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Abstract

This thesis is concerned with point process convergence for sequences of random walks
and the estimation of inhomogeneous phase–type distributions.

First, we study point process convergence for sequences of i.i.d. random walks. The
objective is to derive asymptotic theory for the extremes of these random walks. We show
convergence of the maximum random walk to the Gumbel or the Fréchet distributions.
We make heavily use of precise large deviation results for sums of i.i.d. random variables.
In particular, we show convergence of the maximum random walk to the Gumbel dis-
tribution under the existence of a (2 + δ)th moment, and as a consequence, we derive
the joint convergence of the off–diagonal entries in sample covariance and correlation
matrices of a high–dimensional sample whose dimension increases with the sample size.

Then, we provide a fitting procedure for the class of inhomogeneous phase–type dis-
tributions introduced in [3]. We propose a multivariate extension of inhomogeneous
phase–type distributions as functionals of elements of Kulkarni’s multivariate phase–
type class [73], and study parameter estimation for the resulting new and flexible class
of multivariate distributions.

Resumé

Denne afhandling omhandler punktproceskonvergens for følger af random walks og esti-
mation af inhomogene fasetypefordelinger.

Først studerer vi punktproceskonvergens for følger af i.i.d. random walks. Målsætin-
gen er at udlede asymptotisk teori for ekstremaer af disse random walks. Vi viser kon-
vergens af den maksimale random walk til Gumbel- eller Fréchetfordelinger. Vi benytter
i høj grad præcise large deviations resultater for summer af i.i.d. stokastiske variable.
Navnlig viser vi konvergens af den maksimale random walk til Gumbelfordelingen under
antagelse af eksistens af et (2 + δ)’te moment, og afledt heraf udleder vi simultan kon-
vergens af ikke-diagonal elementerne i empirisk kovarians- og korrelationsmatricer for en
højdimensionel stikprøve hvis dimension vokser med stikprøvestørrelsen.

Derpå giver vi en estimationsprocedure for klassen af inhomogene fasetypefordelinger
introduceret i [3]. Vi foreslår en flerdimensionel udvidelse af inhomogene fasetype-
fordelinger som funktionaler af elementer af Kulkarnis flerdimensionelle fasetypeklasse
[73] og studerer parameterestimation for denne nye og fleksible klasse af flerdimensionelle
fordelinger.
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Chapter 1

Introduction

In this chapter we introduce some of the mathematical tools needed for the formulation
and proofs of the results in the subsequent chapters.

1.1 Some elements from extreme value theory

The main objective of extreme value theory is the study of rare/extreme events. From
a mathematical point of view, an event is extreme if its probability is very small. An
important aim of this field of probability theory is to find general rules and connections
that apply not only to one specific model/distribution but rather to whole classes of
models. This task is similar to the central limit problem in classical probability theory
where one was searching for the possible limit distributions of (centered and normalized)
sample means of i.i.d. data, conditions on the summands to converge to a given limit
distribution as well as possible centering and normalizing constants.

The limit behavior of the maxima of i.i.d. random variables belongs to the same kind
of problems. A seminal solution to it was given by Gnedenko [54] in 1943; the main
result is commonly referred to as Fisher–Tippett Theorem; see Fisher and Tippet [49].
It specifies the possible types of the limit distribution of centered and normalized maxima
of an i.i.d. sequence. We will formulate this result next.

Consider an i.i.d. sequence (Xi) of random variables with generic element X, distri-
bution/distribution function F and right tail F = 1 − F , and set

Mn = max(X1, . . . , Xn) , n ≥ 1 .

We call a non–degenerate distribution H extreme value distribution if there exist con-
stants cn > 0 and dn ∈ R, n ≥ 1, such that the sequence of the maxima (Mn) satisfies
the limit relation

c−1
n (Mn − dn) d→ Y ∼ H , n → ∞ . (1.1)

In this case, there exists γ ∈ R such that H is of the type of the one–parametric family
of distributions given by

Hγ(x) = exp
!

− (1 + γx)−1/γ
+

"
, x ∈ R , (1.2)

where for any y ∈ R, y+ = max(y, 0). This is the content of the Fisher–Tippett Theorem.
The parametric family (1.2) is also called Jenkinson–von–Mises representation of an
extreme value distribution or generalized extreme value distribution (GEV). According
to the sign of γ, one distinguishes between three cases for Hγ :

γ > 0; In this case,

Hγ(x) = exp
!

− (1 + γx)−1/γ
"

, x > −1/γ .

This distribution is of the type of the Fréchet distribution Φα(x) = exp(−x−α),
x > 0, with α = 1/γ. We will refer to the Fréchet–case.

1



2 1. Introduction

γ = 0; In this case, we understand H0 as the limit

H0(x) = lim
γ→0

Hγ(x) = exp(− exp(−x)) = Λ(x) , x ∈ R

which corresponds to the Gumbel distribution; we refer to the Gumbel–case.

γ < 0; In this case,

Hγ(x) = exp
!

− (1 + γx)1/|γ|" , x < 1/|γ| .

The distribution is of the type of the Weibull distribution Ψα(x) = exp(−(−x)α),
x < 0, with α = 1/|γ|; we refer to the Weibull–case.

1.1.1 Maximum domains of attraction
A related problem is the characterization of the distributions F satisfying (1.1) for a
given extreme value distribution H = Hγ . This leads to the notion of maximum domain
of attraction of H (F ∈ MDA(H)).

The maximum domain of attraction of an extreme value distribution is determined
by the conditional behavior of a single random variable, given that it exceeds a certain
(high) threshold. This is the content of a famous result proved independently by Pickands
[100] and Balkema and de Haan [14]: a distribution F ∈ MDA(Hγ) if and only if there
exists a measurable function a : R → R+ such that

lim
u↑xF

F (u + a(u) x)
F (u)

= Gγ(x) := − log(Hγ(x)) , x ∈ R , (1.3)

where xF := sup{x ∈ R : F (x) < 1} is the upper endpoint of the distribution F . When
restricted to positive x, Gγ(x) is indeed the tail of a distribution Gγ , called general-
ized Pareto distribution (GPD). This result is often reformulated in terms of the excess
distribution function Fu(x) := P(X ≤ x + u | X > u) as follows:

F u(x) ≈ Gγ,β(u)(x) , x > 0 ,

for some function β, where Gγ,σ(x) := Gγ(x/σ) and u is large enough. This approx-
imation is the theoretical basis for a major statistical tool: the Peaks–Over–Threshold
method (POT).

In this thesis we will deal only with the Fréchet and Gumbel extreme value distribu-
tions. Next, we characterize the domains of attraction of these two distributions.

The domain of attraction of the Fréchet distribution is closely connected with the
concept of regular variation. Recall that a measurable function f : R+ → R+ is called
regularly varying with index ρ ∈ R, if limt→∞ f(xt)/f(t) = xρ for all x > 0. We write f ∈
RVρ and call f slowly varying if ρ = 0. Regularly varying functions can be represented as
the product of a power function with a slowly varying function, i.e., f ∈ RVρ if and only
if f(x) = L(x) xρ for some slowly varying function L. Regularly varying functions have
been extensively studied in real analysis and probability theory; we refer to Bingham et
al. [21] for a comprehensive account.

A distribution F ∈ MDA(Φα) for some α > 0 if and only if F ∈ RV−α (see [46,
Section 3.3.1]), and then

c−1
n Mn

d→ Y ∼ Φα , n → ∞ , (1.4)
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where (cn) can be chosen such that nP(X > cn) → 1. Thus, the maximum domain
of attraction of Φα consists of the distributions F whose right tail is regularly varying
with index −α. This class of distributions contains very heavy–tailed distributions in
the sense that E(Xk

+) = ∞, for any k > α.

Example 1.1 (Pareto distribution). The Pareto distribution F (x) = 1 − x−α, x > 1,
α > 0, satisfies F ∈ MDA(Φα) and (1.4) holds with cn = n1/α.

The domain of attraction of the Gumbel distribution can be described in terms of the
so–called von Mises functions: a distribution function F is called a von Mises function
if there exists z < xF such that F has the representation

F (x) = c exp
#

−
$ x

z

1
a(t)dt

%
, z < x < xF ,

where c is a positive constant and a(·) is a positive and absolutely continuous function
with density a′(x) → 0 as x → xF . Recall that two distribution functions F and G are
called tail–equivalent if they have the same right endpoint and limx→xF

F (x)/G(x) = c
for some positive constant c. Now, F ∈ MDA(Λ) if and only if F is tail–equivalent to a
von Mises function (see [46, Section 3.3.3]). Moreover,

c−1
n (Mn − dn) d→ Y ∼ Λ , n → ∞ , (1.5)

where (dn) can be chosen such that nP(X > dn) → 1 and cn = a(dn).
This domain of attraction contains distribution functions with very different tail be-

haviors, from heavy–tailed distributions (such as the lognormal) to light–tailed distribu-
tions (such as the exponential distribution). A distinctive difference with respect to the
Fréchet case is that E(Xk

+) < ∞, for any k > 0. It is also possible to have distributions
with finite and infinite right endpoints xF , but for the purposes of this thesis we will
only deal with distributions with infinite right endpoint.

Example 1.2 (Normal distribution). The standard normal distribution Φ ∈ MDA(Λ)
and satisfies (1.5) with cn = 1/dn and

dn =
&

2 log n − log log n + log 4π

2(2 log n)1/2 . (1.6)

Since dn ∼
√

2 log n we can replace cn in (1.5) by 1/
√

2 log n while dn cannot be replaced
by

√
2 log n.

We conclude by recalling the characterization (1.3) of a maximum domain of attrac-
tion. Switching from the continuous threshold u to a sequence (dn) satisfying nP(X >
dn) → 1 we have F ∈ MDA(Hγ) if and only if for any x ∈ R, a positive measurable
function a(·) and cn = a(dn),

nP(X > dn + x cn) → − log(Hγ(x)) , n → ∞ . (1.7)

This characterization creates a link with the notion of vague convergence and, in turn,
combines extreme value theory, large deviation theory and the convergence of point
processes. In this thesis, we will frequently make use of this connection.



4 1. Introduction

1.1.2 Vague convergence
Let E be a locally compact topological space with countable base. This is a technical
assumption, and we will work on sets that satisfy this condition. We equip E with the
Borel σ–field E , i.e., the σ–field generated by the open sets of E. Recall that a measure
µ on E is Radon if µ(A) < ∞ for all compact sets A ⊂ E. Now define

M+ (E) = {µ : µ is a non-negative Radon measure on E}

and

C+
K (E) = {f : E → R+ : f is continuous with compact support} .

Let (µn) be a sequence of measures on M+(E) and µ ∈ M+(E). We say that µn

converges vaguely to µ, and we write µn
v→ µ, if

$

E

f(x)dµn (x) →
$

E

f(x)dµ (x) , n → ∞ , f ∈ C+
K (E) .

A practical equivalent way of proving vague convergence is to show µn(A) → µ(A) for all
relatively compact sets A ∈ E for which µ(∂A) = 0, where ∂A is the boundary of A; see
[103, Proposition 3.12]. In particular, if E ⊂ R it suffices to show that µn(a, b] → µ(a, b]
for all intervals (a, b] ⊂ E, which are also µ–continuity sets.

Example 1.3. We know that F ∈ MDA(Hγ) if and only if there exist sequences (cn) of
positive numbers and (dn) of real numbers such that (1.7) holds. Keeping in mind the
comment about the restriction of vague convergence to intervals (a, b], we conclude that
(1.7) is equivalent to

µn(·) := nP(c−1
n (X − dn) ∈ ·) v→ νγ(·) , n → ∞ (1.8)

in M+(supp (Hγ)), where νγ is given by νγ(x, ∞) = − log(Hγ(x)), x ∈ supp (Hγ).

The characterization of MDA in (1.8) will be particularly useful when dealing with
the weak convergence of point processes; see Section 1.1.3. Moreover, the abstract MDA–
condition (1.8) allows one to extend MDA–conditions from the univariate to the multi-
variate case, for example the regular variation property for MDA(Φα) to a multivariate
setting.

1.1.3 Point processes and their weak convergence
Point processes techniques give a thorough understanding of many structural results
in extreme value theory. In contrast to the classical techniques described above, point
processes allow for the treatment of extremes of sequences more general than i.i.d. in a
straightforward and unified way. One can think of a point process N simply as a random
distribution of points Xi in space. More specifically, the state space where the points
live is denoted by E, and E is equipped with the Borel σ–field E . A point process is
conveniently written by using the Dirac measure εx for x ∈ E :

εx(A) =
'

1 if x ∈ A ,
0 if x /∈ A ,

A ∈ E .
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Consider a sequence of points (xi)i≥1 in E. Then

m =
∞(

i=1
εxi ,

defines a counting measure on E . If m(K) < ∞ for all compact sets K ∈ E , then m is
called a point measure. Let Mp(E) be the space of all point measures on E equipped with
the σ–algebra Mp(E), the smallest σ–algebra making all the evaluation maps m +→ m(A)
measurable for all A ∈ E . Then, a point process on E is a measurable map

N : [Ω, F , P ] → [Mp(E), Mp(E)] .

The distribution of N is fully determined by its Laplace functional ΨN given by

ΨN (f) := E
)

exp
*

−
$

E

fdN
+,

=
$

Mp(E)
exp

*
−

$

E

f(x)dm(x)
+

dPN (m) ,

for non–negative measurable functions f on E.
Perhaps the most important point process in the context of extreme value theory is

the Poisson random measure.

Example 1.4 (Poisson random measure (PRM)). A point process N is called a Poisson
process or a Poisson random measure with mean measure µ (we write PRM(µ)) if N
satisfies:

(a) For any A ∈ E ,

P(N(A) = k) =

-
.

/
e−µ(A) (µ(A))k

k! if µ(A) < ∞ ,

0 if µ(A) = ∞ ,
k ≥ 0 .

(b) For any k ≥ 1, if A1, . . . , Ak are mutually disjoint sets in E then N(A1), . . . , N(Ak)
are independent random variables.

The name mean measure is justified by the fact that E(N(A)) = µ(A). Note also
that a PRM(µ) is fully determined by the knowledge of its mean value function µ. This
is an analogous property to the conventional Poisson distribution, whose distribution is
determined by its mean value. Moreover, the Laplace functional of a PRM(µ) is given
by

ΨN (f) = exp
'

−
$

E

#
1 − e−f(x)

%
dµ(x)

0
.

The weak convergence of point processes is a basic tool in the study of the asymp-
totic theory of extremes. We say that the point processes (Nn) converge weakly to a
point process N in Mp(E) (we write Nn

d→ N) if and only if the corresponding Laplace
functionals converge for every f ∈ C+

K (E), i.e.,

ΨNn
(f) → ΨN (f) .

The following point process limit result (Resnick [102, Theorem 5.3]) is of particular
interest in this thesis.
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Proposition 1.5. Let (Xni)n=1,2,...;i=1,2,... be a triangular array of row–wise i.i.d. ran-
dom elements on some state space E ⊂ Rd equipped with the Borel σ–field E. Let µ be a
Radon measure on E. Then

Nn =
n(

i=1
εXni

d→ N , n → ∞ ,

holds for some PRM(µ) N if and only if

nP(Xn1 ∈ ·) v→ µ(·) , n → ∞ .

Example 1.6. If F ∈ MDA(Hγ), Proposition 1.5 and (1.7) imply that

Nn =
n(

i=1
εc−1

n (Xi−dn)
d→ N , n → ∞ ,

for a PRM(µ) N with mean measure given by µ(x, ∞) = − log(H(x)).

The weak convergence of point processes and random measures has been treated in
detail in the literature. For a compressive reading we refer to, e.g., Kallenberg [70]. For
an account of point process techniques in extreme value theory we refer to Resnick [103].

In this thesis we are interested in the point process convergence of sequences with
a complex random structure. In this context, precise large deviations results will prove
useful. This is the content of the next section.

1.2 Precise large deviations

We consider an i.i.d. sequence (Xi) of random variables with generic element X and
distribution F and define the corresponding partial sum process

S0 = 0 , Sn = X1 + · · · + Xn , n ≥ 1 .

We refer to vanishing probabilities of the type P
!
Sn > an) → 0, n → ∞, as large

deviation probabilities. Large deviation probabilities have been studied in detail in the
literature. For instance, S.V. Nagaev [90] proved a result about the large deviations of a
finite variance random walk (Sn) in the case of F ∈ RV−α for some α > 2. We formulate
this result next to give an idea of precise large deviations.

Theorem 1.7 (Nagaev’s theorem [86, 90]). Consider an i.i.d. sequence (Xi) of random
variables with E[X] = 0, var(X) = 1 and E[|X|2+δ] < ∞ for some δ > 0. Assume that
F ∈ RV−α for some α > 2. Then uniformly for x ≥

√
n as n → ∞,

P(Sn > x) = Φ(x/
√

n) (1 + o(1)) + n F (x) (1 + o(1)) .

In particular, for any positive constant c1 < α − 2

sup
1<x/

√
n<

√
c1 log n

111
P(Sn > x)
Φ

!
x/

√
n

" − 1
111 → 0 , n → ∞ ,

and for any constant c2 > α − 2,

sup
x/

√
n>

√
c2 log n

111
P(Sn > x)
nP(X > x) − 1

111 → 0 , n → ∞ .
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Recall that a distribution function F on (0, ∞) is called subexponential if P(Sn > x) ∼
nF (x) as x → ∞ for any n ≥ 2. We write S for the class of subexponential distributions.

This result says that there is an exact threshold where large deviation probabilities
for centered partial sums of an i.i.d. sequence are approximated by the tail of a normal
distribution to the left and behave in a subexponential way to the right. Similar results
exist in the literature for subexponential distributions F ; we refer to Section 2.3 below
for the relevant literature. However, the regions where the normal and subexponential
approximations hold are in general separated from each other by a region where neither
of these approximations hold.

Example 1.8. Consider i.i.d. copies (S(i)
n )i=1,2,... of Sn satisfying the condition of The-

orem 1.7. We also introduce an integer sequence (pn) such that p = pn → ∞ as n → ∞.
Take (an) such that nP(X > an) → 1 as n → ∞, and let (anp) be (an) evaluated on np.
If (pn) is such that anp ≥

&
(α − 2 + δ)n log n for any small positive δ, then Theorem 1.7

and the definition of (anp) yield for positive x,

pP(a−1
np Sn > x) ∼ npP(a−1

np X > x) ∼ x−α , n → ∞ .

Thus, Proposition 1.5 implies that

Np =
p(

i=1
ε

a−1
np S

(i)
n

d→ N , n → ∞ ,

for a PRM(µ) N with mean measure µ(x, ∞) = x−α, x > 0. Moreover, a continuous
mapping argument implies that

max
i=1,...,p

a−1
np S(i)

n
d→ Y ∼ Φα , n → ∞ .

The convergence of point processes whose points are i.i.d. partial sums processes is
treated in detail in Chapter 2.

This example shows the usefulness of precise large deviation results combined with
point process convergence. In the subsequent section we consider a related example where
sum processes figure but these sum processes are in general dependent.

1.3 Sample covariance matrices

Consider p–dimensional random vectors XXXt = (X1t, . . . , Xpt)′, t = 1, . . . , n, whose com-
ponents (Xit)i,t≥1 are i.i.d. random variables with generic element X. We also assume
that E[X] = 0 and E[X2] = 1 if these expectations are finite. We are interested in the
(non–normalized) p × p sample covariance matrix S

S = Sn =
n(

t=1
XXXtXXX

′
t

with entries

Sij =
n(

t=1
XitXjt , i, j = 1, . . . , p .
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The sample covariance matrix is of crucial importance in multivariate statistics, for
instance in principal component analysis, multivariate regression and hypothesis testing.
In many contemporary applications, one is faced with large data sets where both the
dimension of the observations and the sample size are large. Thus, asymptotic methods
based on limit theorems have proven to be useful tools. This is the case, for instance,
in the study of the largest eigenvalues and their corresponding eigenvectors. In limit
theory for the eigenvalues λ1, . . . , λp, one frequently assumes that the dimension p = pn

is some integer sequence tending to infinity as n → ∞. The most common condition in
the literature is

pn/n → γ ∈ (0, ∞) , n → ∞ . (1.9)

Under this assumption, and the moment condition E(X2) < ∞, the empirical spectral
distribution function

Fn−1S = 1
p

#{1 ≤ j ≤ p : n−1λj ≤ x}

converges weakly with probability 1 to the so–called Marčenko–Pastur law Fγ (see De-
bashis et al. [97]). If γ ∈ (0, 1], Fγ has density

fγ(x) =
' 1

2πxγ

&
(b − x)(x − a), if a ≤ x ≤ b ,

0, otherwise ,

where a = (1 − √
γ)2 and b = (1 + √

γ)2. If γ > 1, the Marčenko–Pastur law is a
mixture of a point mass at 0 and the density function f1/γ with weights 1−1/γ and 1/γ,
respectively. The Marčenko–Pastur law describes the global behavior of the eigenvalues,
and the moment condition E(X2) < ∞ is crucial for this result to hold. The moment
condition E(X4) < ∞ plays a similar role when studying the largest eigenvalues of S.
We write λ(1) ≥ · · · ≥ λ(p) for the ordered eigenvalues of S. If (1.9) holds, Geman [53]
showed that

λ(1)

n

a.s.→ (1 + √
γ)2 , n → ∞ .

This means that λ(1)/n converges to the right endpoint of the Marčenko–Pastur law.
These results are sometimes regarded as “light–tailed” in the sense that they require
finite second/fourth moments of X. In the “heavy–tailed” case (i.e., infinite fourth
moment), Heiny and Mikosch [60], under the additional condition of regular variation on
the tails

P(X > x) ∼ p+
L(x)
xα

and P(X < −x) ∼ p−
L(x)
xα

, x → ∞ , (1.10)

for some α ∈ (0, 4) and p± non–negative constants such that p− + p+ = 1, proved that

a−2
np ‖S − diag(S)‖2

P→ 0 , n → ∞ ,

where ‖A‖2 denotes the spectral norm of a p × p symmetric matrix A, diag(A) consists
of the diagonal of A, (ak) is any sequence satisfying k P(|X| > ak) → 1 as k → ∞, and
pn = nβℓ(n) for some β ∈ (0, 1] and a slowly varying function ℓ. According to Weyl’s
inequality (see Bhatia [17]), the eigenvalues of S satisfy the relation

a−2
np sup

i=1,...,p

11λ(i)(S) − λ(i)(diag(S))
11 ≤ a−2

np ‖S − diag(S)‖2
P→ 0 , n → ∞ .
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Thus, limit theory for the order statistics of S is reduced to limit theory for the
order statistics of the i.i.d. partial sums Sii =

2n
t=1 X2

it, i = 1, . . . , p, which are also the
ordered eigenvalues λ(i)(diag(S)). This theory is completely described by the Fréchet
convergence of the point processes with points (a−2

np Sii)i=1,...,p, for which Nagaev–type
large deviation results are essential.

On the other hand, limit theory for the extremes of the off–diagonal elements of S is
less developed. The situation is more complicated because the points Sij are typically
dependent. The largest off–diagonal entry of a sample covariance has been studied in the
literature and theoretical developments are mainly due to Jiang. For instance, in [66],
he analyzed the asymptotic distributions of

Wn := 1
n

max
1≤i<j≤p

|Sij |

under the assumption p/n → γ ∈ (0, ∞). If E[|X|30+δ] < ∞ for some δ > 0, he proved
that

lim
n→∞

P(nW 2
n − 4 log p + log log p ≤ x) = exp

#
− 1√

8π
e−x/2

%
, x ∈ R ,

The limiting law is a non–standard Gumbel distribution. Under the same assumptions
Jiang [66] also derived the limit

lim
n→∞

3
n

log p
Wn = 2 a.s. (1.11)

However, results concerning the joint limit behavior of the entries were lacking. In
Chapter 3, we prove limit theory for the point processes of scaled and centered points
(Sij) in a more general framework than used for the results above, and as byproduct we
deduce results on their extreme behavior.

The type of limit distributions for the point processes considered in this thesis strongly
depends on the centering and normalizing constants employed, whose choice is deter-
mined by the behavior of the tail F of the underlying random variables above certain
thresholds. A similar phenomenon occurs in extreme value statistics, where the esti-
mators obtained from classical tools like POT method and Hill estimator, significantly
depend on the threshold selected. Moreover, to completely describe the behavior of
given data, one typically needs to fit tail and body separately. On the other hand, the
alternative approach of selecting a specific parametric distribution is often too rigid for
modeling the tail behavior of general distributions. In this thesis we propose inhomo-
geneous phase–type distributions as alternative models where one can fit tail and body
at the same time, due to their denseness in the class of all distributions with support
on the positive real numbers and genuinely heavy tails. Thus, we need to introduce first
conventional phase–type distributions.

1.4 Phase–type distributions

The origins of phase–type distributions can be traced back to the pioneering work of
Erlang [47] and Jensen [65]. Erlang [47] employed a distribution based on i.i.d. sequential
hidden phases with exponential holding times to model the duration of telephone calls.
Such a distribution was one of the first attempts to generalize the exponential distribution
and went on to be known as the Erlang distribution. The idea of hidden stages was then
generalized by Jensen [65] in terms of Markov jump processes. This class of distributions
is, in fact, what we now know as phase–type distributions. However, it was not until
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the late seventies that Neuts and co–workers established much of the modern theory
available today; a large portion of their work is summarized in Neuts [92]. We now
present a precise definition of this class of distributions.

Let (Jt)t≥0 denote a Markov jump process on a state–space {1, . . . , p, p + 1}, where
the states 1, . . . , p are transient and state p+1 is absorbing. Then (Jt)t≥0 has an intensity
matrix of the form

Λ =
4

T ttt
0 0

5
,

where T is a sub–intensity matrix of dimensions p × p and ttt is a p–dimensional column
vector. Since the rows of Λ sum to zero, we have that ttt = −T eee, where eee is the p–
dimensional column vector of ones. Let πk = P(J0 = k), k = 1, . . . , p, πππ = (π1, . . . , πp)
and assume that P(J0 = p + 1) = 0. Then we say that the time until absorption

Y = inf{t ≥ 0 | Jt = p + 1}

has a phase–type distribution with representation (πππ, T ) and we write Y ∼ PH(πππ, T ).
The density fY and distribution function FY of Y ∼ PH(πππ, T ) are given by

fY (y) = πππeT yttt , y > 0 ,

FY (y) = 1 − πππeT yeee , y > 0 ,

where the exponential of a matrix A is defined by

exp(A) =
∞(

n=0

An

n! .

The class of phase–type distributions has been widely used in the area of Applied
Probability, since they often provide exact (or even explicit) solutions to some complex
stochastic models. This is the case, for instance, in ruin theory where the use of phase–
type distributions allows one to derive explicit expressions for ruin probabilities. This
class of distributions is also dense in the set of distributions with support on the positive
real numbers (in the sense of weak convergence). This means that any distribution with
support on R+ can be approximated arbitrarily well by a phase–type distribution (of
sufficiently large dimension). Moreover, statistical inference for phase–type distributions
has been a topic of research for a long time. Maximum likelihood estimation was first
proposed by Asmussen et al. [10] using an expectation–maximization (EM) algorithm
whereas a Markov chain Monte Carlo (MCMC) based approach was suggested in Bladt
et al. [22]. For a comprehensive reading on phase–type distributions we refer to Bladt
and Nielsen [24].

One of the downsides of phase–type distributions is that despite of their denseness,
they are light–tailed (exponential type) and consequently they fail to capture heavy–tail
behavior. In particular, we have for Y ∼ PH(πππ, T )

F Y (y) ∼ cyk−1e −λy , y → ∞ ,

where −λ is the largest real eigenvalue of T , k is the dimension of the Jordan block of λ
and c is a positive constant; see Asmussen et al. [10, Section 5.7].

Some approaches to remedy this problem have been introduced in the literature. For
example, in Bladt et al. [26] the class of PH distributions was extended to allow for
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infinite–dimensional matrices (denoted by NPH) which led to a class of distributions
with phase–type like properties and a genuinely heavy tail. The estimation of such dis-
tributions was considered in Bladt and Rojas-Nandayapa [27]. More recently, Albrecher
et al. [3] considered the transformation of the time scales of each state of the under-
lying Markov process, leading to inhomogeneous phase–type (IPH) distributions. Their
approach has the advantage of preserving the finite dimensionality, and for suitable trans-
formations offer classes of genuinely heavy–tailed distributions. Another advantage of
this construction is that one can apply standard techniques from univariate phase–type
fitting in very specific cases, however a more general fitting procedure was lacking. In
Chapter 4 we consider the class of inhomogeneous phase–type distributions as models
where heavy tails (and lighter than exponential tails) are present, and develop fitting
procedures for this class in the uni– and multivariate cases. To extend our analysis to
the multivariate case, we need to introduce first the notion of multivariate phase–type
models.

1.4.1 Multivariate phase–type distributions
Various multivariate phase–type distributions have been introduced in the literature.
The first multivariate distribution with phase–type marginals (denoted by MPH) was
proposed by Assaf et al. [11]. Their approach consisted of detecting the hitting times
of different subsets of the state–space of a Markov jump process. Later, this class was
extended by Kulkarni [73] to the MPH* class. Their definition is based on linear rewards
of the sojourn times in the states of the Markov jump process underlying a phase–type
distribution. The latest proposal (denoted by MVPH) is given in Bladt et al. [23], in
which the authors considered vectors whose linear combination of entries are phase–type
distributed. These classes satisfy MPH ⊂ MPH∗ ⊂ MVPH, and each one of them has
their own distinctive advantages and disadvantages. However, for the purposes of this
thesis we deal only with the MPH* class due to its probabilistic appeal and flexibility.
More specifically, the MPH* class is constructed as follows. Let Y ∼ PH (πππ, T ) be
a phase–type distributed random variable with underlying time–homogeneous Markov
jump process (Jt)t≥0. Let rrrj = (rj(1), . . . , rj(p))′ be non–negative p–dimensional column
vectors, j = 1, . . . , d, and let R be a p × d reward matrix defined by

R = (rrr1, rrr2, . . . , rrrd) .

The component rj(k) can be interpreted as the rate at which a reward is obtained while
Jt is in state k. Now define a vector YYY = (Y (1), . . . , Y (d))′ such that

Y (j) =
$ Y

0
rj (Jt) dt , j = 1, . . . , d .

Then Y (j) is the total reward obtained according to rrrj prior to absorption. We say
that the random vector YYY has a multivariate phase–type distribution of the MPH* (or
Kulkarni) type, and we write YYY ∼ MPH∗ (πππ, T , R). We refer to [24] for a comprehensive
text on multivariate phase–type distributions.

The MPH* class of distributions is dense within the set of distributions with support
in Rd

+. Their marginals and linear combinations are phase–type distributed and explicit
expressions for their parameters are available; see [24, Theorem 8.1.6]. These properties
(among others) make this class very flexible and appealing from a stochastic modeling
perspective. A disadvantage is that there is no explicit expression for joint densities: in
Kulkarni [73] the density is characterized by a system of partial differential equations, and
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in Breuer [28] a semi–explicit form is deduced in the bivariate case. The following type
of MPH* distributions does lead to an explicit joint density: Let YYY = (Y (1), . . . , Y (d))′ ∼
MPH∗(πππ, T , R) with

πππ = (ααα,000, . . . ,000) , T =

6

7778

T11 T12 0 · · · 0
0 T22 T23 · · · 0
...

...
...

. . .
...

0 0 0 · · · Tdd

9

:::;
, (1.12)

and

R =

6

7778

eee 0 0 · · · 0
0 eee 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · eee

9

:::;
, (1.13)

where Tjj are sub–intensity matrices of dimensions pj , j = 1, . . . , d, and Tj(j+1) are non–
negative matrices such that −Tjj eee = Tj(j+1) eee, j = 1, . . . , d − 1. Then the joint density
of YYY is given by

fYYY

#
y(1), . . . , y(d)

%
= αααe T11y(1)

T12e T22y(2)
· · · T(d−1)de Tddy(d)

(−Tdd)eee ,

Another advantage of this subclass of MPH* distributions is that they are also dense
in the set of distributions on Rd

+; see [6, Remark 7]. However, they are always tail–
independent, making them less suitable for certain applications, for example in quanti-
tative risk management.

Despite their appealing properties for applications, the literature on estimation of
multivariate phase–type distributions is sparse. Ahlström et al. [1] introduced an al-
gorithm in the bivariate case for the subclass of MPH* described above. Breuer [28]
proposed an EM algorithm for parameter estimation in the general case by exploiting
some properties of the MPH* class and the existing results for the univariate case. How-
ever, the method of Breuer was not actually implemented and contains an inconsistency
in the M–step for the estimation of the reward matrix R, which is amended in Chapeter 4
of this thesis.

1.5 Inhomogeneous phase–type distributions

Recently, Albrecher and Bladt [3] considered an extension of the construction prin-
ciple of phase–type distributions by allowing the Markov jump process to be time–
inhomogeneous. Thus, one gains a lot of flexibility in terms of the tail behavior of the
absorption times, while carrying over some of the computational tools and advantages of
the PH class. The construction goes as follows. Let (Jt)t≥0 denote a time–inhomogeneous
Markov jump process on the state–space {1, . . . , p, p + 1}, where the states 1, . . . , p are
transient and state p + 1 is absorbing. Then (Jt)t≥0 has an intensity matrix of the form

Λ(t) =
4

T (t) ttt(t)
0 0

5
, t ≥ 0 ,

where T (t) is a p × p matrix and ttt(t) is a p–dimensional column vector. Here, ttt(t) =
−T (t)eee, t ≥ 0. Let πk = P(J0 = k), k = 1, . . . , p, πππ = (π1, . . . , πp) and assume that
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P(J0 = p + 1) = 0. Then we say that the time until absorption

τ = inf{t ≥ 0 | Jt = p + 1}

has an inhomogeneous phase–type distribution with representation (πππ, T (t)) and we write
τ ∼ IPH(πππ, T (t)). The density f and distribution function F of τ are given by

f(x) = πππ

x<

0
(I + T (u)du)ttt(x) , x > 0 ,

F (x) = 1 − πππ

x<

0
(I + T (u)du)eee , x > 0 ,

where
t<

s

(I + T (u)du) = I +
∞(

k=1

$ t

s

$ uk

s

· · ·
$ u2

s

T (u1) · · · T (uk)du1 · · · duk ;

see [106].
We are particularly interested in the case where T (t) = λ(t) T with a known non–

negative real function λ(t) and a sub–intensity matrix T . Then we write τ ∼ IPH(πππ, T , λ)
and the density and distribution functions are given by

f(x) = λ(x)πππ exp
4$ x

0
λ(t)dt T

5
ttt,

F (x) = 1 − πππ exp
4$ x

0
λ(t)dt T

5
eee.

Note that if λ(t) = 1, then τ has a conventional phase–type distribution.
This subclass of inhomogeneous phase–type distributions is of particular interest since

its member distributions can be expressed as the distributions of transformed (conven-
tional) phase–type random variables. Specifically, if X ∼ IPH(πππ, T , λ), then there exists
a function g such that

X ∼ g(Y ) , (1.14)
where Y ∼ PH(πππ, T ) and g is defined in terms of its inverse function through

g−1(x) =
$ x

0
λ(t)dt .

For further reading on inhomogeneous phase–type distributions and motivations for their
use in modeling, we refer to Albrecher and Bladt [3].

As illustrated in [3], various IPH distributions can be expressed as classical distri-
butions with matrix–valued parameters. This is the case, for instance, for the Pareto,
Weibull and GEV distributions. Moreover, these classes of distributions are all dense in
the class of distributions with support on R+ and inherit the computational advantages
of the PH class, while providing genuinely heavy tails. For the representation of such
distributions we make use of functional calculus. If h is an analytic function and A is a
matrix, define

h(A) = 1
2πi

=

γ

h(z)(zI − A)−1dz,

where γ is a simple path enclosing the eigenvalues of A; see [24, Section 3.4] for further
details.
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Example 1.9 (Matrix–Pareto distributions). Let X = β(eY − 1), where Y ∼ PH(πππ, T )
and β > 0. Then

F X(x) = πππ

4
x

β
+ 1

5T

eee, fX(x) = πππ

4
x

β
+ 1

5T −I

ttt
1
β

.

We refer to the distribution of X as a matrix–Pareto distribution. Asymptotically, it is
easy to see that F X(x) ∼ L(x)x−λ as x → ∞, where L(·) is a slowly varying function
and −λ is the largest real eigenvalue of T . In other words FX ∈ MDA(Φλ). Moreover, if
β = 1, Albrecher et al. [3] noticed that we can fit a matrix–Pareto distribution to i.i.d.
data x1, ..., xN by simply fitting a phase–type distribution PH(πππ, T ) to the transformed
data log(1 + x1), ..., log(1 + xN ) using an EM–algorithm; see [10].

Example 1.10 (Matrix–Weibull distributions). Let X = Y 1/β , where Y ∼ PH(πππ, T )
and β > 0. Then

F X(x) = πππeT xβ

eee , fX(x) = πππeT xβ

tttβxβ−1 .

It is easy to see that F X(x) ∼ xγe−λxβ as x → ∞. This distribution is called matrix–
Weibull since the scale parameter of the usual Weibull distribution is now replaced by a
matrix. Moreover, FX ∈ MDA(Λ).

The parameter estimation in this last example and more generally in the case when
the transformation depends on parameters is more subtle, and it will be treated in detail
in Chapter 4 along with a multivariate extension.

1.6 Contribution of this thesis

In this section we summarize the results from the upcoming chapters.

1.6.1 Gumbel and Fréchet convergence for the point process of i.i.d.
random walks

In Chapter 2 we will consider i.i.d. copies (S(i)
n )i=1,2,... of a random walk Sn with i.i.d.

step sizes Xi with distribution F , and an integer sequence (pn) such that p = pn → ∞
as n → ∞. We also assume that E(X) = 0 and E(X2) = 1 if these expectations are
finite. We show Gumbel and Fréchet convergence of the centered and normalized maxima
maxi=1,...,p S

(i)
n . More generally, we prove the weak convergence of point processes of the

form

Np =
p(

i=1
ε

c̃−1
n (S

(i)
n −d̃n)

d→ N , n → ∞ ,

for suitable constants c̃n > 0 and d̃n ∈ R toward a PRM(µ). As discussed in Section 1.1.3
this means proving relationships of the type

pP(Sn > c̃nx + d̃n) → µ(x, ∞) ,

for which precise large deviations results prove to be handy. We assume that F belongs
to MDA(Λ) or MDA(Φα), and we borrow the known normalizing and centering constants
from these MDAs.
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Gumbel convergence via normal approximations to large deviation
probabilities for small x.

We assume that a large deviation approximation to the standard normal distribution Φ
holds, that is

sup
0≤x<γn

11P(Sn/
√

n > x)
Φ(x)

− 1
111 → 0 , n → ∞ . (1.15)

for some γn → ∞. We recall that Φ ∈ MDA(Λ). Then

pP
# Sn√

n
> dp + x/dp

%
→ e−x = − log Λ(x) , n → ∞ , x ∈ R , (1.16)

holds for any integer sequence pn → ∞ such that pn < exp(γ2
n/2) and (dp) is defined in

(1.6). This limit relationship is equivalent to the following point process convergence on
the state space R

Np =
p(

i=1
ε

dp

!
S

(i)
n√

n
−dp

" d→ N ,

where N is PRM(− log Λ). Moreover, (1.16) is also equivalent to Gumbel convergence of
the maximum random walk

dp max
i=1,...,p

!
S(i)

n /
√

n − dp

" d→ Y ∼ Λ , n → ∞ .

Gumbel convergence via the subexponential approximation to large
deviation probabilities for very large x

We assume that F ∈ MDA(Λ) ∩ S, the subexponential approximation

sup
x>γn

111
P(Sn − E[Sn] > x)

nP(X > x) − 1
111 → 0 ,

holds for some γn → ∞, and for sufficiently large n and an integer sequence pn → ∞,

dnp + x cnp > γn , for any x < 0 , (1.17)

where (dnp) and (cnp) are the centering and normalizing constants (dn) and (cn), respec-
tively, for F ∈ MDA(Λ) (see (1.5)), evaluated at np. Then

pP
!
Sn − E[Sn] > dnp + x cnp

"
→ e−x , x ∈ R , n → ∞ , (1.18)

holds. This limit relationship is equivalent to the following point process convergence on
the state space R

Np =
p(

i=1
ε

c−1
np (S

(i)
n −E[Sn]−dnp)

d→ N , n → ∞ ,

where N is PRM(− log Λ). Moreover, (1.18) is also equivalent to Gumbel convergence of
the maximum random walk

max
i=1,...,p

c−1
np

!
S(i)

n − E[Sn] − dnp

" d→ Y ∼ Λ , n → ∞ .

Note that (1.17) implicitly determines the relationship of pn with n, and a sufficient
condition for such inequality to hold is dnp ≥ (1 + δ)γn for any small δ > 0 and large n.
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Fréchet convergence via the subexponential approximations to large
deviation probabilities for large x

We assume that X is regularly varying with index α > 0 in the sense of (1.10). We
choose a normalizing sequence (an) such that nP(|X| > an) → 1 as n → ∞, and a
centering sequence (dn) such that

dn =
>

0 , α ∈ (0, 1) ∪ (1, ∞) ,

n E[X 1(|X| ≤ an)] , α = 1 .

We also assume that pn → ∞ is an integer sequence which satisfies the additional con-
ditions
>

anp ≥
&

(α − 2 + δ)n log n for some small δ > 0 if α > 2 ,
limn→∞ supx>anp

pδ n

x2 E[X2 1(|X| ≤ x)] = 0 for some small δ > 0 if α = 2 . (1.19)

Then, by a Nagaev–type large deviation result, the following limit relation

pP(±a−1
np (Sn − dn) > x) → p±x−α , x > 0 , n → ∞ ,

holds. This limit relationship is equivalent to

Np =
p(

i=1
ε

a−1
np (S

(i)
n −dn)

d→ N ,

where N is PRM(µα) with intensity

µα(dx) = |x|−α−1!
p+1(x > 0) + p−1(x < 0)

"
dx .

Moreover, a continuous mapping argument implies

lim
n→∞

P
#

0 < a−1
np max

i=1,...,p
S(i)

n ≤ x , −y < a−1
np min

i=1,...,p
S(i)

n

%
= Φp+

α (x)Φp−
α (y) , x, y > 0 ,

where Φc
α(x) = exp(−c x−α), c ≥ 0. Note again that (1.19) implicitly determines the

relationship of pn with n. If α > 2, then (1.19) holds if p ≥ n(α/2)−1+γ′ for any choice of
γ′ > 0. If α = 2 and var(X) < ∞, then (1.19) is satisfied for any sequence pn → ∞ and
δ < 1. If α = 2 and var(X) = ∞, then (1.19) holds if p/nγ → ∞ for any small γ > 0.

These results clarify which rates of growth are possible for pn → ∞ and their impor-
tance for the form of the limit law of the maxima of (S(i)

n ). More specifically, we can
summarize our findings as follows: in the case of the MDA of the Gumbel distribution the
maxima may converge to the Gumbel distribution due to two distinct mechanisms: the
normal approximation at medium–high thresholds and the subexponential approximation
at high–level thresholds. In the case of the MDA of the Fréchet distribution two distinct
limit distributions are possible: the Gumbel distribution due to normal approximation
at medium–high thresholds and the Fréchet distribution due to subexponential approx-
imation at high–level thresholds provided the distribution has finite second moment. If
this last moment condition is not satisfied only the Fréchet convergence is possible.

In Chapter 2 we derive various extensions of these results. Specifically, we consider
the case when pn is replaced by kn = [n/rn] → ∞ for some integer sequence rn → ∞
and n is replaced by rn. This means that we show weak convergence for point processes
with points Srni − Srn(i−1), the sum of the i-th block Xrn(i−1)+1, . . . , Xrni, i = 1, . . . , kn.
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Moreover, we clarify which rates of growth are possible for the block sizes rn → ∞.
We also consider the case when the index of the point process is random, and we show
that analogs of all point process convergences above hold with corresponding growth
rates for pn; see Section 2.4.4. For Fréchet convergence, we also discuss extensions to
stationary regularly varying sequences (see Section 2.4.3.3), i.i.d. multivariate regularly
varying sequences (see Section 2.4.3.4), and i.i.d. random sums (see Section 2.4.3.5).

1.6.2 Gumbel convergence for the point process of the off-diagonal
elements (Sij)

In Chapter 3 we will prove limit theory for the point processes of the scaled and centered
points (Sij) introduced in Section 1.3. More specifically, we derive asymptotic theory for
the point processes

?Nn =
(

1≤i<j≤p

ε?dp(Sij/
√

n−?dp)
d→ N ,

for suitable constants ( ?dp) and a PRM N with mean measure µ on R such that µ(x, ∞) =
e −x, x ∈ R. As a byproduct, we study the joint asymptotic distribution of functionals
of a fixed number of the order statistics of the points Sij . In particular, we show that
the maximum entry converges to the Gumbel distribution provided X has suitably many
finite moments. The main challenge is that the Sij are not independent. It turns out
that, despite their non-trivial dependence, the maximum behaves like the maximum of
i.i.d. copies. Therefore we will first present further results on i.i.d. random walk points
(S(i)

n ). We assume one of the following three moment conditions:

(C1) There exists s > 2 such that E[|X|s] < ∞.

(C2) There exists an increasing differentiable function g on (0, ∞) such that
E[exp(g(|X|))] < ∞, g′(x) ≤ τg(x)/x for sufficiently large x and some τ < 1,
and limx→∞ g(x)/ log x = ∞.

(C3) There exists a constant h > 0 such that E[exp(h |X|)] < ∞.

Note that conditions (C1)–(C3) are increasing in strength, i.e., (C3) ⇒ (C2) ⇒ (C1).
Under these conditions large deviation approximations to the standard normal distribu-
tion of the type (1.15) hold, where γn → ∞ are sequences depending on the conditions
(C1)–(C3). This implicitly determines the rate of growth of p = pn → ∞. Specifically,
assume that p = pn → ∞ satisfies

• p = O(n(s−2)/2) if (C1) holds.

• p = exp(o(g2
n ∧ n1/3)) where gn is the solution of the equation g2

n = g(gn
√

n), if
(C2) holds.

• p = exp(o(n1/3)) if (C3) holds.

Then, by (1.16), we have

pP(Sn/
√

n > dp + x/dp) → e −x, n → ∞, x ∈ R , (1.20)

where dp if given by (1.6). Moreover, relation (1.20) is equivalent to either of the following
two limit relations:

P
#

dp max
i=1,...,p

(S(i)
n /

√
n − dp) ≤ x

%
→ Λ(x) , x ∈ R , n → ∞ .
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and

Nn =
p(

i=1
ε

dp (S
(i)
n /

√
n−dp)

d→ N , n → ∞ , (1.21)

where N is a PRM with mean measure µ(x, ∞) = e −x, x ∈ R.
We now consider the sample covariance matrix S = (Sij)i,j=1,...,p. Since the sum-

mands of Sij are i.i.d. products XitXjt we need to adjust the conditions (C2) and (C3)
to this situation while (C1) remains unchanged.

(C2’) There exists an increasing differentiable function g on (0, ∞) such that
E[exp(g(|X11X12|))] < ∞, g′(x) ≤ τg(x)/x for sufficiently large x and some τ < 1,
and limx→∞ g(x)/ log x = ∞.

(C3’) There exists a constant h > 0 such that E[exp(h |X11X12|)] < ∞.

Now assume that p = pn → ∞ satisfies:

• p = O(n(s−2)/4) if (C1) holds.

• p = exp(o(g2
n ∧ n1/3)), where gn is the solution of the equation g2

n = g(gn
√

n), if
(C2’) holds.

• p = exp(o(n1/3)) if (C3’) holds.

Define ?dp = dp(p−1)/2. Then the following point process convergence holds:

NS
n :=

(

1≤i<j≤p

ε?dp(Sij/
√

n−?dp)
d→ N ,

where N is the PRM defined in (1.21) and has representation

N =
∞(

i=1
ε− log Γi

,

Γi = E1 + · · · + Ei, i ≥ 1, for i.i.d. standard exponential sequence (Ei). Next we consider
the order statistics of Sij , 1 ≤ i < j ≤ p:

min
1≤i<j≤p

Sij =: S(p(p−1)/2) ≤ · · · ≤ S(1) := max
1≤i<j≤p

Sij .

Then a continuous mapping argument implies joint convergence of the upper and lower
order statistics: for any k ≥ 1,

?dp

!
S(i)/

√
n − ?dp

"
i=1,...,k

d→ (− log Γi)i=1,...,k ,

?dp

!
S(i)/

√
n + ?dp

"
i=p(p−1)/2,...,p(p−1)/2−k+1

d→ (log Γi)i=1,...,k .

Moreover, the properly normalized maxima and minima are asymptotically independent,
that is for any x, y ∈ R we have as n → ∞,

P
#

?dp(S(1)/
√

n − ?dp) ≤ x , ?dp(S(p(p−1)/2)/
√

n + ?dp) ≤ y
%

→ Λ(x)(1 − Λ(−y)) .
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An immediate consequence is

S(1)√
n log p

P→ 2 and
S(p(p−1)/2)√

n log p

P→ −2 ,

which is in agreement with (1.11).
We also also derive point process convergence for the sample correlation matrix R =

(Rij)i,j=1,...,p with Rij = Sij/
&

SiiSjj . Under the same assumptions on p = pn → ∞ as
for S, the following point process convergence holds,

NR
n :=

(

1≤i<j≤p

ε?dp(
√

nRij−?dp)
d→ N ,

where N is the PRM defined in (1.21). Moreover, the results for the order statistics of
(Rij) carry over from those for the order statistics of (Sij). In Section 3.4, we extend our
results to hypercubic random matrices of the form

2n
t=1 Xt ⊗ · · · ⊗ Xt and we briefly

discuss some statistical applications such as threshold-based estimation and independence
tests.

1.6.3 Parameter estimation for inhomogeneous phase–type
distributions

The univariate case

In Chapter 4 we will provide an EM algorithm for parameter estimation of inhomo-
geneous phase–type distributions that are obtained as transformations of (conventional)
phase–type distribution. The main assumption is that the transformations are parametric
functions. More specifically, we consider an i.i.d. sample x1, . . . , xN from an inhomoge-
neous phase–type distribution with representation X ∼ IPH(πππ, T , λ( · ;βββ)), where λ( · ;βββ)
is a parametric non–negative function depending on the vector βββ. We then know that
X

d= g(Y ;βββ) with Y ∼ PH(πππ, T ); see (1.14). In particular g−1(X;βββ) d= Y ∼ PH(πππ, T ).
The EM algorithm for fitting IPH(πππ, T , λ( · ;βββ)) then works as follows:

0. Initialize with some “arbitrary” (πππ, T ,βββ).

1. Transform the data into yi = g−1(xi;βββ), i = 1, ..., N and apply the E– and M–
steps of the conventional EM algorithm of Asmussen [10] by which we obtain the
estimators (π̂ππ, T̂ ).

2. Compute

β̂ββ = arg max
βββ

N(

i=1
log(fX(xi; π̂ππ, T̂ ,βββ)) .

3. Assign (πππ, T ,βββ) = (π̂ππ, T̂ , β̂ββ) and GOTO 1.

We show that the likelihood function increases for each iteration, and hence converges
to a (possibly local) maximum.
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The multivariate case

There are various possibilities for how to extend inhomogeneous phase–type distribu-
tions to more than one dimension. In Chapter 4 we suggest one particular approach,
which consists of taking transformations of MPH* distributions. Specifically, we let
YYY ∼ MPH∗ (πππ, T , R) and define XXX := (g1(Y (1)), . . . , gd(Y (d)))′, where gj : R+ → R+
are increasing and differentiable functions for j = 1, . . . , d, then we say that XXX has an
inhomogeneous MPH* distribution. Several of its properties follow directly from the
definition:

a) The marginals X(j) = gj(Y (j)) are IPH distributed, since each Y (j) is phase–type
distributed, j = 1, . . . , d.

b) Since gj is increasing for all j = 1, . . . , d, the copula of XXX is the same as the copula
of YYY (see e.g. [82, Prop.7.7]).

c) For fixed gj(·), j = 1, . . . , d, this new class is dense in Rd
+ (by the denseness of the

MPH* class).

Example 1.11. Let XXX = (g1(Y (1)), . . . , gd(Y (d)))′, where YYY ∼ MPH∗ (πππ, T , R) and

gj(y) = βj(ey − 1), βj > 0, j = 1, . . . , d. (1.22)

Then we say that XXX follows a multivariate matrix–Pareto distribution. Now, consider a
d–dimensional multivariate sample of N i.i.d. observations

xxxi = (x(1)
i , . . . , x

(d)
i )′ , i = 1, . . . , N .

As in the univariate case, if we assume the simpler transformation gj(y) = ey − 1,
j = 1, . . . , d, then we can use fitting methods of the MPH* class by simply taking the
logarithm of the marginal observations. That is, we can apply the algorithms of Breuer
[28] and Ahlström et al. [1] to the transformed data y

(j)
i := log(x(j)

i + 1), i = 1, . . . , N ,
j = 1, . . . , d, to estimate the parameters (πππ, T , R).

If the transformation is parameter–dependent, the situation is more subtle, and we
propose an estimation method that makes use of the joint density. Thus, we consider
the particular case when YYY = (Y (1), Y (2)) ∼ MPH∗(πππ, T , R) has parameters of the form
(1.12) and (1.13). Then, it is easy to see that the density of XXX = (g1(Y (1)), g2(Y (2)))′ is
given by

fXXX

#
x(1), x(2)

%
= αααe T11g−1

1 (x(1))T12e T22g−1
2 (x(2))(−T22)eee 1

g′
1(g−1

1 (x(1)))g′
2(g−1

2 (x(2)))
.

We further assume that gj( · ;βββj) is a parametric non–negative function depending on
the vector βββj , j = 1, 2, and let βββ = (βββ1,βββ2). Then, the EM algorithm works as follows:

0. Initialize with some “arbitrary” (ααα, T ,βββ).
1. Transform the data into y

(j)
i := g−1

j (x(j)
i ;βββj), i = 1, . . . , N , j = 1, 2, and apply the

E– and M–steps of Ahlström et al. [1] by which we obtain the estimators (α̂αα, T̂ ).
2. Compute

β̂ββ = arg max
βββ

N(

i=1
log(fXXX(x(1)

i , x
(2)
i ; α̂αα, T̂ ,βββ)) .

3. Assign (ααα, T ,βββ) = (α̂αα, T̂ , β̂ββ) and GOTO 1.
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Abstract

We consider point process convergence for sequences of i.i.d. random walks. The
objective is to derive asymptotic theory for the largest extremes of these random
walks. We show convergence of the maximum random walk to the Gumbel or the
Fréchet distributions. The proofs heavily depend on precise large deviation results
for sums of independent random variables with a finite moment generating function
or with a subexponential distribution.

Keywords: Large deviation; subexponential distribution; regular variation; ex-
treme value theory; Gumbel distribution; Fréchet distribution; maximum random
walk.
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2.1 Introduction

Let (Xi) be an i.i.d. sequence of random variables with generic element X, distribution
F and right tail F = 1 − F . Define the corresponding partial sum process

S0 = 0 , Sn = X1 + · · · + Xn , n ≥ 1 .

Consider i.i.d. copies (Sni)i=1,2,... of Sn. We also introduce an integer sequence (pn)
such that p = pn → ∞ as n → ∞. We are interested in the limiting behavior of the k
largest values among (Sni)i=1,...,p, in particular in the possible limit laws of the maximum
maxi=1,...,p Sni. More generally, writing εx for Dirac measure at x, we are interested in
the limiting behavior of the point processes

Np =
p(

i=1
εc−1

n (Sni−dn)
d→ N , n → ∞ , (2.1)

for suitable constants cn > 0 and dn ∈ R toward a Poisson random measure N with
Radon mean measure µ (we write PRM(µ)).

Our main motivation for this work comes from random matrix theory, in particular
when dealing with sample covariance matrices. Their entries are dependent random
walks. However, in various situations the theory can be modified in such a way that it
suffices to study independent random walks. We refer to Section 2.4.6 for a discussion.

Relation (2.1) is equivalent to the following limit relations for the tails

pn P
!
c−1

n (Sn − dn) ∈ (a, b]
"

→ µ(a, b] ,

for any a < b provided that µ(a, b] < ∞; see Resnick [102, Theorem 5.3]. These conditions
involve precise large deviation probabilities for the random walk (Sn); in Section 2.3 we
provide some results which are relevant in this context.

We distinguish between two types of precise large deviation results:

• normal approximation

• subexponential approximation

The normal approximation can be understood as an extension of the central limit the-
orem for (Sn/

√
n) toward increasing intervals. This approximation causes the maxima

of (Sni/
√

n) to behave like the maxima of an i.i.d. normal sequence, i.e., these maxima
converge in distribution to the Gumbel distribution. This is in contrast to the subexpo-
nential approximation which requires that F is a so–called subexponential distribution;
see Section 2.2.1. In particular, F is heavy–tailed in the sense that the moment generat-
ing function does not exist. This fact implies that P(Sn > xn) ∼ n F (xn) for sufficiently
fast increasing sequences xn → ∞. Hence n F (xn) dominates P(Sn > xn) at sufficiently
high levels xn and, as in limit theory for the maxima of an i.i.d. sequence, F determines
the type of the limit distribution of the maxima of (Sni) as well as the normalizing and
centering constants. In this case we also assume that F belongs to the maximum domain
of attraction (MDA) of the Gumbel or Fréchet distributions, and we borrow the known
normalizing and centering constants from these MDAs. Thus, in the case of the MDA of
the Gumbel distribution the maxima of (Sni) may converge to the Gumbel distribution
due to two distinct mechanisms: the normal approximation at medium–high thresholds
and the subexponential approximation at high–level thresholds. In the case of the MDA
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of the Fréchet distribution, two distinct approximations are possible: Gumbel approxi-
mation at medium–high thresholds and Fréchet approximation at high–level thresholds
provided the distribution has finite second moment. If this condition is not satisfied only
the Fréchet approximation is possible.

The paper is organized as follows. In Section 2.2 we introduce the necessary notions
for this paper: subexponential and regularly varying distributions (Section 2.2.1), maxi-
mum domain of attraction and relevant distributions in it (Section 2.2.2), point process
convergence of triangular arrays toward Poisson random measures (Section 2.2.3), and
precise large deviations (Section 2.2.4). Due to the importance of the latter topic we
devote Section 2.3 to it and collect some of the known precise large deviation results
in the case when the moment generating function is finite in some neighborhood of the
origin and for subexponential distributions. The main results of this paper are formu-
lated in Section 2.4. Based on the large deviation results of Section 2.3 we give sufficient
conditions for the point process convergence relation (2.1) to hold and we clarify which
rates of growth are possible for pn → ∞. In particular, we consider the case when pn in
(2.1) is replaced by kn = [n/rn] for some integer sequence rn → ∞ and n is replaced by
rn. This means that we are interested in (2.1) when Sni = Srni − Srn(i−1), i = 1, . . . , kn,
are i.i.d. block sums. We also discuss extensions of these results to stationary regularly
varying sequences (Section 2.4.3.3) and i.i.d. multivariate regularly varying sequences
(Section 2.4.3.4).

2.2 Preliminaries I

2.2.1 Subexponential and regularly varying distributions
We are interested in the class S of subexponential distributions F , i.e., it is a distribution
supported on [0, ∞) such that, for any n ≥ 2,

P(Sn > x) ∼ n F (x) , x → ∞ .

For an encyclopedic treatment of subexponential distributions, see Foss et al. [50]. In
insurance mathematics, S is considered a natural class of heavy–tailed distributions. In
particular, F does not have a finite moment generating function; see Embrechts et al.
[46, Lemma 1.3.5].

The regularly varying distributions are another class of heavy–tailed distributions
supported on R. We say that X and its distribution F are regularly varying with index
α > 0 if there are a slowly varying function L and constants p± such that p+ + p− = 1
and

F (−x) ∼ p− x−α L(x) and F (x) ∼ p+ x−α L(x) , x → ∞ . (2.2)

A non–negative regularly varying X is subexponential; see [46, Corollary 1.3.2].

2.2.2 Maximum domains of attraction
We call a non–degenerate distribution H an extreme value distribution if there exist
constants cn > 0 and dn ∈ R, n ≥ 1, such that the maxima Mn = max(X1, . . . , Xn)
satisfy the limit relation

c−1
n (Mn − dn) d→ Y ∼ H , n → ∞ . (2.3)
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In the context of this paper we will deal with two standard extreme value distributions:
the Fréchet distribution Φα(x) = exp(−x−α), x > 0, and the Gumbel distribution Λ(x) =
exp(− exp(−x)), x ∈ R. As a matter of fact, the third type of extreme value distribution
– the Weibull distribution – cannot appear since (2.3) is only possible for X with finite
right endpoint but a random walk is not bounded from above by a constant. We say that
the distribution F of X is in the maximum domain of attraction of the extreme value
distribution H (F ∈ MDA(H)).

Example 2.1. A distribution F ∈ MDA(Φα) for some α > 0 if and only if

F (x) = L(x)
xα

, x > 0

(see [46, Section 3.3.1]). Then

c−1
n Mn

d→ Y ∼ Φα , n → ∞ ,

where (cn) can be chosen such that nP(X > cn) → 1.

Example 2.2. A distribution F with infinite right endpoint obeys F ∈ MDA(Λ) if and
only if there exists a positive function a(x) with derivative a′(x) → 0 as x → ∞ such
that

lim
u→∞

F (u + a(u) x)
F (u)

= e−x , x ∈ R

(see [46, Section 3.3.3]). Then

c−1
n (Mn − dn) d→ Y ∼ Λ , n → ∞ ,

where (dn) can be chosen such that nP(X > dn) → 1 and cn = a(dn).
The standard normal distribution Φ ∈ MDA(Λ) and satisfies

c−1
n (Mn − dn) d→ Y ∼ Λ , n → ∞ , (2.4)

where cn = 1/dn and

dn =
&

2 log n − log log n + log 4π

2(2 log n)1/2 . (2.5)

Since dn ∼
√

2 log n we can replace cn in (2.4) by 1/
√

2 log n while dn cannot be replaced
by

√
2 log n.

The standard lognormal distribution (i.e., X = exp(Y ) for a standard normal random
variable Y ) is also in MDA(Λ). In particular, one can choose

cn = dn/
&

2 log n and dn = exp
#&

2 log n − log log n + log 4π

2(2 log n)1/2

%
(2.6)

(see [46, page 156]).
The standard Weibull distribution has tail F (x) = exp(−x−τ ), x > 0, τ > 0. We

consider a distribution F on (0, ∞) with a Weibull–type tail F (x) ∼ c xβ exp(−λxτ ) for
constants c, β, λ, τ > 0. Then F ∈ MDA(Λ) and one can choose

cn = (λτ)−1s1/τ−1
n and dn = s1/τ

n + 1
τ

s1/τ−1
n

# β

λτ
log sn + log c

λ

%
, (2.7)

where sn = λ−1 log n (see [46, page 155]).
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2.2.3 Point process convergence of independent triangular arrays
For further use we will need the following point process limit result (Resnick [102, The-
orem 5.3]).

Proposition 2.3. Let (Xni)n=1,2,...;i=1,2,... be a triangular array of row–wise i.i.d. ran-
dom elements on some state space E ⊂ Rd equipped with the Borel σ–field E. Let µ be a
Radon measure on E. Then

?Np =
p(

i=1
εXni

d→ N , n → ∞ ,

holds for some PRM(µ) N if and only if

pP(Xn1 ∈ ·) v→ µ(·) , n → ∞ , (2.8)

where v→ denotes vague convergence on E.

2.2.4 Large deviations
Our main goal is to prove the point process convergence (2.1) for i.i.d. sequences (Sni) of
partial sum processes (R– or Rd–valued), properly normalized and centered. It follows
from Proposition 2.3 that this means to prove relations of the type

pP
!
c−1

n (Sn − dn) ∈ (a, b]) → µ(a, b] or pP
!
c−1

n (Sn − dn) > a) → µ(a, ∞) ,

provided µ(a, b] + µ(a, ∞) < ∞. Since p = pn → ∞, this means that P
!
c−1

n (Sn − dn) >
a) → 0 as n → ∞. We will refer to these vanishing probabilities as large deviation
probabilities. In Section 2.3 we consider some of the well–known precise large deviation
results in heavy– and light–tail situations.

2.3 Preliminaries II: precise large deviations

In this section we collect some precise large deviation results in the light– and heavy–
tailed cases.

2.3.1 Large deviations with normal approximation
We assume E[X] = 0, var(X) = 1 and write Φ for the standard normal distribution. We
start with a classical result when X has finite exponential moments.

Theorem 2.4 (Petrov’s theorem [98], Theorem 1, Chapter VIII). Assume that the mo-
ment generating function E[exp(h X)] is finite in some neighborhood of the origin. Then
the following tail bound holds for 0 ≤ x = o(

√
n):

P(Sn/
√

n > x)
Φ(x)

= exp
# x3

√
n

λ
! x√

n

"%)
1 + O

!x + 1√
n

",
, n → ∞ ,

where λ(t) =
2∞

k=0 aktk is the Cramér series whose coefficients ak depend on the cumu-
lants of X, and λ(t) converges for sufficiently small values |t|.
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Under the conditions of Theorem 2.4, uniformly for x = o(n1/6),

P(Sn/
√

n > x)
Φ(x)

→ 1 , n → ∞ . (2.9)

Theorem 7 in Chapter VIII of Petrov [98] considers the situation of Theorem 2.4 under
the additional assumption that the cumulants of order k = 3, . . . , r + 2 of X vanish for
some positive integer r. Then the coefficients a0, . . . , ar−1 in the series λ(t) vanish, and
it is not difficult to see that (2.9) holds uniformly for 0 ≤ x = o

!
n(r+1)/(2(r+3))".

In Section VIII.3 of [98] one also finds necessary and sufficient conditions for (2.9) to
hold in certain intervals.

The following result was proved by S.V. Nagaev [89] for x ∈ (0,
&

(s/2 − 1) log n) and
improved by R. Michel [83] for x ∈ (0,

&
(s − 2) log n). The statement of the proposition

is sharp under the given moment condition; see Theorem 2.8 below.

Proposition 2.5. Assume that E[|X|s] < ∞ for some s > 2. Then (2.9) holds uniformly
for 0 ≤ x ≤

&
(s − 2) log n.

2.3.2 Large deviations with normal/subexponential approximations
Cline and Hsing [36] (in an unpublished article) discovered that the subexponential class
S of distributions exhibits a completely different kind of large deviation behavior:

Proposition 2.6 (Cline and Hsing [36]). We consider a distribution F on (0, ∞) with
infinite right endpoint. Then the following statements hold.

1. F ∈ S if and only if

lim
x→∞

F (x + y)
F (x)

= 1 , for any real y, (2.10)

and there exists a sequence γn → ∞ such that

lim
n→∞

sup
x>γn

P(Sn > x)
n F (x)

≤ 1 .

2. If F ∈ S then there exists a sequence γn → ∞ such that

lim
n→∞

sup
x>γn

111
P(Sn > x)

n F (x)
− 1

111 = 0 . (2.11)

Remark 2.7. If F satisfies (2.10) we say that F is long–tailed, we write F ∈ L. It is
well known that F ∈ S implies F ∈ L; see Embrechts et al. [46, Lemma 1.3.5, page 41].
The converse is not true.

Proposition 2.6 shows that the subexponential class is the one for which heavy–tail
large deviations are reasonable to study. Given that we know that F is long–tailed, F is
subexponential if and only if a uniform large deviation relation of the type (2.11) holds.

Subexponential and normal approximations to large deviation probabilities were stud-
ied in detail in various papers. Among them, large deviations for i.i.d. regularly varying
random variables are perhaps studied best. S.V. Nagaev [90] formulated a seminal result
about the large deviations of a random walk (Sn) in the case of regularly varying X with
finite variance. He dedicated this theorem to his brother A.V. Nagaev who had started
this line of research in the 1960s; see for example [86, 87].
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Theorem 2.8 (Nagaev’s theorem [86, 90]). Consider an i.i.d. sequence (Xi) of random
variables with E[X] = 0, var(X) = 1 and E[|X|2+δ] < ∞ for some δ > 0. Assume that
F (x) = x−α L(x), x > 0, for some α > 2 and a slowly varying function L. Then for
x ≥

√
n as n → ∞,

P(Sn > x) = Φ(x/
√

n) (1 + o(1)) + n F (x) (1 + o(1)) .

In particular, if X satisfies (2.2) with constants p±, then for any positive constant c1 <
α − 2

sup
1<x/

√
n<

√
c1 log n

111
P(±Sn > x)
Φ

!
x/

√
n

" − 1
111 → 0 , n → ∞ , (2.12)

and for any constant c2 > α − 2,

sup
x/

√
n>

√
c2 log n

111
P(±Sn > x)
nP(|X| > x) − p±

111 → 0 , n → ∞ .

Remark 2.9. If X is regularly varying with index α, E[|X|s] is finite (infinite) for s < α
(s > α). Therefore the normal approximation (2.12) is in agreement with Proposition 2.5.

In the infinite variance regularly varying case this result is complemented by an
analogous statement. It can be found in Cline and Hsing [36], Denisov et al. [41].

Theorem 2.10. Consider an i.i.d. sequence (Xi) of regularly varying random variables
with index α ∈ (0, 2] satisfying (2.2). Assume E[X] = 0 if this expectation is finite.
Choose (an) such that

nP(|X| > an) + n

a2
n

E[X2 1(|X| ≤ an)] = 1 , n = 1, 2, . . . ,

and (γn) such that γn/an → ∞ as n → ∞. For α = 2, also assume for sufficiently small
δ > 0,

lim
n→∞

sup
x>γn

n

x2
E[X2 1(|X| ≤ x)]
[nP(|X| > x)]δ = 0 .

Choose (dn) such that

dn =
>

0 , α ∈ (0, 1) ∪ (1, 2] ,

n E[X 1(|X| ≤ an)] , α = 1 .
(2.13)

Then the following large deviation result holds:

sup
x>γn

111
P

!
± (Sn − dn) > x

"

nP(|X| > x) − p±

111 → 0 , n → ∞ .

Remark 2.11. The normalization (an) is chosen such that a−1
n (Sn − dn) d→ Yα for an

α–stable random variable Yα, α ∈ (0, 2]. Therefore γ−1
n (Sn −dn) P→ 0. In the case α < 2,

in view of Karamata’s theorem (see Bingham et al. [20]), it is possible to choose (an)
according as nP(|X| > an) → 1. The case α = 2 is delicate: in this case var(X) can
be finite or infinite. In the former case, (an) is proportional to

√
n, in the latter case

(an/
√

n) is a slowly varying sequence; see Feller [48] or Ibragimov and Linnik [64, Section
II.6].
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Normal and subexponential approximations to large deviation probabilities also exist
for subexponential distributions that have all moments finite. Early on, this was observed
by A.V. Nagaev [86, 87, 88]. Rozovskii [104] did not use the name of subexponential
distribution, but the conditions on the tails of the distributions he introduced are “close”
to subexponentiality; he also allowed for distributions F supported on the whole real
line. In particular, A.V. Nagaev and Rozovskii discovered that, in general, the x–regions
where the normal and subexponential approximations hold are separated from each other.
To make this precise, we call two sequences (ξn) and (ψn) separating sequences for the
normal and subexponential approximations to large deviation probabilities if for an i.i.d.
sequence (Xi) with variance 1,

sup
x<ξn

111
P(Sn − E[Sn] > x)

Φ(x/
√

n)
− 1

111 → 0 ,

sup
x>ψn

111
P(Sn − E[Sn] > x)

nP(X > x) − 1
111 → 0 , n → ∞ .

A.V. Nagaev and Rozovskii gave conditions under which (ψn) and (ξn) cannot have
the same asymptotic order; i.e., one necessarily has ψn/ξn → ∞. In particular, in the
x–region (ξn, ψn) neither the normal nor the subexponential approximation holds; Ro-
zovskii [104] also provided large deviation approximations for P(Sn > x) for these regions
involving Φ(x/

√
n) and a truncated Cramér series. Explicit expressions for (ψn) and (ξn)

are in general hard to get. We focus on two classes of subexponential distributions where
the separating sequences are known.

• Lognormal–type tails, we write F ∈ LN(γ): for some constants β, ξ ∈ R, γ > 1 and
λ, c > 0,

F (x) ∼ c xβ (log x)ξ exp
!

− λ (log x)γ
"

, x → ∞ .

In the notation LN(γ) we suppress the dependence on β, ξ, λ, c.

• Weibull–type tails, we write F ∈ WE(τ): for some β ∈ R, τ ∈ (0, 1), λ, c > 0.

F (x) ∼ c xβ exp
!

− λ xτ
"

, x → ∞ .

In the notation WE(τ) we suppress the dependence on β, λ, c.

The name “Weibull–type tail” is motivated by the fact that the Weibull distribution
F with shape parameter τ ∈ (0, 1) belongs to WE(τ). Indeed, in this case F (x) =
exp(−λxτ ), x > 0, for positive parameters λ. Similarly, the lognormal distribution F
belongs to LN(2). This is easily seen by an application of Mill’s ratio: for a standard
normal random variable Y ,

F (x) = P(Y > log x) ∼
exp

!
− (log x)2/2

"
√

2π log x
, x → ∞ .
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F ∈ ξn ψn

RV(α) , α > 2
!
(α − 2)n log n

"1/2 !
(α − 2)n log n

"1/2

LN(γ) , 1 < γ < 2 (n (log n)γ)1/2 (n (log n)γ)1/2

LN(γ) , γ ≥ 2 (n (log n)γ)1/2/?hn n1/2(log n)γ−1 hn

WE(τ) , 0 < τ ≤ 0.5 n1/(2−τ)/?hn n1/(2−2τ) hn

WE(τ) , 0.5 < τ < 1 n2/3/?hn n1/(2−2τ) hn

Table 2.1: Separating sequences (ξn) and (ψn) for the normal and subexponential ap-
proximations of P(Sn −E[Sn] > x). We also assume var(X) = 1. Here (hn), (?hn) are any
sequences converging to infinity. For completeness, we also include the regularly varying
class RV(α). The table is taken from Mikosch and Nagaev [84].

These classes of distributions have rather distinct tail behavior. It follows from the
theory in Embrechts et al. [46, Sections 1.3 and 1.4] that membership of F in RV(α),
LN(γ) or WE(τ) implies F ∈ S. The case WE(τ), 0 < τ < 1, was already considered by
A.V. Nagaev [87, 88].

For the heaviest tails when F ∈ LN(γ), 1 < γ < 2 one can still choose ξn = ψn. This
means that one threshold sequence separates the normal and subexponential approxi-
mations to the right tail P(Sn − E[Sn] > x). Rozovskii [104] discovered that the classes
LN(γ), γ ≥ 2 , and LN(γ), 1 < γ < 2 have rather distinct large deviation properties.
In the case γ ≥ 2 one cannot choose (ξn) and (ψn) the same. The class LN(γ) with
1 < γ < 2 satisfies the conditions of Theorem 3b in Rozovskii [104] which implies that

P(Sn − E[Sn] > x) =
@
Φ(x/

√
n)1

!
x < γn

"
+ nF (x)1

!
x > γn

"A
(1 + o(1))

uniformly for x, where γn =
!
λ2−γ+1"1/2

n1/2(log n)γ/2. For γ = 2 the conditions of
Theorem 3a in [104] are satisfied: with g(x) = λ(log x)2 −(β+2) log x−ξ log (log x)−log c
and as n → ∞,

P(Sn − E[Sn] > x) =
@
Φ(x/

√
n) 1(x < γn) + nF (x)en(g′(x))2/21(x > γn)

A
(1 + o(1)) .

Direct calculation shows that P(Sn − E[Sn] > γn) ∼ exp(λ) n F (γn) while, uniformly for
x > γnhn, hn → ∞, we have that P(Sn − E[Sn] > x) ∼ nF (x).

It is interesting to observe that all but one class of subexponential distributions con-
sidered in Table 2.1 have the property that c n ∈ (ψn, ∞) for any c > 0. The exception
is WE(τ) for τ ∈ (0.5, 1). This fact turns the investigation of the tail probabilities
P(Sn − E[Sn] > c n) into a complicated technical problem. The exponential (WE(1))
and superexponential (WE(τ)), τ > 1, classes do not contain subexponential distribu-
tions. The corresponding partial sums exhibit the light-tailed large deviation behavior
of Petrov’s Theorem 2.4. As a historical remark, Linnik [78] and S.V. Nagaev [89]
determined lower separating sequences (ξn) for the normal approximation to the tails
P(Sn − E[Sn] > x) under the assumption that F is dominated by the tail of a regular
subexponential distribution from the table.

Denisov et al. [41] and Cline and Hsing [36] considered a unified approach to subex-
ponential large deviation approximations for general subexponential and related distri-
butions. In particular, they identified separating sequences (ψn) for the subexponen-
tial approximation of the tails P(Sn − E[Sn] > x) for general subexponential distribu-
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tions. Denisov et al. [41] also considered local versions, i.e., approximations to the tails
P(Sn ∈ [x, x + T ]) for T > 0 as x → ∞.

2.4 Main results

2.4.1 Gumbel convergence via normal approximations to large
deviation probabilities for small x.

We assume that E[X] = 0 and var(X) = 1 and the large deviation approximation to the
standard normal distribution Φ holds: for some γn → ∞,

sup
0≤x<γn

11P(Sn/
√

n > x)
Φ(x)

− 1
111 → 0 , n → ∞ . (2.14)

We recall that Φ ∈ MDA(Λ) and (2.4) holds. An analogous relation holds for the
maxima of i.i.d. random walks Sn1/

√
n, . . . , Snp/

√
n as follows from the next result.

Theorem 2.12. Assume that (2.14) is satisfied for some γn → ∞. Then

pP
# Sn√

n
> dp + x/dp

%
→ e−x , n → ∞ , x ∈ R , (2.15)

holds for any integer sequence pn → ∞ such that pn < exp(γ2
n/2) and (dp) is defined in

(2.5). Moreover, for the considered (pn), (2.15) is equivalent to either of the following
limit relations:

1. For Γi = E1+· · ·+Ei and an i.i.d. standard exponential sequence (Ei) the following
point process convergence holds on the state space R

Np =
p(

i=1
ε

dp

!
Sni√

n
−dp

" d→ N =
∞(

i=1
ε− log Γi , (2.16)

where N is PRM(− log Λ) on R.

2. Gumbel convergence of the maximum random walk

dp max
i=1,...,p

!
Sni/

√
n − dp

" d→ Y ∼ Λ , n → ∞ .

Proof. In view of Proposition 2.3 it suffices for Np
d→ N to show that

pP
#

dp

! Sn√
n

− dp

"
> x

%
= pP

# Sn√
n

> dp + x/dp

%
∼ p Φ(dp + x/dp) → e−x , x ∈ R .

But this follows from (2.14) and the definition of (dp) if we assume that dp + x/dp < γn,
i.e., pn < exp(γ2

n/2) such that pn → ∞.
If Np

d→ N a continuous mapping argument implies that

P
!
Np(x, ∞) = 0

"
= P

#
max

i=1,...,p
dp

!
Sni/

√
n − dp

"
≤ x

%

→ P
!
N(x, ∞) = 0

"
= Λ(x) , x ∈ R , n → ∞ .
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On the other hand, for x ∈ R as n → ∞,

P
#

max
i=1,...,p

dp

!
Sni/

√
n − dp

"
≤ x

%
=

#
1 −

pP
!
dp(Sn1/

√
n − dp

"
> x

"

p

%p

→ exp
!

− e−x
"

,

if and only if (2.15) holds.

Remark 2.13. If one replaces in (2.16) the quantities (Sni/
√

n)i=1,...,p by i.i.d. stan-
dard normal random variables then this limit relation remains valid. This means that,
under (2.14), e.g. under the assumption of a finite moment generating function in some
neighborhood of the origin (see Section 2.3), the central limit theorem makes the tails
of (Sni/

√
n)i=1,...,p almost indistinguishable from those of the standard normal distribu-

tion. This is in stark contrast to subexponential distributions, where the characteristics
of F (x) show up in the tail P(Sni/

√
n > x) for large values of x.

2.4.1.1 The extreme values of i.i.d. random walks.

Write

Sn,(p) ≤ · · · ≤ Sn,(1)

for the ordered values of Sn1, . . . , Snp The following result is immediate from Theo-
rem 2.12.

Corollary 2.14. Assume that the conditions of Theorem 2.12 hold. Then
&

2 log p
#Sn,(1)√

n
− dp, . . . ,

Sn,(k)√
n

− dp

%
d→

!
− log Γ1, . . . , − log Γk

"
, n → ∞ .(2.17)

Moreover, if there is γn → ∞ such that sup0≤x<γn

11P(±Sn/
√

n > x)/Φ(x) − 1
111 → 0 as

n → ∞, then we have

P
#

max
i=1,...,p

dp

!
Sni/

√
n − dp

"
≤ x , min

i=1,...,p
dp

!
Sni/

√
n + dp

"
≤ y

%

→ Λ(x)
!
1 − Λ(−y)

"
, x, y ∈ R , n → ∞ . (2.18)

Proof. We observe that dp/
√

2 log p → 1. Then (2.16) and the continuous mapping
theorem imply that (2.17) holds for any fixed k ≥ 1.

We observe that

P
#

max
i=1,...,p

dp

!
Sni/

√
n − dp

"
≤ x , min

i=1,...,p
dp

!
Sni/

√
n + dp

"
≤ y

%

= P
#

max
i=1,...,p

dp

!
Sni/

√
n − dp

"
≤ x

%

−P
#

max
i=1,...,p

dp

!
Sni/

√
n − dp

"
≤ x , min

i=1,...,p
dp

!
Sni/

√
n + dp

"
> y

%

= P1(x, y) − P2(x, y) .

Of course, P1(x, y) → Λ(x). On the other hand,

P2(x, y) = P
# pB

i=1

C
Sni/

√
n ≤ dp + x/dp , Sni/

√
n > −dp + y/dp

D%
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=
#
P

#
− dp + y/dp < Sn1/

√
n ≤ dp + x/dp

%%p

= exp
#

p log
#

1 − P
#

Sn1/
√

n > dp + x/dp

%
− P

#
Sn1/

√
n ≤ −dp + y/dp

%%%

→ exp
!

− (e−x + ey)
"

= Λ(x)Λ(−y) .

The last step follows from a Taylor expansion of the logarithm and Theorem 2.12.
This proves (2.18).

2.4.1.2 Examples.

In this section we verify the assumptions of Theorem 2.12 for various classes of distribu-
tions F . We always assume E[X] = 0 and var(X) = 1.

Example 2.15. Assume the existence of the moment generating function of X in some
neighborhood of the origin. Petrov’s Theorem 2.4 ensures (2.16) for p ≤ exp(o(n1/3)).

Example 2.16. Assume E[|X|s] < ∞ for some s > 2. Proposition 2.5 ensures that
(2.16) for p ≤ n(s−2)/2.

Example 2.17. Assume that X is regularly varying with index α > 2. Then we can
apply Nagaev’s Theorem 2.8 with γn =

√
c log n for any c < α − 2 and (2.16) holds for

p ≤ nc/2. This is in agreement with Example 2.16.

Example 2.18. Assume that X has a distribution in LN(γ) for some γ > 1. From
Table 2.1, γn = o((log n)γ/2, and (2.16) holds for p ≤ exp(o((log n)γ))

Example 2.19. Assume that F ∈ WE(τ), 0 < τ < 1. Table 2.1 yields γn = o(nτ/(2(2−τ)))
for τ ≤ 0.5, hence p ≤ exp(o(nτ/(2−τ))), and for τ ∈ (0.5, 1), γn = o(n1/6) and
p ≤ exp(o(n1/3)).

We summarize these examples in Table 2.2.

Example No Upper bound for p

2.15 Petrov case exp(o(n1/3))

2.16 E[|X|s] < ∞, s > 2 n(s−2)/2

2.17 RV(α), α > 2, c < α − 2 nc/2

2.18 LN(γ), γ > 1 exp(o((log n)γ))

2.19 WE(τ), τ ≤ 0.5 exp(o(nτ/(2−τ)))

2.19 WE(τ), τ ∈ (0.5, 1) exp(o(n1/3))

Table 2.2: Upper bounds for p.

2.4.1.3 The extremes of the blocks of a random walk.

We consider a random walk Sn with i.i.d. step sizes Xi with E[X] = 0 and var(X) = 1,
and with distribution F , and any integer sequence rn → ∞ such that kn = [n/rn] →
∞ as n → ∞. Set Sni = Srni − Srn(i−1), i.e., this is the sum of the ith block
Xrn(i−1)+1, . . . , Xrni. Then we are in the setting of Theorem 2.12 if we replace pn by kn
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and n by rn. We are interested in the following result for the point process of the block
sums of Sn with length rn (see (2.16))

Nkn =
kn(

i=1
ε

dkn

! Srni−Srn(i−1)√
rn

−dkn

" d→ N =
∞(

i=1
ε− log Γi . (2.19)

This means we are looking for (rn) such that n/rn < exp(γ2
rn

/2). This amounts to the
following conditions on (rn) in Table 2.3:

Example No Lower bounds for (rn)
2.15 Petrov case rn/(log n)3 → ∞

2.17 RV(α), α > 2 rn > n2/(α−ε) any ε ∈ (0, α − 2)

2.16 E[|X|s] < ∞, s > 2 rn > n2/s

2.18 LN(γ), γ > 1 rn/ exp((2 log n)1/γ) → ∞

2.19 WE(τ), τ ≤ 0.5 rn/(log n)(2−τ)/τ → ∞

2.19 WE(τ), τ ∈ (0.5, 1) rn/(log n)3 → ∞

Table 2.3: Lower bounds on the block size rn

This table shows convincingly that, the heavier the tails, the larger we have to choose
the block length rn. Otherwise, the normal approximation does not function sufficiently
well simultaneously for the block sums Srni − Srn(i−1), i = 1, . . . , kn. In particular, in
the regularly varying case we always need that rn grows polynomially.

Notice that we have from (2.19) in particular

dkn√
rn

max
i=1,...,kn

#
Srni − Srn(i−1) −

√
rn dkn

%
d→ − log Γ1 ∼ Λ , n → ∞ .

The normalization dkn
/
√

rn is asymptotic to
&

(2 log kn)/rn.

2.4.2 Gumbel convergence via the subexponential approximation to
large deviation probabilities for very large x

In this section we will exploit the subexponential approximation to large deviation prob-
abilities for subexponential distributions F , i.e.,

sup
x>γn

111
P(Sn − E[Sn] > x)

nP(X > x) − 1
111 → 0 , (2.20)

and we will also assume that F ∈ MDA(Λ); see Example 2.2 for the corresponding
MDA conditions and the definition of the centering constants (dn) and the normalizing
constants (cn). Then, in particular, X has all moments finite. In this case, the Gumbel
approximation of the point process of the (Sni) is also possible.

Theorem 2.20. Assume that F ∈ MDA(Λ)∩S, the subexponential approximation (2.20)
holds and for sufficiently large n and an integer sequence pn → ∞,

dnp + x cnp > γn , for any x < 0 , (2.21)
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where (dnp) and (cnp) are the subsequences of (dn) and (cn), respectively, evaluated at
np. Then

pP
!
Sn − E[Sn] > dnp + x cnp

"
→ e−x , x ∈ R , n → ∞ , (2.22)

holds. Moreover, (2.22) is equivalent to either of the following limit relations:

1. Point process convergence to a Poisson process on the state space R

Np =
p(

i=1
εc−1

np (Sni−E[Sn]−dnp)
d→ N , n → ∞ , (2.23)

where N ∼ PRM(− log Λ); see Theorem 2.12.

2. Gumbel convergence of the maximum random walk

max
i=1,...,p

c−1
np

!
(Sni − E[Sn]) − dnp

" d→ Y ∼ Λ , n → ∞ . (2.24)

Proof. If dnp + x cnp > γn for every x < 0, then it holds for x ∈ R. Therefore (2.20)
applies. Since F ∈ MDA(Λ) ∩ S and by definition of (cn) and (dn), we have

pP
!
Sn − E[Sn] > dnp + x cnp

"
∼ p nP(X > dnp + x cnp) → e−x , x ∈ R , n → ∞ ,

proving (2.22). Proposition 2.3 yields the equivalence of (2.23) and (2.22). The equiva-
lence of (2.23) and (2.24) follows from a standard argument.

Remark 2.21. Since a(x) defined in Example 2.2 has density a′(x) → 0 as x → ∞ we
have a(x)/x → 0. On the other hand, cn = a(dn) and dn → ∞ since F ∈ S. Therefore,
for any x > 0,

dnp + x cnp = dnp

#
1 + x

a(dnp)
dnp

%
∼ dnp .

Hence (2.21) holds if dnp ≥ (1 + δ)γn for any small δ > 0 and large n.

2.4.2.1 The extreme values of i.i.d. random walks.

Relation (2.23) and a continuous mapping argument imply the following analog of Corol-
lary 2.14. We use the same notation as in Section 2.4.1.1. One can follow the lines of
the proof of Corollary 2.14.

Corollary 2.22. Assume the conditions of Theorem 2.20. Then the following relation
holds for k ≥ 1,

c−1
np

#
Sn,(1) − E[Sn] − dnp, . . . , Sn,(k) − E[Sn] − dnp

%
d→

!
− log Γ1, . . . , − log Γk

"

as n → ∞.
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2.4.2.2 Examples.

Theorem 2.20 applies to F ∈ LN(γ), γ > 1, and F ∈ WE(τ), 0 < τ < 1; see the
discussion in Section 2.3.2. However, the calculation of the constants (cn) and (dn) is
rather complicated for these classes of subexponential distributions. For illustration of
the theory we restrict ourselves to two parametric classes of distributions where these
constants are known.

Example 2.23. We assume that X has a standard lognormal distribution. From
(2.6), Table 2.1 and Remark 2.21 we conclude that we need to verify the condition
exp

!&
2 log(np)

"
≥ hn

√
n log n for a sequence (hn) increasing to infinity arbitrarily

slowly. Calculation shows that it suffices to choose pn → ∞ such that p > exp
!
(log n)2"

.

Example 2.24. We assume that X has a Weibull distribution with tail F (x) = exp(−xτ )
for some τ ∈ (0, 1). From (2.7) we conclude that dnp ∼ (log np)1/τ . In view of Re-
mark 2.21 and Table 2.1 it suffices to verify that (log np)1/τ ≥ hn n1/(2−2τ) for a sequence
hn → ∞ arbitrarily slowly. It holds if p > n−1 exp

!!
hnn1/(2−2τ)"τ "

.

2.4.2.3 The extremes of the blocks of a random walk.

We appeal to the notation in Section 2.4.1.3. We are in the setting of Theorem 2.20 if
we replace pn with kn and n with rn. We are interested in the following result for the
point process of the block sums of Sn with length rn (see (2.23))

Nkn =
kn(

i=1
ε

c−1
n

!
Srni−Srn(i−1)−E[Srn ]−dn

" d→ N =
∞(

i=1
ε− log Γi .

We need to verify condition (2.21) which turns into dn + cn x > γrn
. In view of Re-

mark 2.21 it suffices to prove that dn > hnγrn for a sequence hn → ∞ arbitrarily slowly;
see Table 2.1 for some γn–values.

We start with a standard lognormal distribution; see (2.6) for the corresponding (cn)
and (dn). In particular, we need to verify

dn = exp
#&

2 log n − log log n + log 4π

2(2 log n)1/2

%
≥ hn

√
rn log rn .

A sufficient condition is exp(2
√

2 log n) > ?hnrn for a sequence ?hn → ∞ arbitrarily slowly.
We observe that the left–hand expression is a slowly varying function.

Next we consider a standard Weibull distribution for τ ∈ (0, 1). The constants (cn)
and (dn) are given in (2.7). In particular, we need to verify

dn ∼ (log n)1/τ > hnr1/(2−2τ)
n .

This holds if (log n)2(1−τ)/τ h
−2(1−τ)
n > rn. Again, this is a strong restriction on the

growth of (rn) and is in contrast to the regularly varying case where polynomial growth
of (rn) is possible; see Section 2.4.3.2.

2.4.3 Fréchet convergence via the subexponential approximations to
large deviation probabilities for large x

In this section we assume that X is regularly varying with index α > 0 in the sense of
(2.2). Throughout we choose a normalizing sequence (an) such that nP(|X| > an) → 1
as n → ∞. The following result is an analog of Theorems 2.12 and 2.20.
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Theorem 2.25. Assume that X is regularly varying with index α > 0 and E[X] = 0 if
the expectation is finite. Choose a sequence (dn) such that

dn =
>

0 , α ∈ (0, 1) ∪ (1, ∞) ,

n E[X 1(|X| ≤ an)] , α = 1 .

We assume that pn → ∞ is an integer sequence which satisfies the additional conditions
>

anp ≥
&

(α − 2 + δ)n log n for some small δ > 0 if α > 2 ,
limn→∞ supx>anp

pδ n

x2 E[X2 1(|X| ≤ x)] = 0 for some small δ > 0 if α = 2 . (2.25)

Then the following limit relation

pP(±a−1
np (Sn − dn) > x) → p±x−α , x > 0 , n → ∞ , (2.26)

holds. Moreover, (2.26) is equivalent to

Np =
p(

i=1
εa−1

np (Sni−dn)
d→ N =

∞(

i=1
ε

qi Γ−1/α
i

, (2.27)

where (Γi) is defined in Theorem 2.12 and (qi) is an i.i.d. sequence of Bernoulli variables
with distribution P(qi = ±1) = p± independent of (Γi).

Proof. We start by verifying (2.26). Assume α < 2. Then for any sequence pn → ∞,
anp/an → ∞. Therefore Theorem 2.10 and the definition of (anp) yield

pP(±a−1
np (Sn − dn) > x) ∼ p nP(±X > anp x) ∼ p±x−α , n → ∞ .

If α > 2 the same result holds in view of Theorem 2.8 since we assume condition (2.25).
If α = 2 we can again apply Theorem 2.10 with γn = anp and use (2.25).

We notice that the limit point process N is PRM(µα) with intensity

µα(dx) = |x|−α−1!
p+1(x > 0) + p−1(x < 0)

"
dx . (2.28)

An appeal to Proposition 2.3 shows that (2.26) and (2.27) are equivalent.

Remark 2.26. Assume α > 2. Since anp = (np)1/αℓ(np) for a slowly varying function
ℓ and ℓ(x) ≥ x−γ/α for any small γ > 0 and sufficiently large x, (2.25) holds if p ≥
n(α/2)−1+γ′ for any choice of γ′ > 0. Assume α = 2 and var(X) < ∞. Then anp ∼ c

√
np

and (2.25) is satisfied for any sequence pn → ∞ and δ < 1. If var(X) = ∞, anp =
(np)1/2ℓ(np) for a slowly varying function ℓ and E[X2(|X| ≤ x)] is an increasing slowly
varying function. Using Karamata bounds for slowly varying functions, we conclude that
(2.25) holds if p/nγ → ∞ for any small γ > 0.

2.4.3.1 The extreme values of i.i.d. random walks.

For simplicity, we assume dn = 0. Let N+
p be the restriction of Np to the state space

(0, ∞), and S+
n,(1) the maximum of (Sn1)+, . . . , (Snp)+. We also write ξ = min{i ≥

1 : qi = 1} and assume that ξ is independent of (Γi). Then (2.27) and the continuous
mapping theorem imply that

P
!
N+

p (x, ∞) = 0
"

= P
!
a−1

np S+
n,(1) ≤ x

" d→ P
!
Γ−1/α

ξ ≤ x
"

= Φp+
α (x) . (2.29)

Moreover, we have joint convergence of minima and maxima.
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Corollary 2.27. Assume the conditions of Theorem 2.25 and dn = 0. Then

lim
n→∞

P
#

0 < a−1
np max

i=1,...,p
Sni ≤ x , −y < a−1

np min
i=1,...,p

Sni

%
= Φp+

α (x)Φp−
α (y) , x, y > 0 .

Proof. We have

P
#

a−1
np max

i=1,...,p
Sni ≤ x , −y < a−1

np min
i=1,...,p

Sni

%
= P

!
Np

!
(x, ∞) ∪ (−∞, −y]

"
= 0

"

→ P
!
N

!
(x, ∞) ∪ (−∞, −y]

"
= 0

"

= exp
!

− (p+x−α + p−y−α)
"

= Φp+
α (x)Φp−

α (y) , n → ∞ .

2.4.3.2 The extremes of the blocks of a random walk.

We appeal to the notation of Section 2.4.1.3 and apply Theorem 2.25 in the case when
n is replaced by some integer–sequence rn → ∞ such that kn = [n/rn] → ∞ and pn is
replaced by kn. We also assume for simplicity that dn = 0. Observing that anp turns
into arnkn ∼ an, (2.27) turns into

Nkn =
kn(

i=1
εa−1

n (Srn i−Srn(i−1))
d→ N =

∞(

i=1
ε

qi Γ−1/α
i

, n → ∞ .

For simplicity, we assume α ∕= 2. If α < 2 no further restrictions on (rn) are required.
If α > 2 we have the additional growth condition an >

&
(α − 2 + δ)rn log rn for suffi-

ciently large n. Since an = n1/αℓ(n) for some slowly varying function ℓ, this amounts
to showing that n2/αℓ2(n)/(α − 2 + δ) > rn log rn. Since any slowly varying function
satisfies ℓ(n) ≥ n−ε for any ε > 0 and n ≥ n0(ε) we get the following sufficient condition
on the growth of (rn): for any sufficiently small ε > 0, n2/α−ε > rn. This condition
ensures that (rn) is significantly smaller than n, and the larger α the more stringent this
condition becomes.

An appeal to (2.29) yields in particular

P
#

a−1
n max

i=1,...,kn

(Srn i − Srn (i−1))+ ≤ x
%

d→ P
!
Γ−1/α

ξ ≤ x
"

= Φp+
α (x) ,

P
#

a−1
n max

i=1,...,kn

|Srn i − Srn (i−1)| ≤ x
%

d→ P
!
Γ−1/α

1 ≤ x
"

= Φα(x) , n → ∞ .

2.4.3.3 Extension to a stationary regularly varying sequence.

In view of classical theory (e.g. Feller [48]) X is regularly varying with index α ∈ (0, 2) if
and only if a−1

n (Sn − dn) d→ ξα for an α–stable random variable ξα where one can choose
(an) such that nP(|X| > an) → 1 and (dn) as in (2.13). For the sake of argument we
also assume dn = 0; this is a restriction only in the case α = 1.

If (rn) is any integer sequence such that rn → ∞ and kn = [n/rn] → 0 then

a−1
n Sn = a−1

n

kn(

i=1
(Srn i − Srn (i−1)) + oP(1) d→ ξα . (2.30)
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Moreover, since an/arn
→ ∞, Theorem 2.10 yields

P(±a−1
n Srn > x)

rn P(|X| > an) ∼ P(±X > x an)
P(|X| > an) → p± x−α , x > 0 . (2.31)

Classical limit theory for triangular arrays of the row–wise i.i.d. random variables (Srni −
Srn (i−1))i=1,...,kn (e.g. Petrov [98, Theorem 8, Chapter IV]) yields that (2.30) holds if
and only if

kn P(a−1
n Srn ∈ ·) v→ µα(·) , (2.32)

lim
δ↓0

lim sup
n→∞

knvar
!
a−1

n Srn
1

!
|Srn

| ≤ δan

""
= 0 , (2.33)

where µα is defined in (2.28). We notice that (2.32) is equivalent to (2.31).
An alternative way of proving limit theory for the sum process (Sn) with an α–stable

limit ξα would be to assume the relations (2.32) and (2.33). This would be rather indirect
and complicated in the case of i.i.d. (Xi). However, this approach has some merits in
the case when (Xi) is a strictly stationary sequence with a regularly varying dependence
structure, i.e., its finite–dimensional distributions satisfy a multivariate regular variation
condition (see Davis and Hsing [38] or Basrak and Segers [15]), and a weak dependence
assumption of the type

E
@

exp
!
a−1

n itSn

"A
−

#
E

@
exp

!
a−1

n itSrn

"A%kn

→ 0 , t ∈ R , n → ∞ , (2.34)

holds. Then a−1
n Sn

d→ ξα if and only if a−1
n

2kn

i=1 Sni
d→ ξα where (Sni)i=1,...,kn is an

i.i.d. sequence with the same distribution as Srn . Condition (2.34) is satisfied under mild
conditions on (Xi), in particular under standard mixing conditions such as α–mixing.
Thus one has to prove the conditions (2.32) and (2.33). In the dependent case the limit
measure µα has to be modified. The following analog of (2.31) holds: there exists a
positive number θX such that

P(±a−1
n Srn > x)

rn P(|X| > an) ∼ θX
P(±X > x an)
P(|X| > an) → θX p± x−α , x > 0 .

The quantity θX has an explicit structure in terms of the so–called tail chain of the regu-
larly varying sequence (Xi). It has interpretation as a cluster index in the context of the
partial sum operation acting on (Xi). For details we refer to Mikosch and Wintenberger
[85] and the references therein.

2.4.3.4 Extension to the multivariate regularly varying case.

Consider a sequence (XXXi) of i.i.d. Rd–valued random vectors with generic element XXX,
and define

S0 = 0 , Sn = XXX1 + · · · + XXXn , n ≥ 1.

We say that XXX is regularly varying with index α > 0 and a Radon measure µ on Rd
0 =

Rd\{0}, and we write XXX ∈ RV(α, µ), if the following vague convergence relation is
satisfied on Rd

0:

P(x−1XXX ∈ ·)
P(|XXX| > x)

v→ µ(·) , x → ∞ , (2.35)
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and µ has the homogeneity property µ(t ·) = t−αµ(·), t > 0. We will also use the
sequential version of regular variation: for a sequence (an) such that nP(|XXX| > an) → 1,
(2.35) is equivalent to

nP(a−1
n XXX ∈ ·) v→ µ(·) , n → ∞ .

For more reading on multivariate regular variation, we refer to Resnick [103, 102].
Hult et al. [63] extended Nagaev’s Theorem 2.8 to the multivariate case:

Theorem 2.28 (A multivariate Nagaev-type large deviation result). Consider an i.i.d.
Rd–valued sequence (XXXi) with generic element XXX. Assume the following conditions.

(1) X ∈ RV(α, µ).

(2) The sequence of positive numbers (xn) satisfies

x−1
n Sn

P→ 0 as n → ∞ , (2.36)

and, in addition,
-
EEE.

EEE/

x2
n

nE[|XXX|21(|XXX| ≤ xn)] log xn
→ ∞ α = 2 and E[|XXX|2] = ∞ ,

x2
n

n log n
→ ∞, α > 2 or [α = 2 and E[|XXX|2] < ∞] .

(2.37)

Then
P(x−1

n Sn ∈ ·)
nP(|XXX| > xn)

v→ µ(·) , n → ∞ .

Remark 2.29. Condition (2.36) requires that nE[XXX]/anp → 0 for α > 1. It is always
satisfied if E[XXX] = 0. Now assume that the latter condition is satisfied if the expectation
of XXX is finite. If α ∈ (0, 2) we can choose any (pn) such that pn → ∞. If α ≥ 2 and
(np)1/α/n0.5+γ/α → ∞, equivalently, p/nα/2−1+γ → ∞ holds for any small γ > 0 then
(2.37) is satisfied.

The following result extends Theorem 2.25 to the multivariate case.

Theorem 2.30. Assume that XXX satisfies the conditions of Theorem 2.28. Consider an
integer sequence p = pn → ∞ and, in addition for α ≥ 2, that xn = anp satisfies (2.37).
Then the following limit relation holds

Np =
p(

i=1
εa−1

np Sni

d→ N ,

where (Sni) are i.i.d. copies of Sn and N is PRM(µ) on Rd
0.

Proof. In view of Proposition 2.3 it suffices to show that

pP(a−1
np Sn ∈ ·) v→ µ(·).

Assume α < 2. Then for any sequence pn → ∞, anp/an → ∞. Therefore Theorem 2.28
and the definition of (anp) imply that for any µ–continuity set A ⊂ Rd

0,

pP(a−1
np Sn ∈ A) ∼ p nP(|XXX| > anp) µ(A) → µ(A) , n → ∞ .

If α ≥ 2 the same result holds by virtue of Theorem 2.28 and the additional condition
(2.37).
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Example 2.31. Write

Sni =
!
S

(1)
ni , . . . , S

(d)
ni

"⊤
,

Mn =
!

max
i=1,...,p

S
(1)
ni , . . . , max

i=1,...,p
S

(d)
ni

"⊤ =
!
M (1)

n , . . . , M (d)
n

"⊤
.

For vectors xxx,yyy ∈ Rd with non-negative components, we write xxx ≤ yyy for the compo-
nentwise ordering, [0,xxx] = {yyy : 0 ≤ yyy ≤ xxx} and [0,xxx]c = Rd

+\[0,xxx]. We have by
Theorem 2.30,

P
!
0 ≤ a−1

np Mn ≤ xxx
"

= P
!
Np([0,xxx]c) = 0

"

→ P
!
N([0,xxx]c) = 0

"

= exp
!

− µ([0,xxx]c)
"

=: H(xxx) , n → ∞ ,

for the continuity points of the function − log H(xxx) = µ([0,xxx]c). If µ(Rd
+\{0}) is not

zero, H defines a distribution on Rd
+ with the property − log H(txxx) = t−α(− log H(xxx)),

t > 0. The non–degenerate components of H are in the type of the Fréchet distribution;
H is referred to as a multivariate Fréchet distribution with exponent measure µ.

2.4.3.5 An extension to i.i.d. random sums.

In this section we consider an alternative random sum process:

S(t) =
ν(t)(

i=1
Xi , t ≥ 0 ,

where (ν(t))t≥0 is a process of integer–valued non–negative random variables independent
of the i.i.d. sequence (Xi) with generic element X and finite expectation. Throughout
we assume that λ(t) = E[ν(t)], t ≥ 0, is finite but limt→∞ λ(t) = ∞. We also define

m(t) = E[S(t)] = E[X] λ(t) .

In addition, we assume some technical conditions on the process ν:

N1 ν(t)/λ(t) P→ 1, t → ∞.

N2 There exist ε, δ > 0 such that

lim
t→∞

(

k>(1+δ)λ(t)

P(ν(t) > k) (1 + ε)k = 0 .

These conditions are satisfied for a wide variety of processes ν, including the homogeneous
Poisson process on (0, ∞). Klüppelberg and Mikosch [72] proved the following large
deviation result for the random sums S(t) ([72] allow for the more general condition of
extended regular variation).

Theorem 2.32. Assume that ν satisfies N1, N2 and is independent of the i.i.d. non-
negative sequence (Xi) which is regularly varying with index α > 1. Then for any γ > 0,

sup
x≥γλ(t)

111
P(S(t) − m(t) > x)

λ(t)P(X > x) − 1
111 , t → ∞ .
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The same method of proof as in the previous sections in combination with the large
deviation result of Theorem 2.32 yields the following statement. As usual, we assume
that (a(t)) is a function such that tP(X > a(t)) → 1 as t → ∞.

Corollary 2.33. Assume the condition of Theorem 2.32. Let (p(t)) be an integer–valued
function such that that p(t) → ∞ as t → ∞ and a growth condition is satisfied for every
fixed γ > 0 and sufficiently large t ≥ t0:

a(λ(t)p(t)) ≥ γ λ(t) . (2.38)

Then the following limit relation holds for i.i.d. copies Si of the random sum process S:

Np(t) =
p(t)(

i=1
ε Si(t)−m(t)

a(λ(t)p(t))

d→ N =
∞(

i=1
εΓ−1/α

i

, t → ∞ ,

where (Γi) is defined in Theorem 2.12.

Proof. In view of Proposition 2.3 the result is proved if we can show that as t → ∞,

p(t)P((a(λ(t)p(t)))−1!
S(t) − m(t)) > x

"
∼ λ(t) p(t)P(X > a(λ(t)p(t)) x) → x−α ,

p(t)P((a(λ(t)p(t)))−1!
S(t) − m(t)) < −x

"
→ 0 , x > 0 .

But this follows by an application of Theorem 2.32 in combination with (2.38) and the
regular variation of X.

Remark 2.34. Since a(λ(t)p(t)) = (λ(t)p(t))1/αℓ(λ(t)p(t)) for a slowly varying function
ℓ and ℓ(x) ≥ x−ε/α for any small ε > 0 and sufficiently large x, (2.38) holds if p(t) ≥
(λ(t))α−1+ε′ for any choice of ε′ > 0 .

2.4.4 An extension: the index of the point process is random
Let (Pn)n≥0 be a sequence of positive integer–valued random variables. We assume that
there exists a sequence of positive numbers (pn) such that pn → ∞ and

Pn

pn

P→ 1 , n → ∞ . (2.39)

This condition is satisfied for wide classes of integer–valued sequences (Pn), including
the renewal counting processes and (inhomogeneous) Poisson processes when calculated
at the positive integers. In particular, for renewal processes pn ∼ c n provided the inter–
arrival times have finite expectation.

We have the following analog of Proposition 2.3.

Proposition 2.35. Let (Xni)n=1,2,...;i=1,2,... be a triangular array of i.i.d. random vari-
ables assuming values in some state space E ⊂ Rd equipped with the Borel σ–field E. Let
µ be a Radon measure on E. If the relation

pn P
!
Xn1 ∈ ·

" v→ µ(·) , n → ∞ , (2.40)

holds on E then

?Np =
Pn(

i=1
εXni

d→ N , n → ∞ ,

where N is PRM(µ) on E.
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Proof. We prove the result by showing convergence of the Laplace functionals. The
arguments of a Laplace functional are elements of

C+
K(E) = {g : E → R+ : g continuous with compact support} .

For f ∈ C+
K we have by independence of the (Xni),

E
)

exp
#

−
$

E

f d ?Np

%,
= E

)
exp

#
−

Pn(

j=1
f(Xnj)

%,
= E

)#
E

@
exp(−f(Xn1))

A%Pn
,

.

In view of (2.39) there is a real sequence εn ↓ 0 such that

lim
n→∞

P
!
|Pn/pn − 1| > εn

"
= P(Ac

n) = 0 . (2.41)

Then

E
)#

E
@

exp(−f(Xn1))
A%Pn

,

= E
)#

E
@

exp(−f(Xn1))
A%Pn!

1(Ac
n) + 1(An)

",

= I1 + I2 .

By (2.41) we have I1 ≤ P(Ac
n) → 0 as n → ∞ while

E
)#

E
@

exp(−f(Xn1))
A%(1+εn)pn

1(An)
,

≤ I2 ≤ E
)#

E
@

exp(−f(Xn1))
A%(1−εn)pn

1(An)
,

. (2.42)

In view of Proposition 2.3 and (2.40)
#
E

@
exp(−f(Xn1))

A%(1±εn)pn

→ exp
#

−
$

E

(1 − e−f(xxx)) µ(dxxx)
%

.

The right–hand side is the Laplace functional of a PRM(µ). Now an application of
dominated convergence to I2 in (2.42) yields the desired convergence result.

An immediate consequence of this result is that all point process convergences in
Section 2.4 remain valid if the point processes Np are replaced by their corresponding
analogs ?Np with a random index sequence (Pn) independent of (Sni) and satisfying (2.39).
Moreover, the growth rates for pn → ∞ remain the same.

2.4.5 Extension to the tail empirical process
We assume that (Sni) are i.i.d. copies of a real–valued random walk (Sn). Instead of the
point processes considered in the previous sections one can also study the tail empirical
process

Np = 1
k

p(

i=1
εc−1

[p/k](Sni/
√

n−d[p/k])

where k = kn → ∞, p = pn → ∞ and pn/kn → ∞, and (cn) and (dn) are suitable
normalizing and centering constants. To illustrate the theory we consider two examples.
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Example 2.36. Assume the conditions and notation of Theorem 2.12. In this case,
choose cn = 1/dn. Then

E[Np(x, ∞)] = p

k
P

!
Sn/

√
n > d[p/k] + x/d[p/k]

"
→ e−x ,

var
!
Np(x, ∞)

"
≤ p

k2 P
!
Sn/

√
n > d[p/k] + x/d[p/k]

"
→ 0 , x ∈ R, n → ∞ ,

provided p/k < exp(γ2
n/2). It is not difficult to see that

Np
P→ − log Λ .

Similarly, assume the conditions and the notation of Theorem 2.25 and consider

Np = 1
k

p(

i=1
εa−1

[np/k](Sni−dn) .

Then for x > 0 as n → ∞,

E[Np(x, ∞)] = p

k
P

!
a−1

[np/k](Sn − dn) > x
"

∼ np

k
P(X > a[np/k] x)

→ p+ x−α = µα(x, ∞) ,

var(Np(x, ∞)) → 0 ,

E[Np(−∞, −x]] = p

k
P

!
a−1

[np/k](Sn − dn) ≤ −x
"

→ p− x−α = µα(−∞, −x] ,

var(Np(−∞, −x]) → 0 ,

provided the modified sequence pn/kn → ∞ satisfies the conditions imposed on (pn)
in Theorem 2.25. We notice that the values of µα on (−∞, −x] and (x, ∞) determine
a Radon measure on R\{0}. From these relations we conclude that Np

P→ µα. Then,
following the lines of Resnick and Stărică [101, Proposition 2.3], one can for example
prove consistency of the Hill estimator based on the sample (Sni)i=1,...,p. Assuming for
simplicity dn = 0, p+ > 0, we write Sn,(1) ≥ · · · ≥ Sn,(k) for the k largest values. Then

1
k

k(

i=1
log

Sn,(i)

Sn,(k)

P→ 1
α

.

2.4.6 Some related results
The largest values of sequences of i.i.d. normalized and centered partial sum processes
play a role in the context of random matrix theory which is also the main motivation
for the present work. Consider a double array (Xit) of i.i.d. regularly varying random
variables with index α ∈ (0, 4) (see (2.2)) and generic element X, and also assume that
E[X] = 0 if this expectation is finite. Consider the data matrix

XXX := XXXn = (Xit)i=1,...,p;t=1,...,n

and the corresponding sample covariance matrix XXXXXX⊤ = (Sij). Heiny and Mikosch [60]
proved that

a−2
np ‖XXXXXX⊤ − diag(XXXXXX⊤)‖2

P→ 0 , n → ∞ , (2.43)
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where ‖A‖2 denotes the spectral norm of a p × p symmetric matrix A, diag(A) consists
of the diagonal of A, (ak) is any sequence satisfying k P(|X| > ak) → 1 as k → ∞, and
pn = nβℓ(n) for some β ∈ (0, 1] and a slowly varying function ℓ. Write λ(1)(A) ≥ · · · ≥
λ(p)(A) for the ordered eigenvalues of A. According to Weyl’s inequality (see Bhatia
[17]), the eigenvalues of XXXXXX⊤ satisfy the relation

a−2
np sup

i=1,...,p

11λ(i)(XXXXXX⊤) − λ(i)(diag(XXXXXX⊤))
11 ≤ a−2

np ‖XXXXXX⊤ − diag(XXXXXX⊤)‖2
P→ 0 . (2.44)

But of course, λ(i)(diag(XXXXXX⊤)) are the ordered values of the i.i.d. partial sums Sii =2n
t=1 X2

it, i = 1, . . . , p. In view of (2.44) the asymptotic theory for the largest eigenvalues
of the normalized sample covariance matrix a−2

np XXXXXX⊤ (which also needs centering for
α ∈ (2, 4)) are determined through the Fréchet convergence of the processes with points
(a−2

np Sii)i=1,...,p. Moreover, (2.44) implies the Fréchet convergence of the point processes
of the normalized and centered eigenvalues of the sample covariance matrix.

The large deviation approach also works for proving limit theory for the point pro-
cess of the off–diagonal elements of XXXXXX⊤ provided X has sufficiently high moments.
Heiny et al. [61] prove Gumbel convergence for the point process of the off–diagonal
elements (Sij)1≤i<j≤p. The situation is more complicated because the points Sij are
typically dependent. Multivariate extensions of the normal large deviation approxima-
tion 0.5p2P(dp2/2(S12 − dp2/2) > x) → exp(−x) show that the point process of the
standardized (Sij) has the same limit Poisson process as if the Sij were independent.
Moreover, [61] show that the point process of the diagonal elements (Sii) (under suit-
able conditions on the rate of pn → ∞ and under E[|X|s] < ∞ for s > 4) converges to
PRM(− log Λ). This result indicates that the off-diagonal and diagonal entries of XXXXXX⊤

exhibit very similar extremal behavior. This is in stark contrast to the aforementioned
results in [60] where the diagonal entries have Fréchet extremal behavior.

Related results can also be found in Gantert and Höfelsauer [52] who consider real-
valued branching random walks and prove a large deviation principle for the position of
the right-most particle; see Theorem 3.2 in [52]. The position of the right-most particle
is the maximum of a collection of a random number of dependent random walks. In this
context, the authors also prove a related large deviation result under the assumption
that the considered random walks are i.i.d. . They show that the maximum of these i.i.d.
random walks stochastically dominates the maximum of the branching random walks; see
Theorem 3.1 and Lemma 5.2 in [52]. An early comparison between maxima of branching
and i.i.d. random walks was provided by Durrett [43].
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Point process convergence for the
off–diagonal entries of sample covariance
matrices
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Abstract

We study point process convergence for sequences of i.i.d. random walks. The
objective is to derive asymptotic theory for the extremes of these random walks.
We show convergence of the maximum random walk to the Gumbel distribution
under the existence of a (2 + δ)th moment. We make heavily use of precise large
deviation results for sums of i.i.d. random variables. As a consequence, we derive the
joint convergence of the off–diagonal entries in sample covariance and correlation
matrices of a high–dimensional sample whose dimension increases with the sample
size. This generalizes known results on the asymptotic Gumbel property of the
largest entry.

Keywords: Gumbel distribution, extreme value theory, maximum entry, sample
covariance matrix
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3.1 Introduction

3.1.1 Motivation
An accurate probabilistic understanding of covariances and correlations is often the back-
bone of a thorough statistical data analysis. In many contemporary applications, one is
faced with large data sets where both the dimension of the observations and the sam-
ple size are large. A major reason lies in the rapid improvement of computing power
and data collection devices which has triggered the necessity to study and interpret the
sometimes overwhelming amounts of data in an efficient and tractable way. Huge data
sets arise naturally in genome sequence data in biology, online networks, wireless com-
munication, large financial portfolios, and natural sciences. More applications where the
dimension p might be of the same or even higher magnitude than the sample size n are
discussed in [42, 68]. In such a high–dimensional setting, one faces new probabilistic and
statistical challenges; see [69] for a review. The sample (auto)covariance matrices will
typically be misleading [13, 45]. Even in the null case, i.e., when the components of the
time series are i.i.d., it is well–known that the sample covariance matrix poorly estimates
the population covariance matrix. The fluctuations of the off–diagonal entries of the
sample covariance matrix aggregate, creating an estimation bias which is quantified by
the famous Marčenko–Pastur theorem [80]. This paper provides insight into the joint
behavior of the off–diagonal entries with a particular focus on their extremes.

Aside from the high dimension, the marginal distributions of the components present
another major challenge for an accurate assessment of the dependence. In the literature,
one typically assumes a finite fourth moment since otherwise the largest eigenvalue of the
sample covariance matrix would tend to infinity when n and p increase. This moment
assumption, however, excludes heavy–tailed time series from the analysis. The theory
for the eigenvalues and eigenvectors of the sample autocovariance matrices stemming
from such time series is quite different from the classical Marčenko–Pastur theory which
applies in the light–tailed case. For detailed discussions about classical random matrix
theory, we refer to the monographs [13, 110], while the developments in the heavy–tailed
case can be found in [12, 39, 37, 60, 107, 108] and the references therein. For applications
of extreme value statistics in finance and physics we refer to [29, 51].

In this paper, we study point process convergence for sequences of i.i.d. random walks.
We then apply our results to derive the joint asymptotic behavior of the off–diagonal
entries of sample covariance and correlation matrices. Based on this joint convergence
we propose new independence tests in high dimensions.

3.1.2 The model
We are given p–dimensional random vectors xt = (X1t, . . . , Xpt)⊤, t = 1, . . . , n, whose
components (Xit)i,t≥1 satisfy the following standard conditions:

• (Xit) are independent and identically distributed (i.i.d.) random variables with
generic element X.

• E[X] = 0 and E[X2] = 1.

The dimension p = pn is some integer sequence tending to infinity as n → ∞.
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We are interested in the (non–normalized) p × p sample covariance matrix S and the
sample correlation matrix R,

S = Sn =
n(

t=1
xtx⊤

t and R = Rn = (diag(S))−1/2S(diag(S))−1/2 (3.1)

with entries

Sij =
n(

t=1
XitXjt and Rij = Sij&

SiiSjj

, i, j = 1, . . . , p , (3.2)

respectively. The dependence on n is often suppressed in our notation.
Our goal is to prove limit theory for the point processes of scaled and centered points

(Sij), (Rij). Asymptotic theory for the extremes of these points can be deduced from
the limit point process.

3.1.3 State–of–the–art
In the literature, the largest off–diagonal entry of a sample covariance or correlation
matrix has been studied, but results concerning the joint behavior of the entries are
currently lacking. The theoretical developments are mainly due to Jiang. In [66], he
analyzed the asymptotic distributions of

Wn := 1
n

max
1≤i<j≤p

|Sij | and Ln := max
1≤i<j≤p

|Rij |

under the assumption p/n → γ ∈ (0, ∞). If E[|X|30+δ] < ∞ for some δ > 0, he proved
that

lim
n→∞

P(nW 2
n − 4 log p + log log p ≤ x) = exp

#
− 1√

8π
e−x/2

%
, x ∈ R , (3.3)

lim
n→∞

P(nL2
n − 4 log p + log log p ≤ x) = exp

#
− 1√

8π
e−x/2

%
, x ∈ R . (3.4)

The limiting law is a non–standard Gumbel distribution. Under the same assumptions
Jiang [66] also derived the limits

lim
n→∞

3
n

log p
Ln = 2 = lim

n→∞

3
n

log p
Wn a.s. (3.5)

Several authors managed to relax Jiang’s moment condition while keeping the propor-
tionality of p and n. Zhou [111] showed that (3.4) holds if n6P(|X11X12| > n) → 0 as
n → ∞. A sufficient condition is E[X6] < ∞. The papers [75, 76, 77] provide refinements
of Zhou’s condition. We summarize the distributional assumptions on X for the validity
of (3.4) and (3.3) under proportionality of dimension p and sample size n as follows:
E[X6] < ∞ is sufficient, and E[|X|6−δ] < ∞ for any δ > 0 is necessary. In that sense,
finiteness of the sixth moment is the optimal moment assumption.

Interestingly, the optimal moment requirement also depends on the growth of p if
p increases at a different rate than n. For the largest off–diagonal entry of the sample
correlation matrix, also known as coherence of the random matrix XXX = (x1, . . . , xn), the
interplay between dimension and moments was addressed in [79]. If E[|X|s] < ∞ for
s > 2 and

c1n(s−2)/4 ≤ p ≤ c2n(s−2)/4
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with positive constants c1, c2, Theorem 1.1 in [79] shows that (3.4) still applies. Note
that, for proportional p and n, this result requires the finiteness of the sixth moment.
The larger p relative to n, the more moments of X are needed. If the moment generating
function of |X| exists in some neighborhood of zero, (3.4) holds for p = O

!
exp(nβ)

"
for

certain β ∈ (0, 1/3); see [33]. Finally, if (log p)/n ∕→ 0, various phase transitions appear
in the limit distribution of Ln. These were explored in [34] under convenient assumptions
on X which yield an explicit formula for the density of R12.

3.1.4 Objective and structure of this paper
Our main objective is to prove limit theory for the point processes of scaled and centered
points (Sij), (Rij) in a more general framework than used for the results above. By a
continuous mapping argument, the joint asymptotic distribution of functionals of a fixed
number of points can easily be deduced from the limit process. In particular, we obtain
the asymptotic distribution of the largest and smallest entries.

First, we establish our result for S. Since each Sij is a sum of i.i.d. random variables,
we prove a useful large deviation theorem which exploits the asymptotic normal distri-
bution of Sij . Aside from finding suitable assumptions on X, the main challenge is that
the Sij are not independent. It turns out that despite their non–trivial dependence, the
maximum behaves like the maximum of i.i.d. copies. Therefore we will first solve the
problem for i.i.d. random walk points (S(i)

n ) instead of (Sij). This is done in Section 3.2.
We continue in Section 3.3 with the main results of the paper. Here we derive asymp-

totic theory for the point processes

?Nn =
(

1≤i<j≤p

ε?dp(Sij/
√

n−?dp)
d→ N ,

for suitable constants ( ?dp) and limit Poisson random measure N with mean measure µ on
R such that µ(x, ∞) = e −x, x ∈ R. Throughout this paper εx denotes the Dirac measure
at x. A continuous mapping theorem implies distributional convergence of finitely many
Sij . In particular, the maximum entry Sij converges to the Gumbel distribution provided
X has suitably many finite moments. A related result holds with Sij replaced by the
corresponding sample correlations Rij = Sij/

&
SiiSjj . In Section 3.4, we extend our

results to hypercubic random matrices of the form
2n

t=1 xt ⊗ · · · ⊗ xt and we briefly
discuss some statistical applications. The proofs of the main results are presented in
Sections 3.5 and 3.6.

3.2 Normal approximation to large deviation probabilities

In this section we collect some precise large deviation results for sums of independent
random variables. Throughout this section, (Xi) is an i.i.d. sequence of mean zero,
unit variance random variables with generic element X, distribution F and right tail
F = 1 − F . We define the corresponding partial sum process

S0 = 0 , Sn = X1 + · · · + Xn , n ≥ 1 .

Consider i.i.d. copies (S(i)
n )i≥1 of Sn. We also introduce an integer sequence (pn) such

that p = pn → ∞ as n → ∞. We are interested in the limit behavior of the k largest
values among (S(i)

n )i=1,...,p, in particular in the possible limit laws of the maximum
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maxi=1,...,p S
(i)
n . More generally, we are interested in the limit behavior of the point

processes Nn,

Nn =
p(

i=1
ε

dp(S
(i)
n /

√
n−dp)

d→ N , n → ∞ , (3.6)

toward a Poisson random measure N on R with mean measure µ given by µ(x, ∞) = e −x,
x ∈ R. The sequence (dp) is chosen such that p Φ(dp) = p(1 − Φ(dp)) → 1 as p → ∞
where Φ is the standard normal distribution function. In this paper, we work with

dp =
&

2 log p − log log p + log 4π

2(2 log p)1/2 . (3.7)

A motivation for this choice is that for an i.i.d. sequence (Xi) with distribution function
Φ we have

lim
n→∞

P
#

dp

!
max

i=1,...,p
Xi − dp

"
≤ x

%
= exp(−e −x) = Λ(x) , x ∈ R .

The limit distribution function is the standard Gumbel Λ; see Embrechts et al. [46,
Example 3.3.29].

By [102, Theorem 5.3], relation (3.6) is equivalent to the following limit relation for
the tails

pP
!
dp (Sn/

√
n − dp) > x

"
→ e −x , n → ∞ , x ∈ R , (3.8)

and also to convergence of the maximum of the random walks (S(i)
n )i=1,...,p to the Gumbel

distribution:

lim
n→∞

P
#

max
i=1,...,p

dp(S(i)
n /

√
n − dp) ≤ x

%
= Λ(x) , x ∈ R . (3.9)

Equations (3.8) and (3.9) involve precise large deviation probabilities for the random
walk (Sn). To state some results which are relevant in this context, we assume one of
the following three moment conditions:

(C1) There exists s > 2 such that E[|X|s] < ∞.

(C2) There exists an increasing differentiable function g on (0, ∞) such that
E[exp(g(|X|))] < ∞, g′(x) ≤ τg(x)/x for sufficiently large x and some τ < 1,
and limx→∞ g(x)/ log x = ∞.

(C3) There exists a constant h > 0 such that E[exp(h |X|)] < ∞.

Note that the conditions (C1)–(C3) are increasing in strength. One has the implications
(C3) ⇒ (C2) ⇒ (C1). The following result explains the connection between the rate of
pn → ∞ in (3.8) and the conditions (C1)–(C3) on the distribution of X.

Theorem 3.1. Assume the standard conditions on (Xi) and that p = pn → ∞ satisfies

• p = O(n(s−2)/2) if (C1) holds.

• p = exp(o(g2
n ∧ n1/3)) where gn is the solution of the equation g2

n = g(gn
√

n), if
(C2) holds.
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• p = exp(o(n1/3)) if (C3) holds.

Then we have

pP(Sn/
√

n > dp + x/dp) ∼ p Φ(dp + x/dp) → e −x, n → ∞, x ∈ R . (3.10)

Remark 3.2. The proofs of these results follow from the definition of dp and precise
large deviation bounds of the type

sup
0≤y≤γn

111
P(Sn/

√
n > y)

Φ(y)
− 1

111 → 0 , n → ∞ , (3.11)

where γn → ∞ are sequences depending on the conditions (C1)–(C3). If (C3) holds,
one can choose γn = o(n1/6) implying the growth rate p = exp(o(n1/3)). This follows
from Petrov’s large deviation result [98, Theorem VIII.2]. Under (C2) one can choose
γn = o(n1/6 ∧ gn) implying the growth rate p = exp(o(g2

n ∧ n1/3)). This follows from
S.V. Nagaev’s [87, Theorem 3]. Under (C1) he also derived γn =

&
(s/2 − 1) log n in [87,

Theorem 4]. The best possible range under (C1) is γn =
&

(s − 2) log n; see Michel [83,
Theorem 4].

The aforementioned large deviation results cannot be improved in general unless
additional conditions are assumed. For example, under (C3) if the cumulants of X of
order k = 3, . . . , r + 2 vanish then (3.10) holds for p = exp(o(n(r+1)/(r+3))). This follows
from the fact that one can choose γn = o(n(r+1)/(2(r+3))); see [98, Theorem VIII.7]. In
Section VIII.3 of [98] one also finds necessary and sufficient conditions for (3.11) to hold in
certain intervals. As a matter of fact, such conditions are not of moment–type. Therefore
one cannot expect that necessary and sufficient conditions for (3.10) for general sequences
(pn) can be expressed in terms of moments. There is however a clear relationship between
possible rates of (pn) and the existence of moments: the higher moments exist the larger
we can choose (pn), but the growth cannot be arbitrarily fast.

In passing we mention a sharp large deviation result for a sequence of i.i.d. regularly
varying random variables (Xi) with tail index α > 2, i.e., a generic element X has tails

P(±X > x) ∼ p±
L(x)
xα

, x → ∞ , (3.12)

where p+ + p− = 1 and L is slowly varying. Then, due to S.V. Nagaev’s results in [90],
one has (3.11) with γn =

√
c1 log n for c1 < α − 2, while for ξn =

√
c2 log n and any

c2 > α − 2,

sup
y>ξn

111
P(±Sn/

√
n > y)

n F (y
√

n)
− p±

111 → 0 , n → ∞ . (3.13)

There exists a small but increasing literature on precise large deviation results; we refer
to [41, 104] and the references therein.

Now consider i.i.d. copies (S(i)
n )i≥1 of (Sn). The following result is an immediate

consequence of Theorem 3.1.

Theorem 3.3. Assume the conditions of Theorem 3.1. Relation (3.10) is equivalent to
either of the following two limit relations:

P
#

dp max
i=1,...,p

(S(i)
n /

√
n − dp) ≤ x

%
→ Λ(x) , x ∈ R , n → ∞ . (3.14)
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and

Nn =
p(

i=1
ε

dp (S
(i)
n /

√
n−dp)

d→ N =
∞(

i=1
ε− log Γi , n → ∞ . (3.15)

where Γi = E1 + · · · + Ei, i ≥ 1, and (Ei) is i.i.d. standard exponential, i.e., N is a
Poisson random measure with mean measure µ(x, ∞) = e −x, x ∈ R.

Proof. Following Resnick [102, Theorem 5.3], (3.15) and (3.10) are equivalent. Moreover,
a continuous mapping argument implies that, if Nn

d→ N , then

P(Nn(x, ∞) = 0) = P
#

dp max
i=1,...,p

(S(i)
n /

√
n − dp) ≤ x

%

→ P(N(x, ∞) = 0) = P(− log Γ1 ≤ x) = exp(−e −x) .
(3.16)

Moreover, if (3.14) holds a Taylor expansion argument shows that

P
#

dp max
i=1,...,p

(S(i)
n /

√
n − dp) ≤ x

%
=

#
1 − pP(Sn/

√
n > dp + x/dp)

p

%p

→ exp(−e −x) , n → ∞ ,

holds if and only if (3.10) does.

This means that in case of i.i.d. points (S(i)
n ) the convergence of the maximum is

equivalent to the convergence of the point processes (Nn). In general, the latter is a
stronger statement. If (Nn) converges, the distribution of the maximum can always be
recovered using (3.16).

3.3 Main results

3.3.1 Point process convergence of a sample covariance matrix
We consider the sample covariance matrix S = (Sij)i,j=1,...,p introduced in Section 3.1.2.
The problem of showing limit theory for the associated point process is similar to The-
orem 3.3 for i.i.d. random walks (S(i)

n ). In contrast to the i.i.d. copies (S(i)
n ) in Section

3.2 here we deal with p(p − 1)/2 dependent off–diagonal entries of S. Nevertheless, The-
orem 3.1 will again be a main tool for proving these results.

Since the summands of Sij are i.i.d. products XitXjt we need to adjust the conditions
(C2) and (C3) to this situation while (C1) remains unchanged.

(C2’) There exists an increasing differentiable function g on (0, ∞) such that
E[exp(g(|X11X12|))] < ∞, g′(x) ≤ τg(x)/x for sufficiently large x and some τ < 1,
and limx→∞ g(x)/ log x = ∞.

(C3’) There exists a constant h > 0 such that E[exp(h |X11X12|)] < ∞.

Remark 3.4. By Lemma 3.20, (C3’) implies (C3). The reverse implication is not true.
For example, if X is standard exponential, which satisfies (C3), then X11X21 has Weibull-
type tail with parameter 1/2; see [7]; which does not satisfy (C3’). By Lemma 3.20, (C2’)
implies E[exp(g(|X|)] < ∞.

Theorem 3.5. Assume the standard conditions on (Xit) and that p = pn → ∞ satisfies:
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• p = O(n(s−2)/4) if (C1) holds.

• p = exp(o(g2
n ∧ n1/3)), where gn is the solution of the equation g2

n = g(gn
√

n), if
(C2’) holds.

• p = exp(o(n1/3)) if (C3’) holds.

Define ?dp = dp(p−1)/2. Then the following point process convergence holds:

NS
n :=

(

1≤i<j≤p

ε?dp(Sij/
√

n−?dp)
d→ N ,

where N is the Poisson random measure defined in (3.15).

The proof is given in Section 3.6.1.

Some comments

• The point process convergence in Theorem 3.5 remains valid if the standard con-
ditions on (Xit) are relaxed to the following two conditions:

– The columns x1, . . . , xn of the matrix (Xit)i=1,...,p;t=1...,n are i.i.d..
– The random variables X11, . . . , Xp1 are independent, with mean zero and unit

variance, but they are not necessarily identically distributed.

The proof is the same as that of Theorem 3.5. All results in Section 3.3 hold under
these relaxed conditions. For clarity of presentation and proof, all statements are
presented under the standard conditions.

• Theorem 3.5 can be extended by introducing additional time stamps:
(

1≤i<j≤p

ε!
(i,j)

p ,?dp(Sij/
√

n−?dp)
" d→ ?N , n → ∞ ,

on {(x1, x2) : 0 ≤ x1 ≤ 1 , x1 ≤ x2}×R where ?N is a Poisson random measure with
mean measure LEB × µ. This follows for example by using the techniques of [103,
Proposition 3.21].

• Under any of the moment conditions (C2’),(C3’) one can choose p ∼ γn for γ > 0
in Theorem 3.5. Under (C1), one needs the condition E[|X|6] < ∞ in order to
guarantee p = O(n). This is in agreement with the minimal moment requirement
for the results on Wn (see (3.3)).

Next we consider the order statistics of Sij , 1 ≤ i < j ≤ p:

min
1≤i<j≤p

Sij =: S(p(p−1)/2) ≤ · · · ≤ S(1) := max
1≤i<j≤p

Sij .

Theorem 3.5 implies the convergence of the largest and smallest off–diagonal entries of
S.
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Corollary 3.6. Under the conditions of Theorem 3.5 we have joint convergence of the
upper and lower order statistics: for any k ≥ 1,

?dp

!
S(i)/

√
n − ?dp

"
i=1,...,k

d→ (− log Γi)i=1,...,k , (3.17)

?dp

!
S(i)/

√
n + ?dp

"
i=p(p−1)/2,...,p(p−1)/2−k+1

d→ (log Γi)i=1,...,k . (3.18)

Moreover, the properly normalized maxima and minima are asymptotically independent,
that is for any x, y ∈ R we have as n → ∞,

P
#

?dp(S(1)/
√

n − ?dp) ≤ x , ?dp(S(p(p−1)/2)/
√

n + ?dp) ≤ y
%

→ Λ(x)(1 − Λ(−y)) . (3.19)

Proof. Relation (3.17) is immediate from NS
n

d→ N and the continuous mapping theorem.
The same argument works for (3.18) if one observes that

?dp

!
S(i)/

√
n + ?dp

"
i=p(p−1)/2,...,p(p−1)/2−k+1 = − ?dp

!
(−S)(i)/

√
n − ?dp

"
i=1,...,k

where (−S)(i) is the ordered sample of (−Sij). An application of (3.17) with (Sij)
replaced by (−Sij) then yields (3.18).

Now we consider joint convergence of the maximum and the minimum: for x, y ∈ R,

Gn(x, y) = P
#

?dp(S(1)/
√

n − ?dp) ≤ x , ?dp(S(p(p−1)/2)/
√

n + ?dp) > y
%

= P
#

− ?dp + y/ ?dp < Sij/
√

n ≤ ?dp + x/ ?dp for all 1 ≤ i < j ≤ p
%

= 1 − P
# F

1≤i<j≤p

{Sij/
√

n > ?dp + x/ ?dp} ∪ {−Sij/
√

n ≥ ?dp − y/ ?dp}
%

.

Writing

Aij = {Sij/
√

n > ?dp + x/ ?dp} ∪ {−Sij/
√

n ≥ ?dp − y/ ?dp} ,

one can use the same arguments used for establishing P(NS
n (B) = 0) → P(N(B) = 0) in

the proof of Theorem 3.5 to show that

Gn(x, y) → exp
!

− (e y + e −x)
"

= Λ(x)Λ(−y) , n → ∞ .

Hence

P
#

?dp(S(1)/
√

n − ?dp) ≤ x , ?dp(S(p(p−1)/2)/
√

n + ?dp) ≤ y
%

= P
#

?dp(S(1)/
√

n − ?dp) ≤ x
%

− Gn(x, y)

→ Λ(x) − Λ(x)Λ(−y) = Λ(x)(1 − Λ(−y)) , n → ∞ .

Remark 3.7. An immediate consequence is

S(1)√
n log p

P→ 2 and
S(p(p−1)/2)√

n log p

P→ −2 .



54 3. The off-diagonal point process

Remark 3.8. If E[|X|s] < ∞ for some s > 4 and var(X2) > 0, we conclude from
Theorem 3.3 that for p = O(n(s−4)/4),

p(

i=1
ε

dp

!
(Sii−n)/

√
nvar(X2)−dp

" d→ N . (3.20)

In particular,
!

maxi=1,...,p dp

!
(Sii − n)/

&
nvar(X2) − dp

""
converges to a Gumbel dis-

tribution. We notice that dp ∼
√

2 log p while the normalizing and centering constants
for (Sij/

√
n)i ∕=j , in (3.19) are ?dp ∼ 2

√
log p.

Moreover, while we still have Gumbel convergence for the maxima of the off–diagonal
elements Sij for suitable (pn) if E[|X|s] < ∞ for some s ∈ (2, 4), the point process
convergence in (3.20) cannot hold. Indeed, then an appeal to Nagaev’s large deviation
result (3.13) shows that, under the regular variation condition (3.12) on X with α ∈ (2, 4),

p(

i=1
εa−2

np (Sii−n)
d→ N ,

where N is Poisson random measure on the state space (0, ∞) with mean measure
µα(x, ∞) = x−α/2, x > 0, and ak satisfies kP(|X| > ak) → 1 as k → ∞. In partic-
ular, the maxima of (Sii) converge toward a standard Fréchet distribution:

P
#

a−2
np max

i=1,...,p
(Sii − n) ≤ x

%
→ Φα/2(x) = exp(−x−α/2) , x > 0 .

Assume (3.12) on X with α ∈ (2, 4). If we construct a point process by choosing the
normalization a2

np for the diagonal and off–diagonal entries, the contribution of the (Sij)
vanishes in the limit:

p(

i=1
εa−2

np (Sii−n) +
(

1≤i<j≤p

εa−2
np Sij

d→ N .

It is also proved in Heiny and Mikosch [60] that the diagonal entries (Sii) of the sam-
ple covariance matrix dominate the off–diagonal terms in operator norm, that is ‖S −
diag(S)‖/‖ diag(S)‖ P→ 0 as n → ∞. In turn, the asymptotic behavior of the largest
eigenvalues of the sample covariance matrix are determined by the corresponding largest
values of (Sii).

The techniques in this paper straightforwardly extend to other transformations of the
points (Sij). As an example, we provide one such result for the squares (S2

ij).

Corollary 3.9. Assume the conditions of Theorem 3.5. Then

NS2

n =
(

1≤i<j≤p

ε0.5S2
ij

/n−0.5 ?d2
p−log 2

converges to the Poisson random measure N described in Theorem 3.5.

Proof. One can follow the arguments in the proof of Theorem 3.5. In order to show
condition (i), observe that for x ∈ R,

E
@
NS2

n (x, ∞)
A

= p(p − 1)
2 P

#S2
12

2n
−

?d2
p

2 − log 2 > x
%

= p(p − 1)
2 P

#111
S12√

n

111 >

G
2(x + log 2) + ?d2

p

%

∼ p2 Φ
#G

2(x + log 2) + ?d2
p

%
→ e −x , n → ∞ .
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3.3.2 Point process convergence of a sample correlation matrix
Based on Theorem 3.5 we can also derive point process convergence for the sample
correlation matrix R = (Rij)i,j=1,...,p defined in (3.1) and (3.2).

Theorem 3.10. Assume the standard conditions on (Xit) and that p = pn → ∞ satisfies:

• p = O(n(s−2)/4) if (C1) holds.

• p = exp(o(g2
n ∧ n1/3)) where gn is the solution of the equation g2

n = g(gn
√

n) if
(C2’) holds.

• p = exp(o(n1/3)), if (C3’) holds.

Then the following point process convergence holds,

NR
n :=

(

1≤i<j≤p

ε?dp(
√

nRij−?dp)
d→ N ,

where N is the Poisson random measure defined in (3.15).

The proof is given in Section 3.6.3.
The results for the order statistics of Rij , 1 ≤ i < j ≤ p:

min
1≤i<j≤p

Rij =: R(p(p−1)/2) ≤ · · · ≤ R(1) := max
1≤i<j≤p

Rij ,

carry over from those for the order statistics of (Sij).

Corollary 3.11. Under the conditions of Theorem 3.10 we have joint convergence of
the upper and lower order statistics: for any k ≥ 1,

?dp

!√
nR(i) − ?dp

"
i=1,...,k

d→ (− log Γi)i=1,...,k ,

?dp

!√
nR(i) + ?dp

"
i=p(p−1)/2,...,p(p−1)/2−k+1

d→ (log Γi)i=1,...,k .

Moreover, for any x, y ∈ R,

lim
n→∞

P
#

?dp(
√

nR(1) − ?dp) ≤ x , ?dp(
√

nR(p(p−1)/2) + ?dp) ≤ y
%

= Λ(x)(1 − Λ(−y)) .

and 3
n

log p
R(1)

P→ 2 and
3

n

log p
R(p(p−1)/2)

P→ −2 .

3.4 Extensions and applications

3.4.1 Extensions
In this section, we extend our results for the point processes constructed from the off–
diagonal entries of the sample covariance matrices Sn =

2n
t=1 xtx⊤

t , where xt are the
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p–dimensional columns of the data matrix X. We introduce the hypercubic random
matrices (or tensors) of order m:

S(m) = S(m)
n =

n(

t=1
xt ⊗ · · · ⊗ xtH IJ K

m times

, m ∈ N , n ≥ 1 . (3.21)

with entries

S
(m)
i1,...,im

=
# n(

t=1
Xi1tXi2t · · · Ximt

%
, 1 ≤ i1, . . . , im ≤ p .

It is easy to see that S(2) = S arises as a special case.
Next, we generalize the moment conditions (C2’) and (C3’) to the m–fold product

X11 · · · X1m.

(C2(m)) There exists an increasing differentiable function g on (0, ∞) such that
E[exp(g(|X11 · · · X1m|))] < ∞, g′(x) ≤ τg(x)/x for sufficiently large x and some
τ < 1, and limx→∞ g(x)/ log x = ∞.

(C3(m)) There exists a constant h > 0 such that E[exp(h |X11 · · · X1m|)] < ∞.

The following result extends Theorem 3.5 to hypercubic matrices of order m.

Theorem 3.12. Let m ∈ N and define dp,m = d( p
m). Assume the standard conditions on

(Xit) and that p = pn → ∞ satisfies:

• p = O(n(s−2)/4) if (C1) holds.

• p = exp(o(g2
n ∧ n1/3)), where gn is the solution of the equation g2

n = g(gn
√

n), if
(C2(m)) holds.

• p = exp(o(n1/3)) if (C3(m)) holds.

Then the following point process convergence holds:

N (m)
n =

(

1≤i1<···<im≤p

ε
dp,m(S

(m)
i1,...,im

/
√

n−dp,m)
d→ N ,

where N is the Poisson random measure defined in (3.15).

The proof is given in Section 3.6.2. Since dp,m ∼
√

2m log p, Theorem 3.12 implies
the convergence of the largest and smallest off–diagonal entries of S(m).

Corollary 3.13. Under the assumptions of Theorem 3.12, we have, as n → ∞,

max
1≤i1<···<im≤p

S
(m)
i1,...,im√
n log p

P→
√

2m and min
1≤i1<···<im≤p

S
(m)
i1,...,im√
n log p

P→ −
√

2m .

Analogously to Corollary 3.6, Theorem 3.12 yields the joint weak convergence of the
off–diagonal entries of S(m), thus extending Theorems 1 and 2 in [67] on the asymptotic
Gumbel property of the largest off–diagonal entry of S(m).
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3.4.2 An application to threshold based estimators
A fundamental task in statistics is the estimation of the population covariance or cor-
relation matrix of a multivariate distribution. If the dimension p becomes large, the
sample versions n−1S and R cease to be suitable estimators. Even for our simple model
in Section 3.1.2, i.e., when the population covariance and correlation matrices are the
p–dimensional identity matrix Ip, the estimators n−1S and R are not asymptotically
consistent for Ip. This phenomenon was explored in [59] among many other papers.
Assuming E[X4] < ∞ and p/n → γ ∈ [0, ∞), [59] shows that, as n → ∞,

&
n/p ‖n−1S − Ip‖ P→ 2 + √

γ and
&

n/p ‖R − Ip‖ P→ 2 + √
γ .

Note that p is allowed to grow at a slower rate than n. It was also observed in [59] that
&

n/p ‖n−1 diag(S) − Ip‖ P→ 0 . (3.22)

We would like to construct estimators LS, LR based on S and R, respectively, such that
as n → ∞, &

n/p ‖n−1LS − Ip‖ P→ 0 and
&

n/p ‖ LR − Ip‖ P→ 0. (3.23)

In view of (3.22), we know that we are able to deal with the diagonal. A natural
approach is to eliminate the smallest off–diagonal entries by thresholding. Bickel and
Levina [18, 19] considered estimators of the form

LS =
!
Sij1(|Sij | > n tn)

"
and LR =

!
Rij1(|Rij | > tn)

"
, (3.24)

for some threshold sequence tn → 0. Choosing tn = tn(C) = C
&

(log p)/n with a
sufficiently large constant C, [18, Theorem 1] shows (3.23) for standard normal X. In
view of Remark 3.7, the order of the threshold perfectly matches the order of the largest
off–diagonal entries. Based on our results, we provide a simple proof of (3.23) for a more
general class of distributions.

Corollary 3.14. Assume p/n → γ ∈ [0, ∞) and the conditions of Theorem 3.10. Then
the estimators LR, LS in (3.24) specified for tn(C), C > 2, satisfy relation (3.23).

Proof. The diagonal part is taken care of by (3.22) and the fact that diag(R) = Ip.
The off–diagonal entries of LR and LS asymptotically vanish in view of Remark 3.7 and
Corollary 3.11, respectively.

Corollary 3.14 shows that the order of the threshold tn(C) is not affected by the
distributional assumption. Under (C1) we thus allow for p = O(n(s−2)/4) provided
E[|X|s] < ∞. For comparison, Bickel and Levina [18, p. 2585] showed the first limit
relation in (3.23) for the bigger threshold tn(C) = Cp4/s/

√
n and dimension p = o(ns/8).

3.4.3 An independence test
If the data (Xit) is centered Gaussian with identical distribution the null hypothesis of
independence is equivalent to H0 : n−1E[S] = Ip. Based on (3.3), Jiang [66] proposed
the following test of H0 with significance level α ∈ (0, 1):

Ψα = 1(nW 2
n − 4 log p + log log p ≥ qα) ,
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where
qα = − log(8π) − 2 log log(1 − α)−1

is the (1 − α)–quantile of the limiting non–standard Gumbel distribution. If Ψα = 1, we
reject H0. Properties of this test are studied in [32].

In view of Corollary 3.6 we can propose a multitude of alternative tests based on the
joint asymptotic distribution of the k largest or smallest off–diagonal entries of S and R,
respectively. Under the conditions of Theorem 3.5 we have as n → ∞,

?dp

# (S(1), . . . , S(k))√
n

− ?dp

%
d→ (− log Γ1, . . . , − log Γk)

and Γi = E1 + · · · + Ei for i.i.d. standard exponential random variables (Ej). For k ≥ 1
and α ∈ (0, 1), consider a set Aα

k ⊂ Rk such that

P
!
(− log Γ1, . . . , − log Γk) ∈ Aα

k

"
= 1 − α

and define the test T (Aα
k ) by

T (Aα
k ) = 1

#
?dp

# (S(1), . . . , S(k))√
n

− ?dp

%
/∈ Aα

k

%
.

If T (Aα
k ) = 1, we reject H0. Then T (Aα

k ) is an asymptotic independence test with
significance level α.

Convenient univariate test statistics can be constructed from spacings of S(1), . . . , S(k).
An advantage of using spacings is that one avoids centering by ?dp. For example, consider
for some k ≥ 2,

T
(1)
k = ?dp (S(1) − S(k))/

√
n ,

T
(2)
k = ?dp max

i=1,...,k−1
(S(i) − S(i+1))/

√
n ,

T
(3)
k = ?d2

p

1
n

k−1(

i=1
(S(i) − S(i+1))2 .

Recall the well–known fact that
# Γ1

Γk+1
, . . . ,

Γk

Γk+1

%
d=

!
U(k), . . . , U(1)

"
,

where the right–hand vector consists of the order statistics of k i.i.d. uniform random
variables on (0, 1). Then we have

T
(1)
k

d→ log
!
Γk/Γ1

"
= log Γk/Γk+1

Γ1/Γk+1

d= log
!
U(1)/U(k)

"
,

T
(2)
k

d→ max
i=1,...,k−1

log(Γi+1/Γi)
d= max

i=1,...,k−1
log(U(k−i)/U(k−i+1)) ,

T
(3)
k

d→
k−1(

i=1
(log(Γi+1/Γi))2 d=

k−1(

i=1
(log(U(k−i)/U(k−i+1)))2 .

Now, choosing qα as the (1 − α)–quantiles of the limiting random variables we have
T (Aα

k ) = 1(T (i)
k > qα), i = 1, 2, 3.
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3.5 Proof of Theorem 3.1

In view of Remark 3.2 it suffices to prove the theorem under (C1). Throughout this proof
we assume the standard conditions on (Xit).

We start with a useful auxiliary result due to Einmahl [44] (Corollary 1(b), p. 31, in
combination with Remark on p. 32).

Lemma 3.15. Consider independent Rd–valued random vectors ξ1, . . . , ξn with mean
zero. Assume that ξi, i = 1, . . . , n, has finite moment generating function in some
neighborhood of the origin and that the covariance matrix var(ξ1 + · · · + ξn) = BnId

where Bn > 0 and Id denotes the identity matrix. Let ηk be independent N(0, σ2var(ξk))
random vectors independent of (ξk), and σ2 ∈ (0, 1]. Let ξ∗

k = ξk + ηk, k = 1, . . . , n, and
write p∗

n for the density of B
−1/2
n (ξ∗

1 + · · · + ξ∗
n). Choose α ∈ (0, 0.5) such that

α

n(

k=1
E[|ξk|3 exp(α|ξk|)] ≤ Bn , (3.25)

and write

βn = βn(α) = B−3/2
n

n(

k=1
E[|ξk|3 exp(α|ξk|)] ,

where |x| denotes the Euclidean norm. If

|x| ≤ c1α B1/2
n , σ2 ≥ −c2β2

n log βn , Bn ≥ c3α−2 , (3.26)

where c1, c2, c3 are constants only depending on d, then

p∗
n(x) = ϕ(1+σ2)Id

(x) exp(T n(x)) with |T n(x)| ≤ c4βn (|x|3 + 1) , (3.27)

where ϕΣ is the density of a N(0, Σ) random vector and c4 is a constant only depending
on d.

Proof under (C1). We proceed by formulating and proving various auxiliary results.
We will use the following notation: c denotes any positive constant whose value is not
of interest, sometimes we write c0, c1, c2, . . . for positive constants whose value or size is
relevant in the proof,

Xi = Xi1(|Xi| ≤ n1/s) − E[X1(|X| ≤ n1/s)] , Xi = Xi − Xi ,

Sn =
n(

i=1
Xi , Sn = Sn − Sn .

Next we consider an approximation of the distribution of Sn.

Lemma 3.16. Let ?pn be the density of

n−1/2
n(

i=1
(Xi + σnNi)

where (Ni) is i.i.d. N(0, 1), independent of (Xi) and σ2
n = var(X)s2

n. If n−2c6 log n ≤
s2

n ≤ 1 with c6 = 0.5 − (1 − δ)/s for arbitrarily small δ > 0, then the relation

?pn(x) = ϕ1+σ2
n
(x)(1 + o(1)) , n → ∞ ,

holds uniformly for |x| = o(n1/6−1/(3s)).
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Proof. We apply Lemma 3.15 to the i.i.d. random variables ξi = Xi, i = 1, . . . , n. Notice
that E[X] = 0 and Bn = var(Sn) = n var(X). Choose ?α = c5n−1/s. Then

?α
n(

i=1
E[|Xi|3 exp(?α|Xi|)] = ?α nE[|X|3 exp(?α|X|)]

≤ c5 n1−1/s E[|X|3] exp(2c5)
≤ 8c5 exp(2c5)n1−δ/s E[|X|2+δ] ,

where δ ∈ (0, 1) is chosen such that E[|X|2+δ] < ∞. Hence (3.25) is satisfied for α = ?α
and sufficiently small c5.

Next choose

?βn = B−3/2
n

n(

i=1
E

@
|Xi|3 exp(?α|Xi|)

A
= B−3/2

n nE[|X|3 exp(?α|X|)]

≤ c B−3/2
n n1+(1−δ)/s E[|X|2+δ] ≤ c n−c6 , (3.28)

where δ is chosen as above and c6 = 0.5 − (1 − δ)/s.
Next we consider (3.26). We can choose x according to the restriction

|x| ≤ c1 ?α B1/2
n ∼ c n1/2−1/s . (3.29)

By (3.26) and (3.29) we can choose σ2 = σ2
n according as

1 ≥ σ2
n ≥ c log n n−2c6 . (3.30)

Moreover, Bn ≥ c3 ?α−2. An application of (3.27) yields

?pn(x) = ϕ1+σ2
n
(x) exp(T n(x)) for |T n(x)| ≤ c4 ?βn(|x|3 + 1) ,

but in view of (3.28) and (3.29), ?βn(|x|3+1) = o(1) uniformly for |x|3 = o(min(n0.5−1/s, nc6)) =
o(n0.5−1/s) for arbitrarily small δ > 0. That is, the remainder term |T n(x)| converges to
zero, uniformly for the x considered. This proves the lemma.

We add another auxiliary result.

Lemma 3.17. Assume that p = pn → ∞ and p = O(n(s−2)/2). Then for x ∈ R, c6 as
in Lemma 3.16, an i.i.d. N(0, 1) sequence (Ni) and σ2

n = c log n n−2c6 , we have

pP
#

n−1/2
n(

i=1
(Xi + σnNi) > dp + x/dp

%
→ e −x , n → ∞ .

Proof. Write yn =
&

(s − 2) log n. By virtue of Lemma 3.16 we observe that for any
C > 1,

P1 = P
#

dp + x/dp < n−1/2
n(

i=1
(Xi + σnNi) ≤ yn

%
∼

$ yn

dp+x/dp

ϕ1+σ2
n
(y) dy ,

P2 = P
#

yn < n−1/2
n(

i=1
(Xi + σnNi) ≤ C yn

%
∼

$ Cyn

yn

ϕ1+σ2
n
(y) dy .
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However, using Mill’s ratio and the definition of dp, we have that

p P1 ∼ e −x

Φ
#dp + x/dp&

1 + σ2
n

%

Φ(dp + x/dp)
− p Φ

# yn&
1 + σ2

n

%

∼ e −x exp
#

0.5(dp + x/dp)2 σ2
n

1 + σ2
n

%
− 1√

2π
&

(s − 2) log n
p n−(s−2)/2 ,

but the right-hand side converges to e−x since (dp+x/dp)2σ2
n ∼ d2

pσ2
n = o(1), p n−(s−2)/2 =

O(1) and (log n)2n−2c6 = o(1). A similar argument shows pP2 → 0.
We also have

P
#

n−1/2
n(

i=1
(Xi + σnNi) > C yn

%
≤ P

#
n−1/2Sn > 0.5 C yn

%
+ Φ

!
0.5 Cyn/σn

"

= P3 + P4 .

It is easy to see that pP4 → 0. We observe that

|Xi| ≤ n1/s
!
1 + o(n−1/s)

"
= cn , a.s.

var(X) ≤ E[X21(|X| ≤ n1/s)] ≤ var(X) = 1 .

We apply Prokhorov’s inequality (Petrov [98, Chapter III.5]) for any C > 1,

pP
!
Sn > C

√
n yn

"
≤ p exp

#
−

C
&

(s − 2)n log n

2cn
log

!
1 +

C
&

(s − 2)n log n cn

2nvar(X)
"%

≤ p exp
!

− C2

2
(s − 2) log n

4
"

= p n−C2(s−2)/8.

The right-hand side converges to zero for sufficiently large C. This proves the lemma.

Write (Xit)t≥1 for the i.i.d. sequence of the summands constituting S
(i)
n and

S
(i,N)
n =

n(

t=1
(Xit + σnNi) =: S

(i)
n + σn

√
n ?Ni ,

where ( ?Ni) are i.i.d. standard normal random variables independent of everything else.
Then by Lemma 3.17,

P
#

max
i=1,...,p

dp (S(i,N)
n /

√
n − dp) ≤ x

%
→ Λ(x) , x ∈ R , n → ∞ .

We have

dpn−1/2 max
i=1,...,p

11S(i)
n − S

(i,N)
n | ≤ dp max

i=1,...,p
|σn( ?Ni − dp)| + σn d2

p

≤ dpσn max
i=1,...,p

| ?Ni − dp| + σn d2
p

= OP(d2
pσn) = oP(1) , n → ∞ .
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Therefore

P
#

dp

!
max

i=1,...,p
(S(i)

n /
√

n − dp) ≤ x
%

→ Λ(x) , x ∈ R , n → ∞ , (3.31)

and the latter relation is equivalent to

pP(Sn/
√

n > dp + x/dp) → e −x , x ∈ R , n → ∞ . (3.32)

Our next goal is to prove that we can replace Sn by Sn in the latter relation. In view
of the equivalence between (3.31) and (3.32) it suffices to show (3.31) with S

(i)
n replaced

by S
(i)
n . Therefore we will show that

dp√
n

max
i=1,...,p

11S(i)
n

11 P→ 0 .

We have by the Fuk–Nagaev inequality [99, p. 78] for y > 0 and suitable constants
c0, c1 > 0,

P
#

dp max
i=1,...,p

|S(i)
n /

√
n| > y

%
≤ pP

!
|Sn| >

√
ny/dp

"

≤ c0nE[|X|s]
!√

ny

dp

"−s + exp
#

− c1
y2

d2
p var(X)

%
.(3.33)

Using partial integration and Markov’s inequality of order s, we find that var(X) ≤
c n−0.5+1/(2s) holds if E[|X|s] < ∞. Combining this bound with the rate p = O(n−(s−2)/2),
we see that d2

p var(X) → 0 and therefore the exponential term in (3.33) vanishes. The
polynomial term in (3.33) converges to zero for the same reason. This proves (3.31) with
S

(i)
n replaced by S

(i)
n and finishes the proof of the theorem.

3.6 Proofs of sample covariance and correlation results

3.6.1 Proof of Theorem 3.5
By Kallenberg’s criterion for the convergence of simple point processes (see for instance
[46, p. 233, Theorem 5.2.2]) it suffices to verify the following conditions:

(i) For any −∞ < a < b < ∞, one has E[NS
n (a, b]] → E[N(a, b]] = µ(a, b] as n → ∞.

(ii) For B = ∪ℓ
i=1(bi, ci] ⊂ (−∞, ∞) with −∞ < b1 < c1 < · · · < bℓ < cℓ < ∞, one has

P(NS
n (B) = 0) → P(N(B) = 0) = e −µ(B) as n → ∞.

We start with (i). Note that µ(a, b] = e −a − e −b. Since the assumptions of Theorem 3.1
hold it follows from (3.10) (with p replaced by p(p − 1)/2), that as n → ∞

E[NS
n (a, b]] = p(p − 1)

2 P
! ?dp + a/ ?dp < S12/

√
n < ?dp + b/ ?dp) → µ(a, b] .

To show (ii), we consider

1 − P(NS
n (B) = 0) = P

# F

1≤i<j≤p

Aij

%
, Aij = { ?dp(Sij/

√
n − ?dp) ∈ B} .
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By an inclusion–exclusion argument we get for k ≥ 1,

2k(

d=1
(−1)d−1Wd ≤ P

# F

1≤i<j≤p

Aij

%
≤

2k−1(

d=1
(−1)d−1Wd , (3.34)

where
Wd =

2
(I,J)∈Id

P(Ai1j1 ∩ · · · ∩ Aidjd
) =:

2
(I,J)∈Id

q(I,J)

and the summation runs over the set

Id = {(I, J) = ((i1, j1), . . . , (id, jd)) such that 1 ≤ it < jt ≤ p, t = 1, . . . , d ,

and (i1, j1) < (i2, j2) < · · · < (id, jd)} .

In the definition of Id, we use the lexicographic ordering of pairs (is, js), (it, jt):

(is, js) < (it, jt) if and only if is < it or (is = it and js < jt) .

A combinatorial argument yields

|Id| =
4 p(p−1)

2
d

5
∼ 1

d!

#p2

2

%d

, n → ∞ . (3.35)

Proof of (ii) under (C1). Consider the set LId consisting of all elements (I, J) ∈ Id

such that all it, jt, t = 1, . . . , d are mutually distinct. For (I, J) ∈ LId the random variables
Sit,jt , t = 1, . . . d, are i.i.d. and therefore

q(I,J) =
!
P(A12)

"d
. (3.36)

For (I, J) ∈ Id\LId we write

S(I,J)
n =

!
Si1j1 , . . . , Sid,jd

"⊤ =
n(

t=1

!
Xi1tXj1t, . . . , XidtXjdt

"⊤ =:
n(

t=1
ξt ,

and also 1 = (1, . . . , 1)⊤ ∈ Rd. The i.i.d. Rd–valued summands ξt with generic element
ξ have mean zero and covariance matrix Id. We have

q(I,J) = P
#

n−1/2S(I,J)
n ∈ ?dp 1 + Bd/ ?dp

%

We will apply Lemma 3.15 to (ξt). We will prove it under (C1); the proof under (C2’) and
(C3’) is analogous; we will indicate some necessary changes. In this case, E[|ξi|s] < ∞
for some s > 2. Write

ξt =
#

ξ
(l)
t 1

!
|ξ(l)

t | ≤ n1/s
"

− E[ξ(l)1(|ξ(l)| ≤ n1/s)]
%⊤

l=1,...,d
,

ξ
t

= ξt − ξt ,

S(I,J)
n =

n(

t=1
ξt , S(I,J)

n = S(I,J)
n − S(I,J)

n =
n(

t=1
ξ

t
.

Proceeding as in the proof of Lemma 3.16, we obtain the following result.
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Lemma 3.18. Let ?pn be the density of

n−1/2
n(

i=1
(ξi + σnNi)

where (Ni) is i.i.d. N(0, Id), independent of (ξi) and σ2
n = var(ξ(1))s2

n. If n−2c6 log n ≤
s2

n ≤ 1 with c6 = 0.5 − (1 − δ)/s for arbitrarily small δ > 0, then the relation

?pn(x) = ϕ(1+σ2
n)Id

(x)(1 + o(1)) , n → ∞ ,

holds uniformly for |x| = o(n1/6−1/(3s)).

Following the lines of the proof of Lemma 3.17, we obtain the following result:

Lemma 3.19. Assume that p = pn → ∞ and p2 = O(n(s−2)/2). Then for σ2
n =

c log n n−2c6 and an i.i.d. N(0, 1) sequence ( ?Ni), uniformly for (I, J) in Id,

#p2

2

%d

q(I,J) ∼
#p2

2 P
#

n−1/2
n(

t=1

!
ξ

(1)
t + σn

?Ni

"
∈ B

%%d

∼ (µ(B))d . (3.37)

Finally, we need to prove that S(I,J)
n in (3.37) can be replaced by S(I,J)

n . However,
this follows in the same way as the corresponding steps in the proof of Theorem 3.3.
Indeed, since we need to show that n−1/2S(I,J)

n does not contribute asymptotically to
n−1/2S(I,J)

n it suffices to prove this fact for each of the components of n−1/2S(I,J)
n .

We conclude that as n → ∞

Wd =
# (

(I,J)∈Id\LId

+
(

(I,J)∈LId

%
q(I,J) ∼ 1

d!

#p2

2

%d!
P(A12)

"d ∼ (µ(B))d

d! . (3.38)

We recall that (3.34) provides an upper and lower bound for P(Nn(B) = 0). Letting first
n → ∞ and then k → ∞, thanks to (3.38) we see that both bounds converge to the same
limit. More precisely, we have

lim
n→∞

P (Nn(B) = 0) = 1 −
∞(

d=1
(−1)d−1

!
µ(B)

"d

d! =
∞(

d=0

!
− µ(B)

"d

d! = e−µ(B) .

The proof of (ii) is complete.
Proof of (ii) under (C2’), (C3’). Write b0 = min1≤q≤ℓ bq, c0 = max1≤q≤ℓ cq and for
(I, J) ∈ Id\LId,

?Sn = Si1j1 + · · · + Sidjd
=

n(

t=1
(Xi1tXj1t + · · · + XidtXjdt) .

We have

q(I,J) ≤ P
#! ?Sn

d
√

n
− ?dp

" ?dp ∈ (b0, c0]
%

= P
#√

d
!
b0/ ?dp + ?dp

"
<

?Sn√
d n

<
√

d
!
c0/ ?dp + ?dp

"%
(3.39)
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Note that ?Sn/
√

d has i.i.d. summands with mean zero and unit variance. Since
√

d(c0/ ?dp+
?dp) = o(n1/6) under (C3’) and

√
d(c0/ ?dp + ?dp) = o(n1/6 ∧ gn) under (C2’) applications

of [98, Theorem 1 in Section VIII.2] and [87, Theorem 4], respectively, yield

q(I,J) ≤ c
#

Φ
!√

d(b0/ ?dp + ?dp)
"

− Φ
!√

d(c0/ ?dp + ?dp)
"%

= O(p−2d+ε) .

for an arbitrarily small ε > 0. This shows that (3.38) holds. Now one can proceed as
under condition (C1).

3.6.2 Proof of Theorem 3.12
We proceed as in the proof Theorem 3.5 and show (i), (ii) therein. For −∞ < a < b < ∞,
it follows from (3.10) that as n → ∞

E[N (m)
n (a, b]] =

4
p

m

5
P

!
dp,m + a/dp,m < S12/

√
n < dp,m + b/dp,m)

→ e −a − e −b .

This proves condition (i). The proof of (ii) is completely analogous to the proof of
Theorem 3.5. The main difference is that i < j needs to be replaced with i1 < i2 < · · · <
im. For example, instead of the index set Id whose elements are d distinct m–tuples, with
|Id| =

!(p
2)
d

"
; see (3.35); one would get an index set I

(m)
d of d distinct m–tuples satisfying

|I(m)
d | =

!( p
m)
d

"
. We omit details.

3.6.3 Proof of Theorem 3.10
First, assume var(X2) = 0. Then Sii = n a.s. for all i and hence

√
nRij = Sij/

√
n so

that the claim follows immediately from Theorem 3.5.
In the remainder of this proof, we therefore assume var(X2) > 0. By Theorem 3.5,

we already know that the point processes NS
n converge to a Poisson random measure

with mean measure µ(x, ∞] = e−x, x > 0. Our idea is to transfer the convergence of NS
n

onto NR
n . To this end, it suffices to show that (see [70, Theorem 4.2]) NR

n − NS
n

P→ 0 as
n → ∞, or equivalently that for any continuous function f on R with compact support,

$
f dNR

n −
$

f dNS
n

P→ 0 , n → ∞ .

Suppose the compact support of f is contained in [K+γ0, ∞) for some γ0 > 0 and K ∈ R.
Since f is uniformly continuous, ω(γ) := sup{|f(x) − f(y)| : x, y ∈ R, |x − y| ≤ γ} tends
to zero as γ → 0. We have to show that for any ε > 0,

lim
n→∞

P
#111

(

1≤i<j≤p

#
f

!
(
√

nRij − ?dp) ?dp

"
− f

!
(Sij/

√
n − ?dp) ?dp

"%111 > ε
%

= 0 . (3.40)

On the sets

An,γ =
*

max
1≤i<j≤p

11 ?dp(
√

nRij − Sij/
√

n)
11 ≤ γ

+
, γ ∈ (0, γ0) , (3.41)

we have
11f

!
(
√

nRij − ?dp) ?dp

"
− f

!
(Sij/

√
n − ?dp) ?dp

"11 ≤ ω(γ) 1((Sij/
√

n − ?dp) ?dp > K) .
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Therefore, we see that, for γ ∈ (0, γ0),

P
#111

(

1≤i<j≤p

#
f

!
(
√

nRij − ?dp) ?dp

"
− f

!
(Sij/

√
n − ?dp) ?dp

"%111 > ε, An,γ

%

≤ P
#

ω(γ) #{1 ≤ i < j ≤ p : (Sij/
√

n − ?dp) ?dp > K} > ε
%

≤ ω(γ)
ε

E
@
#{1 ≤ i < j ≤ p : (Sij/

√
n − ?dp) ?dp > K}

A

= ω(γ)
ε

p(p − 1)
2 P((S12/

√
n − ?dp) ?dp > K)

H IJ K
→e−K by Theorem 3.1

.

(3.42)

Moreover, we have

P(Ac
n,γ) = P

#
max

1≤i<j≤p

11 ?dp(
√

nRij − Sij/
√

n)
11 > γ

%

= P
#

max
1≤i<j≤p

?dp
|Sij |√

n

111
n&

SiiSjj

− 1
111 > γ

%
.

Since max1≤i<j≤p(Sij/
√

n− ?dp) ?dp → Λ, we get that max1≤i<j≤p
?dp

|Sij |√
n

= OP( ?d2
p). Thus,

lim
n→∞

P(Ac
n,γ) = 0 (3.43)

is implied by

lim
n→∞

P
#

?d2
p max

1≤i<j≤p

111
n&

SiiSjj

− 1
111 > β

%
= 0 , β > 0 . (3.44)

Then taking the limits n → ∞ followed by γ → 0+ in (3.42) and (3.43) establishes (3.40).
It remains to prove (3.44). By the law of large numbers, |Sii/n| a.s.→ 1 as n → ∞. We

have

max
1≤i<j≤p

111
n&

SiiSjj

− 1
111 =

# n

min1≤i<j≤p

&
SiiSjj

− 1
%

∨
#

1 − n

max1≤i<j≤p

&
SiiSjj

%

≤ max
1≤i≤p

111
n

Sii
− 1

111

so that (3.44) follows from

lim
n→∞

P
#

?d2
p max

1≤i≤p

111
Sii

n
− 1

111 > β
%

= 0 , β > 0 . (3.45)

We have

P
#

?d2
p max

1≤i≤p

111
Sii

n
− 1

111 > β
%

≤ pP
# 1√

n

111
n(

t=1
(X2

1t − 1)
111 >

β
√

n

?d2
p

%
:= Ψn .

It remains to prove that Ψn → 0 under each of the conditions (C1), (C2’), (C3’).
First, assume (C1). Thus we have E[|X|s] < ∞ and p = O(n(s−2)/4) for some s > 2.

An application of Markov’s inequality yields

Ψn ≤ c ?ds
p n−(s+2)/4 E

@
|S11 − n|s/2A

.
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By [39, Lemma A.4] one has

E
@
|S11 − n|s/2A

≤ c nmax(1,s/4)

and therefore it is easy to conclude that Ψn = O((log n)s/2n−(1/4) min(s−2,2)) → 0 as
n → ∞.

Next, assume condition (C3’). By [98, Section VIII.4, No. 8], we have for 0 ≤ x ≤
nα/ρ(n) with 0 < α ≤ 1/6 and ρ(n) → ∞ arbitrarily slowly that

P
# 1√

n

111
n(

t=1
(X2

1t − 1)
111 > x

%
∼ 2Φ(x/

&
var(X2)) , n → ∞ , (3.46)

if E
@

exp
!
|X2

11 − 1|4α/(2α+1)"A
< ∞. We apply this result with α = 1/6. Then the latter

moment requirement reads E
@

exp
!
|X2

11 − 1|1/2"A
< ∞ which in view of Lemma 3.20 is

implied by (C3’). By definition of ?dp and p = exp(o(n1/3)), we have
√

n

?d2
p

∼
√

n

4 log p
>

n1/6

ρ(n) (3.47)

for any ρ(n) → ∞. Using (3.47), applying Mill’s ratio and (3.46) yield for a sequence
ρ(n) → ∞ sufficiently slowly that as n → ∞

Ψn ≤ pP
# 1√

n

111
n(

t=1
(X2

1t − 1)
111 >

n1/6

ρ(n)

%
∼ 2p Φ

# n1/6

ρ(n)
&

var(X2)

%
→ 0 .

Finally, assume (C2’) and p = exp(o(n1/3 ∧ g2
n)). We can proceed in the same way as

under (C1). By Lemma 3.20, we have E[exp(g(|X|))] < ∞. For any ρ(n) → ∞ we have
√

n

?d2
p

>
n1/6

ρ(n) ≥ n1/6 ∧ g′
n

ρ(n) .

An application of [87, Theorem 3] shows that Ψn → 0. The proof is complete.

Lemma 3.20. Let Z, Z ′ ≥ 0 be i.i.d. random variables, h a positive constant and
g an increasing function on (0, ∞) such that E[exp(g(hZZ ′))] < ∞. Then we have
E[exp(g(Z))] < ∞.

Proof. If Z is bounded, the claim is trivial. Otherwise there exists α > 1/h such that
P(Z ≤ α) < 1. Writing F for the distribution function of Z, we have

E[eg(Z)](1 − F (α)) =
$ ∞

α

E[eg(Z)] dF (t)

≤
$ ∞

α

E[eg(Z ht)] dF (t) ≤ E[eg(hZZ′)].

This implies E[eg(Z)] ≤ E[eg(hZZ′)]/(1 − F (α)) < ∞.
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Fitting inhomogeneous phase–type
distributions to data: the univariate and the
multivariate case
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Abstract

The class of inhomogeneous phase-type distributions was recently introduced
in [3] as a dense extension of classical phase-type distributions that leads to more
parsimonious models in the presence of heavy tails. In this paper we propose a
fitting procedure for this class to given data. We furthermore consider an analogous
extension of Kulkarni’s multivariate phase-type class [73] to the inhomogeneous
framework and study parameter estimation for the resulting new and flexible class
of multivariate distributions. As a by-product, we amend a previously suggested
fitting procedure for the homogeneous multivariate phase-type case and provide
appropriate adaptations for censored data. The performance of the algorithms is
illustrated in several numerical examples, both for simulated and real-life insurance
data.

Keywords: heavy tails; inhomogeneous phase-type; matrix Pareto distribution;
matrix Weibull distribution; multivariate phase-type; parameter estimation
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4.1 Introduction

The development, study and fitting of flexible distributions for random phenomena is
an important branch of applied probability and statistics. Some respective approaches
are based on a nice blend of theory and practice, among which the class of phase–type
(PH) distributions is a prominent example. Originally initiated by Neuts [91], the re-
alization of a (univariate) phase–type distributed random variable is interpreted as the
time until absorption of a time–homogeneous, finite state–space Markov jump process
with one absorbing state and the rest being transient. The explicit description through
matrix exponentials makes the resulting class of distributions at the same time versatile
and analytically tractable (see e.g. [24] for a recent survey). The class of phase–type
distributions is known to be dense (in the sense of weak convergence) among all distri-
butions on the positive halfline, but for distributions whose shape is very different from
combinations of exponential components (which are the building blocks of the proba-
bilistic Markov jump process construction), a suitable phase–type approximation will
need a large dimension of the involved matrix (representing the number of phases of the
underlying Markov process) and – in addition to computational challenges – may then
be seen unnatural. This is particularly the case for heavy–tailed distributions, where the
focus in modelling often lies on the tail of the distribution, and the latter is not well
captured by the combination of exponential components of the PH construction. After
some first amendment involving infinite–dimensional matrices was suggested in Bladt et
al. [26, 27], recently a new way to circumvent this problem was proposed in [3]. Con-
cretely, when the Markov jump process is allowed to be time–inhomogeneous, one gains
a lot of flexibility in terms of the structure of the individual components entering the
matrix framework, which can reduce the complexity of appropriate fitting distributions
drastically, in particular for distributions with heavy tails. The intensity matrices of the
Markov jump process are then a function of time. In the general case, they may not
commute at different time epochs, which complicates their statistical estimation due to
a lack of appropriate sufficient statistics. However, there is an important sub–class for
which the intensity matrices can be written as a constant matrix scaled by some real
function. In this class all matrices commute, and it was shown in [3] that along this
way one in fact obtains, for instance, Pareto, Weibull and Generalized Extreme Value
(GEV) distributions with matrix-valued parameters. These distribution classes are all
dense in the class of distributions on the positive halfline and inherit the computational
advantages of the PH-type class, but also provide excellent fits for heavy–tailed data
already for small dimensions, something that the original PH class could not achieve. In
particular, if by some preliminary exploratory analysis one has a good guess for an appro-
priate scaling function (typically suggested by the empirical tail behavior), the resulting
matrix distributions can be very parsimoneous yet effective model improvements of the
respective base distributions with a genuinely heavy tail. However, while parameter es-
timation for univariate PH distributions by a standard maximum likelihood procedure
based on an EM algorithm has been studied in the seminal paper of Asmussen et al. [10]
(see also the later extension of Olsson [95] dealing with censored observations and Bladt
et al. [22] for an MCMC approach), parameter estimation for the time–inhomogeneous
case has not yet been addressed.

Motivated by the flexibility of the approach, in this paper we will also consider an
inhomogeneous extension of the multivariate version of the PH distribution. The multi-
variate phase–type distribution (of MPH∗ type) was originally introduced by Kulkarni
[73] and is constructed as the joint distribution of certain state-dependent accumulated
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rewards earned on the same underlying Markov jump process. It has PH-distributed
marginals and also enjoys a denseness property in the class of all distributions on the re-
spective positive orthant. Multivariate phase–type distributions have found applications
in diverse areas. For instance, Cai et al. [30] consider them for determining conditional
tail expectations in risk management, Cai et al. [31] studied several types of ruin proba-
bilities for a multivariate compound Poisson risk model when the claim size vector follows
an MPH∗ distribution, and Herbertsson [62] used this class to model default contagion in
credit risk. More recently, Bladt et al. [25] applied MPH∗ distributions for the calculation
of Parisian type ruin probabilities. In terms of fitting of the (time–homogeneous) mul-
tivariate MPH∗ distribution, Ahlström et al. [1] introduced an algorithm for a bivariate
subclass of MPH∗, and an EM algorithm for parameter estimation in the general case
was proposed in [28]. However, the latter was not actually implemented and contains an
inconsistency in the maximum likelihood estimator (which we amend in this paper).

The inhomogeneous extension of the MPH∗ to be proposed in this paper will then
again serve the purpose of keeping the dimension of the involved matrices low when
one faces a non-exponential behavior in the marginals and the joint multivariate be-
haviour. We would like to point out that an alternative analytically tractable deviation
from exponential behavior utilizing Mittag-Leffler distributions in both the univariate
and multivariate case can be found in [4, 5, 6]. A number of commonly used heavy-tailed
multivariate distributions are in fact transformed multivariate exponential distributions.
For instance, Mardia [81] was the first to systematically study multivariate Pareto dis-
tributions, which he introduced by transforming a Wicksell–Kibble–type multivariate
exponential distribution (see [71]). He also noticed that estimation methods for the
multivariate exponential can then be translated directly towards the estimation of the
multivariate Pareto distribution. Arnold [8] presents some approaches to extend Mar-
dia’s analysis to obtain other multivariate distributions with Pareto marginals. Likewise,
multivariate versions of the Weibull distribution have been obtained as power transforms
of multivariate exponential distributions, see e.g. Lee [74]. The inhomogeneous MPH∗

extension that we propose in this paper can to some extent be seen as a generalization
and unification of these above models.

The main purpose of this paper is to provide algorithms for the statistical fitting of all
these flexible classes of distributions and illustrate and discuss their implementation. We
will present a unified maximum–likelihood based approach to fitting phase–type distri-
butions (PH), inhomogeneous phase–type distributions (IPH), multivariate phase–type
distributions (of MPH∗ type) and its newly introduced inhomogeneous extension. These
classes contain a large number of mathematically tractable distributions that are suffi-
ciently general to fit any non–negative data set, in the body and for both light or heavy
tails. We will also consider extensions of the procedures to adapt for censored data and
to the fitting of theoretically known joint distributions.

The structure of the paper is as follows. In Section 4.2 we provide an overview
of the class of IPH distributions and present a new fitting procedure, which we then
exemplify on two particular cases, one on a simulated data set and the other on actual
data for lifetimes of the Danish population. In Section 4.3 we shortly recollect some facts
about the MPH* class, review existing methods for parameter estimation and provide
a substantiation and correction of an algorithm that was previously proposed in the
literature. We then extend the algorithm to the case of censored observations, and
give more details on an important particular bivariate subclass with explicit density.
The section finishes with illustrations of the algorithms for a simulated bivariate sample
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as well as a phase–type approximation to a known bivariate exponential distribution.
In Section 4.4 we introduce some multivariate extensions to distributions in the IPH
class, derive basic properties, provide an EM algorithm for its parameter estimation and
again illustrate its use in several examples, including multivariate matrix–Pareto models,
multivariate matrix–Weibull models as well as a real data application to a bivariate
Danish fire insurance data set. Section 4.5 concludes.

4.2 Inhomogeneous phase–type distributions

4.2.1 Preliminaries
Let (Jt)t≥0 denote a time–inhomogeneous Markov jump process on a state space
{1, . . . , p, p + 1}, where states 1, . . . , p are transient and state p + 1 is absorbing. Then
(Jt)t≥0 has an intensity matrix of the form

Λ(t) =
4

T (t) ttt(t)
0 0

5
, t ≥ 0 ,

where T (t) is a p × p matrix and ttt(t) is a p–dimensional column vector. Here, for any
time t ≥ 0, ttt(t) = −T (t)eee, where eee is the p–dimensional column vector of ones. Let
πk = P(J0 = k), k = 1, . . . , p, πππ = (π1, . . . , πp) and assume that P(J0 = p + 1) = 0. Then
we say that the time until absorption

τ = inf{t ≥ 0 | Jt = p + 1}

has an inhomogeneous phase–type distribution with representation (πππ, T (t)) and we write
τ ∼ IPH(πππ, T (t)). If T (t) = λ(t) T , where λ(t) is some known non–negative real function
and T is a sub–intensity matrix, then we write τ ∼ IPH(πππ, T , λ). If X ∼ IPH(πππ, T , λ),
then there exists a function g such that

X ∼ g(Y ) , (4.1)

where Y ∼ PH(πππ, T ). Specifically, g is defined by

g−1(x) =
$ x

0
λ(t)dt

or, equivalently,
λ(t) = d

dt
g−1(t) .

The density fX and distribution function FX for X ∼ IPH(πππ, T , λ) are given by

fX(x) = λ(x)πππ exp
4$ x

0
λ(t)dt T

5
ttt ,

FX(x) = 1 − πππ exp
4$ x

0
λ(t)dt T

5
eee .

For further reading on inhomogeneous phase–type distributions and motivations for their
use in modelling we refer to Albrecher & Bladt [3]. Note that for λ(t) ≡ 1 one returns to
the time-homogeneous case, which corresponds to the conventional phase–type distribu-
tion with notation PH(πππ, T ) (a comprehensive account of phase–type distributions can
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be found in Bladt & Nielsen [24]).

As illustrated in [3], a number of IPH distributions can be expressed as classical
distributions with matrix-valued parameter. For the representation of such distributions
we make use of functional calculus. If h is an analytic function and A is a matrix, define

h(A) = 1
2πi

=

γ

h(z)(zI − A)−1dz ,

where γ is a simple path enclosing the eigenvalues of A (cf. [24, Sec. 3.4] for details).
Important examples include the transformation g(y) = β (ey − 1) for β > 0 in (4.1)
leading to a matrix–Pareto distribution with density function and survival function

fX(x) = πππ

4
x

β
+ 1

5T −I

ttt
1
β

, F̄X(x) = 1 − FX(x) = πππ

4
x

β
+ 1

5T

eee , (4.2)

respectively, as well as the matrix–Weibull distribution with density and survival function

fX(x) = πππeT xβ

tttβxβ−1 , F̄X(x) = πππeT xβ

eee ,

obtained from g(y) = y1/β (β > 0), see [3] for further details.

4.2.2 Parameter estimation
For the matrix–Pareto distribution (4.2) and β = 1, the transform is parameter-
independent, so that the distribution can be fitted to i.i.d. data x1, . . . , xN by fitting
a phase–type distribution PH(πππ, T ) to the transformed data log(1 + x1), . . . , log(1 + xN )
using an EM algorithm [10]. This was the procedure employed in [3] for the numerical
illustration there. The general case – where the transform does depend on parameters
– is more subtle and shall be dealt with here. The key will be to apply a parameter-
dependent transformation in each step of the EM algorithm.

Let x1, . . . , xN be an i.i.d. sample of an inhomogeneous phase–type distribution with
representation X ∼ IPH(πππ, T , λ( · ;βββ)), where λ( · ;βββ) is a parametric non–negative func-
tion depending on the vector βββ. We then know that X

d= g(Y ;βββ) with Y ∼ PH(πππ, T )
and g is defined in terms of its inverse function g−1(x;βββ) =

M x

0 λ(t;βββ)dt. In particular
g−1(X;βββ) d= Y ∼ PH(πππ, T ). The EM algorithm for fitting IPH(πππ, T , λ( · ;βββ)) then works
as follows.

Algorithm 4.1 (EM algorithm for transformed phase–type distributions).
0. Initialize with some “arbitrary” (πππ, T ,βββ).
1. Transform the data into yi = g−1(xi;βββ), i = 1, . . . , N , and apply the E– and

M–steps of the conventional EM algorithm of Asmussen [10] by which we obtain the
estimators (π̂ππ, T̂ ).

2. Compute

β̂ββ = arg max
βββ

N(

i=1
log(fX(xi; π̂ππ, T̂ ,βββ))

= arg max
βββ

N(

i=1
log

4
λ(xi;βββ)π̂ππ exp

4$ xi

0
λ(t;βββ)dt T̂

5
t̂tt

5
.

3. Assign (πππ, T ,βββ) = (π̂ππ, T̂ , β̂ββ) and GOTO 1.
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Then the likelihood function increases for each iteration, and hence converges to a
(possibly local) maximum.

Proof. Since the data points xi are assumed to be i.i.d. realisations from the unknown
distribution IPH(πππ, T , λ), there exists a function g such that yi = g−1(xi;βββ) are i.i.d.
realisations of phase–type distributed random variables PH(πππ, T ). That function g is
assumed to be known up to the value of βββ. In turn, xi = g(yi;βββ), so a data point xi

can be interpreted as the absorption time of the Markov jump process corresponding
to PH(πππ, T ), which is yi, but with the scale of the time axis for the yi–data converted
(stretched) into g( · ;βββ)–coordinates instead. The full data likelihood is then given by

L(πππ, T ,βββ;yyy) =
p<

k=1
πBk

k

p<

k=1

<

l ∕=k

tNkl

kl e−tklZk(βββ)
p<

k=1
tNk

k e−tkZk(βββ) ,

where Bk is the number of times the Markov process underlying the phase–type distri-
bution initiates in state k, Nkl denotes the total number of transitions from state k to
l, Nk denotes the number of times an exit to the absorbing state was caused by a jump
from state k, and Zk(βββ) is the total time the Markov process has spent in state k. We
notice that Zk(βββ) is the only sufficient statistic which depends on the transformation of
the time axis for the y–data and hence on βββ. Consequently, for any given βββ, the E–step
is simply the one as in [10], and so is the M–step for (πππ, T ).

The βββ update in 2. requires a general, usually numerical, maximization of the incom-
plete data likelihood. Each iteration of the algorithm increases the likelihood. Indeed,
let LI denote the incomplete data likelihood and consider parameter values (πππn, Tn,βββn)
after the n-th iteration. In the (n + 1)-th iteration, we first obtain (πππn+1, Tn+1) in 1. so
that

LI(πππn, Tn,βββn; g−1(yyy;βββn)) ≤ LI(πππn+1, Tn+1,βββn; g−1(yyy;βββn)) .

By monotonicity of g and the transformation theorem,

LI(πππn, Tn,βββn;yyy) ≤ LI(πππn+1, Tn+1,βββn;yyy)

and hence

LI(πππn, Tn,βββn;yyy) ≤ LI(πππn+1, Tn+1,βββn;yyy)
≤ sup

βββ
LI(πππn+1, Tn+1,βββ;yyy) = LI(πππn+1, Tn+1,βββn+1;yyy) .

Example 4.2. (Matrix–Gompertz) Let X = log(βY + 1)/β, where Y ∼ PH(πππ, T ) and
β > 0. Then

F̄X(x) = πππeT (eβx−1)/βeee and fX(x) = πππeT (eβx−1)/βttteβx . (4.3)

We refer to the distribution of X as a matrix–Gompertz distribution, since the scale
parameter of the usual Gompertz distribution is now replaced by a matrix. Note that the
resulting distribution has a lighter tail than a conventional phase–type distribution. The
Gompertz distribution is used in a number of applications, most notably it is historically
used for the modelling of human lifetimes [55]. Its matrix version (4.3) provides a natural
flexible extension. As an illustration, we fitted a matrix–Gompertz distribution with 3
phases using Algorithm 4.1 with 2 500 iterations to the lifetime of the Danish population
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that died in the year 2 000 at ages 50 to 100 (data obtained from the Human Mortality
Database (HMD) and available in the R-package MortalitySmooth [35]). Here and in
later examples, the number of iterations in the algorithm is chosen in such a way that the
changes in the successive log–likelihoods become negligible. Concerning running times,
our implementation makes use of the gradient ascent method for the maximization part
of the algorithm, in which the running times highly depend on the step–length and the
actually chosen stopping criterion. In the present example we employed a step–length of
10−8 and run gradient ascent until the absolute value of the derivative is less than 0.001
leading to a running time of about 35 seconds on a usual PC (with 2.9 GHz Dual–Core
Intel Core i5 processor 5287U) for the 2 500 iterations of the EM algorithm. Note that
this choice of stopping criterion is to prioritize precision over speed, and an improvement
on running times can be attained by using a different maximization procedure. The
obtained parameters are as follows:

π̂ππ = (0.0450, 0.1303, 0.8246) ,

T̂ =

6

8
−0.1357 0.1214 0
0.0130 −0.0421 0.0288
0.1415 0.0184 −0.1620

9

; ,

β̂ = 0.1019 .

Figure 4.1 shows that the fitted density recovers the structure of the data quite
well. Note that conventional phase–type distributions have been used to model the
distribution of lifespans (see for instance Asmussen at al. [9]). However, the number of
phases required to capture the tail behavior of the data with the latter is rather large,
due to the lighter than exponential tail. In contrast, the matrix–Gompertz distribution
provides an excellent fit with comparably few parameters (phases).

0.00

0.01

0.02

0.03

50 60 70 80 90 100

Histogram vs fitted density

Figure 4.1: Histogram of lifetimes of the Danish population that died in the year 2 000
at ages 50 to 100 versus the density of the fitted matrix–Gompertz distribution.

Example 4.3. (Matrix–GEV) Algorithm 4.1 can also be applied to estimate distribu-
tions that are not IPH in a strict sense, but that are defined as a transformation of a
PH distribution. This is for instance the case for g(y) = µ − σ(y−ξ − 1)/ξ with µ ∈ R,
σ > 0, and ξ ∈ R. Recall from [3] that

FX(x) =

-
EEE.

EEE/

πππ exp
N

T

4
1 + ξ

x − µ

σ

5−1/ξ
O

eee , ξ ∕= 0 ,

πππ exp
4

T exp
4

−x − µ

σ

55
eee , ξ = 0 ,
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fX(x) =

-
EEE.

EEE/

1
σ

πππ exp
N

T

4
1 + ξ

x − µ

σ

5−1/ξ
O

ttt

4
1 + ξ

x − µ

σ

5−(1+ξ)/ξ

, ξ ∕= 0 ,

1
σ

πππ exp
4

T exp
4

−x − µ

σ

55
ttt exp

4
−x − µ

σ

5
, ξ = 0 ,

from which it becomes clear that this distribution can be interpreted as a matrix version
of the generalized extreme value (GEV) distribution, see e.g. [16]. As an illustration,
we generated an i.i.d. sample of size 5 000 from such a distribution of 3 phases with
parameters

πππ = (1, 0, 0) ,

T =

6

8
−1 0.5 0
0.2 −2 0.8
1 1 −5

9

; ,

µ = 2 , σ = 0.5 , ξ = 0.4 ,

which has theoretical moments E(X) = 2.2524 and SD(X) = 1.4423. The generated
sample has moments Ê(X) = 2.2607 and ŜD(X) = 1.3307. We then fitted such a
matrix–GEV distribution with the same number phases using Algorithm 4.1 with 1 500
steps, obtaining the following parameters:

π̂ππ = (0.0772, 0.1268, 0.7960) ,

T̂ =

6

8
−8.9772 0.0964 0.0001
0.2891 −2.8439 0.3542
3.2353 0.0137 −5.7731

9

; ,

µ̂ = 1.3852 , σ̂ = 0.2285 , ξ̂ = 0.4251 .

We observe that the algorithm estimates pretty well the shape parameter ξ, which
determines the heaviness of the tail. Moreover, the fitted distribution has moments
E(X) = 2.2640 and SD(X) = 1.6587, which resemble the ones of the sample, and Fig-
ure 4.2 shows that the algorithm recovers both body and tail of the data. Note also
that the log–likelihood of the fitted matrix–GEV is −4 104.541, while the log–likelihood
using the original matrix–GEV distribution is −4 107.005. Such a comparison of the
log–likelihoods works as an additional evidence of the performance of the algorithm.
One can observe that the parameters estimated for πππ, T , µ and σ do not resemble the
original parameter values, but this is linked with the well-known identifiability issue for
phase–type distributions (namely that other parameter combinations may lead to a very
similar density shape). In fact, the algorithm finds the parameters that maximize the
likelihood for the given sample, and as the concrete numbers above show, the present
parameters even outperform the original model underlying the sample(!), see also the
convincing QQ–plot in Figure 4.2. Here, the step–length is 10−5 and the gradient ascent
is run until the norm of the derivative is less than 0.1 leading to a running time of 2 609
seconds for the 1 500 iterations of Algorithm 4.1.
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Figure 4.2: Histogram of simulated sample versus density of the fitted matrix–GEV
distribution in log–scale (left) as well as QQ–plot of simulated sample versus fit (right).

4.3 Multivariate phase-type distributions

4.3.1 Preliminaries
Let τ ∼ PH (πππ, T ) be a (conventional) p–dimensional phase–type distributed random
variable with underlying time–homogeneous Markov jump process (Jt)t≥0. Let rrrj =
(rj(1), . . . , rj(p))′ be non–negative p–dimensional column vectors, j = 1, . . . , d, and let

R = (rrr1, rrr2, . . . , rrrd)

be a p × d–dimensional reward matrix. Now define

Y (j) =
$ τ

0
rj (Jt) dt

for all j = 1, . . . , d. If we interpret rj(k) as the rate at which a reward is obtained
while Jt is in state k, then Y (j) is the total reward for component j obtained prior to
absorption. We then say that the random vector YYY =

!
Y (1), . . . , Y (d)"′ has a multivariate

phase–type distribution of the MPH∗ type (as defined in [73], see also [24]) and we write
YYY ∼ MPH∗ (πππ, T , R).

While each member of the MPH∗ class has an explicit expression for the (joint)
Laplace transform and the joint moments of any order (see Section 8.1.1 of [24]), there
are no general explicit expressions for the density and distribution functions. However,
for certain structures and sub–classes explicit expressions for the latter do exist (like
Example 8.1.13 of [24]).

If YYY =
!
Y (1), . . . , Y (d)"′ ∼ MPH∗ (πππ, T , R), then each marginal Y (j) has a phase–type

distribution, PH(πππj , Tj) say. First we decompose

rrrj =
4

rrr+
j

rrr0
j

5
, πππ =

!
πππ+ πππ0"

and T =
4

T ++ T +0

T 0+ T 00

5
,

where we have reordered the state space such that the + terms correspond to the states
k for which the rewards r

(j)
k are strictly positive, and the 0 terms to the states with zero

rewards. E.g., T+0 corresponds to the intensities by which the underlying Markov jump
process (Jt)t≥0 jumps from a state with positive reward to a state with zero reward.
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Then the phase–type distribution of Y (j) is given by an atom at zero of size πππ0(I −
(−T00)−1S0+)eee, where eee is the column vector of ones of appropriate dimension, and

πππj = πππ+ + πππ0(−T 00)−1T 0+ and Tj = ∆(rrr+
j )−1 !

T ++ + T +0(−T00)−1T 0+"
, (4.4)

where ∆(aaa) denotes the d′ × d′ diagonal matrix with entries a(m), m = 1, . . . , d′, from
a d′–dimensional vector aaa. The atom appears in case there is a positive probability
of starting in a non–reward–earning state (0) and the underlying Markov process gets
absorbed before visiting a reward earning state (+). The Markov jump process generating
Y (j) starts in the same state as Jt if the reward is positive (hence πππ+) or it starts in
the first state with positive rewards that Jt enters after starting in a zero reward state
(hence the term πππ0(−T 00)−1T 0+). Similar arguments apply to the generator Tj , where
only reward-earning terms will form part of the state space for Y (j). We refer to [24] for
further details.

Summarizing, each marginal Y (j) has a phase–type distribution, which is based on
the original Markov process (Jt)t≥0, but with a possibly smaller state space and with
rescaled parameters.

4.3.2 Parameter estimation
We next provide an algorithm for estimating MPH∗ distributed data. The data consist
of a d–dimensional multivariate sample of N i.i.d. observations

yyyi = (y(1)
i , . . . , y

(d)
i )′ , i = 1, . . . , N .

That is, we only observe the times to absorption, y
(j)
i , of each phase–type distributed

marginal. Hence we are clearly in an incomplete data set–up and we shall employ the
EM algorithm for fitting (πππ, T , R).

The EM algorithm works by replacing unavailable sufficient statistics by their con-
ditional expectations given data under given parameters, and thereby updating the pa-
rameters by using known formulas for the maximum likelihood estimator in the complete
data domain. Iteration of the procedure then produces a sequence of parameter values
which increases the likelihood in each step.

For the present situation, we define the complete data as both the trajectories of the
underlying Markov process which generates the phase–type distribution from which the
marginals of the multivariate vector are constructed, and the Markov jump processes
representing the rewards in all marginal distributions. It is not sufficient with complete
knowledge of the marginal trajectories only. Indeed, one can easily construct examples
where the underlying processes cannot be reconstructed from the marginals only. The
complete knowledge of both marginals and the underlying Markov process which gener-
ates the marginals creates another problem in relation to the incomplete data since we
do not have observations for the absorption times of the underlying Markov process. We
can get around this problem by assuming that the rows of the reward matrix R sum to
one, i.e. Reee = eee. This assumption is not restrictive and can be imposed without los-
ing generality due to the great ambiguity of (multivariate) phase–type representations.
Hence our data consists of marginals yyy(j) = (y(j)

1 , . . . , y
(j)
N )′, j = 1, . . . , d, and their sums

yyy(S) =
2d

l=1 yyy(l).
In the complete data domain, the estimation is straightforward and works as follows.

The complete data MLE for (πππ, T ) is given by

π̂k = Bk

N
, t̂kl = Nkl

Zk
, t̂k = Nk

Zk
, t̂kk = −

(

l ∕=k

t̂kl − t̂k .
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The rewards of the marginals are then given by

r̂j(k) = Z
(j)
k

Zk
= Z

(j)
k2d

l=1 Z
(l)
k

,

where Z
(j)
k is the over-all amount of time the j’th component has spent in state k.

In the EM algorithm, we now must replace all aforementioned sufficient statistics by
their conditional expectations given data. Concerning Zk, Nkl, Nk and Bk, these only
depend on the underlying Markov jump process and are computed conditionally on yyy(S)

only. Their formulas are then as stated in the algorithm below (see [10]).
Concerning the conditional expectation of Z

(j)
k , we must calculate the expected reward

(under (πππ, T )) given all data of marginal j, which amounts to calculating the conditional
expected time given data for the corresponding phase–type representation of the j-th
marginal, (πππj , Tj). These are readily given by (again using [10])

E
#

Z
(j)
k | YYY (j) = yyy(j)

%
=

N(

i=1

$ y
(j)
i

0
eee′

ke Tj(y
(j)
i

−u)tttjπππje Tjueeekdu

πππje Tjy
(j)
i tttj

.

Then

r̂j(k) =
E

#
Z

(j)
k | YYY (j) = yyy(j)

%

E
!
Zk | YYY (S) = yyy(S)

" .

Iterating the above finally provides a (single) full EM algorithm for the estimation of
(πππ, T , R). We summarize the results in the following.

Algorithm 4.4 (EM algorithm for MPH* distributions).
0. Initialize with some “arbitrary” (πππ, T , R) with Reee = eee, and compute πππj and Tj,

j = 1, . . . , d, using (4.4).
1. (E–step) Calculate

E
#

Bk | YYY (S) = yyy(S)
%

=
N(

i=1

πkeee′
ke T y

(S)
i ttt

πππe T y
(S)
i ttt

E
#

Zk | YYY (S) = yyy(S)
%

=
N(

i=1

$ y
(S)
i

0
eee′

ke T (y
(S)
i

−u)tttπππe T ueeekdu

πππe T y
(S)
i ttt

E
#

Nkl | YYY (S) = yyy(S)
%

=
N(

i=1
tkl

$ y
(S)
i

0
eee′

le T (y
(S)
i

−u)tttπππe T ueeekdu

πππe T y
(S)
i ttt

E
#

Nk | YYY (S) = yyy(S)
%

=
N(

i=1
tk

πππe T y
(S)
i eeek

πππe T y
(S)
i ttt

E
#

Z
(j)
k | YYY (j) = yyy(j)

%
=

N(

i=1

$ y
(j)
i

0
eee′

ke Tj(y
(j)
i

−u)tttjπππje Tjueeekdu

πππje Tjy
(j)
i tttj

.
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2. (M–step) Let

α̂k = 1
N

E
#

Bk | YYY (S) = yyy(S)
%

, t̂kl =
E

!
Nkl | YYY (S) = yyy(S)"

E
!
Zk | YYY (S) = yyy(S)

" , t̂k =
E

!
Nk | YYY (S) = yyy(S)"

E
!
Zk | YYY (S) = yyy(S)

" ,

t̂kk = −
(

l ∕=k

t̂kl − t̂k , π̂ππ = (π̂1, . . . , π̂p) , T̂ = {t̂kl}k,l=1,...,p and t̂tt = (t̂1, . . . , t̂p)′ .

and

r̂j(k) :=
E

#
Z

(j)
k | YYY (j) = yyy(j)

%

E
#

Zk | YYY (S) = yyy(S)
% and R̂ = {r̂j(k)}k=1,...,p,j=1,...,d .

3. Assign πππ := π̂ππ, T := T̂ , ttt := t̂tt, R := R̂ and compute πππj, Tj, j = 1, . . . , d, using
(4.4). GOTO 1.

Remark 4.5. Algorithm 4.4 was originally proposed in [28] as two consecutive EM
algorithms and its original statement contained a minor error in the M–step update
for the reward matrix. To see why Algorithm 4.4 can be decomposed into the two
consecutive EM algorithms, we argue as follows. Running the EM Algorithm 4.4, (π̂ππ, T̂ )
will eventually converge (without input from the part involving the reward components).
For constant (π̂ππ, T̂ ), Algorithm 4.4 is indeed equivalent to the second EM algorithm in
[28]. More specifically, the algorithm takes the following form.

First EM.
0. Initialize with some “arbitrary” (πππ, T ).
1. (E–step) Calculate

E
#

Bk | YYY (S) = yyy(S)
%

=
N(

i=1

πkeee′
ke T y

(S)
i ttt

πππe T y
(S)
i ttt

E
#

Zk | YYY (S) = yyy(S)
%

=
N(

i=1

$ y
(S)
i

0
eee′

ke T (y
(S)
i

−u)tttπππe T ueeekdu

πππe T y
(S)
i ttt

E
#

Nkl | YYY (S) = yyy(S)
%

=
N(

i=1
tkl

$ y
(S)
i

0
eee′

le T (y
(S)
i

−u)tttπππe T ueeekdu

πππe T y
(S)
i ttt

E
#

Nk | YYY (S) = yyy(S)
%

=
N(

i=1
tk

πππe T y
(S)
i eeek

πππe T y
(S)
i ttt

.

2. (M–step) Let

α̂k = 1
N

E
#

Bk | YYY (S) = yyy(S)
%

, t̂kl =
E

!
Nkl | YYY (S) = yyy(S)"

E
!
Zk | YYY (S) = yyy(S)

" , t̂k =
E

!
Nk | YYY (S) = yyy(S)"

E
!
Zk | YYY (S) = yyy(S)

" ,

t̂kk = −
(

l ∕=k

t̂kl − t̂k , π̂ππ = (π̂1, . . . , π̂p) , T̂ = {t̂kl}k,l=1,...,p and t̂tt = (t̂1, . . . , t̂p)′ .

3. Assign πππ := π̂ππ, T := T̂ , ttt := t̂tt and GOTO 1.
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Second EM. Use the estimated (πππ, T ) of the first EM.
0. Initialize with some “arbitrary” R with Reee = eee, and compute πππj and Tj , j =

1, . . . , d, using (4.4).
1. (E–step) Calculate

E
#

Z
(j)
k | YYY (j) = yyy(j)

%
=

N(

i=1

$ y
(j)
i

0
eee′

ke Tj(y
(j)
i

−u)tttjπππje Tjueeekdu

πππje Tjy
(j)
i tttj

.

2. (M–step) Let

r̂j(k) :=
E

#
Z

(j)
k | YYY (j) = yyy(j)

%

d(

l=1
E

#
Z

(l)
k | YYY (l) = yyy(l)

% and R̂ = {r̂j(k)}k=1,...,p,j=1,...,d .

3. Assign R := R̂ and compute πππj and Tj , j = 1, . . . , d, using (4.4). GOTO 1.

Remark 4.6. The main computational burden lies in the E–steps, where matrix expo-
nentials and integrals thereof must be evaluated. In Asmussen et al. [10] this is done
by converting the problem into a system of ODEs, which are then solved via a Runge–
Kutta method of fourth order (a C implementation, called EMpht, is available online
[96]). While this approach is adequate for fitting univariate phase–type distributions,
the Runge–Kutta method fails to work in some cases in the multivariate setting, in par-
ticular for the second EM, when an element in the reward matrix approaches zero. The
reason is that the sub-intensity matrix of (at least) one of the marginals will adjust to
this change by increasing some of the entries of the matrix in each iteration, and thus
requiring an increasingly smaller step–size in the Runge–Kutta method to accurately
approximate the solution to the system. Our implementation includes an approach for
the computation of matrix exponentials based on uniformization, and it is a slight vari-
ation of the method in Neuts [93, p.232]. We explain briefly the method. By taking
φ = max(−tkk)k=1,...,p and defining P := φ−1 (φI + T ), which is in fact a transition
matrix, we have that

exp(T y) =
∞(

n=0

(φy)n

n! e−φyP n .

Then
11111e

T y −
M(

n=0

(φy)n

n! e−φyP n

11111 ≤
∞(

n=M+1

(φy)n

n! e−φy |P n|

≤
∞(

n=M+1

(φy)n

n! e−φy = P(Nφy > M) ,

where Nφy is Poisson distributed with mean φy. Hence, we can find M such that the
difference of the matrix exponential with a finite sum is less than or equal to a given
error ε > 0. Of course, larger values of φy give bigger values of M , dismissing any
computational improvement for large observations. A way to circumvent this problem is
to observe that eT y = (eT y/2m)2m , thus we can find m such that φy/2m < 1, compute
eT y/2m by a finite sum and then retrieve eT y by squaring.
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To compute the integrals involving matrix exponentials, we observe that by defining

G(y;πππ, T ) :=
$ y

0
e T (y−u)tttπππe T udu ,

we have that (see Van Loan [109])

exp
44

T tttπππ
0 T

5
y

5
=

4
e T y G(y;πππ, T )

0 e T y

5
.

Correspondingly, a simple (and efficient) way to compute G(y;πππ, T ) is by calculating the
matrix exponential of the left hand side.

Approaches to improve the speed of the EM algorithm in the univariate case exist
in the literature; for instance, Okamura et al. [94] proposed a method also based on
uniformization. ✷

4.3.3 Parameter estimation for censored data
In certain applications, some or all of the data may be censored. We call a data point
right–censored at v if it takes an unknown value above v, left–censored at w if it takes
an unknown value below w, and interval–censored if it is contained in the interval (v, w],
but its exact value is unknown. Left–censoring is a special case of interval–censoring
with v = 0, while right–censoring can be obtained by fixing v and letting w → ∞.

The EM Algorithm 4.4 works much in the same way as for uncensored data, with the
only difference that we are no longer observing exact data points Y (j) = y(j), but only
Y (j) ∈ (v(j), w(j)]. This will only change the E–steps, where the conditional expectations
can be calculated using the formulas in Olsson [95]. We now explain in detail how to
adapt Algorithm 4.4 to censored data.

First EM
It is possible that a data point consists of a combination of marginals with both

censored (not necessarily in the same intervals) and uncensored data (this is relevant in
the first EM algorithm when considering data of the sum of the marginals). Table 4.1
contains all possible combinations one might have in the data and the way of treating
them. Note that for d > 2, one simply repeats the same rules iteratively.

Y (1) Y (2) Y (S) = Y (1) + Y (2)

Uncensored with value y(1) Uncensored with value y(2) Uncensored with value y(1) + y(2)

Right–censored at v(1) Uncensored with value y(1) Right–censored at v(1) + y(2)

Right–censored at v(1) Right–censored at v(2) Right–censored at v(1) + v(2)

Right–censored at v(1) Interval–censored (v(2), w(2)] Right–censored at v(1) + v(2)

Interval–censored (v(1), w(1)] Uncensored with value y(2) Interval–censored (v(1) + y(2), w(1) + y(2)]

Interval–censored (v(1), w(1)] Interval–censored (v(2), w(2)] Interval–censored (v(1) + v(2), w(1) + w(2)]

Table 4.1: Rules for censored data.

For completeness, we include here the conditional expectations needed (see also [95]).
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E
#

Bk | Y (S) ∈ (v, w]
%

= πkeee′
ke T veee − πkeee′

ke T weee

πππe T veee − πππe T weee
,

E
#

Zk | Y (S) ∈ (v, w]
%

=

$ w

v

πππe T ueeekdu −
4$ w

0
eee′

ke T (w−u)eeeπππe T ueeekdu −
$ v

0
eee′

ke T (v−u)eeeπππe T ueeekdu

5

πππe T veee − πππe T weee
,

E
#

Nkl | Y (S) ∈ (v, w]
%

= tkl

$ w

v

πππe T ueeekdu −
4$ w

0
eee′

le T (w−u)eeeπππe T ueeekdu −
$ v

0
eee′

le T (v−u)eeeπππe T ueeekdu

5

πππe T veee − πππe T weee
,

E
#

Nk | Y (S) ∈ (v, w]
%

= tk

$ w

v

πππe T ueeekdu

πππe T veee − πππe T weee
.

Second EM
The second EM algorithm works as above, with the only difference that for marginals

with censored data the corresponding conditional expectation is calculated as

E
#

Z
(j)
k | Y (j) ∈ (v(j), w(j)]

%

=

$ w(j)

v(j)
πππje Tjueeekdu −

N$ w(j)

0
eee′

ke Tj(w(j)−u)eeeπππje Tjueeekdu −
$ v(j)

0
eee′

ke Tj(v(j)−u)eeeπππje Tjueeekdu

O

πππje Tjv(j)
eee − πππje Tjw(j)

eee
.

4.3.4 A bivariate phase–type distribution with explicit density
For a general MPH∗ distribution an explicit density is not available. Kulkarni [73]
characterized the density by a system of partial differential equations, and in Breuer [28]
a semi–explicit form is deduced. The following type of bivariate phase–type distributions
does lead to an explicit density:
Let YYY = (Y (1), Y (2))′ ∼ MPH∗(πππ, T , R) with

T =
4

T11 T12
0 T22

5
, πππ = (ααα, 000) and R =

4
eee 0
0 eee

5
, (4.5)

where T11 and T22 are sub–intensity matrices of dimensions p1 and p2 (p = p1 + p2),
respectively, and T11 eee + T12 eee = 000. Then the joint density of YYY is given by

fYYY

#
y(1), y(2)

%
= αααe T11y(1)

T12e T22y(2)
(−T22)eee , (4.6)

with marginals Y (1) ∼ PH(ααα, T11) and Y (2) ∼ PH(ααα(−T11)−1T12, T22). Note that the
Baker–type bivariate distributions introduced in Bladt et al. [25] are a particular case.
The latter have some remarkable properties: one can construct a distribution of this type
with specific given marginals and a given Pearson correlation coefficient; this class is also
dense within the set of bivariate distributions with support in R2

+ (this follows from the
fact that the class of Bernstein copulas can be used to approximate arbitrarily well any
copula (see Sencetta and Satchell [105]) and that the class of phase–type distributions can
approximate arbitrarily well any distribution with support on R+), making the bigger
class of bivariate distributions also dense.
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4.3.4.1 Tail independence

The existence of an explicit form of the density allows us to compute the upper tail
dependence coefficient λU . Recall that the latter is defined as

λU = lim
q→1−

P
#

Y (1) > F −1
Y (1)(q) | Y (2) > F −1

Y (2)(q)
%

.

It is a classical measure of dependence in the tail and of considerable interest in applica-
tions in insurance and finance, where the modelling of tail events is crucial. From (4.6)
we have

F̄YYY (y(1), y(2)) = P
#

Y (1) > y(1), Y (2) > y(2)
%

= ααα (−T11)−1 e T11y(1)
T12e T22y(2)

eee .

Then, if −λj is the real part of the eigenvalue of Tjj with largest real part and kj is the
dimension of the Jordan block of λj for j = 1, 2, it is easy to see that

F̄YYY (y(1), y(2)) ∼ b(y(1))k1−1e −λ1y(1)
(y(2))k2−1e −λ2y(2)

, as y(1), y(2) → ∞ ,

where b is a positive constant. Hence

λU = lim
q→1−

b(F −1
Y (1)(q))k1−1e −λ1(F −1

Y (1) (q))(F −1
Y (2)(q))k2−1e −λ2(F −1

Y (2) (q))

c(F −1
Y (2)(q))k2−1e −λ2(F −1

Y (2) (q))
= 0 ,

with c positive constant. In other words, YYY is upper-tail-independent.

4.3.4.2 Estimation

The density (4.6) allows for a special form of EM algorithm. Such an algorithm was
introduced in Ahlström et al. [1] and we include it for completeness, subsequent use and
comparison purposes.

Algorithm 4.7.
0. Initialize with some “arbitrary” (ααα, T ).
1. (E–step) Calculate

E (Bk | YYY = yyy) =
N(

i=1

αkeee′
ke T11y

(1)
i T12e T22y

(2)
i (−T22)eee

fYYY (y(1)
i , y

(2)
i ;ααα, T )

, k = 1, . . . , p1

E (Zk | YYY = yyy)

=

-
EEEEEEEEEE.

EEEEEEEEEE/

N(

i=1

$ y
(1)
i

0
αααe T11ueeekeee′

ke T11(y
(1)
i

−u)T12e T22y
(2)
i (−T22)eeedu

fYYY (y(1)
i , y

(2)
i ;ααα, T )

, k = 1, . . . , p1

N(

i=1

$ y
(2)
i

0
αααe T11y

(1)
i T12e T22ueee(k−p1)eee

′
(k−p1)e T22(y

(2)
i

−u) (−T22)eeedu

fYYY (y(1)
i , y

(2)
i ;ααα, T )

, k = p1 + 1, . . . , p

E (Nkl | YYY = yyy)
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=

-
EEEEEEEEEEEEEEEEEE.

EEEEEEEEEEEEEEEEEE/

N(

i=1
tkl

$ y
(1)
i

0
αααe T11ueeekeee′

le T11(y
(1)
i

−u)T12e T22y
(2)
i (−T22)eeedu

fYYY (y(1)
i , y

(2)
i ;ααα, T )

, k, l = 1, . . . , p1, k ∕= l

N(

i=1
tkl

αααe T11y
(1)
i eeekeee′

l−p1
e T22y

(2)
i (−T22)eee

fYYY (y(1)
i , y

(2)
i ;ααα, T )

, k = 1, . . . , p1, l = p1 + 1, . . . , p

N(

i=1
tkl

$ y
(2)
i

0
αααe T11y

(1)
i T12e T22ueeek−p1eee′

l−p1
e T22(y

(2)
i

−u) (−T22)eeedu

fYYY (y(1)
i , y

(2)
i ;ααα, T )

, k, l = p1 + 1, . . . , p, k ∕= l

E (Nk | YYY = yyy) =
N(

i=1
tk

αααe T11y
(1)
i T12e T22y

(2)
i eeek−p1

fYYY (y(1)
i , y

(2)
i ;ααα, T )

, k = p1 + 1, . . . , p .

2. (M–step) Let

α̂k = 1
N

E (Bk | YYY = yyy) , t̂kl = E (Nkl | YYY = yyy)
E (Zk | YYY = yyy) , t̂k = E (Nk | YYY = yyy)

E (Zk | YYY = yyy) ,

t̂kk = −
(

l ∕=k

t̂kl − t̂k , α̂αα = (α̂1, . . . , α̂p1) , T̂ = {t̂kl}k,l=1,...,p and t̂tt = (t̂p1+1, . . . , t̂p)′ .

3. Assign ααα := α̂αα, T := T̂ , ttt := t̂tt and GOTO 1.

We now provide two detailed illustrations. When Algorithm 4.4 is employed, given
that an explicit form of the joint density is not available, we choose the number of iter-
ations in such a way that the changes in the successive log–likelihoods in the first EM
become negligible and the changes in the successive parameter estimates become negli-
gible in the second EM. For Algorithm 4.7 we used a criterion similar to the univariate
case.

Example 4.8 (Simulation study). The objective of the present example is to compare
the performance of Algorithm 4.4 and Algorithm 4.7. We will illustrate that the more
general Algorithm 4.4 also provides reasonable results when dealing with a sample from
a bivariate distribution with density (4.6), for which the more specific Algorithm 4.7
is particularly well-suited. We generated an i.i.d. sample of size 10 000 from a MPH∗

distribution with parameters

πππ = (0.15, 0.85, 0, 0) , T =

6

778

−2 0 2 0
9 −11 0 2
0 0 −1 0.5
0 0 0 −5

9

::; , and R =

6

778

1 0
1 0
0 1
0 1

9

::; ,

which has theoretical mean E(YYY ) =
!
E(Y (1)),E(Y (2))

"′ = (0.5, 0.9609)′, and correlation
coefficient ρ(Y (1), Y (2)) = 0.1148. Moreover, we know that λU = 0. The simulated
sample has numerical values Ê(YYY ) = (0.5046, 0.9650)′, ρ̂ = 0.1235 and Kendall’s tau
ρ̂τ = 0.1613. We now use Algorithms 4.4 and 4.7 to recover the underlying structure of
the data, and we assess the quality of the estimation by comparing densities, QQ plots,
numerical properties of the distributions and contour plots.
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Using Algorithm 4.4 with the same number of phases p = 4, random initial values
and 3 500 steps in each EM algorithm, we obtain the following parameters:

π̂ππ = (0.8592, 0.0002, 0.0005, 0.1402) ,

T̂ =

6

778

−9.2654 0.3805 7.2657 1.6192
0.0039 −1.1038 0.0002 0.0118
0.7429 0.1640 −7.1356 4.9516
0.3295 1.6162 0.5278 −2.4740

9

::; ,

R̂ =

6

778

0.5950 0.4050
0 1

0.4254 0.5746
0.8347 0.1653

9

::; .

The fitted distribution has mean E(YYY ) = (0.5205, 0.9491)′ and ρ = 0.2559, which approx-
imates reasonably well the mean of the original distribution and to a lesser degree well
the correlation coefficient. We also approximated λU and ρτ via simulation obtaining
λ̂U = 0.0058 and ρ̂τ = 0.2843. Figures 4.3 and 4.4 show that the algorithm is able to re-
cover the structure of the marginals and the sum of the marginals. Moreover, Figure 4.5
shows that the contour plot of the fitted distribution is similar to the one of the sample.
Here, the running time of Algorithm 4.4 with its 3 500 iterations was 924 seconds.
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Figure 4.3: Histograms of simulated sample versus densities of the MPH* distribution
fitted using Algorithm 4.4.

●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

0 1 2
Sample

Fi
tte

d 
di

st
rib

ut
io

n

Marginal 1 − QQplot

●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

5

0 1 2 3 4 5
Sample

Fi
tte

d 
di

st
rib

ut
io

n

Marginal 2 − QQplot

●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

0 2 4 6
Sample

Fi
tte

d 
di

st
rib

ut
io

n

Sum − QQplot

Figure 4.4: QQ plots of simulated sample versus fitted MPH* distribution using Algo-
rithm 4.4.
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Figure 4.5: Contour plot of sample (left), contour plot of a simulated sample from the
MPH* distribution fitted with Algorithm 4.4 (center) and contour plot of of a simulated
sample from the distribution fitted with Algorithm 4.7 (right).

Next we use Algorithm 4.7 with 4 phases (p1 = 2 and p2 = 2), random initial values
and 2 500 steps in the EM algorithm (leading to a running time of 623 seconds). The
estimated parameters are:

π̂ππ = (0.1218, 0.8782, 0, 0) ,

T̂ =

6

778

−2.2656 0.2832 1.9823 0.0002
8.2508 −10.2295 0.0257 1.9530

0 0 −1.0115 0.6419
0 0 0.0992 −4.7781

9

::; ,

R̂ =

6

778

1 0
1 0
0 1
0 1

9

::; ,

with corresponding mean E(YYY ) = (0.5046, 0.9650)′ and ρ = 0.1156. ρτ for this fit can
be estimated via simulation, giving ρ̂τ = 0.1448. A contour plot of the fit is available in
Figure 4.5 and we see that the algorithm recovers the original structure of the data even
better. Note that again the log–likelihood of the fitted MPH* distribution (−12 329.82)
outperforms the log–likelihood using the original MPH* distribution (−12 330.96).

Finally we would like to remark that Algorithm 4.7 already starts with a more specific
structure on its parameters which resembles the one of the distribution from which the
data come from. On the other hand, Algorithm 4.4 does not require any prior assumption
on the initial structure of its parameters. Thus, a better fit from Algorithm 4.7 is
expected, since Algorithm 4.4 needs to find a distribution in a larger set. In line with
the non-identifiability issue, one sees that one can obtain a quite reasonable fit in that
larger class that captures some main features of the original distribution, whereas the
more specific Algorithm 4.7 finds a fit that even exhibits nicely the original correlation
pattern. Yet, the flexibility of Algorithm 4.4 is a considerable advantage when dealing
with data sets without the additional knowledge about the underlying distribution.

Example 4.9 (Known distribution – Marshall-Olkin exponential). We now would like
to illustrate that Algorithms 4.4 and 4.7 can be modified to fit a MPH∗ model to a
theoretically given joint distribution H. The idea is along the lines of [10] and consists
of considering sequences of empirical distributions with increasing sample size. We ex-
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emplify this by considering a bivariate Marshall–Olkin exponential distribution, whose
joint survival function is of the form

F
#

y(1), y(2)
%

= exp
#

−λ1y(1) − λ2y(2) − λ12 max(y(1), y(2))
%

.

We take λ1 = 1, λ2 = 3 and λ12 = 1, then the distribution has theoretical moments
E(YYY ) = (0.5, 0.25) and ρ = 0.2. It is easy to see that the Marshall–Olkin bivariate
exponential is upper-tail-independent, i.e., λU = 0. Moreover, we approximate ρτ via
simulation, obtaining ρ̂τ = 0.2012. Then we fit a MPH* distribution using the Algo-
rithm 4.4. With 3 phases and random initial values together with 2 500 steps in each EM
algorithm (overall running time about 120 seconds), we obtain the parameters

π̂ππ = (0.8233, 0.1633, 0.0134) ,

T̂ =

6

8
2.5894 1.6637 0.7601
0.0087 −2.0699 0.2102
0.1032 0.3465 −4.2765

9

; ,

R̂ =

6

8
0.4412 0.5588
0.9514 0.0486
0.2348 0.7652

9

; ,

which has corresponding moments E(YYY ) = (0.4942, 0.2565)′ and ρ = 0.3260. λU and
ρτ for the resulting model can be approximated by simulation to be λ̂U = 0.0547 and
ρ̂τ = 0.2745. Together with the densities (Figure 4.6) and QQ plots (Figure 4.7), one sees
that this algorithm recovers rather well the structure of the original joint distribution.
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Figure 4.6: Densities of the original Marshall–Olkin distribution versus densities of the
MPH* distribution fitted using Algorithm 4.4.

4.4 Multivariate inhomogeneous phase-type distributions

There are various possibilities for extending inhomogeneous phase-type distributions to
more than one dimension. In the following we suggest one particular approach and
provide an algorithm for the parameter estimation.

4.4.1 Definition and Properties
Let YYY ∼ MPH∗ (πππ, T , R) and define XXX := (g1(Y (1)), . . . , gd(Y (d)))′, where gj : R+ → R+
are increasing and differentiable functions for j = 1, . . . , d, then we say that XXX has an
inhomogeneous MPH* distribution.
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Figure 4.7: QQ plots of original Marshall–Olkin distribution versus fitted MPH* distri-
bution using Algorithm 4.4.
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Figure 4.8: Contour plot of the original Marshall–Olkin distribution (left) contour plot
of simulated sample from Marshall–Olkin distribution (middle) and contour plot of sim-
ulated sample from the distribution fitted with Algorithm 4.4 (right).

Several of its properties follow directly from the definition:

1. The marginals X(j) = gj(Y (j)) are IPH distributed, since each Y (j) is phase–type
distributed, j = 1, . . . , d.

2. Since gj is increasing for all j = 1, . . . , d, the copula of XXX is the same as the copula
of YYY (see e.g. [82, Prop.7.7]).

3. For fixed gj(·), j = 1, . . . , d, this new class is dense in Rd
+ (by the denseness of the

MPH* class).

In the sequel we will provide an algorithm for parameter estimation for which an explicit
expressions of the bivariate density is needed. We therefore restrict it to the bivariate
case.
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4.4.2 Parameter estimation in the bivariate case
In the bivariate case, for any YYY ∼ MPH∗(πππ, T , R) with parameters (4.5), it is easy to
see that the density of XXX = (g1(Y (1)), g2(Y (2)))′ is given by

fXXX

#
x(1), x(2)

%
= αααe T11g−1

1 (x(1))T12e T22g−1
2 (x(2))(−T22)eee 1

g′
1(g−1

1 (x(1)))g′
2(g−1

2 (x(2)))
.

(4.7)

If we assume that gj( · ;βββj) is a parametric non–negative function depending on the
vector βββj , j = 1, 2, and let βββ = (βββ1,βββ2). Then, we can formulate an algorithm analogous
to Algorithm 4.1:

Algorithm 4.10 (EM algorithm for bivariate inhomogeneous MPH* distributions).
0. Initialize with some “arbitrary” (ααα, T ,βββ).
1. Transform the data into y

(j)
i := g−1

j (x(j)
i ;βββj), i = 1, . . . , N , j = 1, 2, and apply the

E– and M–steps of Algorithm 4.7 by which we obtain the estimators (α̂αα, T̂ ).
2. Compute

β̂ββ = arg max
βββ

N(

i=1
log(fXXX(x(1)

i , x
(2)
i ; α̂αα, T̂ ,βββ))

3. Assign (ααα, T ,βββ) = (α̂αα, T̂ , β̂ββ) and GOTO 1.

We now consider particular multivariate distributions obtained through such a trans-
formation of an MPH* random vector.

4.4.3 Multivariate matrix–Pareto models
Let XXX = (g1(Y (1)), . . . , gd(Y (d)))′, where YYY ∼ MPH∗ (πππ, T , R) and

gj(y) = βj(ey − 1), βj > 0, j = 1, . . . , d. (4.8)

Then we say that XXX follows a multivariate matrix–Pareto distribution. Some special
properties of this class of distributions are:

1. Marginal distributions are matrix–Pareto distributed.

2. Moments and cross–moments of XXX can be obtained from the moment generating
function of YYY (see [24, Theorem 8.1.2]), provided that they exist.

3. Products of the type
PM

i=1

#
X(ji)

βji
+ 1

%ai

are matrix–Pareto distributed, ai > 0,
ji ∈ {1, . . . , d}, i = 1, . . . , M , M ≤ N , since linear combinations of YYY are PH
distributed.

In the bivariate case, (4.8) and (4.7), lead to

fXXX(x(1), x(2)) = ααα

4
x(1)

β1
+ 1

5T11−I

T12

4
x(2)

β2
+ 1

5T22−I

(−T22)eee
1

β1β2
.

and

F̄XXX(x(1), x(2)) = ααα (−T11)−1
4

x(1)

β1
+ 1

5T11

T12

4
x(2)

β2
+ 1

5T22

eee
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Moreover, in this bivariate case, linear combinations of X(i) are regularly varying, and
the respective index is the real part of the eigenvalue with largest real part of the sub–
intensity matrices of the marginals, which follows from [40, Lem. 2.1] and asymptotic
independence of YYY . The general case is not clear since the condition of asymptotic
independence does not hold.

Remark 4.11. The Marshall–Olkin Pareto distribution (see Hanagal [57]) is a particular
case of this class of distributions.

4.4.3.1 Parameter estimation

As in the univariate case, if we assume the simpler transformation gj(y) = ey − 1,
j = 1, . . . , d, then we can use fitting methods of the MPH* class by taking the logarithm
of the marginal observations. I.e., we can apply Algorithms 4.4 and 4.7 to the transformed
data y

(j)
i := log(x(j)

i +1), i = 1, . . . , N , j = 1, . . . , d, to estimate the parameters (πππ, T , R).
We exemplify the use of this method in two examples.

Example 4.12. (Mardia type I) We generated an i.i.d. sample of size 10 000 from a
(translated) Mardia type I Pareto distribution (see [81]) with parameters σ1 = σ2 = 1
and α = 2. This distribution has theoretical numerical values E(XXX) = (1, 1)′, λU = 0
and ρτ = 0.2. The simulated sample has numerical values Ê(XXX) = (0.9812, 0.9712)′ and
ρ̂τ = 0.2049.

We fitted a bivariate matrix–Pareto distribution using Algorithm 4.7 with p1 = p2 = 2
(i.e., p = 4) and 2 000 steps on the transformed data (with a running time of 530 seconds),
getting the following parameters:

α̂αα = (0.1666, 0.8334, 0, 0) ,

T̂ =

6

778

−2.0022 0.0238 1.9784 0
9.2506 −11.2967 0.1204 1.9256

0 0 −2.0175 1.8247
0 0 0.0834 −12.8829

9

::; ,

R̂ =

6

778

1 0
1 0
0 1
0 1

9

::; .

The tails of the marginals of the fitted distribution are determined by the real part
of the eigenvalues with largest real part of the sub–intensity matrices of the marginal
distributions, which are λ

(max)
1 = −1.9785 and λ

(max)
2 = −2.0035. These resemble well

the ones of the original distribution. The fitted distribution has first moment E(XXX) =
(1.0164, 0.9963)′. Moreover, we estimated ρτ via simulation, obtaining ρ̂τ = 0.1582.
The QQ plots are available in Figure 4.9 and contour plots are depicted in Figure 4.10,
from where it becomes clear that the algorithm recovers the structure of the data well.
Again, the log–likelihood of the fitted bivariate matrix–Pareto (−15 550.52) exceeds the
log–likelihood using the original Mardia distribution (−16 146.65).

The concrete structure of the intensity and reward matrix underlying Algorithm 4.7
restricts its application to tail-independent models. While in the previous example this
was justified, in situations with tail-dependent data one should rather look for fits in
the general MPH∗ class by using Algorithm 4.4 on the transformed data. The following
example illustrates such an approach.
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Figure 4.9: QQ plots of simulated Mardia Pareto sample versus fitted multivariate
matrix–Pareto distribution using Algorithm 4.7.
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Figure 4.10: Contour plot of simulated Mardia Pareto sample (left) and contour plot of a
simulated sample from the Matrix–Pareto distribution fitted using Algorithm 4.7 (right).
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Figure 4.11: Contour plot of original Mardia Pareto (left) and contour plot of Matrix–
Pareto distribution fitted using Algorithm 4.7 (right).

Example 4.13. (Gumbel copula with matrix–Pareto marginals) We generated an i.i.d.
sample of size 5 000 from a three-dimensional random vector with first marginal being a
matrix–Pareto with parameters

πππ1 = (0.2, 0.8) ,

T1 =
4

−2 0
0 −3

5
,
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β1 = 1 ,

second marginal being a matrix–Pareto with parameters

πππ2 = (0.5, 0.5) ,

T2 =
4

−2 0
0 −1.5

5
,

β2 = 1 ,

and the third marginal being a conventional Pareto with shape parameter 2.5, and a
Gumbel copula with parameter θ = 4. The choice of a Gumbel copula instead of a
multivariate matrix–Pareto model based on an MPH∗ construction is to show that the
algorithm can be used to model any type of dependence structure. The Gumbel copula
is known to have positive tail dependence. This distribution has theoretical numerical
values E(XXX) = (0.6, 1.5, 0.6667)′, λU = 2 − 21/4 ≈ 0.8108 and ρτ = 0.75, and the
real part of the eigenvalues that determine the heaviness of the tails are λ

(max)
1 = −2,

λ
(max)
2 = −1.5 and λ

(max)
3 = −2.5. The simulated sample has numerical values Ê(XXX) =

(0.6035, 1.4721, 0.6732)′, λ̂U (X1, X2) = 0.8142, λ̂U (X1, X3) = 0.7429, λ̂U (X2, X3) =
0.7857, ρ̂τ (X1, X2) = 0.7513, ρ̂τ (X1, X3) = 0.7526 and ρ̂τ (X2, X3) = 0.7544. Then,
we fitted a multivariate matrix–Pareto distribution using Algorithm 4.4 with p = 6 and
5 000 steps on the transformed data (running time 6 501 seconds), obtaining the following
parameters:

α̂αα = (0.0062 , 0.0606 , 0.4394 , 0.0600 , 0.0608 , 0.3731) ,

T̂ =

6

7777778

−16.9867 1.7532 1.3902 3.2835 1.0736 2.1224
0.2710 −1.3282 0.2835 0.0757 0.0562 0.2987
0.3714 0.0161 −2.8735 0.6658 0.8798 0.9208
1.1742 0.5387 0.2421 −4.0067 0.5156 0.5571
0.0786 0.5130 0.2916 1.1454 −4.2894 1.5148
2.0244 0.2912 0.7007 0.7777 2.0237 −6.2507

9

::::::;
,

R̂ =

6

7777778

0.9414 0.0558 0.0028
0.2856 0.4594 0.2549
0.2934 0.5233 0.1833
0.0906 0.5548 0.3546
0.4230 0.0750 0.5020
0.0748 0.5992 0.3260

9

::::::;
.

The real part of the eigenvalues with largest real part of the sub–intensity matrices
of the marginal distributions are λ

(max)
1 = −2.5370, λ

(max)
2 = −1.5941 and λ

(max)
3 =

−2.4167, which are close to the ones of the original distribution. The fitted distribution
has first moment E(XXX) = (0.6006, 1.5344, 0.6850)′. Moreover, we estimated λU and ρτ

via simulation, obtaining λ̂U (X1, X2) = 0.70403, λ̂U (X1, X3) = 0.736438, λ̂U (X2, X3) =
0.672417, ρ̂τ (X1, X2) = 0.6924, ρ̂τ (X1, X3) = 0.7470 and ρ̂τ (X2, X3) = 0.7728. Compar-
ing all numerical properties, together with the QQ plots (see Figure 4.12) and contour
plots (see Figure 4.13), we see that this algorithm also recovers relatively well the struc-
ture of the data.
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Figure 4.12: QQ plots of simulated sample versus fitted multivariate matrix–Pareto
distribution using Algorithm 4.4.
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Figure 4.13: Contour plots of simulated sample from Gumbel copula with matrix-Pareto
marginals (top) and contour plots of a simulated sample from the Matrix–Pareto distri-
bution fitted using Algorithm 4.4 (bottom).
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We would like to comment on the relative inaccuracy of the obtained estimate for
λ

(max)
1 , especially when compared to the convincing estimates for the other marginals.

The first marginal here is in fact a mixture of Pareto distributions with shape parameters
2 and 3, and mixing probabilities 0.2 and 0.8, respectively. That is, a major proportion
of the data for the first marginal are to be expected to stem from the Pareto distribution
with shape parameter 3. Since Algorithm 4.4 fits body and tail at the same time, one
cannot expect the resulting estimate for the tail to be as good as techniques of classical
extreme value theory, which focusses on the tail fit only. To illustrate this point, we also
applied the algorithm to data simulated from changed initial probabilities in the first
marginal according to πππ1 = (0.8, 0.2) (and otherwise identical parameters). Now most
of the data points will stem from the heavier distribution in the mixture. Indeed, the
estimate for λ

(max)
1 in that case turns out to be −2.0152, while the tail estimate for the

other marginals remains almost at the same value (−1.5966 and −2.4154).

Next we present a parameter–dependent example with real data, employing Algo-
rithm 4.10.

Example 4.14. (Danish fire insurance data) Consider the famous Danish fire insurance
claim data set (see e.g. [56]). We propose here a bivariate matrix–Pareto distribution as
a model for the components building and content with observations in the set (1, ∞) ×
(1, ∞). To that end, we first translate the sample to the origin, thus the sample has
numerical values Ê(XXX) = (3.2476, 4.6856)′ and ρ̂τ = 0.2143. Then, we fit a bivariate
matrix–Pareto distribution with p1 = p2 = 2 using Algorithm 4.10 with 2 000 steps (with
a step–length of 0.05 and gradient ascent until the norm of the derivative is less than
0.1, the running time is 438 seconds), obtaining the following parameters:

α̂αα = (0, 1, 0, 0) ,

T̂ =

6

778

−2.6333 0 0.0005 2.6328
1.2788 −3.8336 2.5548 0

0 0 −10.9822 0
0 0 2.4131 −2.4732

9

::; ,

R̂ =

6

778

1 0
1 0
0 1
0 1

9

::; ,

β̂1 = 5.0377 , β̂2 = 13.4538 .

The real part of the eigenvalues that determines the heaviness of the tails are λ
(max)
1 =

−2.6333 and λ
(max)
2 = −2.4732, respectively. The fitted distribution has mean E(XXX) =

(3.1698, 4.6803)′. Moreover, estimating ρτ via simulation gives ρ̂τ = 0.2190. From the
QQ plots (Figure 4.14) and contour plots (Figure 4.15), we see that the fitted distribution
is a reasonable model for the data.
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Figure 4.14: QQ plots of Danish fire insurance claim size sample versus fitted bivariate
matrix–Pareto distribution using Algorithm 4.10.
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Figure 4.15: Contour plot of Danish fire insurance claim size sample (left), contour plot
of Matrix–Pareto distribution fitted using Algorithm 4.10 (middle) and contour plot of
simulated sample from fitted distribution (right).

This bivariate data set was recently also studied in Albrecher et al. [2, Sec. 4.5.2],
where a splicing model with a bivariate mixed Erlang for the body and a bivariate
Generalized Pareto distribution (GPD) for the tail was proposed. That approach required
a threshold selection for the fitting of the tails, and univariate extreme value analysis led
there to values of regular variation of around 2 for the building component and 1.67 for
the contents component. Even though our estimates are further away from these values
than their bivariate model (1.75 and 1.54, respectively), we would like to emphasize
that the fitting of a matrix–Pareto distribution does not require any threshold selection.
Furthermore, if we were to use more phases and a general form of the sub–intensity and
reward matrices, the fit would quickly improve and for about 6 phases reach the accuracy
of the bivariate GPD model, but then the overall number of parameters compared to the
size of the present data set may not be considered commensurate, which is why we stick to
the above choice. Note that our proposed procedure is fully automatic and the respective
implementation can easily be applied to any other data set as well.

4.4.4 Multivariate Matrix–Weibull models
Let XXX = (g1(Y (1)), . . . , gd(Y (d)))′, where YYY ∼ MPH∗ (πππ, T , R) and gj(y) = y1/βj , βj > 0,
j = 1, . . . , d, then we say that XXX has a multivariate matrix–Weibull distribution. Some
special properties of this type of distribution are:



4.4. Multivariate inhomogeneous phase-type distributions 97

1. Marginal distributions are matrix–Weibull distributed.

2. For a vector a = (a(1), . . . , a(d)), with a(j) > 0, j = 1, . . . , d, ∆(a)XXX is multivariate
matrix–Weibull distributed.

For the bivariate case we get

fXXX

#
x(1), x(2)

%
= αααe T11(x(1))β1

T12e T22(x(2))β2 (−T22)eee β1(x(1))β1−1β2(x(2))β2−1 .

and

F̄XXX(x(1), x(2)) = ααα (−T11)−1 e T11(x(1))β1
T12e T22(x(2))β2

eee

Remark 4.15. The Marshall–Olkin Weibull distribution (see [58]) is a particular case
of this distribution.

4.4.4.1 Parameter estimation

In contrast to Section 4.4.3.1, all transformations are parameter–dependent, and the
fitting procedures of the previous subsection are not applicable. However, we can apply
Algorithm 4.10 in the bivariate case.

Example 4.16. (Bivariate Matrix–Weibull) We generate an i.i.d. sample of size 5 000
of a bivariate random vector with matrix–Weibull marginals with parameters

πππ1 = (0.8, 0.2) ,

T1 =
4

−1 0.5
0 −0.5

5
,

β1 = 0.4

for the first marginal and

πππ2 = (0.5, 0.25, 0.25) ,

T2 =

6

8
−1 1 0
0 −0.5 0.5
0 0 −0.1

9

; ,

β2 = 0.6

for the second marginal, and a Gaussian copula with parameter ρ = 0.5. While any
copula, or also simply a bivariate matrix–Weibull based on a MPH∗ construction could
be used, we choose the Gaussian copula here to illustrate that the algorithm is able
to work with any type of dependence structure. This distribution has theoretical mean
E(XXX) = (18.7997, 86.3711)′. The sample has numerical values Ê(XXX) = (18.7690, 88.1637)′

and ρ̂τ = 0.3431.
We fit a bivariate matrix–Weibull distribution with p1 = p2 = 3 using Algorithm 4.10

with 1 500 steps (with a running time of 3 930 seconds for a step–length of 10−5), getting
the following parameters:

α̂αα = (0.2101, 0, 0.7899, 0, 0, 0) ,
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T̂ =

6

7777778

−4.2507 0.5527 1.2916 0 0 2.4064
0 −0.3069 0 0 0.3069 0

0.0089 0.2575 −0.6903 0.4238 0 0
0 0 0 −0.0946 0 0.0946
0 0 0 0.0360 −0.0360 0
0 0 0 0.0026 0 −0.2542

9

::::::;
,

R̂ =

6

7777778

1 0
1 0
1 0
0 1
0 1
0 1

9

::::::;
,

β1 = 0.4689 , β2 = 0.7340 .

One sees that the algorithm estimates the shape parameters of the matrix–Weibull
marginals reasonably well. The fitted distribution has mean E(XXX) = (18.6988, 88.1166)′,
and from simulated data we get ρ̂τ = 0.3236. The QQ and contour plots are given
in Figure 4.16 and Figure 4.18, respectively. The log–likelihood of the fitted bivariate
matrix–Weibull is −39 748, which is to be compared with the log–likelihood −39 687.19
using the original distribution.
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Figure 4.16: QQ plots of sample versus fitted bivariate matrix–Weibull distribution using
Algorithm 4.10.
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Figure 4.17: Contour plot of simulated sample (left) and contour plot of a simulated sam-
ple from the bivariate Matrix–Weibull distribution fitted using Algorithm 4.10 (right).
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Figure 4.18: Contour plot of original bivarite matrix-Weibull (left) and contour plot of
bivariate Matrix–Weibull distribution fitted using Algorithm 4.10 (right).

Remark 4.17. In all examples of this section the marginals were assumed to be of the
same type (both matrix–Pareto or both matrix–Weibull). We would like to mention that
the generality of Algorithm 4.10 also allows to fit models with marginals of different types
(e.g. one marginal matrix–Pareto and the other matrix–Weibull).

4.5 Conclusion

In this paper we provided a guide for the statistical fitting of homogeneous and inho-
mogeneous phase–type distributions to data, both for the univariate and multivariate
case. For that purpose, we derived a new EM algorithm for IPH distributions that are
obtained through parameter–dependent transformations. In addition, we introduced new
classes of multivariate distributions with IPH marginals and some attractive properties.
As a by-product, we amended the estimation method proposed by Breuer [28] for the
homogeneous MPH∗ case and illustrated its usefulness and flexibility. We furthermore
discussed extensions for censored data and the fitting of the phase–type classes to given
continuous joint distribution functions. The performance of the proposed algorithms was
exemplified in various numerical examples, both on simulated and real data. In order to
facilitate the implementation of the proposed algorithms for fitting this general class of
distributions to given data, a respective R package is in preparation and will be made
available on Cran.
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