.
The following proposition gives a useful characterization for graphical independence models
by simply contraposing (s2) and (s3).

PROPOSITION 5.2. Let I(G) be the independence model induced by G. Then α,β ∈ V

are potential siblings if and only if (gs1)–(gs3) hold:

(gs1) β ∈ u(α,I(G)) and α ∈ u(β,I(G)),
(gs2) for all γ ∈ V , C ⊆ V such that β ∈ C: if there exists a μ-connecting walk from γ to

β given C, then there exists a μ-connecting walk from γ to α given C,
(gs3) for all γ ∈ V , C ⊆ V such that α ∈ C: if there exists a μ-connecting walk from γ to

α given C, then there exists a μ-connecting walk from γ to β given C.

PROPOSITION 5.3. Assume that α ↔ β is in G. Then α and β are potential siblings in
I(G).

LEMMA 5.4. Assume that α and β are potential siblings in I(G). Let G+ denote the
DMG obtained from G by adding α ↔ β . Then I(G) = I(G+).

The above shows that if α and β are potential siblings in I(G) then there exists a super-
graph, G+, which is Markov equivalent with G, such that α and β are siblings in G+. This
motivates the term potential siblings.

5.2. Potential parents. In this section, we will argue that also a set of potential parents
are determined by the independence model. This case is slightly more involved for two rea-
sons. First, the relation is asymmetric, as for each potential parent edge there is a parent node
and a child node. Second, adding directed edges potentially changes the ancestry of the graph.

DEFINITION 5.5. Let I be an independence model over V and let α,β ∈ V . We say that
α is a potential parent of β in I if (p1)–(p4) hold:

(p1) α ∈ u(β,I),
(p2) for all γ ∈ V , C ⊆ V such that α /∈ C,

〈γ,β | C〉 ∈ I ⇒ 〈γ,α | C〉 ∈ I,

(p3) for all γ, δ ∈ V , C ⊆ V such that α /∈ C,β ∈ C,

〈γ, δ | C〉 ∈ I ⇒ 〈γ,β | C〉 ∈ I ∨ 〈α, δ | C〉 ∈ I,

(p4) for all γ ∈ V , C ⊆ V , such that α /∈ C,

〈β,γ | C〉 ∈ I ⇒ 〈
β,γ | C ∪ {α}〉 ∈ I.

PROPOSITION 5.6. Let I(G) be the independence model induced by G. Then α ∈ V is a
potential parent of β ∈ V if and only if (gp1)–(gp4) hold:

(gp1) α ∈ u(β,I(G)),
(gp2) for all γ ∈ V , C ⊆ V such that α /∈ C: if there exists a μ-connecting walk from γ to

α given C, then there exists a μ-connecting walk from γ to β given C,
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(gp3) for all γ, δ ∈ V , C ⊆ V such that α /∈ C,β ∈ C: if there exists a μ-connecting walk
from γ to β given C and a μ-connecting walk from α to δ given C, then there exists a μ-
connecting walk from γ to δ given C,

(gp4) for all γ ∈ V , C ⊆ V , such that α /∈ C: if there exists a μ-connecting walk from β

to γ given C ∪ {α}, then there exists a μ-connecting walk from β to γ given C.

PROPOSITION 5.7. Assume that α → β is in G. Then α is a potential parent of β in
I(G).

LEMMA 5.8. Assume that α is a potential parent of β in I(G). Let G+ denote the DMG
obtained from G by adding α → β . Then I(G) = I(G+).

5.3. A Markov equivalent supergraph. Let G = (V ,E) be a DMG. Define N (I(G)) =
(V ,Em) to be the DMG with edge set Em = Ed ∪ Eb where Ed is a set of directed edges
and Eb a set of bidirected edges such that the directed edge from α to β is in Ed if and only
if α is a potential parent of β in I(G) and the bidirected edge between α and β is in Eb if
and only if α and β are potential siblings in I(G).

THEOREM 5.9. Let N = N (I(G)). Then N ∈ [G] and N is a supergraph of all elements
of [G]. Furthermore, if we have a finite sequence of DMGs G0,G1, . . . ,Gm, Gi = (V ,Ei), such
that G0 = G, Gm = N , and Ei ⊆ Ei+1 for all i = 0, . . . ,m − 1, then Gi is Markov equivalent
with N for all i = 0, . . . ,m − 1.

The graph N in the above theorem is a supergraph of every Markov equivalent DMG
and, therefore, maximal. On the other hand, every maximal DMG is a representative of its
equivalence class, and also a supergraph of all Markov equivalent DMGs. This means that
we can use the class of maximal DMGs to obtain a unique representative for each DMG
equivalence class.

Lemmas 5.4 and 5.8 show that conditions (gs1)–(gs3) and (gp1)–(gp4) are sufficient to
Markov equivalently add a bidirected or a directed edge, respectively. The conditions are
also necessary in the sense that for each condition one can find example graphs where only a
single condition is violated and where the larger graph is not Markov equivalent to the smaller
graph.

We can note that α is a potential parent and a potential sibling of α if and only if α ∈
u(α,I(G)). This means that in N (I(G)) for each node either both a directed and a bidirected
loop is present or no loop at all.

5.4. Directed mixed equivalence graphs. Theorem 5.9 suggests that one can represent
an equivalence class of DMGs by displaying the maximal element and then simply indicate
which edges are not present for all members of the equivalence class.

DEFINITION 5.10 (DMEG). Let N = (V ,F ) be a maximal DMG. Define F̄ ⊆ F such
that for e ∈ F we let e ∈ F̄ if and only if there exists a DMG G = (V , F̃ ) such that G ∈ [N ]
and e /∈ F̃ . We call N ′ = (V ,F, F̄ ) a directed mixed equivalence graph (DMEG). When
visualizing N ′, we draw N , but use dashed edges for the set F̄ ; see Figure 8.

Let N ′ = (V ,F, F̄ ) be a DMEG. The DMG (V ,F ) is in the equivalence class represented
by N ′. However, one cannot necessarily remove any subset of F̄ and obtain a member of the
Markov equivalence class (see Figure 8). Moreover, an equivalence class does not in general
contain a least element, that is, an element which is a subgraph of all Markov equivalent
graphs.
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We will throughout this section let N = (V ,F ) be a maximal DMG. For e ∈ F , we will use
N − e to denote the graph (V ,F \ {e}). Assume that we have a maximal DMG from which
we wish to derive the DMEG. Consider some edge e ∈ F . If N − e ∈ [N ], then e ∈ F̄ as
there exists a Markov equivalent subgraph of N in which e is not present. On the other hand,
if N − e /∈ [N ] then we note that N − e is the largest subgraph of N that does not contain e.
Let K be a subgraph of N that does not contain e. Then I(N ) � I(N − e) ⊆ I(K). Using
Theorem 5.9, we know that all N -Markov equivalent DMGs are in fact subgraphs of N , and
using that K is not Markov equivalent to N we see that all graphs in [N ] must contain e.
This means that when N − e /∈ [N ] then e /∈ F̄ as e must be present in all Markov equivalent
DMGs.

Any loop should in principle be dashed when drawing a DMEG as for each node in a
maximal DMG either both the directed and the bidirected loop are present or neither of them.
However, we choose to not present them as dashed as if they are present in the maximal
DMG, then at least one of them will be present in any Markov equivalent DMG satisfying
(3.3), that is, for any DMG which is a marginalization of a DG. In addition, we only draw the
directed loop to not overload the visualizations.

5.5. Constructing a directed mixed equivalence graph. When constructing a DMEG
from N , it suffices to consider the graphs N − e for each e ∈ E and determine if they are
Markov equivalent to N or not. A brute-force approach to doing so is to simply check all
separation statements in both graphs. However, one can make a considerably more efficient
algorithm.

PROPOSITION 5.11. Assume α
e→N β . It holds that N − e ∈ [N ] if and only if α ∈

u(β,I(N − e)).

PROPOSITION 5.12. Assume α
e↔N β . Then N −e ∈ [N ] if and only if α ∈ u(β,I(N −

e)) and β ∈ u(α,I(N − e)).

FIG. 8. The DMG 1 is maximal (the bidirected loops at α, β and δ have been omitted from the visual presenta-
tion). The DMGs 1 – 6 are the six elements of its Markov equivalence class (when ignoring Markov equivalent
removal of loops). The graph 7 is the corresponding DMEG. In a DMEG, every solid edge is in every graph in
the equivalence class, every absent edge is not in any graph, and every dashed edge is in some, but not in others.
Note that every DMG in the above equivalence class contains the edge γ → β or the edge δ → β even though
both are dashed in the DMEG. This example shows that not every equivalence class contains a least element.
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FIG. 9. Left: Local independence graph of Example 2.3. Middle: DMEG for the marginalization over L and I .
Right: DMEG for the marginalization over L. We have omitted the bidirected loops from the DMEGs and presented
the directed loops as solid.

We can now outline a two-step algorithm for constructing the DMEG from an arbitrary
DMG, G. We first construct the maximal Markov equivalent graph, N . We know from The-
orem 5.9 that one can simply check if each pair of nodes are potential siblings/parents in
the independence model induced by G and construct the maximal Markov equivalent graph
directly. This may, however, not be computationally efficient.

The above propositions show that given the maximal DMG, one can efficiently construct
the DMEG by evaluating separability once for each directed edge and twice for each bidi-
rected edge. Using Proposition 4.10, one can determine separability by testing a single sep-
aration statement, and this means that starting from N , one can construct the corresponding
DMEG in a way such that the number of separation statements to test scales linearly in the
number of edges in N .

EXAMPLE 5.13 (Gateway drugs, continued). We return to the model in Example 2.3 to
consider what happens when it is only partially observed and to give an interpretation of the
corresponding local independence model. The local independence graph is assumed to be as
depicted on Figure 9, left.

Consider first the situation where L and I are unobserved. In this case, under the faith-
fulness assumption of the full model (Definition C.5) we can construct the DMEG, which is
shown in the center panel of Figure 9, from the local independence model. The DMEG repre-
sents the Markov equivalence class which we can infer from the marginal local independence
model (L and I are unobserved). Theoretically, the inference requires an oracle to provide
us with local independence statements, which will in practice have to be approximated by
statistical tests. What is noteworthy is that the DMEG can be inferred from the distribution of
the observed variables only, and we do not need to know the local independences of the full
model.

If we ignore which edges are dashed and which are not, the graph simply represents the lo-
cal independence model of the marginal system as the maximal element in the Markov equiv-
alence class. The dashed edges give us additional—and in some sense local—information. As
an example, the directed edge from A to H is dashed and we cannot know if there exists a
conditioning set that would render H locally independent of A in the full system. On the
other hand, the directed edge from T to H is absent, and we can conclude that tobacco use is
not directly affecting hard drug use.

Consider instead the situation where I is also observed. I serves as an analogue to an
instrumental variable (see, e.g., [31] for an introduction to instrumental variables). The in-
clusion of this variable identifies some of the structure by removing some dashed edges and
making others nondashed.

6. Discussion and conclusion. In this paper, we introduced a class of graphs to rep-
resent local independence structures of partially observed multivariate stochastic processes.
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Previous work based on directed graphs, that allows for cycles and use the asymmetric δ-
separation criterion, was extended to mixed directed graphs to account for latent processes
and we introduced μ-separation in mixed directed graphs.

An important task is the characterization of equivalence classes of graphs and this has
been studied, for example, in MAGs [5, 45]. In the case of MAGs, a key result is that every
element in a Markov equivalence class has the same skeleton, that is, the same adjacencies
[5]. As shown by Propositions 4.7 and 4.8, this is not the case for DMGs, and Example 4.12
shows that one cannot necessarily within a Markov equivalence class find an element such
that two nodes are inseparable if and only if they are adjacent.

We proved instead a central maximality property which allowed us to propose the use of
DMEGs to represent a Markov equivalence class of DMGs in a concise way. Given a max-
imal DMG, we furthermore argued that one can efficiently find the DMEG. Similar results
are known for chain graphs, as one can also in a certain sense find a unique, largest graph
representing a Markov equivalence class [20], though this graph is not a supergraph of all
Markov equivalent graphs as in the case of DMGs. Volf and Studený [42] suggested to use
this largest graph as a unique representative of the Markov equivalence class, and they pro-
vided an algorithm to construct it.

We emphasize that the characterization given of the maximal element of a Markov equiva-
lence class of DMGs is constructive in the sense that it straightforwardly defines an algorithm
for learning a maximal DMG from a local independence oracle. This learning algorithm may
not be computationally efficient or even feasible for large graphs, and it is ongoing research
to develop efficient learning algorithms and to develop the practical implementations of the
tools needed for replacing the oracle by statistical tests.
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SUPPLEMENTARY MATERIAL

Additional results and proofs (DOI: 10.1214/19-AOS1821SUPP; .pdf). The supplemen-
tary material consists of Sections A to F. In Sections A and B, we relate μ-separation to
Didelez’s δ-separation, and also relate our slightly different definitions of local independence.
Section C describes how one can unroll a local independence graph and obtain a DAG. We
use this to discuss Markov properties and faithfulness in the time series case. In Section D,
we provide an augmentation criterion to determine μ-separation using an auxiliary undirected
graph. In Section E, we discuss conditions for existence of compensators and elaborate on
the definition of local independence. Section F contains the proofs of the main paper.
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SUPPLEMENTARY MATERIAL FOR MARKOV
EQUIVALENCE OF MARGINALIZED LOCAL

INDEPENDENCE GRAPHS

By Søren Wengel Mogensen and Niels Richard Hansen

University of Copenhagen

In this supplementary material we discuss relations between µ-separation
and other asymmetric notions of graphical separation. We also compare our
proposed definition of local independence to previous definitions to argue
that ours is in fact a generalization. We furthermore relate µ-separation to
m-separation. We provide, in particular, a detailed discussion of the local
independence model for discrete-time stochastic processes (time series), and
we show how to verify µ-separation via separation in an auxiliary undirected
graph. We also discuss the existence of the compensators that are used in
the definition of local independence for continuous-time stochastic process
models. This supplementary material also contains proofs of the results of
the main paper. A list of references can be found on the last page.

A. Relation to other asymmetric notions of graphical separa-
tion. In this section we relate µ-separation to δ-separation as introduced
previously in the literature for directed graphs.

Definition A.1 (Bereaved graph). Let G = (V,Ed) be a DG, and let
B ⊆ V . The B-bereaved graph, GB, is constructed from G by removing
every directed edge with a tail at a node in B except loops. More precisely,

GB = (V, ĒBd ), where ĒBd = Ed \
(⋃

β∈B{(β, δ) | δ 6= β}
)

.

Didelez [2] considered a DG, and for disjoint sets A,B,C ⊆ V said that
B is separated from A by C if there is no µ-connecting walk in GB, or
equivalently, no µ-connecting path. This is called δ-separation. Note that
the condition in Definitions 3.1 and 3.2 that a connecting walk be nontrivial
makes no difference now due to A and B being disjoint. The condition that
a µ-connecting walk ends with a head at β ∈ B is also obsolete as we are
evaluating separation in the bereaved graph GB. Didelez [2] always assumed
that a process depended on its own past, and thus did not visualize loops in
the DGs as a loop would always be present at every node.

Meek [9] generalized δ-separation to δ∗-separation in a DG (allowing for
loops) by considering only nontrivial µ-connecting walks in GB for sets

1
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2 S. W. MOGENSEN & N. R. HANSEN

A,B,C ⊆ V such that A ∩ C = ∅ with the motivation that a node can
be separated from itself using this notion of separation. However, if we con-
sider the graph α → β, and sets A = {α}, B = {α, β}, C = ∅, then using
δ∗-separation, B is separated from A given C, which runs counter to an in-
tuitive understanding of separation. More importantly, δ∗-separation in the
local independence graph will not generally imply local independence.

To establish an exact relationship between δ- and µ-separations and argue
that we are indeed proposing a generalization of the former, assume that G
is a DG and that A,B,C ⊆ V are disjoint. We will argue that

(A.1) A ⊥µ B | C ∪B [G]⇔ A ⊥δ B | C [G].

To see that this is the case, consider first a δ-connecting walk from α ∈ A to
β ∈ B given C in GB, ω. The subwalk from α to the first node on ω which is
in B is also present and µ-connecting given C ∪B in G. On the other hand,
assume that there exists a µ-connecting sequence, ω, in G. We know that
A∩B = ∅, and because B is a subset of the conditioning set on the left hand
side in (A.1), we must have that the first time the path enters B, it has a
head at the node in B, and this implies that a subwalk of ω is δ-connecting,
that is, present and connecting in GB. In Section B we will discuss why B
is included in the conditioning set on the left side of (A.1).

B. Markov properties. The equivalence of pairwise and global Markov
properties is pivotal in much of graphical modeling. In this section, we will
show how our proposed graphical framework fits with known results on
Markov properties in the case of point processes and argue that our graphical
framework is a generalization of that of Didelez [3] to allow for non-disjoint
sets and unobserved processes.

Definition B.1 (The pairwise Markov property). Let I be an indepen-
dence model over V . We say that I satisfies the pairwise Markov property
with respect to the DG D if for all α, β ∈ V ,

α 6→D β ⇒ 〈α, β | V \ {α}〉 ∈ I.

Definition B.2 (The global Markov property). Let A,B,C ⊆ V . Let I
be an independence model over V . We say that I satisfies the global Markov
property with respect to the DMG G if I(G) ⊆ I, i.e., if
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A ⊥µ B | C [G]⇒ 〈A,B | C〉 ∈ I.

Didelez [3] only considered disjoint sets and gave a slighty different defi-
nition of local independence. For disjoint sets, Didelez [3] defined that B is
locally independent of A given C if

A 6→ B | C ∪B,
and we will make the relation between the two definitions precise in this
section. Consider sets S,Sd ⊆ P(V )× P(V )× P(V ),

Sd = {(A,B,C) | A,B,C disjoint, A,B non-empty}
S = {(A,B,C) | B ⊆ C, A,C disjoint, A,B non-empty}

and the bijection s : Sd → S, s((A,B,C)) = (A,B,C ∪ B). We will in this
section let I denote a subset of S and let Id denote a subset of Sd. In Section
A we argued that for any directed graph G and (A,B,C) ∈ Sd,

A ⊥δ B | C [G]⇔ A ⊥µ B | C ∪B [G]

and therefore

{(A,B,C) ∈ Sd : A ⊥δ B | C [G]} = s−1
(
{(A,B,C) ∈ S : A ⊥µ B | C [G]}

)
.

For any local independence model defined by Didelez’s definition, Id, and
any local independence model defined by Definition 2.1, I, it holds that

〈A,B | C〉 ∈ Id ⇔ A 6→ B | C ∪B
⇔ 〈A,B | C ∪B〉 ∈ I

so Id = s−1(I). Hence, there is a bijection between the two sets, and graphi-
cal and probabilistic independence models are preserved under the bijection.
This means that we have equivalence of Markov properties between the two
formulations. Thus, restricting our framework to S, we get the equivalence
of pairwise and global Markov property directly from the proof by Didelez
in the case of point process models, and we see that our seemingly different
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definitions of local independence and graphical separation indeed give an
extension of earlier work.

One can show that for two DMGs G1, G2, that both have all directed and
bidirected loops it holds that

I(G1) ∩ S = I(G2) ∩ S ⇔ I(G1) = I(G2).
Let G denote the class of DMGs such that all directed and bidirected loops

are present. Consider now some G ∈ G. By the above result we can identify
the Markov equivalence class from the independence model restricted to S.
This equivalence class has a maximal element which is also in G and thus
one can also in this case represent the Markov equivalence class using a
DMEG.

C. Time series and unrolled graphs. In this section we first relate
the cyclic DGs and DMGs to acyclic graphs and then use this to discuss
Markov properties (see Definition B.2) and faithfulness of local independence
models in the time series case.

Definition C.1 (m-separation [10]). Let G = (V,E) be a DMG and
let α, β ∈ V . A path between α and β is said to be m-connecting if no
noncollider on the path is in C and every collider on the path is in An(C).
For disjoint sets A,B,C ⊆ V , we say that A and B are m-separated by C
if there is no m-connecting path between α ∈ A and β ∈ B. In this case, we
write A ⊥m B | C.

The above m-separation is a generalization of the well-known d-separation
in DAGs. In this section we will only consider m-separation for DAGs, and
will thus use the d-separation terminology. In Section D we provide a more
general relation between µ-separation and m-separation.

We first describe how to obtain a DAG from a DG such that the DAG,
if read the right way, will give the same separation model as the DG.
This can be useful in time series examples as well as when working with
continuous-time models. Sokol and Hansen [13] studied solutions to stocha-
stic differential equations and used a DAG in discrete time to approximate
the continuous-time dynamics. Danks and Plis [1] and Hyttinen et al. [5]
used similar translations between an unrolled graph in which time is dis-
crete and explicit and a rolled graph in which time is implicit. Some authors
use the term unfolded instead of unrolled. In a rolled graph each node repre-
sents a stochastic process whereas in an unrolled graph each node represents
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α
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γ
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xβ0

xγ0

xα1

xβ1

xγ1

xα2

xβ2

xγ2

xα3

xβ3

xγ3
Fig 1. A directed graph (left) and the corresponding unrolled version with four time points,
D3(G), (right). xδt denotes the δ-coordinate process at time t for δ ∈ {α, β, γ}.

a single random variable. Definition C.2 shows how to unroll a local inde-
pendence graph and Lemma C.3 establishes a precise relationship between
independence models in the rolled and unrolled graphs.

Definition C.2. Let G = (V,E) be a DG and let T ∈ N. The unrolled
version of G, DT (G) = (V̄ , Ē), is the DAG on nodes

V̄ = {xαt | (t, α) ∈ {0, 1, . . . , T} × V }

and with edges

Ē = {xαs → xβt | α→G β and s < t}.

Let D ⊆ V and let T ∈ N. We define D0:T = {xαt ∈ V̄ | α ∈ D, t ≤ T} and
DT = {xαt ∈ V̄ | α ∈ D, t = T}.

Lemma C.3. Let G = (V,E) be a DG. If A ⊥µ B | C [G] then (A \
C)0:(T−1) ⊥d BT | C0:(T−1) [DT (G)]. For large enough values of T , the oppo-
site implication holds as well.

Proof. Assume first that 〈xα0
s0 , e1, x

α1
s1 , . . . , el, x

αl
sl
〉 is a d-connecting path

in DT (G). This path has a head at xαlsl ∈ BT . Construct a walk in G by
for each node, xαksk , taking the corresponding node, αk, and for each edge
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xαksk ∼ x
αk+1
sk+1 taking the corresponding, endpoint-identical edge αk ∼ αk+1

in G. On this walk, no noncollider is in C, and every collider is an ancestor
of a node in C.

Assume instead that ω is a µ-connecting walk in G from A to B given C,

α1 ∼ . . . ∼ αl−1 → αl

and let T ≥ 3(|E|+ 1) + 1. Using Proposition 3.5, we can assume that ω has
length smaller than or equal to |E|+1. We construct a d-connecting walk in
DT (G) in the following way. Starting from xαlT , we choose the edge between
x
αl−1

|E|+1 and xαlT . For the remaining edges, αk ∼ αk+1, we choose the edge

xαksk−1 → x
αk+1
sk if αk → αk+1 in ω, and x

αk+1
sk → xαksk+1 if αk ← αk+1 in ω

where sk is determined by the endpoints of the previous edge. No noncollider
on this walk will be in C0:(T−1). Every collider will be in AnDT (G)(C0:(T−1))
as the collider will be in the time slices 0 to 2(|E| + 1). This d-connecting
walk can be trimmed down to a d-connecting path.

We defined local independence for a class of continuous-time processes in
Definition 2.1. In this section we define a similar notion for time series, as
also introduced in [4]. Let V = {1, . . . , n}. We consider a multivariate time
series (Xt)t∈N∪{0}, Xt = (X1

t , . . . , X
n
t ), of the form

Xα
t = fαt(Xs<t, ε

α
t ),

where Xs<t = {Xα
u | α ∈ V, u < t}. The random variables {εαt } are indepen-

dent. For S ⊆ N ∪ {0} and D ⊆ V we let XD
S = {Xα

s | α ∈ D, s ∈ S} and
XD = {Xα | α ∈ D}. In the case of time series, a notable feature of local
independence and local independence graphs is that they provide a simple
representation in comparison with graphs in which each vertex represents a
single time-point variable.

Definition C.4 (Local independence, time series). Let X be a multi-
variate time series. We say that XB is locally independent of XA given XC

if for all t ∈ N, β ∈ B, XA
s<t and Xβ

t are conditionally independent given
XC
s<t, that is,

XA
s<t ⊥⊥ Xβ

t | XC
s<t

and write A 6→ B | C.

The above definition induces an independence model over V , which we
will also refer to as the local independence model and denote I in the fol-
lowing. The main question that we address is whether this independence
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model is graphical. That is, we will construct a DG, consider the Markov
and faithfulness properties of I and this DG, and relate them to Markov
and faithfulness properties of the conditional independence model of finite
distributions and unrolled versions of the DG.

Definition C.5 (Faithfulness). Let A,B,C ⊆ V . Let I be an indepen-
dence model on V and let G be a DMG. We say that I and G are faithful if
I = I(G), i.e., if

〈A,B | C〉 ∈ I ⇔ A ⊥µ B | C [G].

One can give analogous definitions using other notions of graphical sepa-
ration. Below we also consider faithfulness of a probability distribution and
a DAG, implicitly using d-separation instead of µ-separation in the above
definition.

Let DT for T ≥ 1 be the DAG on nodes {xαs | s ∈ {0, . . . , T}, α ∈ V } such

that there is an edge xαs → xβt if and only if fβt depends on the argument
Xα
s . Let DS = {xαs | α ∈ D, s ∈ S}. Let G denote the minimal DG such that

its unrolled version, DT (G), is a supergraph of DT for all T ∈ N.
For all T ∈ N, the DAG DT (G) and the distribution of Xs≤T satisfy

xαs , x
β
t not adjacent ⇒ Xα

s ⊥⊥ Xβ
t | (An(Xα

s ) ∪An(Xβ
t )) \ {Xα

s , X
β
t },

which is also known as the pairwise Markov property for DAGs. Assume
equivalence of the pairwise and global Markov properties for this DAG and
the finite-dimensional distribution (see e.g. [7] for necessary and sufficient
conditions for this equivalence). Assume that B is µ-separated from A by
C in the DG G, A ⊥µ B | C [G]. By Lemma C.3, (A \ C)s<T ⊥m BT |
Cs<T [DT (G)], and by the global Markov property in this DAG, X

A\C
s<T ⊥⊥

XB
T | XC

s<T . This holds for any T , and therefore A \ C 6→ B | C. It follows
that A 6→ B | C. This means that I satisfies the global Markov property
with respect to G.

Assume furthermore that the distribution of XT and the DAG DT (G) for
some T ∈ N are faithful and that T ≥ 3(|E| + 1) + 1. Meek [8] studied
faithfulness of DAGs and argued that faithful distributions exist for any

DAG. If A 6→ B | C, then A \ C 6→ B | C and X
A\C
s<T ⊥⊥ XB

T | XC
s<T .

By faithfulness of the distribution of XT and the DAG DT (G), we have
(A \ C)s<T ⊥m BT | Cs<T [DT (G)] and using Lemma C.3 this implies that
A ⊥µ B | C [G], giving us faithfulness of I and G.
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In summary, for every DG there exists a time series such that the local
independence model induced by its distribution and the DG are faithful.

D. An augmentation criterion. In this section we present results
that allow us to determine µ-separation from graphical separation in an
undirected graph. An undirected graph is a graph, (V,E), with an edge set
that consists of unordered pairs of nodes such that every edge is of the type
−. Let A,B, and C be disjoint subsets of V . We say that A and B are
separated by C if every path between α ∈ A and β ∈ B contains a node in
C.

When working with d-separation in DAGs, it is possible to give an equiv-
alent separation criterion using a derived undirected graph, the moral graph
[6]. Didelez [2] also gives both pathwise and so-called moral graph crite-
ria for δ-separation. The augmented graph below is a generalization of the
moral graph [10, 11] which allows one to give a criterion for m-separation
based on an augmented graph. We use the similarity of µ-separation and
m-separation to give an augmentation graph criterion for µ-separation. The
first step in making a connection to m-separation is to explicate that each
node of a DMG represents an entire stochastic process, and notably, both
the past and the present of that process. We do that using graphs of the
below type.

Definition D.1. Let G = (V,E) and let B = {β1, . . . , βk} ⊆ V . The
B-history version of G, denoted by G(B), is the DMG with node set V ∪̇
{βp1 , . . . , βpk} such that G(B)V = G and

• α↔G(B) β
p
i if α↔G βi and α ∈ V, βi ∈ B,

• α→G(B) β
p
i if α→G βi and α ∈ V, βi ∈ B.

G(B) is a graph such that every node b ∈ B is simply split in two: one
that represents the present and one that represents the past. We define
Bp = {βp1 , . . . , βpk}.

Proposition D.2. Let G = (V,E) be a DMG, and let A,B,C ⊆ V .
Then

A ⊥µ B | C [G]⇔ A \ C ⊥m Bp | C [G(B)].

Proof. Assume first that there is a µ-connecting walk from α ∈ A to
β ∈ B given C in G. By definition α ∈ A \ C. By Proposition 3.5 there is a
µ-connecting route,
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α ∼ . . . ∼ β ∼ . . . γ ∗→ β.

The subwalk from α to γ is also present in G(B) and composing it with
γ ∗→G(B) β

p gives an m-connecting path between A \ C and Bp which is
open given C.

On the other hand, if there is an m-connecting path from α ∈ A \ C to
βp ∈ Bp given C in G(B), then no non-endpoint node is in Bp,

α ∼ . . . γ ∗→ βp

The subpath from α to γ is present in G and can be composed with the
edge γ ∗→ β to obtain a µ-connecting walk from A to B given C in G.

Definition D.3. Let G = (V,E) be a DMG. We define the augmented
graph of G, Ga, to be the undirected graph without loops and with node set
V such that two distinct nodes are adjacent if and only if the two nodes are
collider connected in G.

Proposition D.4. Let G = (V,E) be a DMG, A,B,C ⊆ V . Then
A ⊥µ B | C [G] if and only if A \ C and Bp are separated by C in the
augmented graph of G(B)An(A∪Bp∪C).

Proof. Using Proposition D.2 we have that A ⊥µ B | C [G]⇔ A\C ⊥m
Bp | C [G(B)]. Let G(B)′ be the DMG obtained from G(B) by removing all
loops. Then A \C ⊥m Bp | C [G(B)] if and only if A \C ⊥m Bp | C [G(B)′].
We can apply Theorem 1 of [10]. That theorem assumes an ADMG, however,
as noted in the paper, acyclicity is not used in the proof which therefore
also applies to G(B)′, and we conclude that A \ C ⊥m Bp | C [G(B)′] if
and only if A \ C and Bp are separated by C in (G(B)′An(A∪Bp∪C))

a =

(G(B)An(A∪Bp∪C))
a.

E. Existence of compensators. Let Z = (Zt) denote a real-valued
stochastic process defined on a probability space (Ω,F , P ), and let (Gt)
denote a right-continuous and complete filtration w.r.t. P such that Gt ⊆
F . Note that Z is not assumed adapted w.r.t. the filtration. When Z is a
right-continuous process of finite and integrable variation, it follows from
Theorem VI.21.4 in [12] that there exists a predictable process of integrable
variation, Zp, such that oZ−Zp is a martingale. Here oZ denotes the optional
projection of Z, which is a right-continuous version of the process (E(Zt |
Gt)), cf. Theorem VI.7.1 and Lemma VI.7.8 in [12]. The process Λ = Zp
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is called the dual predictable projection or compensator of the optional
projection oZ as well as of the process Z itself. It depends on the filtration
(Gt).

If Z is adapted w.r.t. a (right-continuous and complete) filtration (Ft),
it has a compensator Λ̃ = Zp such that Z − Λ̃ is an Ft martingale. When
Gt ⊆ Ft it may be of interest to understand the relation between Λ, as
defined above w.r.t. (Gt), and Λ̃. If Λ̃ is continuous with Λ̃0 = 0, say, we
may ask if Λ equals the predictable projection, E(Λ̃t | Gt−). As Λ̃ is assumed
continuous and is of finite variation,

Λ̃t =

∫ t

0
λ̃sds.

If (λ̃t) itself is an integrable right-continuous process, then its optional pro-
jection, (E(λ̃t | Gt)), is an integrable right-continuous process, and

E(Λ̃t | Gt−) =

∫ t

0
E(λ̃s | Gs)ds

is a finite-variation, continuous version of the predictable projection of Λ̃. It
is clear that

E(Zt | Gt)−
∫ t

0
E(λ̃s | Gs)ds

is a Gt martingale, thus

Λt =

∫ t

0
E(λ̃s | Gs)ds

is a compensator of Z w.r.t. the filtration (Gt).
We formulate the consequences of the discussion as a criterion for deter-

mining local independence via the computation of conditional expectations.
The setup is as in Definition 2.1 in Section 2.1.

Proposition E.1. Assume that the process Xβ for all β ∈ V has a
compensator w.r.t. the filtration (FVt ) of the form

ΛV,βt = ΛV,β0 +

∫ t

0
λβsds

for an integrable right-continuous process (λβt ) and a deterministic constant

ΛV,β0 . Then Xβ is locally independent of XA given XC for A,C ⊆ V if the
optional projection

E(λβt | FA∪Ct )

has an FCt adapted version.
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Another way to phrase the conclusion of the proposition is that if the
optional projection E(λβt | FCt ) is indistinguishable from E(λβt | FA∪Ct ),
then A 6→ β | C, and it is a way of testing local independence via the
computation of conditional expectations. It is a precise formulation of the
innovation theorem stating how to compute compensators for one filtration
via conditional expectations of compensators for a superfiltration.

F. Proofs. The following are proofs of the results from the main paper.

Proof of Proposition 3.3. Let ω be a µ-connecting walk given C and
let γ be a collider on the walk such that γ ∈ An(C) \ C. Then there exists
a subwalk ω̄ = α1 ∗→ γ ←∗ α2, and an open (given C), directed path from
γ to δ ∈ C, π. By composing α1 ∗→ γ with π, π−1, and γ ←∗ α2 we get an
open walk which is endpoint-identical to ω̄ and with its only collider, δ, in
C, and we can substitute ω̄ with this new walk. Making such a substitution
for every collider in An(C)\C on ω, we obtain a µ-connecting walk on which
every collider is in C.

Proof of Proposition 3.5. Assume that we start from α and continue
along ω until some node, γ 6= β, is repeated. Remove the cycle from γ to
γ to obtain another walk from α to β, ω̄. If γ = α, then ω̄ is µ-connecting.
Instead assume γ 6= α. If this instance of γ is a noncollider on ω̄ then it must
have been a noncollider in an instance on ω and thus γ /∈ C. If on the other
hand this instance of γ is a collider on ω̄ then either γ was a collider in an
instance on ω or the ancestor of a collider on ω, and thus γ ∈ An(C). In
either case, we see that ω̄ is a µ-connecting walk. Repeating this argument,
we can construct a µ-connecting walk where only β is potentially repeated.
If there is n > 2 instances of β then we can remove at least n − 2 of them
as above as long as we leave an edge with a head at the final β.

Proof of Proposition 3.6. Note first that a vertex can be a parent of
itself. The result then follows from the fact that α ⊥µ β | pa(β).

Proof of Proposition 3.9. The first statement follows from the fact
that no edge without heads (i.e. −) is ever added. Assume for the second
statement that G satisfies (3.3). Let M = V \O. Assume α ↔M β. By
definition of the latent projection, we can find an endpoint-identical walk
between α and β in G with no colliders and such that all non-endpoint nodes
are in M . Either this walk has a bidirected edge at α in which case α↔G α
by (3.3) and therefore also α ↔M α. Otherwise, there is a directed edge
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from some node γ ∈ M such that γ →G α. Then the walk α ← γ → α is
present in G and therefore α↔M α because M is a latent projection.

Proof of Proposition 3.10. Assume first that α has no loops. In this
case, there are no bidirected edges between α and any node, and therefore the
edges that have a head at α have a tail at the previous node. Any nontrivial
walk between α and α is therefore blocked by V \ {α}. Conversely, if α has
a loop, then α ∗→ α is a µ-connecting walk given V \ {α}.

Proof of Theorem 3.12. Let M = V \O. Let first ω be a µ-connecting
walk from α ∈ A to β ∈ B given C in G. Using Proposition 3.3, we can find a
µ-connecting walk from α ∈ A to β ∈ B given C in G such that all colliders
are in C. Denote this walk by ω̄. Every node, m, on ω̄ which is in M is
on a subwalk of ω̄, δ1 ∼ . . . ∼ m ∼ . . . ∼ δ2, such that δ1, δ2 ∈ O and all
other nodes on the subwalk are in M . There are no colliders on this subwalk
and therefore there is an endpoint-identical edge δ1 ∼ δ2 inM. Substituting
all such subwalks with their corresponding endpoint-identical edges gives a
µ-connecting walk in M.

On the other hand, let ω be a µ-connecting walk from A to B given
C in M. Consider some edge in ω which is not in G. In G there is an
endpoint-identical walk with no colliders and no non-endpoint nodes in C.
Substituting each of these edges with such an endpoint-identical walk gives
a µ-connecting walk in G using Proposition 3.11.

Proof of Proposition 3.13. We first note that in Algorithm 1 adding
an edge will never remove any triroutes. Therefore, Algorithm 1 returns the
same output regardless of the order in which the algorithm adds edges.

Let M denote the output of Algorithm 1 which is clearly a DMG. The
graphsM and m(G, O) have the same node set, thus it suffices to show that
also the edge sets are equal. Assume first α

e∼m(G,O) β. Then there exist an
endpoint-identical walk in G that contains no colliders and such that all the
non-endpoint nodes are in M = V \ O, α ∼ γ1 ∼ . . . ∼ γn ∼ γn+1 = β. Let
el be the edge between α and γl which is endpoint-identical to the subwalk
from α to γl. If el is present in Mk at some point during Algorithm 1, then
edge el+1 will also be added before the algorithm terminates, l = 1, . . . , n.
We see that e1 is in G, and this means that e is also present in M.

On the other hand, assume that some edge e is in M. If e is not in G,
then we can find a noncolliding, endpoint-identical triroute in the graphMk

(k has the value that it takes when the algorithm terminates) such that the
noncollider is in M . By repeatedly using this argument, we can from any
edge, e, in M construct an endpoint-identical walk in G that contains no
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colliders and such that every non-endpoint node is in M , and therefore e is
also present in m(G, O).

Proof of Proposition 4.5. Let

α ∗→ γ1 ↔ . . .↔ γn ↔ β

be the inducing path, ν. Let γn+1 denote β. If ν has length one, then it is
directed or bidirected and itself a µ-connecting path/cycle regardless of C.
Assume instead that the length of ν is strictly larger than one, and assume
also first that α 6= β. Let k be the maximal index in {1, . . . , n} such that
there exists an open walk from α to γk given C which does not contain β
and only contains α once. There is a µ-connecting walk from α to γ1 6= β
given C and therefore k is always well-defined.

Let ω be the open walk from α to γk. If γk ∈ An(C), then the composition
of ω with the edge γk ↔ γk+1 is open from α to γk+1 given C. By maximality
of k, we must have k = n, and the composition is therefore an open walk from
α to β on which β only occurs once. We can reduce this to a µ-connecting
path using arguments like those in the proof of Proposition 3.5. Assume
instead that γk /∈ An(C). There is a directed path from γk to α or to β.
Let π denote the subpath from γk to the first occurrence of either α or β on
this directed path. If β occurs first, then the composition of ω with π gives
an open walk from α to β. There is a head at β when moving from α to β
and therefore the walk can be reduced to a µ-connecting path from α to β
using the arguments in the proof of Proposition 3.5. If α occurs first, then
the composition of π−1 and the edge γk ↔ γk+1 gives a µ-connecting walk
and it follows that k = n by maximality of k. This walk is a µ-connecting
path.

To argue that the open path is endpoint-identical if ν is directed or
bidirected, let instead k be the maximal index such that there exists a µ-
connecting walk from α to γk with a head/tail at α. Using the same argument
as above, we see that the µ-connecting path will be endpoint-identical to ν
in this case. In the directed case, note that in the case γk /∈ An(C) one
can find a directed path form γk to β, and if α occurs on this path one can
simply choose the subpath from α to β.

In the case α = β, analogous arguments can be made by assuming that k
is the maximal index such that there exists a µ-inducing path from α to γk
given C such that β = α only occurs once.

Proof of Propositions 4.7 and 4.8. For both propositions it suffices
to argue that if there is a µ-connecting walk in the larger graph, then we
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can also find a µ-connecting walk in the smaller graph. Using Proposition
4.5 we can find endpoint-identical walks that are open given C \ {α} and
replacing α ∗→ β with such a walk will give a walk which is open given
C. For Proposition 4.8 one should note that adding the edge respects the
ancestry of the nodes due to transitivity.

Proof of Proposition 4.10. Assume there is no inducing path from
α to β and let ω be some walk from α to β with a head at β. Note that ω
must have length at least 2.

α = γ0
e0∼ γ1 e1∼ . . . em−1∼ γm

em∗→ β.

There must exist an i ∈ {0, 1, . . . ,m} such that γi is not directedly
collider-connected to β along ω or such that γi /∈ An(α, β). Let j be the
largest such index. Note first that γm is always directedly collider-connected
to β along ω and γ0 is always in An(α, β). If j 6= m and γj is not directedly
collider-connected to β along ω, then γj+1 is a noncollider and ω is closed
in γj+1 ∈ D(α, β) (note that α = γj+1 is impossible as there would then be
an inducing path from α to β). If j 6= 0 and γj /∈ An(α, β) then there is
some k ∈ {1, . . . , j} such that γk is a collider and γk /∈ An(α, β) and ω is
therefore closed in this collider.

Proof of Proposition 5.3. We verify that (gs1)–(gs3) hold.
(gs1) The edge α↔ β constitutes an inducing path in both directions.
(gs2-3) Let γ ∈ V,C ⊆ V such that β ∈ C, and assume that there is a
µ-connecting walk from γ to β given C in G. This walk has a head at β and
composing the walk with α ↔ β creates an µ-connecting walk from γ to α
given C.

Proof of Lemma 5.4. Any µ-connecting walk in G is also present and
µ-connecting in G+, hence I(G+) ⊆ I(G).

Assume γ, δ ∈ V,C ⊆ V and assume that ρ is a µ-connecting route from
γ to δ given C in G+. Let e denote the edge α↔ β. Using (gs1), there exist
an inducing path from α to β in G and one from β to α. Denote these by ν1
and ν2. If e is not in ρ, then ρ is also in G and µ-connecting as the addition
of the bidirected edge does not change the ancestry of G.

If e occurs twice in ρ then it contains a subroute α
e↔ β

e↔ α and α = δ
(or with the roles interchanged). Either one can find a µ-connecting subroute
of ρ with no occurrences of e or α /∈ C. If β ∈ C, then compose the subroute
of ρ from γ to the first occurrence of α (which is either trivial or can be
assumed to have a tail at α) with the ν1-induced open walk from α to β
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using Proposition 4.5. This is a µ-connecting walk in G from γ to β and using
(gs2) the result follows. If β /∈ C, then the result follows from composing
the subroute from γ to α with the ν1-induced open walk from α to β and
the ν2-inducing open walk from β to α.

If e only occurs once on ρ, consider first a ρ of the form

γ ∼ . . . ∼ α︸ ︷︷ ︸
ρ1

e↔ β ∼ . . . ∗→ δ︸ ︷︷ ︸
ρ2

.

Assume first that α /∈ C. Let π denote the ν1-induced open walk from α to
β and note that π has a head at β. If γ = α then π composed with ρ2 is a
µ-connecting walk from γ to δ in G. If γ 6= α we can just replace e with π,
and the resulting composition of the walks ρ1, π and ρ2 is a µ-connecting
walk from γ to δ in G. If instead α ∈ C, then γ 6= α and α is a collider on
ρ, and ρ1 thus has a head at α and is µ-connecting from γ to α given C in
G. Using (gs3) we can find a µ-connecting walk from γ to β given C in G.
Composing this with ρ2 gives a µ-connecting walk from γ to δ given C in G.

If ρ instead has the form

γ ∼ . . . ∼ β e↔ α ∼ . . . ∗→ δ,

a similar argument using (gs2) applies. In conclusion, I(G) ⊆ I(G+).

Proof of Proposition 5.7. We verify that (gp1)–(gp4) hold.
(gp1) α→ β constitutes an inducing path from α to β.
(gp2) Let ω be a µ-connecting walk from γ to α given C, α /∈ C. Then ω
composed with α→ β is µ-connecting from γ to β given C.
(gp3) Let ω1 be a µ-connecting walk from γ to β given C, α /∈ C, β ∈ C,
and let ω2 be a µ-connecting walk from α to δ given C. The composition of
ω1, α→ β, and ω2 is µ-connecting.
(gp4) Let ω be a µ-connecting walk from β to γ given C ∪ {α}, α /∈ C. If
this walk is closed given C, then there exists a collider on ω, which is an
ancestor of α and not in An(C). Let δ be the collider on ω with this property
which is the closest to γ. Then we can find a directed and open path from
δ to β and composing the inverse of this with the subwalk of ω from δ to γ
gives us a connecting walk.

Proof of Lemma 5.8. As AnG(C) ⊆ AnG+(C) for all C ⊆ V , any µ-
connecting path in G is also µ-connecting in G+, and it therefore follows
that I(G+) ⊆ I(G).

We will prove the other inclusion by considering a µ-connecting walk from
γ to δ given C in G+ and argue that we can find another µ-connecting walk

52 CHAPTER 3. DIRECTED MIXED GRAPHS



16 S. W. MOGENSEN & N. R. HANSEN

in G+ that fits into cases (a) or (b) below. In both cases, we will use the
potential parents properties to argue that there is also a µ-connecting walk
from γ to δ given C in G. Let e denote the edge α→ β.

Let ν denote the inducing path from α to β in G which we know to exist
by (gp1) and Proposition 4.10. Say we have a µ-connecting walk in G+, ω,
from γ to δ given C. There can be two reasons why ω is not µ-connecting
in G: 1) e is in ω, 2) there exist colliders, c1, . . . , ck, on ω, which are in
AnG+(C) but not in AnG(C). We will in this proof call such colliders newly
closed. If there exists a newly closed collider on ω, ci, then there exists in
G a directed path from ci to α on which no node is in C, and furthermore
α /∈ C. Note that this path does not contain β, and the existence of a newly
closed collider implies that β ∈ AnG(C).

Using Proposition 3.5, we can find a route, ρ, in G+ from γ to δ, which
is µ-connecting in G+. Assume first that e occurs at most once on ρ. If
there are newly closed colliders on ρ, we will argue that we can find a µ-
connecting walk in G+ with no newly closed colliders and such that e occurs
at most once. Assume that c1, . . . , ck are newly closed colliders, ordered by
their occurrences on the route ρ. We allow for k = 1, in which case c1 = ck.
We will divide the argument into three cases, and we use in all three cases
that a µ-connecting walk in G is also present in G+ and has no newly closed
colliders nor occurrences of e. We also use that α /∈ C when applying (gp2).

(i) e is between γ and c1 on ρ.
Consider the subwalk of ρ from γ to the first occurrence of α. If this
subwalk has a tail at α (or is trivial) then we can compose it with the
inverse of the path from ck to α and the subwalk from ck to δ. This
walk is open. If there is a head at α, then using (gp2) we can find a
µ-connecting walk from γ to β in G, compose it with e, the inverse of
the path from ck to α and the subwalk from ck to δ. This is open as
β ∈ AnG(C) and α /∈ C whenever there exist newly closed colliders.

(ii) e is between ck and δ on ρ.
Consider the subwalk of ρ from γ to c1, and compose it with the
directed path from c1 to α. This is µ-connecting in G and using (gp2)
we can find a µ-connecting walk in G from γ to β. Composing this
walk with the subwalk of ρ from β to δ gives a µ-connecting walk from
γ to δ, noting that β ∈ AnG(C).

(iii) e is between c1 and ck on ρ or not on ρ at all.
Composing the subwalk from γ to c1 with the directed path from c1 to
α gives a µ-connecting walk from γ to α given C in G, and by (gp2) we
can find a µ-connecting walk from γ to β in G, thus there are no newly
closed colliders on this walk and it does not contain e. Composing it
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with e, the directed path from ck to α and the subwalk from ck to δ
gives a µ-connecting walk in G+.

In all cases (i), (ii), and (iii) we have argued that there exists a µ-connecting
walk from γ to δ in G+ that contains no newly closed colliders and that
contains e at most once. Denote this walk by ω̃. If ω̃ does not contain e
at all, then we are done. Otherwise, two cases remain, depending on the
orientation of e in the µ-connecting walk ω̃:

(a) Assume first we have a walk of the form

γ ∼ . . . eα∼ α→ β ∼ . . . ∗→ δ,

If there is a tail on eα at α, or if γ = α, then we can substitute e
with the open path between α and β induced by ν and obtain an open
walk. Otherwise, assume a head on eα at α. ω̃ is µ-connecting in G+
and therefore α /∈ C. Using (gp2), there exists a µ-connecting walk
from γ to β, and composing this walk with the (potentially trivial)
subwalk from β to δ gives a µ-connecting walk from γ to δ given C in
G.

(b) Consider instead a walk of the form

γ ∼ . . . eβ∼ β ← α ∼ . . . ∗→ δ.

If there is a head on eβ at β, β is a collider. If β ∈ C, then (gp3)
directly gives a µ-connecting walk from γ to δ given C in G. If instead
β ∈ AnG+(C)\C then we can find a directed path, π, in G+ from β to
ε ∈ C. The edge e is not present on π and therefore we can compose
the subwalk from γ to β with π, π−1, and the subwalk from β to δ to
obtain an open walk from γ to δ without any newly closed colliders,
only one occurrence of e, and such that there is a tail at β just before
the occurence of e.
We have reduced this case to walks, ω̃, of the form

γ ∼ . . .← β︸ ︷︷ ︸
ω̃1

← α ∼ . . . ∗→ δ︸ ︷︷ ︸
ω̃2

,

where ω̃1 is potentially trivial. Let π̄ denote the ν-induced open path
or cycle from α to β in G. Using Proposition 3.5 there is a µ-connecting
route, ρ̄, from α to δ given C in G. If there is a tail at α on ρ̄ or on
π̄ then the composition of ω̃1, π and ρ̄ is µ-connecting. Otherwise, if
α 6= β, the composition of π and ρ̄ is a µ-connecting walk from β to
δ given C ∪ {α} in G as α does not occur as a noncollider on this
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composition. Using (gp4) there is also one given C. As there is a tail
at β on ω̃ we can compose ω̃1 with this walk to obtain an open walk
from γ to δ given C in G. If α = β the composition of ω̃1 with ω̃2 is
an open walk from γ to δ given C in G.

Assume finally that e occurs twice on ρ. In this case ρ contains a subroute
β

e← α
e→ β and β = δ. In this case α /∈ C. If there are any newly closed

colliders, consider the one closest to γ, c. The subroute of ρ from γ to c
composed with the directed path from c to α gives a µ-connecting path and
(gp2) gives the result. Else if there is a head at α on the ν-induced open walk
then (gp2) again gives the result. Otherwise, compose the subroute from γ
to the first β, the inverse of the ν-induced open walk, and the ν-induced
open walk to obtain an open walk in G from γ to β = δ.

Proof of Theorem 5.9. Propositions 5.3 and 5.7 show that N is in
fact a supergraph of G, and as Em only depends on the independence model,
it also shows that N is a supergraph of any element in [G]. We can sequen-
tially add the edges that are in N but not in G, and Lemmas 5.4 and 5.8
show that this is done Markov equivalently, meaning that N ∈ [G].

Lemma F.1. Let α, β ∈ V . If there is a directed edge, e, from α to β,
and a unidirected inducing path from α to β of length at least two in N ,
then there is a directed inducing path from α to β in N − e.

Proof of Lemma F.1. Let ν denote the unidirected inducing path and
γ1, . . . , γn the non-endpoint nodes of ν. Then γi ∈ AnN ({α, β}) and also
γi ∈ AnN (β) due to the directed edge from α to β. It follows that either
γi ∈ AnN (α) or γi ∈ An(N−e)(β). If γi ∈ AnN (α), let ei denote the directed
edge from γi to β, and let N+ = (V, F ∪ {ei}). We will argue that N = N+

using the maximality of N . Note first that the edge does not change the
ancestry of the graph in the sense that AnN (γ) = AnN+(γ) for all γ ∈ V .
Note also that there is a bidirected inducing path between γi and β in N ,
and therefore γi ↔N β. Assume that ei is in a µ-connecting path in N+.
There is a directed path from γi to α in N and therefore ei can either be
substituted with γi → αi → . . . → αk → α → β (if α1, . . . , αk, α /∈ C), or
with γi ↔ β (otherwise), and we see that I(N ) = I(N+). By maximality of
N we have that N = N+ which implies that ei ∈ F . Thus γi ∈ An(N−e)(β).
This shows that ν is also a directed inducing path in N − e.

Lemma F.2. Let edges α → β, β → α and α ↔ β be denoted by
e1, e2, e3, respectively. If e1, e3 ∈ F , then N − e1 ∈ [N ]. If e1, e2, e3 ∈ F ,
then N − e3 ∈ [N ].
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Proof of Lemma F.2. Note that if edges γ ∗→ α, α ↔ β, and α → β
are present in a maximal DMG, then so is γ ∗→ β by Propositions 4.7
and 4.8. Assume e1, e3 ∈ E. Using the above observation, note that every
vertex that is a parent of α in N is also a parent of β, thus AnN (δ) \ {α} =
An(N−e1)(δ) \ {α} for all δ ∈ V . Consider a µ-connecting walk, ω, in N
given C. Any collider different from α on this walk is in An(N−e1)(C). If
α /∈ An(N−e1)(C) is a collider, then we can substitute the subwalk γ1 ∗→
α ←∗ γ2 with γ1 ∗→ β ←∗ γ2. If e1 is the first edge on ω and α the first
node, then just substitute e1 with e3. Else, we need to consider two cases: in
the first case there is a subwalk γ ∗→ α→ β (or β ← α←∗ γ) and therefore
an edge γ ∗→ β in N − e1 if γ 6= α. If γ = α, we can simply remove the
loop, replacing e1 with e3 if γ was the final node on ω. In the second case,
there is a subwalk γ ← α → β (or β ← α → γ), and we can substitute e1
with e3 if β 6= γ. If β = γ, then we can substitute β ← α→ β with β ↔ β.

The proof of the other statement is similar.

Proof of Proposition 5.11. One implication is immediate by contra-
position: if α /∈ u(β, I(N − e)), then N − e /∈ [N ].

Assume α ∈ u(β, I(N − e)). There exists an inducing path, ν, from α to
β in N − e. If ν is directed, then the conclusion follows from Proposition
4.8. If ν is unidirected and of length one, then it is also directed. If it is
unidirected and has length at least two, it follows from Lemma F.1 that
there also exists a directed inducing path in N − e. Proposition 4.8 finishes
the argument. Assume that ν is bidirected. Then α↔N β due to maximality
and Proposition 4.7. Lemma F.2 gives the result.

Proof of Proposition 5.12. One implication follows by contraposi-
tion. Assume instead that α ∈ u(β, I(N − e)) and β ∈ u(α, I(N − e)). Then
there is an inducing path from α to β and one from β to α in N − e. Denote
these by ν1 and ν2. If one of them is bidirected, then the conclusion follows.
Assume instead that none of them are bidirected and assume first that both
are a single edge. The conclusion then follows using Lemma F.2.

Assume now that ν1 or ν2 is an inducing path of length at least 2. Say
that β → γ1 ↔ . . .↔ γm ↔ α is an inducing path. If ν1 is the inducing path
α→N β of length one, then there is also a bidirected inducing path between
γ1 and β in N , and there will also be a bidirected inducing path in N − e
between α and β. If instead ν1 is the inducing path α→ φ1 ↔ . . .↔ φk ↔ β
then γ1 ↔N φ1. In this case α↔ γm . . . γ1 ↔ φ1 . . . φk ↔ β can be trimmed
down to a bidirected inducing path in N − e.
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Algorithms for DMGs

In this section, we discuss algorithms to solve problems related to directed mixed graphs. Several of these problems are
related in the sense that a solution to one will help us find solutions to others. If we can find maximal Markov equivalent
graphs of G1 and G2, respectively, we can also decide if G1 and G2 are Markov equivalent by simply checking if their
maximal Markov equivalent graphs are equal. If we can learn a maximal Markov equivalent graph from an independence
oracle, then we can also find a maximal Markov equivalent graph of G by simply querying I(G). We will see that these
problems are computationally hard and that there are most likely no polynomial-time algorithms for their solution. This
means that we should look either for approximation algorithms or for algorithms that do well on average, even though they
may do poor in the worst cases.

The input of the algorithms are graphs, DMGs specifically, and we may think of them as encoded by pairs of adjacency
matrices, thus their input size is a polynomial in the number of nodes. Therefore, we can think of the input size as simply
the number of nodes in the graphs (Sipser, 2013).

Deciding µ-separation Proposition D.4 in the supplementary material of Paper A shows how to decide µ-separation
using an augmented graph. One can find such a graph in polynomial time and this way one can show that deciding
µ-separation can be done in polynomial time.

Marking a DMG From the results on Markov equivalence in DMGs in Paper A, we know that every equivalence class
has a unique, maximal member and that every other member is a subgraph of this maximal member. Therefore, one can
represent the Markov equivalence class by drawing the maximal graph and simply showing for each edge if it is in every
graph in the equivalence class, or if there exists some graph in which the edge is not present. We call this new graphical
object a directed mixed equivalence graph (DMEG), and we say that we mark a DMG to obtain a DMEG. As noted in
Paper A, it is straightforward to find an algorithm for marking DMGs such that the number of required separation tests
scales linearly in the number of edges. Combining this with the above observation leads to a polynomial-time algorithm
for marking a DMG.

Approximate maximalization In the next section, we will argue that given a DMG, G, it is computationally hard to find
the maximal Markov equivalent DMG,N . For this reason, we describe an approximate algorithm which is only guaranteed
to return a DMG G+ such that G ⊆ G+ ⊆ N . We say that two nodes are connected if there exists a walk between them.
We let Gα,d denote the graph on nodes V obtained from G by removing all directed edges that are not out of α and all
bidirected edges that are incident with α. That is, for all γ, δ ∈ V ,

γ →Gα,d δ if and only if γ →G δ and γ = α,
γ ↔Gα,d δ if and only if γ ↔G δ, γ ≠ α and δ ≠ α.

Proposition 3.4. Let G = (V,E) be a DMG, and let α,β ∈ V such that α ≠ β. There is a directed inducing path from α to
β in G if and only if α ∈ an(β) and α and β are connected in (Gα,d)anG(β).
Proof. This follows directly from the definition of a directed inducing path.

We define Gb to be the graph obtained from G after removing every directed edge.

Proposition 3.5. Let G = (V,E) be a DMG, and let α,β ∈ V such that α ≠ β. There is a bidirected inducing path from α
to β in G if and only if α and β are connected in (Gb)anG(α,β).
Proof. This also follows directly, this time by using the definition of a bidirected inducing path.

These propositions use the ancestral relations of the DMG. We will see in Chapter 4 that we can find these ancestral
relations in polynomial time, e.g., using the so-called condensation of the directed part of the DMG. From the above
propositions, it follows that we can decide in polynomial time if there is a directed or bidirected inducing path between a
pair of nodes. By simply looping through all (ordered) pairs of nodes, we can add directed and bidirected edges Markov
equivalently whenever there is an inducing path of the appropriate type. This gives a polynomial-time algorithm for
approximate maximalization of a DMG.
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Hardness of DMGs
Several inference problems in graphical models are known to be computationally hard, often NP-hard (Meek, 2001; Chick-
ering et al., 2004; Chandrasekaran et al., 2008; Koller and Friedman, 2009). Deciding morality of undirected graphs is
also known to be NP-hard (Verma and Pearl, 1993). On the other hand, constraint-based learning of equivalence classes of
sparse maximal ancestral graphs can be done with a polynomial number of tests (Claassen et al., 2013). Deciding Markov
equivalence of DAGs (under d-separation) can be done in polynomial time, and the same is the case for maximal ancestral
graphs (m-separation) (Ali et al., 2009). This is also true in DGs (without loops) under d-separation (Richardson, 1997).

If we consider DGs under µ-separation, we know from Example A.4.2 that two DGs are Markov equivalent if and only
if they are equal and therefore deciding Markov equivalence can also be done in polynomial time. In the case of DMGs
(under µ-separation), the potential sibling and potential parent criteria allow us to find maximal DMGs and we can decide
Markov equivalence of two DMGs by simply comparing their maximal Markov equivalent graphs. However, there are too
many conditions in those criteria for this approach to give a polynomial-time algorithm. In this section, we argue that such
an algorithm is unlikely to exist by showing that the problem of deciding Markov equivalence for DMGs is coNP-complete.
The hardness of this problem is purely graphical, not based on inference, and the nature of the result is therefore different
from most of the hardness results mentioned above. We are in trouble even before looking at data as the DMGs themselves
give rise to computational hardship.

Theorem 3.6. It is coNP-complete to decide Markov equivalence of two DMGs.

Deciding Markov equivalence of DMGs is linked to finding maximal DMGs: if we can find maximal DMGs then we
can also decide Markov equivalence of G1 and G2 by simply comparing the maximal Markov equivalent graphs of G1 andG2. This is done in polynomial time, and therefore finding maximal DMGs is (Turing) coNP-hard. If we assume that we
have a constraint-based algorithm for learning maximal DMGs from an independence oracle, then we could maximalize a
DMG, G, by querying I(G), and this shows that learning maximal DMGs is also (Turing) coNP-hard (since each query is
done in polynomial time).

Proof. If two graphs are not Markov equivalent, then there is a (polynomially sized) certificate consisting of sets A, B,
and C, such that B is µ-separated from A given C in one graph, but not in the other. Deciding µ-separation can be done in
polynomial time, and this shows that the problem is in coNP.

We do a reduction from 3DNF tautology to argue that the problem is coNP-hard. Assume we have a Boolean formula
in 3DNF form, on variables x1, . . . , xn,

(z1
1 ∧ z1

2 ∧ z1
3) ∨ . . . ∨ (zN1 ∧ zN2 ∧ zN3 ),

such that zji is a literal, i.e., a variable xl or its negation ¬xl. We say that xl is a positive literal, and that ¬xl is a negative
literal. We construct a graph that has (among other nodes) two nodes for each literal, one for each variable, and one for the
negation of each variable. We let ζji and ζ̃ji be nodes corresponding to the literal zji , χl corresponds to the variable xl, and
λl corresponds to its negation, ¬xl. Now define

V − = {ζji , ζ̃ji } ∪ {χl, λl},
and

V = {α,β, δ} ∪ V − ∪ {γv, εv}v∈V − .
We construct a graph on nodes V , containing (among others) the edges in Figure 3.2. We also include all directed loops.
For each v ∈ V −, we also add the edges in Figure 3.3. Finally, for each variable, xl, we take all positive literals that
correspond to a variable xl and join them (including χl) by a directed cycle (any cycle works), and all the negative literals
and join them (including λl) by a directed cycle. This graph is denoted by G. We also construct G+ from G by simply adding
δ ↔ β, and we denote this edge by e. The reduction from the 3DNF formula to these two graphs is done in polynomial
time in the number of terms. We say that {ζji }i=1,2,3 ⊆ V is a ζj-component of the graph and that {ζ̃ji }i=1,2,3 ⊆ V is a
ζ̃j-component (similarly for terms that have fewer than three literals). We say that {χl, λl}l=1,...,n is the χ − λ-component
of the graph.

We now argue that the formula is a tautology if and only if G and G+ are Markov equivalent. Assume first that the
formula is a tautology. In this part of the proof we give two arguments that both show that if the formula is a tautology,
then G and G+ are Markov equivalent. One is a direct proof which follows below, and the other uses the potential siblings
criteria of paper A and is stated as Lemma 3.7 below. For the direct proof, consider any µ-connecting route in G+, from φ1

to φ2 given C,
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Figure 3.2: A subgraph of G in the proof of Theorem 3.6.

φ1 ∼ . . . ∼ φ2.

Seeing that all directed loops are included at all nodes, it suffices to consider routes such that e occurs at most once. Let ω
denote such a route. If e is on this route, we split into cases based on φ1. If φ1 ≠ α,β, δ, then there exists an inducing path
from φ1 to β and one to δ. Consider the route,

φ1 ∼ . . . ∼ ρ1
e↔ ρ2 ∼ φ2.

If ρ2 = δ, then we can take the open walk from φ1 to δ in G (its existence follows from the existence of the inducing path)
and compose it with the subwalk from the occurrence of e to φ2 and this gives a µ-connecting walk in G. The analogous
argument holds if ρ2 = β. If instead φ1 = δ or φ1 = β, we can find a subroute of ω which is connecting in G or compose
a subroute of ω with δ → β, β → δ, δ → δ, or β → β. If instead φ1 = α, we divide into cases based on which node, θ, is
found before e on the route: θ ∼ ρ1

e↔ ρ2 where {ρ1, ρ2} = {β, δ}. Note that if θ ≠ β, δ, then the value of θ identifies if
ρ = β or ρ1 = δ as no node except β and δ are adjacent to both β and δ. If θ = εv for some v ∈ V − (analogously, if θ = γv
for some v), note that either

v ∼ εv ↔ δ
e↔ β

or

γv ∼ εv ↔ δ
e↔ β

In the first case, we can substitute this for

v ∼ γv ↔ β or v ∼ εv ∼ γv ↔ β

and in the second case for

γv ↔ β
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Figure 3.3: A subgraph of G in the proof of Theorem 3.6.

to obtain a µ-connecting walk in G. We can argue analogously if θ = γv . If θ = ζj3 and the walk exits the ζj-component
(before reaching α), then there is a tail at a node from which there is an inducing path to δ, and we can find a µ-connecting
walk. If it travels along the ζj component to reach α, then the correspoding ζ̃j component is open. Analogously, if θ = ζ̃j3 .
Assume θ = χn or θ = λn. If the route exits the χ − λ component (before reaching α), then there is a tail at a node from
which there is an inducing path to β. If θ = β, then φ2 = β as well and there is either a µ-connecting subroute, or we can
compose a subroute with the loop β → β to obtain one. Similarly, if θ = δ. Finally, if there is a walk completely within the
χ − λ component, then we can use the fact that the formula is a tautology to see that we can find an open walk from α to
β. Consider the following assignment of truth values,

xl = 1 if and only if χl is on ω.

The formula is a tautology, and this means that there is a term which evaluates to true under this assignment, say, term j,

zj1 ∧ zj2 ∧ zj3.
If zji is a positive literal, then the corresponding variable equals one under the assignment and χl ∈ an(C). If zji is a
negative literal, then the corresponding variable was assigned zero, and therefore χl is not on ω and we must have that
λl is on ω and therefore in an(C). We therefore see that there is a µ-connecting walk between α and β through the
ζj-component of the graph.

Assume instead that the formula is not a tautology, and assume that H is some assignment of the variables x1, . . . , xn
such that the formula is false. Define

C− = {χl ∶ xl = 1 in H} ∪ {λl ∶ xl = 0 in H}
and let C = an(C−) ∪ {β, δ}. We see that β is not µ-separated from α by C in G+. We will now are argue that the
opposite is the case in G. It is clear that a connecting walk cannot go through δ. It cannot also not be contained in a ζ- or
ζ̃-component because of the choice of C and the fact that the assignment evaluates to false. It also cannot cross between
any pair of components as every cyclic component is either fully in C or not at all. Finally, it cannot pass through γv and
εv for any v, for the same reason.

Lemma 3.7. Nodes β and δ are potential siblings (Definition A.5.1) in the DMG G as defined in the proof of Theorem 3.6
if the 3DNF formula is a tautology.

Proof. Some of the terminology and the graphs are introduced in the proof of Theorem 3.6. We show conditions (gs1),
(gs2), and (gs3) of Proposition A.5.2 which proves that α and β are potential siblings in G. (gs1) follows directly as β →G δ
and δ →G β. Assume there is µ-connecting walk from γ ∈ V to δ. If γ ≠ α then it is clear that there is also a µ-connecting
walk from γ to β. If a connecting walk from α to δ visits β, then either there is a head at β or β ∉ C, so assume that
the walk does not visit β. If it traverses an entire ζ̃j-component then the corresponding ζj-component is open. If it stays
within the χ − λ component, then the result follows from the fact that the formula is a tautology.

Otherwise, there must at some point exist a node on the walk, ε, such that there is a tail at ε, ε ∉ C. There is an inducing
path from ε to β and we compose the subwalk from α to ε with the open path (existence follows from the inducing path)
from ε to β. This is µ-connecting walk: either there is a tail at ε on the subwalk from α to ε or ε ∈ an(C) (otherwise the
µ-connecting walk from α to δ would not be able to leave the cyclic component).

If there is a µ-connecting walk from γ to β given C, then similar arguments give the result. This shows that (gs1),
(gs2), and (gs3) all hold and that δ and β are potential siblings.
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Figure 3.4: Left: A DMG on nodes {α,β, γ}. The bidirected edges have been named for ease of reference. This DMG
is not reachable as β is incident with a bidirected edge, yet there is no bidirected loop at β. Right: Canonical DG of the
DMG. For each bidirected edge, e, a node, υe, has been added. The latent projection of this DG onto {α,β, γ} does not
equal the original DMG.

Subclasses of DMGs

In this section, we study two proper subclasses of directed mixed graphs. First, we describe the class of DMGs that can
be obtained as latent projections of DGs. Second, we look into a proper subclass of DMGs which can represent any
independence model of a DMG.

Reachable DMGs

We have described the class of DMGs and a marginalization algorithm. The DMGs are (graphical) marginals of DGs and
it is natural to ask if any DMG can be obtained as the marginalization of a DG. The answer is in the negative and in this
section we will describe the class of DMGs that can be obtained as a marginalization of a DG on a larger set of nodes. This
is mentioned in Paper A (see A.(3.3)), but no argument is included, and we elaborate instead in this section. We say that a
DMG G = (V,E) is reachable if it holds for all α,β ∈ V that α ↔G β implies α ↔G α. When f is an edge in G, we let
eG(f) denote the set of nodes that f is between.

Definition 3.8 (Canonical DG). Let G = (V,E) be a DMG, and let Eb ⊂ E be the set of bidirected edges of G. Define
U = {υf ∶ f ∈ Eb} such that U ∩ V = ∅. Its canonical DG is the graph D(G) = (V ∪U,F ) such that

• for all α,β ∈ V , α →D(G) β if and only if α →G β,

• for all υf ∈ U,β ∈ V , υf →D(G) β if and only if β ∈ eG(f).

Note that if υf ∈ U , then f is a bidirected edge in G and eG(f) is well-defined. We can now show that a DMG can be
obtained as the latent projection of a DG if and only if it is reachable.

Proposition 3.9. Let G = (O,E) be a DMG. There exists a DG, D = (V,ED), such that O ⊆ V and m(D,O) = G if and
only if G is reachable.

Proof. If G is not reachable, then there exists α,β ∈ V such that α↔G β and α /↔G α. If G is a latent projection of a DG,D, then there exists a walk α ← γ . . . → β and γ ∉ O. In that case, D also contains the walk α ← γ → α, and G contains
the edge α↔ α which is a contradiction.

If G is reachable, we will argue that it is the latent projection of its canonical DG (Definition 3.8), i.e. we wish to argue
that G =m(D(G),O). We denote m(D(G),O) byM. The two graphs have the same node set, so it suffices to argue that
the edge sets are also identical. Assume first that e is in G, and between α ∈ O and β ∈ O. If e is directed, then it is also
in D(G), and therefore also inM. If e is bidirected, then there is node υe ∈ U in the canonical DG which is a parent of
α and β (these may be equal), and therefore α↔M β. On the other hand, assume that e is an edge inM, again between
α ∈ O and β ∈ O. If it is directed, then it is also in the canonical DG, and therefore in G. If it is bidirected, then there exists
a node υf ∈ U such that υf is a parent of α and β in the canonical DG. If α ≠ β, then α↔G β. If α = β, then α is adjacent
with a bidirected edge in G, and using that G is reachable, it follows that α↔G α.

We can interpret the class of reachable DMGs as graphs representing systems with the property that if a process depends
on an unobserved process, then it must also depend on itself.
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Figure 3.5: Illustration of Example 3.14. Left: maximal DMG, G. Right: its confounding projection, P(G).
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δ

Figure 3.6: Consider a DMG such that β ∗→ γ ↔ δ. If γ → δ (or if just γ ∈ an(δ)) and the DMG is maximal, then there is
an endpoint-identical edge between β and δ, β ∗→ δ (Propositions A.4.7 and A.4.8). The proof of Theorem 3.15 uses this
observation.

Reduced DMGs
The purpose of this section is to find a class of graphs which is a strict subclass of the DMGs, though can express the
µ-separation model of any DMG. We will see that a class using at most two edges between any pair of nodes can represent
any Markov equivalence class.

Definition 3.10 (Confounded directed edges). Let G = (V,E) be a DMG, and assume α
e→G β, α,β ∈ V . If α↔G β, then

we say that e is confounded, and otherwise we say that e is unconfounded.

Definition 3.11 (Reduced DMG). We say that a DMG is reduced if it has no confounded directed edges.

Definition 3.12 (Confounding projection). Let G = (V,E) be a DMG. The confounding projection of G is the DMGP(G) = (V,F ) obtained from G by removing all confounded directed edges.

It follows immediately from the definition of the confounding projection that the output is a reduced DMG and that the
reduced DMGs are a proper subclass of the DMGs. We call this the confounding projection as it retains the confounding
and ignores parts of the ancestry of the original DMG.

Proposition 3.13. Let G be a DMG. It holds that α ∈ anP(G)(β) if and only if there exists a directed path from α to β inG on which every edge is unconfounded.

Proof. If α ∈ anP(G)(β), then there exists a directed path from α to β in P(G), and therefore also in G. All edges on this
path must be unconfounded. On the other hand, if there exists a directed path in G consisting of unconfounded edges, then
this path exists in P(G) as well.

Example 3.14. As an example of the above proposition consider the DMG, G, in Figure 3.5 (left). α is an ancestor of γ inG, however there is no directed path from α to γ such that every edge is unconfounded and therefore α is not an ancestor
of γ in P(G) (Figure 3.5, right). On the other hand, δ is also an ancestor of γ in G, and the directed path δ → β → γ is such
that every edge is unconfounded and δ is therefore also an ancestor of γ in P(G).

Theorem 3.15. Let G = (V,E) be a maximal DMG. Then G and P(G) are Markov equivalent.

Proof. If there is a µ-connecting walk in G from α to β given C then there is also a µ-connecting walk from α to β such
that all colliders on the walk are in C. Assume ω is such a walk and of minimal length (i.e. there is no strictly shorter µ-
connecting walk from α to β such that all colliders are in C). Every bidirected edge on the walk is also in P(G). Consider
a directed edge, γ → δ. If it is not in P(G), then γ ↔ δ in P(G) and for each such edge we just substitute γ ↔ δ for
the directed edge to obtain ω̃, a walk in P(G) with the same (ordered) node set as ω. Note that this walk has a head at β.
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Assume that γ is a node that has different collider status in ω than in ω̃. In this case, γ (or, more precisely, this instance of
γ) must be a noncollider on ω and a collider on ω̃. Assume there is a head at γ on ω, say ε ∗→ γ → δ. As γ ↔G δ it follows
that ε ∗→G δ which is a contradiction as this would create as strictly shorter, µ-connecting walk with all its colliders in C.
If there is a tail at γ on ω, ε← γ → δ, then either γ is also a noncollider on ω̃, or ε↔ γ in G. However, then ε↔G δ which
is again a contradiction. This means that in P(G) there exists a walk with the same (ordered) node set as ω such that each
node has the same collider status. Every collider is in C and therefore this walk is µ-connecting in P(G).

The other direction is immediate as the projection is a subgraph of G.

Example 3.16. If G is not maximal, then it need not be Markov equivalent with its confounding projection. As an example,
consider α → γ → β such that γ → β is confounded. This graph is not maximal, and it is also not Markov equivalent with
its confounding projection in which β is separated from α by the empty set.
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Directed correlation graphs
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Figure 4.1: A similar figure is found in Paper B.

Stochastic models of dynamical systems are often explic-
itly driven by error processes. The system develops dy-
namically and the error process is the only new informa-
tion that is put into the system. The error process is often
thought of as erratic, ‘white noise’. In some models, the er-
ror process is assumed to consist of independent processes,
while in others the error processes may exhibit correlated
behavior. This means that between time points, there is in-
dependence, but within time points the different error vari-
ables may depend on each other.

Example 4.1. As an example, we consider the follow-
ing autoregressive model of order 2 with correlated errors,
where t ∈ Z and Xt = (Xα

t ,X
β
t ,X

γ
t ),

Xt = ⎛⎜⎝
a11 0 0
0 a22 a23

0 0 a33

⎞⎟⎠Xt−1+⎛⎜⎝
0 0 0
0 0 b23

0 0 0

⎞⎟⎠Xt−2+⎛⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎠Et+
⎛⎜⎝

1
1
0

⎞⎟⎠Dt

where Et = (Eαt ,Eβt ,Eγt ) is a vector of noise variables and Dt is a noise variable such that {Eφs ,Ds}s∈Z,φ∈{α,β,δ} is a
family of independent random variables. We will think of the two first terms as autoregressive terms, and the two last terms
as error terms. In the figure (left), the directed edges correspond to nonzero autoregressive coefficients while the blunt
edge corresponds to correlation of error terms. The δ-nodes represent the D-process. The DAG on the right represents the
independence structure in the time series (at lag 2) and we can think of the cDG as a ‘rolled’ version of the DAG.

One could write such models in greater generality, e.g., by allowing the unobserved D-process to enter in other ways.
However, our main point is the observation that the one-dimensionalD-process does not function as a general confounding
process as its variables are independent across time points. In the figure, this means that the directed edges forwards in
time, δi → δi+1, are missing. Loosely speaking, the correlated errors create fewer dependences than a general confounding
process does due to the independence of the error process variables between time points. If we wish a graphical represen-
tation of local independence in such a time series, or in another stochastic process, then we could use DMGs and obtain a
Markov property. However, we can obtain a stronger Markov property by accounting for the possibility of correlated error
processes. This is the motivation for studying directed correlation graphs as they allow a more fine-grained description of
the local independence model of a dynamical system which is driven by correlated error processes.

In this chapter, Paper B describes the cDGs and proves a global Markov property in a specific model class. It studies
Markov equivalence of cDGs and proves that determining Markov equivalence is computationally hard. In the following
sections, we show that finding minimal graphical representations of cDGs is also computationally hard. Finally, we discuss
some possible remedies for these computational issues.
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Paper B

Søren Wengel Mogensen and Niels Richard Hansen. Graph-
ical modeling of stochastic processes driven by correlated er-
rors. 2020b



Graphical modeling of stochastic processes driven

by correlated errors

Søren Wengel Mogensen and Niels Richard Hansen
University of Copenhagen

Abstract

We study a class of graphs that represent local independence struc-
tures in stochastic processes allowing for correlated error processes. Sev-
eral graphs may encode the same local independences and we characterize
such equivalence classes of graphs. The number of conditions in our char-
acterizations grows superpolynomially as a function of the size of the node
set in the graph. We show that deciding Markov equivalence is coNP-
complete which suggests that our characterizations cannot be improved
upon substantially. We prove a global Markov property in the case of
a multivariate Ornstein-Uhlenbeck process which is driven by correlated
Brownian motions.

1 Introduction

Graphical modeling studies how to relate graphs to properties of probability
distributions (Lauritzen, 1996). There is a rich literature on graphical model-
ing of distributions of multivariate random variables (Maathuis et al., 2018),
in particular on graphs as representations of conditional independences. In
stochastic processes, local independence can be used as a concept analogous to
conditional independence and several papers use graphs to encode local inde-
pendences (Didelez, 2006, 2008; Aalen et al., 2012; Røysland, 2012; Mogensen
et al., 2018; Mogensen and Hansen, 2020). Didelez (2000, 2008) studies graphical
modeling of local independence of multivariate point processes. Mogensen et al.
(2018) also consider diffusions. This previous work only models direct influence
between coordinate processes in a multivariate stochastic process. We consider
the case of correlated error processes which was also considered by Eichler and
Didelez (2007); Eichler (2007, 2012b, 2013) in the time series case (i.e., stochas-
tic processes indexed by discrete time). A specific local independence structure
can be represented by several different graphs, and the characterization of such
Markov equivalence classes is an important question in graphical modeling. We
study these equivalence classes and characterize them. Our characterization is
computationally demanding as it may involve exponentially many conditions (as
a function of the number of nodes in the graphs). We give a complexity result,
proving that deciding Markov equivalence in this class of graphs is coNP-hard,
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and therefore one would not except to find a characterization which is verified
more easily.

The graphical results apply to various models of stochastic processes. As
an example, we study systems of linear stochastic differential equations (SDEs),
and in particular Ornstein-Uhlenbeck processes. Such models have been used in
numerous fields such as psychology (Heath, 2000), neuroscience (Ricciardi and
Sacerdote, 1979; Shimokawa et al., 2000; Ditlevsen and Lansky, 2005), finance
(Stein and Stein, 1991; Schöbel and Zhu, 1999; Bormetti et al., 2010), biology
(Bartoszek et al., 2017), and survival analysis (Aalen and Gjessing, 2004; Lee
and Whitmore, 2006). In this paper, we show that Ornstein-Uhlenbeck processes
with correlated driving Brownian motions satisfy a global Markov property with
respect to a certain graph. Previous work in continous-time models considers
independent error processes and the present work extends this framework to
cases where the driving processes are correlated. To our knowledge, our result
is the first such result in continuous-time models. In discrete-time models, i.e.,
time series, this is analogous to Eichler and Didelez (2007); Eichler (2007, 2012b,
2013). These papers consider graphical modeling of time series in discrete time
with correlated errors and the graphical and algorithmic results we present also
apply to these model classes.

Section 2 introduces local independence for Itô processes. Section 3 defines
directed correlation graphs (cDGs) – the class of graphs that we will use through-
out the paper to represent local independences in a stochastic process. In Section
3 we state a global Markov property for Ornstein-Uhlenbeck processes. Section
4 gives a characterization of the cDGs that encode the same independences.
This directly leads to an algorithm for checking equivalence of cDGs. This al-
gorithm runs in exponential time (in the number of nodes in the graphs). We
prove in Section 5 that deciding Markov equivalence is coNP-complete.

2 Local independence

Before diving into a formal introduction, we will consider a motivating example.

Example 1. Consider the three-dimensional Ornstein-Uhlenbeck process, which
solves the following stochastic differential equation

d
⎛⎜⎝
Xα
t

Xβ
t

Xγ
t

⎞⎟⎠ = ⎛⎜⎝
Mαα 0 0
Mβα Mββ 0

0 0 Mγγ

⎞⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=M

⎛⎜⎝
Xα
t

Xβ
t

Xγ
t

⎞⎟⎠dt+⎛⎜⎝
σα 0 0 0
0 σβ 0 ρβ
0 0 σγ ργ

⎞⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=σ0

d

⎛⎜⎜⎜⎝
W 1
t

W 2
t

W 3
t

W 4
t

⎞⎟⎟⎟⎠
where (W 1

t ,W
2
t ,W

3
t ,W

4
t )T is a standard four-dimensional Brownian motion.

In this example, all entries in the matrix M above that are not explicitly 0 are
assumed nonzero and likewise for σ0.

The interpretation of the stochastic differential equation via the Euler-Maru-
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Figure 1: A local independence graph (left) and a ‘rolled out’ graph (right) where
time is made explicit. The two graphs represent the same local independence
structure. A node δ for δ ∈ {α,β, γ} represents the increments of the Xδ

t -process
at time t. On the right, the ε4-process is a ‘white noise’ process that creates
dependence between Xβ

t and Xγ
t . In the ‘rolled’ version of the graph (left) this

is represented by a blunt edge, β xxγ.

yama scheme yields the update equation

∆X̃α
t = X̃α

t+∆ − X̃α
t =MααX̃

α
t +√

∆σαε
1
t

∆X̃β
t = X̃β

t+∆ − X̃β
t =MβαX̃

α
t +MββX̃

β
t +√

∆ (σβε2
t + ρβε4

t )
∆X̃γ

t = X̃γ
t+∆ − X̃γ

t =MγγX̃
γ
t +√

∆ (σγε3
t + ργε4

t )
where εt ∼ N (0, I). The Euler-Maruyama scheme evaluated in t = n∆ for
n ∈ N0 gives a process, (X̃n∆)n≥0, which, as ∆ → 0, converges to the Ornstein-
Uhlenbeck process, (Xt)t≥0, solving the stochastic differential equation. From
the update equations we see that the infinitesimal increment of each coordinate
depends on that coordinate’s own value, and coordinate β depends, in addition,
on coordinate α (because Mβα ≠ 0). Moreover, the increments for coordinates
β and γ are correlated as they share the error variable ε4

t . Figure 1 provides a
graphical representation, with arrows readily read off from the drift matrix M
and the diffusion matrix σσT . The ‘rolled out’ graph in the figure is the DAG
that corresponds to the Euler-Maruyama scheme.

The main purpose of this paper is to clarify the mathematical interpretation
of the local independence graph in Figure 1, and our results include a charac-
terization of all graphs with equivalent mathematical content. The novelty is
that we allow for σ0σ

T
0 to be nondiagonal as in the example above.

2.1 Itô processes and local independence graphs

We will for the purpose of this paper focus on vector-valued, continuous-time
stochastic processes with continuous sample paths. Thus let X = (Xt)t∈T
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denote such an n-dimensional process with time index t ∈ T ⊆ R and with
Xt = (Xα

t )α∈[n] ∈ Rn being a real-valued vector indexed by [n] = {1, . . . , n}. The
time index set T will in practice be of the forms [0, T ], [0,∞), or R, however,
we will in general just assume that T is an interval containing 0.

The purpose of local independence is to give a mathematically precise defi-
nition of what it means for the historical evolution of one coordinate, α, to not
be predictive of the infinitesimal increment of another coordinate, β, given the
historical evolution of a set, C ⊆ [n], of coordinates. As such, it is a continuous-
time version of Granger causality (see, e.g., Granger and Newbold, 1986; Aalen,
1987; Didelez, 2008; Commenges and Gégout-Petit, 2009), and its formulation
is directly related to filtration problems for stochastic processes. In a statis-
tical context, local independence allows us to express simplifying structural
constraints that are directly useful for forecasting and such constraints are also
useful for causal structure learning.

The process X is defined on the probability space (Ω,F , P ) and we let
σ(Xδ

s ; s ≤ t, δ ∈D) ⊆ F denote the σ-algebra on Ω generated by Xδ
s for all s ∈ T

up to time t and all δ ∈ D. For technical reasons, we define FDt to be the
P -completion of the σ-algebra

⋂
t′>tσ(Xδ

s ; s ≤ t′, δ ∈D),
so that (FDt )t∈T is a complete, right-continuous filtration for all D ⊆ [n]. We will

let Ft = F [n]
t denote the filtration generated by all coordinates of the process.

Within this setup we will restrict attention to Itô processes with continuous
drift and constant diffusion coefficient.

Definition 2 (Regular Itô processes). We say that X is a regular Itô process
if there exists a continuous, Ft-adapted process, λ, with values in Rn, and an
n × n invertible matrix σ such that

Wt = σ−1 (Xt −X0 − ∫ t

0
λsds)

is a standard Ft-adapted Brownian motion.

A regular Itô process is sometimes written in differential form as

dXt = λtdt + σ dWt. (1)

Here λt is known as the drift of the process and σ as the (constant) diffusion
coefficient. We define the diffusion matrix for a regular Itô process as the
positive definite matrix

Σ = σσT . (2)

Observe that the process Xt may, as in Example 1, be defined as the solution
of the stochastic differential equation

dXt = λtdt + σ0 dWt (3)

4
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for an m-dimensional standard Brownian motion W and with the diffusion co-
efficient σ0 an n ×m matrix. If σ0 has rank n, such a solution is also a regular
Itô process with diffusion matrix Σ = σ0σ

T
0 . Indeed, we can take σ = (σ0σ

T
0 )1/2

in Definition 2. Observe also that for any regular Itô process,

Xt −X0 − ∫ t

0
λsds = σWt

is an Ft-martingale and ∫ t0 λsds is the compensator of Xt in its Doob-Meyer
decomposition.

Definition 3. Let X be a regular Itô process with drift λ, let α,β ∈ [n] and let
C ⊆ [n]. We say that β is locally independent of α given C, and write α /→ β ∣ C,
if the process

t↦ E(λβt ∣ FCt )
is a version of t↦ E(λβt ∣ FC∪{α}t ).

It follows immediately from the definition that α /→ β ∣ [n] ∖ {α} if λβt isF [n]∖{α}
t -measurable. That is, if λβt does not depend on the sample path of

coordinate α.
The definition below of a local independence graph generalizes the definitions

of Didelez (2008) and Mogensen and Hansen (2020) for continuous time stochas-
tic processes to allow for a nondiagonal Σ. Eichler (2007) gives the analogous
definition in the case of time series with correlated errors.

Definition 4 (Local independence graph). Consider a regular Itô diffusion with
diffusion matrix Σ. A local independence graph is a graph, D, with nodes [n]
such that

α /→D β ⇒ α /→ β ∣ [n] ∖ {α}
and such that for α ≠ β

α /xxD β ⇒ Σαβ = 0

where →D denotes a directed edge in D and α xxD β denotes a blunt edge.

It follows from the definitions that we can read off a local independence graph
for a regular Itô diffusion directly from λ and Σ by including the edge α →D β
whenever λβt depends upon coordinate α and the edge α xxD β whenever Σαβ ≠ 0.

However, it is possible that the functional form of λβt appears to depend on the
coordinate α, while actually α /→ β ∣ [n]∖{α}. In such a case, the resulting local
independence graph will not be minimal.

Using µ-separation to define a separation model for directed graphs, a main
result in Mogensen et al. (2018) is the fact that for regular Itô diffusions with a
diagonal σσT , the local independence graph satisfies a global Markov property
– if certain integrability constraints are satisfied. A local independence graph
satisfying the global Markov property combined with graph algorithms for de-
termining µ-separation allows us to answer the filtration question: for D ⊆ [n]
and β ∈ [n], which coordinates in D does E(λβt ∣ FDt ) depend upon?

5
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2.2 Itô diffusions

Itô diffusions with a constant diffusion coefficient are particularly interesting
examples of Itô processes. They are Markov processes, but they are not closed
under marginalization. One reason for the interest in the general class of Itô
processes is that they are closed under marginalization, and marginalizing an
Itô diffusion gives, in particular, an Itô process.

A regular Itô diffusion is a regular Itô process such that the drift is of the
form

λt = λ(Xt)
for a continuous function λ ∶ Rn → Rn. In differential form

dXt = λ(Xt) dt + σ dWt.

Proposition 5. Let X be a regular Itô diffusion with a continuously differen-
tiable drift λ. If ∂αλβ = 0 then α /→ β ∣ [n] ∖ {α}.

Proof. If ∂αλβ = 0, then

λβt = λβ((Xδ
t )δ∈[n]∖{α})

is F [n]∖{α}
t -measurable.

While Proposition 5 is straightforward from the definitions, it gives a simple
operational procedure for determining that α /→ β ∣ [n] ∖ {α} and thus a local
independence graph according to Definition 4.

Example 6 (Smoluchowski diffusion). The purpose of this example is to link
the notion of local independence and the local independence graph to classical
undirected graphical models for a special class of diffusions that are widely
studied in equilibrium statistical physics. A Smoluchowski diffusion is a regular
Itô diffusion with

λ(x) = −∇V (x)
for a continuously differentiable function V ∶ Rn → R and σ = √

2τI for a
constant τ > 0. Thus the diffusion matrix Σ = 2τI is diagonal. The function
V is called the potential and τ is called a temperature parameter. Since the
drift is a gradient, the dynamics of a Smoluchowski diffusion is a gradient flow
perturbed by white noise. If V (x)→∞ for ∥x∥→∞ and

Z = ∫ e− 1
τ V (x)dx <∞,

the diffusion has the Gibbs measure with density

π(x) = 1

Z
e− 1

τ V (x)

6
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as equilibrium distribution, see Proposition 4.2 in Pavliotis (2014). When V
is twice differentiable, Proposition 5 gives a local independence graph D with
arrows α →D β whenever ∂αλβ = ∂α∂βV ≠ 0. Since

∂αλβ = ∂α∂βV = ∂β∂αV = ∂βλα
the graph D enjoys the symmetry property that α →D β if and only if β →D α.
We denote by G the undirected version of D. For any α,β ∈ [n] with α /−G β it
follows from ∂α∂βV = ∂β∂αV = 0 that

V (x) = V1(xα, x−{α,β}) + V2(xβ , x−{α,β})
where x−{α,β} denotes the vector x with coordinates xα and xβ removed. From
this decomposition of V we see that π has the pairwise Markov property with
respect to G, and it follows from the Hammersley-Clifford theorem that π fac-
torizes according to G. That is, the potential has the following additive decom-
position

V (x) = ∑
c∈C(G)Vc(xc)

where C(G) denotes the cliques of G. This establishes a correspondence between
local independences for a Smoluchowski diffusion and Markov properties of its
equilibrium distribution.

For Smoluchowski diffusions we have demonstrated a strong link between
local independences representing structural constraints of the dynamics on the
one side and Markov properties of an equilibrium distribution on the other
side. We emphasize that this link is a consequence of the symmetry of the drift
of Smoluchowski diffusions combined with the diffusion matrix being a scalar
multiple of the identity matrix. For diffusions with a non-gradient drift or with
a more complicated diffusion matrix the equilibrium distribution may have no
conditional independences even though there are strong structural constraints
on the dynamics of the process that can be expressed in terms of a sparse
local independence graph. The simplest process which can illustrate this is the
Ornstein-Uhlenbeck process.

Example 7 (Ornstein-Uhlenbeck processes). A regular Itô diffusion with drift

λ(x) =M(x − µ)
for an n×n matrix M and a n-dimensional vector µ is called a regular Ornstein-
Uhlenbeck process. It follows from Proposition 5 that α /→ β ∣ [n]∖{α} if Mβα =
0. If M is a stable matrix, the Ornstein-Uhlenbeck process has an invariant
Gaussian distribution N (µ,Γ∞), where Γ∞ solves the Lyapunov equation

MΓ∞ + Γ∞MT +Σ = 0,

see Proposition 3.5 in Pavliotis (2014) or Theorem 2.12 in Jacobsen (1993).

7
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If M is also symmetric, then λ is a gradient, and if Σ = 2τI we see that
the solution of the Lyapunov equation is Γ∞ = −τM−1, and λ is the negative
gradient of the quadratic potential

V (x) = − 1

2τ
(x − µ)TM(x − µ) = 1

2
(x − µ)TΓ−1∞ (x − µ).

Thus the equilibrium distribution is a Gaussian graphical model whose graphG has edges determined by the non-zero entries of Γ−1∞ = − 1
τ
M . For this Smolu-

chowski diffusion we see very explicitly that the edge α − β is in G if and only
if both α → β and β → α are in the local independence graph D. However, it
is not difficult to find an asymmetric but stable matrix M such that Γ−1∞ is a
dense matrix, even if Σ = I, and the local independence graph cannot in general
be determined from Markov properties of the invariant distribution.

For a general M and general Σ, and with D ⊆ [n], it follows that

E(λβt ∣ FDt ) = ∑
δ∈V Mβδ(E(Xδ

t ∣ FDt ) − µδ)
= ∑
δ∈pa(β)Mβδ(E(Xδ

t ∣ FDt ) − µδ),
where pa(β) = {δ ∣ Mβδ ≠ 0} denotes the set of parents of β in the local inde-
pendence graph determined by M and Σ. Thus determining by Definition 3 if

α /→ β ∣ C amounts to determining if E(Xδ
t ∣ FCt ) are versions of E(Xδ

t ∣ FC∪{α}t )
for δ ∈ pa(β). In words, this means that if we can predict the values of all the
processes, Xδ

t for δ ∈ pa(β), that enter into the drift of coordinate β just as
well from the C-histories as we can from the C ∪ {α}-histories then β is locally
independent of α given C.

The following sections of this paper will develop the graph theory needed
to answer questions about local independence via graphical properties of the
local independence graph. This theory can be applied as long as the processes
considered have the global Markov property with respect to the local indepen-
dence graph, and we show that this is the case for regular Ornstein-Uhlenbeck
processes.

3 Graphs and Markov properties

3.1 Directed correlation graphs

A graph is a pair (V,E) where V is a set of nodes and E is a set of edges. Every
edge is between a pair of nodes. Edges can be of different types. In this paper,
we will consider directed edges, →, bidirected edges, ↔, and blunt edges, xx. Let
α,β ∈ V . Note that α → β and β → α are different edges. We do not distinguish
between α↔ β and β ↔ α, nor between α xxβ and β xxα. We allow directed,
and bidirected loops (self-edges), α → α and α↔ α, but not blunt loops, α xxα.
If α and β are joined by a blunt edge, α xxβ, then we say that they are spouses.

8
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We use α ∼ β to symbolize a generic edge between α ∈ V and β ∈ V of any of
these three types. We use α ∗→ β to symbolize that either α → β or α↔ β.

Definition 8. Let G = (V,E) be a graph. We say that G is a directed correlation
graph (cDG) if every edge is directed or blunt. We say that G is a directed mixed
graphs (DMG) if every e ∈ E is either directed or bidirected.

The class of DMGs was studied by Mogensen et al. (2018); Mogensen and
Hansen (2020). Eichler (2007, 2012b) studied classes of graphs similar to cDGs
as well as a class of graphs which contains both the DMGs and the cDGs as
subclasses.

A walk is an ordered, alternating sequence of nodes (γi) and edges (∼i) such
that each edge, ∼i, is between γi and γi+1,

γ1 ∼1 γ2 ∼2 . . . ∼k γk+1

We say that γ1 and γk+1 are endpoint nodes. We say that a walk is trivial if it
has no edges and therefore only a single node. We say that a walk is nontrivial if
it contains at least one edge. We say that an nonendpoint node, γi, is a collider
if one of the following holds

γi−1 ∗→γi ←∗ γi+1,

γi−1 ∗→γi xxγi+1,

γi−1 xxγi ←∗ γi+1,

γi−1 xxγi xxγi+1,

and otherwise we say that it is a noncollider. We say that α ∗→ β has a head
at β, and that α → β has a tail at α. We say that α xxβ has a stump at α.
We say that edges α xxβ and α ∗→ β have a neck at β. It follows that γi
above is a collider if and only if both adjacent edges have a neck at γi. A path
is a walk such that every node occurs at most once. We say that a path from
α to β is directed if every edge on the path is directed and pointing towards
β. If there is a directed path from α to β, then we say that α is an ancestor
of β. We let an(β) denote the set of ancestors of β, and for C ⊆ V , we define
an(C) = ∪γ∈Can(γ). Note that C ⊆ an(C). We will use µ-connecting walks and
µ-separation to encode independence structures in cDGs.

Definition 9 (µ-connecting walk, Mogensen and Hansen (2020)). Consider a
nontrivial walk, ω,

α ∼1 γ2 ∼2 . . . ∼k−1 γk ∼k β
and a set C ⊆ V . We say that ω is µ-connecting from α to β given C if α ∉ C,
every collider on ω is in an(C), no noncollider is in C, and ∼k has a head at β.

It is essential that the above definition uses walks, and not only paths. As
an example consider α xxβ ← γ. In this graph, there is no µ-connecting path
from α to β given β, but there is a µ-connecting walk.

9
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α β γ

δ

α β γ

δ

Figure 2: Example cDG (left) and example DMG (right). The blunt edges
in a cDG correspond to correlated driving processes which is different from
the bidirected edges of a DMG as those correspond to marginalization, i.e.,
unobserved processes. The notion of µ-separation can be applied to both classes
of graphs, however, the separations models are different. Left: cDG on nodes
V = {α,β, γ, δ}. γ is µ-separated from δ by α as β ∉ an(α) is a collider on any
walk from δ to γ. On the other hand, α is not µ-separated from β given ∅ as
e.g. β xxα → α is µ-connecting given ∅. That walk is not µ-connecting from β
to α given α, however, β ← δ → α is µ-connecting from α to β given α. We see
that α is µ-separated from β given {α, δ}. Right: bidirected edges have heads
at both ends and this means that β ↔ α is µ-connecting from β to α given any
subset of V ∖ {β}. This is not true in the cDG (left).

Definition 10 (µ-separation, Mogensen and Hansen (2020)). Let G = (V,E)
be a cDG or a DMG and let A,B,C ⊆ V . We say that B is µ-separated from A
given C in G if there is no µ-connecting walk from any α ∈ A to any β ∈ B given
C.

Mogensen and Hansen (2020) introduced µ-separation as a generalization of
δ-separation (Didelez, 2000, 2008), however, only in DMGs, and not in cDGs.

Remark 11. Eichler (2007); Eichler and Didelez (2010); Eichler (2012a) de-
scribe graphs that represent local independence (or Granger non-causality) in
time series. The cDGs are a subclass of the graphs in that line of work, however,
we use a different representation. In the aforementioned papers, blunt edges are
represented by − while we use xx. The former notation could suggest that a
blunt edge acts like an edge with tails in both ends, however, this is not the
case. It also does not act like the bidirected edges in a DMG, and this warrants
the usage of an edge with a third kind of mark.

Also note that while this is not paramount in the case of cDGs, nota-
tional clarity and simplicity become more important when considering graphical
marginalizations of these graphs. In this case, one needs to consider also edges
that, when composed with other edges, act like a blunt edge in one end and
like a directed edge in the other and this is described by Eichler (2012b). Using
our notation, this is naturally visualized by the edge ↦. We will not consider
this larger class of graphs in this paper, however, we choose this notation as it
extends naturally to that case.

10
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3.2 A global Markov property

In this section, we state a result showing that an Ornstein-Uhlenbeck process
satisfies a global Markov property with respect to its local independence graph
and we use V to denote both the node set of a graph and the set indexing
the coordinate processes of a multivariate process. In the case of a diagonal
Σ the global Markov property was shown in Mogensen et al. (2018), and we
extend this to the case of nondiagonal Σ, i.e., allowing for correlated driving
Brownian motions. The proof is found in Appendix A and it uses a set of
equations describing the conditional mean processes, t ↦ E[XU

t ∣ FWt ], V =
U ∪̇W (Liptser and Shiryayev, 1977). From this representation, we can reason
about the measurability of the conditional mean processes. We first give a more
general definition of local independence in Itô processes to allow non-singleton
sets A and B.

Definition 12. Let X be a regular Itô process with drift λ, and let A,B,C ⊆ V .
We say that B is locally independent of A given C, and write A /→ B ∣ C, if for
all β ∈ B the process

t↦ E(λβt ∣ FCt )
is a version of t↦ E(λβt ∣ FC∪At ).
Theorem 13. Let X = (Xt)t≥0 be a regular Ornstein-Uhlenbeck process with
local independence graphD = (V,E) (Definition 4), and let A,B,C ⊆ V . Assume
that X0 is a vector of independent and non-degenerate random variables. If B
is µ-separated from A given C in D, then B is locally independent of A given
C.

4 Markov equivalence

Different cDGs can encode the same separation models, and in this section
we will describe the so-called Markov equivalence classes of cDGs. When D =(V,E) is a cDG, we define its independence model, I(D), as the collection of
µ-separations that hold, i.e.,

I(D) = {(A,B,C) ∶ A,B,C ⊆ V, A ⊥µ B ∣ C [D]}.
Definition 14 (Markov equivalence). Let D1 = (V,E1), D2 = (V,E2) be cDGs.
We say that D1 and D2 are Markov equivalent if I(D1) = I(D2).

For any finite set V , Markov equivalence is an equivalence relation on the
set of cDGs with node set V . We let [G] denote the Markov equivalence class
of a graph G. For a cDG, D = (V,E), and a directed or blunt edge e between
α,β ∈ V , we use D + e to denote the cDG (V,E ∪ {e}).
Definition 15 (Maximality). Let D be a cDG. We say that D is maximal if no
edge can be added Markov equivalently, i.e., if for every edge, e, which is not inD, D and D + e are not Markov equivalent.

11
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The following proposition can be found in Mogensen and Hansen (2020) in
the case of DGs.

Proposition 16. Let D = (V,E) be a cDG. Then α →D β if and only if
α ⊥µ β ∣ V ∖ {α} does not hold.

Proof. If the edge is in the graph, it is µ-connecting given any subset of V that
does not contain α, in particular given V ∖ {α}. On the other hand, assume
α → β is not in the graph. Any µ-connecting walk from α to β must have a
head at β,

α ∼ . . . ∼ γ → β.

We must have that γ ≠ α, and it follows that γ is in the conditioning set, i.e.,
the walk is closed.

We can decide µ-separation by considering separation in a certain undirected
graph, an augmented graph, which is a generalization of a moral graph (Cowell
et al., 1999). Richardson and Spirtes (2002); Richardson (2003) used a similar
approach to decide m-separation in ancestral graphs and acyclic direced mixed
graphs. Didelez (2000) used a moral graph to decide δ-separation in DGs. WhenD = (V,E) is a cDG and V̄ ⊆ V , we let DV̄ denote the induced graph on nodes
V̄ , i.e., DV̄ = (V̄ , Ē),

Ē = {e ∈ E ∶ e is between α,β ∈ V̄ }.
We say that α and β are collider connected if there exists a walk from α to β
such that every nonendpoint node is a collider. The augmented graph of a cDG
is the undirected graph where all collider connected pairs of nodes are adjacent
(omitting loops). Given an undirected graph and three disjoint subsets of nodes
A, B, and C, we say that A and B are separated by C if every path between
α ∈ A and β ∈ B intersects C.

Proposition 17 (Augmentation criterion for µ-separation). Let D = (V,E)
be a cDG such that γ → γ for all γ ∈ V . Let A,B,C ⊆ V , and assume that
B = {β1, . . . , βj}. Let Bp = {βp1 , . . . , βpj } and define the graph D(B) with node
set V ∪̇Bp such that DV = D and

α →D(B) βpi if α →D βi and α ∈ V,βi ∈ B.
Then A ⊥µ B ∣ C [D] if and only if A ∖ C and Bp are separated by C in the
augmented graph of D(B)an(A∪Bp∪C).
Proof. The proofs of Propositions D.2 and D.4 by Mogensen and Hansen (2020)
give the result. First one shows that A ⊥µ B ∣ C [D] if and only if A ∖ C ⊥m
Bp ∣ C [D(B)]. The second statement is then shown to be equivalent to sepa-
ration in the relevant augmented graph using Theorem 1 in Richardson (2003).
Richardson (2003) studies acyclic graphs, however, the proof also applies to
cyclic graphs as noted in the paper.
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In graphs that represent conditional independence in multivariate distribu-
tions, such as ancestral graphs and acyclic directed mixed graphs, one can use
inducing paths to characterize which nodes cannot be separated by any condi-
tioning set (Verma and Pearl, 1991; Richardson and Spirtes, 2002). In DMGs,
inducing paths can be defined similarly (Mogensen and Hansen, 2020). In cDGs,
we define both inducing paths and weak inducing paths. We say that a path is
a collider path if every nonendpoint node on the path is a collider.

Definition 18 (Inducing path (strong)). A (nontrivial) collider path from α
to β is a (strong) inducing path if the final edge has a head at β and every
nonendpoint node is an ancestor of α or of β.

A cycle is a path α ∼ . . . ∼ β composed with an edge β ∼ α. Mogensen
and Hansen (2020) also allow cycles in the definition of inducing paths. In the
following, we assume that α → α for all α ∈ V and therefore this would be an
unnecessary complication. We see immediately that in a cDG, the only inducing
path is a directed edge. However, we include this definition to conform with the
terminology in DMGs where more elaborate inducing paths exist. If we drop
one of the conditions from Definition 18, then we obtain a graphical structure
which is more interesting in cDGs, a weak inducing path.

Definition 19 (Weak inducing path). A (nontrivial) collider path between α
and β is a weak inducing path if every nonendpoint node is an ancestor of α or
β.

We note that a strong inducing path is also a weak inducing path. Furthermore,
if there is a weak inducing path from α to β, there is also one from β to α. Also
note that a weak inducing path is most often called an inducing path in the
literature on acyclic graphs.

Proposition 20. Let D = (V,E) be a cDG such that α → α for all α ∈ V . There
is a weak inducing path between α and β if and only if there is no C ⊆ V ∖{α,β}
such that α ⊥µ β ∣ C.

Mogensen and Hansen (2020) showed a similar result in the case of strong
inducing paths in DMGs.

Proof. Assume first that there is no weak inducing path from α to β in D, and
define

D(α,β) = {γ ∈ an(α,β) ∣ γ and β are collider connected } ∖ {α,β}.
We will show that β is µ-separated from α by D(α,β). We can assume that
α ≠ β as we have assumed that all nodes have loops. If there is a µ-connecting
walk from α to β given C ⊆ V ∖ {α,β}, then there is also a µ-connecting walk
which is a path composed with a directed edge, γ → β. We must have that
γ ≠ α, and if γ ≠ β then the walk is closed by D(α,β). Assume instead that
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γ = β. Let π denote some path between α and β. Blunt and directed edges are
weak inducing paths (in either direction) so π must be of length 2 or more,

α = γ0
e0∼ γ1

e1∼ . . . ej−1∼ γj
ej∼ β.

There must exist i ∈ {0,1, . . . , j} such that either γi is not collider connected to
β along π or γi ∉ an(α,β). Let i+ denote the largest such number in {0,1, . . . , j}.
Assume first that γi+ is not collider connected to β along π. In this case, i+ ≠ j.
Then γi++1 is a noncollider on π and it is in D(α,β), and it follows that π is not
µ-connecting. Note that necessarily γi++1 ≠ α,β. On the other hand, assume
γi+ ∉ an(α,β). Then i+ ≠ 0, and there is some collider, γk, on π, k ∈ {1, ..., i+}.
We have that γk ∉ an(α,β) and π is closed in this collider.

On the other hand, assume that there is a weak inducing path between α and
β. If α = β, then α → β which is connecting given C ⊆ V ∖{α,β}. Assume α ≠ β.
If α and β are adjacent, then α ∼ β → β is µ-connecting given C ⊆ V ∖ {α,β}.
Consider the weak inducing path,

α ∼ γ1 ∼ . . . γj ∼ β = γj+1.

Let k be the maximal number in the set {1, . . . , j} such that there is a walk
between α and γk with all colliders in an(C), no noncolliders in C, and which
has a neck at γk. We see that γ1 ≠ β fits this description, i.e., k is well-defined.
Let ω be the walk from α to γk. If γk ∈ an(C), then the composition of ω with
γk ∼ γk+1 gives either a new such walk (if the edge is blunt) and by maximality
γk+1 = β, or if the edge is directed then also γk+1 = β (the weak inducing path is
a collider path), and composing either walk with β → β gives a connecting walk.
Assume instead that γk ∉ an(C), and consider again ω. There is a directed path
from γk to α or to β. Let π̄ denote the subpath from γk to the first instance
of either α or β. If α occurs first, we compose π̄−1 with γk ∼ γk+1 and argue
as in the case of γj ∈ an(C) above. In β occurs first, ω composed with π̄ is
connecting.

We say that β is inseparable from α if there is no C ⊆ V ∖ {α} such that β
is µ-separated from α by C.

Example 21. This example is meant to illustrate that the separation models
encoded by cDGs are a strict superset of those encoded by DGs. Consider the
cDG in Figure 3. We can ask if there is a DG on the same node set that encodes
the same separations. Using Proposition 16, we see that any such DG must
include edges α → β and β → γ, and that it cannot include α → γ nor γ → α.
Then it must include the edge γ → β as otherwise γ would be µ-separated from
α given {β}. However, this is a contradiction as β would then be inseparable
from γ.

Example 22. Mogensen and Hansen (2020) use µ-separation in directed mixed
graphs (DMGs) to represent local independence models. Between every pair of
nodes, α and β, in a DMG there is a subset of the edges {α → β,α ← β,α↔ β}.
We can also ask if the separation model represented by the cDG in Figure 3 can
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α β γ

Figure 3: A cDG, D, on nodes V = {α,β, γ} such that the separation modelI(D) cannot be represented by a DMG on nodes V . See Example 22.
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γ
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γ
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γ
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γ

Figure 4: First row: an equivalence class illustrating that a greatest element
need not exist. Second row: the left and middle graphs are Markov equivalent.
The graph on the right is the largest graph which is a subgraph of both of them,
and this graph is not Markov equivalent, i.e., the Markov equivalence class of
the left (and middle) graph does not have a least element. Theorem 32 gives a
characterization of Markov equivalence of cDGs.

be described by a DMG, i.e., allowing directed and bidirected edges. The node γ
is separable from α and vice versa, i.e., there can be no edge between the two in
the DMG. The node γ is not separated from α given {β}, and therefore β must
be a collider on a path between the two. However, then there is a head at β on
an edge from γ and therefore β is inseparable from γ which is a contradiction.

DGs constitute a subclass of cDGs and within the class of DGs every Markov
equivalence class is a singleton, i.e., two DGs are Markov equivalent if and only
if they are equal.

Proposition 23 (Mogensen and Hansen (2020)). Let D1 = (V,E1) and D2 =(V,E2) be DGs. Then D1 ∈ [D2] if and only if D1 = D2.

Proposition 23 does not hold in general when D1 and D2 are cDGs. As an
example, consider a graph on nodes {α,β} such that α → β and β → α. This
graph is Markov equivalent with the graph where α xxβ is added. The next
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result is an immediate consequence of Proposition 16 and shows that Markov
equivalent cDGs always have the same directed edges.

Corollary 24. Let D1 = (V,E1) and D1 = (V,E1) be cDGs. If they are Markov
equivalent, then for all α,β ∈ V it holds that α →D1 β if and only if α →D2 β.

While the local independence graph (a cDG) is not in general identifiable
from its independence model, Proposition 23 shows that DGs are identifiable
from their induced independence models (within the class of DGs).

Mogensen and Hansen (2020) use DMGs to represent marginalized local
independence models and show the below result on Markov equivalence. The
class of cDGs represent local independences allowing for correlation in the error
process and it is natural to ask if the same result on Markov equivalence holds
in this class of graphs. The answer is in the negative as illustrated by Example
26. For graphs D1 = (V,E1) and D2 = (V,E2), we write D1 ⊆ D2 if E1 ⊆ E2. We
say that a graph, D, is a greatest element of its equivalence class, [D], if it is a
supergraph of all members of the class, i.e., D̃ ⊆ D for all D̃ ∈ [D]. We say thatD is a least element if D ⊆ D̃ for all D̃ ∈ [D].
Theorem 25 (Mogensen and Hansen (2020)). Let G be a directed mixed graph.
Then [G] has a greatest element (within the class of DMGs), i.e., there existsḠ ∈ [G] such that Ḡ is a supergraph of all Markov equivalent DMGs.

Example 26. Consider the graph to the left on the first row of Figure 4. The
edge α xxγ can be added Markov equivalently and the edge β xxγ can be added
Markov equivalently (middle and right graphs), but they cannot both be added
Markov equivalently at the same time. This shows that the equivalence class of
this graph does not contain a greatest element. Figure 4 also gives an example
showing that an equivalence class of cDGs does not necessarily contain a least
element.

4.1 A characterization of Markov equivalence of cDGs

The central result of this section is a characterization of Markov equivalence of
cDGs. We define collider equivalence of graphs as a first step in stating this
result.

Definition 27. Let D1 = (V,E1), D2 = (V,E2) be cDGs with the same directed
edges, and let ω be a collider path in D1,

α ∼ γ1 ∼ . . . ∼ γk1 ∼ β.
We say that ω is covered in D2 if there exists a collider path in D2

α ∼ γ̄1 ∼ . . . ∼ γ̄k2 ∼ β
such that for each γ̄j we have γ̄j ∈ an(α,β) or γ̄j ∈ ∪ian(γi).

In the above definition {γj} and {γ̄j} may be the empty set, corresponding
to α and β being adjacent, α ∼ β.
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Definition 28 (Collider equivalence). Let D1 and D2 be cDGs on the same
node set and with the same directed edges. We say that D1 and D2 are collider
equivalent if every collider path in D1 is covered in D2 and every collider path
in D2 is covered in D1.

In the above definition, it is crucial that we use the convention that every
node is an ancestor of itself, γ ∈ an(γ) for all γ ∈ V . Otherwise, a graph would
not necessarily be collider equivalent with itself. With this convention, it follows
immediately that every cDG is collider equivalent with itself. One should also
note that a single edge, α ∼ β, constitutes a collider path between α and β and
that a single edge covers any other collider path as it has no nonendpoint nodes.

We do not need to consider walks in the above definitions (only paths) as we
assume that all loops are included and therefore all nodes are collider connected
to themselves by assumption. If there is a collider walk between α and β, then
there is also a collider path. Furthermore, if a collider walk is covered by a
collider walk, then it is also covered by a collider path, and we see that one
would obtain an equivalent definition by using collider walks instead of collider
paths in Definitions 27 and 28.

If D is a cDG such that α →D α for all α ∈ V , then we say that D contains
every loop. We say that cDGs D1 = (V,E1) and D2 = (V,E2) have the same
directed edges if for all α,β ∈ V it holds that α →D1

β if and only if α →D2 β.

Remark 29. Collider equivalence implies that two graphs have the same weak
inducing paths in the following sense. Assume ω is a weak inducing path be-
tween α and β in D1, and that D1 and D2 are collider equivalent and have the
same directed edges. In D2, there exists a collider path, ω̄, such that every
nonendpoint node is an ancestor of a node on ω, i.e, an ancestor of {α,β} using
the fact that ω is a weak inducing path. This means that ω̄ is a weak inducing
path in D2.

Lemma 30. Let D1 = (V,E1), D2 = (V,E2) be cDGs that contain every loop.
If D1 and D2 are not collider equivalent, then they are not Markov equivalent.

Proof. Assume that D1 and D2 are not collider equivalent. Assume first that
there exists α,β ∈ V such that there is a collider path between α and β in D2,

α ∼ γ̄1 ∼ . . . ∼ γ̄k ∼ β
which is not covered in D1. Both graphs contain all loops, so α ≠ β. This means
that on every collider path between α and β in D1, there exists a collider γ
such that γ ∉ an(α,β) and γ ∉ ∪jan(γ̄j). Now consider the set D = an(α,β) ∪[∪jan(γ̄j)] ∖ {α,β}. Note that β is not µ-separated from α given D in D2 as
β →D2 β, and we will argue that β is µ-separated from α given D in D1 showing
that these graphs are not Markov equivalent. Consider any walk between α
and β in D1. It suffices to consider paths between α and β composed with the
edge β → β (as β ∉ D). Assume first that it is a collider path. If it is open,
then every nonendpoint node is an ancestor of α, β, or γ̄j for some j, which is
a contradiction. Assume instead that there exists a noncollider (different from
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α and β) on the path. There must also exist a collider (otherwise it is closed),
and the collider is a descendant of the noncollider. The collider is either closed,
or it is an ancestor of either {α,β} or of ∪iγ̄i. In the latter case, the path is
closed in the noncollider.

Proposition 31. Assume α,β ∉ C. If ω is a collider path from α to β given
C such that every collider is in an({α,β} ∪C), then there is a walk between α
and β such that no noncollider is in C and every collider is in an(C).

A similar and more general result was shown by Richardson (2003) in the
case of m-separation in directed mixed graphs.

Proof. In the original graph, D, we add directed edges such that every node in
C is a parent of α. Now the path is a weak inducing path, in this larger graphD+. Using Proposition 20, we can find a µ-connecting walk from α to β given
C in D+, and therefore a walk from α to β such that every noncollider is not in
C and every collider is in an(C). This walk is also in D as it cannot contain an
edge with a tail at γ ∈ C. In D, we see that every collider is still in an(C) and
the result follows.

Theorem 32 (Markov equivalence of cDGs). Let D1 = (V,E1) and D2 = (V,E2)
be cDGs that contain every loop. The graphs D1 and D2 are Markov equivalent
if and only if they have the same directed edges and are collider equivalent.

We give a direct proof of this theorem. One can also use the augmentation
criterion to show this result.

Proof. Assume first that D1 and D2 have the same directed edges and are col-
lider equivalent. Then anD1(C) = anD2(C) for all C ⊆ V so we will omit the
subscript and write simply an(C). Let ω denote a µ-connecting walk from α to
β given C in D1. We will argue that we can also find a µ-connecting walk inD2. We say that a nontrivial subwalk of ω is a maximal collider segment if all
its nonendpoint nodes are colliders on ω, its endpoint nodes are not colliders,
and it contains at least one blunt edge (note that on a general walk this should
be read as instances of these nodes as nodes may be repeated on a walk). We
can partition ω into a sequence of subwalks such that every subwalk is either a
maximal collider segment, or a subwalk consisting of directed edges only. We
note that maximal collider segment may be adjacent, i.e., share an endpoint.
Every segment of ω that consists of directed edges only is also present in D2.
Consider a maximal collider segment. This is necessarily a collider walk in D1.
Then there exists a collider path in D1, and therefore a covering collider path
in D2 using collider equivalence. Denote this path by ρ and assume that it is
between δ and ε. It follows that δ, ε ∉ C as they are noncolliders on ω, or equal
to α or β. If they are equal to the final β, the final edge must point towards
β and therefore the segment is directed. We will now find an open (given C)
walk between δ and ε using ρ. We know that ρ is a collider path and that every
nonendpoint node on ρ is an ancestor of {α,β} or of a collider in the original
maximal collider segment, and therefore to C. It follows from Proposition 31
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that we can find an m-connecting walk between δ and ε. We create a walk from
α to β in D2 by simply substituting each maximal collider segment with the
corresponding open walk. This walk is open in any node which is not an end-
point of a maximal collider segment. If an endpoint of maximal collider node
changes collider status on this new walk, then it must be a noncollider on ω and
a parent of a node in an(C), i.e., also in an(C) itself. Finally, we note that the
last segment (into β) is not a maximal collider segment and therefore still has
a head into β.

On the other hand, if they do not have the same directed edges, it follows
from Proposition 16 that they are not Markov equivalent. If they are not collider
equivalent, it follows from Lemma 30 that they are not Markov equivalent.

We say that α and β are adjacent in the graph D if α ∼D β. In the case of
directed acyclic graphs it holds that Markov equivalent graphs have the same
adjacencies, however, this is not true in the case of cDGs, and in fact, it is also
not true among maximal cDGs (Definition 15) as seen in Figure 7.

Proposition 33. Let D = (V,E) be a cDG, and let α,β, γ ∈ V . Let e denote
the blunt edge between α and β. If α and β are connected by a weak inducing
path consisting of blunt edges only, then D + e ∈ [D].
Proof. Let ω be a µ-connecting walk between δ and ε in D+e. In D, consider the
weak inducing path between α and β that consists of blunt edges only. Using a
proof similar to that of Proposition 20, one can show that there exists an open
walk between α and β in D which has necks at both end. This means that
replacing α xxβ with this walk gives a µ-connecting walk in D.

4.2 Markov equivalent permutation of nodes

The example in Figure 7 shows a characteristic of some Markov equivalent cDGs.
In the example, one can obtain one graph from the other by a permutation of
the endpoints of blunt edges within the set {γ, δ}.

Definition 34 (Cyclic component). We say that S ⊆ V is a cyclic component
if for every (α,β) ∈ S × S, it holds that α ∈ an(β).

Note that if two sets of nodes have the same descendants (using the conven-
tion that every node is a descendant of itself), they are necessarily contained in
the same cyclic component as the graphs are assumed to have all loops. The fol-
lowing is a formal definition of a permutation graph as illustrated in the example
of Figure 7.

Definition 35 (Permutation graph). Let D = (V,E) and let ρ be a permutation
of the node set V . We define Pρ(D) as the cDG on nodes V such that

α →Pρ(D) β if α →D β, (4)

ρ(α)xxPρ(D) ρ(β) if α xxD β. (5)
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Figure 5: Markov equivalence in cDGs. First row: these are three members of a
Markov equivalence class of size 21. The only restriction on 25 combinations of
blunt edges (all but β xxγ can be present) is the fact that we cannot have both
α xxβ and α xxγ present and that either (α, δ), (γ, δ), or (β, δ) are spouses as
otherwise there would not be a weak inducing path between α and δ. Second
row: these graphs are Markov equivalent. The collider path α xxβ xxδ in the
first graph is ‘covered’ in the two others by the walk α xxγ xxδ as γ ∈ an(β).
The edge β xxδ is ‘covered’ by the inducing path δ xxγ ← β in the middle and
right graphs of the row. The equivalence class of these graphs has cardinality 16
which is every combination of blunt edges (25) that makes the graph connected.
Third row: the first graph is not collider equivalent with the following two: the
collider path α xxβ xxδ is not covered by any collider path in the second graph.
The collider path α xxγ is not covered by any collider path in the third.
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α β γ

δ ε

α β γ

δ ε

α β

γ δ

α β

γ δ

Figure 6: Examples of Markov equivalence in cDGs. First row: the two graphs
have the same weak inducing paths, but are not Markov equivalent as the collider
path α xxδ xxε xxγ is not covered in the right graph. Second row: the two
graphs are such that two nodes are collider connected in one if and only if
they are collider connected in the other graph, however, they are not Markov
equivalent.

α β

γ δ

α β

γ δ

Figure 7: The two cDGs constitute a Markov equivalence class, and they are
both seen to be maximal. However, they do not have the same adjacencies.
A similar phenomenon can occur in DGs (without loops) under d-separation
(Richardson, 1996a, 1997).

21

PAPER B 87



Proposition 36. Let D = (V,E) be a cDG and let S ⊆ V . Let ρ be a permu-
tation of V such that ρ(α) = α for all α ∉ S. If β → γ and pa(β) = pa(γ) for all
β, γ ∈ S, then Pρ(D) ∈ [D].

Note that the condition that β →D γ for all β, γ ∈ S implies that S is a cyclic
component.

Proof. The graphs D and Pρ(D) have the same directed edges so it suffices to
show that they are collider equivalent (Theorem 32). Any permutation can be
written as a composition of transpositions so it suffices to prove the result for a
permutation, ρ, such that ρ(α) = β, ρ(β) = α, and ρ(γ) = γ for all γ ≠ α,β. Let
π be a collider path in D,

γ ∼ δ1 ∼ . . . ∼ δk ∼ ε.
If γ, ε ∉ {α,β}, then the path

γ ∼ ρ(δ1) ∼ . . . ∼ ρ(δk) ∼ ε
is in the permutation graph and is covering, using that α and β have the same
parent set. If, e.g., γ = α xxδ1 on the original path, then we can substitute
this for α → β xxγ to obtain a covering walk in the permutation graph. Similar
arguments in each case show that any collider path in D is covered in the per-
mutation graph. Repeating the above argument starting from the permutation
graph and using ρ−1 shows that the two graphs are Markov equivalent.

Figure 7 shows two graphs that are Markov equivalent by Proposition 36.
In some graphs one can find permutations, not fulfilling the assumptions of
Proposition 36, that generate Markov equivalent graphs, and this proposition is
therefore not a necessary condition for Markov equivalence under permutation
of blunt edges. One example is in the first row of Figure 5. The middle and right
graphs are Markov equivalent and one is generated from the other by permuting
β and γ.

5 Deciding Markov equivalence

In this section, we will consider the problem of deciding Markov equivalence
algorithmically. That is, given two cDGs on the same node set, how can we
decide if they are Markov equivalent or not? A starting point is Theorem 32.
While it is computationally easy to check whether the directed edges of two
cDGs are the same (quadratic in the number of nodes in their common node
set), collider equivalence could be hard as there may be exponentially many
paths in a cDG.

Let D = (V,E) be a graph, and let A ⊆ V . We use GA to denote the subgraphG induced by A, i.e., GA = (A,EA) where EA is the set of nodes in E that are
between α ∈ A and β ∈ A. The directed part of a cDG, D(D) = (V,F ), is
the DG on nodes V such that α →D(D) β if and only if α →D β. The blunt
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part of a cDG, U(D), is the cDG obtained by removed all directed edges. The
blunt components of D are the connected components of U(D). We say thatD1 = (V,E1) and D2 = (V,E2) have the same collider connections if it holds for
all α ∈ V and β ∈ V that α and β are collider connected in D1 if and only if they
are collider connected in D2. We say that a subset of nodes, A, is ancestral if
A = an(A). We will throughout only consider cDGs that contain every loop.

We start from the following result which is seen to be a reformulation of the
augmentation criterion.

Theorem 37. Let D1 = (V,E1) and D2 = (V,E2) be cDGs such that D(D1) =
D(D2). D1 and D2 are Markov equivalent if and only if for every ancestral set,
it holds that (D1)A and (D2)A have the same collider connections.

Proof. Assume that there exists an ancestral set A ⊆ V such that α and β are
collider connected in (D1)A, but not in (D2)A. There exists a collider path inD1 between α and β. Any covering path in D2 must by definition consist of
nodes in an(A) = A and it follows that no such path can exists. By Theorem
32, it follows that D1 and D2 are not Markov equivalent.

On the other hand, assume that for every ancestral set A ⊆ V and every
α,β ∈ A, it holds that α and β are collider connected in (D1)A if and only if α
and β are collider connected in (D2)A. Using Theorem 32, it suffices to show
that D1 and D2 are collider equivalent. Consider a collider path between α and
β in D1, and let C denote the set of nodes on this path. This path is also a
collider path in (D1)an({α,β}∪C) and by assumption we can find a collider path
between α and β in (D2)an({α,β}∪C) as well. This collider path is in D2 as well
and is covering the path in D1.

The above theorem can easily be turned into an algorithm for deciding if
two cDGs are Markov equivalent (Algorithm 1). However, there may be expo-
nentially many ancestral sets in a cDG. For instance, in the case where the only
directed edges are loops all subsets of V are ancestral and therefore the algo-
rithm would need to compare collider connections in 2n pairs of graphs where
n is the number of nodes in the graphs (or 2n − 1, omitting the empty set).

5.1 The condensation of a cDG

Let D = (V,E) be a cDG. We say that α,β ∈ V are strongly connected if there
exists a directed path from α to β and a directed path from β to α, allowing
trivial paths. Equivalently, α and β are strongly connected if and only if α ∈
an(β) and β ∈ an(α). This is an equivalence relation on the node set of a cDG.
The definition of strong connectivity is often used in DGs (Cormen et al., 2009).
We use the straight-forward generalization to the class of cDGs in which the
directed part of the cDG simply determines strong connectivity.

The condensation of D (also known as the acyclic component graph of D)
is the directed acyclic graph obtained by contracting each strongly connected
component to a single vertex. That is, if C1, . . . ,Cm are the cyclic components
of D, then the condensation of D has node set C = {C1, . . . ,Cm} and Ci → Cj
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if i ≠ j and there exists α ∈ Ci, β ∈ Cj such that α →D β (Cormen et al.,
2009). We denote the condensation of D by C(D). We also define the completed
condensation of D, C̄(D), which is the graph on nodes C∪{∅} such that C̄(D)C =C(D) and such that ∅ is a parent of every other node and a child of none. The
condensation and the completed condensation are both DAGs. When D has d
directed edges that are not loops, then strongly connected components can be
found in linear time, that is, O(n + d) (Cormen et al., 2009).

In the following, we will be considering sets of nodes in D, i.e., subsets of
V , as well as sets of nodes in C(D), that is, subsets of C. We write the former
as capital letters, A,B,C. We write the latter as capital letters in bold font,
A,B,C, to emphasize that they are subsets of C, not of V .

Proposition 38. The ancestral sets in D are exactly the sets of the form{α ∈ Ci ∶ Ci ∈ C} for an ancestral set, C, in C(D).
Proof. Consider an ancestral set A ⊆ V . We can write this as a union of strongly
connected components, A = ⋃Ci. These strongly connected components must
necessarily constitute an ancestral set in C(D).

On the other hand, consider an ancestral set in C(D), C, and consider α ∈
A = {α ∈ Ci ∶ Ci ∈ C}. Assume that α ∈ C ∈ C. If β is an ancestor of α inD, then β ∈ C̃ such that C̃ is an ancestor of C in C(D). By assumption, C is
ancestral, so C̃ ∈ C and we see that A is ancestral.

The above proposition shows that we can consider the condensation when
finding ancestral sets in a cDG. We let A(D) denote the set of ancestral sets inD. The correctness of Algorithm 1 follows from Theorem 37 and Proposition 38.
The algorithm considers ancestral sets in the condensation, however, a version
using ancestral sets directly in D1 is of course also possible. In the algorithm, one
can decide collider connectivity by noting that α and β are collider connected
in a cDG, D, if and only if there exists a blunt component, U = (U,EU), such
that α ∈ paD(U) and β ∈ paD(U), using that the graphs contain every loop.

Algorithm 1 Markov equivalence

Require: cDGs, D1 = (V,E1),D2 = (V,E2)
if D(D1) ≠ D(D2) then

return FALSE
end if
for A ∈ A(C(D1)) do

Define A = {γ ∈ Ci ∶ Ci ∈ A}
if (D1)A and (D2)A do not have the same collider connections then

return FALSE
end if

end for
return TRUE

24

90 CHAPTER 4. DIRECTED CORRELATION GRAPHS



5.2 Virtual collider tripaths

This section describes a graphical structure that we will call virtual collider
tripaths. We will use these to give a necessary condition for Markov equivalence.

Definition 39 (Virtual collider tripath). Let α,β ∈ V and let C be a node inC̄(D), i.e., C is a cyclic component or the empty set. We say that (α,β,C) is
a virtual collider tripath if there exists a collider path α ∼ γ1 ∼ . . . γm ∼ β such
that γi ∈ an({α,β} ∪C) for all i = 1, . . . ,m.

Richardson (1996b) described virtual adjacencies in DGs equipped with d-
separation. Those are structures that in terms of separation act as adjacencies.
The idea behind virtual collider tripaths is essentially the same; for a fixed pair
of nodes, α and β, a virtual collider tripath, (α,β,C), acts as if there exists
γ ∈ C such that α ∼ γ ∼ β is a collider walk. Note also that if α and β are
adjacent, then (α,β,C) is virtual collider tripath for any cyclic component C.
Finally, note that there are no restrictions on whether or not α, β, or both are
elements in the set C ⊆ V .

Definition 40 (Maximal virtual collider tripath). We say that a virtual collider
tripath, (α,β,C), is maximal if there is no C̃ ≠ C such that (α,β, C̃) is a virtual
collider tripath and C̃ is an ancestor of C in C̄(D).

We say that two cDGs have the same (maximal) virtual collider tripaths if
it holds that (α,β,C) is a (maximal) virtual collider tripath in D1 if and only
if (α,β,C) is a (maximal) virtual collider tripath in D2.

Proposition 41. If (α,β,C) is not a virtual collider tripath, then β and α are
m-separated by an({α,β} ∪C) ∖ {α,β}.

Proof. The contraposition follows from the definition of a virtual collider tri-
path. Assume that ω is an m-connecting walk between α and β given an({α,β}∪
C) ∖ {α,β}. If it is a single edge, then (α,β,C) is a virtual collider tripath for
any C. Assume that it has length at least two. If there is a noncollider, δ, on
ω, then δ must be an ancestor of {α,β} or of a collider. In the former case, ω
is closed as in δ is in the condition set. In the latter case, either ω is closed in
the collider or in δ. Assume therefore that ω is a collider walk. We can reduce
ω to a path and we see from the definition that (α,β,C) is a virtual collider
tripath.

The next theorem gives a necessary condition for Markov equivalence of
cDGs.

Theorem 42. Let D1 = (V,E1) and D2 = (V,E2) be cDGs. If they are Markov
equivalent, then they have the same directed edges and the same maximal virtual
collider tripaths.

Proof. We show this by contraposition. If α is a parent of β in D1, but not
in D2, then it follows from Corollary 24 that they are not Markov equivalent.
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α β γ

δ ε

ζ

α β γ

δ ε

ζ

Figure 8: These cDGs on nodes {α,β, γ, δ, ε, ζ} have the same maximal vir-
tual collider tripaths, however, disagree on whether ζ is µ-separated from α by{β, γ, δ, ε}.

Assume instead that D1 and D2 have the same directed edges, and that (α,β,C)
is a maximal virtual collider tripath in D1, but not in D2. Then it follows that
α ≠ β as we assume all directed loops to be present in both graphs. There are
two cases; either (α,β,C) is not a virtual collider tripath in D2, or it is not
maximal. In the first case, β is µ-separated from α by an({α,β} ∪C) ∖ {α,β}
(Proposition 41) which is seen to not be the case in D1. In the second case, in D2

there is a virtual collider tripath (α,β, C̃) such that C̃ → C in C̄(D1) (note thatC̄(D1) = C̄(D2)) and (α,β, C̃) is not a virtual collider tripath in D1. Repeating
the above argument, we see that D1 and D2 are not Markov equivalent in this
case either.

The example in Figure 8 shows that having the same directed edges and the
same maximal virtual collider tripaths is not a sufficient condition for Markov
equivalence.

5.3 Complexity of deciding Markov equivalence

We have given two characterizations of Markov equivalence of cDGs and argued
that they both use exponentially many conditions in the worst case. In this
section, we prove that this, most likely, cannot be circumvented.

coNP is the class of decision problems for which a no-instance can be verified
using a polynomial-length counterexample in polynomial time and a problem
is in coNP if and only if its complement is in NP. If a problem is as hard as
any problem in coNP, then we say that the problem is coNP-hard. If a problem
is coNP-hard and also in coNP, we say that it is coNP-complete (Garey and
Johnson, 1979; Sipser, 2013). Various inference problems in graphical models
are known to be computationally hard (Meek, 2001; Chickering et al., 2004;
Chandrasekaran et al., 2008; Koller and Friedman, 2009). On the other hand,
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there exists polynomial-time algorithms for deciding Markov equivalence in sev-
eral classes of graphs, e.g., maximal ancestral graphs (Ali et al., 2009) and
DGs under d-separation (Richardson, 1997). This is different in cDGs under
µ-separation.

Theorem 43. Deciding Markov equivalence of cDGs is coNP-complete.

The complexity result implies that, unless P = coNP (which is commonly
believed to not be the case), one cannot find a characterization of Markov equiv-
alence of cDGs which can be verified in polynomial time in the size of the graph
as this would allow us to decide Markov equivalence of two cDGs.

Proof. We first show that deciding Markov equivalence is in coNP. This is clear
as given two graphs that are not Markov equivalence and a certificate indicating
sets A,B,C such that we have separation in one but not in the other, we can
use Proposition 17 to verify this no-instance in polynomial time.

In order to show that deciding Markov equivalence is coNP-hard, we use a
reduction similar to one by Böhler et al. (2012) who study complexity of deciding
equivalence of Boolean circuits, see in particular the proof of their Lemma 4.3.
Consider Boolean variables x1, . . . , xn. We say that xl and ¬xl are literals. A
Boolean formula is in disjunctive normal form (DNF) if it is a disjunction of
conjuctions of literals. It is a 3DNF, if each conjunction has at most three
literals. The 3DNF tautology is the problem of deciding if a 3DNF is satisfied
for all inputs and this problem is known to be coNP-hard. We reduce 3DNF
tautology to the problem of deciding Markov equivalence. Let H be a 3DNF
formula on variables x1, . . . , xn consisting of literals

H = (z1
1 ∧ z1

2 ∧ z1
3) ∨ . . . ∨ (zN1 ∧ zN2 ∧ zN3 )

such that zji equals xl or ¬xl for some l = 1, . . . , n. In the former case, we say

that zji is a positive literal, and in the latter that zji is a negative literal. We

say that a conjunction, e.g., zj1 ∧ zj2 ∧ zj3, is a term. In the following, we will
define graphs in which the nodes corresponds to literals, variables, and negated
variables in this problem. We will use Greek alphabet letters for the nodes.
Now define

V − = {ζji } ∪ {χl, υl},
such that ζji corresponds to zji , χl to xl, and υl to the negation of xl. We also
define

V = {α,β} ∪ V − ∪ {γδ ∶ δ ∈ V −}.
We now construct a cDG on nodes V with the following edge set. Every node
has a directed loop. Furthermore, for δ ∈ V −,

α → γδ
←→ δ.

For every term (analogously if the term has fewer than three literals),
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α → ζj1 xxζj2 xxζj3 xxx1

and also ζj3 xxυ1. Furthermore, χl, υl xxχl+1, υl+1 and χn, υn xxβ (in the sense
that there is a blunt edge between any pair of nodes on opposite sides of xx).
We let also χ1 xxυ1. Finally, χl

→← ζji if and only if zji is a positive literal of the

variable xl and υl
→← ζji if and only if zji is a negative literal of the variable xl.

We let G denote the cDG on nodes V and with edges as described above. We
define also G+ by adding edges α xxχ1, υ1 to G.

We now argue that H is a tautology (that is, true for all inputs) if and only
if G and G+ are Markov equivalent. Assume that H is a tautology. To argue
that G and G+ are Markov equivalent it suffices to show that every collider path
of G+ is covered in G (Theorem 32). Every collider path in G+ which is not in G
either contains the subpath χ1 xxα xxυ1 or is of the below form. If it contains
χ1 xxα xxυ1, then we can substitute this for χ1 xxυ1 and obtain a covering
path in G. Assume instead a collider path of the following form,

α xxε1 xx. . . ∼ εk+1.

If εk+1 ≠ β, then this is covered by α → γεk+1
←→ εk+1, or by α → εk+1. Assume

instead that εk+1 = β. In this case, for all i = 1 . . . , n either χi ∈ {ε1 . . . , εk} or
υi ∈ {ε1 . . . , εk}. Consider now the following assignment of truth values to the
variables: xl = 1 if and only if χl ∈ {ε1 . . . , εk}. By assumption, H is a tautology,
so there is a term which equals 1 for this assignment, say the j’th (without loss
of generality assuming the the j’th term contains three literals),

zj1 ∧ zj2 ∧ zj3.
If zji is a positive literal, then it must correspond to a xl such that χl ∈{ε1 . . . , εk}, and then in G, ζji is a parent of χl ∈ {ε1 . . . , εk}. If it is a neg-
ative literal, then it must correspond to xl such that χl ∉ {ε1 . . . , εk}. Then
υl ∈ {ε1 . . . , εk}, and therefore ζji is a parent of {ε1 . . . , εk}. This means that the
walk

α → ζj1 xxζj2 xxζj3 xxφ1 xx. . . φn xxβ,
where φl = χl if χl ∈ {ε1 . . . , εk} and φl = υl ∈ {ε1 . . . , εk} else, is a covering path
in G. This implies that G and G+ are Markov equivalent.

On the other hand, assume that H is not a tautology. In this case, there
exists some assignment of truth values such that every term of H is 0, and let
I denote this assignment. We now define the following subset of nodes,

C = {χl ∶ xl = 1 in I} ∪ {υl ∶ xl = 0 in I}.
We see that for all l = 1, . . . , n, either χl ∈ C or υl ∈ C, and this means that β is
not µ-separated from α by C in G+. If we consider a term (again, without loss
of generality assuming that the term has three literals),
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zj1 ∧ zj2 ∧ zj3.
we know that (under assignment I) one of them must equal 0, say zji . If it is a
positive literal, then the corresponding variable equals 0 in the assignment and
ζji is not an ancestor of C. If it is a negative literal, then the corresponding

variable xl equals 1 in the assignment, and therefore υl is not in C, and ζji is
not an ancestor of C. In either case, we see that every path

α → ζj1 xxζj2 xxζj3 xxφ1

such that φ1 ∈ {χ1, υ1} contains a nonendpoint node which is not an ancestor of
C. This implies that the collider path in G+ between α and β which traverses
exactly the nodes in C is not covered in G and therefore G and G+ are not
Markov equivalent (Theorem 32).

The reduction from 3DNF tautology to the Markov equivalence problem is
clearly done in polynomial time and is a many-one reduction.

6 Conclusion

We have studied graphs that represent independence structures in stochastic
processes that are driven by correlated error processes. We have characterized
their equivalence classes in two ways and proven that deciding equivalence is
coNP-complete. The characterizations of Markov equivalence do, however, sug-
gest subclasses of cDGs in which deciding Markov equivalence is feasible, e.g., in
cDGs with blunt components of bounded size, or in cDGs such that the length
of the shortest blunt path between two nodes is bounded.

We have also shown a global Markov property in the case of Ornstein-
Uhlenbeck processes driven by correlated Brownian motions. It is an open ques-
tion if and how this can be extended to other or larger classes of continuous-time
stochastic processes.
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Rainer Schöbel and Jianwei Zhu. Stochastic volatility with an Ornstein-
Uhlenbeck process: An extension. European Finance Review, 3:23–46, 1999.

T. Shimokawa, K. Pakdaman, T. Takahata, S. Tanabe, and S. Sato. A first-
passage-time analysis of the periodically forced noisy leaky integrate-and-fire
model. Biological Cybernetics, 83:327–340, 2000.

Michael Sipser. Introduction to the theory of computation. Thomson Course
Technology, 3rd edition, 2013.

Elias M. Stein and Jeremy C. Stein. Stock price distributions with stochastic
volatility: An analytic approach. The Review of Financial Studies, 4(4):727–
752, 1991.

Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models.
Technical Report R-150, University of California, Los Angeles, 1991.

A Proof of Theorem 13

We assume X is a regular Ornstein-Uhlenbeck process with drift

λ(x) =M(x − µ)
and diffusion matrix σ and let Σ = σσT . We let a = −Mµ. Let V = U ∪̇W . We
will use the following notation similar to that of Liptser and Shiryayev (1977),

s ○ s = σUUσTUU + σUWσTUW (6)

s ○ S = σUUσTWU + σUWσTWW (7)

S ○ S = σWUσ
T
WU + σWWσ

T
WW (8)

Note that the above matrices are simply the block components of Σ = σσT ,

Σ = [σUU σUW
σWU σWW

] [σTUU σTWU

σTUW σTWW

] = [ s ○ s s ○ S(s ○ S)T S ○ S] . (9)

We let mt denote E(XU
t ∣ FWt ). The following integral equation holds

(Liptser and Shiryayev, 1977, Theorem 10.3),

mt =m0 ∫ t

0
aU +MUUms +MUWX

W
s ds (10)

+ ∫ t

0
(s ○ S + γsMT

WU)(S ○ S)−1( dXW
s − (aW +MWUms +MWWX

W
s ) ds)

(11)
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where m0 = E[XU
0 ∣ FW0 ] and γt is the solution of a differential equation given

below. We can write this as

mt =m0 + ∫ t

0
aU + (MUU + (s ○ S + γsMT

WU)(S ○ S)−1MWU)ms +MUWX
W
s ds

+∫ t

0
(s ○ S + γsMT

WU)(S ○ S)−1( dXW
s − (aW +MWWX

W
s ) ds).

The process γ(t) is given by the following equation (Liptser and Shiryayev,
1977, Theorem 10.3).

γ̇(t) =MUUγ(t) + γ(t)MT
UU + s ○ s (12)

− (s ○ S + γ(t)MT
WU) [S ○ S]−1 (s ○ S + γ(t)MT

WU)T (13)

= (MUU − (s ○ S)[S ○ S]−1MWU)γ(t) + γ(t)(MT
UU −MT

WU [S ○ S]−1(s ○ S)T )
(14)

+ s ○ s − (s ○ S)[S ○ S]−1(s ○ S)T − γ(t)MT
WU [S ○ S]−1MWUγ(t) (15)

This is known as a differential Riccati equation. The solution of these equations
is unique when we restrict our attention to solutions such that γt is symmetric
and nonnegative definite (Liptser and Shiryayev, 1977, Theorem 10.3). Essen-
tially, we will show the global Markov property by arguing about the measura-
bility of mt, using the sparsity of the matrices that go into the integral equation.
We will achieve this by first describing the sparsity in the solution of an asso-
ciated algebraic Riccati equation and this will allow us to describe the sparsity
in the solution of the differential Riccati equation.

For ease of notation, we now define the matrices

D =MT
UU −MT

WU [S ○ S]−1(s ○ S)T (16)

E =MT
WU [S ○ S]−1MWU (17)

F = s ○ s − (s ○ S)[S ○ S]−1(s ○ S)T (18)

and this allows us to write the equation as

γ̇(t) = γ(t)D +DT γ(t) − γ(t)Eγ(t) + F.
Note that F is the Schur complement of S ○S in Σ. The matrix Σ is positive

definite by assumption, and therefore so is F (Horn and Johnson, 1985, p. 472).

A.1 Sparsity of the solution of the algebraic Riccati equa-
tion

In order to solve the differential Riccati equation, we will first solve an algebraic
Riccati equation (Equation (19)) - or rather argue that its solution has a certain
sparsity structure.
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0 = ΓD +DTΓ − ΓEΓ + F (19)

Proposition 44. Assume V = U ∪̇W , and let U1, U2 ⊆ U . If there is no m-
connecting walk between any α ∈ U1 and any β ∈ U2 given W , then there exists
Vi, i = 1, . . . ,6, such that U = V̄1 ∪̇ V̄2 ∪̇ V̄3,W = V4 ∪̇ V5 ∪̇ V6, U1 ⊆ V1, U2 ⊆ V2

and furthermore after a reordering of the rows and columns such that the order
is consistent with V1, . . . , V6, we have the following sparsity of the matrices M
and Σ,

M =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 0 0 M14 M15 M16

0 M22 0 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 0 0 M44 M45 M46

0 M52 0 M54 M55 M56

0 0 0 M64 M65 M66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ = σσT =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 0 Σ13 Σ14 0 0
0 Σ22 Σ23 0 Σ25 0

Σ31 Σ32 Σ33 Σ34 Σ35 Σ36

Σ41 0 Σ43 Σ44 0 0
0 Σ52 Σ53 0 Σ55 0
0 0 Σ63 0 0 Σ66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For both matrices, the subscript ij corresponds to rows Vi and columns Vj .
The concept of µ-separation is similar to that of m-separation which has

been used in acyclic graphs. In a graph and for disjoint node sets A, B, and C,
we say that A and B are m-separated given C if there is no path between any
α ∈ A and any β ∈ B such that every collider is in an(C) and no noncollider
is in C. m-separation is, in contrast to µ-separation, a symmetric notion of
separation in the sense that if B is m-separated from A given C, then A is
also m-separated from B given C. We will use m-separation as a technical tool
in our study of cDGs as some statements are most easily expressed using this
symmetric notion.

Proof. We simply define sets of nodes, V1, . . . , V6 such that the matrices M and
Σ satisfy the above sparsity. Note first that a trivial walk is m-connecting, and
it follows that U1 and U2 are disjoint. We use the convention that if A∩B ≠ ∅,
then A and B are not m-separated by any subset of V ∖(A∪B). For the purpose
of this proof, we write A⇁ B ∣ C if there exists α ∈ A and β ∈ B such that there
is walk between α and β with every collider in an(C) and no noncollider in C
and furthermore there is a head or a blunt edge on the final edge at β.

35

PAPER B 101



V2 = {u ∈ U ∶ u ⊥m U1 ∣W}
V1 = {u ∈ U ∶ u ⊥m V2 ∣W and u /⊥m U1 ∣W}
V3 = {u ∈ U ∶ u /⊥m U1 ∣W and u /⊥m V2 ∣W}
V4 = {w ∈W ∶ V1 ⇁ w ∣W}
V5 = {w ∈W ∶ V2 ⇁ w ∣W}
V6 =W ∖ (V4 ∪ V5)

Note that U1 ⊆ V1, and U2 ⊆ V2. We have that U = V1 ∪̇ V2 ∪̇ V3. If w ∈ V4 ∩ V5 ≠∅, then there is an m-connecting walk between V2 and V1 which would be a
contradiction, and thus, W = V4 ∪̇V5 ∪̇V6. Note that Σ is symmetric so we only
need to argue that the lower triangular part has the postulated sparsity pattern.
Whenever we mention a m-connecting walk in this proof we tacitly mean ‘given
W ’.

Any edge V1 ∼ V2 would create an m-connecting walk and therefore M21 =
0,M12 = 0,Σ21 = 0. An edge V1 → w ∈ V5 would also create an m-connecting
walk between V1 and V2 given W as V5 ⊆W , and therefore M51 = 0. Similarly,
we see that M42 = 0, Σ51 = 0, and Σ42 = 0. If V1 → w ∈ V6, then w would have
to be in V4, and thus, M61 = 0. Similarly, M62 = 0, Σ61 = 0, Σ62 = 0. Let u ∈ V3.
Then there exists an m-connecting walk between u and V2, and composing this
walk with an edge u→ V1 would give an m-connecting walk between V1 and V2

as u ∉ W . This is a contradiction and M13 = 0. Similarly, M23 = 0. Consider
any u ∈ V3. There exists m-connecting walks between u and U1 and u and
V2. None of them can have a tail at u as otherwise their composition would
be connecting. Therefore, u is a collider on their composition, and from this
it follows that M43 = 0,M53 = 0,M63 = 0. If V4 xxV5, it would follow that
there is an m-connecting walk between V1 and V2, a contradiction. It follows
that Σ54 = 0. If V4 xxw, then w ∈ V4, and it follows that Σ64 = 0. Similarly,
Σ65 = 0.

The matrices D,E, and F all have their rows and columns indexed by U =
V1 ∪̇V2 ∪̇V3. The above proposition and the definition of the matrices D,E, and
F give the following.

Corollary 45. The matrix D has the sparsity structure

⎡⎢⎢⎢⎢⎢⎣
∗ 0 ∗
0 ∗ ∗
0 0 ∗

⎤⎥⎥⎥⎥⎥⎦
,

i.e., DV2V1 = 0,DV3V1 = 0,DV1V2 = 0, and DV3V2 = 0. The matrix F is such that
FV1V2 = 0 and FV2V1 = 0. The matrix E is block diagonal and EV3V3 = 0.

Lemma 46. If N is an invertible matrix with the sparsity of D, then so is N−1.
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Proof. This is easily seen from the Schur complement representation of N−1,
using the first two blocks as one component, and the third as the second com-
ponent.

Lemma 47. Consider the Lyapunov equation

LZ +ZLT +Q = 0,

and let Z0 denote its solution. If L is stable and has the sparsity pattern of DT

and Q is such that QV1V2 = 0, QV2V1 = 0, then (Z0)V1V2 = 0 and (Z0)V2V1 = 0.

Proof. The result follows from the explicit solution of a Lyapunov equation
when L is stable (Lancaster and Rodman, 1995),

Z = ∫ ∞
0

eLsQeL
T s ds.

Definition 48 (Stabilizable pair of matrices). Let G and H be matrices, n×n
and n×m, respectively. We say that the pair (G,H) is stabilizable if there exists
an m × n matrix, K, such that G +HK is stable.

In the literature, stabilizability is used in both the context of continuous-
time and discrete-time systems. The above definition is that of a continuous-
time system (Lancaster and Rodman, 1995, p. 90). The following is proven in
Jacob and Zwart (2012).

Lemma 49. The pair (A,B) is stabilizable if and only if for every eigenvector
of the matrix AT with eigenvalue λ such that Re(λ) ≥ 0 it holds that vTB ≠ 0.

Lemma 50. The pair (D,E) is stabilizable.

Proof. We will prove this using Lemma 49. To obtain a contradiction, assume
that there exists an eigenvector v of DT with corresponding eigenvalue λ such
that Re(λ) ≥ 0, and assume furthermore that vTE = 0. The matrix (S ○S)−1 is
positive definite (since Σ is positive definite), and vTMT

WU(S ○ S)−1MWUv = 0.
It follows that MWUv = 0. Let o be the column vector of zeros of length l. Note
that λv =DT v =MUUv. Then,

M (v
o
) = (MUU MUW

MWU MWW
)(v
o
) = λ(v

o
)

It follows that λ is an eigenvalue of M which is a contradiction as M is stable
by assumption.

Corollary 51. There exists a symmetric k×k matrix X0 such that (X0)V1V2 = 0,(X0)V2V1 = 0 and such that D −EX0 is stable.
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Proof. From the above lemma it follows that there exists a k × k matrix X̄
such that D − EX̄ is stable. From the sparsity of D and E it follows that
for any k × k matrix, X, D − EX is stable if and only if D{V 1,V 2}{V 1,V 2} −
E{V 1,V 2}{V 1,V 2}X{V 1,V 2}{V 1,V 2} andDV3V3 are stable. The matricesD{V 1,V 2}{V 1,V 2}
and E{V 1,V 2}{V 1,V 2} are both block diagonal and thus both pairs of blocks are
stabilizable (Lemma 49). It follows that X{V 1,V 2}{V 1,V 2} can be chosen as block
diagonal. We need to argue that X0 can be chosen to be symmetric. The blocks
in the diagonal of E are positive semidefinite and are stabilizable (when paired
with their corresponding D blocks). Therefore X0 can be chosen to also be
positive definite (Lancaster and Rodman, 1995, Lemma 4.5.4).

Matrices E and F are both positive semidefinite and there exist unique
positive semidefinite matrices Ē and F̄ such that E = ĒĒ and such that F = F̄ F̄
(Horn and Johnson, 1985, Theorem 7.2.6).

Corollary 52. The pair (D, Ē) is stabilizable.

Proof. This follows from the fact that (D,E) is stabilizable (Lemma 50).

Proposition 53. The pair (F̄ ,D) is detectable, i.e, there exists X such that
XF̄ +D is stable. The pair (F,D) is also detectable.

Proof. Observe that F̄ is invertible. This means that we can choose X = (I −
D)F̄ −1. With this choice of X, the matrix XF̄ +D is stable.

Lemma 54 (Sparsity in solution of algebraic Riccati equation). If there is no
m-connecting walk between α ∈ U1 and β ∈ U2 given W , then Γ̄V1V2 = 0 when Γ̄
is the unique, nonnegative solution of Equation (19).

Proof. We will first argue that there exists a unique, nonnegative solution of
Equation (19). We have that E and F are positive semidefinite, that (D, Ē)
is stabilizable, and that (F̄ ,D) is detectable. This means that there exists a
unique nonnegative solution (Kučera, 1973, Theorem 5), and this is necessarily
the maximal solution in the terminology of Lancaster and Rodman (1995). In
this proof, we denote this matrix by X+.

Using Corollary 51, there exists a symmetric k × k matrix, X0, such that(X0)V1V2 = 0, (X0)V2V1 = 0, and such that D−EX0 is stable. From this matrix,
we will define a sequence of matrices that converge to X+. With this purpose in
mind, we define a Newton step as the operation that takes a matrix Xi to the
solution of (this is an equation in X)

(D −EXi)TX +X(D −EXi) +XiEXi + F = 0.

Assume now that Xi is such that (Xi)V1V2 = 0 and (Xi)V2V1 = 0. Note first
that by Corollary 45, Q̄ =XiEXi +F is also such that Q̄V1V2 = 0 and Q̄V2V1 = 0.
The matrix EXi has the sparsity pattern of D, and the matrix D does too. By
induction and using Lemma 47, it follows that Xi is such that (Xi)V1V2 = 0 and(Xi)V2V1 = 0 for all i ≥ 0. Note that for all i it holds that D−EXi is stable (Guo
and Lancaster, 1998). Theorem 1.2 of Guo and Lancaster (1998) now gives that
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X+ = limXi is the solution of the algebraic Riccati equation, and it follows from
the above that (X+)V1V2 = 0 and (X+)V2V1 = 0.

A.2 Sparsity in the solution of the differential Riccati
equation

We will use the above results on the algebraic Riccati equation to describe zero
entries of the solution to the differential Riccation equation. From Choi (1990),
it follows that if Γ0 is positive definite, then

Γ(t) = Γ̄ + etK
T (Γ0 − Γ̄) (I + ∫ t

0
esKEesK

T

ds(Γ0 − Γ̄))−1

etK (20)

where K = D − EΓ̄ and Γ̄ is the unique nonnegative definite solution of the
algebraic Riccati equation (Equation (19)).

Proof of Equation 20. From Choi (1990), we have that Equation (20) holds un-
der whenever Γ0 is positive definite as (D, Ē) is stabilizable (Corollary 52), and(F̄ ,D) is detectable (Proposition 53).

Lemma 55. Assume that Γ0 is a positive definite matrix such that (Γ0)V1V2 = 0,
and let Γ(t) denote the solution of the differential Riccati equation (Equation
(20)) with initial condition Γ0. If there is no m-connecting walk between α ∈ U1

and β ∈ U2 given W , then (Γ(t))V1V2 = 0 for all t ≥ 0.

Proof. This follows directly from the expression in Equation (20) and the spar-
sity of the matrices that go into that expression: etK has the sparsity of D and

etK
T

has that of DT . From Lemma 54 we know that Γ̄V1V2 = 0. The matrix

I + ∫ t

0
esKEesK

T

ds(Γ0 − Γ̄)
has the sparsity of D and so does its inverse (Lemma 46). This result follows
immediately by matrix multiplication.

Proof of Theorem 13. Let β ∈ B and let t ∈ I. We need to show that E(λβt ∣FA∪Ct ) is almost surely equal to an FCt -measurable random variable. We can
without loss of generality assume that A and C are disjoint. The fact that B is
µ-separated from A given C implies that MβA = 0,

E(λβt ∣ FA∪Ct ) = ∑
γ∈A∪CMβγX

γ
t + ∑

δ∉A∪CMβδE(Xδ
t ∣ FA∪Ct )

= ∑
γ∈CMβγX

γ
t + ∑

δ∈pa(β)∖(A∪C)MβδE(Xδ
t ∣ FA∪Ct ).

Let U = V ∖A ∪C. Consider now V1 = {u ∈ U ∶ u ⊥µ A ∣ C}, V2 = {u ∈ U ∶ u ⊥µ
V1 ∣ A ∪C, u /⊥m A ∣ C}, and V3 = {u ∈ U ∶ u /⊥m V1 ∣ A ∪C, u /⊥m A ∣ C}. This is
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a partition of U and we partition W = A ∪̇C as in Proposition 44. This gives the
same sparsity structure as in Proposition 44 and the later proofs apply. We see
that δ ∈ V1 whenever Mβδ ≠ 0. The matrix MUU +(s○S+γtMT

WU)(S○S)−1MWU

in the integral equation for the conditional expectation process has the sparsity
of DT and it follows that one can solve for mV1

t independently of mU∖V1
t as the

solution of the smaller system is unique (Beesack, 1985). We see that processes
XA
t do not enter into these equations. This follows from the sparsity of s ○ S,

S ○ S, and of γtM
T
WU , and the fact that MV4A = 0 and MV1A = 0.
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Figure 4.2: Four Markov equivalent cDGs. G1 is a greatest element of the equivalence class (the entire class is not shown),
and therefore the set of minimal representations of G1 equals the set of minimal representations of [G1]. The minimal
reprensentations of G1 (or equivalently, for this particular graph, of [G1]) are shown in the bottom row (G3 and G4). G2 andG1 are Markov equivalent, and therefore G3 and G4 are also the minimal representations of [G2]. However, G2 equals the
minimal representation of G2 as there is no Markov equivalent proper subgraph of G2.

Finding minimal representations of cDGs
We saw in Paper B that an equivalence class of cDGs need not have a least element. Given a cDG, G, it is still reasonable
to ask for an equivalent graph with fewer edges; maybe even one with as few as possible. We say that G− = (V,E−)
is a minimal representation of [G] if G− ∈ [G] and ∣E−∣ ≤ ∣Ẽ∣ for all G̃ = (V, Ẽ) ∈ [G]. We say that G− is a minimal
representation of G if G− ∈ [G], G− ⊆ G, and ∣E−∣ ≤ ∣Ẽ∣ for any G̃ ∈ [G] such that G̃ ⊆ G. For any G, minimal representations
exist of both [G] and G, though they are not necessarily unique (see Figure 4.2 for examples).

In this section, we prove that finding minimal representations of [G] and G are NP-hard problems.

Theorem 4.2. Let G = (V,E) be a cDG. It is NP-hard to find a minimal representation of [G], that is, Smallest Markov
equivalent graph in (cDG, µ) is NP-hard.

Note that Smallest Markov equivalent graph is not a decision problem, however, it is NP-hard as we can find a
(Turing) reduction from an NP-complete problem to Smallest Markov equivalent graph, thus showing that it is at least
as hard as any problem in NP.

Proof. We do a reduction from the minimum set-covering problem. An instance of the minimum set-covering problem
consists of a finite set U = {u1, . . . , um} and a family, F = {S1, . . . , Sl}, of subsets of U such that ∪S∈FS = U . A covering
is a subfamily, C ⊆ F , such that ∪S∈CS = U , and the size of a covering C is ∣C∣. The minimum set-covering problem asks
for a covering of minimal size and is known to be NP-hard as the corresponding decision problem is NP-complete.

From an instance of the minimum set-covering problem, we will construct a graph, D = (V,E). For each set Sj we
include a corresponding node Σj , and for each element of the universe, uk, we include a node υk. We include auxiliary
nodes α,σ1, σ2, and σ3. For each j, we include the edges

α xxΣj → σ1 → σ2 → σ3 → Σj

We also include the edge α xxσ1. Finally, we include Σj xxυk if and only if uk ∈ Sj , and we include all directed loops.
We argue first that D is a greatest element of [D] and that if D̄ = (V, Ē) ∈ [D] then Ē = E ∪ {α xxΣj}j∈J for some

J ⊆ {1, . . . , l}. Let D̄ ∈ [D]. For all β, γ ∈ V , it holds that β →D̄ γ if and only if β →D γ, using Theorem B.32. Note
first that for each i = 1, . . . ,m, υi is only weakly inseparable in D from σ3 and Σj for j such that ui ∈ Sj . This means
that υi cannot be adjacent with α, σ1, σ2, nor with Σj for j such that ui ∉ Sj , and also not with υi0 , i ≠ i0. It also
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cannot be adjacent with σ3 as this would make it weakly inseparable from σ2. Now we consider the possibility of an edge
Σj0 xxΣj1 in D̄. We assume without loss of generality that no set is contained in another, so assume that ui0 ∈ Sj0 ∖ Sj1
and ui1 ∈ Sj1 ∖ Sj0 . υi0 is weakly inseparable from Σj0 in D, and υi1 from Σj1 . There is a weak inducing path between
υi0 and Σj0 and if σ1 is on this weak inducing path, then υi and σ1 would be weakly inseparable which is a contradiction.
This means that there must exist a blunt path between υi0 and Σj0 , and one between υi1 and Σj1 . Every nonendpoint node
must be a node in the cyclic component of the Σ’s, and composing these paths with the edge Σj0 xxΣj1 would give a
connecting walk in D̄ from υi0 to υi1 given V ∖ {α} ∪ {υi}i which is a contradiction. This means that in D̄ there are no
edges Σj0 xxΣj1 . In D̄ there must be a weakly inducing path from υi to Σj . From the above, if they are not adjacent
in D̄, we see that it must pass through σ1, σ2, or σ3. This would create an inducing path from υi to σ1 or σ2 which is a
contradiction. This means that υi xxΣj in D̄ if and only if ui ∈ Sj . We know that for each Σj there is some i such that
υi xxΣj must be in D̄. Therefore, the edges Σj xxσ1, Σj xxσ2, Σj xxσ3 cannot be in D̄ as they would make υi weakly
inseparable from σ1, σ2, and σ2, respectively. σ1 xxσ2 cannot be in D̄ as this would make Σ1 weakly inseparable from σ2.
The edge σ1 xxσ3 would make the two weakly inseparable in D̄, and so would σ2 xxσ3. α is weakly inseparable from σ1

in D and any weakly inducing path, different from α xxσ1, in D̄ must have a blunt edge between σ1 and σ2, σ3, or Σj for
some j. From the above, this is impossible, so α xxσ1 must be in D̄. The edges α xxσ2 and α xxσ3 cannot be in D̄ as they
would both make α and σ2 weakly inseparable. This shows that D is a greatest element of [D] and that if D̄ ∈ [D] and
some edge, e, is in D but not in D̄, then e is a blunt edge between α and Σj for some j. The reduction from the instance of
the set-covering problem to this graph is done in polynomial time.

Assume that we have a minimal representation of [D] which we denote by D−. We define C− = {Sj ∶ Σj xxD− α}.
We argue that C is a covering. Let uk ∈ U , k = 1, . . . ,m. Then uk ∈ Sj0 for some j0 = 1, . . . , l, and α xxΣj0 xxυ in D.
There must be a covering collider path between α and υk since D− is Markov equivalent with D. The only possibility is
that υk xxΣj1 xxα, and this means that uk ∈ Sj1 ∈ C−.

Assume that C is any covering and define DC to be graph obtained from D by removing every edge α xxSj such that
Sj ∉ C. We will argue that that DC ∈ [D] and for this it suffices to argue that any collider path in D is covered in DC
(Theorem B.32). Every superset of a covering is also a covering and if we show that we can remove an edge, α xxSj ,
Markov equivalently as long as the smaller graph still corresponds to a covering, then the result follows as we can create a
sequence of Markov equivalent graphs, D0,D1, . . . ,DM such that D0 = D and DM = DC . So assume that D2 corresponds
to a covering and that D1 = D2 + {α xxSj0}. Consider a collider path in D1 such that α xxΣj0 is on the path. We assume
first that α appears before Σj0 and divide into cases depending on the subpath after Σj0 . If Σj0 is the final node of the path,
then we can substitute the blunt edge between α and Σj0 with α xxσ1 ← Σj0 to obtain a covering path in D2. If instead,

α xxΣj0 ← σ3

then there must be some j1 such that α xxΣj1 (otherwise the universe is empty) and we obtain a covering walk. Finally, if

α xxΣj0 xxυk
then there exists some j1 such that uk ∈ Sj1 in the covering corresponding to D2 and therefore we can substitute the above
subpath for

α xxΣj1 xxυk
to obtain a covering walk in D2. In each case, if we obtain a covering collider walk, we can reduce it to a covering collider
path. Similarly, if Σj0 appears before α on the original collider path. This shows that DC ∈ [D]. If ∣C∣ < ∣C−∣, thenDC would have strictly fewer edges than D−, and this shows that C− is in fact a minimum set-covering. This proves the
correctness of the polynomial-time (Turing) reduction.

The sets of minimal representations of [G] and G may be different, but they may also be equal. If G is a greatest element
they are in fact equal, and we state this as a proposition.

Proposition 4.3. If G is a greatest element of [G], then every minimal representation of [G] is also a minimal representation
of G and vice versa.

Proof. This follows from the fact that every element of [G] is a subgraph of G.

In the graph constructed in the proof of Theorem 4.2, G is a greatest element and the sets of minimal representations ofG and of [G] are equal.

Theorem 4.4. Let G = (V,E) be a cDG. It is NP-hard to find a minimal representation of G, i.e., Smallest Markov
equivalent subgraph in (cDG, µ) is NP-hard.

Proof. This follows directly from noting that G− in the above proof is also a minimal representation of G.
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Tractable Markov equivalence of cDGs
Paper B argued that deciding Markov equivalence of two cDGs is coNP-hard. One should keep in mind that this is a
worst-case complexity result and the proof of the result exploits arbitrarily long collider paths with no shortcuts. We can
devise a polynomial-time algorithm if we restrict ourselves to cDGs without such malicious structures. We say that a walk
is blunt if it consists of blunt edges only.

Definition 4.5 (The blunt diameter of a cDG). Let G be a cDG. Its blunt diameter is the length of the longest blunt path,

γ1 xxγ2 xx. . .xxγm,
such that γi xxγj implies j = i − 1 or j = i + 1.

By imposing a restriction on the blunt diameter, we can find a polynomial-time algorithm to decide Markov equivalence.
Assume that D1 = (V,E1) and D2 = (V,E2) have blunt diameters less than or equal to a fixed k, and that their directed
parts are equal (otherwise they are surely not Markov equivalent). In this case, every collider path in Di is covered by a
collider path inDi of length k+2 or less, and therefore it is enough to compare collider paths of length k+2 or less. Under
the restriction on the blunt diameters of D1 and D2, the number of those collider paths scales as a polynomial in ∣V ∣ and a
polynomial-time algorithm follows straightforwardly by checking if every collider path of length k + 2 or less is covered
in the other graph and vice versa (e.g., using Proposition 4.6).

We finish this section by stating a result that can be turned into an algorithm for checking if a collider path in D1 is
covered in D2. When D = (V,E) and α,β ∈ V , we define the collider graph of {α,β} to be the cDG Cα,βD = (V,EC) such
that for all γ, δ ∈ V

γ xxδ ∈ EC if and only if γ xxδ ∈ E
and

γ → δ ∈ EC if and only if γ → δ ∈ E and γ ∈ {α,β}.
We say that two nodes are connected if there exists a walk between them.

Proposition 4.6. Let D1 = (V,E) and D2 = (V,E) be cDGs with the same directed edges. Consider a collider path, π, inD1,

α ∼ γ1 xx. . .xxγm ∼ β.
There exists a collider path in D2 which covers π if and only if α and β are connected in (Cα,βD2

)anD2
(α,γi,βi).

Proof. Assume first there exists a path in D2 which covers π,

α ∼ γ̄1 xx. . .xx̄γl ∼ β.
This path is in Cα,βD2

, and by assumption, every γ̃i is an ancestor of {α,β, γ1, . . . , γm}, so this path is also in (Cα,βD2
)anD2

(α,γi,βi).
On the other hand, assume that α and β are connected in (Cα,βD2

)anD2
(α,γi,βi). Then there is a collider path

α ∼ γ̄1 xx. . .xx̄γl ∼ β
such that every node is an ancestor of {α,β, γ1, . . . , γm}. This path is also in D2 and is covering π.





Chapter 5

Structure learning

Structure learning can be viewed as a type of model selection. In classical model selection we will often have a family
of distributions and we choose among these, i.e., we select a model, by optimizing or approximately optimizing some
data-dependent criterion. In structure learning, we choose among a family of structures. We will use graphs to represent
local independence structures, and the task is to choose between these graphs.

There are different approaches to structure learning (see, e.g., Glymour and Cooper (1999); Spirtes et al. (2000) or
Spirtes and Zhang (2018)). The algorithms that we describe in this chapter are all constraint-based in the sense that they
test if some local independences hold or not and in the end output a graph which is consistent with the outcome of those
tests. In this way, we look for graphs that satisfy the constraints that are given by the local independence model. These
tests should be thought of as decision procedures; they will lead us to believe that the graph we are looking for looks like
this or like that - and this means that they are not reject/no reject tests, but rather reject/accept tests.

Assumptions

We will in this chapter assume that we have access to a local independence oracle, a mechanism that will return the
correct answer to a local independence query without uncertainty. Though highly unrealistic, this allows us to separate
the learning into two separate components: a learning algorithm and a statistical test. One advantage of this is that we
can evaluate the performance of a learning algorithm without conflating it with the performance of a specific test of local
independence. Furthermore, while the learning algorithms apply to any class of stochastic processes in which we can
define local independence, the tests will be specific to a model class.

We say that an independence model, I, is Markov with respect to a graph G using the criterion c if whenever B is c-
separated from A by C, it holds that ⟨A,B ∣C⟩ ∈ I. If the opposite implication holds, we say that the independence model
is faithful to the graph. We will throughout this section assume that we have an independence model I which is Markov
with respect to a DMG G0, and furthermore assume that G0 is faithful to I. These assumptions allow us to translate back
and forth between separation and independence statements as these assumptions establish a one-to-one correspondence
between the graphical and the probabilistic independence models. Especially faithfulness is a quite strong assumption to
make.

The graphical learning algorithms we consider will have a specified target, i.e., an unknown graph. We will say that a
learning algorithm is sound if it is guaranteed to output a supergraph of the target graph in the oracle case and say that it
is complete if it is guaranteed to output the target graph itself in the oracle case. Note that the target graph differs between
algorithms as some algorithms attempt to recover targets that are strictly more informative than others.

We will throughout assume that there exists some underlying multivariate stochastic process which generates the dis-
tribution and we assume that the coordinate processes of this underlying multivariate process are indexed by V . Some
coordinate processes may be unobserved, however, and we assume that we observe the coordinate processes in O ⊆ V .
The set O is thus known while V is unknown, apart from the fact that it is a superset of O. We start by considering the
easier case where V = O is assumed.

Definition 5.1 (Causal sufficiency). In the context of structure learning, we will say that the observed processes are causally
sufficient if O = V . 1

1One could relax the definition as there could, e.g., be unobserved stochastic processes that were independent from the processes in O in which case
one could still reasonably call this system causally sufficient. This is not central to this chapter and we will settle for the above simple definition.
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Causal minimality
Definition 5.2 (Causal minimality (Schölkopf et al., 2017)). We say that a DG, G, is causally minimal with respect to a
local independence model, I, if

I(G) ⊆ I
and there is no Ḡ ⊊ G such that Ḡ satisfies the above.

Sadeghi (2017) refers to causal minimality as minimal Markovness. For a collection of local independences, I, the
induced local independence graph is simply the DG, D, such that α →D β if and only if the statement α /→ β ∣ V ∖ {α} is
not in I.

Proposition 5.3. Let I be a local independence model, and let D be the induced local independence graph. Then D is
causally minimal with respect to I whenever we have equivalence of the pairwise and global Markov properties.

Proof. The model I satisfies the pairwise Markov property with respect to D by construction. By equivalence of the
pairwise and global Markov properties it follows that I(D) ⊆ I. Consider instead a proper subgraph of D and denote this
subgraph by D−. Then there exists α,β ∈ V such that α →D β and α /→D− β. This implies α ⊥µ β ∣ V ∖ {α} [D−] and
therefore I(D−) /⊆ I.

The above shows that whenever we have causal sufficiency and equivalence of the Markov properties, we can simply
test if β is locally independent of α given V ∖{α}, and if so leave out the edge α → β. The resulting graph will be causally
minimal. Without causal sufficiency, the graph is not necessarily maximally informative about the local independences
and this motivates learning DMGs instead. In this chapter, Paper C considers the problem of learning a maximal Markov
equivalent graph from an independence oracle using a constraint-based algorithm. This is computationally hard, and in
Paper D we will lower our ambitions and aim only to learn the directed part of this graph.

Learning a maximal DMG
Paper C attempts to output a graph which (using µ-separation) represents the observed local independence model over
O. Under the Markov and faithfulness assumptions, this independence model is represented by an unknown DMG G0 =(O,F ). When [G0] is not a singleton, several DMGs represent the same separation model as G0. From Paper A, we
know that each equivalence class has a maximal element, denoted by N , and we will output this graph. Distinguishing
between the maximal Markov equivalent graph and G0 is impossible when using only tests of local independence. Having
obtained this maximal element, Paper A also shows how to concisely represent the Markov equivalence class by computing
the DMEG which encodes which edges must be in G0, which cannot be in G0, and for which we cannot determine their
presence/absence from the local independence model alone.

The most naive approach to learning the supergraph is to simply use the definitions of potential parents and siblings,
testing for each (ordered) pair of nodes all the conditions in those definitions. Paper C describes a slightly less naive
approach in which we first determine which nodes are separable from each other, and which are not. The output, a
separability graph, is a supergraph of N . We then use some heuristics and the separating sets that are known to us to
remove more edges. We can stop at this point to obtain a sound algorithm, or we can for each edge, if needed, use the
definitions of potential parents and potential siblings to obtain a complete algorithm. The algorithm is reminiscent of
classical constraint-based algorithms in DAG-based structure learning, such as the PC- and FCI-algorithms (Spirtes et al.,
2000; Glymour and Cooper, 1999; Colombo et al., 2012). An important difference is the fact that in the asymmetric case
there is no need for an orientation phase.
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Abstract

Many models of dynamical systems have
causal interpretations that support reasoning
about the consequences of interventions, suita-
bly defined. Furthermore, local independence
has been suggested as a useful independence
concept for stochastic dynamical systems.
There is, however, no well-developed theore-
tical framework for causal learning based on
this notion of independence. We study inde-
pendence models induced by directed graphs
(DGs) and provide abstract graphoid proper-
ties that guarantee that an independence model
has the global Markov property w.r.t. a DG.
We apply these results to Itô diffusions and
event processes. For a partially observed sys-
tem, directed mixed graphs (DMGs) represent
the marginalized local independence model,
and we develop, under a faithfulness assump-
tion, a sound and complete learning algo-
rithm of the directed mixed equivalence graph
(DMEG) as a summary of all Markov equiva-
lent DMGs.

1 INTRODUCTION

Causal learning has been developed extensively using
structural causal models and graphical representations of
the conditional independence relations that they induce.
The Fast Causal Inference (FCI) algorithm and its varia-
tions (RFCI, FCI+, ...) can learn a representation of the
independence relations induced by a causal model even
when the causal system is only partially observed, i.e.,
the data is “causally insufficient” in the terminology of
Spirtes et al. (2000). FCI is, however, not directly ap-
plicable for learning causal relations among entire pro-
cesses in a continuous-time dynamical system. The dy-

namic evolution of such a system cannot be modeled us-
ing a finite number of variables related via a structural
causal model, and standard probabilistic independence
cannot adequately capture infinitesimal conditional in-
dependence relationships between processes since such
relationships can be asymmetric. The asymmetry can in-
tuitively be explained by the fact that the present of one
process may be independent of the past of another pro-
cess, or the reverse, or both.

Local independence was introduced by Schweder (1970)
and is a formalization of how the present of one stochas-
tic process depends on the past of others in a dynamical
system. This concept directly lends itself to a causal in-
terpretation as dynamical systems develop as functions
of their pasts, see e.g. Aalen (1987). Didelez (2000,
2006a, 2008) considered graphical representations of lo-
cal independence models using directed graphs (DGs)
and δ-separation and proved the equivalence of the pair-
wise and global Markov properties in the case of multi-
variate counting processes. Nodelman et al. (2002, 2003)
and Gunawardana et al. (2011) also considered learning
problems in continuous-time models. In this paper, we
extend the theory to a broader class of semimartingales,
showing the equivalence of pairwise and global Markov
properties in DGs. To represent marginalized local inde-
pendence models, Mogensen and Hansen (2018) intro-
duced directed mixed graphs (DMGs) with µ-separation.
Bidirected edges in DMGs (roughly) correspond to de-
pendencies induced by latent processes, and in this sense
DMGs can represent partially observed dynamical sys-
tems. In contrast to the “causally sufficient” setting as
represented by a DG, multiple DMGs may represent the
same set of (marginal) local independence relations; thus
we use the characterization of Markov equivalent DMGs
by Mogensen and Hansen (2018) to propose a sound and
complete algorithm for selecting a set of DMGs consi-
stent with a given collection of independence relations.

Proofs omitted from the main text can be found in the
supplementary material.
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Figure 1: Simulated sample paths (left) for the linear SDE determined by B in (1). The sample paths are from the
observational distribution started in the stationary mean as well as under an intervention regime on α. For the local
independence graph (middle) the color of the edge j → i indicates if the nonzero entryBij is positive (red) or negative
(blue). The step size h difference quotient at 0 for the semigroup t 7→ exp(tB) (right) determines the discrete time
conditional means for time step h transitions. It does not directly reflect the local independences except in the limit
h→ 0, where it converges to the infinitesimal generator B. Danks and Plis (2013) make a similar point in the case of
subsampled time series.

2 CAUSAL DYNAMICAL MODELS

The notion of interventions in a continuous-time model
of a dynamical system is not new, and has been investi-
gated thoroughly in the context of control theory. Causal
models and interventions for event processes and their
relation to graphical independence models have been
treated in detail (Didelez, 2008, 2015). Relations to
structural causal models have been established for ordi-
nary differential equations (ODEs) (Mooij et al., 2013;
Rubenstein et al., 2016). Notions of causality and in-
terventions have also been treated for general stocha-
stic processes such as stochastic differential equations
(SDEs) (Aalen et al., 2012; Commenges and Gégout-
Petit, 2009; Sokol and Hansen, 2014).

To motivate and explain the general results of this paper,
we introduce the toy linear SDE model in R5 given by
dXt = B(Xt −A)dt+ dWt with A = (1, 2, 3, 4, 5)T ,

B =




−1.1 1 1 · ·
· −1.1 · 2.0 ·
· · −1.1 · 1
· · −1 −1.1 ·
1 · · · −1.1


 , (1)

and (Wt) a five-dimensional standard Brownian motion.
The coordinates of this process will be denoted α, β, γ,
δ, and ε. If we assume that this SDE has a causal inter-
pretation, we can obtain predictions under interventions
via manipulations of the SDE itself, see e.g. Sokol and
Hansen (2014). In Figure 1, for instance, we replace the
α coordinate of the SDE by

dXα
t = 1(Xβ

t > 1)dt, Xα
t −Xα

t− = −Xα
t−1(Xβ

t ≤ 1).

The nonzero pattern of the B matrix defines a directed

graph which we identify as the local independence graph
below, which in turn is related to the local independence
model of the SDE. It is a main result of this paper that
the local independence model satisfies the global Markov
property w.r.t. this graph. Under a faithfulness assump-
tion we can identify (aspects of) the causal system from
observational data even when some processes are unob-
served.

It is well known that

Xt+h −Xt | Xt ∼ N ((ehB − I)(Xt −A),Σ(h))

with Σ(h) given in terms ofB. Thus a sample of the pro-
cess at equidistant time points is a vector autoregressive
process with correlated errors. We note that ehB − I is a
dense matrix that will not reveal the local independence
graph unless h is sufficiently small, see Figure 1. The
matrix B is, furthermore, a stable matrix, hence there is
a stationary solution to the SDE and for h→∞ we have
Σ(h)→ Σ, the invariant covariance matrix. We note that
Σ−1 is also a dense matrix, thus the invariant distribution
does not satisfy the global Markov property w.r.t. to any
undirected graph but the complete graph.

In conclusion, the local independence model of the SDE
is not encoded directly neither by Markov properties of
discrete time samples, nor by Markov properties of the
invariant distribution. This is the motivation for our ab-
stract development of local independence models, their
relation to continuous-time stochastic processes, and a
dedicated learning algorithm.
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3 INDEPENDENCE MODELS

Consider some finite set V . An independence model over
V is a set of triples 〈A,B | C〉 such that A,B,C ⊆ V .
We let I denote a generic independence model. Follow-
ing Didelez (2000, 2008) we will consider independence
models that are not assumed to be symmetric inA andB.
The independence models we consider do however satis-
fy other properties which allow us to deduce some inde-
pendences from others. We define the following prop-
erties, some of which have previously been described as
asymmetric (semi)graphoid properties (Didelez, 2006b,
2008). Many of them are analogous to properties in
the literature on conditional independence models (Lau-
ritzen, 1996), though due to the lack of symmetry, one
may define both left and right versions.

• Left redundancy: 〈A,B | A〉 ∈ I
• Left decomposition:
〈A,B | C〉 ∈ I, D ⊆ A⇒ 〈D,B | C〉 ∈ I
• Right decomposition:
〈A,B | C〉 ∈ I, D ⊆ B ⇒ 〈A,D | C〉 ∈ I
• Left weak union:
〈A,B | C〉 ∈ I, D ⊆ A⇒ 〈A,B | C ∪D〉 ∈ I
• Right weak union:
〈A,B | C〉 ∈ I, D ⊆ B ⇒ 〈A,B | C ∪D〉 ∈ I
• Left intersection:
〈A,B | C〉 ∈ I, 〈C,B | A〉 ∈ I ⇒
〈A ∪ C,B | A ∩ C〉 ∈ I
• Left composition:
〈A,B | C〉 ∈ I, 〈D,B | C〉 ∈ I ⇒
〈A ∪D,B | C〉 ∈ I
• Right composition:
〈A,B | C〉 ∈ I, 〈A,D | C〉 ∈ I ⇒
〈A,B ∪D | C〉 ∈ I
• Left weak composition:
〈A,B | C〉 ∈ I, D ⊆ C ⇒ 〈A ∪D,B | C〉 ∈ I

For disjoint sets A,C,D ⊆ V , we say that A and D
factorize w.r.t. C if there exists a partition C = C1 ∪̇ C2

such that (i) and (ii) hold:

(i) 〈A,C1 ∪D | C ∪D〉 ∈ I
(ii) 〈D,C2 ∪A | C ∪A〉 ∈ I.

Definition 1. The independence model I satisfies can-
cellation if 〈A,B | C∪{δ}〉 ∈ I implies 〈A,B | C〉 ∈ I
whenever A and {δ} factorize w.r.t. C. Such an indepen-
dence model is called cancellative.

Cancellation is related to ordered downward-stability as
defined by Sadeghi (2017) for symmetric independence
models over a set with a preorder and studied in relation
to separation in acyclic graphs.

3.1 DIRECTED MIXED GRAPHS

We wish to relate a local independence model, as defined
in Section 4, to a graph and therefore we need a notion
of graphical separation which allows for asymmetry. Di-
rected mixed graphs along with µ-separation will provide
the means for such graphical modeling of local indepen-
dence. The subsequent definitions follow Mogensen and
Hansen (2018), which we refer to for further details.

Definition 2 (Directed mixed graph). A directed mixed
graph (DMG) is an ordered pair (V,E) where V is a
finite set of vertices (also called nodes) and E is a finite
set of edges of the types → and ↔. A pair of vertices
α, β ∈ V may be joined by any subset of {α → β, α ←
β, α ↔ β}. Note that we allow for loops, i.e., edges
α→ α and/or α↔ α.

Let G1 = (V,E1) and G2 = (V,E2) be DMGs. If
E1 ⊆ E2, then we write G1 ⊆ G2 and say that G2 is a
supergraph of G1. The complete DMG on V is the DMG
which is a supergraph of all other DMGs with vertices
V . Throughout this paper, G will denote a DMG with
node set V and edge set E. We will also consider di-
rected graphs (DGs) which are DMGs with no bidirected
edges. Let α, β ∈ V . We will say that the edge α → β
has a head at β and a tail at α, and that the edge α ↔ β
has heads at both α and β. When we write e.g. α → β
this does not preclude other edges between these nodes.
We use α ∗→ β to denote any edge between α and β
that has a head at β. A letter over an edge, e.g. α e→ β,
denotes simply that e refers to that specific edge. If the
edge α→ β is in the graph then we say that α is a parent
of β and if α↔ β then we say that α and β are siblings.
Let pa(α) (or paG(α) to make the graph explicit) denote
the set of parents of α in G. Note that due to loops, α can
be both a parent and a sibling of itself.

A walk is an alternating, ordered sequence of nodes
and edges along with an orientation of the edge such
that each edge is between its two adjacent nodes,
〈ν1, e1, ν2, . . . , en, νn+1〉, where νi ∈ V and ej ∈ E.
We say that the walk is between ν1 and νn+1 or from
ν1 to νn+1. The ν1 and νn+1 are called the endpoint
nodes of the walk. A non-endpoint node νi, i 6= 1, n+ 1,
is called a collider if the two adjacent edges on the
walk both have heads at the node, and otherwise a non-
collider. Note that the endpoint nodes are neither colli-
ders nor non-colliders. A walk is called trivial if it con-
sists of a single node and no edges. A path is a walk
where no node is repeated. A path from α to β is di-
rected if every edge on the path is directed and points
towards β. We say that α is an ancestor of a set C ⊆ V
if there exists a (possibly trivial) directed path from α to
γ ∈ C. We let an(C) denote the set of nodes that are
ancestors to C. Note that C ⊆ an(C).
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Any node is µ-separated from either α by C ∪{δ} or δ by C ∪{α} (middle), and as I(G) is cancellative, α ⊥µ β | C.
A corresponding factor graph (right) with the three factor nodes Ψ1, Ψ2 and λ̄β , cf. Theorem 14.

3.1.1 µ-separation

Definition 3 (µ-connecting walk). A µ-connecting walk
from α to β given C is a non-trivial walk from α to β
such that α /∈ C, every non-collider is not inC and every
collider is in an(C), and such that the final edge has a
head at β.

Definition 4. Let α, β ∈ V,C ⊆ V . We say that β is
µ-separated from α given C in the graph G if there is no
µ-connecting walk from α to β in G givenC. For general
sets, A,B,C ⊆ V , we say that B is µ-separated from
A given C and write A ⊥µ B | C if β is µ-separated
from α given C for every α ∈ A and β ∈ B. We write
A ⊥µ B | C [G] if we wish to make explicit to which
graph the statement applies.

Note that this definition means that B is separated from
A given C whenever A ⊆ C. We associate an indepen-
dence model I(G) with a DMG G by

〈A,B | C〉 ∈ I(G)⇔ A ⊥µ B | C [G].

Lemma 5. The independence model I(G) satisfies left
and right {decomposition, weak union, composition}
and left {redundancy, intersection, weak composition}.
Furthermore, 〈A,B | C〉 ∈ I(G) whenever B = ∅.
Lemma 6. I(G) satisfies cancellation.

3.1.2 Markov equivalence

We say that DMGs G1 = (V,E1), G2 = (V,E2) are
Markov equivalent if I(G1) = I(G2) and this defines
an equivalence relation. We let [G] denote the (Markov)
equivalence class of G. For DMGs, it does not hold
that Markov equivalent graphs have the same adjacen-
cies. Note that the same is true for the directed (cyclic)
graphs with no loops considered by Richardson (1996,

1997) in another context. We say that a DMG is maxi-
mal if it is complete or if no edge can be added without
changing the associated Markov equivalence class. Mo-
gensen and Hansen (2018) define for every vertex in a
DMG a set of potential parents and potential siblings
(both subsets of V ) using the independence model in-
duced by the graph (these definitions are also included
in the supplementary material). We let pp(α, I) denote
the set of potential parents of α and ps(α, I) denote
the set of potential siblings of α in the independence
model I. If G1 and G2 are Markov equivalent we thus
have pp(α, I(G1)) = pp(α, I(G2)) and ps(α, I(G1)) =
ps(α, I(G2)) for each α ∈ V . Given a DMG G and
independence model I = I(G), one can construct an-
other DMG N in which α is a parent of β if and only
if α ∈ pp(β, I) and α and β are siblings if and only
if α ∈ ps(β, I). Mogensen and Hansen (2018) showed
that N ∈ [G], that it is a supergraph of all elements of
[G], and that N is maximal. This allows one to define
a directed mixed equivalence graph (DMEG) from the
(unique) maximal graph N in the equivalence class to
summarize the entire equivalence class. The DMEG is
constructed fromN by partitioning the edge set into two
subsets: one consisting of the edges which are common
to all graphs in the Markov equivalence class, and one
consisting of edges that are present in some members of
the equivalence class but absent in others. One may visu-
alize the DMEG by drawing N and making the edges in
the latter set dashed. Note that by collapsing the distinc-
tion between dashed and solid edges one may straight-
forwardly apply µ-separation to a given DMEG.

3.2 MARKOV PROPERTIES

The main result of this section gives conditions on an
abstract independence model ensuring equivalence be-
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tween the pairwise and the global Markov properties
w.r.t. a directed graph with µ-separation. In the next
section we give examples of classes of processes that ful-
fill these conditions, extending results in Didelez (2008)
to a broader class of models. We take an axiomatic ap-
proach to proving the equivalence in the sense that we
describe some abstract properties and use only these to
show the equivalence. This is analogous to what Lau-
ritzen and Sadeghi (2017) did in the case of symmetric
independence models.
Definition 7. A DG and an independence model satisfy
the pairwise Markov property if for α, β ∈ V ,

α /∈ pa(β)⇒ 〈α, β | V \ {α}〉 ∈ I
A DMG and an independence model satisfy the global
Markov property if for A,B,C ⊆ V ,

A ⊥µ B | C ⇒ 〈A,B | C〉 ∈ I.

Theorem 8. Assume that I is an independence
model that satisfies left {redundancy, intersection, de-
composition, weak union, weak composition}, right
{decomposition, composition}, is cancellative, and fur-
thermore 〈A,B | C〉 ∈ I whenever B = ∅. Let D be a
DG. Then I satisfies the pairwise Markov property with
respect to D if and only if it satisfies the global Markov
property with respect to D.

To keep consistency with earlier literature, we define
the pairwise Markov condition above as the absence of
an edge, which does not directly generalize to DMGs.
Therefore, we prove the equivalence of pairwise and
global Markov only in the class of DGs. The main pur-
pose of DMGs is to represent Markov properties from
marginalized DGs as defined below, in which case the
global Markov property w.r.t. a DMG is inherited from
the DG.
Definition 9 (Marginal independence model). Assume
that I is an independence model over V . Then the
marginal independence model of I over O ⊆ V , IO,
is the independence model,

IO = {〈A,B | C〉 | 〈A,B | C〉 ∈ I;A,B,C ⊆ O}.

Mogensen and Hansen (2018) give a marginalization al-
gorithm (a.k.a. a “latent projection”), which outputs a
marginal DMG, G = (O,F ), from a DG, D = (V,E),
such that I(D)O = I(G). If I satisfies the global
Markov property w.r.t. D then

I(G) = I(D)O ⊆ IO.
This shows that the marginalized independence model
IO then satisfies the global Markov property w.r.t. the
DMG G.

4 LOCAL INDEPENDENCE

This section introduces local independence models and
local independence graphs. The main results of the sec-
tion provide verifiable conditions that ensure that a local
independence model satisfies the global Markov property
w.r.t. the local independence graph.

Let X = (X1
t , . . . , X

n
t ) for t ∈ [0, T ] be a càdlàg

stochastic process defined on the probability space
(Ω,F , P ). Introduce for A ⊆ V = {1, . . . , n} the filtra-
tionFAt as the completed and right continuous version of
σ({Xα

s , s ≤ t, α ∈ A}). Let also λ = (λ1
t , . . . , λ

n
t ) be

an integrable càdlàg stochastic process. This λ-process
need not have any specific relation to X a priori, but for
the main Theorem 14 the relation is through the compat-
ibility processes defined below. Note that some compu-
tations below technically require that E(· | Ft) is com-
puted as the optional projection, cf. Theorem VI.7.1 and
Lemma VI.7.8 in Rogers and Williams (2000). This is
unproblematic, and will not be discussed any further.

Definition 10. We say that B is λ-locally independent
of A given C if the process

t 7→ E(λβt | FA∪Ct )

has an FCt -adapted version for all β ∈ B. In this case
we write A 6→λ B | C.

This is slightly different from the definition in Didelez
(2008) in that β is not necessarily in the conditioning
set. This change in the definition makes it possible for a
process to be locally independent from itself given some
separating set. We define the local independence model,
I(X,λ), determined by X and λ via

〈A,B | C〉 ∈ I(X,λ)⇔ A 6→λ B | C.

When there is no risk of ambiguity we say that B is lo-
cally independent of A given C, and we write A 6→ B |
C and I = I(X,λ).

The local independence model satisfies a number of the
properties listed in Section 3.

Lemma 11. Let I be a local independence model. Then
it satisfies left {redundancy, decomposition, weak union,
weak composition} and right {decomposition, composi-
tion} and furthermore 〈A,B | C〉 ∈ I whenever B = ∅.
If FAt ∩ FCt = FA∩Ct holds for all A,C ⊆ V and
t ∈ [0, T ], then left intersection holds.

Definition 12. The local independence graph is the di-
rected graph with node set V = {1, . . . , n} such that

α 6∈ pa(β)⇔ α 6→λ β | V \{α}.
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By Theorem 8 and Lemma 11 a local independence
model that satisfies left intersection and is cancellative
satisfies the global Markov property w.r.t. the local in-
dependence graph. Left intersection holds by Lemma
11 whenever FAt ∩ FCt = FA∩Ct . Theorem 14 below
gives a general factorization condition on the distribu-
tion of the stochastic processes that ensures a local in-
dependence model to be cancellative. This condition is
satisfied for example by event and Itô processes.

Introduce for C ⊆ V and β ∈ V the shorthand notation

λC,βt = E(λβt | FCt ).

Furthermore, for α ∈ A ⊆ V let

ΨA,α
t = ψαt ((λA,αs )s≤t, (X

α
s )s≤t)

denote a càdlàg process that is given in terms of a positive
functional ψαt of the history of the λA,α- and the Xα-
processes up to time t.

Definition 13. We say that P λ-factorizes with compa-
tibility processes ΨA,α > 0 if for all A ⊆ V

P =
1

ZAt

∏

α∈A
ΨA,α
t ·QAt

with QAt a probability measure on (Ω,F) such that
(Xα

s )0≤s≤t for α ∈ A are independent under QAt . Here,
ZAt is a deterministic normalization constant.

Theorem 14. The local independence model I(X,λ) is
cancellative if P λ-factorizes.

Proof. Assume that A, {δ} ⊆ V factorize w.r.t. C =
C1∪̇C2. In this proof, (i) and (ii) refer to the factorization
properties, see Definition 1. Let F = C ∪A∪{δ}. Then
by (i)

ΨF,γ
t = ψγt ((λC∪{δ},γs )s≤t, (X

γ
s )s≤t) = Ψ

C∪{δ},γ
t

for γ ∈ C1 ∪ {δ}, and by (ii)

ΨF,γ
t = ψγt ((λC∪A,γs )s≤t, , (X

γ
s )s≤t) = ΨC∪A,γ

t

for γ ∈ C2 ∪A.

It follows that

∏

γ∈F
ΨF,γ
t =

Ψ1
t︷ ︸︸ ︷∏

γ∈C1∪{δ}
Ψ
C∪{δ},γ
t

Ψ2
t︷ ︸︸ ︷∏

γ∈C2∪A
ΨC∪A,γ
t

= Ψ1
tΨ

2
t ,

cf. Figure 2. Note that Ψ2
t is FC∪At -adapted. Let β ∈

B. We have 〈A,B | C ∪ {δ}〉 ∈ I, hence with λ̄βt =

λ
C∪{δ},β
t

E(λβt | FC∪At ) = E(E(λβt | FC∪A∪{δ}t ) | FC∪At )

= E(λ̄βt | FC∪At )

=
EQF

t
(λ̄βt Ψ1

tΨ
2
t | FC∪At )

EQF
t

(Ψ1
tΨ

2
t | FC∪At )

=
EQF

t
(λ̄βt Ψ1

t | FC∪At )

EQF
t

(Ψ1
t | FC∪At )

=
EQF

t
(λ̄βt Ψ1

t | FCt )

EQF
t

(Ψ1
t | FCt )

= λC,βt

where the second last identity follows from Xα for α ∈
A being independent of Xγ for γ ∈ C ∪ {δ} under QFt .
We conclude that 〈A,B | C〉 ∈ I, and this shows that I
is cancellative.

4.1 ITÔ PROCESSES

For X a multivariate Itô process with Xα fulfilling the
equation

Xα
t =

∫ t

0

λαs ds+ σt(α)Wα
t

with Wt a standard Brownian motion (σt(α) > 0 deter-
ministic) we introduce the compatibility processes

ΨA,α
t = exp

(∫ t

0

λA,αs

σ2
s(α)

dXα
s −

1

2

∫ t

0

(
λA,αs

σs(α)

)2

ds

)
.

The following result is a consequence of Theorem 7.3 in
Liptser and Shiryayev (1977) combined with Theorem
VI.8.4 in Rogers and Williams (2000).

Proposition 15. If for all A ⊆ V

E

(∏

α∈A
(ΨA,α

t )−1

)
= 1 (2)

then P λ-factorizes.

It can be shown that the linear SDE introduced earlier
satisfies the integrability condition (2).

4.2 EVENT PROCESSES

For X a multivariate counting process with Xα having
intensity process λα we introduce the compatibility pro-
cesses

ΨA,α
t = exp

(∫ t

0

log(λA,αs− )dXα
s −

∫ t

0

λA,αs ds

)
.
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Here λA,αs− = limr→s− λA,αr denotes the left continuous
(and thus predictable) version of the intensity process
λA,αt = E(λαt | FAt ). With these compatibility pro-
cesses, Proposition 15 above holds exactly as formulated
for Itô processes, see e.g. Sokol and Hansen (2015) for
details and weak conditions ensuring that (2) holds.

5 LEARNING ALGORITHMS

In this section, we assume that we have access to a lo-
cal independence oracle that can answer whether or not
some independence statement is in I. In applications,
the oracle would of course be substituted with statisti-
cal tests of local independence. The local independence
model, I, is assumed to be faithful to some DMG G0, i.e.
I = I(G0).

Meek (2014) described a related algorithm for learning
local independence graphs which is, however, not com-
plete when the system of stochastic processes is only par-
tially observed. In the FCI algorithm, which learns an
equivalence class of MAGs (Maximal Ancestral Graphs),
one can exploit the fact that Markov equivalent graphs
have the same adjacencies, so the learning algorithm can
first find this so-called skeleton of the graph and then ori-
ent the edges by applying a finite set of rules (Zhang,
2008; Ali et al., 2009). Since Markov equivalent DMGs
may have different adjacencies, we cannot straightfor-
wardly copy the FCI strategy here, and our procedure is
more complicated.

5.1 A THREE-STEP PROCEDURE

As described in Section 3.1.2, we know that there exists
a unique graph which is Markov equivalent to G0 and a
supergraph of all DMGs in [G0] and we denote this graph
by N . In this section we give a learning algorithm ex-
ploiting this fact. Having learned the maximal DMG N
we can subsequently construct a DMEG to summarize
the Markov equivalence class.

The characterization of Markov equivalence of DMGs in
Mogensen and Hansen (2018) implies a learning algo-
rithm to construct N which is Markov equivalent to G0.
For each pair of nodes α, β there exists a well-defined
list of independence tests such that α→ β is inN if and
only if all requirements in the list is met by I(G0), ana-
logously for the edge α ↔ β (see conditions (p1)-(p4)
and (s1)-(s3) in the supplementary material). This means
that we can use these lists of tests to construct a maxi-
mal graph N such that I(N ) = I(G0). However such
an algorithm would perform many more independence
tests than needed and one can reduce the number of in-
dependence tests conducted by a kind of preprocessing.
Our proposed algorithm starts from the complete DMG

input : a local independence oracle for I
output: a DMG, G = (V,E)
initialize G as the complete DMG, set n = 0,

initialize Ls = ∅,Ln = ∅;
while n ≤ maxβ∈V |paG(β)| do

foreach α→ β ∈ E do
foreach C ⊆ paG(β)\{α}, |C| = n do

if α 6→λ β | C then
delete α→ β and α↔ β from G;
update Ls = Ls ∪ {〈α, β | C〉};

else
update Ln = Ln ∪ {〈α, β | C〉};

end
end

end
update n = n+ 1;

end
set n = 1;
while n ≤ maxα,β∈V |DG(α, β)| do

foreach α→ β ∈ E do
foreach C ⊆ DG(α, β), |C| = n do

if α 6→λ β | C then
delete α→ β and α↔ β from G;
update Ls = Ls ∪ {〈α, β | C〉};

else
update Ln = Ln ∪ {〈α, β | C〉};

end
end
update n = n+ 1;

end
end
return G, Ls, Ln

Subalgorithm 1: Separation step

and removes edges that are not in G0 by an FCI-like ap-
proach, exploiting properties of DMGs and µ-separation,
and then in the end applies the potential parents and po-
tential siblings definitions (see the supplementary mate-
rial), but only if and when needed.

In this section we describe three steps (and three subalgo-
rithms): a separation, a pruning, and a potential step, and
then we argue that we can construct a sound and com-
plete algorithm by using these steps. For all three steps,
we sequentially remove edges starting from the complete
DMG on nodes V . We will also along the way update
a set of triples Ls corresponding to independence state-
ments that we know to be in I and a set of triples Ln
corresponding to independence statements that we know
to not be in I. We keep track of this information as we
will reuse some of it to reduce the number of indepen-
dence tests that we conduct. Figure 3 illustrates what
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input : a separability graph, S, a set of known
independencies Ls

output: a DMG
initialize G = S;
foreach unshielded W -structure in S , w(α, β, γ) do

if β ∈ Sα,γ such that 〈α, γ | Sα,γ〉 ∈ Ls then
if β ↔ γ is in G then

delete β ↔ γ from G;
end

else
if β → γ is in G then

delete β → γ from G;
end

end
end
return G

Subalgorithm 2: Pruning step

each subalgorithm outputs for an example G0.

5.1.1 The separation step

When we have an independence model I over V , we will
for α, β ∈ V say that β is inseparable from α if there
exists no C ⊆ V \ {α} such that 〈α, β | C〉 ∈ I. Let

u(β, I) = {γ ∈ V | β is inseparable from γ in I}.

The purpose of the first step is to output a separability
graph. The separability graph of an independence model
I is the DMG such that the edge α → β is in the DMG
if and only if α ∈ u(β, I) and the edge α ↔ β is in the
DMG if and only if α ∈ u(β, I) and β ∈ u(α, I).

We say that γ is directedly collider connected to β if
there exists a non-trivial walk from γ to β such that every
non-endpoint node on the walk is a collider and such that
the final edge has a head at β. As shorthand, we write
γ � β. We define the separator set of β from α,

DG(α, β) = {γ ∈ an(α, β) | γ � β} \ {α}.

If there exists a subset of V \ {α} that separates β from
α, then this set does (Mogensen and Hansen, 2018). This
set will play a role analogous to that of the set Possible-
D-Sep in the FCI algorithm (Spirtes et al., 2000).

In the first part of Subalgorithm 1, we consider pairs
of nodes, α, β, and test if they can be separated by
larger and larger conditioning sets, though only subsets
of paG(β) \ {α} in the current G. In the second part, we
use all subsets of the current separator set DG(α, β) to
determine separability of each pair of nodes. Note that
separability is not symmetric, hence, one needs to de-
termine separability of β from α and of α from β. The

input : a local independence oracle for I, a DMG
G = (V,E), a set of known dependencies
Ln

output: a DMG
foreach α e→ β ∈ E do

if I(G − e) ∩ Ln = ∅ then
if α /∈ pp(β, I) then

delete α→ β in G;
end

end
end
foreach α e↔ β ∈ E do

if I(G − e) ∩ Ln = ∅ then
if α /∈ ps(β, I) then

delete α↔ β in G;
end

end
end
return G

Subalgorithm 3: Potential step

candidate separator sets may be chosen in more-or-less
efficient ways, but we will not discuss this aspect of the
algorithm (Colombo et al., 2012; Claassen et al., 2013).

Lemma 16. Subalgorithm 1 outputs the separability
graph of I, S, and furthermore N ⊆ S.

5.1.2 The pruning step

Let S denote the graph in the output of Subalgorithm
1. One can use some of the information encoded by the
graph along with the set Ls to further prune the graph.
For this purpose, we consider W -structures which are
triples of nodes α, β, γ such that α 6= β 6= γ, and α →
β ∗→ γ. We denote such a triple by w(α, β, γ). We will
say that a W -structure is unshielded if the edge α → γ
is not in the graph. For every unshielded W -structure
w(α, β, γ), there exists exactly one triple 〈α, γ | C〉 in
Ls (output from Subalgorithm 1) and we let Sα,γ denote
the separating set C.

Lemma 17. Subalgorithm 2 outputs a supergraph of N .

5.1.3 Potential step

In the final step, we sequentially consider each edge
which is still in the graph. If G = (V,E) and e ∈ E
we let G − e denote the DMG (V,E \ {e}). We then
check if I(G − e) ∩ Ln = ∅. If not, we leave this edge
in the graph. On the other hand, if the intersection is the
empty set, we check if the edge is between a pair of po-
tential parents/siblings using the definition of these sets.

PAPER C 121



G0

α

β

γ

δ

ε

S
α

β

γ

δ

ε

S̃
α

β

γ

δ

ε

N
α

β

γ

δ

ε

Ñ
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Figure 3: Illustration of the learning algorithm. The DMG G0 is the underlying graph and we have access to I = I(G0).
Subalgorithm 1 outputs S, the separability graph of I(G0). Subalgorithm 2 prunes S and outputs S̃. Note e.g. the
unshielded W -structure α → β → ε in S. The DMG N is the maximal element in [G0]. Note that δ → ε has been
removed by Subalgorithm 3 using the potential parent criteria. The final graph Ñ is the DMEG constructed from N .

α β

γ

δ

ε

α β

δ

ε

Figure 4: Left: linear SDE example (see Figure 1).
Right: the DMEG after marginalization over γ. It is
not possible to decide if a loop is directed or bidirected
from the independence model only and we choose only
to draw the directed loop and to not present it as dashed.

That is, in the case of a directed edge we check each of
the conditions (p1)-(p4) and in the case of a bidirected
edge each of the conditions (s1)-(s3); both sets of con-
ditions are in the supplementary material. Note that if
α ∈ ps(β, I), then also β ∈ ps(α, I).

Theorem 18. The algorithm defined by first doing the
separation step, then the pruning, and finally the potential
step outputs N , the maximal element of [G0].

Using properties of maximal DMGs, Mogensen and
Hansen (2018) showed how one can construct the DMEG
efficiently. The learning algorithm that is defined by
first constructing N and then constructing the DMEG is
sound and complete in the sense that if an edge is absent
in the DMEG, then it is also absent in any element of [G0]
and therefore also in G0. If it is present and not dashed in
the DMEG, then it is present in all elements of [G0] and
therefore also in G0. Finally, if it is present and dashed
in the DMEG, then there exist G1,G2 ∈ [G0] such that
the edge is present in G1 and absent in G2 and therefore

it is impossible to determine if the edge is in G0 using
knowledge of I(G0) only.

One could also skip the potential step to reduce the com-
putational requirements. The resulting DMG is then a
supergraph of the true graph. A small simulation study
(supplementary material) indicates that one could save
quite a number of tests and still get close to the true N .

6 CONCLUSION AND DISCUSSION

We have shown that for a given directed graph with µ-
separation it is possible to specify abstract properties that
ensure equivalence of the pairwise and global Markov
properties in asymmetric independence models. We have
shown that under certain conditions these properties hold
in local independence models of Itô diffusions and event
processes, extending known results.

Assuming faithfulness, we have given a sound and com-
plete learning algorithm for the Markov equivalence
class of directed mixed graphs representing a marginal-
ized local independence model. Faithfulness is not an
innocuous assumption and it remains an open research
question how common this property is in different classes
of stochastic processes.
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This supplementary material contains proofs that were
omitted in the paper. It also contains the potential par-
ent and potential sibling criteria and reports the results
of a small simulation study illustrating the cost and the
impact of the potential step in the learning algorithm.

A PROOFS OF LEMMAS 5 AND 6

Lemma 5. The independence model I(G) satisfies left
and right {decomposition, weak union, composition}
and left {redundancy, intersection, weak composition}.
Furthermore, 〈A,B | C〉 ∈ I(G) whenever B = ∅.

Proof. Left redundancy, left and right decomposition
and left and right composition follow directly from the
definition of µ-separation. Left and right weak union are
also immediate. Left weak composition follows from left
redundancy, left decomposition and left composition. It
is also clear that 〈A,B | C〉 ∈ I(G) if B = ∅.
For left intersection, consider a µ-connecting walk, ω =
〈ν1, e1, . . . , en, νn+1〉 from δ = ν1 ∈ A ∪ C to β =
νn+1 ∈ B given A ∩ C. This walk is by definition non-
trivial. Consider now the shortest possible non-trivial
subwalk of ω of the form ω̃ = 〈νi, ei, . . . , en, νn+1〉 such
that νi ∈ (A∪C) \ (A∩C). Such a subwalk always ex-
ists and it is µ-connecting either from A to B given C or
from C to B given A.

Lemma 6. I(G) satisfies cancellation.

Proof. The contrapositive of A ⊥µ B | C ∪ {δ} ⇒
A ⊥µ B | C is A 6⊥µ B | C ⇒ A 6⊥µ B | C ∪ {δ}.
So we have that A ⊥µ C1 ∪ {δ} | C ∪ {δ}, δ ⊥µ C2 ∪
A | C ∪ A, and A 6⊥µ B | C and want to show that
A 6⊥µ B | C ∪{δ}. Note that A ⊥µ δ | C ∪{δ} by right
decomposition.

There exists a µ-connecting walk ω from α ∈ A to some
β ∈ B given C, and we argue that this walk is also

µ-connecting given C ∪ {δ}. Suppose not, for contra-
diction. Note that α 6∈ C so α 6∈ C ∪ {δ} since by
factorization A,C, {δ} are disjoint. Also every collider
on ω is in an(C) so it is in an(C ∪ {δ}). Thus if ω is
not µ-connecting given C ∪ {δ} it must be because there
is some non-collider on ω which is not in C but is in
C ∪ {δ}, i.e., the non-collider is δ. Choose now a sub-
walk of ω between some (possibly different) α ∈ A and
δ such that no non-endpoint node of this subwalk is in
A ∪ {δ}. Again, α /∈ C ∪ {δ}. Such a subwalk always
exists.

There are two possibilities: either there is an arrowhead
into δ on this subwalk of ω or there is not. In the first
case, the subwalk of ω from α into δ is µ-connecting
given C ∪ {δ}, i.e., A 6⊥µ δ | C ∪ {δ}. Contradiction. In
the second case, we consider a collider ε on the subwalk
between α and δ (if there is no collider on the walk, then
the directed walk from δ to α is µ-connecting given C ∪
A). Either ε ∈ C1, ε ∈ C2, or there is a (non-trivial)
directed walk from ε to some ε′ that is either inC1 orC2.
If ε ∈ C1, there is a µ-connecting subwalk of ω from α
to ε ∈ C1 given C. Since there are no non-colliders on
this walk in {δ}, it is also µ-connecting given C∪{δ}. If
ε ∈ C2, likewise there is a µ-connecting walk from δ to
C2 given C∪A (note that there are no non-colliders inA
on this walk by choice of α). Either way, contradiction.

If ε 6∈ C, we consider concatenating one of the afore-
mentioned walks to ε with the directed path ω′ from ε
to ε′ ∈ C. Either δ appears on ω′ or it does not. In the
first case, then there is an arrowhead at δ on ω′ and so
A 6⊥µ δ | C ∪ {δ} as before. In the latter case, there
are two subcases to consider: either there is some vertex
in A on ω′ or there is not. If there is, choose α′ ∈ A
on ω′ such that there are no vertices in A nearer to ε on
ω′. Then the the walk from δ to α′ is µ-connecting given
C ∪A. If there is no vertex in A on ω′, then by concate-
nating a subwalk of ω to ω′ we get a µ-connecting walk
from α or δ to ε′ in C1 or C2 given C ∪ {δ} or C ∪ A,
respectively. In any case, contradiction.
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B PROOF OF THEOREM 8

In this section, we first prove some lemmas and then use
these to prove Theorem 8.

Lemma 19. If A ⊥µ B | C and A ⊥µ D | C, then
A ⊥µ B | C ∪D.

Proof. This follows from right composition, right weak
union, and right decomposition of µ-separation.

Lemma 20. Assume γ ∈ an(A∪B ∪C) and α, γ /∈ C.
If there is a walk between α ∈ A and γ such that no non-
collider is in C and every collider is in an(C), and there
is a µ-connecting walk from γ to β ∈ B given C, then
there is a µ-connecting walk from A to B given C.

If ω = 〈ν1, e1, ν2, . . . , en, νn+1〉 is a walk, then the in-
verse, ω−1, is the walk 〈νn+1, en, νn, . . . , e1, ν1〉.

Proof. If γ ∈ an(C), then simply compose the walks.
Assume γ /∈ an(C). If γ ∈ an(A) let π denote the
directed path from γ to ᾱ ∈ A. We have that there
is no node in C on π and composing π−1 with the µ-
connecting walk from γ to B gives a µ-connecting walk
from ᾱ ∈ A to β ∈ B given C. If γ ∈ an(B) compose
the walk from α to γ with the directed path from γ to B
(which is µ-connecting given C as γ /∈ an(C)).

Lemma 21. Assume that I satisfies left weak com-
position, left intersection, and left decomposition. If
A ∩D = ∅ then

〈A,B | C ∪D〉 ∈ I, 〈D,B | C ∪A〉 ∈ I ⇒
〈A ∪D,B | C〉 ∈ I.

Proof. By left weak composition 〈A ∪C,B | C ∪D〉 ∈
I, 〈D∪C,B | C∪A〉 ∈ I. It follows by left intersection
that 〈A ∪ C ∪D,B | C〉 ∈ I and by left decomposition
the result follows.

Lemma 22. Let D = (V,E) be a DG, and let α, β ∈ V .
Then α /∈ paD(β) if and only if α ⊥µ β | V \ {α}.

In the following proofs, we will use ∼ to denote an arbi-
trary edge.

Proof. Assume first that α /∈ paD(β), and consider a
walk between α and β that has a head at β, α ∼ . . . ∼
γ → β. We must have that α 6= γ and therefore the walk
is not µ-connecting given V \ {α}.
Assume instead that α ⊥µ β | V \{α}. The edge α→ β
would constitute a µ-connecting walk given V \ {α} and
therefore we must have that α /∈ paD(β).

Theorem 8. Assume that I is an independence
model that satisfies left {redundancy, intersection, de-
composition, weak union, weak composition}, right
{decomposition, composition}, is cancellative, and fur-
thermore 〈A,B | C〉 ∈ I whenever B = ∅. Let D be a
DG. Then I satisfies the pairwise Markov property with
respect to D if and only if it satisfies the global Markov
property with respect to D.

Proof. It follows directly from the definitions and
Lemma 22 that the global Markov property implies the
pairwise Markov property. Assume that I satisfies the
pairwise Markov property w.r.t. D and let A,B,C ⊆ V .
Assume A ⊥µ B | C. We wish to show that 〈A,B |
C〉 ∈ I.

Assume |V | = n > 0. We will proceed using reverse
induction on |C|. As the induction base, C = V . The
result follows by noting that 〈V,B | V 〉 ∈ I by left
redundancy of I. By left decomposition of I, we get
〈A,B | V 〉 ∈ I.

For the induction step, consider a node γ /∈ C. Note
first that if A ⊆ C, then the result once again follows
using left redundancy and then left decomposition, and
therefore assume that A \ C 6= ∅, and take α ∈ A \ C
(note that α = γ is allowed). Assume first that we cannot
choose α and γ such that α 6= γ. This means that C =
V \ {α}. By right decomposition of I(G) we have that
A ⊥µ β | C for all β ∈ B, and by left decomposition
of I(G) we have α ⊥µ β | C. If B = ∅, then the
result follows by assumption, and else by the pairwise
Markov property and Lemma 22 we have 〈α, β | C〉 ∈ I
for all β ∈ B and by right composition of I we have
〈α,B | C〉 ∈ I. By left weak composition, we have
〈A,B | C〉 ∈ I.

Now assume γ 6= α. We split the proof into two cases,
(i) and (ii), depending on whether or not we can choose
γ as an ancestor to A ∪B ∪ C.

Case (i): γ ∈ an(A ∪B ∪ C)
We have that γ ⊥µ B | C or A ⊥µ γ | C by Lemma 20.
We split into two subcases, (i-1) and (i-2).

Case (i-1): γ ⊥µ B | C
By left composition of I(G), A ∪ {γ} ⊥µ B | C and
by left weak union A ∪ {γ} ⊥µ B | C ∪ {γ} as well
as A ∪ {γ} ⊥µ B | C ∪ (A \ {γ}). By the induction
hypothesis and noting thatC∪{γ} 6= C 6= C∪(A\{γ}),
〈A∪{γ}, B | C ∪{γ}〉 ∈ I, and 〈A∪{γ}, B | C ∪ (A\
{γ})〉 ∈ I. By left decomposition of I and Lemma 21,
the result follows.

Case (i-2): A ⊥µ γ | C
In this case, we can assume that γ /∈ A, as otherwise
by left decomposition of I(G) we would also have γ ⊥µ
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B | C which is case (i-1). Moreover, either γ ⊥µ B | C
or γ ⊥µ A \ C | C, as otherwise A ⊥µ B | C would
not hold (Lemma 20). γ ⊥µ B | C is the above case, so
assume that γ 6⊥µ B | C and γ ⊥µ A \ C | C. Using
right weak union of I(G), we haveA ⊥µ γ | C∪{γ} and
γ ⊥µ A\C | C∪A. Using the induction assumption, we
have that 〈A, γ | C ∪{γ}〉 ∈ I and 〈γ,A\C | C ∪A〉 ∈
I. We haveA ⊥µ B | C andA ⊥µ γ | C and using right
composition and right weak union of I(G), we obtain
A ⊥µ B∪{γ} | C∪{γ}. Using the induction assumption
we have that 〈A,B | C ∪ {γ}〉 ∈ I. Assume to obtain a
contradiction that A 6⊥µ δ | C ∪ γ and γ 6⊥µ δ | C ∪ A
for some δ ∈ C. We know that A ⊥µ γ | C and by
using the contrapositive of Lemma 19 this means that
A 6⊥µ δ | C. Similarly, we obtain that γ 6⊥µ δ | C. We
note that γ 6⊥µ B | C and by Lemma 20 this means that
A 6⊥µ B | C which is a contradiction. Therefore, we
have that for each δ ∈ C, either A ⊥µ δ | C ∪ γ (and
therefore also A \ C ⊥µ δ | C ∪ γ) or γ ⊥µ δ | C ∪ A.
Using the induction assumption, right composition of I,
the cancellation property and left weak composition of I
we arrive at the conclusion.

Case (ii): If one cannot choose a γ ∈ an(A∪B∪C) such
that γ /∈ C and γ 6= α, then an(A ∪B ∪C) = C ∪ {α}.
Assume this and furthermore assume that γ /∈ an(A ∪
B ∪ C). We will first argue that A ⊥µ B | C ∪ {γ}.
If this was not the case there would be a µ-connecting
walk, ω, from A to β ∈ B given C ∪ {γ} on which
γ was a collider and furthermore every collider was in
C ∪ {γ}. Consider now the last occurrence of γ on this
walk, and the subwalk of ω, γ ∼ . . . ∼ θ ∼ . . . → β.
Let θ be the node in an(A ∪B ∪ C) which is the closest
to γ on the walk. Then there must be a tail at θ, and
this means that θ = α as otherwise the walk would be
closed. In this case, the subwalk from α to β would also
be µ-connecting given C which is a contradiction.

It also holds that γ ⊥µ B | C ∪ A as every parent of a
node in B is in C ∪ A. Using the induction assumption
we have that 〈A,B | C∪{γ}〉 ∈ I and 〈γ,B | C∪A〉 ∈
I and using Lemma 21 and left decomposition of I we
obtain 〈A,B | C〉 ∈ I.

C PROOF OF LEMMA 11

Lemma 11. Let I be a local independence model. Then
it satisfies left {redundancy, decomposition, weak union,
weak composition} and right {decomposition, composi-
tion} and furthermore 〈A,B | C〉 ∈ I whenever B = ∅.
If FAt ∩ FCt = FA∩Ct holds for all A,C ⊆ V and
t ∈ [0, T ], then left intersection holds.

Proof. Left redundancy: We note that FA∪Ct = FCt
from which the result follows.

Left decomposition: Assume that A1 ∪ A2 6→λ B | C.
We wish to show that A1 6→λ B | C.

E(λβt | FA1∪C
t ) = E

(
E(λβt | FA1∪A2∪C

t )︸ ︷︷ ︸
=E(λB

t |FC
t )

∣∣FA1∪C
t

)

= E(λβt | FCt )

Left weak union: Simply note that the conditioning σ-
algebra stays the same in the conditional expectation
which is assumed to be FCt -adapted and therefore also
FC∪Dt -adapted.

Left weak composition: The conditioning σ-algebra
again stays the same in the conditional expectation.

Right decomposition and right composition follow di-
rectly from the coordinate-wise definition of local inde-
pendence.

Left intersection: We note that E(λβt | FA∪Ct ) by as-
sumption has an FAt -adapted and an FCt -adapted ver-
sion, thus it has a version, which is adapted w.r.t. the
filtration FAt ∩ FCt = FA∩Ct .

Finally, it is clear that 〈A,B | C〉 ∈ I if B = ∅ as this
makes the condition void.

D PROOFS, SECTION 5

Lemma 16. Subalgorithm 1 outputs the separability
graph of I, S, and furthermore N ⊆ S.

Proof. In Subalgorithm 1, we only remove edges α ∗→
β when we have found a set C ⊆ V \ {α} that separates
β from α. The DMGs G0 and N are Markov equivalent
and therefore the same separation holds in I(N ). Such
an edge would always be µ-connecting from α to β given
C as α /∈ C and therefore we know it to be absent in N .
This means that the output of the algorithm is a super-
graph of N .

The graph G in Subalgorithm 1 is always a supergraph of
G0 and therefore DG0(α, β) ⊆ DG(α, β). If there exists
a set that separates β from α then DG0(α, β) does and
by the above inclusion we are always sure to test this set.
This means that the output is the separability graph.

Lemma 17. Subalgorithm 2 outputs a supergraph of N .

Proof. By Lemma 16, N ⊆ S . We also know that if
there is an edge α → β in S then α ∈ u(β, I(G0)) =
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u(β, I(N )) = u(β, I). Assume there is an unshielded
W -structure w(α, β, γ) in S. The edge between α and β
in S means that β cannot be separated from α in I(N )
and therefore there exists for every C ⊆ V \ {α} a µ-
connecting walk from α to β given C. By definition of
µ-connecting walks this has a head at (the final) β. The
W -structure is unshielded, that is, α → γ is not in S.
This means that we have previously found a separating
set Sα,γ , such that 〈α, γ | Sα,β〉 ∈ I(N ) and α /∈ Sα,γ .
We know that there exists a µ-connecting walk ω, from
α to β given Sα,γ in N as α ∈ u(β, I(N )). If β /∈ Sα,γ
then we can compose ω with the edge β → γ which
gives a µ-connecting walk from α to γ given Sα,γ which
is a contradiction, and therefore the edge β → γ cannot
be inN . If β ∈ Sα,γ then we can argue analogously and
obtain that β ↔ γ cannot be in N .

Theorem 18. The algorithm defined by first doing the
separation step, then the pruning, and finally the potential
step outputs N , the maximal element of [G0].

Proof. By Lemma 17, the output after the first two steps
is a supergraph of N . In the potential step, an edge
α → β is only removed if α is not a potential parent
of β in I. We know that if the edge is in N then α is a
potential parent of β in I(N ) = I(G0) = I (Mogensen
and Hansen, 2018) and by contraposition of this result
it follows that every directed edge removed is not in N .
The same argument applies in the case of a bidirected
edge and therefore the output is a supergraph of N .

If we consider some edge α e→ β in the output graph,
then either α is a potential parent of β, in which case e
is also in N , or I(G − e) ∩ Ln 6= ∅. Assume the latter.
We have that G0 ⊆ G, and therefore I(G − e) ⊆ I(G0) if
e is not in G0. The above intersection is non-empty and
therefore there is some triple which is in both I(G − e)
and Ln, and by I(G − e) ⊆ I(G0) it is also in I(G0).
But by definition Ln contains only triples not in I(G0),
so this is a contradiction. Therefore, e must be in G0 and
also in N as G0 ⊆ N . One can argue analogously for
the bidirected edges. We conclude that the output graph
is equal to N , the maximal element of [G0].

E POTENTIAL PARENT/SIBLINGS

Consider an independence model, I, over V and let
α, β ∈ V . The set u(β, I) is defined in Subsection 5.1.1.
As described in Subsection 5.1 the below definitions de-
fine a list of independence tests which one can conduct
to directly construct N . This was proven by Mogensen
and Hansen (2018). However, the list is very large and
one can construct N in a more efficient manner. If e.g.
|V | = 10, then for each choice of γ in (s2) we can choose

C in 28 different ways (omitting sets C containing γ as
such an independence would hold trivially for any inde-
pendence model satisfying left redundancy and left de-
composition).

Definition 23. We say that α and β are potential siblings
in the independence model I if (s1)-(s3) hold:

(s1) β ∈ u(α, I) and α ∈ u(β, I),

(s2) for all γ ∈ V , C ⊆ V such that β ∈ C,

〈γ, α | C〉 ∈ I ⇒ 〈γ, β | C〉 ∈ I,

(s3) for all γ ∈ V , C ⊆ V such that α ∈ C,

〈γ, β | C〉 ∈ I ⇒ 〈γ, α | C〉 ∈ I.

Definition 24. We say that α is a potential parent of β
in the independence model I if (p1)-(p4) hold:

(p1) α ∈ u(β, I),

(p2) for all γ ∈ V , C ⊆ V such that α /∈ C,

〈γ, β | C〉 ⇒ 〈γ, α | C〉,

(p3) for all γ, δ ∈ V , C ⊆ V such that α /∈ C, β ∈ C,

〈γ, δ | C〉 ⇒ 〈γ, β | C〉 ∨ 〈α, δ | C〉,

(p4) for all γ ∈ V,C ⊆ V , such that α /∈ C,

〈β, γ | C〉 ⇒ 〈β, γ | C ∪ {α}〉.

F SIMULATION STUDY

We conducted a small simulation study to empirically
evaluate the cost and impact of the third step in the learn-
ing algorithm, the potential step. This step is computa-
tionally expensive as it involves testing the potential par-
ent/siblings conditions, see above.

We simulated a random DMG on 5 nodes by first draw-
ing pd from a uniform distribution on [0, 1/2] and pb
from a uniform distribution on [0, 1/4]. We then gene-
rated independent Bernoulli random variates, {b〈α,β〉},
each with success parameter pd, and one for each ordered
pair of nodes, 〈α, β〉. The edge α → β was included if
b〈α,β〉 = 1. For each unordered pair of nodes, {α, β}, we
did analogously, using pb as success parameter. We dis-
carded graphs for which the maximal Markov equivalent
graph had more then 15 edges.

Simulating 800 random DMGs, we saw that on average
the first step required 90 independence tests and removed
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26 edges. The second step removed 1.1 edge on aver-
age (it does not use any additional independence tests),
while the third required an additional 77 independence
tests. On average the third step removed 0.8 edge. This
simulation is very limited and simple, however, it does
indicate that the potential step of the learning algorithm
constitutes a substantial part of the computational cost
while not removing a lot of edges.
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Abstract

Many classical algorithms output graphical rep-
resentations of causal structures by testing con-
ditional independence among a set of random
variables. In dynamical systems, local inde-
pendence can be used analogously as a testable
implication of the underlying data-generating
process. We suggest some inexpensive meth-
ods for causal screening which provide output
with a sound causal interpretation under the as-
sumption of ancestral faithfulness. The popular
model class of linear Hawkes processes is used
to provide an example of a dynamical causal
model. We argue that for sparse causal graphs
the output will often be close to complete. We
give examples of this framework and apply it
to a challenging biological system.

1 INTRODUCTION

Constraint-based causal learning is computationally and
statistically challenging. There is a large literature on
learning structures that are represented by directed acyclic
graphs (DAGs) or marginalizations thereof (see Maathuis
et al. (2019) for references). The fast causal inference
algorithm (FCI, Spirtes et al., 2000) provides in a certain
sense maximally informative output (Zhang, 2008), but
at the cost of using a large number of conditional inde-
pendence tests (Colombo et al., 2012). To reduce the
computational cost, other methods provide output which
has a sound causal interpretation, but may be less informa-
tive. Among these are the anytime FCI (Spirtes, 2001) and
RFCI (Colombo et al., 2012). A recent algorithm, ances-
tral causal inference (ACI, Magliacane et al., 2016), aims
to learn only the directed part of the underlying graphical
structure which allows for a sound causal interpretation
even though some information is lost.

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

In this paper, we describe some simple methods for learn-
ing causal structure in dynamical systems represented by
stochastic processes. Many authors have described frame-
works and algorithms for learning structure in systems of
time series, ordinary differential equations, stochastic dif-
ferential equations, and point processes. However, most
of these methods do not have a clear causal interpretation
when the observed processes are part of a larger system
and most of the current literature is either non-causal in
nature, or requires that there are no unobserved processes.

Analogously to testing conditional independence when
learning DAGs, one can use tests of local independence
in the case of dynamical systems. Eichler (2013), Meek
(2014), and Mogensen et al. (2018) propose algorithms for
learning graphs that represent local independence struc-
tures. We show empirically that we can recover features
of their graphical learning target using considerably fewer
tests of local independence. First, we suggest a learning
target which is easier to learn, though still conveys useful
causal information, analogously to ACI (Magliacane et al.,
2016). Second, the proposed algorithm is only guaranteed
to provide a supergraph of the learning target and this also
reduces the number of local independence tests drasti-
cally. A central point is that our proposed methods retain
a causal interpretation in the sense that absent edges in
the output correspond to implausible causal connections.

Meek (2014) suggests learning a directed graph to rep-
resent a causal dynamical system and gives a learning
algorithm which we will describe as a simple screening
algorithm (Section 4.2). We show that this algorithm
can be given a sound interpretation under a weaker faith-
fulness assumption than that of Meek (2014). We also
provide a simple interpretation of the output of this algo-
rithm and we show that similar screening algorithms can
give comparable results using considerably fewer tests of
local independence.

All proofs are provided in the supplementary material.
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(a) Top: Example data from a four-dimensional Hawkes process.
Bottom: The corresponding intensities. The time axis is aligned
between the two plots.
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(b) Left: The causal graph (see Section 2.1) of a four-
dimensional Hawkes process. Right: Learning output of stan-
dard approach (see Section 2) when 3 is unobserved. When 3
is unobserved, 2 is predictive of 4 and vice versa (heuristically,
more events in process 2 indicate more events in 3 which in turn
indicates more events in 4). However, they are not causally con-
nected and using local independence one can learn that 2 is not
a parent of 4. This is important to predict what would happen
under interventions in the system as the right-hand graph indi-
cates that an intervention on 2 would change the distribution of
4 even though this is not the case as gα2 = 0 for α ∈ {1, 3, 4}.

Figure 1: Subfigure 1a shows data generated from the system in 1b (left). Until the first event all intensities are constant
(equal to µα for the α-process). The first event occurs in process 3. We see that g23, g33, and g43 are different from
zero as encoded by the graph in 1b (left). Therefore the event makes the intensity processes of 2, 3, and 4 jump, making
new events in these processes more likely in the immediate future (1a, bottom).

2 HAWKES PROCESSES

Local independence can be defined in a wide range of
discrete-time and continous-time dynamical models (e.g.,
point processes (Didelez, 2000), time series (Eichler,
2012), and diffusions (Mogensen et al., 2018). See also
Commenges and Gégout-Petit (2009)), and the algorith-
mic results we present apply to all these classes of models.
However, the causal interpretation will differ between
these model classes, and we will use the linear Hawkes
processes to exemplify the framework. Laub et al. (2015)
give an accessible introduction to this continuous-time
model class and Liniger (2009), Bacry et al. (2015), and
Daley and Vere-Jones (2003) provide more background.
Hawkes processes have also been studied in the machine
learning community in recent years (Zhou et al., 2013a,b;
Luo et al., 2015; Xu et al., 2016; Etesami et al., 2016;
Achab et al., 2017; Tan et al., 2018; Xu et al., 2018;
Trouleau et al., 2019). It is important to note that these
papers all consider the case of full observation, i.e., ev-
ery coordinate process is observed. In causal systems
that are not fully observed that assumption may lead to
false conclusions (see Figure 1b). Our work addresses
the learning problem without the assumption of full ob-
servation, hence there can be unknown and unobserved
confounding processes.

On a filtered probability space, (Ω,F , (Ft),P), we con-
sider an n-dimensional multivariate point process, X =
(X1, . . . , Xn). Ft is a filtration, i.e., a nondecreasing
family of σ-algebras, and it represents the information
which is available at a specific time point. Each coordi-

nate process Xα is described by a sequence of positive,
stochastic event times Tα1 , T

α
2 , . . . such that Tαj > Tαi

almost surely for j > i. We let V = {1, . . . , n}. This
can also be formulated in terms of a counting process,
N , such that Nα

s =
∑
i 1(Ti≤s), α ∈ V . There exists

so-called intensity processes, λ = (λ1, . . . , λn), such that

λαt = lim
h→0

1

h
P(Nα

t+h −Nα
t = 1 | Ft)

and the intensity at time t can therefore be thought of
as describing the probability of a jump in the immediate
future after time t conditionally on the history until time t
as captured by theFt-filtration. In a linear Hawkes model,
the intensity of the α-process, α ∈ V , is of the simple
form

λαt = µα +
∑

γ∈V

∫ t

0

gαγ(t− s) dNγ
s

= µα +
∑

γ∈V

∑

i:Tγi <t

gαγ(t− T γi )

where µα ≥ 0 and the function gαγ : R+ → R is non-
negative for all α, γ ∈ V . From the above formula, we
see that if gβα = 0, then the α-process does not enter
directly into the intensity of the β-process and we will
formalize this observation in subsequent sections. The
intensity processes determine how the Hawkes process
evolves and if gβα = 0 then the α-process does not di-
rectly influence the evolution of the β-process (it may of
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course have an indirect influence which is mediated by
other processes). Figure 1a provides an example of data
from a linear Hawkes process and an illustration of its
intensity processes.

2.1 A DYNAMICAL CAUSAL MODEL

We will in this section define what we mean by a dynami-
cal causal model in the case of a linear Hawkes process
and also define a graph (V,E) which represents the causal
structure of the model. The node set V is the index set of
the coordinate processes of the multivariate Hawkes pro-
cess, thus identifying each node with a coordinate process.
If we first consider the case where X = (X1, . . . , Xn) is
a multivariate random variable, it is common to define
a causal model in terms of a DAG, D, and a structural
causal model (Pearl, 2009; Peters et al., 2017) by assum-
ing that there exists functions fi and error terms εi such
that

Xi = fi(XpaD(Xi), εi)

for i = 1, . . . , n. The causal assumption amounts to
assuming that the functional relations are stable under in-
terventions. This idea can be transferred to dynamical sys-
tems (see also Røysland (2012); Mogensen et al. (2018)).
In the case of a linear Hawkes process as described above,
we can consider intervening on the α-process and force
events to occur at the deterministic times t1, . . . , tk, and
at these times only. In this case, the causal assumption
amounts to assuming that the distribution of the inter-
vened system is governed by the intensities

λβt = µβ +

∫ t

0

gβα(t− s) dN̄α
s

+
∑

γ∈V \{α}

∫ t

0

gβγ(t− s) dNγ
s

for all β ∈ V \ {α} and where N̄α
t =

∑k
i=1 1(ti≤t). We

will not go into a discussion of the existence of these
interventional stochastic processes. The above is a hard
intervention in the sense that the α-process is fixed to be a
deterministic function of time. Note that one could easily
imagine other types of interventions such as soft interven-
tions where the intervention process, α, is not determin-
istic. One can also extend this to interventions on more
than one process. It holds thatNβ

t+h−N
β
t ∼ Pois(λβt ·h)

in the limit h→ 0, and we can think of this as a simula-
tion scheme in which we generate the points in one small
interval in accordance to some distribution depending on
the history of the process. As such the intensity describes

a structural causal model at infinitesimal time steps and
the gαβ-functions are in a causal model stable under in-
terventions in the sense that they also describe how the
intervention process N̄α enters into the intensity of the
other processes.

We use the set of functions {gβα}α,β∈V to define the
causal graph of the Hawkes process. A graph is a pair
(V,E) where V is a set of nodes and E is a set of edges
between these nodes. We assume that we observe the
Hawkes process in the time interval J = [0, T ], T ∈ R.
The causal graph has node set V (the index set of the
coordinate processes) and the edge α→ β is in the causal
graph if and only if gβα is not identically zero on J . We
call this graph causal as it is defined using {gβα}α,β∈V
which is a set of mechanisms assumed stable under in-
terventions, and this causal assumption is therefore anal-
ogous to that of a classical structural causal model as
briefly introduced above.

2.2 PARENT GRAPHS

In principle, we would like to recover the causal graph,
D, using local independence tests. Often, we will only
have partial observation of the dynamical system in the
sense that we only observe the processes in O ( V . We
will then aim to learn the parent graph of D on nodes O.
Definition 1 (Parent graph). Let D = (V,E) be a causal
graph and let O ⊆ V . The parent graph of D on nodes
O is the graph (O,F ) such that for α, β ∈ O, the edge
α → β is in F if and only if the edge α → β is in the
causal graph or there is a path α→ δ1 → . . .→ δk → β
in the causal graph such that δ1, . . . , δk /∈ O, for some
k > 0 .

We denote the parent graph of the causal graph by PO(G),
or just P(G) if the set O used is clear from the context.
In applications, a parent graph may provide answers to
important questions as it tells us the causal relationships
between the observed nodes. A similar idea was applied
in DAG-based models by Magliacane et al. (2016), though
that paper describes an exact method and not a screening
procedure. In large systems, it can easily be infeasible to
learn the complete independence structure of the observed
system, and we propose instead to estimate the parent
graph which can be done efficiently. In the supplementary
material, we give another characterization of a parent
graph. Figure 2 contains an example of a causal graph
and a corresponding parent graph.

2.3 LOCAL INDEPENDENCE

Local independence has been studied by several authors
and in different classes of continuous-time models as
well as in time series (Aalen, 1987; Didelez, 2000, 2008;
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Figure 2: Left: A causal graph on nodes V = {α, β, γ, δ, ε, φ}. Right: The corresponding parent graph on nodes
O = {α, δ, ε}. Note that causal graphs and parent graphs may contain cycles. The parent graph does not contain
information on the confounder process φ as it only encodes ‘causal ancestors’. One can also marginalize the causal
graph to obtain a directed mixed graph from which one can read off the parent graph (see the supplementary material).

Eichler and Didelez, 2010). We give an abstract defini-
tion of local independence, following the exposition by
Mogensen et al. (2018).
Definition 2 (Local independence). Let X be a multi-
variate stochastic process and let V be an index set of its
coordinate processes. Let FDt denote the complete and
right-continuous version of the σ-algebra σ({Xα

s : s ≤
t, α ∈ D}), D ⊆ V . Let λ be a multivariate stochastic
process (assumed to be integrable and càdlàg) such that its
coordinate processes are indexed by V . ForA,B,C ⊆ V ,
we say thatXB is λ-locally independent ofXA givenXC

(or simply B is λ-locally independent of A given C) if
the process

t 7→ E(λβt | FC∪At )

has an FCt -adapted version for all β ∈ B. We write this
as A 6→λ B | C, or simply A 6→ B | C.

In the case of Hawkes processes, the intensities will be
used as the λ-processes in the above definition. Didelez
(2000), Mogensen et al. (2018), and Mogensen and
Hansen (2020) provide technical details on the defini-
tion of local independence. Local independence can be
thought of as a dynamical system analogue to the classi-
cal conditional independence. It is, however, asymmetric
which means thatA 6→ B | C does not implyB 6→ A | C.
This is a natural and desirable feature of an independence
relation in a dynamical system as it helps us distinguish
between the past and the present. It is important to note
that by testing local independences we can obtain more
information about the underlying parent graph than by
simply assuming full observation and fitting a model to
the observed data (see Figure 1b).

2.3.1 Local Independence and the Causal Graph

To make progress on the learning task, we will in this sub-
section describe the link between the local independence
model and the causal graph.

Definition 3 (Pairwise Markov property (Didelez, 2008)).
We say that a local independence model satisfies the pair-
wise Markov property with respect to a directed graph,
D = (V,E), if the absence of the edge α → β in D
implies α 6→λ β | V \ α for all α, β ∈ V .

We will make the following technical assumption through-
out the paper. In applications, the functions gαβ are often
assumed to be of the below type (Laub et al. (2015)).
Assumption 4. Assume that N is a multivariate Hawkes
process and that we observed N over the interval J =
[0, T ] where T > 0. For all α, β ∈ V , the function
gβα : R+ → R is continuous and µα > 0.

A version of the following result was also stated by Eich-
ler et al. (2017) but no proof was given and we provide
one in the supplementary material. If G1 = (V,E1) and
G2 = (V,E2) are graphs, we say that G1 is a proper
subgraph of G2 if E1 ( E2.
Proposition 5. The local independence model of a linear
Hawkes process satisfies the pairwise Markov property
with respect to the causal graph of the process and no
proper subgraph of the causal graph has the property.

3 GRAPH THEORY AND
INDEPENDENCE MODELS

A graph is a pair (V,E) where V is a finite set of nodes
and E a finite set of edges. We will use ∼ to denote a
generic edge. Each edge is between a pair of nodes (not
necessarily distinct), and for α, β ∈ V , e ∈ E, we will
write α e∼ β to denote that the edge e is between α and β.
We will in particular consider the class of directed graphs
(DGs) where between each pair of nodes α, β ∈ V one
has a subset of the edges {α → β, α ← β}, and we say
that these edges are directed.

Let G1 = (V,E1) and G2 = (V,E2) be graphs. We say
that G2 is a supergraph of G1, and write G1 ⊆ G2, if
E1 ⊆ E2. For a graph G = (V,E) such that α, β ∈ V ,
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we write α→G β to indicate that the directed edge from
α to β is contained in the edge set E. In this case we say
that α is a parent of β. We let paG(β) denote the set of
nodes in V that are parents of β. We write α 6→G β to
indicate that the edge is not in E. Earlier work allowed
loops, i.e., self-edges α → α, to be either present or
absent in the graph (Meek, 2014; Mogensen et al., 2018;
Mogensen and Hansen, 2020). We assume that all loops
are present, though this is not an essential assumption.

A walk is a finite sequence of nodes, αi ∈ V , and edges,
ei ∈ E, 〈α1, e1, α2, . . . , αk, ek, αk+1〉 such that ei is
between αi and αi+1 for all i = 1, . . . , k and such that
an orientation of each edge is known. We say that a walk
is nontrivial if it contains at least one edge. A path is a
walk such that no node is repeated. A directed path from
α to β is a path such that all edges are directed and point
in the direction of β.
Definition 6 (Trek, directed trek). A trek between α and
β is a (nontrivial) path 〈α, e1, . . . , ek, β〉with no colliders
(Foygel et al., 2012). We say that a trek between α and β
is directed from α to β if ek has a head at β.

We will formulate the following properties using a gen-
eral independence model, I, on V . Let P(·) denote the
power set of some set. An independence model on V
is simply a subset of P(V ) × P(V ) × P(V ) and can be
thought of as a collection of independence statements that
hold among the processes/variables indexed by V . In
subsequent sections, the independence models will be de-
fined using the notion of local independence. In this case,
for A,B,C ⊆ V , A 6→λ B | C is equivalent to writing
〈A,B | C〉 ∈ I in the abstract notation, and we use the
two interchangeably. We do not require I to be symmet-
ric, i.e., 〈A,B | C〉 ∈ I does not imply 〈B,A | C〉 ∈ I.
In the following, we also use µ-separation which is a
ternary relation and a dynamical model (and asymmetric)
analogue to d-separation or m-separation.
Definition 7 (µ-separation). Let G = (V,E) be a DMG,
and let α, β ∈ V and C ⊆ V . We say that a (nontriv-
ial) walk from α to β, 〈α, e1, . . . , ek, β〉, is µ-connecting
given C if α /∈ C, the edge ek has a head at β, every
collider on the walk is in an(C) and no noncollider is
in C. Let A,B,C ⊆ V . We say that B is µ-separated
from A given C if there is no µ-connecting walk from
any α ∈ A to any β ∈ B given C. In this case, we write
A ⊥µ B | C, orA ⊥µ B | C [G] if we wish to emphasize
the graph to which the statement relates.

More graph-theoretical definitions and references are
given in the supplementary material.
Definition 8 (Global Markov property). We say that an
independence model I satisfies the global Markov prop-
erty with respect to a DG, G = (V,E), ifA ⊥µ B | C [G]
implies 〈A,B | C〉 ∈ I for all A,B,C ⊆ V .

From Proposition 5, we know that the local independence
model of a linear Hawkes process satisfies the pairwise
Markov property with respect to its causal graph, and
using the results in Didelez (2008) and Mogensen et al.
(2018) it also satisfies the global Markov property with
respect to this graph.

Definition 9 (Faithfulness). We say that I is faithful with
respect to a DG, G = (V,E), if 〈A,B | C〉 ∈ I implies
A ⊥µ B | C [G] for all A,B,C ⊆ V .

4 NEW LEARNING ALGORITHMS

In this section, we state a very general class of algo-
rithms which is easily seen to provide sound causal
learning and we describe some specific algorithms. We
throughout assume that there is some underlying, true DG,
D0 = (V,E), describing the causal model and we wish
to output PO(D0). However, this graph is not in general
identifiable from the local independence model. In the
supplementary material, we argue that for an equivalence
class of parent graphs, there exists a unique member of
the class which is a supergraph of all other members. De-
note this unique graph by D̄. Our algorithms will output
supergraphs of D̄, and the output will therefore also be
supergraphs of the true parent graph.

We assume that we are in the ‘oracle case’, i.e., have
access to a local independence oracle that provides the
correct answers. We will say that an algorithm is sound if
it in the oracle case outputs a supergraph of D̄ and that it is
complete if it outputs D̄. We let IO denote the local inde-
pendence model restricted to subsets of O, i.e., this is the
observed part of the local independence model. We pro-
vide algorithms that are guaranteed to be sound, but only
complete in particular cases. Naturally, one would wish
for completeness as well. However, complete algorithms
can easily be computationally infeasible whereas sound
algorithms can be very inexpensive (e.g., Mogensen et al.,
2018). We think of these sound algorithms as screening
procedures as they rule out some causal connections, but
do not ensure completeness.

4.1 ANCESTRAL FAITHFULNESS

Under the faithfulness assumption, every local indepen-
dence implies µ-separation in the graph. We assume a
weaker, but similar, property to show soundness. For
learning marginalized DAGs, weaker types of faithfulness
have also been explored, see Zhang and Spirtes (2008);
Zhalama et al. (2017a,b).

Definition 10 (Ancestral faithfulness). Let I be an in-
dependence model and let D be a DG. We say that I
satisfies ancestral faithfulness with respect to D if for ev-
ery α, β ∈ V and C ⊆ V \ {α}, 〈α, β | C〉 ∈ I implies
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that there is no µ-connecting directed path from α to β
given C in D.

Ancestral faithfulness is a strictly weaker requirement
than faithfulness. We conjecture that local independence
models of linear Hawkes processes satisfy ancestral faith-
fulness with respect to their causal graphs. Heuristically,
if there is a directed path from α to β which is not blocked
by any node in C, then information should flow from α to
β, and this cannot be ‘cancelled out’ by other paths in the
graph as the linear Hawkes processes are self-excitatory,
i.e., no process has a dampening effect on any process.
This conjecture is supported by the so-called Poisson
cluster representation of a linear Hawkes process (see
Jovanović et al. (2015)).

4.2 SIMPLE SCREENING ALGORITHMS

As a first step in describing a causal screening algorithm,
we will define a very general class of learning algorithms
that simply test local independences and sequentially re-
move edges. It is easily seen that under the assumption of
ancestral faithfulness every algorithm in this class gives
sound learning in the oracle case. The complete DG on
nodes V is the DG with edge set {α→ β | α, β ∈ V }.
Definition 11 (Simple screening algorithm). We say that
a learning algorithm is a simple screening algorithm if it
starts from a complete DG on nodes O and removes an
edge α→ β only if a conditioning set C ⊆ O \ {α} has
been found such that 〈α, β | C〉 ∈ IO.

The next results describe what can be learned from absent
edges in the output of a simple screening algorithm.

Proposition 12. Assume that I satisfies ancestral faith-
fulness with respect to D0 = (V,E). The output of any
simple screening algorithm is sound in the oracle case.

Corollary 13. Assume ancestral faithfulness of I with
respect to D0 and let A,B,C ⊆ O. If every directed path
from A to B goes through C in the output graph of a
simple screening algorithm, then every directed path from
A to B goes through C in D0.

Corollary 14. If there is no directed path from A to B in
the output graph, then there is no directed path from A to
B in D0.

4.3 PARENT LEARNING

In the previous section, it was shown that if edges are
only removed when a separating set is found the output is
sound under the assumption of ancestral faithfulness. In
this section we give a specific algorithm. The key obser-
vation is that we can easily retrieve structural information
from a rather small subset of local independence tests.

LetDt denote the output from Subalgorithm 1 (see below).
The following result shows that under the assumption of
faithfulness, α →Dt β if and only if there is a directed
trek from α to β in D0.
Proposition 15. There is no directed trek from α to β in
D0 if and only if α ⊥µ β | β [D0].

Note that above, β in the conditioning set represents the
β-past while the other β represents the present of the β-
process. While there is no distinction in the graph, this
interpretation follows from the definition of local inde-
pendence and the global Markov property. We will refer
to running first Subalgorithm 1 and then Subalgorithm 2
(using the output DG from the first as input to the second)
as the causal screening (CS) algorithm. Intuitively, Subal-
gorithm 2 simply tests if a candidate set (the parent set) is
a separating set and other candidate sets could be chosen.
Proposition 16. The CS algorithm is a simple screening
algorithm.

It is of course of interest to understand under what con-
ditions the edge α → β is guaranteed to be removed by
the CS algorithm when it is not in the underlying target
graph. In the supplementary material we state and prove
a result describing one such condition.

input :a local independence oracle for IO
output :a DG on nodes O
initialize D as the complete DG on O;
foreach (α, β) ∈ V × V do

if α 6→λ β | β then
delete α→ β from D;

end
end
return D

Subalgorithm 1: Trek step

input :a local independence oracle for IO and a
DG, D = (O,E)

output :a DG on nodes O
foreach (α, β) ∈ V × V such that α→D β do

if α 6→λ β | paD(β) \ {α} then
delete α→ β from D;

end
end
return D

Subalgorithm 2: Parent step

4.4 ANCESTRY PROPAGATION

In this section, we describe an additional step which prop-
agates ancestry by reusing the output of Subalgorithm 1 to
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remove further edges. This comes at a price as one needs
faithfulness to ensure soundness. The idea is similar to
ACI (Magliacane et al., 2016).

input :a DG, D = (O,E)
output :a DG on nodes O
initialize Er = ∅ as the empty edge set;
foreach (α, β, γ) ∈ V × V × V such that α, β, γ

are all distinct do
if α→D β, β 6→D α, β →D γ, and α 6→D γ

then
update Er = Er ∪ {β → γ};

end
end
Update D = (V,E \ Er);
return D

Subalgorithm 3: Ancestry propagation

In ancestry propagation, we exploit the fact that any trek
between α and β (such that γ is not on this trek) com-
posed with the edge β → γ gives a directed trek from
α to γ. We only use the trek between α and β ‘in one
direction’, as a directed trek from α to β. In Subalgorithm
4 (supplementary material), we use a trek between α and
β twice when possible, at the cost of an additional test.

We can construct an algorithm by first running Subalgo-
rithm 1, then Subalgorithm 3, and finally Subalgorithm
2 (using the output of one subalgorithm as input to the
next). We will call this the CSAPC algorithm. If we use
Subalgorithm 4 (in the supplementary material) instead
of Subalgorithm 3, we will call this the CSAP.

Proposition 17. If I is faithful with respect to D0, then
CSAP and CSAPC both provide sound learning.

5 APPLICATION AND SIMULATIONS

When evaluating the performance of a sound screening
algoritm, the output graph is guaranteed to be a super-
graph of the true parent graph, and we will say that edges
that are in the output but not in the true graph are excess
edges. For a node in a directed graph, the indegree is
the number of directed edges adjacent with and pointed
into the node, and the outdegree is the number of directed
edges adjacent with and pointed away from the node.

One should note that all our experiments are done us-
ing an oracle test, i.e., instead of using real or synthetic
data, the algorithms simply query an oracle for each local
independence and receive the correct answer. This tests
whether or not an algorithm can give good results using an
efficient testing strategy (i.e., a low number of queries to
the oracle) and therefore it evaluates the algorithms. This

approach separates the algorithm from the specific test of
local independence and evaluates only the algorithm. As
such this is highly unrealistic as we would never have ac-
cess to an oracle with real data, however, we should think
of these experiments as a study of efficiency. The oracle
approach to evaluating graphical learning algorithms is
common in the DAG-based case, see Spirtes (2010) for
an overview.

Also note that the comparison is only made with other
constraint-based learning algorithms that can actually
solve the problem at hand. Learning methods that assume
full observation (such as the Hawkes methods mentioned
in Section 2) would generally not output a graph with
the correct interpretation even in the oracle case (see the
example in Figure 1b).

5.1 C. ELEGANS NEURONAL NETWORK

Caenorhabditis elegans is a roundworm in which the
network between neurons has been mapped completely
(Varshney et al., 2011). We apply our methods to this
network as an application to a highly complex network.
It consists of 279 neurons which are connected by both
non-directional gap junctions and directional chemical
synapses. We will represent the former as an unobserved
process and the latter as a direct influence which is con-
sistent with the biological system (Varshney et al., 2011).
From this network, we sampled subnetworks of 75 neu-
rons each (details in the supplementary material) and
computed the output of the CS algorithm. These sub-
sampled networks had on average 1109 edges (including
bidirected edges representing unobserved processes, see
the supplementary material) and on average 424 directed
edges. The output graphs had on average 438 excess
edges which is explained by the fact that there are many
unobserved nodes in the graphs. To compare the output to
the true parent graph, we computed the rank correlation
between the indegrees of the nodes in the output graph and
the indegrees of the nodes in the true parent graph, and
similarly for the outdegree (indegree correlation: 0.94,
outdegree correlation: 0.52). Finally, we investigated the
method’s ability to identify the observed nodes of highest
directed connectivity (i.e., highest in- and outdegrees).
The neuronal network of c. elegans is inhomogeneous
in the sense that some neurons are extremely highly con-
nected while others are only very sparsely connected. We
considered the 15 nodes of highest indegree/outdegree
(out of the 75 observed nodes). On average, the CS algo-
rithm placed 13.4 (in) and 9.2 (out) of these 15 among the
15 most connected nodes.

From the output of the CS algorithm, we can find areas of
the neuronal network which mediates information from
one area to another, e.g., using Corollary 13.
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rises for dFCI and CA while CS spends no more than 2 ·5(5−1)
tests. The output of dFCI and CA is not considerably more
informative as measured by the mean number of excess edges:
CS 0.96, dFCI 0.07, CA 0.81 (average over all levels of sparsity).
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(b) Mean number of excess edges in output graphs for varying
numbers of edges (bidirected and directed) in the true graph (all
graphs are on 10 nodes), not counting loops.

Figure 3: Comparison of performance.

5.2 COMPARISON OF ALGORITHMS

In this section we compare the proposed causal screen-
ing algorithms with previously published algorithms that
solve similar problems. Mogensen et al. (2018) propose
two algorithms, one of which is sure to output the correct
graph when an oracle test is available. They note that this
complete algorithm is computationally very expensive
and adds little extra information, and therefore we will
only consider their other algorithm for comparison. We
will call this algorithm dynamical FCI (dFCI) as it resem-
bles FCI (Mogensen et al., 2018). dFCI actually solves a
harder learning problem (see details in the supplementary
material), however, it is computationally infeasible for
many problems.

The Causal Analysis (CA) algorithm of Meek (2014) is
a simple screening algorithm and we have in this paper
argued that it is sound for learning the parent graph under
the weaker assumption of ancestral faithfulness. Even
though this algorithm uses a large number of tests, it is
not guaranteed to provide complete learning as there may
be inseparable nodes that are not adjacent (Mogensen
et al., 2018; Mogensen and Hansen, 2020).

For the comparison of these algorithms, two aspects are
important. As they are all sound, one aspect is the number
of excess edges. The other aspect is of course the number
of tests needed. The CS and CSAPC algorithms use at
most 2n(n − 1) tests and empirically the CSAP uses
roughly the same number as the two former. This makes
them feasible in large graphs. The quality of their output
is dependent on the sparsity of the true graph, though
the CSAP and CSAPC algorithms can deal considerably
better with less sparse graphs (Subfigure 3b).

6 DISCUSSION

We suggested inexpensive constraint-based methods for
learning causal structure based on testing local indepen-
dence. An important observation is that local indepen-
dence is asymmetric while conditional independence is
symmetric. In a certain sense, this may help when con-
structing learning algorithms as there is no need of some-
thing like an ‘orientation phase’ as in the FCI. This fa-
cilitates using very simple methods to give sound causal
learning as we do not need the independence structure
in full to give interesting output. Simple screening algo-
rithms may be either adaptive or nonadaptive. We note
that nonadaptive algorithms may be more robust to false
conclusions from statistical tests of local independence.

The amount of information in the output of the screening
algorithms depends on the sparsity of the true graph. How-
ever, even in examples with very little sparsity interesting
structural information can be learned.

We showed that the proposed algorithms have a compu-
tational advantage over previously published algorithms
within this framework. This makes it feasible to consider
causal learning in large networks with unobserved pro-
cesses. We obtained this gain in efficiency in part by out-
putting only the directed part of the causal structure. This
means that we may be able to answer structural questions,
but not questions relating to causal effect estimation.
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Supplementary material for Causal screening in dynamical systems

Søren Wengel Mogensen
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This supplementary material contains additional graph
theory, results, and definitions, as well as the proofs of
the main paper.

1 GRAPH THEORY

In the main paper, we introduce the class of DGs to rep-
resent causal structures. One can represent marginal-
ized DGs using the larger class of DMGs. A directed
mixed graph (DMG) is a graph such that any pair of
nodes α, β ∈ V is joined by a subset of the edges
{α→ β, α← β, α↔ β}.
We say that edges α → β and α ← β are directed,
and that α ↔ β is bidirected. We say that the edge
α → β has a head at β and a tail at α. α ↔ β
has heads at both α and β. We also introduced a walk
〈α1, e1, α2, . . . , αn, en, αn+1〉. We say that α1 and αn+1

are endpoint nodes. A nonendpoint node αi on a walk is
a collider if ei−1 and ei both have heads at αi, and other-
wise it is a noncollider. A cycle is a path 〈α, e1, . . . , β〉
composed with an edge between α and β. We say that α
is an ancestor of β if there exists a directed path from α to
β. We let an(β) denote the set of nodes that are ancestors
of β. For a node set C, we let an(C) = ∪β∈Can(β). By
convention, we say that a trivial path (i.e., with no edges)
is directed and this means that C ⊆ an(C).

For DAGs d-separation is often used for encoding inde-
pendences. We use the analogous notion of µ-separation
which is a generalization of δ-separation Didelez (2000,
2008); Meek (2014); Mogensen and Hansen (2020).

We use the class of DGs to represent the underlying, data-
generating structure. When only parts of the causal sys-
tem is observed, the class of DMGs can be used to rep-
resent marginalized DGs Mogensen and Hansen (2020).
This can be done using latent projection Verma and Pearl
(1991); Mogensen and Hansen (2020) which is a map that
for a DG (or more generally, for a DMG), D = (V,E),
and a subset of observed nodes/processes, O ⊆ V , pro-

vides a DMG, m(D, O), such that for all A,B,C ⊆ O,

A ⊥µ B | C [D]⇔ A ⊥µ B | C [m(D, O)].

See Mogensen and Hansen (2020) for details on this
graphical marginalization. We say that two DMGs,
G1 = (V,E1),G2 = (V,E2), are Markov equivalent if

A ⊥µ B | C [G1]⇔ A ⊥µ B | C [G2],

for all A,B,C ⊆ V , and we let [G1] denote the Markov
equivalence class of G1. Every Markov equivalence class
of DMGs has a unique maximal element Mogensen and
Hansen (2020), i.e., there exists G ∈ [G1] such that G is a
supergraph of all other graphs in [G1].

For a DMG, G, we will let D(G) denote the directed part
of G, i.e., the DG obtained by deleting all bidirected edges
from G.

Proposition 1. Let D = (V,E) be a DG, and let O ⊆ V .
Consider G = m(D, O). For α, β ∈ O it holds that
α ∈ anD(β) if and only if α ∈ anD(G)(β). Furthermore,
the directed part of G equals the parent graph of D on
nodes O, i.e., D(G) = PO(D).

Proof. Note first that α ∈ anD(β) if and only if α ∈
anG(β) Mogensen and Hansen (2020). Ancestry is only
defined by the directed edges, and it follows that α ∈
anG(β) if and only if α ∈ anD(G)(β). For the second
statement, the definition of the latent projection gives that
there is a directed edge from α to β in G if and only if
there is a directed path from α to β in D such that no
nonendpoint node is in O. By definition, this is the parent
graph, PO(D).

In words, the above proposition says that if G is a
marginalization (done by latent projection) of D, then
the ancestor relations of D and D(G) are the same among
the observed nodes. It also says that our learning target,
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the parent graph, is actually the directed part of the latent
projection on the observed nodes. In the next subsection,
we use this to describe what is actually identifiable from
the induced independence model of a graph.

1.1 MAXIMAL GRAPHS AND PARENT
GRAPHS

Under faithfulness of the local independence model and
the causal graph, we know that the maximal DMG is a cor-
rect representation of the local independence structure in
the sense that it encodes exactly the local independences
that hold in the local independence model. From the max-
imal DMG, one can use results on equivalence classes
of DMGs to obtain every other DMG which encodes the
observed local independences (Mogensen and Hansen,
2020) and from this graph one can find the parent graph
as simply the directed part. However, it may require an
infeasible number of tests to output such a maximal DMG.
This is not surprising, seeing that the learning target en-
codes this complete information on local independences.

Assume that D0 = (V,E) is the underlying causal graph
and that G0 = (O,F ), O ⊆ V is the marginalized
graph over the observed variables, i.e., the latent pro-
jection of D0. In principle, we would like to output
P(D0) = D(G0), the directed part of G0. However, no
algorithm can in general output this graph by testing only
local independences as Markov equivalent DMGs may
not have the same parent graph. Within each Markov
equivalence class of DMGs, there is a unique maximal
graph. Let Ḡ denote the maximal graph which is Markov
equivalent of G0. The DG D(Ḡ) is a supergraph of D(G0)
and we will say that a learning algorithm is complete if
it is guaranteed to output D(Ḡ) as no algorithm testing
local independence only can identify anything more than
the equivalence class.

2 COMPLETE LEARNING

The CS algorithm provides sound learning of the parent
graph of a general DMG under the assumption of ances-
tral faithfulness. For a subclass of DMGs, the algorithm
actually provides complete learning. It is of interest to
find sufficient graphical conditions to ensure that the al-
gorithm removes an edge α→ β which is not in the true
parent graph. In this section, we state and prove one such
condition which can be understood as ‘the true parent set
is always found for unconfounded processes’. We let D
denote the output of the CS algorithm.

Proposition 2. If α 6→G0 β and there is no γ ∈ V \ {β}
such that γ ↔G0 β, then α 6→D β.

Proof. Let D1,D2, . . . ,DN denote the DGs that are con-

structed when running the algorithm by sequentially re-
moving edges, starting from the complete DG, D1. Con-
sider a connecting walk from α to β in G0. It must be
of the form α ∼ . . . ∼ γ → β, γ 6= α. Under ancestral
faithfulness, the edge γ → β is in D, thus γ ∈ paDi

(β)
for all Di that occur during the algorithm, and there-
fore when 〈α, β | paDi

(β) \ {α}〉 is tested, the walk
is closed. Any walk from α to β is of this form, thus also
closed, and we have that α ⊥µ β | paDi

(β) and there-
fore 〈α, β | paDi

(β) \ {α}〉 ∈ I. The edge α →Di
β is

removed and thus absent in the output graph, D.

3 ANCESTRY PROPAGATION

We state Subalgorithm 4 here.

input :a local independence oracle for IO and a
DG, D = (O,E)

output :a DG on nodes O
initialize Er = ∅ as the empty edge set;
foreach (α, β, γ) ∈ V × V × V such that α, β, γ

are all distinct do
if α ∼D β, β →D γ, and α 6→D γ then

if 〈α, γ | ∅〉 ∈ IO then
update Er = Er ∪ {β → γ};

end
end

end
Update D = (V,E \ Er);
return D

Subalgorithm 4: Ancestry propagation

Composing Subalgorithm 1, Subalgorithm 4, and Subal-
gorithm 2 is referred to as the causal screening, ancestry
propagation (CSAP) algorithm. If we use Subalgorithm
3 instead of Subalgorithm 4, we call it the CSAPC algo-
rithm (C for cheap as this does not entail any additional
independence tests compared to CS).

4 APPLICATION AND SIMULATIONS

In this section, we provide some additional details about
the c. elegans neuronal network and the simulations.

4.1 C. ELEGANS NEURONAL NETWORK

For each connection between two neurons a different
number of synapses are present (ranging from 1 to 37).
We only consider connections with more than 4 synapses
when we define the true underlying network. When sam-
pling the subnetworks, highly connected neurons were
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sampled with higher probability to avoid a fully connected
subnetwork when marginalizing.

4.2 COMPARISON OF ALGORITHMS

As noted in the main paper, the dFCI algorithm solves
a strictly harder problem. By using the additional graph
theory in the supplementary material, we can understand
the output of the dFCI algorithm as a supergraph of the
maximal DMG, Ḡ. There is also a version of the dFCI
which is guaranteed to output not only a supergraph of
Ḡ, but the graph Ḡ itself. Clearly, from the output of the
dFCI algorithm, one can simply take the directed part
of the output and this is a supergraph of the underlying
parent graph.

5 PROOFS

In this section, we provide the proofs of the result in the
main paper.

Proof of Proposition 5. Let D denote the causal graph.
Assume first that α 6→D β. Then gβα is identically zero
over the observation interval, and it follows directly from
the functional form of λβt that α 6→ β | V \ {α}. This
shows that the local independence model satisfies the
pairwise Markov property with respect to D.

If instead gβα 6= 0 over J , there exists r ∈ J such
that gβα(r) 6= 0. From continuity of gβα there exists
a compact interval of positive measure, I ⊆ J , such
that infs∈I(gβα(s)) ≥ gβαmin and gβαmin > 0. Let i0 and i1
denote the endpoints of this interval, i0 < i1. We consider
now the events

Dk = (Nα
T−i0 −Nα

T−i1 = k,Nγ
T = 0 for all γ ∈ V \ {α})

k ∈ N0. Then under Assumption 4, for all k

λβT1Dk
≥ 1Dk

∫

I

gβα(T − s) dNα
s ≥ gβαmin · k · 1Dk

.

Assume for contradiction that β is locally independent
of α given V \ {α}. Then λβT = E(λβT | FVT ) = E(λβT |
FV \{α}T ) is constant on ∪kDk and furthermore P(Dk) >
0 for all k. However, this contradicts the above inequality
when k →∞.

Proof of Proposition 12. Let D denote the DG which is
output by the algorithm. We should then show that
P(D0) ⊆ D. Assume that α →P(D0) β. In this case,

there is a directed path from α to β in D0 such that no
nonendpoint node on this directed walk is in O (the ob-
served coordinates). Therefore for anyC ⊆ O\{α} there
exists a directed µ-connecting walk from α to β inD0 and
by ancestral faithfulness it follows that 〈α, β | C〉 /∈ I.
The algorithm starts from the complete directed graph,
and the above means that the directed edge from α to β
will not be removed.

Proof of Corollary 13. Consider some directed path from
α to β in D0 on which no node is in C. Then there is also
a directed path from α to β on which no nodes is in C in
the graph P(D0), and therefore also in the output graph
using Proposition 12.

Proof of Proposition 15. Assume that there is a µ-
connecting walk from α to β given {β}. If this walk
has no colliders, then it is a directed trek, or can be re-
duced to one. Otherwise, assume that γ is the collider
which is the closest to the endpoint α. Then γ ∈ an(β),
and composing the subwalk from α to γ with the directed
path from γ to β gives a directed trek, or it can be reduced
to one. On the other hand, assume there is a directed
trek from α to β. This is µ-connecting from α to β given
{β}.

Proof of Proposition 17. Assume β →P(D0) γ. Subalgo-
rithms 1 and 2 are both simple screening algorithms, and
they will not remove this edge. Assume for contradiction
that β → γ is removed by Subalgorithm 3. Then there
must exist α 6= β, γ and a directed trek from α to β in
D0. On this directed trek, γ does not occur as this would
imply a directed trek either from α to γ or from β to α,
thus implying α →D γ or β →D α, respectively (D is
the output graph of Subalgorithm 1). As γ does not occur
on the trek, composing this trek with the edge β → γ
would give a directed trek from α to γ. By faithfulness,
〈α, γ | γ〉 /∈ I, and this is a contradiction as α → γ
would not have been removed during Subalgorithm 1.

We consider instead CSAP. Assume for contradiction that
β → γ is removed during Subalgorithm 4. There exists
in D0 either a directed trek from α to β or a directed trek
from β to α. If γ is on this trek, then γ is not µ-separated
from α given the empty set (recall that there are loops at
all nodes, therefore also at γ), and using faithfulness we
conclude that γ is not on this trek. Composing it with the
edge β → γ would give a directed trek from α to γ and
using faithfulness we obtain a contradiction.
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THIS THESIS AS A COMMUTATIVE DIAGRAM 145

This thesis as a commutative diagram
As a final component in this chapter, we consider the commutative diagram below to summarize the content of the thesis.
Our starting point is a distribution of a stochastic process, PX . Using the concept of local independence, we obtain a set
of independences, I, that hold in the distribution. Often we will assume that we only observed some of the coordinate
processes, i.e., we have access to the marginal distribution PXO . From a distribution, PX , one can define a graph D such
that D in a certain sense encodes the independence structure (or some of it) in the distribution. In Paper B we saw that
in the case of a regular Ornstein-Uhlenbeck process, one can read off D from the matrix M in the drift of the process.
We also needed a graph for representing the system under partial observation, G in the diagram. Using µ-separation, we
obtained a separation model. The global Markov property shows that in certain classes of processes, we have I(D) ⊆ I
and therefore I(G) ⊆ IO. Under Markov and faithfulness assumptions, such that I(G) = IO, we considered the learning
problem in which one tries to learn something about G from IO.

PXO PX D G
IO I I(D) I(G)
li

M

li µ-sep

latent proj

µ-sep
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