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Abstract

This thesis studies the relations between special values of !-functions of arithmetic objects and
heights, as well as the arithmetic of torsion points on elliptic curves with complex multiplication.
The �rst of the main results of this thesis, exposed in its last chapter, shows that the special value
!∗ (�, 0) of the !-function associated to an elliptic curve � de�ned over Q which has complex
multiplication can be expressed as an explicit rational linear combination of a logarithm of an
algebraic number and the Mahler measure of a polynomial. The other main result of this thesis,
exposed in its penultimate chapter and obtained in collaboration with Francesco Campagna,
shows that the family of ?∞-division �elds associated to an elliptic curve � de�ned over a number
�eld � containing the CM �eld  becomes linearly disjoint after removing a �nite and explicit
subfamily of �elds, which we expect to be never linearly disjoint over � as soon as it contains
more than one element, and � satis�es a technical condition (see De�nition 7.1.30). We prove
this expectation if � =  and � is the base-change of an elliptic curve de�ned over Q.

The content of this thesis is articulated in the following chapters:
• the �rst chapter contains background material on the notion of height, and on Diophantine

properties of heights;

• the second chapter contains background material on motives, motivic cohomology and
regulators;

• the third chapter contains background material on !-functions, together with some results
concerning the �niteness of the family of !-functions having bounded special values,
which is based on joint work in progress with Fabien Pazuki;

• the fourth chapter contains background material on the Mahler measure, as well as some
computations concerning explicit families of polynomials;

• the �fth chapter contains the outline of an ongoing project joint with François Brunault,
whose aim is to give a geometric interpretation of results by Lalín, inspired by an insight
from Maillot, concerning the Mahler measures associated to polynomials satisfying a
suitable exactness condition;

• the sixth chapter , which is based on joint work in progress with Francesco Campagna,
introduces the notion of ray class �elds associated to orders in algebraic number �elds.
This is probably well known to the experts but not so well documented in the literature;

• the seventh chapter contains background material on elliptic curves and abelian varieties
with complex multiplication, together with the proof of an optimal upper bound for
the index of the image of the Galois representation attached to the torsion points of an
elliptic curve with complex multiplication, which is based on joint work in progress with
Francesco Campagna;

• the eight and ninth chapter contain the expositions of the main results of this thesis, which
were described in the previous paragraph.

• the appendix contains the tables mentioned in the main body of the thesis
Key words: !-functions, heights, special values, Mahler measure, complex multiplication,

elliptic curves.
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Resumé

Denne afhandling studerer relationer mellem specielle værdier for !-funktioner af aritmetiske
objekter og højder, og aritmetikken af torsionspunkter på elliptiske kurver med kompleks
multiplikation. Det første af hovedresultaterne i denne afhandling, fremsat i dens sidste kapitel,
viser, at den specielle værdi !∗ (�, 0) for !-funktionen associeret til en elliptisk kurve, �, de�neret
over Q, som har kompleks multiplikation, kan udtrykkes som en eksplicit, rationel, lineær
kombination af en logaritme af et algebraisk tal og Mahlermålet af et polynomium. Det andet
hovedresultat i denne afhandling, fremsat i næstsidste kapitel og opnået i samarbejde med
Francesco Campagna, viser, at familien af ?∞-divisionslegemer associeret til en elliptisk kurve,
�, de�neret over et tallegeme, � , som indeholder CM-legemet  , bliver lineært disjunkt efter at
en endelig og eksplicit underfamilie af legemer udelukkes. Vi forventer at denne underfamilie
aldrig er lineært disjunkt over � , så snart den indeholder mere end ét element og � opfylder
en teknisk betingelse (se De�nition 7.1.30). Vi beviser denne forventning hvis � =  og � er
basisskiftet af en elliptisk kurve de�neret over Q.

Indeholdet i denne afhandling er struktureret i følgende kapitler:
• det første kapitel indeholder baggrundsmateriale om begrebet højde og om diofantine

egenskaber af højder;

• det andet kapitel indeholder baggrundsmateriale om motiver, motivisk cohomologi og
regulatorer;

• det tredje kapitel indeholder baggrundsmateriale om !-funktioner sammen med nogle
resultater vedrørende endeligheden af familien af !-funktioner med begrænsede specielle
værdier, som er baseret på et igangværende samarbejde med Fabien Pazuki;

• det fjerde kapitel indeholder baggrundsmateriale om Mahlermål sammen med nogle
beregninger forbundet med eksplicitte familier af polynomier;

• det femte kapitel indeholder en skitse af et igangværende projekt i samarbejde med
François Brunault, hvis formål er at give en geometrisk fortolkning af resultater fra Lalín,
inspirerede af en indsigt af Maillot, vedrørende Mahlermålet associeret til polynomier, der
opfylder en passende eksakthedsbetingelse;

• det sjette kapitel, som er baseret på et igangværende samarbejde med Francesco Campagna,
introducerer idéen om stråleklasselegemer associeret til ordner i algebraiske tallegemer.
Dette er sandsynligvis velkendt for eksperter, men ikke så veldokumenteret i litteraturen;

• det syvende kapitel indeholder baggrundsmateriale om elliptiske kurver og abelske vari-
eteter med kompleks multiplikation sammen med et bevis for en optimal øvre grænse for
indekset af billedet af Galois repræsentationen forbundet med torsionspunkterne på en
elliptisk kurve med kompleks multiplikation. Dette er også baseret på et samarbejde med
Francesco Campagna;

• det ottende og niende kapitel indeholder en fremstilling af hovedresultaterne i denne
afhandling, som var beskrevet i de foregående paragra�er;

• bilaget indeholder tabellerne nævnt i afhandlingens hovedtekst.
Nøgleord: !-funktioner, højder, specielle værdier, Mahlermål, kompleks multiplikation,

elliptiske kurver.
2020 Matematik Fagklassi�cering: 11G05, 14K22, 11G15, 11S15, 11F80, 11R06, 11S40,

14K22, 19F27.
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Preface: an outline of this PhD
thesis

Freedom of the spirit is beyond
price, but this world wants to
impose a price on everything.

Wu Ming, Q

It was probably very cold in Saint Petersburg on the 5th of December 1735, when a paper
entitled De summis serierum reciprocarum was read to the Saint Petersburg Academy of sciences.
This paper, presented by the 28 year old Swiss mathematician Leonhard Euler, computes the
values of the in�nite series

Z (B) :=
+∞∑
==1

1
=B

(0.1)

evaluated at even natural numbers B = 2=, with = ∈ N. More precisely, Euler proves that

Z (2=)
c2= =

(−1)=+122=−1�2=

(2=)! ∈ Q× (0.2)

where �2= ∈ Q× is the 2=-th Bernoulli number, de�ned by the generating series

+∞∑
<=0

�<

<!
C< =

C

4C − 1

which was introduced in Jakob Bernoulli’s book Ars Conjectandi, published in Basel in 1713,
eight years after the death of Jakob Bernoulli and twenty-two years before Euler’s remarkable
discovery. Euler’s proof solved in particular the so-called Basel problem, which asked to �nd
the explicit value of Z (2). This was posed in 1650, thus more than eighty years earlier than
Euler’s solution, by the Italian mathematician Pietro Mengoli. We refer the interested reader to
Raymond Ayoub’s survey [Ayo74] for a thorough exposition of Euler’s insights on the series
(0.1).

Euler’s theorem was a profound breakthrough, and contributed to bring him the fame that
lasts until this very day. Moreover, Euler himself extended the study of the series (0.1) to the real
values B ∈ R such that B > 1, but it wasn’t until Bernhard Riemann’s 1859 work Ueber die Anzahl
der Primzahlen unter einer gegebenen Grösse that this function was shown to have a meromorphic
continuation to the whole complex plane, with a pole only at B = 1, corresponding to the fact
that (0.1) degenerates to the notoriously divergent harmonic series in this case. As it can be
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evinced from the German title of Riemann’s paper, this work also focused on the profound
relations between the function Z (B), which is today known as Riemann’s Z -function, and the
distribution of prime numbers. These relations occur in the form of Riemann’s explicit formula,
which links the prime counting function c (G) to the complex numbers B ∈ C such that Z (B) = 0
and 0 < <(B) < 1. Riemann then conjectured that all such complex numbers must lie on the
vertical line<(B) = 1/2. This problem, which is known as the Riemann hypothesis, remains
unsolved to this day, despite numerous attempts and partial results towards it, among which
lies the fundamental prime number theorem, which asserts that Z (B) ≠ 0 on the vertical line
<(B) = 1. We refer the interested reader to Alain Connes’s survey [Con16] for more historical
background on the Riemann hypothesis.

Going back to the equality (0.2), one might wonder if similar formulas exist for the values
Z (2= + 1) of the Riemann Z -function at odd positive integers. This is, perhaps surprisingly,
still unknown to this day, despite the fact that the interest in this problem goes back to Euler
himself (see [Ayo74, § 7]). Nevertheless, it is expected that formulas like (0.2) should not hold for
Z (2= + 1), in a very strong sense. More precisely, it is conjectured that, for every = ∈ N such that
= ≥ 1, the real numbers {c, Z (3), Z (5), . . . , Z (2= + 1)} should be algebraically independent over
Q. The partial results known towards this conjecture are quite little. Most notably, Roger Apéry
mesmerised the audience attending his talk at the Journées arithmétiques in Luminy on the
22nd of June, 1978, by presenting a surprisingly simple proof that the real number Z (3) ∈ R is
irrational. His proof was later clari�ed by several mathematicians, and its developments through
the following year are recounted in Alfred van der Poorten’s survey paper [PA79]. Moreover, it
is today known that one amongst the four real numbers {Z (5), Z (7), Z (9), Z (11)} is irrational, by
work of Wadim Zudilin (see [Zud04]), and it is also known that the sequence {Z (2= + 1)}=≥1
contains in�nitely many irrational numbers. This was �rstly shown by the work of Keith Ball
and Tanguy Rivoal (see [BR01]), and it is now known that a big proportion of odd Z -values is
irrational, thanks to the work of Stéphane Fischler, Johannes Sprang and Wadim Zudilin (see
[FSZ19]), as well as the recent work [LY20] by Li Lai and Pin Yu.

We point out that, to this day, it is not known whether a single odd Z -value is transcendental.
Thus one may ask why it is in fact reasonable to believe that all the odd Z -values are transcen-
dental, and also algebraically independent amongst themselves. One of the reasons comes from
the link between the transcendence of odd zeta values and some deep conjectures in algebraic
geometry. To be more precise, for every = ∈ N the special value

Z ∗ (=) := lim
B→=

Z (B)
(B − =)ordB== (Z (B))

(0.3)

is known to be a period, i.e. to be expressible as the integral of an algebraic di�erential form over
an semi-algebraic domain. Then the transcendence of each of the values Z ∗ (=) = Z (=) for = ≥ 1
can be shown to follow from the period conjecture, which predicts (as formulated by Maxim
Kontsevich and Don Zagier in [KZ01, Conjecture I]) that each equality between periods can be
proved using only the elementary rules of calculus (change of variables, linearity and Stokes’
theorem). We refer the interested reader to Joseph Ayoub’s article [Ayo14b] for a survey of
the period conjecture, and to Yves André’s survey [And04, § 25.7] of the relations between the
transcendence of special values of the Z function and the period conjecture. These conjectures
are nowadays known to be related to multiple Z -values, which are higher-dimensional analogues
of the values of Z at the positive integers. We refer the interested reader to the forthcoming
book [BF] by José Ignacio Burgos Gil and Javier Fresán for an in-depth survey of the theory of
multiple Z -values, with particular focus on its relations to motives.
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The conjectural transcendence of odd Z -values leaves us with the question of �nding formulas
relating them to other (conjecturally transcendental) numbers of interest (e.g. periods having a
particularly simple integral representation). In fact, one may wonder whether relations of this
kind exist for the special values of more general meromorphic functions 5 : C→ C, which satisfy
a functional equation and admit an Euler product representation analogous to the ones which
are known to hold for Riemann’s Z -function. There is a way, at least conjecturally, to produce
such kinds of functions from algebraic varieties. More precisely, one can associate to each
smooth and proper algebraic variety - de�ned over a number �eld ^ a plethora of cohomology
theories, such as the ℓ-adic bi-graded cohomologies � 8, 9

ℓ
(- ) := � 8ét (-^ ;Qℓ ( 9)). Since these are

de�ned by base-changing - to the algebraic closure of ^, we see immediately that the Galois
group G^ := Gal(^/^) acts on � 8, 9

ℓ
(- ). Hence, one can consider the characteristic polynomial of

every element f ∈ G^ acting on � 8, 9
ℓ
(- ). These characteristic polynomials can be “assembled

together”, to create the !-function associated to the 8-th cohomology of - . More generally, one
can carry out this procedure for every mixed motive de�ned over the number �eld � , which is an
object “cut out”, by means of linear algebra, from objects of the form� 8 (- ) associated to smooth
and proper varieties - . We refer the interested reader to Chapter 2 for a survey of the theory
of motives, and to Section 3.2 for an overview of the construction of the !-function !(", B)
associated to a mixed motive " . These functions are de�ned as formal Euler products, which
converge for every B ∈ C with real part <(B) > f0 (") for some real number f0 (") ∈ R>0.
Moreover, it is conjectured that these !-functions admit a meromorphic continuation to the
whole complex plane (see Conjecture 3.3.4) and that this meromorphic continuation satis�es a
suitable functional equation (see Conjecture 3.3.6). Finally, deep conjectures of Selberg predict
that all the functions having these properties arise as motivic !-functions. We refer the interested
reader to Alberto Perelli’s survey articles [Per05; Per04] for an introduction to this circle of
ideas.

Now, for every !-function !(", B) associated to a mixed motive " ∈ MM(� ;Q), which is
de�ned over a number �eld � and has rational coe�cients, one can de�ne the special values

!∗ (",=) := lim
B→=

!(", B)
(B − =)ordB== (! (",B))

∈ R

associated to any integer = ∈ Z. These generalise the special values Z ∗ (=) de�ned in (0.3), which
can be obtained by taking " = � 0 (Spec(Q)) ∈ MM(Q,Q). Then one may ask, in complete
analogy to what happens for the special values Z ∗ (=), if the special values !∗ (",=) are irrational,
transcendental or even algebraically independent amongst themselves. Moreover, one could ask
if these numbers are periods, and if so one could try to �nd the “simplest” integral representation
of such periods. It probably comes as no surprise to the reader, given how little we know already
about the special values Z ∗ (=), that even less is known about the irrationality and transcendence
of the values !∗ (",=) for a general motive " . For example, the value !∗ (j−4, 2) = !(j−4, 2) of
the !-function associated to unique non-trivial Dirichlet character j−4 : (Z/4Z)× → C×, equals
the famous Catalan constant � ∈ R, which is not known to be irrational (see Yuri Nesterenko’s
survey [Nes16]). Nevertheless, if these numbers were periods then their transcendence might be
related once again to the period conjecture.

Luckily enough, these numbers are indeed known to be periods, in the case of Dirichlet
!-functions. This can be seen as an instance of the conjectures of Pierre Deligne (see [Del79])
and Alexander Beilinson (see [Bei84]) on special values of !-functions, which are known to hold
for the !-functions associated to Dirichlet characters by the work of Beilinson himself. We refer
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the reader to Section 3.3.2 for an introduction to Beilinson’s conjecture, and to Jürgen Neukirch’s
survey [Neu88] for an account of Beilinson’s work concerning the Dirichlet !-functions !(j, B).

Now, let us come back to the problem of expressing the periods Z ∗ (=) and !∗ (j, =) in the
“simplest form possible”. This notion is of course subjective, and depends on the reader’s taste for
what should be considered a “simple” integral expression. One key example of “simple period”
is given by the Mahler measure:

<(%) :=
∫ 1

0
· · ·

∫ 1

0
log|% (42c8\1 , . . . , 42c8\= ) |3\1 · · ·3\=

de�ned by Kurt Mahler (see [Mah62]) for every Laurent polynomial % ∈ C[G±1
1 , . . . , G±1

= ] \ {0}.
One of the �rst relations between Mahler measures and special values of !-functions comes
from the work of Christopher Smyth, who proved in [Smy81] that

<(G + ~ + 1) = !′(j−3,−1)
<(G + ~ + I + 1) = −14Z ′(−2)

(0.4)

where j−3 : (Z/3Z)× → C× is the unique non-trivial character (see Theorem 4.2.4). Using the
functional equations for Z (B) we see for example that Smyth’s result gives us one possible
integral expression for Apéry’s number Z (3). We refer the interested reader to the work [Lal06]
by Matilde Lalín for a list of identities involving Mahler measures and the special values Z (2=+1)
for every = ≥ 1, which generalise Smyth’s result. Moreover, we point the reader to Chapter 4
for an introduction to the Mahler measure.

Other special values of !-functions which are known to be periods are given by !∗ (�, =) for
= ≠ 1, where � is an elliptic curve. More precisely, if � is an elliptic curve de�ned overQ then the
modularity theorem (see for instance Bas Edixhoven’s survey [Edi02]) shows that the motivic
!-function !(�, B) := !(� 1 (�), B) coincides with the automorphic !-function !(5 , B) associated
to a newform 5 ∈ (2 (Γ0 (# )). Thus the modularity theorem can be combined with a result of
Beilinson (see Christopher Deninger and Anthony Scholl’s survey [DS91]) to show that !∗ (�, =)
is indeed a period. On the other hand, if � is any number �eld and �/� is an elliptic curve with
complex multiplication (see De�nition 7.1.5) which satis�es a suitable technical condition (see
De�nition 7.1.30), then a result of Deninger, proved in the works [Den89] and [Den90], shows
that !∗ (�, =) is again a period, for = ≠ 1.

Hence one may wonder whether the special values !∗ (�, =) satisfy suitable identities which
relate them to simpler periods, for instance to Mahler measures of Laurent polynomials. This
seems indeed plausible, at least for the special value !∗ (�, 0), thanks to the extensive numerical
computations performed by David Boyd during the last decade of the past century, which are
contained in [Boy98], and more recently by Hang Liu and Houroung Qin (see [LQ19]). These
computations show that, for many Laurent polynomials % ∈ Z[G±1, ~±1], one should expect a
relation of the form

!∗ (�% , 0)
<(%) ∈ Q× (0.5)

where �% is an elliptic curve which appears as a factor of the Jacobian of the curve de�ned by
{% = 0}. On the other hand, if the Jacobian of the curve de�ned by % does not have any elliptic
factor, then one should not expect a relation like (0.5), as we point out at the end of Section 4.2.

It is now natural to ask what happens for polynomials having multiple variables. First of all,
it is often the case that the Mahler measure<(%) of a Laurent polynomial % ∈ Z[G±1

1 , . . . , G±1
= ]

in = variables, appears to be related to the special value of some !-function at B = =. Finding out
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which !-function this is can be tricky. For example, why is it the case that the Dirichlet character
j−3 and the Riemann Z -function make their appearance in Smyth’s computations (0.4)? This
question was partially answered by Vincent Maillot, during a talk which took place on the 30th
of April, 2003 at the Ban� International Research Station, in occasion of the meeting The many
aspects of Mahler’s measure (see [Boy+03, § 8]). More precisely, Maillot proved that in certain
cases the !-function to be considered comes from the cohomology of the variety % = %∗ = 0,
where %∗ (G1, . . . , G=) := % (G−1

1 , . . . , G−1
= ) is the reciprocal of the polynomial % . In these cases,

the polynomial % is said to be exact. For example, the polynomial G + ~ + 1 is exact, and the
variety % = %∗ = 0 consists of two points de�ned overQ(

√
−3), which shows where the Dirichlet

character j−3 comes from. On the other hand, to explain the appearance of Z ∗ (−2) in the second
of Smyth’s computations (0.4), one needs to introduce the notion of successive exactness for a
polynomial % . This has been done in the PhD thesis of Matilde Lalín (see [Lal05; Lal07]), mostly
for polynomials in two and three variables, using the exactness of suitable di�erential forms.
We devote Chapter 5 to report on joint work in progress with François Brunault, whose aim is
to give a notion of :-exactness for polynomials in =-variables, where 0 ≤ : ≤ =. We present
two candidates for this notion, and we use our approach to provide a strategy of proof for a
conjecture concerning the special value !∗ (-1 (15),−1) associated to the elliptic modular curve
-1 (15).

This is all related to the following general question: is every special value !∗ (",=) of a
motivic !-function always related to the Mahler measure of one or more polynomials? While
this question is completely out of reach in general, the following theorem, which is the �rst main
result of this thesis, shows that this conjecture holds for the special value !∗ (�, 0) = !′(�, 0) of
the !-function associated to a CM elliptic curve � which is also de�ned over Q.

Theorem A – Mahler measures and CM elliptic curves (see Theorem 9.2.4)

Let � be an elliptic curve de�ned over Q such that End(�Q) � O for some imaginary
quadratic �eld  . Then there exists a polynomial % ∈ Z[G,~] such that:

• its zero locus +% ↩→ G2
< is birationally equivalent to �;

• <(%) = A !′(�, 0) + log|B | for two explicit numbers A ∈ Q× and B ∈ Q× de�ned in
(9.15).

Before moving on, let us point out that the general question concerning the relations between
!∗ (",=) and Mahler measures can be seen as parts of even broader speculations concerning
the relations between special values of !-functions and di�erent kinds of heights. The Mahler
measure has indeed been introduced as a height function on polynomials (at least on those with
integer coe�cients), which satis�es (at least conjecturally) many of the required Diophantine
properties of a height function, such as the Northcott, Bogomolov and Lehmer properties. We
refer the reader to Chapter 1 for an axiomatic introduction to these di�erent properties. It is then
natural to ask whether the special values !∗ (",=) can also be considered as a kind of height, and
in particular if they satisfy the aforementioned Diophantine properties. We devote Section 3.4,
which is based on joint work in progress with Fabien Pazuki, to the study of these questions.

Let us now go back to the proof of Theorem A, which is contained in Chapter 9. This
proof rests on Deninger’s foundational work [Den97a], which provides a way of relating the
Mahler measure <(%) of a polynomial to periods coming from algebraic geometry, and on
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David Rohrlich’s work [Roh87], which provides a very explicit result that proves a weak form
of Beilinson’s conjectures (see Conjecture 3.3.28) for the special values !∗ (�, 0) associated to a
CM elliptic curve � de�ned over Q. We refer the reader to Section 4.3 for an introduction to
Deninger’s results, and to Section 7.4 for an exposition of Rohrlich’s work.

The aforementioned results of Rohrlich concern pairs of functions 5 , 6 : � → P1
Q

whose zeros
and poles are torsion points, not necessarily de�ned over Q. The coordinates of these torsion
points can also be used to generate some �nite extensions ofQ, called division �elds associated to
the elliptic curve �, which are among the most studied families of number �elds. More generally,
if � is any CM elliptic curve de�ned over a number �eld � , which has complex multiplication by
an order O inside an imaginary quadratic �eld  , one can de�ne for every ideal � ⊆ O a �nite
Galois extension � ⊆ � (� [� ]) generated by the coordinates of those points % ∈ � (� ) such that
[U]� (%) = 0 for every U ∈ � , where [U]� : � → � denotes the multiplication map associated to U .
Then one can form the in�nite Galois extension � ⊆ � (�tors) given as the compositum of all the
division �elds � (� [� ]), and to this extension one may attach a Galois representation

d� : Gal(� (�tors)/� ) ↩→ AutO (�tors) (0.6)

where AutO (�tors) denotes the group of automorphisms of the O-module �tors, de�ned as
�tors := � (� )tors = lim−−→# ∈N

� [# ] (� ). More generally, one can form the in�nite Galois extensions
� ⊆ � (� [?∞]) associated to every rational prime ? ∈ N, which are de�ned as the compositum of
the family of division �elds {� (� [?=]) : = ∈ N}. The following theorem, proved in collaboration
with Francesco Campagna, shows that the family of in�nite extensions {� (� [?∞])}? with ? ∈ N
varying amongst the rational primes, becomes linearly disjoint over � after removing a �nite,
explicit sub-family.

Theorem B – Entanglement of CM division �elds (see Theorem 8.2.6)

Let � be a number �eld and �/� an elliptic curve with complex multiplication by an order
O in an imaginary quadratic �eld  ⊆ � . Denote by b� := fO Δ� #�/Q (f�) the product
of the conductor fO := |O : O| of the order O, the absolute discriminant Δ� ∈ Z of the
number �eld � and the norm #�/Q (f�) := |O� /f� | of the conductor ideal f� ⊆ O� .

Then the natural inclusion

Gal(� (�tors)/� ) ↩→
∏
?

Gal(� (� [?∞])/� )

where the product runs over all rational primes ? ∈ N, induces an isomorphism

Gal(� (�tors)/� ) Gal(� (� [(∞])/� ) ×
∏
?∉(

Gal(� (� [?∞])/� )∼

where ( ⊆ N denotes the �nite set of primes dividing b� .

It now a natural question to ask whether the �nite family of �elds {� (� [?∞]) : ? | b�} is
linearly disjoint or not. We study this question in Section 8.3 and Section 8.4. On the one hand,
we prove in Corollary 8.3.4 that this family is linearly disjoint for every number �eld � which is
an abelian extension of an imaginary quadratic �eld  , and for every elliptic curve � de�ned
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over � which has complex multiplication by an order O ⊆  and does not satisfy a suitable
technical condition (see De�nition 7.1.30), which was introduced in the foundational work of
Goro Shimura and Yutaka Taniyama (see in particular [Shi94, Pages 216-218]). On the other
hand, we prove in Theorem 8.4.4 that the �nite family of division �elds {� (� [?∞]) : ? | b�} is
never linearly disjoint over � as soon as it contains more than one element, under the condition
that � =  is an imaginary quadratic �eld and �/ is the base-change of an elliptic curve
de�ned over Q, which has potential complex multiplication by an order O ⊆  such that
O ∉

{
Z

[
−1+
√
−3

2

]
,Z[
√
−1]

}
.

Our study of division �elds of elliptic curves with complex multiplication led Francesco
Campagna and the author also to extend the usual de�nition of ray class �elds to ray class �elds
relative to orders in number �elds. This was already done for orders contained in imaginary
quadratic �elds in the PhD thesis of Heinz Söhngen [Söh35] using the classical language of class
�eld theory (see also Reinhard Schertz’s survey [Sch10]). We generalise this de�nition to any
order inside any number �eld  , using both the classical and the modern language of class �eld
theory, which involves the group of idèles A×

 
(see De�nition 6.1.6). We report on our current

progress concerning these generalised ray class �elds in Chapter 6.
We observe as well that the ray class �elds�� ,O associated to imaginary quadratic orders are al-

ways contained in the division �elds � (� [� ]), whenever the ideal � is invertible (see Lemma 6.2.7).
This was already proved by Söhngen in [Söh35], and we give another proof in Section 7.2, using
the language introduced in Chapter 6. This inclusion shows that the division �elds � (� [� ]) can
not be “too small”, hence that the image of the Galois representation (0.6) cannot be too small
either. In particular, we prove in Section 7.3 that the index [AutO (�tors) : Im(d�)] is �nite and
explicitly bounded from above. The �niteness of this index is originally due to Max Deuring,
and it is the precursor of the celebrated “open image theorem”, proved by Jean-Pierre Serre
in [Ser71], which states that for an elliptic curve without complex multiplication, the index
[AutZ (�tors) : Im(d�)] is also �nite. Moreover, the aforementioned Corollary 8.3.4 proves that
the upper bound for the index [AutO (�tors) : Im(d�)] provided by Theorem 7.3.1 is optimal, at
least for elliptic curves de�ned over the ring class �eld �O .

To conclude, let us mention the leitmotiv of this PhD thesis. On the one hand, the world
of algebraic geometry, and in particular of motives, gives us a great amount of conjectures to
ponder upon, which often rest over a great deal of abstraction (such as a heavy use of category
theory). On the other hand, periods and heights, of which the Mahler measure is an instance, give
us concretely computable complex (or, more often, real) numbers that measure the complexity,
in a suitable sense, of some arithmetic objects, such as algebraic numbers, points on abelian
varieties, or even number �elds, abelian varieties themselves and so on. A bridge between these
two worlds is provided by the realisations of a motive " , which allow one to speak about the
periods and the !-function attached to " . The special values of this !-function give us other
more or less computable complex numbers, and it is thus a natural question to ask if these can
be related to heights of various sort. In this thesis we show how to do this for elliptic curves
with complex multiplication, and for one particular special value (at B = 0) and one particular
height (the Mahler measure). This is possible because of the extra symmetries with which a
CM elliptic curve is endowed. These symmetries can be exploited in many di�erent ways, for
example to study the division �elds of these elliptic curves, or the ray class �elds associated to
imaginary quadratic orders. Thus we have seen that heights, which are supposed to measure
the complexity of an arithmetic object, turn out to be easier to handle when we apply them to
objects with extra symmetries, which might appear more complicated at a �rst sight. This proves
yet again the unwavering truth that a �rst sight is usually taken from a wrong perspective.

xix





1Heights and their Diophantine
properties

What pleasure lives in height (the shepherd sang)
In height and cold, the splendour of the hills?

Alfred Tennyson, The Princess

The aim of this chapter is to introduce the notion of height (or height function) in wide
generality, and to de�ne the main Diophantine properties of height functions, which are named
after Northcott, Bogomolov and Lehmer. The second section of this chapter is then devoted to
give examples of heights and to survey what is known about their Diophantine properties.

1.1 An axiomatic approach to heights and their
properties

The notion of height is the central cornerstone of modern Diophantine geometry. Height
functions were originally meant to be a measure for the size of solutions to Diophantine equations.
Since these can be understood as rational points+ (Q) on an algebraic variety+ de�ned over the
�eld of rational numbers Q, height functions in this setting can be understood as set-theoretic
functions ℎ : + (Q) → R which measure the complexity of an algebraic point % ∈ + (Q). This
height function can then be used to single out the subset + (� ) ⊆ + (Q) of � -rational points for
any given number �eld � ⊆ Q. The most striking example of this approach is Vojta’s proof
of Mordell’s conjecture, which asserts that the set � (� ) is �nite for every smooth, projective
curve � de�ned over a number �eld � . One of the ingredients that are part of Vojta’s theorem
is the fact that, if � (� ) ≠ ∅, one can associate to a given rational point % ∈ � (� ) the so called
canonical height ℎ̂�,% : � (� ) → R, initially introduced for abelian varieties by Néron in [Nér65],
which has the property that for every � ∈ R the set

{& ∈ � (� ) : |ℎ̂�,% (&) | ≤ �}

is �nite. We refer the interested reader to [HS00, Part E] for an exposition of Vojta’s proof.
The �niteness property enjoyed by the canonical height is called Northcott’s property, in view

of the fact that Northcott showed a similar property for the Weil height of algebraic numbers (see
Section 1.2.1), which is closely related to the canonical height. In fact, the �rst proof of Mordell’s
conjecture, due to Faltings, employs a similar kind of Northcott property. More precisely, Faltings
de�ned a function ℎFal : A(Q) → R on the set of Q-isomorphism classes of abelian varieties
de�ned over Q, with the property that for every �1, �2 ∈ R the set

{� ∈ A(Q) : deg(�) ≤ �1, ℎFal (�) ≤ �2}
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is �nite, where deg(�) ∈ N denotes the minimal degree of a number �eld over which � can be
de�ned. The interested reader might �nd a complete account of Faltings’s proof in the survey
volumes [Fal+92], [Szp85] and [CS86].

The previous examples show that the notion of height is a very general one, and indeed
di�erent kinds of heights have been de�ned for a plethora of di�erent kinds of objects. This
leads us to give the following working de�nition.

De�nition 1.1.1 – Height functions

A height (or height function) on a set ( is a function ℎ : ( → Γ with values in a partially
ordered set Γ.

The most common examples of heights land in Γ = R, but we introduce this general framework
because it makes some de�nitions cleaner, using the product height (1.1).

The rest of the section is devoted to the description of three properties of heights:
• the Northcott property, which asserts that the sets of points of bounded height are �nite;

• the Bogomolov property, which concerns the lower bound of the set ℎ(() ⊆ Γ;

• the Lehmer property, which is a Bogomolov property for a slightly modi�ed height.

1.1.1 Northcott property
As we already said in the introduction, an important property of heights ( → Γ is that they

often allow one to cut the set ( into smaller pieces, by limiting the height from above. This
property can be axiomatically de�ned as follows.

De�nition 1.1.2 – Northcott property

Let ℎ : ( → Γ be a height function, and let S be a collection of subsets of ( . Then the
height ℎ has:

• the �bre-wise S-Northcott property if and only if the �bres of ℎ lie in S;

• the S-Northcott property if and only if {B ∈ ( | ℎ(B) ≤ W} ∈ S for every W ∈ Γ.
If S consists of the collection of �nite subsets of ( , we omit it from the notation.

The name Northcott properties comes from the fact, already stated in the introduction of this
section, that one of the �rst �niteness results of this type was proved by Northcott for the height
of algebraic numbers (see Section 1.2.1). To be precise, this height (as most height functions)
does not satisfy a Northcott property by itself, but it does if one also bounds the degree of the
algebraic numbers in question. This leads to the following generalisation of De�nition 1.1.2.
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De�nition 1.1.3 – Northcott property for a set of heights

If h = {ℎ8 : ( → Γ8 }8∈� is a set of height functions we say that h has one of the properties
described in De�nition 1.1.2 if and only if the “product height”

h̃ : ( →
∏
8∈�

Γ8

B ↦→ (ℎ8 (B))8∈�
(1.1)

has these properties, where the set
∏
8∈� Γ8 is endowed with the product order (see [Bou04,

Chapter III, § 1.4]).

Before moving on, let us mention the following evident implication

ℎ has S-Northcott + S is lower-closed ⇒ ℎ has �bre-wise S-Northcott (1.2)

where S is called lower-closed if for all . ⊆ - ⊆ ( we have that - ∈ S⇒ . ∈ S. Moreover, if S
is the collection of �nite subsets of ( then

ℎ has �bre-wise Northcott + ℎ(() is upper-�nite ⇒ ℎ has Northcott

where we say that - ⊆ Γ is upper-�nite if -≤W := {G ∈ - | G ≤ W} is �nite for all W ∈ Γ.

1.1.2 Bogomolov property
Let us now shift to the de�nition of the Bogomolov property, which concerns the in�mum of

the set ℎ(() ⊆ Γ. This property, which has been widely investigated for the height of algebraic
numbers (see the introduction of [CF20] and the references therein), takes his name from the
toric version of Bogomolov’s conjecture, which has been proved by Zhang in [Zha95a]. Zhang’s
proof uses the concept of successive minimum for the canonical height. This notion can be
generalised as follows to arbitrary subsets of a partially ordered set Γ.

De�nition 1.1.4 – Successive in�ma and minima

Let Γ be a partially ordered set and let : ∈ N. Then a subset - ⊆ Γ has at least : successive
in�ma (respectively at least : successive minima) if:

• - is bounded from below;

• whenever : ≥ 1, the set - has at least : − 1 successive in�ma (resp. minima), and
- \ -:−1 has an in�mum (resp. minimum) `: (- ) ∈ Γ. Here we de�ne -0 := ∅ and

-:−1 := {G ∈ - | G ≤ `:−1 (- )} ∪*:−1

for any : ≥ 2, where*:−1 ⊆ Γ denotes the connected component of - ∪ {`:−1 (- )}
that contains `:−1 (- ). This connected component is taken with respect to the
subspace topology induced on - ∪ {`:−1 (- )} by the order topology on Γ.
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It is easy to see that ` 9 (- ) ≤ ` 9+1 (- ) for any 9 ∈ Z≥1. Moreover if ` 9+1 (- ) = ` 9 (- ) for some
9 ∈ Z≥1 then - has at least : successive in�ma for every : ∈ N and `: (- ) = ` 9 (- ) for every
: ≥ 9 . This leads to the following de�nition.

De�nition 1.1.5 – Exact number of successive in�ma/minima

Let Γ be a partially ordered set. Then any subset - ⊆ Γ has exacly : successive in�ma
(respectively exacly : successive minima) for some : ∈ N if it has at least : successive
in�ma (resp. minima) and at least one of the following holds:

• - does not have at least : + 1 successive in�ma (resp. minima);

• `:+1 (- ) = `: (- ).

A related notion is the one of essential minimum (see the introduction of [AD03]), which can
be generalised as follows.

De�nition 1.1.6 – Essential in�mum/minimum

Let Γ be a partially ordered set, let - ⊆ Γ and let X be a collection of subsets of - . Write
-≤W := {G ∈ - | G ≤ W} for every W ∈ Γ. Then - has a X-essential in�mum (resp.
X-essential minimum) if the set

{W ∈ Γ | -≤W ∉ X} ⊆ Γ

has an in�mum (resp. a minimum). In this case we denote this element by `ess (-,X) ∈ Γ,
where Γ := Γ t {+∞} is the partially ordered set obtained by adjoining to Γ a global
maximum +∞. In particular, `ess (-,X) = +∞ if and only if -≤W ∈ X for every W ∈ Γ.

We are now ready to give the de�nition of Bogomolov property.

De�nition 1.1.7 – Bogomolov property

Let ℎ : ( → Γ be a height function, and let S be a collection of subsets of ( . Then ℎ has:
• the S-essential Bogomolov property if the set ℎ(() ⊆ Γ has an ℎ(S)-essential in�mum,

denoted by `ess (ℎ, S) ∈ Γ;

• Bogomolov number B(ℎ) ∈ N if the set ℎ(() ⊆ Γ has exactly B(ℎ) successive in�ma,
denoted by ` 9 (ℎ) for 9 ∈ {1, . . . ,B(ℎ)};

• the very weak Bogomolov property if and only if B(ℎ) ≥ 0, i.e. if and only if the set
ℎ(() ⊆ Γ is bounded from below;

• the weak Bogomolov property if and only if B(ℎ) ≥ 1 and `1 (ℎ) ∈ ℎ((), i.e. if and
only if ℎ(() has a minimum;

• the Bogomolov property if and only if either |ℎ(() | = 1 or B(ℎ) ≥ 2 and `1 (ℎ) ∈ ℎ((),
i.e. if and only if ℎ(() has an isolated minimum.
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If h = {ℎ8 : ( → Γ8 }8∈� is a set of height functions we write B(h) and `ess (h, S) for the
Bogomolov number and the essential in�mum of the product height (1.1), and we say that
h has one of the various Bogomolov properties if and only if the product height does.

Clearly one has the chains of implications

ℎ has Bogomolov ⇒ ℎ has weak Bogomolov ⇒ ℎ has very weak Bogomolov

ℎ has Northcott ⇒ ℎ has Bogomolov .

1.1.3 Interlude: examples of successive infima
Before moving to the de�nition of Lehmer’s property, we devote this subsection to the study

of examples of successive in�ma and minima. In particular, we show that our de�nitions
De�nition 1.1.4 and De�nition 1.1.5 recover the notions of successive in�ma and minima present
in Arakelov geometry, due to Minkowski (for lattices) and Zhang (for heights associated to
hermitian line bundles).

Example 1.1.8. Let Γ = R. In this case the order topology coincides with the Euclidean topology.
Then every set which has at least zero successive in�ma (i.e. is bounded from below) has also
has at least = successive in�ma for every = ∈ N. Moreover, if - ⊆ R is a �nite union of open
intervals - =

⋃:
8=1 (08 , 18 ) with 01 < 11 < 02 < 12 < . . . , then it is easy to see that - has exactly

: successive in�ma, with `8 (- ) = 08 for every 8 ∈ {1, . . . , :}. Finally, if - ⊆ R is countable
then - has exactly : ∈ Z≥1 successive minima if and only if there exists a Cauchy sequence
{G=}=∈N ⊆ - such that |{G ∈ - | G ≤ G=, ∀= ∈ N}| = : .

Example 1.1.9 (Minkowski). Let Λ ⊆ R= be a lattice, and let 6 : R= → R≥0 be any distance
function (see [Cas97, Chapter IV]), i.e. any continuous function such that 6(C · x) = |C |6(x) for
all C ∈ R. Then the image of the map

Λ→ R≥0 × N
_ ↦→

(
6(_), dimR (+6,_)

) where +6,_ := 〈{G ∈ Λ | 6(G) ≤ 6(_)}〉R

has exactly = successive in�ma, which are given by the pairs (` 9 (Λ, 6), 9) for some sequence

0 < `1 (Λ, 6) ≤ `2 (Λ, 6) ≤ · · · ≤ `= (Λ, 6) < +∞

with ` 9 (Λ, 6) ∈ R>0 for every 9 ∈ {1, . . . , =}. The numbers {` 9 (Λ, 6)} are usually called successive
minima of the function 6 on the lattice Λ (see [Cas97, Chapter VIII]). However, these numbers
are really in�ma and not minima in general.

Example 1.1.10 (Zhang). Let X → Spec(Z) be an arithmetic variety of dimension 3 , as de�ned
in [Zha95a], and let Cl(- ) be the set of closed sub-schemes of the generic �bre - := XQ. Fix
L to be a relatively semi-ample hermitian line bundle on X with ample generic �bre, and let
ℎL : - (Q) → R be the associated height. Then the image of the map

Cl(- ) → R × N

. ↦→
(
inf{ℎL (G) | G ∈ - (Q) \ . (Q)} , dim(. )

)
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has exactly 3 + 1 successive in�ma, which are given by pairs (` 9 (X,L), 9) for some sequence

`0 (X,L) ≤ `1 (X,L) ≤ · · · ≤ `3 (X,L) ≤ +∞

with ` 9 (X,L) ∈ R for every 9 ∈ {0, . . . , 3 − 1} and `3 (X,L) ∈ R t {+∞}. It is easy to see that
`3 (X,L) = +∞ if and only if - is irreducible, and that for every 9 ∈ {0, . . . , 3 − 1} we have
` 9 (X,L) = 43−9 (L), where 41 (L) ≥ · · · ≥ 43 (L) is the sequence de�ned in [Zha95a, § 5]. We
also refer the interested reader to the seminal paper [Gau08], and in particular to [Gau08, § 5.4],
for more examples of successive minima.

1.1.4 Lehmer property
As we point out in Section 1.2.1, the height of algebraic numbers has the weak Bogomolov

property, because zero the set ℎ(Q) has a minimum in zero), but not the Bogomolov property,
since ℎ( =

√
2) → 0 for = → ∞. Nevertheless, there is no known sequence {U=} ⊆ Q such that

ℎ(U=) ≠ 0 for all = ∈ N, lim=→+∞ ℎ(U=) = 0 and deg(U=) is bounded. Moreover, it is expected
that the function U ↦→ ℎ(U) deg(U) should have the Bogomolov property, thereby proving that
no such sequence {U=} should exist. This expectation is linked to the famous problem posed by
Lehmer in [Leh33, § 13], which is discussed in Section 4.1.1. It is now clear why the following
property, which generalises the aforementioned conjectural property of the height of algebraic
numbers, is called “Lehmer property”.

De�nition 1.1.11 – Lehmer property

Let h = {ℎ8 : ( → Γ8 }8∈� be a set of heights, and let U :
∏
8∈� Γ8 → Γ be any map of sets,

where Γ is a partially ordered set. Then the Lehmer number L(h, U) ∈ N is de�ned to be
the Bogomolov number of the height U ◦ h̃, where h̃ denotes the product height (1.1). The
successive in�ma of U (h̃(()) are denoted accordingly by ` 9 (h, U) for 9 ∈ {1, . . . ,L(h, U)}.
Moreover, the pair (h, U) has:

• the very weak Lehmer property if and only if U ◦ h̃ has the very weak Bogomolov
property;

• the weak Lehmer property if and only if U ◦ h̃ has the weak Bogomolov property;

• the Lehmer property if and only if U ◦ h̃ has the Bogomolov property.

It is easy to observe that one has the following implications

ℎ′ has very weak Bogomolov + U ◦ h̃ ≥ ℎ′ ⇒ (h, U) has very weak Lehmer

ℎ′ has weak Bogomolov + U ◦ h̃ ≥ ℎ′ ⇒ (h, U) has weak Lehmer

ℎ′ has Bogomolov + U ◦ h̃ ≥ ℎ′ ⇒ (h, U) has Lehmer

where ℎ′ : ( → Γ is any height and U ◦ h̃ ≥ ℎ′ means that U (h̃(B)) ≥ ℎ′(B) for every B ∈ ( .
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1.2 Examples of heights
We devote the rest of this chapter to list examples of heights and their properties, and to

relate these examples to special values of !-functions. Let us start with the logarithmic Weil
height, which was the main inspiration to give the general de�nitions in Section 1.1.

1.2.1 The height of algebraic numbers
Let ℎ : Q → R be the absolute logarithmic Weil height (see [BG06, De�nition 1.5.4]), and

let deg : Q → Z≥1 denote the degree deg(U) := [Q(U) : Q]. It is immediate to see that ℎ does
not have the �bre-wise Northcott property (with respect to the collection of �nite subsets of
Q), for example because ℎ(Z ) = 0 for any root of unity Z ∈ Q. Hence ℎ does not have the
Northcott property. It is also immediate to see that the same holds for the degree function.
However, Northcott’s theorem (see [BG06, Theorem 1.6.8]) shows that the set h = {ℎ, deg}
has the Northcott property. Moreover, it is immediate to see that ℎ has the weak Bogomolov
property, because 0 ∈ R is a minimum for ℎ(Q), attained exactly at the roots of unity (see [BG06,
Theorem 1.5.9]). However, it is easy to see that this minimum is not isolated, because for example
lim=→+∞ ℎ( =

√
2) = 0. Hence B(ℎ) = 1, and ℎ does not have the Bogomolov property. Finally,

asking whether the set h = {ℎ, deg} has the Lehmer property with respect to the function

c : R × Z≥1 → R
(G, 3) ↦→ G · 3

is equivalent to Lehmer’s celebrated problem (see [BG06, § 1.6.15]).

Let us mention some of the recent work concerning Northcott, Bogomolov and Lehmer
properties relative to the logarithmic Weil height. First of all, it is known thatℎ has the Bogomolov
property when restricted to suitable in�nite sub-extensions of Q, such as the maximal abelian
extension Qab ⊆ Q (see [AZ10]) or the extension obtained by adjoining to Q the coordinates of
torsion points of elliptic curves (see [Hab13]). We refer the interested reader to the introduction
of [CF20] for a complete list of references of known results. Moreover, Smyth’s theorem [BG06,
Theorem 4.4.15] says that (h, c) has the Lehmer property when restricted to the set ( ⊆ Q
of algebraic numbers which are not Galois-conjugate to their multiplicative inverse. Finally,
Dobrowolski’s theorem [BG06, Theorem 4.4.1] says that, if we let

U : R × Z≥1 → R

(G, 3) ↦→ G · 3 ·
(

log(33)
log log(33)

)3 (1.3)

then the pair (h, U) has Lehmer’s property.

1.2.2 Mahler measure
This height can be seen as a multi-dimensional analogue of the function

c ◦ h̃ : Q→ R
U ↦→ ℎ(U) · deg(U)
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appearing in Section 1.2.1, and it is one of the protagonists of this work. As such, we devote to it
the entire fourth chapter of this thesis. See in particular De�nition 4.1.1 for the de�nition of the
Mahler measure, which is a height

< : C[G±1
1 , G±1

2 , . . . ] \ {0} → R

de�ned for non-zero polynomials with complex coe�cients, in any number of variables.
Concerning Diophantine properties of the Mahler measure, it is known that the height<

has the weak Bogomolov property if one restricts it to the ring Z[G±1
1 , G±1

2 , . . . ] of Laurent
polynomials with integral coe�cients, because for every % ∈ Z[G±1

1 , G±1
2 , . . . ] one has that

<(%) ≥ 0 and<(%) = 0 if and only if % is a product of cyclotomic polynomials evaluated at
monomials (see Theorem 4.1.15). Moreover, if we let

X : C[G±1
1 , G±1

2 , . . . ] → Z≥1

% ↦→
+∞∑
8=1

8 · degG8 (%)

then the pair (<,X) has the Northcott property, when restricted to polynomials with integer
coe�cients. Indeed, this follows from [Mah62], which gives the inequality

exp(<(%)) = exp(<(%̃)) ≥ 2−
∑+∞
8=1 degG8 (%̃ ) ·

∑
j

|0j |

where {0j}j ⊆ Z are the coe�cients of %̃ =
∑

j 0jG
0j written in multi-index notation.

Finally, let us mention that, for every algebraic number U ∈ Q× we have that

<(5U ) = ℎ(U) deg(U)

where 5U ∈ Z[C] is the integral minimal polynomial of U (see Example 4.1.9).

1.2.3 Canonical height
The Mahler measure of an integral polynomial % ∈ Z[G±1

1 , . . . , G±1
= ] has been related, by work

of Maillot, to the canonical height of the hypersurface de�ned by this polynomial. To be more
precise, let +% ⊆ G=< be the zero locus of % , let Δ% ⊆ R= be the Newton polytope of % (see
[GKZ94, Chapter 6]) and let +% ⊆ P(Δ% ) denote the closure of +% inside the projective toric
variety P(Δ% ) associated to Δ% . Fix also a family of toric Cartier divisors D = {�1, . . . , �=}
de�ned on P(Δ% ) which are generated by global sections. Then [Mai00, Proposition 7.2.1] (see
also [Gua19, Corollary 6.3]) shows that the canonical height ℎcan

D (+% ) can be computed as

ℎcan
D (+% ) = degD (P(Δ% )) · (<(%) − log|gcd(%) |) (1.4)

where gcd(%) ∈ N denotes the greatest common divisor of the coe�cients of % and

degD (P(Δ% )) := deg( [�1] ∪ · · · ∪ [�=]) ∈ Z

denotes the geometric degree. We point out that (1.4) is somehow surprising. Indeed, the Mahler
measure of a polynomial can be thought of as a height measuring the complexity of the zero
locus +% . However, one needs to keep in mind that this height does not only depend on +% , but
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on the speci�c model % that we have chosen. Nevertheless, (1.4) shows that this dependency is
not particularly sensitive to changes in % . Moreover, we remark that also the canonical height
ℎcan
D (+% ) does not depend solely on +% , because the compacti�cation +% depends on the Newton

polytope Δ% .

We refer the interested reader to [HS00, § B.4] for an introduction to canonical heights on
abelian varieties, and to [Gua19, § 3] for an introduction to canonical heights in toric varieties,
such as the height ℎcan

D appearing in (1.4). Other important contributions to the �eld are given by
the works of Zhang (see [Zha95a; Zha95b]), Philippon (see [Phi91; Phi94; Phi95]) and Faltings
(see [Fal91] and [Sou92, Chapter III, § 6]), all of whom explore di�erent de�nitions for the
notions of “canonical” heights of sub-varieties (inside P= , for instance). Numerous Diophantine
properties have been proved for these heights in the papers mentioned above. We chose not to
describe these properties explicitly. Instead, let us move to another, even more canonical, type
of height that can be associated to algebraic varieties.

1.2.4 Faltings’s height
Let A(Q) be the set of isomorphism classes of abelian varieties de�ned over Q, and let

ℎ : A(Q) → R be the stable Faltings height (see [Fal86, Section 3] and [Del85a, Page 27], which
use two di�erent normalizations). Then ℎ satis�es the very weak Bogomolov property with
respect to the dimension dim: A(Q) → N, since one has the lower bound

ℎ(�) ≥ − log(
√

2c) · dim(�)

which is due to Bost (see [GR14, Corollary 8.4]). Then [Del85a, Page 29] shows that ℎ has the
weak Bogomolov property if we restrict to the set A1 (Q) of Q-isomorphism classes of elliptic
curves de�ned over Q. Moreover, [Löb17] and [BMR18] show that ℎ : A1 (Q) → R has the
Bogomolov property tout court. It seems reasonable to ask whether ℎ itself satis�es a Bogomolov
property with respect to the dimension.

Finally Faltings’s theorem [Fal86, Theorem 1], combined with Zahrin’s “trick” [Mil86, Re-
mark 16.12], shows that ℎ has the Northcott property with respect to the pair f = {dim, deg}.
This degree function is de�ned by

deg : A(Q) → N
� ↦→ min{[� : Q] | � is de�ned over � }

where we say that an abelian variety � de�ned over a �eld L is de�ned over a sub-�eld K if
there exists an abelian variety �′ de�ned over K and such that � � �′ ×Spec(K) Spec(L). Then
deg is well de�ned, because every abelian variety de�ned over Q can be de�ned over a number
�eld (see [EGA IV.3, Théorème 8.8.2]). We note that sometimes the degree of a polarised abelian
variety is de�ned to be the degree of its polarisation (see [Mil86, § 13]), but this has nothing to
do with our function deg : A(Q) → N.

We conclude by pointing out that Mocz has recently proved that (if one assumes Artin’s
and Colmez’s conjectures) the function ℎ satis�es Northcott’s property with respect to ∅ if we
restrict to the subset of isomorphism classes of abelian varieties with complex multiplication
(see [Moc17, Theorem 1.4]).
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1.2.5 Conductors of complex Galois representations
The Faltings height of an abelian variety� is a quite di�cult invariant to compute. In the case

of elliptic curves, an explicit formula for the unstable version of the Faltings height is provided in
[Sil86, Proposition 1.1]. Another case in which the Faltings height is conjectured to be explicitly
computable is given by abelian varieties with complex multiplication (see De�nition 7.1.5).
Indeed, the seminal work of Colmez [Col89] predicts that the Faltings height of a CM abelian
variety � should be computable using the logarithmic derivatives of some !-functions related to
the CM �eld associated to �. We refer the interested reader to Example 3.4.3 for a brief account
of Colmez’s conjectural formula.

For now, we only want to point out that Colmez’s formula involves the Artin conductor 5j ∈ N
of some Artin characters j : �Q → C. By de�nition 5j := N(fd ) coincides with the norm of
the conductor associated to any complex representation d : �Q → GL= (C) such that j = tr ◦d ,
where tr : GL= (C) → C denotes the trace map. The aim of this subsection is to show that the
association d ↦→ fd behaves almost like a height. In particular it satis�es a Northcott property,
at least if we include the Archimedean places in the de�nition of the conductor.

Let � be a number �eld, �x = ∈ N and let A= (� ) be the set of cuspidal automorphic represen-
tations of GL= (A� ) (see [IS10, § 1]). Then [Bru06, Corollary 9] shows that the analytic conductor
C : A= (� ) → R≥1, which is de�ned in [IS10, Equation (31)], satis�es the Northcott property. In
particular, the = = 1 case shows that the set of Hecke characters k : A×

�
→ C× with bounded

analytic conductor is �nite.
Let nowWC (� ) be the set of isomorphism classes of pairs (+ , d)where+ is a �nite dimensional

complex vector space and d : ,� → GL(+ ) is a continuous semi-simple representation of the
Weil group,� (see [Tat79, § 1]). Then there is a function f : WC (� ) → O� sending each (+ , d)
to its global Artin conductor ideal fd ⊆ O� (see [Neu99, Chapter VII, § 11]). Moreover, the
Archimedean local Langlands correspondence, explained for example in [Kna94], allows one to
associate to each (+ , d) ∈ WC (� ) an Archimedean conductor C∞ ((+ , d)) ∈ R, de�ned in exactly
the same way as the Archimedean part of the analytic conductor of a cuspidal automorphic form.
Then [And+94, Theorem 3.3] can be combined with our previous discussion to show that the
function C : WC (� ) → R de�ned as C((+ , d)) := N�/Q (fd ) · C∞ ((+ , d)) satis�es the Northcott
property. Let us observe that:

• one can consider all the number �elds at once as follows: if WC denotes the set of
isomorphism classes of triples (�,+ , d), where � is a number �eld and (+ , d) ∈ WC (� ),
then [Roh94, Property (a2)] shows that the composite map C ◦ Ind : WC →WC (Q) → R
satis�es the Northcott property, where Ind : WC →WC (Q) sends (�,+ , d) to the induced
representation on,Q ⊇,� ;

• the conductor fd is related to !-functions by means of the functional equation (see [Tat79,
Theorem 3.5.3]).

1.2.6 Conductors of ℓ-adic representations
This subsection is the analogue of the previous one for representations valued in vector spaces

de�ned over Qℓ .
Let ℓ ∈ N be a prime number and let � be a number �eld. We denote by "0

�
the set of

non-Archimedean places of � , and for every E ∈ "0
�

we write FrobE ⊆ Gal(�/� )/IE for the
conjugacy class of geometric Frobenius elements relative to E , where IE denotes the E-adic inertia
subgroup. We de�ne Gℓ (� ) to be the set of isomorphism classes of pairs (+ , d) where + is a
�nite dimensional vector space over Qℓ and d : Gal(�/� ) → GL(+ ) is a continuous semi-simple
representation satisfying the following properties:
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• the set ( (ram)
d ⊆ "0

�
of non-Archimedean places at which d is rami�ed is �nite;

• the set ( (int)
d ⊆ "0

�
of non-Archimedean places E ∈ "0

�
such that tr(d (FrobE)) ∈ Z has

�nite complement. Here tr : GL(+ ) → C denotes the trace.

Let now (+ , d) ∈ Gℓ (� ). We set (d := ( (ram)
d ∪ ("0

�
\ ( (int)

d ) and we denote by Td the family of
�nite sets ) ⊆ "0

�
such that ) ∩ (d = ∅ and the restriction map⋃

E∈)
FrobE → Gal( /� )

is surjective for every extension � ⊆  of number �elds which is unrami�ed outside (d and
such that [ : � ] ≤ ℓ2 dim(+ )2 . We de�ne two functions c : Gℓ (� ) → N and g : Gℓ (� ) → N as

c (+ , d) := max{char(^E) : E ∈ ( (ram)
d }

g (+ , d) := min
) ∈Td

(max{|tr(d (FrobE)) | : E ∈ ) })

where ^E denotes the residue �eld of � at E . Note in particular that Td ≠ ∅, as follows from a
combination of Chebotarev’s density theorem and Hermite’s theorem.

Then [Del85b, Théorème 1] shows that the set h = {dim, c, g} has the Northcott property.
Moreover, the functions c and g are related to more classical invariants as follows:

• c (+ , d) ≤ C0 (+ , d), where C0 (+ , d) := N�/Q (fd ) denotes the norm of the conductor ideal
fd ⊆ O� associated to d (see for example [Ulm16]). Hence the set h = {dim, C0, g} has the
Northcott property;

• g (+ , d) ≤ dim(+ ) · g̃ (+ , d), where g̃ : Gℓ (� ) → R is the function de�ned by

g̃ (+ , d) := min
) ∈Td

(max{|f | : f ∈ Sp(d (FrobE))})

where, for any 5 ∈ End(+ ), we denote by Sp(5 ) the set of its eigenvalues. In particular,
if we restrict to the subsetMℓ (� ) ⊆ Gℓ (� ) consisting of those Galois representations
that admit a weight �ltration with �nitely many non-zero graded pieces (see [Jan10,
§ 2]), then the sets {dim, c,Fmax} and {dim, C0,Fmax} have the Northcott property, where
Fmax : Mℓ (� ) → N sends a representation to the greatest of its weights.

Let us conclude by making the following observations:

• the semi-sempli�cations of the ℓ-adic étale cohomology groups � 8ét (-� ;Qℓ ( 9)) associated
to a smooth and proper variety - de�ned over � which has good reduction at all the
primes of � lying above ℓ give rise to elements ofMℓ (� ) which are pure of weight 8 − 2 9 .
For these Galois representations the set (d equals the set of primes of � which either lie
above ℓ or are primes of bad reduction for - . This follows from the smooth and proper
base change theorem for étale cohomology, combined with Deligne’s proof of the Weil
conjectures (see [Jan90, Appendix C]).

• we can consider all the number �elds at once, as we did in Section 1.2.5, by de�ning
Gℓ as the set of isomorphism classes of triples (�,+ , d) where � is a number �eld and
(+ , d) ∈ Gℓ (� ). Then [Roh94, Property (a’2)] implies that the sets {dim ◦ Ind, c ◦ Ind, g}
and {dim, C0 ◦ Ind, g} have the Northcott property. Here Ind : Gℓ → Gℓ (Q) is again the
map sending (�,+ , d) to the representation induced on Gal(Q/Q) ⊇ Gal(�/� );
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• the conductor fd is supposed to be related to the !-function !(d, B) by means of the
conjectural functional equation (compare with [Tat79, § 4.5]).

1.2.7 Volumes of hyperbolic manifolds
We conclude this roundup of examples by talking about a more geometric example of height,

given by the volume of hyperbolic manifolds.
Let H be the set of isomorphism classes of hyperbolic manifolds of �nite volume. Then

it is conjectured that the volume vol : H → R≥0 has the Bogomolov property, and that the
minimum is attained at an arithmetic hyperbolic manifold " � h=/Γ, where Γ is an arithmetic
subgroup of the isometry group of the hyperbolic space h= (see [BE14]). Moreover, if we restrict
to the setH ar ⊆ H of isomorphism classes of arithmetic hyperbolic manifolds, it is conjectured
that the set h = {vol, dim, deg} has the Northcott property, where the degree is de�ned by
deg(") := [Q(tr(c1 (") (2) )) : Q]. Here we denote by c1 (") (2) the sub-group generated by
the squares, and by tr : c1 (") → C the trace map induced from the embedding of c1 (") into
the isomorphism group of h= . This Northcott property has been proved for three dimensional
arithmetic hyperbolic manifolds (see [Jeo14]).
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2Cohomology theories, motives
and regulators

What makes life dreary is the want of motive.

George Eliot, Daniel Deronda

The aim of this chapter is to review the notion of a motive. This was envisioned by Gro-
thendieck as an attempt to gather the properties common to the di�erent cohomology theories
which could be de�ned for algebraic varieties. Most notably, as Serre points out in [Ser91],
there are in�nitely many ℓ-adic cohomology theories � 8, 9

ℓ
(−), one for every rational prime

ℓ ∈ N, and it is a challenging question to determine under what circumstances a Qℓ -linear map
iℓ : � 8, 9

ℓ
(- ) → �

8, 9

ℓ
(. ) induces a Qℓ′ linear map iℓ′ : � 8, 9ℓ′ (- ) → �

8, 9

ℓ′ (. ) for a prime ℓ ′ ≠ ℓ . This
is clearly true if iℓ = 5 ∗ for some 5 : . → - , and more generally if iℓ is induced by a span
. ← / → - where / → . is proper and of relative dimension zero. These are examples of
Qℓ -linear maps iℓ which are “motivated”, i.e. which come from the algebraic geometry of the
varieties - and . , and thus have a good reason to extend to ℓ ′-adic cohomology theories for
ℓ ′ ≠ ℓ . This notion of motivated maps can be encoded in essentially two di�erent ways:

• by the compatibility of iℓ with the various comparison isomorphisms which relate ℓ-adic
cohomology to singular cohomology (for varieties de�ned over sub-�elds);

• by keeping only the maps iℓ which come from algebraic correspondences, thereby taking
into account the geometry of the varieties in question. Usually one does this by considering
the correspondences between - and . , which are suitable linear combinations of closed
sub-varieties of - × . , modulo an “adequate” equivalence relation (see De�nition 2.2.1).

These two notions of “motivated” give rise to two very di�erent notions of “motive”: the �rst
type of construction allows one to get abelian categories (which we describe in Section 2.2.2),
whereas the second kind of construction allows one to get abelian categories of “pure motives”
(see Section 2.2.1), related to smooth and projective varieties, only if one considers algebraic
cycles modulo numerical equivalence, which is the coarsest of all adequate equivalence relations.
If one wants instead to consider �ner equivalence relations (like the ones induced by cohomology
theories, which would link the two approaches) one faces immediately some important obstacles,
which have been encoded in the form of the “standard conjectures” (see [And04, Chapitre 5]).
Moreover, the cohomological approach described in Section 2.2.2 allows one to get an abelian
category of “mixed motives”, where in particular there are objects associated to each separated
scheme of �nite type de�ned over the �eld we are working with. In contrast, the best one can
do to this day with the second approach is to get a triangulated category of “mixed motives” (see
Section 2.2.3). Nevertheless, a far reaching program laid down by Beilinson in the foundational
papers [Bei87, § 5] and [Bei86b, § 0.3] predicts that the second approach should also lead to an
abelian category of mixed motives, and the two approaches should agree. We warn the reader
that these two tasks are likely to be extremely di�cult: the existence of a “geometric” abelian
category of mixed motive would give a positive answer to the standard conjectures (see [Bei12]).
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This is also profoundly related to the conjectures concerning the fullness and conservativity of
the realisation functors (see for instance [HM17, Proposition 10.2.1]).

Nevertheless, the existing constructions of triangulated categories of mixed motives (due to
the work of Voevodsky, Morel, Suslin, Ayoub, Cisinski and Déglise, Robalo, etc.) allow one to
talk about the motivic cohomology of a scheme - . This is an incredibly rich invariant, which
is (conjecturally) linked to the algebraic  -theory of perfect complexes of sheaves on - (see
Section 2.3.1) on the one hand, and to complexes of algebraic cycles (see Section 2.3.2) and
functions (see Section 2.3.3) on - . Finally, motivic cohomology is suppose to have the role of a
“universal cohomology theory”, in the sense that every cohomology theory satisfying the axioms
that we outline in the next section should receive a map from motivic cohomology. These maps
are usually called regulators, because they help to tame down, hence to regulate, the wildness of
algebraic cycles present in motivic cohomology. We outline their construction and their basic
properties in Section 2.4.

2.1 What is a cohomology theory?
The world of algebraic and analytic geometry is a very chaotic one. Algebraic varieties,

manifolds and (more generally) topological spaces can be deformed in many di�erent ways,
which can become di�cult to control. Homology and cohomology theories are a copious source
of powerful invariants which allow one to use methods of linear and (co)homological algebra
to study the geometric world. The aim of the present section is to recall some of the working
de�nitions for the concept of cohomology theory (due to Weil, Bloch and Ogus, Cisinski and
Déglise) and to recall how many familiar cohomology theories (singular cohomology, de Rham
cohomology, étale cohomology) �t into this picture.

2.1.1 Axioms for cohomology theories
The question of �nding suitable axioms for the concept of homology (or cohomology) is a

highly non-trivial one. In algebraic topology, this subject has a very rich history (see [Die09,
Chapter IV]), and has led to the following notion (see [AGP02, De�nition 12.1.1]).

De�nition 2.1.1 – Cohomology theory (for topological spaces)

Let V denote a sub-category of the category of topological spaces, closed under �nite
products and such that R ∈ V . LetV∗ denote the category of pairs (-,�) of objects ofV
such that � ⊆ - is a subspace, and let Ṽ∗ be the category of triples (-,�, �) of objects of
V such that � ⊆ � ⊆ - . This category is endowed with two functors c1, c2 : Ṽ∗ →V∗
de�ned by c1 (-,�, �) := (-,�) and c2 (-,�, �) := (�, �). Fix an abelian category A
and let � • : (V∗)op → AZ be a functor with values in Z-graded objects of A, and
X• : � • ◦ c2 → f ◦� • ◦ c1 be a natural transformation, where f : AZ → AZ is de�ned by
f (A)8 := �8+1 for every A := {�8 }8∈Z ∈ AZ.

The pair (� •, X•) is an A-valued cohomology theory if the following conditions are
satis�ed:
Homotopy
invariance

for every - ∈ V , the projection map c : - × R→ - induces an iso-
morphism � • (c) : � • (- ) −→∼ � • (- × R), where � • (. ) := � • (., ∅)
for every . ∈ V .
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Excision for every (-,�) ∈ V∗ and every subset * ⊆ � whose closure is
contained in the interior of�, the inclusion 9 : (- \* ,�\* ) ↩→ (-,�)
induces an isomorphism � • ( 9) : � • (-,�) −→∼ � • (- \* ,� \* ).

Exact Sequence
in Cohomology

for every (-,�, �) ∈ Ṽ∗ one has a long exact sequence

. . . � 8 (-, �) � 8 (�, �)

� 8+1 (-,�) � 8+1 (-, �) . . .

� 8 (^)

X8

� 8+1 (])

where ] : (-, �) ↩→ (-,�) and ^ : (�, �) ↩→ (-, �) are the obvious
inclusions.

Moreover, (� •, X•) is said to be additive if the following axiom is satis�ed:
Additivity A is closed under products and � • preserves products, i.e. (re-

member that � • is contravariant) for every set ( and every collec-
tion {(-B , �B )}B∈( ⊆ V∗ the inclusions inside the disjoint union
]B : (-B , �B ) →

⊔
B∈( (-B , �B ) induce an isomorphism∏

B∈(
� • (]B ) : � •

(⊔
B∈(

-B ,
⊔
B∈(

�B

)
−→∼

∏
B∈(

� • (-B , �B ).

and (� •, X•) is said to be ordinary if the following axiom is satis�ed:
Dimension
Axiom

� 8 ({∗}, ∅) = 0 if 8 ≠ 0, where {∗} ∈ V is the topological space with
only one point.

Remark 2.1.2. Thanks to the homotopy axiom, the functor � • : (V∗)op → AZ factors through a
functor ℎ� • : (ℎV∗)op → AZ, where ℎV∗ denotes the homotopy category, which has the same
objects ofV∗ but where the morphisms are homotopy classes of maps.
Remark 2.1.3. The axioms for an ordinary cohomology theory (in our terminology) correspond
to the axioms laid down by Eilenberg and Steenrod in [ES52, § I.3].

Let us now move to algebraic geometry. In this context the analogue of De�nition 2.1.1 can be
identi�ed in the concept of a mixed Weil cohomology in the sense of [CD19, § 17.2] and [Dre13,
§ 2.1]. We give here an axiomatic treatment of this notion, following [Pan03, § 2], to emphasise
the parallels with De�nition 2.1.1.

De�nition 2.1.4 – Cohomology theory (algebraic geometry)

Let ( be a scheme, let V be a category of schemes over ( and let V∗ be the category
whose objects are pairs (-,* ) where - ∈ V and * ↩→ - is an open immersion in V .
Assume that A1

(
∈ V and thatV is closed under products. Denote by Ṽ∗ the category

of triples (-,* ,+ ) where - ∈ V and + ↩→ * ↩→ - are open immersions in V . This
category is endowed with the functors c1, c2 : Ṽ∗ →V∗ de�ned as c1 (-,* ,+ ) := (-,* )
and c2 (-,* ,+ ) := (* ,+ ). Fix an abelian cateogry A, let AZ be the category of Z-
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graded objects in A and let f : AZ → AZ be the shift functor de�ned in De�nition 2.1.1.
Then a pair (� •, X•) consisting of a functor � • : (V∗)op → AZ together with a natural
transformation X• : � •◦c2 → f◦� •◦c1 is anA-valued cohomology theory if the following
conditions are satis�ed:
Homotopy
invariance

for every - ∈ V the projection map c : - ×( A1
(
→ - induces

an isomorphism � • (c) : � • (- ) −→∼ � • (- ×( A1
(
), where � • (. ) :=

� • (., ∅) for every . ∈ V .

Excision every Nisnevich distinguished morphism i : (-,* ) → (- ′,* ′) in
V∗ induces an isomorphism � • (i) : � • (- ′,* ′) −→∼ � • (-,* ). By
de�nition, i is given by a Cartesian square

* -

* ′ - ′

y
i

9

5 ′ 5

9 ′

(2.1)

such that the map 5 is étale and induces an isomorphism

5 −1 ((- ′ \ 9 ′(* ′))red) −→∼ (- ′ \ 9 ′(* ′))red

where (- ′ \ 9 ′(* ′))red denotes - ′ \ 9 ′(* ′), considered as a closed
sub-scheme of - ′ with its reduced sub-scheme structure.

Exact Sequence
in Cohomology

for every (-,* ,+ ) ∈ Ṽ∗ we have a long exact sequence

. . . � 8 (-,+ ) � 8 (* ,+ )

� 8+1 (-,* ) � 8+1 (-,+ ) . . .

� 8 (^)

X8

� 8+1 (])

(2.2)

where ] : (-,+ ) → (-,* ) and ^ : (* ,+ ) → (-,+ ) are the obvious
morphisms inV∗.

Suppose now thatA is an abelian tensor category, as de�ned in [DM82, De�nition 1.15],
and let 1A denote the unit object. Then an A-valued cohomology theory (� •, X•) is said
to be ordinary if the following axiom is satis�ed
Dimension
Axiom

( ∈ V , � 0 (() � 1A and � 8 (() = 0 for 8 > 0.

and it is said to be stable if the following axiom is satis�ed
Stability G<,( ∈ V , � 0 (G<,( ) � � 1 (G<,( ) � 1A and � 8 (G<,( ) = 0 for 8 > 1.
where G<,( → ( denotes the multiplicative group (see [SP, Example 022U]). Moreover, a
cross product on a cohomology theory (� •, X•) is a natural transformation

× : � • ⊗ � • → � • ◦ `(
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� 8 (* ) ⊗ � 9 (.,+ ) � 8+9 (* ×( .,* ×( + ) � 8+9 ((* ×( . ) ∪ (- ×( + ), - ×( + )

� 8+1 (-,* ) ⊗ � 9 (.,+ ) � 8+9+1 (- ×( ., (* ×( . ) ∪ (- ×( + ))

X8 ⊗Id

× � 8+9 (])−1

∼

X8+9

×

Figure 2.1.: Compatibility between cross product and boundary in De�nition 2.1.4. Here

] : (* ×( .,* ×( + ) → ((* ×( . ) ∪ (- ×( + ), - ×( + )

is the obvious inclusion, which is Nisnevich distinguished.

where the functors � • ⊗ � • and `( : (V∗)2 →V∗ are de�ned by

� • ⊗ � • ((-,* ), (- ′,* ′)) := � • (-,* ) ⊗ � • (- ′,* ′)
`( ((-,* ), (- ′,* ′)) := (- ×( - ′, (- ×( * ′) ∪ (* ×( - ′))

for every ((-,* ), (- ′,* ′)) ∈ (V∗)2. We demand moreover that for every (-,* ), (.,+ ) ∈
V∗ the diagram in Figure 2.1 is commutative. Finally, a mixed Weil cohomology is a triplet
(� •, X•,×) consisting of an ordinary and stable cohomology theory (� •, X•) together with
a cross product × satisfying the following axiom:
Künneth formula the cross product is an isomorphism, when restricted to the category

V (B) ⊆ V of schemes - ∈ V which are smooth over ( .

Remark 2.1.5. Observe that the de�nition of mixed Weil cohomology given in [CD12] and [Dre13]
is not entirely axiomatic, as the one we have given here, but assumes that the cohomology comes
from an A-valued Nisnevich sheaf of complexes (see also Section 2.1.2).

Remark 2.1.6. Specialising the cross product to the pair ((-,* ), (-,* )) one gets the cup product

⌣ : � • (-,* )⊗2 −→× � • (- ×( -, (- ×( * ) ∪ (* ×( - )) −−−−−→
� • (Δ)

� • (-,* )

where Δ : (-,* ) → (- ×( -,* ×( * ) ↩→ (- ×( -, (- ×( * ) ∪ (* ×( - )) is the diagonal map.
Vice-versa, the cross product is determined by the cup product as

× : � • (-,* ) ⊗ � • (.,+ ) −−−−−−−−−−−−−→
� • (c- ) ⊗� • (c. )

� • (- ×( ., (- ×( + ) ∪ (* ×( . ))⊗2 ⌣−−→ � • (- ×( ., (- ×( + ) ∪ (* ×( . ))

where c- : (-×(., (-×(+ )∪(*×(. )) → (-,* ) and c. : (-×(., (-×(+ )∪(*×(. )) → (.,+ )
denote the obvious projections. The cup product makes � • (-,* ) into a graded ring, and
sometimes (for example in [CD19, § 17.2]) the cross product is called exterior cup product.

Remark 2.1.7. The name “mixed Weil cohomology” is related to the fact that every such coho-
mology theory is expected to give rise to a Weil cohomology theory, in the sense of [And04,
De�nition 3.3.1.1], when restricted to the sub-categoryV (B?) ⊆ V consisting of those + ∈ V
which are smooth and projective over ( . This is proved in [CD12] when ( = Spec(^) for a
perfect �eld ^ , modulo the fact that the cohomology is not known to vanish in negative degrees.

Remark 2.1.8. Sometimes it is useful to have relative cohomology groups � 8 (-,. ) de�ned for a
map . → - which is not necessarily an open immersion. This is done for example in [Den97b]
or [BD99], where relative cohomology is taken with respect to a closed sub-scheme. We believe
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that all the axioms laid out in De�nition 2.1.4 should carry over to a more general setting (where
V∗ is a more general arrow category), except perhaps for the excision axiom.
Remark 2.1.9. De�nition 2.1.1 and De�nition 2.1.4 admit a common generalisation, whereV∗ is
taken to be a sub-category of the category of morphisms Arr(V), whereV is a Grothendieck
site (see [SP, Section 03NF]). An example of this can be any category of schemes with one of the
many topology which can be de�ned on them (see e.g. [SP, Chapter 020K]). Other examples
could be the category of manifolds, or the category of rigid analytic spaces. One of the most
general de�nitions of the notion of cohomology theory, which uses the language of∞-categories,
is given in [Lur17, De�nition 1.4.1.6].

Let us conclude this section by mentioning another possible set of axioms for a cohomology
theory, which was described by Bloch and Ogus in [BO74, § 2], and was re�ned by Gillet [Gil81,
De�nition 1.2], Jannsen [Jan90, § 6] and Levine [Lev98, Chapter V, De�nition 1.1.6]. In fact,
their setting requires a pair (� •, �•) consisting of a cohomology and a homology theory, which
should be related by a cap product and by Poincaré duality. We decided to include this set of
axioms here, following the exposition given by Jannsen, because it is used in some de�nitions of
the abelian categories of mixed motives given in De�nition 2.2.7.

De�nition 2.1.10 – Twisted Poincaré duality theory

Let^ be a �eld and letV be a full sub-category of the category of schemes of �nite type over
^, which contains all the quasi-projective ones (in the sense of [EGA II, Dé�nition 5.3.1]).
Denote byV∗ the category with the same objects ofV , but only proper morphisms, and
by V∗ the category whose objects are closed immersions . ↩→ - with .,- ∈ V , and
whose morphisms are Cartesian squares. Let A be an abelian tensor category, as de�ned
in [DM82, De�nition 1.15].

Then a twisted Poincaré duality theory with values in A consists of two families of
functors {� •, 9 : (V∗)op → AZ}9 ∈Z and {�•, 9 : V∗ → AZ}9 ∈Z with values in Z-graded
objects in A, satisfying the following axioms:
Exact Sequence
in Cohomology

if U : / ↩→ . and V : . ↩→ - are closed immersions, for every 9 ∈ Z
there exists a long exact sequence

· · · → � 8, 9 (V ◦ U) → � 8, 9 (V) −−−−−→
� 8,9 (i)

� 8, 9 (W) → � 8+1, 9 (V ◦ U) → . . .

where W : . \ U (/ ) ↩→ - \ V (U (/ )) denotes the closed immersion in-
duced by V , and i : W → V is the obvious Cartesian square. Moreover,
for every commutative diagram

/ . -

/ ′ . ′ - ′

y
U

5
y

V

6

U′ V′

(2.3)

where the horizontal arrows are closed immersions and the squares
are Cartesian, the two exact sequences corresponding to (U, V) and
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(U ′, V ′) �t in a commutative diagram whose vertical arrows are given
by � ∗, 9 (6 ◦ 5 ), � ∗, 9 (6) and � ∗, 9 (ℎ), where ℎ is the square

. \ U (/ ) - \ V (U (/ ))

. ′ \ U ′(/ ′) - ′ \ V ′(U ′(/ ′))

y
ℎ

W

W ′

induced by (2.3), which is evidently Cartesian.

Excision if U : / ↩→ * is a closed immersion and V : * ↩→ - is an open
immersion, the natural map� 8, 9 (V ◦U) → � 8, 9 (V) is an isomorphism;

Étale
Contravariance

for every 8, 9 ∈ Z and every étale morphism 5 : - → . between two
objects-,. ∈ V there exists a map 5 ∗ : �8, 9 (. ) → �8, 9 (- ) such that
for every Cartesian square

- .

/ ,

5

U
y

V

6

where U and V are proper and 5 and 6 are étale, the square

�8, 9 (. ) �8, 9 (- )

�8, 9 (, ) �8, 9 (/ )

5 ∗

�8,9 (V) �8,9 (U)
6∗

commutes.

Exact Sequence
in Homology

for every closed immersion U : / ↩→ - with complementary open
immersion V : - \ U (/ ) ↩→ - there is a long exact sequence

. . . �8, 9 (- ) �8, 9 (- \ U (/ ))

�8−1, 9 (/ ) �8−1, 9 (- ) . . .

V∗

m8,9

�8,9 (U)

and for every proper map 5 : - → - ′, the long exact sequences
associated to U and to U ′ : 5 (/ ) ↩→ - ′ �t in a commutative diagram
where the vertical arrows are given by�8, 9 (5

��
/
),�8, 9 (5 ) and�8, 9 (ℎ) ◦

i∗. Here i : - \ 5 −1 (5 (U (/ ))) ↩→ - \U (/ ) is the obvious immersion
and ℎ : - \ 5 −1 (5 (U (/ ))) → - ′ \ 5 (/ ) is the restriction of 5 .

Cap product for every 0, 1, 2, 3 ∈ Z and every closed immersion U : / ↩→ - there
is a pairing

�0,1 (- ) ⊗ �2,3 (U) −−→⌢ �0−1,2−3 (/ )
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such that for every Cartesian square

/ -

/ ′ - ′

y
i

U

5 6

U′

and every b ∈ �0,1 (- ), [ ∈ �2,3 (U) and [ ′ ∈ �2,3 (U ′) we have that
5 ∗ (b ⌢ [) = 6∗ (b) ⌢ 6∗ ([) if 5 and 6 are étale, and

�0,1 (6) (b) ⌢ [ ′ = �0,1 (5 ) (b ⌢ �2,3 (i) ([ ′))

if 5 and 6 are proper.

Fundamental
Class

if - ∈ V is irreducible and has dimension 3 then there exists a
morphism [- : 1A → �23,3 (- ), where 1A ∈ A denotes the identity
object for the tensor product. Moreover, if U : - → . is étale then
U∗ ◦ [. = [- , which makes sense because U has relative dimension
zero (see [SP, Section 02GH]).

Poincaré duality if - ∈ V is smooth, irreducible of dimension 3 and U : / ↩→ - is a
closed immersion, the map

1A ⊗ � 23−8,3−9 (U) −−−−−→
[- ⊗Id

�23,3 (- ) ⊗ � 23−8,3−9 (U) −−→⌢ �8, 9 (/ )

is an isomorphism. From this we get the Poincaré duality

� 23−8,3−9 (U) −→∼ �8, 9 (/ )

using the identi�cation � 23−8,3−9 (U) −→∼ 1A ⊗ � 23−8,3−9 (U).

Remark 2.1.11. Usually, if U : / ↩→ - is a closed immersion, the groups � 8, 9
/
(- ) := � 8, 9 (U) are

called cohomology groups of - with support on / .

Remark 2.1.12. Let us explain the relation between De�nition 2.1.4 and De�nition 2.1.10. First
of all, if � • is a stable cohomology theory in the sense of De�nition 2.1.4, we can de�ne a
twisted version of it by setting � •, 9 (-,* ) := � • (-,* ) ⊗ 1A ( 9)� , where the Tate object 1A ( 9)�
is de�ned by setting

1A ( 9)� :=

{
(� 1 (G<,( )⊗ 9 )∨, if 9 ≥ 0
� 1 (G<,( )⊗(−9) , if 9 ≤ 0

where �∨ denotes the ⊗-dual of an object � ∈ A (see [DM82, Page 110]). This dual might not
always exist, but in our case it does because � • is assumed to be stable. Moreover, if / ↩→ -

is a closed immersion we might set � •, 9
/
(- ) := � •, 9 (-,* ), where * ↩→ - denotes the open

complement. This shows that a stable cohomology theory gives rise to functors � •, 9 on the
category of closed immersions, which satisfy the �rst two axioms of De�nition 2.1.10.
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2.1.2 Constructing cohomology theories
The aim of this section is to survey some ways in which cohomology theories can be con-

structed. All the cohomology theories that we describe in Section 2.1.3 can be constructed in
one or more of these ways.

Example 2.1.13 (Spectra). Let us start with cohomology theories de�ned on topological spaces,
which were described in De�nition 2.1.1. First of all, the mapping cone (see [AGP02, Exam-
ples 3.1.2]) de�nes a functor � : V∗ → V+, whereV+ denotes the category of pointed spaces
(-, G) with - ∈ V . Then a natural way of constructing a family of functors {�= : (V∗)op →
Sets : = ∈ Z} is by the composition

�= : (V∗)op −−→�
op
(V+)op −−→ℎ

op
(ℎV+)op −−−−−−−−−→

[−,(-=,G=) ] Sets (2.4)

where ℎV+ denotes the homotopy category of pointed spaces inV+ and [−, (-=, G=)] denotes
the representable functor which sends (.,~) ∈ V+ to the set of homotopy classes of maps into
(-=, G=). Let us write �̃= := [−, (-=, G=)] ◦ ℎop, so that �= = �̃= ◦ �op. Then the existence
of a natural transformation X• as in De�nition 2.1.1 can be encoded in the existence of a
natural equivalence X̃• : �̃ • −→∼ f ◦ �̃ • ◦ Σop, where Σ : V+ → V+ denotes the suspension
(see [AGP02, § 2.10]). In turn the existence of X̃• is equivalent to the existence of pointed
homotopy equivalences (-=, G=) −→∼ Ω(-=+1, G=+1), where Ω(-=+1, G=+1) denotes the loop space of
(-=+1, G=+1) (see [AGP02, De�nition 1.3.9]). One says that such a sequence of pointed topological
spaces {(-=, G=)}=∈Z together with pointed homotopy equivalences (-=, G=) −→∼ Ω(-=+1, G=+1)
forms a spectrum (see [AGP02, § 12.3]), and under these circumstances the functors�= de�ned by
(2.4) form a cohomology theory in the sense of De�nition 2.1.1, which is valued in abelian groups.
Indeed, for every pointed space (-, G) ∈ V+ the two-fold suspension Σ2 (-, G) := Σ(Σ(-, G)) is
an abelian co-group object in the homotopy category ℎV+, with respect to the smash product,
and this implies that for every space (.,~) ∈ V+ the set [(.,~), Σ2 (-, G)] has the structure of
an abelian group. A fundamental result in homotopy theory, called Brown’s representability
theorem (see [AGP02, § 12.2]), says that each cohomology theory arises in this way, at least if
V is a category of CW-complexes (see [AGP02, § 5.1]). Moreover, a previous result of Milnor
(see [AGP02, Theorem 12.1.19]) asserts that every additive and ordinary cohomology theory
can be represented by an Eilenberg-MacLane spectrum � (�) for some abelian group � , and
thus that each additive and ordinary cohomology theory coincides with singular cohomology
� • (−;�) with coe�cients in � (see Example 2.1.20). This cohomology admits a cup product if
and only if � has the structure of a commutative ring with unity.

In the previous example, we have seen a natural way to construct cohomology theories on
topological spaces, as functors represented by spectra, and Brown’s representability theorem
shows that this is essentially the only way in which a reduced cohomology theory �̃ • de�ned
on topological spaces can arise. Let us give another possible way of constructing cohomology
theories, which is perhaps more familiar, and more amenable to computations.

Example 2.1.14 (Complexes). One way to construct a family of functors � • : (V∗)op → AZ,
whereV∗ is any category and A is an abelian category, is to construct a functor

Γ : (V∗)op → C(A)

to the category of A-valued cochain complexes, and then to de�ne � • := � •A ◦ Γ, where
� •A : C(A) → AZ denotes the usual cohomology of a cochain complex.
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Suppose from now on thatV∗ is a sub-category of the category of morphisms Arr(V) on
a given category V . Then for every functor ΓV : Vop → C(A), one can de�ne a functor
Γ : (V∗)op → C(A) by setting Γ(5 ) := Cone(Γ+ (5 )) [−1] (see [SP, Section 014D]). Using the
properties of the cone, it is easy to obtain the natural transformation X• and the long exact
sequence (2.2) for the corresponding cohomology theory � • : (V∗)op → AZ, if Ṽ∗ is de�ned
simply to be the category of triples (-,* ,+ ) where* → - and + → * are two objects ofV∗.
Moreover, � • satis�es the excision axiom (see De�nition 2.1.4) with respect to all the morphisms
i ∈ Arr(V∗) corresponding to a square

- .

/ ,

i

U

V W

X

(2.5)

such that the associated square

ΓV (, ) ΓV (/ )

ΓV (. ) ΓV (- )
ΓV (i)

ΓV (X)

ΓV (W ) ΓV (V)

ΓV (U)

(2.6)

is Cartesian in C(A). IfA is a tensor category then one can de�ne a cup product (or equivalently
a cross product) on � • by de�ning a natural transformation Γ ⊗ Γ → Γ which endows Γ(- )
with the structure of a commutative di�erential graded algebra (see [SP, De�nition 061W]) for
every - ∈ V .

Remark 2.1.15. Since we are only interested in the cohomology of chain complexes, one would
like to replace every occurrence of C(A) appearing in Example 2.1.14 with the homotopy
category ℎ C(A). The problem is that, doing this, one loses functoriality of cones (compare with
[SP, Lemma 014F]).
Remark 2.1.16. Another approach to de�ne a cohomology theory on V , which is similar to
Example 2.1.14 but is more challenging for computational purposes, is to de�ne a complex
of sheaves Γ•V ∈ C(Shv(V;A)) with respect to some Grothendieck topology de�ned on V ,
and then to set � • (5 ) := H• (Cone(Γ•V (5 )) [−1]), where H• denotes hyper-cohomology (see
[HM17, § 1.4]). Employing this approach usually allows one to specify the functor ΓV only on a
sub-category (e.g. the category of smooth a�ne schemes), using the covering properties of the
Grothendieck topology. This is the approach adopted in [Gil81] (see also [BKK07, § 1.5]) and
[CD12].

Let us conclude with the last approach to de�ne a cohomology theory that we would like to
mention, which is intimately related to the theory of motives.

Example 2.1.17 (Extensions). One can construct a cohomology theory � • : (V∗)op → AZ
with values in an abelian category A, starting from an object � ∈ A (to be thought of as the
coe�cient object of our cohomology theory) and a covariant functor ' : V∗ → A, by setting
� • := Ext• (−, �) ◦ 'op, where Ext• (−, �) : Aop → AZ denote the usual Ext-groups (see [SP,
Section 06XP]). Then the various properties characterising a cohomology theory (homotopy
invariance, excision, long exact sequences etc.) can all be restated in terms of properties of the
functor '.
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Remark 2.1.18. Another way to de�ne a cohomology theory is to de�ne a functor ' : V∗ → T
with values in a tensor triangulated category T (see [MVW06, Appendix 8A]), and then to
de�ne �= (−;�) := HomT (−, �[=]) ◦ 'op, for any = ∈ Z. This would in general only de�ne a
functor �= : (V∗)op → Sets, but usually one is able to enrich this to an A-valued functor for
some abelian category A. A typical example is A = T ♥, where T ♥ denotes the heart of T with
respect to a C-structure de�ned on T . One can take T := � (A) to be the derived category of
some abelian category A, showing that this approach generalises Example 2.1.17.

Let us conclude by observing that the three constructions given in this section can be under-
stood as examples of the following general construction.

Example 2.1.19 (Stable cohomology). To de�ne a cohomology theory on an∞-categoryV∗
endowed with a Grothendieck topology (in the sense of [Lur09, De�nition 6.2.2.1]) one can
de�ne a functor ' : V∗ → H, where H is an ∞-category, and for every coe�cient object
� ∈ Sp(H) lying in the category of spectrum objects in H (see [Lur17, § 1.4.2]), one can de�ne
the cohomology theory� • (−, �) := c0 (H(−; Ω∞ (Σ= (�))))◦'op given by the groups of connected
components of the spaces of maps '(- ) → Ω∞ (Σ= (�)), where Ω∞ : Sp(H) → H is the functor
de�ned in [Lur17, Notation 1.4.2.20] and Σ= denotes the =-fold iterate of the suspension functor
Σ : Sp(H) → Sp(H). This makes sense for every = ∈ Z because Sp(H) is stable (see [Lur17,
Corollary 1.4.2.17]), and thus Σ is an equivalence (see [Lur17, Page 23]).

2.1.3 Examples of cohomology theories
We devote this section to a brief roundup of examples of cohomology theories. All the

constructions that we mention are examples of the general procedures described in Section 2.1.2.
Let us start with three cohomology theories coming from the Archimedean world, which are
deeply interrelated.

Example 2.1.20 (Singular cohomology). Fix a topological space - endowed with a subspace
� ⊆ - . The singular cohomology � •sing (-,�;') with coe�cients in a ring ' can be de�ned in
the following ways:

• as the additive and ordinary cohomology theory induced by the spectrum � ('), as men-
tioned in Example 2.1.13;

• as the cohomology of the singular cochain complex

�• (-,�;') := Hom' (�• (- ;')/�• (�;'), ')

where �= (- ;') is the free '-module generated by continuous maps f : Δ= → - , and
�= (�;') is de�ned analogously. Here Δ= ⊆ (R≥1)=+1 denotes the standard simplex,
de�ned by the equation

∑=
8=0 C8 = 1;

• as the cohomology of the direct image with compact supports 9! ('-\�) (see [Ive86, Chap-
ter VII, De�nition 1.1]), where 9 : - \� ↩→ - is the complementary inclusion to � ⊆ -
and '-\� ∈ Shv(- \�;') denotes the constant sheaf associated to '. The usual properties
of sheaf cohomology imply that

�=sing (-,�;') � Ext=Shv(- ;') ('- , 9! ('-\�)) � Hom� (Shv(- ;')) ('- , 9! ('-\�) [=])

which shows that singular cohomology is an example of the construction given in Exam-
ple 2.1.14 and Remark 2.1.18.
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These de�nitions agree on suitable sub-categories of topological spaces: for example the
second and the third de�nitions are known to agree on topological spaces which are semi-locally
contractible, as explained in [Sel16]. Moreover, if (-,�) is the geometric realisation of a pair
(-∗, �∗) of simplicial complexes, singular cohomology coincides with the cohomology of the
cochain complex

�• (-∗, �∗;') := Hom' (�• (-∗;')/�• (�∗;'), ')

where �• (-∗;') is the free '-module on the set of =-simplices in -∗, and �• (�∗;') is de�ned
analogously.

Example 2.1.21 (de Rham cohomology). The de Rham cohomology theory � •dr (−) can be de-
�ned for di�erentiable manifolds, for complex manifolds or for schemes as the hypercohomology
of the complex of C∞, holomorphic or algebraic di�erentials Ω•. In order to deal with singular
schemes, one of the best choices available is to use the ℎ-topology de�ned by Voevodsky (see
[HM17, De�nition 3.2.2]). More precisely, for every morphism of schemes 5 : �→ - one can
de�ne (see [HM17, § 3.2]) the relative cohomology group

� •dR (-,�) := H• ((Sch/- )ℎ, ker(Ω•
ℎ/- → 5∗ (Ω•ℎ/�))) (2.7)

where (Sch/- )ℎ denotes the site of schemes of �nite type over - , endowed with the ℎ-topology,
and Ω•

ℎ/- denotes the ℎ-shea��cation of Ω•/- , which is usually not a sheaf in the ℎ-topology.
In the case of a di�erentiable or holomorphic manifold" , the Poincaré lemma (see for example

[HM17, Proposition 4.1.3] for the holomorphic case) gives an isomorphism between de Rham and
singular cohomology. One can combine this with GAGA theorems to get the period isomorphism

per : � •dR (-,�) ⊗^ C −→∼ � •sing (- (C), �(C);Q) ⊗Q C (2.8)

de�ned in [HM17, De�nition 5.4.1], where ^ is a sub-�eld of C, - (C) denotes the complex
analyti�cation of - , and �(C) is de�ned analogously.

Example 2.1.22 (Deligne-Beilinson cohomology). Deligne-Beilinson cohomology can be seen
as a way to interpolate de Rham and singular cohomology. First of all, let us observe that
we can make these two cohomology theories into bi-graded cohomology theories by setting
�
8, 9

sing (- ;Λ) := � 8 (- ;Λ( 9)) and � 8, 9dR (- ) := � 9 (� 8dR (- )). Here Λ ⊆ R is any subring, Λ( 9) ⊆ C
denotes the subgroup Λ( 9) := (2c

√
−1) 9 · Λ and � • denotes the Hodge �ltration on de Rham

cohomology, which comes from the “stupid” �ltration (or “�ltration bête”) obtained by truncating
the complex of di�erentials Ω• (see for instance [Del71, § 1.4.7]). Then the Deligne-Beilinson
cohomology groups � •,•D (- ;Λ) �t into a long exact sequence

· · · → �
8, 9

D (- ;Λ) → �
8, 9

sing (- ;Λ) → � 8dR (- )/�
8, 9

dR (- ) → �
8+1, 9
D (- ;Λ) → . . .

which shows how Deligne-Beilinson cohomology interpolates between singular and de Rham
cohomology.

As with almost any other cohomology theory, there is a plethora of ways in which Deligne-
Beilinson cohomology can be de�ned. First of all, let - be a smooth variety over C, and let
9 : - ↩→ - be a good compacti�cation, by which we mean an open embedding 9 into a smooth,
proper variety - → Spec(C), such that the complement � := - \ 9 (- ) is a divisor with normal
crossings. Such a compacti�cation always exists, which can be seen, as it is done in [BZ20,
§ A.3], by combining Nagata’s compacti�cation theorem (see [Con07]) together with Hironaka’s
embedded resolution of singularities (see [BM97, Theorem 1.6] and [BEV05, Theorem 2.4]).
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Then one de�nes a complex Ω•
-
(log(�)) of holomorphic forms with logarithmic singularities

along � , which is the sub-algebra of the O
-

-algebra 9∗ (Ω•- ) generated by Ω•
-

and by the forms
3 (5 )/5 ∈ 9∗ (Ω1

-
), where 5 runs over the local equations of the irreducible components of the

normal crossings divisor � . Now, the natural inclusion of the constant sheaf Λ(<) ↩→ O-
induces a map D1 : ' 9∗ (Λ(<)) → ' 9∗ (Ω•- ) = 9∗ (Ω•- ) in the derived category of quasi-coherent
O
-

-modules, where the last equality holds because 9 is a�ne (see [SP, Section 0AVV]). Moreover,
we denote by D2 : Ω•

-
(log(�)) → 9∗ (Ω•- ) the natural inclusion. Using this notation, we de�ne

the Deligne-Beilinson complex of (-,- ) to be

Λ(<)D := Cone
(
' 9∗ (Λ(<)) ⊕ Ω≤=

-
(log(�)) −−−−−−−→

D1⊕(−D2)
9∗ (Ω•- )

)
[−1]

where Ω≤=
-
(log(�)) denotes again the “stupid” �ltration obtained by truncation. The Deligne-

Beilinson cohomology of - is then de�ned as the hypercohomology � 8, 9D (- ;Λ) := H8 (- ;Λ( 9)D).
Of course, for this de�nition to make sense, one needs to show that it does not depend on the
good compacti�cation that we have chosen. This is done in [EV88, Lemma 2.8] as follows: �rst
of all, one uses the fact that every two good compacti�cations 9 : - ↩→ - and 9 ′ : - ↩→ -

′
are

linked by a morphism g : - → -
′

such that 9 ′ = 5 ◦ 9 , and then one uses the distinguished
triangle

H= (- ;Λ(<)D) → H= (- ;' 9∗ (Λ(<))) ⊕ H= (- ; �= (Ω•
-
(log(�)))) → H= (- ; 9∗ (Ω•- ))

coming from the de�nition of Λ(<)D , to show that �=,<D (- ;Λ) does not depend on the chosen
good compacti�cation, because the other two factors do not.

This de�nition shows that the Deligne-Beilinson cohomology groups carry two pieces of
information: the Λ-structure on singular cohomology and the Hodge �ltration � • on de Rham
cohomology. Hence for a general ring Λ ⊆ R, the de�nition of Deligne-Beilinson cohomology
cannot be substantially simpli�ed, and one has to deal with the hypercohomology of a sheaf.
However, if Λ = R there exists a complex of R-vector spaces D•log (-, 9) such that � 8, 9D (- ;R) �
� 8 (D•log (-, 9)). This complex was de�ned by Burgos Gil in [Bur94] (see also [Bur97]): in
particular, its de�nition uses the fact that the category of good compacti�cations of a variety -
is directed (see [Del71, § 3.2.11]) to get rid of the indeterminacy concerning the choice of good
compacti�cation at the level of complexes, by taking a direct limit over all of them. Since we do
not need this complex in this thesis, we do not give the precise de�nition. Let us only remark
that the association - ↦→ D•log (-, 9) gives rise to a Nisnevich sheaf on the site Sm/C of smooth
complex varieties, which is also A1-invariant.

Let us mention that Deligne-Beilinson cohomology (with general coe�cients Λ ⊆ R) can be
computed using the formalism outlined in Example 2.1.17, because it can be computed as an
extension in the category MHSΛ of mixed Hodge structures over Λ (see [Bei86b] and [Bur13]).
Moreover, Deligne-Beilinson cohomology can be de�ned for varieties de�ned over R, using a
combination of the action of complex conjugation on the complex points of the variety and on
the coe�cients (see [EV88, § 2.1] and [BKK07, § 5.7], as well as Section 2.5 for the case of curves).
Finally, each of these constructions admits a generalisation to the relative setting (see [EV88,
§ 4] and [BF12, De�nition 1.28]), and to singular varieties by means of simplicial resolutions
(see [Bei86b, § 4.1] and [HM17, § 3.3.1]). This generalisation, together with the de�nition of
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Deligne-Beilinson homology (see [Jan88b]), allows one to see that Deligne-Beilinson cohomology
is part of a twisted Poincaré duality theory in the sense of De�nition 2.1.10.

We continue by mentioning another fundamental example, which is needed in the construction
of !-functions.

Example 2.1.23 (ℓ-adic cohomology). Let - be a scheme of �nite type over a �eld ^ , and �x an
algebraic closure ^ ⊇ ^, and a rational prime ℓ ∈ N. Then the ℓ-adic cohomology groups of -
are de�ned to be

�
8, 9

ℓ
(- ) :=

(
lim←−−
=

� 8 ((-^)ét,Z/ℓ=Z)
)
⊗Zℓ Qℓ ( 9) (2.9)

which gives rise to a Qℓ -linear representation of the absolute Galois group Gal(^/^) endowed
with a Zℓ -linear stable lattice. Here Qℓ ( 9) denotes the vector space Qℓ endowed with the action
of Gal(^/^) given by the 9-th power of the cyclotomic character. One would be tempted to study
analogously the groups

� • (.ét,Zℓ ) → lim←−−
=

� • (.ét,Z/ℓ=Z)

associated to a general scheme . . The �rst ones are in general very ill-behaved (see [FK88,
Chapter I, § 12]), which leads to the de�nition given in (2.9), whereas the second ones are ill-
behaved as soon as the cohomology groups � • (.ét,Z/ℓ=Z) are not �nite. This second problem
can be overcome using Jannsen’s continuous étale cohomology groups (see [Jan88a]), and both
these problems have been resolved by Bhatt and Scholze by changing the site -ét to a bigger site
-pro-ét (see [BS15]). Their construction generalises also work of Ekedahl (see [Eke07]), and allows
one to see the construction of continuous ℓ-adic cohomology as an example of the construction
outlined in Remark 2.1.18. One can then de�ne a relative version of étale cohomology (or,
equivalently, a version of étale cohomology with supports) using either the recipe explained in
[SP, Section 09XP] or a de�nition similar to (2.7).

Remark 2.1.24. There are many more cohomology theories relevant for the non-Archimedean
world, among which we mention:

• the �ltered Ogus cohomology of Chiarellotto, Lazda and Mazzari (see [CLM19]), constructed
using crystalline cohomology (compare with [AB05] and [ABB17]);

• the syntomic cohomology of Besser (see [Bes00]) , which can be constructed using the
formalism of Example 2.1.17 (see [Ban02]) or of Remark 2.1.18 (see [CCM13]) in favorable
cases. This cohomology theory has been extended beyond the smooth case by Nekovář
and Nizioł ([NN16]), generalising work of Kato (see [Kat94]). Even this new cohomology
theory �ts in the picture outlined in Example 2.1.17 and Remark 2.1.18, as explained in
[DM15], [DN18] and [Niz19];

• the prismatic cohomology of Bhatt and Scholze (see [BS19]), which is related to many of the
cohomology theories mentioned above by comparison isomorphisms. This cohomology
theory is still not proved to be an example of the constructions outlined in Example 2.1.17
and Remark 2.1.18. See nevertheless [Dri20] for a construction of the category which
should play the role of the category of coe�cients for prismatic cohomology.

2.2 Various categories of motives
The aim of this section is to give a brief review of the various approaches to construct a

category of pure and mixed motives. First of all, we recall the notion of pure motives over a
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�eld ^, which goes back to Grohtendieck, following [And04, Chapitre 4]. Then we present the
conjectural framework for the category of mixed motives, following Levine’s survey [Lev05].
Finally, we present the examples of constructions of candidates for the category of mixed motives,
and of its triangulated counterpart.

2.2.1 Pure motives
Let ^ be a �eld, and let P(^) denote the category of smooth and projective schemes (in the

sense of [SP, De�nition 01W8]) de�ned over ^ . In particular such schemes are quasi-projective,
hence of �nite type, over ^. For every commutative ring with unity ', we denote by

Z• (−)' : P(^)op → Mod'

the contravariant functor sending a smooth and projective scheme to the '-module of algebraic
cycles on - , which can be equivalently described as the free '-module generated by closed,
integral subschemes / ↩→ - , or as the free '-module generated by the points b ∈ - (via the
correspondence sending a closed, integral sub-scheme to its generic point, and a point to its
closure, considered with the reduced sub-scheme structure). This module Z• (- )' admits a
natural grading, which can be described as the grading by co-dimension of closed, integral
sub-schemes or as the grading by the Krull dimension dim(O-,b ) of the stalks of the structure
sheaf (see [SP, Lemma 02IZ]). However, the mapsZ• (5 )' : Z• (. )' → Z• (- )' associated to
a morphism 5 : - → . , which are induced by the association / ↦→ 5 −1 (/ ) for every / ⊆ . ,
do not respect the grading. On the '-module Z• (- )' there is also an '-bilinear intersection
product, which is de�ned only on the sub-set ofZ• (- )' ×Z• (- )' consisting of pairs of cycles
(U, V) which intersect properly, which means that codim- () ) ≥ codim- (/ ) + codim- (, ) for
every irreducible component ) ⊆ / ∩, inside each intersection of two closed and integral
subschemes /,, ⊆ - such that U/ ≠ 0 and V, ≠ 0, where U/ , V, ∈ ' are the multiplicities
with which / and, appear in the cycles U =

∑
/ ′⊆- U/ ′ [/ ′] and V, ′⊆- =

∑
V, ′ [, ′]. In order

to extend this partially de�ned product, which we denote by U · V , to the whole groupZ• (- )
we would like to be able to “move” any pair of cycles (U, V) so that it becomes a pair intersecting
properly. The types of movement that we allow are captured by the following de�nition.

De�nition 2.2.1 – Adequate equivalence relation (see [And04, De�nition 3.1.1.1])

Let ^ be a �eld, and ' be a commutative ring with unity. Then an '-linear adequate
equivalence relation for ^ is given by a family of equivalence relations ∼ on the '-modules
Z• (- )' for every - ∈ P(^), such that:

• ∼ is '-linear and respects the grading;

• for every - ∈ P(^) and every pair of cycles U, V ∈ Z• (- )' , there exists another
cycle U ′ ∈ Z• (- )' such that U ′ ∼ U and U ′ intersects V properly;

• for every -,. ∈ P(^) and every pair of cycles U ∈ Z• (- )' and V ∈ Z• (- × . )'
such that V intersects properly c−1

-
(U), one has that c. (V · c−1

-
(U)) ∼ 0 inside

Z• (. )' . Here c- : - × . → - and c. : - × . → . denote the corresponding
projection maps.

This shows that for every '-linear adequate equivalence relation ∼ one gets a functor
Z•∼ (−)' : P(^)op → Alg((Mod')Z) sending a scheme - ∈ P(^) to the graded '-module

2.2 Various categories of motives 27

https://stacks.math.columbia.edu/tag/01W8
https://stacks.math.columbia.edu/tag/02IZ


Z•∼ (- )' := Z• (- )'/∼, endowed with the structure of a graded algebra given by the intersection
product. This allows one to extendZ•∼ (−)' to a functor by settingZ•∼ (5 )' (U) := c- (ΓC5 ·c

−1
.
(U))

for every 5 : - → . and U ∈ Z•∼ (. )' , where ΓC
5

:= {(5 (G), G) : G ∈ - } ⊆ . × - . Usually one
writes 5 ∗ := Z•∼ (5 )' . Using the graph of 5 instead of its transpose ΓC

5
, one can show that there

exists a graded map 5∗ : Z•∼ (- )' →Z
dim(5 )+•
∼ (. )' , where dim(5 ) denotes the generic dimension

of the �bres of 5 .
This way of de�ning the morphismZ•∼ (5 )' can be generalised to any correspondence between

- and . , not necessarily given by a map 5 : - → . (see [MVW06, Lecture 1]). More precisely,
for every -,. ∈ P(^) one de�nes the graded '-module of correspondences from - to . as

Cor•∼ (-,. )' :=
⊕
* ⊆-
Zdim(* )+•
∼ (* × . )'

where* ⊆ - ranges over the connected components of - . Then for every -,., / ∈ P(^) one
has a composition law

Cor•∼ (-,. )' ⊗' Cor•∼ (., / )' → Cor•∼ (-,/ )'
(U, V) ↦→ V ◦ U := (c-,/ )∗ (c∗-,. (U) · c∗.,/ (V))

(2.10)

where c-,/ : - × . × / → - × / , c-,. : - × . × / → - × . and c.,/ : - × . × / → . × /
are the projection maps. In particular, for every map 5 : - → . one has a correspondence
Γ5 ∈ Cor•∼ (-,. )' obtained by summing over all the graphs of the restrictions of 5 to the
connected components of - , and one has that Γ6 ◦ Γ5 = Γ6◦5 for every 5 : - → . and 6 : . → / .
Moreover, the composition law makes Cor•∼ (-,- )' into a graded '-algebra, which in general is
not commutative, whose unit is given by the diagonal Δ- ⊆ - × - . Moreover, this algebra is
endowed with the involution g∗, where g : - × - → - × - is the map g (G1, G2) := (G2, G1).

We are now ready to de�ne the category of pure motives.

De�nition 2.2.2 – Pure motives (see [And04, § 4.1.3])

Let ^ be a �eld, and ' be a commutative ring with unit. Then a pure motive for the
equivalence ∼, de�ned over ^ with coe�cients in ', is de�ned to be a triple (-, 4, A ) where
- ∈ P(^), 4 ∈ Cor0

∼ (-,- )' is an idempotent (i.e. 4 ◦ 4 = 4) and A ∈ Z is an integer. The
category of pure motivesM∼ (^;') is then de�ned by setting

HomM∼ (^;') ((-, 4, A ), (- ′, 4 ′, A ′)) := 4 ′ ◦ CorA
′−A
∼ (-,- ′)' ◦ 4 ⊆ Cor• (-,- ′)

with the composition law induced by (2.10).

We denote by h∼ (−;') : P(^)op →M∼ (^;') the functor de�ned as h∼ (- ;') := (-,Δ- , 0) on
objects, and as

h∼ (5 ;') := ΓC
5
∈ Cor0

∼ (.,- ) = HomM∼ (^;') (h∼ (. ;'), h∼ (- ;'))

on each morphism 5 : - → . .
The categoryM∼ (^;') is endowed with the tensor product given by

(-, 4, A ) ⊗ (- ′, 4 ′, A ′) := (- × - ′, 4 ⊗ 4 ′, A + A ′)
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on objects, and by 5 ⊗ 5 ′ := (42⊗4 ′2)◦(i⊗i ′)◦(41⊗4 ′1) on morphisms 5 : (-1, 41, A1) → (-2, 42, A2)
and 5 ′ : (- ′1, 4 ′1, A ′1) → (- ′2, 4 ′2, A ′2), written as 5 = 42 ◦ i ◦ 41 and 5 = 4 ′2 ◦ i ′ ◦ 4 ′1. Here we have
used the tensor product of correspondences

⊗ : Cor•∼ (-,. )' ⊗' Cor•∼ (- ′, . ′)' → Cor•∼ (- × - ′, . × . ′)'

which is induced by the product of closed sub-schemes. The identity for this tensor product is
the pure motive 1∼,' := h∼ (Spec(^);').

The categoryM∼ (^;') is also endowed with a direct sum, which is de�ned as follows. First of
all, for every pure motive" = (-, 4, A ) ∈ M∼ (^;') and every= ∈ Zwe write" (=) := (-, 4, A+=).
Then one can check that 1∼,' (−1) � (P1

^ , P
1
^ × {G}, 0) for every rational point G ∈ P1 (^). Hence

for every pure motive " = (-, 4, A ) ∈ M∼ (^;') and every A ′ ≥ A one can write

" � " (A ′ − A ) ⊗ 1∼,' (−1)⊗A ′−A � (- × (P1)A ′−A , ? ⊗ 4, A ′)

for some idempotent ? ∈ Cor0
∼ ((P1)A ′−A , (P1)A ′−A ). Then for every pair of motives "," ′ ∈

M∼ (^;') given by " = (-, 4, A ) and " ′ = (- ′, 4 ′, A ′) one de�nes

" ⊕ " ′ � (- × (P1)A ′−A , ? ⊗ 4, A ′) ⊕ (- ′, 4 ′, A ′) :=
(
(- × (P1)A ′−A ) t - ′, (? ⊗ 4) ⊕ 4 ′, A ′

)
if A ′ ≥ A , and (-, 4, A ) ⊕ (- ′, 4 ′, A ′) := (- ′, 4 ′, A ′) ⊕ (-, 4, A ) otherwise. Here the direct sum of
correspondences

⊕ : Cor•∼ (-,. ) ⊕' Cor•∼ (- ′, . ′) → Cor•∼ (- t - ′, . t . ′)

is induced from the disjoint union of closed sub-schemes. Using the direct sum, we can de�ne
the dual of a pure motive " = (-, 4, A ) ∈ M∼ (- ;') as

"∨ :=
⊕
* ⊆-
(* , g∗ (4), dim(* ) − A )

where the direct sum runs over all the irreducible components * ⊆ - , and g : - × - → - × -
denotes, as before, the transposition map g (G1, G2) := (G2, G1). This shows in particular that
h∼ (- ;')∨ � h∼ (- ;') (3) if - ∈ P(^) is equidimensional of dimension 3 , which gives rise to a
map Tr∼,'

-
: h∼ (- ;') → 1∼,' (−3).

The cateogryM∼ (^;') endowed with the operations ⊗ and ⊕ is thus an '-linear, additive,
rigid symmetric tensor category which is pseudo-abelian, i.e. such that every 5 : " → " with
5 ◦ 5 = 5 admits a kernel (see [And04, p. 1.1.3.1] for an equivalent de�nition).

Remark 2.2.3. Typical examples of adequate equivalence relations ∼ are given by:
• the rational equivalence relation ∼rat, such that Z•rat (- )' is the quotient of Z• (- )' by

the sub-module generated by cycles of the form [/ ∩ (- × {0})] − [/ ∩ (- × {∞})],
for / ⊆ - × P1 a closed integral sub-scheme which dominates P1. This is the �nest
of adequate equivalence relations (see [And04, Lemme 3.2.2.1]), and the corresponding
category of motives CHM(^;') is called the category of Chow motives, because the groups
CH• (- ;') := Z•rat (- )' are called Chow groups;

• the algebraic equivalence relation ∼alg, such thatZ•alg (- )' is the quotient ofZ• (- )' by
the sub-module generated by cycles of the form [/ ∩ (- × {~0})] − [/ ∩ (- × {~∞})], for
/ ⊆ - × . a closed integral sub-scheme which dominates a connected scheme . ∈ P(^)
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with two rational points ~0, ~∞ ∈ . (^). Note that . is allowed to vary, but we can assume
(using theorems of Bertini type) that . is a smooth, projective, connected curve;

• the ⊗-nilpotence relation ∼⊗−nil, which says that U ∼⊗−nil 0 for a cycle U ∈ Z• (- )' if
and only if there exists # ∈ Z≥1 such that U ⊗# ∈ Z• (-# )' is rationally equivalent
to zero. This equivalence relation is coarser than ∼alg if ' is a Q-algebra (see [And04,
Proposition 3.2.4.1]);

• the numerical equivalence relation ∼num, de�ned by saying that if - ∈ P(^) is irreducible
of dimension 3 and U ∈ Z 9 (- )' then U ∼num 0 if and only if deg( [U]rat · V) = 0 for every
V ∈ CH3−9 (- )' . Here deg : CH3 (- )' → ' is de�ned by setting

deg ©­«
∑
b

=b [b]
ª®¬ :=

∑
b

=b · [^ (b) : ^]

which makes sense because the points b ∈ - are closed. If ' is a �eld, this equivalence
relation is the coarsest of all non-trivial adequate equivalence relations.

Let us now recall that the category of pure motivesM∼ (^;') has been constructed to be
universal with respect to all the Weil cohomology theories, in the sense of the following de�nition.

De�nition 2.2.4 – Weil cohomology (see [And04, § 4.2.4])

Let ^ be a �eld and ' be a commutative ring with unity. Fix an additive, '-linear, pseudo-
abelian, rigid tensor category T , with identity object 1T ∈ T . Let also ∼ be an '-linear
adequate congruence relation which is at least as �ne as the numerical equivalence. Then
a T -valued Weil cohomology theory for ∼ is a triple (�, tr� , c) such that:

• � : P(^)op → T is a ⊗-functor (in the sense of [DM82, De�nition 1.8]), with respect
to the tensor structure on P(^) given by the product. In particular the diagonal
map Δ- : - → - × - induces a product structure ⌣ : � (- )⊗2 → � (- ) for every
- ∈ P(^);

• the structural map P1
^ → Spec(^) and the rational point {∞} : Spec(^) → P1

^ induce
a decomposition � • (P1

^) � 1T ⊕ L for some ⊗-invertible object L ∈ T ;

• tr� is a family of morphisms tr�
-

: � (- ) → L⊕ dim(- ) de�ned for every equidimen-
sional - ∈ P(- ), such that tr-×. is related to tr�

-
⊗ tr. by the coherence maps

pertinent to � . Moreover, we demand that the natural transformation

HomT (−, � (- ) ⊗ L⊗−3 ) → HomT ((−) ⊗ � (- ),1T)
5 ↦→ i- ◦ (5 ⊗ Id� (- ) )

is an isomorphism, for every equidimensional - ∈ P(^). Here i- is the morphism

i- : (� (- ) ⊗ L⊗−3 ) ⊗ � (- ) −→∼ � (- )⊗2 ⊗ L⊗−3
(tr�
-
◦⌣) ⊗Id

−−−−−−−−−−→ L⊗3 ⊗ L⊗−3 −→∼ 1T

where 3 := dim(- ). In particular, we have an isomorphism � (- ) ⊗ L⊗−3 � � (- )∨;
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• 2 is a collection of natural transformations

2A : ZA
∼ (−)' → HomT (1T , � (−) ⊗ L⊗−A )

such that 2A
-×. is identi�ed with

∑
8+9=A 2

8
-
⊗ 2 9

.
by the various coherence maps.

Moreover, we normalise 2A in such a way that the map

Zdim(- )
∼ (- )' → EndT (1T)

U ↦→ k- ◦ 2dim(- )
-

(U)

coincides with the degree map deg : Zdim(- )
∼ (- )' → ' −→∼ EndT (1T) for every

equidimensional - ∈ P(^). Herek- is de�ned as

k- : � (- ) ⊗ L⊗−3 −−−−−−→
tr�
-
⊗ Id
L⊗3 ⊗ L⊗−3 −→∼ 1T

where 3 := dim(- ). Note also that the degree map is well de�ned because we
demanded that ∼num is coarser than ∼.

We omit the equivalence relation ∼ from the notation if ∼=∼rat.

It is now clear from the de�nition and the construction of the category of pure motives
M∼ (^;') that every T -valued Weil cohomology theory � for ∼ factors as

� : P(^)op −−−−−−→
h∼ (−;')

M∼ (^;') l�−−→ T

in such a way that L = l� (1∼,' (−1)). Moreover, tr�
-
◦l� = l� ◦ tr∼,'

-
and 2A is induced by l� ,

using the fact thatZA
∼ (- )' � HomM∼ (^;') (1∼,', h∼ (- ;') (A )) for every - ∈ P(^).

Remark 2.2.5. Every Weil cohomology theory � (with respect to ∼rat) gives rise to a new
equivalence relation ∼� , which is coarser than ∼alg and ∼⊗−nil, and �ner than ∼num. Moreover,
one of Grothendieck’s standard conjectures predicts that ∼num=∼� for every Weil cohomology
theory � (see [And04, § 5.4.1]). Voevodsky went further to conjecture a re�nement of this,
which says that ∼num=∼⊗−nil (see [And04, § 11.5.2]).

We conclude this brief review of pure motives by mentioning that if ' is a �eld the category
M∼ (^;') is abelian and semi-simple if and only if ∼=∼num, as proved by Jannsen (see [And04,
§ 4.5]). Moreover, the standard conjectures of Grothendieck (see [And04, Chapitre 5]) allow one
to introduce a Tannakian formalism on this category (by modifying the coherence functor for
the symmetry of the tensor product), which gives rise to motivic Galois groups (see [And04,
Chapitre 6]) and realisation functors. The latter are conjectured to be full and to have semi-simple
image (see [And04, Chapitre 7]).

2.2.2 Abelian categories of mixed motives
We have seen in the previous section that, under the standard conjecture ∼num=∼� , the

functor hnum (−;') : P(^)op → NM(^;') provides a universal Weil cohomology theory, with
the virtue that NM(^;') is abelian and semi-simple. The aim of this section is to survey brie�y
the attempts that have been made to generalise this to mixed Weil cohomology theories (in
the sense of De�nition 2.1.4), which are de�ned also for varieties which are not smooth and
projective.
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The �rst attempt which can be made to generalise the construction of pure motives to varieties
which are not necessarily smooth or projective is to use resolution of singularities, at least in
characteristic zero. To do so, let us �x a �eld ^ of characteristic zero. Then for every Cartesian
square in P(^)

� -̃

/ -

y (2.11)

where the horizontal maps are closed immersions, and every adequate equivalence relation ∼,
we have that [h∼ (- ;')] − [h∼ (/ ;')] = [h∼ (-̃ ;')] − [h∼ (�;')] inside the Grothendieck group
 0 (M∼ (^;')). This group is de�ned as the quotient of the free abelian group generated by
isomorphism classes ["] of motives" ∈ M∼ (^;'), by the relation [" ⊕" ′] = ["] + [" ′]. One
can similarly de�ne a group  0 (S) for every category of schemes S over ^ which is closed under
disjoint unions. More precisely, this group  0 (S) is given by the quotient of the free abelian
group on the isomorphism classes [- ] of objects - ∈ S, by the relation [- t . ] = [- ] + [. ].
Hence the inclusion P(^) ↩→V(^) induces a map  0 (P(^)) →  0 (V(^)), where P(^) is the
category of smooth and projective schemes over Spec(^), andV(^) is the category of reduced
and separated schemes of �nite type over Spec(^). Then Bittner’s work [Bit04] uses resolution
of singularities to show that the map  0 (P(^)) →  0 (V(^)) is surjective, and its kernel is the
subgroup generated by the elements [- ] − [/ ] − ([-̃ ] − [�]) for every Cartesian square (2.11).
Therefore what we have seen implies that the functor h∼ (−;') : P(^)op →M∼ (^;') induces a
map of groups  0 (V(^)) →  0 (M∼ (^;')), showing that we can interpret the Grothendieck
group  0 (M∼ (^;')) as a �rst approximation of the category of mixed motives. The existence
of this group homomorphism was also proved by Gillet and Soulé [GS96] and by Guillén and
Navarro Aznar [GN02], who construct also a contravariant functorV(^)op → ℎ�+ (M∼ (^;'))
to the homotopy category of the category ofM∼ (^;')-valued complexes which are bounded
below (see in particular [GN02, Théorème 5.10]).

The ideas outlined in the previous paragraph, and namely the usage of resolution of singulari-
ties, can also be employed to give a �rst de�nition of the abelian category of mixed motives in
terms of realisations. This was done by Jannsen, for a �eld ^ which is �nitely generated over Q.
First of all, he de�nes a category of mixed realisations as follows.

De�nition 2.2.6 – The category of mixed realisations (see [Jan90, § 2])

Let ^ be a �eld �nitely generated over Q. Then the category of mixed realisationsMR^
consists of tuples � = (�3', {�ℓ }ℓ , {�f }f , {�∞,f }f , {�ℓ,f̃ }ℓ,f̃ ) such that:

• ℓ ∈ N ranges over the rational primes;

• f and f̃ range over the embeddings f : ^ ↩→ C and f̃ : ^ ↩→ C;

• �3' ∈ (Vecf.g.
^ )bi-�l is a �nite dimensional bi-�ltered vector space over ^. This

means that �3' is endowed with an exhaustive decreasing �ltration � • (�3') and
an exhaustive increasing �ltration,• (�3');

• �ℓ ∈ Gℓ (^)�l is a �nite dimensional representation d�ℓ : Gal(^/^) → GL(�ℓ )
endowed with an exhaustive, increasing, Galois stable �ltration,• (�ℓ );
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• �f ∈ MHSQ is a mixed Hodge structure de�ned over Q, in the sense of [Del71,
§ 2.3]. In other words, �f is a �nite dimensional Q-vector space endowed with an
exhaustive, increasing �ltration,• (�f ) and such that �f ⊗Q C is endowed with an
exhaustive decreasing �ltration � • (�f ⊗QC), having the property that the �ltrations
induced by � • and by its complex conjugate � • on each graded quotient

gr,= (�f ⊗ C) :=,= (�f ⊗ C)/,=−1 (�f ⊗ C)

are =-opposed, i.e. gr?
�
(gr@

�
(gr,= (�f ⊗ C))) = 0 if ? + @ ≠ =;

• �∞,f : �f ⊗Q C −→∼ �dR ⊗^,f C is an isomorphism, which respects the �ltrations,•
and � • de�ned on both sides;

• �ℓ,f̃ : �f ⊗Q Qℓ −→∼ �ℓ is an isomorphism respecting the �ltrations,• de�ned on
both sides, such that for every 6 ∈ Gal(^/^) we have that �ℓ,f̃ = d�ℓ (6) ◦ �ℓ,f̃◦6 . Here
we are assuming that f : ^ ↩→ C is obtained from the restriction of f̃ : ^ ↩→ C.

Jannsen proves that MR^ is a neutral Tannakian category over Q (in the sense of [DM82,
De�nition 2.19]), i.e. it is a Q-linear, abelian, rigid tensor category endowed with a Q-linear
⊗-functorMR^ → Vecf.g.

Q
which is exact and faithful. In fact, there are as many of these functors

as the embeddings f : ^ ↩→ C, given by sending � ∈ MR^ to the vector space �f ∈ Vecf.g.
Q

.

Now, let QP(^) denote the category of smooth, quasi-projective schemes of �nite type over
Spec(^) (see [SP, De�nition 01VW]). Then for every = ∈ N there is a functor

�= : QP(^)op →MR^

- ↦→
(
�=
3'
(- ), {�=,0

ℓ
(- )}ℓ , {�=sing (-f (C);Q)}f , {�=∞,f (- )}f , {�=ℓ,f̃ (- )}ℓ,f̃

)
where -f := - ×^,f Spec(C), and all the cohomology theories have been de�ned in Section 2.1.3.
Moreover, �=∞,f (- ) denotes inverse of the period isomorphism (2.8) and

�=
ℓ,f̃
(- ) : �=sing (-f (C);Q) ⊗Q Qℓ −→∼ �=sing (-f (C);Qℓ ) −−→

(†)
�
=,0
ℓ
(- )

is given by the change of coe�cients �=sing (-f (C);Q) ⊗Q Qℓ −→∼ �=sing (-f (C);Qℓ ) and by

(†) : �=sing (-f (C);Qℓ ) −→∼
(
lim←−−
<

�=ét (-
f ;Z/ℓ<Z)

)
⊗Zℓ Qℓ −→∼ �=ℓ (- )

which is the composition of the Artin comparison isomorphism, that depends on f (see [FK88,
Theorem 11.6]), followed by the smooth base change isomorphism, that depends on f̃ (see
[Mil80, Chapter VI, Corollary 4.3]). We note as well that the �ltrations appearing on the various
cohomology groups can be de�ned using the fact that - admits a “good compacti�cation”
consisting of a smooth and projective variety - ∈ P(^) and an open immersion - ↩→ - , whose
complement is a divisor with normal crossings and smooth components (see [Jan90, § 3] for
details). We are now ready to give the �rst de�nition of a candidate for the abelian category of
mixed motives.

2.2 Various categories of motives 33

https://stacks.math.columbia.edu/tag/01VW


De�nition 2.2.7 –Mixedmotives for absoluteHodge cycles (according to Jannsen)

The category of mixed motives for absolute Hodge cycles according to JannsenMM ( � )
^

over a �eld ^ which is �nitely generated over Q is de�ned as the Tannakian sub-category
ofMR^ generated by the union of the images of the functors �= : QP(^)op →MR^ for
every = ∈ Z. We denote by �= : QP(^)op →MM ( � )

^ the functor induced by �= .

By de�nition the categoryMM ( � )
^ is a Q-linear Tannakian category. The de�nition also

shows that every object " ∈ MM ( � )
^ admits a weight �ltration, and the full sub-category

M^ ⊆ MM ( � )
^ of semi-simple objects can be identi�ed with the sub-category of pure objects, i.e.

objects which are direct sums of ones with only one non-trivial piece in the weight �ltration.
Moreover, [Jan90, Theorem 4.4] shows thatM^ is equivalent to the category of absolute Hodge
motives de�ned in [DM82, § 6]. Hence under the standard, Hodge and Tate conjectures, the
categoryM^ should be equivalent to the category of pure numerical motives NM(^;Q).

Let us mention also an alternative construction of the category of mixed motives, which is due
to Huber (see [Hub95]). The key point here is to consider realisations of complexes of varieties
instead of single varieties, in order to be able to de�ne mixed motives associated to non-smooth
varieties. More precisely, Huber proves in [Hub95, § 11] and [Hub00, Theorem 2.3.1] that
there exists a realisation functor ' : S(^)op → �MR^ , where S(^) denotes the category of all
smooth, reduced, separated schemes of �nite type over Spec(^), and �MR^ is a category whose
objects are triples of complexes in the categories (Vecf.g.

^ )bi-�l, Gℓ (^)�l and MHSQ mentioned
in De�nition 2.2.6, together with �ltered quasi-isomorphisms between them (generalising �∞,f
and �ℓ,f̃ ), such that the cohomology of these complexes lies inMR^ and the di�erentials in
these complexes are strict, in the sense of [SP, De�nition 0123]. This functor has the property
that �= ('(- )) = �= (- ) for every - ∈ QP(^) ⊆ S(^), which ensures some compatibility
between Jannsen’s and Huber’s constructions. Using the fact that �MR^ is closed under total
complexes (see [Hub00, Lemma 2.2.5]), ' extends to a functor ' : �− (Q[S(^)])op → �MR^ ,
where �− (Q[S(^)]) denotes the category of bounded-above cochain complexes valued in the
categoryQ[S(^)] whose objects are the same as those ofS(^) and whose morphisms are de�ned
as the free Q-vector spaces HomQ[S (^) ] (-,. ) := Q[HomS(^) (-,. )] generated by morphisms
in S(^). We are now ready to recall Huber’s de�nition of the category of mixed motives for
absolute Hodge cycles (see [HM17, De�nition 6.3.11]).

De�nition 2.2.8 – Mixed motives for absolute Hodge cycles (according to Huber)

The category of mixed motives for absolute Hodge cycles according to HuberMM (� )
^

over a �eld ^ which is �nitely generated over Q is de�ned as the full abelian, tensor
sub-category ofMR^ generated by the images of the functors {�= ◦ '}=∈Z and by the
dual of Q(−1) = � 2 ('(P1)).

It is known thatMM ( � )
^ ⊆ MM (� )

^ , and that the category of semi-simple objects inMM (� )
^

coincides with the categoryM^ of absolute Hodge motives in the sense of [DM82, § 6]. One
advantage of Huber’s construction is that one can apply [Hub04, Lemma B.5.3] to get a family
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of functors �= : V(^)op →MM (� )
^ , which extends the notion of motive to every variety (i.e.

separated, reduced scheme of �nite type) over Spec(^). There should be a commutative square

P(^)op V(^)op

NM(^;Q) MM (� )
^

?hnum (−;Q) � • (−)

?

(2.12)

where � • (- ) :=
⊕

=∈Z�
= (- ) and the bottom arrow should be given by the conjectural natural

equivalence NM(^;Q) −→∼ M^ , followed by the inclusionM^ ↩→ MM^ . The existence and
the commutativity of (2.12) follow of course from a combination of the standard conjectures,
together with conjectures of Hodge and Tate type.

Let us �nally mention the existence of an entirely new kind of construction, due to Nori,
which is still based on realisations. Its de�nition goes as follows (see [HM17, § 9.1]).

De�nition 2.2.9 – Nori motives

Let ^ ⊆ C be a sub-�eld, and let ' be a Noetherian ring. Then:
• de�ne Pairse�

^ to be the directed graph whose nodes are triples (-,., 8) where
- ∈ V(^) is a variety, . ↩→ - a closed immersion in V(^) and 8 ∈ N. The
edges of Pairse�

^ are given by maps 5 ∗ : (- ′, . ′, 8 ′) → (-,., 8) for every morphism
5 : - → - ′ inV(^), such that 5 (. ) ⊆ . ′, and maps m : (., /, 8) → (-,., 8 + 1) for
every chain of closed immersions / ↩→ . ↩→ - ;

• de�ne a categoryMM (# ),e�
^,'

of e�ective mixed Nori motives as a suitable colimit
of modules over the rings End(�

��
D) where D ⊆ Pairse�

^ runs over the �nite sub-
graphs and � : Pairse�

^ → Mod' denotes the map of directed graphs which sends
(-,., 8) to the relative cohomology � 8sing (- (C), . (C);'). For a de�nition of the
endomorphism ring of a morphism of directed graphs, see [HM17, De�nition 7.1.8];

• de�ne the categoryMM (# )
^,'

of mixed Nori motives by formally inverting the object
1(−1) := � (G<, ∅, 1), where

� : Pairse�
^ →MM

(# ),e�
^,'

is the functor coming out of the construction brie�y described above (see [HM17,
Theorem 7.1.13]).

The striking feature of the category of Nori motives is that of providing a cohomology theory
de�ned onV(^)∗ := Pairse�

^ which is universal amongst all the cohomology theories comparable
with singular cohomology (see [HM17, Theorem 9.1.10]). Moreover, if ' is a Dedekind domain
thenMM (# )

^,'
is a neutral Tannakian category over Mod' (see [HM17, Theorem 9.3.10]), and

there exists a triangulated functor (see [HM17, Theorem 9.1.9])

' : ℎ�1 (' [V(^)])op → �1 (MM (# )
^,'
)
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such that � 8 (-,., 8) = � 8 ('(Cone( [. ] → [- ]))) for every (-,., 8) ∈ V(^)∗. Finally, let us
mention that there there exists a faithful functor (see [HM17, Proposition 10.1.2])

MM (# )
^ →MM (� )

^ (2.13)

whereMM (# )
^ :=MM (# )

^,Q
, such that every object ofMM (� )

^ is a sub-quotient of an object in
the image of (2.13). Moreover, each object inMM (# )

^ is endowed with a weight �ltration (see
[HM17, Theorem 10.2.5]), which is respected by (2.13), and the category of pure objects with
respect to this weight �ltration is equivalent (see [HM17, Theorem 10.2.7]) to the category of
motives constructed by André using motivated cycles (see [And04, § 9.2]). This last category is in
turn equivalent to the category of numerical motives NM(^;Q) assuming the Hodge conjecture,
and the functor (2.13) should induce an equivalence between this category and the categoryM^

of pure motives for absolute Hodge cycles described above.

2.2.3 Triangulated categories of mixed motives

The constructions of the abelian category of mixed motivesMM^ outlined in Section 2.2.2
might give mixed feelings to the reader. On the one hand, they are abelian, and even Tannakian
categories, which allows one to talk about motivic Galois groups. On the other hand, their
construction only partially ful�ls the program laid down by Beilinson in [Bei87, § 5.10], for
multiple reasons. First of all, Beilinson’s program should work for every scheme ( , whereas the
categoriesMM^ have been constructed only over a �eld ^ . Secondly, the categoriesMM^ are
constructed using realisations, which makes it di�cult to relate them to algebraic geometry.
More precisely, any hope to construct a fully faithful embedding NM(^;Q) ↩→MM^ rests on
some of the most di�cult conjectures in algebraic geometry, and there is no hope to have a
fully faithful embedding CHM(^;Q) ↩→MM^ , at least if ^ is algebraically closed. Indeed, in
this case Mumford has shown in [Mum69] that Chow groups are “enormous”, usually in�nitely
generated, hence it would be impossible to gain a fully faithful embedding in a category given
by realisations (see also [BS83] for a generalisation of Mumford’s result).

The aim of this section is to describe how one could hope to overcome these di�culties,
using triangulated categories. More precisely, Deligne noted in a letter to Soulé that it might be
easier to construct the conjectural abelian categoryMM((,Λ) envisioned by Beilinson (with
coe�cients in any ring Λ) similarly to how one constructs categories of perverse sheaves (see
[BBD82]). First, one should de�ne a triangulated category T (( ;Λ) endowed with a functor
" : V(()op → T (( ;Λ), whereV(() denotes the category of schemes of �nite type over ( . Then
one should de�ne a C-structure on T (( ;Λ) whose heart would giveMM(( ;Λ). Using this C-
structure one would be able to de�ne cohomology functors� 8 : T (( ;Λ) → MM(( ;Λ) given by
� 8 (") := g ≤0 (g ≥0 (" [8])), where g ≤0 and g ≥0 denote the truncation functors. This would give
rise to a functor � • : T (( ;Λ) → MM(( ;Λ) de�ned as the direct sum � • (") :=

⊕
8∈Z�

8 (").
Moreover, one should have an equivalence of categories ' : MM(Spec(^);Q) −→∼ MM^ , where
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MM^ is one of the categories constructed in Section 2.2.2. This equivalence ' should also �t
into a commutative diagram

P(^)op V(^)op

CHM(^;Q) T (Spec(^);Q)

NM(^;Q) MM^

hrat (−;Q)
hnum (−;Q)

"

� •
?

'◦� •

?

(2.14)

where the horizontal maps are fully faithful embeddings.
The construction of the triangulated category T (( ;Λ) has been essentially achieved in suc-

cessive steps by Hanamura, Levine, Voevodsky, Morel, Cisinski and Déglise and many others.
In particular, we argue in this section that one should take T (( ;Λ) := DM(( ;Λ)op to be the
opposite of the triangulated category of (homological) mixed motives constructed by Cisinski
and Déglise in [CD19], following the work of Morel and Voevodsky (see [MV99]). Let us start
with the notion of geometric motives, which over an arbitrary base is due to Ivorra (see [CD19,
De�nition 11.1.10]).

To do so, we need to recall the notion of �nite correspondence. Let ( be a scheme, - ∈ Sch(
a scheme endowed with a morphism - → ( and Λ be a ring. Then the Λ-module of relative
cycles Z• (-/()Λ is the sub-module ofZ• (- )Λ consisting of those cycles U ∈ Z• (- )Λ such that
the structural morphism 5 : - → ( sends Supp(U) to generic points of ( . In other words, these
are cycles dominant over ( . Then one can de�ne C•0 (-/()Λ to be the sub-module ofZ• (-/()Λ
consisting of those cycles which are �nite and Λ-universal over ( , where the second condition
means roughly that the pull-back of these cycles along every point G : Spec(^) → - whose
image is in the support of ( has coe�cients in Λ (see [CD19, p. 8.1.47] for the precise de�nition).
Finally, given two schemes -,. ∈ Sch( one de�nes the Λ-module of �nite correspondences over
( to be C( (-,. )Λ := C•0 (- ×( ./- )Λ. These correspondences admit a composition (see [CD19,
De�nition 9.1.5]), similar to the one that we outlined in Section 2.2.1 when ( = Spec(^) for
some �eld ^. This allows one to de�ne the category �&cor

(,Λ as the category whose objects are
smooth schemes of �nite type over ( and whose morphisms are given by the Λ-modules of �nite
correspondences, with composition given by the product just mentioned. This category admits a
functor W : �&( → �&

cor
(,Λ which is the identity on objects and sends each morphism 5 : - → .

to its graph Γ5 ∈ C( (-,. )Λ. Moreover, �&cor
(,Λ is a Λ-linear, symmetric tensor category, with

tensor product induced by the �bre product of schemes (see [CD19, § 9.2]).

De�nition 2.2.10 – Triangulated category of mixed geometric motives

Let ( be a scheme and let Λ be a commutative ring with unity. We de�ne the Λ-linear
triangulated category of e�ective mixed geometric motives DMe�

gm (( ;Λ) as the pseudo-abelian
envelope (see [And04, § 1.1.3.1]) of the quotient of the homotopy category K1 (�&cor

(,Λ) of
bounded chain complexes valued in�&cor

(,Λ, by the triangulated sub-category�( generated
by complexes of the form:

• [A1
-
] −−−−−→
W (?- ) [- ] for every scheme - ∈ Sch( which is smooth and of �nite type

over ( , where ?- : A1
-
→ - denotes the structural morphism;
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• [* ] −−−−−−−−−−→
(W ( 9),−W (5 ′))

[- ] ⊕ [* ′] −−−−−−−−→
W (5 )+W ( 9 ′)

[- ′] for every Nisnevich distinguished
square (2.1).

Moreover, the Λ-linear triangulated category of mixed geometric motives DMgm (( ;Λ) is
de�ned to be the category obtained from DMe�

gm (( ;Λ) by formally inverting the motive
1(1) given by the class of the complex [P1

(
] → [(].

Observe that we use chain complexes instead of the usual cochain complexes used so far,
because Voevodsky’s motives are homological. In particular, there is a covariant functor
"gm (−/( ;Λ) : �&( → DMgm (( ;Λ). To describe this functor, let us unravel the de�nition
of DMgm (( ;Λ). The objects of DMgm (( ;Λ) are of the form (", A ) with " ∈ DMe�

gm (( ;Λ) and
A ∈ Z. Morphisms between these objects are de�ned by the formula

HomDMgm (( ;Λ) ((", A ), (" ′, A ′)) := lim−−→
9≥−min(A,A ′)

HomDMe�
gm (( ;Λ) (" ( 9 + A ), " ( 9 + A ′))

where " (=) := " ⊗ 1(1)⊗= for every = ∈ N and every " ∈ DMe�
gm (( ;Λ). It is worth noting that

the direct limit stabilises. Furthermore, the objects of DMe�
gm (( ;Λ) are pairs of the form" = (�, 4)

where � ∈ K1 (�&cor
(,Λ) and 4 ∈ HomK1 (�&cor

(,Λ)/�( (�,�) is an idempotent (i.e. 4 ◦ 4 = 4) in the
quotient category K1 (�&cor

(,Λ)/�( . We recall that this quotient category K1 (�&cor
(,Λ)/�( has

the same objects as K1 (�&cor
(,Λ), but the morphisms are given by

HomK1 (�&cor
(,Λ)/�( (�, �) := lim−−→

�̃→�

HomK1 (�&cor
(,Λ) (�̃, �)

where the direct limit runs over all the morphisms �̃→ � whose cone lies in�( (see [SP, Section
05RA]). Finally, morphisms in DMe�

gm (( ;Λ) are given by the following formula

HomDMe�
gm (( ;Λ) ((�, 4), (�′, 4 ′)) := 4 ′ ◦ HomK1 (�&cor

(,Λ)/�( (�,�
′) ◦ 4

which is analogous to what happens with pure motives (see Section 2.2.1). The functor

"gm (−/( ;Λ) : �&( → DMgm (( ;Λ)

can now be de�ned as the composite of the functor [−] : �&( → K1 (�&cor
(,Λ) sending -

to the homotopy class of the complex [- ] concentrated in degree zero (which was used in
De�nition 2.2.10), the projection onto the quotient K1 (�&cor

(,Λ) → K
1 (�&cor

(,Λ)/�( , the functor
K1 (�&cor

(,Λ)/�( → DMe�
gm (( ;Λ) sending � to (�, Id�) and the functor

DMe�
gm (( ;Λ) → DMgm (( ;Λ)

sending - to (-, 0).

Let us recall some properties of the triangulated category of mixed geometric motives
DMgm (( ;Λ). First of all, it is a triangulated category, which agrees with its name. Indeed,
the quotient category K1 (�&cor

(,Λ)/�( is easily seen to be triangulated, which implies that
DMe�

gm (( ;Λ) is triangulated (and pseudo-abelian) by a general result of Balmer and Schlichting
(see [BS01]) on pseudo-abelian envelopes. The fact that DMgm (( ;Λ) is triangulated and pseudo-
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abelian follows from the fact that it can be written as a 2-colimit of pseudo-abelian, triangulated
categories (see [Ivo07, Page 616]). Moreover, for every �eld ^ there exists a commutative square

P(^)op S(^)op

CHM(^;Λ) DMgm (^;Λ)op

hrat (−;Λ) "gm (−/^;Λ)op (2.15)

where DMgm (^;Λ) := DMgm (Spec(^);Λ), and the functor on the bottom is a fully faithful
embedding, which maps 1rat,Q (−1) to 1(1) [2] and sends a Chow motive (-, 4, A ) with A ≥ 0 to
an e�ective mixed geometric motive (see [And04, § 18.3]). Hence the diagram (2.15) seems to be
a �rst step towards the construction of a diagram like (2.14). It turns out that in order to extend
the functor "gm (−;Λ) to singular schemes it is better to work with a bigger category, which we
are now going to de�ne.

Let us recall �rst of all that a Λ-linear presheaf with transfers over a scheme ( is a presheaf
on the category �&cor

(,Λ of Λ-linear smooth correspondences (see [CD19, De�nition 10.1.1]),
valued in the category ModΛ of modules over Λ. Such a presheaf with transfers � ∈ PShtr ((,Λ)
is called a sheaf with transfers, with respect to some Grothendieck topology g on �&( , if
the composition � ◦ W( is a sheaf with respect to this topology, where W( : �&( → �&

cor
(,Λ is

the functor sending each object to itself and each morphism 5 : - → . to its graph Γ5 . We
denote the category of Λ-linear sheaves with transfers by Shtr

g ((,Λ). Under some technical
hypotheses on the Grothendieck topology g (see [CD19, De�nition 10.3.5]), which are satis�ed
if g is the étale or the Nisnevich topology (see [CD19, Proposition 10.3.3]), the forgetful functor
Shtr

g ((,Λ) → PShtr ((,Λ) admits a left-adjoint (the g-shea��cation) PShtr ((,Λ) → Shtr
g ((,Λ),

and for every - ∈ �&( one denotes by Λtr
(
(- )g the g-shea��cation of the representable

presheaf Λtr
(
(- ) ∈ PShtr ((,Λ) de�ned by Λtr

(
(- ) (. ) := C( (.,- )Λ. This de�nes a functor

Λ( (−)trg : �&( → Shvtr
g (( ;Λ). We note moreover that the category Shvtr

g (( ;Λ) is an abelian
symmetric tensor category (if we have a g-shea��cation functor), where the tensor structure is
induced by the one present on ModΛ. Moreover, the identity for the tensor product is given by
1(,g := Λtr

(
(()g , and we denote by 1(,g {1} the cokernel of the map Λtr

(
(()g → Λtr

(
(G1

<,(
)g induced

by the unit ( → G1
<,(

. This object allows us to de�ne the category of symmetric Tate spectra
Sptr
g (( ;Λ) as follows. First of all, one de�nes the category of symmetric sequences Shvtr

g (( ;Λ)S
whose objects are sequences � = (�=, d=)=∈N of pairs (�=, d=) where �= ∈ Shvtr

g (( ;Λ) and
d= : S= → Aut(�=) is an action of the symmetric group on =-letters S= , and whose morphisms
are equivariant morphisms. For every symmetric sequence � = (�=, d=) ∈ Shvtr

g (( ;Λ)S and
every = ∈ N, one can de�ne a twist �{−=}, by considering suitable “�bre products” of the
form S< ×S<−= �<−= for every< ≥ = (see [CD19, Equation 5.3.5.2] for the precise de�nition).
Moreover, one de�nes the object 1(,g {∗} ∈ Shvtr

g (( ;Λ)S to be the sequence of pairs (1(,g {=}, f=)
where 1(,g {=} := 1(,g {1}⊗= and f= : S= → Aut(1(,g {=}) denotes the permutation action.
This object is a monoid (in the sense of [KS06, Remark 4.3.2]) inside the monoidal category
Shvtr

g (( ;Λ)S , where the tensor product is de�ned by setting (�8 )8 ⊗ (� 9 )9 :=
(⊕

==8+9 (�8 ⊗ � 9 )
)

for every �, � ∈ Shvtr
g (( ;Λ)S . Then the category of symmetric Tate spectra Sptr

g (( ;Λ) is �nally
de�ned as the full subcategory of Shvtr

g (( ;Λ)S given by all the objects which are modules over
the monoid 1(,g {∗}, in the sense of [KS06, De�nition 4.3.3]. Note that there is an adjunction
Σ∞ : Shvtr

g (( ;Λ) � Sptr
g (( ;Λ) : Ω∞, which is de�ned in [CD19, Equation 5.3.16.1].

We are now �nally ready to de�ne the triangulated categories of mixed motives, in the sense
of [CD19, De�nition 11.1.1].
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De�nition 2.2.11 – Triangulated category of mixed motives

Let ( be a scheme and let Λ be a commutative ring with unity. Fix a Grothendieck topology
g on the category�&( of smooth schemes of �nite type over ( , which is mildly compatible
with transfers (in the sense of [CD19, De�nition 10.3.5]). The Λ-linear triangulated category
of e�ective mixed motives for the topology g is de�ned as the quotient

DMe�
g (( ;Λ) := � (Shvtr

g (( ;Λ))/�A1

(,g

of the derived category of Nisnevich sheaves with transfers modulo the triangulated
sub-category �A1

(,g
generated by the complexes of the form

Λtr
( (A

1
- )g −−−−−→

Λtr
(
(?)g

Λtr
( (- )g

for every - ∈ �&( , where ? : A1
-
→ - denotes the canonical projection. Moreover, the

Λ-linear triangulated category of mixed motives for the topology g is de�ned to be the
quotient

DMg (( ;Λ) := � (Sptr
g (( ;Λ))/�A1,Ω

(,g

where�A1,Ω
(,g

is the triangulated sub-category generated by the union of Σ∞ (�A1

(,g
) together

with the complexes of the form [Σ∞ (Λtr
(
(- )g )]{−=} ⊗�1(,g {1} for every - ∈ �&( and

every = ∈ N. Here �1(,g {1} denotes the complex�1(,g {1} : [Σ∞ (1(,g {1})]{−1} → Σ∞ (1(,g )

induced by the fact that Σ∞ is a left adjoint. Finally, we write DMe� (( ;Λ) and DM(( ;Λ)
for the categories associated to the Nisnevich topology.

The main advantage of using sheaves with transfers instead of complexes valued in the
category �&cor

(,Λ, as we did in De�nition 2.2.10, is that now it becomes easy to de�ne a functor
" (−/( ;Λ) : V(() → DMe� (( ;Λ) which associates to any scheme of �nite type - ∈ V(()
its motive " (-/( ;Λ). To do so, one extends the functor Λ( (−)trg : �&( → Shvtr

g (( ;Λ) to
singular schemes, de�ning Λ( (- )trg to be the g-shea��cation of the presheaf with transfers
Λtr
(
(- ) ∈ PShtr (( ;Λ) which associates to each . ∈ �&cor

(,Λ the Λ-module of �nite correspon-
dences Λtr

(
(- ) (. ) := C( (.,- )Λ. Then one gets a functor

" (−/( ;Λ) : V(() → DMe� ((,Λ) (2.16)

taking g to be the Nisnevich topology. This functor �ts in a commutative diagram (see [CD19,
Diagram 11.1.12.1])

�&( DMe�
gm (( ;Λ) DMgm (( ;Λ)

V(() DMe� (( ;Λ) DM(( ;Λ)

"gm (−/( ;Λ)

" (−/( ;Λ) Σ∞

(2.17)
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where Σ∞ is the left adjoint in the adjuction Σ∞ : DMe� (( ;Λ) � DM(( ;Λ) : Ω∞, induced from
the corresponding adjunction between sheaves with transfers and symmetric Tate spectra.
Moreover, [CD19, Theorem 11.1.13] proves that the horizontal maps appearing in (2.17) are
fully faithful embeddings, which identify the category DMe�

gm (( ;Λ) (respectively, the category
DMgm (( ;Λ)) with the sub-category of DMe� (( ;Λ) (resp. DM(( ;Λ)), given by compact objects,
i.e. by those objects - such that Hom(-,−) commutes with small sums (see [SP, De�nition
07LS]). Hence (2.15) can be extended to give the following commutative square

P(^)op V(^)op

CHM(^;Λ) DM(^;Λ)op

hrat (−;Λ) " (−/^;Λ)op

where the horizontal maps are fully faithful embeddings, which should be the top square
appearing in (2.14). We note that, if ( satis�es a suitable form of resolution of singularities (e.g.
if ( = Spec(^) where ^ is a �eld of characteristic zero), then the functor

" (−/( ;Λ) : V(() → DMe� ((,Λ)

actually factors through the embedding DMe�
gm ((,Λ) ↩→ DMe� ((,Λ), in virtue of [CD19, Corol-

lary 4.4.3]. Thus we could in fact extend our original diagram (2.15), where ^ is certainly a �eld
of characteristic zero, by replacing S(^)op withV(^)op. However, it is expected that Huber’s
or Nori’s constructions ofMM^ could generalise to de�ne a categoryMM( over a general
base ( , and then (until a suitable form of resolution of singularities is proved for () it might be
better to stick with our decision of taking DM(( ;Λ)op to be our candidate for the triangulated
category of mixed motives, rather than DMgm (( ;Λ)op. Let us mention that other candidates for
the triangulated category of mixed motives can be obtained by applying the same techniques
seen in this section to the categoryV(()cor

Λ where the objects are schemes of �nite type over (
and the morphisms are given by �nite correspondences. Doing so, one gets two triangulated
categories DMe�

g
(( ;Λ) and DM

g
(( ;Λ) which �t in a commutative diagram

DMe�
g (( ;Λ) DMg (( ;Λ)

DMe�
g
(( ;Λ) DM

g
(( ;Λ)

Σ∞

ie�
!

Ω∞

i!

Σ∞
i∗e�

Ω∞

i∗

where Σ∞ a Ω∞, Σ∞ a Ω∞, ie�
! a (i

e�)∗ and i! a i∗ are adjoints (see [CD19, § 11.1.15]).
Moreover, the functors i! and ie�

! are fully faithful, and they are compatible with twists (see
[CD19, Proposition 11.1.19]).

We conclude this brief review of the various existing candidates for the triangulated category
of mixed motives by mentioning the A1-homotopy categories DAe�

g (( ;Λ) and DAg (( ;Λ) con-
structed by Ayoub (see [Ayo07]), which are denoted by De�

A1,g
(( ;Λ) and DA1,g (( ;Λ) in [CD19,

Example 5.3.31]. These categories are constructed in the exact same way as DMe�
g (( ;Λ) and

DMg (( ;Λ) (see De�nition 2.2.11), by replacing the abelian category Shvtr
g (( ;Λ) with the abelian

category Shvg (( ;Λ) of Λ-linear g-sheaves on the category �&( of smooth schemes of �nite
type over ( . The functor W : �&( → �&

cor
(,Λ which sends a scheme to itself and a morphism
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5 : - → . to its graph Γ5 , induces an adjunction W∗ : Shvg (( ;Λ) � Shtr
g (( ;Λ) : W∗, which in turn

induces a commutative diagram

DAe�
g (( ;Λ) DAg (( ;Λ)

DMe�
g (( ;Λ) DMg (( ;Λ)

Σ∞
A1

W∗e�

Ω∞
A1

W∗

Σ∞
W e�
∗

Ω∞

W∗

where Σ∞ a Ω∞, Σ∞
A1 a Ω∞A1 , W∗ a W∗ and W∗e� a W

e�
∗ . Moreover, if ( is excellent and geometrically

unibranch (e.g. if ( = Spec(^)) then one can combine [CD19, Theorem 16.1.4] and [CD19,
Theorem 16.2.13] to see that W∗ gives a fully faithful embedding DM(( ;Q) ↩→ DA(( ;Q), where
as usual DA(( ;Q) := DANis (( ;Q). Moreover, [CD19, Theorem 16.2.18] shows that one has an
equivalence of categories DM(( ;Q) ' DAét (( ;Q). This is crucially used in the Section 2.4, since
the construction of regulator maps is easier if one works in the A1-homotopy category. Finally,
let us mention that one can work with simplicial sheaves instead of sheaves of Λ-modules,
to obtain the category SHg (( ;Λ) constructed by Morel and Voevodsky (see [MV99]). There
is an adjuction SHg (( ;Λ) � DAg (( ;Λ), which becomes an equivalence if Λ is a Q-algebra
(see [CD19, p. 5.3.35]). This category admits also an∞-categorical enhancement (see [Rob15,
De�nition 2.38]), which can be particularly useful to overcome the non-functoriality of cones.

2.3 Motivic cohomology
In the previous section we have de�ned various categories of motives, and in particular we

have seen that the Beilinson-Deligne program for constructing an abelian category of mixed
motives over any base ( and with any ring of coe�cients Λ would entail the construction of a
triangulated category T (( ;Λ) together with a functor "T (−/( ;Λ) : V(()op → T (( ;Λ) which
sends a scheme of �nite type - → ( to its motive "T (-/( ;Λ). This category should also
be equipped with a tensor product and with a family of objects 1T,( ( 9) ∈ T (( ;Λ) such that
1T,( := 1T,( (0) = "T ((/() is the unit of the tensor product and 1T ( 9) ⊗ 1T ( 9 ′) = 1T ( 9 + 9 ′)
for every 9, 9 ′ ∈ Z. Then, to conclude the program, one should de�ne a C-structure on T (( ;Λ)
whose heartMM( would be the abelian category of mixed motives. Now, if we only have
the triangulated category T (( ;Λ) mentioned above, we can still make sense of the following
de�nition.

De�nition 2.3.1 – Motivic cohomology

Let ( be a scheme, and let - ∈ V(() be an (-scheme of �nite type. Then we de�ne the
Λ-linear motivic cohomology of ( with respect to T as the modules

�
8, 9

T (( ;Λ) := HomT(( ;Λ) (1T ( 9) [8], "T (( ;Λ))

where [8] : T (( ;Λ) → T (( ;Λ) denote the shift functors.

In principle, the previous de�nition of motivic cohomology would depend on the base ( . How-
ever, the categories T (- ;Λ) should satisfy a version of Grothendieck’s six-functor formalism
(see [CD19, § A.5] for a review), which would in particular imply that for every 5 : - → (

which is separated and of �nite type there should be a functor 5 ∗ : T (( ;Λ) → T (- ;Λ) such
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that 5 ∗ (1T,( ) = 1T,- , and this functor should admit a left adjoint L5# : T (- ;Λ) → T (( ;Λ)
which �ts in the commutative square

V(- )op T (- ;Λ)

V(()op T (( ;Λ)

"T (−/- ;Λ)
L5#

"T (−/( ;Λ)

where the mapV(- )op →V(()op is the natural one, which considers a scheme c : . → - as
an (-scheme via the composition 5 ◦ c : . → ( . Using the adjunction property 5# a 5 ∗ one can
see that this formalism would imply that De�nition 2.3.1 does not depend on the choice of a
base scheme ( (compare with [CD19, § 11.2.4]).

We have seen in the previous section that the insights of Voevodsky, Morel, Ayoub, Cisinski-
Déglise and others have lead to the construction of many candidates for the category T (( ;Λ):
the category DMgm (( ;Λ)op of mixed geometric motives, the category DM(( ;Λ)op of Voevod-
sky motives and the A1-homotopy category DA(( ;Λ)op, which are constructed starting from
smooth schemes of �nite type over ( , and their enlarged versions DM(( ;Λ)op and DA(( ;Λ)op,
constructed using separated schemes of �nite type over ( . To get the formalism described above,
and in particular to obtain a functor L5# for every morphism 5 : - → ( which is separated of
�nite type, the best choice is to take T (( ;Λ) := DM(( ;Λ)op. However, since we have the fully
faithful embedding i! : DM(( ;Λ) ↩→ DM(( ;Λ), we can de�ne motivic cohomology to be

�
8, 9

M (- ;Λ) := HomDM(- ;Λ) (1- ,1- ( 9) [8]) = HomDM(- ;Λ) (1- ,1- ( 9) [8]) (2.18)

which is well de�ned for every scheme - . This de�nition agrees with [CD19, De�nition 11.2.1]
and for every separated morphism of �nite type 5 : - → ( one has that

�
8, 9

M (- ;Λ) = HomDM(( ;Λ) (1( , 5∗ (5 ∗ (1( ( 9) [8]))) = HomDM(( ;Λ)op (1( ( 9) [8], " (-/( ;Λ))

which shows that this de�nition agrees with De�nition 2.3.1 if we take T (( ;Λ) = DM(( ;Λ)op.
We recall that the de�nition of motivic cohomology can be extended to diagrams of (-schemes.
More precisely, one can de�ne a category DM(� ;Λ) associated to every diagram � = (I, i),
where I is a small category and i : I → Sch/( is a functor (see [CD19, § 3.1]), in such a way that
DM(( ;Λ) = DM(�( ;Λ) where �( is the diagram given by the constant functor i : {∗} → Sch
de�ned as i (∗) := ( . For every morphism of diagrams 5 : � → � ′, which consists of a functor
5 : I → I ′ and a natural transformation i → i ′ ◦ 5 , one has a pair of adjoint functors
5 ∗ : DM(� ′;Λ) � DM(� ;Λ) : 5∗. Hence one de�nes the motivic cohomology of every diagram
� of (-schemes as

�
8, 9

M (� ;Λ) := HomDM(( ;Λ) (1( , c∗ (c∗ (1( ( 9) [8])))

where c : � → �( denotes the structural morphism. Similarly to what we have seen in the
case of a single scheme - , one can show that this de�nition of motivic cohomology does
not depend on the base scheme, hence one might take ( = Spec(Z). Moreover, every open
immersion 9 : * ↩→ - can be considered as a diagram, and one denotes its motivic cohomology
by �=,<M (-,* ;Λ) := �=,<M ( 9 ;Λ). One clearly has that �=,<M (-, ∅;Λ) = �

=,<

M (- ;Λ), and one can
check that the motivic cohomology groups �=,0M (-,* ;Λ) satisfy all the hypotheses of a mixed
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Weil cohomology theory (see De�nition 2.1.4) except from the Künneth formula. In particular,
for every Nisnevich distinguished square (2.1) one gets a Mayer-Vietoris long exact sequence

· · · → �
8, 9

M (-
′;Λ) −−−−−−−→

( 9 ′)∗⊕5 ∗
�
8, 9

M (*
′;Λ) ⊕ � 8, 9M (- ;Λ) −−−−−−→

(5 ′)∗+9∗
�
8, 9

M (* ;Λ) −→m �
8+1, 9
M (- ;Λ) → . . .

coming from an exact triangle " (* /( ;Λ) → " (* ′/( ;Λ) ⊕ " (-/( ;Λ) → " (- ′/( ;Λ) in
DM(( ;Λ) (see [CD19, Remark 3.3.6]).

Let us mention that these de�nitions of motivic cohomology can be generalised by replacing
DM(( ;Λ) with some other triangulated category of mixed motives. One possible choice is given
by taking the category DMcdh (- ;Λ) of Voevodsky motives relative to the cdh-topology, which
is obtained as a re�nement of the Nisnevich topology by including among the distinguished
squares the abstract blow-ups, which are Cartesian squares of the form

� -̃

/ -

]′

c ′ c

]

(2.19)

where ] is a closed immersion, c is proper and the induced map c−1 (- \ ] (/ )) → - \ ] (/ ) is an
isomorphism (see [CD19, Example 2.1.11]). Other options include the A1-homotopy category
DA(( ;Λ) and the category of Beilinson motives DMB (( ;Λ), which is de�ned only when Λ is a
Q-algebra (see [CD19, § 14.2] for the precise de�nition). The three categories mentioned in this
paragraph have the advantage that, under some suitable hypotheses, they satisfy all the axioms
of the six functors formalism laid down in [CD19, § A.5], and in particular the localisation
property.

This property asserts that, if 9 : * ↩→ - is an open immersion with complementary closed
immersion ] : / ↩→ - , one should have a distinguished triangle

9! ( 9 ! (")) → " → ]∗ (]∗ (")) → 9! ( 9 ! (")) [1]

for every" ∈ T (- ;Λ), where T (−;Λ) is a triangulated category of mixed homological motives.
For T (( ;Λ) = DM(( ;Λ) the validity of this property is equivalent to a deep conjecture of
Voevodsky (see [CD19, Proposition 11.4.7]). Moreover, the triangulated categories DA(( ;Λ) and
DMB (( ;ΛQ) for a Q-algebra ΛQ always satisfy the localisation property (see [Ayo07, § 4.5.3]
and [CD19, Corollary 14.2.11]), and the category DMcdh (( ;Λ) satis�es this property if ( is a
Noetherian scheme of �nite dimension over Spec(^), where ^ is either a �eld of characteristic
zero or a �eld of characteristic ? > 0 such that ? ∈ Λ× (see [CD15, Theorem 5.11]). In particular,
if T is one of the three last-mentioned categories and � 8, 9T denotes motivic cohomology with
respect to this category (see De�nition 2.3.1), which can be extended to diagrams as we did above,
one has an identi�cation between the relative cohomology �=,<T (-,* ;Λ), where 9 : * ↩→ - is
an open immersion, and the cohomology groups

�
=,<

T,/ (- ;Λ) := HomDM(- ;Λ) (]∗ (1/ ),1- (<) [=])

supported on the closed complement ] : / ↩→ - . Using these functors, [DM15, Corollary 2.2.10]
shows that the pair (� •,•T , �

B.M.,T
•,• ) forms a twisted Poincaré duality theory in the sense of

De�nition 2.1.10, where for every separated (-scheme 5 : - → ( of �nite type we write

�
B.M.,T
8, 9

(-/( ;Λ) := HomT(( ;Λ) (1(,T , 5∗ (5 ! (1(,T (− 9) [−8])))
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for the Borel-Moore motivic homology groups (relative to our choice of T ) de�ned in [DM15,
§ 2.2.1]. Let us mention as well the existence of Mayer-Vietoris long exact sequences

· · · → �
8, 9

T (- ;Λ) −−−−→]∗⊕c∗
�
8, 9

T (/ ;Λ) ⊕ � 8, 9T (-̃ ;Λ) −−−−−−−−→
(]′)∗+(c ′)∗

�
8, 9

T (�;Λ) −→m �
8+1, 9
T (- ;Λ) → . . .

(2.20)
associated to each abstract blow-up (2.19) (see [CD19, Proposition 3.3.10]).

2.3.1 Relations with algebraic  -theory
The aim of the next three sections is to recall some of the conjectural and known ways of

computing motivic cohomology. The �rst one comes from its relation to higher algebraic  -
theory. This is an incredibly rich invariant, which can be associated to objects of a very di�erent
nature: rings, schemes, topological spaces, adic spaces, �∗-algebras and so on. The general idea
is that the  -theory of an object - should capture equivalence classes of objects which live
over - . For example, when - is a ring one looks at the category Mod' of modules over that
ring, and the equivalence relation is given by exact sequences in this category. For topological
spaces, and schemes, the role of Mod(') is played by the category Vec(- ) of vector bundles over
- , or the category Perf (- ) of perfect complexes on - with globally �nite Tor-amplitude (see
[TT90, De�nition 3.1]). These categories can be treated as Waldhausen categories, i.e. categories
with a collection of co�brations and weak equivalences. Using co�brations, one can build a
simplicial Waldhausen category (∗ (C) out of any Waldhausen category C, and then one de�nes
the  -theory space  (C) := Ω |F ((∗ (C)) | to be the loop space of the geometric realisation of
the simplicial sub-category of (∗ (C) whose morphisms are weak equivalences. We refer the
interested reader to [Wei13, Chapter IV, § 8] for an exposition of Waldhausen’s work, and to
[BGT13, § 7.1] for a general construction in the context of ∞-categories, which allows one
to prove a suitable universal property of algebraic  -theory. Then, one de�nes the algebraic
 -theory groups of C as  = (C) := c= ( (C)), and one de�nes in this way the  -theory groups
of a ring ' or a scheme - by taking C = Mod(') to be the category of modules or C = Perf (- )
to be the category of perfect complexes on - having globally �nite Tor-amplitude.

Computing these algebraic  -theory groups of schemes or rings has been notoriously di�cult.
We mention, among the very few cases in which these  -groups are completely known, the
 -theory of a �nite �eld F@ with @ elements, given by  0 (F@) = Z,  2= (F@) = 0 and

 2=−1 (F@) � Z/(@= − 1)

for every = ∈ Z≥1 (see [Wei13, Chapter IV, Corollary 1.13]), and the relative  -theory groups
 • (�, � ), where � is a nilpotent ideal (see [HM97], [AGH09], [HN20] and [Spe20] among others).
The situation becomes much better if we consider the rational  -groups  • (−)Q :=  • (−) ⊗Z Q.
The main computations which are known concern the  -theory of �elds, in particular of a
number �eld � . In this case Borel proved that  0 (� )Q � Q,  2= (� )Q = 0,  4=−1 (� )Q � QA2 and
 4=−3 (� )Q � QA1+A2 for every = ∈ Z≥1 (see [Bur02, Theorem 9.9]), where A1 denotes the number
of real embeddings of � and A2 denotes the number of conjugate pairs of complex embeddings of
� which are not real. As we see in next chapter, further work of Borel shows that these  -groups
are also related to the special values of the Dedekind Z -function Z� (B).

In order to see this result of Borel as a con�rmation of Beilinson’s conjectures on special
values of !-functions in the case of number �elds, one needs to relate the  -theory groups
to motivic cohomology. To this end, let us recall that the direct sum  • (- ) :=

⊕
=  = (- ) of

the  -theory groups  = (- ) associated to a scheme - has the structure of a graded ring (with
respect to the derived ⊗-product of perfect complexes, as explained in [TT90, § 3.15]) and also
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the structure of a graded _-ring. This means that there exist operations _: :  • (- ) →  • (- ) for
: ∈ N, which are compatible with the grading, such that _0 (G) = 1, _1 (G) = G and

_: (G + ~) =
∑
8+9=:

_8 (G)_ 9 (~)

for every G,~ ∈  • (- ). Moreover, the map _C :  • (- ) →W( • (- )) to the ring of Witt vectors
W( • (- )) := 1 +  • (- )ÈCÉ sending G ∈  • (- ) to

∑
: _

: (G)C: is a homomorphism of _-rings.
We refer the reader to [Wei13, Chapter II, § 4] for a detailed exposition of _-rings and Witt
vectors (see also [Bor11, § 1] for a modern account), and to [Lev97, § 5] for the proof of the
existence of a _-ring structure on the  -theory of a scheme, which essentially comes from the
existence of exterior powers of vector bundles (at least in the case when - admits an ample
family). We note also that these operations can be easily de�ned on  0 (- ) (which is also a
_-ring) using its explicit presentation, and then they can be extended to  = (- ) if - is regular
using [Rio10, Theorem 1.1.1]. In particular, the projection map  • (- ) →  0 (- ) is a morphism
of _-rings, and composing it with the map  0 (- ) → � 0 (- ;Z) induced by taking the rank of a
vector bundle one gets a map of _-rings Y :  • (- ) → � 0 (- ;Z) which is a section of the inclusion
� 0 (- ;Z) ⊆  0 (- ) ⊆  • (- ) and is an augmentation in the sense of [Wei13, De�nition 4.2.1]. In
any case, the _-ring structure allows one to de�ne the W-operations W: :  • (- ) →  • (- ), by the
formula W: (G) = _: (G + : − 1), and the Adams operations Ψ: :  • (- ) →  • (- ) by the equality

+∞∑
:=0

Ψ: (G)C: = Y (G) − C · 3
3C

log(_−C (G))

which amounts to the inductive formulas Ψ: (G) = ∑:−1
9=1 (−1) 9+1_ 9 (G)Ψ:−9 (G) − (−1)::_: (G)

normalised by the initial conditions Ψ0 (G) = Y (G), Ψ1 (G) = G and Ψ2 (G) = G2 − 2_2 (G).
The W-operations allow one to de�ne a decreasing �ltration F•W of ideals on  • (- ), by setting
F0
W ( • (- )) :=  • (- ), F1

W (- ) := ker(Y) and

F=W ( • (- )) :=

〈{
W01 (G1) · · ·W0< (G<)

�����G1, . . . , G< ∈ F1
W (- ),

<∑
9=1

0 9 ≥ =
}〉

for every = ≥ 2. Essentially by de�nition of the category of Beilinson motives DMB (( ;Λ), one
has a decomposition of the form

�
8, 9

B (- ;Λ) � gr9W
(
 29−8 (- ) ⊗Z Λ

)
(2.21)

which holds for every regular scheme - and every Q-algebra Λ. Moreover, for every = ∈ Z≥1
one has also the decompositions

 = (- )Q �
+∞⊕
<=1

gr<W ( = (- )Q) �
+∞⊕
<=1

�
2<−=,=
B (- ;Q) (2.22)

and the various graded pieces gr9W ( = (- )Q) can be identi�ed with the : 9 -th eigenspace for the
Adams operation Ψ: :  = (- ) →  = (- ) for any (or all) : > 1. We refer the reader to [CD19,
Corollary 14.2.14] for a proof of the identi�cation (2.21), and to [Lev94, Lemma 2.1] for a proof
of the decomposition (2.22).
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2.3.2 Computing motivic cohomology: higher Chow groups

As we have seen in the previous section, the relations between motivic cohomology and  -
theory groups allow one to use computations of the latter to understand more about the former.
Nevertheless, this is arguably a very minor improvement in computability, since the de�nition of
algebraic  -theory is also very abstract (as is the de�nition of motivic cohomology) and di�cult
to compute with. Moreover, any relation between  -theory and motivic cohomology holds only
rationally, even in the case of regular schemes. The aim of this section is to brie�y recall the
theory of higher Chow groups, introduced by Bloch (see [Blo86a]) and developed by Totaro
(see [Tot92]) and Levine (see [Lev94]). We present here the cubical theory for smooth schemes
over an a�ne base ( = Spec('), where ' is a �eld or more generally a Dedekind domain (see
[Gei04]), following [Tot92]. This theory be extended to schemes of �nite type (not necessarily
smooth) over any base ( by considering a complex of sheaves instead of a single complex of
modules (see [Lev05, Chapter II, § 2.5]).

Let ( = Spec(') be the spectrum of a �eld or a Dedekind domain, and let - → ( be a
smooth (-scheme of �nite type. Let � := P1 \ {1} and let t = (C1, . . . , C=) denote the coordinates
on �= . Then the faces of �= are the closed sub-schemes given by C8 = 0 or by C8 = ∞ for
some 8 ∈ {1, . . . , =}, and one denotes by m�= ⊆ �= the divisor given by the sum of the faces.
Fixing a commutative ring with unity Λ, one de�nes 28, 9 (-/( ;Λ) to be the free Λ-module
generated by closed sub-schemes of - ×( �9 having codimension 8 which meet - ×( m�9
properly. Moreover, one de�nes 38, 9 (-/( ;Λ) ⊆ 28, 9 (-/( ;Λ) to be the sub-module generated
by the inverse images f∗1 (/ ), . . . , f∗9 (/ ), where / ⊆ - ×( �9−1 runs over all the closed sub-
schemes of codimension 8 meeting - ×( m�9−1 properly, and for every : ∈ {1, . . . , 9} we let
f: : - ×( �9 → - ×( �9−1 denote the map f: (G, t) = (G, (C1, . . . , Ĉ: , . . . , C 9 )). Finally, one can
put all the Λ-modules I8, 9 (-/( ;Λ) := 28, 9 (-/( ;Λ)/38, 9 (-/( ;Λ) into a homological complex
I8,• (-/( ;Λ), whose di�erentials are induced by the maps

m8, 9 : 28, 9 (-/( ;Λ) → 28, 9−1 (-/( ;Λ)

G ↦→
9∑

:=1
(−1): ·

(
(X∞
9,:
)∗ (G) − (X0

9,:
)∗ (G)

) (2.23)

where XU
9,:

: - × �9−1 → - × �9 is de�ned as XU
9,:
(G, t) := (G, (C1, . . . , C:−1, U, C: , . . . , C 9−1)) for

every U ∈ �. Then the higher Chow groups of - over ( are de�ned to be the homology groups
CH8, 9 (-/( ;Λ) := � 9 (I8,• (-/( ;Λ)). As we said in the previous paragraph, one can check that
I8,• (−;Λ) is a complex of sheaves for the étale topology (see [Gei04, Lemma 3.1] for a proof
using the simplicial version of this complex), and one can de�ne higher Chow groups for any
scheme - as the hypercohomology groups of this complex of sheaves (see [Lev05, Chapter II,
§ 2.5] for details).

Now, it is evident that higher Chow groups give rise to a theory which is much more suitable
for explicit computations than motivic cohomology (de�ned as groups of morphisms in a derived
category) or algebraic  -theory. Nevertheless, one of the main results of Voevodsky is that, for
every scheme - which is smooth, separated and of �nite type over ( = Spec(^) where ^ is a
perfect �eld, one has that (see [CD19, Example 11.2.3])

�
8, 9

M (- ;Λ) � CH9,29−8 (- ;Λ) (2.24)
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which holds for any commutative ring with unity Λ (because it holds for Λ = Z). Moreover,
[Lev97, Corollary 8.2] shows that if - is also quasi-projective of dimension 3 then

CH8, 9 (- ;Λ) � gr8W ( 9 (- )) ⊗Z Λ

for every Λ such that (3 + 9 − 1)! ∈ Λ×. Finally, there is another version of motivic cohomology

�
8, 9

�
(- ;Λ) := HomSH(- ) (1- , Σ8, 9 (MΛ- ))

de�ned using the spectra MΛ- := 5 ∗ (MΛSpec(Z) ) obtained by pulling back along the structural
morphism 5 : - → Spec(Z) the spectrum MΛSpec(Z) ∈ SH(Spec(Z)) introduced by Spitzweck
(see [Spi18]). This new version of motivic cohomology, which should coincide with � 8, 9cdh under
Voevodsky’s conjecture (see [CD19, Remark 11.4.8]) has the property that

�
8, 9

�
(- ;Λ) � CH9,29−8 (- ;Λ)

for every - which is smooth over ( = Spec('), where ' is a Dedekind domain. This should be
particularly promising for arithmetic applications: indeed every smooth and proper variety -
over a number �eld  can be “spread out” to a smooth and proper X over the Dedekind domain
O [1/# ] for some # ∈ Z≥1 (see [Poo17, Theorem 3.2.1]).

We conclude this section by recalling that the Λ-modules I8, 9 (- ;Λ) can be replaced with
suitable complexes of equidimensional cycles, introduced by Suslin (see [Sus00]).

2.3.3 Computing motivic cohomology: polylogarithmic
motivic complexes

As we have seen in the previous section, higher Chow groups provide an explicit family of
cochain complexes Z•, 9 (- ;Λ) := I 9,29−• (- ;Λ) of Λ-modules, whose 8-th cohomology group
should compute Λ-linear motivic cohomology � 8, 9M (- ;Λ). The aim of this section is to introduce
another family of cochain complexes B•, 9 (- ;Λ), which are called Bloch group complexes or
polylogarithmic motivic complexes, which should also compute the motivic cohomology of a
scheme - , at least under suitable regularity assumptions. These complexes were introduced by
Goncharov in [Gon95b] and their relation with the complexes Z•, 9 (- ;Λ) should be thought
of as analogous to the relation that elapses between Beilinson’s and Zagier’s conjectures on
special values of !-functions. Let us say right from the start that, while the de�nition of these
complexes is only conjectural and they exist only for regular schemes - , they are still a very
interesting and completely explicit candidate for motivic cohomology. Moreover, as Goncharov
claims in the introduction of [Gon05], these complexes are the smallest ones which can compute
motivic cohomology. In particular, their cohomology � 8, 9B (- ;Λ) := � 8 (B•, 9 (- ;Λ)) vanishes by
de�nition for 8 > 9 + dim(- ) for every smooth variety - over a �eld. The analogous statement
for motivic cohomology is true, but not at all obvious (see [MVW06, Theorem 3.6]).

To de�ne the complex B•, 9 (- ;Λ) one starts by de�ning the Bloch groups B= (� ;Λ) associated
to a �eld � and to an integer = ∈ Z. These are de�ned as B= (� ;Λ) := 0 if = ≤ 0 and as
B= (� ;Λ) := Λ[P1 (� )]/R= (� ;Λ) if = ≥ 1. The sub-modules R= (� ;Λ) ⊆ Λ[P1 (� )] are de�ned as

R1 (� ;Λ) :=
〈
{0}, {∞}, {G · ~} − {G} − {~}

�� G,~ ∈ �×〉
Λ

R= (� ;Λ) :=
〈
{0}, {∞}, {5 (1)} − {5 (0)}

�� 5 ∈ P1 (� (C)), X1,= ({5 }) = 0
〉
Λ

(2.25)
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where {G} ∈ Λ[P1 (� )] denotes the generator of the free Λ-module Λ[P1 (� )] corresponding to
G ∈ P1 (� ). Moreover, for every 9 > 8 ≥ 1 and any �eld  , we denote by X8, 9 the maps

Λ[P1 ( )] ⊗Λ
∧8−1  ×Λ

X8,9−−→
{∧9  ×Λ , if 8 = 9 − 1
B9−8 ( ;Λ) ⊗Λ

∧8  ×Λ , if 8 < 9 − 1

{G} ⊗ ~ ↦→


(1 − G) ∧ G ∧ ~, if 8 = 9 − 1 and G ∈ P1 ( ) \ {0, 1,∞}
{G}9−8 ⊗ (G ∧ ~), if 8 < 9 − 1 and G ∈ P1 ( ) \ {0, 1,∞}
0, if G ∈ {0, 1,∞}

where  ×Λ :=  × ⊗Z Λ and {G}9−8 ∈ B9−8 ( ;Λ) denotes the class of {G} ∈ Λ[P1 ( )] inside
the quotient B9−8 ( ;Λ). Note that the maps X1,= appearing in (2.25) are well de�ned because
the module B=−1 ( ;Λ) has been constructed in the previous inductive steps. Taking  = � (C)
allows one to de�ne the modules R= (� ;Λ) and B= (� ;Λ), as we have seen above.

We are now ready to de�ne the complexes B•, 9 (- ;Λ) for - = Spec(� ). First of all, one sets

B8, 9 (� ;Λ) :=

{
B9−(8−1) (� ;Λ) ⊗Λ

∧8−1 �×Λ , if 8 ≠ 9∧9 �×Λ , if 8 = 9

which implies in particular thatB8, 9 (� ;Λ) ≠ 0 only if 1 ≤ 8 ≤ 9 . This agrees with the conventions
BA (� ;Λ) = ∧B � = 0 for every A ≤ 0 and B ≤ −1. The complex B•, 9 (� ;Λ) is then de�ned as

· · · → 0→ B1, 9 (� ;Λ) −−→X
1, 9

. . . −−−−→X8−1, 9
B8, 9 (� ;Λ) −−→X

8,9

. . . −−−−→X 9−1, 9
B 9, 9 (� ;Λ) → 0→ . . .

which makes sense because X8, 9 (R 9−(8−1) ( ;Λ) ⊗∧8−1  ×Λ ) = 0 for every �eld  (see [Gon95b,
Lemma 1.16]).

Now, in order to be able to give the (conjectural) de�nition ofB•, 9 (- ;Λ) one needs to introduce
the residue maps m•, 9E : B•, 9 ( ;Λ) → B•, 9−1 (^E ;Λ) [−1] associated to every discretely valued
�eld ( , E) with residue �eld ^E . These maps are de�ned as m8, 9E := B 9−(8−1)

E ⊗ \ 8−1
E when 1 ≤ 8 < 9 ,

and m 9, 9E := \ 9E . Here, for any< ∈ N the map B<E : B< ( ;Λ) → B< (^E ;Λ) is simply de�ned as
B<E ({G}<) := {G}< for every G ∈ P1 ( ), where G ∈ P1 (^E) denotes the reduction of G ∈ P1 ( ).
In particular G = ∞ if and only if G = ∞ or G ∈  and E (G) < 0. Moreover, \<E is de�ned as∧<  ×Λ

\<E−−→ ∧<−1 (^×E )Λ

~1 ∧ · · · ∧ ~< ↦→
<∑
8=1
(−1)8−1 · E (~8 ) ·

(
resc (~1) ∧ · · · ∧ �resc (~8 ) ∧ · · · ∧ resc (~<)

)
where c ∈  × is any uniformiser (i.e. E (c) = 1) and for any ~ ∈  × we write resc (~) ∈ ^×E for
the reduction of the unit ~/c E (~) . It is now easy to see that, for every �eld  , there is a map

B•, 9 ( (C);Λ)
B•, 9 ( ;Λ)

⊕
p m
•, 9
p

−−−−−−→
⊕
p

B•, 9
(
 [C]
p

;Λ
)
[−1] (2.26)

where the sum runs over all the non-zero prime ideals p ⊆  [C]. Then Goncharov makes the
following conjecture, which is inspired by Milnor’s theorem for algebraic  -theory (see [Wei13,
Chapter III, Theorem 7.4]).
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Conjecture 2.3.2 – Goncharov’s homotopy invariance conjecture

For every �eld the map (2.26) is a quasi-isomorphism of cochain complexes. In particular,
for every �nite extension � ⊆ � ′ of �elds, there exists a norm map

N•, 9
� ′/� : B•, 9 (� ′;Λ) d B•, 9 (� ;Λ)

in the derived category � (ModΛ), uniquely determined by the property that

m
•, 9
∞ = −

∑
p

N•, 9p ◦ m
•, 9
p

where for any non-zero prime ideal p ⊆  [C] the symbol N•, 9p denotes the norm relative
to the �nite extension  ⊆  [C]/p.

Let us now move on to give the de�nition of B•, 9 (- ;Λ) for any regular scheme - , assuming
Conjecture 2.3.2. First of all, one de�nes the Λ-modules

B̃0,1,9 (- ;Λ) :=
⊕
G ∈- (0)

B1,9−0 (^ (G);Λ) [−0] =
⊕
G ∈- (0)

B9−(1−1) (^ (G);Λ) ⊗Λ
∧1−(0+1) ^ (G)×Λ

where ^ (G) denotes the residue �eld of a point G ∈ - and - (0) ⊆ - denotes the set of points
having codimension 0. These modules should give rise to a family double complexes B̃•,•, 9 (- ;Λ).
The vertical di�erentials X0,1,9 : B̃0,1,9 (- ;Λ) → B̃0,1+1, 9 (- ;Λ) in this family of double complexes
are de�ned unconditionally as X0,1,9 :=

⊕
G ∈- (0) X

1−0,9−0
G , where X•, 9−0G are the di�erentials of

the complex B•, 9−0 (^ (G);Λ). Then Goncharov assumes Conjecture 2.3.2 to de�ne the horizontal
di�erentials m0,1,9 : B̃0,1,9 (- ;Λ) → B̃0+1,1, 9 (- ;Λ) by setting

m0,•, 9 =
⊕
G ∈- (0)

⊕
~∈Cl(G)

m
•, 9−0
G,~ [−0]

where Cl(G) denotes the closure of G inside - . Here, m•,=G,~ denotes, for every = ∈ Z≥2, a map of
complexes m•,=G,~ : B•,= (^ (G);Λ) d B•,=−1 (^ (~);Λ) [−1] which is de�ned for every pair of points
G,~ ∈ - such that ~ ∈ Cl(G) as

B•,= (^ (G);Λ)
⊕"

<=1 m
•,=
E<−−−−−−−−→

"⊕
<=1
B•,=−1 (^ (G)< ;Λ) [−1]

⊕"
<=1 N•,=−1

^ (G )</^ (~)−−−−−−−−→ B•,=−1 (^ (~)) [−1]

where E1, . . . , E" are the discrete valuations of ^ (G) which are trivial on ^ (~) ⊆ ^ (G), and
^ (G)1, . . . , ^ (G)" are their residue �elds. Finally, having the double complex B̃•,•, 9 (- ;Λ) at our
disposal, we de�ne B•, 9 (- ;Λ) to be its total complex, and we write� 8, 9B (- ;Λ) := � 8 (B•, 9 (- ;Λ))
for the cohomology of this cochain complex.

Remark 2.3.3. A brutal way to make unconditional the de�nition of the horizontal di�erentials
in the double complex B̃•,•, 9 (- ;Λ) would be to set m•, 9G,~ = 0 unless there is exactly one valuation
E of ^ (G) which is trivial on ^ (~), and ^ (G)E = ^ (~). This happens when ~ ∈ Cl(G)reg is a regular
point of Cl(G). Hence one could try to use embedded resolution of singularities and theorems
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of Bertini type to relate this new (well de�ned) complex to the conjecturally de�ned complex
B•, 9 (- ;Λ), when - is regular, separated and of �nite type over a �eld � of characteristic zero.

Remark 2.3.4. The de�nition of B•, 9 (- ;Λ) gives in general only a complex which is well-de�ned
in the derived category D(ModΛ). However, one could hope for the norm maps N•, 9

� ′/� to be
de�ned as maps of complexes, even if the equality m•, 9∞ = −∑

p N•, 9p ◦ m
•, 9
p probably does not hold

on the nose, but only up to quasi-isomorphism.

Remark 2.3.5. We note that the complexes B•, 9 (- ;Λ) are de�ned unconditionally if - has
dimension at most one over a �eld, or if 9 ≤ 3, because in both cases the norm maps do not
appear in the horizontal di�erentials of B̃•,•, 9 (- ;Λ).

To conclude we remark that de Jeu has constructed in [DeJ95] another family of cochain
complexes, the so called wedge complexesW•, 9 (- ;Λ), which should compute motivic coho-
mology. These complexes are slightly more complicated to de�ne than B•, 9 (- ;Λ), but have
the advantage of being directly related to the graded pieces of algebraic  -theory (see [DeJ95,
Theorem 3.15]).

2.3.4 Computing motivic cohomology: low degrees
The aim of this section is to use some of the comparison isomorphisms and of the ideas

introduced in the previous sections to compute some motivic cohomology groups in low degrees.
First of all, let us recall the following computation, which deals with the groups � 8,0 and � 8,1,
computed in the category of e�ective motives DMe� (- ;Λ).

Proposition 2.3.6 – Motivic cohomology with twists 0 and 1

For every scheme - and every commutative ring with unity Λ one has that

�
8,0
DMe� (- ;Λ) := HomDMe� (- ;Λ) (" (- ; _), " (- ;Λ) [8]) �

{
Λc0 (- ) , if 8 = 0
0, otherwise

where " (- ;Λ) := Λtr
-
(- )Nis, as we de�ned in (2.16). Moreover, if - is regular we have

�
8,1
DMe� (- ;Λ) := HomDMe� (- ;Λ) (" (- ; _), " (- ;Λ) (1) [8]) �


O× (- ) ⊗Z Λ, if 8 = 1
Pic(- ) ⊗Z Λ, if 8 = 2
0, otherwise

and �nally, if - is smooth over a �eld, the same computations hold true for the motivic
cohomology groups � 8, 9M (- ) and not only for their e�ective versions.

We refer the reader to [CD19, Theorem 11.2.14] and [MVW06, Corollary 4.2] for the proofs of
these statements, and we remark that, for a smooth variety over a �eld, Proposition 2.3.6 can be
deduced from the isomorphisms (2.24). For instance, the isomorphism CH1,1 (- ;Λ) � O× (- )⊗ZΛ
is easily induced by the map which sends a function 5 ∈ O× (- ) to 0 if 5 ≡ 1 and to its graph
Γ5 := {(G, C) ∈ - ×� | 5 (G) = C} otherwise. Note in particular that m1,1 (Γ5 ) = 0 precisely because
5 ∈ O× (- ), i.e. 5 has no zeros nor poles.
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Let us now recall what happens in the �rst range of indices not covered by Proposition 2.3.6,
namely for the groups � 2,2

M (- ;Λ). In this case we can be completely explicit when - is a regular
curve over a number �eld, and Λ = Q (or, more generally, a Q-algebra).

Proposition 2.3.7 – Motivic cohomology for curves over number �elds

Let - be a regular and connected curve over a number �eld ^. Then we have the isomor-
phism

�
2,2
M (- ;Q) � ker

©­­­­«
(^ (- )× ⊗Z Q)⊗2

〈ℎ ⊗ (1 − ℎ) : ℎ ∈ ^ (- )× \ {1}〉
m−→

⊕
G ∈ |- |

^ (G)× ⊗Z Q

{5 , 6} ↦→
⊕
G ∈ |- |

mG ({5 , 6})

ª®®®®®¬
(2.27)

where {5 , 6} denotes the class of 5 ⊗ 6 in the quotient of (^ (- )× ⊗Z Q)⊗2 appearing in
(2.27), and

mG ({5 , 6}) := (−1)ordG (5 ) ordG (6) 5
ordG (6)

6ordG (5 )

����
G

(2.28)

for every closed point G ∈ |- |

Proof. The previous proposition can be proved in di�erent ways, using the di�erent techniques
to compute motivic cohomology that we have recalled in the previous sections. For instance, let
us start by saying that � 2,2

M (- ;Q) � � 2,2
B (- ;Q), since ( = Spec(^), or even ( = - , are excellent

and geometrically unibranch (see [CD19, Theorem 16.1.4]). Hence in particular we can use the
isomorphism (2.21), together with Matsumoto’s theorem on  2 of a �eld (see [Wei13, Chapter II,
Theorem 6.1]) and the localisation sequence for  -theory (see [Wei13, Chapter V, § 6.12]) to
conclude.

However, a more intrinsic way to prove (2.3.7) is to use directly the localisation sequence for
motivic cohomology, coming from the fact that motivic cohomology with rational coe�cients
is part of a twisted Poincaré duality theory in the sense of De�nition 2.1.10. In particular, for
every �nite set of closed points . ⊆ |- | we get an exact sequence

0→ �
2,2
M (- ) → �

2,2
M (- \ . )

X−→ �
1,1
M (. ) → �

3,2
M (- ) → �

3,2
M (- \ . ) → 0 (2.29)

where � •,•M (−) denotes motivic cohomology with rational coe�cients. This comes from the
localisation sequence relative to the closed immersion . ↩→ - together with the fact that

�
8, 9

M (. ) �
⊕
~∈ |. |

�
8, 9

M (Spec(^ (~))) (2.30)

for every 8, 9 ∈ Z because motivic cohomology commutes with disjoint unions (as a very
particular case of Nisnevich descent), which shows that � 8, 9M (. ) = 0 if 2 | 8 , as a consequence of
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Borel’s theorem on the  -theory of number �elds (see Section 2.3.1). Now, we can let . grow in
the exact sequence (2.30). Combining this with the identi�cation

�
1,1
M (. )

(2.30)
�

⊕
~∈ |. |

�
1,1
M (Spec(^ (~))) �

⊕
~∈ |. |

^ (~)× ⊗Z Q (2.31)

provided by Proposition 2.3.6, we get an exact sequence

0→ �
2,2
M (- ) → �

2,2
M (b- )

X−→
⊕
G ∈ |- |

^ (G)× ⊗Z Q→ . . .

where b- ∈ - denotes the generic point. We can now get the isomorphism (2.27) using the
identi�cation

�
2,2
M (b- ) � �

2,2
M (Spec(^ (- ))) � (^ (- )× ⊗Z Q)⊗2

〈G ⊗ (1 − G) : G ∉ {0, 1}〉
provided by Matsumoto’s theorem. �

Remark 2.3.8. Proposition 2.3.7 is extensively used in Chapter 9, to explicitly construct elements
in the motivic cohomology group � 2,2

M (�) associated to a CM elliptic curve � de�ned over Q.
Proposition 2.3.7 is also used in Section 4.4.1, to prove that Boyd’s conjectures for a given
two-variable polynomial families follow from Beilinson’s ones.

From now until the end of this section, we use the notation� •,•M to denote motivic cohomology
with rational coe�cients, as we did in the proof of Proposition 2.3.7.

Remark 2.3.9. We note that for every �nite extension of �elds � ⊆ � ′ there exists a norm map

N� ′/� : � •, 9M (�
′) → �

•, 9
M (� )

where � •, 9M (�
′) := � •, 9M (Spec(� ′)) and � •, 9M (� ) := � •, 9M (Spec(� )). This norm map is given by the

push-forward along the morphism Spec(� ′) → Spec(� ) induced by the inclusion � ⊆ � ′.

Before moving on, we record one interesting feature of the localisation sequence (2.29).

Lemma 2.3.10 – Weil’s reciprocity law

Let - be a regular, connected, projective curve de�ned over a number �eld ^, and let
. ↩→ - be a closed �nite sub-scheme. Then for every 9 ∈ N we have that∑

~∈.
N1, 9−1
^ (~)/^ ◦ m

2, 9
~ = 0 (2.32)

where m2, 9
~ : � 2, 9

M (- \. ) → �
1, 9−1
M (^ (~)) is the map appearing in the localisation sequence

· · · → �
2, 9
M (- ) → �

2, 9
M (- \. ) −−−−−−→

⊕
~ m

2, 9
~ ⊕

~

�
1, 9−1
M (^ (~)) −−−−−−−→

⊕
~ (]~ )∗

�
3, 9
M (- ) → . . . (2.33)
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Proof. Observe that (]~)∗ : � 1, 9−1
M (^ (~)) → �

3, 9
M (- ) is the push-forward map associated to the

inclusion ]~ : Spec(^ (~)) → - giving rise to the point ~ ∈ - . This fact gives us the equality

c∗ ◦ (]~)∗ = N^ (~)/^ (2.34)

by the functoriality of push-forwards, where c : - → Spec(^) is the structural morphism. Finally
(2.34) gives the equality (2.32) using the fact that the localisation sequence (2.33) is exact. �

Remark 2.3.11. We note that the previous proof works only in the smooth projective case because
the existence of c∗ is not guaranteed otherwise (see [CD19, § 11.3.4]).

Remark 2.3.12. The usual Weil reciprocity law deals with the motivic cohomology (or the  -
theory) of the function �eld of the curve - (see for instance [Wei13, § 6.12.1]). One gets this
version of the Weil reciprocity law by letting . grow and taking the limit of the equality (2.32).

To conclude this section, we show how to use what we just recalled to construct elements in
the motivic cohomology of a curve.

Proposition 2.3.13 – Constructing motivic cohomology classes on a curve

Let- be a regular, connected, projective curve over a number �eld ^ and let . ⊆ - (^) be a
�nite set of closed points. Assume that there exists~0 ∈ - (^) such that~−~0 ∈ (�- ) (^)tors
for every ~ ∈ . , where �- denotes the Jacobian of - . Then the natural restriction map
�

2,2
M (- ) → �

2,2
M (- \ . ) admits a natural retraction � 2,2

M (- \ . ) � �
2,2
M (- ).

Proof. Let ^ ′ ⊇ ^ be a �nite Galois extension, such that all the points of . are ^ ′-rational. Then
the identi�cation (2.31) gives the isomorphism

�
1,1
M (.^′) �

⊕
~∈ |. |
(^ ′)× ⊗Z Q � Q[. ] ⊗Z (^ ′)× (2.35)

where Q[. ] denotes the group of divisors with rational coe�cients which are supported on . .
Now the exact sequence (2.29) induces a short exact sequence

0→ �
2,2
M (-^′) → �

2,2
M ((- \ . )̂ ′)

X′−→ Im(X ′) → 0

and using Lemma 2.3.10 we can see that, under the isomorphism (2.35), we have that

Im(X ′) ⊆ Q[. ]0 ⊗Z (^ ′)×

where Q[. ]0 ⊆ Q[. ] denotes the Q-vector space of divisors of degree zero. Moreover, we also
have that Im(X ′) = Q[. ]0 ⊗Z (^ ′)×, because X ′ �ts into the commutative diagram

�
2,2
M ((- \ . )̂ ′) Q[. ]0 ⊗Z (^ ′)×

�
1,1
M ((- \ . )̂ ′) ⊗ �

1,1
M (Spec(^ ′)) (O× ((- \ . )̂ ′) ⊗Z Q) ⊗Z (^ ′)×

X′

∪

∼

div ⊗ Id^′

54 Chapter 2 Cohomology theories, motives and regulators



and the divisor map (O× ((- \ . )̂ ′) ⊗Z Q) ⊗Z (^ ′)×
div ⊗ Id^′−−−−−−−→ Q[. ]0 ⊗Z (^ ′)× is surjective. This

follows from the fact that we are taking rational coe�cients, together with the assumption that
there exists a point ~0 ∈ . such that ~ − ~0 ∈ (�- (^))tors for every ~ ∈ . .

We have shown that

�
2,2
M ((- \ . )̂ ′) � �

2,2
M (-^′) ⊕ {O

× ((- \ . )̂ ′), (^ ′)×}

where {O× ((- \. )̂ ′), (^ ′)×} ⊆ � 2,2
M ((- \. )̂ ′) denotes the subspace of symbols {5 , 2} = {5 }∪{2}

where 5 ∈ O× ((- \. )̂ ′) and 2 ∈ (^ ′)× is a constant. To conclude we can use Galois descent for
motivic cohomology (see [CD19, Theorem 14.3.4]) to get an isomorphism

�
2,2
M (- \ . ) � �

2,2
M (- ) ⊕k∗ ({O

× ((- \ . )̂ ′), (^ ′)×}) (2.36)

where k : (- \ . )̂ ′ → - \ . denotes the Galois covering induced by base change. Then, the
retraction � 2,2

M (- \ . ) � �
2,2
M (- ) is simply given by the projection onto the �rst factor in the

decomposition (2.36). �

We can now use the retraction � 2,2
M (- \ . ) � �

2,2
M (- ) given by Proposition 2.3.13 to get a

map

O× (- \ . )⊗2 ⊗Z Q �
1,1
M (- \ . ) �

2,2
M (- \ . ) �

2,2
M (- )

5 ⊗ 6 [5 ,6

∼ ∪

(2.37)

which can be used to construct elements in motivic cohomology. In the case of elliptic curves,
(2.37) can be made more explicit, as the following example, due to Bloch (see [Blo00, Proposi-
tion 10.1.1]), shows.

Example 2.3.14 (Bloch’s trick). Let � be an elliptic curve de�ned over a number �eld ^. Fix
two functions 5 , 6 : � → P1, and let ( 5 ,6 ⊆ � (^) denote the set of their zeros and poles. Suppose
that ( 5 ,6 ⊆ �tors, where �tors := � (^)tors denotes the set of torsion points of � de�ned over the
algebraic closure ^ , and suppose as well that both 5 and 6 have the origin 0 ∈ � as their unique
pole. Then we have that

[5 ,6 := =5 ,6 {5 , 6} −
∑

G ∈(5 ,6\{0}
{mG ({5 , 6}), i (G)5 ,6 } (2.38)

where =5 ,6 := |lcm{ordI (5 ), ordI (6) | I ∈ ( 5 ,6 \ {0}}| ∈ Z≥1. Moreover, mG denotes the map
de�ned in Proposition 2.3.7, and for every G ∈ ( 5 ,6 the notation i (G)

5 ,6
stands for any function

i
(G)
5 ,6

: � → P1 de�ned over ^ such that div(i (G)
5 ,6
) = =5 ,6 · ((G) − (0)).

It is now easy to see that [ is bilinear, alternating and invariant by scaling, i.e.

[5 6,ℎ = [5 ,ℎ + [6,ℎ, and [5 ,6 = −[6,5 and [2,5 = 0

for every 5 , 6 ∈ � → P1
^ and 2 ∈ ^. This shows that we have an alternating, bilinear pairing

[ , ]M :
∧2
Q[� (^)tors]0,Gal(Q/Q) → �

2,2
M (�)

�1 ∧ �2 ↦→ [51,52

(2.39)

2.3 Motivic cohomology 55



where 51, 52 : � → P1 are any two functions such that div(59 ) = ord(� 9 ) � 9 . Here, we de�ne the
order ord(�) ∈ N of a divisor � ∈ Q[� (^)tors]0 to be the smallest natural number = ∈ N such
that = · � is a principal divisor. Finally, we observe that

[�1, �2]M = ord(�1) ord(�2) [�1, �2]A

for every �1, �2 ∈ Q[� (Q)tors]0,Gal(Q/Q) , where [ , ]A is the pairing de�ned in [DW88, Theo-
rem 5.1].

Remark 2.3.15. The map (2.37) has a natural generalisation in the context of polylogarithmic
motivic complexes, at least conjecturally. More precisely, every pair of functions 5 , 6 ∈ ^ (- )×
de�nes an element {5 }=−1 ⊗ 6 ∈ B2,= (- ;Q). For this element to de�ne a cohomology class
{5 , 6}= ∈ � 2,=

B (- ;Q) it is necessary and su�cient to show that

X2,= ({5 }=−1 ⊗ 6) = m2,= ({5 }=−1 ⊗ 6) = 0

as it is easily seen by specialising the construction of the complex B•,= (- ;Q) to the case of
smooth curves. Let now . ⊆ - (^) be the set of zeros and poles of 5 and 6, and assume that
there exists ~0 ∈ - (^) such that ~ − ~0 ∈ �- (^)tors for every ~ ∈ . . Then one can subtract from
{5 }=−1 ⊗ 6 some elements of the form {0}=−1 ⊗ ℎ, where 0 ∈ ^ is a constant and ℎ ∈ ^ (- )×, to
get a new element [ (=)

5 ,6
∈ B=−1 (- ) ⊗ ^ (- )× such that m2,= ([ (=)

5 ,6
) = 0. The proof uses the same

ideas appearing in the proof of Proposition 2.3.13 (which is recovered as the case = = 2), together
with the conjectural formula ∑

G ∈- (^)
m2,=
G ({5 }= ⊗ 6) = 0 ∈ B=−1 ( ′)

which is the equivalent of Weil’s reciprocity formula for the polylogarithmic motivic complexes
(see [Rud18] for partial results towards the validity of this formula).

2.4 Regulators
We have seen in the previous sections that the motivic cohomology � •,•M (- ;Λ) of a scheme

- with coe�cients in a ring Λ is an incredibly rich invariant, whose de�nition requires a
conspicuous amount of setup. Our lack of knowledge about motivic cohomology is also extremely
tantalising: on the one hand it is quite di�cult to construct motivic cohomology classes, with
the notable exception of � 1,1

M (- ;Λ) � O× (- ) ⊗Z Λ, and on the other hand it is completely out
of reach (as of today) to prove that motivic cohomology groups are �nitely generated, with the
notable exception of the theorems of Borel. It is therefore natural to attempt to relate the motivic
cohomology groups of a scheme - to more computable invariants, given for instance by the
cohomology theories described in Section 2.1. These relations have the form of regulator maps

A? : � •,•M (−;Λ) → �
•,•
? (−;Λ)

between Λ-linear motivic cohomology and some other Λ-linear bi-graded cohomology theory
satisfying the axioms of Section 2.1. Regulators can be constructed in one of the following ways:

• from realisation functors '? : DM(( ;Λ) → T?, where T is a triangulated category with Tate
twists, whose homomorphisms compute the cohomology theory � •,•? (see Remark 2.1.18);
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• from unit maps of ring spectra, whenever � •,•? is represented by a spectrum E? ∈ DA(( ;Λ).
More precisely, suppose that there exists a monoid object E? ∈ DA(( ;Λ) (usually called a
ring spectrum) and a functorial family of isomorphisms

�
8, 9

? (- ) � HomDA(( ;Λ) ("A1 (-/( ;Λ),E? ( 9) [8])

for every - ∈ �&( , where "A1 (-/(,−) : �&( → DA(( ;Λ) denotes the functor which
sends an (-scheme to its motive in the A1-homotopy category DA(( ;Λ) (see Section 2.2.3).
Then the unit map[ : 1( → E? induces maps 1( ( 9) [8] → E? ( 9) [8]. Applying the covariant
functor HomDA(( ;_) ("A1 (-/( ;Λ),−) to these maps, one gets regulator maps

A
E?
-

: � 8, 9M,A1 (- ;Λ) → �
8, 9

? (- ;Λ)

where � 8, 9M,A1 (- ;Λ) := HomDA(( ;Λ) ("A1 (-/( ;Λ),1( ( 9) [8]) denotes motivic cohomology
computed in the A1-homotopy category. We recall that this coincides with the motivic co-
homology � 8, 9M (- ;Λ) computed in DM(( ;Λ) if ( is excellent and geometrically unibranch
(e.g. ( = Spec(^) for a �eld ^) and Λ is a Q-algebra;

• as a Chern character, using the fact that motivic cohomology is related to  -theory (see
Section 2.3.1). More precisely, the Chern character is a family of natural transformations
ch8, 9 :  29−8 (−) → �

8, 9

? (−), from which we get a regulator map using the isomorphism
(2.21);

• as cycle class maps (sometimes called Abel-Jacobi maps), using the relation between motivic
cohomology and higher Chow groups (see Section 2.3.2). More precisely, the regulator is
induced by maps of complexes of sheavesZ•, 9 → �?

9 , where �?
9 are complexes of sheaves

on �&( such that � 8, 9? (- ) � �
8 (�?

9 (- )) for every - ∈ �&( ;

• as higher polylogarithms, using the conjectural relations between motivic cohomology and
the cohomology of polylogarithmic motivic complexes (see Section 2.3.3). More precisely,
the regulator is induced by a map of complexes of sheaves B•, 9 → �?

9 , where again �?
9 are

complexes of sheaves on �&( such that � 8, 9? (- ) � �
8 (� 9 (- )) for every - ∈ �&( .

As it is probably evident to the reader, the �rst three approaches are the most general, and
they are the best to ensure the naturality properties of regulator maps, whereas the last two
approaches are best for explicit computations.

The �rst approach, which constructs regulators from realisation functors, has been pursued
by a great number of people. Let us mention the works of Huber (see [Hub00] and [Hub04]),
Ayoub (see [Ayo14a]), Lecomte and Wach (see [LW09] and [LW13]) and Ivorra (see [Ivo07],
[Ivo10] and [Ivo16]). We do not use this approach in this thesis, except from mentioning it in
passing in Remark 2.4.7.
Remark 2.4.1. Suppose that a bi-graded cohomology theory� •,•? is represented by a ring spectrum
E? ∈ DA(( ;Λ), i.e. suppose that we can apply the second approach to the construction of a
regulator map. Then we can de�ne T? to be the triangulated category of E?-modules inside
DA(( ;Λ), and we can de�ne a realisation functor '? : DA(( ;Λ) → T? by setting '? (") := "⊗E?
for every " ∈ DA(( ;Λ). This shows that each time a cohomology theory is represented by a
motivic spectrum, it can also be obtained as homomorphisms in a category of realisations. Of
course, the construction of the category T? is of a non explicit nature, which is in stark contrast
to the usual categories of coe�cients, like the category of mixed Hodge structures (or mixed
Hodge modules), Ekhedal’s category for ℓ-adic sheaves and so on.
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The previous remark shows that the �rst approach to construct regulator maps is somehow
a special case of the second. The following result, due to Déglise and Mazzari (see [DM15,
Proposition 1.4.10]), allows one to represent a Λ-linear cohomology theory � •,•? by a motivic
spectrum E? ∈ DA(( ;Λ), as long as this cohomology theory is de�ned by a family �?

9 of Λ-linear
Nisnevich sheaves on �&( , via the formula � 8, 9? (- ) := � 8 (�?

9 (- )).

Theorem 2.4.2 – Motivic spectra associated to cohomology theories

Let Λ be a Q-algebra, and let (� 9 )9 ∈N ⊆ � (ShNis (( ;Λ)) be a family of complexes of
Nisnevich sheaves � 9 : �&op

(
→ ModΛ on the category of smooth schemes of �nite type

over a Noetherian, �nite dimensional base ( . Suppose that:
• the cohomology of each complex � 9 is A1-homotopy invariant, i.e. for every scheme
- ∈ �&( the canonical map A1

-
→ - induces isomorphisms

� 8 (� 9 (- )) −→∼ � 8 (� 9 (A1
- ))

for every 8, 9 ∈ Z;

• there exists a unit map[ : Λ→ �0 (whereΛ ∈ � (PSh(( ;Λ)) denotes the constant pre-
sheaf concentrated in degree zero) and a family of product maps `8, 9 : �8 ⊗� 9 → �8+9
for every 8, 9 ∈ N, such that the diagrams appearing in Figure 2.2 commute;

• there exists a map 2 : Λ(G<,( ) → �1 [1], where Λ(G<,( ) ∈ PSh(( ;Λ) denotes the pre-
sheaf given by Λ(G<,( ) (- ) := Hom(-,G<,( ) ⊗Z Λ. Moreover, for every - ∈ �&(

and every 8, 9 ∈ N the map

� 8 (� 9 (- )) −−→·×2 � 8+1 (� 9+1 (- ×( G<,( )) � Coker(c∗)

is an isomorphism, where 2 := 2 (IdG<,( ) ∈ � 1 (�1 (G<)), c : - ×( G<,( → - is the
canonical projection and × denotes the exterior product

� 8 (� 9 (- )) ⊗ � 8
′ (� 9 ′ (- ′)) −→× � 8+8

′ (� 9+9 ′ (- ×( - ′))

induced by the maps `8, 9 .
Then the collection (� 9 )9 ∈N gives rise to a spectrum Ẽ ∈ SpNis (( ;Λ), and we have isomor-
phisms

� 8 (� 9 (- )) � HomDA(( ;Λ) ("A1 (-/( ;Λ),E( 9) [8])

for every 8, 9 ∈ N and every - ∈ �&( , where E ∈ DA(( ;Λ) denotes the motive corre-
sponding to Ẽ. This isomorphism is compatible with products and functorial in - , and the
construction of E is functorial in the families {(� 9 ), [, `8, 9 } and in the choice of 2 . Here
"A1 (−/( ;Λ) : �&( → DA(( ;Λ) denotes the functor

"A1 (- ) := W∗ (" (-/( ;Λ)) = Σ∞ (Λ(- ))

sending a scheme to its motive (see Section 2.2.3).
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�8 ⊗ Λ �8

�8 ⊗ �0

Id�8 ⊗[

∼

`8,0

(a) Unit

�8 ⊗ � 9 �8+9

� 9 ⊗ �8

`8,9

∼ ` 9,8

(b) Commutativity

(�8 ⊗ � 9 ) ⊗ �: �8+9 ⊗ �:
�8+9+:

�8 ⊗ (� 9 ⊗ �: ) �8 ⊗ � 9+:

∼

`8,9 ⊗Id�:
`8+9,:

Id�8 ⊗` 9,:

`8,9+:

(c) Associativity

Figure 2.2.: Compatibility diagrams needed in Theorem 2.4.2 to construct a spectrum out of a family of
sheaves. In these diagrams all the isomorphisms indicated with∼ are the natural commutativity
and associativity constraints of the category � (%(ℎ(�&( ;Λ))

Remark 2.4.3. The commutativity of the diagrams appearing in Figure 2.2 can be relaxed by
asking that the diagrams “Unit” and “Associativity” are commutative up to homotopy, or that all
three are commutative up to coherent homotopy (see [BNT18]).

One can apply Theorem 2.4.2 to essentially all the cohomology theories mentioned in Sec-
tion 2.1.3. Let us mention a few examples explicitly.

Example 2.4.4 (Betti cohomology). Take ( = Spec( ) with  ⊆ C and Λ ⊆ R, one can de�ne
�B9 (- ;Λ) := �• (- (C); (2c8) 9 · Λ) to be the singular cochain complex. Then Theorem 2.4.2 gives
B ∈ DA( ;Λ) such that

HomDA( ;Λ) ("A1 (- ),B(<) [=]) � �=sing (- (C); (2c8)<Λ)

for every - of �nite type over C. This gives rise to a Betti regulator map

AB- : � 8, 9M,A1 (- ;Λ) → �
8, 9

B (- ;Λ)

for every - of �nite type over C.

Example 2.4.5 (�ltered de Rham cohomology). Take ( to be a scheme and Λ = � 0 (( ;O( ).
Assume that, for every - ∈ �&( , the category of good compacti�cations - ↩→ - (see Exam-
ple 2.1.22) is directed and functorial, by which we mean that for every 5 : - → . and every
pair of good compacti�cations 9- : - ↩→ - and 9. : . ↩→ . there exists 5 : - → . such that
5 ◦ 9- = 9. ◦ 5 . As it is shown in [Del71], these conditions are satis�ed if ( has resolutions of
singularities, for instance if ( = Spec( ) where  is a �eld of characteristic zero. We de�ne

�dR9 (- ) := lim−−→
- ↩→-

� 0 (-,�Gdm(Ω≤ 9
-/(
(log(- \ - ))))

where Ω≤ 9
-/(
(log(- \- )) denotes the truncation of the sheaf of di�erentials with logarithmic sin-

gularities (see again Example 2.1.22), and �Gdm(F ) denotes the Thom-Sullivan normalisation of
the Godement resolution of a sheaf F , which is described in [DM15, § 3.1.3]. Then Theorem 2.4.2
gives a spectrum dR ∈ DA(( ;Λ) such that

HomDA(( ;Λ) ("A1 (- ),dR( 9) [8]) � � 9 (� 8dR (-/())

for every - ∈ �&( , where � 9 denotes the Hodge �ltration. This gives rise to regulator maps

AdR- : � 8, 9M,A1 (- ;Λ) → �
8, 9

dR
(- ;Λ)
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for every - ∈ �&( .
Example 2.4.6 (Deligne-Beilinson cohomology). Take ( = Spec( ) with  ⊆ C, and let Λ = R.
Then one can take �DB9 (- ) := D•log (-C, 9) to be the complex de�ned by Burgos Gil in [Bur94]
(see Example 2.1.22), and Theorem 2.4.2 gives a spectrum DBC ∈ DA( ;R) such that

HomDA( ;Λ) ("A1 (- ),DBC ( 9) [8]) � � 8, 9D (-C;R)

for every - which is smooth and of �nite type over  . This gives rise to regulator maps

A
DBC
-

: � 8, 9M,A1 (- ;R) → �
8, 9

D (-C;R)

for every - which is smooth and of �nite type over  . A similar construction can be applied to
real Deligne-Beilinson cohomology (by taking complex conjugation into account), and gives rise
to a spectrum DBR ∈ DA( ;R) for every sub-�eld  ⊆ R. In this way we get regulator maps

A
DBR
-

: � 8, 9M,A1 (- ;R) → �
8, 9

D (-R;R)

for every - which is smooth and of �nite type over a �eld  ⊆ R. For more details, we refer the
reader to [BZ20, § A.3].
Remark 2.4.7. Since Example 2.4.6 uses the complexes constructed by Burgos Gil, we get a
regulator map only with real coe�cients. One way to get regulator maps with general coe�cients
is to use the realisation approach. This is explained in [Hub00, Corollary 2.3.5], [LW13] and
[Ivo16].
Example 2.4.8 (ℓ-adic cohomology). Take ( = Spec(^) for some �eld ^ with a �xed algebraic
closure ^, and �x Λ = Qℓ for some rational prime ℓ ∈ N. Then one can de�ne

�
ÉTℓ
0 (- ) := lim−−→

X�-^

lim−−→
C

(
lim←−−
=

lim−−→
<

Ω• (c0 (�̌ (Xtot
<
/-^)),Z/ℓ=Z)

)
⊗Zℓ Qℓ (2.40)

where X � -^ runs over all the non-empty �nite families of étale fundamental systems. In
other words, X = {X (1) , . . . ,X (:) } and

X ( 9) :=
[
· · ·� X ( 9)

=+1 � X
( 9)
= � · · ·� X ( 9)1 � X ( 9)0 = -^

]
is a sequence of surjective étale coverings X ( 9)= � -^ such that every surjective étale covering
. � -^ factors through a surjective étale covering . � X ( 9)= for some = ∈ N. Moreover, for
every étale covering . → -^ one de�nes the Čech simplicial scheme

�̌ (./-^)8 := . ×-^ · · · ×-^ .︸              ︷︷              ︸
8 times

and for every - � -^ one de�nes Xtot to be the simplicial scheme whose<-th component Xtot
<

is the �bre product
Xtot
<

:= X (1)< ×-^ · · · ×-^ X
(:)
<

where - = {X (1) , . . . ,X (:) }. Finally, for every scheme . and every ring ' one denotes by
Ω• (., ') the “'{C}-de Rham complex” de�ned in [Del85b, § 5.1.4]. Here '{C} denotes the
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divided power polynomial algebra on ' (see [SP, Section 07H4]), and the injective limit lim−−→C

appearing in (2.40) is taken with respect to the C-grading on Ω• (., ') (see [Del80, Page 238]).
One now de�nes �ÉTℓ

9
(- ) := �ÉTℓ0 (- ) ⊗ �ÉTℓ0 (G<) [− 9] for every 9 ∈ N, and Theorem 2.4.2

gives a spectrum ÉTℓ ∈ DA(( ;Qℓ ) with the property that

Hom("A1 (- ), ÉTℓ ( 9) [8]) � � 8, 9ℓ (- )

for every - which is smooth and of �nite type over ^.

Example 2.4.9 (Syntomic cohomology). Take ( = Spec(O ) where  is a �nite extension of
Q? for some prime ? ∈ N, and take Λ = Q? . Then Déglise and Mazzari start from Theorem 2.4.2
to construct a spectrum SYN ∈ DA(O ;Q? ) which represents syntomic cohomology (see
Remark 2.1.24). In particular, we get regulator maps

ASYN- : � 8, 9M,A1 (- ;Q? ) → �
8, 9
syn (- ;Q? )

for every - which is smooth and of �nite type over O .

Remark 2.4.10. Syntomic cohomology is generally believed to be the non-Archimedean analogue
of Deligne-Beilinson cohomology, and this analogy can be made precise in multiple ways. For
example, they both arise as “absolute Hodge cohomologies”, i.e. as extensions in the categories
of mixed Hodge structures over the given complete local �eld  . This is the usual category of
mixed Hodge structures if  ∈ {R,C}. On the other hand, [DN18, § 2.6] suggests that Fontaine’s
category of admissible, �ltered (i, #,Gal( / ))-modules can be regarded as a category of
mixed Hodge structures if  is a non-Archimedean local �eld. Moreover, as Deligne-Beilinson
cohomology is expected to be related to (Archimedean) !-functions by the Beilinson conjecture
(see Conjecture 3.3.18), syntomic cohomology is expected to be related to ?-adic !-functions.

For these reasons, we believe that it is not unreasonable to introduce the following notation:
for every number �eld � and every place E ∈ "� we denote by

A E- : � 8, 9M,A1 (- ;Q?E ) → �
8, 9

M,A1 (-�E ;Q?E ) → �
8, 9

AH,E (-�E ;Q?E ) (2.41)

the regulator map associated either to syntomic cohomology (when E is non-Archimedean)
or to Deligne-Beilinson cohomology (when E is Archimedean). More precisely, the �rst map
appearing in (2.41) is induced by base-change to �E , and the absolute Hodge cohomology groups
are de�ned by

�
8, 9

AH,E (-�E ;Q?E ) :=

{
�
8, 9
syn (-�E ;Q?E ), if ?E < +∞

�
8, 9

D (-�E ;R), if ?E = +∞

where ?E ∈ "Q denotes the place lying under E . With this notation in mind, the second map
in (2.41) is either the syntomic regulator introduced in Example 2.4.9 or the Deligne-Beilinson
regulator introduced in Example 2.4.6.

Let us conclude this section with a brief review of the other three approaches to construct
regulator maps:

• Gillet has proved in [Gil81] that one can construct a Chern character associated to each
cohomology theory which can be de�ned as the Zariski hypercohomology of a graded
family of complexes of Zariski sheaves. This result may be regarded as a  -theoretic
analogue of Theorem 2.4.2, and has been generalised in [BKK07].
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• explicit cycle class maps for Deligne-Beilinson cohomology have been constructed by
Bloch (see [Blo86b, § 4]) at the level of cohomology groups, and by Goncharov (see [Gon95a,
§ 5.3] and [Gon05, Theorem-Construction 2.3]) at the level of complexes. Goncharov’s
construction has been re�ned by multiple authors: Kerr’s thesis gave an integral version
of Goncharov’s construction (see [Ker03, § 2.4.1] and [KLM06]), and the thesis of Fan
re�ned this construction to the étale hypercohomology of the sheaves given by Bloch’s
complexes (see [Fan15]). Moreover, Burgos Gil and Feliu [BF12] have replaced the Deligne
complex of currents used by Goncharov with the complexesD•log (-, 9) (see Example 2.1.22)
and Bloch’s simplicial techniques with Totaro’s/Levine’s cubical ones, to give another
construction of the cycle class map at the level of complexes, which was shown to be
compatible with Beilinson’s regulator in [BFT11];

• �nally, Goncharov has constructed a regulator map for the polylogarithmic motivic
complexes B•, 9 (- ;Z) in [Gon02].

2.5 Deligne-Beilinson cohomology of curves over
the reals

The aim of this section is to give a more explicit description of Deligne-Beilinson cohomology
(with real coe�cients) for a smooth algebraic curve - de�ned over R, which is used in Chapter 9.
In particular, we only need the groups � 1,1

D (- ;R) and � 2,2
D (- ;R) for a smooth algebraic curve -

de�ned over R. Hence it is su�cient to recall how to compute the Deligne-Beilinson cohomology
groups �=,=D (- ;R) for a smooth variety - de�ned over R or C. In order to do so, we follow
[Nek94, §7.3], which is a special case of [BKK07, De�nition 5.50] (see also Example 2.1.22).

Let us start by introducing the following notation:
• an analytic space . over R can be seen as a pair (-, �∞) where - is a complex analytic

space and �∞ : - → - is an anti-holomorphic involution (see [Tog67, Teorema 14]).
Moreover, a sheaf S on . can also be seen as a pair (T , f) where T is a sheaf on - and
f : � ∗∞ (T ) → T is an isomorphism whose inverse is � ∗∞ (f);

• for every algebraic variety - over C we denote by - (C) the usual complex analyti�cation,
given by the set of complex points endowed with the complex analytic topology. If . is
an algebraic variety over R we denote by . an the real analytic space (.C (C), �∞) where
�∞ is complex conjugation (on points);

• for every subgroup � ⊆ C and every 9 ∈ Z we write �( 9) := (2c8) 9 � ⊆ C and we denote
by c 9 : C→ R( 9) the projection map given by c 9 (I) := (I + (−1) 9 I)/2. If - is a complex
analytic space we denote by �( 9) the constant sheaf with value �( 9), and if . = (-, �∞)
is a real analytic space we denote by �( 9) the pair (�( 9), ( )), where

( ) : � ∗∞ (�( 9)) = �( 9) → �( 9)

denotes complex conjugation (on coe�cients);

• for every smooth complex analytic space - we denote byA•, 9 (- ) the complex of smooth
di�erential forms with values in R( 9). If . is a smooth real analytic space given by the pair
(-, �∞) we write A•, 9 (. ) := A•, 9 (- )� ∗∞ where ( ) denotes again the action of complex
conjugation on the coe�cients of the di�erential forms. If - is an algebraic variety over
C (respectively, over R) we write A•, 9 (- ) := A•, 9 (- (C)) (resp. A•, 9 (- ) := A•, 9 (- an));
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• a good compacti�cation of a morphism 5 : - → . of schemes (or analytic spaces) is a
factorisation 5 = ? ◦ 9 where 9 : - ↩→ / is an open immersion, ? : / → . is proper and
/ \ 9 (- ) is a divisor with normal crossings. Moreover, if 5 : - → . is smooth we assume
that ? : / → . is also smooth. When . = Spec(^) and ^ is a �eld of characteristic zero, we
always have a good compacti�cation, and any two good compacti�cations are dominated
by a third one (see [Del71, §3.2.II]). When - is a smooth curve over a �eld, then a good
compacti�cation is simply a smooth, proper curve - with an open immersion 9 : - ↩→ -

such that - \ 9 (- ) is �nite;

• if ] : � ↩→ / is a divisor with normal crossings on / , and 9 : / \ � ↩→ / is the
complementary open immersion, we denote by Ω•

/
〈�〉 ⊆ 9∗ (Ω•/\� ) the complex of

sheaves of di�erential forms with logarithmic singularities along � (see [SP, De�nition
0FUA]). This makes sense for schemes and also for analytic spaces. The global sections
Ω•
/
〈�〉(- ) ⊆ Ω•

/\� (/ \ �) can be interpreted as (algebraic, smooth or holomorphic)
di�erential forms on / \ � which have at worst logarithmic singularities “at in�nity”;

• for every smooth variety - de�ned over C and any good compacti�cation - ↩→ - we
de�ne the complex

F • (- ↩→ - ) := Ω•
- (C) 〈(- \ - ) (C)〉(- (C))

which, up to quasi-isomorphism, is independent from the choice of a good compacti�cation
(see [BKK07, Theorem 5.46]). For this reason, we usually abuse notation and write
F • (- ) := F • (- ↩→ - );

• if - is a smooth variety de�ned over R and - ↩→ - is a good compacti�cation we de�ne
the complex

F • (- ↩→ - ) := F •
(
-C ↩→ -C

)� ∗∞
and we abuse again notation, denoting it by F • (- ).

Using this notation, we can introduce the following explicit way of computing motivic
cohomology in terms of di�erential forms, following [Nek94, §7.3] (see also [CLJ19, § 4.1]).

Proposition 2.5.1 – A simple description of Deligne-Beilinson cohomology

Let - be a smooth algebraic variety de�ned over R or C. Then one can compute the
Deligne-Beilinson cohomology groups �=,=D (- ;R) as

�
=,=

D (- ;R) � {(l,[) ∈ A
=−1,=−1 (- ) ⊕ F = (- ↩→ - ) : 3 (l) = c=−1 ([)}

3 (A=−2,=−1 (- ))

where - ↩→ - denotes any good compacti�cation. In particular, we have that

�
=+1,=+1
D (- ;R) � �= (- ;R(=))

for every =-dimensional variety - .
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Remark 2.5.2. We have an explicit description (see [EW99, § 3, 10]) of the cup product

�
=,=

D (- ) ⊗ �
<,<

D (- ) → �
=+<,=+<
D (- )

[(l1, [1)] ⊗ [(l2, [2)] ↦→ [(l1 ∧ c< ([2) + (−1)<c= ([1) ∧ l2, [1 ∧ [2)]

and of Beilinson’s regulator map

A∞- : O× (- ) ⊗Z Q � � 1,1
M (- ) → �

1,1
D (- )

5 ⊗ 1 ↦→ [(log|5 |, 3 log(5 ))]

which gives us the equality A∞
-
({5 , 6}) = [(log|5 |3 arg(6) − log|6|3 arg(5 ), 0)] for every pair

of functions 5 , 6 ∈ O(- )×. Here {5 , 6} ∈ � 2,2
M (- ) denotes the cup product of the two motivic

cohomology classes {5 }, {6} ∈ � 1,1
M (- ) � O(- )

× ⊗Z Q.

Remark 2.5.3. For every =-dimensional smooth algebraic variety - over R or C we have an
integration pairing

〈 , 〉 : F 9 (- ) ⊗ � 9 (- (C);R) → C

l ⊗ W ↦→ 〈l,W〉 :=
∫
W

l
(2.42)

between di�erential forms and singular homology classes. If - is proper then there is another
integration pairing

A=,9 (- ) ⊗ A=,9 (- ) → R

U ⊗ V ↦→ 1
(c8) 9

∫
-C (C)

U ∧ V

between di�erential forms, which is related to the �rst one by Poincaré duality (see [Bos92,
§ A.2.5]).

Let now . be a smooth curve over C, let 2 ∈ C× and let 5 ∈ O(. )×. We can use the explicit
descriptions provided by Remark 2.5.2 to compute the pairing of the regulator of the symbol
{2, 5 } ∈ � 2,2

M (. ) with a homology class c ∈ �1 (. ;Z). To make this precise, let us recall some
elements from the theory of Riemann surfaces, following [Bos92, Appendix A].

Remark 2.5.4. Let - be a complex compact Riemann surface of genus 6. Then the �rst singular
homology group �1 (- ;Z) supports an intersection pairing # : �1 (- ;Z)⊗2 → Z which is bilinear
and anti-symmetric. Moreover, �1 (- ;Z) � Z26 , where 6 ∈ N denotes the genus of - , and there
exists a Z-basis {U8 , V 9 }8, 9=1,...,6 ⊆ �1 (- ;Z) which is symplectic, i.e. for every 8, 9 ∈ {1, . . . , 6} we
have that

U8#U8 = V 9#V 9 = 0 and U8#V 9 = X8, 9

where X8, 9 ∈ {0, 1} denotes Kronecker’s symbol (i.e. X8, 9 = 1 if 8 = 9 , and X8, 9 = 0 otherwise).
Now, let ( ⊆ - be a �nite set of points and let ] : - \ ( ↩→ - denote the canonical inclusion.

Then for every symplectic basis {U8 , V 9 } ⊆ �1 (- ;Z) and every point G ∈ - \( there exist smooth
loops {08 , 1 9 : [0, 1] → - \ (}8, 9=1,...,6 such that:

• 08 (0) = 1 9 (0) = 08 (1) = 1 9 (1) = G for every 8, 9 ∈ {1, . . . , 6};
• 08 (]0, 1[) ∩ 1 9 (]0, 1[) = ∅ for every 8, 9 ∈ {1, . . . , 6};
• 08

��
[0,1[ and 1 9

��
[0,1[ are injective for every 8, 9 ∈ {1, . . . , 6};
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• the vectors {0′8 (0), 1 ′9 (0), 0′8 (1), 1 ′9 (1)}8, 9 ∈1,...,6 ⊆ )G (- ) are pairwise non-collinear;

• the loops ] ◦ 08 and ] ◦ 1 9 are representatives of the homology classes U8 , V 9 ∈ �1 (- ;Z).

We commit a slight abuse of notation, and denote by U8 , V 9 ∈ �1 (- (C) \ ( ;Z) the classes
associated to the loops 08 , 1 9 : [0, 1] → - \ ( .

Now, observe that the loops 08 , 1 9 correspond to a canonical dissection (Δ, i) of - with
( ⊆ i (Δ◦). More precisely, for every choice of {08 , 1 9 } as above there exists a polygon Δ ⊆ R2

with 46 edges, an open * ⊆ R2 such that Δ ⊆ * and a surjective smooth map i : * � - such
that i

��
Δ◦ is a di�eomorphism onto - \� where

� :=
⋃
8

08 ( [0, 1]) ∪
⋃
9

1 9 ( [0, 1])

is the union of all the loops given by 08 and 1 9 . Each loop 08 or 1 9 corresponds to precisely two
edges of Δ under i , which are glued together with the same orientation (see [Bos92, Figure 23]).

To conclude, observe that for every B ∈ ( we can de�ne a loop 2B : [0, 1] → Δ\i−1 (() → - \( ,
where the map [0, 1] → Δ \ i−1 (() is a small circle around i−1 (B) connected to one vertex of Δ
by a straight line. Let WB ∈ �1 (- \ ( ;Z) be the singular cohomology class associated to 2B , which
does not depend on the choice of the small circle 2B if all the circles {2B }B∈( are pairwise disjoint
and oriented coherently. Then we have an exact sequence

0→ Z→ Z( → �1 (- (C) \ ( ;Z) → �1 (- (C);Z) → 0

{<B }B∈( ↦→
∑
B∈(

<BWB
(2.43)

where the map Z→ Z( is the diagonal one. In particular, for every B0 ∈ ( the set

{U8 , V 9 , WB | 8, 9 ∈ {1, . . . , 6}, B ∈ ( \ {B0}}

is a basis of �1 (- \ ( ;Z). This can be easily shown using the Mayer-Vietoris exact sequence
(see [Spa95, § 4.6]).

Let us now use Remark 2.5.4 to compute the pairing that we announced.

Proposition 2.5.5 – Regulator pairings on a punctured curve

Let - be a smooth, proper algebraic curve over C of genus 6, and let ( ⊆ - (C) be a �nite
set of points. Let (Δ, i) be a canonical dissection of - (C) such that ( ⊆ i (Δ◦) and let
U8 , V 9 , WB be the homology classes associated to (Δ, i). Then we have that

〈A∞
-\( ({2, 5 }), U8〉 = 〈A

∞
-\( ({2, 5 }), V 9 〉 = 0 (2.44)

〈A∞
-\( ({2, 5 }), WB〉 = log|mB ({2, 5 }) | = ordB (5 ) log|2 | (2.45)

for every 2 ∈ C, every 5 ∈ C(- ) such that ( 5 ⊆ ( , every 8, 9 ∈ {1, . . . , 6} and every B ∈ ( .

Proof. The computation (2.44) follows from the fact that
∫
- (C) 3 (log(5 )) ∧ U = 0, whereas (2.45)

is an application of Jensen’s formula, as explained in [Rod99, Page 25]. �

2.5 Deligne-Beilinson cohomology of curves over the reals 65



To conclude this section let us introduce some notations concerning the cohomology of elliptic
curves de�ned over the reals.
Notation 2.5.6. Let � be an elliptic curve de�ned over R. We introduce the following notation:

• � (R)0 ⊆ � (R) denotes the connected component of the identity;

• l� ∈ F 1 (�) the unique di�erential form such that
∫
� (R)0 l� = 1. We clearly have that

l� ∈ � 1 (�an;Q(1)), because �1 (�an;Q) is generated by the homology class of � (R)0;

• �1 (� (C);Q)− ⊆ �1 (� (C);Q) denotes the subspace of homology classes which are anti-
invariant by complex conjugation;

• W� ∈ �1 (� (C);Q)− denotes the Poincaré dual of l� .
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3L-functions and their special
values

The function of freedom is to free someone else.

Toni Morrison,
Commencement speech at Barnard College, 1979

As we have seen in the previous chapter, the category of algebraic varieties is a very chaotic
one. It is in particular very di�cult to describe the sub-objects of a product of two algebraic
varieties, and we have seen how one can use the closed sub-varieties of - ×. to form the graded
module of correspondences C• (-,. )Λ, and from this a category of Λ-linear motives, which is
an attempt to linearise the category of varieties.

In order to understand even better algebraic varieties, one could attempt to associate to
their cohomology groups an invariant which is more computable. If we consider the ℓ-adic
cohomology of algebraic varieties, then !-functions provide such an invariant, which allows
one to put together into an analytic object the data concerning the Galois action on the ℓ-adic
cohomology groups. This idea rests on Chebotarëv’s density theorem (see [Neu99, Chapter VII,
Theorem 13.4]). More precisely, let d : G� → � be a continuous group homomorphism from the
absolute Galois group G� := Gal(�/� ) to a topological group � , and assume that d (IE) = 1 for
all non-Archimedean places E ∈ "0

�
\ ( , where ( ⊆ "0

�
is �nite and IE ⊆ G�E ⊆ G� denotes the

inertia group of the absolute Galois group G�E := Gal(�E/�E) of the E-adic completion �E of � .
Then, for every E ∈ "0

�
the group GE/IE � Gal(^E/^E) is generated by the geometric Frobenius

5�E := Φ
−[^E : F? ]
E , where Φ�E : (�E)0 → (�E)0 is the automorphism of the maximal unrami�ed

extension �E ⊆ (�E)0 which lifts the automorphism qE : ^E → ^E of the algebraic closure of the
residue �eld ^E , de�ned by setting qE (G) := G? , where ? ∈ N is the characteristic of ^E . Now,
Chebotarëv’s density theorem implies that our continuous group homomorphism d : G� → � is
determined by the values {d (5�E ) : E ∈ "0

�
\ (}, which are well de�ned because d (IE) = 1 for all

E ∈ "0
�
\ ( . In the case when � = GL(+ ) for some topological module + , one can observe that

the characteristic polynomials of d (5�E ) determine d up to semi-sempli�cation. The !-function
associated to d is a way of putting together all these characteristic polynomials.
!-functions have been the cornerstone of numerous developments in number theory since

the introduction of Riemann’s Z -function. First of all, !-functions conjecturally provide a
factorisation of the Hasse-Weil Z -function associated to integral models X of algebraic varieties
- de�ned over a number �eld � . Henceforth the study of the location of zeros of !-functions
allows one to obtain some information about the asymptotics of the number of pointsX(O� /p=)
as = → +∞, for any prime ideal p ⊆ O� .

Moreover, !-functions are at the centre of two far-reaching sets of conjectures: the Langlands
program, whose aim is to relate algebraic varieties (and motives) to automorphic representations,
and the Deninger program, whose aim is to relate algebraic varieties (and motives) to dynamical
systems. One expects to be able to attach !-functions both to motives and to automorphic
forms/dynamical systems, and the Langlands and Deninger programs may be considered as
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a “lift”, at the level of the objects themselves, of the correspondences that are apparent at the
level of !-functions. We do not touch on these topics in this chapter, and we refer the interested
reader to [Clo90] and [Den98] for further details.

Finally, the values and the derivatives of !-functions of algebraic varieties at the integers play
a pivotal role. On the one hand, they are conjectured to be related to the regulators which were
introduced in Section 2.4, and on the other hand it is known by work of Deninger that one can
recover an !-function from its values at the integers (see Section 3.1). The study of these special
values was initiated by the work of Euler on Z (2) = c2/6, and continued by the work of Dirichlet
on the evaluation of the special value Z ∗

 
(1) for every imaginary quadratic �eld  , which was

extended by Hecke to any number �eld. Birch and Swinnerton-Dyer then investigated the
special values !∗ (�, 1) of !-functions associated to elliptic curves, and their conjectures were
extended by Tate to higher dimensional abelian varieties. The revolutionary work of Beilinson
then introduced a framework for the study of the special values !∗ (",=) of any motive " at
any integer = ∈ Z. The conjectural relations studied by Beilinson hold up to a non-zero rational
number (or, more generally, up to an element of  ×, where  is the number �eld over which the
motive " is de�ned), but the subsequent work of Bloch and Kato, further precised by Fontaine
and Perrin-Riou, gives a conjecture which predicts the special values !∗ (",=) up to sign (or,
more generally, up to an element of O×

 
). The work on these conjectures is still ongoing to this

day: we mention among others the equivariant generalisation of the conjecture of Bloch and
Kato carried out by Burns and Flach, the work of Flach and Morin on arithmetic schemes and
the work of Braunling, which gives a more categorical formulation of the conjecture of Burns
and Flach. We give precise statements and references for these conjectures in Section 3.3.2.

If these conjectures on special values were true, these values could be considered as a form
of height, because they would be related to regulators. In particular, it is interesting to study
Diophantine properties of special values of !-functions, such as the Northcott, Bogomolov and
Lehmer properties de�ned in Section 1.1. We devote Section 3.4, which is based on joint work in
progress with Fabien Pazuki, to show some initial examples of relations between heights and
special values of !-functions, and some Diophantine properties satis�ed (at least conjecturally)
by the latter.

3.1 Dirichlet series and their special values
The aim of this section is to describe a set of functions 5 : C → C which can be recovered

by their values at almost all positive integers. This set contains all the holomorphic functions
that can be expressed as a Dirichlet series 5 (B) = ∑

=�−∞ 0=/=B , and thus in particular all the
!-functions that are usually considered in number theory. This can be seen as a motivation for
the conjectures on special values of !-functions, which are outlined in Section 3.3.2. Indeed,
a combination of the results in this section with the conjectures in question shows that one
can think about the motivic !-function !(", B) as a set of arithmetic invariants associated to " ,
corresponding to the special values {!∗ (",=) : = ∈ Z}.

Let us start by de�ning the ambient space which contains the sequences of special values of
our functions. This is a C-algebra Ã given by

Ã := {(=0, a) | =0 ∈ Z, a = (0=)=≥=0 ∈ CZ≥=0 }/∼Ã (3.1)

where the equivalence relation ∼Ã is de�ned by setting a ∼Ã b if and only if there exists :0 ∈ Z
such that 0: = 1: for every : ≥ :0.
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By analogy, we de�ne an ambient space of functions F̃ which contains all the functions that
can be recovered from their special values. This is the C-vector space

F̃ := {(V, 5 ) | V ∈ R, 5 : ℜV → C is holomorphic}/∼F̃

where ℜV := {I ∈ C | <(I) > V} and ∼F̃ is de�ned by setting (V1, 51) ∼F̃ (V2, 52) if and only
if there exists W ∈ R such that W ≥ max(V1, V2) and 5 (I) = 6(I) for every I ∈ ℜW . Using the
evident compatibility between ∼Ã and ∼F̃ we get a map

( : F̃ → Ã
[(V, 5 )] ↦→

[ (
=0, (5 (=))=≥=0

) ] (3.2)

where =0 := min{= ∈ Z | = > V}. We should think about ( as the map sending a function to its
sequence of “special” values 5 (=) ∈ C at the integers.
Remark 3.1.1. As we point out later in this chapter, for every meromorphic function q : C→ C
and every B0 ∈ C one usually de�nes the special value as

q∗ (B0) := lim
B→B0

q (B)
(B − B0)ordB=B0 (q)

∈ C×

where ordB=B0 (q) ∈ Z is the unique integer = ∈ Z such that limB→B0 (B − B0)−=q (B) ∈ C×.
The relation between this de�nition and the map ( comes from the following observation. Let
(V, 5 ) ∈ F̃ be a pair with the property that there exist V ′ > V and a collection of holomorphic
functions {59 : ℜV′ → C}9 ∈� indexed over some set � ⊆ N such that 5 can be expressed as an
Euler product

5 (I) =
∏
9 ∈�

59 (I)−1 (3.3)

for every I ∈ ℜV′ . Then 5 ∗ (=) = 5 (=) for every = ∈ Z such that = > V ′, because 5 is holomorphic
in ℜV ⊇ ℜV′ and (3.3) shows that if 5 (I) = 0 then<(I) ≤ V ′.

Let us now see how to de�ne a partial right inverse to ( . In order to do so, we de�ne P to be
the C-vector space

P :=

(* ,k, U)
�������
* ⊆ C is open, R≤0 ⊆ *
k : * \ {0} → C is holomorphic
U ∈ R and |k (I) | = $ ( |I |U ) as I → −∞

 /∼P
where ∼P is the equivalence relation de�ned by saying that (*1,k1, U1) ∼P (*2,k2, U2) if and
only if there exists+ ⊆ C open such that 0 ∈ + ⊆ *1 ∩*2 and there exists a Laurent polynomial
% ∈ C[I±1] such thatk1 (I) −k2 (I) = % (I) for every I ∈ + \ {0}. Now, we can restrict our set of
admissible sequences of special values as follows.
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De�nition 3.1.2 – Admissible sequences of special values

Let Ã be the set de�ned in (3.1). We de�neA ′ ⊆ Ã to be the set of those a ∈ Ã such that:
• there exists a neighbourhood of the origin * ′ ⊆ C such that the Laurent series∑+∞

==−∞ 0=I
= converges for every I ∈ * ′ \ {0};

• there exist an open* ⊆ C and a holomorphic functionka : * \ {0} → C such that
R≤0 ∪* ′ ⊆ * and

ka (I) =
+∞∑
==−∞

0=I
=

for every I ∈ * ′ \ {0};
• there exists U ∈ R such that |k (I) | = $ ( |I |U ) as I → −∞.

Moreover, we de�ne F ′ := (−1 (A ′).

Note thatA ′ is well de�ned, because if a ∼Ã b then
∑+∞
==−∞ 0=I

= −∑+∞
==−∞ 1=I

= ∈ C[G±1], hence
one of the two Laurent series converges if and only if the other converges (away from zero) and
one of them can be analytically continued if and only if the other can be analytically continued.
Moroever, the compatibility between ∼Ã and ∼P gives us a well-de�ned map

Ψ : A ′→ P
[a] ↦→ [(* ,ka, U)]

where * ⊆ C and U ∈ R are as in De�nition 3.1.2. The next theorem (see [Den00, Theorem 2.1])
shows that the special value map ( : F ′ → A ′ admits an explicitly de�ned, C-linear right
inverse.

Theorem 3.1.3 – Recovering a function from its special values

Let A ′ and F ′ be the C-vector spaces de�ned in De�nition 3.1.2, and let ( : F ′→ A ′ be
the special value map de�ned in (3.2). Then the map

� : P → F̃

[(* ,k, U)] ↦→

©­­«U,

� (k ) : ℜU → C

B ↦→ 1
2c8

∫
W

I−Bk (I)3I
I

ª®®¬


is well de�ned. Moreover, � (Ψ(A ′)) ⊆ F ′ and ( ◦ � ◦ Ψ = IdA′ . Here W ⊆ * denotes any
loop which starts from −∞, goes around the origin counterclockwise and returns to −∞
(see Figure 3.1). Thus, if we de�ne F := � (Ψ(A ′)) ⊆ F ′ and A := A ′ we have a C-linear
isomorphism ( : F −→∼ A whose C-linear inverse is � ◦ Ψ.
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U

U'

Figure 3.1.: The �gure depicts two opens * ′ ⊆ * ⊆ C as the ones featured in De�nition 3.1.2, and a path
W ⊆ * as the one featured in Theorem 3.1.3

Proof. First of all, for every [(* ,k, U)] ∈ P there exists V ∈ R such that����∫
W

I−Bk (I)3I
I

���� ≤ �����∫W∩ℜV I−Bk (I)3II
����� + ∫

W\ℜV

3I

|I |1+<(B)−U

and the residue theorem [SS03, Chapter 3, Theorem 2.1] shows that for every rational function
5 ∈ C(I) which does not have any pole in R≤0 we have the formula

1
2c8

∫
W ′
I−B 5 (I)3I

I
= −

∑
I0∈C\R≤0

ResI=I0 (5 (I) · I1−B )

for every B ∈ ℜ3 , where 3 = deg(5 ) is the degree of the rational function 5 (I) and W ′ ⊆ C
denotes any path which starts from −∞, goes around the origin counterclockwise, returns to
+∞ and avoids the poles of 5 in its interior. The combination of these two computations shows
that � (k ) : ℜU → C is well de�ned (i.e. the de�nition is compatible with ∼P ) and holomorphic.

Another application of the residue theorem shows that � (Ψ(a)) (=) = 0= for every a ∈ A ′
and every = > U , where U ∈ R is taken as in De�nition 3.1.2. This shows immediately that
� (Ψ(A ′)) ⊆ F ′ and in fact that ( ◦ � ◦ Ψ = IdA′ . �

Example 3.1.4. Let us mention a few examples of the values of the function � ◦ Ψ : A → F :
• if _ ∈ C \ R≤0 then a := [(_−=)=≥0] ∈ A and

� (Ψ(a)) = _−B := exp(−(log|_ | + arg(_) · 8) · B)

where the argument is normalised by arg(_) ∈ (−c, c];
• if a := (1/=!)=≥0 then a ∈ A and

� (Ψ(a)) (B) = � (4I) (B) = 1
2c8

∫
W

4I

IB+1
3I =

1
Γ(B + 1)
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where the last equality follows from [WW96, § 12.22];

• if we take a := (−�=+1 (0)/(= +1)!)=≥−1 where 0 ∈ R, 0 < 0 ≤ 1 and �= (G) ∈ Q[G] denotes
the =-th Bernoully polynomial, then a ∈ A and we have that

� (Ψ(a)) (B) = �
(
40I

1 − 4I

)
(B) = Z (−B, 0)

Γ(B + 1)

where Z (G,~) :=
∑+∞
==0 (G + ~)−= denotes Hurwitz’s zeta function (see [WW96, § 13.13]).

This shows that our interpolation procedure explained in Theorem 3.1.3 recovers the most
commonly known interpolation procedures: the function _−B de�ned as a function which
interpolates the well de�ned values _−= , and the Γ-function as an interpolation of factorials.

Theorem 3.1.3 shows that any holomorphic function 5 : ℜV → C such that [(V, 5 )] ∈ F can
be recovered from any subset of its special values having the form {5 ∗ (=) | = ≥ =0} for some
=0 ∈ Z. However, the de�nition of F is somehow implicit, and it is di�cult in general to decide
whether or not [(V, 5 )] ∈ F . The next theorem, which is also due to Deninger (see [Den00,
Theorem 3.2]), shows that a certain interpolation formula of Hardy and Ramanujan allows one
to provide an explicit class of functions F� such that F� ⊆ F .

Theorem 3.1.5 – The Hardy-Ramanujan class

Let F denote the class of functions de�ned in Theorem 3.1.3, and let

F� :=


(f0, �, �, i, 5 )

����������
f0, �, � ∈ R, � < c

5 : ℜf0 → C is holomorphic
i : R→ R>0, i ∈ !1 (R), lim

C→±∞
i (C) = 0

|5 (B) | ≤ i (=(B)) · 4�<(B)+� |=(B) |, ∀B ∈ ℜf0


/∼F�

where (f0, �, �, i, 5 ) ∼F� (f ′0, �′, �′, i ′, 5 ′) if and only if there exists f1 ∈ R such that
f1 ≥ max(f0, f

′
0) and 5 (I) = 5 ′(I) for every I ∈ ℜf1 . Then the map

] : F� → F̃
[(f0, �, �, i, 5 )] ↦→ [(f0, 5 )]

is well de�ned and injective. Moreover, ] (F� ) ⊆ F .

Proof. It is clear from the de�nitions of ∼F� and ∼F̃ that ] is well de�ned and injective, hence
we only have to check that ] (F� ) ⊆ F . To do this, �x some element [(f0, �, �,�, 5 )] ∈ F� and
let =0 := min{= ∈ Z | = > V}. Then the power series

∑+∞
===0 5 (=) · I

= converges absolutely in the
punctured disc 0 < |G | < 4−�. Fix now A, ! ∈ R such that =0 − 1 < A < =0 < !, and for every
' ∈ R>0 consider the contour W (!, ') = W1 (!, ') + · · · + W4 (!, ') given by the boundary of the
square [A, !] × [−', '] oriented counterclockwise (see Figure 3.2). Then the residue theorem
shows that

1
2c8

∫
W (!,')

c

sin(cB) · 5 (B) (−G)
B3B =

∑
=0≤=<!

5 (=)G= (3.4)
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and for ! ∈ R �xed we have that

lim
'→+∞

∫
W2 (!,')

c

sin(cB) · 5 (B) (−G)
B3B = lim

'→+∞

∫
W4 (!,')

c

sin(cB) · 5 (B) (−G)
B3B = 0 (3.5)

as follows easily from the bounds |5 (B) | ≤ i (=(B)) ·4�<(B)+� |=(B) | and |c/sin(cB) | ≤ �1 ·4−c |=(B) |
which hold for every B ∈ W (!, '). Moreover, the same estimates show that

lim
!→+∞

lim
'→+∞

∫
W3 (!,')

c

sin(cB) · 5 (B) (−G)
B3B = 0 (3.6)

for every G ∈ R such that −4−� < G < 0. Indeed, one has that����∫ +∞

−∞

c

sin(c (! + 8C)) 5 (! + 8C) (−G)
!+8C

���� ≤ �1

∫ +∞

−∞
4−c |C |i (C)4�!+c |C | · 4! log(−G)3C =

= �1 4
! (�+log(−G))

∫ +∞

−∞
i (C)3C

which allows one to show (3.6) because i ∈ !1 (R) and lim!→+∞ 4! (�+log(−G)) = 0 for every G ∈ R
such that −4−� < G < 0. Thus combining (3.4), (3.5) and (3.6) one gets that

+∞∑
===0

5 (=)G= = − 1
2c8

∫ +∞

−∞

c

sin(c (A + 8C)) · 5 (A + 8C) (−G)
A+8C3C (3.7)

for every A ∈ R such that =0 − 1 < A < =0, and every G ∈ R such that −4−� < G < 0.

Now, one can easily see that the integral on the right hand side of (3.7) converges for every
G ∈ C such that |arg(−G) | < c − �. Indeed����∫ +∞

−∞

c

sin(c (A + 8C)) · 5 (A + 8C) (−G)
A+8C3C

���� ≤ �1 ·
∫ +∞

−∞
4−c |C |4�A+� |C | |G |A4arg(−G) |C |3C =

= �14
�A |G |A

∫ +∞

−∞
4 (�−c+arg(−G)) |C | < +∞

(3.8)

Figure 3.2.: The integration contour W (!, ') featured in Theorem 3.1.5
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using the usual estimates |5 (B) | ≤ i (=(B)) · 4�<(B)+� |=(B) | and |c/sin(cB) | ≤ �1 · 4−c |=(B) | .
Observe that (3.8) shows that (5 (=))=≥=0 ∈ A. Indeed the power series

∑+∞
===0 5 (=)G

= converges
in the punctured neighbourhood 0 < |G | < 4−�, and (3.8) shows that it can be analytically
continued to a functionk5 : * \ {0} → C, where * := {G ∈ C | |arg(−G) | < c − �}. Evidently
* is open, R≤0 ⊆ * and (3.8) shows thatk5 (I) = $ ( |I |A ) for I → −∞.

The previous paragraph proves that ] (F� ) ⊆ F ′. We show now that ] (F� ) ⊆ F . To do so, we
prove that � (k5 ) (B) = 5 (B) for every B ∈ ℜf0 and every [(f0, �, �, i, 5 )] ∈ F� . First of all, we
observe that the function � (G) := −k5 (−G)/G=0 is given by the inverse Mellin transform

� (G) = 1
2c8

∫ f+8∞

f−8∞
6(B)G−B3B

with f := =0 − A > 0 and 6(B) := c/sin(c (B −=0)) · 5 (=0 − B). Hence, applying Mellin’s inversion
formula (see [Igu78, Chapter 1, Theorem 3.1]) we get that

5 (B) = − sin(cB)
c

∫ +∞

0
C−B−1k5 (−C)3C

for every B ∈ C such that f0 < Re(B) < =0. On the other hand, we have the holomorphic function
� (k5 ) : ℜf0 → C, which can be expressed as

� (k5 ) (B) =
1

2c8
lim
Y→0+

∫ +∞

Y

(4−8cB − 48cB )G−B−1k5 (−G) 3G +
∮
|I |=Y

I−B−1k (I)3I =

= − sin(cB)
c

∫ +∞

0
G−B−1k5 (−G) = 5 (B)

(3.9)

for every B ∈ C such that f0 < <(B) < =0. The last equality follows from the equality
4−8cB − 48cB = −28 sin(cB) and the inequality���� 1

2c8

∮
|I |=Y

I−B−1k (I)3I
���� ≤ �2 · Y=0−<(B)

which holds because |k5 (I) | = |
∑+∞
===0 5 (=)I

= | = $ ( |I |=0 ) as |I | → 0. Hence we have proved
in (3.9) that 5 (B) = � (k5 ) (B) for every B ∈ C such that f0 < <(B) < =0, and we can conclude
by analytic continuation that 5 (B) = � (k5 ) (B) for every B ∈ ℜf0 , which is what we wanted to
prove. �

We conclude this section by showing that Dirichlet series (and thus !-functions) belong to F� .
To do so we de�neF 0

�
⊆ F� to be theC-linear subspace generated by those [(f0, �, �, i, 5 )] ∈ F�

with � = 0. Fix now :0 ∈ Z and a sequence _ = (_: ) ∈ (R>0)Z≥:0 such that lim=→+∞ _(=) = +∞.
Then if a generalised Dirichlet series

5 (B) =
+∞∑
:=:0

0:

_B
:
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has a �nite abscissa of absolute convergence f0 ∈ R, one has that [(f1, 0, 0, i, 5 )] ∈ F 0
�

for every
f1 > f0, where

i (C) ≡
+∞∑
:=:0

|0: |
_
f1
:

is a constant function. This shows that a Dirichlet series can be reconstructed from its special
values.
Remark 3.1.6. Let us also mention that one can recover some completed Dirichlet series from
their special special values. By this we mean functions of the form

5̂ (B) = l−B ·
(∏
=∈Z

ΓR (B + =)U=
)
·
(∏
<∈Z

ΓC (B +<)V<
)
·
+∞∑
:=1

0:

:B

wherel ∈ R× and (U=), (V<) ∈ NZ are two sequences with �nite support. Here the two Γ-factors
ΓC (B) := (2c)−BΓ(B) and ΓR (B) := (c−B/2/

√
2) · Γ(B/2) are normalised according to Deninger (see

Remark 3.2.8). Now, in order to recover 5̂ (B) from its values at the integers one shows that
1/ 5̂ (B) ∈ F� , by the following steps:

• the reciprocal of a (classical) non-zero Dirichlet series 5 (B) = ∑+∞
:=1 0::

−B with �nite
abscissa of absolute convergence is again a Dirichlet series with �nite abscissa of absolute
convergence. Hence 1/5 (B) ∈ F 0

�
;

• ΓR (B + =)−1, ΓC (B + =)−1 ∈ F� for every = ∈ Z. This is a consequence of Stirling’s formula,
and we refer the reader to [Den00, Proposition 4.1] for further details;

• l−B , (2c)B ,
√

2cB/2 ∈ F 0
�

, as it is easy to see.

3.2 Constructing the motivic !-functions
Fix two number �elds � and �. The aim of this section is to recall the procedure which

associates to a (mixed) motive " ∈ MM(� ;�) an !-function !(", B) ∈ ℜf → (� ⊗Q C),
which is conjectured to have a meromorphic continuation to the whole complex plane (see
Conjecture 3.3.4), and to satisfy a functional equation (see Conjecture 3.3.6). The validity of
these conjectures would imply, using what we have developed in the previous section, that
!(�, B) is determined either by the sequence {!(",=) : = ∈ Z, = ≥ =0} for any =0 ∈ Z such that
=0 > f , or by the sequence {!∗ (",=) : = ∈ Z, = ≤ =0} for any =0 ∈ Z. Here !∗ (",=) ∈ (� ⊗ C)×
denotes the special value

!∗ (",=) := lim
B→=

!(", B)
(B − =)ordB== (! (",B))

which we de�ned in Remark 3.1.1. Then we describe in Section 3.3.2 how these special values
!∗ (",=) are supposed to be connected to regulators and to other arithmetic invariants associated
to " . Finally, Section 3.3.3 is dedicated to the study of some speci�c examples of the validity of
these conjectures concerning special values.

3.2.1 Preliminaries
If we want to de�ne the !-function associated to a mixed motive " ∈ MM(� ;�) de�ned

over a number �eld � with coe�cients in a number �eld �, we run immediately into a problem,
because the abelian categoryMM(� ;�) is not unequivocally de�ned. We content ourselves
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with using one of the tentative de�nitions given by Jannsen, Huber and Nori, which we recalled
in Section 2.2.2. To be more precise, the categoriesMM ( � )

�
andMM (� )

�
de�ned by Jannsen

and Huber are Q-linear, but they can be turned into �-linear categories MM ( � ) (� ;�) and
MM (� ) (� ;�) using the following general procedure.

Proposition 3.2.1 – Additive categories with coe�cients (see [Del79, § 2.1])

Let A be Q-linear category, i.e. an additive category such that for every -,. ∈ A the
homomorphism group HomA (-,. ) is actually a Q-vector space. Suppose also that A is
pseudo-abelian and �x a number �eld �. Consider the following two categories:

• the category Mod� (A) with objects (-, d) where - ∈ A and d : � → End(- ) is a
map of Q-algebras with unity. The morphisms (-, d- ) → (., d. ) are those maps
5 ∈ HomA (-,. ) such that 5 ◦ d- (4) = d. (4) ◦ 5 for all 4 ∈ �;

• the category (A⊗Q�)♮ , which is the pseudo-abelian envelope (see [And04, § 1.1.3.1])
of the categoryA ⊗Q � whose objects are the same asA and whose morphisms are
de�ned by HomA⊗� (-,. ) := HomA (-,. ) ⊗Q �.

For every - ∈ A we denote by (-�, d-� ) ∈ Mod� (A) the object characterised up to
isomorphism by the fact that

HomMod� (A) ((-�, d-� ), (., d. )) = HomQ (�,HomA (-,. ))

for every (., d. ) ∈ Mod� (A). Then the association - ↦→ -� gives rise to an equivalence
of categories (A ⊗Q �)♮ −→∼ Mod� (A). Moreover, if A is abelian then Mod� (A) and
(A ⊗Q �)♮ are abelian.

The categoriesMM(� ;�) that we consider in this section are obtained by applying Proposi-
tion 3.2.1 to Huber’s categoryMM (� )

�
. They are expected to be equivalent to Nori’s category

MM (# )
�,�

which was de�ned in Section 2.2.2.
Remark 3.2.2. The reason why one wants to consider categoriesMM(� ;�) of motives with co-
e�cients is that certain !-functions cannot be obtained with Q-coe�cients, The most important
example of this is given by Artin’s !-functions.

On the other hand, for every �nite extension � ⊆ � ′ we have an adjunction

c∗ : MM(� ;�) �MM(� ′;�) : c∗

where c : Spec(� ′) → Spec(� ) denotes the structural morphism. More precisely, c∗ is the
motivic analogue of the schematic base-change - ↦→ - ×� Spec(� ′) and c∗ is the motivic
analogue of the schematic Weil restriction- ↦→ N� ′/� (- ) (see [BLR90, § 7.6]). All the conjectures
that we mention in this section are compatible with base-change and the Weil restriction, hence
the reader might assume � = Q in what follows.

As we have seen in Section 2.2.2 and Section 2.4, all the abelian categories of mixed motives
are supposed to be endowed with realisation functions, and Jannsen’s and Huber’s categories
are in fact constructed starting from the categories of mixed realisations. In particular, for every
rational prime ℓ ∈ N the categoryMM(� ;�) is endowed with a realisation functor

'ℓ : MM(� ;�) → Repcont (Gal(�/� );� ⊗Q Qℓ )
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into the category of continuous Galois representations d : Gal(�/� ) → GL(+ ), where + is
a �nitely generated module over � ⊗Q Qℓ . Note in particular that, using the isomorphism
� ⊗Q Qℓ �

∏
_ |ℓ �_ , where the product runs over all the places of � lying above ℓ , one can view

d as the collection of the _-adic representations d ⊗ �_ : Gal(�/� ) → GL(+ ⊗ �_).

Notation 3.2.3. From now until the end of the chapter, we denote by G^ := Gal(^/^) the absolute
Galois group of a �eld ^.

Remark 3.2.4 (Weil-Deligne representations and independence of ℓ). The Galois representations
{'ℓ (")}ℓ , or at least their semi-sempli�cations, are supposed to be independent of ℓ . A good
way to state this is to use the discrete representations of the Weil-Deligne group. More precisely,
for every prime ℓ and every place E of � we have a commutative square

MM(� ;�) Repcont (G� ;� ⊗Q Qℓ )

MM(�E ;�) Repcont (G�E ;� ⊗Q Qℓ )

'ℓ

'ℓ

(3.10)

where �E denotes the E-adic completion of � , andMM(�E ;�) denotes the abelian category of
mixed motives over �E with coe�cients in �. This can be constructed by �xing an embedding
] : �E ↩→ C and using Jannsen’s, Huber’s or Nori’s formalism, although this construction should
not depend on the choice of ]. Nevertheless, one expects to be able to attach at the bottom of the
commutative square (3.10) the triangle

MM(�E ;�) Repcont (G�E ;� ⊗Q Qℓ )

Rep(WD�E ;� ⊗Q C)

'ℓ

'WD
WD (3.11)

which is supposed to commute only up to natural isomorphism. HereWD�E is the Weil-Deligne
group of �E (see [Tat79, De�nition 4.1.2]), and Rep(WD�E ;� ⊗Q C) denotes the category of
discrete representationsWD�E → GL(+ ) where + is a �nite dimensional module over � ⊗Q C.
Moreover, the functor 'WD : MM(�E ;�) d Rep(WD�E ;� ⊗Q C) should not depend on any
auxiliary data (e.g. the prime ℓ or an embedding �E ↩→ C). Finally the functor

WD : Repcont (G�E ;� ⊗Q Qℓ ) → Rep(WD�E ;� ⊗Q C)

is the one described in [Fon94, § 2.3.7], composed with a suitable base-change to C. This functor
depends in general on some choices, which is the reason why the triangle (3.11) is supposed to
commute only up to natural isomorphism.

An interesting consequence of the expectations outlined in Remark 3.2.4 would be that, for
every " ∈ MM(� ;�) and every f ∈ G� the characteristic polynomial

det(1 −) · f | 'ℓ (")) ∈ (� ⊗Q Qℓ ) [) ]

should be independent of ℓ . This can either be assumed in the construction of the !-function
!(", B), or the latter can be constructed using purely ?-adic methods, as we recount in the
following sections.
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3.2.2 non-Archimedean local !-factors
Let us now turn to the construction of the motivic !-function, following [Fon92, § 3] and

[Den94]. We start by recalling the construction of the !-function associated to a continuous
_-adic Galois representation d : G → GL(+ ), where  is a �nite extension of Q? for some
rational prime ? ∈ N and+ is a �nite dimensional vector space over the _-adic completion �_ of
a number �eld �, associated to some non-Archimedean place _ ∈ "0

�
.

To give the precise de�nition of !(d, B) we need to introduce a fair amount of notation. First
of all, we let ℓ ∈ N be the rational prime lying below _, and we write

� (d) :=

{
+ I , if ℓ ≠ ?
(�crys (O ) ⊗Q? + )G , if ℓ = ?

(3.12)

where G denotes the absolute Galois group of  and I ⊆ G denotes its inertia sub-group,
given by all the elements which induce the trivial map on the residue �eld ^. Hence if ℓ ≠ ?

we see that � (d) is a �nite dimensional vector space over �_,? := �_ , given by the elements
of + which are invariant under the action of the inertia group I . On the other hand, if ℓ = ?
then � (d) is a free module over �_,? :=  0 ⊗Q? �_ , where  0 ⊆  denotes the maximal sub-�eld
which is unrami�ed over Q? . Indeed, this follows from the fact that the crystalline period ring
�crys (O ) is an algebra over  0 ⊆  , which is again de�ned as the maximal sub-�eld of  
unrami�ed over Q? (and not as the algebraic closure of  0). Equivalently,  0 can be described
as the �eld of fractions of the ring of ?-typical Witt vectors,?∞ (^E) of the algebraic closure of
the residue �eld ^E of  .
Remark 3.2.5. Let us brie�y recall the de�nition of Fontaine’s period ring functor �crys, following
[Car19, § 3.2]. This functor depends on the choice of a prime ? , that we �x.

First of all, we de�ne the ?-adic tilt of a ring ' to be '♭ := lim←−−q '/? , where q : '/? → '/?
denotes the Frobenius map q (G) := G? . Then one de�nes �inf (') :=,?∞ ('♭) to be the ring of
?-typical Witt vectors on '♭. If ' is ?-adically complete then '♭ is a perfect F? -algebra and we
get a map \' : �inf (') → ', uniquely de�ned by the commutative square

�inf (') '♭

' '/?
\'

where ' � '/? is the canonical projection, '♭ � '/? is the projection onto the �rst factor and
�inf (') � '♭ is also the projection onto the �rst factor of an inverse limit, namely

�inf (') :=,?∞ ('♭) := lim←−−,?= ('♭)

where,? ('♭) = '♭ by de�nition.
Now, let us recall that a ring ' is called perfectoid (with respect to the prime ?) if:
• ' is ?-adically complete;

• the Frobenius map q : '/? → '/? is surjective;

• there exists l ∈ ' such that ? · ' = l? · ';

• ker(\') is principal.
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If ' is perfectoid of characteristic zero, one can de�ne the following period rings associated to ':

• �crys ('), which is the ?-adic completion of the �inf (')-algebra generated by the elements
b=/=! ∈ �inf (') [1/?], where b ∈ �inf (') is any generator of ker(\');

• �+crys (') := �crys (') [1/?] which is the ring obtained by inverting ? in �crys (');

• �+dR (') := �+crys (')∧b which is the b-adic completion of �+crys (');
• �dR (') := �+dR (') [1/b] which is the ring obtained by inverting b in �+dR (').

One sees immediately that the previous de�nitions do not depend on the choice of b . Suppose
�nally that {G ∈ ' | G?= = 1} � (Z/?=Z)× for every = ∈ N, i.e. that ' contains all the ?-power
roots of unity. We can choose a compatible system of primitive roots Y = (. . . , Y2, Y1, Y0), where
Y 9 ∈ ' is a primitive ? 9 -th root of unity (hence Y0 = 1) and Y?

9
= Y 9−1. This induces an element

Y ∈ '♭, and we can consider its image [Y] ∈ �inf ('), where [·] : '♭ → �inf (') denotes the
Teichmüller map. Then it is easy to see that the formal power series

log( [Y]) := −
+∞∑
==1

(1 − [Y])=
=

converges in �crys ('). Ultimately, one de�nes the last period ring:

• �crys (') := �+crys (') [1/log( [Y])], which is the ring obtained by inverting the element
log( [Y]) ∈ �crys (') ⊆ �+crys (') in �+crys (').

It is straightforward to check that this de�nition does not depend on the choice of Y.

The main examples of perfectoid rings ' which contain all ?-power roots of unity are given
by ' = OC? and ' = O

 
for any  which is a �nite extension of Q? . Let us concentrate

on this second case. Unravelling the de�nitions we see that �dR (O ) is a  -algebra and that
�crys (O ) ⊆ �dR (O ) is a  0 sub-algebra. Moreover, �dR (O ) is endowed with a decreasing
�ltration and with an action of G , which induces an action on �crys (O ) ⊆ �dR (O ). Finally,
�crys (O ) is endowed with a map of abelian groups i : �crys (O ) → �crys (O ) which commutes
with the action of G and satis�es the equality i (0~) = Φ (0) · i (~) for every G ∈ �crys (O )
and 0 ∈  0. Here Φ :  0 →  0 is the unique �eld automorphism which lifts the map q^ : ^ → ^

de�ned on the algebraic closure of the residue �eld ^ by setting q^ (G) := G? .

Now, let us observe that � (d), which we de�ned in (3.12) as a free, �nitely generated module
over �_,? , is endowed with a �_,? -linear endomorphism 5d : � (d) → � (d). Indeed, if ℓ ≠ ? then
we see that � (d) := + I is endowed with an action of

G /I � Gal( 0/ 0) � Gal(^/^)

and this group is topologically generated by the geometric Frobenius

5 := Φ
−[^ : F? ]
 

(3.13)

where Φ :  0 →  0 is the map de�ned at the end of Remark 3.2.5. Thus in the case ℓ ≠ ?

one simply de�nes 5d to be the map induced by the action of 5 over � (d). On the other hand,
if ℓ = ? the map 5d : (�crys (O ) ⊗Q? + )G → (�crys (O ) ⊗Q? + )G is induced by the map
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i [^ : F? ] ⊗ Id+ , where i : �crys (O ) → �crys (O ) is the map mentioned in Remark 3.2.5. We can
�nally de�ne the !-function

!(d, B)�_ := det(1 − |^ |−B · 5d | � (d)) ∈ �_ [|^ |−B ]

which is the characteristic polynomial of 5d evaluated at |^ |−B . The notation det(− | � (d)) is
used simply to stress the fact that we are taking the determinant of an endomorphism of � (d).
Observe moreover that if ℓ = ? then !(d, B) has coe�cients in (�_)0 ⊆ �_ (see [FP94, Chapitre I,
Remarque 1.3.3, (ii)]).

Finally, let d be an ℓ-adic Galois representation of  with coe�cients in �, by which we mean
a continuous group homomorphism d : : G → GL(+ ) where  is a �nite extension of Q? for
some rational prime ? ∈ N and + is a free, �nitely generated module over �ℓ := � ⊗Q Qℓ . Then
we can still de�ne an !-function

!(d, B)�ℓ = (!(d, B)�_ )_ ∈ �ℓ [|^ |−B ]

using the isomorphism �ℓ := � ⊗Q Qℓ �
∏
_ �_ , where _ runs over all the places lying over the

rational prime ℓ ∈ N. Then we can make the following conjecture, which is related the questions
of independence of ℓ that we explored in Remark 3.2.4.

Conjecture 3.2.6 – Coe�cients of the non-Archimedean !-factors

Let ? ∈ N be a rational prime and  a �nite extension of Q? . Fix another rational prime
ℓ ∈ N and a number �eld �, and let + be a free, �nitely generated module over � ⊗Q Qℓ .
Then for every continuous group homomorphism d : : G → GL(+ ) we have that

!(d, B)�ℓ ∈ � [|^ |−B ]

where ^ denotes the residue �eld of  .

Under the validity of Conjecture 3.2.6, one can associate a complex !-function !C (d, B) to
every ℓ-adic Galois representation d : G → GL(+ ) with coe�cients in a number �eld �. Indeed,
one simply sets

!(d, B)C := (f (!(d, B)�ℓ ))f ∈ (� ⊗Q C) [|^ |−B ] (3.14)

where f runs over the embeddings f : � ↩→ C, using the isomorphism � ⊗Q C � CHom(�,C) .

3.2.3 Archimedean local !-factors
Before going back to the de�nition of the !-function of a motive " ∈ MM(� ;�) let us give

a sort of Archimedean analogue of the previous paragraphs. More precisely, we are going to
de�ne the !-function !(�, B) associated to a mixed Hodge structure � ∈ MHS( ;�) de�ned
over an Archimedean local �eld  and having coe�cients in a number �eld �. First of all, we
recall the de�nition of the category MHS( ;�), which we implicitly used in De�nition 2.2.7.
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De�nition 3.2.7 – Mixed Hodge structures

Let  be an Archimedean local �eld (i.e.  ∈ {R,C}). Then the category MHS( ;Q) is
de�ned as follows:

• MHS(C;Q) is the category of triples � /C = (�,,• (� ), � • (�C)) where � is a �nite
dimensional Q-vector space endowed with an increasing �ltration (called weight
�ltration) ,• (� ) such that there exist 80, 81 ∈ Z with ,8 (� ) = 0 for 8 ≤ 80 and
,8 (� ) = � for 8 ≥ 81, and � • (�C) is a decreasing �ltration (called Hodge �ltration)
on �C := � ⊗Q C such that the three �ltrations {,•, � •, �

•} formed by the weight
�ltration, the Hodge �ltration and its complex conjugate are opposed, which means
that gr?

�
(gr@

�
(gr,= (�C))) = 0 if ? + @ ≠ =;

• MHS(R;Q) is the category of pairs � /R = (� /C, d) where � /C ∈ MHS(C;Q) and
d : Gal(C/R) → Aut(� /C) is an action of complex conjugation on � /C. This
amounts to a direct sum decomposition� = �+ ⊕�− at the level of Q-vector spaces,
which is compatible with the weight �ltration and such that the Hodge �ltration on
�C is induced from a �ltration de�ned over (�C)Gal(C/R) := �+ ⊕ 8 · �−, considered
as a real vector space.

Finally, let � be a number �eld, and  ∈ {R,C} be an Archimedean local �eld. Then
the category MHS( ;�) of rational mixed Hodge structures over  with coe�cients in
� is de�ned as MHS( ;�) := Mod� (MHS( ;Q)) ' (MHS( ;Q) ⊗Q �)♮ , using Proposi-
tion 3.2.1.

Now, let us de�ne the local Archimedean !-function associated to a mixed Hodge structure
� / ∈ MHS( ;�), where  is an Archimedean local �eld and � is a number �eld. First of all, let
us observe that �C is a free module over the ring � ⊗Q C � CHom(�,C) . Moreover, �C supports
the decreasing �ltration W• (�C), given by

W= (�C) := �= (�C) ∩ �
= (�C) = (�= (�C) ∩ � ) ⊗ C

and the sub-spaces W= (�C) ⊆ �C are modules over (� ⊗ C), which are also invariant under the
action d : Gal(C/R) → Aut(� /C) if  = R. This allows one to de�ne, for every 9 ∈ Z and every
f ∈ Hom(�,C) the number

= 9,f (� /C) := dimC (gr9W (�C) ⊗�⊗C,f C)

associated to every mixed Hodge structure � /C ∈ MHS(C;�) de�ned over  = C. In a similar
fashion, one can de�ne for every 9 ∈ Z, every f ∈ Hom(�,C) and every Y ∈ {±1} a number

= 9,f (� /R)
Y := dimR

(
(gr9W (�C) ⊗�⊗C,f C)�∞=Y

)
associated to every mixed Hodge structure � /R ∈ MHS(R;�) de�ned over  = R. Here
�∞ : C→ C denotes complex conjugation, i.e. the unique non-trivial element �∞ ∈ Gal(C/R).

This being said, we can de�ne the local !-function associated to each mixed Hodge structure
� / ∈ MHS( ;�) as the function

!(� / , B)C = (!(� / , B)f )f ∈Hom(�,C) : C→ (� ⊗ C) (3.15)
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with components !(� / , B)f : C→ C which are given by

!(� / , B)f :=

{∏
9 ∈Z ΓR (B − 9 + Y 9 )=

+
9,f (� /R) · ΓR (B − 9 + (1 − Y 9 ))=

−
9,f (� /C) , if  = R∏

9 ∈Z ΓC (B − 9)= 9,f (� /C) , if  = C

where, for every 9 ∈ Z, the number Y 9 ∈ {0, 1} is de�ned by the congruence Y 9 ≡ 9 (2).

Remark 3.2.8 (Gamma factors). We remark that in this thesis we have decided to consider the
Γ-factors ΓC (B) := (2c)−BΓ(B) and ΓR (B) := (c−B/2/

√
2) · Γ(B/2) as normalised by Deninger

(see [Den91]). As explained in [FP94, Remarque 1.2.6], one may replace (ΓR (B), ΓC (B)) by
(0ΓR (B), 02ΓC (B)) for every 0 ∈ C×, without changing the good properties of the pair (ΓR, ΓC).
Choosing 0 =

√
2 one gets the Γ-factors used by Deligne in [Del79, § 5.3].

3.2.4 The global !-function
Let us �nally turn to the de�nition of the !-functions associated to a mixed motive de�ned

over a number �eld � with coe�cients in another number �eld �.

De�nition 3.2.9 – The !-function of a mixed motive

Let � and � be two number �elds, and letMM(� ;�) be the category of mixed motives
de�ned over � with coe�cients in � (see Section 3.2.1). Fix a �nite set of places ( ⊆ "� of
� , and a motive - ∈ MM(� ;�).

For every non-Archimedean place E ∈ "0
�
\ ( lying above a rational prime ? ∈ N

we let '? (- ) ∈ Repcont (G� , � ⊗Q Q? ) denote the ?-adic realisation, and 'E (- ) denote
the restriction of '? (- ) to the absolute Galois group G�E ⊆ G� . Moreover, for every
Archimedean place E ∈ "∞

�
\ ( we let 'E (- ) ∈ MHS(�E ;�) denote the mixed Hodge

structure coming from the rational Betti realisation of - . Observe that 'E (- ) has still
coe�cients in �, despite the fact that we are taking the rational Betti realisation, because
- does.

Now, assuming Conjecture 3.2.6 for the family {'E (- ) : E ∈ "0
�
\ (}, we de�ne the

!-function !( (-, B) as a formal Euler product

!( (-, B) :=
∏

E∈"� \(
!('E (- ), B)C (3.16)

where the local !-factors appearing in the product are the ones de�ned in (3.14) and (3.15).
We introduce the notation !(-, B) := !"∞

�
(-, B) and !̂(-, B) := !∅ (-, B).

Remark 3.2.10. Let us explain the relation between De�nition 3.2.9 and the more common
ℓ-adic de�nition of motivic !-functions. Let �, � be two number �elds, and recall that for
every non-Archimedean place _ ∈ "0

�
one can de�ne the _-adic realisation '_ (- ) of a motive

- ∈ MM(� ;�), which is a _-adic representation of the global Galois group G� . Hence for every
non-Archimedean place E ∈ "0

�
one can consider the restriction '_ (- )E of '_ (- ) to the local

Galois group G�E . Fix a �nite set of places ( ⊆ "� , and assume that !('_ (- )E, B)�_ ∈ � [|^E |−B ]
for every E ∈ "0

�
\ ( , where ^E denotes the residue �eld of �E .
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Then one can consider the formal Euler product∏
E∈"� \(

!('_ (- )E, B)C (3.17)

where, for every non-Archimedean place E ∈ "0
�
\ ( we de�ne !('_ (- )E, B)C as in (3.14), and for

every Archimedean E ∈ "∞
�
\ ( we de�ne '_ (- )E := 'E (- ) as in De�nition 3.2.9. The various

conjectures on the independence of ℓ imply that the Euler product (3.17) should coincide with
!( (-, B) as de�ned in De�nition 3.2.9. In particular, the product (3.17) should not depend on
the non-Archimedean place _ ∈ "0

�
. This is particularly useful because it would be possible

to choose _ as a place of “good reduction” for the motive - , which makes many computations
easier. On the other hand, De�nition 3.2.9 has the advantage of not depending on the choice of
an auxiliary place _ ∈ "0

�
.

Remark 3.2.11. If - ∈ MM(� ;�) and 9 ∈ Z then the !-function of the Tate twist - ( 9) satis�es
!( (- ( 9), B) = !( (-, 9 + B).

Remark 3.2.12. Let � and � be two number �elds. To every mixed motive " ∈ MM(� ;�),
endowed with its weight �ltration,• ("), one can associate the semi-simpli�cation

"ss :=
⊕
F∈Z

gr,F (") ∈ MM(� ;�)ss

which could be identi�ed with a numerical motive under the conjectural equivalence of cate-
gories NM(� ;�) ' MM(� ;�)ss. Then the various semi-simplicity conjectures for the ℓ-adic
realisations of " imply that there is a strong relation between !( (", B) and !( ("ss, B). Hence it
would be nice to have an alternative to De�nition 3.2.9, which would re�ect more the mixed
nature of " . Some attempts towards this program may be found in the recent work of Brown
(in particular [Bro19b] and [Bro19a]). Moreover, the recent “derived” approach to Z -functions of
Campbell, Wolfson and Zakharevich (see [CWZ19]) and Campbell, Lind, Malkiewich, Ponto and
Zakharevich (see [Cam+20]) might shed some light on the “correct” de�nition of !(", B) which
captures the mixed nature of " .

3.3 Conjectures on motivic !-functions
The aim of this section is to state the main conjectures concerning motivic !-functions. As

we have seen already in Section 3.2, the very construction of these !-functions is made possible
only assuming a conjecture. namely Conjecture 3.2.6. This conjecture is known for the Galois
representation 'E (") associated to every mixed motive" ∈ MM(� ;�) of the form" = � 9 (- ),
where - is a smooth and proper variety de�ned over � with good reduction at the place E ∈ "0

�
.

Alternatively, one may neglect Conjecture 3.2.6 and choose instead a family of embeddings
(�_)0 ↩→ C for every place _ ∈ "0

�
. This allows one to de�ne unconditionally an !-function, and

Conjecture 3.2.6 becomes more or less equivalent to the fact that this !-function is independent
from the choice of these embeddings.

3.3 Conjectures on motivic !-functions 83



3.3.1 Convergence, meromorphic continuation and
functional equations

Up until now, we have de�ned motivic !-functions as formal Euler products (3.16). This
implies in particular that the !-function !( (", B) associated to a mixed motive " ∈ MM(� ;�)
and a �nite set of places ( ⊆ "� can be seen as a formal Dirichlet series

!( (", B) =
+∞∑
==1

0= (", ()
=B

(3.18)

having coe�cients 0= (", () ∈ � ⊗Q C. Hence we can associate to !( (", B) an abscissa of
convergence f0 (", () ∈ R ∪ {±∞} (see [HR64, Chapter II, § 6]). This can be computed by the
explicit formula f0 (", () := max]∈Hom(�,C) {f0 (", ()]}, where

f0 (", ()] :=


lim sup
=→+∞

log
��∑+∞

:==+1 0: (", ()]
��

log(= + 1) , if
+∞∑
:=1

0: (", ()] converges

lim sup
=→+∞

log|∑=
:=1 0: (", ()] |
log(=) , otherwise

and the series (3.18) is known to converge for every B ∈ C such that <(B) > f0 (", (), i.e.
for every B ∈ ℜf0 (",() in the notation of Section 3.1. This shows that one may regard the
formal Euler product (3.16) as a holomorphic function !( (", B) : ℜf0 (",() → � ⊗Q C, and makes
appealing the following conjecture.

Conjecture 3.3.1 – Convergence of motivic !-functions

Let � and � be two number �elds, and let ( ⊆ "� be a �nite set of places. Then for every
mixed motive " ∈ MM(� ;�) we have that ℜf0 (",() ≠ ∅, i.e. f0 (", () < +∞.

Remark 3.3.2. The work of Deligne on the Weil conjectures implies that Conjecture 3.3.1 holds
for all motives " ∈ MM(� ;�) of the form " = � 9 (- ) where - is a smooth and proper variety
de�ned over � , under the assumption that the �nite set of places ( ⊆ "� contains the places of
bad reduction of - . Moreover, in this case one has that f0 (� 9 (- ), () = 9/2 + 1.

Remark 3.3.3. Conjecture 3.3.1 is compatible with extensions. More precisely, if

0→ " ′→ " → " ′′→ 0

is an exact sequence inMM(� ;�) and Conjecture 3.3.1 holds for " ′ and " ′′ then Conjec-
ture 3.3.1 holds for " .

In particular, if one takesMM(� ;�) to be Jannsen’s abelian category of mixed motives (see
De�nition 2.2.7) then each " ∈ MM(� ;�) is an iterated extension of motives of the form
� 9 (- ) where - is smooth and proper over � . Hence Remark 3.3.2 shows that Conjecture 3.3.1
holds for every " ∈ MM(� ;�), if ( contains the �nite set of places where all the smooth and
proper varieties appearing in the extensions may have bad reduction. In particular, ( contains
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the set (conjectured to be empty) of places where " is not !-admissible, in the sense of [FP94,
Chapitre III, § 2.1.5]. Moreover, one has that f0 (", () = Fmax (")/2 + 1, where

Fmax (") := max{F ∈ Z | gr,F (") ≠ 0}

denotes the maximum weight appearing in the weight �ltration,• (") of " .
As we have seen, Conjecture 3.3.1 allows one to see the formal Euler product de�ning a

motivic !-function as an actual holomorphic function !( (", B) : ℜf0 (",() → (� ⊗Q C). The
theory of the Riemann Z -function shows that a great amount of interesting information (e.g. the
prime number theorem) can be derived from knowing that an !-function admits a meromorphic
continuation to the whole complex plane. Moreover, the theory of automorphic !-functions (e.g.
!-functions associated to modular forms) shows that often this meromorphic continuation is
actually entire. This is summarised in the next conjecture.

Conjecture 3.3.4 – Meromorphic continuation of motivic !-functions

Let � and � be two number �elds, and let ( ⊆ "� be a �nite set of places. Then for every
motive " ∈ MM(� ;�) we have that

!( (", B) =
!
(1)
(
(", B)

!
(2)
(
(", B)

for all B ∈ ℜf0 (",B)

where ! (1)
(
(", B) : C→ (� ⊗Q C) is an entire function of order of growth equal to one (see

[SS03, Chapter 5, § 2]) and ! (2)
(
(", B) ∈ (� ⊗Q C) [B] is a polynomial whose components

!
(2)
(
(", B)] ∈ C[B] associated to each embedding ] ∈ Hom(�,C) have zeros in Z.

Remark 3.3.5. We observe that there exist !-functions of automorphic origin which have poles
that are not rational integers. Most notably, if g ∈ R and jg : A×

�
→ C× is the character given

by jg (B) := ‖B ‖−8g , the !-function !(j, B) has two poles at B = 8g and B = 1 + 8g (see [RV99,
Theorem 7-19]).

Essentially all the cases when Conjecture 3.3.4 is known are given by motivic !-functions
which can be related to automorphic ones. The two most notable examples of this are the
!-functions !(k, B) associated to algebraic Hecke charactersk : A×

�
→ �× (see Remark 7.1.18)

and the !-functions !(5 , B) associated to modular forms 5 =
∑+∞
==1 0=@

= ∈ (: (Γ) (see [Sch90,
§ 1.2.4] for the construction of the motive " (5 ) ∈ MM(Q;Q({0=}=≥1)) corresponding to 5 ).
In these two cases one can prove Conjecture 3.3.4 by appealing to harmonic analysis on two
di�erent kinds of objects: for Hecke characters one uses the Fourier transform on the locally
compact abelian groupA×

�
(see [RV99, § 7]), and for modular forms one uses the Mellin transform

for the locally compact abelian group R>0 (see [DS05, § 5.10]). Using the inversion theorems
coming from harmonic analysis, one is able to prove that the completed !-functions !̂(k, B)
and !̂(5 , B) satisfy a functional equation. This initial evidence leads to conjecture that a similar
functional equation might hold in general.
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Conjecture 3.3.6 – Functional equation of motivic !-functions

Let � and � be two number �elds. Then, for every motive " ∈ MM(� ;�) there should
exist two complex numbers 0("), 1 (") ∈ � ⊗Q C such that 0(") ≠ 0 and

!̂(", B) = Y (", B) · !̂("∨, 1 − B) (3.19)

where Y (", B) := 0(") ·41 (")B and"∨ ∈ MM(� ;�) is the dual (with respect to the tensor
product) of " .

Remark 3.3.7. The Y-factor Y (", B) admits also a decomposition in an Euler product, as the
!-function !̂(", B) itself. More precisely, we have a decomposition

Y (", B) =
∏
E∈"�

YkE ,`E (WD('E (")), B)

where kE : �E → C× and `E are the local components, for each place E ∈ "� , of a continuous
group homomorphism k : A� /� → C× and of a Haar measure ` on A� /� . Here k can be any
character, satisfying only the condition thatkE (G) = exp(2c8 Tr�E/R (G)) for every Archimedean
place E ∈ "∞

�
and every G ∈ �E . Moreover, ` is the unique Haar measure on A� /� such that

` (A� /� ) = 1. The local components `E are Haar measures for the additive groups (�E, +). We
assume that `E = [�E : R] · `�E for every Archimedean place E ∈ "∞

�
, where `�E is the Lesbesgue

measure for �E ∈ {R,C}. Finally, the local factors YkE ,`E (WD('E (")), B) associated to the
Weil-Deligne representationWD('E (")) (see Remark 3.2.4) are the ones de�ned in [Roh94,
§ 11], whose general de�nition uses Brauer’s induction theorem (see [Roh94, § 2, Corollary 2])
to reduce to explicit formulas for characters (see [Roh94, Equation 11.3]).

Example 3.3.8. If " = " (k ) for some algebraic Hecke character k : A×
�
→ �×, Conjec-

ture 3.3.6 holds with 0(" (k )) = , (k )
√
|Δ� N�/Q (fk ) | and 1 (" (k )) = − log| |Δ� | N�/Q (fk ) |.

Here , (k ) = (, (k )])]∈Hom(�,C) ∈ (� ⊗ C)× is a number whose components have absolute
value |, (k )] | = 1, and fk ⊆ O� denotes the conductor of the Hecke characterk . Both of them
are de�ned in terms of local constributions associated to every place E ∈ "� . Finally, Δ� ∈ Z
denotes the absolute discriminant of the number �eld � .

Example 3.3.9. If " = " (5 ) for some cuspidal modular form 5 ∈ (: (Γ1 (# )) then Conjec-
ture 3.3.6 holds with 0(" (5 )) =, (5 ) ·

√
#
:

and 1 (" (5 )) = − log(# ). Here again

, (5 ) = (, (5 )])]∈Hom(�,C) ∈ (� ⊗Q C)×

is a number whose components have absolute value |, (5 )] | = 1.

Remark 3.3.10. If " = �F (- ) for some smooth and proper variety - de�ned over � , then
"∨ � " (F), where " (F) denotes theF-th Tate twist of " . Hence, applying Remark 3.2.11 we
see that the functional equation (3.19) becomes !̂(�F (- ), B) = Y (�F (- ), B)!̂(�F (- ),F + 1 − B).
This holds more generally for motives " ∈ MM(� ;�) having a single non-zero weight in their
weight �ltration, which is in particular the case for the motive " (5 ) mentioned in the previous
example. In this case the only non-zero weight of " (5 ) is given precisely byF (" (5 )) = : − 1,
where : ∈ Z is the weight of 5 ∈ (: (Γ1 (# )).

86 Chapter 3 L-functions and their special values



Remark 3.3.11. Conjecture 3.3.4 and Conjecture 3.3.6 are both compatible with short exact
sequences. More precisely, for every short exact sequence 0 → " ′ → " → " ′′ → 0 in
MM(� ;�) we have that if Conjecture 3.3.4 and Conjecture 3.3.6 hold for two out of three of
{"," ′, " ′′} then they hold for the third.

3.3.2 Special values of motivic !-functions
The aim of this section is to recall some of the conjectures which aim at describing the special

values !∗ (", B) of the !-function associated to a motive in terms of some arithmetic invariants
associated to it. To de�ne these invariants, one needs the notion of 5 -cohomology, as introduced
by Beilinson and Bloch and Kato. To do so, we follow the exposition of [Sch12, § 6.1], which in
turn is inspired by [FP94, Chapitre II, § 1.3].

De�nition 3.3.12 – 5 -cohomology

Let � and � be two number �elds, and �x a motive " ∈ MM(� ;�). Then one de�nes the
5 -cohomology groups � 8, 9

5
("/� ) as the subgroups � 8, 9

5
("/� ) ⊆ � 8, 9M ("/� ) given by the

Cartesian square

�
8, 9

5
("/� ) �

8, 9

M ("/� )

∏
ℓ

�
8, 9

5
(�,"ℓ )

∏
ℓ

� 8, 9 (�,"ℓ )

y ∏
ℓ A
ℓ
"

where the products run over all the rational primes ℓ ∈ N. Here � 8, 9M ("/� ) denotes
motivic cohomology with rational coe�cients, "ℓ denotes the ℓ-adic realisation of " and
� 8, 9 (�,"ℓ ) denotes the 8-th Galois cohomology group of "ℓ ( 9) with respect to the global
Galois group G� (see for instance [Ser02, Chapter II, § 1.1]). Moreover, the maps A ℓ

"
denote

the ℓ-adic regulators, induced by the realisation functors" ↦→ "ℓ (see also Example 2.4.8),
and the subgroups � 8, 9

5
(�,"ℓ ) ⊆ � 8, 9 (�,"ℓ ) are de�ned by the Cartesian squares

�
8, 9

5
(�,"ℓ ) � 8, 9 (�,"ℓ )

∏
E∈"0

�

�
8, 9

5
(�E, "ℓ )

∏
E∈"0

�

� 8, 9 (�E, "ℓ )

y
(3.20)

where the products run over all the non-Archimedean places E ∈ "0
�
. The vertical maps

appearing in (3.20) are induced by the restriction of the Galois representations "ℓ to the
sub-groups G�E ⊆ G� , and again � 8, 9 (�E, "ℓ ) denotes the 8-th Galois cohomology group
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of "ℓ ( 9) with respect to the local Galois group G�E . Finally, the groups � 8, 9
5
(�E, "ℓ ) are

de�ned by

�
8, 9

5
(�E, "ℓ ) :=


� 0, 9 (�E, "ℓ ), if 8 = 0
{, ∈ � 1 (�E, "ℓ ( 9)) | � (, ) → � (�_) is surjective}, if 8 = 1
0, otherwise

where �ℓ,E denotes the trivial representation of G�E with coe�cients in �ℓ := � ⊗Q Qℓ .
Here, ∈ � 1 (�E, "ℓ ( 9)) = Ext1 (�ℓ , "ℓ,E ( 9)) is the class of an extension

0→ "ℓ ( 9) →, → �ℓ,E → 0

and � (, ) → � (�_) denotes the map obtained by applying the functor � de�ned in (3.12)
to the surjection, � �ℓ,E .

Remark 3.3.13. The 5 -cohomology groups� 8, 9
5
("/� ) can be de�ned in another, more geometrical

way, by extending " to a motive over the ring of integers O� . More precisely, if X → Spec(O� )
is smooth, proper and �at, with generic �bre - := X� , one de�nes

�
8, 9

5
(" (-/� )) := Im(� 8, 9M (X) → �

8, 9

M (- ))

where � 8, 9M denotes motivic cohomology with rational coe�cients. It can be shown that
�
8, 9

5
(" (-/� )) depends indeed only on the generic �bre - = X� , and not on the model X.

Moreover, Scholl has extended the association - ↦→ �
8, 9

5
(" (-/� )) to a functor " ↦→ �

8, 9

5
(")

from the category of Chow motives (see [Sch00]), and Scholbach proved in [Sch12] that this
extension essentially coincides with the de�nition that we have given in De�nition 3.3.12 for
the abelian category of mixed motives. Scholbach’s result is proved assuming deep conjectures
on motives, such as the existence of the motivic C-structure, whose validity is necessary to
give a new de�nition of 5 -cohomology, inspired by perverse sheaves, to which the other two
de�nitions are then compared. Finally, new unconditional de�nitions for the 5 -cohomology of a
Chow motive over a general base have been given by Wildeshaus (see [Wil12, Remark 1.11]) and
Bondarko (see [Bon14, Remark 3.8]) using the motivic weight structure introduced by the latter.

The 5 -cohomology groups� 8, 9
5
("/� ) de�ned in De�nition 3.3.12 are global objects, and in par-

ticular �-vector spaces. The following De�nition 3.3.14 de�nes a class of motives" ∈ MM(� ;�)
for which there is a strong relation between the global 5 -cohomology groups � 8, 9

5
("/� ) and

the local 5 -cohomology groups of their realisations, which were used in De�nition 3.3.12.

De�nition 3.3.14 – 5 -admissibility

Let � and � be two number �elds. Then a motive " ∈ MM(� ;�) is called 5 -admissible if:
• for every prime ℓ ∈ N and every 8, 9 ∈ Z the natural map

�
8, 9

5
("/� ) ⊗� �ℓ → �

8, 9

5
(�,"ℓ )
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is an isomorphism, where �ℓ := � ⊗Q Qℓ ;
• whenever � 0,1

5
("∨/� ) = � 1,1

5
("∨/� ) = 0 the natural map

�
8, 9

5
("/� ) ⊗� �∞ →

⊕
E∈"∞

�

� 8 (�E, " ( 9)E ⊗� �∞)

is an isomorphism, for every 8, 9 ∈ Z. Here �∞ := � ⊗Q R.

Remark 3.3.15. The “natural maps” appearing in De�nition 3.3.14 are induced from the realisation
functors. Henceforth, they can be seen as analogous to the regulators for the ℓ-adic and Deligne-
Beilinson cohomology that were de�ned in Section 2.4.

The following conjecture predicts that the class of 5 -admissible motives coincides with the
whole categoryMM(� ;�).

Conjecture 3.3.16 – Every motive is 5 -admissible

Let � and � be two number �elds. Then every " ∈ MM(� ;�) is 5 -admissible, in the
sense of De�nition 3.3.14.

Remark 3.3.17. If our motive " ∈ MM(� ;�) is the “mixed realisation” of a geometrically
de�ned motive "̃ ∈ DM(� ;�), we can de�ne � 8, 9

5
("/� ) starting from the motivic cohomology

�
8, 9

M ("̃/� ) computed in DM(� ;�). If we do so, Conjecture 3.3.16 turns out to be incredibly
di�cult to prove. Indeed, Conjecture 3.3.16 is strongly related to the Hodge and Tate conjectures,
and to the conservativity of the realisation functors, which all seem out of reach at the moment.
Moreover, for every 5 -admissible motive" ∈ MM(� ;�) we have that dim� (� 8, 95 ("/� )) < +∞.
This is surely expected, but it is not known outside of Artin-Tate motives, where it follows from
the work of Borel.

Let us �nally move towards the conjectures relating special values of !-functions to the arith-
metic invariants of the motive " . Using the 5 -cohomology one can de�ne the one-dimensional
�-vector space

!5 (") := det(� 0,0
M ("/� )) ⊗ (det(� 1,0

5
("/� )))∨

associated to every motive " ∈ MM(� ;�) de�ned over a number �eld � with coe�cients
in another number �eld �. Here det denotes the determinant line det(+ ) :=

∧dim(+ ) + for
every �nite dimensional vector space + . Then one de�nes the fundamental line associated to
" ∈ MM(� ;�) as

Δ5 (") := !5 (") ⊗ !5 ("∨ (1)) ⊗ det("dR/� 0 ("dR)) ⊗ det ©­«
⊕
E∈"∞

�

� 0 (�E, "E)
ª®¬
∨

where "dR denotes the de Rham realisation of " ∈ MM, endowed with the Hodge �ltration
� • ("dR), and for every Archimedean place E ∈ "∞

�
we denote by "E ∈ MHS(�E ;�) the E-adic

Betti realisation of " . Thus "E is endowed with an action of the Galois group Gal(C/�E),
and it makes sense to write � 0 (�E, "E) for the corresponding group cohomology, given by the
invariants � 0 (�E, "E) := ("E)Gal(C/�E ) .
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Now, supposing that " is 5 -admissible in the sense of De�nition 3.3.14, we can construct a
family of norms ‖·‖_ : Δ5 (") ⊗� �_ → �_ associated to the places _ ∈ "� . More precisely, for
every Archimedean place _ ∈ "∞

�
one has a map

U"_ : ©­«
⊕
E∈"∞

�

� 0 (�E, "E) ⊗� �_
ª®¬→ ("dR/� 0 ("dR)) ⊗� �_

obtained by composing the change of coe�cients

©­«
⊕
E∈"∞

�

� 0 (�E, "E) ⊗� �_
ª®¬→ ©­«

⊕
E∈"∞

�

� 0 (�E, "E ⊗�,_ C)
ª®¬

with the period map induced by (2.8)

per" : ©­«
⊕
E∈"∞

�

� 0 (�E, "E ⊗�,_ C)
ª®¬→ "dR ⊗� �_

and then with the projection "dR ⊗� �_ � ("dR/� 0 ("dR)) ⊗ �_ . The admissibility of " implies
that the sequence

0→ �
0,0
5
(")_ → ker(U"_ ) → �

1,1
5
("∨)∨

_
→ �

1,0
5
(")_ → coker(U"_ ) → �

0,1
5
("∨)_ → 0

is exact, where � 8, 9
5
(- )_ := �

8, 9

5
(-/� ) ⊗� �_ for every - ∈ MM(� ;�). This induces an

isomorphism

(!5 (") ⊗� !5 ("∨ (1))) ⊗� �_ −→∼ det(ker(U�_ )) ⊗�_ det(coker(U�_ ))∨ (3.21)

and analogously the tautological exact sequence

0→ ker(U"_ ) →
©­«
⊕
E∈"∞

�

� 0 (�E, "E) ⊗� �_
ª®¬ −−−→
U"_ ("dR/� 0 ("dR)) ⊗� �_ → coker(U�_ ) → 0

induces an isomorphism

©­«det("dR/� 0 ("dR)) ⊗ det ©­«
⊕
E∈"∞

�

� 0 (�E, "E)
ª®¬
∨ª®¬ ⊗� �_ −→∼ det(ker(U�_ ))∨ ⊗�_ det(coker(U�_ ))

(3.22)
for every motive " ∈ MM(� ;�). Putting together the two isomorphisms (3.21) and (3.22) we
get an isomorphism

‖·‖_ : Δ5 (") ⊗� �_ → �_
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which is de�ned for every mixed motive " ∈ MM(� ;�) that is 5 -admissible, and for every
Archimedean place _ ∈ "∞

�
. This allows us already to enounce Beilinson’s conjecture on special

values of !-functions, using the isomorphism

‖·‖∞ : Δ5 (") ⊗� �∞ −→∼ �∞ := � ⊗Q R �
∏
_∈"∞

�

�_

obtained by gluing together the various isomorphisms ‖·‖_ .

Conjecture 3.3.18 – Beilinson’s conjecture on special values of !-functions

Let � and � be two number �elds. Then, for every 5 -admissible motive " ∈ MM(� ;�),
there exists a (necessarily unique) element L∗ (", 0) ∈ Δ5 (") \ {0} such that

!∗ (", 0) · ‖L∗ (", 0) ⊗ 1‖∞ = 1

where !∗ (", 0) ∈ �×∞ denotes the special value of the !-function de�ned in De�nition 3.2.9.

Remark 3.3.19. Let us mention that Conjecture 3.3.18 can be expressed in another, perhaps
cleaner form when " = � 8 (- ) (=) for some smooth and projective variety - de�ned over � ,
and some pair of integers 8, = ∈ N such that = lies in the region of absolute convergence for the
!-function !(� 8 (- ), B), i.e. such that = > 8/2+ 1. More precisely, we still have the 5 -cohomology
group � 8, 9

5
(- ) ⊆ � 8, 9M (- ), which can be de�ned geometrically (see Remark 3.3.13). Then we

have Beilinson’s regulator map

A∞- : � •,•M (- ) ⊗Q R→ �
•,•
D (- ;R)

whose target is Deligne-Beilinson cohomology (see Example 2.4.6). Then Conjecture 3.3.18 for
the motive " = � 8 (- ) (=) ∈ MM(� ;Q) is equivalent to the following two assertions:

• Beilinson’s regulator A∞
-

induces an isomorphism

A∞- : � 8+1,=
5
(- ) ⊗Q R −→∼ �

8+1,=
D (- ;R);

• we have that
det(A∞

-
)

!∗ (� 8 (- ), =)
∈ Q×

where det(A∞
-
) is taken with respect to any two bases of the Q-vector spaces � 8+1,=

5
(- )

and � 8+1,=D (- ;Q).
Finally, the other norm maps ‖·‖_ : Δ5 (") ⊗� �_ → �_ are de�ned by using a suitable integral

structure of Δ5 ("). Since we do not need them in what follows, we content ourselves with
using them to give the statement of the conjecture of Bloch and Kato, as stated by Fontaine
and Perrin-Riou (see [FP94, Chapitre III, § 4.5]). We refer the interested reader to [FP94] for the
detailed de�nition of the norms ‖·‖_ associated to non-Archimedean places _ ∈ "0

�
.
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Conjecture 3.3.20 – Bloch-Kato’s conjecture on special values of !-functions

Let � and � be two number �elds. Then, for every 5 -admissible motive " ∈ MM(� ;�),
Conjecture 3.3.18 holds and we have that

‖L∗ (", 0) ⊗ 1‖_ = 1

for every non-Archimedean place _ ∈ "0
�

.

Remark 3.3.21. We observe that Conjecture 3.3.18 determines !∗ (", 0) only up to an element
of �×. Indeed, even if we know that L∗ (�, 0) is necessarily unique, the only thing that is sure
from Conjecture 3.3.18 is that L∗ (�, 0) ≠ 0. This determines !∗ (", 0) up to an element of �×
since Δ5 (") is a one dimensional vector space over �. On the other hand, as we have said,
Conjecture 3.3.20 says essentially that L∗ (", 0) belongs to a suitable integral O�-sub-module of
Δ5 ("). Hence this determines !∗ (", 0) up to an element of O×

�
.

Remark 3.3.22. The conjectures of Beilinson and Bloch-Kato are usually stated only for the
special values of a motivic !-function !(", B) at B = 0. However, since !∗ (",=) = !∗ (" (=), 0),
the conjectures immediately generalise to the special values at every integer = ∈ Z. In particular,
one can de�ne an element L∗ (",=) ∈ Δ5 (" (=)), which is expected to satisfy

!∗ (",=) · ‖L∗ (",=) ⊗ 1‖∞ = 1

and ‖L∗ (",=) ⊗ 1‖_ = 1 for every _ ∈ "0
�
. If the !-function !(", B) satis�es the functional

equation predicted in Conjecture 3.3.6, it is natural to expect that the Beilinson and Bloch-Kato
conjectures for the special value !∗ (",=) are equivalent to the corresponding ones for the
special value !∗ ("∨, 1 − =). This is known to be true for the Beilinson conjecture (see [FP94,
Chapitre III, Remarque 4.4.4.(iv)], which refers to Deligne’s computation [Del79, Théorème 5.6]),
but it is not known in general for the Bloch-Kato conjecture (see [FP94, § 4.5.4]).
Remark 3.3.23. In the case when � = � = Q the sign ambiguity in the determination of
!∗ (", 0) ∈ R can be deduced by the orders of !(", B) at positive integers. More precisely,
!∗ (", 0) > 0 if and only if

∑
=>0 ordB== (!(", B)) is even. In general, the determination of

!∗ (", 0) on the nose remains a challenging problem.
Remark 3.3.24. Using the fact that every mixed motive " ∈ MM(� ;Q) should be given by
�nitely many successive extensions of motives of the form � 8 (- ) (=) for a regular scheme - , it
should be able to compute the 5 -cohomology groups � 8, 9

5
(") using the polylogarithmic motivic

complexes described in Section 2.3.3. If one does so, Conjecture 3.3.20 becomes intimately related
to Zagier’s polylogarithmic conjecture (see [Zag86], and the survey [ZG00]), which is still open
even for Dedekind Z -functions. We refer the reader to [Gon95b] and [DeJ95] for the general
picture, and to [GR18] for recent progress in the case of the special value Z ∗

�
(4).

Let us mention perhaps the most challenging part of the conjectures of Bloch and Kato: the
one concerning the order of vanishing of !-functions.
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Conjecture 3.3.25 – Orders of vanishing of motivic !-functions

Let � and � be two number �elds, and let " ∈ MM(� ;�) be an 5 -admissible motive.
Then we have that

ordB== (!(", B)) = dim� (� 1,1−=
5
("∨)) − dim� (� 0,=+1

5
("))

for every = ∈ Z.

To conclude, we brie�y survey some recent developments on the conjectures of Beilinson and
Bloch-Kato:

• Burns and Flach have formulated a version of the conjecture of Bloch and Kato for motives
endowed with the action of a semisimple Q-algebra �, which might be non-commutative
(see [BF01, § 4.3]). The main di�culty in doing this lies in the de�nition of a suitable
analogue of the fundamental line for equivariant motives. This analogue is given by a
suitable relative algebraic -group 0 (U,R), whereU ⊆ � is an order. Then one constructs
two elements inside  0 (U,R): one coming from the !-value !∗ (", 0), and another coming
from the 5 -cohomology of the motive " . The conjecture of Burns and Flach states then
that these two elements should be equal. Observe that here " is an equivariant motive,
and the de�nition of the !-function !(", B) takes this into account;

• Braunling has given a new interpretation of the relative  -group  0 (U,R) appearing in
the conjecture of Burns and Flach (see [Bra20]). More precisely, this group is proved to
be isomorphic to the �rst  -group  1 (LCA∗

U
) of a suitable sub-category LCA∗

U
⊆ LCAU

of the category LCAU of locally compacy topological right modules over U. Moreover,
Braunling has also proposed a new version of the conjecture of Burns and Flach (see
[Bra19]) which uses a group of non-commutative idèles associated to the algebra� instead
of the relative  -group  0 (U,R);

• Flach and Morin have provided yet another interpretation of the conjecture of Bloch and
Kato (see [FM18]). More precisely, their conjecture concerns the special values of the
Z -function

Z (X, B) :=
∏
G ∈ |X |

1
1 − |^ (G) |−B

associated to a scheme of �nite type X → Spec(Z) which is proper and regular. Here the
product runs over all the closed points of X and ^ (G) denotes the residue �eld of a closed
point G ∈ |X|, which is a �nite �eld. This Z -function is known to factor, up to �nitely many
bad primes, into the product of the !-functions of the motives �F (- ), where - := XQ is
the generic �bre of X (see [Den94, Equation 1.4]). This allows one to relate the conjecture
of Flach and Morin to the conjecture of Bloch and Kato, which is done in [FM18, § 5.6].

3.3.3 Two special cases of the Bloch-Kato conjecture
The last section was heavily charged with far reaching conjectures, which might seem too

unrealistic to believe. Nevertheless, the somehow abstract conjectures of Beilinson and Bloch-
Kato have been inspired by more concrete questions and results. The �rst one, in the long series
of identities which appear to be related to the Beilinson and Bloch-Kato conjectures, is the
analytic class number formula for the Dedekind Z -function Z� (B) associated to a number �eld � .
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This can be easily seen to coincide with the !-function of the motive � 0 (� ) ∈ MM(� ;Q), and
the following formula (3.23) can be shown to be equivalent to Conjecture 3.3.20 for the motive
� 0 (� ) (see [HK03, § 2.3]).

Theorem 3.3.26 – Analytic class number formula

Let � be a number �eld, and let Z� denote its Dedekind zeta function. Then one has that

ordB=0 (Z� (B)) = rk(O×� ) and Z ∗� (0) = −
|Pic(O� ) |
| (O×

�
)tors |

· '� (3.23)

where '� := det(log|f8 (W 9 ) |)8, 9=1,...,rk(O×
�
) denotes the unit regulator of � and Pic(O� )

denotes the class group of O� , which is a �nite group (see [Neu99, Chapter I, Theorem 6.3]).
We recall as well that the unit group O×

�
is a �nitely generated abelian group of rank

rk(O×
�
) = A1 (� ) + A2 (� ) − 1 (see [Neu99, Chapter I, Theorem 7.4]).

We observe that, in the case studied in Theorem 3.3.26, the 5 -cohomology groups� 8, 9
5
(� 0 (� ))

involved are rather simple, and they amount essentially to considering the group of units O×
�

and the class group Pic(O� ) appearing in (3.23). On the other hand, motivic cohomology groups
associated to higher dimensional objects are much more di�cult to compute. In particular,
they are not known to be �nitely generated, even if this is predicted by Conjecture 3.3.16.
Nevertheless, if " = � 0 (� ) (=) for some = ∈ Z the 5 -cohomology groups � 8, 9

5
(") are known to

be �nitely generated from the work of Borel (see [Sou10] for a survey). Moreover, the conjecture
of Bloch and Kato (and ever the equivariant analogue of Burns and Flach) are completely known
for all the special values Z ∗

�
(=), as soon as � is an abelian extension of Q. We refer the reader

to [Ngu15, § 9.5] for a survey of the proof, a detailed account of which can be obtained by
combining the three papers [BN02], [BG03] and [Fla11].

Let us now turn to higher dimensional motives. Similarly to what happened in the case of the
analytic class number formula (3.23), one can often make explicit the Bloch-Kato conjecture in
the case of a special value in the critical strip, because in this case the 5 -cohomology groups
are more explicitly computable. The most famous instance of this phenomenon is given by the
special value at B = 1 of the !-function !(�, B) associated to an abelian variety � de�ned over a
number �eld � . In this case, the Bloch-Kato conjecture for the motive � 1 (�) (1) ∈ MM(� ;Q)
can be shown to be equivalent to the following conjecture of Tate (see [Tat66]), which generalises
the famous Birch and Swinnerton-Dyer conjecture for elliptic curves. To state this conjecture,
we need to introduce the following notation associated to an abelian variety � de�ned over a
number �eld � :

• A → Spec(O� ) is the Néron model of �, which is a smooth and separated (but usually
not proper) model of � over O� , uniquely characterised by the fact that the map

HomO� (X,A) → Hom� (X� , �)
5 ↦→ 5 ×O� �

is a bijection for every smooth and separated scheme X → Spec(O� );
• [A ∈ lA/O� is a generator of the canonical bundle lA/O� :=

∧6 Ω1
A/O� , where we set

6 := dim(�/� ) = dim(A/O� );
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• Ω� :=
∫
�(R) |[A | ∈ R>0 is called the real period of �;

• for every non-Archimedean place E ∈ "0
�
, we let 2E (�) := |c0 (AO�E ) | ∈ N denote the

number of connected components of the Néron model of ��E ;

• we let X(�/� ) denote the Tate-Shavarevich group

X(�/� ) :=
⋂
E∈"0

�

ker
(
� 1 (�,�) → � 1 (�E, ��E )

)
where � 1 (�,�) denotes Galois cohomology with respect to the global absolute Galois
group G� := Gal(�/� ) and � 1 (�E, ��E ) denotes Galois cohomology with respect to the
local absolute Galois group G�E := Gal(�E/�E) relative to the E-adic completion of � ;

• �∨ is the dual of the abelian variety �, which is another abelian variety whose points are
in bijective correspondence with the equivalence classes of line bundles of degree zero
over � (see [HS00, Theorem A.7.3.4]);

• P ∈ Pic(� ×�∨) denotes the Poincaré divisor class (see again [HS00, Theorem A.7.3.4]);

• �(� ) denotes the set of points of � which are de�ned over � . This is an abelian group
because � is an abelian variety, and it is �nitely generated by the Mordell-Weil theorem
(see [HS00, Theorem C.0.1]);

• ℎ̂P : �(� ) ×�∨ (� ) → R denotes the Néron-Tate height associated to the Poincaré divisor
class (see [HS00, Theorem B.5.6]);

• '�,� ∈ R>0 denotes the regulator of � over � , which is de�ned as the determinant

'�,� :=
����det

(
ℎ̂P (%8 , %̌ 9 )

)
8, 9=1,...,A�,�

���� (3.24)

where {%8 }A�,�8=1 ⊆ �(� ) and {%̌ 9 }A�,�9=1 ⊆ �∨ (� ) denote any sets of points such that the set
{%8 ⊗ 1}A�,�

8=1 ⊆ �(� ) ⊗ZQ is a basis of the Q-vector space�(� ) ⊗ZQ, which has dimension
A�,� := rk(�(� )), and the set {%̌ 9 ⊗ 1}A�,�

9=1 ⊆ �∨ (� ) ⊗Z Q is a dual basis.
We are �nally ready to give the statement of the conjecture of Tate (see [Tat66]) which

generalises to higher dimensional abelian varieties the conjecture of Birch and Swinnerton-Dyer.

Conjecture 3.3.27 – Birch and Swinnerton-Dyer, Tate

Let � be a number �eld and let � be an abelian variety de�ned over � . Then we have that:
• Conjecture 3.3.4 and Conjecture 3.3.6 hold for the !-function !(�, B) := !(� 1 (�), B);
• ordB=1 (!(�, B)) = rk(�(� )), where �(� ) denotes the abelian group of points of �

which are de�ned over � . This group is �nitely generated by the Mordell-Weil
theorem (see [HS00, Theorem C.0.1]);

• the Tate-Shafarevich group X(�/� ) is �nite;
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• we have the equality

!∗ (�, 1) =
(
|X(�/� ) | ·∏E∈"0

�
2E (�)

|�(� )tors | · |�∨ (� )tors |

)
· '�/� · Ω� (3.25)

where !∗ (�, 1) denotes the special value of the !-function !(�, B) at B = 1.

As we already pointed out, the validity of Conjecture 3.3.27 is equivalent to the combined
validity of Conjecture 3.3.4, Conjecture 3.3.6, Conjecture 3.3.20 and Conjecture 3.3.25 for the
motive " = � 1 (�) ∈ MM(� ;Q). Extensive evidence in favour of Conjecture 3.3.27 is known
when � = Q and � is an elliptic curve such that rk(�(Q)) ∈ {0, 1}. In this case, Conjecture 3.3.4
and Conjecture 3.3.6 are known from the modularity theorem (see [Edi02] for a survey), and
Conjecture 3.3.25 is known by the work of Gross-Zagier (see [Coa86] for a survey), Kolyvagin
and Rubin (see [Per90] for a survey). Moreover, the ?-part of the group X(�/Q) is known to
be �nite in a variety of cases, and when this is known the formula (3.25) can be proved by a
numerical computation (see for example [Cre11]). We refer the reader to [BHM20] and [Bom20]
for some recent developments on the numerical veri�cation of Conjecture 3.3.27 in the case
when � = Q and � = Jac(�) is the Jacobian of a curve �/Q having genus 6(�) ≥ 2.

3.3.4 Evidence towards the conjecture of Bloch and Kato
We conclude this section with a brief survey of the known evidence towards the validity of

Conjecture 3.3.20 for the special values of a motivic !-function !∗ (", B) at integers = ∈ Z that
lie in the region of absolute convergence. On the one hand, these special values are easier to
treat (especially numerically) than the special values which lie inside or at the boundaries of the
critical strip. On the other hand, the 5 -cohomology groups appearing in the fundamental line
Δ5 (" (=)) are in general much harder to compute than the ones when = lies in the region of
absolute convergence.

First of all, as we mentioned already in the previous section, the Bloch-Kato conjecture is
known for the special values Z ∗

�
(=) of Dedekind Z -functions associated to number �elds � which

are abelian over Q. Moreover, the Bloch-Kato conjecture is also known for the !-functions
!(j, B) associated to Dirichlet characters, which appear in the factorisations

ZQ(`# ) (B) =
©­«

∏
p |#Z[`# ]

1
1 − |NQ(`# )/Q (p) |−B

ª®¬
(∏
j

!(j, B)
)

where `# ⊆ Q denotes the group of # -th roots of unity, and Z[`# ] denotes the ring of integers
of the # -th cyclotomic �eld Q(`# ). This follows again from the work of Burns and Greither
[BG03], Burns and Flach [BF06] and Flach [Fla11]. We point out that a di�erent proof of the
Bloch-Kato conjecture for Dirichlet !-functions can be obtained using the works [HK99] and
[HK03] of Huber and Kings, which provide a di�erent approach to the construction of the
required motivic cohomology classes (see also [Hub15] and [Kin15] for a survey). In all these
cases, one is also able to prove Conjecture 3.3.25 thanks to the work of Borel.

Moving away from the zero dimensional cases provided by Dirichlet characters and Dedekind
Z -functions, we immediately face the tantalising problem posed by the computation of the rank
of the 5 -cohomology groups � 8, 9

5
("). These groups are conjectured to be �nitely generated, but

this is not known for any motive which is not an Artin-Tate motive, apart from some peculiar
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values of 8 and 9 . For instance, given an abelian variety � de�ned over a number �eld � we have
that � 1,1

5
(� 1 (�)) � �(� ) ⊗Z Q, as explained in [Kin11, Example 1.21].

Nevertheless, it is often possible to prove a weak version of the Bloch-Kato conjecture, even
without knowing the �nite generation of the 5 -cohomology groups. This is the content of the
following conjecture.

Conjecture 3.3.28 – Weak form of the Beilinson and Bloch-Kato conjectures

Let � and � be number �elds. Then for every motive " ∈ MM(� ;�) and every 8, 9 ∈ Z
there exists a �nitely generated sub-space �̃ 8, 9

5
(") ⊆ � 8, 9

5
(") such that

ordB== (!(", B)) = dim� (�̃ 1,1−=
5
("∨)) − dim� (�̃ 0,=+1

5
("))

for every = ∈ Z. Moreover, for every motive " ∈ MM(� ;�) and every integer = ∈ Z
there exists an element L̃∗ (",=) ∈ Δ̃5 (" (=)) such that

!∗ (",=) · ‖L̃∗ (",=) ⊗ 1‖∞ = 1 and ‖L̃∗ (",=) ⊗ 1‖_ = 1, ∀_ ∈ "0
�

where Δ̃5 (" (=)) is the weak motivic fundamental line. This is de�ned as

Δ̃5 (# ) := !̃5 (# ) ⊗ !̃5 (#∨ (1)) ⊗ det(#dR/� 0 (#dR)) ⊗ det ©­«
⊕
E∈"∞

�

� 0 (�E, #E)
ª®¬
∨

for every motive # ∈ MM(� ;�), where !̃5 (# ) := det� (�̃ 0,0
5
(# )) ⊗ det� (�̃ 1,0

5
(# ))∨.

Finally, the norms
‖·‖∞ : Δ̃5 (" (=)) ⊗� �∞ → �∞ := � ⊗Q R
‖·‖_ : Δ̃5 (" (=)) ⊗� �_ → �_

are induced by the inclusion Δ̃5 (" (=)) ⊆ Δ5 (" (=)), and for every non-Archimedean
place _ ∈ "0

�
the non-Archimedean norm ‖·‖_ is supposed to be an isomorphism.

Remark 3.3.29. If the motive " is of the form " = � 8 (- ) (=) ∈ MM(� ;Q) for some smooth
and projective variety - de�ned over a number �eld � , and for some pair of integers 8, = ∈ N
such that = > 8/2 + 1, we can combine Conjecture 3.3.28 with Remark 3.3.19 to get a weak form
of Beilinson’s conjecture. More precisely, there should exist a sub-space �̃ 8+1,=

5
(- ) ⊆ � 8+1,=

5
(- )

such that Beilinson’s regulator induces an isomorphism

Ã∞- : �̃ 8+1,=
5
(- ) ⊗Q R −→∼ �

8+1,=
D (- ;R)

and we should have that
det(Ã∞

-
)

!∗ (� 8 (- ), =)
∈ Q×

where the determinant is taken with respect to any Q-basis of �̃ 8+1,=
5
(- ) and � 8+1,=D (- ;Q).
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This weaker form of Conjecture 3.3.20 is known to hold in a number of cases. First of all,
some results are known when " is a motive which is automorphic in nature, i.e. a motive cut
o� from the motive of a Shimura variety (see [Lem17] and [CLJ19]). Moreover, the work of
Deninger (see [Den89] and [Den90], as well as the surveys [Den88] and [Den97b]) and Kings
(see [Kin01]) proves Conjecture 3.3.28 for all the special values of the form !∗ (�, =), where = ∈ Z
is any integer and �/� is an elliptic curve with complex multiplication by the ring of integers O 
of an imaginary quadratic �eld  . We refer the reader to Chapter 7 for a survey of the theory of
complex multiplication, and in particular to Section 7.4 for a more detailed survey of the proof
of Conjecture 3.3.28 for the special value !∗ (�, 2).

3.4 Diophantine properties of special values of
!-functions

The aim of this section, which is based on joint work in progress with Fabien Pazuki, is to
show that special values of !-functions can be interpreted as heights. To be more precise, let us
�x an integer = ∈ Z and two number �elds � and �. Then, assuming Conjecture 3.3.4, we can
consider the function

MM(� ;�) → R
" ↦→ |!∗ (",=) |

(3.26)

sending a motive to the special value of its !-function at B = =. We actually take the absolute
value of !∗ (",=) ∈ �∞ := � ⊗Q R �

∏
_∈"∞

�
�_ , de�ned as the product of all the absolute values

of the components. As we outline in Section 3.4.1, there are numerous examples of relations
between special values of !-functions and heights of various sorts. Thus it is natural to ask
whether the map (3.26), perhaps restricted to a subset ( ⊆ MM(� ;�), satis�es any of the
Diophantine properties outlined in Section 1.1. It is interesting, in particular, to see for which
subsets ( ⊆ MM(� ;�) the restriction of the map (3.26) to ( satis�es the Northcott property.
We prove in Section 3.4.2 that, �xing = = 0, the �rst example of such a subset ( ⊆ MM(� ;�)
is given by taking � = � = Q and ( := {� 0 (Spec( )) | [ : Q] < +∞} to be the set of motives
whose !-functions coincide with the Dedekind Z -functions Z (B) associated to a number �eld  .
Moreover, we discuss in Section 3.4.3 to what extent, assuming numerous conjectures and taking
= = 1, one can take ( to be the set of pure motives � 1 (�) associated to an abelian variety �.
Finally, Section 3.4.4 shows that one can take ( to be the set of all pure motives of a given weight
F ∈ Z, under the condition that = < −F/2 and under the assumption that our !-functions satisfy
the expected functional equation (see Conjecture 3.3.6).

Let us point out that properties similar to the ones we discuss here have already been studied
in the case of automorphic !-functions by Sarnak, Shin and Templier in [SST16]. Moreover,
we devote Section 3.4.5 to explore a possible connection between special values of motivic
!-functions and motivic heights, in the sense of Kato (see [Kat18]).

3.4.1 Some relations between heights and special values
This section contains a few examples of relations between special values of !-functions and

heights of various sorts, which motivate the search for Diophantine properties of special values
of !-functions.
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Example 3.4.1 (logarithmic Weil height). The results of [AV16], combined with the class
number formula (3.23), show that for every number �eld � with unit rank A� := dimQ (O×� ⊗Z Q)
there exists a basis {W1, . . . , WA� } ⊆ O×� ⊗Z Q such that {W1, . . . , WA� } ⊆ O×� and

ℎ� · 3A�� · (2A� )!
2 ·F� · (A� !)4

A�∏
8=1

ℎ(W8 ) ≤ |Z ∗� (0) | ≤
ℎ� · 3A��
F�

·
A�∏
8=1

ℎ(W8 ) (3.27)

which shows that the special value Z ∗
�
(0) of the Dedekind Z -function associated to a number �eld

� is commensurable to a product of Weil heights (see Section 1.2.1). The constants appearing in
(3.27) are given by 3� := [� : Q], ℎ� := |Pic(O� ) | andF� := | (O×

�
)tors |.

Example 3.4.2 (Mahler measures). As we illustrate in the next chapter, the study of relations
between Mahler measures and special values of !-functions is very active and rich. Most of the
conjectural relations of this kind involve a family of Laurent polynomials %: ∈ Z[:] [G±1

1 , . . . , G±1
= ],

for which it is conjectured that

!∗ (�=−1 (+%: ), 0)
<(%: )

∈ Q× (3.28)

where +%: denotes the zero locus of %: inside G=< (see Question 4.2.9). Moreover, in most cases
it seems that the ratio appearing in (3.28) is actually an integer. If this was the case, we see
immediately that the Northcott property for the family of special values |!∗ (�=−1 (+%: ), 0) | would
follow from the Northcott property of the Mahler measure, as the function X (%: ) is constant in
: (see Section 1.2.2).

Example 3.4.3 (Faltings’s height). The stable Faltings’s height ℎ : A(Q) → R (see Section 1.2.4)
is expected to be related to !-functions by Colmez’s conjecture [Col93, Conjecture 0.4] which
predicts the relation

− ℎ(�) ?
=

∑
j

< (�,Φ) (j)
(
!′(j, 0)
!(j, 0) + log(5j )

)
(3.29)

where (�,Φ) is the CM-type of � and the sum runs over all the Artin characters

j : �Q → C

whose value on complex conjugation 2 ∈ �Q := Gal(Q/Q) equals j (2) = −1. This implies in
particular that !(j, 0) ∈ C×. Moreover, 5j ∈ N denotes the Artin conductor of j and the family
of rational numbers {< (�,Φ) (j)}j ⊆ Q is de�ned by the equality

1
[�Q : Stab(Φ)]

∑
f ∈�Q/Stab(Φ)

|Φ ∩ f ◦ Φ| =
∑
j

< (�,Φ) (j) · j (f)

which holds for every f ∈ Gal(Q/Q). In particular,< (�,Φ) (j) = 0 for all but �nitely many Artin
characters.

We recall that Colmez’s conjecture has recently been proved to hold on average. We refer the
interested reader to the original work of Yuan and Zhang for an analytic proof (see [YZ18]), and
of Andreatta, Goren, Howard and Madapusi Pera for a more geometric proof (see [And+18]), as
well as to Howard’s survey [How18].
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Example 3.4.4 (Conductors). We have seen in Section 1.2.5 and Section 1.2.6 that conductors of
complex and ℓ-adic Galois representations can be seen as examples of heights. These conductors
are related to special values of !-functions by means of the functional equation associated to a
given Galois representation, as we recall in Section 3.4.4.

Example 3.4.5 (Volumes of hyperbolic manifolds). The relations of hyperbolic volumes (see
Section 1.2.7) with special values of !-functions comes from the fact that for every number �eld
� we have that

Z ∗� (−1) ∼Q× vol

(
h
A2 (� )
3
Γ

)
where Γ is a �nite-index and torsion-free subgroup of the group O (1) ⊆ O of units having norm
one in some order O ⊆ � in a totally de�nite quaternion algebra � ≠ Mat2×2 ( ) de�ned over  
(see [Vig80, Example IV.1.5]).

3.4.2 Special values at the boundary of the critical strip:
Dedekind Z -functions

The aim of this section is to provide the �rst example of an in�nite family of special values of
!-functions which satis�es the Northcott property. This is given by the special values {Z ∗

�
(0)}

at B = 0 of the Dedekind Z -functions associated to number �elds � .

Theorem 3.4.6 – Northcott property for Dedekind Z -values at B = 0

Let ( be the set of isomorphism classes of number �elds. Then for every � ∈ R>0 the set

{[� ] ∈ ( : |Z ∗� (0) | ≤ �}

is �nite.

Proof. Let � > 0 be a real number. Our aim is to prove that Z ∗
�
(0) ≤ � implies that Δ� is

bounded above, which allows us to conclude by Hermite’s discriminant theorem (see [Neu99,
Theorem III.2.16]).

By the class number formula (3.23), if Z ∗
�
(0) ≤ �, then we have

ℎ�'�

F�
≤ �. (3.30)

The proof proceeds with two steps: �rst we prove that inequality (3.30) implies an upper
bound on '� . This leads to �niteness, except possibly for CM �elds. The second step is proving
�niteness of CM �elds with Z ∗

�
(0) bounded from above.

Step 1: Observe �rst of all that for every number �eld � of degree 3� := [� : Q] we have that
i (F� ) ≤ 3� , where i is Euler’s totient function. Indeed Q(`F� ) ⊆ � , where `= ⊆ Q denotes
the group of =-th roots of unity. Then one can use the easy estimate 2 · i (=) ≥

√
= to get that

F� ≤ 432
�
. Now we can use the fact that for every number �eld � we have that '� ≥ 21 · 23�2

where 21 = (11.5)−39 and 22 = 1.15, as it was proved by Zimmert in [Zim81, Satz 3] (see also
[Sko93] for a simpler proof and [FS99] for a more general statement). This surely implies the
weaker inequalityF� ≤ 23

√
'� for some absolute constant 23 ∈ R>0. Going back to (3.30) and
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using ℎ� ≥ 1, we see that Z ∗
�
(0) ≤ � implies that '� ≤ (23 · �)2. By [Paz14, Theorem 1.1] we

obtain that the set
{[� ] ∈ ( | Z ∗� (0) ≤ �} \ {CM �elds}

is �nite. We recall brie�y the argument here for completeness. Observe that Zimmert’s inequality
'� ≥ 21 ·23�2 implies that number �elds with regulator bounded from above have degree bounded
from above. Then we can use [Fri89, Theorem C], providing us with the inequality

'� ≥
24

3
23�
�

·
(
log

(
Δ�

3
3�
�

))A1 (� )+A2 (� )−1−A0 (� )

(3.31)

where 24 ∈ R>0 is an absolute constant and

A0 (� ) := max {A1 (!) + A2 (!) − 1 | ! ( � }

is the biggest unit rank of proper sub-�elds of � . This gives a useful upper bound on the
discriminant if and only if � is not a CM �eld. Indeed, we always have A0 (� ) ≤ A1 (� ) + A2 (� ) − 1
and the equality A0 (� ) = A1 (� ) + A2 (� ) − 1 is satis�ed if and only if � is a CM �eld (see [Paz14,
Proposition 3.7]). The �nal step is Hermite’s discriminant theorem, which shows that the
discriminant has the Northcott property.

Step 2: Let now (CM be the set of isomorphism classes of CM �elds. We want to prove that

{[� ] ∈ (CM | Z ∗� (0) ≤ �} (3.32)

is �nite. To do so observe that for a CM �eld � of degree 3� := [� : Q] and with maximal real
sub�eld denoted �+, we have that '� ≥ 2

3�
2 −1 '� + (see [Paz14, Proposition 3.7]), and thus any

upper bound on Z ∗
�
(0) entails an upper bound on '� + . This implies by [Paz14, Theorem 1.1] that

if � is an element of the set given in (3.32), then �+ belongs to a �nite set of isomorphism classes
of totally real �elds. Hence to conclude we can assume that �+ is �xed. Then any upper bound
on Z ∗

�
(0) implies an upper bound on ℎ� , which in turn implies the �niteness of the set given in

(3.32) by results of Siegel and Stark. To be more precise, when �+ = Q (hence � is an imaginary
quadratic �eld), Siegel proved the following: for any �xed Y > 0 there exists a constant 25 (Y) > 0,
such that for any imaginary quadratic �eld �

ℎ� ≥ 25 (Y) · Δ
1
2−Y
�

.

This implies that the set of isomorphism classes of imaginary quadratic �elds of class number
bounded from above is �nite by Hermite’s theorem (see [Gol74] for a short and elegant proof of
Siegel’s result). If �+ ≠ Q we can use a result of Stark, who proved the following: for any �xed
Y > 0 there exists a constant 26 (Y) > 0, such that for any CM �eld � of degree 3� ≥ 4,

ℎ� ≥
26 (Y)3�
3� 6(�+)

·
(
|Δ� |
|Δ� + |2

) 1
2−

1
3�

· |Δ� |
1
2−

2
3�
−Y

(see [Sta74, Theorem 2]) where for every number �eld ^ we set 6(^) = 1 if there is a tower
Q = ^0 ⊆ · · · ⊆ ^= = ^ such that ^8 ⊆ ^8+1 is Galois, and 6(^) = [^ : Q]! otherwise. If we �x
�+ then this inequality gives us immediately an upper bound for the discriminant of � over
Q depending on ℎ� (recall 3� ≥ 4), and thus implies the �niteness of isomorphism classes of
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CM �elds with �+ ≠ Q �xed and ℎ� bounded, again by Hermite’s theorem. Putting everything
together, we have proved that the set given in (3.32) is �nite and thus we can conclude. �

3.4.3 Special values inside the critical strip: abelian
varieties

In this section, let us look at the Northcott properties of the special values at the integer B = 1
of the !-functions !(�, B) := !(� 1 (�), B) associated to abelian varieties � de�ned over a number
�eld � . We note that these are much more di�cult to prove than the Northcott properties for
the special values Z ∗

�
(0) which we considered in the previous section. First of all, if we want

to follow the strategy that we used in the previous section, we should relate the special value
!∗ (�, 1) to some regulator determinant. This relation was given by the class number formula
Theorem 3.3.26 in the case of the special value Z ∗

�
(0) studied in the previous section, and was

thus unconditional. On the other hand, !∗ (�, 1) is related to a regulator determinant only by
the conjectural equality (3.25), re-written here as

!∗ (�, 1) ?
=

( ∏
E∈"0

�
2E (�)

|�(� )tors | · |�∨ (� )tors |

)
·
|X(�/� ) | · '�/�

Ω−1
�

(3.33)

which is the subject of the celebrated conjecture by Birch and Swinnerton-Dyer (see Conjec-
ture 3.3.27).

Now, the �rst step in the proof of Theorem 3.4.6 was observing that the quantity | (O×
�
)tors |

appearing in the class number formula Theorem 3.3.26 is clearly bounded from above by a
polynomial in the degree [� : Q] of the number �eld � . An analogous statement for abelian
varieties is the content of the following, widely believed conjecture.

Conjecture 3.4.7 – Torsion conjecture

For every number �eld � and every 6 ∈ N≥1 there exists a natural number 2 (6, � ) ∈ N
such that |�(� )tors | ≤ 2 (6, � ) for all 6-dimensional abelian varieties � de�ned over � .

We recall that, in the case of elliptic curves, Conjecture 3.4.7 is proved to be true, thanks to
work of Merel (see [Mer96]). Moreover, the prime number theorem shows easily that

|�(� )tors | · |�∨ (� )tors | � (log|N�/Q (f�) |)4 dim(�)

as explained in [Hin07, Lemma 3.6].
Now, observing that the Tamagawa numbers 2E (�) are integers, we see that any upper bound

for the quantity |!∗ (�, 1) | entails an upper bound for the quantity

|X(�/� ) | · '�/�
Ω−1
�

(3.34)

if one assumes the validity of the formula (3.33), which is a version of the Birch and Swinnerton-
Dyer conjecture. Since our goal is to study Northcott properties for the quantity |!∗ |, it would
be useful to compare the quantity (3.34) to other quantities for which a Northcott property is
already known to hold. The best candidates for this are the stable Faltings height ℎst (�) and the
norm of the conductor ideal f� of the abelian variety �.
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This is exactly the same strategy which was achieved in the proof of Theorem 3.4.6, where
the quantity ℎ� · '� was compared to the quantity |Δ� |, which satis�es the Northcott property
thanks to Hermite’s theorem. However, there is one fundamental di�erence between the proof
of Theorem 3.4.6 and the current discussion: both the numerator and the denominator of the
ratio (3.34) are comparable to something satisfying a Northcott property, at least conjecturally.
First of all, one has that

� (�) � Ω−1
� � � (�) (log(� (�)))dim(�)/2

as shown in [Hin07, Lemma 3.7]. Secondly, [Hin07, Conjecture 5.5] predicts that

� (�)1−Y � |X(�/� ) | · '�/� � � (�)1+Y (3.35)

which would be analogous to the Brauer-Siegel theorem that holds for the regulator of number
�elds, and was used in the proof of Theorem 3.4.6. Hindry proves in [Hin07, Proposition 5.6]
that (3.35) holds if one assumes a suitable generalisation of Szpiro’s conjecture (see [Hin07,
Conjecture 3.4]) as well as the validity of the following inequalities

|N�/Q (f�) |−Y
?� |!∗ (�, 1) | ?� |N�/Q (f�) |Y (3.36)

for every Y ∈ R>0.
The previous discussion shows that it is necessary to gain further evidence in order to be

able to prove a Northcott property for the special value !∗ (�, 1) associated to abelian varieties.
In particular, the two quantities |X(�/� ) | · '�/� and Ω−1

�
appearing at the numerator and

denominator of the ratio (3.34), appear to have the same order of magnitude, at least conjecturally.
It is henceforth necessary to study better these quantities, to understand in which sorts of in�nite
families of abelian varieties one can expect that the quantity !∗ (�, 1) satis�es a Northcott
property. Two �nal remarks are in order:

• the validity of the inequalities (3.36) has been questioned by Watkins in [Wat08, § 4.5];

• in the case of elliptic curves, one knows from [AHP18] that the following inequality holds

'�/�
|� (� )tors | · |�∨ (� )tors |

� ℎ
A�/� −4

3 · (log(3 · ℎ))
2·A�/� +2

3

where ℎ := max{1, ℎ( 9 (�))} is a quantity comparable with the stable Faltings height (see
for instance [Paz18, Lemma 3.2]), and A�/� := rk(� (� )). This inequality shows that a part
of the right hand side of (3.33) can indeed be related to some height, even if this relation is
too weak to conclude that (under the Birch and Swinnerton-Dyer conjecture) the special
value !∗ (�, 1) satis�es a Northcott property.

3.4.4 Special values outside the critical strip: Weil’s
conjectures and the functional equation

The aim of this section is to show how to get a Northcott property for special values of
!-functions at the left of the critical strip using the conjectural functional equation.
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Proposition 3.4.8 – Northcott properties at the left of the critical strip

Let � ≠ Q and � be two number �elds, and �x F ∈ Z. Then for every �1, �2 ∈ R≥0 and
every = ∈ Z such that = < F/2, the set

( := {" ∈ MM(� ;�) | " � grWF ("), |!∗ (",=) | < �1, h∞ (") < �2}/∼iso

is �nite, under the assumption of Conjecture 3.3.4 and Conjecture 3.3.6. Here h∞ (") ∈ N
is de�ned as

h∞ (") := max
9 ∈Z

f ∈Hom(�,C)

(
{= 9,f ('E (")) | E ∈ "C� } ∪ {=

Y
9,f ('E (")) | Y ∈ {±}, E ∈ "R� }

)
where"C

�
:= {E ∈ "∞

�
: �E � C} and"R

�
is de�ned analogously. We recall that the various

numbers = 9,f (� /C) and =±9,f (� /R) associated to a Hodge structure� ∈ MHS( ;�) de�ned
over  ∈ {R,C} were introduced in Section 3.2.3.

Proof. Applying the functional equation (3.19) we see that the inequality |!∗ (",=) | < � is
equivalent to

|Y (",=) | ≤ � · |!∗ ("∨, 1 − =) |−1 · |!∗∞ (",=) |
|!∗∞ ("∨, 1 − =) |

(3.37)

where !∞ :=
∏
E∈"∞

�
!('E ("), B)C denotes the Archimedean part of the completed !-function

!̂(", B). Since h∞ (") is bounded from above, we see from the de�nition of the Archimedean
component of the !-function that there exists �3 ∈ R≥0 (depending on �2) such that

" ∈ ( ⇒ |!∗∞ (",=) |
|!∗∞ ("∨, 1 − =) |

≤ �3

which can be combined with (3.37) to get that

|Y (",=) | ≤ (� · �3) · |!∗ ("∨, 1 − =) |−1 (3.38)

for every " ∈ ( .

Now, the assumption that " � grWF ("), i.e. that " is pure of weight F , implies that for
every non-Archimedean place E ∈ "0

�
the absolute values of the roots of the polynomial 5'E (")

attached to the local Galois representation 'E (") (see Section 3.2.2) are bounded by a function
depending only onF , which is equal to |N /Q (pE) |F/2 for almost all places E ∈ "0

�
. Moreover,

Remark 3.3.10 shows that

|!∗ ("∨, 1 − =) | = |!∗ (",F + 1 − =) |

and if we combine this with the previous observation we see that

" ∈ ( ⇒ |!∗ ("∨, 1 − =) | ≥ �4 (3.39)

for some �4 ∈ R, depending only onF and =. Hence, putting together (3.38) and (3.39) we see
that |Y (",=) | ≤ �5 for every " ∈ ( , where �5 := � · �3/�4.
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To conclude, it is su�cient to recall that for every " ∈ ( we have

|Y (",=) | = |Δ� |
F+1

2 dim('ℓ (")) · |N�/Q (f'ℓ (") ) |
F+1

2 −= ≤ �5

where ℓ ∈ N is any prime such that " has good reduction at every place of � lying above ℓ (see
[Roh94, § 12, Corollary]). Thus we see that, since � ≠ Q, both the dimension and the norm of
the conductor of the Galois representations 'ℓ (") is bounded from above. Hence we can apply
the Northcott property for the conductor that we have seen in Section 1.2.6 to see that there
are only �nitely many 'ℓ ("), up to isomorphism. SinceMM(� ;�) is one of the categories of
mixed motives de�ned in Section 2.2.2, we see that every motive is determined by its realisations,
and therefore we have also �nitely many elements in ( . �

Remark 3.4.9. The proof of Proposition 3.4.8 shows that Proposition 3.4.8 can be extended to
� = Q, if we simply add the dimension of the ℓ-adic realisations of " to the bounded functions.
However, it is possible that in fact Proposition 3.4.8 would hold without changes even for � = Q.
To show this, one would need to show that the set of isomorphism classes of pure ℓ-adic Galois
representations de�ned over Q which have their conductor bounded and their weight �xed is
�nite, without bounding the dimension as we did in Section 1.2.6. Such a statement is even
not known for weight one Galois representation. However, the fact that there are no abelian
varieties of any dimension 3 ≥ 1 which are unrami�ed over Q, as was proved by Fontaine in
[Fon85], might be seen as evidence for these kinds of statements.

3.4.5 Connections with motivic heights
The aim of this short section is to brie�y describe a possible connection between the Dio-

phantine properties (and in particular the Northcott property) described in Section 3.4, and the
motivic heights de�ned by Kato in [Kat18]. Our driving question is the following.

Question 3.4.10 – Special values of !-functions and motivic heights

Let � and � be two number �elds. Fix ℎ : MM(� ;�) → R to be one of the height functions
de�ned in [Kat18], e.g. ℎ = ℎ∗,♦ (see Example 3.4.11). Let " ∈ MM(� ;�) be a motive
and = ∈ Z be an integer, for which the special value !∗ (",=) is de�ned. Does there exist
another motive "= such that

|!∗ (",=) | = ℎ("=)

or maybe a �nite family of motives M= , in the guise of a square matrix, such that
|!∗ (",=) | = det(ℎ(M=))?

First of all, let us brie�y review the de�nition of Kato’s heights, and then let us describe one
possible strategy to answer Question 3.4.10. Kato’s heights are de�ned in [Kat18] by the formula

ℎk : M� → R

" ↦→
∑
3∈N

ℎ
Ψ3
3
(") (3.40)

which depends on a family of functionsk = {k3 }3∈N. These functions are given by

k0 : M� × Z2 → R
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andk3 : M� × Z→ R for 3 ≥ 1.

The idea is that the complexity measured by the heights ℎk
3

increases with respect to 3 ∈ N.
In particular, ℎk0 (") measures the complexity of the graded pieces grFW (") similarly to how
Faltings’s height measures the complexity of an abelian variety. On the other hand, the higher
heights ℎk

3
(") measure how distant the motive " is from being isomorphic to

⊕
F∈Z grFW (")

by measuring the complexity of monodromy at the di�erent primes. In particular, if

" �
⊕
F∈Z

grFW (")

then ℎk
F,3
(") = 0 for every 3 ≥ 1. Finally, the functions i and k are supposed to be “simple”

functions that serve merely as coe�cients in the linear combinations (3.40) and (3.41). See
Example 3.4.11 for some examples of functions i andk .

Let us get into the de�nition of ℎk0
0 , which is given by

ℎ
k

0 (") :=
∑

(F,A ) ∈Z2

k0 (" ;F, A ) · d̂eg
(
LA (grFW (")), {|·|E}E∈Ω�

)
. (3.41)

where LA (grFW (")) is a one dimensional � -vector space endowed with an absolute value |·|E for
every place E ∈ Ω� . For every such vector space (+ , {|·|E}E∈Ω� ) we de�ne the “Arakelov degree”

d̂eg(+ , {|·|E}E∈Ω� ) :=
∑
E∈Ω�

log|G |E for any generator G ∈ +

which is well de�ned because + is one dimensional and the absolute values of � are normalized
to satisfy the product formula

∏
E∈Ω� |G |E = 1. In our speci�c case, for every A ∈ Z and every

pure motive # of weightF# we de�ne

LA (# ) := det(grAH (#dR)) ⊗� det(grF# −AH (#dR))

and one uses Hodge theory and ?-adic Hodge theory to de�ne the di�erent absolute values. We
refer the interested reader to [Kat18, § 1.4] for further details.

Now we can turn to the de�nition of ℎk1
1 , which is given by

ℎ
k1
1 (") :=

∑
F∈Z

k1 (" ;F) ·
( ∑
E∈Ω�

log
(
‖UF,1 (")‖",F1,E

))
where UF,1 (") ∈ Ext1

M�
(grFW ("), grF−1

W (")) is the class of the extension

0→ grF−1
W (") →

FilFW (")
FilF−2
W (")

→ grFW (") → 0

and the absolute values ‖·‖",F,1,E : Ext1
M�
(grFW ("), grF−1

W (")) → R≥0 are de�ned using Beilin-
son’s height pairing. Indeed, we can identify

Ext1
M�
(grFW ("), grF−1

W (")) = Ext1
M�
(Q, " (F) )
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where " (F) := (grFW ("))
∨ ⊗ grF−1

W ("). If we assume that for everyF ∈ Z the graded quotient
grFW (") is polarized then we have a polarization ?"F : " (F) → (" (F) )∨ (1) that we can use to
de�ne the absolute values

‖·‖",F,1,E : Ext1
M�
(Q, " (F) ) → R≥0

G ↦→
√
〈G, ?" (F) (G)〉B," (F) ,E

using the local components of Beilinson’s height pairing for the motive "F . We refer the
interested reader to [Kat18, § 1.7.1] for more details.

Finally, let us de�ne ℎk3
3

for 3 ≥ 2. We have again a local decomposition

ℎ
k3
3
(") :=

∑
F∈Z

k3 (" ;F) ·
( ∑
E∈Ω�

log
(
‖UF,3,E (")‖",F,3,E

))
but now the elements of which we take the absolute value vary with the place E ∈ Ω� . These
elements UF,3,E (") are de�ned using the monodromy theorem of Grothendieck and the (conjec-
tural) weight monodromy �ltration that arises from the relation between the weight �ltration
and the monodromy operator. We refer the interested reader to [Kat18, § 1.7.3] for more details.

Example 3.4.11. Let us list some choices for i , which allow us to recover all the examples of
heights de�ned in [Kat18].

First of all, we can choosek3 = 0 for 3 ≥ 1. Moreover, we can choose

k0 (" ;F, A ) := 5 (" ;F) · 6(grFW ("); A )

for two functions 5 : M� × Z → R and 6 : Mpure
�
× Z → R. Possible choices for 5 and 6 are

given by

5 (" ;F) := 1 6(# ; A ) := 1

5 (" ;F) :=

{
1, ifF = F0

0, otherwise
6(# ; A ) :=

∑
9<A

dim� (gr9H (#dR))

5 (" ;F) := dim� (grFW ("dR)) 6(# ; A ) := dim� (gr9H (#dR))

and these examples (in any combination of choices from the �rst and the second column) allow
us to recover the functions ℎ∗ and ℎ♣ de�ned by Kato. Observe that [Kat18] de�nes these heights
only for pure motives: the �rst choice of 6 paired with any of the �rst two choices of 5 gives us
ℎ∗ when restricted to pure motives of �xed weightF0.

On the other hand, the function ℎ♠ can be recovered by takingk3 = 0 for 3 ≥ 1 and

k0 (" ;F, A ) :=
∑
8<F
9<A

i8, 9 (") −
∑
8>F
9>A

i8, 9 (") +
∑
9<A
9≠F−A

iF,9 (") +
{
iF,A (") − (−1)F, if A > F/2,
0, otherwise

where i (" ; 8, 9) := dim� (gr9H (gr8W ("dR))).
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Finally, we can of course consider many choices for the functions k3 (" ;F, A ) for 3 ≥ 1.
In particular, if we set k3 ≡ 1 for every 3 ∈ N≥1 then we get the height ℎ∗,♦ mentioned in
Question 3.4.10.

As we have brie�y seen, Kato’s height functions may seem rather involved at the �rst sight.
However, the complexity of their de�nitions sparks even more hope that they might be the right
invariant to capture all the intrinsic complexity inherent to the category of mixed motives. In
particular, one could ask whether Kato’s heights are the right ones to answer Question 3.4.10.

Let us conclude this section by brie�y mentioning our strategy to construct the motive "=

(or the matrix of motives M=) appearing in Question 3.4.10, at least in the case � = � = Q.
Moreover, let us assume that " ∈ MM(Q/Z;Q), whereMM(Q/Z;Q) denotes the category
of “mixed motives over Z” de�ned by Scholl in [Sch91, Page 376]. This is the full subcategory
of MM(Q;Q), consisting of those motives " such that the weight �ltration on the ℓ-adic
realisation 'ℓ (") splits over Qnr

? (the maximal unrami�ed extension of Q? ) for every pair of
distinct primes ℓ, ? ∈ N. In particular,MM(Q/Z;Q) contains all the pure motives.

Now, if " ∈ MM(Q/Z;Q) and = ∈ Z then we can use a construction of Scholl (see [Sch94])
to get a new motive "(=) ∈ MM(Q;Q) such that

!("(=) , B) = !(", B)Z (B − =)0Z (B − = + 1)1 (3.42)

and = is a critical value for the !-function !("(=) , B). This means that

Hom(1, "(=) (=)) = Ext1 (1, "(=) (=)) = Hom("(=) (=),1) = Ext1 ("(=) (=),1) = 0 (3.43)

where the homomorphism and extension groups are taken in the categoryMM(Q/Z;Q). Hence
we have in particular that !("(=) , =) ≠ 0, and the conjectures of Bloch and Kato imply that the
special value !∗ ("(=) , =) = !("(=) , =), which is related to !∗ (",=) by (3.42), can be computed
using the determinant of a matrix whose entries are given by Beilinson’s height pairing. Thus
it is not unreasonable to expect that, for some choice of motivic height ℎ : MM(Q;Q) → R,
one has that ℎ("(=) ) is related (or even equal) to !∗ (",=). This will be the subject of future
investigations.
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4An introduction to the Mahler
measure

Measure what is measurable,
and make measurable what is not so.

Galileo Galilei,
Dialogue Concerning the Two Chief World Systems

The present chapter contains a brief survey of the theory surrounding the Mahler measure of
polynomials. This “measure” gives a number " (5 ) ∈ R≥0 that can be associated to a vast class
of complex-valued functions 5 : T= → C de�ned on the real torus

T= := {z = (I1, . . . , I=) ∈ (C×)= | |I1 | = · · · = |I= | = 1}.

This class of functions comprises Laurent polynomials % ∈ C[G±1
1 , . . . , G±1

= ], for which one knows
that " (%) ≠ 0 as soon as % ≠ 0. This allows one to de�ne the logarithmic Mahler measure
<(%) := log(" (%)). Since in this thesis we are mainly interested in the logarithmic version, we
deserve the term Mahler measure for<(%), and call " (%) by the name of exponential Mahler
measure.

The exponential Mahler measure " (%) for one-variable monic polynomials % ∈ Z[C] was
introduced by Lehmer (see [Leh33, Theorem 16]), using the formula

" (%) :=
∏
U ∈C
% (U)=0

max(1, |U |) (4.1)

which was used to show that " (%) computes the growth rate of the sequence of integers

Δ= (%) :=
∏
U ∈C
% (U)=0

U= − 1 ∈ Z

which were introduced by Pierce (see [Pie16]) as a generalisation of Mersenne’s sequence
2= − 1 = Δ= (C − 2). Note in particular that " (%) ≥ 1 for every % ∈ Z[C] \ {0}. Exactly like
Mersenne’s numbers, any integer of the form Δ= (%) is easier to factor than a randomly chosen
one. In particular, Lehmer pointed out in [Leh33, § 13] that the smaller " (%) was, the more
primes there seemed to be in the sequence {Δ= (%)}=∈N. This lead him to ask whether the height
function

" : Z[C] \ {0} → R (4.2)

has the Bogomolov property (see De�nition 1.1.7), i.e. whether the set (1 := " (Z[C] \ {0}) ⊆ R
has an isolated minimum. It is known that min((1) = 1 (see Theorem 4.1.15), but Lehmer’s
general question remains unanswered, despite the numerous attempts and partial results, which
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we describe in Section 4.1.1. Clearly, the Bogomolov property holds for the function (4.2) if and
only if it holds for the function< : Z[C] \ {0} → R.

One of the most interesting attempts towards the solution of Lehmer’s problem has been
given by Boyd (see [Boy81b]). More precisely, studying Lehmer’s question entails a deeper
understanding of the numbers U ∈ R that arise as limits of sequences of Mahler measures, i.e. of
the derived set ( (1)1 ⊆ R≥1. A result of Boyd and Lawton shows that (= ⊆ ( (1)1 for every = ∈ Z≥1,
where (= := " (Z[G1, . . . , G=] \ {0}) ⊆ R≥1. This gives rise to a nested, increasing chain of sets

(1 ⊆ . . . (= ⊆ (=+1 ⊆ · · · ⊆ ( (1)1 ⊆ (1 ⊆ R≥1

where (1 denotes the closure of (1. Now, Boyd conjectures in [Boy81b, Conjecture 1] that the
set (∞ := lim−−→=

(= ⊆ R≥1 is closed. Since (∞ is countable, this would easily imply Lehmer’s
conjecture (see Lemma 4.1.19).

The theorem of Boyd and Lawton, together Boyd’s prediction that (∞ is closed, generated
an increasing interest in the study of Mahler measures of polynomials in multiple variables.
The pioneering work [Smy81] by Smyth showed that these real numbers could be surprisingly
related to special values of !-functions. More precisely, Smyth computed the two formulas

<(G + ~ + 1) = !∗ (j−3,−1)
<(G + ~ + I + 1) = −14Z ∗ (−2)

where j−3 : (Z/3Z)× → {±1} is the unique non-trivial Dirichlet character modulo 3, associated
to the imaginary quadratic �eld Q(

√
−3), and Z denotes Riemann’s Z -function. These results,

further enriched by the thesis of Ray [Ray87], prompted Boyd to start an intensive numerical
investigation concerning the relations between Mahler measures of polynomials in multiple
variables and special values of !-functions. This led to the foundational paper [Boy98], which
contains an incredible amount of predictions and numerical computations relating special values
of !-functions arising from elliptic curves to polynomials in two variables. These conjectural
identities are still largely unproved today, despite the fact that the modular methods of Rogers
and Zudilin (see [RZ12], [RZ14] and [Zud14]) and Brunault (see [Bru16b] and [BZ20, Chapter 10])
have almost reduced the task of proving some of these identities to a purely algorithmic one.

The last years of the twentieth century did not only see the publication of Boyd’s numerical
computations, but they also featured the appearance of two theoretical papers attempting at
explaining them. First of all, we mention Rodriguez Villegas’s paper [Rod99], which focuses on
the fact that most identities conjectured by Boyd come in families of polynomials %: ∈ Z[G,~],
where %: (G,~) ∈ Z[:] [G,~]. Thus the Mahler measure<(%: ) can be studied as a function of
: , and for suitable families this function can be related to Eisenstein-Kronecker series, which
are intimately linked to modular forms. Moreover, this approach of studying Mahler measures
in families has also proved incredibly useful in proving relations of the form<(%: ) =<(&: )
for two families of polynomials %: , &: ∈ Z[G,~]. We do not deal with these kinds of problems
in this thesis, despite their great interest, and we refer the interested reader to the papers by
Bertin-Zudilin (see [BZ16; BZ17] and the survey [BZ20, Chapter 5]) and Lalín and Wu (see
[LW18] and [LW20]) for two di�erent methods that allow one to prove relations between the
Mahler measures of di�erent families of polynomials.

The second (or rather the �rst, in chronological order) of the innovative works that appeared
towards the end of the twentieth century consists in Deninger’s paper [Den97a]. In this work,
Deninger proves that the seemingly transcendental integral de�ning the Mahler measure can be
converted into an integral related to algebraic geometry. More precisely, for a suitable class of
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Laurent polynomials % ∈ Q[G±1
1 , . . . , G±1

= ] there exists a mixed motive "% ∈ MM(� ;Q), where
� is the number �eld generated by the coe�cients of % , such that the Mahler measure<(%)
appears as a period of "% (see Section 4.3). This class of polynomials has been enlarged by
numerous subsequent work, among which we cite the paper [BD99] by Besser and Deninger,
and Bornhorn’s thesis (see [Bor99; Bor15]).

Deninger’s work can also be used to relate Boyd’s conjectural links between !-values and
Mahler measures to the conjectures of Beilinson and Bloch-Kato that we surveyed in Section 3.3.2.
This has been fully done by Bornhorn in his PhD thesis for the family %: (G,~) := C1+ 1

C1
+C2+ 1

C2
+:

(see Theorem 4.4.1). We dedicate Section 4.4.1 to give a similar proof for the family

%: (G,~) = C1 +
1
C1
+ C2 +

1
C2
+ C1
C2
+ C2
C1
+ :.

Finally, Section 4.4.2 is devoted to the computation of the Mahler measure of two families
providing a “canonical model” for elliptic curves: a certain Weierstraß family, and the Edwards
family.

4.1 Definition and Diophantine properties
The aim of this section is to introduce the theory of the Mahler measure, by giving its de�nition

and explaining its relation to the height of algebraic number, by means of Jensen’s formula.
Moreover, we outline the main questions of Diophantine nature related to the Mahler measure.

First of all, let us de�ne the Mahler measure< and its exponential variant " , which were
introduced by Mahler in [Mah62].

De�nition 4.1.1 – Mahler measure

Let = ∈ N be an integer. Then the Mahler measure is the functional

< : C[G±1
1 , . . . , G±1

= ] → R ∪ {−∞}

de�ned on the ring C[G±1
1 , . . . , G±1

= ] of Laurent polynomials as

<(%) :=
∫
T=

log|% | 3`T= (4.3)

where T= := {z = (I1, . . . , I=) ∈ (C×)= | |I1 | = · · · = |I= | = 1} is the =-dimensional real-
analytic torus and `T= is the unique Haar probability measure on T= . Moreover, we de�ne
the exponential Mahler measure" : C[G±1

1 , . . . , G±1
= ] → R≥0 as" (%) := exp(<(%)). Finally,

we de�ne the plus-Mahler measures as the positive functionals<+ : C[G±1
1 , . . . , G±1

= ] → R≥0
and "+ : C[G±1

1 , . . . , G±1
= ] → R≥1 given by

<+ (%) :=
∫
T=

log+ |% | 3`T= and "+ (%) := exp(<+ (%))

where log+ : R≥0 → R≥0 is de�ned by setting log+ (0) := 0 and log+ (C) := max(0, log(C))
for every C > 0.
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Example 4.1.2. We regard T0 as a point, hence the Mahler measure of a constant U ∈ C is
de�ned to be <(U) := log(U). Analogously, one has <+ (U) = log+ |U |, and the exponential
Mahler measures are given by " (U) = |U | and "+ (U) = max(1, |U |).

Remark 4.1.3. It is easy to prove by induction on the number of variables = ∈ Z≥1 that for every
�xed non-zero Laurent polynomial % ∈ C[G±1

1 , . . . , G±1
= ] \ {0} we have that `T= (+% (C) ∩T=) = 0,

where+% ↩→ G=
<,C

is the closed sub-variety given by the zero locus of % . Actually, one can easily
prove the estimate (see [EW99, Lemma 3.8])

`T= ({z ∈ T= | |% (z) | < Y}) ≤ �% · YX (% ) (4.4)

where �% ∈ R>0 depends on the coe�cients of % and X (%) ∈ R>0 depends on the degree of % .
This estimate (4.4) implies in particular that<(%) = −∞ if and only if % = 0.

Remark 4.1.4. The inclusions ]= : C[G±1
1 , . . . , G±1

= ] ↩→ C[G±1
1 , . . . , G±1

=+1] are compatible with the
Mahler measure, i.e.<(]= (%)) =<(%) for every Laurent polynomial % ∈ C[G±1

1 , . . . , G±1
= ]. This

allows one to see the Mahler measure as a functional

< : � 0 (G∞<,C,OG∞<,C ) � C[G
±1
1 , G±1

2 , . . . ] → R ∪ {−∞}

where G∞
<,C

denotes the inverse limit of the complex algebraic tori G=
<,C

along the projections
which forget the last coordinate.

Remark 4.1.5. The Mahler measure can be de�ned in a far more general setting. More precisely,
let (-, `- ) be a probability space and let !0 (- ) denote the complex vector space of measurable
functions 5 : - → C, quotiented by the sub-space given by those functions which are zero
almost everywhere. Then one can de�ne the !? -spaces

!? (- ) :=

{
5 ∈ !0 (- )

����� ‖ 5 ‖? :=
(∫
-

|5 |? 3`-
)1/?

< +∞
}

for every non-negative real number ? ∈ R≥0. These are complex vector spaces, endowed with a
function

‖·‖? : !? (- ) → R≥0

for every ? > 0. This function is a norm if ? ≥ 1, but only a quasi-norm in general. Now, since
- is supposed to be a probability space we have that !? (- ) ⊆ !@ (- ) for every ? ≥ @ ≥ 0. Using
this, one can de�ne the exponential Mahler measure (relative to - ) as the functional

" : !>0 (- ) → R≥0

5 ↦→ lim
?→0
‖ 5 ‖? (4.5)

on the complex vector space

!>0 (- ) := lim−−→
?→0+

!? (- ) =
⋃
?>0

!? (- ) ⊆ !0 (- )

given by those measurable functions 5 : - → C such that ‖ 5 ‖? < +∞ for some ? > 0. It is easy
to see that

" (5 ) = exp
(

lim
?→0+

1
?

log
(∫
-

|5 |? 3`-
))

= exp
(∫
-

log|5 | 3`-
)
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where we set exp(−∞) := 0. This shows that the functional " de�ned in (4.5) coincides with
the exponential Mahler measure de�ned in De�nition 4.1.1, if we take - to be the probability
space G=

<,C
with the unique Haar probability measure `T= . Hence it makes sense to de�ne the

functional< : !>0 (- ) → R ∪ {−∞} by setting

<(5 ) :=
∫
-

log|5 | 3`-

so that " (5 ) = exp(<(5 )). As we did in De�nition 4.1.1, we de�ne the plus-Mahler measure
<+ : !>0 (- ) → R≥0 as

<+ (5 ) :=
∫
-

log+ |5 | 3`-

and we denote by "+ : !>0 (- ) → R≥1 the exponential analogue "+ (5 ) := exp(<+ (5 )).

Remark 4.1.6. There are various other generalisations of the Mahler measure, which are not
studied in this thesis. Some of them are in fact particular instances of the general framework
developed in Remark 4.1.5, such as:

• the Mahler measure for arbitrari tori studied by Lalín and Mittal in [LM18], which is
obtained by taking - = Ta for some a = (01, . . . , 0=) ∈ (R>0)= , where

Ta := {z ∈ (C×)= | |I1 | = 01, . . . , |I= | = 0=}

is the real analytic =-torus associated to a;

• the Mahler measure for compact abelian groups studied by Lind in [Lin05], who takes
- = � to be a compact abelian group (with the unique probability Haar measure), and
considers only functions 5 ∈ Z[�̂], where �̂ := Hom(�,T1) is the Pontryagin dual of � ;

• the elliptic Mahler measure introduced by Everest and Fhlathúin in [EF96] (see also [EW99,
§ 6.3] for the de�nition in several variables). This elliptic Mahler measure is essentially
de�ned by taking- = � (C)= for some elliptic curve�, endowed with the unique probability
Haar measure.

Let us mention also some other generalisations of the notion of Mahler measure, such as:

• the higher Mahler measure introduced by Kurokawa, Lalín and Ochiai in [KLO08]. Using
the general framework outlined in Remark 4.1.5, this can be de�ned for every probability
space - and every : ∈ N as the functional

<: : !>0 (- ): → R ∪ {−∞}

(51, . . . , 5: ) ↦→
∫
-:

log|51 | · · · log|5: | 3`-:

where `-: denotes the product probability measure;

• the metric Mahler measure of Dubickas and Smyth [DS01] (see also [Sam14] for a generali-
sation), which satis�es the triangle inequality and hence is more amenable to topological
considerations;

• the @-Mahler measure and the crystal Mahler measure introduced by Kurokawa in [Kur04].
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Remark 4.1.7. As it is mentioned in the preface of [BZ20], the Mahler measure has connections
with “practically every other part of mathematics”. Let us mention some of these connections,
which do not otherwise appear in this thesis:

• Mahler measures can arise as entropies of dynamical systems. More precisely, for every
= ∈ N and every Laurent polynomial % ∈ Z[G±1

1 , . . . , G±1
= ] we let O% denote the sheaf

on G=
<,Z corresponding to the zero locus of % , i.e. to the quotient Z[G±1

1 , . . . , G±1
= ]/(%)

seen as a module over Z[G±1
1 , . . . , G±1

= ]. Then we have an action of Z= on � 0 (G=
<,Z,O% ),

induced by the action d : Z= → Aut(G=
<,Z) given by d (a) (G1, . . . , G=) := (G01

1 , . . . , G
0=
= ).

Now, if we give to � 0 (G=
<,Z,O% ) the discrete topology we see that the Pontryagin dual

� 0 (G=
<,Z,O% )

∧ := Hom(� 0 (G=
<,Z,O% ),T

1) is a compact abelian group endowed with an
action of Z= . Then a theorem of Lind, Schmidt and Ward says that the entropy of this
action is precisely given by the Mahler measure<(%) (see [Sch95, Theorem 18.1]);

• the previous connections between Mahler measures and entropies have been extensively
explored by Deninger. In particular, Mahler measures and more general heights have
been related to the entropy of certain actions of suitable amenable groups, and to Fuglede-
Kadison determinants of certain operators on the algebras associated to the action (see
[Den12] for a survey). This work of Deninger is part of the bigger program which aims
to relate arithmetic schemes X → Spec(Z) to dynamical systems, in a way which would
respect the Z -functions de�nable on both sides. Under such a program, the relations
between regulators and entropies outlined in [Den12] would become relations between
the values of the corresponding Z -functions, assuming the validity of the conjectures
described in Section 3.3.2;

• the work of Breuillard gives another relation between the Mahler measure and the theory of
amenable groups, with particular emphasis on the problem of Lehmer (see Question 4.1.14).
We refer the interested reader to the survey [Bre14];

• �nally, the work of Borwein, Straub, Wan and Zudilin (see [Bor+12] and [SZ20]) shows
that the Mahler measures ` (=) :=<(G1 + · · · + G=) can be computed as the derivative in
B = 0 of the moment function,= (B) associated to a uniform random walk of = steps. This
allows one to compute explicit hypergeometric formulas for the values ` (=), which are
much more amenable to computation.

The �rst remarkable property of the Mahler measure is a consequence of Jensen’s formula (see
[SS03, § 5.1] and [BZ20, Proposition 1.4]), which allows one to reduce the number of variables
in the integral computing<(%).

Proposition 4.1.8 – Jensen’s formula

For every = ∈ N let i= : !>0 (T=) → !>0 (T=+1) be the functional sending 5 : T= → C to
the function i= (5 ) : T=+1 → C given by i= (5 ) (G1, . . . , G=+1) := G=+1 − 5 (G1, . . . , G=). Then
we have that< ◦ i= =<+, i.e.

<(G=+1 − 5 (G1, . . . , G=)) =<+ (5 (G1, . . . , G=))

for every 5 ∈ !>0 (T=).
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Let us show how to use Proposition 4.1.8 to reduce the computation of the Mahler measure
<(%) of a polynomial % ∈ C[G±1

1 , . . . , G±1
= , C

±1] in = + 1 variables to the computation of some
=-variable integrals. First of all, it is clear from De�nition 4.1.1 that<(% ·&) =<(%) +<(&) for
every pair of Laurent polynomials %,& ∈ C[G±1

1 , . . . , G±1
= ]. Hence one can factor each Laurent

polynomial % ∈ C[x, C] as % = U0 (x) · (C − U1 (x)) · · · (C − U3 (x)), where U0 (x) ∈ C[G±1
1 , . . . , G±1

= ]
is a Laurent polynomial and U1, · · · , U3 are algebraic functions in the variables x = (G1, . . . , G=).
Now, applying Proposition 4.1.8 to this factorisation we see that

<(%) =<(U0) +
3∑
9=1
<(C − U 9 (x)) =<(U0) +

3∑
9=1
<+ (U 9 ) (4.6)

which allows one to reduce the computation of the Mahler measure of a polynomial % in = + 1
variables to the computation of the plus-Mahler measures of algebraic functions in = variables.

Example 4.1.9. Applying the factorisation (4.6) to a polynomial % ∈ C[C] in one variable, we
get the formula

<(%) = log|00 | +
∑
U ∈C
% (U)=0

log+ |U | (4.7)

where 00 ∈ C× denotes the leading coe�cient of % . We observe that (4.7) is the logarithmic
analogue of Lehmer’s formula (4.1). In particular, (4.7) shows that for every algebraic number
U ∈ Q× we have the following relation between the Mahler measure and the absolute logarithmic
Weil height ℎ(U) ∈ R (see Section 1.2.1):

<(5U (C)) = deg(U) · ℎ(U)

where 5U (C) = 03C3 + · · · + 00 ∈ Z[C] is the integral minimal polynomial of U , de�ned as the
unique irreducible integral polynomial satisfying the two conditions gcd(00, . . . , 03 ) = 1 and
03 > 0, such that 5U (U) = 0.

4.1.1 Small values of the Mahler measure
Let % ∈ C[C] be a monic polynomial. The identity (4.1) shows immediately that

lim
=→+∞

����Δ=+1 (%)Δ= (%)

���� = " (%) (4.8)

where {Δ= (%)}=∈N ⊆ C is the sequence of complex numbers de�ned by the formula

Δ= (%) :=
∏
U ∈C
% (U)=0

U= − 1 ∈ C.

When % ∈ Z[C] is a monic polynomial with integer coe�cients, Galois theory shows that
Δ= (%) ∈ Z for every = ∈ N, and one has that

Δ=< (%)
Δ< (%)

=
∏
U ∈C
% (U)=0

(
=−1∑
9=0

U<9

)
∈ Z
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for every =,< ∈ N. These numbers are sometimes called cyclotomic integers, because they have
a factorisation which resembles the one of cyclotomic polynomials. Pierce and Lehmer used this
sequence of integers to �nd new large prime numbers of the form Δ? (%)/Δ1 (%), where ? ∈ N is
a small rational prime. Two famous examples of this include the prime numbers

Δ113 (%1) = 63088004325217
Δ127 (%1) = 3233514251032733

(4.9)

associated to the polynomial %1 (C) ∈ Z[C] de�ned as %1 (C) := C3 − C − 1. Note that these numbers
can indeed be primes because Δ1 (%1) = 1. We also invite the reader to observe that, in the
beginning of the twentieth century, the largest prime number known was the Mersenne prime

Δ127 (C − 2) = 170141183460469231731687303715884105727

discovered by Lucas in 1876 (see [Luc76]). Thus the number of digits of the primes discovered
by Lehmer and Pierce was not incredibly distant from the world record at the time, and the two
numbers Δ113 (%1) and Δ127 (%1) had the advantage of not being Mersenne primes.

Lehmer observed in [Leh33] that the prime counting function

c (& ;G) := |{? ≤ G | Δ? (&)/Δ1 (&) is prime}| (4.10)

seems to grow faster as soon as the Mahler measure <(&) is small. This has one notable
exception, given by the following proposition (see [BZ20, Exercise 1.7]).

Proposition 4.1.10 – Cyclotomic integers and reciprocal polynomials

Let % ∈ Z[C] be a non-zero, monic polynomial and suppose that % (C) = C3% (1/C) where
3 = deg(%). Then for every =,< ∈ N such that< | = the ratio |Δ= (%)/Δ< (%) | ∈ Z is a
square if = ≡< (2).

Proof. It is clearly su�cient to prove that |Δ2= (%)/Δ2 (%) | and |Δ2=+1 (%)/Δ1 (%) | are squares for
every= ∈ N. We can also assume that % is irreducible, since clearly Δ= (&1 ·&2) = Δ= (&1) ·Δ= (&2)
for every pair of polynomials &1, &2 ∈ Z[C]. If % is irreducible, it is not di�cult to see that 3 is
even, because % (C) = C3% (1/C). Moreover, we can order the roots U1, . . . , U3 of % in such a way
that U28 = U

−1
28−1 for every 8 ≥ 1. Doing so, we see that

Δ2= (%)
Δ2 (%)

=

3/2∏
8=1

(U2=
28−1 − 1) · (U2=

28 − 1)
(U2

28−1 − 1) · (U2
28 − 1)

=

3/2∏
8=1

(
U=−1

28−1

=−1∑
9=0

U
29
28

)2

(4.11)

Δ2=+1 (%)
Δ1 (%)

=

3/2∏
8=1

(
U2=+1

28−1 − 1
U28−1 − 1

)
·
(
U2=+1

28 − 1
U28 − 1

)
=

3/2∏
8=1

(
1 +

=∑
9=1

U
9

28−1 + U
9

28

)2

(4.12)

which allows us to conclude, because the expressions (4.11) and (4.12) are clearly rational integers
thanks to Galois theory. �

The class of polynomials appearing in Proposition 4.1.10 deserves a name of its own.
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De�nition 4.1.11 – Reciprocal polynomial

Let = ∈ N. We de�ne two involutions % ↦→ %∗ and % ↦→ %† on the ring C[G±1
1 , . . . , G±1

= ] of
Laurent polynomials, by setting

%∗ (G1, . . . , G=) := % (G−1
1 , . . . , G−1

= )

%† (G1, . . . , G=) := % (G1
−1, . . . , G=

−1)

where I ↦→ I denotes complex conjugation. We say that a given Laurent polynomial
% ∈ C[G±1

1 , . . . , G±1
= ] is self-reciprocal (respectively conjugate self-reciprocal) if %/%∗ (resp.

%/%†) is a monomial.

Remark 4.1.12. Sometimes the polynomial %∗ is called the reciprocal polynomial of % . However,
if % ∈ C[C] one usually calls by this name the polynomial C3 · %∗ (C), where 3 denotes the degree
of % .

Hence, going back to the counting function c (& ;G) de�ned in (4.10), we see that c (& ;G) = 0
for every G ∈ R as soon as& is self-reciprocal. On the other hand, one can observe experimentally
that c (C3 − C − 1;G) seems to grow faster than c (C − 2;G), and this re�ects Lehmer’s prediction
because <(C3 − C − 1) = 0.281199 · · · < 0.693147 · · · = <(C − 2). In fact, the choice of the
polynomial C3 − C − 1 is not a coincidence. This is shown by the following theorem, proved in
the PhD thesis of Smyth (see [Smy71] and [BZ20, Theorem 2.1]).

Theorem 4.1.13 – Bogomolov’s property for non-reciprocal polynomials

The Mahler measure function % ↦→ <(%) has the Bogomolov property, in the sense of
De�nition 1.1.7, when restricted to the set of non-zero integral polynomials % ∈ Z[C]
such that % (C) ≠ Cdeg(% )% (1/C). More precisely, for every non-zero, irreducible polynomial
% ∈ Z[C] we have that

<(%) < <(%1) ⇒ % (C) = Cdeg(% )% (1/C)

where %1 (C) := C3 − C − 1.

Thus, combining Proposition 4.1.10 with Theorem 4.1.13 and Lehmer’s prediction about the
functions c (& ;G) de�ned in (4.8), one sees that the most e�cient way to obtain primes of the
form Δ? (&)/Δ1 (&) is to consider the sequence Δ? (%1), which was already studied by Lehmer
as we have seen in (4.9). However, Proposition 4.1.10 suggests that it might be interesting to
consider the sequence of integers

√
|Δ? (&)/Δ1 (&) | associated to a self-reciprocal polynomial

& ∈ Z[C]. As Lehmer himself points out at the end of his paper [Leh33], the amateur Belgian
mathematician Poulet was able to compute that√

|Δ379 (%0) |
?
= 1794327140357 (4.13)

is a prime number, where %0 ∈ Z[C] denotes the self-reciprocal polynomial

%0 (C) = C10 + C9 − C7 − C6 − C5 − C4 − C3 + C + 1
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which is known today as Lehmer’s polynomial. We note, thanks to an observation of Burgos Gil,
that the equality (4.13) cited by Lehmer appears to be wrong. Indeed, the correct value (which
nowadays can be computed easily using any computer algebra system) is√

|Δ379 (%0) | = 37098890596487

which is also a prime number.
It might look surprising that Poulet was able to compute the sequence

√
Δ? (%0) up to the prime

index ? = 379 (even if his computation turned out to be wrong). However, we notice that this
sequence grows quite slowly, because

√
" (%0) = 1.084564 · · · is far less than the Mahler measure

" (%1) = 1.324717 · · · . In fact, we also have that<(%0) = 0.162357 · · · < 0.281199 · · · =<(%1),
and Lehmer pointed out that<(%0) was the smallest Mahler measure that he could �nd, after
extensive research. Hence, he proposed the following question (see [Leh33, § 13]).

Question 4.1.14 – Lehmer’s problem

Weak Lehmer
problem

Is it true that the Mahler measure function< : Z[C] \ {0} → R has
the Bogomolov property, in the sense of De�nition 1.1.7?

Lehmer’s
problem

Is it true that

<(%) ≥ <(%0) =<(C10 + C9 − C7 − C6 − C5 − C4 − C3 + C + 1)

for every % ∈ Z[C] \ {0} such that<(%) ≠ 0?

It might not be clear immediately why a positive answer to the second question implies a positive
answer to the �rst question. This is indeed the case, because the function< : Z[C] \ {0} → R
satis�es a weak Bogomolov property, in the sense of De�nition 1.1.7. Indeed, using (4.7) we see
that<(%) ≥ 0 for every % ∈ Z[C]. In fact, this inequality extends to several variables by induction,
because Jensen’s formula (4.6) shows that<(%) ≥ <(00) for every % ∈ Z[G±1

1 , . . . , G±1
= ], where

00 ∈ Z[G±1
1 , . . . , G±1

=−1] is the leading coe�cient of % in the variable G= .
The following theorem, which is due independently to Lawton (see [Law77]), Boyd (see

[Boy81a]) and Smyth (see [Smy81]), shows that we can completely characterise the set of
polynomials with integer coe�cients that achieve the minimal Mahler measure.

Theorem 4.1.15 – Kronecker’s theorem

Let < : C[G±1
1 , . . . , G±1

= ] → R ∪ {−∞} denote the Mahler measure (see De�nition 4.1.1).
Then<(%) = −∞ if and only if % = 0 and<(%) ≥ 0 for every % ∈ Z[G±1

1 , . . . , G±1
= ] \ {0}.

Moreover, for every % ∈ Z[G±1
1 , . . . , G±1

= ] we have that<(%) = 0 if and only if there exists
# ∈ N and a �nite sequence of =-tuples {a9 = (0 9,1, . . . , 0 9,=)}#9=1 ⊆ Z= such that

% =

#∏
9=0

Φ9 (G
0 9,1
1 · · · G0 9,== )1 9
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where Φ0 (C) := C ∈ Z[C] and for every 9 ≥ 1 we denote by Φ9 (C) ∈ Z[C] the 9-th cyclotomic
polynomial.

Let us conclude this section by mentioning some partial steps towards a positive solution to
Lehmer’s problem, in addition to the aforementioned Theorem 4.1.13:

• it is known that every irreducible polynomial % ∈ Z[C] of degree 3 := deg(%) ≥ 2 satis�es

<(%) > 1
4

(
log log(3)

log(3)

)3
(4.14)

which was proved by Voutier (see [Vou96]), following work of Dobrowolski (see [Dob79]).
The inequality (4.14) was already implicitly mentioned in Section 1.2.1, to show that the
pair (ℎ, U) consisting of the absolute logarithmic Weil height ℎ : Q

× → R and the function
(1.3) satis�es Lehmer’s property;

• Lehmer’s problem is known for the families of polynomials

D< :=

{
3∑
9=0

0 9G
9 ∈ Z[C]

����� 0 9 ≡ 1(<), ∀0 ≤ 9 ≤ <
}

as was shown by Borwein, Dobrowolski and Mossingho� in [BDM07];

• the Schinzel-Zassenhaus conjecture, which can be regarded as a strengthening of Do-
browolski’s bound, is now known thanks to the recent work of Dimitrov (see [Dim19]).
In particular, it is now known that for every monic, irreducible polynomial % ∈ Z[C] of
degree 3 := deg(%) > 1 we have that

max{|U | : U ∈ C, % (U) = 0} ≥ 21/43

which shows that also the single terms appearing in the formula (4.1) cannot be too small.

4.1.2 Limits of Mahler measures
As we have seen in the previous section, Lehmer’s Question 4.1.14 remains tantalisingly

unanswered to this day. However, the following conjecture of Boyd provides a very interesting
strategy to attack the weak version of Lehmer’s problem.

Conjecture 4.1.16 – Boyd’s conjecture on Lehmer’s problem

For every = ∈ N, de�ne (= := <(Z[G1, . . . , G=] \ {0}) ⊆ R≥0 to be the set of Mahler
measures of non-zero integral polynomials in =-variables. Then the set

(∞ := lim−−→
=→+∞

(= ⊆ R≥0 (4.15)

is closed. Here the direct limit denotes a nested union, because (= ⊆ (=+1 for every = ∈ N.
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Remark 4.1.17. A fundamental partial result towards a complete proof of Conjecture 4.1.16 has
been recently shown by Smyth in [Smy18]. More precisely, for every matrix � ∈ Mat<×= (Z)
and every Laurent polynomial % ∈ C[G±1

1 , . . . , G±1
= ] we de�ne

%� (G1, . . . , G<) := % (G01,1
1 · · · G0<,1< , . . . , G

01,=
1 · · · G0<,=< ) ∈ C[G±1

1 , . . . , G±1
< ]

and we setM(%) := lim−−→<
M< (%) whereM< (%) := {<(%�) | � ∈ Mat<×= (Z)} \ {−∞}. Then

Smyth proves thatM(%) ⊆ R is closed, for every Laurent polynomial % ∈ C[G±1
1 , . . . , G±1

= ], and
that if 0 ∈ M(%) and % ∈ Z[G±1

1 , . . . , G±1
= ] \Z then 0 is an isolated point ofM(%). In other words,

the Mahler measure function< : Z[G±1
1 , . . . ] \ {0} → R≥0 satis�es the Bogomolov property (in

the sense of De�nition 1.1.7) when restricted to each set of the form

P(%) := lim−−→
<∈Z≥1

{%� | � ∈ Mat<×= (Z)} \ {0}

such that 0 ∈ P(%), where % ∈ Z[G±1
1 , . . . , G±1

= ] \ {0} is a �xed polynomial. Finally, Smyth shows
that the set (∞ appearing in (4.15) can be written as the nested union

(∞ := lim−−→
=→+∞

M(� (=) )

where � (=) ∈ Z[G1, . . . , G2=] denotes the polynomial � (=) :=
∑2=
9=1 (−1) 9G 9 .

In order to prove that Conjecture 4.1.16 implies indeed a positive answer to the weak Lehmer
problem (as stated in Question 4.1.14) we need the following theorem, which is originally due
to Lawton (see [Law83]), and has been revisited recently by Dimitrov and Habegger in [DH19,
Appendix A].

Theorem 4.1.18 – Multivariate Mahler measures as limits of univariate Mahler
measures

Let % ∈ Z[G±1
1 , . . . , G±1

= ] \ {0} and let : := |{j ∈ Z= | 0j (%) ≠ 0}|, where 0j (%) ∈ Z denotes
the j-th coe�cient of % (x) = ∑

j 0jxj written in multi-index notation. Suppose that : ≥ 2,
and �x a = (01, . . . , 0=) ∈ Z= \ {0} such that

d (a) := inf

{
‖b‖∞

����� b = (11, . . . , 1=) ∈ Z= \ {0},
=∑
9=1

0 91 9 = 0

}
> deg(%)

where ‖b‖∞ := max=9=1 |1 9 |. Then we have that

<(% (C01 , . . . , C0= )) −<(%) ≤ � (=, :) ·
(

deg(%)16=2

d (a)1/16(:−1)

)
for some function � : N2 → R. In particular, we have that

lim
d (a)→+∞

<(% (C01 , . . . , C0= )) =<(%)
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which shows that the Mahler measure of any non-zero polynomial % ∈ Z[G±1
1 , . . . , G±1

= ]
can be approximated by the Mahler measures of univariate, integral polynomials.

We do not give the details of the proof of Theorem 4.1.18, which are already greatly exposed in
[DH19, Appendix A]. Instead, let us use Theorem 4.1.18 to show that Conjecture 4.1.16 gives
a positive answer to the weak Lehmer problem. Indeed, Theorem 4.1.18 shows that (∞ ⊆ (1,
and if Conjecture 4.1.16 was true we would have that (1 = (∞. On the other hand, the following
lemma shows that if the weak Lehmer problem has a negative answer we have that (1 = R≥0,
which would lead to a contradiction because the set (∞ is countable.

Lemma 4.1.19 – Closures of semi-groups

Let ( ⊆ R≥0 be a subset such that = · ( ⊆ ( for every = ∈ Z≥1. If 0 ∈ ( (1) is a limit point of
( we have that ( = [0, +∞)

Proof. For every U ∈ R, let {U} := U − bUc ∈ [0, 1) denote the fractional part of U . Then it is
immediate to see that

lim
=→+∞

{
U

Y=

}
Y= = 0

for every sequence {Y=} ⊆ R such that Y= → 0 as = → +∞. This implies that

lim
=→+∞

⌊
U

Y=

⌋
Y= = U (4.16)

for every U ∈ R. Now, by assumption there exists a sequence {Y=}=∈N ⊆ ( such that Y= → 0 as
= → +∞, because 0 ∈ ( (1) . Moreover, since # · ( ⊆ ( for every integer # ≥ 1, we have that
bU/Y=c · Y= ∈ ( for every U ∈ R>0. Hence (4.16) implies that U ∈ ( (1) for every U ∈ R≥0. This
shows that ( (1) = R≥0, and we can conclude by recalling that ( (1) ⊆ (1 ⊆ R≥0. �

To conclude this section, we remark that Conjecture 4.1.16 shows that, even to understand the
Diophantine properties of the Mahler measure of polynomials in one variable, one is naturally
led to study Mahler measures of polynomials in multiple variables.

4.2 Mahler measures and special values of
!-functions: an historical introduction

The aim of this section is to brie�y recall the history of the conjectural links between the
Mahler measure and special values of !-functions. The �rst example of this relation occurs
already in one variable (see [BZ20, § 1.4]).

Example 4.2.1. Let %±
:
(C) := C2 +:C ±1 ∈ Z[C], for : ∈ N such that : ≥ 3. Then, using Lehmer’s

formula (4.7) we see that

<(%±
:
(C)) = log

(
: +
√
:2 ± 4
2

)
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and combining this with the analytic class number formula (see Theorem 3.3.26) we see that

Z ∗
Q(Y±

:
) (0)

<(%±
:
(C)) = −

|Pic(Z[Y: ]) |
2|Z[Y±

:
]× : (Y±

:
)Z |
∈ Q×

where Y±
:

:= (: +
√
:2 ± 4)/2.

Remark 4.2.2. It would be interesting to generalise Example 4.2.1 to number �elds of higher
degree. The �rst natural number �elds � to study are those for which rk(O×

�
) = 1. Apart from

real quadratic �elds, which are the subject of Example 4.2.1, these include cubic �elds with one
real and one complex place, and totally imaginary quartic �elds. In the �rst case one can use
[SS73, Theorem 1.1] (see also [BZ20, Page 11]) to prove that for every : ∈ Z≥1 one has

Z ∗
�:
(0)

<(G3 − :G2 − 1) = −
|Pic(O�: ) |

2|O×
�:

: (U: )Z |
∈ Q×

where U: ∈ R>1 is the unique real root of the polynomial &: (C) := C3 − :C2 − 1 ∈ Z[C], and
�: := Q[C]/(&: ). For quartic �elds, one can use for example the explicit family provided by
[BW19, Theorem 1.1] to prove similar kinds of identities.
Remark 4.2.3. Let us mention that it would be very appealing to prove relations of the form

Z ∗
�
(0)

<(P) ∈ Q
× (4.17)

for number �elds � having unit rank A := rk(O×
 
) > 1. Here P = (%8, 9 ) ∈ MatA×A (Z[C]) would

be a matrix of polynomials %8, 9 ∈ Z[C] such that � � Q[C]/(%8, 9 ) for every 8, 9 ∈ {1, . . . , A }, and
<(P) := |det(<(%8, 9 )) | ∈ R>0 would denote the absolute value of the determinant of the matrix
whose entries are given by the Mahler measures of the polynomials appearing in P. We believe
that proving a formula like (4.17) should be possible using Minkowski’s theorem on units (see
[AV17]), at least for number �elds � which are Galois over Q. Indeed, this theorem allows one
to express the matrix computing the unit regulator of � as a circulant matrix (see [Dav79]), and
this makes it easier to relate the regulator determinant to a determinant of Mahler measures.
This will be the subject of future investigations.

Historically speaking, the next two examples of identities between Mahler measures and
special values of !-functions were proved by Smyth in [Smy81]. As it is stated in the introduc-
tion of that paper, Smyth was indeed inspired by Boyd’s work [Boy81a] (and in particular by
Conjecture 4.1.16) to gain a better understanding of Mahler measures of polynomials in multiple
variables.
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Theorem 4.2.4 – Smyth’s computations

Let j−3 : (Z/3Z)× → {±1} be the unique non-trivial Dirichlet character modulo 3, i.e. the
Dirichlet character associated to the imaginary quadratic �eld Q(

√
−3). Then we have:

<(G1 + G2 + 1) = 3
√

3
4c

!(j−3, 2) = !′(j−3,−1) (4.18)

<(G1 + G2 + G3 + 1) = 7
2c2 Z (3) = −14Z ′(−2) (4.19)

where Z (B) denotes Riemann’s Z -function.

Proof. We follow [Boy81a, Appendix 1] (see also [BZ20, § 3.3]). First of all, Jensen’s formula
(4.6) shows that<(G1 + G2 + 1) =<+ (1 + C), and we can compute

<+ (1 + C) = <
(∫ 1/3

−1/3
log(1 + 42c8C )3C

)
= <

(∫ 1/3

−1/3

+∞∑
==1

(−1)=−142c=C

=
3C

)
which can be combined with the identity∫ 1/3

−1/3
42c8=C3C =

1
=c

sin
(

2c=
3

)
=

√
3

2=c
j−3 (=)

to conclude that

<+ (1 + C) =
√

3
2c

+∞∑
==1

(−1)=−1j−3 (=)
=2 =

√
3

2c

( +∞∑
==1

j−3 (=)
=2 − 2

+∞∑
==1

j−3 (2=)
(2=)2

)
=

3
√

3
c
!(j−3, 2)

where the last equality follows from the fact that j−3 (2=) = j−3 (2)j−3 (=) = −j−3 (=).

To prove (4.19), observe that <(G1 + G2 + G3 + 1) = <(-1 + -2 (1 + -3) + 1), by the change
of variables (-1, -2, -3) = (G1, G2, G2/G3). Using again Jensen’s formula (4.6) one sees that
<(-1 + -2 (1 + -3) + 1) =<(max( |1 + C1 |, |1 + C2 |)), and we can compute

<(max( |1 + C1 |, |1 + C2 |)) =
1
c2

∫ c

0

∫ c

0
max(log|1 + 48C1 |, log|1 + 48C2 |)3C13C2 =

=
1
c2

(∫
0≤C2<C2≤c

log|1 + 48C1 |3C13C2 +
∫

0≤C1<C2≤c
log|1 + 48C2 |3C13C2

)
=

=
2
c2

∫ c

0
(c − \ ) log|1 + 48\ |3\ =

=
2
c2<(1 + C) −

2
c2

∫ c

0
\ log|1 + 48\ |3\ =

= − 2
c2

∫ c

0
\ log|1 + 48\ |3\
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where the last equality follows from Theorem 4.1.15. Now we can again use the power series for
the logarithm to get∫ c

0
\ log|1 + 48\ |3\ =

+∞∑
==1

(−1)=−1

=
<

(∫ c

0
\48=\3\

)
= −2

+∞∑
:=0

1
(2: + 1)3

where the last equality follows from the computation∫ c

0
C4UC3C =

4cU

U
−

∫ c

0

4UC

U
3C =

4cU (U − 1) + 1
U2

obtained integrating by parts. Hence we can see that

<(G1 + G2 + G3 + 1) = 4
c2

+∞∑
:=0

1
(2: + 1)3 =

4
c2

( +∞∑
==1

1
=3 −

+∞∑
==1

1
(2=)3

)
=

7
2c2 Z (3)

which concludes the proof. �

Remark 4.2.5. The identity<(G1 + G2 + 1) = !′(j−3,−1) is only the �rst example of identities of
the form

!′(j� ,−1)
<(%� )

∈ Q× (4.20)

where j� denotes the quadratic character associated to the imaginary quadratic �eld � , and
%� ∈ Z[G1, G2] is a polynomial with integer coe�cients. Identities of this kind are known in a
�nite number of special cases (see Table A.4), and Chinburg proved in [Chi84] that for every
imaginary quadratic �eld � there exist two polynomials %� , &� ∈ Z[G1, G2] such that

!′(j� ,−1)
<(%� ) −<(&� )

∈ Q×

but in general one has<(&� ) ≠ 0 (in Chinburg’s construction). Unfortunately Chinburg’s proof
never appeared in the literature, and we were not able to �nd an account of his construction
elsewhere. Nevertheless, in the same unpublished manuscript [Chi84], Chinburg conjectures that
identities of the kind (4.20) should hold for every imaginary quadratic �eld � . This conjecture was
our original inspiration for the work which appears in Chapter 9. Indeed, as we have mentioned
in Section 3.3.4, the special values of the !-functions !(j� , B) are amongst the few families of
examples for which the conjectures of Beilinson (see Conjecture 3.3.18) and Bloch-Kato (see
Conjecture 3.3.20) are completely known. Using in particular the constructions of Huber and
Kings (see [HK99] and [HK03]), which are related to modular curves, and the constructions
appearing in Chapter 5, we think that it should be possible to tackle new cases of Chinburg’s
conjecture. This will be the subject of future work. Instead, Chapter 9 focuses on the special
values !∗ (�, 2) associated to elliptic curves � with complex multiplication, for which a weak
form of Beilinson’s conjecture is also known to hold (see Section 7.4).

Remark 4.2.6. We observe that the polynomials G1 + G2 + 1 and G1 + G2 + G3 + 1 appearing in
Theorem 4.2.4 are part of the family %= := G1 + · · · + G= + 1, whose Mahler measures<(%=) are
sometimes called linear Mahler measures. We recall that Rodriguez Villegas used the insight
of Maillot, which is investigated in Chapter 5, to conjecture that<(%4) and<(%5) should be
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related to the special values of certain explicitly de�ned modular forms of weight three and four,
respectively (see [Boy+03, § 8] and [BZ20, § 6.2]).

Continuing with our historical introduction, the next crucial step to be mentioned consists in
Boyd’s extensive numerical computations, published in [Boy98]. These numerical computations
concerned certain explicitly given families of Laurent polynomials %: (G,~) ∈ Z[:] [G±1, ~±1],
whose zero locus +%: ⊆ G2

<,Z is birationally equivalent to an elliptic curve �: for almost all
values of : ∈ Z. The �rst example of such a family is given by

%: (G,~) = G +
1
G
+ ~ + 1

~
+ : (4.21)

whose zero locus is birationally equivalent to the elliptic curve given by the Weierstraß equation

�: : ~2 = G3 + (:2 − 8)G2 + 16G (4.22)

for every : ∈ Z \ {0,±4}. Boyd computed numerically that for every : ∈ Z \ {0,±4} such that
|: | ≤ 40 the ratio

U (%: ) :=
!∗ (�: , 0)
<(%: )

seemed to be a rational number, and in fact an integer for every |: | ∉ {23, 24, 25, 3, 5, 12, 15}. Here
!∗ (�, 0) = !′(�, 0) denotes the special value of the !-function of � at B = 0. Note that in this
case Conjecture 3.3.4 and Conjecture 3.3.6 hold for the !-function !(�, B) := !(� 1 (�), B) thanks
to the modularity theorem. We recall that<(%−: (G,~)) =<(%: (−G,~)) =<(%: (G,~)), hence it
is su�cient to study only positive values of : . Moreover, the Weierstraß equation (4.22) shows
that �: is de�ned over Q as soon as :2 ∈ Q, which originated some interest also in the ratios
U (%√

:
) for : ∈ Z. Other families of polynomials that were studied by Boyd are described in

Appendix A.1. For now, we content ourselves with remarking that most of these families were
tempered, in the sense of the following de�nition.

De�nition 4.2.7 – Tempered polynomial

Let % ∈ ' [G±1
1 , . . . , G±1

= ] be a Laurent polynomial with coe�cients in a ring ', and let
+% ↩→ G=

<,'
denote its zero locus inside the split algebraic =-torus G=

<,'
de�ned over '.

Fix an embedding ] : +% ↩→ +% of +% inside a proper '-scheme +% . Then % is said to be
tempered with respect to ] if there exists [% ∈ �=,=M (+% ) such that

]∗ ([% ) = {G1, . . . , G=} ∈ �=,=M (+% )

where {G1, . . . , G=} := {G1} ∪ · · · ∪ {G=} denotes the cup product of all the motivic co-
homology classes {G8 } ∈ � 1,1

M (+% ) � O(+% )
× ⊗Z Q induced by the coordinate functions

G8 : +% ↩→ G=
<,'
� G1

<,'
. Here � •,•M denotes motivic cohomology with rational coe�cients

(see De�nition 2.3.1).

Remark 4.2.8. Let � ∈ C[G±1
1 , G±1

2 ] be an irreducible Laurent polynomial in two variables, and
denote by Δ� ⊆ R2 its Newton polygon, which is de�ned to be the convex hull of the set of
indices j ∈ Z2 such that 0j (� ) ≠ 0, where {0j (� ) : j ∈ Z2} ⊆ C denote the coe�cients of the
polynomial � (G1, G2) =

∑
j 0j (� )xj written in multi-index notation. Fix a smooth, projective
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curve - de�ned over C such that C(- ) � Frac(C[G±1
1 , G±1

2 ]/(� )). Then [Coo+94, § 3] shows
that, supposing that 00 (� ) ≠ 0, one can associate to every side f of Δ� a point %f ∈ - (C) and a
power series 5f (C) ∈ CÈCÉ such that, if we set

G1 (C) := C? (f) and G2 (C) := C@ (f) 5f (C)

we obtain a local parametrisation of - around %f . Here ? (f) ∈ Z and @(f) ∈ N are such that
(? (f) : @(f)) ∈ P1 (Z) is the slope of the side f . Moreover, the same paper [Coo+94] shows
that for every point % ∈ - (C) which is either a zero or a pole of the coordinate functions G1
and G2, there exists a face f of Δ� such that % = %f . Finally it is known that the tame symbol
m%f ({G,~}) ∈ C× (see Equation (2.28)) satis�es

m%f ({G,~}) ∈ 〈±R(�f )〉Z (4.23)

where R(�f ) ⊆ C× denotes the set of roots of the face polynomial �f (C) :=
∑3 (f)
9=0 0f ( 9) (� )C 9 .

Here f (0), . . . , f (3 (f)) ∈ Z2 denote the points of f having integral coordinates, ordered by
reading the faces of Δ� counterclockwise.

Now, combining Proposition 2.3.7 with (4.23) and the fact that each zero or pole of the
coordinate functions on - can be expressed as a point of the form %f , we see that our Laurent
polynomial � ∈ C[G±1

1 , G±1
2 ] is tempered (with respect to any compacti�cation of +% ) if and only

if<(�f ) = 0 for every face f of the Newton polygon Δ� . This can be regarded already as an
interesting example of the relationships intercurrent between Mahler measures and motives.
More relations of this kind are investigated in the next section. Moreover, this gives us a practical
way to compute whether a polynomial is tempered. We refer the reader to [Rod99, § 8] for a
nice introduction to tempered polynomials, and to [DK11, Theorem 3.1] for a generalisation of
(4.23) to several variables.

The extensive computations of Boyd lead naturally to wonder for which Laurent polynomials
% ∈ Z[G±1

1 , G±1
2 ] one might expect a link between the Mahler measure<(%) and an !-value. This

is to this day a very open question. Even the condition of being tempered (see De�nition 4.2.7),
which appears like a natural one, does not seem to be necessary to get interesting links between
Mahler measures and special values of !-functions. This has been the subject of extensive
investigation in recent years (see [LSZ16],[LM18], [MS19], [Gia20]), and the results contained in
Chapter 9 (see also [Pen20]) give another class of polynomials which are usually not tempered,
whose Mahler measure is related to special values of !-functions. Nevertheless, we can give
a precise formulation of these types of questions, for polynomials in any number of variables.

Question 4.2.9 – Relations of Boyd type

Let % ∈ Q[G±1
1 , . . . , G±1

= ] be a Laurent polynomial such that <(%) ≠ 0, and denote by
+% ↩→ G=

<,Q
the zero locus of % . We ask the following two questions:

• suppose that Conjecture 3.3.4 holds for the !-function !(�=−1 (+% ), B). Under which
conditions on the polynomial % is it true that the ratio

!∗ (�=−1 (+% ), 0)
<(%) ∈ R×
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is a rational number, or even an integer?

• �x an open embedding ] : +% ↩→ +% of +% inside a proper Q-scheme +% , and a
desingularisation c : +̃% � +% . Under which conditions on the triple (%, ], c) is it
true that the ratio

!∗ (�=−1 (+̃% ), 0)
<(%) ∈ R×

is a rational number, or even an integer?
More generally, one can ask the same questions replacing the motives �=−1 (+% ) and
�=−1 (+̃% ) with suitable sub-motives.

We remark that Question 4.2.9 starts from a polynomial % and asks whether or not its Mahler
measure is linked to the special value of some !-function related to % . The inverse approach
leads to the following question.

Question 4.2.10 – Inverse problems of Boyd type

Let " ∈ MM(Q;Q) be a mixed motive over Q. Under which conditions does there exist
a polynomial % ∈ Q[G1, . . . , G=] such that<(%) ∈ R× and the quotient

!∗ (", 0)
<(%) ∈ R

×

is rational? Moreover, does there exist such a polynomial with the property that the motive
" can be identi�ed with a sub-motive of �=−1 (+% ) or �=−1 (+̃% ), where +% ↩→ G=< is the
zero locus of % and +̃% is some desingularisation of some compacti�cation of +%?

Finally, one can ask if the identities appearing in Question 4.2.9 can be “deformed” in a suitable
way. For example, one can ask whether these identities are sensitive to twists, i.e. isomorphisms
up to a �nite extension. This is made precise in the following question.

Question 4.2.11 – Twisting identities of Boyd type

Let % ∈ Q[G±1
1 , . . . , G±1

= ] be a Laurent polynomial which answers a�rmatively Ques-
tion 4.2.9. In particular, let us assume that<(%) ∈ R× and

!∗ (�=−1 (+̃% ), 0)
<(%) ∈ Q×

where +̃% denotes some desingularisation of some compacti�cation of the zero locus
+% ↩→ G=< . Let " ∈ MM(Q;Q) be a motive which is a twist of �=−1 (+̃% ), i.e. such
that "/� � �=−1 (+̃%/� ) for some number �eld � . Does there exist a Laurent polynomial
& ∈ Z[G±1

1 , . . . , G±1
= ] such that !∗ (", 0)/<(&) ∈ Q×? Is there an algorithmic way to

construct & starting from %?

We conclude this section with a series of remarks:

4.2 Mahler measures and special values of !-functions: an historical introduction 127



• Boyd’s computations considered mainly families of polynomials whose Newton polygon is
re�exive, i.e. it contains only one interior point with integer coordinates (see Appendix A.2).
A notable exception is provided by the families studied in [Boy98, § 3], which consist of
polynomials de�ning curves of genus two whose Jacobian splits into the product of two
elliptic curves. We refer the interested reader to [LQ19] for an extensive list of families
of polynomials de�ning curves of genus 2 and 3, whose Jacobian has a one-dimensional
factor. Some of the results conjectured by Boyd and Liu and Qin have been proved in
recent years, especially in the work of Bertin and Zudilin (see [BZ16; BZ17]) and Lalín
and Wu (see [LW18; LW20]);

• Question 4.2.9 has been answered in the positive for some polynomials in three variables
such that +% is (birationally equivalent to) a  3-surface. Moreover, variants of Ques-
tion 4.2.9 have been proved for polynomials in three variables, by replacing � 2 (+% ) with
a suitable one-dimensional sub-motive. We cite in particular the work of Bertin and
collaborators (see [Ber08; Ber10; Ber+13]), the paper [PRS14] by Papanikolas, Rogers and
Samart and the article [BN18] by Brunault and Neururer;

• we see in the next chapter that Question 4.2.9 has a negative answer for a certain class of
polynomials, which satisfy suitable exactness conditions. In particular, the next chapter
contains the outline of a framework which allows one to generalise Question 4.2.9 to these
kinds of exact polynomials.

4.3 Mahler measures, motives and regulators
The aim of this section is to present the work of Deninger [Den97a], later re�ned by the

work of Besser and Deninger [BD99] and Bornhorn (see [Bor99] and [Bor15]), which relates
the Mahler measure of a polynomial to regulators and periods of mixed motives. The main
idea is the following: one can use Jensen’s formula to change the domain of integration for the
Mahler measure, in such a way that the resulting di�erential form, albeit not closed, can be
easily modi�ed to a closed form without changing the value of the integral in question. The �rst
step towards this is provided by the following proposition (see [Den97a, Proposition 3.3]).

Proposition 4.3.1 – Deninger’s integral

Let % ∈ C[G±1
1 , . . . , G±1

= ] \ {0} be a non-zero Laurent polynomial, such that:

D.1 if we write % (G1, . . . , G=) =
∑degG= (% )
8=80

08 (G1, . . . , G=−1)G8= with 08 ∈ C[G±1
1 , . . . , G±1

=−1]
and %∗ := 080 ≠ 0 then 80 = 0 and {z ∈ T=−1 | 080 (z) = 0} = ∅;

D.2 if we let +% ↩→ G=
<,C

denote the zero locus of % , and W% denote the sub-space

W% := {z ∈ (C×)= | |I1 | = · · · = |I=−1 | = 1, |I= | ≤ 1} ∩+% (C) (4.24)

then W% ∩+ sing
%
(C) = ∅. We orient W% using the canonical orientation coming from

the real analytic torus T= .
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Then we have that
<(%) =<(%∗) − 1

(2c8)=−1

∫
W%

[=

where [= is the smooth di�erential form on G=
<,C

de�ned by

[= :=
=∑
9=1

(−1)=+9
=!

∑
f ∈S=

sgn(f) log|Gf (1) |
3Gf (2)
Gf (2)

∧ · · · ∧
3Gf ( 9)
Gf ( 9)

∧
3Gf ( 9+1)
Gf ( 9+1)

∧ · · · ∧
3Gf (=)
Gf (=)

(4.25)
where S= denotes the symmetric group on = letters. The di�erential form [= is closed on
+

reg
%

↩→ G=
<,C

.

Proof. Jensen’s formula, as stated in [SS03, Chapter 5, Theorem 1.1], implies that, for every
z′ ∈ T=−1 such that %∗ (z′) ≠ 0 we have that∫

T1
log|% (z′, U) |3`T1 (U) = log|%∗ (z′) | −

∑
U ∈� (0;1)◦\{0}
% (z′,U)=0

log|U | (4.26)

where � (0; 1) := {I ∈ C | |I | ≤ 1}. This implies that

<(%) =
∫
T=−1

(∫
T1

log|% (x′, G=) |3`T1 (G=)
)
3`T=−1 (x′) =

=

∫
T=−1

log|%∗ (x′) | −
∑

G= ∈� (0;1)◦\{0}
% (x′,G=)=0

log|G= |3`T=−1 (x′) =

=<(%∗) − 1
(2c8)=−1

∫
W%

log|G= |
3G1

G1
∧ · · · ∧ 3G=−1

G=−1

because `T=−1 ({z′ ∈ T=−1 | %∗ (z′) = 0}) = 0 (see Remark 4.1.3). Now we can observe that

<(%) =<(%∗) − 1
(2c8)=−1

∫
W%

log|G= |
3G1

G1
∧ · · · ∧ 3G=−1

G=−1
=<(%∗) − 1

(2c8)=−1

∫
W%

[%

because the di�erential form
log|G= |

3G1

G1
∧ · · · ∧ 3G=−1

G=−1

coincides with [= on W% . Indeed, we have that

[=
��
W%

=

=∑
9=1

(−1)=+9
=!

∑
f ∈S=
f (1)==

sgn(f) log|G= |
3Gf (2)
Gf (2)

∧ · · · ∧
3Gf ( 9)
Gf ( 9)

∧
3Gf ( 9+1)
Gf ( 9+1)

∧ · · · ∧
3Gf (=)
Gf (=)

(4.27)

=
(−1)=−1

(= − 1)!
∑
f ∈S=
f (1)==

sgn(f) log|G= |
3Gf (2)
Gf (2)

∧ · · · ∧
3Gf (=)
Gf (=)

(4.28)
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= log|G= |
3G1

G1
∧ · · · ∧ 3G=−1

G=−1
(4.29)

where (4.27) follows from the fact that log|G 9 | = 0 on W% for every 9 ∈ {1, . . . , = − 1}, because
|G1 | = · · · = |G=−1 | = 1 on W% . Moreover, (4.28) follows from the equality

3I

I

����
T1

=
3 (I−1)
I−1 = −3I

I

and (4.29) follows from the alternating property of the wedge product, which gives

3G1

G1
∧ · · · ∧ 3G=−1

G=−1
= (−1)=−1 sgn(f)

3Gf (2)
Gf (2)

∧ · · · ∧
3Gf (=)
Gf (=)

for every f ∈ S= such that f (1) = =. Finally, we easily see that

3 ([=) = ℜ= (3 log(G1) ∧ · · · ∧ 3 log(G=))

where ℜ2<+1 (I) := <(I) and ℜ2< (I) = =(I) for every< ∈ N. This implies, using the Cauchy-
Riemann equations for % , that [= is closed when restricted to + reg

%
. �

It is now worth re�ecting upon the two conditions D.1 and D.2 which appear in Propo-
sition 4.3.1. First of all, the following lemma shows that one can always modify a polynomial,
without changing its Mahler measure, in such a way that it satis�es D.1 (see [BD99, Fact 2.1]).

Lemma 4.3.2 – Introducing constant terms

Let ' be a ring and let % ∈ ' [G±1
1 , . . . , G±1

= ]. Then there exist W ∈ Z= o GL= (Z) and
00 ∈ ' \ {0} such that

%W − 00 ∈ G= · ' [G1, . . . , G=]

where %W := (W ∗ %) denotes the W-image of % under the action of Z= o GL= (Z) on
' [G±1

1 , . . . , G±1
= ], which is given by

(v o�) ∗ % := (G E1
1 · · · G

E=
= ) · % (G

01,1
1 · · · G0=,1= , . . . , G

01,=
1 · · · G0=,== ) (4.30)

for every vector v = (E1, . . . , E=) ∈ Z= and every matrix � = (08, 9 ) ∈ GL= (Z). In particular,
if ' ⊆ C then %W satis�es the condition D.1 appearing in Proposition 4.3.1, and we have
that<(%W ) =<(%).

Proof. We proceed by induction on = ∈ N. If = = 0 there is nothing to prove, and if = = 1 there
exists E1 ∈ Z such that G E1

1 % (G1) =
∑3
9=0 0 9G

9

1 with 00 ≠ 0. Hence we can take � = 1 ∈ GL1 (Z)
and v = (E1) ∈ Z. Now, assume that = ≥ 2. Then there exists w ∈ Z= such that

(GF1
1 · · · G

F=
= ) · % = %1 (G2, . . . , G=) + G1&1 (G1, . . . , G=) (4.31)
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where %1 ∈ ' [G2, . . . , G=] and &1 ∈ ' [G1, . . . , G=]. If we set W ′ ∈ Z= o GL= (Z) to be the element
de�ned as W ′ := w o �, where

� =
©­­«
1

. . .

1 . . . 1

ª®®¬ ∈ GL= (Z)

we see from (4.31) that
%W ′ = %2 (G2, . . . , G=) + G=&2 (G1, . . . , G=)

where %2 := %1 (G2G=, · · · , G=−1G=, G=) and &2 := G1&1 (G1G=, . . . , G=−1G=, G=). Now, by induction
we know that there exist W ′′ ∈ Z=−1 o GL=−1 (Z) and 00 ∈ ' \ {0} such that

(%2)W ′′ − 00 ∈ G=' [G2, . . . , G=]

which shows that %W − 00 ∈ G=' [G1, . . . , G=] if we take W := W ′ · ]= (W ′′). Here ]= denotes the
embedding

]= : Z=−1 o GL=−1 (Z) ↩→ Z= o GL= (Z)

v o� ↦→ (0, v) o
©­­­­«
1 0 . . . 0
0

�...

0

ª®®®®¬
which makes Z=−1 o GL=−1 (Z) act on the last = − 1 coordinates of ' [G±1

1 , . . . , G±1
= ]. To con-

clude, %W clearly satis�es D.1 with %∗ = 00 (a constant). Moreover, <(%W ) = <(%), because
<(G E1

1 · · · G
E=
= ) = 0 for every v ∈ Z= (compare with Theorem 4.1.15) and<(%�) =<(%) for every

� ∈ GL= (Z), as one can observe by performing a change of variables in the integral (4.3). �

Getting rid of the second restriction D.2 appearing in Proposition 4.3.1 is more di�cult. This
can be done when = = 2 as long as+% (C)sing ∩T2 = ∅, as the following result of Bornhorn shows
(see [Bor99, Lemma 5.2.8] and [Bor15, Lemma 1.7]).

Lemma 4.3.3 – Eliminating singularities in Deninger’s cycle

Let % ∈ C[G±1
1 , G±1

2 ] \ {0} and denote by +% ↩→ G2
<,C

the zero locus of % . Suppose that
+% (C)sing ∩T2 = ∅ and that there exists 00 ∈ C× such that % −00 ∈ G2C[G1, G2] (which can
always be achieved by Lemma 4.3.2). Then there exists a matrix � ∈ GL2 (Z) such that, if
we set & := %� we have that

& − 00 ∈ G2C[G1, G2] and W& ∩+ sing
&
(C) = ∅

where W& is the cycle de�ned in (4.24).

Proof. Write % = 00 +
∑3
9=1 0 9 (G1)G 92 and take< ∈ N such that

< + 1 > max
{
{deg(0 9 )}39=1 ∪

{���� log|U2 |
log|U1 |

���� : (U1, U2) ∈ +% (C)sing, |U1 | ≠ 1
}}

(4.32)
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which surely exists because the set +% (C)sing is �nite. Then we can take � ∈ GL2 (Z) to be the
matrix

� :=
(
−1 <

−1 < + 1

)
which is surely invertible since det(�) = −1. Moreover, we have that & − 00 ∈ G2C[G1, G2]
because we have chosen < > deg(0 9 ) for every 9 ∈ {1, . . . , 3}. Finally, let us show that
+& (C)sing ∩ W& = ∅. Indeed, if by contradiction (V1, V2) ∈ +& (C)sing ∩ W& then |V1 | = 1 and
(U1, U2) := ((V1V2)−1, V<1 V

<+1
2 ) ∈ +% (C)sing. This implies that���� log|U2 |

log|U1 |

���� =< + 1

which contradicts (4.32) unless |U1 | = 1. But in this case we would have that

(U1, U2) ∈ +% (C)sing ∩ T2

which contradicts the hypothesis +% (C)sing ∩ T2 = ∅, and thus we conclude that it was absurd
to suppose that +& (C)sing ∩ W& ≠ ∅. �

Let us now use Proposition 4.3.1 to achieve the main result of this section, which relates Mahler
measures and regulators. This result has been proved by Deninger in [Den97a, Theorem 3.4].

Theorem 4.3.4 – Mahler measures and regulators

Let  ⊆ C be a �eld, and % ∈  [G±1
1 , . . . , G±1

= ] \ {0} be a non-zero Laurent polynomial.
Suppose that at least one of the following holds:

• the condition D.2 of Proposition 4.3.1 is satis�ed;

• = = 2, and T2 ∩+% (C)sing = ∅.
Then there exist a sub-set Δ% ⊆ +% (C)reg, a relative homology class

U% ∈ � sing
=−1 (+% (C)

reg,Δ% ;Z(1 − =))

and a number 00 ∈  × such that

<(%) = log|00 | + 〈A∞+ reg
%

({G1, . . . , G=}), U% 〉per (4.33)

where 〈·, ·〉per denotes the period pairing induced by (2.8), and A∞
+

reg
%

denotes Beilinson’s
regulator (see Example 2.4.6) applied to the motivic cohomology class

{G1, . . . , G=} := {G1} ∪ · · · ∪ {G=} ∈ �=,=M (+
reg
%

;Q)

where {G1}, . . . , {G=} ∈ � 1,1
M (+

reg
%

;Q) � O(+ reg
%
)× ⊗Z Q.
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Proof. Combining Lemma 4.3.2 and Lemma 4.3.3 we see that there exist V ∈ Z= o GL= (Z) and
00 ∈  × such that& −00 ∈ G= [G1, . . . , G=] and W& ∩+& (C)sing = ∅, where& := %V . In particular,
applying Proposition 4.3.1 we see that

<(%) =<(&) = log|00 | −
1

(2c8)=−1

∫
W&

[=

where W& is de�ned as in (4.24) and [= is the di�erential form de�ned in (4.25).
Now, observe that �=,=D (+

reg
&

;R) � �
=−1,=−1
dR (+ reg

&
;R) because dim(+ reg

&
) = = − 1. Moreover,

using the description of the cup-product provided by Remark 2.5.2 one easily sees (by induction
on = ∈ N) that the the cohomology class A∞

+
reg
&

({G1, . . . , G=}) ∈ �=−1,=−1
dR (+ reg

&
;R) is represented

by the restriction of [= to + reg
&

, which is a closed form as we pointed out in Proposition 4.3.1.
Hence we get that A∞

+
reg
&

({G1, . . . , G=}) de�nes a relative cohomology class

A∞
+

reg
&

({G1, . . . , G=}) ∈ �=−1,=−1
dR (+ reg

&
,T= ;R) ⊆ �=−1,=−1

dR (+ reg
&
, mW& ;R)

because [= vanishes (as a di�erential form) on the real torus T= ⊇ +& (C) ∩ T= ⊇ mW& . Finally,
we observe that W& ⊆ (C×)= is a semi-algebraic set (see [HM17, § 2.6]). Hence we can use the
triangulation theorem for semi-algebraic sets (see [Hir75]) to get a relative homology class
[W& ] ∈ � sing

=−1 (+& (C)reg, mW& ;Z) such that

〈A∞
+

reg
&

({G1, . . . , G=}), [W& ] ⊗ (2c8)1−=〉per =
1

(2c8)=−1

∫
W&

[= .

We conclude by setting Δ% := qV (mW& ) and U% := qV∗ (−[W& ]), where qV : G=
<,C
−→∼ G=

<,C
is the

isomorphism induced by V which sends +& to +% . �

Remark 4.3.5. Note that, in the statement and proof of Theorem 4.3.4, we are using implicitly the
comparison between algebraic de Rham cohomology and analytic de Rham cohomology. Indeed,
the subset Δ% ⊆ +% (C)reg featured in the theorem cannot be obtained as the complex points of
a sub-variety. However, there is a way around this, which is implicitly stated by Deninger in
[Den97a, Page 274]. More precisely, Deninger writes:

"In general if one wishes to interpret the formula in Proposition 3.3 in terms of
Deligne cohomology or even K-theory, it will be necessary to replace m� by an
algebraic variety. Possibly some complexi�cation will do..."

Indeed, one can proceed as follows. Let S= := NC/R (G=<,C) denote the =-dimensional Deligne
torus (see [Mil13, § 5]), where NC/R denotes Weil’s restriction of scalars (see [BLR90, § 7.6]). We
recall that S= is a scheme over R, such that S= (R) = G=

<,C
(C) = (C×)= . Moreover, there exists a

scheme-theoretic map g : S= → G=
<,R which on real points is given by I → II. Hence we have

that ker(g) (R) = T= , and in particular for every Laurent polynomial % ∈ C[G±1
1 , . . . , G±1

= ] we can
identify the set T=∩+% (C) with the real points of the sub-scheme�% := ker(g)∩NC/R (+% ) ↩→ S= .
Proceeding similarly to what we have done in Theorem 4.3.4 one is able to write

<(%) = log|00 | + 〈A∞+ reg
%,R

({G1, ~1, . . . , G=, ~=}), U%,R〉per
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where +%,R := NC/R (+% ) ↩→ S= and G1, ~1, . . . , G=, ~= ∈ O(S=)× are the coordinate functions.
Now, the homology class U%,R is relative to Δ%,R := �% (R), and hence we can view the di�erential
form A∞

+
reg
%,R

({G1, ~1, . . . , G=, ~=}) as an element of a relative algebraic de Rham cohomology group.

Thus if one believes in the injectivity of the Beilinson regulator map associated to +% (when
% ∈ Q[G±1

1 , . . . , G±1
= ]) one is able to see {G1, ~1, . . . , G=, ~=} as a relative motivic cohomology class.

The details of this construction, as well as applications of this point of view, will be the subject
of future research.

Remark 4.3.6. Deninger uses Theorem 4.3.4 to prove that, under the same assumptions on the
polynomial % ∈  [G±1

1 , . . . , G±1
= ], the Mahler measure<(%) appears as the period of a mixed

motive"% ∈ MM( ;Q). Let us recall brie�y its construction. First of all, recall that the general
linear group GL= (Z) acts on G=

<,C
via the action

� ∗ (G1, . . . , G=) := (G01,1
1 · · · G0=,1= , . . . , G

01,=
1 · · · G0=,== )

which was already used in Lemma 4.3.2. Then for every �nite subgroup Γ ⊆ GL= (Z) one
associates to each sub-scheme - ↩→ G=

<, 
the following two schemes

-tΓ :=
⊔
W ∈Γ

-W → G=<, 

-∪Γ :=
⋃
W ∈Γ

-W ↩→ G=<, 

which can both be thought of as a sort of “completion” of - along the action of Γ. Using these
schemes, one can de�ne four motives over  with coe�cients in any ring Λ such that |Γ | ∈ Λ×.
This can be done in any of the abelian categoriesMM( ;Λ) de�ned in Section 2.2.2, by setting:

"t%,Γ := 4Γ
(
�=,= (G=<, ,+

tΓ
% )

)
"
t,reg
%,Γ := 4Γ

(
�=,= (G=<, , (+

reg
%
)tΓ)

)
"∪%,Γ := 4Γ

(
�=,= (G=<, ,+

∪Γ
% )

)
"
∪,reg
%,Γ := 4Γ

(
�=,= (G=<, , (+

reg
%
)∪Γ)

) (4.34)

where 4Γ ∈ Λ[Γ] denotes the element of the group algebra Λ[Γ] de�ned by:

4Γ :=
1
|Γ |

∑
W ∈Γ

det(W) [W−1] ∈ Λ[Γ]

which is an idempotent, and acts as a projector on any motive endowed with an action of Γ.
Now, for every subgroup Γ ⊆ GL= (Z) such that 4Γ (�=−1,= (G=

<, 
)) = 0, Deninger observes that

the relative cohomology exact sequence (see De�nition 2.1.4):

· · · → �=−1,= (G=<, ) → �=−1,= (+ tΓ% ) → �=,= (G=<, ,+
tΓ
% ) → �=,= (G=<, ) → �=,= (+ tΓ% ) → . . .

shows that "t
%,Γ ∈ Ext1 (Λ(0), �=−1,= (+% )). Indeed, �=,= (+ tΓ

%
) = 0 because + tΓ

%
is a�ne and

dim(+ tΓ
%
) = = − 1. Moreover, 4Γ (�=−1,= (G=

<, 
)) = 0 by assumption, and it is easy to see that

�=,= (G=
<, 
) � Λ(0), with trivial Γ-action. Finally, there is a canonical isomorphism

�=−1,= (+% ) � 4Γ (�=−1,= (+ tΓ% ))

134 Chapter 4 An introduction to the Mahler measure



which comes from the de�nition of+ tΓ
%

. One can show similar results for the other three motives
mentioned in (4.34). Moreover, Deninger shows that, under the assumptions of Theorem 4.3.4,
the Mahler measure<(%) appears in the image of the period pairing

("∨%,Γ (1))+B × � 0 ("%,Γ)dR → R

where "%,Γ is any of the motives de�ned in (4.34), and Γ ⊆ GL= (Z) is any �nite subgroup such
that 4Γ (�=−1,= (G=

<, 
)) = 0.

In particular, one can use as Γ ⊆ GL= (Z) any �nite subgroup which contains the diagonal
matrix − Id= ∈ GL= (Z). Indeed, Künneth’s formula shows that

�=−1 (G=<) �
=⊕
8=1

Λ(1 − =) (4.35)

and any matrix W ∈ GL= (Z) acts on the 8-th component in the sum (4.35) as multiplication by
det(W (8) ) ∈ {±1}, whereW (8) ∈ GL=−1 (Z) denotes the (=−1)-minor obtained by removing the 8-th
row and column. Since det(− Id=) = (−1)= = −(−1)=−1 = − det(W (8) ) for every 8 ∈ {1, . . . , =}, we
see that the projector [Id=] + (−1)= [− Id=] acts as the zero map on �=−1 (G=<). We observe that
Maillot’s trick, which is the subject of the following chapter, is strongly related to the previous
discussion, specialised to the choice of subgroup Γ ⊆ GL= (Z) given by Γ := {Id=,− Id=}.

It would be very interesting to generalise Deninger’s construction to every Laurent polynomial
% ∈  [G±1

1 , . . . , G±1
= ] de�ned over a number �eld ⊆ C. This would give us a more or less explicit

way to construct a motive "% ∈ MM( ;Q) such that<(%) appears as a period of "% , with
the property that "% is “as small as possible”. Approaching this question would undoubtedly
require a generalisation of Theorem 4.3.4, of the kind discussed in Remark 4.3.5.

4.4 Some explicit computations
The aim of this �nal section of the current chapter is to show two di�erent kinds of examples

of explicit computations related to the techniques outlined in Section 4.3. First of all, we show
how Theorem 4.3.4 can be used to relate special values of !-functions to Mahler measures,
assuming Beilinson’s conjecture (see Conjecture 3.3.18). Then, we use the methods developed
by Rodriguez Villegas in [Rod99] to compute explicit expressions for the Mahler measure of
polynomials in families.

4.4.1 Mahler measures and Beilinson’s conjecture
We start by recalling the theorem which inspired this whole section, which is due to Deninger

(see [Den97a, Page 274]) and Bornhorn (see [Bor99, Satz 5.3.8] and [Bor15, Theorem 2.2]).

Theorem 4.4.1 – Beilinson’s conjecture and Deninger’s family

Let %: (C1, C2) := C1 + 1
C1
+ C2 + 1

C2
+ : ∈ Z[:] [C±1

1 , C±1
2 ] be Deninger’s family de�ned in (4.21).

Fix : ∈ C such that :2 ∈ Z \ {0,±4}. Then Beilinson’s conjecture (see Conjecture 3.3.18)
for the motive � 1 (�: ) implies that

!′(�: , 0)
<(%: )

∈ Q×
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where �: denotes the elliptic curve de�ned by the a�ne Weierstraß equation

�: : ~2 − :G~ = G3 − 2G2 + G

which is birationally equivalent to the zero locus of %: , and isomorphic over Q to the
elliptic curve de�ned in (4.22).

Let us review the strategy used in the proof of Theorem 4.4.1, before applying it to another
example. The conjectural 5 -admissibility of the motive � 1 (�: ) (see Conjecture 3.3.16) implies
that dim(� 2,2

5
(�: )) = 1, and Beilinson’s conjectures imply that for every 2: ∈ � sing

1,1 (�: (C);Z)
there exists V: ∈ � 2,2

5
(�: ) such that !′(�: , 0) = 〈A∞�: (V: ), 2:〉per, where A∞

�:
denotes Beilinson’s

regulator (see Example 2.4.6). Since %: is reciprocal, one can use Theorem 4.3.4 to show that
there exists a class U: ∈ � sing

=−1,1−= (+%: (C)reg;Z) such that

<(%: ) = 〈A∞+%: ({G,~}), U:〉per (4.36)

because in this case we can take 00 = 1 in (4.33). Combining this with the prediction

dim(� 2,2
5
(�: ))

?
= 1

it is su�cient to show that there exists a class l: ∈ � 2,2
5
(�: ) such that i: (l: ) = {G,~}, where

i: denotes the restriction map

i: : � 2,2
5
(�: ) → �

2,2
M (�: ) → �

2,2
M (+

reg
%:
)

induced by the inclusion + reg
:

↩→ �: . Since we can view G,~ ∈ Q(�: ), the existence of l: can
be proved using the following result of Schappacher-Scholl [SS91, Proposition 3.2] (compare
with Proposition 2.3.7 and [DJZ06, Remark 3.8]).

Theorem 4.4.2 – Computing 5 -cohomology for elliptic curves

For every elliptic curve � de�ned over a number �eld ^ we have � 2,2
5
(�) � ker(m), where

m :
(^ (�)× ⊗Z Q)⊗2

〈ℎ ⊗ (1 − ℎ) : ℎ ∈ ^ (�)× \ {1}〉 →
©­«
⊕
G ∈ |� |

^ (G)× ⊗Z Q
ª®¬ ⊕

(⊕
p∈(�
Q

)
is a family of residue maps, indexed over the set of closed points G ∈ |� | and the set (� of
maximal ideals p ⊆ O^ at which � has split multiplicative reduction. More precisely, the
components mG at closed points G ∈ |� | are given by the formula

mG ({5 , 6}) := (−1)ordG (5 ) ordG (6) 5
ordG (6)

6ordG (5 )

����
G
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which already appeared in (2.28). Here 5 , 6 ∈ ^ (�)× is any pair of functions, and

{5 , 6} ∈ (^ (�)× ⊗Z Q)⊗2

〈ℎ ⊗ (1 − ℎ) : ℎ ∈ ^ (�)× \ {1}〉

denotes the class of the tensor 5 ⊗ 6 inside the quotient.
Let now E → Spec(O^) be the minimal regular model of � (see [Liu02, § 9.3.3]), and

denote by Ep its �bres at di�erent primes p ⊆ O^ . Then for every p ∈ (� and every pair
of functions 5 , 6 ∈ ^ (�)× such that ( 5 ,6 ⊆ Ereg

p , where ( 5 ,6 denotes the set of zeros and
poles of 5 and 6, we have that

mp ({5 , 6}) := ± 1
3#p (�)

∑
D,E∈Z/#p (�)

X 5 ,p (D) X6,p (D + E) �3

({
E

#p (�)

})
(4.37)

where:
• #p (�) ∈ N denotes the number of connected components of Ep, which is a Néron

polygon (see [Sil94, Chapter IV, Theorem 8.2]) because we are assuming that �
has split multiplicative reduction at p. We note that #p (�: ) = ordp (Δp (�: )) where
Δp (�: ) ∈ denotes the minimal discriminant of the base change of �: to the p-adic
completion of ^ (see [Sil09, Chapter VII, § 1]);

• for every function ℎ ∈ ^ (�)× with divisor div(ℎ) = ∑
G ordG (ℎ) [G] whose support

(ℎ is contained in the smooth part of the �bre Ep for some p ∈ (� , we write

Xℎ,p : Z/#p (�) → Z

= ↦→
∑
G

ordG (ℎ)XG,p (=)

where XG,p (=) = 1 if and only if G lies in the =-th component of the Néron polygon
Ep, and XG,p (=) = 0 otherwise;

• �3 (C) := C3 − 3
2C

2 + 1
2C is the third Bernoulli polynomial;

• {E/#p (�)} denotes the unique representative of the quotient E/#p (�) ∈ Q/Z such
that 0 ≤ {E/#p (�)} < 1.

Thus if one proves that {G,~} ∈ ker(m) then one can combine Theorem 4.4.2 with (4.36)
to obtain Theorem 4.4.1. Let us see what this entails in practice, by studying a di�erent fam-
ily of polynomials appearing in Boyd’s numerical investigations (see [Boy98, Table 2] and
Appendix A.1).

Theorem 4.4.3 – Beilinson’s conjecture and a polynomial family

Let %: (C1, C2) ∈ Z[:] [C±1
1 , C±1

2 ] denote the family of polynomials

%: (C1, C2) = C1 +
1
C1
+ C2 +

1
C2
+ C1
C2
+ C2
C1
+ :
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with zero locus +%: ↩→ G2
< . Denote by �: the curve de�ned by the Weierstraß equation

�: : ~2 + :G~ − 2~ = (G − 1)3 (4.38)

which is birationally equivalent (over Q) to+%: . Then the validity of Beilinson’s conjecture
(see Conjecture 3.3.18) for the motive � 1 (�: ) implies that

!′(�: , 0)
<(%: )

∈ Q× (4.39)

for every : ∈ Z \ {−6, 2, 3}.

Proof. The polynomial %: is evidently tempered (see Remark 4.2.8) and reciprocal, hence we can
apply [Bor15, Corollary 1.9] (see also [LW20, Equation 9]) to see that there exists a homology
class U: ∈ � sing

1,−1 (+%: (C)reg;Z) such that

<(%: ) = 〈A∞+%: ({C1, C2}), U:〉per (4.40)

for every : ∈ Z \ {−6, 2, 3}. We note in passing that if : ∈ {−6, 2, 3} then T2 ∩+% (C)sing ≠ ∅,
and the Weierstraß equation (4.38) is singular. One can indeed show that

<(%−6) = 5!′(j−3,−1)
<(%2) =<(G + ~) +<(~ + 1) +<(G + 1) = 0
<(%3) =<(G + ~ + 1) +<(G + ~ + G~) = 2!′(j−3,−1)

(4.41)

where the �rst result is due to Rodriguez Villegas (see [Boy98, Page 54]), the second is easy
to show (see also Theorem 4.1.15) and the third follows from the computations of Smyth (see
Theorem 4.2.4). Observe now that we have a birational identi�cation

�: d +%:

(G,~) ↦→
(
G + ~ − 1
G + : − 3

,
(1 − :)G − ~ + 1

G + : − 3

) (4.42)

whose inverse is given by

+%: d �:

(C1, C2) ↦→
(
(C1 + C2) (3 − :)
C1 + C2 + : − 2

,
(: − 2) (C2 + 1 + (: − 2)C1)

C1 + C2 + : − 2

) (4.43)

where the coordinates (C1, C2) on +%: are induced by %: and the coordinates (G,~) on �: are
given by the Weierstraß equation (4.38). Hence to conclude the proof it is su�cient to show that
for every prime ? ∈ (�: we have that m? ({5 , 6}) = 0, where m? is the map de�ned in (4.37), and
5 , 6 ∈ Q(�)× denote the functions

5 :=
G + ~ − 1
G + : − 3

and 6 :=
(1 − :)G − ~ + 1

G + : − 3
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appearing in (4.42). To do so, we use the explicit formula (4.37), and in particular we show that
for each prime ? ∈ (�: and every = ∈ Z/#? (�: ) we have that X 5 ,? (=) = X6,? (=) = 0. This is done
by studying the order of the images of points G ∈ ( 5 ,6 in the Néron component group

Φ? (�: ) :=
� (Q? )
�0 (Q? )

�
Z

#? (�: )

where �0 (Q? ) ⊆ � (Q? ) denotes the subgroup of points with non-singular reduction. More
precisely, we use the fact that

ordΦ? (�: ) (G) = ordΦ? (�: ) (~) ⇒ XG,? (=) = X~,? (=) (4.44)

for every ? ∈ (�: and every pair of points G,~ ∈ � (Q). This is combined with the explicit form
of the divisors of 5 and 6, which is given by

div(5 ) = (4&) + (3&) − (&) − (0)
div(6) = (2&) + (3&) − (5&) − (0) = [−1]∗ (div(5 ))

(4.45)

where [−1] : �: → �: is the inversion map, and & := (3 − :, (: − 2)2) ∈ �: (Q) [6] = �: (Q)tors
denotes the generator of the torsion subgroup of �: (Q), whose multiples are given by

& = (3 − :, (: − 2)2) 2& = (1, 2 − :) 3& = (0, 1)
4& = (1, 0) 5& = (3 − :, : − 2) 6& = 0.

Let us dive into the details of the proof. First of all, we de�ne two polynomials:

24 (:) = :4 − 24:2 + 48:
Δ(:) = (: + 6) (: − 3)2 (: − 2)3

which are the 24-invariant and the discriminant of the Weierstraß equation (4.38) (see for example
[Sil09, Chapter III, § 1]). Then we know by [Sil09, Chapter VII, Proposition 5.1] that ? ∈ (�:
if and only if ? ∈ N is a rational prime such that ? | Δ(:) and ? - 24 (:). Suppose that ? ≥ 3
and ? | (: − 2). Then ? | Δ(:) and ? - : (: − 3), which implies that ? - 24 (:) because
24 (:) = : (:3 − 24(: − 2)). This shows that ? ∈ (�: and also that the Weierstraß equation (4.38)
is minimal at the prime ? (see [Sil09, Chapter VII, Remark 1.1]). Thus #? (�: ) = ord? (Δ(:)) = 3,
and the reduction of �: modulo ? is given by the curve ~2 +2G~−2~ = (G −1)3, which is singular
exactly at the points 2& = 4& = (1, 0). This shows that

ordΦ? (�: ) (<&) =
{

1, if< ≡ 0, 3(6)
3, if< ≡ 1, 2, 4, 5(6)

which in turn implies, as we have seen, that X&,? (=) = X2&,? (=) = X4&,? (=) = X5&,? (=) and
X3&,? (=) = X0,? (=) for every = ∈ Z/#? (�: ). Finally, we see that

X 5 ,? (=) = (X4&,? (=) − X&,? (=)) + (X3&,? (=) − X0,? (=)) = 0
X6,? (=) = (X2&,? (=) − X5&,? (=)) + (X3&,? (=) − X0,? (=)) = 0
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for every = ∈ Z/#? (�: ), where ? ∈ N is any rational prime such that ? ≥ 3 and ? | (: − 2). We
can proceed in a similar way to analyse the other primes ? | Δ(:), dividing our discussion in
the following cases:

• ? ≠ 3 and ? | (: − 3). Then ? - 24 (:) because 24 (:) = 9+ (: − 3) (:3 + 3:2− 15: + 3), which
shows again that ? ∈ (�: and the Weierstraß equation (4.38) is minimal. Then #? (�: ) = 2
and we have that

ordΦ? (�: ) (<&) =
{

1, if< ≡ 0, 2, 4(6)
2, if< ≡ 1, 3, 5(6)

which can be used in combination with (4.44) to see that

X 5 ,? (=) = (X4&,? (=) − X0,? (=)) + (X3&,? (=) − X&,? (=)) = 0
X6,? (=) = (X2&,? (=) − X0,? (=)) + (X3&,? (=) − X5&,? (=)) = 0

for every = ∈ Z/#? (�: );
• ? ≥ 5 and ? | (:+6). In this case ? - 24 (:) because 24 (:) = 144+(:+6) (:3−6:2+12:−24),

hence ? ∈ (�: and the Weierstraß equation (4.38) is minimal. Thus #? (�: ) = 1, which
immediately shows that X 5 ,? (=) = X6,? (=) = 0;

• ? = 2 and 2 | : . Then �: has additive reduction at ? = 2, which implies that 2 - (�: , unless
either 24 | (: − 2) or 24 | : + 6. If 24 | (: − 2) then the Weierstraß equation (4.38) is not
minimal at ? = 2. However, it is easy to see that a 2-minimal Weierstraß equation for �:
is given by

�: : ~2 + :
2
G~ + : − 2

8
~ = G3 (4.46)

and this new equation shows that 2 ∈ (�: whenever 24 | (: − 2). In this case we see that
#2 (�: ) = 3, and (4.46) reduces modulo 2 to the curve ~2 + G~ = G3, which is singular at
the point (0, 0). This implies that

ordΦ2 (�: ) (<&) =
{

1, if< ≡ 0, 3(6)
3, if< ≡ 1, 2, 4, 5(6)

which shows once again that X 5 ,2 (=) = X6,2 (=) = 0 for every = ∈ Z/#2 (�: ). On the other
hand, if 24 | (: + 6) then the 2-minimal Weierstraß equation for �: is given by

~2 + :
2
G~ − 3

8
(: + 6)~ = G3 − 3G2 + : + 6

2
G − 3

8
(: + 6)

which shows that #2 (�: ) = 1 whenever 24 | (: + 6). Therefore X 5 ,2 (=) = X6,2 (=) = 0 for
every = ∈ Z/#2 (�: );

• if ? = 3 and 3 | : , then 9 | :3 + 3:2 − 15: = (24 (:) − 9)/(: − 3), which shows that
ord3 (24 (:)) = 2. Thus the original Weierstraß equation (4.38) is minimal at ? = 3, and the
reduction is additive.

We have shown, as we anticipated, that for every : ∈ Z \ {−6, 2, 3} and every prime ? ∈ (�: at
which the elliptic curve �: has split multiplicative reduction, we have that X 5 ,? (=) = X6,? (=) for
all = ∈ Z/#? (�: ). Hence using the explicit formula (4.37) we see that m? ({5 , 6}) = 0 for every
? ∈ (�: . Since the polynomial % is tempered we also have that m% ({5 , 6}) = 0 for every % ∈ �: (Q).
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Hence combining these two things together with Theorem 4.4.2 we see that {5 , 6} ∈ � 2,2
5
(�: )

for every : ∈ Z \ {−6, 2, 3}. Now, Beilinson’s conjecture (see Conjecture 3.3.18) implies that
there exists an element V: ∈ � 2,2

5
(�: ) such that

!′(�: , 0) = 〈A∞�: (l: ), (]: )∗ (U: )〉per (4.47)

where U: ∈ � sing
1,−1 (+%: (C)reg;Z) is the homology class appearing in (4.40), and ]: : + reg

%:
↩→ �: is

the natural embedding, coming from the birational map (4.43). Moreover, what we have shown
implies that there exists b: ∈ � 2,2

5
(�: ) such that ]∗

:
(b: ) = {C1, C2}. Hence we can use (4.40) and

(4.47) to get
!′(�: , 0)
<(%) =

〈A∞
�:
(l: ), (]: )∗ (U: )〉per

〈A∞
+

reg
%:

({C1, C2}), U:〉per
=
〈A∞
�:
(l: ), (]: )∗ (U: )〉per

〈A∞
�:
(b: ), (]: )∗ (U: )〉per

which allows us to conclude that (4.39) holds, using the conjectural admissibility of the motive
� 1 (�: ). �

Remark 4.4.4. Methods similar to the ones outlined in this section have been used to construct
speci�c planar models of elliptic curves, which would give rise to 5 -cohomology classes in the
group � 2,2

5
(�: ). One particular example of this is given by the polynomial family

%: (G,~) := ~3 − (3G + 3:)~2 + (3G2 + 6:G − 1)~ − (G3 − G2 − G + 1)

which arises from work of Schappacher and Nekovář, and has been studied in Rolshausen’s PhD
thesis (see [RS98, § 5.2] and [Rol96, Chapitre IV]).

Remark 4.4.5. As already pointed out by Boyd in [Boy98, Page 12], it would be interesting
to generalise the two theorems Theorem 4.4.1 and Theorem 4.4.3 by showing that the ratios
!′(�: , 0)/<(%: ) are not only rational but also integral for all but �nitely many : ∈ Z. To do this
one probably needs to assume the conjecture of Bloch and Kato (see Conjecture 3.3.20), and then
compute the ?-adic norms ‖b: ‖? of the element b: ∈ � 2,2

5
(�: ) such that ]∗

:
(b: ) = {C1, C2}.

4.4.2 Weierstraß and Edwards models of elliptic curves
The aim of this section is to show that the Mahler measures of naturally occurring families

of polynomials can be completely unrelated to special values of !-functions. The �rst example
of this is given by the following observation, which is due to Smyth (see [Smy81, Theorem 1]).

Proposition 4.4.6 – Mahler measures of Weierstraß forms

For every : ∈ C such that |: | ≥ 2 we have that<(~2 − G3 − :) = log|: |.

Proof. It is su�cient to apply the change of variables (G,~) ↦→ (G, 1/~) and the formula (4.6),
which imply that

<(~2 − G3 − :) = log|: | +<+ (U+ (G)) +<+ (U− (G))

where U± (G) := ±(G3 + :)−1/2. Since |: | ≥ 2 we have that |U± (G) | ≤ 1 whenever |G | = 1. Thus,
the de�nition of<+ shows that<+ (U±) = 0, and we can conclude. �
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Remark 4.4.7. Despite what one may be lead to believe from Proposition 4.4.6, the Mahler
measures of Weierstraß forms can be related to !-values of elliptic curves. Some examples of
these kinds of relations are collected in Table A.3.

Now, another canonical model for elliptic curves has been introduced by Edwards in [Edw07],
as we now recall.

Proposition 4.4.8 – The existence of Edwards model

Let � be an elliptic curve de�ned over a �eld ^ such that char(^) ≠ 2. Then there exists a
�nite extension ^ ′ ⊇ ^ and a parameter : ∈ P1 (^ ′) \ {0, 1,∞} such that � is birationally
equialent to the zero locus of the polynomial

%: (G,~) := G2 + ~2 − :G2~2 − 1 (4.48)

which is commonly known as Edwards polynomial.

Proof. The zero locus of %: is birational to the curve de�ned by the Weierstraß equation

1
1 − :.

2 = - 3 +
(
2

1 + :
1 − :

)
- 2 + -

by the substitution G = 2-/. and ~ = (- − 1)/(- + 1) (which is invertible if and only if
char(^) ≠ 2). Hence if ^ ′ := ^ (

√
1 − :) we see that the Edwards curve %: = 0 is birational over

^ ′ to a Weierstraß curve of the form . 2 = - 3 +�- 2 + �- +� .
Vice-versa, if char(^) ≠ 2 then every general Weierstraß form can be reduced to

. 2 = - 3 +�- 2 + �- +�

for some �, �,� ∈ ^ (see [Sil09, Page 42]) and then to . 2 = - 3 + U - 2 +- for some U ∈ ^ . To see
this we can write - 3 +�- 2 + �- +� = (- − 41) (- − 42) (- − 43) for some 41, 42, 43 ∈ ^ and then
use the substitution - =

√
(41 − 42) (41 − 43)- ′ + 41 and . = ((41 − 42) (41 − 43))3/4 . ′ to get an

equation of the form (. ′)2 = (- ′)3 + U (- ′)2 +- ′ where U =
√
(41 − 42) (41 − 43) (241 − 42 − 43).

Now, if we start already from an equation of the form . 2 = - 3 + U - 2 + - for some U ∈ ^ and
we apply the substitution - = (1 +~)/(1−~) and . = (2 + 2~)/(G − G~), which is the inverse to
G = 2-/. and ~ = (- − 1)/(- + 1), we get the curve(

1 + U
2

)
G2 +

(
1 − U

2

)
G2~2 = 2(1 − ~2)

and thus if we set ^ ′ := ^ (41, U,
√
U + 2, 4

√
(41 − 42) (41 − 43)) we get that our Weierstraß curve is

birational over ^ ′ to the Edwards curve given by %: = 0 with : = 2−U
2+U . �

Now, we would like to compute the Mahler measure of the Edwards forms given by (4.48). To
do this, we use the following result of Rodriguez Villegas (see [Rod99, § 11]), which allows one
to express Mahler measures of families of polynomials depending on a parameter : as a power
series in : with rational coe�cients.
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Theorem 4.4.9 – Mahler measures expansions

Let % ∈ C[G±1
1 , . . . , G±1

= ] be a Laurent polynomial with no constant term. Then for every
: ∈ C such that |: | ≥ maxz∈T= |% (z) | we have that

<(% (G1, . . . , G=) − :) = <
(
log(:) −

+∞∑
<=1

[%<]0
<

:−<

)
(4.49)

where [%<]0 ∈ C denotes the constant coe�cient of the polynomial %< . If we write
the polynomial % as % (G1, . . . , G=) =

∑#%
9=1 2 9 x

a9 for some coe�cients 2 9 ∈ C× and some
exponents a9 ∈ Z= , then the constant terms [%<]0 can be computed explicitly as:

[%<]0 =
∑

w∈N#%
f (w)=<

w∈ker(Ξ% )

<!
F1! · · ·F#% !

· 2F1
1 · · · 2

F#%
#%

(4.50)

where Ξ% := (a1 | a2 | · · · | a#% ) ∈ Mat=×#% (Z) and f (w) := F1 + · · · +F#% .

Proof. First of all, we observe that∫
T=

xa3`T= =

{
1, if a = 0
0, otherwise

for every a = (01, . . . , 0=) ∈ Z= . Here we write xa := G01
1 · · · G

0=
= , as we did in the statement of

the theorem. Hence we get that

<
(
log(:) −

+∞∑
<=1

[%<]0
<

:−<

)
= log|: | +

∫
T=
<

(
−
+∞∑
<=1

(% (x)/:)<
<

)
3`T= = (†)

and using the Taylor expansion log(1 − C) = −∑+∞
<=1

C<

<
with C = % (x)/: we see that

(†) = log|: | +
∫
T=

log
����1 − % (x): ����3`T= =

∫
T=

log |% (x) − : | 3`T= =<(% (x) − :)

which shows (4.49). Observe that our usage of the Taylor expansion of log(1 − G) is admissible
because we assumed that |: | ≥ maxz∈T= |% (z) |. To conclude, it is su�cient to point out that
(4.50) is an easy consequence of the multinomial theorem (see [AS64, § 24.1.2]). �

We can �nally use Theorem 4.4.9 to see that the Mahler measure of almost all Edwards
polynomials with integer coe�cients is very easy to compute.

Proposition 4.4.10 – Mahler measures of Edwards polynomials

For every : ∈ C such that |: | ≥ 3 we have that<(G2 + ~2 − :G2~2 − 1) = log|: |.
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Proof. Let %: (G,~) := G2 + ~2 − :G2~2 − 1, and observe that %: = G2~2 (& (G,~) − :) where

& (G,~) = 1
G2 +

1
~2 +

1
G2~2

which implies that<(%: ) =<(& (G,~)−:). Hence we can apply Theorem 4.4.9 to the polynomial
& . Since we have that #& = 3 and

Ξ& =

(
−2 0 −2
0 −2 −2

)
we see that ker(Ξ& ) ∩ Z#% = Z · (1, 1,−1). This shows that ker(Ξ& ) ∩ N#% = 0, and combining
this with (4.50) we see that [&<]0 = 0 for every< ∈ Z≥1. Finally, (4.49) gives us the equality
<(%: ) =<(& − :) = log|: | for every : ∈ C× such that

|: | ≥ max
(I1,I2) ∈T2

|& (I1, I2) | = 3

where max(I1,I2) ∈T2 |& (I1, I2) | = 3 because & (1, 1) = 3 and |& (I1, I2) | ≤ 3 by the triangle
inequality. �
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5Mahler measures of exact
polynomials

The �nest of all the devil’s
tricks was persuading you that
he doesn’t exist.

Charles Baudelaire, Paris Spleen

This aim of this chapter, which is based on joint work in progress with François Brunault, is
to give an outline of some possible ways to explain geometrically the identities between Mahler
measures and special values of !-functions which escape the framework of Question 4.2.9. Many
of these di�erent identities, as we discuss in this chapter, can be explained using a remarkable
idea due to Maillot (who in fact dates this idea back to Darboux), concerning the intersection
between the zero locus of a Laurent polynomial % (G1, . . . , G=) ∈ C[G±1

1 , . . . , G±1
= ] and the zero

locus of its conjugate reciprocal %† (see De�nition 4.1.11). Unfortunately, Maillot’s own work
never appeared in print, but was only exposed in a talk on the 30th of April, 2003, at the
Ban� International Research Station, a short report of which is fortunately available online
(see [Boy+03, § 8]). Nevertheless, Maillot’s ideas were pursued in the theses of Condon (see
[Con04, Chapter 5]) and Lalín (see [Lal05, Chapter 5] and [Lal07]), where it was shown how to
obtain identities relating the Mahler measure of polynomials in three or more variables, and
zero-dimensional !-functions (such as the Riemann Z -function and Dirichlet !-functions). Later
on, Lalín investigated as well the problem of �nding a three-variable polynomial whose Mahler
measure is related to the special value !∗ (�,−1) for some elliptic curve �. This question was
raised by Rodriguez-Villegas after Maillot’s talk, and the candidate polynomial

% := I − (1 − G) (1 − ~) ∈ Z[G,~, I] (5.1)

was proposed. Boyd then checked numerically that

<(I − (1 − G) (1 − ~)) ?
= −2!∗ (-1 (15),−1) (5.2)

where -1 (15) is the modular curve relative to the congruence subgroup Γ1 (15) ⊆ SL2 (Z). This
modular curve is an elliptic curve, which can be de�ned for example by the Weierstraß equation
~2 + G~ + ~ = G3 + G2 (see [LMFDB, Elliptic Curve 15.a7]). More importantly, -1 (15) is also
birationally equivalent to the curve de�ned by the equation

(1 − G) (1 − ~) =
(
1 − 1

1 − G

) (
1 − 1

1 − ~

)
which is precisely the Maillot variety % = %∗ = 0 associated to the polynomial % appearing
in (5.1). Lalín then went on to prove that, if Beilinson’s conjecture (see Conjecture 3.3.18)
holds for the motive � 1 (-1 (15)) (−1), and in particular if this motive is 5 -admissible in the
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sense of De�nition 3.3.14, then the identity (5.2) holds true, up to a rational number, i.e.
!∗ (-1 (15),−1)/<(%) ∈ Q× (see [Lal15, Theorem 2 and § 4.1]). We illustrate at the end of
this chapter how the cohomological methods developed to explain Maillot’s trick can be used to
approach the identity (5.2).

5.1 Maillot’s trick, exactness of polynomials and
Smyth’s results

The aim of this section is to introduce the surprisingly simple observation supporting Mail-
lot’s “trick” to compute the Mahler measure of polynomials which escape the framework of
Question 4.2.9. This is connected with the notion of exactness of a polynomial, which we
also review. We focus in particular on the two identities <(G + ~ + 1) = !′(j−3,−1) and
<(G + ~ + I + 1) = −14Z ′(−2), proved by Smyth in [Smy81] (see also Theorem 4.2.4), which are
our guiding examples throughout this chapter.

Just as a di�erential form is said to be exact if and only if the cohomology class it represents
vanishes, so a Laurent polynomial % ∈ ' [G±1

1 , . . . , G±1
= ] with coe�cients in a ring ' is said to

be exact if the motivic cohomology class {G1, . . . , G=} ∈ �=,=M (+% ) vanishes, where +% ↩→ G=<
is the zero locus of % and {G1, . . . , G=} := {G1} ∪ · · · ∪ {G=} denotes the cup product of the
motivic cohomology classes {G1}, . . . , {G=} ∈ � 1,1

M (+% ) � O(+% )
× ⊗Z Q (see Proposition 2.3.6).

Suppose now that % ∈ C[G±1
1 , . . . , G±1

= ] \ {0} is an exact polynomial, such that the Deninger cycle
W% ⊆ (C×)= de�ned in (4.24) has no boundary, and suppose that % satis�es the hypotheses of
Theorem 4.3.4. Then the formula (4.33) shows that<(%) = log|00 |, where 00 ∈ C× is the number
appearing in Lemma 4.3.2. In particular, if % ∈ ' [G±1

1 , . . . , G±1
= ] \ {0} for some ring ' ⊆ C then

00 ∈ ', hence we see that<(%) is rather uninteresting. We note in passing that, in order to have
the equality<(%) = log|00 |, it is su�cient to have that the Deligne-Beilinson cohomology class
A+ reg
%
({G1, . . . , G=}) ∈ �=,=D (+

reg
%
) vanishes, where + reg

%
denotes the regular locus of +% and A+ reg

%

denotes the Deligne-Beilinson regulator (see Example 2.4.6).

Despite these initial comments, there are in fact many examples of exact polynomials which are
known to have interesting Mahler measures. In particular, either the Deninger cycleW% associated
to these polynomials has a boundary, or these polynomials do not satisfy the hypotheses of
Theorem 4.3.4. The �rst examples of polynomials of this kind are in fact given by the linear
forms !2 (G,~) = G + ~ + 1 and !3 (G,~, I) = G + ~ + I + 1 studied by Smyth (see Theorem 4.2.4).
These two polynomials are exact because the varieties de�ned by them are clearly rational,
hence their motivic cohomology groups � 2,2

M (+!2 ) and � 3,3
M (+!2 ) vanish altogether, as it follows

from the A1-invariance of motivic cohomology and Borel’s theorem on the  -theory of number
�elds (see Section 2.3.1). Nevertheless, it is easy to see that the two Deninger cycles W!2 and W!2

have a boundary, and it is indeed this boundary which is interesting. For example, the boundary
of W!2 is given by the points (Z6,−1 − Z6) and (Z6,−1 − Z6), where Z6 := 4c8/3 = (1 +

√
−3)/2 is a

primitive sixth root of unity. In particular, in this case we can view mW!2 as a sub-scheme of +!2 .
Hence it makes sense to consider the relative long exact sequence in motivic cohomology

· · · → �
1,2
M (mW!2 ) −→

X
�

2,2
M (+!2 , mW!2 ) → �

2,2
M (+!2 ) = 0→ . . .
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from which we see that there exists a motivic cohomology class U!2 ∈ �
1,2
M (mW!2 ) such that

X (U!2 ) = {G,~}. Now, we can apply Theorem 4.3.4 (whose hypotheses are satis�ed by !2) to get:

<(!2) = 〈A∞+!2
({G,~}), W!2〉per = 〈A∞mW!2

(U!2 ), mW!2〉per

where the last equality follows from Stokes’s theorem. Clearly the period pairing is simply given
by the evaluation of a function at the points of mW!2 . This function, it turns out, is given by the
Bloch-Wigner dilogarithm (see [Zag07, Chapter I, § 3]), and this allows one to compute that
<(!2) = !′(j−3,−1), as was shown by Smyth (see Theorem 4.2.4) with a di�erent, analytically
�avoured proof. We refer the interested reader to [Lal06, § 4] for the details of this new proof of
Smyth’s result. The key point to remember, which is also useful in our discussion, is that the
restriction of the di�erential form [2 (see Proposition 4.3.1) to +!2 is exact, and a primitive is
given by the Bloch-Wigner dilogarithm. Thus the regulator A∞mW!2

(U!2 ) is simply given by the
restriction of the Bloch-Wigner dilogarithm function to mW!2 . We refer the interested reader
to Vandervelde’s work [Van08] for a formula which computes the Mahler measure of every
genus zero polynomial % (G,~) ∈ C[G,~], which is automatically exact, and to Guilloux’s and
Marché’s work [GM18], which computes a general formula for the Mahler measure of any exact
two-variable polynomial, in terms of the primitive of the di�erential form [2.

Moving on to the three-variable polynomial !3 = G + ~ + I + 1, we see that mW!3 is not zero-
dimensional, but it is a closed path inside (C×)3. It is at this point that Maillot’s insight, which
is epitomised in the next result, kicks in.

Proposition 5.1.1 – Maillot’s trick

Let % ∈ C[G±1
1 , . . . , G±1

= ] \ {0} be a Laurent polynomial, and let W% ⊆ (C×)= be Deninger’s
cycle, which was de�ned in (4.24). Then we have that

mW% ⊆ +% (C) ∩ T= ⊆ +% (C) ∩+%† (C)

where %† (G1, . . . , G=) := % (G−1
1 , . . . , G

−1
= ) (see De�nition 4.1.11).

Proof. Take z = (I1, . . . , I=) ∈ mW% . Then z ∈ T= , hence I−1
9 = I 9 for every 9 ∈ {1, . . . , =}. This

implies that
%† (z) = % (I−1

1 , . . . , I
−1
= ) = % (I1, . . . , I=) = 0

which allows us to conclude. �

Remark 5.1.2. If % ∈ C[x±1] \ {0} is written in multi-index notation as % (x) = ∑
j 0jxj, then

%† (x) = ∑
j 0jx−j. Hence %† = %∗ := % (G−1

1 , . . . , G−1
= ) for every polynomial % ∈ R[G±1

1 , . . . , G±1
= ].

Now, the reason why Maillot’s insight is so important is that one can consider cohomology
and homology groups relative to,% := +% ∩ +%† rather than mW% ⊆ ,% . More precisely, we
clearly have that

W% ∈ � sing
=−1,1−= (+% (C), mW% ) ⊆ �

sing
=−1,1−= (+% (C),,% )

and moreover the relative cohomology long exact sequence

· · · → �
=−1,=
D (,% ) −→X �

=,=

D (+% ,,% ) → �
=,=

D (+% ) → �
=,=

D (,% ) = 0→ . . . (5.3)
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shows that there exists a relative cohomology class l% ∈ �=,=D (+% ,,% ) which maps to the
cohomology class A∞

+%
({G1, . . . , G=}) ∈ �=,=D (+% ). We note that here all the various varieties may

be singular, and the Deligne-Beilinson cohomology groups are de�ned using the spectrum DB
constructed in Example 2.4.6. Thus we see in particular that �=,=D (,% ) = �=−1,=−1

dR (,% ) = 0, as
follows from the fact that,% is a�ne, together with resolution of singularities. We also observe
that the class l% is not unique. Indeed, each cohomology class

b ∈ �=,=D (+% ,,% ) = �=−1,=−1
dR (+% ,,% )

is represented, at least in the case when both +% and,% are smooth, by a pair (U, V) consisting
of an (= − 1)-form U on +% and a (= − 2)-form V on,% having the property that U

��
,%

= 3V .
Hence we see that l% can be represented by the pair ([=, l̃% ), where l̃% is any primitive of the
restriction of [= to,% . In any case, we can see from Theorem 4.3.4 that

<(%) = log|00 | + 〈l% , W% 〉per

where now 〈·, ·〉per denotes the period pairing

〈·, ·〉per : �=,=D (+% ,,% ) × � sing
=−1,1−= (+% (C),,% (C)) → R

given on cohomology and homology groups relative to,% . Therefore, if the polynomial % is
exact, we can use again the relative cohomology long exact sequence (5.3) to see that there exists
a cohomology class U% ∈ �=−1,=

D (,% ) such that X (U% ) = l% . Thus, one can use again Stokes’s
theorem, as we did in the previous paragraph for the two-variable polynomial !2 (G,~) = G +~+1,
to obtain the equality

<(%) = log|00 | + 〈U% , mW% 〉per

which shows that the Mahler measure<(%) is now related to an integral over the variety,% ,
which is (= − 2)-dimensional. To be more precise, we observe that,% could be singular, in
which case the pairing 〈·, ·〉per is not given by a single integral.

Going back to Smyth’s three-variable polynomial !3 (G,~, I) := G + ~ + I + 1, we see that
Proposition 5.1.1 allows one to relate <(!3) to a speci�c pairing over the “Maillot variety”
,!3 := {!3 = !∗3 = 0}. We observe that the variety !3 corresponds to the curve given by the
equation

(G + ~ + 1)
(

1
G
+ 1
~
+ 1

)
= 1

which turns out to be equivalent to the equation (G + ~) (G + 1) (~ + 1) = 0. Thus the variety
,!3 ⊆ G3

< is the union of three lines, disposed in a triangle whose vertices are the points
,

sing
!3

:= {(−1, 1,−1), (1,−1,−1), (−1,−1, 1)}, which form the singular locus of,!3 . Since,!3

is singular, we can consider its desingularisation ,̃!3 , which consists of three disjoint rational
lines, de�ned over Q. Now, we see that � 2,3

M (,̃!3 ) = �
2,3
M (,

sing
!3
) = 0 because these motivic

cohomology groups are related to the  -theory group  2·3−2 (Q) =  4 (Q), which is a torsion
group (see Section 2.3.1). Analogously, and every more easily, one can show that the Deligne-
Beilinson cohomology groups � 2,3

D (,̃!3 ) and � 2,3
D (,

sing
!3
) also vanish. Hence we can use the

Mayer-Vietoris long exact sequence (see (2.20) for the motivic analogue):

· · · → �
1,3
D (�!3 ) → �

2,3
D (,!3 ) → �

2,3
D (,̃!3 ) ⊕ �

2,3
D (,

sing
!3
) = 0→ . . .
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associated to the abstract blow-up square

�!3 ,̃!3

,
sing
!3

,!3

to see that there exists V!3 ∈ �
1,3
D (�!3 ) which maps to U!3 via the map � 1,3

D (�!3 ) → �
2,3
D (,!3 ).

This fact leads one to say that the polynomial !3 is 2-exact. Indeed, the fact that !3 was exact
in the �rst place allowed us to choose a primitive of the restriction of [3 to +!3 , and this lead
to the cohomology class U% ∈ � 2,3

D (,!3 ). Now analogously, we see that the geometry of,!3

(and in particular the fact that it is the union of three lines) allows us to take a primitive of
U% when “restricted” to the desingularisation ,̃% and to the singular locus , sing

%
. Taking a

suitable di�erence of these primitives, and restricting it to the exceptional locus �!3 leads to
the cohomology class V!3 ∈ �

1,3
D (�!3 ). To conclude, one can see that Stokes’s theorem gives a

compatibility between the period pairing 〈·, ·〉per and Mayer-Vietoris long exact sequences, which
can be used to show that<(%) is related to a suitable “integral” of V!3 . As in the case of !2, this
integral is just given by the evaluation of a suitable function on the six points which make up �!3 .
One can show that this function is given by the trilogarithm L3 (see [Lal06, Equation 8]), and
thus one gets the link between the Z -value Z ∗ (−2) and the Mahler measure<(!3), which was
proved in Theorem 4.2.4 using di�erent, more analytic methods. We refer the interested reader
to [Lal06, Theorem 8] for the detailed computation which shows that it is indeed L3 the right
function to evaluate on the points forming �!3 , and to [Lal05, § 5.4.1] for a complete proof of
Smyth’s theorem using these techniques. Finally, we remark that cohomological considerations
similar to the ones appearing in this section appeared in the PhD thesis of Standfest (see [Sta01]).

5.2 Two approaches towards successive
exactness

We have seen in the previous section how one can give a cohomological proof of Smyth’s
identities (see Theorem 4.2.4). This proof involves the notion of exactness of a polynomial, and
we have seen that the polynomial G + ~ + I + 1 is 2-exact. This concept of successive exactness
was �rstly studied by Lalín in her PhD thesis. Her work initially focused on 2-exact polynomials
in three variables (see [Lal05, § 5.2] and [Lal06, § 4]), and then laid down the bases for studying
(= − 1)-exact polynomials in =-variables, for = ≥ 4 (see [Lal05, § 5.5, 5.8] and [Lal06, § 5, 6]).

The aim of this section is to introduce two conjectural geometric ways of saying when a
polynomial % ∈ Q[G±1

1 , . . . , G±1
= ] is :-exact, for some natural number : ∈ N. In particular, one

would always have that 0 ≤ : ≤ =, and it is reasonable to expect that: = = if and only if<(%) = 0.
Moreover, usually one expects <(%) to be related to the special value of some !-function at
B = =, and this !-function should be associated to the cohomology of an (= − : − 1)-dimensional
variety. We see however in Section 5.4 that there are examples of proved identities which fail to
meet this expectation.

5.2.1 The first approach: successive desingularisations
Fix throughout this section a Laurent polynomial % ∈  [G±1

1 , . . . , G±1
= ] with coe�cients in

a number �eld  ⊆ C. Suppose that there exists 00 ∈  × such that % − 00 ∈ G= [G1, . . . , G=],
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hence in particular that % has no denominators. This can be always achieved without changing
the Mahler measure of % , as was shown in Lemma 4.3.2. Finally, we �x a triangulated category of
mixed motives T , in the sense of Section 2.2.3, which satis�es cdh-descent. For example we could
take T to be the category of Beilinson motives DMB ( ;Q), or T to be Ayoub’s A1-homotopy
category DA( ;Λ) for some ring Λ.

The �rst idea to de�ne successive exactness for % is to take successive desingularisations of
the complex a�ne variety +1 := +% ∪+%† , where %† denotes the conjugate reciprocal of % (see
De�nition 4.1.11) and +% ,+%† ↩→ +̃0 denote the corresponding (reduced) zero sub-schemes of
+̃0 := G=< . The embedding ]̃0 : +1 ↩→ +̃0 �ts in a diagram of complex varieties

+# . . .

. . . +9+1 +̃9

,9+1 +9 . . .

. . . +3 +̃2

,3 +2 +̃1

,2 +1 +̃0

]̃ 9

? 9+1 c 9

] 9

]̃2

?3 c2

]2

?2

]̃1

c1

]1 ]̃0

(5.4)

where,9+1 := + sing
9

and +̃9 is always smooth. Moreover, we can demand that each square is an
abstract blow-up, by which we mean that each square is Cartesian, c 9 is proper and induces an
isomorphism c−1

9 (+
reg
9
) → +

reg
9

. If we demand this, then there is a preferred way of constructing
such a diagram, where the only ambiguity lies in the choice of +̃1. More precisely, we can take +̃1
to be an embedded resolution of singularities of+1, in such a way that+2 ↩→ +̃1 is a divisor with
simple normal crossings. Then +2 =

⋃A
8=1 �A and,3 = +

sing
2 =

⋃
8≠9 (�8 ∩ � 9 ). We can hence

take +̃2 :=
⊔A
8=1 �A , which implies that +3 =

⊔A
8=1

⋃
9≠8 (�8 ∩ � 9 ). We go on by taking

+9 :=
⊔

a∈{1,...,A } 9−2

#f (a)=9−2

⋃
� ⊆{1,...,A }\f (a)

#�=1

�f (a)∪� ′

+̃9 :=
⊔

b∈{1,...,A } 9−1

#f (1)=9−1

�f (1) =
⊔

a∈{1,...,A } 9−2

#f (a)=9−2

⊔
� ⊆{1,...,A }\f (a)

#�=1

�f (a)∪�

,9+1 :=
⊔

a∈{1,...,A } 9−2

#f (a)=9−2

⋃
� ⊆{1,...,A }\f (a)

#� =2

�f (a)∪�

where for every subset � ⊆ {1, . . . , A } we de�ne �� :=
⋂
8∈� �8 . Here, we use the notation

f (a) ⊆ {1, . . . , A } for the set of elements of a tuple a. In particular, the conditions on the
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cardinality #f (a) simply mean that we allow only tuples without repetitions. We observe that
this explicit way of de�ning the diagram (5.4) shows that # ≤ =, because +2 ↩→ +̃1 is a divisor
with normal crossings.

We are now ready to construct suitable cohomology classes which allow us to give a tentative
de�nition of the notion of successive exactness. To do so, �x a motivic ring spectrum E ∈ T (i.e.
a monoid object in the category T , in the sense of [KS06, Remark 4.3.2]). As we have seen in
Section 2.4, examples of these kinds of objects are given by the motivic cohomology spectrum
1T and (for suitable categories T ) by the Deligne-Beilinson cohomology spectrum DB. Since T
satis�es cdh-descent, we have one Mayer-Vietoris sequence

. . . �=−9 (,9+1;E) ⊕ �=−9 (+̃9 ;E) �=−9 (+9+1;E)

�=−( 9−1) (+9 ;E) �=−( 9−1) (,9+1;E) ⊕ �=−( 9−1) (+̃9 ;E) . . .

?∗9+1−]̃ 9
∗

X
]∗9 ⊕c∗9

(5.5)

associated to each abstract blow-up appearing in the diagram (5.4). Here the E-cohomologies
are de�ned as � 8 (- ;E) := HomT (-,E[8]), so that � 8, 9M (- ) � �

8 (- ;1T ( 9)) and analogously for
Deligne-Beilinson cohomology. Now, we have a class Ũ0 ∈ �= (+̃0;E(=)) given by the regulator
of {G1, . . . , G=} ∈ �=,=M (G

=
<) with respect to E (see Section 2.4). We can then say that a polynomial

% is 1-exact (with respect to the cohomology theory given by E) if

c∗1 (U1) = ]∗1 (U1) = 0

where U1 := ]̃0 (Ũ0). Then the Mayer-Vietoris long exact sequence (5.5) can be used to construct a
class U2 ∈ �=−1 (+2;E(=)) such that X (U2) = U1, up to an ambiguity coming from the cohomology
groups �=−1 (+̃1;E(=)) ⊕ � (=−1) (,2;E(=)).

Now, we have two possible de�nitions of the notion of :-exactness, for : ≥ 2:
• we can say that the polynomial is 2-exact if c∗2 (U2) = ]∗2 (U2) = 0, and this would allow us

to construct a class U3 ∈ �=−2 (+3;E) such that X (U3) = U2. There are two problems with
this approach:

1. a priori, being 2-exact depends on the ambiguity in the de�nition of U2;
2. there is again an ambiguity in the de�nition of U3.

Nevertheless, we can move upwards in the diagram at each step, and de�ne a notion of
:-exactness in this way. More precisely, we say that % is :-exact if it is (: − 1)-exact
and c∗

:
(U: ) = ]∗: (U: ) = 0. This de�nition is probably not well posed in general, since it

depends on the ambiguities in the choice of the spectrum E, of the diagram (5.4) and of
the cohomology classes U2, . . . , U: . We note that : ≤ # ≤ =;

• we can use the Mayer-Vietoris spectral sequence for the simple normal crossings divisor
+2 ↩→ +̃1 to get a descending �ltration Fil•M.V. on the cohomology group�=−1 (+2;E). Then
we say that our polynomial % is :-exact (for : ≥ 2) if it is 1-exact and we have that
U1 ∈ Fil:−1

M.V. (�=−1 (+2;E)). This de�nition has the advantage of being canonical, and again
we necessarily have that : ≤ # ≤ =.

Let us turn to the original problem of relating the Mahler measure<(%) to special values of
!-functions. Our objective is to obtain a relation similar to (4.33), which allows one to compare
<(%) with some regulator integrals. We �x E = DB to be the Deligne-Beilinson spectrum,
until the end of this section. Suppose �rst of all that % is 0-exact, which is in fact an empty
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assumption. Then we have the cohomology class U1 ∈ �=,=D (+1), which is given by the regulator
of {G1, . . . , G=} ∈ �=,=M (+1). Now, we expect to be able to generalise Theorem 4.3.4 and get an
identity of the form

<(%) ?
= log|00 | +

1
2
〈U1, W1〉per (5.6)

where U1 := ]̃0∗ (Ũ0) ∈ �=,=D (+1) and

W1 := (2c8)1−= ⊗ [{(G1, . . . , G=) ∈ (C×)= | |G1 | = · · · = |G=−1 | = 1} ∩+1 (C)] ∈ � sing
=−1,1−= (+1 (C))

denotes a “symmetrised” version of Deninger’s cycle de�ned in (4.24), which can be equivalently
de�ned as W1 = W% ∪ W%† = W% ∪ W%∗ . The pairing appearing in (5.6) is given by the period
isomorphism

〈·, ·〉per : �=,=D (+1) ⊗ � sing
=−1,1−= (+1 (C)) → C

using the identi�cation �=,=D (+1) = �=−1,=−1
dR (+1) provided by the fact that +1 is =-dimensional.

We note in particular that +1 is generally singular, but this is not a problem as we are taking all
the cohomology theories to be de�ned by applying the motivic formalism (see [HM17, § 5.4, 5.5]
for a related discussion). We expect that the cohomological methods employed in the proof of
[BD99, Proposition 2.2] should be a key tool to prove the equality (5.6).

Suppose now that the polynomial % is 1-exact, so that we can �nd U2 ∈ �=−1,=
D (+2) such that

U1 = X (U2). Then Stokes’s theorem shows that (5.6) becomes

<(%) ?
= log|00 | +

1
2
〈U2, W2〉per (5.7)

where W2 ∈ � sing
=−2,1−= (+2) is de�ned as W2 := m(W1), using the boundary map m in the sequence

. . . �
sing
=−( 9−1),1−= (,9+1) ⊕ � sing

=−( 9−1),1−= (+̃9 ) �
sing
=−( 9−1),1−= (+9 )

�
sing
=−9,1−= (+9+1) �

sing
=−9,1−= (,9+1) ⊕ � sing

=−9,1−= (+̃9 ) . . .

(] 9 )∗−(c 9 )∗

m

(? 9+1)∗⊕(]̃ 9 )∗

which is the Mayer-Vietoris long exact sequence for singular homology. The period pairing
appearing in (5.7) is given by

〈·〉per : �=−1,=
D (+2) ⊗ � sing

=−2,1−= (+2 (C)) → C

which is again well de�ned due to the identi�cation �=−1,=
D (+2) � �

=−2,=−1
dR (+2), which holds

because +2 is (= − 1)-dimensional. We observe that the number 〈U2, W2〉per does not depend on
the ambiguities in the de�nition of U2.

It is now clear how the pattern should continue for :-exact polynomials. More precisely, if %
is :-exact, an iterated application of Stokes’s theorem, together with the initial formula (5.6),
shows that

<(%) ?
= log|00 | +

1
2
〈U:+1, W:+1〉per (5.8)

where U:+1 ∈ �=−(:+1),=D (+: ) is any Deligne-Beilinson cohomology class such that X (U:+1) = U: ,
and W:+1 ∈ � sing

=−:,1−= (+: (C)) is de�ned by induction as W:+1 = m(W: ).
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We conclude this section with an intriguing observation about the relations between the
exactness of a polynomial % and the geometry of the complex points of +% . Let us say that a
polynomial % ∈  [G1, . . . , G=], satisfying the hypotheses mentioned at the beginning of this
section, has exactness index 4 (%) ∈ N if % is 4 (%)-exact and not (4 (%) + 1)-exact. On the other
hand, let us say that % has closedness number 2 (%) ∈ N if W2 (% ) ≠ 0 and W2 (% )+1 = 0. Then, if
<(%) ≠ log|00 |, and we believe that (5.8) should hold, it is natural to ask the following question.

Question 5.2.1 – Are polynomials more closed than exact?

Let % ∈  [G1, . . . , G=] be a polynomial, de�ned over a number �eld  ⊆ C, such that
<(%) ∉ log| × |. Is it true that 4 (%) < 2 (%)?

We observe that 2 (%) ≤ A ≤ =, where A is the number of components of +2 as a simple normal
crossings divisor inside +̃1. Moreover, Question 5.2.1 has a positive answer for = = 2 and 4 (%) = 1,
as was shown by Guilloux and Marché in [GM18, Theorem 2.10].

5.2.2 The second approach: relative cohomology
The aim of this section is to describe brie�y a second possible approach to the de�nition

of successive exactness, which has the advantage of being completely canonical. We �x the
same notation that we used in Section 5.2.1: % ∈ 00 + G= [G1, . . . , G=] is a polynomial with
coe�cients in a number �eld  ⊆ C, and E is a motivic spectrum, i.e. an object in a �xed
triangulated category of mixed motives T which has cdh descent. In addition to the hypotheses
made in Section 5.2.1, we assume as well that E is constructed applying Theorem 2.4.2 to a
family of complexes of Nisnevich sheaves {�•9 : 9 ∈ N} which are pseudo-�asque, in the sense of
[BKK07, De�nition 5.26]. The key property of pseudo-�asque complexes of sheaves is that, for
any scheme - , one can compute the hypercohomology of the complex as the cohomology of
its global sections (see [BKK07, Proposition 5.27]). The key example for us is once again the
Deligne-Beilinson cohomology spectrum E = DB. Indeed, Deligne-Beilinson cohomology can
be de�ned from the complexes of sheaves �•9 := D•log (−, 9) introduced by Burgos Gil in [Bur94]
(see Example 2.1.22 and Example 2.4.6). The complexes D•log (−, 9) turn out to be pseudo-�asque,
as it is proved by Burgos Gil, Kramer and Kühn in [BKK07, Proposition 5.29].

Let us now go back to the notion of exactness. First of all, we take again

+1 := +% ∪+%† ↩→ +̃0 := G=<

to be the sub-variety of G=< de�ned by the equation % = %† = 0, where %† denotes the conjugate
reciprocal of % (see De�nition 4.1.11). As before, we �x a desingularisation +̃1 � +1, which �ts
in an abstract blow-up square

+2 +̃1

,2 +1

?2

]̃1

c1

]1

(5.9)

where,2 := +
sing

1 and +2 ↩→ +̃1 is a divisor with simple normal crossings. Once again, we
let Ũ0 ∈ �= (+̃0;E(=)) denote the E-regulator of {G1, . . . , G=} ∈ �=,=M (+̃0), and we denote by
U1 ∈ �= (+1;E(=)) the restriction of U0 along ]̃0.
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From now on, the new approach di�ers from the old one. First of all, one notices that,2 is an
a�ne, (= − 2)-dimensional variety, and as such it is plausible to expect that �= (,2;E(=)) = 0
(compare with [Mil80, Theorem 7.2] and [SP, Proposition 0F0V]). This is certainly true for
Deligne-Beilinson cohomology, by comparing it with de Rham cohomology. In any case, if
indeed we assume that �= (,2;E(=)) = 0, then we can use the long exact sequence in relative
cohomology

· · · → �=−1 (,2;E(=)) → �= (+1,,2;E(=)) → �= (+1;E(=)) → �= (,2;E(=)) = 0→ . . .

to lift the cohomology class U1 ∈ �= (+1;E(=)) to a relative class Urel ∈ �= (+1,,2;E(=)). Let
us point out that this lifting is not unique, with the ambiguity coming from �=−1 (,2;E(=)).
We can also observe now that since the square (5.9) is an abstract blow-up, the corresponding
restriction map

�= (+1,,2;E(=)) → �= (+̃1,+2;E(=))

is an isomorphism. Hence Urel can be restricted to become a classlrel ∈ �= (+̃1,+2;E(=)), without
losing any information.

Now, we can use our assumption that E comes from a family of pseudo-�asque complexes
of sheaves �•9 . Indeed, this assumption allows one to compute the relative cohomology group
�= (+̃1,+2;E(=)) as the cohomology of an explicit complex. More precisely, let us write

+2 = �1 ∪ · · · ∪ �A

as a union of its components, and let us set �0 := +̃1 and

�? :=
⊔

� ⊂{1,...,A }
|� |=?

⋂
8∈�

�8

for every integer ? ∈ Z≥1. Then the cohomology groups �@= (�? ) can be arranged in a double
complex �•= (�•), whose di�erentials are induced by the ones of �= in the vertical direction, and
by an alternating sum of restriction maps in the horizontal one. Then the 8-th cohomology of the
total complex Tot(�•= (�•)) computes indeed the relative cohomology group � 8 (+̃1,+2;E). We
refer the reader interested in the details, and in particular in the explicit shape of the di�erentials
of the double complex �•= (�•), to [BF, Construction 2.72], which focuses on algebraic de Rham
cohomology.

The use of computing the relative cohomology group �= (+̃1,+2;E=) as the cohomology of
the total complex of a double complex is that one can use the spectral sequence of the double
complex (see [SP, Section 012X]) to obtain a decreasing �ltration Fil•rel on the cohomology
group �= (+̃1,+2;E(=)). In particular, Fil0rel (�= (+̃1,+2;E(=))) = �= (+̃1,+2;E(=)). Using the
explicit representation of the relative cohomology group �= (+̃1,+2;E(=)) that comes out of this
approach, one sees that it makes a lot of sense to say that the polynomial % is :-exact (with
respect to E) for some : ∈ N, if the cohomology class lrel ∈ �= (+̃1,+2;E(=)) lies in the subspace
Fil:rel (�= (+̃1,+2;E(=))). This de�nition, as we said in the introduction, is almost canonical: the
only ambiguity comes from the de�nition of l , i.e. from the cohomology group �=−1 (,2;E(=)).

To conclude, let us observe that using this framework it is also much easier to describe the
connection to the Mahler measure. To do this, we �x once again E = DB to be the Deligne-
Beilinson cohomology spectrum. Then, the Deninger cycle de�ned in (4.24) can be seen as a
relative homology class inside � sing

=−1,1−= (+1 (C),,2 (C)). Moreover, one can lift this class through
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the abstract blow-up (5.9), to get a relative homology class Wrel ∈ � sing
=−1,1−= (+̃1 (C),+2 (C)). Now,

Theorem 4.3.4 should admit the following generalisation

<(%) = log|00 | + 〈lrel, Wrel〉per

where 〈·, ·〉per : �=,=D (+̃1,+2) ⊗ � sing
=−1,1−= (+̃1 (C),+2 (C)) → C denotes a relative version of the

period pairing. Let us note that, using the explicit description of the relative cohomology group
�
=,=

D (+̃1 (C),+2 (C)), one should be able to express the number 〈lrel, Wrel〉per as an alternating sum
of integrals de�ned over the smooth varieties �? . Finally, we observe that Question 5.2.1 has
clearly an analogue in this setting. Indeed, we can say that % has exactness index 4 (%) ∈ N if
lrel ∈ Fil4 (% )rel \ Fil4 (% )+1rel , and we can say that the polynomial % has closedness number 2 (%) ∈ N
if Wrel ∈ Filrel

=−2 (% ) \ Filrel
=−(2 (% )+1) , where Filrel

• denotes the increasing �ltration induced on the
homology group �=−1,1−= (+̃1 (C),+2 (C)).

5.3 An explicit computation for -1(15)
The aim of this section is to review an explicit application of the ideas outlined in Section 5.2.

More precisely, we are concerned with the identity (5.2), which was shown to hold up to a
rational number in [Lal15]. The key point here is that this identity involves the !-function
associated to -1 (15), which is both an elliptic curve and a modular curve. Thus one could
use modular techniques to construct elements in the motivic cohomology group � 2,3

M (-1 (15)),
whose regulators should be related to the !-value !∗ (-1 (15),−1). This was done by Beilinson
in [Bei86a], although his construction is somehow implicit. Beilinson’s construction has then
been made more explicit in the work of Brunault (see [Bru07] and [Bru17]) for the special values
at B = 2, using pairs of Siegel units. Suitably chosen triplets of modular units can be used to
explicitly construct elements inside � 2,3

M (-1 (15)) using the polylogarithmic motivic complexes
that we introduced in Section 2.3.3, which have been proved to be related to � 2,3

M (-1 (15)) by
the work of Goncharov (see [Gon96]).

Suppose now that we have indeed constructed an explicit element ` ∈ � 2,3
M (-1 (15)) and an

explicit homology class Y ∈ � sing
1,2 (-1 (15) (C)) such that 〈`, Y〉per = !∗ (-1 (15),−1). Then, in

order to prove (5.2), one can try to apply the techniques outlined in Section 5.2 to construct
another explicit motivic cohomology element whose regulator is related to the Mahler measure.
Since both elements are explicitly de�ned, it is then not unreasonable to look for an explicit
comparison between the two at the level of motivic cohomology. More precisely, following
the approach outlined in Section 5.2.1, we would like to construct a motivic cohomology class
U2 ∈ � 2,3

M (-1 (15)) whose regulator is related to the Mahler measure<(%).
Let us see how to construct such a class explicitly and unconditionally. To do so, we use

the comparison between motivic cohomology and higher Chow groups that was outlined in
Section 2.3.2. This gives us an explicit sheaf of cochain complexes of Q-vector spaces Z•,3,
whose cohomology computes the motivic cohomology groups � •,3M . In particular, the mo-
tivic cohomology class {G,~, I} ∈ �

3,3
M (G

3
<) given by the cup product of the three classes

{G}, {~}, {I} ∈ � 1,1
M (G

3
<) � O× (G3

<) ⊗Z Q is represented in the group Z3,3 (G3
<) by the class

of the graph ΓG,~,I ⊆ G3
< × �3 of these three functions, where � := P1 \ {1}. In general, the

elements ofZ8,3 (- ) are represented by sub-varieties of codimension three inside - × �6−8 .
Now, let us recall that +1 ↩→ G3

< is given by the union of the two smooth varieties +% and
+%∗ (notice that %† = %∗ because % has real coe�cients), which intersect transversely. Hence
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,2 := + sing
1 is just given by the intersection,2 = +% ∩+%∗ , and the desingularisation +̃1 � +1

is given by the disjoint union +̃1 = +% t +%∗ . Since +% and +%∗ are both rational and de�ned
over the number �eld Q, we see that � 3,3

M (+̃1) = 0. This is enough to show that % is 1-exact
(with respect to motivic cohomology), because the restriction map ]∗1 : � 3,3

M (G
3
<) → �

3,3
M (,2)

factors through � 3,3
M (+% ) = 0. Thus, we can indeed aim at constructing a motivic cohomology

class U2 ∈ � 2,3
M (+2) such that X (U2) = U1. Using the explicit description of � 2,3

M (+2) as the second
cohomology of the complexZ•,3 (+2), one sees that a particularly good way of representing U2
is by taking the di�erence of two primitives (in the complexZ•,3) of the restriction of the cycle
ΓG,~,I ⊆ G3

< × �3 to the subvarieties +% ,+%† ↩→ G3
< . This leads to a closed cycle [ representing

U2. Doing this concretely in our situation amounts to the following explicit computation.

Proposition 5.3.1 – An explicit Maillot cycle

Let % (G,~, I) := I − (1 − G) (1 − ~), and let +% ,+%∗ ↩→ G3
< be the zero loci of % and its

reciprocal %∗ (G,~, I) := % (G−1, ~−1, I−1). We denote also by, := +% ∩+%∗ the intersection
of these two sub-schemes.

Let� := P1\{1}, whose coordinate is denoted by C . Using this notation, we can introduce
the closed sub-scheme

[1 :=
{(
G,~, C,

(1 − G)C − (1 − G) (1 − ~)
C − (1 − G) (1 − ~)

)}
↩→, × �4

given by those pairs (%, (C1, . . . , C4)) ∈, ×�4 such that C1 = G (%) and C2 = ~ (%), as well as

C4 =
(1 − G)C − (1 − G) (1 − ~)

C − (1 − G) (1 − ~) (5.10)

where C := C3. Using a similar notation, we de�ne the following closed immersions:

[2 =
{(
G, C, 1 − C, 1 − ~

C

)}
↩→, × �4

[3 =
{(
C, ~, 1 − C, 1 − G

C

)}
↩→, × �4

[4 =

{(
G,~, C,

(1 − (1 − G)−1)C − (1 − (1 − G)−1) (1 − (1 − ~)−1)
C − (1 − (1 − G)−1) (1 − (1 − ~)−1)

)}
↩→, × �4

[5 =

{(
G,

1
C
,

1
1 − C , 1 −

1
~C

)}
↩→, × �4

[6 =

{(
1
C
, ~,

1
1 − C , 1 −

1
GC

)}
↩→, × �4

(5.11)

which are the constituents of the cycle [ := [1 − [2 − [3 − ([4 − [5 − [6) ∈ Z2,3 (, ).
Then the cycle [ has the property that X ( [[]) = U1, where U1 ∈ � 3,3

M (+% ∪+%∗ ) denotes
the cup product of the coordinate function symbols {G}, {~}, {I} ∈ � 1,1

M (+% ∪ +%∗ ), and
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[[] ∈ � 2,3
M (, ) denotes the class of [ in the cohomology of the complexZ•,3 (, ). More

precisely, we have that

m([1 − [2 − [3) = {(G,~, I)}
��
,

= m([4 − [5 − [6) (5.12)

where m : Z2,3 (, ) → Z3,3 (, ) denotes the di�erential of the cochain complexZ•,3 (, ).

Proof. Using the explicit shape of the di�erential m introduced in (2.23) we see that

m([1 − [2 − [3) = ([1
��
G=0 − [1

��
G=∞) + ([1

��
~=∞ − [1

��
~=0)

+ ([1
��
C=0 − [1

��
C=∞) + ([1

��
5 =∞ − [1

��
5 =0)

+ ([2
��
G=∞ − [2

��
G=0) + ([2

��
C=0 − [2

��
C=∞)

+ ([2
��
1−C=∞ − [2

��
1−C=0) + ([2

��
1−~/C=0 − [2

��
1−~/C=∞)

+ ([3
��
C=∞ − [3

��
C=0) + ([3

��
~=0 − [3

��
~=∞)

+ ([3
��
1−C=∞ − [3

��
1−C=0) + ([3

��
1−G/C=0 − [3

��
1−G/C=∞) = (†)

where 5 : , × �→ P1 denotes the function

5 (G,~, I, C) :=
(1 − G)C − (1 − G) (1 − ~)

C − (1 − G) (1 − ~)

already introduced in (5.10). Observe now that the following equations

(1 − G) (1 − ~) = (1 − (1 − G)−1) (1 − (1 − ~)−1)
G~ = (1 − G)2 (1 − ~)2

(1 − G)−1 (1 − ~)−1 = (1 − G−1) (1 − ~−1)
(5.13)

hold on, . Moreover, since, ↩→ G3
< we have that

, ∩ {G = 0} =, ∩ {~ = 0} =, ∩ {G = ∞} =, ∩ {~ = ∞} = ∅ (5.14)

and we also have that, ∩ {G = 1} = , ∩ {~ = 1} = ∅, which follows immediately from a
combination of (5.13) with (5.14). Finally, we know that all the coordinates in all the cycles are
≠ 1, because by de�nition � := P1 \ {1}. Thus we see that the expression (†) can be hugely
simpli�ed, to give

(†) = −[1
��
C=∞ + [1

��
5 =∞ − [1

��
5 =0

+ [2
��
1−~/C=0 + [3

��
1−G/C=0 =

= −{(G,~, 1 − G)} + {(G,~, (1 − G) (1 − ~))} − {(G,~, 1 − ~)}
+ {(G,~, 1 − ~)} + {(G,~, 1 − G)} =
= {(G,~, (1 − G) (1 − ~))} = {(G,~, I)}

using (5.13). This shows the �rst equality appearing in (5.12).
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The proof of the second equality appearing in (5.12) is essentially analogous, but we give it
for the sake of completeness. First of all, we see that

m([4 − [5 − [6) = ([4
��
G=0 − [4

��
G=∞) + ([4

��
~=∞ − [4

��
~=0)

+ ([4
��
C=0 − [4

��
C=∞) + ([4

��
6=∞ − [4

��
6=0)

+ ([5
��
G=∞ − [5

��
G=0) + ([5

��
C−1=0 − [5

��
C−1=∞)

+ ([5
��
(1−C )−1=∞ − [5

��
(1−C )−1=0) + ([5

��
ℎ=0 − [5

��
ℎ=∞)

+ ([6
��
C−1=∞ − [6

��
C−1=0) + ([6

��
~=0 − [6

��
~=∞)

+ ([6
��
(1−C )−1=∞ − [6

��
(1−C )−1=0) + ([6

��
9=0 − [6

��
9=∞) = (♥)

where the function 6 : , × �→ P1 is given by the expression

6(G,~, I, C) :=
(1 − (1 − G)−1)C − (1 − (1 − G)−1) (1 − (1 − ~)−1)

C − (1 − (1 − G)−1) (1 − (1 − ~)−1)

and the functions ℎ, 9 : , × �→ P1 are de�ned as

ℎ(G,~, I, C) := 1 − 1
~C

and 9 (G,~, I, :) := 1 − 1
GC
.

Note that all these expressions already appear in the de�nition of the varieties [4, [5 and [6 (see
Equation (5.11)). As before, we can apply (5.13) and (5.14) to simplify enormously the expression
(♥), and we get

(♥) = −[4
��
C=∞ + [4

��
6=∞ − [4

��
6=0 + [5

��
ℎ=0 + [6

��
9=0 =

= −{(G,~, 1 − (1 − G)−1)} − {(G,~, 1 − (1 − ~)−1)}
+ {(G,~, (1 − (1 − G)−1) (1 − (1 − ~)−1))}
+ {(G,~, (1 − ~−1)−1)} + {(G,~, (1 − G−1))−1} =
= {(G,~, (1 − (1 − G)−1) (1 − (1 − ~)−1))} = {(G,~, (1 − G) (1 − ~))} = {(G,~, I)}

using (5.13) together the fact that 1 − (1 − G)−1 = (1 − G−1)−1 and 1 − (1 − ~)−1 = (1 − ~−1)−1.
This concludes the proof. �

Remark 5.3.2. Explicit computations similar to the ones carried out in Proposition 5.3.1 can be
found in the works of Zhao [Zha07] and Petras [Pet09].

Now, the next step is to show that the class [[] ∈ � 2,3
M (+2) constructed in Proposition 5.3.1 is

actually the restriction of a motivic cohomology class U2 ∈ � 2,3
M (-1 (15)) de�ned on the modular

curve -1 (15). This follows from the fact that the motivic cohomology class U1 ∈ � 3,3
M (+% ) has

the same property, since % is tempered. However, the details remain to be fully worked out.
Finally, one has to relate U2 ∈ � 2,3

M (-1 (15)) to the class ` ∈ � 2,3
M (-1 (15)) mentioned in the

introduction. One possible approach is to use strongly the explicit nature of the two classes, and
try to relate them for instance in the polylogarithmic motivic group B2,3 (-1 (15)), using some
computationally expensive linear algebra. This will be the subject of future investigations.
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5.4 A catalogue of identity types
We conclude this chapter by mentioning a possible expansion of the ideas described so far.

More precisely, we have already seen that Maillot’s trick (see Proposition 5.1.1) can be crucially
used to explain relations between Mahler measures and special values of !-functions which go
beyond the framework of Question 4.2.9. It is therefore useful to take a step back, and analyse
the plethora of relations between Mahler measures and special values of !-functions that have
been proved or conjectured to hold. We are particularly interested in a qualitative study, which
highlights the common features unifying di�erent identities. Let us mention a few of these
types, which we were able to encounter in the literature:

• we have relations of the form

!∗ (�=−1 (+% ), 0)
<(%) ∈ Q× or

!∗ (�=−1 (+̃% ), 0)
<(%) ∈ Q× (5.15)

for some Laurent polynomials % ∈ Q[G±1
1 , . . . , G±1

= ] (see Question 4.2.9). Here +% is the
zero locus of % inside G=< , and +̃% is a desingularisation of a good compacti�cation of +% .
Usually, when relations like (5.15) hold one has that +̃% is a Calabi-Yau variety (e.g. an
elliptic curve, or a  3 surface), and the polynomial % is tempered (see De�nition 4.2.7).
We refer the interested reader to Section 4.2 for a history of the subject, focusing on
polynomials in two variables;

• sometimes, relations of the form (5.15) hold after replacing �=−1 (+% ) with a suitable
sub-motive. This can be the case, for example, when % ∈ Q[G±1, ~±1] is a two-variable
polynomial giving a (possibly singular) plane model of a smooth and proper curve +̃% of
genus 6(+̃% ) ≥ 2, whose Jacobian Jac(+̃% ) has a one-dimensional factor in its Poincaré
decomposition (see Theorem 7.1.1). We refer the reader to the work of Bertin and Zudilin
[BZ16; BZ17] and Lalín and Wu [LW18; LW20] for proved examples of these identities,
and to the work of Liu and Qin [LQ19] for in�nite families of conjectural ones;

• the Mahler measure of a polynomial is sometimes related to zero-dimensional !-functions.
Examples of this type of relations include Smyth’s results (see Theorem 4.2.4), as well
as the in�nite families of results proved by Lalín in [Lal06], and some results proved in
Condon’s thesis (see [Con04, Chapter 2]) and in work of Rogers (see [Rog06]);

• more generally, the Mahler measure of a polynomial in = variables is sometimes nu-
merically related to an !-function associated to an object whose dimension is strictly
less than = − 1. Typical examples of this include the three-variable relations numeri-
cally discovered by Boyd in the talk [Boy06], which were investigated further in the
work of Lalín [Lal15], as well as the relations involving the family of linear polynomials
%= (G1, . . . , G=) := G1 + · · · + G= + 1, which were examined by Rodriguez-Villegas following
Maillot’s talk in Ban� (see [Boy+03, § 8] and [BZ20, § 6.2]);

• some Mahler measures simply evaluate to be logarithms of algebraic numbers, as we have
seen for example in Section 4.4.2.

• �nally, sometimes one sees linear combinations of the previous types appearing. Identities
of this kind have been investigated already in Boyd’s seminal paper (see for instance
[Boy98, Page 76]), and then in the thesis of Bornhorn (see [Bor99, § 5.6] and [Bor15, § 4]).
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Remark 5.4.1. We observe that often one expects the Mahler measure of a polynomial in =
variables to be related to !-values at B = =. However, the equality

<((1 − G1) (1 − G2) − (1 − G3) (1 − G4)) =
9

2c2 Z (3) = −18Z ′(−2)

computed by D’Andrea and Lalín (see [DL07, Theorem 7]), shows that this expectation fails to
be true in general.

Now, it would be extremely interesting (in the author’s opinion) to �nd a complete list of these
types, i.e. a complete classi�cation of the types of identities that may occur between Mahler
measures and special values of !-functions. We imagine that such a type would be given in
the form of a natural number A ∈ N and triple (n,w, d) ∈ (ZA )2 × NA , where A represents the
number of special values appearing in the relation, n represents the set of integers at which
these special values are taken, and the two vectors w and d represent respectively the weights
and the dimensions of the motives involved.

The next step would be to device an algorithm which takes as input a Laurent polynomial
% ∈ Q[G±1

1 , . . . , G±1
= ] and outputs the type (A, n,w, d) associated to this polynomial % . We note

in passing that such a type might not be unique, and that in order to have only a �nite list of
types associated to each polynomial one should not count di�erent identities which are “trivially
equal”, such as the trivial relation

<(%) = !∗ (", 0) = !∗ (", 0) + !∗ (#,−1) − !∗ (#,−1)

or identities coming from functional equations. How to make this precise still remains a
challenging open question.

Finally, we remark that this problem is fundamentally related to the problem of associating to
each polynomial % ∈ Q[G±1

1 , . . . , G±1
= ] a motive"% which has<(%) as a period (see Remark 4.3.6).

More precisely, a possible approach to understand the combinatorics of identity types would be
to �nd suitable ways to decompose the motive "% , according to the “motivic Meccano” brie�y
described by Serre in [Ser91, Page 339].
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6Ray class fields for orders

The moon swam back,
its rays all silvered,
and time and again the darkness
would be broken.

Pablo Neruda, It is born

The aim of this chapter is to introduce the notion of ray class �eld associated to data relative
to an order O ⊆ � inside a number �eld � . More precisely, we describe how to construct ray
class �elds �m associated to a generalised module m := (O, � ,m∞), where O ⊆ O� is an order,
� ⊆ O is a non-zero ideal and m∞ ⊆ "∞� is a collection of Archimedean places. This generalises
the usual notion of ray class �eld, as we point out in Remark 6.2.13. We de�ne �m using the
idelic approach to class �eld theory (see De�nition 6.2.11). This de�nition is then related to the
classical language of class �eld theory in Theorem 6.2.17 and Remark 6.2.18.

This chapter is based on joint work in progress with Francesco Campagna, part of which
appeared in [CP20, Appendix A]. The current aim of this project is to develop the theory of
ray class �eld for orders, which is outlined in this chapter, and to generalise to this context
some results already present in the literature for the usual notion of ray class �eld. Examples
of this include the analysis of the rami�cation behaviour in these ray class �elds (including
a computation of the di�erent and discriminant), and the computational results appearing in
[CS08]. These results are in all likelihood known to the experts, but to the authors’ knowledge
their proofs have never been collected in a single place. Our work, of which this chapter
represents the �rst version, aims at �lling this gap.

We point out that the original interest of the authors in ray class �elds for orders arose from
the aim of giving an adelic proof of Theorem 7.2.5. This result, which is well known for elliptic
curves having complex multiplication by the maximal order O of an imaginary quadratic �eld
 (see for example [Sil94, Chapter II, Theorem 5.6]), was originally proved by Söhngen in his
PhD thesis (see [Söh35] and [Sch10, Theorem 6.2.3]), using the classical language of class �eld
theory.

Despite the fact that our original interest was only con�ned to orders in imaginary quadratic
�elds, there are at least two reasons to engage with the development of a general theory of ray
class �elds for orders:

• Theorem 7.2.5 has been generalised to abelian varieties of each dimension by Shimura
and Taniyama (see [ST61, Main Theorem 3]), still using the classical language of class
�eld theory employed by Söhngen. We point out that in this more general case it is not
true anymore that the division �elds associated to an abelian variety � with complex
multiplication by an order O inside a CM �eld  contain some ray class �elds (relative
to this order O), because one has to take into account the re�ex norm associated to the
CM type induced on  by �. Nevertheless, developing a general, adelic theory of ray
class �elds for orders is a key step towards providing a completely adelic proof of the
aforementioned result of Shimura and Taniyama;
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• the ring class �eld of an order O, which is a generalisation of the Hilbert class �eld
associated to a number �eld � , has been studying recently in two works by Lv and Deng
(see [LD15]) and by Yi and Lv (see [YL18]). They show how to apply this study to �nd
criteria for the solubility of equations of the form N�/Q,B (x) = ~, where x = (G1, . . . , G3 )
is a vector of indeterminates having length equal to the degree 3 = [� : Q] of a number
�eld � , and N�/Q,B (x) ∈ Z[x] denotes the polynomial corresponding to the �eld norm
N�/Q : �× → Q×, computed with respect to a given integral basis B. As we point out in
Remark 6.2.14, our ray class �elds for orders generalise the ring class �elds de�ned by Lv
and Deng, and may provide further insight to the study of di�erent kinds of Diophantine
equations.

Let us conclude this introduction by outlining the contents of this chapter: Section 6.1.1
provides the necessary background on the set of lattices contained in a given number �eld � ,
which is endowed with a natural action of the idèle group A×

�
(see Section 6.1.2). This group is

also the source of the global Artin map [·, � ] : A×
�
� Gal(� ab/� ). This map, which is a surjective

group homomorphism, allows one to describe the abelian extensions of � in terms of subgroups
of the group of idèles A×

�
, as we recall in Section 6.1.3. Moreover, Section 6.2 contains the

heart of this chapter, consisting of the idelic de�nition of ray class �elds for orders, which is
related to the classical language of class �eld theory in Theorem 6.2.17. Finally, Section 6.2
contains also various computations of the Galois group of the extension � ⊆ �m and of suitable
sub-extensions.

6.1 Lattices, idèles and class field theory
As we stated in the introduction, the aim of this section is to collect some background material

on lattices in number �elds and the group of idèles, together with the relations between them
and the idelic version of class �eld theory.

6.1.1 Lattices
This short section collects some de�nitions and crucial properties of lattices in number �elds.

Let us start by giving the following general de�nition.

De�nition 6.1.1 – Lattices

Let ^ be a �eld of characteristic zero, endowed with a sub-ring ' ⊆ ^ , and let+ be a vector
space over ^. An '-lattice is a free '-module Λ ⊆ + such that + = Λ ⊗' ^. We denote by
L(+ ;') the set of '-lattices inside the vector space + , and by L(+ ) the set of Z-lattices.

Remark 6.1.2. There are at least two other notions of lattices present in the literature, namely:

• an additive subgroup Λ ⊆ � inside an R-vector space � endowed with an inner product
〈·, ·〉 : � × � → R is called a lattice if the metric 3 : � × � → R de�ned as

3 (G,~) :=
√
〈G − ~, G − ~〉

induces the discrete topology on Λ;

• a pair (Λ, i) consisting of an abelian group Λ endowed with a symmetric bilinear form
i : Λ ⊗ Λ→ R.
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These two notions coincide as soon as Λ has �nite rank (see [Len08, § 2]). We note that a lattice
Λ ⊆ � inside an Euclidean space � is not required to satisfy rkZ (Λ) = dimR (�), whereas we have
rk' (Λ) = dim^ (+ ) for every Λ ⊆ + which is a lattice in the sense of De�nition 6.1.1. Despite
this di�erence, the aforementioned two notions of lattice coincide otherwise with the one given
in De�nition 6.1.1, when + is �nite dimensional and we take ^ = R and ' = Z.

Fix a �eld ^ of characteristic zero, a sub-ring ' ⊆ ^ and two ^-vector spaces + and + ′. Let us
introduce a few operations that can be performed on the '-lattices contained in + and + ′:

Direct sum There is a map ⊕ : L(+ ;') × L(+ ′;') → L(+ ⊕ + ′;') which sends a
pair of lattices Λ ⊆ + and Λ′ ⊆ + ′ to their direct sum Λ ⊕ Λ′ ⊆ + ⊕ + ′
(as a '-module). This is again an '-lattice, generated by the direct sum
B ⊕ B ′ := {1 ⊕ 1 ′ : 1 ∈ B, 1 ′ ∈ B ′} of the bases B ⊆ + and B ′ ⊆ + ′ which
generate Λ and Λ′.

Tensor product There is a map ⊗ : L(+ ;') × L(+ ′;') → L(+ ⊗ + ′;') taking a pair of
lattices Λ ⊆ + and Λ′ ⊆ + ′ to their tensor product Λ ⊗' Λ′ (as '-modules),
which coincides with the '-lattice generated inside + ⊗^ + ′ by the tensor
productB⊗B ′ := {1⊗1 ′ : 1 ∈ B, 1 ′ ∈ B ′} of the basesB ⊆ + andB ′ ⊆ + ′
which generate Λ and Λ′.

Homomor-
phisms

There is a function Hom: L(+ ;') ×L(+ ′;') → L(Hom^ (+ ,+ ′);') map-
ping a pair of '-lattices Λ ⊆ + and Λ′ ⊆ + ′ to Hom' (Λ,Λ′). Fix two bases
B ⊆ + and B ′ ⊆ + ′ which generate Λ and Λ′. Then the isomorphism

Hom' (Λ,Λ′) � {5 ∈ Hom^ (+ ,+ ′) | 5 (Λ) ⊆ Λ′} ⊆ Hom^ (+ ,+ ′)

shows that the '-module Hom' (Λ,Λ′) can be identi�ed with the lattice
generated inside Hom^ (+ ,+ ′) by the basis

Hom(B,B ′) := {5E,E′ : E ∈ B, E ′ ∈ B ′}

where 5E,E′ : + → + ′ is de�ned by setting 5E,E′ (E) := E ′ and 5E,E′ (F) := 0 for
everyF ∈ B \ {E}.

Dual lattice As a special case of the previous one, there is a map L(+ ) → L(+ ∨)
sending a lattice Λ ⊆ + to its dual Λ∨ ⊆ + ∨.

Base-change Consider a commutative square

' '′

^ ^ ′

where ^ and ^ ′ are two �elds of characteristic zero, endowed with sub-rings
' ⊆ ^ and '′ ⊆ ^ ′. For every ^-vector space+ we have a base-change map
L(+ ;') → L(+ ⊗^ ^ ′;'′) which sends a '-lattice Λ ⊆ + to the '′-lattice
Λ'′ := Λ ⊗' '′.

We now restrict our attention to �nitely generated vector spaces + , and to sub-rings ' ⊆ ^
such that ^ = Frac('). This is due to the following easy result.
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Proposition 6.1.3 – Intersections and images of lattices

Let ^ be a �eld of characteristic zero, endowed with a sub-ring ' ⊆ ^ such that ^ = Frac(').
Fix a �nite dimensional ^-vector space + . Then any pair of '-lattices Λ1,Λ2 ∈ L(+ ;') is
commensurable, i.e. there exist U, V ∈ ^× such that UΛ2 ⊆ Λ1 ⊆ VΛ2.

Suppose now that ' is a principal ideal domain. Then:
• for every subspace, ⊆ + and every '-lattice Λ ∈ L(+ ;') the intersection Λ ∩,

is a '-lattice inside, ;

• for every surjective map 5 : + � + ′ and every '-lattice Λ ∈ L(+ ;'), the image
5 (Λ) ⊆ + ′ is again a '-lattice.

Proof. To prove the �rst assertion we can assume without loss of generality that + = ^= and
Λ1 = '= . Then Λ2 = " · '= for some " ∈ GL= (^), hence there exists U ∈ ' such that
U" ∈ Mat= ('), which implies that UΛ2 ⊆ Λ1. We can conclude, swapping Λ1 and Λ2 in the
previous discussion, that there exists V ∈ ^ such that V−1 ∈ ' and Λ1 ⊆ VΛ2.

Suppose now that ' is a principal ideal domain. Then:
• to prove the �rst point in the list we can assume that+ = ^= and, = ^< for some< ≤ =,

where ^< ↩→ ^= is the inclusion of the �rst< coordinates. Then Λ ∩ ^< is a torsion-free
sub-module of ^< , which is free because ' is a principal ideal domain (see for instance
[SP, Lemma 0AUW]). Moreover, we observe that rk' (Λ ∩ ^<) =< because there exists
U ∈ ' such that U · '< ⊆ Λ, hence

U · Z< = U · '= ∩ ^< ⊆ Λ ∩ ^<

which shows that rk' (Λ∩^<) ≥ <. This allows us to conclude because rk' (") ≤ dim^ (+ )
for every free ' sub-module " ⊆ ^;

• to prove the second point we proceed analogously. More precisely, 5 (Λ) ⊆ + ′ is a free
module over ' (again by [SP, Lemma 0AUW]) and contains a ^-basis of + (because 5 is
surjective). This is enough to conclude that 5 (Λ) ∈ L(+ ′;'), as before.

�

Fix now a principal ideal domain of characteristic zero ' and let ^ := Frac('). We can
use Proposition 6.1.3 to de�ne two new kinds of operations on '-lattices contained in a �nite
dimensional ^-vector space + , endowed with a ^-bilinear pairingk : + ⊗ + → + :
Internal sum there is a map + : L(+ ;')×L(+ ;') → L(+ ;') sending a pair of '-lattices

Λ1,Λ2 ⊆ + to their internal sum Λ1+Λ2 ⊆ + (as '-modules). This is again a
free'-module by [SP, Lemma 0AUW], and it is a lattice because it obviously
contains a basis.

Internal product if k is surjective we can de�ne a map ·k : L(+ ;') × L(+ ;') → L(+ ;')
by setting Λ1 ·k Λ2 := k (Λ1 ⊗Z Λ2), which is a lattice in virtue of Proposi-
tion 6.1.3.

Quotient if the map k̃ : + → End(+ ) induced by k is injective, we can de�ne a
quotient operation (· : ·)k : L(+ ;') × L(+ ;') → L(+ ;') by setting

(Λ1 : Λ2)k := k̃−1
(
Hom(Λ2,Λ1) ∩ k̃ (+ )

)
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for any pair of '-lattices Λ1,Λ2 ⊆ + . We observe that (Λ1 : Λ2)k is again a
lattice thanks to Proposition 6.1.3.

To conclude, we want to apply the previous discussion to number �elds. Indeed, every number
�eld � is a �nite dimensional Q-vector space, endowed with a Q-bilinear mapk : � ⊗Q � → �

given byk (G,~) := G ·~. We see immediately thatk is surjective (because � is a unital ring) and
that k̃ : � → EndQ (� ) is injective (because � is an integral domain). Hence the set of Z-lattices
L(� ) supports the following three operations:

Λ1 + Λ2 := {0 + 1 : 0 ∈ Λ1, 1 ∈ Λ2} ⊆ �

Λ1 · Λ2 := Λ1 ·k Λ2 =

{
A∑
8=1

0818 | 08 ∈ Λ1, 18 ∈ Λ2

}
⊆ �

(Λ1 : Λ2) := (Λ1 : Λ2)k = {G ∈ � | G Λ2 ⊆ Λ1} ⊆ �

which satisfy the natural associativity and distributivity properties. Moreover, we observe
that for every lattice Λ ⊆ � the quotient OΛ := (Λ : Λ) ⊆ O� is an order, in the sense of
De�nition 6.2.1. The lattice Λ then becomes a fractional ideal for OΛ, which is invertible if � is
an imaginary quadratic �eld (see [Cox13, Proposition 7.4]). Finally, we conclude this section by
recalling a result about the behaviour of lattices under localisation and completion (see [Lan87,
Chapter 8, § 1]).

De�nition 6.1.4 – Localisation and completion of lattices

Let ' be an integral domain of characteristic zero, endowed with a prime ideal p ⊆ ',
and denote by ' (p) ⊆ 'p the localisation and the completion of ' at the prime p. Let
 := Frac(') and �x + to be a vector space over  . Then for every prime p ⊆ ' we write
+p := + ⊗ Frac('p) and we associate to every lattice Λ ∈ L(+ ;') two lattices

Λ (p) := Λ ⊗' ' (p) and Λp := Λ ⊗' 'p = Λ (p) ⊗' (p) 'p

which are the p-localisation Λ (p) ∈ L(+ ;' (p) ) and the p-completion Λp ∈ L(+p;'p) of Λ.

Lemma 6.1.5 – Behaviour of lattices under localisation and completion

Let ' be a domain of characteristic zero, and let + be a vector space over  := Frac(').
Then for every pair of lattices Λ,Λ′ ∈ L(+ ;') we have that:

Λ ⊆ Λ′⇔ Λ (p) ⊆ Λ′(p) , ∀p ∈ Spec(') ⇔ Λp ⊆ Λ′p, ∀p ∈ Spec(') (6.1)

and for every lattice Λ ∈ L(+ ;') we have that:

Λ =
⋂
p

Λ (p) and
+

Λ
�

⊕
p

+

Λ (p)
�

⊕
p

+p

Λp

(6.2)

where p runs over all the primes of '.
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Proof. It is immediate to see that for every prime p ⊆ ' we have that

Λ (p) ⊆ Λ′(p) ⇔ Λp ⊆ Λ′p

because Λ (p) = Λp ∩+ ⊆ +p and Λp = Λ (p) ⊗' (p) 'p. Hence showing the implication

Λ (p) ⊆ Λ′(p) , ∀p ∈ Spec(') ⇒ Λ ⊆ Λ′ (6.3)

is su�cient to prove (6.1). Since Λ ⊆ Λ (p) for every prime p ⊆ ', we see that for every G ∈ Λ
there exist two collections of elements {Gp, Ap : p ∈ Spec(')} such that for every prime p ⊆ '
we can write G = Gp/Ap with Gp ∈ Λ′ and Ap ∈ ' \ p. This last condition implies in particular
that there exists a sequence of elements {Bp}p ⊆ ', with Bp = 0 for all but �nitely many primes
p ⊆ ', such that

∑
p ApBp = 1. Thus we see immediately that

G = G · 1 =
∑
p

Bp (GAp) =
∑
p

BpGp ∈ Λ′

which shows that G ∈ Λ′, and allows us to conclude the proof of (6.3).
Take now G ∈ + such that G ∈ Λ (p) for every prime ideal p ⊆ '. Then we can choose again
{Gp, Ap, Bp : p ⊆ Spec(')} such that we can write G = Gp/Ap and 1 =

∑
p ApBp, with Gp ∈ Λ and

Ap, Bp ∈ ' having the property that Bp ∈ ' \ p and Bp = 0 for all but �nitely many primes p ⊆ '.
Thus once again we have that G =

∑
p BpGp ∈ Λ, which shows that

Λ =
⋂
p

Λ (p) (6.4)

because Λ ⊆ Λ (p) for every prime p ⊆ '. Finally, (6.4) shows that

+

Λ
�

⊕
p

+

Λ (p)

and, since Λ (p) = Λp ∩+ ⊆ +p for every prime p ⊆ ', we have that⊕
p

+

Λ (p)
�

⊕
p

+p

Λp

which allows us to conclude. �

6.1.2 Idelic multiplication on lattices
The aim of this section is to describe the action of the group of idèles A×

�
on the set of lattices

L(� ) contained in a number �eld � . First of all, let us recall the de�nition of the adèle ring A� ,
and of its group of units A×

�
.
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De�nition 6.1.6 – Adèles and idèles

Let � be a number �eld. Then we de�ne the adèle ring A� as the restricted product

A� :=
∏′

F∈"�
�F =

{
B = (BF)F∈"� ∈

∏
F∈"�

�F

����� BF ∈ O�F for almost allF ∈ "0
�

}
.

where "� denotes the set of places of � , containing the set "0
�
⊆ "� of non-Archimedean

places. We endow A� with the structure of a topological ring: the sum and product
operations are de�ned component-wise, and the topology is generated by the open sets
of the form

∏
F∈"� *F where *F ⊆ �F is open and *F = O�F for all but �nitely many

F ∈ "0
�

. Finally, we de�ne the idèle group A×
�

as the group of units in the adèle ring A� .

In order to describe the action of the idèle groupA×
�

on the set of lattices L(� ), we need to use
the fact that adèles are compatible with base-change, as it is shown by the following proposition
(see [Neu99, Page 371]).

Proposition 6.1.7 – Adèles and base-change

Let  ⊆ � be an extension of number �elds. Then there is a natural isomorphism of
topological rings

A ⊗ � −→∼ A� (6.5)

induced by the natural inclusion A ↩→ A� and the diagonal embedding � ↩→ A� .

Proof. Use the fact that
 E ⊗ � −→∼

∏
F |E

�F

which holds for every place E ∈ " (see [Neu99, Chapter II, Proposition 8.3]), together with the
fact that tensor products distribute over restricted products. �

We are �nally ready to de�ne the action of the idèle group A×
�

on the set L(� ) (see [Lan87,
Chapter 8, § 1]).

Proposition 6.1.8 – The idelic action on lattices

Let � be a number �eld. Then for every Z-lattice Λ ⊆ � and every idèle B ∈ A×
�

there exists
a unique lattice B · Λ ⊆ � such that for every prime ? ∈ N we have that

(B · Λ) ⊗Z Z? = B? · Λ? ⊆ �?

where �? := � ⊗Q Q? and B? ∈ �×? is the ?-adic component of B , coming from the isomor-
phism (6.5) with  = Q.
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Proof. Fix an idèle B ∈ A×
�

and a lattice Λ ⊆ � . To show the existence of the lattice B · Λ, we
observe that B? · Λ? ∈ L(� ;Z(?) ) for every prime ? ∈ N. This shows that

((B? · Λ? ) ∩ � ) ⊗Z Z@ =

{
B? · Λ? , if ? = @

�@, if ? ≠ @

for every pair of primes ?, @ ∈ N, which implies that(⋂
?

(
(B? · Λ? ) ∩ �

))
⊗Z Z@ = (B@ · Λ@) ∩ �

for every pair of primes ?, @ ∈ N. Hence the lattice B · Λ ⊆ � can be taken to be

B · Λ :=
⋂
?

(
(B? · Λ? ) ∩ �

)
and this de�nes B · Λ uniquely thanks to Lemma 6.1.5. �

The map (B,Λ) ↦→ B · Λ de�nes an action of A×
�

on L(� ), such that (B · Λ1) · Λ2 = B · (Λ1 · Λ2)
for every idèle B ∈ A×

�
and every pair of lattices Λ1,Λ2 ∈ L(� ). Furthermore, for every idèle

B ∈ A×
�

and every lattice Λ ∈ L(� ) we have a multiplication by B map �/Λ B ·−→ �/(B · Λ), de�ned
by means of the following commutative diagram

�

Λ

�

B · Λ

⊕
?∈"0

Q

�?

Λ?

⊕
?∈"0

Q

�?

B?Λ?

B ·

∼ ∼

(B? · )?

(6.6)

where the bottom map is given by (G? )? ↦→ (B? G? )? and the vertical maps are the isomorphisms
given by (6.2).

6.1.3 The global Artin map
The aim of this short section is to brie�y recall some of the main properties of the global Artin

map. We give no proofs, referring the reader to [Neu99, Chapter VI] for a complete account of
global class �eld theory, and to [Poo12] for a summary of the statements.

First of all, let us recall that for every �nite extension of number �elds  ⊆ � and every place
F ∈ "� lying above a place E ∈ " there exists a commutative diagram

�× A×
�

�×F

 × A×
 

 ×E

]�

N� / N� / 

]�F

N�F / E
] 

] E

(6.7)
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where ] :  × ↩→ A×
 

and ]� : �× ↩→ A×
�

denote the diagonal embeddings. On the other hand,
] F :  ×F ↩→ A×

 
denotes the inclusion obtained by the identi�cation

 ×F � {B ∈ A× | BF′ = 1, ∀F ′ ∈ " \ {F}}

and ]�E : �×E ↩→ A×
�

is de�ned analogously. Finally, the homomorphism

N�/ : A×� → A× 

is the so-called idelic norm map (see [Neu99, Chapter VI, § 2]).

Let us now state the main theorem of global class �eld theory, which contains in itself the
de�nition of the global Artin map. In what follows, we assume that  is embedded in an
algebraically closed �eld Ω, and we denote by  ab ⊆ Ω the maximal sub-�eld of Ω which is an
abelian extension of  . Of course, the isomorphism class of this �eld does not depend on Ω nor
on the embedding  ↩→ Ω.

Theorem 6.1.9 – Main theorem of global class �eld theory

For every number �eld there exists a unique surjective, continuous group homomorphism
[·,  ] : A×

 
� Gal( ab/ ) with the following properties:

• the kernel of [·,  ] equals the topological closure of the subgroup  × ·  +∞ ⊆ A× ,
where  +∞ ⊆  ×∞ denotes the connected component of the identity in the group of
units of the topological ring  ∞ :=  ⊗Q R �

∏
E∈"∞

 
 E . The kernel of [·,  ] is

also equal to the inverse image of the connected component of the identity of the
topological group A×

 
/ × under the quotient map A×

 
� A×

 
/ ×;

• for every �nite abelian extension  ⊆ � , the following square

A×
�

Gal(� ab/� )

A×
 

Gal( ab/ )

[ ·,� ]

N� / A� / 

[ ·, ]

(6.8)

commutes, where A�/ : Gal(� ab/� ) → Gal( ab/ ) denotes the restriction map. In
particular, the map [·,  ] induces an isomorphism

[·, �/ ] :
A×
 

 × · N�/ (A×� )
−→∼ Gal(�/ ) (6.9)

for every �nite abelian extension  ⊆ � ;

• for every non-Archimdean place E ∈ "0
 

lying above a prime ? ∈ N we have that
[] E ( ×E ),  ] ⊆ Gal( ab

E / E). Moreover, for every uniformiser c ∈  ×E the homo-
morphism [] E (c),  ] ∈ Gal( ab

E / E) acts on the maximal unrami�ed extension
 E ⊆ ( E)0 (which is pro-cyclic, hence abelian) as the arithmetic Frobenius element
5 −1
 E

(see (3.13) for the de�nition of the geometric Frobenius 5 E ).
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De�nition 6.1.10 – Global Artin map

Let  be a number �eld. Then the global Artin map is the unique surjective, continuous
group homomorphism

[·,  ] : A× � Gal( ab/ )

satisfying the properties stated in Theorem 6.1.9.

Remark 6.1.11. Our formulation of the main theorem of global class �eld theory may appear a
little di�erent from the ordinary. It can be obtained by combining the main theorem of local class
�eld theory (see [Neu99, Chapter V, Theorem 1.3]) and the main theorem of global class �eld
theory (see [Neu99, Chapter VI, Theorem 6.1]). We refer in particular to [Mil20, Theorem 1.13]
for a proof of the uniqueness of the local Artin map.

6.2 The notion of ray class fields for orders
The aim of this section, as we stated in the introduction of the chapter, is to study the notion of

ray class �eld for an order O inside a number �eld � . We introduce them using the idelic language
of class �eld theory, which we recalled in Theorem 6.1.9. We then show in Theorem 6.2.17 how
to relate this to a de�nition coming from the classical language of class �eld theory.

The material present in this section is based on joint work in progress with Francesco Cam-
pagna. We think that much of this material is probably known to the experts, but we were
unable to �nd it explained in any suitable reference. In particular, our de�nition De�nition 6.2.11
has not appeared elsewhere in this generality. Nevertheless, it can be seen as a generalisation of
the notions introduced by Söhngen and by Lv-Deng and Yi-Lv, as pointed out in Remark 6.2.14.

6.2.1 Number rings and orders
We start this section by recalling the notion of number ring and order, following [Ste08, § 2].

De�nition 6.2.1 – Number rings and orders

A number ring ' is a domain whose �eld of fractions Frac(') is a number �eld. A number
ring O ⊆  inside a number �eld  is called an order in  if  = Frac(O) and O is �nitely
generated as an abelian group.

Example 6.2.2. The basic example of order inside a number �eld  is given by the ring of
integers O ⊆  , consisting of all the elements U ∈  which are integral over Z, i.e. such that
there exists a monic polynomial 5 (C) ∈ Z[C] with 5 (U) = 0. We refer the reader to [Neu99,
Chapter I, Theorem 3.1] for a proof of the fact that O ⊆  is indeed an order in  .

Example 6.2.3. Further examples of number rings are given by the rings of the form

' = Z[U1, . . . , U=]

with U1, . . . , U= ∈ Q. We note that the ring Z[U1, . . . , U=] is an order inside the number �eld
Q(U1, . . . , U=) if and only if U1, . . . , U= ∈ Z (see [Neu99, Chapter I, Proposition 2.2]).
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One of the reasons why orders are more amenable to computations than general number rings
is given by the fact that they are lattices in the corresponding number �eld, as the following
result shows (see [Ste08, Theorem 2.2]).

Proposition 6.2.4 – Orders as lattices

Let ' ⊆  be a number ring inside a number �eld  = Frac('). Then ' is an order in  if
and only if ' ⊆ O and the index [O : '] is �nite. Moreover, every ideal � ⊆ O inside
an order O ⊆  is �nitely generated and every non-zero prime ideal p ⊆ O is maximal,
i.e. every order O is a one dimensional, Noetherian integral domain. Finally, for every
Λ ⊆  which is a fractional ideal for an order O ⊆  (i.e. a non-zero �nitely generated O
sub-module of  ) we have that Λ ∈ L( ), i.e. Λ is a Z-lattice in  (see De�nition 6.1.1).

Proof. Since O ⊆  is an order in  we have that any ring ' ⊆ O is �nitely generated as an
abelian group, and if the index [O : '] is �nite we have that  = Frac('). For the converse, we
observe that Example 6.2.3 implies that for any O ⊆  which is an order for  we have that
O ⊆ O . Since  = Frac(O) we have that O and O are �nitely generated abelian groups of
the same rank. This shows as well that every ideal � ⊆ O is a �nitely generated abelian group,
hence a �nitely generated O-module, which implies that O is a Noetherian integral domain.
Moroever, for every ideal � ⊆ O we have that = · O ⊆ � ⊆ O for every = ∈ � ∩ Z. Hence if we
take � ≠ (0) we see that � and O are �nitely generated abelian groups of the same rank, which
implies that for every non-zero ideal � ⊆ O we have that � is a lattice in  and O/� is a �nite
ring. This applies in particular to every non-zero prime ideal p ⊆ O, which implies that p is
maximal because the �nite integral domain O/p is a �eld, thanks to Wedderburn’s little theorem
(see for instance [Coh03, Theorem 7.8.6]). To conclude, it is su�cient to observe that for every
fractional O-ideal Λ ⊆  there exists = ∈ Z such that = ≠ 0 and =Λ ⊆ O is an ideal. Thus =Λ
and Λ are both Z-lattices inside  . �

To conclude, let us recall the notion of conductor of an order O ⊆  .

De�nition 6.2.5 – Conductor of an order

Let  be a number �eld and let O ⊆  be an order in  . Then the conductor of O is:

fO := (O : O ) = {U ∈ O | UO ⊆ O} ⊆ O

which is the biggest ideal of O to be contained in O.

Remark 6.2.6. Let O be an order inside a number �eld � . Then it is immediate to see that
|O� : O| · O� ⊆ O, which implies that the conductor ideal fO ⊆ O� divides the principal ideal
|O� : O| · O� generated by the index |O� : O| ∈ N.

The conductor fO of an order is important in view of the following result concerning the
invertibility of ideals.
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Lemma 6.2.7 – The conductor and invertible ideals

Let O be an order inside a number �eld  . Then an ideal � ⊆ O is invertible if and only
if � · (O : � ) = O. This happens if � + fO = O, i.e. every ideal which is coprime to the
conductor fO ⊆ O is invertible, and the converse holds if � is a prime ideal. Moreover, the
map

{� ⊆ O | � + fO = O } → {� ⊆ O | � + fO = O}
� ↦→ � ∩ O

is a bijection, whose inverse is given by � ↦→ � · O . These maps are multiplicative, i.e.
(� · � ′) ∩ O = (� ∩ O) · (� ′ ∩ O) and (� · � ′)O = (� · O ) · (� ′ · O ) for every two pairs of
ideals � , � ′ ⊆ O and � , � ′ ⊆ O such that � + fO = � ′ + fO = O and � + fO = � ′ + fO = O .
Finally, for every ideal � ⊆ O such that � ∩ O is invertible, the natural map

O
� ∩ O →

O 
�

(6.10)

is an isomorphism.

Proof. The �rst statement is the content of [Con19, Lemma 3.2] and the second can be obtained
by combining [Neu99, Chapter I, Proposition 12.10] and [Con19, Theorem 3.6]. The fact that
the maps � ↦→ � ∩ O and � ↦→ � · O establish a bijection between the sets of ideals of O
and O which are coprime with fO is the content of [Con19, Theorem 3.6]. Finally, [Con19,
Theorem 3.12] proves that (6.10) is an isomorphism for every ideal � ⊆ O such that � ∩ O is
invertible. �

Example 6.2.8 (Conductors of imaginary quadratic orders). Let O be an order inside an imag-
inary quadratic �eld  . Then it can be shown that the conductor fO ⊆ O equals the ideal
generated inside O by the integer |O : O| ∈ N (see [Con19, Example 2.1]). Hence, we usually
abuse notation and denote by fO both the index |O : O| and the conductor ideal fO ⊆ O 
generated by this index. Moreover, let us observe that for every natural number 5 ∈ N and every
number �eld  there exists a unique order O5 ⊆ O whose conductor equals 5 · O . Indeed,
O5 is given by the ring O5 := Z + 5 O .

6.2.2 Definition of ray class fields for orders
We are now ready to de�ne the ray class �elds relative to an order O ⊆ O� inside a number

�eld � . First of all, we package the data needed to give the de�nition of such a ray class �eld in
the following concept.

De�nition 6.2.9 – Generalised modules

Let � be a number �eld. Then a generalised module for � is a triple

m = (O, � ,m∞)

where O ⊆ � is an order, � ⊆ O is a non-zero ideal and m∞ ⊆ "∞
�

is a collection of
Archimedean places of � such that �E � R for every E ∈ m∞.
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Remark 6.2.10. Usually one de�nes a module m̃ for a number �eld � as a formal N-linear
combination m̃ =

∑
E ordE (m̃) [E] ∈ N["� ] of places of � , such that ordE (m̃) = 0 for all but

�nitely many E ∈ "� and ordE (m̃) ∈ {0, 1} if E ∈ "∞
�

(see for example [Neu99, Page 363]). Then
the triple

m =
©­«O� ,

∏
E∈"0

�

p
ordE (m̃)
E , {E ∈ "∞� | ordE (m̃) ≠ 0}ª®¬

de�nes a generalised module for � , in the sense of De�nition 6.2.9. Moreover, the map m̃ ↦→ m

induces a bijection between the set of modules m̃ (in the classical sense) and the set of generalised
modules m = (O, � ,m∞) such that O = O� .

Let us now introduce the ray class �eld �m associated to a generalised module m.

De�nition 6.2.11 – Ray class �elds for orders

Let � be a number �eld and m = (O, � ,m∞) be a generalised module for � . Then we de�ne
the ray class �eld of � modulo m as

�m := (� ab) [*m,� ] ⊆ � ab (6.11)

where [·, � ] : A×
�
→ Gal(� ab/� ) is the global Artin map and*m ⊆ A×� is the subgroup

*m :=
B ∈ A×�

������ B? ∈
(
O×? ∩ (1 + � · O? )

)
for all rational primes ? ∈ N

BE ∈ R>0, for all places E ∈ m∞

 (6.12)

where B? ∈ �×? := (� ⊗Q Q? )× denotes the ?-adic component of an idèle B ∈ A×
�

, which is
de�ned using (6.5) with  = Q, and

O? := lim←−−
=∈N

O
?=O � O ⊗Z Z? ⊆ �? := � ⊗Q Q? (6.13)

denotes the completion of O with respect to the ideal ? O (see also De�nition 6.1.4).
When m∞ = ∅ we write *� ,O := *m , and if � = # · O for some # ∈ Z we denote *� ,O

by *#,O , and we write *O := *1,O . The corresponding ray class �elds are denoted by
�� ,O, �#,O and �O , respectively.

Remark 6.2.12. De�nition 6.2.11 is easily generalised to all number rings. More precisely, one
can de�ne a generalised module m to be a triple m = (', �,m∞) where ' is a number ring, � ⊆ '
is an ideal and m∞ is a set of Archimedean places of � := Frac('), with the property that �E � R
for every E ∈ m∞. Then one can de�ne

+m :=
B ∈ A×�

������ B? ∈
(
O×? ∩ (1 + � · O? )

)
for all rational primes ? ∈ N

BE ∈ R>0, for all places E ∈ m∞


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where '? := ' ⊗Z Z? and again � = Frac('). Finally, the ray class �eld for the generalised
module m is de�ned to be �m := (� ab) [+m,� ] , and use again the notation �� ,', �#,' and �' ,
de�ned exactly as in the case of orders.

We decided to focus on the theory for orders in this chapter, because it is less technical to
develop. For instance, already for the ring class �eld �' associated to a number ring ', showing
that Gal(�'/Frac(')) � Pic(') takes up half of the proof of [YL18, Theorem 4.2].
Remark 6.2.13. When O = O� is the ring of integers, the ray class �elds �m coincide with the
usual ray class �elds of � , which are de�ned for example in [Neu99, Chapter VI, De�nition 6.2]).
This is evident from the de�nitions, using the bijection m̃ ↦→ m described in Remark 6.2.10, and
the isomorphism

O� ⊗Z Z? �
∏
p |?
O�p

which holds for every rational prime ? ∈ N (see also (6.18) for the analogous decomposition in
the case of a general order).
Remark 6.2.14. When � =  is an imaginary quadratic �eld, the ray class �elds �� ,O have been
de�ned by Söhngen in [Söh35]. His work is exposed in great detail by Schertz in [Sch10, §3.3],
and if � = # · O for some # ∈ N the construction of �� ,O = �#,O has been reformulated by
Stevenhagen in [Ste01, § 4], using an idelic language. Finally, the ring class �elds �O have been
studied for general number �elds � by Lv and Deng in [LD15] and by Yi and Lv in [YL18], who
treated also the case of general number rings.
Remark 6.2.15. For every generalised module m = (O, � ,m∞) we have that *m ⊆ *� ,O , which
implies that �m ⊇ �� ,O . Moreover, for every pair of ideals � ⊆ � ⊆ O we have that *� ,O ⊆ * � ,O ,
which implies that �� ,O ⊇ � � ,O . In particular, �O ⊆ �� ,O for every ideal � ⊆ O. Similarly, for
every pair of orders O1 ⊆ O2 ⊆ � and every ideal � ⊆ O1 we have that *� ,O1 ⊆ *� ·O2,O2 , which
gives the containment�� ,O1 ⊇ �� ·O2,O2 . This generalises Deuring’s Anordnungssatz, as explained
for example in [Ste01, Page 169]. In particular for every generalised module m = (O, � ,m∞) we
have the following diagram of inclusions

�m

�� ·O� ,O� �� ,O �� ·fO ·O� ,O�

� �O� �O �fO ,O�

⊆ ⊆

⊆

⊆

⊆

⊆ ⊆

⊆ ⊆

where fO ⊆ O is the conductor of O (see De�nition 6.2.5). This shows, applying [Neu99,
Chapter VI, Corollary 6.6], that the extension � ⊆ �� ,O is unrami�ed outside the set of primes
dividing � · fO · O� .

6.2.3 Galois groups of ray class fields for orders
The aim of this �nal section, which constitutes the technical part of this chapter, is to describe

the Galois groups of the abelian extensions � ⊆ �m . First of all, we have the following idelic
description, which follows essentially from Theorem 6.1.9 and De�nition 6.2.11.
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Lemma 6.2.16 – Galois groups of ray class �elds, in terms of idèles

Let m = (O, � ,m∞) be a generalised module, relative to the number �eld � := Frac(O).
Then �× ·*m ⊆ A×� is a closed subgroup of �nite index and one has

�× · �+∞ ⊆ ker( [·, � ]) ⊆ �× ·*m = �× · N�m/� (A×�m
)

where N�m/� : A×
�m
→ A×

�
denotes the idelic norm map, and �+∞ ⊆ �×∞ is the connected

component of the identity in the group of units of the topological ring �∞ := � ⊗Q R.
Moreover, there is an isomorphism

Gal(�m/� ) �
A×
�

�× ·*m

(6.14)

induced by the global Artin map [·, � ] : A×
�
� Gal(� ab/� ).

Proof. Let m̃ := (O� , � · fO · O� ,m∞), so that *m ⊇ *m̃ . This implies that the subgroup
�× · *m ⊆ A×� is closed and has �nite index, thanks to [Neu99, Chapter VI, Proposition 1.8].
Moreover, we have by de�nition that �+∞ ⊆ *m , so the inclusions

�× · �+∞ ⊆ ker( [·, � ]) ⊆ �× ·*m

follow from the fact that �× · *� ,O is closed in A×
�

and ker( [·, � ]) is the closure of �× · �+∞
inside A×

�
, as explained in Theorem 6.1.9. The isomorphism (6.9) now gives (6.14) and shows

that �× · N�m/� (A×�m
) ⊆ A×

�
is also a closed subgroup of �nite index containing the kernel

of the Artin map and �xing precisely the �eld �m . Then by Galois theory we must have
�× ·*m = �× · N�m/� (A×�m

), and this concludes the proof. �

The next step in our description of the Galois group Gal(�m/� ) is to relate it to suitable
sub-quotients of the group IO of invertible ideals a ⊆ O. This is achieved by the following
result, which extends [YL18, Theorem 4.2], where it is shown that Gal(�'/') � Pic(') for every
number ring ', to general ray class �elds for orders.

Theorem 6.2.17 – Galois groups of ray class �elds, in terms of ideals

Let m = (O, � ,m∞) be a generalised module, relative to the number �eld � = Frac(O).
Let Im be the group of invertible ideals a ⊆ O such that a + � = O, and let Pm ⊆ Im be
the subgroup of principal ideals generated by elements U ∈ O such that U ≡ 1(� ) and
]E (U) > 0 for every E ∈ m∞, where ]E : � ↩→ �E denotes the canonical embedding of �
inside its completion �E � R. Then there is an isomorphism

Gal(�m/� ) �
Im
Pm

which shows in particular that Gal(�O/� ) � Pic(O) for every order O ⊆ � .

Proof. First of all, let Jm be the group of fractional O-ideals a1 · a−1
2 ⊆ � , where a1, a2 ∈ Im , and

let Qm ⊆ Jm be the subgroup of principal fractional O-ideals (U1/U2) · O, where U1, U2 ∈ O
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are elements such that U1O + � = U2O + � = O and U1 ≡ U2 (� ). Then the natural inclusion
] : Im ↩→ Jm induces an isomorphism

] :
Im
Pm
−→∼ JmQm

(6.15)

as follows from clearing denominators. Indeed, if a = a1 · a−1
2 ∈ Jm and a2 = (U1, . . . , U=) then

U · a ⊆ O, where U := U1 · · ·U= . Since a2 + � = O we have that U becomes a unit modulo � , hence
there exists V ∈ O such that UV ≡ 1(� ), which shows that the class of a in the quotient Jm/Qm

coincides with the class of (UV) · a, where (UV) · a ∈ Im . This shows that the map (6.15) is
surjective. Since it is also naturally injective, we see that it is an isomorphism.

Now, let m̃ := (O� , � · fO · O� ,m∞), where fO ⊆ O denotes the conductor ideal of O. Then
there is a map i : Jm̃ → Jm induced by the map Ĩm → Im given by a ↦→ a ∩ O. Moreover, for
every a ∈ Ĩm we have that a = (a ∩ O) · O� because a is coprime with fO , which shows that
i−1 (Qm) is the subgroup of all principal fractional ideals (U1/U2) · O� which are generated by
quotients of elements U1, U2 ∈ O such that U1O + � fO = U2O + � fO = O and U1 ≡ U2 (� ).

We can now proceed as in [YL18, Theorem 2.9] to show that for every a ∈ Im there exists
U ∈ O such that UO ∈ Pm and aO(p) = UO(p) for every prime p ⊆ O such that p ⊇ fO . Indeed,
let p1, . . . ,p= ⊆ O be all the prime ideals containing fO and let O(p8 ) be the localisation of O at
p8 . Observe that these ideals are all maximal, and in particular pairwise coprime, because O
is one-dimensional (see Proposition 6.2.4). Then one can use the Chinese remainder theorem
combined with [Neu99, Chapter I, Proposition 12.4] and [Bou89, Chapter II, § 2.6, Proposition 15]
to show that for every 8 ∈ {1, . . . , =} there exist U8 , V8 ∈ O and 48 ∈ Z≥1 such that

p
48
8
O(p8 ) ⊆ aO(p8 ) = V8 O(p8 ) * p

48
8
O(p8 ) and

U8 ≡ V8 (p48+18
)

U8 ≡ 1(p9 ), ∀9 ≠ 8
U8 ≡ 1(� )

and in particular one can take U8 = V8 = 48 = 1 whenever p8 ⊇ � , since a + � = O. Under these
assumptions we can set U := U1 · · ·U= , because U ≡ 1(� ) and

aO(p8 ) = U8O(p8 ) = U8

(∏
9≠8

U 9O(p8 )

)
= UO(p8 )

for every 8 ∈ {1, . . . , =}. Now, since U−1a ⊆ O(p8 ) for every 8 ∈ {1, . . . , =} we see that U−1a = W−1b

for some b ⊆ O and some W ∈ O such that b + � fO = WO + � fO = O and W ≡ 1(� ). Hence the map
i : Jm̃ → Jm induces an isomorphism

i :
Jm̃
Rm

−→∼ JmQm

where Rm := i−1 (Qm) is, as we said above, the set of all principal fractional ideals (U1/U2) · O�
which are generated by quotients of elements U1, U2 ∈ O such that U1O + � fO = U2O + � fO = O
and U1 ≡ U2 (� ).

Now, letA×
�,m
⊆ A×

�
be the subgroup given by those idèles B ∈ A×

�
such that B? ∈ O×? ∩(1+�O? )

for every rational prime ? ∈ N dividing N�/Q (� · fO · O� ), and ]E (BE) > 0 for every real place
E ∈ m∞. Observe that A×

�
= A×

�,m
· �×. Indeed, let � · fO · O� = P

01
1 · · ·P

0A
A be the factorisation

of the ideal � · fO · O� ⊆ O� into prime powers, and �x any element Y ∈ R>0 such that for every
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9 ∈ {1, . . . , A } the ball of radius Y centred at the origin of �P9 is contained in P
0 9
9
· O�P9 . Then

for every 9 ∈ {1, . . . , A } and every idèle B ∈ A×
�

we see that there exists C 9 ∈ � such that

|C 9 − B−1
P9
|P9 < |B−1

P9
|P9 · (Y/2)

because � ⊆ �P9 is dense, Moreover, the approximation theorem [Neu99, Chapter II, Theorem 3.4]
shows that there exists G ∈ �× such that |G − C 9 |P9 < |B−1

P9
|P9 · (Y/2). Hence we get

| (G · B)P9 − 1|P9 ≤ |BP9 |P9 ·
(
|G − C 9 |P9 + |C 9 − B−1

P9
|P9

)
< Y

which implies that (G · B)P9 ∈ 1 +P0 9
9
O�P9 for every 9 ∈ {1, . . . , A }. This allows us to conclude

that A×
�,m̃
· �× = A×

�
, where A×

�,m̃
⊆ A×

�
is de�ned analogously to A×

�,m
using the modulus

m̃ = (O� , � · fO · O� ,m∞). Since it is easy to see that A×
�,m̃
⊆ A×

�,m
we get that A×

�
= A×

�,m
· �×,

as we wanted.
We can now observe that there is a well de�ned group homomorphism

k : A×�,m → Jm̃

which sends an idèle B ∈ A×
�

to the fractional ideal (B) :=
∏

p⊆O� p
ordp (B) ⊆ � . Indeed for any

B ∈ A×
�,m

and every 9 ∈ {1, . . . , A } we have that ordP9 (B) = 0 because

B? 9 = (BP)P |? 9 O� ∈ O×? ⊆
∏
P |? 9 O�

O×�P

where ? 9 ∈ N denotes the rational prime lying under P9 . Now, k is surjective because for
every fractional ideal � =

∏
p p

0p we have � = (B) with Bp := c0pp for some uniformiser cp ∈ �p.
Moreover, we have that k−1 (Rm) = *m · �m where �m := A×

�,m
∩ �×. Indeed let B ∈ A×

�,m
and

suppose that (B) = U · O� where U = U1/U2 for some U1, U2 ∈ O such that

U1O + � fO = U2O + � fO = O

and U1 ≡ U2 (� ). Then U1, U2 ∈ O×? for every rational prime ? ∈ N dividing N�/Q (� · fO · O� ),
which shows that U ∈ �m . Moreover, since (B) = UO� we see that B? · O�,? = UO�,? for every
rational prime ? ∈ N, which implies that B? · O? = U · O? after noticing that U1 and U2 are
coprime with fO . Hence we get U−1 · B ∈ (*O ∩ A×�,m) = *m , and thus B ∈ U ·*m ⊆ *m · �m , as
we wanted to prove. This shows that ], i andk induce an isomorphism

A×
�

�× ·*m

�× · A×
�,m

�× ·*m

�× · A×
�,m
/�×

�× ·*m/�×
A×
�,m

*m · �m
Jm̃
Rm

Jm
Qm

Im
Pm

= � �
∼
k

∼
i

∼
]−1

which allows us to conclude using the isomorphism (6.14). �

Remark 6.2.18. The isomorphism Gal(�m/� ) � Jm̃/Rm can be used to de�ne the ray class
�elds �m using the classical language of class �eld theory. More precisely, we know from
Remark 6.2.10 that m̃ = (O� , � · fO · O� ,m∞) can be thought of as a classical module for the
number �eld � . Then the classical version of global class �eld theory (see for example [Neu99,

6.2 The notion of ray class fields for orders 177



Chapter VI, Corollary 7.2]) shows that for every �nite abelian extension � ⊆ ! there exists a
classical module n = (O� , � , n∞) such that

Gal(!/� ) � Jn
ℜ!/�,n

where ℜ!/�,n is a subgroup containing the “ray” Qn . This can be reversed, to show that for every
classical module n and every subgroup R ⊆ Jn such that Qn ⊆ R there exists a �nite abelian
extension � ⊆ ! such that R = ℜ!/�,n . Hence we can de�ne �m precisely in this way, by taking
n = ñ and R := Rm .

Example 6.2.19. If � is an imaginary quadratic �eld, we can use Remark 6.2.18 to retrieve the
classical de�nition of ray class �elds for imaginary quadratic orders appearing in the PhD thesis
of Söhngen [Söh35] (see also [Sch10, §3.3]).

The previous results shows that we can split the abelian extension � ⊆ �m into the sub-
extension � ⊆ �O given by the ring class �eld �O , which depends only on the order O and has
Galois group Gal(�O/� ) � Pic(O), and the upper part �O ⊆ �m . The following result, which
concludes this chapter, computes the Galois group of this upper part.

Theorem 6.2.20 – Galois groups of ray class �elds over the ring class �eld

Let m = (O, � ,m∞) be a generalised module, relative to the number �eld � := Frac(O).
Then we have the isomorphism:

Gal(�m/�O) �
(O/� )×
c×
�
(O×m∞ )

where c×
�

: O× → (O/� )× is the map induced by the projection c� : O � O/� , and
O×m∞ ⊆ O

× denotes the subgroup given by those units U ∈ O× such that ]E (U) > 0 for
every E ∈ m∞.

Proof. First of all, we see that

Gal(�m/�O) = ker (Gal(�m/� ) � Gal(�O/� ))
(0)
� ker

(
A×
�

�× ·*m

�
A×
�

�× ·*O

)
�

�
�× ·*O
�× ·*m

�
�× ·*O/�×
�× ·*m/�×

(1)
�

*O/(�× ∩*O)
(*m · (�× ∩*O))/(�× ∩*O)

�

�
*O

*m · (�× ∩*O)
(2)
=

*O
*m · O×

where (0) comes from Lemma 6.2.16, (1) holds because *m ⊆ *O and (2) follows from the fact
that �× ∩*O = O×.

Now, observe that �×∞ ⊆ *O , where �∞ := � ⊗Q R �
∏
F |∞ �F ↩→ A� . Moreover, we have

cO :
*O
�×∞

�
∏
?∈N
O×? �

∏
?∈N

lim←−−
=∈N

(
O
?=O

)×
� lim←−−
# ∈Z≥1

(
O
#O

)×
� Ô× (6.16)
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where the products run over the rational primes ? ∈ N, and O? is the ring de�ned in (6.13). In
the chain of isomorphisms (6.16) the ring Ô is the pro�nite completion of O, i.e.

Ô := lim←−−
# ∈Z≥1

O
#O �

∏
?∈N
O? �

∏
p⊆O
Op (6.17)

where the second product runs over all the non-zero prime ideals p ⊆ O and Op := lim←−−=∈N O/p
=

is the completion of O at the prime p. The second isomorphism appearing in (6.17) can be
obtained by applying [Eis95, Corollary 7.6] to ' = Z? and � = O? . This gives the decomposition

O? �
∏
p⊇?
Op (6.18)

where the product runs over all primes p ⊆ O lying above ? .

Under the isomorphism (6.16) the subgroup *� ,O/�×∞ ⊆ *O/�×∞ � Ô× is identi�ed with the
kernel of the map ĉ�× : Ô× → (Ô/� Ô)× induced by the projection ĉ� : Ô � Ô/� Ô. Using this,
one sees that the subgroup (*m · O× · �×∞)/�×∞ ⊆ *O/�×∞ � Ô× is identi�ed with ker(ĉ�×) · O×m∞ .
Hence we get that

Gal(�m/�O) �
*O

*m · O×
�

*O/�×∞
(*m · O× · �×∞)/�×∞

�
Ô×

ker(ĉ�×) · O×m∞
�
(Ô/� Ô)×

ĉ�
× (O×m∞ )

because ĉ�× is surjective. This surjectivity is shown by the factorisation

Ô×
(
Ô/� Ô

)×
∏
p⊇�
O×p

ĉ�
×

where the �rst map Ô× �∏
p⊇� O×p is surjective as follows from (6.17), and the second map

∏
p⊇�
O×p �

∏
p⊇�

( Op
�Op

)×
�

(
Ô
� Ô

)×
is surjective by [Che20, Corollary 2.3], which can be applied since the ring

∏
p⊇� Op has �nitely

many maximal ideals.

To �nish our proof we need to show the isomorphism

(Ô/� Ô)×

ĉ�
× (O×m∞ )

�
(O/� )×
c×
�
(O×m∞ )

.
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To do this recall that c� and ĉ� are related by the commutative diagram

O O/� ∏
p⊇�

O(p)
�O(p)

Ô Ô/� Ô ∏
p⊇�

Op
�Op

c� W

V

ĉ� U
∼

where U is the isomorphism coming from the decomposition (6.17), and V and W are the maps
induced by the natural inclusions O ⊆ O(p) ⊆ Op. Moreover the products run over all the prime
ideals p ⊆ O such that p ⊇ � , and O(p) denotes the localisation of O at the prime p.

Hence to conclude it is su�cient to observe that W is an isomorphism by [Neu99, Chapter I,
Proposition 12.3], and V is an isomorphism because O is a one-dimensional Noetherian domain
(see [Neu99, Chapter I, Proposition 12.2]). More explicitly, for any prime p ⊆ O such that p ⊇ �
we have that p · O(p) =

√
� · O(p) because O(p) is a one-dimensional local ring. Hence [Bou89,

Chapter II, § 2.6, Proposition 15] shows that O(p)/�O(p) is complete with respect to pO(p) . Thus
we can conclude that O(p)/�O(p) is isomorphic to Op/�Op using the exactness of completion,
which holds because O(p) is Noetherian (see [Eis95, Lemma 7.15]). �
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7The theory of complex
multiplication

The more complex the mind,
the greater the need for the simplicity of play.

James T. Kirk,
Star Trek: The Original Series

The aim of this chapter is to introduce the main points of the theory of complex multiplication
(often abbreviated by CM) which are needed in what follows. This theory is incredibly rich,
and it has been understood for a long time that objects with complex multiplication form
a fertile testing ground for numerous conjectures in arithmetic geometry. These include the
Mumford-Tate conjecture (see for instance [FC20, Page 4] for a motivic version of this conjecture)
and Beilinson’s conjectures for the special values of !-functions (see Conjecture 3.3.18). More
precisely, the Mumford-Tate conjecture is known by work of Pohlmann (see [Poh68]) for every
abelian variety with complex multiplication, and the weak form of Beilinson’s conjecture (see
Conjecture 3.3.28) is known in the following cases:

• for the special value !∗ (�, 1) associated to any abelian variety � with complex multipli-
cation, thanks to work of Blasius and Harder (see [HS85]), which was later revisited in
Colmez’s thesis (see [Col89]);

• for the special values !∗ (�, =) with = ≠ 1, associated to any elliptic curve � with complex
multiplication that satis�es Shimura’s condition (see De�nition 7.1.30), thanks to the work
of Deninger (see [Den89] and [Den90]).

All these proofs and conjectures use heavily the structure of torsion points on CM abelian
varieties, and the fact that the Galois representation induced by these is far better understood
in the CM case than in the general case. This is exempli�ed by the main theorem of complex
multiplication (see Theorem 7.1.25) which is part of to the groundbreaking work of Shimura and
Taniyama [ST61], and describes the Galois action on torsion points in terms of class �eld theory
and the global Artin map.

Let us review the contents of this chapter. First of all, we devote Section 7.1 to de�ning
abelian varieties with complex multiplication, and to giving the statement of the main theorem
of complex multiplication, of which we present a partial proof in the case of elliptic curves. The
two central sections of the chapter are then based on joint work with Francesco Campagna.
First of all, the aim of Section 7.2 is to present a proof of the third main theorem of complex
multiplication (see [ST61, Page 142]) for elliptic curves with complex multiplication by general
orders. While the corresponding result for curves with CM by maximal orders is classical (see
[Sil94, Chapter II, Theorem 5.6]), the corresponding result for elliptic curves having complex
multiplication by non-maximal orders is not equally well documented. This result can of course
be derived as a special case of the result of Shimura and Taniyama, but it is in fact due to Söhngen
[Söh35]. Both proofs, as well as the pedagogical account of Söhngen’s proof given by Schertz in
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[Sch10, Theorem 6.2.3], use the classical language of class �eld theory, whereas Stevenhagen’s
account [Ste01, § 4] of Söhngen’s proof uses an idelic language, but focuses only on the case of
# -torsion points, for some integer # ∈ N, instead of the more general case of � -torsion points
for some ideal � ⊆ O. Therefore we thought it meaningful to include a completely idelic proof
of the general case, based on the notions of ray class �elds for orders that we introduced in the
previous chapter. Secondly, Section 7.3 contains the proof of an optimal bound for the index of
the image of the Galois representation attached to the torsion points of an elliptic curve with
complex multiplication. This partially generalises work of Lombardo (see [Lom17]) and Bourdon
and Clark (see [BC20]). Finally, Section 7.4 is dedicated to recalling the results of Deninger on
Beilinson’s conjecture for elliptic curves with complex multiplication at non-critical integers.
We focus in particular on the integer B = 2, which is the subject of a theorem of Rohrlich (see
Theorem 7.4.5), which generalises earlier work of Bloch (see [Blo00, Theorem 11.2.1]).

7.1 Abelian varieties with complex multiplication
It is a common, general theme of mathematics to study the symmetries of objects. Most

notably, it was precisely to study symmetries of roots of polynomials that the notion of group
was envisioned by Galois. Since then, it has become apparent that the theory underlying objects
whose number of symmetries is di�erent from the average one is both richer and easier to
develop than the general one. Going back to the solutions of polynomial equations, it is no
mystery (as we reviewed in Section 6.1.3), that class �eld theory, which studies abelian extensions
of number �elds, results in a theory far more vivid than the general theory of Galois extensions
of number �elds.

The theory of abelian varieties is no exception to this rule, but here the situation is somehow
reversed: the more symmetries an abelian variety possesses, the richer the theory. To be more
precise, symmetries of an abelian variety � are given by the elements of its endomorphism ring
End(�). In order to study this ring, we can employ the following result, which allows us to split
an abelian variety into its simple constituents (see [CCO14, Theorem 1.2.1.3]).

Theorem 7.1.1 – Poincaré reducibility theorem

Let � be a non-zero abelian variety de�ned over a �eld ^. Then there exists an isogeny

�→ �
41
1 × · · · ×�

4=
= (7.1)

where 41, . . . , 4= ∈ N and {�1, . . . , �=} are pairwise non-isogenous simple abelian varieties,
i.e. abelian varieties which do not have any non-trivial abelian sub-varieties.

Using Theorem 7.1.1 we see that the endomorphism Q-algebra End0 (�) := End(�) ⊗Z Q is
semi-simple. More precisely, each algebra End0 (�8 ) is a simple division Q-algebra, which means
that End0 (�8 ) does not have any non-trivial two-sided ideal and for every pair U,W ∈ End0 (�8 )
there exists a unique pair V, X ∈ End0 (�8 ) such that U = V W = W X . Moreover, the endomorphism
algebra End0 (�) decomposes as

End0 (�) �
=∏
8=1

Mat48×48 (End0 (�8 ))
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because End0 is invariant under isogeny.
Since the algebra End0 (�) is semi-simple, we can measure how big it is by means of its

reduced degree, which is de�ned using the following lemma on simple algebras (see [Coh03,
Theorem 5.4.6]).

Lemma 7.1.2 – Centres of �nite dimensional simple algebras

Let � be a �eld and let " be a �nite dimensional simple algebra over � . Then the centre
/ (") ⊆ " is a �eld, which is a �nite extension of � . Moreover, the index [" : / (")] is
�nite, and is the square of an integer.

De�nition 7.1.3 – Reduced degree

Let � be a �eld and " be a �nite dimensional semi-simple algebra over � . Then its reduced
degree is de�ned as

[" : � ]red :=
=∑
8=1
["8 : � ]red :=

=∑
8=1

√
["8 : / ("8 )] [/ ("8 ) : � ] ∈ N

where " = "1 × · · · ×"= is the decomposition of " as a product of simple algebras.

As we said, the reduced degree of the Q-algebra End0 (�) is a good way of measuring how
many endomorphisms � has. This is also expressed by the following result, which shows that
the reduced degree is bounded in terms of the dimension of the abelian variety � (see [CCO14,
Theorem 1.3.1.1]).

Theorem 7.1.4 – Reduced degree and étale sub-algebras

Let � be an abelian variety over a �eld ^. Then we have that

[End0 (�) : Q]red = max{[" : Q] | " ⊆ End0 (�) is étale over Q}

and [End0 (�) : Q]red ≤ 2 dim(�).

As we mentioned in the beginning, CM abelian varieties are those abelian varieties which
have more symmetries than usual. Since we have seen that the reduced degree is a way of
measuring how many endomorphisms an abelian variety has, it is not surprising to give the
following de�nition.
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De�nition 7.1.5 – Abelian varieties with complex multiplication

Let � be an abelian variety de�ned over a �eld ^. Then � has complex multiplication if

[End0 (�) : Q]red = 2 dim(�)

and � has potential complex multiplication if there exists a �nite extension of �elds ^ ⊆ ^ ′
such that the base-change �/^′ has complex multiplication. We call CM abelian varieties
the abelian varieties with potential complex multiplication.

De�nition 7.1.5 has the virtue of being an intrinsic de�nition, which does not depend on
anything but the abelian variety �. On the other hand, we may observe that every polarisation
� → �∨ induces a positive involution on End0 (�), and thus on the single factors End0 (�8 )
coming from the decomposition (7.1). Hence one can use Albert’s classi�cation of division
Q-algebras endowed with a positive involution, to describe the endomorphism algebra of an
abelian variety with complex multiplication as follows (see [CCO14, § 1.3.6]).

Theorem 7.1.6 – Endomorphisms of abelian varieties with CM

Let � be an abelian variety with complex multiplication de�ned over a �eld ^. Fixing a
decomposition of � into its simple isogeny factors (see Equation (7.1)) we have that

End0 (�) �
=∏
8=1

Mat48×48 ( 8 ) (7.2)

where the Q-algebras  8 are:
• non-split quaternion algebras if char(^) > 0;

• number �elds, which are totally imaginary quadratic extensions of a totally real
number �eld  +8 ⊆  8 , if char(^) = 0.

The class of number �elds appearing in Theorem 7.1.6 deserves a special name.

De�nition 7.1.7 – CM �elds, CM algebras, CM types and CM pairs

A CM �eld  is a number �eld such that there exists a sub-�eld  + ⊆  with the property
that [ :  +] = 2 and [ F :  +E ] = 2 for every Archimedean place F ∈ "∞

 
lying above

the place E ∈ "∞
 + . In other words,  is a totally imaginary quadratic extension of a totally

real number �eld  +.
A CM algebra � is a product of CM �elds � =  1 × · · · ×  = , and a CM type for � is

a collection Φ ⊆ Hom(�,C) such that Φ ∩ Φ = ∅ and Φ ∪ Φ = Hom(�,C), where the
elements of Φ ⊆ Hom(�,C) are obtained by composing the elements of Φ with complex
conjugation.

Finally, a CM pair is a pair (�,Φ) where � is a CM algebra and Φ is a CM type for �.
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Remark 7.1.8. CM �elds can equivalently be de�ned as number �elds  endowed with an
automorphism f :  →  such that Φ∞ ◦ ] = ] ◦ f for every embedding ] :  ↩→ C, where
Φ∞ : C→ C denotes complex conjugation.

Example 7.1.9. CM �elds of degree [ : Q] = 2 are precisely the imaginary quadratic �elds
 = Q(

√
−3) for some square-free 3 ∈ N. Hence for every elliptic curve � de�ned over a �eld

^ of characteristic zero we have that either End0 (�) � Q or End0 (�) �  for some imaginary
quadratic �eld  .

Let us now consider the problem of determining when some CM abelian variety � de�ned
over a �eld ^ of characteristic zero has all its complex multiplications de�ned over ^ . In order to
give a complete answer to this question, we need to introduce the re�ex of a CM pair (�,Φ),
using the following result (see [ST61, § 8.3]).

Proposition 7.1.10 – Fields generated by traces and norms

Let  be a CM �eld, and Φ ⊆ Hom( ,C) be a CM type for  . Then we have that
Q(trΦ ( )) = Q(NΦ ( ×)), where

trΦ :  → C

G ↦→
∑
i ∈Φ

i (G) and
NΦ :  × → C×

G ↦→
∏
i ∈Φ

i (G) (7.3)

are the trace and norm associated to the type Φ. Moreover, the number �eld

 ∗ := Q(trΦ ( )) = Q(NΦ ( ×))

is a CM �eld, endowed with an embedding ] ∗ :  ∗ ↩→ C coming from the maps trΦ and
NΦ. Finally, we have that

Aut(C/] ∗ ( ∗)) = {f ∈ Aut(C/Q) | f ◦ i ∈ Φ, ∀i ∈ Φ} (7.4)

and that for any i ∈ Φ, the set

Φ∗ := {f−1 ◦ ] ∗ | f ∈ Aut(C/Q), f ◦ i1 ∈ Φ} ⊆ Hom( ∗,C)

is a CM type of  ∗, which does not depend on i .

De�nition 7.1.11 – Re�ex of a CM pair

Let (�,Φ) = ( 1 × · · · ×  =,Φ1 × · · · × Φ=) be a CM pair, in the sense of De�nition 7.1.7.
Then the re�ex pair (�∗,Φ∗) is de�ned as

(�∗,Φ∗) := ( ∗1 × · · · ×  ∗=,Φ∗1 × · · · × Φ∗=)

where  ∗8 and Φ∗8 are the �elds and the types provided by Proposition 7.1.10.
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Let us observe that the type norm NΦ :  × → C× induces a map NΦ :  × → ( ∗)× which is
algebraic, in the sense of the following de�nition.

De�nition 7.1.12 – Algebraic maps of multiplicative groups

Let 5 :  × → �× be a group homomorphism between the multiplicative groups of two
number �elds  and � . Then we say that 5 is algebraic if one of the following equivalent
conditions holds:

• for every Q-basis B = {U1, . . . , U=} of  , there exists a rational function

5B (G1, . . . , G=) ∈ � (G1, . . . , G=)

such that

5

(
=∑
9=1

0 9U 9

)
= 5B (01, . . . , 0=)

for every a = (01, . . . , 0=) ∈ Q= \ {0};
• there exists a function<5 : Hom( , � ) → Z such that

5 (G) =
∏

g :  ↩→�

g (G)<5 (g) (7.5)

for every G ∈  ×;

• there exists a morphism of Q-schemes

50 : N /Q (G<, ) → N�/Q (G<,� ) (7.6)

which induces 5 when evaluated at Q-points. Here N /Q and N�/Q denote the Weil
restriction functors.

Example 7.1.13. Let  be a CM �eld of degree 23 = [� : Q], and let Φ ⊆ Hom( ,C) be a
CM type for  . Then the type norm NΦ :  × → C× de�ned in (7.3) induces an algebraic map
NΦ :  × → ( ∗)×. To see this, �x an element U ∈  such that  = Q(U), and consider the
polynomial

5Φ,U (C) :=
∏
i ∈Φ
(C − i (U)) ∈ C[C]

which has actually coe�cients in  ∗ ↩→ C, in virtue of (7.4). Thus we see that there exists a
unique injective map of Q-algebras ΦU :  ↩→ Mat3×3 ( ∗) such that ΦU (U) := "Φ,U , where"Φ,U

is the companion matrix of 5Φ,U . Clearly this map ΦU does not depend on the choice of U , and
one can show that NΦ (G) = det(ΦU (G)) for every G ∈  ×. This shows in particular that NΦ is
algebraic, using the �rst of the equivalent conditions appearing in De�nition 7.1.12.

Remark 7.1.14. Let us observe that every algebraic map 5 :  × → �× induces maps

50 (') : (' ⊗Q  )× → (' ⊗Q � )×
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for every Q-algebra ', simply by evaluating the map (7.6) at '-points. In particular, if we take
' = AQ and 5 = NΦ we get the idelic type norm

NΦ : A× → A× ∗ (7.7)

which is a continuous group homomorphism. Moreover, the re�ex type Φ∗ induces a map

NΦ∗ : A× ∗ → A× (7.8)

using the fact that ( ∗)∗ ⊆  for every CM �eld  , which follows directly from De�nition 7.1.7.
We can now see under which conditions an abelian variety � with potential complex multipli-

cation, de�ned over a �eld ^ of characteristic zero, acquires all its complex multiplications after
base-change to a given �nite extension ^ ′ ⊇ ^ (see [Shi98, Chapter II, Proposition 30]).

Proposition 7.1.15 – Field extensions and complex multiplications

Let � be an abelian variety de�ned over a �eld ^ ⊆ C, and suppose that � has complex
multiplication (over ^). Then the action of End0 (�) over the tangent space of � at the
origin induces a CM type Φ on the CM algebra � :=  1 × · · · ×  = coming from the
decomposition (7.2). Moreover, this action induces embeddings ] 8 :  ∗8 ↩→ ^ for every
8 ∈ {1, . . . , =}.

Conversely, �x an abelian variety � de�ned over a �eld ^ ⊆ C, and suppose that there
exists a �nite extension ^ ′ ⊇ ^ such that

End0 (�/^′) �
=∏
8=1

Mat48×48 ( 8 )

for some CM �elds  1, . . . ,  = , where � ' �41
1 × · · · × �

4=
= is the isogeny decomposition

given by Theorem 7.1.1. Then for every sub-extension ^ ⊆ ˜̂ ⊆ ^ ′ we have that

End0 (�/˜̂) = End0 (�/^′) ⇐⇒ ] 8 ( 8 ) ⊆ ˜̂, ∀8 ∈ {1, . . . , =}
where ] 8 :  8 ↩→ ^ ′ is the embedding de�ned in the previous paragraph.

Example 7.1.16. If � is an elliptic curve de�ned over a number �eld � , which has potential
complex multiplication by an imaginary quadratic �eld  , we see from Proposition 7.1.15 that
End0 (�) � End0 (�/� ) if and only if  ⊆ � .

7.1.1 The main theorem of complex multiplication
One of the reasons why the theory of CM abelian varieties is much richer than the general

one, is due to the fact that the !-function !(�/� , B) associated to the motive � 1 (�/� ) can be
expressed in terms of !-functions of Hecke characters, which are certain characters of the group
of idèles associated to the number �eld over which � is de�ned. In particular, the validity of
Conjecture 3.3.4 and Conjecture 3.3.6 is established for !-functions of CM abelian varieties,
thanks to work of Hecke (see [Neu99, Chapter VII, § 8]). We devote this section to explaining
these claims, and to the presentation of the so-called main theorem of complex multiplication,
the technical backbone upon which these results rely.

First of all, let us introduce the notion of Hecke character.
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De�nition 7.1.17 – Hecke character

Let � be a number �eld and let Ω be a topological ring. A Ω-valued Hecke character is a
continuous group homomorphism

k : A×� → Ω×

such thatk (�×) = 1, where �× ↩→ A×
�

via the diagonal embedding. A Hecke character is a
C-valued Hecke character. For every sub-�eld  ⊆ � and every place E ∈ " we denote
bykE : �×E → Ω× the restriction ofk to �×E := (� ⊗  E)× �

∏
F |E �

×
F .

Remark 7.1.18. Let us recall the related notion of algebraic Hecke character, which is not used
in this thesis but is fundamentally related to the theory of complex multiplication. Fix a pair of
number �elds  and �, and consider the latter as a discrete topological �eld. Then an �-valued
algebraic Hecke character for  is an �-valued Hecke character

k : A× → �×

such that the restrictionkalg := k ◦ ] :  × → �× is algebraic, in the sense of De�nition 7.1.12.
Let us observe that any algebraic Hecke character k : A×

 
→ �× induces a family of Hecke

characters k (_) : A×
 
→ �×

_
indexed over the set of places _ ∈ "� , where �_ is endowed

with the _-adic topology. Indeed, it is su�cient to take k (_) := k · (c_ ◦ k0 (AQ))−1 where
k0 (AQ) : A× → A×� is the map induced by evaluating (7.6) at AQ-points, and c_ : A×

�
� �×

_
is

the canonical projection.
Hecke characters can be thought of as one dimensional automorphic representations. Thus, as

we mentioned in the introduction of Chapter 3, there is a way to associate certain !-functions
(de�ned as a suitable Euler product) to these Hecke characters. Let us recall this de�nition,
following [RV99, § 7.4].

De�nition 7.1.19 – Local !-factors

Let  be a local �eld of characteristic zero, and let j :  × → C× be a continuous group
homomorphism. Suppose that  is non-Archimedean, and let c ∈  × be a uniformiser.
Then we de�ne the local !-factor !(j) ∈ C as:

!(j) :=

{
(1 − j (c)), if j (O×

 
) = 1

1, otherwise

which does not depend on the choice of c , because for any two uniformisers c, c ′ ∈  × we
have that c/c ′ ∈ O×

 
. Suppose now that  � C. In this case we de�ne the local !-factor as

!(j) := ΓC

(
0(j) + |1 (j) |

2

)
∈ C

188 Chapter 7 The theory of complex multiplication



where 0(j) ∈ C and 1 (j) ∈ N are the unique numbers such that j (I) = |I |0 (j) (I/|I |)1 (j)
for every I ∈ C×. Finally, if  � R we de�ne

!(j) := ΓR (0(j) + 1 (j))

where 0(j) ∈ C and 1 (j) ∈ {0, 1} are such that j (C) = |C |0 (j) (C/|C |)1 (j) for every C ∈ R×.

De�nition 7.1.20 – Hecke !-functions

Let � be a number �eld andk : A×
�
→ C× be a Hecke character. Then, for every �nite set

( ⊆ "� we de�ne the !-function ofk as the Euler product

!( (k, B) =
∏

E∈"� \(
!(kE |·|BE) (7.9)

where kE : �×E → C× denotes the character induced by the embedding �E ↩→ A� , and
|·|E : �×E → R>0 denotes the E-adic absolute value, normalised in such a way that the
product formula ∏

E∈"�
|G |E = 1

holds for every G ∈ �×. We �nally write !(k, B) := !"∞
�
(k, B) and !̂(k, B) := !∅ (k, B).

One of the reasons why Hecke !-functions are so interesting to study is because they are
amongst the few which are known to admit a meromorphic continuation to C, and to satisfy a
functional equation, as explained by the following result (see [Neu99, Chapter VII, Theorem 8.5]
and [RV99, Theorem 7-19]).

Theorem7.1.21 –Meromorphic continuation and functional equations forHecke
!-functions

Letk : A×
�
→ C× be a Hecke character. Then the Euler product (7.9) converges for every

B ∈ C such that<(B) > 1, and the !-function !( (k, B) : ℜ1 → C admits a meromorphic
continuation to the whole complex plane. Furthermore, !̂(k, B) satis�es a functional
equation of the form

!̂(k, B) = Y (k, B) · !̂(1 − B,k ‖·‖−1)

where Y (k, B) := 0(k ) · 41 (k )B is the Y-factor de�ned in [RV99, Theorem 7.2]. Here

‖·‖ : A×� → R>0

U ↦→
∏
E∈"�
|U |E
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denotes the idelic norm map, and the complex numbers 0(k ), 1 (k ) ∈ C are de�ned by
setting

0(k ) :=, (k )
√
|Δ� |N�/Q (fk )

1 (k ) := − log| |Δ� |N�/Q (fk ) |

where Δ� ∈ Z is the absolute discriminant of � and, (k ) ∈ T1 is the root number, de�ned
in [RV99, Page 259]. Moreover, fk ⊆ O� denotes the conductor ofk , which is de�ned as
the product of prime ideals fk :=

∏
p p

ordp (fk ) , where the integers ordp (fk ) are de�ned by
setting

ordp (fk ) := min{= ∈ N | kp (O� + p=) = 1} (7.10)

where kp : �×p → C× denotes the restriction of k to the p-adic completion of � . Finally,
!(k, B) is entire unlessk = ‖·‖−8C for some C ∈ R. In the latter case the !-function !(k, B)
has two poles at B = 8C and B = 1 + 8C .

Remark 7.1.22. We note that Theorem 7.1.21 uses the analytic normalisation for Hecke !-
functions, which is the same one used in [RV99].
Remark 7.1.23. The de�nition of the conductor fk ⊆ O� of a Hecke characterk : A×

�
→ C× can

be extended to any Hecke characterk : A×
�
→ Ω× valued in a topological ring Ω such that the

topological group of units Ω× has no small subgroup. This means that there exists an open
subset* ⊆ Ω× such that 1 ∈ * and* does not contain any subgroup. In this case we know that
the set

{= ∈ N | kp (O� + p=) = 1}

is non-empty for every prime ideal p ⊆ O� , which shows that the de�nition (7.10) makes sense.
The typical example of a topological ring Ω such that Ω× has no small subgroup is given by the
product of �nitely many copies of C.

We have already mentioned in Example 3.3.8 that Theorem 7.1.21 can be seen as one of the
few examples in which Conjecture 3.3.4 holds. In order to do this, we need to relate the Hecke
!-function !(k, B) to some motivic !-function. This can be achieved for every Hecke character
k : A×

�
→ C× which arises as the Archimedean component of an algebraic Hecke character, as

the following result shows (see [Sch88, § 4 and § 5])

Theorem 7.1.24 – Motives for algebraic Hecke characters

Let � and � be two number �elds, and letk : A×
�
→ �× be an algebraic Hecke character, as

de�ned in Remark 7.1.18. Then there exists a motive " ∈ MM(� ;�), which is unique up
to isomorphism, such that the motivic !-function !(" (k ), B) : C→ � ⊗QC decomposes as

!(" (k ), B)_ =

!

(
k (_) , B − F (k )

2

)
, if �_ � R

!

(
k (_) , B − F (k )

2

)
!

(
k (_) , B − F (k )

2

)
, if �_ � C
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where !(" (k ), B)_ denotes the _-adic component of !(" (k ), B), coming from the decom-
position

� ⊗Q C �
∏
�↩→C

C

and k (_) : A×
�
→ �×

_
⊆ C× denotes the complex conjugate of the Hecke character

k (_) : A×
�
→ �×

_
⊆ C× induced by the Archimedean place _ (see Remark 7.1.18). Moreover,

F (k ) ∈ Z denotes the weight of the algebraic Hecke characterk , de�ned to be the unique
integer such that for every embedding ]

�
: � ↩→ C we have that

<k (g) +<k (g) = F (k )

for every g : � ↩→ �, where g ↦→ g denotes the action of complex conjugation on Hom(�, �)
induced by the embedding ]

�
, and<k : Hom(�, �) → Z denotes the function appearing

in (7.5).

The proof of Theorem 7.1.24 uses greatly the geometry of abelian varieties with complex
multiplication, from which the motives " (k ) are constructed. In particular, it uses the fact that
one can associate to every abelian variety � de�ned over a number �eld � , which has complex
multiplication by the CM algebra � �  ×1 ×· · ·× ×= , an algebraic Hecke characterk� : A� → �×,
i.e. a family of algebraic Hecke characters {k (8)

�
: A� →  ×8 }=8=1. These Hecke characters arise

by looking at the action of the absolute Galois group G� := Gal(�/� ) on the group of torsion
points �tors := �(� )tors. This action, which exists for every abelian variety �, gives rise to a
Galois representation

d� : G� → AutZ (�tors)

which induces an injection d� : Gal(� (�tors)/� ) ↩→ AutZ (�tors), where � (�tors) denotes the
division �eld associated to the abelian variety �, which is the compositum (in a �xed algebraic
closure � ) of all the residue �elds � (%) associated to torsion points % ∈ �tors. Now, if we �x
a prime ℓ ∈ N we can look at the action of G� on the group �[ℓ∞] := lim−−→=

�[ℓ=] of torsion
points of ℓ-power order, which gives rise to the ℓ∞-division �eld � (�[ℓ∞]) and to an embedding
d�,ℓ∞ : Gal(� (�[ℓ∞])/� ) ↩→ AutZ (�[ℓ∞]). These Galois representations are known, for a
general abelian variety �, to be related to the !-function !(� 1 (�), B). More precisely, the group
�[ℓ∞] is a Zℓ -module, and one has the following identi�cations (see [Ser71, § 4.1] and [Mil86,
Theorem 15.1]):

AutZ (�[ℓ∞]) � AutZℓ ()ℓ (�))
()ℓ (�) ⊗Zℓ Qℓ )∨ � �

1,0
ℓ
(�) = 'ℓ (� 1 (�))

(7.11)

where )ℓ (�) := lim←−−=∈N�[ℓ
=] is the ℓ-adic Tate module associated to the abelian variety �. Note

that the transition maps appearing in the direct limit de�ning �[ℓ∞] are simply the inclusions
�[ℓ=] ↩→ �[ℓ=+1], whereas the transition maps appearing in the inverse limit de�ning the Tate
module)ℓ (�) are the multiplication-by-ℓ maps �[ℓ=+1] → �[ℓ=]. Thus using (7.11) we �nd that
the relation

!(� 1 (�), B) = !(d�,ℓ ) (7.12)

holds for every prime ℓ ∈ N and every abelian variety � de�ned over a number �eld.

Let us go back to abelian varieties with complex multiplication, and to the problem of relating
the !-function !(� 1 (�), B) to the !-function of some Hecke character. Using the relation (7.12)
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we see that this problem can be reduced to the problem of relating the Galois representation d�
to a Hecke character. This is precisely the content of the main theorem of complex multiplication,
that we now recall.

Theorem 7.1.25 – The main theorem of complex multiplication

Let � be a number �eld, endowed with an embedding ]� : � ↩→ C, and let � be an abelian
variety with complex multiplication (over � ). Then:

• there exists a CM algebra  =  1 × · · · ×  = of degree

[ : Q] =
=∑
8=1
[ 8 : Q] = 2 dim(�)

which is endowed with an embedding ] :  ↩→ End0
� (�). The emebddings ]� and

] induce a CM type Φ ⊆ Hom( ,C), and if we denote by

( ∗ =  ∗1 × · · · ×  ∗=,Φ∗)

the re�ex of the CM pair (�,Φ), then for every 8 ∈ {1, . . . , =} we have an embedding
] ∗
8

:  ∗8 ↩→ � .
Fix O := End(�) ∩  , so that O× ⊆ Aut� (�) ⊆ AutZ (�tors). Then:
• the image of the Galois representation

d� : Gal(� (�tors)/� ) ↩→ AutZ (�tors)

is contained in the centraliser of Aut� (�) inside AutZ (�tors). Moreover, the cen-
traliser of O× inside AutZ (�tors) is isomorphic to Ô×, where

Ô := lim←−−
# ∈N
O/#O

denotes the pro�nite completion of the ring O. Hence d� induces a representation

d� : Gal(� (�tors)/� ) ↩→ Ô×

and in particular the extension � ⊆ � (�tors) is abelian.
Now, we associate to O the subgroup

*O :=

(∏
?

O×?

)
·  ×∞ ⊆ A× := (AQ ⊗Q  )× � A× 1

× · · · × A× =

where the product runs over all the rational primes ? ∈ N. Moreover, O? := O ⊗Z Z? and
 ∞ :=  ⊗Q R � CΦ (compare with De�nition 6.2.11). Then:
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• for every sub-�eld " ⊆ � such that � (�tors) ⊆ "ab · � and ] ∗
8
( ∗8 ) ⊆ " for each

8 ∈ {1, . . . , =}, there exists a unique group homomorphism

U : "× · N�/" (A×� ) →  ×

having the following properties:
(a) the image of the homomorphism

bU : "× · N�/" (A×� ) → A× 
B ↦→ U (B) · NΦ∗ (N"/ ∗ (B−1))

is contained in *O . Here N"/ ∗ : A×
"
→ A×

 
is the idelic norm map (see

Equation (6.7)) induced by the inclusions ] 1 , . . . , ] = , and NΦ∗ : A×
 ∗ → A× is

the idelic type norm associated to the re�ex type Φ∗. This is again induced by
all the idelic re�ex type norms NΦ∗

8
: A×( 8 )∗ → A

×
 8

associated to each CM �eld
 8 appearing as a factor of  (see Equation (7.8));

(b) the continuous group homomorphism

kU : "× · N�/" (A×� ) → (CΦ)×

B ↦→ Φ(U (B)) · NΦ∗ (N"/ ∗ (B−1))∞
(7.13)

admits exactly ["ab ∩ � : "] continuous extensions k̃ : A×
"
→ (CΦ)× to the

whole idèle group A×
"

. Moreover, each k̃ is a Hecke character, i.e. a continuous
group homomorphism which is trivial on  × :=  ×1 × · · · ×  ×= . Here the
embedding Φ :  ↩→ CΦ is induced by the CM type Φ ⊆ Hom( ,C), and for
every idèle C ∈ A×

 
we denote by C∞ ∈  ×∞ � CΦ its Archimedean component,

coming from the decomposition A � AQ ⊗Q  ;
(c) the following diagram

"× · N�/" (A×� ) *O/ ×∞

Gal(� (�tors)/� ) Ô×

cO◦bU

A
"ab ·� /� (�tors )

◦A� /" cO∼

d�

(7.14)

commutes, where cO : *O � *O/ ×∞ is the natural quotient map, and

cO :
*O
 ×∞
−→∼

∏
?∈N
O×? −→∼

∏
?∈N

lim←−−
=∈N

(
O
?=O

)×
−→∼ lim←−−

# ∈Z≥1

(
O
#O

)×
−→∼ Ô×

is the natural isomorphism (compare with Equation (6.16)). Finally,

A"ab ·�/� (�tors) : Gal("ab · �/� ) � Gal(� (�tors)/� )
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denotes the restriction map, and the homomorphism A�/" is de�ned by

A�/" : "× · N�/" (A×� ) −−−−→
[ ·," ]

Gal("ab/"ab ∩ � ) −→∼ Gal("ab · �/� )

where [·, "] denotes the global Artin map (see De�nition 6.1.10).

Proof. Theorem 7.1.25 is one of the main results of the theory developed by Shimura and
Taniyama, which is exposed in the books [ST61; Shi94; Shi98]. Let us point at speci�c references
for the general case, and then provide some more details for elliptic curves. The existence of
a CM algebra  having the desired properties follows from Theorem 7.1.1 and Theorem 7.1.6.
Indeed, suppose that

End0 (�) �
=∏
8=1

Mat48×48 ( ̃8 )

for some CM �elds  ̃1, . . . ,  ̃= and some 41, . . . , 4= ∈ N. Then we can choose, for every index
8 ∈ {1, . . . , =}, a totally real number �eld !8 of degree [!8 : Q] = 48 which is disjoint from  ̃8 ,
as follows easily from rami�cation theory. Then the compositum  8 := !8 ·  ̃8 is again a CM
�eld, of degree 248 dim(�8 ). Moreover, any choice of a  ̃8-basis for  8 induces an embedding
 8 ↩→ Mat48×48 ( ̃8 ). Thus, the CM algebra  :=  1 × · · · ×  = has degree 2 dim(�) and admits
an embedding  ↩→ End0 (�). The other properties which are required from this CM algebra
follow from Proposition 7.1.15.

Now, it is immediate to see that Im(d�) ⊆ AutZ (�tors) commutes with every f ∈ Aut� (�),
precisely because the automorphism f : �→ � is de�ned over � , and is thus insensitive to the
action of Gal(� (�tors)/� ). Thus in particular Im(d�) centralises O× ⊆ Aut� (�). Now, it is only
slightly more di�cult to see that the centraliser of O× inside AutZ (�tors) is indeed Ô×, and we
refer the reader to [ST68, § 4, Corollary 1] for a proof. In the case of elliptic curves, this follows
easily from the fact that � [# ] is a free module over O/#O for every # ∈ Z≥1 (see Lemma 7.2.4).

The really challenging part of Theorem 7.1.25 is the last one, i.e. the existence and uniqueness
of the group homomorphism U : "× · N�/" (A×� ) →  ×. The reader can obtain a complete proof
of all the properties stated in Theorem 7.1.25 by combining [Shi94, Proposition 7.40] and [Shi94,
Proposition 7.41] when " = � , and using [Shi94, Theorem 7.44] for the general case.

Let us dive a little more in the details of the proofs for elliptic curves �. In this case  is an
imaginary quadratic �eld and O ⊆  is an order, in the sense of De�nition 6.2.1. Moreover,
the type Φ ⊆ Hom( ,C) consists of a single embedding Φ :  ↩→ C, which is exactly the
composition of ] :  ↩→ � and of the �xed embedding � ↩→ C. Hence ( ∗,Φ∗) = ( ,Φ) and
the idelic re�ex type norm NΦ∗ : A×

 
→ A×

 
is simply the identity map.

Fix a �eld" ⊆ � as in the statement of the theorem, i.e. such that ⊆ " and � (�tors) ⊆ "ab ·� .
The �rst step in the construction of the group homomorphism U : "× ·N�/" (A×� ) →  × consists
in applying the �rst main theorem of complex multiplication (see [Lan87, Chapter 10, Theorem 3]).
This says that for every �eld automorphism f : C→ C such that f

��
 ab = [B,  ] for some idèle

B ∈ A×
 

, and every complex analytic uniformisation b : C� � (C) such that ker(b) ⊆  , there
exists a unique complex analytic uniformisation b ′ : C� �f (C) such that ker(b) = B · ker(b ′)
and the following diagram

 
ker(b)

 
ker(b′)

� (C) �f (C)

b

·B−1

b′

f
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commutes. Here the notation B · ker(b ′) refers to the action of A×
 

on the set of lattices L( )
which we de�ned in Proposition 6.1.8, and analogously the map

 

ker(b) −−−→
·B−1  

ker(b ′)

is the one de�ned in (6.6).

Let us now see how to use the �rst main theorem of complex multiplication, that we just
recalled, to de�ne the continuous group homomorphism U : "× ·N�/" (A×� ) →  ×. This follows
the same strategy of the proof of [Sil94, Chapter II, Theorem 9.1] First of all, �x B ∈ "× ·N�/" (A×� ),
and take f : C→ C to be a �eld automorphism lifting A�/" (B) ∈ Gal("ab · �/� ). Then we see
that f

��
 ab = [N"/ (B),  ], thanks to the commutative diagram (6.8). Hence, �xing a complex

uniformisation b : C � � (C) we get, from the �rst main theorem of complex multiplication,
another complex uniformisation b ′ : C� �f (C) such that the following diagram

 
Λ

 
N"/ (B)Λ

� (C) �f (C)

b

(N"/ (B)−1) ·

b′

f

commutes, where Λ := ker(b). Now, observe that �f = � because � is de�ned over � , and f
�xes � because A�/" (B) does. Hence the two lattices Λ and N"/ (B) · Λ are homothetic, and
there exists a unique V (B) ∈  × and a new, unique complex uniformisation b ′′ : C� � (C) such
that ker(b ′′) = Λ and the following square

 
Λ

 
Λ

� (C) � (C)

b

(V (B) N"/ (B)−1) ·

b′′

f

commutes. This shows that b ′′ ◦ b−1 : � (C) → � (C) is an automorphism, which implies that
there exists a unique Y (B) ∈ O× such that the following square

 
Λ

 
Λ

� (C) � (C)

b

(U (B) N"/ (B)−1) ·

b

f

(7.15)

commutes, where U (B) := V (B) · Y (B). It is now immediate to see that the map

U : "× · N"/ (A×� ) →  ×

which we just de�ned is a group homomorphism, using the compatibility between the multi-
plication of lattices and the action of A×

 
on the set of lattices L( ). Moreover, the fact that

Im(bU ) ⊆ *O follows from the fact that b (U) · Λ = Λ, as we see from (7.15), and from the fact
that the complex uniformisation b : C � � (C) can be chosen in such a way that Λ := ker(b)
is an invertible ideal of O (see Proposition 7.1.33). Moreover, the commutativity of (7.15) is
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clearly equivalent to the commutativity of (7.14), and U the unique homomorphism with these
properties by construction. It remains now to be shown that U is continuous, and that the map

kU : "× · N�/" (A×� ) → C×

B ↦→ U (B) N"/ (B−1)∞

de�ned in (7.13) can be extended to exactly ["ab ∩ � : "] Hecke characters ĩ : A×
"
→ C×.

First of all, the fact that U is continuous is equivalent to say that ker(U) is open inside the
topological group "× · N�/" (A×� ). To show this, one can use the fact that every division �eld
� (� [� ]) ⊆ "ab · � associated to an invertible ideal � ⊆ O contains the ray class �eld �� ,O , as we
show in Theorem 7.2.5. This can be combined with (7.15) to show that N"/ (*� ,O)−1 ∩"× ·
N�/" (A×� ) ⊆ ker(U) for every invertible ideal � ⊆ O, and this is enough to prove that ker(U) is
open. We refer the reader to the proof of [Sil94, Theorem 9.2] for more details.

Let us now observe thatkU ("×) = 1 because for every G ∈ "× we have R�/" (G) = Id"ab ·� ,
which implies that U (B) = N"/ (G) = N"/ (G−1)−1

∞ , where the last equality uses the compatibil-
ity between the idelic norm and the norm on number �elds provided by (6.7).

To conclude, one needs to observe that kU admits exactly ["ab ∩ � : "] extensions to A×
"

.
To do so one may apply a general result about topological groups, which says that for every
abelian topological group � endowed with a subgroup of �nite index � ⊆ � , there are exactly
[� : � ] ways to extend any given continuous group homomorphismk : � → C× to the whole
� . The proof is straightforward (see [Shi94, Lemma 7.45]): �x a decomposition of the �nite
abelian group�/� as a product of cyclic groups�/� = �1 × · · · ×�A , and choose 01, . . . , 0A ∈ �
to be A -elements which reduce to generators of the cyclic groups �1, . . . ,�A modulo � . Then we
see that any element 6 ∈ � can be uniquely written as 6 = ℎ 0

=1
1 · · ·0

=A
A where =8 ∈ Z and ℎ ∈ � ,

hence any continuous group homomorphism k̃ : � → C× which extendsk is of the form

k̃ (6) = k̃ (ℎ 0=1
1 · · ·0

=A
A ) = k (ℎ)Z

=1
1 · · · Z

=A
A

where Z1, . . . , ZA ∈ C× are |%8 |-th roots ofk (0 |%8 |
8
). Thus we see thatk can be easily extended to

the whole� (just take Z8 = k (08 ) for every 8 ∈ {1, . . . , A }), and this extension can be achieved in
[� : � ] = |%1 | · · · |%A | possible ways. Now, applying this general fact tok = kU we see that the
number of homomorphisms k̃ : A×

"
→ C× which extendkU is exactly

[A×" : "× · N�/" (A×� )] = ["ab ∩ � : "] (7.16)

where the equality (7.16) follows immediately from (6.9). This concludes the proof. �

Remark 7.1.26. The CM algebra  , whose existence is guaranteed by Theorem 7.1.25, need not
be unique. More precisely, we see that this algebra is unique if and only if the abelian variety
� is isogenous to a product of distinct simple abelian varieties, i.e. if 41 = · · · = 4= = 1 in
Theorem 7.1.1.

Remark 7.1.27. If ( ∗1 · · · ∗=) ⊆ " ⊆ " ′ ⊆ � and � (�tors) ⊆ "ab then " ⊆ � is abelian
and Theorem 7.1.25 gives us ["ab ∩ � : "] = [� : "] Hecke characters k̃ : A×

"
→ (CΦ)× and

[(" ′)ab ∩ � : " ′] = [� : " ′] Hecke characters k̃ ′ : A×
"′ → (CΦ)×. We can observe that

["ab ∩ � : "]
[(" ′)ab ∩ � : " ′]

=
[� : "]
[� : " ′] = ["

′ : "] ∈ N
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and that for every Hecke character k̃ ′ : A×
"′ → (CΦ)× given by Theorem 7.1.25 there are exactly

[" ′ : "] Hecke characters k̃ : A×
"
→ (CΦ)× such that k̃ ′ = k̃ ◦ N"′/" .

Example 7.1.28. If we take " = � in Theorem 7.1.25 then we have a unique Hecke character
k̃ : A×

�
→ (CΦ)× which coincides with the usual Hecke character

k� : A×� → (CΦ)×

associated to abelian varieties with complex multiplication (see [Shi94, Proposition 7.41]).
Moreover, in this case we have that "× · N�/" (A×� ) = A×� . Thus the homomorphism U

constructed in Theorem 7.1.25 is actually an algebraic Hecke character U� : A×
�
→  ×, and

k� = U
(∞)
�

is the character induced by U� on the Archimedean components (see Remark 7.1.18).

Remark 7.1.29. Theorem 7.1.25 can be used to show that the !-function !(�, B) := !(� 1 (�), B)
associated to a CM abelian variety � can be expressed in terms of !-functions for Hecke
characters. For a number �eld � ⊆ C and a CM elliptic curve �/� which has potential complex
multiplication by the order O inside the imaginary quadratic �eld  , this relation reads (see
[Sil94, Chapter II, Theorem 10.5]):

!(�, B) =
{
!(k�, B − 1/2) · !(k�, B − 1/2), if  ⊆ �
!(k�� · , B − 1/2), if  * �

where  · � ⊆ C denotes the compositum of  and � inside C. We refer the reader to [Mil72,
Pages 187-189] for a discussion concerning general abelian varieties.

We conclude this section by introducing Shimura’s condition, which enables one to take " to
be the as small as possible in Theorem 7.1.25 (see [Shi94, Pages 216-218]).

De�nition 7.1.30 – Shimura’s condiiton

Let � be an abelian variety with complex multiplication de�ned over a number �eld � ,
and let  ↩→ End0

� (�) be any CM algebra of degree [ : Q] = 2 dim(�), which exists
by Theorem 7.1.25. Then we say that � satis�es Shimura’s condition if the extension
( ∗1 · · · ∗=) ⊆ � (�tors) is abelian, where  ∗1 · · · ∗= ⊆ � denotes the compositum of the
re�ex �elds  ∗1 , . . . ,  

∗
= inside � .

7.1.2 Conductors of elliptic curves with complex
multiplication

Let � be an abelian variety with complex multiplication de�ned over a number �eld � ⊆ C.
We have seen in the previous section that the Galois representation

d� : Gal(� (�tors)/� ) ↩→ AutZ (�tors)

admits an explicit description, provided by the diagram (7.14), in terms of Hecke characters.
For any abelian variety � we know, thanks to Grothendieck’s monodromy theorem, that the
conductor of the ℓ-adic Galois representation

d�,ℓ∞ : Gal(� (�[ℓ∞])/� ) ↩→ AutZ (�[ℓ∞])

7.1 Abelian varieties with complex multiplication 197



does not depend on the prime ℓ , at least as long as � has good reduction at all the primes of O�
lying above ℓ . This conductor is thus denoted by f� ⊆ O� , and one knows that a prime ideal
p ⊆ O� divides the conductor if and only if � has bad reduction at p (see [Gro72, § 4]). The aim
of this section is to recall how the ideal f� is related to the conductor fk� ⊆ O� of the Hecke
characterk� : A×

�
→ (CΦ)× de�ned by Theorem 7.1.25 (see also Remark 7.1.27). The main result

in this direction has been proved by Milne in [Mil72].

Theorem 7.1.31 – Conductors of CM abelian varieties and Hecke characters

Let � be an abelian variety de�ned over a number �eld � , let ! ⊇ � be a �nite Galois
extension and suppose that �! has complex multiplication. Fix an embedding ! ↩→ C,
and let Φ ⊆ Hom(!,C) be the CM type associated to �! and to this embedding. Fix
moreover a CM algebra  ↩→ End0 (�!) of degree [ : Q] = 2 dim(�), whose existence
is guaranteed by Theorem 7.1.25. Assume �nally that  ∩ End0 (�) is a �eld and that
[ :  ∩ End0 (�)] = [! : � ].

Then we have that [! : � ] | 2 dim(�) and the following formula

f� =

(
N!/� (fk�! ) disc(!/� )

)2 dim(�)/[! : � ]

holds, where fk�!
⊆ O! is the conductor (see Equation (7.10)) of the Hecke character

k�! : A×
!
→ (CΦ)× de�ned by Theorem 7.1.25.

Proof. Let 3 := dim(�) and< := [! : � ]. Since [ : Q] = 23 it is immediate to see that< | 23 .
Now, observe that for every i ∈ Φ we have that fk�! = fk�!,i

, wherek�!,i : A×
!
→ C× denotes

the i-th component of f. This is indeed easy to see, and follows from the fact that the re�ex
norm NΦ∗ appears in the de�nition ofk�. Then the theorem follows from the fact that the Weil
restriction N!/� (�!) is isogenous to �< , as proved by Milne in [Mil72, Theorem 3], and from
the two formulas:

f�! = f23
k�!,i

fN!/� (�!) = N!/� (f�! ) disc(!/� )23

proved by Serre and Tate in [ST68, Theorem 12] and by Milne in [Mil72, Theorem 1]. �

There are two extreme cases in which Theorem 7.1.31 holds. First of all, we can clearly
take � = ! if � has already complex multiplication over � , in which case we get the formula
f� = f

2 dim(�)
k�

proved by Serre and Tate in [ST68, Theorem 12]. On the other hand, we can take �
to be the so-called �eld of moduli of our abelian variety �, i.e. the smallest number �eld over
which there exists an abelian variety which is isomorphic to � over � . In the case of elliptic
curves �, this boils down to taking � = Q( 9 (�)). Then, in virtue of Proposition 7.1.15, the
smallest ! that can be taken is given by the compositum of the �eld of moduli � with all the
re�ex �elds  ∗1 , . . . ,  

∗
= . Doing so in the case of elliptic curves, for which the hypotheses of

Theorem 7.1.31 are clearly satis�ed, we get the following formula, which is originally due to
Deuring (see [Deu56]).
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Proposition 7.1.32 – Conductors of CM elliptic curves

Let O ⊆  be an order inside an imaginary quadratic �eld  . Let � be an elliptic curve
de�ned over Q( 9 (�)) with complex multiplication by O. Denote by i : A×

�O
→ C× the

unique Hecke character associated by Theorem 7.1.25 to the base change of � over ( 9 (�)).
Then, letting 9 = 9 (�), one can write the conductor f� ⊆ OQ( 9) of � as

f� = N ( 9)/Q( 9) (fi ) · disc( ( 9)/Q( 9))

where N ( 9)/Q( 9) (fi ) ⊆ OQ( 9) denotes the relative norm of the conductor fi ⊆ O ( 9)
of the Hecke character i and disc( ( 9)/Q( 9)) denotes the relative discriminant ideal
associated to the quadratic extension Q( 9) ⊆  ( 9).

Finally, let us recall that the smallest �eld over which an elliptic curve � with complex
multiplication by the order O inside the imaginary quadratic �eld  can be de�ned together
with all its complex multiplications, i.e. the �eld  ( 9 (�)), coincides with the ring class �eld �O ,
as stated in the following result.

Proposition 7.1.33 – Fields of moduli for CM elliptic curves

Let � be an elliptic curve de�ned over C, such that End(�) � O for some imaginary
quadratic order O. Then the 9-invariant 9 (�) ∈ C is an algebraic integer, and the number
�eld Q( 9 (�)) is isomorphic to the ring class �eld �O (see De�nition 6.2.11). Furthermore,
any isomorphism End(�) � O induces an embedding O ↩→ C, and there exists an
invertible ideal � ⊆ O such that � (C) � C/� . This ideal is uniquely determined up to the
multiplicative action of O×, and in particular there are as many 9-invariants of elliptic
curves with complex multiplication by O as the class number |Pic(O)|.

Proof. The fact that 9 (�) is an algebraic integer can be proved analytically (see [Shi94, Theo-
rem 4.14]) or algebraically, using the properties of good reduction of CM abelian varieties. We
refer the interested reader to [Sil94, Chapter II, § 6] for a survey of these di�erent approaches, in
the case when O = O is the maximal order of an imaginary quadratic �eld  . To see that the
�eld Q( 9 (�)) is isomorphic to �O we refer the reader to [Cox13, Theorem 11.1]. Finally, the last
properties concerning the complex analytic uniformisation of the elliptic curve � are proved in
[Shi94, § 4.4]. �

7.2 Division fields of CM elliptic curves and ray
class fields for imaginary quadratic orders

From now on, the rest of this chapter focuses on CM elliptic curves rather than higher
dimensional abelian varieties. First of all, let us recall that in the case of elliptic curves one
does not need to talk about CM types, because they are already hidden in the choice (usually
tacitly assumed) of a complex embedding of the number �eld over which the elliptic curve is
de�ned. More precisely, let � be a number �eld, and let �/� be an elliptic curve with complex
multiplication. This means, in the language introduced in De�nition 7.1.5, that we have an
isomorphism � End0

� (�) between theQ-algebra of endomorphisms End0
� (�) := End(�/� )⊗ZQ
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de�ned over � , and an imaginary quadratic �eld  . This implies that there exists an order O ⊆  
such that O � End� (�). Moreover, the following result shows that this isomorphism can be
�xed once we �x an embedding � ↩→ C (see [Sil94, Chapter II, Proposition 1.1]).

Proposition 7.2.1 – Normalised isomorphism for CM elliptic curves

Let � be an elliptic curve with complex multiplication, de�ned over a number �eld � . Then
there exists a map

Hom(�,C) → Isom(O, End� (�))
] ↦→ []�,]

such that for every ] ∈ Hom(�,C) and every U ∈ O we have that [U]∗] (l) = ] (U) · l for
every invariant di�erential l ∈ Ω1

�/C. Here the base-change of � to the complex numbers
is achieved by means of the embedding ] : � ↩→ C.

Remark 7.2.2. Usually, we �x the embedding � ↩→ C, and denote the corresponding normalised
isomorphism simply by [·]� : O −→∼ End� (�).

Let us now introduce the notion of division �elds of CM elliptic curves, which was used but
not properly de�ned in the previous section.

De�nition 7.2.3 – Division �elds

Let � ⊆ C be a number �eld, and �/� be an elliptic curve with complex multiplication by
the order O in the imaginary quadratic �eld  .. Then for every non-zero ideal � ⊆ O we
denote by � [� ] ↩→ � the sub-scheme whose points are given by

� [� ] (') := � (') [� ] := {% ∈ � (') : [U]� (%) = 0 for all U ∈ � }

for every � -algebra '.
When � = U · O for some U ∈ O we write � (!) [U] := � (!) [� ] and � [U] := � (Q) [U].

For any non-zero ideal � ⊆ O we denote � (Q) [� ] by � [� ], with a slight abuse of notation.
These groups � [� ] are always �nite and they give rise to �nite extensions � ⊆ � (� [� ])
obtained by adjoining to � the coordinates of every � -torsion point. We refer to the number
�eld � (� [� ]) as the � -division �eld of �/� .

The next result summarises the main properties of the extension � ⊆ � (� [� ]) when � is an
invertible O-ideal, as we de�ned in Lemma 6.2.7.

Lemma 7.2.4 – Division �elds and invertible ideals

Let � be a number �eld and �/� an elliptic curve with complex multiplication by an order
O in an imaginary quadratic �eld  ⊆ � . Then for every ideal � ⊆ O the extension
� ⊆ � (� [� ]) is Galois and there is a canonical inclusion Gal(� (� [� ])/� ) ↩→ AutO (� [� ]).
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Moreover, if � is invertible, the group � [� ] has a natural structure of free O/� -module of
rank one and, after choosing a generator, one gets an injective group homomorphism

d�,� : Gal(� (� [� ])/� ) ↩→ (O/� )×

which is denoted by d�,# when � = # · O for some # ∈ Z. Under the further assumption
that � is coprime to the ideal fO · O generated by the conductor fO := |O : O| of the order
O, one has that O/� � O /�O .

Proof. Since � contains the CM �eld  , the endomorphisms of � are all de�ned over � and this
implies that Gal(Q/� ) acts on � [� ] by O-module automorphisms. In particular � ⊆ � (� [� ]) is
Galois and there is a canonical inclusion

Gal(� (� [� ])/� ) ↩→ AutO (� [� ]).

If � is invertible, � [� ] has the structure of free O/� -module of rank one by [BC20, Lemma 2.4], and
the choice of a generator induces an isomorphism AutO (� [� ]) � (O/� )× which gives the map
d�,� appearing in the statement. The last assertion follows from [Cox13, Proposition 7.20]. �

We conclude this short section by showing that the division �elds � (� [� ]) cannot be too small.
More precisely, we know already that  ⊆ � for every elliptic curve � which has complex multi-
plication (over � ) by an order O in an imaginary quadratic �eld  . Moreover, Proposition 7.1.33
shows that �O ⊆ � , where �O denotes the ring class �eld of O (see De�nition 6.2.11). Finally,
the next result shows that �� ,O ⊆ � (� [� ]), where �� ,O denotes the ray class �eld de�ned again
in De�nition 6.2.11. In particular, we prove that the ray class �eld �� ,O is always generated over
the imaginary quadratic �eld  by the values of the Weber function

h� : � � �/Aut(�) � P1

associated to any elliptic curve �/C which has complex multiplication by O.

Theorem 7.2.5 – Ray class �elds and Weber’s function

Let O be an order inside an imaginary quadratic �eld  ⊆ C, and let � ⊆ O be an invertible
ideal. Then we have that

�� ,O = �O (h� (� [� ])) =  ( 9 (�), h� (� [� ]))

for any elliptic curve �/C such that End(�) � O. In particular, if � is an elliptic curve
de�ned over a number �eld � such that End� (�) � O then �� ,O ⊆ � (� [� ]).

Proof. We can assume that 9 (�) ∉ {0, 1728}, because in this case we have that O = O , and
an idelic proof of Theorem 7.2.5 is given by [Sil94, Chapter II, Theorem 5.6]. Fix a generator %
of � [� ] as a module over O/� , which exists by Lemma 7.2.4 because � ⊆ O is invertible. Then
�O (h� (� [� ])) = �O (h� (%)), as one can see by writing every endomorphism of � in the standard
form described in [Was08, § 2.9] and applying [Lan87, Chapter I, Theorem 7].
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Let now b : C/a −→∼ � (C) be a complex parametrisation, where a ⊆ O is an invertible ideal
(see Proposition 7.1.33). Fix moreover I ∈ (a : � ) ⊆  ⊆ C such that b (I) = % , where I := aI/a
denotes the image of I in the quotient  /a ⊆ C/a. Then [Shi94, Theorem 5.5] shows that

�O (h� (%)) = ( ab) [,% , ]

where,% ⊆ A× is the subgroup de�ned by,% :=
{
B ∈ A×

 

�� B · a = a, B · I = I
}
. In particular,

we recall that for any B ∈ A×
 

such that B ·a = a, the notation B ·I stands for the image of I ∈  /a
under the map  /a −→B ·  /a. This map is de�ned by the commutative diagram

 

a

 

B · a
 

a

⊕
?∈"0

Q

 ?

a?

⊕
?∈"0

Q

 ?

B?a?

⊕
?∈"0

Q

 ?

a?

B ·
∼ ∼

=

∼

(B? · )?
=

where a? := a ⊗Z Z? = a O? for any rational prime ? ∈ N. Since �O =  ( 9 (�)), the theorem
follows from the claim

,% = *� ,O (7.17)

where*� ,O ⊆ A× is the subgroup de�ned in (6.12).
Let us prove the claim (7.17). To show the inclusion *� ,O ⊆ ,% take any B ∈ *� ,O . Then

B ·a = a because B?a? = a? for every rational prime ? ∈ N, since by de�nition B? ∈ O×? . Moreover,
B · I = I because I ∈ (a : � ) and B? ∈ 1 + �O? for every rational prime ? ∈ N, which implies that
(B? − 1)I ∈ a? . This shows that*� ,O ⊆,I

To prove the opposite inclusion,% ⊆ *� ,O , �x any rational prime ? ∈ N and take B ∈,% , so
that B · a = a and B · I = I. Since a ⊆ O is invertible we have that a · (O : a) = O and

B · O = B · (a · (O : a)) = (B · a) · (O : a) = a · (O : a) = O

which shows that B? ∈ O×? . Let us now prove that B? ∈ 1+ � · O? . Since � ⊆ O and a ⊆ O are both
invertible we have that � · (O : a) · (a : � ) = O, so that we can write 1 =

∑�

9=1 U 9V 9g 9 with U 9 ∈ � ,
V 9 ∈ (O : a) and g 9 ∈ (a : � ). Notice that B · g 9 = g 9 for every 9 ∈ {1, . . . , � } because B · I = I and
% = b (I) generates � [� ] as a module over O/� . Hence B? − 1 ∈ � · O? , because we can write

B? − 1 =

�∑
9=1

U 9 V 9 (B? g 9 − g 9 )

where B? g 9 − g 9 ∈ a? = a O? and V 9 (B? g 9 − g 9 ) ∈ O? since V 9 ∈ (O : a) for every 9 ∈ {1, . . . , � }.
Thus we have shown that B? ∈ O×? and B? ∈ 1 + � · O? for every prime ? ∈ N, which gives
,% ⊆ *� ,O . This shows the claimed equality (7.17), and allows us to conclude. �

Remark 7.2.6. Theorem 7.2.5 was already proved by Söhngen [Söh35], using the classical lan-
guange of class �eld theory (see also [Sch10, Theorem 6.2.3]) for a modern account. To claim
indeed that Theorem 7.2.5 gives an idelic proof of Söhngen’s result we need to appeal to Theo-
rem 6.2.17, which shows that our idelic description of the ray class �elds �� ,O coincides with
the classical de�nition given by Söhngen. We also refer the interested reader to [Ste01, § 4] for a
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presentation whose language is closer to ours, which focuses on the case � = # · O for some
# ∈ Z.

7.3 Bounding the index of the image of Galois for
elliptic curves with complex multiplication

We have seen that, for every number �eld � , the Galois representation

d� : Gal(� (�tors)/� ) ↩→ AutZ (�tors) (7.18)

associated to an elliptic curve �/� which has complex multiplication by an imaginary quadratic
order O, is related to Hecke characters by Theorem 7.1.25, and this allows to describe explicitly
the ray class �elds for the order O in terms of the values of the Weber function associated to the
elliptic curve �.

The Galois representation (7.18) can in fact be associated to any elliptic curve � de�ned over
the number �eld � . If � does not have complex multiplication, Serre’s Open Image Theorem
[Ser71, Théorème 3] shows that the subgroup Im(d�) has �nite index in AutZ (�tors). Giving an
explicit bound on the index |AutZ (�tors) : Im(d�) | is still an area of active research, related to
Serre’s “uniformity conjecture” (see [Lom15, Theorem 9.1]).

Let us now return to elliptic curves with complex multiplication. In this case, if � is a number
�eld and �/� is an elliptic curve with complex multiplication by an order O, the image of
the Galois representation d� is contained in AutO (�tors) � Ô×, which is the centraliser of
O× = Aut� (�) inside AutZ (�tors). This shows in particular that Im(d�) cannot have �nite index
inside AutZ (�tors). However, a theorem of Deuring shows that the index |AutO (�tors) : Im(d�) |
is �nite. The main result of this section, which is based on joint work in progress with Francesco
Campagna, is the following theorem, which gives an explicit upper bound for this index.

Theorem 7.3.1 – An optimal bound for the index of the image of Galois, for CM
elliptic curves

Let � ⊆ C be a number �eld and let � be an elliptic curve with CM by an order O inside
an imaginary quadratic �eld  ⊆ � . Denote by d� the associated Galois representation.
Then the index |AutO (�tors) : Im(d�) | divides �� := |Aut(�) | · [� ∩  ab : �O], where �O
denotes the ring class �eld of O.

Observe that, for every CM elliptic curve � de�ned over a number �eld � which contains the
CM �eld  , we have that �� ≤ �′′� ≤ �′� , where

�′� :=

{
[� : Q], if 9 (�) ∉ {0, 1728}
3 · [� : Q], otherwise

and �′′� := |Aut(�) | · [� : �O]

are the quantities provided respectively by Lombardo [Lom17, Theorem 6.6] and Bourdon and
Clark [BC20, Corollary 1.5] as upper bounds for the index |AutO (�tors) : Im(d�) |.

We give two proofs of Theorem 7.3.1. The �rst one uses the fact that every elliptic curve �/�
with complex multiplication by O ⊆ � is a twist of the base-change to � of an elliptic curve
de�ned over the ring class �eld �O .
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First proof of Theorem 7.3.1. Recall that  ab ⊆ � (�tors), thanks to Theorem 7.2.5, and observe
that

d� (Gal(� (�tors)/� ·  ab)) = Aut(�) ∩ Im(d�)

because the values of the Weber function h� : � � �/Aut(�) � P1 are all contained in  ab, and
generate the extension  ⊆  ab. This shows that d� induces an injective map

f� : Gal(� ·  ab/� ) ↩→ AutO (�tors)/Aut(�)

such that |AutO (�tors) : Im(d�) | divides |Aut(�) | · |AutO (�tors)/Aut(�) : Im(f�) |. Hence to
conclude it is su�cient to prove that |AutO (�tors)/Aut(�) : Im(f�) | = [� ∩  ab : �O].

To this end, let �0 be an elliptic curve de�ned over the ring class �eld�O such that 9 (�) = 9 (�0),
which exists thanks to Proposition 7.1.33. In particular, there exists U ∈ �× such that �0 = �

(U)

is the twist of � by U (see [Sil09, Chapter X, Proposition 5.4]). Setting = := |Aut(�) | and writing
� and �0 in short Weierstraß forms, one has an isomorphism

i : � −→∼ �0

(G,~) ↦→
(
U2/= · G, U3/= · ~

) (7.19)

de�ned over the �nite extension � ( =
√
U). Then i induces an isomorphism

i∗ : AutO (�tors) −→∼ AutO ((�0)tors)
5 ↦→ i ◦ 5 ◦ i−1

such that i∗ (Aut(�)) = Aut(�0). Moreover, for every g̃ ∈ Gal(�/� ) the two automorphisms

i∗ (d� (g)), d�0 (g0) ∈ AutO ((�0)tors)

di�er by an element of Aut(�0), where g := g̃
��
� (�tors) and g0 := g̃

��
�O ( (�0)tors) . Indeed, for every

%0 ∈ (�0)tors, if we write %0 = (G,~) in the short Weierstraß model for �0 chosen above, we have:

i∗ (d� (g)) (%0) = (jU,= (g̃)−2g (G), jU,= (g̃)−3g (~)) = (jU,= (g̃)−2g0 (G), jU,= (g̃)−3g0 (~))
d�0 (g0) (%0) = (g0 (G), g0 (~))

where jU,= : Gal(�/� ) → `= ⊆  ⊆ �O ((�0)tors) is the Kummer character, de�ned as

jU,= (g̃) :=
g̃ ( =
√
U)

=
√
U

for every g̃ ∈ Gal(�/� ).

This shows that the following diagram

Gal(� ·  ab/� ) AutO (�tors)/Aut(�)

Gal( ab/� ∩  ab) Gal( ab/�O) AutO ((�0)tors)/Aut(�0)

f�

∼ i∗∼

f�0

(7.20)
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commutes. Now, using [BC20, Theorem 1.4], which was already proved in [Ste01], one sees
that f�0 is an isomorphism. In particular |AutO (�tors)/Aut(�) : Im(f�) | = [� ∩ ab : �O] as we
wanted to prove. �

Our second proof uses the main theorem of complex multiplication, rather than the twist-
structure of CM elliptic curves.

Second proof of Theorem 7.3.1. Recall that  ab ⊆ � (�tors), thanks to Theorem 7.2.5, and that

d� (Gal(� (�tors)/� ·  ab)) = Aut(�) ∩ Im(d�)

because the values of the Weber function h� : � � �/Aut(�) � P1 are all contained in  ab, and
generate the extension  ⊆  ab. This shows that d� induces an injective map

f� : Gal(� ·  ab/� ) ↩→ AutO (�tors)/Aut(�)

such that |AutO (�tors) : Im(d�) | divides |Aut(�) | · |AutO (�tors)/Aut(�) : Im(f�) |. To conclude
it su�ces to prove that |AutO (�tors)/Aut(�) : Im(f�) | = [� ∩  ab : �O], and we prove this
by showing that there exists a group surjection k� : AutO (�tors) � Gal( ab/�O) such that
ker(k�) = Aut(�) and the following diagram

Gal(� (�tors)/� ) AutO (�tors)

Gal( ab/� ∩  ab) Gal( ab/�O)

d�

k� (7.21)

commutes, where the map Gal(� (�tors)/� ) � Gal( ab/� ∩  ab) is the canonical restriction.
Let us see how to de�ne the mapk� . First of all, let

t� : AutO (�tors) −→∼ lim←−−
#

AutO (� [# ]) −→∼ lim←−−
#

AutO (O/#O) −→∼ Ô×

be the natural isomorphism induced by the various projection maps, and by the decomposition
�tors = lim−−→#

� [# ] of the torsion subgroup �tors ⊆ � (C). Moreover, let

cO :
*O
 ×∞
−→∼ Ô×

be the isomorphism de�ned by (6.16). Then we de�nek� to be the map

k� : AutO (�tors) Ô× *O/ ×∞ Gal( ab/�O)
t�
∼

c−1
O
∼

aO

where aO (B) := [B−1,  ] is the reciprocal of the Artin map. In particular ker(aO) =  ×∞ · O×/ ×∞,
which shows that ker(k�) = Aut(�). Hence to conclude we only have to prove that the diagram
(7.21) commutes.

To show this, let u� := c−1
O ◦t� , so thatk� = aO◦u� . Let moreoveri : C� � (C) be any complex

uniformisation such that Λ := ker(i) ⊆  , and let ĩ :  /Λ −→∼ �tors be the induced isomorphism
of O-modules. Then we have that u−1

�
= i∗ ◦ iΛ, where i∗ : AutO ( /Λ) −→∼ AutO (�tors) is
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de�ned as i∗ (5 ) = ĩ ◦ 5 ◦ ĩ−1, and iΛ : *O/ ×∞ −→∼ AutO ( /Λ) is induced by the map which
sends B ∈ *O to the automorphism  /Λ −→B ·  /Λ.

Now, applying Theorem 7.1.25 with " = � we see that there exists a unique group homomor-
phism U� : A×

�
→  × with open kernel, such that the following diagram

A×
�

*O/ ×∞

Gal(� (�tors)/� ) AutO (�tors)

cO◦b�

[ ·,� ]
���
� (�tors )

u−1
�∼

d�

(7.22)

commutes, where cO : *O � *O/ ×∞ is the canonical projection and b� : A×
�
→ *O is the

group homomorphism given by b� (B) := U� (B) · N�/ (B−1). Since the vertical maps appearing
in (7.22) are surjective, to show that the diagram (7.21) commutes it is su�cient to show the
commutativity of the following square

A×
�

*O/ ×∞

Gal( ab/� ∩  ab) Gal( ab/�O)

V�

[ ·,� ]
���
 ab

aO (7.23)

obtained by gluing (7.22) above (7.21). Now, since  × ⊆ ker( [·,  ]) we have that

aO ◦ V� = [·,  ] ◦ N�/ 

and the functoriality of class �eld theory (see Theorem 6.1.9) allows us to conclude that (7.23)
commutes. �

Remark 7.3.2. The previous proof, when applied to an elliptic curve � de�ned over a number
�eld � such that � ∩  ab = �O shows that f� is an isomorphism. In particular, this shows that
the map f�0 in the diagram (7.20) is an isomorphism.

We conclude this section by pointing the interested reader to Corollary 8.3.4, where we prove
that that the bound

|AutO (�tors) : Im(d�) | ≤ ��
provided by Theorem 7.3.1 is optimal. More precisely, for every imaginary quadratic order O
we can combine Corollary 8.3.4 and Theorem 8.3.6 to see that

|AutO (�tors) : Im(d�) | = �� := |Aut(�) | · [� :  ab : �O]

for in�nitely many elliptic curves � which are de�ned over the ring class �eld �O and have
complex multiplication by the order O. These elliptic curves are precisely the ones satisfying
Shimura’s condition, which was de�ned in De�nition 7.1.30. On the other hand, we show in
Theorem 8.3.7 that there exist also in�nitely many elliptic curves � de�ned over the ring class
�eld �O which have complex multiplication by O and do not satisfy Shimura’s condition. For
these elliptic curves, Corollary 8.3.4 shows that

|AutO (�tors) : Im(d�) | = 1
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which may be seen as a sign that there is still room for improving Theorem 7.3.1.

7.4 Beilinson’s conjecture for elliptic curves with
complex multiplication

The aim of this section is to present the sketch of a proof of the main result of [Roh87], which
proves in an explicit way that the weak form of Beilinson’s conjecture (see Conjecture 3.3.28)
holds for the special value !∗ (�, 0) associated to a CM elliptic curve � de�ned over Q. This
is a very special case of a general theorem due to Deninger, proved in [Den89; Den90] and
surveyed in [Den88; DW88; Den94], which shows Beilinson’s conjecture for elliptic curves
with complex multiplication that satisfy Shimura’s condition (see De�nition 7.1.30). The main
di�erence between the results of Deninger and Rohrlich is that the �rst one constructs, for every
: ≥ 0, a speci�c element b: ∈ � 2,:+2

M (�) whose regulator, paired with a suitable homology class,
is an explicit rational multiple of the special value !∗ (�,−:), whereas the second one shows that
in fact !∗ (�, 0) is a rational multiple of a multitude of regulators of elements in � 2,2

M (�), paired
with a suitable homology class. We note that one can combine the Galois descent property
of motivic cohomology with the fact that a CM elliptic curve � has potential good reduction
everywhere to see that � 8, 9M (�) = �

8, 9

5
(�) for every 8, 9 ∈ Z. Hence, if Beilinson’s predictions on

the ranks of motivic cohomology groups are true (see Conjecture 3.3.25) then an implicit form
of Rohrlich’s result would of course follow from Deninger’s theorem.

Let us now state Rohrlich’s result, collecting �rst a certain amount of notation. First of all, we
need to introduce the diamond operator, which operates on divisors de�ned over a curve.

De�nition 7.4.1 – Diamond operator

Let - be a smooth, proper curve over a number �eld ^, whose absolute Galois group is
denoted by G^ := Gal(^/^). Then, for every ring Λ, the diamond operator ♦ is a map

♦ : Λ[- (^)]G^ ⊗ Λ[- (^)]G^ → Λ[G^\� (^)]

where � := Jac(- ) denotes the Jacobian of - . This map is de�ned by

©­«
∑

G ∈- (^)
0G (G)

ª®¬ ♦ ©­«
∑

~∈- (^)
1~ (~)

ª®¬ :=
∑

[G,~ ]^ ∈�^\- (^)2
0 [G ]^ 1 [~ ]^

| [G,~]^ |
| [G − ~]^ |

( [G − ~]^)

where [G]^ ∈ G^\- (^) denotes the Galois orbit of a point - (^), and analogously the
notation [G,~]^ ∈ G^\- (^)2 stands for the orbit of a pair (G,~) ∈ - (^)2 under the
diagonal action of the Galois group G^ . Moreover, G − ~ ∈ � (^) denotes the di�erence
of the images of G and ~ under any embedding - ↩→ � , and it does not depend on this
embedding.

Fix now an elliptic curve � de�ned over Q such that End(�) � O for some imaginary
quadratic �eld  . In particular, � is a twist of one of the elliptic curves appearing in Table A.11
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which have complex multiplication by a maximal order. Besides the diamond operator de�ned
in De�nition 7.4.1, Rohrlich’s theorem involves also a function

R : �tors → Q

whose de�nition requires in turn the existence of a complex uniformisation \� : C � � (C)
having certain peculiar properties (see [Roh87, Page 377]).

Proposition 7.4.2 – Uniformising CM elliptic curves over Q

Let � be an elliptic curve de�ned over Q which has complex multiplication by the ring
of integers O of an imaginary quadratic �eld  . Then, for every embedding f :  ↩→ C
and every orientation of � (R)0, there exists a unique complex analytic uniformisation
\� : C� � (C) such that:

• \� (R) ⊆ � (R);

• the induced isomorphism R/Z −→∼ � (R)0 preserves the orientations;

• ker(\�) = f (b�), where b� ⊆  is a fractional ideal de�ned as

b� :=

{
O , if (Δ = −3 ∧ 0 > 0) ∨ (Δ = −4 ∧ Δ� > 0) ∨ (Δ < −4 ∧ 1 > 0)
D−1
 /Q, otherwise

for any short Weierstraß equation ~2 = 4G3 − 0 G − 1 de�ning �, with 0, 1 ∈ R and
Δ� := 03 − 2712. Here D /Q ⊆ O denotes the di�erent of the extension Q ⊆  , as
de�ned in [Neu99, Chapter III, § 2].

Proof. Consider an invariant di�erential l ∈ Ω1
�R

, which is de�ned over R, and consider the
Abel-Jacobi isomorphism

U : � (C) −→∼ C/Λ

% ↦→
[∫ %

$

l

] (7.24)

where Λ ⊆ C denotes the period lattice of l , obtained by pairing it with singular homology
classes � sing

1 (� (C);Z). Observe that the lattice Λ is invariant by complex conjugation, hence
Λ∩R = _Z for some _ ∈ R×. Thus, after scaling l and Λ by _−1 we may assume that Λ∩R = Z.
Using this in combination with the fact that l is de�ned over R, we see that U induces an
isomorphism � (R) � R/Z. We can assume that this isomorphism preserves the orientations,
after composing it, if needed, with the inversion I ↦→ −I on C/Λ. We now de�ne \� as:

\� : C� C/Λ −−→U
−1

� (C)

and observe that \� satis�es the �rst two conditions appearing in the statement.

To prove that ker(\�) = f (b�), we claim �rst of all thatΛ = ker(\�) is of the formΛ = 1 ·f (O )
or Λ = 1 · f (D−1

 /Q) for some 1 ∈ Q. For ease of notation, we suppose �xed the inclusion  ⊆ C
coming from f . Now, observe that Λ = _ · O for some _ ∈  ×, because Pic(O ) = 1. Then,
_/_ ∈ O×

 
, since Λ is invariant under complex conjugation. If _ = _ then _ ∈  ∩ R = Q, hence

208 Chapter 7 The theory of complex multiplication



Λ is of the form 1 · O for some 1 ∈ Q. On the other hand, if Δ < −4 then the only other
option is _ = −_, which implies that _ ∈  ∩ 8R =

√
Δ · Q. This allows us to conclude that

Λ = 1 ·D−1
 /Q for some 1 ∈ Q, because D−1

 /Q = Δ−1/2
 
· O = Δ · (

√
Δ · O). Moreover, if Δ = −4

then  = Q(8), and we have two more cases to consider, namely _ = 8 · _ and _ = −8 · _. In these
cases we have respectively that _ ∈ (1+ 8) ·Q and _ ∈ (1− 8) ·Q, which implies that Λ = 1 ·D−1

 /Q
for some 1 ∈ Q since D /Q = (1 + 8) · Z[8]. Finally, we observe that _/_ ∉ `6 \ {±1} for every
_ ∈ C×, where `6 ⊆ C× denotes the group of sixth roots of unity. This shows our claim for
 = Q(

√
−3), i.e. for Δ = −3. Now, we point out that O ∩ Q = D−1

 /Q ∩ Q = Z, which implies
that Λ ∈ {O,D−1

 /Q} using our previous claim.
To conclude thatΛ = b� we proceed as follows. First of all, since\� is a complex uniformisation,

we see that � admits a short Weierstraß model of the form ~2 = 4G3 − 62 (Λ)G − 63 (Λ), where

62 (Λ) := 60
∑

l ∈Λ\{0}
l−4 and 63 (Λ) := 140

∑
l ∈Λ\{0}

l−6

are the usual Eisenstein series computed on the lattice Λ. Now, if Δ < −4 we see that

6< (O ) = −6< (D−1
 /Q) > 0 (7.25)

for every< ∈ {2, 3}, which shows that Λ = b� as we wanted. The �rst equality in (7.25) follows
from the fact that D /Q =

√
Δ · O if Δ ≠ −4. Moreover, the fact that 6< (O ) > 0 can be

proved by the following steps:

• 6< (Z + gZ) ∈ R× for every g ∈ C of the form g = 8C with C > 1 or g = 1
2 + 8C with C >

√
3/2.

Indeed, the fact that 6< (Z + gZ) ∈ R follows easily from the de�nition, whereas the fact
that 6< (Z + gZ) ≠ 0 is a special case of a result of Rankin and Swinnerton-Dyer (see
[RS70]);

• observe that

lim
C→+∞

6< (Z + 8CZ) = lim
C→+∞

6<

(
Z +

(
1
2
+ 8C

)
Z

)
=

{
120 · Z (4), if< = 2
280 · Z (6), if< = 3

as follows again from the de�nition. This allows us to conclude that

6< (Z + 8CZ) > 0, ∀C > 1,

6<

(
Z +

(
1
2
+ 8C

)
Z

)
> 0, ∀C >

√
3

2
.

(7.26)

• use the fact that O = Z + 8
√

2Z if Δ = −8 and O = Z +
(

1
2 + 8
√
|Δ |
2

)
Z if 2 - Δ < −4.

Finally, if Δ = −3 one can prove similarly that 62 (O ) = −62 (D /Q) > 0, whereas if Δ = −4
we know that 63 (Z[8]) = 0. This implies that 62 (Z[8]) ≠ 0, which can be combined with (7.26)
to see that Δ� = 62 (Z[8])3 > 0.

To conclude the proof, we need to show that \� is unique. Indeed, any two complex uni-
formisations \, \ ′ : C � � (C) satisfy \ (I) = \ ′(2I) for some 2 ∈ C. If both \ and \ ′ are
de�ned over R then 2 ∈ R. Moreover, if ker(\ ), ker(\ ′) ⊆  then 2 ∈  ∩ R = Q, and if
ker(\ ) ∩R = ker(\ ′) ∩R = Z then necessarily 2 ∈ {±1}. Finally, if \ and \ ′ induce isomorphisms
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R/Z � � (R)0 which are compatible with the orientations, then 2 = 1. Since \� satis�es all the
aforementioned properties, the previous discussion shows that it is unique. �

Remark 7.4.3. To avoid unnecessary sign issues, whenever we have an elliptic curve � de�ned
over Q which has potential complex multiplication we �x implicitly an embedding f :  ↩→ C
and an orientation of � (R)0.

Let us now introduce the function R : �tors → Q which appears in Rohrlich’s theorem.

De�nition 7.4.4 – The function R

Let � be an elliptic curve de�ned over Q, which has potential complex multiplication by
the ring of integers O of an imaginary quadratic �eld  ⊆ C. Then we de�ne a function

R : �tors → Q

G ↦→


0, if fk� - AnnO (G)
s(G), if fk� | AnnO (G) and [G] = [G] 
s(G) + s(G), if fk� | AnnO (G) and [G] ∩ [G] = ∅

where AnnO (G) := {U ∈ O | [U]� (G) = 0} denotes the annihilator of a point G ∈ �tors,
and fk� denotes the conductor of the Hecke character k� : A×

 
→ C× associated to the

base-change � (see Remark 7.1.27). Moreover, the function s : �tors →  is de�ned as

s(G) :=
1
bG

∏
p |AnnO (G)

p-fk�

(1 −k� (p))

where bG ∈ O is the unique generator of the ideal AnnO (G) b−1
�
⊆ O such that

\� (b−1
G ) ∈ G G . Finally, I ↦→ I denotes the complex conjugation map C → C, and for

every prime p ⊆ O such that p - fk� we letk� (p) ∈  × denote the image of any p-adic
uniformiser cp ∈  ×p ⊆ A× . This image does not depend on the choice of a uniformiser
becausek� (O× p

) = 1, since p - fk� .
We also denote by R : Q[�tors] → Q the Q-linear extension of the map R : �tors → Q.

Finally, we are ready to state Rohrlich’s theorem, and to provide a sketch of its proof.

Theorem 7.4.5 – Beilinson’s conjecture at B = 2 for CM elliptic curves over Q

Let � be an elliptic curve de�ned over Q having potential complex multiplication by the
ring of integers O of an imaginary quadratic �eld  ⊆ C. Let moreover 5 , 6 : � → P1 be
two functions de�ned over Q whose zeros and poles are torsion points. Then we have that

〈A∞� ([5 ,6), W�〉 = =5 ,6 · R(div(5 )♦ div(6)) !′(�, 0)

where A∞
�
([5 ,6) ∈ � 2,2

D (�) � �
1
dR (- ;R(1)) denotes the image, under Beilinson’s regulator

map A∞
�

(see Example 2.4.6 and Remark 2.4.10) of the class [5 ,6 ∈ � 2,2
M (�) de�ned in (2.37).
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Moreover, we have that =5 ,6 R(div(5 )♦ div(6)) ∈ Z, where =5 ,6 ∈ N denotes the smallest
common multiple of the orders of the zeros and poles of 5 and 6, which exists because the
latter are assumed to be torsion points. Finally, W� ∈ � sing

1 (�;Q)− denotes the homology
class de�ned in Notation 2.5.6.

Proof (sketch). We provide a sketch of the proof, pointing at speci�c places of [Roh87] for details.
The key idea, which is incidentally the same idea which supports the work of Deninger [Den89;
Den90], is to express a regulator integral in terms of Eisenstein-Kronecker series, and then relate
them to the !-function using complex multiplication.

Fix \� : C� � (C) to be the complex uniformisation given by Proposition 7.4.2, which allows
us to view 5 and 6 as meromorphic on C, which are invariant with respect to translation by the
lattice b� . Using this point of view, we see that

〈A∞� ([5 ,6), W�〉 =
=5 ,6

c8

∫
C/b�

log|5 (I) |6
′(I)
6(I) 3I ∧ 3I (7.27)

combining Remark 2.5.3 and Proposition 2.5.5. Now, Rohrlich shows in [Roh87, Equation (13)]
that

1
c8

∫
C/b�

log|5 (I) |6
′(I)
6(I) 3I ∧ 3I =

3"5 ,6 (B)
3B

����
B=0

(7.28)

where "5 ,6 is the function de�ned by

"5 ,6 (B) :=
∑
I,F∈C

ordI (5 ) ordF (6)�1 (I −F, B; b�) (7.29)

which is de�ned in terms of the Eisenstein-Kronecker series �1 (I, B ; b�) : C2 → C. This function,
which is holomorphic on C2, is de�ned as the analytic continuation of the series expression

�1 (I, B; b�) :=
∑

V∈b�\{−I }

I + V
|I + V |2B

which converges for Re(B) > 3/2. We refer the interested reader to [Wei99, Chapter VII, § 12-13]
for the basic properties of the Eisenstein-Kronecker series, and we point out that Weil denotes
�1 (I, B; b�) as  1 (I, 0, B). The proof of (7.28), which appears in [Roh87, Page 375], uses the
following two results:

• for every lattice Λ ⊆ C and every elliptic function i : C/Λ→ C one has that

− 1
c8

∫
C/Λ

log|i (I) |� (I, B;Λ)3I ∧ 3I = 1
(B − 1)2

∑
I∈C/Λ

ordI (i)� (I, B − 1;Λ) (7.30)

for every B ∈ C such that<(B) < 1. Here � (I, B;Λ) denotes the double Eisenstein series,
which is the analytic continuation of the double series

� (I, B;Λ) =
∑

_∈Λ\{−I }
|I + _ |−2B
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which converges for every B ∈ C such that <(B) > 1. The formula (7.30) is proved in
[Roh87, Page 372];

• every elliptic function i : C/Λ→ C can be factored as

i (I) = 2
∏
I0∈C

g(I − I0;Λ)ordI0 (i)

where 2 ∈ C and g(I;Λ) := Δ(Λ)1/124−I[ (I;Λ)/2f (I;Λ) is the Siegel function associated to
Λ. This can be proved using the factorisation of elliptic functions in terms of the f-function
(see [Lan87, Chapter 18, § 1]). We observe moreover that g(I) is related to the Eisenstein
series � (I, B) by the second Kronecker limit formula, which says that

−2 log|g(I;Λ) | = 3� (I, B;Λ)
3B

����
B=0

for every I ∉ Λ (see [Lan87, Chapter 20, § 5]).

Now, using the diagonal action of GQ := Gal(Q/Q) on � (Q)2 := � (Q)×� (Q), one can re-write
the de�nition (7.29) as

"5 ,6 (B) =
∑
[I,F ]Q

ordI (5 ) ordF (6)
| [I,F]Q |
| [I −F]Q |

"I−F (B;�) (7.31)

where the sum runs over all the diagonal orbits [I,F]Q ∈ � (Q)2/GQ, and for every point
I ∈  /Λ � �tors, the functions "I (B) are de�ned as

"I (B;�) :=
∑

F∈[I ]Q

�1 (F, B; b�)

where the sum runs over all the elements in the Galois orbit of I ∈ � (Q).

To conclude, Rohrlich proves in [Roh87, Pages 381-384] that

"I (B;�) = �I (B;�) · !(�, B) and �I (0, �) = R(div(5 )♦ div(6)) (7.32)

for every torsion point I ∈  /b� , where �I (B;�) is an explicitly de�ned holomorphic function.
More precisely, �I (B;�) is de�ned as follows

�I (B;�) :=


0, if fk� - AnnI (O )
�I (B;�), if fk� | AnnI (O ) and [I] = [I] 
�I (B;�) + �I (B;�), if fk� | AnnI (O ) and [I] ∩ [I] = ∅

where �I (B;�) denotes the �nite Euler product

�I (B;�) :=
|bI |2B
bI

∏
p |AnnI (O )

p-fk�

(
1 − k� (p)
|N /Q (p) |B

)
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running over all the primes p ⊆ O which divide the annihilator ideal AnnI (O ) ⊆ O and do
not divide the conductor fk� ⊆ O . This indeed allows one to conclude, combining the fact that
!(�, 0) = 0 with (7.27), (7.28), (7.31) and (7.32). �

Now, to prove Beilinson’s conjectures for the special value !∗ (�, 0) = !′(�, 0) one has to show
that for every CM elliptic curve � de�ned over Q we can �nd a pair of functions 5 , 6 : � → P1

such that R(div(5 )♦ div(6)) ≠ 0. This happens in fact for many pairs of functions. Since
these pairs of functions are crucially used in Chapter 9 to construct suitable polynomials
% ∈ Z[G,~] whose Mahler measure<(%) is related to !∗ (�, 0), we defer this last bit of the proof
of Beilinson’s conjectures for !∗ (�, 0) to Section 9.1. More precisely, we use Section 9.1.1 to
recall the construction of the pairs of functions 5 , 6 : � → P1 de�ned by Deninger and Wingberg
in [DW88, Theorem 4.10], and we devote Section 9.1.2 to recall the constructions of the pairs of
functions 5 , 6 : � → P1 de�ned by Rohrlich in [Roh87, Page 384].
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8Entanglement in the family of
division fields of CM elliptic
curves

If your confusion leads you in the right direction,
the results can be uncommonly rewarding.

Haruki Murakami,
Hard-Boiled Wonderland and the End of the World

The aim of this chapter, which is based on the preprint [CP20] written jointly with Francesco
Campagna, is to study the rami�cation and entanglement of division �elds associated to CM
elliptic curves. These division �elds were introduced in De�nition 7.2.3, and we saw in Theo-
rem 7.2.5 that they contain the ray class �elds associated to the order by which the elliptic curve
in question has complex multiplication.

Let us step back for a moment, and consider any elliptic curve � (not necessarily with complex
multiplication) de�ned over a number �eld � . Fix also an algebraic closure � ⊇ � . Then the
absolute Galois group Gal(�/� ) acts on the group �tors := � (� )tors of all torsion points of �. This
action gives rise to a Galois representation

d� : Gal(� (�tors)/� ) ↩→ AutZ (�tors) � GL2 (Ẑ)

where � (�tors) is the compositum of the family of �elds {� (� [?∞])}? for ? ∈ N prime. Each
extension � ⊆ � (� [?∞]) is in turn de�ned as the compositum of the family {� (� [?=])}=∈N,
where, for every # ∈ N, we denote by � (� [# ]) the division �eld obtained by adjoining to � the
coordinates of all the points belonging to the # -torsion subgroup � [# ] := � [# ] (� ).

For an elliptic curve � without complex multiplication (CM), Serre’s Open Image Theorem
[Ser71, Théorème 3] asserts that the image of d� has �nite index in GL2 (Ẑ). However, explicitly
describing this image is a non-trivial problem in general, which is connected to the celebrated
Uniformity Conjecture [Ser71, § 4.3]. A �rst step in this direction is to study the entanglement
of the family {� (� [?∞])}? for ? prime, i.e. to describe the image of the natural inclusion

Gal(� (�tors)/� ) ↩→
∏
?

Gal(� (� [?∞])/� ) (8.1)

where the product runs over all primes ? ∈ N. For each non-CM elliptic curve �/� this has
been done in [CS19] by Campagna and Stevenhagen. They identify a �nite set ( of “bad primes”
(depending on � and � ) such that the map (8.1) induces an isomorphism

Gal(� (�tors)/� ) Gal(� (� [(∞])/� ) ×
∏
?∉(

Gal(� (� [?∞])/� )∼
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where � (� [(∞]) denotes the compositum of the family of �elds {� (� [?∞])}?∈( . In this case one
says that the family {� (� [(∞])} ∪ {� (� [?∞])}? is linearly disjoint over � . The �rst goal of this
paper is to prove Theorem B (see also Theorem 8.2.6), which provides an analogous statement
for CM elliptic curves.

A key ingredient in the proof of Theorem B is Proposition 8.2.2, which can be seen as an explicit
version of Deuring’s analogue, for CM elliptic curves, of Serre’s Open Image Theorem (see [Ser71,
§ 4.5]). More precisely, if �/� is an elliptic curve with complex multiplication by an order O in an
imaginary quadratic �eld  , the extension � ⊆ � (�tors) is abelian. This shows that the image of
d� has in�nite index in AutZ (�tors) � GL2 (Ẑ), and in particular the conclusion of Serre’s theorem
does not hold in this setting. Nevertheless, the elements of Gal(�/� ) act on �tors as O-module
automorphisms, so that the image of d� is contained in the subgroup AutO (�tors) ⊆ AutZ (�tors).
Then Proposition 8.2.2 says that d� (Gal(� (� [?=])/� )) = AutO (� [?=]) for every prime ? ∉ (

and every = ∈ N. Hence one has the inclusion∏
?∉(

AutO (� [?∞]) ⊆ Im(d�) := d� (Gal (� (�tors)/� ))

which can be used to show, as Deuring did, that Im(d�) ⊆ AutO (�tors) has �nite index. Proposi-
tion 8.2.2 is proved using some results concerning formal groups attached to CM elliptic curves,
which are recalled in Section 8.1. We point out that another proof of Proposition 8.2.2 can also
be deduced from previous work of Lozano-Robledo, as explained in Remark 8.2.3.

While Proposition 8.2.2 (combined with Lemma 7.2.4) gives the identi�cation

Gal(� (� [# ])/� ) � (O/#O)× (8.2)

for every # ∈ N coprime with b� , we prove in Theorem 8.3.1 that, if the extension  ⊆ � is
abelian and � (�tors) ⊆  ab, the isomorphism (8.2) does not hold for in�nitely many # ∈ N not
coprime with b� . Theorem 8.3.1 extends results of Coates and Wiles (see [CW77, Lemma 3]) and
Kuhman (see [Kuh78, Chapter II, Lemma 3]) using the ray class �elds for orders constructed in
Section 6.2.

The condition � (�tors) ⊆  ab was introduced by Shimura in [Shi94, Theorem 7.44], and we
have provided a possible generalisation of this condition in De�nition 7.1.30. Shimura also
shows in [Shi94, Page 217] that, if  is an imaginary quadratic �eld with absolute discriminant
Δ . −1 (3), then there exists an elliptic curve � de�ned over the Hilbert class �eld � with
complex multiplication by O such that � (�tors) ⊆  ab. We generalise Shimura’s result in
Theorem 8.3.6 by proving that, for every imaginary quadratic �eld  and any order O ⊆  ,
there exist in�nitely many ellipic curves �/�O with complex multiplication by O which satisfy
Shimura’s condition, i.e. such that the extension  ⊆ �O (�tors) is abelian. Here �O denotes the
ring class �eld of  relative to O (see [Cox13, § 9]), which is an abelian extension of  coinciding
with the Hilbert class �eld � when O = O . We also show in Theorem 8.3.7 that there exist
in�nitely many elliptic curves �/�O which have complex multiplication by O and do not satisfy
Shimura’s condition. For these elliptic curves, we show in Corollary 8.3.4 that the whole family
of division �elds {�O (� [?∞])}? is linearly disjoint over �O .

In the �nal section, we use Theorem B and Theorem 8.3.1 to prove Theorem 8.4.4, which
provides a complete description of the image of (8.1) when � =  is an imaginary quadratic
�eld and �/ is the base-change of an elliptic curve de�ned over Q. In particular, as we note
in Remark 8.4.5, Theorem 8.4.4 shows that the �nite set of primes ( appearing in Theorem B
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cannot be made smaller in general. However, see Remark 8.2.8 for a broader discussion around
this topic.

We �nally remark that the work presented in this chapter, despite having di�erent objectives,
bears a connection with Lozano-Robledo’s recent work [Loz19], which provides an explicit
list of subgroups of GL2 (Z? ) that can occur as the image of the ?-adic Galois representations
associated to a CM elliptic curve. We comment more punctually on this relation in Remark 8.2.5,
Remark 8.3.5 and Remark 8.4.2.

8.1 Formal groups and elliptic curves
8.1.1 Formal groups

The aim of this subsection is to recall, following [Sil09, Chapter IV], some of the main points
of the theory of one dimensional, commutative formal group laws de�ned over a ring ', which
we call formal groups for short. Roughly speaking, these are power series F ∈ 'ÈI1, I2É for
which the association G +F ~ := F (G,~) behaves like an abelian group law. More precisely, they
are de�ned as follows.

De�nition 8.1.1 – Formal groups

Let ' be a commutative ring with unity. A power series F ∈ 'ÈI1, I2É is a one dimensional,
commutative formal group law, which we call formal group for short, if:

• F (I1, I2) − I1 − I2 ∈ 〈{I2
1, I1I2, I

2
2}〉' . In particular, F (0, 0) = 0;

• F (I1, F (I2, I3)) = F (F (I1, I2), I3), which represents the associativity of the formal
group law I1 +F I2 := F (I1, I2);

• F (I1, I2) = F (I2, I1), which represents the commutativity of +F ;

• there exists a unique power series in one variable ]F (C) ∈ C · 'ÈCÉ such that
F (C, ]F (C)) = 0.

Given a formal group F ∈ 'ÈI1, I2É we denote the set of endomorphisms of F by

End' (F ) := {5 ∈ C'ÈCÉ | 5 (G +F ~) = 5 (G) +F 5 (~)}

which is a ring under the operations (5 +F 6) (C) := F (5 (C), 6(C)) and (6 ◦ 5 ) (C) := 6(5 (C)).
We write Aut' (F ) for the unit group End' (F )× and we denote by [·]F the unique ring homo-
morphism Z → End' (F ). For every q ∈ End' (F ) one has that q ∈ Aut' (F ) if and only if
q ′(0) ∈ '×, where q ′(C) := 3

3C
q ∈ 'ÈCÉ (see [Sil09, Chapter IV, Lemma 2.4]). Moreover, every

q ∈ End' (F ) is uniquely determined by q ′(0) whenever ' is torsion-free. More precisely, there
exist two power series expF, logF ∈ (' ⊗Z Q)ÈCÉ such that

q (C) = expF (q ′(0) · logF (C)) (8.3)

as explained in [Sil09, Chapter IV, § 5].
Let us now recall that if (',m) is a complete local ring there is a well de�ned map

m ×m
+F−−→ m

(G,~) ↦→ F (G,~)
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endowing the set m with the structure of an abelian group, which is denoted by F (m). We
sometimes refer to F (m) as the group of m-points of F . Every q ∈ End' (F ) induces an
endomorphism qm : F (m) → F (m), and for every ideal Φ ⊆ End' (F ) we de�ne the Φ-torsion
subgroup F (m) [Φ] ⊆ F (m) as

F (m) [Φ] :=
⋂
q ∈Φ

ker(qm).

These Φ-torsion subgroups generalise the usual # -torsion subgroups F (m) [# ] ⊆ F (m) de-
�ned for every # ∈ Z. The following lemma provides some information about the behaviour
of F (m) [?=] under �nite extensions of local rings with residue characteristic ? (see [Sil09,
Chapter IV, Exercise 4.6] and [Sil15, Page 15]).

Lemma 8.1.2 – Valuations of ?-adic torsion points of formal groups

Let ' ⊆ ( be a �nite extension of complete discrete valuation rings of characteristic zero
with maximal ideals m' ⊆ m( and residue �elds ^' ⊆ ^( . Let ? := char(^') > 0 be the
residue characteristic of ' and ( , and suppose that m' = ?'. Then for every formal group
F ∈ 'ÈI1, I2É and every G ∈ F (m( ) [?=] \ F (m( ) [?=−1] with = ∈ Z≥1 we have that

E( (G) ≤
E( (?)

?ℎ (=−1) · (?ℎ − 1)

where E( denotes the normalised valuation on ( , and

ℎ = ht(F ) := max
{
= ∈ N

��� [?]F ∈ ^'ÈC?=É }
is the height of the reduced formal group F ∈ ^'ÈI1, I2É.

Proof. Using that ℎ = ht(F ) and that m' = ? · ' we see that there exist 5 , 6 ∈ 'ÈCÉ such that
[?]F = 5 (C?ℎ ) + ? 6(C). We can assume that 5 , 6 ∈ C 'ÈCÉ and 6′(0) = 1 because [?]F ∈ C 'ÈCÉ
and [?] ′F (0) = ? . Now, �x G ∈ F (m( ) [?=] \ F (m( ) [?=−1] and proceed by induction on = ∈ Z≥1.

If = = 1 then 5 (G?ℎ ) + ? 6(G) = [?]F (G) = 0, hence E( (?) + E( (6(G)) = E( (5 (G?
ℎ )). Now

E( (6(G)) = E( (G) because 6(0) = 0 and 6′(0) = 1, and E( (5 (G?
ℎ )) ≥ E( (G?

ℎ ) = ?ℎ E( (G) because
5 (0) = 0. Hence E( (?) ≥ (?ℎ − 1) · E( (G), which is what we wanted to prove.

If = ≥ 2 we know by induction that

E( (?)
?ℎ (=−2) · (?ℎ − 1)

≥ E( ( [?]F (G)) = E( (5 (G?
ℎ ) + ? 6(G)) ≥ min(E( (G?

ℎ ), E( (?G))

because [?]F (G) ∈ F (m( ) [?=−1] \ F (m( ) [?=−2] by assumption. This implies that

min(E( (G?
ℎ ), E( (?G)) = E( (G?

ℎ )

as otherwise we would get the contradiction

E( (?) ≥ ?ℎ (=−2) · (?ℎ − 1) · E( (?G) > E( (?)
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because = ≥ 2, E( (G) > 0 and ℎ ≥ 1. Hence we have that

E( (G) =
E( (G?

ℎ )
?ℎ

≤ E( (?)
?ℎ · (?ℎ (=−2) · (?ℎ − 1))

=
E( (?)

?ℎ (=−1) · (?ℎ − 1)

which is what we wanted to prove. �

8.1.2 Formal groups and elliptic curves
Given an elliptic curve � de�ned over a number �eld � by an integral Weierstraß equation,

one can construct, following for example [Sil09, Chapter IV], a formal group �̂ ∈ O�ÈI1, I2É,
which can be thought of as the formal counterpart of the addition law on �. The association
� ↦→ �̂ is functorial and in particular induces a map

End� (�) → End� (�̂)

q ↦→ q̂
(8.4)

between the endomorphism rings of � and �̂. The power series lying in the image of (8.4) have
integral coe�cients, as proved in the following theorem, which is due to Streng (see [Str08,
Theorem 2.9]).

Theorem 8.1.3 – Integrality of formal endomorphisms

Let � be an elliptic curve de�ned over a number �eld � ⊆ C and let �̂ ∈ O�ÈI1, I2É be the
formal group law associated to a Weierstraß model of � with coe�cients 01, . . . , 06 ∈ O� .
Then for every q ∈ End� (�) we have that q̂ ∈ O�ÈCÉ.

Proof (sketch). One can show by induction that [̂=]� = [=]
�̂
∈ Z[01, . . . , 06]ÈCÉ ⊆ O�ÈCÉ for

every = ∈ Z, where [=]� ∈ End� (�) denotes the multiplication-by-= map. This proves the
theorem when End� (�) � Z. Otherwise � has complex multiplication. Hence one can combine
Example 7.1.9 and Proposition 7.2.1 with [Sil09, Chapter IV, Corollary 4.3] to see that there exists
a unique isomorphism [·]� : O −→∼ End� (�) such that [̂U]

′
� (0) = U for every U ∈ O, where O is

an order in an imaginary quadratic �eld  ⊆ � .
Let {k 9 }9 ∈N ⊆ � [B] be the polynomials determined by the equality

+∞∑
9=0
k 9 (B) · C 9 = exp

�̂
(B · log

�̂
(C)) ∈ �ÈC, BÉ

and observe thatk 9 (Z) ⊆ O� for every 9 ∈ N, because (8.3) shows that

+∞∑
9=0
k 9 (=) · C 9 = [=]�̂ (C) ∈ O�ÈCÉ

for every = ∈ Z.
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To conclude, it is su�cient to show that k 9 (O) ⊆ O�P for every 9 ∈ N and every prime
P ⊆ O� , where �P denotes the completion of � at P. Indeed, in this casek 9 (O) ⊆ O� for every
9 ∈ N, and again (8.3) gives

[̂U]� (C) = exp
�̂
( [̂U]�

′
(0) · log

�̂
(C)) = exp

�̂
(U · log

�̂
(C)) =

+∞∑
9=0
k 9 (U) · C 9 ∈ O�ÈCÉ

for every U ∈ O. The inclusionk 9 (O) ⊆ O�P is easily seen if P lies above a rational prime ? ∈ N
which splits in  , because under this assumption O ⊆ Z? andk 9 (Z? ) ⊆ O�P , since Z is dense in
Z? andk 9 : �P → �P is continuous with respect to the P-adic topology.

For the remaining cases, we refer the reader to the original proof contained in [Str08]. In fact,
Streng provides two proofs: one uses the extension of a morphism q ∈ End(�) to the connected
component of the identity of a Néron model, whereas the other is more elementary, and uses
Vélu’s isogeny formulas (see [Was08, § 12.3]). �

Let now P ⊆ O� be a prime of � with residue �eld ^P and corresponding maximal ideal
mP ⊆ O�P , where �P denotes the completion of � at P. Then [Str08, § 2] shows that there is a
unique injective group homomorphism ]P : �̂ (mP) → � (�P) making the following diagram

�̂ (mP) � (�P)

�̂ (mP) � (�P)

q̂P

]P

q

]P

(8.5)

commute for every q ∈ End�P (�), where q̂P := (q̂)mP
(see Section 8.1.1). Moreover [Sil09,

Chapter VII, Proposition 2.1 and Proposition 2.2] imply that ]P �ts in the following exact
sequence

0→ �̂ (mP)
]P−→ � (�P)

cP−−→ �̃ (^P) → 0

in which �̃ denotes the reduction of � modulo P and cP : � (�P) � �̃ (^P) is the canonical
projection. Taking torsion and using (8.5) we get a left-exact sequence (extensively used in the
next section):

0→ �̂ (mP) [Φ̂]
]P−→ � (�P) [Φ]

cP−−→ �̃ (^P) [Φ] (8.6)

for every ideal Φ ⊆ End�P (�). Here � (�P) [Φ] ⊆ � (�P) is the Φ-torsion subgroup

� (�P) [Φ] :=
⋂
q ∈Φ

ker(q)

and �̃ (^P) [Φ] is de�ned analogously, noting that the map End�P (�) → End^P (�̃) is injective (see
[Sil94, Chapter II, Proposition 4.4]). We remark that �̂ (mP) [Φ̂] is well de�ned since Φ̂ ⊆ O�ÈCÉ
by Theorem 8.1.3.
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8.2 Division fields of CM elliptic curves:
ramification and entanglement

The goal of this section is to prove Theorem B by studying the rami�cation properties of
primes in division �eld extensions associated to CM elliptic curves, which are described in
Proposition 8.2.1 and Proposition 8.2.2. The proof of these results is an application to the CM
case of the theory of formal groups outlined in Section 8.1. We often tacitly assume that all our
number �elds are embedded into C. This �xes in particular a unique, normalised isomorphism

[·]� : O −→∼ End� (�)

associated to every elliptic curve � which has complex multiplication by an order O inside an
imaginary quadratic �eld  , and is de�ned over a number �eld � ⊆ C such that  ⊆ � (see
Proposition 7.2.1).

With the next proposition, we start our study concerning the rami�cation properties of the
extensions � ⊆ � (� [� ]) (see De�nition 7.2.3), by �nding an explicit �nite set of primes outside
which these are unrami�ed.

Proposition 8.2.1 – Unrami�edness of division �elds

Let � ⊆ C be a number �eld and �/� an elliptic curve with complex multiplication by an
order O in an imaginary quadratic �eld  ⊆ � . Denote by fO := |O : O| the conductor of
the order O, and by f� ⊆ O� the conductor ideal of the elliptic curve �. Then for every
ideal � ⊆ O coprime with fO the extension � ⊆ � (� [� ]) is unrami�ed at all primes not
dividing (� · O� ) · f� .

Proof. Since � is coprime with the conductor of the order O, it can be uniquely factored into
a product of invertible prime ideals of O (see Lemma 6.2.7). The �eld � (� [� ]) is then the
compositum of all the division �elds � (� [p=]) with p= the prime power factors of � in O. Hence
it su�ces to prove that for every invertible prime ideal p ⊆ O and every = ∈ N, the �eld
extension � ⊆ � (� [p=]) is unrami�ed at every prime of � not dividing (p O� ) · f� .

Fix an invertible prime p ⊆ O and write ! := � (� [p=]). Let q - (p O� ) · f� be a prime of � and
�x a prime Q ⊆ O! lying above q, with residue �eld ^ . Since q does not divide the conductor f�
of the elliptic curve, � has good reduction �̃ modulo q and we then denote by c : � (!) → �̃ (^)
the reduction map. Take f ∈ � (Q/q), where � (Q/q) ⊆ Gal(!/� ) denotes the inertia subgroup
of q ⊆ Q, and �x a torsion point & ∈ � [p=] = � (!) [p=]. By de�nition of inertia, f acts trivially
on the residue �eld ^, hence

c (&f −&) = c (&f ) − c (&) = c (&) − c (&) = 0 (8.7)

i.e. the point &f − & is in the kernel of the reduction map c . We are going to use the exact
sequence (8.6) to show that the only p=-torsion point contained in this kernel is 0. To this
aim, we embed ! in its Q-adic completion !Q , with ring of integers O!Q and maximal ideal
mQ . Notice that the set (p= ∩ O) \ (Q ∩ O) is non-empty because p - fO and q - (p O� ).
Consider then the formal group �̂ ∈ O�ÈI1, I2É associated to an integral Weierstraß model
of �, and let U ∈ (p= ∩ O) \ (Q ∩ O). The endomorphism [̂U]� ∈ End� (�̂) corresponding
to [U]� ∈ End� (�) via (8.4) becomes an automorphism over !Q , because [̂U]

′
� (0) = U ∈ O×!Q .
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Hence taking Φ = [p=]� in (8.6) shows that � [p=] ∩ ker(c) ⊆ � [U] ∩ ker(c) = {0}, where the
last equality holds because �̂ (mQ) [̂U]� = 0. Combining this with (8.7), we see that &f = & for
every & ∈ � [p=] and f ∈ � (Q/q). Since ! is generated over � by the elements of � [p=], we
deduce that the inertia group � (Q/q) is trivial. In particular, � ⊆ ! is unrami�ed at every prime
not dividing (p · O� ) f� , as wanted. �

We now turn to the study of the primes which ramify in � ⊆ � (� [� ]). To do this, it su�ces to
restrict our attention to the case � = p= for some prime p ⊆ O and some = ∈ N, as we do in the
following proposition.

Proposition 8.2.2 – Total rami�cation in division �elds

Let � ⊆ C be a number �eld and �/� be an elliptic curve with complex multiplication by
an order O in an imaginary quadratic �eld  ⊆ � . Denote by b� := fO Δ� #�/Q (f�) the
product of the conductor fO := |O : O| of the order O, the absolute discriminant Δ� ∈ Z of
the number �eld � and the norm#�/Q (f�) := |O� /f� | of the conductor ideal f� ⊆ O� . Then,
for any = ∈ N and any prime ideal p ⊆ O coprime with b� O the extension � ⊆ � (� [p=])
is totally rami�ed at each prime dividing p O� . Moreover, the Galois representation

d�,p= : Gal(� (� [p=])/� ) ↩→ (O/p=)× � (O /p=O )×

de�ned in Lemma 7.2.4 is an isomorphism.

Proof. The statement is trivially true if = = 0, hence we assume that = ≥ 1. Fix �̂ ∈ O�ÈI1, I2É
to be the formal group associated to an integral Weierstraß model of �, and let p ⊆ O be as in
the statement. The hypothesis of coprimality with b� O implies that p is invertible in O and that
it lies above a rational prime ? ∈ N which is unrami�ed in  . We divide the proof according to
the splitting behaviour of ? in O, which is the same as the splitting behaviour in  , since ? - fO .

First, assume that ? is inert in  , so that p = ?O. In this case, ! := � (� [p=]) coincides with
the ?=-division �eld � (� [?=]). The injectivity of the Galois representation

d�,?= : Gal(!/� ) ↩→ (O/?=O)× � (O /?=O )×

shows that the degree of the extension � ⊆ ! is bounded as

[! : � ] ≤ |(O /?=O )× | = ?2(=−1) (?2 − 1).

Let P ⊆ O! be a prime of ! lying above ? and denote by !P the P-adic completion of !, with ring
of integers O!P , maximal ideal mP and residue �eld ^P. We want to determine the rami�cation
index 4 (P/(P ∩ O� )).

Since ? is inert in , the reduced elliptic curve �̃ is supersingular by [Lan87, § 14, Theorem 12],
hence �̃ (^P) [?=] = 0. Taking Φ = [?=]� in (8.6), we see that the group �̂ (mP) contains a
non-zero point of exact order ?= . We can now use Lemma 8.1.2 and the hypothesis ? - Δ� to get

?ℎ (=−1) (?ℎ − 1) ≤ E!P (?) = 4 (P/?) = 4 (P/(P ∩ O� )) ≤ [! : � ] ≤ ?2(=−1) (?2 − 1) (8.8)

where ℎ ∈ N denotes the height of the reduction modulo P of the formal group �̂. Since the
latter is precisely the formal group associated to �̃, we have that ℎ = 2 by [Sil09, Chapter V,
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Theorem 3.1]. Thus all the inequalities appearing in (8.8) are actually equalities, and we see at
once that 4 (P/(P∩O� )) = [! : � ] = ?2(=−1) (?2−1), which implies that d�,?= is an isomorphism,
and that P ∩ O� is totally rami�ed in !. This concludes the proof of the inert case.

Suppose now that ? splits in  , so that ?O = pp, where p is the image of p under the unique
non-trivial automorphism of  . If we put again ! := � (� [p=]), the injectivity of d�,p= gives

[! : � ] ≤ |(O /?=O )× | = ?=−1 (? − 1).

It is convenient in this case to work inside the bigger division �eld �̃ := � (� [?=]), which contains
both ! and !′ := � (� [p= ]). We then �x P,P ⊆ O

�̃
to be two primes of �̃ , lying respectively

above pO and pO , and we denote by P := P∩O! and P := P∩O! the corresponding primes
in !. For every prime ideal q ∈ {P,P} we denote by �̃q the q-adic completion of �̃ , with ring of
integers O

�̃q
and residue �eld ^q , and by �̃q the reduction of �/�̃ modulo q. We use analogous

notation for P and P. The goal is to compute the rami�cation index 4 (P/P ∩ O� ), and we
divide our argument in three steps.

Step 1 First of all, we prove that the reduction map � [p=] → �̃
P
(^

P
) is injective. This is

equivalent to say that ker(cP) ∩ � (!P) [p
=] = 0, where

cP : � (!P) � �̃P (^P) ⊆ �̃P(^P)

denotes the reduction moduloP. Since ? is coprime with the conductor of the order O by assump-
tion, it is possible to �ndU ∈ p= such thatU ∉ p. The endomorphism [̂U]� ∈ End� (�̂) correspond-
ing to [U]� ∈ End� (�) via (8.4) becomes an automorphism over !P , because [̂U]

′
� (0) = U ∈ O×!P .

Hence taking Φ = [p=]� in (8.6) shows that

ker(cP) ∩ � (!P) [p
=] ⊆ ker(cP) ∩ � (!P) [U] = 0

where the last equality holds because �̂ (mP) [̂U]� = 0. In exactly the same way, using !′ in place
of !, one shows that the reduction map � [p=] → �̃P(^P) is injective.

Step 2 We now claim that ker(cP) ∩ � [?=] = � [p=] where cP : � (�̃ ) → �̃P(^P) denotes
the reduction modulo P. Since ?O = pp, there is a decomposition of the group � [?=] into
the direct sum of � [p= ] and � [p= ], which are cyclic groups of order ?= by Lemma 7.2.4. In
particular, there exist � ∈ � [p=] and � ∈ � [p=] such that every ?=-torsion point & ∈ � [?=] can
be written as

& = [0] (�) + [1] (�)

for unique 0, 1 ∈ {0, . . . , ?= − 1}. If cP(&) = 0 then

cP( [1] (�)) = cP( [−0] (�)) ∈ �̃P[p= ] ∩ �̃P[p= ] = {0}

where the last equality follows from the fact that p= and p
= are coprime in O. In particular,

[1] (�) is in the kernel of the reduction map � [p=] → �̃P(^P) [?=], which is the restriction of
cP to � [p=], and is injective by Step 1. Hence we have & = [0] (�) ∈ � [p=], and this shows the
inclusion ker(cP) ∩� [?=] ⊆ � [p=]. To prove the other inclusion, �rst notice that the restriction
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of cP to � [?=] gives rise to a surjection � [?=] � �̃P(^P) [?=], because � [p=] → �̃P(^P) [?=]
is injective and the elliptic curve �̃P is ordinary by [Lan87, § 14, Theorem 12]. This gives

� [?=]
ker(cP) ∩ � [?=]

� �̃P(^P) [?=]

which in turn shows that

|ker(cP) ∩ � [?=] | =
|� [?=] |

|�̃P(^P) [?=] |
=
?2=

?=
= ?= = |� [p=] |.

We conclude that ker(cP) ∩ � [?=] = � [p=], as we wanted to prove.

Step 3 Using (8.6) with Φ = [?=]� and Step 2, after recalling that P lies over P, one can
see that the group �̂ (mP) contains a point of exact order ?= . We now apply Lemma 8.1.2, and
the hypothesis ? - Δ� , to get

?ℎ (=−1) (?ℎ − 1) ≤ E!P (?) = 4 (P/?) = 4 (P/(P ∩ O� )) ≤ [! : � ] ≤ ?=−1 (? − 1). (8.9)

where ℎ ∈ N denotes the height of the reduction modulo P of the formal group �̂. Since the
latter is precisely the formal group associated to the ordinary elliptic curve �̃P , we have that
ℎ = 1 by [Sil09, Chapter V, Theorem 3.1]. Thus all the inequalities appearing in (8.9) are actually
equalities, and we see at once that 4 (P/(P ∩ O� )) = [! : � ] = ?=−1 (? − 1), which implies that
d�,p= is an isomorphism, and that P ∩ O� is totally rami�ed in !. This concludes the proof. �

Remark 8.2.3. As we already stated in the introduction, Proposition 8.2.2 can be obtained by
combining various results of Lozano-Robledo. More precisely, see [Loz16, Proposition 5.6] for
the inert case, and the proof of [Loz18, Theorem 6.10] for the split case. The arguments used by
Lozano-Robledo for the inert case involve a formula for the valuation of the coe�cient of C?
in the power series [?]

�̂
(C) ∈ O�ÈCÉ (see [Loz13, Theorem 3.9]), and the study of the split case

goes through a detailed investigation of Borel subgroups of GL2 (Z/?=Z) (see [Loz18, Section 4]).
Our proof of Proposition 8.2.2, which concerns only CM elliptic curves and prime ideals not
dividing b� O, appears to be shorter because it uses the same techniques to deal with the split
and inert case. Notice as well that our discussion is explicitly written for general imaginary
quadratic orders, whereas [Loz18, Theorem 6.10] is stated and proved only for maximal orders.
We observe however that Lozano-Robledo uses [Loz18, Remark 6.12] to point out that the proof
of [Loz18, Theorem 6.10] carries over to the general case.

We also remark that, if O = O is a maximal order of class number 1 and � =  , Proposi-
tion 8.2.2 is proved by Coates and Wiles in [CW77, Lemma 5] (see also [Art78, Lemma 3] and
[Coa13, Proposition 47]). The main tool used in their proof is Lubin-Tate theory.
Remark 8.2.4. Let �/� be any elliptic curve (not necessarily with complex multiplication) which
has good supersingular reduction at a prime p ⊆ O� lying above a prime ? ∈ N which does
not ramify in the extension Q ⊆ � . Then one can use the same argument provided in the �rst
part of the proof of Proposition 8.2.2 to show that the rami�cation index 4 (P/p) is bounded
from below by ?2(=−1) (?2 − 1), where P ⊆ � (� [?=]) is any prime lying above p. This result has
already been proved by Lozano-Robledo in [Loz16, Proposition 5.6] and by Smith in [Smi18,
Theorem 2.1].
Remark 8.2.5. Let � be an elliptic curve having complex multiplication by an imaginary quadratic
order O, and suppose that � is de�ned over the ring class �eld �O . Then, using the recent work
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[Loz19] of Lozano-Robledo, and in particular [Loz19, Theorem 1.2.(4)] and [Loz19, Theorem 7.11],
one can show that the Galois representation d�,?= is an isomorphism for every = ∈ N and every
rational prime ? ∈ N such that ? - 2fOΔ . This strengthens, for elliptic curves de�ned over �O ,
the �nal assertion of Proposition 8.2.2.

We are now ready to prove Theorem B, whose statement we recall for convenience.

Theorem 8.2.6 – Entanglement and division �elds of CM elliptic curves

Let � be a number �eld and �/� be an elliptic curve with complex multiplication by an
order O in an imaginary quadratic �eld  ⊆ � . Denote by b� := fO Δ� #�/Q (f�) the
product of the conductor fO := |O : O| of the order O, the absolute discriminant Δ� ∈ Z
of the number �eld � and the norm #�/Q (f�) := |O� /f� | of the conductor ideal f� ⊆ O� .

Then the map (8.1) induces an isomorphism

Gal(� (�tors)/� ) Gal(� (� [(∞])/� ) ×
∏
?∉(

Gal(� (� [?∞])/� )∼

where ( ⊆ N denotes the �nite set of primes dividing b� .

Remark 8.2.7. Recall that a family F = {�B }B∈S of Galois extensions of a number �eld � , indexed
over any set S, is called linearly disjoint over � if the natural inclusion map

Gal(!/� ) ↩→
∏
B∈S

Gal(�B/� )

is an isomorphism, where ! denotes the compositum of the �elds �B . Otherwise the family is
called entangled over � .

Proof of Theorem 8.2.6. The family {� (� [?∞])}@∉( ∪ {� (� [(∞])} appearing in the statement of
Theorem 8.2.6 is linearly disjoint over � if and only if � (� [?=]) ∩ � (� [<]) = � for every prime
? ∉ ( , every = ∈ N and every< ∈ Z coprime with ? . To prove this latter statement, we �rst
show that every non-trivial subextension of �̃ := � (� [?=]) is rami�ed at some prime dividing ? .

When ? is inert in  , this follows immediately from Proposition 8.2.2. Suppose then that ?
is split in  , with ?O = pp. The division �eld �̃ is the compositum over � of the extensions
�p := � (� [p=]) and �p := � (� [p=]). By Proposition 8.2.2 the extension � ⊆ �p (respectively
� ⊆ �p) is totally rami�ed at every prime of � lying over p (resp. p). Let P be a prime of � lying
above p, and denote by � (P) ⊆ Gal(�̃/� ) its inertia group and by 4 (P) its rami�cation index
in the extension � ⊆ �̃ . If � ( ! is a subextension of � ⊆ �̃ in which P does not ramify, then
! must be contained in the inertia �eld ) = (�̃ )� (P) relative to P. Notice that the latter also
contains �p, since by Proposition 8.2.1 the extension � ⊆ �p is unrami�ed at P. On the other
hand, the fact that � ⊆ �p is totally rami�ed at P gives the chain of inequalities

[�p : � ] ≤ [) : � ] = [�̃ : � ]
|� (P) | =

[�̃ : � ]
4 (P) ≤

[�p : � ] · [�p : � ]
4 (P) ≤ [�p : � ]

which shows that ) = �p. Hence Proposition 8.2.2 implies that any extension � ⊆ ! which is
unrami�ed at every prime lying above p is totally rami�ed at every prime lying above p.
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Now, it is easy to conclude that �̃ ∩ � (� [<]) = � , since otherwise � ⊆ � (� [<]) would ramify
at some prime of � dividing ? , contradicting Proposition 8.2.1. �

Remark 8.2.8. Let � be a number �eld and �/� be an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld  ⊆ � . Denote by ( ⊆ N the set of primes
dividing b� , as in Theorem 8.2.6. In this general setting, it is an interesting question to study the
entanglement in the �nite family of “bad” division �elds {� (� [?∞])}?∈( , as we do in Section 8.4
where we specify � =  and � to be the base-change of an elliptic curve de�ned over Q.

A �rst step towards a complete answer to the previous question in the general setting is to
�nd the minimal set ( ′ ⊆ ( such that the family of division �elds

{� (� [?∞])}?∉(′ ∪ {� (� [(( ′)∞])}

is linearly disjoint over � . We partially answer the latter question in Corollary 8.3.4, where
we prove that one can take ( ′ = ∅ for every elliptic curve � de�ned over the ring class �eld
�O satisfying the condition �O (�tors) *  ab. There are in�nitely many such elliptic curves
when Pic(O) ≠ {1}, as we show in Theorem 8.3.7. On the other hand, if Pic(O) = {1} there are
in�nitely many examples of elliptic curves � having complex multiplication by O for which
( ′ = ( can be arbitrarily large (see Remark 8.4.5).

Remark 8.2.9. Let � be a number �eld and � be a CM elliptic curve de�ned over � . Then, even
when  * � , we have that  ⊆ � (� [# ]) for every # > 2. This has been showed in [Mur83,
Lemma 6] for � = Q, and in [BCS17, Lemma 3.15] for arbitrary � . In particular, the statement of
Theorem 8.2.6 does not hold when  * � .

The description of the set of primes ( in Theorem 8.2.6 is actually redundant, since all the
primes ? dividing the conductor fO , with the possible exception of ? = 2, also divide the absolute
discriminant Δ� of the �eld of de�nition of �. This can be seen using the fact that � contains the
ring class �eld  ( 9 (�)) = �O (see Proposition 7.1.33). Indeed, the following proposition, which
is a weaker form of [Cox13, Exercise 9.20], shows that the extension Q ⊆ �O is rami�ed at all
the odd primes dividing the conductor fO , and thus allows us to conclude that for every prime
? ∈ N such that ? ≥ 3 we have that ? | fO ⇒ ? | Δ� .

Proposition 8.2.10 – Rami�cation in the ring class �elds associated to imaginary
quadratic orders

Let O be an order of conductor fO := |O : O| in an imaginary quadratic �eld  . Then the
extension Q ⊆ �O is rami�ed at all the odd primes dividing fO . Moreover, if 4 | fO the
same extension is also rami�ed at 2.

Proof. If fO = 1 there is nothing to prove. Otherwise, let fO = ?
01
1 · · · ?

0=
= be the prime factorisa-

tion of fO , and observe that, for every 8 ∈ {1, . . . , =}, one has the chain of inclusions

 ⊆ �O ⊆ �O8 ⊆ �O
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given by the Anordnungsatz for ring class �elds (see Remark 6.2.15), where O8 denotes the
unique order of conductor ?08

8
(see Example 6.2.8). Now, the class number formula [Cox13,

Theorem 7.24] yields

[�O8 : �O ] =
[�O8 :  ]
[�O :  ] =

ℎO8
ℎ 

=
?
08
8

|O×
 

: O×
8
|

(
1 −

(
Δ 
?8

)
1
?8

)
. (8.10)

where ℎO8 := [�O8 :  ] = |Pic(O8 ) | and analogously ℎ := [�O :  ] = |Pic(O ) |. Since either
?8 ≥ 3 or ?8 = 2 and 08 ≥ 2, we see from (8.10) that �O8 ≠ �O except when ?8 = 3, 08 = 1
and  = Q(

√
−3). In this last case the extension Q ⊆  is rami�ed at ?8 = 3. Otherwise the

extension �O ( �O8 is rami�ed at some prime dividing ?8 . Indeed, �O ( �O8 is rami�ed at
some prime because  ⊆ �O8 is abelian and �O is the Hilbert class �eld of  , and this su�ces
to conclude because  ⊆ �O8 can ramify only at primes lying above ?8 . �

Remark 8.2.11. If 2 | fO but 4 - fO , the extension Q ⊆ �O could still be unrami�ed at 2. This
happens, for instance, if fO = 2 and 2 splits in  , because in this case the ring class �eld �O is
equal to the Hilbert class �eld �O .

Proposition 8.2.10 shows that the set ( in Theorem 8.2.6 could be replaced by the set ( ′ of
primes dividing 2 · Δ� · N�/Q (f�), even if this results in a slightly weaker statement. However,
choosing the set ( ′ instead of the set ( allows to draw a comparison with a result of Lombardo
on the image of ?-adic Galois representations attached to CM elliptic curves, which is shown in
[Lom17, Theorem 6.6]. In this paper, Lombardo proves the isomorphism

Gal(� (� [?∞])/� ) � (O ⊗Z Z? )×

for every prime ? - Δ� · N�/Q (f�). If moreover ? ≥ 3, i.e. ? ∉ ( ′, this isomorphism follows also
from Proposition 8.2.2 by taking inverse limits. The methods used in [Lom17] are di�erent from
ours, and generalise also to higher dimensional abelian varieties.

8.3 Minimality of division fields
We have seen in Proposition 8.2.2 that, for every CM elliptic curve � de�ned over a number

�eld � with End� (�) � O for some order O in an imaginary quadratic �eld  ⊆ � , the division
�elds � (� [# ]) are maximal for all integers # coprime with a �xed integer b� ∈ N. This is to
say that the associated Galois representation d�,# given by Lemma 7.2.4 is surjective. When �
is de�ned over the ring class �eld �O of  relative to O, the division �elds �O (� [# ]) always
contain the ray class �eld �#,O (see De�nition 6.2.11), as we proved in Theorem 7.2.5. If the
division �eld �O (� [# ]) is maximal and # > 2, then the containment �#,O ⊆ �O (� [# ]) is
strict. In this section, we want to study for which integers# the division �elds are minimal, in the
sense that �O (� [# ]) = �#,O . Theorem 8.3.1, which is the main result of this section, provides
an explicit set of integers # ∈ N for which such an equality occurs. In fact, Theorem 8.3.1 is
formulated in a wider setting, with the integer # replaced by a general invertible ideal � ⊆ O.
This minimality result is used in Section 8.4 to detect entanglement in families of division �elds.

Before stating Theorem 8.3.1, we point out that the its proof uses crucially the main theorem
of complex multiplication, which we stated as Theorem 7.1.25. Hence the entire Section 8.3
makes wide use of the concepts of lattices, idèles and Hecke characters that we introduced in
Section 6.1. Finally, we recall that, for every order O contained in an imaginary quadratic �eld  
and every ideal � ⊆ O, we denote by �� ,O the ray class �eld of  modulo � relative to the order
O, which was de�ned in De�nition 6.2.11.
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Theorem 8.3.1 – Minimality of division �elds of CM elliptic curves

Let � ⊆ C be a number �eld and let �/� be an elliptic curve such that End� (�) � O for
some order O inside an imaginary quadratic �eld  ⊆ � . Suppose that � (�tors) ⊆  ab,
i.e. that � satis�es Shimura’s condition (see De�nition 7.1.30). Let � := �O the ring class
�eld of O, and �x U :  × · N�/ (A×� ) →  × as in Theorem 7.1.25, with " =  . Then we
have that � (� [� ]) = � · �� ,O for every invertible ideal � ⊆ O such that � ⊆ fi ∩ O, where
fi ⊆ O is the conductor of any of the Hecke characters i : A×

 
→ C× extending the

group homomorphismkU :  × · N�/ (A×� ) → C× de�ned in (7.13).

Proof. The containment �� ,O ⊆ � (� [� ]) is given by Theorem 7.2.5. Observe moreover that
 ⊆ � is an abelian extension, since � ⊆ � (�tors) ⊆  ab by assumption. Hence, to prove that
� (� [� ]) ⊆ � · �� ,O it is su�cient to show that every � -torsion point of � is �xed by [B,  ], for
any B ∈ A×

 
such that [B,  ]

��
�� ,O

= Id. Moreover, it su�ces to consider only those B ∈ A×
 

such
that B∞ = 1 and B ∈ *� ,O , where*� ,O ≤ A× is the subgroup de�ned in (6.12). This follows from
the fact that [*� ,O,  ] = Gal( ab/�� ,O) and  ×∞ ⊆ ker( [·,  ]) ∩*� ,O by De�nition 6.2.11 and
Lemma 6.2.16.

Fix then B ∈ *� ,O with B∞ = 1. To study the action of [B,  ] on � [� ], we �x an invertible ideal
a ⊆ O ⊆ C and a complex uniformisation b : C/a −→∼ � (C), which exists by Proposition 7.1.33.
Take a torsion point % ∈ � [� ], and let I ∈ (a : � ) be any element such that b (I) = % , where
I ∈ (a : � )/a denotes the image of I in the quotient. Since B ∈  × · N�/ (A×� ), we have that

% [B, ] = b (I) [B, ] = b
(
(U (B) B−1) · I

)
which follows from applying Theorem 7.1.25 with " =  . This result can be applied because

B ∈ *� ,O ⊆ *O ⊆  × ·*O =  × · N�/ (A×� )

where the last equality is given by Lemma 6.2.16.
To conclude, it su�ces to show that B−1 · I = I and U (B) = 1. Notice that B−1 · a = a, because

a ⊆ O is invertible and B? ∈ O×? for every rational prime ? ∈ N. The equality B−1 · I = I then
follows from the fact that, for every prime ? ∈ N, we have B−1

? I − I ∈ a? , because I ∈ (a : � ) and
B−1
? ∈ 1 + � O? . To prove the equality U (B) = 1, notice that for every prime ? ∈ N we have

1 + � O? ⊆
∏
F |?
F∈"0

 

(1 + fi O F )

since � ⊆ fi ∩ O by assumption. This implies that i? (B? ) = 1 for every prime ? ∈ N. Indeed
B? ∈ 1 + � O? by the de�nition of *� ,O and for everyF ∈ "0

 
we have that iF (1 + fi O F ) = 1,

because fi is the conductor of i . Since B∞ = 1 we get that U (B) = i (B) = 1, as was to be
shown. �

Remark 8.3.2. Theorem 8.3.1 has been proved by Coates and Wiles (see [CW77, Lemma 3]) if
O = O is a maximal order of class number one. Their result has been generalised in the PhD
thesis of Kuhman (see [Kuh78, Chapter II, Lemma 3]) to maximal orders O = O , under the
hypothesis that � ⊆ �� ,O .
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Theorem 8.3.1 has a partial converse, as we show in the following proposition.

Proposition 8.3.3 – A partial converse to Theorem 8.3.1

Let O be an order in an imaginary quadratic �eld  and � ⊇  be an abelian extension.
Let �/� be an elliptic curve with complex multiplication by the order O. Suppose that
there exists an invertible ideal � ⊆ O such that � (� [� ]) = � · �� ,O , and that � ∩ Z = #Z,
with # > 2 if 9 (�) ≠ 0 and # > 3 if 9 (�) = 0. Then � (�tors) =  ab.

Proof. It is su�cient to prove that � (�tors) ⊆  ab, since the other inclusion follows from
Theorem 7.2.5 and the fact that  ⊆ � is abelian.

Fix an embedding  ↩→ C and let b : C/Λ −→∼ � (C) be a complex parametrization for �, where
Λ ⊆  is a lattice. Take f ∈ Aut(C/ ab). By [Shi94, Theorem 5.4] with B = 1, there exists a
complex parametrization b ′ : C/Λ −→∼ � (C) such that the following diagram

� (C) � (C)

 /Λ

f

b b′

commutes. This means that f acts on �tors as an automorphism W = b ′ ◦ b−1 ∈ Aut(�) � O×. In
particular, for any point % ∈ � [� ] we have

W (%) = f (%) = % (8.11)

since by assumption � (� [� ]) = � · �� ,O ⊆  ab. Notice now that, if 9 (�) ∉ {0, 1728} we have
Aut(�) = {±1}, and equality (8.11) can occur for W = −1 only when � ∩ Z = 2Z. Similarly, if
9 (�) = 1728 or 9 (�) = 0, one sees that a non-trivial element of Aut(�) can possibly �x only
points of � [2] or points of � [2]∪� [3], respectively. Our assumptions on � allow then to conclude
that W must be the identity on �.

We have shown that every complex automorphism which �xes the maximal abelian extension
of  �xes also the torsion points of �. We conclude that � (�tors) ⊆  ab, which �nishes the
proof. �

As a consequence of Proposition 8.3.3 we deduce that, for any order O in an imaginary
quadratic �eld  , and any elliptic curve � with complex multiplication by O which is de�ned
over the ring class �eld�O , the whole family of division �elds {�O (� [?∞])}? is linearly disjoint
over �O as soon as the extension  ⊆ �O (�tors) is not abelian.
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Corollary 8.3.4 – The index of the image of the Galois representation attached to
a CM elliptic curve

Let O be an order inside an imaginary quadratic �eld  , and let �/�O be an elliptic curve
with complex multiplication by O. Then we have that

|AutO (�tors) : Im(d�) | =
{
|O× |, if  ⊆ �O (�tors) is abelian,
1, otherwise.

In particular, if �O (�tors) *  ab then all the Galois representations d�,?= de�ned in
Lemma 7.2.4 are isomorphisms, and the family of division �elds {�O (� [?∞])}? is linearly
disjoint over �O .

Proof. Suppose that ⊆ �O (�tors) is not abelian. Since�O (�tors) ⊆ � ab
O , this shows in particular

that  ≠ �O and hence that 9 (�) ∉ {0, 1728}. Then Proposition 8.3.3 shows that

�O (� [# ]) ≠ �#,O

for every # ∈ N with # ≥ 2. Since 9 (�) ∉ {0, 1728}, this implies that the Galois representation

d�,# : Gal(�O (� [# ])/�O) → (O/#O)×

introduced in Lemma 7.2.4 is an isomorphism for every # ∈ Z≥1. Hence the family of division
�elds {�O (� [?∞])}? is linearly disjoint over �O , and Im(d�) = AutO (�tors).

Suppose now that  ⊆ �O (�tors) is abelian. Then Theorem 8.3.1 shows that there exists
# ∈ N such that for every " ∈ N with # | " we have that �O (� ["]) = �",O . Combining this
with Theorem 6.2.20 we get that [AutO (�tors) : Im(d�)] ≥ |O× |. However, Theorem 6.2.20 and
Theorem 7.2.5 imply that [AutO (�tors) : Im(d�)] ≤ |O× |, which allows us to conclude. �

Remark 8.3.5. The previous Corollary 8.3.4 generalises [Loz19, Theorem 1.3], whose proof will
appear in the forthcoming work [Loz]. Indeed, if �/Q is an elliptic curve with complex multipli-
cation by an order O in an imaginary quadratic �eld  then we clearly have that  (�tors) ⊆  ab,
hence Corollary 8.3.4 shows that the Galois representation d� : Gal( (�tors)/ ) ↩→ Ô× is not
surjective. Let now d̃� : Gal(Q/Q) → NX,q be the Galois representation associated to the elliptic
curve � over Q, where NX,q ⊆ GL2 (Ẑ) is the subgroup de�ned by Lozano-Robledo in [Loz19,
Theorem 1.1]. Then [Loz19, Theorem 1.1.(2)] and Corollary 8.3.4 show that

[NX,q : Im(d̃�)] = [Ô× : Im(d�)] = |O× |

hence we get that d̃� is not surjective. In particular, if 9 (�) = 1728 as in [Loz19, Theorem 1.3]
we get that [NX,q : Im(d̃�)] = 4.

We have seen that, for a CM elliptic curve � de�ned over an abelian extension � of the CM
�eld  , having a minimal division �eld is essentially equivalent to Shimura’s condition (see
De�nition 7.1.30), i.e. to the property that torsion points of � generate abelian extensions of  
(and not only of � ). It seems then natural to ask whether, for a �xed order O in an imaginary
quadratic �eld  , there exists any elliptic curve � with complex multiplication by O and de�ned
over the ring class �eld �O (the smallest possible �eld of de�nition for �) with the property that
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�O (�tors) =  ab. This question is discussed by Shimura in [Shi94, Page 217]. Here the author
proves that, if O = O is a maximal order whose discriminant is a square modulo 3, then there
exists an elliptic curve �/�O such that �O (�tors) =  ab. The next theorem generalises this result
to arbitrary imaginary quadratic orders.

Theorem 8.3.6 – In�nitely many curves satisfy Shimura’s condition

Let O be an order in an imaginary quadratic �eld  and let 9 ∈ �O be the 9-invariant of
any elliptic curve with complex multiplication by O. Then there exist in�nitely many
elliptic curves �/�O with 9 (�) = 9 but non-isomorphic over�O , such that�O (�tors) =  ab.

Proof. When O has class number 1 the statement is trivially true. We may then assume that
Pic(O) ≠ {1}, and in particular that 9 ∉ {0, 1728}.

Let �0/�O be any elliptic curve with 9 (�) = 9 , and let ? ∈ N be a prime satisfying

1 ? ≡ 3 mod 4;

2 ? does not divide fO ·#�O/Q (f�0 ), where fO := |O : O| denotes the conductor of the order
O and f�0 ⊆ O�O is the conductor ideal of the elliptic curve �0;

3 ? splits completely in  .

There are in�nitely many such primes. Indeed, it clearly su�ces to show that there are in�nitely
many primes satisfying conditions 1 and 3 , which are equivalent to(

−4
?

)
= −1 and

(
Δ 
?

)
= 1 (8.12)

respectively. Here Δ ∈ Z denotes the absolute discriminant of the imaginary quadratic �eld  ,
and

(
·
?

)
denotes Legendre’s symbol (see [Neu99, Page 50]). The existence of an in�nitude of

primes such that (8.12) then follows from Dirichlet’s theorem on primes in arithmetic progression
(see [Neu99, Chapter VII, Theorem 5.14]), noticing that Δ ≠ −4,−8 by the assumption Pic(O) ≠
{1}.

Let p ⊆ O be a prime ideal lying over ? and note that p is invertible by condition 2 . We
de�ne a new elliptic curve �p over �O as follows: consider the division �eld �O (�0 [p]). By
Proposition 8.2.2, there is an isomorphism

Gal(�O (�0 [p])/�O) � (O/pO)× � F×?

where the last isomorphism follows from the fact that ? splits in  . In particular, the group
Gal(�O (�0 [p])/�O) is cyclic of order ?−1, so�O ⊆ �O (�0 [p]) contains unique sub-extensions
of degree (? − 1)/2 and of degree 2 over �O . The �rst one is necessarily the ray class �eld �p,O
(see Theorem 7.2.5), the second one is of the form �O (

√
U) for some element U = Up ∈ �×O .

By condition 1 , the integer ? − 1 is not divisible by 4, hence these two extensions must be
linearly disjoint over �O . We deduce that �O (�0 [p]) = �p,O (

√
U). We set �p := � (U)0 , where

�
(U)
0 denotes the twist of �0 by U ∈ �×O .
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By Proposition 8.4.1, which is proved in the next section, the Galois representation

d�p,p : Gal(�O (�p [p])/�O) ↩→ (O/pO)×

is not surjective. This in particular implies that �O (�p [p]) = �p,O . It follows from Proposi-
tion 8.3.3 that �O ((�p) tors ) =  ab.

To conclude the proof, we want to show that the in�nitely many elliptic curves �p with
p ⊆ O chosen as above, are pairwise non-isomorphic over �O . To do so, it su�ces to prove
that the �elds �O (

√
Up) associated to the quadratic twists are pairwise distinct. But this follows

from Proposition 8.2.1 and Proposition 8.2.2, which show that the extension �O ⊆ �O (
√
Up)

is rami�ed at all primes of �O lying above p and unrami�ed at all primes of �O which do not
divide p · f�p · O�O , because �O (

√
Up) ⊆ �O (�0 [p]). This �nishes the proof. �

We conclude this section by remarking that, under the assumption that Pic(O) ≠ {1}, not all
CM elliptic curves �/�O with 9 (�) = 9 as in Theorem 8.3.6 satisfy Shimura’s condition, i.e. have
the property that �O (�tors) =  ab. We prove this by generalising and providing more detail to a
remark of Shimura (see [Shi94, Pages 217-218]).

Theorem 8.3.7 – In�nitely many curves do not satisfy Shimura’s condition

Let O be an order in an imaginary quadratic �eld such that Pic(O) ≠ {1}, and �x 9 ∈ �O
to be the 9-invariant of any elliptic curve with complex multiplication by O. Then there
exist in�nitely many elliptic curves �/�O with 9 (�) = 9 but non-isomorphic over �O , and
such that �O (�tors) ≠  ab.

Proof. Fix an elliptic curve �0 de�ned over �O such that 9 (�0) = 9 and �O ((�0)tors) =  ab. We
know that in�nitely many such elliptic curves �0 exist by Theorem 8.3.6. We observe now that,
for every U ∈ �×O such that the extension  ⊆ �O (

√
U) is not abelian, we have that

�O ((� (U)0 )tors) ≠  ab

where � (U)0 denotes the quadratic twist of �0 by U ∈ �×O . Indeed, Theorem 8.3.1 shows that
�O (�0 [# ]) = �#,O for some # ∈ N, and this, combined with Proposition 8.4.1 (which is proved
in the next section), implies that �O (� (U)0 [# ]) = �#,O (

√
U) *  ab.

In order to conclude the proof it is thus su�cient to show that there exist in�nitely many
U ∈ �×O such that

√
U ∉  ab and the elliptic curves � (U)0 are pairwise not isomorphic over �O .

This is equivalent to say that there exist in�nitely many distinct quadratic extensions of �O
which are not abelian over  . This can be shown, for instance, as follows.

Since Pic(O) ≠ {1} we have that  ≠ �O . Hence Chebotarëv’s density theorem (see [Neu99,
Chapter VII, Theorem 13.4]) shows that there exists A ∈ Z≥2 and an in�nite set of prime ideals
Λ0 = {p9 ⊆ O }9 ∈N such that for every index 9 ∈ N we have that 2 ∉ p9 and

p9 · O�O = P1, 9 · · ·PA,9

where P1, 9 , . . . ,PA,9 ⊆ O�O are distinct prime ideals. Fix now an index 90 ∈ N (e.g. 90 = 0), and
take any U0 ∈ O�O such that U0 ∈ P1, 90 and U0 ∉ P2

1, 90 ∪P2, 90 . Now, elementary rami�cation
theory of quadratic extensions (see for instance [Gra03, Chapter I, Theorem 6.3]) shows that
the extension �O ⊆ �O (

√
U0) rami�es at P1, 90 but not at P2, 90 . This implies that the extension
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 ⊆ �O (
√
U0) is not Galois, hence in particular not abelian. Now, let Γ0 be the �nite set of

prime ideals of O dividing N�O/ (U0), and put Λ1 := Λ0 \ Γ0, which is still an in�nite set. Fix
an index 91 ∈ N such that p91 ∈ Λ1, and take any element U1 ∈ P1, 91 \ (P2

1, 91 ∪ P2, 91 ). Again
 ⊆ �O (

√
U1) is a non-abelian extension. Moreover, we have that �O (

√
U0) ≠ �O (

√
U1), since

the prime P1, 91 rami�es in the extension �O ⊆ �O (
√
U1), but the same prime does not ramify

in �O ⊆ �O (
√
U0). Repeating this process, we construct an in�nite set of pairwise distinct

quadratic extensions {�O ⊆ �O (
√
U 9 ) : 9 ∈ N} that are non-abelian over  . This concludes the

proof. �

8.4 Entanglement in the family of division fields
of CM elliptic curves over Q

Let �/Q be an elliptic curve with potential complex multiplication by some order in an
imaginary quadratic �eld  . The aim of this section is to explicitly determine the image of the
natural map

Gal( (�tors)/ ) ↩→
∏
@

Gal( (� [@∞])/ ) (8.13)

where the product runs over all rational primes @ ∈ N, and  (� [@∞]) denotes the compositum
of the @-power division �elds of �/ . In other words, we want to analyse the entanglement in the
family of Galois extensions { (� [@∞])}@ over  . The conclusion of this study is Theorem 8.4.4,
which provides a complete description of the image of (8.13) for all CM elliptic curves �/Q such
that 9 (�) ∉ {0, 1728}.

Observe that there is essentially no di�erence in considering the division �elds of the elliptic
curve �/Q and of its base change �/ , because Q(� [=]) =  (� [=]) for every = > 2, as explained
in Remark 8.2.9. In particular, the family of division �elds {Q(� [@∞])}@ is always entangled
over Q, but there are elliptic curves for which it is linearly disjoint over  , as we show in
Theorem 8.4.4.

We brie�y outline the strategy of our proof. Since � is de�ned over Q, we have that

|Pic(O)| = [ ( 9 (�)) : Q] = 1

as follows from Proposition 7.1.33. This implies that 9 (�) ∈ Q because Q( 9 (�)) ∩  = Q (see
[Cox13, Proposition 13.2]). Hence the elliptic curve � has complex multiplication by one of
the thirteen imaginary quadratic orders O of class number 1, listed in [Cox13, Theorem 7.30].
For each of these orders O, we �rst �nd an elliptic curve �0/Q with complex multiplication by
O such that #�0 ∈ N is minimal among all the conductors of elliptic curves de�ned over Q
which have complex multiplication by O. Let us point out that, for every elliptic curve �/Q,
the natural number #� ∈ N is de�ned as the unique positive generator of the conductor ideal
f� ⊆ Z. Having �xed �0, we proceed to compute the full entanglement in the family of division
�elds of �0/ , using Theorem 8.2.6, Theorem 8.3.1, and Proposition 7.1.32. Since O is an order
of class number 1 and 9 (�) ∉ {0, 1728}, we have that � is a quadratic twist of �0. We then use
Proposition 8.4.1, which describes how Galois representations attached to CM elliptic curves
behave under quadratic twisting, to determine the complete entanglement in the family of
division �elds of �/ .

In order to state Proposition 8.4.1, we introduce the following notation: given an elliptic curve
� de�ned over a number �eld � and an element U ∈ �×, we denote by � (U) the twist of � by U , as
described in [Sil09, Chapter X, § 5]. We recall that two twists � (U) and � (U′) are isomorphic over
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� if and only if U and U ′ represent the same class in �×/(�×)2, i.e. if and only if � (
√
U) = � (

√
U ′).

Proposition 8.4.1 – Twisting and surjectivity of Galois representations

Let O be an order of discriminant ΔO < −4 in an imaginary quadratic �eld  , and let
�O be the ring class �eld of  relative to the order O. Consider an elliptic curve �/�O
with complex multiplication by O, and �x U ∈ �×O . Then, for every invertible ideal � ⊆ O,
the surjectivity of the Galois representation d�,� de�ned in Lemma 7.2.4 determines the
surjectivity of d� (U ) ,� as follows:

1 if d�,� is surjective, then d� (U ) ,� is surjective if and only if

�O (� [� ]) ≠ �� ,O (
√
U)

where �� ,O is the ray class �eld of  modulo � relative to O (see De�nition 6.2.11);

2 if d�,� is not surjective, then d� (U ) ,� is surjective if and only if

�O (� [� ]) ∩ �O (
√
U) = �O .

Proof. First of all, observe that d�,� (respectively d� (U ) ,� ) has maximal image if and only if
there exists f ∈ Gal(Q/�O) such that d�,� (f) = −1 ∈ (O/� )× (respectively d� (U ) ,� (f) = −1).
Indeed, �O (� [� ]) contains the ray class �eld �� ,O , which is generated over �O by the values
of the Weber function h� : � � �/Aut(�) � P1 at � -torsion points (see Theorem 7.2.5). Since
h� ( [Y] (%)) = h� (%) for every % ∈ � [� ] and Y ∈ {±1} = O× � Aut(�), we see that d�,� induces
the identi�cation

Gal(�O (� [� ])/�� ,O) � Im(c×� ) ∩ Im(d�,� ) = {±1} ∩ Im(d�,� ) ⊆ (O/� )× (8.14)

where c×
�

: O× → (O/� )× denotes the map induced by the quotient c� : O � O/� . Hence, d�,� is
surjective if and only if −1 ∈ Im(d�,� ), and the same holds for d� (U ) ,� . Moreover, d� (U ) ,� is linked
to d�,� , after choosing compatible generators of � [� ] and � (U) [� ] as O/� -modules, by the formula

d� (U ) ,� = d�,� · jU (8.15)

where jU : Gal(Q/�O) → {±1} ⊆ (O/� )× is the quadratic character associated to �O (
√
U).

To prove 1 , suppose that d�,� has maximal image. First, assume that �O (� [� ]) ≠ �� ,O (
√
U).

Then, either �O (
√
U) ∩ �O (� [� ]) = �O or we have �O (

√
U) ⊆ �� ,O . In the �rst case, we can

certainly �nd f ∈ Gal(Q/�O) acting trivially on �O (
√
U) and such that d�,� (f) = −1. Hence we

can use (8.15) to see that d� (U ) ,� (f) = d�,� (f) · jU (f) = −1. This implies, by the initial discussion,
that d� (U ) ,� has maximal image. In the second case, any f ∈ Gal(Q/�O) with d�,� (f) = −1 acts
trivially on �� ,O ⊇ �O (

√
U) by (8.14). As before, we can use (8.15) to conclude that d� (U ) ,� has

maximal image.
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Assume now that �O (� [� ]) = �� ,O (
√
U). This implies that the extensions �O ⊆ �O (

√
U) and

�O ⊆ �� ,O are linearly disjoint over �O , because d�,� has maximal image. In particular

Gal(�O (� [� ])/�O) � Gal(�� ,O/�O) × Gal(�O (
√
U)/�O).

We deduce that any f ∈ Gal(Q/�O) with d�,� (f) = −1, being the identity on �� ,O by (8.14),
must act non-trivially on �O (

√
U). Then (8.15) gives

d� (U ) ,� (f) = d�,� (f) · jU (f) = 1

and this su�ces to see that d� (U ) ,� is non-maximal. This concludes the proof of 1 .
The proof of 2 can be carried out in a similar fashion. First of all, notice that the non-

maximality of d�,� and (8.14) imply that �� ,O = �O (� [� ]). Now, by (8.15) the only possibility for
d� (U ) ,� to be surjective in this case is to �nd an automorphism f ∈ Gal(Q/�O) with d�,� (f) = 1
and jU (f) = −1, which is clearly impossible if �O (

√
U) ⊆ �O (� [� ]) = �� ,O . On the other hand,

if �O (� [� ]) ∩�O (
√
U) = �O one can certainly �nd f ∈ Gal(Q/�O) such that jU (f) = −1 and

d�,� (f) = 1, which shows by (8.15) that d� (U ) ,� has maximal image. �

Remark 8.4.2. Let � be an elliptic curve with complex multiplication by an imaginary quadratic
order O of discriminant ΔO , and suppose that � is de�ned over the ring class �eld �O . Fix a
rational prime ? ∈ N such that ? - 2ΔO and ? ≡ ±1 mod 9 if ΔO = −3. Then, the recent results
[Loz19, Theorem 4.4.(5)] and [Loz19, Theorem 7.11] of Lozano-Robledo show that, for every
U ∈ �×O and every = ∈ N, the Galois representation d�,?= is surjective if and only if d� (U ) ,?= is
surjective. If moreover ΔO < −4, then one can combine 1 of Proposition 8.4.1 with Remark 8.2.5
to show that �O (� [?=]) ≠ �?=,O (

√
U) for every U ∈ �O and every = ∈ Z≥1.

We want now to derive some consequences of Proposition 8.4.1 when U ∈ Q×, the class
group Pic(O) is trivial, and the elliptic curve �/ is the base change to the imaginary quadratic
�eld  = �O of an elliptic curve de�ned over Q. To do this, we make an essential use of
Proposition 7.1.32. This result, originally due to Deuring, provides the formula

f� = N /Q (fk� ) · disc( /Q) (8.16)

which relates the conductor of a CM elliptic curve de�ned over Q to the conductor of the unique
Hecke characterk� : A×

 
→ C× associated to its base change over  by Theorem 7.1.25 (see also

Remark 7.1.27).
Now, let �/ be the base change to an imaginary quadratic �eld  = �O of an elliptic curve

�/Q of conductor f� ⊆ Z, and suppose that � has complex multiplication by an order O of class
number one and discriminant ΔO < −4. Fix also some rational number U ∈ Q×. Under these
hypotheses, we may assume that U = Δ, where Δ = Δ� ∈ Z is the fundamental discriminant
associated to some quadratic extension Q ⊆ � . Since � (UV) = (� (U) ) (V) for any U, V ∈ Q×, we
reduce the study of the Galois representation d� (Δ) ,?= , for any prime ? ∈ Z≥1 and any = ∈ N, to
the following cases:

T.1 Δ = (−1) (@−1)/2 @ for some prime@ ∈ Z≥3 with@ - ? f� . In this case (
√
Δ)∩ (� [?=]) =  .

Indeed, any prime q ⊆ O such that q | @O does not ramify in  ⊆  (� [?=]), as follows
from Proposition 8.2.1 because @ - ? f� . On the other hand, any prime q | @O rami�es
in  ⊆  (

√
Δ) since (8.16) shows that @ - Δ , where Δ ∈ Z<0 denotes the absolute

discriminant of the imaginary quadratic �eld  . Thus, Proposition 8.4.1 implies that
d� (Δ) ,?= has maximal image independently from the behaviour of d�,?= ;
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T.2 ? ≥ 3 and Δ = (−1) (?−1)/2 ? . In this case, class �eld theory shows that

Q(
√
Δ) ⊆ Q(`? ) ⊆ �?=,O

where for every< ∈ N we let `< ⊆ Q denote the group of<-th roots of unity. Hence,
Proposition 8.4.1 implies that d� (Δ) ,?= has maximal image if and only if d�,?= does;

T.3 Δ ∈ {−4,−8, 8} and 2 - ? f� . In this case  (
√
Δ) ∩  (� [?=]) =  , as in T.1 , hence

Proposition 8.4.1 shows that d� (Δ) ,?= has maximal image independently from the behaviour
of d�,?= ;

T.4 Δ ∈ {−4,−8, 8} and ? = 2. In this case, Q(
√
Δ) ⊆ Q(` |Δ |) ⊆ � |Δ |,O by class �eld theory.

Hence, Proposition 8.4.1 implies that, for every= ∈ N such that 2= ≥ |Δ|, the representation
d� (Δ) ,2= has maximal image if and only if d�,2= does, similarly to what we proved in T.2 .

Remark 8.4.3. The previous discussion shows in particular that, under suitable hypotheses on Δ,
if the Galois representation d�,?= is surjective then d� (Δ) ,?= is surjective. This might not be the
case if these assumptions on Δ are not satis�ed, as it follows from Theorem 8.4.4.

We are now ready to study the entanglement of division �elds of CM elliptic curves � de�ned
over Q such that 9 (�) ∉ {0, 1728}.

First of all, assume that � has complex multiplication by an order O with gcd(ΔO, 6) = 1. Here
ΔO := f2

O Δ denotes the discriminant of O, where Δ ∈ Z denotes the absolute discriminant of
 and fO := [O : O] denotes the conductor of O. Since Pic(O) = {1} we have that O = O and
ΔO = Δ = −? , where ? ∈ N is a prime number such that ? ≥ 7 and ? ≡ 3 mod 4 (see [Cox13,
Theorem 7.30]). Moreover, � = �

(Δ)
0 for some fundamental discriminant Δ ∈ Z, where �0 is one

of the two elliptic curves with 9 (�0) = 9 (�) appearing in Table A.11, which lists the CM elliptic
curves de�ned over Q whose conductor #�0 ∈ N is minimal among its twists.

Let us study the division �elds of �0, as a �rst step towards the analysis of the division �elds
of �. Theorem 8.2.6 provides a decomposition

Gal( ((�0)tors)/ ) �
∏
@

Gal( (�0 [@∞])/ ) (8.17)

where the product runs over all the rational primes@ ∈ N. Indeed in this case the set (�0 appearing
in Theorem 8.2.6 consists of the single prime ? , because an inspection of Table A.11 shows
that #�0 = ?

2. The isomorphism (8.17) implies that the family of division �elds { (�0 [@∞])}@
is linearly disjoint over  , where @ ∈ N runs over all the rational primes. Proposition 8.2.2
gives also that Gal( (�0 [@<])/ ) � (O/@<O)× for every prime @ ≠ ? and every < ∈ N.
On the other hand we have that Gal( (�0 [?<])/ ) � (O/?<O)×/{±1} for every < ∈ N.
Indeed, it follows from (8.16) that fi0 = p, where p ⊆ O is the unique prime lying above ? and
i0 : A×

 
→ C× is the unique Hecke character associated by Theorem 7.1.25 to the base-change

of �0 over  . Hence, Theorem 8.3.1 shows that  (�0 [?<]) = �?<,O for every< ∈ N, where
�?<,O is the ray class �eld of  modulo ?< because O = O . We can therefore conclude that
Gal( (�0 [?<])/ ) � (O/?<O)×/{±1}, using Theorem 6.2.20.

Let us now go back to the division �elds of � = �
(Δ)
0 . We can assume that ? - Δ, because

otherwise Δ = −? Δ′ for some fundamental discriminant Δ′ ∈ Z, hence � � �
(Δ′)
0 , since

√−? ∈  . Here the symbol � means that the two elliptic curves � and � (Δ
′)

0 , which are de�ned
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over Q, become isomorphic when base-changed to  . Observe that #� = (? Δ)2, which follows
from (8.15) and [Ulm16, § 10, Proposition 1], because #�0 is coprime with Δ. We see that

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ ) (8.18)

as a consequence of Theorem 8.2.6. The product appearing in (8.18) runs over the ratio-
nal primes @ ∈ N such that @ ∉ ( , because in this case the �nite set ( = (� ⊆ N ap-
pearing in Theorem 8.2.6 consists uniquely of the primes dividing #� = (? Δ)2. Moreover,
Gal( (� [ℓ<])/ ) � (O/ℓ<O)× for every prime ℓ ∈ N and every< ∈ N, since T.1 and T.3
show that, for every< ∈ N, the Galois representation d�,ℓ< has maximal image. On the other
hand, Proposition 8.4.1 shows that  (� [?<]) = �?<,O (

√
Δ), and that

 (� [?<]) ∩  (� [Δ]) =  (
√
Δ)

for every< ∈ Z≥1. Hence the family of division �elds { (� [@∞])}@∈( is entangled over  , and
for every collection of integers {0@}@∈( ⊆ Z≥1 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}

where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .

Let us now consider orders O such that gcd(ΔO, 6) ≠ 1. The analysis of the division �elds of
an elliptic curve �/Q having complex multiplication by such an order O proceeds similarly to
what happened before, with the only exception of the order O = Z[

√
−3]. Indeed, if

O ∈ {Z[3Z3],Z[28],Z[
√
−2],Z[

√
−7]} (8.19)

where Z3 := (−1 +
√
−3)/2 and 8 :=

√
−1, then all the elliptic curves �0 appearing in Table A.11

which have complex multiplication by O share the property that #�0 is a power of the unique
rational prime ? ∈ N which rami�es in the quadratic extension Q ⊆  . Hence Theorem 8.2.6
shows that

Gal( ((�0)tors)/ ) �
∏
@

Gal( (�0 [@∞])/ )

where the product runs over all rational primes @ ∈ N, because in this case the �nite set (�0 ⊆ N
appearing in Theorem 8.2.6 consists of the single prime ? . This implies that the division �elds of
�0 are linearly disjoint over  . Moreover, Proposition 8.2.2 gives that

Gal( (�0 [@<])/ ) � (O/@<O)×

for every rational prime @ ≠ ? and every< ∈ N. On the other hand, (8.16) entails that fi0 = p:

is a power of the unique prime ideal p ⊆ O lying over ? , with : ≤ 2 if O ∉ {Z[28],Z[
√
−2]},

and : ≤ 6 otherwise. Therefore, Theorem 8.3.1 and Theorem 6.2.20 give that

Gal( (�0 [?<])/ ) � (O/?<)×/{±1}

for every< ∈ N such that< ≥ 1 if O ∉ {Z[28],Z[
√
−2]}, and every< ≥ 3 otherwise.
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Let now �/Q be any elliptic curve with complex multiplication by an order O belonging to
the list (8.19). Since 9 (�) = 9 (�0) ∉ {0, 1728} we know that � = �

(Δ)
0 for some fundamental

discriminant Δ ∈ Z. If O = Z[3Z3] or O = Z[
√
−7], we can assume that ? - Δ because √−? ∈  .

Hence, Theorem 8.2.6 shows that

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ )

with the product running over the rational primes @ ∈ N such that @ ∉ ( , where in this case the
�nite set ( = (� ⊆ N appearing in Theorem 8.2.6 consists of the primes dividing #� = (? Δ)2.
Exactly as before, T.1 and T.3 show that

Gal( (� [ℓ<])/ ) � (O/ℓ<O)×

for every prime ℓ ∈ N and every< ∈ N. Moreover, Proposition 8.4.1 shows that

 (� [?<]) = �?<,O (
√
Δ) and  (� [?<]) ∩  (� [Δ]) =  (

√
Δ)

for every< ∈ Z≥1. Hence, the family of division �elds { (� [@∞])}@∈( is entangled over  , and
for every collection of integers {0@}@∈( ⊆ Z≥1 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}

where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .

Studying the entanglement in the family of division �elds of � becomes slightly more compli-
cated if O ∈ {Z[28],Z[

√
−2]}. First of all, note that there exists a unique Δ2 ∈ {1,−4,−8, 8} such

that Δ = Δ2 Δ
′, where Δ′ ∈ Z is an odd fundamental discriminant. We can now write � = �

(Δ′)
1 ,

where �1 := � (Δ2)
0 . One can check that, if O = Z[

√
−2] then �1 is isomorphic to one of the four

elliptic curves with complex multiplication by Z[
√
−2] appearing in Table A.11. On the other

hand, if O = Z[28] then �1 can be either one of the two elliptic curves

~2 = G3 − 44G − 112
~2 = G3 − 44G + 112

or one of the two elliptic curves with complex multiplication by Z[28] appearing in Table A.11.
In each case, it is not di�cult to see that #�1 ∈ N is a power of 2, which shows that the division
�elds of �1 behave similarly to the division �elds of �0. More precisely, Theorem 8.2.6 gives

Gal( ((�1)tors)/ ) �
∏
@

Gal( (�1 [@∞])/ )

where the product runs over all the rational primes @ ∈ N. This shows that the division �elds of
�1 are linearly disjoint over  . Moreover, Proposition 8.2.2 shows that

Gal( (�1 [@<])/ ) � (O/@<O)×
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for every rational prime @ ≥ 3 and every< ∈ N, and a combination of (8.16) and Theorem 8.3.1
gives Gal( (�1 [2<])/ ) � (O/2<O)×/{±1} for every< ∈ N such that< ≥ 3. This concludes
the analysis of the division �elds of � = �1 if Δ′ = 1. On the other hand, if Δ′ ≠ 1 then
#� = #�1 (Δ′)2, where #�1 is a power of 2. Therefore, Theorem 8.2.6 shows that

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ )

with the product running over the rational primes @ ∈ N such that @ ∉ ( , where ( = (� denotes
the �nite set appearing in Theorem 8.2.6, which in this case consists of the primes dividing 2 ·Δ′.
Similarly to what happened before, T.1 and T.4 show that Gal( (� [ℓ<])/ ) � (O/ℓ<O)× for
every prime ℓ ∈ N and every< ∈ N. Moreover, Proposition 8.4.1 gives  (� [2<]) = �2<,O (

√
Δ′)

and  (� [2<]) ∩  (� [Δ′]) =  (
√
Δ′) for every< ≥ 3. Therefore, the family of division �elds

{ (� [@∞])}@∈( is entangled over  , and for all {0@}@∈( ⊆ Z≥1 with 02 ≥ 3 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}

where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .

We are left with the analysis of the entanglement between the division �elds of an elliptic
curve � de�ned over Q which has complex multiplication by O = Z[

√
−3]. As usual � = �

(Δ)
0 for

some fundamental discriminant Δ ∈ Z, where �0 is one of the two elliptic curves with complex
multiplication by Z[

√
−3] appearing in Table A.11. In contrast to what we have seen before, here

#�0 = 22 32 is not a prime power. This forces us to study separately the division �elds  (�0 [2∞])
and  (�0 [3∞]). First of all, one can compute that, for any of the two possibilities for �0, given
by the Weierstraß equations ~2 = G3 − 15G + 22 and ~2 = G3 − 135G − 594, the representation d�0,3
is not surjective, i.e.  (�0 [3]) = �3,O =  ( 3√2). This clearly shows that d�0,3= is not surjective
for every = ∈ Z≥1. Moreover, d�0,2= is surjective for every = ∈ Z≥1. Indeed, Theorem 6.2.20 and
Theorem 7.2.5 imply that����( O2=O )×���� = [�2= 3,O :  ]

[�3,O :  ] =
[�2= 3,O :  ]
[ (�0 [3]) :  ]

≤ [ (�0 [2= 3]) :  ]
[ (�0 [3]) :  ]

≤ [ (�0 [2=]) :  ] (8.20)

hence Lemma 7.2.4 shows that every inequality appearing in (8.20) is actually an equality, and
d�0,2= is surjective. This gives that  (�0 [2=]) ∩  (�0 [3<]) =  for every =,< ∈ Z≥1. These
considerations, together with Theorem 8.2.6 and Proposition 8.2.2, give a decomposition

Gal( ((�0)tors)/ ) �
∏
@

Gal( (�0 [@∞])/ )

where the product runs over all rational primes @ ∈ N. Moreover, for every< ∈ N we get

Gal( (�0 [@<])/ ) �
{
(O/@<O)×, if @ ≠ 3
(O/3<O)×/{±1}, if @ = 3

and the family of division �elds { (� [@∞])}@ is linearly disjoint over  .
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Let us go back to the division �elds of � = �
(Δ)
0 , where we can assume that 3 - Δ because√

−3 ∈  . Write now Δ = Δ2 Δ
′ as above, where Δ2 ∈ {1,−4,−8, 8} and Δ′ ∈ Z an odd

fundamental discriminant, and let �1 := �
(Δ2)
0 . Then T.4 shows that d�1,2= is surjective for

every = ≥ 3. Moreover, d�1,3= is surjective for every = ≥ 1, which follows from Proposition 8.4.1
after observing that  (�0 [3]) ∩  (

√
Δ2) =  because [ (�0 [3]) :  ] = 3. These considerations,

together with Theorem 8.2.6, show that

Gal( ((�1)tors)/ ) �
©­«
∏
@∉(

Gal( (�1 [@∞])/ )
ª®¬ × Gal( (�1 [(∞])/ )

with the product running over the rational primes @ ∈ N such that @ ∉ ( , where ( = {2, 3} and
 (�1 [(∞]) denotes the compositum of the division �elds  (�1 [2∞]) and  (�1 [3∞]). Moreover,
T.1 , T.2 , and the previous considerations show that Gal( (�1 [ℓ<])/ ) � (O/ℓ<O)× for

every prime ℓ ∈ N and every< ∈ N. Now, Proposition 8.4.1 shows that

 (�1 [3<]) ∩  (�1 [Δ2]) =  (
√
Δ2) and  (�1 [3<]) = �3<,O (

√
Δ2)

for every< ∈ Z≥1. Hence  (�1 [2∞]) and  (�1 [3∞]) are entangled over  , and for every pair
of integers 0, 1 ∈ Z≥1 we have that

Gal(!/ ) � (O/2
0O)× × (O/31O)×
{±1}

where ! denotes the compositum of  (�1 [20]) and  (�1 [31]).
To conclude our analysis of the division �elds of � = �

(Δ)
0 , we can observe that � = �

(Δ′)
1 and

that gcd(Δ′, f�1 ) = gcd(Δ′, 6) = 1. Hence, Theorem 8.2.6 gives the decomposition

Gal( (�tors)/ ) �
©­«
∏
@∉(

Gal( (� [@∞])/ )ª®¬ × Gal( (� [(∞])/ )

with the product running over the rational primes @ ∈ N such that @ ∉ ( , where ( ⊆ N denotes
the �nite set of primes dividing 6Δ′. Now, T.1 and T.2 show that

Gal( (� [ℓ<])/ ) � (O/ℓ<)×

for all rational primes ℓ ∈ Z and all < ∈ N. Moreover,  (� [3<]) ∩  (� [Δ]) =  (
√
Δ) and

 (� [3<]) = �3<,O (
√
Δ) for every < ∈ Z≥1, thanks to Proposition 8.4.1. Hence, the family

{ (� [@∞])}@∈( is entangled over  , and for all {0@}@∈( ⊆ Z≥1 we get

Gal(!/ ) �
∏
@∈( (O/@0@O)×

{±1}

where ! is the compositum of all the division �elds  (� [@0@ ]) for @ ∈ ( .
The following theorem summarises the previous discussion. Recall that, for every rational

prime @ ∈ N, we denote by  (� [@∞]) the compositum of all the division �elds { (� [@=])}=∈N
associated to an elliptic curve �, and for every �nite set of primes ( ⊆ N we denote by  (� [(∞])
the compositum of all the �elds { (� [@∞])}@∈( .
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Theorem 8.4.4 – Entanglement of division �elds of CM elliptic curves over Q

Let O be an order inside an imaginary quadratic �eld , such that Pic(O) = 1 and ΔO < −4.
We introduce the following notation:

• = = =(O) ∈ N denotes the number = := 4 if O ∈ {Z[28],Z[
√
−2]}, and = := 2

otherwise;

• ? ∈ N is the unique prime ramifying in Q ⊆  , which is well de�ned because
Pic(O ) = {1};

• p ⊆ O is the unique prime lying above the rational prime ? ∈ N.
Label all the elliptic curves de�ned over Q which have complex multiplication by O as
{�A }A ∈Z≥1 , in such a way that #�A ≤ #�A+1 for every A ∈ Z≥1. Then #�= < #�=+1 , and the
properties of the division �elds associated to the elliptic curve �A depend on A as follows:
A ≤ = • the family { (�A [@∞])}@ , where @ ∈ N runs over all the rational primes, is

linearly disjoint over  ;

• Gal( (�A [@<])/ ) � (O/@<O)×, for every prime @ ≠ ? and every< ∈ N;

• Gal( (�A [?<])/ ) � (O/?<O)×/{±1}, for every< ≥ = − 1;

A > = • there exist a unique A0 ≤ = and a unique fundamental discriminant ΔA ∈ Z
coprime with ? , such that �A = � (ΔA )A0 ;

• there is a decomposition

Gal( ((�A )tors)/ ) �
©­«
∏
@∉(A

Gal( (�A [@∞])/ )
ª®¬ × Gal( (�A [(∞])/ )

where (A ⊆ N denotes the �nite set of primes dividing ? · ΔA , and the product
runs over the rational primes @ ∈ N such that @ ∉ (A . Hence the family

{ (�A [(∞A ]) } ∪ { (�A [@∞]) }@∉(A

is linearly disjoint over  ;

• for every< ∈ N such that< ≥ = − 1 we have that

 (�A [?<]) = �?<,O (
√
ΔA ) and  (�A [?<]) ∩  (�A [ΔA ]) =  (

√
ΔA )

which shows that the family { (�A [@∞])}@∈(A is entangled over  ;

• Gal( (�A [@<])/ ) � (O/@<O)×, for every prime @ ∈ N and every< ∈ N;

• for every collection of integers {0@}@∈(A ⊆ Z≥1 with 0? ≥ = − 1, we have:

Gal(!/ ) �
∏
@∈(A (O/@0@O)

×

{±1}

where ! is the compositum of all the division �elds  (�A [@0@ ]) for @ ∈ (A .
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Remark 8.4.5. Fix an imaginary quadratic order O having trivial class group Pic(O) = {1},
conductor fO ≠ 2 and discriminant ΔO < −4. Let = = =(O) ∈ {2, 4} be as in Theorem 8.4.4.
We observe that, for every A > =, the set (A appearing in Theorem 8.4.4 coincides with the
set of primes ( = {? : ? | b�A } appearing in Theorem 8.2.6. This shows that, even �xing the
�eld of de�nition, the number of entangled division �elds of an elliptic curve with complex
multiplication can be arbitrarily large, as we already pointed out in Remark 8.2.8.
Remark 8.4.6. We exclude the two orders Z[8] and Z[Z3] in the statement of Theorem 8.4.4,
because elliptic curves having complex multiplication by these orders admit quartic (respectively
sextic) twists (as explained in [Sil09, Chapter X, Proposition 5.4]). To study these we would need
a generalisation of Proposition 8.4.1, which will be subject of future investigations.
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9Mahler measures and elliptic
curves with complex
multiplication

Faith and mathematical proof
are two irreconcilable things.

Fyodor Dostoevsky,
A Writer’s Diary

This chapter, based on the preprint [Pen20], studies the special values !∗ (�, 0) = !′(�, 0)
associated to CM elliptic curves � de�ned over Q, and relates them to the Mahler measure of
some two-variable polynomial % ∈ Z[G,~] associated to �. More speci�cally, the aim of this
chapter is to prove Theorem A, which asserts that every CM elliptic curve �/Q has a planar
model % ∈ Z[G,~] such that

<(%) = A!′(�, 0) + log|B | (9.1)

for two explicit numbers A ∈ Q× and B ∈ Q×. This implies in particular that the zero locus
+% ↩→ G2

< is birationally equivalent to the elliptic curve �. The formulas de�ning the two
numbers A and B are made precise in Theorem 9.2.4, which provides also the explicit de�nition
of the polynomial % . This polynomial has the following remarkable characteristics:

• in general, % is not tempered (see De�nition 4.2.7), which implies in particular that the
motivic cohomology class {G,~} ∈ � 2,2

M (+% ) does not generally extend to the smooth
compacti�cation �. This is the reason for the appearance of the logarithmic term in the
identity (9.1). Nevertheless, Mahler measures of non-tempered polynomials have attracted
much attention in recent years (see [LSZ16; LM18; MS19; Gia20; Sam20]). Most of them
have been related to special values of !-functions via formulas comprising a logarithmic
term, similarly to what happens in (9.1);

• in general, % has a very high degree, and thus the curve +% ↩→ G2
< is generally highly

singular. This is in contrast with the majority of previously known cases of Boyd’s conjec-
tures, where the polynomials appearing have small degree (see for instance Section 4.2 or
Appendix A.1).

Theorem A �ts into the vast landscape of conjectures and results which relate the Mahler
measure of a polynomial with special values of certain !-functions. We have given an historical
introduction to these questions in Section 4.2, and we devote the upcoming Appendix A.1 to list
many known examples of such kinds of identities. In particular, we have seen in Question 4.2.9
that these relations often predict that the Mahler measure of a polynomial % ∈ Z[G1, . . . , G=]
is a non-zero rational multiple of the special value at B = 0 of the !-function associated to the
motive �=−1 (+̃% ), where +̃% is some desingularisation of some compacti�cation of +% . This type
of question, inspired by Boyd’s foundational work [Boy98], investigates the relations which
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elapse between Mahler measures and special values of !-functions starting from the former, and
constructing the latter accordingly. It is also interesting to do the opposite, as we expressed in
Question 4.2.10. More precisely, it is an intriguing problem to start with the special value of
some motivic !-function !(", B) and then �nd a polynomial whose Mahler measure is related
to this special value. We view Theorem A as a step towards a positive answer to Question 4.2.10
for the motives " := � 1 (�) associated to CM elliptic curves de�ned over Q. Since there are
only �nitely many Q-isomorphism classes of CM elliptic curves de�ned over Q, Theorem A
can also be seen as a step towards a positive answer to Question 4.2.11, which refers to the
problem of “twisting” identities between Mahler measures and special values of !-functions.
We remark that most of the research conducted on the subject of Mahler measures and special
values of !-functions revolves around Question 4.2.9, and not so much around the “inverse
problem” posed in Question 4.2.10. Indeed, the only major line of research revolving around
Question 4.2.10 is given by Chinburg’s conjecture (see Remark 4.2.5) concerning the special
values of Dirichlet !-functions, which was one of the main inspirations for the work contained
in this chapter.

Let us explain what is the strategy behind the proof of Theorem A. We know, thanks to the
work of Deninger and Wingberg (see [DW88]) and Rohrlich (see [Roh87]) which is recalled in
Section 9.1, that for every CM elliptic curve � de�ned over Q there exist many pairs of functions
5 , 6 ∈ Q(�) such that the regulator of the Milnor symbol {5 , 6} is related to the special value
!′(�, 0). We prove in Section 9.1 that Q(�) = Q(5 , 6), generalising a result of Brunault (see
[Bru16a]). This allows us to construct the polynomial % ∈ Z[G,~] as the minimal polynomial
of 5 and 6. Finally, we can prove Theorem A by relating the regulator of {5 , 6} to the Mahler
measure of % . This is done in Section 9.2, using some generalisations of the seminal work of
Deninger (see [Den97a]) that we recalled in Section 4.3.

This chapter makes wide use of the background that was developed in the previous parts of
this thesis. First of all, we refer the reader to Chapter 2 for the required background on motives,
motivic cohomology and regulators. In particular, Section 2.3.4 is essential to understand the
computations presented in this chapter. More speci�cally, the results present in this chapter
make use of Bloch’s trick to construct a motivic cohomology class [5 ,6 ∈ � 2,2

M (�) starting from
two functions 5 , 6 : � → P1 whose set of zeros and poles ( 5 ,6 consists of torsion points. This
cohomology class can be expressed as

[5 ,6 := =5 ,6 {5 , 6} −
∑

G ∈(5 ,6\{0}
{mG ({5 , 6}), i (G)5 ,6 }

as we have seen in Example 2.3.14. Here =5 ,6 ∈ N is the least common multiple of the orders
of the points of ( 5 ,6 , which is a natural number because ( 5 ,6 ⊆ � (Q)tors. Moreover, mG denotes
the map de�ned in Proposition 2.3.7, and for every G ∈ ( 5 ,6 we denote by i (G)

5 ,6
: � → P1 any

function de�ned over Q such that div(i (G)
5 ,6
) = =5 ,6 · ((G) − (0)).

This chapter uses also extensively the Deligne-Beilinson regulator maps

A∞- : � •,•M (- ) → �
•,•
D (- )

associated to a given variety - (see Example 2.4.6). Here � •,•D denotes Deligne-Beilinson coho-
mology (see Example 2.1.22), which was studied more speci�cally for curves de�ned over the real
numbers in Section 2.5. We recall in particular that W� ∈ �1 (� (C),Q)− denotes the homology
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class de�ned in Notation 2.5.6, which is the Poincaré dual of a di�erential form l� ∈ F 1 (�)
such that

∫
� (R)0 l� = 1.

Secondly, we refer the reader to Chapter 3 for background on the construction of the !-
function !(�, B) := !(� 1 (�), B), and to Chapter 7 for background on the theory of complex
multiplication. In particular, we recall that !(�, B) coincides with the !-function !(k�, B − 1/2)
of the Hecke character k� : A×

 
→ C× associated to the elliptic curve �/ obtained by base-

changing � to the imaginary quadratic �eld  by which � has potential complex multiplication
(see Theorem 7.1.25 and Remark 7.1.27). This entails that !(�, B) has the analytic continuation
predicted by Conjecture 3.3.4, and satis�es the functional equation expressed by Conjecture 3.3.6.
In particular, we have that 4c2 !′(�, 0) = #� !(�, 2), where #� ∈ N denotes the unique generator
of the conductor ideal f� ⊆ Z. Moreover, we recalled in Section 7.4 that the weak version of
Beilinson’s conjectures (see Conjecture 3.3.28) is known for the special value !∗ (�, 0) associated
to a CM elliptic curve � de�ned over Q. More precisely, in this chapter we use the result of
Rohrlich recalled in Theorem 7.4.5, which asserts that

〈A∞� ([5 ,6), W�〉 = =5 ,6 · R(div(5 )♦ div(6)) !′(�, 0) (9.2)

for any pair of functions 5 , 6 : � → P1 whose set of zeros and poles ( 5 ,6 consists of torsion points.
Here the pairing

〈·, ·〉 : � 2,2
D (�) ⊗ �

sing
1 (� (C),Q) → C

is the one induced by (2.42). Moreover, R : Q[� (Q)tors] → Q denotes the function de�ned in
De�nition 7.4.4, and the diamond operator

♦ : Q[� (Q)]GQ ⊗ Q[� (Q)]GQ → Q[GQ\� (Q)]

is de�ned in De�nition 7.4.1.
Finally, we refer the reader to Chapter 4 for an outline of the theory of Mahler measures.

In particular, we recall that the Mahler measure of a polynomial % ∈ Z[G,~] \ {0} is the real
number

<(%) :=
∫ 1

0

∫ 1

0
log|% (42c8\1 , 42c8\2 ) | 3\1 3\2 ∈ R≥0

which was de�ned in De�nition 4.1.1. This number is known to be related, under suitable
conditions, to some speci�c regulator integral, by the foundational work of Deninger [Den97b]
which we summarised in Section 4.3 (see in particular Theorem 4.3.4). We recall the relevant
parts of this work in Section 9.2, and we use it to complete the proof of Theorem A.

9.1 Constructing the polynomials
The aim of this section is to associate to every elliptic curve � de�ned over Q which has

potential complex multiplication by the ring of integers O of an imaginary quadratic �eld  ,
the polynomial % ∈ Z[G,~] appearing in Theorem A. To do so, we study the pairs of functions
5 , 6 : � → P1 de�ned in [DW88, Theorem 4.10] and [Roh87, Page 384], for which we have that
R(div(5 )♦ div(6)) ≠ 0, and we prove that Q(�) = Q(5 , 6). Hence, if we take % ∈ Z[G,~] to be
the minimal polynomial of 5 and 6, we see immediately that +% is birational to �, which was
one of the conditions outlined in the statement of Theorem A. The Mahler measure<(%) of % is
related to !′(�, 0) in Section 9.2. Hence, combining the current section with the following one,
we obtain a complete proof of Theorem A (see also Theorem 9.2.4).
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9.1.1 Models of CM elliptic curves (according to Deninger
and Wingberg)

The aim of this section is to construct the �rst pair of functions 5 , 6 ∈ Q(�) of the kind
described in the introduction of Section 9.1. This construction is due to Deninger and Wingberg
(see [DW88, Theorem 4.10]), and is expressed in the following result.

Lemma 9.1.1 – The Deninger-Wingberg pair of functions

Let � be an elliptic curve de�ned over Q having potential complex multiplication by the
ring of integers O of an imaginary quadratic �eld  ⊆ C. Let moreover:

• a� ∈ O be the number de�ned as

a� := N /Q(fk� ) ·
min{b� ∩ R>0}

1�

where 1� ∈  is a �xed generator of the fractional ideal b� de�ned in Proposi-
tion 7.4.2, and fk� ⊆ O denotes the conductor of the Hecke characterk� : A×

 
→ C×

associated to the base-change of � to the imaginary quadratic �eld  ;

• ` := O×
 

denote the group of roots of unity contained in  , which coincides with
the group of units of O since  is imaginary quadratic;

• j̃� denote the map
j̃� : � [a�] (C) → ` ∪ {0}

G ↦→ j�

(
\−1
� (G)

a�

1�

) (9.3)

where j� : O → ` ∪ {0} is the multiplicative map de�ned by j� (G) := k� (G)/G
for every G ∈ O which is coprime to fk� , and by j� (G) = 0 otherwise. Moreover,
the map \� : C� � (C) appearing in (9.3) is the complex uniformisation constructed
in Proposition 7.4.2.

Then there exists a pair of functions 5 , 6 : � → P1 such that

div(5 ) =
∑

G ∈� [a� ] (Q)\{0}

((G) − (0))

div(6) = 26
∑

~∈� [a� ] (Q)/` 

(( [ j̃� (G)] (G)) − (0))

where 26 ∈ {1, 2} denotes the order of the point
∑
~∈� [a� ] (Q)/` [ j̃� (G)] (G) ∈ � [2] (Q).

Moreover we have that

R(div(5 )♦ div(6)) =
26 f�

|disc( /Q) | = 26 N /Q (fk� ) ∈ Z \ {0} (9.4)

where � is the base change of � over  .
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Proof. The two divisors∑
G ∈� [a� ] (Q)\{0}

((G) − (0)) and 2
∑

~∈� [a� ] (Q)/` 

(( [ j̃� (G)] (G)) − (0))

are elements of Q[� (Q)tors]0,Gal(Q/Q) , as it is clear from the explicit description of the Galois
action on torsion points (see [DW88, Section 4] and Section 7.4). Moreover, we have that∑

G ∈� [a� ] (Q)\{0}

G =

{
0, if 2 - N /Q (a�)∑
G ∈� [2] (Q)\{0} G = 0, otherwise

because � [a�] (Q) is a group and � [2] (Q) � (Z/2Z)2. For similar reasons we have that∑
~∈� [a� ] (Q)/` 

[ j̃� (G)] (G) ∈ � [2] (Q)

which implies that we can �nd two functions 5 , 6 : � → P1 as in the statement of the theorem.
Now the identity (9.4) follows from the computations carried out in [DW88, Section 4], after
having observed that the regulator used by Rohrlich is twice the regulator used by Deninger and
Wingberg (see [Roh87, Page 371] and [DW88, Equation 1.8] for a comparison) and that div(6) is
twice the divisor V which appears in [DW88, Theorem 4.10]. �

Remark 9.1.2. It would in principle be possible to prove the identity (9.4) using directly the
de�nition of R given in De�nition 7.4.4. However this seems di�cult, given the complexity of
the divisors involved in Lemma 9.1.1.

We use now an idea due to Brunault (see [Bru16a, Lemma 3.3]) to prove that the function
�eld Q(�) is generated, as a transcendental extension of Q, by the functions 5 and 6.

Lemma 9.1.3 – Generators for elliptic function �elds

Let � be an elliptic curve de�ned over a �eld^ . For every % ∈ � (^)tors, let$% := Gal(^/^) ·%
be its Galois orbit, and let 5% ∈ ^ (�) be any function such that

div(5% ) = 2%
∑
G ∈$%

((G) − (0))

where 2% ∈ Z≥1 is the order of the point
∑
G ∈$% G ∈ � (^)tors. Then we have that:

1. the extension ^ (5% ) ⊂ ^ (�) contains no proper sub-extensions;

2. if ^ (5% ) = ^ (5& ) for some points %,& ∈ � (^)tors, and char(^) = 0, then |$% | = |$& |.

Proof. Consider a sub-extension ^ (5% ) ⊆ � ⊆ ^ (�). Two possibilities can occur:
• � = ^ (6) for some function 6 ∈ ^ (�), which implies that 5% = ℎ ◦ 6 for some ℎ : P1

^ → P1
^ .

We can assume, up to applying two homographies P1
^ → P1

^ , that 6(0) = ∞ and that
ℎ(0) = 0. These homographies can be taken to be de�ned over ^, because 0 ∈ P1 (^) and
6(0) ∈ P1 (^). Then, every zero of 6 is a zero of 5% , and the converse also applies because
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6 is not constant (hence it has some zero G ∈ $% ) and de�ned over ^ (hence all the points
~ ∈ $G = $% are zeros of 6). Moreover, ℎ(∞) = ℎ(6(0)) = 5% (0) = ∞, which implies that
0 is the unique pole of 6 (since 0 is the unique pole of 5% ). This implies that

div(6) = 3
∑

G ∈Gal(^/^) %
((G) − (0))

for some 3 ∈ Z≥1. But then 2% | 3 (since 2% is the order of
∑
G ∈$% G ∈ � (^)tors) and thus

2% = 3 (because 5% = ℎ ◦6). Hence 6 = U 5% for some U ∈ ^×, which implies that � = ^ (5% ).
• there is an isogeny i : � � � ′, which induces an embedding i∗ : ^ (� ′) ↩→ ^ (�), and we

have that � = i∗ (^ (� ′)). This implies that 5% = 6 ◦ i for some function 6 ∈ ^ (� ′), which
in turn implies that 5% (G) = ∞ for every G ∈ ker(i). Hence i is an isomorphism (because
0 is the unique pole of 5% ), and thus � = ^ (�).

This shows that ^ (5% ) ⊂ ^ (�) contains no proper sub-extensions.
Now, suppose that ^ (5% ) = ^ (5& ) for some points %,& ∈ � (^)tors. Then we have that

2% |$% | = [^ (�) : ^ (5% )] = [^ (�) : ^ (5& )] = 2& |$& |

(see [Ful89, Proposition 8.4]). Moreover, we see that

5% =
05& + 1
2 5& + 3

for some
(
0 1

2 3

)
∈ GL2 (^)

and since both 5% and 5& have 0 as their unique pole we must have that 2 = 0. Hence we get

|$% | 2% + 1 ≥
∑
G ∈$%
(2% − 1) [^ (G) : ^] +

∑
G ∈$&
(2& − 1) [^ (G) : ^] (9.5)

applying the Riemann-Hurwitz formula (see [SP, Section 0C1B]) for the covering 5% : � → P1.
This implies that 2% = 2& = 1, and thus that |$% | = |$& |. �

Now, in order to show that Q(�) = Q(5 , 6) for any pair of functions 5 , 6 : � → P1 as
in Lemma 9.1.1, we need to use an explicit description of the action of the Galois group
Gal( (� [a�])/ ) over the set � [a�]/` (see [DW88, Page 264]).

Lemma 9.1.4 – Galois action on torsion points modulo units

We can describe the action of Gal( (� [a�])/ ) on � [a�]/` as

Gal( (� [a�])/ ) × � [a�]/` → � [a�]/` 
(f, G) ↦→ [i (f

��
�a� ,O 

)−1 j̃� (G)]� (G)

where �a� ,O ⊆  (� [a�]) denotes the ray class �eld of  relative to a� O (see De�ni-
tion 6.2.11) and

i : Gal(�a� ,O / ) −→∼ (O /a�)×/` 
denotes the isomorphism given by Theorem 6.2.20.
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Proof. This follows immediately from Theorem 8.3.1, which was proved by Coates and Wiles in
this setting (see [CW77, Lemma 3]). �

We are �nally ready to prove that the pair of functions 5 , 6 de�ned in Lemma 9.1.1 generates
the function �eld Q(�).

Theorem 9.1.5 – The Deninger-Wingberg polynomial

Let � be an elliptic curve de�ned over Q having potential complex multiplication by the
ring of integers O of an imaginary quadratic �eld  . Let moreover 5 , 6 ∈ Q(�) be a pair
of functions as in Lemma 9.1.1.

Then we have that Q(�) = Q(5 , 6) and degG (%) = N /Q (a�) − 1, where % ∈ Z[G,~]
denotes any minimal polynomial for 5 and 6.

Proof. We know that [Q(�) : Q(5 )] = |� [a�] (Q) \ {0}| = N /Q (a�) − 1 (see [Ful89, Proposi-
tion 8.4]), which implies that degG (%) = N /Q (a�)−1. Moreover, [Q(�) : Q(6)] < [Q(�) : Q(5 )]
because |� [a�] (Q)/` | < |� [a�] (Q) |.

We also have that Q(6) = Q(5% ), where % = [ j̃� (G0)] (G0) for any G0 ∈ � [a�] (Q). Indeed, we
know that for every G ∈ � [a�] (Q) there exists 0 ∈ (O /a�)× such that G = [0−1] (G), because
� [a�] (Q) is a free (O /a�)-module of dimension one (see Lemma 7.2.4). We can now use
Lemma 9.1.4 to see that

div(6) = 26
∑

~∈� [a� ] (Q)/` 

(( [ j̃� (G)] (G)) − (0)) =

= 26

∑
0∈(O /a� )×/` 

(
( [ j̃� ( [0−1] (G0))] ( [0−1] (G0))) − (0)

)
=

= 26

∑
0∈(O /a� )×/` 

(
( [0−1 j� (0) j̃� (G)] (G)) − (0)

)
=

= 26

∑
f ∈Gal( (� [a� ] (Q))/ )

((f ( [ j̃� (G)] (G))) − (0)) = 2%
∑
~∈$%

((~) − (0)) = div(5% )

which implies that 6 = U 5% for some U ∈ Q×.
Now, to conclude thatQ(�) = Q(5 , 6) we apply Lemma 9.1.3, using the fact thatQ(5 ) ≠ Q(5% )

since [Q(�) : Q(5% )] = [Q(�) : Q(6)] < [Q(�) : Q(5 )]. �

Remark 9.1.6. We know that degG (%) = N /Q (a�) − 1. Computing deg~ (%) is harder, but it can
be done if we know |� [a�] (Q)/` | (which depends on gcd(N /Q (a�), |` |)) and |( |, where

( := {G ∈ � [a�] (Q) | j̃� (G) = 0} =
⋃
U |fk�
U≠1

�

[a�
U

]
(Q) =

⋃
U |fk�

U O ∈Spec(O )

�

[a�
U

]
(Q). (9.6)

In particular, (9.6) shows that |( | can be computed using an inclusion-exclusion principle.
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9.1.2 Models of CM elliptic curves (according to Rohrlich)

Let us turn our attention to the pairs of functions 5 , 6 constructed by Rohrlich.

Lemma 9.1.7 – The Rohrlich pairs (see [Roh87, Pages 384-386])

Let � be an elliptic curve de�ned over Q having potential complex multiplication by the
ring of integers O of an imaginary quadratic �eld  . Let ? ∈ N be a prime such that
? - #� and ? O is also prime, where #� ∈ N denotes the positive generator of the
conductor ideal f� ⊆ Z. Let moreover 2 ∈ N be an integer such that

fk� b
−1
� | 2 O | f<k� for some < ∈ N

where b� ⊆  is the fractional ideal de�ned in Proposition 7.4.2, and fk� ⊆ O denotes
the conductor of the Hecke characterk� : A×

 
→ C× associated to the base-change �/ .

Then there exist two functions 5 , 6 : � → P1 such that

div(5 ) = :?
∑
G ∈$?

((G) − (0))

div(6) = :2
∑
~∈$2
((~) − (0))

where for every< ∈ Z≥1 we de�ne$< := Gal(Q/Q) ·\� (1/<) ⊆ � [<] (Q), and we denote
by :< ∈ Z≥1 the order of the torsion point

∑
G ∈$< G ∈ � [<] (Q). Finally, we have that

R (div(5 )♦ div(6)) = −
:? :2 (1 + ?3)

2 ?
∈ 1
=5 ,6
Z \ {0}. (9.7)

Proof. First of all, observe that such a number 2 ∈ N exists because b−1
�
| fk� , which follows

from Deuring’s formula (see Proposition 7.1.32) and the fact that ord? (f�) ≠ 1 for every prime
? ∈ N. Now, observe that

∑
G ∈$< ((G) − (0)) ∈ Q[� (Q)tors]0,Gal(Q/Q) for every< ∈ Z≥1, which

implies the existence of the pair 5 , 6 ∈ Q(�).

Let us now turn to the proof of (9.7). First of all, it is evident from the de�nition that
? - 2 , which implies that |Gal(Q/Q) (G,~) | = |Gal(Q/Q) (G − ~) | for every G ∈ � [?] (Q) and
~ ∈ � [2] (Q). Moreover, for every f1, f2 ∈ Gal(Q/Q) there exists g ∈ Gal(Q/Q) such that

f1

(
\�

(
1
?

))
= g

(
\�

(
1
?

))
and f2

(
\�

(
1
2

))
= g

(
\�

(
1
2

))
because Gal(Q/Q) \� (U) = Gal(Q/ ) \� (U) for every U ∈ R and (� [?] (Q))∩ (� [2] (Q)) =  ,
as follows from Theorem B. This implies that

R (div(5 )♦ div(6)) = :? :2 (R(\� (1/?) − \� (1/2)) − |$? | R(\� (1/2))
− |$2 | R(\� (−1/?)) + |$? | |$2 | R(0))

(9.8)
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because {(0, 0), (\� (1/?), 0), (0, \� (1/2)), (\� (1/?), \� (1/2))} is a full set of representatives for
the diagonal action of Gal(Q/Q) on ( 5 × (6 . We have moreover that R(\� (−1/?)) = R(0) = 0
and that |$? | = ?2 − 1 (see [BC20, Theorem 7.8(c)]). Observe now that

R(\� (1/2)) =
1
2

∏
p |2 b�

(1 −k� (p)) =
1
2

(9.9)

because \� (1/2) ∈ � (R), no prime ideal p | 2 b� is coprime to fk� and AnnO (\� (1/2)) = 2 b� .
Finally, we have that

R(\� (1/?) − \� (1/2)) = R
(
−\�

(
k� ((2 − ?) O )

2 ?

))
=
−1
2 ?

∏
p | (2 ?) b�

(1 −k� (p)) =

=
−(1 −k� (? O ))

2 ?
= −1 + ?

2 ?

(9.10)

because AnnO (\� (1/(2 ?))) = 2 ? b� , and the only prime which divides 2 ? b� and is coprime
with fk� is ? O , for which we have thatk� (? O ) =

(
disc( /Q)

?

)
? = −? . Putting together (9.8),

(9.9) and (9.10) we obtain (9.7). �

Remark 9.1.8. Observe that :< ∈ {1, 2, 3, 4, 6} for every < ∈ Z≥1, which follows from the
complete characterisation of the possible rational torsion subgroups � (Q)tors associated to an
elliptic curve � de�ned over Q which has potential complex multiplication (see [Ols74]).

We can now prove the analogue of Theorem 9.1.5 for Rohrlich’s functions.

Theorem 9.1.9 – The Rohrlich polynomials

Let � be an elliptic curve de�ned over Q, having potential complex multiplication by the
ring of integers O of an imaginary quadratic �eld  . Let ?, 2 ∈ N and 5 , 6 ∈ Q(�) be as
in Lemma 9.1.7 and assume that q (2) > ?2 − 1, where q denotes Euler’s totient function.
Then Q(5 , 6) = Q(�), and if % ∈ Z[G,~] denotes a minimal polynomial of 5 and 6 we have
that degG (%) = |$? | and deg~ (%) = |$2 |.

Proof. We see from Lemma 9.1.3 that either Q(�) = Q(5 , 6) or Q(5 ) = Q(6), and in this case
we would have that |$? | = |$2 |, but this is absurd. Indeed, |$? | = ?2 − 1 and q (2) < |$2 | (see
[BC20, Section 6.5]). Then our hypothesis shows that |$2 | > |$? |. The �nal part of the theorem
follows simply from the fact that degG (%) = [Q(�) : Q(5 )] and deg~ (%) = [Q(�) : Q(6)]. �

9.2 Computing the Mahler measure
The aim of this section is to complete the proof of Theorem A, taking as % ∈ Z[G,~] a slightly

modi�ed version of the polynomials that we de�ned in Section 9.1. To do so, we use Lemma 4.3.2
and Lemma 4.3.3, both of which concern the action of the group

Γ := (Q×)3 ×
(
Z2 oi GL2 (Z)

)
(9.11)
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on the ring of Q[G±1, ~±1]. We recall that the actions of the elements

v = (E0, E1, E2) ∈ (Q×)3

w = (F1,F2) ∈ Z2

" =

(
<1,1 <1,2
<2,1 <2,2

)
∈ GL2 (Z)

on a Laurent polynomial % ∈ Q[G±1, ~±1] are given by

v ∗ % := E0 % (E1 G, . . . , E2 ~)
w ∗ % := GF1~F2 % (G,~)
" ∗ % := % (G<1,1~<1,2 , G<2,1~<2,2 ).

For every U ∈ Γ, we write %U := U ∗ % , and we denote by

vU ∈ (Z×)=+1

wU ∈ Z=

"U ∈ GL= (Z)

the components of U .

Remark 9.2.1. Let % ∈ Q[G±1, ~±1] and let U ∈ Γ. Then we have an isomorphism +% −→∼ +%U

between the zero loci of % and %U inside G2
< . This induces an isomorphism Q(+̃%U ) −→∼ Q(+̃% )

between the function �elds of the desingularisations of their compacti�cations, which identi�es
the functions G,~ ∈ Q(+̃% ) with GU := G0 ~1 and ~U := G2 ~3 , where 0, 1, 2, 3 ∈ Z are such that
"U =

(
0 1
2 3

)
.

Let now �% := �
+̃%

denote the Jacobian of +̃% , let � ≤ �% (^) denote any subgroup such that
(G,~ ⊆ � and let k : Q[�] → Q be any Q-linear map which is odd, i.e. such that the equality
k ((−G)) = −k ((G)) holds for every G ∈ � . Then we have that (GU ,~U = (G,~ , and(

div(GU )
div(~U )

)
= "U

(
div(G)
div(~)

)
(9.12)

k (div(GU )♦ div(~U )) = det("U )k (div(G)♦ div(~)) (9.13)

which follows simply from the fact that ♦ is bilinear and thatk is odd.
Using the action of the group Γ de�ned in (9.11), we can transform any Laurent polynomial to

make the Deninger path (see Equation (4.24)) avoid the unit torus and the set of singular points.
This can be done combining the work of Besser and Deninger (see Lemma 4.3.2) and Bornhorn
(see Lemma 4.3.3).
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Lemma 9.2.2 – Modifying polynomials in two variables

Let & ∈ Q[G±1, ~±1] \ {0} be any non-zero Laurent polynomial. Then there exists U ∈ Γ
such that

&U ∈ 1 + ~ Z[G,~]
+&U (C) ∩ T2 = ∅

W&U ∩+
sing
&U
(C) = ∅

where T2 ⊆ (C×)2 denotes the real unit torus, and W& , W&U ⊆ (C×)2 denote the Deninger
paths de�ned in (4.24).

Proof. Combining Lemma 4.3.2 with Lemma 4.3.3 we see that there exists U ′ ∈ Z2 oi GL2 (Z)
such that +&U′ (C) ∩ T2 = ∅ and W&U′ ∩+

sing
&U′
(C) = ∅.

To conclude it is su�cient to observe that there exist ?, @ ∈ Q× such that +
&̃
(C) ∩ T2 = ∅,

where &̃ := &U′ (?G, @~). To show this, we can use the amoeba map

` : (C×)2 → R2

(G,~) ↦→ (log|G |, log|~ |)
(9.14)

which deserves this name because for every Laurent polynomial ) ∈ C[G±1, ~±1] the set
` (+) (C)) ⊆ R2 is given by a bounded region to which are attached some “tentacles” go-
ing towards in�nity (see [GKZ94, Page 194] for a picture). In particular, the complement
R2 \ ` (+) (C)) has at least one unbounded connected component (see [GKZ94, Corollary 6.1.8]).
Now, the fact that +

&̃
(C) ∩ T2 = ∅ is equivalent to say that 0 ∉ ` (+

&̃
(C)). Moreover, we

know that ` (+
&̃
(C)) = g?,@ (` (+& (C))), where g?,@ : R2 → R2 denotes the translation by the

vector −(log|? |, log|@ |). Hence, we can use the fact that the set R2 \ ` (+& (C)) has at least one
unbounded connected component to see that there exist ?, @ ∈ Q× su�ciently large such that
+
&̃
(C) ∩ T2 = ∅. Thus we can take U := (?, @) × U ′, so that &U = &̃ , and this concludes the

proof. �

Remark 9.2.3. If we start from a tempered polynomial % ∈ Q[G±1, ~±1], the resulting polynomial
%U is generally not tempered anymore, because we are scaling its variables and therefore its
coe�cients. Nevertheless, the functions GU , ~U are still supported on torsion points, thanks to
(9.12), and A

+̃%
([GU ,~U ) ≠ 0, thanks to (9.13). Hence, we are still able to apply Theorem 7.4.5, and

we can �nd a relation between the Mahler measure of %U and the !-value !′(�, 0), despite the
fact that % is not tempered.

We are now ready to prove Theorem A, which we state more precisely as follows.

Theorem 9.2.4 – Mahler measures and CM elliptic curves (see Theorem A)

Let � be an elliptic curve de�ned over Q, having potential complex multiplication by
the ring of integers O of an imaginary quadratic �eld  . Let 5 , 6 ∈ Q(�) be any pair
of functions which generates the function �eld Q(�), such that ( 5 ,6 ⊆ � (Q)tors and
〈A∞
�
([5 ,6), W�〉 ≠ 0. Let & ∈ Q[G±1, ~±1] be a minimal polynomial for 5 , 6 and let % := &U
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for any U ∈ Γ satisfying the conditions of Lemma 9.2.2. Let 2% ∈ Q× be de�ned by the
identity [ 9̃∗ ( 9∗ (W% ))] = (−2% ) W� , where 9 denotes the open embedding 9 : + reg

%
↩→ � \ ( 5 ,6

and 9̃ denotes the open embedding 9̃ : � \ ( 5 ,6 ↩→ �. Let moreover:
• {[WI]}I∈(5 ,6 ⊆ �1 (� (C) \ ( 5 ,6 ;Z) be the homology classes associated to small loops

around each point I ∈ ( 5 ,6 ;

• [V1], [V2] ∈ �1 (� (C) \( 5 ,6 ;Z) be such that the set {[V8 ]}28=1∪ {[WI]}I∈(5 ,6 generates
�1 (� (C) \ ( 5 ,6 ;Z);

• {0I}I∈(5 ,6\{0} ⊆ Z and {18 }28=1 ⊆ Z be the numbers de�ned by the decomposition

[ 9∗ (W% )] =
∑

I∈(5 ,6\{0}
0I [WI] +

2∑
8=1

18 [V8 ]

which exists and is unique thanks to the exact sequence (2.43);

• G̃, ~̃ ∈ Q(�) be the functions given by G̃ := 5U and ~̃ := 6U (see Remark 9.2.1)
Then +% is birational to � and

<(%) = A !′(�, 0) + log|B |

where A ∈ Q and B ∈ Q are de�ned by

A :=
2% R(div(G̃)♦ div(~̃))

=G̃,~̃
∈ Q

B :=
∏

I∈(G̃,~̃\{0}
mI ({G̃, ~̃})0I ∈ Q

× (9.15)

and A ≠ 0 for a suitable choice of U .

Proof. Recall �rst of all that (G̃,~̃ = ( 5 ,6 . Observe moreover that

[ 9̃∗ ( 9∗ (W% ))], W� ∈ �1 (� (C);Q)− � Q

which implies that 2% ∈ Q exists. We have now the following chain of identities:

<(%) = −
〈
A∞+% ({G,~}), [W% ]

〉
= (9.16)

= −
〈
A∞
+

reg
%

(]∗ ({G,~})), [W% ]
〉
= (9.17)

= −
〈
A∞
�\(G̃,~̃ ({G̃, ~̃}), [ 9∗ (W% )]

〉
= (9.18)

= − 1
=G̃,~̃

©­«
〈
A∞� ([G̃,~̃), [ 9̃∗ ( 9∗ (W% ))]

〉
−

∑
I∈(G̃,~̃\{0}

〈
A∞
�\(G̃,~̃ ({mI ({G̃, ~̃}), i

(I)
G̃,~̃
}), [ 9∗ (W% )]

〉ª®¬ =

(9.19)

=
2%

=G̃,~̃

〈
A∞� ([G̃,~̃), W�

〉
+

∑
I∈(G̃,~̃\{0}

0I log|mI ({G̃, ~̃}) | = (9.20)
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=

(
2% R(div(G̃)♦ div(~̃))

=G̃,~̃

)
!′(�, 0) + log

������ ∏
I∈(G̃,~̃\{0}

mI ({G̃, ~̃})0I
������ (9.21)

where ] denotes the open embedding ] : + reg
%

↩→ +% .
To explain these identities we observe that (9.16) is an application of Theorem 4.3.4, using the

fact that 00 = 1 in this case, and (9.17) is a consequence of the fact that W% ⊆ + reg
%
(C). Moreover,

(9.18) follows from the fact that ]∗ ({G,~}) = 9∗ ({G̃, ~̃}) and (9.19) follows from the de�nition of
[G̃,~̃ . Finally, (9.20) follows from Proposition 2.5.5 and (9.21) follows from Theorem 7.4.5.

Now, observe that 2% = 0 if +% (C) ∩ {(G,~) ∈ C2 : |G | = 1} ⊆ {(G,~) ∈ C2 : |~ | < 1} (see
[Boy98, Page 48]). Clearly, the same holds if we take |~ | > 1 in the set on the right and if we
change G with~. In other words, if the amoeba ` (+% (C)) does not intersect all the four semi-axes
we have that 2% = 0. Nevertheless, it is clear that we can translate the amoeba su�ciently enough
so that, with a convenient rotation, it intersects all the four semi-axes. When this happens, we
have that 2% ≠ 0. �

Remark 9.2.5. Pairs of functions like the ones described in the statement of Theorem 9.2.4 are
given by the constructions of Deninger and Wingberg (see Lemma 9.1.1) and Rohrlich (see
Lemma 9.1.7).

9.3 Some open questions
We conclude this chapter with some questions which may serve as a guide for future research.
First of all, it is interesting to ask whether one can remove the logarithmic term appearing in

Theorem 9.2.4, henceforth giving a positive answer to Question 4.2.10 for each motive" = � 1 (�)
which arises from a CM elliptic curve �/Q. This would be equivalent to �nding a planar model
for � which is weakly tempered, in the sense of the following de�nition.

De�nition 9.3.1 – Weakly tempered polynomials

Let % ∈ C[G±1, ~±1] be a Laurent polynomial, with zero locus +% ↩→ G2
< . Fix also some

compacti�cation +% ↩→ +% , and some desingularisation +̃% � +% . Let 6 := dim(�
+̃%
) ∈ N

be the genus of +̃% and let {[WI]}I∈(G̃,~̃ ⊆ �1 (+̃% (C) \ (G̃,~̃ ;Z) be the homology classes
associated to small loops around each point I ∈ (G̃,~̃ . Let W% denote Deninger’s path (see
Equation (4.24)) and let 9 : + reg

%
↩→ +̃% \ (G̃,~̃ denote the obvious inclusion.

Then % is said to be weakly tempered if mW% = ∅ and if there exist some homology classes

{[V8 ]}268=1 ⊆ �1 (+̃% (C) \ (G̃,~̃ ;Z)

and a point I0 ∈ (G̃,~̃ such that:

• the set {[WI]}I∈(G̃,~̃ ∪ {[V8 ]}
26
8=1 generates �1 (+̃% (C) \ (G̃,~̃ ;Z);

• we have that ������ ∏
I∈(G̃,~̃\{0}

mI ({G̃, ~̃})0I
������ = 1
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where {0I}I∈(5 ,6\{0} ⊆ Z (and {18 }268=1 ⊆ Z) are de�ned by the decomposition

[ 9∗ (W% )] =
∑

I∈(G̃,~̃\{I0 }
0I [WI] +

26∑
8=1

18 [V8 ]

which exists and is unique (see Proposition 2.5.5).

Remark 9.3.2. If a polynomial % ∈ C[G±1, ~±1] is tempered, in the sense of De�nition 4.2.7 and
Remark 4.2.8, then % is weakly tempered in the sense of De�nition 9.3.1.

Since Rohrlich’s construction produces in�nitely many pairs of functions 5 , 6 : � → P1 (see
Lemma 9.1.7), it could be possible that at least for one of these pairs the resulting polynomial
% ∈ Z[G,~] de�ned in Theorem 9.1.9 is weakly tempered.

Secondly, it is interesting to ask whether there exists an algorithm for computing the polyno-
mial % ∈ Z[G,~] associated to a CM elliptic curve �. This can easily be done if ( 5 ,6 ⊆ � (Q)tors,
where ( 5 ,6 denotes the set of zeros and poles of the functions 5 , 6 : � → P1 used to construct
the polynomial % . This is unfortunately not the case in general, and actually the degree of the
number �eld where the set ( 5 ,6 is de�ned can be quite large. Nevertheless, it should be possible
to device an algorithm which computes % without having to compute all the points in ( 5 ,6 ,
simply using for example the expressions which are known for the divisors of the functions
represented by division polynomials (see [Sil09, Chapter III, Exercise 3.7]).

Thirdly, it is interesting to ask whether the techniques explained in this chapter can help to
relate some other special value !∗ (�,−=), associated to a CM elliptic curve �/Q, to the Mahler
measure of some polynomial % ∈ Z[G1, . . . , G=+2]. In fact, the work of Deninger (see [Den89]
and [Den90]) shows that the weak form of Beilinson’s conjectures (see Conjecture 3.3.28) is
true for the special values !∗ (�,−=), for every = ∈ N, by constructing explicitly a motivic
cohomology class D= ∈ � 2,=+2

M (�) whose regulator (paired with the homology class W� de�ned
in Notation 2.5.6) is a non-zero rational multiple of !∗ (�,−=). The cohomology class D= is
even de�ned starting from an (= + 2)-tuple of functions 51, . . . , 5=+2 ∈ Q(�), using Beilinson’s
Eisenstein symbol (see [Bei86a]). In particular, we have that D0 = [5 ,6 , where 5 , 6 : � → P1

are the two functions de�ned in Lemma 9.1.1. Now, it remains the problem to show how to
de�ne a polynomial % from this tuple of (= + 2)-functions. The natural guess is of course to
take a polynomial such that % (51, . . . , 5=+2) = 0. Moreover, such a polynomial would probably
need to be =-exact, in the sense of Section 5.2, in order to have a relation between<(%) and
!∗ (�,−=). How to precisely construct the polynomial, as well as a precise relation between the
Mahler measure and the special value, remain open questions which will be the subject of future
research.
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ASome tables

Yea, from the table of my memory
I’ll wipe away all trivial fond records,
All saws of books, all forms, all pressures past,
That youth and observation copied there.

William Shakespeare, Hamlet

The aim of this appendix is to collect various tables which have been mentioned in the main
body of this thesis. First of all, Appendix A.1 exhibits various lists containing many of the known
identities which relate the Mahler measure of a polynomial to some special values of !-functions.
Then, Appendix A.2 contains a complete list of all the families of two-variable polynomials
% ∈ Z[:] [G,~] which are tempered (see De�nition 4.2.7) and re�exive, i.e. such that the Newton
polygon Δ% ⊆ R2 contains only one interior point whose coordinates are both integers. Finally,
Table A.11 contains the minimal Weierstraß equations of those CM elliptic curves de�ned over
Q which have minimal conductor amongst their twists.

A.1 Known Mahler measure identities
As we just stated in the introduction of this appendix, the aim of this section is to gather an

almost complete list (to the author’s knowledge) of known identities between Mahler measures
and special values of !-functions. We do this with the hope of giving to the reader a sense of the
abundance and variety of works dedicated to this topic. We refer the reader to Chapter 4 for the
necessary background on the Mahler measure, and in particular to Section 4.2 for an historical
overview of the relations between special values of !-functions and Mahler measures.

First of all, let us start with some identities which �t in the framework of Question 4.2.9. In
other words, we take %: (C1, C2) ∈ Z[:] [C±1

1 , C±1
2 ] to be a family of polynomials, and we present a

list of values : ∈ C such that the ratio

A: :=
!′(� 1 (+̃%: ), 0)

<(%: )

is known to be a rational number. Here +̃%: denotes any smooth compacti�cation of the curve
+%: ↩→ G2

< , de�ned as the zero locus of %: inside G2
< . The most studied polynomial family by

far is given by
%
(1)
:
(C1, C2) := C1 +

1
C1
+ C2 +

1
C2
+ : (A.1)
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which is sometimes called Boyd-Deninger family, because it was thoroughly investigated in the
work of Deninger [Den97b] and Boyd [Boy98]. It is easy to see that, for every : ∈ C \ {−4, 0, 4}
such that :2 ∈ Z, the curve +̃

%
(1)
:

is isomorphic (over Q) to the elliptic curve

�
(1)
:

: ~2 = G3 + :
2

8

(
:2

8
− 1

)
G2 + :4

256
G . (A.2)

Moreover, for :2 ∈ {−4, 0, 4} we know that

<(% (1)0 ) =<((C
2
1 + C2) (C2 + 1)) = 0 (A.3)

<(% (1)−4 ) =<(%
(1)
4 ) = 2<(1 + 8 · C1 + 8 · C2 + C1C2) = 2!′(j−4,−1) (A.4)

where 8 :=
√
−1 denotes the imaginary unit. Indeed, (A.3) follows immediately from Theo-

rem 4.1.15, and (A.4) follows from the identity

<(1 + C1 + C2 − C1C2) = !′(j−4,−1)

which is due to Ray (see Table A.4). Finally, we present in Table A.1 a complete list of values of
: for which the quotient

A
(1)
:

:=
!∗ (� (1)

:
, 0)

<(% (1)
:
)

is known to be a rational number. This table is taken from the recent article [Sam20] by Samart.
Note that <(% (1)

:
) = <(% (1)−: ), hence Table A.1 records only one of the two values ±: . As a

matter of notation, we remark that the column LMFDB present in Table A.1 refers to the labels
of the elliptic curves � (1)

:
in the !-functions and modular forms database [LMFDB]. Finally,

Table A.1 shows that di�erent Mahler measures in the family<(% (1)
:
) are rationally related to

the same !-value, even if the ratios A (1)
:

di�er as : varies. More speci�cally, the elliptic curves
�
(1)
:

corresponding to : ∈ {
√

2, 3
√

2, 8,
√

28} are all in the isogeny class 24.a, as well as all the
elliptic curves corresponding to : ∈ {1, 5, 38} belong to the isogeny class 15.a and all the elliptic
curves corresponding to : ∈ {2

√
2, 48} belong to the isogeny class 32.a.

The second family of polynomials whose Mahler measure has been widely studied is given by

%
(2)
:
(C1, C2) := C1 +

1
C1
+ C2 +

1
C2
+ C1
C2
+ C2
C1
+ :. (A.5)

This family was introduced by Boyd in [Boy98, Equation (1-31)], and was the main protagonist
of Theorem 4.4.3. Boyd also showed that for every : ∈ Z \ {−6, 2, 3}, the polynomial % (2)

:
gives a

planar model for the elliptic curve � (2)
:

given by the Weierstraß equation:

�
(2)
:

: ~2 + :G~ − 2~ = (G − 1)3 (A.6)

which is identi�ed with +
%
(2)
:

via the mutually inverse birational maps (4.42) and (4.43). As we
already stated in Section 4.4.1 (see in particular Equation (4.41)), we have that

<(% (2)−6 ) = 5!′(j−3,−1)
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<(% (2)2 ) =<(G + ~) +<(~ + 1) +<(G + 1) = 0

<(% (2)3 ) =<(G + ~ + 1) +<(G + ~ + G~) = 2!′(j−3,−1)

which takes care of the polynomials % (2)
:

whose zero locus is singular. For the other ones, we
report in Table A.2 the values of : for which the ratio

A
(2)
:

:=
!∗ (� (2)

:
, 0)

<(% (2)
:
)

is known to be a rational number.

Now, another family of polynomials which give interesting Mahler measures is given by the
Weierstraß forms

%
(3)
a (C1, C2) := C2

2 + 01C1C2 + 03C2 − C3
1 − 02C

2
1 − 04C1 − 06 (A.7)

which depend on a vector of parameters a = [01, 02, 03, 04, 06]. We note that most of these
Weierstraß forms are not tempered, in the sense of De�nition 4.2.7. Nevertheless, some of them
are, like the ones for which 03 = 1 and 02 = 04 = 06 = 0, which are known as Deuring normal
forms (see [Sil09, Appendix A, Proposition 1.3]). Some non-tempered Weierstraß forms are
nevertheless known to satisfy relations of the kind

<(% (3)a ) =
1
A
(3)
a

!′(� (3)a , 0) + log|B (3)a | (A.8)

where � (3)a denotes the elliptic curve de�ned by % (3)a . Moreover, A (3)a ∈ Q× is a non-zero rational
number, and B (3)a ∈ Q

×
is a non-zero algebraic number. We gather all the identities of this kind

which are known to the author in Table A.3. We also mention that Lalín and Mittal managed to
prove the in�nite family of identities (see [LM18, Corollary 3]):

<(C2
2 + 2C1C2 − 0C3

1 + 0−1C1) =


2!′(�, 0),

√
5−1
2 ≤ 0 ≤ 1+

√
5

2

log(0), 0 ≥ 3+
√

13
2

− log(0), 0 < 0 ≤ −3+
√

13
2

where 0 is allowed to be any real number, and � : ~2 + 2G~ = G3 + G is the elliptic curve identi�ed
by the LMFDB label 20.a3. Finally, we refer the reader to [Bru05, § 3.9] for a proof of the two
“sporadic identities”

<
(
(C1 + 1)C2

2 + (C2
1 + 5C1 + 2)C2 + (C2

1 + 2C1 + 1)
)
= 7!′(-1 (11), 0)

<
(
C2
2 + (C2

1 + 2C1 − 1)C2 + C3
1
)
= 5!′(-1 (11), 0)

associated to the elliptic modular curve -1 (11) : ~2 + ~ = G3 − G2.

To conclude this section, let us mention something about the other kinds of identities which
relate the Mahler measure of some polynomial to some special value. First of all, we have
identities which �t into the framework of Question 4.2.9, for polynomials % ∈ Q[G±1

1 , . . . , G±1
= ]

with = ≥ 3. We refer the interested reader to the works [Ber08; Ber10; Ber+13; PRS14; BN18;
ZGQ20] for examples of these kinds of identities. Moreover, we have identities that answer a
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question analogous to Question 4.2.9 where �=−1 (+̃% ) is replaced by a convenient sub-motive.
Typical examples of these identities arise when % is a polynomial de�ning a curve of genus 6 ≥ 2,
whose Jacobian has a one-dimensional factor in its Poincaré decomposition (see Theorem 7.1.1).
Such identities have been investigated in the works [Boy98; Bor99; Bor15; BZ16; BZ17; LW18;
LQ19; LW20]. Finally, there are many known examples of identities between Mahler measures
and special values of !-functions which involve polynomials that are conjectured or proved to
be successively exact (see Chapter 5). All rigorously proved identities of this kind involve Laurent
polynomials % ∈ Q[G±1

1 , . . . , G±1
= ] which are conjectured to be (= − 1)-exact, although we refer

the reader to [Lal15] and to Section 5.3 for a conjectural identity involving the three-variable
polynomial % (G1, G2, G3) := G3 − (1 − G1) (1 − G2), which is only 1-exact. On the other hand, we
refer the interested reader to [Smy81; Ray87; BR02; BRD03; Lal03; Lal06; DL07; Tou08b; Lal16;
LQ19] for a plethora of results which relate Mahler measures to special values !-functions arising
from zero-dimensional objects. A particular example of these is given by the special values
!∗ (j ,−1) = !′(j ,−1) arising from the Dirichlet character j associated to an imaginary
quadratic �eld  . This is the subject of Chinburg’s conjecture (see Remark 4.2.5), which can be
seen as a specialisation of Question 4.2.10 to the motives" = � 0 (j ) arising from these Dirichlet
characters. We have collected in Table A.4 all the imaginary quadratic �elds  = Q(

√
Δ ) for

which, to our knowledge, Chinburg’s conjecture is known to hold. As a last remark, we recall
that there exist examples of identities between Mahler measures and special values of !-functions
which involve a linear combination of the previous types. We refer the interested reader to
[Bor99; Sam13; Bor15; Sam15; ZGQ20] for examples of these kinds of identities.

A.2 Tempered reflexive polynomials
The aim of this section is to describe explicitly the set of tempered polynomials % ∈ Z[G,~]

whose Newton polygon Δ% ⊆ R2 is re�exive. First of all, we recall that Δ% ⊆ R2 is de�ned as the
convex hull of the set {j ∈ R2 | 0j (%) ≠ 0}, where 0j (%) ∈ Z denotes the j-th coe�cient of % ,
when % is written in multi-index notation % (G,~) = ∑

j 0j (%)G j. Then Δ% is a convex polygon,
whose vertices lie on the lattice Z2 ⊆ R2. As such, we can talk about the faces f < Δ% of Δ% .
Any such face f consists of a list of points f = {jf1 , . . . , jfA (f) } ⊆ Δ% ∩ Z2, which are ordered by
reading them counter-clockwise on the polygon Δ% . To each face f < Δ% , one can therefore
associate a face polynomial

%f (C) :=
A (f)∑
:=1

0jf
:
(%) C:

and we know from Remark 4.2.8 that % ∈ Z[G,~] is tempered (in the sense of De�nition 4.2.7)
if and only if<(%f ) = 0 for every face f < Δ% , where<(·) denotes the Mahler measure (see
De�nition 4.1.1).

Now, we recall that a convex lattice polygon Δ ⊆ R2 is called re�exive if |Δ◦
%
∩ Z2 | = 1, i.e. if

there is only one point with integral coordinates lying inside the polygon Δ% . It turns out that
there are exactly 16 orbits of convex, re�exive lattice polygons, with respect to the natural action
of Z2 o GL2 (Z2) (see [Rab89]). This action is obtained as the combination of the translation
action of Z2, and the multiplication action of GL2 (Z) on the lattice Z2. We refer the reader to
Table A.5 for a list of representatives of the sixteen orbits of convex, re�exive lattice polygons,
and to [BZ20, Page 47] for a picture. In particular, all our representatives have the origin (0, 0)
as their unique interior lattice point. Let us �nally remark that the action of Z2 o GL2 (Z2) on
the set of convex, lattice polygons corresponds to the action of the same group on the ring of
Laurent polynomials Z[G±1, ~±1], given by (4.30).
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A little thinking shows that, for every �xed convex lattice polygon Δ ⊆ R2, there are only
�nitely many families of tempered Laurent polynomials %k ∈ Z[k] [G±1, ~±1] such that Δ%k = Δ.
Here k denotes a set of free parameters, which are as many as |Δ◦ ∩ Z2 |. Then, to �nd all the
families %k, one has simply to �nd all the possible face polynomials, which amounts to �nd
all the polynomials 5 ∈ Z[C] such that <(5 ) = 0, up to a given degree. This can be done in
particular for the sixteen re�exive, convex lattice polygons collected in Table A.5. In this case
we see that, if Δ%: ∉ {Δ(13) ,Δ(16) }, we can write

%: (G,~) =
1
G~
·
(
�(G)~2 + �(G)~ +� (G)

)
− :

for some �, �,� ∈ Z[G]. On the other hand, if Δ%: = Δ(13) then

%: (G,~) =
1
G2~
·
(
�(G)~2 + �(G)~ +� (G)

)
− :

and if Δ%: = Δ(16) then

%: (G,~) =
1
G~
·
(
~3 +�(G) ~2 + �(G) ~ +� (G)

)
− :

for some �, �,� ∈ Z[G]. As we said, imposing the temperedness of %: (G,~) gives automatically
a �nite list of possible polynomials �, �,� associated to every polygon Δ ∈ {Δ(1) , . . . ,Δ(16) }.
We write down explicitly this list in Table A.6 and Table A.7. In total, we have 668 families
of polynomials %: (G,~), although we want to remark that some of them parametrise exactly
the same family of curves. Finally, we know that %: (G,~) = 0 gives rise to an elliptic surface,
because the polygons Δ(1) , . . . ,Δ(16) are re�exive. This is an instance of a celebrated theorem of
Baker, which computes the genus of a curve in terms of the interior lattice point of the Newton
polygon of its planar model (see for instance [BP00, Theorem 4.2] or [Dok18, § 2]). We devote
Table A.8 and Table A.9 to the collection of Weierstraß models for all of these elliptic surfaces,
except from the ones having Newton polygon Δ(13) . Indeed, for all the other ones, we were
able to use the algorithm described in [ART05], which is implemented in PARI/GP, in order
to �nd closed expressions for the Weierstraß forms. On the other hand, for any of the 220
families %: (G,~) having Newton polygon Δ(13) , one can certainly use the more sophisticated
algorithm implemented in SageMath (see [SAGE, Construct elliptic curves as Jacobians]), to get
a Weierstraß equation for the family %: . We have skipped this step in order to save space and
spare the patience of our readers.

A.3 The tables
This section contains the tables that were mentioned in Appendix A.1 and Appendix A.2.
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Paper ±: LMFDB A
(1)
:

Paper ±: LMFDB A
(1)
:

[RZ14] 1 15.a7 1 [RZ12] 8 24.a2 1/4
[Zud14]

√
2 56.a4 4 [Bru16b] 12 64.a2 1/2

[LR07] 2 24.a5 1 [Lal10; RZ14] 16 48.a1 1/11
[Rod99] 2

√
2 32.a4 1 [Zud14] 8 17.a4 1/2

[Bru16b] 3 21.a6 1/2 [Rod99; LR07]
√

28 24.a4 2/3
[Rod99] 3

√
2 24.a4 2/5 [Zud14] 28 40.a3 1

[Lal10; RZ14] 5 15.a3 1/6 [Lal10; RZ14] 38 15.a6 1/5
[Rod99] 4

√
2 64.a2 1 [Rod99] 48 32.a2 1/2

Table A.1.: Values of : ∈ C \ {−4, 0, 4} such that :2 ∈ Z and the quotient A (1)
:

:= !′(� (1)
:
, 0)/<(% (1)

:
) is

known to be rational, where % (1)
:

is de�ned as in (A.1) and � (2)
:

is the elliptic curve de�ned in
(A.2)

Paper : LMFDB A
(2)
:

Paper : LMFDB A
(2)
:

[Mel19] -5 14.a6 1/6 [RZ12] 4 20.a3 1/3
[RZ12] -2 20.a4 1/2 [Rod99] 6 36.a4 1/2
[Rod99] 0 24.a5 1/2 [Mel19] 10 14.a4 1/10
[Mel19] 1 14.a5 1

Table A.2.: Values of : ∈ Z \ {−6, 2, 3} such that the quotient A (2)
:

:= !′(� (2)
:
, 0)/<(% (2)

:
) is known to be

rational, where % (2)
:

is de�ned as in (A.5) and � (2)
:

is the elliptic curve de�ned in (A.6).

Paper a = [01, 02, 03, 04, 06] LMFDB A
(3)
a B

(3)
a

[Tou08a; Ber15] [2, 0, 0, 1, 0] 20.a3 1/2 1
[Bru16a] [−3, 0, 1, 0, 0] 54.a2 1 1
[Bru16a] [−2, 0, 1, 0, 0] 35.a2 1 1
[Bru16a] [−1, 0, 1, 0, 0] 14.a5 1/2 1
[LR17] [3, 0, 0,−1, 0] 17.a4 2/7 1
[Gia20] [4, 0, 2, 0, 0] 20.a3 3/8 3√2

Table A.3.: List of vectors a for which the corresponding Weierstraß form, de�ned in (A.7), satis�es an
identity of the kind (A.8).

Paper −Δ Paper −Δ 
[Smy81] 3 [BRD03] 19, 40, 120
[Ray87] 4, 7, 8, 20 [LQ19] 23, 303, 755
[BR02] 11, 15, 24, 35, 39, 55, 84

Table A.4.: List of discriminants −Δ of imaginary quadratic �elds  for which Chinburg’s conjecture is
known (see Remark 4.2.5)

262

http://www.lmfdb.org/EllipticCurve/Q/15/a/7
http://www.lmfdb.org/EllipticCurve/Q/24/a/2
http://www.lmfdb.org/EllipticCurve/Q/56/a/4
http://www.lmfdb.org/EllipticCurve/Q/64/a/2
http://www.lmfdb.org/EllipticCurve/Q/24/a/5
http://www.lmfdb.org/EllipticCurve/Q/48/a/1
http://www.lmfdb.org/EllipticCurve/Q/32/a/4
http://www.lmfdb.org/EllipticCurve/Q/17/a/4
http://www.lmfdb.org/EllipticCurve/Q/21/a/6
http://www.lmfdb.org/EllipticCurve/Q/24/a/4
http://www.lmfdb.org/EllipticCurve/Q/24/a/4
http://www.lmfdb.org/EllipticCurve/Q/40/a/3
http://www.lmfdb.org/EllipticCurve/Q/15/a/3
http://www.lmfdb.org/EllipticCurve/Q/15/a/6
http://www.lmfdb.org/EllipticCurve/Q/64/a/2
http://www.lmfdb.org/EllipticCurve/Q/32/a/2
http://www.lmfdb.org/EllipticCurve/Q/14/a/6
http://www.lmfdb.org/EllipticCurve/Q/20/a/3
http://www.lmfdb.org/EllipticCurve/Q/20/a/4
http://www.lmfdb.org/EllipticCurve/Q/36/a/4
http://www.lmfdb.org/EllipticCurve/Q/36/a/4
http://www.lmfdb.org/EllipticCurve/Q/14/a/4
http://www.lmfdb.org/EllipticCurve/Q/14/a/5
https://www.lmfdb.org/EllipticCurve/Q/20a2/
http://www.lmfdb.org/EllipticCurve/Q/54/a/2
http://www.lmfdb.org/EllipticCurve/Q/35/a/2
http://www.lmfdb.org/EllipticCurve/Q/14/a/5
https://www.lmfdb.org/EllipticCurve/Q/17/a/4
https://www.lmfdb.org/EllipticCurve/Q/20a2/


Δ Vertices Δ Vertices

Δ(1) { (-1,0), (0,1), (1,-1) } Δ(9) { (-1,-1), (-1,0), (0,1), (1,0), (1,-1) }
Δ(2) { (-1,-1), (0,1), (1,-1) } Δ(10) { (-1,0), (-1,1), (0,1), (1,0), (1,-1), (0, -1) }
Δ(3) { (-1,0), (0,1), (1,-1), (0, -1) } Δ(11) { (-1,-1), (-1,0), (1,0), (2,-1) }
Δ(4) { (-1,0), (0,1), (1,0), (0,-1) } Δ(12) { (-1,-1), (-1,0), (1,0), (1,1), (1,-1) }
Δ(5) { (-1,-1), (0,1), (1,0), (1,-1) } Δ(13) { (-2,-1), (0,1), (2,-1) }
Δ(6) { (-1,0), (0,1), (1,0), (1,-1), (0,-1) } Δ(14) { (-1,-1), (-1,1), (0,1), (2,-1) }
Δ(7) { (-1,-1), (0,1), (2,-1) } Δ(15) { (-1,-1), (-1,1), (1,1), (1,-1) }
Δ(8) { (-1,-1), (0,1), (1,1), (1,-1) } Δ(16) { (-1,-1), (-1,2), (2,-1) }

Table A.5.: Convex, re�exive lattice polygons Δ ⊆ R2. See [BZ20, Page 47] for a picture.

Δ% Number �(G) �(G) � (G)
Δ(1) 1 G −1 G2

Δ(2) 4 G 0 G2 + U G + 1

G 0 −G2 + 1

Δ(3) 2 G 1 G2 + G
G 1 G2 − G

Δ(4) 4

G G2 + 1 G

−G G2 + 1 G

G −G2 + 1 G

−G −G2 + 1 G

Δ(5) 4 G G2 G2 + U G + 1

G G2 −G2 + 1

Δ(6) 4

G G2 + 1 G2 + G
G G2 − 1 G2 + G
G G2 + 1 G2 − G
−G G2 − 1 G2 + G

Δ(7) 20 G U G2 G3 + V (G2 + G) + 1

G 0 −G3 + V (G2 − G) + 1

Δ(8) 16

G2 + G U1 G
2 G2 + U2 G + 1

G2 + G 0 −G2 + 1

−G2 + G 0 G2 + U G + 1

G2 + G U G2 G2 − 1
Table A.6.: Tempered re�exive polynomials with Newton polygon Δ(1) − Δ(8) (see Table A.5). Here

U 9 ∈ {0, 1, 2} and V 9 ∈ {−1, 0, 1, 2, 3}.
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Δ% Number �(G) �(G) � (G)

Δ(9) 8

G G2 + 1 G2 + U G + 1

G −G2 + 1 G2 + U G + 1

G G2 + 1 G2 − 1

G −G2 + 1 G2 − 1

Δ(10) 8 G + Y1 G2 + Y2 G2 + Y3 G

Δ(11) 20 G U G2 + 1 G3 + V (G2 + G) + 1

−G 1 G3 + V (G2 + G) + 1

Δ(12) 16

G2 + G U1 G
2 + 1 G2 + U2 G + 1

−G2 + G 1 G2 + U G + 1

G2 + G 1 −G2 + 1

G2 + G U G2 + 1 G2 − 1

Δ(13) 220

G2 U1 G
3 + U2 G G4 + YE1 (G3 + G) + E2 G

2 + 1

G2 U G −G4 + (V − 1) (G3 − G) + 1

G2 U G3 G4 + (V − 1) (G3 − G) − 1

−G2 0 G4 + YE1 (G3 + G) + E2 G
2 + 1

Δ(14) 80

G + 1 U1 G
2 + U2 G3 + V (G2 + G) + 1

G + 1 U −G3 + V (G2 − G) + 1

G + 1 U G2 G3 + V (G − G2) − 1

G + 1 0 −G3 + V (G − G2) − 1

Δ(15) 136

G2 + U1 G + 1 U2 G
2 + U3 G2 + U4 G + 1

G2 − 1 U1 G
2 G2 + U2 G + 1

G2 + U1 G + 1 U2 −G2 + 1

−G2 + 1 U1 G2 + U2 G + 1

−G2 − U1 G − 1 0 G2 + U2 G + 1

−G2 + 1 −U1 G
2 + U2 −G2 + 1

G2 + U1 G + 1 U2 G
2 G2 − 1

G2 − 1 0 −G2 + 1

Δ(16) 125 V1 G + V2 V1 G
2 + V2 G3 + V3 (G2 + G) + 1

Table A.7.: Tempered re�exive polynomials with Newton polygon Δ(1) − Δ(8) (see Table A.5). Here( E1
E2

)
∈ {

( 0
−2

)
,
( 0
−1

)
,
( 0

0
)
,
( 0

1
)
,
( 0

2
)
,
( 1

0
)
,
( 1

1
)
,
( 1

2
)
,
( 2

2
)
,
( 2

3
)
,
( 3

4
)
,
( 4

6
)
}.

and U 9 ∈ {0, 1, 2}. Moreover, we have that V 9 ∈ {−1, 0, 1, 2, 3}, and Y 9 ∈ {±1}.
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Δ%: 01 02 03 04 06

Δ(1) : 0 1 0 0

Δ(2)
: −U 0 1 0

: 0 0 −1 0

Δ(3)
: −1 −1 0 0

: 1 −1 0 0

Δ(4)

: −2 0 1 0

: 0 0 −1 0

: 0 0 −1 0

: 2 0 1 0

Δ(5)
: −U −1 1 0

: 0 −1 −1 0

Δ(6)

: −2 −1 1 0

: 0 1 −1 0

: 0 −1 −1 0

: 2 −1 1 0

Δ(7)
: −V −U V −1

: V 0 V 1

Δ(8)

: −U2 − 1 −U1 U2 + 1 −1

: −1 0 −1 1

: −U + 1 0 −U + 1 1

: 1 U −1 −1

Δ(9)

: −U − 1 −2 U + 1 −1

: −U + 1 0 −U + 1 1

: −1 0 −1 1

: 1 −2 −1 −1

Δ(10) : − (Y1 + Y2 + Y3) − (Y3Y1 + Y2) Y1Y2 + Y1Y3 + Y2Y3 −Y1Y2Y3

Table A.8.: Weierstraß equations for the elliptic surfaces de�ned in Table A.6 and Table A.7.
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Δ%: 01 02 03 04 06

Δ(11)
: −(U + V) −(U + V) VU + V + 1 : − (VU + V + 1)
: V V V − 1 : − V + 1

Δ(12)

: −(U1 + U2 + 1) −(U1 + U2 + 1) (U1 + 1) (U2 + 1) + 1 : − (U1 + 1) (U2 + 1) − 1

: 1 − U U − 1 −U U − :
: −1 1 −2 2 − :
: 1 − U U − 1 −U U − :

Δ(14)

: −(U1U2 + 2V) −(U1 + U2) (V + 1) (U1 + U2)2 + (V + 1)2 − 4 %U1,U2,V (:)
: 0 U (1 − V) 3 + 2V − U2 − V2 :2 + (V − 1)0:
: 0 U (1 − V) 3 + 2V − U2 − V2 :2 + (V − 1)0:
: 0 0 −(V2 + 3) 2(V2 + 1) − :2

Δ(15)

: −U1U4 − U203 − 2 −(U1 + U4) (U2 + U3) & (U1, U2, U3, U4) 'U1,U2,U3,U4 (:)
: 0 U1U2 4 − U2

1 − U2
2 :2 − U1U2:

: 0 U1U2 4 − U2
1 − U2

2 :2 − U1U2:

: 0 U1U2 4 − U2
1 − U2

2 :2 − U1U2:

: U1U2 + 2 0 (U1 + U2)2 − 4 −:2 + 2(U2
1 + U2

2 − 4)
: U1U2 + 2 0 (U1 + U2)2 − 4 −:2 + 2(U2

1 + U2
2 − 4)

: 0 U1U2 4 − U2
1 − U2

2 :2 − U1U2:

: −2 0 −4 8 − :2

Δ(16) : −(V1V2 + V1V3 + V2V3) ( (V1, V2, V3) ) (V1, V2, V3) +V1,V2,V3 (:)
Table A.9.: Weierstraß equations for the elliptic surfaces de�ned in Table A.6 and Table A.7. The polyno-

mials %,&, ',+ are de�ned in Table A.10.

%U1,U2,V (:) = −:2 + (U1 + U2) (V + 1): + 2V (2 − U1U2 − (U1 + U2)2) − (U1U2 + 2) (V2) + 1
& (U1, U2, U3, U4) = (U1 + U4)2 + (U2 + U3)2 + U1U2U3U4 − 4

( (V1, V2, V3) = 9 − V2
1 − V2

2 − V2
3 − 2V1V2V3

) (V1, V2, V3) = V2
3V2V1 + V2

3V2 + V2
3V1 + V3V

2
2V1 + V3V

2
2

+ V3V2V
2
1 − 3V3V2 + V3V

2
1 − 3V3V1 + V2

2V1 + V2V
2
1 − 3V2V1

'U1,U2,U3,U4 (:) = −:2 + (U1 + U4) (U2 + U3): + U3 (U2 (U4 (−2U1 − U4) − U2
1)

+ U3 (−U1U4 − 2)) − 2U2
1 + U2

2 (−U1U4 − 2) − 2U2
4 + 8

+V1,V2,V3 (:) = :3 + ((−V2 − V3) V1 − V3V2) :2 +) (V1, V2, V3): − 2V3
3V2V1

− 2V3
3 − 2V2

3V
2
2V1 − V2

3V
2
2V

2
1 − V2

3V
2
2 − 2V2

3V2V
2
1

+ 4V2
3V2V1 + 9V2

3 − V2
3V

2
1 − 2V3V

3
2V1+

− 2V3V
2
2V

2
1 + 4V3V

2
2V1 + −2V3V2V

3
1 + 4V3V2V

2
1

+ 6V3V2V1 + −2V3
2 + 9V2

2 − V2
2V

2
1 + −2V3

1 + 9V2
1 − 27

Table A.10.: Coe�cient polynomials featured in Table A.9.
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Δ fO 9 (�) #� Equations

−3 1 0 33 ~2 + ~ = G3 − 7
~2 + ~ = G3

2 24 33 53 2232 ~2 = G3 − 15G + 22
~2 = G3 − 135G − 594

3 −215 3 53 33 ~2 + ~ = G3 − 30G + 63
~2 + ~ = G3 − 270G − 1708

-4 1 26 33 25 ~2 = G3 − G
~2 = G3 + 4G

2 23 33 113 25 ~2 = G3 − 11G − 14
~2 = G3 − 11G + 14

-7 1 −33 53 72 ~2 + G~ = G3 − G2 − 2G − 1
~2 + G~ = G3 − G2 − 107G + 552

2 33 53 173 72 ~2 + G~ = G3 − G2 − 37G − 78
~2 + G~ = G3 − G2 − 1822G + 30393

-8 1 26 53 28
~2 = G3 − G2 − 3G − 1
~2 = G3 + G2 − 3G + 1
~2 = G3 − G2 − 13G + 21
~2 = G3 + G2 − 13G − 21

-11 1 −215 112 ~2 + ~ = G3 − G2 − 7G + 10
~2 + ~ = G3 − G2 − 887G − 10143

-19 1 −215 33 192 ~2 + ~ = G3 − 38G + 90
~2 + ~ = G3 − 13718G − 619025

-43 1 −218 33 53 432 ~2 + ~ = G3 − 860G + 9707
~2 + ~ = G3 − 1590140G − 771794326

-67 1 −215 33 53 113 672 ~2 + ~ = G3 − 7370G + 243528
~2 + ~ = G3 − 33083930G − 73244287055

-163 1 −218 33 53 233 293 1632 ~2 + ~ = G3 − 2174420G + 1234136692
~2 + ~ = G3 − 57772164980G − 5344733777551611

Table A.11.: Minimal Weierstraß equations of CM elliptic curves de�ned over Q having the smallest
conductor #� amongst all their twists. Here #� ∈ N denotes the unique positive generator
of the conductor ideal f� ⊆ Z, and fO := |O : O| denotes the conductor of the imaginary
quadratic order O (see Example 6.2.8).
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Postface: conclusions and future
research

Every phrase and every sentence
is an end and a beginning.

T.S.Eliot, Little gidding

We hope that this thesis has given the reader a taste of the richness of the various theories
involved, from the theory of heights to that of !-functions, from Mahler measures to abelian
varieties with complex multiplication. We have contributed our grain of sand to these mountains
so di�cult to climb, and yet so overwhelmingly beautiful when one stares at them from the
valley down below, by exploring the relations between special values of !-functions associated
to CM elliptic curves and Mahler measures of polynomials in Chapter 9, and by studying various
properties of the division �elds attached to CM elliptic curves in Chapter 8. We have also dived
into the depths of exact polynomials in Chapter 5, and we have explored the various de�nitions
of ray class �elds for orders in Chapter 6.

This thesis in particular aims to prove, once again, how objects with extra symmetries, such
as elliptic curves with complex multiplication, can be used as mathematical guinea pigs, on
which testing broader conjectures is both easier and sometimes more enlightening than trying
to attack immediately the general case. On the other hand, we have striven to present in every
context the most general picture that our technical abilities managed to portray, as we do indeed
believe that often the e�ort of doing so is paid back by the insight one obtains after gaining an
aerial view of the mathematical surroundings, allowed by the generality pursued.

This being said, the rest of this �nal section is devoted to give an overview of the future
perspectives opened by this thesis, and to provide a list of possible future research themes. The
�rst examples of these are clearly given by the ongoing projects joint with Fabien Pazuki (see
Section 3.4), François Brunault (see Chapter 5) and Francesco Campagna (see Chapter 6 and
Section 7.3). We won’t spend more words on these, and we refer the reader to the ends of the
aforementioned sections and chapters for an outline of the future, previewed steps of those
projects. Other than this, here are some further questions which might be interesting to explore
in future work:
Mahler
determinants

As we have already pointed out in Remark 4.2.3, it would be interesting to
prove at least one relation expressing the special value of an !-function as
the determinant of a matrix whose entries would be Mahler measures. For
this to be a truly new result of course this matrix would need to have at least
dimension two, and this determinant should not result in a Mahler measure
itself, at least not for “obvious reasons”, e.g. the determinant should not
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be equal to the sum of two entries. Vice-versa, it would be interesting to
�nd a Mahler measure which can be related to the determinant of a matrix
whose entries are special values of !-functions. Obvious candidates for
the special values of !-functions amenable to these kinds of computations
would be the numbers Z ∗

 
(1), associated to some number �eld  such that

rk(O×
 
) ≥ 2, or the values !∗ (�, 0) for some curve � de�ned over Q whose

Jacobian is a simple CM abelian variety of dimension 6 ≥ 2.

Exact
polynomials and
Hecke
characters

We have seen already in Chapter 5 how we aim to use modular techniques
in order to prove Lalín’s conjecture. On the other hand, one could try to
use the constructions of motivic cohomology elements coming from com-
plex multiplication, in order to prove new types of identities going beyond
Question 4.2.9. For example, one could use Beilinson/Neukirch’s elements
in the motivic cohomology of abelian number �elds, and in particular their
geometric counterparts constructed by Huber and Kings in [HK99], to �nd
new 1-exact polynomials % ∈ Z[G,~] adapted to attack Chinburg’s conjec-
ture (see Remark 4.2.5). On the other hand, as we outlined in Section 9.3,
one could use Deninger’s results [Den89] to construct new :-exact polyno-
mials % ∈ Z[G1, . . . , G:+2] whose Mahler measure is related to the !-value
!∗ (�,−:) associated to an elliptic curve � with complex multiplication.

Motives for
Mahler
measures

Deninger’s construction of mixed motives which have the Mahler measure
of a polynomial as one of their periods (see Remark 4.3.6) should be gener-
alised to encompass any kind of polynomial, and not only those satisfying
the hypotheses of Theorem 4.3.4. To do so, one needs to pursue until
the end Bornhorn’s computations, which could be generalised to higher
dimensional cases, as well as some of the relative cohomology techniques
that were outlined in Chapter 5.

The Mahler
measure and
Deninger’s
dynamical
system

It is already known that the Mahler measure <(%) of a polynomial can
be computed as the entropy of a dynamical system. Recently, Deninger
has introduced in [Den18] a way to attach a dynamical system to many
arithmetic schemes, i.e. schemes of �nite type over Spec(Z). Does the
Mahler measure of a polynomial % ∈ Z[G±1

1 , . . . , G±1
= ] with integer coe�-

cients appear as an entropy of one of these dynamical systems, for example
the one associated to the zero locus +% ↩→ G=

<,Z?

Division fields of
CM abelian
varieties

It would be interesting of course to extend the results of Chapter 8 to higher
dimensional abelian varieties. While much of the theory carries over to
the general context, like the main theorem of complex multiplication (see
Theorem 7.1.25), many arguments featured in Chapter 8 must be changed,
if they are to be adapted to the higher dimensional case. Most notably,
formal groups need to be replaced by ?-divisible groups, or by formal group
schemes.
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