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Abstract

This thesis aims at advancing the field of statistical causality.
Causal modeling is relevant whenever one seeks an understanding
not only of how a system evolves by itself, but also how it may
respond if some of its components are altered or replaced (‘inter-
vened on’). Arguably, such situations are frequently encountered.
Inferring causal knowledge from data is a notoriously hard problem,
since, even in the limit of infinitely many data, there are typically
several compatible causal explanations. Often, this issue is further
compounded by incomplete access to all relevant parts of the system
(i.e., by the existence of ‘hidden variables’).

This work addresses several open problems related to causal learn-
ing in the presence of hidden variables. It consists of three main
theoretical contributions. Chapter 2 considers the task of learning
causal relations (the ‘causal structure’) from heterogeneous data in
cases where these are not known a priori. We exploit a fundamen-
tal invariance property which is often assumed of causal regression
models. In Chapter 3, we present a causal approach to the prob-
lem of distributional robustness, where one aims to learn prediction
models that perform well not only on the training data, but also
on test data that may come from a different distribution. We use
the concept of interventions to model the differences in training and
test distribution. Chapter 4 emerged from discussions with environ-
mental scientists, and is motivated by the question of a causal rela-
tionship between armed conflict and tropical forest loss. It resulted
in the development of a novel causal framework for spatio-temporal
stochastic processes, and a procedure for drawing causal inference
from observational spatio-temporal data.
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Resumé

Denne afhandling bidrager til udviklingen af forskningsfeltet statis-
tisk kausalitet. Kausal modellering er relevant i tilfælde hvor man
udover at forst̊a hvordan et system udvikler sig af sig selv, samtidig
er interesseret i, hvordan det reagerer, hvis nogle af dets kompo-
nenter bliver forandret eller udskiftet (‘interveneret p̊a’). Der kan
argumenteres for, at s̊adanne situationer indtræder ofte. At inferere
kausal viden er en notorisk svær opgave da der, selv i grænsen af
uendeligt meget data, typisk findes adskillige kompatible kausale
forklaringer. Dette problem er yderligere forstærket af ufuldstændig
adgang til alle systemets relevante dele (dvs. af tilstedeværelsen af
‘uobserverbare variable’).

Denne opgave adresserer flere åbne spørgsm̊al relateret til kausal
læring i tilstedeværelsen af uobserverbare variable. Den best̊ar af tre
hovedbidrag. Kapitel 2 betragter problemet af at lære kausale rela-
tioner (den ‘kausale struktur’) fra heterogent data i situationer, hvor
denne ikke er givet p̊a forh̊and. Vi udnytter en fundamental invar-
ians egenskab, som ofte bliver antaget omkring kausale regressions-
modeller. I Kapitel 3 præsenteres en kausal tilgang til spørgsm̊alet
om fordelingsmæssig robusthed, hvilket beskriver en prediktions-
models egenskab til ikke blot at fungere godt p̊a træningsdata, men
lige s̊avel p̊a testdata som m̊atte komme fra en anden fordeling. Vi
anvender konceptet interventioner til at modellere forskellene mellem
trænings- og test fordelingen. Kapitel 4 opstod ud fra samtaler med
miljøforskere, og er motiveret af spørgsm̊alet omkring en kausal re-
lation mellem væbnet konflikt og tropisk skovrydning i Colombia.
Projektet resulterede i udviklingen af en ny kausal ramme for rumlig-
tidslige stokastiske processer, og en procedure til at drage kausal
inferens p̊a baggrund af observationel rumlig-tidslig data.
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1 | Introduction

On an individual level, anticipating the effect of a change in one’s
behavior (an ‘intervention’), is key for decision making. The ability
to do so relies on a causal understanding (a ‘causal model’) of reality.
In causal data science, one aims at embedding such an understanding
into the workings of automated processes. In the absence of causal
intuitions to consult, this integration requires proper mathematical
formalism. Statistical causal models provide such formalism. They
are statistical since they allow for probabilistic (rather than deter-
ministic) relations between variables, and they are causal in that
they model not only the distribution of data that are passively ob-
served (the ‘observational distribution’), but also how the system
responds to changes in the data generating mechanism (i.e., they
model ‘intervention distributions’, too).

This chapter contains a brief introduction to causal data science.
We present important concepts which will be used throughout this
work, survey a few existing methods for causal learning, and discuss
how the contributions of this thesis fit into the current scientific land-
scape. The introduction is structured as follows. In Section 1.1, we
introduce structural causal models, which provide a formal frame-
work for discussing questions of causality, and which will be our
starting point for causal reasoning throughout most of this thesis.
Section 1.2 addresses the fact that, in practice, causal models usu-
ally need to be learned from data. We present methods for infer-
ring causal relations in cases where these are not known a priori,
and further explain how background knowledge of a system’s causal
structure can be exploited for estimating effects of hypothetical in-
terventions. Section 1.3 introduces the problem of distributional
robustness, where one aims to learn prediction models that are ro-
bust against distributional changes, and argues how causal concepts
may play a role for this task. In Section 1.4, we discuss the inad-
equacy of classical statistical causal models for modeling complex
data structures such as spatio-temporal data.
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1. Introduction

1.1. Causal reasoning

Causal reasoning describes the procedure of drawing conclusions
based on a causal model. Throughout the last decades, many sta-
tistical causal models have been proposed. Among the most widely
used are structural causal models [Bollen, 1989, Pearl, 2009], causal
graphical models [Spirtes et al., 2000], and the framework of poten-
tial outcomes [Rubin, 1974]. Below, we formally define structural
causal models and introduce the notion of interventions. We further
discuss the role of autonomy, which plays a central part in our con-
tribution in Chapter 4. To describe causal relations among random
variables, we will rely on graphical representations. We therefore
start with a few definitions.

1.1.1. Graph terminology

A graph is a pair G = (V, E), where V = {X1, . . . , Xp} is a set of
vertices or nodes and E is a set of edges. For now, we assume that
E contains only directed edges, which are of the form Xi → Xj ,
for Xi, Xj ∈ V with Xi 6= Xj . Such a graph is called a directed
graph. If Xi → Xj ∈ E then Xi is a parent of Xj , and Xj is a
child of Xi. A path in G is a sequence of (at least two) distinct
nodes Xi1 , . . . , Xim ∈ V such that for all k = 1, . . . ,m − 1, there is
an edge between Xik and Xik+1

. If all these edges are of the form
Xik → Xik+1

, the path is a directed path. In that case, Xi1 is an
ancestor of Xik and Xik a descendant of Xi1 . A (directed) cycle is a
(directed) path Xi1 , . . . , Xik with Xi1 = Xik . A directed graph that
contains no directed cycles is called a directed acyclic graph (DAG).

1.1.2. Structural causal models

Below, we formally define structural causal models, also called struc-
tural equation models.

Definition 1.1 (Structural causal model). A structural causal model
(SCM) over variables X1, . . . , Xp is a pair M = (S, Q) consisting of

• a family S of structural assignments

Xj := fj(PAj , εj), j = 1, . . . , p,

2



1.1. Causal reasoning

X1 := f1(X4, ε1)

X2 := f2(X1, ε2)

X3 := f3(X2, X4, ε3)

X4 := ε4,

where (ε1, ε2, ε3, ε4) ∼ Q.

X1

X4 X2

X3

Figure 1.1. Our running example for all of this chapter: an SCM
over variables (X1, X2, X3, X4). For every node in the graph (right),
the set of parents coincides with the set of variables that appear in
the respective structural assignment (left).

where for each j ∈ {1, . . . , p}, fj is some real-valued function,
and PAj ⊆ {X1, . . . , Xp} \ {Xj} denotes the parent set of
variable Xj, and

• a product distribution Q over the noise variables (ε1, . . . , εp).

The structural assignments S induce a directed graph G with nodes
X1, . . . , Xp: for every j, one draws an arrow from each of the vari-
ables in PAj to Xj. We require this graph to be acyclic.

Further details about SCMs are provided by Bongers et al. [2016],
for example. We refer to the graph G induced by an SCM as the
causal graph. Whenever G contains a directed path from Xj to Xk,
then Xj is said to be a cause of Xk, or simply to cause Xk. For
each k ∈ {1, . . . , p}, the variables in PAk are the direct causes or
the causal parents of Xk. A variable X` which causes both Xj and
Xk is a confounder of the pair (Xj , Xk), and the (potential) causal
effect of Xj on Xk is said to be confounded by X`. In Figure 1.1,
we present the SCM which will serve as a running example through-
out this introduction. Here, X2 causes X3, but this causal effect is
confounded by the variable X4.

Every SCM entails a joint distribution over its variables. This can
be seen by iteratively substituting structural assignments into each

3



1. Introduction

other. Due to the assumed acyclicity of G, this procedure termi-
nates in a unique expression of (X1, . . . , Xp) in terms of the noise
variables (ε1, . . . , εp). We call the induced distribution the observa-
tional distribution, since it is regarded a statistical model for data
obtained under passive observation. Apart from the observational
distribution, an SCM further models changes in the data generating
mechanism via the concept of interventions.

1.1.3. Interventions

An intervention in an SCM is a formal abstraction of a change in
mechanism occurring in a real-world process (e.g., a change in polit-
ical policy). Mathematically, it is a mapping between model classes.
Let M be a fixed class of SCMs over (X1, . . . , Xp). An interven-
tion is a mapping fromM into a possibly larger set of SCMs, which
takes as input a model M = (S, Q) ∈ M, and outputs another
model M(i) = (Si, Qi) over (X1, . . . , Xp), the intervened model. We
require all interventions to preserve the joint independence of the
error variables as well as the acyclicity of the causal graph. The
latter restriction ensures that each intervened model M(i) induces
a unique distribution over (X1, . . . , Xp), the intervention distribu-
tion. A variable whose structural assignment or noise distribution
is altered by an intervention is said to having been intervened on.
As such, an intervention may modify the structural assignment of a
variable in a way which depends on the input model itself. An ex-
ample of such a modification is a so-called shift-intervention, which
shifts the structural assignment of a variable, say Xj , by a constant
c ∈ R. That is, if Xj := fj(PAj , εj) is the structural assignment in
the original model, then Xj := fj(PAj , εj) + c is the structural as-
signment in the intervened model (and εj has the same distribution
in both models). An intervention may also completely break the
structural dependence of Xj on its causal parents by assigning it to
an independent noise variable (Xj is being ‘randomized’). In cases
where this noise variable is degenerate, say the intervention assigns
Xj := xj for some xj ∈ R, we simply write M(xj) to denote the
intervened model (assuming no other parts of the model are altered
by the intervention).

In Chapter 3, we return to a more detailed discussion on differ-
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1.1. Causal reasoning

X1 := f1(X4, ε1)

X2 := εi2

X3 := f3(X2, X4, ε3)

X4 := ε4,

where (ε1, ε
i
2, ε3, ε4) ∼ Qi.

X1

X4 X2

X3

Figure 1.2. An SCM obtained from the model in Figure 1.1 by
intervening on X2. This model induces a (potentially) different dis-
tribution and a different causal graph.

ent types of interventions. Here, we focus on the key idea. Fig-
ure 1.2 shows the SCM from Figure 1.1 after randomizing X2. In
the intervened model, X2 has no causal parents, and is statistically
independent of X1.

1.1.4. Autonomy

A fundamental assumption that is often made about real-world phys-
ical processes is the assumption of independent mechanisms. It
states that the causal generative process of a system’s variables is
composed of autonomous modules that do not inform or influence
each other [Peters et al., 2017, Principle 2.1]. Consider, for instance,
the generative process of a simple cause-effect pair (X,Y ). Let A be
the generating mechanism for the cause X, and let B be the mech-
anism which produces Y from X. Then, in general, the output of A
and the output of B are statistically dependent. The assumption of
independent mechanisms states that the mechanism A itself, that is,
the means by which A operates, carries no information about B. In
other words, assuming that it is possible to replace A by a different
mechanism A′, we expect that, after such an operation, mechanism
B would still be in place.

The above assumption is embedded in our definition of interven-
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1. Introduction

tions, which allows for the isolated modification of a single struc-
tural assignment, while leaving the remaining parts of the model
unaffected. Since each assignment defines the conditional distribu-
tion of a variable given its causal parents, this property induces a
factorization of the entailed distribution into several autonomous
units. We illustrate this fact using the model M from Figure 1.1.
Consider two interventions i1 and i2 which randomize X1 and X2,
respectively. For simplicity, assume that the distributions entailed
by the models M , M(i1) and M(i2) have densities with respect to a
product measure, and let p, pi1 and pi2 denote such densities. It fol-
lows by straight-forward computations, that these densities satisfy
the factorizations

p(x1, x2, x3, x4) = p(x1 |x4)p(x2 |x1)p(x3 |x2, x4)p(x4)

pi1(x1, x2, x3, x4) = pi1(x1) p(x2 |x1)p(x3 |x2, x4)p(x4)

pi2(x1, x2, x3, x4) = p(x1 |x4)pi2(x2) p(x3 |x2, x4)p(x4),

where each equality holds for all (x1, x2, x3, x4) outside a nullset of
the respective distribution. Although the joint distribution may be
altered by each of the interventions, it differs from the original dis-
tribution only by the factor related to the intervened variable. The
conditionals of each non-intervened variable given its direct causes
remains unaffected. While this property is simply a consequence of
the way we have defined interventions in SCMs, it can serve as a
starting point for causal formalism in situations where SCMs are
not applicable. We revisit this discussion in Section 1.4.

1.2. Causal learning

Causal models can be used to formally define and quantify causal
relationships among a system of variables. In most cases, the true
causal model is not fully known, and needs to be learned from data.
Causal learning can be tackled effectively by performing interven-
tions in the system of interest. This is the rationale behind con-
trolled randomized trials [Peirce, 1883], which remove the influence
of confounders via randomized treatment allocation, and are often
considered the gold standard for inferring intervention effects. In
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1.2. Causal learning

many situations, however, it is infeasible to embed the system of
interest within a controlled study design, and causal knowledge thus
needs to be inferred from observational data (or naturally occurring
interventional data). Such cases will be the focus of this section.
We distinguish between the learning of causal relations (e.g., parts
of the causal graph) and the learning of causal effects (e.g., the ex-
pectation of Y under interventions on X). These topics are treated
in Sections 1.2.2 and 1.2.3, respectively. First, we discuss some of
the fundamental difficulties associated with causal learning.

1.2.1. A three-fold inference problem

In classical statistical learning, one aims to infer properties of some
unknown (observational) distribution based on i.i.d. replications from
it. Given access to only finitely many data, this can be a challenging
task in and of itself. In causal learning, we are faced with two addi-
tional layers of difficulty. First, there is the problem of identifiability.
We are trying to infer causal knowledge, which often involves targets
of inference that are defined in terms of intervention distributions
or in terms of the causal graph. In cases where the system of inter-
est is only passively observed, this poses a fundamental challenge:
typically, several different causal mechanisms can lead to the same
observed behavior. Without suitable constraints on the underlying
causal model class, the inferential target can thus remain unknown,
even in the limit of infinitely many data. Second, there is the prob-
lem of learnability. Even in cases where the inferential target is
identified from the observational distribution, it may not be obvious
how to compute it in a finite number of computational steps. In
many causal learning tasks, the definition of an identifiable causal
target is therefore followed by the construction of an algorithmic
procedure (a ‘population algorithm’) which maps the observational
distribution to the target of inference. After formulating this target
as a computable property of the observational distribution, we are,
thirdly, left with the well-known statistical problems of estimating
distributional features from finite samples of data (i.e., the construc-
tion of a corresponding ‘sample algorithm’). In what follows, we will
mostly discuss causal learning problems on population level.

7



1. Introduction

1.2.2. Learning causal relations

It is well-known that, without suitable restrictions on the model
class, the causal graph is not identified from the observational dis-
tribution. Nevertheless, the problem of causal structure learning
from observational data has been addressed in several lines of work.
Among them are constraint-based methods, score-based methods,
methods based on restricted SCMs, and methods based on the in-
dependence of causal mechanisms. A detailed overview of recent
methodological advancements is provided by Spirtes and Zhang [2016],
Guo et al. [2018]. Below, we treat constraint-based methods in more
detail, and discuss the difficulties that can arise from the existence
of hidden variables. We then introduce the novel causal discovery
method ICPH, which will be the content of Chapter 2.

1.2.2.1. Constraint-based causal discovery

Constraint-based methods aim to learn a set of graphs that are com-
patible with the conditional independencies embedded in the data.
They make use of two central assumptions, which relate properties
of the unknown graph to properties of the observed distribution. In
the following two definitions, P denotes a generic distribution over
a random vector X, and G a generic graph over the variables in X.
By slight abuse of notation, we sometimes treat X as a set.

Definition 1.2 (Markov property). P is said to satisfy the Markov
property, or to be Markovian, with respect to G, if for all disjoints
sets A,B,C ⊆ X, it holds that

A ⊥⊥G B |C ⇒ A ⊥⊥PB |C.

The above condition is sometimes referred to as the global Markov
property, as opposed to its local or pairwise version. Here, ⊥⊥G de-
notes a graphical independence relation among sets of vertices in
G, and ⊥⊥ P denotes conditional independence in P. The Markov
property states that certain graphical relations in G imply proper-
ties about the observational distribution P. In order to exploit the
Markov property for structure learning, we also require the reverse
implication, which is known as the faithfulness condition.

8



1.2. Causal learning

Definition 1.3 (Faithfulness). P is said to satisfy faithfulness, or
to be faithful, with respect to G, if for all disjoints sets A,B,C ⊆ X,
it holds that

A ⊥⊥PB |C ⇒ A ⊥⊥G B |C.

Together, Definitions 1.2 and 1.3 define a one-to-one correspon-
dence between the graphical independence relations in G and the
conditional independence patterns in P. If P is both Markovian and
faithful with respect to G, then P identifies the Markov equivalence
class of G, which consists of all graphs G̃ which agree with G on the
set of graphical independence relations they imply. The objective
of constraint-based methods is to infer this equivalence class from
observational data.

Obviously, the Markov equivalence class of a graph depends on
the graphical independence relation ⊥⊥ G . In the case where all
variables X = (X1, . . . , Xp) are observed, the inferential target is
the true causal DAG, and ⊥⊥G typically denotes d -separation in G
[Pearl, 2009]. With this graphical independence relation, it can be
shown that the Markov property is satisfied if (P,G) are induced
by an SCM [Pearl, 2009, Theorem 1.4.1]. Further, any two Markov
equivalent graphs have the same skeleton [Verma and Pearl, 1988].
The Markov equivalence class [G]d of G can therefore be conveniently
represented in terms of a completed partially directed acyclic graph
(CPDAG), which may contain both directed and undirected (−)
edges. A directed edge Xi → Xj in this graph is an edge common to
all DAGs in [G]d. Likewise, the absence of an edge between Xi and
Xj means that these variables are not connected by an edge in any
DAG from [G]d. Both these cases therefore correspond to a direct
causal relation (or the absence of one) which, under the assumption
of faithfulness, is identified from P. An undirected edge Xi − Xj

indicates that both orientations Xi → Xj and Xi ← Xj can be
found among some DAGs in [G]d, and hence corresponds to a direct
causal relation which cannot be inferred via the above procedure.

For the graph GM in our running example, the only two d-separation
statements that hold true are

{X2} ⊥⊥GM {X4} | {X1} and {X1} ⊥⊥GM {X3} | {X2, X4}. (1.2.1)

This means that PM is Markovian and faithful with respect to GM if

9
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X1

X4 X2

X3

DAG
true causal graph

X1

X4 X2

X3

CPDAG
identified from CIs

Figure 1.3. True causal graph GM (left), and the corresponding
Markov equivalence class [GM ]d represented in terms of a CPDAG
(right). If PM is Markovian and faithful with respect to GM , the
Markov equivalence class of GM can be computed by checking for
conditional independencies (‘CIs’) in PM . In this example, PM iden-
tifies the two directed edges X4 → X3 and X2 → X3. For the edges
X4 − X1 and X1 − X2, both orientations are compatible with the
conditional independencies in PM .

and only if the following (and only those) conditional independence
statements are satisfied:

X2 ⊥⊥ PMX4 |X1 and X1 ⊥⊥ PMX3 | (X2, X4). (1.2.2)

Figure 1.3 shows the true causal graph GM alongside with the as-
sociated CPDAG. Here, all graphs in [GM ]d agree on the oriented
edges X4 → X3 and X2 → X3, while the causal relations X4 −X1

and X1 −X2 remain unidentified.

1.2.2.2. Hidden variables

If some of the variables in X remain unobserved, there may not
exist a DAG over the observed variables X∗ ⊆ X which correctly
represents their conditional independence relations. In such cases,
Richardson et al. [2002] propose the use of an extended space of
graphs called maximal ancestral graphs (MAGs), which, in addition
to directed and undirected edges, also may include bidirected (↔)

10



1.2. Causal learning

edges. Here, we do not formally define MAGs, and rather focus
on the overall idea behind their use for causal discovery. Unlike in
CPDAGs, an undirected edge in a MAG does not reflect uncertainty
about the true edge orientation, but rather represents a statistical
dependence arising from an implicit conditioning variable. Here, we
assume that no conditioning variables exist, and therefore disregard
such edges from the below discussion about the causal interpretation
of MAGs.

Every DAG G over the full set of variables X can be transformed
into a unique MAG G∗ over the observed variables X∗ by ‘marginal-
izing out’ the latent variables [Richardson et al., 2002, p. 981]. This
MAG then serves as the causal inferential target. It encodes ances-
tral causal information about the underlying DAG in the following
sense. Whenever Xi → Xj in G∗, then Xi is an ancestor of Xj in G,
and whenever Xi ← Xj or Xi ↔ Xj in G∗, then Xi is not an ances-
tor of Xj in G. In words, every arrow tail indicates a cause and every
arrow head indicates a non-cause. Further, G∗ encodes, via a graph-
ical independence relation called m-separation, the same graphical
independence statements that hold true among the observed vari-
ables in G. That is, for any disjoint subsets A,B,C ⊆ X∗, it holds
that

A ⊥⊥mG∗B |C ⇔ A ⊥⊥dGB |C, (1.2.3)

where ⊥⊥mG∗ and ⊥⊥dG refer to m-separation in G∗ and d-separation
in G, respectively [Richardson et al., 2002, Theorem 4.18]. Conse-
quently, any distribution P over X that is Markovian and faithful
w.r.t. G (in terms of d-separation) induces a marginal P∗ over X∗
which is Markovian and faithful w.r.t. G∗ (in terms of m-separation).
In such a case, P∗ identifies the Markov equivalence class [G∗]m of
G∗. This equivalence class can be represented in terms of a par-
tial ancestral graph (PAG), which may contain directed, undirected,
bidirected, nondirected (((), partially undirected ( () and partially
directed (→() edges. Every non-circle mark in a PAG is a mark
common to all MAGs in the associated equivalence class [G∗]m, and
therefore corresponds to an ancestral causal relation which is iden-
tified from P∗. If every circle mark in a PAG corresponds to a mark
that is not common to all MAGs in [G∗]m, then this PAG is called
maximally informative. This PAG represents the maximal amount of
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X1

H X2

X3

DAG
true causal graph

X1

X2

X3

MAG
inferential target

X1

X2

X3

PAG
identified from CIs

Figure 1.4. Left: true causal graph GM . Since no d-separation
holds true among the observed variables in GM , no fully connected
MAG over {X1, X2, X3} can be rejected as a candidate for the true
inferential target G∗M (middle). This results in an uninformative
Markov equivalence class [G∗M ]m with an associated maximally in-
formative PAG that contains only circle edge marks (right). In this
example, it is thus not possible to infer any ancestral causal relations
among {X1, X2, X3} solely based on conditional independencies.

ancestral causal information identifiable from P∗ via m-separation.
Let us return to our running example. Suppose that we do not

observe the variable X4. This situation is depicted in Figure 1.4
(left), where we have replaced X4 by H (for ‘hidden’). The corre-
sponding MAG G∗M (Figure 1.4 middle) represents ancestral causal
relations among the observed variables in GM . For example, the edge
X1 → X3 in G∗M says that X1 is an ancestor of X3 in GM and that
X3 is not an ancestor of X1 in GM . In this example, no d-separation
statement holds true among the observed variables {X1, X2, X3} in
GM , implying the non-existence of any m-separations in G∗M . In the
equivalence class [G∗M ]m, no edge mark is common to all MAGs, re-
sulting in a maximally informative PAG that contains no ancestral
causal information (Figure 1.4 right).
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1.2. Causal learning

1.2.2.3. Invariant causal prediction

We now briefly introduce the causal discovery method which will
be the subject of study in Chapter 2. It is based on the principle
of invariant causal prediction first proposed by Peters et al. [2016],
and extends the existing methodology to a setting with hidden vari-
ables. Rather than aiming at learning all of the causal structure,
our method tries to infer the set of (observable) causal parents of a
certain target variable Y in cases where some of the direct causes
remain unobserved. It makes a simplicity assumption on the hidden
variables and exploits the existence of an exogenous ‘environmen-
tal variable’ E. Formally, our method does not rely on data being
generated by an SCM. In particular, the environmental ‘variable’ is
not assumed to be drawn from a probability distribution, and may
simply be an index describing different experimental settings or con-
ditions (‘environments’) under which the data were generated. To
match up with the rest of this chapter, we here formulate our method
in terms of an SCM.

Consider an SCM over variables (X,Y,H,E), where X ∈ Rd is
a vector of observed covariates, Y is a real-valued target variable
of interest, H is a discrete unobserved direct cause of Y , say H ∈
{1, . . . , `}, for some (small) integer ` ≥ 2, and E is a real-valued
variable that is known to be a source node in the causal graph over
(X,Y,H,E). Our method then aims to infer the set S∗ ⊆ {1, . . . , d}
of causal parents of Y among the observed covariates X (here, we
identify each predictor Xj by its index j ∈ {1, . . . , d}). The variable
E is allowed to directly influence all parts of the system except for the
target variable Y itself. Under this assumption, the set S∗ satisfies
the following key property. For all x, e, it holds that

PY |(XS∗=x,E=e) =
∑̀
j=1

PY |(XS∗=x,H=j,E=e)P(H = j |XS∗ = x,E = e)

=
∑̀
j=1

PY |(XS∗=x,H=j)P(H = j |XS∗ = x,E = e),

(1.2.4)
where the second equality follows from the conditional independence
Y ⊥⊥ E | (XS∗ , H). That is, the distribution of Y | (XS∗ = x,E = e)
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1. Introduction

can be expressed as an `-fold mixture of the distributions Y | (XS∗ =
x,H = j), j ∈ {1, . . . , `}, each of which does not depend on the value
e of the environmental variable E. This property can be exploited
for causal discovery. The population version of our proposed algo-
rithm ICPH (‘invariant causal prediction in the presence of hidden
variables’) proceeds as follows: (1) run through all possible subsets
of predictors S ⊆ {1, . . . , d} and check whether (1.2.4) holds true for
S∗ = S, and (2) output the set

S̃ :=
⋂

S satisfies (1.2.4)

S (1.2.5)

of predictors necessary for (1.2.4) to hold.1 We construct an esti-
mator Ŝ of S̃ by taking the intersection over all sets S ⊆ {1, . . . , d}
which pass a statistical test for the hypothesis of (1.2.4) being sat-
isfied. Our main theoretical result is the asymptotic false discovery
control of our method. In words, it says that, as the number of data
points tends to infinity, the estimator Ŝ is, with controllable large
probability, a subset of the true set S∗ of observable causal parents.

Apart from obtaining provable false discovery control, our method
is applicable in situations where purely constraint-based methods
cannot be expected to work. To see this, consider once again our
running example. Let Y = X3 be the target variable of interest, and
assume that H = X4 is discrete-valued and unobserved. Assume fur-
ther that the variable E directly affects X1, X2 and H. The causal
graph for this system of variables can be seen in Figure 1.5 (left),
where the inferential target S∗ = {2} is indicated in green. Assum-
ing faithfulness (this assumption is not necessary for the above false
discovery control to hold true), the only sets satisfying (1.2.4) are
{2} and {1, 2}. In the population case, our estimator therefore cor-
rectly infers S̃ = {2}. It is not possible to make the same inference
solely based on conditional independencies, see Figure 1.5 (right).

1.2.3. Learning causal effects

Often, we are interested not only in learning the existence of causal
relations (such as ‘X causes Y’), but also in quantifying the strength

1We define the intersection over an empty index set to be the empty set.
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E X1

H X2

Y

DAG
true causal graph

E X1

X2

Y

graph identified from CIs
& background knowledge

Figure 1.5. Left: true causal graph for the SCM in Figure 1.1,
with an additional exogenous variable E. Our method tries to infer
set S∗ = {2} of observable causal parents of Y (green). In this ex-
ample, under the assumption of faithfulness, the population version
(1.2.5) of our estimator correctly identifies S∗. Right: graph rep-
resenting the maximal causal information that can be obtained via
m-separation. This graph is constructed in three steps: (1) compute
the Markov equivalence class of the MAG associated with the true
causal DAG, (2) disregard all MAGs not compatible with E being
a source node (i.e., all MAGs containing edges of the form E − • or
E ← • for some generic node •), and (3) for every pair of observed
variables, use the same edge marks as for PAGs to represent the vari-
ation of the corresponding edge mark among all plausible MAGs. In
this example, no causal relations among the variables (X1, X2, Y )
can be identified via this procedure.

of these relations. For example, we may be interested in assessing
the expected value of Y under a range of different interventions
on X. In other words, we want to learn properties of intervention
distributions. This task requires causal background knowledge. In
general, however, full identification of the causal structure is not
necessary for computing intervention effects. E.g., it suffices to have
access to a suitable ‘adjustment set’, a definition of which we give
below. We further discuss the influence of hidden variables, and
introduce the instrumental variables approach, which plays a central
role in Chapter 3.
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1.2.3.1. Covariate adjustment

Some intervention distributions can be directly expressed as com-
putable functionals of the observational distribution and (parts of)
the causal graph. Formulas describing such functional relationships
are called ‘adjustment formulas’ and exist in various forms. Below,
we give an example of an adjustment formula due to Pearl [2009].
For simplicity, we assume the existence of densities, which we denote
by p.

Proposition 1.1 (Backdoor adjustment). Consider an SCM M
over a set of variables X, and let X,Y ∈ X. Assume that Y is not
a causal parent of any of the variables from X. Let Z ⊆ X \ {X,Y }
be a set of variables satisfying that (i) Z contains no descendant of
X, and (ii) Z blocks all paths from X to Y that are of the form
X ← · · ·Y (they enter X ‘through the backdoor’). Then, for all x, y,
it holds that,

pM(x)(y) =

∫
z

pM (y |x, z) pM (z)dz, (1.2.6)

i.e., the distribution of Y in the intervened model M(x) can be com-
puted from the observational distribution over (X,Y, Z).

A set Z which satisfies Equation (1.2.6) is called a ‘valid adjust-
ment set’ for the pair (X,Y ). A proof of Proposition 1.1 can be found
in [Peters et al., 2017, Proposition 6.41], for example. Here, we re-
frain from formally defining the notion of path blocking, and rather
illustrate the above result using our running example. Assume that
we are interested in computing the intervention distribution PX3

M(x2),

for some x2 ∈ R. As seen in Figure 1.6, this distribution can be
obtained by adjusting for X1, for X4, or for both of these variables.

1.2.3.2. Hidden variables

If relevant parts of the system remain unobserved, there may not ex-
ist a valid adjustment set among the set of observed variables. This
poses a major statistical challenge, since in general, it is impossible
to distinguish between the statistical dependencies originating from
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X1

X4 X2

X3

true causal graph valid adjustment sets

• {X1}

• {X4}

• {X1, X4}

Figure 1.6. True causal graph (left), and valid adjustment sets for
the pair (X2, X3) (right). The only backdoor path from X2 to X3 is
the path X2 ← X1 ← X4 → X3 (red), which is blocked by each of
the displayed sets of nodes. Any such set therefore serves as a valid
adjustment set for computing the intervention distribution PX3

M(x2),
see Proposition 1.1.

causal relations, and those induced by hidden confounders. To illus-
trate this point, assume that the model class M in our running ex-
ample corresponds to the set of SCMs with linear structural assign-
ments and zero-mean Gaussian noise variables. For simplicity, as-
sume that in the true model M from Figure 1.1, all linear coefficients
are equal to one, and all noise variables have unit variance. Say we
are interested in the causal coefficient β := d

dx2
EM(x2)[X3] = 1, but

we do not have access to the variables X1 and X4, i.e., no valid ad-
justment set exists for the pair (X2, X3). This situation is illustrated
in Figure 1.7 (left). The figure additionally displays two alternative
models fromM which agree with M on the causal structure as well
as on the entailed distribution over (X2, X3), but which induce dif-
ferent causal effects X2 → X3. Even if the true causal structure of
M is known, β can thus not be identified from the observational dis-
tribution over (X2, X3). This problem can sometimes be remedied
by the use of instrumental variables.
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Figure 1.7. True causal model M (left) and two alternative mod-
els (middle and right) which agree with M on the causal structure
as well as on the observational distribution over (X2, X3). Num-
bers next to arrows and nodes indicate linear coefficients and error
variances, respectively, in the corresponding structural assignments.
The noise variables in the two alternative models have been chosen
carefully to induce the correct observational distribution. Even given
access to the full observational distribution over (X2, X3) along with
the true causal graph, it is impossible to infer the strength of the
causal relation X2 → X3.

1.2.3.3. Instrumental variables

The instrumental variables method [e.g., Theil, 1953, Fuller, 1977] is
a popular approach for adjusting for latent confounders. It exploits
the existence of observed exogenous variables, which are facilitated
as ‘instruments’ for inferring causal effects. Although the method
does not rely on data being generated by an SCM, we here make
this assumption to employ the causal formalism introduced in Sec-
tion 1.1. Consider an SCM over a real-valued response Y ∈ R, a
vector of observed covariates X ∈ Rd, additional observed variables
A ∈ Rr, and hidden variables H ∈ Rq. We focus on the case of a
linear causal influence X → Y . Assume that there exists a noise
variable εY ⊥⊥ (X,H), a measurable function h : Rq+1 → R, and a
vector of coefficients β ∈ Rd, such that the structural assignment for
Y is given as

Y := X>β + h(H, εY ),
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1.2. Causal learning

where ξY := h(H, εY ) has mean zero.2 We do not state the remain-
ing structural assignments, but we explicitly allow for the hidden
variables H to enter the assignments for X. As highlighted in the
previous section, in such a case, the causal coefficient β is gener-
ally not identified from the observational distribution over (X,Y ).
This is where the variables A come into play. Under the assumption
that (i) E[AξY ] = 0 and (ii) E[AA>], E[AX>] are all of full column
rank, β is uniquely determined by the observational distribution
over (X,Y,A). Indeed, under (i) and (ii), we have the well-defined
expression(

E[XA>]E[AA>]E[AX>]
)−1 E[XA>]E[AA>]E[AY ]

=
(
E[XA>]E[AA>]E[AX>]

)−1 E[XA>]E[AA>]E[AX>]β

+
(
E[XA>]E[AA>]E[AX>]

)−1 E[XA>]E[AA>]E[AξY ]

= β,

where the left-most side is a function only of the observational dis-
tribution over (X,Y,A). If (i) and (ii) are satisfied, the variables in
A are said to be instruments for (X,Y ). In the terminology from
Section 1.2.1, the above equation defines a population algorithm for
inferring β. A consistent estimator for β (a sample algorithm) can
be obtained by substituting all expectations by their empirical coun-
terparts, resulting in the so-called two stage least squares estimator
(TSLS) [Theil, 1953].

The instrumental variables method has been studied for several
decades, and is particularly prominent in the econometrics litera-
ture, where several alternatives to the TSLS have been proposed
[e.g., Anderson and Rubin, 1949, Theil, 1958, Fuller, 1977]. Most
of these methods assume a linear causal relationship X → Y , as
is done in the formulation above. The question arises what can be
done in the nonlinear case, i.e., where the structural assignment for
Y is given by Y := f(X) + h(H, εY ) for some nonlinear function f .
If f belongs to some known parametric class of C2 functions, identi-
fiability can be ensured by assuming that (i)′ E[ξY |A] = 0 together
with a generalized version of the rank conditions in (ii), which we

2This can be assumed w.l.o.g. by including an intercept into X.
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make explicit in Appendix B.2. These conditions are inspired by
the work of Amemiya [1974], Jorgenson and Laffont [1974], Kelejian
[1971], who study consistency of estimators in such function classes.

Unless precise background knowledge is available, it is usually
hard to justify the membership of the true causal function f to
some priorly specified (low-dimensional) nonlinear function class.
We therefore require procedures with data-driven model complexi-
ties. While a plethora of such methods exists for standard regres-
sion problems, only few are applicable in the instrumental variables
setting. Moreover, most existing methods, such as the one pro-
posed by Racine and Hayfield [2018], focus on in-sample estimation
of the causal function, and cannot be expected to provide causal
predictions for values of X that lie outside the range of the train-
ing data. Extrapolating estimates outside of this domain requires
additional assumptions on the causal function class. As part of our
contribution in Chapter 3, we propose a novel nonlinear instrumental
variables estimator called the NILE (‘Nonlinear Intervention-robust
Linear Extrapolator’). It achieves flexible in-sample estimation via
a penalized B-spline approach, and exploits a linear extrapolation
assumption on f to obtain out-of-sample estimates.

1.3. Distributional robustness

The NILE estimator inherits its name from the well-known fact that
a prediction model which uses the true causal relationship f to pre-
dict Y from X remains valid under arbitrary interventions on the
covariates (i.e., it is ‘robust’ w.r.t. such interventions). This result
may be seen as a special case of distributional robustness, which
describes the property of a regression model of obtaining predic-
tive guarantees across a range of test distributions that differ from
the training distribution. This property is of particular interest in
situations where we require predictions for Y under unprecedented
circumstances, e.g., when spatially or temporally extrapolating cli-
mate models, when applying learned marketing strategies to a newly
evolving industry, or in reinforcement learning tasks, when transfer-
ring knowledge between two different episodes of an arcade game.
In all such cases, the test distribution for (X,Y ) may differ from its
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training distribution.
The problem of finding distributionally robust regression mod-

els has been well-studied, and is known in different variants un-
der a range of different names, e.g., domain generalization, out-of-
distribution prediction or covariate shift; see Section 3.1.2 for a de-
tailed list of references. The general objective is to minimize the
worst-case prediction risk supP̃∈N (P) EP̃[(Y −f�(X))2] across all test

distributions P̃ in some suitable neighborhood N (P) of the training
distribution P over (X,Y ). This neighborhood is often taken to be
a ball around the training distribution with respect to some suitable
metric, e.g., the Wasserstein metric.

In Chapter 3, we consider test distributions that arise from inter-
ventions in a causal model; an approach that is motivated by the
idea that distributional changes may have causal explanations. A set
of test distributions induced in such a way may differ substantially
from any neighborhood that can be realized as a ball with respect to
a commonly used metric, and arguably, in some scenarios, describes
a more realistic class of distributions to be encountered in practice.
We consider a class of SCMs M which, in addition to X and Y ,
allow for the existence of exogenous variables A ∈ Rr and hidden
variables H ∈ Rq. Interventions may occur on either X or A. If I
is a set of such interventions, M ∈ M is the true data generating
model, and F is the class of permitted prediction functions, then we
consider the minimax problem

arg min
f�∈F

sup
i∈I

EM(i)[(Y − f�(X))2]. (1.3.1)

A solution to this problem is called a minimax solution. We prove
that, under a large class of interventional settings, the causal predic-
tion function is a minimax solution, and that any alternative predic-
tion function is not robust to misspecifications of the intervention
set I.

Identifying minimax solutions from observational data is closely
related to the overall inference challenges discussed in Section 1.2.1:
if ψ(M) is the set of solutions to (1.3.1), then, based on PM , it is
only possible to identify the class{

ψ(M̃) : M̃ ∈M and PM̃ = PM
}
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of plausible solution sets. This motivates the definition of distribu-
tion generalization, which requires the existence of a function f∗ that
is a member of ψ(M̃) for all M̃ ∈ M with PM̃ = PM .3 We provide
sufficient conditions on PM , I and M which allow for distribution
generalization, and present corresponding impossibility results prov-
ing the necessity of some of these conditions.

1.4. Modeling real data

So far, we have sojourned in the idealized realm of mathematical
models. We used the framework of SCMs to formally quantify causal
relationships among random variables, and discussed various tech-
niques for estimating such relationships from i.i.d. observational or
partly intervened data. In reality, true i.i.d. replications are hard
to find. Any two distinct phenomena occur under distinct condi-
tions, and different observations must, in principle, be regarded as
realizations from different distributions. Often, these differences are
negligible enough to justify an i.i.d. assumption. If the data consist
of sufficiently heterogeneous or dependent measurements, however,
it may be more sensible to regard them as a single outcome of some
joint distribution over all observations in the data set.

Figure 1.8 (right) shows a real-world spatial data set ZS = (Zs)s∈S
containing multivariate measurements from a vector of variables
Z = (Z1, Z2, Z3, Z4) ∈ R4 observed at several spatial locations
s ∈ S ⊆ R2. (We here use Z rather than X to align with the
notation used in Chapter 4.) When modeling these data with a
classical SCM over (Z1, Z2, Z3, Z4), e.g., the one from Figure 1.1,
we make the implicit assumption that there are no causal or sta-
tistical relations between any observations obtained from different
locations. That is, we assume a causal structure as shown in Fig-
ure 1.8 (left), where each of the five graphs corresponds to a different
spatial location. As visually indicated by the strong spatial autocor-
relation patterns in the data (Figure 1.8 right), this does not seem
like a sensible assumption. To allow for spatial dependencies, we

3We only require f∗ to approximately solve the minimax problems associated
with the models M̃ (see Chapter 3). Here, we neglect this detail in favor of
notational simplicity.
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Figure 1.8. Inadequacy of classical causal models for modeling
the causal dynamics of real-world spatial data sets. When using
the SCM from Figure 1.1 to model the multivariate spatial data set
shown in the right panel, we make the implicit assumption that the
causal graph over all measurements decomposes into several discon-
nected copies of the same graph; one copy for each observed location.
As becomes evident from the strong correlation structures in the
data, this spatial independence assumption can hardly be justified.

need a joint causal model across all observations in the data set.
SCMs are not easily applicable, since they would require the indi-
vidual specification of 4 · |S| structural assignments, each of which
possibly depends on 4 · |S| − 1 variables. There are two main diffi-
culties associated with this task. First, it may not be obvious how
to resolve the problem of causal cycles. In a time series setting,
one can ensure the existence of a well-defined observational distri-
bution by only allowing for causal relations to be directed forward in
time. Without the notion of a ‘forward’-direction, this idea cannot
be directly transferred to spatial data. Here, one may reasonably
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assume that every variable can be causally influenced by all other
variables within a suitable spatial neighborhood. This assumption
directly leads to causal cycles. An SCM specified in this way may
not entail an observational distribution. Second, drawing inference
about an SCM based on a single observation requires homogeneity
assumptions on its structural assignments. For example, one may
assume that the functional dependence of each variable on its spatial
neighbors remains the same across space. While effectively reducing
the degrees of freedom, such an approach demands a large num-
ber of complicated boundary conditions, in particular for irregularly
shaped domains like the one in Figure 1.8.

For simplicity, we have highlighted the above challenges using a
purely spatial data set. In fact, the maps in Figure 1.8 are aggre-
gations of a spatio-temporal data set related to armed conflict and
tropical forest loss in Colombia, which we analyze in Chapter 4. To
quantify the causal influence of conflict on forest loss, we require
a class of causal models for spatio-temporal data. As part of our
contribution, we develop such a class of models, formulated in terms
of stochastic processes. Within this framework, a spatio-temporal
data set may be viewed as a sample from an underlying causal pro-
cess, observed at discrete points in space and time. Our approach is
based on the principle of autonomy discussed in Section 1.1.4. We
now illustrate it using a spatio-temporal version of our running ex-
ample. To that end, let Z be spatio-temporal stochastic process with
coordinate processes denoted by Z(j), j ∈ {1, 2, 3, 4}. We can define
causal relations among these coordinate processes by specifying that
the joint density of Z admits the factorization4

p(Z) = p(Z(1) |Z(4)) p(Z(2) |Z(1)) p(Z(3) |Z(2),Z(4)) p(Z(4)),

and that, in addition, the above factors correspond to autonomous
units which allow for localized interventions. That is, we assume that
an intervention i in the data generating mechanism for Z, which in-
tervenes on all of a certain coordinate process, say on Z(2), changes
the joint distribution of Z only by replacing the conditional for Z(2)

by some new distribution pi(Z(2) |Z(1)). For a data generating pro-

4For simplicity, we here assume the existence of densities, but this is not for-
mally required by our model class (see Chapter 4).
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cess which follows such an interventional behavior, we may reason-
ably think of the above conditionals as models for causal mecha-
nisms.

Unlike SCMs, our models only accommodate interventions on cer-
tain bundles of variables at once. As such, it allows for causal rela-
tions between variables within each bundle without modeling these
explicitly. It is a useful class of models if the main objective lies
in quantifying causal relations among the different coordinate pro-
cesses, and if the causal dynamics within each of these processes are
only of secondary interest. In Chapter 4, we consider the problem of
quantifying the causal influence of a vector of covariates X ∈ Rd on
a real-valued response Y in the presence of some latent confounders
H ∈ R`. Within the above model class, this means that we are
considering a stochastic process (Y,X,H) whose density admits the
causal factorization

p(Y,X,H) = p(Y |X,H) p(X |H) p(H).

By imposing additional assumptions on the conditional p(Y |X,H),
our framework allows us to formally define a notion of the ‘causal
effect’ of X on Y. We show how to estimate the causal effect from
observational data, and develop a procedure for testing the hypoth-
esis of this effect being zero. Our methods exploit the assumption
of H being time-invariant.
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els and Causal Inference
in the Presence of Dis-
crete Latent Variables
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Jonas Peters

Abstract
Given a response Y and a vector X = (X1, . . . , Xd) of d pre-

dictors, we investigate the problem of inferring direct causes of Y

among the vector X. Models for Y that use all of its causal co-

variates as predictors enjoy the property of being invariant across

different environments or interventional settings. Given data from

such environments, this property has been exploited for causal dis-

covery. Here, we extend this inference principle to situations in

which some (discrete-valued) direct causes of Y are unobserved.

Such cases naturally give rise to switching regression models. We

provide sufficient conditions for the existence, consistency and asymp-

totic normality of the MLE in linear switching regression models

with Gaussian noise, and construct a test for the equality of such

models. These results allow us to prove that the proposed causal

discovery method obtains asymptotic false discovery control under

mild conditions. We provide an algorithm, make available code,

and test our method on simulated data. It is robust against model

violations and outperforms state-of-the-art approaches. We fur-

ther apply our method to a real data set, where we show that it

does not only output causal predictors, but also a process-based

clustering of data points, which could be of additional interest to

practitioners.
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2. Causal discovery and discrete latent variables

2.1. Introduction

2.1.1. Causality

In many real world applications, we are often interested in causal
rather than purely statistical relations. In the last decades, sem-
inal work by Imbens and Rubin [2015], Spirtes et al. [2000], and
Pearl [2009] has provided a solid mathematical basis for formalizing
causal questions. They often start from a given causal model in the
form of a structural causal model (SCM) or potential outcomes. In
practice, we often do not know the underlying causal model, and
the field of causal discovery aims at inferring causal models from
data. There are several lines of work that are based on different
assumptions. Among them are constraint-based methods [Spirtes
et al., 2000, Pearl, 2009, Maathuis et al., 2009], score-based meth-
ods [Chickering, 2002, Silander and Myllymak, 2006, Koivisto, 2006,
Cussens, 2011], methods based on restricted SCMs [Shimizu et al.,
2006, Mooij et al., 2016, Peters et al., 2017], and methods based on
the independence of causal mechanisms [Janzing et al., 2012, Steudel
et al., 2010]. The problem of hidden variables has been addressed
in several works [e.g., Spirtes et al., 1995, Silva et al., 2006, Silva
and Ghahramani, 2009, Sgouritsa et al., 2013, Claassen et al., 2013,
Ogarrio et al., 2016, Silva and Evans, 2016, Richardson et al., 2017,
Tsagris et al., 2018]. These methods usually consider slightly differ-
ent setups than our work does; e.g., they concentrate on full causal
discovery (rather than estimating causal parents), and consider dif-
ferent model classes.

In this work, instead of aiming to learn all of the data gener-
ating structure, we consider the subproblem of inferring the set
of causal parents of a target variable Y among a set of variables
X = (X1, . . . , Xd). We furthermore assume that some of the causal
predictors are unobserved. While in general, this is a notoriously
hard problem to solve, we will constrain the influence of the hidden
variables by assuming that they take only few different values. Such
a model is applicable whenever the system may be in one of several
unobserved states and was motivated by an example from Earth sys-
tem science, see Section 2.5.2. We further assume that the data are
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2.1. Introduction

not purely observational but come from different environments.
For the case when all causal parents are observed, Peters et al.

[2016] recently proposed the method invariant causal prediction (ICP).
Under the assumption that the causal mechanism generating Y from
its causal predictors remains the same in all environments (“invari-
ant prediction”), it is possible to obtain the following guarantee:
with large probability, the inferred set is a subset of the true set of
causal predictors. A concise description of the method is provided
in Section 2.1.3.

If some of the causal predictors are unobserved, the above guar-
antee will, in general, not hold anymore. Under the additional as-
sumption of faithfulness, one can still prove that ICP infers a subset
of the causal ancestors of the target Y . In many cases, however,
the method of ICP infers the empty set, which is not an incor-
rect, but certainly an uninformative answer. This paper extends
the idea of invariant models to situations, in which relevant parts of
the system are unobserved. In particular, we suggest a relaxation
of the invariance assumption and introduce the formal framework
of h-invariance (“hidden invariance”). If the influence of the hidden
variable is not too complex, e.g., because it takes only a few discrete
values, this property is restrictive enough to be exploited for causal
discovery. The assumption of h-invariance gives rise to switching re-
gression models, where each value of the hidden variable corresponds
to a different regression coefficient (we provide more details in Sec-
tion 2.1.2). For building an invariance-based procedure, we require
a test for the equality of switching regression models. In this paper,
we provide such a test and show that it satisfies asymptotic level
guarantees. This result allows us to prove that our causal discov-
ery procedure is asymptotically correct under mild assumptions. In
case of sequential data, we allow for the possibilities that the hidden
variables follow an i.i.d. structure or a hidden Markov model [e.g.,
Zucchini et al., 2016]. We suggest efficient algorithms, provide code
and test our method on simulated and real data.

2.1.2. Switching regression models

Switching regression models are often used to model statistical de-
pendencies that are subject to unobserved “regime switches”, and
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2. Causal discovery and discrete latent variables

can be viewed as ordinary regression models that include interac-
tions with a discrete hidden variable. Roughly speaking, each data
point (Xi, Yi) is assumed to follow one of several different regression
models; a formal definition is given in Definition 2.1. Switching re-
gression models have been used in various disciplines, e.g., to model
stock returns [Sander, 2018], energy prices [Langrock et al., 2017]
or the propagation rate of plant infections [Turner, 2000]. Statisti-
cal inference in switching regression models is a challenging problem
for several reasons: switching regression models are non-identifiable
(permuting mixture components does not change the modeled condi-
tional distribution), and their likelihood function is unbounded (one
may consider one of the regression models containing a single point
with noise variance shrinking toward zero) and non-convex. In this
paper, we circumvent the problem of an unbounded likelihood func-
tion by imposing parameter constraints on the error variances of the
mixture components [e.g., Hathaway, 1985, Goldfeld and Quandt,
1973]. We then construct a test for the equality of switching re-
gression models by evaluating the joint overlap of the Fisher confi-
dence regions (based on the maximum likelihood estimator) of the
respective parameter vectors of the different models. We establish
an asymptotic level guarantee for this test by providing sufficient
conditions for (i) the existence, (ii) the consistency and (iii) the
asymptotic normality of the maximum likelihood estimator. To the
best of our knowledge, each of these three results is novel and may
be of interest in itself. We further discuss two ways of numerically
optimizing the likelihood function.

Without parameter constraints, the likelihood function is unbounded
and global maximum likelihood estimation is an ill-posed problem
[e.g., De Veaux, 1989]. Some analysis has therefore been done on
using local maxima of the likelihood function instead. Kiefer [1978]
show that there exists a sequence of roots of the likelihood equa-
tions that yield a consistent estimator, but provide no information
on which root, in case there is more than one, is consistent. Another
popular approach is to impose parameter constraints on the error
variances of the mixture components. In the case of ordinary, uni-
variate Gaussian mixture models, Hathaway [1985] formulate such a
constrained optimization problem and prove the existence of a global
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optimum. In this paper, we present a similar result for switching re-
gression models. The proof of Hathaway [1985] uses the fact that the
maximum likelihood estimates of all mean parameters are bounded
by the smallest and the largest observation. This reasoning can-
not be applied to the regression coefficients in switching regression
models and therefore requires a modified argument. We also pro-
vide sufficient conditions for the consistency and the asymptotic nor-
mality (both up to label permutations) of the proposed constrained
maximum likelihood estimator. Our proofs are based on the proofs
provided by Bickel et al. [1998] and Jensen and Petersen [1999], who
show similar results for the maximum likelihood estimator in hidden
Markov models with finite state space. Together, (ii) and (iii) prove
the asymptotic coverage of Fisher confidence regions and ensure the
asymptotic level guarantee of our proposed test.

Readers mainly interested in inference in switching regression mod-
els, may want to skip directly to Section 2.3. Additionally, Sec-
tions 2.2.5 and 2.2.6 contain our proposed test for the equality of
switching regression models that is available in our code package as
the function test.equality.sr.

2.1.3. The principle of invariant causal prediction

This section follows the presentation provided by Pfister et al. [2019b].
Suppose that we observe several instances (Y1, X1), . . . , (Yn, Xn) of
a response or target variable Y ∈ R and covariates X ∈ R1×d.
We assume that the instances stem from different environments
e ⊆ {1, . . . , n}, and use E to denote the collection of these, i.e.,⋃̇
e∈Ee = {1, . . . , n}. These environments can, for example, corre-

spond to different physical or geographical settings in which the sys-
tem is embedded, or controlled experimental designs in which some
of the variables have been intervened on. The crucial assumption
is then that there exists a subset S∗ ⊆ {1, . . . , d} of variables from
X that yield a predictive model for Y that is invariant across all
environments.

More formally, one assumes the existence of a set S∗ ⊆ {1, . . . , d},
such that for all x and all 1 ≤ s, t ≤ n, we have

Ys | (XS∗

s = x)
d
= Yt | (XS∗

t = x), (2.1.1)
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2. Causal discovery and discrete latent variables

where XS∗

t denotes the covariates in S∗ at instance t. For simplicity,
the reader may think about (2.1.1) in terms of conditional densities.
Also, the reader might benefit from thinking about the set S∗ in the
context of causality, which is why we will below refer to the set S∗

as the set of (observable) direct causes of the target variable. If, for
example, data come from a structural causal model (which we for-
mally define in Appendix A.1), and different interventional settings,
a sufficient condition for (2.1.1) to hold is that the structural assign-
ment for Y remains the same across all observations, i.e., there are
no interventions occurring directly on Y . In Section 2.2.3, we will
discuss the relationship to causality in more detail. Formally, how-
ever, this paper does not rely on the definition of the term “direct
causes”.

Since each instance is only observed once, it is usually hard to
test whether Equation (2.1.1) holds. We therefore make use of the
environments. Given a set S ⊆ {1, . . . , d}, we implicitly assume that
for every e ∈ E , the conditional distribution PYt|XSt

1 is the same for
all t ∈ e, say P eY |XS , and check whether for all e, f ∈ E , we have

that
P eY |XS = P f

Y |XS . (2.1.2)

In the population case, Equation (2.1.2) can be used to recover (parts
of) S∗ from the conditional distributions P eY |XS : for each subset

S ⊆ {1, . . . , d} of predictors we check the validity of (2.1.2) and
output the set

S̃ :=
⋂

S satisfies (2.1.2)

S (2.1.3)

of variables that are necessary to obtain predictive stability. Under
assumption (2.1.1), S̃ only contains variables from S∗. For purely ob-

servational data, i.e., (Yt, Xt)
d
= (Ys, Xs) for all s, t, Equation (2.1.2)

is trivially satisfied for any set S ⊆ {1, . . . , d} and thus S̃ = ∅. It
is the different heterogeneity patterns of the data in different envi-
ronments that allow for causal discovery. If only a single i.i.d. data
set is available, the method’s result would not be incorrect, but it

1We use PYt|XSt
as shorthand notation for the family

(
PYt|(XSt =x)

)
x

of con-

ditional distributions.
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would not be informative either. Based on a sample from (Yt, Xt)t∈e
for each environment, Peters et al. [2016] propose an estimator Ŝ of
S̃ that comes with a statistical guarantee: with controllable (large)
probability, the estimated set Ŝ is contained in S∗. In other words,
whenever the method outputs a set of predictors, they are indeed
causal with high certainty.

In this paper, we consider cases in which the full set of direct
causes of Y is not observed. We then aim to infer the set of observ-
able causal variables S∗ ⊆ {1, . . . , d}. Since the invariance assump-
tion (2.1.1) cannot be expected to hold in this case, the principle
of invariant prediction is inapplicable. We therefore introduce the
concept of h-invariance, a relaxed version of assumption (2.1.1). If
the latent variables are constrained to take only few values, the h-
invariance property can, similarly to (2.1.3), be used for the inference
of S∗.

2.1.4. Organization of the paper

The remainder of the paper is organized as follows. Section 2.2
explains in which sense the principle of invariant causal predic-
tion breaks down in the presence of hidden variables and proposes
an adaptation of the inference principle. It also contains hypoth-
esis tests that are suitable for the setting with hidden variables.
In Section 2.3, we establish asymptotic guarantees for these tests.
This section contains all of our theoretical results on the inference
in switching regression models, and can be read independently of
the problem of causal inference. In Section 2.4, we combine the
results of the preceding sections into our overall causal discovery
method (ICPH), provide an algorithm and prove the asymptotic
false discovery control of ICPH. The experiments on simulated data
in Section 2.5 support these theoretical findings. They further show
that even for sample sizes that are too small for the asymptotic re-
sults to be effective, the overall method generally keeps the type
I error control. The method is robust against a wide range of
model misspecifications and outperforms other approaches. We ap-
ply our method to a real world data set on photosynthetic activ-
ity and vegetation type. Proofs of our theoretical results are con-
tained in Appendix A.3. All our code is available as an R pack-
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age at https://github.com/runesen/icph, and can be installed by
devtools::install_github("runesen/icph/code"), for example.
Scripts reproducing all simulations can be found at the same url.

2.2. Invariant causal prediction in the
presence of latent variables

Consider a collection (Y,X,H) = (Yt, Xt, Ht)t∈{1,...,n} of triples of

a target variable Yt ∈ R, observed covariates Xt ∈ R1×d and some
latent variables Ht ∈ R1×k. For simplicity, we refer to the index t
as time, but we also allow for an i.i.d. setting; see Section 2.3.1 for
details. When referring to properties of the data that hold true for
all t, we sometimes omit the index altogether.

In analogy to Section 2.1.3, we start by assuming the existence of
an invariant predictive model for Y , but do not require all relevant
variables to be observed. That is, we assume the existence of a set
S∗ ⊆ {1, . . . , d} and a subvector H∗ of H such that the conditional
distribution of Yt | (XS∗

t , H∗t ) is the same for all time points t. Based
on the observed data (Y,X), we then aim to infer the set S∗.

Section 2.2.1 shows why the original version of invariant causal
prediction is inapplicable. In Sections 2.2.2 and 2.2.4 we intro-
duce the formal concept of h-invariance and present an adapted
version of the inference principle discussed in Section 2.1.3. In Sec-
tions 2.2.5 and 2.2.6 we then present tests for h-invariance of sets
S ⊆ {1, . . . , d}, which are needed for the construction of an empir-
ical estimator Ŝ of S∗. A causal interpretation of the h-invariance
property is given in Section 2.2.3.

2.2.1. Latent variables and violation of invariance

The inference principle described in Section 2.1.3 relies on the invari-
ance assumption (2.1.1). The following example shows that if some
of the invariant predictors of Y are unobserved, we cannot expect
this assumption to hold. The principle of ordinary invariant causal
prediction is therefore inapplicable.
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Example 2.1 (Violation of invariance due to latent variables). We
consider a linear model for the data (Yt, X

1
t , X

2
t , H

∗
t )t∈{1,...,n} ∈

Rn×4. Assume there exist i.i.d. zero-mean noise variables ε1, . . . , εn
such that for all t, (X1

t , H
∗
t , εt) are jointly independent and

Yt = X1
t +H∗t + εt.

Assume furthermore that the distribution of the latent variable H∗t
changes over time, say E[H∗r ] 6= E[H∗s ] for some r, s. Then, with
S∗ := {1}, the conditional distribution PYt|(XS∗t ,H∗t ) is homogeneous
in time, but

E[Yr|XS∗

r = x] = x+ E[H∗r ] 6= x+ E[H∗s ] = E[Ys|XS∗

s = x],

which shows that PYt|XS∗t is not time-homogeneous, i.e., S∗ does not

satisfy (2.1.1).

The above example shows that in the presence of hidden variables,
assumption (2.1.1) may be too strong. The distribution in the above
example, however, allows for a different invariance. For all t, s and
all x, h we have that2

Yt | (XS∗

t = x,H∗t = h)
d
= Ys | (XS∗

s = x,H∗s = h). (2.2.1)

Ideally, we would like to directly exploit this property for the infer-
ence of S∗. Given a candidate set S ⊆ {1, . . . , d}, we need to check
if there exist H∗1 , . . . ,H

∗
n such that (2.2.1) holds true for S∗ = S.

Similarly to (2.1.3), the idea is then to output the intersection of all
sets for which this is the case. Without further restrictions on the
influence of the latent variables, however, the result will always be
the empty set.

2In the remainder of this work, we implicitly assume that for every t,
(Yt, Xt, Ht) is abs. continuous w.r.t. a product measure. This ensures the ex-
istence of densities ft(y, x, h) for (Yt, Xt, Ht). The marginal density ft(x, h)
can be chosen strictly positive on the support of (Xt, Ht) and thereby defines
a set of conditional distributions {Yt | (Xt = x,Ht = h)}(x,h)∈supp((Xt,Ht))
via the conditional densities ft(y |x, h) = ft(y, x, h)/ft(x, h). Strictly speak-
ing, we therefore assume that the conditional distributions can be chosen s.t.
(2.2.1) holds for all (x, h) ∈ supp((XS∗

t , H∗t )) ∩ supp((XS∗
s , H∗s )).
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Proposition 2.1 (Necessity of constraining the influence of H∗).
Let S ⊆ {1, . . . , d} be an arbitrary subset of the predictors Xt. Then,
there exist variables H1, . . . ,Hn such that (2.2.1) is satisfied for S∗ =
S and (H∗t )t∈{1,...,n} = (Ht)t∈{1,...,n}.

The proof is immediate by choosing latent variables with non-
overlapping support (e.g., such that for all t, P (Ht = t) = 1).
Proposition 2.1 shows that without constraining the influence of H∗,
(2.2.1) cannot be used to identify S∗. Identifiability improves, how-
ever, for univariate, discrete latent variables H∗ ∈ {1, . . . , `} with
relatively few states ` ≥ 2. Equation (2.2.1) then translates into
the following assumption on the observed conditional distributions
PYt |XS∗t : for all t, x it holds that

PYt|(XS∗t =x) =
∑̀
j=1

λjxtP
j
x , (2.2.2)

for some λ1
xt, . . . , λ

`
xt ∈ (0, 1) with

∑`
j=1 λ

j
xt = 1 and distribu-

tions P 1
x , . . . , P

`
x that do not depend on t. This fact can be seen

by expressing the conditional density of PYt|(XS∗t =x) as ft(y |x) =∫
ft(y |x, h)ft(h |x)dh. By (2.2.1), ft(y |x, h) does not depend on t.

Property (2.2.2) then follows by taking λjxt = P (H∗t = j |XS∗

t = x)
and letting P jx denote the distribution of Y1 | (XS∗

1 = x,H∗1 = j).
The conditional distributions of Yt | (XS∗

t = x) are thus assumed
to follow mixtures of ` distributions, each of which remains invari-
ant across time. The mixing proportions λxt may vary over time.
In the following subsection, we translate property (2.2.2) into the
framework of mixtures of linear regressions with Gaussian noise.
The invariance assumption on P 1

x , . . . P
`
x then corresponds to time-

homogeneity of the regression parameters of all mixture components.

2.2.2. Hidden invariance property

As motivated by Proposition 2.1, we will from now on assume that
H∗ only takes a small number of different values. We now formalize
the dependence of Y on (XS∗ , H∗) by a parametric function class.
We purposely refrain from modeling the dependence between ob-
servations of different time points, and come back to that topic in
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Section 2.3.1. Since the inference principle described in Section 2.1.3
requires us to evaluate (2.2.2) for different candidate sets S, we state
the following definition in terms of a general p-dimensional vector
X (which will later play the role of the subvectors XS , see Defini-
tion 2.2).

Definition 2.1 (Switching regression). Let X be a p-dimensional

random vector, ` ∈ N and λ ∈ (0, 1)` with
∑`
j=1 λj = 1. Let fur-

thermore Θ be a matrix of dimension (p+ 2)× ` with columns Θ·j =
(µj , βj , σ

2
j ) ∈ R × Rp × R>0, for j ∈ {1, . . . , `}. The joint distribu-

tion P of (Y,X) ∈ R(1+p) is said to follow a switching regression of
degree ` with parameters (Θ, λ), if there exist H ∼ Multinomial(1, λ)
and εj ∼ N (0, σ2

j ), j ∈ {1, . . . , `}, with (ε1, . . . , ε`) ⊥⊥ X, such that

Y =
∑̀
j=1

(µj +Xβj + εj)1{H=j},

where 1{H=j} denotes the indicator function for the event H = j.

A few remarks are in place. First, we will as of now let ` ≥ 2 be
fixed. The reader is encouraged to think of ` = 2, which is also the
case to be covered in most examples and experiments. (Non-binary
latent variables are considered in Appendix A.5.1.) Second, it will be
convenient to parametrize the matrix Θ by a map θ 7→ Θ(θ), θ ∈ T ,
where T is a subset of a Euclidean space. This allows for a joint
treatment of different types of parameter contraints such as requiring
all intercepts or all variances to be equal. We will use SRΘ(θ, λ |X)
(“Switching Regression”) to denote the distribution P over (Y,X)
satisfying Definition 2.1 with parameters (Θ(θ), λ), although we
will often omit the implicit dependence on Θ and simply write
SR(θ, λ |X). For now, the reader may think of (Θ, T ) as the un-
constrained parametrization, where T = (R×Rp×R>0)` and where
Θ consists of the coordinate projections Θij(θ) = θ(j−1)(p+2)+i. Fi-
nally, we will for the rest of this paper disregard the intercept terms
µj as they can be added without loss of generality by adding a con-
stant predictor to X.

The following definition and assumption translate (2.2.2) into the
model class SR.
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Definition 2.2 (h-invariance). A set S ⊆ {1, . . . , d} is called h-
invariant w.r.t. (Y,X) = (Yt, Xt)t∈{1,...,n} if there exist θ and λ1, . . . , λn
such that, for all t, P(Yt,XSt ) = SR(θ, λt |XS

t ).

Definition 2.2 describes an invariance in the regression parameters
θ and makes no restriction on the mixing proportions λ1, . . . , λn.
This allows the influence of the latent variable to change over time.
From now on, we assume the existence of an h-invariant set S∗.

Assumption 2.1. There exists a set S∗ ⊆ {1, . . . , d} which is h-
invariant w.r.t. (Y,X).

This assumption is at the very core of the proposed methodol-
ogy, with the unknown h-invariant set S∗ as inferential target. In
Section 2.2.3 we show that if the data (Y,X,H) are generated by
different interventions in an SCM (see Appendix A.1), in which the
variable H∗ ∈ {1, . . . , `} acts on Y , Assumption 2.1 is satisfied by
the set S∗ = PA0(Y ) of observable parents of Y . Here, interven-
tions are allowed to act on the latent variables, and thus indirectly
on the target Y . For illustrations of the h-invariance property, see
Figures 2.1 and 2.2.

2.2.3. Relation to causality

Assumption 2.1 is formulated without the notion of causality. The
following proposition shows that if the data (Y,X,H) do come from
an SCM, the set S∗ may be thought of as the set of observable
parents of Y .

Proposition 2.2 (Causal interpretation of S∗). Consider an SCM
over the system of variables (Yt, Xt, H

∗
t )t∈{1,...,n}, where for every

t, (Yt, Xt, H
∗
t ) ∈ R1 × Rd × {1, . . . , `}. Assume that the structural

assignment of Y is fixed across time, and for every t ∈ {1, . . . , n}
given by

Yt := f(X
PA0(Y )
t , H∗t , Nt),

where (Nt)t∈{1,...,n} are i.i.d. noise variables. Here, PA0(Y ) ⊆ {1, . . . , d}
denotes the set of parents of Yt among (X1

t , . . . , X
d
t ). The structural

assignments for the remaining variables X1, . . . , Xd, H∗ are allowed
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2.2. Invariant causal prediction

to change between different time points. Then, property (2.2.1) is
satisfied for S∗ = PA0(Y ). If furthermore the assignment f(·, h, ·) is
linear for all h ∈ {1, . . . , `} and the noise variables Nt are normally
distributed, then, Assumption 2.1 is satisfied for S∗ = PA0(Y ). That
is, the set of observable parents of Y is h-invariant with respect to
(Y,X) = (Yt, Xt)t∈{1,...,n}.

From a causal perspective, Proposition 2.2 informs us about the
behavior of PY |(XS∗=x) under interventions in the data generating

process. The set S∗ = PA0(Y ) will be h-invariant under any type
of intervention that does not occur directly on the target variable
(except through the latent variable H∗). The following example
demonstrates the h-invariance property for an SCM in which the as-
signments of some of the variables change between every time point.

Example 2.2. Consider an SCM over (Yt, Xt, H
∗
t )t∈{1,...,n}, where

for every t, the causal graph over (Yt, Xt, H
∗
t ) ∈ R1 × R3 × {1, 2}

is given as in Figure 2.1. The node E denotes the “environment
variable” and the outgoing edges from E to X1, X2 and H∗ indicate
that the structural assignments of these variables change throughout
time. The structural assignment of Y is fixed across time, and for
every t ∈ {1, . . . , n} given by

Yt := (1 +X2
t + 0.5Nt)1{H∗t =1} + (1 + 2X2

t + 0.7Nt)1{H∗t =2},

where (Nt)t∈{1,...,n} are i.i.d. standard Gaussian noise variables.
Then, by Proposition 2.2, the set S∗ = {2} of observable parents
of Y is h-invariant w.r.t. (Y,X), see Figure 2.1.

2.2.4. Inference of the h-invariant set

In general, Definition 2.2 does not define a unique set of predictors.
In analogy to Peters et al. [2016], we thus propose to output the
intersection of all h-invariant sets. We define

H0,S : S is h-invariant with respect to (Y,X), and (2.2.3)

S̃ :=
⋂

S:H0,S true

S, (2.2.4)
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Figure 2.1. An illustration of the h-invariance property based on
simulated data from the SCM in Example 2.2. The causal graph
(top) and rolling window estimates of regression coefficients in the
linear interaction model for the conditional distribution of Y given
(X1, H∗), (X2, H∗) and (X3, H∗), respectively (bottom). Within
both regimes H∗t = 1 and H∗t = 2 (corresponding to different back-
ground colors in the plot), the regression coefficient for X2 (green)
is time-homogeneous, and the set S∗ = {2} is therefore h-invariant
with respect to (Y,X). Due to heterogeneity in the data (“the vari-
able E acts on X1, X2 and H∗”), neither of the sets {1} or {3}
satisfy h-invariance. In practice, we test for h-invariance using en-
vironments, rather than rolling windows, see Section 2.2.5.
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2.2. Invariant causal prediction

where S runs over subsets S ⊆ {1, . . . , d}. In (2.2.4), we define the
intersection over an empty index set as the empty set. In practice, we
are given a sample from (Y,X), and our goal is to estimate S̃. Given
a family of tests (ϕS)S⊆{1,...,d} of the hypotheses (H0,S)S⊆{1,...,d},
we therefore define an empirical version of (2.2.4) by

Ŝ :=
⋂

S:ϕS accepts H0,S

S. (2.2.5)

Using that {ϕS∗ accepts H0,S∗} ⊆ {Ŝ ⊆ S∗}, we immediately obtain
the following important coverage property.

Proposition 2.3 (Coverage property). Under Assumption 1 and
given a family of tests (ϕS)S⊆{1,...,d} of (H0,S)S⊆{1,...,d} that are all

valid at level α, we have that P(Ŝ ⊆ S∗) ≥ 1 − α. In words, the
(setwise) false discovery rate of (2.2.5) is controlled at level α.

The set S∗ in Proposition 2.3 may not be uniquely determined by
the h-invariance property. But since our output is the intersection
(2.2.5) of all h-invariant sets, this ambiguity does no harm—the
coverage guarantee for the inclusion Ŝ ⊆ S∗ will be valid for any
choice of h-invariant set S∗. The key challenge that remains is the
construction of the tests (ϕS)S⊆{1,...,d}, which we will discuss in
Section 2.2.5.

2.2.4.1. Tests for non-causality of individual predictors

Proposition 2.3 proves a level guarantee for the estimator Ŝ. To ob-
tain statements about the significance of individual predictors that
could be used for a ranking of all the variables in X, for exam-
ple, we propose the following construction. Whenever at least one
hypothesis H0,S is accepted, we define for every j ∈ {1, . . . , d} a

p-value for the hypothesis Hj
0 : j 6∈ S∗ of non-causality of Xj by

pj := max{p-value for H0,S : j 6∈ S}. When all hypotheses H0,S ,
S ⊆ {1, . . . , d}, are rejected (corresponding to rejecting the exis-
tence of S∗), we set all of these p-values to 1. The validity of thus
defined tests is ensured under the assumptions of Proposition 2.3,
and is a direct consequence of ϕS∗ achieving correct level α.
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2. Causal discovery and discrete latent variables

2.2.5. Tests for the equality of switching regression
models

We will now focus on the construction of tests for the hypotheses
H0,S that are needed to compute the empirical estimator (2.2.5).
Let S ⊆ {1, . . . , d} be fixed for the rest of this section. We will make
use of the notation XS to denote the columns of X with index in S
and Ye = (Yt)t∈e and XS

e = (XS
t )t∈e for the restrictions of Y and

XS to environment e ∈ E . For notational convenience, we rewrite
H0,S(E) := H0,S as follows.

H0,S(E) :


There exist λ1, . . . , λn and (θe)e∈E , such that

for all e ∈ E , P(Yt,XSt ) = SR(θe, λt |XS
t ) if t ∈ e, and

for all e, f ∈ E , θe = θf .

Intuitively, a test ϕS = ϕS(E) of H0,S(E) should reject whenever
the parameters θe and θf differ between at least two environments
e, f ∈ E . This motivates a two-step procedure:

(i) For every e ∈ E , fit an SR model to (Ye,X
S
e ) to obtain an

estimate θ̂e with confidence intervals, see Section 2.3.

(ii) Based on (i), test if θe = θf for all e, f ∈ E , see Section 2.2.6.

For (i), we use maximum likelihood estimation and construct indi-

vidual confidence regions for the estimated parameters θ̂e using the
asymptotic normality of the MLE. For (ii), we evaluate the joint
overlap of these confidence regions. Any other test for the equality
of SR models can be used here, but to the best of our knowledge,
we propose the first of such tests. Figure 2.2 illustrates step (i) for
the two candidate sets {1} and {2}. Here, we would expect a test
to reject the former set, while accepting the truly h-invariant set
S∗ = {2}. A generic approach for comparing ordinary linear re-
gression models across different environments can be based on exact
resampling of the residuals [e.g., Pfister et al., 2019b]. This proce-
dure, however, is not applicable to mixture models: after fitting the
mixture model, the states Ht are unobserved, and thus, there are
multiple definitions of the residual rjt = Yt −XS

t β̂j , j ∈ {1, . . . , `}.
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2.2. Invariant causal prediction
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Figure 2.2. Testing procedure for H0,S , here illustrated for the sets
{1} (black; not h-invariant) and {2} (green; h-invariant) using the
same data that generated Figure 2.1. First, we split data up into
several environments, here e1 = {1, . . . , 200}, e2 = {201, . . . , 400}
and e3 = {401, . . . , 600}. Then, we fit an SR model to each data set
(Ye,X

S
e ), e ∈ E , separately, and evaluate whether the mixture com-

ponents remain invariant across all environments. For illustration
purposes, we indicate model fits by dashed lines, and assign points
to the most likely hidden state (• : Ĥ∗t = 1, M: Ĥ∗t = 2). (This
explicit classification of points is not part of the proposed testing
procedure.)

2.2.6. Intersecting confidence regions

Assume H0,S(E) is true and let θ0 be the true vector of regres-
sion parameters (that is the same for all environments). If for
e ∈ E , Cαe = Cαe (Ye,X

S
e ) are valid (1 − α)–confidence regions

for θe = θ0, we can obtain a p-value for H0,S(E) by considering
their joint overlap. More formally, we construct the test statistic
TS : Rn×(1+|S|) → [0, 1] by

TS(Y,XS) := max

{
α ∈ [0, 1] :

⋂
e∈E

Cα/|E|e (Ye,X
S
e ) 6= ∅

}
, (2.2.6)

and define a test ϕαS by ϕαS = 1 :⇔ TS < α. Due to the Bonferroni
correction of the confidence regions, such a test will be conservative.
The construction of confidence regions is discussed in the following
section.
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2. Causal discovery and discrete latent variables

2.3. Inference in switching regression
models

In this section, we discuss maximum likelihood estimation and the
construction of confidence regions for the parameters in SR mod-
els. In Sections 2.3.1–2.3.2 we present two different models for time
dependencies in the data, introduce the likelihood function for SR
models, and present two types of parameter constraints that ensure
the existence of the maximum likelihood estimator. In Section 2.3.3–
2.3.4 we construct confidence regions based on the maximum likeli-
hood estimator, and in Section 2.3.5 we show that these confidence
regions attain the correct asymptotic coverage. As a corollary, we
obtain that the test defined in (2.2.6) satisfies asymptotic type I
error control.

Let S ⊆ {1, . . . , d} and consider a fixed environment e, say e =
{1, . . . ,m}. Throughout this section, we will omit all indications of
S and e and simply write (Yt, Xt) ∈ R1+p for (Yt, X

S
t ) and (Y,X)

for (Ye,X
S
e ).

2.3.1. Time dependence and time independence

Assume there exist parameters θ and λ1, . . . , λm such that, for all
t ∈ {1, . . . ,m}, (Yt, Xt) ∼ SR(θ, λt |Xt). Let H = (Ht)t∈{1,...,m} ∈
{1, . . . , `}m be such that for every t ∈ {1, . . . ,m}, the distributional
statement in Definition 2.1 holds for (Yt, Xt, Ht). We will now con-
sider two different models for the dependence between observations
of different time points:

• Independent observations (“IID”): All observations (Yt, Xt, Ht)
across different time points t = 1, . . . ,m are jointly indepen-
dent and the marginal distribution of H is time-homogeneous.
Furthermore, for every t ∈ {1, . . . ,m}, the variables Xt and
Ht are independent.

• A hidden Markov model (“HMM”): The dependence in the
data is governed by a first order Markovian dependence struc-
ture on the latent variables H as described in Figure 2.3. The
Markov chain H is initiated in its stationary distribution. Fur-
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2.3. Inference in switching regression models

· · · Ht−1 Ht Ht+1 · · ·

Yt−1 Yt Yt+1

Xt−1 Xt Xt+1

Figure 2.3. A hidden Markov model for (Y,X). All observations
(across different t ∈ {1, . . . ,m}) are conditionally independent given
H, and (Yt, Xt) only depends on H through the present state Ht.
Moreover, the variables in H resemble a first order Markov chain,
that is, (H1, . . . ,Ht−1) ⊥⊥ Ht+1 |Ht for all t ∈ {2, . . . ,m− 1}.

thermore, for every t ∈ {1, . . . ,m}, the variables Xt and Ht

are independent.

We conveniently assume the independence of X and H, which allows
for likelihood inference without explicitly modelling the distribution
of X. Our robustness analysis in Section 2.5.1.5 suggests, however,
that violations of this assumption do not negatively affect the per-
formance of our causal discovery method.

For i, j ∈ {1, . . . , `}, let Γij = P (Ht = j |Ht−1 = i) denote the
transition probabilities of H. By considering different parametriza-
tions γ 7→ Γ(γ), γ ∈ G, where G is a subset of a Euclidean space, we
can encompass both of the above models simultaneously. The model
IID then simply corresponds to a map Γ satisfying that, for every
γ ∈ G, Γ(γ) has constant columns. For details on the parametriza-
tions of the models IID and HMM, see Appendix A.2.

2.3.1.1. Notation

The characteristics of the model for the joint distribution of (Y,X)
are determined by the parametrizations (Θ, T ) and (Γ,G) of the
regression matrix Θ and the transition matrix Γ, respectively. For
every γ ∈ G, let λ(γ) = λ(Γ(γ)) ∈ R1×` be the stationary dis-
tribution of Γ(γ). The stationary distribution λ(γ) exists (and is
unique) if the matrix Γ(γ) is irreducible and aperiodic [e.g., Ching
and Ng, 2006, Propositions 1.31–1.33]. In the remainder of this
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2. Causal discovery and discrete latent variables

work, we therefore require the image Γ(G) to be a subset of the
space of irreducible and aperiodic matrices of dimension `×`. We use
SR(Θ,Γ)(θ, γ |X) to denote the joint distribution P over (Y,X) with
marginals (Yt, Xt) ∼ SRΘ(θ, λ(γ) |Xt) and a dependence structure
given by Γ(γ). Unless explicit parametrizations are referred to, we
will usually omit the dependence on Θ and Γ and simply write
SR(θ, γ |X). For every j ∈ {1, . . . , `}, we use βj(·) and σ2

j (·) to
denote the parametrizations of the jth regression coefficient and the
jth error variance, respectively, as induced by (Θ, T ). Finally, φ
denotes the combined parameter vector (θ, γ) with corresponding
parameter space P := T × G.

2.3.2. Likelihood

Consider a fixed pair of parametrizations (Θ, T ) and (Γ,G). For
(θ, γ) ∈ T × G, the joint density of (Y,X,H) induced by the distri-
bution SR(θ, γ |X) is given by

p(Θ,Γ)(y,x,h | θ, γ) = p(x)λ(γ)h1

m∏
s=2

Γhs−1hs(γ)

m∏
t=1

N (yt |xtβht(θ), σ2
ht(θ)),

where p(x) is the (unspecified) density of X, and where, for j ∈
{1, . . . , `}, N (yt |xtβj , σ2

j ) is short hand notation for the density of

a N (xtβj , σ
2
j ) distribution evaluated at yt. Given a sample (y,x)

from (Y,X), the loglikelihood function for the model {SR(θ, γ |X) :
(θ, γ) ∈ T × G} is then given by, for every (θ, γ) ∈ T × G,

`(Θ,Γ)(y,x | θ, γ) = log
∑
h1

· · ·
∑
hm

p(Θ,Γ)(y,x,h | θ, γ). (2.3.1)

It is well known that, in general, the loglikelihood function (2.3.1) is
non-concave and may have several local maxima. For unconstrained
parametrizations (Θ, T ) and (Γ,G), it is even unbounded. To see
this, one may, for example, choose (θ, γ) ∈ T × G such that all
entries of Γ(γ) are strictly positive and such that xt0β1(θ) = yt0 for
a single fixed t0. By letting σ2

1(θ) go to zero while keeping all other
regression parameters fixed, p(Θ,Γ)(y,x,h | θ, γ) approaches infinity
for all h with ht = 1⇔ t = t0.
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2.3. Inference in switching regression models

We consider two kinds of parameter constraints: (i) a lower bound
on all error variances, and (ii) equality of all error variances. These
constraints can be implemented using the parametrizations (Θc, T c)
and (Θ=, T =) given in Appendix A.2. In the following theorem, we
show that either of these parametrizations ensures the existence of
the maximum likelihood estimator.

Theorem 2.1 (Existence of the MLE). Let (y,x) be a sample of
(Y,X) = (Yt, Xt)t∈{1,...,m} and assume that the set {(yt, xt) | t ∈
{1, . . . ,m}} is not contained in a union of ` hyperplanes of dimen-
sion p. Let G be a compact subset of a Euclidean space and let
Γ : G → [0, 1]`×` be a continuous parametrization of the transition
matrix Γ. Then, with (Θ, T ) being either of the parametrizations
(Θc, T c) or (Θ=, T =) (see Appendix A.2), the loglikelihood function
`(Θ,Γ) attains its supremum on T × G.

The assumption involving hyperplanes excludes the possibility of
a perfect fit. The conditions on (Γ,G) ensure that the space of
possible transition matrices is a compact set. The continuity of
all parametrizations together with the parameter constraints inher-
ent in (Θc, T c) and (Θ=, T =) make for a continuous and bounded
likelihood function. We use two different methods for likelihood
optimization: a numerical optimization routine3 and an EM-type
algorithm. These methods make use of the R packages nlm and
mixreg, respectively, and will be referred to as “NLM” and “EM”;
see Appendix A.4 for details.

2.3.3. Fisher confidence regions

Using the asymptotic normality of maximum likelihood estimators,
we can now construct (approximate) confidence regions for θ. Let

therefore φ̂ = (θ̂, γ̂) be a global maximizer of the likelihood function

and let J (φ̂) be the observed Fisher information [e.g., Lehmann and

Casella, 2006, Chapter 2] at φ̂. For α ∈ (0, 1), we define the region

Cα(θ̂) :=
{
θ̂ + J−1/2(θ̂)v : ‖v‖22 ≤ qχ2(dim(θ))(α)

}
, (2.3.2)

3We are grateful to Roland Langrock who shared parts of his code with us.
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where dim(θ) is the length of the parameter vector θ, qχ2(f)(α) is

the α-quantile of a χ2(f)-distribution and J−1/2(θ̂) is the submatrix

of J (φ̂)−1/2 corresponding to θ̂. For these confidence regions to
achieve the correct asymptotic coverage, we need to adjust for the
label switching problem described in the following subsection.

2.3.4. Label permutations

The distribution SR(φ |X) is invariant under certain permutations
of the coordinates of the parameter vector φ. For example, when
` = 2, the hidden variable has two states. If we exchange all pa-
rameters corresponding to the first state with those correspond-
ing to the second state, the induced mixture distribution is un-
changed. In general, the model {SR(φ |X) : φ ∈ P} is therefore
not identifiable. More formally, let Π denote the set of all permuta-
tions of elements in {1, . . . , `}. For every permutation π ∈ Π with
associated permutation matrix Mπ, define the induced mappings
πT := Θ−1 ◦ (Θ 7→ ΘMT

π ) ◦Θ, πG := Γ−1 ◦ (Γ 7→MπΓMT
π ) ◦Γ and

πP := (πT , πG) on T , G and P, respectively. Then, for every φ ∈ P
and every π ∈ Π, the distributions SR(φ |X) and SR(πP(φ) |X)
coincide (and thus give rise to the same likelihood). The likelihood
function therefore attains its optimum in a set of different param-
eter vectors, all of which correspond to permutations of one an-
other. Coverage properties of the confidence region (2.3.2) depend
on which particular permutation of the MLE is output by the opti-
mization routine (even though each of them parametrizes the exact
same distribution). To overcome this ambiguity, we introduce the
permutation-adjusted confidence regions

Cαadjusted(θ̂) :=
⋃
π∈Π

Cα(πT (θ̂)). (2.3.3)

In the following section, we make precise under which conditions
these confidence regions achieve the correct asymptotic coverage.
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2.3. Inference in switching regression models

2.3.5. Asymptotic coverage of adjusted confidence
regions

Assume that the distribution ofXt is stationary across e = {1, . . . ,m}
and has a density f with respect to the Lebesgue measure on Rp.
Consider a fixed pair (Θ, T ) and (Γ,G) of parametrizations. Let
φ0 = (θ0, γ0) ∈ P := T × G be the true parameters and let Θ0 =
Θ(θ0) and Γ0 = Γ(γ0) be the associated regression matrix and tran-
sition matrix, respectively.

Suppose now that the data within environment e accumulates.
For every m ∈ N, write (Ym,Xm) = (Yt, Xt)t∈{1,...,m}, let Pm0 :=
SR(θ0, γ0 |Xm) and use P0 to denote the (infinite-dimensional) lim-
iting distribution of Pm0 . Similarly, E0 denotes the expectation with
respect to P0. We require the following assumptions.

(A1) The maximum likelihood estimator exists.

(A2) The true parameter φ0 is contained in the interior of P.

(A3) The transition matrix Γ0 is irreducible and aperiodic [e.g.,
Ching and Ng, 2006, Section 1].

(A4) For every i ∈ {1, . . . , p + 1} and j, k ∈ {1, . . . , `}, the maps
θ 7→ Θij(θ) and γ 7→ Γjk(γ) have two continuous derivatives.

(A5) For everym ∈ N, assume that the joint distribution of (Ym,Xm)
has a density with respect to the Lebesgue measure that we
denote by fm. Then, with

η := lim
m→∞

∂

∂φ
fm(Ym, Xm |Ym−1,Xm−1, φ)

∣∣∣∣
φ=φ0

,

the Fisher information matrix I0 := E0[ηηT ] is strictly positive
definite.

(A6) All coordinates of X1 have finite fourth moment.

(A7) E[|log f(X1)|] <∞.

Assumptions (A1) and (A4) are satisfied for the explicit parametriza-
tions of the models IID and HMM given in Appendix A.2, see The-
orem 2.1. The irreducibility of Γ0 assumed in (A3) guarantees all
latent states to be visited infinitely often, such that information on
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all parameters keeps accumulating. Assumption (A5) is needed to
ensure that, in the limit, the loglikelihood function has, on average,
negative curvature and hence a local maximum at φ0. Finally, (A6)
and (A7) are mild regularity conditions on the (otherwise unspeci-
fied) distribution of Xt.

Essentially, the asymptotic validity of the adjusted confidence
regions (2.3.3) rests on two results: (1) consistency of the MLE
and (2) asymptotic normality of the MLE. For every φ ∈ P, let
[φ] := {πP(φ) : π ∈ Π} ⊆ P denote the equivalence class of φ, i.e.,
the set of parameters in P that are equal to φ up to a permutation
πP as defined in Section 2.3.4. Consistency in the quotient topology
(“[φ̂m]→ [φ0]”) then simply means that any open subset of P that
contains the equivalence class of φ0, must, for large enough m, also
contain the equivalence class φ̂m. With this notation, we can now
state an asymptotic coverage result for confidence regions (2.3.3).
The main work is contained in Theorems 2.2 and 2.3. Their proofs
make use of results given by Leroux [1992] and Bickel et al. [1998],
which discuss consistency and asymptotic normality, respectively, of
the MLE in hidden Markov models with finite state space.

Theorem 2.2 (Consistency of the MLE). Assume that (A1), (A3),

(A4) and (A7) hold true. Then, P0-a.s., [φ̂m]→ [φ0] as m→∞.

Theorem 2.2 says that (φ̂m)m∈N alternates between one or more
subsequences, each of which is convergent to a permutation of φ0.
We now prove a central limit theorem for these subsequences.

Theorem 2.3 (Asymptotic normality of the MLE). Assume that
the maximum likelihood estimator is consistent. Then, under (A1)–

(A6), it holds that J (φ̂m)1/2(φ̂m − φ0)
d−→ N (0, I) under P0.

Theorems 2.2 and 2.3 imply the following coverage guarantee.

Corollary 2.1 (Asymptotic coverage of adjusted confidence re-
gions). Under Assumptions (A1)–(A7), the adjusted confidence re-
gions (2.3.3) achieve the correct asymptotic coverage. That is, for
any α ∈ (0, 1),

lim inf
m→∞

Pm0 (θ0 ∈ Cαadjusted(θ̂m)) ≥ 1− α. (2.3.4)
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As another corollary, the asymptotic type I error control of the
tests defined by (2.2.6) follows by applying Corollary 2.1 to each
environment separately.

2.4. ICPH: Algorithm and false discovery
control

We now summarize the above sections into our overall method. In
Section 2.4.1 we provide a pseudo code for this procedure, and Sec-
tion 2.4.2 presents our main theoretical result—an asymptotic ver-
sion of Proposition 2.3, which states that our method is consistent.

2.4.1. Algorithm

Given data (Y,X) and a collection E of environments, we run through
all S ⊆ {1, . . . , d}, test the hypothesis H0,S with the test defined
by (2.2.6) using the adjusted confidence regions (2.3.3), and out-
put the intersection of all accepted sets. Below, this procedure is
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2. Causal discovery and discrete latent variables

formalized in a pseudo code.

Algorithm 1: ICPH (“Invariant Causal Prediction in the
presence of Hidden variables”)

1 Input: response Y ∈ Rn, covariates X ∈ Rn×d,
environment indicator E ∈ {1, . . . , |E|}n (i.e.,
Et = k ⇔ t ∈ ek);

2 Options: model ∈ {“IID”, “HMM”},
method ∈ {“EM”, “NLM”},
variance.constraint ∈ {“lower bound”, “equality”},
number.of.states ∈ N≥2,
intercept ∈ {TRUE, FALSE},
test.parameters ⊆ {“intercept”, “beta”, “sigma”},
alpha ∈ (0, 1);

3 for S ⊆ {1, . . . , d} do
4 for e ∈ E do
5 Fit an SR model to (Ye,X

S
e ), see Section 2.3.2;

6 Construct the perm.-adjusted conf. region (2.3.3);

7 end
8 Compute a p-value pS for H0,S using the test defined

by (2.2.6);

9 end

10 Output: the empirical estimator Ŝ =
⋂
S:pS>α

S;

Most of the options in Algorithm 1 are self-explanatory. The
option test.parameters allows the user to specify the “degree of
h-invariance” that is required of the sets S ⊆ {1, . . . , d}. If, for
example, test.parameters = {“beta”, “sigma”}, a set S will be
regarded h-invariant if the mixture components of PYt|XSt are “in-

variant in β and σ2”, i.e., time-homogeneous up to changes in the
intercept between different environments. Code is available online
(see Section 2.1.4). To make Algorithm 1 scalable to a large number
of predictors, it can be combined with a variable screening step, e.g.,
using Lasso [Tibshirani, 1994]; see Section 2.4.2 for more details.
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2.4. Algorithm and false discovery control

2.4.2. Asymptotic false discovery control of ICPH

The cornerstone for the false discovery control of ICPH is given in
Corollary 2.1. It proves that if Assumptions (A1)–(A7) are sat-
isfied for the true set S∗, then the test ϕS∗ achieves the correct
asymptotic level, which in turn guarantees an asymptotic version of
Proposition 2.3. We will now summarize this line of reasoning into
out main theoretical result.

Assume we have data ((Yn,Xn))n∈N =
(
(Yn,t, Xn,t)t∈{1,...,n}

)
n∈N

from a triangular array, where, for every n, (Yn,Xn) ∈ Rn×(1+d).
Consider a fixed number of K environments and let (En)n∈N be a
sequence of collections En = {en,1, . . . , en,K}, such that, for all n,
en,1, . . . , en,K are disjoint with ∪ken,k = {1, . . . , n} and such that,
for all k, |en,k| → ∞ as n→∞. For all n and k, write (Yn,k,Xn,k) =
(Yt, Xt)t∈en,k . Consider a transition parametrization (Γ,G) and a
family of regression parametrizations {(ΘS , T S)}S⊆{1,...,d}, i.e., for
every S ⊆ {1, . . . , d}, ΘS maps T S into the space of matrices of
dimension (|S| + 1) × ` with columns in R|S| × R>0. For every n
and every S ⊆ {1, . . . , d}, let Hn

0,S denote the hypothesis (2.2.3) for

the data (Yn,X
S
n) and let ϕnS be the corresponding test defined by

(2.2.6) with the confidence regions (2.3.3). Finally, define for every
n the estimator

Ŝn :=
⋂

S:ϕnS accepts Hn0,S

S. (2.4.1)

We then have the following result.

Theorem 2.4 (Asymptotic false discovery control). Assume that
Assumption 2.1 is satisfied. That is, there exists a set S∗ ⊆ {1, . . . , d}
which, for every n, is h-invariant with respect to (Yn,Xn). Assume
furthermore that, for every k, (A1)–(A7) hold true for the data
(Yn,k,X

S∗

n,k) with parametrizations (ΘS∗ , T S∗) and (Γ,G). Then,

the estimator Ŝn enjoys the following coverage property

lim inf
n→∞

Pn0 (Ŝn ⊆ S∗) ≥ 1− α, (2.4.2)

where Pn0 is the law of (Yn,Xn).

If the number of predictor variables is large, our algorithm can be
combined with an upfront variable screening step. Given a family
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2. Causal discovery and discrete latent variables

(Ŝnscreening)n∈N of screening estimators, we can for every n ∈ N con-

struct an estimator S̄n of S∗ analogously to (2.4.1), but where the
intersection is taken only over those S additionally satisfying that
S ⊆ Ŝnscreening. Given that lim infn→∞ Pn0 (S∗ ⊆ Ŝnscreening) ≥ 1 − α,
it then follows from

Pn0 (S̄n 6⊆ S∗) = Pn0 ([S̄n 6⊆ S∗] ∩ [S∗ ⊆ Ŝnscreening])

+ Pn0 ([S̄n 6⊆ S∗] ∩ [S∗ 6⊆ Ŝnscreening])

≤ Pn0 (ϕnS∗ rejects Hn
0,S∗) + Pn0 (S∗ 6⊆ Ŝnscreening),

that the estimator (S̄n)n∈N satisfies the asymptotic false discovery
control (2.4.2) at level 1− 2α. In high-dimensional models, assump-
tions that allow for the screening property have been studied [see,
e.g., Bühlmann and van de Geer, 2011].

2.5. Experiments

In this section, we apply our method to simulated data (Section 2.5.1)
and to a real world data set on photosynthetic activity and sun-
induced fluorescence (Section 2.5.2). We only report results using
the NLM optimizer. In all experiments, the results for EM were al-
most identical to those for NLM, except that the computation time
for EM was larger (by approximately a factor of 6). For an experi-
ment that uses the EM-method, see Appendix A.4.2.

2.5.1. Simulated data

We start by testing the sample properties of the adjusted confi-
dence regions, disregarding the problem of causal discovery, see Sec-
tion 2.5.1.1. In Section 2.5.1.2, we present the multivariate data
generating process that we will use in the subsequent analyses. In
Section 2.5.1.3, we see that, even for sample sizes that are too small
for the confidence regions to achieve the correct coverage, our over-
all method (ICPH) is able to keep the type I error control. Sec-
tion 2.5.1.4 contains a power analysis. In Section 2.5.1.5, we test
the robustness of ICPH against a range of different model viola-
tions, and include a comparison with two alternative causal discovery
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methods. The performance of ICPH for non-binary latent variables,
for large numbers of predictor variables, or under violations of the
h-invariance assumption, can be found in Appendix A.5.

2.5.1.1. Empirical coverage properties of adjusted confidence
regions

The finite sample coverage properties of the confidence regions (2.3.3)
depend on the true distribution over (Y,X) (i.e., on the parameters
of the SR model as well on the marginal distribution of X) and on
the sample size. We here illustrate this sensitivity in the i.i.d. setting.
Consider a joint distribution P over (Y,X,H) ∈ R1+p × {1, . . . , `}
which induces an SR model over (Y,X). For every j ∈ {1, . . . , `} let
pj(y, x) = P(H = j |Y = y,X = x) denote the posterior probability
of state j based on the data (y, x). We then use the geometric mean
of expected posterior probabilities

GMEP :=

∏̀
j=1

E[pj(Y,X) |H = j]

1/`

∈ [0, 1] (2.5.1)

as a measure of difficulty of fitting the SR model induced by P.4

We expect smaller values of GMEP to correspond to more difficult
estimation problems, which negatively affect the convergence rate of
(2.3.4) and result in low finite sample coverage. If the between-states
differences in the regression parameters of X are small, for example,
we expect the unobserved states to be difficult to infer from the
observed data (i.e., for every j, the expected posterior probabilities
E[pi(Y,X) |H = j] are close to uniform in i), resulting in small
GMEP.

We now perform the following simulation study. For different
model parameters and sample sizes, we generate i.i.d. data sets from
the SCM

H := NH
λ , X := µX + σXN

X ,

Y := µY + β1X · 1{H=1} + β2X · 1{H=2} + σYN
Y ,

(2.5.2)

4If each of the distributions P(Y,X)|H=j , j ∈ {1, . . . , `} has a density w.r.t. the

Lebesgue measure on R1+p, each factor in (2.5.1) is given as an integral over
R1+p. In practice, we approximate these integrals by numerical integration.

55



2. Causal discovery and discrete latent variables

where all noise variables are jointly independent with marginal distri-
butions NH

λ ∼ Ber(λ), NX , NY ∼ N (0, 1). We construct adjusted
confidence regions (2.3.3) for the vector of regression parameters
θ0 = (µY , β1, µY , β2, σ

2
Y ) using the likelihood function (2.3.1) with

parametrizations (Θ=, T =) and (ΓIID,GIID) (see Appendix A.2).
We sample 50 sets of parameters independently as µX , µY , β1, β2 ∼
Uniform(−1, 1), σX ∼ Uniform(0.1, 1), σY ∼ Uniform(0.1, 0.5) and
λ ∼ Uniform(0.3, 0.7). For each setting, we compute empirical cov-
erage degrees based on 1000 independent data sets, each consisting
of 100 independent replications from (2.5.2), and compare them to
the GMEP of the underlying models, see Figure 2.4 (left). For the
same simulations, we also compare the p-values

p := max{α ∈ [0, 1] : θ0 6∈ Cαadjusted(θ̂)} (2.5.3)

for the (true) hypotheses H0 : θ = θ0 to a uniform distribution
(Figure 2.4 middle). For 5 models of different degrees of difficulty
(GMEP ≈ 0.50, 0.55, 0.60, 0.65, 0.70), we then compute empirical
coverage degrees for increasing sample size (Figure 2.4 right).

For difficult estimation problems (i.e., low GMEP), the finite sam-
ple variance of the MLE is inflated, resulting in low empirical cov-
erage and too small p-values (Figure 2.4 left and middle). Although
there is no proof that NLM finds the global optimum, it is assur-
ing that there is little difference when we start the algorithm at the
(usually unknown) true values (Figure 2.4 left, hollow circles). In-
deed, the thus obtained likelihood scores exceed those obtained from
data driven initialization in less than 0.2% of simulations. As seen
in Figure 2.4 (right), coverage properties improve with increasing
sample size, although in models with low GMEP, we require large
amounts of data in order to obtain satisfactory performance. We
will see in Section 2.5.1.3 that even cases where we cannot expect
the confidence regions to obtain valid coverage, our overall causal
discovery method maintains type I error control.

2.5.1.2. Data generating process

We now specify the data generating process used in the follow-
ing sections. We consider an SCM over the system of variables
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Figure 2.4. Empirical coverage properties of the adjusted confi-
dence regions (2.3.3) using data simulated from the model (2.5.2).
The left panel shows empirical coverage of 95%-confidence regions
for different model parameters (see Equation 2.5.1 for a definition
of GMEP), and a fixed sample size of 100. We see that the cover-
age properties strongly depend on GMEP, and that the poor perfor-
mance for low GMEP is not an optimization problem (the likelihood
scores obtained from starting the algorithm in the true values exceed
those obtained from data driven initialization in less than 0.2% of
simulations). In the middle panel, we use the same simulations, but
only consider data-driven initialization. Each column corresponds
to a histogram of p-values (2.5.3). For increasing GMEP, the p-
value distribution approximates the desired uniform distribution.
For 5 different parameter settings, we further increase the sample
size (right). As suggested by Corollary 2.1, the empirical cover-
age gradually improves, although very low GMEP demand large
amounts of data to obtain satisfactory coverage.

(Y,X1, X2, X3, H) given by the structural assignments

X1 := N1, H := NH , X2 := β21X1 +N2

Y :=
∑̀
j=1

(µYj + βY1jX
1 + βY2jX

2 + σY jN
Y )1{H=j}

X3 := β3Y Y +N3,

where NH ∼ Multinomial(1, λ), NY ∼ N (0, 1) and N j ∼ N (µj , σ2
j ).

In Sections 2.5.1.3–2.5.1.5, the latent variable H is assumed to be
binary, while Appendix A.5.1 treats the more general case where
` ≥ 2. The different environments are constructed as follows. We

57



2. Causal discovery and discrete latent variables

−2

0

2

4

−1 0 1
X1

Y

−2

0

2

4

−2 0 2 4
X2

Y

−2

0

2

4

−2.5 0.0 2.5 5.0
X3

Y

environment
t = 1,...,144
t = 145,...,324
t = 325,...,500

hidden state
Ht = 1
Ht = 2

model fit
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Figure 2.5. Data generated from the SCM described in Sec-
tion 2.5.1.2 for each of the three environments (black, red, blue).
Here, the only h-invariant set is S∗ = {1, 2} and we would there-
fore like our method to correctly identify the violations of the h-
invariance of the sets {1}, {2} and {3}. These violations are indi-
cated by the different model fits (colored lines), which for none of
the three variables are stable across all environments. For numerical
results on such data sets, see Sections 2.5.1.3 and 2.5.1.4. The is-
sue of label permutations can be seen from the occasional mismatch
between the true latent states (• : Ht = 1, M: Ht = 2) and the
estimated labels ( : Ĥt = 1, : Ĥt = 2).

first draw random change points 1 < t1 < t2 < n and then generate
data as described below.

• e1 = {1, . . . , t1}: Here, we sample from the observational dis-
tribution.

• e2 = {t1 + 1, . . . , t2}: Here, we set X2 := β21X1 + Ñ2, where
Ñ2 is a Gaussian random variable with mean sampled uni-
formly between 1 and 1.5 and variance sampled uniformly be-
tween 1 and 1.5. Also, the mixing proportions λ are resampled.

• e3 = {t2 + 1, . . . , n}: We again sample data from the above
SCM, but this time we intervene on X3. The structural assign-
ment is replaced by X3 := Ñ3, where Ñ3 is a Gaussian random
variable with mean sampled uniformly between −1 and −0.5
and the same variance as the noise N3 from the observational
setting. The mixing proportions λ are again resampled.

A sample data set can be seen in Figure 2.5, where points have been
colored according to the above environments (black, red and blue
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2.5. Experiments

for e1, e2 and e3, respectively). The only h-invariant set is the set
S∗ = {1, 2} of observable parents of Y . In the population case, our
method therefore correctly infers S̃ = {1, 2}, see Equation (2.2.4).
The causal graph induced by the above data generating system can
be seen in Figure 2.6 (left). Here, the environment is drawn as a ran-
dom variable.5 We also display the CPDAG representing the Markov
equivalence class of the induced graph over the observed variables
(right), showing that the full set of causal parents S∗ = {1, 2} cannot
be identified only from conditional independence statements.

2.5.1.3. Level analysis

Given that the theoretical coverage guarantees are only asymptotic,
we cannot expect the tests (2.2.6) to satisfy type I error control
for small sample sizes—especially if GMEP is low, see also Sec-
tion 2.5.1.1. The following empirical experiments suggest, how-
ever, that even if the test level of the true hypothesis H0,S∗ is
violated, ICPH may still keep the overall false discovery control.
We use data sets (Yt, X

1
t , X

2
t , X

3
t )t∈{1,...,n} generated as described

in Section 2.5.1.2, and analyse the performance of ICPH for dif-
ferent sample sizes and different GMEP. Since the latter is diffi-
cult to control directly, we vary the between-states difference in re-
gression coefficients for X1 and X2 in the structural assignment
for Y , and report the average GMEP for each setting. For every
n ∈ {100, 200, 300, 400, 500} and every ∆β ∈ {0, 0.5, 1, 1.5, 2}, we
simulate 100 independent data sets by drawing model parameters
µ ∼iid Uniform(−0.2, 0.2), σ2 ∼iid Uniform(0.1, 0.3) (with the re-
striction that σ2

Y 1 = σ2
Y 2), β ∼iid Uniform([−1.5,−0.5] ∪ [0.5, 1.5])

and λ ∼ Uniform(0.3, 0.7). For j ∈ {1, 2} we then assign βYj,2 :=

βYj,1 + sign(βYj,1)∆β. The results are summarized in Figure 2.7. We
see that even in settings for which the true hypothesis H0,S∗ is re-
jected for about every other simulation, ICPH stays conservative.

5To view the data set as i.i.d. realizations from such a model one formally
adds a random permutation of the data set, which breaks the dependence of
the realizations of the environment variable (this has no effect on the causal
discovery algorithm, of course). Constantinou and Dawid [2017] discuss a
non-stochastic treatment of such nodes.
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causal DAG
CPDAG from
cond. indep.

X2

E YH X1

X3

X2

E Y X1

X3

Figure 2.6. Left: the causal graph induced by the SCM in Sec-
tion 2.5.1.2. The node E represents the different environments (E
points into variables that have been intervened on, the color cor-
responds to the environments shown in Figure 2.5). Right: the
CPDAG representing the Markov equivalence class of the graph
where H is marginalized out. Since the edge X2 − Y is not ori-
ented, the full set of causal parents S∗ = {1, 2} cannot be identified
only from conditional independence statements. Our method ex-
ploits the simple form of the influence of H on Y . Note that in the
case of an additional edge E → X1, none of the edges among the
variables (Y,X1, X2, X3) would be oriented in the CPDAG.

2.5.1.4. Power analysis

Since the only h-invariant set is the set S∗ = {1, 2} of causal par-
ents of Y , the population version of our method correctly infers
S̃ = {1, 2}, see Equation (2.2.4). For finite samples, identifiability
of S∗ is determined by the power of the tests for the hypotheses
H0,S . For a fixed value of ∆β = 1.5 (average GMEP of 0.66) and
increasing sample size, we generate i.i.d. data sets as described in
Section 2.5.1.3 and analyze the performance of ICPH for two dif-
ferent variance constraints σ2

Y 1 = σ2
Y 2 and σ2

Y 1, σ
2
Y 2 ≥ 10−4. The

results in Figure 2.8 suggest that the former constraint results in
higher performance, and it will therefore be our default setting for
the rest of this section. As the sample size increases, ICPH tends to
identify the set S∗ (larges shares of green in bar plots).
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Figure 2.7. Estimates P̂(ϕS∗ rejects H0,S∗) (left) and P̂(Ŝ 6⊆
S∗) (right) of the type I error rates of the test ϕS∗ and the
overall method ICPH, respectively, based on the experiment de-
scribed in Section 2.5.1.3 and 100 repetitions. The desired level
is α = 0.05. We have used NLM with parametrizations Θ=

and ΓIID (see Appendix A.2). The average GMEP values are
0.51, 0.56, 0.64, 0.66, 0.78 (ordered in accordance to the vertical axis).
For small sample sizes, and in particular for low GMEP, the type I
error control of the test ϕS∗ is violated. Even in these cases, how-
ever, the false causal discovery control of ICPH is satisfied.

For the same data that generated Figure 2.8, we compute rejec-
tion rates for non-causality (i.e., empirical proportions of not being
contained in Ŝ) for each of the predictors X1, X2 and X3. Here, we
also add a comparison to other methods. We are not aware of any
other method that is suitable for inferring S∗, but we nevertheless
add two approaches as baseline.

• “k-means ICP”: Pool data points from all environments and
infer estimates Ĥ of the hidden states using 2-means clustering.
Run the ordinary ICP algorithm [Peters et al., 2016] on each
of the data sets {(Yt, Xt) : Ĥt = j}, j ∈ {1, 2}, testing all
hypotheses at level α/2, and obtain Ŝ1 and Ŝ2. Output the
final estimate Ŝ = S1 ∪ S2.

• “JCI-PC”: We use a modified version of the PC algorithm
[Spirtes et al., 2000], which exploits our background knowledge
of E being a source node: in between skeleton search and edge
orientation, we orient all edges connecting E to another node.
The resulting algorithm may be viewed as a variant of the
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Figure 2.8. Output of ICPH (bar plots) and rejection rates for indi-
vidual hypotheses (curve plots) for the experiment in Section 2.5.1.4
with parameter constraint σ2

Y 1, σ
2
Y 2 ≥ 10−4 (left) and σ2

Y 1 = σ2
Y 2

(right). The larger the proportion of blue and green colors in the
bar plots, the more power our method has. Simulations are ordered
such that, within each bar, the bottom colors (yellow, light orange,
dark orange, purple) correspond to false positives, i.e., cases where
Ŝ 6⊆ S∗. Even though the level of the test for H0,S∗ is violated in the
finite sample case, ICPH controls the empirical type I error rate at
α = 0.05 (indicated by a dashed horizontal line). Enforcing equal-
ity on error variances is beneficial, especially for small data sets.
For both settings, the identification of S∗ improves with increasing
sample size.

of JCI algorithm [Magliacane et al., 2016]. We apply it to
the full system of observed variables (E, Y,X1, X2, X3), and
output the set of variables (among {X1, X2, X3}) which have
a directed edge to Y in the resulting PDAG.6

In the JCI-PC algorithm, we use conditional independence tests
based on partial correlations. Since we apply it to a system of mixed
variables (i.e., continuous as well as discrete), the assumptions un-
derlying some of the involved tests will necessarily be violated. We
are not aware of any family of tests which is more suitable. How-
ever, even in the population case, we cannot expect constraint-based
methods such as JCI-PC to infer the set full S∗, see Figure 2.6. ICPH

6 Note that H can be marginalized out, so it is not necessary to use FCI.
Furthermore, since we do not assume the intervention targets to be known,
search algorithms for interventional data such as the GIES algorithm [Hauser
and Bühlmann, 2012] are not applicable.
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solves a specific problem and is the only method which exploits the
simple influence of H on Y . The results in Figure 2.9 (black curves)
confirm our previous findings: causal discovery improves with in-
creasing sample size, and our method stays conservative. ICPH
outperforms both other methods in terms of level and power.

2.5.1.5. Robustness analysis

Our results are based on various assumptions, and we now investi-
gate the robustness of ICPH against different kinds of model viola-
tions. We use data generated from the following modified versions of
the SCM in Section 2.5.1.2. Unless mentioned otherwise, parameters
are sampled as described in Section 2.5.1.3.

• Heterogeneous variances: The error variances σ2
Y 1 and σ2

Y 2 are
sampled independently.

• Non-Gaussian noise: We generate errorsNY from (i) a uniform
distribution and (ii) a Laplace distribution.

• A direct effect H → X1: We allow for an influence of H on X1

through binary shifts in (i) the mean value and (ii) the error
variance. Parameters are sampled independently as µ1

1, µ
1
2 ∼

Uniform(−1, 1) and σ2
11, σ

2
12 ∼ Uniform(0.1, 1).

• A continuous hidden variable: We substitute the structural
assignment for Y by Y := (µY + βY1 X

1 + βY2 X
2)H + σYN

Y ,
where H ∼ N (0, 1). The distribution of H does not change
across environments.

We now repeat the power analysis from Section 2.5.1.4 for data sets
generated in the above way (Figure 2.9, colored curves). Most model
violations do not qualitatively affect the results. Only the assump-
tion on the state space of H is crucial for the power (not the level)
of our method; for a continuous hidden variable, we mostly output
the empty set.
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Figure 2.9. Rejection rates for non-causality. This figure contains
two comparisons (one among all black curves, and another among
all curves with round points). For data generated from the SCM in
Section 2.5.1.2 (black), we compare the performance of ICPH (•)
against the two alternative methods k-means ICP (N) and JCI-PC
(�) described in Section 2.5.1.4. For increasing sample size, ICPH
outperforms both methods in terms level and power. As a robust-
ness analysis, we further apply ICPH to simulated data sets from
the modified SCMs described in Section 2.5.1.5 (colored). Each of
the modified SCMs yields a misspecification of the model for PY |XS∗

that is assumed by our method. Most of these model misspecifica-
tions do not qualitatively affect the results: for increasing sample
size, both causal parents X1 and X2 tend to be identified. For
a continuous hidden variable, none of the variables is identified as
causal (which is not incorrect, but uninformative). In all scenarios,
ICPH maintains empirical type I error control.

2.5.2. Sun-induced fluorescence and land cover
classification

We now consider a real world data set for which we can compare our
method’s output against a plausible causal model constructed from
background knowledge. The data set is related to the study of global
carbon cycles, which are determined by the movement of carbon be-
tween land, atmosphere and ocean. Carbon is emitted, e.g., during
fossil fuel combustion, land use change or cellular respiration, and
assimilated back into the Earth’s surface by processes of carbon fixa-
tion. A major component hereof is photosynthesis, where inorganic
carbon is converted into organic compounds by terrestrial ecosys-
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variable description

Y sun-induced fluorescence (SIF)
X1 incident shortwave rad. (SW)
X2 abs. phot. active rad. (APARchl)
X3 gross primary prod. (GPP)
H vegetation type

E

X1

H
X2

X3 Y

Figure 2.10. Variable descriptions (left) and causal graph con-
structed from background knowledge (right). In our analysis, we
use the temporal ordering of data to construct the environment vari-
able E. Due to seasonal cycles of aggradation and degradation of
chlorophyll, APARchl is not a constant fraction of SW (which itself
is time-heterogeneous). The environment therefore “acts” on the
variables X1 and X2. Furthermore, different vegetation types differ
not only in their chlorophyll composition (and thus in APARchl),
but also in their respective efficiencies of converting APARchl into
GPP and SIF—hence the arrows from H to X2, X3 and Y .

tems. Direct measurements of carbon fluxes can be obtained from
fluxtowers (http://fluxnet.fluxdata.org), but are only available
at single locations. Constructing reliable global models for predict-
ing photosynthesis using satellite data is an active line of research.
While most of the commonly used models [e.g., Jung et al., 2009,
Running and Zhao, 2015] use sunlight as the predominant driver, re-
cent work [e.g., Guanter et al., 2012, Zhang et al., 2016] explores the
predictive potential of sun-induced fluorescence (SIF), a (remotely
sensible) electromagnetic radiation that is emitted by plants during
the photosynthetic process.

Here, we take SIF as the target variable. As predictors, we include
the incident shortwave radiation (SW), the photosynthetically active
radiation absorbed by the plants’ chlorophyll cells (APARchl), and
the gross primary productivity (GPP), the latter of which is a mea-
sure of photosynthesis. Since GPP cannot be directly measured, we
use spatially upscaled measurements from a network of fluxtowers
[Jung et al., 2009]. Background knowledge suggests that out of these
three variables, only APARchl is a direct causal parent of the target
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SIF. Zhang et al. [2016] suggest evidence for a linear relationship
between SIF and APARchl, and show that this relationship strongly
depends on the type of vegetation. Estimates of the vegetation type
can be obtained from the IGBP global land cover data base [Love-
land et al., 2000]. We use the IGBP classification to select data
coming from two different vegetation types only. In the resulting
data set, we thus expect the causal influence of SIF on APARchl to
be confounded by a binary variable. When applying our method to
these data, we remove information on vegetation type, so that this
binary variable becomes latent. The data and the ground truth we
consider is shown in Figure 2.10.

In Section 2.5.2.1, we use our causal discovery method to identify
the causal predictor of SIF. In Section 2.5.2.2, we explore the pos-
sibility to reconstruct the vegetation type from the observed data
(Y,X1, X2, X3) when assuming that we have inferred the correct
causal model. We believe that such estimates may be used to com-
plement conventional vegetation type classifications.

2.5.2.1. Causal discovery

We denote the observed variables by (Y,X1, X2, X3) as described in
Figure 2.10 (left). The data are observed along a spatio-temporal
grid with a temporal resolution of 1 month (Jan 2010 – Dec 2010),
and a spatial resolution of 0.5◦ × 0.5◦ covering the North Ameri-
can continent. The setup is directly taken from Zhang et al. [2016],
and we refer to their work for a precise description of the data pre-
processing for the variables (Y,X2, X3). The data for X1 is pub-
licly available at https://search.earthdata.nasa.gov. We select
pixels classified as either Cropland (CRO) or Evergreen Needleleaf
Forest (ENF). These vegetation types are expected to differ in their
respective relationships X2 → Y [Zhang et al., 2016]. As environ-
ments we use the periods Feb – Jul and Aug – Jan.7

The goal of the statistical analysis is to identify the set S∗ = {2}

7 We also conducted the experiments with alternative constructions of the
environments. Since switching regression models are hard to fit if the dis-
tribution of the predictors strongly differs between states, some choices of
environments make our method output the empty set—a result that is not
incorrect, but uninformative.

66

https://search.earthdata.nasa.gov


2.5. Experiments

of causal parents of Y among the vector (X1, X2, X3). Since the
variables X1 and X2 are closely related, we regard distinguishing
between their respective causal relevance for Y as a difficult prob-
lem. We analyze the data for different sample sizes. To do so, we
gradually lower the spatial resolution in the following way. For every
c ∈ {1, . . . , 16}, we construct a new data set by increasing the pixel
size of the original data set by a factor of c2, and then averaging ob-
servations within each pixel. Grid cells that do not purely contain
observations from either of the two vegetation types are discarded.
We then apply our causal discovery method to each of the generated
data sets, allowing for a binary hidden variable. The results are il-
lustrated in Figure 2.11.8 Indeed, for several sample sizes (n ≤ 390),
the true hypothesis H0,S∗ is accepted, and our method mostly cor-

rectly infers Ŝ = {2} (left plot). In all experiments, the variable X2

is attributed the highest significance as a causal parent of Y (right
plot). Also, we consistently do not reject the only non-ancestrial
variable X3, and the causal ordering implied by the right hand plot
is in line with the assumed causal structure from Figure 2.10. As
the sample size grows, the power of our tests of the hypotheses H0,S

increases, and even small differences in regression coefficients are de-
tected. For sample sizes above 1459 (the two largest sample sizes are
not shown here), all hypotheses H0,S are rejected, and our method

returns the uninformative output Ŝ = ∅. At sample sizes 436, 797
and 1045, our method infers the set Ŝ = {1, 2}, that is, the two
predictors APARchl and SW. A possible explanation is that the true
chlorophyll content is unknown, and that APARchl therefore itself
is estimated (on the basis of the greenness index EVI [Huete et al.,
2002]). Due to these imperfect measurements, X1 may still contain
information about Y that cannot be explained by X2.

2.5.2.2. Reconstruction of the vegetation type

We know that (Y,X2) follows a switching regression model (see Fig-
ure 2.10), and that the hidden variable in this model corresponds to

8We omit all intercept terms, impose an equality constraint on the error vari-
ances, and assume an i.i.d. structure on the hidden variables. For estimation,
we use the NLM optimizer. In our implementation of the test (2.2.6), the
lowest attainable p-value is 10−4.
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Figure 2.11. P -values for h-invariance of different sets S ⊆ {1, 2, 3}
(left) and p-values for non-causality (see Section 2.2.4.1) of the in-
dividual variables X1, X2 and X3 (right). For every experiment,
the estimated set Ŝ in the left plot is indicated by a triangle. For
several sample sizes, our method correctly infers Ŝ = {2} (left),
and the causal parent X2 consistently obtains the lowest p-value for
non-causality (right). Experiments for which all p-values for non-
causality are equal to 1 correspond to instances in which all sets
have been rejected. For large amounts of data, this is always the
case (the two largest sample sizes are not shown here). At sample
sizes 436, 797 and 1045, our method infers the set Ŝ = {1, 2}. This
finding may be due to imperfect measurements of the variable X2,
that do not contain all information from X1 that is relevant for Y .
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Ĥ = 1 Ĥ = 2

Figure 2.12. Vegetation type by IGBP (left) and estimates ob-
tained from reconstructing the values of the hidden variable, as de-
scribed in Section 2.5.2.2 (middle). We correctly classify more than
95% of the pixels. The right hand plot illustrates the vegetation-
dependent linear relationship between Y and X2. Switching regres-
sion model fits are indicated by straight lines, and points are colored
according the reconstructed value of Ĥ. Since the data are not well-
clustered in the X2-Y space, classifying observations based on data
from (Y,X2) is generally not a straight-forward task.

the true vegetation type. We can thus obtain estimates of the veg-
etation type by reconstructing the values of the hidden variable in
the fitted model. We use the data set at its highest resolution, and
exploit the background knowledge that H does not change through-
out the considered time span. All observations obtained from one
spatial grid cell are therefore assumed to stem from the same under-
lying regime. Let S ⊆ R2 and T = {1, . . . , 12} be the spatial and the
temporal grid, respectively, along which data are observed. We then
classify each grid cell s ∈ S as Ĥs := arg maxj∈{1,2}

∑
t∈T P̂(Hst =

j |Yst, Xst), where P̂ refers to the fitted model. Our method correctly
reconstructs the hidden variable in more than 95% of the grid cells
(Figure 2.12, left and middle). As seen in Figure 2.12 (right), recon-
structing H based on data from (Y,X2) is not an easy classification
problem.

So far, we have assumed that the IGBP classification corresponds
to the true vegetation type. In reality, it is an estimate based on
greenness indices that are constructed from remotely sensed radia-
tion reflected from the Earth’s surface. The outcome of our method
may be viewed as an alternative ecosystem classification scheme,
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which additionally comes with a process-based interpretation: each
cluster corresponds to a different slope parameter in the linear re-
gression of SIF on APARchl. This parameter represents the efficiency
at which absorbed energy is quenched as fluorescence, and is referred
to as fluorescence yield.

2.6. Conclusions and future work

This paper discusses methodology for causal discovery that is ap-
plicable in the presence of discrete hidden variables. If the data
set is time-ordered, the hidden variables may follow a Markov struc-
ture. The method is formulated in the framework of invariant causal
prediction. It aims at inferring causal predictors of a target vari-
able and comes with the following coverage guarantee: whenever
the method’s output is non-empty, it is correct with large probabil-
ity. Our algorithm allows for several user choices and is tested on a
wide range of simulations. We see that also in small sample regimes
and under a variety of different model violations, the coverage is not
negatively affected. Our implementation allows for using either the
EM-algorithm or a numerical maximization technique. In our exper-
iments, we find that the two options yield very similar results, but
that the latter is computationally faster and more suitable for han-
dling parameter constraints. The power of both methods decreases
with an increasing number of hidden states. This conforms to the
theoretical result that, in general, identifiability of causal predictors
cannot be achieved if the hidden variable may take arbitrarily many
states, for example.

As part of the method, we propose a test for the equality of two
switching regression models; to the best of our knowledge this is the
first example of such a test and may be of interest in itself. We prove
the asymptotic validity of this test by providing sufficient conditions
for the existence, the consistency and the asymptotic normality of
the maximum likelihood estimator in switching regression models.

On the real world data, the true causal parent is consistently at-
tributed the highest significance as a causal predictor of the target
variable. Switching regression models can also be used for classifying
data points based on reconstructed values of the hidden variables.
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For large sample sizes, most goodness of fits test are usually re-
jected in real data. Since the h-invariance assumption may not hold
exactly either, it may be interesting to explore relaxations of this
assumption. For example, Pfister et al. [2019a] propose a causal
ranking, and Rothenhäusler et al. [2018] interpolate between pre-
diction and invariance. Our robustness analysis in Section 2.5.1.5
suggests that the performance of our method is not negatively af-
fected when allowing for a dependence between X and H, and we
believe that our theoretical results could be extended to such sce-
narios (possibly adding mild assumptions). To widen the range of
applicability of our method, it might also be worthwhile to consider
non-linear models. In particular, it would be interesting to construct
conditional independence tests that are able to take into account a
mixture model structure.
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3 | The Difficult Task of Dis-
tribution Generalization
in Nonlinear Models

Joint work with

Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco
and Jonas Peters

Abstract
We consider the problem of predicting a response from a set of

covariates when the test distribution differs from the training dis-

tribution. Here, we consider robustness against distributions that

emerge as intervention distributions. Causal models that regress

the response variable on all of its causal parents have been sug-

gested for the above task since they remain valid under arbitrary

interventions on any subset of covariates. However, in linear mod-

els, for a set of interventions with bounded strength, alternative

approaches have been shown to be minimax prediction optimal.

In this work, we analyze minimax solutions in nonlinear models

for both direct and indirect interventions on the covariates. We

prove that the causal function is minimax optimal for a large class

of interventions. We introduce the notion of distribution general-

ization, which is motivated by the fact that, in practice, minimax

solutions need to be identified from observational data. We prove

sufficient conditions for distribution generalization and present cor-

responding impossibility results. To illustrate the above findings,

we propose a practical method, called NILE, that achieves distri-

bution generalization in a nonlinear instrumental variable setting

with linear extrapolation. We prove consistency, present empirical

results and provide code.
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3. Distribution generalization in nonlinear models

3.1. Introduction

Large-scale learning systems, particularly those focusing on predic-
tion tasks, have been successfully applied in various domains of
application. Since inference is usually done during training time,
any difference between training and test distribution poses a chal-
lenge for prediction methods Quionero-Candela et al. [2009], Pan
and Yang [2010], Csurka [2017], Arjovsky et al. [2019]. Dealing with
differences in training and test distribution is of great importance
in fields such as many environmental sciences, where methods need
to extrapolate both in space and time. Tackling this task requires
restrictions on how the distributions may differ, since, clearly, gen-
eralization becomes impossible if the test distribution may be ar-
bitrary. Given a response Y and some covariates X, existing pro-
cedures often aim to find a function f which minimizes the worst-
case risk supP∈N EP [(Y − f(X))2] across distributions contained in
a small neighborhood N of the training distribution. The neigh-
borhood N should be representative of the difference between the
training and test distributions, and often mathematical tractabil-
ity is taken into account, too [Abadeh et al., 2015, Sinha et al.,
2017]. A typical approach is to define a ρ-ball of distributions
Nρ(P0) := {P : D(P, P0) ≤ ρ} around the training distribution P0,
with respect to some divergence measure D, such as the Kullback-
Leibler divergence or the χ2 divergence [Hu and Hong, 2013, Ben-Tal
et al., 2013, Bertsimas et al., 2018, Lam, 2019, Duchi et al., 2016].
While these divergence functions only consider distributions with
the same support as P0, the Wasserstein distance allows to define a
neighborhood of distributions around P0 with possibly different sup-
ports [Abadeh et al., 2015, Sinha et al., 2017, Esfahani and Kuhn,
2018, Blanchet et al., 2019]. In our analysis, we do not start from
a divergence measure, but we construct a neighborhood of distri-
butional changes by using the concept of interventions [Pearl, 2009,
Peters et al., 2017].

We will see that, depending on the considered setup, one can find
models that perform well under interventions which yield distribu-
tions that are considered far away from the observational distribu-
tion in any commonly used metric. Using causal concepts for the
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above problem has been motivated by the following observation. A
causal prediction model, that uses only the direct causes of the re-
sponse Y as covariates, is known to be invariant under interventions
on variables other than Y : the conditional distribution of Y given
its causes does not change (this principle is known as invariance, au-
tonomy or modularity) [Aldrich, 1989, Haavelmo, 1944, Pearl, 2009].
Such a model yields the minimal worst-case prediction error when
considering all interventions on variables other than Y [e.g., Rojas-
Carulla et al., 2018, Theorem 1, Appendix]. It has therefore been
suggested to use causal models in problems of domain generalization
or distributional shifts [Schölkopf et al., 2012, Rojas-Carulla et al.,
2018, Heinze-Deml and Meinshausen, 2017, Magliacane et al., 2018,
Meinshausen, 2018, Arjovsky et al., 2019, Pfister et al., 2019c]. One
may argue, however, that causal methods are too conservative in
that the interventions which induce the test distributions may not
be arbitrarily strong. As a result, methods which focus on a trade-off
between predictability and causality have been proposed for linear
models [Rothenhäusler et al., 2018, Pfister et al., 2019a], see also
Section 3.5.1. In this work, we consider the problem of characteriz-
ing and finding minimax optimal models in a more general, nonlinear
framework.

3.1.1. Contribution

We assume that the true data generating process can be described
by a model M that belongs to a class of models M and induces an
observational distribution PM . We then consider the risk of a pre-
diction function f� from a function class F under a modified model
M(i) that is obtained from M by an intervention i, which belongs
to a set of interventions I. Here, interventions can either act di-
rectly on X or indirectly, via an exogenous variable A, if the latter
exists (precise definitions are provided in Section 3.2 below). Our
work has four main contributions. (1) We analyze the relation be-
tween the causal function (defined formally in Section 3.2) and the
minimizer of supi∈I EM(i)[(Y − f�(X))2]. Our findings go beyond
existing results in that the causal function is shown to be minimax
optimal already for relatively small intervention classes. We further
prove that, in general, the difference between a minimax solution
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intervention suppI(X) assumptions result

on X (well-behaved) ⊆ supp(X) Ass. 3.1 Prop. 3.6

on X (well-behaved) 6⊆ supp(X) Ass. 3.1 & 3.2 Prop. 3.8

on A ⊆ supp(X) Ass. 3.1 & 3.3 Prop. 3.12

on A 6⊆ supp(X) Ass. 3.1, 3.2 & 3.3 Prop. 3.12

Table 3.1. Summary of conditions under which generalization is
possible. Corresponding impossibility results are shown in Proposi-
tions 3.7, 3.11 and 3.13.

and the causal function can be bounded and that any minimax solu-
tion different from the causal function is not robust with respect to
misspecification of the intervention class. (2) In practice, we usually
have to learn the minimax solution from an observational distribu-
tion, in the absence of causal background knowledge. We therefore
introduce the concept of distribution generalization, which requires
the existence of a prediction model f∗ which (approximately) solves
the minimax problem arg minf�∈F supi∈I EM̃(i)[(Y − f�(X))2] for

all M̃ with PM = PM̃ . To the best of our knowledge, the consid-
ered setup is novel. (3) We then investigate explicit conditions on
M, I and PM that allow us to use the observational distribution
of (X,Y,A) to identify a function f∗ : Rd → R that generalizes to
I, i.e., it (approximately) solves the above minimax problem. We
prove several results. E.g., if the interventions are such that the
support of X does not increase with respect to the training distri-
bution, then identifiability of the causal function — a well-studied
problem in causality — is in general sufficient for generalization.
We furthermore give sufficient conditions for generalization to inter-
ventions on either A or X that extend the support of X. Table 3.1
summarizes some of these results. We also prove that, without these
assumptions, generalization is impossible; (4) In Section 3.5, we dis-
cuss how minimax functions can be learned from finitely many data
and explain how existing methodology fits into our framework. We
propose a novel estimator, the NILE, that is applicable in a non-
linear instrumental variables (IV) setting and achieves distribution
generalization with linear extensions. We prove consistency and pro-
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vide empirical results. Our code is available as an R-package at
https://runesen.github.io/NILE. Scripts generating all our fig-
ures and results can be found at the same url.

3.1.2. Further related work

That the causal function is minimax optimal under the set of all
interventions on the covariates has been shown by Rojas-Carulla
et al. [2018], for example, where the additional assumption of no
hidden variables is made. In Section 3.2, we extend this result in
various ways. The question of distributional robustness, sometimes
also referred to as out-of-distribution generalization, aims to develop
procedures that are robust to changes between training and testing
distribution. Empirically, this problem is often studied using ad-
versarial attacks, where small digital [Goodfellow et al., 2014] or
physical [Evtimov et al., 2017] perturbations of pictures can deterio-
rate the performance of a model; arguably, these procedures are not
yet fully understood theoretically. Unlike the procedures mentioned
in Section 3.1.1 that aim to minimize the worst-case risk across dis-
tributions contained in a neighborhood of the training distribution,
e.g., in the Wasserstein metric, [Sinha et al., 2017], we assume these
neighborhoods to be generated by interventions. To the best of our
knowledge, the characterization of distribution generalization that
we consider in Section 3.4 is novel.

In settings of covariate shift, one usually assumes that the train-
ing and test distribution of the covariates are different, while the
conditional distribution of the response given the covariates remains
invariant [Daume III and Marcu, 2006, Bickel et al., 2009, David
et al., 2010, Muandet et al., 2013]. Sometimes, it is additionally
assumed that the support of the training distribution covers the one
of the test distribution [Shimodaira, 2000]. In this work, the con-
ditional distribution of the response given the covariates is allowed
to change between interventions, due to the existence of a hidden
confounder, and we consider settings where the test observations lie
outside the training support. Data augmentation methods increase
the diversity of the training dataset by changing the geometry and
the color of the images (e.g., by rotation, cropping or changing sat-
uration) [Zhang et al., 2017, Shorten and Khoshgoftaar, 2019]. This
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allows the user to create models that generalize better to unseen
environments [e.g., Volpi et al., 2018]. We view these approaches as
a way to enlarge the support of the covariates, which comes with
theoretical advantages, see Section 3.4.

Minimizing the worst-case prediction error can also be formulated
in terms of minimizing the regret in a multi-armed bandit problem
[Lai and Robbins, 1985, Auer et al., 2002, Bartlett et al., 2008]. In
that setting, the agent can choose the distribution which generates
the data. In our setting, though, we do not assume to have control
on the interventions and hence on the distribution of the sampled
data.

3.1.3. Structure of this work

We introduce our framework for generating a collection of inter-
vention distributions in Section 3.2. In Section 3.3, we formalize
the problem considered in this work, namely to find a model that
predicts well under a set of intervention distributions. We prove
that for a wide range of intervention classes, this is achieved by the
causal function. In reality, we are not given the full causal model,
but only the observational distribution. This problem is considered
in Section 3.4, where we provide sufficient conditions under which
distribution generalization is possible and prove corresponding im-
possibility results. The condition whether the intervened X values
are inside the support of the training distribution will play an impor-
tant role. Section 3.5 considers the problem of learning models from
a finite amount of data. In particular, we propose a method, called
NILE, that learns a generalizing model in a nonlinear IV setting. We
prove consistency and compare our method to state-of-the art ap-
proaches empirically. In Appendix B.1, we comment on the different
model classes that are contained in our framework. Appendix B.2
summarizes existing results on identifiability in IV models and Ap-
pendix B.3 provides details on the test statistic that we use in NILE.
Appendix B.4 contains an additional experiment and all proofs are
provided in Appendix B.5.
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3.2. Modeling intervention induced
distributions

We now specify the statistical model used throughout this paper. For
a real-valued response variable Y ∈ R and predictors X ∈ Rd, we
consider the problem of estimating a regression function that works
well not only on the training data, but also under distributions that
we will model by interventions. We require a model that is able
to model an observational distribution of (X,Y ) (training) and the
distribution of (X,Y ) under a class of interventions on (parts of)
X (testing). We will do so by means of a structural causal model
(SCM) [Bollen, 1989, Pearl, 2009]. More precisely, denoting by H ∈
Rq some additional (unobserved) variables, we consider the SCM

H := εH q assignments

X := h2(H, εX) d assignments

Y := f(X) + h1(H, εY ) 1 assignment YX

H

f

h2 h1

Here, f , h1 and h2 are measurable functions, the innovation terms
εX , εY and εH are independent vectors with possibly dependent co-
ordinates. Two comments are in order. The joint distribution of
(X,Y ) is constrained only by requiring that X and h1(εY , H) enter
the equation of Y additively. This constraint affects the allowed con-
ditional distributions of Y given X but does not make any restriction
on the marginal distributions of either X or Y . Furthermore, we do
not assume that the above SCM represents the true causal relation-
ships between the random variables. We do not assume any causal
background knowledge of the system. Instead, the SCM is used only
to construct the test distributions (by considering interventions on
X) for which we are analyzing the predictive performance of dif-
ferent methods – similar to how one could have considered a ball
around the training distribution. If causal background knowledge
exists, however, e.g., in the form of an SCM over variables X and Y ,
it can be made to fit into the above framework. As such, our frame-
work includes a large variety of models, including SCMs in which
some of the X are not ancestors but descendants of Y (this requires
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3. Distribution generalization in nonlinear models

adapting the set of interventions appropriately), see Appendix B.1
for details. The following remark shows such an example, and may
be interesting to readers with a special interest in causality. It can
be skipped at first reading.

Remark 3.1 (Rewriting causal background knowledge). If a pri-
ori causal background knowlededge is available, e.g., in form of an
SCM, our framework is still applicable after an appropriate trans-
formation. The following example shows a reformulation of an SCM
over variables X1, X2 and Y .

X1 := ε1

X2 := k(Y ) + ε2

Y := f(X1) + ε3,

(ε1, ε2, ε3) ∼ Q.

Y

X1 X2

f k

rewrite−−−−→

H := ε3

X := h2(H, (ε1, ε2))

Y := f(X1) +H,

(ε1, ε2, ε3) ∼ Q.
Y

H

X f

Here, h2(H, (ε1, ε2)) := (ε1, k(f(ε1) +H) + ε2). Both SCMs induce
the same observational distribution over (X1, X2, Y ) and any inter-
vention on the covariates in the SCM on the left-hand side can be
rewritten as an intervention on the covariates in the SCM on the
right-hand side. Details and a more general treatment are provided
in Appendix B.1.

Sometimes, the vector X contains variables that are independent
of H and that enter additively into the assignments of the other
covariates. If such covariates exist, it can be useful to explicitly dis-
tinguish them from the other covariates. We will denote them by A
and call them exogenous variables. Such variables are interesting for
two reasons. (i) Under additional assumptions, they can be used as
instrumental variables [e.g., Bowden and Turkington, 1985, Greene,
2003], a well-established tool for ensuring that f can be uniquely
recovered from the observational distribution of (X,Y ). And (ii),
we will see below that in general, interventions on such variables
lead to intervention distributions with desirable properties. In the
remainder of this article, we will therefore consider a slightly larger
class of SCMs that also includes exogenous variables A. It contains
the SCM presented at the beginning of Section 3.2 as a special case.1

1This follows by choosing A as an indep. noise variable and a constant g.
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3.2.1. Model

Formally, we consider a response Y ∈ R1, covariates X ∈ Rd, ex-
ogenous variables A ∈ Rr, and unobserved variables H ∈ Rq. Let
further F ⊆ {f : Rd → R}, G ⊆ {g : Rr → Rd}, H1 ⊆ {h1 :
Rq+1 → R} and H2 ⊆ {h2 : Rq+d → Rd} be fixed sets of mea-
surable functions. Moreover, let Q be a collection of probability
distributions on Rd+1+r+q, such that for all Q ∈ Q it holds that if
(εX , εY , εA, εH) ∼ Q, then εX , εY , εA and εH are jointly indepen-
dent, and for all h1 ∈ H1 and h2 ∈ H2 it holds that ξY := h1(εH , εY )
and ξX := h2(εH , εX) have mean zero.2 LetM := F×G×H1×H2×
Q denote the model class. Every model M = (f, g, h1, h2, Q) ∈ M
then specifies an SCM by3

A := εA r assignments

H := εH q assignments

X := g(A) + h2(H, εX) d assignments

Y := f(X) + h1(H, εY ) 1 assignment
YX

H

A

f

h2 h1
g

with (εX , εY , εA, εH) ∼ Q. For each model M = (f, g, h1, h2, Q) ∈
M, we refer to f as the causal function (for the pair (X,Y )) and
assume that the entailed distribution has finite second moments.
Furthermore, we denote by PM the joint distribution over the ob-
served variables (X,Y,A) induced by the SCM specified by M . If
no exogenous variables A exist, one can think of the function g as
being a constant function.

3.2.2. Interventions

Each SCM M ∈ M can now be modified by the concept of in-
terventions [e.g., Pearl, 2009, Peters et al., 2017]. An intervention
corresponds to replacing one or more of the structural assignments of
the SCM. For example, we intervene on all covariates X by replacing
the d assignments with, e.g., a random variable, which is indepen-

2This can be assumed without loss of generality if F and G are closed under
addition and scalar multiplication, and contain the constant function.

3For appropriate choices of h2, the model includes settings in which (some of)
the A directly influence Y .
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3. Distribution generalization in nonlinear models

dent of the other noise variables and has a multivariate Gaussian
distribution. Importantly, an intervention on some of the variables
does not change the assignment of any other variable. In particular,
an intervention on X does not change the conditional distribution
of Y , given X and H (this is an instance of the invariance prop-
erty mentioned in Section 3.1). More generally, we denote by M(i)
the intervened SCM over the variables (Xi, Ai, Y i, Hi), obtained by
performing the intervention i in model M . We do not require that
the intervened model M(i) belong to the model class M, but we
require that M(i) induces a joint distribution over (Xi, Y i, Ai, Hi),
which has finite second moments. We use I to denote a collection
of interventions.

In this work, we only consider interventions on the covariates X
and A. More specifically, for a given model M = (f, g, h1, h2, Q) ∈
M and an intervention i ∈ I, the intervened SCM M(i) takes one
of two forms. First, for an intervention on X it is given by

Ai := εiA, Hi := εiH ,

Xi := ψi(g, h2, A
i, Hi, εiX , I

i),

Y i := f(Xi) + h1(Hi, εiY ),

and, second, for an intervention on A it is given by

Ai := ψi(Ii, εiA), Hi := εiH ,

Xi := g(Ai) + h2(Hi, εiX),

Y i := f(Xi) + h1(Hi, εiY ).

In both cases, (εiX , ε
i
Y , ε

i
A, ε

i
H) ∼ Q, the (possibly degenerate) ran-

dom vector Ii is independent of (εiX , ε
i
Y , ε

i
A, ε

i
H), and ψi is a mea-

surable function, whose arguments are all part of the structural as-
signment of the intervened variable in model M . We will see below
that this class of interventions is rather flexible. It does, however,
not allow for arbitrary manipulations of M . For example, the noise
variable εY is not allowed to enter the structural assignment of the
intervened variable. Interventions on A will generally be easier to
analyze than interventions on X. We therefore distinguish between
the following different types of interventions on X. Let i be an in-
tervention on X with intervention map ψi. The intervention is then
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3.2. Modeling intervention induced distributions

called

confounding-preserving
if there exists a map ϕi, such that
ψi(g, h2, A

i, Hi, εiX , I
i) = ϕi(Ai, g(Ai), h2(Hi, εiX), Ii)

and it is called

confounding-removing
if for all models M ∈M,
ψi(g, h2, A

i, Hi, εiX , I
i) ⊥⊥ Hi under M(i).

Furthermore, we call a set of interventions I well-behaved either if
it consists only of confounding-preserving interventions or if it con-
tains at least one confounding-removing intervention. Confounding-
preserving interventions contain, for example, shift interventions
on X, which linearly shift the original assignment by Ii, that is,
ψi(g, h2, A

i, Hi, εiX , I
i) = g(Ai) + h2(Hi, εiX) + Ii. The naming

‘confounding-preserving’ stems from the fact that the unobserved
(confounding) variables H only enter the intervened structural as-
signment of X via the term h2(Hi, εiX), which is the same as in the
original model. Some interventions are confounding-removing and
confounding-preserving, but not every confounding-removing inter-
vention is confounding-preserving. For example, the intervention
ψi(g, h2, A

i, Hi, εiX , I
i) = εiX is confounding-removing but, in gen-

eral, not confounding-preserving. Similarly, not all confounding-
preserving are confounding-removing.

If the context does not allow for any ambiguity, we omit the su-
perscript i and write expressions such as EM(i)[(Y − f(X))2]. The
support of random variables under interventions will play an impor-
tant role for the analysis of distribution generalization. Through-
out this paper, suppM (Z) denotes the support of the random vari-
able Z ∈ {A,X,H, Y } under the distribution PM , which is induced
by the SCM M ∈ M. Moreover, suppMI (Z) denotes the union of
suppM(i)(Z) over all interventions i ∈ I. We call a collection of inter-
ventions on Z support-reducing (w.r.t. M) if suppMI (Z) ⊆ suppM (Z)
and support-extending (w.r.t. M) if suppMI (Z) 6⊆ suppM (Z). When-
ever it is clear from the context which model is considered, we may
drop the indication of M altogether and simply write supp(Z).
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3. Distribution generalization in nonlinear models

3.3. Interventional robustness and the
causal function

Let M be a fixed model class, let M = (f, g, h1, h2, Q) ∈ M be the
true data generating model, and let I be a class of interventions.
In this work, we aim to find a function f∗ : Rd → R, such that the
predictive model Ŷ = f∗(X) has low worst-case risk over all distri-
butions induced by the interventions in I. We therefore consider the
optimization problem

arg min
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
, (3.3.1)

where EM(i) is the expectation in the intervened model M(i). In
general, this optimization problem is neither guaranteed to have
a solution, nor is the solution, if it exists, ensured to be unique.
Whenever a solution f∗ exists, we refer to it as a minimax solution
(for model M w.r.t. (F , I)).

If, for example, I consists only of the trivial intervention, that is,
PM = PM(i), we are looking for the best predictor on the observa-
tional distribution. In that case, the minimax solution is obtained
by any conditional mean function, f∗ : x 7→ E[Y |X = x] (provided
that f∗ ∈ F). For larger classes of interventions, however, the con-
ditional mean may become sub-optimal in terms of prediction. To
see this, it is instructive to decompose the risk under an interven-
tion. Since the structural assignment for Y remains unchanged for
all interventions that we consider in this work, it holds for all f� ∈ F
and all interventions i on either A or X that

EM(i)[(Y − f�(X))2]

= EM(i)[(f(X)− f�(X))2] + EM [ξ2
Y ] + 2EM(i)[ξY (f(X)− f�(X))].

Here, the middle term does not depend on i since ξY = h1(H, εY )
remains fixed. If i is a confounding-removing intervention, then
ξY ⊥⊥ X under PM(i), and, because of EM [ξY ] = 0, the last term
in the above equation vanishes. Therefore, if I consists only of
confounding-removing interventions, the causal function is a solu-
tion to the minimax-problem (3.3.1). The following proposition
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3.3. Interventional robustness and the causal function

shows that an even stronger statement holds: The causal function is
already a minimax solution if I contains at least one confounding-
removing intervention on X.

Proposition 3.1 (confounding-removing interventions on X). If I
is a set of interventions on X or A and at least one of these is a
confounding-removing intervention, then the causal function f is a
minimax solution.

One step in the proof of this proposition is to show that the mini-
mal worst-case loss is attained at a confounding-removing interven-
tion. That is,

inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
= inf
f�∈F

sup
i∈Icr

EM(i)

[
(Y − f�(X))2

]
,

where Icr ⊆ I denotes the non-empty subset of confounding-removing
interventions. This observation will also be used in the proofs of
some of the results that follow below.

We now prove that when restricting ourselves to linear functions
only, the causal function is also a minimax solution with respect
to the set of all shift interventions on X – interventions that ap-
pear in linear IV models and recently gained further attention in
the causal community [Rothenhäusler et al., 2018, Sani et al., 2020].
The proposition below also makes precise in which sense shift in-
terventions are related to linear model classes. Intuitively, when
the causal relation between X and Y is linear, shift interventions
are sufficient to create unbounded variability in all directions of the
covariance matrix of X (more precisely, the unbounded eigenvalue
condition below is satisfied if I is the set of all shift interventions on
X). As the following proposition shows, under this condition, the
causal function is a minimax solution.

Proposition 3.2 (unbounded interventions on X with linear F).
Let F be the class of all linear functions, and let I be a set of in-
terventions on X or A s.t. supi∈I λmin

(
EM(i)

[
XX>

])
= ∞, where

λmin denotes the smallest eigenvalue (assuming that the considered
moments exist). Then, the causal function f is the unique minimax
solution.
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Even if the causal function f does not solve the minimax prob-
lem (3.3.1), the difference between the minimax solution and the
causal function cannot be arbitrarily large. The following proposi-
tion shows that the worst-case L2-distance between f and any func-
tion f� that performs better than f (in terms of worst-case risk)
can be bounded by a term which is related to the strength of the
confounding.

Proposition 3.3 (difference between causal function and minimax
solution). Let I be a set of interventions on X or A. Then, for any
function f� ∈ F which satisfies that

sup
i∈I

EM(i)[(Y − f�(X))2] ≤ sup
i∈I

EM(i)[(Y − f(X))2],

it holds that

sup
i∈I

EM(i)[(f(X)− f�(X))2] ≤ 4 VarM (ξY ).

Even though the difference can be bounded, it may be non-zero,
and one may benefit from choosing a function that differs from the
causal function f . This choice, however, comes at a cost: it relies on
the fact that we know the class of interventions I. In general, being
a minimax solution is not entirely robust with respect to misspecifi-
cation of I. In particular, if the set I2 of interventions describing the
test distributions is misspecified by a set I1 6= I2, then the consid-
ered minimax solution with respect to I1 may perform worse than
the causal function on the test distributions.

Proposition 3.4 (properties of the minimax solution under mis-
-specified interventions). Let I1 and I2 be any two sets of interven-
tions on X, and let f∗1 ∈ F be a minimax solution w.r.t. I1. Then,
if I2 ⊆ I1 it holds that

sup
i∈I2

EM(i)

[
(Y − f∗1 (X))2

]
≤ sup
i∈I2

EM(i)

[
(Y − f(X))2

]
.

If I2 6⊆ I1, however, it can happen (even if F is linear) that

sup
i∈I2

EM(i)

[
(Y − f∗1 (X))2

]
> sup
i∈I2

EM(i)

[
(Y − f(X))2

]
.
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The second part of the proposition should be understood as a
non-robustness property of non-causal minimax solutions. Improve-
ments on the causal function are possible in situations, where one
has reasons to believe that the test distributions do not stem from
a set of interventions that is much larger than the specified set.

So far, the optimizer of the minimax problem (3.3.1) depends on
the true model M . In practice, however, we do not have access to
the true model M , but only to its observational distribution PM .
This motivates the definition of distribution generalization.

3.4. Distribution generalization

Throughout this section, let M denote a fixed model class, let
M = (f, g, h1, h2, Q) ∈ M be the true (but unknown) data gen-
erating model, with observational distribution PM , and let I be a
set of interventions on X or A. Depending on the model class M,
there may be several models M̃ ∈ M that induce the observational
distribution PM but do not agree with M on all intervention distri-
butions induced by I. Each such model induces a potentially differ-
ent minimax problem, with a potentially different set of solutions.
Given knowledge only of PM , it is therefore generally not possible to
identify a solution to (3.3.1). In this section, we study conditions on
M, PM and I, under which this becomes possible. More precisely,
we aim to characterize under which conditions (PM ,M) generalizes
to I.

Definition 3.1 (distribution generalization). (PM ,M) is said to
generalize to I if for every ε > 0 there exists a function f∗ ∈ F such
that, for all models M̃ ∈M with PM̃ = PM , it holds that∣∣∣∣sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣∣∣ ≤ ε.
(3.4.1)

Distribution generalization does not require the existence of a min-
imax solution in F (which would require further assumptions on the
function class F) and instead focuses on whether an approximate
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solution can be identified based only on the observational distribu-
tion PM . If, however, there exists a function f∗ ∈ F which, for
every M̃ ∈ M with PM̃ = PM , is a minimax solution for M̃ w.r.t.
(F , I), then, in particular, (PM ,M) generalizes to I. As the next
proposition shows, generalization is closely linked to the ability of
identifying the joint intervention distributions of (X,Y ) from the
observational distribution.

Proposition 3.5 (Sufficient conditions for distribution generaliza-
tion). Assume that for all M̃ ∈M it holds that4

PM̃ = PM ⇒ P(X,Y )

M̃(i)
= P(X,Y )

M(i) ∀i ∈ I,

where P(X,Y )
M(i) is the joint distribution of (X,Y ) under M(i). Then,

(PM ,M) generalizes to I.

Proposition 3.5 provides verifiable conditions for distribution gen-
eralization, and is a useful result for proving possibility statements.
It is, however, not a necessary condition. In Propositions 3.6 and 3.8,
we give further conditions under which distribution generalization is
possible for all well-behaved sets of interventions. In particular, if
the set of interventions I contains at least one confounding-removing
intervention it can be shown that the causal function always gener-
alizes, even in cases where the interventional marginal of X is not
identified. We will see that distribution generalization is closely
linked to the relation between the support of PM and the support of
the intervention distributions. Below, we therefore distinguish be-
tween support-reducing interventions (Section 3.4.1) and support-
extending interventions (Section 3.4.2) on X. In Section 3.4.3, we
consider interventions on A. We will see that parts of the analysis
carry over from the interventions on X.

3.4.1. Support-reducing interventions on X

In order to simplify the following analysis, we will constrain ourselves
to cases in which the causal function is identified on the support of
X. This condition is made precise in the following assumption.

4It is in fact sufficient if the marginal distribution of X, EM̃(i)[Y |X] and

EM̃(i)[Y
2 |X] remain fixed for all M̃ ∈M with PM̃ = PM .
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Assumption 3.1 (Identifiability of f on the support of X). For all
M̃ = (f̃ , . . . ) ∈ M with PM̃ = PM , it holds that f̃(x) = f(x) for all
x ∈ supp(X).

Assumption 3.1 concerns identifiability of the causal function from
the observational distribution on the support of X. This question
has received a lot of attention in literature. In linear instrumen-
tal variable settings, for example, one assumes that the functions
f and g are linear and the product moment between A and X has
rank at least the dimension of X [e.g., Wooldridge, 2010]. In lin-
ear non-Gaussian models, one can identify the function f even if
there are no instruments [Hoyer et al., 2008]. For nonlinear models,
restricted structural causal models can be exploited, too. In that
case, Assumption 3.1 holds under regularity conditions if h1(H, εY )
is independent of X [Zhang and Hyvärinen, 2009, Peters et al., 2014,
2017] and first attempts have been made to extend such results to
non-trivial confounding cases [Janzing et al., 2009]. The nonlinear
IV setting [e.g., Amemiya, 1974, Newey, 2013, Newey and Powell,
2003] is discussed in more detail in Appendix B.2, where we give
a brief overview of identification results for linear, parametric and
non-parametric function classes. There is also a technical aspect re-
garding identifiability: Assumption 3.1 states that f is identifiable,
even on PM -null sets, which is usually achieved by placing further
constraints on the function class, such as smoothness. Even though
this issue seems technical, it becomes important when considering
hard interventions that set X to a fixed value, for example.

Assumption 3.1 is not necessary for generalization. Rothenhäusler
et al. [2018] show, for example, that if F and G consist of linear func-
tions it is possible to generalize to a set of bounded interventions on
A – even if Assumption 3.1 does not hold. If, however, Assump-
tion 3.1 holds, then distribution generalization is possible even in
nonlinear settings, under a large class of interventions if these are
support-reducing.

Proposition 3.6 (Generalization to support-reducing interventions
on X). Let I be a well-behaved set of interventions on X, and as-
sume that suppI(X) ⊆ supp(X). Then, under Assumption 3.1,
(PM ,M) generalizes to the interventions I.
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Proposition 3.6 states that Assumption 3.1 is a sufficient condition
for generalization when I is a well-behaved set of support-reducing
interventions. However, for an arbitrary set of interventions, gener-
alization can become impossible, even if Assumption 3.1 is satisfied
and all interventions are support-reducing.

3.4.1.1. Impossibility of generalization under changes in
confounding

Consider, for example, a one-dimensional linear instrumental vari-
able setting. Let therefore Q be a class of product distributions on
R4, such that for all Q ∈ Q, the coordinates of Q are non-degenerate,
zero-mean with finite second moment. Let M be the class of all
models of the form

A := εA, H := σεH , X := γA+εX + 1
σH, Y := βX+εY + 1

σH,
(3.4.2)

with γ, β ∈ R, σ > 0 and (εA, εX , εY , εH) ∼ Q ∈ Q. Assume
that PM is induced by some (unknown) model M = M(γ, β, σ,Q)
from the above model class (here, we slightly adapt the notation
from Section 3.2). The following proposition shows that if the set
of interventions I is not well-behaved, distribution generalization is
not always ensured.

Proposition 3.7 (Impossibility of generalization to non-well-be-
haved interventions). Assume thatM is given as defined above, and
let I ⊆ R>0 be a compact set of interventions on X defined by
ψi(g, h2, A

i, Hi, εiX , I
i) = iH, for i ∈ I (this set of interventions is

not well-behaved). Then, (PM ,M) does not generalize to the inter-
ventions in I (even if Assumption 3.1 is satisfied). In addition, any
prediction model other than the causal model may perform arbitrar-
ily bad under the interventions I. That is, for any b 6= β and any
c > 0, there exists a model M̃ ∈M with PM̃ = PM , such that∣∣∣sup

i∈I
EM̃(i)

[
(Y − bX)2

]
− inf
b�∈R

sup
i∈I

EM̃(i)

[
(Y − b�X)2

]∣∣∣ ≥ c.
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3.4.2. Support-extending interventions on X

If the interventions in I extend the support of X, i.e., suppI(X) 6⊆
supp(X), Assumption 3.1 is not sufficient for ensuring distribution
generalization. This is because there may exist models M̃ ∈ M
which agree with M on the observational distribution, but whose
corresponding causal function f̃ differs from f outside of the support
ofX. In that case, a support-extending intervention onX may result
in different dependencies between X and Y in the two models, and
therefore induce a different set of minimax solutions. The following
assumption on the model class F ensures that any f ∈ F is uniquely
determined by its values on supp(X).

Assumption 3.2 (Extrapolation of F). For all f̃ , f̄ ∈ F with
f̃(x) = f̄(x) for all x ∈ supp(X), it holds that f̃ ≡ f̄ .

We will see that this assumption is sufficient (Proposition 3.8)
for generalization with respect to well-behaved interventions on X.
Furthermore, it is also necessary (Proposition 3.11) if F is sufficiently
flexible. The following proposition can be seen as an extension of
Proposition 3.6.

Proposition 3.8 (Generalization under support-extending inter-
ventions on X). Let I be a well-behaved set of interventions on X.
Then, under Assumptions 3.1 and 3.2, (PM ,M) generalizes to I.

Because the interventions may change the marginal distribution
of X, the preceding proposition includes examples, in which distri-
bution generalization is possible even if some of the considered joint
(test) distributions are arbitrarily far from the training distribution,
in terms of any reasonable divergence measure over distributions,
such as Wasserstein distance or f -divergence.

The proposition relies on Assumption 3.2. Even though this as-
sumption is restrictive, it is satisifed by several reasonable function
classes, which therefore allow for generalization under any set of
well-behaved interventions. Below, we give two examples of such a
function class.

91



3. Distribution generalization in nonlinear models

3.4.2.1. Sufficient conditions for generalization

Assumption 3.2 states that every function in F is globally identified
by its values on supp(X). This is, for example, satisfied if F is a
linear space of functions with domain D ⊆ Rd which are linearly
independent on supp(X). More precisely,

F is linearly closed : f1, f2 ∈ F , c ∈ R⇒ f1 + f2, cf1 ∈ F , and
(3.4.3)

F is lin. ind. on supp(X) : f1(x) = 0 ∀x ∈ supp(X)⇒ f1(x) ≡ 0.
(3.4.4)

Examples of such classes include (i) globally linear parametric func-
tion classes, i.e., F is of the form

F1 := {f� : D → R | there exists γ ∈ Rk s.t. ∀x ∈ D : f�(x) = γ>ν(x)},

where ν = (ν1, . . . , νk) consists of real-valued, linearly independent
functions satisfying that EM [ν(X)ν(X)>] is strictly positive definite,
and (ii) the class of differentiable functions that extend linearly out-
side of supp(X), that is, F is of the form

F2 := {f� : D → R | f� ∈ C1,∀x 6∈ supp(X) : f�(x) = f�(xb)+∇f�(xb)(x−xb)},

where xb := arg minz∈supp(X)‖x− z‖ and supp(X) is assumed to be
closed with non-empty interior. Clearly, both of the above function
classes are linearly closed. To see that F1 satisfies (3.4.4), let γ ∈ Rk
be s.t. γ>ν(x) = 0 for all x ∈ supp(X). Then, it follows that 0 =
EM [(γ>ν(X))2] = γ>EM [ν(X)ν(X)>]γ and hence that γ = 0. To
see that F2 satisfies (3.4.4), let f� ∈ F2 and assume that f�(x) = 0
for all x ∈ supp(X). Then, f�(x) = 0 for all x ∈ D and thus F2

uniquely defines the function on the entire domain D.
By Proposition 3.8, generalization with respect to these model

classes is possible for any well-behaved set of interventions. In prac-
tice, it may often be more realistic to impose bounds on the higher
order derivatives of the functions in F . We now prove that this
still allows for approximate distribution generalization, see Proposi-
tions 3.9 and 3.10.
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3.4. Distribution generalization

3.4.2.2. Sufficient conditions for approximate distribution
generalization

For differentiable functions, exact generalization cannot always be
achieved. Bounding the first derivative, however, allows us to achieve
approximate generalization. We therefore consider the following
function class

F3 := {f� : D → R | f� ∈ C1 with ‖∇f�‖∞ ≤ K}, (3.4.5)

for some fixed K <∞, where ∇f� denotes the gradient and D ⊆ Rd.
We then have the following result.

Proposition 3.9 (Approx. generalization with bdd. derivatives
(confounding-removing)). Let F be as defined in (3.4.5). Let I be
a set of interventions on X containing at least one confounding-
removing intervention, and assume that Assumption 3.1 holds true.
(In this case, the causal function f is a minimax solution.) Then,
for all f∗ with f∗ = f on supp(X) and all M̃ ∈M with PM̃ = PM ,
it holds that∣∣∣sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣∣
≤ 4δ2K2 + 4δK

√
VarM (ξY ),

where δ := supx∈suppMI (X) infz∈suppM (X)‖x−z‖. If I consists only of
confounding-removing interventions, the same statement holds when
replacing the bound by 4δ2K2.

Proposition 3.9 states that the deviation of the worst-case gener-
alization error from the best possible value is bounded by a term
that grows with the square of δ. Intuitively, this means that un-
der the function class defined in (3.4.5), approximate generalization
is reasonable only for interventions that are close to the support
of X. We now prove a similar result for cases in which the mini-
max solution is not necessarily the causal function. The following
proposition bounds the worst-case generalization error for arbitrary
confounding-preserving interventions. Here, the bound additionally
accounts for the approximation to the minimax solution.
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3. Distribution generalization in nonlinear models

Proposition 3.10 (Approx. generalization with bdd. derivatives
(confounding-preserving)). Let F be as defined in (3.4.5). Let I be a
set of confounding-preserving interventions on X, and assume that
Assumption 3.1 is satisfied. Let ε > 0 and let f∗ ∈ F be such that∣∣∣sup

i∈I
EM(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]∣∣∣ ≤ ε.
Then, for all M̃ ∈M with PM̃ = PM , it holds that∣∣∣sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣∣
≤ ε+ 12δ2K2 + 32δK

√
VarM (ξY ) + 4

√
2δK
√
ε

where δ := supx∈suppMI (X) infz∈suppM (X)‖x− z‖.

We can take f∗ to be the minimax solution if it exists. In that
case, the terms involving ε disappear from the bound, which then
becomes more similar to the one in Proposition 3.9.

3.4.2.3. Impossibility of generalization without restrictions on F

If we do not constrain the function class F , generalization is impos-
sible. Even if we consider the set of all continuous functions F , we
cannot generalize to interventions outside the support of X. This
statement holds even if Assumption 3.1 is satisfied.

Proposition 3.11 (Impossibility of extrapolation). Assume that
F = {f� : Rd → R | f� is continuous}. Let I be a well-behaved set of
support-extending interventions on X, such that suppI(X)\supp(X)
has non-empty interior. Then, (PM ,M) does not generalize to the
interventions in I, even if Assumption 3.1 is satisfied. In particular,
for any function f̄ ∈ F and any c > 0, there exists a model M̃ ∈M,
with PM̃ = PM , such that∣∣∣sup

i∈I
EM̃(i)

[
(Y − f̄(X))2

]
− inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣∣ ≥ c.
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3.4. Distribution generalization

3.4.3. Interventions on A

We can now derive corresponding results for interventions on A, for
which, as we will see, parts of the analysis simplify. We will be
able to employ several of the above results by realizing that any
intervention on A can be written as an intervention on X, in which
the structural assignment of X is altered in a way that depends on
the functional relationship g between X and A. The effect of such
an intervention on the prediction model is propagated by g. More
formally, under such an intervention, a model M̃ = (f̃ , g̃, h̃1, h̃2, Q̃)
with g̃ 6= g may induce a distribution over (X,Y ) that differs from
the one induced by M . Without further restrictions on the function
class G, this may happen even in cases where M̃ and M agree on
the observational distribution. This motivates an assumption on the
identifiability of g.

Assumption 3.3 (Identifiability of g). For all M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈
M with PM̃ = PM , it holds that g̃(a) = g(a) for all a ∈ supp(A) ∪
suppI(A).

Since g(A) is a conditional mean for X given A, the values of g
are identified from PM for PM -almost all a. If suppI(A) ⊆ supp(A),
Assumption 3.3 therefore holds if, for example, G contains continu-
ous functions only. The point-wise identifiability of g is necessary,
for example, if some of the test distributions are induced by hard
interventions on A, which set A to some fixed value a ∈ Rr. In the
case where the interventions I extend the support of A, we addi-
tionally require the function class G to extrapolate from supp(A) to
supp(A)∪ suppI(A); this is similar to the conditions on F which we
made in Section 3.4.2 and requires further restrictions on G. Un-
der Assumption 3.3, we obtain a result corresponding to Proposi-
tions 3.6 and 3.8.

Proposition 3.12 (Generalization under interventions on A). Let
I be a set of interventions on A and assume Assumption 3.3 is satis-
fied. Then, (PM ,M) generalizes to I if either suppI(X) ⊆ supp(X)
and Assumption 3.1 is satisfied or if both Assumptions 3.1 and 3.2
are satisfied.
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3. Distribution generalization in nonlinear models

3.4.3.1. Impossibility of generalization without constraints on G

Without restrictions on the model class G, generalization to inter-
ventions on A is impossible. This holds true even under strong
assumptions on the true causal function (such as f is known to be
linear). Below, we give a formal impossibility result for hard inter-
ventions on A, which set A to some fixed value, where G is the set
of all continuous functions.

Proposition 3.13 (Impossibility to generalize under interventions
on A). Assume that F = {f� : Rd → R | f� is linear} and G = {g� :
Rr → Rd | g� is continuous}. Let A ⊆ Rr be bounded, and let I de-
note the set of all hard interventions which set A to some fixed value
from A. Assume that A \ supp(A) has nonempty interior. Assume
further that EM [ξXξY ] 6= 0 (this excludes the case of no hidden con-
founding). Then, PM does not generalize to the interventions in I.
In addition, any function other than f may perform arbitrarily bad
under the interventions in I. That is, for any f̄ 6= f and c > 0,
there exists a model M̃ ∈M with PM̃ = PM such that∣∣∣sup

i∈I
EM̃(i)

[
(Y − f̄(X))2

]
− inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣∣ ≥ c.

3.5. Learning generalizing models from data

So far, our focus has been on the possibility to generalize, that is,
we have investigated under which conditions it is possible to identify
generalizing models from the observational distribution. In practice,
generalizing models need to be estimated from finitely many data.
This task is challenging for several reasons. First, analytical solu-
tions to the minimax problem (3.3.1) are only known in few cases.
Even if generalization is possible, the inferential target thus often
remains a complicated object, given as a well-defined but unknown
function of the observational distribution. Second, we have seen
that the ability to generalize depends strongly on whether the in-
terventions extend the support of X, see Propositions 3.8 and 3.11.
In a setting with a finite amount of data, the empirical support of
the data lies within some bounded region, and suitable constraints
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Figure 3.1. The left plot illustrates the straight-forward idea be-
hind the impossibility result in Proposition 3.11. The plots in the
middle and on the right-hand side illustrate the impossibility re-
sult in Proposition 3.13. All plots visualize the case of univariate
variables. Under well-behaved interventions on X (left; here using
confounding-removing interventions) which extend the support of
X, generalization is impossible without further restrictions on the
function class F . This holds true even if Assumption 3.1 is satisfied.
Indeed, although the candidate model (blue line) coincides with the
causal model (green dashed curve) on the support of X, it may per-
form arbitrarily bad on test data generated under support-extending
interventions. Under interventions on A (right and middle), general-
ization is impossible even under strong assumptions on the function
class F (here, F is the class of all linear functions). Any support-
extending intervention on A shifts the marginal distribution of X by
an amount which depends on the (unknown) function g, resulting in
a distribution of (X,Y ) which cannot be identified from the obser-
vational distribution. Without further restrictions on the function
class G, any candidate model apart from the causal model may result
in arbitrarily large worst-case prediction risk.
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3. Distribution generalization in nonlinear models

on the function class F are necessary when aiming to achieve em-
pirical generalization outside this region, even if X comes from a
distribution with full support. As we show in our simulations in
Section 3.5.2.4, constraining the function class can also improve the
prediction performance at the boundary of the support.

In Section 3.5.1, we survey existing methods for learning general-
izing models. Often, these methods assume either a globally linear
model class F or are completely non-parametric and therefore do
not generalize outside the empirical support of the data. Motivated
by this observation, we introduce in Section 3.5.2 a novel estima-
tor, which exploits an instrumental variable setup and a particular
extrapolation assumption to learn a globally generalizing model.

3.5.1. Existing methods

As discussed in Section 3.1.2, a wide range of methods have been
proposed to guard against various types of distributional changes.
Here, we review methods that fit into the causal framework in the
sense that the distributions that in the minimax formulation the
supremum is taken over are induced by interventions.

For well-behaved interventions on X which contain at least one
confounding-removing intervention, estimating minimax solutions
reduces to the well-studied problem of estimating causal relation-
ships. One class of algorithms for this task is given by linear instru-
mental variable (IV) approaches. They assume that F is linear and
require identifiability of the causal function (Assumption 3.1) via a
rank condition on the observational distribution, see Appendix B.2.
Their target of inference is to estimate the causal function, which by
Proposition 3.1 will coincide with the minimax solution if the set I
consists of well-behaved interventions with at least one of them being
confounding-removing. A basic estimator for linear IV models is the
two-stage least squares (TSLS) estimator, which minimizes the norm
of the prediction residuals projected onto the subspace spanned by
the observed instruments (TSLS objective). TSLS estimators are
consistent but do not come with strong finite sample guarantees;
e.g., they do not have finite moments in a just-identified setup [e.g.,
Mariano, 2001]. K-class estimators Theil [1958] have been proposed
to overcome some of these issues. They minimize a linear combina-
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3.5. Learning generalizing models from data

model class interventions suppI(X) assumptions algorithm

F linear on X or A
(at least one
confounding-

removing)

– Ass. 3.1 linear IV
(e.g., TSLS, K-class

or PULSE Theil
[1958], Jakobsen

and Peters [2020])

F ,G linear on A bounded
strength

– anchor regression
(Rothenhäusler
et al. [2018], see

also Theil [1958])

F smooth on X or A
(at least one
confounding-

removing)

support-
reducing

Ass. 3.1 nonlinear IV
(e.g., NPREGIV

Racine and
Hayfield [2018])

F smooth
& linearly
extrapo-

lates

on X or A
(at least one
confounding-

removing)

– Ass. 3.1 & 3.2 NILE
Section 3.5.2

Table 3.2. List of algorithms to learn the generalizing function
from data, the considered model class, types of interventions, sup-
port under interventions, and additional model assumptions. Suffi-
cient conditions for Assumption 3.1 are given, for example, in the
IV literature by generalized rank conditions, see Appendix B.2.

tion of the residual sum of squares (OLS objective) and the TSLS
objective. K-class estimators can be seen as utilizing a bias-variance
trade-off. For fixed and non-trivial relative weights, they have, in a
Gaussian setting, finite moments up to a certain order that depends
on the sample-size and the number of predictors used. If the weights
are such that the OLS objective is ignored asymptotically, they con-
sistently estimate the causal parameter [e.g., Mariano, 2001]. More
recently, PULSE has been proposed [Jakobsen and Peters, 2020], a
data-driven procedure for choosing the relative weights such that
the prediction residuals ‘just’ pass a test for simultaneous uncorre-
latedness with the instruments.

In cases where the minimax solution does not equal causal func-
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3. Distribution generalization in nonlinear models

tion, only few algorithms exist. Anchor regression [Rothenhäusler
et al., 2018] is a procedure that can be used when F and G are lin-
ear and h1 is additive in the noise component. It finds the minimax
solution if the set I consists of all interventions on A up to a fixed
intervention strength, and is applicable even if Assumption 3.1 is
not necessarily satisfied.

In a linear setting, where the regression coefficients differ between
different environments, it is also possible to minimize the worst-case
risk among the observed environments [Meinshausen and Bühlmann,
2015]. In its current formulation, this approach does not quite fit into
the above framework, as it does not allow for changing distributions
of the covariates. A summary of the mentioned methods and their
assumptions is given in Table 3.2.

If F is a nonlinear or non-parametric class of functions, the task
of finding minimax solutions becomes more difficult. In cases where
the causal function is among such solutions, this problem has been
studied in the econometrics community. For example, Newey [2013],
Newey and Powell [2003] treat the identifiability and estimation of
causal functions in non-parametric function classes. Several non-
parametric IV procedures exists, e.g., NPREGIV Racine and Hay-
field [2018] contains modified implementations of Darolles et al.
[2011] and Horowitz [2011]. Identifiability and estimation of the
causal function using nonlinear IV methods in parametric function
classes is discussed in Appendix B.2. Unlike in the linear case, most
of the methods do not aim to extrapolate and only recover the causal
function inside the support of X, that is, they cannot be used to pre-
dict interventions outside of this domain. In the following section,
we propose a procedure that is able to extrapolate when F consists
of functions which extend linearly outside of the support of X. In
our simulations, we show that such an assumption can improve the
prediction performance on the boundary of the support.

3.5.2. NILE

We have seen in Proposition 3.11 that in order to generalize to in-
terventions which extend the support of X, we require additional
assumptions on the function class F . In this section, we start from
such assumptions and verify both theoretically and practically that
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3.5. Learning generalizing models from data

they allow us to perform distribution generalization in the consid-
ered setup. Along the way, several choices can be made and usually
several options are possible. We will see that our choices yield a
method with competitive performance, but we do not claim opti-
mality of our procedure. Several of our choices were partially made
to keep the theoretical exposition simple and the method computa-
tionally efficient. We first consider the univariate case (i.e., X and
A are real-valued) and comment later on the possibility to extend
the methodology to higher dimensions. Unless specific background
knowledge is given, it might be reasonable to assume that the causal
function extends linearly outside a fixed interval [a, b]. By addition-
ally imposing differentiability on F , any function from F is uniquely
defined by its values within [a, b], see also Section 3.4.2.1. Given an
estimate f on [a, b], the linear extrapolation property then yields a
global estimate on the whole of R. In principle, any class of dif-
ferentiable functions can be used. Here, we assume that, on the
interval [a, b], the causal function f is contained in the linear span
of a B-spline basis. More formally, let B = (B1, ..., Bk) be a fixed
B-spline basis on [a, b], and define η := (a, b, B). Our procedure as-
sumes that the true causal function f belongs to the function class
Fη := {fη(·; θ) : θ ∈ Rk}, where for every x ∈ R and θ ∈ Rk,
fη(x; θ) is given as

fη(x; θ) :=


B(a)>θ +B′(a)>θ(x− a) if x < a

B(x)>θ if x ∈ [a, b]

B(b)>θ +B′(b)>θ(x− b) if x > b,

(3.5.1)

where B′ := (B′1, . . . , B
′
k) denotes the component-wise derivative of

B. In our algorithm, η = (a, b, B) is a hyper-parameter, which can
be set manually, or be chosen from data.

3.5.2.1. Estimation procedure

We now introduce our estimation procedure for fixed choices of all
hyper-parameters. Section 3.5.2.2 describes how these can be cho-
sen from data in practice. Let (X,Y,A) ∈ Rn×3 be n i.i.d. real-
izations sampled from a distribution over (X,Y,A), let η = (a, b, B)
be fixed and assume that supp(X) ⊆ [a, b]. Our algorithm aims
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3. Distribution generalization in nonlinear models

to learn the causal function fη(·; θ0) ∈ Fη, which is determined
by the linear causal parameter θ0 of a k-dimensional vector of co-
variates (B1(X), . . . , Bk(X)). From standard linear IV theory, it is
known that at least k instrumental variables are required to iden-
tify the k causal parameters, see Appendix B.2. We therefore ar-
tificially generate such instruments by nonlinearly transforming A,
by using another B-spline basis C = (C1, . . . , Ck). The parame-
ter θ0 can then be identified from the observational distribution
under appropriate rank conditions, see Section 3.5.2.3. In that
case, the hypothesis H0(θ) : θ = θ0 is equivalent to the hypothesis
H̃0(θ) : E[C(A)(Y −B(X)>θ)] = 0. Let B ∈ Rn×k and C ∈ Rn×k be
the associated design matrices, for each i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
given as Bij = Bj(Xi) and Cij = Cj(Ai). A straightforward choice

would be to construct the standard TSLS estimator, i.e., θ̂ as the
minimizer of θ 7→ ‖P(Y −Bθ)‖22, where P is the projection matrix
onto the columns of C, see also Hall [2005]. Even though this pro-
cedure may result in an asymptotically consistent estimator, there
are several reasons why it may be suboptimal in a finite sample set-
ting. First, the above estimator can have large finite sample bias,
in particular if k is large. Indeed, in the extreme case where k = n,
and assuming that all columns in C are linearly independent, P is
equal to the identity matrix, and θ̂ coincides with the OLS estima-
tor. Second, since θ corresponds to the linear parameter of a spline
basis, it seems reasonable to impose constraints on θ which enforce
smoothness of the resulting spline function. Both of these points can
be addressed by introducing additional penalties into the estimation
procedure. Let therefore K ∈ Rk×k and M ∈ Rk×k be the matrices
that are, for each i, j ∈ {1, . . . , k}, defined as Kij =

∫
B′′i (x)B′′j (x)dx

and Mij =
∫
C ′′i (a)C ′′j (a)da, and let γ, δ > 0 be the respective penal-

ties associated with K and M. For λ ≥ 0 and with µ := (γ, δ, C),
we then define the estimator

θ̂nλ,η,µ := arg min
θ∈Rk

‖Y −Bθ‖22 + λ‖Pδ(Y −Bθ)‖22 + γθ>Kθ, (3.5.2)

where Pδ := C(C>C+δM)−1C> is the ‘hat’-matrix for a penalized
regression onto the columns of C. By choice of K, the term θ>Kθ
is equal to the integrated squared curvature of the spline function
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parametrized by θ. The above may thus be seen as a nonlinear exten-
sion of K-class estimators [Theil, 1958], with an additional penalty
term which enforces linear extrapolation. In principle, the above ap-
proach extends to situations where X and A are higher-dimensional,
in which case B and C consist of multivariate functions. For exam-
ple, Fahrmeir et al. [2013] propose the use of tensor product splines,
and introduce multivariate smoothness penalties based on pairwise
first- or second order parameter differences of basis functions which
are close-by with respect to some suitably chosen metric. Similarly
to (3.5.2), such penalties result in a convex optimization problem.
However, due to the large number of involved variables, the opti-
mization procedure becomes computationally burdensome already
in small dimensions.

Within the function class Fη, the above defines the global estimate

fη(·; θ̂nλ,η,µ), for every x ∈ R given by

fη(x; θ̂nλ,η,µ) :=


B(a)>θ̂nλ,η,µ +B′(a)>θnλ,η,µ(x− a) if x < a

B(x)>θ̂nλ,η,µ if x ∈ [a, b]

B(b)>θnλ,η,µ +B′(b)>θnλ,η,µ(x− b) if x > b.

(3.5.3)
We deliberately distinguish between three different groups of hyper-
parameters η, µ and λ. The parameter η = (a, b, B) defines the
function class to which the causal function f is assumed to be-
long. To prove consistency of our estimator, we require this func-
tion class to be correctly specified. In turn, the parameters λ and
µ = (γ, δ, C) are algorithmic parameters that do not describe the sta-
tistical model. Their values only affects the finite sample behavior of
our algorithm, whereas consistency is ensured as long as C satisfies
certain rank conditions, see Assumption (B2) in Section 3.5.2.3. In
practice, γ and δ are chosen via a cross-validation procedure, see
Section 3.5.2.2. The parameter λ determines the relative contribu-
tion of the OLS and TSLS losses to the objective function. To choose
λ from data, we use an idea similar to the PULSE [Jakobsen and
Peters, 2020].

103



3. Distribution generalization in nonlinear models

3.5.2.2. Algorithm

Let for now η, µ be fixed. In the limit λ→∞, our estimation proce-
dure becomes equivalent to minimizing the TSLS loss θ 7→ ‖Pδ(Y−
Bθ)‖22, which may be interpreted as searching for the parameter
θ which complies ‘best’ with the hypothesis H̃0(θ) : E[C(A)(Y −
B(X)>θ)] = 0. For finitely many data, following the idea introduced
in [Jakobsen and Peters, 2020], we propose to choose the value for

λ such that H̃0(θ̂nλ,η,µ) is just accepted (e.g., at a significance level
α = 0.05). That is, among all λ ≥ 0 which result in an estima-
tor that is not rejected as a candidate for the causal parameter,
we chose the one which yields maximal contribution of the OLS
loss to the objective function. More formally, let for every θ ∈ Rk,
T (θ) = (Tn(θ))n∈N be a statistical test at (asymptotic) level α for
H̃0(θ) with rejection threshold q(α). That is, Tn(θ) does not reject
H̃0(θ) if and only if Tn(θ) ≤ q(α). The penalty λ?n is then chosen in
the following data-driven way

λ?n := inf{λ ≥ 0 : Tn(θ̂nλ,η,µ) ≤ q(α)}.

In general, λ?n is not guaranteed to be finite for an arbitrary test
statistic Tn. Even for a reasonable test statistic it might happen
that Tn(θ̂nλ,η,µ) > q(α) for all λ ≥ 0; see Jakobsen and Peters [2020]
for further details. We can remedy the problem by reverting to an-
other well-defined and consistent estimator, such as the TSLS (which
minimizes the TSLS loss above) if λ?n is not finite. Furthermore, if

λ 7→ Tn(θ̂nλ,η,µ) is monotonic, λ?n can be computed efficiently by a
binary search procedure. In our algorithm, the test statistic T and
rejection threshold q can be supplied by the user. Conditions on T
that are sufficient to yield a consistent estimator fη(·, θ̂λ?n,µ,η), given
that Fη is correctly specified, are presented in Section 3.5.2.3. Two
choices of test statistics which are implemented in our code package
can be found in Appendix B.3.

For every γ ≥ 0, let Qγ = B(B>B+γK)−1B> be the ‘hat’-matrix
for the penalized regression onto B. Our algorithm then proceeds
as follows.

104



3.5. Learning generalizing models from data

Algorithm 2: NILE (“Nonlinear Intervention-robust
Linear Extrapolator”)

1 input: data (X,Y,A) ∈ Rn×3;
2 options: k, T , q, α;
3 begin
4 a← miniXi, b← maxiXi;
5 construct cubic B-spline bases B = (B1, . . . , Bk) and

C = (C1, . . . , Ck) at equidistant knots, with boundary
knots at respective extreme values of X and A;

6 define η̂ ← (a, b, B);
7 choose δnCV > 0 by 10-fold CV to minimize the

out-of-sample mean squared error of Ŷ = PδY;
8 choose γnCV > 0 by 10-fold CV to minimize the

out-of-sample mean squared error of Ŷ = QγY;
9 define µnCV ← (δnCV, γ

n
CV, C);

10 approximate λ?n = inf{λ ≥ 0 : Tn(θ̂nλ,µnCV,η̂
) ≤ q(α)} by

binary search;
11 update γnCV ← (1 + λ?n) · γnCV;

12 compute θ̂nλ?n,µnCV,η̂
using (3.5.2);

13 end

14 output: f̂nNILE := fη̂( · ; θ̂nλ?n,µnCV,η̂
) defined by (3.5.3);

The penalty parameter γnCV is chosen to minimize the out-of-

sample mean squared error of the prediction model Ŷ = QγY, which
corresponds to the solution of (3.5.2) for λ = 0. After choosing λ?n,
the objective function in (3.5.2) increases by the term λ?n‖PδnCV

(Y−
Bθ)‖22. In order for the penalty term γθ>Kθ to impose the same de-
gree of smoothness in the altered optimization problem, the penalty
parameter γ needs to be adjusted accordingly. The heuristic update
in our algorithm is motivated by the simple observation that for all
δ, λ ≥ 0, ‖Y −Bθ‖22 + λ‖Pδ(Y −Bθ)‖22 ≤ (1 + λ)‖Y −Bθ‖22.

3.5.2.3. Asymptotic generalization (consistency)

We now prove consistency of our estimator in the case where the
hyper-parameters (η, µ) are fixed (rather than data-driven), and the
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function class Fη is correctly specified. Fix any a < b and a ba-
sis B = (B1, . . . , Bk). Let η0 = (a, b, B) and let the model class
be given by M = Fη0 × G × H1 × H2 × Q, where Fη0 is as de-
scribed in Section 3.5.2. Assume that the data-generating model
M = (fη0( · ; θ0), g, h1, h2, Q) ∈ M induces an observational distri-
bution PM such that suppM (X) ⊆ (a, b). Let further I be a set of
interventions on X or A, and let α ∈ (0, 1) be a fixed significance
level.

We prove asymptotic generalization (consistency) for an idealized
version of the NILE estimator which utilizes η0, rather than the
data-driven values. Choose any δ, γ ≥ 0 and basis C = (C1, ..., Ck)
and let µ = (δ, γ, C). We will make use of the following assumptions.

(B1) ∀M̃ ∈ M with PM = PM̃ it holds that supi∈I EM̃(i)[X
2] <∞

and supi∈I λmax(EM̃(i)[B(X)B(X)>]) <∞.

(B2) EM [B(X)B(X)>], EM [C(A)C(A)>] and EM [C(A)B(X)>] are
of full rank.

(C1) T (θ) has uniform asymptotic power on any compact set of
alternatives.

(C2) λ?n := inf{λ ≥ 0 : Tn(θ̂nλ,η0,µ) ≤ q(α)} is almost surely finite.

(C3) λ 7→ Tn(θ̂nλ,η0,µ) is weakly decreasing and θ 7→ Tn(θ) is contin-
uous.

Assumptions (B1)–(B2) ensure consistency of the estimator as long
as λ?n tends to infinity. Intuitively, in this case, we can apply argu-
ments similar to those that prove consistency of the TSLS estimator.
Assumptions (C1)–(C3) ensure that consistency is achieved when
choosing λ?n in the data-driven fashion described in Section 3.5.2.2.
In Assumption (B1), λmax denotes the largest eigenvalue. In words,
the assumption states that, under each model M̃ ∈ M with PM =
PM̃ , there exists a finite upper bound on the variance of any linear
combination of the basis functions B(X), uniformly over all dis-
tributions induced by I. The first two rank conditions of (B2)
enable certain limiting arguments to be valid and they guarantee
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3.5. Learning generalizing models from data

that estimators are asymptotically well-defined. The last rank con-
dition of (B2) is the so-called rank condition for identification. It
guarantees that θ0 is identified from the observational distribution
in the sense that the hypothesis H0(θ) : θ = θ0 becomes equiv-
alent with H̃0(θ) : EM [C(A)(Y − B(X)>θ)] = 0. (C1) means
that for any compact set K ⊆ Rk with θ0 6∈ K it holds that
limn→∞ P (infθ∈K Tn(θ) ≤ q(α)) = 0. If the considered test has,
in addition, a level guarantee, such as pointwise asympotic level,
the interpretation of the finite sample estimator discussed in Sec-
tion 3.5.2.2 remains valid (such level guarantee may potentially yield
improved finite sample performance, too). (C2) is made to simplify
the consistency proof. As previously discussed in Section 3.5.2.2, if
(C2) is not satisfied, we can output another well-defined and con-
sistent estimator on the event (λ?n = ∞), ensuring that consistency
still holds.

Under these conditions, we have the following asymptotic gener-
alization guarantee.

Proposition 3.14 (Asymptotic generalization). Let I be a set of in-
terventions on X or A of which at least one is confounding-removing.
If assumptions (B1)–(B2) and (C1)–(C3) hold true, then, for any
M̃ ∈M with PM̃ = PM , and any ε > 0, it holds that

PM
(∣∣ sup
i∈I

EM̃(i)

[
(Y − fη0(X; θ̂nλ?n,η0,µ))2

]
− inf
f�∈Fη0

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣ ≤ ε)→ 1,

as n→∞. In the above event, only θ̂nλ?n,η0,µ is stochastic.

3.5.2.4. Experiments

We now investigate the empirical performance of our proposed es-
timator, the NILE, with k = 50 spline basis functions. To choose
λ?n, we use the test statistic T 2

n , which tests the slightly stronger
hypothesis H̄0, see Appendix B.3. In all experiments use the signif-
icance level α = 0.05. We include two other approaches as baseline:
(i) the method NPREGIV (using its default options) introduced in
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Section 3.5.1, and (ii) a linearly extrapolating estimator of the or-
dinary regression of Y on X (which corresponds to the NILE with
λ? ≡ 0). In all experiments, we generate data sets of size n = 200
as independent replications from

A := εA, H := εH ,

X := αAA+ αHH + αεεX ,

Y := f(X) + 0.3H + 0.2εY ,

(3.5.4)

where (εA, εH , εX , εY ) are jointly independent with U(−1, 1) marginals.
To make results comparable across different parameter settings, we
impose the constraint α2

A + α2
H + α2

ε = 1, which ensures that in
all models, X has variance 1/3. The function f is drawn from the
linear span of a basis of four natural cubic splines with knots placed
equidistantly within the 90% inner quantile range of X. By well-
known properties of natural splines, any such function extends lin-
early outside the boundary knots. Figure 3.2 (left) shows an example
data set from (3.5.4), where the causal function is indicated in green.
We additionally display estimates obtained by each of the considered
methods, based on 20 i.i.d. datasets. Due to the confounding vari-
able H, the OLS estimator is clearly biased. NPREGIV exploits
A as an instrumental variable and obtains good results within the
support of the observed data. Due to its non-parametric nature,
however, it cannot extrapolate outside this domain. The NILE esti-
mator exploits the linear extrapolation assumption on f to produce
global estimates.

We further investigate the empirical worst-case mean squared er-
ror across several different models of the form (3.5.4). That is, for
a fixed set of parameters (αA, αH , αε), we construct several mod-
els M1, . . . ,MN of the form (3.5.4) by randomly sampling causal
functions f1, . . . , fN (see Appendix B.4 for further details on the
sampling procedure). For every x ∈ [0, 2], let Ix denote the set of
hard interventions which set X to some fixed value in [−x, x]. We
then characterize the performance of each method using the average
(across different models) worst-case mean squared error (across the
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Figure 3.2. A sample dataset from the model (3.5.4) with αA =√
1/3, αH =

√
2/3, αε = 0. The true causal function is indicated

by a green dashed line. For each method, we show 20 estimates of
this function, each based on an independent sample from (3.5.4).
For values within the support of the training data (vertical dashed
lines mark the inner 90% quantile range), NPREGIV correctly esti-
mates the causal function well. As expected, when moving outside
the support of X, the estimates become unreliable, and we gain an
increasing advantage by exploiting the linear extrapolation assumed
by the NILE.

interventions in Ix), i.e., for each estimator f̂ , we consider

1

N

N∑
j=1

sup
i∈Ix

EMj(i)

[
(Y−f̂(X))2

]
= E[ξ2

Y ]+
1

N

N∑
j=1

sup
x̃∈[−x,x]

(fj(x̃)−f̂(x̃))2,

(3.5.5)
where ξY := 0.3H + 0.2εY is the noise term for Y (which is fixed

across all experiments). In practice, we evaluate the functions f̂ ,
f1, . . . , fN on a fine grid on [−x, x] to approximate the above supre-
mum. Figure 3.3 plots the average worst-case mean squared error
versus intervention strength for different parameter settings. The
optimal worst-case mean squared error E[ξ2

Y ] is indicated by a green
dashed line. The results show that the linear extrapolation property
of the NILE estimator is beneficial in particular for strong inter-
ventions. In the case of no confounding (αH = 0), the minimax
solution coincides with the regression of Y on X, hence even the
OLS estimator yields good predictive performance. In this case,
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Figure 3.3. Predictive performance under confounding-removing
interventions on X for different confounding- and intervention
strengths (see alpha values in the grey panel on top). The right
panel corresponds to the same parameter setting as in Figure 3.2.
The plots in each panel are based on data sets of size n = 200,
generated from N = 100 different models of the form (3.5.4). For
each model, we draw a different function f , resulting in a different
minimax solution (see Appendix B.4 for details on the sampling pro-
cedure). The performances under individual models are shown by
thin lines; the average performance (3.5.5) across all models is indi-
cated by thick lines. In all considered models, the optimal prediction
error is equal to E[ξ2

Y ] (green dashed line). The grey area indicates
the inner 90 % quantile range of X in the training distribution; the
white area can be seen as an area of generalization.

the hypothesis H̄0(θ̂nλ,δnCV,γ
n
CV

) is accepted already for small values

of λ (in this experiment, the empirical average of λ?n equals 0.015),
and the NILE estimator becomes indistinguishable from the OLS.
As the confounding strength increases, the OLS becomes increas-
ingly biased, and the NILE objective function differs more notably
from the OLS (average λ?n of 2.412 and 5.136, respectively). The
method NPREGIV slightly outperforms the NILE inside the sup-
port of the observed data, but drops in performance for stronger
interventions. We believe that the increase in extrapolation perfor-
mance of the NILE for stronger confounding (increasing αH) might
stem from the fact that, as the λ?n increases, also the smoothness
penalty γ increases, see Algorithm 2. While this results in slightly
worse in-sample prediction, it seems beneficial for extrapolation (at
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Figure 3.4. Predictive performance for varying instrument
strength. If the instruments have no influence on X (αA = 0),
the second term in the objective function (3.5.2) is effectively con-
stant in θ, and the NILE therefore coincides with the OLS estimator
(which uses λ = 0). This guards the NILE against the large variance
which most IV estimators suffer from in a weak instrument setting.
For increasing influence of A, it clearly outperforms both alternative
methods for large intervention strengths.

least for the particular function class that we consider). We do not
claim that our algorithm has theoretical guarantees which explain
this increase in performance.

In the case, where all exogenous noise comes from the unobserved
variable εX (i.e., αA = 0), the NILE coincides with the OLS estima-
tor. In such settings, standard IV methods are known to perform
poorly, although also the NPREGIV method seems robust to such
scenarios. As the instrument strength increases, the NILE clearly
outperforms OLS and NPREGIV for interventions on X which in-
clude values outside the training data.

3.6. Discussion and future work

In many real world problems, the test distribution may differ from
the training distribution. This requires statistical methods that
come with a provable guarantee in such a setting. It is possible
to characterize robustness by considering predictive performance for
distributions that are close to the training distribution in terms of
standard divergences or metrics, such as KL divergences or Wasser-
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stein distance. As an alternative view point, we have introduced
a novel framework that formalizes the task of distribution gener-
alization when considering distributions that are induced by a set
of interventions. Based on the concept of modularity, interventions
modify parts of the joint distribution and leave other parts invari-
ant. Thereby, they impose constraints on the changes of the distri-
butions that are qualitatively different from considering balls in a
certain metric. As such, we see them as a useful language to de-
scribe realistic changes between training and test distributions. Our
framework is general in that it allows us to model a wide range of
causal models and interventions, which do not need to be known be-
forehand. We have proved several generalization guarantees, some
of which show robustness for distributions that are not close to the
training distribution by considering almost any of the standard met-
rics. We have further proved impossibility results that indicate the
limits of what is possible to learn from the training distribution. In
particular, in nonlinear models, strong assumptions are required for
distribution generalization to a different support of the covariates.
As such, methods such as anchor regression cannot be expected to
work in nonlinear models, unless strong restrictions are placed on
the function class G.

Our work can be extended into several directions. It may, for ex-
ample, be worthwhile to investigate the sharpness of the bounds we
provide in Section 3.4.2.2 and other extrapolation assumptions on
F . While our results can be applied to situations where causal back-
ground knowledge is available, via a transformation of SCMs, our
analysis is deliberately agnostic about such information. It would
be interesting to see whether stronger theoretical results can be ob-
tained by including causal background information. Finally, it could
be worthwhile to investigate whether NILE, which outperforms ex-
isting approaches with respect to extrapolation, can be combined
with non-parametric methods. This could yield an even better per-
formance on estimating the causal function within the support of
the covariates.

We view our work as a step towards understanding the problem of
distribution generalization. We hope that considering the concepts
of interventions may help to shed further light into the question
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under which assumptions it is possible to generalize knowledge that
was acquired during training to a different test distribution.
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Abstract
In many data scientific problems, we are interested not only in

modeling the behavior of a system that is passively observed, but

also in inferring how the system reacts to changes in the data gener-

ating mechanism. Given knowledge of the underlying causal struc-

ture, such behavior can be estimated from purely observational

data. To do so, one typically assumes that the causal structure

of the data generating mechanism can be fully specified. Further-

more, many methods assume that data are generated as indepen-

dent replications from that mechanism. Both of these assump-

tions are usually hard to justify in practice: datasets often have

complex dependence structures, as is the case for spatio-temporal

data, and the full causal structure between all involved variables is

hardly known. Here, we present causal models that are adapted to

the characteristics of spatio-temporal data, and which allow us to

define and quantify causal effects despite incomplete causal back-

ground knowledge. We further introduce a simple approach for

estimating causal effects, and a non-parametric hypothesis test for

these effects being zero. The proposed methods do not rely on

any distributional assumptions on the data, and allow for arbitrar-

ily many latent confounders, given that these confounders do not
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vary across time (or, alternatively, they do not vary across space).

Our theoretical findings are supported by simulations and code is

available online. This work has been motivated by the following

real-world question: how has the Colombian conflict influenced

tropical forest loss? There is evidence for both enhancing and re-

ducing impacts, but most literature analyzing this problem is not

using formal causal methodology. When applying our method to

data from 2000 to 2018, we find a reducing but insignificant causal

effect of conflict on forest loss. Regionally, both enhancing and

reducing effects can be identified.

116



4.1. Introduction

4.1. Introduction

4.1.1. Spatio-temporal data analysis

In principle, all data are spatio-temporal data: Any observation of
any phenomenon occurs at a particular point in space and time.
If information on the spatio-temporal origin of data are available,
this information can be exploited for statistical modeling in various
ways; this is the study of spatio-temporal statistics [see, e.g., Sher-
man, 2011, Montero et al., 2015, Cressie and Wikle, 2015, Wikle
et al., 2019]. Spatio-temporal statistical models find their appli-
cation in many environmental and sustainability sciences, and have
been used, for example, for the analysis of biological growth patterns
[Chaplain et al., 1999], to identify hotspots of species co-occurrence
[Ward et al., 2015], to model meteorological fields [Bertolacci et al.,
2019], or to assess the development of land-use change [Liu et al.,
2017] and sea level rise [Zammit-Mangion et al., 2015]. They are fre-
quently used in epidemiology for prevalence mapping of infectious
diseases [Giorgi et al., 2018], and have also been applied in the social
sciences, for example, for the modeling of housing prices [Holly et al.,
2010], or for election forecasting [Pav́ıa et al., 2008]. In almost all of
these domains, the abundance of spatio-temporal data has increased
rapidly over the last decades. Several advances aim to improve the
accessibility of such datasets, e.g., via ‘data cube’ approaches [Na-
tivi et al., 2017, Giuliani et al., 2019, Appel and Pebesma, 2019,
Mahecha et al., 2020].

Most spatio-temporal statistical models are models for the obser-
vational distribution, that is, they model processes that are passively
observed. By allowing for spatio-temporal trends and dependence
structures, such models can be accurate descriptions of complex
processes, and have proven to be effective tools for spatio-temporal
prediction (i.e., filtering and smoothing), inference and forecasting
[Wikle et al., 2019]. However, to answer interventional questions
such as “How does a certain policy change affect land-use patterns?”,
we require a model for the intervention distribution, that is, for data
generated under a change in the data generating mechanism — we
require a causal model for the data generating process.
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4.1.2. Causality

For i.i.d. and time series data, that is, for data, for which the spatial
information can be neglected, causal models have been well-studied.
Among the most widely used approaches are structural causal mod-
els, causal graphical models, and the framework of potential out-
comes [see, e.g., Bollen, 1989, Pearl, 2009, Peters et al., 2017, Ru-
bin, 1974]. Knowledge of the causal structure of a system does not
only provide us with cause-effect relationships; sometimes, it also
allows us to quantify causal relations by estimating intervention ef-
fects from observational data. If, for example, we know that W is
causing X and Y , and that X is causing Y , procedures such as vari-
able adjustment can be used to estimate the causal influence of X on
Y from i.i.d. replications from the model [Pearl, 2009, Rubin, 1974].
While using a slightly different language, the same underlying causal
deliberations are the basis of many works in econometrics, e.g., work
related to generalized methods of moments and identifiability of pa-
rameters [e.g., Hansen, 1982, Newey and McFadden, 1994]. In this
field, data are often assumed to have a time series structure [e.g.,
Hall, 2005].

Existing causal models for i.i.d. or time series data do not ap-
ply easily to a spatio-temporal setting, since we cannot regard a
spatio-temporal dataset as a collection of independent replications
from some random vector or timeseries generated from the same
underlying causal system. Nevertheless, several methods have been
proposed for spatio-temporal causal modeling [e.g., Lozano et al.,
2009, Luo et al., 2013, Zhu et al., 2017]. These are mostly algo-
rithmical approaches that extend the concept of Granger causality
[Granger, 1980, Wiener, 1956] to spatio-temporal data. They re-
duce the question of causality to predictability and a positive time
lag. In particular, these methods assume that there are no relevant
unobserved variables (‘confounders’) and they do not resolve the
question of time-instantaneous causality between different points in
space. Further, to the best of our knowledge, existing work does not
provide a formal model for causality for spatio-temporal data. As
a consequence, the precise definition of the target of inference, the
causal effect, remains vague.

In this work, we introduce a class of causal models for multivari-
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ate spatio-temporal stochastic processes. A spatio-temporal dataset
may then be viewed as a single realization from such a model, ob-
served at discrete points in space and time. The full causal structure
among all variables of a spatio-temporal process can hardly be fully
specified. In practice, however, a full causal specification may also
not be necessary: we are often interested in quantifying only certain
causal relationships, while being indifferent to other parts of the
causal structure. The introduced causal models are well adapted to
such settings. They allow us to model a causal influence of a vector
of covariates X on a target variable Y while leaving other parts of
the causal structure unspecified. In particular, the models accom-
modate largely unspecified autocorrelation patterns in the response
variable, which are a common phenomena in spatio-temporal data.

The introduced framework allows us to formally talk about causal-
ity in a spatio-temporal context and can be used to construct well-
defined targets of inference. As an example, we define the interven-
tion effect (‘causal effect’) of X on Y . We show that this effect can
be estimated from observational spatio-temporal data and introduce
a corresponding estimator. We further construct a non-parametric
hypothesis test for the effect being zero. Our methods do not rely
on any distributional assumptions on the data generating process.
They further allow for the influence of arbitrarily many latent con-
founders if these confounders do not vary across time. In principle,
our method also allows to analyze problems where temporal and
spatial dimensions are interchanged, meaning that confounders may
vary in time but remain static across space.

Our work has been motivated by the following application.

4.1.3. Conflict and forest loss in Colombia

Tropical forests show the highest values of biodiversity for many or-
ganismic groups, e.g., in terms of vascular plants [Kreft and Jetz,
2007], or certain animal groups like amphibians [Hof et al., 2011].
Additionally, contiguous low-land tropical forests store large amounts
of carbon [Avitabile et al., 2016], play an important role in climate-
regulation, and provide livelihoods to millions of people [Lambin and
Meyfroidt, 2011]. Yet, tropical forest loss remains a major global en-
vironmental problem, as many of these areas continue to be under
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pressure due to agricultural expansion [Carlson et al., 2013, Angelsen
and Kaimowitz, 1999], legal and illicit mining [Sonter et al., 2017],
timber harvest [Pearson et al., 2014] or urban expansion [DeFries
et al., 2010].

A problem that is still only partly understood is the interaction
between forest loss and armed conflicts [Baumann and Kuemmerle,
2016], which are frequent events in tropical areas [Gleditsch et al.,
2002, Pettersson and Wallensteen, 2015]. In particular, it has been
reported that armed conflict may have both positive and negative
impacts on forest loss. On the one hand, conflict can lead to in-
creasing pressure on forests, as (illegal) timber exports may allow
for financing warfare activities [Harrison, 2015]. Also, reduced law
enforcement in conflict regions may lead to plundering natural re-
sources or undertaking illegal mining activities, altogether leading
to increasing forest loss [Irland, 2008, Butsic et al., 2015]. On the
other hand, the outbreak of armed conflicts can also reduce the
pressure on forest resources. This may happen, for example, when
economic and political insecurity interrupt large-scale mining ac-
tivities, or economic sanctions stopping international timber trade
[Le Billon, 2000]. Investors may further be hesitant to invest in agri-
cultural activities [Collier et al., 2000], thereby reducing the pressure
on forest areas compared to peace times [Gorsevski et al., 2012]. In
a global overview, Gaynor et al. [2016] call for a regional nuanced
analysis of such interactions.

Along these lines, we here focus on the specific case of Colombia,
where an armed conflict has been present for over 50 years, causing
more than 200,000 fatalities, until a peace agreement was reached in
2016. Throughout this period, a variety of interacting social and po-
litical factors have regionally led to internal migration and changes
in livelihoods and land-use that are all related to the overall conflict
[Armenteras et al., 2013]. There is evidence that forest loss can be,
at least regionally, attributed to the armed conflict [Castro-Nunez
et al., 2017, Landholm et al., 2019]. At the same time, there are also
arguments suggesting that the pressure on forests was partially re-
duced when armed conflict prevented logging [Dávalos et al., 2016],
either directly (by demanding human resources) or indirectly (e.g.,
due to land-abandonment in the wake of local conflicts [Sánchez-
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Cuervo et al., 2012, Negret et al., 2017]). Most papers report evi-
dence that both positive and negative impacts of conflict on forest
loss may happen in parallel, depending on the local conditions [e.g.,
Sánchez-Cuervo and Aide, 2013, Castro-Nunez et al., 2017]. Latest
evidence suggests, however, that forest loss has increased substan-
tially after the initiation of the peace process in protected areas
[Armenteras et al., 2019, Clerici et al., 2020]. We believe that a
purely data-driven approach can be a useful addition to this debate.

In our analysis, we use a spatio-temporal dataset containing mea-
surements of the following variables.

• Xt
s : binary conflict indicator for location s at year t.

• Y ts : absolute forest loss in location s from year t− 1 to year t,
measured in square kilometers.

• W t
s : distance from location s to the closest road, measured in

kilometers.

Data are annually aggregated, covering the years from 2000 to 2018,
and spatially explicit at a 10km×10km-resolution. We provide a de-
tailed description of the data processing in Section 4.4. A summary
of the dataset can be seen in Figure 4.1. Visually, there is a strong
positive dependence between the occurrence of a conflict and the loss
of forest canopy. This observation is supported by simple summary
statistics: the average forest loss across measurements classified as
conflict events exceeds that from non-conflict events by almost 50%;
a difference that is declared highly significant by a standard t-test
(Figure 4.1, left). The strong signficance of the statistical depen-
dence between forest loss and conflict has been reported before [e.g.,
Landholm et al., 2019]. When seeking a causal explanation for the
observed data, however, we regard such an analysis as flawed in two
ways. First, both conflicts and forest loss predominantly occur in
areas with good transport infrastructure (Figure 4.1, right), indi-
cating that the potential causal effect of X on Y is confounded by
W . In fact, we expect the existence of several other confounders
(e.g., population density, market infrastructure, mining operations,
cocaine plantations, etc.), many of which may be unobserved. Fail-
ing to account for confounding variables leads to biased estimates of
the causal effect. Second, strong spatial dependencies in X and Y
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Figure 4.1. Temporally aggregated summary of the dataset de-
scribed in Section 4.1.3. For visual purposes, the above color scales
are square root- and log10-transformed, respectively. Conflicts are
predictive of exceedances in forest loss (left), but this dependence
is partly induced by a common dependence on transport infrastruc-
ture, which we measure by the mean distance to a road (right).
Failing to account for this variable and other confounders biases our
estimate of the causal influence of conflict on forest loss. Also, since
both conflicts and forest loss exhibit complicated spatial dependence
patterns, the independence assumptions underlying a standard two-
sample t-test are likely to be violated. To correctly assess statements
of statistical significance, we need a test which acknowledges the spa-
tial dependence in the data.

reduce the effective sample size, and a standard t-test thus exagger-
ates the significance of the observed difference in sample averages.
To test hypotheses about X and Y , we need statistical tests which
are adapted to the spatio-temporal nature of data.

4.1.4. Contributions and structure of the paper

Apart from the case study, this paper contains three main theo-
retical contributions: the definition of a causal model for spatio-
temporal data, a method for estimating causal effects, and a hy-
pothesis test for the overall existence of such effects. Our class of
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causal models is introduced in Section 4.2. It translates the situ-
ation of a vector of covariates X that causally affect a real-valued
response variable Y into a spatio-temporal setting. It allows for ar-
bitrary influences of latent confounders, as long as these confounders
do not vary across time. It further accommodates largely unspeci-
fied spatio-temporal dependence structures in the data. Within our
model class, we conceptually define the causal effect of X and Y ,
propose an estimator of this quantity, and prove consistency. This
finding is supported by a simulation study. In Section 4.3, we in-
troduce a non-parametric hypothesis test for the overall existence of
a causal effect, and prove that this test obtains valid level in finite
samples. Section 4.4 applies our methodology to the above example.
All data used for our analysis are publicly available. A descrip-
tion of how it can be obtained, along with an implementation of our
method and reproducing scripts for all our figures and results, can be
found at github.com/runesen/spatio_temporal_causality. All
our proofs are contained in Appendix C.2.

4.2. Quantifying causal effects for
spatio-temporal data

A spatio-temporal dataset may be viewed as a single realization of
a spatio-temporal stochastic process, observed at discrete points in
space and time. In this section, we provide a formal framework
to quantify causal relationships among the components of a mul-
tivariate spatio-temporal process. This framework is presented in
Section 4.2.1. In Section 4.2.2, we define the class of latent spatial
confounder models (LSCMs) which will be the subject of study in
this work, Section 4.2.3 shows how to estimate causal effects within
this model class, and Section 4.2.4 discusses several extensions of
our methodology.

4.2.1. Causal models for spatio-temporal processes

Throughout this section, let (Ω,A, P ) be some background proba-
bility space. A p-dimensional spatio-temporal process Z is a ran-
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dom variable taking values in the sample space Zp of all (B(R2 ×
N),B(Rp))-measurable functions, where B(·) denotes the Borel σ-
algebra. We equip Zp with the σ-algebra Fp, defined as the small-
est σ-algebra such that for all B ∈ B(R2 × N), the mapping Zp 3
z 7→

∫
B
z(x)dx is (Fp,B(Rp))-measurable. The induced probabil-

ity measure P on the measurable space (Zp,Fp), for every F ∈ Fp
defined by P(F ) := P (Z−1(F )), is said to be the distribution of Z.
Throughout this paper, we use the notation Zts to denote the ran-
dom vector obtained from marginalizing Z at spatial location s and
temporal instance t. We use Zs for the time series (Zts)t∈N, Zt for
the spatial process (Zts)s∈R2 , and Z(S) for the spatio-temporal pro-
cess corresponding to the coordinates in S ⊆ {1, . . . , p}. We call a
spatio-temporal process weakly stationary if the marginal distribu-
tion of Zts is the same for all (s, t) ∈ R2 × N, and time-invariant if
P(Z1 = Z2 = · · · ) = 1.

Multivariate spatio-temporal processes are used for the joint mod-
eling of different phenomena, each of which corresponds to a coor-
dinate process. Let us consider a decomposition of these coordinate
processes into disjoint ‘bundles’. We are interested in specifying
causal relations among these bundles while leaving the causal struc-
ture among variables within each bundle unspecified. Similarly to a
graphical model [Lauritzen, 1996], our approach relies on a factor-
ization of the joint distribution of Z into a number of components,
each of which models the conditional distribution for one bundle
given several others. This approach induces a graphical relation
among the different bundles. We will equip these relations with a
causal interpretation by additionally specifying the distribution of
Z under certain interventions on the data generating process. More
formally, we have the following definition.

Definition 4.1 (Causal graphical models for spatio-temporal pro-
cesses). A causal graphical model for a p-dimensional spatio-temporal
process Z is a triplet (S,G,P) consisting of

• a family S = (Sj)
k
j=1 of non-empty, disjoint sets S1, . . . , Sk ⊆

{1, . . . , p} with
⋃k
j=1 Sj = {1, . . . , p},

• a directed acyclic graph G with vertices S1, . . . , Sk, and
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• a family P = (Pj)kj=1 of collections Pj = {Pjz}z∈Z|PAj |
of dis-

tributions on (Z|Sj |,F|Sj |), where for every j, PAj :=
⋃
i:Si→Sj∈G Si.

Whenever PAj = ∅, Pj consists only of a single distribution
which we denote by Pj.

Since G is acyclic, we can without loss of generality assume that
S1, . . . , Sk are indexed such that Si 6→ Sj in G whenever i > j. The
above components induce a unique joint distribution P over Z. For

every F =×k

j=1
Fj, it is defined by

P(F ) =

∫
F1

· · ·
∫
Fk

Pk
z(PAk)(dz

(Sk)) · · ·P1(dz(S1)). (4.2.1)

We call P the observational distribution. For each j ∈ {1, . . . , k},
the conditional distribution of Z(Sj) given Z(PAj) as induced by P
equals Pj. We define an intervention on Z(Sj) as replacing Pj by
another model P̃j. This operation results in a new graphical model
(S,G, P̃) for Z which induces, via (4.2.1), a new distribution P̃, the
interventional distribution.

Assume that we perform an intervention on Z(Si). By definition,
the resulting interventional distribution differs from the observa-
tional distribution only in the way in which Z(Si) depends on Z(PAi),
while all other conditional distributions Z(Sj) |Z(PAj), j 6= i, remain
the same. This property is analogous to the modularity property
of structural causal models [Haavelmo, 1944, Aldrich, 1989, Pearl,
2009, Peters et al., 2017] and justifies a causal interpretation of the
conditionals in P. We refer to the graph G as the causal structure of
Z, and sometimes write Z = [Z(Sk) |Z(PAk)] · · · [Z(S1)] to emphasize
this structure.

4.2.2. Latent spatial confounder model

Motivated by the example on conflict and forest loss introduced in
Section 4.1.3, we are particularly interested in scenarios where a
target variable Y is causally influenced by a vector of covariates X,
and where (X,Y ) are additionally affected by some latent variables
H. In general, inferring causal effects under arbitrary influences of
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latent confounders is impossible, and we therefore need to impose
additional restrictions on the variables in H. We here make the
fundamental assumption that they do not vary across time (alterna-
tively, one can assume that the hidden variables are invariant over
space, see Section 4.2.4.3).

Definition 4.2 (Latent spatial confounder model). Consider a spatio-
temporal process (X,Y,H) = (Xt

s, Y
t
s , H

t
s)(s,t)∈R2×N over a real-

valued response Y , a vector of covariates X ∈ Rd and a vector of
latent variables H ∈ R`. We call a causal graphical model over
(X,Y,H) with causal structure [Y |X,H][X |H][H] a latent spatial
confounder model (LSCM) if both of the following conditions hold
true for the observational distribution.

• The latent process H is weakly stationary and time-invariant.

• There exists a function f : Rd+`+1 → R and an i.i.d. sequence
ε1, ε2, . . . of weakly-stationary spatial error processes, indepen-
dent of (X,H), such that

Y ts = f(Xt
s, H

t
s, ε

t
s) for all (s, t) ∈ R2 × N. (4.2.2)

Throughout this section, we assume that (X,Y,H) come from
an LSCM. The above definition says that for every s, t, Y ts depends
on (X,H) only via (Xt

s, H
t
s), and that this dependence remains the

same for all points in space-time. Together with the weak station-
arity of H and ε, this assumption ensures that the average causal
effect of Xt

s on Y ts (which we introduce below) remains the same
for all s, t. Our model class imposes no restrictions on the marginal
distribution of X. The spatial dependence structure of the error pro-
cess ε must have the same marginal distributions everywhere, but
is otherwise unspecified (in particular, ε is not required to be sta-
tionary). The temporal independence assumption on ε is necessary
for our construction of resampling tests, see Section 4.3. We now
formally define our inferential target.

Definition 4.3 (Average causal effect). The average causal effect
of X on Y is defined as the function fAVE(X→Y ) : Rd → R, for every

x ∈ Rd given by

fAVE(X→Y )(x) := E[f(x,H1
0 , ε

1
0)]. (4.2.3)
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Here, the causal effect is an average effect in that it takes the ex-
pectation over both the noise variable (as opposed to making coun-
terfactual statements [Rubin, 1974]) and the hidden variables (see
also Remark 4.1). The following proposition justifies fAVE(X→Y ) as
a quantification of the causal influence of X on Y.

Proposition 4.1 (Causal interpretation). Let (s, t) ∈ R2 × N and
x ∈ Rd be fixed, and consider any intervention on X such that Xt

s =
x holds almost surely in the induced interventional distribution Px.
We then have that

EPx [Y ts ] = fAVE(X→Y )(x),

i.e., fAVE(X→Y )(x) is the expected value of Y ts under any interven-
tion that enforces Xt

s = x.

In many practical applications, we do not have explicit knowledge
of, or data from, the interventional distributions Px. If we have
access to the causal graph, however, we can sometimes compute
intervention effects from the observational distribution. In the i.i.d.
setting, depending on which variables are observed, this can be done
by covariate adjustment or G-computation [Pearl, 2009, Rubin, 1974,
Shpitser et al., 2010], for example. The following proposition shows
a similar result in the case of a latent spatial confounder model. It
follows directly from Fubini’s theorem.

Proposition 4.2 (Covariate adjustment). Let fY |(X,H) denote the
regression function (x, h) 7→ E[Y ts |Xt

s = x,Ht
s = h] (by definition of

an LSCM, this function is the same for all s, t). For all x ∈ Rd, it
holds that

fAVE(X→Y )(x) = E[fY |(X,H)(x,H
1
0 )]. (4.2.4)

Proposition 4.2 shows that fAVE(X→Y ) is identified from the full
observational distribution over (X,Y,H) (given that the LSCM
structure is known). Since H is unobserved, the main challenge
is to estimate (4.2.4) merely based on data from (X,Y), see Sec-
tion 4.2.3. (We discuss in Section 4.2.4.1 how to further include
observable covariates that are allowed to vary over time.)
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Figure 4.2. Conceptual idea for estimating the average causal
effect (green dashed line) defined in (4.2.3). In both the left and
right panel, we do not display the information of time and space.
The figure in the middle shows the data at different locations
s ∈ {s1, . . . , sn}, i.e., every small plot corresponds to a single time
series. The dashed curve illustrates the unobserved realization of
the spatial confounder Ht

s (for visual purposes, we here consider
one-dimensional space). Due to this confounder, regressing Y ts on
Xt
s (red line in left plot) leads to a biased estimator of the aver-

age causal effect. By exploiting the time-invariance of Ht
s, our es-

timator (blue line in right plot) removes this bias. This procedure
is illustrated in the middle figure: at every location s, we observe
several time instances (Xt

s, Y
t
s ), t = 1, . . . ,m, with the same con-

ditionals Y ts | (Xt
s, H

t
s) and the same (unobserved) value of Ht

s. For
each realization hs of H1

s , we can therefore estimate the regression
fY |(X,H)(·, hs) only using the data (Xm

s ,Y
m
s ) (blue lines in middle

figure). A final estimate of the average causal effect (blue line in right
plot) is obtained by approximating the expectation in (4.2.5) by a
sample average over all spatial locations. We make this approach
precise in Section 4.2.3.
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Remark 4.1 (An alternative definition of the average causal effect).
In our definition of the average causal effect (4.2.3), we take the ex-
pectation with respect to the hidden variables H. By the assumption
of time-invariance, however, there is only a single replication of the
spatial process H1. One may argue that it is more relevant to define
the inferential target in terms of that one realization, rather than in
terms of a distribution over possible alternative outcomes which will
never manifest themselves. This leads to the alternative definition
of the average causal effect

x 7→ lim
S→∞

1

(2S)2

∫
[−S,S]2

E[f(x, h1
s, ε

1
0)] ds

= lim
S→∞

1

(2S)2

∫
[−S,S]2

fY |(X,H)(x, h
1
s) ds,

assuming that the above limits exist. Under the assumption of ergod-
icity of H1, the above expression coincides with Definition 4.3, but it
is learnable from data, via the estimator introduced in Section 4.2.3,
even if this is not the case.1 Here, we choose the formulation in Def-
inition 4.3 because we found that it results in a more comprehensible
theory.

4.2.3. Estimation of the average causal effect

4.2.3.1. Definition and consistency

In practice, we only observe the process (X,Y) at a finite num-
ber of points in space and time. We assume that at every tem-
poral instance, we observe the process at the same spatial loca-
tions s1, . . . , sn ∈ R2 (these locations need not lie on a regular
grid). To simplify notation, we further assume that the observed
time points are t = 1, 2, . . . ,m, i.e., we have access to a dataset
(Xm

n ,Y
m
n ) = (Xt

s, Y
t
s )(s,t)∈{s1,...,sn}×{1,...,m}. The proposed method

is based on the following key idea: for every s ∈ {s1, . . . , sn}, we
observe several time instances (Xt

s, Y
t
s ), t ∈ {1, . . . ,m}, all with the

same conditionals Y ts | (Xt
s, H

t
s). Since H is time-invariant, we can,

for every s, estimate fY |(X,H)(·, hs) for the (unobserved) realization

1We are grateful to Steffen Lauritzen for emphasizing this viewpoint.
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hs of H1
s using the data (Xt

s, Y
t
s ), t ∈ {1, . . . ,m}. The expecta-

tion in (4.2.4) is then approximated by averaging estimates obtained
from different spatial locations. This idea is visualized in Figure 4.2.
More formally, our method requires as input a model class for the re-
gressions fY |(X,H)(·, h), h ∈ R`, alongside with a suitable estimator

f̂Y |X = (f̂mY |X)m∈N, and returns

f̂nmAVE(X→Y )(X
m
n ,Y

m
n )(x) :=

1

n

n∑
i=1

f̂mY |X(Xm
si ,Y

m
si )(x), (4.2.5)

an estimator of the average causal effect (4.2.3) within the given
model class. In Section 4.3, we further provide a statistical test
for the overall existence of a causal effect. Our approach may be
seen as summarizing the output of a spatially varying regression
model [e.g., Gelfand et al., 2003] that is allowed to change arbitrarily
from one location to the other (within the model class dictated by

f̂Y |X). By permitting such flexibility, our method does not rely on
observing data from a continuous or spatially connected domain,
and accommodates complex influences of the latent variables. An
implementation can be found in our code package, see Section 4.1.4.

To prove consistency of our estimator, we let the number of ob-
servable points in space-time increase. Let therefore (sn)n∈N ⊆
R2 be a sequence of spatial coordinates, and consider the array
of data (Xm

n ,Y
m
n )n,m≥1, where for every n,m ∈ N, (Xm

n ,Y
m
n ) =

(Xt
s, Y

t
s )(s,t)∈{s1,...,sn}×{1,...,m}. We want to prove that the corre-

sponding sequence of estimators (4.2.5) consistently estimates (4.2.3).
To obtain such a result, we need two central assumptions.

Assumption 4.1 (Law of Large Numbers for the latent process).
For all measurable functions ϕ : R` → R with E[|ϕ(H1

0 )|] < ∞ it
holds that 1

n

∑n
i=1 ϕ(H1

si)→ E[ϕ(H1
0 )] in probability as n→∞.

The above assumption ensures that, for an increasing number of
spatial locations at which data are observed, the spatial average
in (4.2.5) approximates the expectation in (4.2.3). As the number
of observed time points tends to infinity, we require the estimators
f̂mY |X to converge to the integrand in (4.2.3), at least in some area

X ⊆ Rd.
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Assumption 4.2 (Consistent estimators of the conditional expec-
tations). There exists X ⊆ Rd s.t. for all x ∈ X and s ∈ R2, it

holds that f̂mY |X(Xm
s ,Y

m
s )(x) − fY |(X,H)(x,H

1
s ) → 0 in probability

as m→∞.

A slightly stronger, but maybe more intuitive formulation is to re-
quire the above consistency to hold conditionally on H, i.e., assum-
ing that for all x ∈ X , s ∈ R2 and almost all h, f̂mY |X(Xm

s ,Y
m
s )(x)→

fY |(X,H)(x, h
1
s) as m→∞, in probability under P(· |H = h). It fol-

lows from the dominated convergence theorem that this assumption
implies Assumption 4.2.

Under Assumptions 4.1 and 4.2, we obtain the following consis-
tency result.

Theorem 4.2 (Consistent estimator of the average causal effect).
Let (X,Y,H) come from an LSCM as defined in Definition 4.2. Let
(sn)n∈N be a sequence of spatial coordinates such that the marginal-
ized process (H1

sn)n∈N satisfies Assumption 4.1, and assume that

for all x ∈ X , E[|fY |(X,H)(x,H
1
0 )|] < ∞. Let furthermore f̂Y |X =

(f̂mY |X)m∈N be an estimator satisfying Assumption 4.2. We then have
the following consistency result. For all x ∈ X , δ > 0 and α > 0,
there exists N ∈ N such that for all n ≥ N we can find Mn ∈ N such
that for all m ≥Mn we have that

P
(∣∣∣f̂nmAVE(X→Y )(X

m
n ,Y

m
n )(x)− fAVE(X→Y )(x)

∣∣∣ > δ
)
≤ α. (4.2.6)

Apart from the LSCM structure, the above result does not rely
on any particular distributional properties of the data. Assump-
tions 4.1 and 4.2 do not impose strong restrictions on the data gen-
erating process and hold true for several model classes, including
linear and nonlinear models. Below, we provide sufficient conditions
under which these assumptions are true.

4.2.3.2. Sufficient conditions for Assumptions 4.1 and 4.2

For Assumption 4.1, we consider a stationary Gaussian setup. By
considering a regular spatial sampling scheme, we can make use of
standard ergodic theorems for stationary and ergodic time series.
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Proposition 4.3 (Sufficient conditions for Assumption 4.1). As-
sume that H1 is a stationary multivariate Gaussian process with
covariance function C : R2 → R`×`, i.e., C(h) = Cov(H1

s , H
1
s+h)

for all s, h ∈ R2. Assume that C(h) → 0 entrywise as ‖h‖2 → ∞.
Consider a regular grid {s1

1, s
1
2, . . . } × {s2

1, s
2
2, . . . , s

2
m} ⊆ R2, where

s1
1 < s1

2 < · · · are equally spaced, and let (sn)n∈N be the spatial
sampling scheme for every i ∈ N and j ∈ {1, . . . ,m} given as
s(i−1)m+j = (s1

i , s
2
j ). Then, the process (H1

sn)n∈N satisfies Assump-
tion 4.1.

For Assumption 4.2, we consider the slightly stronger version for-
mulated conditionally on H. We let H ⊆ Z` denote the set of all
functions h : R2 × N→ R` that are constant in the time-argument.
Since H is time-invariant, we have that P(H ∈ H) = 1, and it there-
fore suffices to prove the statement for all h ∈ H. Below, we use, for
every h ∈ H, Ph to denote the conditional distribution P(· |H = h)
and Eh for the expectation with respect to Ph.

We now make some structural assumptions on the function f in
(4.2.2), which allow us to parametrically estimate the regressions
x 7→ fY |(X,H)(x, h). Let {ϕ1, . . . , ϕp} be a known basis of continuous

functions on Rd, and with ϕ1 ≡ 1 an intercept term. With ϕ :=
(ϕ1, . . . , ϕp), we make the following assumptions on the underlying
LSCM.

(L1) There exist functions f1 : R` → Rp and f2 : R`+1 → R such
that Equation (4.2.2) splits into

Y ts = ϕ(Xt
s)
>f1(Ht

s) + f2(Ht
s, ε

t
s) for all (s, t) ∈ R2 × N,

and such that for all h ∈ R`, f2(h, ε1
0) has finite second mo-

ment.

For every s, t, define ξts = f2(Ht
s, ε

t
s). We can w.l.o.g. assume that for

all s, t and h, E[ξts |Ht
s = h] = 0. (Since ϕ1 ≡ 1, this can always be

accommodated by adding h 7→ E[ξts |Ht
s = h] to the first coordinate

of f1.) For every fixed h ∈ H and s ∈ R2, assumption (L1) says
that, under Ph, (Xs,Ys) follows a simple regression model, where
E[Y ts |Xt

s] depends linearly on ϕ(Xt
s). For arbitrary but fixed h1

s, we
can therefore estimate x 7→ E[Y 1

s |X1
s = x,H1

s = h1
s] using standard
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OLS estimation. For every s ∈ R2 and m ∈ N, let Φm
s ∈ Rm×p

be the design matrix given by (Φm
s )ij = ϕj(X

i
s). We define an

estimator f̂Y |X = (f̂mY |X)m∈N, for every x ∈ Rd and m ∈ N by

f̂mY |X(Xm
s ,Y

m
s )(x) = ϕ(x)>γ̂ms , (4.2.7)

where γ̂ms := ((Φm
s )>Φm

s )−1(Φm
s )>Ym

s . To formally prove consis-
tency of (4.2.7), we need some regularity conditions on the predictors
X.

(L2) For all h ∈ H, s ∈ R2 and δ > 0, it holds that

lim
m→∞

Ph(‖ 1
m (Φm

s )>ξms ‖2 > δ) = 0.

(L3) For all h ∈ H, s ∈ R2, there exists c > 0 such that

lim
m→∞

Ph(λmin

(
1
m (Φm

s )>Φm
s

)
≤ c) = 0,

where λmin denotes the minimal eigenvalue.

We first state the result and discuss assumptions (L2) and (L3)
afterwards.

Proposition 4.4 (Sufficient conditions for Assumption 4.2). As-
sume that (X,Y,H) come from an LSCM satisfying (L1)–(L3).

Then, Assumption 4.2 is satisfied with X = Rd and with f̂mY |X as

defined in (4.2.7).

Since for every (s, t) ∈ R2 × N and h ∈ H, Xt
s and ξts are inde-

pendent under Ph with Eh[ξts] = 0, (L2) states a natural LLN-type
condition, which is satisfied under suitable constraints on the tempo-
ral dependence structure in X, and on its variance. Assumption (L3)
says that, with probability tending to one, the matrix 1

m (Φm
s )>Φm

s

is bounded away from singularity as m → ∞. This is in particular
satisfied if 1

m (Φm
s )>Φm

s converges in probability entrywise to some
matrix which is strictly positive definite. In Appendix C.1, we give
two examples in which this is the case.
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4. Causal inference for spatio-temporal data

4.2.3.3. An example LSCM

To illustrate the consistency result in Theorem 4.2, we now con-
sider a simple example with one covariate (d = 1) and two hidden
variables (` = 2).

Example 4.1 (Latent Gaussian process and a linear average causal
effect). Let ζ,ψ, ξt, εt, t ∈ N, be independent versions of a univari-
ate stationary spatial Gaussian process with mean 0 and covariance

function u 7→ e−
1
2‖u‖2 . For notational simplicity, let H̄ and H̃ de-

note the respective first and second coordinate process of H. We
define a marginal distribution over H and conditional distributions
X |H and Y | (X,H) by specifying that for all (s, t) ∈ R2 × N,

Ht
s = (H̄t

s, H̃
t
s) = (ζs, 1 + 1

2ζs +
√

3
2 ψs),

Xt
s = exp(−‖s‖22/1000) + (0.2 + 0.1 · sin(2πt/100)) · H̄t

s · H̃t
s + 0.5 · ξts,

Y ts = (1.5 + H̄t
s · H̃t

s) ·Xt
s + (H̄t

s)
2 + |H̃t

s| · εts.

Interventions on X, Y or H are defined as in Definition 4.1. In
this LSCM, the average causal effect fAVE(X→Y ) is the linear func-
tion x 7→ β0 + β1x, with β0 := E[(H̄1

0 )2] = 1 and β1 := 1.5 + E[H̄1
0 ·

H̃1
0 ] = 2. We define a spatial sampling scheme (si)i∈N for every

j ∈ N and k ∈ {1, . . . , 25} by s25·(j−1)+k = (j, k). Given a sample
(Xm

n ,Y
m
n ) = (Xt

s, Y
t
s )(s,t)∈{s1,...,sn}×{1,...,m} from (X,Y), we con-

struct an estimator of fAVE(X→Y ) by

f̂nmAVE(X→Y )(X
m
n ,Y

m
n )(x) =

1

n

n∑
i=1

(1 x) β̂mOLS(Xm
si ,Y

m
si ), (4.2.8)

where β̂mOLS(Xm
si ,Y

m
si ) ∈ R2 is the OLS estimator for the linear re-

gression at spatial location si, that is of Ym
si = (Y 1

si , . . . , Y
m
si ) on

Xm
si = (X1

si , . . . , X
m
si ) (we assume that the regression includes an

intercept term). It follows by Propositions 4.3 and 4.4 (see in par-
ticular Example C.2 and Remark C.2 in Appendix C.1) that As-
sumptions 4.1 and 4.2 are satisfied.2 Hence, (4.2.8) is a consistent
estimator of fAVE(X→Y ).

2Strictly speaking, Example C.2 and Remark C.2 show that (L1)–(L3) are
satisfied for bounded basis functions. We are confident that the same holds
true in the current example.
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4.2. Quantifying causal effects

Figure 4.3 shows results from a numerical experiment based on
Example 4.1. The left panel shows the simulated dataset, the plot
in the middle represents our method, and the right panel illustrates
that the estimator is consistent. More details are provided in the
figure caption. The example shows that we can estimate causal
effects even under complex influences of the latent process H. To
construct the estimator f̂nmAVE(X→Y ), we have used that the influence

of (X,H) on Y is linear in X. It is worth noting, however, that we
do not assume knowledge of the particular functional dependence
of Y on H; we obtain consistency under any influence of the form
Y ts = f1(Ht

s) ·Xt
s + f2(Ht

s, ε
t
s), see Proposition 4.4.

4.2.4. Extensions

4.2.4.1. Observed confounders

For simplicity, we have until now assumed that the only confounders
of (X,Y ) are the variables in H. Our method naturally extends
to settings with observed (time- and space-varying) confounders.
Let W ∈ Rp be a vector of observed covariates, and consider a
causal graphical model over (X,W,Y,H) with causal structure
[Y |X,W,H][X |W,H][W,H]. Similarly to Definition 4.2, assume
that W and H are weakly stationary, H is time-invariant, and there
exists a function f : Rd+p+`+1 → R and an i.i.d. sequence ε1, ε2, . . .
of weakly stationary error processes, independent of (X,W,H), such
that

Y ts = f(Xt
s,W

t
s , H

t
s, ε

t
s) for all (s, t) ∈ R2 × N. (4.2.9)

We define the average causal effect of X on Y, for every x ∈ Rd, by

fAVE(X→Y )(x) = E[f(x,W 1
0 , H

1
0 , ε

1
0)].

It is straight-forward to show that this function enjoys the same
causal interpretation as given in Proposition 4.1. Similarly to Propo-
sition 4.2, we have that for all x ∈ Rd, it holds that

fAVE(X→Y )(x) = E[fY |(X,W,H)(x,W
1
0 , H

1
0 )],
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Figure 4.3. Results for applying our methodology to the LSCM in
Example 4.1. The left panel shows a sample dataset of the process
(X,Y,H) observed at the spatial grid {1, . . . , 25}×{1, . . . , 25} ⊆ R2

and at several temporal instances. For the sake of illustration, each
square has its own colorscale, and colors are therefore not compara-
ble across plots. The middle panel illustrates the output from our
method applied to the same dataset. The average causal effect, our
inferential target, is indicated by a dashed green line. Due to con-
founding by H, a standard nonlinear regression (red curve) severely
overestimates the causal influence of X on Y. By estimating the de-
pendence between X and Y in each spatial location separately (thin
blue lines), and aggregating the results into a final estimate (thick
blue line), all spatial confounding is removed. In the right panel,
we investigate the consistency result from Theorem 4.2 empirically.
For increasing numbers of spatial locations n (shown on the x-axis)
and temporal instances m (shown on the y-axis), we generate sev-

eral datasets (Xm
n,i,Y

m
n,i), i = 1, . . . , 100, compute estimates β̂nmi of

the causal coefficients β, and use these to compute empirical error
probabilities P̂(‖β̂nm − β‖2 > δ). In the above plot, we have chosen
δ = 0.2. As n and m increase, the error probability tends towards
zero.
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4.2. Quantifying causal effects

where fY |(X,W,H) is the regression function of Y ts onto (Xt
s,W

t
s , H

t
s).

As an estimator for the case where H remains unobserved, we then
use

f̂nmAVE(X→Y )(X
m
n ,Y

m
n ,W

m
n )(x) :=

1

n

n∑
i=1

ÊW [f̂mY |(X,W )(X
m
si ,Y

m
si ,W

m
si )(x,W

1
0 )],

where ÊW is the expectation w.r.t. some estimate of the marginal
distribution of W .

4.2.4.2. Temporally lagged causal effects

We can incorporate temporally lagged causal effects by allowing the
function f in (4.2.2) to depend on past values of the predictors.
That is, we model a joint causal influence of the past k ≥ 1 temporal
instances of the predictors by assuming the existence of a function
f : Rd·k+`+1 → R and an i.i.d. sequence ε1, ε2, . . . such that

Y ts = f(Xt−k+1
s , . . . , Xt

s, H
t
s, ε

t
s) for all s ∈ R2 and t ≥ k.

In this case, the average causal effect (4.2.3) is a function Rd·k →
R which can be estimated, similarly to (4.2.5), using a regression

estimator f̂mY |X of Y ts onto (Xt−k+1
s , . . . , Xt

s).

4.2.4.3. Exchanging the role of space and time

We have assumed that the hidden confounders do not vary across
time. This assumption allowed us to estimate the regression x 7→
E[Y ts |Xt

s = x,Ht
s = h] at all unobserved values h. In fact, our

method can be formulated in more general terms. If (X,Y,H) is a
multivariate process defined on some general, possibly random, in-
dex set I = I1×· · ·× Ip (see the definition of a data cube [Mahecha
et al., 2020]), it is enough to require H to be invariant across one (or
several) of the dimensions in I. Similarly to (4.2.5), the idea is then
to estimate the dependence of Y on (X,H) along these invariant
dimensions, followed by an aggregation across the remaining dimen-
sions. In case of a spatio-temporal process, for example, our method
also applies if the hidden variables are constant across space, rather
than time.
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4. Causal inference for spatio-temporal data

4.3. Testing for the existence of causal
effects

The previous section has been concerned with the quantification
and estimation of the causal effect of X on Y . In this section, we
introduce hypothesis tests for this effect being non-zero. We consider
the null hypothesis

H0 :

{
(X,Y) come from an LSCM with a function f

that is constant with respect to Xt
s,

which formalizes the assumption of “no causal influence of X on Y ”
within the framework of LSCMs. We construct a non-parametric
hypothesis test for H0 using data resampling. Our approach ac-
knowledges the existence of spatial dependence in the data without
modeling it explicitly. It thus does not rely on distributional as-
sumptions apart from the LSCM structure.

For the construction of a resampling test, we closely follow the
setup presented in Pfister et al. [2018]. We require a data permuta-
tion scheme which, under the null hypothesis, leaves the distribution
of the data unaffected. In particular, it must preserve the depen-
dence between X and Y that is induced by H. The idea is to permute
observations of Y corresponding to the same (unobserved) values of
H. Since H is assumed to be constant within every spatial location,
this is achieved by permuting Y along the time axis. Let (Xm

n ,Y
m
n )

be the observed data. For every (x,y) ∈ R(d+1)×n×m and every per-
mutation σ of the elements in {1, . . . ,m}, let σ(x,y) ∈ R(d+1)×n×m

denote the permuted array with entries (σ(x, y))ts = (xts, y
σ(t)
s ). We

then have the following exchangeability property.

Proposition 4.5 (Exchangeability). For any permutation σ of the
elements in {1, . . . ,m}, we have that, under H0,

σ(Xm
n ,Y

m
n ) is equal in distribution to (Xm

n ,Y
m
n ).

Proposition 4.5 is the cornerstone for the construction of a valid
resampling test. Under the null hypothesis, we can compute pseudo-
replications of the observed sample (Xm

n ,Y
m
n ) using the permutation
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4.3. Testing for the existence of causal effects

scheme described above. Given any test statistic T̂ : R(d+1)×n×m →
R, we obtain a p-value for H0 by comparing the value of T̂ calculated
on the original dataset with the empirical null distribution of T̂ ob-
tained from the resampled datasets. The choice of T̂ determines the
power of the test. More formally, let M := m! and let σ1, . . . , σM be
all permutations of the elements in {1, . . . ,m}. By Proposition 4.5,
each of these permutations yields a new dataset with the same distri-
bution as (Xm

n ,Y
m
n ). Let B ∈ N and let k1, . . . , kB be independent,

uniform draws from {1, . . . ,M}. For every (x,y), we define

pT̂ (x,y) :=
1 + |{b ∈ {1, . . . , B} : T̂ (σkb(x,y)) ≥ T̂ (x,y)}|

1 +B
,

and construct for every α ∈ (0, 1) a test ϕα
T̂

: R(d+1)×n×m → {0, 1}
of H0 defined by ϕα

T̂
= 1 :⇔ pT̂ ≤ α.3 The following level guarantee

for ϕα
T̂

follows directly from [Pfister et al., 2018, Proposition B.4].

Corollary 4.1 (Level guarantee of resampling test). Assume that
for all k, ` ∈ {1, . . . , B}, k 6= `, it holds that, under H0,

P(T̂ (σk(Xm
n ,Y

m
n )) = T̂ (σ`(X

m
n ,Y

m
n ))) = 0.

Then, for every α ∈ (0, 1), the test ϕα
T̂

has correct level α.

Corollary 4.1 ensures valid test level for a large class of test statis-
tics. The particular choice of test statistic should depend on the
alternative hypothesis that we seek to have power against. Within
the LSCM model class, it makes sense to quantify deviations from
the null hypothesis using functionals of the average causal effect, i.e.,
T = ψ(fAVE(X→Y )) for some suitable function ψ. As a test statistic,
we then use the plug-in estimator

T̂ (Xm
n ,Y

m
n ) = ψ(f̂nmAVE(X→Y )(X

m
n ,Y

m
n )).

An implementation of the above testing procedure is contained in
our code package, see Section 4.1.4.

3Two-sided tests can be obtained using pT̂ ,2-sided := min(1, 2 ·min(pT̂ , p−T̂ )),

for example.
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4.4. Conflict and forest loss in Colombia

We now return to the problem of conflict (X) and forest loss (Y)
introduced in Section 4.1.3. We first describe our data sources in
Section 4.4.1, and then apply our proposed methodology in Sec-
tion 4.4.2. In Section 4.4.3, we introduce two alternative approaches
for comparison, Section 4.4.4 contains our results, and Section 4.4.5
interprets these results in light of the Colombian peace process.

4.4.1. Data description and preprocessing

Our analysis is based on two main datasets: (1) a remote sensing-
based forest loss dataset for the period 2000–2018, which identifies
annual forest loss at a spatial resolution of 30m× 30m using Land-
sat satellites [Hansen et al., 2013]. Here, forest loss is defined as
complete canopy removal. (2) Spatially explicit information on con-
flict events from 2000 to 2018, based on the Georeferenced Event
Dataset (GED) from the Uppsala Conflict Data Program (UCDP)
[Croicu and Sundberg, 2015]. In this dataset, a conflict event is de-
fined as “an incident where armed force was used by an organized
actor against another organized actor, or against civilians, result-
ing in at least one direct death at a specic location and a specifc
date” [Sundberg and Melander, 2013]. Such events were identified
through global newswire reporting, global monitoring of local news,
and other secondary sources such as reports by non-governmental
organizations (for information on the data collection as well as con-
trol for quality and consistency of the data, please refer to Sundberg
and Melander [2013] and Croicu and Sundberg [2015]). We homog-
enized these datasets through aggregation to a spatial resolution of
10km × 10km by averaging the annual forest loss within each grid,
and by counting all conflict events occurring in the same year and
within the same grid. As a proxy for local transport infrastruc-
ture, we additionally calculated, for each spatial grid, the average
Euclidean distance to the closest road segment, using spatial data
from https://diva-gis.org containing all primary and secondary
roads in Colombia. We regard this variable as relatively constant
throughout the considered time-span.
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4.4.2. Quantifying the causal influence of conflict on
forest loss

We assume that (X,Y) come from an LSCM as defined in Defin-
tion 4.2. Since Xt

s is binary, we can characterize the causal influence
of X on Y by T := fAVE(X→Y )(1) − fAVE(X→Y )(0), i.e., the differ-
ence in expected forest loss E[Y ts ] under the respective interventions
enforcing conflict (Xt

s := 1) and peace (Xt
s := 0). Positive values

of T correspond to an augmenting effect of conflict on forest loss
and negative values correspond to a reducing effect. Our goal is to
estimate T , and to test the hypothesis H0 : T = 0 (no causal effect
of X on Y). To construct an estimator of the average causal effect
of the form (4.2.5), we require estimators of the conditional expecta-
tions x 7→ fY |(X,H)(x, h). Since Xt

s is binary, we use simple sample
averages of the response variable. To make the resulting estimator
of fAVE(X→Y ) well-defined, we omit all locations which do not con-
tain at least one observation from each of the regimes Xt

s = 0 and
Xt
s = 1. More precisely, let (Xm

n ,Y
m
n ) be the observed dataset. We

then use the estimator, for every x ∈ {0, 1} defined as

f̂nmAVE(X→Y )(X
m
n ,Y

m
n )(x) =

1

|Imn |
∑
i∈Imn

1

|{t : Xt
si = x}|

∑
t:Xtsi

=x

Y tsi ,

(4.4.1)
where Imn := {i ∈ {1, . . . , n} : ∃ t0, t1 ∈ {1, . . . ,m} s.t. Xt0

si =
0 and Xt1

si = 1}. To test H0, we use the resampling test introduced

in Section 4.3 with test statistic T̂ = f̂nmAVE(X→Y )(1)−f̂nmAVE(X→Y )(0).

The estimator (4.4.1) is constructed from a reduced dataset. The
used data exclusion criterion is not independent of the assumed
hidden confounders (i.e., the distribution of the hidden variables
is expected to differ between the reduced data and the original
data), and therefore results in a biased estimator. Under additional
assumptions on the underlying LSCM, however, (4.4.1) may still
be used to estimate T . We now give a population version argu-
ment. Assume that there is no interaction between Xt

s and Ht
s in

the causal mechanism for Y ts , i.e., the function f in (4.2.2) splits
into f1(Xt

s, ε
t
s) + f2(Ht

s, ε
t
s). Then, the conditional expectation of

Y ts | (Xt
s, H

t
s) likewise splits additively into a function of Xt

s and a
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function of Ht
s. Using Proposition 4.2, it follows that any two dif-

ferent models for the marginal distribution of the latent process H
induce average causal effects fAVE(X→Y ) that are equal up to an ad-
ditive constant. In particular, every model for H induces the same
value for T . By regarding the reduced dataset as a realization from
a modified LSCM, in which the distribution of H has been altered,
this argument justifies the use of (4.4.1) as an estimator for T .4

4.4.3. Comparison with alternative assumptions on
the causal structure

To emphasize the relevance of the assumed causal structure, we
compare our method with two alternative approaches based on dif-
ferent assumptions about the ground truth: Model 1 assumes no
confounders of (X,Y) and Model 2 assumes that the only con-
founder is the observed process W (mean distance to a road). Even
though none of the models may be a precise description of the data
generating mechanism, we regard both Models 1 and 2 as less re-
alistic than the LSCM. In both models we can, similarly to Def-
inition 4.3, define the average causal effect of X on Y. Under
Model 1, fAVE(X→Y ) coincides with the conditional expectation of
Y ts given Xt

s, which can be estimated simply using sample aver-
ages (as is done in Figure 4.1 left). Under Model 2, fAVE(X→Y )

can, analogously to Proposition 4.2, be computed by adjusting for
the confounder W. For each x ∈ {0, 1}, we obtain an estimate

f̂nmAVE(X→Y )(x) by calculating sample averages of Y across different

subsets {(s, t) ∈ R2 × N : Xt
s = x, W t

s ∈ Wj}, j ∈ J (we here
construct these by considering 100 equidistant quantiles of W), and
subsequently averaging over the resulting values. In both models,
we further test the hypothesis of no causal effect of X on Y using
approaches similar to the ones presented in Section 4.3. Under the
LSCM assumption, we have constructed a permutation scheme that
permutes the values of Y along the time axis, to preserve the depen-
dence between Y and the assumed time-invariant confounders H, see
Proposition 4.5. Similarly, we construct a permutation scheme for

4In practice, we use the values of X to exclude data points, and the above
argument must thus be regarded a heuristic.
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Model 2 by permuting observations of Y corresponding to similar
values of the confounder W (i.e., values within the same quantile
range). Under the null hypothesis corresponding to Model 1, X and
Y are (unconditionally) independent, and we therefore permute the
values of Y completely at random. Strictly speaking, the permu-
tation schemes for Models 1 and 2 require additional exchangeabil-
ity assumptions on Y in order to yield valid resampling tests. In
Appendix C.3, we repeat the analysis for Model 1 using a spatial
block-permutation to account for the spatial dependence in Y, and
obtain similar results.

4.4.4. Results

The results of applying our method and the two alternative ap-
proaches to the entire study region are depicted in Figure 4.4. Un-
der Model 1, there is an enhancing, highly significant causal effect
of conflict on forest loss (T̂ = 0.073, P = 0.002). When adjust-
ing for transport infrastructure (quantified by W, Model 2), the
size of the estimated causal effect shrinks, and becomes insignifi-
cant (T̂ = 0.049, P = 0.168). (Note that we have considered other
confounders, too, yet obtained similar results. For example, when
adjusting for population density, which we consider as moderately
temporally varying, we obtain T̂ = 0.038 and P = 0.214.) When
applying the methodology proposed in this paper, that is, adjust-
ing for all time-invariant confounders, the estimated effect swaps
sign (T̂ = −0.018, P = 0.578), but is insignificant. One reason for
this non-finding could be the time delay between the proposed cause
(conflict) and effect (forest loss). To account for this potential issue,
we also test for a causal effect of X on Y that is temporally lagged by
one year, i.e., we use an estimator similar to (4.4.1), where we com-
pare the average forest loss succeeding conflict events with the aver-
age forest loss succeeding non-conflict events. Again, the estimated
influence of X on Y is negative and insignificant (T̂ = −0.0293,
P = 0.354). Additionally, we perform alternative versions of the last
two tests where we account for potential autocorrelation in the re-
sponse variable, by adopting a temporal block-permutation scheme.
In both cases, the test is insignificant, see Appendix C.3.

The above analysis provides an estimate for the average causal ef-
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Figure 4.4. Testing for a causal influence of conflict (X) on
forest loss (Y) using our method (right) and two alternative ap-
proaches (left and middle) which are based on different and ar-
guably less realistic assumptions on the causal structure. The pro-
cess W corresponds to the mean distance to a road, and H rep-
resents unobserved time-invariant confounders. Each of the above
models gives rise to a different expression for the test statistic
T̂ = f̂nmAVE(X→Y )(1)− f̂nmAVE(X→Y )(0) (indicated by red vertical bars),
see Sections 4.4.2 and 4.4.3. The gray histograms illustrate the em-
pirical null distributions of T̂ under the respective null hypothe-
ses obtained from 999 resampled datasets. The results show that
our conclusions about the causal influence of conflict on forest loss
strongly depend on the assumed causal structure: under Model 1,
there is a positive, highly significant effect (T̂ = 0.073). When ad-
justing for the confounder W, the effect size decreases and becomes
insignificant (T̂ = 0.049). When applying our proposed methodol-
ogy, the estimated effect is negative (T̂ = −0.018).
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fect, see Equation (4.2.3), which, in particular, averages over space.
Given that Colombia is a country with high ambiental and socio-
economic heterogeneity, where different regional dynamics may in-
fluence the causal relationship between conflict and forest loss, we
further conduct an analysis at the department level (see Figure 4.5).
In fact, there is considerable spatial variation in the estimated causal
effects, with significant positive as well as negative effects (Figure 4.5
middle). From a modeling perspective, this variation may be seen as
evidence for an interaction effect between conflict and the assumed
hidden confounders. In most departments, the estimated causal ef-
fect is negative (although mostly insignificant), meaning that con-
flict tends to decrease forest loss. The strongest positive and sig-
nificant causal influence is identified in the La Guajira department
(T̂ = 0.398, P = 0.047). Although this region is commonly associ-
ated with semi-arid to very dry conditions, most conflicts occured
in the South-Western areas, at the beginning of Caribbean tropical
forests (see Figure 4.1). In fact, these zones have also been identified
by Negret et al. [2019] as having been strongly affected by defor-
estation pressure in the wake of conflict. Interestingly, the neighbor-
ing Magdalena department shows the opposite effect (T̂ = −0.218,
P = 0.004), which might point to a different socio-political reality.
It may also reflect the fact that this department experienced high
forest loss after the ceasefire in the entire Colombia [Prem et al.,
2020]. The positive effect in the department of Huila (T̂ = 0.095,
P = 0.023) is again in line with the findings by Negret et al. [2019]
(based on a visual inspection of their attribution maps). Out of the 8
departments that are mostly controlled by FARC (Figure 4.5 right),
6 have a negative test statistic, meaning that conflict reduces forest
loss. This can be explained in part by the internal governance of this
group, where forest cover was a strategic advantage for both their
own protection as well as for cocaine production. Overall, of course,
the peace-induced acceleration of forest loss has to be discussed with
caution, and should not be interpreted reversely as if conflict per se
is a measure of environmental protection as it has been discussed,
for instance, by Clerici et al. [2020].
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Figure 4.5. Regional analysis of conflict and forest loss in Colom-
bia. The left panel shows the total forest loss and the total number
of conflict events from 2000 to 2018 aggregated at department level.
The most severe incidences of forest loss occur in the Northern An-
dean forests and on the northern borders of the Amazon region. In
the middle panel, we report for each department estimates T̂ and
test results for H0 : T = 0, using the methodology described in
Sections 4.2 and 4.3. We used a test level of α = 0.05, and report
significances without multiple-testing adjustment. In most depart-
ments, the estimated causal effect is negative (blue, conflict reduces
forest loss), although mainly insignificant. We identify four depart-
ments with statistically significant results, hereof two with a positive
causal effect (La Guarija and Huila) and two with a negative causal
effect (Magdalena and Sucre). In total, there are 8 departments that
are mostly controlled by FARC (above 75% FARC presence, right
panel). Out of these, 6 departments have a negative test statistic
(conflict reduces forest loss).
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4.4.5. Interpretation of our results in light of the
Colombian peace process

In late 2012, negotiations that later would be known as “Colombian
peace process” started between the then president of Colombia and
the strongest group of rebels, the FARC, and lasted until 2016. Con-
troversies in the country culminated in the rejection of the agreement
in a national referendum. Despite this failure, peace was declared
by both parties upon a revised agreement in October 2016, and
became effective in the subsequent year.5 While severe incidences
continued to occur in the year leading up to the final agreement, the
negotiations marked a steadily decreasing number of conflicts, see
Figure 4.6 (left). Since this decrease of conflicts is the consequence
of governmental intervention, rather than a natural resolution of lo-
cal tensions, the peace process provides an opportunity to verify the
intervention effects estimated in Section 4.4.4. As can be seen in
Figure 4.6 (right), Colombia experienced a steep increase in the to-
tal forest loss in the final phase of the peace negotiations. Although
there may be several other factors which have contributed to this
development, we observe that these results align with our previous
finding of an overall negative causal effect of conflict on forest loss
(T̂ < 0).

4.5. Conclusions and future work

4.5.1. Methodology

This paper introduces ways to discuss causal inference for spatio-
temporal data. From a methodological perspective, it contains three
main contributions: the definition of a class of causal models for mul-
tivariate spatio-temporal stochastic processes, a procedure for esti-
mating causal effects within this model class, and a non-parametric
hypothesis test for the overall existence of such effects. Our method
allows for the influence of arbitrarily many latent confounders, as
long as these confounders do not vary across time (or space). We

5The agreement was signed only by the FARC, while other guerilla groups
remain active.
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Figure 4.6. Total number of conflicts (left) and total forest loss
(right) in the years 2000–2018 in Colombia. In the right panel, the
height of the curve at x + 0.5 corresponds to the total forest loss
between years x and x + 1. The shaded area marks the Colombian
peace process, which began in September 2012. A final agreement
was reached in October 2016 (vertical red line).

prove asymptotic consistency of our estimator, and verify this find-
ing empirically using simulated data. Our results hold under weak
assumptions on the data generating process, and do not rely on any
particular distributional properties of the data. We prove sufficient
conditions under which these rather general assumptions hold true.
The proposed testing procedure is based on data resampling and
provably obtains valid level in finite samples.

Our work can be extended into several directions. We proved
that Assumption 4.1 holds for regularly sampled stationary Gaus-
sian processes. Such settings allow for the application of well-known
theorems about stationary and ergodic sequences. We hypothesize
that the assumption also holds in the more general case, where the
marginalized process does not resemble a (collection of) stationary
sequence(s), as long as certain mixing conditions are satisfied. For
example, we believe that if the original spatial process H1 is weakly
stationary and mixing, Assumption 4.1 holds under any spatial sam-
pling scheme (sn)n∈N with ‖sn‖ → ∞ as n→∞.

In our method for estimating causal effects, we allow the regres-
sion model for (Xt

s, Y
t
s ) to change arbitrarily (within the specified

function class) between neighboring locations. It may be worthwhile
exploring how smoothness assumptions on the hidden variables can
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be incorporated in the modeling process to gain statistical efficiency
of the proposed estimator. Likewise, such smoothness assumptions
would allow for alternative permutation schemes (data can be per-
muted spatially wherever H is assumed to be constant) which could
lead to increased power of our hypothesis tests.

4.5.2. Case study

We have applied our methodology to the problem of quantifying the
causal influence of conflict on forest loss in Colombia. Conflict events
are predictive of exceedances in forest loss, but we find no evidence of
a causal relation when analyzing this problem on country level: once
all (time-invariant) confounders are adjusted for, there is a negative
but insignificant correlation between conflict and forest loss. Our
analysis on department level suggests that this non-finding could be
due to locally varying effects of opposite directionality, which would
approximately cancel out in our final estimate. In most departments,
we find negative (mostly insignificant) effect of conflict on forest loss,
although we also identify a few departments where conflict seems to
increase forest loss. The overall negative influence of conflict on for-
est loss estimated by our method is in line with the observation that
in the final phase of the peace process, which stopped many of the
existing conflicts, the total forest loss in Colombia has increased.
However, these results should be interpreted with caution. Overall,
we find that, once all time-invariant confounders are adjusted for,
conflicts have only weak explanatory power for predicting forest loss,
and the potential causal effect is therefore likely to be small, com-
pared to other drivers of forest loss. The chain of events which link
the occurrence of an armed conflict with the clearing of local forests
is rather complex, and we hope that future research will be able to
shed further light on the underlying causal relationship.
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A. Causal discovery and discrete latent variables

A.1. Structural causal models

Below, we formally define structural causal models [Pearl, 2009,
Bollen, 1989], and use a presentation similar to Peters et al. [2017,
Chapter 6].

Definition A.1 (Structural causal model). A structural causal model
(SCM) over variables (Z1, . . . , Zp) consists of a family of structural
assignments

Zj := fj(PAj , Nj), j = 1, . . . , p,

where for each j ∈ {1, . . . , p}, PAj ⊆ {Z1, . . . , Zp} \ {Zj} denotes
the parent set of variable Zj, and a product distribution over the
noise variables (N1, . . . , Np). Every SCM induces a graph over the
nodes in {Z1, . . . , Zp}: for every j, one draws an arrow from each of
the variables in PAj to Zj. We here require this graph to be acyclic.
A variable Zi is a cause of Zj, if there exists a directed path from
Zi to Zj. The variables in PAj are said to be the direct causes of
Zj.

Due to the acyclicity of the graph, an SCM induces a distribution
over the variables Z1, . . . , Zp. An intervention on Zj corresponds
to replacing the corresponding assignment. (We still require joint
independence of all noise variables, as well as the acyclicity of the
induced graph to be preserved under interventions.) This yields
another SCM and another distribution, the intervention distribution.

A.2. Parametrizations of the models IID
and HMM

Define GIID := [0, 1]`−1 and GHMM := {γ ∈ [0, 1](`−1)` | for all j ∈
{1, . . . , `} :

∑`−1
k=1 γj`+k ≤ 1} and parametrize the transition matrix

via the maps ΓIID : GIID → [0, 1]`×` and ΓHMM : GHMM → [0, 1]`×`,
for all i, j ∈ {1, . . . , `} given by

ΓIID
ij (γ) =

{
γj j < `

1−
∑`−1
k=1 γk j = `
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and

ΓHMM
ij (γ) =

{
γi`+j j < `

1−
∑`−1
k=1 γi`+k j = `.

For the regression matrix Θ, we consider the two types of parameter
constraints discussed in Section 2.3.2. For c > 0, let T c := (Rp ×
[c,∞))` and T = := Rp` × (0,∞) and parametrize the regression
matrix via the maps Θc : T c → Rp×` and Θ= : T = → Rp×`, for all
i ∈ {1, . . . , p+ 1} and j ∈ {1, . . . , `} given by

Θc
ij(θ) = θ(j−1)(p+1)+i and Θ=

ij(θ) =

{
θ(j−1)p+i i ≤ p
θp`+1 i = p+ 1.

Both of the parameter constraints induced by (Θc, T c) and (Θ=, T =)
ensure the existence of the maximum likelihood estimator, see The-
orem 2.1. Since all of the above coordinate mappings are linear in
θ and γ, Assumption (A4) in Section 2.3.5 is satisfied for any pair
(Θ,Γ) with Θ ∈ {Θc,Θ=} and Γ ∈ {ΓIID,ΓHMM}.

A.3. Proofs

A.3.1. Proof of Proposition 2.2

Recall that by Definition A.1, we require the underlying causal graph
to be acyclic. For every t ∈ {1, . . . , n}, we can therefore recur-

sively substitute structural assignments to express (X
PA0(Y )
t , H∗t ) as

a function of all noise variables appearing in the structural assign-
ments of the ancestors of Yt. Using the joint independence of all noise

variables (see Definition A.1), it follows that (X
PA0(Y )
t , H∗t ) ⊥⊥ Nt.

Using the i.i.d. assumption on (Nt)t∈{1,...,n}, we have that for all t

and for all x, h, the distribution of Yt | (XPA0(Y )
t = x,H∗t = h)

d
=

f(x, h,Nt) does not depend on t, which shows that S∗ = PA0(Y )

satisfies (2.2.1). By writing Yt =
∑`
h=1 f(X

PA0(Y )
t , h,Nt)1{H∗t =h}

and using the linearity of the functions f(·, h, ·), it follows that
S∗ = PA0(Y ) is h-invariant with respect to (Y,X). �
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A.3.2. Proof of Theorem 2.1

We first introduce some notation. Since neither of the parametriza-
tions in question impose any constraints on the regression coeffi-
cients, we will throughout this proof write θ = (β, δ), where β =
(β1, . . . , β`) ∈ B := Rp×` and δ ∈ D is the part of θ that parametrizes
the error variances, i.e., D= = (0,∞) and Dc = [c,∞)`. Also, we
will use D̄= = [0,∞], D̄c = [c,∞]`, B̄ = (R ∪ {−∞,+∞})p×` to de-
note the “compactifications” of Dc, D= and B, respectively. For
every h ∈ {1, . . . , `}m and every j ∈ {1, . . . , `} define Th=j :=
{t ∈ {1, . . . ,m} : ht = j} and write the likelihood function as
G =

∑
h∈{1,...,`}m gh, where

gh(φ) = p(x)λ(γ)h1

m∏
s=2

Γhs−1hs(γ)
∏̀
j=1

∏
t∈Th=j

N (yt |xtβht , σ2
ht(δ)),

where the product over an empty index set is defined to be 1.
Let G∗ := supφ∈P G(φ) ∈ (0,∞]. We want to show that there

exists φ∗ ∈ P with G(φ∗) = G∗ (which in particular shows that
G∗ < ∞). The idea of the proof is as follows. We first show that
given an arbitrary point φ̄ in the compactification P̄ and an arbitrary
sequence (φn)n∈N in P that converges to φ̄, we can construct a se-
quence (φ̃n)n∈N with limit point φ̃ ∈ P, such that limn→∞G(φ̃n) ≥
limn→∞G(φn). We then let (φ∗n)n∈N be s.t. limn→∞G(φ∗n) = G∗.
By compactness of P̄, we can wlog assume that (φ∗n)n∈N is conver-
gent in P̄ (otherwise we may choose a convergent subsequence). By
the first part of the proof, there exists a sequence (φ̃∗n)n∈N that is
convergent to some φ∗ ∈ P, and with limn→∞G(φ̃∗n) = G∗. By
continuity of G, G(φ∗) = G∗.

Let φ̄ = (β̄, δ̄, γ) ∈ P̄ and let (φn)n∈N = (βn, δn, γn)n∈N be such
that limn→∞ φn = φ̄. If φ̄ ∈ P, there is nothing to prove. Assume
therefore φ̄ ∈ P̄ \ P. Since G was assumed to be compact, P̄ =
B̄ × D̄ × G. The problem can therefore be divided into the two
cases δ̄ ∈ D̄ \ D and β̄ ∈ B̄ \ B, which are treated in Lemma A.1
and Lemma A.2, respectively. Together, they imply the existence
of a sequence (φ̃n)n∈N with limn→∞ φ̃n ∈ P and limn→∞G(φ̃n) ≥
limn→∞G(φn), thereby completing the proof of Theorem 2.1.

We first consider the case where δ̄ ∈ D̄ \ D.
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Lemma A.1. Let (φn)n∈N be a sequence in P that converges to
a point φ̄ = (β̄, δ̄, γ) ∈ B̄ × (D̄ \ D) × G and assume that the
limit limn→∞G(φn) exists in [0,∞]. Then, there exists a sequence
(φ̃n)n∈N with limit point (β̄, δ, γ) ∈ B̄×D×G, such that lim supn→∞G(φ̃n) ≥
limn→∞G(φn).

Proof. We treat the two parametrizations (Θc, T c) and (Θ=, T =)
separately.

If D = Dc, then we have D̄ \ D = {(δ̄1, . . . , δ̄`) ∈ [c,∞]` : δ̄j =
∞ for at least one j}. Let j be such that δ̄j = ∞. Since for every
h ∈ {1, . . . , `}m,

gh(φn)

{
→ 0 as n→∞ if Th=j 6= ∅
does not depend on δnj otherwise,

(A.3.1)

we can simply substitute (δnj )n∈N by the sequence (δ̃nj )n∈N that is

constantly equal to c, to obtain (φ̃n)n∈N with lim supn→∞G(φ̃n) ≥
limn→∞G(φn). By repeating this procedure for all j with δ̄j = ∞,

we obtain (φ̃n)n∈N with lim supn→∞G(φ̃n) ≥ limn→∞G(φn) and
such that δ = limn→∞ δn ∈ D.

If D = D=, then D̄\D = {0,∞}. If δ̄ =∞, then limn→∞G(φn) =
0 and the result is trivial. Assume therefore that δ̄ = 0. Let h ∈
{1, . . . , `}m be fixed. By the assumption on the sample (y,x), there
exists no set of parameters that yield a perfect fit. We may therefore
find a sequence (s(n))n∈N of elements in {1, . . . ,m} such that ys(n)−
xs(n)β

n
hs(n)

is bounded away from zero for all n large enough. For

every n ∈ N we have

gh(φn) ≤ p(x)(2πσ2
1(δn))−m/2 exp

(
− 1

2σ2
1(δn)

(ys(n) − xs(n)β
n
hs(n)

)2

)
.

Since the last factor on the right hand side goes to zero exponentially
fast in σ2

1(δn), it follows that limn→∞ gh(φn) = 0. Since h was
arbitrary, we have that limn→∞G(φn) = 0, and the result follows.

We now turn to the case where β̄ ∈ B̄ \ B.
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Lemma A.2. Let (φn)n∈N be a sequence in P that converges to
a point φ̄ = (β̄, δ, γ) ∈ (B̄ \ B) × D × G. Then, there exists a se-
quence (φ̃n)n∈N with limit point (β, δ, γ) ∈ B × D × G, such that
limn→∞G(φ̃n) ≥ lim supn→∞G(φn).

Proof. The idea of the proof is as follows. We construct a bounded
sequence (β̃n)n∈N, s.t. the sequence (φ̃n)n∈N obtained from (φn)n∈N
by substituting (βn)n∈N by (β̃n)n∈N satisfies that limn→∞G(φ̃n) ≥
lim supn→∞G(φn). Since (δn)n∈N was assumed to be convergent in
D (and hence bounded) and by compactness of G, the whole sequence
(φ̃n)n∈N is bounded. We can therefore find a compact set K ⊆ P,
such that {φ̃n : n ∈ N} ⊆ K. Consequently, we can wlog assume that
(φ̃n)n∈N is convergent in K (otherwise we may choose a convergent
subsequence). The sequence (φ̃n)n∈N then fulfills the requirements
in Lemma A.2, thereby completing the proof.

The crucial part that remains is the construction of the sequence
(β̃n)n∈N. This is done by induction. Let (φn)n∈N = (βn1 , . . . , β

n
` , δ

n, γn)
be as stated in Lemma A.2 and let K∞ be the set of states k,
for which ‖βnk ‖ → ∞ as n → ∞. We then construct (β̃n)n∈N
in the following way. Pick an arbitrary k ∈ K∞ and construct a
bounded sequence (β̃nk )n∈N (this construction is described below),

such that the sequence (φ̃n(k))n∈N obtained from (φn)n∈N by sub-

stituting (βnk )n∈N by (β̃nk )n∈N satisfies that lim supn→∞G(φ̃n(k)) ≥
lim supn→∞G(φn). We then take k′ ∈ K∞ \ {k} and similarly con-
struct (φ̃n(k,k′))n∈N from (φ̃n(k))n∈N such that lim supn→∞G(φ̃n(k,k′)) ≥
lim supn→∞G(φ̃n(k)). By inductively repeating this procedure for

all elements of K∞, we obtain a bounded sequence (β̃n)n∈N, such
that (φ̃n)n∈N = (β̃n, δn, γn)n∈N satisfies that lim supn→∞G(φ̃n) ≥
limn→∞G(φn). Once again, we can wlog assume that (G(φ̃n))n∈N
converges, since otherwise we can choose a convergent subsequence
(G(φ̃ni))i∈N with limi→∞G(φ̃ni) = lim supn→∞G(φ̃n).

We now prove the induction step. Assume that we have itera-
tively constructed sequences for k1, . . . , kj ∈ K∞ (if j = 0, this
corresponds to the base case). For simplicity write (φ̌n)n∈N =
(φ̃n(k1,...,kj))n∈N. Pick an arbitrary k ∈ K∞ \ {k1, . . . , kj}. If for

all t ∈ {1, . . . ,m}, |xtβnk | → ∞ as n → ∞, we could (similar to the

proof of Lemma A.1) take (β̃nk )n∈N to be a constant sequence. Since
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in general, there might exist s such that |xsβnk | 6→ ∞ as n → ∞,
we divide the problem as follows. Define S1 := {s ∈ {1, . . . ,m} :
|xsβnk | → ∞ as n → ∞}, S2 := {1, . . . ,m} \ S1, H1 := {h ∈
{1, . . . , `}m : Th=k ∩ S1 6= ∅} and H2 := {1, . . . , `}m \ H1, and write
the likelihood function as G = G1 + G2, where G1 :=

∑
h∈H1

gh
and G2 :=

∑
h∈H2

gh. We now show that limn→∞G1(φ̌n) = 0. We
formulate a slightly more general result, which we will also make use
of later in the proof:

(*) Let h ∈ {1, . . . , `}m and assume there exists a sequence (s(n))n∈N
of elements in Th=k, such that |xs(n)β

n
k | → ∞ as n → ∞.

Then, limn→∞ gh(φn) = 0.

Proof. Since (δn)n∈N was assumed to be convergent in D, all se-
quences {σ2

j (δn)}n∈N, j ∈ {1, . . . , `}, are bounded from above and
bounded away from 0. Since for all n ∈ N,

gh(φn) ≤ p(x)(2π)−n/2
m∏
t=1

(σ2
ht(δ

n))−1/2 exp

(
− 1

2σ2
k(δn)

(ys(n) − xs(n)β
n
k )2

)
︸ ︷︷ ︸

→−∞

,

we are done.

For h ∈ H1, we can simply pick s0 ∈ Th=k ∩ S1 and consider
the sequence (s(n))n∈N that is constantly equal to s0. The result
(*) therefore shows that limn→∞G1(φ̌n) = 0. It thus suffices to
construct (φ̃nk )n∈N from (φ̌n)n∈N such that lim supn→∞G2(φ̃nk ) ≥
lim supn→∞G2(φ̌n). Since for every h ∈ H2 we have Th=k ⊆ S2, we
take a closer look at S2. For every s ∈ S2, the sequence (|xsβnk |)n∈N
is either bounded or can be decomposed into two sequences, one
of which is bounded and one of which converges to infinity. For
every s ∈ S2, let therefore Ibs and I∞s be disjoint subsets of N with
Ibs ∪I∞s = N, such that (|xsβnk |)n∈Ibs is bounded and such that either
I∞s = ∅ or |I∞s | = ∞ with (|xsβnk |)n∈I∞s converging to infinity. Let

Ib := ∪s∈S2Ibs and define a sequence (β̃nk )n∈N by

β̃nk :=

{
the proj. of βnk onto spanR({xs : n ∈ Ibs}) if n ∈ Ib

0 otherwise.

We now show that the above defines a bounded sequence.
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(◦) The sequence (β̃nk )n∈N is bounded.

Proof. For every S ⊆ S2, define IbS := {n ∈ N : n ∈ Ibs ⇔ s ∈ S}
(where Ib∅ := N \ Ib). We can then decompose (β̃nk )n∈N into the

subsequences (β̃nk )n∈IbS , S ⊆ S2, and prove that each of these se-

quences is bounded. Let S ⊆ S2 and let {u1, . . . , ud} be an or-
thonormal basis for spanR({xs : s ∈ S}). Since all sequences in
{(|xsβ̃nk |)n∈IbS : s ∈ S} are bounded, then so are the sequences

(|u1β̃
n
k |)n∈IbS , . . . , (|udβ̃

n
k |)n∈IbS (this follows by expressing each of the

uis as a linear combination of elements in {xs : s ∈ S}). The result

now follows from the identities ‖β̃nk ‖2 =
∑d
j=1|uj β̃nk |2, n ∈ IbS .

Let (φ̃nk )n∈N be the sequence obtained from (φ̌n)n∈N by substitut-

ing (βnk )n∈N by (β̃nk )n∈N. Finally, we show the following result.

(4) lim supn→∞G(φ̃nk ) ≥ lim supn→∞G(φ̌n).

Proof. Let h ∈ H2 and define I∞h :=
⋃
s∈Th=k I

∞
s (if Th=k = ∅, we

define I∞h := ∅). The idea is to decompose (φ̌n)n∈N into (φ̌n)n∈I∞h
and (φ̌n)n 6∈I∞h and to treat both sequences separately.

We start by considering (φ̌n)n 6∈I∞h . First, observe that for every s,

N (ys |xsβk, σ2
k(δ)) only depends on βk via the inner product xsβk.

By construction of I∞h and (β̃nk )n∈N, we thus have that for all n 6∈ I∞h
and for all s ∈ Th=k, the function values N (ys |xsβ̃nk , σ2

k(δn)) and
N (ys |xsβnk , σ2

k(δn)) coincide. Consequently, we have that for all

n 6∈ I∞h , gh(φ̃nk ) = gh(φ̌n). In particular, the sequences (ǧnh,b)n∈N

and (g̃nh,b), for every n ∈ N defined by ǧnh,b := gh(φ̌n)1{n6∈I∞h } and

g̃nh,b := gh(φ̃n)1{n 6∈I∞h }, coincide.

We now consider (φ̌n)n∈I∞h . By construction of the sets I∞s , s ∈
Th=k, either I∞h = ∅ or |I∞h | = ∞. If |I∞h | = ∞, then for every
n ∈ N, there exists š(n) ∈ Th=k such that n ∈ I∞š(n). By applying

(*) to the sequence (φ̌n)n∈I∞ with (s(n))n∈I∞h = (š(n))n∈I∞h , it fol-

lows that limn→∞,n∈I∞h gh(φ̌n) = 0. In particular, the sequences
(ǧnh,∞)n∈N and (g̃nh,∞)n∈N, for every n ∈ N defined by ǧnh,∞ :=

gh(φ̌n)1{n∈I∞h } and g̃nh,∞ := gh(φ̃n)1{n∈I∞h }, converge to 0 as n→∞
(this holds also if I∞ = ∅).
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By combing the above results for all h ∈ H2, we finally have

lim sup
n→∞

G2(φ̌n) = lim sup
n→∞

(∑
h∈H2

ǧnh,b +
∑
h∈H2

ǧnh,∞

)

= lim sup
n→∞

(∑
h∈H2

ǧnh,b

)

= lim sup
n→∞

(∑
h∈H2

g̃nh,b

)

≤ lim sup
n→∞

(∑
h∈H2

g̃nh,b +
∑
h∈H2

g̃nh,∞

)
= lim sup

n→∞
G2(φ̃nk ).

Since lim supn→∞G1(φ̃nk ) ≥ 0 = lim supn→∞G1(φ̌n), the result fol-
lows.

This completes the proof of Lemma A.2.

A.3.3. Proof of Theorem 4.2

We start by introducing some notation to be used in the proofs
of Theorem 4.2 and Theorem 2.3. Let K := Rp × (0,∞) be the
full parameter space for a single pair κ = (βT , σ2)T of regression
parameters. In analogy to previous notation, we will use κj(θ) to
denote the jth pair of regression parameters of a parameter vector
θ ∈ T . If the conditional distribution of Yt | (Xt = x,Ht = j) is
a normal distribution with regression parameters κ, we will denote
the conditional density of (Xt, Yt) | (Ht = j) by f(x, y |κ). We use
P0 for the distribution SR(φ0 |X1) and E0 for the expectation with
respect to P0. Finally, for every k ∈ N, let SRk(· |X1) denote the
unconstrained class of mixture distributions of degree k (i.e., all
parameters can vary independently within their range).

Theorem 4.2 now follows from Leroux [1992, Theorem 3]. To
prove the applicability of their result, we first state slightly adapted
versions of their conditions (L1)–(L6) and prove afterwards that
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they are satisfied. (L1) Γ0 is irreducible, (L2) for each (x, y), κ 7→
f(x, y |κ) is continuous and vanishes at infinity (see the last para-
graph of Section 2 in Leroux [1992]), (L3) for all j, k ∈ {1, . . . , `},
the maps θ 7→ κj(θ) and γ 7→ Γjk(γ) are continuous, (L4) for all j ∈
{0, . . . , `}, E0[|log f(X1, Y1 |κj(θ0))|] <∞, (L5) for all κ ∈ K, there
exists a δ > 0 such that E0[supκ′:‖κ−κ′‖<δ(log f(X1, Y1 |κ′))+] <∞,

and (L6) for every k ∈ {1, . . . , `}, the class SRk(· |X1) satisfies the
following identifiability property. Define

Λk := {(λ1, . . . , λk) :

k∑
j=1

λj = 1}, and

Qk :=

{
{(λ1, κ1), . . . , (λk, κk)} :

(λ1, . . . , λk) ∈ Λk and κj ∈ K
with all κjs being distinct

}
and consider the mapping ϕk : Qk → SR(· |X1) that sends q =
{(λ1, κ1), . . . , (λk, κk)} into the mixture distribution Pq ∈ SR(· |X1)
with density

fq(x, y) :=

k∑
j=1

λjf(x, y |κj) = f(x)

k∑
j=1

λjf(y |x, κj).

Then, for every k ∈ {1, . . . , `}, ϕk is a one-to-one map of Qk onto
SRk(· |X1). It is therefore the set {(λ1, κ1), . . . , (λk, κk)}, rather
than the parameters (κ1, . . . , κk) and (λ1, . . . , λk) themselves, that
is required to be identifiable.

We now show that (L1)–(L6) are satisfied. Condition (L1) is im-
plied by (A3). Condition (L2) follows by the continuity of κ 7→
N (y |x, κ) and (L3) is implied by (A4). For (L4), we see that for all
j ∈ {0, . . . , `},

log f(X1, Y1 |κj(θ0)) = log(2πσ2
j (θ0))− 1

2σ2
j (θ0)

(Y1 −X1βj(θ
0))2

+ log f(X1) ∈ L1(P0),

by (A7) and by moment-properties of the normal distribution. For
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(L5), let κ = (β, σ2) ∈ K and choose δ := σ2/2. We then have

E0

[
sup

κ′:‖κ′−κ‖<δ
(log f(X1, Y1|κ′))+

]

≤ E0

[
sup

κ′:‖κ′−κ‖<δ
(log f(Y1|X1, κ

′))+ + |log f(X1)|

]

≤ E0

[
sup

σ′:‖σ′2−σ2‖<δ
(−1

2
log(2πσ′2))+ + |log f(X1)|

]

≤ E0

[
1

2
|log(πσ2)|+ |log f(X1)|

]
<∞.

It is left to prove (L6), the identifiability of the classes SRk(· |X1).
Teicher [1963, Proposition 1] shows an analogous result for mixtures
of univariate normal distributions, that are parametrized by their
mean and variance. His result will be the cornerstone for our argu-
ment. Let k ∈ {1, . . . , `} and q = {(λ1, β1, σ

2
1), . . . , (λk, βk, σ

2
k)}, q′ =

{(λ′1, β′1, σ′1
2
), . . . , (λ′k, β

′
k, σ
′
k

2
)} ∈ Qk, and assume that the induced

mixtures Pq and Pq′ are identical. Collect q and q′ into two matrices

Q,Q′ with columns Q·j = (λj , σ
2
j , β

T
j )T and Q′·j = (λ′j , σ

′
j
2
, β′j

T
)T

for j ∈ {1, . . . , k}. We wish to show that Q and Q′ are equal
up to a permutation of their columns. Because the densities fq
and fq′ coincide Lebesgue-almost everywhere, it holds that, for all
x ∈ int(supp(X1)),

fq(y |x) =

k∑
j=0

λjf(y |x, κj) =

k∑
j=0

λ′jf(y |x, κ′j) = fq′(y |x)

for almost all y. It now follows from Teicher [1963, Proposition 1]
that, for all x ∈ int(supp(X1)),

{(λ1, σ
2
1 , xβ1), . . . , (λk, σ

2
k, xβk)} = {(λ′1, σ′

2
1, xβ

′
1), . . . , (λ′k, σ

′2
k, xβ

′
k)}.

(A.3.2)
In the remainder of the proof, we will consider several x simulta-
neously (rather than a fixed x). This will help us to draw con-
clusions about the betas. Equation (A.3.2) means that for every
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z ∈ Z := R2 × int(supp(X1)), the vectors zQ and zQ′ are equal up
to a permutation of their entries (this permutation may depend on
z). Let Σ denote the (finite) family of permutation matrices of size
k × k and consider the partition

Z =
⋃
M∈Σ

ZM , where ZM = {z ∈ Z : zQ = zQ′MT }.

Since Z is an open subset of Rp+2, there exists an element M0 ∈ Σ,
such that ZM0

contains an open subset of Rp+2. We can therefore
choose p + 2 linearly independent elements z1, . . . , zp+2 ∈ ZM0

and
construct the invertible matrix Z = [zT1 , . . . , z

T
p+2]T . Since ZQ =

ZQ′MT
0 , it follows that Q = Q′MT

0 . �

A.3.4. Proof of Theorem 2.3

Throughout the proof, we make use of the notation introduced in
the first paragraph of Appendix A.3.3. Theorem 2.3 follows if both
the below statements hold true.

(i) m−1J (φ̂m)→ I0 as m→∞ in P0-probability.

(ii)
√
m(φ̂m − φ0)I1/2

0
d−→ N (0, I) as m→∞ under P0.

These results correspond to slightly adapted versions of Lemma 2
and Theorem 1, respectively, in Bickel et al. [1998] (here referred to
as L2 and T1). L2 builds on assumptions (B1)–(B4) to be stated be-
low. T1 additionally assumes that φ0 ∈ int(P) and that the Fisher
information matrix I0 is positive definite, i.e., our (A2) and (A5).
Assumptions (B1)–(B4) state local regularity conditions for a neigh-
borhood of the true parameter φ0. We therefore need to verify that
there exists an open neighborhood T0 of θ0, such that the following
conditions are satisfied.

(B1) The transition matrix Γ0 is irreducible and aperiodic.

(B2) For all j, k ∈ {1, . . . , `} and for all (x, y), the maps γ 7→ Γjk(γ)
and θ 7→ f(x, y|κj(θ)) (for θ ∈ T0) have two continuous deriva-
tives.

(B3) Write θ = (θ1, . . . , θK). For all n ∈ {1, 2}, i1, . . . , in ∈ {1, . . . ,K}
and j ∈ {1, . . . , `}, it holds that
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(i) ∫
sup
θ∈T0

∣∣∣∣ ∂n

∂θi1 · · · ∂θin
f(x, y|κj(θ))

∣∣∣∣ d(x, y) <∞, and

(ii)

E0

[
sup
θ∈T0

∣∣∣∣ ∂n

∂θi1 · · · ∂θin
log f(X1, Y1|κj(θ))

∣∣∣∣3−n
]
<∞.

(B4) For all (x, y), define

ρ(x, y) = sup
θ∈T0

max
0≤i,j≤`

f(x, y|κi(θ))
f(x, y|κj(θ))

.

Then for all j ∈ {1, . . . , `}, P0(ρ(X1, Y1) =∞|H1 = j) < 1.

We first construct the set T0. Let therefore ε > 0 and choose
T0 so small that there exists c > 0, such that for all θ ∈ T0 and
for all j ∈ {1, . . . , `} and k ∈ {1, . . . , d}, it holds that βjk(θ) ∈
(βjk(θ0) − ε, βjk(θ0) + ε) and σ2

j (θ) ≥ c. We can now verify the
conditions (B1)–(B4).

Assumption (B1) is satisfied by (A3). For every (x, y), the maps
κ 7→ f(x, y|κ) are two times continuously differentiable on Rp ×
(0,∞). Together with (A4), this implies (B2), independently of the
choice of T0.

For the proof of (B3)(i)–(ii) we will make use of the following
result. Let g be a polynomial of (x, y) of degree at most 4, i.e.,
a sum of functions on the form bxrix

s
ky
t for some i, k ∈ {1, . . . , p}

and r, s, t ∈ {0, . . . , 4} with r + s + t ≤ 4. Then, for every κ ∈ K,∫
g(|x|, |y|)f(x, y |κ)d(x, y) < ∞, where |x| = (|x1|, . . . , |xp|). This

result follows from the fact that for every x,
∫
|y|tf(y |x, κ)dy is

a polynomial of |x| of degree t, and the assumption that, for all
j ∈ {1, . . . , p}, E[|Xj

1 |4] <∞.
For (B3)(i), we treat all derivatives simultaneously. Let n ∈ {1, 2},

i1, . . . , in ∈ {1, . . . ,K} and j ∈ {1, . . . , `} be fixed. Let {gθ}θ∈T0 be
the functions, for all (x, y) and for all θ ∈ T0 defined by

∂n

∂θi1 · · · ∂θin
f(x, y |κj(θ)) = gθ(x, y) exp

(
− 1

2σ2
j (θ)

(y − xβj(θ))2

)
f(x),

165



A. Causal discovery and discrete latent variables

(note that f(x) = 0 implies f(x, y|κj(θ)) = 0). Then, for all (x, y),
θ 7→ gθ(x, y) is continuous, and for all θ ∈ T0, (x, y) 7→ gθ(x, y) is
a polynomial of degree at most 4. By the compactness of T̄0, the
closure of T0, and by the continuity of θ 7→ gθ(x, y), there exists a
polynomial g of degree 4, such that, for all (x, y), supθ∈T0 |gθ(x, y)| ≤
g(|x|, |y|).

Consider now a fixed k ∈ {1, . . . , p}. By choice of T0, we have that
for all xk and for all θ ∈ T0, it holds that xk(βjk(θ0)− sign(xk)ε) ≤
xkβjk(θ) ≤ xk(βjk(θ0)+sign(xk)ε). With s(x) = (sign(x1), . . . , sign(xp))
it follows that for all (x, y) and all θ ∈ T0, y−x(βj(θ

0)−diag(s(x))ε) ≤
y− xβj(θ) ≤ y− x(βj(θ

0) + diag(s(x))ε). Consequently, we may for
every (x, y) find s(x, y) ∈ {−1, 1}p (either s(x) or −s(x)) such that
for all θ ∈ T0,

−(y − xβj(θ))2 ≤ −(y − x(βj(θ
0) + diag(s(x, y))ε︸ ︷︷ ︸

=:βs

))2.

By choosing C > 0 small enough, it follows that for all (x, y) and
for all θ ∈ T0 it holds that

exp

(
− 1

2σ2
j (θ)

(y − xβj(θ))2

)
≤ exp

(
−C(y − xβj(θ))2

)
≤

∑
s∈{−1,1}p

exp
(
−C(y − xβs)2

)
.

Since all integrals
∫
g(|x|, |y|) exp(−C(y − xβs)

2)f(x)d(x, y), s ∈
{−1, 1}p, are finite, this completes the proof of (B3)(i).

The proof of (B3)(ii) is similar to that of (B3)(i). Fix n ∈ {1, 2},
i1, . . . , in ∈ {1, . . . ,K} and j ∈ {1, . . . , `}. Let {hθ}θ∈T0 be the
functions, for all (x, y) and for all θ ∈ T0 defined by

∂n

∂θi1 · · · ∂θin
log f(x, y |κj(θ)) = hθ(x, y).

Then, for all (x, y), θ 7→ hθ(x, y) is continuous, and for all θ ∈ T0,
(x, y) 7→ hθ(x, y) is a polynomial of degree at most 2. We can
therefore find a dominating polynomial h of degree 2, such that,
for all (x, y), supθ∈T0 |hθ(x, y)| ≤ h(|x|, |y|). Since h(|X1|, |Y1|) ∈
L2(P0), this completes the proof of (B3)(ii).
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(B4) is easily verified. Since the support S of the functions f(· |κ)
does not depend on κ, it is enough to consider (x, y) ∈ int(S). For
all (x, y) ∈ int(S) and for all j ∈ {1, . . . , `}, θ 7→ f(x, y |κj(θ)) is
bounded from above and bounded away from zero (by choice of T0).
The function ρ is therefore finite everywhere. �

A.3.5. Proof of Corollary 2.1

Let (A1)–(A7) hold true. By Theorem 4.2, we can decompose (φ̂m)m∈N =

((θ̂m, γ̂m))m∈N into one or more subsequences, each of which is con-
vergent to a permutation of φ0. We can therefore find a sequence
(πmP )m∈N = ((πmT , π

m
G ))m∈N of permutations on P, such that, P0-

almost surely, the sequence of MLEs (πmP (φ̂m))m∈N converges to φ0

as m→∞. For α ∈ (0, 1) and for every m ∈ N, we then have

Pm0 (θ0 ∈ Cαadjusted(θ̂m)) ≥ Pm0 (θ0 ∈ Cα(πmT (θ̂m)))

= Pm0 (φ0 ∈ Cα(πmT (θ̂m))× G).

By Theorem 2.3, the right hand side converges to 1−α as m→∞.�

A.3.6. Proof of Theorem 2.4

By Corollary 2.1, the adjusted confidence regions within each envi-
ronment all achieve the correct asymptotic coverage, ensuring the
asymptotic validity of the test ϕS∗ of H0,S∗ . Since, for every n,

Pn0 (Ŝn ⊆ S∗) ≥ Pn0 (ϕnS∗ accepts Hn
0,S∗), the result follows. �

A.4. Further details on likelihood
optimization

Below, we describe the two optimization methods NLM and EM.
Since the loglikelihood function (2.3.1) is non-convex, the perfor-
mance of these routines depend on the initialization. In practice, we
restart the algorithms in 5 different sets of starting values (using the
regmix.init function from the R package mixtools).
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A.4.1. Method I (“NLM”): Non-Linear Maximization

This method maximizes the loglikelihood function (2.3.1) numeri-
cally. We use the R optimizer nlm, which is a non-linear maximizer
based on a Newton-type optimization routine [e.g., Schnabel et al.,
1985]. The method also outputs an estimate of the observed Fisher
information, which is used for the construction of the confidence re-
gions (2.3.2). An equality constraint on the error variances can be
enforced directly by using the parametrization (Θ=, T =) described
in Appendix A.2. A lower bound (we use 10−4 as a default value)
can be imposed by suitable reparametrization of all error variances
[e.g., Zucchini et al., 2016, Section 3.3.1].

A.4.2. Method II (“EM”): The EM-algorithm

Given starting values φ(0) ∈ P, the EM-algorithm operates by alter-
nating between the following two steps until a convergence criterion

is met. (1) The E-step: Compute the posterior distribution P
(t)
(y,x)

of H | (Y = y,X = x, φ(t)) given the current parameters φ(t). (2)
The M-step: Maximize the expected complete data loglikelihood

Q(φ |φ(t)) := E
P

(t)

(y,x)

[`complete(y,x,H |φ)] (A.4.1)

to obtain updates φ(t+1) ∈ arg maxφ∈P Q(φ |φ(t)). Here, `complete

is the loglikelihood function of the complete data (y,x,h). The

explicit forms of P
(t)
(y,x) and Q depend on the choice of model. In

model IID, P
(t)
(y,x) is a product distribution which can be computed

by simple applications of Bayes’ theorem. In model HMM, the pos-
terior distribution is obtained by the forward-backward algorithm.
In both cases, (A.4.1) can be maximized analytically [e.g., Bishop,

2006, Chapters 9 and 13]. The observed Fisher information J (φ̂) can
be computed analytically from the derivatives of (A.4.1), see Oakes
[1999]. In our R package, the EM-algorithm is only implemented
for model IID and makes use of the package mixreg. An equality
constraint on the error variances can be accommodated using the
parametrization (Θ=, T =) from Appendix A.2. A lower bound on
the error variances is enforced by restarting the algorithm whenever
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Figure A.1. Output of ICPH (bar plots) and rejection rates
for individual hypotheses (curve plots) for the experiment in Sec-
tion 2.5.1.4 with parameter constraint σ2

Y 1, σ
2
Y 2 ≥ 10−16 (left) and

σ2
Y 1 = σ2

Y 2 (right), using the EM-algorithm as optimization routine.
The results are very similar to those presented in Figure 2.8, where
NLM is applied to the same data. The only notable differences are
the missing values in the bar plots (left). These simulations corre-
spond to instances in which the EM-algorithm, after trying several
different starting values, failed to converge to a solution which sat-
isfies the variance constraints.

an update φ(t) contains a variance component that deceeds the lower
bound (mixreg uses the threshold 10−16).

Figure A.1 shows numerical results for ICPH when using the EM-
algorithm as optimization routine. The results should be compared
to Figure 2.8, where NLM has been applied to the same data. The
two methods perform very similarly, although NLM is computation-
ally faster (by approximately a factor of 6), and better suited for
handling the lower bound constraint on the error variances.

A.5. Additional numerical experiments

In this section, we present additional experimental results. In all
simulations, we use slight adaptations of the SCM in Section 2.5.1.2,
and measure the performance of ICPH using rejection rates for non-
causality (similar to Figure 2.9). All results are summarized in Fig-
ure A.2.
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A.5.1. Non-binary latent variables and unknown
number of states

ICPH requires the number of states as an input parameter—we test
for h-invariance of degree ` in line 8 of Algorithm 1. If ` is un-
known, we propose the following modification. Let K ≥ 3 be some
predefined integer (e.g., K = 5), and let for every S ⊆ {1, . . . , d}
and every k ∈ {2, . . . ,K}, pkS be a p-value for the hypothesis Hk

0,S

of h-invariance of degree k of the set S, obtained from the test
(2.2.6). We then substitute the p-value pS in line 8 of Algorithm 1
by p′S := max{pkS : 2 ≤ k ≤ K}. By construction, the test defined
by p′S is a valid test of H`

0,S for any (unknown) ` ∈ {2, . . . ,K}.
Our code package automatically performs this procedure when the
supplied argument number.of.states is a vector of length greater
than one. We now investigate this procedure numerically. For a fixed
sample size of n = 500 and for every ` ∈ {2, 3, 4, 5}, we generate 100
i.i.d. data sets from the SCM in Section 2.5.1.2 with parameters
sampled as in Section 2.5.1.3. The probabilities λj = P (H = j),
j ∈ {0, . . . , `} are sampled uniformly between 0.1 and 1/(`+ 1) and
standardized correctly. In Figure A.2 (left), we compare three dif-
ferent approaches: (i) we always test for h-invariance of degree 2
(circles), (ii) we always test for h-invariance of degree less than or
equal to 5, using the approach described above (triangles), and (iii)
we test for h-invariance using the true number of states ` (squares).
For all methods, ICPH maintains the type I error control, but drops
in power as the number of latent states increases. Even if the num-
ber of latent states is unknown (but small), ICPH often recovers
the causal parents X1 and X2. In general, we propose to limit the
application of ICPH to cases where the hidden variables is expected
to take only a few different values.

A.5.2. Systems with large numbers of variables

For a fixed sample size of n = 300, we simulate data (Y,X1, X2, X3, H)
as described in Section 2.5.1.2. For increasing m ∈ {1, 10, 100, 1000},
we generate additional predictor variables (Z1, . . . , Zm) from the
structural assignments Zj := αjX

3 + NZ
j , j = 1, . . . ,m, where

NZ
1 , . . . , N

Z
m are i.i.d. standard Gaussian noise variables, and all αj

170



A.5. Additional numerical experiments

0.00

0.25

0.50

0.75

1.00

2 3 4 5
number of latent states k0

re
j. 

ra
te

 f
o

r 
n

o
n

-c
a

u
s
a

lit
y

variable         

X1

X2

X3

testing for
h-invariance 
of degree

k = 2

k ≤ 5

k = k0

non-binary latent variables

0.00

0.25

0.50

0.75

1.00

1 10 100 1000
# of pred. in addition to X1, X2 and X3

re
j. 

ra
te

 fo
r 

no
n−

ca
us

al
ity

variable         

X1

X2

X3

large systems of variables

0.00

0.25

0.50

0.75

1.00

0 0.1 0.2 0.3 0.4 0.5
strength  ∆  of intervention on Y

re
j. 

ra
te

 fo
r 

no
n−

ca
us

al
ity

variable         

X1

X2

X3

violations of h−invariance

Figure A.2. Rejection rates for non-causality of the variables X1,
X2 and X3 for the experiments described in Appendix A.5. We
investigate the performance of ICPH for non-binary variables (left),
for large numbers of predictors (middle), and under violations of
the h-invariance assumption (right). By simultaneously testing for
h-invariance of different degrees (see Appendix A.5.1 for details), we
can recover X1 and X2 even if the true number of latent states is
unknown (left figure, triangles). Our algorithm can be combined
with an upfront variable screening (here using Lasso), which results
in satisfactory performance even for large number of predictor vari-
ables (middle). Under violations of Assumption 2.1, the population
version of ICPH is not able to infer S∗ = {1, 2}. In the finite sam-
ple case we still identify X1 and X2 if H0,S∗ is only mildly violated
(right).

are drawn independently from a Uniform(−1, 1) distribution. We
then perform variable screening by selecting the first 5 predictors
included along the Lasso selection path [Tibshirani, 1994], and run
ICPH on the reduced data set. The results in Figure A.2 (middle)
suggest that even for a large number of predictors, ICPH is generally
able to infer S∗ (provided that S∗ contains only few variables).

A.5.3. Violations of the h-invariance assumption

The theoretical guarantees of our method rely on the existence of
an h-invariant set (Assumption 2.1). We now empirically investigate
the performance of ICPH under violations of this assumption. For
a fixed sample size of n = 300, we generate data as described in
Section 2.5.1.2, but include direct interventions on Y . For increasing
values of ∆ ∈ {0, 0.1, . . . , 0.5}, we change the coefficients (βY11, β

Y
21) in
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A. Causal discovery and discrete latent variables

the structural assignment of Y to (βY11 + ∆, βY21 + ∆) in environment
e2, and to (βY11 − ∆, βY21 − ∆) in environment e3. As expected,
the power of our method drops with the strength of intervention
(Figure A.2 right).
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B.1. Transforming causal models

As illustrated in Remark 3.1, our framework is able to model cases
where causal relations between the observed variables are given ex-
plicitly, e.g., by an SCM. The key insight is that most of these causal
relations can be absorbed by the hidden confounding H on which
we make few restrictions. To show how this can be done in a general
setting, let us consider the following SCM

A := εA X := w(X,Y ) + g(A) + h2(H, εX)

H := εH Y := f(X) + h1(H, εY ).
(B.1.1)

Assume that this SCM is uniquely solvable in the sense that there ex-
ists a unique function F such that (A,H,X, Y ) = F (εA, εH , εX , εY )
almost surely, see Bongers et al. [2016] for more details. Denote by
FX the coordinates of F that correspond to the X variable (i.e., the
coordinates from r + q + 1 to r + q + d). Assume further that there
exist functions g̃ and h̃2 such that

FX(εA, εH , εX , εY ) = g̃(εA) + h̃2((εH , εY ), εX). (B.1.2)

This decomposition is not always possible, but it exists in the follow-
ing settings, for example: (i) There are no A variables. As discussed
in Section 3.2 our framework also works if no A variables exist. In
these cases, the additive decomposition (B.1.2) becomes trivial. (ii)
There are further constraints on the full SCM. The additive decom-
position (B.1.2) holds if, for example, w is a linear function or A
only enters the structural assignments of covariates X which have
at most Y as a descendant.

Using the decomposition in (B.1.2), we can define the following
SCM

A := εA X := g̃(A) + h̃2(H̃, εX)

H̃ := εH̃ Y := f(X) + h1(H̃),
(B.1.3)

where εH̃ has the same distribution as (εH , εY ) in the previous
model. This model fits the framework described in Section 3.2,
where the noise term in Y is now taken to be constantly zero. Both
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SCMs (B.1.1) and (B.1.3) induce the same observational distribution
and the same function f appears in the assignments of Y .

It is further possible to express the set of interventions on the
covariates X in the original SCM (B.1.1) as a set of interventions
on the covariates in the reduced SCM (B.1.3). The description of a
class of interventions in the full SCM (B.1.1) may, however, become
more complex if we consider them in the reduced SCM (B.1.3). In
particular, to apply the developed methodology, one needs to check
whether the interventions in the reduced SCM is a well-behaved set
of interventions (this is not necessarily the case) and how the support
of all X variables behaves under that specific intervention. We now
discuss the case that the causal graph induced by the full SCM is a
directed acyclic graph (DAG).

Intervention type. First, we consider which types of interven-
tions in (B.1.1) translate to well-behaved interventions in (B.1.3).
Importantly, interventions on A in the full SCM reduce to regu-
lar interventions A also in the reduced SCM. Similarly, performing
hard interventions on all components of X in the full SCM leads to
the same intervention in the reduced SCM, which is in particular
both confounding-removing and confounding-preserving. For inter-
ventions on subsets of the X, this is not always the case. To see
that, consider the following example.

A := εA

X1 := ε1, X2 := Y + ε2

Y := X1 + εY

(B.1.4)

A := εA, H := εY

X := (ε1, H + ε1 + ε2)

Y := X1 +H

(B.1.5)

with εA, ε1, ε2, εY
i.i.d.∼ N (0, 1), where (B.1.4) represents the full

SCM and (B.1.5) corresponds to the reduced SCM using our frame-
work. Consider now, in the full SCM, the intervention X1 := i, for
some i ∈ R. In the reduced SCM, this intervention corresponds to
the intervention X = (X1, X2) := (i,H + i + ε2), which is neither
confounding-preserving nor confounding-removing.1 On the other

1 This may not come as a surprise since without the help of an instrument, it is
impossible to distinguish whether a covariate is an ancestor or a descendant
of Y .
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hand, any intervention on X2 or A in the full SCM model corre-
sponds to the same intervention in the reduced SCM. We can gen-
eralize these observations to the following statements:

• Interventions on A: If we intervene on A in the full SCM
(B.1.1) (i.e., by replacing the structural assignment of A with
ψi(Ii, εiA)), then this translates to an equivalent intervention
in the reduced SCM (B.1.3).

• Hard interventions on all X: If we intervene on all X in the full
SCM (B.1.1) by replacing the structural assignment of X with
an independent random variable I ∈ Rd, then this translates
to the same intervention in the reduced SCM (B.1.3) which is
confounding-removing.

• No X is a descendant of Y and there is no unobserved con-
founding H: If we intervene on X in the full SCM (B.1.1) (i.e.,
by replacing the structural assignment ofX with ψi(g,Ai, εiX , I

i)),
then this translates to a potentially different but confounding-
removing intervention in the reduced SCM (B.1.3). This is
because the reduced SCM (B.1.3) does not include unobserved
variables H in this case.

• Hard interventions on a variable Xj which has at most Y as
a descendant: If we intervene on Xj in the full SCM (B.1.1)
by replacing the structural assignment of Xj with an indepen-
dent random variable I, then this intervention translates to a
potentially different but confounding-preserving intervention.

Other settings may yield well-behaved interventions, too, but may
require more assumptions on the full SCM model (B.1.1) or further
restrictions on the intervention classes.

Intervention support. A support-reducing intervention in the full
SCM can translate to a support-extending intervention in the re-
duced SCM. Consider the following example.
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X1 := ε1

X2 := X1 + 1{X1 = 0.5}
Y := X2 + εY

(B.1.6)

X := (ε1, ε1 + 1{ε1 = 0.5})
Y := X2 + εY ,

(B.1.7)

with ε1, εY
i.i.d.∼ U(0, 1). As before, (B.1.6) represents the full SCM,

whereas (B.1.7) corresponds to the reduced SCM converted to fit
our framework. Under the observational distribution, the support
of X1 and X2 is equal to the open interval (0, 1). Consider now
the support-reducing intervention X1 := 0.5 in (B.1.6). Within our
framework, such an intervention would correspond to the interven-
tion X = (X1, X2) := (0.5, 1.5), which is support-extending. This
example is rather special in that the SCM consists of a function that
changes on a null set of the observational distribution. With appro-
priate assumptions to exclude similar degenerate cases, it is possible
to show that support-reducing interventions in (B.1.1) correspond
to support-reducing interventions within our framework (B.1.3).

B.2. Sufficient conditions for Assumption 1
in IV settings

Assumption 3.1 states that f is identified on the support of X from
the observational distribution of (Y,X,A). Whether this assumption
is satisfied depends on the structure of F but also on the other
function classes G,H1,H2 and Q that make up the model class M
from which we assume that the distribution of (Y,X,A) is generated.

Identifiability of the causal function in the presence of instrumen-
tal variables is a well-studied problem in econometrics literature.
Most prominent is the literature on identification in linear SCMs
[e.g., Fisher, 1966, Greene, 2003]. However, identification has also
been studied for various other parametric function classes. We say
that F is a parametric function class if it can be parametrized by
some finite dimensional parameter set Θ ⊆ Rp. We here consider
classes of the form

F := {f(·, θ) : Rd → R | θ : Θ→ R, θ 7→ f(x, θ) is C2 for all x ∈ Rd}.
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Consistent estimation of the parameter θ0 using instrumental vari-
ables in such function classes has been studied extensively in the
econometric literature [e.g., Amemiya, 1974, Jorgenson and Laffont,
1974, Kelejian, 1971]. These works also contain rigorous results on
how instrumental variable estimators of θ0 are constructed and under
which conditions consistency (and thus identifiability) holds. Here,
we give an argument on why the presence of the exogenous variables
A yields identifiability under certain regularity conditions. Assume
that E[h1(H, εY )|A] = 0, which implies that the true causal function
f(·, θ0) satisfies the population orthogonality condition

E[l(A)>(Y − f(X, θ0))] = E
[
l(A)>E[h1(H, εY )|A]

]
= 0, (B.2.1)

for some measurable mapping l : Rq → Rg, for some g ∈ N>0.
Clearly, θ0 is identified from the observational distribution if the map
θ 7→ E[l(A)>(Y −f(X, θ))] is zero if and only if θ = θ0. Furthermore,
since θ 7→ f(x, θ) is differentiable for all x ∈ Rd, the mean value
theorem yields that, for any θ ∈ Θ and x ∈ Rd, there exists an
intermediate point θ̃(x, θ, θ0) on the line segment between θ and θ0

such that

f(x, θ)− f(x, θ0) = Dθf(x, θ̃(x, θ, θ0))(θ − θ0),

where, for each x ∈ Rd, Dθf(x, θ) ∈ R1×p is the derivative of θ 7→
f(x, θ) evaluated in θ. Composing the above expression with the
random vector X, multiplying with l(A) and taking expectations
yields that

E[l(A)(Y − f(X, θ0))]− E[l(A)(Y − f(X, θ))]

= E[l(A)Dθf(X, θ̃(X, θ, θ0))](θ0 − θ).

Hence, if E[l(A)Dθf(X, θ̃(X, θ, θ0))] ∈ Rg×p is of rank p for all θ ∈ Θ
(which implies g ≥ p), then θ0 is identifiable as it is the only param-
eter that satisfies the population orthogonality condition of (B.2.1).
As θ0 uniquely determines the entire function, we get identifiability
of f ≡ f(·, θ0), not only on the support of X but the entire domain
Rd, i.e., both Assumptions 3.1 and 3.2 are satisfied. In the case
that θ 7→ f(x, θ) is linear, i.e. f(x, θ) = f(x)T θ for all x ∈ Rd, the
above rank condition reduces to E[l(A)f(X)T ] ∈ Rg×p having rank
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p (again, implying that g ≥ p). Furthermore, when (x, θ) 7→ f(x, θ)
is bilinear, a reparametrization of the parameter space ensures that
f(x, θ) = xT θ for θ ∈ Θ ⊆ Rd. In this case, the rank condition can
be reduced to the well-known rank condition for identification in a
linear SCM, namely that E[AXT ] ∈ Rq×p is of rank p.

Finally, identifiability and methods of consistent estimation of the
causal function have also been studied for non-parametric function
classes. The conditions for identification are rather technical, how-
ever, and we refer the reader to Newey [2013], Newey and Powell
[2003] for further details.

B.3. Choice of test statistic

By considering the variablesB(X) = (B1(X), . . . , Bk(X)) and C(A) =
(C1(A), . . . , Ck(A)) as vectors of covariates and instruments, respec-
tively, our setting in Section 3.5.2 reduces to the classical (just-
identified) linear IV setting. We could therefore use a test statistics
similar to the one propsed by the PULSE [Jakobsen and Peters,
2020]. With a notation that is slightly adapted to our setting, this
estimator tests H̃0(θ) using the test statistic

T 1
n(θ) = c(n)

‖P(Y −Bθ)‖22
‖Y −Bθ‖22

,

where P is the projection onto the columns of C, and c(n) is some
function with c(n) ∼ n as n → ∞. Under the null hypothesis,
T 1
n converges in distribution to the χ2

k distribution, and diverges to
infinity in probability under the general alternative. Using this test
statistic, H̃0(θ) is rejected if and only if T 1

n(θ) > q(α), where q(α) is
the (1 − α)-quantile of the χ2

k distribution. The acceptance region
of this test statistic is asymptotically equivalent with the confidence
region of the Anderson-Rubin test [Anderson and Rubin, 1949] for
the causal parameter θ0. Using the above test results in a consistent
estimator for θ0 [Jakobsen and Peters, 2020, Theorem 3.12]; the
proof exploits the particular form of T 1

n without explicitly imposing
that assumptions (C1) and (C2) hold.

If the number k of basis functions is large, however, numerical ex-
periments suggest that the above test has low power in finite sample
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settings. As default, our algorithm therefore uses a different test
based on a penalized regression approach. This test has been pro-
posed in Chen et al. [2014] for inference in nonparametric regression
models. We now introduce this procedure with a notation that is
adapted to our setting. For every θ ∈ Rk, let Rθ = Y − B(X)>θ
be the residual associated with θ. We then test the slightly stronger
hypothesis

H̄0(θ) : there exists σ2
θ > 0 such that E[Rθ |A]

a.s.
= 0 and Var[Rθ |A] = σ2

θ

against the alternative that E[Rθ |A] = m(A) for some smooth func-
tion m. To see that the above hypothesis implies H̃0(θ) (and there-
fore H0(θ), see Section 3.5.2.1), let θ ∈ Rk be such that H̄0(θ) holds
true. Then,

E[C(A)(Y −B(X)>θ)] = E[C(A)Rθ] = E[E[C(A)Rθ |A]]

= E[C(A)E[Rθ |A]] = 0,

showing that also H̃0(θ) holds true. Thus, if H̃0(θ) is false, then also
H̄0(θ) is false. As a test statistic T 2

n(θ) for H̄0(θ), we use (up to a
normalization) the squared norm of a penalized regression estimate
of m, evaluated at the data A, i.e., the TSLS loss ‖Pδ(Y −Bθ)‖22.
In the fixed design case, where A is non-random, it has been shown
that, under H̄0(θ) and certain additional regularity conditions, it
holds that

‖Pδ(Y −Bθ)‖22 − σ2
θcn

σ2
θdn

d−→ N (0, 1),

where cn and dn are known functions of C, M and δ [Chen et al.,
2014, Theorem 1]. The authors further state that the above conver-
gence is unaffected by exchanging σ2

θ with a consistent estimator σ̂2
θ ,

which motivates our use of the test statistic

T 2
n(θ) :=

‖Pδ(Y −Bθ)‖22 − σ̂2
θ,ncn

σ̂2
θ,ndn

,

where σ̂2
θ,n := 1

n−1

∑n
i=1‖(In−Pδ)(Y−Bθ)‖22. As a rejection thresh-

old q(α) we use the 1−α quantile of a standard normal distribution.
For results on the asymptotic power of the test defined by T 2, we
refer to Section 2.3 in Chen et al. [2014].
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In our software package, both of the above tests are available
options.

B.4. Addition to experiments

B.4.1. Sampling of the causal function

To ensure linear extrapolation of the causal function, we have cho-
sen a function class consisting of natural cubic splines, which, by
construction, extrapolate linearly outside the boundary knots. We
now describe in detail how we sample functions from this class for
the experiments in Section 3.5.2.4. Let qmin and qmax be the respec-
tive 5%- and 95% quantiles of X, and let B1, . . . , B4 be a basis of
natural cubic splines corresponding to 5 knots placed equidistantly

between qmin and qmax. We then sample coefficients βi
iid∼ U(−1, 1),

i = 1, . . . , 4, and construct f as f =
∑4
i=1 βiBi. For illustration, we

have included 18 realizations in Figure B.1.

B.4.2. Violations of the linear extrapolation
assumption

We have assumed that the true causal function extrapolates linearly
outside the 90% quantile range of X. We now investigate the perfor-
mance of our method for violations of this assumption. To do so, we
again sample from the model (3.5.4), with αA = αH = αε = 1/

√
3.

For each data set, the causal function is sampled as follows. Let
qmin and qmax be the 5%- and 95% quantiles of X. We first gen-
erate a function f̃ that linearly extrapolates outside [qmin, qmax] as
described in Section B.4.1. For a given threshold κ, we then draw

k1, k2
iid∼ U(−κ, κ) and construct f for every x ∈ R by

f(x) = f̃(x) +
1

2
k1((x− qmin)−)2 +

1

2
k2((x− qmax)+)2,

such that the curvature of f on (−∞, qmin] and [qmax,∞) is k1 and
k2, respectively. Figure B.2 shows results for κ = 0, 1, 2, 3, 4. As the
curvature increases, the ability to generalize decreases.
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Figure B.1. The plots show independent realizations of the causal
function that is used in all our experiments. These are sampled
from a linear space of natural cubic splines, as described in Ap-
pendix B.4.1. To ensure a fair comparison with the alternative
method, NPREGIV, the true causal function is chosen from a model
class different from the one assumed by the NILE.
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Figure B.2. Worst-case mean squared error for increasingly strong
violations of the linear extrapolation assumption. The grey area
marks the inner 90 % quantile range of X in the training distribu-
tion. As the curvature of f outside the domain of the observed data
increases, it becomes difficult to predict the interventional behavior
of Y for strong interventions. However, even in situations where
the linear extrapolation assumption is strongly violated, it remains
beneficial to extrapolate linearly.

B.5. Proofs

B.5.1. Proof of Proposition 3.1

Proof. Assume that I is a set of interventions on X with at least
one confounding-removing intervention. Let i ∈ I and f� ∈ F , then
we have the following expansion

EM(i)[(Y − f�(X))2] = EM(i)[(f(X)− f�(X))2] + EM(i)[ξ
2
Y ]

+ 2EM(i)[ξY (f(X)− f�(X))],
(B.5.1)

where ξY = h1(H, εY ). For any intervention i ∈ I the causal func-
tion always yields an identical loss. In particular, it holds that

sup
i∈I

EM(i)[(Y − f(X))2] = sup
i∈I

EM(i)[ξ
2
Y ] = EM [ξ2

Y ], (B.5.2)

where we used that the distribution of ξY is not affected by an
intervention on X. The loss of the causal function can never be
better than the minimax loss, that is,

inf
f�∈F

sup
i∈I

EM(i)[(Y − f�(X))2] ≤ sup
i∈I

EM(i)[(Y − f(X))2] = EM [ξ2
Y ].

(B.5.3)
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In other words, the minimax solution (if it exists) is always better
than or equal to the causal function. We will now show that when
I contains at least one confounding-removing intervention, then the
minimax loss is dominated by any such intervention.

Fix i0 ∈ I to be a confounding-removing intervention and let
(X,Y,H,A) be generated by the SCM M(i0). Recall that there
exists a map ψi0 such that X := ψi0(g, h2, A,H, εX , I

i0) and that
X ⊥⊥ H as i0 is a confounding-removing intervention. Furthermore,
since the vectors A, H, εX , εY and Ii0 are mutually independent,
we have that (X,H) ⊥⊥ εY which together with X ⊥⊥ H implies
X,H and εY are mutually independent, and hence X ⊥⊥ h1(H, εY ).
Using this independence we get that EM(i0)[ξY (f(X) − f�(X))] =
EM [ξY ]EM(i0)[(f(X)− f�(X))]. Hence, (B.5.1) for the intervention
i0 together with the modeling assumption EM [ξY ] = 0 implies that
for all f� ∈ F ,

EM(i0)[(Y −f�(X))2] = EM(i0)[(f(X)−f�(X))2]+EM [ξ2
Y ] ≥ EM [ξ2

Y ].

This proves that the smallest loss at a confounding-removing inter-
vention is achieved by the causal function. Denoting the non-empty
subset of confounding-removing interventions by Icr ⊆ I, this im-
plies

inf
f�∈F

sup
i∈I

EM(i)[(Y − f�(X))2] ≥ inf
f�∈F

sup
i∈Icr

EM(i)[(Y − f�(X))2]

≥ inf
f�∈F

EM(i0)[(Y − f�(X))2]

= EM [ξ2
Y ]. (B.5.4)

Combining (B.5.3) and (B.5.4) it immediately follows that

inf
f�∈F

sup
i∈I

EM(i)[(Y − f�(X))2] = sup
i∈I

EM(i)[(Y − f(X))2],

and hence
f ∈ arg min

f�∈F
sup
i∈I

EM(i)[(Y − f�(X))2],

which completes the proof of Proposition 3.1.
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B.5.2. Proof of Proposition 3.2

Proof. Let F be the class of all linear functions and let I denote the
set of interventions on X that satisfy

sup
i∈I

λmin

(
EM(i)

[
XX>

])
=∞.

We claim that the causal function f(x) = b>x is the unique minimax
solution of (3.3.1). We prove the result by contradiction. Let f̄ ∈ F
(with f̄(x) = b̄>x) be such that

sup
i∈I

EM(i)[(Y − b̄>X)2] ≤ sup
i∈I

EM(i)[(Y − b>X)2],

and assume that ‖b̄−b‖2 > 0. For a fixed i ∈ I, we get the following
bound

EM(i)[(b
>X − b̄>X)2] = (b− b̄)>EM(i)[XX

>](b− b̄)
≥ λmin(EM(i)[XX

>])‖b− b̄‖22.

Since we assumed that the minimal eigenvalue is unbounded, this
means that we can choose i ∈ I such that EM(i)[(b

>X− b̄>X)2] can
be arbitrarily large. However, applying Proposition 3.3, this leads
to a contradiction since supi∈I EM(i)[(b

>X − b̄>X)2] ≤ 4 VarM (ξY )
cannot be satisfied. Therefore, it must holds that b̄ = b, which
moreover implies that f is indeed a solution to the minimax problem
arg minf�∈F supi∈I EM(i)[(Y − f�(X))2], as it achieves the lowest
possible objective value. This completes the proof of Proposition 3.2.

B.5.3. Proof of Proposition 3.3

Proof. Let I be a set of interventions on X or A and let f� ∈ F
with

sup
i∈I

EM(i)[(Y − f�(X))2] ≤ sup
i∈I

EM(i)[(Y − f(X))2]. (B.5.5)
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For any i ∈ I, the Cauchy-Schwartz inequality implies that

EM(i)[(Y − f�(X))2]

= EM(i)[(f(X) + ξY − f�(X))2]

= EM(i)[(f(X)− f�(X))2] + EM(i)[ξ
2
Y ] + 2EM(i)[ξY (f(X)− f�(X))]

≥ EM(i)[(f(X)− f�(X))2] + EM [ξ2
Y ]− 2

(
EM(i)[(f(X)− f�(X))2]EM [ξ2

Y ]
) 1

2 .

A similar computation shows that the causal function f satisfies

EM(i)[(Y − f(X))2] = EM [ξ2
Y ].

So by condition (B.5.5) this implies for any i ∈ I that

EM(i)[(f(X)− f�(X))2] + EM [ξ2
Y ]

− 2
(
EM(i)[(f(X)− f�(X))2]EM [ξ2

Y ]
) 1

2 ≤ EM [ξ2
Y ],

which is equivalent to

EM(i)[(f(X)− f�(X))2] ≤ 2
√
EM(i)[(f(X)− f�(X))2]EM [ξ2

Y ]

⇐⇒ EM(i)[(f(X)− f�(X))2] ≤ 4EM [ξ2
Y ].

As this inequality holds for all i ∈ I, we can take the supremum
over all i ∈ I, which completes the proof of Proposition 3.3.

B.5.4. Proof of Proposition 3.4

Proof. As argued before, we have that for all i ∈ I1,

EM(i)

[
(Y − f(X))2

]
= EM(i)

[
ξ2
Y

]
= EM

[
ξ2
Y

]
.

Let now f∗1 ∈ F be a minimax solution w.r.t. I1. Then, using that
the causal function f lies in F , it holds that

sup
i∈I1

EM(i)

[
(Y − f∗1 (X))2

]
≤ sup
i∈I1

EM(i)

[
(Y − f(X))2

]
= EM

[
ξ2
Y

]
.

Moreover, if I2 ⊆ I1, then it must also hold that

sup
i∈I2

EM(i)

[
(Y − f∗1 (X))2

]
≤ EM

[
ξ2
Y

]
= sup
i∈I2

EM(i)

[
(Y − f(X))2

]
.
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To prove the second part, we give a one-dimensional example. Let
F be linear (i.e., f(x) = bx) and let I1 consist of shift interventions
on X of the form

Xi := g(Ai) + h2(Hi, εiX) + c,

with c ∈ [0,K]. Then, the minimax solution f∗1 (where f∗1 (x) = b∗1x)
with respect to I1 is not equal to the causal function f as long
as Cov(X, ξY ) is strictly positive. This can be seen by explicitly
computing the OLS estimator for a fixed shift c and observing that
the worst-case loss is attained at c = K. Now let I2 be a set of
interventions of the same form as I1 but including shifts with c > K
such that I2 6⊆ I1. Since F consists of linear functions, we know that
the loss EM(i)

[
(Y − f∗1 (X))2

]
can become arbitrarily large, since

EM(i)

[
(Y − f∗1 (X))2

]
= (b− b∗1)2EM(i)[X

2] + EM [ξ2
Y ] + 2(b− b∗1)EM(i)[ξYX]

= (b− b∗1)2(c2 + EM [X2] + 2cEM [X]) + EM [ξ2
Y ]

+ 2(b− b∗1)(EM [ξYX] + EM [ξY ]c),

and (b − b∗)2 > 0. In contrast, the loss for the causal function is
always EM [ξ2

Y ], so the worst-case loss of f∗1 becomes arbitrarily worse
than that of f . This completes the proof of Proposition 3.4.

B.5.5. Proof of Proposition 3.5

Proof. Let ε > 0. By definition of the infimum, we can find f∗ ∈ F
such that∣∣∣∣sup

i∈I
EM(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]∣∣∣∣ ≤ ε.
Let now M̃ ∈ M be s.t. PM̃ = PM . By assumption, the left-hand

side of the above inequality is unaffected by substituting M for M̃ ,
and the result thus follows.

B.5.6. Proof of Proposition 3.6

Proof. Let I be a well-behaved set of interventions on X. We con-
sider two cases; (A) all interventions in I are confounding-preserving
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and (B) there is at least one intervention in I that is confounding-
removing.

Case (A): In this case, we prove the result in two steps: (i)
We show that (A, ξX , ξY ) is identified from the observational dis-
tribution PM . (ii) We show that this implies that the intervention
distributions (Xi, Y i), i ∈ I, are also identified from the observa-
tional distribution, and conclude by using Proposition 3.5. Some
of the details will be slightly technical because we allow for a large
class of distributions (e.g., there is no assumption on the existence
of densities).

We begin with step (i). In this case, I is a set of confounding-
preserving interventions onX, and we have that suppI(X) ⊆ supp(X).
Fix M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈M such that PM̃ = PM and let (X̃, Ỹ , H̃, Ã)

be generated by the SCM of M̃ . We have that (X,Y,A)
d
= (X̃, Ỹ , Ã)

and by Assumption 3.1, we have that f ≡ f̃ on supp(X), hence

f(X)
a.s.
= f̃(X). Further, fix any B ∈ B(Rp) (i.e., in the Borel sigma-

algebra on Rp) and note that

EM [1B(A)X|A] = EM [1B(A)g(A) + 1B(A)h2(H, εX)|A]

= EM [1B(A)g(A)|A] + 1B(A)E[h2(H, εX)]

= 1B(A)g(A),

almost surely. Here, we have used our modeling assumption E[h2(H, εX)] =
0. Hence, by similar arguments for EM̃ (1B(Ã)X̃|Ã) and the fact that

(X,Y,A)
d
= (X̃, Ỹ , Ã) we have that

1B(A)g(A)
a.s.
= EM (1B(A)X|A)

d
= EM̃ (1B(Ã)X̃|Ã)

a.s.
= 1B(Ã)g̃(Ã).

We conclude that 1B(A)g(A)
d
= 1B(Ã)g̃(Ã) for any B ∈ B(Rp).

Let P and P̃ denote the respective background probability measures
on which the random elements (X,Y,H,A) and (X̃, Ỹ , H̃, Ã) are
defined. Fix any F ∈ σ(A) (i.e., in the sigma-algebra generated by
A) and note that there exists a B ∈ B(Rp) such that F = {A ∈ B}.
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Since A
d
= Ã, we have that,∫
F

g(A) dP =

∫
1B(A)g(A) dP =

∫
1B(Ã)g̃(Ã) dP̃

=

∫
1B(A)g̃(A) dP =

∫
F

g̃(A) dP.

Both g(A) and g̃(A) are σ(A)-measurable and they agree integral-

wise over every set F ∈ σ(A), so we must have that g(A)
a.s.
= g̃(A).

With η(a, b, c) = (a, c− f̃(b), b− g̃(a)) we have that

(A, ξY , ξX)
a.s.
= (A, Y − f̃(X), X − g̃(A)) = η(A,X, Y )

d
= η(Ã, X̃, Ỹ ) = (Ã, ξ̃Y , ξ̃X),

so (A, ξY , ξX)
d
= (Ã, ξ̃Y , ξ̃X). This completes step (i).

Next, we proceed with step (ii). Take an arbitrary intervention

i ∈ I and let φi, Ii, Ĩi with Ii
d
= Ĩi, Ii ⊥⊥ (εiX , ε

i
Y , ε

i
H , ε

i
A) ∼ Q and

Ĩi ⊥⊥ (ε̃iX , ε̃
i
Y , ε̃

i
H , ε̃

i
A) ∼ Q̃ be such that the structural assignments

for Xi and X̃i in M(i) and M̃(i), respectively, are given as

Xi := φi(Ai, g(Ai), h2(Hi, εiX), Ii) and

X̃i := φi(Ãi, g̃(Ãi), h̃2(H̃i, ε̃iX), Ĩi).

Define ξiX := h2(Hi, εiX), ξiY := h1(Hi, εiY ), ξ̃iX := h̃2(H̃i, ε̃iX) and

ξ̃iY := h̃1(H̃i, ε̃iY ). Then, it holds that

(Ai, ξiX , ξ
i
Y )

d
= (A, ξX , ξY )

d
= (Ã, ξ̃X , ξ̃Y )

d
= (Ãi, ξ̃iX , ξ̃

i
Y ),

where we used step (i), that (Ai, ξiX , ξ
i
Y ) and (A, ξX , ξY ) are gener-

ated by identical functions of the noises and that (εX , εY , εH , εA)
and (εiX , ε

i
Y , ε

i
H , ε

i
A) have identical distributions. Adding a random

variable with the same distribution, that is mutually independent
with all other variables, on both sides does not change the distribu-
tion of the bundle, hence

(Ai, ξiX , ξ
i
Y , I

i)
d
= (Ãi, ξ̃iX , ξ̃

i
Y , Ĩ

i).
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Define κ(a, b, c, d) := (φi(a, g̃(a), b, d), f̃(φi(a, g̃(a), b, d)) + c). As

shown in step (i) above, we have that g(Ai)
a.s.
= g̃(Ai). Furthermore,

since supp(Xi) ⊆ supp(X) we have that f(Xi)
a.s.
= f̃(Xi), and hence

(Xi, Y i)
a.s.
= (Xi, f̃(Xi) + ξiY )

= (φi(Ai, g(Ai), ξiX , I
i), f̃(φi(Ai, g(Ai), ξiX , I

i)) + ξiY )
a.s.
= (φi(Ai, g̃(Ai), ξiX , I

i), f̃(φi(Ai, g̃(Ai), ξiX , I
i)) + ξiY )

= κ(Ai, ξiX , ξ
i
Y , I

i)
d
= κ(Ãi, ξ̃iX , ξ̃

i
Y , Ĩ

i) = (X̃i, Ỹ i).

Thus, P(X,Y )
M(i) = P(X,Y )

M̃(i)
, which completes step (ii). Since i ∈ I was

arbitrary, the result now follows from Proposition 3.5.
Case (B): Assume that the set of interventions I contains at least

one confounding-removing intervention. Let M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈
M be such that PM̃ = PM . Then, by Proposition 3.1, it follows

that the causal function f̃ is a minimax solution w.r.t. (M̃, I). By
Assumption 3.1, we further have that f̃ and f coincide on supp(X) ⊇
suppI(X). Hence, it follows that

inf
f�∈F

sup
i∈I

EM̃(i)[(Y − f�(X))2] = sup
i∈I

EM̃(i)[(Y − f̃(X))2]

= sup
i∈I

EM̃(i)[(Y − f(X))2],

showing that also f is a minimax solution w.r.t. (M̃, I). This com-
pletes the proof of Proposition 3.6.

B.5.7. Proof of Proposition 3.7

Proof. We first show that the causal parameter β is not a minimax
solution. Let u := sup I < ∞, since I is bounded, and take b =
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β + 1/(σu). By an explicit computation we get that

inf
b�∈R

sup
i∈I

EM(i)

[
(Y − b�X)2

]
≤ sup

i∈I
EM(i)

[
(Y − bX)2

]
= sup

i∈I
EM(i)

[
(εY + 1

σH −
1
σu iH)2

]
= sup

i∈I

[
1 +

(
1− i

u

)2]
< 2 = sup

i∈I
EM(i)

[
(Y − βX)2

]
,

where the last inequality holds because 0 < 1 + (1− i/u)2 < 2 for all
i ∈ I, and since I ⊆ R>0 is compact with upper bound u. Hence,

sup
i∈I

EM(i)

[
(Y − βX)2

]
− inf
b�∈R

sup
i∈I

EM(i)

[
(Y − b�X)2

]
> 0,

proving that the causal parameter is not a minimax solution for
model M w.r.t. (F , I). Recall that in order to prove that (PM ,M)
does not generalize with respect to I we have to show that there
exists an ε > 0 such that for all b ∈ R it holds that

sup
M̃ :PM̃=PM

∣∣ sup
i∈I

EM̃(i)

[
(Y − bX)2

]
− inf
b�∈R

sup
i∈I

EM̃(i)

[
(Y − b�X)2

]∣∣ ≥ ε.
Thus, it remains to show that for all b 6= β there exists a model
M̃ ∈M with PM = PM̃ such that the generalization loss is bounded
below uniformly by a positive constant. We will show the stronger
statement that for any b 6= β, there exists a model M̃ with PM̃ = PM ,

such that under M̃ , b results in arbitrarily large generalization error.
Let c > 0 and i0 ∈ I. Define

σ̃ :=
sign ((β − b)i0)

√
1 + c− 1

(β − b)i0
> 0,

and let M̃ := M(γ, β, σ̃, Q). By construction of the model class M,
it holds that PM̃ = PM . Furthermore, by an explicit computation

191



B. Distribution generalization in nonlinear models

we get that

sup
i∈I

EM̃(i)

[
(Y − bX)2

]
≥ EM̃(i0)

[
(Y − bX)2

]
= EM̃(i0)

[
((β − b)i0H + εY + 1

σ̃H)2
]

= EM̃(i0)

[
([(β − b)i0σ̃ + 1]εH + εY )2

]
= [(β − b)i0σ̃ + 1]2 + 1

= ((β − b)i0σ̃)2 + 2(β − b)i0σ̃ + 2

= (sign ((β − b)i0)
√

1 + c− 1)2 + 2 sign ((β − b)i0)
√

1 + c

= c+ 2. (B.5.6)

Finally, by definition of the infimum, it holds that

inf
b�∈R

sup
i∈I

EM̃(i)

[
(Y − b�X)2

]
≤ sup

i∈I
EM̃(i)

[
(Y − βX)2

]
= 2. (B.5.7)

Combining (B.5.6) and (B.5.7) yields that the generalization error
is bounded below by c. That is,∣∣ sup

i∈I
EM̃(i)

[
(Y − bX)2

]
− inf
b�∈R

sup
i∈I

EM̃(i)

[
(Y − b�X)2

]∣∣ ≥ c.
The above results make no assumptions on γ, and hold true, in
particular, if γ 6= 0 (in which case Assumption 3.1 is satisfied, see
Appendix B.2). This completes the proof of Proposition 3.7.

B.5.8. Proof of Proposition 3.8

Proof. Let M̃ ∈ M be such that PM̃ = PM . By Assumptions 3.1

and 3.2, it holds that f ≡ f̃ . The proof now proceeds analogously
to that of Proposition 3.6.

B.5.9. Proof of Proposition 3.9

Proof. By Assumption 3.1, f is identified on suppM (X) by the ob-
servational distribution PM . Let I be a set of interventions con-
taining at least one confounding-removing intervention. For any
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M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈ M, Proposition 3.1 yields that the causal
function is a minimax solution. That is,

inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]
= sup

i∈I
EM̃(i)

[
(Y − f̃(X))2

]
= sup

i∈I
EM̃(i)[ξ

2
Y ] = EM̃ [ξ2

Y ], (B.5.8)

where we used that any intervention i ∈ I does not affect the distri-
bution of ξY = h̃2(H, εY ). Now, assume that M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈
M satisfies PM̃ = PM . Since (PM ,M) satisfies Assumption 3.1,

we have that f ≡ f̃ on suppM (X) = suppM̃ (X). Let f∗ be any
function in F such that f∗ = f on suppM (X). We first show
that ‖f̃ − f∗‖I,∞ ≤ 2δK, where ‖f‖I,∞ := supx∈suppMI (X) ‖f(x)‖.
By the mean value theorem, for all f� ∈ F it holds that |f�(x) −
f�(y)| ≤ K‖x − y‖, for all x, y ∈ D. For any x ∈ suppMI (X) and
y ∈ suppM (X) we have∣∣f̃(x)− f∗(x)

∣∣ =
∣∣f̃(x)− f̃(y) + f∗(y)− f∗(x)

∣∣
≤
∣∣f̃(x)− f̃(y)

∣∣+
∣∣f∗(y)− f∗(x)

∣∣
≤ 2K‖x− y‖,

where we used the fact that f̃(y) = f(y) = f∗(y), for all y ∈
suppM (X). In particular, it holds that

‖f̃ − f∗‖I,∞ = sup
x∈suppMI (X)

∣∣f̃(x)− f∗(x)
∣∣

≤ 2K sup
x∈suppMI (X)

inf
y∈suppM (X)

‖x− y‖

= 2δK.

(B.5.9)

For any i ∈ I we have that

EM̃(i)

[
(Y − f∗(X))2

]
= EM̃(i)

[
(f̃(X) + ξY − f∗(X))2

]
(B.5.10)

= EM̃
[
ξ2
Y

]
+ EM̃(i)

[
(f̃(X)− f∗(X))2

]
+ 2EM̃(i)

[
ξY (f̃(X)− f∗(X))

]
.
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Next, we can use Cauchy-Schwarz, (B.5.8) and (B.5.9) in (B.5.10)
to get that∣∣∣∣sup
i∈I

EM̃(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣∣∣
= sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− EM̃ [ξ2

Y ]

= sup
i∈I

(
EM̃(i)

[
(f̃(X)− f∗(X))2

]
+ 2EM̃(i)

[
ξY (f̃(X)− f∗(X))

])
≤ 4δ2K2 + 4δK

√
VarM (ξY ), (B.5.11)

proving the first statement. Finally, if I consists only of confounding-
removing interventions, then the bound in (B.5.11) can be improved
by using that E[ξY ] = 0 together with H ⊥⊥ X. In that case, we get
that EM̃(i)

[
ξY (f̃(X) − f(X))

]
= 0 and hence the bound becomes

4δ2K2. This completes the proof of Proposition 3.9.

B.5.10. Proof of Proposition 3.10

Proof. By Assumption 3.1, f is identified on suppM (X) by the obser-
vational distribution PM . Let I be a set of confounding-preserving
interventions. For a fixed ε > 0, let f∗ ∈ F be a function satisfying

|sup
i∈I

EM(i)

[
(Y − f∗(X))2)

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2)

]
| ≤ ε.

(B.5.12)
Fix any secondary model M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) ∈M with PM̃ = PM .
The general idea is to derive an upper bound for supi∈I EM̃(i)[(Y −
f∗(X))2] and a lower bound for inff�∈F supi∈I EM̃(i)[(Y − f�(X))2]
which will allow us to bound the absolute difference of interest.

Since (PM ,M) satisfies Assumption 3.1, we have that f ≡ f̃ on

suppM (X) = suppM̃ (X). We first show that ‖f̃ − f‖I,∞ ≤ 2δK,
where ‖f‖I,∞ := supx∈suppMI (X) ‖f(x)‖. By the mean value theo-

rem, for all f� ∈ F it holds that |f�(x)− f�(y)| ≤ K‖x− y‖, for all
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x, y ∈ D. For any x ∈ suppMI (X) and y ∈ suppM (X) we have∣∣f̃(x)− f(x)
∣∣ =

∣∣f̃(x)− f̃(y) + f(y)− f(x)
∣∣

≤
∣∣f̃(x)− f̃(y)

∣∣+
∣∣f(y)− f(x)

∣∣
≤ 2K‖x− y‖,

where we used the fact that f̃(y) = f(y), for all y ∈ suppM (X). In
particular, it holds that

‖f̃ − f‖I,∞ = sup
x∈suppMI (X)

∣∣f̃(x)− f(x)
∣∣

≤ 2K sup
x∈suppMI (X)

inf
y∈suppM (X)

‖x− y‖

= 2δK.

(B.5.13)

Let now i ∈ I be fixed. The term ξY = h1(H, εY ) is not affected

by the intervention i. Furthermore, P(X,ξY )
M(i) = P(X,ξY )

M̃(i)
since i is

confounding-preserving (this can be seen by a slight modification to
the arguments from case (A) in the proof of Proposition 3.6). Thus,
for any f� ∈ F we have that

EM̃(i)

[
(Y − f�(X))2

]
= EM̃(i)

[
(f̃(X) + ξY − f�(X) + f(X)− f(X))2

]
= EM̃(i)

[
ξ2
Y

]
+ EM̃(i)

[
(f(X)− f�(X))2

]
+ EM̃(i)

[
(f̃(X)− f(X))2

]
+ 2EM̃(i)

[
ξY (f(X)− f�(X))

]
+ 2EM̃(i)

[
(f̃(X)− f(X))(f(X)− f�(X))

]
+ 2EM̃(i)

[
ξY (f̃(X)− f(X))

]
= EM(i)

[
ξ2
Y

]
+ EM(i)

[
(f(X)− f�(X))2

]
+ EM(i)

[
(f̃(X)− f(X))2

]
+ 2EM(i)

[
ξY (f(X)− f�(X))

]
+ 2EM(i)

[
(f̃(X)− f(X))(f(X)− f�(X))

]
+ 2EM(i)

[
ξY (f̃(X)− f(X))

]
= EM(i)

[
(Y − f�(X))2

]
+ Li1(f̃) + Li2(f̃ , f�) + Li3(f̃),

(B.5.14)
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where, we have made the following definitions

Li1(f̃) := EM(i)

[
(f̃(X)− f(X))2

]
,

Li2(f̃ , f�) := 2EM(i)

[
(f̃(X)− f(X))(f(X)− f�(X))

]
,

Li3(f̃) := 2EM(i)

[
ξY (f̃(X)− f(X))

]
.

Using (B.5.13) it follows that

0 ≤ Li1(f̃) ≤ 4δ2K2, (B.5.15)

and by the Cauchy-Schwarz inequality it follows that∣∣Li3(f̃)
∣∣ ≤ 2

√
VarM (ξY )4δ2K2 = 4δK

√
VarM (ξY ). (B.5.16)

Let now f� ∈ F be any function such that

sup
i∈I

EM̃(i)

[
(Y − f�(X))2)

]
≤ sup

i∈I
EM̃(i)

[
(Y − f̃(X))2)

]
, (B.5.17)

then by (B.5.13), the Cauchy-Schwarz inequality and Proposition 3.3,
it holds for all i ∈ I that

Li2(f̃ , f�) = 2EM(i)

[
(f̃(X)− f(X))(f(X)− f�(X))

]
= 2EM̃(i)

[
(f̃(X)− f(X))(f(X)− f�(X))

]
= −2EM̃(i)

[
(f̃(X)− f(X))2

]
+ 2EM̃(i)

[
(f̃(X)− f(X))(f̃(X)− f�(X))

]
≥ −8δ2K2 − 2

√
4δ2K2

√
4 VarM (ξY )

= −8δ2K2 − 8δK
√

VarM (ξY ), (B.5.18)

where, in the third equality, we have added and subtracted the term
2EM̃(i)

[
(f̃(X)−f(X))f̃(X)

]
. Now let S := {f� ∈ F : supi∈I EM̃(i)

[
(Y−

f�(X))2
]
≤ supi∈I EM̃(i)

[
(Y − f̃(X))2

]
} be the set of all functions

satisfying (B.5.17). Due to (B.5.14), (B.5.15), (B.5.16) and (B.5.18)
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we have the following lower bound of interest

inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]
= inf
f�∈S

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]
(B.5.19)

= inf
f�∈S

sup
i∈I

{
EM(i)

[
(Y − f�(X))2

]
+ Li1(f̃) + Li2(f̃ , f�) + Li3(f̃)

}
≥ inf
f�∈S

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
− 8δ2K2 − 8δK

√
VarM (ξY )

− 4δK
√

VarM (ξY )

≥ inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
− 8δ2K2 − 12δK

√
VarM (ξY ).

Next, we construct the aforementioned upper bound of interest. To
that end, note that

sup
i∈I

EM̃(i)

[
(Y − f∗(X))2

]
(B.5.20)

= sup
i∈I

{
EM(i)

[
(Y − f∗(X))2

]
+ Li1(f̃) + Li2(f̃ , f∗) + Li3(f̃)

}
,

by (B.5.14). We have already established upper bounds for Li1(f̃)
and Li3(f̃) in (B.5.15) and (B.5.16), respectively. In order to control
Li2(f̃ , f∗) we introduce an auxiliary function. Let f̄∗ ∈ F satisfy

sup
i∈I

EM(i)

[
(Y − f̄∗(X))2)

]
≤ sup

i∈I
EM(i)

[
(Y − f(X))2)

]
, (B.5.21)

and∣∣∣sup
i∈I

EM(i)

[
(Y − f̄∗(X))2

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]∣∣∣ ≤ ε.
(B.5.22)

Choosing such a f̄∗ ∈ F is always possible. If f is an ε-minimax
solution, i.e., it satisfies (B.5.22), then choose f̄∗ = f . Otherwise, if
f is not a ε-minimax solution, then choose any f̄∗ ∈ F that is an
ε-minimax solution (which is always possible). In this case we have
that

sup
i∈I

EM(i)

[
(Y − f̄∗(X))2

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
≤ ε,
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and

sup
i∈I

EM(i)

[
(Y − f(X))2

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
≥ ε,

which implies that (B.5.21) is satisfied. We can now construct an
upper bound on Li2(f̃ , f∗) in terms of Li2(f̃ , f̄∗) by noting that for
all i ∈ I∣∣Li2(f̃ , f∗)

∣∣
= 2
∣∣EM(i)

[
(f̃(X)− f(X))(f(X)− f∗(X))

]∣∣
≤ 2
∣∣EM(i)

[
(f̃(X)− f(X))(f(X)− f̄∗(X))

]∣∣ (B.5.23)

+ 2EM(i)

∣∣(f̃(X)− f(X))(f̄∗(X)− f∗(X))
∣∣

=
∣∣Li2(f̃ , f̄∗)

∣∣+ 2EM(i)

∣∣(f̃(X)− f(X))(f̄∗(X)− f∗(X))
∣∣

≤
∣∣Li2(f̃ , f̄∗)

∣∣+ 2

√
EM(i)

[
(f̃(X)− f(X))2

]
EM(i)

[
(f̄∗(X)− f∗(X))2

]
≤
∣∣Li2(f̃ , f̄∗)

∣∣+ 4δK
√
EM(i)

[
(f̄∗(X)− f∗(X))2

]
,

where we used the triangle inequality, Cauchy-Schwarz inequality
and (B.5.13) . Furthermore, (B.5.13) and (B.5.21) together with
Proposition 3.3 yield the following bound

|Li2(f̃ , f̄∗)| = 2
∣∣EM(i)

[
(f̃(X)− f(X))(f(X)− f̄∗(X))

]∣∣
= 2
√

EM(i)

[
(f̃(X)− f(X))2

]
EM(i)

[
(f(X)− f̄∗(X))2

]
≤ 2
√

4δ2K2
√

4 VarM (ξY )

= 8δK
√

VarM (ξY ), (B.5.24)

for any i ∈ I. Thus, it suffices to construct an upper bound on the
second term in the final expression in (B.5.23). Direct computation
leads to

EM(i)

[
(Y − f∗(X))2

]
= EM(i)

[
(Y − f̄∗(X))2

]
+ EM(i)

[
(f̄∗(X)− f∗(X))2

]
+ 2EM(i)

[
(Y − f̄∗(X))(f̄∗(X)− f∗(X))

]
.
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Rearranging the terms and applying the triangle inequality and
Cauchy-Schwarz results in

EM(i)

[
(f̄∗(X)− f∗(X))2

]
= EM(i)

[
(Y − f∗(X))2

]
− EM(i)

[
(Y − f̄∗(X))2

]
− 2EM(i)

[
(Y − f̄∗(X))(f̄∗(X)− f∗(X))

]
≤
∣∣EM(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]∣∣
+
∣∣ inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
− EM(i)

[
(Y − f̄∗(X))2

]∣∣
+ 2EM(i)

∣∣(Y − f̄∗(X))(f̄∗(X)− f∗(X))
∣∣

≤ 2ε+ 2
√
EM(i)

[
(Y − f̄∗(X))2

]√
EM(i)

[
(f̄∗(X)− f∗(X))2

]
≤ 2ε+ 2

√
VarM (ξY )

√
EM(i)

[
(f̄∗(X)− f∗(X))2

]
,

for any i ∈ I. Here, we used that both f∗ and f̄∗ are ε-minimax
solutions with respect to M and that f̄∗ satisfies (B.5.21) which
implies that

EM(i)

[
(Y − f̄∗(X))2)

]
≤ sup

i∈I
EM(i)

[
(Y − f(X))2)

]
= sup

i∈I
EM(i)

[
ξ2
Y

]
= VarM [ξY ],

for any i ∈ I, as ξY is unaffected by an intervention on X. Thus,
EM(i)

[
(f̄∗(X)−f∗(X))2

]
must satisfy `(EM(i)

[
(f̄∗(X)−f∗(X))2

]
) ≤

0, where ` : [0,∞)→ R is given by `(z) = z− 2ε− 2
√

VarM (ξY )
√
z.

The linear term of ` grows faster than the square root term, so the
largest allowed value of EM(i)

[
(f̄∗(X)−f∗(X))2

]
coincides with the

largest root of `(z). The largest root is given by

C2 := 2ε+ 2 VarM (ξY ) + 2
√

VarM (ξY )2 + 2εVarM (ξY ),

where (·)2 refers to the square of C. Hence, for any i ∈ I it holds
that

EM(i)

[
(f̄∗(X)− f∗(X))2

]
≤ C2. (B.5.25)

Hence by (B.5.23), (B.5.24) and (B.5.25) we have that the following
upper bound is valid for any i ∈ I.∣∣Li2(f̃ , f∗)

∣∣ ≤ 8δK
√

VarM (ξY ) + 4δKC. (B.5.26)
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Thus, using (B.5.20) with (B.5.15), (B.5.16) and (B.5.26), we get
the following upper bound

sup
i∈I

EM̃(i)

[
(Y − f∗(X))2

]
(B.5.27)

≤ sup
i∈I

EM(i)

[
(Y − f∗(X))2

]
+ 4δ2K2 + 4δKC + 12δK

√
VarM (ξY ).

Finally, by combining the bounds (B.5.19) and (B.5.27) together
with (B.5.12) we get that∣∣∣sup

i∈I
EM̃(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣∣
≤ sup

i∈I
EM(i)

[
(Y − f∗(X))2

]
− inf
f�∈F

sup
i∈I

EM(i)

[
(Y − f�(X))2

]
+ 4δ2K2 + 4δKC + 12δK

√
VarM (ξY )

+ 8δ2K2 + 12δK
√

VarM (ξY )

≤ ε+ 12δ2K2 + 24δK
√

VarM (ξY ) + 4δKC. (B.5.28)

Using that all terms are positive, we get that

C =
√

VarM (ξY ) +
√

VarM (ξY ) + 2ε ≤ 2
√

VarM (ξY ) +
√

2ε

Hence, (B.5.28) is bounded above by

ε+ 12δ2K2 + 32δK
√

VarM (ξY ) + 4
√

2δK
√
ε.

This completes the proof of Proposition 3.10.

B.5.11. Proof of Proposition 3.11

Proof. Let f̄ ∈ F and c > 0. By assumption, I is a well-behaved
set of support-extending interventions on X. Since suppMI (X) \
suppM (X) has non-empty interior, there exists an intervention i0 ∈
I and ε > 0 such that PM(i0)(X ∈ B) ≥ ε, for some open subset

B ( B̄, such that dist(B,Rd \ B̄) > 0, where B̄ := suppMI (X) \
suppM (X). Let f̃ be any continuous function satisfying that, for all
x ∈ B ∪ (Rd \ B̄),

f̃(x) =

{
f̄(x) + γ, x ∈ B
f(x), x ∈ Rd \ B̄,
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where γ := ε−1/2
{

(2EM̃ [ξ2
Y ] + c)1/2 + (EM̃ [ξ2

Y ])1/2
}

.

Consider a secondary model M̃ = (f̃ , g, h1, h2, Q) ∈M. Then, by
Assumption 3.1, it holds that PM = PM̃ . Since I only consists of
interventions on X, it holds that PM(i0)(X ∈ B) = PM̃(i0)(X ∈ B)

(this holds since all components of M̃ and M are equal, except for
the function f , which is not allowed to enter in the intervention on
X). Therefore,

EM̃(i0)

[
(Y − f̄(X))2

]
≥ EM̃(i0)

[
(Y − f̄(X))2

1B(X)
]

= EM̃(i0)

[
(γ + ξY )2

1B(X)
]

≥ γ2ε+ 2γEM̃(i0)

[
ξY 1B(X)

]
≥ γ2ε− 2γ

(
EM̃
[
ξ2
Y

]
ε
)1/2

= c+ EM̃ [ξ2
Y ], (B.5.29)

where the third inequality follows from Cauchy–Schwarz. Further,
by the definition of the infimum it holds that

inf
f�∈F

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]
≤ sup

i∈I
EM̃(i)

[
(Y − f̃(X))2

]
= EM̃ [ξ2

Y ].

(B.5.30)

Therefore, combining (B.5.29) and (B.5.30), the claim follows.

B.5.12. Proof of Proposition 3.12

Proof. We prove the result by showing that under Assumption 3.3 it
is possible to express interventions on A as confounding-preserving
interventions on X and applying Propositions 3.6 and 3.8. To avoid
confusion, we will throughout this proof denote the true model by
M0 = (f0, g0, h0

1, h
0
2, Q

0). Fix an intervention i ∈ I. Since it is
an intervention on A, there exist ψi and Ii such that for any M =
(f, g, h1, h2, Q) ∈M, the intervened SCM M(i) is of the form

Ai := ψi(Ii, εiA), Hi := εiH ,

Xi := g(Ai) + h2(Hi, εiX),

Y i := f(Xi) + h1(Hi, εiY ),
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where (εiX , ε
i
Y , ε

i
A, ε

i
H) ∼ Q. We now define a confounding-preserving

intervention j on X, such that, for all models M̃ with PM̃ = PM , the

distribution of (X,Y ) under M̃(j) coincides with that under M̃(i).
To that end, define the intervention function

ψ̄j(h2, A
j , Hj , εjX , I

j) := g0(ψi(Ij , Aj)) + h2(Hj , εjX),

where g0 is the fixed function corresponding to model M , and there-
fore not an argument of ψ̄j . Let now j be the intervention on X
satisfying that, for all M = (f, g, h1, h2, Q) ∈ M, the intervened
model M(j) is given as

Aj := εjA, Hj := εjH ,

Xj := ψ̄j(h2, A
j , Hj , εjX , I

j),

Y j := f(Xj) + h1(Hj , εjY ),

where (εjX , ε
j
Y , ε

j
A, ε

j
H) ∼ Q and where Ij is chosen such that Ij

d
=

Ii. By definition, j is a confounding-preserving intervention. Let
now M̃ = (f̃ , g̃, h̃1, h̃2, Q̃) be such that PM̃ = PM , and let (X̃i, Ỹ i)

and (X̃j , Ỹ j) be generated under M̃(i) and M̃(j), respectively. By
Assumption 3.3, it holds for all a ∈ supp(A)∪ suppI(A) that g̃(a) =
g0(a). Hence, we get that

(X̃i, Ỹ i)
d
= (g̃(ψi(Ii, ε̃iA)) + h̃2(ε̃iH , ε̃

i
X),

f̃(g̃(ψi(Ii, ε̃iA)) + h̃2(ε̃iH , ε̃
i
X)) + h̃1(ε̃iH , ε̃

i
Y ))

= (g0(ψi(Ii, ε̃iA)) + h̃2(ε̃iH , ε̃
i
X),

f̃(g0(ψi(Ii, ε̃iA)) + h̃2(ε̃iH , ε̃
i
X)) + h̃1(ε̃iH , ε̃

i
Y ))

d
= (g0(ψi(Ij , ε̃jA)) + h̃2(ε̃jH , ε̃

j
X),

f̃(g0(ψi(Ij , ε̃jA)) + h̃2(ε̃jH , ε̃
j
X)) + h̃1(ε̃jH , ε̃

j
Y ))

d
= (ψ̄j(h̃2, ε̃

j
A, ε̃

j
H , ε̃

j
X , I

j),

f̃(ψ̄j(h̃2, ε̃
j
A, ε̃

j
H , ε̃

j
X , I

j)) + h̃1(ε̃jH , ε̃
j
Y ))

d
= (X̃j , Ỹ j),

as desired. Since i ∈ I was arbitrary, we have now shown that there
exists a mapping π from I into a set J of confounding-preserving
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(and hence a well-behaved set) of interventions on X, such that for

all M̃ with PM̃ = PM , P(X,Y )

M̃(i)
= P(X,Y )

M̃(π(i))
. Hence, we can rewrite

Equation (3.4.1) in Definition 3.1 in terms of the set J . The result
now follows from Propositions 3.6 and 3.8.

B.5.13. Proof of Proposition 3.13

Proof. Let b ∈ Rd be such that f(x) = b>x for all x ∈ Rd. We start
by characterizing the error EM̃(i)

[
(Y − f�(X))2

]
. Let us consider

models of the form M̃ = (f, g̃, h1, h2, Q) ∈ M for some function
g̃ ∈ G with g̃(a) = g(a) for all a ∈ suppM (A). Clearly, any such
model satisfies that PM̃ = PM . For every a ∈ A, let ia ∈ I denote
the corresponding hard intervention on A. For every a ∈ A and
b� ∈ Rd, we then have

EM̃(ia)

[
(Y − b>� X)2

]
= EM̃(ia)

[
(b>X + ξY − b>� X)2

]
= (b− b�)>EM̃(ia)[XX

>](b− b�)

+ 2(b− b�)>EM̃(ia)[XξY ] + EM̃(ia)

[
ξ2
Y ]

= (b− b�)> (g̃(a)g̃(a)> + EM [ξXξ
>
X ])︸ ︷︷ ︸

=:KM̃ (a)

(b− b�)

+ 2(b− b�)>EM [ξXξY ] + EM
[
ξ2
Y ],

(B.5.31)

where we have used that, under ia, the distribution of (ξX , ξY ) is
unaffected. We now show that, for any M̃ with the above form, the
causal function f does not minimize the worst-case mean squared
error across interventions in I. The idea is to show that the worst-
case mean squared error (B.5.31) strictly decreases at b� = b in the
direction u := EM [ξXξY ]/‖EM [ξXξY ]‖2. For every a ∈ A and s ∈ R,
define

`M̃,a(s) := EM̃(ia)

[
(Y − (b+ su)>X)2

]
= u>KM̃ (a)u · s2 − 2u>EM [ξXξY ] · s+ EM

[
ξ2
Y ].

For every a, `′
M̃,a

(0) = −2‖EM [ξXξY ]‖2 < 0, showing that `M̃,a

is strictly decreasing at s = 0 (with a derivative that is bounded
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away from 0 across all a ∈ A). By boundedness of A and by the
continuity of a 7→ `′′

M̃,a
(0) = 2u>KM̃ (a)u, it further follows that

supa∈A|`′′M̃,a
(0)| < ∞. Hence, we can find s0 > 0 such that for

all a ∈ A, `M̃,a(0) > `M̃,a(s0). It now follows by continuity of
(a, s) 7→ `M̃,a(s) that

sup
i∈I

EM̃(i)

[
(Y − b>X)2

]
= sup
a∈A

`M̃,a(0)

> sup
a∈A

`M̃,a(s0)

= sup
i∈I

EM̃(i)

[
(Y − (b+ s0u)>X)2

]
,

showing that b+ s0u attains a lower worst-case mean squared error
than b.

We now show that all functions other than f may result in an ar-
bitrarily large error. Let b̄ ∈ Rd \{b} be given, and let j ∈ {1, . . . , d}
be such that bj 6= b̄j . The idea is to construct a function g̃ ∈ G such

that, under the corresponding model M̃ = (f, g̃, h1, h2, Q) ∈ M,
some hard interventions on A result in strong shifts of the jth coor-
dinate of X. Let a ∈ A. Let ej ∈ Rd denote the jth unit vector, and
assume that g̃(a) = nej for some n ∈ N. Using (B.5.31), it follows
that

EM̃(ia)

[
(Y − b̄>X)2

]
= n2(b̄j − bj)2 + (b̄− b)>EM [ξXξ

>
X ](b̄− b)

+ 2(b̄− b)>EM [ξXξY ] + EM
[
ξ2
Y ].

By letting n → ∞, we see that the above error may become arbi-
trarily large. Given any c > 0, we can therefore construct g̃ such
that EM̃(ia)

[
(Y − b̄>X)2

]
≥ c + EM

[
ξ2
Y ]. By carefully choosing

a ∈ int(A \ suppM (A)), this can be done such that g̃ is continuous
and g̃(a) = g(a) for all a ∈ suppM (A), ensuring that PM̃ = PM . It
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follows that

c ≤ EM̃(ia)

[
(Y − b̄>X)2

]
− EM

[
ξ2
Y ]

= EM̃(ia)

[
(Y − b̄>X)2

]
− sup

i∈I
EM̃(i)

[
(Y − b>X)2]

≤ EM̃(ia)

[
(Y − b̄>X)2

]
− inf
b�∈Rd

sup
i∈I

EM̃(i)

[
(Y − b>� X)2]

≤ sup
i∈I

EM̃(i)

[
(Y − b̄>X)2

]
− inf
b�∈Rd

sup
i∈I

EM̃(i)

[
(Y − b>� X)2],

which completes the proof of Proposition 3.13.

B.5.14. Proof of Proposition 3.14

Proof. By assumption, I is a set of interventions on X or A of which
at least one is confounding-removing. Now fix any

M̃ = (fη0(x; θ̃), g̃, h̃1, h̃2, Q̃) ∈M,

with PM = PM̃ . By Proposition 3.1, we have that a minimax solu-
tion is given by the causal function. That is,

inf
f�∈Fη0

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]
= sup

i∈I
EM̃(i)

[
(Y − fη0(X; θ̃))2

]
= EM [ξ2

Y ],

where we used that ξY is unaffected by an intervention on X. By
the support restriction suppM (X) ⊆ (a, b) we know that

fη0(x; θ0) = B(x)>θ0,

fη0(x; θ̃) = B(x)>θ̃,

fη0(x; θ̂nλ?n,η0,µ) = B(x)>θ̂nλ?n,η0,µ,

for all x ∈ suppM (X). Furthermore, as Y = B(X)>θ0 + ξY PM -
almost surely, we have that

EM [C(A)Y ] = EM
[
C(A)B(X)>θ0

]
+ EM [C(A)ξY ]

= EM
[
C(A)B(X)>

]
θ0, (B.5.32)
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where we used the assumptions that E [ξY ] = 0 and A ⊥⊥ ξY by the
exogeneity of A. Similarly,

EM̃ [C(A)Y ] = EM̃
[
C(A)B(X)>

]
θ̃.

As PM = PM̃ , it holds EM [C(A)Y ] = EM̃ [C(A)Y ] and EM [C(A)B(X)>] =
EM̃ [C(A)B(X)>], hence

EM
[
C(A)B(X)>

]
θ̃ = EM

[
C(A)B(X)>

]
θ0 ⇐⇒ θ̃ = θ0,

by assumption (B2), which states that E[C(A)B(X)>] is of full
rank (bijective). In other words, the causal function parameterized
by θ0 is identified from the observational distribution. Assump-
tions 3.1 and 3.2 are therefore satisfied. Furthermore, we also have
that

sup
i∈I

EM̃(i)

[
(Y − fη0(X; θ̂nλ?n,η0,µ))2

]
= sup

i∈I

{
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ))2

]
+ EM̃(i)

[
ξ2
Y

]
+ 2EM̃(i)

[
ξY (fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ))

]}
≤ sup

i∈I

{
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ))2

]
+ EM̃(i)

[
ξ2
Y

]
+ 2
√
EM̃(i)

[
ξ2
Y

]
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ

))2
]}

≤ sup
i∈I

EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ))2

]
+ EM

[
ξ2
Y

]
+ 2
√
EM
[
ξ2
Y

]
sup
i∈I

EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ

))2
]
,

by Cauchy-Schwarz inequality, where we additionally used that EM̃(i)[ξ
2
Y ] =

EM [ξ2
Y ] as ξY is unaffected by interventions on X. Thus,∣∣ sup

i∈I
EM̃(i)

[
(Y − fη0(X; θ̂nλ?n,η0,µ))2

]
− inf
f�∈Fη0

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣
≤ sup

i∈I
EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ))2

]
+ 2
√

EM
[
ξ2
Y

]
sup
i∈I

EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂nλ?n,η0,µ

))2
]
.
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For the next few derivations let θ̂ = θ̂nλ?n,η0,µ for notational simplicity.
Note that, for all x ∈ R,

(fη0(x; θ0)− fη0(x; θ̂))2 ≤ (θ0 − θ̂)>B(x)B(x)>(θ0 − θ̂)

+ (B(a)>(θ0 − θ̂) +B′(a)>(θ0 − θ̂)(x− a))2

+ (B(b)>(θ0 − θ̂) +B′(b)>(θ0 − θ̂)(x− b))2.

The second term has the following upper bound

(B(a)>(θ0 − θ̂) +B′(a)>(θ0 − θ̂)(x− a))2

= (θ0 − θ̂)>B(a)B(a)>(θ0 − θ̂)

+ (x− a)2(θ0 − θ̂)>B′(a)B′(a)>(θ0 − θ̂)

+ 2(x− a)(θ0 − θ̂)>B′(a)B(a)>(θ0 − θ̂)

≤ λmax(B(a)B(a)>)‖θ0 − θ̂‖22
+ (x− a)2λmax(B′(a)B′(a)>)‖θ0 − θ̂‖22
+ 2(x− a)λmax((B′(a)B(a)> +B(a)B′(a)>)/2)‖θ0 − θ̂‖22,

where λmax denotes the maximum eigenvalue. An analogous upper
bound can be constructed for the third term. Thus, by combining
these two upper bounds with a similar upper bound for the first
term, we arrive at

EM̃(i)

[
(fη0(X; θ0)− fη0(X; θ̂))2

]
≤ λmax(EM̃(i)[B(X)B(X)>])‖θ0 − θ̂‖22

+ λmax(B(a)B(a)>)‖θ0 − θ̂‖22
+ EM̃(i)[(X − a)2]λmax(B′(a)B′(a)>)‖θ0 − θ̂‖22
+ 2EM̃(i)[X − a]λmax((B′(a)B(a)> +B(a)B′(a)>)/2)‖θ0 − θ̂‖22
+ λmax(B(b)B(b)>)‖θ0 − θ̂‖22
+ EM̃(i)[(X − b)

2]λmax(B′(b)B′(b)>)‖θ0 − θ̂‖22
+ 2EM̃(i)[X − b]λmax((B′(b)B(b)> +B(b)B′(b)>)/2)‖θ0 − θ̂‖22.

Ass. (B1) says that supi∈I EM̃(i)[X
2] and supi∈I λmax(EM̃(i)[B(X)B(X)>])

are finite. Hence, the supremum of each of the above terms is finite.
That is, there exists a constant c > 0 such that
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∣∣ sup
i∈I

EM̃(i)

[
(Y − fη0(X; θ̂nλ?n,η0,µ))2

]
− inf
f�∈Fη0

sup
i∈I

EM̃(i)

[
(Y − f�(X))2

]∣∣
≤ c‖θ0 − θ̂nλ?n,η0,µ‖

2
2 + 2

√
EM
[
ξ2
Y

]
c‖θ0 − θ̂nλ?n,η0,µ‖2.

It therefore suffices to show that

θ̂nλ?n,η0,µ
P−→

n→∞
θ0,

with respect to the distribution induced by M . To simplify notation,
we henceforth drop the M subscript in the expectations and prob-
abilities. Note that by the rank conditions in (B2), and the law of
large numbers, we may assume that the corresponding sample prod-
uct moments satisfy the same conditions. That is, for the purpose of
the following arguments, it suffices that the sample product moment
only satisfies these rank conditions asymptotically with probability
one.

Let B := B(X), C := C(A), let B and C be row-wise stacked
i.i.d. copies of B(X)> and C(A)>, and recall the definition Pδ :=

C
(
C>C + δM

)−1
C>. By convexity of the objective function we

can find a closed form expression for our estimator of θ0 by solving
the corresponding normal equations. The closed form expression is
given by

θ̂nλ,η,µ : = arg min
θ∈Rk

‖Y −Bθ‖22 + λ‖Pδ(Y −Bθ)‖22 + γθ>Kθ,

=

(
B>B

n
+ λ?n

B>PδPδB

n
+
γK

n

)−1(
B>Y

n
+ λ?n

B>PδPδY

n

)
,

where we used that λ?n ∈ [0,∞) almost surely by (C2). Consequently
(using standard convergence arguments and that n−1γK and n−1δM
converges to zero in probability), if λ?n diverges to infinity in proba-
bility as n tends to infinity, then

θ̂nλ?n,η0,µ
P→
(
E
[
BC>

]
E
[
CC>

]−1 E
[
CB>

])−1

E
[
BC>

]
E
[
CC>

]−1 E [CY ]

= θ0.
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Here, we also used that the terms multiplied by λ?n are the only
asymptotically relevant terms. These are the standard arguments
that the K-class estimator (with minor penalized regression mod-
ifications) is consistent as long as the parameter λ?n converges to
infinity, or, equivalently, κ?n = λ?n/(1+λ?n) converges to one in prob-
ability.

We now consider two cases: (i) E[BξY ] 6= 0 and (ii) E[BξY ] = 0,
corresponding to the case with unmeasured confounding and with-
out, respectively. For (i) we show that λ?n converges to infinity in
probability and for (ii) we show consistency by other means (as λ?n
might not converge to infinity in this case).

Case (i): The confounded case E[BξY ] 6= 0. It suffices to show
that

λ?n := inf{λ ≥ 0 : Tn(θ̂nλ,η0,µ) ≤ q(α)} P−→
n→∞

∞.

To that end, note that for fixed λ ≥ 0 we have that

θ̂nλ,η0,µ
P−→

n→∞
θλ, (B.5.33)

where

θλ :=
(
E
[
BB>

]
+ λE

[
BC>

]
E
[
CC>

]−1 E
[
CB>

])−1

(B.5.34)

×
(
E [BY ] + λE

[
BC>

]
E
[
CC>

]−1 E [CY ]
)
.

Recall that (B.5.32) states that E [CY ] = E
[
CB>

]
θ0. Using (B.5.32)

and that Y = B>θ0 + ξY PM -almost surely, we have that the latter
factor of (B.5.34) is given by

E [BY ] + λE
[
BC>

]
E
[
CC>

]−1 E [CY ]

= E
[
BB>

]
θ0 + E [BξY ] + λE

[
BC>

]
E
[
CC>

]−1 E
[
CB>

]
θ0

=
(
E
[
BB>

]
+ λE

[
BC>

]
E
[
CC>

]−1 E
[
CB>

])
θ0 + E [BξY ]

Inserting this into (B.5.34) we arrive at the following representation
of θλ

θλ = θ0 +
(
E
[
BB>

]
+ λE

[
BC>

]
E
[
CC>

]−1 E
[
CB>

])−1

E [BξY ] .

(B.5.35)
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Since E [BξY ] 6= 0 by assumption, the above yields that

∀λ ≥ 0 : θ0 6= θλ. (B.5.36)

Now we prove that λ?n diverges to infinity in probability as n tends
to infinity. That is, for any λ ≥ 0 we will prove that

lim
n→∞

P(λ?n ≤ λ) = 0.

We fix an arbitrary λ ≥ 0. By (B.5.36) we have that θ0 6= θλ. This
implies that there exists an ε > 0 such that θ0 6∈ B(θλ, ε), where
B(θλ, ε) is the closed ball in Rk with center θλ and radius ε. By
the consistency result (B.5.33), we know that the sequence of events
(An)n∈N, for every n ∈ N, given by

An := (|θ̂nλ,η0,µ − θλ| ≤ ε) = (θ̂nλ,η0,µ ∈ B(θλ, ε)),

satisfies P(An)→ 1 as n→∞. By assumption (C3) we have that

λ̃ 7→ Tn(θn
λ̃,η0,µ

), and θ 7→ Tn(θ),

are weakly decreasing and continuous, respectively. Together with
the continuity of λ̃ 7→ θ̂n

λ̃,η0,µ
, this implies that also the mapping

λ̃ 7→ Tn(θ̂n
λ̃,η0,µ

) is continuous. It now follows from Ass. (C2) (stating

that λ?n is almost surely finite) that for all n ∈ N, P(Tn(θ̂nλ?n,η0,µ) ≤
q(α)) = 1. Furthermore, since λ̃ 7→ Tn(θn

λ̃,η0,µ
) is weakly decreasing,

it follows that

P(λ?n ≤ λ) = P({λ?n ≤ λ} ∩ {Tn(θ̂nλ?n,η0,µ) ≤ q(α)})

≤ P({λ?n ≤ λ} ∩ {Tn(θ̂nλ,η0,µ) ≤ q(α)})

= P({λ?n ≤ λ} ∩ {Tn(θ̂nλ,η0,µ) ≤ q(α)} ∩An)

+ P({λ?n ≤ λ} ∩ {Tn(θ̂nλ,η0,µ) ≤ q(α)} ∩Acn)

≤ P({λ?n ≤ λ} ∩ {Tn(θ̂nλ,η0,µ) ≤ q(α)} ∩ {|θ̂nλ,η0,µ − θλ| ≤ ε})
+ P(Acn).

210



B.5. Proofs

It now suffices to show that the first term converges to zero, since
P(Acn)→ 0 as n→∞. We have

P({λ?n ≤ λ} ∩ {Tn(θ̂nλ,η0,µ) ≤ q(α)} ∩ {|θ̂nλ,η0,µ − θλ| ≤ ε})

≤ P
(
{λ?n ≤ λ} ∩

{
inf

θ∈B(θλ,ε)
Tn(θ) ≤ q(α)

}
∩ {|θ̂nλ,η0,µ − θλ| ≤ ε}

)
≤ P

(
inf

θ∈B(θλ,ε)
Tn(θ) ≤ q(α)

)
P→ 0,

as n→∞, since B(θλ, ε) is a compact set not containing θ0. Here,
we used that the test statistic (Tn) is assumed to have compact
uniform power (C1). Hence, limn→∞ P(λ?n ≤ λ) = 0 for any λ ≥ 0,
proving that λ?n diverges to infinity in probability, which ensures
consistency.

Case (ii): the unconfounded case E[B(X)ξY ] = 0. Recall that

θ̂nλ,η0,µ : = arg min
θ∈Rk

‖Y −Bθ‖22 + λ‖Pδ(Y −Bθ)‖22 + γθ>Kθ

= arg min
θ∈Rk

lnOLS(θ) + λlnTSLS(θ) + γlPEN(θ), (B.5.37)

where we defined lnOLS(θ) := n−1‖Y−Bθ‖22, lnTSLS(θ) := n−1‖Pδ(Y−
Bθ)‖22, and lPEN(θ) := n−1θ>Kθ. For any 0 ≤ λ1 < λ2 we have

lnOLS(θ̂nλ1,η0,µ) + λ1l
n
TSLS(θ̂nλ1,η0,µ) + γlPEN(θ̂nλ1,η0,µ)

≤ lnOLS(θ̂nλ2,η0,µ) + λ1l
n
TSLS(θ̂nλ2,η0,µ) + γlPEN(θ̂nλ2,η0,µ)

= lnOLS(θ̂nλ2,η0,µ) + λ2l
n
TSLS(θ̂nλ2,η0,µ) + γlPEN(θ̂nλ2,η0,µ)

+ (λ1 − λ2)lnTSLS(θ̂nλ2,η0,µ)

≤ lnOLS(θ̂nλ1,η0,µ) + λ2l
n
TSLS(θ̂nλ1,η0,µ) + γlPEN(θ̂nλ1,η0,µ)

+ (λ1 − λ2)lnTSLS(θ̂nλ2,η0,µ),

where we used (B.5.37). Rearranging this inequality and dividing
by (λ1 − λ2) yields

lnTSLS(θ̂nλ1,η0,µ) ≥ lnTSLS(θ̂nλ2,η0,µ),
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proving that λ 7→ lnTSLS(θ̂nλ,η0,µ) is weakly decreasing. Thus, since
λ?n ≥ 0 almost surely, we have that

lnTSLS(θ̂nλ?n,η0,µ) ≤ lnTSLS(θ̂n0,η0,µ) (B.5.38)

= n−1(Y −Bθ̂n0,η0,µ)>PδPδ(Y −Bθ̂n0,η0,µ).

Furthermore, recall from (B.5.33) that

θ̂n0,η0,µ
P−→

n→∞
θ0 = θ0, (B.5.39)

where the last equality follows from (B.5.35) using that we are in
the unconfounded case E[B(X)ξY ] = 0. By expanding and deriving
convergence statements for each term, we get

(Y −Bθ̂n0,η0,µ)>PδPδ(Y −Bθ̂n0,η0,µ)

P−→
n→∞

(E[Y C>]− θ0E[BC>])E[C>C]−1(E[CY ]− E[CB>]θ0)

= 0, (B.5.40)

where we used Slutsky’s theorem, the weak law of large numbers,
(B.5.39) and (B.5.32). Thus, by (B.5.38) and (B.5.40) it holds that

lnTSLS(θ̂nλ?n,η0,µ) = n−1‖Pδ(Y −Bθ̂nλ?n,η0,µ)‖22
P−→

n→∞
0.

For any z ∈ Rn we have that

‖Pδz‖22
= z>C(C>C + δM)−1C>C(C>C + δM)−1C>z

= z>C(C>C + δM)−1(C>C)1/2(C>C)1/2(C>C + δM)−1C>z

= ‖(C>C)1/2(C>C + δM)−1C>z‖22,

hence

‖Hn −Gnθ̂nλ?n,η0,µ‖
2
2

= ‖n−1/2(C>C)1/2(C>C + δM)−1C>(Y −Bθ̂nλ?n,η0,µ)‖22
P→ 0, (B.5.41)
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where for each n ∈ N, Gn ∈ Rk×k and Hn ∈ Rk×1 are defined as

Gn := n−1/2(C>C)1/2(C>C + δM)−1C>B, and

Hn := n−1/2(C>C)1/2(C>C + δM)−1C>Y.

Using the weak law of large numbers, the continuous mapping the-
orem and Slutsky’s theorem, it follows that, as n→∞,

Gn
P→ G := E[CC>]1/2E[CC>]−1E[CB>], and

Hn
P→ H := E[CC>]1/2E[CC>]−1E[CY ]

= E[CC>]1/2E[CC>]−1E[CB>]θ0

= Gθ0,

where the second to last equality follows from (B.5.32). Together
with (B.5.41), we now have that

‖Gnθ̂nλ?n,η0,µ −Gθ
0‖22 ≤ ‖Gnθ̂nλ?n,η0,µ −Hn‖22 + ‖Hn −Gθ0‖22

P−→
n→∞

0.

Furthermore, by the rank assumptions in (B2) we have that Gn ∈
Rk×k is of full rank (with probability tending to one), hence

‖θ̂nλ?n,η0,µ − θ
0‖22 = ‖G−1

n Gn(θ̂nλ?n,η0,µ − θ
0)‖22

≤ ‖G−1
n ‖2op‖Gn(θ̂nλ?n,η0,µ − θ

0)‖22
P→ ‖G−1‖2op · 0
= 0,

as n→∞, proving the proposition.
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C. Causal inference for spatio-temporal data

C.1. Examples

Let (X,Y,H) come from an LSCM satisfying condition (L1) de-
scribed in Section 4.2.3.2. Below, we give two examples of distribu-
tions over (X,H) for which also conditions (L2) and (L3) hold true.
In both cases, 1

m (Φm
s )>Φm

s converges in probability to some limit
matrix of the form Eν [ϕ(X)ϕ(X)>] for some measure ν with full sup-
port on Rd. To see that Eν [ϕ(X)ϕ(X)>] is strictly positive definite,
let v ∈ Rp be such that 0 = v>Eν [ϕ(X)ϕ(X)>]v = Eν [‖ϕ(X)>v‖22].
By continuity of ϕ, it follows that ϕ>v ≡ 0, and the linear indepen-
dence of ϕ1, . . . , ϕp implies that v = 0.

Example C.1 (Temporally ergodic X). Let (X,Y,H) come from
an LSCM satisfying Assumption (L1). Assume that for every h ∈ H
and s ∈ R2, it holds that under Ph, Xs is a stationary and mix-
ing process with a marginal distribution that has full support on Rd
(e.g., a vector autoregessive process with additive Gaussian noise).
Assume further that Eh[|ξ1

s |2] < ∞ and Eh[|ϕi(X1
s )|2 < ∞] for all

i ∈ {1, . . . , p}. Analogously to the proof of Proposition 4.3, we can
then show that for each i, j ∈ {1, . . . , p}, the sequences (ϕi(X

t
s)ξ

t
s)t∈N

and (ϕi(X
t
s)ϕj(X

t
s))t∈N are ergodic under Ph, and it follows that

( 1
m (Φm

s )>ξms )i =
1

m

m∑
t=1

ϕi(X
t
s)ξ

t
s → Eh[ϕi(X

1
s )ξ1

s ]

and

( 1
m (Φm

s )>Φm
s )ij =

1

m

m∑
t=1

ϕi(X
t
s)ϕj(X

t
s)→ Eh[ϕi(X

1
s )ϕj(X

1
s )]

as m→∞ in probability under Ph. Since for all s ∈ R2, Eh[ϕ(X1
s )ξ1

s ] =
Eh[ϕ(X1

s )]·Eh[ξ1
s ] = 0 and Eh[ϕ(X1

s )ϕ(X1
s )>] � 0, the above implies

(L2) and (L3).

Example C.2 (Temporally independent X with convergent mixture
distributions). Let (X,Y,H) come from an LSCM satisfying As-
sumption (L1) for some bounded functions ϕ1, . . . , ϕp. Assume that
for every s ∈ R2, the variables X1

s , X
2
s , . . . are conditionally inde-

pendent given H (they are not required to be identically distributed),
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and that for every h ∈ H, the sequence of mixture distributions

Pms,h :=
1

m

m∑
t=1

PXts|H=h, m ∈ N, (C.1.1)

converges, for m→∞, weakly towards some limit measure P∞s,h with

full support on Rd. Then, conditions (L1) and (L2) are satisfied. To
see this, let h ∈ H and s ∈ R2 be fixed for the rest of this example.
Let m ∈ N and δ > 0. Since Eh[(Φm

s )>ξms ] = 0, it follows from
Chebychev’s inequality that for all i ∈ {1, . . . , p},

Ph(| 1
m ((Φm

s )>ξms )i| > δ) ≤ 1

δ2
Varh(

1

m
((Φm

s )>ξms )i)

=
Eh((ξ1

0)2)

δ2m
Ems,h[ϕi(X)2]︸ ︷︷ ︸
unif. bounded

→ 0,

as m → ∞, showing that (L2) is satisfied. To prove (L3), let
Mm := Ems,h[ϕ(X)ϕ(X)>], m ∈ N, and M∞ := E∞s,h[ϕ(X)ϕ(X)>]
(to simplify notation, we here omit the implicit dependence on h
and s). By assumption on (Pms,h)m∈N, Mm converges entrywise to
M∞ as m → ∞. Together with another application of Chebychev’s
inequality, it follows that for all i, j ∈ {1, . . . , p},

Ph(| 1
m ((Φm

s )>Φm
s )ij −M∞ij | > 2δ)

≤ Ph(| 1
m ((Φm

s )>Φm
s )ij −Mm

ij | > δ) + Ph(|Mm
ij −M∞ij | > δ)

≤ 1

δ2m
Ems,h[ϕi(X)2ϕj(X)2]︸ ︷︷ ︸

unif. bounded

+Ph(|Mm
ij −M∞ij | > δ)︸ ︷︷ ︸

=0 for m large

→ 0,

as m → ∞, showing that 1
m ((Φm

s )>Φm
s ) converges entrywise to

M∞ � 0 in probability under Ph, and (L3) follows.

Remark C.1 (Necessity of the convergence of mixtures). The con-
vergence assumption on Pms,h is crucial for obtaining the above con-
sistency result. It is easy to construct examples of (PXts|H=h)t∈N
where this assumption fails to hold. For example, let Ph(Xt

s ∈
(−∞,−1]d) = 1 whenever blog2 tc is even, and Ph(Xt

s ∈ [1,∞)d) = 1
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Figure C.1. Visualization of the example in Remark C.1. When-
ever the parity of blog2 tc changes from even to odd, the entire mass
of PXts|H=h moves from (−∞,−1]d to [1,∞)d, and vice versa. In
this case, the mixture Pms,h in (C.1.1) does not converge, and the
consistency in Proposition 4.4 does not hold in general.

whenever blog2 tc is odd. This construction is visualized in Fig-
ure C.1. Then, both sequences (Ph(Xt

s ∈ (−∞,−1]d))t∈N and (Ph(Xt
s ∈

[1,∞)d))t∈N alternate between zero and one, with a frequency chosen

such that for all k ≥ 2 even, P2k−1
s,h ([1,∞)d) = 2/3, and for all k ≥ 3

odd, P2k−2
s,h ((−∞,−1]d) = 2/3, showing that Pms,h does not converge.

In this case, the dataset {(Xt
s, Y

t
s ) : t ∈ {1, . . . ,m}} alternates be-

tween mostly containing pairs (Xt
s, Y

t
s ) with Xt

s ∈ (−∞,−1]d and
mostly containing pairs (Xt

s, Y
t
s ) with Xt

s ∈ [1,∞)d. If the func-
tional dependence of Y ts on Xt

s differs between these two domains,

the estimator f̂mY |X does therefore not converge in general.

Remark C.2 (Conditions implying the convergence of mixtures).
We can make the convergence assumption on Pms,h more concrete in
the case where the distributions in (PXts|H=h)t∈N differ only in their

respective mean vectors. Assume there exist functions µts : Z` → Rd
and gs : Z` × Rd → Rd, (s, t) ∈ R2 × N, and a d-dimensional error
process ζ ⊥⊥ H, such that for each s ∈ R2, ζ1

s , ζ
2
s , . . . are i.i.d., and

such that for all (s, t) ∈ R2×N it holds that Xt
s = µts(H)+gs(H, ζts).

Assume further that for each h ∈ H and s ∈ R2, gs(h, ζ
0
s ) has strictly

positive density fs,h w.r.t. the Lebesgue measure on Rd. We can then
ensure convergence of the mixture distributions Pms,h by requiring that

for each h ∈ H and s ∈ R2 there exists some density function fmix
s,h
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on Rd, such that for all x ∈ Rd it holds that1

lim
m→∞

1

m

m∑
t=1

1(−∞,x](µ
t
s(h)) =

∫
(−∞,x]

fmix
s,h (z)dz.

(Intuitively, this equation states that, in the limit m → ∞, the set
{µts(h) : t ∈ {1, . . . ,m}} looks like an i.i.d. sample drawn from the
distribution with density fmix

s,h .) For all h ∈ H, s ∈ R2, m ∈ N and

x ∈ Rd, we then have

Pms,h((−∞, x]) =
1

m

m∑
t=1

∫
(−∞,x]

fs,h(v − µts(h))dv

=

∫
Rd

1

m

m∑
t=1

fs,h(v − µts(h))1(−∞,x](v)dv

=

∫
Rd
fs,h(v)

1

m

m∑
t=1

1(−∞,x−v](µ
t
s(h))dv,

and it follows from the dominated convergence theorem that

lim
m→∞

Pms,h((−∞, x]) =

∫
Rk
fs,h(v)

∫
(−∞,x−v]

fmix
s,h (z)dzdv

=

∫
(−∞,x]

∫
Rk
fs,h(v)fmix

s,h (z − v)dvdz

=

∫
(−∞,x]

(fs,h ∗ fmix
s,h )(z)dz,

showing that Pms,h converges weakly to the measure with the convo-

luted density fs,h ∗ fmix
s,h . Since fs,h is strictly positive, this measure

has full support on Rd.

1By slight abuse of notation, we use (−∞, x] to denote the product set�d
i=1(−∞, xi].
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C.2. Proofs

C.2.1. Proof of Proposition 4.1

By definition, intervening on X leaves the conditional distribution
Y | (X,H) unchanged. Under Px, the property (4.2.2) therefore still
holds for the same error process ε. Since also the marginal distribu-
tion of H is unaffected by the intervention, we have that

EPx [Y ts ] = EPx [f(Xt
s, H

t
s, ε

t
s)] = EPx [f(x,Ht

s, ε
t
s)]

= E[f(x,Ht
s, ε

t
s)] = E[f(x,H1

0 , ε
1
0)] = fAVE(X→Y )(x),

as desired. �

C.2.2. Proof of Theorem 4.2

Consider a fixed x ∈ X . For every n,m ∈ N we have that

f̂nmAVE(X→Y )(X
m
n ,Y

m
n )(x)− fAVE(X→Y )(x)

=
1

n

n∑
i=1

f̂mY |X(Xm
si ,Y

m
si )(x)− E

[
fY |(X,H)(x,H

1
0 )
]

=
1

n

n∑
i=1

(
f̂mY |X(Xm

si ,Y
m
si )(x)− fY |(X,H)(x,H

1
si)
)

+
1

n

n∑
i=1

fY |(X,H)(x,H
1
si)− E

[
fY |(X,H)(x,H

1
0 )
]

= r1(Xm
n ,Y

m
n ,H

1
n) + r2(H1

n),

where

r1(Xm
n ,Y

m
n ,H

1
n) :=

1

n

n∑
i=1

(
f̂mY |X(Xm

si ,Y
m
si )(x)− fY |(X,H)(x,H

1
si)
)

and

r2(H1
n) :=

1

n

n∑
i=1

fY |(X,H)(x,H
1
si)− E

[
fY |(X,H)(x,H

1
0 )
]
.
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It follows that for any δ > 0,

P
(∣∣∣f̂nmAVE(X→Y )(X

m
n ,Y

m
n )(x)− f0

AVE(X→Y )(x)
∣∣∣ > δ

)
≤ P

(
|r1(Xm

n ,Y
m
n ,H

1
n)| > δ/2

)
+ P

(
|r2(H1

n)| > δ/2
)
.

Let now α > 0 be arbitrary. By Assumption 4.1, there exists N ∈ N
such that for all n ≥ N , P(|r2(H1

n)| ≥ δ/2) ≤ α/2. By Assump-
tion 4.2, we can for any such n ≥ N find Mn ∈ N, such that for all
i = 1, . . . , n and all m ≥ Mn it holds that P(|f̂mY |X(Xm

si ,Y
m
si )(x) −

fY |(X,H)(x,H
1
si)| > δ/2) ≤ α/(2n). For all m ≥Mn we then have

P
(
|r1(Xm

n ,Y
m
n ,H

1
n)| > δ/2

)
≤ P

(
1

n

n∑
i=1

∣∣∣f̂mY |X(Xm
si ,Y

m
si )(x)− fY |(X,H)(x,H

1
si)
∣∣∣ > δ/2

)

≤ P

(
n⋃
i=1

{∣∣∣f̂mY |X(Xm
si ,Y

m
si )(x)− fY |(X,H)(x,H

1
si)
∣∣∣ > δ/2

})

≤
n∑
i=1

P
(∣∣∣f̂mY |X(Xm

si ,Y
m
si )(x)− fY |(X,H)(x,H

1
si)
∣∣∣ > δ/2

)
≤

n∑
i=1

α/(2n) = α/2,

and the result follows. �

C.2.3. Proof of Proposition 4.3

By construction, (H1
sn)n∈N can be decomposed into m subsequences

(H1
s(n−1)m+j

)n∈N, j ∈ {1, . . . ,m}, each of which corresponds to an

equally spaced sampling of H1 along the first spatial axis. We fist
prove that each of these subsequences satisfies Assumption 4.1, and
then conclude that the same must hold for the original sequence
(H1

sn)n∈N. Let j ∈ {1, . . . ,m} and let ϕ : R` → R be a measurable
function with E[|ϕ(H1

0 )|] <∞. For notational simplicity, let for each
n ∈ N, Zn := H1

s(n−1)m+j
. The idea is to apply an ergodic theorem

for real-valued stationary and ergodic time series [e.g., Rønn-Nielsen
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and Sokol, 2013, Corollary 2.3.13] to the sequence (ϕ(Zn))n∈N. By
stationarity of the process H1, and by choice of the sampling scheme,
(ϕ(Zn))n∈N is indeed stationary. We need to show that (ϕ(Zn))n∈N
is also ergodic. Using Rønn-Nielsen and Sokol [2013, Lemma 2.3.15],
this follows by proving the following mixing condition: for all p, q ≥ 1
and all A1, . . . , Ap ∈ B(R) and B1, . . . , Bq ∈ B(R), it holds that

P(ϕ(Z1) ∈ A1, . . . , ϕ(Zp) ∈ Ap, ϕ(Zn+1) ∈ B1, . . . , ϕ(Zn+q) ∈ Bq)
→ P(ϕ(Z1) ∈ A1, . . . , ϕ(Zp) ∈ Ap) · P(ϕ(Z1) ∈ B1, . . . , ϕ(Zq) ∈ Bq),

(C.2.1)

as n → ∞. Since the finite-dimensional distributions of (Zn)n∈N
are Gaussian, this condition is easily verified. Let p, q ≥ 1, and
let P1 = N (µ1,Σ1) and P2 = N (µ2,Σ2) be the distributions of
(Z1, . . . , Zp) and (Z1, . . . , Zq), respectively. Property (C.2.1) fol-
lows if we can show that (Z1, . . . , Zm, Zn+1, . . . , Zn+p) converges to
P1⊗P2 = N ((µ1, µ2),diag(Σ1,Σ2)) in distribution as n→∞. Con-
vergence of the mean vector is trivial, and convergence of the co-
variance matrix follows by the assumption on C and our choice of
spatial sampling (the distance between the respective locations at
which (Z1, . . . , Zm) and (Zn+1, . . . , Zn+p) are observed tends to in-
finity as n increases). To prove that the limit distribution is indeed
Gaussian, one can then consider characteristic functions and apply
a combination of Levy’s Continuity Theorem [e.g., Williams, 1991,
Theorem 18.1] and the Cramér-Wold Theorem [Cramér and Wold,
1936]. This proves that 1

n

∑n
i=1 ϕ(Zi) → E[ϕ(Z1)] in probability

as n → ∞, i.e., the subsequence (H1
s(n−1)m+j

)n∈N satisfies Assump-

tion 4.1. Since j was arbitrary, this holds true for all j ∈ {1, . . . ,m}.
It remains to prove that also the original sequence (H1

sn)n∈N satisfies
Assumption 4.1.

Let an integrable function ϕ : R` → R be given, and assume first
that E[ϕ(H1

0 )] = 0. For every j ∈ {1, . . . ,m} and i ∈ N, define

Sji :=
∑i
k=1 ϕ(H1

s(k−1)m+j
). By the first part of the proof, we have

that for all j, 1
iS

j
i → 0 in probability as i → ∞. We want to

show that also 1
n

∑n
k=1 ϕ(H1

sk
) → 0 in probability as n → ∞. Let

δ, α > 0 and choose I ∈ N such that for all j ∈ {1, . . . ,m} and
i ≥ I, P( 1

i |S
j
i | > δ/m) ≤ α/m. Define N := mI + 1 and pick an

arbitrary n ≥ N . We can then write n = im+ j for some i ≥ I and

222



C.2. Proofs

j ∈ {1, . . . ,m}. With J1 := {1, . . . , j} and J2 = {1, . . . ,m} \ J1, we
then have

P(
1

n
|
n∑
k=1

ϕ(H1
sk

)| > δ) = P(
1

n
|
∑
j′∈J1

Sj
′

i+1 +
∑
j′∈J2

Sj
′

i | > δ)

≤ P(
∑
j′∈J1

1

i+ 1
|Sj
′

i+1|+
∑
j′∈J2

1

i
|Sj
′

i | > δ)

≤
∑
j′∈J1

P(
1

i+ 1
|Sj
′

i+1| > δ/m)

+
∑
j′∈J2

P(
1

i
|Sj
′

i | > δ/m) ≤ α,

which completes the proof in the case where E[ϕ(H1
0 )] = 0. The

general case follows by applying the above result to the function
ϕ̃ = ϕ− E[ϕ(H1

0 )]. �

C.2.4. Proof of Proposition 4.4

Let s ∈ R2 and h ∈ H. With γs := f1(h1
s), it follows from (L1)

that for all x and t, we have E[Y ts |Xt
s = x,Ht

s = hts] = ϕ(x)>γs. It
therefore suffices to prove that γ̂ms → γs in probability under Ph. For
the ease of notation, we omit all sub- and superscripts from Ym

s ,Φ
m
s

and ξms in the below calculations. Let c > 0 be such that (L3) holds
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true and let δ > 0 be arbitrary. For every m ∈ N, we then have

Ph(‖γs − γ̂ms ‖2 > δ)

= Ph(‖γs − (Φ>Φ)−1Φ>Y‖2 > δ)

= Ph(‖γs − (Φ>Φ)−1Φ>(Φγs + ξ)‖2 > δ)

= Ph(‖(Φ>Φ)−1Φ>ξ‖2 > δ)

≤ Ph(‖( 1
mΦ>Φ)−1‖2‖ 1

mΦ>ξ‖2 > δ | )
= Ph((λmin( 1

mΦ>Φ))−1‖ 1
mΦ>ξ‖2 > δ)

= Ph((λmin( 1
mΦ>Φ))−1‖ 1

mΦ>ξ‖2 > δ and λmin

(
1
mΦ>Φ

)
> c)

+ Ph((λmin( 1
mΦ>Φ))−1‖ 1

mΦ>ξ‖2 > δ and λmin

(
1
mΦ>Φ

)
≤ c)

≤ Ph(‖ 1
mΦ>ξ‖2 > cδ) + Ph(λmin

(
1
mΦ>Φ

)
≤ c),

which tends to zero as m→∞ by (L2) and (L3). �

C.2.5. Proof of Proposition 4.5

Recall our definition of H ⊆ Z` as the set of functions h : R2 ×
N → R` that are constant in the time-argument. Since H is time-
invariant, we have that P(H ∈ H) = 1. It therefore suffices to prove

that for all h ∈ H, (Xm
n , σ(Ym

n ))
d
= (Xm

n ,Y
m
n ) under P( · |H = h).

Assume thatH0 holds true, and let σ be a permutation of {1, . . . ,m}.
Then, there exists a function f̃ : R`+1 → R and an error process ε ⊥⊥
(X,H) such that for all (s, t) ∈ R2 × N, Y ts = f̃(Hs, ε

t
s). It follows

that the conditional distribution of Y | (X,H) does not depend on
X, and hence that X and Y are conditionally independent given
H. Further, since ε1, ε2, . . . are i.i.d., we have that for all h ∈ H,
Y1, . . . ,Ym are i.i.d. under P( · |H = h). For all h ∈ H, it therefore

holds that (Xm
n , σ(Ym

n ))
d
= (Xm

n ,Y
m
n ) under P( · |H = h), and the

result follows. �
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C.3. Further results on resampling tests

C.3.1. Temporal autocorrelation in the response
variable

A central assumption of the LSCM model class is that the error pro-
cess of Y is independent over time. This assumption says that all
dependencies between different temporal instances of Y are induced
via the covariates X or the time-invariant confounders H. In prac-
tice, there may be other time-varying conditions influencing forest
loss, thereby inducing a temporal dependence in Y which cannot
be explained by (X,H). In this case, the exchangeability property
in Proposition 4.5, and therefore the level of our resampling test, is
violated. To incorporate temporal autocorrelation in the response
variable, we adopt a block-permutation scheme: we divide the period
2000–2018 into 6 blocks (2000–2002, 2003–2005, ..., 2016–2018), and
perform a block-wise permutation of the data from Y. This proce-
dure leaves the within-block dependence structure in Y intact. The
results align with our previous findings: P = 0.892 for the test of
an instantaneous effect, and P = 0.498 for the test of a temporally
lagged effect (when using the same test statistics as in Section 4.4.4).

C.3.2. Spatial block-permutation scheme for Model 1

In Section 4.4.3, we describe alternative permutation schemes to
test the null hypotheses in Models 1 and 2. Strictly speaking, we
require additional exchangeability assumptions on Y to ensure the
validity of the corresponding resampling tests. Here, we investigate
an alternative permutation scheme for Model 1. To account for the
spatial autocorrelation in Y, we adopt a spatial block-permutation:
for every year 2000–2018, observations are grouped into blocks of
size 100km × 100km. To obtain resampled datasets, we then per-
mute values of Y in these blocks of data, thereby leaving the spatial
dependence within each block intact. Observations which do not fall
in any of the blocks are permuted randomly. As seen in Figure C.2,
this procedure slightly increases the p-value, but does not affect the
significance of the test.
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block structure for spatial permutations

block perm
utation
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co
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Figure C.2. Block structure for the spatial permutation scheme
(left) and results of resampling tests (right) for the null hypothesis in

Model 1 from Section 4.4.4. The test statistic T̂ = f̂nmAVE(X→Y )(1)−
f̂nmAVE(X→Y )(0) is indicated by a red vertical bar. The empirical dis-

tribution of the test statistic under this permutation scheme (top
right) has a higher variance than under the permutation scheme
used in Section 4.4.4 (bottom right), resulting in a slightly larger
p-value of 0.008 compared with the p-value of 0.002 for the original
test. The significance of the test does not change.
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and regional determinants of tropical deforestation in Colombia.
Regional Environmental Change, 13(6):1181–1193, 2013.

D. Armenteras, L. Schneider, and L. M. Dávalos. Fires in protected
areas reveal unforeseen costs of Colombian peace. Nature ecology
& evolution, 3(1):20–23, 2019.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2-3):235–256,
2002.

227



Bibliography

V. Avitabile, M. Herold, G. B. Heuvelink, S. L. Lewis, O. L. Phillips,
G. P. Asner, J. Armston, P. S. Ashton, L. Banin, N. Bayol, et al.
An integrated pan-tropical biomass map using multiple reference
datasets. Global change biology, 22(4):1406–1420, 2016.

P. L. Bartlett, V. Dani, T. Hayes, S. Kakade, A. Rakhlin, and
A. Tewari. High-probability regret bounds for bandit online lin-
ear optimization. In 21st Annual Conference on Learning Theory
(COLT), 2008.

M. Baumann and T. Kuemmerle. The impacts of warfare and armed
conflict on land systems. Journal of land use science, 11(6):672–
688, 2016.

A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and
G. Rennen. Robust solutions of optimization problems affected
by uncertain probabilities. Management Science, 59(2):341–357,
2013.

M. Bertolacci, E. Cripps, O. Rosen, J. W. Lau, S. Cripps, et al.
Climate inference on daily rainfall across the Australian continent,
1876–2015. The Annals of Applied Statistics, 13(2):683–712, 2019.

D. Bertsimas, V. Gupta, and N. Kallus. Data-driven robust opti-
mization. Mathematical Programming, 167(2):235–292, 2018.

P. J. Bickel, Y. Ritov, and T. Ryden. Asymptotic normality of the
maximum-likelihood estimator for general hidden Markov models.
The Annals of Statistics, 26(4):1614–1635, 1998.

S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning
under covariate shift. Journal of Machine Learning Research, 10
(Sep):2137–2155, 2009.

C. M. Bishop. Machine Learning and Pattern Recognition. Springer,
New York, USA, 2006.

J. Blanchet, Y. Kang, K. Murthy, and F. Zhang. Data-driven opti-
mal transport cost selection for distributionally robust optimiza-
tion. In 2019 Winter Simulation Conference (WSC), pages 3740–
3751. IEEE, 2019.

228



Bibliography

K. A. Bollen. Structural Equations with Latent Variables. John
Wiley & Sons, New York, 1989.

S. Bongers, J. Peters, B. Schölkopf, and J. M. Mooij. Foundations of
structural causal models with cycles and latent variables. ArXiv
e-prints (1611.06221v3), 2016.

R. J. Bowden and D. A. Turkington. Instrumental Variables. Econo-
metric Society Monographs. Cambridge University Press, 1985.
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