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Abstract:

This thesis studies strict quantizations in a Fréchet-algebraic setting.
In the Introduction, we review the quantization problem and di�erent approaches to its

solution: formal deformation quantization, strict deformation quantization in the sense of
Rie�el, Berezin�Toeplitz quantization, and strict quantization in a Fréchet-algebraic setting.

In Paper I, which is joint with M. Schötz, we study strict Fréchet-algebraic quantizations
of a family of manifolds Mred that can be obtained via phase space reduction from C

1+n

with the Wick product in di�erent signatures. In particular, we show how to reduce the
formal Wick star product to Mred, compute its de�ning bidi�erential operators explicitly,
and prove that it restricts to a strict product on a subalgebra of polynomial functions. We
prove that this product extends to a continuous product on the Fréchet algebra of certain
analytic functions that admit a holomorphic extension to a larger space. We obtain an
isomorphism between the Fréchet-algebraic quantizations for di�erent signatures, which is
similar to a Wick rotation.

In Paper II, we obtain strict quantizations for semisimple coadjoint orbits O of semisim-
ple connected Lie groups G. We give an explicit formula for the canonical element of the
Shapovalov pairing, which was used by Alekseev�Lachowska to de�ne a formal G-invariant
star product on O. We show that the formal star product converges on polynomials, and,
using the explicit formula for the canonical element, we show that it extends to a strict G-
invariant product on the Fréchet algebra of all functions that admit a holomorphic extension
to the complexi�cation of O. In this setting, we also have an analogue of a Wick rotation.

In the Appendix, we show that all the reduced manifolds Mred are coadjoint orbits, and

that the strict star products obtained for Mred via phase space reduction as in Paper I

coincide with the strict star products obtained in Paper II.





Résumé:

I denne afhandling behandler vi streng kvantisering ud fra en Fréchet-algebraisk tilgang.
I indledningen indfører vi kvantiseringsproblemet og diskuterer forskellige løsningstil-

gange: formel deformationskvantisering, streng deformationskvantisering som indført af Ri-
e�el, Berezin�Toeplitz kvantisering, og streng kvantisering ud fra en Fréchet-algebraisk til-
gang.

I Paper I (sammen med M. Schötz) studerer vi strenge Fréchet-algebraiske kvantiseringer
af en familie af mangfoldigheder Mred, som konstrueres ved hjælp af faserumreduktion fra
C

1+n med Wick-produktet i forskellige signaturer: vi demonstrerer hvordan man reducerer
Wick-produktet til Mred, beregner bidi�erentialoperatorerne som de�nerer det og beviser at
det restringerer til en algebra af polynomiale funktioner. Derudover viser vi at produktet
kan udvides til fuldstændiggørelsen af denne algebra, som er en Fréchet algebra og består
af funktioner med en udvidelse til holomorfe funktioner på et større rum. Vi indfører en
isomor� mellem de Fréchet-algebraiske kvantiseringer med forskellige signaturer, som ligner
en Wick rotation.

I Paper II konstruerer vi strenge kvantiseringer af semisimple koadjungerede baner O af
semisimple sammenhængende Lie grupper G. Vi giver en eksplicit formel for det kanoniske
element af Shapovalov-parringen, som Alekseev�Lachowska brugte til at de�nerer formelle
G-invariante stjerneprodukter. Vi beviser at det formelle stjerneprodukt konvergerer på
polynomier og med formlen for det kanoniske element viser vi at produktet udvides til et
strengt G-invariant produkt på Fréchet algebraen af alle funktioner som kan udvides til
holomorphe funktioner på kompleksi�ceringen af O. Der eksisterer også en Wick rotation i
den her formalisme.

I appendikset beviser vi, at alle de reducerede mangfoldigheder Mred er koadjungerede

baner og at det strenge produkt, som vi konstruerede på Mred ved hjælp af faserumreduktion

i Paper I, er det samme, som det strenge produkt vi konstruerede i Paper II.





Acknowledgements

First and most important, my warmest thanks to my adviser Ryszard Nest. You
were always there when I had questions, no matter whether it was about complex
analysis, algebraic topology, or mathematical logic. Your insight and intuitive way
of explaining things have changed my own understanding of mathematics drastically.
Thank you!

Thanks to Pierre Bieliavsky and Alexander Gorokhovsky for the warm hospitality
that I received during my stays at the Université catholique de Louvain and the
University of Colorado, Boulder. I learned a lot from you during this time and
broadened my mathematical horizons.

Thanks to Chiara Esposito, Matthias Schötz, and Stefan Waldmann for their
interest in my work, for solving problems together, and for all the other support that
I received in the last three years after leaving Würzburg.

My o�cemates made my average working day much more enjoyable, and I re-
ally missed you during the lockdown. Thank you for all the mathematical and non-
mathematical discussions.

Writing this thesis would not have been possible without the support of my family.
Thanks for always being there, and for running to the German authorities whenever
I needed some documents stamped.

Special thanks to the only two people whom I saw regularly in person during
the lockdown, and not just on a computer screen: Calista and Clemens, you are
amazing! Thanks for all the boardgaming and the fun time that we spent together,
for proofreading some parts of this thesis, and for preventing me from going crazy
during the lockdown.

Thanks also to everyone else who made this world a bit more normal again, in
these unusual times!



Contents

Preface 1

Introduction 3
1 Quantization: A non-technical introduction . . . . . . . . . . . . . . . . 3
2 Mathematical introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Classical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The quantization problem . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Formal deformation quantization . . . . . . . . . . . . . . . . . . . 11
2.5 Strict deformation quantization . . . . . . . . . . . . . . . . . . . . 17
2.6 Berezin�Toeplitz quantization . . . . . . . . . . . . . . . . . . . . . 24
2.7 Obstructions to strict quantizations . . . . . . . . . . . . . . . . . . 27
2.8 Fréchet-algebraic approach to quantization . . . . . . . . . . . . . . 30

3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Existing results on coadjoint orbits . . . . . . . . . . . . . . . . . . 34
3.2 Contributions of the author . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Paper I: Wick rotations in deformation quantization 49
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3 Geometric background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Algebraic point of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Smooth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Polynomial functions . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Poisson brackets and star products . . . . . . . . . . . . . . . . . . . . . 69
5.1 The smooth case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Explicit formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 The polynomial case . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 The analytic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Wick rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Geometric Wick rotation . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Algebraic Wick rotation . . . . . . . . . . . . . . . . . . . . . . . . 88



6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A Symmetrized covariant derivatives . . . . . . . . . . . . . . . . . . . . . 94
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Paper II: Strict quantization of coadjoint orbits 103
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.1 Coadjoint orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.2 Invariant holomorphic k-di�erential operators . . . . . . . . . . . . 111

3 Quantizing complex coadjoint orbits . . . . . . . . . . . . . . . . . . . . 114
3.1 Verma modules and the Shapovalov pairing . . . . . . . . . . . . . 114
3.2 Generalization to non-regular orbits . . . . . . . . . . . . . . . . . 121
3.3 The induced formal and strict products . . . . . . . . . . . . . . . 128
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.1 Continuity in the reduction-topology . . . . . . . . . . . . . . . . . 137
4.2 Stein manifolds and extension of holomorphic functions . . . . . . 142
4.3 Characterizing the reduction-topology . . . . . . . . . . . . . . . . 144

5 Quantizing real coadjoint orbits . . . . . . . . . . . . . . . . . . . . . . . 145
5.1 Complexi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2 Polynomials and analytic functions . . . . . . . . . . . . . . . . . . 147
5.3 Formal and strict star products on real coadjoint orbits . . . . . . 150
5.4 Examples: complex projective spaces and hyperbolic discs . . . . . 154
5.5 Positive linear functionals . . . . . . . . . . . . . . . . . . . . . . . 155
5.6 A generalized Wick rotation . . . . . . . . . . . . . . . . . . . . . . 158

A Proofs, G-�nite functions, and complex structures . . . . . . . . . . . . . 159
A.1 Proofs of Proposition 2.5 and Proposition 2.7 . . . . . . . . . . . . 159
A.2 G-�nite functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.3 Complex structures on real coadjoint orbits . . . . . . . . . . . . . 164

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A Comparison between the two constructions 169





Preface

The quantization problem is a good example to illustrate the close relationship be-
tween mathematics and theoretical physics. This problem asks to quantize a clas-
sical mechanical system, which can be formalized as the task of associating non-
commutative (quantum) algebras to commutative Poisson algebras, in such a way
that the commutator corresponds to the Poisson bracket. Formal deformation quan-
tization is a mathematical theory which tries to study this problem in a simpli�ed
formal setting. One of the most important theorems in this context is Kontsevich's
formality theorem, which ensures the existence of a formal deformation quantization
on any Poisson manifold. On the one hand, these mathematical results can be applied
to help to understand the original physical problem, but on the other hand they are
also of independent mathematical interest. For example, formal deformation quanti-
zations can be used to formulate an algebraic analogue of the Atiyah�Singer index
theorem.

More generally, the mathematical �elds of non-commutative geometry and quan-
tum groups emerged from the need of having a good formalism to study non-commuta-
tive spaces and their symmetries, as required in order to better understand quantum
mechanics. There are numerous applications to quite di�erent mathematical prob-
lems, ranging from number theory to representation theory.

The aim of this thesis is to study the quantization problem from a mathematical
perspective. We will introduce the problem in detail and discuss some of the numerous
approaches to its solution. In the main part of this thesis we present new results on
a Fréchet-algebraic approach: We obtain quantizations of algebras of certain analytic
functions. Our hope is that these results will lead to a better understanding of some
of the other approaches to quantization, too. For example, the Fréchet algebras
interpolate between the quantum algebras obtained via Berezin�Toeplitz quantization.
It also seems reasonable that they are related to C∗-algebraic quantizations, at least
in some well-behaved examples.

This thesis consists of an introduction, two research articles, and an appendix.
The research articles can be found at arxiv:1911.12118 and arxiv:1907.03185. They
have both been edited to comply with the conventions used in the rest of this thesis,
and a few footnotes referring to other parts of this thesis were added.

When referencing within a certain chapter, we only indicate the number of the
corresponding theorem or equation, e.g. Theorem 3.18 or (2.1). When referencing to a
di�erent chapter, this number is pre�xed by I or II for the research articles, and Intro
or Appendix for the introduction or appendix, e.g. Theorem II.3.18 or (Intro.2.1).

http://arxiv.org/1911.12118
http://arxiv.org/1907.03185


2 PREFACE

Numbers in brackets like (2.1) always refer to equations.
Throughout this work we use N to denote the natural numbers {1, 2, 3, . . . } and

let N0 := {0} ∪N. As usual Z, Q, R and C denote integers, rational numbers, real
numbers, and complex numbers. Formal power series over a ring R are denoted by
R[[ν]] and Laurent series by R[ν−1, ν]].

We use standard di�erential geometric notation throughout this thesis. C∞(M)
stands for (complex) smooth functions on a manifold, TM is the (real) tangent bundle
of the manifold M , TCM its complexi�cation, and T∗M the (real) cotangent bundle.
If V is a vector space, then we denote its tensor algebra by T•V , and the subspaces of
symmetric and antisymmetric tensors by S•V and Λ•V , respectively. This notation
applies also to vector bundles E overM , e.g. ΛkE denotes the vector bundle obtained
as the k-fold antisymmetric tensor product of E. Γ∞(E) denotes the smooth sections
of E. In particular, Γ∞(ΛkT∗M) denotes k-forms on M .

Lie groups are denotes by G or H, or by K if they are compact. We denote
Lie algebras always by gothic letters, e.g. g, h and k. U g stands for the universal
enveloping algebra.



Introduction

This introduction is divided into three parts. The �rst part consists of a very short
non-technical summary of the motivation of this thesis, aimed at a reader without
any mathematical background. The second part is a mathematical introduction to
the topic of quantization. We give a brief review of classical and quantum mechanics,
and introduce the quantization problem. Then we discuss several approaches to solve
this problem: Formal deformation quantization, strict quantization in a C∗-algebraic
context, and a Fréchet-algebraic approach. This part is supposed to give the reader
the necessary background knowledge to understand the broader context, in which this
thesis is placed. The third part consists of a more detailed summary of previous results
that are directly relevant to the author's work, a description of the main contributions
of this thesis, and an outlook on possible future directions.

1 Quantization: A non-technical introduction

In this short section we attempt to explain what the central problem of this thesis,
the quantization problem, is about, without assuming any background knowledge. We
give a brief description of the development of quantum mechanics, and explain why
a good theory of quantization is desirable.

Classical physics

At the end of the 19th century, physicists believed to have a rather accurate description
of the world. Most of the existent phenomena could be described and predicted
by their theories, and there was good progress on the remaining questions. One
important theory concerned the understanding of electromagnetism, i.e. light, which
was described by Maxwell's equations. These equations describe light as a wave that
propagates through space, similar to a water wave, although the precise description
is more complicated: A light wave consists of oscillating magnetic and electric �elds,
that interact with each other and with matter, and only in vacuum will those �elds be
synchronous, so that they can essentially be treated as one. Maxwell's equations could
explain and accurately predict many phenomena known at that time, like refraction
or polarization.
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Of waves and particles

However, in the beginning of the 20th century experiments showed that, under certain
circumstances, light behaved more as a collection of particles and not as a wave,
contradicting the existing physical theories. For example, if light behaved as a wave
and was shone on a metal, then one would expect that it knocks out electrons after a
certain amount of time needed for the wave to deposit enough energy, and that this
time is shorter if the light is more intense (�brighter�). However, when performing this
experiment, one �nds that there is no waiting time, but electrons are only emitted if
the frequency of the light is high, i.e. if the wave oscillates quickly. The intensity has
no in�uence on whether electrons are knocked out or not. Einstein explained this by
postulating that light consists of particles, whose energy is high if the frequency is
high. Electrons are hit by only one of those particles at a time, and get dislodged if
the frequency is above a certain threshold. The intensity of the light is the number
of particles in the beam, and therefore only a�ects the number of dislodged electrons,
but not whether electrons can be dislodged or not.

Additionally, new experiments showed that particles, which were believed to be
localized in space and essentially described as small balls moving around, behaved as
waves in certain experiments. Shooting a beam of electrons through two slits produced
an interference pattern on a screen, similar to the pattern one would expect for waves:
One can think of each of the slits as emitting a wave and the intensity varies along
the screen, depending on whether these waves reach a certain point in phase or not:
Two wave peaks add up to high intensity, whereas a peak and a trough cancel each
other. Such a cancelling, meaning that electrons do not hit certain parts of the screen
at all, cannot be explained in a particle picture.

More surprisingly, when physicists acquired the technology to shoot only a single
electron at a time, that electron appeared at a random position on the screen, following
the intensity pattern described above. So the single electron seems to pass through
both slits, waves emerging from the two slits interfere with each other, and the electron
appears at a random position with probability proportional to (the square of) the
amplitude of the superposition of these waves.

Quantum mechanics is born

The picture that physicists had made of the world changed drastically with those
observations. The classical description, where electrons behave like particles and
light behaves as a wave described by Maxwell's equations, became known as classical
physics, whereas the new theory describing both in a uniform way became known as
quantum physics. In this new theory, all particles (and light, which is essentially a
bunch of particles, called photons) are described by waves, called probability waves.
Such a wave propagates through space and may interfere with itself, just as a water
wave. When measuring where a particle is, it will appear at a random position with
probability proportional to (the square of the absolute value of) its probability wave.
It is impossible to predict where exactly the particle will appear.

Even worse, this new theory also predicts that certain properties of the particle
cannot be measured simultaneously. If one tries to determine its position, then the
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velocity becomes more uncertain, and vice versa, when determining the velocity, the
particle spreads out more and more. This is not a problem coming from a lack of
good measurement devices, it is inherent to the theory: Measuring certain properties
of a particle, will change this particle's state and always in�uence other properties.

Physicists were of course aware of the fact that such a theory sounds crazy, as we
cannot observe any of those quantum e�ects in the macroscopic world that we observe
on a daily basis. The thesis that you are currently reading is somewhere in space,
probably on your desk, and if anyone told you that it is a wave, interfering with itself
and appearing at random positions when you look at it, then you would probably
be inclined to send that person to a psychiatric ward. Similarly, many physicists
were unsatis�ed with quantum theory, and hoped for di�erent explanations. Ein-
stein famously said �God does not play dice with the universe.� to express that he
was repelled by the probabilistic aspects of this theory, Niels Bohr said �Hvis kvante-
mekanikken ikke gør dig svimmel, har du ikke forstået noget som helst.� (�If quantum
mechanics hasn't profoundly shocked you, you haven't understood it.�), and the sim-
ilar quote �If you think you understand quantum mechanics, you don't understand
quantum mechanics.� is commonly attributed to Richard Feynman.

Quantization

But no matter how abstruse quantum mechanics might sound, until now no better
theory has been found. On the contrary, quantum mechanics agrees with the experi-
ments to a high degree and can make extremely accurate (probabilistic) predictions,
but none of the proposed alternatives does. This, of course, poses a problem to physi-
cists: How does one �nd a good mathematical description of a quantum system, if
quantum mechanics is so far from our intuition? One idea is to start with an analogous
classical system, which we can describe very well, and then �quantize� this theory by
replacing certain objects in the formalism with other quantum objects. This process
is usually called quantization.

There is no universal theory of quantization that would allow to get quantum
systems out of any classical input. On the contrary, there are a few theorems asserting
that if one demands too many similarities between a classical and a quantum system,
then there does not exist a quantization procedure. So far, many di�erent approaches
to quantization have been proposed and studied extensively.

In this thesis, we discuss and relate some of these approaches. We show how one
of them can be applied to so-called coadjoint orbits, a class of classical systems which
possess a lot of symmetries.

Quantization in mathematics

The quantization problem, i.e. the problem of �nding a good quantization procedure
to quantize classical systems, is a good example of a problem that originated in physics
and which has led to important developments in pure mathematics. Many notions,
as for example formal deformation quantizations that we introduce in Subsection 2.4,
can be used to understand other mathematical problems better.
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More generally, the whole mathematical �elds of non-commutative geometry and
quantum groups were motivated by quantum mechanics and the fact that quantum
observables do not commute. Many of the mathematical developments in those �elds
have then inspired new physical developments, showing the close interaction between
mathematics and physics.

2 Mathematical introduction

In this section we give a mathematical introduction to quantization. This should
provide the broad context, in which to see the results of this thesis. We start by
brie�y outlining classical mechanics and quantum mechanics in Subsection 2.1 and
Subsection 2.2, focussing on their observable algebras. The observable algebras will
be the starting point for many, but not all, quantization theories. We formulate the
quantization problem, and present some no-go theorems in Subsection 2.3.

We then discuss possible approaches to solve the quantization problem. In Subsec-
tion 2.4 we introduce formal deformation quantization, which tries to neglect analytic
aspects of the problem, and thereby makes it accessible to algebraic methods. We
present the main ideas needed to obtain existence and classi�cation results, both in
the symplectic and in the more general Poisson case. In Subsection 2.5 we discuss
strict deformation quantization in the sense of Rie�el, presenting a very prominent
construction of such strict deformation quantizations and discussing why this con-
struction, as many others, cannot be applied to the 2-sphere. In Subsection 2.6 we
give a more general de�nition of strict quantizations, that also covers examples like
the Berezin�Toeplitz quantization.

To illustrate the importance of formal deformation quantizations, also in other
areas of mathematics, we describe the algebraic index theorem in Subsection 2.7. This
theorem is the starting point for many results about obstructions to the existence of
strict quantizations. Finally, we describe a Fréchet-algebraic approach to quantization
in Subsection 2.8.

2.1 Classical mechanics

In this subsection, we recall brie�y the Hamiltonian formalism in classical mechanics.
Our description is, of course, far from complete. For more details, see [Arn89,Gol91,
Tak08,Wal07].

There are two powerful formulations of classical mechanics, namely Lagrangian
and Hamiltonian mechanics. Essentially, those formulations are equivalent to New-
ton's law of motion, but o�er more freedom in the choice of coordinates to describe
the problem. The Hamiltonian formalism will be more useful for us, as it makes the
similarities to quantum mechanics more apparent. However, the Lagrangian formal-
ism is more commonly used when describing relativistic theories, which is due to the
fact that it does not distinguish time and energy, and therefore is manifestly Lorentz
invariant. There are interesting physical systems, for example dissipative systems,
that cannot be described in either framework.
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In Hamiltonian mechanics, the time evolution of a classical mechanical system
is determined by its current state, consisting of the positions and momenta of all
particles. The set of all allowed positions and momenta is usually referred to as the
phase space M of the system, and assumed to be a smooth manifold. We would like
to compute how any point in phase space evolves with time.

In many examples, the positions of the particles are described by some manifold
Q, and the phase space is just the cotangent bundle M = T∗Q. Choose coordinates
q1, . . . , qd on Q. These coordinates induce coordinates x1, . . . , xd, p1, . . . , pd on T∗Q,
given by xi(αq) = qi(q) and pi(αq) = αq

(
∂
∂qi

∣∣
q

)
where αq ∈ T∗qQ. Now given a smooth

real function H ∈ C∞(M), called Hamiltonian, which corresponds to the energy of
the system, we obtain the equations of motion

dxi(γ(t))

dt
=
∂H

∂pi
(γ(t)) and

dpi(γ(t))

dt
= −∂H

∂xi
(γ(t)) , (2.1)

where γ is a curve in M , describing the time evolution of the state γ(0). Let us give
a coordinate independent formulation of these equations.

Lemma 2.1 With the notation above, ω =
∑d
i=1 dxi ∧ dpi de�nes a non-degenerate

closed 2-form on M = T∗Q, independent of the chosen coordinates q1, . . . , qd.

Non-degeneracy means that the map [ : TM → T∗M , v 7→ v[ := ω(v, · ) is an isomor-
phism. Denote its inverse by ]. We can then de�ne a Poisson bracket

{ · , · } : C∞(M)× C∞(M)→ C∞(M) , {f, g} = ω((df)], (dg)]) , (2.2)

meaning that { · , · } is a Lie bracket, and also a derivation whenever one of its ar-
guments is �xed. For any H ∈ C∞(M), we call the vector �eld XH corresponding
to the derivation {H, · } of C∞(M) the Hamiltonian vector �eld of H. Equivalently,
we could de�ne it as XH = (dH)]. The equations of motion (2.1) mean that the
Hamiltonian vector �eld XH coincides with the derivative of a trajectory in phase
space for all times t, or, said di�erently, the time evolution of the physical system is
given by the �ow of XH . In terms of the Poisson bracket, the equations of motion
(2.1) can then be rewritten as

df(γ(t))

dt
= {f,H}(γ(t)) (2.3)

where f is any of the coordinates x1, . . . xd, p1, . . . , pd. It is easy to see that this
equation remains true if f ∈ C∞(M).

Let us make some abstractions of the relevant structures above.

De�nition 2.2 (Symplectic manifold) A symplectic manifold (M,ω) is a mani-
fold M endowed with a non-degenerate closed 2-form ω ∈ Γ∞(Λ2T∗M).

There is a procedure of symplectic reduction, that allows to eliminate conserved quan-
tities from the equations of motion. Starting with a cotangent bundle and doing sym-
plectic reduction, we can end up with a symplectic manifold that is not a cotangent
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bundle. So symplectic manifolds are not just a mathematical generalization, they
occur naturally in physics. Note that the de�nition of a Poisson structure from a
symplectic form ω and the de�nition of Hamiltonian vector �elds still work in this
context.

More generally, we can only require the existence of a Poisson bracket { · , · }. In
this case the de�nition of a Hamiltonian vector �eld as the derivation {H, · } still
makes sense.

De�nition 2.3 (Poisson manifold) A Poisson manifold (M,π) is a manifold M
endowed with a bivector �eld π ∈ Γ∞(Λ2TM) such that the bracket {f, g} := π(df, dg)
satis�es the Jacobi identity. In this case, { · , · } is called the Poisson bracket induced
by π.

Note that { · , · } is automatically a derivation of any of its arguments when the other
one is �xed. It satis�es the Jacobi identity if and only if Jπ, πK = 0 where J · , · K
denotes the Schouten�Nijenhuis bracket of multivector �elds.

To summarize, the time evolution of a classical mechanical system can be com-
puted from two pieces of data: a Poisson structure on the phase space M and a
Hamiltonian function H ∈ C∞(M) that is the energy of the system. The time evolu-
tion is then given by the �ow of the Hamiltonian vector �eld XH .

Finally, we would like to change perspective and view the equation of motion (2.3)
not as an equation describing how the state of the system changes, but rather as an
equation describing how the observables f ∈ C∞(M) change. We think of the state
of the system as being time independent. To determine the value of any observable
f0 ∈ C∞(M) after time t we evolve the observable according to the equation

d

dt
ft = {ft, H} (2.4)

and evaluate the resulting function on the constant state of the system. If f0 itself
depends on the time, this equation stays valid if we add ∂

∂tf0 on the right hand side.
The immediate advantage of this point of view is that we can de�ne the state of

the system as a functional on the observables, i.e. as a map C∞(M)→ C. The pure
state that was given by a point x ∈ M before then corresponds to the evaluation
functional at x, and there are many more mixed states. To do statistical mechanics,
we could even replace a state with a map C∞(M)→ P(C) to the space of probability
measures on C.

2.2 Quantum mechanics

The idea to consider observables as the fundamental objects and to de�ne states as
linear functionals on the observables becomes more relevant in quantum mechanics.
In fact, it is often unclear what a good de�nition of quantum state, that does not
make use of observables, would be. In contrast, the quantum observables turn out to
be (associated to) a C∗-algebra, and therefore have a lot of structure. We start with
an explicit example and then discuss an abstract formulation of quantum mechanics.
Many more details can be found in [RS72,Rud91,Sch90,Thi02,Wal07].
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Example 2.4 (Particle in Rd) Let us look at the example of a particle moving in
Rd. This quantum system is usually described by the Hilbert space L2(Rd) of square
integrable functions on Rd. A pure state ψ ∈ L2(Rd) should be thought of as a wave
function describing the probability of measuring the particle at a certain position in
Rd. Note however that Rd is only the con�guration space and not the whole phase
space of the corresponding classical system, indicating that it could be di�cult to
de�ne quantum states when the classical system is not a cotangent bundle.

An observable A is a possibly unbounded self-adjoint operator on L2(Rd). We
will not go into any of the functional analytic di�culties arising from the fact that
observables may not be bounded, but rather treat them in a naive way as if they were
bounded. The position and momentum observables are the unbounded self-adjoint
operators X̂i and P̂i, de�ned (on appropriate domains) by X̂i(f)(x) = xif(x) and
P̂i(f) = −ih̄ ∂

∂xi f . Their commutator

[X̂i, P̂j ] = ih̄δij (2.5)

resembles the classical Poisson bracket {xi, pj} = δij . Here h̄ is Planck's constant,
relating the angular frequency of a photon to its energy, and δij is 1 if i = j and
0 otherwise. The non-commutativity of the quantum mechanical observables leads
to the uncertainty principle: non-commuting observables cannot be measured with
arbitrary precision at the same time. Measuring one of the observables in�uences the
system and changes the expected measurement outcomes of the other.

The spectrum of an observable A is the set of possible values when measuring A,
and since A is self-adjoint, it is a subset of R. The probability P(E) of measuring a
value in a Borel set E ⊆ R is given by

P(E) = 〈ψ, PA(E)ψ〉 , (2.6)

where PA(E) is the spectral projection associated to A, and ψ ∈ L2(Rd) is the state
of the system. As in the classical case, we can describe a quantum mechanical system
by either evolving the state or the observables with time. These two points of view are
called the Schrödinger or Heisenberg picture of quantum mechanics. In the Heisenberg
picture, the time evolution of an observable A0 is de�ned by the equation

d

dt
At =

1

ih̄
[At, Ĥ] , (2.7)

and we can again add ∂
∂tA0 to the right hand side, if A0 itself depends explicitly on

time. This is clearly analogous to the classical case, and the observable Ĥ can be
viewed as the quantum observable associated to the classical Hamiltonian H.

Abstracting properties of this example, the observables of a quantum mechanical
system are given by the self-adjoint elements in an algebra A of possibly unbounded
operators. A precise formulation can be obtained for example by using O∗-algebras,
see [Sch90], but for our purposes it will be enough to mention that, by considering
bounded functions of the self-adjoint elements, it is usually possible to pass to bounded
operators and C∗-algebras. The time evolution of an observable is given as in (2.7).
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States can be de�ned as positive linear functionals on A. Note however, that this
is not su�cient for de�ning the superposition of two pure states. Taking a linear
combination of the linear functionals, that describe two states, would only give a
probabilistic mixture. Instead, one has to represent the algebra A on a Hilbert space,
and then one can de�ne the superposition of two vector states as the vector state
corresponding to the sum of vectors. So a concrete representation of A on a Hilbert
space is necessary, and an important part of the quantum theory.

This raises the question to what extent the representation of A on a Hilbert space
matters, or, in other words, to what extent A alone determines the quantum system.
As a rule of thumb, the chosen representation is irrelevant when the physical system
has only �nitely many degrees of freedom: Consider the C∗-algebra obtained by apply-
ing the function t 7→ eit to operators satisfying the canonical commutation relations
(2.5). Then the Stone�von Neumann theorem (see e.g. [AM85, Theorem 5.4.25]) says
that any two irreducible representations of this C∗-algebra on a Hilbert space are
unitarily equivalent, if they satisfy a natural continuity assumption. However, this
changes drastically when passing to systems with in�nitely many degrees of freedom,
where it is the origin of interesting phenomena like spontaneous symmetry breaking.

2.3 The quantization problem

The quantization problem asks to associate a quantum mechanical system to a clas-
sical mechanical system. That is, given a phase space M and a Hamilton function
H ∈ C∞(M), we have to construct an operator algebra Ah̄ (ideally a C∗-algebra), rep-
resented on a Hilbert space H, and some correspondence between classical observables
f ∈ C∞(M) and quantum observables A ∈ Ah̄.

Since classical mechanics is, when considering macroscopic objects, a very good
approximation of quantum mechanics, we expect to recover the classical system in a
classical limit : Note that physically we cannot change the value of Planck's constant
h̄, so this limit needs to be understood in the sense that other characteristic quantities
of the system, that have the same dimension as h̄, become large when compared to h̄.
Mathematically, we will simply treat h̄ as a parameter, and ask to construct a family
of quantum systems for di�erent values of h̄, accumulating at 0. The classical limit
then becomes the limit h̄→ 0.

The exposition in the previous two subsections has shown that the classical and
quantum observable algebras C∞(M) and Ah̄ are similar: Both are ∗-algebras and
the actual observables are given by the self-adjoint elements. The classical algebra is
commutative, and endowed with the extra structure of a Poisson bracket, which, in
particular, is a Lie bracket. The quantum algebra is non-commutative, and therefore
the commutator de�nes a Lie bracket.

Possible measurement outcomes are de�ned by the spectrum, and therefore di-
rectly related to the associative structure of the algebras. Comparing the time evo-
lution equations (2.3) and (2.7), we see that the Poisson bracket { · , · } corresponds
to the rescaled commutator 1

ih̄ [ · , · ]. Therefore, it is reasonable to try to construct
some quantization map Qh̄, mapping classical observables to quantum observables,
that respects the ∗-algebra structures and intertwines the rescaled commutator with
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the Poisson bracket. That is, we would like some correspondence

λQh̄(f) +Qh̄(g) ! Qh̄(λf + g) , (2.8a)

Qh̄(f)∗ ! Qh̄(f) , (2.8b)

Qh̄(f)Qh̄(g) ! Qh̄(fg) , (2.8c)
1
ih̄ [Qh̄(f), Qh̄(g)] ! Qh̄({f, g}) . (2.8d)

However, not all of these requirements can be implemented exactly, already in the
simple example of a particle moving in Rd. The following result says that there is
no bijection between classical and quantum observables that implements (2.8a) and
(2.8d) exactly. As the other result below, it follows from the work of Groenewold and
van Hove [Gro46,vH51], see also [AM85]. We follow the exposition in [Wal07, Section
5.2.1].

Theorem 2.5 (Groenewold�van Hove) There does not exist a unital algebra A,
for which the associated Lie algebra (A, 1

ih̄ [ · , · ]) is isomorphic to the Lie algebra
(Pol(Rd), { · , · }).

Since we cannot �nd a bijection between observables satisfying (2.8a) and (2.8d)
as shown in the previous theorem, we can ask whether we can at least extend the
correspondence of monomials x1, . . . , xd, p1, . . . , pd with X̂1, . . . X̂d, P̂1, . . . , P̂d to a
representation of (Pol(Rd), { · , · }). This is also not possible:

Theorem 2.6 (Groenewold�van Hove) No faithful irreducible representation of
the Lie algebra (span{1, x1, . . . , xd, p1, . . . , pd}, { · , · }) can be extended to a represen-
tation of the Lie algebra (Pol(R2d), { · , · }).

By irreducible we mean that the commutant of the image of the representation consists
only of multiples of the identity. The representation obtained by mapping xi to X̂i

and pi to P̂i is faithful and irreducible and therefore satis�es the assumptions of
Theorem 2.6.

Many quantization procedures overcome these problems by only implementing
(2.8a) and (2.8b) exactly, and requiring (2.8c) and (2.8d) only in the classical limit
h̄→ 0.

2.4 Formal deformation quantization

After presenting the physical motivation behind the quantization problem in the pre-
vious subsections, our exposition will be more mathematical from here on. In this
subsection we introduce the reader to formal deformation quantization that appeared
�rst in [BFF+78]. Suppose for the moment that the maps Qh̄ are bijective. Then
Q−1
h̄ (Qh̄(f)Qh̄(g)) de�nes a new non-commutative product on C∞(M). Formal de-

formation quantization considers the expansion of this product into a formal power
series around h̄ = 0.

De�nition 2.7 (Formal deformation quantization, star product) Let (M,π)
be a Poisson manifold. A formal deformation quantization of M is an associative
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C[[ν]]-bilinear product on formal power series of smooth functions

? : C∞(M)[[ν]]× C∞(M)[[ν]]→ C∞(M)[[ν]] , (2.9)

such that, when expanded in the form

f ? g = νr
∞∑
r=0

Cr(f, g)

with f, g ∈ C∞(M) and Cr : C∞(M)× C∞(M)→ C∞(M), we have that

i.) C0(f, g) = fg,

ii.) C1(f, g)− C1(g, f) = i{f, g},
iii.) f ? 1 = 1 ? f = f where 1 is the function on M that is constantly 1, and

iv.) Cr is a bidi�erential operator for every r ≥ 0.

The product ? is called a formal star product.

The last property ensures that ? is local and can be restricted to any open subset
U ⊆ M . We call a product a non-local star product if it satis�es all properties
of the last de�nition, except that Cr might not be bidi�erential. One can show
that for any product satisfying all properties except ii.) in the previous de�nition,
1
i (C1(f, g)− C1(g, f)) de�nes a Poisson bracket on M . In this sense we require that
the Poisson bracket given on M coincides with the Poisson bracket de�ned by the
quantization.

Convention 2.8 From now on, we reserve h̄ to denote an actual complex number.
As in the previous de�nition, formal parameters that play the role of h̄ are denoted
by ν.

Note that the de�nition of formal star products is purely algebraic, and the main
di�culty when trying to �nd such formal star products is to ensure associativity,
which can be written as a quadratic equation in the bidi�erential operators Cr. As a
consequence, a lot of algebraic tools are available to study formal deformations, and we
discuss this in greater detail below. We may see a formal deformation quanization as a
formal, that is arbitrary order in�nitesimal, approximation to a well-behaved solution
of the full quantization problem at h̄ = 0, similarly as we may view the expansion of
a smooth function f in a Taylor series at a point x as the formal approximation to
f at x. In many cases, this provides a way to extract important properties from a
quantization, and can help to understand it better.

Example 2.9 (Weyl�Moyal and Wick star products) Denote the standard co-
ordinates on R2d by x1, . . . , xd, p1, . . . , pd and assume that R2d is endowed with the
standard symplectic form ω =

∑d
i=1 dxi∧dpi. Choose β ∈ C2d⊗C2d, such that when

viewed as a constant section β ∈ Γ∞((TCR2d)⊗2) its antisymmetrization βasym :=
1
2 (β − τ(β)) coincides with the Poisson tensor associated to ω. Here, τ is the map
�ipping the two tensor factors. Then



2. MATHEMATICAL INTRODUCTION 13

? : C∞(R2d)[[ν]]× C∞(R2d)[[ν]]→ C∞(R2d)[[ν]] ,

(f, g) 7→ f ? g := µ ◦ exp(iνβ)f ⊗ g (2.10)

de�nes a formal deformation quantization. Here, µ denotes the map multiplying the
two tensor factors together. If

β =
1

2

d∑
i=1

(
∂

∂xi
⊗ ∂

∂pi
− ∂

∂pi
⊗ ∂

∂xi

)
(2.11)

is the Poisson tensor associated to ω, then ? is called the Weyl�Moyal product. If

β =

d∑
i=1

∂

∂xi
⊗ ∂

∂pi
or β = 2i

d∑
i=1

∂

∂zi
⊗ ∂

∂zi
(2.12)

where ∂
∂zi = 1

2

(
∂
∂xi − i ∂

∂pi

)
and ∂

∂zi
= 1

2

(
∂
∂xi + i ∂

∂pi

)
, then ? is called standard ordered

or the Wick product, respectively.

The class of star products, that separate holomorphic and antiholomorphic derivatives,
like the Wick product, will be important when studying positivity of linear functionals.
Therefore they deserve their own name.

De�nition 2.10 (Star product of Wick type) Let M be a Kähler manifold. A
formal star product that derives the �rst argument only in holomorphic directions and
the second argument only in antiholomorphic directions is said to be of Wick type.

We can interpret a formal deformation quantization as deforming the classical Poisson
algebra into a non-commutative algebra. The idea of studying such deformations
is not only relevant for the quantization problem, but can be applied much more
universally. For any mathematical structure, for example associative algebras, it is
an interesting question to ask what the space of all such structures looks like. This
space is usually called a moduli space and can be very hard to understand. As a �rst
step, one can try to study formal neighbourhoods of points, which in the example of
an associative algebra A would correspond to associative C[[ν]]-bilinear products on
A[[ν]]. Usually, one is only interested in isomorphism classes of such algebras. In the
case of deformation quantizations this corresponds to isomorphism classes under the
following equivalence relation.

De�nition 2.11 (Equivalence of formal deformations) Let (M,π) be a Poisson
manifold. Two formal deformation quantizations ?1 and ?2 of M are called equivalent
if there exist di�erential operators Tr on M for r ∈ N such that T = 1 +

∑∞
r=1 ν

rTr
intertwines ?1 and ?2, i.e.

T (f ?1 g) = T (f) ?2 T (g) (2.13)

holds for all f, g ∈ C∞(M).
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Note that since ?1 and ?2 are unital, we must automatically have T1 = 1, and
therefore Tr1 = 0 for all r ∈ N. Note also that any formal power series starting with
1 is automatically invertible, in particular there is a series of di�erential operators Sr
such that S = 1 +

∑∞
r=1 ν

rSr is an inverse to T . As we shall see later, all products in
Example 2.9 are equivalent.

Gerstenhaber introduced cohomological methods to study the deformation prob-
lem for associative algebras [Ger63]. Let A be a vector space over C. The graded
vector space C•(A) :=

⊕
n≥−1 C

n(A) where Cn(A) denotes C-multilinear maps from
A⊗(n+1) to A carries a graded Lie algebra structure de�ned as follows. For φ ∈ Cn(A),
ψ ∈ Cm(A), and i ∈ {0, 1, . . . , n} de�ne φ ◦i ψ ∈ Cn+m(A) by

(φ ◦i ψ)(a0, . . . , an+m) = φ(a0, . . . , ai−1, ψ(ai, . . . , ai+m), ai+m+1, . . . , an+m) ,

and set

φ ◦ ψ =

n∑
i=0

(−1)inφ ◦i ψ and [φ, ψ] = φ ◦ ψ − (−1)nmψ ◦ φ . (2.14)

A �multiplication� µ : A × A → A is associative if and only if [µ, µ] = 0, and an
associative multiplication de�nes a di�erential δ = [µ, · ] on C•(A). So if A is an
associative algebra, then C•(A) becomes a di�erential graded Lie algebra (dgla).

We will now reformulate the quantization problem in terms of dgla's. See [Wal07,
Esp15] for a more detailed exposition. If g is a dgla, then any D ∈ g0 de�nes a
homogeneous derivation ad(D) = [D, · ] of g.

De�nition 2.12 (Maurer�Cartan elements, gauge action) Let g be a dgla. An
element m ∈ νg1[[ν]] is said to be a (formal) Maurer�Cartan element if

δm+
1

2
[m,m] = 0 . (2.15)

The group G := {exp(ν ad(D)) | D ∈ g0[[ν]]} of automorphisms of g1[[ν]] acts on
formal Maurer�Cartan elements by the gauge action

eν ad(D) . m := eν ad(D)(m)− ν
∞∑
n=0

(ν ad(D))n

(n+ 1)!
(δD) . (2.16)

Remark 2.13 It is useful to think about a Maurer�Cartan element m as an element
de�ning a ��at connection� ∇m : g• → g•+1, ∇m = δ + [m, · ]. Indeed, (2.15) says
precisely that ∇2

m = 0. The gauge action de�ned in (2.16) can then be obtained from
the formula ∇eν ad(D).m = eν ad(D) ◦ ∇m ◦ e−ν ad(D).

Example 2.14 Many deformation problems are equivalent to the problem of �nding
Maurer�Cartan elements in a dgla:

i.) If (A, µ) is an associative algebra, and (A[[ν]], µ+m) is a formal deformation of
A, then 0 = [µ+m,µ+m] = 2[µ,m]+[m,m], som is a formal Maurer�Cartan el-
ement in C•(A). Vice versa, by reversing this argument, formal Maurer�Cartan
elements in C•(A) give rise to a formal deformation of A. Furthermore, one can
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check that the equivalence relation induced by the gauge action of G on Maurer�
Cartan elements corresponds exactly to the equivalence of formal deformations
of A.

ii.) To formulate the problem of �nding formal deformation quantization in terms
of Maurer�Cartan elements, we need to modify our de�nitions slightly, in order
to take care of the fact that deformation quantizations are always unital and de-
�ned by bidi�erential operators in all orders of ν. The di�erential and bracket on
C•(C∞(M)) restrict to the subspace C•diff,1(C∞(M)) of multidi�erential maps
(i.e. maps that are di�erential in each argument) that vanish on constant func-
tions. Maurer�Cartan elements m = νm1 + O(ν2) ∈ νC1

diff,1(C∞(M))[[ν]] cor-
respond precisely to formal deformations of M with Poisson bracket {f, g} :=
1
i (m1(f, g)−m1(g, f)), and the equivalence relation induced by the gauge action
ofG := {exp(ν ad(D)) | D ∈ C0

diff,1(C∞(M))[[ν]]} corresponds to the equivalence
of formal deformations de�ned in De�nition 2.11.

iii.) The multivector �elds X•(M) := Γ∞(Λ•+1TM) with Schouten�Nijenhuis bracket
J · , · K and di�erential δ = 0 also form a dgla, and Maurer�Cartan elements cor-
respond to formal Poisson structures, i.e. elements π ∈ νX•(M)[[ν]] satisfying
Jπ, πK = 0. Note that such elements could be viewed as deforming the zero Pois-
son structure. Two formal Poisson structures π1 and π2 are equivalent, if there
is a vector �eld X ∈ νX0(M)[[ν]] such that π1 = eLXπ2, with LX denoting the
Lie derivative, which is the case if and only if the corresponding Maurer�Cartan
elements are gauge equivalent.

The Hochschild�Kostant�Rosenberg theorem (see [HKR62] for the original algebraic
statement) asserts that the map of complexes

HKR: X•(M)→ C•diff,0(C∞(M)) ,

v1 ∧ · · · ∧ vn 7→

(
(f1, . . . , fn) 7→ 1

n!

∑
σ∈Sn

(−1)sgn(σ)vσ(1)f1 . . . vσ(n)fn

)
(2.17)

induces a Lie algebra isomorphism on cohomology. However HKR is not itself a Lie
algebra morphism and does therefore not necessarily map Maurer�Cartan elements
to Maurer�Cartan elements.

This defect can be repaired. There is a weaker notion of an L∞-morphism U : g→
h between dgla's, or more generally L∞-algebras, g and h, which consists of a sequence
of linear maps U (r) : Λrg → h of degree 1 − r. The idea is that U (1) is a Lie algebra
isomorphism up to higher homotopies, given by the maps U (r).

Kontsevich proved in his famous formality theorem [Kon03] that U (1) := HKR
can indeed be made into an L∞-morphism X•(M) → C•diff,0(C∞(M)). If π =
νπ1 +O(ν2) ∈ νX1(M)[[ν]] is a formal Poisson structure, then

∑∞
r=1 U (r)(π, . . . , π) ∈

νC1
diff,0(C∞(M))[[ν]] is again a Maurer�Cartan element and therefore de�nes a for-

mal deformation quantization of π1. Since U (1) is an isomorphism on cohomology,
it follows that there is another L∞-morphism C•diff,0(C∞(M)) → X•(M) inducing
the inverse map on cohomology. In addition, L∞-morphisms map gauge equivalent
Maurer�Cartan elements to gauge equivalent Maurer�Cartan elements, and therefore
we obtain:
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Theorem 2.15 (Kontsevich) Every Poisson manifold (M,π) admits a deforma-
tion quantization. Moreover, equivalence classes of deformation quantizations are in
bijection with equivalence classes of formal deformations of the Poisson tensor π.

We remark that given a Poisson manifold (M,π), one obtains a canonical equivalence
class of star products from the formal Poisson structure νπ. However, there is no
canonical choice of a star product in this equivalence class.

The main di�culty when quantizing Poisson manifolds or when proving Kontse-
vich's formality theorem, comes from the fact that there is no good local standard
form of the Poisson tensor. Indeed, the construction of the maps U (r) for Rd with an
arbitrary Poisson structure is the hardest part of the proof, and was achieved by Kont-
sevich by encoding di�erential operators in graphs, and assigning certain weights to
them. These weights can be interpreted using topological �eld theories [CF00]. Glob-
alizing from Rd to arbitrary Poisson manifolds is then relatively easy [CFT02]. See
also [Dol05] for a di�erent approach to formality using operads.

For symplectic manifolds, the situation is much easier. Any symplectic manifold
is locally symplectomorphic to R2d with the standard symplectic form

∑d
i=1 dxi∧dpi.

Existence [DL83, Fed94, OMY91] and classi�cation [BCG97, NT95a, NT95b,WX91]
results for star products on symplectic manifolds were obtained by many mathemati-
cians and by rather di�erent methods. Most notably, one should mention the Fedosov
construction [Fed94], which, in a conceptually clear way, glues the local Weyl quan-
tizations from Example 2.9 together to obtain a formal deformation quantization of
M . In contrast to the case of Poisson manifolds, the formal star products on M can
be described more explicitly, and there is also an easier description of the equivalence
classes of such star products.

Theorem 2.16 Let M be a symplectic manifold. Then M admits a deformation
quantization, and equivalence classes of deformations are parametrized by the charac-
teristic class

θ =
1

iν
ω + θ0 + νθ1 + · · · ∈ 1

iν
ω + H2

dR(M,C)[[ν]] . (2.18)

The characteristic class can be obtained naturally from objects appearing in the Fe-
dosov construction: It is the curvature of a lift of a certain connection. Since this
curvature always has lowest order 1

iνω, one usually de�nes θ to take values in the
a�ne space over this value. This is also convenient for formulating the algebraic
index theorem in Subsection 2.7.

Note that Theorem 2.16 implies in particular that all formal star products consid-
ered in Example 2.9 are equivalent, since H2

dR(R2d,C) = 0. The following theorem
from [Kar96] classi�es all star products of Wick type, and not just equivalence classes.

Theorem 2.17 (Karabegov) Let (M,ω0) be a Kähler manifold. Then formal star
products of Wick type are classi�ed by formal deformations of the Kähler form, that
is by formal series

ω = ω0 + νω1 + ν2ω2 + · · · ∈ ω0 + νΓ∞(Λ(1,1)TC,∗M)[[ν]] (2.19)

where ω1, ω2, . . . are 2-forms of type (1, 1), that are closed but not necessarily non-
degenerate.
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The characteristic class from Theorem 2.16 can be obtained from Karabegov's class
by rescaling with (iν)−1 and adding the Ricci curvature of a symplectic connection
appearing in the Fedosov construction, see [Neu03].

2.5 Strict deformation quantization

Let us now discuss more complete solutions of the quantization problem, which con-
struct actual C∗-algebras varying with h̄, and not just algebras over formal power
series C[[ν]]. To make precise what it means for a C∗-algebra to vary continuously
with h̄, recall the following de�nition from [Dix77].

De�nition 2.18 (Continuous �eld of C∗-algebras) A continuous �eld of C∗-al-
gebras over a topological space I is a family (Ah̄)h̄∈I of C∗-algebras together with a
set Γ ⊆

∏
h̄∈I Ah̄ of continuous sections, such that

i.) Γ is a ∗-subalgebra of
∏
h̄∈I Ah̄,

ii.) the set {x(h̄) | x ∈ Γ} is dense in Ah̄ for every h̄ ∈ I,
iii.) the function h̄ 7→ ‖x(h̄)‖h̄ is continuous for every x ∈ Γ, and

iv.) if x ∈
∏
h̄∈I Ah̄ and if for every h̄ ∈ I and every ε > 0 there exists an x′ ∈ Γ

and a neighbourhood I ′ of h̄ in I such that ‖x(h̄′) − x′(h̄′)‖h̄′ < ε holds for all
h̄′ ∈ I ′, then x ∈ Γ.

Usually, one only speci�es a subset of Γ when de�ning a continuous �eld of C∗-algebras.
The following lemma, which follows from [Dix77, Proposition 10.2.3] and [Dix77,
Proposition 10.3.2], gives conditions for this to be enough.

Lemma 2.19 Given a family (Ah̄)h̄∈I of C∗-algebras and any subset Γ′ ⊆
∏
h̄∈I Ah̄,

such that the span of {x(h̄) | x ∈ Γ′} is dense in Ah̄ for all h̄ ∈ I, there is at most
one set Γ containing Γ′ that de�nes the structure of a continuous �eld on (Ah̄)h̄∈I . If
Γ′ satis�es i.), ii.), and iii.) of the previous de�nition, then there exists a unique set
Γ containing Γ′ that de�nes the structure of a continuous �eld.

The following de�nition of a strict deformation quantization is due to Rie�el [Rie89],
and a special case of the more general De�nition 2.28. We denote the continuous func-
tions on a manifold M vanishing at in�nity by C0(M) and the compactly supported
smooth functions by Cc(M).

De�nition 2.20 (Strict deformation quantization) Let (M,π) be a Poisson man-
ifold. A strict deformation quantization on M is speci�ed by the following data:

i.) a dense ∗-subalgebra A of C0(M), which is closed under taking Poisson brackets,

ii.) an open interval I ⊆ R containing 0,

iii.) for every h̄ ∈ I a product ?h̄, an involution ∗h̄ and a C∗-norm ‖ · ‖h̄ (with respect
to the product ?h̄ and involution ∗h̄) on the underlying vector space of A

such that

a.) for h̄ = 0 the product ?0, involution
∗0 , and norm ‖ · ‖0 coincide with the commu-

tative product, complex conjugation and maximum norm of A ,
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b.) the completions Ah̄ of A with respect to the norms ‖ · ‖h̄ form a continuous �eld
of C∗-algebras over I, for which the constant sections h̄ 7→ a with a ∈ A are
continuous,

c.) for a, b ∈ A we have

lim
h̄→0

∥∥∥∥ 1

h̄
(a ?h̄ b− b ?h̄ a)− i{a, b}

∥∥∥∥
h̄

= 0 . (2.20)

Such a strict deformation quantization is called �abby if A contains C∞c (M).

Note that it follows from Lemma 2.19 that the continuous �eld de�ned by the constant
sections is necessarily unique (if it exists). However, since the constant sections do
not necessarily form a ∗-subalgebra, the continuity of h̄ 7→ ‖a‖h̄ for all a ∈ A is not
enough to guarantee the existence of a continuous �eld structure (even though this is
often claimed in the literature). It is su�cient to assume that h̄ 7→ ‖a + b∗h̄‖h̄ and
h̄ 7→ ‖a ?h̄ b‖h̄ are continuous for all a, b ∈ A , see [Rie93, Proposition 9.1].

The standard examples of strict deformation quantizations are given by a strict
version of the Weyl�Moyal product and by non-commutative tori, see Example 2.24
and Example 2.25. We will �rst describe Rie�el's construction of strict deformation
quantizations from isometric actions of Rd on a C∗-algebra, and present the examples
as special cases of this construction. Many known constructions of strict deformation
quantizations rely in some way on oscillatory integrals and are therefore analytically
demanding. Rie�el's construction starts with a Fréchet algebra.

De�nition 2.21 (Fréchet algebra) A Fréchet space V is a Hausdor� complete
topological vector space, whose topology is induced by a countable family of semi-
norms ‖ · ‖n. A Fréchet algebra A is a Fréchet space, with a continuous multiplication
· : A×A → A de�ning an associative algebra structure on A.

For an increasing family of seminorms ‖ · ‖n de�ning the topology on A, continuity
of · means that for any n ∈ N there exists m ∈ N and C ∈ R+ such that ‖a · b‖n ≤
C‖a‖m‖b‖m holds for all a, b ∈ A. If there exists such a family for which we may
choose m = n then A is said to be multiplicatively convex.

Recall that an action α : Rd → Aut(A) of the abelian group Rd on a Fréchet
algebra A is called isometric, if there is a family of seminorms de�ning the topology
of A such that, for all g ∈ R, the map α(g) : A → A is isometric with respect to every
member of this family, and it is said to be smooth, if every a ∈ A is a smooth vector
of the action, meaning that the map Rd → A, g 7→ α(g)(a) is smooth for every a ∈ A.

Theorem 2.22 (Rie�el) Let A be a Fréchet algebra endowed with a strongly contin-
uous, isometric, and smooth action α : Rd → Aut(A) of Rd by automorphisms, and
let J be any linear operator on Rd. Then the oscillatory integral

a ?J b =
1

πd

∫∫
Rd×Rd

αJu(a)αv(b)e
2iu·v dudv (2.21)

is well-de�ned and

i.) the product ?J is associative and continuous,
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ii.) the action of Rd on A with the product ?J is by automorphisms,

iii.) a ?0 b = ab.

Proof: See [Rie93, Proposition 2.2, Proposition 2.5, Corollary 2.8, and Theorem
2.14]. �

Let us make two important remarks: First, the product ?J is in general non-com-
mutative, even if A is commutative. However, we do not need to assume that A is
commutative: For a non-commutative Fréchet algebra A the previous theorem yields
another possibly non-commutative product ?J on A. Second, when given an action
of Rd by automorphisms on a Fréchet algebra A that is isometric but not necessarily
smooth, we can consider the smooth vectors A∞. If we de�ne seminorms on A∞
that also take derivatives of the action into account as in [Rie93, Chapter 1], then
A∞ is again a Fréchet algebra, now with an isometric and smooth action of Rd. So
Theorem 2.22 applies to A∞.

Theorem 2.23 (Rie�el) Let A be a C∗-algebra endowed with an isometric action
α : Rd → Aut(A) of Rd by ∗-automorphisms. Let J be a skew-symmetric linear
operator on Rd. Then for any h̄ ∈ R
i.) the previous theorem and the remark in the previous paragraph yield the existence

of a product ?h̄J on A∞,
ii.) there is a representation of A∞ with product ?h̄J as bounded operators on a

Schwartz space SA,
iii.) this representation de�nes a C∗-norm ‖ · ‖h̄J on A∞ with respect to the product

?h̄J ,

iv.) the topology de�ned by ‖ · ‖h̄J is coarser than the Fréchet topology of A∞, and
v.) endowing A∞ with the product ?h̄J , the involution of A, and the C∗-norm ‖ · ‖h̄J

we obtain a strict deformation quantization of A in the direction of the Poisson
structure

{a, b} =

d∑
j,k=1

Jjkα̃ej (a)α̃ek(b) , (2.22)

where a, b ∈ A∞.

In part v.) {e1, . . . , ed} is the standard basis of Rd, and α̃ei(a) = d
dt

∣∣
t=0

αtei(a) is the

induced action of the Lie algebra Rd on A.

Proof: For parts ii.), iii.), and iv.) see [Rie93, Chapter 4], for part v.) see [Rie93,
Theorem 9.3]. �

Again, the C∗-algebra A we start with might be non-commutative. In this case the
Poisson structure de�ned in v.) is a Poisson structure on a non-commutative algebra
as de�ned, for example, in [Xu94], and we need to generalize the de�nition of a strict
deformation quantization to the non-commutative setting, which essentially means
replacing (2.20) with

∥∥ 1
h̄f ?h̄ g −

i
2{f, g}

∥∥
h̄
→ 0, see [Rie93, De�nition 9.2]. This

becomes necessary since non-commutative Poisson structures are not guaranteed to
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be skew symmetric. Since we are only interested in deforming commutative algebras
in the following, we shall not elaborate on this.

Example 2.24 (Strict Weyl�Moyal quantization) Let R2d act on R2d by trans-
lation, and consider the induced action on the C∗-algebra C0(R2d) by pullbacks. As-
sume that, in standard coordinates x1, . . . , xd, p1, . . . , pd, we have J =

(
0 1
−1 0

)
with

blocks of size d× d. Then the product ?h̄J obtained in Theorem 2.23 is a convergent
version of the Weyl�Moyal product ?WM from Example 2.9, in the sense that it has
an asymptotic expansion in h̄, which coincides with ?WM. For f, g ∈ B(R2d), the
space of smooth functions vanishing at ∞ for which all derivatives of arbitrary order
are bounded, and h̄ 6= 0 we have

(f ?h̄J g)(x) =
1

π2d

∫∫
R2d×R2d

f(x− h̄Ju)g(x− v)e2iu·v dudv

=
1

(πh̄)2d

∫∫
R2d×R2d

f(u)g(v)e
2i
h̄ J
−1(x−u)·(x−v) dudv

=
1

(πh̄)2d

∫∫
R2d×R2d

f(u)g(v)e
2i
h̄ (ω(x,u)+ω(u,v)+ω(v,x)) dudv . (2.23)

Here ω(u, v) := J−1u · v coincides with the standard symplectic form ω =
∑d
i=1 dxi ∧

dpi. Note that this formula reproduces the formulas obtained in [Fed96, Theorem
3.2.1] and [Wal07, Remark 5.3.25]. The completion of B(R2n) with respect to the
product ?h̄J and norm ‖ · ‖h̄J is just the C∗-algebra of compact operators if h̄ 6= 0, and
the C∗-algebra C0(Rd) of continuous functions vanishing at ∞ if h̄ = 0, see [Rie93,
Proposition 5.2].

Formula (2.23) is precisely the composition law of the pseudodi�erential operators
associated by the Weyl calculus to the symbols f and g. More precisely, if we de�ne
the pseudo-di�erential operator associated to a su�ciently nice symbol f

(Op(f)u)(q) :=
1

(2πh̄)d

∫
R2d

exp

(
i

h̄
p(q − q′)

)
f

(
q + q′

2
, p

)
u(q′) dq′ dp , (2.24)

where u ∈ S(Rd) is a Schwartz function and q ∈ Rd, then Op(f ?h̄J g) = Op(f)Op(g).
Since it is not relevant in the following, we do not discuss what precisely �su�ciently
nice symbol f � means, but only mention that (2.24) is obviously well-de�ned if f is
Schwartz, and that it can be extended to symbols in the sense of Hörmander [Hör05].

Note that one may replace q+q′

2 in the �rst argument of f in (2.24) by q to obtain
a convergent version of the standard ordered product. There is a generalization of
the pseudodi�erential calculus (the association of a certain operator to a symbol as
in (2.24)) to arbitrary cotangent bundles T∗Q.

The phase in (2.23) can be interpreted as a multiple of the symplectic area of the
triangle with vertices x, u, and v, or rather as a multiple of the symplectic area of a
triangle with midpoints x, u, and v. This is the starting point of a construction of
strict star products on solvable symmetric spaces [Bie02,Wei94].

Example 2.25 (Non-commutative tori) Consider the action of Rd on the torus
Td ∼= Rd/(2πZ)d by translation, and the induced action on the C∗-algebra C (Td)
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by pullbacks. It is more convenient to consider Td ∼= (S1)d as a subset of Cd in the
following. The smooth vectors of this action are just the smooth functions C∞(Td).
Let J be any skew-symmetric matrix. For every n ∈ Zd, de�ne the element un := (z 7→
zn) of C∞(Td), using the abbreviation zn := zn1

1 · . . . ·z
nd
d . Note that αvun = e−iv·nun

for any v ∈ Rd. Consequently

(un ?h̄J um) =
1

πd

∫∫
Rd×Rd

(αh̄Jvun) · (αwum) · e2iv·w dv dw

=
1

(2π)d
unum

∫∫
Rd×Rd

e−ih̄Jv·n/2e−iw·meiv·w dv dw

= e−ih̄Jm·n/2un+m . (2.25)

We used the oscillatory distribution-valued integral 1
(2π)d

∫
Rd

ei(v−m)·w dw = δ(v−m),

but the result follows also in a more elementary way from [Rie93, Lemma 2.20].
Denote the C∗-completion of C∞(Td) with respect to ‖ · ‖h̄J by Ah̄. Note that

u∗n = u−n, and therefore (2.25) shows that un ∈ Ah̄ is unitary for all h̄ ∈ R. Fur-
thermore, since span{un | n ∈ Zd} is dense in C∞(Td) with respect to its Fréchet
topology, it is also dense in C∞(Td) with respect to the topology induced by ‖ · ‖h̄J
by Theorem 2.23 iv.), and therefore dense in the C∗-completion Ah̄. Thus (2.25)
shows that Uk := uek with 1 ≤ k ≤ d, where ek is the vector with entry 1 in its k-th
component and all other components 0, generate Ah̄, and

Uk ?h̄J U` = e−ih̄Je`·ek/2Uk+` = eih̄(Jek·e`−Je`·ek)/2U` ?h̄J Uk = eih̄J`kU` ?h̄J Uk .

The non-commutative torus ATh̄J/(2π) is de�ned as the universal C∗-algebra gener-
ated by unitaries Vk satisfying precisely these relations. Therefore there is a ∗-
homomorphism π : ATh̄J/(2π) → Ah̄. This map is equivariant with respect to the
action of Rd on ATh̄J/(2π), de�ned by αvVk = e−ivkVk on the unitary generators. But
since ATh̄J/(2π) does not have non-trivial ideals invariant under this action, π must be
an isomorphism.

However, there is a serious limitation to the Poisson manifolds that can be quantized
using Rie�el's construction: The Poisson bracket must be of the form (2.22), i.e.
it must be possible to de�ne it using commuting derivations. This is not always the
case. Note that up to scaling by a non-zero constant, there is a unique non-degenerate
SO(3)-invariant Poisson structure on the 2-sphere.

Proposition 2.26 No non-degenerate SO(3)-invariant Poisson structure on the 2-
sphere is induced by an action of Rd as in (2.22), and therefore the 2-sphere with
such a Poisson structure cannot be quantized as in Theorem 2.23.

Proof: Since any action ofRd on the 2-sphere has a �xed point, the Poisson structure
de�ned in (2.22) must vanish at some point. But if it was also SO(3)-invariant, then
it must vanish everywhere. �

There are several generalizations of Rie�el's approach. Bieliavsky�Gayral [BG15] show
how to extend it to negatively curved Kählerian Lie groups, i.e. Lie groups that admit a
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left-invariant Kählerian structure of negative sectional curvature. Topologically, such
groups are homeomorphic to Rd, but they might be non-commutative. Examples are
given by the groups AN , which are factors of the Iwasawa decomposition SU(1, n) =
KAN . In fact, any negatively curved Kählerian Lie group is an iterated semidirect
product of such factors. See also [BGNT16,BGNT19] and the references therein for a
di�erent approach based on locally compact quantum groups and dual cocycles, and
their equivalence.

Obstructions to strict equivariant quantization of the 2-sphere

The fact that Theorem 2.23 cannot be used to quantize the 2-sphere with a non-
degenerate SO(3)-equivariant Poisson structure does of course not mean that it could
not be quantized by other means. However, the same problem occurs in other ap-
proaches, too. For example, as discussed in the Appendix, the 2-sphere is a ho-
mogeneous space SU(2)/S(U(1) × U(1)) and one can therefore try to use the the-
ory of quantum groups and quantum homogeneous spaces to obtain strict quantiza-
tions [DK94, She91]. However, since SU(2) is treated as a Poisson�Lie group in this
approach, and the Poisson structure of a Poisson�Lie group is necessarily degenerate
at the identity element, the induced Poisson structure on the sphere will vanish at
least at one point and is therefore either trivial or not SO(3)-invariant.

The following theorem shows that a SO(3)-invariant strict deformation quantiza-
tion does not exist at all. The theorem and its proof are motivated by Wassermann's
result that every von Neumann algebra with an ergodic action of SU(2) must be of
type I [Was88].

Theorem 2.27 (Rie�el) Any product ?, involution ∗ and C∗-norm ‖ · ‖ on C∞(S2),
for which the usual action of SO(3) on C∞(S2) is by isometric ∗-automorphisms, is
commutative. In particular, the 2-sphere does not allow a SO(3)-invariant �abby strict
deformation quantization.

We elaborate on the proof in [Rie89, Theorem 7.1], giving more details why (in the
notation of the proof) e is a unit in A. This is required to apply the result from [EL77].
Note that we can replace SO(3) with SU(2) in the theorem, and the following proof
still works.

Proof: The proof depends crucially on the fact that we know how C∞(S2) de-
composes into irreducible representations of SO(3): Irreducible representations Pk
of SO(3) are labelled by non-negative integers k ∈ N0, are (2k + 1)-dimensional, and
every irreducible representation Pk appears in C∞(S2) with multiplicity exactly 1.
Denote the C∗-completion of C∞(S2) by A and identify Pk with a subset of A.

Take any p0 ∈ P0. Since ? is SO(3)-equivariant, it follows that g . (p0 ? a) =
(g . p0) ? (g . a) = p0 ? (g . a) holds for all a ∈ A and g ∈ SO(3). In other words
p0 ? · : A → A is SO(3)-equivariant and must therefore map Pk into Pk. The same is
true for the involution ∗. In particular (P0)2 ⊆ P0, and (P0)2 = 0 would contradict
that ‖ · ‖ is a C∗-norm. But since P0 is 1-dimensional, this implies (P0)2 = P0 and
there is a non-zero self-adjoint idempotent e ∈ P0.

From Schur's lemma it follows that for each k ∈ N0, the endomorphism e? · of Pk
is either the identity or zero. By pre- and postcomposing e? · with the involution ∗, it
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follows that e? · = · ?e, so e is central in A. Consequently e?A is a SO(3)-invariant 2-
sided closed ideal in A, and the quotient C∗-algebra A/e?A carries a representation of
SO(3), in which the trivial representation has multiplicity 0. Denote the Haar measure
on SO(3) by µ, and let a ∈ A/e?A. Then the element

∫
SO(3)

(g.a)∗?(g.a)µ ∈ A/e?A
is SO(3)-invariant, hence 0. But then g.a = 0 holds for all g ∈ SO(3) and a ∈ A/e?A,
so A = e ?A, and e is a unit for A.

Consider the commutator [ · , · ]? with respect to ?. [P1,P1]? is SO(3)-invariant,
and since the commutator factors through the antisymmetric tensor product P1 ∧
P1
∼= P1 of the representation P1, this commutator is either P1 or 0. We want to

show that it is 0. So, working towards a contradiction, assume that [P1,P1]? = P1.
Choose a maximal torus of SO(3) and weight vectors a−1, a0, a1 ∈ P1. Since [ · , · ]? is
SO(3)-equivariant, we can rescale the weight vectors so that we have [a0, a1]? = 2a1,
[a0, a−1]? = −2a−1, and [a1, a−1]? = a0. We would like to study the ∗-subalgebra B of
C∞(S2) generated by P1. To this end, set B1 := P0⊕P1 and de�ne the spaces Bk :=
Bk−1 + Bk−1 ? P1, spanned by products of up to k many elements of P1, recursively.
Note that B and Bk are SO(3)-invariant, and therefore direct sums of some P`'s. Since
Pk⊗P1

∼= Pk−1⊕Pk⊕Pk+1 if k ∈ N, we have Bk ⊆ P0⊕· · ·⊕Pk. If we had equality
for every k ∈ N0, then (a1)k 6= 0 for all k ∈ N0. But then [a0, (a1)k]? = 2k(a1)k,
whence [a0, · ]? would be unbounded on A. So there must be a smallest k ∈ N with
Bk $ P0⊕· · ·⊕Pk, and consequently Bk−1 = Bk = · · · = B. Recall that the involution
∗ preserves the P`'s, so B is a �nite dimensional C∗-subalgebra of A, thus a direct
sum of matrix algebras. Central idempotents in B are projections to direct sums of
matrix subalgebras, and therefore there are only �nitely many central idempotents.
Taking any central idempotent f , it is easy to check that g . f is again a central
idempotent for all g ∈ SO(3), depending continuously on g. Since the space of central
idempotents is �nite and hence discrete, this implies that every central idempotent f
is �xed by SO(3). But the trivial representation has multiplicity 1 in B, so there is
only one central idempotent and B is a full matrix algebra.

We saw before that e is a unit in A and contained in the C∗-subalgebra B. There-
fore A ∼= B ⊗ Bc by [EL77], where Bc denotes the commutant of B in A. Note that
Bc is SO(3)-invariant and the tensor product decomposition is preserved under the
action of SO(3). So Bc is a direct sum of P`'s, and if it contains any P` with ` ≥ 1,
then basic representation theory shows that P` occurs both in the representations
P0⊗P` ∼= P` and P1⊗P` ∼= P`−1⊕P`⊕P`+1, and therefore occurs with multiplicity
at least 2 in B⊗Bc. Consequently Bc must be trivial, proving that A = B and thereby
contradicting that B is �nite dimensional.

Consequently, we must have [P1,P1] = 0. De�ne the algebras Bk as before. If
there is a smallest k ∈ N such that Bk $ P0 ⊕ · · · ⊕ Pk, then Bk−1 = Bk = · · · = B is
a commutative �nite-dimensional C∗-algebra, and the argument above using central
idempotents shows that B must be 1-dimensional, contradicting that P0 ⊕ P1 ⊆ B.
So B = P0 ⊕ P1 ⊕ . . . is commutative since it is generated by P1 and [P1,P1] = 0.
Since B is dense in A, this implies that A is commutative. �

In this thesis we would like to �nd a quantization procedure, that is also capable of
quantizing the 2-sphere in a SO(3)-equivariant way. Therefore we will inevitable need
to generalize our de�nition of strict quantizations.
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2.6 Berezin�Toeplitz quantization

We now discuss a di�erent quantization method, closely related to geometric quan-
tization. This method works also for the 2-sphere with a SO(3)-invariant Poisson
structure, and approximates C∞(M) by �nite dimensional matrix algebras for values
of h̄ in the set I = {1, 1

2 ,
1
3 , . . . }. This requires a more general de�nition of strict

quantizations than the one we gave in De�nition 2.20. In particular, we need to allow
non-injective quantization maps A0 → Ah̄. See [Haw08] for a further discussion of
de�nitions of strict quantizations present in the literature.

De�nition 2.28 (Strict quantization) Let (M,π) be a Poisson manifold. A strict
quantization on M is speci�ed by the following data:

i.) a subset I ⊆ R containing 0 as a non-isolated point,

ii.) a collection Ah̄ of C∗-algebras with A0 = C0(M),

iii.) a set Γ ⊆
∏
h̄∈I Ah̄ of sections,

iv.) a dense ∗-subalgebra A0 of A0, and

v.) linear quantization maps Qh̄ : A0 → Ah̄,
such that

a.) {Ah̄}h̄∈I together with Γ de�nes a continuous �eld of C∗-algebras as in De�ni-
tion 2.18,

b.) A0 is closed under taking Poisson brackets,

c.) for every a ∈ A0 the section h̄ 7→ Qh̄(a) is continuous, i.e. an element of Γ,

d.) for all a, b ∈ A0 we have

lim
h̄→0

∥∥∥∥ 1

ih̄
[Qh̄(a), Qh̄(b)]−Qh̄({a, b})

∥∥∥∥
h̄

= 0 . (2.26)

A strict quantization is called

1.) injective if each Qh̄ is injective,

2.) Hermitian if Qh̄(a∗) = Qh̄(a)∗ for all a ∈ A0,

3.) algebraically closed if im(Qh̄) is an algebra for every h̄ ∈ I,
4.) dense if the ∗-algebra generated by im(Qh̄) is dense in Ah̄ for every h̄ ∈ I,
5.) unital if A0 and all Ah̄ are unital, and the quantization maps Qh̄ are unital maps,

6.) of order n ∈ N0 if for all a, b ∈ A0 there exists a polynomial a ∗n b ∈ A0[h̄] of
degree n such that

lim
h̄→0

∥∥∥∥ 1

h̄n
(Qh̄(a)Qh̄(b)−Qh̄(a ∗n b))

∥∥∥∥ = 0 . (2.27)

In this terminology a strict deformation quantization as de�ned in De�nition 2.20 is
nothing else than an injective, algebraically closed, and dense strict quantization, for
which I is an open interval and im(Qh̄) is closed under ∗.
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Berezin�Toeplitz quantization

Let us now present the main idea of Berezin�Toeplitz quantization. As opposed to for-
mal deformation quantization, it focusses more on the states, and directly constructs
a Hilbert space Hh̄ together with a quantization map that associates a bounded op-
erator to any smooth function on M . All the Hilbert spaces Hh̄ with h̄ 6= 0 are �nite
dimensional, but their dimension increases when h̄ becomes small. In the limit h̄→ 0
the bounded operators on Hh̄ approximate C∞(M).

Let L→M be a complex line bundle with a Hermitian metric 〈 · , · 〉 on the �bers.
Recall that a connection∇ on L is Hermitian if it satis�esX〈s, t〉 = 〈∇Xs, t〉+〈s,∇Xt〉
for all vector �elds X ∈ Γ∞(TM) and sections s, t ∈ Γ∞(L), and that we may identify
its curvature R∇, which is a 2-form with values in End(L), with a complex 2-form on
M .

De�nition 2.29 A symplectic manifold (M,ω) is said to be quantizable if there exists
a complex line bundle L → M with a Hermitian metric 〈 · , · 〉 on the �bers and a
Hermitian connection ∇ on L, such that the curvature of ∇ is −iω.

It can be shown that M is quantizable if and only if [ω]/2π ∈ H2
dR(M) lies in the

image of the map H2(M,Z)→ H2
dR(M). The Hermitian metric can be used to endow

the space Γ∞c (L) of smooth compactly supported sections of L with an inner product
�s, t� :=

∫
M
〈s, t〉ωd. Let L2Γ(L) denote the completion of Γ∞c (L) to a Hilbert space

with respect to � · , ·�.
Let M be a quantizable compact Kähler manifold. For any quantizing line bundle

L → M with connection ∇, the antiholomorphic part of ∇ can be used to make
L into a holomorphic line bundle. More precisely, there is a unique way to write
∇ = ∇(1,0) +∇(0,1) with ∇(1,0) : Γ∞(L)→ Γ∞(T∗,(1,0)M ⊗ L) and ∇(0,1) : Γ∞(L)→
Γ∞(T∗,(0,1)M ⊗ L). We can then de�ne holomorphic sections as those sections s ∈
Γ∞(L) that satisfy ∇(0,1)s = 0. The space Γhol(L) of holomorphic sections of L is
�nite dimensional, and we may de�ne the orthogonal projection Π: L2Γ(L)→ Γhol(L)
and the Toeplitz operators

Tf : Γhol(L)→ Γhol(L) , Tf = Π ◦Mf (2.28)

for all f ∈ C∞(M). Here Mf : Γhol(L)→ Γ∞(L) denotes the multiplication by f .
Finally, consider tensor powers L⊗m of the quantum line bundle, with the in-

duced connection ∇(m) and the induced inner product 〈 · , · 〉(m). Denote the Toeplitz
operators on L⊗m, de�ned as in (2.28), by T

(m)
f .

Since R∇ = −iω it follows that L is positive and therefore, by Kodaira's theorem,
it is ample. This means that some tensor power of L is very ample, in the sense that
the global sections of this tensor power de�ne an embedding of M into projective
space. It is a technical assumption in the following theorem that L is already very
ample, which we can achieve by replacing it with a tensor power and rescaling the
symplectic form.

Theorem 2.30 (Bordemann�Meinrenken�Schlichenmaier) Let M be a com-
pact Kähler manifold, with a very ample quantum line bundle L. Then
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i.) for every f ∈ C∞(M) there is a constant C such that

‖f‖∞ −
C

m
≤ ‖T (m)

f ‖ ≤ ‖f‖∞ (2.29)

holds for all m ∈ N, where ‖f‖∞ is the maximum norm of f and ‖T (m)
f ‖ is the

operator norm of T
(m)
f ,

ii.) for all f, g ∈ C∞(M) we have

lim
m→∞

‖T (m)
f T (m)

g − T (m)
fg ‖ = 0 (2.30)

and

lim
m→∞

‖im[T
(m)
f , T (m)

g ]− T (m)
{f,g}‖ = 0 . (2.31)

In particular, setting h̄ = 1
m , the Berezin�Toeplitz quantization is a strict quantization

on the set I = {1, 1
2 ,

1
3 , . . . }. Furthermore, it is algebraically closed and of in�nite

order.

Proof: The proof of statements i.) and ii.) can be found in [BMS94]. Note that
(2.29) implies that limh̄→0‖T (1/h̄)

f ‖ = ‖f‖∞ and therefore, using the notation Qh̄(f) =
T

(1/h̄)
f if h̄ 6= 0 and Q0(f) = f , that h̄ 7→ ‖Qh̄(f)‖h̄ is continuous for every f ∈

C∞(M). It follows from (2.30) that h̄ 7→ ‖Qh̄(f)Qh̄(g)‖h̄ is continuous, and since
(T

(1/h̄)
g )∗ = T

(1/h̄)
g we also have that h̄ 7→ ‖Qh̄(f) + Qh̄(g)∗‖h̄ = ‖Qh̄(f + g)‖h̄ is

continuous. So by the discussion after De�nition 2.20 it follows that the �eld of C∗-
algebras is indeed continuous. The other properties of a strict quantization are easily
veri�ed.

It is proven in [BdMG81] that Toeplitz operators form a ring, so the quantization is
algebraically closed, and in [Sch00] it is shown that the Berezin�Toeplitz quantization
is of in�nite order. �

To conclude this section, let us mention that Berezin�Toeplitz quantization is closely
related to geometric quantization, where one considers the operators

Qf : Γ∞(L)→ Γ∞(L) , Qf (s) = −∇Xf s+ ifs (2.32)

on sections of a quantum line bundle L over a symplectic manifold M . However, the
quantum state space L2Γ(L) is too large for physical applications: If M = R2d and L
is the trivial line bundle, then L2Γ(L) = L2(R2d), instead of L2(Rd). Therefore one
needs to cut down its dimension by polarizing. If M is a Kähler manifold we can use
the complex polarization for this step.

The operatorsQf : Γhol(L)→ Γhol(L), Qf = Π◦Qf are related to Berezin�Toeplitz
quantization by

Qf = iTf− 1
2 ∆f , (2.33)

which is a result of Tuynman [Tuy87].
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2.7 Obstructions to strict quantizations

The purpose of this subsection is two-fold. First, we want to show that formal defor-
mation quantizations have important applications in other areas of mathematics, by
demonstrating how they can be used to reformulate the Atiyah�Singer index theorem
in a purely algebraic way, usually referred to as the algebraic index theorem. Second,
we want to show how the algebraic index theorem can be used to obtain obstructions
for the existence of strict quantizations.

The Atiyah�Singer index theorem [AS68] itself is certainly one of the most impor-
tant mathematical results of the 20th century, revealing deep connections between
analysis and algebraic topology. Let us only mention that it computes the index of
an elliptic pseudodi�erential operator D between vector bundles over a compact man-
ifold M in terms of the symbol of D and topological invariants of the manifold M ,
and refer to the literature [BGV04,Gil96] on the subject for further details.

The connection to the algebraic index theorem is given by the symbol calculus of
pseudodi�erential operators, see (2.24). Fixing a map which associates a pseudodif-
ferential operator to a symbol de�nes a deformation quantization in a natural way.
This can be used to derive the Atiyah�Singer index theorem from the algebraic index
theorem [NT96].

In this subsection we use the abbreviationA for a formal deformation quantization
(C∞(M)[[ν]], ?), and denote the subalgebras (C∞c (M)[[ν]], ?) and (C∞const(M)[[ν]], ?) of
formal power series of functions with compact support and of formal power series of
functions that are constant outside some compact set by Ac and Aconst, respectively.

Any formal deformation quantization A has a trace [Fed96], that is a C[[ν]]-linear
functional tr : Ac → C∞[ν−1, ν]] with values in Laurent series, such that tr(f ? g) =
tr(g ? f) holds for all f ∈ Ac and g ∈ A. Such a trace is unique up to normalization,
and the normalization can be �xed by local considerations. The algebraic index
theorem computes the pairing of this trace with the compactly supported K-theory
of A. This theorem was obtained independently by Fedosov [Fed86,Fed95] and Nest�
Tsygan [NT95a].

Theorem 2.31 (Algebraic index theorem) Let A be a formal deformation quan-
tization of a symplectic manifold (M,ω), and let e, f ∈ Mn×n(A) be idempotents in
the matrix algebra over A, such that their di�erence is of compact support. Then

tr(e− f) =

∫
M

(ch(σ(e))− ch(σ(f)))Â(M)eiθ . (2.34)

A precise understanding of the expression on the right hand side is not required
in the following. It is only relevant that it depends on the symbols σ(e), σ(f) ∈
Mn×n(C∞(M)), obtained by setting h̄ = 0, topological data of the manifold, and
the characteristic class of the deformation quantization. But for completeness let us
mention that ch is the Chern character mapping idempotents in Mn×n(C∞(M)) to
di�erential forms Ωeven(M) of even degree, while Â(M) ∈ H4•

dR(M) denotes the A
roof genus of M , which is de�ned as a certain characteristic class of its (complexi�ed)
tangent bundle, and θ is the characteristic class from (2.18).

Let us now show how Theorem 2.31 can provide obstructions to the existence
of certain quantizations. Note that given a strict quantization and an element f ∈
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C∞c (M), we can ask whether the trace of f viewed as an element of Ac can be
computed from the elements Qh̄(f). For the Weyl�Moyal product from Example 2.9
and Example 2.24 anyQh̄(f) is of trace-class, and its trace agrees with the trace of f in
Ac. This motivates the following de�nition, which is due to Fedosov [Fed96, Chapter
7], and abstracts the properties of the Weyl�Moyal product. In ii.) we require
explicitly that the trace of an element f ∈ Ac is the formal expansion of the traces of
the operators OpN,h̄(f). Write tr f |N−d for the truncation of the formal Laurent series

tr f =
∑∞
k=−d tkν

k at order N−d with ν substituted by h̄, i.e. tr f |N−d =
∑N−d
k=−d tkh̄

k.

De�nition 2.32 (Asymptotic operator representation) Let (M,ω) be a sym-
plectic manifold of dimension 2d and let I ⊆ (0, 1] be a set with 0 as limit point.
An asymptotic operator representation (AOR) of a formal deformation quantization
A of M is a family of linear maps

OpN,h̄ : Aconst(M)→ B(H) (2.35)

for all N ∈ N and h̄ ∈ I, where H is a �xed Hilbert space, satisfying that

i.) for all N ∈ N and f, g ∈ Aconst there are constants C1, C2 ∈ R such that

‖OpN,h̄(f)−OpN+1,h̄(f)‖ ≤ C1h̄
N+1 , (2.36)

‖OpN,h̄(f ? g)−OpN,h̄(f)OpN,h̄(g)‖ ≤ C2h̄
N+1 (2.37)

hold for all h̄ ∈ I,
ii.) for all N ∈ N and f ∈ Ac, there exist constants C3, C4, C5 ∈ R such that the

operator OpN,h̄(f) is trace class and

‖OpN,h̄(f)‖1 ≤ C3h̄
−d , (2.38)

‖OpN,h̄(f)−OpN+1,h̄(f)‖1 ≤ C4h̄
−d+N+1 , (2.39)∣∣tr OpN,h̄(f)− tr f |N−d

∣∣ ≤ C5h̄
−d+N+1 (2.40)

hold for all h̄ ∈ I, and
iii.) for all N > d and f, g ∈ Aconst, there is a constant C6 ∈ R such that the

operator OpN,h̄(f ? g)−OpN,h̄(f)OpN,h̄(g) is trace class and

‖OpN,h̄(f ? g)−OpN,h̄(f)OpN,h̄(g)‖1 ≤ C6h̄
−d+N+1 (2.41)

holds for all h̄ ∈ I.

The motivating example for the de�nition of an AOR is the Weyl�Moyal product.
Note that for any g ∈ C∞(M) the pseudodi�erential operator Opg de�ned in Exam-
ple 2.24 can be extended to L2(Rd), see [Fed96, Section 3.4]. If f |N =

∑N
k=0 fkh̄

k

denotes the truncation of an element f =
∑∞
k=0 fkν

k ∈ Aconst, then we may de�ne
OpN,h̄(f) = Opf |N , where the right hand side refers to the extension described above.
As in this example, the parameter N in the de�nition of an AOR can be thought of as
a truncation degree in powers of h̄, and an AOR as the collection of all truncations at
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orders N of an in�nite order strict quantization. Note however that, starting with an
AOR and �xing h̄ and f , there is no reason for the sequence OpN,h̄(f) to converge.

There are good criteria for the existence of AORs. Let Kc(M) be the compact
K-theory of M , i.e. equivalence classes of formal di�erences [e − f ], where e, f ∈
Mn×n(C∞(M)) are idempotents with compactly supported di�erence. Denote the
right hand side of (2.34) for ξ ∈ Kc(M) by indtop(ξ), i.e.

indtop(ξ) =

∫
M

ch(ξ)Â(M)eiθ , (2.42)

and let indtop(ξ)|N be the formal expansion of indtop(ξ), truncated at order N and
with ν replaced by h̄. Note that the only dependence of indtop(ξ) on ν is through the
characteristic class θ.

Theorem 2.33 (Fedosov) Let (M,ω) be a symplectic manifold and ξ1, . . . , ξm ∈
Kc(M) be generators of the compact K-theory of M . Assume that M has an AOR
on the set I. Then we must have

indtop(ξk)|N−d ∈ Z mod O(h̄N−d+1) (2.43)

for all N > d on the set I. In particular, if θ = 1
ih̄ω, then

indtop(ξk) ∈ Z mod O(h̄∞) . (2.44)

By f(h̄) ∈ Z mod O(h̄N ) we mean that the di�erence of f(h̄) to the nearest integer
can be bounded by Ch̄N for some constant C, independent of h̄. If θ = 1

ih̄ω, then this
theorem implies in particular that for every ε > 0 there is some R > 0 such that the
di�erence of indtop(ξk) to the nearest integer is at most ε for all h̄ ∈ I ∩ [−R,R].

Theorem 2.33 is not very surprising. Since ξk can be represented by a di�erence of
idempotents, vanishing outside of a compact set, the algebraic index theorem shows
that indtop(ξk) equals the trace of ξk. But the trace can be computed asymptotically
from the operator trace in the AOR, and this operator trace is integral for any h̄ ∈ I.
If θ = 1

ih̄ω then indtop(ξk) is a Laurent polynomial concentrated in degrees −d to 0,
and therefore indtop(ξk)|N−d is independent of N if N > d.

Any symplectic manifold admits a compatible almost complex structure, and there-
fore its tangent bundle admits the structure of a d-dimensional complex vector bundle
TCM . We have

Â(M) = exp

(
1

2
c1(TCM)

)
Td(TCM) (2.45)

with c1 and Td denoting the �rst Chern class and the Todd class, respectively. If
θ = ω

ih̄ , then integrality of indtop(ξk) for all ξk ∈ Kc(M) implies that ω
ih̄ + 1

2c1(TCM)
is an integral cohomology class. On the other hand this condition is su�cient to
guarantee the existence of AORs:

Theorem 2.34 (Fedosov) Let (M,ω) be a compact symplectic manifold with formal
deformation quantization A. Assume that the characteristic class of A is θ = ω

ih̄ . If
h̄ ∈ (0, 1] is such that

ω

h̄
+

1

2
c1(TCM) ∈ im

(
H2(M,Z)→ H2

dR(M,C)
)
, (2.46)



30 INTRODUCTION

then indtop(ξ) ∈ Z for all ξ ∈ Kc(M) and there is an AOR on the parameter set
I = { h̄

2k+1 | k ∈ N0}.

Proof: See [Fed96, Section 7.3]. �

Unfortunately, not every strict quantization, even if it is of in�nite order, leads to
an AOR in the sense of Fedosov. For the non-commutative torus from Example 2.25
there is a unique trace on the quantum algebras Ah̄, but the possible values of this
trace when applied to idempotents are dense in [0, 1] [Rie81]. These operators are
therefore not trace-class, as required in the de�nition of an AOR, and we do not get
an integrality condition.

Nevertheless, both Fedosov's construction of AORs and his proof of the integrality
condition have inspired other more general existence and obstruction results of strict
quantizations. Natsume, Nest, and Peter generalized his construction to obtain strict
quantizations of a rather general class of symplectic manifolds [NNP03], that does,
however, not contain the 2-sphere.

Theorem 2.35 (Natsume�Nest�Peter) Let M be a closed symplectic manifold
such that π1(M) is exact and π2(M) = 0. Then M has a dense strict quantization on
a parameter set of the form I = [0, ε) with ε ∈ R+.

The basic idea of the proof is to pass to the universal cover M̃ of M . The assumption
that π2(M) = 0 implies that H1(M̃) = H2(M̃) = 0. For this reason the integral-
ity condition of Fedosov becomes trivial. In fact, his construction of AORs can be
generalized to yield a dense strict quantization of M̃ . By considering the reduced
crossed product of this strict quantization with the fundamental group Γ, which is
the construction of �non-commutative quotients�, and using that π1(M) is exact, it is
possible to obtain a dense strict quantization of the quotient M = M̃/Γ.

Similar ideas of quantizing the universal cover had already been used to obtain
quantizations of compact Riemann surfaces of genus at least 1, which are quotients
of the hyperbolic plane by a discrete subgroup of SL(2,R), see [KL92,NN99].

Hawkins shows how to obtain more general obstructions to the existence of strict
quantizations of the 2-sphere that do not necessarily determine AORs in [Haw08],
using similar ideas than Fedosov.

Theorem 2.36 (Hawkins) If {Ah̄}h̄∈I is a unital Hermitian second order strict
quantization of the 2-sphere S2 with a non-degenerate SO(3)-invariant Poisson struc-
ture, such that xi ∈ A0 and such that ∆f ∈ A0 implies f ∈ A0 for all f ∈ C (S2),
then there is no connected neighbourhood of 0 in I. In particular, I is not connected.

Here xi denotes the coordinate functions on R3, restricted to S2 ⊆ R3, and ∆ is the
Laplacian.

2.8 Fréchet-algebraic approach to quantization

In the previous constructions of strict quantizations we obtained strict quantizations
directly, without making use of formal deformation quantizations. In this subsection,
we will use that a formal deformation quantization is usually easy to obtain, either



2. MATHEMATICAL INTRODUCTION 31

by the results of Theorem 2.15 and Theorem 2.16 or by more explicit constructions
for certain special cases, and ask whether we can make such a formal deformation
quantization convergent. This idea goes back to the work of Beiser, Römer, and
Waldmann [BRW07,BW14].

Note that, starting with a formal power series, it is not hard to construct a smooth
function that has this series as Taylor expansion. But such a construction is certainly
not canonical, and so we do not expect that there is any canonical way to make formal
deformation quantizations convergent.

One possible approach is to search for subalgebras P of C∞(M), on which the
star product of any two elements is a polynomial in ν, or in other words the power
series in ν has only �nitely many non-zero elements. On such a subalgebra we can
replace the formal parameter ν with any complex number h̄, and obtain a family of
non-formal products ?h̄ : P×P →P. While the existence of a non-trivial algebra P
with these properties is in general not guaranteed, extra structure on M determines
such algebras in many concrete situations: For the formal star products introduced
in Example 2.9 we may choose P to be the algebra of polynomials on R2d, and for a
cotangent bundle we may try to take polynomials in the momentum variables.

Once such a subalgebra P is found, one can search for a topology with respect to
which the product on P is continuous. Completing P with respect to this topology
yields a larger algebra of interesting functions for which the product is still well-
de�ned. Usually, such a topology is only locally convex and cannot be de�ned by
multiplicative seminorms, so that the completion often becomes a Fréchet algebra
that is not multiplicatively convex (see De�nition 2.21), in particular it is not a C∗-
algebra. This is not very surprising, since P usually contains elements satisfying
(some variant of) the canonical commutation relations, which cannot be realized in a
C∗-algebra, or even any multiplicatively convex algebra.

On the one hand, it might be desirable from a mathematical perspective to obtain
C∗-algebras, and one is led to the question whether there is a good way to associate
C∗-algebras to the Fréchet algebras obtained with this construction. On the other
hand, for doing physics a Fréchet-algebraic quantization might be considered to be
more direct, as it may already contain the relevant observables.

Let us now describe some of the examples in which this approach was carried out
successfully.

Example 2.37 (Star product of exponential type) Let V be a (not necessarily
�nite dimensional) vector space and let Λ: V × V → C be a bilinear form on V .
De�ne PΛ : Sm(V )⊗ Sn(V )→ Sm−1(V )⊗ Sn−1(V ) by

PΛ(v1 ∨ · · · ∨ vm ⊗ w1 ∨ · · · ∨ wn) =

m∑
j=1

n∑
k=1

Λ(vj , wk) ·

· v1 ∨ · · · ∨ vj−1 ∨ vj+1 ∨ · · · ∨ vm ⊗ w1 ∨ · · · ∨ wk−1 ∨ wk+1 ∨ · · · ∨ wn (2.47)

and de�ne the strict star product of exponential type as

?h̄Λ : S•(V )× S•(V )→ S•(V ) , (v, w) 7→ v ?h̄Λ w := µ∨ ◦ e
1
2 iPh̄Λ(v ⊗ w) . (2.48)
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By µ∨ we mean the map that multiplies the two tensor factors together, using the
symmetric tensor product. Our convention concerning symmetric tensors is that
v ∨ w = Sym•(v ⊗ w) where Sym• is the sum of the symmetrization operators

Symk : Tk(V )→ Tk(V ) , Symk(v1 ⊗ . . .⊗ vk) =
1

k!

∑
σ∈Sk

vσ(1) ⊗ . . .⊗ vσ(k) (2.49)

and S•(V ) is identi�ed with the image of Sym• in T•(V ).
Note that (2.48) already de�nes a �strict product�, in the sense that h̄ is a com-

plex number and not a formal parameter. If V = R2d is �nite dimensional, then
S•(V ) is isomorphic to the algebra of polynomials Pol(V ∗), via the linear extension
of the map v1 ∨ · · · ∨ vk 7→ (α 7→ α(v1) . . . α(vk)). Choosing standard coordinates
x1, . . . , xd, p1, . . . , pd on V

∗, and letting Λ =
∑d
i=1

(
∂
∂xi
⊗ ∂

∂pi
− ∂

∂pi
⊗ ∂

∂xi

)
, the prod-

uct (2.48) is precisely the restriction of the Weyl�Moyal product from Example 2.9 to
the polynomials, with ν replaced by h̄. Since di�erential operators are already deter-
mined by their behaviour on polynomials, one can also reconstruct the Weyl�Moyal
product from (2.48).

Let V be a locally convex vector space. Recall that the topology on the projective
tensor product V ⊗πk is the locally convex topology de�ned by all the seminorms

pk(v) = inf

{∑̀
i=1

p(v
(i)
1 ) . . . p(v

(i)
k )

∣∣∣∣∣ ` ∈ N , v =
∑̀
i=1

v
(i)
1 ⊗ . . .⊗ v

(i)
k

}
, (2.50)

obtained by letting p run through the continuous seminorms on V .

De�nition 2.38 (TR-topology) Let R ∈ R and V be a locally convex vector space.
Then the TR-topology on T•(V ) is the locally convex topology determined by the
seminorms

pR(v) =

∞∑
k=0

(k!)Rpk(vk) , (2.51)

where v =
∑∞
k=0 vk with vk ∈ V ⊗k and p is running through the continuous seminorms

on V . The TR-topology on S•(V ) is the subspace topology on S•(V ), induced by the
TR-topology on T•(V ).

The following theorem was obtained in [Wal14].

Theorem 2.39 (Waldmann) Let V be a locally convex vector space and Λ: V ×
V → C be a continuous bilinear form on V . For any R ≥ 1

2 and h̄ ∈ C, the star
product of exponential type ?h̄Λ is continuous with respect to the TR-topology on S•(V ).

There is a version of this theorem for the case that all seminorms are Hilbert semi-
norms, meaning that they are induced by a not necessarily positive de�nite inner
product. In this case, one can consider their Hilbert tensor product instead of the
projective tensor product, see [SW18].

Note that, as opposed to the C∗-algebraic constructions in the previous subsec-
tions, this example works well in in�nite dimensions, which is important for possible
applications in quantum �eld theory.
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Example 2.40 (Gutt star product) Let g be a Lie algebra, and denote its univer-
sal enveloping algebra by U g. From the Poincaré�Birkho��Witt theorem it follows
that summing the maps

qn,h̄ : Sn(g)→ U g , x1 ∨ · · · ∨ xn →
(ih̄)n

n!

∑
σ∈Sn

xσ(1) . . . xσ(n) (2.52)

we obtain an isomorphism qh̄ : S•(g) → U g, qh̄ =
∑∞
n=0 qn,h̄ of vector spaces, but,

unless g is commutative, not of algebras. For x ∈ S•(g) and y ∈ S•(g) we de�ne the
Gutt star product

x ?h̄ y = q−1
h̄ (qh̄(x)qh̄(y)) . (2.53)

As in the previous example, if g is �nite dimensional, then this product is the restric-
tion of a formal star product on g∗ to the polynomials Pol(g∗) ∼= S(g). The formal
star product can be reconstructed from ?h̄ and deforms the linear Poisson structure
on g∗ obtained from the Lie algebra structure of g.

Let g be a locally convex Lie algebra. Then a continuous seminorm q on g is said to
be an asymptotic estimate for a continuous seminorm p if

p(wn(x1, . . . , xn)) ≤ q(x1) · . . . · q(xn) (2.54)

holds for all n ∈ N, all elements x1, . . . , xn ∈ g, and words wn(x1, . . . , xn) obtained
by applying Lie brackets in arbitrary order to these elements (e.g. [x1, [[x2, x3], x4]]
or [[[x1, x2], x3], x4]). The Lie algebra g is said to be asymptotic estimate if every
continuous seminorm has an asymptotic estimate. For an asymptotic estimate Lie
algebra, we have the following continuity result, see [ESW17]:

Theorem 2.41 (Esposito�Stapor�Waldmann) Let g be an asymptotic estimate
Lie algebra. Then for any R ≥ 1 and h̄ ∈ C, the Gutt star product on g is continuous
with respect to the TR-topology on S•(g).

In both these examples the completion of S•(V ) or S•(g) with respect to the TR-
topology can be described by power series with coe�cients of a certain decay. However,
there is no good geometric interpretation of this algebra. This is di�erent in the
following example. We describe this example in detail in Paper I, so we will only
sketch the most relevant aspects.

De�nition 2.42 The hyperbolic disc Dn is the n-dimensional Kähler manifold that
is biholomorphic to the complex submanifold {z ∈ Cn | |z1| + · · · + |zn| < 1} of Cn,
and whose Riemannian metric is given by

g =

∑n
k=1 dwk ∨ dwk

1−
∑n
k=1 w

kwk
+

∑n
k,`=1 w

`wk dwk ∨ dw`

(1−
∑n
k=1 w

kwk)2
, (2.55)

where wk(z) = zk are the standard coordinates of Cn restricted to Dn.
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The hyperbolic disc Dn can be obtained from C1+n with a metric of signature (1, n)
via phase space reduction. A similar procedure allows one to de�ne an extended
disc D̂n by reduction from C1+n × C1+n. The embedding C1+n 3 z 7→ (z, z) ∈
C1+n×C1+n descends to an embedding Dn → D̂n, and any holomorphic function on
D̂n is uniquely determined by its restriction toDn. Denote the algebra of functions on
Dn, which are restrictions of a holomorphic function on D̂n by A (Dn). Polynomials
on C1+n can be used to de�ne an algebra P(Dn) of polynomials on Dn, and P(Dn)
is contained in A (Dn).

There is a way to perform an equivalence transformation on the Wick star product
on C1+n, introduced in Example 2.9, such that it can be reduced to a product ? on
the hyperbolic disc Dn.

Theorem 2.43 (Kraus�Roth�Schötz�Waldmann) The product ? onDn, described
in the last paragraph, restricts to a strict product ?h̄ on the polynomials P(Dn), for
all h̄ ∈ C\{−1,− 1

2 ,−
1
3 , . . . }. It is continuous with respect to the topology on P(Dn),

induced by the TR-topology on S•((C1+n)∗) for R ≥ 0. For R = 0, this topology is
precisely the topology of locally uniform convergence of the holomorphic extensions to
D̂n, and the completion of P(Dn) with respect to this topology is precisely A (Dn).

The poles in this construction arise since ?h̄ is a �nite power series with rational
functions as coe�cients, when applied to two polynomials.

3 Objectives

The previous section explained the general theory relevant for understanding the
quantization problem. In this section, we will focus on the contributions of this
thesis. In Subsection 3.1 we describe brie�y what is known in the literature about
the quantization of coadjoint orbits, Subsection 3.2 discusses the contributions of the
author, and in Subsection 3.3 we give an outlook on possible future directions.

3.1 Existing results on coadjoint orbits

In this subsection, we review the de�nition of coadjoint orbits and results on their
quantization.

Let G be a Lie group. Then G acts under the adjoint action on its Lie algebra g,
and by dualizing also on the dual g∗ of g. This action is called the coadjoint action
and its orbit through an element λ ∈ g∗ is called a coadjoint orbit and denoted by Oλ.
Note that we can always identify Oλ with the homogeneous space G/Gλ, where Gλ is
the stabilizer of λ. We give a brief introduction to coadjoint orbits in Section II.2.1,
which we will not repeat here.

In many respects, coadjoint orbits behave better and have more relevant geomet-
ric structure than orbits of the adjoint action: First, a coadjoint orbit Oλ of a Lie
group G always admits a canonical G-invariant symplectic form, providing the nec-
essary information to do classical mechanics on Oλ. In addition, the group action
of G describes symmetries of Oλ, and yields extra structure that we can use for the
construction of a quantization. Since coadjoint orbits are subsets of the vector space



3. OBJECTIVES 35

g∗, we can de�ne polynomials on Oλ by restricting polynomials on g∗, and those
polynomials can be the starting point for carrying out the Fréchet-algebraic approach
outlined in Subsection 2.8. In addition, if G is semisimple, then a lot of Lie algebraic
and representation theoretic tools become available to study Oλ.

Second, the class of coadjoint orbits contains many geometrically interesting ex-
amples. Among the coadjoint orbits of semisimple Lie groups are complex projective
spaces CPn, including as the special case n = 1 the 2-sphere S2, and the hyperbolic
discs Dn de�ned in De�nition 2.42. Since Riemann surfaces are quotients of D1 by a
Fuchsian group Γ, understanding Γ-equivariant quantizations of D1 provides a way to
study the quantization problem for Riemann surfaces. In the Appendix we describe
brie�y how Dn and CPn arise as coadjoint orbits. Note that Dn and CPn are rather
di�erent spaces, with CPn being compact and admitting a metric of positive sec-
tional curvature, while Dn is non-compact and admits a metric of negative sectional
curvature. For more examples of coadjoint orbits, see e.g. [MR99, Chapter 14].

Note that for a semisimple Lie algebra g the Killing form B is non-degenerate and
therefore provides an isomorphism [ : g → g∗, X 7→ B(X, · ). Denote its inverse by
] : g∗ → g.

De�nition 3.1 Let G be a complex semisimple Lie group. A coadjoint orbit Oλ of G
is called semisimple if λ] is semisimple, i.e. diagonalisable under the adjoint action,
and nilpotent if λ] is nilpotent under the adjoint action. If G is a real semisimple
Lie group, then Oλ is semisimple or nilpotent if λ] is semisimple or nilpotent in the
complexi�cation of g.

Note that if any element of Oλ is semisimple (or nilpotent), then every element is
semisimple (or nilpotent). It can be shown that complex semisimple coadjoint orbits
are Zariski closed, and therefore in particular closed submanifolds of g∗, determined
as the vanishing set of a �nite family of polynomials. For a �xed semisimple Lie group,
there are only �nitely many nilpotent orbits. The Zariski closure of a nilpotent orbit
is a union of nilpotent orbits, and contains 0.

In this thesis, we will only be interested in the case of semisimple coadjoint orbits
of semisimple Lie groups. Note however, that formal deformation quantizations were
also obtained for nilpotent coadjoint orbits [ABC94,AB02], where it is not required
that the operators Cr in De�nition 2.7 are di�erential, and for coadjoint orbits of
non-semisimple Lie groups like GLn(C) [DM02].

One attempt to quantize semisimple coadjoint orbits is to start with the Gutt star
product on g∗, introduced in Example 2.40, and to ask whether this product can be
restricted to Oλ. For this to be possible, the di�erential operators Cr in De�nition 2.7
would need to take derivatives only in directions tangential to the orbits, but not in
transversal directions. There is a result of Cahen�Gutt�Rawnsley [CGR96] that there
is no star product on any neighbourhood of the origin in g∗ that is tangential to all
coadjoint orbits, including the zero orbit. (The original motivation of the authors
when studying this question was to determine whether one might be able to quantize
Poisson structures by quantizing all symplectic leaves, and glueing these quantizations
together.)

However, it is still possible that a star product restricts to many (but not all)
coadjoint orbits. So given an orbit Oλ, we may try to perform an equivalence transfor-
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mation as de�ned in De�nition 2.11 on the Gutt star product, such that the resulting
star product is tangential to Oλ and can therefore be restricted. Such an approach
was attempted in an algebraic setting in [FL01], where the polynomial relations de�n-
ing a semisimple orbit are deformed, and carried out in a much clearer geometrical
setting by Karabegov [Ast99,Kar96,Kar98].

In the simplest form, Karabegov's construction works as follows. Let K be a
semisimple compact connected Lie group with coadjoint orbit Oλ ⊆ k∗. Such a coad-
joint orbit with the canonical symplectic form has a unique compatible K-invariant
complex structure that makes it into a Kähler manifold. The map

`h̄ : k→ DiffOp(Oλ) , X 7→ X
(1,0)
Oλ

− i

h̄
X (3.1)

de�nes a representation of k for all h̄ ∈ C \ {0}. Here XOλ

∣∣
ξ

:= d
dt

∣∣
t=0

Ad∗exp(−tX) ξ ∈
Γ∞(TOλ) is the fundamental vector �eld of X and the superscript (1, 0) denotes its
projection to the holomorphic tangent space. The X ∈ k ⊆ Sk in the last term is
interpreted as a polynomial on Oλ ⊆ k∗.

Denote the complexi�cation of k by g. From the representation `h̄ we obtain
a map Φh̄ : U g → Pol(Oλ) by extending X1 . . . Xk 7→ `h̄(X1) . . . `h̄(Xk)1 complex
linearly. Here 1 denotes the function on Oλ that is constantly 1. The kernel of Φh̄ is
a two-sided ideal, and therefore we can push forward the non-commutative product
of U g/ ker Φh̄ to a product ∗h̄ on im Φh̄. For all but countably many values of h̄,
the image of Φh̄ consists of all polynomials Pol(Oλ). The dependence of ∗h̄ on h̄ is
rational with no pole at 0, and one can obtain a formal star product from the Taylor
series expansion around h̄ = 0.

To see that we may interpret this construction as deforming the Gutt star product,
note that we may extend Φh̄ to a map U g → Sg by interpreting X on the RHS of
(3.1) as an element of Sg, and then view Φh̄ ◦ qh̄ as the equivalence transformation.
Here qh̄ is the map introduced in Example 2.40. Note also the formal similarity of
(3.1) with (2.32), which suggests that there is some relation with Berezin�Toeplitz
quantization. This is made precise in [Kar99, Section 11]:

Theorem 3.2 (Karabegov) Let K be a compact connected semisimple Lie group K
with Lie algebra k, and assume that λ ∈ k∗ is chosen such that its stablizer Lie algebra
kλ is a Cartan subalgebra of k and such that λ is a dominant weight. Then there is a
quantizing line bundle for Oλ, and for every h̄ ∈ {1, 1

2 ,
1
3 , . . . } Karabegov's star product

∗h̄ coincides with the quantization of Oλ through Berezin's covariant symbols, and is
therefore related to the Berezin�Toeplitz quantization via the Berezin transform.

The assumption that kλ is a Cartan subalgebra can be replaced by a weaker require-
ment of λ being invariant with respect to the Weyl group generated by a certain subset
of the root system. But introducing the proper terminology to formulate this precisely
would go too far. In any case, the main importance of Theorem 3.2 is that Karabov's
quantization at the poles is intimately related to the Berezin�Toeplitz quantization,
but unless one chooses more complicated representations in (3.1) does not reproduce
the Berezin�Toeplitz quantization exactly. Since the precise quantization at the poles
is irrelevant in the following, we refer the reader to [Kar99,Sch10] for a de�nition of
Berezin's covariant symbols and the Berezin transform.
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A seemingly di�erent algebraic approach was developed by Alekseev�Lachowska
[AL05]. They view a coadjoint orbit as a homogeneous space Oλ ∼= G/Gλ, and use that
the space of G-invariant bidi�erential operators on G/Gλ is canonically isomorphic to
((U g/U g·gλ)⊗2)Gλ . By inverting a certain algebraic pairing between Verma modules,
called the Shapovalov pairing, they obtain an element in ((U g/U g · gλ)⊗2)Gλ [[ν]],
which de�nes an associative formal product on Oλ. Here gλ denotes the Lie algebra
of Gλ, the stabilizer of λ. We will present this construction in detail in Paper II.

The relation of the two approaches was studied in [ESW19]:

Theorem 3.3 (Esposito�Schmitt�Waldmann) Let G be a compact semisimple
connected Lie group. The constructions of Alekseev�Lachowska and Karabegov lead to
the same star products.

To be more precise, there are some choices that need to be made in both constructions.
It is shown in [ESW19] which choices need to be made to get the same star products.

In Paper II we focus on the algebraic construction of Alekseev�Lachowska since
it is better suited for obtaining continuity estimates of the star product. However, it
is good to keep the geometric interpretation in terms of Karabegov's construction in
mind.

3.2 Contributions of the author

In this subsection, we give an account of the results obtained in this thesis. The �rst
part contains the main motivation, whereas the second part contains a more detailed
description and some intermediary results obtained along the way. Since the precise
statements can be found in the introductions to the research articles, we try to be
more qualitative in our description and refer to the articles whenever necessary.

Motivation and main results

In a nutshell, the starting point of this thesis is Theorem 2.43. As mentioned in
Subsection 2.8, the completion of the polynomials P(Dn) on the hyperbolic disc with
respect to the T0-topology can be described geometrically as the algebra of functions
obtained by restricting holomorphic functions on an extended disc D̂n. However,
the construction of the extended hyperbolic disc D̂n in [KRSW19] is somewhat ad-
hoc, and it was not clear whether such a construction could also be applied in other
situations.

In Paper I we show that this construction is indeed not limited to hyperbolic discs,
but works similarly for other manifolds M

(s)
red that can be obtained by a similar re-

duction procedure from C1+n, using a metric of signature s ∈ {1, . . . , n + 1}. These
manifolds include the complex projective spaces and hyperbolic discs. The construc-
tion of star products on M

(s)
red is analogous to the construction for the hyperbolic disc,

see Main Theorem I.I and Main Theorem I.II. The novelty in our approach is that it
allows us to compare the quantizations obtained for di�erent signatures s, see Main
Theorem I.IV. Indeed, every manifold M

(s)
red embeds �antidiagonally� into a complex

manifold M̂
(s)
red, just as the hyperbolic disc D

n embeds into D̂n, and the completion of
the polynomials on M

(s)
red with respect to a topology induced from the T0-topology on
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S•((C1+n)∗) is given precisely by the restrictions of holomorphic functions on M̂
(s)
red.

There is a holomorphic di�eomorphism between the extended spaces M̂
(s)
red, which is an

analogue of the Wick rotation and essentially changes the signature of the metric. Ex-
tending from M

(s)
red to M̂

(s)
red, applying the Wick rotation, and restricting to a di�erent

M
(s′)
red is compatible with the product structure and therefore gives an isomorphism

of the quantum algebras for di�erent manifolds M
(s)
red, which is not compatible with

the ∗-structures.

This generalizes the construction for Dn to a larger class of examples, but it still
remains somewhat unclear where the extended spaces actually come from. This prob-
lem is addressed in Paper II where we study semisimple coadjoint orbits of semisimple
connected Lie groups. These coadjoint orbits admit a unique complexi�cation. In fact,
all the examples studied in Paper I are semisimple coadjoint orbits of semisimple con-
nected Lie groups, and the extended spaces are precisely their complexi�cations. We
show that the Alekseev�Lachowska star product on coadjoint orbits, which we intro-
duced brie�y in the last subsection, restricts to polynomials on the coadjoint orbit
and can be extended by continuity to all holomorphic functions on the complexi�-
cation, see Main Theorem II.II. This extension is quite non-trivial, and requires an
explicit computation of the twist de�ning the star product and the application of some
non-trivial theorems from complex analysis concerning the extension of holomorphic
functions. We can restrict the quantization to real orbits, see Main Theorem II.III,
and we also get an isomorphism generalizing the Wick rotation in this approach, see
Main Theorem II.IV.

The main novelty in our construction is the systematic use of complexi�cations.
Indeed, the construction of Alekseev�Lachowska yields both a product for polynomi-
als on the real coadjoint orbit and for holomorphic polynomials on the complexi�-
cation, and those products are intertwined by restriction. However, by working on
the complexi�cation many powerful tools from complex analysis become available. In
particular, we have a good description of the decay of the coe�cients in the Taylor
series of any holomorphic function. These estimates combined with estimates for the
coe�cients of the twist allow us to prove the required continuity of the product on
the complexi�cation, with respect to the topology of locally uniform convergence. We
need to invoke powerful complex analytic theorems again when proving that the com-
pletion of the holomorphic polynomials with respect to this topology really consists of
all holomorphic functions on the complexi�cation. The Wick rotation, which relates
quantizations of di�erent coadjoint orbits with the same complexi�cation, is a natural
consequence of this approach.

In the Appendix we show that the star products on the hyperbolic disc and the
complex projective spaces, constructed in Paper I by phase space reduction and in
Paper II by inverting the Shapovalov pairing, agree. In this sense many results ob-
tained in Paper II are a generalization of the results obtained in Paper I. But note
that the construction in Paper I is rather di�erent and in some sense more geometric
and explicit, and can therefore provide additional insights.
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More detailed description

Let us start by giving a de�nition of the type of strict quantizations that we construct.
Essentially, our constructions in Paper I and Paper II share most of the properties of
the Fréchet-algebraic quantization of the hyperbolic disc, obtained in [KRSW19]. The
following de�nition tries to capture these properties as closely as possible. Variations
of this de�nition would certainly make sense, and might even be more natural. For
example, there is no real need to require that the topology T does not depend on
h̄, but we decided to give the strongest sensible de�nition that is satis�ed by our
examples.

De�nition 3.4 (Fréchet-algebraic quantization) Let (M,π) be a Poisson mani-
fold. A strict Fréchet-algebraic quantization on M is speci�ed by the following data:

i.) a subalgebra P of C∞(M) which is closed under taking Poisson brackets,

ii.) a locally convex topology T on P,

iii.) a countable subset P ⊆ C \ {0} accumulating only at zero,

iv.) for every h̄ ∈ C \ P an associative product ∗h̄ on the underlying vector space of
P

such that

a.) the product ∗0 coincides with the commutative pointwise product of C∞(M),

b.) for every h̄ ∈ C \ P , the product ∗h̄ is continuous with respect to the topology T ,
and the unique extension of ∗h̄ to the completion A of P makes (A , ∗h̄) a Fréchet
algebra,

c.) for f, g ∈P we have

1

h̄
(f ∗h̄ g − g ∗h̄ f)− i{f, g} h̄→0−−−→ 0 (3.2)

in the topology T ,
d.) for f, g ∈ A and every x ∈ M , the function h̄ 7→ (f ∗h̄ g)(x) is holomorphic on

C \ (P ∪ {0}).

All our examples are constructed from a formal star product, which becomes a �nite
series with rational functions as coe�cients when restricted to two elements of P.
We can therefore only specify h̄ to values that do not coincide with the poles P of
these rational functions. The function h̄ 7→ (f ?h̄ g)(x) with f, g ∈ A and x ∈ M is
usually not continuous at h̄ = 0 in this approach, as it can blow up around the poles
P , which accumulate at 0, see [KRSW19, Example 4.2].

In all our examples, a Lie group G acts onM by Poisson maps, i.e. in a way that is
compatible with the Poisson structure. The subspaces P and A are both G-invariant,
and all products ∗h̄ with h̄ ∈ C \ P are G-equivariant. In many examples, there will
be an involution ∗ on P and A , and for every h̄ ∈ C \P we have (f ∗h̄ g)∗ = g∗ ∗h̄ f∗
for all f, g ∈ A .

Let us describe the intermediary results obtained in the research articles in more
detail. First, we obtain explicit formulas for the star products in both articles. In
Paper I, those formulas were already known for complex projective spaces [BBEW96a,
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BBEW96b] and the hyperbolic disc [BW14], but not for the manifolds M
(s)
red of signa-

ture s 6= 1, n+ 1. A formula describing the bidi�erential operators of a Fedosov star
product on the reduced manifold was obtained in [Löf10]. We computed the bidi�er-
ential operators directly via phase space reduction, and obtained the same formula,
see Main Theorem I.I. This computation shows that the product from [Löf10] coin-
cides indeed with the product obtained from phase space reduction, which was already
suggested by the fact that their characteristic classes (see Theorem 2.16) agree.

For coadjoint orbits, the formula for the canonical element of the Shapovalov
pairing of SL2(C) appeared in [AL05], but to the author's best knowledge the formulas
for SLn(C) and an arbitrary semisimple Lie algebra, see Main Theorem II.I, are new.
These formulas are of independent interest, but also allow one to give a fairly explicit
description of the bidi�erential operators de�ning the star products.

Especially in Paper II we tried to present some folklore results in an accessible way.
Our appendix contains a detailed proof that G-invariant k-di�erential holomorphic
operators on a complex homogeneous space G/H are in bijection to certain invariant
elements in a quotient of the universal enveloping algebra. We try to review results on
the relation between polynomials on coadjoint orbits and holomorphic polynomials on
the complexi�cation, as well as on the relation between polynomials on the coadjoint
orbit and invariant polynomials on the Lie group. The author is convinced that these
results are not new, but is not aware of a good reference.

As we explained in Subsection 2.2, quantizing the observable algebra is not suf-
�cient to de�ne a quantum system. We do also need to represent this algebra on a
Hilbert space. In most examples studied in Paper I and Paper II the complex con-
jugation is a star involution on the Fréchet algebras (A , ∗h̄). Given a positive linear
functional, the GNS construction can then be used to obtain a representation. For
the hyperbolic disc and more generally coadjoint orbits for which the root system
satis�es some technical conditions, see Theorem II.5.28, we prove the existence of
positive linear functionals, or more generally, we prove that all the point evaluations
are positive linear functionals on the quantum algebras.

We prove in Proposition I.6.10 that the quantum algebra on the 2-sphere has no
positive non-trivial linear functionals when h̄ < −1, because −1 can be written as
a sum of squares. The same result holds for all h̄ ∈ R+ that are not poles and for
all complex projective spaces (which is not proven in this thesis), implying that their
Fréchet ∗-algebras cannot be represented faithfully on a Hilbert space, and emphasiz-
ing that the ∗-involution is an important piece of information of a strict quantization.
Since there are non-trivial linear functionals for h̄ < −1 on the hyperbolic disc1, this
implies in particular that the Wick rotation cannot be an isomorphism of Fréchet ∗-
algebras, and more generally, that there cannot exist another ∗-isomorphism between
the Fréchet ∗-algebras for CPn and Dn either, see Proposition I.6.10.

1In Paper I we use conventions for which the Wick rotation is an isomorphism between the
quantum algebras of di�erentM

(s)
red for a �xed value of h̄. As a consequence we consider the hyperbolic

disc with a negative de�nite metric. Changing the sign of the metric, we would also need to change
the sign of the symplectic form and of h̄. In this sense h̄ < −1 in the conventions of Paper I
corresponds to the case h̄ > 1 on the hyperbolic disc with a positive de�nite metric.
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3.3 Future directions

In this thesis we focus on the behaviour away from the poles of the Alekseev�Lachowska
star product and the star product obtained via phase space reduction. However, the
explicit formulas that we obtain for those star products show that they stay well-
de�ned at the poles for a restricted set of functions (depending on the pole), usually
the polynomials up to a certain degree. With respect to the star product, these func-
tions form an associative algebra. We have already observed this phenomenon for
coadjoint orbits of compact Lie groups in Theorem 3.2. (Recall that Karabegov's
star product coincides with the star product of Alekseev�Lachowska according to
Theorem 3.3.)

It would certainly be interesting to gain a better understanding of how the Fréchet
algebras �degenerate� into �nite dimensional algebras at the poles. Note that the
poles are intimately related to the representation theory of G. For example, the �nite
dimensional representations of a compact semisimple Lie group K can be realized
by the Borel�Weil�Bott theorem [Bot57] on the space of global holomorphic sections
of a line bundle over Oλ, and this line bundle can serve as a quantizing line bundle.
In this sense, it would be interesting to see whether there is any good geometric
interpretation of the Fréchet algebras interpolating between these �nite dimensional
representations.

There are two natural follow-up questions to the results obtained in Paper II. As
mentioned in Subsection 2.2 it is crucial for physical applications to represent the
constructed Fréchet algebras on a Hilbert space, which can be achieved through the
GNS construction if there are enough positive linear functionals. As explained in
the previous subsection, we know whether positive linear functionals exist for the
quantum algebras of CPn and Dn, but for other coadjoint orbits this is a largely
open question. For complex projective spaces, the question arises whether one might
be able to modify the ∗-involution on the quantum algebras so that there are positive
linear functionals.

Closely related is the question whether one can associate C∗-algebraic deforma-
tion quantizations when one has found a representation on a Hilbert space. In certain
examples, like the star product of exponential type from Theorem 2.39, it is possi-
ble to naively restrict to a C∗-algebra of bounded functions, as described in [Sch18].
It is unclear how this C∗-algebra relates to the other constructions of C∗-algebraic
quantizations from Section 2, and whether more sophisticated constructions might
yield better behaved C∗-algebras. For the hyperbolic disc, just looking at bounded
elements does not seem to be enough. Rather one has to apply some sort of func-
tional calculus to obtain a larger C∗-algebra. Since good C∗-algebraic quantizations
of Dn are known, it would be interesting to investigate whether they can be obtained
from our Fréchet-algebraic quantizations, with the aim of constructing C∗-algebras in
similar ways for other coadjoint orbits.

It would certainly be interesting to explore in which other situations complexi�ca-
tions can provide new insights into constructions of strict quantizations. One class of
examples could be semisimple Lie groups, since many of the tools we used in Paper II
are available in this case, too. It could be helpful to have a more conceptual under-
standing of when a star products extends to all holomorphic functions, that does not
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rely on explicit computations as much as our methods in Paper II do.
In this context, it would be interesting to study Drinfel'd twists. Drinfel'd twists

are elements of (U g⊗U g)[[ν]] satisfying a certain equation that is equivalent to saying
that the G-invariant formal star product on C∞(G)[[ν]], obtained by associating left-
invariant di�erential operators on G to elements of U g, is associative. Such twists
de�ne associative products on C∞(M)[[ν]] whenever M is a manifold with an action
of g. The construction of Drinfel'd twists from [Dri83] is in terms of the Baker�
Campbell�Hausdor� series, and understanding the growth of the coe�cients of that
series was one of the main tools used to prove Theorem 2.41. Therefore it does not
seem unreasonable that it is possible to obtain some topology in which twists obtained
with this construction converge. If this was the case, it would be very interesting to
investigate whether such twists can induce strict products on manifolds with an action
of g.
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Abstract

We study formal and non-formal deformation quantizations of a family of man-
ifolds that can be obtained by phase space reduction from C1+n with the Wick
star product in arbitrary signature. Two special cases of such manifolds are
the complex projective space CPn and the complex hyperbolic disc Dn. We
generalize several older results to this setting: The construction of formal star
products and their explicit description by bidi�erential operators, the existence
of a convergent subalgebra of �polynomial� functions, and its completion to an
algebra of certain analytic functions that allow an easy characterization via
their holomorphic extensions. Moreover, we �nd an isomorphism between the
non-formal deformation quantizations for di�erent signatures, linking e.g. the
star products on CPn and Dn. More precisely, we describe an isomorphism
between the (polynomial or analytic) function algebras that is compatible with
Poisson brackets and the convergent star products. This isomorphism is essen-
tially given by Wick rotation, i.e. holomorphic extension of analytic functions
and restriction to a new domain. It is not compatible with the ∗-involution of
pointwise complex conjugation.
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1 Introduction

One way to study the quantization problem arising in physics, which asks how to
associate a quantum mechanical system to a classical mechanical one, is formal de-
formation quantization as introduced in [2]. In this approach, the classical observ-
able algebra is assumed to be the algebra C∞(M) of smooth functions on a Poisson
manifold M and one tries to �nd a so-called formal star product ? that deforms
the classical product. More precisely, ? : C∞(M)[[ν]] × C∞(M)[[ν]] → C∞(M)[[ν]]
is called a formal star product if it is C[[ν]]-bilinear, associative, has the constant
1-function as a unit, and if it can be expanded as f ? g =

∑∞
r=0 ν

rCr(f, g) with
C[[ν]]-linear extensions of bidi�erential operators Cr : C∞(M)× C∞(M) → C∞(M)
that satisfy that C0(f, g) = fg is the usual commutative pointwise product and that
C1(f, g)−C1(g, f) = i{f, g} is (up to the factor i) the Poisson bracket of f, g ∈ C∞(M).
Here [[ν]] denotes formal power series in the parameter ν. We say that ? deforms in
direction of the Poisson bracket { · , · }. Such a star product is called Hermitian
if pointwise complex conjugation is a ∗-involution, i.e. if f ? g = g ? f holds for all
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f, g ∈ C∞(M). In a sense, formal deformation quantization transfers the quantization
problem to algebra and therefore allows to use powerful algebraic tools in its study.
For example, existence and classi�cation results follow from Kontsevich's formality
theorem in the most general case of Poisson manifolds [16], but were already proven
before in the special case of symplectic manifolds by various authors [5,10,14,20] and
with the help of di�erent techniques, e.g. the so-called Fedosov construction.

Formal deformation quantizations can also be studied in an equivariant setting.
Assume G is a Lie group acting onM . Then a star product is called G-invariant if all
the bidi�erential operators Cr are G-invariant. For Hamiltonian G-actions there is a
related notion of G-equivariance that considers the quantization of a momentum map
as well. Existence and classi�cation results are also available in this setting [4,11,21].
Some explicit examples of star products can easily be obtained on C1+n, namely the
exponential star products like Weyl�Moyal or Wick star products. There are also
explicit methods to obtain star products on more general spaces, like CPn or Dn.
[3,7,8,17] use a construction via phase space reduction from one of the aforementioned
products on C1+n. Alternatively, one can e.g. use Berezin dequantization [9], a Lie
algebraic approach [1] or an explicit solution of the recursive equations coming from
the Fedosov construction [18].

The drawback of considering formal power series is that one cannot easily replace
the formal parameter ν by Planck's constant h̄, as required in actual physical appli-
cations. Therefore strict quantization asks to �nd a �eld of well-behaved algebras,
usually Fréchet ∗-algebras or C∗-algebras, see [6, 19, 22], that depend nicely on a pa-
rameter h̄ ranging over some subset of C, and that reproduce the usual product and
Poisson bracket in the zeroth and �rst order as above for h̄ → 0. Usually, strict
quantizations as in [6,22] are constructed by analytical methods, involving oscillatory
integrals. If a strict quantization depends smoothly on the parameter h̄, its asymp-
totic expansion around h̄ = 0 yields a formal deformation quantization. Conversely,
one can ask to construct strict quantizations that have a given formal deformation
quantization as their limit.

Some results in this direction were obtained by Waldmann and collaborators, who
try to �nd some distinguished subalgebra P(M) of C∞(M), on which a star product
converges trivially because the formal power series are �nite. Such a choice usually
comes from some extra structure, for example ifM = T∗Q is a cotangent bundle then
one can try to use functions that are polynomial in the momenta. One then tries to
�nd some topology with respect to which a star product on P(M) is continuous, in
order to complete P(M) to a more interesting algebra A (M), typically consisting
of analytic functions. This approach has been worked out e.g. for star products
of exponential type on possibly in�nite-dimensional vector spaces [24, 26], for the
Gutt star product on the dual of a Lie algebra [13], for the 2-sphere [12], for the
hyperbolic discDn [3,17], and for semisimple coadjoint orbits of semisimple connected
Lie groups [23]. In the case of the hyperbolic disc the completed algebra A has a
nice geometric interpretation as functions that allow an extension to holomorphic
functions on some �xed, larger space.
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In this article we generalize the approach used in [17] for the hyperbolic disc to
obtain formal and non-formal star products on a larger class of certain (pseudo-)Käh-
ler manifolds. These manifolds depend on two parameters, dimension n and signature
s, and are obtained by using Marsden�Weinstein reduction for the canonical U(1)-
action on C1+n endowed with a metric of signature s. Focussing on treating all these
examples in a uniform way, we construct U(s, 1 + n− s)-invariant, Hermitian formal
star products. Using ideas relating to Kähler reduction, we derive an explicit formula
in Theorem 5.12:

Main Theorem I For any of the reduced (pseudo-)Kähler manifolds Mred described
above, the formula

f?redg =

∞∑
r=0

1

r!

νr

(1− ν)(1− 2ν) . . . (1− (r − 1)ν)
·
〈
(Dsym

red )rf⊗(Dsym
red )rg,Hr

red

〉
(1.1)

de�nes a formal star product. Here f, g ∈ C∞(Mred), Dsym
red is the symmetrized covari-

ant derivative associated to the Levi-Civita connection of Mred, and Hred is a certain
bivector �eld on Mred.

This formula was already known in the special case of CPn and Dn, [18], where it was
derived from the Fedosov construction. Our result therefore allows to compare this
approach with phase space reduction without appealing to any abstract classi�cation
results, and generalizes it to a larger class of manifolds.

It will become clear from the construction that, at least outside of the poles ap-
pearing in (1.1), the star product ?red converges trivially for a class of functions
P(Mred) that is obtained by reducing polynomials on C1+n. All these functions can
be (uniquely) extended to holomorphic functions on a larger complex manifold M̂red

that can be obtained by an analogous reduction procedure from C1+n × C1+n. We
de�ne the algebra A (Mred) of all functions that can be extended to holomorphic func-
tions on M̂red, thus obtaining an algebra of certain analytic functions. Using methods
from complex analytic geometry, we prove that P(Mred) is dense in A (Mred) with re-
spect to the topology of locally uniform convergence of the extensions to M̂red. Then
we obtain for all complex h̄ outside of the poles of (1.1) our Theorem 5.26:

Main Theorem II The strict product ?red,h̄ on P(Mred) obtained by replacing the
formal parameter ν with h̄ in (1.1), is continuous with respect to the topology of lo-
cally uniform convergence of the holomorphic extensions to M̂red. It therefore extends
uniquely to a continuous product on A (Mred).

The geometries of the manifolds Mred can be quite di�erent (e.g. sometimes compact,
sometimes not). However, both the classical and quantum algebras of analytic func-
tions cannot see this di�erence as we show in Theorem 6.4 and Theorem 6.7 using
essentially a generalization of the Wick rotation:

Main Theorem III The algebras A (Mred) (for the same dimension n but di�erent
signatures s) with the pointwise product are all isomorphic as unital Fréchet algebras.
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Main Theorem IV The algebras A (Mred) (for the same dimension n but di�erent
signatures s) with the product ?red,h̄ and �xed h̄ are all isomorphic as unital Fréchet
algebras.

Note that these last two results can also be proven in a more Lie algebraic context for
coadjoint orbits [23]. However, the algebras A (Mred) are in general not ∗-isomorphic
(for real h̄ and the ∗-involution of pointwise complex conjugation), which demonstrates
the importance of considering ∗-algebras in strict deformation quantization. This can
be shown by examining positive linear functionals on these ∗-algebras, which encode
information about their ∗-representations on pre-Hilbert spaces.

The article is structured as follows: After introducing some notation in Section 2,
we discuss the smooth and complex manifolds occurring at various stages of the con-
struction in Section 3. The classical and quantum phase space reduction allow to
construct Poisson brackets and formal star products on a reduced manifold Mred out
of a constant Poisson bracket and the Wick star product on C1+n. This is achieved
essentially by �rst restricting to the level set Z of a momentum map J ∈ C∞(C1+n)
and then dividing out the action of the group U(1) to obtain Mred

∼= Z/U(1). De-
pending on the choice of signature, Mred can e.g. be CPn or Dn. In order to be able
to construct the spaces of analytic functions on which the non-formal star products
can be de�ned, we introduce complex manifolds C1+n × C1+n, Ẑ , and M̂red into
which C1+n, Z , and Mred can be embedded �anti-diagonally�. The complex structure
on C1+n �nally gives rise to a complex structure on Mred, which in the special cases
of CPn and Dn coincides with the usual one. This also allows to obtain Mred by
restricting �rst to an open subset C1+n

+ of C1+n and then dividing out an action
of the complexi�cation C∗ = {z ∈ C | z 6= 0} of U(1), which simpli�es some later
considerations.

Section 4 deals with the algebras C∞(. . .), A (. . .) and P(. . .) of smooth, certain
analytic, and polynomial functions on C1+n, Z and Mred. It is also discussed under
which conditions and how additional structures given by bidi�erential operators on
C1+n can be reduced toMred. This is then applied in Section 5 to the Poisson bracket
and Wick star product on C1+n. We obtain the usual Fubini�Study structures as
well as explicit formulae for the reduced star products both by means of bidi�erential
operators and by structure constants.

As the constructions for CPn, Dn, and the other examples only di�er by the
choice of certain signs, it is not surprising that they yield closely related results: In
Section 6 we construct isomorphisms between various function spaces on the reduced
manifolds, which are compatible with both the Poisson brackets and the convergent
star products, i.e. with the classical and quantum structures.

Finally, in Appendix A we discuss some details concerning the symmetrized covari-
ant derivatives used for the explicit description of bidi�erential operators in Section 5.
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2 Notation and conventions

There are some conventions that will be used throughout the whole article: We �x
two natural numbers n ∈ N, s ∈ {1, . . . , 1 +n}. These will be the complex dimension
n of the reduced manifold Mred and the choice of signature s. Nearly all objects will
depend on this signature, but in order to keep the notation clean this dependence will
usually not be made explicit. Only when it is necessary (especially when discussing
the Wick rotation in Section 6) the choice of s will be indicated by a superscript in
brackets.

For a smooth manifold M , we denote by C∞(M) the unital ∗-algebra of complex-
valued smooth functions on M with the pointwise operations. TM and T∗M are
the real tangent and cotangent bundles of M , and TCM and T∗,CM their com-
plexi�cations. If M is even a complex manifold with complex structure I, then
T(1,0)M and T(0,1)M denote the linear subbundles of +i and −i eigenvectors of I,
respectively, and T∗,(1,0)M , T∗,(0,1)M their duals. The space of smooth sections of
a complex vector bundle E → M over a smooth manifold M is denoted by Γ∞(E)
and is a C∞(M)-module. Tensor products between such spaces of sections are al-
ways tensor products over the ring C∞(M). If M is endowed with an action of
a group G, then C∞(M)G ⊆ C∞(M) denotes the G-invariant smooth functions
on M . This notation is also applied to subspaces of C∞(M). A k-multilinear map
Φ: C∞(M)×· · ·×C∞(M)→ C∞(M) is calledG-invariant if Φ(f1/g, . . . , fk/g)/g−1 =
Φ(f1, . . . , fk) holds for all f1, . . . , fk ∈ C∞(M) and all g ∈ G.

The tensor algebra over a vector space V is denoted by T•V :=
⊕∞

k=0 TkV with
TkV the linear subspace of homogeneous tensors of degree k ∈ N0. The symmetric and
antisymmetric tensor algebra are identi�ed with the linear subspaces S• V and Λ• V of
T•V consisting of symmetric and antisymmetric tensors, respectively, with symmetric
and antisymmetric tensor product X ∨ Y = Sym•(X ⊗ Y ) for all X,Y ∈ S• V and
X ∧ Y = Asym•(X ⊗ Y ) for all X,Y ∈ Λ• V . Here Sym•,Asym• : T•V → T•V , the
operators of symmetrization and antisymmetrization, are de�ned as the homogeneous
projections onto S• V and Λ• V ful�lling

Symk
(
v1 ⊗ · · · ⊗ vk

)
=

1

k!

∑
σ

vσ(1) ⊗ · · · ⊗ vσ(k) (2.1)

and

Asymk
(
v1 ⊗ · · · ⊗ vk

)
=

1

k!

∑
σ

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(k) (2.2)

for k ∈ N0 and v1, . . . , vk ∈ V , where the sum is over all permutations σ of {1, . . . , k}.
So especially v ∨w = 1

2 (v⊗w+w⊗ v) and v ∧w = 1
2 (v⊗w−w⊗ v) for all v, w ∈ V .

Vector bundles and their sections are treated analogously.
By 〈 · , · 〉 : V ∗ × V → C we denote the dual pairing between a complex vector

space V and its algebraic dual V ∗, 〈ω, α〉 := ω(α) for all ω ∈ V ∗, α ∈ V . This pairing
is extended to higher tensor powers by demanding that〈

ω1 ⊗ · · · ⊗ ωk, α1 ⊗ · · · ⊗ αk
〉

= 〈ω1, α1〉 . . . 〈ωk, αk〉 (2.3)
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for all k ∈ N0 and ω1, . . . , ωk ∈ V ∗, α1, . . . , αk ∈ V . Especially for symmetric tensor
products this yields〈

ω1 ∨ · · · ∨ ωk, α1 ∨ · · · ∨ αk
〉

=
1

k!

∑
σ

〈ω1, ασ(1)〉 . . . 〈ωk, ασ(k)〉 (2.4)

where again the sum is over all permutations σ of {1, . . . , k}. If ιβ denotes the insertion
derivation with a vector β ∈ V , i.e. the derivation of degree −1 of the symmetric tensor
algebra over V ∗ that ful�ls ιβω = 〈ω, β〉 for all ω ∈ V ∗, then by the above conventions,

1

k

〈
ιβ(ω1 ∨ · · · ∨ ωk), α1 ∨ · · · ∨ αk−1

〉
=
〈
ω1 ∨ · · · ∨ ωk, β ∨ α1 ∨ · · · ∨ αk−1

〉
(2.5)

holds for all k ∈ N, ω1, . . . , ωk ∈ V ∗ and α1, . . . , αk−1 ∈ V . Like before, vector
bundles and their sections are treated analogously.

We will also make use of multiindices P,Q ∈ N1+n
0 and de�ne as usual P ! :=∏n

k=0 Pk! and (
P

Q

)
:=

P !

(P −Q)!Q!
(2.6)

for Q ≤ P (the order is the elementwise one). Moreover, the elementwise minimum
is

min{P,Q} :=
(

min{P0, Q0}, . . . ,min{Pn, Qn}
)
. (2.7)

3 Geometric background

In this section we will in detail explain the following commutative diagram, that
describes the reduction procedures to obtain Mred and M̂red:

C1+n ×C1+n Ẑ M̂red

C1+n Z Mred

C1+n
+

ι̂ p̂r

∆

ι

∆Z

pr

∆red

Pr

(3.1)

Note the similarity to the diagram considered in [17].

Middle row

The middle row is a typical example of Marsden�Weinstein reduction, even though
we will not yet discuss symplectic structures in this section. It consists of (at least)
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smooth manifolds endowed with an action of the real Lie group GJ , which is de�ned
below, and of GJ -equivariant smooth maps.

On C1+n, let z0, . . . , zn be the standard coordinates, i.e. zk(ρ) = ρk for all k ∈
{0, . . . , n} and ρ ∈ C1+n. We de�ne

J :=

n∑
k=0

σkz
kzk =

s−1∑
k=0

zkzk −
n∑
k=s

zkzk , (3.2)

where the coe�cients σk are +1 if k ∈ {0, . . . , s − 1} and −1 if k ∈ {s, . . . , n}. Note
that we drop the dependence of J and σk on s from our notation as explained in
the convention at the beginning of Section 2. The Lie group GL1+n(C) of invertible
complex (1+n)×(1+n) -matrices acts from the left on C1+n as usual via A.ρ := Aρ
for all A ∈ GL1+n(C) and ρ ∈ C1+n. This left action · . · on C1+n induces a right
action · / · on smooth functions and tensor �elds by pullback. Especially for the
coordinate functions, this yields zk / A =

∑n
`=0A

k
` z

`.
The stabilizer of J , i.e. the set of all A ∈ GL1+n(C) ful�lling J / A = J , is

GJ := U(s, 1 + n− s)

=
{
A ∈ GL1+n(C)

∣∣∣ ∑n

k=0
σkA

k
`Akm = δ`,m σm for all `,m ∈ {0, . . . , n}

}
(3.3)

with δ`,m the usual Kronecker-δ. Note that GJ is a real Lie group and a subgroup of
GL1+n(C). Its Lie algebra is

gJ := u(s, 1 + n− s)

=
{
A ∈ gl1+n(C)

∣∣∣σ`A`m + σmA
m
` = 0 for all `,m ∈ {0, . . . , n}

}
, (3.4)

which is a real form of gl1+n(C) = C(1+n)×(1+n).

Remark 3.1 Note that the Hamiltonian vector �eld of −J with respect to the sym-
plectic form ω = i

∑n
k=0 σk dzk ∧ dzk corresponding to the Poisson tensor considered

in (5.6) is just the generator of the action of the U(1)-subgroup {eiφ11+n |φ ∈ R} of
GJ on C1+n, which is computed in (3.15). In other words, −J is a momentum map
for the U(1)-action. Here 11+n is the identity matrix. Our construction below can be
understood as Marsden�Weinstein reduction with respect to this action.

We de�ne Z := J −1({1}) =
{
ρ ∈ C1+n

∣∣ 1 +
∑n
k=s|ρk|2 =

∑s−1
k=0|ρk|2

}
, the 1-level

set of J , and ι : Z → C1+n as the canonical inclusion. Then the GJ -action on C1+n

restricts to Z and ι is GJ -equivariant.
The next step is to divide out the action of the U(1)-subgroup {eiφ11+n |φ ∈ R}

of GJ , which yields

Mred := Z
/

U(1) . (3.5)

As the U(1)-subgroup of GJ is central, the GJ -action remains well-de�ned on Mred

and the canonical projection pr: Z →Mred is GJ -equivariant.
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We note that, by mapping the U(1)-equivalence class [ρ] ∈ Mred of some ρ ∈ Z
to its C∗-equivalence class [ρ] ∈ CPn, the manifold Mred can be identi�ed with
the well-de�ned open complex submanifold {[ρ] ∈ CPn | J (ρ) > 0} of CPn. Then
w1, . . . , wn : {[ρ] ∈Mred | ρ0 6= 0} → C,

wk
(
[ρ]
)

:=
ρk

ρ0
(3.6)

with k ∈ {1, . . . , n} de�ne the usual (complex) projective coordinates on {[ρ] ∈
Mred | ρ0 6= 0} ⊆ Mred and it is easy to obtain an atlas by considering similar co-
ordinates on {[ρ] ∈ Mred | ρ` 6= 0} for 1 ≤ ` ≤ n. We will later see how the complex
structure that Mred inherits from CPn can also be obtained in a more natural way.

In the special case of the signature s = 1 + n, this construction yields M
(1+n)
red

∼=
CPn with the usual action of U(1 + n) on it. For s = 1, one obtains the disc
M

(1)
red
∼= Dn = {ξ ∈ Cn |

∑n
k=1|ξk|2 < 1} with the action of U(1, n) by Möbius

transformations. The holomorphic isomorphism fromM
(1)
red to the disc is simply given

by the coordinates w1, . . . , wn, which are global coordinates if s = 1.
Note that, in general, these projective coordinates w1, . . . , wn describe a chart for

Mred with dense domain of de�nition. Because of this, it is essentially su�cient to
use only these coordinates for the explicit description of some tensors later on, but it
is important to keep in mind that they describe Mred only up to a meagre subset.

Top row

The top row consists of complex manifolds carrying a holomorphic action of a complex
Lie group GĴ , and of GĴ -equivariant holomorphic maps. These complex manifolds

will later be helpful for de�ning certain algebras of analytic functions on C1+n and
Mred.

On C1+n × C1+n, the standard complex coordinate functions are denoted by
x0, . . . , xn, y0, . . . , yn, and given by xk(ξ, η) := ξk as well as yk(ξ, η) := ηk for all
k ∈ {0, . . . , n} and ξ, η ∈ C1+n. De�ne the holomorphic polynomial

Ĵ :=

n∑
k=0

σkx
kyk =

s−1∑
k=0

xkyk −
n∑
k=s

xkyk . (3.7)

Note that the polynomial J considered before is just the restriction of Ĵ to the
antidiagonal. More precisely, if ∆: C1+n → C1+n ×C1+n,

ρ 7→ ∆(ρ) := (ρ, ρ) (3.8)

denotes the embedding along the antidiagonal, then J = Ĵ ◦∆ = ∆∗(Ĵ ). Similarly,
∆∗(xk) = zk and ∆∗(yk) = zk for all k ∈ {0, . . . , n}.

The complex Lie group GL1+n(C)×GL1+n(C) acts holomorphically from the left
on C1+n × C1+n as usual via (A,B) . (ξ, η) := (Aξ,Bη) for all A,B ∈ GL1+n(C)
and ξ, η ∈ C1+n, which induces a right action · / · by pullback on the spaces of
holomorphic functions or holomorphic tensor �elds. Especially for the coordinate
functions, this yields xk / (A,B) =

∑n
`=0A

k
` x

` and yk / (A,B) =
∑n
`=0B

k
` y

`.
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The stabilizer GĴ of Ĵ , i.e. the set of (A,B) ∈ GL1+n(C) ×GL1+n(C) ful�lling

Ĵ / (A,B) = Ĵ , is explicitly given by

GĴ =

{
(A,B) ∈ GL1+n(C)×GL1+n(C)∣∣∣∣ n∑

k=0

σkA
k
`B

k
m = δ`,m σm for all `,m ∈ {0, . . . , n}

}
. (3.9)

Note that for all A ∈ GL1+n(C) there exists a unique B ∈ GL1+n(C) such that
(A,B) ∈ GĴ , namely Bkm = σkσm(A−1)mk, so GĴ is a complex Lie group and
isomorphic to GL1+n(C).

Similar to the de�nition of Z we de�ne Ẑ as the 1-level set of Ĵ in C1+n×C1+n,
i.e.

Ẑ := Ĵ −1({1}) =

{
(ξ, η) ∈ C1+n ×C1+n

∣∣∣∣ 1 +

n∑
k=s

ξk ηk =

s−1∑
k=0

ξk ηk
}
. (3.10)

Then Ẑ is a complex submanifold of C1+n×C1+n. The canonical inclusion of Ẑ into
C1+n ×C1+n is denoted by ι̂. As Ĵ is invariant under the action of GĴ , this action
can be restricted to Ẑ and ι̂ then is clearly GĴ -invariant. Moreover the inclusion
∆ restricts to an inclusion ∆Z : Z → Ẑ , which makes the upper left square in (3.1)
commute.

The second step is to divide out the orbits of the Lie group C∗ := C \ {0}, more
precisely of the subgroup {(α11+n, α

−111+n) |α ∈ C∗} of GĴ . So de�ne

M̂red := Ẑ
/
C∗ , (3.11)

then M̂red can be identi�ed with {([ξ], [η]) ∈ CPn×CPn | Ĵ (ξ, η) 6= 0}, a well-de�ned
open and dense complex submanifold of CPn×CPn, via M̂red 3 [(ξ, η)] 7→ ([ξ], [η]) ∈
CPn × CPn. As the C∗-subgroup of GĴ is central, the GĴ -action remains well-
de�ned on M̂red. The canonical projection from Ẑ onto the quotient M̂red will be
denoted by p̂r and is again GĴ -equivariant by construction. Finally, one can check
that ∆red : Mred → M̂red,

[ρ] 7→ ∆red

(
[ρ]
)

:=
[
∆Z(ρ)

]
= [(ρ, ρ)] (3.12)

is well-de�ned and makes the upper right rectangle of (3.1) commute.
On M̂red, we use the usual projective coordinates coming from CPn × CPn,

denoted by u1, . . . , un : {[(ξ, η)] ∈ M̂red | ξ0 6= 0} → C and v1, . . . , vn : {[(ξ, η)] ∈
M̂red | η0 6= 0} → C, and given by

uk
(
[(ξ, η)]

)
:=

ξk

ξ0
as well as vk

(
[(ξ, η)]

)
:=

ηk

η0
(3.13)

for all k ∈ {1, . . . , n}. Note that it is again easy to obtain an atlas by considering
similarly de�ned coordinates on {[(ξ, η)] ∈ M̂red | ξi 6= 0} and {[(ξ, η)] ∈ M̂red | ηj 6= 0}
and that the relations (∆red)∗(uk) = wk and (∆red)∗(vk) = wk hold for all k ∈
{1, . . . , n}. As before, one should also keep in mind that these coordinates form a
chart with dense domain of de�nition.
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Bottom node

It turns out that the complex structure on C1+n can be used to simplify the Marsden�
Weinstein reduction in the middle row of (3.1). First, we de�ne a complex structure
on Mred that is compatible with the complex coordinates de�ned before. A more
general treatment of this procedure can be found in [25]. Then we �nd a holomorphic
projection map Pr: C1+n

+ →Mred from the open subset

C1+n
+ :=

{
z ∈ C1+n

∣∣J (z) > 0
}

(3.14)

of C1+n toMred making the bottom right triangle in (3.1) commute. Since restriction
to an open subset is easy for almost any geometric structure, one can therefore avoid
the restriction to a hypersurface that is needed in the Marsden�Weinstein reduction.

Denote the standard complex structure of C1+n by I. For A ∈ gl1+n(C), let XA

be the vector �eld on C1+n obtained by di�erentiating the right action of GL1+n(C)
on C∞(C1+n) in the direction of A, i.e. XA(f) = d

dt

∣∣
t=0

f / exp(tA). In particular,

Xi := Xi11+n =

n∑
k=0

(
izk

∂

∂zk
− izk

∂

∂zk

)
(3.15)

is the generator of the (diagonal) U(1)-action and

X1 := X11+n =

n∑
k=0

(
zk

∂

∂zk
+ zk

∂

∂zk

)
= −IXi . (3.16)

Let �Xi� and �X1� be the 1-dimensional vector subbundles of TC1+n
+ spanned by

Xi|C1+n
+

and X1|C1+n
+

, respectively. Moreover, for ρ ∈ C1+n
+ de�ne

Ξρ :=
{
αρ ∈ TρC

1+n
+

∣∣αρ(J ) = 0 and
(
I
∣∣
ρ
αρ
)
(J ) = 0

}
and Ξ :=

⋃
ρ∈C1+n

+

Ξρ ,

(3.17)
then one can check that Ξ is a 2n-dimensional vector subbundle of TC1+n

+ , and we
get:

Proposition 3.2 The tangent bundle of C1+n
+ can be decomposed as the direct sum

TC1+n
+ = �X1�⊕ �Xi�⊕ Ξ . (3.18)

Moreover, for all ρ ∈ Z , the map Tρpr ◦ (Tρι)
−1

: Ξρ → T[ρ]Mred is a linear isomor-
phism.

Proof: The linear subspace Sρ :=
{
αρ ∈ TρC

1+n
+

∣∣αρ(J ) = 0
}
of TρC

1+n
+ has

codimension 1 for all ρ ∈ C1+n
+ , and �X1�|ρ is a complement of Sρ in TρC

1+n
+

because X1(J ) = 2J . So TρC
1+n
+ = �X1�|ρ ⊕ Sρ. Moreover, U(1)-invariance

of J implies that Xi(J ) = 0, so �Xi�|ρ ⊆ Sρ, and Ξρ ⊆ Sρ is clear. But as
(IXi)(J ) = −X1(J ) = −2J , the sum of �Xi�|ρ and Ξρ is direct, and therefore
Sρ = �Xi�|ρ ⊕ Ξρ by counting dimensions. This proves the decomposition (3.18).
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If ρ ∈ Z , then Sρ = �Xi�|ρ ⊕ Ξρ coincides with the image of TρZ under Tρι.
Because of this, the map Tρpr ◦ (Tρι)

−1 is well-de�ned as a map from �Xi�|ρ⊕Ξρ to
T[ρ]Mred and is clearly surjective. The kernel of this map is �Xi�|ρ, so its restriction
to Ξρ is an isomorphism. �

Note that Xi, X1 and Ξ do not depend on any choices but arise naturally from the
U(1)-action, the map J , and the complex structure I that C1+n

+ inherits from C1+n.
By de�nition of Ξ, this complex structure restricts to Ξ. As it is also U(1)-invariant,
it gives rise to a well-de�ned (almost) complex structure Ired on Mred:

De�nition 3.3 De�ne the vector bundle endomorphism Ired : TMred → TMred, that
maps any β[ρ] ∈ T[ρ]Mred with [ρ] ∈Mred to

Ired

∣∣
[ρ]

(β[ρ]) :=
(
Tρpr ◦ (Tρι)

−1 ◦ I|ρ ◦ (Tρpr ◦ (Tρι)
−1)−1

)
(β[ρ]) .

It is clear that Ired squares to −idTMred
and hence is an almost complex structure. In

order to see that it is also integrable, we check that Ired coincides with the complex
structure that Mred inherits from CPn. For a more general discussion, see [25]:

De�nition 3.4 On C1+n
+ \{ρ ∈ C1+n

+ | z0(ρ) = 0} we de�ne the complex vector �elds

Wk := z0

(
∂

∂zk
− σkz

k

J

n∑
`=0

z`
∂

∂z`

)∣∣∣∣
C

1+n
+ \{ρ∈C1+n

+ | z0(ρ)=0}
(3.19)

for all k ∈ {1, . . . , n}.

Note that, analogously to the projective coordinates w1, . . . , wn on Mred, the vector
�elds W1, . . . ,Wn are only de�ned on a dense subset of C1+n

+ . However, this will be
completely su�cient for our purposes.

As IWk = iWk and 〈dJ ,Wk〉 = 0 for all k ∈ {1, . . . , n} on the domain of def-
inition of Wk, these vector �elds Wk, as well as their complex conjugates W k with
k ∈ {1, . . . , n}, are actually (local, densely de�ned) sections of ΞC, the complex 2n-
dimensional vector subbundle of TCC1+n

+ generated by Ξ. A short calculation shows
that

Wk

(
z`/z0

)
= δ`k (3.20)

for all k, ` ∈ {1, . . . , n}, so the sections Wk are pointwise linearly independent and,
by counting dimensions, they form a (local, densely de�ned) frame of ΞC. Moreover,
this immediately shows:

Proposition 3.5 If ρ ∈ Z , z0(ρ) 6= 0, then

(
Tρpr ◦ (Tρι)

−1 )
(Wk|ρ) =

∂

∂wk

∣∣∣∣
[ρ]

and
(
Tρpr ◦ (Tρι)

−1 )
(W k|ρ) =

∂

∂wk

∣∣∣∣
[ρ]

(3.21)

for all k ∈ {1, . . . , n}.

As an immediate consequence we obtain:
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Corollary 3.6 The reduced complex structure Ired satis�es Ired( ∂
∂wk

) = i ∂
∂wk

and
Ired( ∂

∂wk
) = −i ∂

∂wk
for all k ∈ {1, . . . , n}, so Ired is indeed the standard complex

structure ofMred interpreted as an open subset of CPn. In particular, Ired is integrable
and really a complex structure.

Lemma 3.7 If a holomorphic complex-valued map φ on a connected and open subset
S ⊆ C1+n with S ∩ Z 6= ∅ vanishes on S ∩ Z , then it already vanishes on all of S.

Proof: Indeed, as TρC
1+n = �X1�|ρ ⊕ (Tρι)(TρZ ) for all ρ ∈ Z , as αρ(φ) = 0 for

all αρ ∈ (Tρι)(TρZ ) by assumption and as also X1|ρ(φ) = Xi|ρ(−iφ) = 0 because φ
is holomorphic and X1|ρ ∈ (Tρι)(TρZ ), all �rst order partial derivatives of φ vanish
on S ∩ Z . This now extends to all arbitrarily high partial derivatives by using the
same argument and thus the holomorphic φ vanishes on whole S. �

As a consequence, there is at most one holomorphic map Pr: C1+n
+ → Mred whose

restriction to Z coincides with pr. In the special case treated here it is not hard to
guess this map:

Proposition 3.8 There exists a (unique) holomorphic map Pr: C1+n
+ →Mred whose

restriction to Z coincides with pr. It is explicitly given by

ρ 7→ Pr(ρ) = [ρ/
√
J (ρ)] . (3.22)

In coordinates, wk ◦ Pr = zk/z0.

Proof: It is not hard to check the expression of (3.22) in coordinates, which also
shows that Pr is holomorphic. Its restriction to Z clearly coincides with pr. �

We also note that the domain C1+n
+ of Pr, which was chosen rather arbitrarily, is

naturally determined from the U(1)-action on C1+n and the complex structure I:
The action of the corresponding Lie algebra u(1) ∼= R is given by its fundamental
vector �eld Xi, and the complex structure I allows to extend this to an action of
the complexi�ed Lie algebra u(1)⊗C ∼= C via the fundamental vector �elds Xi and
X1. This action even integrates to a unique holomorphic action of the corresponding
complex Lie group C∗ on C1+n, which is just given by multiplication with scalars.
The orbit of Z under the action of C∗ is easily seen to be C1+n

+ , and Pr: C1+n
+ →

Mred is the quotient map that identi�es C1+n
+ /C∗ with Mred as complex manifolds.

From this point of view, the complex structure on C1+n allows to replace the two
steps of Marsden�Weinstein reduction (restriction to the level set Z and taking U(1)-
equivalence classes) by restriction to the open complex submanifold C1+n

+ and taking
equivalence classes with respect to the action of the complexi�cation C∗ of U(1).

For future use it will be helpful to be able to express the standard coordinate
vectors ∂

∂zk
with k ∈ {0, . . . , n} in terms of the holomorphic Euler vector �eld

E :=
1

2
(X1 − iXi)

∣∣
C

1+n
+

=

n∑
k=0

zk
∂

∂zk

∣∣∣∣
C

1+n
+

(3.23)
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and theWk, k ∈ {1, . . . , n}. On their domain of de�nition, one gets (using that always
σ0 = 1)

∂

∂z0
=
z0

J
E −

n∑
`=1

z`

(z0)2
W` and

∂

∂zk
=
σkz

k

J
E +

1

z0
Wk (3.24)

for all k ∈ {1, . . . , n} and (E,W1, . . . ,Wk) is a local, densely de�ned frame for
T(1,0)C1+n

+ . Together with its complex conjugates (E,W 1, . . . ,Wn) we obtain a
densely de�ned frame for the whole tangent space TCC1+n

+ . The dual frames are
denoted by (E∗,W ∗1 , . . . ,W

∗
n) and (E∗,W ∗1, . . . ,W

∗
n), and (again only on the domain

of de�nition of the vector �elds Wk) we have

E∗ =
1

J

n∑
k=0

σkz
k dzk , (3.25)

W ∗k = − zk

(z0)2
dz0 +

1

z0
dzk = Pr∗(dwk) , (3.26)

dz0 = z0E∗ − (z0)2

J

n∑
k=1

σkz
kW ∗k , (3.27)

dzk = zkE∗ + z0

(
W ∗k −

zk

J

n∑
`=1

v`z
`W ∗`

)
. (3.28)

Note that E and E are obtained from the U(1)-action and complex structure of C1+n
+ .

Similarly, also E∗ and E∗ can be obtained naturally as the (1, 0) and (0, 1)-parts
of dJ /J . Only the vector �elds W1, . . . ,Wn as well as their conjugates and duals
depend on a choice of coordinates.

4 Algebraic point of view

The general reduction procedure from C1+n toMred by �rst restricting to the level set
Z and then dividing out the action of U(1) has a dual version that connects various
function algebras on C1+n and Mred: First, one divides out the ideal of functions
vanishing on Z and then restricts to U(1)-invariant equivalence classes. However, as
every U(1)-invariant equivalence class of functions also contains at least one U(1)-
invariant function, which can be obtained by averaging over the compact group U(1),
a simpli�ed procedure yields the same results: First, one restricts to U(1)-invariant
functions and then divides out the ideal of functions vanishing on Z . We will use this
second approach throughout.

It is well-known that this way one can also construct algebraic structures on Mred

out of such structures on C1+n, especially Poisson brackets and star products. In
the following we will consider three types of function algebras: All smooth functions,
polynomial functions, and certain analytic functions. While formal star products are
de�ned on all smooth functions, their non-formal versions can only be de�ned on
polynomial or some analytic functions. All these function algebras on C1+n will also
be endowed with the right-action of the stabilizer group GJ .
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4.1 Smooth functions

The reduction procedure for smooth functions is well-known. In order to �x notation,
it is helpful to shortly discuss some details again: Recall that C∞(C1+n)U(1) is the
unital subalgebra of C∞(C1+n) whose elements are the U(1)-invariant functions. It
is easy to see that the following is well-de�ned:

De�nition 4.1 Let S be an open and U(1)-invariant subset of C1+n such that S ⊇ Z .
The (classical) reduction map is · red : C∞(S)U(1) → C∞(Mred), f 7→ fred, where

fred([ρ]) := f(ρ) (4.1)

for all ρ ∈ Z .

We will especially be interested in the two cases S = C1+n and S = C1+n
+ . Note

that fred is the unique smooth function on Mred that ful�ls pr∗(fred) = ι∗(f). From
the algebraic point of view, smooth functions on C1+n and Mred can be related as
follows:

Lemma 4.2 For every g ∈ C∞(Mred) there exists an f ∈ C∞(C1+n)U(1) such that
fred = g, and f can even be chosen in such a way that the following locality condition
is ful�lled: Whenever U is an open subset of Mred such that the restriction of g to
U vanishes, then there exists an open subset V of C1+n such that V ⊇ pr−1(U) and
such that the restriction of f to V vanishes.

Proof: This is well-known to be true in more generality, but in the present case it
is also easy to construct such an f ∈ C∞(C1+n)U(1) for every g ∈ C∞(Mred): Indeed,
one can de�ne f(ρ) := 0 for all ρ ∈ C1+n \C1+n

+ and f(ρ) := g(Pr(ρ))χ(J (ρ)) for all

ρ ∈ C1+n
+ , where χ : ]0,∞[ → [0, 1] is a smooth function with compact support that

ful�ls χ(1) = 1. �

This lemma has the following consequence:

Proposition 4.3 For every U(1)-invariant open subset S ⊆ C1+n containing Z , the
reduction map · red : C∞(S)U(1) → C∞(Mred) descends to an isomorphism between
the unital ∗-algebras C∞(S)U(1)/{v ∈ C∞(S)U(1) | ι∗(v) = 0} and C∞(Mred).

We can now also construct algebraic structures on C∞(Mred) out of such structures
on C∞(C1+n) or C∞(C1+n

+ ):

Proposition 4.4 Let S be an open and U(1)-invariant subset of C1+n such that
S ⊇ Z , and let C : C∞(S)×C∞(S)→ C∞(S) be a U(1)-invariant bilinear map, then
the following is equivalent:

� There exists a bilinear map Cred : C∞(Mred) × C∞(Mred) → C∞(Mred) such
that (

C(f, g)
)

red
= Cred

(
fred, gred

)
holds for all f, g ∈ C∞(S)U(1).
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� C(f, v)|Z = 0 = C(v, f)|Z holds for all f, v ∈ C∞(S)U(1) with ι∗(v) = 0.

If one, hence both of these two conditions are ful�lled, then the bilinear map Cred from
the �rst point is uniquely determined.

Proof: Using the existence of preimages under · red from Lemma 4.2, the equivalence
of the two points and the uniqueness of Cred are standard results. �

De�nition 4.5 Let S be an open and U(1)-invariant subset of C1+n such that S ⊇ Z ,
and let C : C∞(S) × C∞(S) → C∞(S) be a U(1)-invariant bilinear map, then C
is called reducible if one, hence both of the equivalent properties from the previous
Proposition 4.4 are ful�lled. In this case, we also de�ne the reduced map Cred like in
the �rst point there.

One example is of course the multiplication: Let C be the pointwise multiplication of
smooth functions on C1+n, then Cred is the pointwise multiplication of smooth func-
tions on Mred. For more interesting examples, however, the second point in Proposi-
tion 4.4 can still be hard to check. Luckily, there are some simpli�cations for bidi�er-
ential operators. Note that in the following it is no loss of generality to consider the
special case of a U(1)-invariant bidi�erential operator C : C∞(C1+n

+ )×C∞(C1+n
+ )→

C∞(C1+n
+ ): A bidi�erential operator on a di�erent domain of de�nition can always

be restricted and extended (in a not necessarily unique way) to a bidi�erential opera-
tor on C1+n

+ which coincides with the original one in a neighbourhood of Z and thus
yields the same reduced map.

Proposition 4.6 Let C : C∞(C1+n
+ )×C∞(C1+n

+ )→ C∞(C1+n
+ ) be a U(1)-invariant

bidi�erential operator. If C
(
(J − 1)|

C
1+n
+

f, f ′
)

= 0 = C
(
f, (J − 1)|

C
1+n
+

f ′
)
holds for

all f, f ′ ∈ C∞(C1+n
+ )U(1), then C is reducible and(

C(Pr∗(g),Pr∗(g′))
)

red
= Cred(g, g′) (4.2)

holds for all g, g′ ∈ C∞(Mred).

Proof: In order to show that C is reducible, let f, v ∈ C∞(C1+n
+ )U(1) with ι∗(v) = 0

be given. For every ε ∈ (0, 1) and using a bump function χ ∈ C∞((0,∞)) with support
in [1− ε, 1 + ε] ful�lling χ(r) = 1 for all r ∈ [1− ε/2, 1 + ε/2], one can express v as the
sum v = v ·(χ◦J |

C
1+n
+

)+(J − 1)|
C

1+n
+

ṽ of a function v ·(χ◦J |
C

1+n
+

) ∈ C∞(C1+n)U(1)

with support in {ρ ∈ C1+n
+ | − ε ≤ J (ρ) − 1 ≤ ε} and the product of (J − 1)|

C
1+n
+

with a function ṽ ∈ C∞(C1+n
+ )U(1). Then C(f, v) = C

(
f, v · (χ ◦ J |

C
1+n
+

)
)
and

C(v, f) = C
(
v · (χ ◦ J |

C
1+n
+

), f
)
have support in {ρ ∈ C1+n

+ | − ε ≤ J (ρ) − 1 ≤ ε}.
As ε ∈ (0, 1) was arbitrary, even C(v, f) = 0 = C(f, v) holds and C is reducible. For
Equation (4.2) we just note that (Pr∗(g))red = g for all g ∈ C∞(Mred). �

4.2 Polynomial functions

On polynomial functions it will be possible to construct non-formal star products in
Section 5. Here we only discuss the basic de�nitions and the reduction procedure:
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De�nition 4.7 We write P(C1+n) for the unital ∗-subalgebra of C∞(C1+n) that
consists of all polynomial functions in z0, . . . , zn, z0, . . . , zn. We denote the image of
P(C1+n)U(1) under · red by P(Mred) and call its elements polynomials on Mred.

One can check that P(Mred) is a unital ∗-subalgebra of C∞(Mred) and so the re-
duction map restricts to a surjective unital ∗-homomorphism from P(C1+n)U(1) to
P(Mred). Its kernel are all U(1)-invariant polynomial functions on C1+n which van-
ish on Z . We see that the unital ∗-algebra P(Mred) is isomorphic to the quotient
P(C1+n)U(1)/{v ∈ P(C1+n)U(1) | ι∗(v) = 0} like in the smooth case. A basis of
P(C1+n)U(1) yields a generating subset of P(Mred), a subset of which is a basis of
P(Mred). We essentially follow [3,17] and just check that the de�nitions and results
there, which were made for the special case s = 1, actually work for all signatures:

De�nition 4.8 For every pair of multiindices P,Q ∈ N1+n
0 we de�ne the monomial

on C1+n

bP,Q := zP zQ := (z0)P0 . . . (zn)Pn(z0)Q0 . . . (zn)Qn . (4.3)

The monomials bP,Q with P,Q ∈ N1+n
0 are a basis of P(C1+n), and those mono-

mials with |P | = |Q| are a basis of P(C1+n)U(1). The resulting reduced monomials
bP,Q;red ∈P(Mred) are, in the projective coordinates de�ned in (3.6) (and restricted
to the dense domain of de�nition of these coordinates),

bP,Q;red =
wP
′
wQ

′

(1 +
∑n
k=1 σkw

kwk)|P |
:=

(w1)P1 . . . (wn)Pn(w1)Q1 . . . (wn)Qn

(1 +
∑n
k=1 σkw

kwk)|P |
(4.4)

for all P,Q ∈ N1+n
0 with |P | = |Q| and with P ′ := (P1, . . . , Pn) ∈ Nn0 , analogously

for Q. To check this, note that the pullback with Pr of the right-hand side coincides
with bP,Q/J |P | on C1+n

+ , hence with bP,Q on Z . Even though the monomials bP,Q on
C1+n are linearly independent, this does no longer hold for their counterparts bP,Q;red

on Mred. Because of this we introduce:

De�nition 4.9 For all multiindices P,Q ∈ Nn0 we de�ne the fundamental monomial
on Mred

cP,Q :=

{
b(|Q|−|P |,P1,...,Pn),(0,Q1,...,Qn);red if |P | ≤ |Q| ,
b(0,P1,...,Pn),(|P |−|Q|,Q1,...,Qn);red if |P | ≥ |Q| .

(4.5)

Note that the fundamental monomials on Mred�unlike the monomials on C1+n�are
determined by 2n indices, not 2n+ 2. Using projective coordinates on Mred, they can
be expressed as

cP,Q =
wPwQ

(1 +
∑n
k=1 σkw

kwk)max{|P |,|Q|} (4.6)

for all P,Q ∈ Nn0 . While the usual easy multiplication rules for monomials still hold
for the bP,Q;red, i.e. bP,Q;redbR,S;red = bP+R,Q+S;red for all P,Q,R, S ∈ N1+n

0 with
|P | = |Q| and |R| = |S|, this is no longer true for the fundamental monomials onMred.
Their product can be obtained by rewriting them in terms of the reduced monomials,
which can easily be multiplied, and by applying the following:
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Lemma 4.10 For all P,Q ∈ N1+n
0 with |P | = |Q|, the identity

bP,Q;red =
∑
T∈Nn0

|T |≤min{P0,Q0}

(−1)|T | sgn(T )

(
min{P0, Q0}

|T |

)
|T |!
T !

cP ′+T,Q′+T (4.7)

holds, where we use P ′ := (P1, . . . , Pn) ∈ Nn0 , Q′ := (Q1, . . . , Qn) ∈ Nn0 and sgn(T ) :=∏n
k=1 σ

Tk
k .

Proof: For k ∈ {0, . . . , n}, let Ek := (0, . . . , 0, 1, 0, . . . , 0) ∈ N1+n
0 be the tuple with 1

at position k. From bE0,E0;red = 1−
∑n
k=1 σkbEk,Ek;red and the multinomial theorem

it follows that(
bE0,E0;red

)min{P0,Q0}
=

∑
T∈Nn0

|T |≤min{P0,Q0}

(−1)|T | sgn(T )

(
min{P0, Q0}

|T |

)
|T |!
T !

cT,T .

Combining this with bP,Q;red = (bE0,E0;red)min{P0,Q0}cP ′,Q′ yields the desired result.�

Analogous to [3,17], one can show that these fundamental monomials cP,Q with P,Q ∈
Nn0 are a Hamel basis of P(Mred). We will come back to this problem later in
Section 6.

4.3 Analytic functions

The polynomial algebras discussed in the previous Subsection 4.2 can be completed
to algebras of certain analytic functions. More precisely, we are interested in the
pullbacks with ∆: C1+n → C1+n × C1+n and ∆red : Mred → M̂red of holomorphic
functions:

De�nition 4.11 By O(M) we denote the unital complex algebra of holomorphic
functions on a complex manifold M . Moreover, we de�ne the following subsets of
C∞(C1+n) and C∞(Mred), respectively:

A (C1+n) :=
{

∆∗(f̂)
∣∣ f̂ ∈ O(C1+n ×C1+n)

}
(4.8)

and

A (Mred) :=
{

∆∗red(ĝ)
∣∣ ĝ ∈ O(M̂red)

}
. (4.9)

It is not hard to check that A (C1+n) and A (Mred) are unital ∗-subalgebras of
C∞(C1+n) and C∞(Mred), respectively. Especially for the ∗-involution one �nds:
Given f̂ ∈ O(C1+n×C1+n) or ĝ ∈ O(M̂red), then one can de�ne f̂ ′ ∈ O(C1+n×C1+n)
or ĝ′ ∈ O(M̂red) as the functions

C1+n ×C1+n 3 (ξ, η) 7→ f̂ ′(ξ, η) := f̂(η, ξ) ∈ C
or

M̂red 3 ([ξ, η]) 7→ ĝ′([ξ, η]) := ĝ([η, ξ]) ∈ C ,

so that ∆∗(f̂ ′) = ∆∗(f̂) and ∆∗red(ĝ′) = ∆∗red(ĝ), respectively. As algebras, O(C1+n×
C1+n) and A (C1+n) as well as O(M̂red) and A (Mred) are isomorphic:
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Proposition 4.12 The pullbacks

∆∗ : O(C1+n ×C1+n)→ A (C1+n) and ∆∗red : O(M̂red)→ A (Mred)

are isomorphisms of algebras.

Proof: It is easy to check that ∆∗ and ∆∗red are homomorphisms of algebras, and
they are surjective by de�nition of A (C1+n) and A (Mred), so only injectivity remains:

Given f̂ ∈ O(C1+n ×C1+n) with ∆∗(f̂) = 0 or ĝ ∈ O(M̂red) with ∆∗red(ĝ) = 0, then,
in the coordinates introduced in Section 3,

∂f̂

∂xk

∣∣∣∣
(ρ,ρ)

=
(
Tρ∆

)( ∂

∂zk

∣∣∣∣
ρ

)(
f̂
)

=
∂

∂zk

∣∣∣∣
ρ

∆∗
(
f̂
)

= 0 ,

∂f̂

∂yk

∣∣∣∣
(ρ,ρ)

=
∂

∂zk

∣∣∣∣
ρ

∆∗
(
f̂
)

= 0

or

∂ĝ

∂u`

∣∣∣∣
[(ρ,ρ)]

=
(
T[ρ]∆red

)( ∂

∂w`

∣∣∣∣
[ρ]

)(
ĝ
)

=
∂

∂w`

∣∣∣∣
[ρ]

∆∗red

(
ĝ
)

= 0 ,

∂ĝ

∂v`

∣∣∣∣
[(ρ,ρ)]

=
∂

∂w`

∣∣∣∣
[ρ]

∆∗red

(
ĝ
)

= 0

hold for all ρ ∈ Z with z0(ρ) 6= 0 and all k ∈ {0, . . . , n}, ` ∈ {1, . . . , n}, respectively.
By iteration one �nds that also all higher derivatives of f̂ or ĝ vanish, so that f̂ = 0
or ĝ = 0. �

It is well-known that the holomorphic functions O(M) on a complex manifold M
with the pointwise operations become a Fréchet algebra with the topology of locally
uniform convergence (i.e. O(M) is complete and the multiplication continuous with
respect to this metrizable locally convex topology). This locally convex topology can
be described by all the seminorms ‖ · ‖K : O(M)→ [0,∞),

f̂ 7→ ‖f̂‖K := max
z∈K
|f̂(z)| (4.10)

with K a compact subset of M . From this we see immediately that A (C1+n) and
A (Mred) with the topology coming from O(C1+n×C1+n) and O(M̂red), respectively,
are Fréchet ∗-algebras (Fréchet algebras endowed with a continuous ∗-involution). It is
a consequence of the Cauchy integral formula onC1+n×C1+n that every f ∈ A (C1+n)
can be expressed in a unique way as an absolutely convergent series

f =
∑

P,Q∈N1+n
0

fP,QbP,Q (4.11)

with complex coe�cients fP,Q ful�lling

‖f‖r :=
∑

P,Q∈N1+n
0

|fP,Q|r|P |+|Q| <∞ (4.12)
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for all r ∈ [1,∞), and that the topology of A (C1+n) can equivalently be described by
these seminorms ‖ · ‖r : A (C1+n) → [0,∞). See e.g. [23, Proposition 3.5] for details.
We will later in Proposition 6.11 obtain an analogous result also for A (Mred). Like for
polynomials one also �nds that the U(1)-invariant analytic functions f are precisely
those which ful�l fP,Q = 0 for all P,Q ∈ N1+n

0 with |P | 6= |Q|, e.g. by explicitly
calculating the coe�cients with the help of the Cauchy integral formula. Note that
due to the completeness of A (C1+n), averaging over the U(1)-action on A (C1+n) is
possible and yields for every f ∈ A (C1+n) an fav ∈ A (C1+n)U(1).

We observe that the reduction map · red can be de�ned analogously as before also
for holomorphic functions:

Lemma 4.13 Assume that f̂ ∈ O(C1+n × C1+n) is C∗-invariant in the sense that

f̂ / (α11+n, α
−111+n) = f̂ holds for all α ∈ C∗. Then there exists a unique f̂ ˆred ∈

O(M̂red) for which

ι̂∗
(
f̂
)

= p̂r∗
(
f̂ ˆred

)
holds.

Proof: As ι̂∗(f̂) isC∗-invariant, it descends to a well-de�ned function f̂ ˆred on M̂red =

Ẑ/C∗, which is automatically holomorphic. Uniqueness of f̂ ˆred is clear. �

Proposition 4.14 The map · red restricts to a map A (C1+n)U(1) → A (Mred). More

precisely, given f ∈ A (C1+n)U(1) and f̂ ∈ O(C1+n×C1+n) such that ∆∗(f̂) = f , then

f̂ is C∗-invariant in the sense of the previous Lemma 4.13 and fred = ∆∗red(f̂ ˆred) ∈
A (Mred).

Proof: Given such f and f̂ , then

∆∗
(
f̂ / (eiφ11+n, e

−iφ11+n)
)

= ∆∗(f̂) / eiφ11+n = f / eiφ11+n = f = ∆∗(f̂)

holds for all φ ∈ R, so f̂ is U(1)-invariant because ∆∗ is an isomorphism between
O(C1+n ×C1+n) and A (C1+n). But since the action of the complex Lie group C∗

on C1+n ×C1+n is holomorphic, f̂ is even C∗-invariant. Using the commutativity of
the diagram in Section 3, one can now check that

pr∗
(
∆∗red(f̂ ˆred)

)
= ∆∗Z

(
p̂r∗(f̂ ˆred)

)
= ∆∗Z

(
ι̂∗(f̂)

)
= ι∗

(
∆∗(f̂)

)
= ι∗(f)

holds, hence fred = ∆∗red(f̂ ˆred) ∈ A (Mred). �

Using some deep results from complex analysis, the analytic functions on Mred and
on C1+n can be related in the same way as smooth or polynomial functions:

Lemma 4.15 For every g ∈ A (Mred) there exists an f ∈ A (C1+n)U(1) such that
fred = g.
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Proof: Given g ∈ A (Mred) and corresponding ĝ ∈ O(M̂red) such that ∆∗red(ĝ) = g,

then p̂r∗(ĝ) is a holomorphic function on Ẑ . Now note that C1+n ×C1+n is a Stein
manifold by [15, Sec. 5.1] and that Ẑ is�in the language of [15, Def. 6.5.1]�an
analytic submanifold thereof because it is the set of zeros of a holomorphic function
on C1+n×C1+n. So [15, Thm. 7.4.8] applies and shows that there exists an extension

f̂ ∈ O(C1+n × C1+n) of p̂r∗(ĝ), i.e. ι̂∗(f̂) = p̂r∗(ĝ). Therefore f := ∆∗(f̂) ful�ls
ι∗(f) = pr∗(g) due to the commutativity of the diagram in Section 3. By averaging
over the U(1)-action on A (C1+n) we can even arrange that f is U(1)-invariant. �

For an alternative proof one can also generalize the more constructive results obtained
in [17, Sec. 3.2] for the case of signature s = 1, or use these results and the Wick
rotation as discussed later in Section 6.

Clearly, {f ∈ A (C1+n)U(1) | ι∗(f) = 0} is the kernel of ·red restricted to A (C1+n)
and therefore a closed ∗-ideal of A (C1+n)U(1). Similarly to the case of smooth or
polynomial functions we get:

Proposition 4.16 The reduction map · red descends to a ∗-isomorphism between the
Fréchet ∗-algebras A (C1+n)U(1)/{f ∈ A (C1+n) | ι∗(f) = 0} and A (Mred), that is in
addition a homeomorphism.

Proof: Using Lemma 4.13 it is clear that that · red induces a ∗-isomorphism. As
‖f̂ ˆred‖K = ‖f̂‖B∩pr∗(K) holds for every f̂ ∈ O(C1+n × C1+n)C

∗
with B ⊆ C1+n ×

C1+n a su�ciently large closed ball, the map · ˆred : O(C1+n × C1+n)C
∗ → O(M̂red)

from Lemma 4.13 is continuous with respect to the topologies of locally uniform
convergence, thus · red : A (C1+n)U(1) → A (Mred) is continuous as well. It follows
from the open mapping theorem that it is a homeomorphism. �

As the U(1)-invariant polynomials P(C1+n)U(1) are dense in A (C1+n)U(1), this im-
mediately yields:

Corollary 4.17 The polynomials P(Mred) are dense in A (Mred).

5 Poisson brackets and star products

In this section we introduce a Poisson bracket and star product on C1+n and discuss
their reduction to Mred. First we consider formal star products, which make sense
for formal power series of smooth functions. We present a method for reducing the
(pseudo-)Wick product on C1+n to Mred in Subsection 5.1 and derive more explicit
formulas in Subsection 5.2. The other two sections deal with strict star products. In
order to make the formal power series convergent, we restrict ourselves to polynomials
in Subsection 5.3 and extend these results to analytic functions in Subsection 5.4.

5.1 The smooth case

We will now introduce the Wick star product on C1+n. The antisymmetrization of its
�rst order gives rise to a Poisson structure on C1+n. Let ∇ be the Euclidean covariant
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derivative of C1+n, D its exterior covariant derivative and Dsym the corresponding
symmetrized covariant derivative, see Appendix A for details. We de�ne

H :=

n∑
k=0

σk
∂

∂zk
⊗ ∂

∂zk
∈ Γ∞

(
T(1,0)C1+n ⊗ T(0,1)C1+n

)
. (5.1)

It is easy to see that H is U(1)-invariant, so that Hred ∈ Γ∞(T(1,0)Mred⊗T(0,1)Mred)
can be de�ned as

Hred|[ρ] := (Tρ Pr)⊗2(H|ρ) (5.2)

for all [ρ] ∈Mred with representative ρ ∈ Z . An explicit formula for Hred in projective
coordinates will be given later in Lemma 5.7. Using H and symmetrized covariant
derivatives, we can now de�ne the well-known Wick star product:

De�nition 5.1 The product

? : C∞(C1+n)[[ν]]× C∞(C1+n)[[ν]]→ C∞(C1+n)[[ν]] ,

(f, g) 7→ f ? g :=

∞∑
r=0

νr

r!

〈
(Dsym)r(f)⊗ (Dsym)r(g), Hr

〉
(5.3)

is the (pseudo-)Wick star product3 on C1+n. Here Hr denotes the r-th power of H as
an element of degree (1, 1) in the algebra S •(C1+n)⊗S •(C1+n) with S •(C1+n) :=⊕∞

k=0 Γ∞(Sk TCC1+n) the algebra of complex symmetric multivector �elds.

Note that one can check that ? is actually a GJ -invariant Hermitian formal star
product constructed out of the bidi�erential operators

Cr(f, g) =
1

r!

〈
(Dsym)r(f)⊗ (Dsym)r(g), Hr

〉
. (5.4)

It deforms in direction of the Poisson bracket4 with signature s

1

i

(
C1(f, g)− C1(g, f)

)
=

1

i

n∑
k=0

σk

(
∂f

∂zk
∂g

∂zk
− ∂g

∂zk
∂f

∂zk

)
:={f, g} (5.5)

on C1+n with Poisson tensor

π = −2i

n∑
k=0

σk
∂

∂zk
∧ ∂

∂zk
= 2 Im(H) , (5.6)

where {f, g} = 〈df ⊗ dg, π〉 = 〈Dsymf ⊗Dsymg, π〉. Note that (5.6) implies that π is
a real tensor.

3For signature s = 1+n this product coincides (up to a rescaling of the Poisson bivector explained
below) with the Wick product from Example Intro.2.9. Writing it with symmetrized covariant
derivatives will be convenient for the reduction to Mred.

4Note that from standard coordinates z0, . . . , z1+n we get real coordinates xi = Re(zi) and
pi = Im(zi). Then {xi, pj} = 1

2
δi,j , so this is one half of the standard Poisson bracket. With this

rescaling the set of poles of the strict star product becomes {1, 1
2
, 1

3
, . . . }.
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Lemma 5.2 The Poisson bracket (5.5) ful�ls the condition for reducibility of Propo-
sition 4.6.

Proof: First, { · , · } is bidi�erential, hence can be restricted to C1+n
+ . As H is U(1)-

invariant, the Poisson bracket is U(1)-invariant, too. One also �nds that {f,J } =
Xi(f) for all f ∈ C∞(C1+n), with Xi the generator of the U(1)-action as before. So
if f, g ∈ C∞(C1+n)U(1) are U(1)-invariant, then {f(J − 1), g} = {f, g}(J − 1) −
fXi(g) = {f, g}(J − 1) vanishes on Z , and similarly {f, g(J − 1)}|Z = 0. �

Thus we can construct a reduced Poisson bracket on Mred by application of De�ni-
tion 4.5 and get:

Proposition 5.3 For all f, g ∈ C∞(Mred) and ρ ∈ Z the reduced Poisson bracket
{ · , · }red : C∞(Mred)× C∞(Mred)→ C∞(Mred) is given by

{f, g}red([ρ]) =
{

Pr∗(f),Pr∗(g)
}

(ρ) =
〈
df ⊗ dg|[ρ], (Tρ Pr)⊗2π|ρ

〉
(5.7)

and the corresponding Poisson tensor πred on Mred is simply

πred = 2 Im(Hred) . (5.8)

Proof: Equation (5.7) is clear and (5.8) then follows from (5.2) and (5.6). �

This is just the Poisson-algebraic analog of the Marsden�Weinstein reduction scheme.
However, the situation is a bit more di�cult if one tries to reduce the bidi�er-
ential operators Cr de�ning the Wick star product. One immediately sees that
Proposition 4.4 cannot be applied directly: For example, C1(J ,J − 1) = J 6= 0.
Following [7], this problem can be overcome by restricting to C1+n

+ and perform-
ing an equivalence transformation S = id +

∑∞
k=1 ν

kSk, with di�erential operators
Sk : C∞(C1+n

+ )→ C∞(C1+n
+ ) that vanish on constant functions, from ? to a suitable

new star product ?̃, i.e. f ?̃ f ′ := S(S−1(f) ? S−1(f ′)), in such a way that ?̃ is re-
ducible to a star product ?red on Mred by application of Proposition 4.6. If this can
be achieved, then pr∗(g ?red g

′) = (Pr∗(g) ?̃ Pr∗(g′))|Z for all g, g′ ∈ C∞(Mred). For
this we require the following:

i.) S should commute with · , since then ?̃ is again a Hermitian star product.

ii.) S should be GJ -invariant, since then ?̃ is again GJ -invariant.

iii.) Moreover, ?̃ should ful�l J ?̃ f = J f for all f ∈ C∞(C1+n)U(1), hence also

f ?̃ J = J ?̃ f = J f = fJ for all f ∈ C∞(C1+n)U(1). As a consequence,
Proposition 4.6 can be applied to the bidi�erential operator de�ning the r-th
order of ?̃ for any r, so that ?red as described above is indeed well-de�ned.

iv.) Finally, it would be helpful if S (hence also S−1) acts as the identity on C∗-
invariant functions, because this has the consequence that the formula for ?red

simpli�es to

pr∗(g ?red g
′) =

(
Pr∗(g) ?̃ Pr∗(g′)

)∣∣
Z

=
(
S
(

Pr∗(g) ? Pr∗(g′)
))∣∣

Z
(5.9)

for all g, g′ ∈ C∞(Mred).
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Let us de�ne the rescaled vector �eld

∂

∂J
:=

1

2J
X1 ∈ Γ∞(TC1+n

+ ) (5.10)

on C1+n
+ , which satis�es ∂

∂J J = 1. Then Properties i.), ii.) and iv.) are ful�lled if

all the di�erential operators Sk with k ∈ N are of the form Sk =
∑∞
`=1(Sk,`◦J )( ∂

∂J )`

with smooth functions Sk,` : (0,∞) → R, such that for every �xed k ∈ N there are
only �nitely many ` ∈ N with Sk,` 6= 0.

We are interested in the inverse equivalence transformation T = S−1, which then
also contains only derivatives ∂

∂J and coe�cient functions dependent on J , i.e. T =
id+

∑∞
k,`=1 ν

k(Tk,` ◦J )( ∂
∂J )`. Therefore recall the usual de�nition of the falling and

rising factorial as

(ξ)↓,r :=

r−1∏
k=0

(ξ − k) and (ξ)↑,r :=

r−1∏
k=0

(ξ + k) , (5.11)

respectively, for all elements ξ of a ring with unit and all r ∈ N0. Here the empty
product is of course (ξ)↓,0 = 1 = (ξ)↑,0. For formal Laurent series in ν over the
smooth functions C∞(M) of a manifold M and a pointwise invertible f ∈ C∞(M)
we see that

1

(f/ν)↓,r
=

νr∏r−1
k=0(f − kν)

and
1

(f/ν)↑,r
=

νr∏r−1
k=0(f + kν)

(5.12)

are actually formal power series because f ± kν ∈ C∞(M)[[ν]] are invertible.

Proposition 5.4 Let T be a U(1)-invariant equivalence transformation on C1+n
+

from a new star product ?̃ to ? , then the following is equivalent:

� T (J ) = J and J ?̃ f = J f for all f ∈ C∞(C1+n
+ )U(1).

� [T,J ](f) = νJ ∂
∂J T (f) for all f ∈ C∞(C1+n

+ )U(1), where [ · , · ] denotes the
commutator.

If T ful�ls one, hence both of these conditions, then

T
(
νr(J /ν)↓,r

)
= J r and T

(
J

νr+1(J /ν)↑,r+1

)
= J −r (5.13)

for all r ∈ N0.

Proof: Assume T (J ) = J and J ?̃ f = J f for some f ∈ C∞(C1+n
+ )U(1), then

T (J f) = T (J ?̃ f) = T (J ) ? T (f) =

= J ? T (f) =
(
J + νE

)
T (f) =

(
J + νJ ∂

∂J

)
T (f)

and so [T,J ](f) = νJ ∂
∂J T (f). Conversely, if [T,J ](f) = νJ ∂

∂J T (f) for all f ∈
C∞(C1+n

+ )U(1), then especially for f = 1 one gets T (J ) − J T (1) = νJ ∂
∂J T (1), i.e.
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T (J )−J = 0 because T (1) = 1 for the equivalence transformation T . Then one also
checks that

J ?̃ f = T−1

((
J + νJ ∂

∂J

)
T (f)

)
= T−1

(
J T (f) + [T,J ](f)

)
= J f .

Moreover, by induction one �nds that indeed T (νr(J /ν)↓,r) = J r for all r ∈ N0: For
r = 0 this is just T (1) = 1, and if it holds for one r ∈ N0, then

T
(
νr+1(J /ν)↓,r+1

)
= νT

(
νr(J /ν)↓,r(J /ν − r)

)
= [T,J ]

(
νr(J /ν)↓,r

)
+ J T

(
νr(J /ν)↓,r

)
− νrT

(
νr(J /ν)↓,r

)
=

(
νJ ∂

∂J
+ J − νr

)
T
(
νr(J /ν)↓,r

)
=

(
νJ ∂

∂J
+ J − νr

)
J r

= J r+1 .

In order to check the formula for J −r, we note �rst that

(J + rν)T
(
J (νr+1(J /ν)↑,r+1)−1

)
=

= [J + rν, T ]
(
J (νr+1(J /ν)↑,r+1)−1

)
+ T

(
J (νr(J /ν)↑,r)

−1
)

= −νJ ∂

∂J
T
(
J (νr+1(J /ν)↑,r+1)−1

)
+ T

(
J (νr(J /ν)↑,r)

−1
)
,

so (
J + rν + νJ ∂

∂J

)
T
(
J (νr+1(J /ν)↑,r+1)−1

)
= T

(
J (νr(J /ν)↑,r)

−1
)
.

Since J is an invertible function on C1+n
+ it follows that J + rν+νJ ∂

∂J is invertible

on C∞(C1+n
+ )[[ν]]. Since(
J + rν + νJ ∂

∂J

)
J −r = J −r+1 + rνJ −r − rνJ −r = J −r+1

for all r ∈ N, we obtain
(
J + rν + νJ ∂

∂J
)−1

(J −r+1) = J −r. The statement now
follows by induction because the base case r = 0 reduces to T (1) = 1 and is therefore
ful�lled. �

Proposition 5.5 There exists a unique equivalence transformation T on C1+n
+ of the

form

T = id +

∞∑
k=1

2k∑
`=1

νk(Tk,` ◦ J )

(
∂

∂J

)`
(5.14)

with Tk,` ∈ C∞((0,∞)) that has the properties from the previous Proposition 5.4. Its
inverse S = T−1 thus has all the properties i.) to iv.) discussed above and additionally
ful�ls S(J ) = J .
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Proof: By collecting terms in νk and
(
∂
∂J
)`
, the identity [T,J ] = νJ ∂

∂J T with T
like in (5.14) is equivalent to

Tk+1,`+1 ◦ J =
J
`+ 1

(
(T ′k,` + Tk,`−1) ◦ J

)
for all k ∈ N0, ` ∈ N0 with initial conditions T0,0 = 1 and T0,` = 0 = Tk,0 for all
k ∈ N, ` ∈ N, where T ′k,` ∈ C∞((0,∞)) is the derivative of Tk,` and where Tk,−1 := 0
for all k ∈ N0. �

So the equivalence transformation S exists and is uniquely determined if we add to
the four requirements i.) to iv.) above the �fth requirement that S(J ) = J , which
is just a convenience. We can now construct the reduced star product on Mred:

De�nition 5.6 The transformed star product ?̃ on C1+n
+ is the one obtained from

? by application of the equivalence transformation S = T−1 with T like in Proposi-
tion 5.5. Explicitly,

f ?̃ g = S
(
T (f) ? T (g)

)
(5.15)

for all f, g ∈ C∞(C1+n
+ )[[ν]]. Moreover, the reduced star product ?red on Mred is

de�ned as

f ?red g :=

∞∑
r=0

νrC̃r,red(f, g) (5.16)

for all f, g ∈ C∞(Mred) and extended to formal power series in ν, where C̃r,red on

Mred are the reductions like in De�nition 4.5 of the bidi�erential operators C̃r on
C1+n

+ that describe the transformed star product ?̃ on C1+n
+ .

Using the de�ning properties of the reduced bilinear maps C̃r,red it is easy to check
that ?red is again associative and it is clear that the constant 1-function is the neutral
element. It also follows from the construction that C̃r,red are bidi�erential operators
onMred, but we will also show this by giving an explicit formula in the next subsection.
As T and thus also S commute with the pointwise complex conjugation and the action
of GJ , both ?̃ and ?red are Hermitian and GJ -invariant. Note also that ?̃ still deforms
in direction of the original Poisson bracket { · , · } (or rather, its restriction to C1+n

+ ),
so that it is easy to check that ?red deforms in direction of the reduced Poisson bracket
{ · , · }red on Mred.

5.2 Explicit formulae

We want to obtain an explicit expression for the reduced Poisson bracket { · , · }red

and star product ?red in terms of bidi�erential operators on Mred.

Lemma 5.7 The restriction to C1+n
+ of the tensor H can be expressed as

H|
C

1+n
+

=
1

J
E ⊗ E +HΞ (5.17)
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with some HΞ ∈ Γ∞(ΞC ⊗ ΞC). Explicitly,

HΞ =
1

z0z0

( n∑
k,`=1

zkz`

z0z0Wk ⊗W ` +

n∑
k=1

σkWk ⊗W k

)
(5.18)

on the domain of de�nition of the vector �elds W1, . . . ,Wn and consequently

Hred =

(
1 +

n∑
k=1

σkw
kwk

)( n∑
k,`=1

wkw`
∂

∂wk
⊗ ∂

∂w`
+

n∑
k=1

σk
∂

∂wk
⊗ ∂

∂wk

)
(5.19)

in projective coordinates on Mred.

Proof: The �rst part is an easy computation using (3.24). The formula forHred then
follows since (z0z0)−1|Z = (J /|z0|2)|Z = Pr∗(1+

∑n
k=1 σkw

kwk)|Z , (Tρ Pr)(Wk|ρ) =
(Tρpr)(Wk|ρ) = ∂

∂wk
|[ρ] by Proposition 3.5, and (Tρ Pr)(E|ρ) = 0. �

As an immediate consequence we get from (5.8):

Proposition 5.8 The reduced Poisson tensor that determines { · , · }red is

πred = −2i

(
1 +

n∑
k=1

σkw
kwk

)( n∑
k,`=1

wkw`
∂

∂wk
∧ ∂

∂w`
+

n∑
k=1

σk
∂

∂wk
∧ ∂

∂wk

)
(5.20)

in projective coordinates.

For the signature s = 1+n, this is the usual Poisson tensor associated to the symplectic
Fubini�Study form on M

(1+n)
red

∼= CPn. If s = 1, then one obtains (up to a sign) the
Poisson tensor associated to the symplectic Fubini�Study form on the hyperbolic disc
M

(1)
red
∼= Dn.

Similarly to the Wick star product from De�nition 5.1, the bidi�erential operators
de�ning the reduced star product should be expressed using symmetrized covariant
derivatives. In order to de�ne reduced symmetrized covariant derivatives we need the
following:

De�nition 5.9 We write ΘΞ : Γ∞(TCC1+n
+ ) → Γ∞(TCC1+n

+ ) for the projection on

the subbundle ΞC of TCC1+n
+ associated to the complexi�cation of the decomposition

TC1+n
+ = �X1�⊕�Xi�⊕Ξ from Proposition 3.2. Moreover, its dual will be denoted

by Θ∗Ξ : Γ∞(T∗,CC1+n
+ )→ Γ∞(T∗,CC1+n

+ ).

Note that ΘΞ commutes with the complex structure I of C1+n
+ . Like in Proposi-

tion A.6 and Proposition A.8 we can construct a reduced exterior covariant derivative
and a reduced symmetrized covariant derivative onMred out of D and Dsym on C1+n

+ ,
because D and Dsym are C∗-invariant (even invariant under arbitrary linear automor-
phisms of C1+n):

De�nition 5.10 By Dred : (A ⊗S )•,•(Mred)→ (A ⊗S )•+1,•(Mred) we denote the
reduced exterior covariant derivative on Mred, which is the one that ful�ls

Pr∗
(
DredΩ

)
= (Θ∗Ξ)⊗(k+1+`)DPr∗(Ω) (5.21)
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for all Ω ∈ (A ⊗S )k,`(Mred), k, ` ∈ N0, and analogously, the reduced symmetrized
covariant derivative Dsym

red : S •(Mred)→ S •+1(Mred) on Mred is determined by

Pr∗
(
Dsym

red ω
)

= (Θ∗Ξ)⊗(k+1)Dsym Pr∗(ω) (5.22)

for all ω ∈ S k(Mred), k ∈ N0.

We will give a more explicit characterization of the corresponding covariant derivative
on Mred later in Proposition 5.18. Note that D is compatible with the complex
structure on C1+n in the sense of De�nition A.9, and thus splits into (1, 0) and (0, 1)-
components D = Dhol +Dhol as in De�nition A.10, analogously Dsym = Dsym

hol +Dsym

hol
.

This carries over to the reduced derivatives:

Proposition 5.11 The reduced exterior covariant derivative Dred is compatible with
the complex structure and

Pr∗(Dsym
red,holω) = (Θ∗Ξ)⊗(k+1)Dsym

hol Pr∗(ω) (5.23)

holds for all ω ∈ S k(Mred).

Proof: As a consequence of Proposition 3.2 the projection Θ∗Ξ commutes with the
complex structure I on C1+n

+ and therefore (Θ∗Ξ)⊗(p+q) commutes with the projec-
tion onto symmetric tensors of degree (p, q). The projection onto such tensors also
commutes with Pr∗ since Pr is holomorphic. Therefore Dred is compatible with the
complex structure and (5.23) follows immediately from (5.22). �

We can now formulate the main theorem of this section:

Theorem 5.12 The reduced Wick star product is

f ?red g =
∞∑
r=0

1

r!

1

(1/ν)↓,r

〈
(Dsym

red )rf ⊗ (Dsym
red )rg,Hr

red

〉
(5.24)

for all f, g ∈ C∞(Mred), where Hred|[ρ] = (Tρ Pr)⊗2H|ρ was computed in Lemma 5.7.
Moreover, if f ∈P(Mred) or g ∈P(Mred), then the series in r in the product f ?red g
has only �nitely many non-zero terms.

Note that for complex projective spaces and hyperbolic discs this formula coincides
(up to rescaling the formal parameter) with the formula derived in [18, Thm. 3.2.4]
for a Fedosov star product with form Ω = 0. For the proof of Theorem 5.12 we have
to collect some intermediate results:

Lemma 5.13 On C∗-invariant functions f, g ∈ C∞(C1+n
+ )C

∗
the transformed Wick

star product can be expressed as

f ?̃ g = S(f ? g) =

∞∑
r=0

1

r!

J /ν
(J /ν)↑,r+1

〈
(Dsym

hol )rf ⊗ (Dsym

hol
)rg,HrJ r

〉
. (5.25)
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Proof: The �rst equality in (5.25) follows from requirement iv.) for the equivalence
transformation. For the second one we use that we can express f ? g as

f ? g =

∞∑
r=0

νr

J rr!

〈
(Dsym)rf ⊗ (Dsym)rg,HrJ r

〉
.

Note that 〈(Dsym)rf⊗(Dsym)rg,HrJ r〉 is C∗-invariant, so that all its derivatives ∂
∂J

vanish. Now 〈(Dsym)rf ⊗ (Dsym)rg,HrJ r〉 = 〈(Dsym
hol )rf ⊗ (Dsym

hol
)rg,HrJ r〉 because

of Proposition A.11 and since the �rst tensor factor of H lies in T(1,0)C1+n and the
second one in T(0,1)C1+n. Then it only remains to apply the formula for S(J −r)
from Proposition 5.4. �

If we restrict (5.25) to Z , we can substitute J by 1. In order to express 〈(Dsym
hol )rf ⊗

(Dsym

hol
)rg,Hr〉|Z withC∗-invariant functions f and g by di�erential operators onMred,

we use formula (5.17) for H and explicitly calculate the contribution of the vertical
directions E and E:

Lemma 5.14 For C∗-invariant s ∈ Γ∞(Sk T∗,(1,0)C1+n
+ )C

∗
and k ∈ N0, we have

[ιE , D
sym
hol ](s) = −2ks.

Proof: Let k ∈ N0 be given. For a multiindex P ∈ N1+n
0 we write (dz)P :=

(dz0)P0 ∨ · · · ∨ (dzn)Pn , then a general element s ∈ Γ∞(Sk T∗,(1,0)C1+n
+ )C

∗
can be

expanded as s =
∑
P∈N1+n

0 ,|P |=k sP (dz)P with coe�cient functions sP ∈ C∞(C1+n
+ ).

Note that C∗-invariance of s implies that its Lie derivative with E vanishes, LEs = 0.
As LE dz` = dz` for all ` ∈ {0, . . . , n}, hence LE(dz)P = k(dz)P , it follows that
LE(sP ) = −ksP and thus

[ιE , D
sym
hol ](sP ) = ιE d(sP ) = LE(sP ) = −ksP .

Moreover, [ιE , D
sym
hol ] dz` = −Dsym

hol ιE dz` = −dz` for all ` ∈ {0, . . . , n}. As both ιE
and Dsym

hol are derivations, their commutator [ιE , D
sym
hol ] is also a derivation and we

obtain [ιE , D
sym
hol ]s = −2ks. �

Lemma 5.15 For f, g ∈ C∞(C1+n
+ )C

∗
and r ∈ N we have

ιE(Dsym
hol )rf = −r(r − 1)(Dsym

hol )r−1f and ιE(Dsym

hol
)rg = −r(r − 1)(Dsym

hol
)r−1g

(5.26)
as well as〈

(Dsym
hol )rf ⊗ (Dsym

hol
)rg,Hr

〉∣∣
Z

=

=

r∑
k=1

r!(r − k)!

k!

(
r − 1

k − 1

)2〈
(Dsym

hol )kf ⊗ (Dsym

hol
)kg, (HΞ)k

〉∣∣
Z
, (5.27)

where HΞ is the component of H in ΞC ⊗ ΞC, as de�ned in (5.18).
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Proof: For (5.26) it su�ces to prove the �rst statement since the second one then
follows by taking complex conjugates. Note that (Dsym

hol )kf is C∗-invariant, so the
previous Lemma 5.14 yields

ιE(Dsym
hol )rf =

r−1∑
k=0

(Dsym
hol )r−k−1

[
ιE , D

sym
hol

]
(Dsym

hol )kf =

=

r−1∑
k=0

(−2k)(Dsym
hol )r−1f = −r(r − 1)(Dsym

hol )r−1f

for all r ∈ N0. With this and H|Z = E ⊗ E|Z + HΞ|Z from Lemma 5.7 we can now
calculate〈

(Dsym
hol )rf ⊗ (Dsym

hol
)rg,Hr

〉∣∣
Z

=

=

r∑
k=0

(
r

k

)〈
(Dsym

hol )rf ⊗ (Dsym

hol
)rg, (E ⊗ E)r−k(HΞ)k

〉∣∣
Z

(1)
=

r∑
k=0

(
r

k

)(
k!

r!

)2〈
(ιE)r−k(Dsym

hol )rf ⊗ (ιE)r−k(Dsym

hol
)rg, (HΞ)k

〉∣∣
Z

(2)
=

r∑
k=1

(
r

k

)(
(r − 1)!

(k − 1)!

)2〈
(Dsym

hol )kf ⊗ (Dsym

hol
)kg, (HΞ)k

〉∣∣
Z

=

r∑
k=1

r!(r − k)!

k!

(
r − 1

k − 1

)2〈
(Dsym

hol )kf ⊗ (Dsym

hol
)kg, (HΞ)k

〉∣∣
Z
.

The factors appearing in step (1) are due to our conventions for the symmetric product,
the dual pairing and the insertion derivation, see Equation (2.5). In (2) we used

(ιE)r−k(Dsym
hol )rf = (−1)r−k

r!

k!

(r − 1)!

(k − 1)!
f

and its complex conjugate, which can be obtained by applying (5.26) several times.
In the special case k = 0, (5.26) yields (ιE)r(Dsym

hol )rf = 0. �

The combinatorial factors in (5.25) can be simpli�ed using:

Lemma 5.16 For all k ∈ N the identity

∞∑
s=0

1/ν

(1/ν)↑,k+s+1

(
k + s− 1

k − 1

)2

s! =
1

(1/ν)↓,k
(5.28)

holds for a formal parameter ν.

Proof: By multiplication with ν−k we see that (5.28) is equivalent to the identity

∞∑
s=0

νss!∏k+s
`=1 (1 + ν`)

(
k + s− 1

k − 1

)2

=
1∏k−1

`=1 (1− ν`)
(∗)
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of formal power series, which can be proven by induction over k: First note that

∞∑
s=0

νss!∏1+s
`=1(1 + ν`)

=

∞∑
s=0

νss!∏s
`=1(1 + ν`)

(
1− ν(s+ 1)

1 + ν(s+ 1)

)
=

=

∞∑
s=0

νss!∏s
`=1(1 + ν`)

−
∞∑
s=0

νs+1(s+ 1)!∏s+1
`=1(1 + ν`)

,

which is a telescope sum that gives the result 1. So (∗) holds for k = 1. Now assume
that (∗) holds for some k ∈ N, then we get for k + 1:

∞∑
s=0

νss!∏k+s+1
`=1 (1 + ν`)

(
k + s

k

)2

=

=
1

1− νk

∞∑
s=0

(
νss!∏k+s+1

`=1 (1 + ν`)
− νs+1s!k∏k+s+1

`=1 (1 + ν`)

)(
k + s

k

)2

=
1

1− νk

∞∑
s=0

(
νss!∏k+s

`=1 (1 + ν`)

(
1− ν(k + s+ 1)

1 + ν(k + s+ 1)

)

− νs+1s!k∏k+s+1
`=1 (1 + ν`)

)(
k + s

k

)2

=
1

1− νk

∞∑
s=0

(
νss!∏k+s

`=1 (1 + ν`)
− νs+1(s+ 1)!∏k+s+1

`=1 (1 + ν`)

k + s+ 1

s+ 1

− νs+1(s+ 1)!∏k+s+1
`=1 (1 + ν`)

k

s+ 1

)(
k + s

k

)2

(∗∗)
=

1

1− νk

(
1∏k

`=1(1 + ν`)

+

∞∑
s=0

νs+1(s+ 1)!∏k+s+1
`=1 (1 + ν`)

(
(k + s+ 1)2

(s+ 1)2
− k + s+ 1

s+ 1
− k

s+ 1

)(
k + s

k

)2
)

=
1

1− νk

(
1∏k

`=1(1 + ν`)
+

∞∑
s=0

νs+1(s+ 1)!∏k+s+1
`=1 (1 + ν`)

(
k + s

k − 1

)2
)

=
1

1− νk

(
1∏k

`=1(1 + ν`)
+

∞∑
s=1

νss!∏k+s
`=1 (1 + ν`)

(
k + s− 1

k − 1

)2
)

=
1

1− νk

∞∑
s=0

νss!∏k+s
`=1 (1 + ν`)

(
k + s− 1

k − 1

)2

=
1

(1− νk)
∏k−1
`=1 (1− ν`)

=
1∏k

`=1(1− ν`)
.
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At (∗∗) we used that

∞∑
s=0

νss!∏k+s
`=1 (1 + ν`)

(
k + s

k

)2

=

=
1∏k

`=1(1 + ν`)
+

∞∑
s=1

νss!∏k+s
`=1 (1 + ν`)

(k + s)2

s2

(
k + s− 1

k

)2

=
1∏k

`=1(1 + ν`)
+

∞∑
s=0

νs+1(s+ 1)!∏k+s+1
`=1 (1 + ν`)

(k + s+ 1)2

(s+ 1)2

(
k + s

k

)2

. �

The last, crucial step is the following observation:

Lemma 5.17 We have

Dsym
hol E

∗ = −(E∗)2 as well as Dsym

hol
E
∗

= −(E
∗
)2 (5.29)

and consequently

(Θ∗Ξ)⊗(k+1)Dsym
hol (Θ∗Ξ)⊗kω = (Θ∗Ξ)⊗(k+1)Dsym

hol ω (5.30)

as well as

(Θ∗Ξ)⊗(k+1)Dsym

hol
(Θ∗Ξ)⊗kω = (Θ∗Ξ)⊗(k+1)Dsym

hol
ω (5.31)

for all ω ∈ Γ∞(Sk T∗,(1,0)C1+n
+ ) with k ∈ N0.

Proof: Again, it su�ces to prove the �rst equalities since the second ones then
follow by taking complex conjugates. Using (3.25), (3.26), (3.27), and (3.28), an easy
computation shows

Dsym
hol E

∗ = Dsym
hol

(
1

J

n∑
k=0

σkz
k dzk

)
=
(
Dsym

hol J
−1
) n∑
k=0

σkz
k dzk =

= −J −2

( n∑
k=0

σkz
k dzk

)2

= −(E∗)2 .

For (5.30) it is su�cient to consider the case k = 1, the general case then follows from
the algebraic properties of Θ∗Ξ and Dsym

hol (i.e. being a projection and a derivation). If
k = 1, then there is an f ∈ C∞(C1+n

+ ) such that Θ∗Ξω − ω = fE∗, and thus

Dsym
hol Θ∗Ξω −D

sym
hol ω = Dsym

hol (Θ∗Ξω − ω) = Dsym
hol fE

∗ = df ∨ E∗ − f(E∗)2

is in the kernel of (Θ∗Ξ)⊗2. �

Proof of Theorem 5.12: The reduced star product on Mred ful�ls

pr∗(f ?red g) =
(
S
(

Pr∗(f) ? Pr∗(g)
))∣∣

Z
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for all f, g ∈ C∞(Mred). Application of �rst Lemma 5.13 and then Lemma 5.15 now
yields

pr∗(f ?red g) =

∞∑
r=0

1

r!

1/ν

(1/ν)↑,r+1

〈
(Dsym

hol )r Pr∗(f)⊗ (Dsym

hol
)r Pr∗(g), Hr

〉∣∣
Z

= fg
∣∣
Z

+

∞∑
r=1

r∑
k=1

1/ν

(1/ν)↑,r+1

(r − k)!

k!

(
r − 1

k − 1

)2

·

·
〈
(Dsym

hol )k Pr∗(f)⊗ (Dsym

hol
)k Pr∗(g), (HΞ)k

〉∣∣
Z

for all f, g ∈ C∞(Mred). Collecting the k-th derivatives and using Lemma 5.16 we
obtain

pr∗(f ?red g) = fg
∣∣
Z

+

∞∑
k=1

∞∑
r=k

1/ν

(1/ν)↑,r+1

(r − k)!

k!

(
r − 1

k − 1

)2

·

·
〈
(Dsym

hol )k Pr∗(f)⊗ (Dsym

hol
)k Pr∗(g), (HΞ)k

〉∣∣
Z

= fg
∣∣
Z

+

∞∑
k=1

∞∑
s=0

1/ν

(1/ν)↑,k+s+1

s!

k!

(
k + s− 1

k − 1

)2

·

·
〈
(Dsym

hol )k Pr∗(f)⊗ (Dsym

hol
)k Pr∗(g), (HΞ)k

〉∣∣
Z

= fg
∣∣
Z

+

∞∑
k=1

1

k!

1

(1/ν)↓,k

〈
(Dsym

hol )k Pr∗(f)⊗ (Dsym

hol
)k Pr∗(g), (HΞ)k

〉∣∣
Z

=

∞∑
k=0

1

k!

1

(1/ν)↓,k

〈
(Dsym

hol )k Pr∗(f)⊗ (Dsym

hol
)k Pr∗(g), (HΞ)k

〉∣∣
Z
.

As (HΞ)|ρ ∈ ΞCρ ⊗ ΞCρ for all ρ ∈ C1+n
+ , we may insert projections Θ∗Ξ and get〈

(Dsym
hol )k Pr∗(f)⊗ (Dsym

hol
)k Pr∗(g), (HΞ)k

〉
=

=
〈
(Θ∗Ξ)⊗k(Dsym

hol )k Pr∗(f)⊗ (Θ∗Ξ)⊗k(Dsym

hol
)k Pr∗(g), (HΞ)k

〉
.

Using Lemma 5.17 and Proposition 5.11 we obtain

(Θ∗Ξ)⊗k(Dsym
hol )k Pr∗(f) = (Θ∗Ξ)⊗kDsym

hol (Θ∗Ξ)⊗(k−1)Dsym
hol . . .Θ

∗
ΞD

sym
hol Pr∗(f)

= Pr∗
(
(Dsym

red,hol)
kf
)

and analogously for g, so that

pr∗(f ?red g) =

∞∑
k=0

1

k!

1

(1/ν)↓,k

〈
(Dsym

hol )k Pr∗(f)⊗ (Dsym

hol
)k Pr∗(g), (HΞ)k

〉∣∣
Z

=

∞∑
k=0

1

k!

1

(1/ν)↓,k

〈
Pr∗

(
(Dsym

red,hol)
kf
)
⊗ Pr∗

(
(Dsym

red,hol
)kg
)
, (HΞ)k

〉∣∣
Z

=

∞∑
k=0

1

k!

1

(1/ν)↓,k
pr∗
(〈

(Dsym
red,hol)

kf ⊗ (Dsym

red,hol
)kg,Hk

red

〉)
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=

∞∑
k=0

1

k!

1

(1/ν)↓,k
pr∗
(〈

(Dsym
red )kf ⊗ (Dsym

red )kg,Hk
red

〉)
.

In the last step we used Proposition A.11 and that the �rst tensor factor of Hred lies
in T(1,0)Mred whereas the second lies in T(0,1)Mred.

It remains to check that only �nitely many summands contribute to f ?red g if
f ∈ P(Mred) or g ∈ P(Mred): Indeed, if f = bP,Q;red with P,Q ∈ N1+n

0 and
|P | = |Q|, then Pr∗(bP,Q;red) = J −|P |bP,Q, and as Dsym

hol J = J E∗ is in the kernel of
Θ∗Ξ, we get

Pr∗
(
(Dsym

red,hol)
kbP,Q;red

)
= (Θ∗Ξ)⊗kDsym

hol (Θ∗Ξ)⊗(k−1)Dsym
hol . . .Θ

∗
ΞD

sym
hol J

−|P |bP,Q

= J −|P |(Θ∗Ξ)⊗kDsym
hol (Θ∗Ξ)⊗(k−1)Dsym

hol . . .Θ
∗
ΞD

sym
hol bP,Q

= J −|P |(Θ∗Ξ)⊗k(Dsym
hol )kbP,Q ,

which vanishes for k > |P |. The argument for g is similar. �

Finally, we can also characterize the reduced covariant derivative as follows:

Proposition 5.18 The reduced exterior covariant derivative Dred on Mred is the
one for the Levi-Civita connection associated to the (not necessarily de�nite) reduced
metric gred ∈ S 2(Mred), which is de�ned by

Pr∗(gred) = (Θ∗Ξ)⊗2

( n∑
k=0

σk dzk ∨ dzk

J

∣∣∣∣
C

1+n
+

)
. (5.32)

Proof: As
∑n
k=0 σk dzk ∨ dzk/J is C∗-invariant, gred is indeed well-de�ned. As D

is torsion-free, Dred is torsion free as well (see Proposition A.6). Now we calculate

Pr∗
(
Dred(gred)

)
= (Θ∗Ξ)⊗3DPr∗(gred)

= (Θ∗Ξ)⊗3D(Θ∗Ξ)⊗2

( n∑
k=0

σk dzk ∨ dzk

J

∣∣∣∣
C

1+n
+

)
.

Using (3.27) and (3.28) one can check that

n∑
k=0

σk(Θ∗Ξ dzk) ∨ (Θ∗Ξ dzk) =

n∑
k=0

σk dzk ∨ dzk − J E∗ ∨ E∗ .

It follows that

Pr∗
(
Dred(gred)

)
= (Θ∗Ξ)⊗3D

( n∑
k=0

σk dzk ∨ dzk

J

∣∣∣∣
C

1+n
+

)
− (Θ∗Ξ)⊗3D

(
E∗ ∨ E∗

)
= 0

because Θ∗Ξ d(J−1) = −J−2Θ∗Ξ dJ = 0 and because (Θ∗Ξ)⊗3D(E∗ ∨ E∗) = 0, so
Dred(gred) = 0. �
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Note that gred can be obtained from the standard (pseudo-)metric g :=
∑n
k=0 σk dzk∨

dzk on C1+n in signature s by �rst restricting (Θ∗Ξ)⊗2g to Z and then projecting down
on Mred. In local coordinates on the domain of de�nition of the forms W ∗k one �nds
that

(Θ∗Ξ)⊗2

( n∑
k=0

σk dzk ∨ dzk

J

∣∣∣∣
C

1+n
+

)
=

=
|z0|2

J

n∑
k=1

σkW
∗
k ∨W ∗k −

|z0|2

J 2

n∑
k,`=1

σkσ`z
`zkW ∗k ∨W ∗` (5.33)

and hence that

gred =

∑n
k=1 σk dwk ∨ dwk

1 +
∑n
k=1 σkw

kwk
−
∑n
k,`=1 σkσ`w

`wk dwk ∨ dw`

(1 +
∑n
k=1 σkw

kwk)2
. (5.34)

In particular, in signature s = 1 + n one obtains that gred is the usual Fubini�Study

metric on M
(1+n)
red

∼= CPn, and for s = 1 it is the negative of the usual Fubini�Study

metric on M
(1)
red
∼= Dn.

5.3 The polynomial case

In this section we will replace the formal parameter ν by a complex number h̄. In
order to make sense of the convergence of the formal power series describing the star
product, we restrict ourselves to polynomial functions.

From the de�nition of the Poisson bracket in (5.5) it is clear that it restricts to
a well-de�ned map { · , · } : P(C1+n) ×P(C1+n) → P(C1+n) that is given by the
same formula, and similarly for the Wick star product:

Lemma 5.19 In the basis bP,Q de�ned in De�nition 4.8, the Poisson bracket is

{
bP,Q,bR,S

}
=

1

i

n∑
k=0

σk(PkSk −QkRk)bP+R−Ek,Q+S−Ek (5.35)

with Ek = (0, . . . , 0, 1, 0, . . . , 0) ∈ N1+n
0 having the 1 at position k ∈ {0, . . . , n}, and

the product ? from De�nition 5.1 is

bP,Q ? bR,S =

min{P,S}∑
T=0

sgn(T )ν|T |T !

(
P

T

)(
S

T

)
bP+R−T,Q+S−T (5.36)

with sgn(T ) =
∏n
k=0 σ

Tk
k =

∏n
k=1 σ

Tk
k as in Lemma 4.10.

So by setting ν to h̄ ∈ C, this yields a well-de�ned map ?h̄ : P(C1+n)×P(C1+n)→
P(C1+n). Next we consider the equivalence transformation S from Proposition 5.5:

Lemma 5.20 For P,Q ∈ N1+n
0 with |P | = |Q|, the equivalence transformation S is

given by

S(bP,Q) =

(
ν

J

)|P |(J
ν

)
↓,|P |

bP,Q . (5.37)
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Proof: As J −|P |bP,Q is C∗-invariant, we get using Proposition 5.4:

S(bP,Q) = S(J |P |J −|P |bP,Q) = S(J |P |)J −|P |bP,Q = (J /ν)↓,|P |(ν/J )|P |bP,Q .

Note that this is indeed a well-de�ned formal power series in ν as the term J /ν that
occurs in (J /ν)↓,|P | if |P | ≥ 1 is cancelled. �

Replacing ν by h̄ ∈ C yields a rational expression in h̄ and we have to be aware of
some poles:

De�nition 5.21 We de�ne the open subset Ω of C as

Ω := C \
(
{1/k | k ∈ N} ∪ {0}

)
. (5.38)

We have already seen in Theorem 5.12 that the reduced Wick star product f ?red g
of polynomials f, g ∈ P(Mred) is rational in h̄ with poles in {1/k | k ∈ N}. More
precisely, we get:

Proposition 5.22 For P,Q,R, S ∈ N1+n
0 with |P | = |Q| and |R| = |S|, the reduced

star product from De�nition 5.6 is given by

bP,Q;red ?red bR,S;red =

=

min{P,S}∑
T=0

sgn(T )
(1/ν)↓,|P+S−T |

(1/ν)↓,|P |(1/ν)↓,|S|
T !

(
P

T

)(
S

T

)
bP+R−T,Q+S−T ;red . (5.39)

Replacing ν by h̄ ∈ Ω gives a strict associative product ?red,h̄ : P(Mred)×P(Mred)→
P(Mred) and P(Mred) with this product and pointwise complex conjugation becomes
a unital ∗-algebra if h̄ ∈ Ω ∩R.

Proof: First we note that Lemma 5.19 and Lemma 5.20 show that(
ν

J

)|P |(J
ν

)
↓,|P |

bP,Q ?̃

(
ν

J

)|S|(J
ν

)
↓,|S|

bR,S =

=

min{P,S}∑
T=0

sgn(T )ν|T |T !

(
P

T

)(
S

T

)(
ν

J

)|P+S−T |(J
ν

)
↓,|P+S−T |

bP+R−T,Q+S−T

holds for the transformed star product ?̃ and all P,Q,R, S ∈ N1+n
0 with |P | = |Q|

and |R| = |S|. As

pr∗
(
ν|P |

(
1/ν
)
↓,|P |bP,Q;red

)
= ι∗

((
ν/J

)|P |(J /ν)↓,|P |bP,Q)
we �nd that(

ν|P |
(
1/ν
)
↓,|P |bP,Q;red

)
?red

(
ν|S|

(
1/ν
)
↓,|S|bR,S;red

)
=

=

min{P,S}∑
T=0

sgn(T )ν|P+S|T !

(
P

T

)(
S

T

)(
1/ν
)
↓,|P+S−T |bP+R−T,Q+S−T ;red ,
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which yields (5.39) by C[[ν]]-linearity of ?red and because ν|P |(1/ν)↓,|P | = (1 −
ν) . . . (1 − (|P | − 1)ν) is an invertible formal power series. Note that the right-hand
side of (5.39) is indeed a well-de�ned formal power series in ν because the factor 1/ν
that occurs in (1/ν)↓,|P+S−T | for |P + S − T | ≥ 1 is cancelled.

We can now substitute ν by h̄: If h̄ ∈ Ω, the falling factorials in the nominator are
non-zero, thus (5.39) de�nes a well-de�ned product on the whole algebra P(Mred).
Associativity and compatibility with pointwise complex conjugation follow from the
properties of the Hermitian formal star product ?red, and the unit is the constant
1-function. �

Equation (5.39) immediately yields:

Corollary 5.23 For two �xed polynomials f, g ∈ P(Mred), the map h̄ 7→ f ?red,h̄ g
is rational and limh̄→0 f ?red,h̄ g = fg holds pointwise.

Proposition 5.24 For two polynomials f, g ∈P(Mred), we have

lim
h̄→0

1

ih̄

(
f ?red,h̄ g − g ?red,h̄ f

)
= {f, g}red (5.40)

pointwise and with the reduced Poisson bracket { · , · }red on Mred.

Proof: All terms with |T | ≥ 2 in Equation (5.39) are at least of order h̄2 and the
T = 0 term cancels out when taking the commutator. The �rst order in h̄ of the
terms with |T | = 1 produces

lim
h̄→0

1

ih̄

(
bP,Q;red ?red,h̄ bR,S;red − bR,S;red ?red,h̄ bP,Q;red

)
=

=
1

i

n∑
k=0

σk(PkSk −QkRk)bP+R−Ek,Q+S−Ek;red ,

where Ek = (0, . . . , 0, 1, 0, . . . , 0) ∈ N1+n
0 has the 1 at position k ∈ {0, . . . , n}. This

coincides by De�nition 4.5 and Lemma 5.19 with {bP,Q;red,bR,S;red}red. �

5.4 The analytic case

The aim of this section is to obtain a strict star product on the algebra A (Mred). We
achieve this by proving the continuity of the star product ?red,h̄ on P(Mred) with
respect to the locally convex topology that P(Mred) inherits from A (Mred), i.e. the
topology of locally uniform convergence of the holomorphic extensions to M̂red. This
then implies that ?red,h̄ extends uniquely to a continuous star product on A (Mred).

Recall from Proposition 4.16 that the topology on A (Mred) is just the quotient
topology of the topology on A (C1+n)U(1) de�ned by locally uniform convergence of
the holomorphic extensions to C1+n × C1+n. For h̄ ∈ Ω de�ne a product ∗h̄ on
P(C1+n)U(1) by bilinearly extending

bP,Q ∗h̄ bR,S :=

min{P,S}∑
T=0

sgn(T )
(1/h̄)↓,|P+S−T |

(1/h̄)↓,|P |(1/h̄)↓,|S|
T !

(
P

T

)(
S

T

)
bP+R−T,Q+S−T
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for all P,Q,R, S ∈ N1+n
0 with |P | = |Q| and |R| = |S|. Note that this product

might not be associative. However, from Proposition 5.22 it follows immediately that
dividing out the vanishing ideal of J −1 is possible and reproduces the product ?red,h̄.
Consequently, continuity of ∗h̄ with respect to the seminorms ‖ · ‖r with r ∈ [1,∞)
de�ned in Equation (4.12) implies continuity of ?red,h̄.

Proposition 5.25 The product ∗h̄ is continuous with respect to the locally convex
topology de�ned by the seminorms ‖ · ‖r with r ∈ [1,∞) as in Equation (4.12). More
precisely, for every r ∈ [1,∞) and every compact subset K of Ω there exists r′ ∈ [1,∞)
such that

‖f ∗h̄ g‖r ≤ ‖f‖r′‖g‖r′ (5.41)

holds for all h̄ ∈ K and all f, g ∈P(C1+n)U(1).

Proof: It is well-known that for any compact set K ′ ⊆ C \N0 there are constants
c, C > 0 such that

cnn! ≤ |(z)↓,n| ≤ Cnn!

holds for all z ∈ K and all n ∈ N0. For a compact set K ⊆ Ω also K ′ := {z ∈
C \ {0} | z−1 ∈ K} is compact and a subset of C \N0. Therefore it follows for any
r ∈ [1,∞) and P,Q,R, S ∈ N1+n

0 with |P | = |Q| and |R| = |S|, and assuming without
loss of generality that C ≥ 1, that

‖bP,Q ∗h̄ bR,S‖r

=

∥∥∥∥min{P,S}∑
T=0

sgn(T )
(1/h̄)↓,|P+S−T |

(1/h̄)↓,|P |(1/h̄)↓,|S|
T !

(
P

T

)(
S

T

)
bP+R−T,Q+S−T

∥∥∥∥
r

≤
min{P,S}∑
T=0

∣∣∣∣ (1/h̄)↓,|P+S−T |

(1/h̄)↓,|P |(1/h̄)↓,|S|

∣∣∣∣T !

(
P

T

)(
S

T

)
r|P+Q+R+S−2T |

≤
min{P,S}∑
T=0

C |P+S−T |

c|P+S|
|P + S − T |!T !

|P |!|S|!
2|P+S|r|P+Q+R+S−2T |

≤
min{P,S}∑
T=0

(c−1C)|P+S|4|P+S|r|P+Q+R+S|

≤ (8c−1Cr)|P+Q+R+S| .

Given U(1)-invariant polynomials f =
∑
P,Q fP,QbP,Q and g =

∑
R,S gR,SbR,S on

C1+n with complex coe�cients fP,Q and gR,S , then

‖f ∗h̄ g‖r ≤
∑

P,Q∈N1+n
0

|P |=|Q|

|fP,Q|(8c−1Cr)|P+Q|
∑

R,S∈N1+n
0

|R|=|S|

|gR,S |(8c−1Cr)|R+S|

= ‖f‖8c−1Cr‖g‖8c−1Cr . �
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We would like to remark that, similar as in [12], one can also use the description of
the star product using bidi�erential operators to prove its continuity.

Theorem 5.26 For every h̄ ∈ Ω, the product ?red,h̄ on P(Mred) extends to a contin-
uous associative product on A (Mred). Moreover A (Mred) becomes a unital Fréchet
∗-algebra with this product and pointwise complex conjugation as ∗-involution in the
case that h̄ ∈ Ω∩R. Finally, for any two �xed elements f, g ∈ A (Mred) and [ρ] ∈Mred,
the map Ω→ C, h̄ 7→ (f ?red,h̄ g)([ρ]) is holomorphic.

Proof: By the previous Proposition 5.25 and the discussion above, the associative
product ?red,h̄ is continuous on P(Mred) with respect to the topology inherited from
A (Mred), and thus extends to an associative and continuous product on A (Mred)
because P(Mred) is dense in A (Mred) by Corollary 4.17. The constant 1-function
remains the unit like on polynomials. Compatibility with the ∗-involution is clear as
well if h̄ is additionally real.

Now recall that for polynomials p, q ∈ P(Mred), the map h̄ 7→ (p ?red,h̄ q)([ρ]) is
rational by Corollary 5.23. Since the estimates in Proposition 5.25 are locally uniform
in h̄, it follows that h̄ 7→ (f ?red,h̄ g)([ρ]) is a locally uniform limit of rational functions
and therefore holomorphic. �

Note that 0 /∈ Ω, so one would like to understand whether in the limit h̄ → 0, the
product ?red,h̄ yields the pointwise one, and whether its commutator yields the Poisson
bracket also on A (Mred). Despite the results from Corollary 5.23 and Proposition 5.24
in the polynomial case, this is not so obvious because 0 is an accumulation point of
the poles of ?red,h̄. We will come back to this question later in Proposition 6.12.

6 Wick rotation

The dependence on the choice of signature s will now always be made explicit by a
superscript �(s)�.

We have already seen that the construction of the formal and non-formal star prod-
ucts on M

(s)
red works completely independent of s ∈ {1, . . . , 1 + n}. We will see now

that the non-formal star product algebras are even all isomorphic as unital complex
algebras. This will be proven by construction of a Wick transformation: A holomor-
phic isomorphism between the complex manifolds M̂

(s)
red for di�erent values of s which

gives rise to isomorphisms of the algebras P(M
(s)
red) and A (M

(s)
red) (with the pointwise

product) and which are also compatible with the Poisson brackets and the non-formal
star products, i.e. describe isomorphisms of Poisson algebras and associative algebras,
respectively. However, we will also see that these isomorphisms are not compatible
with the ∗-involution which is given by pointwise complex conjugation, hence are not
∗-isomorphisms. This demonstrates how important it is to consider ∗-algebras and
not just algebras in non-formal deformation quantization: After all, one would surely
want to be able to distinguish the quantization of the complex projective space CPn

from the one of the hyperbolic disc Dn.
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6.1 Geometric Wick rotation

We start �rst with discussing the complex manifolds C1+n ×C1+n and then proceed

to M̂
(s)
red:

The Lie group GL1+n(C) × GL1+n(C) acts on C1+n × C1+n from the left via
· . · , which induces a right action · / · on O(C1+n×C1+n). It is easy to check that
∆(A.ρ) = (A,A).∆(ρ) for all ρ ∈ C1+n and all A ∈ GL1+n(C), where A denotes the
elementwise complex conjugate of A. For all s ∈ {1, . . . , 1 +n}, let W (s) ∈ GL1+n(C)
be (W (s))k` := 1 if k = ` ∈ {0, . . . , s− 1} and (W (s))k` := i if k = ` ∈ {s, . . . , n}, and
otherwise (W (s))k` := 0. Then the action of (W (s),W (s)) on C1+n ×C1+n does not
come from an action on C1+n, except in the trivial case that s = 1 +n. However, the
identity

Ĵ (s) / (W (s),W (s)) = Ĵ (1+n) (6.1)

holds and thus the holomorphic automorphism of C1+n ×C1+n that is given by the
action of (W (s),W (s)) restricts to a holomorphic isomorphism from Ẑ(1+n) to Ẑ(s). It
is then immediate that this restriction even descends to a holomorphic isomorphism

from M̂
(1+n)
red to M̂

(s)
red, because (W (s),W (s)) commutes with all elements of the C∗-

subgroup of GL1+n(C)×GL1+n(C).

De�nition 6.1 For every s ∈ {1, . . . , 1 + n} we de�ne the map

α(s) : M̂
(1+n)
red → M̂

(s)
red , [(ξ, η)] 7→ α(s)

(
[(ξ, η)]

)
:=
[
(W (s),W (s)) . (ξ, η)

]
. (6.2)

The above discussion shows that α(s) is well-de�ned and even more:

Proposition 6.2 The maps α(s) : M̂
(1+n)
red → M̂

(s)
red are holomorphic isomorphisms of

complex manifolds for all s ∈ {1, . . . , 1 + n}.

Moreover, Equation (6.1) also shows that the inner automorphism of the Lie group
GL1+n(C)×GL1+n(C) that is given by conjugation with (W (s),W (s)), i.e.

(A,B) 7→
(
W (s)A(W (s))−1,W (s)B(W (s))−1

)
, (6.3)

restricts to an isomorphism from GĴ (1+n) to GĴ (s) . Note that we have already seen
in Section 3 that GĴ (s) is isomorphic to GL1+n(C) for all s ∈ {1, . . . , 1 + n}.

As a �nal remark, we note that the isomorphisms of M̂
(s)
red with di�erent signature

s clearly do not descend to isomorphisms of M
(s)
red. For example, M

(1+n)
red

∼= CPn is

compact while M
(1)
red
∼= Dn is not.

6.2 Algebraic Wick rotation

The isomorphism of the complex manifolds M̂
(s)
red for di�erent signatures from Proposi-

tion 6.2 immediately shows that the corresponding unital associative algebras O(M̂
(s)
red)

are isomorphic. By Proposition 4.12, the algebras A (M̂
(s)
red) for di�erent signatures are

isomorphic as unital associative algebras as well (but not necessarily as ∗-algebras).



6. WICK ROTATION 89

De�nition 6.3 For every s ∈ {1, . . . , 1 + n} we de�ne the maps

Φ(s) : A (C1+n)→ A (C1+n) , f 7→ Φ(s)(f) := ∆∗
(
f̂ / (W (s),W (s))

)
(6.4)

as well as

Φ
(s)
red : A (M

(s)
red)→ A (M

(1+n)
red ) , g 7→ Φ

(s)
red(g) :=

(
∆

(1+n)
red

)∗
(ĝ ◦ α(s)) , (6.5)

where f̂ ∈ O(C1+n ×C1+n) and ĝ ∈ O(M̂
(s)
red) satisfy ∆∗(f̂) = f and (∆

(s)
red)∗(ĝ) = g.

We will refer to Φ(s) and Φ
(s)
red as the Wick rotation and the reduced Wick rotation,

respectively.

Proposition 4.12, Proposition 6.2 and the observation that (W (s),W (s)) commutes
with the whole C∗-subgroup of GL1+n(C)×GL1+n(C) immediately show:

Theorem 6.4 The Wick rotation Φ(s) is a well-de�ned homeomorphic automorphism
of the unital associative Fréchet algebra A (C1+n) that restricts to an automorphism
of A (C1+n)U(1). Moreover, the reduced Wick rotation Φ

(s)
red : A (M

(s)
red)→ A (M

(1+n)
red )

is a well-de�ned homeomorphic isomorphism of unital associative Fréchet algebras.

The Wick rotations are also compatible with the reduction procedure:

Proposition 6.5 Given f ∈ A (C1+n)U(1), then(
Φ(s)(f)

)
red

= Φ
(s)
red(fred) .

Proof: By Proposition 4.14 there exists an f̂ ∈ O(C1+n×C1+n)C
∗
as in Lemma 4.13

such that ∆∗(f̂) = f and (∆
(s)
red)∗(f̂ ˆred) = fred. Using the commutativity of the

diagram from Section 3 and the properties of the action of (W (s),W (s)) one �nds:

(ι(1+n))∗
(
Φ(s)(f)

)
= (ι(1+n))∗

(
∆∗
(
f̂ / (W (s),W (s))

))
= (∆

(1+n)
Z )∗

(
(ι̂(1+n))∗

(
f̂ / (W (s),W (s))

))
= (∆

(1+n)
Z )∗

(
(ι̂(s))∗(f̂) / (W (s),W (s))

)
= (∆

(1+n)
Z )∗

(
(p̂r(s))∗(f̂ ˆred) / (W (s),W (s))

)
= (∆

(1+n)
Z )∗

(
(p̂r(1+n))∗

(
f̂ ˆred ◦ α

(s)
))

= (pr(1+n))∗
(
(∆

(1+n)
red )∗

(
f̂ ˆred ◦ α

(s)
))

= (pr(1+n))∗
(
Φ

(s)
red(fred)

)
. �

In the following we will see that the Wick rotations are not only isomorphisms of unital
associative algebras, but also compatible with Poisson brackets and star products:

Lemma 6.6 Given s ∈ {1, . . . , 1 + n}, then the identity

Φ(s)(bP,Q) = i
∑n
k=s(Pk+Qk)bP,Q (6.6)
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holds for all P,Q ∈ N1+n
0 ,

Φ
(s)
red

(
b

(s)
P,Q;red

)
= i

∑n
k=s(Pk+Qk)b

(1+n)
P,Q;red (6.7)

holds for all P,Q ∈ N1+n
0 with |P | = |Q|, and

Φ
(s)
red

(
c
(s)
P,Q

)
= i

∑n
k=s(Pk+Qk)c

(1+n)
P,Q (6.8)

holds for all P,Q ∈ Nn0 , where cP,Q are the fundamental monomials from De�-
nition 4.9. Moreover, Φ(s) restricts to an automorphism of the unital subalgebra
P(C1+n) of A (C1+n), and Φ

(s)
red restricts to an isomorphism from the unital sub-

algebra P(M
(s)
red) of A (M

(s)
red) to the unital subalgebra P(M

(1+n)
red ) of A (M

(1+n)
red ).

Proof: Using bP,Q = ∆∗(xP yQ) with x0, . . . , xn, y0, . . . , yn : C1+n ×C1+n → C the
standard coordinates, it is easy to check that Equation (6.6) holds. Equation (6.7)
then follows by applying the previous Proposition 6.5, which gives Equation (6.8) as
a special case. The rest is clear. �

Theorem 6.7 The Wick rotations remain isomorphisms of unital associative alge-
bras also for the deformed products. More precisely, given s ∈ {1, . . . , 1 +n}, then the
identities

Φ(s)
(
f ?

(s)
h̄ g

)
= Φ(s)(f) ?

(1+n)
h̄ Φ(s)(g) (6.9)

and

Φ(s)
{
f, g
}(s)

=
{

Φ(s)(f),Φ(s)(g)
}(1+n)

(6.10)

hold for all f, g ∈ A (C1+n) and all h̄ ∈ C. Similarly, the identities

Φ
(s)
red

(
f ?

(s)
red,h̄ g

)
= Φ

(s)
red(f) ?

(1+n)
red,h̄ Φ

(s)
red(g) (6.11)

and

Φ
(s)
red

{
f, g
}(s)

red
=
{

Φ
(s)
red(f),Φ

(s)
red(g)

}(1+n)

red
(6.12)

hold for all f, g ∈ A (M
(s)
red) and all h̄ ∈ Ω.

Proof: First note that as a consequence of the previous Lemma 6.6, the identity

Φ(s)
(

sgn(s)(T )bP+R−T,Q+S−T
)

= i
∑n
k=s(Pk+Qk+Rk+Sk)bP+R−T,Q+S−T

holds for all P,Q,R, S, T ∈ N1+n
0 with T ≤ min{P, S}, and similarly,

Φ
(s)
red

(
sgn(s)(T )b

(s)
P+R−T,Q+S−T ;red

)
= i

∑n
k=s(Pk+Qk+Rk+Sk)b

(1+n)
P+R−T,Q+S−T ;red

holds for all P,Q,R, S, T ∈ N1+n
0 with |P | = |Q|, |R| = |S| and T ≤ min{P, S}.

Using this and the explicit formulas from Lemma 5.19 and Proposition 5.22 and
noting that sgn(1+n)(T ) = 1 for all T ∈ N1+n

0 , it is easy to check the identities for the
star products in the special case that f and g are monomials. The identities for the
Poisson brackets are an immediate consequence thereof due to the representation of
the Poisson brackets as a limit of the star product commutator as in Proposition 5.24.
The general case then follows by bilinearity and continuity of the star product and
the Poisson bracket. �
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While it is completely clear that the Wick rotations do not commute with the ∗-
involution given by pointwise complex conjugation, it is somewhat harder to show

that the algebras A (M
(s)
red) with product ?

(s)
red,h̄ are in general not ∗-isomorphic, not

even via some other isomorphism. One possibility to prove this is to examine their

positive linear functionals: A linear functional φ : A (M
(s)
red)→ C is called positive for

the product ?
(s)
red,h̄ with h̄ ∈ Ω ∩R if

φ
(
f ?

(s)
red,h̄ f

)
≥ 0 (6.13)

holds for all f ∈ A (M
(s)
red). It is easy to see that the pullback of a positive linear

functional with a ∗-homomorphism between two ∗-algebras yields again a positive
linear functional. In the special case of s = 1, i.e. M

(1)
red
∼= Dn, the existence of

non-trivial positive linear functionals for negative h̄ is known:

Proposition 6.8 The evaluation functionals δ
(1)
[ρ] : A (Dn)→ C,

f 7→ δ
(1)
[ρ] (f) := f([ρ])

with [ρ] ∈ M (1)
red
∼= Dn are positive linear functionals on A (Dn) with product ?

(1)
red,h̄

for all h̄ ∈ (−∞, 0).

Proof: Positivity of evaluation functionals has been proven in [3, Sec. 5.4] on an
algebra containing (at least) P(Dn) with a product ∗h̄ ful�lling f ?(1)

red,h̄ g = f ∗−h̄/2 g
for all f, g ∈ P(Dn). By continuity of the evaluation functionals, the pointwise
complex conjugation and the product ?

(1)
red,h̄, this extends to whole A (Dn). �

However, there are some limitations to the existence of positive linear functionals in
the special case of s = 1 + n, i.e. M

(1+n)
red

∼= CPn, at least if n = 1:

Lemma 6.9 Consider only the case n = 1 and s = 1 + n = 2. Then the identity

1∑
i,j=0

b
(2)
Ei,Ej ;red ?

(2)
red,h̄ b

(2)
Ej ,Ei;red = 1 + h̄ (6.14)

holds for all h̄ ∈ Ω, where E0 = (1, 0) ∈ N1+1
0 and E1 = (0, 1) ∈ N1+1

0 .

Proof: Proposition 5.22 yields

b
(2)
Ei,Ej ;red ?

(2)
red,h̄ b

(2)
Ej ,Ei;red

=
(1/h̄)↓,2

(1/h̄)↓,1(1/h̄)↓,1
b

(2)
Ei+Ej ,Ei+Ej ;red +

(1/h̄)↓,1
(1/h̄)↓,1(1/h̄)↓,1

b
(2)
Ej ,Ej ;red

= (1− h̄)b
(2)
Ei+Ej ,Ei+Ej ;red + h̄b

(2)
Ej ,Ej ;red

for all i, j ∈ {0, 1}. By summation over i and j we get

1∑
i,j=0

b
(2)
Ei,Ej ;red ?

(2)
red,h̄ b

(2)
Ej ,Ei;red =



92 PAPER I: WICK ROTATIONS IN DEFORMATION QUANTIZATION

= (1− h̄)
(
b

(2)
2E0,2E0;red + 2b

(2)
E0+E1,E0+E1;red + b

(2)
2E1,2E1;red

)
+ 2h̄

(
b

(2)
E0,E0;red + b

(2)
E1,E1;red

)
.

Keeping in mind that the reduced monomials are not linearly independent, this can be

simpli�ed: We �nd that b
(2)
E0,E0;red + b

(2)
E1,E1;red = J (2)

red is the constant 1-function, and

the same is true for their pointwise square (b
(2)
E0,E0;red + b

(2)
E1,E1;red)2 = b

(2)
2E0,2E0;red +

2b
(2)
E0+E1,E0+E1;red + b

(2)
2E1,2E1;red. �

Proposition 6.10 Consider only the case n = 1 and h̄ ∈ (−∞,−1). For signature
s = 2, the only linear functional φ : A (CP1) → C, which is positive for the product

?
(2)
red,h̄, is φ = 0. But for signature s = 1, the evaluation functionals from Proposi-

tion 6.8 are non-trivial positive linear functionals for the product ?
(1)
red,h̄ on A (D1).

Consequently, the ∗-algebra A (D1) with product ?
(1)
red,h̄ and pointwise complex con-

jugation as ∗-involution is not ∗-isomorphic to the ∗-algebra A (CP1) with product

?
(2)
red,h̄ and pointwise complex conjugation as ∗-involution.

Proof: Let s = 2 and let φ : A (CP1) → C be a positive linear functional for

the product ?
(2)
red,h̄. Then the previous Lemma 6.9 shows that there exist functions

f1, . . . , f4 ∈ A (CP1) such that

0 ≤
4∑
k=1

φ
(
fk ?

(2)
red,h̄ fk

)
= φ(1 + h̄) = (1 + h̄)φ(1) = (1 + h̄)φ

(
1 ?

(2)
red,h̄ 1

)
≤ 0

holds because h̄ < −1, so φ(1) = 0. But then the Cauchy Schwarz inequality applied

to the (possibly degenerate) inner product A (CP1) 3 (f, g) 7→ φ(f ?
(2)
red,h̄ g) ∈ C

shows that∣∣φ(f)
∣∣2 =

∣∣φ(1 ?(2)
red,h̄ f

)∣∣2 ≤ φ(1 ?(2)
red,h̄ 1

)
φ
(
f ?

(2)
red,h̄ f

)
= φ(1)φ

(
f ?

(2)
red,h̄ f

)
= 0

holds for all f ∈ A (CP1), and therefore φ = 0. The rest is clear. �

6.3 Applications

In this section we use the reduced Wick rotation to transfer some of the results
obtained in [17] for the special case of the hyperbolic disc, i.e. s = 1, to general
signatures. Note that one could also check that all the proofs in [17] work for an
arbitrary signature, but the Wick rotation provides a more elegant way to generalize
these results. We will again drop the superscripts (s) most of the time, the following
is valid for every choice of signature s ∈ {1, . . . , 1 + n}.

Proposition 6.11 The fundamental monomials cP,Q with P,Q ∈ Nn0 form an abso-
lute Schauder basis of A (Mred). More precisely, every f ∈ A (Mred) can be expanded
in a unique way as an absolutely convergent series

f =
∑

P,Q∈Nn0

fP,QcP,Q (6.15)
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with complex coe�cients fP,Q that ful�l the estimate

‖f‖red,r :=
∑

P,Q∈Nn0

|fP,Q|r|P |+|Q| <∞ (6.16)

for all r ∈ [1,∞). Moreover, the topology of A (Mred) (i.e. the topology of locally uni-
form convergence of the holomorphic extensions to M̂red) can equivalently be described
by these seminorms ‖f‖red,r and the coe�cients fP,Q can be calculated explicitly by
means of the integral formula

fP,Q =
1

(−4π2)n

∮
C

· · ·
∮
C

f̂

(
1 +

∑n
k=1 σku

kvk
)max{|P |,|Q|}−1

uP+(1,...,1)vQ+(1,...,1)
dnu ∧ dnv (6.17)

for all P,Q ∈ Nn0 . Here f ∈ A (Mred) and f̂ ∈ O(M̂red) satis�es ∆∗red(f̂) = f . The
coordinates u and v were de�ned in Equation (3.13) and C ⊆ C is, in these projective
coordinates, a circle around zero with radius in (0, 1/

√
n).

Proof: For s = 1 this is exactly the statement of [17, Thm. 3.16]. Because the Wick
rotation is a homeomorphic isomorphism and using Lemma 6.6, the generalization to
arbitrary signatures is immediately clear for everything except the integral formula.
In order to prove that (6.17) holds, we have to check that it is compatible with the
holomorphic isomorphisms α(s):

We have to use superscripts (s) again to indicate the signature s. As u(s),k ◦α(s) =
u(1+n),k and v(s),k ◦ α(s) = v(1+n),k for all k ∈ {1, . . . , s− 1} as well as u(s),k ◦ α(s) =
iu(1+n),k and v(s),k ◦ α(s) = iv(1+n),k for all k ∈ {s, . . . , n} hold, we get(

α(s)
)∗

(dnu(s) ∧ dnv(s)) = (−1)n+1−s dnu(1+n) ∧ dnv(1+n)

as well as(
α(s)

)∗(
1 +

n∑
k=1

σ
(s)
k u(s),kv(s),k

)
= 1 +

n∑
k=1

σ
(1+n)
k u(1+n),kv(1+n),k

and(
α(s)

)∗(
(u(s))P+(1,...,1)(v(s))Q+(1,...,1)

)
=

= i
∑n
k=s(Pk+Qk+2)(u(1+n))P+(1,...,1)(v(1+n))Q+(1,...,1)

for all P,Q ∈ Nn0 . So given f̂ ∈ O(M̂
(s)
red), then the right-hand side of (6.17) for f̂

in signature s, multiplied with the factor i
∑n
k=s(Pk+Qk), gives the same result as for

f̂ ◦ α(s) ∈ O(M̂
(s)
red) in signature 1+n. This matches precisely with Lemma 6.6, which

shows that

Φ
(s)
red(f) =

∑
P,Q∈Nn0

fP,QΦ
(s)
red(b

(s)
P,Q;red) =

∑
P,Q∈Nn0

fP,Q i
∑n
k=s(Pk+Qk)b

(1+n)
P,Q;red

for all f ∈ A (M
(s)
red) with expansion coe�cients fP,Q. This way, one �rst sees that

(6.17) holds not only for signature s = 1 but also for s = 1 + n, and then that it even
holds for all s ∈ {1, . . . , n+ 1}. �
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We would now like to generalize Corollary 5.23 and Proposition 5.24 for analytic
functions. Because of the poles in h̄ we only discuss one-sided limits: For some
function f : Ω ∩ R → C the limit when h̄ approaches 0 from the left is denoted by
limh̄→0− f(h̄) (if it exists).

Proposition 6.12 The limits limh̄→0− f ?red,h̄g and limh̄→0−
1
ih̄

(
f ?red,h̄g−g?red,h̄f

)
exist for any two analytic functions f, g ∈ A (Mred). They are given by

lim
h̄→0−

f ?red,h̄ g = fg (6.18)

and

lim
h̄→0−

1

ih̄

(
f ?red,h̄ g − g ?red,h̄ f

)
= {f, g}red (6.19)

with the reduced Poisson bracket { · , · }red on Mred.

Proof: This was proven in [17, Thm. 4.5] in the special case of signature s = 1 for

a product ∗h̄ with −h̄ ∈ Ω ful�lling f ?
(1)
red,h̄ g = f ∗−h̄/2 g for all f, g ∈ A (M

(1)
red) and

the corresponding Poisson bracket { · , · }∗ = 2{ · , · }red. The statements for arbitrary
signatures s follow immediately from Theorem 6.4 and Theorem 6.7. �

Note also that [17, Example 4.2] shows that there exist two functions f, g ∈ A (Mred)
for which f ?red,h̄ g has non-trivial �rst order poles at all h̄ = 1/m with m ∈ N. As a
consequence, the result of the above Proposition 6.12 cannot be generalized to limits
over arbitrary sequences (h̄k)k∈N in Ω with limit 0.

A Symmetrized covariant derivatives

On a smooth manifold M we de�ne the spaces of complex tensor �elds

S `(M) := Γ∞(S` T∗,CM) and (A ⊗S )k,`(M) := Γ∞(Λk T∗,CM ⊗ S` T∗,CM)

for all k, ` ∈ Z, as well as the Z-graded algebra S •(M) :=
⊕

`∈ZS `(M) with
the usual pointwise symmetric tensor product ∨ and the Z2-graded algebra (A ⊗
S )•,•(M) :=

⊕
k,`∈Z(A ⊗S )k,`(M) with product ◦ given by the combination of the

pointwise antisymmetric and symmetric tensor products. In order to de�ne graded
commutators, a Z2-grading on these two algebras is needed: In the case of S •(M),
this is the trivial one, in which all elements of S •(M) have even degree, and on
(A ⊗S )•,•(M) we consider the antisymmetric degree only, i.e. all elements of (A ⊗
S )k,`(M) with k ∈ 2Z, ` ∈ Z have even degree and all elements of (A ⊗S )k,`(M)
with k ∈ 1 + 2Z, ` ∈ Z have odd degree. This way, both S •(M) and (A ⊗S )•,•(M)
are graded commutative. For later use we also de�ne the total degree Deg on (A ⊗
S )•,•(M) by setting

Deg Ω = (k + `)Ω (A.1)

for all Ω ∈ (A ⊗S )k,`(M) with k, ` ∈ Z. Clearly Deg is a graded derivation of degree
(0, 0). Note that S 0(M) ∼= C∞(M) ∼= (A ⊗S )0,0(M) and that S •(M) is generated
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as a complex algebra by S 0(M)⊕S 1(M), whereas (A ⊗S )•,•(M) is generated as
a complex algebra by (A ⊗S )0,0(M)⊕ (A ⊗S )1,0(M)⊕ (A ⊗S )0,1(M).

We will need two other operators, the Koszul di�erentials: There are unique C-
linear graded derivations δ, δ∗ of (A ⊗S )•,•(M) of degree (+1,−1) and (−1,+1) that
ful�l

δ(1⊗ ω) = ω ⊗ 1 as well as δ∗(ρ⊗ 1) = 1⊗ ρ , (A.2)

respectively, for all ρ, ω ∈ Γ∞(T∗,CM). In local coordinates, δ(ρ ⊗ ω) =
∑
i(dx

i ∧
ρ)⊗ (ι∂/∂xiω) and δ∗(ρ⊗ω) =

∑
i(ι∂/∂xiρ)⊗ (dxi∨ω) hold for all ρ ∈ Γ∞(Λk T∗,CM)

and ω ∈ Γ∞(S` T∗,CM). Of course, δ and δ∗ are not only C-linear but even C∞(M)-
linear.

Lemma A.1 For the graded commutators we have

[δ, δ] = 2δ2 = 0 , [δ∗, δ∗] = 2(δ∗)2 = 0 , [δ, δ∗] = [δ∗, δ] = Deg ,

[Deg, δ] = −[δ,Deg] = 0 and [Deg, δ∗] = −[δ∗,Deg] = 0 .

Proof: One checks easily that this holds on (A ⊗S )0,0(M), (A ⊗S )1,0(M) and
(A ⊗S )0,1(M). But graded derivations are already uniquely determined by how they
act on these spaces. �

One can also check that δ and δ∗ commute with pullbacks. That is, whenever Ψ : M →
N is smooth, then δ ◦Ψ∗ = Ψ∗ ◦δ and δ∗ ◦Ψ∗ = Ψ∗ ◦δ∗ where Ψ∗ : (A ⊗S )•,•(N)→
(A ⊗S )•,•(M) denotes the usual pullback.

Next we consider the insertion of vector �elds into the antisymmetric and symmet-
ric part: Given X ∈ Γ∞(TCM), then there exist unique C-linear graded derivations
ιaX , ι

s
X of (A ⊗S )•,•(M) of degree (−1, 0) and (0,−1) that ful�l

ιaX(ρ⊗ 1) = 〈ρ,X〉 as well as ιsX(1⊗ ω) = 〈ω,X〉 , (A.3)

respectively, for all ρ, ω ∈ Γ∞(T∗,CM). Clearly, ιaX and ιsX are even C∞(M)-linear
and:

Lemma A.2 For the graded commutators we have

[ιaX , ι
a
Y ] = [ιaX , ι

s
Y ] = [ιsX , ι

a
Y ] = [ιaX , δ

∗] = [ιsX , δ] = 0 ,

[ιaX , δ] = ιsX , [ιsX , δ
∗] = ιaX , [Deg, ιaX ] = −ιaX , [Deg, ιsX ] = −ιsX

for all X,Y ∈ C∞(M).

Proof: These identities are easy to check on (A ⊗S )0,0(M), (A ⊗S )1,0(M) and
(A ⊗S )0,1(M). �

We see that the C-linear span of δ, δ∗, Deg and all ιaX and ιsX with X ∈ C∞(M) in
the graded Lie algebra of C-linear graded derivations of (A ⊗S )•,•(M) is a graded
Lie subalgebra. Now we can de�ne exterior covariant derivatives:
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De�nition A.3 A C-linear graded derivation D of (A ⊗S )•,•(M) of degree (+1, 0)
that ful�ls D(ρ⊗1) = dρ⊗1 for all ρ ∈ Γ∞(Λ•T∗,CM) is called an exterior covariant
derivative on M .

For every covariant derivative ∇ on M there exists a unique exterior covariant deriva-
tive D∇ on M that ful�ls

ιaXD
∇(1⊗ ω) = 1⊗∇Xω (A.4)

for all ρ ∈ Γ∞(Λ•T∗,CM), ω ∈ S •(M) and X ∈ Γ∞(TCM). In local coordinates,

D∇(ρ⊗ ω) = dρ⊗ ω +
∑
i

(dxi ∧ ρ)⊗∇∂/∂xiω (A.5)

for all ρ ∈ Γ∞(Λ•T∗,CM) and ω ∈ S •(M). Conversely, every exterior covariant
derivative D on M determines a unique covariant derivative ∇D on M that ful�ls

〈ω,∇DXY 〉 = X
(
〈ω, Y 〉

)
− 〈∇DXω, Y 〉 = X

(
〈ω, Y 〉

)
− ιsY ιaXD(1⊗ ω) (A.6)

for all X,Y ∈ Γ∞(TCM) and all ω ∈ Γ∞(T∗,CM). One can check that ∇D∇ = ∇ for
every covariant derivative ∇ on M and that D∇

D

= D for every exterior covariant
derivative on M . So there is a 1-to-1 correspondence between covariant derivatives
and exterior covariant derivatives.

We say that an exterior covariant derivative D is torsion-free if the associated
covariant derivative ∇D is torsion-free.

Proposition A.4 An exterior covariant derivative D on M is torsion-free if and
only if [D, δ] = 0.

Proof: Denote the torsion of ∇D by T . We compute

ιaY ι
a
X [D, δ](1⊗ ω) = ιaY ι

a
X(dω ⊗ 1) + ιaY ι

a
XδD(1⊗ ω)

= 2〈dω,X ∧ Y 〉 − ιaY διaXD(1⊗ ω) + ιaY ι
s
XD(1⊗ ω)

= 2〈dω,X ∧ Y 〉 − ιaY δ(1⊗∇Xω) + ιsXι
a
YD(1⊗ ω)

= 2〈dω,X ∧ Y 〉 − 〈∇Xω, Y 〉+ 〈∇Y ω,X〉
= 2〈dω,X ∧ Y 〉 −X

(
〈ω, Y 〉

)
+ Y

(
〈ω,X〉

)
+ 〈ω,∇XY 〉 − 〈ω,∇YX〉

= 〈ω,−[X,Y ] +∇XY −∇YX〉
= 〈ω, TX,Y 〉 .

In particular, if [D, δ] = 0, then ∇D is torsion-free. Conversely, if ∇D is torsion-free,
then [D, δ] vanishes on (A ⊗ S )0,1(M) by the above calculation. But [D, δ] is a
C-linear graded derivation of (A ⊗S )•,•(M) of degree (+2,−1), so [D, δ] = 0 in this
case. �

If g ∈ S 2(M) is real and non-degenerate, then there exists a unique exterior covariant
derivative D onM that ful�ls D(1⊗g) = 0 = [D, δ], namely the one corresponding to
the Levi-Civita connection. This exterior Levi-Civita connection will be interesting
for us:



A. SYMMETRIZED COVARIANT DERIVATIVES 97

Lemma A.5 Let M be a smooth manifold, g ∈ Γ∞(S2 T∗M) a real and non-degen-
erate symmetric tensor with Levi-Civita connection ∇, and Φ: M → M a di�eo-
morphism. If ∇XΦ∗(g) = 0 for all X ∈ Γ∞(TCM), then the exterior Levi-Civita
connection D associated to g commutes with the pullback Φ∗, i.e. DΦ∗(Ω) = Φ∗(DΩ)
for all Ω ∈ (A ⊗S )•,•(M).

Proof: It su�ces to show that D′ : (A ⊗S )•,•(M)→ (A ⊗S )•,•(M), Ω 7→ D′Ω :=
(Φ−1)∗(DΦ∗(Ω)) is an exterior covariant derivative and ful�ls D′(1⊗ g) = 0 = [D′, δ]:
It is easy to see that D′ is a C-linear graded derivation of (A ⊗S )•,•(M) of degree
(+1, 0) that ful�ls D′(ρ ⊗ 1) = dρ ⊗ 1 for all ρ ∈ Γ∞(Λ• T∗,CM), hence an exterior
covariant derivative. It commutes with δ (in the graded sense) because δ commutes
with D and all pullbacks. Finally, D′(1 ⊗ g) holds because ∇XΦ∗(g) = 0 for all
X ∈ Γ∞(TCM). �

Note that the condition ∇Φ∗(g) = 0 is ful�lled e.g. if Φ∗(g) = g, but also more
generally if Φ∗(g) = λg with λ ∈ C.

Proposition A.6 LetM be a smooth manifold endowed with a free and proper action
· . · of a Lie group G and a G-invariant exterior covariant derivative D on M
(i.e. D commutes with the action of G on (A ⊗ S )•,•(M) by pullbacks like in the
previous Lemma A.5). Moreover, write Pr: M → M/G for the canonical projection
onto the quotient manifold M/G and assume we have chosen a smooth G-invariant
complement ΞC =

⋃
p∈MΞCp of ker(T Pr), i.e. a linear subbundle of TCM such that

TCM = ΞC ⊕ ker(T Pr) and such that ΞCg.p =
(
Tp( · / g)

)
(ΞCp ) for all p ∈ M . Let

ΘΞ : Γ∞(TCM) → Γ∞(TCM) be the corresponding projection on this subbundle ΞC

and Θ∗Ξ : Γ∞(T∗,CM)→ Γ∞(T∗,CM) its dual projection. Then

Pr∗
(
DredΩ

)
:= (Θ∗Ξ)⊗(k+1+`)DPr∗(Ω) (A.7)

for all Ω ∈ (A ⊗S )k,`(M/G), k, ` ∈ N0 de�nes an exterior covariant derivative on
M/G. If D is torsion-free, then Dred also remains torsion-free.

Proof: Since D and ΞC are G-invariant, it follows that (Θ∗Ξ)⊗(k+1+`)DPr∗(Ω) is
G-invariant, so (A.7) does describe a well-de�ned C-linear endomorphism Dred of
(A ⊗S )•,•(M/G) of degree (1, 0) and one can also check that Dred is again a graded
derivation. Using that T Pr ◦ΘΞ = T Pr one sees that Dred(ρ⊗ 1) = dρ⊗ 1 holds for
all ρ ∈ Γ∞(Λ•T∗,CM). As δ commutes with pullbacks and Θ∗Ξ, one also �nds that
Dred (graded) commutes with δ if D does. �

Next we consider the graded commutator of an exterior covariant derivative D on a
smooth manifold M with δ∗, which is a C-linear graded derivation of (A ⊗S )•,•(M)
of degree (0,+1) and satis�es [D, δ∗](f) = δ∗Df = 1 ⊗ df for all f ∈ C∞(M). So
[D, δ∗] restricts to a C-linear derivation Dsym of S •(M) of degree 1.

De�nition A.7 A C-linear derivation ∆ of S •(M) of degree 1 that ful�ls ∆f = df
for all f ∈ C∞(M) is called a symmetrized covariant derivative, and for every exterior
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covariant derivative D of M we de�ne its induced symmetrized covariant derivative
Dsym : S •(M)→ S •(M) by

1⊗Dsymω := [D, δ∗](1⊗ ω) (A.8)

for all ω ∈ S •(M).

Given an exterior covariant derivative D, we compute that its induced symmetrized
covariant derivative Dsym ful�ls

1⊗ ιY ιXDsymω = ιsY ι
s
X [D, δ∗](1⊗ ω)

= ιsY ι
s
Xδ
∗D(1⊗ ω)

= ιsY ι
a
XD(1⊗ ω) + ιsY δ

∗ιsXD(1⊗ ω)

= 1⊗ ιY∇DXω + ιaY ι
s
XD(1⊗ ω)

= 1⊗
(
ιY∇DXω + ιX∇DY ω

)
= 1⊗

(
〈∇DXω, Y 〉+ 〈∇DY ω,X〉

)
for all ω ∈ Γ∞(T∗,CM). So in local coordinates, Dsymω = dxi ∨∇D∂/∂xiω.

Conversely, every C-linear derivation ∆ of S •(M) that ful�ls ∆f = df for all
f ∈ C∞(M) de�nes a covariant derivative ∇∆ on M by〈

∇∆
Xω, Y

〉
:= 〈∆ω,X ∨ Y 〉+

1

2

(
X(〈ω, Y 〉)− Y (〈ω,X〉)− 〈ω, [X,Y ]〉

)
(A.9)

for all ω ∈ Γ∞(T∗,CM) and all X,Y ∈ Γ∞(TCM). This covariant derivative ∇∆

then is torsion-free because

〈∇∆
Xω, Y 〉 − 〈∇∆

Y ω,X〉 = X(〈ω, Y 〉)− Y (〈ω,X〉)− 〈ω, [X,Y ]〉 (A.10)

and ful�ls

〈∇∆
Xω, Y 〉+ 〈∇∆

Y ω,X〉 = 2〈∆ω,X ∨ Y 〉 = ιY ιX∆ω . (A.11)

Consequently there is a 1-to-1-correspondence between torsion-free covariant deriva-
tives (or their exterior covariant derivatives) and symmetrized covariant derivatives.
For the reduction of symmetrized covariant derivatives we get:

Proposition A.8 Let M , G, D, Pr and Ξ be as in Proposition A.6. Then Dsym
red ,

the symmetrized covariant derivative on M/G constructed out of the reduced exterior
covariant derivative Dred, ful�ls

Pr∗
(
Dsym

red ω
)

= (Θ∗Ξ)⊗(k+1)Dsym Pr∗(ω) (A.12)

for all ω ∈ S k(M/G), k ∈ N0.

Proof: As δ∗ commutes with the pullback Pr∗ and the projection Θ∗Ξ this follows
immediately from (A.7). �
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Being an endomorphism of S •(M), a symmetrized covariant derivative can be iter-
ated. Given k ∈ N0, X0 ∈ Γ∞(S0 TCM), . . . , Xk ∈ Γ∞(Sk TCM), then

C∞(M) 3 f 7→
k∑
r=0

〈
(Dsym)rf,Xr

〉
∈ C∞(M)

is a di�erential operator of degree k. Conversely, by induction over their symbols,
one can show that all di�erential operators of degree k on C∞(M) are of this form.
So symmetrized covariant derivatives allow to describe di�erential operators rather
explicitly but without requiring a choice of coordinates.

So far, all results in the appendix would also make sense in a real setting. The
decomposition of a covariant derivative on a complex manifold into holomorphic and
antiholomorphic parts, which we introduce now, requires to use the complexi�ed
tangent space. Let M be a complex manifold, so that its complexi�ed tangent and
cotangent space split into (1, 0) and (0, 1) parts. Consequently

S k(M) =
⊕
p+q=k

S (p,q)(M) (A.13)

and

(A ⊗S )k,`(M) =
⊕
p+q=k
r+s=`

(A ⊗S )(p,q),(r,s)(M) (A.14)

also split into subspaces

S (p,q)(M) := Γ∞
(
Sp T∗,(1,0)M ∨ Sq T∗,(0,1)M

)
, (A.15)

(A ⊗S )(p,q),(r,s)(M)

:= Γ∞
(
Λp T∗,(1,0)M ∧ Λq T∗,(0,1)M ⊗ Sr T∗,(1,0)M ∨ Ss T∗,(0,1)M

)
. (A.16)

Note that δ and δ∗ are compatible with this splitting in the sense that

δ
(
(A ⊗S )(p,q),(r,s)(M)

)
⊆

⊆ (A ⊗S )(p+1,q),(r−1,s)(M)⊕ (A ⊗S )(p,q+1),(r,s−1)(M) , (A.17)

δ∗
(
(A ⊗S )(p,q),(r,s)(M)

)
⊆

⊆ (A ⊗S )(p−1,q),(r+1,s)(M)⊕ (A ⊗S )(p,q−1),(r,s+1)(M) (A.18)

hold for all p, q, r, s ∈ N0. For exterior covariant derivatives, there is a similar com-
patibility condition:

De�nition A.9 LetM be a complex manifold and D an exterior covariant derivative
on M . Then D is said to be compatible with the complex structure if

D
(
(A ⊗S )(p,q),(r,s)(M)

)
⊆ (A ⊗S )(p+1,q),(r,s)(M)⊕(A ⊗S )(p,q+1),(r,s)(M) (A.19)

holds for all p, q, r, s ∈ N0.
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If D is the exterior covariant derivative associated to a covariant derivative ∇, then it
follows from Equations (A.5) and (A.6) that D is compatible with the complex struc-
ture if and only if ∇X preserves the holomorphic and antiholomorphic parts of the tan-
gent bundle for all X ∈ Γ∞(TCC1+n), i.e. ∇X(Γ∞(T(1,0)C1+n)) ⊆ Γ∞(T(1,0)C1+n)
and ∇X(Γ∞(T(0,1)C1+n)) ⊆ Γ∞(T(0,1)C1+n). As an example, this is well-known to
be the case for the Levi-Civita covariant derivative on a Kähler manifold.

Using (A.18) it is easy to check that condition (A.19) implies that the symmetrized
covariant derivative ful�ls Dsym(S (p,q)(M)) ⊆ S (p+1,q)(M)⊕S (p,q+1)(M).

De�nition A.10 Let M be a complex manifold and D an exterior covariant deriva-
tive compatible with the complex structure. Then we de�ne

Dhol, Dhol : (A ⊗S )•,•(M)→ (A ⊗S )•,•(M) (A.20)

and

Dsym
hol , D

sym

hol
: S •(M)→ S •(M) (A.21)

as the (1, 0) and (0, 1)-components of D and Dsym, respectively, i.e.

Dhol :=
∑

p,q,r,s∈N0

Θ∗,(p+1,q),(r,s)DΘ∗,(p,q),(r,s) , (A.22)

Dhol :=
∑

p,q,r,s∈N0

Θ∗,(p,q+1),(r,s)DΘ∗,(p,q),(r,s) (A.23)

and

Dsym
hol :=

∑
p,q∈N0

Θ∗,(p+1,q)DsymΘ∗,(p,q) , (A.24)

Dsym

hol
:=

∑
p,q∈N0

Θ∗,(p,q+1)DsymΘ∗,(p,q) (A.25)

with projections Θ∗,(p,q),(r,s) : (A ⊗ S )(•,•),(•,•)(M) → (A ⊗ S )(p,q),(r,s)(M) and
Θ∗,(p,q) : S (•,•)(M)→ S (p,q)(M) on graded subspaces.

Because of the required compatibility with the complex structure one gets D = Dhol +
Dhol and D

sym = Dsym
hol +Dsym

hol
. Furthermore,[

Dhol, δ
∗](1⊗ ω) = 1⊗Dsym

hol ω (A.26)

holds for all ω ∈ S •(M), and analogously for the antiholomorphic part. Conse-
quently:

Proposition A.11 Let M be a complex manifold, D an exterior covariant deriva-
tive on M that is compatible with the complex structure, and Dsym its symmetrized
covariant derivative. Then

Θ∗,(k,0)(Dsym)kf = (Dsym
hol )kf and Θ∗,(0,k)(Dsym)kf = (Dsym

hol
)kf (A.27)

hold for all f ∈ C∞(M) and all k ∈ N0, with Θ∗,(k,0) as in the previous De�ni-
tion A.10.

Proof: This follows immediately from the decomposition Dsym = Dsym
hol +Dsym

hol
. �
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Abstract

For any semisimple coadjoint orbit Ô of a complex connected semisimple Lie
group Ĝ, we obtain a family of strict Ĝ-invariant products ∗̂h̄ on the space of
holomorphic functions on Ô. For any semisimple coadjoint orbit O of a real
connected semisimple Lie group G, we obtain strict G-invariant products ∗h̄ on
a space A(O) of certain analytic functions on O by restriction. A(O) endowed
with one of the products ∗h̄ is a G-Fréchet algebra, and the formal expansion
of the products around h̄ = 0 determines a formal deformation quantization of
O, which is of Wick type if G is compact. We study a generalization of a Wick
rotation, which provides isomorphisms between the quantizations obtained
for di�erent real orbits with the same complexi�cation. Our construction
relies on an explicit computation of the canonical element of the Shapovalov
pairing between generalized Verma modules, and complex analytic results on
the extension of holomorphic functions.
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1 Introduction

The quantization problem in physics asks how to associate a quantum system to a
classical mechanical system, such that the classical system can be recovered from the
quantum system in a classical limit. Since both systems can be studied by their observ-
able algebras, a �rst step is to quantize the classical observable algebra. This algebra
is usually the Poisson algebra C∞(M) of smooth functions on a Poisson manifold M .
The observable algebra of a quantum mechanical system is some non-commutative
∗-algebra A, which in many cases is obtained from a C∗-algebra. In a second step,
the states of the quantum mechanical system can be obtained as normalized positive
linear functionals on A. To de�ne their superposition, one has to represent A on a
(pre) Hilbert space, so that the superposition of two vector states can be de�ned as
the vector state corresponding to the sum of the two vectors.

Formal deformation quantization, as introduced in [2], has proven to be a fruitful
theory for studying some aspects of the quantization problem. One views Planck's
constant h̄ as a formal parameter ν and tries to �nd so-called formal star products ?
on A = C∞(M)[[ν]], which may be thought of as the in�nite jet of a full solution to
the quantization problem at h̄ = 0. These star products are associative C[[ν]]-bilinear
products for which 1 ∈ C∞(M) is a unit and which satisfy the correct classical
limit. To be more precise, if f, g ∈ C∞(M) and f ? g =

∑∞
r=0 ν

rCr(f, g) with
operators Cr : C∞(M)×C∞(M)→ C∞(M), then one requires C0 to be the pointwise
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multiplication, C0(f, g) = fg, and that the quantization is in the direction of the
Poisson bracket, C1(f, g)−C1(g, f) = i{f, g}. Usually one also requires the Cr to be
bidi�erential operators, so that ? is local and can be restricted to open subsets of M .
Using formal power series means on the one hand that we cannot substitute ν with
the real value of Planck's constant as required for direct physical applications, but on
the other hand transfers the quantization problem to algebra by neglecting analytic
aspects, such as convergence of the power series. Consequently, many powerful tools
become available for its study, and existence and classi�cation results were obtained
in [5,14,18,36] for symplectic manifolds, whereas in the more general case of Poisson
manifolds they follow from Kontsevich's formality theorem [28]. One can also study
formal star products that are equivariant with respect to the action of a Lie group,
where the classi�cation follows for example from [15].

A complete solution of the quantization problem consists of a Hilbert space H
together with a quantization map that associates a quantum observable, usually a
self-adjoint operator on H, to any classical observable. This motivates the de�nition
of a strict quantization [30,34,35,37], which is some �eld of �nice� ∗-algebras Ah̄ (over
C) depending �nicely� on a parameter h̄ ranging over some subset of C, with A0

being a completion of the classical observable algebra and the deformation being in
the direction of the Poisson bracket. However, strict quantizations are much harder to
understand than formal deformation quantizations. There are many examples of strict
quantizations in di�erent contexts, and therefore there are several ways to formalize
the above de�nition, i.e. specifying the parameter set and what �nice� actually means2.
No general existence results are known, and a classi�cation seems completely hopeless
due to the increased complexity.

There are two prominent constructions of strict quantizations. The �rst is due to
Rie�el [37] who, using oscillatory integrals, deforms the product on a Fréchet alge-
bra endowed with an isometric action of Rd. If the original algebra is a C∗-algebra,
then Rie�el constructs a C∗-algebraic quantization. A generalization to negatively
curved Kählerian Lie groups can be found in [6]. The second construction, due to
Natsume, Nest, and Peter [35], essentially glues convergent versions of the Weyl prod-
uct on charts to obtain a C∗-algebraic quantization. However, both methods work
only for some symplectic manifolds and fail for example for the 2-sphere with its
SO(3)-invariant symplectic structure [38]. They also make crucial use of the �nite
dimensionality of the classical mechanical system, so it remains unclear how to apply
them to quantum �eld theories, despite such �eld theories �tting into the framework
of formal deformation quantization.

Another approach to strict quantization was proposed by Beiser and Waldmann in
[3,4,40]. They start with formal deformation quantizations, which are well-understood,
and try to �nd subalgebras on which the formal power series converge. Such subal-
gebras are usually de�ned using additional geometric structures, and can be com-
pleted with respect to a topology in which the product is continuous. This approach
was carried out explicitly for star products of exponential type on possibly in�nite-
dimensional vector spaces [39], for the linear Poisson structure on the dual of a Lie
algebra [17], and for the hyperbolic disc Dn using an invariant star product obtained

2We attempted to give a de�nition that captures the most relevant cases in De�nition Intro.2.28.
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via phase space reduction [29]. See also [41] for a survey. In this paper, we extend this
approach to semisimple coadjoint orbits of connected semisimple Lie groups, which
gives a much larger class of geometrically interesting examples.

Coadjoint orbits play an important role in di�erent areas of mathematics. In
the representation theory of unitary Lie groups they appear e.g. in the Kirillov orbit
method [27], while in symplectic geometry they are related to momentum maps. Ba-
sic examples of coadjoint orbits are hyperbolic discs and complex projective spaces,
including the 2-sphere. Any coadjoint orbit O of a Lie group G has a canonical
G-invariant symplectic form, and if O is semisimple and G is compact, connected,
and semisimple then there is a unique compatible G-invariant complex structure that
makes O a Kähler manifold.

Constructions of star products on coadjoint orbits are due to many authors [1,
8�11, 19, 25, 26]. In this paper, we focus on semisimple coadjoint orbits of connected
semisimple Lie groups, and the algebraic construction of Alekseev�Lachowska [1]. The
canonical element Fλ of the Shapovalov pairing between certain generalized Verma
modules satis�es an associativity equation generalizing that of a Drinfel'd twist. This
twist induces a formal product for holomorphic functions on a complex orbit and
a formal star product for smooth functions on a real orbit, and those products are
compatible by restriction. It is very convenient that we can pass from one setting to
the other: We will mainly work in the complex setting, which is more convenient for
obtaining continuity estimates, and restrict to the real setting only in the very end.

Our �rst result uses methods developed by Ostapenko [32] to obtain an explicit
formula for the canonical element of the Shapovalov pairing for a semisimple Lie
algebra g:

Main Theorem I The Shapovalov pairing 〈 · , · 〉∼λ : U (ñ+) × U (ñ−) → C is non-

degenerate if λ ∈ Λ̃, and in this case its canonical element Fλ ∈ U (ñ+) ⊗̂U (ñ−) is
given by

Fλ =
∑
w∈W̃

pwλ (αw)−1π̃+
λ (Xw)⊗ π̃−λ (Yw) . (1.1)

The notation is explained in detail in Section 3. For now, it su�ces to mention that
the Shapovalov pairing is a pairing between the universal enveloping algebras of two
nilpotent Lie subalgebras ñ± of g, depending on a parameter λ ∈ g∗. The sum is over
a set of words W̃ related to the root system of g, the pwλ (αw) are non-zero coe�cients
which are de�ned by an explicit formula, Xw and Yw are elements of U g and π̃±λ maps
these elements to U (ñ±). The element Fh̄, which induces the star product, is obtained
by rescaling λ, and doing so the coe�cients pwiλ/h̄(αw)−1 will depend rationally on h̄,
with a countable set of poles P that accumulate only at 0. It seems as if explicit
formulas for deformation quantizations received special attention by various authors,
and (1.1) provides such a formula that works in great generality.

As mentioned above, the formal expansion of Fh̄ induces formal products in a
complex and a real setting. Furthermore, we also obtain a family of actual (non-
formal) products for holomorphic polynomial functions in the complex setting and
for polynomial functions in the real setting, parametrized by C\P , since only �nitely
many elements of the in�nite sum de�ning Fh̄ are non-zero on polynomials. All these
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products are G-invariant, and under some conditions on the Cartan subalgebra used
in the construction they are also Hermitian, meaning that f ∗h̄ g = g ∗h̄ f . In the real
setting and for a compact semisimple connected Lie group G, the formal star product
is of Wick type [24] with respect to the Kähler complex structure on the coadjoint
orbit, meaning that it derives the �rst argument only in holomorphic directions and
the second argument only in antiholomorphic directions.

The next major step after constructing the star product is to use the explicit
formulas to prove its continuity in the complex setting with respect to the topology of
locally uniform convergence. This topology is locally convex and we can extend the
product to a continuous product on the completion of the holomorphic polynomials.
Using methods from analytic geometry we identify this completion with the space of
holomorphic functions.

Main Theorem II For any semisimple coadjoint orbit Ô of a connected semisimple
complex Lie group G, there is a family of products ∗̂h̄ : Hol(Ô)×Hol(Ô)→ Hol(Ô) for
h̄ ∈ C \ P , where every product ∗̂h̄ is G-invariant and continuous with respect to the
topology of locally uniform convergence. The dependence of ∗̂h̄ on h̄ is holomorphic.

This result is certainly interesting in its own right. However, as mentioned above,
we can also restrict it to real coadjoint orbits O ⊆ Ô. Denote by A(O) the class
of functions on O that extend to holomorphic functions on Ô (if a function extends,
its extension is unique), which contains the polynomials. We de�ne the topology of
extended locally uniform convergence on A(O) by saying that a sequence of func-
tions in A(O) converges if the corresponding sequence of extensions converges locally
uniformly, so that A(O) is homeomorphic to Hol(Ô).

Main Theorem III For any semisimple coadjoint orbit O of a connected semisimple
real Lie group G, there is a family of product ∗h̄ : A(O)×A(O)→ A(O) for h̄ ∈ C\P ,
where every product ∗h̄ is G-invariant and continuous with respect to the topology of
extended locally uniform convergence. The dependence of ∗h̄ on h̄ is holomorphic. The
formal expansion of ∗h̄ around 0 is a formal star product deforming the G-invariant
symplectic form of O.

For the hyperbolic disc the quantum algebra (A(Dn), ∗h̄) agrees with the algebra
obtained in [29] while for the 2-sphere, (A(S2), ∗h̄) is the algebra considered in [16].

Since we constructed a quantization of the holomorphic functions on a complex
coadjoint orbit and the restriction Hol(Ô) → A(O) is an isomorphism, the quantiza-
tions of di�erent real orbits with the same complexi�cation are related:

Main Theorem IV If O and O′ are coadjoint orbits of real semisimple connected Lie
groups with the same complexi�cation and through one common semisimple element,
then the algebras (A(O), ∗h̄) and (A(O′), ∗′h̄) are isomorphic.

This isomorphism generalizes the classical Wick rotation, which can be interpreted
as an isomorphism between the polynomial algebras Pol(CPn) and Pol(Dn). How-
ever, this isomorphism does not necessarily respect the star involutions with which
the algebras A(O) are equipped. In other words, the algebras A(O) and A(O′) are
isomorphic as algebras, but not necessarily as ∗-algebras.
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In order to apply our quantization to physics, we should represent the Fréchet
algebras (A(O), ∗h̄) on a Hilbert space. Given a positive linear functional we can use
the GNS representation to do so. For a formal star product of Wick type all point
evaluation functionals are formally positive. However, formal positivity means only
that the �rst non-vanishing order is positive and therefore, as in this case, might not
survive the passage to strict products (where the contribution of higher orders can
dominate the contribution of the �rst order). For certain coadjoint orbits we will
prove that point evaluations stay positive.

One aspect that we do not discuss in this work is the relation to geometric or
Berezin�Toeplitz quantization [8�11]. These theories construct a quantization by
studying holomorphic sections of a quantizing line bundle over the manifold M . This
line bundle needs to satisfy some integrality condition, which for compact M means
that only countably many values of h̄, accumulating at 0, are allowed. The algebra
C∞(M) is, in the limit h̄ → 0, approximated by �nite dimensional matrix algebras.
The construction of Alekseev�Lachowska coincides with another more geometric con-
struction of star products on semisimple coadjoint orbits by Karabegov [16,26], if h̄ is
not a pole. However, Karabegov's construction still makes sense at the poles, where
it coincides with (a variant of) the Berezin�Toeplitz quantization [26]. In this sense
our in�nite dimensional Fréchet algebras (A(O), ∗h̄) interpolate between the �nite
dimensional Berezin�Toeplitz algebras. It could be very interesting to study this in
greater detail.

Contents

In Section 2 we recall some well-known facts about coadjoint orbits. This includes the
realizability of coadjoint orbits as orbits of matrix Lie groups, and a characterization
of invariant multidi�erential operators on homogeneous spaces. In Section 3 we intro-
duce the Shapovalov pairing of (generalized) Verma modules and derive an explicit
formula for its canonical element. From this, we obtain a product for holomorphic
polynomials on complex coadjoint orbits. In Section 4 we show that this product is
continuous with respect to the topology of locally uniform convergence, so that we can
extend it to the completion, which consists of all holomorphic functions on the orbit.
Finally, we restrict our results to real coadjoint orbits in Section 5. We will determine
additional properties of the star products obtained in this way (e.g. being of Wick
type or of standard ordered type), study positive linear functionals, and investigate
isomorphisms of the algebras obtained for di�erent real forms of the same complex
coadjoint orbit. In Appendix A we give some remaining proofs and more details on
complex structures.
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Notation

In the whole paper G is either a real or complex Lie group, g denotes the Lie algebra
of G, and U g denotes the universal enveloping algebra of g. In Section 3 and Sec-
tion 4, G is always complex. In Section 5, G refers to a real Lie group and Ĝ to a
complexi�cation of G. K denotes a compact real Lie group. Coadjoint orbits through
λ ∈ g∗ are denoted by Oλ.

We write C∞(M) for the smooth complex-valued functions on a manifold M . If
M is a real manifold, TM denotes its (real) tangent bundle (so sections of TM are
derivations of the algebra of real-valued smooth functions on M). The complexi�ca-
tion of TM is denoted by TCM (so sections of TCM are derivations of C∞(M)). IfM
is a complex manifold, then the holomorphic tangent bundle is denoted by T(1,0)M .

2 Preliminaries

In this section we summarize some results that are needed in the rest of this article:
We review the de�nition of coadjoint orbits and their realizability as orbits of matrix
Lie groups in Subsection 2.1. In Subsection 2.2 we introduce invariant multidi�erential
operators on homogeneous spaces.

2.1 Coadjoint orbits

Let G be a real or complex Lie group with Lie algebra g. We denote the adjoint
action of G on g by Ad: G → End(g). For any g ∈ G, Adg := Ad(g) is the tangent
map of the conjugation G 3 x 7→ gxg−1 ∈ G by g. Its di�erential ad: g → end(g) is
given by the Lie bracket, adX(Y ) = [X,Y ]. The coadjoint action Ad∗ : G→ End(g∗)
of G on the dual g∗ of g is de�ned by Ad∗g ξ = ξ ◦Adg−1 for ξ ∈ g∗.

The coadjoint orbit Oλ of G through an element λ ∈ g∗ is de�ned as

Oλ = {ξ ∈ g∗ | ξ = Ad∗g λ for some g ∈ G} . (2.1)

It is well-known that Oλ ∼= G/Gξ where ξ ∈ Oλ is any point on the coadjoint orbit and
Gξ = {g ∈ G | Ad∗g ξ = ξ} is the stabilizer subgroup of ξ. If G is a real (complex) Lie
group, there is a unique smooth (complex) manifold structure on G/Gξ that makes
the projection π : G → G/Gξ a smooth (holomorphic) submersion, and we use it to
de�ne the structure of a smooth (complex) manifold on Oλ. It does not depend on
the choice of ξ ∈ Oλ.

Fix a basis e1, . . . , en of g and let Ckij be the structure constants with respect
to this basis, i.e. [ei, ej ] =

∑n
k=1 C

k
ijek. Then {f, g}(ξ) =

∑n
i,j,k=1 C

k
ijξ(ek) ∂f∂ei

∂g
∂ej

de�nes a linear Poisson structure on g∗, where f, g ∈ C∞(g∗) and where view the
ei as global linear coordinates on g∗. The following proposition is well-known, see
e.g. [12, Example 1.1.3].

Proposition 2.1 If the Lie group G is connected, then the coadjoint orbits of G
are precisely the symplectic leaves of this linear Poisson structure. In particular, all
connected Lie groups with the same Lie algebra have the same coadjoint orbits.
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Corollary 2.2 If the Lie group G is semisimple and connected, then G and its image
under Ad: G→ End(g) have the same coadjoint orbits.

Proof: Since g is semisimple, it has trivial center and therefore ad: g → end(g) is
injective. Consequently, G and its image in End(g) have the same Lie algebra. Since
both are connected, the result follows by applying the previous proposition. �

It is easy to show that G and its image under Ad do not only have the same coadjoint
orbits, but that Ad: G → End(g) also intertwines the actions of G and its image
on the coadjoint orbits. Since the image of G under Ad is a matrix Lie group, we
can therefore, when studying coadjoint orbits of connected semisimple Lie groups,
assume without loss of generality that such a Lie group is a matrix Lie group. Using
the argument provided in [20, Theorem 9] we can even assume that G is a closed
matrix Lie group.

For X ∈ g, denote the fundamental vector �eld of X for the coadjoint action
by XOλ

∣∣
ξ

:= d
dt

∣∣
t=0

Ad∗exp(−tX) ξ, where ξ ∈ Oλ. Note that the map g/gξ → TξOλ,

X 7→ XOλ

∣∣
ξ
is an isomorphism, where gξ denotes the Lie algebra of Gξ. Consequently,

ωKKS(XOλ , YOλ)
∣∣
ξ

= ξ([X,Y ]) (2.2)

determines a well-de�ned 2-form on Oλ, which is called the Kirillov-Kostant-Souriau
form. One can show that ωKKS is symplectic and G-invariant. By symplectic we mean
that ωKKS is closed and that ωKKS

∣∣
ξ
: TξOλ×TξOλ → k is k-bilinear, antisymmetric,

and non-degenerate for all ξ ∈ Oλ, where k is either R or C, depending on whether
G is real or complex.

For a semisimple Lie algebra g, the Killing form B : g× g→ k is non-degenerate,
giving an isomorphism [ : g → g∗, X 7→ X[ := B(X, · ). We denote its inverse by
] : g∗ → g. In the complex case we say that λ ∈ g∗ is semisimple if adλ] ∈ end(g) is
diagonalisable and in the real case λ ∈ g∗ is semisimple if the complex linear extension
of λ to the complexi�cation of g is semisimple. A coadjoint orbit Oλ is semisimple if
λ is semisimple.

Proposition 2.3 Let G be a complex connected semisimple Lie group and λ ∈ g∗ be
semisimple. Then Gλ is connected.

Proof: The Lie algebra spanned by λ] integrates to a connected commutative Lie
subgroup T ′ of G, and since λ] is semisimple, all elements of T ′ are diagonalisable in
the adjoint representation. There is a smallest closed complex Lie group T containing
T ′, that can be obtained as follows: Take the closure of T ′ (which is a real Lie group),
take the Lie algebra of this closure (which is a real Lie subalgebra of g), take the
complex Lie algebra spanned by it, integrate this Lie algebra to a connected Lie
subgroup of G, and possibly repeat these steps. T is still connected and commutative,
and all its elements are diagonalisable in the adjoint representation, so T is a complex
torus in G. Its centralizer is exactly Gλ, and centralizers of tori are connected. �

Note that the statement is also true for a real compact connected semisimple Lie
group K, but might fail if the compactness assumption is dropped.
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We denote the smooth functions on G that are invariant under the action of Gλ
from the right by C∞(G)Gλ . That is, f ∈ C∞(G)Gλ if and only if f ∈ C∞(G) and
f(gg′) = f(g) for all g ∈ G and g′ ∈ Gλ. There is an algebra isomorphism

π∗ : C∞(G/Gλ)→ C∞(G)Gλ , f 7→ π∗f := f ◦ π (2.3)

and for a complex Lie group, this isomorphism restricts to an isomorphism on holo-
morphic functions. We denote the inverse by π∗ : C∞(G)Gλ → C∞(G/Gλ).

Remark 2.4 This article is written mainly from a di�erential geometric perspective.
Note however, that any complex connected semisimple Lie group G has a unique struc-
ture of an algebraic group, see Theorem 6.3 and the preceding corollary in Chapter
1 of [31]. Any holomorphic representation of G is polynomial. Consequently, if G is
realized as a subgroup of GLN (C) it is automatically closed. The coadjoint action
G×g∗ → g∗ is a morphism of algebraic varieties, and coadjoint orbits of G are smooth
subvarieties of g∗. A coadjoint orbit of G is closed in the Zariski topology if and only
if it is semisimple, see [13, Theorem 5.4]. In particular, semisimple coadjoint orbits
of complex connected semisimple Lie groups are a�ne algebraic varieties.

Note however, that this is not necessarily true for real connected semisimple Lie
groups (not even if they are linear). It is still true that real connected semisimple
linear Lie groups and their coadjoint orbits are connected components (with respect
to the usual topology) of a�ne algebraic varieties.

2.2 Invariant holomorphic k-di�erential operators

In the whole subsection G is a complex Lie group, H is a closed complex Lie subgroup
of G, and k ≥ 1 is an integer. We present some results on holomorphic G-invariant
k-di�erential operators on the homogeneous space G/H, in particular we construct
a bijection between the set ((U g/U g · h)⊗k)H and the set of such operators. The
results seem to be well-known, but proofs are hard to �nd in the literature.

A k-di�erential operator D (see Appendix A.1 for a short review of the de�nition)
on a manifoldM endowed with an action of a Lie group G is said to be invariant under
G if φ∗g(D

~f) = D((φ∗g)
×k ~f) for all ~f ∈ C∞(M)k and all g ∈ G. Here φg : M → M is

the di�eomorphism of M given by the action of a �xed element g ∈ G, and the upper
star denotes the pullback. We write k-DiffOpGH(M) for the space of holomorphic G-
invariant k-di�erential operators on a complex manifold M . A k-di�erential operator
on G is said to be left-invariant if it is invariant with respect to the left action L: G×
G→ G, (g, g′) 7→ gg′ =: Lg(g

′).
LetM be a complex manifold with complex structure I : TM → TM . For a vector

�eld V ∈ Γ∞(TM) its holomorphic part is V (1,0) = 1
2 (V − iIV ) ∈ Γ∞(T(1,0)M). Let

g be the Lie algebra of G. For any X ∈ g de�ne the left-invariant vector �eld

X left
∣∣
g

:=
d

dt

∣∣
t=0

g exp(tX) ∈ Γ∞(TG) . (2.4)

Its holomorphic part X left,(1,0) = 1
2 (X left − i(iX)left) ∈ Γ∞(T(1,0)G) induces a holo-

morphic left-invariant 1-di�erential operator f 7→ X left,(1,0)f on G. Since the map
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( · )left,(1,0) : g → Γ∞(T(1,0)G) is a Lie algebra homomorphism, it induces an algebra
homomorphism ( · )left,(1,0) : U g→ DiffOpGH(G).

In the following we extend various maps to k-fold products and still denote them
by the same symbol,

Adg : (U g)⊗k → (U g)⊗k , u1 ⊗ . . .⊗ uk 7→ Adg u1 ⊗ . . .⊗ Adg uk ,
(2.5a)

π∗ : C∞(G/H)k → (C∞(G)H)k , (f1, . . . , fk) 7→ (π∗f1, . . . , π
∗fk) , (2.5b)

( · )left,(1,0) : (U g)⊗k → k-DiffOpGH(G) ,

u1 ⊗ . . .⊗ uk 7→ ((f1, . . . , fk) 7→ uleft,(1,0)
1 f1 · . . . · uleft,(1,0)

k fk) . (2.5c)

Proposition 2.5 The map ( · )left,(1,0) : (U g)⊗k → k-DiffOpGH(G) is an isomorphism.

Proof: See Appendix A.1. �

Next, we want to describe holomorphic G-invariant k-di�erential operators on the
homogeneous space G/H. Let H be a closed Lie subgroup of G with Lie algebra h,
and let U g · h ⊆ U g be the left ideal generated by h. Note that (U g/U g · h)⊗k is
isomorphic to (U g)⊗k/I where I = I1 + · · · + Ik and Ii = (U g)⊗(i−1) ⊗ U g · h ⊗
(U g)⊗(k−i) is a left ideal in (U g)⊗k. Introduce the set

Uinv = {~u ∈ (U g)⊗k | [~u] ∈ (U g/U g · h)⊗k is H-invariant}
= {~u ∈ (U g)⊗k | Adh ~u− ~u ∈ I for all h ∈ H} . (2.6)

Here the action of H on (U g)⊗k is the diagonal action de�ned in (2.5a).

Lemma 2.6 Let ~u ∈ Uinv, ~v ∈ I, and ~f ∈ (C∞(G)H)k. Then we have

~vleft,(1,0) ~f = 0 and ~uleft,(1,0) ~f ∈ C∞(G)H . (2.7)

Proof: Let Y ∈ h and f ∈ C∞(G)H . Then we compute

(Y leftf)(g) =
d

dt

∣∣∣
t=0

f(g exp(tY )) =
d

dt

∣∣∣
t=0

f(g) = 0 .

By using that Y left,(1,0) = 1
2 (Y left − i(iY )left) this implies that Y left,(1,0)f = 0, and

therefore also ~vleft,(1,0) ~f = 0 for all ~v ∈ I and ~f ∈ (C∞(G)H)k. If X ∈ g, then

(X leftf)(gh) =
d

dt

∣∣∣
t=0

f(gh exp(tX)) =
d

dt

∣∣∣
t=0

f(g exp(tAdhX)) = ((AdhX)leftf)(g)

for all f ∈ C∞(G)H , g ∈ G, and h ∈ H. Consequently, we obtain (X left,(1,0)f)(gh) =
((AdhX)left,(1,0)f)(g), and extending to the universal enveloping algebra and to tensor

products yields (~uleft,(1,0) ~f)(gh) = ((Adh ~u)left,(1,0) ~f)(g) for all ~u ∈ (U g)⊗k and ~f ∈
(C∞(G)H)k. If ~u ∈ Uinv, then together with the �rst part we obtain

(~uleft,(1,0) ~f)(gh) = ((Adh ~u)left,(1,0) ~f)(g) =

= (~uleft,(1,0) ~f)(g) + ((Adh ~u− ~u)left,(1,0) ~f)(g) = (~uleft,(1,0) ~f)(g) . �
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Because of this lemma we can de�ne

Ψ̃ : Uinv → Map(C∞(G/H)k,C∞(G/H)) , Ψ̃(~u)~f = π∗(~u
left,(1,0)(π∗ ~f)) .

Since π∗ and π∗ are algebra homomorphisms, it follows that Ψ̃(~u) satis�es essentially
the same commutation relations with the operator of multiplying a component by
a smooth function than ~uleft,(1,0) and consequently Ψ̃(~u) is k-di�erential and of the
same order than ~uleft,(1,0) (see the de�nition of k-di�erential operators given in De�-
nition A.1). Moreover, Ψ̃(~u) is G-invariant, because π∗ and π∗ are G-equivariant and
~uleft,(1,0) is G-invariant. Since π : G → G/H is a holomorphic map, it follows that
Ψ̃(~u) is holomorphic, and Ψ̃ really maps into k-DiffOpGH(G/H). The map Ψ̃ descends
to a map

Ψ: ((U g/U g · h)⊗k)H → k-DiffOpGH(G/H) (2.8)

because Ψ̃(I) = 0 according to the previous lemma.

Proposition 2.7 The map Ψ de�ned in (2.8) is an isomorphism.

Proof: The proof is given in Appendix A.1. �

The last result of this subsection gives a description of the k-di�erential operator
Ψ([~u]) on the coadjoint orbit without using extensions to G. Let S be the antipode
of U g and extend the Lie algebra homomorphism g 3 X 7→ XOλ ∈ Γ∞(TOλ) de�ned
just before (2.2) to an algebra homomorphism U g→ DiffOp(Oλ).

Proposition 2.8 Let Oλ ∼= G/Gλ be a coadjoint orbit. For ~u = u1 ⊗ . . .⊗ uk ∈ Uinv

and ~f = (f1, . . . , fk) ∈ C∞(Oλ)k we have

Ψ([~u])~f(Ad∗g λ) = (S(Adg u1))
(1,0)
Oλ

f1(Ad∗g λ) · . . . · (S(Adg uk))
(1,0)
Oλ

fk(Ad∗g λ) . (2.9)

Proof: De�ning the Lie algebra homomorphism ( · )right : g→ Γ∞(TG), X 7→ Xright

with Xright
∣∣
g

:= d
dt

∣∣
t=0

exp(−tX)g and extending to U g as before, one checks that

uleftf(g) = X left
1 . . . X left

j f(g)

=
d

dt1

∣∣∣
t1=0

. . .
d

dtj

∣∣∣
tj=0

f(g exp(t1X1) . . . exp(tjXj))

=
d

dt1

∣∣∣
t1=0

. . .
d

dtj

∣∣∣
tj=0

f(exp(t1 AdgX1) . . . exp(tj AdgXj)g)

= (−AdgXj)
right . . . (−AdgX1)rightf(g)

= (S(Adg u))rightf(g)

for u = X1 . . . Xj ∈ U g and similarly uleft,(1,0)f(g) = (S(Adg u))right,(1,0)f(g). Fur-
thermore, we have

Xright(π∗f)(g) =
d

dt

∣∣∣
t=0

π∗f(exp(−tX)g) =

=
d

dt

∣∣∣
t=0

f(Ad∗exp(−tX) Ad∗g λ) = XOλf(Ad∗g λ) = π∗(XOλf)(g)
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for allX ∈ g, implying thatXright,(1,0)◦π∗ = π∗◦X(1,0)
Oλ

, and therefore that uright,(1,0)◦
π∗ = π∗ ◦ u(1,0)

Oλ
for all u ∈ U g. Finally,

Ψ([~u])~f(Ad∗g λ) = (~uleft,(1,0)π∗ ~f)(g)

= uleft,(1,0)
1 (π∗f1)(g) · . . . · uleft,(1,0)

k (π∗fk)(g)

= (S(Adg u1))right,(1,0)(π∗f1)(g) · . . . · (S(Adg uk))right,(1,0)(π∗fk)(g)

= (S(Adg u1))
(1,0)
Oλ

f1(Ad∗g λ) · . . . · (S(Adg uk))
(1,0)
Oλ

fk(Ad∗g λ) . �

3 Quantizing complex coadjoint orbits

In this section we construct a formal associative product for holomorphic functions on
a semisimple coadjoint orbit of a complex connected semisimple Lie group, and a strict
associative product for polynomials. These products are induced by a twist, which is
constructed using the Shapovalov pairing between generalized Verma modules. For
the convenience of the reader we �rst consider the special case of regular semisimple
orbits in Subsection 3.1, where we introduce the Shapovalov pairing between Verma
modules and compute its canonical element. In Subsection 3.2 we generalize these
results to non-regular semisimple orbits. In Subsection 3.3 we describe the induced
formal and strict products in detail. We consider an example in Subsection 3.4.

Later, in Section 5, we will use the results of this section to obtain star products
on semisimple coadjoint orbits of real connected semisimple Lie groups. From the
example considered in this section, we will then obtain strict quantizations of the
hyperbolic disc and the complex projective space.

3.1 Verma modules and the Shapovalov pairing

In this subsection we introduce the Shapovalov pairing between Verma modules. In
case this pairing is non-degenerate, we derive an explicit formula for its canonical
element, following [32]. A similar formula in the more general setting of quantum
groups was obtained recently in [33]. The results allow us to quantize regular orbits.

Let g be a complex semisimple Lie algebra with Cartan subalgebra h. Recall
that a root is a non-zero element α ∈ h∗ such that gα := {X ∈ g | adH X =
α(H)X for all H ∈ h} contains a non-zero element. Denote the set of roots by ∆ and
choose an ordering (i.e. a subset ∆+ of positive roots such that, setting ∆− := −∆+,
we have ∆+ ∪∆− = ∆, ∆+ ∩∆− = ∅, and such that if the sum of positive roots is a
root, then it is positive). Denote the simple roots (i.e. elements of ∆+ that cannot be
written as a sum of two elements of ∆+) by Σ. Let n+ and n− be the nilpotent Lie
subalgebras of g spanned by the positive respectively negative root spaces and de�ne
b+ := h ⊕ n+ and b− := h ⊕ n− (the direct sum is as vector spaces, the Lie algebra
structure on b± ⊆ g is obtained by restriction from g).

Note that 0 is not a root. However, it is convenient to introduce the notation g0 :=
h. Then g is (∆∪{0})-graded, in the sense that g =

⊕
α∈∆∪{0} g

α and [gα, gβ ] ⊆ gα+β

for any α, β ∈ ∆∪ {0}. Consequently the tensor algebra Tg is Z∆-graded, where the
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so-called root lattice Z∆ is the set of linear combinations of roots. The two-sided ideal
generated by elements of the formX⊗Y−Y⊗X−[X,Y ] withX,Y ∈ g is homogeneous
and therefore the universal enveloping algebra U g = Tg/〈X⊗ Y −Y ⊗X− [X,Y ]〉 is
also Z∆-graded. Denote the degree of a homogeneous element w ∈ U g by d(w) ∈ Z∆.

Given a linear functional λ ∈ h∗, the formula H . z = λ(H)z makes C a left
h-module, and since h is commutative also a right h-module. We can extend this to
a left or right b±-module by noting that b± = h ⊕ n± and letting n± act trivially.
Denote the corresponding left U (b±)-module by C±λ and the right U (b−)-module by
C∗λ. De�ne the Verma modules

Mλ := U g⊗U (b+) C
+
λ , M−λ := U g⊗U (b−) C

−
−λ and M∗λ := C∗λ ⊗U (b−) U g .

(3.1)
Note that Mλ and M−λ are left U g-modules, whereas M∗λ is a right U g-module. Mλ

is the most general left U g-module of highest weight λ, meaning that any other left
U g-module of highest weight λ can be obtained as a quotient ofMλ. M

−
λ is the most

general left U g-module of lowest weight −λ.
There are canonical isomorphisms M∗λ ⊗U g Mλ

∼= C∗λ ⊗U (b−) U g ⊗U (b+) Cλ
∼=

C∗λ ⊗U h Cλ
∼= C since the left and right h-module structures on C coincide.

De�nition 3.1 The pairing 〈 · , · 〉′λ : M∗λ ×Mλ → C de�ned by (x, y) 7→ x⊗U g y is
called the Shapovalov pairing between M∗λ and Mλ.

In the following it will be convenient to have alternative descriptions of Mλ, M
−
λ

and M∗λ . Let {X1, . . . , Xk} be a basis of n+, {Y1, . . . , Yk} be a basis of n−, and
{H1, . . . ,Hr} be a basis of h. Since g = n+ ⊕ h⊕ n− (as vector spaces) the Poincaré�
Birkho��Witt theorem implies that

{Y IHJXK | I,K ∈ Nk0 , J ∈ Nr0} and {XKHJY I | I,K ∈ Nk0 , J ∈ Nr0} (3.2)

are bases for U g. Here we use the multiindex notation Y I := Y I11 . . . Y Ikk (and
similarly for H and X). De�ne maps

π−λ : U g→ U (n−) , π−λ (Y IHJXK) := λ(H1)J1 . . . λ(Hr)
JrY IδK,0 , (3.3a)

π+
λ : U g→ U (n+) , π+

λ (XKHJY I) := (−λ(H1))J1 . . . (−λ(Hr))
JrXKδI,0 , (3.3b)

π∗λ : U g→ U (n+) , π∗λ(Y IHJXK) := λ(H1)J1 . . . λ(Hr)
JrXKδI,0 , (3.3c)

where δK,0 is 1 if K = (0, . . . , 0) and is 0 otherwise. Note that π±λ and π∗λ are
independent of the choice of bases. Fix non-zero vectors 1 ∈ C±λ and 1 ∈ C∗λ (thinking
of C as a vector space, this choice is not canonical).

Lemma 3.2 The maps · ⊗ 1: U (n−) → Mλ, v 7→ v ⊗ 1 and · ⊗ 1: U (n+) →
M−λ , u 7→ u ⊗ 1 de�ne isomorphisms of left U (n−)-modules and U (n+)-modules,
respectively. The map 1⊗ · : U (n+)→M∗λ , u 7→ 1⊗u de�nes an isomorphism of right
U (n+)-modules. The U g-module structures on U (n±) obtained by transferring the
module structures on the Verma modules with these isomorphisms are given explicitly
by

.−λ : U g×U (n−)→ U (n−) , (w, v) 7→ w .−λ v := π−λ (wv) , (3.4a)
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.+
λ : U g×U (n+)→ U (n+) , (w, u) 7→ w .+

λ u := π+
λ (wu) , (3.4b)

/∗λ : U (n+)×U g→ U (n+) , (u,w) 7→ u /∗λ w := π∗λ(uw) . (3.4c)

Furthermore, S(w .+
λ u) = S(u) /∗λ S(w), where S denotes the antipode of U g. Or,

in other words, S : U (n+) → U (n+) is an isomorphism from the left U g-module
(U (n+), .+

λ ) to the right U g-module (U (n+), /∗λ) over the map S : U g→ U g.

Proof: One checks easily that the maps Mλ → U (n−), w ⊗ z1 7→ z · π−λ (w) and
M−λ → U (n+), w⊗ z1 7→ z · π+

λ (w) as well as M∗λ → U (n+), z1⊗ w 7→ z · π∗λ(w) are
all well-de�ned and inverses of the maps in the statement of the lemma. Consequently
we have w .−λ v = ( · ⊗ 1)−1(wv⊗ 1) = π−λ (wv), and (3.4b) and (3.4c) follow similarly.
Finally, π∗λ ◦S = S ◦π+

λ , so S(w .+
λ u) = S ◦π+

λ (wu) = π∗λ ◦S(wu) = π∗λ(S(u)S(w)) =
S(u) /∗λ S(w). �

The pairing of the left U g-modules (U (n±), .±λ ) obtained from the Shapovalov pairing

by composing with the isomorphisms (U (n−), .−λ )
· ⊗1−−−→ Mλ and (U (n+), .+

λ )
S−→

(U (n+), /∗λ)
1⊗ ·−−−→M∗λ of the previous lemma, is

〈 · , · 〉λ : U (n+)×U (n−)→ C , (u, v) 7→ 〈u, v〉λ := 〈1⊗ S(u), v ⊗ 1〉′λ . (3.5)

In order to compute 〈u, v〉λ for u ∈ U (n+) and v ∈ U (n−) one needs to write S(u)v ∈
U g in the form

∑
i v
′
ih
′
iu
′
i with u

′
i ∈ U (n+), v′i ∈ U (n−) and h′i ∈ U h. The pairing

is then given by summing λ(h′i) for those summands that have v′i = u′i = 1. This is
made more precise in the next lemma. De�ne πλ := π−λ ◦ π∗λ = π∗λ ◦ π

−
λ : U g → C,

where C is identi�ed with C1 ⊆ U (n±) and we have implicitly used the inclusion
U (n±)→ U g when composing the maps.

Lemma 3.3 For u ∈ U (n+) and v ∈ U (n−) the pairing 〈 · , · 〉λ de�ned in (3.5) can
be computed as

〈u, v〉λ = πλ(S(u)v) . (3.6)

It is U g-invariant, in the sense that 〈w .+
λ u, v〉λ = 〈u, S(w) .−λ v〉λ for u ∈ U (n+),

v ∈ U (n−) and w ∈ U g. The pairing respects the degree d de�ned in the beginning
of this section, meaning that 〈u, v〉λ = 0 for homogeneous elements u ∈ U (n+) and
v ∈ U (n−) with d(u) 6= −d(v). Furthermore, if d(u) = −d(v), then

〈u, v〉λ1U (n−) = S(u) .−λ v and 〈u, v〉λ1U (n+) = S(v) .+
λ u . (3.7)

Proof: By de�nition 〈u, v〉λ = 1⊗U (b−)S(u)v⊗U (b+) 1. So to prove (3.6) it su�ces
to check that 1⊗U (b−)w⊗U (b+)1 = πλ(w) for all w ∈ U g, which one can easily verify

on the basis {Y IHJXK | I,K ∈ Nk0 , J ∈ Nr0}. The U g-invariance follows by noting
that 〈 · , · 〉′λ is U g-invariant, meaning 〈xw, y〉′λ = 〈x,wy〉′λ for x ∈ M∗λ and y ∈ Mλ,
and using the isomorphisms of the previous lemma. For homogenous u ∈ U (n+)
and v ∈ U (n−) with d(u) 6= −d(v) it follows that S(u)v is also homogeneous of
degree d(u) + d(v) 6= 0 and therefore πλ(S(u)v) = 0. Finally, if d(u) = −d(v),
then d(S(u)v) = 0 and 〈u, v〉λ1U (n−) = πλ(S(u)v)1U (n−) = π−λ (S(u)v) = S(u) .−λ v,
implying the �rst equality of (3.7). The second one follows from applying S on
both sides of 〈u, v〉λ1U (n+) = πλ(S(u)v)1U (n+) = π∗λ(S(u)v) = S(π+

λ (S(v)u)) =

S(S(v) .+
λ u). �
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If the pairing 〈 · , · 〉λ is non-degenerate, we can pick bases {ui}i∈N of U (n+) and
{vj}j∈N of U (n−) consisting of homogeneous elements with respect to d and satisfying
〈ui, vj〉λ = δij . Then the element Fλ :=

∑∞
i=1 ui ⊗ vi ∈ U (n+) ⊗̂U (n−) is called

the canonical element of the pairing. It is independent of the choice of bases. By
U (n+) ⊗̂U (n−) we mean the completion of the tensor product with respect to the
Z∆-grading d de�ned in the beginning of this subsection, which is needed to make
sense of the in�nite sum. The following lemma is a standard statement when working
with canonical elements.

Lemma 3.4 Assume that 〈 · , · 〉λ is non-degenerate, and let Fλ =
∑∞
i=1 ui ⊗ vi ∈

U (n+) ⊗̂U (n−) be its canonical element. Then

∞∑
i=1

ui〈u, vi〉λ = u and

∞∑
i=1

vi〈ui, v〉λ = v (3.8)

hold for all u ∈ U (n+) and all v ∈ U (n−), and Fλ is uniquely determined by this
property.

Note that 〈u, vi〉 and 〈ui, v〉 are non-zero for only �nitely many indices i, so that the
sums in (3.8) are both �nite. The pairing 〈 · , · 〉λ is non-degenerate precisely when the
Verma modules are irreducible, but we will not need this below. In order to determine
Fλ explicitly, we need to introduce some more notation.

Denote the Killing form of g by B. Since g is semisimple, B is non-degenerate
on g. Extending linear functionals on h by 0 on the root spaces gα, we may view h∗

as a subspace of g∗. Since B restricts to zero on h × gα for any α ∈ ∆, it follows
that B is non-degenerate on h and that the maps [ : g → g∗ and ] : g∗ → g de�ned
in Subsection 2.1 restrict to mutually inverse isomorphisms [ : h→ h∗ and ] : h∗ → h.
For α, β ∈ h∗, let (α, β) := B(α], β]).

Denote the positive roots by α1, . . . , αk. For every positive root αi ∈ ∆+ choose
elements Xi := Xαi ∈ gαi and Yi := Yαi = X−αi ∈ g−αi such that B(Xi, Yi) = 1.

Then we have [Xi, Yi] = α]i since for all H ∈ h,

B([Xi, Yi], H) = B(Xi, [Yi, H]) = αi(H)B(Xi, Yi) = αi(H) = B(α]i , H)

and the Killing form is non-degenerate on h. Note that [α]i , Xi] = αi(α
]
i)Xi =

(αi, αi)Xi and similarly [α]i , Yi] = −(αi, αi)Yi, so X
′
i = 2(αi, αi)

−1Xi, Y
′
i = Yi and

H ′i = 2(αi, αi)
−1α]i satisfy the commutation relations [X ′i, Y

′
i ] = H ′i, [H ′i, X

′
i] = 2X ′i

and [H ′i, Y
′
i ] = −2Y ′i of the usual generators of sl2(C), the special linear Lie algebra

in 2 dimensions.
Let ρ = 1

2

∑
α∈∆+ α be the half-sum of all positive roots. Denote non-negative

integral linear combinations of positive roots by N0∆+. For λ ∈ h∗ �xed, and µ ∈ h∗

de�ne the number

pλ(µ) :=
1

2
(µ, µ)− (ρ, µ)− (λ, µ) . (3.9)

Recall that for a representation % : g → V and µ ∈ h∗ we de�ne V µ := {v ∈ V |
%(H)v = µ(H)v for all H ∈ h}. If V µ 6= {0}, then we call µ a weight and any v ∈ V µ
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is called a weight vector of weight µ. V is called a weight module if V =
⊕

µ∈h∗ V
µ.

A highest weight module is a weight module generated by a vector v ∈ V satisfying
Xαv = 0 for all α ∈ ∆+. It is said to be of highest weight µ if v ∈ V µ.

Lemma 3.5 (Ostapenko, [32, Lemma 2]) Let V be a highest weight module of
highest weight λ, assume µ ∈ N0∆+, and let v ∈ V λ−µ. Then

−pλ(µ)v =
∑
α∈∆+

YαXαv . (3.10)

Proof: Choose an orthonormal basis {H1, . . . ,Hr} of h with respect to the Killing
form. The Casimir element

c =
∑
α∈∆+

(XαYα + YαXα) +

r∑
i=1

HiHi =
∑
α∈∆+

(2YαXα + α]) +

r∑
i=1

HiHi

acts as a scalar on V because V is generated by a highest weight vector and c is central
in U g. Evaluating it on a highest weight vector the YαXα-part vanishes and we obtain
that c acts as multiplication by

∑
α∈∆+(α, λ) +

∑r
i=1 λ(Hi)λ(Hi) = (2ρ, λ) + (λ, λ).

Therefore

(2ρ, λ)v + (λ, λ)v = 2
∑
α∈∆+

YαXαv + (2ρ, λ− µ)v + (λ− µ, λ− µ)v

holds for any v ∈ V λ−µ, and rearranging this equation proves the lemma. �

Let W be the set of words with letters from {1, . . . , k}. For any w = (w1, . . . , w|w|) ∈
W , we de�ne wopp := (w|w|, . . . , w1), wi...j := (wi, . . . , wj), Xw := Xw1

. . . Xw|w| ∈
U (n+), Yw := Yw1 . . . Yw|w| ∈ U (n−) and αw := αw1 + · · ·+ αw|w| . We use wi...j := ∅
if j < i, X∅ := 1, Y∅ := 1 and α∅ := 0. Furthermore let

pwλ (µ) :=

|w|−1∏
i=0

pλ(µ− αw1...i
) . (3.11)

We call a set T of words a tree if w = (w1, . . . , w|w|) ∈ T implies that w1...i ∈ T for all
i = 0, . . . , |w|−1 and (w1, w2, . . . , w|w|−1, x) ∈ T for all x ∈ {1, . . . , k}. See Figure 3.1
for a visualization of a tree. For a tree T we denote by maxT the set of elements
w ∈ T such that w 6= w′1...i for any w

′ ∈ T and any i ∈ {0, . . . , |w′| − 1}. Finally a
tree is said to be µ-admissible if pλ(µ−αw) 6= 0 for all w ∈ T \maxT , or equivalently
if pwλ (µ) 6= 0 for all w ∈ T .

Lemma 3.6 (Ostapenko, [32, Theorem 3]) Let V be a highest weight module of
highest weight λ, assume µ ∈ N0∆+, and let v ∈ V λ−µ. For a µ-admissible tree T we
have

v =
∑

w∈maxT

(−1)|w|pwλ (µ)−1YwXwoppv . (3.12)

Proof: Apply the previous lemma repeatedly. �
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α1

α2

α3

...

. . .
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λ− µ

λ+ α2

λ+ α1 λ+ α3
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21 23

3

Figure 3.1: Left: The roots of sl3(C). The Cartan subalgebra h of sl3(C) is 2-
dimensional and there are six 1-dimensional root spaces. The picture shows the real
subspace of h∗ spanned by the roots. The positive roots are denoted by α1, α2 and α3

and drawn in green, negative roots are drawn in red. Middle: The weights in a highest
weight module of highest weight λ. The picture shows again the real subspace of h∗

spanned by the roots. Weights are indicated by black dots, and µ = 3α1 + 2α3. Note
that since λ is a highest weight, the spaces V λ+α1 , V λ+α2 and V λ+α3 must all be triv-
ial. Right: Visualization of the tree T = {∅, 1, 2, 3, 11, 12, 13, 21, 22, 23, 131, 132, 133}.
The elements of maxT = {3, 11, 12, 21, 22, 23, 131, 132, 133} are indicated by black
dots. Words starting with a 1 are coloured red, words starting with a 2 blue, and
words starting with a 3 green.

Lemma 3.7 Let V be a lowest weight module of lowest weight −λ, assume µ ∈ N0∆+,
and let v ∈ V −λ+µ. Then

∑
α∈∆+ XαYαv = −pλ(µ)v and for a µ-admissible tree T

we have
v =

∑
w∈maxT

(−1)|w|pwλ (µ)−1XwYwoppv . (3.13)

Proof: Similar to the proof of Lemma 3.5 and Lemma 3.6. �

De�ne the set
Λ := {λ ∈ h∗ | pλ(µ) 6= 0 ∀µ ∈ N0∆+ \ {0}} . (3.14)

Proposition 3.8 The Shapovalov pairing 〈 · , · 〉λ : U (n+) × U (n−) → C is non-
degenerate for λ ∈ Λ, and in this case its canonical element Fλ ∈ U (n+) ⊗̂U (n−) is
given by

Fλ =
∑
w∈W

pwλ (αw)−1Xw ⊗ Yw =
∑
w∈W

|w|∏
i=1

pλ(αwi...|w|)
−1Xw ⊗ Yw . (3.15)

Proof: We check that Fλ satis�es the property given in Lemma 3.4. We decompose
v ∈ U (n−) as v =

∑
µ∈N0∆+ v−µ where v−µ is homogeneous of degree −µ with

respect to the Z∆-grading. For µ ∈ N0∆+ let Wµ be the set of words w ∈ W
satisfying αw = µ. Then∑

w∈W
pwλ (αw)−1Yw〈Xw, v〉λ =

∑
w∈W

pwλ (αw)−1Yw .
−
λ S(Xw) .−λ v−αw =
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α1

α2

α3

...

. . .

...

λ

λ− µ

Figure 3.2: The tree T used in the proof of Proposition 3.8 for g = sl3(C) and
µ = 2α1 + α3. Elements of the tree starting with 1, 2 and 3 are coloured red, blue
and green, respectively. Note that all weight spaces of maximal elements of this tree
are trivial, except for V λ. All non-maximal weight spaces are non-trivial.

=
∑

µ∈N0∆+

∑
w∈Wµ

(−1)|w|pwλ (αw)−1Yw .
−
λ Xwopp .−λ v−µ =

∑
µ∈N0∆+

v−µ = v .

The �rst equality holds because Yw〈Xw, v〉λ = Yw .
−
λ (〈Xw, v−αw〉λ1U (n−)) = Yw .

−
λ

S(Xw) .−λ v−αw by Lemma 3.3. The second equality is true by basic manipulations.
The third equality follows from Lemma 3.6 because we can rewrite the sum over all
w ∈Wµ as a sum over maxT for a µ-admissible tree T as follows: De�ne

T := {∅} ∪ {w ∈W | ∃w′ ∈Wµ and 0 ≤ i ≤ |w′| − 1 such that w1...|w|−1 = w′1...i} ,

which is the smallest tree containingWµ. Since λ ∈ Λ this tree is µ-admissible. Clearly
Wµ ⊆ maxT . Furthermore, any element w ∈ maxT satis�es either αw = µ, so that
w ∈ Wµ, or there does not exist any w

′ ∈ Wµ and i ∈ {0, . . . , |w′|} with w = w′1...i,
so that µ− αw /∈ N0∆+ and therefore Xwoppv−µ = 0.

Similarly, for u =
∑
µ∈N0∆+ uµ ∈ U (n+) with d(uµ) = µ we compute that∑

w∈W
pwλ (µ)−1Xw〈u, Yw〉λ =

∑
w∈W

pwλ (µ)−1Xw .
+
λ S(Yw) .+

λ uαw =

=
∑

µ∈N0∆+

∑
w∈Wµ

(−1)|w|pwλ (µ)−1Xw .
+
λ Ywopp .+

λ uµ =
∑

µ∈N0∆+

uµ = u ,

using Xw〈u, Yw〉λ = Xw .
+
λ (〈uαw , Yw〉λ1U (n+)) = Xw .

+
λ S(Yw) .+

λ uαw , and that the
sum over w ∈ Wµ can be rewritten as a sum over maximal elements of a tree T in a
similar way than before. �

Using the inclusion U (n+) ⊗̂U (n−) → (U g)⊗̂2 and passing to the quotient, we
can map the element Fλ from (3.15) to (U g/U g · h)⊗̂2. Note that U g · h is a
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homogeneous ideal in U g with respect to the degree d, so the quotient U g/U g · h
is still graded. The completed tensor product is de�ned with respect to this grading.
The action of h on (U g)⊗2 given by H . (w ⊗ w′) = adH w ⊗ w′ + w ⊗ adH w

′ with
H ∈ h and w,w′ ∈ U g stays well-de�ned on the quotient and preserves the degree, so
extends uniquely to a continuous action on the completed tensor product. Denote the
coproduct of the Hopf algebra U g by ∆. It is de�ned by extending the assignment
g 3 X 7→ X⊗1+1⊗X ∈ U g⊗U g to an algebra homomorphism ∆: U g→ U g⊗U g.

Proposition 3.9 (Alekseev�Lachowska [1]) Let λ ∈ Λ. Then the element Fλ ∈
(U g/U g · h)⊗̂2 is h-invariant and satis�es

((id⊗ ∆)Fλ)1⊗ Fλ = ((∆⊗ id)Fλ)Fλ ⊗ 1 (3.16)

in (U g/U g · h)⊗̂3.

Proof: See the proof of Theorem 3.23. �

Using the results of Subsection 2.2, elements of ((U g/U g · h)⊗2)H determine bidif-
ferential operators on a complex coadjoint orbit for which gλ = h. Such orbits are of
maximal dimension among all coadjoint orbits and called regular. Note that H is au-
tomatically connected by Proposition 2.3, so h-invariance of Fλ implies H-invariance,
but Fλ is only an element of the completed tensor product. So applying the construc-
tion from Subsection 2.2 naively gives a sum of bidi�erential operators of increasing
orders. To make sense of this sum, we can either introduce a formal parameter ν in
the construction in such a way that we obtain a formal power series of bidi�erential
operators, or we can restrict ourselves to applying these operators to some class of
polynomials, for which only �nitely many of the bidi�erential operators appearing in
the sum give a non-zero contribution.

We will now proceed as follows: In Subsection 3.2, we generalize the construction
of Fλ to work for arbitrary stabilizers gλ (and not just h). In Subsection 3.3 we will
give details on how to construct bidi�erential operators out of Fλ, both in the formal
and polynomial setting mentioned above.

3.2 Generalization to non-regular orbits

The aim of this subsection is to generalize the results of the last subsection to non-
regular semisimple coadjoint orbits. To achieve this, we need to replace h by a possibly
larger stabilizer gλ and de�ne a generalization of the Shapovalov pairing. When this
pairing is non-degenerate, we derive an explicit formula for its canonical element,
which satis�es (3.16).

Let g be a complex semisimple Lie algebra acting under the coadjoint action, i.e.
the action dual to the adjoint action, on its dual g∗. We assume that λ ∈ g∗ is
semisimple (as de�ned in Subsection 2.1) with stabilizer gλ := {X ∈ g | ad∗X λ = 0}.
We �x a Cartan subalgebra h containing λ] (which is possible since λ is semisimple)
and denote the corresponding root system by ∆. Since any H ∈ h commutes with λ],
it follows that ad∗H λ = λ([−H, · ]) = −B(λ], [H, · ]) = −B([λ], H], · ) = 0, so h ⊆ gλ.
We let

∆′ := {α ∈ ∆ | (α, λ) = 0} and ∆̂ := {α ∈ ∆ | (α, λ) 6= 0} = ∆ \∆′ . (3.17)
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One checks easily that gλ = h⊕
⊕

α∈∆′ g
α. Given an ordering on ∆ with ∆± being the

set of positive respectively negative roots, de�ne ∆̂± = ∆±∩ ∆̂ and (∆′)± = ∆±∩∆′.
Furthermore, let ñ± :=

⊕
α∈∆̂± gα and b̃± := gλ ⊕ ñ±.

De�nition 3.10 An ordering of ∆ is called invariant if for any α ∈ ∆̂+ and β ∈ ∆′

such that α+ β is again a root, this root α+ β is in ∆̂+.

Note that since the sum of two roots in ∆′ is again in ∆′ (if it is a root), it is
automatic that α+β ∈ ∆̂. The important part of the previous de�nition is that α+β
should again be positive. See Figure 3.3 for an example of invariant and non-invariant
orderings.

Lemma 3.11 An ordering of ∆ is invariant if and only if for any α, β ∈ ∆̂+ with
α+ β ∈ ∆ we have α+ β ∈ ∆̂+.

In the condition of the lemma it is automatic that α+β is positive and the important
part is that it lies in ∆̂.

Proof: Assume the condition of the lemma is false, i.e. α, β ∈ ∆̂+ and α+β ∈ ∆\∆̂+.
Since α+β is positive we must then have α+β ∈ ∆′. Consequently α+(−(α+β)) =
−β /∈ ∆̂+, so the ordering is not invariant.

Conversely, if the ordering is not invariant, then we can �nd α ∈ ∆̂+ and β ∈
∆′ such that α + β ∈ ∆ \ ∆̂+. Then we must have α + β ∈ ∆̂− and therefore
α+ (−(α+ β)) = −β /∈ ∆̂+, so the condition of the lemma is not ful�lled. �

Intuitively the invariance of an ordering means that roots in ∆′ are close to being
simple, or more precisely that they are linear combinations of simple roots in ∆′.
Indeed, if α ∈ (∆′)+, then α is a non-negative linear combination of simple roots.
By the lemma at least one of those simple roots, say σ, must be in ∆′, so α = σ or
α− σ ∈ (∆′)+ and we can apply induction.

Corollary 3.12 If the ordering of ∆ is invariant, then ñ± and b̃± are both Lie sub-
algebras of g. Moreover, [gλ, ñ

±] ⊆ ñ± and [gλ, b̃
±] ⊆ b̃±.

Proof: The condition in the previous lemma says precisely that [ñ±, ñ±] ⊆ ñ±, i.e.
that ñ± is a Lie subalgebra of g. The de�ning property of an invariant ordering means
that [gλ, ñ

±] ⊆ ñ±. The statements for b̃± are then clear. �

De�nition 3.13 We say an ordering is standard if there is a set S ⊆ C\{0}, closed
under addition and satisfying S ∩ (−S) = ∅, S ∪ (−S) = C \ {0} such that α ∈ ∆̂ is
positive if and only if (α, λ) ∈ S.

Standard invariant orderings exist always since we can construct them as follows.
First, take any ordering on the set ∆′ (meaning a subset (∆′)+ such that if the sum of
two elements of (∆′)+ is in ∆′, then it is in (∆′)+ and such that for (∆′)− := −(∆′)+

we have (∆′)+ ∪ (∆′)− = ∆′ and (∆′)+ ∩ (∆′)− = ∅). Then choose a set S that
is closed under addition and satis�es S ∩ (−S) = ∅ and S ∪ (−S) = C \ {0}, e.g.
S = {z ∈ C \ {0} | Re(z) > 0 or z ∈ iR+}. Let α ∈ ∆ be positive if α ∈ (∆′)+ or
(α, λ) ∈ S.
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λ λ

∆′

λ

∆′

Figure 3.3: Invariant and non-invariant orderings. As in the left picture of Figure 3.1
the roots of sl3(C) are shown. Simple roots are encircled. Roots in ∆′ are drawn
with blue dashed lines. Roots in ∆̂ are drawn in green if they are positive, and in red
if they are negative. The fundamental Weyl chamber has a light green background.
A regular orbit of SL3(C) is shown on the left, the other two pictures are of non-
regular orbits. In the right picture the ordering on ∆ is not invariant, since adding
the negative root in ∆′ (the lower blue dashed line) to one of the positive roots (a
green arrow) gives a negative root (a red arrow). The ordering in the middle picture is
invariant and standard, the ordering in the left picture is invariant, but not standard.
It would be standard if λ was in the fundamental Weyl chamber.

For real coadjoint orbits standard invariant orderings are the ones which induce
star products of pseudo Wick type (under some further assumptions, see Proposi-
tion 5.21), and therefore the orderings we are mainly interested in. However, the
construction below works also for other (possibly non-standard) invariant orderings.

Before generalizing the results of the last subsection, we would like to mention the
following technical lemma for later use:

Lemma 3.14 Let g be a semisimple Lie algebra, let λ ∈ g∗ be semisimple, and let h
be a Cartan subalgebra of g containing λ]. Assume that we have chosen an invariant
ordering de�ning sets ∆+, ∆̂, and ∆′ as above. Then there is a constant M ∈ N such
that for any m ∈ N the sum of m positive roots in ∆̂+ and at least Mm positive roots
in (∆′)+ is not in N0∆̂+.

Proof: Label the simple roots by σ1, . . . , σr such that the �rst r′ simple roots
σ1, . . . , σr′ are in ∆′ and the remaining simple roots are in ∆̂. Label all roots in
∆̂+ by α1, . . . , αk̃. Then there are unique non-negative integers cij ∈ N0 such that

αj =
∑r
i=1 c

i
jσi. SetM

′ = maxj∈{1,...,k̃}
∑r′

i=1 c
i
j , M

′′ = maxj∈{1,...,k̃}
∑r
i=r′+1 c

i
j and

M = M ′M ′′ + 1.
Since αj ∈ ∆̂+ we have

∑r
i=r′+1 c

i
j ≥ 1, and

∑r′

i=1 c
i
j ≤ M ′ ≤ M ′

∑r
i=r′+1 c

i
j

for any j ∈ {1, . . . , k̃}. Note that any element β ∈ N0∆̂+ can be written uniquely
as β =

∑r
i=1 β

iσi with βi ∈ N0, and the coe�cients satisfy the same inequality∑r′

i=1 β
i ≤M ′

∑r
i=r′+1 β

i.
Recall that any root in (∆′)+ is a linear combination of simple roots in (∆′)+. So

if
∑r
i=1 d

iσi ∈ (∆′)+, then di = 0 for all i = r′ + 1, . . . , r. Therefore, if γ is the sum
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of m roots from ∆̂+ and at least Mm roots from (∆′)+, and γ =
∑r
i=1 γ

iσi, then

M ′
∑r
i=r′+1 γ

i ≤M ′M ′′m < Mm ≤
∑r′

i=1 γ
i, so γ cannot be in N0∆̂+. �

Note that for a regular coadjoint orbit, we have ∆′ = ∅. Consequently ∆̂ = ∆, gλ = h,
ñ+ = n+ and ñ− = n−. In this case every ordering is invariant, and the generalized
Shapovalov pairing, that we will introduce now, coincides with the Shapovalov pairing
introduced in the last subsection. Since gλ = h when ∆′ = ∅, we usually denote an
element of gλ by H.

Let λ ∈ g∗λ be the restriction of λ ∈ g∗ to gλ. Then λ([H ′, H]) = ad∗H λ(H ′) = 0
for all H,H ′ ∈ gλ, so H . z = λ(H)z makes C a left or right gλ-module. Extending
trivially along ñ± gives a left or right b̃±-module, and we denote the corresponding
left U (b̃±)-module by C̃±λ and the right U (b̃−)-module by C̃∗λ. De�ne the generalized
Verma modules

M̃λ = U g⊗U (b̃+) C̃
+
λ , M̃−λ = U g⊗U (b̃−) C̃

∗
−λ , and M̃∗λ = C̃∗λ ⊗U (b̃−) U g .

(3.18)
M̃λ and M̃−λ are left U g-modules, M̃∗λ is a right U g-module. Most of the results of
the previous subsection have obvious analogues in this setting.

Let {X1, . . . , Xk̃} be a basis of ñ+, {Y1, . . . , Yk̃} be a basis of ñ−, and {H1, . . . ,Hr̃}
be a basis of gλ. Since g = ñ+⊕ gλ⊕ ñ− the Poincaré�Birkho��Witt theorem implies
that

{Y IHJXK | I,K ∈ Nk̃0 , J ∈ Nr̃0} and {XKHJY I | I,K ∈ Nk̃0 , J ∈ Nr̃0} (3.19)

are bases for U g. De�ne maps

π̃−λ : U g→ U (ñ−) , π̃−λ (Y IHJXK) := λ(H1)J1 . . . λ(Hr̃)
Jr̃Y IδK,0 , (3.20a)

π̃+
λ : U g→ U (ñ+) , π̃+

λ (XKHJY I) := (−λ(H1))J1 . . . (−λ(Hr̃))
Jr̃XKδI,0 ,

(3.20b)

π̃∗λ : U g→ U (ñ+) , π̃∗λ(Y IHJXK) := λ(H1)J1 . . . λ(Hr̃)
Jr̃XKδI,0 . (3.20c)

Note that they are compatible with the maps π−λ , π
+
λ , and π∗λ in the sense that

π̃−λ ◦ π
−
λ = π̃−λ , π̃

+
λ ◦ π

+
λ = π̃+

λ , and π̃∗λ ◦ π∗λ = π̃∗λ. On the left hand sides, we
are implicitly using the inclusion U (n±) → U g. Note that this inclusion is not a
U g-module map.

Lemma 3.15 The maps · ⊗ 1: U (ñ−) → M̃λ, v 7→ v ⊗ 1 and · ⊗ 1: U (ñ+) →
M̃−λ , u 7→ u ⊗ 1 de�ne isomorphisms of left U (ñ−)-modules and U (ñ+)-modules,
respectively. The map 1 ⊗ · : U (ñ+) → M∗λ , u 7→ 1 ⊗ u is an isomorphism of right
U (ñ+)-modules. The U g-module structures on U (ñ±) obtained by transferring the
module structures on the generalized Verma modules with these isomorphisms are
given explicitly by

.̃−λ : U g×U (ñ−)→ U (ñ−) , (w, v) 7→ w .̃−λ v := π̃−λ (wv) , (3.21a)

.̃+
λ : U g×U (ñ+)→ U (ñ+) , (w, u) 7→ w .̃+

λ u := π̃+
λ (wu) , (3.21b)

/̃∗λ : U (ñ+)×U g→ U (ñ+) , (u,w) 7→ u /̃∗λ w := π̃∗λ(uw) . (3.21c)

Furthermore, S(w .̃+
λ u) = S(u) /̃∗λ S(w), where S denotes the antipode of U g.
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Proof: Similar to the proof of Lemma 3.2. �

Note that since U (ñ±) is a U g-module, we must have

π̃±λ (wπ̃±λ (w′)) = w .̃±λ (w′ .̃±λ 1) = (ww′) .̃±λ 1 = π̃±λ (ww′) (3.22)

and
π̃∗λ(π̃∗λ(w)w′) = π̃∗λ(ww′) (3.23)

for all w,w′ ∈ U g. In particular, this implies that the map π̃±λ
∣∣
U (n±)

: U (n±) →
U (ñ±) is a U g-module homomorphism (with respect to the module structures given
by .±λ and .̃±λ ). Indeed, for the plus case we have

π̃+
λ (w .+

λ u) = π̃+
λ π

+
λ (wu) = π̃+

λ (wu) = π̃+
λ (wπ̃+

λ u) = w .̃+
λ π̃

+
λ u

for all w ∈ U g and u ∈ U (n+) and the minus case is similar. De�ne g±λ :=⊕
α∈(∆′)± gα = gλ ∩ n±. Note that U g · g±λ = {w .±λ X | w ∈ U g, X ∈ g±λ } is a

U g-submodule of U (n±). Since π̃±λ is a map of U g-modules and vanishes on g±λ ,
U g · g±λ is in its kernel.

Lemma 3.16 The induced maps π̃±λ : U (n±)/U g · g±λ → U (ñ±) are isomorphisms
of U g-modules.

Proof: It is easy to check that the quotient map induced by the inclusion U (ñ±)→
U (n±) de�nes an inverse. �

As before there are isomorphisms M̃∗λ ⊗U g M̃λ
∼= C̃−λ ⊗U (b̃−) U g ⊗U (b̃+) C̃λ

∼=
C̃−λ ⊗U (gλ) C̃λ

∼= C, which we use to de�ne the Shapovalov pairings 〈 · , · 〉∼λ
′
: M̃∗λ ×

M̃λ → C, (x, y) 7→ 〈x, y〉∼λ
′ := x⊗ y and

〈 · , · 〉∼λ : U (ñ+)×U (ñ−)→ C , 〈u, v〉∼λ = 〈1⊗ S(u), v ⊗ 1〉∼λ
′

= 1⊗ S(u)v ⊗ 1 .
(3.24)

In the same way as in Lemma 3.3 one proves that this pairing can be computed by

〈u, v〉∼λ = πλ(S(u)v) . (3.25)

Note that π̃−λ ◦ π̃∗λ = π̃∗λ ◦ π̃
−
λ = π∗λ ◦ π

−
λ = πλ, so there is no need to introduce a π̃λ.

Lemma 3.17 Let u ∈ U (n+) and v ∈ U (n−). Then we have 〈π̃+
λ u, π̃λv〉∼λ = 〈u, v〉λ.

In particular 〈 · , · 〉λ
∣∣
U (n+)×U g·g−λ

= 〈 · , · 〉λ
∣∣
U g·g+

λ×U (n−)
= 0.

Proof: Using (3.22) twice, we compute

〈π̃+
λ u, π̃

−
λ v〉

∼
λ = πλ(S(π̃+

λ u)π̃−λ v) = π̃∗λ ◦ π̃−λ (π̃∗λ(Su)π̃−λ v) = π̃∗λ ◦ π̃−λ (π̃∗λ(Su)v) =

= π̃−λ ◦ π̃
∗
λ(π̃∗λ(Su)v) = π̃−λ ◦ π̃

∗
λ(S(u)v) = πλ(S(u)v) = 〈u, v〉λ . �

De�ne the set
Λ̃ = {λ ∈ h∗ | pλ(µ) 6= 0 ∀µ ∈ N0∆̂+ \ {0}} . (3.26)

Furthermore, let W̃ be the set of words w ∈ W such that αwi...|w| ∈ N0∆̂+ for all

i = 1, . . . , |w|. Since π̃+
λ (Xw) = 0 and π̃−λ (Yw) = 0 for w ∈ W \ W̃ , the following

theorem is not surprising.
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α1

α2

α3
λ

∆′

...

. . .

...

λ

λ− µ

Figure 3.4: The tree T used in the proof of Theorem 3.18 for g = sl3(C) and µ =
2α1 + α3. Compare this with Figure 3.2. Elements of the tree starting with 1, 2
and 3 are coloured red, blue and green, respectively. Only the weight spaces marked
with �lled dots are non-trivial (but might have a di�erent dimension than in the
case where ∆′ = ∅), and all weight spaces marked with circles only contain 0. In
particular, the weight spaces at maximal elements of the tree are trivial, except for
V λ. All non-maximal weight spaces are non-trivial.

Theorem 3.18 Let λ ∈ Λ̃. Then the Shapovalov pairing 〈 · , · 〉∼λ : U (ñ+)×U (ñ−)→
C is non-degenerate and its canonical element Fλ ∈ U (ñ+) ⊗̂U (ñ−) is given by

Fλ =
∑
w∈W̃

pwλ (αw)−1π̃+
λ (Xw)⊗ π̃−λ (Yw) =

∑
w∈W̃

|w|∏
i=1

pλ(αwi...|w|)
−1π̃+

λ (Xw)⊗ π̃−λ (Yw) .

(3.27)

Proof: It su�ces to prove that
∑
w∈W̃ pwλ (αw)−1π̃−λ (Yw)〈π̃+

λ (Xw), ṽ〉∼λ = ṽ for all

ṽ ∈ U (ñ−) and that
∑
w∈W̃ pwλ (αw)−1π̃+

λ (Xw)〈ũ, π̃−λ (Yw)〉∼λ = ũ for all ũ ∈ U (ñ+)
by using an analogue of Lemma 3.4. Let v ∈ U (n−) be the image of ṽ under the
inclusion U (ñ−) → U (n−), so that π̃−λ (v) = ṽ. Assume that v =

∑
µ∈N0∆̂+ v−µ is

the weight decomposition of v. Then∑
w∈W̃

pwλ (αw)−1π̃−λ (Yw)〈π̃+
λ (Xw), ṽ〉∼λ

=
∑
w∈W̃

pwλ (αw)−1π̃−λ (Yw)〈Xw, v〉λ

= π̃−λ

( ∑
w∈W̃

pwλ (αw)−1Yw〈Xw, v−αw〉λ
)

= π̃−λ

( ∑
µ∈N0∆̂+

∑
w∈W̃µ

(−1)|w|pwλ (αw)−1Yw .
−
λ Xwopp .−λ v−µ

)
,
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where W̃µ = {w ∈ W̃ | αw = µ}. We claim that there is an admissible tree T and
v′ ∈ U g · g−λ such that∑

w∈W̃µ

(−1)|w|pwλ (αw)−1Yw .
−
λ Xwopp .−λ v−µ =

= v′ +
∑

w∈maxT

(−1)|w|pwλ (αw)−1Yw .
−
λ Xwopp .−λ v−µ ,

which would �nish the proof by using Lemma 3.6. Indeed, let

T = {∅} ∪ {w ∈W | ∃w′ ∈ W̃µ and 0 ≤ i ≤ |w′| − 1 such that w1...|w|−1 = w′1...i}

be the smallest tree containing W̃µ. Since λ ∈ Λ̃, this tree is admissible. Furthermore

W̃µ ⊆ maxT and any element w ∈ maxT satis�es exactly one of the following two

conditions. Either αw = µ, so that w ∈ W̃µ appears in the sum on the left hand side

of the above equation. Or µ − αw /∈ N0∆̂+, so that Xwoppv−µ would have to be of

weight αw − µ /∈ −N0∆̂+ and does therefore either vanish or lie in U g · g−λ . The
statement for ũ is proven similarly. �

Using the inclusions U (ñ±) → U g and the projection U g → U g/U g · gλ, we map
Fλ to (U g/U g · gλ)⊗̂2. Note that, as before, U g · gλ is a homogeneous ideal in U g,
so the grading of U g stays well-de�ned on the quotient. The action of gλ on (U g)⊗2

also passes to the quotient and extends to a continuous action on the completed tensor
product.

Theorem 3.19 (Alekseev�Lachowska [1]) Let λ ∈ Λ̃. Then the element Fλ ∈
(U g/U g · gλ)⊗̂2 is gλ-invariant and satis�es

((id⊗ ∆)Fλ)1⊗ Fλ = ((∆⊗ id)Fλ)Fλ ⊗ 1 (3.28)

in (U g/U g · gλ)⊗̂3.

Proof: Note that the g-invariance of the Shapovalov pairing (proven similarly as
in Lemma 3.3) implies that Fλ ∈ U (ñ+) ⊗̂U (ñ−) is also g-invariant. Then Fλ ∈
(U g/U g · gλ)⊗̂2 is gλ-invariant since the map U (ñ+) × U (ñ−) → (U g/U g · gλ)⊗̂2

is gλ-equivariant. Equation (3.28) is proven in [1, Section 4]. �

It will be convenient in the following to write Fλ as a sum of elements that are all
invariant under gλ.

Lemma 3.20 Let λ ∈ Λ̃. Then there is a partition of W̃ into �nite subsets W̃`,
` ∈ N0 such that

Fλ,` :=
∑
w∈W̃`

pwλ (αw)−1π̃+
λ (Xw)⊗ π̃−λ (Yw) (3.29)

is gλ-invariant.
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Proof: It will be convenient to introduce a di�erent grading d′ on g, for which gλ is
of degree 0. To this end, let h and the root spaces of simple roots in ∆′ be of degree 0,
and let the root spaces of simple roots in ∆̂ be of degree 1. Since any root is a unique
linear combination of simple roots this assignment extends to a grading on g. More
explicitly, if σ1, . . . , σr ∈ ∆ are the simple roots, with σ1, . . . , σr′ ∈ ∆′, then the root
space of a root α =

∑r
i=1 c

iσi is of degree d
′(α) =

∑r
i=r′+1 c

i. Since gλ is spanned by
h and the root spaces of roots in ∆′, and since the invariance of the ordering implies
that any root in ∆′ is a linear combination of simple roots in ∆′, it follows that every
element of gλ is homogeneous of degree 0. This grading is coarser than the grading
given by d, in the sense that the graded components with respect to the new grading
d′ are direct sums of the graded components with respect to d. The restrictions of
the maps π̃±λ to U (n±) are homogeneous of degree 0 with respect to (the restriction
of) the Z-grading on U g induced by d′.

For w ∈ W set d′(w) := d′(αw1
) + · · · + d′(αw|w|), and de�ne W̃` := {w ∈ W̃ |

d′(w) = `}. It follows from Lemma 3.14 that W̃` is �nite for every `. The elements
Fλ,` de�ned from W̃ ` as in (3.29) have a nice description in terms of the grading
d′. Since all graded components of ñ+ resp. ñ− are of degree ≥ 1 resp. ≤ −1, d′

induces a grading of U (ñ+)⊗ U (ñ−) by N0 × (−N0). Using the homogeneity of π̃±λ ,
it follows directly from the de�nition of W̃` that Fλ,` is precisely the component of
Fλ of degree (`,−`) with respect to this grading. Since gλ is of degree 0, the action
of gλ on U (ñ+)⊗ U (ñ−) preserves the graded components, and the gλ-invariance of
Fλ implies that all the graded components Fλ,` must also be gλ-invariant. �

3.3 The induced formal and strict products

In this subsection we construct associative products from the element Fλ obtained at
the end of the last subsection. We will rescale λ in order to introduce a parameter
playing the role of Planck's constant in the construction. Then we would like to
use the results of Subsection 2.2 to obtain bidi�erential operators from (the rescaled)
Fλ. However, since Fλ is only in the completed tensor product, applying these results
naively would give a sum of bidi�erential operators of increasing orders and we have to
deal with its convergence. There are essentially two solutions to this problem: Firstly,
we can take a formal expansion in the parameter h̄, which will give us a well-de�ned
power series of bidi�erential operators of increasing order. Secondly, we can restrict
ourselves to applying these operators only to some polynomial functions, for which
only �nitely many terms of the in�nite sum give a non-zero contribution. We discuss
both approaches in detail, starting with the formal one.

Let us �rst introduce the rescaling. De�ne the set

Pλ = {0} ∪ {h̄ ∈ C \ {0} | iλ/h̄ /∈ Λ̃} , (3.30)

and for h̄ ∈ C \ Pλ set Fh̄ := Fiλ/h̄ and Fh̄,` := Fiλ/h̄,`, where Fiλ/h̄ was computed
in Theorem 3.19 and Fiλ/h̄,` was de�ned in Lemma 3.20. Note that giλ/h̄ = gλ, so
Fh̄ ∈ ((U g/U g · gλ)⊗̂ 2)gλ holds for all h̄ ∈ C \ Pλ. Furthermore, the projections
π̃±iλ/h̄

∣∣
U (n±)

: U (n±) → U (ñ±) are independent of h̄, which one can easily see from
their de�nition in (3.20).
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Proposition 3.21 Let g be a complex semisimple Lie algebra, h a Cartan subalgebra
of g, and λ ∈ h∗. Fix an invariant ordering on ∆, and assume that (λ, µ) 6= 0 for all
µ ∈ N0∆̂+ satisfying 1

2 (µ, µ) = (ρ, µ). Then the set Pλ is countable and accumulates
only at zero.

Proof: From the de�nition of Pλ we obtain

Pλ = {0} ∪ {h̄ ∈ C \ {0} | piλ/h̄(µ) = 0 for some µ ∈ N0∆̂+ \ {0}} .

Under our assumptions the function h̄ 7→ piλ/h̄(µ) = 1
2 (µ, µ) − (ρ, µ) − i

h̄ (λ, µ) has

the only root i(λ, µ)/( 1
2 (µ, µ) − (ρ, µ)) if 1

2 (µ, µ) − (ρ, µ) 6= 0 and no root otherwise.

Therefore Pλ is countable sinceN0∆̂+\{0} is countable. Furthermore, Pλ accumulates
only at zero since∣∣∣∣ i(λ, µ)

1
2 (µ, µ)− (ρ, µ)

∣∣∣∣ ≤ ‖λ‖‖µ‖
1
2‖µ‖2 − ‖µ‖‖ρ‖

=
‖λ‖

1
2‖µ‖ − ‖ρ‖

if ‖µ‖ > 2‖ρ‖. Note that there are only �nitely many elements µ ∈ N0∆̂+ with
‖µ‖ ≤ 2‖ρ‖. �

Remark 3.22 If the ordering in the previous proposition is standard, then any ele-
ment µ ∈ N0∆̂+ automatically satis�es (λ, µ) 6= 0: For all α ∈ ∆̂+ we have (λ, α) ∈ S
and since S is closed under addition this implies (λ, µ) ∈ S for all µ ∈ N0∆̂+. Note
that 0 /∈ S, so in particular (λ, µ) 6= 0.

Note also that 1
2 (µ, µ) = (ρ, µ) implies ‖µ‖ ≤ 2‖ρ‖, so there can only be �nitely

many elements µ ∈ N0∆ satis�ying 1
2 (µ, µ) = (ρ, µ). Among those are all simple

roots and the element 2ρ. However, simple roots which are in N0∆̂ are by de�nition
not orthogonal to λ. An example of an element that is not a simple root and not 2ρ
in the case of g = sl3(C) with root system as in Figure 3.1 is µ = α1 + α2.

We say that Fh̄ depends rationally on h̄ if all the Fh̄,` depend rationally on h̄. This
makes sense since Fh̄,` takes values in a �nite dimensional subspace of (U g/U g·gλ)⊗2

that is independent of h̄.

Theorem 3.23 (Alekseev�Lachowska [1]) Let λ ∈ h∗ and assume that Pλ is
countable. Then Fh̄ depends rationally on h̄, with no pole at zero. In particular,
the Taylor series expansion of Fh̄ around 0 makes sense, and it gives an element
F ∈ (U g/U g ·gλ)⊗2[[ν]], where the tensor product is the usual (not completed) tensor
product. Furthermore, F satis�es (3.28) in (U g/U g · gλ)⊗3[[ν]] and is gλ-invariant.

Proof: As mentioned before, giλ/h̄ and π̃±iλ/h̄
∣∣
U (n±)

: U (n±)→ U (ñ±) are indepen-
dent of h̄, so only the coe�cients pwiλ/h̄(αw)−1 in the formula for Fiλ/h̄ obtained in
Theorem 3.18 depend on h̄. Since they are products of elements of the form

piλ/h̄(µ)−1 =

(
1

2
(µ, µ)− (ρ, µ)−

(
iλ

h̄
, µ

))−1

=
h̄(

1
2 (µ, µ)− (ρ, µ)

)
h̄− (iλ, µ)

with µ ∈ N0∆̂+ \ {0}, their dependence on h̄ is rational without a pole at zero.
(Observe that 1

2 (µ, µ) − (ρ, µ) and (iλ, µ) cannot vanish simultaneously since Pλ is
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assumed to be countable.) Consequently, we may take the Taylor expansion of Fiλ/h̄

around h̄ = 0. To see that this yields an element in the usual tensor product,
note that the formal expansion of piλ/h̄(µ)−1 is a multiple of ν unless (λ, µ) = 0.
Now pwiλ/h̄(αw)−1 =

∏|w|
i=1 piλ/h̄(αwi...|w|)

−1, and if the formal expansions of both
piλ/h̄(αwi...|w|)

−1 and piλ/h̄(αwi+1...|w|)
−1 are not multiples of h̄, then (λ, αwi) = 0, i.e.

αwi ∈ ∆′. However, Lemma 3.14 ensures that this cannot happen too often: If M is
the constant obtained in that lemma, then at least d|w|/(M + 1)e many elements in
the formal expansion of pwiλ/h̄(αw)−1 are multiples of ν, so this expansion is of order
at least νd|w|/(M+1)e. Consequently, only �nitely many words contribute to a given
order in ν, so that we do not need to complete the tensor product. Since every Fh̄
satis�es (3.28) and is gλ-invariant, this is also true for the formal expansion F . �

Let us now apply this theorem to quantize complex coadjoint orbits. Let G be a
complex connected semisimple Lie group with coadjoint orbit Oλ through a semisimple
element λ ∈ g∗. Pick a Cartan subalgebra h containing λ]. Choose an invariant
ordering for which Pλ is countable (e.g. a standard invariant ordering).

By Proposition 2.3 we know that Gλ is connected. Therefore the gλ-invariance
of the elements F and Fh̄ constructed previously implies their Gλ-invariance. Con-
sequently we can apply the results of Subsection 2.2 in order to obtain holomorphic
G-invariant bidi�erential operators on Oλ ∼= G/Gλ. De�ne the formal product

? : C∞(Oλ)[[ν]]×C∞(Oλ)[[ν]]→ C∞(Oλ)[[ν]] , (f, g) 7→ f ?g := Ψ(F )(f, g) , (3.31)

and note that this product is well-de�ned since the previous theorem asserts that
F ∈ (U g/U g · gλ)⊗2[[ν]].

Proposition 3.24 The product ? is associative and restricts to a product

? : Hol(Oλ)[[ν]]×Hol(Oλ)[[ν]]→ Hol(Oλ)[[ν]] (3.32)

on power series of holomorphic functions. Moreover, ? is G-invariant, in the sense
that (g . f1) ? (g . f2) = g . (f1 ? f2) holds for all g ∈ G and f1, f2 ∈ C∞(Oλ)[[ν]].

Proof: It is a standard argument that the twist condition (3.28) translates into
associativity of the induced product. That ? restricts to power series of holomorphic
functions and is G-invariant is immediate since the image of Ψ consists of holomorphic
G-invariant bidi�erential operators. �

In order to de�ne strict star products from Fh̄ directly, i.e. without taking a formal
power series expansion, we need to ensure that Ψ(Fh̄) is well-de�ned. To do that
we introduce polynomials on the coadjoint orbit. It will turn out that only �nitely
many elements of the in�nite sum de�ning Fh̄ contribute non-trivially when Ψ(Fh̄) is
applied to polynomials.

Recall from Subsection 2.1 that we may assume without loss of generality that G
is a closed complex Lie subgroup of GLN (C). We �x a way to realize G as such a
matrix Lie group once and for all. In particular, the Lie algebra g of G is realized as
a complex Lie subalgebra of glN (C).
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De�nition 3.25 (Polynomials on Oλ) Let Oλ ⊆ g∗ be a complex coadjoint orbit.
Then

Pol(Oλ) = {p : Oλ → C | p = P
∣∣
Oλ

for some holomorphic polynomial P on g∗}
(3.33)

is called the algebra of polynomials on Oλ.

Recall that the symmetric algebra Sg of g is isomorphic (as an algebra) to the algebra
Pol(g∗) of polynomials on g∗. The isomorphism sends an element X1 ∨ · · · ∨Xj ∈ Sjg
to ξ 7→ ξ(X1) . . . ξ(Xj).

De�nition 3.26 (Polynomials on G) For a complex linear Lie group G, the alge-
bra of polynomials Pol(G) is the unital complex subalgebra of C∞(G) generated by the
functions Pij : G→ C, g 7→ gij.

Polynomials on a complex Lie group G are holomorphic. In the case of semisimple
connected Lie groups both the Lie group itself and the coadjoint orbit are a�ne alge-
braic varieties, see Remark 2.4, and our de�nition of polynomials coincides with the
de�nition of regular functions on algebraic varieties. If G is connected and semisim-
ple, then the de�nition of polynomials on G is independent of the way in which G is
realized as a linear group, which can be proven as outlined in Appendix A.2.

Proposition 3.27 Assume that the complex linear Lie group G is semisimple and
connected. Then π∗ : Hol(Oλ) ∼= Hol(G/Gλ)→ Hol(G)Gλ restricts to an isomorphism
π∗ : Pol(Oλ)→ Pol(G)Gλ .

Proof: Since the Lie algebra g is semisimple, we have g = [g, g], i.e. every element of
g can be written as a sum of commutators. Consequently the trace of any element of
g is zero. Therefore any element in a su�ciently small neighbourhood of the identity
of G must have determinant 1, and consequently G is a Lie subgroup of SLN (C).

Let Eij ∈ glN (C) be the matrix that is 1 at position (i, j) and 0 otherwise. Extend

λ to a linear functional λ̃ ∈ glN (C)∗. For an element X ∈ g = S1g, which we identify
with a polynomial on g∗, we compute

π∗
(
X
∣∣
Oλ

)
(g) = X

∣∣
Oλ

(π(g)) = X
∣∣
Oλ

(Ad∗g λ) = X
∣∣
Oλ

(λ(g−1 · g)) =

= λ(g−1Xg) =
∑
i,j

λ̃((g−1Xg)ijEij) =
∑
i,j,k,`

(g−1)ikg`jXk`λ̃(Eij) .

Since det g = 1 we can write (g−1)ik as a polynomial in the entries of g, so that
π∗
(
X|Oλ

)
itself is a polynomial in the entries of g. Since Pol(Oλ) is generated by

X|Oλ and π∗ is an algebra homomorphism, it follows that π∗p ∈ Pol(G) for any
p ∈ Pol(Oλ). Injectivity of π∗ is immediate. Surjectivity is harder to prove. One
can either use methods from algebraic geometry (making use of Remark 2.4, see for
example [23, Chapter 12]) or work in a more di�erential geometric setting using G-
�nite functions as outlined in Appendix A.2. �

Recall the degree d′ introduced in the proof of Lemma 3.20.
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Lemma 3.28 For any polynomial p ∈ Pol(GLN (C)), there is a constant Np ∈ N
such that for any u ∈ U (ñ+) ⊆ U (glN (C)) of degree d′ greater Np and any v ∈
U (ñ−) ⊆ U (glN (C)) of degree d′ smaller −Np we have uleft,(1,0)p = vleft,(1,0)p = 0.

Proof: Using the Leibniz rule we may assume that p = Pk` in the notation of
De�nition 3.26. Let Eij ∈ glN (C) be the matrix that is 1 at position (i, j) and
0 otherwise. It is easy to check that Eleft

ij Pk` = δj`Pki and therefore X leftPk` =(∑
i,j XijEij

)left
Pk` =

∑
iXi`Pki for all X ∈ glN (C). Since Pk` is holomorphic,

this implies that also X left,(1,0)Pk` = X leftPk` =
∑
iXi`Pki. Consequently, if u =

u1 . . . uM ∈ U (glN (C)) with u1, . . . , uM ∈ glN (C), then

uleft,(1,0)Pk` =
∑
iM

(u1 . . . uM−1)left,(1,0)(uM )iM `PkiM =

=
∑

iM−1,iM

(u1 . . . uM−2)left,(1,0)(uM−1)iM−1iM (uM )iM `PkiM−1
= · · · =

=
∑

i1,...,iM

(u1)i1i2 . . . (uM−1)iM−1iM (uM )iM `Pki1 =
∑
i

(u1 . . . uM )i`Pki .

Since adX is nilpotent for any X ∈ ñ+ it follows that 0 = (adX)s = ad(Xs) for
X ∈ ñ+, where the index s stands for the semisimple part of the Jordan decomposition.
Since g is semisimple this implies Xs = 0, so every X ∈ ñ+ is realized by a nilpotent
matrix. It follows from Engel's theorem that any matrix Lie algebra consisting of
nilpotent matrices is nilpotent as an algebra, so there exists a constant M ∈ N such
that products of M or more elements of ñ+ vanish. Therefore, if u is a product of
at least M elements of ñ+ the above calculation shows that uleftPk` = 0. If M ′ is an
upper bound for the degree d′ of elements of ñ+ then we can set NPk` := MM ′. It is
easy to check that this constant also works for ñ−. �

Corollary 3.29 For all polynomials p, q ∈ Pol(Oλ) and all h̄ ∈ C \ Pλ, the sum∑∞
`=0 Ψ(Fh̄,`)(p, q) is �nite, and

∑∞
`=0 Ψ(Fh̄,`)(p, q) ∈ Pol(Oλ).

Proof: Proposition 3.27 implies that π∗p and π∗q are polynomials. By Lemma 3.20
the components Fh̄,` are of degree (`,−`), and then the previous lemma implies
that only �nitely many summands of

∑∞
`=0 F

left,(1,0)
h̄,` (π∗p, π∗q) are non-zero. Its

proof shows that
∑∞
`=0 F

left,(1,0)
h̄,` (π∗p, π∗q) is again a polynomial. The components

Fh̄,` are gλ-invariant, and therefore, since Gλ is connected by Proposition 2.3, also
Gλ-invariant. Consequently

∑∞
`=0 F

left,(1,0)
h̄,` (π∗p, π∗q) is Gλ-invariant by Lemma 2.6.

Then Proposition 3.27 yields that
∑∞
`=0 Ψ(Fh̄,`)(p, q) =

∑∞
`=0 π∗(F

left,(1,0)
h̄,` (π∗p, π∗q))

is a polynomial. �

Corollary 3.30 Let Oλ be a semisimple coadjoint orbit of a complex connected semisim-
ple Lie group G with Lie algebra g. Assume that h is a Cartan subalgebra of g con-
taining λ], and that we have chosen an invariant ordering. Then for any h̄ ∈ C \ Pλ,

∗h̄ : Pol(Oλ)× Pol(Oλ)→ Pol(Oλ) , (p, q) 7→ p ∗h̄ q :=

∞∑
`=0

Ψ(Fh̄,`)(p, q) (3.34)
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de�nes an associative and G-invariant product (where G-invariant means that (g .
p) ∗h̄ (g . q) = g . (p ∗h̄ q) holds for any g ∈ G and p, q ∈ Pol(Oλ)). For p, q ∈ Pol(Oλ),
p∗h̄ q depends rationally on h̄, and the formal expansion of ∗h̄ around h̄ = 0 coincides
with the formal product ?.

Proof: As in the formal case, it is a standard argument to show that (3.28) implies
the associativity of ∗h̄. Since the codomain of Ψ consists of G-invariant bidi�erential
operators, it is clear that ∗h̄ is G-invariant. Since the dependence of Fh̄ on h̄ is rational
without pole at 0, it follows that ∗h̄ also depends rationally on h̄ without pole at 0,
and since ? was constructed from the formal expansion of Fh̄, it coincides with the
formal expansion of ∗h̄. �

Remark 3.31 When considering Ψ(Fh̄,`), we may leave out the projections π̃±λ in the
formula for Fh̄,` from Lemma 3.20 to obtain the same result. Indeed, by Lemma 3.16
the di�erence of Fh̄,` and

F ′h̄,` :=
∑
w∈W̃`

pwiλ/h̄(αw)−1Xw ⊗ Yw ∈ U (n+)⊗ U (n−) (3.35)

is an element in the ideal U g · gλ ⊗ U g + U g⊗ U g · gλ and therefore contained in
the kernel of Ψ by Lemma 2.6.

Recall that we obtained a condition for Pλ being countable in Proposition 3.21, and
that this condition is satis�ed in particular when the ordering is standard, see Re-
mark 3.22.

Proposition 3.32 Assume that Pλ is countable. Then the �rst order commutator of
? coincides with the Poisson bracket induced by the KKS form ωKKS de�ned in (2.2).

Proof: Note that the formal expansion of

piλ/h̄(µ)−1 =

(
1

2
(µ, µ)− (ρ, µ)− i

h̄
(λ, µ)

)−1

= ih̄

(
ih̄

2
(µ, µ)− ih̄(ρ, µ) + (λ, µ)

)−1

is of order ν if (λ, µ) 6= 0. It follows from Theorem 3.18 that the element F is the
formal expansion of∑

w∈W̃
|w|≤1

pwiλ/h̄(αw)−1π̃+
λ (Xw)⊗ π̃−λ (Yw) +

∑
w∈W̃
|w|≥2

pwiλ/h̄(αw)−1π̃+
λ (Xw)⊗ π̃−λ (Yw) .

Using that the words w ∈ W̃ with |w| ≤ 1 are precisely the empty word and
the one-letter words (`) with α` ∈ ∆̂+, i.e. (λ, α`) 6= 0, it follows that the �rst
sum expands to 1 + iν

∑
α∈∆̂+(λ, α)−1Xα ⊗ Yα + O(ν2). Let us argue why the

formal expansion of the second sum is of order ν2. By de�nition pwiλ/h̄(αw)−1 =∏|w|
i=1 piλ/h̄(αwi...|w|)

−1. Since, by de�nition of W̃ , we have αw|w| ∈ ∆̂+, it is clear that
the formal expansions of all summands with (λ, αw|w|−1

+ αw|w|) 6= 0 are of order ν2

(because both piλ/h̄(α(w|w|−1,w|w|))
−1 and piλ/h̄(αw|w|)

−1 are of order ν). So assume
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(λ, αw|w|−1
+ αw|w|) = 0, in which case αw|w|−1

∈ ∆̂+ and, by invariance of the order-
ing, αw|w|−1

+ αw|w| is not a root. Therefore Xw|w|−1
Xw|w| = Xw|w|Xw|w|−1

, and if
w′ = (w1, . . . , w|w|−2, w|w|, w|w|−1) is the word obtained form w by switching the last
two letters then Xw = Xw′ . Similarly Yw = Yw′ . Furthermore, by de�nition of αw,
we have αwi...|w| = αw′

i...|w′|
for all i < |w| and

pwiλ/h̄(αw)−1 + pw
′

iλ/h̄(αw′)
−1 =

=
(
piλ/h̄(αw|w|)

−1 + piλ/h̄(αw|w|−1
)−1
) |w|−1∏
i=1

piλ/h̄(αwi...|w|)
−1 .

But under our assumptions (αw|w| , λ)−1+(αw|w|−1
, λ)−1 = 0, and therefore the formal

expansion of piλ/h̄(αw|w|)
−1 + piλ/h̄(αw|w|−1

)−1 is iν(αw|w| , λ)−1 + iν(αw|w|−1
, λ)−1 +

O(ν2) = O(ν2). Consequently, the summands which could potentially be of order ν
in the sum over w ∈ W̃ with |w| ≥ 2 cancel out, and this sum is therefore of order ν2

as claimed.

To conclude the proof, note that antisymmetrizing the �rst order gives indeed

F antisym
(1) = i

∑
α∈∆̂+

λ(α])−1(Xα⊗Yα−Yα⊗Xα) = i
∑
α∈∆̂

λ([Xα, Yα])−1Xα⊗Yα = iπKKS ,

where πKKS denotes the Poisson tensor associated to the KKS symplectic form. �

We conclude this subsection by saying a bit more about the directions in which ? and
∗h̄ di�erentiate.

Lemma 3.33 For any ξ = Ad∗g λ ∈ Oλ, the subspaces

L+,ξ = span
{

(AdgXα)Oλ
∣∣
ξ
, α ∈ ∆̂+

}
⊆ TξOλ , (3.36a)

L−,ξ = span
{

(AdgXα)Oλ
∣∣
ξ
, α ∈ ∆̂−

}
⊆ TξOλ (3.36b)

are independent of the choice of g ∈ G.

Proof: Any two choices g, g′ ∈ G di�er by an element of Gλ, that is g
′ = gx with

x ∈ Gλ. So it su�ces to prove that span{AdxXα , α ∈ ∆̂±} = span{Xα , α ∈ ∆̂±}.
This follows from the invariance of the ordering and the connectedness of Gλ. �

Therefore the distributions L+ and L− in TOλ spanned by L+,ξ and L−,ξ, respectively,
are well-de�ned.

Corollary 3.34 The star product ∗h̄ derives the �rst argument only in the directions

of L
(1,0)
+ and the second argument only in the directions of L

(1,0)
− .

Proof: This follows from the explicit formula for Fh̄ obtained in Theorem 3.18, from
Remark 3.31, and from Proposition 2.8. �
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3.4 Examples

In this subsection we derive formulas for Fh̄ in the case G = SL1+n(C) for the largest
non-trivial stabilizer Gλ. When restricting to real coadjoint orbits in Subsection 5.4,
this example allows us to obtain quantizations of complex projective spaces and hy-
perbolic discs.

Example 3.35 (SL1+n(C)) Let G = SL1+n(C) be the Lie group of matrices with
determinant 1. Its Lie algebra g = sl1+n(C) consists of matrices with trace 0. Number
the rows and columns of a matrix X ∈ g by 0, . . . , n. Let λ : g → C, X 7→ −irX0,0

where r ∈ C. Using that the Killing form B satis�es B(X,Y ) = 2(n + 1) tr(XY ),
where tr is the usual (not normalized) matrix trace, it follows that λ] is a multiple of
the diagonal matrix diag(n,−1, . . . ,−1), and therefore

gλ = {X ∈ sl1+n(C) | X0,i = Xi,0 = 0 for 1 ≤ i ≤ n} , (3.37a)

Gλ = {g ∈ SL1+n(C) | g0,i = gi,0 = 0 for 1 ≤ i ≤ n} . (3.37b)

We choose the Cartan subalgebra h consisting of the diagonal matrices in g. The
roots are then given by αi,j = Li − Lj for 0 ≤ i, j ≤ n with i 6= j, where Li ∈ h∗,
Li(X) = Xi,i. If we let the roots αi,j with i < j be positive, then the simple roots
are α0,1, α1,2, . . . , αn−1,n. As before, denote the matrix with entry 1 at position (i, j)
by Ei,j , and de�ne Xi,j := Ei,j ∈ gαi,j and Yi,j := Ej,i ∈ gαj,i = g−αi,j . Note that
B(Xi,j , Yi,j) = 2(n + 1) tr(Xi,jYi,j) = 2(n + 1), so we use a di�erent normalization
than in Subsection 3.1.

If n = 1, it is easy to simplify the formula for Fh̄ obtained in Theorem 3.18: There
is only one positive root α = α0,1, and there is a unique word w` of a given length
` ∈ N0. Note that λ = −irα/2 and ρ = α/2, so piλ/h̄(mα) = 1

2m
2(α, α)− 1

2m(α, α)−
1

2h̄mr(α, α) = 1
4m(m− 1− r

h̄ ). Therefore

pw`iλ/h̄(αw`) =
∏̀
m=1

4

m
(
m− 1− r

h̄

) =
(−4)`

`! rh̄
(
r
h̄ − 1

)
. . .
(
r
h̄ − (`− 1)

) .
We set X := X0,1 and Y := Y0,1. Since B(X,Y ) = 4 we have to plug the normalized
elements X/2 and Y/2 into (3.27), and obtain

Fh̄ =
∑
`∈N0

(−1)`

`! rh̄
(
r
h̄ − 1

)
. . .
(
r
h̄ − (`− 1)

)X` ⊗ Y ` . (3.38)

This result was already obtained in [1, Example 4.16], but the following result for
arbitrary n is new. We prove it by computing the canonical element of the Shapovalov
pairing directly, instead of simplifying (3.27).

Proposition 3.36 For G = SL1+n(C), the same λ and the same ordering as above,
we have

Fh̄ =
∑
`∈N0

(−1)`

`! rh̄
(
r
h̄ − 1

)
. . .
(
r
h̄ − (`− 1)

) (X0,1 ⊗ Y0,1 + · · ·+X0,n ⊗ Y0,n)` . (3.39)
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Proof: The Lie algebras ñ+ and ñ− are commutative Lie algebras spanned by
X0,1, . . . , X0,n and Y0,1, . . . , Y0,n respectively, and therefore {XI := XI1

0,1 . . . X
In
0,n |

I ∈ Nn0} and {Y J := Y J1
0,1 . . . Y

Jn
0,n | J ∈ Nn0} are bases of U (ñ+) and U (ñ−).

The Lie algebra n+ is spanned by Xi,j with i < j and we can view XI also as
an element of U (n+). Then π̃+

λ (XI) = XI and similarly π̃−λ (Y J) = Y J . Con-
sequently 〈XI , Y J〉∼iλ/h̄ = 〈XI , Y J〉iλ/h̄. For degree reasons the bases {XI} and
{Y J} are orthogonal, meaning that 〈XI , Y J〉iλ/h̄ = 0 for I 6= J . Indeed, XI

and Y J are homogeneous with respect to the degree d de�ned in the beginning of
Subsection 3.1, d(XI) = I1d(X0,1) + · · · + Ind(X0,n) = I1α0,1 + · · · + Inα0,n, and
d(Y J) = −(J1α0,1 + · · ·+Jnα0,n). Since the α0,i are linearly independent, Lemma 3.3
implies the claimed orthogonality.

Therefore it su�ces to determine the normalization 〈XI , Y I〉iλ/h̄. De�ne Hi :=
[X0,i, Y0,i] = E0,0 − Ei,i. Given a multiindex I ∈ Nn0 we can form a sequence that
starts with I1 many 1's, then has I2 many 2's, . . . , then In many n's. Denote the
k-th element of this sequence by I{k}. Introduce the projection ( · )0 to U h in the
decomposition U g = U h⊕ (n− ·U g + U g · n+), so that πλ(u) = λ((u)0). Then we
claim that

(XIY I)0 = I!

|I|−1∏
`=0

(HI{`} − `) . (3.40)

To see that this formula implies the proposition, note that

〈XI , Y I〉iλ/h̄ = πiλ/h̄(S(XI)Y I) = (−1)|I|
(

i

h̄
λ

)
((XIY I)0)

and that i
h̄λ(Hi) = r

h̄ for all i = 1, . . . , n. So

Fh̄ =
∑
I∈Nn0

1

〈XI , Y I〉iλ/h̄
XI ⊗ Y I =

∑
I∈Nn0

(−1)|I|

I! rh̄
(
r
h̄ − 1

)
. . .
(
r
h̄ − (|I| − 1)

)XI ⊗ Y I

and an application of the multinomial theorem gives (3.39).
It remains to prove (3.40). For n = 1 this is the statement of [16, Lemma 5.2].

Note that this also means that Z := XIn
0,nY

In
0,n − In!Hn(Hn − 1) . . . (Hn − In + 1) ∈

U (span{X0,n, Y0,n, Hn}) satis�es (Z)0 = 0. We proceed by induction and assume that
(3.40) holds for n−1. Writing I− = (I1, . . . , In−1, 0) and noting that [Hn, X0,i] = X0,i

for 1 ≤ i ≤ n− 1, we compute

(XIY I)0 = (XI−XIn
0,nY

In
0,nY

I−)0

= (XI−(In!Hn(Hn − 1) . . . (Hn − In + 1) + Z)Y I−)0

= In!((Hn − |I−|)(Hn − |I−| − 1) . . . (Hn − |I−| − In + 1)XI−Y I−)0 + (XI−ZY I−)0

= In!(Hn − |I−|)(Hn − |I−| − 1) . . . (Hn − |I−| − In + 1)(XI−Y I−)0 + (XI−ZY I−)0.

Since (Z)0 = 0 and d(Z) = d(XIn
0,nY

In
0,n − In!Hn(Hn − 1) . . . (Hn − In + 1)) = 0 we

can write Z = Y0,nZ
′X0,n for some Z ′ ∈ U (span{X0,n, Y0,n, Hn}). Since Y0,n ∈ gαn,0

any commutator of Y0,n with elements of gα0,1 , . . . , gα0,n−1 has degree d equal to Ln−
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∑n−1
i=0 ciLi for some ci ∈ Z, so must either be 0 or in a negative root space. Therefore

(XI−ZY I−)0 = 0, and the claim follows by applying the induction hypothesis to the
�rst summand in the equation above. �

Corollary 3.37 Let G = SL1+n(C) and λ be as above, but choose the opposite or-
dering, for which αi,j with i > j is positive. Then

Fh̄ =
∑
`∈N0

1

`! rh̄
(
r
h̄ + 1

)
. . .
(
r
h̄ + (`− 1)

) (Y0,1 ⊗ X0,1 + · · ·+ Y0,n ⊗ X0,n)` . (3.41)

Proof: The only change in the computation above is that the roles of X0,i and Y0,i

are swapped. Now [Y0,i, X0,i] = Ei,i − E0,0, so
i
h̄λ([Y0,i, X0,i]) = − r

h̄ , which means
that r changes sign. �

4 Continuity

In this section, we extend the product ∗h̄ : Pol(Oλ) × Pol(Oλ) → Pol(Oλ) obtained
in Corollary 3.30 to a product ∗h̄ : Hol(Oλ)×Hol(Oλ)→ Hol(Oλ) on all holomorphic
functions on the coadjoint orbit, that is continuous with respect to the topology of
locally uniform convergence. More precisely, we prove the following theorem.

Theorem 4.1 Let Oλ be a complex semisimple coadjoint orbit of a complex semisim-
ple connected Lie group G. Then for any h̄ ∈ C \ Pλ the product ∗h̄ on Pol(Oλ) is
continuous with respect to the topology of locally uniform convergence and extends to
a continuous and G-invariant product ∗h̄ : Hol(Oλ)×Hol(Oλ)→ Hol(Oλ) on the space
of all holomorphic functions on Oλ.

The proof of this theorem proceeds as follows: In Subsection 4.1 we prove the con-
tinuity of ∗h̄ with respect to a topology that we call the reduction-topology and in
Subsection 4.3 we prove that the reduction-topology coincides with the topology of
locally uniform convergence. Consequently ∗h̄ extends to the completion of the space
of polynomials on Oλ. Using the results of Subsection 4.2 we prove in Subsection 4.3
that this completion is the space Hol(Oλ) of all holomorphic functions on Oλ.

In the whole section we assume that the complex connected semisimple Lie group
G is concretely realized as a complex Lie subgroup of GLN (C) for some N ∈ N,
as explained in Subsection 2.1. In particular, since G is semisimple, it is a closed
submanifold of CN×N .

4.1 Continuity in the reduction-topology

In this subsection we prove the continuity of the star product ∗h̄ with respect to a
topology that we call the reduction-topology, and which is de�ned below. Recall that
a sequence of functions fi : X → C on a topological space X is said to be locally
uniformly convergent if for every x ∈ X there is a neighbourhood U ⊆ X such that
fi converges uniformly to f on U , i.e. limi→∞ supy∈U |fi(y) − f(y)| = 0. In this
work, X will always be a manifold. Then the topology of locally uniform convergence
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coincides with the topology of compact convergence (for every compact subsetK ⊆ X,
fi converges uniformly on K), and is therefore a locally convex topology, de�ned by
the seminorms ‖f‖K := supK |f |.

Denote the ideal of polynomials in Pol(CN×N ) whose restriction to G vanishes by
I(G).

De�nition 4.2 (Reduction-topology) The topology Tlc of locally uniform conver-
gence on the space Pol(CN×N ) of polynomials on CN×N induces a quotient topology
on the space Pol(G) ∼= Pol(CN×N )/I(G) of polynomials on G, and we call the sub-
space topology on the space Pol(Oλ) ∼= Pol(G)Gλ of polynomials on the coadjoint orbit
Oλ the reduction-topology.

In Subsection 4.3 we will prove that the reduction-topology coincides with the topol-
ogy of locally uniform convergence on Oλ.

This topology is convenient for obtaining continuity estimates for ∗h̄, since we
gave a description of Ψ(Fh̄) via bidi�erential operators on G in Subsection 2.2. Since
we assume that the Lie group G is concretely realized as a complex Lie subgroup of
GLN (C), its Lie algebra g is realized as a Lie subalgebra of glN (C). Considering the
element F ′h̄,` de�ned in (3.35) as an element of U (glN (C))⊗ U (glN (C)), we let

∗′h̄ : Pol(CN×N )× Pol(CN×N )→ Pol(CN×N ) ,

(p, q) 7→ p ∗′h̄ q :=

∞∑
`=0

(F ′h̄,`)
left,(1,0)(p, q) , (4.1)

which is well-de�ned because Lemma 3.28 implies that the sum over ` is �nite, and that
(F ′h̄,`)

left,(1,0)(p, q) is again a polynomial. Note that ∗′h̄ is (in general) not associative

since
∑∞
`=0 F

′
h̄,` satis�es (3.28) only after passing to the quotient. However, since F

′
h̄,`

lies in the subspace U g⊗U g it induces a product on Pol(G) ∼= Pol(CN×N )/I(G). As
in Remark 3.31 it follows that the restriction of this product to Pol(G)Gλ ∼= Pol(Oλ)
coincides with ∗h̄.

Theorem 4.3 For h̄ ∈ C \ Pλ the product ∗′h̄ on Pol(CN×N ) is continuous with
respect to the topology of locally uniform convergence Tlc.

Before proving this theorem in the rest of this section, we would like to note the
following consequence, which motivates the de�nition of the reduction-topology given
above.

Corollary 4.4 For h̄ ∈ C \ Pλ the product ∗h̄ on Pol(Oλ) is continuous with respect
to the reduction-topology.

Proof: This follows immediately from the previous theorem and the construction of
the reduction-topology. �

Remark 4.5 It is interesting to point out that the proof of Theorem 4.3 will not use
anything about the actual Lie algebra structure but semisimplicity and the form of the
element Fh̄. In fact, we only need that the coe�cients of Fh̄ behave like p

w
λ (αw) ≈ |w|2

for large |w|. The rest of the proof consists in counting terms and checking that there
are not too many.



4. CONTINUITY 139

The strategy to prove Theorem 4.3 is as follows. We �rst introduce a di�erent locally
convex topology that is better suited for obtaining continuity estimates. Then we
prove that this topology is equivalent to the topology of locally uniform convergence
and we prove the continuity of ∗′h̄ with respect to this topology.

Set m = N2. Let B = {b1, . . . , bm} be the standard basis of Cm and denote
the dual basis of (Cm)∗ by B∗ = {b∗1, . . . , b∗m}. Elements of Pol(Cm) ∼= S((Cm)∗)
(where S denotes the symmetric tensor algebra) can be written uniquely in the form∑

I∈Nm0
aIb
∗
I . Here I ∈ Nm0 is a multiindex, b∗I = (b∗1)∨I1 ∨ · · · ∨ (b∗m)∨Im and only

�nitely many of the coe�cients aI ∈ C are non-zero. For any R ∈ R+ de�ne a norm∣∣∣∣∣∣∣∣∣∣∣∣∑I∈Nm0
aIb
∗
I

∣∣∣∣∣∣∣∣∣∣∣∣
R

:=
∑

I∈Nm0
|aI |R|I| . (4.2)

Note that these norms coincide with the T0-norms with respect to the basis B∗, stud-
ied for example in [40]. We denote the locally convex topology given by endowing
Pol(Cm) ∼= S((Cm)∗) with the seminorms ||| · |||R by T|||·||| . This topology can equiva-
lently be de�ned by the countable set of norms ||| · |||R with R ∈ N.

Note that ||| · |||R is submultiplicative with respect to the classical product:∣∣∣∣∣∣∣∣∣∣∣∣(∑I∈Nm0
aIb
∗
I

)
∨
(∑

J∈Nm0
a′Jb
∗
J

)∣∣∣∣∣∣∣∣∣∣∣∣
R

=

∣∣∣∣∣∣∣∣∣∣∣∣∑I,J∈Nm0
aIa
′
Jb
∗
I ∨ b∗J

∣∣∣∣∣∣∣∣∣∣∣∣
R

≤

≤
∑

I,J∈Nm0
|aI ||a′J |R|I|+|J| =

(∑
I∈Nm0

|aI |R|I|
)(∑

J∈Nm0
|a′J |R|J|

)
=

=

∣∣∣∣∣∣∣∣∣∣∣∣∑I∈Nm0
aIb
∗
I

∣∣∣∣∣∣∣∣∣∣∣∣
R

∣∣∣∣∣∣∣∣∣∣∣∣∑J∈Nm0
a′Jb
∗
J

∣∣∣∣∣∣∣∣∣∣∣∣
R

.

Proposition 4.6 The topologies T|||·||| and Tlc coincide.

Proof: Assume p =
∑
I∈Nm0

aIb
∗
I ∈ Pol(Cm) is a polynomial. Given K ⊆ Cm

compact, choose R ∈ R such that |z| ≤ R holds for all z ∈ K. Then on the one hand
we have

‖p‖K = max
z∈K
|p(z)| ≤

∑
I∈Nm0

|aI |R|I| = |||p|||R .

On the other hand, if DR = {(z1, . . . , zm) ∈ Cm | |zi| ≤ R for all i = 1, . . . ,m} ⊆ Cm
denotes a closed polydisc of radius R, then Cauchy's integral formula yields

|aI | =
1

I!
|∂Ip(0)| = 1

(2π)m

∣∣∣∣∣
∫
|zi|=R

p(z)

zI+(1,...,1)
dzI

∣∣∣∣∣ ≤
≤ max
z∈DR

|p(z)| Rm

R|I+(1,...,1)| =
1

R|I|
max
z∈DR

|p(z)| .

Applying this estimate for a polydisc of radius 2mR yields

|||p|||R =
∑
I∈Nm0

|aI |R|I| ≤
∑
I∈Nm0

1

(2mR)|I|
R|I| max

z∈D2mR

|p(z)| ≤
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≤ max
z∈D2mR

|p(z)|
∑
I∈Nm0

(2m)−|I| ≤ 2 max
z∈D2mR

|p(z)| = 2‖p‖D2mR
.

Consequently we can estimate any norm of T|||·||| by a seminorm of Tlc and vice versa,
so the topologies T|||·||| and Tlc coincide. �

Because of the previous proposition we can and will work with the norms ||| · |||R
instead of the seminorms ‖ · ‖K in the following. To obtain continuity estimates, we
need to estimate the coe�cients pλ(µ) de�ned in (3.9).

Lemma 4.7 (Estimates for pλ) For any �xed compact set K ⊆ h∗ there are con-
stants C > 0 and M such that pλ(αw) de�ned in (3.9) satis�es

|pλ(αw)| ≥ C|w|2 (4.3)

for all words w ∈W of length |w| ≥M and all λ ∈ K.

Proof: Assume that the positive roots α1, . . . , αk ∈ ∆+ are ordered in such a way
that α1, . . . , αr are the simple roots. Write αw =

∑r
i=1 cw,iαi as a linear combination

of simple roots, where cw,i ∈ N0 satisfy |w| ≤
∑r
i=1 cw,i ≤ c|w| with c depending only

on the root system. Since (ρ, αi) > 0 for all 1 ≤ i ≤ r we can choose cρ, Cρ ∈ R+

such that cρ ≤ (ρ, αi) ≤ Cρ holds for all 1 ≤ i ≤ r. Similarly, there is C ′ ∈ R+ with
|(λ, αi)| ≤ C ′ for all λ ∈ K and 1 ≤ i ≤ r. Then

(αw, αw) ≥ 1

(ρ, ρ)
(αw, ρ)2 =

1

(ρ, ρ)

(
r∑
i=1

(cw,iαi, ρ)

)2

≥

≥
c2ρ

(ρ, ρ)

(
r∑
i=1

cw,i

)2

≥
c2ρ

(ρ, ρ)
|w|2

and for all λ ∈ K we obtain

|(ρ+ λ, αw)| ≤
r∑
i=1

cw,i(|(ρ, αi)|+ |(λ, αi)|) ≤ (Cρ + C ′)

r∑
i=1

cw,i ≤ c(Cρ + C ′)|w| .

Setting C := 1
4(ρ,ρ)c

2
ρ, C1 := c(Cρ + C ′), and M := C1

C , and assuming |w| ≥ M we

obtain

|pλ(αw)| ≥ 1

2
(αw, αw)−|(ρ+λ, αw)| ≥ 2C|w|2−C1|w| ≥ 2C|w|2−C|w|2 = C|w|2 . �

Corollary 4.8 (Estimates for pwλ ) Fix λ ∈ h∗. For any compact set K ⊆ C \ Pλ
there is a constant Cp > 0 such that pwiλ/h̄(αw) de�ned in (3.9) satis�es

|pwiλ/h̄(αw)−1| ≤ C
|w|
p

(|w|!)2
(4.4)

for all words w ∈ W̃ and all h̄ ∈ K.
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Proof: Note that K ′ = {iλ/h̄ | h̄ ∈ K} is a compact subset of Λ̃. Let M and
C be the constants obtained by applying the previous lemma to K ′, so |pλ′(αw)| ≥
C|w|2 for all w ∈ W with |w| ≥ M and all λ′ ∈ K ′. Since iλ/h̄ ∈ Λ̃, we have
minw∈W̃ ,|w|<M |piλ/h̄(αw)| > 0 for all h̄ ∈ K. Since this quantity depends continuously
on h̄ the minimum for h̄ ∈ K exists and must also be positive. Hence we may decrease
the constant C such that |piλ/h̄(αw)| ≥ C|w|2 also holds for the �nitely many words
w ∈ W̃ with |w| < M . Consequently |piλ/h̄(αw)| ≥ C|w|2 holds for all words w ∈ W̃ .
Setting Cp := 1/C, the corollary follows by rearranging. �

We have now collected all the results needed to prove Theorem 4.3.

Proof of Theorem 4.3: First, we note that it su�ces to prove the existence of
a constant M such that for any multiindices I, J ∈ Nm0 we have |||b∗I ∗′h̄ b∗J |||R ≤
(RM)|I|+|J|. Indeed, this statement implies the continuity of ∗′h̄ since for p =

∑
I∈Nm0

pIb
∗
I

and q =
∑
I∈Nm0

qIb
∗
I we estimate

|||p ∗′h̄ q|||R =

∣∣∣∣∣∣∣∣∣∣∣∣∑I∈Nm0
pIb
∗
I ∗′h̄

∑
J∈Nm0

qJb
∗
J

∣∣∣∣∣∣∣∣∣∣∣∣
R

≤
∑
I∈Nm0

∑
J∈Nm0

|pI ||qJ ||||b∗I ∗′h̄ b∗J |||R

≤
∑
I∈Nm0

∑
J∈Nm0

|pI ||qJ |(RM)|I|+|J|

=

∣∣∣∣∣∣∣∣∣∣∣∣∑I∈Nm0
pIb
∗
I

∣∣∣∣∣∣∣∣∣∣∣∣
RM

∣∣∣∣∣∣∣∣∣∣∣∣∑J∈Nm0
qJb
∗
J

∣∣∣∣∣∣∣∣∣∣∣∣
RM

= |||p|||RM |||q|||RM .

Using the notation I{j} introduced in the proof of Proposition 3.36 we estimate

|||b∗I ∗′h̄ b∗J |||R =
∣∣∣∣∣∣∣∣∣∑∞

`=0
(F ′h̄,`)

left,(1,0)(b∗I , b
∗
J)
∣∣∣∣∣∣∣∣∣
R

≤
∣∣∣∣∣∣∣∣∣∑

w∈W̃
pwiλ/h̄(αw)−1(Xw ⊗ Yw)left,(1,0)(b∗I , b

∗
J)
∣∣∣∣∣∣∣∣∣
R(1)

≤
∑
w∈W̃

|pwiλ/h̄(αw)−1| ·

·
∑

w(1),...,w(|I|)

∑
w′

(1)
,...,w′

(|J|)

∣∣∣∣∣∣∣∣∣X left,(1,0)
w(1)

b∗I{1}

∣∣∣∣∣∣∣∣∣
R
. . .
∣∣∣∣∣∣∣∣∣X left,(1,0)

w(|I|)
b∗I{|I|}

∣∣∣∣∣∣∣∣∣
R
·

·
∣∣∣∣∣∣∣∣∣Y left,(1,0)

w′
(1)

b∗J{1}

∣∣∣∣∣∣∣∣∣
R
. . .
∣∣∣∣∣∣∣∣∣Y left,(1,0)

w′
(|J|)

b∗J{|J|}

∣∣∣∣∣∣∣∣∣
R

(2)

≤
∑
w∈W̃

C
|w|
p

(|w|!)2
|I||w||J ||w|C2|w|R|I|+|J|

(3)

≤ R|I|+|J|
∞∑
`=0

(kCpC
2)`
|I|`|J |`

(`!)2
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(4)

≤ R|I|+|J|
∞∑
`=0

(k1/2C
1/2
p C|I|)`

`!

∞∑
`′=0

(k1/2C
1/2
p C|J |)`′

`′!

≤ R|I|+|J|ek
1/2C1/2

p C|I|ek
1/2C1/2

p C|J|

= (Rek
1/2C1/2

p C)|I|+|J| .

The sum
∑
w(1),...,w(|I|)

introduced in (1) is over all partitions of w ∈ W̃ into words

w(1), . . . , w(|I|). To be more precise, consider a partition P1, . . . , P|I| of {1, . . . , |w|}
into |I| many subsets. If Pi = {pi,1, . . . , pi,ji} with pi,1 < · · · < pi,ji , then associate
the word w(i) = wpi,1wpi,2 . . . wpi,ji . Then we sum over all partitions. The other sum
is de�ned similarly. We also used submultiplicativity of ||| · |||R in this step. To justify
(2), we note that for any Z ∈ glN (C), Z left,(1,0)b∗i is of degree 1, so that X

left,(1,0)
w(`)

b∗I{`}
is of degree 1. De�ning C := maxi∈{1,...,m},α∈∆ |||X left,(1,0)

α b∗i |||1 we obtain∣∣∣∣∣∣∣∣∣X left,(1,0)
w(`)

b∗I{`}

∣∣∣∣∣∣∣∣∣
R
≤ C |w(`)|R .

The sum over w(1), . . . , w(|I|) has |I||w| many terms, since for each letter of w we can
choose in which of the |I| many sets we want to have it. Similarly for the other sum.
In (3) we used that there are at most k|w| many words of a given length |w| in W̃ and
(4) holds, because we just added some positive extra terms. �

Remark 4.9 For a �xed compact set K ⊆ C \ Pλ the proof above shows that there
is a constant M ∈ R+ such that for any h̄ ∈ K we have

|||p ∗′h̄ q|||R ≤ |||p|||RM |||q|||RM (4.5)

since Corollary 4.8 gives uniform estimates for all h̄ ∈ K.

4.2 Stein manifolds and extension of holomorphic functions

In this subsection, we discuss extension properties of holomorphic functions on closed
complex submanifolds of Stein manifolds or, more generally, on analytic subsets
of Stein manifolds. We will use the results in the next subsection to identify the
reduction-topology with the topology of locally uniform convergence and to deter-
mine the completion of the space of polynomials with respect to this topology.

Since analytic subsets in a Stein manifold are a very natural setting to prove the
extendability results, we formulate them in this generality (even though we only need
the case of closed submanifolds most of the time). The content of this subsection has
been known for long and can be found e.g. in the textbook [22].

Recall that for a complex manifold M , we denote the vector space of holomorphic
functions on M by Hol(M).

De�nition 4.10 (Holomorphic convex hull) For a compact subset K of a com-
plex manifold M we de�ne its holomorphic convex hull to be the set

K̂M = {z ∈M | |f(z)| ≤ sup
K
|f | for all f ∈ Hol(M)} . (4.6)
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De�nition 4.11 (Stein manifold) A complex manifold M of dimension n is said
to be Stein if

i.) for any compact subset K ⊆M its holomorphic convex hull K̂M is compact,

ii.) for every z ∈M there are functions f1, . . . , fn ∈ Hol(M) that form a coordinate
system around z.

Stein manifolds should be thought of as domains of holomorphicity for holomorphic
functions of several complex variables. Clearly Cn is Stein.

De�nition 4.12 A subset V ⊆ M of a complex manifold is called analytic, if for
every point z ∈ M there is a neighbourhood U ⊆ M of z such that there is a family
of holomorphic functions fj ∈ Hol(U) with j ∈ J , J some index set, such that

V ∩ U = {z ∈ U | fj(z) = 0 for all j ∈ J} . (4.7)

Example 4.13 Any closed complex submanifold M of Cn is an analytic subset. In-
deed, around any z ∈M we can �nd a submanifold chart, that is a neighbourhood U
and coordinates z = (z1, . . . , zn) such thatM ∩U is given by the vanishing of the �rst
n − dimM coordinates. Therefore we can take fj = zj for j = 1, . . . , n − dimM in
De�nition 4.12. Around any z /∈M there is a neighbourhood U such that U ∩M = ∅
and we may pick f1 = 1 in De�nition 4.12.

De�nition 4.14 A function f : V → C on an analytic subset V ⊆ M of a complex
manifold is called holomorphic, if for every point z ∈ V there is a neighbourhood
U ⊆M of z and a holomorphic function g ∈ Hol(U) such that g

∣∣
U∩V = f

∣∣
U∩V .

Example 4.15 If V is a closed complex submanifold of Cn as in Example 4.13, then
this de�nition of a holomorphic function coincides with the usual de�nition. Indeed,
in any submanifold chart (U, z) as in Example 4.13, a holomorphic function on U ∩V
can be extended constantly along the �rst n − dimM variables to a holomorphic
function on U . The reverse implication is clear.

Proposition 4.16 Let V be an analytic subset of a Stein manifold M . Then Hol(V )
endowed with the topology of locally uniform convergence is a Fréchet space.

Proof: It follows from the de�nition of analytic subsets that V is closed. Therefore
the restriction of any compact exhaustion of M to V gives a compact exhaustion
Ki of V . The seminorms ‖f‖Ki = supKi |f | de�ne a countable system of seminorms
inducing the topology of locally uniform convergence. The completeness of Hol(V )
with respect to this topology is a non-trivial result and proved in [22, Theorem 7.4.9].�

The crucial property of an analytic subset V of a Stein manifold is the following
extendability property for any holomorphic function on V .

Theorem 4.17 (Extendability of holomorphic functions) Let V be an analytic
subset of a Stein manifold M . Any holomorphic function f ∈ Hol(V ) can be extended
to a holomorphic function f ∈ Hol(M). In other words, the restriction map Hol(M)→
Hol(V ) is surjective.
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Proof: See [22, Theorem 7.4.8]. �

For an analytic subset V of a complex manifoldM we denote the subspace of Hol(M)
consisting of functions that vanish on V by I(V ). Note that the restriction map
Hol(M) → Hol(V ) descends to a map on the quotient, r : Hol(M)/I(V ) → Hol(V ).
This map is clearly injective by de�nition of I(V ), and if M is Stein it is surjective
by the previous theorem.

Corollary 4.18 Assume that M is Stein and that V ⊆ M is an analytic subset. If
Hol(M)/I(V ) is endowed with the quotient topology of the topology of locally uniform
convergence and Hol(V ) is endowed with the topology of locally uniform convergence
then the map r : Hol(M)/I(V )→ Hol(V ) is a homeomorphism.

Proof: We know that r is bijective, so it only remains to prove the continuity of
r and r−1. Both Hol(M) and Hol(V ) are Fréchet spaces (for Hol(M) this is well-
known, for Hol(V ) it is the statement of Proposition 4.16). Since I(V ) is closed,
Hol(M)/I(V ) is also a Fréchet space. Clearly the locally uniform convergence of a
sequence fi ∈ Hol(M) implies the locally uniform convergence of the sequence of
restrictions fi

∣∣
V
∈ Hol(V ), so the map r is continuous. The statement then follows

from the open mapping theorem for Fréchet spaces. �

4.3 Characterizing the reduction-topology

In this subsection, we show that the reduction-topology on Oλ as de�ned in Subsec-
tion 4.1 is the topology of locally uniform convergence and that the completion of the
space of polynomials Pol(Oλ) on Oλ with respect to this topology is exactly the space
of holomorphic functions Hol(Oλ) on Oλ.

Proposition 4.19 The reduction topology Tred on Oλ coincides with the topology of
locally uniform convergence.

Proof: By the assumption at the beginning of this section (see also Subsection 2.1),
G is a closed complex submanifold of CN×N , hence an analytic subset by Exam-
ple 4.13. Applying Corollary 4.18 yields that the quotient topology on Hol(G) induced
by the topology of locally uniform convergence on CN×N is precisely the topology of
locally uniform convergence on G.

By De�nition 4.2 the reduction-topology is the restriction of this topology to the
subspace of right Gλ-invariant holomorphic functions. Using that this subspace is
closed, and that a sequence fi ∈ Hol(Oλ) converges locally uniformly if and only if
the sequence π∗(fi) ∈ Hol(G)Gλ converges locally uniformly, one can easily check that
the reduction-topology coincides with the topology of locally uniform convergence on
Hol(Oλ). �

Finally, we would like to determine the completion P̂ol(Oλ) of Pol(Oλ) with respect
to the topology of locally uniform convergence.

Proposition 4.20 We have P̂ol(Oλ) = Hol(Oλ).
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Proof: The inclusion P̂ol(Oλ) ⊆ Hol(Oλ) is trivial, since Pol(Oλ) ⊆ Hol(Oλ) and
the limit of a locally uniformly convergent sequence of holomorphic functions is again
holomorphic.

The other inclusion is easy to see if one uses that semisimple coadjoint orbits are
a�ne algebraic varieties, see Remark 2.4: In particular they are analytic subsets of the
Stein manifold g∗ and therefore we can use Theorem 4.17 to extend any f ∈ Hol(Oλ)
to a holomorphic function f̃ ∈ Hol(g∗), which can be approximated by polynomials.
Restricting these approximating polynomials to Oλ gives a sequence of polynomials
in Pol(Oλ) converging locally uniformly to f .

Alternatively, we know that G is a closed submanifold of the Stein manifoldCN×N ,
so the same argument yields that any f ∈ Hol(G) can be approximated by some
pn ∈ Pol(G). Assume that f ∈ Hol(G)Gλ . Let Kλ be a maximal compact subgroup
of Gλ. Averaging pn over Kλ gives a sequence p′n ∈ Pol(G)Kλ that converges locally
uniformly to f . Now p′n is even Gλ-invariant since the action of G is holomorphic, so
π∗p
′
n ∈ Pol(Oλ) converges to π∗f ∈ Hol(Oλ). �

We are now able to prove the main theorem stated in the introduction to this section.

Proof of Theorem 4.1: From Subsection 4.1 we know that the product ∗h̄ is con-
tinuous with respect to the reduction-topology. We showed in Proposition 4.19 that
the reduction-topology coincides with the topology of locally uniform convergence on
Oλ. The previous proposition shows that the completion of Pol(Oλ) in this topology
is Hol(Oλ). Finally G-invariance of the product on the completion is clear since the
action of G on Pol(Oλ) is continuous with respect to the topology of locally uniform
convergence. �

We close this section by the following proposition, which asserts that the dependence
of ∗h̄ on h̄ is holomorphic.

Proposition 4.21 (Holomorphic dependence on h̄) For two �xed holomorphic
functions p, q ∈ Hol(Oλ) and x ∈ Oλ the map C \ Pλ → C, h̄ 7→ p ∗h̄ q(x) is
holomorphic.

Proof: By construction of ∗h̄ in Section 3, the map C \ Pλ → C, h̄ 7→ p′ ∗h̄ q′(x) is
rational for p′, q′ ∈ Pol(Oλ). Assume that pn, qn are sequences of polynomials on Oλ
such that pn → p and qn → q locally uniformly. Since the estimates of Subsection 4.1
are locally uniform in h̄, see Remark 4.9, it follows that pn ∗h̄ qn → p ∗h̄ q locally
uniformly in h̄. But clearly the evaluation at x is continuous, so that h̄ 7→ p ∗h̄ q(x) is
a locally uniform limit of rational functions and therefore holomorphic. �

5 Quantizing real coadjoint orbits

We have seen in the previous sections how to construct (formal and strict) quantiza-
tions of complex coadjoint orbits. In this section, we will use these results to obtain
(formal and strict) quantizations of real coadjoint orbits.

In Subsection 5.1 and Subsection 5.2 we collect some prelimary results on the
complexi�cation of a real coadjoint orbit Oλ and a real Lie group G. We de�ne a
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certain class of analytic functions that we denote by A(Oλ) and A(G). In Subsec-
tion 5.3 we construct a quantization of real orbits by restricting the quantization of
a complexi�cation. We discuss the examples of complex projective spaces and hyper-
bolic discs in Subsection 5.4. Finally, we show that point evaluation functionals are
positive for certain coadjoint orbits in Subsection 5.5 and compare the quantum alge-
bras obtained for coadjoint orbits of real Lie groups with the same complexi�cation
in Subsection 5.6. Most results in the later subsections follow almost directly from
the results in the complex case.

From now on, all complex Lie groups and Lie algebras will be denoted with a hat
and letters without decoration will be used to denote real objects. We will also use
hats for maps between complex objects, e.g. we rename the map de�ned in (2.8) to
Ψ̂.

5.1 Complexi�cation

In this subsection we de�ne the complexi�cation of a real coadjoint orbit Oλ and a
real Lie group G, and show how they are related.

For a real Lie algebra g, denote the space of real-valued real-linear functionals on
g by g∗. As before, ĝ∗ denotes the space of complex-valued complex-linear functionals
on a complex Lie algebra ĝ. In the following, we will always assume that ĝ = g ⊗ C
is the complexi�cation of g. In this case, any element of g∗ has a unique extension
to an element of ĝ∗. We will perform this extension implicitly whenever necessary,
without mentioning it. For example, in the following proposition, the coadjoint orbit
Ôλ is really the coadjoint orbit through the extension of λ ∈ g∗ to an element of ĝ∗.

Proposition 5.1 Let Oλ ⊆ g∗ be a coadjoint orbit of a real connected Lie group, and
assume that ĝ is the complexi�cation of g. Then Oλ is a submanifold of a unique
complex coadjoint orbit Ôλ ⊆ ĝ∗ of a complex connected Lie group with Lie algebra
ĝ. The tangent space TξÔλ of this orbit Ôλ is the complexi�cation of TξOλ for every
ξ ∈ g∗.

Proof: By Proposition 2.1 the coadjoint orbit Oλ is the symplectic leaf through λ
of the linear Poisson structure on g∗ de�ned just before Proposition 2.1. Similarly
the coadjoint orbits in ĝ∗ are symplectic leaves of the linear Poisson structure on ĝ∗,
and the symplectic leaf containing λ ∈ ĝ∗ contains the whole orbit Oλ. This proves
existence and uniqueness of Ôλ.

As in Subsection 2.1, we can identify TξOλ with g/gξ (as real vector spaces) and
TξÔλ with ĝ/ĝξ (as complex vector spaces) for all ξ ∈ Oλ. Therefore TξÔλ is indeed
the complexi�cation of TξOλ. �

We refer to the complex coadjoint orbit Ôλ of the previous proposition as the com-
plexi�cation of Oλ. We will show how to realize it explicitly as the coadjoint orbit of
some Lie group Ĝ.

De�nition 5.2 Let G be a real Lie group. A complexi�cation of G is a complex con-
nected Lie group Ĝ together with an embedding ι : G→ Ĝ, such that the corresponding
Lie algebra ĝ is isomorphic to the complexi�cation g⊗ C of g and such that the map
Teι : g→ ĝ corresponds to the injection X 7→ X ⊗ 1 under this isomorphism.
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Note that a complexi�cation according to this de�nition may fail to exist or may not
be unique, if it exists. See the paragraph after Proposition 5.8 for an example of a
Lie group with non-unique complexi�cation. For a connected semisimple Lie group
G a complexi�cation exists if and only if the group can be realized as a linear group:
Existence for linear Lie groups is shown below, and the reverse implication follows
since semisimplicity of G implies semisimplicity of the complexi�cation and complex
connected semisimple Lie groups are always matrix Lie groups, see Remark 2.4. There
is a di�erent notion of a universal complexi�cation that does always exist, but that
does not enjoy the property that ĝ ∼= g⊗C. We will not use universal complexi�cations
in this paper.

Proposition 5.3 If G is a real connected closed linear Lie group, then it admits a
complexi�cation Ĝ.

Proof: We may assume that both G and its Lie algebra g are realized by real matri-
ces. Then the complexi�cation ĝ = g⊗ C is a Lie subalgebra of glN (C). We can use
the exponential map to construct an immersed complex Lie subgroup Ĝ of GLN (C)
containing G as a subgroup and having ĝ as Lie algebra, see e.g. [21, Chapter 5.9].
Since G is a closed subgroup of GLN (C), it is also a closed subgroup of Ĝ. �

Note that we did not claim that Ĝ is a closed subgroup of GLN (C). For semisimple
Lie groups this follows automatically from Remark 2.4.

Lemma 5.4 Let G be a real connected Lie group with complexi�cation Ĝ and let Oλ
be a coadjoint orbit of G with complexi�cation Ôλ. Then Ôλ is a coadjoint orbit of Ĝ
and the embedding ι : G→ Ĝ descends to an embedding Oλ ∼= G/Gλ → Ĝ/Ĝλ ∼= Ôλ.

Proof: Since Ĝ is connected and has the Lie algebra ĝ, it follows from Proposition 2.1
that its coadjoint orbit through λ is Ôλ. We identify G with a subgroup of Ĝ. Since
the coadjoint action of Ĝ on ĝ is holomorphic, Ĝλ is a complexi�cation of Gλ = Ĝλ∩G.
So the map ι descends to a map Oλ ∼= G/Gλ → Ĝ/Ĝλ ∼= Ôλ that is still injective. To
see that it is an embedding, note that the actions of Gλ and Ĝλ on Ĝ are proper and
free, so Ĝ is a principal Gλ resp. Ĝλ bundle over Ĝ/Gλ resp. Ĝ/Ĝλ. This implies �rst
that G/Gλ → Ĝ/Gλ is still an embedding, and then that G/Gλ → Ĝ/Ĝλ also is. �

5.2 Polynomials and analytic functions

In this subsection we introduce polynomials Pol(Oλ) and a certain class of analytic
functions A(Oλ) on a real coadjoint orbit Oλ. A(Oλ) consists of restrictions of holo-
morphic functions on the complexi�cation. In analogy to the complex case, A(Oλ) is
the completion of Pol(Oλ) with respect to some locally convex topology.

All our polynomials are complex-valued. So for a real �nite dimensional vector
space V we de�ne Pol(V ) to be the unital complex subalgebra of C∞(V ) generated
by the linear maps. (Remember that C∞(V ) consists of smooth functions V → C.)
So Pol(V ) ∼= S(V ∗

C
) where V ∗

C
is the complexi�cation of V ∗ = {φ : V → R, φ linear}.
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De�nition 5.5 (Polynomials) Let Oλ be a coadjoint orbit of a real connected Lie
group G with Lie algebra g. Then

Pol(Oλ) = {p : Oλ → C | p = P
∣∣
Oλ

for some polynomial P on g∗} (5.1)

is called the algebra of polynomials on Oλ.

Note that polynomials on a complex orbit Ôλ were assumed to be holomorphic and do
therefore not coincide with polynomials on the underlying real orbit. We will always
use holomorphic polynomials on complexi�cations, so this will hopefully not cause
any confusion.

Denote the ideal of polynomials on g∗ resp. ĝ∗ vanishing on Oλ resp. Ôλ by I(Oλ)

resp. I(Ôλ). It is clear that the maps Pol(g∗)/I(Oλ)→ Pol(Oλ) and Pol(ĝ∗)/I(Ôλ)→
Pol(Ôλ) are isomorphisms. We would now like to relate polynomials on Oλ and Ôλ.

Proposition 5.6 Let Oλ ⊆ g∗ be a real coadjoint orbit with complexi�cation Ôλ ⊆ ĝ∗.
Then the restriction map ( · )

∣∣
Oλ

: C∞(Ôλ) → C∞(Oλ) restricts to an isomorphism

( · )
∣∣
Oλ

: Pol(Ôλ)→ Pol(Oλ).

Proof: Since restriction to V is a bijection between complex linear maps V ⊗C→ C

and real linear maps V → C for any �nite dimensional real vector space V , it follows
that the restriction map Pol(ĝ∗) → Pol(g∗) is an isomorphism. If we can prove that

the restriction map I(Ôλ) → I(Oλ) is also an isomorphism, then we are done since

Pol(Ôλ) ∼= Pol(ĝ∗)/I(Ôλ)→ Pol(g∗)/I(Oλ) ∼= Pol(Oλ) would be an isomorphism.

Since any map vanishing on Ôλ vanishes in particular on Oλ ⊆ Ôλ, the restriction
map I(Ôλ)→ I(Oλ) is well-de�ned and it is injective since it is the restriction of the
injective map Pol(ĝ∗)→ Pol(g∗). So we only need to prove surjectivity, meaning that
if a polynomial p on g∗ vanishes on Oλ, then its unique extension to a polynomial p̂
on ĝ∗ vanishes on Ôλ. Since Ôλ is a complex submanifold of ĝ∗, the restriction of p̂
to Ôλ is holomorphic. As such it is determined by its derivatives (of all orders) at λ.

It is even determined by its derivatives in the direction of TλOλ since TλÔλ is the
complexi�cation of TλOλ. But all these derivatives vanish since the restriction of p̂
to Oλ vanishes. �

De�nition 5.7 Let G be a linear real Lie group. Its algebra of polynomials Pol(G)
is the unital complex subalgebra of C∞(G) generated by the functions Pij : G → C,
g 7→ gij.

In contrast to the complex case, the algebra of polynomials Pol(G) may depend on
the way in which G is realized as a linear group, even in the semisimple case. We
will give an instructive example after stating the following proposition, which can be
proven in a similar way than Proposition 5.6.

Proposition 5.8 Let G ⊆ GLN (R) be a linear connected Lie group with complexi�-
cation Ĝ ⊆ GLN (C). Then the restriction map ( · )

∣∣
G

: C∞(Ĝ)→ C∞(G) restricts to
an isomorphism ( · )

∣∣
G

: Pol(Ĝ)→ Pol(G).
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The reason why the algebra of polynomials Pol(G) may depend on the linear struc-
ture of G, is essentially that G may not have a unique complexi�cation. Consider
the linear semisimple Lie group SL3(R) ⊆ GL3(R), which has SL3(C) as a com-
plexi�cation. The images of SL3(R) and SL3(C) under Ad are again semisimple
Lie groups. Furthermore, Ad(SL3(R)) ∼= SL3(R) since SL(3,R) has trivial center,
and Ad(SL3(C)) ∼= SL3(C)/{1, e2πi/3, e4πi/3} is a complexi�cation of Ad(SL3(R)).
By the previous proposition Pol(Ad(SL3(R))) ∼= Pol(SL3(C)/{1, e2πi/3, e4πi/3}) →
Pol(SL3(C)) ∼= Pol(SL3(R)) where the map in the middle is not surjective, since
there are polynomials on SL3(C) that are not constant on {1, e2πi/3, e4πi/3}.

We denote the inverses of the isomorphisms in Proposition 5.6 and Proposition 5.8
by

·̂ : Pol(Oλ)→ Pol(Ôλ) and ·̂ : Pol(G)→ Pol(Ĝ) . (5.2)

Lemma 5.9 Let G be a real connected linear Lie group with complexi�cation Ĝ, and
let λ ∈ g∗ be such that Ĝλ is connected. If f ∈ Pol(Ĝ) satis�es f

∣∣
G
∈ Pol(G)Gλ then

f ∈ Pol(Ĝ)Ĝλ .

Proof: Let f be as in the statement of the lemma. Since f
∣∣
G

= (g . f)
∣∣
G
holds for

all g ∈ Gλ it follows from the injectivity of ( · )
∣∣
G
that f = g . f , so f ∈ Pol(Ĝ)Gλ .

Therefore f is in particular invariant under gλ, thus also under ĝλ since the action is
holomorphic. Since Ĝλ is connected we obtain that f is Ĝλ-invariant. �

Corollary 5.10 Let G be a real connected semisimple linear Lie group with complex-
i�cation Ĝ, and assume that λ ∈ g∗ is semisimple. In this case the restriction map
( · )
∣∣
G

: Pol(Ĝ)Ĝλ → Pol(G)Gλ is an isomorphism.

Proof: Gλ is connected by Proposition 2.3, so this is an immediate consequence of
Proposition 5.8 and Lemma 5.9. �

Corollary 5.11 Let G be a real connected semisimple linear Lie group with complex-
i�cation Ĝ, and assume that λ ∈ g∗ is semisimple. Then the map π∗ : Pol(Oλ) →
Pol(G)Gλ is an isomorphism.

Proof: The composition Pol(Oλ)
·̂−→ Pol(Ôλ)

π̂∗−→ Pol(Ĝ)Ĝλ
( · )|G−−−→ Pol(G)Gλ equals

π∗ and is an isomorphism because of Proposition 5.6, Proposition 3.27, and Corol-
lary 5.10. �

Corollary 5.12 Let G be a real connected semisimple linear Lie group with com-
plexi�cation Ĝ, and assume that λ ∈ g∗ is semisimple. Then the following diagram
commutes and all arrows are isomorphisms:

Pol(Ĝ)Ĝλ Pol(Ôλ)

Pol(G)Gλ Pol(Oλ) .

π̂∗

(·)|G (·)|Oλ

π̂∗

·̂
π∗

π∗

·̂ (5.3)
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Next, we want to introduce a class of analytic functions, that becomes the closure
of the polynomials with respect to a certain locally convex topology. To this end,
assume that Oλ is a coadjoint orbit with complexi�cation Ôλ, and that G is a real
connected Lie group with complexi�cation Ĝ. Then de�ne

A(Oλ) = im
(

( · )
∣∣
Oλ

: Hol(Ôλ)→ C∞(Oλ)
)

(5.4)

and

A(G) = im
(

( · )
∣∣
G

: Hol(Ĝ)→ C∞(G)
)
. (5.5)

Note that an element f ∈ A(Oλ) determines a unique element f̂ ∈ Hol(Ôλ): Existence

follows by de�nition of A(Oλ) and f̂ is determined by all its derivatives at λ. Since the

complexi�cation of TλOλ is just TλÔλ, see Lemma 5.4, it su�ces to take derivatives in
the direction of TλOλ. But these derivatives are determined by f . A similar reasoning
holds for G and Ĝ. We obtain a commuting square that is similar to the square for
polynomials obtained in Corollary 5.12.

Proposition 5.13 The following diagram is commutative and all arrows are isomor-
phisms:

Hol(Ĝ)Ĝλ Hol(Ôλ)

A(G)Gλ A(Oλ) .

π̂∗

(·)
∣∣∣
G

(·)
∣∣∣
Oλ

π̂∗

·̂
π∗

π∗

·̂ (5.6)

Proof: We know from Subsection 2.1 that π̂∗ : Hol(Ôλ) → Hol(Ĝ)Ĝλ is an isomor-
phism. In the previous paragraph we explained that ·̂ : A(Oλ) → Hol(Ôλ) and
·̂ : A(G) → Hol(Ĝ) are isomorphisms and as in Lemma 5.9 it follows that the same
is true for ·̂ : A(G)Gλ → Hol(Ĝ)Ĝλ . Composing these isomorphisms we obtain that
π∗ : A(Oλ)→ A(G)Gλ is an isomorphism. �

Since Pol(Ôλ) ⊆ Hol(Ôλ) it follows that Pol(Oλ) ⊆ A(Oλ). We can de�ne a topol-
ogy Tl̂u of extended locally uniform convergence on A(Oλ) as follows: A sequence
fn ∈ A(Oλ) converges to some f ∈ A(Oλ) if and only if the sequence f̂n ∈ Hol(Ôλ)

converges locally uniformly to f̂ ∈ Hol(Ôλ). Clearly the maps ·̂ : A(Oλ) → Hol(Ôλ)

and ( · )
∣∣
Oλ

: Hol(Ôλ)→ A(Oλ) are both homeomorphisms. From Proposition 4.20 it

follows that the closure of Pol(Oλ) with respect to the topology of extended locally
uniform convergence is A(Oλ).

5.3 Formal and strict star products on real coadjoint orbits

In a sense all constructions in Section 2, Section 3, and Section 4 are compatible
with the restriction to real forms. In this subsection we want to make this statement
precise. In particular, we will show that we can restrict formal and strict products
from a complexi�cation Ôλ of a semisimple coadjoint orbit Oλ of a real connected
semisimple Lie group G to formal and strict star products on Oλ. These star products
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can�as before�be computed by applying fundamental vector �elds or by passing to
the Lie group by using the maps π∗ and π∗. We will determine when the star products
on Oλ are of (pseudo) Wick type or of standard ordered type.

Proposition 5.14 Let Oλ be a semisimple coadjoint orbit of a semisimple connected
real Lie group G. By Lemma 5.4 it has a complexi�cation Ôλ, and there are strict
products ∗̂h̄ : Pol(Ôλ)×Pol(Ôλ)→ Pol(Ôλ) with extensions ∗̂h̄ : Hol(Ôλ)×Hol(Ôλ)→
Hol(Ôλ) constructed in Corollary 3.30 and Theorem 4.1, where h̄ ∈ C \ Pλ. These
products restrict to G-invariant strict products

∗h̄ : Pol(Oλ)× Pol(Oλ)→ Pol(Oλ) and ∗h̄ : A(Oλ)×A(Oλ)→ A(Oλ) (5.7)

for all h̄ ∈ C \ Pλ. For �xed p, q ∈ Pol(Oλ), the dependence of p ∗h̄ q on h̄ is
rational with no pole at zero, and for �xed f, g ∈ A(Oλ) and x ∈ Oλ, the dependence
of f ∗h̄ g(x) on h̄ is holomorphic. Both products are continuous with respect to the
topology of extended locally uniform convergence de�ned at the end of Subsection 5.2.

Proof: Since the restriction maps Pol(Ôλ) → Pol(Oλ) and Hol(Ôλ) → A(Oλ) are
both homeomorphisms (with respect to the topology of locally uniform convergence
on the domains and the topology of extended locally uniform convergence on the
codomains), the statement follows trivially from the corresponding statements for ∗̂h̄,
obtained in Corollary 3.30, Theorem 4.1, and Proposition 4.21. �

We would like to compute these star products without passing to the complexi�cation.
The construction of bidi�erential operators from Subsection 2.2 works completely
similarly in the real setting. Recall that our di�erential operators act on complex-
valued functions, and therefore any complex vector �eld Γ∞(TCM) de�nes a �rst
order di�erential operator on M .

Proposition 5.15 Let G be a real Lie group with Lie algebra g, and let ĝ be the
complexi�cation of g. The map

( · )left : (U ĝ)⊗k → k-DiffOpG(G)

obtained by extending ĝ 3 X 7→ X left ∈ Γ∞(TCG) to an algebra homomorphism
U ĝ→ DiffOpG(G) and further to tensor products as in (2.5c) is an isomorphism. If
H is a closed Lie subgroup of G, then the map

Ψ: ((U ĝ/U ĝ · ĥ)⊗k)H → k-DiffOpG(G/H) , Ψ([~u])(~f) = π∗(~u
left(π∗ ~f)) (5.8)

is also an isomorphism.

Proof: With the obvious modi�cations the proofs of Proposition 2.5 and Proposi-
tion 2.7 given in Appendix A.1 apply also to the real situation. �

To be consistent with the notation of this chapter, we denote the map de�ned in (2.8)
by Ψ̂.
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Lemma 5.16 Let G be a real Lie group with closed subgroup H and assume that
the complex Lie group Ĝ is a complexi�cation of G and contains a complex closed
subgroup Ĥ that is a complexi�cation of H. The maps ( · )left and Ψ are compatible
with the maps ( · )left,(1,0) and Ψ̂ in the sense that the diagrams

Hol(Û)k C∞(U)k

Hol(Û) C∞(U)

(·)|×kU

~uleft,(1,0)
~uleft

(·)|U

and

Hol(V̂ )k C∞(V )k

Hol(V̂ ) C∞(V )

(·)|×kV

Ψ̂([~v]) Ψ([~v])

(·)|V

(5.9)

commute for all open subsets Û ⊆ Ĝ and V̂ ⊆ Ĝ/Ĥ, with U := Û ∩ G and V :=

V̂ ∩G/H, and all elements ~u ∈ (U ĝ)⊗k and ~v ∈ ((U ĝ/U ĝ · ĥ)⊗k)Ĥ .

Proof: The commutativity of the second diagram follows easily from commutativity
of the �rst, since the restrictions are compatible with π∗ and π∗. To prove commuta-
tivity of the �rst diagram, assume that k = 1 and ~u = X ∈ ĝ ⊆ U ĝ. The tangent
map of a holomorphic function commutes with the multiplication by i. We compute

X left,(1,0)f(g) =
1

2
(Tgf ◦ TeLg(X)− iTgf ◦ TeLg(iX)) =

= Tgf ◦ TeLg(X) = X leftf
∣∣
U

(g)

for f ∈ Hol(Û) and g ∈ U . The general case follows from this computation by the
way in which ( · )left,(1,0) and ( · )left are extended to (U ĝ)⊗k. �

Corollary 5.17 Let Oλ be a semisimple coadjoint orbit of a semisimple connected real
Lie group G. For h̄ ∈ C\Pλ and p, q ∈ Pol(Oλ), the product ∗h̄ : Pol(Oλ)×Pol(Oλ)→
Pol(Oλ) de�ned in Proposition 5.14 can be computed by

p ∗h̄ q =

∞∑
`=0

Ψ(Fh̄,`)(p, q) . (5.10)

Proof: The previous lemma implies

p ∗h̄ q = (p̂ ∗̂h̄ q̂)
∣∣
Oλ

=

∞∑
`=0

Ψ̂(Fh̄,`)(p̂, q̂)
∣∣
Oλ

=

∞∑
`=0

Ψ(Fh̄,`)(p, q) .

Note that the sum over ` is �nite by Corollary 3.29. �

Theorem 5.18 Let Oλ be a semisimple coadjoint orbit of a semisimple connected
real Lie group G. The product ? : C∞(Oλ)[[ν]] × C∞(Oλ)[[ν]] → C∞(Oλ)[[ν]] de�ned
by f ? g = Ψ(F )(f, g) where F was obtained in Theorem 3.23 is a G-invariant formal
star product. In particular, it is associative and deforms the KKS symplectic form
on Oλ. Furthermore, p ? q coincides with the formal power series expansion of p ∗h̄ q
around h̄ = 0 for p, q ∈ Pol(Oλ), and f ? g = f̂ ?̂ ĝ

∣∣
Oλ

for f, g ∈ A(Oλ).



5. QUANTIZING REAL COADJOINT ORBITS 153

Proof: It is immediate from the de�nition of F and Ψ that every order of ? is given
by a G-invariant bidi�erential operator. Since F is the formal power series expansion
of Fh̄ around h̄ = 0 and p ∗h̄ q is rational with no pole at 0 for p, q ∈ Pol(Oλ), it
follows that p ? q coincides with the formal power series expansion of p ∗h̄ q. The
compatibility with ?̂ is immediate from Lemma 5.16. Since bidi�erential operators
are uniquely determined by their behaviour on Pol(Oλ) ⊆ A(Oλ), the compatibility
with ?̂ implies that ? is associative and, using Proposition 3.32, that it deforms the
KKS symplectic form. �

Recall that we proved in Corollary 3.34 that the product ∗̂h̄ separates variables with
respect to the distributions L+ and L−, which we call L̂+ and L̂− in this section.
In the real case, those distributions may have further properties. They can be real,
or the holomorphic and antiholomorphic tangent spaces with respect to a complex
structure. Before giving further details let us make the following de�nitions.

De�nition 5.19 (Star products of standard ordered type) A star product ∗h̄
on a symplectic manifold M is said to be of standard ordered type if there are two
Lagrangian distributions L1, L2 ⊆ TM spanning the real tangent bundle TM of M
such that the �rst argument of the star product is derived only in directions of L1 and
the second argument only in directions of L2.

De�nition 5.20 (Star products of (pseudo) Wick type) A star product ∗h̄ on
a complex manifold M that is also symplectic is said to be of pseudo Wick type if
the �rst argument is derived only in holomorphic directions and the second argument
only in antiholomorphic directions. A star product of pseudo Wick type on a Kähler
manifold is said to be of Wick type.

For formal star products of Wick type and with respect to the usual ∗-involution
given by complex conjugation, point evaluations are positive linear functionals, which
is not necessarily the case for formal star products of pseudo Wick type. Note that the
situation is more complicated for strict star products, as we shall see in Subsection 5.5.

Let us brie�y recall some results on the existence of invariant complex structures on
coadjoint orbits. See Appendix A.3 for more details. Let Oλ be a semisimple coadjoint
orbit of a real connected semisimple Lie group G with Lie algebra g, and assume that
Gλ is compact. Choose a real Cartan subalgebra h containing λ]. Since h ⊆ gλ, it
follows that h is compact (meaning that it integrates to a subgroup of G with compact
closure). Then there are G-invariant complex structures on Oλ, and these structures
are in bijection to invariant orderings of ∆̂ (we say an ordering on ∆̂ is invariant if it
is the restriction of an invariant ordering of ∆ as de�ned in De�nition 3.10) as follows.
Recall that TCλ Oλ

∼= ĝ/ĝλ ∼=
⊕

α∈∆̂ gα. So given an invariant ordering we can de�ne

a map Iλ : TCλ Oλ → TCλ Oλ by letting IλXα = iXα if α ∈ ∆̂+, and IλXα = −iXα if
α ∈ ∆̂−. The map Iλ extends G-invariantly to an endomorphism I of the complexi�ed
tangent bundle TCOλ and restricts to an endomorphism of the real tangent bundle
TOλ, thus it de�nes a complex structure.

If G is compact, there is a unique ordering that makes Oλ with the complex
structure I and the KKS symplectic form ωKKS a Kähler manifold. This ordering is
characterized by α ∈ ∆̂ being positive i� (α, iλ) > 0. In particular it is standard. See
Appendix A.3 for more details.
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Proposition 5.21 For a semisimple coadjoint orbit Oλ of a real connected semisim-
ple linear Lie group G, the product ∗h̄ obtained in Proposition 5.14

i.) has poles Pλ ⊆ R if h is compact,

ii.) is of pseudo Wick type if Gλ is compact and the same ordering is used in the
construction of the star product and the de�nition of the complex structure,

iii.) is of standard ordered type with poles Pλ ⊆ iR if ih ⊆ ĝ is compact.

In particular, if G is compact and, in the construction of ∗h̄, we choose the ordering
that makes Oλ with the induced complex structure I a Kähler manifold, then ∗h̄ is of
Wick type.

Proof: Roots take purely imaginary values on a compact Lie subalgebra of h. Since
λ ∈ g∗ is by de�nition real on h ⊆ ĥ, it follows that (λ, µ) ∈ iR if h is compact and
(λ, µ) ∈ R if ih is compact. Since 1

2 (µ, µ) − (ρ, µ) ∈ R, this implies that the roots

(with respect to h̄) of piλ/h̄(µ) = 1
2 (µ, µ)− (ρ, µ)− i

h̄ (λ, µ) are real if h is compact and
purely imaginary if ih is compact.

Recall the de�nition of the distributions L+ and L−, which we denote by L̂+ and
L̂− in this section, made just after Lemma 3.33. Restricting them to Oλ ⊆ Ôλ gives
two distributions L+, L− ⊆ TCOλ of the complexi�ed tangent bundle. An analogue
of Proposition 2.8 in the real case and the explicit formula for Fh̄ from Theorem 3.18
together with Remark 3.31 show that ? derives the �rst argument only in directions
of L+, and the second argument only in directions of L−.

Assume that gλ is compact. The holomorphic tangent space T
(1,0)
λ Oλ is, under the

isomorphism TCλ Oλ
∼= ĝ/ĝλ, spanned by Xα− iIλXα for α ∈ ∆̂. If Iλ is de�ned using

the ordering chosen in the construction of ∗h̄ as described above, then Xα− iIλXα =
Xα − i · iXα = 2Xα if α ∈ ∆̂+, and Xα − iIλXα = Xα − i · (−i)Xα = 0 if α ∈ ∆̂−,
so T

(1,0)
λ Oλ = span{(Xα)Oλ

∣∣
λ, α ∈ ∆̂+}. This coincides exactly with L+

∣∣
λ
, and by

G-invariance it follows that L+ coincides with T(1,0)Oλ. Similarly, L− coincides with
T(0,1)Oλ. Therefore ? is of pseudo Wick type.

If ih is compact, then every adH for H ∈ h is self-adjoint. Since they are all com-
muting we can �nd simultaneous eigenvectors in g of all adH (without complexifying
g). But then we can pick Xα and Yα to lie in g so that L1 = L+ ∩ g and L2 = L− ∩ g
are Lagrangian distributions satisfying De�nition 5.19. �

Remark 5.22 Assume that gλ is compact as in part ii.) of the previous proposition.
If one uses di�erent invariant orderings in the construction of the star product and
in the de�nition of a complex structure, then the distributions L+ and L− may both
contain holomorphic and antiholomorphic directions. Since we are mainly interested
in star products of (pseudo) Wick type (these are the ones for which we would hope
to �nd positive linear functionals on the star product algebra, see Subsection 5.5), we
will usually assume that the two orderings agree.

5.4 Examples: complex projective spaces and hyperbolic discs

Recall that we have computed the canonical element of the Shapovalov pairing for
SL1+n(C) and a certain choice of λ in Subsection 3.4. Let us now specialize this result
to the real forms SU(1 + n) and SU(1, n).
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Example 5.23 (CPn) The coadjoint orbit of SU(1 + n) through λ : su1+n → R,
X 7→ −irX0,0 with r ∈ R+ is the complex projective space CPn. SL1+n(C) is

a complexi�cation of SU(1 + n). Using the notation ĥ for the Cartan subalgebra
of sl1+n(C) introduced in Subsection 3.4, we obtain a compact Cartan subalgebra

h := su1+n ∩ ĥ of su1+n. Proposition A.10 tells us that the Kähler complex structure
is de�ned by the ordering of ∆̂ for which α ∈ ∆̂+ i� (iλ, α) > 0. This ordering is the
restriction of the ordering on ∆ for which all αi,j with i < j are positive. Therefore
the element Fh̄ from Proposition 3.36 induces a Wick type star product on CPn. This
product has poles at { 1

nr | n ∈ N}.

Example 5.24 (Dn) Denote the complex hyperbolic disc in n dimensions by Dn.
Recall that SU(1, n) denotes the group of isometries of the inde�nite scalar product
g(v, w) = −v0w0 +

∑n
i=1 viwi on R

1+n. The coadjoint orbit of SU(1, n) through
λ : su1,n → R, X 7→ −irX0,0 with r ∈ R+ is the hyperbolic disc Dn. SL1+n(C) is a

complexi�cation of SU(1, n). Again, h := su1,n ∩ ĥ de�nes a compact Cartan subal-
gebra of su1,n. Now all roots are non-compact, so that according to Corollary A.11

the Kähler complex structure is de�ned by the ordering on ∆̂ for which α ∈ ∆̂+ i�
(iλ, α) < 0. This ordering is the restriction of the ordering on ∆ for which all αi,j
with i > j are positive. Therefore the element Fh̄ from Corollary 3.37 induces a Wick
type star product on Dn. This product has poles at {− 1

nr | n ∈ N}.

Remark 5.25 A star product of Wick type on the hyperbolic disc was also studied
in [29], where it was obtained from a star product of Wick type on C1+n using
phase space reduction. This product coincides3 with the star product obtained in
Example 5.24. To see this, one checks that monomials of degree 1 generate the
star product algebra, so that it su�ces to compare the two formulas for a degree 1
monomial and an arbitrary monomial. But for a degree 1 monomial only very few
summands are non-zero in both constructions and one can explicitly check that the
expressions agree.

5.5 Positive linear functionals

In this subsection we prove that for certain coadjoint orbits and certain values of h̄
the point evaluation functionals of the star product algebras constructed in Subsec-
tion 5.3 are positive. In order to have a meaningful notion of positivity we need a star
involution on (A(Oλ), ∗h̄). Of course, this star involution should be the restriction
of the complex conjugation of C∞(Oλ), but we need to prove that this restriction is
well-de�ned.

Assume that ĝ = g ⊗ C is the complexi�cation of a Lie algebra g. The complex
conjugation · : ĝ → ĝ, X ⊗ z 7→ X ⊗ z is an antilinear involution on ĝ. Then
· : ĝ∗ → ĝ∗, φ 7→ φ := · ◦ φ ◦ · de�nes an antilinear involution on ĝ∗. Note that on
the right hand side, we �rst apply the involution of ĝ, then φ, and then the complex
conjugation of C. Therefore the right hand side de�nes a complex linear functional
φ ∈ ĝ∗. The map φ 7→ φ is antilinear.

3More generally, the products obtained in Paper I coincide with the products obtained by consid-
ering di�erent real forms of SL1+n(C). We show this in the Appendix.
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Lemma 5.26 Let G ⊆ GLN (R) be a real linear Lie group with complexi�cation Ĝ ⊆
GLN (C), assume λ ∈ g∗, and let Ôλ be the coadjoint orbit of Ĝ through λ. Then the

map · : ĝ∗ → ĝ∗ restricts to an antilinear involution · : Ôλ → Ôλ.

Proof: Note that since λ ∈ g∗ we have λ = λ. Therefore we compute

Ad∗g λ = λ ◦Adg−1 = λ ◦ · ◦Adg−1 ◦ · = λ ◦Adg−1 = Ad∗g λ .

Here g denotes the entrywise complex conjugate of g ∈ Ĝ. Since the exponential map
ĝ → Ĝ commutes with the complex conjugation, it follows that Ĝ is closed under
entrywise complex conjugation, and therefore g ∈ Ĝ and Ad∗g λ ∈ Ôλ. This proves
that · restricts to Ôλ, and the restriction is clearly still an antilinear involution. �

Note that Tξ · ◦ Iξ = (Iξ)
−1 ◦ Tξ · holds for ξ ∈ ĝ∗, where Tξ · : Tξĝ

∗ → Tξĝ
∗ is the

tangent map to the complex conjugation of ĝ∗ and Iξ : Tξĝ
∗ → Tξĝ

∗ is the complex
structure at ξ. Since the complex structure I and the complex conjugation · of Oλ
are both obtained by restriction from ĝ∗, they satisfy the same relation.

For any f ∈ Hol(Ôλ) consider the function f∗ := · ◦ f ◦ · , where the left · is the
complex conjugation of C and the right · is the antilinear involution obtained in the
previous lemma. Denote the complex structure of C by J , and identify the tangent
space of C with C. Then

Tξf
∗ ◦ Iξ = · ◦ Tξf ◦ Tξ · ◦ Iξ = · ◦ Tξf ◦ I

−1

ξ
◦ Tξ · =

= · ◦ J−1 ◦ Tξf ◦ Tξ · = J ◦ · ◦ Tξf ◦ Tξ · = J ◦ Tξf
∗

shows that f∗ is holomorphic. Since · restricts to the identity on Oλ ⊆ g∗, it follows
that f∗|Oλ = f |Oλ . Consequently, the restriction of ∗ : Hol(Ôλ)→ Hol(Ôλ) to A(Oλ)
is just the complex conjugation · : A(Oλ) → A(Oλ). In other words, the complex
conjugation is well-de�ned on A(Oλ).

Proposition 5.27 Let Oλ be a semisimple coadjoint orbit of a connected semisimple
real Lie group G. Assume that the Cartan subalgebra h used in the construction of a
star product ∗h̄ is compact. Then f ∗h̄ g = g ∗h̄ f holds for all f, g ∈ A(Oλ).

Proof: As in the proof of Proposition 5.21 one argues that since h is compact the
coe�cients pwiλ(αw) are real and more generally pwiλ/h̄(αw) = pwiλ/h̄(αw). From (A.3)
we obtain that Xα ⊗ Yα = Yα ⊗ Xα = τ(Xα ⊗ Yα) for both a compact and a non-
compact root α ∈ ∆̂+, and the same formula holds when α is replaced by a word
w ∈ W̃ . Here · is the complex conjugation of ĝ with respect to g, extended to
(U ĝ)⊗2, and τ : (U ĝ)⊗2 → (U ĝ)⊗2 is the �ip of the two tensor factors. Note that
τ stays well-de�ned on (U ĝ/U ĝ · ĝλ)⊗2, and therefore the formula for Fh̄ obtained
in Theorem 3.18, Remark 3.31, and the computations above imply Fh̄,` = τ(Fh̄,`).
Consequently

f ∗h̄ g =

∞∑
`=0

Ψ(Fh̄,`)(f, g) =

∞∑
`=0

Ψ(Fh̄,`)(f, g) =
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=

∞∑
`=0

Ψ(τ(Fh̄,`))(f, g) =

∞∑
`=0

Ψ(Fh̄,`)(g, f) = g ∗h̄ f

holds for all f, g ∈ Pol(Oλ) and extends to A(Oλ) by continuity. �

A linear functional φ on a ∗-algebra A is said to be positive if φ(a∗a) ≥ 0 for all a ∈ A .
In the following we formulate our results for the star algebra Ah̄ := (A(Oλ), ∗h̄, · ),
but would like to point out that they also hold for (Pol(Oλ), ∗h̄, · ).

Theorem 5.28 Assume that Oλ is a semisimple coadjoint orbit of a real connected
semisimple Lie group G. Assume further that h is a compact Cartan subalgebra, and
that all roots (with respect to the complexi�cation ĥ of h) in ∆̂ are non-compact. Let
∗h̄ be the star product constructed with respect to the ordering for which α ∈ ∆̂ is
positive if and only if (α, iλ) < 0. Then there is a constant M > 0 such that for all
ξ ∈ Oλ and h̄ ∈ (0,M) \ Pλ the point evaluation at ξ is a positive linear functional
evξ : Ah̄ → C.

Proof: Since (α, iλ) < 0 for all α ∈ ∆̂+, it follows that −i(λ, µ) > 0 holds for all
µ ∈ N0∆̂+ \ {0}. There are only �nitely many µ ∈ N0∆̂+ with (ρ, µ) − 1

2 (µ, µ) > 0,
thus we can choose M > 0 such that − i

h̄ (λ, µ) > (ρ, µ) − 1
2 (µ, µ) holds for all µ ∈

N0∆̂+ \ {0} and h̄ ∈ (0,M) \ Pλ. But this says precisely that piλ/h̄(µ) > 0, and
therefore pwiλ/h̄(αw) > 0 for all w ∈ W̃ . For a non-compact root we have Xα = Yα
according to (A.3b). Consequently, if g ∈ G is such that ξ = Ad∗g(λ), then

evξ(f ∗h̄ f) =

∞∑
`=0

Ψ

( ∑
w∈W̃`

pwiλ/h̄(αw)−1π̃+(Xw)⊗ π̃−(Yw)

)
(f, f)(ξ)

=

∞∑
`=0

∑
w∈W̃`

pwiλ/h̄(αw)−1X left
w (π∗f)(g) · Y left

w (π∗f)(g)

=

∞∑
`=0

∑
w∈W̃`

pwiλ/h̄(αw)−1X left
w (π∗f)(g) ·X left

w (π∗f)(g)

≥ 0

holds for all f ∈ A(Oλ). �

Example 5.29 (Dn) It is straightforward to check that the choices made to quantize
the hyperbolic disc in Example 5.24 are such that h is compact, such that every root
in ∆̂ is non-compact, and such that α ∈ ∆̂ is positive i� (α, iλ) < 0. Therefore
the previous theorem implies the existence of a constant M > 0 such that all point
evaluation functionals are positive if h̄ ∈ (0,M).

We can prove a stronger result by using the formula for Fh̄ derived in Corollary 3.37.
If h̄ ∈ (0,∞) then all the coe�cients appearing in this formula are positive, and so
point evaluations are positive for all h̄ ∈ (0,∞).

Note that a similar proof does not work for CPn since some of the coe�cients in
(3.39) are negative. Indeed, one can use the appearing negative coe�cients to show
that no point evaluation functional is positive on CPn for h̄ ∈ (0,∞) \ Pλ.
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5.6 A generalized Wick rotation

In this subsection we want to state an immediate corollary of the construction in
the previous sections. Let g1, g2 be two real semisimple Lie algebras with the same
complexi�cation ĝ. Assume λ ∈ g∗1 ∩ g∗2 where we view g∗1 and g∗2 as subspaces of ĝ∗.
Denote the coadjoint orbits in g∗1 and g∗2 through λ by O1

λ and O2
λ, respectively. There

is an isomorphism Pol(O1
λ) → Pol(O2

λ) given by composing the map Pol(O1
λ) 3 p 7→

p̂ ∈ Pol(Ôλ) with the restriction to O2
λ. Here Ôλ is the complex extension of Oλ. It

turns out that this isomorphism is still an isomorphism of both the uncompleted and
completed quantum algebras.

Theorem 5.30 Let g1 and g2 be two real semisimple Lie algebras with a common
complexi�cation ĝ and assume that λ ∈ g∗1 ∩ g∗2 is semisimple. Then the algebras
(Pol(O1

λ), ∗1h̄) and (Pol(O2
λ), ∗2h̄), and also the algebras (A(O1

λ), ∗1h̄) and (A(O2
λ), ∗2h̄),

constructed with respect to the same Cartan subalgebra h ⊆ g1 ∩ g2 and the same
ordering, are isomorphic.

Proof: Both algebras are isomorphic to (Pol(Ôλ), ∗̂h̄) or (Hol(Ôλ), ∗̂h̄). �

Example 5.31 (CPn and Dn) We know from Example 5.23 and Example 5.24
that CPn and Dn are coadjoint orbits of the Lie groups SU(1 + n) and SU(1, n)
through the same element, and that SL1+n(C) is a common complexi�cation. So
the previous proposition implies that the star product algebras on CPn and Dn are
isomorphic if we choose the same ordering in the construction of the star products.

The ordering that induces a Kähler complex structure on CPn, induces the com-
plex structure on Dn that is the opposite of the Kähler complex structure. Therefore
the associated star product onDn is of pseudo Wick type with respect to this opposite
complex structure, and therefore of anti-Wick type for the Kähler complex structure.
(A star product is of anti-Wick type if the �rst argument is derived in antiholomorphic
directions and the second argument is derived in holomorphic ones.) Consequently,
the algebra A(CPn) with the Wick type star product is isomorphic to the algebra
A(Dn) with the anti-Wick type star product. Similarly, the algebra A(CPn) with
the anti-Wick type star product is isomorphic to the algebra A(Dn) with the Wick
type star product.

One can also construct an isomorphism between the Wick type star product for
h̄ and the anti-Wick type star product for −h̄, both on the hyperbolic disc and the
complex projective space. Composing with these isomorphisms shows that the Wick
type star product for h̄ on CPn is isomorphic to the Wick type star product for −h̄
on Dn.

Note that Theorem 5.30 only gives an algebra homomorphism between Pol(O1
λ) and

Pol(O2
λ), or between A(O1

λ) and A(O2
λ). If we view these algebras as ∗-algebras

with the star involution considered in Subsection 5.5 then they are in general not
∗-isomorphic! One can see this for example by proving that the point evaluation
functionals on CPn are not positive for h̄ ∈ (0,∞) \ Pλ.
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A Proofs, G-�nite functions, and complex structures

In Appendix A.1 we prove Proposition 2.5 and Proposition 2.7. In Appendix A.2 we
prove Proposition 3.27 using the concept of G-�nite functions. Finally we recall some
facts about complex structures on coadjoint orbits in Appendix A.3.

A.1 Proofs of Proposition 2.5 and Proposition 2.7

Let M be a manifold. For f ∈ C∞(M) we de�ne Mf : C∞(M)→ C∞(M), f ′ 7→ ff ′

and M i
f = id×(i−1) ×Mf × id×(k−i) : C∞(M)k → C∞(M)k.

De�nition A.1 Let M be a manifold. For a multiindex K = (K1, . . . ,Kk) ∈ Zk we
de�ne k-DiffOpK(M) = {0} if some Ki < 0 and otherwise we de�ne inductively

k-DiffOpK(M) = {D : C∞(M)k → C∞(M) |Mf ◦D−D◦M i
f ∈ k-DiffOpK−Ei(M)

for all f ∈ C∞(M) and 1 ≤ i ≤ k} . (A.1)

Here (K − Ei)j = Kj − δij where δij is 1 if i = j and 0 otherwise. Elements of
k-DiffOpK(M) are called k-di�erential operators of degreeK. A map D : C∞(M)k →
C∞(M) is said to be a k-di�erential operator if it is a k-di�erential operator of some
degree K. The space of k-di�erential operators is denoted by k-DiffOp(M).

It follows that a k-di�erential operator is local in every argument, so that it can be
restricted to any open subset. In a chart U ⊆M with local coordinates (x1, . . . , xn),
a k-di�erential operator D of degree K can be written as

D(f1, . . . , fk) =
∑

I1,...,Ik∈Nn0
cI1,...,Ik∂

I1
x f1 · . . . · ∂Ikx fk (A.2)

where cI1,...,Ik ∈ C∞(M) and cI1,...,Ik = 0 if |Ii| > Ki for some 1 ≤ i ≤ k. For a

multiindex J ∈ Nn0 we used ∂Jx := ∂J1

x1 . . . ∂
Jn
xn and ∂xi := ∂

∂xi . Conversely, an operator
D : C∞(M)k → C∞(M) that has this form in any chart is k-di�erential of order
K. A k-di�erential operator D on a complex manifold M is holomorphic if, in local
holomorphic coordinates (z1, . . . , zn), we have

D(f1, . . . , fk) =
∑

I1,...,Ik∈Nn0
cI1,...,Ik∂

I1
z f1 · . . . · ∂Ikz fk

with all cI1,...,Ik being holomorphic. Here ∂Jz = ∂J1

z1 . . . ∂
Jn
zn and ∂zi = ∂

∂zi . Equiva-
lently, D is holomorphic if D maps Hol(U)k into Hol(U) and D

∣∣
U
◦M i

f−Mf ◦D
∣∣
U

= 0
for all open subsets U ⊆ M and all antiholomorphic functions f on U . We write
k-DiffOpH(M) for the space of holomorphic k-di�erential operators.

We say a k-di�erential operator is of order K ∈ Zk at a point p ∈ M if, when
written in a local chart U around p as in (A.2), we have cI1,...,Ik(p) = 0 whenever
|Ij | > Kj for some 1 ≤ j ≤ k.

If I1, . . . , Ik, J,K ∈ Nn0 are all multiindices, we write J ≤ K if Ji ≤ Ki for all
1 ≤ i ≤ n. If X1, . . . , Xn ∈ g, then we use XJ as a shorthand for XJ1

1 . . . XJn
n ∈ U g

and XI1⊗...⊗Ik as a shorthand for XI1 ⊗ . . .⊗ XIk ∈ (U g)⊗k.
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Proof of Proposition 2.5: Choose a basis {X1, . . . , Xn} of g. It follows from
the Poincaré�Birkho��Witt theorem that {XI1⊗...⊗Ik | I1, . . . , Ik ∈ Nn0} is a ba-
sis of (U g)⊗k. Moreover, {X left,(1,0)

1

∣∣
e
, . . . , X left,(1,0)

n

∣∣
e
} is a basis of the tangent

space T
(1,0)
e G and we can choose a complex chart U around e with local coordinates

(z1, . . . , zn) such that ∂zi
∣∣
e

= X left,(1,0)
i

∣∣
e
.

Assume ~u =
∑
I1,...,Ik∈Nn0

cI1,...,IkX
I1⊗...⊗Ik 6= 0 with only �nitely many cI1,...,Ik 6=

0. Choose I1, . . . , Ik in such a way that cI1,...,Ik 6= 0 and cJ1,...,Jk = 0 whenever

Ii ≤ Ji and (I1, . . . , Ik) 6= (J1, . . . Jk). For ~f = (zI1 , . . . , zIk) ∈ C∞(U)×k we compute

~uleft,(1,0) ~f(e) = I1! . . . Ik!cI1,...,Ik 6= 0. So ~uleft,(1,0) 6= 0 and ( · )left,(1,0) is injective.
Note that (XI1)left,(1,0)f1 · . . . · (XIk)left,(1,0)fk = ∂I1z f1 · . . . · ∂Ikz fk +D′(f1, . . . , fk)

where D′ is a holomorphic k-di�erential operator whose order at e is strictly smaller
than (|I1|, . . . , |Ik|). For any holomorphic k-di�erential operator D we can therefore,
by induction, �nd coe�cients cI1,...,Ik ∈ C, only �nitely many of which are non-zero,
such that

D(f1, . . . , fk)(e) =
∑

I1,...,Ik∈Nn0

cI1,...,Ik(XI1)left,(1,0)f1(e) · . . . · (XIk)left,(1,0)fk(e)

holds for all f1, . . . , fk ∈ C∞(G). In other words, D and the di�erential operator∑
I1,...,Ik∈Nn0

(cI1,...,IkX
I1⊗...⊗Ik)left,(1,0) agree at e. So if D is also left-invariant, then

these operators agree everywhere on G, proving surjectivity. �

The proof of Proposition 2.7 is similar. We need the following lemma to simplify the
local calculations.

Lemma A.2 Let G be a complex Lie group with Lie algebra g, and assume that H is a
closed complex Lie subgroup of G with Lie algebra h. Given a basis B = {X1, . . . , Xn}
of g such that B′ = {Xn−r+1, . . . , Xn} is a basis of h we can choose a neighbourhood
U of e in G and complex coordinates z = (z1, . . . , zn) on U such that

i.) for any g ∈ U its �ber gH ∩ U is given locally as ({z(g)}+ {0} ×Cr) ∩ z(U),

ii.) the left-invariant holomorphic vector �elds agree with coordinate vector �elds at
e ∈ G, that is X left,(1,0)

i

∣∣
e

= ∂zi
∣∣
e
.

Proof: It is well known that π : G→ G/H is a principal bundle. Therefore we can
choose a local trivialization χ : π−1(V ) → V × H on a small neighbourhood V of
eH in G/H. Choosing coordinates on V (after possibly shrinking V �rst) and on a
neighbourhood W of the identity in H, we obtain coordinates z′ on U := χ−1(V ×
W ) ⊆ G satisfying property i.). Since all X left,(1,0)

i are linearly independent we can
write X left,(1,0)

i

∣∣
e

= Aij∂(z′)j
∣∣
e
for some invertible matrix A and since X left,(1,0)

i is
tangential to H ⊆ G for i > n − r, it follows that Aij = 0 for i > n − r, j ≤ n − r.
Then the coordinates z := (A−1)Tz′ satisfy both properties of the lemma. �

Let π : G→ G/H. Given coordinates as in the previous lemma we may identify π(U)
locally with {(z1(g), . . . , zn−r(g), 0, . . . , 0) | g ∈ U}. Then (z1, . . . , zn−r) descend
to coordinates on π(U) and π is, with respect to these coordinates, given by the
projection to the �rst n− r coordinates.
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Lemma A.3 The map Ψ from Proposition 2.7 is injective.

Proof: Let r = dim h and n = dim g ≥ r. We can choose a basis B = {X1, . . . , Xn}
of g such that B′ = {Xn−r+1, . . . , Xn} is a basis of h. Recall from the proof of Propo-
sition 2.5 that {XI1⊗...⊗Ik | I1, . . . , Ik ∈ Nn0} is a basis of (U g)⊗k. Furthermore,

{XI1⊗...⊗Ik | I1, . . . , Ik ∈ Nn0 , (Ii)j > 0 for some 1 ≤ i ≤ k and some j > n− r}

is a basis of the ideal I de�ned just before Lemma 2.6 and

{XI1⊗...⊗Ik | I1, . . . , Ik ∈ Nn0 , (Ii)j = 0 for all 1 ≤ i ≤ k, j > n− r} =

= {XI1⊗...⊗Ik | I1, . . . , Ik ∈ Nn−r0 }

is a basis of a complement C of I in (U g)⊗k. Injectivity of Ψ means that 0 is the
only element of C on which Ψ vanishes.

So to prove that Ψ is injective, it su�ces to �nd, for any non-zero

~u =
∑

I1,...,Ik∈Nn−r0

cI1,...,IkX
I1⊗...⊗Ik ∈ C ,

some open subset U ⊆ G/H and some k-tuple of functions ~f ∈ C∞(U)k such that

Ψ([~u])(~f) 6= 0. Fix ~u ∈ C \ {0} and assume that I1, . . . , Ik ∈ Nn−r0 are chosen such
that cI1,...,Ik 6= 0 and such that for any multiindices J1, . . . , Jk ∈ Nn−r0 satisfying
Ii ≤ Ji and (I1, . . . , Ik) 6= (J1, . . . , Jk) we have cJ1,...,Jk = 0. Choose coordinates
z = (z1, . . . , zn) around e on G as in the previous lemma, and note that, as described
just after this lemma, (z1, . . . , zn−r) descend to coordinates (y1, . . . , yn−r) on G/H.

Set ~f = (yI1 , . . . , yIk), so that π∗ ~f = (zI1 , . . . , zIk). This implies that

Ψ([~u])(~f)(eH) = ~uleft,(1,0)(π∗ ~f)(e) = I1! . . . Ik!cI1,...,Ik 6= 0 . �

Lemma A.4 The map Ψ from Proposition 2.7 is surjective.

Proof: We claim that for any holomorphic k-di�erential operator D on G/H we can
�nd ~u ∈ (U g)⊗k such that

~uleft,(1,0)(π∗ ~f)(e) = π∗(D~f)(e)

holds for all ~f ∈ C∞(G/H)k. We prove this claim by induction on the order K ∈ Zk
of D at eH. If Ki < 0 for some 1 ≤ i ≤ k, then D = 0 and we can use ~u = 0. For
the induction step, assume that the claim is already proven for every holomorphic
k-di�erential operator of order strictly smaller than K at eH. Choose coordinates
z = (z1, . . . , zn) around e on G as in Lemma A.2 and denote the coordinates on G/H
induced by (z1, . . . , zn−r) by y := (y1, . . . , yn−r). Locally we can write

D(f1, . . . , fk) =
∑

I1,...,Ik∈Nn−r0

cI1,...,Ik · ∂I1y f1 · . . . · ∂Iky fk
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with cI1,...,Ik ∈ C∞(G/H) satisfying cI1,...,Ik(eH) = 0 whenever |Ii| > Ki for some
1 ≤ i ≤ k. De�ne a holomorphic k-di�erential operator DG on G by

DG(f ′1, . . . , f
′
k) =

∑
I1,...,Ik∈Nn−r0

(cI1,...,Ik ◦ π) · ∂I1z f ′1 · . . . · ∂Ikz f ′k .

Then DG(π∗ ~f)(e) = π∗(D~f)(e). Set ~u1 :=
∑
I1,...,Ik∈Nn−r0

cI1,...,Ik(π(e))XI1 ⊗ . . . ⊗
XIk ∈ (U g)⊗k. Note that D′G := DG − ~uleft,(1,0)

1 has a strictly smaller order than
DG at e since X left,(1,0)

i

∣∣
e

= ∂zi
∣∣
e
. There are functions c′I1,...,Ik ∈ C∞(G) such that

we can express D′G in local coordinates as

D′G(f ′1, . . . , f
′
k) =

∑
I1,...,Ik∈Nn0

c′I1,...,Ik · ∂
I1
z f
′
1 · . . . · ∂Ikz f ′k .

We obtain a k-di�erential operator D′ on G/H of strictly smaller order than D at eH
by letting

D′(f1, . . . , fk) =
∑

I1,...,Ik∈Nn−r0

c′I1,...,Ik( · , 0)∂I1y f1 · . . . · ∂Iky fk .

It ful�ls D′G(π∗ ~f)(e) = π∗(D′ ~f)(e). Using the induction hypothesis we �nd ~u′ ∈
(U g)⊗k such that ~u′left,(1,0)(π∗ ~f)(e) = π∗(D′ ~f)(e). Now

(~u1 + ~u′)left,(1,0)(π∗ ~f)(e) = (DG −D′G)(π∗ ~f)(e) + π∗(D′ ~f)(e) =

= π∗(D~f)(e)− π∗(D′ ~f)(e) + π∗(D′ ~f)(e) = π∗(D~f)(e) ,

proving the claim.

Assume that D is in addition left-invariant. Writing Lg : G/H → G/H also for
the action of g ∈ G on G/H we compute

~uleft,(1,0)(π∗ ~f)(g) = L∗g~u
left,(1,0)(π∗ ~f)(e) = ~uleft,(1,0)(L×kg )∗(π∗ ~f)(e) =

= ~uleft,(1,0)π∗((L×kg )∗ ~f)(e) = π∗(D(L×kg )∗ ~f)(e) =

= π∗(L∗gD
~f)(e) = L∗gπ

∗(D~f)(e) = π∗(D~f)(g) .

Thus ~uleft,(1,0)(π∗ ~f) = π∗(D~f) holds for all ~f ∈ C∞(G/H)k. Finally, we need to show
that ~u has the correct invariance properties under the adjoint action of H. De�ne
Rg : G → G, Rg′(g) := gg′. Since R∗hπ

∗(D~f) = π∗(D~f) for all h ∈ H we obtain

R∗h~u
left,(1,0)π∗ ~f = ~uleft,(1,0)π∗ ~f and therefore

(Adh ~u)left,(1,0)(π∗ ~f)(g) = (~uleft,(1,0)π∗ ~f)(gh) = R∗h~u
left,(1,0)π∗ ~f(g) = ~uleft,(1,0)π∗ ~f(g)

for all ~f ∈ C∞(G/H)k and all g ∈ G, where the �rst equality follows as in the proof of
Lemma 2.6. This means that (Adh ~u−~u)left,(1,0)(π∗ ~f) = 0 for all ~f ∈ C∞(G/H)k, and
therefore the proof of injectivity implies Adh ~u− ~u ∈ I, or in other words ~u ∈ Uinv.�
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A.2 G-�nite functions

In this subsection we introduce G-�nite functions on a Lie group G and use them
to prove Proposition 3.27. The de�nition of G-�nite functions uses only abstract
properties of the Lie group G, and is therefore independent of whether G is explicitly
realized by matrices or not. For complex semisimple connected Lie groups a function
is G-�nite if and only if it is a polynomial, and therefore G-�nite functions give a
characterization of polynomials that is independent of the representation.

De�nition A.5 (G-�nite functions) Let M be a manifold with an action of a Lie
group G. Then f ∈ C∞(M) is said to be G-�nite if the vector space span{g.f | g ∈ G}
is �nite dimensional. We denote the space of G-�nite functions on M by FinG(M) or
just by Fin(M) if G is clear from the context.

Here g . f denotes the smooth function on M de�ned by (g . f)(m) = f(g−1 . m).

Below, we use this de�nition only for M = G and the action L or for M = Ôλ and
the coadjoint action, and will therefore not mention these actions explicitly.

Lemma A.6 Let G be a real or complex matrix Lie group and let Oλ be a coadjoint
orbit of G. Then polynomials on G are G-�nite, and polynomials on Oλ are also
G-�nite.

Proof: Let Pij : G → C, X 7→ Xij , and call such polynomials elementary in this
proof. We compute (g . Pij)(h) = Pij(g

−1h) =
∑
k(g−1)ikhkj =

∑
k(g−1)ikPkj(h)

for g ∈ G, so g . Pij is a linear combination of some elementary polynomials. If
p = Pi1j1 . . . Pinjn ∈ Pol(G) is a product of n elementary polynomials, then g . p is
in the linear span of products of n many elementary polynomials, which is a �nite
dimensional space. The statement for arbitrary polynomials follows by taking linear
combinations.

The action of G on Pol(Oλ) is obtained by restricting the adjoint action of G
on Sg ∼= Pol(g∗). The adjoint action preserves the degree of a symmetric tensor, so
span{AdgX | g ∈ G} is �nite dimensional for any X ∈ Sg, and therefore span{g . p |
g ∈ G} is �nite dimensional for any p ∈ Pol(Oλ). �

Proposition A.7 Let G be a complex semisimple connected Lie group with coadjoint
orbit Oλ. Then G-�nite holomorphic functions on Oλ are polynomials.

Proof: Hol(Oλ) is isomorphic to Hol(G)Gλ as a G-module. The restriction to a
maximal compact Lie subgroup K ⊆ G is an injective K-module homomorphism to
L2(K), the square-integrable functions on K with respect to the left-invariant Haar
measure, so that we may view Hol(Oλ) as a K-submodule of L2(K). In particular,
it is completely reducible as a K-module and therefore also as a G-module. Each
irreducible module of highest weight ν appears only �nitely many times in L2(K) and
thus also in Hol(Oλ).

The scalar product of L2(K) is K-invariant and therefore any irreducible modules
of di�erent highest weights are orthogonal. Restricting the scalar product to Hol(Oλ)
gives that Hol(Oλ)ν is orthogonal to Hol(Oλ)ν

′
if ν 6= ν′.
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Assume f ∈ Fin(Oλ) is holomorphic and not in Pol(Oλ). We can without loss
of generality assume that f ∈ Fin(Oλ)ν for some weight ν. (Indeed, we can write
f =

∑
µ f

µ with fµ ∈ Fin(Oλ)µ and only �nitely many fµ are non-zero because
f is G-�nite. One of these fµ is not in Pol(Oλ).) We can choose f orthogonal to
Pol(Oλ)ν (which is �nite dimensional) and therefore orthogonal to Pol(Oλ). However,
this space is dense in Hol(Oλ) because polynomials on K are dense in L2(K). So
f = 0, a contradiction. �

Corollary A.8 Let G be a complex semisimple connected Lie group. Then the pull-
back π∗ : Pol(Oλ)→ Pol(G)Gλ is an isomorphism.

Proof: We have seen in the proof of Proposition 3.27 that π∗ is well-de�ned and
injective, so it only remains to show that π∗ is surjective. Any element f ∈ Pol(G)Gλ

is G-�nite by Lemma A.6. Then its image under the G-equivariant isomorphism
π∗ : Hol(G)Gλ → Hol(Oλ) is also G-�nite because �nite dimensionality of span{g . f |
g ∈ G} implies �nite dimensionality of span{g . π∗f | g ∈ G} = span{π∗(g . f) | g ∈
G}. The previous proposition implies that the G-�nite element π∗f ∈ Pol(Oλ) is a
polynomial. It is mapped to f by π∗. �

With similar methods as in this subsection one can prove that G-�nite functions on
a complex semisimple connected Lie group G coincide with polynomials on G. Since
the de�nition of G-�nite functions does not depend on a representation of G as a
linear group, it follows that our de�nition of polynomials in De�nition 3.26 is indeed
independent of the representation. The same result is true for a compact semisimple
connected Lie group K.

A.3 Complex structures on real coadjoint orbits

We have seen in Subsection 2.1 that a coadjoint orbit of a real Lie group G always
admits a G-invariant symplectic structure, in particular its dimension is even. In this
subsection, we will see that a semisimple coadjoint orbit Oλ of a connected semisimple
real Lie groupG admits aG-invariant complex structure ifGλ is compact, and that the
set of such complex structures is in bijection to invariant orderings. If G is compact,
then there is a unique G-invariant complex structure that makes Oλ a Kähler manifold.
If G is not compact, then Oλ might or might not admit a Kähler structure. All results
of this subsection are classical and well-known, see for example [7] for a summary.

Let G be a real connected semisimple Lie group. Assume that λ ∈ g∗ is semisimple
and that Gλ is compact. Then any Cartan subalgebra h ⊆ g containing λ] is contained
in gλ and therefore compact. As usual, we denote the complexi�cation of g by ĝ and
let · be the complex conjugation of ĝ with respect to g.

Recall that a root α ∈ h∗ is called compact if the Killing form B is negative de�nite
on g ∩ (gα ⊕ g−α), and non-compact if it is positive de�nite. (The root spaces gα are
subspaces of the complexi�cation ĝ of g.) We can always choose Xα ∈ gα such that
B(Xα, X−α) = 1 and if [Xα, Xβ ] = Nα,βXα+β , then N−α,−β = −Nα,β (see [7, Section
3]). In this case,

−X−α = Xα and i(Xα +X−α), Xα −X−α ∈ g if α is compact, (A.3a)
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X−α = Xα and i(Xα −X−α), Xα +X−α ∈ g if α is non-compact. (A.3b)

Recall that ∆̂ is the set of roots that are not orthogonal to λ.

Theorem A.9 Let Oλ be a coadjoint orbit of a real connected semisimple Lie group
G. Assume that Gλ is compact, and let h be a Cartan subalgebra of g containing λ].
Then G-invariant complex structures on Oλ are in bijection with invariant orderings
of ∆̂ (i.e. choices of positive roots ∆̂+ that arise as ∆̂+ = ∆̂ ∩∆+ from an invariant
ordering of ∆ as de�ned in De�nition 3.10).

Proof (Sketch): Introduce m =
⊕

α∈∆̂ gα ∼= ĝ/ĝλ. Since taking fundamental vec-
tor �elds (see Subsection 2.1) gives an isomorphism g/gλ → TλOλ, m is isomorphic
to the complexi�ed tangent space TCλ Oλ and g ∩m is isomorphic to TλOλ.

Given an invariant ordering of ∆̂, see De�nition 3.10, de�ne I : m → m by ex-
tending Xα 7→ iXα if α ∈ ∆̂+, Xα 7→ −iXα if α ∈ ∆̂− linearly. Clearly I2 = −id.
For both a compact and a non-compact root α, I restricts to an endomorphism of
g∩ (gα⊕g−α), from which it follows that I restricts to a map g∩m→ g∩m, squaring
to −id. To prove that it extends to a G-invariant almost complex structure on Oλ, it
su�ces to prove that I is Gλ-invariant. By applying the analogue of Proposition 2.3
for compact connected semisimple Lie groups to a maximally compact subgroup of
G containing Gλ, it follows that Gλ is connected, and it su�ces to prove that I is
gλ-invariant, in the sense that I([A,B]) = [A, I(B)] holds for all A ∈ gλ and B ∈ m.
This identity holds for A ∈ h since I preserves the root spaces. So we only need to
check it for A = Xα and B = Xβ with α ∈ ∆′ and β ∈ ∆̂, which is equivalent to

the invariance of the ordering. Finally, one uses that α+ β is positive if α, β ∈ ∆̂ are
positive to compute that the Nijenhuis torsion of I vanishes, so I is indeed a complex
structure.

Vice versa, a G-invariant complex structure I on Oλ determines a gλ-invariant map
I : m → m with I2 = −id by restricting to the tangent space at λ and complexifying.
In particular I is h-invariant, and therefore preserves the root spaces, so Xα 7→ icαXα

with cα = ±1. Since I preserves the real tangent space, we must have cα = −c−α.
The Nijenhuis torsion of the complex structure vanishes, which implies that ∆̂+ =
{α ∈ ∆̂ | cα = 1} de�nes an ordering. Finally invariance under the whole Lie algebra
gλ gives that this ordering is invariant. �

Proposition A.10 If Oλ is a coadjoint orbit of a compact connected semisimple
Lie group K, then Oλ has a unique K-invariant complex structure I that makes
(Oλ, I, ωKKS) a Kähler manifold, and this complex structure corresponds to an or-
dering for which α ∈ ∆̂ is positive if and only if (α, iλ) > 0.

Note that α attains purely imaginary values on k, whereas λ attains real values. There-
fore (α, iλ) ∈ R. The ordering for which α ∈ ∆̂ is positive if (α, iλ) > 0 is standard
(see Subsection 3.2).

Proof: Since K is compact, it follows that any root is compact. Given a K-invariant
complex structure I, we associate the (not necessarily positive de�nite) metric g(v, w) =
ωKKS(v, Iw) and Oλ is a Kähler manifold if g is positive de�nite. Since I and ωKKS
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are K-invariant, so is g and we may check positive de�niteness on TλOλ. Identi-
fying TCλ Oλ with m as in the proof of the previous proposition and extending g
complex linearly, we compute that g(Xα, Xβ) = ωKKS(Xα, IXβ) = cβλ([Xα, Xβ ])

for all α, β ∈ ∆̂. This expression is non-zero only if α = −β, and in this case
g(Xα, X−α) = −icαλ(α]) = −icα · (α, λ). Then

g(i(Xα +X−α), i(Xα +X−α)) = 2icα · (α, λ)

and

g(Xα −X−α, Xα −X−α) = 2icα · (α, λ) .

So g is positive de�nite if and only if cα = 1 for all α ∈ ∆̂ with (α, iλ) > 0. �

Note that the situation is more complicated if G is non-compact, but Gλ is compact,
since we may then have both compact and non-compact roots. The condition for
g being positive de�nite then becomes cα = 1 if either α is a compact root and
(α, iλ) > 0 or if α is a non-compact root and (α, iλ) < 0. If these conditions de�ne an
invariant ordering, then Oλ has a G-invariant Kähler structure (which is automatically
unique). One can give more explicit criteria for when the conditions above de�ne an
invariant ordering, see [7], but we only need the following easy case.

Corollary A.11 Let Oλ be a coadjoint orbit of a connected semisimple Lie group G.
Assume that Gλ is compact, and that h is a Cartan subalgebra containing λ]. If all
roots in ∆̂ are non-compact, then (Oλ, I, ωKKS) is a Kähler manifold, where I is the
complex structure corresponding to the ordering for which α ∈ ∆̂ is positive if and
only if (α, iλ) < 0.
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Appendix A

Comparison between the two

constructions

In this appendix we prove that the strict star products obtained in Paper I via phase
space reduction and in Paper II by inverting the Shapovalov pairing agree, both for
complex projective spaces and hyperbolic discs.

In the notation of Paper I, let us �x the signature s := 1 + n. Note that we
have seen in Section I.3 that the manifolds M

(1+n)
red and CPn are di�eomorphic, and

in Section I.5.2 that the metric and symplectic form on M
(1+n)
red coincide with the

standard Fubini�Study metric and symplectic form on CPn (at least up to a scalar).
Recall that GJ = U(1 + n) acts on C1+n, that this action restricts to a transitive
action on Z = S2n+1, and descends to the quotient of Z by the action of the central
subgroup U(1) ⊆ U(1 +n), i.e. to CPn. The action of the subgroup SU(1 +n) is still
transitive.

Let λ : su1+n → R, X 7→ −irX0,0 be the linear functional on su1+n considered in
Example II.5.23.

Lemma A.1 The stabilizer of [1:0: . . . :0] under the SU(1 + n)-action on CPn is

S(U(1)×U(n)) := {g ∈ SU(1 + n) | g0,i = gi,0 = 0 for 1 ≤ i ≤ n} , (A.1)

and therefore coincides with the stabilizer of λ ∈ su∗1+n.

Proof: It is clear that any matrix in S(U(1) × U(n)) stabilizes [1:0: . . . :0]. To see
the reverse implication, let e0 = (1, 0, . . . , 0) ∈ C1+n, and assume that g ∈ SU(1 + n)
stabilizes [1:0: . . . :0]. Then ge0 = φe0 for some φ ∈ C with |φ| = 1, and therefore
gi,0 = 0 for 1 ≤ i ≤ n. But since g ∈ SU(1 + n) this implies that g0,i = 0, i.e.
g ∈ S(U(1)×U(n)).

Since the stabilizer of λ is just the intersection of the stabilizer {g ∈ SL1+n(C) |
g0,i = gi,0 = 0 for 1 ≤ i ≤ n} from (II.3.37b) with SU(1+n), it coincides with S(U(1)×
U(n)). �

It turns out that the naive map SU(1 + n) → CPn, g 7→ g . [1:0: . . . :0] descends to
an antiholomorphic map from the coadjoint orbit Oλ ∼= SU(1 + n)/S(U(1) × U(n)),
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through the element λ ∈ su∗1+n de�ned above, to CPn. We therefore consider the
smooth map

Φ̃ : SU(1 + n)→ CPn , g 7→ (gT)−1 . [1:0: . . . :0] . (A.2)

Note that on SU(1 + n) the map g 7→ (gT)−1 is a group homomorphism, coincides
with the entrywise complex conjugation, and maps the stabilizer S(U(1) × U(n)) of
[1:0: . . . :0] ∈ CPn to itself. Therefore Φ̃ descends to a bijection

Φ: SU(1 + n)/S(U(1)×U(n))→ CPn . (A.3)

Since the projection SU(1 +n)→ SU(1 +n)/S(U(1)×U(n)) is a smooth submersion,
Φ is also smooth. Since Φ is also an immersion (this follows e.g. by considering
fundamental vector �elds), the inverse of Φ is also smooth, implying that Φ is a
di�eomorphism.

Consider the left action of SU(1 + n) on itself. The map Φ̃ is clearly equivariant
with respect to the actions of SU(1 + n) over the group homomorphism g 7→ (gT)−1,
meaning that Φ̃(gg′) = (gT)−1Φ̃(g′) holds for all g, g′ ∈ SU(1 + n). The same equiv-
ariance property holds for Φ.

Lemma A.2 The map Φ is holomorphic.

Proof: Recall that Eij denotes a matrix with entry 1 at position (i, j) and all other
entries 0. The elements F0j := E0j − Ej0 ∈ su1+n and G0j := iE0j + iEj0 ∈ su1+n

with 1 ≤ j ≤ n de�ne a complement of the stabilizer (su1+n)λ in su1+n. Identifying
su1+n/(su1+n)λ with the tangent space of Oλ ⊆ su∗1+n at λ via fundamental vector
�elds as usual, Example II.5.23 implies that the Kähler complex structure maps E0j

to iE0j and Ej0 to −iEj0, and therefore maps F0j to G0j and G0j to −F0j for all
1 ≤ j ≤ n. The tangent map of SU(1 + n) 3 g 7→ (gT)−1 ∈ SU(1 + n) is just
su1+n 3 X 7→ −XT ∈ su1+n, and therefore maps F0j to itself and G0j to −G0j . It
is straightforward to compute that, with respect to the coordinates wi = zi

z0 on CPn

around [1:0: . . . :0], the tangent map of the standard action of SU(1 +n) on CPn at λ
maps F0j to − ∂

∂wj and G0j to i ∂
∂wj . This shows that the composition Φ maps F0j to

− ∂
∂wj and G0j to −i ∂

∂wj , and therefore maps the holomorphic tangent space of Oλ at
λ to the holomorphic tangent space of CPn at [1:0: . . . :0]. By SU(1 + n)-invariance
of the complex structures it follows that Φ is holomorphic. �

Recall the de�nitions of P(CPn) from De�nition I.4.7, of Pol(CPn) from De�ni-
tion II.5.5, and of Pol(SU(1 + n)) from De�nition II.5.7: The polynomials P(CPn)
are de�ned via the reduction map, viewing CPn as a quotient of S2n+1 ⊆ C1+n by
the action of U(1), whereas the polynomials Pol(CPn) are de�ned by restricting poly-
nomials on su∗1+n to CPn viewed as a coadjoint orbit. Pol(SU(n + 1)) was de�ned
as the algebra spanned by matrix coe�cients for any representation of SU(n+ 1) by
real matrices (and, since SU(n+ 1) is compact, does not depend on the chosen repre-
sentation). We obtain such a representation e.g. by replacing an entry x+ iy ∈ C in
the standard representation with a 2-by-2 matrix with entries x on the diagonal, and
±y in the upper right and lower left corners. Polynomials on SU(n+ 1) are therefore
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precisely polynomials in the real and imaginary parts of the matrix entries, or equiv-
alently polynomials in the matrix entries of the standard representation and their
complex conjugates. Using the de�ning relation U†U = 1 of SU(n+ 1), the complex
conjugates of matrix entries are polynomials of matrix entries, so Pol(SU(n+ 1)) also
coincides with polynomials in the matrix entries of the standard representation.

Lemma A.3 The polynomials P(CPn) are precisely the SU(1 + n)-�nite functions
on CPn.

Proof: Any polynomial pred ∈ P(CPn) lies in the image of the reduction map
( · )red from De�nition I.4.1, so is induced by a U(1)-invariant polynomial p on C1+n.
Using the degree, it is clear that span{g .p | g ∈ SU(1 +n)} is �nite dimensional, and
since ( · )red is SU(1 + n)-equivariant it follows that pred is SU(1 + n)-�nite.

To see the converse, note that every SU(1 + n)-�nite function on CPn extends to
a U(1)-invariant SU(1 +n)-�nite function on S2n+1. Projecting to the zeroth column
gives a SU(1 + n)-equivariant map SU(1 + n) → S2n+1, so we may view L2(S2n+1)
as a submodule of the left-regular representation of SU(1 + n) on itself. Modifying
the proof of Proposition A.7 gives that all SU(1 + n)-�nite functions on S2n+1 are
polynomials. �

We saw in Section II.A.2 that Pol(CPn) ∼= Pol(SU(1 + n)/S(U(1)× U(n))) also con-
sists precisely of the SU(1+n)-�nite functions, and since Φ is a SU(1+n)-equivariant
di�eomorphism (over an automorphism of SU(1 + n)), we obtain the following corol-
lary.

Corollary A.4 The pullback Φ∗ : C∞(CPn) → C∞(SU(1 + n)/S(U(1) × U(n))) re-
stricts to an isomorphism Φ∗ : P(CPn)→ Pol(SU(1 + n)/S(U(1)×U(n))).

We will usually identify SU(1+n)/S(U(1)×U(n)) with the corresponding coadjoint or-
bit, which we also denote by CPn, so that the isomorphism becomes Φ∗ : P(CPn)→
Pol(CPn).

We are now ready to compare the strict star products on CPn, obtained in Paper I
and Paper II.

Theorem A.5 The map Φ∗ : P(CPn) → Pol(CPn) intertwines the two star prod-
ucts ?red,h̄ de�ned in Proposition I.5.22 and ∗h̄ for r = 1 de�ned in Example II.5.23,
meaning that for all p, q ∈P(CPn) we have

Φ∗(p ?red,h̄ q) = Φ∗(p) ∗h̄ Φ∗(q) . (A.4)

Proof: Both star products are SU(1 + n)-equivariant, so it su�ces to prove (A.4)
at the point λ ∈ su∗1+n de�ned above, which corresponds to eS(U(1) × U(n)) ∈
SU(1+n)/S(U(1)×U(n)), and therefore to [1:0: . . . :0] ∈ CPn under the isomorphism
Φ. Since Φ∗(p ?red,h̄ q)(λ) = (p ?red,h̄ q)([1:0: . . . :0]) we have to prove that

(p ?red,h̄ q)([1:0: . . . :0]) = (Φ∗(p) ∗h̄ Φ∗(q))(λ) .

Recall the de�nition of the monomials bP,Q for P,Q ∈ N1+n
0 from De�nition I.5.6,

and that the bP,Q;red with |P | = |Q| span the space P(CPn). It is therefore enough
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to prove the above equation for p = bP,Q;red and q = bR,S;red with P,Q,R, S ∈ N1+n
0 ,

|P | = |Q|, and |R| = |S|.
The explicit formula for ?red,h̄ obtained in Proposition I.5.22 shows that bP,Q;red

with |P | = |Q| = 1 generate the whole star product algebra, meaning that elements
of the form bP1,Q1;red ? · · · ? bPk,Qk;red with k ∈ N and |P1| = · · · = |Pk| = |Q1| =
· · · = |Qk| = 1 span P(CPn). Since both ?red,h̄ and ∗h̄ are associative and unital, it
therefore su�ces to prove that

(bP,Q;red ?red,h̄ bR,S;red)([1:0: . . . :0]) = (Φ∗(bP,Q;red) ∗h̄ Φ∗(bR,S;red))(λ) (A.5)

for P,Q,R, S ∈ Nn+1
0 with |P | = |Q| = 1 and |R| = |S|. O

We will compute both sides of that equation explicitly, but before we derive a lemma
that simpli�es this computation. In analogy to the notation used in De�nition II.5.7
we de�ne the polynomials Pij : SU(1 + n) → C, g 7→ gij . We explained above that
the Pij generate Pol(SU(1 + n)). As in Proposition II.3.36, if 1 ≤ j ≤ n we de�ne
X0j := E0j and Y0j := Ej0 in sl1+n(C), the complexi�cation of su1+n.

Lemma A.6 For all j ∈ {1, . . . , n} and k, ` ∈ {0, . . . , n} we have

X left
0j Pk0 = 0 , Y left

0j Pk` = δ0`Pkj , (A.6a)

X left
0j Pk` = −δ0`Pkj , Y left

0j Pk0 = 0 . (A.6b)

Proof: Note that F0j := E0j −Ej0 and G0j := iE0j + iEj0 with 1 ≤ j ≤ n all lie in
su1+n, and that X0j = 1

2 (F0j − iG0j). Therefore

X left
0j Pk`(g) =

1

2

(
d

dt

∣∣∣
t=0

Pk`(g exp(tF0j))− i
d

dt

∣∣∣
t=0

Pk`(g exp(tG0j))

)
=

1

2
(Pk`(gF0j)− iPk`(gG0j))

=
1

2
(gk0δj` − gkjδ0` − i · igk0δj` − i · igkjδ0`)

= gk0δj`

= δj`Pk0(g) ,

and the �rst equation is the special case ` = 0. The other equation including X left
0j

follows from a similar computation with Pk` instead of Pk`. The statements for
Y left

0j follow by taking conjugates: Since SU(n+ 1) is compact, all roots are compact,

and therefore X0j = −Y0j by (II.A.3a) (with · denoting the complex conjugation of
sl1+n(C) with respect to the real form su1+n, not the entrywise complex conjugation
of a matrix). �

Continuation of the proof of Theorem A.5: We attempt to compute both sides
of (A.5) explicitly, starting with the left hand side. Since |P | = |Q| = 1, let
0 ≤ p, q ≤ n be such that P = Ep and Q = Eq. Note that bEi,0(1, 0, . . . , 0) = δi,0
and b0,Ej (1, 0, . . . , 0) = δj,0, and consequently bR,S;red([1:0: . . . :0]) = δR′,0δS′,0 for
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any multiindices R = (R0, . . . , Rn), S = (S0, . . . , Sn) ∈ N1+n
0 with |R| = |S| and with

truncations R′ = (R1, . . . , Rn), S′ = (S1, . . . , Sn). Then

(bEp,Eq ;red ?red,h̄ bR,S;red)([1:0: . . . :0])

(1)
=

min{Ep,S}∑
T=0

h̄(1/h̄)↓,|Ep+S−T |

(1/h̄)↓,|S|
T !

(
Ep
T

)(
S

T

)
δE′p+R′−T ′,0δE′q+S′−T ′,0

(2)
=

min{Sp,1}∑
t=0

h̄(1/h̄)↓,|S|+1−t

(1/h̄)↓,|S|

(
Sp
t

)
δE′p+R′−(tEp)′,0δE′q+S′−(tEp)′,0

(3)
= h̄(1/h̄− |S|)δE′p+R′,0δE′q+S′,0 + h̄SpδR′,0δE′q+S′−E′p,0
(4)
= δE′p+R′,0δE′q+S′,0 − h̄|S|δE′p+R′,0δE′q+S′,0 + h̄SpδR′,0δE′q+S′−E′p,0
(5)
= δp,0δq,0δR′,0δS′,0 − h̄S0δp,0δq,0δR′,0δS′,0

+ h̄S0δp,0δq,0δR′,0δS′,0 +

n∑
i=1

h̄Siδp,iδq,0δR′,0δS′,E′i

(6)
= δp,0δq,0δR′,0δS′,0 + h̄

n∑
i=1

δp,iδq,0δR′,0δS′,E′i .

Here we used the explicit formula for ?red,h̄ from Proposition I.5.22 in (1). In (2), the
sum over T is a sum over the multiindex 0 and, if Sp ≥ 1, the multiindex Ep. In (3)
we wrote out the sum and simpli�ed the expression, and in (4) we multiplied out the
�rst product. In (5) we used that all our multiindices have non-negative entries, so
e.g. δE′p+R′,0 = δE′p,0δR′,0 = δp,0δR′,0. When doing a similar computation for the last
summand, we distinguish the two cases p = 0 and p ≥ 1, yielding the third and fourth
summand. Finally (6) only involves cancelling.

To compute the right hand side of (A.5), note that

(π∗ ◦ Φ∗)(bR,S;red)(g) = bR,S;red((gT)−1 . [1:0: . . . :0]) = bR,S;red(g . [1:0: . . . :0])

holds for all R,S ∈ N1+n
0 with |R| = |S| and for all g ∈ SU(1 +n). Therefore we have

(π∗ ◦ Φ∗)(bR,S;red) = P · 0
R(P · 0)S

where P · 0
R is a shorthand for P00

R0P10
R1 . . . Pn0

Rn and (P · 0)S is a shorthand for
(P00)S0(P10)S1 . . . (Pn0)Sn . Clearly P · 0

R(e) = δR′,0 and (P · 0)S(e) = δS′,0 with e
denoting the identity element of SU(1 + n).

From (A.6a) and (A.6b) it is immediate that applying two or more X left
0j to (π∗ ◦

Φ∗)(bP,Q;red) with |P | = |Q| = 1 gives 0, so that all summands in (II.3.39) with ` ≥ 2
vanish. Therefore

(Φ∗(bEp,Eq ;red) ∗h̄ Φ∗(bR,S;red))(λ)

(1)
=

1∑
`=0

(−1)`

`! 1
h̄

(
1
h̄ − 1

)
. . .
(

1
h̄ − (`− 1)

) ·
· ((X0,1 ⊗ Y0,1 + · · ·+X0,n ⊗ Y0,n)`)left(Pp,0Pq,0, P · ,0

R(P · ,0)S)(e)
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(2)
= (Pp,0Pq,0P · ,0

R(P · ,0)S)(e)

− h̄
n∑
i=1

(X left
0,i Pp,0)(e)Pq,0(e)P · ,0

R(e)(Y left
0,i (P · ,0)S)(e)

(3)
= δp,0δq,0δR′,0δS′,0 + h̄

n∑
i=1

δp,iδq,0δR′,0δS′,Ei .

In (1) we used that f ∗h̄ g = π∗(F
left
h̄ (π∗f, π∗g)), inserted (II.3.39) with r = 1 for Fh̄,

and truncated the sum at ` = 1 as described above. In (2) we wrote out the sum
over `, and used (A.6a) and (A.6b). Finally, we used these equations again in step
(3): X left

0,i Pp,0(e) = −Pp,i(e) = −δp,i and similarly Y left
0,i (P · ,0)S(e) = δS′,Ei .

These computations prove (A.5) and therefore Theorem A.5. �

Corollary A.7 The formal star product ?red de�ned in De�nition I.5.6 and the for-
mal star product ?, obtained from the asymptotic expansion of the element Fh̄ in
Proposition II.3.36, are intertwined by Φ∗.

Proof: Since both formal star products are the asymptotic expansions of the cor-
responding strict star products ?red,h̄ and ∗h̄ (recall that di�erential operators are
uniquely determined by their behaviour on polynomials), this follows from the previ-
ous theorem. �

Corollary A.8 The map Φ: SU(1 +n)/S(U(1)×U(n))→ CPn de�ned in the begin-
ning of this section is a symplectomorphism.

Proof: The symplectic forms on SU(1 + n)/S(U(1)×U(n)) and CPn can be recov-
ered from the star products ? and ?red as the antisymmetrized �rst order. Since Φ∗

intertwines the star products, it must also intertwine the symplectic forms. �

Recall the setup from Section I.3, where we de�ned complex manifolds M̂red and
an antidiagonal embedding ∆red : Mred → M̂red. Remember that these de�nitions
depend on the signature s, which we omit from the notation for better readabil-
ity. We did not de�ne extended products ?̂red,h̄ in Paper I, so we will do so now.
Similarly to the de�nition of polynomials on Mred in Section I.4.2, we can de�ne
holomorphic polynomials P(M̂red) as the image of C∗-invariant holomorphic poly-
nomials on C1+n × C1+n under the reduction map · ˆred. It is easy to verify that
(∆red)∗ : P(M̂red) → P(Mred) is a bijection. Consequently there is a uniquely de-
termined product ?̂red,h̄ : P(M̂red)×P(M̂red)→P(M̂red) that restricts to ?red,h̄ on
Mred.

Recall also the de�nition of the stabilizer GĴ from Section I.3. Assembling the σj
into a diagonal matrix σ := diag(σ0, . . . , σn), we have GĴ = {(g′, g) ∈ GL1+n(C) ×
GL1+n(C) | g′ = σ(g−1)Tσ}. GĴ acts on M̂red by (g′, g) . [(x, y)]C∗ = [(g′x, gy)]C∗ .

Since the subgroup {(z11+n, z
−111+n) | z ∈ C∗} ⊆ GĴ acts trivially, we will usually

only consider the action of the subgroup

S(GĴ ) = {(g′, g) ∈ SL1+n(C)× SL1+n(C) | g′ = σ(g−1)Tσ}
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of GĴ in the following. Note that S(GĴ ) still acts transitively on M̂red.
Let e0 = (1, 0, . . . , 0) ∈ C1+n. The stabilizer of µ := [e0, e0]C∗ ∈ M̂red is given by

S(GĴ )µ := {(σ(g−1)Tσ, g) | g ∈ S(GL1(C)×GLn(C))}, where

S(GL1(C)×GLn(C)) := {g ∈ SL1+n(C) | g0,i = gi,0 = 0 for 1 ≤ i ≤ n} ⊆ SL1+n(C)

denotes matrices with determinant 1 that are block diagonal with blocks of size 1 and
n. In the following we identify SL1+n(C) with S(GĴ ) via the map g 7→ (σ(g−1)Tσ, g).
Under this correspondence, the subgroup S(GL1(C) × GLn(C)), that also appeared
in (II.3.37b), is identi�ed with S(GĴ )µ. Therefore, similarly to the de�nition of Φ,
we obtain a holomorphic di�eomorphism

Φ̂ : SL1+n(C)/S(GL1(C)×GLn(C))→ M̂red ,

g · S(GL1(C)×GLn(C)) 7→ (σ(gT)−1σ, g) . µ = [σ(gT)−1σe0, ge0]C∗ . (A.7)

Indeed, surjectivity is clear by the transitivity of the action of S(GĴ ) on M̂red, injec-
tivity follows since we divided out the stabilizer, being a di�eomorphism follows as
before, and being holomorphic is obvious since all involved maps like transposition, in-
verse, and the action on M̂red are holomorphic. Φ̂ is also SL1+n(C)-equivariant (with
respect to the left action of SL1+n(C) on SL1+n(C)/S(GL1(C) × GLn(C)) and the
action of SL1+n(C) on M̂red, obtained through the identi�cation of SL1+n(C) with
S(GĴ )).

To better distinguish the next corollary from the following statements, we write
out the signatures.

Corollary A.9 The pullback with the map Φ̂(n+1) de�ned in (A.7) intertwines the
product ?̂

(1+n)
red,h̄ on P(M̂

(1+n)
red ) with the product ∗̂h̄ on Pol(SL1+n(C)/S(GL1(C) ×

GLn(C))) de�ned by Fh̄ from (II.3.39), meaning that

(Φ̂(1+n))∗(p ?̂
(1+n)
red,h̄ q) = (Φ̂(1+n))∗(p) ∗̂h̄ (Φ̂(1+n))∗(q) (A.8)

holds for all p, q ∈P(M̂
(1+n)
red ).

Proof: For better readability we drop the signature s = 1 + n in this proof. The in-
clusion ι : SU(1+n)/S(U(1)×U(n))→ SL1+n(C)/S(GL1(C)×GLn(C)) is intertwined
with ∆red by Φ and Φ̂, in the sense that ∆red ◦ Φ = Φ̂ ◦ ι. Indeed,

(Φ̂ ◦ ι)(g · S(U(1)×U(n))) = [(gT)−1e0, ge0]C∗ = [ge0, ge0]C∗ =

= ∆red([ge0]U(1)) = (∆red ◦ Φ)(g · S(U(1)×U(n)))

holds for all g ∈ SU(1 + n). Recall that elements of P(Mred) extend uniquely to
holomorphic polynomials P(M̂red) whereas elements of Pol(SU(1+n)/S(U(1)×U(n)))
extend uniquely to holomorphic polynomials Pol(SL1+n(C)/S(GL1(C) × GLn(C))).
Since the pullback Φ∗ : P(Mred)→ Pol(SU(1+n)/S(U(1)×U(n))) is an isomorphism
according to Corollary A.4, and Φ̂ is holomorphic, it follows that Φ̂∗ is a bijection
between P(M̂red) and Pol(SL1+n(C)/S(GL1(C)×GLn(C))).
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The products ?̂red,h̄ and ∗̂h̄ are uniquely characterized by the property that they
restrict to ?red,h̄ and ∗h̄ under the embeddings ∆red and ι. Since Φ intertwines ?red,h̄

and ∗h̄ by Theorem A.5, it follows that Φ̂ intertwines ?̂red,h̄ and ∗̂h̄. �

We will use the Wick rotation to transfer this result to other signatures. Recall

that the geometric Wick rotation α(s) : M̂
(1+n)
red → M̂

(s)
red de�ned in De�nition I.6.1

intertwines ?̂
(1+n)
red,h̄ and ?̂

(s)
red,h̄.

Corollary A.10 The pullback with the map Φ̂(s) de�ned in (A.7) intertwines the
product ?̂

(s)
red,h̄ on P(M̂

(s)
red) with the product ∗̂h̄ on Pol(SL1+n(C)/S(GL1(C)×GLn(C)))

de�ned by Fh̄ from (II.3.39), meaning that

(Φ̂(s))∗(p ?̂
(s)
red,h̄ q) = (Φ̂(s))∗(p) ∗̂h̄ (Φ̂(s))∗(q) (A.9)

holds for all p, q ∈P(M̂
(s)
red).

Proof: We will determine which map α(s) induces on SL1+n(C), from which the
result will follow since this map leaves ∗̂h̄ invariant. The details are as follows.

Recall the de�nition of W (s) from the beginning of Section I.6.1. Let LW be the
map SL1+n(C)/S(GL1(C) × GLn(C)) → SL1+n(C)/S(GL1(C) × GLn(C)) given by
the left action of det(W (s))−1W (s) ∈ SL1+n(C). Then Φ̂(s) ◦ LW = α(s) ◦ Φ̂(1+n).
Indeed, we compute

(Φ̂(s) ◦ LW )(g · S(GL1(C)×GLn(C)))

= Φ̂(s)(det(W (s))−1W (s)g · S(GL1(C)×GLn(C)))

= [σ(s)((det(W (s))−1W (s)g)T)−1σ(s)e0,det(W (s))−1W (s)ge0]C∗

= [W (s)(gT)−1e0,W
(s)ge0]C∗

= (α(s) ◦ Φ̂(1+n))(g)

for all g ∈ SL1+n(C) since σ(s)e0 = e0, (W (s))T = W (s), (W (s))−1 = σ(s)W (s),
and [zx, z−1y]C∗ = [x, y]C∗ holds for z ∈ C∗ and x, y ∈ C1+n. Applying the previous
corollary to the pullbacks (α(s))∗p and (α(s))∗q, and using that α(s) intertwines ?̂

(1+n)
red,h̄

and ?̂
(s)
red,h̄, we obtain

((Φ̂(1+n))∗ ◦ (α(s))∗(p)) ∗̂h̄ ((Φ̂(1+n))∗ ◦ (α(s))∗(q))

= (Φ̂(1+n))∗((α(s))∗(p) ?̂
(1+n)
red,h̄ (α(s))∗(q))

= (Φ̂(1+n))∗ ◦ (α(s))∗(p ?̂
(s)
red,h̄ q)

= (LW )∗ ◦ (Φ̂(s))∗(p ?̂
(s)
red,h̄ q) .

A direct computation gives

((Φ̂(1+n))∗ ◦ (α(s))∗(p)) ∗̂h̄ ((Φ̂(1+n))∗ ◦ (α(s))∗(q))

= ((LW )∗ ◦ (Φ̂(s))∗(p)) ∗̂h̄ ((LW )∗ ◦ (Φ̂(s))∗(q))
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= (LW )∗((Φ̂(s))∗(p) ∗̂h̄ (Φ̂(s))∗(q)) ,

where we used in the last step that ∗̂h̄ is SL1+n(C)-invariant. Equating the expressions
and applying the pullback with the left action of det(W (s)) · (W (s))−1 ∈ SL1+n(C)
proves the corollary. �

Corollary A.11 The pullback with the restriction of Φ̂(s) to a map

Φ(s) : SU(s, 1 + n− s)/S(U(s)×U(1 + n− s))→M
(s)
red

intertwines the star product ?
(s)
red,h̄ de�ned in Proposition I.5.22 with the star product

∗(s)h̄ de�ned by the element Fh̄ from Proposition II.3.36 for r = 1. That is, for all

p, q ∈P(M
(s)
red) we have

(Φ(s))∗(p ?
(s)
red,h̄ q) = (Φ(s))∗(p) ∗(s)h̄ (Φ(s))∗(q) . (A.10)

Proof: This follows immediately from the previous corollary by restriction. �

Note that for s = 1 the star product ∗(1)
h̄ is not the Wick type star product from

Example II.5.24 which is induced by the element Fh̄ from Corollary II.3.37, but is the
anti-Wick type star product induced by the element Fh̄ from Proposition II.3.36. We
have already seen this in Example II.5.31.
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