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Abstract:

This thesis studies strict quantizations in a Fréchet-algebraic setting.

In the we review the quantization problem and different approaches to its
solution: formal deformation quantization, strict deformation quantization in the sense of
Rieffel, Berezin—Toeplitz quantization, and strict quantization in a Fréchet-algebraic setting.

In which is joint with M. Schétz, we study strict Fréchet-algebraic quantizations
of a family of manifolds M,.q that can be obtained via phase space reduction from C**"
with the Wick product in different signatures. In particular, we show how to reduce the
formal Wick star product to M;.q, compute its defining bidifferential operators explicitly,
and prove that it restricts to a strict product on a subalgebra of polynomial functions. We
prove that this product extends to a continuous product on the Fréchet algebra of certain
analytic functions that admit a holomorphic extension to a larger space. We obtain an
isomorphism between the Fréchet-algebraic quantizations for different signatures, which is
similar to a Wick rotation.

In |Paper 11} we obtain strict quantizations for semisimple coadjoint orbits O of semisim-
ple connected Lie groups G. We give an explicit formula for the canonical element of the
Shapovalov pairing, which was used by Alekseev—Lachowska to define a formal G-invariant
star product on 0. We show that the formal star product converges on polynomials, and,
using the explicit formula for the canonical element, we show that it extends to a strict G-
invariant product on the Fréchet algebra of all functions that admit a holomorphic extension
to the complexification of O. In this setting, we also have an analogue of a Wick rotation.

In the we show that all the reduced manifolds M,.q are coadjoint orbits, and
that the strict star products obtained for M,.q via phase space reduction as in
coincide with the strict star products obtained in






Résumé:

I denne athandling behandler vi streng kvantisering ud fra en Fréchet-algebraisk tilgang.

I [ndledningen| indfgrer vi kvantiseringsproblemet og diskuterer forskellige lgsningstil-
gange: formel deformationskvantisering, streng deformationskvantisering som indfegrt af Ri-
effel, Berezin—Toeplitz kvantisering, og streng kvantisering ud fra en Fréchet-algebraisk til-
gang.

I|Paper | (sammen med M. Schétz) studerer vi strenge Fréchet-algebraiske kvantiseringer
af en familie af mangfoldigheder M;eq, som konstrueres ved hjelp af faserumreduktion fra
C'" med Wick-produktet i forskellige signaturer: vi demonstrerer hvordan man reducerer
Wick-produktet til M;cq, beregner bidifferentialoperatorerne som definerer det og beviser at
det restringerer til en algebra af polynomiale funktioner. Derudover viser vi at produktet
kan udvides til fuldstaendigggrelsen af denne algebra, som er en Fréchet algebra og bestar
af funktioner med en udvidelse til holomorfe funktioner pa et stgrre rum. Vi indfgrer en
isomorfi mellem de Fréchet-algebraiske kvantiseringer med forskellige signaturer, som ligner
en Wick rotation.

I[Paper 11| konstruerer vi strenge kvantiseringer af semisimple koadjungerede baner O af
semisimple sammenhangende Lie grupper G. Vi giver en eksplicit formel for det kanoniske
element af Shapovalov-parringen, som Alekseev—Lachowska brugte til at definerer formelle
G-invariante stjerneprodukter. Vi beviser at det formelle stjerneprodukt konvergerer pa
polynomier og med formlen for det kanoniske element viser vi at produktet udvides til et
strengt G-invariant produkt pa Fréchet algebraen af alle funktioner som kan udvides til
holomorphe funktioner pa kompleksificeringen af O. Der eksisterer ogsa en Wick rotation i
den her formalisme.

I [appendikset] beviser vi, at alle de reducerede mangfoldigheder M;cq er koadjungerede
baner og at det strenge produkt, som vi konstruerede pa M;.q ved hjelp af faserumreduktion

i[Paper ] er det samme, som det strenge produkt vi konstruerede i [Paper 1]
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Preface

The quantization problem is a good example to illustrate the close relationship be-
tween mathematics and theoretical physics. This problem asks to quantize a clas-
sical mechanical system, which can be formalized as the task of associating non-
commutative (quantum) algebras to commutative Poisson algebras, in such a way
that the commutator corresponds to the Poisson bracket. Formal deformation quan-
tization is a mathematical theory which tries to study this problem in a simplified
formal setting. One of the most important theorems in this context is Kontsevich’s
formality theorem, which ensures the existence of a formal deformation quantization
on any Poisson manifold. On the one hand, these mathematical results can be applied
to help to understand the original physical problem, but on the other hand they are
also of independent mathematical interest. For example, formal deformation quanti-
zations can be used to formulate an algebraic analogue of the Atiyah-Singer index
theorem.

More generally, the mathematical fields of non-commutative geometry and quan-
tum groups emerged from the need of having a good formalism to study non-commuta-
tive spaces and their symmetries, as required in order to better understand quantum
mechanics. There are numerous applications to quite different mathematical prob-
lems, ranging from number theory to representation theory.

The aim of this thesis is to study the quantization problem from a mathematical
perspective. We will introduce the problem in detail and discuss some of the numerous
approaches to its solution. In the main part of this thesis we present new results on
a Fréchet-algebraic approach: We obtain quantizations of algebras of certain analytic
functions. Our hope is that these results will lead to a better understanding of some
of the other approaches to quantization, too. For example, the Fréchet algebras
interpolate between the quantum algebras obtained via Berezin-Toeplitz quantization.
It also seems reasonable that they are related to C*-algebraic quantizations, at least
in some well-behaved examples.

This thesis consists of an introduction, two research articles, and an appendix.
The research articles can be found at arxiv:1911.12118 and |arxiv:1907.03185. They
have both been edited to comply with the conventions used in the rest of this thesis,
and a few footnotes referring to other parts of this thesis were added.

When referencing within a certain chapter, we only indicate the number of the
corresponding theorem or equation, e.g. or . When referencing to a
different chapter, this number is prefixed by I or II for the research articles, and Intro
or Appendix for the introduction or appendix, e.g. [Theorem II.3.18| or (Intro.2.1).



http://arxiv.org/1911.12118
http://arxiv.org/1907.03185

2 PREFACE

Numbers in brackets like always refer to equations.

Throughout this work we use N to denote the natural numbers {1,2,3,...} and
let Ng := {0} UN. As usual Z, @, R and C denote integers, rational numbers, real
numbers, and complex numbers. Formal power series over a ring R are denoted by
R[[v]] and Laurent series by R[v~!,v].

We use standard differential geometric notation throughout this thesis. € (M)
stands for (complex) smooth functions on a manifold, TM is the (real) tangent bundle
of the manifold M, T M its complexification, and T*M the (real) cotangent bundle.
If V is a vector space, then we denote its tensor algebra by T*V, and the subspaces of
symmetric and antisymmetric tensors by S*V and A®V, respectively. This notation
applies also to vector bundles E over M, e.g. A*E denotes the vector bundle obtained
as the k-fold antisymmetric tensor product of E. T'*°(FE) denotes the smooth sections
of E. In particular, I*°(A*T*M) denotes k-forms on M.

Lie groups are denotes by G or H, or by K if they are compact. We denote
Lie algebras always by gothic letters, e.g. g, h and €. % g stands for the universal
enveloping algebra.



Introduction

This introduction is divided into three parts. The first part consists of a very short
non-technical summary of the motivation of this thesis, aimed at a reader without
any mathematical background. The second part is a mathematical introduction to
the topic of quantization. We give a brief review of classical and quantum mechanics,
and introduce the quantization problem. Then we discuss several approaches to solve
this problem: Formal deformation quantization, strict quantization in a C*-algebraic
context, and a Fréchet-algebraic approach. This part is supposed to give the reader
the necessary background knowledge to understand the broader context, in which this
thesis is placed. The third part consists of a more detailed summary of previous results
that are directly relevant to the author’s work, a description of the main contributions
of this thesis, and an outlook on possible future directions.

1 Quantization: A non-technical introduction

In this short section we attempt to explain what the central problem of this thesis,
the quantization problem, is about, without assuming any background knowledge. We
give a brief description of the development of quantum mechanics, and explain why
a good theory of quantization is desirable.

Classical physics

At the end of the 19th century, physicists believed to have a rather accurate description
of the world. Most of the existent phenomena could be described and predicted
by their theories, and there was good progress on the remaining questions. One
important theory concerned the understanding of electromagnetism, i.e. light, which
was described by Maxwell’s equations. These equations describe light as a wave that
propagates through space, similar to a water wave, although the precise description
is more complicated: A light wave consists of oscillating magnetic and electric fields,
that interact with each other and with matter, and only in vacuum will those fields be
synchronous, so that they can essentially be treated as one. Maxwell’s equations could
explain and accurately predict many phenomena known at that time, like refraction
or polarization.
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Of waves and particles

However, in the beginning of the 20th century experiments showed that, under certain
circumstances, light behaved more as a collection of particles and not as a wave,
contradicting the existing physical theories. For example, if light behaved as a wave
and was shone on a metal, then one would expect that it knocks out electrons after a
certain amount of time needed for the wave to deposit enough energy, and that this
time is shorter if the light is more intense (“brighter”). However, when performing this
experiment, one finds that there is no waiting time, but electrons are only emitted if
the frequency of the light is high, i.e. if the wave oscillates quickly. The intensity has
no influence on whether electrons are knocked out or not. Einstein explained this by
postulating that light consists of particles, whose energy is high if the frequency is
high. Electrons are hit by only one of those particles at a time, and get dislodged if
the frequency is above a certain threshold. The intensity of the light is the number
of particles in the beam, and therefore only affects the number of dislodged electrons,
but not whether electrons can be dislodged or not.

Additionally, new experiments showed that particles, which were believed to be
localized in space and essentially described as small balls moving around, behaved as
waves in certain experiments. Shooting a beam of electrons through two slits produced
an interference pattern on a screen, similar to the pattern one would expect for waves:
One can think of each of the slits as emitting a wave and the intensity varies along
the screen, depending on whether these waves reach a certain point in phase or not:
Two wave peaks add up to high intensity, whereas a peak and a trough cancel each
other. Such a cancelling, meaning that electrons do not hit certain parts of the screen
at all, cannot be explained in a particle picture.

More surprisingly, when physicists acquired the technology to shoot only a single
electron at a time, that electron appeared at a random position on the screen, following
the intensity pattern described above. So the single electron seems to pass through
both slits, waves emerging from the two slits interfere with each other, and the electron
appears at a random position with probability proportional to (the square of) the
amplitude of the superposition of these waves.

Quantum mechanics is born

The picture that physicists had made of the world changed drastically with those
observations. The classical description, where electrons behave like particles and
light behaves as a wave described by Maxwell’s equations, became known as classical
physics, whereas the new theory describing both in a uniform way became known as
quantum physics. In this new theory, all particles (and light, which is essentially a
bunch of particles, called photons) are described by waves, called probability waves.
Such a wave propagates through space and may interfere with itself, just as a water
wave. When measuring where a particle is, it will appear at a random position with
probability proportional to (the square of the absolute value of) its probability wave.
It is impossible to predict where exactly the particle will appear.

Even worse, this new theory also predicts that certain properties of the particle
cannot be measured simultaneously. If one tries to determine its position, then the



1. QUANTIZATION: A NON-TECHNICAL INTRODUCTION 5

velocity becomes more uncertain, and vice versa, when determining the velocity, the
particle spreads out more and more. This is not a problem coming from a lack of
good measurement devices, it is inherent to the theory: Measuring certain properties
of a particle, will change this particle’s state and always influence other properties.

Physicists were of course aware of the fact that such a theory sounds crazy, as we
cannot observe any of those quantum effects in the macroscopic world that we observe
on a daily basis. The thesis that you are currently reading is somewhere in space,
probably on your desk, and if anyone told you that it is a wave, interfering with itself
and appearing at random positions when you look at it, then you would probably
be inclined to send that person to a psychiatric ward. Similarly, many physicists
were unsatisfied with quantum theory, and hoped for different explanations. Ein-
stein famously said “God does not play dice with the universe.” to express that he
was repelled by the probabilistic aspects of this theory, Niels Bohr said “Hvis kvante-
mekanikken ikke gor dig svimmel, har du ikke forstiet noget som helst.” (“If quantum
mechanics hasn’t profoundly shocked you, you haven’t understood it.”), and the sim-
ilar quote “If you think you understand quantum mechanics, you don’t understand
quantum mechanics.” is commonly attributed to Richard Feynman.

Quantization

But no matter how abstruse quantum mechanics might sound, until now no better
theory has been found. On the contrary, quantum mechanics agrees with the experi-
ments to a high degree and can make extremely accurate (probabilistic) predictions,
but none of the proposed alternatives does. This, of course, poses a problem to physi-
cists: How does one find a good mathematical description of a quantum system, if
quantum mechanics is so far from our intuition? One idea is to start with an analogous
classical system, which we can describe very well, and then “quantize” this theory by
replacing certain objects in the formalism with other quantum objects. This process
is usually called quantization.

There is no universal theory of quantization that would allow to get quantum
systems out of any classical input. On the contrary, there are a few theorems asserting
that if one demands too many similarities between a classical and a quantum system,
then there does not exist a quantization procedure. So far, many different approaches
to quantization have been proposed and studied extensively.

In this thesis, we discuss and relate some of these approaches. We show how one
of them can be applied to so-called coadjoint orbits, a class of classical systems which
possess a lot of symmetries.

Quantization in mathematics

The quantization problem, i.e. the problem of finding a good quantization procedure
to quantize classical systems, is a good example of a problem that originated in physics
and which has led to important developments in pure mathematics. Many notions,
as for example formal deformation quantizations that we introduce in
can be used to understand other mathematical problems better.
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More generally, the whole mathematical fields of non-commutative geometry and
quantum groups were motivated by quantum mechanics and the fact that quantum
observables do not commute. Many of the mathematical developments in those fields
have then inspired new physical developments, showing the close interaction between
mathematics and physics.

2 Mathematical introduction

In this section we give a mathematical introduction to quantization. This should
provide the broad context, in which to see the results of this thesis. We start by

briefly outlining classical mechanics and quantum mechanics in and
focussing on their observable algebras. The observable algebras will
be the starting point for many, but not all, quantization theories. We formulate the

quantization problem, and present some no-go theorems in

We then discuss possible approaches to solve the quantization problem. In
[tion 2.4) we introduce formal deformation quantization, which tries to neglect analytic
aspects of the problem, and thereby makes it accessible to algebraic methods. We
present the main ideas needed to obtain existence and classification results, both in
the symplectic and in the more general Poisson case. In we discuss
strict deformation quantization in the sense of Rieffel, presenting a very prominent
construction of such strict deformation quantizations and discussing why this con-
struction, as many others, cannot be applied to the 2-sphere. In we
give a more general definition of strict quantizations, that also covers examples like
the Berezin—Toeplitz quantization.

To illustrate the importance of formal deformation quantizations, also in other
areas of mathematics, we describe the algebraic index theorem in This
theorem is the starting point for many results about obstructions to the existence of
strict quantizations. Finally, we describe a Fréchet-algebraic approach to quantization
in [Subsection 2.8

2.1 Classical mechanics

In this subsection, we recall briefly the Hamiltonian formalism in classical mechanics.
Our description is, of course, far from complete. For more details, see [Arn89}(Gol91}
Tak08}[Wal07].

There are two powerful formulations of classical mechanics, namely Lagrangian
and Hamiltonian mechanics. Essentially, those formulations are equivalent to New-
ton’s law of motion, but offer more freedom in the choice of coordinates to describe
the problem. The Hamiltonian formalism will be more useful for us, as it makes the
similarities to quantum mechanics more apparent. However, the Lagrangian formal-
ism is more commonly used when describing relativistic theories, which is due to the
fact that it does not distinguish time and energy, and therefore is manifestly Lorentz
invariant. There are interesting physical systems, for example dissipative systems,
that cannot be described in either framework.
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In Hamiltonian mechanics, the time evolution of a classical mechanical system
is determined by its current state, consisting of the positions and momenta of all
particles. The set of all allowed positions and momenta is usually referred to as the
phase space M of the system, and assumed to be a smooth manifold. We would like
to compute how any point in phase space evolves with time.

In many examples, the positions of the particles are described by some manifold
@, and the phase space is just the cotangent bundle M = T*Q. Choose coordinates
g%, ...,q% on Q. These coordinates induce coordinates z',...,z% p1,...,pq on T*Q,
given by 2(a,) = ¢*(q) and p;(ag) = aq(a%i q) where a, € T;Q. Now given a smooth
real function H € €°°(M), called Hamiltonian, which corresponds to the energy of
the system, we obtain the equations of motion

OO iy ama AD - O (21)

where v is a curve in M, describing the time evolution of the state v(0). Let us give
a coordinate independent formulation of these equations.

Lemma 2.1 With the notation above, w = Zle dz® A dp; defines a non-degenerate
closed 2-form on M = T*Q, independent of the chosen coordinates q", ..., q%.

Non-degeneracy means that the map ”: TM — T*M, v — v* == w(v, - ) is an isomor-
phism. Denote its inverse by . We can then define a Poisson bracket

{3 €M) x €%(M) = €>(M), {f.g}=w((df) (dg)*), (2.2)

meaning that {-, -} is a Lie bracket, and also a derivation whenever one of its ar-
guments is fixed. For any H € ¥°°(M), we call the vector field Xy corresponding
to the derivation {H, - } of €°°(M) the Hamiltonian vector field of H. Equivalently,
we could define it as Xy = (dH)*. The equations of motion mean that the
Hamiltonian vector field Xy coincides with the derivative of a trajectory in phase
space for all times ¢, or, said differently, the time evolution of the physical system is
given by the flow of Xpy. In terms of the Poisson bracket, the equations of motion
(2.1) can then be rewritten as

df(v(#))

T — (4 o) (23)

Loa% pi,...,pq. Tt is easy to see that this

where f is any of the coordinates z
equation remains true if f € € (M).

Let us make some abstractions of the relevant structures above.

Definition 2.2 (Symplectic manifold) A symplectic manifold (M,w) is a mani-
fold M endowed with a non-degenerate closed 2-form w € T'>°(A*T*M).

There is a procedure of symplectic reduction, that allows to eliminate conserved quan-
tities from the equations of motion. Starting with a cotangent bundle and doing sym-
plectic reduction, we can end up with a symplectic manifold that is not a cotangent
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bundle. So symplectic manifolds are not just a mathematical generalization, they
occur naturally in physics. Note that the definition of a Poisson structure from a
symplectic form w and the definition of Hamiltonian vector fields still work in this
context.

More generally, we can only require the existence of a Poisson bracket {-, -}. In
this case the definition of a Hamiltonian vector field as the derivation {H, -} still
makes sense.

Definition 2.3 (Poisson manifold) A Poisson manifold (M,7) is a manifold M
endowed with a bivector field m € T°°(A>TM) such that the bracket {f, g} == w(df,dg)
satisfies the Jacobi identity. In this case, {-, -} is called the Poisson bracket induced
by .

Note that { -, - } is automatically a derivation of any of its arguments when the other
one is fixed. It satisfies the Jacobi identity if and only if [r, 7] = 0 where [-, -]
denotes the Schouten—Nijenhuis bracket of multivector fields.

To summarize, the time evolution of a classical mechanical system can be com-
puted from two pieces of data: a Poisson structure on the phase space M and a
Hamiltonian function H € €°°(M) that is the energy of the system. The time evolu-
tion is then given by the flow of the Hamiltonian vector field X .

Finally, we would like to change perspective and view the equation of motion
not as an equation describing how the state of the system changes, but rather as an
equation describing how the observables f € ¥°°(M) change. We think of the state
of the system as being time independent. To determine the value of any observable
fo € €>(M) after time t we evolve the observable according to the equation

d
aft = {th} (2~4)

and evaluate the resulting function on the constant state of the system. If fy itself
depends on the time, this equation stays valid if we add % fo on the right hand side.

The immediate advantage of this point of view is that we can define the state of
the system as a functional on the observables, i.e. as a map €°°(M) — C. The pure
state that was given by a point © € M before then corresponds to the evaluation
functional at x, and there are many more mixed states. To do statistical mechanics,
we could even replace a state with a map ¢°°(M) — P(C) to the space of probability
measures on C.

2.2 Quantum mechanics

The idea to consider observables as the fundamental objects and to define states as
linear functionals on the observables becomes more relevant in quantum mechanics.
In fact, it is often unclear what a good definition of quantum state, that does not
make use of observables, would be. In contrast, the quantum observables turn out to
be (associated to) a C*-algebra, and therefore have a lot of structure. We start with
an explicit example and then discuss an abstract formulation of quantum mechanics.
Many more details can be found in [RS72,[Rud91}/Sch90, Thi02, Wal07].
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Example 2.4 (Particle in IR?) Let us look at the example of a particle moving in
R?. This quantum system is usually described by the Hilbert space L2(IR?) of square
integrable functions on R%. A pure state ¢ € L2(IR%) should be thought of as a wave
function describing the probability of measuring the particle at a certain position in
R?. Note however that R? is only the configuration space and not the whole phase
space of the corresponding classical system, indicating that it could be difficult to
define quantum states when the classical system is not a cotangent bundle.

An observable A is a possibly unbounded self-adjoint operator on L2(R%). We
will not go into any of the functional analytic difficulties arising from the fact that
observables may not be bounded, but rather treat them in a naive way as if they were
bounded. The position and momentum observables are the unbounded self-adjoint
operators X? and P;, defined (on appropriate domains) by X(f)(z) = 2’ f(x) and
Pi(f) = —ih aa f. Their commutator

2t

[X*, P;] = ihd} (2.5)

resembles the classical Poisson bracket {z%,p;} = 5; Here % is Planck’s constant,
relating the angular frequency of a photon to its energy, and 47 is 1 if ¢ = j and
0 otherwise. The non-commutativity of the quantum mechanical observables leads
to the uncertainty principle: non-commuting observables cannot be measured with
arbitrary precision at the same time. Measuring one of the observables influences the
system and changes the expected measurement outcomes of the other.

The spectrum of an observable A is the set of possible values when measuring A,
and since A is self-adjoint, it is a subset of R. The probability P(E) of measuring a
value in a Borel set £ C R is given by

P(E) = (¢, Pa(E)Y) , (2.6)

where P, (E) is the spectral projection associated to A, and ¥ € L?(IR?) is the state
of the system. As in the classical case, we can describe a quantum mechanical system
by either evolving the state or the observables with time. These two points of view are
called the Schridinger or Heisenberg picture of quantum mechanics. In the Heisenberg
picture, the time evolution of an observable A is defined by the equation

d 1 -
— Ay = —[A, H 2.7
@ = A Hl 27)
and we can again add %Ao to the right hand side, if Ay itself depends explicitly on
time. This is clearly analogous to the classical case, and the observable H can be
viewed as the quantum observable associated to the classical Hamiltonian H.

Abstracting properties of this example, the observables of a quantum mechanical
system are given by the self-adjoint elements in an algebra A of possibly unbounded
operators. A precise formulation can be obtained for example by using O*-algebras,
see [Sch90|, but for our purposes it will be enough to mention that, by considering
bounded functions of the self-adjoint elements, it is usually possible to pass to bounded
operators and C*-algebras. The time evolution of an observable is given as in ([2.7).
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States can be defined as positive linear functionals on 4. Note however, that this
is not sufficient for defining the superposition of two pure states. Taking a linear
combination of the linear functionals, that describe two states, would only give a
probabilistic mixture. Instead, one has to represent the algebra 4 on a Hilbert space,
and then one can define the superposition of two vector states as the vector state
corresponding to the sum of vectors. So a concrete representation of A on a Hilbert
space is necessary, and an important part of the quantum theory.

This raises the question to what extent the representation of A on a Hilbert space
matters, or, in other words, to what extent A alone determines the quantum system.
As a rule of thumb, the chosen representation is irrelevant when the physical system
has only finitely many degrees of freedom: Consider the C*-algebra obtained by apply-
ing the function t — e’ to operators satisfying the canonical commutation relations
(2.5). Then the Stone-von Neumann theorem (see e.g. [AM85, Theorem 5.4.25]) says
that any two irreducible representations of this C*-algebra on a Hilbert space are
unitarily equivalent, if they satisfy a natural continuity assumption. However, this
changes drastically when passing to systems with infinitely many degrees of freedom,
where it is the origin of interesting phenomena like spontaneous symmetry breaking.

2.3 The quantization problem

The quantization problem asks to associate a quantum mechanical system to a clas-
sical mechanical system. That is, given a phase space M and a Hamilton function
H € $°°(M), we have to construct an operator algebra Ay (ideally a C*-algebra), rep-
resented on a Hilbert space H, and some correspondence between classical observables
f € €>*(M) and quantum observables A € Aj.

Since classical mechanics is, when considering macroscopic objects, a very good
approximation of quantum mechanics, we expect to recover the classical system in a
classical limit: Note that physically we cannot change the value of Planck’s constant
h, so this limit needs to be understood in the sense that other characteristic quantities
of the system, that have the same dimension as %, become large when compared to h.
Mathematically, we will simply treat /i as a parameter, and ask to construct a family
of quantum systems for different values of 7, accumulating at 0. The classical limit
then becomes the limit # — 0.

The exposition in the previous two subsections has shown that the classical and
quantum observable algebras €>°(M) and Ay are similar: Both are *-algebras and
the actual observables are given by the self-adjoint elements. The classical algebra is
commutative, and endowed with the extra structure of a Poisson bracket, which, in
particular, is a Lie bracket. The quantum algebra is non-commutative, and therefore
the commutator defines a Lie bracket.

Possible measurement outcomes are defined by the spectrum, and therefore di-
rectly related to the associative structure of the algebras. Comparing the time evo-
lution equations and , we see that the Poisson bracket {-, -} corresponds
to the rescaled commutator =[-, -]. Therefore, it is reasonable to try to construct
some quantization map @y, mapping classical observables to quantum observables,
that respects the *-algebra structures and intertwines the rescaled commutator with
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the Poisson bracket. That is, we would like some correspondence

AQn(f) + Qnr(g) &~ Qr(Af +9),
Qn(f)* «~ Qu(f),

Qn(f)Qn(9) & Qn(f9) (2.8¢

+Qr(f), Qr(9)] & Qr({f.g})- (2.8d

However, not all of these requirements can be implemented exactly, already in the
simple example of a particle moving in IR?. The following result says that there is
no bijection between classical and quantum observables that implements and
(2.8d)) exactly. As the other result below, it follows from the work of Groenewold and
van Hove |Gro46lvH51|, see also [AMS85|. We follow the exposition in [Wal07), Section
5.2.1].

S~ o~ o~ —

Theorem 2.5 (Groenewold—van Hove) There does not ezist a unital algebra A,
for which the associated Lie algebra (A, [+, -]) is isomorphic to the Lie algebra

(POI(IRd)’ { Tyt })

Since we cannot find a bijection between observables satisfying and
as shown in the previous theorem, we can ask whether we can at least extend the
correspondence of monomials z!,...,z% p1,...,pa with X', ... X4 P,....P; to a
representation of (Pol(R?),{-, - }). This is also not possible:

Theorem 2.6 (Groenewold—van Hove) No faithful irreducible representation of
the Lie algebra (span{l,z',... 2% p1,...,pa},{-,-}) can be extended to a represen-
tation of the Lie algebra (Pol(R%?),{-, -1}).

By irreducible we mean that the commutant of the image of the representation consists
only of multiples of the identity. The representation obtained by mapping z* to X*
and p; to P; is faithful and irreducible and therefore satisfies the assumptions of
[Mheorem 2.6l

Many quantization procedures overcome these problems by only implementing

(2.8a) and (2.8b)) exactly, and requiring (2.8c) and (2.8d) only in the classical limit
h—0.

2.4 Formal deformation quantization

After presenting the physical motivation behind the quantization problem in the pre-
vious subsections, our exposition will be more mathematical from here on. In this
subsection we introduce the reader to formal deformation quantization that appeared
first in [BFFT78]. Suppose for the moment that the maps Q; are bijective. Then
Q7 ' (Qr(f)Qn(g)) defines a new non-commutative product on ¢°°(M). Formal de-
formation quantization considers the expansion of this product into a formal power
series around i = 0.

Definition 2.7 (Formal deformation quantization, star product) Let (M, )
be a Poisson manifold. A formal deformation quantization of M is an associative
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C|[v]]-bilinear product on formal power series of smooth functions
*: G (M)[V]) x €= (M)[v] = €= (M)[v], (2.9)

such that, when expanded in the form

frg=v">_ Cu(f.9)

r=0

with f,g € € (M) and Cy: €°(M) x €°(M) — €>(M), we have that
i.) Co(f.9) = fg,
i.) Ci(f,9) — Ci(g, f) = i{f, g},
iii.) fx1=1xf = f where 1 is the function on M that is constantly 1, and
w.) Cy is a bidifferential operator for every r > 0.
The product x is called a formal star product.

The last property ensures that * is local and can be restricted to any open subset
U C M. We call a product a non-local star product if it satisfies all properties
of the last definition, except that C). might not be bidifferential. One can show
that for any product satisfying all properties except . ) in the previous definition,
2(C1(f,9) — Ci(g, f)) defines a Poisson bracket on M. In this sense we require that
the Poisson bracket given on M coincides with the Poisson bracket defined by the
quantization.

Convention 2.8 From now on, we reserve i to denote an actual complex number.
As in the previous definition, formal parameters that play the role of / are denoted
by v.

Note that the definition of formal star products is purely algebraic, and the main
difficulty when trying to find such formal star products is to ensure associativity,
which can be written as a quadratic equation in the bidifferential operators C,.. As a
consequence, a lot of algebraic tools are available to study formal deformations, and we
discuss this in greater detail below. We may see a formal deformation quanization as a
formal, that is arbitrary order infinitesimal, approximation to a well-behaved solution
of the full quantization problem at i = 0, similarly as we may view the expansion of
a smooth function f in a Taylor series at a point = as the formal approximation to
f at . In many cases, this provides a way to extract important properties from a
quantization, and can help to understand it better.

Example 2.9 (Weyl-Moyal and Wick star products) Denote the standard co-
ordinates on R?¢ by z',...,z% p',... p% and assume that R2? is endowed with the
standard symplectic form w = Zle da® Adp®. Choose 8 € €?¢® C??, such that when

viewed as a constant section 3 € I'*°((TCR24)®2) its antisymmetrization f2V™ =
1(B — 7(B)) coincides with the Poisson tensor associated to w. Here, T is the map

flipping the two tensor factors. Then
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*: CF (R[] x € R*)[V]] = €= (R*)[v],
(f,9) = frg=poexp(ivf)f®g (2.10)

defines a formal deformation quantization. Here, ;1 denotes the map multiplying the
two tensor factors together. If

d
1 0 0 0 0
p= 2 Z(&‘xi © opt  op @ &fci) (2.11)

is the Poisson tensor associated to w, then  is called the Weyl-Moyal product. If

d d
0 0 0 0
= - - =21 - - 2.12
h ; o’ © ap? or f l; 0z ® oz" ( )
where a(zi = %(8% - ia?;i) and 8‘; = %(8% +ia%i)> then « is called standard ordered

or the Wick product, respectively.

The class of star products, that separate holomorphic and antiholomorphic derivatives,
like the Wick product, will be important when studying positivity of linear functionals.
Therefore they deserve their own name.

Definition 2.10 (Star product of Wick type) Let M be a Kdihler manifold. A
formal star product that derives the first argument only in holomorphic directions and
the second argument only in antiholomorphic directions is said to be of Wick type.

We can interpret a formal deformation quantization as deforming the classical Poisson
algebra into a non-commutative algebra. The idea of studying such deformations
is not only relevant for the quantization problem, but can be applied much more
universally. For any mathematical structure, for example associative algebras, it is
an interesting question to ask what the space of all such structures looks like. This
space is usually called a moduli space and can be very hard to understand. As a first
step, one can try to study formal neighbourhoods of points, which in the example of
an associative algebra A would correspond to associative C[[v]]-bilinear products on
A[[v]]. Usually, one is only interested in isomorphism classes of such algebras. In the
case of deformation quantizations this corresponds to isomorphism classes under the
following equivalence relation.

Definition 2.11 (Equivalence of formal deformations) Let (M, ) be a Poisson
manifold. Two formal deformation quantizations x1 and x2 of M are called equivalent
if there exist differential operators T, on M for r € N such that T =1+ > 2 v'T,
intertwines x1 and xo, i.e€.

T(fx19)=T(f)*2T(9) (2.13)

holds for all f,g € € (M).
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Note that since x; and xo are unital, we must automatically have 71 = 1, and
therefore T,.1 = 0 for all » € N. Note also that any formal power series starting with
1 is automatically invertible, in particular there is a series of differential operators S,
such that S =1+ 2, v"S, is an inverse to 7. As we shall see later, all products in
are equivalent.

Gerstenhaber introduced cohomological methods to study the deformation prob-
lem for associative algebras [Ger63|. Let A be a vector space over C. The graded
vector space C*(A) =@, _; C"(A) where C"(A) denotes C-multilinear maps from
A®(+1) to A carries a graded Lie algebra structure defined as follows. For ¢ € C™(A),
e C™(A), and i € {0,1,...,n} define ¢ o; p € C"T™(A) by

(poip)(ag, ... anym) = @(ao, ..., @i—1,PV(Ai, .., Gitm), Gigm1s-- - Gntm) 5

and set

n

potp=> (1)"po;¢p and [p,9)] =por)—(~1)""Ppog. (2.14)

=0

A “multiplication” p: A x A — A is associative if and only if [p,u] = 0, and an
associative multiplication defines a differential 6 = [u, -] on C*(A). So if A is an
associative algebra, then C*(A) becomes a differential graded Lie algebra (dgla).

We will now reformulate the quantization problem in terms of dgla’s. See [Wal07,
Espl5] for a more detailed exposition. If g is a dgla, then any D € g° defines a
homogeneous derivation ad(D) = [D, -] of g.

Definition 2.12 (Maurer—Cartan elements, gauge action) Let g be a dgla. An
element m € vg'([V]] is said to be a (formal) Maurer—Cartan element if

om + %[m,m] =0. (2.15)

The group G = {exp(vad(D)) | D € g°[[v]]} of automorphisms of g*[[v]] acts on
formal Maurer—Cartan elements by the gauge action

vad(D) " vadD) N (vad(D))"
e >mi=e (m) Vgi(n+1)! (6D). (2.16)
Remark 2.13 It is useful to think about a Maurer—Cartan element m as an element
defining a “fat connection” V,,: g* — g*™, V,, = § + [m, -|. Indeed, (2.15) says
precisely that V2, = 0. The gauge action defined in (2.16) can then be obtained from
the formula Vv aa(p)y,, = e 24P) 0 V,,, 0 e 2d(D),

Example 2.14 Many deformation problems are equivalent to the problem of finding
Maurer—Cartan elements in a dgla:

i.) If (A, p) is an associative algebra, and (A[[v]], u+m) is a formal deformation of
A, then 0 = [p+m, p+m] = 2[u, m]+[m, m], so m is a formal Maurer—Cartan el-
ement in C*(A). Vice versa, by reversing this argument, formal Maurer—Cartan
elements in C*(.A) give rise to a formal deformation of A. Furthermore, one can
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check that the equivalence relation induced by the gauge action of G on Maurer—
Cartan elements corresponds exactly to the equivalence of formal deformations

of A.

ii.) To formulate the problem of finding formal deformation quantization in terms
of Maurer—Cartan elements, we need to modify our definitions slightly, in order
to take care of the fact that deformation quantizations are always unital and de-
fined by bidifferential operators in all orders of v. The differential and bracket on
C*(€>°(M)) restrict to the subspace Cgg | (¢°°(M)) of multidifferential maps
(i.e. maps that are differential in each argument) that vanish on constant func-
tions. Maurer-Cartan elements m = vm; + O(v?) € vCgq | (€°(M))[[v]] cor-
respond precisely to formal deformations of M with Poisson bracket {f,g} =
%(ml(ﬁ g)—m1(g, f)), and the equivalence relation induced by the gauge action
of G == {exp(vad(D)) | D € C%q (€ (M))[[v]]} corresponds to the equivalence
of formal deformations defined in [Definition 2.111

i#.) The multivector fields X*(M) := I'>°(A**1TM) with Schouten—Nijenhuis bracket
[-, -] and differential 6 = 0 also form a dgla, and Maurer—Cartan elements cor-
respond to formal Poisson structures, i.e. elements m € vX*(M)[[v] satisfying
[, 7] = 0. Note that such elements could be viewed as deforming the zero Pois-
son structure. Two formal Poisson structures m; and mo are equivalent, if there
is a vector field X € vX°(M)[[v]] such that 7; = e?X 7y, with .#x denoting the
Lie derivative, which is the case if and only if the corresponding Maurer—Cartan
elements are gauge equivalent.

The Hochschild-Kostant—Rosenberg theorem (see [HKR62] for the original algebraic
statement) asserts that the map of complexes

HKR: X*(M) = Ci5,0(€>=(M)),

VLA Aoy ((fl, i) % > (1), fr .v(,(n)fn> (2.17)
ocES,,

induces a Lie algebra isomorphism on cohomology. However HKR is not itself a Lie

algebra morphism and does therefore not necessarily map Maurer—Cartan elements

to Maurer—Cartan elements.

This defect can be repaired. There is a weaker notion of an Ly.-morphism U: g —
h between dgla’s, or more generally L..-algebras, g and b, which consists of a sequence
of linear maps U™ : A"g — b of degree 1 — r. The idea is that UV is a Lie algebra
isomorphism up to higher homotopies, given by the maps U,

Kontsevich proved in his famous formality theorem [Kon03| that /(! := HKR
can indeed be made into an Lec-morphism X*(M) — Cig o (¢>(M)). If 7 =
v+ O?) € vX'(M)[[v] is a formal Poisson structure, then Y oo U (7,...,7) €
vCyig o(€>°(M))[[v]] is again a Maurer—Cartan element and therefore defines a for-
mal deformation quantization of 71. Since UM is an isomorphism on cohomology,
it follows that there is another Loo-morphism Cgig ((¢°°(M)) — X*(M) inducing
the inverse map on cohomology. In addition, L,,-morphisms map gauge equivalent
Maurer—Cartan elements to gauge equivalent Maurer—Cartan elements, and therefore
we obtain:
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Theorem 2.15 (Kontsevich) Every Poisson manifold (M, ) admits a deforma-
tion quantization. Moreover, equivalence classes of deformation quantizations are in
bijection with equivalence classes of formal deformations of the Poisson tensor m.

We remark that given a Poisson manifold (M, 7), one obtains a canonical equivalence
class of star products from the formal Poisson structure vw. However, there is no
canonical choice of a star product in this equivalence class.

The main difficulty when quantizing Poisson manifolds or when proving Kontse-
vich’s formality theorem, comes from the fact that there is no good local standard
form of the Poisson tensor. Indeed, the construction of the maps U(") for R¢ with an
arbitrary Poisson structure is the hardest part of the proof, and was achieved by Kont-
sevich by encoding differential operators in graphs, and assigning certain weights to
them. These weights can be interpreted using topological field theories [CF00]. Glob-
alizing from R? to arbitrary Poisson manifolds is then relatively easy [CFT02]. See
also [Dol05] for a different approach to formality using operads.

For symplectic manifolds, the situation is much easier. Any symplectic manifold
is locally symplectomorphic to R?? with the standard symplectic form Zle da® Adp'.
Existence [DL83,|[Fed94, OMY91| and classification [BCG97, NT95al,[NT95b],[WX91|
results for star products on symplectic manifolds were obtained by many mathemati-
cians and by rather different methods. Most notably, one should mention the Fedosov
construction |[Fed94|, which, in a conceptually clear way, glues the local Weyl quan-
tizations from together to obtain a formal deformation quantization of
M. In contrast to the case of Poisson manifolds, the formal star products on M can
be described more explicitly, and there is also an easier description of the equivalence
classes of such star products.

Theorem 2.16 Let M be a symplectic manifold. Then M admits a deformation
quantization, and equivalence classes of deformations are parametrized by the charac-
teristic class
6= $w+90+u91+~~ € $w+H3R(M,(D)[[u]]. (2.18)
The characteristic class can be obtained naturally from objects appearing in the Fe-
dosov construction: It is the curvature of a lift of a certain connection. Since this
curvature always has lowest order %w, one usually defines # to take values in the
affine space over this value. This is also convenient for formulating the algebraic
index theorem in [Subsection 2.7
Note that [Theorem 2.16|implies in particular that all formal star products consid-
ered in [Example 2.9| are equivalent, since H2, (R??,C) = 0. The following theorem
from [Kar96| classifies all star products of Wick type, and not just equivalence classes.

Theorem 2.17 (Karabegov) Let (M,wg) be a Kihler manifold. Then formal star
products of Wick type are classified by formal deformations of the Kdhler form, that
is by formal series

w = wy + vy + 2w 4+ € wo + vIP(ALDTE* M) ] (2.19)

where wy,ws, ... are 2-forms of type (1,1), that are closed but not necessarily non-
degenerate.
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The characteristic class from can be obtained from Karabegov’s class
by rescaling with (iv)~! and adding the Ricci curvature of a symplectic connection
appearing in the Fedosov construction, see [Neu03|.

2.5 Strict deformation quantization

Let us now discuss more complete solutions of the quantization problem, which con-
struct actual C*-algebras varying with &, and not just algebras over formal power
series C[[v]]. To make precise what it means for a C*-algebra to vary continuously
with 7, recall the following definition from |[Dix77].

Definition 2.18 (Continuous field of C*-algebras) A continuous field of C*-al-
gebras over a topological space I is a family (Ap)ner of C*-algebras together with a
set I' C [[c; An of continuous sections, such that

i.) T is a *-subalgebra of [ An,
ii.) the set {x(h) | x € T'} is dense in Ay for every h € I,
iii.) the function h — ||z(h)||n is continuous for every x € T', and
w.) if © € [[nc; An and if for every b € I and every e > 0 there exists an 2’ € I’

and a neighbourhood I' of h in I such that |z(R') — 2'(K')||nr < € holds for all
W el,thenxzecTl.

Usually, one only specifies a subset of I' when defining a continuous field of C*-algebras.
The following lemma, which follows from [Dix77, Proposition 10.2.3] and [Dix77,
Proposition 10.3.2], gives conditions for this to be enough.

Lemma 2.19 Given a family (Ap)ner of C*-algebras and any subset IV C [], o, An,
such that the span of {x(h) | x € I} is dense in Ay, for all h € I, there is at most
one set T' containing T that defines the structure of a continuous field on (Ap)per. If
TV satisfies @r), .), and ) of the previous definition, then there exists a unique set
T' containing I that defines the structure of a continuous field.

The following definition of a strict deformation quantization is due to Rieffel |[Rie89],
and a special case of the more general [Definition 2.28] We denote the continuous func-
tions on a manifold M vanishing at infinity by %5(M) and the compactly supported
smooth functions by €.(M).

Definition 2.20 (Strict deformation quantization) Let (M, ) be a Poisson man-
ifold. A strict deformation quantization on M is specified by the following data:

i.) a dense *-subalgebra o/ of €o(M), which is closed under taking Poisson brackets,
ii.) an open interval I C R containing 0,
iii.) for every h € I a product i, an involution ** and a C*-norm || - ||n (with respect
to the product x;, and involution *») on the underlying vector space of <
such that

a.) for h =0 the product xq, involution *°, and norm || - ||o coincide with the commu-
tative product, complex conjugation and mazimum norm of <7,
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b.) the completions Ay, of o/ with respect to the norms || - ||n form a continuous field
of C*-algebras over I, for which the constant sections h — a with a € </ are
continuous,

c.) for a,b € o we have

hmel’z(a*h b—bxpa)—i{a,b}

h—0

=0. (2.20)
h

Such a strict deformation quantization is called flabby if &7 contains €>°(M).

Note that it follows from [Cemma 2.19that the continuous field defined by the constant
sections is necessarily unique (if it exists). However, since the constant sections do
not necessarily form a *-subalgebra, the continuity of & — ||a||s for all @ € &7 is not
enough to guarantee the existence of a continuous field structure (even though this is
often claimed in the literature). It is sufficient to assume that i — ||a + b*"||; and
Ii = ||a *p b|| are continuous for all a,b € o7, see |Rie93, Proposition 9.1].

The standard examples of strict deformation quantizations are given by a strict
version of the Weyl-Moyal product and by non-commutative tori, see
and We will first describe Rieffel’s construction of strict deformation
quantizations from isometric actions of R¢ on a C*-algebra, and present the examples
as special cases of this construction. Many known constructions of strict deformation
quantizations rely in some way on oscillatory integrals and are therefore analytically
demanding. Rieffel’s construction starts with a Fréchet algebra.

Definition 2.21 (Fréchet algebra) A Fréchet space V is a Hausdorff complete
topological vector space, whose topology is induced by a countable family of semi-
norms || - ||n. A Fréchet algebra A is a Fréchet space, with a continuous multiplication
- Ax A — A defining an associative algebra structure on A.

For an increasing family of seminorms || - ||,, defining the topology on A, continuity
of - means that for any n € N there exists m € N and C € R* such that |la - b|, <
Clla||m |||l holds for all a,b € A. If there exists such a family for which we may
choose m = n then A is said to be multiplicatively convexz.

Recall that an action a: RY — Aut(A) of the abelian group RY on a Fréchet
algebra A is called isometric, if there is a family of seminorms defining the topology
of A such that, for all g € R, the map «a(g): A — A is isometric with respect to every
member of this family, and it is said to be smooth, if every a € A is a smooth vector
of the action, meaning that the map R? — A, g — a(g)(a) is smooth for every a € A.

Theorem 2.22 (Rieffel) Let A be a Fréchet algebra endowed with a strongly contin-
uous, isometric, and smooth action o: R — Aut(A) of R? by automorphisms, and
let J be any linear operator on R®. Then the oscillatory integral

1 .
axyb=— // g (@), (b)e*™ ¥ du dv (2.21)
T RdxR4

is well-defined and
i.) the product xj is associative and continuous,
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i.) the action of R? on A with the product x; is by automorphisms,
iii.) axo b = ab.

PRrOOF: See |Rie93, Proposition 2.2, Proposition 2.5, Corollary 2.8, and Theorem
2.14]. O

Let us make two important remarks: First, the product *; is in general non-com-
mutative, even if A is commutative. However, we do not need to assume that A is
commutative: For a non-commutative Fréchet algebra A the previous theorem yields
another possibly non-commutative product x; on A. Second, when given an action
of R¢ by automorphisms on a Fréchet algebra A that is isometric but not necessarily
smooth, we can consider the smooth vectors A*°. If we define seminorms on A>
that also take derivatives of the action into account as in [Rie93, Chapter 1], then
A> is again a Fréchet algebra, now with an isometric and smooth action of R?. So

applies to A™.

Theorem 2.23 (Rieffel) Let A be a C*-algebra endowed with an isometric action
a: R* — Aut(A) of R? by *-automorphisms. Let J be a skew-symmetric linear
operator on R%. Then for any h € R

i.) the previous theorem and the remark in the previous paragraph yield the existence
of a product xpy on A>,
ii.) there is a representation of A with product xn; as bounded operators on a
Schwartz space S,
iii.) this representation defines a C*-norm || -||ny on A with respect to the product
*hJ s
iv.) the topology defined by || - ||ns is coarser than the Fréchet topology of A, and
v.) endowing A with the product xp, the involution of A, and the C*-norm || - ||n.s

we obtain a strict deformation quantization of A in the direction of the Poisson
structure

d
{a,0} = D Tikdie, (a)de, (b) (2.22)
Jk=1
where a,b € A>.

In part B) {e1,...,eq} is the standard basis of R¢, and &, (a) = %‘t:()atei (a) is the
induced action of the Lie algebra R¢ on A.

PROOF: For parts[ig ), [izd ), and [i} ) see [Rie93, Chapter 4], for part [f) see [Rie93]
Theorem 9.3]. a

Again, the C*-algebra A we start with might be non-commutative. In this case the
Poisson structure defined in @ ) is a Poisson structure on a non-commutative algebra
as defined, for example, in [Xu94|, and we need to generalize the definition of a strict
deformation quantization to the non-commutative setting, which essentially means
replacing with ||%f *p g — %{f,g}Hh — 0, see [Rie93, Definition 9.2]. This
becomes necessary since non-commutative Poisson structures are not guaranteed to
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be skew symmetric. Since we are only interested in deforming commutative algebras
in the following, we shall not elaborate on this.

Example 2.24 (Strict Weyl-Moyal quantization) Let R2¢ act on R?? by trans-
lation, and consider the induced action on the C*-algebra %;(IR??) by pullbacks. As-
sume that, in standard coordinates z',...,z% p',...,p% we have J = (,Ol (IJ) with
blocks of size d x d. Then the product %5 ; obtained in is a convergent
version of the Weyl-Moyal product xwy; from in the sense that it has
an asymptotic expansion in %, which coincides with xwu. For f,g € Z(R??), the
space of smooth functions vanishing at oo for which all derivatives of arbitrary order
are bounded, and & # 0 we have

(f *ns 9)(x) = % //}RMXRH f(x — hJu)g(z — v)e*™? du dv

1 5 (a—u)-(z—v)
= 3 Tr—u r—v d d
7 e 90 e

1 20 (o (2w 4w (1.0) 4w (V.2
:W//]RM def(u)g(v)eﬂ (@)t o) +o@e) qydy.  (2.23)
X

Here w(u,v) :== J~'u-v coincides with the standard symplectic form w = 2?21 dz® A
dp’. Note that this formula reproduces the formulas obtained in [Fed96, Theorem
3.2.1] and [Wal07, Remark 5.3.25]. The completion of Z(R?") with respect to the
product *; and norm || - || is just the C*-algebra of compact operators if i # 0, and
the C*-algebra %,(IR?) of continuous functions vanishing at oo if i = 0, see |Rie93,
Proposition 5.2].

Formula is precisely the composition law of the pseudodifferential operators
associated by the Weyl calculus to the symbols f and g. More precisely, if we define
the pseudo-differential operator associated to a sufficiently nice symbol f

1 i

001100 = sz [ e (o= ) ) 1(S5 L Jutradan, 220

where u € S(R?) is a Schwartz function and ¢ € R¢, then Op(f %7 g) = Op(f)Op(g).
Since it is not relevant in the following, we do not discuss what precisely “sufficiently
nice symbol f” means, but only mention that is obviously well-defined if f is
Schwartz, and that it can be extended to symbols in the sense of Hormander [Hor05|.

Note that one may replace “5% in the first argument of f in by ¢ to obtain
a convergent version of the standard ordered product. There is a generalization of
the pseudodifferential calculus (the association of a certain operator to a symbol as
in ) to arbitrary cotangent bundles T*Q.

The phase in can be interpreted as a multiple of the symplectic area of the
triangle with vertices x, u, and v, or rather as a multiple of the symplectic area of a
triangle with midpoints x, u, and v. This is the starting point of a construction of
strict star products on solvable symmetric spaces [Bie02, Wei94].

Example 2.25 (Non-commutative tori) Consider the action of R? on the torus
T4 = R¢/(277Z)?% by translation, and the induced action on the C*-algebra ¢'(T9)
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by pullbacks. It is more convenient to consider T¢ = ($!)? as a subset of C? in the
following. The smooth vectors of this action are just the smooth functions €°°(T¢).
Let J be any skew-symmetric matrix. For every n € Z9, define the element u,, == (z
2") of €>°(T?), using the abbreviation 2" = 27" -...-2}*. Note that a,u, = e~ """y,
for any v € R%. Consequently

1 -
(Un *hg Um) = —5 // (hgotin) - (Qptiy) - €2V dv dw
™ R4 xR

1 . ) P
_ U Uy e ihJv n/2e fwmgivw 1.0 qap
(2m) RAxR4

= hImn/2y (2.25)

We used the oscillatory distribution-valued integral (2%){1 fRd el(v=m)w quy = §(v—m),
but the result follows also in a more elementary way from |Rie93, Lemma 2.20].

Denote the C*-completion of ¢>°(T9) with respect to || -||sns by Ax. Note that
Uy = U_p, and therefore shows that u,, € Ajy is unitary for all # € R. Fur-
thermore, since span{u, | n € Z} is dense in ¢>°(T?) with respect to its Fréchet
topology, it is also dense in ¢’>°(T%) with respect to the topology induced by |- ||/
by [Theorem 2.23|[it} ), and therefore dense in the C*-completion Aj. Thus
shows that Uy = u., with 1 <k < d, where e, is the vector with entry 1 in its k-th
component and all other components 0, generate Ay, and

Uk e UZ _ eflﬁJeg.ek/QUk+£ — elﬁ(]ek-engeg.ek)/QUe *hJ Uk _ elﬁJgk UE *hJ Uk .

The non-commutative torus .A;LTJ /(2m) is defined as the universal C*-algebra gener-
ated by unitaries Vj satisfying precisely these relations. Therefore there is a *-
homomorph1sm T An J/em) Ap. This map is equivariant with respect to the
action of R? on -An J/(2m)? defined by a, Vi = e” sV}, on the unitary generators. But
since Ah 7/(2r) does not have non-trivial ideals invariant under this action, = must be

an isomorphism.

However, there is a serious limitation to the Poisson manifolds that can be quantized
using Rieffel’s construction: The Poisson bracket must be of the form , i.e.
it must be possible to define it using commuting derivations. This is not always the
case. Note that up to scaling by a non-zero constant, there is a unique non-degenerate
SO(3)-invariant Poisson structure on the 2-sphere.

Proposition 2.26 No non-degenerate SO(3)-invariant Poisson structure on the 2-
sphere is induced by an action of R? as in ([2.22), and therefore the 2-sphere with
such a Poisson structure cannot be quantized as in[Theorem 2.23,

PROOF: Since any action of R? on the 2-sphere has a fixed point, the Poisson structure
defined in (2.22)) must vanish at some point. But if it was also SO(3)-invariant, then
it must vanish everywhere. O

There are several generalizations of Rieffel’s approach. Bieliavsky—Gayral [BG15] show
how to extend it to negatively curved Kahlerian Lie groups, i.e. Lie groups that admit a
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left-invariant Kahlerian structure of negative sectional curvature. Topologically, such
groups are homeomorphic to R, but they might be non-commutative. Examples are
given by the groups AN, which are factors of the Iwasawa decomposition SU(1,n) =
KAN. In fact, any negatively curved Kéhlerian Lie group is an iterated semidirect
product of such factors. See also [BGNT16,BGNT19| and the references therein for a
different approach based on locally compact quantum groups and dual cocycles, and
their equivalence.

Obstructions to strict equivariant quantization of the 2-sphere

The fact that cannot be used to quantize the 2-sphere with a non-
degenerate SO(3)-equivariant Poisson structure does of course not mean that it could

not be quantized by other means. However, the same problem occurs in other ap-
proaches, too. For example, as discussed in the the 2-sphere is a ho-
mogeneous space SU(2)/S(U(1) x U(1)) and one can therefore try to use the the-
ory of quantum groups and quantum homogeneous spaces to obtain strict quantiza-
tions [DK94,|She91]. However, since SU(2) is treated as a Poisson-Lie group in this
approach, and the Poisson structure of a Poisson—Lie group is necessarily degenerate
at the identity element, the induced Poisson structure on the sphere will vanish at
least at one point and is therefore either trivial or not SO(3)-invariant.

The following theorem shows that a SO(3)-invariant strict deformation quantiza-
tion does not exist at all. The theorem and its proof are motivated by Wassermann’s
result that every von Neumann algebra with an ergodic action of SU(2) must be of
type I [Was88|.

Theorem 2.27 (Rieffel) Any product x, involution * and C*-norm || - || on €°°($?),
for which the usual action of SO(3) on €°>°($?2) is by isometric *-automorphisms, is
commutative. In particular, the 2-sphere does not allow a SO(3)-invariant flabby strict
deformation quantization.

We elaborate on the proof in [Rie89, Theorem 7.1], giving more details why (in the
notation of the proof) e is a unit in .A. This is required to apply the result from [EL77].
Note that we can replace SO(3) with SU(2) in the theorem, and the following proof
still works.

PRrROOF: The proof depends crucially on the fact that we know how €*°($2) de-
composes into irreducible representations of SO(3): Irreducible representations Py
of SO(3) are labelled by non-negative integers k € Ny, are (2k + 1)-dimensional, and
every irreducible representation Pj appears in €>°($2) with multiplicity exactly 1.
Denote the C*-completion of €>°($?2) by A and identify Pj with a subset of A.

Take any py € Py. Since * is SO(3)-equivariant, it follows that g > (po x a) =
(g>po) x (g>a) = po* (g>a) holds for all a € A and g € SO(3). In other words
pox -+ A— Ais SO(3)-equivariant and must therefore map Py, into Pj. The same is
true for the involution *. In particular (Pg)? C Py, and (Pg)? = 0 would contradict
that ||| is a C*-norm. But since Py is 1-dimensional, this implies (P)? = Py and
there is a non-zero self-adjoint idempotent e € Py.

From Schur’s lemma it follows that for each k& € Ny, the endomorphism ex - of Py
is either the identity or zero. By pre- and postcomposing ex - with the involution *, it
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follows that ex - = - xe, so e is central in .A. Consequently ex.4 is a SO(3)-invariant 2-
sided closed ideal in A, and the quotient C*-algebra A/e*.A carries a representation of
SO(3), in which the trivial representation has multiplicity 0. Denote the Haar measure
on SO(3) by u, and let a € A/ex.A. Then the element fSO(S) (gra)*x(gra)p € Afex A
is SO(3)-invariant, hence 0. But then g>a = 0 holds for all g € SO(3) and a € A/ex.A,
so A =ex A, and e is a unit for A.

Consider the commutator [-, -], with respect to x. [Py, P1], is SO(3)-invariant,
and since the commutator factors through the antisymmetric tensor product P; A
Py =2 Py of the representation Py, this commutator is either P; or 0. We want to
show that it is 0. So, working towards a contradiction, assume that [Py, P1]. = Ps.

Choose a maximal torus of SO(3) and weight vectors a_1, ag,a; € P;. Since [+, -], is
SO(3)-equivariant, we can rescale the weight vectors so that we have [ag, a1], = 2ay,
[ap,a—1]« = —2a_1, and [a1,a_1]x = ap. We would like to study the *-subalgebra B of

€ (%2) generated by P;. To this end, set By := Py ® P; and define the spaces By, =
Bi_1 + Bi_1 * P71, spanned by products of up to £ many elements of Py, recursively.
Note that B and By, are SO(3)-invariant, and therefore direct sums of some P,’s. Since
Pr@P1 = Pr_1®Pr ®Pr41 if k € N, we have B, CPy®--- &Py If we had equality
for every k € Ny, then (a;)¥ # 0 for all k € No. But then [ag, (a1)*], = 2k(a;)¥,
whence [ag, -]« would be unbounded on A. So there must be a smallest k¥ € N with
By g Po®- - -® Py, and consequently By, = B = --- = B. Recall that the involution
* preserves the Py’s, so B is a finite dimensional C*-subalgebra of A, thus a direct
sum of matrix algebras. Central idempotents in B are projections to direct sums of
matrix subalgebras, and therefore there are only finitely many central idempotents.
Taking any central idempotent f, it is easy to check that g > f is again a central
idempotent for all g € SO(3), depending continuously on g. Since the space of central
idempotents is finite and hence discrete, this implies that every central idempotent f
is fixed by SO(3). But the trivial representation has multiplicity 1 in B, so there is
only one central idempotent and B is a full matrix algebra.

We saw before that e is a unit in A and contained in the C*-subalgebra 5. There-
fore A = B ® B¢ by |[EL77|, where B¢ denotes the commutant of B in .A. Note that
B¢ is SO(3)-invariant and the tensor product decomposition is preserved under the
action of SO(3). So B¢ is a direct sum of P,’s, and if it contains any P, with ¢ > 1,
then basic representation theory shows that P, occurs both in the representations
Po®@Pe =Py and P1 @ Py =2 Py—1 D Pe B Pry1, and therefore occurs with multiplicity
at least 2 in B® B¢. Consequently ¢ must be trivial, proving that A = B and thereby
contradicting that B is finite dimensional.

Consequently, we must have [P;,P;] = 0. Define the algebras By as before. If
there is a smallest £ € IN such that B ; Po®---® Py, then B,_1 =B, =---=Bis
a commutative finite-dimensional C*-algebra, and the argument above using central
idempotents shows that B must be 1-dimensional, contradicting that Py & P; C B.
So B =Py ®P1@... is commutative since it is generated by Py and [Py, P1] = 0.
Since B is dense in A, this implies that A4 is commutative. |

In this thesis we would like to find a quantization procedure, that is also capable of
quantizing the 2-sphere in a SO(3)-equivariant way. Therefore we will inevitable need
to generalize our definition of strict quantizations.
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2.6 Berezin—Toeplitz quantization

We now discuss a different quantization method, closely related to geometric quan-
tization. This method works also for the 2-sphere with a SO(3)-invariant Poisson
structure, and approximates €°°(M) by finite dimensional matrix algebras for values

of i in the set I = {1, %, %, ... }. This requires a more general definition of strict
quantizations than the one we gave in In particular, we need to allow

non-injective quantization maps <% — Ap. See |[Haw08§| for a further discussion of
definitions of strict quantizations present in the literature.

Definition 2.28 (Strict quantization) Let (M, ) be a Poisson manifold. A strict
quantization on M is specified by the following data:

i.) a subset I C R containing 0 as a non-isolated point,
ii.) a collection Ay of C*-algebras with Ay = 6o(M),
iii.) a set I' C [[;c; An of sections,

iv.) a dense *-subalgebra oty of Ay, and

v.) linear quantization maps Qrn: A — Ap,

such that

a.) {An}ner together with T' defines a continuous field of C*-algebras as in

b.) o is closed under taking Poisson brackets,
c.) for every a € o the section i — Qp(a) is continuous, i.e. an element of T,
d.) for all a,b € <fy we have

li 1
iml||—
h—0||ih

[@n(a), @n(b)] = @n({a, b})

=0. (2.26)
h

A strict quantization is called

1.) injective if each Qy is injective,

2.) Hermitian if Qrn(a*) = Qn(a)* for all a € o,

3.) algebraically closed if im(Qy) is an algebra for every h € I,

4.) dense if the *-algebra generated by im(Qy,) is dense in Ay, for every h € 1,

5.) unital if @7 and all Ay, are unital, and the quantization maps Qy, are unital maps,

6.) of order n € Ng if for all a,b € o there exists a polynomial a x™ b € <lh] of
degree n such that

. 1
lim || - (Qn(a)Qn(6) — Qn(a " b))H 0. (2.97)
r—o0l|| R
In this terminology a strict deformation quantization as defined in is

nothing else than an injective, algebraically closed, and dense strict quantization, for
which I is an open interval and im(Qy) is closed under *.
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Berezin—Toeplitz quantization

Let us now present the main idea of Berezin—Toeplitz quantization. As opposed to for-
mal deformation quantization, it focusses more on the states, and directly constructs
a Hilbert space Hp together with a quantization map that associates a bounded op-
erator to any smooth function on M. All the Hilbert spaces Hy with /i # 0 are finite
dimensional, but their dimension increases when h becomes small. In the limit 7 — 0
the bounded operators on Hj; approximate €°°(M).

Let L — M be a complex line bundle with a Hermitian metric (-, -} on the fibers.
Recall that a connection V on L is Hermitian if it satisfies X (s, t) = (Vxs,t)+(s, Vxt)
for all vector fields X € T'°°(TM) and sections s,t € I'*°(L), and that we may identify
its curvature RV, which is a 2-form with values in End(L), with a complex 2-form on
M.

Definition 2.29 A symplectic manifold (M, w) is said to be quantizable if there exists
a complez line bundle L — M with a Hermitian metric (-, -) on the fibers and a
Hermitian connection V on L, such that the curvature of V is —iw.

It can be shown that M is quantizable if and only if [w]/27 € H2 (M) lies in the
image of the map H?(M,Z) — H2,(M). The Hermitian metric can be used to endow
the space I'2°(L) of smooth compactly supported sections of L with an inner product
((s,t) = [y, (s, t)w?. Let L?T(L) denote the completion of I'>°(L) to a Hilbert space
with respect to (( . »

Let M be a quantizable compact Kdhler manifold. For any quantizing line bundle
L — M with connection V, the antiholomorphic part of V can be used to make
L into a holomorphic line bundle. More precisely, there is a unique way to write
V =vVL0 4 vO with VA0 T(L) — T(T*MOM @ L) and VOV : (L) —
(T M ® L). We can then define holomorphic sections as those sections s €
I'>°(L) that satisfy V(®Ys = 0. The space T'o1(L) of holomorphic sections of L is
finite dimensional, and we may define the orthogonal projection II: L2T(L) — T'po1(L)
and the Toeplitz operators

Tf : Fhol(L) — Fhol(L) s Tf =1IIo Mf (228)

for all f € €>°(M). Here My: I'yo1(L) — I'*°(L) denotes the multiplication by f.

Finally, consider tensor powers L®™ of the quantum line bundle, with the in-
duced connection V(™) and the induced inner product (-, -)(™). Denote the Toeplitz
operators on L®™, defined as in , by T}m).

Since RY = —iw it follows that L is positive and therefore, by Kodaira’s theorem,
it is ample. This means that some tensor power of L is very ample, in the sense that
the global sections of this tensor power define an embedding of M into projective
space. It is a technical assumption in the following theorem that L is already very
ample, which we can achieve by replacing it with a tensor power and rescaling the
symplectic form.

Theorem 2.30 (Bordemann—Meinrenken—Schlichenmaier) Let M be a com-
pact Kdhler manifold, with a very ample quantum line bundle L. Then
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i.) for every f € €°°(M) there is a constant C' such that
c m
1£lloe = — < ITF™ I < £l (2.29)

holds for all m € N, where || f||s is the mazimum norm of f and ||T(m)|| is the
operator norm of T

ii.) for all f,g € € (M ) we have

(m)rp(m) _ p(m)y
mlgl(lx)HT T, T, II=0 (2.30)
and
lim [|im[T™, T — 70 || = 0 (2.31)
m—s o fo7yg {f.9} ) ’

In particular, setting h = %, the Berezin—Toeplitz quantization is a strict quantization
on the set I = {1, é, :13,. . }. Furthermore, it is algebraically closed and of infinite
order.

PROOF The proof of statements [}) and[id) can be found in [BMS94]. Note that
9) implies that limy 0|7} (/%) Il = || flloo and therefore, using the notation Q(f) =
T Jif h # 0 and Qo(f) = f, that & — ||Qn(f)|ls is continuous for every f €
%‘X’gM) It follows from ) that & — ||Qn(f)Qnr(g)|ls is continuous, and since
(T5/M) = T we also ave that 1 13 1Qu(f) + Qn(9)*lIn = 1Qn(f +9)lln is
continuous. So by the discussion after it follows that the field of C*-
algebras is indeed continuous. The other properties of a strict quantization are easily
verified.

It is proven in [BAMG81| that Toeplitz operators form a ring, so the quantization is
algebraically closed, and in [Sch00] it is shown that the Berezin—Toeplitz quantization
is of infinite order. O

To conclude this section, let us mention that Berezin—Toeplitz quantization is closely
related to geometric quantization, where one considers the operators

Qi T™(L) = T™(L), Qy(s) = —Vx,s+ifs (2.32)

on sections of a quantum line bundle L over a symplectic manifold M. However, the
quantum state space L2I'(L) is too large for physical applications: If M = R?? and L
is the trivial line bundle, then LT'(L) = L?(R??), instead of L2(IR?). Therefore one
needs to cut down its dimension by polarizing. If M is a K&dhler manifold we can use
the complex polarization for this step.

The operators Q: T'hoi(L) — I'noi(L), Q@ = IoQ; are related to Berezin—Toeplitz
quantization by

Qr = in—%Afa (2.33)

which is a result of Tuynman [Tuy87]|.
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2.7 Obstructions to strict quantizations

The purpose of this subsection is two-fold. First, we want to show that formal defor-
mation quantizations have important applications in other areas of mathematics, by
demonstrating how they can be used to reformulate the Atiyah—Singer index theorem
in a purely algebraic way, usually referred to as the algebraic index theorem. Second,
we want to show how the algebraic index theorem can be used to obtain obstructions
for the existence of strict quantizations.

The Atiyah—Singer index theorem [ASG68| itself is certainly one of the most impor-
tant mathematical results of the 20th century, revealing deep connections between
analysis and algebraic topology. Let us only mention that it computes the index of
an elliptic pseudodifferential operator D between vector bundles over a compact man-
ifold M in terms of the symbol of D and topological invariants of the manifold M,
and refer to the literature [BGV04}/Gil96] on the subject for further details.

The connection to the algebraic index theorem is given by the symbol calculus of
pseudodifferential operators, see (2.24). Fixing a map which associates a pseudodif-
ferential operator to a symbol defines a deformation quantization in a natural way.
This can be used to derive the Atiyah-Singer index theorem from the algebraic index
theorem [NT96].

In this subsection we use the abbreviation A for a formal deformation quantization
(€ (M)[[v]],*), and denote the subalgebras (€°(M)[[v]], *) and (€, (M)[[V]], *) of
formal power series of functions with compact support and of formal power series of
functions that are constant outside some compact set by A, and A opnst, respectively.

Any formal deformation quantization A has a trace |[Fed96], that is a C[[v]]-linear
functional tr: A, — €>°[v~1,v]] with values in Laurent series, such that tr(f x g) =
tr(g = f) holds for all f € A, and g € A. Such a trace is unique up to normalization,
and the normalization can be fixed by local considerations. The algebraic index
theorem computes the pairing of this trace with the compactly supported K-theory
of A. This theorem was obtained independently by Fedosov [Fed86,Fed95| and Nest—
Tsygan |[NT95a].

Theorem 2.31 (Algebraic index theorem) Let A be a formal deformation quan-
tization of a symplectic manifold (M,w), and let e, f € M, «xn(A) be idempotents in
the matriz algebra over A, such that their difference is of compact support. Then

tr(e — f) = /M<ch<a<e>> — ch(o(f))A(M)e". (2.34)

A precise understanding of the expression on the right hand side is not required
in the following. It is only relevant that it depends on the symbols o(e),o(f) €
My sn(€°°(M)), obtained by setting & = 0, topological data of the manifold, and
the characteristic class of the deformation quantization. But for completeness let us
mention that ch is the Chern character mapping idempotents in M, «, (€ (M)) to
differential forms Q°V*"(M) of even degree, while A(M) € Hi% (M) denotes the A
roof genus of M, which is defined as a certain characteristic class of its (complexified)
tangent bundle, and 6 is the characteristic class from .

Let us now show how can provide obstructions to the existence
of certain quantizations. Note that given a strict quantization and an element f €
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€ (M), we can ask whether the trace of f viewed as an element of A, can be
computed from the elements Q(f). For the Weyl-Moyal product from [Example 2.9

and [Example 2.24]any Qy,(f) is of trace-class, and its trace agrees with the trace of f in
A.. This motivates the following definition, which is due to Fedosov [Fed96, Chapter

7], and abstracts the properties of the Weyl-Moyal product. In [i) we require
explicitly that the trace of an element f € A, is the formal expansion of the traces of

the operators Op y 5 (f). Write tr f|ny_q4 for the truncation of the formal Laurent series
tr f = 370, txr® at order N—d with v substituted by A, i.e. tr f|y_a = Yo % trh".

Definition 2.32 (Asymptotic operator representation) Let (M,w) be a sym-
plectic manifold of dimension 2d and let I C (0,1] be a set with 0 as limit point.
An asymptotic operator representation (AOR) of a formal deformation quantization
A of M is a family of linear maps

OpN,h: Aconst(M) — B(H) (235)

for all N € N and h € I, where H is a fixed Hilbert space, satisfying that
i.) for all N € N and f,g € Aconst there are constants Cy,Co € R such that

10PN 4 (f) = Opypyn ()l < CLANTY, (2.36)
10PN (f*9) — Opy £ (£)OPN 1 (9)]| < CoRN T (2.37)

hold for all h € 1,

it.) for all N € N and f € A., there exist constants C3,Cy,Cs € R such that the
operator Opy 5 (f) is trace class and

|0pw A (Hll < Csh™?, (2.38)
HOpN,h(f) - OpN+1,n(f)||1 < Czlh_dJrNJr1 ) (2.39)
|tr Opys(f) —tr f|N7d| < Cyhm N (2.40)

hold for all h € I, and

iii.) for all N > d and f,g € Aconst, there is a constant Cs € R such that the
operator Opy1(f +.9) ~ O (F)Opn 1 (g) is trace class and

10PN 1 (f*9) — OPn 4 (F)OPN ()1 < Ch™ TN T (2.41)
holds for all h € 1.

The motivating example for the definition of an AOR is the Weyl-Moyal product.
Note that for any g € €°°(M) the pseudodifferential operator Op, defined in
can be extended to L2(R%), see |[Fed96, Section 3.4]. If f|y = Zszo fxh

denotes the truncation of an element f = Z;ozo Fur® € Aconst, then we may define
Opn 1 (f) = Opy,, where the right hand side refers to the extension described above.
Ag in this example, the parameter N in the definition of an AOR can be thought of as
a truncation degree in powers of %, and an AOR as the collection of all truncations at
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orders N of an infinite order strict quantization. Note however that, starting with an
AOR and fixing h and f, there is no reason for the sequence Opy (f) to converge.

There are good criteria for the existence of AORs. Let K (M) be the compact
K-theory of M, i.e. equivalence classes of formal differences [e — f], where e, f €
My xn(€°°(M)) are idempotents with compactly supported difference. Denote the
right hand side of for £ € K.(M) by indgep(€), i-e.

indien(€) = [ chi(©) A", (2.42)
M

and let indop(€)|n be the formal expansion of indy.p(€), truncated at order N and
with v replaced by 7. Note that the only dependence of indi.,(§) on v is through the
characteristic class 6.

Theorem 2.33 (Fedosov) Let (M,w) be a symplectic manifold and & ,...,&5n €
K.(M) be generators of the compact K-theory of M. Assume that M has an AOR
on the set I. Then we must have

indiop (éx)|v_a € Z  mod ORN T4 (2.43)
for all N > d on the set I. In particular, if 0 = %w, then
indiop(é) €Z  mod O(h™). (2.44)

By f(h) € Z mod O(hY) we mean that the difference of f(h) to the nearest integer
can be bounded by ChY for some constant C, independent of i. If § = %w, then this
theorem implies in particular that for every € > 0 there is some R > 0 such that the
difference of indyop(£x) to the nearest integer is at most € for all A € I N [—R, R].

[Theorem 2.33]is not very surprising. Since & can be represented by a difference of
idempotents, vanishing outside of a compact set, the algebraic index theorem shows
that indgop (&) equals the trace of £;. But the trace can be computed asymptotically
from the operator trace in the AOR, and this operator trace is integral for any A € I.
Ifo = %w then indyop(&x) is a Laurent polynomial concentrated in degrees —d to 0,
and therefore indop (€x)|N—q is independent of N if N > d.

Any symplectic manifold admits a compatible almost complex structure, and there-
fore its tangent bundle admits the structure of a d-dimensional complex vector bundle
TeM. We have

AM) = exp(;cl (T@M))Td(T@M) (2.45)

with ¢; and Td denoting the first Chern class and the Todd class, respectively. If
6 = {7, then integrality of indiop (&) for all § € K (M) implies that & + %cl(T@M)
is an integral cohomology class. On the other hand this condition is sufficient to
guarantee the existence of AORs:

Theorem 2.34 (Fedosov) Let (M,w) be a compact symplectic manifold with formal
deformation quantization A. Assume that the characteristic class of A is 0 = 3. If
I € (0,1] is such that

1

94 Le(ToM) € im (20, 7) — H2,(01.©) (2.46)
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then indop (&) € Z for all € € K. (M) and there is an AOR on the parameter set

PRrOOF: See [Fed96l Section 7.3]. O

Unfortunately, not every strict quantization, even if it is of infinite order, leads to
an AOR in the sense of Fedosov. For the non-commutative torus from
there is a unique trace on the quantum algebras Ay, but the possible values of this
trace when applied to idempotents are dense in [0,1] [Rie81]. These operators are
therefore not trace-class, as required in the definition of an AOR, and we do not get
an integrality condition.

Nevertheless, both Fedosov’s construction of AORs and his proof of the integrality
condition have inspired other more general existence and obstruction results of strict
quantizations. Natsume, Nest, and Peter generalized his construction to obtain strict
quantizations of a rather general class of symplectic manifolds [NNPO03], that does,
however, not contain the 2-sphere.

Theorem 2.35 (Natsume—Nest—Peter) Let M be a closed symplectic manifold
such that w1 (M) is exact and 7o(M) = 0. Then M has a dense strict quantization on
a parameter set of the form I = [0,¢) withe € R™T.

The basic idea of the proof is to pass to the universal cover M of M. The assumption
that mo(M) = 0 implies that H'(M) = H?(M) = 0. For this reason the integral-
ity condition of Fedosov becomes trivial. In fact, his construction of AORs can be
generalized to yield a dense strict quantization of M. By considering the reduced
crossed product of this strict quantization with the fundamental group I', which is
the construction of “non-commutative quotients”, and using that 1 (M) is exact, it is
possible to obtain a dense strict quantization of the quotient M = M/F.

Similar ideas of quantizing the universal cover had already been used to obtain
quantizations of compact Riemann surfaces of genus at least 1, which are quotients
of the hyperbolic plane by a discrete subgroup of SL(2,R), see [KL92LNN99|.

Hawkins shows how to obtain more general obstructions to the existence of strict
quantizations of the 2-sphere that do not necessarily determine AORs in [HawO0§],
using similar ideas than Fedosov.

Theorem 2.36 (Hawkins) If {Ax}ner is a unital Hermitian second order strict
quantization of the 2-sphere 82 with a non-degenerate SO(3)-invariant Poisson struc-
ture, such that x* € % and such that Af € <% implies f € < for all f € €($2?),
then there is no connected neighbourhood of 0 in I. In particular, I is not connected.

Here 2 denotes the coordinate functions on IR?, restricted to $2 C IR?, and A is the
Laplacian.

2.8 Fréchet-algebraic approach to quantization

In the previous constructions of strict quantizations we obtained strict quantizations
directly, without making use of formal deformation quantizations. In this subsection,
we will use that a formal deformation quantization is usually easy to obtain, either
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by the results of [Theorem 2.15| and [Theorem 2.16| or by more explicit constructions
for certain special cases, and ask whether we can make such a formal deformation
quantization convergent. This idea goes back to the work of Beiser, Romer, and
Waldmann [BRWO07,BW14].

Note that, starting with a formal power series, it is not hard to construct a smooth
function that has this series as Taylor expansion. But such a construction is certainly
not canonical, and so we do not expect that there is any canonical way to make formal
deformation quantizations convergent.

One possible approach is to search for subalgebras & of ¥°°(M), on which the
star product of any two elements is a polynomial in v, or in other words the power
series in v has only finitely many non-zero elements. On such a subalgebra we can
replace the formal parameter v with any complex number 7, and obtain a family of
non-formal products *x: £ x P — . While the existence of a non-trivial algebra &2
with these properties is in general not guaranteed, extra structure on M determines
such algebras in many concrete situations: For the formal star products introduced
in we may choose Z to be the algebra of polynomials on R??, and for a
cotangent bundle we may try to take polynomials in the momentum variables.

Once such a subalgebra & is found, one can search for a topology with respect to
which the product on & is continuous. Completing & with respect to this topology
yields a larger algebra of interesting functions for which the product is still well-
defined. Usually, such a topology is only locally convex and cannot be defined by
multiplicative seminorms, so that the completion often becomes a Fréchet algebra
that is not multiplicatively convex (see , in particular it is not a C*-
algebra. This is not very surprising, since & usually contains elements satisfying
(some variant of) the canonical commutation relations, which cannot be realized in a
C*-algebra, or even any multiplicatively convex algebra.

On the one hand, it might be desirable from a mathematical perspective to obtain
C*-algebras, and one is led to the question whether there is a good way to associate
C*-algebras to the Fréchet algebras obtained with this construction. On the other
hand, for doing physics a Fréchet-algebraic quantization might be considered to be
more direct, as it may already contain the relevant observables.

Let us now describe some of the examples in which this approach was carried out
successfully.

Example 2.37 (Star product of exponential type) Let V be a (not necessarily
finite dimensional) vector space and let A: V x V' — C be a bilinear form on V.
Define Py: S™(V) ® S™(V) — S™ (V) ®@ S"~1(V) by

m n
Pr(v1 V- VU, Quwi V- Vuw,) = ZZAv],wk
J=1k=1

~v1\/---\/vj_lVUj+1V--~VUm®w1\/---\/wk_l\/wk+1\/---\/wn (247)

[

and define the strict star product of exponential type as

*a: ST(V) x S*(V) = S*(V), (v, w) — v*pp wi= py 0 eziPra (y @ w). (2.48)
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By py we mean the map that multiplies the two tensor factors together, using the
symmetric tensor product. Our convention concerning symmetric tensors is that
vV w = Sym®(v ® w) where Sym® is the sum of the symmetrization operators

Symk; Tk(V) — Tk(V), Symk(vl ®...Qvg) = Z V(1) ® + .. @ Vr) (2.49)

o€Sk

and S*(V) is identified with the image of Sym® in T*(V).

Note that already defines a “strict product”, in the sense that % is a com-
plex number and not a formal parameter. If V = R?? is finite dimensional, then
S*(V) is isomorphic to the algebra of polynomials Pol(V*), via the linear extension
of the map vy V- Vg = (a — a(v1)...a(vg)). Choosing standard coordinates
L1y, T, P1,y---,Pq On V* and letting A = Z?:l(ai ® a?u - Bzi ® 6%), the prod-
uct ([2.48) is precisely the restriction of the Weyl-Moyal product from to
the polynomials, with v replaced by &. Since differential operators are already deter-
mined by their behaviour on polynomials, one can also reconstruct the Weyl-Moyal

product from ({2.48]).

Let V be a locally convex vector space. Recall that the topology on the projective
tensor product V®=* is the locally convex topology defined by all the seminorms

mf{Zp . ) teN, v—Zv() ,(j)}, (2.50)

obtained by letting p run through the continuous seminorms on V.

Definition 2.38 (Tgr-topology) Let R € R and V be a locally convex vector space.
Then the Tpg-topology on T*(V) is the locally convex topology determined by the

seminorms
oo

pr(v) =D (K)p" (), (2.51)
k=0
where v = Z?}:o v with v, € VOF and p is running through the continuous seminorms
on V. The Tgr-topology on S*(V') is the subspace topology on S*(V'), induced by the
T r-topology on T*(V).

The following theorem was obtained in [Wall4].

Theorem 2.39 (Waldmann) Let V be a locally convex vector space and A: V x
V — C be a continuous bilinear form on V. For any R > % and I € C, the star
product of exponential type xpa is continuous with respect to the T g-topology on S* (V).

There is a version of this theorem for the case that all seminorms are Hilbert semi-
norms, meaning that they are induced by a not necessarily positive definite inner
product. In this case, one can consider their Hilbert tensor product instead of the
projective tensor product, see [SW1§].

Note that, as opposed to the C*-algebraic constructions in the previous subsec-
tions, this example works well in infinite dimensions, which is important for possible
applications in quantum field theory.
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Example 2.40 (Gutt star product) Let g be a Lie algebra, and denote its univer-
sal enveloping algebra by %' g. From the Poincaré-Birkhoff-Witt theorem it follows
that summing the maps

ih)"
Qnp:S"(g) > %g, x1 V-V, — ( n? Z To(1) - - Lo(n) (2.52)
: O'ESn

we obtain an isomorphism gn: S*(g) — %@, ¢n = Y., dn,x Of vector spaces, but,
unless g is commutative, not of algebras. For x € S®(g) and y € S*(g) we define the
Gutt star product

zxny=q; (an(2)qn(y)) - (2.53)

Asg in the previous example, if g is finite dimensional, then this product is the restric-
tion of a formal star product on g* to the polynomials Pol(g*) = S(g). The formal
star product can be reconstructed from %; and deforms the linear Poisson structure
on g* obtained from the Lie algebra structure of g.

Let g be a locally convex Lie algebra. Then a continuous seminorm ¢ on g is said to
be an asymptotic estimate for a continuous seminorm p if

pwn(z1, .., 20)) < glxy) ... qzy) (2.54)

holds for all n € N, all elements z1,...,z, € g, and words w,(x1,...,2,) obtained
by applying Lie brackets in arbitrary order to these elements (e.g. [z1, [[x2, Z3], 24]]
or [[[x1,x2],x3],24]). The Lie algebra g is said to be asymptotic estimate if every
continuous seminorm has an asymptotic estimate. For an asymptotic estimate Lie
algebra, we have the following continuity result, see [ESW17|:

Theorem 2.41 (Esposito—Stapor—Waldmann) Let g be an asymptotic estimate
Lie algebra. Then for any R > 1 and h € C, the Gutt star product on g is continuous
with respect to the Tgr-topology on S*(g).

In both these examples the completion of S*(V) or S®(g) with respect to the Tg-
topology can be described by power series with coefficients of a certain decay. However,
there is no good geometric interpretation of this algebra. This is different in the
following example. We describe this example in detail in so we will only
sketch the most relevant aspects.

Definition 2.42 The hyperbolic disc D" is the n-dimensional Kdhler manifold that
is biholomorphic to the complex submanifold {z € C™ | |z} + -+ + |2"| < 1} of C",
and whose Riemannian metric is given by

> dw v dw® D k=1 whw® dw* v dw’
SR VLTI TR VTS E

(2.55)

k

where w*(z) = 2* are the standard coordinates of C™ restricted to D™.
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The hyperbolic disc D" can be obtained from C'™" with a metric of signature (1, n)
via phase space reduction. A similar procedure allows one to define an extended
disc D" by reduction from C!'*" x C'*". The embedding C*" 3 z — (2,%) €
Q7 x C*" descends to an embedding D™ — ]]5”, and any holomorphic function on
D™ is uniquely determined by its restriction to D™. Denote the algebra of functions on
D™, which are restrictions of a holomorphic function on D" by o (D™). Polynomials
on C'*™ can be used to define an algebra £?(ID™) of polynomials on D", and (D)
is contained in 7 (ID"™).

There is a way to perform an equivalence transformation on the Wick star product
on C'*" introduced in such that it can be reduced to a product x on
the hyperbolic disc D™.

Theorem 2.43 (Kraus—Roth—Schétz—Waldmann) The product x on D™, described
in the last paragraph, restricts to a strict product x;, on the polynomials &2(D™), for
allh € C\{-1, —%, —%, ... }. It is continuous with respect to the topology on &(D™),
induced by the Tgr-topology on S*((C1t™)*) for R > 0. For R = 0, this topology is
precisely the topology of locally uniform convergence of the holomorphic extensions to

D™, and the completion of (ID™) with respect to this topology is precisely </ (D™).

The poles in this construction arise since *j is a finite power series with rational
functions as coefficients, when applied to two polynomials.

3 Objectives

The previous section explained the general theory relevant for understanding the
quantization problem. In this section, we will focus on the contributions of this
thesis. In we describe briefly what is known in the literature about
the quantization of coadjoint orbits, discusses the contributions of the
author, and in we give an outlook on possible future directions.

3.1 Existing results on coadjoint orbits

In this subsection, we review the definition of coadjoint orbits and results on their
quantization.

Let G be a Lie group. Then G acts under the adjoint action on its Lie algebra g,
and by dualizing also on the dual g* of g. This action is called the coadjoint action
and its orbit through an element A € g* is called a coadjoint orbit and denoted by O,.
Note that we can always identify O, with the homogeneous space G/G, where G, is
the stabilizer of \. We give a brief introduction to coadjoint orbits in [Section 1I.2.1]
which we will not repeat here.

In many respects, coadjoint orbits behave better and have more relevant geomet-
ric structure than orbits of the adjoint action: First, a coadjoint orbit O, of a Lie
group G always admits a canonical G-invariant symplectic form, providing the nec-
essary information to do classical mechanics on Oy. In addition, the group action
of G describes symmetries of Oy, and yields extra structure that we can use for the
construction of a quantization. Since coadjoint orbits are subsets of the vector space



3. OBJECTIVES 35

g*, we can define polynomials on Oy by restricting polynomials on g*, and those
polynomials can be the starting point for carrying out the Fréchet-algebraic approach
outlined in In addition, if G is semisimple, then a lot of Lie algebraic
and representation theoretic tools become available to study O.

Second, the class of coadjoint orbits contains many geometrically interesting ex-
amples. Among the coadjoint orbits of semisimple Lie groups are complex projective
spaces CIP", including as the special case n = 1 the 2-sphere $2, and the hyperbolic
discs D" defined in Since Riemann surfaces are quotients of D! by a
Fuchsian group I', understanding I'-equivariant quantizations of D! provides a way to
study the quantization problem for Riemann surfaces. In the we describe
briefly how D™ and CIP" arise as coadjoint orbits. Note that D™ and CPP™ are rather
different spaces, with CIP" being compact and admitting a metric of positive sec-
tional curvature, while D" is non-compact and admits a metric of negative sectional
curvature. For more examples of coadjoint orbits, see e.g. [MR99, Chapter 14].

Note that for a semisimple Lie algebra g the Killing form B is non-degenerate and
therefore provides an isomorphism °: g — g*, X — B(X, -). Denote its inverse by
gt =g

Definition 3.1 Let G be a complex semisimple Lie group. A coadjoint orbit Oy of G
is called semisimple if A\ is semisimple, i.e. diagonalisable under the adjoint action,
and nilpotent if ! is nilpotent under the adjoint action. If G is a real semisimple
Lie group, then Oy is semisimple or nilpotent if \f is semisimple or nilpotent in the
complezification of g.

Note that if any element of O, is semisimple (or nilpotent), then every element is
semisimple (or nilpotent). It can be shown that complex semisimple coadjoint orbits
are Zariski closed, and therefore in particular closed submanifolds of g*, determined
as the vanishing set of a finite family of polynomials. For a fixed semisimple Lie group,
there are only finitely many nilpotent orbits. The Zariski closure of a nilpotent orbit
is a union of nilpotent orbits, and contains 0.

In this thesis, we will only be interested in the case of semisimple coadjoint orbits
of semisimple Lie groups. Note however, that formal deformation quantizations were
also obtained for nilpotent coadjoint orbits [ABC94L|/AB02|, where it is not required
that the operators C, in are differential, and for coadjoint orbits of
non-semisimple Lie groups like GL,,(C) [DMO02].

One attempt to quantize semisimple coadjoint orbits is to start with the Gutt star
product on g*, introduced in and to ask whether this product can be
restricted to Oy. For this to be possible, the differential operators C,. in
would need to take derivatives only in directions tangential to the orbits, but not in
transversal directions. There is a result of Cahen-Gutt—Rawnsley [CGRI6| that there
is no star product on any neighbourhood of the origin in g* that is tangential to all
coadjoint orbits, including the zero orbit. (The original motivation of the authors
when studying this question was to determine whether one might be able to quantize
Poisson structures by quantizing all symplectic leaves, and glueing these quantizations
together.)

However, it is still possible that a star product restricts to many (but not all)
coadjoint orbits. So given an orbit O, we may try to perform an equivalence transfor-



36 INTRODUCTION

mation as defined in [Definition 2.11]on the Gutt star product, such that the resulting
star product is tangential to Oy and can therefore be restricted. Such an approach
was attempted in an algebraic setting in [FLO1|, where the polynomial relations defin-
ing a semisimple orbit are deformed, and carried out in a much clearer geometrical
setting by Karabegov [Ast99,Kar96l|[Kar98|.

In the simplest form, Karabegov’s construction works as follows. Let K be a
semisimple compact connected Lie group with coadjoint orbit O, C #*. Such a coad-
joint orbit with the canonical symplectic form has a unique compatible K-invariant
complex structure that makes it into a K&hler manifold. The map

(n: €= DIffop(0y), X = X0 — %X (3.1)

defines a representation of ¢ for all 7 € C\ {0}. Here Xo, ‘5 = %‘t:o Add i) €
['*°(TO,) is the fundamental vector field of X and the superscript (1,0) denotes its
projection to the holomorphic tangent space. The X € £ C St in the last term is
interpreted as a polynomial on O, C ¢*.

Denote the complexification of ¢ by g. From the representation ¢; we obtain
a map Pp: %g — Pol(0,) by extending X7 ... X, — lr(X1)...n(X)1 complex
linearly. Here 1 denotes the function on O, that is constantly 1. The kernel of &y is
a two-sided ideal, and therefore we can push forward the non-commutative product
of % g/ker @ to a product *p on im ®5. For all but countably many values of 7,
the image of @ consists of all polynomials Pol(Oy). The dependence of * on h is
rational with no pole at 0, and one can obtain a formal star product from the Taylor
series expansion around A = 0.

To see that we may interpret this construction as deforming the Gutt star product,
note that we may extend ®; to a map % g — Sg by interpreting X on the RHS of
as an element of Sg, and then view ®p o gy as the equivalence transformation.
Here g3, is the map introduced in Note also the formal similarity of
with (2.32)), which suggests that there is some relation with Berezin-Toeplitz
quantization. This is made precise in [Kar99, Section 11]:

Theorem 3.2 (Karabegov) Let K be a compact connected semisimple Lie group K
with Lie algebra ¥, and assume that \ € €* is chosen such that its stablizer Lie algebra
£y is a Cartan subalgebra of ¥ and such that A is a dominant weight. Then there is a
quantizing line bundle for Oy, and for every b € {1, %7 %, ...} Karabegov’s star product
xp, coincides with the quantization of Oy through Berezin's covariant symbols, and is
therefore related to the Berezin—Toeplitz quantization via the Berezin transform.

The assumption that £, is a Cartan subalgebra can be replaced by a weaker require-
ment of A\ being invariant with respect to the Weyl group generated by a certain subset
of the root system. But introducing the proper terminology to formulate this precisely
would go too far. In any case, the main importance of is that Karabov’s
quantization at the poles is intimately related to the Berezin—Toeplitz quantization,
but unless one chooses more complicated representations in does not reproduce
the Berezin—Toeplitz quantization exactly. Since the precise quantization at the poles
is irrelevant in the following, we refer the reader to [Kar99,/Sch10] for a definition of
Berezin’s covariant symbols and the Berezin transform.
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A seemingly different algebraic approach was developed by Alekseev—Lachowska
|ALO5|. They view a coadjoint orbit as a homogeneous space O, = G/G ), and use that
the space of G-invariant bidifferential operators on G /G is canonically isomorphic to
(% g/% g-9x)%%)%>. By inverting a certain algebraic pairing between Verma modules,
called the Shapovalov pairing, they obtain an element in (% g/%g - g,)%2)“ V],
which defines an associative formal product on Oy. Here g, denotes the Lie algebra
of G, the stabilizer of \. We will present this construction in detail in

The relation of the two approaches was studied in [ESW19|:

Theorem 3.3 (Esposito—Schmitt—Waldmann) Let G be a compact semisimple
connected Lie group. The constructions of Alekseev—Lachowska and Karabegov lead to
the same star products.

To be more precise, there are some choices that need to be made in both constructions.
It is shown in [ESW19| which choices need to be made to get the same star products.

In we focus on the algebraic construction of Alekseev—Lachowska since
it is better suited for obtaining continuity estimates of the star product. However, it
is good to keep the geometric interpretation in terms of Karabegov’s construction in
mind.

3.2 Contributions of the author

In this subsection, we give an account of the results obtained in this thesis. The first
part contains the main motivation, whereas the second part contains a more detailed
description and some intermediary results obtained along the way. Since the precise
statements can be found in the introductions to the research articles, we try to be
more qualitative in our description and refer to the articles whenever necessary.

Motivation and main results

In a nutshell, the starting point of this thesis is As mentioned in
Subsection 2.8} the completion of the polynomials #(ID™) on the hyperbolic disc with

respect to the Ty-topology can be described geometrically as the algebra of functions
obtained by restricting holomorphic functions on an extended disc D". However,
the construction of the extended hyperbolic disc D" in [KRSW19] is somewhat ad-
hoc, and it was not clear whether such a construction could also be applied in other
situations.

In[Paper I] we show that this construction is indeed not limited to hyperbolic discs,
but works similarly for other manifolds Mr(es(i that can be obtained by a similar re-
duction procedure from C**", using a metric of signature s € {1,...,n + 1}. These
manifolds include the complex projective spaces and hyperbolic discs. The construc-
tion of star products on Mr(es(i is analogous to the construction for the hyperbolic disc,
see [Main Theorem [.I]and [Main Theorem I.IIl The novelty in our approach is that it
allows us to compare the quantizations obtained for different signatures s, see
Indeed, every manifold Mr(jc)l embeds “antidiagonally” into a complex
manifold M.}, just as the hyperbolic disc D™ embeds into D™, and the completion of
the polynomials on Mr(es 21 with respect to a topology induced from the Ty-topology on
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S*((C'*™)*) is given precisely by the restrictions of holomorphic functions on Mr(;i
There is a holomorphic diffeomorphism between the extended spaces Mr(es 3, which is an
analogue of the Wick rotation and essentially changes the signature of the metric. Ex-
tending from Mr(;)l to Mr(sg, applying the Wick rotation, and restricting to a different
(s) . . . . . .
M./ is compatible with the product structure and therefore gives an isomorphism
of the quantum algebras for different manifolds M. (*) " which is not compatible with

red’
the *-structures.

This generalizes the construction for D™ to a larger class of examples, but it still
remains somewhat unclear where the extended spaces actually come from. This prob-
lem is addressed in [Paper IT] where we study semisimple coadjoint orbits of semisimple
connected Lie groups. These coadjoint orbits admit a unique complexification. In fact,
all the examples studied in are semisimple coadjoint orbits of semisimple con-
nected Lie groups, and the extended spaces are precisely their complexifications. We
show that the Alekseev—Lachowska star product on coadjoint orbits, which we intro-
duced briefly in the last subsection, restricts to polynomials on the coadjoint orbit
and can be extended by continuity to all holomorphic functions on the complexifi-
cation, see [Main Theorem II.IIl This extension is quite non-trivial, and requires an
explicit computation of the twist defining the star product and the application of some
non-trivial theorems from complex analysis concerning the extension of holomorphic
functions. We can restrict the quantization to real orbits, see [Main Theorem TI.ITI|
and we also get an isomorphism generalizing the Wick rotation in this approach, see

(Main Theorem II.TV]

The main novelty in our construction is the systematic use of complezxifications.
Indeed, the construction of Alekseev—Lachowska yields both a product for polynomi-
als on the real coadjoint orbit and for holomorphic polynomials on the complexifi-
cation, and those products are intertwined by restriction. However, by working on
the complexification many powerful tools from complex analysis become available. In
particular, we have a good description of the decay of the coefficients in the Taylor
series of any holomorphic function. These estimates combined with estimates for the
coefficients of the twist allow us to prove the required continuity of the product on
the complexification, with respect to the topology of locally uniform convergence. We
need to invoke powerful complex analytic theorems again when proving that the com-
pletion of the holomorphic polynomials with respect to this topology really consists of
all holomorphic functions on the complexification. The Wick rotation, which relates
quantizations of different coadjoint orbits with the same complexification, is a natural
consequence of this approach.

In the we show that the star products on the hyperbolic disc and the
complex projective spaces, constructed in by phase space reduction and in
by inverting the Shapovalov pairing, agree. In this sense many results ob-
tained in are a generalization of the results obtained in But note
that the construction in is rather different and in some sense more geometric
and explicit, and can therefore provide additional insights.
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More detailed description

Let us start by giving a definition of the type of strict quantizations that we construct.
Essentially, our constructions in [Paper Il and [Paper IIl share most of the properties of
the Fréchet-algebraic quantization of the hyperbolic disc, obtained in [KRSW19]. The
following definition tries to capture these properties as closely as possible. Variations
of this definition would certainly make sense, and might even be more natural. For
example, there is no real need to require that the topology 7 does not depend on
h, but we decided to give the strongest sensible definition that is satisfied by our
examples.

Definition 3.4 (Fréchet-algebraic quantization) Let (M,7) be a Poisson mani-
fold. A strict Fréchet-algebraic quantization on M is specified by the following data:

i.) a subalgebra & of €°°(M) which is closed under taking Poisson brackets,
ii.) a locally convex topology T on 2,
iii.) a countable subset P C C\ {0} accumulating only at zero,

iv.) for every h € C\ P an associative product x;, on the underlying vector space of

P
such that
a.) the product xo coincides with the commutative pointwise product of € (M),

b.) for every i € C\ P, the product *p is continuous with respect to the topology T,
and the unique extension of 5 to the completion &7 of &2 makes (<7, xy) a Fréchet
algebra,

c.) for f,g € 2 we have

1 .

+(Fong =g f) = i{f,g} =0 (32)
in the topology T,

d.) for f,g € o and every x € M, the function h — (f x5 g)(x) is holomorphic on
C\ (PuU{0}).

All our examples are constructed from a formal star product, which becomes a finite
series with rational functions as coefficients when restricted to two elements of &.
We can therefore only specify % to values that do not coincide with the poles P of
these rational functions. The function % — (f x; g)(z) with f,g € &/ and z € M is
usually not continuous at A = 0 in this approach, as it can blow up around the poles
P, which accumulate at 0, see [KRSW19, Example 4.2].

In all our examples, a Lie group G acts on M by Poisson maps, i.e. in a way that is
compatible with the Poisson structure. The subspaces &2 and &7 are both G-invariant,
and all products *p with i € C \ P are G-equivariant. In many examples, there will
be an involution * on & and &7, and for every i € C\ P we have (f %5 g)* = g* *; f*
for all f,g € &.

Let us describe the intermediary results obtained in the research articles in more
detail. First, we obtain explicit formulas for the star products in both articles. In
those formulas were already known for complex projective spaces [BBEW964,
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BBEWO96b| and the hyperbolic disc [BW14], but not for the manifolds Mr(;i of signa-
ture s # 1,n 4+ 1. A formula describing the bidifferential operators of a Fedosov star
product on the reduced manifold was obtained in [L6f10]. We computed the bidiffer-
ential operators directly via phase space reduction, and obtained the same formula,
see [Main Theorem LIl This computation shows that the product from [L&f10] coin-
cides indeed with the product obtained from phase space reduction, which was already

suggested by the fact that their characteristic classes (see [Theorem 2.16) agree.

For coadjoint orbits, the formula for the canonical element of the Shapovalov
pairing of SLy(C) appeared in [ALO5|, but to the author’s best knowledge the formulas
for SL,,(C) and an arbitrary semisimple Lie algebra, see [Main Theorem II.I} are new.
These formulas are of independent interest, but also allow one to give a fairly explicit
description of the bidifferential operators defining the star products.

Especially in we tried to present some folklore results in an accessible way.
Our appendix contains a detailed proof that G-invariant k-differential holomorphic
operators on a complex homogeneous space G/H are in bijection to certain invariant
elements in a quotient of the universal enveloping algebra. We try to review results on
the relation between polynomials on coadjoint orbits and holomorphic polynomials on
the complexification, as well as on the relation between polynomials on the coadjoint
orbit and invariant polynomials on the Lie group. The author is convinced that these
results are not new, but is not aware of a good reference.

As we explained in [Subsection 2.2] quantizing the observable algebra is not suf-

ficient to define a quantum system. We do also need to represent this algebra on a
Hilbert space. In most examples studied in [Paper I| and [Paper II| the complex con-
jugation is a star involution on the Fréchet algebras (7, ;). Given a positive linear
functional, the GNS construction can then be used to obtain a representation. For
the hyperbolic disc and more generally coadjoint orbits for which the root system
satisfies some technical conditions, see [Theorem [I.5.28] we prove the existence of
positive linear functionals, or more generally, we prove that all the point evaluations
are positive linear functionals on the quantum algebras.

We prove in [Proposition [.6.10] that the quantum algebra on the 2-sphere has no
positive non-trivial linear functionals when i < —1, because —1 can be written as
a sum of squares. The same result holds for all i € R™ that are not poles and for
all complex projective spaces (which is not proven in this thesis), implying that their
Fréchet *-algebras cannot be represented faithfully on a Hilbert space, and emphasiz-
ing that the *-involution is an important piece of information of a strict quantization.
Since there are non-trivial linear functionals for 7i < —1 on the hyperbolic disd7} this
implies in particular that the Wick rotation cannot be an isomorphism of Fréchet *-
algebras, and more generally, that there cannot exist another *-isomorphism between
the Fréchet *-algebras for CIP™ and D™ either, see [Proposition 1.6.10}

n we use conventions for which the Wick rotation is an isomorphism between the
quantum algebras of different Mr:d for a fixed value of ii. As a consequence we consider the hyperbolic
disc with a negative definite metric. Changing the sign of the metric, we would also need to change
the sign of the symplectic form and of A. In this sense A < —1 in the conventions of [Paper ]|
corresponds to the case h > 1 on the hyperbolic disc with a positive definite metric.
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3.3 Future directions

In this thesis we focus on the behaviour away from the poles of the Alekseev—Lachowska
star product and the star product obtained via phase space reduction. However, the
explicit formulas that we obtain for those star products show that they stay well-
defined at the poles for a restricted set of functions (depending on the pole), usually
the polynomials up to a certain degree. With respect to the star product, these func-
tions form an associative algebra. We have already observed this phenomenon for
coadjoint orbits of compact Lie groups in (Recall that Karabegov’s
star product coincides with the star product of Alekseev-Lachowska according to
[Theorem 3.3,)

It would certainly be interesting to gain a better understanding of how the Fréchet
algebras “degenerate” into finite dimensional algebras at the poles. Note that the
poles are intimately related to the representation theory of G. For example, the finite
dimensional representations of a compact semisimple Lie group K can be realized
by the Borel-Weil-Bott theorem [Bot57] on the space of global holomorphic sections
of a line bundle over Oy, and this line bundle can serve as a quantizing line bundle.
In this sense, it would be interesting to see whether there is any good geometric
interpretation of the Fréchet algebras interpolating between these finite dimensional
representations.

There are two natural follow-up questions to the results obtained in As
mentioned in it is crucial for physical applications to represent the
constructed Fréchet algebras on a Hilbert space, which can be achieved through the
GNS construction if there are enough positive linear functionals. As explained in
the previous subsection, we know whether positive linear functionals exist for the
quantum algebras of CIP™ and D™, but for other coadjoint orbits this is a largely
open question. For complex projective spaces, the question arises whether one might
be able to modify the *-involution on the quantum algebras so that there are positive
linear functionals.

Closely related is the question whether one can associate C*-algebraic deforma-
tion quantizations when one has found a representation on a Hilbert space. In certain
examples, like the star product of exponential type from [Theorem 2.39] it is possi-
ble to naively restrict to a C*-algebra of bounded functions, as described in [Sch18].
It is unclear how this C*-algebra relates to the other constructions of C*-algebraic
quantizations from [Section 2| and whether more sophisticated constructions might
yield better behaved C*-algebras. For the hyperbolic disc, just looking at bounded
elements does not seem to be enough. Rather one has to apply some sort of func-
tional calculus to obtain a larger C*-algebra. Since good C*-algebraic quantizations
of D™ are known, it would be interesting to investigate whether they can be obtained
from our Fréchet-algebraic quantizations, with the aim of constructing C*-algebras in
similar ways for other coadjoint orbits.

It would certainly be interesting to explore in which other situations complexifica-
tions can provide new insights into constructions of strict quantizations. One class of
examples could be semisimple Lie groups, since many of the tools we used in
are available in this case, too. It could be helpful to have a more conceptual under-
standing of when a star products extends to all holomorphic functions, that does not
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rely on explicit computations as much as our methods in do.

In this context, it would be interesting to study Drinfel’d twists. Drinfel’d twists
are elements of (% g® % g)[[v]] satisfying a certain equation that is equivalent to saying
that the G-invariant formal star product on €°°(G)[[v]], obtained by associating left-
invariant differential operators on G to elements of % g, is associative. Such twists
define associative products on €°°(M)[[v]] whenever M is a manifold with an action
of g. The construction of Drinfel’d twists from |Dri83| is in terms of the Baker—
Campbell-Hausdorff series, and understanding the growth of the coefficients of that
series was one of the main tools used to prove Therefore it does not
seem unreasonable that it is possible to obtain some topology in which twists obtained
with this construction converge. If this was the case, it would be very interesting to
investigate whether such twists can induce strict products on manifolds with an action
of g.
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Abstract

We study formal and non-formal deformation quantizations of a family of man-
ifolds that can be obtained by phase space reduction from C'*" with the Wick
star product in arbitrary signature. Two special cases of such manifolds are
the complex projective space CPP" and the complex hyperbolic disc D". We
generalize several older results to this setting: The construction of formal star
products and their explicit description by bidifferential operators, the existence
of a convergent subalgebra of “polynomial” functions, and its completion to an
algebra of certain analytic functions that allow an easy characterization via
their holomorphic extensions. Moreover, we find an isomorphism between the
non-formal deformation quantizations for different signatures, linking e.g. the
star products on CP"™ and D". More precisely, we describe an isomorphism
between the (polynomial or analytic) function algebras that is compatible with
Poisson brackets and the convergent star products. This isomorphism is essen-
tially given by Wick rotation, i.e. holomorphic extension of analytic functions
and restriction to a new domain. It is not compatible with the *-involution of
pointwise complex conjugation.
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1 Introduction

One way to study the quantization problem arising in physics, which asks how to
associate a quantum mechanical system to a classical mechanical one, is formal de-
formation quantization as introduced in . In this approach, the classical observ-
able algebra is assumed to be the algebra ¢°°(M) of smooth functions on a Poisson
manifold M and one tries to find a so-called formal star product x that deforms
the classical product. More precisely, x: €°°(M)[[v]] x € (M)[v] — €>=(M)[v]
is called a formal star product if it is C[[v]|-bilinear, associative, has the constant
1-function as a unit, and if it can be expanded as fxg = >.)7 v C.(f,g) with
C[[v]]-linear extensions of bidifferential operators C,.: € (M) x €°>°(M) — €< (M)
that satisfy that Co(f,g) = fg is the usual commutative pointwise product and that
Ci(f,9)—C1(g, f) = i{f, g} is (up to the factor i) the Poisson bracket of f, g € €= (M).
Here [[v]] denotes formal power series in the parameter v. We say that x deforms in
direction of the Poisson bracket {-,-}. Such a star product is called Hermitian
if pointwise complex conjugation is a *-involution, i.e. if fxg = g« f holds for all
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frg € €°°(M). In a sense, formal deformation quantization transfers the quantization
problem to algebra and therefore allows to use powerful algebraic tools in its study.
For example, existence and classification results follow from Kontsevich’s formality
theorem in the most general case of Poisson manifolds [16], but were already proven
before in the special case of symplectic manifolds by various authors [5,/10,{14]20] and
with the help of different techniques, e.g. the so-called Fedosov construction.

Formal deformation quantizations can also be studied in an equivariant setting.
Assume G is a Lie group acting on M. Then a star product is called G-invariant if all
the bidifferential operators C). are G-invariant. For Hamiltonian G-actions there is a
related notion of G-equivariance that considers the quantization of a momentum map
as well. Existence and classification results are also available in this setting [4}/11}21].
Some explicit examples of star products can easily be obtained on C'*", namely the
exponential star products like Weyl-Moyal or Wick star products. There are also
explicit methods to obtain star products on more general spaces, like CP™ or D™.
[3/7,8/17] use a construction via phase space reduction from one of the aforementioned
products on C'*". Alternatively, one can e.g. use Berezin dequantization [9], a Lie
algebraic approach |1] or an explicit solution of the recursive equations coming from
the Fedosov construction [18].

The drawback of considering formal power series is that one cannot easily replace
the formal parameter v by Planck’s constant &, as required in actual physical appli-
cations. Therefore strict quantization asks to find a field of well-behaved algebras,
usually Fréchet *-algebras or C*-algebras, see [6(19,22], that depend nicely on a pa-
rameter h ranging over some subset of C, and that reproduce the usual product and
Poisson bracket in the zeroth and first order as above for i — 0. Usually, strict
quantizations as in [6,[22] are constructed by analytical methods, involving oscillatory
integrals. If a strict quantization depends smoothly on the parameter 7, its asymp-
totic expansion around A = 0 yields a formal deformation quantization. Conversely,
one can ask to construct strict quantizations that have a given formal deformation
quantization as their limit.

Some results in this direction were obtained by Waldmann and collaborators, who
try to find some distinguished subalgebra & (M) of €°° (M), on which a star product
converges trivially because the formal power series are finite. Such a choice usually
comes from some extra structure, for example if M = T*Q is a cotangent bundle then
one can try to use functions that are polynomial in the momenta. One then tries to
find some topology with respect to which a star product on (M) is continuous, in
order to complete Z(M) to a more interesting algebra </ (M), typically consisting
of analytic functions. This approach has been worked out e.g. for star products
of exponential type on possibly infinite-dimensional vector spaces [24},26], for the
Gutt star product on the dual of a Lie algebra [13|, for the 2-sphere [12], for the
hyperbolic disc D™ |3}/17], and for semisimple coadjoint orbits of semisimple connected
Lie groups [23|. In the case of the hyperbolic disc the completed algebra 7 has a
nice geometric interpretation as functions that allow an extension to holomorphic
functions on some fixed, larger space.
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In this article we generalize the approach used in [17] for the hyperbolic disc to
obtain formal and non-formal star products on a larger class of certain (pseudo-)Kéah-
ler manifolds. These manifolds depend on two parameters, dimension n and signature
s, and are obtained by using Marsden—Weinstein reduction for the canonical U(1)-
action on C'*" endowed with a metric of signature s. Focussing on treating all these
examples in a uniform way, we construct U(s, 1+ n — s)-invariant, Hermitian formal
star products. Using ideas relating to Kahler reduction, we derive an explicit formula
in [I’heorem 5.12

Main Theorem I For any of the reduced (pseudo-)Kdhler manifolds Myeq described
above, the formula

o0 r

v

1
frreag = Zﬁ(l —v)(1=2v)...(1 = (r = 1) A

r=0

D) fo(DRa") g, Hieq) (1.1)

defines a formal star product. Here f,g € €°°(Myea), D32y is the symmetrized covari-
ant derivative associated to the Levi-Civita connection of Mieq, and Hyeq is a certain
bivector field on M,cq.

This formula was already known in the special case of CP™ and D", [18|, where it was
derived from the Fedosov construction. Our result therefore allows to compare this
approach with phase space reduction without appealing to any abstract classification
results, and generalizes it to a larger class of manifolds.

It will become clear from the construction that, at least outside of the poles ap-
pearing in , the star product *p.q converges trivially for a class of functions
P (M,eq) that is obtained by reducing polynomials on C'*". All these functions can
be (uniquely) extended to holomorphic functions on a larger complex manifold Myeq
that can be obtained by an analogous reduction procedure from C!*" x C!*", We
define the algebra o7 (M,cq) of all functions that can be extended to holomorphic func-
tions on Mieq, thus obtaining an algebra of certain analytic functions. Using methods
from complex analytic geometry, we prove that 92 (M.cq) is dense in o7 (M,oq) with re-
spect to the topology of locally uniform convergence of the extensions to Myeq. Then

we obtain for all complex 7 outside of the poles of (1.1 our [Theorem 5.26

Main Theorem II The strict product xyeqa n 0n P (Myeq) obtained by replacing the
formal parameter v with h in , is continuous with respect to the topology of lo-
cally uniform convergence of the holomorphic extensions to Myeq. It therefore extends
uniquely to a continuous product on of (Myeq)-

The geometries of the manifolds M;.q can be quite different (e.g. sometimes compact,
sometimes not). However, both the classical and quantum algebras of analytic func-
tions cannot see this difference as we show in [Theorem 6.4] and [Theorem 6.7] using
essentially a generalization of the Wick rotation:

Main Theorem IIT1 The algebras o (Myeq) (for the same dimension n but different
signatures s) with the pointwise product are all isomorphic as unital Fréchet algebras.
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Main Theorem IV The algebras of (Myeq) (for the same dimension n but different
signatures s) with the product xyeqa.r, and fixed h are all isomorphic as unital Fréchet
algebras.

Note that these last two results can also be proven in a more Lie algebraic context for
coadjoint orbits |23]. However, the algebras &/ (M,eq) are in general not *-isomorphic
(for real i and the *-involution of pointwise complex conjugation), which demonstrates
the importance of considering *-algebras in strict deformation quantization. This can
be shown by examining positive linear functionals on these *-algebras, which encode
information about their *-representations on pre-Hilbert spaces.

The article is structured as follows: After introducing some notation in
we discuss the smooth and complex manifolds occurring at various stages of the con-
struction in The classical and quantum phase space reduction allow to
construct Poisson brackets and formal star products on a reduced manifold M,eq out
of a constant Poisson bracket and the Wick star product on C!'*". This is achieved
essentially by first restricting to the level set Z of a momentum map J € €>°(C*")
and then dividing out the action of the group U(1) to obtain Myeq = Z/U(1). De-
pending on the choice of signature, M,.q can e.g. be CP™ or D”. In order to be able
to construct the spaces of analytic functions on which the non-formal star products
can be defined, we introduce complex manifolds C'*" x €, Z, and M,eq into
which C'*", Z, and M,cq can be embedded “anti-diagonally”. The complex structure
on C'*™ finally gives rise to a complex structure on M,.q, which in the special cases
of CP™ and D™ coincides with the usual one. This also allows to obtain M;.q by
restricting first to an open subset (D}f” of C'*" and then dividing out an action
of the complexification C* = {z € C|z # 0} of U(1), which simplifies some later
considerations.

[Section 4] deals with the algebras €°°(...), </(...) and 2(...) of smooth, certain
analytic, and polynomial functions on C'*", Z and M,cq. It is also discussed under
which conditions and how additional structures given by bidifferential operators on
C™™ can be reduced to M,cq. This is then applied into the Poisson bracket
and Wick star product on C'*". We obtain the usual Fubini-Study structures as
well as explicit formulae for the reduced star products both by means of bidifferential
operators and by structure constants.

As the constructions for CP”, D", and the other examples only differ by the
choice of certain signs, it is not surprising that they yield closely related results: In
we construct isomorphisms between various function spaces on the reduced
manifolds, which are compatible with both the Poisson brackets and the convergent
star products, i.e. with the classical and quantum structures.

Finally, in [Appendix A]we discuss some details concerning the symmetrized covari-
ant derivatives used for the explicit description of bidifferential operators in
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2 Notation and conventions

There are some conventions that will be used throughout the whole article: We fix
two natural numbers n € N, s € {1,...,1+n}. These will be the complex dimension
n of the reduced manifold M,.q and the choice of signature s. Nearly all objects will
depend on this signature, but in order to keep the notation clean this dependence will
usually not be made explicit. Only when it is necessary (especially when discussing
the Wick rotation in the choice of s will be indicated by a superscript in
brackets.

For a smooth manifold M, we denote by €°°(M) the unital *-algebra of complex-
valued smooth functions on M with the pointwise operations. TM and T*M are
the real tangent and cotangent bundles of M, and T®M and T*©M their com-
plexifications. If M is even a complex manifold with complex structure I, then
TOOAM and TV M denote the linear subbundles of +i and —i eigenvectors of I,
respectively, and T*1O N T*ODAS their duals. The space of smooth sections of
a complex vector bundle E — M over a smooth manifold M is denoted by I'*°(FE)
and is a ¥°°(M)-module. Tensor products between such spaces of sections are al-
ways tensor products over the ring €°(M). If M is endowed with an action of
a group G, then €>(M)¢ C €°°(M) denotes the G-invariant smooth functions
on M. This notation is also applied to subspaces of €°°(M). A k-multilinear map
O: CO(M)x---xE>®(M) — €°°(M) is called G-invariant if ®(f1g, ..., frdg)dg~! =
®(f1,..., fr) holds for all fi,..., fr € €>°(M) and all g € G.

The tensor algebra over a vector space V is denoted by T*V := ;- , T*V with
T*V the linear subspace of homogeneous tensors of degree k € Ny. The symmetric and
antisymmetric tensor algebra are identified with the linear subspaces S®* V and A®* V of
T*V consisting of symmetric and antisymmetric tensors, respectively, with symmetric
and antisymmetric tensor product X VY = Sym®*(X ® V) for all X,Y € S*V and
XAY =Asym®* (X ®Y) for all X, Y € A*V. Here Sym®, Asym®: T*V — T*V, the
operators of symmetrization and antisymmetrization, are defined as the homogeneous
projections onto S* V and A® V fulfilling

1
Symk(vl®...®vk) = EZUU(1)®”'®’UU(’C) (21)
and
1
Asym” (111 Q- ® vk) =1 Z SEN(0)Vp(1) @ -+ @ Vg(k) (2.2)
for k € Ny and vq,...,v; € V, where the sum is over all permutations o of {1,...,k}.

So especially vVw = 2(v@w+w®@v) and vAw = (v@w—w®w) for all v,w € V.
Vector bundles and their sections are treated analogously.

By (-, ): V* x V — C we denote the dual pairing between a complex vector
space V' and its algebraic dual V*, (w, o) := w(«a) for all w € V*, o € V. This pairing
is extended to higher tensor powers by demanding that

<OJ]_ Q- ®U.}k,a1 ®®ak¢> = <W]_,Oé]_>...<bdk;,0(}g> (23)



3. GEOMETRIC BACKGROUND 35

for all k € Ng and w1, ...,wr € V*, ay,...,a € V. Especially for symmetric tensor
products this yields

1
<w1 VRS \/wk,al \VAREAV/ Ckk> = E Z(wl,aa(1)> N <wk,a0(k)> (24)

where again the sum is over all permutations o of {1, ..., k}. If 153 denotes the insertion
derivation with a vector 8 € V, i.e. the derivation of degree —1 of the symmetric tensor
algebra over V* that fulfils tsw = (w, 8) for all w € V*, then by the above conventions,

1
E<L5(w1\/-~-\/wk)7a1\/--~\/ak,1> :<w1\/-~-\/wk,6\/a1\/---\/ak,1> (2.5)

holds for all kK € N, wq,...,wr € V* and ay,...,ar_1 € V. Like before, vector
bundles and their sections are treated analogously.
We will also make use of multiindices P,Q € JN(1)+” and define as usual P! =

[Ti_o Px! and
P P!
(Q> S r-ow (26)

for @ < P (the order is the elementwise one). Moreover, the elementwise minimum
is

min{P, Q} = (min{Py, Qo},..., min{P,,Q,}). (2.7)

3 Geometric background

In this section we will in detail explain the following commutative diagram, that
describes the reduction procedures to obtain M;eq and M;eq:

QU Qin Lz P N
TA Az WAred
Cl+n L Z — P Mg (3.1)
(Di-i-n

Note the similarity to the diagram considered in [17].

Middle row

The middle row is a typical example of Marsden—Weinstein reduction, even though
we will not yet discuss symplectic structures in this section. It consists of (at least)
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smooth manifolds endowed with an action of the real Lie group G, which is defined
below, and of G 7-equivariant smooth maps.

On C'*7 let 2°,...,2" be the standard coordinates, i.e. 2¥(p) = p* for all k €
{0,...,n} and p € C*". We define

n s—1 n
J = E opEk = E 2Pz — E 27k, (3.2)
k=0 k=0 k=s

where the coefficients oy, are +1if k € {0,...,s — 1} and —1if k € {s,...,n}. Note
that we drop the dependence of J and oj on s from our notation as explained in
the convention at the beginning of The Lie group GL;,(C) of invertible
complex (1+n) x (14 n)-matrices acts from the left on C**" as usual via A>p = Ap
for all A € GL14,(C) and p € C**™. This left action - > - on C'*™ induces a right
action - < - on smooth functions and tensor fields by pullback. Especially for the
coordinate functions, this yields z* <« A = Yo ARy 2L,
The stabilizer of 7, i.e. the set of all A € GL14,(C) fulfilling 7 <A =7, is

Gy =U(s,14+n—2s)

- {A € GL14,(T) ) S kAN AR = 5 0y for all £m € {0, n}}
3

with d¢ ., the usual Kronecker-6. Note that G is a real Lie group and a subgroup of
GL14,(C). Its Lie algebra is

3)

g7 =u(s,1+n—2s)
= {A € gl (T) | 0/ AT, + 0 A™, = 0 for all £,m € {0, . n}} (3.4)

which is a real form of gl,,(C) = CA+n)x(1+n)

Remark 3.1 Note that the Hamiltonian vector field of —7 with respect to the sym-
plectic form w =13, _, o} dz* A dz* corresponding to the Poisson tensor considered
in is just the generator of the action of the U(1)-subgroup {e'*1;., |¢ € R} of
G on €', which is computed in . In other words, —7 is a momentum map
for the U(1)-action. Here 11,4y, is the identity matrix. Our construction below can be
understood as Marsden—Weinstein reduction with respect to this action.

We define Z == J ' ({1}) = {p € T |1+ X7_|p"]> = S52010"[?}, the 1-level
set of J, and ¢: Z — C'*™ as the canonical inclusion. Then the G 7-action on C¢Hn
restricts to Z and ¢ is G 7-equivariant.
The next step is to divide out the action of the U(1)-subgroup {e?1;,, ¢ € R}
of Gz, which yields
Mea = Z/U(1). (3.5)

As the U(1)-subgroup of G is central, the G 7-action remains well-defined on M,q
and the canonical projection pr: Z — M,;q is G 7-equivariant.
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We note that, by mapping the U(1)-equivalence class [p] € Myeq of some p € Z
to its C*-equivalence class [p] € CP", the manifold M,.q can be identified with
the well-defined open complex submanifold {[p] € CP™|J(p) > 0} of CP™. Then
wh, . w™: {[p] € Myeq | p° # 0} — C,

k p*
w* ([p]) = = (3.6)
P
with & € {1,...,n} define the usual (complex) projective coordinates on {[p] €

Myeq | p° # 0} € Myeq and it is easy to obtain an atlas by considering similar co-
ordinates on {[p] € Myeq | p* # 0} for 1 < ¢ < n. We will later see how the complex
structure that M,eq inherits from CP™ can also be obtained in a more natural way.

In the special case of the signature s = 1 + n, this construction yields Mr(Hn) =~
CP" with the usual action of U(1 + n) on it. For s = 1, one obtains the disc
MY =~ Dr = (¢ € ©| 0, |€52 < 1} with the action of U(1,n) by M&bius
transformations. The holomorphic isomorphism from M ( G)l to the disc is simply given
by the coordinates w?, ..., w", which are global coordlnates if s=1.

Note that, in general, these projective coordinates w', ..., w™ describe a chart for
M,q with dense domain of definition. Because of this, it is essentially sufficient to
use only these coordinates for the explicit description of some tensors later on, but it
is important to keep in mind that they describe M,oq only up to a meagre subset.

Top row

The top row consists of complex manifolds carrying a holomorphic action of a complex
Lie group G 4, and of G ;-equivariant holomorphic maps. These complex manifolds
will later be helpful for defining certain algebras of analytic functions on C'*" and
Mred-

On C't" x €', the standard complex coordinate functions are denoted by

20 2™ Y0 . y", and given by zF(£,m) = ¢F as well as y*(&,n) = n* for all
k€ {0,...,n} and &, € C*". Define the holomorphic polynomial
n s—1 n
J = Zakxkyk = Zxkyk - kayk . (3.7)
k=0 k=0 k=s

Note that the polynomial 7 considered before is just the restriction of J to the
antidiagonal. More precisely, if A: C'*" — C1H7 x €M7,

p = Alp) = (p,p) (3.8)

denotes the embedding along the antidiagonal, then J = JoA= A*(j ). Similarly,
A*(xF) = 2% and A*(y*) =7 for all k € {0,...,n}.

The complex Lie group GL14,(C) x GL1+,(C) acts holomorphically from the left
on C'*7" x €7 as usual via (A, B) > (£,1) = (A&, Bn) for all A,B € GL1,(C)
and &, € C'*", which induces a right action - < - by pullback on the spaces of
holomorphic functions or holomorphic tensor fields. Especially for the coordinate
functions, this yields z* < (A, B) = Y_,_, A%z’ and y* < (A, B) = Y_,_, B¥, y".
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The stabilizer G ; of J, i.e. the set of (A, B) € GL14,(C) x GL14,(C) fulfilling
J < (A,B) = J, is explicitly given by

Gj = {(A,B) € GL1+TL(®) X GL1+n(®)

> 0k A¥ By = 6y g o, for all £,m € {0, ... ,n}} . (3.9
k=0
Note that for all A € GL;4,(C) there exists a unique B € GLj4,(C) such that
(A,B) € G, namely B¥,, = opom(A~1)™,, so G is a complex Lie group and
isomorphic to GL14,(C).

Similar to the definition of Z we define Z as the 1-level set of J in C!*" x C*7,
ie.

1+Z§’“ ’“_SZ& ’“}. (3.10)

Then Z is a complex submanifold of C!*" x €'+, The canonical inclusion of Z into
CH™ x ¢ is denoted by i. As J is invariant under the action of G 7, this action
can be restricted to Z and 7 then is clearly G ;-invariant. Moreover the inclusion
A restricts to an inclusion Ayz: Z — Z, which makes the upper left square in
comimute.

The second step is to divide out the orbits of the Lie group C* := C \ {0}, more
precisely of the subgroup {(alin, ™ '114,) a € C*} of G ;. So define

“ap = {Em et xo

Myea = 7/ T*, (3.11)

then M,qq can be identified with {([¢], [n]) € CP™x CP" | J (&,7) # 0}, a well-defined
open and dense complex submanifold of CIP" x CP", via Myeq > [(€,1)] — ([€], [7]) €
CP™ x CP". As the C*-subgroup of G; is central, the G ;-action remains well-
defined on M,eq. The canonical projection from Z onto the quotlent Myeq will be
denoted by pr and is again G ;-equivariant by construction. Finally, one can check
that Areq: Mrea — Mreda

o] = Acea([p]) = [Az(p)] = [(p,ﬁ)] (3.12)

is well-defined and makes the upper right rectangle of (3.1) commute.

On Mred, we use the usual projective coordlnates comlng from (DIP" x CP",
denoted by u! " A(E,n)] € Myea|€® # 0} — C and v',...,v": {[(&,n)] €
Myea | 7° # 0} —> (D, and given by

gk nk
" ([(&n)]) = & as well as R ([(€,m)]) = 0 (3.13)
for all kK € {1,...,n}. Note that it is again easy to obtain an atlas by considering

similarly defined coordinates on {[(&,7)] € Myeq | € # 0} and {[(€,7)] € Myea |77 # 0}
and that the relations (Aeq)*(u*) = w* and (Ayeq)*(v*) = @* hold for all k €
{1,...,n}. As before, one should also keep in mind that these coordinates form a
chart with dense domain of definition.
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Bottom node

It turns out that the complex structure on C!*" can be used to simplify the Marsden—
Weinstein reduction in the middle row of (3.1)). First, we define a complex structure
on M,eq that is compatible with the complex coordinates defined before. A more
general treatment of this procedure can be found in [25|. Then we find a holomorphic
projection map Pr: (Df" — Moq from the open subset

Ci={zeC"™|J(2) >0} (3.14)

of C'*" to M,.q making the bottom right triangle in commute. Since restriction
to an open subset is easy for almost any geometric structure, one can therefore avoid
the restriction to a hypersurface that is needed in the Marsden—Weinstein reduction.
Denote the standard complex structure of C**" by I. For A € gl;_,(T), let X4
be the vector field on C'™" obtained by differentiating the right action of GL1 ., (TC)
on €°°(C'™) in the direction of 4, i.e. Xa(f) = %|t:0f <exp(tA). In particular,

~(x 0 0
Xi = Xi]ll+n = Z (IZkazk — 12k82k> (315)

k=0

is the generator of the (diagonal) U(1)-action and

- .0 0
X]l = X11+n = Z (Zkazk +Zkazk> = —IXi . (316)
k=0

Let ((Xi » and ((X]l » be the 1-dimensional vector subbundles of T(D}f" spanned by
Xi

. 14+n
oitn and Xy | cltns respectively. Moreover, for p € C,™" define

=, == {a, € T,C1" | a,(J) = 0 and (I|pap)(j) =0} and Z:= U =,
pGCfr"
(3.17)
then one can check that Z is a 2n-dimensional vector subbundle of T(D}f", and we
get:

Proposition 3.2 The tangent bundle of (Df'" can be decomposed as the direct sum
TCI =(X1) e (X))@=, (3.18)

Moreover, for all p € Z, the map T,pr o (sz,)_lz =y = T Mrea is a linear isomor-
phism.

Proor: The linear subspace S, = {a, € T,C{™" |, (J) = 0} of T,C"™ has
codimension 1 for all p € C}*", and (X3}, is a complement of S, in T,CL™"
because Xy(J) = 2J. So T,C1™ = (X1)|, ® S,. Moreover, U(1)-invariance
of J implies that X;(J) = 0, so «Xi»|p C Sy, and E, C S, is clear. But as
(IXi)(J) = —X1(J) = —2J, the sum of (X;))|, and Z, is direct, and therefore
S, = {Xi)|, ® Z, by counting dimensions. This proves the decomposition (3.18).
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If p € Z, then S, = (Xi))|, ® Z, coincides with the image of T,Z under T .
Because of this, the map T,pro (T,¢)~! is well-defined as a map from (Xi»\p ©E, to
T, Mreq and is clearly surjective. The kernel of this map is «Xi »|p, so its restriction
to E, is an isomorphism. O

Note that X;, X7 and = do not depend on any choices but arise naturally from the
U(1)-action, the map J, and the complex structure I that (D}f" inherits from C".
By definition of =, this complex structure restricts to =. As it is also U(1)-invariant,
it gives rise to a well-defined (almost) complex structure I;oq on Myeq:

Definition 3.3 Define the vector bundle endomorphism Ieq: TMioq — TM:eq, that
maps any Py € T(yMrea with [p] € Myeq to

Ired|[p] (Br)) = (Tppr o (TpL)_1 oll,o(Typro (TPL)_l)_l)(ﬁ[p]) .

It is clear that I .q squares to —idTas,., and hence is an almost complex structure. In
order to see that it is also integrable, we check that I,q coincides with the complex
structure that M,.q inherits from CP™. For a more general discussion, see [25]:

Definition 3.4 On C1™™\ {p € C1"|2%(p) = 0} we define the complez vector fields
—k n

0 Okz
W=z <8zk Zz 825>

forall ke {1,...,n}.

(3.19)

CYM\{peCi [ 20(p)=0}

Note that, analogously to the projective coordinates w!, ..., w™ on M,eq, the vector

fields W1,...,W,, are only defined on a dense subset of (D_lﬁ". However, this will be
completely sufficient for our purposes.

As IW, = iWy, and (dJ,Wy) = 0 for all k& € {1,...,n} on the domain of def-
inition of W}, these vector fields W}, as well as their complex conjugates W, with
k € {1,...,n}, are actually (local, densely defined) sections of Z¥, the complex 2n-
dimensional vector subbundle of TC(DE'" generated by . A short calculation shows
that

Wi (2/2") = 6y, (3.20)

for all k,£ € {1,...,n}, so the sections Wy, are pointwise linearly independent and,
by counting dimensions, they form a (local, densely defined) frame of Z%. Moreover,
this immediately shows:

Proposition 3.5 If p € Z, 2°(p) # 0, then

- 7] “1N 7]
(Tppro (Tpt) ' )(Wk\p) = owk . and (Tppr o (Tpt) ' )(Wk\p) = onk . (3.21)
P P

for all k€ {1,...,n}.

As an immediate consequence we obtain:
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Corollary 3.6 The reduced complex structure I..q satisfies Ired(a%) = i% and
Ired(%) = *iagk for all k € {1,...,n}, so Lq is indeed the standard complex

structure of Myoq interpreted as an open subset of CIP™. In particular, I eq is integrable
and really a complex structure.

Lemma 3.7 If a holomorphic complex-valued map ¢ on a connected and open subset
S C CH™ with SN Z # () vanishes on S N Z, then it already vanishes on all of S.

ProOOF: Indeed, as T,C**" = (Xy )|, ® (T,t)(T,Z) for all p € Z, as a,(¢) = 0 for
all o, € (T,)(T,Z) by assumption and as also X1 |,(¢) = Xi|,(—i¢) = 0 because ¢
is holomorphic and X, € (T,¢)(T,Z), all first order partial derivatives of ¢ vanish
on SN Z. This now extends to all arbitrarily high partial derivatives by using the
same argument and thus the holomorphic ¢ vanishes on whole S. O

As a consequence, there is at most one holomorphic map Pr: Cf” — M,eq whose
restriction to Z coincides with pr. In the special case treated here it is not hard to
guess this map:

Proposition 3.8 There exists a (unique) holomorphic map Pr: (D}f" — Myeq whose
restriction to Z coincides with pr. It is explicitly given by

p = Pr(p) =[p/v/ T (p)]- (3:22)

In coordinates, w* o Pr = 2¥ /20,

PRrOOF: It is not hard to check the expression of (3.22)) in coordinates, which also
shows that Pr is holomorphic. Its restriction to Z clearly coincides with pr. O

We also note that the domain (Df" of Pr, which was chosen rather arbitrarily, is
naturally determined from the U(1)-action on C'™" and the complex structure I:
The action of the corresponding Lie algebra u(1) = R is given by its fundamental
vector field X;, and the complex structure I allows to extend this to an action of
the complexified Lie algebra u(1) ® C = C via the fundamental vector fields X; and
X7. This action even integrates to a unique holomorphic action of the corresponding
complex Lie group €* on C'*", which is just given by multiplication with scalars.
The orbit of Z under the action of C* is easily seen to be C1*", and Pr: C}*" —
Mcq is the quotient map that identifies (D_l:r" /C* with M,eq as complex manifolds.
From this point of view, the complex structure on C'*" allows to replace the two
steps of Marsden—Weinstein reduction (restriction to the level set Z and taking U(1)-
equivalence classes) by restriction to the open complex submanifold (Df" and taking
equivalence classes with respect to the action of the complexification C* of U(1).
For future use it will be helpful to be able to express the standard coordinate
vectors % with k£ € {0,...,n} in terms of the holomorphic Euler vector field

_1 : ~ 0
Ei=(Xy — 1Xi)‘@1++n = I;z 5F (3.23)

v14n
(/+
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and the Wy, k € {1,...,n}. On their domain of definition, one gets (using that always
og = 1)

620 - J

0 z° LRy 0 orZ" 1

E ; (ZO)ZWZ and o5 = =Bt W (3.24)
for all £k € {1,...,n} and (FE,Wi,...,Wy) is a local, densely defined frame for
T(I’O)(Df'". Together with its complex conjugates (E,W1,...,W,) we obtain a
densely defined frame for the whole tangent space TC(DE". The dual frames are
denoted by (E*, Wy, ..., W) and (E*,W?%,...,W?), and (again only on the domain
of definition of the vector fields W}) we have

1 n
E* == opzFdet, (3.25)
j k=0
* 2" 0 Lok * k
0 0 7 (20)2 S [ T~
dz0 = 2°F* — 7 > o FWr, (3.27)
k=1
k n
dzF = 2FE* 4 2° (W,: - % ZW%WZ*) : (3.28)
(=1

Note that E and E are obtained from the U(1)-action and complex structure of C1™".
Similarly, also E* and E* can be obtained naturally as the (1,0) and (0, 1)-parts
of d7/J. Only the vector fields Wy,...,W,, as well as their conjugates and duals
depend on a choice of coordinates.

4 Algebraic point of view

The general reduction procedure from C'*™ to M,.q by first restricting to the level set
Z and then dividing out the action of U(1) has a dual version that connects various
function algebras on C'*" and M,.q: First, one divides out the ideal of functions
vanishing on Z and then restricts to U(1)-invariant equivalence classes. However, as
every U(1)-invariant equivalence class of functions also contains at least one U(1)-
invariant function, which can be obtained by averaging over the compact group U(1),
a simplified procedure yields the same results: First, one restricts to U(1)-invariant
functions and then divides out the ideal of functions vanishing on Z. We will use this
second approach throughout.

It is well-known that this way one can also construct algebraic structures on M;eq
out of such structures on C'*", especially Poisson brackets and star products. In
the following we will consider three types of function algebras: All smooth functions,
polynomial functions, and certain analytic functions. While formal star products are
defined on all smooth functions, their non-formal versions can only be defined on
polynomial or some analytic functions. All these function algebras on C!*" will also
be endowed with the right-action of the stabilizer group G7.
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4.1 Smooth functions

The reduction procedure for smooth functions is well-known. In order to fix notation,
it is helpful to shortly discuss some details again: Recall that ¢°°(C'*")V() is the
unital subalgebra of €>°(C'*") whose elements are the U(1)-invariant functions. It
is easy to see that the following is well-defined:

Definition 4.1 Let S be an open and U(1)-invariant subset of C1™" such that S D Z.
The (classical) reduction map s - red: ‘@”“(S)U(l) — €°(Myed), [ frea, where

forallp e Z.

We will especially be interested in the two cases S = C'*" and S = (D}f”. Note
that fieq is the unique smooth function on M,eq that fulfils pr*(freq) = ¢*(f). From
the algebraic point of view, smooth functions on C'*” and M,.q can be related as
follows:

Lemma 4.2 For every g € €™ (Myeq) there exists an f € € (C'T)VD) such that
fred = ¢, and f can even be chosen in such a way that the following locality condition
is fulfilled: Whenever U is an open subset of Me.q such that the restriction of g to
U wvanishes, then there exists an open subset V of C'™" such that V 2 pr=Y(U) and
such that the restriction of f to V vanishes.

PRrROOF: This is well-known to be true in more generality, but in the present case it
is also easy to construct such an f € €°°(C'+")V() for every g € €°°(M,eq): Indeed,
one can define f(p) =0 for all p € C*7\ C1™™ and f(p) = g(Pr(p))x(J (p)) for all

p € CY{™, where y:]0,00[ — [0,1] is a smooth function with compact support that
fulfils x(1) = 1. a

This lemma has the following consequence:

Proposition 4.3 For every U(1)-invariant open subset S C C'*™ containing Z, the
reduction map - yeq: ‘KOO(S)U(U — € (Myeq) descends to an isomorphism between
the unital *-algebras €>(S)VM /{v € €>(S)VM) | 1*(v) = 0} and €°°(Myeq)-

We can now also construct algebraic structures on €°°(M,eq) out of such structures
on € (CH™) or € (CL™):

Proposition 4.4 Let S be an open and U(1)-invariant subset of C'™" such that
S2Z,andlet C: €=(S) x € (S) — €=(5) be a U(1)-invariant bilinear map, then
the following is equivalent:

e There exists a bilinear map Creq: €°°(Mred) X €°°(Myred) — €°°(Myed) such
that

(C(f7 g))red = Chred (freda gred)

holds for all f,g € €>°(S)VM).
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e C(f,v)|z =0=C(v,[)|z holds for all f,v € €>=(S)'M) with 1*(v) = 0.

If ome, hence both of these two conditions are fulfilled, then the bilinear map Creq from
the first point is uniquely determined.

PROOF: Using the existence of preimages under -4 from|[Lemma 4.2} the equivalence
of the two points and the uniqueness of C.oq are standard results. O

Definition 4.5 Let S be an open and U(1)-invariant subset of C1™" such that S O Z,
and let C': €°(S) x €>°(S) — €(S) be a U(1l)-invariant bilinear map, then C
is called reducible if one, hence both of the equivalent properties from the previous

are fulfilled. In this case, we also define the reduced map Cheq like in
the first point there.

One example is of course the multiplication: Let C' be the pointwise multiplication of
smooth functions on C'*", then C.q is the pointwise multiplication of smooth func-
tions on M,eq. For more interesting examples, however, the second point in
can still be hard to check. Luckily, there are some simplifications for bidiffer-
ential operators. Note that in the following it is no loss of generality to consider the
special case of a U(1)-invariant bidifferential operator C': €>°(C™™) x €= (C{™) —
€>(CL"): A bidifferential operator on a different domain of definition can always
be restricted and extended (in a not necessarily unique way) to a bidifferential opera-
tor on (Df'" which coincides with the original one in a neighbourhood of Z and thus
yields the same reduced map.

Proposition 4.6 Let C: €°(CL") x €= (CL™) — € (CL™) be a U(1)-invariant
bidifferential operator. If C((J — 1)|@1+nf, i ) =0=C(f,(J —1)|gr+nf’) holds for
all f, ' € €= (CLT)VW), then C is reducible and "

(C(Pr*(9),Pr*(¢"))) ,oq = Creal9,9") (4.2)

holds for all g,g" € €°°(Myea)-

PROOF: In order to show that C' is reducible, let f,v € €°°(CT™)VM with *(v) =0
be given. For every € € (0,1) and using a bump function x € €*°((0, 00)) with support
in [1 —e€,14 € fulfilling x(r) =1 for all € [1 —€/2,1+ €/2], one can express v as the
sum v = v-( )+(J —1) @an of a function v+ (xoJ |g14n) € € (CHHm)VD)
with support in {p+€ CH"| —e< j( ) — 1 < €} and the pro+duct of (J —1)|g14n
with a function & € €(C}") M. Then C(f,v) = C(f,v - (x 0 T |gysn)) and
Clv, f)=C(v-(xo Tlgren) , f) have support in {p € CI'™| —e < T (p )= 1< e}
As e € (0, 1) was arbitrary, even C(v, f) = 0 = C(f,v) holds and C is reducible. For
Equation (4.2) we just note that (Pr*(g))req = g for all g € €°°(Myeq)- O

4.2 Polynomial functions

On polynomial functions it will be possible to construct non-formal star products in
Here we only discuss the basic definitions and the reduction procedure:
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Definition 4.7 We write 2(C*") for the unital *-subalgebra of €°>°(C**™) that
consists of all polynomial functions in 2°,... 2", 2°,...,Z". We denote the image of

2(CH)YD) ynder - oq by P(Myeq) and call its elements polynomials on Myeq.

One can check that % (M,eq) is a unital *-subalgebra of ¢°°(M,eq) and so the re-
duction map restricts to a surjective unital *-homomorphism from Z2(C!'*")V() to
P(Miyea). Its kernel are all U(1)-invariant polynomial functions on C**" which van-
ish on Z. We see that the unital *-algebra & (M.,.q) is isomorphic to the quotient
2(CHMVD) [y € (@)U | 1*(v) = 0} like in the smooth case. A basis of
2 (CHH)VA) yields a generating subset of Z2(M,eq), a subset of which is a basis of
P (Miyeq). We essentially follow [3}/17] and just check that the definitions and results
there, which were made for the special case s = 1, actually work for all signatures:

Definition 4.8 For every pair of multiindices P, Q € ]N(l)‘m we define the monomial
on Q17

bpg = 2P22 = ()P0 . (2P (z0)Q0 . (z) @ . (4.3)

The monomials bp g with P,Q € ]Né*'" are a basis of Z(C'*"), and those mono-
mials with |P| = |Q| are a basis of 2(C'*")V(}). The resulting reduced monomials
bp.gired € P (M;eq) are, in the projective coordinates defined in (3.6 (and restricted
to the dense domain of definition of these coordinates),

wP w? _ @HP )P @) @)
(1+ >0, opwkw™)I Pl (1+ >, opwkw”)IPl

for all P,Q € Nj™™ with |P| = |Q| and with P’ := (Py,..., P,) € Ny, analogously
for Q. To check this, note that the pullback with Pr of the right-hand side coincides
with bp,g/J!Fl on C11", hence with bp g on Z. Even though the monomials bp g on
C1*™ are linearly independent, this does no longer hold for their counterparts bp, g.red
on M,.q. Because of this we introduce:

bP7Q;red == (44)

Definition 4.9 For all multiindices P, () € N we define the fundamental monomial
on Mred

cpg e 4 PUQIEIPLP P 0.1 Quyired i IPISQ, (45)
’ b0,Py,.. Pa) (1 PI=1Q1,Q1 - @u)ed  if [P] 2 [Q].

Note that the fundamental monomials on M,eq—unlike the monomials on C'*t"—are
determined by 2n indices, not 2n + 2. Using projective coordinates on M4, they can
be expressed as

wPw?
C =
PO 1+ 07 opwhwh)max{IPLIRN

for all P,@ € INj. While the usual easy multiplication rules for monomials still hold
for the bP,Q;reda i.e. bP,Q;redbR,S;red = bP+R,Q+S;red for all P,Q,R,S € ]N(1)+n with
|P| = |Q| and |R| = |S], this is no longer true for the fundamental monomials on M;eq.
Their product can be obtained by rewriting them in terms of the reduced monomials,
which can easily be multiplied, and by applying the following:

(4.6)
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Lemma 4.10 For all P,Q € N§t™ with |P| = |Q|, the identity
min{ Py, Q T\
bp,Qired = Z (-1 Sgn(T)( {IY(”)I o}) %cp,m@,w (4.7)
TENY '
|T|<min{Po,Qo}
holds, where we use P' == (Py,...,P,) e N}, Q' = (Q1,...,Qn) € N} and sgn(T) =
| Jka'

PRrOOF: For k € {0,...,n},let Ey := (0,...,0,1,0,...,0) € N;*" be the tuple with 1
at position k. From bg, gyired = 1 — ZZ:1 0kbE, Ejired and the multinomial theorem
it follows that

min{ Py,Q0 min{ Py, T|!
(bE07E0;red) { @ } = Z (—1)|T‘ Sgl’l(T)( {|T(')| QO}) %CT,T .
TeNG ’

|T|Smil’l{P(],Q()}
Combining this with bp,gired = (b, Boired) ™™ @ cpr s yields the desired result.Od

Analogous to [317], one can show that these fundamental monomials cp o with P, Q) €
N§ are a Hamel basis of &(Myeq). We will come back to this problem later in
Section 6l

4.3 Analytic functions

The polynomial algebras discussed in the previous can be completed
to algebras of certain analytic functions. More precisely, we are interested in the
pullbacks with A: CH" — CH7 x " and Aveq: Myeqa — Myea of holomorphic
functions:

Definition 4.11 By O(M) we denote the unital complex algebra of holomorphic
functions on a complex manifold M. Moreover, we define the following subsets of
E>°(CH) and €°°(Mieq), respectively:

o (CH7) = {A*(f) | f € O(C x €M)} (4.8)
and
JZ{(]\41red) = {A* (g)

red

g € ﬁ(Mred)}- (49)

It is not hard to check that </ (C'*") and o/ (Myq) are unital *-subalgebras of
‘5"0(@{*”) and ¢°°(Myca), respectively. Especially for the *-involution one finds:
Given f € O(CH" x C1*™) or § € O(Myeq), then one can define f € O(CHH" x C17)

or §' € O(Myeq) as the functions

CH" x CH 5 (&) = f/(E,n) = f([7,6) € C

or

Miea 3 ([,m)) = §'(1€,m]) = g([0.€]) € T,

so that A*(f') = A*(f) and Af4(9') = A,4(9), respectively. As algebras, 0(C'*+™ x
C*) and & (C'T") as well as 0(Myeq) and & (M,eq) are isomorphic:
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Proposition 4.12 The pullbacks

A*: O(CH™ x ©1) = 7 (CHT) and voq: O(Myeq) = A (Myeq)
are isomorphisms of algebras.

PRrOOF: It is easy to check that A* and A}, ; are homomorphisms of algebras, and
they are surjective by definition of .7 (C'*") and &7 (M,cq), so only injectivity remains:
Given f € O(C'" x C'*") with A*(f) = 0 or § € €(Myeq) with A% ,(§) = 0, then,
in the coordinates introduced in

3], =] ) - gk a0 -0

or
% P (i) <58w£ [p]) 9= % o =0
% = % =0

hold for all p € Z with 2%(p) # 0 and all k € {0,...,n}, £ € {1,...,n}, respectively.
By iteration one finds that also all higher derivatives of f or g vanish, so that f =0
or g =0. O

It is well-known that the holomorphic functions ¢(M) on a complex manifold M
with the pointwise operations become a Fréchet algebra with the topology of locally
uniform convergence (i.e. (M) is complete and the multiplication continuous with
respect to this metrizable locally convex topology). This locally convex topology can
be described by all the seminorms || - ||x: (M) — [0, 00),

Felfllee = glealglf(z)l (4.10)

with K a compact subset of M. From this we see immediately that </ (C**") and
o (Myeq) with the topology coming from &@(C'+" x C1*7) and &(M,eq), respectively,
are Fréchet *-algebras (Fréchet algebras endowed with a continuous *-involution). It is
a consequence of the Cauchy integral formula on C1*" x C1*" that every f € &/ (C1")
can be expressed in a unique way as an absolutely convergent series

f= Y frobra (4.11)

P,QENy™™

with complex coefficients fp , fulfilling

IFll = D el < oo (4.12)

P,QENyT™
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for all € [1,00), and that the topology of &/ (C!™") can equivalently be described by
these seminorms || -||,: &7 (C'*") — [0,00). See e.g. |23, Proposition 3.5] for details.
We will later in|Proposition 6.11|obtain an analogous result also for &7 (M;eq). Like for
polynomials one also finds that the U(1)-invariant analytic functions f are precisely
those which fulfil f5, = 0 for all P,Q € Ni*" with |P| # |Q|, e.g. by explicitly
calculating the coefficients with the help of the Cauchy integral formula. Note that
due to the completeness of &7 (C**™"), averaging over the U(1)-action on &7 (C**™) is
possible and yields for every f € o/ (C'*") an fa, € o/ (C'H™)VO),

We observe that the reduction map - q can be defined analogously as before also
for holomorphic functions:

Lemma 4.13 Assume that f € O(C'" x C'*") is C*-invariant in the sense that
fa(alifn, @ 1yy,) = f holds for all « € C*. Then there exists a unique f ., €

O(Myeq) for which

holds.

PROOF: As Z*(f) is C*-invariant, it descends to a well-defined function fréd on Myeq =
A /C*, which is automatically holomorphic. Uniqueness of fré q is clear. O

Proposition 4.14 The map - .oq Testricts to a map Q{(CH”)UO) — A (Myea). More

precisely, given f € o (CT)9W) and f € G(CH" xC™) such that A*(f) = f, then
[ is C*-invariant in the sense of the previous and frea = Alq(fioq) €
o (Myed).-
ProOF: Given such f and f, then

A*(fa(@Tipn, e Tipn)) = A% (f) 9Ty, = f 9Ly, = f = A*(f)

holds for all ¢ € R, so f is U(1)-invariant because A* is an isomorphism between
O(CH"™ x C*") and & (C™). But since the action of the complex Lie group C*
on €™ x C*+" is holomorphic, f is even C*-invariant. Using the commutativity of
the diagram in [Section 3| one can now check that

pr* (Alea(fraa)) = A2 (01" (fag)) = AL (7 (F) = (A% (F)) = ()

holds, hence frea = Afq(foq) € & (Mrea). O

Using some deep results from complex analysis, the analytic functions on M,.q and
on C'*" can be related in the same way as smooth or polynomial functions:

Lemma 4.15 For every g € o/ (Myeq) there exists an f € o (C**F)VD) such that
fred =g
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PROOF: Given g € &/ (M,eq) and corresponding § € &(M,eq) such that A () = g,
then pr*(g) is a holomorphic function on Z. Now note that €™ x €+ is a Stein
manifold by [15, Sec. 5.1] and that Z is—in the language of |15, Def. 6.5.1]—an
analytic submanifold thereof because it is the set of zeros of a holomorphic function
on C'*7 x €117, So |15, Thm. 7.4.8] applies and shows that there exists an extension
f e O(CH™ x O of pr(g), ie. i*(f) = pr*(g). Therefore f := A*(f) fulfils
*(f) = pr*(g) due to the commutativity of the diagram in By averaging
over the U(1)-action on o/ (C'*") we can even arrange that f is U(1)-invariant. O

For an alternative proof one can also generalize the more constructive results obtained
in |17, Sec. 3.2] for the case of signature s = 1, or use these results and the Wick
rotation as discussed later in

Clearly, {f € &7 (C*+™)UM) | ,*(f) = 0} is the kernel of -q restricted to <7 (C'T)
and therefore a closed *-ideal of o7 (C*+")U(Y). Similarly to the case of smooth or
polynomial functions we get:

Proposition 4.16 The reduction map - ,..q descends to a *-isomorphism between the
Fréchet *-algebras o/ (C*T™)VM /{f € o/ (CH) | 1*(f) = 0} and o/ (Myeq), that is in
addition a homeomorphism.

PRrooF: Using it is clear that that -,q induces a *-isomorphism. As
If,callc = [1F Brpe- () holds for every f € O(CH" x CH™)®" with B € €17 x
C'*" a sufficiently large closed ball, the map - - ;: O(C1*" x CH™) T — O(Meq)
from is continuous with respect to the topologies of locally uniform
convergence, thus - q: @7 (C*+")V() — o7 (M,eq) is continuous as well. Tt follows

from the open mapping theorem that it is a homeomorphism. O

As the U(1)-invariant polynomials Z2(C'+")U() are dense in .o/ (C'T™)V(M) | this im-
mediately yields:

Corollary 4.17 The polynomials &?(M,eq) are dense in o (Myeq).

5 Poisson brackets and star products

In this section we introduce a Poisson bracket and star product on C'*" and discuss
their reduction to M,eq. First we consider formal star products, which make sense
for formal power series of smooth functions. We present a method for reducing the
(pseudo-)Wick product on C**" to M,eq in and derive more explicit
formulas in The other two sections deal with strict star products. In
order to make the formal power series convergent, we restrict ourselves to polynomials

in and extend these results to analytic functions in
5.1 The smooth case

We will now introduce the Wick star product on C'*". The antisymmetrization of its
first order gives rise to a Poisson structure on C!'*”. Let V be the Euclidean covariant
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derivative of C**", D its exterior covariant derivative and D™ the corresponding
symmetrized covariant derivative, see [Appendix A]for details. We define

H::Zo‘ka 57 €T (THO et @ TOD ) (5.1)

It is easy to see that H is U(1)-invariant, so that Hyeq € (T Mg @ TOD M,oq)
can be defined as
Hiealjp = (T, Pr)®*(H|,) (5.2)

for all [p] € Myeq with representative p € Z. An explicit formula for H.q4 in projective
coordinates will be given later in Using H and symmetrized covariant
derivatives, we can now define the well-known Wick star product:

Definition 5.1 The product
*: CF(CH) V] x €=(CH)[V] = €(CH) V],

oo

(f.9) = frg=Y " ,<Dbym )" (f) ® (DY) (g), H")  (5.3)

r=0

is the (pseudo-)Wick star productﬂ on C". Here H" denotes the r-th power of H as
an element of degree (1,1) in the algebra #*(CT") @ *(CH") with /*(C1*") =
D, I (S*F TV C™) the algebra of complex symmetric multivector fields.

Note that one can check that x is actually a Gy-invariant Hermitian formal star
product constructed out of the bidifferential operators

C(f,9) = <(Dsym)’°(f) ® (D¥™)"(g), H"). (5.4)
It deforms in direction of the Poisson brackeﬁ with signature s

- of 9g 99 Of

1 1
1€ - Clo) = Lo gk kg ) = e} 69

on CM™ with Poisson tensor
T~ 0 0

where {f,g} = (df ® dg, ) = (D™ f @ D¥™g, 7). Note that (5.6) implies that 7 is
a real tensor.

3Tor signature s = 1+n this product coincides (up to a rescaling of the Poisson bivector explained

below) with the Wick product from Writing it with symmetrized covariant
derivatives will be convenient for the reduction t0 Myed-

4Note that from standard coordinates z° 21*7" we get real coordinates ' = Re(z?) and

= Im(2%). Then {2¢,p’} = 161 »J, so this is one half of the standard Poisson bracket. With this

rescahng the set of poles of the strict star product becomes {1, o é,. . h
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Lemma 5.2 The Poisson bracket (5.5)) fulfils the condition for reducibility of
fition 7.0

PROOF: First, {-, -} is bidifferential, hence can be restricted to C1*". As H is U(1)-
invariant, the Poisson bracket is U(1)-invariant, too. One also finds that {f,J} =
Xi(f) for all f € €>°(C*"), with X; the generator of the U(1)-action as before. So
if f,g € €°(C**)VM are U(1)-invariant, then {f(J —1),9} = {f,g}(J — 1) —
fXi(g) ={f,g}(J — 1) vanishes on Z, and similarly {f,g(J —1)}|z = 0. O

Thus we can construct a reduced Poisson bracket on M,.q by application of
and get:

Proposition 5.3 For all f,g € €°(Myeq) and p € Z the reduced Poisson bracket
{+)  }red 1 € (Myeq) X €°°(Mrea) = €°°(Mea) is given by

{f.g}reallpl) = {Pr*(f), Pr*(9)}(p) = (df @ ]}, (T, Pr)wl,)  (5.7)

and the corresponding Poisson tensor meq on Mieq is simply
Tred = 2 Im<Hred) . (58)
Proor: Equation (5.7) is clear and ([5.8) then follows from ([5.2) and (5.6). O

This is just the Poisson-algebraic analog of the Marsden—Weinstein reduction scheme.
However, the situation is a bit more difficult if one tries to reduce the bidiffer-
ential operators C, defining the Wick star product. One immediately sees that
cannot be applied directly: For example, C1(J,J — 1) = J # 0.
Following [7], this problem can be overcome by restricting to C4*" and perform-
ing an equivalence transformation S = id + 21?;1 v* S, with differential operators
Si: €=(CLT") — €°>°(CL") that vanish on constant functions, from * to a suitable
new star product x, i.e. f* f' = S(S7Y(f) » S~I(f")), in such a way that % is re-
ducible to a star product %..q on M,eq by application of If this can
be achieved, then pr*(g *eq ¢') = (Pr*(g) * Pr*(¢'))|z for all g,g" € €°°(Myeq). For
this we require the following:

i.) S should commute with =, since then % is again a Hermitian star product.
ii.) S should be G 7-invariant, since then * is again G s-invariant.

i1.) Moreover, x should fulfil 7 x f = Jf for all f € €>°(C+™)U(M) | hence also
f*T =T*f =Jf = fJ for all f € €°(C"*)VM), As a consequence,
can be applied to the bidifferential operator defining the r-th
order of x for any 7, so that x,.q as described above is indeed well-defined.

iv.) Finally, it would be helpful if S (hence also S~!) acts as the identity on C*-
invariant functions, because this has the consequence that the formula for x;eq
simplifies to

pri(g*ea g') = (Pr*(g) *Pr*(¢))|, = (S(Pr*(9) * Pr*(¢"))]|,  (5.9)
for all g,¢" € €°(Myea)-
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Let us define the rescaled vector field

d 1

— = —X; € T®(TCL™ 5.10

07 = a7 (TC™) (5.10)
on €1, which satisfies ;2-7 = 1. Then Properties []), [i]) and [i}) are fulfilled if

all the differential operators S; with & € IN are of the form Sy, = Z;’;l(Sk’goj)(%)e
with smooth functions Sy ¢: (0,00) — R, such that for every fixed k¥ € N there are
only finitely many ¢ € N with Sj , # 0.

We are interested in the inverse equivalence transformation T = S~!, which then
also contains only derivatives ai and coeflicient functions dependent on 7, i.e. T =
id + Z?@:l V*(Ty 0 j)(%)é. Therefore recall the usual definition of the falling and
rising factorial as

r—1 r—1

Our =% and (. =]]E+k), (5.11)

k=0 k=0

respectively, for all elements £ of a ring with unit and all + € Ny. Here the empty
product is of course (£); 0 = 1 = (£)1,0. For formal Laurent series in v over the
smooth functions €>°(M) of a manifold M and a pointwise invertible f € €°(M)
we see that

1 v" 1 v"

T T~k ™ U o+ i)

are actually formal power series because f + kv € €°°(M)[v]] are invertible.

(5.12)

Proposition 5.4 Let T be a U(1)-invariant equivalence transformation on (Df’"
from a new star product x to x, then the following is equivalent:

e T(J)=T and T * f = Jf for all f € €>(CL™)VAD).

e [T,T](f) = Vj%T(f) for all f € €=(CY™VD) | where [-, -] denotes the
commutator.

If T fulfils one, hence both of these conditions, then

TW (T /v)r)=T" and T(V“"l(Jj/y)TH_l) =J " (5.13)

for all r € Ny.
PROOF: Assume T(J) =7 and J % f = J f for some f € €>(CT")VD), then
TWJf) =TT *f)=T(T)*T(f) =

=J*xT(f) = (j—i—I/E)T(f) = <j+uj;7>T(f)

and so [T, J|(f) = vT 2% T(f). Conversely, if [T, TJ|(f) = vT 35 T(f) for all f €
¢>°(C{t")YW), then especially for f =1 one gets T(J) — JT(1) = vJ 35 T(1), i.e.
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T(J)—J = 0because T(1) = 1 for the equivalence transformation 7. Then one also
checks that

T*f= T‘1(<J —i—uJ;j)T(f)) =T Y JITH)+[T.TN) =T f.

Moreover, by induction one finds that indeed T'(v"(J /v),,») = J" for all r € Ny: For
r = 0 this is just T(1) = 1, and if it holds for one r € Ny, then

T(VT+1(j/V)¢,r+l) = VT(yT(j/z/)J,,r(j/V — 7”))
=TTV (T W)1r) + TTW (T [V)1r) =vrT (" (T [V)10)

- (yj(;} +J — w)T(uT(J/V)W)

9 r
= (VJerJW)J
:j’l‘Jrl.

In order to check the formula for 7", we note first that

(T +m)T(T T W)t =
= [T +r, THT (T W) 1r) ) + T(T (T 0)10) )
= —VJ%T(J(WI(J/v)wﬂ)*l) +T(T (T /)er) ),

SO

(j +rv 4+ I/ja?j)T(j(V"'+1(j/V)T7r+1)1) _ T(J(y’“(j/l/)T,r)’l) .

Since J is an invertible function on (D}:“" it follows that J +rv+vJ % is invertible
on ¢ (CL™)[[v]]. Since

<J+TV+VJ£7)JT =J Mg T g =g

for all r € N, we obtain (J +rv + yj%)_l(j_r“) = J~". The statement now
follows by induction because the base case r = 0 reduces to T'(1) = 1 and is therefore
fulfilled. |

Proposition 5.5 There ezists a unique equivalence transformation T on (D_lﬁ'” of the

form
oo 2k

. 2\

T = |d—|—kz_:1;1/k(Tk,goj)(j> (5.14)
with Ty, ¢ € €°°((0,00)) that has the properties from the previous|Proposition 5.4 Its
inverse S = T~ thus has all the properties E) to ) discussed above and additionally
fulfils S(T)=J.
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PROOF: By collecting terms in v* and (%)Z, the identity [T, J] = VJ%T with T’
like in ((5.14)) is equivalent to

J

m((TAg + Tk,lfl) o j)

Tk+1,e+1 oJ =
for all £ € Ny, £ € Ny with initial conditions To o = 1 and Ty, = 0 = Ty for all
k € N, ¢ € N, where T/é,e € €°°((0,00)) is the derivative of Ty, and where T, _1 :==0
for all k € Ny. O

So the equivalence transformation S exists and is uniquely determined if we add to
the four requirements[i) to[it]) above the fifth requirement that S(J) = J, which
is just a convenience. We can now construct the reduced star product on M,eq:

Definition 5.6 The transformed star product * on @f” is the one obtained from
x by application of the equivalence transformation S = T~ with T like in

tion 5.5 Explicitly,
frg=58(T(f)*T(9)) (5.15)

for all f,g € €=(C{™)[v]]. Moreover, the reduced star product %weq on Myed is
defined as

f*red g = Zyrér,red(fa g) (516)

r=0

for all f,g € €°°(Mea) and extended to formal power series in v, where C‘med on

M,oq are the reductions like in of the bidifferential operators C, on
(D}f” that describe the transformed star product * on (D}J".

Using the defining properties of the reduced bilinear maps C'med it is easy to check
that *..q is again associative and it is clear that the constant 1-function is the neutral
element. It also follows from the construction that é,.7red are bidifferential operators
on M,eq, but we will also show this by giving an explicit formula in the next subsection.
As T and thus also S commute with the pointwise complex conjugation and the action
of G 7, both * and x,¢q are Hermitian and G 7-invariant. Note also that % still deforms
in direction of the original Poisson bracket { -, - } (or rather, its restriction to (D}f"),
so that it is easy to check that x,.q deforms in direction of the reduced Poisson bracket

{ Tyt }red on Myeq-

5.2 Explicit formulae

We want to obtain an explicit expression for the reduced Poisson bracket { -, - }red
and star product *.¢q in terms of bidifferential operators on M;eq.

Lemma 5.7 The restriction to (Df” of the tensor H can be expressed as

1 —
H|C£r+n = 7E®E+HE (5.17)
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with some H= € T (2C @ 2. Eaxplicitly,
"L 2kt — “ _
< Z MWk®W€+ZUka®Wk) (5.18)
k=177 k=1

1

He = —
2070

on the domain of definition of the vector fields W1, ..., W, and consequently

" " 0 0 ~ 0 0
H..=1[(1 kagk T S = 1
red ( +kz::10kww)(zwwawk®%£+;0kawk®awk) (5.19)

k=1
in projective coordinates on M eq.

PrROOF: The first part is an easy computation using (3.24). The formula for H,eq then
follows since (2°2°)71| 7z = (J/|2°2)|z = Pr*(1+ X _, opw*@®)| z, (T, Pr)(Wi|,) =
(T,00)(Wily) — 52l by [Proposition 53 and (T, B1)(El) 0. E

As an immediate consequence we get from ([5.8):

Proposition 5.8 The reduced Poisson tensor that determines { -, - }req 18

- - 0 0 - 0 0
o . § k—k E k=t E
7Tred21(1+k_10'kw w )< ww W/\ﬁ+k O'kawk/\a’wk> (520)

k=1 =1
in projective coordinates.

For the signature s = 14n, this is the usual Poisson tensor associated to the symplectic
Fubini-Study form on MrildJr") >~ CP™. If s = 1, then one obtains (up to a sign) the
Poisson tensor associated to the symplectic Fubini-Study form on the hyperbolic disc
e

Similarly to the Wick star product from the bidifferential operators
defining the reduced star product should be expressed using symmetrized covariant
derivatives. In order to define reduced symmetrized covariant derivatives we need the

following:
Definition 5.9 We write ©z: I'°(TCCLT") — I'°(TYCL™) for the projection on

the subbundle Z€ of T(D(D};HI associated to the complexification of the decomposition

T(D}j" = «X]l )) &) «Xl» PE froijropositz’on 3% Moreover, its dual will be denoted

by ©%: T(T*UCL™) — Too(T~CCi™).

Note that Oz commutes with the complex structure I of (Dlj”. Like in
[tion A.6|and [Proposition A.8we can construct a reduced exterior covariant derivative
and a reduced symmetrized covariant derivative on M;qq out of D and D™ on (Dr“",
because D and D™ are C*-invariant (even invariant under arbitrary linear automor-
phisms of C1+7):

Definition 5.10 By D,cq: (o @ .7)%*(Meq) — (7 @ 7)1 (M,eq) we denote the
reduced exterior covariant derivative on M;eq, which is the one that fulfils

Pr* (D,ea) = (62)2* 19D Pre(Q) (5.21)
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for all Q € (o @ .S)*(Myeq), k, £ € No, and analogously, the reduced symmetrized
covariant derivative DY}": *(Myeq) — T (Myea) 0n Myeq is determined by

Pr* (Dw) = (02)°* ) D™ Pr(w) (5.22)
for all w € S%(M,eq), k € Ny.

We will give a more explicit characterization of the corresponding covariant derivative
on M,eq later in [Proposition 5.181 Note that D is compatible with the complex
structure on C" in the sense of [Definition A.9| and thus splits into (1,0) and (0, 1)-
components D = Dy + Diy as in [Definition A.10} analogously D™ = D" +D;L011n .
This carries over to the reduced derivatives:

Proposition 5.11 The reduced exterior covariant derivative D.oq is compatible with
the complex structure and

Pr (D, gw) = (©2) Y DIV Pr(w) (5.23)
holds for all w € S*(Myeq).

PROOF: As a consequence of [Proposition 3.2| the projection ©% commutes with the

complex structure I on C1™" and therefore (©%)®(*9) commutes with the projec-
tion onto symmetric tensors of degree (p,q). The projection onto such tensors also
commutes with Pr* since Pr is holomorphic. Therefore D,.q is compatible with the
complex structure and follows immediately from . O

We can now formulate the main theorem of this section:

Theorem 5.12 The reduced Wick star product is

o0

_ 1 1 Sym\\r Sym\r T
f*redg - ; ﬁm<(Dred ) f® (Dred ) g7Hred> (524)

for all f,g € €°°(Msea), where Hyeal) = (T, Pr)®2H|, was computed in .
Moreover, if f € P (Myeq) or g € P(Myea), then the series in v in the product f *wea g
has only finitely many non-zero terms.

Note that for complex projective spaces and hyperbolic discs this formula coincides
(up to rescaling the formal parameter) with the formula derived in Thm. 3.2.4]
for a Fedosov star product with form 2 = 0. For the proof of we have
to collect some intermediate results:

Lemma 5.13 On C*-invariant functions f,g € ‘K‘X’((le”)@* the transformed Wick
star product can be expressed as

oo

frg=S(fxg) =)

r=0

LT

AT ) D) f @ (D) g, H' T ") . (5.25)
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ProoOF: The first equality in (5.25) follows from requirement [it} ) for the equivalence
transformation. For the second one we use that we can express f % g as

frg= 3 (DY) f @ (DY) g, HT).
r=0 ’

Note that ((D™)" f® (D¥™)"g, H"J ") is C*-invariant, so that all its derivatives ai
vanish. Now ((D¥™)"f@ (D*¥™) g, H"J") = (Dp)")" f @ (D)9, H'J ") because
of [Proposition A.11|and since the first tensor factor of H lies in THOC*" and the
second one in TODE@'", Then it only remains to apply the formula for S(J ")

from [Proposition 5.4 a

If we restrict (5.25)) to Z, we can substitute J by 1. In order to express ((Dp)")" f @
(D) g, H")| 7 with C*-invariant functions f and g by differential operators on Mied,
we use formula (5.17) for H and explicitly calculate the contribution of the vertical

directions F and E:

Lemma 5.14 For C*-invariant s € I'°(SF T*OCH™)C" and k € Ny, we have
. DY) (s) = —2ks.

PROOF: Let k € Ny be given. For a multiindex P € NJ™™ we write (d2)" =
(d2%) 0 v .. v (dz™)P», then a general element s € I'>°(SF T*’(1’°)®}r+")c* can be
expanded as s = ZPelNéJrn’lP‘:k sp(dz)? with coefficient functions sp € €>°(CLT").
Note that C*-invariance of s implies that its Lie derivative with F vanishes, Zgs = 0.
As Lpdzt = dzf for all £ € {0,...,n}, hence Zx(dz)" = k(dz)?, it follows that
ZE(sp) = —ksp and thus

e, Dy (sp) = wpd(sp) = Le(sp) = —ksp.

Moreover, [tp, DY d2f = —Di¥ipdet = —dzf for all £ € {0,...,n}. As both ¢
and DpY)" are derivations, their commutator [vp, D;))"] is also a derivation and we
obtain [tg, Diy"]s = —2ks. |

Lemma 5.15 For f,g € ‘KOO(CEF”)@* and r € N we have

(DR f = —r(r =)D T and  im(DER)Tg = —r(r — 1)(D2) g

(5.26)
as well as

(DY @ (D 0. H7), =
ZW(IZ:D (DR © (D)0, (H)) . (52)
k=1 '

where H= is the component of H in 2% @ ZC, as defined in (5.18).



78 PAPER I: WICK ROTATIONS IN DEFORMATION QUANTIZATION

Proor: For (5.26) it suffices to prove the first statement since the second one then
follows by taking complex conjugates. Note that (D;Y]")*f is C*-invariant, so the

previous [Lemma 5.14] yields

S, m S, n k— 1 m m
(D) f = Z D)™™ LE’Dh}c])I ](D;Zﬂ) f=

r—1

= SO =~ - DD
0

for all r € No. With this and H|z = E® E|z + Hz|z from we can now

calculate

<(Di¥,?)’“ @ (D) g, HY)|, =

B
I

m @ m r—k
L) (D) f @ (D)7 g, (E @ E) ™ (Hz)*)],

f

- (; )

(k)< ) () M(DEM) f @ (1) H (D) g, (Hz)*)],
< )

‘”Z . (“1 ) (DR & (R 2,
O
k=1

r—1 k k
T () (s o 0 (),
The factors appearing in step (1) are due to our conventions for the symmetric product,

the dual pairing and the insertion derivation, see Equation (2.5)). In (2) we used

e o (r—1)!
(LE) k(Dhol ) f= (_1) kg(k_l)!

and its complex conjugate, which can be obtained by applying (5.26) several times.
In the special case k =0, (5.26) yields (¢g)" (D))" f = 0. O
The combinatorial factors in (5.25) can be simplified using:

Lemma 5.16 For all k € N the identity

> /v k+s—1 2 B 1
Z ( ol >5!(1/VM (5.28)

=0 1/V 1 k+s+1

holds for a formal parameter v.

PrOOF: By multiplication with =% we see that (5.28) is equivalent to the identity
o0

Z v8s! (k+s— 1)2 _ 1 ()
ATETAN RS e

s=0 =1
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of formal power series, which can be proven by induction over k: First note that
o0 oo

v3s! s v(s+1) _
2 (1 4 we) E: [T, 1+ua<1_1+u@41))_

s=0 =1

B i Vsl i vitl(s +1)!

[l +vl)  Z LA +v0)’
which is a telescope sum that gives the result 1. So holds for £k = 1. Now assume
that (%) holds for some k € N, then we get for k + 1:

i ves! <k‘+s)2 _
= ?*f“(l +u\ K
- Z ves! votislk k+s\°
T 1_ I/k k+s+1 (1+ 1/6) k+s+1(1 + v0) k
B i Vsl 1 vik+s+1)
_1—1/k8 M+ o) 14+v(k+s+1)
B votislk )<k+5)2
A (R VAN
1 i( vis! vt s+ 1) k+s+1
= T— ok ey k+5(1 + f) k+s+1(1 + Vﬁ) s+1

s 4+1)! kK k+s\>
k+s+1(1-|—1/[)3+1 k

()1 1
1—vk \TT,_,(1+ve)

vitl(s +1)! ((k+s+1)2_k+s+1_ k )(k+5)2
=0 ?:f“(l—kuﬁ) (s+1)2 s+1 s+1 k

1 1 2 s+ 1) (k+s\’
B 1—V’<<H§_1<l+w> +; i v (k—l) )
1 1 ad v3s! E+s—1\°
_1—”"“<He L(1+v0) 2 ’Zif(lwf)( k=1 >>

B Z sl (k + 55— 1>2
1—yk ~ @ +ve\ k-1
1
(1= vk) T2, (1 - ve)
_ 1
[T_,(1—v0)

_|_
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At (#%) we used that

oo

Z V85! (k + s) 2 B
SIS a+vo\ K
1 > visl (k4 8)? (k+s—1\°

+ Z 52 k

LA +vl) ST+ )
1 2 (s 4 1) (k+s+1)2(k+5>2

= + O
o, (t+vl) ST +ve) (s+1)? k
The last, crucial step is the following observation:
Lemma 5.17 We have
DYPE* = —(E*)? as well as D%HF* = —(E")? (5.29)
and consequently
(02)°+) D (©2) P = (02) 2+ DY, (5.30)
as well as
* \Q(k+1) Hsym *\Qk— __ *\®@(k+1) msym—
(©z) D~ (02)""w = (0z) D w (5.31)

for all w € T (SF T*OCLT™) with k € N,.

PROOF: Again, it suffices to prove the first equalities since the second ones then

follow by taking complex conjugates. Using (3.25)), (3.26), (3.27)), and (3.28), an easy
computation shows

1 n
DY™E* = DY <j > oz dzk> (DY T~ Z opZ" d2t =
-2 ( > oz dzk) =—(E")?.
k=0

For (5.30) it is sufficient to consider the case k = 1, the general case then follows from
the algebraic properties of ©% and D}Y " (i.e. being a projection and a derivation). If
k =1, then there is an f € ‘KOO(CDH”) such that Ofw —w = fE*, and thus

DRV'Otw — Dil'w = DIV (Okw —w) = DRV fE* = df Vv E* — f(E*)?
is in the kernel of (©%)%2. O
ProOF OF [THEOREM 5.12k The reduced star product on M,.q fulfils

pr*(f *rea 9) = (S(Pr*(f) »Pr'(9)))|,
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for all f,g € €°°(M;eq). Application of first [Lemma 5.13| and then [Lemma 5.15(now

yields

o0

* 1 L/v symyr symyr p_x T
P (F v ) = 3=y (DR P ()8 (DR Pr(0) 27

—fglz—kzzrz /v r;!k)!(ZiDZ

i W/ren
(DR P (f) @ (D) Pri(g), (H=)")|,

for all f,g € €°°(Myeqa). Collecting the k-th derivatives and using [Lemma 5.16| we

obtain

&1 — k) r—1\?
pr*(f *rea 9) = fg|Z+ZZ [v rk!)<2—1>

k=17r—Fk A/v)r1
((DE)EPr(f) @ (DE)* Pr(g), (H=)") |,
k+s—1
7fg|Z+ZZ 1/VTk+s+1k'< k-1 >

k=1 s= 0
(D) Pre(f) @ (DR Pr(g), (Hz)")|,

= ol + 3 e (PR P ()8 (O P 0. ()

_ Zkl 5 (DR P () (D) P (0). (H2)")
k=0

=
s
m
[1]

;‘f ® E for all p € (Dr“", we may insert projections ©% and get
(DR Pr(f) @ (DEF)* Pri(g), (Hz)") =
— ((02)PH(DEMF Pr (f) @ (O2)2F(DXM)E Pr(g), (Hz)*) .
Using [Lemma 5.17] and [Proposition 5.11| we obtain
(O2)PH (DRI Pr(f) = (O5)F Dy (02)* D Dy . @£ DI Pr' ()
=Pr’ ((szg,lhol)kf)

and analogously for g, so that

P (F 0 0) = Y- 3 7y (DR P () @ (D) P (0), (1)

(Pr* (Do) f) @ Pr* (D2 )" 9). (He)®),

. 1 1 * S m S m
= Zﬁ( pr* ({(D rod., o) f @ (D rzd7ﬁ)kgaerd>)
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e 1 1 * symy k sym k k
= Z 7 pr (<(Dred ) f® (Dred ) g’Hred>) :

In the last step we used [Proposition A.11|and that the first tensor factor of H,eq lies
in T M, .q whereas the second lies in TV M,oq.

It remains to check that only finitely many summands contribute to f x.q g if
f € P(Mya) or g € P(Myeq): Indeed, if f = bpgrea With P,Q € Nit" and
|P| = |QJ, then Pr*(bpg.ed) = J Flbp g, and as D" 7 = J E* is in the kernel of
0%, we get

Pr* (D;iho) " bP.quea) = (02)** DR (02)* VDT .. 02 DR T P bp g
=7 PI(e5)* Dy (05)* VD .. 05D Mbrg
=717 (05)*F (DR bre

which vanishes for k£ > |P|. The argument for g is similar. O

Finally, we can also characterize the reduced covariant derivative as follows:

Proposition 5.18 The reduced exterior covariant derivative D..q on Meq is the
one for the Levi-Civita connection associated to the (not necessarily definite) reduced
metric greq € *(Mrea), which is defined by

. N " oy d2F v dzF
Pr*(gred) = (@E)®2(Z %
k=0

) . (5.32)
ol

PROOF: As > ")_, o dz* v dz¥/J is C*-invariant, g,eq is indeed well-defined. As D

is torsion-free, Dyeq is torsion free as well (see [Proposition A.6). Now we calculate

Pr* (Dred(gred)) = (®%)®3D Pr*(gred)
@}j”) '

n

Z o dzF v dz*

~ (02 p(ez)**( -

k=0

Using (3.27) and ([3.28) one can check that
> or(0rdzM) v (02dz") =) opdeF vdEt - JEFVE".
k=0 k=0

It follows that

Ok dzF v dz*

Pr* (Dred(gred)) = (GE)®3D(Z J

k=0

> —(02)®D(E*VE*) =0

1+n
Cr

because OLd(J ') = —J205LdJ = 0 and because (0%)®*D(E* V E*) = 0, so
Dred(gred) =0. O
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Note that greq can be obtained from the standard (pseudo-)metric g :== > ,_, op d2*V
dz* on C'*" in signature s by first restricting (0%)®2g to Z and then projecting down
on M.eq. In local coordinates on the domain of definition of the forms W;' one finds
that

n ko q=k
(@*5)8,2(2 o dzF Vv dz ) _
k=0 t.7 ®1+n
2 n

* a7 * ‘Z0|2 - L=k * a7
VWi - WiV (5.33)
k=1 k=1

J

and hence that

S o dwb vdwt Yg my oropw @ dw v dw’
14>, opwkwk (1+ Y, opwkwk)?

In particular, in signature s = 1 4+ n one obtains that geq is the usual Fubini-Study

metric on M(1+") = CP™, and for s = 1 it is the negative of the usual Fubini-Study

metric on Mr(eld) =~ D",

Gred = (534)

5.3 The polynomial case

In this section we will replace the formal parameter v by a complex number 7. In
order to make sense of the convergence of the formal power series describing the star
product, we restrict ourselves to polynomial functions.

From the definition of the Poisson bracket in it is clear that it restricts to
a well-defined map {-, - }: Z(C'*") x 2(CH") — 2(CH") that is given by the
same formula, and similarly for the Wick star product:

Lemma 5.19 In the basis bpg defined in the Poisson bracket is

1 n
{bpg,brs} = T Z 0k (PpSk — QrRr)bPiR-E,.Q+5-E, (5.35)
k=0

with E = (0,...,0,1,0,...,0) € lN(l)'m having the 1 at position k € {0,...,n}, and
the product x from |Definition 5.1 is

min{P,S} P IS
bp,Q * bR,S = Z Sgn(T)VIT‘T! <T> (T> bP+R—T,Q+S—T (536)

T=0
with sgn(T) = [[}_yor* = [1r_, 0¥ as in|Lemma 4.10
So by setting v to i € €, this yields a well-defined map x;: Z(C*") x Z2(C*") —
P(CH™). Next we consider the equivalence transformation S from [Proposition 5.5
Lemma 5.20 For P,Q € Ny™™ with |P| = |Q|, the equivalence transformation S is
given by
|P|
v J
sore)= (%) (L) bre- (5.37)
J Y/ LIP|



84 PAPER I: WICK ROTATIONS IN DEFORMATION QUANTIZATION

PROOF: As j‘lp‘bp,Q is C*-invariant, we get using |Proposition 5.4

S(bpq) =S(IT"ITFopq) = S(TNT Flbpg = (T /v)1p(v/T)Fbpg .

Note that this is indeed a well-defined formal power series in v as the term J /v that
occurs in (J /v)y p| if [P| > 1 is cancelled. O

Replacing v by i € C yields a rational expression in i and we have to be aware of
some poles:

Definition 5.21 We define the open subset Q of C as
Q=C\ ({1/k|k e N}u{0}). (5.38)

We have already seen in that the reduced Wick star product f *peq ¢
of polynomials f,g € &?(Myeq) is rational in h with poles in {1/k|k € N}. More
precisely, we get:

Proposition 5.22 For P,Q,R,S € Nyt with |P| = |Q| and |R| = |S|, the reduced
star product from[Definition 5.60| is given by

bP,Q;rcd *red bR,S;rcd =

min{P,S}
(1/v)y,1p+s—1 (P) (S)
= E sgn(T ’ T! b _ _Tored - (5.39
= nl )(1/V)¢,|P\(1/V)¢,|S| r)\p)Prenrars T (559

Replacing v by I € Q gives a strict associative product *ved n: P (Mrea) X P (Myed) —
P (Mreq) and P (Myeq) with this product and pointwise complex conjugation becomes
a unital *-algebra if h € QN R.

PRrROOF: First we note that [Lemma 5.19 and [Lemma 5.20l show that

|P| |S]
7) () orer () (7)), oms
— — b * | = — b =
<«7) (V LIP| Per T Vs "

min{P,S}

P\ /S p\ P+ J
_ [T - il
- Z sgn(T)v"™" T (T) (T) (j) ( - )LP—FS—TbPJrRT,QJrST

T=0
holds for the transformed star product * and all P,Q, R, S € Nyt with |P| = |Q|
and |R| =|S|. As
pr* (V‘Pl (l/V)Mple,Q;red) =" ((V/j)‘Pl (j/V)¢,\P|bP7Q>
we find that
(l/lp‘ (1/V)\L’|P‘bP,Q;red) *red (V‘Sl (1/V)\L’|S‘bR’Sired> =

min{P,S} P g
= Z Sgn(T)y|P+S\T! (T) (T> (1/V) ,|,,\P+S—T\bP+R_T7Q+S_T9red ,

T=0
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which yields by C[v]-linearity of #.q and because v71(1/v), p = (1 —
v)...(1=(]P] — 1)v) is an invertible formal power series. Note that the right-hand
side of is indeed a well-defined formal power series in v because the factor 1/v
that occurs in (1/v), |pyg—7 for [P+ S —T| > 1is cancelled.

We can now substitute v by h: If i € , the falling factorials in the nominator are
non-zero, thus defines a well-defined product on the whole algebra &2 (M,cq)-
Associativity and compatibility with pointwise complex conjugation follow from the
properties of the Hermitian formal star product *,eq, and the unit is the constant
1-function. O

Equation ((5.39) immediately yields:

Corollary 5.23 For two fized polynomials f,g € P (Miea), the map h — f *redn g
is rational and limp o f *red,n 9 = fg holds pointwise.

Proposition 5.24 For two polynomials f,g € P (Myeq), we have

. 1
%13% o (f H*reds 9 — 9 *vedii f) = {f1 9}red (5.40)

pointwise and with the reduced Poisson bracket { -, - }rea 0N Myeq.

PrROOF: All terms with |T| > 2 in Equation (5.39) are at least of order /* and the
T = 0 term cancels out when taking the commutator. The first order in & of the
terms with |T| = 1 produces

1
717,11)% E (bP,Q;red *red,h bR,S’;red - bR,S;red *red,h bP,Q;red) =

n

1
=7 Z 0k (PeSk — QrRi)bp+R—Ey,Q+5—Epired 5
k=0

where Ej, = (0,...,0,1,0,...,0) € N;™™ has the 1 at position k& € {0,...,n}. This
coincides by [Definition 4.5 and [Lemma 5.19 with {bp Q.red, PR, S:red }red- O

5.4 The analytic case

The aim of this section is to obtain a strict star product on the algebra o/ (M;eq). We
achieve this by proving the continuity of the star product *yeqn on & (Mpea) with
respect to the locally convex topology that &?(M,eq) inherits from o7 (M;eq), i.€. the
topology of locally uniform convergence of the holomorphic extensions to Myeq. This
then implies that *eq,; extends uniquely to a continuous star product on &7 (Myeq)-

Recall from [Proposition 4.16| that the topology on o (M,eq) is just the quotient
topology of the topology on & (C'*t")U() defined by locally uniform convergence of
the holomorphic extensions to C'™” x C*". For h € Q define a product *; on
2(C+™)V() by bilinearly extending

min{P,S}

_ (/h)y prs—1| . (P\(S
bpg *x br,s = TZ::O sgn(T) (1/h)¢,\P|(1/h)¢,\S|T. )7 bp+rR-T,Q+5-T
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for all P,Q,R,S € N§™" with |P| = |Q| and |R| = |S|. Note that this product
might not be associative. However, from [Proposition 5.22]it follows immediately that
dividing out the vanishing ideal of J —1 is possible and reproduces the product *yed,p.
Consequently, continuity of x; with respect to the seminorms || - ||, with r € [1,00)
defined in Equation implies continuity of *yed s

Proposition 5.25 The product *xp is continuous with respect to the locally convex
topology defined by the seminorms |- ||, with r € [1,00) as in Equation (4.12)). More
precisely, for everyr € [1,00) and every compact subset K of Q) there ezists v’ € [1,00)
such that

If *r gllr < (1l gl (5.41)
holds for all h € K and all f,g € 2(CH7)V(),

PROOF: It is well-known that for any compact set K’ C C \ Ny there are constants
¢,C' > 0 such that
c"nl <|(2)yn] < C™nl

holds for all z € K and all n € Ny. For a compact set K C Q also K' = {z €
C\ {0} |27! € K} is compact and a subset of €\ Ng. Therefore it follows for any
r € [1,00) and P,Q, R, S € N™" with |P| = |Q| and |R| = |S|, and assuming without
loss of generality that C' > 1, that

[br,q *n br,sll»

min{P,S
— (1/h)y,p|(1/R) s \T)\T ’ ,
min{P,S}
Z (1/h)¢,\P+S—T\ T <P> (S>T|P+Q+R+S—2T
T 1A/R) e (/RS T)\T
min{P,S} _
< ClP+S-T [P+ S =TT pys| |pra+ris—ar]
- clP+5| | PSS!
T=0
min{P,S}
< Z (0710)IP+S|4|P+S\T\P+Q+R+S\
T=0

< (8¢~ Cp)/PHQERYS|

Given U(1)-invariant polynomials f = > p fpobr and g = >k ¢ gr sbr,s on
C'*" with complex coefficients fp , and gp g, then

1F #nglle < D0 Ifpgl@BeiOniPFel 37 g sl8e On)l s

P,QeEN;T™ R,SeENT™
|P|=|Q| |R|=|S|

= ||fH8C*1CngH8c*1Cr- O
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We would like to remark that, similar as in [12], one can also use the description of
the star product using bidifferential operators to prove its continuity.

Theorem 5.26 For every h € Q, the product xyea,n, on P (Myeq) extends to a contin-
uous associative product on &/ (Myeq). Moreover of (Meq) becomes a unital Fréchet
*-algebra with this product and pointwise complex conjugation as *-involution in the
case that h € QNIR. Finally, for any two fized elements f,g € o (Myea) and [p] € Myed,
the map Q — C, h— (f *rea,n 9)([p]) is holomorphic.

PRrROOF: By the previous [Proposition 5.25| and the discussion above, the associative
product *yeq s is continuous on & (M,eq) with respect to the topology inherited from
o (Mreq), and thus extends to an associative and continuous product on o7 (Meq)
because P (M, eq) is dense in o7 (Myeq) by The constant 1-function
remains the unit like on polynomials. Compatibility with the *-involution is clear as
well if & is additionally real.

Now recall that for polynomials p,q € Z?(Myeq), the map i — (p *rea,n ¢)([p]) is
rational by [Corollary 5.23] Since the estimates in [Proposition 5.25]are locally uniform
in A, it follows that i — (f *rea,n 9)([p]) is a locally uniform limit of rational functions
and therefore holomorphic. O

Note that 0 ¢ Q, so one would like to understand whether in the limit i — 0, the
product %,cq 5 yields the pointwise one, and whether its commutator yields the Poisson
bracket also on &7 (M,eq). Despite the results from [Corollary 5.23|and [Proposition 5.24]
in the polynomial case, this is not so obvious because 0 is an accumulation point of
the poles of *yeq,n- We will come back to this question later in [Proposition 6.12]

6 Wick rotation

The dependence on the choice of signature s will now always be made explicit by a
superscript “(5)”,

We have already seen that the construction of the formal and non-formal star prod-
ucts on Mr(cs(i works completely independent of s € {1,...,1+ n}. We will see now
that the non-formal star product algebras are even all isomorphic as unital complex
algebras. This will be proven by construction of a Wick transformation: A holomor-
phic isomorphism between the complex manifolds M;;i for different values of s which
gives rise to isomorphisms of the algebras & (Mr(jg) and &/ (Mr((:c)l) (with the pointwise
product) and which are also compatible with the Poisson brackets and the non-formal
star products, i.e. describe isomorphisms of Poisson algebras and associative algebras,
respectively. However, we will also see that these isomorphisms are not compatible
with the *-involution which is given by pointwise complex conjugation, hence are not
*-isomorphisms. This demonstrates how important it is to consider *-algebras and
not just algebras in non-formal deformation quantization: After all, one would surely
want to be able to distinguish the quantization of the complex projective space CIP™
from the one of the hyperbolic disc D".
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6.1 Geometric Wick rotation

We start first with discussing the complex manifolds C'*" x C'*" and then proceed
to Mr(csg
The Lie group GL11,(C) x GL14,(C) acts on C*" x C1*7" from the left via
- > -, which induces a right action - < - on &(C*" x C'*"). It is easy to check that
A(App) = (A, A)>A(p) for all p € C'" and all A € GL14,(C), where A denotes the
elementwise complex conjugate of A. For all s € {1,...,14n}, let W®) € GL1,,(C)
be (WYr, .=1if k=0€{0,...,s— 1} and (W)r, .=iif k=0 € {s,...,n}, and
otherwise (W (), := 0. Then the action of (W), W) on C*" x C*" does not
come from an action on C'*", except in the trivial case that s = 1+ n. However, the
identity
T (W& W)y = g0+ (6.1)
holds and thus the holomorphic automorphism of C!*" x C'*” that is given by the
action of (W), W) restricts to a holomorphic isomorphism from Z(+") to Z() It
is then immediate that this restriction even descends to a holomorphic isomorphism

from Mr(el(;rn) to Mr(;)l, because (W) W) commutes with all elements of the C*-
subgroup of GL14,(C) x GL14,(C).

Definition 6.1 For every s € {1,...,1+ n} we define the map
o MG™ = MG, (€] = o ((Em)]) = (WO W) e (€ m)]. (62)

The above discussion shows that a(®) is well-defined and even more:

Proposition 6.2 The maps a(® : Mr(:;n) — Mr(jc)i are holomorphic isomorphisms of
complex manifolds for all s € {1,...,1+n}.

Moreover, Equation (6.1]) also shows that the inner automorphism of the Lie group
GL147(C) x GL11,,(C) that is given by conjugation with (W) W) i.e.

(A, B) = (WOAWE) =L wE) pw)=1) (6.3)

restricts to an isomorphism from G ;+n) t0 G (). Note that we have already seen
in that G ;. is isomorphic to GL14,(C) for all s € {1,...,1+n}.

As a final remark, we note that the isomorphisms of Mr(j(z with different signature
s clearly do not descend to isomorphisms of Mr(jg For example, Mr(elj”) =~ CP" is

compact while Mr(elg =~ D" is not.

6.2 Algebraic Wick rotation

The isomorphism of the complex manifolds Mr(es(; for different signatures from
immediately shows that the corresponding unital associative algebras &' (M)
are isomorphic. By[Proposition 4.12] the algebras o7 (]\Zl'r(cS 3) for different signatures are
isomorphic as unital associative algebras as well (but not necessarily as *-algebras).




6. WICK ROTATION 89

Definition 6.3 For every s € {1,...,1 4+ n} we define the maps

o) o7 (CH") » /(C), [ @9(f) = A (fa(WO, W) (6.4)
as well as

s A (M) = o/ (Meg™) . 9= B(0) = (A7) (G0 a),  (65)

where f € O(CH™ x €7 and § € O(MY) satisfy A (f) = f and (A))*(5) = g.
We will refer to ®) and @Ez()i as the Wick rotation and the reduced Wick rotation,
respectively.

[Proposition 4.12} [Proposition 6.2 and the observation that (W) W) commutes
with the whole C*-subgroup of GL11,(C) X GL;4,(C) immediately show:

Theorem 6.4 The Wick rotation ) is a well-defined homeomorphic automorphism
of the unital associative Fréchet algebra o/ (C1T™) that restricts to an automorphism
of & (C*™)VD) . Moreover, the reduced Wick rotation @Eezi. %(Mr(ec)i) — M(Mr(el:n))
is a well-defined homeomorphic isomorphism of unital associative Fréchet algebras.

The Wick rotations are also compatible with the reduction procedure:
Proposition 6.5 Given f € o (C**")VD) | then
(@) 0 = Pred(frea)

PROOF: By [Proposition 4. 14|there exists an f € O(C'" xC*+")C” as in[Lemma 4.13
such that A*(f) = f and (Arcd) (fréd) = frea. Using the commutativity of the
diagram from and the properties of the action of (W) W) one finds:

(N”W@@m) () (A (2 (WO, W)

1+n)

“”>G<W@W@m

<><>«w@wwm
) (fraa) « W, W)

*“)(m W

B Db
o ND
+
2
*

>

"Cﬁ
SR
-
+
3
*

P E

Q =

&t
3
2

=

/_\

£

[

O..

(@]
Q
\_\/_/
SN—

oD oo Do
NT NT N
+
3
3
NN NN
*
—~ o~ TN/~

“““@ﬁmwy O

In the following we will see that the Wick rotations are not only isomorphisms of unital
associative algebras, but also compatible with Poisson brackets and star products:

Lemma 6.6 Given s € {1,...,1+n}, then the identity

) (bp o) = iZh=:Fet@pp o (6.6)
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holds for all P,Q € INH'"

(I)S()i (bg‘j)@ red) =i k Q(Pk+Qk)b 1,227,11‘6d (67)
holds for all P,Q € Ny™™ with |P| = |Q|, and

@Ez()i (C(S) ) _ iZZ=S(Pk+Qk)C(1'g’L) (6.8)

holds or all P,Q € Ny, where cpq are the fundamental monomials from [Defi]
nition 4.9 Moreover, ®) restricts to an automorphism of the unital subalgebra
@((DH‘") of .52{(@1+"), and @ECZI restricts to an zsomorphzsm from the unital sub-
algebra ,@(Mr(esd) of o (M rei) to the unital subalgebra (M rel;n)) of o (M. reldJrn)).

PRrROOF: Using bpg = A*(2Py?) with 20,...,2", 4%, ... ,y": C*" x C*" — C the
standard coordinates, it is easy to check that Equation holds. Equation (6.7)
then follows by applying the previous [Proposition 6.5 which gives Equation (6.8]) as

a special case. The rest is clear. O

Theorem 6.7 The Wick rotations remain isomorphisms of unital associative alge-
bras also for the deformed products. More precisely, given s € {1,...,1+n}, then the
identities

o0 (47 g) = 8 (f) T @) (g) (6.9)
and
o {f,} = {@C)(f), 00 ()} (6.10)
hold for all f,g € &/ (C**™) and all h € C. Similarly, the identities
Dy (f iean 9) = B () *edr) B(0) (6.11)
and
ol r by = {20 2@} (6.12)

hold for all f,g € o/ (M) and all h € .

Proor: First note that as a consequence of the previous the identity
o) (sgn®®(T)bpyp-mops—1) = ihms PRFRFRASIN, L o oysor

holds for all P,Q, R, S,T € N;*" with T < min{P, S}, and similarly,

(S) ) (sgn)(T )bS?FR T,Q+S5—T; red) = 2= S(PHQHRHSk)b(Hn
holds for all P,Q,R,S,T € NJ™ with |P| = |Q|, |R| = |S| and T < min{P, S}.
Using this and the explicit formulas from [Lemma 5.19| and [Proposition 5.22| and
noting that sgn!*™)(T') = 1 for all T € N ™", it is easy to check the identities for the
star products in the special case that f and g are monomials. The identities for the
Poisson brackets are an immediate consequence thereof due to the representation of
the Poisson brackets as a limit of the star product commutator as in [Proposition 5.24]
The general case then follows by bilinearity and continuity of the star product and
the Poisson bracket. O

R—T,Q+S—T;red




6. WICK ROTATION 91

*

While it is completely clear that the Wick rotations do not commute with the *-
involution given by pointwise complex conjugation, it is somewhat harder to show
that the algebras o (Mr(eS ()1) with product *5221 ,, are in general not *-isomorphic, not
even via some other isomorphism. One possibility to prove this is to examine their

positive linear functionals: A linear functional ¢: %(M(S)) — C is called positive for

red
the product *SZ()LE with h € QNR if

S(F ik f) =0 (6.13)

holds for all f € &/ (Mr(j()i) It is easy to see that the pullback of a positive linear
functional with a *-homomorphism between two *-algebras yields again a positive
linear functional. In the special case of s = 1, i.e. Mr(el(i =~ D", the existence of
non-trivial positive linear functionals for negative i is known:

Proposition 6.8 The evaluation functionals (5[(p1]): o/ (D™) — C,

£ 000 () = £ (o))

with [p] € MY =~ D are positive linear functionals on o/ (D™) with product *Eizi,h

red —

for all h € (—00,0).

PROOF: Positivity of evaluation functionals has been proven in [3, Sec. 5.4] on an
algebra containing (at least) £ (ID™) with a product *, fulfilling f *g()i n9=Ff*_nspg
for all f,g € £ (D™). By continuity of the evaluation functionals; the pointwise
complex conjugation and the product *gi()jﬁ, this extends to whole 7 (ID"™). O

However, there are some limitations to the existence of positive linear functionals in
the special case of s =1+ n, i.e. ng") =~ CP", at least if n = 1:
Lemma 6.9 Consider only the case n =1 and s =1+ n = 2. Then the identity

1

2 2 2
Z b(Ei),Ej;red *Eeé,h b(Ej),Ei;red =1+nh (614)
i,5=0

holds for all h € Q, where Ey = (1,0) € Ng™' and E; = (0,1) € Nj .

PROOEF: [Proposition 5.22| yields

2 2 2
b(Ei)’Ej?red *get):l,ﬁ b(E'j),Ei;red
- ey O/ e

(LR (U /R) g BB Brred (T R) (1 /R), - PoFoired
2 2
= (1 - h)b(Ei)+Ej,Ei+Ej;red + hb(E/'J-)7Ej;red
for all ¢,j € {0,1}. By summation over i and j we get

1

E : (2) 2 © _
bEi,Ej;red *red,h bEj,Ei;red -

4,J=0
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2 2 (2)
- (1 - h) (ng)o,QEo;red + 2b(E‘0)+E17E0+E1,I‘ed + b2E172E1,red)

(2)
+ 2h(bE0,Eo;red + bEl,El,red)

Keeping in mind that the reduced monomials are not linearly independent, this can be

simplified: We find that b(2) o Eored T bgl) Byred = jed is the constant 1-function, and
2)

the same is true for their pointwise square (bgg Foired T b( ) Brred). = b%ﬂ 2Bywed T

(2) (2)
2Dy By Byt Eried T P2E, 25, red- g

Proposition 6.10 Consider only the case n = 1 and h € (—oo0, —1). For signature
s = 2, the only linear functional ¢: o/ (CPP') — C, which is positive for the product
*fzzi ny 18 ¢ = 0. But for signature s = 1, the evaluation functionals from

are non-trivial positive linear functionals for the product *Eéé’h on o/ (D).

a )

Consequently, the *-algebra <7 (DY) with product *red and pointwise complex con-

*

jugation as *-involution is not *-isomorphic to the *—algebm o/ (CPPY) with product

fe()j n and pointwise complex conjugation as *-involution.

PrOOF: Let s = 2 and let ¢: &/(CP!) — C be a positive linear functional for
the product *Ei&,n- Then the previous shows that there exist functions

fi,---, f1 € o/ (CP') such that

4
Z S(Fr i fu) = (L +1) = (1 +h) ¢(1) = (L +h) ¢(T*2) , 1) <0

holds because i < —1, so ¢(1) = 0. But then the Cauchy Schwarz inequality applied
to the (possibly degenerate) inner product <7 (CP') > (f,g9) — o(f *i&)h g) € C
shows that

|¢(f)}2 = |¢(T*$<)1,h )’2 < ¢(1 *Ei()ih )(i)(f *redh ) = ¢(1)¢(7*1(r§()i,h ) =0
holds for all f € o (CP!), and therefore ¢ = 0. The rest is clear. O

6.3 Applications

In this section we use the reduced Wick rotation to transfer some of the results
obtained in [17] for the special case of the hyperbolic disc, i.e. s = 1, to general
signatures. Note that one could also check that all the proofs in [17] work for an
arbitrary signature, but the Wick rotation provides a more elegant way to generalize
these results. We will again drop the superscripts (*) most of the time, the following
is valid for every choice of signature s € {1,...,1+n}.

Proposition 6.11 The fundamental monomials cpg with P,Q € Ny form an abso-
lute Schauder basis of &/ (Myea). More precisely, every f € o/ (Myeqa) can be expanded
in a unique way as an absolutely convergent series

f= > frocre (6.15)

P,QENy
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with complex coefficients fp o that fulfil the estimate

[ fllrea,r = Z ‘fP,Q‘TlPHIQI < o0 (6.16)

P,QeNy

for allr € [1,00). Moreover, the topology of </ (Myeq) (i-e. the topology of locally uni-
form convergence of the holomorphic extensions to Mred) can equivalently be described
by these seminorms | f|lrea,r and the coefficients fp can be calculated explicitly by
means of the integral formula

max{|P[,|Q|}—1
1+Zk 19k uk k) n n
frg= 4772 7{ 7{ P (D) O D) d"undv  (6.17)

for all P,Q € N'. Here f € o (Myeq) and f € ﬁ( Mi,eq) satisfies A* 4(f) = f. The
coordinates u and v were defined in Equation (3.13) and C' C C is, in these projective
coordinates, a circle around zero with radius in (0, 1/\/77)

PrOOF: For s =1 this is exactly the statement of Thm. 3.16]. Because the Wick
rotation is a homeomorphic isomorphism and using the generalization to
arbitrary signatures is immediately clear for everything except the integral formula.
In order to prove that holds, we have to check that it is compatible with the
holomorphic isomorphisms a(*)

We have to use superscripts (*) again to indicate the signature s. As u(*)¥oa(®) =
u(1+)F and vk 0 a8) = ")k for all k € {1,...,s — 1} as well as u(®)F o a(®) =
i)k and vk o 8) = jp(+m)+ for all k € {s,...,n} hold, we get

(a(s))*(dnu(s) A dn’lj(s)) _ (_1)n+175 dnu(lJrn) A dn,v(lJrn)
as well as
n
( (S) (1 + Z O'(S w8k (s), ) =1+ ZU,(CHn)u(H")’kU(H")’k
k=1 k=1

and

(a(s))* ((u(s))P+(1,...,1)(v(s))Q+(1,...,1)) _
— iZQZS(Pk+Qk+2) (u(1+n))P+(1,...,1) (v(1+n))Q+(1,...,1)

for all P, € INj. So given fe o( red) then the right-hand side of - ) for f
in signature s, multlphed with the factor i2k=:(FPx+@x)  gives the same result as for
foa® e o(M%)) in signature 1+n. This matches prec1se1y with [Cemma 6.6] which
shows that

) ( (Pi+ (1+n)
red Z fP Q(Pr:d bIjQ red Z fPQ IZk A Qk)b aQtLred
P,QEN? P,QEN?

for all f € & (M (:()1) with expansion coefficients fp . This way, one first sees that
(6.17) holds not only for signature s = 1 but also for s = 1 +n, and then that it even
holds for all s € {1,...,n+ 1}. a
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We would now like to generalize [Corollary 5.23| and [Proposition 5.24] for analytic
functions. Because of the poles in i we only discuss one-sided limits: For some
function f: 2 N IR — C the limit when & approaches 0 from the left is denoted by
limp_,o- f(R) (if it exists).

Proposition 6.12 The limits limy_,o- f*red,ng and limy_,o- % (f*redﬁg—g*red,h f)
exist for any two analytic functions f,g € o/ (Myea). They are given by

lim f*eang=[9g (6.18)
h—0—
and

1
li I re — g *re = yYJre 6.19
Jim (e n g = 9 xrean f) = {fs Threa (6.19)

with the reduced Poisson bracket { -, - }rea 0 Mieq.

Proor: This was proven in |17, Thm. 4.5] in the special case of signature s = 1 for
a product x5 with —h € Q fulfilling f *g()i’h g=f#*_pjpgforall f,ge %(Mgg) and
the corresponding Poisson bracket { -, - }. = 2{ -, - };ca. The statements for arbitrary
signatures s follow immediately from [Theorem 6.4] and [Theorem 6.7} O

Note also that |17, Example 4.2] shows that there exist two functions f,g € &/ (M;eq)
for which f *yeq,r g has non-trivial first order poles at all i = 1/m with m € N. As a
consequence, the result of the above [Proposition 6.12| cannot be generalized to limits
over arbitrary sequences (fig)ren in  with limit 0.

A Symmetrized covariant derivatives

On a smooth manifold M we define the spaces of complex tensor fields
UMY =TT M) and (& @.7) (M) =TA"T*°M oS T“M)

for all k,¢ € Z, as well as the Z-graded algebra .7*(M) = @,cq (M) with
the usual pointwise symmetric tensor product V and the Z2-graded algebra (& ®
LN (M) = @kxez(fszf@)y)k’f(M) with product o given by the combination of the
pointwise antisymmetric and symmetric tensor products. In order to define graded
commutators, a Zs-grading on these two algebras is needed: In the case of .7*(M),
this is the trivial one, in which all elements of .#*(M) have even degree, and on
(o @ #)**(M) we consider the antisymmetric degree ouly, i.e. all elements of (&7 ®
V(M) with k € 27Z,¢ € 7 have even degree and all elements of (& ® .%)%*(M)
with k € 1427, ¢ € Z have odd degree. This way, both .*(M) and (& ® .%)**(M)
are graded commutative. For later use we also define the total degree Deg on (& ®
Z)**(M) by setting

DegQ = (k+£)Q (A1)

for all Q € (o ®.7)%4(M) with k, ¢ € 7. Clearly Deg is a graded derivation of degree
(0,0). Note that .7°(M) = ¢ (M) = (o ®.)%°(M) and that .*(M) is generated
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as a complex algebra by .%(M) @ .7*(M), whereas (o ® .%)**(M) is generated as
a complex algebra by (& @ .%)"°(M) & (o @ S)O(M) & (o @ ) (M),

We will need two other operators, the Koszul differentials: There are unique C-
linear graded derivations 4, * of (& ®.7)**(M) of degree (+1,—1) and (—1, +1) that
fulfil

(lew)=wel as well as Mpel)=1®p, (A.2)

respectively, for all p,w € I'*°(T*®M). In local coordinates, §(p @ w) = >_,(dz’ A
p) @ (Lo /aziw) and 8* (p@w) = 3, (Lg/0.:p) @ (dz' Vw) hold for all p € T>°(A* T*T M)
and w € (S T*CM). Of course, § and §* are not only C-linear but even ¢ (M)-
linear.

Lemma A.1 For the graded commutators we have

[6,0] = 25° = 0, [6%,6%] = 2<5*)2 =0, [6,0%] = [6%,6] = Deg,
[Deg, §] = —[0, Deg] =0 and [Deg, §*] = —[6", Deg] = 0.

PROOF: One checks easily that this holds on (& ® .%)%%(M), (& ® )1%(M) and
(o @)% (M). But graded derivations are already uniquely determined by how they
act on these spaces. a

One can also check that § and 6* commute with pullbacks. That is, whenever ¥ : M —
N is smooth, then 6o U* = ¥* 0§ and §* o U* = ¥* 0§* where U* : (o ®@.7)**(N) —
(o ® S)**(M) denotes the usual pullback.

Next we consider the insertion of vector fields into the antisymmetric and symmet-
ric part: Given X € I'°(T® M), then there exist unique C-linear graded derivations
%, 1% of (& @ )% (M) of degree (—1,0) and (0, —1) that fulfil

S (p@l)={p,X) as well as 1ew) = (w,X), (A.3)

respectively, for all p,w € I'°°(T*CM). Clearly, 1% and (5 are even €°°(M)-linear
and:

Lemma A.2 For the graded commutators we have
(5%, v ] = [tk 3] = [k 9] = [1%,07] = [k, 0] = 0,
[LaX’ 6] =X, [ng, 5*] =15, [Deg7 Lg{] = —tX, [Deg7 Lg{] =—tx
for all XY € €°°(M).

PROOF: These identities are easy to check on (& @ .%)%%(M), (o ® #)O(M) and
(o @ )L M). O

We see that the C-linear span of §, 6*, Deg and all 1% and (% with X € €>°(M) in
the graded Lie algebra of C-linear graded derivations of (& ® .#)**(M) is a graded
Lie subalgebra. Now we can define exterior covariant derivatives:



96 PAPER I: WICK ROTATIONS IN DEFORMATION QUANTIZATION

Definition A.3 A C-linear graded derivation D of (o @ .7)**(M) of degree (+1,0)
that fulfils D(p®1) = dp®1 for all p € T>(A* T*T M) is called an exterior covariant
derivative on M.

For every covariant derivative V on M there exists a unique exterior covariant deriva-
tive DY on M that fulfils

1% DV(1®w)=1® Vxw (A.4)
for all p € T®(A*T*CM), w € #*(M) and X € I'°(TTM). In local coordinates,

DY (p@w) :dp®w—|—2(da:i Ap)® Vo opiw (A.5)

for all p € T(A*T*TM) and w € .#*(M). Conversely, every exterior covariant
derivative D on M determines a unique covariant derivative V? on M that fulfils

(@, VRY) = X (w0, V) — (VRw,Y) = X(.Y)) — 34D &w)  (A6)

for all X,Y € I'°°(TTM) and all w € T°°(T*®M). One can check that V2" = V for
every covariant derivative V on M and that DV’ = D for every exterior covariant
derivative on M. So there is a 1-to-1 correspondence between covariant derivatives
and exterior covariant derivatives.

We say that an exterior covariant derivative D is torsion-free if the associated
covariant derivative VP is torsion-free.

Proposition A.4 An exterior covariant derivative D on M 1is torsion-free if and
only if [D, ] = 0.

PROOF: Denote the torsion of VP by T. We compute

51%[D, 0|1 @ w) = 151% (dw ® 1) + 151%0D(1 @ w)

=2(dw, X A\Y) — 1505 D(1 Q@ w) + 1315 D(1 Q w)

=2(dw, X AY) —156(1 ® Vxw) + 1513 D(1 ® w)

=2(dw, X AY) = (Vxw,Y) + (Vyw, X)

=2(dw, X AY) — X ((w,Y)) + Y ((w, X)) + (w0, VxY) — (w, Vy X)

= (w,—[X, Y]+ VxY - VyX)

= (w,Txy).
In particular, if [D,d] = 0, then V¥ is torsion-free. Conversely, if VP is torsion-free,
then [D, 6] vanishes on (& ® .)%1(M) by the above calculation. But [D,4] is a

C-linear graded derivation of (& ®.%)®*(M) of degree (+2,—1), so [D,d] = 0 in this
case. d

If g € .#2(M) is real and non-degenerate, then there exists a unique exterior covariant
derivative D on M that fulfils D(1®g) = 0 = [D, ¢], namely the one corresponding to
the Levi-Civita connection. This exterior Levi-Civita connection will be interesting
for us:
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Lemma A.5 Let M be a smooth manifold, g € T°°(S2T*M) a real and non-degen-
erate symmetric tensor with Levi-Civita connection V, and ®: M — M a diffeo-
morphism. If Vx®*(g) = 0 for all X € T(TCM), then the exterior Levi-Civita
connection D associated to g commutes with the pullback ®*, i.e. D®*(Q2) = &*(DQ)
for all Q e (o @ )% (M).

ProoOF: It suffices to show that D': (# ®.7)** (M) — (& @.L)** (M), Q2 — D'Q =
(@~ 1)*(D®*(Q)) is an exterior covariant derivative and fulfils D'(1®g) = 0 = [D’, ]
It is easy to see that D’ is a C-linear graded derivation of (& ® .)**(M) of degree
(+1,0) that fulfils D'(p® 1) = dp® 1 for all p € T°°(A®* T*T M), hence an exterior
covariant derivative. It commutes with ¢ (in the graded sense) because § commutes
with D and all pullbacks. Finally, D’(1 ® g) holds because Vx®*(g) = 0 for all
X eI>(T®M). O

Note that the condition V®*(g) = 0 is fulfilled e.g. if ®*(g) = g, but also more
generally if ®*(g) = \g with A € C.

Proposition A.6 Let M be a smooth manifold endowed with a free and proper action
- >« of a Lie group G and a G-invariant exterior covariant derivative D on M
(i.e. D commutes with the action of G on (&7 ® #)**(M) by pullbacks like in the
Previous . Moreover, write Pr: M — M/G for the canonical projection
onto the quotient manifold M/G and assume we have chosen a smooth G-invariant

complement =¥ = UPGME;';j of ker(T Pr), i.e. a linear subbundle of TV M such that
TC®M = E® @ ker(TPr) and such that 23, = (T,(- <9))(EF) for all p € M. Let
Oz: I'®(TYM) — I'°(T® M) be the corresponding projection on this subbundle =
and ©%: T°°(T*Y M) — T°°(T*% M) its dual projection. Then

Pr* (DyeaQ) = (02)2* 19 D Pr*(Q) (A7)

for all Q € (o7 @ L)Y M/G), k,t € Ny defines an exterior covariant derivative on
M/G. If D is torsion-free, then Dyeq also remains torsion-free.

PROOF: Since D and =€ are G-invariant, it follows that (©%)®*+1+0DPr*(Q) is
G-invariant, so does describe a well-defined C-linear endomorphism Dyeq of
(o @.7)**(M/G) of degree (1,0) and one can also check that D,eq is again a graded
derivation. Using that TPr o ©z = T Pr one sees that D,eq(p® 1) = dp® 1 holds for
all p € T°(A*T*“M). As § commutes with pullbacks and ©%, one also finds that

Dieq (graded) commutes with § if D does. O

Next we consider the graded commutator of an exterior covariant derivative D on a
smooth manifold M with ¢*, which is a C-linear graded derivation of (&7 ®.%)** (M)
of degree (0,+1) and satisfies [D,6*](f) = 6*Df = 1 @ df for all f € €>*°(M). So
[D, §*] restricts to a C-linear derivation D™ of .*(M) of degree 1.

Definition A.7 A C-linear derivation A of /*(M) of degree 1 that fulfils Af = df
forall f € €°°(M) is called a symmetrized covariant derivative, and for every exterior
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covariant derivative D of M we define its induced symmetrized covariant derivative
D™ S(M) — S*(M) by

1® D¥"w :=[D,§*](1 ® w) (A.8)
for allw e .S*(M).

Given an exterior covariant derivative D, we compute that its induced symmetrized
covariant derivative D™ fulfils
1®ytx DY"w = 15.0%[D, 6*](1 @ w)

=151%0"D(1 @ w)

=151 D(1Qw) + 1565 D(1 @ w)

=1® 1y VRw+ 1815 D(1 @ w)

=1® (Lyv)’@w + LXV}[/)W)

=1® ((VRw,Y) + (VPw, X))
for all w € T>°(T*TM). So in local coordinates, D% w = da’ V V5 gui-

Conversely, every C-linear derivation A of .*(M) that fulfils Af = df for all
f € €°°(M) defines a covariant derivative V2 on M by

<v§w, V) = (Aw, X VY)+ %(X((w, Y)) =Y ((w, X)) — (w, [X,Y])) (A.9)

for all w € T°(T*CM) and all X,V € T°°(T®M). This covariant derivative V4
then is torsion-free because
(VRw,Y) = (VPw, X) = X((w,Y)) = Y ({w, X)) = (w, [X,Y]) (A.10)
and fulfils
(VEW,Y) +(VBw, X) = 2(Aw, X VY) = 1y 1x Aw. (A.11)

Consequently there is a 1-to-1-correspondence between torsion-free covariant deriva-
tives (or their exterior covariant derivatives) and symmetrized covariant derivatives.
For the reduction of symmetrized covariant derivatives we get:

Proposition A.8 Let M, G, D, Pr and = be as in [Proposition A.6 Then DY},

the symmetrized covariant derivative on M /G constructed out of the reduced exterior
covariant derivative D.cq, fulfils

Pr* (Djlf'w) = (0%)°* ) D™ Pr(w) (A.12)
for all w € S*(M/G), k € No.

PROOF: As ¢* commutes with the pullback Pr* and the projection ©% this follows
immediately from (A.7). O
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Being an endomorphism of .*(M), a symmetrized covariant derivative can be iter-
ated. Given k € No, Xo € T®(S°TVM), ..., X € T>(S* TP M), then

k
CO(M) 3 Y (DY™)'f,X,) € € (M)

r=0

is a differential operator of degree k. Conversely, by induction over their symbols,
one can show that all differential operators of degree k on ¥°° (M) are of this form.
So symmetrized covariant derivatives allow to describe differential operators rather
explicitly but without requiring a choice of coordinates.

So far, all results in the appendix would also make sense in a real setting. The
decomposition of a covariant derivative on a complex manifold into holomorphic and
antiholomorphic parts, which we introduce now, requires to use the complexified
tangent space. Let M be a complex manifold, so that its complexified tangent and
cotangent space split into (1,0) and (0, 1) parts. Consequently

SHM) = P P (M) (A.13)
p+q=k
and
(7 @) M) = P (o @.7) P02 (1) (A.14)
pt+q=k
r+s=~L
also split into subspaces
FPD (M) =T (P TEO N v 2T O D) (A.15)

(o @ )P rs) (pf)
=T (AP T O AN TOD M @ 8" TEON v S T+ODN) . (A.16)

Note that § and §* are compatible with this splitting in the sense that
5((ﬁ®y)(p,q),(ns)(M)) C
C (o @) PHLD =L (V) @ (o @ .7)PatDms=D (A1) (A7)

5" (e @ )P (1) ©
C (o @ L) PO+ (V) @ (of ® )P4~ DD (A1) (A18)

hold for all p,q,r, s € Ng. For exterior covariant derivatives, there is a similar com-
patibility condition:

Definition A.9 Let M be a complex manifold and D an exterior covariant derivative
on M. Then D is said to be compatible with the complex structure if

D((%(@y)(w),(m)(M)) C (d®y)(p+1,q),(r78)(M)@(ﬂ(@y)(mﬂ)mw(M) (A.19)

holds for all p,q,7,s € Ny.
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If D is the exterior covariant derivative associated to a covariant derivative V, then it
follows from Equations and that D is compatible with the complex struc-
ture if and only if V x preserves the holomorphic and antiholomorphic parts of the tan-
gent bundle for all X € I'°(TCC'*™), i.e. Vx (I°(THOCHH)) C 1o (TEHOCH)
and Vy (T(TODCH7)) € 1o(TODE"). As an example, this is well-known to
be the case for the Levi-Civita covariant derivative on a Kahler manifold.

Using it is easy to check that condition (A.19) implies that the symmetrized
covariant derivative fulfils D™ (79 (M)) C .7PHLO (M) @ .7 @9tV (M),

Definition A.10 Let M be a complex manifold and D an exterior covariant deriva-
tive compatible with the complex structure. Then we define

D1, Digp: (o @ 2)** (M) — (o @ .7)** (M) (A.20)
and
D;%T,D%n: S(M) = (M) (A.21)
as the (1,0) and (0, 1)-components of D and D™, respectively, i.e.
Dhol = Z O*Pt+1a).(r5) n@*(Pa).(rs) (A.22)
p,q,m,sENg
DH = Z @*7(p7q+1)7(7‘,8)D@*,(p,qL(T,S) (A‘23)
p,q,7,s€N(
and
DY = Z @* (P19 psymg*.(p.a) (A.24)
P,q€No
sym ,__ *,(p,q+1 sym oy, (P,
DY = Z @*(P.a+1) psymg,(p,q) (A.25)
p,q€No

with projections ©*PD:(5). (of @ F) @ (&O(M) = (of @ L) PD3) (M) and
0w . Z(®9)(\) — P9 (M) on graded subspaces.

Because of the required compatibility with the complex structure one gets D = Dy +

. sym __ )Sym sym
Dy and D =D+ DH . Furthermore,

[Dhol, 0*](1 @ w) = 1 ® Dy¥'w (A.26)

holds for all w € #*(M), and analogously for the antiholomorphic part. Conse-
quently:

Proposition A.11 Let M be a complex manifold, D an exterior covariant deriva-
tive on M that is compatible with the complex structure, and D™ its symmetrized
covariant derivative. Then

6*,(k,0)(Dsym)kf _ (D;S(;liﬂ)kf and @*,(O,k)(Dsym)kf = (D%n)kf (A27)
hold for all f € €°°(M) and all k € Ny, with ©5*9) as in the previous
tion A 10,

Proor: This follows immediately from the decomposition D™ = D" + D22 [

ol
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Abstract

For any semisimple coadjoint orbit O of a complex connected semisimple Lie
group G we obtain a family of strict G-invariant products %5 on the space of
holomorphic functions on 0. For any semisimple coadjoint orbit O of a real
connected semisimple Lie group GG, we obtain strict G-invariant products %5 on
a space A(O) of certain analytic functions on O by restriction. A(O) endowed
with one of the products %5 is a G-Fréchet algebra, and the formal expansion
of the products around % = 0 determines a formal deformation quantization of
O, which is of Wick type if G is compact. We study a generalization of a Wick
rotation, which provides isomorphisms between the quantizations obtained
for different real orbits with the same complexification. Our construction
relies on an explicit computation of the canonical element of the Shapovalov
pairing between generalized Verma modules, and complex analytic results on
the extension of holomorphic functions.
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1 Introduction

The quantization problem in physics asks how to associate a quantum system to a
classical mechanical system, such that the classical system can be recovered from the
quantum system in a classical limit. Since both systems can be studied by their observ-
able algebras, a first step is to quantize the classical observable algebra. This algebra
is usually the Poisson algebra €>°(M) of smooth functions on a Poisson manifold M.
The observable algebra of a quantum mechanical system is some non-commutative
*~algebra A, which in many cases is obtained from a C*-algebra. In a second step,
the states of the quantum mechanical system can be obtained as normalized positive
linear functionals on A. To define their superposition, one has to represent A on a
(pre) Hilbert space, so that the superposition of two vector states can be defined as
the vector state corresponding to the sum of the two vectors.

Formal deformation quantization, as introduced in , has proven to be a fruitful
theory for studying some aspects of the quantization problem. One views Planck’s
constant & as a formal parameter v and tries to find so-called formal star products
on A = ¢°°(M)[[v]], which may be thought of as the infinite jet of a full solution to
the quantization problem at i = 0. These star products are associative C[[v]|-bilinear
products for which 1 € (M) is a unit and which satisfy the correct classical
limit. To be more precise, if f,g € €°(M) and f*g = > 2 v"Cr(f,g) with
operators C,.: €°(M)x€>°(M) — €°°(M), then one requires Cj to be the pointwise
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multiplication, Co(f,g) = fg, and that the quantization is in the direction of the
Poisson bracket, C1(f,g9) — Ci(g, f) = i{f, g}. Usually one also requires the C, to be
bidifferential operators, so that x is local and can be restricted to open subsets of M.
Using formal power series means on the one hand that we cannot substitute v with
the real value of Planck’s constant as required for direct physical applications, but on
the other hand transfers the quantization problem to algebra by neglecting analytic
aspects, such as convergence of the power series. Consequently, many powerful tools
become available for its study, and existence and classification results were obtained
in [5,14,/181|36] for symplectic manifolds, whereas in the more general case of Poisson
manifolds they follow from Kontsevich’s formality theorem [28]. One can also study
formal star products that are equivariant with respect to the action of a Lie group,
where the classification follows for example from [15].

A complete solution of the quantization problem consists of a Hilbert space H
together with a quantization map that associates a quantum observable, usually a
self-adjoint operator on H, to any classical observable. This motivates the definition
of a strict quantization [30,34,35/37], which is some field of “nice” *-algebras Ay (over
C) depending “nicely” on a parameter /i ranging over some subset of C, with A4,
being a completion of the classical observable algebra and the deformation being in
the direction of the Poisson bracket. However, strict quantizations are much harder to
understand than formal deformation quantizations. There are many examples of strict
quantizations in different contexts, and therefore there are several ways to formalize
the above definition, i.e. specifying the parameter set and what “nice” actually meanﬂ
No general existence results are known, and a classification seems completely hopeless
due to the increased complexity.

There are two prominent constructions of strict quantizations. The first is due to
Rieffel [37] who, using oscillatory integrals, deforms the product on a Fréchet alge-
bra endowed with an isometric action of R?. If the original algebra is a C*-algebra,
then Rieffel constructs a C*-algebraic quantization. A generalization to negatively
curved Kahlerian Lie groups can be found in [6]. The second construction, due to
Natsume, Nest, and Peter [35], essentially glues convergent versions of the Weyl prod-
uct on charts to obtain a C*-algebraic quantization. However, both methods work
only for some symplectic manifolds and fail for example for the 2-sphere with its
SO(3)-invariant symplectic structure |38]. They also make crucial use of the finite
dimensionality of the classical mechanical system, so it remains unclear how to apply
them to quantum field theories, despite such field theories fitting into the framework
of formal deformation quantization.

Another approach to strict quantization was proposed by Beiser and Waldmann in
[3l1440]. They start with formal deformation quantizations, which are well-understood,
and try to find subalgebras on which the formal power series converge. Such subal-
gebras are usually defined using additional geometric structures, and can be com-
pleted with respect to a topology in which the product is continuous. This approach
was carried out explicitly for star products of exponential type on possibly infinite-
dimensional vector spaces [39], for the linear Poisson structure on the dual of a Lie
algebra [17], and for the hyperbolic disc D™ using an invariant star product obtained

2We attempted to give a definition that captures the most relevant cases in |Deﬁnition Intro.2.28l
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via phase space reduction [29]. See also [41] for a survey. In this paper, we extend this
approach to semisimple coadjoint orbits of connected semisimple Lie groups, which
gives a much larger class of geometrically interesting examples.

Coadjoint orbits play an important role in different areas of mathematics. In
the representation theory of unitary Lie groups they appear e.g. in the Kirillov orbit
method [27], while in symplectic geometry they are related to momentum maps. Ba-
sic examples of coadjoint orbits are hyperbolic discs and complex projective spaces,
including the 2-sphere. Any coadjoint orbit O of a Lie group G has a canonical
G-invariant symplectic form, and if O is semisimple and G is compact, connected,
and semisimple then there is a unique compatible G-invariant complex structure that
makes O a Kédhler manifold.

Constructions of star products on coadjoint orbits are due to many authors [1}
8H111|19,25,|26]. In this paper, we focus on semisimple coadjoint orbits of connected
semisimple Lie groups, and the algebraic construction of Alekseev—Lachowska [1]. The
canonical element F) of the Shapovalov pairing between certain generalized Verma
modules satisfies an associativity equation generalizing that of a Drinfel’d twist. This
twist induces a formal product for holomorphic functions on a complex orbit and
a formal star product for smooth functions on a real orbit, and those products are
compatible by restriction. It is very convenient that we can pass from one setting to
the other: We will mainly work in the complex setting, which is more convenient for
obtaining continuity estimates, and restrict to the real setting only in the very end.

Our first result uses methods developed by Ostapenko [32] to obtain an explicit
formula for the canonical element of the Shapovalov pairing for a semisimple Lie
algebra g:

Main Theorem I The Shapovalov pairing (-, -)Y: % (2") x % (n~) — C is non-
degenerate if A\ € A, and in this case its canonical element F\ € % (WF) Q% (R™) is
given by
Fr= ) p¥(aw) "7 (Xu) © 73 (Vo). (1.1)
weW

The notation is explained in detail in For now, it suffices to mention that
the Shapovalov pairing is a pairing between the universal enveloping algebras of two
nilpotent Lie subalgebras fi* of g, depending on a parameter A € g*. The sum is over
a set, of words W related to the root system of g, the p¥ (o) are non-zero coefficients
which are defined by an explicit formula, X,, and Y,, are elements of % g and ﬁf maps
these elements to % (™). The element F},, which induces the star product, is obtained
by rescaling A, and doing so the coefficients p§ /h(ozw)_1 will depend rationally on 7,
with a countable set of poles P that accumulate only at 0. It seems as if explicit
formulas for deformation quantizations received special attention by various authors,
and provides such a formula that works in great generality.

As mentioned above, the formal expansion of F} induces formal products in a
complex and a real setting. Furthermore, we also obtain a family of actual (non-
formal) products for holomorphic polynomial functions in the complex setting and
for polynomial functions in the real setting, parametrized by C\ P, since only finitely
many elements of the infinite sum defining F}, are non-zero on polynomials. All these
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products are G-invariant, and under some conditions on the Cartan subalgebra used
in the construction they are also Hermitian, meaning that f x; g = g*ﬁf. In the real
setting and for a compact semisimple connected Lie group G, the formal star product
is of Wick type [24] with respect to the Kéhler complex structure on the coadjoint
orbit, meaning that it derives the first argument only in holomorphic directions and
the second argument only in antiholomorphic directions.

The next major step after constructing the star product is to use the explicit
formulas to prove its continuity in the complex setting with respect to the topology of
locally uniform convergence. This topology is locally convex and we can extend the
product to a continuous product on the completion of the holomorphic polynomials.
Using methods from analytic geometry we identify this completion with the space of
holomorphic functions.

Main Theorem II For any semisimple coadjoint orbit O of a connected semisimple
complex Lie group G, there is a family of products %5 : Hol(O) x Hol(Q) — Hol(O) for
h € C\ P, where every product %5 is G-invariant and continuous with respect to the

topology of locally uniform convergence. The dependence of ¥, on h is holomorphic.

This result is certainly interesting in its own right. However, as mentioned above,
we can also restrict it to real coadjoint orbits © C ©. Denote by A(O) the class
of functions on O that extend to holomorphic functions on O (if a function extends,
its extension is unique), which contains the polynomials. We define the topology of
extended locally uniform convergence on A(O) by saying that a sequence of func-
tions in A(Q) converges if the corresponding sequence of extensions converges locally

uniformly, so that A(O) is homeomorphic to Hol(O).

Main Theorem III For any semisimple coadjoint orbit O of a connected semisimple
real Lie group G, there is a family of product *p,: A(0) x A(0) — A(Q) for h € C\ P,
where every product * is G-invariant and continuous with respect to the topology of
extended locally uniform convergence. The dependence of x5 on h is holomorphic. The
formal expansion of x; around 0 is a formal star product deforming the G-invariant
symplectic form of O.

For the hyperbolic disc the quantum algebra (A(ID™),*p) agrees with the algebra
obtained in [29] while for the 2-sphere, (A($?), x5,) is the algebra considered in [16].
Since we constructed a quantization of the holomorphic functions on a complex

coadjoint orbit and the restriction Hol(Q) — A(O) is an isomorphism, the quantiza-
tions of different real orbits with the same complexification are related:

Main Theorem IV IfO and O’ are coadjoint orbits of real semisimple connected Lie
groups with the same complezification and through one common semisimple element,
then the algebras (A(O),*s) and (A(0'),*}) are isomorphic.

This isomorphism generalizes the classical Wick rotation, which can be interpreted
as an isomorphism between the polynomial algebras Pol(CP") and Pol(ID™). How-
ever, this isomorphism does not necessarily respect the star involutions with which
the algebras A(Q) are equipped. In other words, the algebras A(OQ) and A(O’) are
isomorphic as algebras, but not necessarily as *-algebras.
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In order to apply our quantization to physics, we should represent the Fréchet
algebras (A(O), #5) on a Hilbert space. Given a positive linear functional we can use
the GNS representation to do so. For a formal star product of Wick type all point
evaluation functionals are formally positive. However, formal positivity means only
that the first non-vanishing order is positive and therefore, as in this case, might not
survive the passage to strict products (where the contribution of higher orders can
dominate the contribution of the first order). For certain coadjoint orbits we will
prove that point evaluations stay positive.

One aspect that we do not discuss in this work is the relation to geometric or
Berezin—Toeplitz quantization [8-11]. These theories construct a quantization by
studying holomorphic sections of a quantizing line bundle over the manifold M. This
line bundle needs to satisfy some integrality condition, which for compact M means
that only countably many values of %, accumulating at 0, are allowed. The algebra
&> (M) is, in the limit & — 0, approximated by finite dimensional matrix algebras.
The construction of Alekseev—Lachowska coincides with another more geometric con-
struction of star products on semisimple coadjoint orbits by Karabegov [16}[26], if 7 is
not a pole. However, Karabegov’s construction still makes sense at the poles, where
it coincides with (a variant of) the Berezin—Toeplitz quantization [26]. In this sense
our infinite dimensional Fréchet algebras (A(Q),*p) interpolate between the finite
dimensional Berezin—Toeplitz algebras. It could be very interesting to study this in
greater detail.

Contents

In [Section 2| we recall some well-known facts about coadjoint orbits. This includes the
realizability of coadjoint orbits as orbits of matrix Lie groups, and a characterization
of invariant multidifferential operators on homogeneous spaces. In we intro-
duce the Shapovalov pairing of (generalized) Verma modules and derive an explicit
formula for its canonical element. From this, we obtain a product for holomorphic
polynomials on complex coadjoint orbits. In we show that this product is
continuous with respect to the topology of locally uniform convergence, so that we can
extend it to the completion, which consists of all holomorphic functions on the orbit.
Finally, we restrict our results to real coadjoint orbits in [Section 5| We will determine
additional properties of the star products obtained in this way (e.g. being of Wick
type or of standard ordered type), study positive linear functionals, and investigate
isomorphisms of the algebras obtained for different real forms of the same complex

coadjoint orbit. In we give some remaining proofs and more details on
complex structures.
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Notation

In the whole paper G is either a real or complex Lie group, g denotes the Lie algebra
of G and % g denotes the universal enveloplng algebra of g. In 3] and [Sec]
G is always complex. In | G refers to a real Lie group and G to a
complex1ﬁcat10n of G. K denotes a compact real Lie group. Coadjoint orbits through
A € g* are denoted by O,.

We write €>° (M) for the smooth complex-valued functions on a manifold M. If
M is a real manifold, TM denotes its (real) tangent bundle (so sections of TM are
derivations of the algebra of real-valued smooth functions on M). The complexifica-
tion of TM is denoted by T M (so sections of T¥ M are derivations of € (M)). If M
is a complex manifold, then the holomorphic tangent bundle is denoted by T M.

2 Preliminaries

In this section we summarize some results that are needed in the rest of this article:
We review the definition of coadjoint orbits and their realizability as orbits of matrix
Lie groups in[Subsection 2.1] In[Subsection 2.2|we introduce invariant multidifferential
operators on homogeneous spaces.

2.1 Coadjoint orbits

Let G be a real or complex Lie group with Lie algebra g. We denote the adjoint
action of G on g by Ad: G — End(g). For any g € G, Ad, = Ad(yg) is the tangent
map of the conjugation G > x +— grg~! € G by g. Its differential ad: g — end(g) is
given by the Lie bracket, adx (Y) = [X,Y]. The coadjoint action Ad*: G — End(g*)
of G on the dual g* of g is defined by Ad;§ =¢oAd,-: for € g*.

The coadjoint orbit Oy of G through an element A € g* is defined as

Ox={{€g"|{=Ad,\ for some g € G} . (2.1)

It is well-known that Oy = G/G¢ where £ € 0, is any point on the coadjoint orbit and
Ge ={g € G| Ad, & = £} is the stabilizer subgroup of €. If G is a real (complex) Lie
group, there is a unique smooth (complex) manifold structure on G/G¢ that makes
the projection 7: G — G/G¢ a smooth (holomorphic) submersion, and we use it to
define the structure of a smooth (complex) manifold on 0. It does not depend on
the choice of £ € O,.

Fix a basis e,...,e, of g and let C”“J be the structure constants with respect
to this basis, i.e. [el,e]] Sory C’fjek Then {f,g}(&) = 3.7 ke 1Ckf(ek)gef7 g‘i
defines a linear Poisson structure on g*, where f,g € ¥°°(g*) and where view the
e; as global linear coordinates on g*. The following proposition is well-known, see
e.g. [12, Example 1.1.3].

Proposition 2.1 If the Lie group G is connected, then the coadjoint orbits of G
are precisely the symplectic leaves of this linear Poisson structure. In particular, all
connected Lie groups with the same Lie algebra have the same coadjoint orbits.
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Corollary 2.2 If the Lie group G is semisimple and connected, then G and its image
under Ad: G — End(g) have the same coadjoint orbits.

PROOF: Since g is semisimple, it has trivial center and therefore ad: g — end(g) is
injective. Consequently, G and its image in End(g) have the same Lie algebra. Since
both are connected, the result follows by applying the previous proposition. O

It is easy to show that G and its image under Ad do not only have the same coadjoint
orbits, but that Ad: G — End(g) also intertwines the actions of G and its image
on the coadjoint orbits. Since the image of G under Ad is a matrix Lie group, we
can therefore, when studying coadjoint orbits of connected semisimple Lie groups,
assume without loss of generality that such a Lie group is a matrix Lie group. Using
the argument provided in |20, Theorem 9] we can even assume that G is a closed
matrix Lie group.

For X € g, denote the fundamental vector field of X for the coadjoint action
by XOA}& = |, _ Al (ix) & where & € Oy, Note that the map g/ge — TeOa,
X — Xo, | ¢ is an isomorphism, where g¢ denotes the Lie algebra of G¢. Consequently,

wiks(Xo,, Yo, )|, = £(X,Y]) (2.2)

determines a well-defined 2-form on Oy, which is called the Kirillov-Kostant-Souriau
form. One can show that wkks is symplectic and G-invariant. By symplectic we mean
that wkks is closed and that wKKS‘éz TeO) x T¢Ox — kis k-bilinear, antisymmetric,
and non-degenerate for all ¢ € Oy, where k is either R or C, depending on whether
G is real or complex.

For a semisimple Lie algebra g, the Killing form B: g x g — k is non-degenerate,
giving an isomorphism °: g — g*, X + X° := B(X, -). We denote its inverse by
. g* — g. In the complex case we say that A € g* is semisimple if ad,: € end(g) is
diagonalisable and in the real case A € g* is semisimple if the complex linear extension
of A\ to the complexification of g is semisimple. A coadjoint orbit O, is semisimple if
A is semisimple.

Proposition 2.3 Let G be a complex connected semisimple Lie group and X € g* be
semisimple. Then G is connected.

ProoOF: The Lie algebra spanned by A integrates to a connected commutative Lie
subgroup T’ of G, and since \* is semisimple, all elements of 7’ are diagonalisable in
the adjoint representation. There is a smallest closed complex Lie group T containing
T’, that can be obtained as follows: Take the closure of 7" (which is a real Lie group),
take the Lie algebra of this closure (which is a real Lie subalgebra of g), take the
complex Lie algebra spanned by it, integrate this Lie algebra to a connected Lie
subgroup of G, and possibly repeat these steps. T is still connected and commutative,
and all its elements are diagonalisable in the adjoint representation, so 7" is a complex
torus in G. Its centralizer is exactly G, and centralizers of tori are connected. O

Note that the statement is also true for a real compact connected semisimple Lie
group K, but might fail if the compactness assumption is dropped.
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We denote the smooth functions on G that are invariant under the action of G
from the right by €>°(G)*. That is, f € €°>(G)%* if and only if f € €°°(G) and
f(gg") = f(g) for all g € G and ¢’ € G,. There is an algebra isomorphism

T E°(G)Gr) = €°(R), frn'fi=for (2.3)

and for a complex Lie group, this isomorphism restricts to an isomorphism on holo-
morphic functions. We denote the inverse by 7,: € (G)% — €=(G/G\).

Remark 2.4 This article is written mainly from a differential geometric perspective.
Note however, that any complex connected semisimple Lie group G has a unique struc-
ture of an algebraic group, see Theorem 6.3 and the preceding corollary in Chapter
1 of [31]. Any holomorphic representation of G is polynomial. Consequently, if G is
realized as a subgroup of GLy(C) it is automatically closed. The coadjoint action
G x g* — g* is a morphism of algebraic varieties, and coadjoint orbits of G are smooth
subvarieties of g*. A coadjoint orbit of G is closed in the Zariski topology if and only
if it is semisimple, see [13, Theorem 5.4]. In particular, semisimple coadjoint orbits
of complex connected semisimple Lie groups are affine algebraic varieties.

Note however, that this is not necessarily true for real connected semisimple Lie
groups (not even if they are linear). It is still true that real connected semisimple
linear Lie groups and their coadjoint orbits are connected components (with respect
to the usual topology) of affine algebraic varieties.

2.2 Invariant holomorphic k-differential operators

In the whole subsection G is a complex Lie group, H is a closed complex Lie subgroup
of G, and k > 1 is an integer. We present some results on holomorphic G-invariant
k-differential operators on the homogeneous space G/H, in particular we construct
a bijection between the set (% g/%g-H)®*)H and the set of such operators. The
results seem to be well-known, but proofs are hard to find in the literature.

A k-differential operator D (see [Appendix A 1] for a short review of the definition)
on a manifold M endowed with an action of a Lie group G is said to be invariant under
G if ¢5(Df) = D((¢%)** f) for all f € €°(M)* and all g € G. Here ¢,: M — M is
the diffeomorphism of M given by the action of a fixed element g € G, and the upper
star denotes the pullback. We write k—DiﬁOp% (M) for the space of holomorphic G-
invariant k-differential operators on a complex manifold M. A k-differential operator
on G is said to be left-invariant if it is invariant with respect to the left action L: G x
G =G, (9,9") = 99" = Lg(g).

Let M be a complex manifold with complex structure I: TM — TM. For a vector
field V € I'>°(TM) its holomorphic part is V(10 = 1(V —iIV) € I°(THOM). Let
g be the Lie algebra of G. For any X € g define the left-invariant vector field

d
XIEft|g — &L&:Og exp(tX) e I°(TQG). (2.4)

Its holomorphic part X'¢f:(1.0) = 1(xleft —j(1X)left) € Poo(T1OG) induces a holo-
morphic left-invariant 1-differential operator f — X0 f on G. Since the map
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()left(10): g — Too(T(LO)G) is a Lie algebra homomorphism, it induces an algebra
homomorphism (- )!(1.0): 7/ g — DiffOp,(G).

In the following we extend various maps to k-fold products and still denote them
by the same symbol,

Ady: (% 9)®F — (% 9)®", U @ ... @u > Adguy ® ... @ Adyuy,
(2.5a)
T ER(G/H)E = ((@) ), (frooos fi) = (7" fr, ™ fi) . (2.5D)
()10 (7 g)®* — k-DiffOp§(G),
UL @ .. @ up = ((fiye o, fr) > eSO f o0 gy (2.5¢)

Proposition 2.5 The map (- )10 (% g)®* — k-DiffOp%(G) is an isomorphism.

PrOOF: See [Xppondix A1) :

Next, we want to describe holomorphic G-invariant k-differential operators on the
homogeneous space G/H. Let H be a closed Lie subgroup of G with Lie algebra b,
and let Zg-bh C %g be the left ideal generated by bh. Note that (Zg/%g - h)®F is
1som0rph1c to (%g)®%/I where = I, +---+ Iy and I; = (%g)® V@ %g-h®
(% g)® %=1 is a left ideal in (% g)®*. Introduce the set
Uy = {6 € (%)% | 4] € (g/%g-b)®* is H-invariant}
={ie(%g)®" |Adyi—idecIforallhec H}. (2.6)

Here the action of H on (% g)®* is the diagonal action defined in (2.5a]).
Lemma 2.6 Let @i € Uy, 7€ I, and f € (€°°(G))E. Then we have
FrOOF 0 gnd @00 Fego@)H . (2.7)

PROOF: Let Y € h and f € €>(G)*. Then we compute

(Y f)(g9) = %L:O Hgexp(tY)) = 5;|,_f(9) = 0.

By using that Y1ef(1.0) = L(yleft _j(jy)left) this implies that Y10 f = 0, and
therefore also #°f(10) f = 0 for all 7 € I and f € (¥°°(G)H)*. If X € g, then

(X1t £)(gh) = (i dt‘ Flgexp(tAdy X)) = ((Ady X) f)(g)

for all f € €°(G)", g € G, and h € H. Consequently, we obtain (X'¢f:(1.0) f)(gh) =
((Ady, X)'ef(1.0) £)(g), and extending to the universal enveloping algebra and to tensor
products yields (@19 £)(gh) = ((Ady, @)1 f)(g) for all @ € (% g)®F and f €
(€= (G)H)*. If @ € Uiy, then together with the first part we obtain

o (ghexp(tX))

(@100 F)(gh) = ((Ady )0 f)(g) =
_ (ﬁleft, 1,0)f)( ) (( il — U)left,(l,o)f_-')(g) _ (ﬁleft,(l,o)]?)(g) 0O
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Because of this lemma we can define
U: Uiy — Map(6=(G/H)*, ¢°(G/H)), V(@)f = m. (@00 (z* ).

Since 7* and 7, are algebra homomorphisms, it follows that \i!(ﬁ) satisfies essentially
the same commutation relations with the operator of multiplying a component by
a smooth function than @19 and consequently ¥(@) is k-differential and of the
same order than @' (10) (see the definition of k-differential operators given in
nition A.1). Moreover, ¥ (%) is G-invariant, because 7* and 7, are G-equivariant and
oY) s Giinvariant. Since 7: G — G/H is a holomorphic map, it follows that
U(@) is holomorphic, and ¥ really maps into k—DiffOp%(G/H). The map ¥ descends
to a map

U: (%9/%g-5)*")" — k-DiffOp; (G/H) (2.8)

because ¥(I) = 0 according to the previous lemma.

Proposition 2.7 The map ¥ defined in (2.8)) is an isomorphism.
PROOF: The proof is given in O

The last result of this subsection gives a description of the k-differential operator
U([@]) on the coadjoint orbit without using extensions to G. Let S be the antipode
of % g and extend the Lie algebra homomorphism g 3 X — X¢, € I'*°(T0,) defined

just before (2.2)) to an algebra homomorphism % g — DiffOp(0,).

Proposition 2.8 Let Oy = G/Gy be a coadjoint orbit. For @ = u1 ® ... uy € Upny
and f = (f1,...,fr) € €(0))* we have

—

U([@) fA; A) = (S(Adgun))y " LA A) - (S(Adgu) s fu(AdS N) . (2.9)

PROOF: Defining the Lie algebra homomorphism (- )*ght: g — '°(TQq), X > Xright

with Xright|g = |, exp(—tX)g and extending to % g as before, one checks that

uleftf(g) _ Xieft o X;eftf(g)

d d
== e t1 Xq)... t; X
dtil=0 " dt; tj:Of(gexp( 1X1) - exp(t; X))
d d
= - e t1 Ady Xq) ... t; Ady X
dtq lty=0  dt; tj:of(eXp( 1 Adg X1) ... exp(t; Adg X;)g)
= (_Adg Xj)right (= Adg Xl)rightf(g)
= (S(Adg )" f(g)

for u = X1...X; € %g and similarly «'*(19 f(g) = (S(Ad, u))" 8" 10 f(g). Fur-
thermore, we have

X 0 o) = G Flempl—t3)0) =

d

dt

oo Adap(—ex) Adg A) = Xo, f(Adg A) = 77(Xo, f)(9)
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for all X € g, implying that X &bt (1.0) o+ — w*oX&’O), and therefore that u!ie(1,0)o

™ =x*o ug;o) for all w € % g. Finally,

—

(@) f(Ady ) = @07 f)(g)

= a0 (7 1) (g) - w00 (2% f) (g)
= (S(Adguy)) O (7 £1)(g) - ..+ (S(Adgug)) 10 (7 ) (g)
= (S(Adgu)g” fr(Ady N) - (S(Adyun)g " fe(AdN). O

3 Quantizing complex coadjoint orbits

In this section we construct a formal associative product for holomorphic functions on
a semisimple coadjoint orbit of a complex connected semisimple Lie group, and a strict
associative product for polynomials. These products are induced by a twist, which is
constructed using the Shapovalov pairing between generalized Verma modules. For
the convenience of the reader we first consider the special case of regular semisimple
orbits in where we introduce the Shapovalov pairing between Verma
modules and compute its canonical element. In we generalize these
results to non-regular semisimple orbits. In we describe the induced

formal and strict products in detail. We consider an example in
Later, in we will use the results of this section to obtain star products

on semisimple coadjoint orbits of real connected semisimple Lie groups. From the
example considered in this section, we will then obtain strict quantizations of the
hyperbolic disc and the complex projective space.

3.1 Verma modules and the Shapovalov pairing

In this subsection we introduce the Shapovalov pairing between Verma modules. In
case this pairing is non-degenerate, we derive an explicit formula for its canonical
element, following [32]. A similar formula in the more general setting of quantum
groups was obtained recently in [33]. The results allow us to quantize regular orbits.

Let g be a complex semisimple Lie algebra with Cartan subalgebra h. Recall
that a root is a non-zero element a € h* such that g* = {X € g | adg X =
a(H)X for all H € h} contains a non-zero element. Denote the set of roots by A and
choose an ordering (i.e. a subset A" of positive roots such that, setting A~ := —A*,
we have ATUA™ = A, ATN A~ = (), and such that if the sum of positive roots is a
root, then it is positive). Denote the simple roots (i.e. elements of AT that cannot be
written as a sum of two elements of AT) by . Let n™ and n~ be the nilpotent Lie
subalgebras of g spanned by the positive respectively negative root spaces and define
bt :=h®nT and b~ := h ®n~ (the direct sum is as vector spaces, the Lie algebra
structure on b* C g is obtained by restriction from g).

Note that 0 is not a root. However, it is convenient to introduce the notation g° :=
h. Then g is (AU{0})-graded, in the sense that g = @,c (o) 8* and [g%,¢°] C g7
for any a, f € AU{0}. Consequently the tensor algebra Tg is ZA-graded, where the
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so-called root lattice ZA is the set of linear combinations of roots. The two-sided ideal
generated by elements of the form X®@Y -Y®@X—[X,Y] with X, Y € gis homogeneous
and therefore the universal enveloping algebra g = Tg/(X QY - Y ® X — [X,Y]) is
also ZA-graded. Denote the degree of a homogeneous element w € % g by d(w) € ZA.

Given a linear functional A € b*, the formula H >z = A(H)z makes C a left
h-module, and since h is commutative also a right h-module. We can extend this to
a left or right b*-module by noting that b* = h ® n* and letting n* act trivially.
Denote the corresponding left % (b*)-module by €5 and the right % (b~)-module by
C3. Define the Verma modules

My =g D (b+) (D-)\i_, M, = Uy (b)) (D:)\ and My =Cj S (b-) 02?9)
3.1
Note that M)y and M, are left % g-modules, whereas M7 is a right % g-module. M)
is the most general left % g-module of highest weight A, meaning that any other left
% g-module of highest weight A can be obtained as a quotient of M. M is the most
general left % g-module of lowest weight —\.
There are canonical isomorphisms M} @44 Mx = C} Qo) %9 Qg (p+) Cx =
C3 ® o € = C since the left and right h-module structures on C coincide.

Definition 3.1 The pairing (-, -)\: My x My — C defined by (x,y) — & Qq 4y is
called the Shapovalov pairing between M5 and M.

In the following it will be convenient to have alternative descriptions of My, M,
and M3. Let {Xi,...,X;} be a basis of n™, {Y3,...,Y,} be a basis of n~, and
{H1,...,H,} be a basis of h. Since g =nT @ h@n~ (as vector spaces) the Poincaré—
Birkhoff-Witt theorem implies that

(YH XK | IKeNE JeNy} and {XFH/Y!|I,KeNE JeN;L  (3.2)

are bases for % g. Here we use the multiindex notation Y/ := Y ...v;" (and
similarly for H and X). Define maps

T Ug— W), m (YIHIXE) = XH)" .. NH)Y 6k, (3.3a)
U= AW, w{(XEHIY!) = (<AH) L (AH) X RS, (3.3b)
e Ug— (), I (YTHIXE) = NH) . NH,) X6, (3.3¢)
where 0o is 1 if K = (0,...,0) and is 0 otherwise. Note that 75 and 7% are

independent of the choice of bases Fix non-zero vectors 1 € (D and 1 € C} (thinking
of € as a vector space, this choice is not canonical).

Lemma 3.2 The maps - @ 1: Z(n™) = My, v~ v® 1 and - @ 1: (n") —
My, u — u®1 define isomorphisms of left % (n~)-modules and % (n*)-modules,
respectively. The map 1® - : % (nt) — M3, u— 1®u defines an isomorphism of right
% (w)-modules. The % g-module structures on % (w*) obtained by transferring the
module structures on the Verma modules with these isomorphisms are given explicitly

by
DN UGXUMT) > U(n7), (w,v) = wpy vi=m, (W), (3.4a)
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pT: Ugx U (nt) = % (nt), w,u) — wbT ui= 7] (wu), 3.4b
A A A

G UM ) x Ug— U ("), (u, w) = u < w = 7} (uw) . (3.4c)

Furthermore, S(w >y u) = S(u) <} S(w), where S denotes the antipode of % g. Or,
in other words, S: % (n*t) — % (n") is an isomorphism from the left % g-module
(% (nF),>1) to the right % g-module (% (nt),<}) over the map S: U g — X g.

PRrROOF: One checks easily that the maps My = Z(n™), w® z1 — z -7, (w) and
My =% (), w®zl— 27 (w) as well as M} — % (nT), 21 ®@ w — z - 75 (w) are
all well-defined and inverses of the maps in the statement of the lemma. Consequently
we have wpy v = (- ® 1) H(wv® 1) = 7 (wv), and and follow similarly.
Finally, 7508 = Sox, so S(w>} u) = Son (wu) = 75 0 S(wu) = 75(S(u)S(w)) =
S(u) <5 S(w). O

The pairing of the left % g-modules (% (n*), D;\t) obtained from the Shapovalov pairing

by composing with the isomorphisms (% (n~),>)) ~2L, M, and (% (nt),>)) LN

(% (nh),<3) ELEN M of the previous lemma, is
(W) xU) = C,  (u,v) = (u, )y = (1@ S(u),v®1)i. (3.5)

In order to compute (u,v), for u € % (n™) and v € % (n~) one needs to write S(u)v €
% g in the form Y, vihjul with u, € % (n*t), v, € % (w~) and hj € %h. The pairing
is then given by summing A(h}) for those summands that have v, = u;, = 1. This is
made more precise in the next lemma. Define 7y = 7, o7} = 7y om, : g — C,
where C is identified with C1 C % (n*) and we have implicitly used the inclusion
% (wF) — % g when composing the maps.

Lemma 3.3 Foru € % (n") and v € % (n™) the pairing (-, - ) defined in (3.5) can
be computed as
(u,v)x = mA(S(uw)v). (3.6)

It is U g-invariant, in the sense that (w i u,v)y = (u, S(w) >y v)\ for u € % (nt),

vE UMW) and w € %g. The pairing respects the degree d defined in the beginning
of this section, meaning that (u,v)y = 0 for homogeneous elements u € % (n") and
v € U (") with d(u) # —d(v). Furthermore, if d(u) = —d(v), then

(U, VAl -y =S) >y v and (u,v)algy @) =S@) > u. (3.7)

PROOF: By definition (u,v)x = 1®4 (5~ S(u)v @4 (p+)1. So to prove it suffices
to check that 104 (p—) W R4 (p+)1 = mA(w) for all w € % g, which one can easily verify
on the basis {Y/H' XX | I, K € N, J € Ni}. The % g-invariance follows by noting
that (-, )} is % g-invariant, meaning (zw,y)\ = (z,wy)) for x € M} and y € M),
and using the isomorphisms of the previous lemma. For homogenous u € % (n™)
and v € Z(n~) with d(u) # —d(v) it follows that S(u)v is also homogeneous of
degree d(u) + d(v) # 0 and therefore m\(S(u)v) = 0. Finally, if d(u) = —d(v),
then d(S(u)v) = 0 and (u,v)xlgy m-) = TA(S(W)v)ly m-) = 7y (S(u)v) = S(u) >y v,
implying the first equality of The second one follows from applying S on
both sides of (u,v)xlg@m+) = TA(S(WV)lgy @) = TE(S(W)v) = S(r¥ (S(v)u)) =
S(S(v) >y u). O
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If the pairing (-, - ), is non-degenerate, we can pick bases {u;};en of % (n') and
{v;}jen of % (n~) consisting of homogeneous elements with respect to d and satisfying
(uj,vj)» = 8;;. Then the element Fy = > ° u; ® v; € Z(nT)@% (n™) is called
the canonical element of the pairing. It is independent of the choice of bases. By
% (nT)® %% (n~) we mean the completion of the tensor product with respect to the
ZA-grading d defined in the beginning of this subsection, which is needed to make
sense of the infinite sum. The following lemma is a standard statement when working
with canonical elements.

Lemma 3.4 Assume that (-, )5 is non-degenerate, and let Fy = > .°° u; ® v; €
U (nT) Q% (n~) be its canonical element. Then

Zuz(u,vi),\ =u and Z%‘(Ui,@,\ =0 (3.8)
i=1 i=1

hold for all w € % (n%) and all v € % (n™), and Fy is uniquely determined by this
property.

Note that (u,v;) and (u;,v) are non-zero for only finitely many indices i, so that the
sums in are both finite. The pairing (-, - ), is non-degenerate precisely when the
Verma modules are irreducible, but we will not need this below. In order to determine
F), explicitly, we need to introduce some more notation.

Denote the Killing form of g by B. Since g is semisimple, B is non-degenerate
on g. Extending linear functionals on § by 0 on the root spaces g%, we may view h*
as a subspace of g*. Since B restricts to zero on h x g* for any a € A, it follows
that B is non-degenerate on h and that the maps ®: g — g* and *: g* — g defined
in |Subsection 2.1 restrict to mutually inverse isomorphisms "= h*and ¥ h* = h.
For a, B € b*, let (a, B) :== B(at, 5%).

Denote the positive roots by o, ..., ax. For every positive root a; € AT choose
elements X; = X,, € g% and YV; =Y,, = X_,, € g~ such that B(X;,Y;) = 1.
Then we have [X;,Y;] = af since for all H € b,

B(1X;, Y], H) = B(X;,[Y;, H]) = a;(H)B(X;,Y;) = a;(H) = B(al, H)

and the Killing form is non-degenerate on h. Note that [ag,Xi] = ai(ag)Xi =

(v, ;) X; and similarly [ag,Yi] = —(,)Y;, 80 X = 2(a;,0;) 71 X;, Y/ = Y; and
H! = 2(cv, o)L satisfy the commutation relations [X!,Y/] = H], [H}, X!] = 2X]
and [H/,Y/] = —2Y; of the usual generators of slo(C), the special linear Lie algebra

in 2 dimensions.

Let p = %ZaeA+ a be the half-sum of all positive roots. Denote non-negative
integral linear combinations of positive roots by NgA™. For A € h* fixed, and p € bh*
define the number

palh) = 5o 10) = (o) = ). (39

Recall that for a representation p: g — V and p € h* we define V# = {v € V |
o(H)v = u(H)v for all H € h}. If V# =£ {0}, then we call 1 a weight and any v € V#
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is called a weight vector of weight p. V is called a weight module if V' = @uef)* VE.
A highest weight module is a weight module generated by a vector v € V satisfying
Xov =0 for all « € AT, Tt is said to be of highest weight p if v € V.

Lemma 3.5 (Ostapenko, |32, Lemma 2|) Let V be a highest weight module of
highest weight X, assume p € NoA*t, and let v € VA=#. Then

_p)\</1')’U: Z YaXaU~ (310)
acAt

ProOOF: Choose an orthonormal basis {Hi,..., H,} of h with respect to the Killing
form. The Casimir element,

c= Y (XoYo+YaXe)+ Z HiH; = Y (2YoXo +af) + Z H;H;

aEAT i=1 aeAt i=1

acts as a scalar on V because V is generated by a highest weight vector and c is central
in % g. Evaluating it on a highest weight vector the Y, X, -part vanishes and we obtain
that ¢ acts as multiplication by >+ (a, A) + D00 A(H)A(H;) = (2p, A) 4+ (A, N).
Therefore

(2p, Mo+ (A, AN)v =2 Z YoXov+ 20, A —p)ov+ (A — pu, A — p)o

aceAt

O

holds for any v € V*~#, and rearranging this equation proves the lemma.

Let W be the set of words with letters from {1,...,k}. For any w = (w1, ..., w),|) €
W, we define wPP = (w)y, ..., w1), wi_j = (Wi,...,w;), Xy = X, ... Xu,,, €
U Y)Yy =Yy, ... Yy, €% (") and o =y, + -+ Q- We use w;_j =0
if j <i, Xp:=1,Y) =1 and ay = 0. Furthermore let

[w|-1
py (1) = H palp — oy ) - (3.11)
i=0
We call a set T' of words a tree if w = (wy, ..., w,|) € T implies that w,. ; € T for all

i=0,...,Jw|—=1and (w,ws,..., wWy-1,2) € T forall x € {1,... k}. Seej@l
for a visualization of a tree. For a tree T" we denote by maxT the set of elements
w € T such that w # w}_, for any v’ € T and any i € {0,...,|w’| — 1}. Finally a
tree is said to be p-admissible if py(pu— ) # 0 for all w € T\ max T, or equivalently
it py(u) #0 for all w e T

Lemma 3.6 (Ostapenko, [32, Theorem 3]) Let V be a highest weight module of
highest weight X\, assume p € NoAY1, and let v € V =*. For a p-admissible tree T we
have

v=" Y (=DM (n) Y Xy (3.12)

wemax T

PRrROOF: Apply the previous lemma repeatedly. O
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Figure 3.1: Left: The roots of sl3(C). The Cartan subalgebra h of sl3(C) is 2-
dimensional and there are six 1-dimensional root spaces. The picture shows the real
subspace of h* spanned by the roots. The positive roots are denoted by oy, as and a3
and drawn in green, negative roots are drawn in red. Middle: The weights in a highest
weight module of highest weight A. The picture shows again the real subspace of h*
spanned by the roots. Weights are indicated by black dots, and ¢ = 3a; + 2a3. Note
that since ) is a highest weight, the spaces VA1, ATz and VA3 must all be triv-
ial. Right: Visualization of the tree T = {0, 1,2,3,11,12,13,21,22,23,131,132,133}.
The elements of maxT = {3,11,12,21,22,23,131,132,133} are indicated by black
dots. Words starting with a 1 are coloured red, words starting with a 2 blue, and
words starting with a 3 green.

Lemma 3.7 LetV be a lowest weight module of lowest weight — X, assume pn € NoA™T,
and let v € VAT Then Y cn+ XaYov = —pa(p)v and for a p-admissible tree T
we have

v = Z (_1)|w‘p§](/}'>_1Xwa°PP’U . (313)
wEmax T
PROOF: Similar to the proof of [Lemma 3.5| and [Lemma 3.6l O
Define the set
A={xeh" | pr(p) #0 Yu € NoAT\ {0}}. (3.14)

Proposition 3.8 The Shapovalov pairing (-, -)x: Z(n") x % (n~) — C is non-
degenerate for A € A, and in this case its canonical element Fy € % (nt) Q% (n™) is
given by

|w]

Fy= > p¥(ow) ' Xe@Ye= > []rrlcw, ) "' Xu® Y. (3.15)
weWw weW i=1

PRrROOF: We check that F) satisfies the property given in We decompose
v E XUMT)as v =3 cxa+V—p Where v_, is homogeneous of degree —p with

respect to the ZA-grading. For u € NoA™T let W, be the set of words w € W
satisfying «,, = p. Then

Z p?(aw)leuKXw,v)A = Z p?(aw)ilyﬂf >y S(Xw) by voq, =
weWw weWw
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Y o

Figure 3.2: The tree T used in the proof of for g = sl3(C) and
= 2a; + a3. Elements of the tree starting with 1, 2 and 3 are coloured red, blue
and green, respectively. Note that all weight spaces of maximal elements of this tree
are trivial, except for V*. All non-maximal weight spaces are non-trivial.

Z Z ‘wl )_IYw D; Xyorp l>; Voypy = Z Vo =7.

HENA+ weEW,, HENQA+

The first equality holds because Yy, (X, v)x = Yo &) ((Xw, v—ay)rlam-)) = Yo >y
S(Xw) >y v—q, by|[Lemma 3.3l The second equality is true by basic manipulations.
The third equality follows from [Lemma 3.6| because we can rewrite the sum over all
w € W, as a sum over max 1 for a u-admissible tree 1" as follows: Define

T ={0}U{weW|3w eW,and 0 <i<|w|—1such that wy_,-1 =w]_;},

which is the smallest tree containing W,,. Since A € A this tree is y-admissible. Clearly
W, € maxT. Furthermore, any element w € maxT satisfies either o, = i, so that
w € Wy, or there does not exist any w’ € W, and i € {0,...,[w'|} with w = w]| _;,
so that p — ayy & NoA™ and therefore X oopv_,, = 0.

Similarly, for u =7 cx a+ U € % (nT) with d(u,,) = we compute that

Zpk ) X (1, V) A—Zpk ) X 5T S(Ya) bY ta, =
weWw weWw

Z Z |w| 1X l>>\ Yiore l>>\ Uy = Z Uy = U,

HENQA+ wEW,, HENGA+

using X (4, Yo )r = X 0F ((tay, . Yo)ala ) = Xw > S(Ye) &Y ta,, and that the
sum over w € W, can be rewritten as a sum over maximal elements of a tree T in a
similar way than before. O

Using the inclusion % (n™) &% (n~) — (#g)®? and passing to the quotient, we
can map the element F\ from (3.15) to (% g/%g - H)®2. Note that g - b is a



3. QUANTIZING COMPLEX COADJOINT ORBITS 121

homogeneous ideal in % g with respect to the degree d, so the quotient Zg/%g-h
is still graded. The completed tensor product is defined with respect to this grading.
The action of h on (% g)®?2 given by Hb (w ® w') = adg w ® v’ + w ® ady w’ with
H € b and w,w € % g stays well-defined on the quotient and preserves the degree, so
extends uniquely to a continuous action on the completed tensor product. Denote the
coproduct of the Hopf algebra % g by A. It is defined by extending the assignment
g2 X —» X®14+10 X € g% g to an algebra homomorphism A: % g — Y gRQU g.

Proposition 3.9 (Alekseev—Lachowska [1]) Let A € A. Then the element F) €
(%g)%g-H)®? is h-invariant and satisfies

((d AYF)1® Fy= ((AQid)F)\)Fy® 1 (3.16)
in (%s/%g-b)%°.
PROOF: See the proof of [Theorem 3.23 O
Using the results of elements of (% g/% ¢ -b)®%)H determine bidif-

ferential operators on a complex coadjoint orbit for which gy = h. Such orbits are of
maximal dimension among all coadjoint orbits and called regular. Note that H is au-
tomatically connected by so h-invariance of F implies H-invariance,
but F) is only an element of the completed tensor product. So applying the construc-
tion from naively gives a sum of bidifferential operators of increasing
orders. To make sense of this sum, we can either introduce a formal parameter v in
the construction in such a way that we obtain a formal power series of bidifferential
operators, or we can restrict ourselves to applying these operators to some class of
polynomials, for which only finitely many of the bidifferential operators appearing in
the sum give a non-zero contribution.

We will now proceed as follows: In we generalize the construction
of F\ to work for arbitrary stabilizers g, (and not just b). In we will

give details on how to construct bidifferential operators out of F), both in the formal
and polynomial setting mentioned above.

3.2 Generalization to non-regular orbits

The aim of this subsection is to generalize the results of the last subsection to non-
regular semisimple coadjoint orbits. To achieve this, we need to replace h by a possibly
larger stabilizer g, and define a generalization of the Shapovalov pairing. When this
pairing is non-degenerate, we derive an explicit formula for its canonical element,
which satisfies (3.16)).

Let g be a complex semisimple Lie algebra acting under the coadjoint action, i.e.
the action dual to the adjoint action, on its dual g*. We assume that A\ € g* is
semisimple (as defined in with stabilizer gy = {X € g | ad%x A = 0}.
We fix a Cartan subalgebra b containing A* (which is possible since \ is semisimple)
and denote the corresponding root system by A. Since any H € h commutes with A,
it follows that adj; A = \([—H, -]) = —B(\},[H, -]) = —B([\, H], -) = 0, s0 h C ga.
We let

A ={acA|(a,)\)=0} and A={aecA|(a,))#0}=A\A". (3.17)
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One checks easily that gy = h®&@, s 9% Given an ordering on A with A* being the
set of positive respectively negative roots, define A* = A*NAand (A)* = ATNA".
Furthermore, let a+ = Doca+ 9¢ and bt =g\ ®at.

Definition 3.10 An ordering of A is called invariant if for any a € At and g e A
such that a + B is again a root, this root o+ 3 is in AT,

Note that since the sum of two roots in A’ is again in A’ (if it is a root), it is
automatic that o+ € A. The important part of the previous definition is that a+
should again be positive. See [Figure 3.3|for an example of invariant and non-invariant
orderings.

Lemma 3.11 An ordering of A is invariant if and only if for any o, € AT with
a+ B €A wehave o+ 3 € AT,

In the condition of the lemma it is automatic that o+ 3 is positive and the important
part is that it lies in A.

PROOF: Assume the condition of the lemma is false, i.e. o, € At and a43 € A\A*.
Since a+ 3 is positive we must then have a+ 8 € A’. Consequently a+ (—(a+f8)) =
-5 ¢ A‘*‘, so the ordering is not invariant.

Conversely, if the ordering is not invariant, then we can find a € At and 8 €

A’ such that o + 8 € A\ A*. Then we must have a + € A~ and therefore
a+ (—(a+8)) = —B ¢ AT, so the condition of the lemma is not fulfilled. O

Intuitively the invariance of an ordering means that roots in A’ are close to being
simple, or more precisely that they are linear combinations of simple roots in A’.
Indeed, if « € (A")*, then « is a non-negative linear combination of simple roots.
By the lemma at least one of those simple roots, say o, must be in A’, so a = o or
a—o € (AT and we can apply induction.

Corollary 3.12 If the ordering of A is invariant, then i+ and b* are both Lie sub-
algebras of g. Moreover, [gx, 0] C 2T and [gy, bT] C bT.

PROOF: The condition in the previous lemma says precisely that [n*,7n%] C A%, i.e.
that n* is a Lie subalgebra of g. The defining property of an invariant ordering means
that [gy,n*] C ¥, The statements for b* are then clear. O

Definition 3.13 We say an ordering is standard if there is a set S C C\ {0}, closed
under addition and satisfying SN (=S) =0, SU(=S) = C\ {0} such that a € A is
positive if and only if (o, ) € S.

Standard invariant orderings exist always since we can construct them as follows.
First, take any ordering on the set A’ (meaning a subset (A’)* such that if the sum of
two elements of (A")* is in A/, then it is in (A’)™ and such that for (A’)~ = —(A")*
we have (A")T U (A)~ = A’ and (A)* N (A’)~ = 0). Then choose a set S that
is closed under addition and satisfies S N (—S) = 0 and SU (=S) = C\ {0}, e.g.
S ={2e€ C\{0} | Re(z) >0o0rz€iR"}. Let « € A be positive if a € (A")T or
(o, A) € S.
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Figure 3.3: Invariant and non-invariant orderings. As in the left picture of
the roots of sl3(C) are shown. Simple roots are encircled. Roots in A’ are drawn
with blue dashed lines. Roots in A are drawn in green if they are positive, and in red
if they are negative. The fundamental Weyl chamber has a light green background.
A regular orbit of SL3(C) is shown on the left, the other two pictures are of non-
regular orbits. In the right picture the ordering on A is not invariant, since adding
the negative root in A’ (the lower blue dashed line) to one of the positive roots (a
green arrow) gives a negative root (a red arrow). The ordering in the middle picture is
invariant and standard, the ordering in the left picture is invariant, but not standard.
It would be standard if A was in the fundamental Weyl chamber.

For real coadjoint orbits standard invariant orderings are the ones which induce
star products of pseudo Wick type (under some further assumptions, see
, and therefore the orderings we are mainly interested in. However, the
construction below works also for other (possibly non-standard) invariant orderings.

Before generalizing the results of the last subsection, we would like to mention the
following technical lemma for later use:

Lemma 3.14 Let g be a semisimple Lie algebra, let A € g* be semisimple, and let b
be a Cartan subalgebra of g containing \f. Assume that we have chosen an invariant
ordering defining sets A*, A, and A’ as above. Then there is a constant M € N such
that for any m € N the sum of m positive roots in A and at least Mm positive roots
in (AT is not in NgAT.

PROOF: Label the simple roots by o1,...,0, such that the first r’ simple roots
O1,...,0p are in A’ and the remaining simple roots are in A. Label all roots in
A" by a1,...,aj. Then there are unique non- negative integers c¢; € Ny such that
aj =31 1@ o;. Set M’ = max;. o iy 23:1 s, M" = max;co; 7y S, 41 cJ and
M=MM"+1.

Since a; € AT we have Y7, 5 > 1, andzl 1;<M’<M’Zl i C

for any j € {1,..., %} Note that any element § € NoA* can be written uniquely
as B Z: 1 Blo; with 8° € Np, and the coefficients satisfy the same inequality

Z 1ﬂZ<M/Zi r+15

Recall that any root in (A’)" is a linear combination of simple roots in (A’)*. So
if Y0, d'o; € (A')*, then d* =0 for all i = r' +1,...,r. Therefore, if v is the sum
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of m roots from A* and at least Mm roots from (A’ )", and v = >°1_, v'o;, then
My <M'M”m<Mm<Zl 7%, 80 4 cannot be in NoA*. O

Note that for a regular coadjoint orbit, we have A’ = (). Consequently A= A gr=Dh,
At = nt and n~ = n~. In this case every ordering is invariant, and the generalized
Shapovalov pairing, that we will introduce now, coincides with the Shapovalov pairing
introduced in the last subsection. Since gy = h when A’ = (), we usually denote an
element of gy by H.

Let A € g3 be the restriction of A € g* to gx. Then A([H', H]) = adj; A(H') =0
for all H, H' € gy, so H> 2z = A\(H)z makes C a left or right gy-module. Extending
trivially along a* gives a left or right b*-module, and we denote the corresponding
left % (b%)-module by €7 and the right % (b~ )-module by ©%. Define the generalized
Verma modules

B ~ ~ (3.18)
My and M, are left % g-modules, My is a right % g-module. Most of the results of
the previous subsection have obvious analogues in this setting.

Let {X,...,X;} beabasisof at, {Y1,...,Y;} beabasisof i~, and {Hy, ..., Hr}
be a basis of gy. Since g = 1T @ g, ® 1~ the Poincaré-Birkhoff-Witt theorem implies
that

(YIH' XX |I,K e Nk, Je N} and {XXH'Y'|I,K e NE, JeNI} (3.19)
are bases for % g. Define maps
i Ue—>ww7), w7, (YIHIXE) = NH)" . NH) Y 0ko,  (3.20a)

i wg—w®@h), FI(XEHIYT) = (-ANH) . (MNH) X6,
(3.20b)

e wg—w@T),  A(YTHIXE) = XNH) . ONH)TT XK. (3.20¢)

Note that they are compatible with the maps =), 71':(, and 73 in the sense that
Ty Oy = Ty, ﬁf o 7rj\L = ﬁj\L, and 7} omy = 73. On the left hand sides, we
are implicitly using the inclusion % (n*) — %g. Note that this inclusion is not a
% g-module map.

Lemma 3.15 The maps - @ 1: (™) — My, v —» v ® 1 and - @ 1: %Z () —
M;, u — u ® 1 define isomorphisms of left % (n~)-modules and % (7" )-modules,
respectively. The map 1 ® -: % (nt) — M5, u — 1 ® u is an isomorphism of right
% (wF)-modules. The % g-module structures on % ("F) obtained by transferring the
module structures on the generalized Verma modules with these isomorphisms are
given explicitly by

Sy UgxUWM™) > UMW), (w,v) = wby vi=m, (w), (3.21a)

SYiwgx w(wT) = % (w'), (w,u) = wbY u =7} (wu), (3.21Db)

K@) x Ug— U (@), (u,w) = u )y w=7Tx(uw). (3.21¢)
Furthermore, S(w 5y u) = S(u) 3} S(w), where S denotes the antipode of % g.
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PROOF: Similar to the proof of [Lemma 3.2 0
Note that since % (%) is a % g-module, we must have
it W) = wst (0 55 1) = (w) 55 1= 7 (ww) (3.22)
and
(@ (w)w') = 73 (ww') (3.23)

for all w,w’ € %g. In particular, this implies that the map 73 |% (nt) C Y (nt) —
4 (ni) is a % g-module homomorphism (with respect to the module structures given
by 5% and 55). Indeed, for the plus case we have

T (wey u) = 77 (wu) = 7 (wu) = 7 (wifu) = ws] 7 u

for all w € g and v € Z(n") and the minus case is similar. Define g)\ =
@ae(A')i g® = g\ Nnt. Note that %g~gf\t = {w D/\ X|weXgX € g/\} is a
% g-submodule of % (n*). Since ﬁf is a map of % g-modules and vanishes on gA,
Ug - gf is in its kernel.

Lemma 3.16 The induced maps 7y : % (n*)/%g - 95 — % (W*) are isomorphisms
of % g-modules.

PRrOOF: It is easy to check that the quotient map induced by the inclusion % (%) —
% (n*t) defines an inverse. a
és before tliere are isomorphisms Z\Z; Qg M, = @; D (5-) g Qo (5+) @:\ ~
Cy ®a(g,) Cx = C, which we use to define the Shapovalov pairings (-, '>;/: M3 x
My — C, (z,y) — (z,y)Y =2 ®y and
(VW 2EN)x2m) - C, (wo)y =12 Swu),ve1)y =11 Suwvel.
(3.24)
In the same way as in one proves that this pairing can be computed by

(u,v)Y = ma(S(u)v) . (3.25)
Note that 7, o7} = 7} o7, = m} om, = 7y, so there is no need to introduce a 7y.
Lemma 3.17 Letu € % (n*) and v € % (n~). Then we have (7 u, 7yv)y = (u,v)x.
In particular (-, =0.

>A|%(n+)x%g.g; = (- '>>‘|6Z/g~g§><%(n*)

Proor: Using (3.22)) twice, we compute

Define the set

A={xeb* | palp) #0 Vo e NgAT\ {0}}. (3.26)
Furthermore, let W be the set of words w € W such that Qu, 1w € NoA+ for all
i =1,...,|w|. Since 7} (X,) = 0 and 7, (Y,,) = 0 for w € W \ W, the following
theorem is not surprising.
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o

Figure 3.4: The tree T used in the proof of for g = sl3(C) and p =
2a1 4+ a3. Compare this with Elements of the tree starting with 1, 2
and 3 are coloured red, blue and green, respectively. Only the weight spaces marked
with filled dots are non-trivial (but might have a different dimension than in the
case where A’ = (), and all weight spaces marked with circles only contain 0. In
particular, the weight spaces at maximal elements of the tree are trivial, except for
V. All non-maximal weight spaces are non-trivial.

Theorem 3.18 Let A\ € A. Then the Shapovalov pairing (-, -)y: % (RT)x % (7~) —
C is non-degenerate and its canonical element F\ € % ("T) @ % (v™) is given by

Fy = Z pg’f(aw)_lﬁ;\r(Xw) ® 7y (Yo) = Z HPA(O‘wi...M)_lﬁ)T(Xw) @7y (Yu).
weW weW =1
v v (3.27)

PROOF: It suffices to prove that Y, i p¥ () 17y (Yo ) (7Y (Xo), 0)y = © for all
0 € () and that P () 17 (X)) (@, 7y (Vi)Y = @ for all @ € % (nh)
by using an analogue of Let v € % (n~) be the image of ¢ under the

inclusion % (n~) — % (n~), so that 7y (v) = 0. Assume that v = >\ A+ v—p is
the weight decomposition of v. Then

Z pg\u(aw)_lﬁ';(ywxﬁj\r(xw)aﬁ>:

= > P o) Ty (Yar) (X, )
weW

(x pff(aw>-1Yw<Xw,v_aw>A)

wew

( Z Z \wl )*1Yw D; Xorp [>X U—M) ,

pENGA+ wew,

I
|

I
:]z



3. QUANTIZING COMPLEX COADJOINT ORBITS 127

where W, = {w € W | a,, = p}. We claim that there is an admissible tree 7' and
v' € %g-g, such that

Z (*1)Iw‘p§?(0¢w)71Yw [>>T qum) D; Voy =
weEW,
=o' + Z \wl NCHER >y Xuworr By U_y

wemax T

which would finish the proof by using Indeed, let
T={0}u{weW|3uw €W, and 0 <i < |w|—1such that wy_j,_; =w] ;}

be the smallest tree containing Wu- Since A € A, this tree is admissible. Furthermore
Wu C maxT and any element w € maxT satisfies exactly one of the following two
conditions. Either «,, = p, so that w € Wu appears in the sum on the left hand side
of the above equation. Or u — «,, ¢ NoA™, so that Xwerrv—,, would have to be of
weight o, — p ¢ —NoA+ and does therefore either vanish or lie in % g - g, . The
statement for « is proven similarly. O

Using the inclusions % (") — % g and the projection %g — % g/% g - g, we map
Fyto (%g/%g - gA)®2 Note that, as before, % g - g» is a homogeneous ideal in % g,
so the grading of % g stays well- deﬁned on the quotient. The action of gy on (% g)®?
also passes to the quotient and extends to a continuous action on the completed tensor
product.

Theorem 3.19 (Alekseev—Lachowska [1]) Let A € A. Then the element Fy €
(Ug)%g-9x)%? is gr-invariant and satisfies

((d® A)F)1@ Fy = (A® id)F))Fy ® 1 (3.28)

n (Ug|Usg - g\)*?

ProoF: Note that the g-invariance of the Shapovalov pairing (proven similarly as

in [Lemma 3.3) implies that F\ € % (n")® % (7~) is also g-invariant. Then F) €
(%g/%g-9x)%? is ga-invariant since the map % (nF) x % (") — (U g/%g - 9))®?
is gx-equivariant. Equation (3.28) is proven in [1, Section 4]. O

It will be convenient in the following to write F as a sum of elements that are all
invariant under g.

Lemma 3.20 Let A € A. Then there is a partition of W into finite subsets Wy,
{ € Ng such that

Fae= Y p¥(aw) ' (Xw) @ 75 (V) (3.29)

18 gx-tnvariant.
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Proor: It will be convenient to introduce a different grading d’ on g, for which g, is
of degree 0. To this end, let b and the root spaces of simple roots in A’ be of degree 0,
and let the root spaces of simple roots in A be of degree 1. Since any root is a unique
linear combination of simple roots this assignment extends to a grading on g. More
explicitly, if o1,...,0, € A are the simple roots, with o1,...,0, € A’, then the root
space of a root o = Y\, ¢'o; is of degree d'(a) = Y7, . Since gy is spanned by
b and the root spaces of roots in A’, and since the invariance of the ordering implies
that any root in A’ is a linear combination of simple roots in A’, it follows that every
element of g, is homogeneous of degree 0. This grading is coarser than the grading
given by d, in the sense that the graded components with respect to the new grading
d' are direct sums of the graded components with respect to d. The restrictions of
the maps 75 to % (n*) are homogeneous of degree 0 with respect to (the restriction
of) the Z-grading on % g induced by d'.

For w € W set d'(w) = d'(w,) + -+ + d'(aw,,,), and define Wy ={weW|
d'(w) = £}. Tt follows from r that W, is finite for every £. The elements
F ¢ defined from W, as in (3.29) have a nice description in terms of the grading
d'. Since all graded components of a+ resp. i~ are of degree > 1 resp. < —1, d’
induces a grading of % (n*) ® % (™) by Ny x (—Ny). Using the homogeneity of ¥,
it follows directly from the definition of W, that F} ¢ is precisely the component of
F) of degree (¢, —{) with respect to this grading. Since g, is of degree 0, the action
of gy on % (W) @ % (n~) preserves the graded components, and the gy-invariance of
F implies that all the graded components F , must also be gy-invariant. O

3.3 The induced formal and strict products

In this subsection we construct associative products from the element F)\ obtained at
the end of the last subsection. We will rescale A in order to introduce a parameter
playing the role of Planck’s constant in the construction. Then we would like to
use the results of to obtain bidifferential operators from (the rescaled)
F\. However, since F), is only in the completed tensor product, applying these results
naively would give a sum of bidifferential operators of increasing orders and we have to
deal with its convergence. There are essentially two solutions to this problem: Firstly,
we can take a formal expansion in the parameter h, which will give us a well-defined
power series of bidifferential operators of increasing order. Secondly, we can restrict
ourselves to applying these operators only to some polynomial functions, for which
only finitely many terms of the infinite sum give a non-zero contribution. We discuss
both approaches in detail, starting with the formal one.
Let us first introduce the rescaling. Define the set

Py ={0}U{heC\ {0} |iN/h ¢ A}, (3.30)

and for i € C\ Py set Fy, = Fiyp, and Fp o = Fi\/p,0, where Fiy/; was computed
in and Fiy/p ¢ was defined in Note that gix/n = ga, so
Fy, € (Zg]/%g-9x)®%)% holds for all h € C\ Py. Furthermore, the projections
T /hl oy ey ? % (W) — % (W*) are independent of i, which one can easily see from
their definition in (3.20)).



3. QUANTIZING COMPLEX COADJOINT ORBITS 129

Proposition 3.21 Let g be a complex semisimple Lie algebra, h a Cartan subalgebra
of g, and X € b*. Fiz an invariant ordering on A, and assume that (A, p) # 0 for all
1€ NoAt satisfying (. 1) = (p,p). Then the set Py is countable and accumulates
only at zero.

PROOF: From the definition of Py we obtain
Py ={0}U{h € C\ {0} | pir/n(p) = 0 for some p € NoA™\ {0}}.

Under our assumptions the function 7 — pyy/n(p) = 5(u, 1) — (p, ) — 3+ (X, p) has
the only root i(A, 1)/ (3 (u, 1) — (p, 1)) if (1, 1t) — (p, ) # 0 and no root otherwise.

Therefore Py is countable since NgA*\ {0} is countable. Furthermore, Py accumulates
only at zero since

i\ ) ’ o Al Al

(i) = (o) | = glel® = Nulllell— 3 ladl = ol

if ||| > 2||p|l. Note that there are only finitely many elements p € NoAT with
[l < 2lpll- 0

Remark 3.22 If the ordering in the previous proposition is standard, then any ele-
ment ;1 € NoAT automatically satisfies (), y1) # 0: For all @ € At we have (\,a) € S
and since S is closed under addition this implies (A, ) € S for all p € NoA*. Note
that 0 ¢ S, so in particular (A, ) #0.

Note also that % (u, ) = (p, p) implies [|u|| < 2[|p[|, so there can only be finitely
many elements g e NoA satisfiying £ (u, u) = (p, ). Among those are all simple
roots and the element 2p. However, simple roots which are in NgA are by definition
not orthogonal to A\. An example of an element that is not a simple root and not 2p

in the case of g = sl3(C) with root system as in [Figure 3.1|is p = a3 + .

We say that Fj depends rationally on £ if all the Fy ¢ depend rationally on h. This
makes sense since F, ; takes values in a finite dimensional subspace of (% g/% g-g,)®?
that is independent of 7.

Theorem 3.23 (Alekseev—Lachowska [1]) Let A € b* and assume that Py is
countable. Then Fy depends rationally on h, with no pole at zero. In particular,
the Taylor series expansion of Fy around 0 makes sense, and it gives an element
F e (%g/%g-9x)%?|v]], where the tensor product is the usual (not completed) tensor
product. Furthermore, F satisfies in (%g/%g-9x)23 V] and is gx-invariant.

PROOF: As mentioned before, g;/, and ﬂl/\/hj%(ni U (nF) — % (n*t) are indepen-
dent of A, so only the coefficients p! )\/h(aw) tlzle formula for Fjy,, obtained in
m depend on #. Since they are products of elements of the form

(1 i\ - h
Pixn(p) ™ = (2(u7u)—(p7u)— (hu>) = ) = )i — G

with 1 € NoA*t \ {0}, their dependence on % is rational without a pole at zero.
(Observe that 3(u,p) — (p,p) and (iX, ) cannot vanish simultaneously since Py is
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assumed to be countable.) Consequently, we may take the Taylor expansion of Fjy
around A = 0. To see that this yields an element in the usual tensor product,
note that the formal expansion of p»\/h(u)*l is a multiple of v unless (A, u) = 0.
Now p;ﬁ/h(aw)_l = HLill pixjn(aw, )", and if the formal expansions of both
Pir/n(Qw, o) "" and pin(uw,,, )" are not multiples of i, then (A, a,) = 0, i.e.
au,y, € A’. However, ensures that this cannot happen too often: If M is
the constant obtained in that lemma, then at least [|w|/(M + 1)] many elements in
the formal expansion of pi§ h (cyy) ! are multiples of v, so this expansion is of order
at least v[I®l/(M+D1 " Consequently, only finitely many words contribute to a given

order in v, so that we do not need to complete the tensor product. Since every Fj
satisfies ([3.28) and is gy-invariant, this is also true for the formal expansion F. O

Let us now apply this theorem to quantize complex coadjoint orbits. Let G be a
complex connected semisimple Lie group with coadjoint orbit O, through a semisimple
element \ € g*. Pick a Cartan subalgebra b containing Af. Choose an invariant
ordering for which Py is countable (e.g. a standard invariant ordering).

By we know that G is connected. Therefore the gy-invariance

of the elements I’ and F} constructed previously implies their Gy-invariance. Con-

sequently we can apply the results of in order to obtain holomorphic
G-invariant bidifferential operators on Oy & GG/G,. Define the formal product

x: (O[] x €= (ON)[v]) = €= OO0V, (f,9) = frg =V (F)(f,9), (3.31)

and note that this product is well-defined since the previous theorem asserts that
Fe(%g/%g-9\)%v]-

Proposition 3.24 The product x is associative and restricts to a product
*: Hol(O)[[v]] x Hol(O)[[¥]] — Hol(O))[[V] (3.32)

on power series of holomorphic functions. Moreover, x is G-invariant, in the sense
that (g f1) * (g> f2) = g> (f1 * f2) holds for all g € G and f1, fo € € (0,)[V].

Proor: It is a standard argument that the twist condition translates into
associativity of the induced product. That * restricts to power series of holomorphic
functions and is G-invariant is immediate since the image of ¥ consists of holomorphic
G-invariant bidifferential operators. O

In order to define strict star products from F}, directly, i.e. without taking a formal
power series expansion, we need to ensure that W(Fj) is well-defined. To do that
we introduce polynomials on the coadjoint orbit. It will turn out that only finitely
many elements of the infinite sum defining Fy, contribute non-trivially when ¥ (Fj) is
applied to polynomials.

Recall from that we may assume without loss of generality that G
is a closed complex Lie subgroup of GLy(C). We fix a way to realize G as such a
matrix Lie group once and for all. In particular, the Lie algebra g of G is realized as
a complex Lie subalgebra of gl (C).
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Definition 3.25 (Polynomials on Oy) Let Oy C g* be a complex coadjoint orbit.
Then

Pol(0)) ={p: O = C |p= P|OA for some holomorphic polynomial P on g*}
(3.33)
is called the algebra of polynomials on Oy.

Recall that the symmetric algebra Sg of g is isomorphic (as an algebra) to the algebra
Pol(g*) of polynomials on g*. The isomorphism sends an element X; V---V X; € S/g

to & — £(X1) ... £(X;).

Definition 3.26 (Polynomials on G) For a complex linear Lie group G, the alge-
bra of polynomials Pol(G) is the unital complex subalgebra of €>°(G) generated by the
functions Pij: G — C, g — g45.

Polynomials on a complex Lie group G are holomorphic. In the case of semisimple
connected Lie groups both the Lie group itself and the coadjoint orbit are affine alge-
braic varieties, see and our definition of polynomials coincides with the
definition of regular functions on algebraic varieties. If G is connected and semisim-
ple, then the definition of polynomials on G is independent of the way in which G is

realized as a linear group, which can be proven as outlined in

Proposition 3.27 Assume that the complex linear Lie group G is semisimple and
connected. Then 7*: Hol(O)) = Hol(G/G,) — Hol(G)%* restricts to an isomorphism
7*: Pol(9y) — Pol(G)%*

PROOF: Since the Lie algebra g is semisimple, we have g = [g, g], i.e. every element of
g can be written as a sum of commutators. Consequently the trace of any element of
g is zero. Therefore any element in a sufficiently small neighbourhood of the identity
of G must have determinant 1, and consequently G is a Lie subgroup of SLy(C).

Let E;; € gl (C) be the matrix that is 1 at position (7, j) and 0 otherwise. Extend
A to a linear functional \ € gl (C)*. For an element X € g = S'g, which we identify
with a polynomial on g*, we compute

(X, )(9) = X|o, (7(9)) = X[, (AdGA) = X[, (A(g™" - 9)) =
= Ay 1X9 Z)\ 1Xg l] l]) = Z (g_l)ikgfjxkfj‘(Eij)~
1,5,k

Since detg = 1 we can write (¢g~');. as a polynomial in the entries of g, so that
7 (X|o,) itself is a polynomial in the entries of g. Since Pol(0,) is generated by
Xlo, and 7* is an algebra homomorphism, it follows that 7*p € Pol(G) for any
p € Pol(0,). Injectivity of 7* is immediate. Surjectivity is harder to prove. One
can either use methods from algebraic geometry (making use of see for
example [23| Chapter 12]) or work in a more differential geometric setting using G-

finite functions as outlined in O
Recall the degree d’ introduced in the proof of [Lemma 3.20
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Lemma 3.28 For any polynomial p € Pol(GLN(C)), there is a constant N, € N
such that for any v € % (W) C % (gly(C)) of degree d' greater N, and any v €
U (07) C % (gly(C)) of degree d’ smaller —N,, we have u'*f(1:0)p = ¢left.(1.0)y, — 0,

ProOF: Using the Leibniz rule we may assume that p = Py, in the notation of

[Definition 3.26] Let E;; € gly(C) be the matrix that is 1 at position (4, ) and

0 otherwise. It 1s easy to check that E$"Py, = §;0P; and therefore X'*Py, =

(Z” )1 Py = >, Xy Py for all X € g[N((D). Since Py, is holomorphic,

this 1mphes that also Xet(1, OPp = X**Py = Y, X;¢Pyi. Consequently, if u =
up € (gl (€)) with ug, ..., up € gly(C), then

w10 p, = Z(Ul e uM*l)IEft)(LO)(uM)iMe.Pk’Uw =

iM
= > (wrun—) O (unr )iy i (Wa)ingePring = - =
IM—1,0M
= Y ()ivin - (Unr1)ingying (U1 )ing e Priy = Y (1 -t )ie Pri -
D1,y fM %

Since ady is nilpotent for any X € a' it follows that 0 = (ad X)s = ad(Xj) for
X € nt, where the index s stands for the semisimple part of the Jordan decomposition.
Since g is semisimple this implies X, = 0, so every X € o™ is realized by a nilpotent
matrix. It follows from Engel’s theorem that any matrix Lie algebra consisting of
nilpotent matrices is nilpotent as an algebra, so there exists a constant M € N such
that products of M or more elements of ™ vanish. Therefore, if u is a product of
at least M elements of it the above calculation shows that w!*® P, = 0. If M’ is an
upper bound for the degree d’ of elements of i then we can set Np,, == MM'. It is
easy to check that this constant also works for n~. O

Corollary 3.29 For all polynomials p,q € Pol(0,) and all h € C\ Py, the sum
>veo U (Fre)(p,q) is finite, and Y ,° o U(Fp0)(p, q) € Pol(Oy).

PRroOF: [Proposition 3.27] implies that 7*p and 7*q are polynomials. By
the components Fy, are of degree (¢,—f), and then the previous lemma implies
that only finitely many summands of Y ;2 Fjef-(10)(7*p, 7*q) are non-zero. Its
proof shows that Y/~ Fpej" (1O (7*p, 7*q) is again a polynomial. The components
Fy¢ are gy-invariant, and therefore, since G is connected by [Proposition 2.3} also
G y-invariant. Consequently >eeo F%??’(l’o)(ﬂ*p, 7*q) is G-invariant by [Lemma 2.6}
Then [Proposition 3.27] yields that Y2 W(Fy.¢)(p, q) = Yo m (Fpef- 0 (7 p, mq) )
is a polynomial. O

Corollary 3.30 Let Oy be a semisimple coadjoint orbit of a complex connected semisim-
ple Lie group G with Lie algebra g. Assume that by is a Cartan subalgebra of g con-
taining \*, and that we have chosen an invariant ordering. Then for any h € C\ Py,

#n: Pol(0x) x Pol(0x) = Pol(0x),  (p,q) = p*nq = Z V(Fne)(p,q)  (3.34)
=0
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defines an associative and G-invariant product (where G-invariant means that (g >
p)*n (g q) = g (p*nr q) holds for any g € G and p,q € Pol(0y)). For p,q € Pol(0,),
px*p q depends rationally on h, and the formal expansion of x around h = 0 coincides
with the formal product x.

PROOF: As in the formal case, it is a standard argument to show that implies
the associativity of #5. Since the codomain of ¥ consists of G-invariant bidifferential
operators, it is clear that x5 is G-invariant. Since the dependence of Fj on & is rational
without pole at 0, it follows that *; also depends rationally on & without pole at 0,
and since x was constructed from the formal expansion of Fj, it coincides with the
formal expansion of xp. O

Remark 3.31 When considering ¥(Fj ¢), we may leave out the projections %f in the

formula for Fj , from to obtain the same result. Indeed, by

the difference of Fj , and
o= > pSmlaw) ' Xp@Y, €)@ % @) (3.35)
wEVVz

is an element in the ideal % g- g\ ® %9+ %9 ® % g - g and therefore contained in
the kernel of ¥ by

Recall that we obtained a condition for Py being countable in [Proposition 3.21] and
that this condition is satisfied in particular when the ordering is standard, see [Re]
mark 3,22

Proposition 3.32 Assume that Py is countable. Then the first order commutator of
* coincides with the Poisson bracket induced by the KKS form wkks defined in (2.2).

PROOF: Note that the formal expansion of

1 -1

pirn(w) = (2(/%/0 —(p,p) — ;(A,u))_ = ih(i;l(u, w) —ih(p, pt) + (Mt))

is of order v if (A, u) # 0. It follows from |Theorem 3.18|that the element F' is the

formal expansion of

Z piuj\/h(o‘w)ilﬁ'j\_(xw) ® 7y (Yu) + Z piu))\/h(aw)ilﬁ:\’_(Xw) ® 7y (V).

weWw weW
w]<1 |w[>2

Using that the words w € W with |w| < 1 are precisely the empty word and
the one-letter words (£) with a; € AT, ie. (A a) # 0, it follows that the first
sum expands to 1+ v a+(A, @) ' Xy ® Yo + O(v?). Let us argue why the
formal expansion of the second sum is of order v2. By definition i /h(aw)’1 =
Hyﬂl Dix/h (awi___lwl)*l. Since, by definition of W, we have o, € AT, it'is clear that
the formal expansions of all summands with (X, o, _, + @) # 0 are of order v
(because both pix/s (., ww)) " and pir/(euw,, )" are of order v). So assume
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(A, Quppy_y + Qapy,, ) = 0, in which case au,,_, € A+ and, by invariance of the order-
ing, au,,_, + Qu,,, is not a root. Therefore X, w1 Xwp) = Xy Xwj_,» and if
w' = (W1, ..., Ww|—2, Wjw|, Ww|-1) is the word obtained form w by switching the last
two letters then X,, = X,,,. Similarly Y,, = Y,. Furthermore, by definition of «,,
we have a,, Qyy for all ¢ < |w| and

Jwl T Gl
Pisyn(0w) ™+ pi% () T =
|w| 1
= (piA/h(O‘w‘w ) +p1,\/h Q) ) H pl,\/n Qu; ) ) t

But under our assumptions (cy,, , A) "+ (@, _,,A) 7" = 0, and therefore the formal
expansion of piA/h(aw‘w‘)*l +pi>\/n(aw‘w‘7l)71 is iy(aw‘w‘,)\)*l + iu(aw‘w‘fl,)\)*l +
O(v?) = O(v?). Consequently, the summands which could potentially be of order v
in the sum over w € W with |w| > 2 cancel out, and this sum is therefore of order v/?
as claimed.

To conclude the proof, note that antisymmetrizing the first order gives indeed

Fsm — 5 37 Aof) H(Xa®YaYa®Xa) =1 3 A([Xa, Yal) ' Xa® Y, = imgics
acA+ acl

where mkks denotes the Poisson tensor associated to the KKS symplectic form. O

We conclude this subsection by saying a bit more about the directions in which x and
xp, differentiate.

Lemma 3.33 For any £ = Ad; A € Oy, the subspaces

Lic= span{(Adg Xao)o,

o aeA+} C Ty, (3.36a)

L= span{(Adg Xa)oxler @ € A‘} C TeOx (3.36b)

¢
are independent of the choice of g € G.

PROOF: Any two choices g,¢" € G differ by an element of G, that is g’ = go with
x € Gy. So it suffices to prove that span{Ad, X,, a € A*} =span{X,, a € A*}.
This follows from the invariance of the ordering and the connectedness of G . O

Therefore the distributions Ly and L_ in TO, spanned by L ¢ and L_ ¢, respectively,
are well-defined.

Corollary 3.34 The star product x5 derives the first argument only in the directions
of L(j’o) and the second argument only in the directions of A

PRrOOF: This follows from the explicit formula for F} obtained in[Theorem 3.18| from
and from 0
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3.4 Examples

In this subsection we derive formulas for F}, in the case G = SL14,(C) for the largest
non-trivial stabilizer G. When restricting to real coadjoint orbits in
this example allows us to obtain quantizations of complex projective spaces and hy-
perbolic discs.

Example 3.35 (SL14,(C)) Let G = SL14+,(C) be the Lie group of matrices with
determinant 1. Its Lie algebra g = sl;,,(C) consists of matrices with trace 0. Number
the rows and columns of a matrix X € g by 0,...,n. Let A: g = C, X — —irXpo
where r € C. Using that the Killing form B satisfies B(X,Y) = 2(n + 1) tr(XY),
where tr is the usual (not normalized) matrix trace, it follows that A* is a multiple of

the diagonal matrix diag(n,—1,...,—1), and therefore
grx = {X € 5[1+n(®) | XO,i = Xi,O =0for1<i< n}, (337&)
G)\ = {g S SL1+n(®) ‘ 9o,i = gi,0 = 0 for 1 S ) S n} . (337b)

We choose the Cartan subalgebra h consisting of the diagonal matrices in g. The
roots are then given by «; ; = Ly — L; for 0 < 4,j < n with ¢ # j, where L; € b*,
L;i(X) = X;;. If we let the roots «; ; with ¢ < j be positive, then the simple roots
are ap1,04,2,--.,0n_1n- As before, denote the matrix with entry 1 at position (i, j)
by Ez], and define Xi,j = Ei,j S ga"«f and )/i,j = Ej,i S gaj'i’ = g_ai”j. Note that
B(X”,Y ) =2(n+1)tr(X;,Y; ;) = 2(n+ 1), so we use a different normalization
than in [S

Ifn= 1, it is easy to simplify the formula for F} obtained in There
is only one positive root o = a1, and there is a unique word w, of a given length
¢ € Ny. Note that A = —ira/2 and p = /2, 50 piy/n(ma) = tm?(a, ) — 3m(a, o) —
s=mr(a, ) = ym(m — 1 — §). Therefore

L
_ (—4)
Pixyn(Cwe) = IIWL _1_7)_aze-4y”(%—w—n)'

m=1

We set X = Xy and Y := Yp 1. Since B(X,Y) = 4 we have to plug the normalized
elements X/2 and Y/2 into (3.27)), and obtain

_ (_1)6 ¢ ¢
L e G (3.58)

This result was already obtained in [1, Example 4.16], but the following result for
arbitrary n is new. We prove it by computing the canonical element of the Shapovalov
pairing directly, instead of simplifying (3.27).

Proposition 3.36 For G = SLy,,(C), the same X and the same ordering as above,
we have

(=D* ,
Iy = T - (Xo1 @ Yo1+ -+ Xon®Yon). (3.39)
ZEZN:O Az —1).. (L—((—1)



136 PAPER II: STRICT QUANTIZATION OF COADJOINT ORBITS

Proor: The Lie algebras nt and = are commutative Lie algebras spanned by
X014, Xon and Yo 1,..., Yo, respectively, and therefore {X! := Xé}l . Xéfn |
I € Np}and {Y7 == Yi...Yjn | J € N} are bases of % (a*) and % (™).
The Lie algebra n' is spanned by X;; with ¢ < j and we can view X7 also as
an element of % (n*). Then 7y (X!) = X! and similarly 7, (Y/) = Y7. Con-
sequently (X7, Y7)5 . = (X', Y7)y/n. For degree reasons the bases {X'} and
{v”7} are orthogonal, meaning that (X', Y”/);\), = 0 for I # J. Indeed, X'
and Y’ are homogeneous with respect to the degree d defined in the beginning of
, d(XI) = Ild(XQ,l) + -+ Ind(XO,n) = 1101071 + 0+ InOto ns and
d(Y”) = —(Jiag1+- -+ Jpao ). Since the oy ; are linearly independent,
implies the claimed orthogonality.

Therefore it suffices to determine the normalization (X7, Y7} /5. Define H; =
[Xo0,i,Y0,:] = FEoo — E;;. Given a multiindex I € Ny we can form a sequence that
starts with /; many 1’s, then has I many 2’s, ..., then I, many n’s. Denote the
k-th element of this sequence by Ij;y. Introduce the projection (-)o to %b in the
decomposition Zg=Uhd n~ - Ug+ ¥g-n"), so that mx(u) = A((u)o). Then we

claim that
[1]-1

XYDo=1 1] (Hip,y, — 0 (3.40)
=0

To see that this formula implies the proposition, note that
i
(XY i = mam(SXNYT) = (-1 (m) (XY 7))

and that $A(H;) = § foralli=1,...,n. So

R
Fr = Z T 11 X'ov!= Z (T (71)|7-I| x'oy!
i (XL YT)insm iEx nNe(s—1)...(5 - (I11-1)

and an application of the multinomial theorem gives (|3.39).

It remains to prove (3.40). For n = 1 this is the statement of |16, Lemma 5.2].
Note that this also means that Z = X{%Yn — L,/H,(H, — 1)...(H, — I, + 1) €
U (span{ X, Yo n, Hp}) satisfies (Z)o = 0. We proceed by induction and assume that
holds for n—1. Writing I_ = (11, ..., I,—1,0) and noting that [H,, Xo ;] = Xo
for 1 <i<n-—1, we compute

(XTY o = (X X3, Y55 Y " o

= (X" (I,)H,(H, = 1)...(H, — I, + 1) + 2)Y1-),

= L(Hp = [T [)(Hp = |[I-| = 1) .. (Hy = [T = L, + )XY )o + (X 2YT),
=L)NH, —|I_|)(H, = |I_| = 1)...(H, — |I_| = I, + )(X=Y ") + (XT-2Y'-),.
Since (Z)o = 0 and d(Z) = d(X{",Yyr — I\ Hy(H, — 1) ... (H, — I, + 1)) = 0 we

can write Z =Yy, Z' Xo ,, for some Z' € % (span{Xo n, Yon, Hn}). Since Yy ,, € gon©
any commutator of Y, with elements of g*o.*,..., g@®~~1 has degree d equal to L,, —
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Z:-:Ol c; L; for some ¢; € Z, so must either be 0 or in a negative root space. Therefore
(XT-ZYT7)y = 0, and the claim follows by applying the induction hypothesis to the
first summand in the equation above. O

Corollary 3.37 Let G = SL11,(C) and X be as above, but choose the opposite or-
dering, for which o, ; with i > j is positive. Then

1
Fr = (You ® Xoq+ -+ Y0 @ Xon)'.  (3.41)
l;;o MrE+D). (F1(-1)

PROOF: The only change in the computation abqve is that the roles of Xy ; and Yy ;
are swapped. Now [1/()71‘,)(071‘] = Elﬁi — E070, SO %)\([YE)J,XO,,;]) = —%, which means
that r changes sign. O

4 Continuity

In this section, we extend the product xj: Pol(Oy) x Pol(0y) — Pol(O,) obtained
in to a product 5 : Hol(Oy) x Hol(Oy) — Hol(Oy) on all holomorphic
functions on the coadjoint orbit, that is continuous with respect to the topology of
locally uniform convergence. More precisely, we prove the following theorem.

Theorem 4.1 Let Oy be a complex semisimple coadjoint orbit of a complex semisim-
ple connected Lie group G. Then for any h € C \ Py the product ; on Pol(OQy) is
continuous with respect to the topology of locally uniform convergence and extends to
a continuous and G-invariant product *5,: Hol(Oy) x Hol(0,) — Hol(O,) on the space
of all holomorphic functions on O).

The proof of this theorem proceeds as follows: In we prove the con-
tinuity of *5 with respect to a topology that we call the reduction-topology and in

we prove that the reduction-topology coincides with the topology of
locally uniform convergence. Consequently *; extends to the completion of the space
of polynomials on O,. Using the results of we prove in
that this completion is the space Hol(O,) of all holomorphic functions on O,.

In the whole section we assume that the complex connected semisimple Lie group
G is concretely realized as a complex Lie subgroup of GLy(C) for some N € N,

as explained in [Subsection 2.1} In particular, since G is semisimple, it is a closed

submanifold of CV*H

4.1 Continuity in the reduction-topology

In this subsection we prove the continuity of the star product *; with respect to a
topology that we call the reduction-topology, and which is defined below. Recall that
a sequence of functions f;: X — C on a topological space X is said to be locally
uniformly convergent if for every « € X there is a neighbourhood U C X such that
fi converges uniformly to f on U, i.e. lim; oo sup,ey|fi(y) — f(y)] = 0. In this
work, X will always be a manifold. Then the topology of locally uniform convergence
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coincides with the topology of compact convergence (for every compact subset K C X,
fi converges uniformly on K), and is therefore a locally convex topology, defined by
the seminorms || f||x = supg|f|.

Denote the ideal of polynomials in Pol(
Z(G).

Definition 4.2 (Reduction-topology) The topology Ti. of locally uniform conver-
gence on the space Pol(CN*N) of polynomials on CN*¥ induces a quotient topology
on the space Pol(G) = Pol(CN*N)/Z(G) of polynomials on G, and we call the sub-
space topology on the space Pol(Oy) = Pol(G)% of polynomials on the coadjoint orbit
Oy the reduction-topology.

In we will prove that the reduction-topology coincides with the topol-
ogy of locally uniform convergence on Oj.

This topology is convenient for obtaining continuity estimates for ;, since we
gave a description of W(F}) via bidifferential operators on G in Since
we assume that the Lie group G is concretely realized as a complex Lie subgroup of
GLx(C), its Lie algebra g is realized as a Lie subalgebra of gl (C). Considering the
element Fy , defined in as an element of % (gl (C)) ® % (gly(C)), we let

CN*N) whose restriction to G vanishes by

5 0 Pol(CV*N) x Pol(CN*N) — Pol(CV*N)

[e )
(pq) = ¥y g =Y (F} )"0 (p,q), (41)

=0
which is well-defined because implies that the sum over £ is finite, and that
(F}, )19 (p, q) is again a polynomial. Note that x}, is (in general) not associative
since Y, Fj, , satisfies (3.28) only after passing to the quotient. However, since Fy, ,
lies in the subspace % g® % g it induces a product on Pol(G) = Pol(CV*Y) /Z(G). As
in [Remark 3.31| it follows that the restriction of this product to Pol(G)%* = Pol(0,)

coincides with xj.

Theorem 4.3 For li € C\ Py the product %}, on Pol(CY*Y) is continuous with
respect to the topology of locally uniform convergence Ti.

Before proving this theorem in the rest of this section, we would like to note the
following consequence, which motivates the definition of the reduction-topology given
above.

Corollary 4.4 For I € C\ Py the product x5 on Pol(0)) is continuous with respect
to the reduction-topology.

Proo¥r: This follows immediately from the previous theorem and the construction of
the reduction-topology. O

Remark 4.5 It is interesting to point out that the proof of will not use
anything about the actual Lie algebra structure but semisimplicity and the form of the
element Fj;. In fact, we only need that the coefficients of Fy, behave like p¥ () &~ |w|?
for large |w|. The rest of the proof consists in counting terms and checking that there
are not too many.
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The strategy to prove is as follows. We first introduce a different locally
convex topology that is better suited for obtaining continuity estimates. Then we
prove that this topology is equivalent to the topology of locally uniform convergence
and we prove the continuity of %}, with respect to this topology.

Set m = N2. Let B = {by,...,b,} be the standard basis of €™ and denote
the dual basis of (C™)* by B* = {b7,...,b:,}. Elements of Pol(C™) = S((C™)*)
(where S denotes the symmetric tensor algebra) can be written uniquely in the form
Y reny arby. Here I € N is a multiindex, b = (b)VE v - v (b)) VIm and only

finitely many of the coefficients a; € C are non-zero. For any R € R define a norm

*
a]b =
’HZIGN;;L g ZIGN{,’L

Note that these norms coincide with the Th-norms with respect to the basis B*, stud-
ied for example in [40]. We denote the locally convex topology given by endowing
Pol(C™) = S((C™)*) with the seminorms ||| - ||| ; by 7jj.;j- This topology can equiva-
lently be defined by the countable set of norms || - || ; with R € N.
Note that ||| - ||| ; is submultiplicative with respect to the classical product:
<

arbs | v g a’;b* = g ara’ by v b
’H(ZIE]N(’}" ! 1) ( seny N raeng LT
< ol R = (0 ar) (S0 el =
1,JENg IeNg JENT
arbj g a’;b
ZIeNom I Jeng 77

Proposition 4.6 The topologies T).| and T\ coincide.

ar|R1T. (4.2)

R R

PROOF: Assume p = ZIEJNZF' arb} € Pol(C™) is a polynomial. Given K C C™
compact, choose R € R such that |z| < R holds for all z € K. Then on the one hand
we have

Ipllxc = maxlp() < > lar| R = llpll
TeNT

On the other hand, if D = {(z1,...,2m) € C™ | |z;] < Rforalli=1,...,m} CC™
denotes a closed polydisc of radius R, then Cauchy’s integral formula yields

1 1 p(2) I
lar| = ﬁ|31p(0)| = anr /lzil—R I+(10) dz’| <
R™ 1
< Zlél%ﬁ\p(zﬂm =g 212%31(2|p(2)|~

Applying this estimate for a polydisc of radius 2mR yields

1
ol = D larlRT < 37—z Rl max [p()| <
IeNm [enm (2mR)| | 2€D2mRr
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< om) "1l < 2 =2 .
<2 e 32 <2 g 1) = 215l
0

Consequently we can estimate any norm of 7). by a seminorm of 7} and vice versa,

so the topologies NHH and 7y coincide. |
Because of the previous proposition we can and will work with the norms |||,
instead of the seminorms || - ||k in the following. To obtain continuity estimates, we

need to estimate the coeflicients py (1) defined in (3.9)).

Lemma 4.7 (Estimates for py) For any fized compact set K C b* there are con-
stants C > 0 and M such that py(cw,) defined in (3.9) satisfies

[pa(aw)] = Clul? (4.3)
for all words w € W of length |w| > M and all X € K.

PROOF: Assume that the positive roots aq,...,a; € AT are ordered in such a way
that a1, ..., a, are the simple roots. Write a,, = 22:1 Cw,i; as a linear combination
of simple roots, where ¢,,; € Ny satisfy |w| < 31, ¢y, < cJw| with ¢ depending only
on the root system. Since (p,a;) > 0 for all 1 < i < r we can choose ¢,,C, € R
such that ¢, < (p, ;) < C, holds for all 1 < i < r. Similarly, there is C’ € Rt with
(A, )] < C" forall A € K and 1 <4 <r. Then

and for all A € K we obtain

(p+ X )l <D cwill(pai)| + (X ai)l) < (Cp +C) Y cwi < e(Cp + ).

i=1 i=1

Setting C' = 4(;;))0,2), Ci =¢(C,+C"), and M = %, and assuming |w| > M we
obtain
1
[pA(0w)] = 5 (s ) =[(pFA, )| = 2C w]* = Cafw| > 2C|w]* = Clwl® = Cluf*. O

Corollary 4.8 (Estimates for pY) Fiz A € b*. For any compact set K C C\ Py
there is a constant Cp, > 0 such that p}‘;\/h(aw) defined in (3.9) satisfies

|w]
(o) < o0 (14)

for all words w e W and all h € K.
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PROOF: Note that K’ = {iA\/h | h € K} is a compact subset of A. Let M and
C' be the constants obtained by applying the previous lemma to K’, so |px (aw)| >
Clwl|? for all w € W with |w| > M and all ' € K’. Since i\/h € A, we have
minweW7|w\<M|pi>\/h(O¢w)| > 0 for all h € K. Since this quantity depends continuously
on 7 the minimum for 7 € K exists and must also be positive. Hence we may decrease
the constant C' such that |piy/n ()| > Clw|? also holds for the finitely many words
w € W with |w| < M. Consequently [pia/n(0w)| > Clw|* holds for all words w € w.
Setting C), := 1/C, the corollary follows by rearranging. O

We have now collected all the results needed to prove

Proor or [THEOREM 4.3} First, we note that it suffices to prove the existence of
a constant M such that for any multiindices I, J € N{* we have [[b] %, b5, <

(RM)1+1Y1, Indeed, this statement implies the continuity of %, since for p = ZIG]NB" prb%
and ¢ = ZIGN(T qrb; we estimate

/ . % L/
1%l =[5, g 1 50 32 g0

< S Ioallaslllng # b3l
IEND JENT
< S pillasl(RAD) I

IENT JENT

ZIEJNg,”pI I

= |||p|||RM|||QH|RM :

b*
MH‘ZJEN?(H !

RM

Using the notation Iy;y introduced in the proof of [Proposition 3.36| we estimate

157 ‘”R*H’Ze ()0 (57,05 H

left,(1,0) (px 7.%
< )szewmm )M (X © ¥o) "0 (57, 57)

Ix

-1
E |p1)\/h o) |
wew
left,(1,0) left,(1,0)
Z Z ’HX“’(I) bf{l} HR 'H‘Xw(um bf{m} 'S
W(1)se-W( 1)) w(1)7 7w(|‘]‘>
. Yleft,(l,O) * o Yleft (1,0) 3,
‘H W) Y1) R waap o Juan
(2) |w]
<y Cp |zl el gt i+
= = (|lw]h)?
weWw

@ S 171
< RUI+IJ] L el
<R Zz:%( C,C?) (1
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1/2 1/2 4
2 g o 2O S 04203 0l

0 o1
£=0 £=0

< Rm+|.f\eklﬂc;/?cmekl”c;/?mJ|

_ (Rekl/QC;”c)mHﬂ )

The sum 32, = ., i;troduced in (1) is over all partitions of w € W into words
w(1),---,w( ). To be more precise, consider a partition P,..., Py of {1,...,|w|}
into |I| many subsets. If P; = {p;1,...,pi; ,} with p;1 < --- < p; j,, then associate
the word w(;) = wy, ,wp, , - .. wy, ;. Then we sum over all partitions. The other sum
is defined similarly. We also used submultiplicativity of || - ||| ; in this step. To justify
(2), we note that for any Z € gl (C), Z'°%1-0p* is of degree 1, so that X}ffz)’(l*o)bjm
is of degree 1. Defining C := max;e(1,._m}aca | X108, we obtain

left,(1,0) 7% [w(eyl
H‘XW Vi ‘HR s CHOR.

The sum over wyyy, ..., w( ) has |7|l“l many terms, since for each letter of w we can
choose in which of the [I| many sets we want to have it. Similarly for the other sum.
In (3) we used that there are at most k/*! many words of a given length |w| in W and
(4) holds, because we just added some positive extra terms. O

Remark 4.9 For a fixed compact set K C C\ Py the proof above shows that there
is a constant M € R* such that for any 7 € K we have

llp *;LL qu < H|p”|RM|”q|HRJ\/l (4.5)

since gives uniform estimates for all h € K.

4.2 Stein manifolds and extension of holomorphic functions

In this subsection, we discuss extension properties of holomorphic functions on closed
complex submanifolds of Stein manifolds or, more generally, on analytic subsets
of Stein manifolds. We will use the results in the next subsection to identify the
reduction-topology with the topology of locally uniform convergence and to deter-
mine the completion of the space of polynomials with respect to this topology.

Since analytic subsets in a Stein manifold are a very natural setting to prove the
extendability results, we formulate them in this generality (even though we only need
the case of closed submanifolds most of the time). The content of this subsection has
been known for long and can be found e.g. in the textbook [22].

Recall that for a complex manifold M, we denote the vector space of holomorphic
functions on M by Hol(M).

Definition 4.10 (Holomorphic convex hull) For a compact subset K of a com-
plex manifold M we define its holomorphic convex hull to be the set

Ky = {z€ M ||f(2)| <supl|f| for all f € Hol(M)}. (4.6)
K
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Definition 4.11 (Stein manifold) A complex manifold M of dimension n is said
to be Stein if

i.) for any compact subset K C M its holomorphic convex hull Ky is compact,

ii.) for every z € M there are functions f1,..., f, € Hol(M) that form a coordinate
system around z.

Stein manifolds should be thought of as domains of holomorphicity for holomorphic
functions of several complex variables. Clearly C™ is Stein.

Definition 4.12 A subset V. C M of a complex manifold is called analytic, if for
every point z € M there is a neighbourhood U C M of z such that there is a family
of holomorphic functions f; € Hol(U) with j € J, J some index set, such that

VNU={z€U| fj(z) =0 forall j € J}. (4.7)

Example 4.13 Any closed complex submanifold M of C” is an analytic subset. In-
deed, around any z € M we can find a submanifold chart, that is a neighbourhood U
and coordinates z = (z1, ..., z,) such that M NU is given by the vanishing of the first
n — dim M coordinates. Therefore we can take f; = z; for j = 1,...,n —dim M in
Around any z ¢ M there is a neighbourhood U such that UNM = ()
and we may pick f; =1 in

Definition 4.14 A function f: V — C on an analytic subset V. C M of a complex
manifold is called holomorphic, if for every point z € V there is a neighbourhood

U C M of z and a holomorphic function g € Hol(U) such that g’UnV = f|UnV.

Example 4.15 If V is a closed complex submanifold of C" as in then
this definition of a holomorphic function coincides with the usual definition. Indeed,
in any submanifold chart (U, z) as in a holomorphic function on UNV
can be extended constantly along the first n — dim M variables to a holomorphic
function on U. The reverse implication is clear.

Proposition 4.16 Let V be an analytic subset of a Stein manifold M. Then Hol(V)
endowed with the topology of locally uniform convergence is a Fréchet space.

PRrooF: It follows from the definition of analytic subsets that V' is closed. Therefore
the restriction of any compact exhaustion of M to V gives a compact exhaustion
K; of V. The seminorms | f||x, = supg, |f| define a countable system of seminorms
inducing the topology of locally uniform convergence. The completeness of Hol(V)
with respect to this topology is a non-trivial result and proved in |22, Theorem 7.4.9].0

The crucial property of an analytic subset V' of a Stein manifold is the following
extendability property for any holomorphic function on V.

Theorem 4.17 (Extendability of holomorphic functions) Let V' be an analytic
subset of a Stein manifold M. Any holomorphic function f € Hol(V') can be extended
to a holomorphic function f € Hol(M). In other words, the restriction map Hol(M) —
Hol(V) is surjective.
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PROOF: See |22, Theorem 7.4.8]. O

For an analytic subset V' of a complex manifold M we denote the subspace of Hol(M)
consisting of functions that vanish on V' by Z(V). Note that the restriction map
Hol(M) — Hol(V') descends to a map on the quotient, r: Hol(M)/Z(V) — Hol(V).
This map is clearly injective by definition of Z(V'), and if M is Stein it is surjective
by the previous theorem.

Corollary 4.18 Assume that M is Stein and that V' C M is an analytic subset. If
Hol(M)/Z(V) is endowed with the quotient topology of the topology of locally uniform
convergence and Hol(V') is endowed with the topology of locally uniform convergence
then the map r: Hol(M)/Z(V') — Hol(V) is a homeomorphism.

PROOF: We know that r is bijective, so it only remains to prove the continuity of
r and 7~1. Both Hol(M) and Hol(V) are Fréchet spaces (for Hol(M) this is well-
known, for Hol(V) it is the statement of [Proposition 4.16). Since Z(V') is closed,
Hol(M)/Z(V) is also a Fréchet space. Clearly the locally uniform convergence of a
sequence f; € Hol(M) implies the locally uniform convergence of the sequence of
restrictions fi‘v € Hol(V), so the map r is continuous. The statement then follows
from the open mapping theorem for Fréchet spaces. O

4.3 Characterizing the reduction-topology

In this subsection, we show that the reduction-topology on O as defined in
tion 4.1is the topology of locally uniform convergence and that the completion of the
space of polynomials Pol(O,) on O, with respect to this topology is exactly the space
of holomorphic functions Hol(Oy) on O,.

Proposition 4.19 The reduction topology Trea on Oy coincides with the topology of
locally uniform convergence.

ProOOF: By the assumption at the beginning of this section (see also [Subsection 2.1J),
G is a closed complex submanifold of CV*YN  hence an analytic subset by
Applying[Corollary 4.18]yields that the quotient topology on Hol(G) induced
by the topology of locally uniform convergence on CV* is precisely the topology of
locally uniform convergence on G.

By the reduction-topology is the restriction of this topology to the
subspace of right G)-invariant holomorphic functions. Using that this subspace is
closed, and that a sequence f; € Hol(O,) converges locally uniformly if and only if
the sequence 7*(f;) € Hol(G)%* converges locally uniformly, one can easily check that
the reduction-topology coincides with the topology of locally uniform convergence on
Hol(0,). O

Finally, we would like to determine the completion 1351((9 a) of Pol(0,) with respect
to the topology of locally uniform convergence.

Proposition 4.20 We have 1581((%\) = Hol(0Oy).
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ProoF: The inclusion P/’(\)I(OA) C Hol(0,) is trivial, since Pol(0,) € Hol(O,) and
the limit of a locally uniformly convergent sequence of holomorphic functions is again
holomorphic.

The other inclusion is easy to see if one uses that semisimple coadjoint orbits are
affine algebraic varieties, see Remark 2.4} In particular they are analytic subsets of the
Stein manifold g* and therefore we can use [Theorem 4.17)to extend any f € Hol(0,)
to a holomorphic function f € Hol(g*), which can be approximated by polynomials.
Restricting these approximating polynomials to Oy gives a sequence of polynomials
in Pol(0,) converging locally uniformly to f.

Alternatively, we know that G is a closed submanifold of the Stein manifold CV*¥,
so the same argument yields that any f € Hol(G) can be approximated by some
pn € Pol(G). Assume that f € Hol(G)%*. Let K be a maximal compact subgroup
of Gx. Averaging p, over K gives a sequence p!, € Pol(G)¥* that converges locally
uniformly to f. Now p/, is even G-invariant since the action of G is holomorphic, so
P, € Pol(O)) converges to m, f € Hol(Oy). O

We are now able to prove the main theorem stated in the introduction to this section.

Proor or [THEOREM 4.1} From we know that the product *j is con-
tinuous with respect to the reduction-topology. We showed in [Proposition 4.19| that
the reduction-topology coincides with the topology of locally uniform convergence on
O». The previous proposition shows that the completion of Pol(O,) in this topology
is Hol(O,). Finally G-invariance of the product on the completion is clear since the
action of G on Pol(0,) is continuous with respect to the topology of locally uniform
convergence. (|

We close this section by the following proposition, which asserts that the dependence
of x5 on A is holomorphic.

Proposition 4.21 (Holomorphic dependence on k) For two fized holomorphic
functions p,q € Hol(0)) and = € Oy the map C\ Py — C, h — p x5 q(z) is
holomorphic.

PROOF: By construction of x5 in [Section 3} the map C\ Py — C, h — p' x5 ¢'(z) is
rational for p’, ¢’ € Pol(0,). Assume that p,, g, are sequences of polynomials on O,
such that p, — p and ¢, — ¢ locally uniformly. Since the estimates of

are locally uniform in 7%, see it follows that p, *x ¢, — p *5 ¢ locally
uniformly in 7. But clearly the evaluation at x is continuous, so that /i — p*p q(z) is

a locally uniform limit of rational functions and therefore holomorphic. O

5 Quantizing real coadjoint orbits

We have seen in the previous sections how to construct (formal and strict) quantiza-
tions of complex coadjoint orbits. In this section, we will use these results to obtain
(formal and strict) quantizations of real coadjoint orbits.

In [Subsection 5.1] and [Subsection 5.2| we collect some prelimary results on the
complexification of a real coadjoint orbit O, and a real Lie group G. We define a
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certain class of analytic functions that we denote by A(O,) and A(G). In
we construct a quantization of real orbits by restricting the quantization of
a complexification. We discuss the examples of complex projective spaces and hyper-
bolic discs in Finally, we show that point evaluation functionals are

positive for certain coadjoint orbits in and compare the quantum alge-
bras obtained for coadjoint orbits of real Lie groups with the same complexification
in Most results in the later subsections follow almost directly from
the results in the complex case.

From now on, all complex Lie groups and Lie algebras will be denoted with a hat
and letters without decoration will be used to denote real objects. We will also use
hats for maps between complex objects, e.g. we rename the map defined in (2.8) to
v,

5.1 Complexification

In this subsection we define the complexification of a real coadjoint orbit O, and a
real Lie group G, and show how they are related.

For a real Lie algebra g, denote the space of real-valued real-linear functionals on
g by g*. As before, g* denotes the space of complex-valued complex-linear functionals
on a complex Lie algebra g. In the following, we will always assume that § = g® C
is the complexification of g. In this case, any element of g* has a unique extension
to an element of g*. We will perform this extension implicitly whenever necessary,
without mentioning it. For example, in the following proposition, the coadjoint orbit
0, is really the coadjoint orbit through the extension of A € g* to an element of g*.

Proposition 5.1 Let Oy C g* be a coadjoint orbit of a real connected Lie group, and
assume that § is the complexification of g. Then Oy is a submanifold of a unique
complex coadjoint orbit Oy C g* of a complex connected Lie group with Lie algebra
g. The tangent space Tg(?JA of this orbit Oy is the complezification of T¢Oy for every
feg”

PRrOOF: By the coadjoint orbit O is the symplectic leaf through A
of the linear Poisson structure on g* defined just before Similarly
the coadjoint orbits in §* are symplectic leaves of the linear Poisson structure on g*,
and the symplectic leaf containing A\ € g* contains the whole orbit 0. This proves
existence and uniqueness of Oy.

Asin we can identify T¢Oy with g/g¢ (as real vector spaces) and
TgO)\ with §/g¢ (as complex vector spaces) for all £ € Oy. Therefore Tg(‘))\ is indeed
the complexification of T¢O,. O

We refer to the complex coadjoint orbit O, of the previous proposition as the com-
plezification of 0. We will show how to realize it explicitly as the coadjoint orbit of
some Lie group G.

Definition 5.2 Let G be a real Lie group. A complex1ﬁcat10n of G is a complex con-
nected Lie group G together with an embedding 1: G — G such that the corresponding
Lie algebra § is isomorphic to the complezification g ® C of g and such that the map
Ter: g — g corresponds to the injection X — X ® 1 under this isomorphism.
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Note that a complexification according to this definition may fail to exist or may not
be unique, if it exists. See the paragraph after for an example of a
Lie group with non-unique complexification. For a connected semisimple Lie group
G a complexification exists if and only if the group can be realized as a linear group:
Existence for linear Lie groups is shown below, and the reverse implication follows
since semisimplicity of G implies semisimplicity of the complexification and complex
connected semisimple Lie groups are always matrix Lie groups, see[Remark 2.4l There
is a different notion of a universal complexification that does always exist, but that
does not enjoy the property that § = g C. We will not use universal complexifications
in this paper.

Proposition 5.3 If G is a real connected closed linear Lie group, then it admits a
complexification G.

PRrROOF: We may assume that both G and its Lie algebra g are realized by real matri-
ces. Then the complexification § = g ® C is a Lie subalgebra of gl (C). We can use
the exponential map to construct an immersed complex Lie subgroup G of GL ~(C)
containing G as a subgroup and having § as Lie algebra, see e.g. [21, Chapter 5.9].
Since G is a closed subgroup of GLy(C), it is also a closed subgroup of G. O

Note that we did not claim that G is a closed subgroup of GLy (C). For semisimple
Lie groups this follows automatically from

Lemma 5.4 Let G be a real connected Lie group with complezification G and let Ox
be a coadjoint orbit of G with complezification Ox. Then Oy is a coadjoint orbit of G
and the embedding v: G — G descends to an embedding O\ =2 G/Gy\ — G/Gy\ =2 0.

PROOF: Since G is connected and has the Lie algebra g, it follows from
that its coadjoint orbit through A is O,. We identify G with a subgroup of GG. Since
the coadjoint action of G on g is holomorphic, Gyisa complexification of G = GANG.
So the map ¢ descends to a map Oy =2 G/G) — CAJ/CA?,\ >~ (), that is still injective. To
see that it is an embedding, note that the actions of G and G’A on G are proper and
free, so Gisa principal G resp. G bundle over G/GA resp. G/GA This implies first
that G/Gy — G/G,y is still an embedding, and then that G/G\ — G/Gy also is. O

5.2 Polynomials and analytic functions

In this subsection we introduce polynomials Pol(O,) and a certain class of analytic
functions A(0y) on a real coadjoint orbit Oy. A(OQ,) consists of restrictions of holo-
morphic functions on the complexification. In analogy to the complex case, A(Q),) is
the completion of Pol(Q,) with respect to some locally convex topology.

All our polynomials are complex-valued. So for a real finite dimensional vector
space V' we define Pol(V') to be the unital complex subalgebra of €>°(V') generated
by the linear maps. (Remember that (V') consists of smooth functions V- — C.)
So Pol(V) = S(V{%) where V{j is the complexification of V* = {¢: V — R, ¢ linear}.
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Definition 5.5 (Polynomials) Let Oy be a coadjoint orbit of a real connected Lie
group G with Lie algebra g. Then

Pol(0)) ={p: Oy = C|p= P‘oA for some polynomial P on g*} (5.1)
is called the algebra of polynomials on Oy.

Note that polynomials on a complex orbit O, were assumed to be holomorphic and do
therefore not coincide with polynomials on the underlying real orbit. We will always
use holomorphic polynomials on complexifications, so this will hopefully not cause
any confusion.

Denote the ideal of polynomials on g* resp. §* vanishing on Oy resp. O by Z(0,)
resp. Z(0,). It is clear that the maps Pol(g*)/Z(Ox) — Pol(0y) and Pol(§*)/Z(O) —

Pol(Oy) are isomorphisms. We would now like to relate polynomials on O, and Oj.

Proposition 5.6 Let O\ C g* be a real coadjoint orbit with complezification Oy C g*.
Then the restriction map (-) o E>*(0)) = €>(0)) restricts to an isomorphism

()]g, : Pol(0x) = Pol(0y).

0]

PROOF: Since restriction to V' is a bijection between complex linear maps V@ C — C
and real linear maps V' — C for any finite dimensional real vector space V, it follows
that the restriction map Pol(§*) — Pol(g*) is an isomorphism. If we can prove that
the restriction map I((?))\) — Z(0,) is also an isomorphism, then we are done since
Pol(0y) = Pol(§*)/Z(0,) — Pol(g*)/Z(Ox) = Pol(0y) would be an isomorphism.
Since any map vanishing on O, vanishes in particular on Q) C 0) A, the restriction
map Z(0y) — Z(0,) is well-defined and it is injective since it is the restriction of the
injective map Pol(g*) — Pol(g*). So we only need to prove surjectivity, meaning that
if a polynomial p on g* vanishes on O, then its unique extension to a polynomial p
on g* vanishes on O,. Since O, is a complex submanifold of g*, the restriction of p
to Oy is holomorphic. As such it is determined by its derivatives (of all orders) at A.
It is even determined by its derivatives in the direction of T»O, since T,\é A is the
complexification of T\O,. But all these derivatives vanish since the restriction of p
to O, vanishes. O

Definition 5.7 Let G be a linear real Lie group. Its algebra of polynomials Pol(G)
is the unital complex subalgebra of €°°(G) generated by the functions Pi;: G — C,

g Gij.

In contrast to the complex case, the algebra of polynomials Pol(G) may depend on
the way in which G is realized as a linear group, even in the semisimple case. We
will give an instructive example after stating the following proposition, which can be

proven in a similar way than |Proposition 5.6

Proposition 5.8 Let G C GLy(R) be a linear connected Lie group with complexifi-
cation G C GLy(C). Then the restriction map ()|G € (G) = €°°(G) restricts to

an isomorphism ()|G Pol(G) — Pol(G).
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The reason why the algebra of polynomials Pol(G) may depend on the linear struc-
ture of G, is essentially that G may not have a unique complexification. Consider
the linear semisimple Lie group SL3(R) € GL3(R), which has SL3(C) as a com-
plexification. The images of SL3(IR) and SL3(C) under Ad are again semisimple
Lie groups. Furthermore, Ad(SL3(R)) = SL3(R) since SL(3,R) has trivial center,
and Ad(SL3(C)) = SL3(C)/{1,e*"/3 ¢*™/3} is a complexification of Ad(SL3(RR)).
By the previous proposition Pol(Ad(SL3(IR))) 2 Pol(SL3(C)/{1,e2™/3 e*i/3}) —
Pol(SL3(C)) = Pol(SL3(R)) where the map in the middle is not surjective, since
there are polynomials on SLz(C) that are not constant on {1,e?™/3 e4/3},

We denote the inverses of the isomorphisms in [Proposition 5.6|and [Proposition 5.8
by

2 Pol(0,) = Pol(0y) and  *: Pol(G) — Pol(G). (5.2)

Lemma 5.9 Let G be a real connected linear Lie group with complexification G‘, and
let X € g* be such that G is connected. If f € Pol(G) satisfies f|G € Pol(G)%* then
f € Pol(G)»

PRrROOF: Let f be as in the statement of the lemma. Since f|G = (g f)‘G holds for
all g € G, it follows from the injectivity of ()|G that f = g f, so f € Pol(G)%*
Therefore f is in particular invariant under g, thus also under g, since the action is
holomorphic. Since G, is connected we obtain that fis G x-invariant. O

Corollary 5.10 Let G be a real connected semisimple linear Lie group with complez-
zﬁcatzon G and assume that \ € g* is semisimple. In this case the restriction map

|G Pol(G)GA — Pol(G)* is an isomorphism.

PROOF: G is connected by [Proposition 2.3| so this is an immediate consequence of
[Proposition 5.8 and [Lemma 5.9] O

Corollary 5.11 Let G be a real connected semisimple linear Lie group with complez-
ification G, and assume that A\ € g* is semisimple. Then the map 7*: Pol(0,) —
Pol(G)%* is an isomorphism.

ProOF: The composition Pol(Oy) = Pol(0y) LA Pol((?)éA la, Pol(G)%* equals
7* and is an isomorphism because of [Proposition 5.6} [Proposition 3.27, and [Corol{

O

Corollary 5.12 Let G be a real connected semisimple linear Lie group with com-
plezification G, and assume that A € g* is semisimple. Then the following diagram
commautes and all arrows are isomorphisms:

Pol(G)%> & Pol(0y)
T Ole T (Yo, (5.3)

Pol(G)%x <:> Pol(0,)
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Next, we want to introduce a class of analytic functions, that becomes the closure
of the polynomials with respect to a certain locally convex topology. To this end,
assume that O, is a coadjoint orbit with complexification (?)A, and that G is a real
connected Lie group with complexification G. Then define

A(0y) = im((-)|OA: Hol(0,) — %OO(OA)) (5.4)
and
AG) = im(( )|y Hol(G) — %‘”(G)) . (5.5)

Note that an element f € A(O) determines a unique element f € Hol(0,): Existence
follows by definition of A(O,) and f is determined by all its derivatives at A. Since the
complexification of T, is just T»O5, see it suffices to take derivatives in
the direction of T»5O,. But these derivatives are determined by f. A similar reasoning
holds for G and G. We obtain a commuting square that is similar to the square for

polynomials obtained in

Proposition 5.13 The following diagram is commutative and all arrows are isomor-
phisms:

Hol(G) G ﬁ Hol(0)

H( ., H . (5.6)

A(G)GA :’AO,\)

PROOF: We know from [Subsection 2.1| that #*: Hol(Oy) — Hol(é)é* is an isomor-

phism. In the previous paragraph we explained that *: A4(0,) — Hol(@k) and
*: A(G) — Hol(G) are isomorphisms and as in it follows that the same
is true for : A(G)%* — Hol(G)%*. Composing these isomorphisms we obtain that
7 A(9)) = A(G)* is an isomorphism. 0

Since Pol(0,) C Hol(0,) it follows that Pol(0,) C A(Oy). We can define a topol-
ogy T, of extended locally uniform convergence on A(O) as follows: A sequence
fn € A(O,) converges to some fe A(O,\) if and only if the sequence f, € Hol(O,\)
converges locally uniformly to f € Hol(O,). Clearly the maps °: A(0,) — Hol(0))
and (-)‘OA : Hol(0,) — A(0O,) are both homeomorphisms. From |Proposition 4.20|it

follows that the closure of Pol(O,) with respect to the topology of extended locally
uniform convergence is A(O,).

5.3 Formal and strict star products on real coadjoint orbits

In a sense all constructions in [Section 2| [Section 3| and [Section 4| are compatible
with the restriction to real forms. In this subsection we want to make this statement
precise. In particular, we will show that we can restrict formal and strict products
from a complexification Oy of a semisimple coadjoint orbit Oy of a real connected
semisimple Lie group G to formal and strict star products on Oy. These star products
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can—as before—be computed by applying fundamental vector fields or by passing to
the Lie group by using the maps 7* and m,. We will determine when the star products
on O, are of (pseudo) Wick type or of standard ordered type.

Proposition 5.14 Let O, be a semisimple coadjoint orbit of a semisimple connected
real Lie group G. By it has a complexification Oy, and there are strict
products %5 : Pol(0y) x Pol(0,) — Pol(Oy) with extensions %5 : Hol(Oy) x Hol(0,) —
Hol(Oy) constructed in |Corollary 3.30| and |Theorem 4.1, where h € C©\ Py. These
products restrict to G-invariant strict products

*p POI(O)\) X POl(O)\) — POI(O)\) and *p A(O)\) X .A(O)\) — A(O)\) (57)

for all h € C\ P\. For fized p,q € Pol(O,), the dependence of p x5 q on h is
rational with no pole at zero, and for fived f,g € A(O)) and x € Oy, the dependence
of f*r g(x) on h is holomorphic. Both products are continuous with respect to the

topology of extended locally uniform convergence defined at the end of [Subsection 5.2

PROOF: Since the restriction maps Pol(Oy) — Pol(0,) and Hol(O,) — A(0O,) are
both homeomorphisms (with respect to the topology of locally uniform convergence
on the domains and the topology of extended locally uniform convergence on the
codomains), the statement follows trivially from the corresponding statements for %,
obtained in [Corollary 3.30} [Theorem 4.1} and [Proposition 4.21] O

We would like to compute these star products without passing to the complexification.
The construction of bidifferential operators from works completely
similarly in the real setting. Recall that our differential operators act on complex-
valued functions, and therefore any complex vector field I'°°(TV M) defines a first
order differential operator on M.

Proposition 5.15 Let G be a real Lie group with Lie algebra g, and let § be the
complexification of g. The map

()t (2 §)®* - k-DiffOp®(Q)
obtained by extending g > X — X' € I'°(TTQG) to an algebra homomorphism
wg— DiffOpG(G) and further to tensor products as in (2.5¢) is an isomorphism. If
H is a closed Lie subgroup of G, then the map
U (%e/%5-6)%")" — k-DiffOp®(G/H),  W([@)(f) = m. (@ (x*f))  (5.8)

is also an isomorphism.

Proor: With the obvious modifications the proofs of [Proposition 2.5 and [Proposi]

given in apply also to the real situation. ]

To be consistent with the notation of this chapter, we denote the map defined in ([2.8)
by W.
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Lemma 5.16 Let G be a real Lie group with closed subgroup H and assume that
the complex Lie group Gisa complexification of G and contains a complez closed
subgroup H that is a complezification of H. The maps (-)'® and U are compatible
with the maps (- )10 and U in the sense that the diagrams

l—ileft,(l,O)J/ J/ﬂleft and ﬁ/([ﬁ])l J‘P([U]) (5.9)
Hol([l) —— ¢ (U) Hol(V) ——=— €>(V)

Oly Olv

commute for all open subsets UCGandV C é/.F:T, withU =UNG and V =
VNG/H, and all elements @ € (%§)®% and 7€ (% §/%§-§)®F)H

PROOF: The commutativity of the second diagram follows easily from commutativity
of the first, since the restrictions are compatible with 7* and m,. To prove commuta-
tivity of the first diagram, assume that k = 1 and & = X € § C Z§. The tangent
map of a holomorphic function commutes with the multiplication by i. We compute

X'ef(10) £(g) = %(Tgf 0T Lg(X) —iTyf o TLy(iX)) =
=T, f 0 TeLy(X) = X" f|_(g)

for f € Hol( ) and g € U. The general case follows from this computation by the
way in which (- )left’(l’o) and (.)1eft are extended to (% §)®". -

Corollary 5.17 Let Oy be a semisimple coadjoint orbit of a semisimple connected real
Lie group G. For h € C\ Py and p,q € Pol(0,), the product x5 : Pol(0y) x Pol(0y) —
Pol(0y) defined in|Proposition 5.14) can be computed by

Prng =Y U (Fro)(p,q). (5.10)
£=0

PROOF: The previous lemma implies

prrna= 0], = U(Fhe) (b q ZZ‘I’(FH,Z)(P7Q)~
£=0 (=0
Note that the sum over / is finite by O

Theorem 5.18 Let Oy be a semisimple coadjoint orbit of a semisimple connected
real Lie group G. The product x: € (0,)[[v] x € (0)[v]] = €>(0,)[v] defined
by fxg=Y(F)(f,g) where F' was obtained in is a G-invariant formal
star product. In particular, it is associative and deforms the KKS symplectic form
on Oy. Furthermore, px q coincides with the formal power series expansion of p *y q
around h = 0 for p,q € Pol(0,), and fxg = f;g|OA for f,g € A(Oy).
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PROOF: It is immediate from the definition of F' and ¥ that every order of x is given
by a G-invariant bidifferential operator. Since F' is the formal power series expansion
of Fj, around h = 0 and p *p ¢ is rational with no pole at 0 for p,q € Pol(0,), it
follows that p x ¢ coincides with the formal power series expansion of p x5 q. The
compatibility with % is immediate from Since bidifferential operators
are uniquely determined by their behaviour on Pol(0,) C A(O,), the compatibility
with * implies that x is associative and, using [Proposition 3.32] that it deforms the
KKS symplectic form. O

Recall that we proved in [Corollary 3.34] that the product % separates variables with
respect to the distributions L and L_, which we call L+ and L_ in this section.
In the real case, those distributions may have further properties. They can be real,
or the holomorphic and antiholomorphic tangent spaces with respect to a complex
structure. Before giving further details let us make the following definitions.

Definition 5.19 (Star products of standard ordered type) A star product %5
on a symplectic manifold M is said to be of standard ordered type if there are two
Lagrangian distributions L1, Lo C TM spanning the real tangent bundle TM of M
such that the first argument of the star product is derived only in directions of L1 and
the second argument only in directions of L.

Definition 5.20 (Star products of (pseudo) Wick type) A star product x; on
a complex manifold M that is also symplectic is said to be of pseudo Wick type if
the first argument is derived only in holomorphic directions and the second argument
only in antiholomorphic directions. A star product of pseudo Wick type on a Kahler
manifold is said to be of Wick type.

For formal star products of Wick type and with respect to the usual *-involution
given by complex conjugation, point evaluations are positive linear functionals, which
is not necessarily the case for formal star products of pseudo Wick type. Note that the
situation is more complicated for strict star products, as we shall see in

Let us briefly recall some results on the existence of invariant complex structures on
coadjoint orbits. See[Appendix A.3|for more details. Let O, be a semisimple coadjoint
orbit of a real connected semisimple Lie group G with Lie algebra g, and assume that
G is compact. Choose a real Cartan subalgebra b containing \*. Since h C gy, it
follows that b is compact (meaning that it integrates to a subgroup of G with compact
closure). Then there are G-invariant complex structures on Oy, and these structures
are in bijection to invariant orderings of A (we say an ordermg on A is 1nvarlant if it
is the restriction of an invariant ordering of A as defined in [Definition 3.10) as follows.
Recall that T{YO) = §/§y = Da.ca 8¢ So given an invariant ordering we can define
amap Iy: T‘E(‘)A — Tfo)\ by letting I X, = iX, if a € A"’, and L X, = —iX, if
o € A~. The map I extends G-invariantly to an endomorphism I of the complexified
tangent bundle T¥ Oy and restricts to an endomorphism of the real tangent bundle
TO,, thus it defines a complex structure.

If G is compact, there is a unique ordering that makes O, with the complex
structure I and the KKS symplectic form wkgkg a Kdhler manifold. This ordering is
characterized by a € A being positive iff (a,i\) > 0. In particular it is standard. See

[Appendix A3 for more details.
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Proposition 5.21 For a semisimple coadjoint orbit Oy of a real connected semisim-
ple linear Lie group G, the product =y obtained in [Proposition 5.1/

i.) has poles Py C R if b is compact,

ii.) is of pseudo Wick type if G is compact and the same ordering is used in the
construction of the star product and the definition of the complex structure,

iii.) 1is of standard ordered type with poles Py C iR if ih C g is compact.
In particular, if G is compact and, in the construction of *p, we choose the ordering

that makes Oy with the induced complex structure I a Kahler manifold, then x5 is of
Wick type.

PRrROOF: Roots take purely imaginary values on a compact Lie subalgebra of . Since
A € g* is by definition real on § C b, it follows that (X, ) € iR if b is compact and
(A, 1) € R if ih is compact. Since 3(u,u) — (p, p) € R, this implies that the roots
(with respect to i) of piy/n(p) = 5 (1, 1) — (p, ) — % (A, p) are real if b is compact and
purely imaginary if ih is compact.

Recall the definition of the distributions L. and L_, which we denote byAﬁJr and
L_ in this section, made just after Restricting them to Oy C O, gives
two distributions L,,L_ C T®O, of the complexified tangent bundle. An analogue
of in the real case and the explicit formula for F} from
together with show that x derives the first argument only in directions
of L, and the second argument only in directions of L_.

Assume that g, is compact. The holomorphic tangent space TE\I’O)O A 18, under the
isomorphism T?OA & §/aa, spanned by X, — il X, for o € A. If T, is defined using
the ordering chosen in the construction of #; as described above, then X, —il\ X, =
Xo—i-iXq =2X, if @ € AT, and X, — i1 Xy = Xo —i- (—1)Xo =0if a € A,
S0 T&l’O)O,\ = span{(Xa)o, |»,@ € AT}. This coincides exactly with L. ,» and by
G-invariance it follows that L, coincides with T(190,. Similarly, L_ coincides with
TO:1Q,. Therefore * is of pseudo Wick type.

If ih is compact, then every ady for H € b is self-adjoint. Since they are all com-
muting we can find simultaneous eigenvectors in g of all ady (without complexifying
g). But then we can pick X, and Y, to lie in g so that L1 = Ly Ngand Ly = L_Ng
are Lagrangian distributions satisfying O

Remark 5.22 Assume that g, is compact as in part . ) of the previous proposition.
If one uses different invariant orderings in the construction of the star product and
in the definition of a complex structure, then the distributions L and L_ may both
contain holomorphic and antiholomorphic directions. Since we are mainly interested
in star products of (pseudo) Wick type (these are the ones for which we would hope
to find positive linear functionals on the star product algebra, see , we

will usually assume that the two orderings agree.

5.4 Examples: complex projective spaces and hyperbolic discs

Recall that we have computed the canonical element of the Shapovalov pairing for

SL14»(C) and a certain choice of A in|Subsection 3.4} Let us now specialize this result
to the real forms SU(1 4+ n) and SU(1,n).
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Example 5.23 (CP"™) The coadjoint orbit of SU(1 + n) through A: su;y, — R,
X — —irXoo with » € R" is the complex projective space CP". SLyi,(C) is
a complexification of SU(1 + n). Using the notation h for the Cartan subalgebra
of sly4,(C) introduced in [Subsection 3.4] we obtain a compact Cartan subalgebra
hi=suj4, N 6 of suyq,. |Proposition A.10| tells us that the Kéhler complex structure
is defined by the ordering of A for which o € A* iff (i\, &) > 0. This ordering is the
restriction of the ordering on A for which all «; ; with ¢ < j are positive. Therefore
the element F} from [Proposition 3.36|induces a Wick type star product on CIP™. This
product has poles at {1r | n € N}.

Example 5.24 (ID™) Denote the complex hyperbolic disc in n dimensions by D™.
Recall that SU(1,n) denotes the group of isometries of the indefinite scalar product
g(v,w) = —vowy + Y i, viw; on R, The coadjoint orbit of SU(1,n) through
A:suy, — R, X — —irXg o with » € R* is the hyperbolic disc D". SL;4,(C) is a
complexification of SU(1,n). Again, b := suy , N h defines a compact Cartan subal-
gebra of su; ,. Now all roots are non-compact, so that according to
the Ké&hler complex structure is defined by the ordering on A for which o € AT iff
(iX\, ) < 0. This ordering is the restriction of the ordering on A for which all «; ;
with ¢ > j are positive. Therefore the element F}, from induces a Wick
type star product on ID™. This product has poles at {—%r | n € N}.

Remark 5.25 A star product of Wick type on the hyperbolic disc was also studied
in [29], where it was obtained from a star product of Wick type on C**" using
phase space reduction. This product coincide.ﬂ with the star product obtained in
To see this, one checks that monomials of degree 1 generate the
star product algebra, so that it suffices to compare the two formulas for a degree 1
monomial and an arbitrary monomial. But for a degree 1 monomial only very few
summands are non-zero in both constructions and one can explicitly check that the
expressions agree.

5.5 Positive linear functionals

In this subsection we prove that for certain coadjoint orbits and certain values of &
the point evaluation functionals of the star product algebras constructed in
are positive. In order to have a meaningful notion of positivity we need a star
involution on (A(Oy),*x). Of course, this star involution should be the restriction
of the complex conjugation of ¥>°(0,), but we need to prove that this restriction is
well-defined.

Assume that § = g ® C is the complexification of a Lie algebra g. The complex
conjugation -: g — g, X ® 2z — X ® % is an antilinear involution on g. Then
L1 g" = g%, ¢ ¢ = - opo - defines an antilinear involution on g*. Note that on
the right hand side, we first apply the involution of §, then ¢, and then the complex
conjugation of C. Therefore the right hand side defines a complex linear functional
¢ € §*. The map ¢ — ¢ is antilinear.

3More generally, the products obtained in [Paper I| coincide with the products obtained by consid-
ering different real forms of SLi4,(C). We show this in the Appendix}
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Lemma 5.26 Let G C GLy(R) be a real linear Lie group with complexification G -
GLN(C), assume \ € g*, and let O, be the coad]omt orbit ofG through A. Then the
map - : §* — §* restricts to an antilinear involution - OA — O,\

ProoOF: Note that since A € g* we have A\ = X\. Therefore we compute

Ad:;)\:AOAdgfl :XofOAdgq Of:AOAdg—l =Ad2)\.

Here g denotes the entrywise complex conjugate of g € G. Since the - exponential map
g — G commutes with the complex conjugation, it follows that G is closed under
entrywise complex conjugation, and therefore g € G and Ad;)\ € O,. This proves
that - restricts to O A, and the restriction is clearly still an antilinear involution. O

Note that T¢- o I = (Ig)*1 o T¢ - holds for £ € g%, where T¢ - : Teg* — Tgﬁ* is the
tangent map to the complex conjugation of §* and I¢: Teg* — T¢g* is the complex
structure at &. Since the complex structure I and the complex conjugation - of Oy
are both obtained by restriction from g*, they satisfy the same relation.

For any f € Hol(O,) consider the function f* := - o f o -, where the left - is the
complex conjugation of € and the right - is the antilinear involution obtained in the
previous lemma. Denote the complex structure of € by J, and identify the tangent
space of C with C. Then

Tgf* OI§ :7OTEfOT670IE :7OTEfOIgl ngiz
=-oJ 'oTgfoTe- =Jo - oTgfoTe =JoTef*
shows that f* is holomorphic. Since - restricts to the identity on Oy C g*, it follows
that f*|o, = flo,- Consequently, the restriction of *: Hol(O,) — Hol(0,) to A(Oy)

is just the complex conjugation -: A(0y) — A(O0,). In other words, the complex
conjugation is well-defined on A(O)).

Proposition 5.27 Let Oy be a semisimple coadjoint orbit of a connected semisimple
real Lie group G. Assume that the Cartan subalgebra ) used in the construction of a
star product xp, is compact. Then f xp g = g5 f holds for all f,g € A(Oy).

PROOF: As in the proof of [Proposition 5.21] one argues that since b is compact the
coefficients p{3 (o) are real and more generally pi ; (aw) = pi3 7(cw). From
we obtain that X, ® Y, =Y, ® X, = 7(X,s ® YJ for both a compact and a non-
compact root « € A*, and the same formula holds when « is replaced by a word
w € W. Here - is the complex conjugation of § with respect to g, extended to
(% §)%?%, and 7: (%§)%? — (% §)®? is the flip of the two tensor factors. Note that
7 stays well-defined on (/% ¢ - §x)%?, and therefore the formula for F}, obtained
in |Theorem 3.18|, |Remark 3.31L and the computations above imply m = T(Fﬁ’e).
Consequently

f*hg—Z\PFhé (f,9) =Y _U(Fro)(f.g
=0

£=0
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:Z\P(T(Fﬁ, (f,9 Z\P hé )G, f) =7+ ﬁ?

=0 =0
holds for all f,g € Pol(O,) and extends to A(OQy) by continuity. O

A linear functional ¢ on a *-algebra </ is said to be positive if ¢(a*a) > 0 for all a € &/.
In the following we formulate our results for the star algebra o, = (A(Ox), *p, -),
but would like to point out that they also hold for (Pol(Oy), *x, - ).

Theorem 5.28 Assume that Oy is a semisimple coadjoint orbit of a real connected
semisimple Lie group G. Assume further that b is a compact Cartan subalgebra, and
that all roots (with respect to the complezification h of b) in A are non- compact. Let
xp be the star product constructed with respect to the ordering for which o € A is
positive if and only if (a,i\) < 0. Then there is a constant M > 0 such that for all
€0y and h € (0, M)\ Py the point evaluation at € is a positive linear functional
eve: Jth — C.

PROOF: Since (a,i\) < 0 for all @ € At it follows that —i(\, u) > 0 holds for all
1 € NoA+\ {0}. There are only finitely many p € NoA* With (p, 1) — 5(p, ) > 0,
thus we can choose M > 0 such that —3 (X, p) > (p, ) — &(p, 1) holds for all p €
NoA+\ {0} and h € (0, M)\ Px. But this says prec1sely that piy/p(p) > 0, and

therefore plA/h(aw) > 0 for all w € W. For a non-compact root we have X, = Y,
according to (A.3b). Consequently, if g € G is such that & = Ady()), then

eve(f . T) = Zw( 5 #nlan) R ) 8 7 (1)) T

wEWe
=D > plymlan) T XS (7 ) 9) - Yt (77 F) (9)
£=0 wEWZ
=D D pymlan) XS (T ) (9) - X () (9)
£=0 wEVW
>0
holds for all f € A(O)). a

Example 5.29 (ID™) It is straightforward to check that the choices made to quantize
the hyperbolic disc in are such that § is compact, such that every root
in A is non-compact, and such that a € A is positive iff (,i\) < 0. Therefore
the previous theorem implies the existence of a constant M > 0 such that all point
evaluation functionals are positive if # € (0, M).

We can prove a stronger result by using the formula for Fy, derived in
If i € (0,00) then all the coefficients appearing in this formula are positive, and so
point evaluations are positive for all i € (0, c0).

Note that a similar proof does not work for CIP" since some of the coefficients in
(3.39) are negative. Indeed, one can use the appearing negative coefficients to show
that no point evaluation functional is positive on CP™ for 7 € (0, 00) \ Py.
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5.6 A generalized Wick rotation

In this subsection we want to state an immediate corollary of the construction in
the previous sections. Let g1, g2 be two real semisimple Lie algebras with the same
complexification §. Assume A € gi N g5 where we view gj and g5 as subspaces of g*.
Denote the coadjoint orbits in g and g5 through A by O} and 03, respectively. There
is an isomorphism Pol(0}) — Pol(03) given by composing the map Pol(0}) 2 p —
pE Pol(@A) with the restriction to O3. Here O, is the complex extension of Oy. It
turns out that this isomorphism is still an isomorphism of both the uncompleted and
completed quantum algebras.

Theorem 5.30 Let g1 and go be two real semisimple Lie algebras with a common
complezification § and assume that X € g N g5 is semisimple. Then the algebras
(Pol(03), ) and (Pol(03),%2), and also the algebras (A(O}),*}) and (A(O3),%3),
constructed with respect to the same Cartan subalgebra b C g1 N g2 and the same
ordering, are isomorphic.

PROOF: Both algebras are isomorphic to (Pol(0,), %4) or (Hol(0y), %p). O

Example 5.31 (CP"™ and D™) We know from [Example 5.23| and [Example 5.24)
that CP™ and D™ are coadjoint orbits of the Lie groups SU(1 + n) and SU(1,n)
through the same element, and that SL;4,(C) is a common complexification. So
the previous proposition implies that the star product algebras on CPP"™ and D™ are
isomorphic if we choose the same ordering in the construction of the star products.

The ordering that induces a Kahler complex structure on CIP", induces the com-
plex structure on ID” that is the opposite of the Kdhler complex structure. Therefore
the associated star product on D™ is of pseudo Wick type with respect to this opposite
complex structure, and therefore of anti-Wick type for the K&hler complex structure.
(A star product is of anti-Wick type if the first argument is derived in antiholomorphic
directions and the second argument is derived in holomorphic ones.) Consequently,
the algebra A(CP™) with the Wick type star product is isomorphic to the algebra
A(D™) with the anti-Wick type star product. Similarly, the algebra A(CP™) with
the anti-Wick type star product is isomorphic to the algebra A(D™) with the Wick
type star product.

One can also construct an isomorphism between the Wick type star product for
h and the anti-Wick type star product for —h, both on the hyperbolic disc and the
complex projective space. Composing with these isomorphisms shows that the Wick
type star product for i on CPP" is isomorphic to the Wick type star product for —#
on D™,

Note that [Theorem 5.30| only gives an algebra homomorphism between Pol(0}) and
Pol(03), or between A(0}) and A(03). If we view these algebras as *-algebras

with the star involution considered in then they are in general not
*-isomorphic! One can see this for example by proving that the point evaluation

functionals on CP™ are not positive for % € (0,00) \ Px.
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A Proofs, G-finite functions, and complex structures

In we prove [Proposition 2.5| and [Proposition 2.7l In[Appendix A.2| we

prove [Proposition 3.27| using the concept of G-finite functions. Finally we recall some

facts about complex structures on coadjoint orbits in

A.1 Proofs of [Proposition 2.5( and [Proposition 2.7|

Let M be a manifold. For f € (M) we define My: €°(M) — €M), f' — ff’
and M} =id* 0™ x My x id* 570 @ (MR — ¢ (M)*.

Definition A.1 Let M be a manifold. For a multiindex K = (K1, ..., K}) € ZF we
define k-DiffOpy (M) = {0} if some K; < 0 and otherwise we define inductively

k-DiffOp (M) = {D: €= (M)* = €>°(M) | MyoD—DoM} € k-DiffOpy_ 5, (M)
forall f € €°(M) and 1 <i<k}. (A.l)

Here (K — E;); = K; — 6;; where §;; is 1 if i = j and 0 otherwise. Elements of
k-DiffOp (M) are called k-differential operators of degree K. A map D: €= (M)* —
€ (M) is said to be a k-differential operator if it is a k-differential operator of some
degree K. The space of k-differential operators is denoted by k-DiffOp(M).

It follows that a k-differential operator is local in every argument, so that it can be

restricted to any open subset. In a chart U C M with local coordinates (z!,...,z™),
a k-differential operator D of degree K can be written as
—_— I . . I
D(fl,,fk) 7le,.‘.,lkENgCh""’Ikazlfl azkfk (AQ)

where cp,,..1, € €°(M) and ¢y, ... 1, = 0if |I;| > K; for some 1 < i < k. For a
multiindex J € N§ we used 9; = 8;11 e 853} and 0, = %. Conversely, an operator
D: €>(M)* — €°°(M) that has this form in any chart is k-differential of order
K. A k-differential operator D on a complex manifold M is holomorphic if, in local
holomorphic coordinates (z!,...,2"), we have

D(fl7' . 7fk> = Z[ Ike]Nnthm;Ikaglfl et 6£kfk
1500y 0

with all ¢z, .1, being holomorphic. Here o = 8;’11 3;’:2 and 0, = %. Equiva-
lently, D is holomorphic if D maps Hol(U)¥ into Hol(U) and D|U0M} —M;y oD|U =0
for all open subsets U C M and all antiholomorphic functions f on U. We write
k-DiffOp,, (M) for the space of holomorphic k-differential operators.

We say a k-differential operator is of order K € Z* at a point p € M if, when
written in a local chart U around p as in (A.2), we have ¢y, 1, (p) = 0 whenever
|I;| > K for some 1 < j <k.

If I,...,Ix,J, K € N are all multiindices, we write J < K if J; < K; for all
1<i<n If Xj,...,X, €g, then we use X’ as a shorthand for X" ... X/» € %g
and X11®-®Ik a5 3 shorthand for X't @ ... ®@ X* € (% g)®*.
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PRrROOF OF [PROPOSITION 2.5t Choose a basis {X1,...,X,} of g. It follows from
the Poincaré-Birkhoff-Witt theorem that {X11®-®lk | [, .. I, € NI} is a ba-
sis of (?/g}@)k. Moreover, {X}f-(10)| - XWeft(LO)| 4 s a basis of the tangent
space Tél’ G and we can choose a complex chart U around e with local coordinates
(z',...,2") such that 0,:| = X}t-(1L0)| .

Assume @ = Zh,..,,lke]Ng cry .1, X11®®I o£ () with only finitely many ¢y, 1, #
0. Choose Iy,...,I in such a way that ¢, ... 5, # 0 and ¢y, j, = 0 whenever
I < Jyand (Iy,..., 1) # (J1,... ). For f = (z1,... 2T%) € €°°(U)** we compute
ﬁIE&’(LO)f(e) =N!...Itlc, .1, #0. So @10 £ 0 and (-)® 1.0 is injective.

Note that (X71)1ef(10) ¢ . (X Te)ef(L0) g = glu 9l fr + D'(f1, ..., fr)
where D’ is a holomorphic k-differential operator whose order at e is strictly smaller
than (|I1],...,|Ix|). For any holomorphic k-differential operator D we can therefore,
by induction, find coefficients ¢y, .. 5, € C, only finitely many of which are non-zero,
such that

Dty )@= 3 eno g (XM f (o) L (X0 f o)

Iy,..., Ir€Ny

.....

holds for all f1,..., fr € €*°(G). In other words, D and the differential operator
oo ILeNg (1.1, XT1®@1e)left.(1.0) aoree at e. So if D is also left-invariant, then
these operators agree everywhere on GG, proving surjectivity. O

The proof of is similar. We need the following lemma to simplify the

local calculations.

Lemma A.2 Let G be a complex Lie group with Lie algebra g, and assume that H is a
closed complex Lie subgroup of G with Lie algebra ). Given a basis B = {X1,..., Xy}
of g such that B = {X,—r11,...,Xn} is a basis of h we can choose a neighbourhood
U of e in G and complex coordinates z = (z1,...,2") on U such that

i.) for any g € U its fiber gH N U is given locally as ({z(g)} + {0} x C") N z(U),
it.) the left-invariant holomorphic vector fields agree with coordinate vector fields at
e € G, that is X (1.0 |e =0,

e

PRrOOF: It is well known that 7: G — G/H is a principal bundle. Therefore we can
choose a local trivialization y: 7=%(V) — V x H on a small neighbourhood V of
eH in G/H. Choosing coordinates on V (after possibly shrinking V first) and on a
neighbourhood W of the identity in H, we obtain coordinates z’ on U = xy~}(V x
W) C @G satistying property |d.). Since all X%e“’(l’o) are linearly independent we can
write X[eft(10)| © = Aija(z/ﬂe for some invertible matrix A and since X}f(1.0) ig
tangential to H C G for ¢ > n — r, it follows that 4;; =0fori >n—r, 7 <n—r.
Then the coordinates z := (A~1)T 2’ satisfy both properties of the lemma. O

Let 7: G — G/H. Given coordinates as in the previous lemma we may identify 7(U)
locally with {(2'(g),...,2"""(9),0,...,0) | ¢ € U}. Then (z!,...,2""") descend
to coordinates on 7(U) and 7 is, with respect to these coordinates, given by the
projection to the first n — r coordinates.
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Lemma A.3 The map ¥ from [Proposition 2.7 is injective.

ProOF: Let r = dimbh and n = dimg > r. We can choose a basis B = {X1,...,X,,}
of g such that B’ = {X,,_,41,...,X,} is a basis of h. Recall from the proof of
sition 2.5 that {X71®~®Ix | [, ... I, € N3} is a basis of (% g)®*. Furthermore,

{xhe-l Ty € NiL (1) > 0 for some 1 <4 < k and some j >n —r}
is a basis of the ideal I defined just before and

(Xhe-@h L e N, () =0forall 1 <i<k,j>n—r}=
= {xhe-®h |1 I, e N7}

is a basis of a complement C of I in (% g)®*. Injectivity of ¥ means that 0 is the
only element of C' on which ¥ vanishes.
So to prove that W is injective, it suffices to find, for any non-zero

U= g cry g, X1@®l c ¢
Iy Ig€NDT

some open subset U C G/H and some k-tuple of functions fe € (U)* such that
([@)(f) # 0. Fix @ € C\ {0} and assume that I, ..., I € NG ™" are chosen such
that ¢r, .1, # 0 and such that for any multiindices Ji,...,J; € Ny~" satisfying
I < J; and (Iy,...,Ix) # (J1,...,Jk) we have cj, . s, = 0. Choose coordinates
z=(z',...,2") around e on G as in the previous lemma, and note that, as described
just after this lemma, (z1,...,2""") descend to coordinates (y!,...,y""") on G/H.
Set f = (y',...,y'*), so that 7* f = (271,..., 2*). This implies that

— —

U([@)(f)(eH) = @ T (x* fY(e) = ... Ller,...1. #0. 0

Lemma A.4 The map ¥ from [Proposition 2.7 is surjective.

Proor: We claim that for any holomorphic k-differential operator D on G/H we can
find @ € (% g)®* such that

—

@10 (1 f(e) = 7* (D f)(e)

holds for all f € €°°(G/H)*. We prove this claim by induction on the order K € Z*
of D at eH. If K; < 0 for some 1 < ¢ < k, then D = 0 and we can use @ = 0. For
the induction step, assume that the claim is already proven for every holomorphic
k-differential operator of order strictly smaller than K at eH. Choose coordinates
z=(z',...,2") around e on G as in and denote the coordinates on G/H
induced by (z!,...,2"7") by y := (y*,...,y" ). Locally we can write

D(f1,..., fx) = Zh,.

I Ty
c o) <. 0,
o IpeNp—r Tl Ty h " T



162 PAPER II: STRICT QUANTIZATION OF COADJOINT ORBITS

with ¢g,,. 1, € €°(G/H) satistying cy,, . 1, (eH) = 0 whenever |I;| > K; for some
1 < i < k. Define a holomorphic k-differential operator Dg on G by

I I
Do(fiee =20, e (Crin o) O f Ol f
[RER] 0

Then Dg<7r*f)(e) = 7T*<Df)(€) Set 1_1:1 = 211,...,I;¢EN377' CIy,.... 0k (W(e))Xfl ®...Q
X € (% g)®F. Note that D, = Dg — @10 has a strictly smaller order than
D¢ at e since X}ft( O)‘e = 6Z1 . There are functions ¢}, ;€ ¢°°(G) such that
we can express DG in local coordmates as

I Ip
D,G(f{avfllc) = E I I;\G]N"cirl’“"l"' ,821](‘{ Tt azkfllc .
..... , ENT

We obtain a k-differential operator D’ on G/H of strictly smaller order than D at eH
by letting

D/(fl,“'afk)zz o (000 fre O S

In,.. I,eNJ™" €r..

It fulfils D¢, (7 “f)(e) = 7*(D'f)(e). Using the induction hypothesis we find @ €

—

(% )®* such that @1 0)( )(e) = m* (D' f)(e). Now

(i + )0 (- 3( ) = (Da = Dg)(w* f)(e) + 7" (D' f)(e) =
) .

— =

T (Df)(e) =7 (D' f)(e) + (D' f)(e) = " (Df)(e),

proving the claim.
Assume that D is in addition left-invariant. Writing L,: G/H — G/H also for
the action of g € G on G/H we compute

) ) ) = Ly o) = A0 (L) (o) =
:’Jleft’(l’o)ﬂ'*((L;k)*f)(e) T (D( ;< ) )( ):
= " (LiDf)(e) = Lin*(Df)(e) = 7*(Df)(g).

Thus @10 (r* f) = 7*(Df) holds for all f € €>°(G/H)*. Finally, we need to show
that « has the correct invariance properties under the adjoint action of H. Define
Ry: G — G, Ry (g) = g¢’. Since RZ?T*(DJF) = 7*(Df) for all h € H we obtain
R;‘Lﬁleft’(l’o)w*f: 16:(1.0) 7 £ and therefore

(Adh ﬁ)left,(l,O) (7(*,]?)( ) (—»left (1,0) *f)(gh) Rzﬁleft (1,0) *f( ) —»left 1 O) f( )
for all f € >(G/H)* and all g € G, where the first equality follows as in the proof of

This means that (Ady, @—)*® 00 (r* f) = 0 for all f € €°°(G/H)*, and
therefore the proof of injectivity implies Ad, « — & € I, or in other words « € Uj,y.0O
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A.2 (G-finite functions

In this subsection we introduce G-finite functions on a Lie group G and use them
to prove [Proposition 3.27] The definition of G-finite functions uses only abstract
properties of the Lie group G, and is therefore independent of whether G is explicitly
realized by matrices or not. For complex semisimple connected Lie groups a function
is G-finite if and only if it is a polynomial, and therefore G-finite functions give a
characterization of polynomials that is independent of the representation.

Definition A.5 (G-finite functions) Let M be a manifold with an action of a Lie
group G. Then f € €°°(M) is said to be G-finite if the vector space span{g>f | g € G}
is finite dimensional. We denote the space of G-finite functions on M by FinG(M) or
Just by Fin(M) if G is clear from the context.

Here g > f denotes the smooth function on M defined by (g f)(m) = f(g~t >m).
Below, we use this definition only for M = G and the action L or for M = O, and
the coadjoint action, and will therefore not mention these actions explicitly.

Lemma A.6 Let G be a real or complex matriz Lie group and let Oy be a coadjoint
orbit of G. Then polynomials on G are G-finite, and polynomials on O are also
G-finite.

Proor: Let Pj;: G — C, X — X;;, and call such polynomials elementary in this
proof. We compute (g > P;;)(h) = Pij(g7'h) = 3. (g7 irhws = D4 (97 ik Prj(h)
for g € G, so g P;; is a linear combination of some elementary polynomials. If
p =P ... P, ;, € Pol(G) is a product of n elementary polynomials, then g p is
in the linear span of products of n many elementary polynomials, which is a finite
dimensional space. The statement for arbitrary polynomials follows by taking linear
combinations.

The action of G on Pol(O),) is obtained by restricting the adjoint action of G
on Sg = Pol(g*). The adjoint action preserves the degree of a symmetric tensor, so
span{Ad, X | g € G} is finite dimensional for any X € Sg, and therefore span{g>p |
g € G} is finite dimensional for any p € Pol(0Oy). O

Proposition A.7 Let G be a complex semisimple connected Lie group with coadjoint
orbit Oy. Then G-finite holomorphic functions on Oy are polynomials.

ProoOF: Hol(O,) is isomorphic to Hol(G)%* as a G-module. The restriction to a
maximal compact Lie subgroup K C G is an injective K-module homomorphism to
L%(K), the square-integrable functions on K with respect to the left-invariant Haar
measure, so that we may view Hol(O,) as a K-submodule of L?(K). In particular,
it is completely reducible as a K-module and therefore also as a G-module. Each
irreducible module of highest weight v appears only finitely many times in L?(K) and
thus also in Hol(Oy).

The scalar product of L?(K) is K-invariant and therefore any irreducible modules
of different highest weights are orthogonal. Restricting the scalar product to Hol(O))
gives that Hol(0y)" is orthogonal to Hol(0y)"" if v # /.
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Assume f € Fin(0,) is holomorphic and not in Pol(Q,). We can without loss
of generality assume that f € Fin(O0,)” for some weight v. (Indeed, we can write
= Zu f* with f* € Fin(O,)* and only finitely many f* are non-zero because
f is G-finite. One of these f* is not in Pol(0,).) We can choose f orthogonal to
Pol(0,)" (which is finite dimensional) and therefore orthogonal to Pol(O,). However,
this space is dense in Hol(O)) because polynomials on K are dense in L?(K). So
f =0, a contradiction. O

Corollary A.8 Let G be a complex semisimple connected Lie group. Then the pull-
back 7*: Pol(0y) — Pol(G)%* is an isomorphism.

PRrROOF: We have seen in the proof of [Proposition 3.27| that 7* is well-defined and
injective, so it only remains to show that 7* is surjective. Any element f € Pol(G)%*
is G-finite by Then its image under the G-equivariant isomorphism
7.+ Hol(G)* — Hol(0O,) is also G-finite because finite dimensionality of span{g> f |
g € G} implies finite dimensionality of span{g>m.f | g € G} = span{m.(g> f) | g €
G}. The previous proposition implies that the G-finite element 7. f € Pol(0,) is a
polynomial. It is mapped to f by 7*. O

With similar methods as in this subsection one can prove that G-finite functions on
a complex semisimple connected Lie group G coincide with polynomials on G. Since
the definition of G-finite functions does not depend on a representation of G as a
linear group, it follows that our definition of polynomials in is indeed
independent of the representation. The same result is true for a compact semisimple
connected Lie group K.

A.3 Complex structures on real coadjoint orbits

We have seen in that a coadjoint orbit of a real Lie group G always
admits a G-invariant symplectic structure, in particular its dimension is even. In this

subsection, we will see that a semisimple coadjoint orbit O, of a connected semisimple
real Lie group G admits a G-invariant complex structure if G is compact, and that the
set of such complex structures is in bijection to invariant orderings. If G is compact,
then there is a unique G-invariant complex structure that makes O a K&hler manifold.
If G is not compact, then Oy might or might not admit a Kahler structure. All results
of this subsection are classical and well-known, see for example [7] for a summary.

Let G be a real connected semisimple Lie group. Assume that A € g* is semisimple
and that G is compact. Then any Cartan subalgebra h C g containing \* is contained
in gy and therefore compact. As usual, we denote the complexification of g by § and
let - be the complex conjugation of § with respect to g.

Recall that a root « € h* is called compact if the Killing form B is negative definite
on gN(g* ®g—“), and non-compact if it is positive definite. (The root spaces g< are
subspaces of the complexification § of g.) We can always choose X, € g* such that
B(Xa,X_o) =1andif [X,, Xg] = Nq g Xatp, then N_ _g = —N, 3 (see |7, Section
3]). In this case,

X _ o=X, and i(Xy+X_ o), Xo—X_o€g if aiscompact, (A.3a)
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X o=X, and i(Xq—X_4),Xo+X_o€g if ais non-compact. (A.3b)

Recall that A is the set of roots that are not orthogonal to .

Theorem A.9 Let Oy be a coadjoint orbit of a real connected semisimple Lie group
G. Assume that G is compact, and let b be a Cartan subalgebra of g containing \*.
Then G-invariant complex structures on Oy are in bijection with invariant orderings
of A (i.e. choices of positive roots A that arise as AT = AN AT from an invariant

ordering of A as defined in|Definition 3.10).

PROOF (SKETCH): Introduce m = @, . §% = §/gx. Since taking fundamental vec-
tor fields (see gives an isomorphism g/g)x — T»0,, m is isomorphic
to the complexified tangent space T‘EOA and g Nm is isomorphic to T»Oj.

Given an invariant ordering of A, see define I: m — m by ex-
tending X, — iX, if a € A*, Xo = —iX, if @ € A~ linearly. Clearly I? = —id.
For both a compact and a non-compact root «, I restricts to an endomorphism of
gN(g*®g—®), from which it follows that I restricts to a map gNm — gNm, squaring
to —id. To prove that it extends to a G-invariant almost complex structure on Oy, it
suffices to prove that I is Gy-invariant. By applying the analogue of
for compact connected semisimple Lie groups to a maximally compact subgroup of
G containing Gy, it follows that G is connected, and it suffices to prove that I is
gy -invariant, in the sense that I([A, B]) = [A, I(B)] holds for all A € gy and B € m.
This identity holds for A € b since I preserves the root spaces. So we only need to
check it for A = X, and B = Xg with « € A’ and g € A, which is equivalent to
the invariance of the ordering. Finally, one uses that o 4 8 is positive if a, 8 € A are
positive to compute that the Nijenhuis torsion of I vanishes, so [ is indeed a complex
structure.

Vice versa, a G-invariant complex structure I on O determines a gy-invariant map
I:m — m with I? = —id by restricting to the tangent space at A and complexifying.
In particular I is h-invariant, and therefore preserves the root spaces, so X, — ico X4
with ¢, = 1. Since I preserves the real tangent space, we must have c, = —c_,.
The Nijenhuis torsion of the complex structure vanishes, which implies that A+ =
{ov€ A | ¢o =1} defines an ordering. Finally invariance under the whole Lie algebra
g, gives that this ordering is invariant. O

Proposition A.10 If Oy is a coadjoint orbit of a compact connected semisimple
Lie group K, then Oy has a unique K-invariant complex structure I that makes
(O, I,wkks) a Kdhler manifold, and this complex structure corresponds to an or-
dering for which o € A is positive if and only if (a,iX) > 0.

Note that o attains purely imaginary values on £, whereas A attains real values. There-
fore (a,i\) € R. The ordering for which @ € A is positive if («,i\) > 0 is standard

(see [Subsection 3.2).

PRrROOF: Since K is compact, it follows that any root is compact. Given a K-invariant
complex structure I, we associate the (not necessarily positive definite) metric g(v, w) =
wkks (v, Tw) and Oy is a Kihler manifold if g is positive definite. Since I and wkks
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are K-invariant, so is ¢ and we may check positive definiteness on T»O,. Identi-
fying T?O » with m as in the proof of the previous proposition and extending g
complex linearly, we compute that g(Xa, Xp) = wkks(Xa,IXg) = csA([Xa, X5])
for all o, 3 € A. This expression is non-zero only if « = —f, and in this case
9(Xa, X_o) = —icaM(a?) = —icy - (a, A). Then

g1 Xa + X_0),i(Xo + X_0)) = 2icy - (a, A)
and
9(Xa — X0, Xa — X_0o) =2icy - (o, N).

So g is positive definite if and only if ¢, = 1 for all & € A with (a,i\) > 0. O

Note that the situation is more complicated if G is non-compact, but G, is compact,
since we may then have both compact and non-compact roots. The condition for
g being positive definite then becomes ¢, = 1 if either « is a compact root and
(o, iA) > 0 or if « is a non-compact root and (a,iX) < 0. If these conditions define an
invariant ordering, then O has a G-invariant K&hler structure (which is automatically
unique). One can give more explicit criteria for when the conditions above define an
invariant ordering, see [7], but we only need the following easy case.

Corollary A.11 Let Oy be a coadjoint orbit of a connected semisimple Lie group G.
Assume that G is compact, and that by is a Cartan subalgebra containing \¥. If all
roots in A are non-compact, then (O, I, wkks) is a Kihler manifold, where I is the
complex structure corresponding to the ordering for which o € A is positive if and
only if (a,iN) < 0.
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Appendix A

Comparison between the two
constructions

In this appendix we prove that the strict star products obtained in via phase
space reduction and in by inverting the Shapovalov pairing agree, both for
complex projective spaces and hyperbolic discs.

In the notation of let us fix the signature s := 1 + n. Note that we
have seen in that the manifolds Mr(el; ™ and CP" are diffeomorphic, and
in that the metric and symplectic form on M} ™) coincide with the
standard Fubini-Study metric and symplectic form on CPP" (at least up to a scalar).
Recall that G; = U(1 +n) acts on C!*", that this action restricts to a transitive
action on Z = $?"*1, and descends to the quotient of Z by the action of the central
subgroup U(1) C U(1+mn), i.e. to CP™. The action of the subgroup SU(1+ n) is still
transitive.

Let A: sujy, =+ R, X — —irXoo be the linear functional on su;,, considered in

xample 11.5.23

Lemma A.1 The stabilizer of [1:0:...:0] under the SU(1 + n)-action on CP" is
S(U) x U(n)) =={g € SU1+n) | go; =¢gi0o=0 for 1 <i<n}, (A1)
and therefore coincides with the stabilizer of A € suj .

PROOF: It is clear that any matrix in S(U(1) x U(n)) stabilizes [1:0:...:0]. To see
the reverse implication, let ey = (1,0,...,0) € C'*™, and assume that g € SU(1 + n)
stabilizes [1:0:...:0]. Then gey = ¢eg for some ¢ € C with |¢| = 1, and therefore
gio = 0for 1 < i < n. But since g € SU(1 + n) this implies that go; = 0, i.e.
g € S(U(1) x U(n)).

Since the stabilizer of A is just the intersection of the stabilizer {g € SL14,(C) |
goi = gio = 0 for 1 <i <n}from with SU(14n), it coincides with S(U(1) x
U(n)). O

It turns out that the naive map SU(1 +n) — CP", g — g [1:0:...:0] descends to
an antiholomorphic map from the coadjoint orbit O, = SU(1 4 n)/S(U(1) x U(n)),
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through the element A\ € suj ., defined above, to CIP". We therefore consider the
smooth map

®: SU(1+n) = CP", g~ (¢5)"1n[1:0:...:0]. (A.2)

Note that on SU(1 + n) the map g ~ (¢g%)~! is a group homomorphism, coincides
with the entrywise complex conjugation, and maps the stabilizer S(U(1) x U(n)) of
[1:0:...:0] € CP™ to itself. Therefore ® descends to a bijection

®: SU(L +n)/S(U(1) x U(n)) — CP". (A.3)

Since the projection SU(1+n) — SU(1+n)/S(U(1) x U(n)) is a smooth submersion,
® is also smooth. Since ® is also an immersion (this follows e.g. by considering
fundamental vector fields), the inverse of ® is also smooth, implying that ® is a
diffeomorphism.

Consider the left action of SU(1 + n) on itself. The map ® is clearly equivariant
with respect to the actions of SU(1 + n) over the group homomorphism g + (g%)7!,
meaning that ®(gg’) = (¢7) "' ®(g) holds for all g, ¢’ € SU(1 + n). The same equiv-

ariance property holds for ®.

Lemma A.2 The map ® is holomorphic.

ProoOF: Recall that E;; denotes a matrix with entry 1 at position (7,j) and all other
entries 0. The elements Foj = on — Lyjo € SUi4qp and Goj = ion + iEjo € Suj4p
with 1 < j < n define a complement of the stabilizer (suj4,)x in su;4,. Identifying
SUiyn/(SU140)x With the tangent space of Oy C suj,,, at A via fundamental vector
fields as usual, implies that the Kéhler complex structure maps Ep;
to iEy; and Ejo to —iFE;o, and therefore maps Fy; to Go; and Go; to —Fp; for all
1 < j < n. The tangent map of SU(1 +n) > g — (¢%7)~! € SU(1 + n) is just
s, 2 X = —X7T € suy,,, and therefore maps Fy; to itself and Go; to —Goj. It
is straightforward to compute that, with respect to the coordinates w’ = j—o on CP"
around [1:0:...:0], the tangent map of the standard action of SU(1+n) on CP" at A
maps Fp; to —% and Go; to i%. This shows that the composition ® maps Fp; to
—% and Gg; to —i%, and therefore maps the holomorphic tangent space of Oy at
A to the holomorphic tangent space of CP™ at [1:0:...:0]. By SU(1 4 n)-invariance
of the complex structures it follows that ® is holomorphic. O

Recall the definitions of &(CP") from [Definition 1.4.7, of Pol(CP™) from
and of Pol(SU(1 + n)) from The polynomials & (CP™)
are defined via the reduction map, viewing CIP" as a quotient of $2"*1 C C!*" by
the action of U(1), whereas the polynomials Pol(CIP") are defined by restricting poly-
nomials on suj,, to CP" viewed as a coadjoint orbit. Pol(SU(n 4 1)) was defined
as the algebra spanned by matrix coefficients for any representation of SU(n + 1) by
real matrices (and, since SU(n + 1) is compact, does not depend on the chosen repre-
sentation). We obtain such a representation e.g. by replacing an entry = + iy € C in
the standard representation with a 2-by-2 matrix with entries x on the diagonal, and
+y in the upper right and lower left corners. Polynomials on SU(n + 1) are therefore
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precisely polynomials in the real and imaginary parts of the matrix entries, or equiv-
alently polynomials in the matrix entries of the standard representation and their
complex conjugates. Using the defining relation UTU = 1 of SU(n + 1), the complex
conjugates of matrix entries are polynomials of matrix entries, so Pol(SU(n + 1)) also
coincides with polynomials in the matrix entries of the standard representation.

Lemma A.3 The polynomials Z(CIP") are precisely the SU(1 + n)-finite functions
on CP™.

PROOF: Any polynomial peq € Z(CP") lies in the image of the reduction map
(*)rea from so is induced by a U(1)-invariant polynomial p on C1+".
Using the degree, it is clear that span{g>p | g € SU(1+n)} is finite dimensional, and
since (- )red is SU(1 + n)-equivariant it follows that pyeq is SU(1 4 n)-finite.

To see the converse, note that every SU(1 + n)-finite function on CIP™ extends to
a U(1)-invariant SU(1 + n)-finite function on $2"*1. Projecting to the zeroth column
gives a SU(1 + n)-equivariant map SU(1 + n) — $2"*1, so we may view L2($>"F1)
as a submodule of the left-regular representation of SU(1 4+ n) on itself. Modifying

the proof of gives that all SU(1 + n)-finite functions on $2"*1 are

polynomials. O

We saw in that Pol(CP™) = Pol(SU(1 + n)/S(U(1) x U(n))) also con-

sists precisely of the SU(1 4+ n)-finite functions, and since ® is a SU(1 + n)-equivariant
diffeomorphism (over an automorphism of SU(1 + n)), we obtain the following corol-
lary.

Corollary A.4 The pullback ®*: €°°(CP") — €°°(SU(1 + n)/S(U(1) x U(n))) re-
stricts to an isomorphism ®*: Z(CP") — Pol(SU(1 4+ n)/S(U(1) x U(n))).

We will usually identify SU(14+n)/S(U(1) x U(n)) with the corresponding coadjoint or-
bit, which we also denote by CIP", so that the isomorphism becomes ®*: £ (CP") —
Pol(CP™).

We are now ready to compare the strict star products on CIP™, obtained in [Paper I
and
Theorem A.5 The map ®*: Z(CP") — Pol(CIP") intertwines the two star prod-

ucts %red,n defined in [Proposition 1.5.29 and *, for v =1 defined in[Ezample T1.5.23,
meaning that for all p,q € &(CP") we have

(p*(p *rcd,h q) = @*(p) *p (I)*(q) . (A4)

ProoF: Both star products are SU(1 + n)-equivariant, so it suffices to prove (A.4))
at the point A € suj,, defined above, which corresponds to eS(U(1) x U(n)) €
SU(1+n)/S(U(1) x U(n)), and therefore to [1:0:...:0] € CP" under the isomorphism
®. Since ®*(p *red,n ¢)(A) = (P *rea,n ¢)([1:0:...:0]) we have to prove that

(P Hrea,n g)([1:0:....:0]) = (D7(p) *n D7 ())(A) -

Recall the definition of the monomials bpg for P,Q € N§*" from [Definition I.5.6|

and that the bp g.req With |P| = |Q| span the space Z(CP"). It is therefore enough
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to prove the above equation for p = bp g.eqa and ¢ = b g.req With P,Q, R, S € N§*™,
P| = [Q], and |R| = |S].

The explicit formula for *..q,5 obtained in [Proposition I.5.22| shows that bp g.red
with |P| = |@Q| = 1 generate the whole star product algebra, meaning that elements
of the form bPl,Ql;red *ovee *bp,ka;red with £ € N and |P1‘ = ... = |Pk| = |Q1| =
-+ = |Qk| =1 span Z(CP"). Since both *eq n and *p are associative and unital, it
therefore suffices to prove that

(bP.Qired *red,h DR,sired) ([1:0: ... :0]) = (27 (bp,giwea) *n ™ (bR,s1wea)) (X)) (A.D)
for P,Q, R, S € Nyt with |P| = |Q| = 1 and |R| = |S|. v

We will compute both sides of that equation explicitly, but before we derive a lemma

that simplifies this computation. In analogy to the notation used in
we define the polynomials P;;: SU(1 4+ n) — C, g — g;;. We explained above that
the P;; generate Pol(SU(1 + n)). As in [Proposition 11.3.36} if 1 < j < n we define
Xoj = Ey; and Yy; = Ejg in sl ,(C), the complexification of su;,,.

Lemma A.6 Forallj€{l,...,n} and k,£ € {0,...,n} we have

X(l)z'ftpko =0, Y()I;ftpké = 000 Prj (A.6a)
X5 Pee = —60¢Prj Yt Py = 0. (A.6b)

Proor: Note that Fy; := Eo; — Ejo and Goj; := iEy; +1Ejp with 1 < j < n all lie in
SUT4n, and that XOj = %(FOJ — IGOJ) Therefore

1/d . d
Xoj Prel9) = 5 ((h‘t_osz(geXp(tFoj)) —igy|,_ Frely eXp(tGOJ‘”)

tle
1 )
= §(Pké(9F0j) — 1Py (9Goj))
1 . .
= 5(%05]'@ — Grjoe —1-igrodje —1-1igr;dor)
= grodje

= 050 Pro(9) s

and the first equation is the special case £ = 0. The other equation including X"
follows from a similar computation with Py, instead of Py, The statements for
Yol;?ft follow by taking conjugates: Since SU(n + 1) is compact, all roots are compact,
and therefore Xo; = —Yy; by (with - denoting the complex conjugation of
sly 4, (C) with respect to the real form su;,, not the entrywise complex conjugation
of a matrix). O

CONTINUATION OF THE PROOF OF [[THEOREM A5t We attempt to compute both sides
of explicitly, starting with the left hand side. Since |P| = |Q| = 1, let
0 < p,q < n be such that P = E, and Q = E,. Note that bg, ¢(1,0,...,0) = &0
and bg,g,(1,0,...,0) = d;,0, and consequently bg s.red([1:0:...:0]) = dr/ 0050 for
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any multiindices R = (Ro, ..., Ry),S = (S0, - --,S,) € NgT" with |R| = |S| and with
truncations R’ = (Ry,...,R,), 8" = (S1,...,5,). Then

(bEp,Eq;rcd *red,h bR,S;rcd)([lzo: ce 0])
1 min{E,,S} B

W Z (1/h)¢’|E”+S_T|T!<Ep> <S> OB +R—1/,00E,+5'~T',0

< (1/R)y,s) T\
min{S,,1}
@) Z AL/ 151410 (SP> OB 4RI —(tE,) 00E! +S'—(tE,) 0
i ’ '—(tEp)’, {’1 '—(tEp),
=S CONEIAC YA

(Z) h(1/h —1S))dE,+r 008 +57,0 + WSpOR 00 B, +57—F70
4
(: 0B, +Rr 008, +5',0 — NS|0E+ R 00E) +57,0 + NSpOr/ 00E; +5 —E1 0

= 0p,004,00r" ,0057,0 — 11S00p,004,00 R’ 0057 0

+ 1S00p,004.00 R, 00570 + > hiSi0p.i64.00 R 0057 B
i=1

(6) -
= 0p.002.008,0057.0 + B Y _ 0p.i04,00R 00/ 1 -

i=1

Here we used the explicit formula for *eq, from [Proposition 1.5.22/in (1). In (2), the
sum over 7' is a sum over the multiindex 0 and, if S, > 1, the multiindex E,. In (3)
we wrote out the sum and simplified the expression, and in (4) we multiplied out the
first product. In (5) we used that all our multiindices have non-negative entries, so
e.g. 6E;+Rr,0 = 5E;,0(53/,0 = 0p,00r’,0. When doing a similar computation for the last
summand, we distinguish the two cases p = 0 and p > 1, yielding the third and fourth
summand. Finally (6) only involves cancelling.
To compute the right hand side of , note that

(7T* ] (I)*)(bR,S;rcd)(g) = bR’S;er((gT)71 > [1202 ce 0]) = vas;er(gb [1:02 ce 0])
holds for all R, S € Nj™™ with |R| = |S| and for all g € SU(1 +n). Therefore we have

(7% 0 ®*)(bg,s:red) = P.o"(P.0)°

where P. (% is a shorthand for Py Pyof*t ... Pof*» and (P.()” is a shorthand for
(PO())SO(PH))SI (Pno)S" Clearly P.OR(e) = 5R/,0 and (P,O)S(e) = 55/70 with e
denoting the identity element of SU(1 + n).

From (A.6a) and (A.6b]) it is immediate that applying two or more X(l)‘}ft to (m* o
®*)(bp.g.rea) With |P| = |Q| = 1 gives 0, so that all summands in with £ > 2
vanish. Therefore

(@%(bE,,Ered) *1 " (bR, Sirea)) (A)
DEN (1)
Tl G -w-n)]
((Xo1 @ Yo + -+ Xon ® Yo,0)") " (B0 Py0, P o (P 0)%)(e)

—~
N2
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2 BraPyoP o (P 0)%)(e)

s Z (XENP, 0)(e)Pyo(e)P- o™ (e) (Yool (P. 0)%)(e)

®)
= 0p,004,00R" 00570 + I Z 0p,i0¢,00R 005" E
i—1

In (1) we used that f *, g = m.(EFle® (7" f,7*g)), inserted (IL.3.39) with r = 1 for Fy,
and truncated the sum at £ = 1 as described above. In (2) we wrote out the sum
over /, and used (A.6a) and (A.6b). Finally, we used these equations again in step
(3): Xcl)czftpp o(e) = _Pp,z( )=— p i and similarly YIC&(P ,O) ( ) =05k

These computations prove and therefore O

Corollary A.7 The formal star product x.eq defined in[Definition 1.5.6 and the for-
mal star product x, obtained from the asymptotic expansion of the element Fy in
[Proposition 11.5.536], are intertwined by ®*.

PRrROOF: Since both formal star products are the asymptotic expansions of the cor-
responding strict star products *yeq,n and *p (recall that differential operators are
uniquely determined by their behaviour on polynomials), this follows from the previ-
ous theorem. O

Corollary A.8 The map ®: SU(1+n)/S(U(1) x U(n)) — CP™ defined in the begin-
ning of this section is a symplectomorphism.

PRroOF: The symplectic forms on SU(1 4+ n)/S(U(1) x U(n)) and CP™ can be recov-
ered from the star products * and x..q as the antisymmetrized first order. Since ®*
intertwines the star products, it must also intertwine the symplectic forms. O

Recall the setup from where we defined complex manifolds M,eq and
an antidiagonal embedding A,oq: Mieq — Mred. Remember that these definitions
depend on the signature s, which we omit from the notation for better readabil-
ity. We did not define extended products %45 in [Paper I so we will do so now.
Similarly to the definition of polynomials on M;eq in we can define
holomorphic polynomials &?(M,.q) as the image of C*-invariant holomorphic poly-
nomials on ([;H” x C'*™ under the reduction map “req- It is easy to verify that
(Aved)*™: P (Myea) = P( rcd) is a bijection. Consequently there is a uniquely de-
termined product x,.q 1 P (Mrea) X P (Mrea) = P (Mrea) that restricts to *req,n on
Mred

Recall also the definition of the stabilizer G ; from Assembling the o;
into a diagonal matrix o := diag(oy, ... ,an) We have g',9) € GL14,(C) x
GL11n(C) | ¢’ = o(g7")"0}. G acts on Myeq by (¢ ,9) [(%y)} = [(¢'z, gy)]c-
Since the subgroup {(z114n, 2~ ]l1+n) | 2 € €©*} C G; acts trivially, we will usually
only consider the action of the subgroup

S(G4) =1{(¢',9) € SL144(C) x SL14(C) | g’ = 0(97 ") 0}
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of G in the following. Note that S(G ;) still acts transitively on Mrgd.
Let g = (1,0,...,0) € C'*™. The stabilizer of u := [eg, eo]cx € Myeq is given by

S(G 5) = {(0(g ) 0.g) | g € S(GL1(T) X GL,(CT))}, where
S(GLl(C) X GLn(C)) = {g c SL1+n(®) | 90,i = Gi,0 = Ofor1 <i< TL} - SL1+n((D)

denotes matrices with determinant 1 that are block diagonal with blocks of size 1 and
n. In the following we identify SL;.,(C) with S(G ;) via the map g — (a(g7 1) %o, g).
Under this correspondence, the subgroup S(GL;(C) x GL,(C)), that also appeared
in , is identified with S(G ;),. Therefore, similarly to the definition of @,
we obtain a holomorphic diffeomorphism

$: SLy4n(T)/S(GL1(T) X GLA(T)) — Myeq
g-S(GL1(C) x GL,(TC)) = (o(¢g") o, g9) > p = [o(g") toes, geo)c- . (A7)

Indeed, surjectivity is clear by the transitivity of the action of S(G j) on Mred, injec-
tivity follows since we divided out the stabilizer, being a diffeomorphism follows as
before, and being holomorphic is obvious since all involved maps like transposition, in-
verse, and the action on M,eq are holomorphic. & is also SLy ., (C)-equivariant (with
respect to the left action of SLi4,(C) on SLi4,(C)/S(GL;(C) x GL,(C)) and the
action of SLy4,(C) on Mred, obtained through the identification of SL;,(C) with
S(G4)).

To better distinguish the next corollary from the following statements, we write
out the signatures.

Corollary A.9 The pullback with the map S+ defined in (A7) intertwines the
product %g;‘g) on 9(M<1+")) with the product % on Pol(SLi4,(C)/S(GLy(C) x

, red /.
GL,,(Q))) defined by Fy, f?’om 11.5.39), meaning that
(@) (pAlaas) @) = (@) (p) dn (2" () (A8)

holds for all p,q € '@(Mr(eljn))

PROOF: For better readability we drop the signature s = 1+ n in this proof. The in-
clusion ¢: SU(1+n)/S(U(1)xU(n)) — SL14,(C)/S(GL1(C) x GL,(C)) is intertwined
with Areq by ® and @, in the sense that A..q 0 ® = ® o . Indeed,

(®ou)(g-S(UL) x U(n))) = [(g") "o, geolc+ = [geo, geole- =
= Area([ge0]u(1)) = (Area © ®)(g - S(U(1) x U(n)))

holds for all g € SU(1 4+ n). Recall that elements of 92 (M,.q) extend uniquely to
holomorphic polynomials 22 (M,eq) whereas elements of Pol(SU(14n)/S(U(1)x U(n)))
extend uniquely to holomorphic polynomials Pol(SLi4,(C)/S(GL1(C) x GL,(C))).
Since the pullback ®*: & (M;eqa) — Pol(SU(1+4n)/S(U(1) x U(n))) is an isomorphism
according to and ® is holomorphic, it follows that ®* is a bijection
between & (Myeq) and Pol(SL 4, (C)/S(GL1(C) x GL,(C))).
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The products *,.q  and %, are uniquely characterized by the property that they
restrict t0 *peq,n and *n under the embeddlngs Ayeq and ¢. Since @ intertwines xyeq s
and *; by [Theorem A.5) it follows that & intertwines *rean and Fp. O

We will use the Wick rotation to transfer this result to other signatures. Recall

that the geometric Wick rotation a(®): Mr(j(;r") — J\A{[r(csg defined in |Definition 1.6.1

. . ~(14n) ~(8)
intertwines *red h and *rod B

Corollar A 10 The (pullback with the map &) defined in (A7) intertwines the
pmduct* y on P (M 1) with the product %5, on Pol(SLi,(C)/S(GL(C)xGL,(C)))
defined by Fh from (I1.3.59 3 3 , meaning that

(@) (p k@) = (@) (p) 31 (89) (0) (4.9)
holds for all p,q € 2( red)

PrOOF: We will determine which map a(® induces on SL;,(C), from which the
result will follow since this map leaves %5 invariant. The details are as follows.
Recall the definition of W) from the beginning of [S Let Ly be the
map SL14,(C)/S(GL1(C) x GL,(C)) — SL14+,(C)/S(GL1(C) x GL,(C)) given by
the left action of det(W®)=1W ) € SLy,,(C). Then &) o Ly = o) o 1+n),
Indeed, we compute
() o Liw)(g - S(GL1(T) x GLn(©))

= 3O (det(WE) W) g . S(GL1 (T) x GL,(T)))

= [0 (det(WE) W E YT "1 eg, det(WE) LW E) geg) g

= W (g") "o, W geglc-

= (@) 0 B4 (g)

for all g € SLi,,(C) since c®ey = o, (WE)T = WG, (WE)~1 = W),

and [zz, 27 'y]o« = [z, y]o~ holds for 2 € C* and z,y € C'™". Applying the previous
corollary to the pullbacks ((*))*p and (a(*))*q, and using that o(*) intertwines %ﬁé;”g)

~(s) .
and *rod fs WE obtain

(B0 o (al))*(p)) 2 (BF)* 0 (a9)*(q))
= (U (@) (p) * i (@) (q))
= (@) o (0 (p &) 1 @)
= (Lw)* o (89 (p#{) 5 0).-
A direct computation gives
(1) o (al*))*(p)) 2 (B1F™)* 0 (a9)*(q))
= (Lw)" 0 (29))"(p)) 1 (L) 0 (8))"(q))
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— (L))" (D) (p) %4 (3))*(g)),

where we used in the last step that %y, is SL; 1, (C)-invariant. Equating the expressions
and applying the pullback with the left action of det(W)) . (W)=l € SL;,,(TC)
proves the corollary. O

Corollary A.11 The pullback with the restriction of &) to a map

®):SU(s,14+n—s5)/S(U(s) x Ul +n—s)) = Mr(cs(i

intertwines the star product *52()1 y, defined in[Proposition I.5.22 with the star product
*%S) defined by the element F}, from [Proposition II.3.36| for r = 1. That is, for all
p,q € 2(MS)) we have

(@) (pxich ) = (@) (p) + (@) (q). (A.10)
Proo¥F: This follows immediately from the previous corollary by restriction. |

Note that for s = 1 the star product *%1) is not the Wick type star product from

[Example I1.5.24) which is induced by the element Fy, from [Corollary 11.3.37] but is the
anti-Wick type star product induced by the element Fj from [Proposition 11.3.36] We

have already seen this in
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