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Abstract. This thesis consists of two research papers prefaced by an introduction. Both papers
relate to the stable module ∞-category of a finite group 𝐺 over a field 𝑘 of characteristic 𝑝.

In the first, joint with Tobias Barthel and Jesper Grodal, we study the Picard group of the
stable module ∞-category, more commonly known as the group of endotrivial modules 𝑇 (𝐺).
We describe the whole group of endotrivial modules in terms of 𝑝-local data, using the celebrated
classification of endotrivial modules on its Sylow 𝑝-subgroup as input. In particular, we find an
explicit obstruction to lifting a 𝐺-stable endotrivial 𝑆-module up to 𝐺 itself, which vanishes when
𝐺 has a normal 𝑝-subgroup or when 𝑝 = 2 but does not vanish in general. As a consequence, we
see that conjectures of Carlson–Mazza–Thévenaz about torsion-free endotrivial modules hold
in certain cases, but not always. We illustrate the computability of our description by calculating
concrete cases, such as the symmetric groups.

In the second, I show that the stable module ∞-category of a finite group 𝐺 decomposes
in three different ways as a limit of the stable module ∞-categories of certain subgroups of 𝐺.
Analogously to Dwyer’s terminology for homology decompositions, I call these the centraliser,
normaliser, and subgroup decompositions. I construct centraliser and normaliser decomposi-
tions and extend the subgroup decomposition (constructed by Mathew) to more collections of
subgroups. The methods used are not specific to the stable module ∞-category, so may also be
applicable in other settings where an ∞-category depends functorially on 𝐺.

Resumé. Denne ph.d.-afhandling består af to forskningsartikler samt en kort indledning. Begge
artikler handler om den stabile modul-∞-kategori for en endelig gruppe 𝐺 over et legeme 𝑘 af
karakteristik 𝑝.

I den første artikel, som er skrevet i samarbejde med Tobias Barthel og Jesper Grodal, stud-
erer vi Picard-gruppen af den stabile modul-∞-kategori, også kaldet gruppen af endotrivielle
moduler 𝑇 (𝐺). Vi beskriver hele gruppen 𝑇 (𝐺) med 𝑝-lokal information ved at brug den fejrede
klassificering af endotrivielle moduler på en 𝑝-Sylowundergruppe som input. Særligt finder vi
en konkret forhindring for at løfte en 𝐺-stabil endotriviel modul til 𝐺 selv, der forsvinder når
𝐺 har en normal 𝑝-undergruppe eller når 𝑝 = 2, men som ikke generelt forsvinder. Vi viser
som følge af dette, at formodninger af Carlson–Mazza–Thévenaz om torsionsfri endotrivielle
moduler gælder i visse tilfælde, men ikke altid. Vi illustrerer beregneligheden af vores model
ved at anvende den i konkrete tilfælde, f.eks. de symmetriske grupper.

I den anden artikel viser jeg, at den stabilemodul-∞-kategori kan dekomponeres på tre forskel-
lige måder som et invers limes af de stabile modul-∞-kategorier af visse undergrupper af 𝐺. I for-
længelse af Dwyers terminologi kaldes disse dekompositioner for centralisatordekompositionen,
normalisatordekompositionen og undergruppedekompositionen. Jeg konstruerer centralisator-
dekompositionen og normalisatordekompositionen og udvider undergruppedekompositionen
(først konstrueret af Mathew) til flere samlinger af undergrupper. De anvendte metoder er ikke
specifikke for den stabile modul-∞-kategori, så de forventes at være anvendelige i andre situa-
tioner, hvor en ∞-kategori afhænger funktorielt af 𝐺.
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General introduction

This thesis consists of two papers:
Paper A: Torsion-free endotrivial modules via homotopy theory, and
Paper B: Decompositions of the stable module ∞-category.
The first of these is joint with Tobias Barthel and Jesper Grodal. In this general introduction,
I will attempt to explain how the papers are related, with a less specialised audience in mind
than the introductions to the papers themselves. To avoid too much overlap with the other
introductions, I omit mention of many results from the papers, as well as background that is
irrelevant to the exposition here. For more details, including a more extensive bibliography, I
refer to the introductions of Papers A and B.

The common theme of the papers is the study of the stable module ∞-category using decom-
positions of ∞-categories. By a decomposition of an ∞-category C, I mean an equivalence

C ∼−−→ lim𝑖∈𝐼 C𝑖

where 𝐼 is some indexing diagram and the C𝑖 are in some way simpler or easier to understand
than C. Such a decomposition allows us to study C by first studying each C𝑖 and then attempting
to “glue” our results together to say something about C.

This is far from a new idea: the analogous concept for classifying spaces is a classical tool
of homotopical group theory. Let 𝐺 be a finite group and 𝑝 be a prime dividing the order of 𝐺.
A homology decomposition of the classifying space B𝐺 is a diagram of spaces 𝐹 ∶ 𝐷 → S such
that for every 𝑑 ∈ 𝐷 there is some 𝐻 ≤ 𝐺 for which 𝐹(𝑑) ≃ B𝐻 , together with a map

hocolim 𝐹 → B𝐺
that induces an isomorphism on mod 𝑝 homology. Here we have a homotopy colimit instead
of a limit of ∞-categories, but the principle is the same: we can now attempt to understand 𝐺
(or at least the mod 𝑝 homology of its classifying space) inductively by first understanding its
subgroups and then gluing this information together to study 𝐺.

Dwyer [Dwy97] identifies three types of homology decompositions, each with their own
indexing category. In different ways, each of the indexing categories describes how the sub-
groups in C behave under conjugation. Let C be a collection of subgroups of 𝐺, i.e. a set of
subgroups of 𝐺 that is closed under conjugation by elements of 𝐺. Firstly, we have the orbit
category OC (𝐺), which is equivalent to the category whose objects are the left 𝐺-sets 𝐺/𝐻
with 𝐻 ∈ C and whose morphisms are 𝐺-equivariant maps. Secondly, we have the fusion
category FC (𝐺), whose objects are the subgroups in C and whose morphisms are the group
homorphisms that are induced by conjugation in 𝐺. Finally, we have the orbit simplex cate-
gory 𝑠𝑆C (𝐺), which is the poset of the 𝐺-conjugacy classes of non-empty chains of subgroups
𝐻0 < … < 𝐻𝑛 in C , ordered by refinement. These give us (potential) decompositions associated
with C :
Subgroup decomposition: There is a functor 𝐹 ∶ OC (𝐺) → S with 𝐹(𝐺/𝐻) ≃ B𝐻 .
Centraliser decomposition: There is a functor 𝐹 ∶ FC (𝐺)op → S with 𝐹(𝐻) ≃ B𝐶𝐺(𝐻).
Normaliser decomposition: There is a functor 𝐹 ∶ 𝑠𝑆C (𝐺)op → S with

𝐹(𝐻0 < … < 𝐻𝑛) ≃ B( ⋂
1≤𝑖≤𝑛

𝑁𝐺(𝐻𝑖)) .

Dwyer shows that these three are indeed decompositions of B𝐺 provided that C is an “ample”
collection. There are many standard examples of ample collections, such as the collection S𝑝(𝐺)
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of all non-trivial 𝑝-subgroups of 𝐺. In the cases that are of interest to us, C will be a subset of
S𝑝(𝐺). We let OS(𝐺) denote the orbit category on S𝑝(𝐺).

In mywork, I am interested not in the classifying space B𝐺, but in the stable module category
of 𝑘𝐺, where 𝑘 is a field of characteristic 𝑝. Since the characteristic of 𝑘 divides the order of
𝐺, we are in the realm of “modular” representation theory, and in general the module category
Mod𝑘𝐺 is poorly behaved: unless the Sylow 𝑝-subgroup of 𝐺 is a member of a small list of fami-
lies, 𝑘𝐺 has “wild representation type”, and classifying the indecomposable 𝑘𝐺-modules would
in some sense entail the simultaneous classification of the indecomposable representations of
all finite dimensional 𝑘-algebras. (Specifically, the cases where 𝐺 does not have wild represen-
tation type are when its Sylow is a cyclic, Klein four, dihedral, semi-dihedral, or generalised
quaternion group; see Theorem 4.4.4 of [Ben98].) Such a classification is generally viewed as
being unreasonably difficult. Dade [Dad78a] remarks that,

“There are just too many modules over 𝑝-groups! Faced with this vast, literally
incomprehensible family of modules, we are reduced to looking for subfamilies
which are, at the same time, small enough to be classified and large enough to be
useful.”

In this spirit, the stable module category is of interest to representation theorists because it
contains important information about 𝑘𝐺-modules while still being simple enough to study.

Informally speaking, the stable module category discards the “characteristic zero” informa-
tion in themodule category, leaving only the behaviour that is specific to characteristic 𝑝. More
precisely, to obtain the stable module category of 𝐺, we declare a morphism 𝑓 ∶ 𝑀 → 𝑁 in
Mod𝑘𝐺 to be equivalant to the zeromorphism if it factors through a projectivemodule. We have
therefore forced all projective modules to be equivalant to the zero module in the stable module
category. (Recall that if the characteristic of 𝑘 is zero then all modules are projective, and so
the stable module category over such a field is itself zero; this is what was meant by “discarding
the characteristic zero information” above.) Traditionally, the stable module category has been
considered as a triangulated category, for example in Section 5 of [Car96]. However, in order
to be able to get a decomposition of the stable module category, we will need to consider it
as an ∞-category. In Section 2.1 of [Mat15], Mathew gives a construction of the stable mod-
ule ∞-category StMod𝑘𝐺 , a stable ∞-category whose homotopy category is the aforementioned
triangulated category. In both the triangulated and the stable ∞-category settings, the stable
module (∞-)category inherits a symmetric monoidal structure from Mod𝑘𝐺 , which is given by
𝑀 ⊗𝑘 𝑁 with a diagonal 𝐺-action.

It is unfortunately difficult to give anything more than a cursory explanation of the role
that ∞-categories [Lur09; Lur17] play here. Informally speaking, an ∞-category behaves anal-
ogously to a category where, instead of having a unique composition of morphisms, there is
only a composition that is “unique up to homotopy”. An ∞-category encodes not only all the
homotopies between the different compositions, but also the higher homotopies between the
homotopies, and so on. This causes them in some ways to behave more like topological spaces,
which is important when attempting to construct decompositions. The analogous decomposi-
tion statements for the 1-categorical stable module category are false: we have forgotten too
much information by passing to the homotopy category.

Corollary 9.16 of [Mat16] proves an analogue of the subgroup decomposition for the stable
module ∞-category, showing that

(1.1) StMod𝑘𝐺 ∼−−→ lim
𝐺/𝑃∈OS (𝐺)op

StMod𝑘𝑃
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is an equivalence of symmetric monoidal ∞-categories. (Note that Mathew’s result covers
more collections than just S𝑝(𝐺).) This equivalence further justifies the earlier statement that
StMod𝑘𝐺 only sees the behaviour of Mod𝑘𝐺 that is specific to the prime 𝑝: each of the sub-
groups 𝑃 appearing on the right hand side is a 𝑝-group, and OS(𝐺) only contains data about
𝑝-subgroups of 𝐺 and their normalisers (that is, the “𝑝-local” group theory of 𝐺).

In Paper B, I prove the existence of a subgroup decomposition formore collections than those
covered by Corollary 9.16 of [Mat16] and show that there are also centraliser and normaliser
decompositions for many collections:

Theorem. Let C be one of the collections S𝑝(𝐺), A𝑝(𝐺), B𝑝(𝐺), I𝑝(𝐺), or Z𝑝(𝐺). There is a
subgroup decomposition

StMod𝑘𝐺 ∼−−→ lim
OC (𝐺)op

StMod𝑘𝑃

and a normaliser decomposition

StMod𝑘𝐺 ∼−−→ lim
𝑠𝑆C (𝐺)

StMod𝑘𝑁𝐺(𝜎).

If C is S𝑝(𝐺), A𝑝(𝐺), or Z𝑝(𝐺), then there is additionally a centraliser decomposition

StMod𝑘𝐺 ∼−−→ lim
FC (𝐺)

StMod𝑘𝐶𝐺(𝑃).

The definitions of the collections in the statement of the theorem can all be found in the in-
troduction to Paper B. For the subgroup decomposition, the collections that are not covered
by Mathew’s result are B𝑝(𝐺), I𝑝(𝐺), and Z𝑝(𝐺). The proof of the theorem uses 𝐺-spaces to
encode decompositions, building on the ideas in Section 3 of Dwyer’s [Dwy98], and as a key
input uses work of Grodal–Smith [GS06] that provides equivariant equivalences between these
encoding 𝐺-spaces.

Paper A gives an example of how to use such decompositions of ∞-categories in practice.
It uses Mathew’s subgroup decomposition (1.1) to study the Picard group of the stable module
∞-category: this group consists of the equivalence classes of modules 𝑀 ∈ StMod𝑘𝐺 that have
an inverse under the tensor product, i.e. for which there exist a module 𝑁 ∈ StMod𝑘𝐺 and
an equivalence 𝑀 ⊗𝑘 𝑁 ≃ 𝑘. It has been studied by representation theorists as the group of
endotrivial modules and is commonly denoted by 𝑇 (𝐺). The name “endotrivial” arises because
whenever a finite-dimensional module 𝑀 has an inverse under the tensor product, the inverse
must be equivalent to the 𝑘-linear dual of 𝑀 ; that is,

End𝑘(𝑀) ≃ 𝑀 ⊗𝑘 𝑀∗ ≃ 𝑘,
so the 𝑘-linear endomorphisms of 𝑀 are equivalant to 𝑘 as a stable 𝐺-module. Picard groups
are often interesting objects to study and endotrivial modules are no exception, appearing in
several places in modular representation theory.

A lot of information is already known about 𝑇 (𝐺): when 𝐺 is a finite 𝑝-group this group was
classified in a number of important papers, starting in the 1970s with [Dad78a; Dad78b] and
culminating in the early 2000s with [CT05; CT04]. For an arbitrary finite group 𝐺, we therefore
want to understand the image and kernel of the restriction homomorphism

res𝐺𝑆 ∶ 𝑇 (𝐺) → 𝑇(𝑆)
where 𝑆 is a Sylow 𝑝-subgroup of 𝐺. The kernel is called the group of Sylow-trivial modules
and was described in terms of the local group theory of 𝐺 by Balmer in [Bal13] and by Grodal
in [Gro18]. By earlier work of Carlson, Mazza, Nakano, and Thévenaz ([CMN06], [MT07], and
[CMT13]), we also know what the image of the restriction homomorphism is as an abstract
group; therefore, the aim of Paper A is to identify the image as a subgroup of 𝑇 (𝑆). In the cases
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of interest, it turns out that 𝑇 (𝑆) is a free abelian group, so we wish to identify the sublattice
of 𝑇 (𝑆) that corresponds to modules restricted from 𝑇 (𝐺).

In order to use the subgroup decomposition to study the Picard group 𝑇 (𝐺), we need to
replace the Picard group by the Picard space: that is, the space of tensor-invertible objects in
StMod𝑘𝐺 together with the equivalences between them, and homotopies between those equiv-
alences, and the homotopies between those homotopies, and so on. This is a Kan complex
whose set of connected components is (by definition) isomorphic to the Picard group. A re-
sult of Mathew–Stojanoska [MS16, Proposition 2.2.3] tells us that the subgroup decomposition
induces a decomposition of the Picard space as a homotopy limit:

Pic(StMod𝑘𝐺) ∼−−→ holim
OS (𝐺)op

Pic(StMod𝑘𝑃 ).

Our algebraic question has become topological, and standard techniques from algebraic topol-
ogy give an obstruction that determines the image of the restriction:

Theorem. There is an exact sequence

0 → H1(OS(𝐺); 𝑘×) → 𝑇(𝐺) → 𝑇 𝐺-stable(𝑆) 𝛼−→ H2(OS(𝐺); 𝑘×),
and we can explicitly describe a 2-cocycle representing the obstruction 𝛼 .
Here 𝑇 𝐺-stable(𝑆) denotes the group of 𝐺-stable endotrivial 𝑆-modules, which is the subgroup of
𝑇 (𝑆) that is invariant under 𝐺-conjugation. It is isomorphic to limOS (𝐺)op 𝑇 (−), which is how
we denote it throughout Paper A, and it is straightforward to show that it contains the image
of the restriction morphism res𝐺𝑆 .

The rest of Paper A involves manipulating the obstruction 𝛼 in order to obtain an algebraic
model for 𝑇 (𝐺), expressed in terms of the 𝑝-subgroups of 𝐺 and the one-dimensional characters
of their normalisers. Since the groups of characters in question have often already been com-
puted, this model is useful for calculations. Along the way, we provide an algebraic criterion
for showing that a given 𝐺-stable endotrivial 𝑆-module lifts to 𝑇 (𝐺): a module lifts if and only if
it is possible to specify a one-dimensional character of 𝑁𝐺(𝑃) for each 𝑝-subgroup 𝑃 ≤ 𝐺 such
that these characters satisfy a compatibility condition on the cyclic 𝑝-subgroups. We carry out
these calculations for the group 𝐺 = PSL3(𝑝), where 𝑝 ≡ 1 (mod 3), showing that the image of
the restriction is a subgroup of 𝑇 (𝑆) of index three. This allows us to settle two conjectures of
Carlson–Mazza–Thévenaz [CMT14, Conjectures 9.2 and 10.1], partially positively and partially
negatively.
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TORSION-FREE ENDOTRIVIAL MODULES VIA HOMOTOPY THEORY
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Abstract. The group of endotrivial 𝑘𝐺-modules 𝑇 (𝐺), for 𝐺 a finite group and 𝑘 a field of
characteristic 𝑝, is by definition the Picard group of the stable module category of 𝑘𝐺-modules.
The quest to understand this group has a long history, as it occurs in many parts of representa-
tion theory. In this paper, we describe the whole group of endotrivial modules of an arbitrary
finite group in terms of computable 𝑝-local data, using the celebrated classification of endotriv-
ial modules on its Sylow 𝑝-subgroup 𝑆 as input. We accomplish this by combining techniques
from higher algebra with recent homotopy methods of the second-named author, which he
used to describe the subgroup of torsion endotrivial modules. In particular, we find an explicit
obstruction to lifting a 𝐺-stable endotrivial 𝑆-module up to 𝐺 itself, which vanishes when 𝐺 has
a normal 𝑝-subgroup or when 𝑝 = 2 but does not vanish in general. As a consequence, we see
that conjectures of Carlson–Mazza–Thévenaz about torsion-free endotrivial modules hold in
certain cases, but not always. We illustrate the computability of our description by calculating
concrete cases, such as the symmetric groups.
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1. Introduction

Endotrivial modules, i.e. 𝑘𝐺-modules such that End𝑘(𝑀) ≅ 𝑘 ⊕ (proj), for 𝐺 a finite group
and 𝑘 a field of characteristic 𝑝, play an important role in many parts of representation theory,
which is surveyed in [Thé07; Car12; Car17]. They form an abelian group under tensor product,
denoted 𝑇 (𝐺) or 𝑇𝑘(𝐺). This is the group of tensor-invertible objects in the stable module
category of 𝐺, and it is known to be finitely generated [CMN06, Corollary 2.5].

When 𝑃 is a finite 𝑝-group, 𝑇 (𝑃) was classified in a number of important papers, starting in
the 1970swith [Dad78a; Dad78b] and culminating in the early 2000swith [CT05; CT04]. For𝐺 a
general finite group, computable formulas for the torsion part of 𝑇 (𝐺) in terms of 𝑝-local group
theory were provided recently by the second-named author in [Gro18]. The goal of this paper
is to combine the homotopy methods from [Gro18] with additional tools from higher algebra
to obtain a computable model for the whole of 𝑇 (𝐺). In particular, we obtain information about
the torsion-free generators, settling conjectures of Carlson–Mazza–Thévenaz [CMT14] both in
the positive and in the negative.

We briefly recall the outline of the classification of 𝑇 (𝑃); more details on the known structure
of 𝑇 (𝐺) are provided in Section 2.6. Dade showed in [Dad78a; Dad78b] that when 𝑃 is a finite
abelian 𝑝-group, 𝑇 (𝑃) consists of shifts of the trivial module, i.e. it is infinite cyclic unless 𝑃
itself is cyclic, in which case it is 0 if |𝑃 | ≤ 2 and ℤ/2 otherwise. Carlson–Thévenaz showed in
[CT05] that when 𝑃 is an arbitrary finite 𝑝-group, 𝑇 (𝑃) is torsion-free except in the exceptional
cases when the 𝑝-group is cyclic, a semi-dihedral 2-group, or a generalised quaternion 2-group.
In all the exceptional cases, we know explicit generators for 𝑇 (𝑃). In [CT04], they also estab-
lished generators in the cases where 𝑇 (𝑃) is torsion-free, proving that a set of elements given
earlier by Alperin [Alp01] that was known to form a rational basis is in fact an integral basis.

1.1. Obstruction theory. Since we understand the group of endotrivial modules for 𝑝-groups,
we can aim to understand 𝑇 (𝐺) for arbitrary finite 𝐺 by choosing a Sylow 𝑝-subgroup 𝑆 of 𝐺
and considering the exact sequence

(1.2) 0 → 𝑇(𝐺, 𝑆) → 𝑇(𝐺) res−−→ 𝑇(𝑆).

Here 𝑇 (𝐺, 𝑆) is defined as the kernel of the restriction map, i.e. the modules 𝑀 such that
res𝐺𝑆 𝑀 ≅ 𝑘 ⊕ (proj), referred to as Sylow-trivial modules. In [Gro18, Theorem A], the second-
named author established an isomorphism 𝑇 (𝐺, 𝑆) ≅ H1(OS(𝐺); 𝑘×), building on earlier ideas
of Balmer [Bal13]. HereOS(𝐺) denotes the orbit category of 𝐺 on the collection S𝑝(𝐺) of non-
trivial 𝑝-subgroups of 𝐺. This cohomological description is very amenable to manipulation via
standard methods from homotopy theory, and [Gro18, Theorem D] says that 𝑇 (𝐺, 𝑆) can al-
ternatively be described as a collection of one-dimensional characters of normalisers of chains
𝑁𝐺(𝑃0 < … < 𝑃𝑛), compatible under refinement. This implies the Carlson–Thévenaz conjec-
ture [Gro18, Theorem F], which gives an algorithmic way of calculating 𝑇 (𝐺, 𝑆) from 𝑝-local
group theory information. In terms of homotopy theory, the statement about one-dimensional
characters can again be rewritten as 𝑇 (𝐺, 𝑆) ≅ H0

𝐺(S𝑝(𝐺); H1(−; 𝑘×)), where here H∗
𝐺(𝑋 ; 𝐹 )

denotes the 𝐺-equivariant Bredon cohomology of a 𝐺-space 𝑋 with coefficients in the functor
𝐹 ; see [Gro18, §5].

Understanding the exact image of the restriction 𝑇 (𝐺) → 𝑇(𝑆) is subtle, as we now explain.
Carlson–Mazza–Nakano [CMN06, Theorem 3.1] show that the rank of TF (𝐺) can be described
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by a formula similar to Alperin’s formula for 𝑝-groups [Alp01, Theorem 4]:

(1.3) dimℚ(𝑇 (𝐺) ⊗ ℚ) = rk(TF (𝐺)) = {
0 if rk𝑝(𝐺) = 1,
𝑛𝐺 if rk𝑝(𝐺) = 2, and
𝑛𝐺 + 1 if rk𝑝(𝐺) ≥ 3.

Here rk𝑝(𝐺) is the 𝑝-rank of 𝐺, i.e. the rank 𝑟 of the largest elementary abelian 𝑝-subgroup
(ℤ/𝑝)𝑟 of𝐺, and 𝑛𝐺 is the number of conjugacy classes of rank twomaximal elementary abelian
subgroups of 𝐺. This formula determines TF (𝐺) as an abstract group. Apart from the group
theoretic question of actually calculating 𝑛𝐺 for classes of groups (see Section 2.6), the above
rank formula for TF (𝐺) also still leaves open the important question of describing torsion-free
generators for 𝑇 (𝐺), for example via their image in 𝑇 (𝑆), and pinning down its representation
theoretic structure—a status in some ways analogous to the status in the 𝑝-group case prior
to [CT04]. This has been the subject of a number of works, both in the abstract and for con-
crete collections of finite groups; the paper [CMT14] summarises many of the pre-existing
approaches to this problem.

An obvious condition on the image of the restriction 𝑇 (𝐺) → 𝑇(𝑆) is that it must land in the
subgroup limOop

S
𝑇 (−) of 𝐺-stable modules in 𝑇 (𝑆), i.e. the endotrivial 𝑆-modules that restrict

to compatible elements under restriction and conjugation in 𝐺. Using methods from higher
algebra we find a computable obstruction for this being the case. Extending the results in
[Gro18] “to the right” we get the following sequences describing 𝑇 (𝐺) in terms of 𝑇 (𝑆) and
𝑝-local information.

Theorem A. There are exact sequences

0 → H1(OS(𝐺); 𝑘×) → 𝑇(𝐺) res−−→ lim
OS (𝐺)op

𝑇 (−) 𝛼−→ H2(OS(𝐺); 𝑘×)

and

0 → H0
𝐺(C ; H1(−; 𝑘×)) → 𝑇(𝐺) res−−→ lim

OS (𝐺)op
𝑇 (−) 𝛽−→ H1

𝐺(C ; H1(−; 𝑘×)),
where C is any collection of non-trivial 𝑝-subgroups of 𝐺 for which C ↪ S𝑝(𝐺) is a 𝐺-homotopy
equivalence (Theorem 4.5 and Corollary 5.10). We can explicitly describe cocycles representing the
obstructions 𝛼 and 𝛽 (Theorem 4.5 and Proposition 5.11).

The two left-most terms in the exact sequences are descriptions of 𝑇 (𝐺, 𝑆) from [Gro18], as
explained above. All of the cohomology groups mentioned are finite abelian 𝑝′-groups de-
scribed in terms of the 𝑝-local structure of 𝐺. We provide information on cases when 𝛼 and
𝛽 are known either to vanish or to be non-zero in Theorem C; in particular, when 𝑝 = 2 the
obstruction classes vanish, but at odd primes they do not vanish in general.

Previously, Balmer [Bal15] provided an obstruction to lifting modules from a subgroup 𝐻
(of 𝑝′-index) to 𝐺, lying in a Čech cohomology group with respect to a “sipp topology” that
he introduced. While obviously fundamental and an inspiration for this work, the theory was
not immediately amenable to calculations of the obstruction group or obstruction class. In
Appendix A—logically independent of the rest of the paper—we go back and show that, when
𝐻 is a Sylow 𝑝-subgroup, Balmer’s obstruction group is in fact isomorphic to H2(OS ; 𝑘×) and
his obstruction corresponds to 𝛼 under our constructed isomorphism.

1.4. An algebraic model. As mentioned previously, the obstruction class in Theorem A may
be non-zero when 𝑝 is odd. Just as an element of the cohomology group H0

𝐺(C ; H1(−; 𝑘×)) can
be thought of as a set of one-dimensional characters 𝑁𝐺(𝑃) → 𝑘× that agree as 𝑃 varies, we
can view the obstruction group H1

𝐺(C ; H1(−; 𝑘×)) as encoding the obstruction to the existence
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of such a set of characters. It therefore makes sense to build these characters into a model for
𝑇 (𝐺), which is the content of our Theorem B.

Given an endotrivial module 𝑀 ∈ 𝑇(𝐺), the most obvious invariant that we can assign to it
is the data of its restrictions to elementary abelian 𝑝-subgroups. We letA𝑝(𝐺) denote the poset
of non-trivial elementary abelian 𝑝-subgroups of 𝐺. Recall that Dade’s theorem implies that,
for 𝑉 ∈ A𝑝(𝐺), every endotrivial 𝑉 -module is a shift of the trivial module. We can therefore
choose a type function 𝑛∶ A𝑝(𝐺) → ℤ that satisfies

(1.5) res𝐺𝑉 𝑀 ≃ Ω𝑛(𝑉 )𝑘
for every 𝑉 ∈ A𝑝(𝐺). This function determines the image of 𝑀 in TF (𝐺) but not 𝑀 itself
[CMT14, Theorem 2.2].

Having chosen such a type function, we can assign further invariants to 𝑀 , which de-
scribe the action of 𝑝′-elements of 𝐺: for any 𝑉 ∈ A𝑝(𝐺), we consider the 𝑁𝐺(𝑉 )-module
Ĥ𝑛(𝑉 )(𝑉 ; 𝑀), which is one-dimensional because of (1.5). We let 𝜑𝑉 ∈ H1(𝑁𝐺(𝑉 ); 𝑘×) denote
the one-dimensional character of 𝑁𝐺(𝑉 ) that corresponds to the aforementioned module.

These invariants satisfy compatibility conditions because they come from a 𝐺-module. Since
the restriction of 𝑀 to 𝑇 (𝑆) is an endotrivial 𝑆-module, the type function 𝑛 must satisfy con-
ditions imposed by the classification of endotrivial modules on 𝑇 (𝑆), as in [CMT14, §3]. Fur-
thermore, since the restriction of 𝑀 to 𝑇 (𝑆) is 𝐺-stable, the type function must be constant on
𝐺-conjugacy classes of elementary abelian subgroups.

The compatibility conditions on the one-dimensional characters relate to the action of 𝑝′-
elements on cyclic subgroups: for a cyclic 𝑝-subgroup 𝑉 ≤ 𝑆, the fact that 𝑇 (𝑉 ) ≅ ℤ/2 imposes
a compatibility condition on the type function 𝑛 and hence on the possible structures of a mod-
ule in 𝑇 (𝑆). However, whenwe lift to 𝐺, wemight have a 𝑝′-element 𝑥 that acts non-trivially on
𝑉 , in which case the order of Ω𝑘 in 𝑇 (𝑉 ⋊ ⟨𝑥⟩) is greater than two. The compatibility condition
on the one-dimensional characters arises from this larger periodicity, and this phenomenon is
also exactly what our obstructions in Theorem A are measuring. We say that a set of charac-
ters satisfying this compatibility condition is an orientation for 𝑛; see Definition 7.6. We work
through the concrete example 𝐺 = PSL3(𝑝) in Example 10.2, where this phenomenon is clearly
visible; that example does not use any of the obstruction theory that we develop in the first part
of the paper, and some readers may find it useful to skip ahead to the example before reading
the intervening sections.

Our algebraic model for 𝑇 (𝐺) says that the compatibility conditions in the above two para-
graphs determine a unique endotrivial 𝐺-module:

Theorem B. The group 𝑇 (𝐺) is isomorphic to the abelian group of tuples (𝑀𝑆 , 𝑛 ∶ A𝑝(𝐺) →
ℤ, { 𝜑𝑉 ∶ 𝑉 ∈ A𝑝(𝐺) }), where 𝑀𝑆 is a 𝐺-stable endotrivial 𝑆-module, 𝑛 is a type function for 𝑀𝑆 ,
and {𝜑𝑉 } is an orientation for 𝑛, under an explicit equivalence relation (Theorem 8.3).

There is also an isomorphism

𝑇 (𝐺) ≅ lim
[𝑃0<…<𝑃𝑛]

𝑇 (𝑁𝐺(𝑃0 < … < 𝑃𝑛)),

where the indexing of the limit is over the poset of conjugacy classes of non-empty chains of 𝑝-
subgroups of 𝐺, ordered by refinement (Theorem 9.4). In particular, 𝑇 (𝐺) is an invariant of the
𝑝-local structure of 𝐺.
The conditions for being a type function and an orientation, as well as the equivalence relation,
are all straightforward to verify for explicit tuples, so we obtain a computable model for 𝑇 (𝐺).
The description of 𝑇 (𝐺) in terms of the endotrivial modules of normalisers of chains of sub-
groups 𝑇 (𝑁𝐺(𝑃0 < … < 𝑃𝑛)) generalises the normaliser decomposition of [Gro18, Theorem D].
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1.6. (Non)-vanishing of the obstructions. We study the behaviour of the obstructions 𝛼
and 𝛽 appearing in Theorem A using a range of techniques from homotopy theory. Here we
collect our results on when they vanish or not:

Theorem C. If 𝑝 = 2 or 𝐺 has a non-trivial normal 𝑝-subgroup, then 𝛼 and 𝛽 are zero (Corol-
lary 7.12 and Proposition 5.8); in this case, we obtain an exact sequence

0 → 𝑇(𝐺, 𝑆) → 𝑇(𝐺) res−−→ lim
OS (𝐺)op

𝑇 (−) → 0.

If 𝛼 or 𝛽 is zero and 𝑝 is odd, then we obtain that

TF (𝐺) ≅−→ lim
OS (𝐺)op

TF (−)

via restriction (Proposition 11.1), where the right-hand side denotes the 𝐺-stable elements in TF (𝑆).
In general, 𝛼 and 𝛽 are non-zero: for example, when 𝐺 = PSL3(𝑝) and 𝑝 ≡ 1 mod 3, we have

that H1
𝐺(C ; H1(−; 𝑘×)) ≅ ℤ/3 and 𝛽 is surjective (Example 10.2), so we obtain an exact sequence

0 → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) → ℤ/3 → 0.

Even though our theorem says that our obstructions may be non-zero in general when 𝑝 is
odd, the cases where this occurs seem to be very limited, for a range of reasons. It may be
possible to classify exactly when this happens for many classes of groups, for example the
simple groups, by using our model from Theorem B in combination with the well-developed
theory for calculating the obstruction groups that is demonstrated in [Gro18]. As an example,
we carry this out for symmetric groups in Section 12: the image of the restriction is a proper
subgroup of limOS (𝐺)op 𝑇 (−), and we show that a a rational basis constructed by Carlson–
Hemmer–Mazza in [CHM10] is also an integral basis.

Theorem C sheds light on some open questions in the literature about 𝑝-fusion invariance
of TF (𝐺) and choice of generators:

Corollary D. Suppose that 𝜙 ∶ 𝐺 → 𝐺′ is a group homomorphism that controls 𝑝-fusion. The
induced homomorphism 𝜙∗∶ TF (𝐺′) → TF (𝐺) is an isomorphism if 𝑝 = 2. If 𝑝 is odd, this
is not necessarily the case; for example, when 𝑝 ≡ 1 mod 3 the quotient map 𝜙 ∶ SL3(𝑝) →
PSL3(𝑝) preserves fusion but the induced map 𝜙∗∶ TF (PSL3(𝑝)) ↪ TF (SL3(𝑝)) is the inclusion
of a subgroup of index three.

This answers [CMT14, Conjecture 10.1] in the positive when 𝑝 = 2, but in the negative in
general; it is proved as Theorem 11.3.

A related question is what qualitative properties the generators of TF (𝐺) possess: the previ-
ously known methods for building generators have all involved constructing them from shifts
of the trivial module, which led to the conjecture [CMT14, Conjecture 9.2] that these might all
be chosen to lie in the principal block of 𝑘𝐺, i.e. the block containing the trivial module. As not
all endotrivial modules for SL3(𝑝) are inflated from PSL3(𝑝), this conjecture was too optimistic:

Corollary E. When 𝑝 ≡ 1 mod 3, a generating set of TF (SL3(𝑝)) cannot be chosen in the princi-
pal block.

This is proved as Theorem 11.4.

1.7. Outline of proofs. Let us now sketch how we prove these theorems, and give an outline
of the paper. The key starting point for our approach is to combine the viewpoint in [Gro18]
with the power of ∞-categories, which enables us to set up the obstruction theory for lifting
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a compatible family of endotrivial 𝑘𝑃-modules, for 𝑃 ranging over 𝑝-subgroups of 𝐺, to an
endotrivial 𝑘𝐺-module. More precisely, using a result of Mathew [Mat16], we obtain that

StMod𝑘𝐺 ∼−−→ holim
𝐺/𝑃∈OS (𝐺)op

StMod𝑘𝑃

as symmetric monoidal ∞-categories (see Proposition 3.1). The Picard space Pic(−) is a functor
from symmetric monoidal ∞-categories to pointed spaces, which commutes with homotopy
limits [MS16]. Applying this functor produces a homotopy decomposition of spaces

Pic(StMod𝑘𝐺) ∼−−→ holim
𝐺/𝑃∈OS (𝐺)op

Pic(StMod𝑘𝑃 ).

Once in the world of spaces, there is a classical spectral sequence and obstruction theory, devel-
oped by Bousfield–Kan [BK72] and others, for calculating the homotopy groups of a homotopy
limit of a diagram 𝐹 ∶ 𝐼 → S of spaces in terms of the derived functors of the inverse limit of
the homotopy groups of the spaces 𝐹(𝑖). The spectral sequence has the slight complication that
it is “fringed”, which is related to problems with strictifying basepoints; indeed, determining
whether or not a basepoint lifts is our main concern! However, spectral sequences of this form
have been intensively studied in unstable homotopy theory, for example in connection with
calculating maps between classifying spaces, and there is also an extensive literature on calcu-
lating the derived limits that appear (see e.g. [Oli98; Gro02; Gro10; Gro18]). As the homotopy
groups of the Picard space Pic(StMod𝑘𝑃 ) identify in positive degrees with Tate cohomology,
we can use a vanishing result of Jackowski–McClure for derived limits with values in 𝑝-local
Mackey functors to show that only one “existence” and one “uniqueness” group might be non-
trivial, arriving at the first exact sequence in TheoremA. This is done in Section 3 and Section 4,
with preliminaries in Section 2. We then use the isotropy spectral sequence of a collection C
to relate the obstruction class 𝛼 ∈ H2(OS(𝐺); 𝑘×) to Bredon cohomology, as in [Gro18], and
derive the second exact sequence in Theorem A.

To deduce Theorem B and Theorem C from this, we have to analyse the obstruction class
𝛽 ∈ H1

𝐺(C ; H1(−; 𝑘×)), and understand it in terms of representation theory. As alluded to
prior to the statement of Theorem B, the key point is that for a 𝑘𝐺-module 𝑀 , the normaliser
𝑁𝐺(𝑃) acts on res𝑆𝑃 𝑀 in the homotopy category of StMod𝑘𝑃 , giving rise to a one-dimensional
character of 𝑁𝐺(𝑃) when 𝑃 is abelian. Since the restrictions of 𝑀 to non-conjugate abelian
𝑝-subgroups might be equivalent to different shifts of the trivial module, we obtain a relation
between the one-dimensional characters on these subgroups that is more complicated than the
relation in the Sylow-trivial case in [Gro18, Theorem D]. For a 𝐺-stable endotrivial 𝑆-module,
the obstruction in H1

𝐺(C ; H1(−; 𝑘×)) vanishes if these relations can be simultaneously satisfied.
In Section 6, we carry out an analysis of actions on objects in the homotopy category of

StMod𝑘𝑃 , as in the above paragraph, and use it in Section 7 to reinterpret 𝛽 in terms of type
functions and orientations. We thereby see that the obstruction to lifting a 𝐺-stable endotrivial
𝑆-module can be seen directly, via representation theory, without using the cohomological
obstruction theory. This reinterpretation is used in Sections 8 and 9 to prove the two parts
of Theorem B. The remaining sections give other consequences and computations, and the
appendix establishes the relationship between the obstruction class 𝛼 and Balmer’s work.

We end this discussion of proofs by pointing out that the method of proof is rather general,
combining ∞-categorical techniques with algebraic obstruction group calculations as they oc-
cur in classical homotopy theory, and hence should apply to other to other symmetric monoidal
∞-categories in algebra and topology.
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2. Notation and preliminaries

Throughout the paper, we let 𝐺 be a finite group, 𝑝 be a prime dividing its order, 𝑘 be a field
of characteristic 𝑝, and 𝑆 be Sylow 𝑝-subgroup of 𝐺.

We use the unadorned word “space” to mean “simplicial set”. Since we will need to work
with both 1-categorical and ∞-categorical (co)limits, we will call the former “(co)limits” and
the latter “homotopy (co)limits”.

2.1. Group theory. Let S𝑝(𝐺) denote the poset of non-trivial 𝑝-subgroups of 𝐺, let A𝑝(𝐺)
denote its subposet of non-trivial elementary abelian 𝑝-subgroups, and let B𝑝(𝐺) denote the
poset of non-trivial 𝑝-radical subgroups of 𝐺 (i.e. subgroups 𝑃 ∈ S𝑝(𝐺) with 𝑃 = 𝑂𝑝(𝑁𝐺(𝑃)),
where 𝑂𝑝(𝐻) is the largest normal 𝑝-subgroup of 𝐻 ).

By a collection of subgroups we mean a set C of subgroups of 𝐺 that is closed under conju-
gation: for example, the posetsA𝑝(𝐺), B𝑝(𝐺), and S𝑝(𝐺) introduced in the previous paragraph.
For any such collection C , we write TC (𝐺) for its transport category, i.e. the Grothendieck
construction of the left action of 𝐺 on C . More explicitly, TC (𝐺) is the category whose objects
are the elements of C and whose morphisms are given by

Mor(𝑃, 𝑄) ≔ { 𝑔 ∈ 𝐺 ∶ 𝑔𝑃 ≤ 𝑄 },
where 𝑔𝑃 denotes 𝑔𝑃𝑔−1. When referring to the transport category of a named collection such
as S𝑝(𝐺), we will drop the decorations and write TS(𝐺) (similarly for the categoriesOS(𝐺) and
FS(𝐺) defined below).

We have an orbit category OC (𝐺) associated with such a collection, namely the category of
transitive 𝐺-sets with isotropy groups in C and 𝐺-equivariant maps between them. We can
again be more explicit: this category is equivalent to the category with objects 𝐺/𝑃 for 𝑃 ∈ C
and morphisms given by

Mor(𝐺/𝑃, 𝐺/𝑄) ≔ { 𝑔 ∈ 𝐺 ∶ 𝑃𝑔 ≤ 𝑄 }/𝑄,
where 𝑃𝑔 denotes 𝑔−1𝑃𝑔. There is a canonical quotient functor TC (𝐺) → OC (𝐺) that sends
𝑃 to 𝐺/𝑃 and sends a morphism 𝑔 ∈ Mor(𝑃, 𝑄) to the coset 𝑔−1𝑄 ∈ Mor(𝐺/𝑃, 𝐺/𝑄). We
will sometimes need to refer to the orbit category on all 𝑝-subgroups, not just the non-trivial
𝑝-subgroups, and we will denote this by O𝑝(𝐺). This is the same as adding the free 𝐺-set to
OS(𝐺).

We also have a fusion category FC (𝐺) associated with such a collection. The objects of
FC (𝐺) are the elements of C and the morphisms are the group homomorphisms that are in-
duced by conjugation in 𝐺:

Mor(𝑃, 𝑄) ≅ { 𝑔 ∈ 𝐺 ∶ 𝑔𝑃 ≤ 𝑄 }/𝐶𝐺(𝑃).
There is again a natural quotient functor TC (𝐺) → FC (𝐺) that is the identity on objects and
the natural quotient on morphism sets.

Finally, we have an orbit simplex category 𝑠𝑆C (𝐺), which is the poset of 𝐺-conjugacy classes
of chains of subgroups in C : we let 𝜎 ≤ 𝜏 if 𝜎 is a face of 𝜏 for some representatives 𝜎 ∈ 𝜎 and
𝜏 ∈ 𝜏 . (This is the opposite of the category with this name in [Dwy98, §1.7].) This category is
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equivalent to the category whose objects are chains of subgroups in C , and where there is a
unique morphism 𝜎 → 𝜏 when there is an element of 𝐺 conjugating 𝜎 to a face of 𝜏 .
2.2. The stable module ∞-category of a finite group. We write Mod𝑘𝐺 for the category
of 𝑘𝐺-modules, with the symmetric monoidal structure (⊗𝑘 , 𝑘) coming from the Hopf algebra
structure of 𝑘𝐺. A map 𝑓 ∶ 𝑀 → 𝑁 is called a stable equivalence if there exists 𝑔 ∶ 𝑁 → 𝑀 such
that 𝑓 𝑔 − id𝑁 and 𝑔𝑓 − id𝑀 both factor through a projective 𝑘𝐺-module. Inverting the stable
equivalences on Mod𝑘𝐺 yields the stable module category, which is a triangulated category that
has been studied by representation theorists, for example as a way of classifying 𝑘𝐺-modules
when Mod𝑘𝐺 has wild representation type; see [BIK11].

In order to study decompositions of the stable module category over the orbit category of 𝐺,
we need to work within a suitable higher categorical setting [Lur09; Lur17]. Therefore, we con-
sider primarily the stable module ∞-category StMod𝑘𝐺 , which is defined as the ∞-categorical
localisation of Mod𝑘𝐺 at the stable equivalences. We will use Hom𝐺(𝑀, 𝑁 ) to denote the map-
ping space between objects 𝑀,𝑁 ∈ StMod𝑘𝐺 . The homotopy category of StMod𝑘𝐺 is the stable
module category as defined in the previous paragraph. Its objects are 𝑘𝐺-modules and its hom
sets are given by

𝜋0 Hom𝐺(𝑀, 𝑁 ) ≅ Hom𝐺(𝑀, 𝑁 )/(𝑓 ∼ 0 if 𝑓 factors through a projective).
Every stable ∞-category C comes equipped with a shift or desuspension functor Ω∶ C ∼−−→ C.
(See [Lur17, §1] for a general introduction to the theory of stable ∞-categories.) For C =
StMod𝑘𝐺 , this identifies with the Heller shift, which can be computed by taking the kernel of a
projective cover. The salient features of StMod𝑘𝐺 are summarised in the following theorem:

2.3. Theorem. The stablemodule∞-category StMod𝑘𝐺 has the structure of a symmetricmonoidal
stable ∞-category with unit 𝑘, where the monoidal structure is inherited from the symmetric
monoidal structure on Mod𝑘𝐺 . Moreover, StMod𝑘𝐺 is rigidly compactly generated, i.e. it admits a
set of compact generators and the compact objects coincide with the dualisable ones.

See [Car96, §5] for a discussion of the triangulated category and [Mat15, Definition 2.2] for a
construction of StMod𝑘𝐺 as a symmetric monoidal stable ∞-category.

2.4. Remark. More explicitly, the stable module ∞-category may be constructed as the under-
lying ∞-category of a model structure on Mod𝑘𝐺 for which:

• weak equivalences are given by stable equivalences,
• cofibrations are precisely the monomorphisms, and
• fibrations are precisely the epimorphisms in Mod𝑘𝐺 .

We refer to [Hov99, §2.2] for a more detailed discussion of this model structure.

Given a subgroup 𝐻 → 𝐺 and an element 𝑔 ∈ 𝐺, restricting along the right-conjugation map
𝑐𝑔 ∶ 𝑔𝐻 → 𝐻 gives a functor

𝑔 ⊗𝐻 −∶ StMod𝑘𝐻 → StMod𝑘(𝑔𝐻).
Explicitly, 𝑔⊗𝐻 𝑀 has the twisted action 𝑔ℎ𝑔−1 ⋅ (𝑔⊗𝐻 𝑚) ≔ 𝑔⊗𝐻 (ℎ ⋅𝑚). Note that 𝑔⊗𝐻 𝑀 can
be identified with a submodule of the induced module 𝑘𝐺 ⊗𝐻 𝑀 . More generally, restriction to
a subgroup 𝑖∶ 𝐻 → 𝐺 gives rise to a symmetric monoidal functor

res𝐺𝐻 = 𝑖∗∶ StMod𝑘𝐺 → StMod𝑘𝐻
which preserves all (homotopy) limits and (homotopy) colimits. This implies that 𝑖∗ admits a
left adjoint 𝑖! and a right adjoint 𝑖∗, usually referred to as induction and coinduction, respec-
tively. Since 𝐺/𝐻 is finite, there is in fact a natural equivalence 𝑖∗ ≃ 𝑖!. Since 𝑖∗ inherits a
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lax monoidal structure from 𝑖∗, it follows that 𝑖∗𝑘 is a commutative algebra object in StMod𝑘𝐺 ,
whose underlying 𝑘𝐺-module can be identified with ∏𝐺/𝐻 𝑘 with its permutation action, and
whose multiplication is given by pulling back along the diagonal map 𝐺/𝐻 → 𝐺/𝐻 ×𝐺/𝐻 . We
will denote this algebra object by 𝐴𝐺𝐻 . Balmer [Bal15, Theorem 1.2] proves an equivalence be-
tween StMod𝑘𝐻 and the category of modules over 𝐴𝐺𝐻 internal to StMod𝑘𝐺 ; see [Mat16, Propo-
sition 9.12] for the ∞-categorical version of this theorem.

2.5. Theorem (Balmer, Mathew). For any subgroup 𝐻 ≤ 𝐺, there is a natural symmetric
monoidal equivalence

StMod𝑘𝐻 ∼−−→ ModStMod𝑘𝐺 (𝐴𝐺𝐻 ),
induced by coinduction, under which the free/forget adjunction StMod𝑘𝐺 ⟵⟶ ModStMod𝑘𝐻 (𝐴𝐺𝐻 )
corresponds to the restriction/coinduction adjunction StMod𝑘𝐺 ⟵⟶ StMod𝑘𝐻 .

We can extend the construction of the stable module ∞-category to an arbitrary finite 𝐺-set
𝑋 by setting

StMod(𝑋) ≔ ModStMod𝑘𝐺 (∏𝑋 𝑘) ,
where the algebra structure on ∏𝑋 𝑘 is again given by pullback along the diagonal map 𝑋 →
𝑋 ×𝑋 . (More formally, this is a homotopy Kan extension of StMod𝑘− along the inclusion of the
orbit category into all finite 𝐺-sets.) With this notation, Theorem 2.5 provides an equivalence
StMod(∐𝑖∈𝐼 𝐺/𝐻𝑖) ≃ ∏𝑖∈𝐼 StMod𝑘𝐻𝑖 for any finite set of transitive 𝐺-sets { 𝐺/𝐻𝑖 ∶ 𝑖 ∈ 𝐼 }.

2.6. Endotrivial modules. Our primary object of study is the group of endotrivial modules
of 𝐺, denoted 𝑇 (𝐺). A 𝑘𝐺-module 𝑀 is said to be endotrivial if

𝑀∗ ⊗𝑘 𝑀 ≃ 𝑘 ⊕ (proj)

as 𝑘𝐺-modules, where 𝑀∗ is the 𝑘-linear dual of 𝑀 and (proj) denotes some projective 𝑘𝐺-
module. In particular, a finitely generated module 𝑀 is endotrivial if and only if its 𝑘-endo-
morphism ring is stably equivalent to the trivial module. We write [𝑀] for the stable equiva-
lence class of 𝑀 in StMod𝑘𝐺 , and define

𝑇 (𝐺) ≔ { [𝑀] ∶ 𝑀 endotrivial },
which is an abelian group under the operation [𝑀] + [𝑁 ] ≔ [𝑀 ⊗𝑘 𝑁]. (We will henceforth
omit the subscript 𝑘 in ⊗𝑘 .) The inverse of [𝑀] is its 𝑘-linear dual [𝑀∗]. For any finite group
𝐺, the abelian group 𝑇 (𝐺) is finitely generated: see [CMN06, Corollary 2.5] and earlier work
of Puig [Pui90, Corollary 2.4] for the case of finite 𝑝-groups.

A fact about endotrivial modules that we will use repeatedly is that their endomorphisms
are all homotopic to multiplication by a scalar:

2.7. Lemma. If 𝑀 is an endotrivial 𝐺-module, then 𝜋0 End𝐺(𝑀) ≅ 𝑘 as 𝑘-algebras.
Proof. Since 𝑀 is necessarily a compact object of StMod𝑘𝐺 , we have

Hom𝐺(𝑀,𝑀) ≃ Hom𝐺(𝑘,𝑀∗ ⊗ 𝑀) ≃ Hom𝐺(𝑘, 𝑘),
so up to homotopy any endomorphism of 𝑀 is given by 𝑀 ⊗ 𝜑 for some 𝜑 ∈ Hom𝐺(𝑘, 𝑘). □

One key property of the shift functor Ω introduced previously is that Ω𝑛𝑁 ⊗ Ω𝑚𝑀 ≃
Ω𝑚+𝑛(𝑁 ⊗ 𝑀). In particular, for every finite group 𝐺, the shifts { Ω𝑛𝑘 ∶ 𝑛 ∈ ℤ } of the triv-
ial module form a cyclic subgroup of 𝑇 (𝐺) generated by Ω𝑘. A classical theorem of Dade says
that for abelian 𝑝-groups, this is the entire group of endotrivial modules:
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2.8. Theorem ([Dad78b, Proposition 9.16, Theorem 10.1]). If 𝑃 is a non-trivial abelian 𝑝-group
then 𝑇 (𝑃) is cyclic, generated by Ω𝑘𝑃 . Furthermore:

𝑇 (𝑃) ≅
⎧
⎨
⎩

0 if 𝑃 ≅ ℤ/2,
ℤ/2ℤ if 𝑃 ≅ ℤ/𝑛 with 𝑛 > 2, and
ℤ otherwise.

A lot is already known about the structure of 𝑇 (𝐺). In addition to Dade’s theorem above,
Carlson–Thévenaz showed in [CT05] that when 𝑃 is an arbitrary finite 𝑝-group, 𝑇 (𝑃) is torsion-
free except in the cases where the 𝑝-group is cyclic, a semi-dihedral 2-group (where the torsion
subgroup is ℤ/2), or a generalised quaternion 2-group (where it is either ℤ/4 or ℤ/4 ⊕ ℤ/2,
depending on whether or not 𝑘 has a primitive third root of unity).

Carlson–Mazza–Nakano [CMN06, Theorem 3.1] explicitly describe the torsion-free rank of
𝑇 (𝐺):

(2.9) dimℚ(𝑇 (𝐺) ⊗ ℚ) = rk(TF (𝐺)) = {
0 if rk𝑝(𝐺) = 1,
𝑛𝐺 if rk𝑝(𝐺) = 2, and
𝑛𝐺 + 1 if rk𝑝(𝐺) ≥ 3,

where rk𝑝(𝐺) is the 𝑝-rank of 𝐺, i.e. the rank 𝑟 of the largest elementary abelian 𝑝-subgroup
(ℤ/𝑝)𝑟 of𝐺, and 𝑛𝐺 is the number of conjugacy classes of rank twomaximal elementary abelian
𝑝-subgroups of 𝐺. This generalises Alperin’s formula for 𝑝-groups [Alp01, Theorem 4].

The number 𝑛𝐺 is related to many questions in classical group theory, and there has been
a lot of research into determining its value; see e.g. [Mac70; GM10; CMN06; CGMN20]. In
particular, unless 𝐺 itself has low rank, the number 𝑛𝐺 is zero and the torsion free part of
𝑇 (𝐺) is of rank one, generated by shifts of the trivial module. Specifically, by “low rank” we
mean less than or equal to 𝑝 if 𝑝 is odd [GM10, Theorem A] and less than or equal to four if
𝑝 = 2, by [Mac70, “Four generator theorem”] together with [GM10, Lemma 2.4]. The origin
of the formula in (2.9) is that it computes the number of connected components of the poset
of conjugacy classes of elementary abelian 𝑝-subgroups of 𝐺 of rank at least two; on these
subgroups the torsion-free rank is known to be one by Dade’s theorem. (We sketch a reproof
of (2.9) in Remark 4.8, using the obstruction theory of Section 4.)

In light of (2.9), to determine 𝑇 (𝐺) as an abstract group we only need to calculate its torsion
subgroup. Since 𝑇 (𝑆) is torsion-free except in the few exceptional cases listed above, this is
in most cases equal to the kernel 𝑇 (𝐺, 𝑆) of the restriction map 𝑇 (𝐺) → 𝑇(𝑆), also known as
the group of Sylow trivial modules. More explicitly, these are modules 𝑀 ∈ 𝑇(𝐺) such that
res𝐺𝑆 𝑀 ≅ 𝑘 ⊕ (free). In [Gro18], the second-named author established several descriptions of
𝑇 (𝐺, 𝑆) in terms of local group theory, building on earlier ideas of Balmer [Bal13]. Here we list
the descriptions that we will use later:

• There is an isomorphism 𝑇 (𝐺, 𝑆) ≅ H1(OS(𝐺); 𝑘×). [Gro18, Theorem A]
• Let C be a collection of 𝑝-subgroups of 𝐺 such that the inclusion C ↪ S𝑝(𝐺) is a
𝐺-homotopy equivalence. There is an isomorphism

𝑇 (𝐺, 𝑆) ≅ lim
[𝑃0<…<𝑃𝑛]

H1(𝑁𝐺(𝑃0 < … < 𝑃𝑛); 𝑘×),

where the limit is indexed over chains of subgroups inC , ordered by refinement. [Gro18,
Theorem D]

• Let C be as above and let H∗
𝐺(𝑋 ; 𝐹 ) denote the 𝐺-equivariant Bredon cohomology of a

𝐺-space 𝑋 with coefficients in the functor 𝐹 (see Section 5). There is an isomorphism
𝑇 (𝐺, 𝑆) ≅ H0

𝐺(C ; H1(−; 𝑘×)). [Gro18, §5]



Torsion-free endotrivial modules via homotopy theory 27

What happens in the exceptional cases, when 𝑇 (𝑆) has torsion, is also completely understood:
Carlson, Mazza, and Thévenaz [MT07; CMT13] show that the restriction map 𝑇 (𝐺) → 𝑇(𝑆) is
a surjection; in particular, all endotrivial 𝑆-modules lift to 𝑇 (𝐺) and hence are 𝐺-stable. Fur-
thermore, apart from the (well-understood) cyclic case, the restriction map is split, so TT (𝐺) ≅
𝑇 (𝐺, 𝑆) ⊕ TT (𝑆). This allows for a full description of TT (𝐺) from that of 𝑇 (𝐺, 𝑆), using the
classification of 𝑇 (𝑆).
2.10. Picard spaces. The group 𝑇 (𝐺) is in fact the Picard group of StMod𝑘𝐺 , i.e. the group of
equivalence classes of ⊗-invertible objects. The Picard group construction provides a functor
from symmetric monoidal categories to abelian groups.

One unfortunate property of the Picard group is that it does not preserve (homotopy) limits
of categories, so is hard to calculate using descent methods. This can be remedied by con-
sidering instead the Picard space Pic(C) of a symmetric monoidal ∞-category C: this is the
∞-groupoid (i.e. space) of ⊗-invertible objects in C and equivalences between them. Its set of
connected components can be identified with the Picard group of C, but due to its extra struc-
ture, Pic commutes with homotopy limits as a functor to pointed spaces. More information can
be found in [MS16, §2].

For any symmetric monoidal ∞-category (C, ⊗, 𝟙), we have a description of the higher ho-
motopy groups of Pic(C). These are given by

𝜋𝑖 Pic(C) ≅ {
PicGp(C) when 𝑖 = 0,
(𝜋0 Hom(𝟙, 𝟙))× when 𝑖 = 1, and
𝜋𝑖−1 Hom(𝟙, 𝟙) when 𝑖 ≥ 2,

where PicGp denotes the Picard group. In the case of StMod𝑘𝐺 , we have

(2.11) 𝜋𝑖 Pic(StMod𝑘𝐺) ≅ {
𝑇 (𝐺) when 𝑖 = 0,
𝑘× when 𝑖 = 1, and
Ĥ1−𝑖(𝐺; 𝑘) when 𝑖 ≥ 2,

where Ĥ𝑛(𝐺; 𝑀) ≅ 𝜋0(Hom𝐺(Ω𝑛𝑘,𝑀)) denotes the Tate cohomology of 𝐺.

3. Decomposition of the stable module ∞-category over the orbit category

We continue to let 𝐺 be a finite group. A key input for deriving our obstruction will be a
symmetric monoidal decomposition of the stable module ∞-category as a homotopy limit over
the orbit category. Let Cat⊗∞ be the ∞-category of symmetric monoidal ∞-categories. There are
various ways to construct the required functor OS(𝐺)op → Cat⊗∞; one possibility is to follow
the approach of [Mat16, §9.5] and use the composite of the functors

O(𝐺)op → CAlg(StMod𝑘𝐺)
𝐺/𝐻 ↦ ∏

𝐺/𝐻
𝑘

and

Mod(−)∶ CAlg(StMod𝑘𝐺) → Cat⊗∞
𝐴 ↦ ModStMod𝑘𝐺 (𝐴)

along with Theorem 2.5. Here CAlg(C) denotes the ∞-category of commutative algebra ob-
jects in a symmetric monoidal ∞-category C. Note that, by [Lur17, Proposition 3.2.2.1], the
∞-category CAlg(C) has all homotopy limits which exist in C and these are preserved by the
forgetful functor CAlg(C) → C.
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3.1. Proposition. Let C 𝑒 be a collection of subgroups of 𝐺 that is closed under intersection and
such that every elementary abelian 𝑝-subgroup of 𝐺 is contained in a subgroup in C 𝑒 . Let C de-
note the non-trivial subgroups in C . There is an equivalence of symmetric monoidal ∞-categories

StMod𝑘𝐺 ∼−−→ holim
𝐺/𝐻∈OC (𝐺)op

StMod𝑘𝐻 ,

where the homotopy limit is taken in the ∞-category of symmetric monoidal ∞-categories.

Proof. Corollary 9.16 in [Mat16] implies that

StMod𝑘𝐺 ≃ holim
OC 𝑒 (𝐺)op

StMod𝑘𝐻 .

We note that StMod𝑘{1} is trivial, so we can remove 𝐺/{1} from the diagram without changing
the value of the homotopy limit: indeed, if we let 𝐹 ∶ OC 𝑒 (𝐺)op → Cat⊗∞ denote the functor
constructed above and 𝑖∶ OC (𝐺)op → OC 𝑒 (𝐺)op denote the inclusion, then 𝐹 is equivalent to
the homotopy right Kan extension along 𝑖 of the restriction 𝑖∗𝐹 . The homotopy limit of Ran𝑖 𝑖∗𝐹
agrees with the homotopy limit of 𝑖∗𝐹 , because Ran𝑖 is right adjoint to 𝑖∗ and taking homotopy
limits is right adjoint to the constant diagram functor. Therefore, we get

StMod𝑘𝐺 ≃ holim
OC 𝑒 (𝐺)op

Ran𝑖 𝑖∗𝐹 ≃ holim
OC (𝐺)op

𝑖∗𝐹 . □

The Picard space functor commutes with homotopy limits [MS16, Proposition 2.2.3], so we
get a decomposition of pointed simplicial sets

Pic(StMod𝑘𝐺) ≃ holim
𝐺/𝐻∈OC (𝐺)op

Pic(StMod𝑘𝐻 ).

The homomorphism 𝑇 (𝐺) → limOC (𝐺)op 𝑇 (−) is exactly the induced map

𝜋0 Pic(StMod𝑘𝐺) → lim
𝐺/𝐻∈OC (𝐺)op

𝜋0 Pic(StMod𝑘𝐻 ).

4. Obstruction theory for homotopy limits

In [Bou89, §5.2], Bousfield gives an obstruction theory for cosimplicial spaces that we can ap-
ply to the problem of lifting from limOC (𝐺)op 𝜋0 Pic(StMod𝑘𝑃 ) to 𝜋0 holimOC (𝐺)op Pic(StMod𝑘𝑃 ),
i.e. from limOC (𝐺)op 𝑇 (−) to 𝑇 (𝐺). We recall this obstruction theory in the case of a diagram
of Kan complexes with trivial action of their fundamental group on their higher homotopy
groups, then specialise to the case of interest.

Let sSet be the category of simplicial sets and let csSet be the category of cosimplicial spaces.
Given a diagram of Kan complexes 𝐹 ∶ 𝐼 op → sSet, let 𝑋 • denote the the fibrant cosimplicial
space given by

(4.1) 𝑋 𝑛 ≔ ∏
𝑖0→…→𝑖𝑛

𝐹(𝑖0),

where the product is indexed by the 𝑛-simplices in the nerve of 𝐼 . The space Tot𝑋 • is a model
for the homotopy limit of 𝐹 , where Tot𝑋 • denotes the simplicial set MapcsSet(Δ•, 𝑋 •). This
model is itself a limit of the tower of fibrations

… → Tot𝑛 𝑋 • → Tot𝑛−1 𝑋 • → … → Tot0 𝑋 •,
where Tot𝑛 𝑋 • denotes the simplicial set MapcsSet(sk𝑛 Δ•, 𝑋 •).

Assume that 𝜋1(𝑋 𝑠 , 𝑥) acts trivially on 𝜋𝑛(𝑋 𝑠 , 𝑥) for all 𝑛 ≥ 1, 𝑠 ≥ 0 and 𝑥 ∈ 𝑋 𝑠 . If we
choose a vertex 𝑣𝑟 ∈ Tot𝑟 𝑋 • that lifts to Tot𝑟+1 𝑋 •, then Bousfield’s obstruction theory gives



Torsion-free endotrivial modules via homotopy theory 29

an obstruction class in 𝜋 𝑟+2𝜋𝑟+1𝑋 • that vanishes if and only if 𝑣𝑟 is liftable to Tot𝑟+2 𝑋 • (this
is explained in more detail in the proof of the following lemma). Here 𝜋 𝑟𝜋𝑡𝑋 • denotes the 𝑟 th
cohomotopy group of 𝜋𝑡𝑋 •, defined to be the 𝑟 th cohomology group of the cochain complex
given by the normalised homotopy groups

𝑁𝜋𝑡(𝑋 •, 𝑣) ≔
•−1
⋂
𝑖=0

ker(𝑠 𝑗 ∶ 𝜋𝑡(𝑋 •, 𝑣) → 𝜋𝑡(𝑋 •−1, 𝑠 𝑗𝑣))

and the differential induced by the alternating sum of the face maps.

4.2. Lemma. Let C be a collection for which we have a decomposition

StMod𝑘𝐺 ∼−−→ holim
OC (𝐺)op

StMod𝑘𝐻

and let (𝑀𝐻 )𝐺/𝐻∈OC (𝐺) ∈ limOC (𝐺)op 𝜋0 Pic(StMod𝑘−). There are obstructions to lifting (𝑀𝐻 ) to
an element of 𝜋0 Pic(StMod𝑘𝐺) that lie inH𝑟+2(OC (𝐺); 𝜋𝑟+1 Pic StMod𝑘−) for 𝑟 ≥ 0. When 𝑟 ≥ 1,
these obstruction groups identify with H𝑟+2(OC (𝐺); Ĥ−𝑟 (−; 𝑘)).
Proof. The Picard space is by construction a Kan complex, and the actions of its fundamental
group on its higher homotopy groups are trivial since it has an 𝐸∞-space structure. We apply
Bousfield’s obstruction theory: by hypothesis, we start with a vertex 𝑣0 ∈ Tot0 𝑋 • that lifts to
Tot1 𝑋 •, where 𝑋 • is the cosimplicial space defined in (4.1) associated with the functor

Pic(StMod𝑘−)∶ OC (𝐺)op → sSet,
whose totalisation computes the homotopy limit holimOC (𝐺)op Pic(StMod𝑘−). The trivial action
of the fundamental group implies that this case is covered by the spectral sequence of [Bou89,
§2.6], and [Bou89, §5.2] gives an obstruction class in 𝜋2𝜋1𝑋 • that vanishes if and only if 𝑣0 lifts
further to Tot2 𝑋 •. Now let 𝑟 ≥ 1 and 𝑣𝑟 ∈ Tot𝑟 𝑋 • be a vertex liftable to Tot𝑟+1 𝑋 •. [Bou89,
§5.2] gives an obstruction in 𝜋 𝑟+2𝜋𝑟+1𝑋 • that vanishes if and only if 𝑣𝑟 lifts further to Tot𝑟+2 𝑋 •.
(In particular, we do not require any hypotheses on the vanishing of Whitehead products in
this case.)

The obstruction group 𝜋 𝑟+2𝜋𝑟+1𝑋 • is isomorphic toH𝑟+2(OC (𝐺); 𝜋𝑟+1 Pic StMod𝑘−) by [GJ09,
VIII.2 (2.18)], so it remains for us to check that the homotopy groups of Pic(StMod𝑘𝐻 ) are as
we claimed earlier in Equation (2.11). Since Ω Pic(StMod𝑘𝐻 ) ≃ Aut(𝑘), we have

𝜋𝑟+1 Pic(StMod𝑘𝐻 ) ≅ 𝜋𝑟 Aut(𝑘),
and hence 𝜋1 Pic(StMod𝑘𝐻 ) ≅ 𝑘×. For 𝑟 ≥ 1 we have

𝜋𝑟+1 Pic(StMod𝑘𝐻 ) ≅ 𝜋𝑟 Hom(𝑘, 𝑘) ≅ 𝜋0(Hom(Ω−𝑟𝑘, 𝑘)) ≅ Ĥ−𝑟 (𝐻 ; 𝑘). □

Since 𝑘 is a field of characteristic 𝑝, a result of Jackowski and McClure shows that all but the
first of these obstruction groups are zero when C = S𝑝(𝐺):
4.3. Lemma. Let 𝑗 ∈ ℤ. The functor Ĥ𝑗(−; 𝑘)∶ OS(𝐺)op → Mod𝑘 is acyclic, i.e.

H𝑖(OS(𝐺); Ĥ𝑗(−; 𝑘)) = 0
for any 𝑖 ≥ 1.
Proof. We again let O𝑝(𝐺) denote the orbit category on all 𝑝-subgroups of 𝐺, and consider the
extended functor 𝐹 ≔ Ĥ𝑗(−; 𝑘)∶ O𝑝(𝐺)op → Mod𝑘 . Proposition 5.14 in [JM92] says that any
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proto-Mackey functor O𝑝(𝐺)op → Modℤ(𝑝) is acyclic, and we observe that 𝐹 is indeed a proto-
Mackey functor. This is well-known, with the covariant part of the Mackey functor sending a
morphism 𝑔 ∶ 𝐺/𝑃 → 𝐺/𝑄 to the transfer map

Ĥ𝑗(𝑃; 𝑘) ≅ 𝜋0 Hom𝑃 (res𝑔 Ω𝑗𝑘, res𝑔 𝑘) ≅ 𝜋0 Hom𝑄(Ω𝑗𝑘, ind𝑔 res𝑔 𝑘)
𝜀∗−−→ 𝜋0 Hom𝑄(Ω𝑗𝑘, 𝑘) ≅ Ĥ𝑗(𝑄; 𝑘).

The Mackey decomposition formula for 𝐹 follows from the Mackey decomposition theorem
[Ben98, Theorem 3.3.4] applied to 𝑘.

Next we need to deduce acyclicity of 𝐹 ′ ≔ Ĥ𝑗(−; 𝑘)∶ OS(𝐺)op → Mod𝑘 from acyclicity
of 𝐹 : that is, we need to remove the trivial subgroup again. Since right Kan extension along
OS(𝐺)op → O𝑝(𝐺)op extends by the zero group on the coset 𝐺/𝑒, it follows that 𝐹 is the right
Kan extension of 𝐹 ′. It also follows that taking right Kan extensions preserves epimorphisms.
By [JM92, Lemma 3.1], we haveH𝑖(OS(𝐺); 𝐹 ′) ≅ H𝑖(O𝑝(𝐺); 𝐹 ) for all 𝑖, so 𝐹 ′ is also acyclic. □

4.4. Remark. Note that the functors considered in the vanishing result [JM92, Proposition 5.14]
are implicitly contravariant. It is also important that we consider the orbit category on all 𝑝-
subgroups OS(𝐺) rather than, for example, restricting to the orbit category on elementary
abelian 𝑝-subgroups OA(𝐺), where in general the higher limits do not vanish; see [Gro02, Re-
mark 3.4]. (As in the above proof, the inclusion or exclusion of the trivial subgroup is irrelevant
here.)

We can illustrate the latter remark by the example 𝐺 = 𝐷8, making forward reference to
some results later in the paper. There are two non-conjugate elementary abelian subgroups of
𝐺, which we will call 𝐸1 and 𝐸2. The limit limOA(𝐺)op 𝑇 (−) then identifies with 𝑇 (𝐸1)⊕𝑇 (𝐸2) ≅
ℤ2. By Corollary 7.12, the obstruction appearing in Theorem 4.5 below vanishes when 𝑝 = 2.
Since 𝐺 is itself a 2-group, 𝑇 (𝐺, 𝑆) = 0. Therefore, if all the higher obstructions vanished,
we would have an isomorphism 𝑇 (𝐺) ∼−−→ 𝑇(𝐸1) ⊕ 𝑇 (𝐸2) induced by restriction. Since the re-
striction from 𝑇 (𝐺) → 𝑇(𝐸1) ⊕ 𝑇 (𝐸2) ≅ ℤ2 lands only in the “even” part of the lattice [CT00,
Theorem 5.4], one of the groups H𝑟+2(OA(𝐺); Ĥ−𝑟 (−; 𝑘)) must be non-zero. We can neverthe-
less hope to extract useful information from the decomposition over OA(𝐺); see Remark 4.8
for an example.

4.5. Theorem. There is an exact sequence

0 → 𝑇(𝐺, 𝑆) → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) 𝛼−→ H2(OS(𝐺); 𝑘×),

and we can explicitly describe a 2-cocycle that represents 𝛼 : given an element (𝑀𝑃 )𝐺/𝑃∈OS (𝐺) ∈
limOS (𝐺)op 𝑇 (−), choose an equivalence 𝜆𝑔 ∶ res𝑔 𝑀𝑄 → 𝑀𝑃 in StMod𝑘𝑃 for every morphism
𝑔 ∶ 𝐺/𝑃 → 𝐺/𝑄 in OS(𝐺). We obtain a potentially non-commutative diagram of equivalences

res𝑔 resℎ 𝑀𝑅

res𝑔 𝑀𝑄 𝑀𝑃

res𝑔 𝜆ℎ 𝜆𝑔ℎ
𝜆𝑔

for every 𝐺/𝑃 𝑔−→ 𝐺/𝑄 ℎ−→ 𝐺/𝑅 in OS(𝐺). We define 𝛼𝑀 (𝑔, ℎ) to be the element of 𝑘× that
corresponds to the automorphism

res𝑔 resℎ 𝑀𝑅
𝜆𝑔ℎ−−−→ 𝑀𝑃

𝜆𝑔←−− res𝑔 𝑀𝑄
res𝑔 𝜆ℎ←−−−−− res𝑔 resℎ 𝑀𝑅
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determined by the above diagram. (Recall from Lemma 2.7 that 𝜋0 Aut(𝑀) ≅ 𝑘× for any endo-
trivial module 𝑀 .) The cohomology class 𝛼((𝑀𝑃 )) is represented by 𝛼𝑀 .

4.6. Notation. When the 𝐺-stable endotrivial 𝑆-module (𝑀𝑃 ) is clear from context, we will
drop the subscript on 𝛼𝑀 and use 𝛼 to refer to both the homomorphism and the cocycle.

Proof. Lemma 4.3 shows that all the obstructions given in Lemma 4.2 vanish with the possible
exception of the obstruction in H2(OS(𝐺); 𝑘×). This establishes the existence of the exact
sequence, so we just need to show that 𝛼𝑀 actually represents 𝛼 .

Let 𝑋 • be the cosimplicial space defined in (4.1) associated with the functor

Pic(StMod𝑘−)∶ OS(𝐺)op → sSet.
Section 5.1 in [Bou89] describes the obstruction in H2(OS(𝐺); 𝑘×): if we have chosen a vertex
𝑏 ∈ Tot1 𝑋 • then we obtain a map 𝑐(𝑏)∶ 𝜕Δ2 = sk1 Δ2 → 𝑋 2 in the normalised homotopy
𝑁𝜋1(𝑋 2, 𝑏) that represents the obstruction in 𝜋2𝜋1(𝑋 •, 𝑏).

Choosing a vertex in Tot1 𝑋 • is the same as choosing endotrivial modules 𝑀𝑃 ∈ StMod𝑘𝑃
for all 𝐺/𝑃 ∈ OS(𝐺) along with equivalences 𝜆𝑔 ∶ res𝑔 𝑀𝑄 → 𝑀𝑃 for all 𝑔 ∶ 𝐺/𝑃 → 𝐺/𝑄. The
obstruction 𝑐(𝑏) corresponding to this choice of vertex is then the 2-cocycle described in the
statement of the theorem. □
4.7. Remark. In Appendix A, we compare the obstruction 𝛼 constructed above with an obstruc-
tion that appeared in work of Balmer [Bal15].

4.8. Remark. We outline how Proposition 3.1 should allow us to re-derive Alperin’s formula
for the torsion-free rank of 𝑇 (𝐺). Let 𝑛𝐺 denote the number of conjugacy classes of rank 2
maximal elementary abelian subgroups of 𝐺. Recall that the torsion-free rank of 𝑇 (𝐺) is given
by

dimℚ(𝑇 (𝐺) ⊗ ℚ) = {
0 if the 𝑝-rank of 𝐺 is one,
𝑛𝐺 if the 𝑝-rank of 𝐺 is two, and
𝑛𝐺 + 1 if the 𝑝-rank of 𝐺 is three or greater.

This was proved for finite groups by Carlson–Mazza–Nakano [CMN06, Theorem 3.1] and for
𝑝-groups by Alperin [Alp01, Theorem 4].

We use Proposition 3.1 to decompose StMod𝑘𝐺 over OA(𝐺):
StMod𝑘𝐺 ∼−−→ holim

OA(𝐺)op
StMod𝑘𝑉 .

Since OA(𝐺) is a finite 1-category, Alperin’s formula holds for limOA(𝐺)op 𝑇 (−): rationalisa-
tion commutes with finite limits, and the group-theoretic argument given prior to Lemma 4
of [Alp01] shows that any two elementary abelian subgroups of 𝑝-rank at least three are
connected by a zig-zag of elementary abelian subgroups of 𝑝-rank at least two. Therefore,
limOA(𝐺)op(𝑇 (−)⊗ℚ) has one copy of ℚ for each conjugacy class of rank two maximal elemen-
tary abelian subgroups, plus an extra copy if there are any elementary abelian subgroups of
𝑝-rank at least three. Lemma 4.2 implies that 𝑇 (𝐺) is obtained from limOA(𝐺)op 𝑇 (−) by repeat-
edly taking the kernel of a homomorphism to H𝑟+2(OA(𝐺); 𝜋𝑟+1 Pic StMod𝑘−), so it is enough
to show that this procedure preserves the torsion-free rank.

We now come to a gap in the argument: it is not clear that the obstructions given in [Bou89,
§5.2] arise as the differentials in a spectral sequence of the form constructed in [Bou89, §§2.4–
2.6]. Assuming that this is nevertheless the case, the analogue for the stable module ∞-category
of [MNN19, Theorem 2.25] shows that this spectral sequence has a horizontal vanishing line
at a finite stage. Note that the nilpotency condition of that theorem is satisfied for any module
in StMod𝑘𝐺 because the algebra object ∏𝑉∈A𝑝(𝐺) 𝐴𝐺𝑉 is descendable. (Recall that 𝐴𝐺𝑉 denotes
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coind𝐺𝑉 (𝑘); see Theorem 2.5.) It seems likely that the domain of definition of the spectral se-
quences can be expanded as claimed, at least if one is willing to construct a less general spectral
sequence than in [Bou89].

Therefore, there are only finitely many obstruction groups to consider, and it is enough to
check that each of them is torsion. For the obstruction in H2(OA(𝐺); 𝑘×), we have rational
equivalences

H∗(OA(𝐺)) ⊗ ℚ ≅←−− H∗(TA(𝐺)) ⊗ ℚ ≅−−→ H∗(A𝑝(𝐺)/𝐺) ⊗ ℚ
by [Gro18, Proposition 4.33]. Symonds’ theorem [Sym98] says that S𝑝(𝐺)/𝐺 is contractible,
so A𝑝(𝐺)/𝐺 is as well. Since H𝑖(OA(𝐺)) is finitely generated, we deduce that it is finite when
𝑖 > 0. The universal coefficient theorem then implies that H2(OA(𝐺); 𝑘×) is also finite provided
𝑘 is algebraically closed. The argument for the higher obstruction groups is simpler: each
H𝑟+2(OA; Ĥ−𝑟 (−; 𝑘)) is a 𝑘-vector space and hence is annihilated by multiplication by 𝑝.

5. An obstruction in Bredon cohomology

While useful conceptually, the obstruction 𝛼 of Theorem 4.5 can be difficult to work with
in practice. The category OS(𝐺) contains the Weyl group of every 𝑝-subgroup of 𝐺, so it can
be hard to compute its cohomology for specific choices of 𝐺 that we are interested in. In this
section, we show that the obstruction 𝛼 in H2(OS(𝐺); 𝑘×) vanishes if and only if another ob-
struction 𝛽 in the Bredon cohomology group H1

𝐺(S𝑝(𝐺); H1(−; 𝑘×)) vanishes (Proposition 5.9).
This latter obstruction has several advantages for practical computations: for example, S𝑝(𝐺)

is a finite poset, so computing the obstruction group is much easier. We can also replace S𝑝(𝐺)
with a smaller 𝐺-homotopy equivalent poset, such as the poset B𝑝(𝐺) of non-trivial 𝑝-radical
subgroups or the poset A𝑝(𝐺) of non-trivial elementary abelian 𝑝-subgroups. It will later al-
low us to provide an alternative viewpoint on the question of lifting: given a 𝐺-stable en-
dotrivial 𝑆-module (𝑀𝑃 )𝐺/𝑃∈OS (𝐺), there is a lift of 𝑀𝑆 to 𝑇 (𝐺) if and only if we can specify
one-dimensional characters, one for every elementary abelian 𝑝-subgroup 𝑃 ∈ A𝑝(𝐺), such
that they satisfy a certain compatibility condition; see Section 7.

We start by recalling the isotropy spectral sequence as defined in [Bro82, VII (5.3)] or [Dwy98,
§2.3]. Given a 𝐺-space 𝑋 and an abelian group 𝐴, we have a quasi-isomorphism

(5.1) C•(𝑋ℎ𝐺 ; 𝐴) ≃ Tot•(Hom𝐺(C•(E𝐺),C•(𝑋 ; 𝐴)).
Here C•(𝑋 ; 𝐴) denotes the cochains on 𝑋 with coefficients in 𝐴; similarly, C•(𝑋 ; 𝐴) denotes
the chains on 𝑋 with coefficients in 𝐴. We can filter the right-hand side of Equation (5.1) by
skeleta of 𝑋 , giving rise to a spectral sequence calculating the cohomology H∗(𝑋ℎ𝐺 ; 𝐴). More
explicitly, we use the filtration

… ⊆ 𝐹 •1 ⊆ 𝐹 •0 = C•(𝑋ℎ𝐺 ; 𝐴) with 𝐹 𝑛𝑟 ≔ ⨁
𝑠+𝑡=𝑛𝑠≥𝑟

Hom𝐺(C𝑡(E𝐺),C𝑠(𝑋 ; 𝐴)).

The corresponding filtered complex spectral sequence is isomorphic to the double complex
spectral sequence where one first takes the differential in the 𝐶•(E𝐺) direction. Therefore, the
spectral sequence has 𝐸••1 page given by

𝐸𝑠,𝑡
1 = H𝑡(𝐺; C𝑠(𝑋 ; 𝐴))

with differential induced by the differential in C•(𝑋 ; 𝐴).
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The rows of the 𝐸••1 page identify with the cochain complexes C𝑠
𝐺(𝑋 ; H𝑡(−; 𝐴)), where

C•
𝐺(𝑋 ; 𝐹 ) denotes the 𝐺-equivariant Bredon cochains of 𝑋 with coefficients in some functor

𝐹 ∶ O(𝐺)op → Ab. This is defined by

(5.2) C𝑠
𝐺(𝑋 ; 𝐹 ) ≔ ( ∏

𝜎∈𝑋𝑠
𝐹(𝐺𝜎 ))

𝐺
,

where 𝐺𝜎 is the stabiliser of 𝜎 in 𝐺. The 𝐺-equivariant Bredon cohomology of𝑋 with coefficients
in 𝐹 , denoted by H∗

𝐺(𝑋 ; 𝐹 ), is then defined to be the cohomology of the above cochain complex,
which is an invariant of the 𝐺-equivariant homotopy type of 𝑋 ; see [Bre67, §I.6]. In this way,
we obtain the isotropy spectral sequence

(5.3) 𝐸𝑠,𝑡
2 ≅ H𝑠

𝐺(𝑋 ; H𝑡(−; 𝐴)) ⇒ H𝑠+𝑡 (𝑋ℎ𝐺 ; 𝐴).
Let C be a collection. Thomason’s theorem [Tho79, Theorem 1.2] implies that TC is homotopy
equivalent to Cℎ𝐺 . Therefore, when applied to C , the isotropy spectral sequence computes the
cohomology of TC in terms of the Bredon cohomology of C .

The canonical quotient functor TS(𝐺) → OS(𝐺) induces an injective map

(5.4) H2(OS(𝐺); 𝑘×) → H2(TS(𝐺); 𝑘×)
that identifies H2(OS(𝐺); 𝑘×) with a direct summand of H2(TS(𝐺); 𝑘×), by [Gro18, Corol-
lary 4.36]. For certain collections C , we can also identify H1

𝐺(C ; H1(−; 𝑘×)) with a subgroup
of H2(TS(𝐺); 𝑘×):
5.5. Lemma. There is a natural injective map

H1
𝐺(C ; H1(−; 𝑘×)) → H2(TS(𝐺); 𝑘×)

for any collectionC of non-trivial 𝑝-subgroups such thatC ↪ S𝑝(𝐺) is a𝐺-homotopy equivalence.

Proof. Consider the isotropy spectral sequence (5.3) for 𝑋 = C . Symonds’ theorem [Sym98]
says that S𝑝(𝐺)/𝐺 is contractible, and hence so is C /𝐺. Therefore for 𝑠 > 0 we have

𝐸𝑠,0
2 ≅ H𝑠

𝐺(C ; H0(−; 𝑘×)) ≅ H𝑠(C /𝐺; 𝑘×) = 0,
and the bottom-left corner of the 𝐸2 page of the spectral sequence is as follows:

(5.6)

𝑘× 0 0

H1
𝐺(C ; H1(−; 𝑘×))

H0
𝐺(C ; H2(−; 𝑘×))

We deduce that 𝐸1,1
2 ≅ H1

𝐺(C ; H1(−; 𝑘×)) injects into H2(TC (𝐺); 𝑘×). Since C is 𝐺-homotopy
equivalent to S𝑝(𝐺), Thomason’s theorem implies that TC (𝐺) is homotopy equivalent to TS(𝐺).

□

5.7. Remark. We can describe the image 𝛾𝑀 of 𝛼𝑀 in H2(TS(𝐺); 𝑘×) analogously to the de-
scription of 𝛼𝑀 in Theorem 4.5: for every 𝑔−1∶ 𝑃 → 𝑄 in TS(𝐺), we choose an equivalence
𝜆𝑔 ∶ 𝑔 ⊗𝑄 𝑀𝑄 → 𝑀𝑃 in StMod𝑘𝑃 , and then for every 2-chain

𝑃 𝑔−1
−−−→ 𝑄 ℎ−1−−−→ 𝑅
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we define 𝛾𝑀 (𝑔−1, ℎ−1) to be the element of 𝑘× that corresponds to the automorphism

𝑔ℎ ⊗𝑅 𝑀𝑅
𝑔⊗𝜆ℎ−−−−→ 𝑔 ⊗𝑄 𝑀𝑄

𝜆𝑔−−→ 𝑀𝑃
𝜆𝑔ℎ←−−− 𝑔ℎ ⊗𝑅 𝑀𝑅

of 𝑔ℎ⊗𝑅𝑀𝑅. That 𝛾𝑀 represents the same cohomology class as the image of 𝛼𝑀 inH2(TS(𝐺); 𝑘×)
follows from the commutativity of the diagram

ModStMod𝑘𝐺 (𝐴𝐺𝑄) ModStMod𝑘𝐺 (𝐴𝐺𝑃 )

StMod𝑘𝑄 StMod𝑘𝑃
∼

res𝑔

∼

𝑔⊗𝑃−

for every 𝑔−1∶ 𝑃 → 𝑄 in TS(𝐺). This can be checked using the description of the vertical maps
given in Construction 5.23 of [MNN17]. Here 𝐴𝐺𝑃 denotes the algebra object coind𝐺𝑃 𝑘 (recall
Theorem 2.5). Intuitively, there is a canonical choice of equivalence 𝑥 ⊗𝑃 𝑀𝑃 → 𝑀𝑃 for every
𝑥 ∈ 𝑃 , given by the action of 𝑥 on 𝑀𝑃 , so the difference between the orbit category and the
transport category is not relevant for our obstruction class.

The injectivity of the homomorphism H2(OS(𝐺); 𝑘×) → H2(TS(𝐺); 𝑘×) combined with The-
orem 4.5 implies that we also have an exact sequence

0 → 𝑇(𝐺, 𝑆) → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) 𝛾−→ H2(TS(𝐺); 𝑘×).

We use this to show that we can always lift in the following special case:

5.8. Proposition. Suppose that𝐺 has a non-trivial normal 𝑝-subgroup. Any 𝐺-stable endotrivial
𝑆-module lifts to a module in 𝑇 (𝐺).

Proof. Let 𝑃 be a non-trivial normal 𝑝-subgroup of 𝐺. We consider the following commutative
diagram:

𝑇 (𝐺) limOS (𝐺)op 𝑇 (−) H2(TS(𝐺); 𝑘×)

𝑇 (𝑍(𝑃)) H2(𝐺; 𝑘×)

𝛾

≅
𝛾 ′

The right-hand map is restriction to the full subcategory on the object 𝑍(𝑃). It is an isomor-
phism because TS(𝐺) is homotopy equivalent to S𝑝(𝐺)ℎ𝐺 and S𝑝(𝐺) is 𝐺-equivariantly con-
tractible to the object 𝑍(𝑃). The map 𝛾 ′ is defined similarly to 𝛾 , but again restricted to auto-
morphisms of the object 𝑍(𝑃). Since neither 𝛾 nor 𝛾 ′ depend on the choices of equivalences
that appear in their respective constructions, the right-hand square commutes.

By Dade’s Theorem 2.8, every module in 𝑇 (𝑍(𝑃)) is equivalent to Ω𝑛𝑘 for some 𝑛, and hence
the diagonal map from 𝑇 (𝐺) is surjective. Since the top composite is zero, this implies that 𝛾 ′
is also zero. The proposition now follows from exactness of the top row. □

5.9. Proposition. Let C be any collection of non-trivial 𝑝-subgroups such that C ↪ S𝑝(𝐺) is a
𝐺-homotopy equivalence. There is a homomorphism 𝛽 making the diagram
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lim
OS (𝐺)op

𝑇 (−) H2(OS(𝐺); 𝑘×)

H1
𝐺(C ; H1(−; 𝑘×)) H2(TS(𝐺); 𝑘×)

𝛼

𝛽

commute.

Proof. Recall the form of the 𝐸2-page of the isotropy spectral sequence for C , as shown in
Diagram 5.6. To show that a class 𝜃 ∈ H2(TS(𝐺); 𝑘×) lies in the subgroup H1

𝐺(C ; H1(−; 𝑘×)), it
is enough to show that it maps to zero inH0

𝐺(C ; H2(−; 𝑘×)). Corollary 7.2 in [Gro02] shows that
H0

𝐺(C ; H2(−; 𝑘×)) identifies with lim𝑠𝑆C (𝐺) H2(𝑁𝐺(−); 𝑘×), where 𝑠𝑆C (𝐺) denotes the poset of
𝐺-conjugacy classes of chains of subgroups of C with the order relation given by refinement,
so it is enough to check that 𝜃 maps to the zero class in H2(𝑁𝐺(𝜎); 𝑘×) for every 𝜎 ∈ 𝑠𝑆C (𝐺).
If 𝜎 = [𝑃0 < … < 𝑃𝑛] then the image of 𝜃 in H2(𝑁𝐺(𝜎); 𝑘×) is given by restriction to 𝑁𝐺(𝜎) ≤
AutTS (𝐺)(𝑃0).

For the class 𝛾𝑀 that denotes the image of 𝛼𝑀 in H2(TS(𝐺); 𝑘×), we can immediately reduce
to the case where 𝐺 = 𝑁𝐺(𝜎) by considering the diagram

limOS (𝐺)op 𝑇 (−) H2(TS(𝐺); 𝑘×)

limOS (𝑁𝐺(𝜎))op 𝑇 (−) H2(TS(𝑁𝐺(𝜎)); 𝑘×)

𝛾

𝛾

and observing that the restriction H2(TS(𝐺); 𝑘×) → H2(𝑁𝐺(𝜎); 𝑘×) factors through the right-
hand map of this diagram. By Proposition 5.8, the bottom map of the square is zero, and hence
so is the restriction of 𝛾𝑀 to H2(𝑁𝐺(𝜎); 𝑘×).

We have now shown that the obstruction class 𝛼𝑀 ∈ H2(OS(𝐺); 𝑘×) maps to zero in the
zeroth Bredon cohomology group H0

𝐺(C ; H2(−; 𝑘×)). Therefore, there is a homomorphism 𝛽
as claimed. □

5.10. Corollary. There is an exact sequence

0 → 𝑇(𝐺, 𝑆) → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) 𝛽−→ H1
𝐺(C ; H1(−; 𝑘×))

for any collectionC of non-trivial 𝑝-subgroups such thatC ↪ S𝑝(𝐺) is a𝐺-homotopy equivalence.

We can give an explicit description of the obstruction in Bredon cohomology:

5.11. Proposition. Let C be a collection of non-trivial 𝑝-subgroups such that C ↪ S𝑝(𝐺) is a
𝐺-homotopy equivalence. The homomorphism

𝛽 ∶ lim
OS (𝐺)op

𝑇 (−) → H1
𝐺(C ; H1(−; 𝑘×))

has the following explicit description. Let (𝑀𝑃 )𝐺/𝑃∈OC (𝐺) be a 𝐺-stable endotrivial 𝑆-module.
Choose equivalences 𝜆𝑃𝑔 ∶ 𝑔 ⊗𝑃 𝑀𝑃 → 𝑀𝑃 in StMod𝑘𝑃 for every 𝑃 ∈ C and 𝑔 ∈ 𝑁𝐺(𝑃), such that

(5.12)
𝑔ℎ ⊗𝑃 𝑀𝑃 𝑔 ⊗𝑃 𝑀𝑃

𝑀𝑃

𝑔⊗𝑃𝜆𝑃
ℎ

𝜆𝑃
𝑔ℎ 𝜆𝑃𝑔
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commutes in the homotopy category of StMod𝑘𝑃 . Additionally, choose an equivalence

𝜆𝑃<𝑄 ∶ res𝑄𝑃 𝑀𝑄 → 𝑀𝑃

in StMod𝑘𝑃 for every 𝑃 < 𝑄. We insist that both of these sets of choices be invariant under
conjugation.

For any 𝑔 ∈ 𝑁𝐺(𝑃 < 𝑄) we obtain a potentially non-commutative diagram

𝑔 ⊗𝑃 𝑀𝑄 𝑀𝑄

𝑔 ⊗𝑃 𝑀𝑃 𝑀𝑃

𝑔⊗𝑃𝜆𝑃<𝑄

𝜆𝑄𝑔

𝜆𝑃<𝑄
𝜆𝑃𝑔

in the homotopy category of StMod𝑘𝑃 . We define a cocycle 𝛽𝑀 ∈ C1
𝐺(C ; H1(−; 𝑘×)) by letting

𝛽𝑀 (𝑃 < 𝑄)(𝑔) be the element in 𝑘× corresponding to the automorphism of 𝑀𝑃 given by the above
diagram. The class 𝛽((𝑀𝑃 )) is represented by 𝛽𝑀 .

5.13. Notation. When the 𝐺-stable endotrivial 𝑆-module (𝑀𝑃 ) is clear from context, we will
drop the subscript on 𝛽𝑀 and use 𝛽 to refer to both the homomorphism and the cocycle.

5.14. Remark. The condition in Diagram 5.12 is necessary to ensure that 𝛽𝑀 (𝑃 < 𝑄) is actually
a character. It can always be satisfied: this is exactly what we proved in Proposition 5.9 in
order to show that 𝛾 lies in H1

𝐺(C ; H1(−; 𝑘×)).
The conjugation invariance condition that we imposed on the 𝜆𝑃𝑔 and 𝜆𝑃<𝑄 is necessary to

ensure that 𝛽𝑀 is a Bredon 1-cochain, i.e. lies in the 𝐺-fixed points in (5.2). It can always be
satisfied by choosing such data for representatives of conjugacy classes of 0- and 1-simplices
in C and extending by conjugation.

5.15. Remark. Note that in many cases we have to specify significantly less data in order to
compute 𝛽 than we do to compute 𝛼 : for the latter we need to choose

𝜆𝑔 ∶ res𝑔 𝑀𝑄 → 𝑀𝑃

for every 𝑔 ∶ 𝐺/𝑃 → 𝐺/𝑄 in OS(𝐺), whereas for the former we need only choose such an
equivalence when 𝑔 is an isomorphism in TS(𝐺) or an inclusion 𝑃 ↪ 𝑄. Furthermore, if it
happens that C /𝐺 is isomorphic to a subposet C0 ⊆ C then we only need to specify 𝜆𝑔 when
𝑔 is an automorphism of a subgroup in C0 or an inclusion of subgroups in C0, which again
makes computations much simpler in practice. Examples where this occurs include the case
𝐺 = PSL3(𝑝) with 𝑝 ≡ 1 mod 3 and the case 𝐺 = Σ𝑛 with 𝑝2 ≤ 𝑛 < 𝑝2 + 𝑝; see Sections 10
and 12 respectively.

Proof of Proposition 5.11. This is a computationworking through the construction of the isotropy
spectral sequence. We first extend our choices of 𝜆𝑃𝑔 and 𝜆𝑃<𝑄 to the rest of the transport cate-
gory, i.e. we make choices of equivalences

(5.16) 𝜆𝑔 ∶ 𝑔 ⊗𝑄 𝑀𝑄 → 𝑀𝑃

in StMod𝑘𝑃 for every remaining 𝑔−1∶ 𝑃 → 𝑄 in TS(𝐺). As in Remark 5.7, these choices
determine a cocyle 𝛾 ∈ C2(TS(𝐺); 𝑘×) that represents the cohomology class of the image of
𝛼 in H2(TS(𝐺); 𝑘×).
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We will now check that the class represented by 𝛾 in H2(TS(𝐺); 𝑘×) restricts to the class of
the cocycle 𝛽 defined in the statement of the proposition. Let

𝐹 𝑛𝑟 ≔ ⨁
𝑠+𝑡=𝑛𝑠≥𝑟

Hom𝐺(C𝑡(E𝐺),C𝑠(C ; 𝑘×))

be the filtration 𝐹 •0 ⊇ 𝐹 •1 ⊇ … that gives rise to the isotropy spectral sequence. The inclusion

H1
𝐺(C ; H1(−; 𝑘×)) → H2(TS(𝐺); 𝑘×)

of Lemma 5.5 is induced by the composition

C1
𝐺(C ; H1(−; 𝑘×)) ≅ H1(𝐺; C1(C ; 𝑘×)) ≅ H2(𝐹 •1/𝐹 •2) ← H2(𝐹 •1) → H2(𝐹 •0) ≅←−− H2(TS(𝐺); 𝑘×),

where a left-facing arrow means choosing a lift along that map (the image is independent of
the choice of lift).

The right-most isomorphism

H2(TS(𝐺); 𝑘×) ≅−−→ H2(𝐹 •0) = H2(Tot• Hom𝐺(C•(E𝐺),C•(C ; 𝑘×))
is given by pulling back along some choice of chain homotopy inverse to the Alexander–
Whitney map, then applying the tensor-hom adjunction. Under one such choice of isomor-
phism, 𝛾 corresponds to the element of Tot2 Hom𝐺(C•(E𝐺),C•(C ; 𝑘×)) that sends

1 ↦ [𝑃 ≤ 𝑄 ≤ 𝑅 ↦ 𝛼(𝑃 ≤ 𝑄 ≤ 𝑅)]

1 𝑔−→ 𝑔 ↦ [𝑃 ≤ 𝑄 ↦ 𝛼(𝑃 ≤ 𝑄 𝑔−→ 𝑔𝑄)
𝛼(𝑃 𝑔−→ 𝑔𝑃 ≤ 𝑔𝑄)

]

1 𝑔−→ 𝑔 ℎ−→ ℎ𝑔 ↦ [𝑃 ↦ 𝛼(𝑃 𝑔−→ 𝑔𝑃 ℎ−→ ℎ𝑔𝑃)].(5.17)

The component of 𝛾 labelled (5.17), living in Hom𝐺(C2(E𝐺),C0(C ; 𝑘×)), is equivalent to zero
because we chose the 𝜆𝑃𝑔 to make Diagram 5.12 commute. (More precisely, the subcategory of
the transport category on conjugates of 𝑃 is a connected groupoid, and hence is equivalent to
the full subcategory on the object 𝑃 . We chose the 𝜆𝑃𝑔 compatibly on 𝑃 , so when we extended
these choices at the start of the proof, we can do so in such a way that 𝛾 is equal to zero.)
Therefore we can lift 𝛾 to the class in H2(𝐹 •1) that sends

1 ↦ [𝑃 ≤ 𝑄 ≤ 𝑅 ↦ 𝛼(𝑃 ≤ 𝑄 ≤ 𝑅)]

1 𝑔−→ 𝑔 ↦ [𝑃 ≤ 𝑄 ↦ 𝛼(𝑃 ≤ 𝑄 𝑔−→ 𝑔𝑄)
𝛼(𝑃 𝑔−→ 𝑔𝑃 ≤ 𝑔𝑄)

] .(5.18)

Under the map H2(𝐹 •1) → H2(𝐹 •1/𝐹 •2) ≅ H1(𝐺; C1(C ; 𝑘×)), this class is sent to the homomor-
phism labelled (5.18). By comparing to the formula of 𝛼 given in Theorem 4.5, we see that this
homomorphism represents a class that identifies with 𝛽 under the isomorphism

H1(𝐺; C1(C ; 𝑘×)) ≅ C1
𝐺(C ; H1(−; 𝑘×)),

thereby completing the proof. □
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6. Compatible actions in the homotopy category

The obstruction 𝛽 in the Bredon cohomology group H1
𝐺(C ; H1(−; 𝑘×)) demonstrates a con-

nection between lifting endotrivial modules and one-dimensional characters: the coefficients
of the obstruction group take a subgroup 𝑃 to the group of one-dimensional characters of
𝑁𝐺(𝑃). (The normaliser of 𝑃 appears here because this is the stabiliser in 𝐺 of 𝑃 , considered as
a 0-simplex of the 𝐺-space C .) In the next section, we will expand on this connection, giving a
necessary and sufficient condition for a 𝐺-stable endotrivial 𝑆-module to lift that is completely
algebraic and makes no reference to obstruction groups; the condition involves only specifying
one-dimensional characters of 𝑁𝐺(𝑃) for varying 𝑃 . The current section lays the groundwork
for this by analysing the relationship between the definition of 𝛽 and one-dimensional char-
acters. Throughout this section, we work in the stable module category (i.e. the homotopy
category of the stable module ∞-category) unless stated otherwise.

We start by giving a name to a concept that has already appeared several times in Section 5.
It captures the part of the structure of an 𝑁𝐺(𝑃)-module that can still be seen in StMod𝑘𝑃 .
Closely related objects were considered in [Bal15, Theorem 9.9].

6.1. Definition. Let 𝑁 be a finite group with a normal 𝑝-subgroup 𝑃 and let 𝑀 ∈ StMod𝑘𝑃 .
We say 𝑀 is 𝑁 -stable if 𝑔 ⊗𝑃 𝑀 ≃ 𝑀 for every 𝑔 ∈ 𝑁 . A compatible 𝑁 -action on an 𝑁 -stable
module 𝑀 is a set of equivalences

{ 𝜆𝑔 ∶ 𝑔 ⊗𝑃 𝑀 ∼−−→ 𝑀 | 𝑔 ∈ 𝑁 }
such that

(6.2)
𝑔ℎ ⊗𝑃 𝑀 𝑔 ⊗𝑃 𝑀

𝑀

𝑔⊗𝑃𝜆ℎ

𝜆𝑔ℎ 𝜆𝑔

commutes in the homotopy category of StMod𝑘𝑃 for every 𝑔, ℎ ∈ 𝑁 . A map 𝑓 ∶ 𝑀 → 𝑀′
in StMod𝑘𝑃 between modules with compatible 𝑁 -actions is 𝑁 -equivariant if it respects the
𝑁 -actions.

6.3. Remark. We have been using the term “𝐺-stable endotrivial 𝑆-module” to mean an element
of limOS (𝐺)op 𝑇 (−), i.e. an element of 𝑇 (𝑆) that is invariant under restriction and conjugation by
elements of𝐺. Since 𝑃 is normal in𝑁 , if𝑀 is an𝑁 -stable 𝑃-module in the sense of Definition 6.1
that is also endotrivial, then 𝑀 is an element of limOS (𝑁 )op≤𝑃 𝑇 (−), whereOS(𝑁 )≤𝑃 denotes the
full subcategory of OS(𝑁 ) on objects 𝐺/𝑄 with 𝑄 ≤ 𝑃 .
6.4. Remark. Let 𝑖∶ 𝑃 → 𝑁 be the inclusion exhibiting 𝑃 as a normal subgroup of 𝑁 and
consider the induction/restrictionmonad 𝑖∗𝑖! on StMod𝑘𝑃 . By normality, the underlying functor
of this monad can be identified with 𝑘[𝑁/𝑃]⊗𝑘 (−). The resulting algebra structure on 𝑘[𝑁/𝑃]
is then determined by the formula [𝑔] ⋅ [ℎ] = [𝑔ℎ] for cosets [𝑔], [ℎ] ∈ 𝑁/𝑃 .

A compatible 𝑁 -action on𝑀 ∈ StMod𝑘𝑃 is the same data as an action of 𝑘[𝑁/𝑃] on𝑀 in the
homotopy category of StMod𝑘𝑃 . We could consequently construct an ∞-categorical version of
the above definition, namely the ∞-category of algebras over the monad 𝑖∗𝑖! in StMod𝑘𝑃 :

AlgStMod𝑘𝑃 (𝑖∗𝑖!) ≃ ModStMod𝑘𝑃 (𝑘[𝑁/𝑃]).
However, for our purposes it is sufficient to work with the hands-on definition given above.

Compatible actions are more rigid than they appear at first sight, and the next lemma shows
that their behaviour is controlled on subgroups of 𝑃 :
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6.5. Lemma. Let 𝑁 be a finite group with a normal 𝑝-subgroup 𝑃 , and let 𝑍 ≤ 𝑃 be a subgroup
that is normal in 𝑁 . Let 𝑀 ∈ StMod𝑘𝑃 be an 𝑁 -stable endotrivial module. The group of one-
dimensional characters H1(𝑁 ; 𝑘×) acts freely and transitively on the set of compatible 𝑁 -actions
on 𝑀 , and restriction induces an H1(𝑁 ; 𝑘×)-equivariant bijection

{ compatible 𝑁 -actions on 𝑀 } ≅−−→ { compatible 𝑁 -actions on res𝑃𝑍 𝑀 }.
Here we consider two compatible actions 𝜆𝑔 and 𝜆′𝑔 on 𝑀 to be the same if id𝑀 is 𝑁 -equivariant,
i.e. if 𝜆𝑔 is homotopic to 𝜆′𝑔 for every 𝑔 ∈ 𝑁 .

Proof. Let 𝜑 ∈ H1(𝑁 ; 𝑘×) act on the set of compatible 𝑁 -actions on 𝑀 by sending 𝜆𝑔 to 𝜑(𝑔)𝜆𝑔 .
By Lemma 2.7, this action is free and transitive. It is clear that a compatible 𝑁 -action on 𝑀
gives rise to one on res𝑃𝑍 𝑀 by restriction, so we need to provide the inverse map. Suppose that
{𝜆𝑔 ∶ 𝑔 ⊗𝑍 res𝑃𝑍 𝑀 → res𝑃𝑍 𝑀} is a compatible 𝑁 -action. Since 𝑔 ⊗𝑃 𝑀 and 𝑀 are equivalent
endotrivial 𝑃-modules, restriction induces an isomorphism of one-dimensional 𝑘-vector spaces

res𝑃𝑍 ∶ 𝜋0 Hom𝑃 (𝑔 ⊗𝑃 𝑀,𝑀) ≅−−→ 𝜋0 Hom𝑍 (𝑔 ⊗𝑍 res𝑃𝑍 𝑀, res𝑃𝑍 𝑀).
We define 𝜇𝑔 ∶ 𝑔 ⊗𝑃 𝑀 → 𝑀 to be the unique (up to homotopy) map that restricts to 𝜆𝑔 . Since
the 𝜆𝑔 make Diagram 6.2 commute, so too do the 𝜇𝑔 . □

6.6. Remark. Any compatible𝑁 -action on an endotrivial 𝑃-module𝑀 necessarily has the prop-
erty that for every 𝑥 ∈ 𝑃 , the map 𝜆𝑥 ∶ 𝑥 ⊗𝑃 𝑀 → 𝑀 is homotopic to the natural map given by
the 𝑃-module structure of 𝑀 . Since 𝑃 is a 𝑝-group, the group H1(𝑃; 𝑘×) is trivial. Lemma 6.5
therefore implies that all compatible actions of 𝑃 on 𝑀 are homotopic, and the 𝑃-module struc-
ture of 𝑀 is one such compatible action.

6.7. Remark. Let 𝑀 and 𝑀′ be endotrivial 𝑃-modules with compatible 𝑁 -actions. Since they
are endotrivial, either all equivalences 𝑀 ∼−−→ 𝑀′ as stable 𝑃-modules are 𝑁 -equivariant or
none of them are.

Similarly, suppose that 𝑀 is an endotrivial 𝑃-module with a compatible 𝑁 -action and that
𝑀′ is a 𝑃-module equivalent to 𝑀 in StMod𝑘𝑃 . There is a unique compatible 𝑁 -action on 𝑀′
induced by the existence of an equivalence𝑀 ≃ 𝑀′, i.e. the induced 𝑁 -action does not depend
on the choice of equivalence.

TheHeller shiftΩ on StMod𝑘𝑃 induces a shift functor Ω̃ on stable 𝑃-modules with compatible
𝑁 -actions: Ω̃𝑀 has Ω𝑀 as its underlying stable 𝑃-module and a compatible 𝑁 -action given by

𝑔 ⊗𝑃 Ω𝑀 ≃ Ω(𝑔 ⊗𝑃 𝑀)
Ω𝜆𝑔−−−→ Ω𝑀.

When 𝑃 is cyclic, the periodicity of Ω̃ may differ from that of Ω, since the 𝑁 -action is altered
by the functor Ω̃. To understand this difference in periodicity, we need to determine the action
of 𝑁𝐺(𝑃) on Tate cohomology.

6.8. Lemma. Let 𝑍 be a non-trivial cyclic 𝑝-group that is normal in a finite group 𝑁 . Let𝑀 be a
stable 𝑍 -module with a compatible 𝑁 -action such that𝑀 ≃ Ω𝑛𝑘 as stable 𝑍 -modules. Let 𝑙 denote
the periodicity of a projective resolution of 𝑘 as a 𝑍 -module ( i.e. 𝑙 = 1 if 𝑍 is cyclic of order two
and 𝑙 = 2 otherwise). There is a natural isomorphism

Ĥ𝑙(𝑍 ; 𝑘) ⊗ Ĥ𝑛(𝑍 ; 𝑀) ≅−−→ Ĥ𝑛+𝑙(𝑍 ; 𝑀)
as one-dimensional characters of 𝑁 , which is induced by composition of morphisms in the stable
module category of 𝑍 .
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Proof. Since𝑀 ≃ Ω𝑛𝑘 as stable 𝑍 -modules, both sides of the morphism induced by composition
are one-dimensional 𝑘-vector spaces. The interesting part of the statement is that composition
is 𝑁 -equivariant.

We will work in the homotopy category of the stable module ∞-category of 𝑍 , and tem-
porarily introduce the notation [𝑀, 𝑁 ] for the morphism set 𝜋0 Hom𝑍 (𝑀, 𝑁 ) in that homotopy
category. Recall that Ĥ𝑛(𝑍 ; 𝑀) ≅ [Ω𝑛𝑘,𝑀]. The action of 𝑔 ∈ 𝑁 on Ĥ𝑛(𝑍 ; 𝑀), considered as a
𝑘-vector space, is given by

𝑔 ⋅ −∶ [Ω𝑛𝑘,𝑀] 𝑔⊗𝑍−−−−−−→ [𝑔 ⊗𝑍 Ω𝑛𝑘, 𝑔 ⊗𝑍 𝑀] → [Ω𝑛𝑘, 𝑔 ⊗𝑍 𝑀] → [Ω𝑛𝑘,𝑀],
where the middle map is induced by the the natural equivalence 𝑔 ⊗𝑍 Ω𝑛𝑘 ≃ Ω𝑛(𝑔 ⊗𝑍 𝑘) ≃ Ω𝑛𝑘
and the last map by composing with the action 𝑔 ⊗𝑍 𝑀 → 𝑀 of 𝑔 on 𝑀 . It suffices to show
that each of these maps respects composition

[Ω𝑙𝑘, 𝑘] ⊗ [Ω𝑛𝑘,𝑀] Ω𝑛⊗id−−−−−→ [Ω𝑛+𝑙𝑘, Ω𝑛𝑘] ⊗ [Ω𝑛𝑘,𝑀] ∘−→ [Ω𝑛+𝑙𝑘,𝑀].
This is a straightforward check using the fact that 𝑔 ⊗𝑍 − commutes with Ω. □

6.9. Lemma. Let 𝑍 be a non-trivial cyclic 𝑝-group that is normal in a finite group 𝑁 .
When 𝑝 is odd, let 𝑌 be the unique subgroup of 𝑍 of order 𝑝 (which will also be normal in 𝑁 ),

and let 𝜈 denote the twisting character

𝜈 ∶ 𝑁 → Aut(𝑌 ) ≅ 𝔽×𝑝 ≤ 𝑘×
given by the right action of 𝑁 on 𝑌 . We have

Ĥ2(𝑍 ; 𝑘) = 𝜈
as one-dimensional characters of 𝑁 .

When 𝑝 = 2, let 𝑙 denote the periodicity of a projective resolution of 𝑘 as a 𝑍 -module ( i.e. 𝑙 = 1
if 𝑍 is cyclic of order two and 𝑙 = 2 otherwise). The one-dimensional character Ĥ𝑙(𝑍 ; 𝑘) is trivial.
Proof. We deal first with the case where 𝑝 is odd. Since 𝑘 ≃ Ω2𝑘, the Tate cohomology Ĥ2(𝑍 ; 𝑘)
is one-dimensional, and we wish to determine the 𝑁 -action on it. Let [𝑀, 𝑁 ] again denote
𝜋0 Hom𝑍 (𝑀, 𝑁 ). The action of 𝑔 ∈ 𝑁 on Ĥ2(𝑍 ; 𝑘) is given by

(6.10) 𝑔 ⋅ −∶ [Ω2𝑘, 𝑘] 𝑔⊗𝑍−−−−−−→ [𝑔 ⊗𝑍 Ω2𝑘, 𝑔 ⊗𝑍 𝑘] ≅ [Ω2𝑘, 𝑘].
We will choose a convenient model for Ω2𝑘 and compute this action explicitly. Let 𝑥 be a

generator of 𝑍 . We have strict pullback squares in the model category Mod𝑘𝑍
𝑘 𝑘𝑍

0 Ω𝑘 𝑘𝑍

0 𝑘

⌟ 𝑥−1

⌟

that are also homotopy pullbacks, which witness that 𝑘 is a model for Ω2𝑘. These pullbacks
are completely determined by the resolution of 𝑘 as a 𝑘𝑍 -module

(6.11) 𝑘 → 𝑘𝑍 𝑥−1−−−→ 𝑘𝑍 → 𝑘
that appears along the top and right edges of the above diagram.
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With this identification, we can consider id∶ 𝑘 → 𝑘 as an element of Ĥ2(𝑍 ; 𝑘) and compute
where it is sent to by the action of 𝑔 given in (6.10). The crucial point here is that in the
isomorphism

[𝑔 ⊗𝑍 𝑘, 𝑔 ⊗𝑍 𝑘] ≅ [𝑘, 𝑘],
the equivalence between 𝑔 ⊗𝑍 𝑘 and 𝑘 is different in the domain and codomain: in the domain,
we are treating 𝑘 as a model for Ω2𝑘 and so need to take the data of the resolution (6.11) into
account, whereas in the codomain the equivalence is induced by the (trivial) action of 𝑔 on 𝑘.
Therefore, the action of 𝑔 on Ĥ2(𝑍 ; 𝑘) is given by multiplication by the scalar 𝜆 that makes the
following diagram commute in Mod𝑘𝑍 :

𝑘 𝑘𝑍 𝑘𝑍 𝑘

𝑘 𝑔 ⊗𝑍 𝑘𝑍 𝑔 ⊗𝑍 𝑘𝑍 𝑘
𝜆

𝑥−1

𝑓2 𝑓1 id

𝑔⊗𝑍 (𝑥−1)

This amounts to lifting the identity to a comparison map between the two resolutions of 𝑘.
We can choose 𝑓1 to send 1 to 𝑔 ⊗𝑍 1, i.e. send 𝑧 to 𝑔 ⊗𝑍 𝑧𝑔 . We need to choose 𝑓2 such that

(𝑔 ⊗𝑍 (𝑥 − 1)) ⋅ 𝑓2(1) = 𝑓1(𝑥 − 1) = 𝑔 ⊗𝑍 (𝑥𝑔 − 1).
Write |𝑍 | = 𝑝𝑟 . Expanding with respect to the basis given by powers of (𝑥 − 1), we have a
unique expression

(6.12) 𝑥𝑔 − 1 = ∑
1≤𝑖<𝑝𝑟

𝑎𝑖(𝑥 − 1)𝑖

for some scalars 𝑎𝑖 ∈ 𝑘. We can therefore choose 𝑓2(1) ≔ ∑1≤𝑖<𝑝𝑟 𝑎𝑖𝑔 ⊗𝑍 (𝑥 − 1)𝑖−1.
The map 𝑘 → 𝑔⊗𝑍 𝑘𝑍 is given by sending 1 to 𝑔⊗𝑍 𝑁𝑍 , where𝑁𝑍 denotes the norm element

of 𝑘𝑍 . By definition, 𝜆 satisfies

𝜆𝑔 ⊗𝑍 𝑁𝑍 = 𝑓2(𝑁𝑍 ) = 𝑎1𝑔 ⊗𝑍 𝑁𝑍 ,
so 𝜆 = 𝑎1. To determine 𝑎1, we observe that

𝑥𝑚 = ((𝑥 − 1) + 1)𝑚 ≡ 𝑚(𝑥 − 1) + 1 mod (𝑥 − 1)2
for any integer 𝑚, and hence for an appropriate choice of 𝑚 we have

𝑥𝑔 − 1 = 𝑥𝑚 − 1 ≡ 𝑚(𝑥 − 1) mod (𝑥 − 1)2.
Comparing with Equation (6.12), we see that 𝑎1, and hence also 𝜆, is equal to the image of 𝑚 in
𝑘 whenever 𝑚 satisfies 𝑥𝑚 = 𝑥𝑔 . We learnt the above trick of expanding modulo (𝑥 − 1)2 from
[MT07].

Since 𝑌 is generated by 𝑥𝑝𝑟−1
, if 𝑥𝑚 = 𝑥𝑔 then we have

(𝑥𝑝𝑟−1)𝜈(𝑔) ≔ (𝑥𝑝𝑟−1)𝑔 = (𝑥𝑝𝑟−1)𝑚
and so 𝜈(𝑔) is also equal to the image of 𝑚 in 𝑘. Therefore, 𝜆 = 𝜈(𝑔) and Ĥ2(𝑍 ; 𝑘) = 𝜈 as
one-dimensional characters of 𝑁 .

When 𝑝 = 2 and 𝑙 = 2, one can carry out the same computation to get 𝜆 = 𝜈(𝑔). However,
in this case the character 𝜈 is trivial: the image of 𝑚 in 𝑘 is always 1. For 𝑝 = 2 and 𝑙 = 1, we
have 𝑔 ⊗𝐶2 𝑘𝐶2 ≅ 𝑘𝐶2, so the action of 𝑔 on Ĥ1(𝑍 ; 𝑘) is again trivial. □

Combining these two lemmas, we obtain:
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6.13. Corollary. Let 𝑍 be a non-trivial cyclic 𝑝-group that is normal in a finite group 𝑁 , and let
𝜈 be the twisting character defined in Lemma 6.9. Let 𝑀 be a stable 𝑍 -module with a compatible
𝑁 -action such that 𝑀 ≃ Ω𝑛𝑘 as stable 𝑍 -modules. When 𝑝 is odd we have

Ĥ𝑛+2(𝑍 ; 𝑀) ≅ 𝜈 ⊗ Ĥ𝑛(𝑍 ; 𝑀)
as one-dimensional 𝑁 -modules, and when 𝑝 = 2 we have

Ĥ𝑛+𝑙(𝑍 ; 𝑀) ≅ Ĥ𝑛(𝑍 ; 𝑀),
where 𝑙 is the periodicity of a projective resolution of 𝑘 as a 𝑍 -module ( i.e. 𝑙 = 1 if 𝑍 is cyclic of
order two and 𝑙 = 2 otherwise).
6.14. Notation. Let 𝑍 be a normal subgroup of 𝑁 . For any 𝑀 ∈ StMod𝑘𝑁 , we get an induced
compatible 𝑁 -action on the stable 𝑍 -module res𝑁𝑍 𝑀 . When we want to emphasise the fact
that we wish to consider res𝑁𝑍 𝑀 with its compatible 𝑁 -action, we will denote it by r̃es𝑁𝑍 𝑀 .

We can now use Corollary 6.13 to show several useful facts about stable modules with com-
patible actions:

6.15. Proposition. Let 𝑍 be a non-trivial 𝑝-group that is normal in a group 𝑁 . In the case where
𝑍 is cyclic, let 𝜈 denote the twisting character defined in Lemma 6.9.

(i) For any 𝑀 ∈ StMod𝑘𝑁 we have an equivalence r̃es𝑁𝑍 (Ω𝑛𝑀) ≃ Ω̃𝑛 r̃es𝑁𝑍 𝑀 as stable 𝑍 -
modules with compatible 𝑁 -actions.

(ii) If 𝑍 is abelian, then every endotrivial 𝑍 -module with a compatible 𝑁 -action is equivalent
to r̃es𝑁𝑍 (Ω𝑛𝜑) for some 𝑛 ∈ ℤ and 𝜑 ∈ H1(𝑁 ; 𝑘×).

(iii) Let 𝜑, 𝜓 ∈ H1(𝑁 ; 𝑘×) be one-dimensional characters. There is an equivalence

r̃es𝑁𝑍 (Ω𝑛𝜑) ≃ r̃es𝑁𝑍 (Ω𝑛𝜓)
of stable 𝑍 -modules with compatible 𝑁 -actions if and only if 𝜑 = 𝜓 as characters.

(iv) If 𝑍 is cyclic and 𝑝 is odd, then r̃es𝑁𝑍 (Ω2𝜑) ≃ r̃es𝑁𝑍 (𝜈−1𝜑) as stable 𝑍 -modules with com-
patible 𝑁 -actions.

(v) If 𝑍 is cyclic and 𝑝 = 2, then r̃es𝑁𝑍 (Ω𝜑) ≃ r̃es𝑁𝑍 𝜑 as stable 𝑍 -modules with compatible
𝑁 -actions.

Proof.
(i) It is enough to prove this for 𝑛 = ±1. We will prove it for 𝑛 = 1, since the 𝑛 = −1 case

is just a dual argument. We need to show that, for any 𝑔 ∈ 𝑁 , the action of 𝑔 on the
𝑁 -module Ω𝑀 is given by

𝑔 ⊗𝑁 Ω𝑀 ≃ Ω(𝑔 ⊗𝑁 𝑀)
Ω(act𝑔)−−−−−−→ Ω𝑀

up to homotopy. Let 𝑃𝑀 denote the projective cover of 𝑀 . We have a commutative
diagram in the 1-category Mod𝑘𝑁

0 Ω(𝑔 ⊗𝑁 𝑀) 𝑔 ⊗𝑁 𝑃𝑀 𝑔 ⊗𝑁 𝑀 0

0 𝑔 ⊗𝑁 Ω𝑀 𝑔 ⊗𝑁 𝑃𝑀 𝑔 ⊗𝑁 𝑀 0

0 Ω𝑀 𝑃𝑀 𝑀 0

≅

act𝑔 act𝑔 act𝑔
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since the horizontal maps are 𝑁 -equivariant. This shows that the left-hand composite
is homotopic to Ω(act𝑔), proving the claim.

(ii) This is a consequence of Dade’s Theorem 2.8: the underlying stable 𝑍 -module must be
equivalent to Ω𝑛𝑘 for some 𝑘, so if we apply Ω̃−𝑛 then we get a compatible action on 𝑘.
These naturally biject with one-dimensional characters of 𝑁 .

(iii) We can apply Ω̃−𝑛 to reduce to the case where 𝑛 = 0. The underlying modules res𝑁𝑍 𝜑
and res𝑁𝑍 𝜓 are both 𝑘, and r̃es𝑁𝑍 𝜑 ≃ r̃es𝑁𝑍 𝜓 if and only if the diagram

𝑔 ⊗𝑁 𝜑 𝜑

𝑔 ⊗𝑁 𝜓 𝜓
𝑔⊗𝑁 𝑓

𝜑(𝑔)

𝑓
𝜓 (𝑔)

commutes up to homotopy for all 𝑔 ∈ 𝑁 , which in turn is if and only if 𝜑 = 𝜓 as
characters.

(iv) & (v) In the case where 𝑝 is odd, the module res𝑁𝑍 (Ω2𝜑) is equivalent to 𝑘, and hence

r̃es𝑁𝑍 (Ω2𝜑) ≃ r̃es𝑁𝑍 𝜓
for some one-dimensional character 𝜓 . To determine 𝜓 , we can apply zeroth Tate co-
homology, and Corollary 6.13 tells us that

Ĥ0(𝑍 ; Ω2𝜑) ≅ Ĥ−2(𝑍 ; 𝜑) ≅ 𝜈−1 ⊗ 𝜑.
A similar argument works when 𝑝 is even, in which case 𝜈 is the trivial character. □

6.16. Remark. Despite Proposition 6.15(i), Ω and Ω̃ can have quite different behaviour. In
particular, even if Ω̃ is periodic, it need not be the case that Ω be periodic. One example where
this happens is when 𝑍 is the trivial group and 𝑁 is an elementary abelian subgroup of rank at
least two: thenΩ is not periodic but the category of stable 𝑍 -modules with compatible𝑁 -action
is trivial, so Ω̃ is the identity.

A less trivial example occurs when 𝑍 is a cyclic group and 𝑁 contains an elementary abelian
subgroup of rank at least two: Ω is again not periodic, but the periodicity of Ω̃ is at most twice
the order of 𝜈𝑍 in H1(𝑁 ; 𝑘×).

7. Lifting via orientations

In this section, we give a more explicit condition for lifting a 𝐺-stable endotrivial 𝑆-module
(𝑀𝑃 )𝐺/𝑃∈OS (𝐺). For a suitable collection C , such as A𝑝(𝐺), the module 𝑀𝑆 lifts to 𝑇 (𝐺) if
and only if we can specify a one-dimensional character of 𝑁𝐺(𝑃) for every 𝑃 ∈ C such that
the characters satisfy the compatibility condition stated in Proposition 7.5. We will refer to
such a set of compatible characters as an orientation. This reduces the question of lifting 𝐺-
stable endotrivial modules to local group theory, since we just need to understand the one-
dimensional characters of normalisers of 𝑝-subgroups and how they behave under restriction.

Viewing the obstruction to lifting in terms of characters makes clear exactly “what can go
wrong” when trying to lift: as explained in the introduction, when we attempt to lift a 𝐺-stable
endotrivial 𝑆-module to𝐺, we have to take into account the possibility that there is a 𝑝′-element
𝑥 that acts non-trivially on a cyclic subgroup 𝑍 , in which case the order of Ω𝑘 in 𝑇 (𝑍 ⋊ ⟨𝑥⟩)
is larger than its order in 𝑇 (𝑍). This puts extra compatibility conditions on type functions of
modules in 𝑇 (𝐺) that are not visible for modules in limOop

S
𝑇 (−).
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Recall that by Dade’s Theorem 2.8, for abelian 𝑝-groups, every endotrivial module is equiv-
alent to a Heller shift of the unit 𝑘. With this in mind, we give a variation of a definition from
[CMT14, §2]:

7.1. Definition. Let (𝑀𝑃 ) ∈ limOS (𝐺)op 𝑇 (−) be a 𝐺-stable endotrivial 𝑆-module. A type func-
tion for (𝑀𝑃 ) on a collection C is a function 𝑛∶ C → ℤ that is invariant under 𝐺-conjugation
and that satisfies res𝑃𝑍(𝑃) 𝑀𝑃 ≃ Ω𝑛(𝑃)𝑘 for all 𝐺/𝑃 ∈ OC (𝐺).
7.2. Remark. All type functions for a fixed 𝐺-stable endotrivial 𝑆-module (𝑀𝑃 ) agree when re-
stricted to the subset of C consisting of subgroups with non-cyclic centre. In other words, the
only flexibility one has when choosing a type function 𝑛 for (𝑀𝑃 ) is to change its value on a sub-
group 𝑃 with cyclic centre: if 𝑍(𝑃) ≅ 𝐶2, then there are no constraints on 𝑛(𝑃), and otherwise
𝑛(𝑃) is determined modulo two. For the same reason, the restriction that 𝑛 be conjugation-
invariant will automatically hold whenever 𝑍(𝑃) is non-cyclic.
7.3. Remark. The definition of the type of a module in [CMT14, §2], which we will briefly
recall, is closely related to our definition of a type function on S𝑝(𝐺). When the 𝑝-rank of 𝐺
is one, the type of a module is undefined. When the 𝑝-rank is two, we choose representatives
𝐸1, … , 𝐸𝑟 for the 𝐺-conjugacy classes of maximal elementary abelian subgroups of 𝐺. The type
of a 𝐺-module 𝑀 is defined to be the 𝑟-tuple (𝑛1, … , 𝑛𝑟 ), where res𝐺𝐸𝑖

𝑀 ≃ Ω𝑛𝑖𝑘. When the 𝑝-
rank is greater than two, let 𝐸2, … , 𝐸𝑟 be representatives for the 𝐺-conjugacy classes of rank
two maximal elementary abelian subgroups of 𝐺 and let 𝐸1 be a maximal elementary abelian
subgroup of rank greater than two. We define the type of 𝑀 to be (𝑛1, … , 𝑛𝑟 ) where the 𝑛𝑖 are
defined as before.

A type function 𝑛∶ S𝑝(𝐺) → ℤ for (𝑀𝑃 ) determines the type of𝑀𝑆 by restricting to a subset
of S𝑝(𝐺) consisting of a maximal elementary abelian subgroup of rank at least three (if 𝐺 has
such a subgroup) together with a representative of each 𝐺-conjugacy class of rank twomaximal
elementary abelian subgroups.

Conversely, the restriction homomorphism

𝑇 (𝑆) → ∏
1≤𝑖≤𝑟

𝑇 (𝐸𝑖)

has kernel equal to the torsion subgroup of 𝑇 (𝑆), so specifying the type of a 𝐺-stable endotrivial
module determines it up to torsion. Therefore, in the absence of torsion, the type of a 𝐺-stable
endotrivial 𝑆-module determines its type function on S𝑝(𝐺) up to the ambiguity mentioned in
Remark 7.2.

When there is torsion in 𝑇 (𝑆), a type function can contain more information than the type:
when 𝑆 is generalised quaternion or cyclic of order at least three, there is no definition of the
type of a module, yet type functions on S𝑝(𝐺) can distinguish between Ω𝑘 and 𝑘. Similarly,
when 𝑆 is the semi-dihedral 2-group with presentation

⟨ 𝑥, 𝑦 | 𝑥2𝑚 = 𝑦2 = 1, 𝑦𝑥𝑦 = 𝑥𝑚−1 ⟩,
the generator Ω1𝐿 of the torsion part of 𝑇 (𝑆𝐷4𝑚) that was constructed in [CT00, Theorem 7.1]
has a non-trivial restriction to 𝑇 (⟨𝑦⟩) but has a trivial restriction to every elementary abelian
subgroup. Hence type functions on S𝑝(𝐺) can distinguish between Ω1𝐿 and 𝑘 despite these
modules having the same type.

7.4. Definition. Let 𝑍 be a non-trivial normal 𝑝-subgroup of a finite group 𝑁 . In order to
avoid the need to split into cases depending on whether or not 𝑍 is cyclic, we will make the
following convention: the twisting character 𝜈 for the right action of 𝑁 on 𝑍 is defined to be
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• the trivial character of 𝑁 , when 𝑍 is non-cyclic, and
• the character defined in Lemma 6.9, when 𝑍 is cyclic.

7.5. Proposition. Let C be a collection of non-trivial 𝑝-subgroups such that C ↪ S𝑝(𝐺) is a
𝐺-homotopy equivalence and for every 𝑃 < 𝑄 in C , there is an abelian 𝑝-subgroup 𝑉 ≤ 𝑄 that is
normalised by 𝑁𝐺(𝑃 < 𝑄) and that contains both 𝑍(𝑃) and 𝑍(𝑄) as subgroups.

Let (𝑀𝑃 )𝐺/𝑃∈OS (𝐺) be a 𝐺-stable endotrivial 𝑆-module, and let 𝑛∶ S𝑝(𝐺) → ℤ be any type
function for (𝑀𝑃 ). The module𝑀𝑆 lifts to an endotrivial module in 𝑇 (𝐺) if and only if it is possible
to specify one-dimensional characters { 𝜑𝑃 ∈ H1(𝑁𝐺(𝑃); 𝑘×) ∶ 𝑃 ∈ C } satisfying the following
conditions for every 𝑃 < 𝑄 in C :

(i) If 𝑝 = 2, then 𝜑𝑃 = 𝜑𝑄 as one-dimensional characters of 𝑁𝐺(𝑃 < 𝑄).
(ii) If 𝑝 is odd, then

𝜈(𝑛(𝑉 )−𝑛(𝑃))/2
𝑃 𝜑𝑃 = 𝜈(𝑛(𝑉 )−𝑛(𝑄))/2

𝑄 𝜑𝑄
as one-dimensional characters of 𝑁𝐺(𝑃 < 𝑄), where 𝜈𝑃 is the twisting character for the
right action of 𝑁𝐺(𝑃) on 𝑍(𝑃), as in Definition 7.4, and 𝑉 is any abelian 𝑝-subgroup of 𝑄
that is normalised by 𝑁𝐺(𝑃 < 𝑄) and that contains both 𝑍(𝑃) and 𝑍(𝑄) as subgroups.

(iii) For every 𝑔 ∈ 𝐺 we have 𝑔 ⊗𝑁𝐺(𝑃) 𝜑𝑃 = 𝜑𝑔𝑃 .

7.6. Definition. We will say that a choice of characters { 𝜑𝑃 ∈ H1(𝑁𝐺(𝑃); 𝑘×) ∶ 𝑃 ∈ C }
satisfying the conditions in Proposition 7.5 is an orientation for 𝑛.
7.7. Remark. When 𝑝 is odd, we necessarily have 𝑛(𝑉 ) ≡ 𝑛(𝑃) ≡ 𝑛(𝑄) mod 2, so the exponents
appearing in condition (ii) are integers. Additionally, condition (ii) does not depend on the
choice of 𝑉 : let 𝑊 be the intersection of all abelian 𝑝-subgroups 𝑉 ≤ 𝑄 that are normalised by
𝑁𝐺(𝑃 < 𝑄) and that contain both 𝑍(𝑃) and 𝑍(𝑄). If 𝑊 is non-cyclic, then 𝑛(𝑉 ) is independent
of 𝑉 . If 𝑊 is cyclic, then the twisting characters for the right actions of 𝑁 on 𝑊 , on 𝑍(𝑃), and
on 𝑍(𝑄) all coincide.
7.8. Remark. We emphasise that the choice of type function 𝑛∶ S𝑝(𝐺) → ℤ does not affect
whether or not a module lifts: as in Remark 7.2, the type function is determined by (𝑀𝑃 ) away
from 𝑝-subgroups with cyclic centres. Any change in the type function on a 𝑝-subgroup with a
cyclic centre can be corrected for by multiplying the orientation characters by the appropriate
power of a twisting character such that condition (ii) still holds.

Proof of Proposition 7.5. Suppose that we had an endotrivial module𝑀 ∈ 𝑇(𝐺) that restricted to
𝑀𝑆 . We wish to construct an orientation for the type function 𝑛∶ S𝑝(𝐺) → ℤ. For every 𝑃 ∈ C

we get a one-dimensional 𝑁𝐺(𝑃)-module Ĥ𝑛(𝑃)(𝑍(𝑃); 𝑀), corresponding to a one-dimensional
character 𝜑𝑃 . We check that these satisfy the three conditions for being an orientation:

(i) If 𝑝 = 2, then 𝑛(𝑃) ≡ 𝑛(𝑉 ) modulo the periodicity of a projective resolution of 𝑘 as a
𝑍(𝑃)-module, and Corollary 6.13 implies that

Ĥ𝑛(𝑃)(𝑍(𝑃); 𝑀) ≅ Ĥ𝑛(𝑉 )(𝑍(𝑃); 𝑀) ≅ Ĥ𝑛(𝑉 )(𝑉 ; 𝑀)
as 𝑁𝐺(𝑃 < 𝑄)-modules; similarly for 𝑄 instead of 𝑃 .

(ii) If 𝑝 is odd, then 𝑛(𝑃) ≡ 𝑛(𝑉 ) mod 2, and Corollary 6.13 implies that

𝜈(𝑛(𝑉 )−𝑛(𝑃))/2
𝑃 ⊗ Ĥ𝑛(𝑃)(𝑍(𝑃); 𝑀) ≅ Ĥ𝑛(𝑉 )(𝑉 ; 𝑀)

as 𝑁𝐺(𝑃 < 𝑄)-modules; similarly for 𝑄 instead of 𝑃 .
(iii) This follows since we require type functions to be constant on conjugacy classes.
Conversely, suppose that we had an orientation { 𝜑𝑃 ∶ 𝑃 ∈ C } for (𝑀𝑃 ). We wish to show

that we can lift 𝑀𝑆 to 𝑇 (𝐺). By the description of the obstruction 𝛽 in Proposition 5.11, it
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is enough to construct a compatible 𝑁𝐺(𝑃)-action on 𝑀𝑃 for every 𝑃 ∈ C , invariant under
conjugation in 𝐺, such that some (and hence every) equivalence res𝑄𝑃 𝑀𝑄 → 𝑀𝑃 is 𝑁𝐺(𝑃 < 𝑄)-
equivariant.

The orientation gives us a stable 𝑍(𝑃)-module with compatible 𝑁𝐺(𝑃) action, namely

𝐿𝑃 ≔ r̃es𝑁(𝑃)
𝑍(𝑃) (Ω𝑛(𝑃)𝜑𝑃 ).

Since res𝑃𝑍(𝑃) 𝑀𝑃 ≃ 𝐿𝑃 as stable 𝑍(𝑃)-modules, we get an induced compatible 𝑁𝐺(𝑃)-action on

res𝑃𝑍(𝑃) 𝑀𝑃 , and hence also one on 𝑀𝑃 by Lemma 6.5. Recall from Remark 6.7 that the induced

𝑁𝐺(𝑃)-action on res𝑃𝑍(𝑃) 𝑀𝑃 is independent of the choice of equivalence as 𝑍(𝑃)-modules, be-
cause 𝑀𝑃 is endotrivial. Condition (iii) in the statement of the proposition implies that the
resulting 𝑁𝐺(𝑃)-actions are invariant under conjugation, as required.

Let 𝑃 < 𝑄 be subgroups in C , and write 𝑁 ≔ 𝑁𝐺(𝑃 < 𝑄). In order to complete the proof of
the proposition, we check that the conditions imposed on 𝜑𝑃 and 𝜑𝑄 imply that 𝑀𝑃 ≃ 𝑀𝑄 as
stable 𝑃-modules with a compatible 𝑁 -action. By Lemma 6.5 again, it is enough to check that
they are equivalent as stable 𝑍(𝑃)-moduleswith a compatible𝑁 -action. By assumption, there is
a subgroup 𝑉 ≤ 𝑄 that is normalised by𝑁 and forwhich there exists a zig-zag 𝑍(𝑃) ≤ 𝑉 ≥ 𝑍(𝑄).
We will use this zig-zag to compare the 𝑁 -actions on 𝐿𝑃 and 𝐿𝑄 (and thereby the 𝑁 -actions on
𝑀𝑃 and 𝑀𝑄 ). Note that 𝑁 normalises all three subgroups of the zig-zag, so it does make sense
to talk about compatible 𝑁 -actions for these subgroups.

We deal first with the case where 𝑝 is odd. Using Lemma 6.5 applied to the 𝑉 -moduleΩ𝑛(𝑉 )𝑘,
we see that it has a unique compatible 𝑁 -action that restricts to r̃es𝑁𝑍(𝑄)𝐿𝑄 . We will denote
this stable 𝑉 -module with its compatible 𝑁 -action by 𝐿𝑉 . The 𝑁 -action on 𝑀𝑄 agrees with
the 𝑁 -action on 𝐿𝑉 : both were defined such that they restrict to 𝐿𝑄 , and 𝑍(𝑄) ≤ 𝑉 ≤ 𝑄 by
assumption. Therefore, the restriction of𝑀𝑄 to a stable 𝑍(𝑃)-module is equivalent to r̃es𝑁𝑍(𝑃)𝐿𝑉 .
By Proposition 6.15, we must have

𝐿𝑉 ≃ r̃es𝑁𝑉 Ω𝑛(𝑉 ) (𝜈(𝑛(𝑉 )−𝑛(𝑄))/2
𝑄 ⋅ 𝜑𝑄)

and on restriction to 𝑍(𝑃) this is equivalent to
r̃es𝑁𝑍(𝑃)Ω𝑛(𝑃) (𝜈(𝑛(𝑃)−𝑛(𝑉 ))/2

𝑃 ⋅ 𝜈(𝑛(𝑉 )−𝑛(𝑄))/2
𝑄 ⋅ 𝜑𝑄) .

By condition (ii), this is in turn equivalent to 𝐿𝑃 and we are done.
Finally, we deal with the case where 𝑝 is even. This is identical to the previous case, ex-

cept that the twisting character is always trivial and we do not necessarily have that 𝑛(𝑃) ≡
𝑛(𝑉 ) mod 2. As before, we deduce that

𝐿𝑉 ≃ r̃es𝑁𝑉 Ω𝑛(𝑉 )𝜑𝑄
and consequently that the restriction of𝑀𝑄 to a stable 𝑍(𝑃)-modulewith a compatible𝑁 -action
is equivalent to 𝐿𝑃 . □
7.9. Remark. Let 𝑀 ∈ 𝑇(𝐺) and let 𝑃 ∈ C . In the above proof of Proposition 7.5, we defined
𝜑𝑃 ≔ Ĥ𝑛(𝑃)(𝑍(𝑃); 𝑀). We could equally well have defined 𝜑𝑃 to be the unique one-dimensional
character such that

r̃es𝑁𝐺(𝑃)
𝑍(𝑃) res𝐺𝑁𝐺(𝑃) 𝑀 ≃ r̃es𝑁𝐺(𝑃)

𝑍(𝑃) (Ω𝑛(𝑃)𝜑𝑃 ).
7.10. Remark. One can prove an analogous proposition with a slightly different condition on
C : instead of asking that 𝑍(𝑃) ≤ 𝑉 ≥ 𝑍(𝑄), we could instead ask that 𝑉 be non-trivial and
𝑍(𝑃) ≥ 𝑉 ≤ 𝑍(𝑄). The proof of the proposition goes through essentially unchanged.
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7.11. Example. Suppose that C = A𝑝(𝐺) and 𝑝 is odd. Since 𝑍(𝑃) = 𝑃 for every 𝑃 ∈ A𝑝(𝐺),
choosing 𝑉 ≔ 𝑄 shows that A𝑝(𝐺) satisfies the conditions on C in Proposition 7.5. The com-
patibility conditions on { 𝜑𝑃 ∶ 𝑃 ∈ C } reduce to:

(1) if 𝑃 is not cyclic, then 𝜑𝑃 and 𝜑𝑄 agree on restriction to 𝑁𝐺(𝑃 < 𝑄),
(2) if 𝑃 is cyclic, then

𝜑𝑃 = 𝜈(𝑛(𝑃)−𝑛(𝑄))/2
𝑃 ⋅ 𝜑𝑄

as𝑁𝐺(𝑃 < 𝑄)-characters, where 𝜈𝑃 is the twisting character induced by the right action
of 𝑁𝐺(𝑃) on 𝑃 , and

(3) for every 𝑔 ∈ 𝐺, we have 𝑔 ⊗𝑁𝐺(𝑃) 𝜑𝑃 = 𝜑𝑔𝑃 .
In order to be more explicit, we have split condition (ii) into two conditions here: since 𝑛(𝑃) =
𝑛(𝑄) when 𝑃 is not cyclic, the two formulations are equivalent.

7.12. Corollary. When 𝑝 = 2, any 𝐺-stable endotrivial 𝑆-module lifts to a module in 𝑇 (𝐺).
Proof. We apply Proposition 7.5 to C = A𝑝(𝐺), and observe that letting each 𝜑𝑃 be the trivial
character gives an orientation for any type function. □

8. An algebraic description of the group of endotrivial modules

In this section, we use the obstruction 𝛽 of Section 5 to provide an algebraic description of
the group of endotrivial modules of 𝐺 along the lines of the viewpoint from [Gro18].

Recall that, by Remark 7.2, a 𝐺-stable endotrivial 𝑆-module (𝑀𝑃 )𝐺/𝑃∈OS (𝐺) together with
a type function for (𝑀𝑃 ) on A𝑝(𝐺) uniquely determines an extension of that type function
to S𝑝(𝐺). We will implicitly identify (𝑀𝑃 ) with the module 𝑀𝑆 on the Sylow subgroup, from
which we can recover the other modules by restriction.

8.1. Definition. We define an equivalence relation ∼ on the set of tuples (𝑀𝑆 , 𝑛, {𝜑𝑉 }), where
𝑀𝑆 is a 𝐺-stable endotrivial 𝑆-module, 𝑛∶ A𝑝(𝐺) → ℤ is a type function for 𝑀𝑆 on A𝑝(𝐺),
and { 𝜑𝑉 ∶ 𝑉 ∈ A𝑝(𝐺) } is an orientation for the unique extension of 𝑛 to S𝑝(𝐺). We say that
(𝑀𝑆 , 𝑛, {𝜑𝑉 }) ∼ (𝑀′𝑆 , 𝑛′, {𝜑′𝑉 }) if 𝑀𝑆 ≃ 𝑀′𝑆 and for every 𝑉 ∈ A𝑝(𝐺) we have

𝜑𝑉 = { 𝜑′𝑉 if 𝑝 = 2 or
𝜑′𝑉 ⋅ 𝜈(𝑛(𝑉 )−𝑛′(𝑉 ))/2

𝑉 if 𝑝 odd,

where 𝜈𝑉 denotes the twisting character for the right action of 𝑁𝐺(𝑉 ) on 𝑉 . (Recall from
Definition 7.4 that 𝜈𝑉 is trivial by convention when 𝑉 is not cyclic.) We define 𝐴(𝐺) to be the
set of tuples (𝑀𝑆 , 𝑛, {𝜑𝑉 }) up to the equivalence relation ∼. Note that for a given equivalence
class of ∼, the choice of type function determines the orientation; that is, there is a bijection
between type functions of 𝑀𝑆 and elements of the equivalence class.

8.2. Remark. It is possible to remove the equivalence relation from the definition of𝐴(𝐺) if one
iswilling to put a restriction on 𝑛, for example that 0 ≤ 𝑛(𝑍) < |𝑇 (𝑍)| for every cyclic 𝑍 ∈ A𝑝(𝐺).
This picks out a distinguished representative in each equivalence class. Alternatively, one could
omit the type function altogether and instead provide an infinite sequence of characters, one
for each possible value of 𝑛(𝑍).

We can put an abelian group structure on 𝐴(𝐺) by defining

(𝑀𝑆 , 𝑛, {𝜑𝑉 }) ⋅ (𝑀′𝑆 , 𝑛′, {𝜑′𝑉 }) ≔ (𝑀𝑆 ⊗ 𝑀′𝑆 , 𝑛 + 𝑛′, {𝜑𝑉 ⋅ 𝜑′𝑉 }).
This multiplication respects the equivalence relation, and {𝜑𝑉 ⋅ 𝜑′𝑉 } is an orientation for 𝑛 + 𝑛′
because both {𝜑𝑉 } and {𝜑′𝑉 } are orientations for their respective type functions.
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8.3. Theorem. There is an isomorphism of groups Θ∶ 𝑇(𝐺) → 𝐴(𝐺) that sends an endotrivial
𝐺-module 𝑀 to the equivalence class of the tuple

(res𝐺𝑆 𝑀, 𝑛, 𝜑𝑉 ≔ Ĥ𝑛(𝑉 )(𝑉 ; 𝑀)),
where 𝑛 is any type function 𝑛∶ A𝑝(𝐺) → ℤ for 𝑀 .

Proof. We compare the exact sequence in Corollary 5.10 to a similar sequence containing𝐴(𝐺),
which we will show to be exact below:

0 𝑇 (𝐺, 𝑆) 𝑇 (𝐺) limOop
S

𝑇 (−) H1
𝐺(A𝑝(𝐺); H1(−; 𝑘×))

0 H0
𝐺(A𝑝(𝐺); H1(−; 𝑘×)) 𝐴(𝐺) limOop

S
𝑇 (−) H1

𝐺(A𝑝(𝐺); H1(−; 𝑘×)).
≅ Θ

𝛽

𝑓0 𝑓1 𝛽

The leftmost vertical map is the description of 𝑇 (𝐺, 𝑆) given in [Gro18, §5]. The map 𝑓0 is the
inclusion map that sends a Bredon 0-cocycle { 𝜑𝑉 ∶ 𝑉 ∈ A𝑝(𝐺) } to the tuple (𝑘, 𝑧, {𝜑𝑉 }), where
𝑧 is the constant function on A𝑝(𝐺) with value 0. The characters {𝜑𝑉 } define an orientation
for 𝑛 because, for any 𝑉 < 𝑊 , the characters 𝜑𝑉 and 𝜑𝑊 are compatible upon restriction to
𝑁𝐺(𝑉 < 𝑊), by definition of Bredon cohomology. The map 𝑓1 is the projection map onto
the first factor, remembering only the 𝐺-stable endotrivial 𝑆-module. The only square whose
commutativity needs justification is the leftmost one. This amounts to checking that the map

𝑇 (𝐺, 𝑆) → H0
𝐺(A𝑝(𝐺); H1(−; 𝑘×))

is given by sending a Sylow-trivial module𝑀 to the cocycle whose value on a subgroup 𝑉 is the
one-dimensional 𝑁𝐺(𝑉 )-character given by Ĥ0(𝑉 ; 𝑀). This is implicit in [Gro18], combining
the description of the isomorphism in Theorem A with the proof of Proposition 5.3 (dualised
to cohomology).

We now justify the exactness of the lower sequence; the theorem will then follow from
the 5-lemma. The injectivity of 𝑓0 is clear: the tuple (𝑘, 𝑧, {𝜑𝑉 }) represents the zero class only
when all 𝜑𝑉 are trivial. Exactness at 𝐴(𝐺) is also straightforward: if 𝑓1(𝑀𝑆 , 𝑛, {𝜑𝑉 }) ≃ 𝑘 then
by changing the representative of the equivalence class in 𝐴(𝐺), we can take 𝑛 to be equal to
𝑧, and hence {𝜑𝑉 } forms a Bredon 0-cocycle. Finally, we consider exactness at the limit term.
That 𝛽𝑓1 = 0 follows from Proposition 7.5: we asked that {𝜑𝑉 } be an orientation for 𝑛, and so
𝛽(𝑀𝑆) = 0. Conversely, if 𝛽(𝑀𝑆) = 0, we know that we can lift 𝑀𝑆 to some 𝑀 ∈ 𝑇(𝐺), by
exactness of the top sequence. Applying Θ to 𝑀 gives an equivalence class in 𝐴(𝐺) that lifts
𝑀𝑆 . □
8.4. Remark. If 𝑇 (𝑆) does have torsion, then onemightworry that it could be difficult in practice
to verify whether a given module in 𝑇 (𝑆) is 𝐺-stable, since the type does not detect torsion.
Fortunately, in this case [MT07, Theorem 3.6] and [CMT13, Theorems 4.5 and 6.4] show that
𝑇 (𝐺) → 𝑇(𝑆) is surjective, and hence that all endotrivial 𝑆-modules are 𝐺-stable.

In the case where 𝑝 is odd, we do not need to specify the module 𝑀𝑆 in 𝐴(𝐺), because this is
recoverable from the type function 𝑛. In order to make this simplification, we need to be able
to recognise which type functions are realisable by a 𝐺-stable endotrivial 𝑆-module. This is the
content of Proposition 8.5 below, which we state after recalling some notation from [CMT14,
§3].

Let 𝑝 be odd. Without loss of generality, we can assume that the torsion-free rank of 𝑇 (𝑆)
is at least two: otherwise, 𝑇 (𝑆) is cyclic (and so detected by 𝑛) or trivial. This implies that the
𝑝-rank of 𝐺 is at least two. If the 𝑝-rank of 𝐺 is two, then let 𝐸1, … , 𝐸𝑟 be representatives for
the 𝑆-conjugacy classes of rank two maximal elementary abelian subgroups of 𝑆. If the 𝑝-rank
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of 𝐺 is three or greater, then let 𝐸2, … , 𝐸𝑟 be representatives for the 𝑆-conjugacy classes of rank
two maximal elementary abelian subgroups of 𝑆, and let 𝐸1 be a maximal elementary abelian
subgroup of rank greater than two. As in [CMT14, Theorem 4.1], 𝑇 (𝑆) is generated by Ω𝑘 and
modules 𝑁2, … , 𝑁𝑟 , where each 𝑁𝑖 restricts trivially to 𝐸𝑗 unless 𝑗 = 𝑖 and restricts to Ω2𝑝𝑘 on
𝐸𝑖.
8.5. Proposition. Let 𝑝 be odd, and consider the set of pairs (𝑛, { 𝜑𝑉 ∶ 𝑉 ∈ A𝑝(𝐺) }) where
𝑛∶ A𝑝(𝐺) → ℤ, each 𝜑𝑉 ∈ H1(𝑁𝐺(𝑉 ); 𝑘×), and 𝑛 and {𝜑𝑉 } satisfy the following conditions:

(i) For every 𝑉 < 𝑊 in A𝑝(𝐺) with 𝑉 non-cyclic, we have 𝑛(𝑉 ) = 𝑛(𝑊 ).
(ii) For every 𝑉 < 𝑊 in A𝑝(𝐺) with 𝑉 cyclic, we have 𝑛(𝑉 ) ≡ 𝑛(𝑊 ) mod 2.
(iii) For every 𝑖 with 1 < 𝑖 ≤ 𝑟 , we have 𝑛(𝐸𝑖) ≡ 𝑛(𝐸1) mod 2𝑝.
(iv) 𝑛 is constant on 𝐺-conjugacy classes.
(v) For every 𝑉 < 𝑊 in A𝑝(𝐺), we have

𝜑𝑊 = 𝜈(𝑛(𝑊 )−𝑛(𝑉 ))/2
𝑉 𝜑𝑉

as one-dimensional characters of 𝑁𝐺(𝑉 < 𝑊), where 𝜈𝑉 denotes the twisting character for
the right action of 𝑁𝐺(𝑉 ) on 𝑉 as in Definition 7.4.

We put an equivalence relation on such pairs by defining (𝑛, {𝜑𝑉 }) ∼ (𝑛′, {𝜑′𝑉 }) if for every non-
cyclic 𝑉 ∈ A𝑝(𝐺), we have 𝑛(𝑉 ) = 𝑛′(𝑉 ), and for every 𝑉 ∈ A𝑝(𝐺) we have

𝜑𝑉 = 𝜑′𝑉 ⋅ 𝜈(𝑛(𝑉 )−𝑛′(𝑉 ))/2
𝑉 .

Let 𝐵(𝐺) denote the set of equivalence classes for ∼, and give 𝐵(𝐺) the abelian group structure

(𝑛, {𝜑𝑉 }) ⋅ (𝑛′, {𝜑′𝑉 }) ≔ (𝑛 + 𝑛′, {𝜑𝑉 ⋅ 𝜑′𝑉 }).
There is an isomorphism of groups 𝐴(𝐺) → 𝐵(𝐺) induced by forgetting the 𝑀𝑆 factor.

Proof. From the description of 𝐴(𝐺) given in Theorem 8.3, it is enough to show that a function
𝑛∶ A𝑝(𝐺) → ℤ is the type function of a 𝐺-stable endotrivial 𝑆-module if and only if 𝑛 satisfies
conditions (i)–(iv) in the statement of the proposition, in which case there is a unique 𝐺-stable
endotrivial 𝑆-module whose type function is 𝑛.

We start with the uniqueness statement: for a 𝑝-group 𝑃 , if 𝑃 is cyclic or 𝑇 (𝑃) has no torsion,
then the restriction

(8.6) 𝑇 (𝑃) → ∏
𝑉∈A𝑝(𝑃)

𝑇 (𝑉 )

is injective. (In the cyclic case, we are using the assumption that 𝑝 is odd, and otherwise the
injectivity is [Pui90, Theorem 2.2].) Therefore, for any type function 𝑛, there can be at most
one 𝐺-stable endotrivial 𝑆-module that realises it.

Using [CMT14, Theorem 4.1], we see that the type function of any endotrivial 𝑆-module
must satisfy conditions (i)–(iii) when 𝑊 ≤ 𝑆. If (𝑀𝑃 ) is 𝐺-stable, then condition (iv) follows
from the equivalences

Ω𝑛(𝑔𝑉 )𝑘 ≃ 𝑀𝑔𝑉 ≃ 𝑔 ⊗𝑉 𝑀𝑉 ≃ 𝑔 ⊗𝑉 Ω𝑛(𝑉 )𝑘,
and this implies conditions (i)–(iii) for all 𝑉 < 𝑊 in A𝑝(𝐺).

Conversely, given a function 𝑛 satisfying (i)–(iv), we define an endotrivial 𝑆-module

𝑀𝑆 ≔ Ω𝑛(𝐸1)𝑘 ⊗ 𝑁 𝑒22 ⊗ … ⊗ 𝑁 𝑒𝑟𝑟 ,
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where 𝑒𝑖 ≔ (𝑛(𝐸𝑖) − 𝑛(𝐸1))/2𝑝. This has type function 𝑛, so we just need to check that 𝑀𝑆 is
𝐺-stable. For every 𝑔 ∈ 𝐺 and 𝑉 ≤ 𝑔𝑆 ∩ 𝑆, we have

res
𝑔𝑆
𝑉 (𝑔 ⊗𝑆 𝑀𝑆) ≃ Ω𝑛(𝑉 𝑔)𝑘 ≃ Ω𝑛(𝑉 )𝑘 ≃ res𝑆𝑉 𝑀𝑆 .

Either the subgroup 𝑔𝑆 ∩ 𝑆 is cyclic or 𝑇 (𝑔𝑆 ∩ 𝑆) is torsion-free. In either case, the injectivity of
(8.6) shows that 𝑔 ⊗𝑆 𝑀𝑆 and 𝑀𝑆 are equivalent as 𝑔𝑆 ∩ 𝑆 modules. □

9. A local description of the group of endotrivial modules

We can provide another link between compatible actions and endotrivial modules by giving
a description of 𝑇 (𝐺) purely in terms of local information, i.e. in terms of 𝑁 -stable elements of
𝑇 (𝑃0), where 𝑁 is the normaliser in 𝐺 of some chain of 𝑝-subgroups 𝑃0 < … < 𝑃𝑛.

We first need to slightly expand the definition of Bredon cohomology that was given in
Section 5 to cover more general coefficient systems.

9.1. Definition. Let Δ𝑋 denote the category of simplices of a 𝐺-space 𝑋 , whose objects are
simplices 𝜎 ∶ [𝑛] → 𝑋 and whose morphisms 𝜎 → 𝜎 ′ are commutative diagrams

[𝑛]
𝑋 .

[𝑛′]

𝜎

𝜎 ′

Let (Δ𝑋)𝐺 denote the Grothendieck construction for the left action of 𝐺 on Δ𝑋 , whose
objects are simplices 𝜎 ∈ Δ𝑋 and whose morphisms 𝜎 → 𝜏 are pairs (𝑔 ∈ 𝐺, 𝑓 ∶ 𝑔𝜎 → 𝜏),
where 𝑓 is a morphism in Δ𝑋 . A (cohomological) 𝐺-local coefficient system on 𝑋 is a functor
𝐹 ∶ (Δ𝑋)𝐺 → Ab.

Given a 𝐺-local coefficient system 𝐹 on 𝑋 , we define the non-equivariant cochains

C𝑠(𝑋 ; 𝐹 ) ≔ ∏
𝜎∈𝑋𝑠

𝐹(𝜎)

with differential given by 𝛿(𝑓 )(𝜎) ≔ ∑(−1)𝑖𝐹(1, 𝑑 𝑖)(𝑓 (𝑑𝑖𝜎)). We can define a 𝐺-action on
C𝑠(𝑋 ; 𝐹 ) where 𝑔 acts by

𝐹(𝑔, id𝑔𝜎 )∶ 𝐹(𝜎) → 𝐹(𝑔𝜎)
on the component 𝐹(𝜎). The 𝐺-equivariant Bredon cohomology of 𝑋 with coefficients in 𝐹 is
then defined to be the cohomology of the cochain complex C𝑠

𝐺(𝑋 ; 𝐹 ) ≔ C𝑠(𝑋 ; 𝐹 )𝐺 .
We have a functor

(ΔC )𝐺 → O(𝐺)op,
𝜎 ↦ 𝐺/𝐺𝜎

where 𝐺𝜎 denotes the stabiliser of the simplex 𝜎 , and a morphism (𝑔, 𝑓 ∶ 𝑔𝜎 → 𝜏) is sent to the
composite

𝐺/𝐺𝜎
𝑔←− 𝐺/𝐺𝑔𝜎

𝑓←− 𝐺/𝐺𝜏 .
In Section 5, we considered only 𝐺-isotropy coefficient systems, where 𝐹 ∶ (ΔC )𝐺 → Ab is
induced from a functorO(𝐺)op → Ab by pulling back along the above functor (ΔC )𝐺 → O(𝐺)op.
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Given a functor 𝑠𝑆S → Ab, we can pull back along

(ΔC )𝐺 → 𝑠𝑆C

𝜎 ↦ [𝜎]
to obtain a 𝐺-local coefficient system. Bredon cohomology with 𝐺-isotropy coefficients is an
invariant of the 𝐺-equivariant homotopy type of 𝑋 , but this is no longer the case for a general
𝐺-local coefficient system.

9.2. Lemma. Let 𝐶 denote the functor 𝑠𝑆S(𝐺) → Ab that takes a chain 𝑃0 < … < 𝑃𝑛 to the group
of isomorphism classes of endotrivial 𝑃0-modules with a compatible 𝑁𝐺(𝑃0 < … < 𝑃𝑛)-action.
There is an isomorphism

𝑇 (𝐺) ≅−−→ lim
𝜎∈𝑠𝑆S (𝐺)

𝐶(𝜎)

induced by the restriction maps

r̃es𝑁𝐺(𝜎)
𝑃0 res𝐺𝑁𝐺(𝜎)∶ 𝑇 (𝐺) → 𝐶(𝜎).

Recall from Notation 6.14 that r̃es𝑁𝑃 (𝑀) denotes the module res𝑁𝑃 (𝑀) with a compatible 𝑁 -action
given by its forgotten 𝑁 -module structure.

Proof. We introduce two other functors from 𝑠𝑆S(𝐺). We will use 𝜎 to refer to a chain of
subgroups 𝑃0 < … < 𝑃𝑛. Firstly, let 𝐻 ∶ 𝑠𝑆S(𝐺) → Ab take 𝜎 to H1(𝑁𝐺(𝜎); 𝑘×). Secondly, let
𝑇 st∶ 𝑠𝑆S(𝐺) → Ab take 𝜎 to the group of 𝑁𝐺(𝜎)-stable elements of 𝑇 (𝑃0).

We have a natural transformation 𝐻 → 𝐶 that takes a one-dimensional character 𝜑 to
r̃es𝑁(𝜎)

𝑃0 𝜑. We also have a natural transformation 𝐶 → 𝑇 st that forgets the compatible action
and remembers only the underlying endotrivial 𝑃0-module.

These functors assemble into a short exact sequence of functors

0 → 𝐻 → 𝐶 → 𝑇 st → 0.
Indeed, such a sequence is exact if and only if it is exact pointwise. Proposition 6.15(iii) im-
plies that the first map is injective. The second map is surjective because we can equip any
𝑁𝐺(𝜎)-stable 𝑃0-module 𝑀 with a compatible action: by Lemma 6.5 it is enough to provide a
compatible action on res𝑃0𝑍(𝑃0) 𝑀 , which is equivalent to res𝐺𝑍(𝑃0) Ω

𝑛𝑘 for some 𝑛. Finally, exact-
ness at the middle term follows because the kernel of the second map is precisely the group of
compatible 𝑁𝐺(𝜎)-actions on 𝑘.

We therefore get an exact sequence

0 → lim
𝑠𝑆S (𝐺)

𝐻 → lim
𝑠𝑆S (𝐺)

𝐶 → lim
𝑠𝑆S (𝐺)

𝑇 st → lim
𝑠𝑆S (𝐺)

1 𝐻,

which we compare to the exact sequence from Corollary 5.10:

0 𝑇 (𝐺, 𝑆) 𝑇 (𝐺) limOS (𝐺)op 𝑇 H1
𝐺(S𝑝(𝐺); H1(−; 𝑘×))

0 lim𝑠𝑆S (𝐺) 𝐻 lim𝑠𝑆S (𝐺) 𝐶 lim𝑠𝑆S (𝐺) 𝑇 st lim1
𝑠𝑆S (𝐺) 𝐻.

≅

𝛽

≅ ≅

The first vertical map is the isomorphism described by [Gro18, TheoremD]. It is induced by the
maps sending a Sylow-trivial module 𝑀 to the one-dimensional character given by Ĥ0(𝑃0; 𝑀),
considered as a one-dimensional character of 𝑁𝐺(𝜎). The second vertical map is induced by
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the composition r̃es𝑁𝐺(𝜎)
𝑃0 res𝐺𝑁𝐺(𝜎). The third vertical map is induced by projection onto 𝑇 (𝑃0),

the image of which lands inside 𝑇 st(𝜎); its inverse is induced by

lim𝑠𝑆S (𝐺) 𝑇 st(−) limOS (𝐺)op 𝑇 (−)

𝑇 st([𝑃]) 𝑇 (𝑃).
The fourth vertical map is the isomorphism described by [Gro02, Proposition 7.1], which spe-
cialises to the statement that

(9.3) lim
𝑠𝑆S (𝐺)

∗ 𝐹 ≅ H∗
𝐺(S𝑝(𝐺); 𝐹 )

for any functor 𝐹 ∶ 𝑠𝑆S(𝐺) → Ab.
The rightmost square is the only one whose commutativity is not straightforward to check.

Equation (9.3) implies that it is enough to check that the description of 𝛽 given in Proposi-
tion 5.11 agrees with the boundary map arising from the short exact sequence of cochain com-
plexes

0 → C•
𝐺(S𝑝(𝐺); 𝐻) → C•

𝐺(S𝑝(𝐺); 𝐶) → C•
𝐺(S𝑝(𝐺); 𝑇 st) → 0.

We omit this check. The lemma then follows from the five lemma. □

The above lemma implies a similar statement for the functor 𝑇 (𝑁𝐺(−)):
9.4. Theorem. There is an isomorphism

𝑇 (𝐺) ≅−−→ lim
𝜎∈𝑠𝑆S (𝐺)

𝑇 (𝑁𝐺(𝜎))

induced by restriction.

Proof. We can factorise the map in Lemma 9.2 as

𝑇 (𝐺) lim𝑠𝑆S (𝐺) 𝐶(𝜎)

lim𝑠𝑆S (𝐺) 𝑇 (𝑁𝐺(𝜎))
res𝐺𝑁𝐺(𝜎)

≅

𝑓

so it is sufficient to show that the map 𝑓 is injective. Suppose that (𝑀𝜎 ) ∈ lim𝑠𝑆S (𝐺) 𝑇 (𝑁𝐺(𝜎))
mapped to zero in lim𝑠𝑆S (𝐺) 𝐶(𝜎). We will start by showing that each 𝑀𝜎 is Sylow-trivial. Let
𝜎 ∈ 𝑠𝑆S(𝐺), and let 𝑅 denote a Sylow subgroup of 𝑁𝐺(𝜎).

We claim that there is a zig-zag though simplices normalised by 𝑅 that starts at 𝜎 and ends
at a simplex in S𝑝(𝐺) all of whose subgroups contain 𝑅. Let 𝜎 = (𝑃0 < … < 𝑃𝑛) and let 𝑖 be
maximal such that 𝑅 ≰ 𝑃𝑖. Since 𝑅 ≤ 𝑁𝐺(𝜎), the group 𝑅𝑃𝑖 is still a 𝑝-subgroup of 𝐺 with
𝑅 ≤ 𝑁𝐺(𝑅𝑃𝑖). We can now replace 𝑃𝑖 with 𝑅𝑃𝑖 by means of the following zig-zag in 𝑠𝑆S(𝐺):

𝜎 = (… < 𝑃𝑖−1 < 𝑃𝑖 < 𝑃𝑖+1𝑅 < …) (… < 𝑃𝑖−1 < 𝑃𝑖𝑅 ≤ 𝑃𝑖+1𝑅 < …) ≕ 𝜎 ′

(… < 𝑃𝑖−1 < 𝑃𝑖 < 𝑃𝑖𝑅 ≤ 𝑃𝑖+1𝑅 < …).
Note that 𝜎 ′ has strictly fewer vertices that do not contain 𝑅 (and is of a smaller dimension if
𝑃𝑖𝑅 = 𝑃𝑖+1𝑅). Since all of the simplices in the diagram are normalised by 𝑅, the modules 𝑀𝜎
and 𝑀𝜎 ′ agree after restriction to 𝑅. By repeating this procedure, we find a simplex 𝜏 = (𝑄0 <
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… < 𝑄𝑚) with 𝑅 ≤ 𝑄0 such that 𝑀𝜎 and 𝑀𝜏 agree on restriction to 𝑅. By assumption, 𝑀𝜏 maps
to zero in 𝐶(𝜏) and hence restricts trivially to 𝑅. Therefore 𝑀𝜎 is Sylow-trivial, as claimed.

Each 𝑁𝐺(𝜎) has a non-trivial normal 𝑝-subgroup, so all of its Sylow-trivial modules are one-
dimensional [MT07, Lemma 2.6]. Finally, by Proposition 6.15, if a one-dimensional character
of 𝑇 (𝑁𝐺(𝜎)) maps to zero in 𝐶(𝜎), then it must have been the trivial character. Therefore, 𝑓 is
injective as claimed. □

10. Endotrivial modules for PSL3(𝑝)

In this section, we apply our obstruction theory to the example of 𝐺 = PSL3(𝑝), for 𝑝 ≡
1 mod 3, in which the obstruction to lifting 𝐺-stable endotrivial 𝑆-modules can be seen directly
without reference to the cohomological obstruction classes. We will compute the obstruc-
tion group H1

𝐺(S𝑝(𝐺); H1(−; 𝑘×)) and use orientations to determine exactly which 𝐺-stable
endotrivial 𝑆-modules lift to 𝑇 (𝐺).

We first collect some group-theoretic facts about the groups SL3(𝑝) and PSL3(𝑝) that we will
need below. Recall that 𝑂𝑝(𝐻) denotes the 𝑝-core of 𝐻 , i.e. its largest normal 𝑝-subgroup, and
that a 𝑝-radical subgroup of 𝐺 is a 𝑝-subgroup 𝑃 ≤ 𝐺 such that 𝑃 = 𝑂𝑝(𝑁𝐺(𝑃)). We denote the
collection of non-trivial 𝑝-radical subgroups of 𝐺 by B𝑝(𝐺).
10.1. Lemma. Let �̃� ≔ SL3(𝑝) and 𝐺 ≔ PSL3(𝑝), for any prime 𝑝.

(i) The non-trivial 𝑝-radical subgroups of 𝐺 and �̃� are (up to conjugacy) the Sylow subgroup
𝑆, consisting of the unipotent upper-triangular matrices, along with the rank 2 elementary
abelian subgroups

𝑉 ≔ (
1 ∗ ∗

1 0
1
) and 𝑊 ≔ (

1 0 ∗
1 ∗

1
) .

(ii) 𝑁�̃�(𝑉 ), 𝑁�̃�(𝑊 ) and 𝑁�̃�(𝑆) are respectively given by the subgroups consisting of matrices
with determinant one that are of the form

(
𝑣 ∗ ∗

A ) , (
∗A ∗
𝑤

) , and (
∗ ∗ ∗

∗ ∗
∗

) .

(iii) There are isomorphisms

𝑁�̃�(𝑉 )/𝑉 ≅−−→ GL2(𝑝)
(

𝑣 0 0
A ) 𝑉 ↦ 𝐴

and

𝑁�̃�(𝑊 )/𝑊 ≅−−→ GL2(𝑝),
(

0A 0
𝑤

)𝑊 ↦ 𝐴

as well as an isomorphism

𝑁�̃�(𝑆)/𝑆
≅−−→ GL1(𝑝) × GL1(𝑝).

(
𝑣 0 0

(𝑣𝑤)−1 0
𝑤
) 𝑆 ↦ (𝑣, 𝑤)
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(iv) Suppose 𝑝 ≡ 1 mod 3, and let 𝜔 be a primitive third root of unity in 𝔽𝑝 . The Weyl groups
𝑁𝐺(𝑉 )/𝑉 and 𝑁𝐺(𝑊 )/𝑊 both fit into a central 𝑝′-extension

1 → SL2(𝑝) → ? → GL1(𝑝)/𝜔 → 1
induced by the isomorphisms of (iii). The quotient map is given by sending each of the
specified coset representatives to det𝐴.

Proof.
(i) & (ii) Since we are working at the characteristic of �̃�, we can apply a corollary of the Borel–

Tits theorem [GLS98, Corollary 3.1.5] to deduce that if 𝑃 is 𝑝-radical then 𝑁�̃�(𝑃) is a
parabolic subgroup of �̃�. The parabolic subgroups are classified up to conjugacy by
[GLS98, Theorem 1.13.2]: we have a maximal torus given by the diagonal matrices and
a Borel subgroup 𝐵 given by the upper-triangular matrices, with respect to which the
standard parabolics are �̃�, 𝐵,

𝑃𝑉 ≔ (
𝑣 ∗ ∗

A ) and 𝑃𝑊 ≔ (
∗

A ∗
𝑤

) .

The corresponding 𝑝-radical subgroups are 1 = 𝑂𝑝(�̃�), 𝑆 = 𝑂𝑝(𝐵), 𝑉 = 𝑂𝑝(𝑃𝑉 ), and
𝑊 = 𝑂𝑝(𝑃𝑊 ). This establishes the claim for �̃�.

We now transfer the above results down to 𝐺. The kernel of the map 𝜋 ∶ �̃� → 𝐺 is a
central 𝑝′-group, so 𝜋−1(𝑃) has a unique Sylow 𝑝-subgroup (isomorphic to 𝑃 ) for any
𝑝-subgroup 𝑃 ≤ 𝐺. This implies that 𝜋 induces a �̃�-equivariant isomorphism of posets
𝜋∗∶ S𝑝(�̃�) → S𝑝(𝐺) and that 𝑂𝑝(𝜋(�̃� )) = 𝜋(𝑂𝑝(�̃� )) for any �̃� ≤ �̃�. It follows that 𝜋∗
restricts to an isomorphism 𝜋∗∶ B𝑝(�̃�) → B𝑝(𝐺), completing the proof.

(iii) This is a straightforward calculation using (ii).
(iv) This follows from (iii) and the observation that the preimages of SL2(𝑝) in 𝑁�̃�(𝑉 ) and

𝑁�̃�(𝑊 ) intersect ker 𝜋 trivially. □
Using the above computations, we give a necessary condition for a PSL3(𝑝)-stable endotriv-

ial 𝑆-module to lift to 𝑇 (PSL3(𝑝)). Afterwards, we use Proposition 7.5 to show that the condition
is also sufficient.

10.2. Example. Let 𝑝 ≡ 1 mod 3 and 𝐺 = PSL3(𝑝). Let 𝑉 , 𝑊 and 𝑆 be as in Lemma 10.1.
Let 𝑍 ≔ 𝑍(𝑆) = 𝑉 ∩ 𝑊 , a cyclic subgroup of order 𝑝. We are interested in the image of the
restriction map

𝑇 (𝐺) → lim
OS (𝐺)op

𝑇 (−).
First consider (𝑀𝑃 ) ∈ limOS (𝐺)op 𝑇 (−). By Dade’s Theorem 2.8, we have 𝑀𝑉 ≃ Ω𝑚𝑘 and

𝑀𝑊 ≃ Ω𝑛𝑘 for some integers 𝑚 and 𝑛. Since 𝑀𝑉 and 𝑀𝑊 are equivalent after restriction to 𝑍
and 𝑇 (𝑍) ≅ ℤ/2, these integers satisfy 𝑚 ≡ 𝑛 mod 2.

Now instead consider 𝑀 ∈ 𝑇(𝐺). We similarly have res𝐺𝑉 𝑀 ≃ Ω𝑚𝑘 and res𝐺𝑊 𝑀 ≃ Ω𝑛𝑘 for
some integers 𝑚 and 𝑛, but we will show that in this case 𝑚 ≡ 𝑛 mod 6. This difference arises
from the non-trivial action of 𝑝′-elements in 𝑁𝐺(𝑍). Since 𝑝 ≡ 1 mod 3, there is a primitive
third root of unity 𝜔 in 𝔽𝑝 . Let

𝑥 ≔ (
1

𝜔
𝜔2

)

and note that 𝑥 normalises 𝑍 , 𝑉 and 𝑊 .



Torsion-free endotrivial modules via homotopy theory 55

We claim that res𝐺𝑉⋊𝑥 𝑀 ≃ Ω𝑚𝑘𝑉⋊𝑥 , where the notation 𝑉 ⋊𝑥 is shorthand for the semi-direct
product 𝑉 ⋊ ⟨𝑥⟩. Indeed, we have a short exact sequence

0 → 𝑇(𝑉 ⋊ 𝑥, 𝑉 ) → 𝑇(𝑉 ⋊ 𝑥) res−−→ 𝑇(𝑉 ) → 0
which is split by Ω𝑘𝑉 ↦ Ω𝑘𝑉⋊𝑥 . This implies that Ω−𝑚 res𝐺𝑉⋊𝑥 𝑀 ∈ 𝑇(𝑉 ⋊ 𝑥, 𝑉 ). Since 𝑉 ⋊𝑥 has
a normal 𝑝-subgroup, 𝑇 (𝑉 ⋊ 𝑥, 𝑉 ) is isomorphic to the group of one-dimensional characters
H1(𝑉 ⋊ 𝑥; 𝑘×). Using the description of 𝑇 (𝑉 ⋊ 𝑥, 𝑉 ) found in [Gro18, Theorem A], we see
Ω−𝑚 res𝐺𝑉⋊𝑥 𝑀 corresponds to the one-dimensional (𝑉 ⋊𝑥)-character given by Tate cohomology
Ĥ0(𝑉 ; Ω−𝑚𝑀) ≅ Ĥ𝑚(𝑉 ; 𝑀).

However, this (𝑉 ⋊ 𝑥)-character is the restriction of the 𝑁𝐺(𝑉 )-character Ĥ𝑚(𝑉 ; 𝑀), and by
Lemma 10.1(iv) the image of 𝑥 in 𝑁𝐺(𝑉 )/𝑉 lies inside the subgroup SL2(𝑝). Since SL2(𝑝) is
perfect, the (𝑉 ⋊ 𝑥)-character Ĥ𝑚(𝑉 ; 𝑀) is necessarily trivial, and res𝐺𝑉⋊𝑥 𝑀 ≃ Ω𝑚𝑘 as claimed.
The analogous statement holds for 𝑊 and 𝑛.

We now consider the restriction of 𝑀 to 𝑍 ⋊ 𝑥 . We must have Ω𝑚𝑘𝑍⋊𝑥 ≃ Ω𝑛𝑘𝑍⋊𝑥 , i.e. 𝑚
and 𝑛 must be congruent modulo the periodicity of a (𝑍 ⋊ 𝑥)-resolution of the trivial module.
Identifying 𝑍 with the additive group of 𝔽𝑝 , the action of 𝑥 on 𝑍 is given by multiplication by
𝜔2, so this periodicity is six and we have 𝑚 ≡ 𝑛 mod 6 as claimed.

Conversely, we now show that if 𝑚 ≡ 𝑛 mod 6, then we can lift (𝑀𝑃 ) ∈ limOS (𝐺)op 𝑇 (−) to
𝑇 (𝐺):
10.3. Theorem. Let 𝑝 ≡ 1 (mod 3) and 𝐺 = PSL3(𝑝). We have an exact sequence

0 → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) → ℤ/3 → 0.

Proof. Let 𝑉 ,𝑊 , 𝑆 and 𝜔 be as in Lemma 10.1. In Example 10.2, we saw that every type function
𝑛∶ S𝑝(𝐺) → ℤ of a 𝐺-module satisfies 𝑛(𝑉 ) ≡ 𝑛(𝑊 ) mod 6. We will show that this condition
is also sufficient for lifting a 𝐺-stable endotrivial 𝑆-module to 𝑇 (𝐺).

We apply Proposition 7.5 to B𝑝(𝐺). We have already computed the 𝑝-radical subgroups of 𝐺
up to 𝐺-conjugacy. The 𝑝-radical subgroup that has a cyclic centre is the Sylow, whose centre
is

(
1 0 ∗

1 0
1
) .

We have that 𝑁𝐺(𝑆)/𝑆 ≅ (GL1(𝑝) × GL1(𝑝))/⟨(𝜔, 𝜔)⟩ with coset representatives

(
𝑣 0 0

(𝑣𝑤)−1 0
𝑤
) .

If we identify 𝑍(𝑆) with 𝔽𝑝 , then right conjugation by the above coset representative induces
multiplication by 𝑣−1𝑤 . This determines the twisting character 𝜈𝑆 ∈ H1(𝑁𝐺(𝑆); 𝑘×).

Since 𝑁𝐺(𝑉 < 𝑆) = 𝑁𝐺(𝑆), to specify an orientation, it is sufficient to give characters 𝜑𝑉 ∈
H1(𝑁𝐺(𝑉 ); 𝑘×) and 𝜑𝑊 ∈ H1(𝑁𝐺(𝑊 ); 𝑘×) such that

(10.4) 𝜑𝑉 = 𝜈(𝑛(𝑉 )−𝑛(𝑊 ))/2
𝑆 𝜑𝑊

in H1(𝑁𝐺(𝑆); 𝑘×). We have H1(𝑁𝐺(𝑉 ); 𝑘×) ≅ Hom(GL1(𝑝)/𝜔, 𝑘×), and we let 𝜓𝑉 denote the
image of 𝜑𝑉 under this isomorphism. Similarly, let 𝜓𝑊 denote the image of 𝜑𝑊 under the
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analogous isomorphism for 𝑁𝐺(𝑊 ). When we restrict 𝜑𝑉 and 𝜑𝑊 to 𝑁𝐺(𝑆), we get

𝜑𝑉 ((
𝑣 0 0

(𝑣𝑤)−1 0
𝑤
)) = 𝜓𝑉 (𝑣−1) and 𝜑𝑊 ((

𝑣 0 0
(𝑣𝑤)−1 0

𝑤
)) = 𝜓𝑊 (𝑤−1).

Write 𝑛(𝑉 ) − 𝑛(𝑊 ) = 6𝜆 for some 𝜆 ∈ ℤ. We choose

𝜓𝑉 (𝑥) ≔ 𝑥3𝜆 ∈ 𝑘× and 𝜓𝑊 (𝑥) ≔ 𝑥3𝜆 ∈ 𝑘×,
noting that both characters send 𝜔 to 1 as required. We have

(𝜈3𝜆𝑆 ⋅ 𝜑𝑊 ) ((
𝑣 0 0

(𝑣𝑤)−1 0
𝑤
)) = (𝑣−1𝑤)3𝜆 ⋅ 𝑤−3𝜆

= 𝑣−3𝜆

= 𝜑𝑉 ((
𝑣 0 0

(𝑣𝑤)−1 0
𝑤
)) ,

so Equation (10.4) is satisfied by these choices.
We have now shown that the congruence condition 𝑛(𝑉 ) ≡ 𝑛(𝑊 ) mod 6 is both necessary

and sufficient for a 𝐺-stable endotrivial 𝑆-module to lift to 𝑇 (𝐺), i.e. we have shown that the
image of 𝑇 (𝐺) has index three inside limOS (𝐺)op 𝑇 (−). Therefore the image of limOS (𝐺)op 𝑇 (−)
inside the obstruction group H1

𝐺(B𝑝(𝐺); H1(−; 𝑘×)) is of order three.
It remains to show that the obstruction group itself is of order three and to compute 𝑇 (𝐺, 𝑆),

which is isomorphic to H0
𝐺(B𝑝(𝐺); H1(−; 𝑘×)) by [Gro18, §5]. This is a direct computation: the

cochain complex C•(B𝑝(𝐺); H1(−; 𝑘×)) is isomorphic to the complex

H1(𝑁𝐺(𝑉 ); 𝑘×)
⊕

H1(𝑁𝐺(𝑊 ); 𝑘×) H1(𝑁𝐺(𝑆); 𝑘×)
⊕ ⊕

H1(𝑁𝐺(𝑆); 𝑘×) H1(𝑁𝐺(𝑆); 𝑘×)

− res𝑁(𝑉 )
𝑁 (𝑆)

res𝑁(𝑊)
𝑁(𝑆)

id

and so splits off an acyclic summand (the bottom row). To compute H0
𝐺(B𝑝(𝐺); H1(−; 𝑘×)) and

H1
𝐺(B𝑝(𝐺); H1(−; 𝑘×)) we therefore wish to determine the kernel and cokernel of the map to

the top copy of H1(𝑁𝐺(𝑆); 𝑘×).
We choose generators for 𝑁𝐺(𝑆)/𝑆:

𝛾0 ≔ (
𝜁 0 0

𝜁−2 0
𝜁
) and 𝛾1 ≔ (

𝜁 0 0
𝜁−1 0

1
)

where 𝜁 is a generator for 𝔽×𝑝 . The cohomology group H1(𝑁𝐺(𝑆); 𝑘×) is then generated by the
character 𝛾∗0 , defined to send 𝛾0 to 𝜁 3 and 𝛾1 to 1, and the character 𝛾∗1 , defined to send 𝛾0 to 1
and 𝛾1 to 𝜁 .
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By Lemma 10.1, the generator of H1(𝑁𝐺(𝑊 ); 𝑘×) sends an element

(
0

A 0
𝑤

)

of 𝑁𝐺(𝑊 ) to (det𝐴)3. This implies that the image of res𝑁(𝑊)
𝑁 (𝑆) is the subgroup generated by 𝛾∗0 .

Similarly, the generator of H1(𝑁𝐺(𝑉 ); 𝑘×) sends an element

(
𝑣 0 0

A )

of 𝑁𝐺(𝑉 ) to (det𝐴)3, so the image of res𝑁(𝑉 )
𝑁 (𝑆) is the subgroup generated by −𝛾∗0 − 3𝛾∗1 .

Therefore, H0
𝐺(B𝑝(𝐺); H1(−; 𝑘×)) = 0 and H1

𝐺(B𝑝(𝐺); H1(−; 𝑘×)) ≅ ℤ/3, generated by 𝛾∗1 .
□

10.5. Remark. If 𝑝 ≢ 1 (mod 3), then PSL3(𝑝) = SL3(𝑝) and an analogous calculation shows
that H1

𝐺(B𝑝(𝐺); H1(−; 𝑘×)) = 0, so the obstruction vanishes in this case. Similarly, if 𝑛 ≤ 2,
then PSL𝑛(𝑝) has a cyclic Sylow subgroup, while if 𝑛 ≥ 4, then PSL𝑛(𝑝) has no rank two
maximal elementary abelian subgroups. In either case, we can see directly that the restriction
𝑇 (𝐺) → 𝑇(𝑆) is surjective. Therefore, the example of PSL3(𝑝) with 𝑝 ≡ 1 (mod 3) is the only
case where we get interesting behaviour.

11. Torsion-free endotrivial modules

Let TF (𝐺) denote the torsion-free quotient of 𝑇 (𝐺), i.e. the quotient by its torsion subgroup
TT (𝐺). When 𝑝 is odd and our obstructions vanish, we obtain an expression for the torsion-free
endotrivial modules of 𝐺 as a limit over the orbit category:

11.1. Proposition. Let 𝑝 be odd and suppose that there is a short exact sequence

0 → 𝑇(𝐺, 𝑆) → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) → 0,

as is for example the case when 𝐺 has a non-trivial normal 𝑝-subgroup. Restriction induces an
isomorphism

TF (𝐺) ≅−−→ lim
OS (𝐺)op

TF (−).

Proof. Since 𝑇 (𝐺, 𝑆) is finite [CMT14, Proposition 2.3], the short exact sequence given in the
statement of the proposition implies that TF (𝐺) is isomorphic to the torsion-free quotient of
limOS (𝐺)op 𝑇 (−). We have a short exact sequence of functors from OS(𝐺)op

0 → TT → 𝑇 → TF → 0
that induces an exact sequence

(11.2) 0 → lim
OS (𝐺)op

TT (−) → lim
OS (𝐺)op

𝑇 (−) 𝑓−→ lim
OS (𝐺)op

TF (−) → lim
OS (𝐺)op

1 TT (−).

Since the first term of (11.2) is torsion and the third term is torsion-free, the image of the map
𝑓 is isomorphic to the torsion-free quotient of limOS (𝐺)op 𝑇 (−), which by the above argument
is isomorphic to TF (𝐺). It therefore remains to show that 𝑓 is surjective.
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We have a commutative diagram

limOS (𝐺)op 𝑇 (−) 𝑇 (𝑆)

limOS (𝐺)op TF (−) TF (𝑆).
𝑓

Since the right-hand vertical map is surjective, let 𝑀𝑆 be a lift to 𝑇 (𝑆) of a 𝐺-stable element in
TF (𝑆). It suffices to check that 𝑀𝑆 is still 𝐺-stable. Let 𝑔 ∈ 𝐺. Since the map

𝑇 (𝑃) → ∏
𝑉∈A𝑝(𝑃)

𝑇 (𝑉 )

is injective when 𝑃 is cyclic (and 𝑝 is odd) or when 𝑇 (𝑃) is torsion free, it is enough to check
that 𝑔 ⊗𝑆 𝑀𝑆 and 𝑀𝑆 restrict to the same element of 𝑇 (𝑉 ) for every 𝑉 ∈ A𝑝(𝑔𝑆 ∩ 𝑆).

If 𝑉 is cyclic, then this follows because A𝑝(𝐺)/𝐺 is contractible, and consequently either
the restriction of 𝑀𝑆 to every cyclic 𝑝-subgroup is equivalent to Ω𝑘 or its restriction to every
cyclic 𝑝-subgroup is equivalent to 𝑘.

Otherwise, TF (𝑉 ) = 𝑇 (𝑉 ) and so

res
𝑔𝑆
𝑉 (𝑔 ⊗𝑆 𝑀𝑆) ≃ res𝑆𝑉 𝑀𝑆 ,

because 𝑀𝑆 is a 𝐺-stable element of TF (𝑆). □

In [CMT14], Carlson–Mazza–Thévenaz asked several questions about the behaviour of the
torsion-free quotient of 𝑇 (𝐺). We are able to answer these questions at certain primes using
Theorem 10.3, which computed the obstruction group for PSL3(𝑝). A homomorphism 𝜙 ∶ 𝐺 →
𝐺′ is said to preserve 𝑝-fusion if and only if it restricts to an isomorphism between some Sylow
𝑝-subgroups 𝑆 ≤ 𝐺 and 𝑆′ ≤ 𝐺′ and induces an equivalence FS(𝐺) → FS(𝐺′) of fusion
categories.

In [CMT14, Conjecture 10.1], Carlson–Mazza–Thévenaz asked whether 𝜙 controlling fusion
implies that 𝜙∗∶ TF (𝐺′) → TF (𝐺) is an isomorphism. The following theorem shows that this
is true for 𝑝 = 2 but not in general:

11.3. Theorem. Suppose that 𝜙 ∶ 𝐺 → 𝐺′ is a group homomorphism that controls 𝑝-fusion.
The induced homomorphism 𝜙∗∶ TF (𝐺′) → TF (𝐺) is an isomorphism if 𝑝 = 2. If 𝑝 is odd,
this is not necessarily the case; for example, when 𝑝 ≡ 1 mod 3 the quotient map 𝜙 ∶ SL3(𝑝) →
PSL3(𝑝) preserves fusion but the induced map 𝜙∗∶ TF (PSL3(𝑝)) ↪ TF (SL3(𝑝)) is the inclusion
of a subgroup of index three.

Proof. When 𝑝 = 2, we have a short exact sequence

0 → 𝑇(𝐺, 𝑆) → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) → 0

by Corollary 7.12. Since 𝑇 (𝐺, 𝑆) is finite [CMT14, Proposition 2.3], we have that TF (𝐺) is iso-
morphic to the torsion-free part of limOS (𝐺)op 𝑇 (−). There is a zig-zag of functors OS(𝐺) ←
TS(𝐺) → FS(𝐺), which induces an isomorphism limOS (𝐺)op 𝑇 (−) ≅ limFS (𝐺)op 𝑇 (−). Since 𝜙
preserves 𝑝-fusion, it induces an equivalence on fusion categories, so we deduce that

lim
OS (𝐺′)op

𝑇 (−) ≅ lim
OS (𝐺)op

𝑇 (−).

Therefore 𝜙∗∶ TF (𝐺′) → TF (𝐺) is an isomorphism, completing the proof of the case where
𝑝 = 2.
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Now let �̃� = SL3(𝑝) and 𝐺 = PSL3(𝑝) for 𝑝 ≡ 1 mod 3. One can directly calculate that the
obstruction group H1

�̃�(B𝑝(�̃�); H1(−; 𝑘×)) vanishes and that 𝑇 (�̃�, 𝑆) = 0 by using the method
that was used in Theorem 10.3 to carry out the analogous computation for 𝐺; the normalisers
that appear were computed in Lemma 10.1.

We obtain a diagram with exact rows:

0 𝑇 (𝐺) limOS (𝐺)op 𝑇 (−) ℤ/3 0

0 𝑇 (�̃�) limOS (�̃�)op 𝑇 (−) 0
𝜙∗ ≅

≅

The middle vertical map is an isomorphism because 𝜙 preserves 𝑝-fusion. We see that Im(𝜙∗)
is a subgroup of index three. □

In [CMT14, Conjecture 9.2], Carlson–Mazza–Thévenaz asked whether there is a torsion-
free subgroup 𝐹 ≤ 𝑇 (𝐺) such that 𝐹 consists of modules lying in the principal block of 𝐺 and
𝑇 (𝐺) = TT (𝐺) ⊕ 𝐹 . The following theorem shows that this is not true when 𝐺 = SL3(𝑝) and
𝑝 ≡ 1 (mod 3):
11.4. Theorem. When 𝑝 ≡ 1 mod 3, the torsion subgroup TT (SL3(𝑝)) is zero, but the subgroup
of 𝑇 (𝐺) consisting of modules lying in the principal block has index at least three.

Proof. We again let �̃� = SL3(𝑝), 𝐺 = PSL3(𝑝), and 𝜙 be the quotient map SL3(𝑝) → PSL3(𝑝).
For any finite group 𝐻 , the 𝑝′-core 𝑂𝑝′(𝐻) acts trivially on 𝑘𝐻 -modules lying in the principal
block [HB82, Lemma 13.1], and here 𝑂𝑝′(�̃�) = 𝑍(�̃�). The kernel of 𝜙 is also equal to 𝑍(�̃�),
being the group generated by

(
𝜔

𝜔
𝜔
)

for 𝜔 a primitive third root of unity in 𝔽𝑝 . Therefore, if 𝑂𝑝′(�̃�) acts trivially on a �̃�-module,
then that module is inflated from 𝐺. Since not every module in 𝑇 (�̃�) is inflated from 𝐺, there
must be endotrivial �̃�-modules that do not lie in the principal block. □

11.5. Remark. Theorem 4.5 shows that a weaker form of the conjecture relating to fusion
systems does hold. If instead we ask that 𝜙 induce an equivalence on orbit categoriesOS(𝐺) →
OS(𝐺′), then the five lemma applied to the exact sequence

0 → H1(OS(𝐺); 𝑘×) → 𝑇(𝐺) → lim
OS (𝐺)op

𝑇 (−) → H2(OS(𝐺); 𝑘×)

shows that 𝜙 induces an isomorphism on 𝑇 (𝐺).
11.6. Remark. The fact that all 𝐺-stable endotrivial 𝑆-modules lift to 𝑇 (𝐺) when 𝑝 = 2 does not
seem to say anything positive about the conjecture relating to principal blocks. Since 𝑝-groups
only have one block, the information about the block of an indecomposable 𝑘𝐺-module is some-
how contained in the coherence data of the corresponding object of holimOS (𝐺)op StMod𝑘𝑃 , not
its restrictions to StMod𝑘𝑃 .
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12. Endotrivial modules for the alternating and symmetric groups

Here we use orientations in order to compute the image of 𝑇 (𝐺) in 𝑇 (𝑆) where 𝐺 is either
the symmetric group Σ𝑛 or the alternating group 𝐴𝑛, the degree 𝑛 satisfies 𝑝2 ≤ 𝑛 < 𝑝2 + 𝑝,
and 𝑝 is odd. Note that if 𝑛 < 𝑝2, then TF (𝐺) = 0, while when 𝑝2 + 𝑝 ≤ 𝑛, we have TF (𝐺) ≅ ℤ
generated by Ω𝑘. The case 𝑝2 ≤ 𝑛 < 𝑝2 + 𝑝 is considered in [CHM10], where they calculate
that TF (𝐺) ≅ ℤ2 and provide bounds on the type of the generators. We provide precise values
for the type of the generators in Theorem 12.1. The software package [GAP] was invaluable
for working out the details of the computations below.

When 𝑝2 ≤ 𝑛 < 𝑝2 + 𝑝 and 𝑝 is odd, both Σ𝑛 and 𝐴𝑛 have two maximal elementary abelian
subgroups (up to conjugacy), which we denote 𝐸1 and 𝐸2. We describe these subgroups after
the statement of the theorem.

12.1. Theorem. Let 𝐺 denote either the symmetric group Σ𝑛 or the alternating group 𝐴𝑛, where
𝑝2 ≤ 𝑛 < 𝑝2 +𝑝 and 𝑝 is odd. We have TF (𝐺) ≅ ℤ2, generated by [Ω𝑘] and [𝑀] for some module
𝑀 satisfying

res𝐺𝐸1
𝑀 ≃ 𝑘 and res𝐺𝐸2

𝑀 ≃ Ω2𝑝(𝑝−1)𝑘.
Theorem 6.1 in [CHM10] proves that

res𝐺𝐸1
𝑀 ≃ 𝑘 and res𝐺𝐸2

𝑀 ≃ Ω2𝑝𝑟𝑘

for some 𝑟 dividing 𝑝 − 1. Our contribution is to show that 𝑟 = 𝑝 − 1. All of the work in the
proof of the theorem is for the case 𝐺 = 𝐴𝑛, which we deal with in Proposition 12.10; the case
𝐺 = Σ𝑛 follows as a corollary. To prove the proposition, we require some understanding of the
local structure of Σ𝑛 and 𝐴𝑛, which we discuss first (following the description in [CHM10, §6]).

12.2. Assumption. Without further comment, we assume throughout the remainder of this
section that 𝑝2 ≤ 𝑛 < 𝑝2 + 𝑝 and that 𝑝 is odd.

Define elements in Σ𝑛 for 𝑖 = 1, … , 𝑝 by

𝑥𝑖 = (𝑖𝑝 − 𝑝 + 1,… , 𝑖𝑝) and 𝑦 = (1, 𝑝 + 1, … , 𝑝2 − 𝑝 + 1)… (𝑝, 2𝑝, … , 𝑝2),
where we consider Σ𝑛 as acting on {1, … , 𝑛} on the right. These 𝑝 + 1 elements generate the
Sylow subgroup 𝑆 ≅ 𝐶𝑝 ≀ 𝐶𝑝 of both Σ𝑛 and 𝐴𝑛. Let 𝐸1 be the base subgroup of the wreath prod-
uct, i.e. 𝐸1 ≔ ⟨𝑥1, … , 𝑥𝑝⟩, and let 𝐸2 ≔ ⟨𝑥1 …𝑥𝑝 , 𝑦⟩. The subgroups 𝐸1 and 𝐸2 are the maximal
elementary abelian subgroups of 𝑆 up to conjugacy, and 𝐸1 is clearly a maximal elementary
abelian subgroup of 𝐴𝑛 (and hence Σ𝑛). 𝐸2 cannot be subconjugate to 𝐸1, since all non-identity
elements of 𝐸2 are a product of 𝑝 𝑝-cycles and 𝐸1 has a subgroup 𝐸1 ∩ Σ𝑝2−𝑝 that is of index 𝑝
and has no such elements. Therefore 𝐸2 is also a maximal elementary abelian subgroup of 𝐴𝑛
(and hence Σ𝑛).

We will also use the following notation: there is a subgroup Σ𝑝 ≀ Σ𝑝 ≤ Σ𝑛, where the 𝑖th base
factor is viewed as acting on the set {𝑖𝑝 − 𝑝 + 1,… , 𝑖𝑝}. We let 𝛽𝑖∶ Σ𝑝 → Σ𝑝 ≀ Σ𝑝 denote the
inclusion of the 𝑖th base factor and 𝜏 ∶ Σ𝑝 → Σ𝑝 ≀ Σ𝑝 denote the inclusion of the twisting factor.
With this notation, 𝑥𝑖 = 𝛽𝑖((1, … , 𝑝)) and 𝑦 = 𝜏((1, … , 𝑝)). Note that sgn 𝜏 (𝜎) = sgn 𝛽(𝜎) =
sgn 𝜎 .
12.3. Example. In the smallest possible case, we have 𝑝 = 3 and 𝑛 = 9. The elements defined
above are 𝑥1 = (123), 𝑥2 = (456), 𝑥3 = (789), and 𝑦 = (147)(258)(369). The action of 𝑦 cyclically
permutes the 𝑥𝑖.
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We will work with the collection B𝑝(𝐺) of 𝑝-radical subgroups, so start by determining this
collection up to conjugacy:

12.4. Lemma. Up to 𝐺-conjugacy, the 𝑝-radical subgroups of 𝐺 = Σ𝑛 and 𝐺 = 𝐴𝑛 are:
(i) the Sylow subgroup 𝑆,
(ii) the rank two elementary abelian subgroup 𝐸2, and
(iii) the rank 𝑖 elementary abelian subgroup 𝑅𝑠 ≔ ⟨𝑥1, … , 𝑥𝑠⟩ for 1 ≤ 𝑖 ≤ 𝑝,

except when 𝑝 = 3 and 𝑛 = 9, in which case 𝑅2 is not 𝑝-radical.
12.5. Remark. Note that 𝑅𝑝 = 𝐸1.
Proof of Lemma 12.4. We use the classification of 𝑝-radical subgroups of Σ𝑛 found in [AF90,
(2A)], which we now summarise: for 𝑐 ≥ 1, let 𝐵𝑐 denote the (unique up to conjugacy) transitive
subgroup of Σ𝑝𝑐 that is isomorphic to the elementary abelian group of order 𝑝𝑐 . This is given by
the permutation representation arising from the right regular action of the elementary abelian
group on itself. Note that 𝐵1 is conjugate to ⟨𝑥1⟩ and 𝐵2 is conjugate to 𝐸2.

For a tuple of positive integers (𝑐1, … , 𝑐𝑡), let 𝐵(𝑐1,…,𝑐𝑡 ) denote the iterated wreath product
𝐵𝑐1 ≀… ≀𝐵𝑐𝑡 . This group embeds uniquely up to conjugacy as a transitive subgroup of Σ𝑝𝑑 , where

𝑑 = 𝑐1 +…+ 𝑐𝑡 . The subgroup 𝐵(𝑐1,…,𝑐𝑡 ) ≤ Σ𝑝𝑑 is said to be a basic subgroup, whose degree is 𝑝𝑑
and whose length is 𝑡 .

Any 𝑝-radical subgroup 𝑅 of Sym(𝑉 ) splits as
(12.6) 𝑅 ≅ 𝑇0 × … × 𝑇𝑠
corresponding to a partition

𝑉 = 𝑉0 ⨿ … ⨿ 𝑉𝑠 .
𝑇0 is the trivial subgroup of Sym(𝑉0), and each 𝑇𝑖 for 𝑖 > 0 is a basic subgroup of Sym(𝑉𝑖).

We note that 𝐵(1,1,1) has order (𝑝𝑝 ⋅𝑝)𝑝 ⋅𝑝 = 𝑝𝑝2+𝑝+1, which is strictly greater than |𝑆| = 𝑝𝑝+1,
so any basic subgroup in a decomposition of a 𝑝-radical subgroup of Σ𝑛 has length at most 2.
The basic subgroups we need to consider are therefore

(i) 𝐵(1,1) ≅ 𝐶𝑝 ≀ 𝐶𝑝 ≅ 𝑆 of degree 𝑝2,
(ii) 𝐵(1) ≅ 𝐶𝑝 ≅ ⟨𝑥1⟩ of degree 𝑝, and
(iii) 𝐵(2) ≅ 𝐶𝑝2 ≅ 𝐸2 of degree 𝑝2.

Σ𝑛 itself has degree strictly less than 𝑝2 +𝑝, so the possible candidates for 𝑝-radical subgroups
of Σ𝑛 are 𝐵(1,1), 𝐵(2), and a direct product of copies of 𝐵(1). It is not hard to deduce directly
that the 𝑝-radical subgroups of Σ𝑛 are as claimed in the statement of the lemma; however, any
𝑝-radical 𝑃 in 𝐴𝑛 is a 𝑝-radical in Σ𝑛, since

𝑃 ≤ 𝐴𝑛 ∩ 𝑂𝑝(𝑁Σ𝑛(𝑃)) ≤ 𝑂𝑝(𝑁𝐴𝑛(𝑃)) = 𝑃
and a 𝑝-group has no subgroups of index two. Therefore, it is sufficient to check that each of
our candidates is radical in 𝐴𝑛 and that none of their Σ𝑛-conjugacy classes splits in two in 𝐴𝑛.

We first show the statement about conjugacy classes. For the Sylow subgroup there is noth-
ing to check. By the orbit-stabiliser theorem it is enough to show that the stabiliser in Σ𝑛 of
each other 𝑝-radical subgroup 𝑃 is strictly larger than its stabiliser in 𝐴𝑛. That is, we seek an
element of Σ𝑛 that normalises 𝑃 and does not lie in𝐴𝑛. Let 𝜉 ∈ 𝑁Σ𝑝 (𝐶𝑝) represent a generator of
the quotient 𝑁Σ𝑝 (𝐶𝑝)/𝐶𝑝 . Note that 𝜉 is an odd permutation, since the conjugacy class 𝐶𝑝 ⧵ {1}
splits into two conjugacy classes in 𝐴𝑝 . The element 𝛽1(𝜉 ) … 𝛽𝑝(𝜉 ) normalises ⟨𝑦⟩, ⟨𝑥1 …𝑥𝑝⟩,
and each ⟨𝑥𝑖⟩. Moreover, it does not lie in 𝐴𝑛. Therefore, the Σ𝑛-conjugacy class of each of the
subgroups listed above is the same as its 𝐴𝑛-conjugacy class.
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It remains to check which subgroups in the above list are radical in 𝐴𝑛. For the Sylow
subgroup there is nothing to check. For 𝑅𝑠 we claim that

(12.7) 𝑁Σ(𝑛)(𝑅𝑠) ≅ (𝑁Σ(𝑝)(𝐶𝑝) ≀ Σ𝑠) × Σ𝑛−𝑝𝑠 .
Indeed, since conjugation preserves cycle type, any 𝜎 ∈ Σ𝑝𝑠 that normalises 𝑅𝑠 must satisfy
𝑥𝑖𝜎 = 𝑥𝜂(𝑖)𝑛𝑖 for some permutation 𝜂 ∈ Σ𝑠 . The element 𝜎 ⋅ 𝜏 (𝜂)−1 normalises each ⟨𝑥𝑖⟩, prov-
ing the claim. Write 𝑊𝐺(𝐻) ≔ 𝑁𝐺(𝐻)/𝐻 for the Weyl group of 𝐻 in 𝐺. We deduce from
Equation (12.7) that

𝑊Σ(𝑛)(𝑅𝑠) ≅ (𝔽×𝑝 ≀ Σ𝑠) × Σ𝑛−𝑝𝑠 ,
and we note that 𝑊𝐴𝑛(𝑅𝑠) is an index two subgroup of this. The order of 𝑊Σ𝑛(𝑅𝑠) is not divis-
ible by 𝑝2, so if 𝑂𝑝(𝑊𝐴𝑛(𝑅𝑠) were non-trivial then it would be a Sylow subgroup of order 𝑝;
in particular, 𝑊𝐴𝑛(𝑅𝑠) would have a unique Sylow 𝑝-subgroup, and hence so would 𝑊Σ𝑛(𝑅𝑠).
Therefore, to show that 𝑅𝑠 is 𝑝-radical in 𝐴𝑛, it is enough to show 𝑊Σ𝑛(𝑅𝑠) does not have a
unique subgroup of order 𝑝. We prove this case-by-case:

(i) If 𝑝 > 3 and 𝑠 = 𝑝, then there are (𝑝 − 2)! subgroups of order 𝑝 in the Σ𝑠 of the wreath
product.

(ii) If 𝑝 > 3 and 𝑠 < 𝑝, then the Σ𝑛−𝑝𝑠 factor of the direct product contains a copy of Σ𝑝 .
(iii) If 𝑝 = 3 and 𝑠 = 𝑝, then ⟨𝑦⟩ and ⟨𝛽1(𝜉 )−1𝛽2(𝜉 )𝑦⟩ are different subgroups of order 𝑝 in

𝑊Σ𝑛(𝑅3).
(iv) If 𝑝 = 3, 𝑠 < 𝑝, and 𝑛 > 3𝑠 + 3, then the Σ𝑛−𝑝𝑠 factor of the direct product contains a

copy of Σ4.
(The only case not covered is when 𝑝 = 3, 𝑠 = 2, and 𝑛 = 9.) It follows that in all of the above
cases, 𝑂𝑝(𝑊𝐴(𝑛)(𝑅𝑠)) = 1 and 𝑅𝑠 is 𝑝-radical in 𝐴𝑛. In the exceptional case, 𝑊𝐴(9)(𝑅2) ≅ 𝐷24
and 𝑊Σ(9)(𝑅2) ≅ 𝐷8 × Σ3, both of which have a normal Sylow 3-subgroup.

Finally, we check that 𝐸2 is 𝑝-radical in 𝐴𝑛. By [AF90, (2.1)], the Weyl group of 𝐵(𝑐1,…,𝑐𝑡 ) inΣ𝑝𝑑 is given by

(12.8) 𝑊Σ(𝑝𝑑 )(𝐵(𝑐1,…,𝑐𝑡 )) ≅ GL𝑐1(𝑝) × GL𝑐2(𝑝) × … × GL𝑐𝑡 (𝑝).
Since 𝐸2 = 𝐵(2), we have

𝑊Σ(𝑛)(𝐸2) ≅ GL2(𝑝) × Σ𝑛−𝑝2 .
The Σ𝑛−𝑝2 factor is a 𝑝′-group, and 𝑂𝑝(GL2(𝑝)) = 1 because the upper-triangular unitary ma-
trices and lower-triangular unitary matrices are two Sylow subgroups whose intersection is
trivial. □

For any group 𝐺, let 𝐺𝑝′ denote the quotient of 𝐺 by the smallest normal subgroup 𝑂𝑝′(𝐺)
such that 𝐺/𝑂𝑝′(𝐺) is a 𝑝′-group; equivalently, 𝐺𝑝′ is the quotient of 𝐺 by the normal subgroup
generated by all elements of 𝑝-power order.

12.9. Lemma. Let 𝑝 ≥ 5. The group H1(𝑁𝐴(𝑝2)(𝐸2))𝑝′ is isomorphic to a subgroup of 𝔽×𝑝 . With
this identification the canonical map

𝑁𝐴(𝑝2)(𝐸2) → H1(𝑁𝐴(𝑝2)(𝐸2))𝑝′ ≤ 𝔽×𝑝
takes an element to the determinant of the matrix that represents it with respect to the basis
{𝑥1 …𝑥𝑝 , 𝑦} of 𝐸2, and the image of the canonical map is the subgroup of squares in 𝔽×𝑝 .
Proof. We have 𝑊Σ(𝑝2)(𝐸2) ≅ GL2(𝑝) by Equation (12.8). An element of 𝑁Σ(𝑝2)(𝐸2) is sent to
the matrix representing it with respect to the basis {𝑥1 …𝑥𝑝 , 𝑦}. The functors H1(−) and (−)𝑝′
commute with each other (up to natural isomorphism), so H1(𝑁𝐴(𝑝2)(𝐸2))𝑝′ ≅ H1(𝑊𝐴(𝑝2)(𝐸2))
via an isomorphism that commutes with the quotient maps from 𝑁𝐴(𝑝2)(𝐸2). The Weyl group
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𝑊𝐴(𝑝2)(𝐸2) identifies with a subgroup 𝑊 ≤ GL2(𝑝) of index two, and it is enough to show that
the derived subgroup of 𝑊 is SL2(𝑝)

Wewill first show that SL2(𝑝) ≤ 𝑊 . We have |SL2(𝑝) ∶ 𝑊 ∩SL2(𝑝)| ≤ 2, so 1 ≠ 𝑊 ∩ SL2(𝑝)⊴
SL2(𝑝). We have a subnormal series of SL2(𝑝) given by

1 ⊴
𝐶2

{±𝐼 } ⊴
PSL2(𝑝)

SL2(𝑝).

We see that {±𝐼 } ≤ 𝑊 , so (𝑊 ∩ SL2(𝑝))/{±𝐼 } ≤ PSL2(𝑝) is a subgroup of index at most two.
However, PSL2(𝑝) is simple (since 𝑝 ≥ 5) so has no index two subgroups. Therefore, 𝑊 ∩
SL2(𝑝) = SL2(𝑝), i.e. SL2(𝑝) ≤ 𝑊 .

We deduce that𝑊/ SL2(𝑝) ≤ 𝔽×𝑝 is an index two subgroup, and hence that𝑊 is the preimage
(under the determinant homomorphism) of the set of squares in 𝔽×𝑝 . The group SL2(𝑝) is perfect,
since 𝑝 ≥ 5, so is contained in the derived subgroup of 𝑊 . Therefore, it is equal to the derived
subgroup, and we see that H1(𝑊𝐴(𝑝2)(𝐸2)) is the set of squares in 𝔽×𝑝 . □

12.10. Proposition. If 𝑀 ∈ 𝑇(𝐴𝑛) is of type (0, 2𝑝𝑟), then 𝑝 − 1 divides 𝑟 .
Proof. Write 𝐺 ≔ 𝐴𝑛 for brevity. Note that B𝑝(𝐺) satisfies the condition on C found in Propo-
sition 7.5: for a 1-simplex 𝑃 < 𝑄 in B𝑝(𝐺), if 𝑄 is elementary abelian then we can set 𝑉 ≔ 𝑄.
Otherwise, by conjugating 𝑃 < 𝑄 we can assume that 𝑄 = 𝑆. If 𝑃 is conjugate to 𝐸2, then
we can set 𝑉 ≔ 𝑃 . The remaining case is where 𝑃 is a 𝑝-radical subgroup contained in 𝑆 and
subconjugate to 𝐸1, and by comparing cycle types we see it must actually be a subgroup of 𝐸1.
In this case, we claim that we can take 𝑉 ≔ 𝐸1. It is clear that 𝐸1 contains both 𝑍(𝑃) = 𝑃 and
𝑍(𝑆) = 𝐸1 ∩ 𝐸2, so we just need to check that 𝑁𝐺(𝑃 < 𝑆) normalises 𝐸1. In fact, the normaliser
of 𝑆 is contained in the normaliser of 𝐸1, because 𝐸1 is generated by the elements of 𝑆 that are
𝑝-cycles. Therefore, B𝑝(𝐺) satisfies the condition in Proposition 7.5.

Let 𝑛∶ S𝑝(𝐺) → ℤ be a type function for 𝑀 with 𝑛(𝑅𝑠) = 𝑛(𝐸1) = 𝑛(𝑆) = 0 and 𝑛(𝐸2) = 2𝑝𝑟 .
The strategy of the proof will be to compare the characters of an orientation on four 𝑝-radical
subgroups: 𝑅𝑝−2, 𝐸1, 𝑆, and 𝐸2. We will show that it is impossible to specify an orientation for
𝑛 unless 𝑝 − 1 divides 𝑟 . Note that when 𝑝 = 3 and 𝑛 = 9, the fact that 𝑅2 is not 𝑝-radical does
not cause any issues, since we only use 𝑅1 and 𝑅3 (which is equal to 𝐸1).

Let 𝜉 ∈ 𝑁Σ𝑝 (𝐶𝑝) represent a generator of the quotient 𝑁Σ𝑝 (𝐶𝑝)/𝐶𝑝 , and let 𝜆 ∈ 𝔽×𝑝 be the
generator corresponding to it under the canonical isomorphism 𝑁Σ𝑝 (𝐶𝑝)/𝐶𝑝 ≅ 𝔽×𝑝 given by
right conjugation. When 𝑝 = 3, we will specifically choose 𝜉 = (2, 3); this choice avoids
problems later in the proof due to 𝐴3 not being perfect. As argued for previously, 𝜉 is an odd
permutation. We give names to some elements of 𝐺:

𝑎 ≔ ( ∏
1≤𝑖≤𝑝

𝛽𝑖(𝜉 )) ⋅ 𝜏 (𝜉 ), 𝑏 ≔ ∏
1≤𝑖≤𝑝

𝛽𝑖(𝜉 )2,

𝑎′ ≔ 𝛽𝑝(𝜉 ) ⋅ 𝜏 ((𝑝 − 1, 𝑝)), and 𝑏′ ≔ 𝛽𝑝(𝜉 )2.
An overview of the proof is given in Figure 1. All boxes represent an element of 𝔽×𝑝 , and

arrows indicate equality; the arrow is labelled by the compatibility condition that we are using
in that step. The argument depends on several computations in homology, which we postpone
until we have described the outline. We start at the top of the diagram, with the observation
that [𝑎] = [𝑏] in H1(𝑁𝐺(𝐸2))𝑝′ , where as before the subscript 𝑝′ denotes the 𝑝′-quotient. This
implies that the value the character 𝜑𝐸2 takes on the elements 𝑎 and 𝑏 must agree. Next we use
the condition from Proposition 7.5 that

𝜑𝐸2 = 𝜈𝑝𝑟
𝑆 𝜑𝑆
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𝜑𝐸2(𝑎) = 𝜑𝐸2(𝑏)

𝜆𝑟𝜑𝑆(𝑎)

𝜆𝑟𝜑𝐸1(𝑎) = 𝜆𝑟𝜑𝐸1(𝑎′)

𝜆𝑟𝜑𝑅𝑝−2(𝑎′) = 𝜆𝑟

𝜆2𝑟𝜑𝑆(𝑏)

𝜆2𝑟𝜑𝐸1(𝑏) = 𝜆2𝑟𝜑𝐸1(𝑏′)

𝜆2𝑟𝜑𝑅𝑝−2(𝑏′) = 𝜆2𝑟

𝜆𝑟 = 𝜆2𝑟

𝜑𝐸2 = 𝜈𝑝𝑟
𝑆 𝜑𝑆

𝜑𝑆 = 𝜑𝐸1

𝜑𝐸1 = 𝜑𝑅𝑝−2

𝜑𝐸2 = 𝜈𝑝𝑟
𝑆 𝜑𝑆

𝜑𝑆 = 𝜑𝐸1

𝜑𝐸1 = 𝜑𝑅𝑝−2

Figure 1. Overview of the comparison of characters for the alternating group.

as characters of 𝑁𝐺(𝐸2 < 𝑆), but crucially the twisting character 𝜈𝑆 takes different values on 𝑎
and 𝑏: the homology classes [𝑎] and [𝑏] do not agree in H1(𝑁𝐺(𝑆))𝑝′ . We have 𝜈𝑆(𝑎) = 𝜆 and
𝜈𝑆(𝑏) = 𝜆2. We now use the compatibility condition for orientation characters again: 𝜑𝑆 = 𝜑𝐸1
as characters of 𝑁𝐺(𝐸1 < 𝑆), so 𝜑𝑆(𝑎) = 𝜑𝐸1(𝑎) and similarly for 𝑏. In H1(𝑁𝐺(𝐸1)𝑝′ we have
[𝑎] = [𝑎′] and [𝑏] = [𝑏′], so 𝜑𝐸1(𝑎) = 𝜑𝐸1(𝑎′) and similarly for 𝑏 and 𝑏′. Finally, we use the
compatibility condition one last time to pass to 𝑅𝑝−2. Here, however, we have [𝑎′] = [𝑏′] = 0
in H1(𝑁𝐺(𝑅𝑝−2)). We have therefore shown that 𝜆𝑟 = 𝜆2𝑟 ; since 𝜆 is a generator for 𝔽×𝑝 , this
can only be the case if 𝑝 − 1 divides 𝑟 .

It remains to justify all the claims made in the above argument. We start with an implicit
claim, namely that 𝑎, 𝑏 ∈ 𝑁𝐺(𝐸1) ∩ 𝑁𝐺(𝑆) ∩ 𝑁𝐺(𝐸2) and 𝑎′, 𝑏′ ∈ 𝑁𝐺(𝑅𝑝−2) ∩ 𝑁𝐺(𝐸1). This is a
straightforward check, since we know how 𝛽𝑖(𝜉 ), 𝜏 (𝜉 ), and 𝜏 ((𝑝 − 1, 𝑝)) act on the elements 𝑥𝑖
and 𝑦 .

Secondly, we show that [𝑎] = [𝑏] in H1(𝑁𝐺(𝐸2))𝑝′ . When 𝑝 ≥ 5, we use Lemma 12.9: 𝑎 and
𝑏 represent the same class in H1(𝑁𝐴(𝑝2)(𝐸2))𝑝′ if they correspond to matrices with the same
determinant. With respect to the basis {𝑥1 …𝑥𝑝 , 𝑦}, the elements 𝑎 and 𝑏 act by the matrices

(12.11) (𝜆 𝜆) and (𝜆
2

1)

respectively. When 𝑝 = 3, it can be checked that 𝑏 = 1 and

𝑎 = (2, 3)(4, 7)(5, 9)(6, 8) = [(2, 4, 3, 7)(5, 6, 9, 8), (2, 5, 3, 9)(4, 8, 7, 6)]
where both of the elements appearing in the commutator normalise 𝐸2. The matrices in (12.11)
also tell us the value of the twisting character 𝜈𝑆 on the elements 𝑎 and 𝑏. The twisting character
is determined by the right action of 𝑁𝐺(𝑆) on 𝑍(𝑆) = ⟨𝑥1 …𝑥𝑝⟩, so its value is given by the top-
left corner of the matrix. We have 𝜈𝑆(𝑎) = 𝜆 and 𝜈𝑆(𝑏) = 𝜆2.
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Thirdly, we show that [𝑎′] = [𝑎] and [𝑏′] = [𝑏] in H1(𝑁𝐺(𝐸1))𝑝′ . We have

𝛽𝑖(𝜉 )−1 ⋅ 𝛽𝑗(𝜉 ) = [𝛽𝑝(𝜉 )𝛽𝑖(𝜉 ), 𝛽𝑝(𝜉 )𝜏 ((𝑖, 𝑗))] ∈ [𝑁𝐺(𝐸1), 𝑁𝐺(𝐸1)]
for any distinct 𝑖 and 𝑗 with 𝑖, 𝑗 < 𝑝, so [𝛽𝑖(𝜉 )] = [𝛽𝑗(𝜉 )] in H1(𝑁𝐺(𝐸1))𝑝′ . Since 𝜉𝑝−1 ∈ 𝐶𝑝 , this
implies that [𝑏′] = [𝑏] and [𝑎′−1𝑎] = [𝜏((𝑝 − 1, 𝑝) ⋅ 𝜉 )] once we have passed to the 𝑝′-quotient.
When 𝑝 = 3, we chose 𝜉 = (2, 3), while when 𝑝 ≥ 5 we have 𝜏 (𝐴𝑝) = [𝜏(𝐴𝑝), 𝜏 (𝐴𝑝)] ≤
[𝑁𝐺(𝐸1), 𝑁𝐺(𝐸1)]. In either case, [𝑎′] = [𝑎] as claimed.

Finally, we observe that [𝑎′] = [𝑏′] = 0 in H1(𝑁𝐺(𝑅𝑝−2)). Indeed, both 𝑎′ and 𝑏′ are con-
tained in Alt({𝑝2 − 2𝑝 + 1,… , 𝑝2}) ≅ 𝐴2𝑝 , which is a perfect subgroup of 𝑁𝐺(𝑅𝑝−2). □

Proof of Theorem 12.1. As noted in the introduction to this section, all that is needed in addition
to [CHM10, Theorem 6.1] is to rule out the existence of modules of type (0, 2𝑝𝑟) for 0 < 𝑟 <
𝑝−1. Proposition 12.10 does this for the alternating group, and restricting from 𝑇 (Σ𝑛) to 𝑇 (𝐴𝑛)
preserves the type of a module so the result follows for the symmetric group too. □

Appendix A. Comparison with an obstruction due to Balmer

Let 𝐻 ≤ 𝐺 be a subgroup whose index in 𝐺 is prime to 𝑝. In Theorem 10.7 of [Bal15],
Balmer provides an abstract obstruction for lifting a 𝑘𝐻 -module to a 𝑘𝐺-module, which lives
in the second Čech cohomology group of a certain cover U in his “sipp” topology on finite
𝐺-sets. The goal of this section is to relate his obstruction to our class 𝛼 ∈ H2(OS(𝐺); 𝑘×).
We recall the setup of [Bal15] and show that the Čech cohomology groups Ȟ∗(U ; 𝔾𝑚) are
isomorphic to the cohomology groups H∗(OS(𝐺); 𝑘×) in the case where 𝐻 = 𝑆. We also show
that our obstruction class 𝛼𝑀 is sent to the obstruction of [Bal15, Theorem 10.7] under this
isomorphism.

Let C be a category, let 𝐹 ∶ Cop → Ab be a presheaf of abelian groups, and let 𝑈 → 𝑋 be a
morphism for which the iterated pullbacks 𝑈 ×𝑋 … ×𝑋 𝑈 exist in C; for example, we can take
𝑈 → 𝑋 to be a cover in a Grothendieck topology on C. We get a simplicial diagram

⋯ →→→→ 𝑈 ×𝑋 𝑈 ×𝑋 𝑈 →→→ 𝑈 ×𝑋 𝑈 →→ 𝑈
in C, with the face maps induced by projections and degeneracies induced by the diagonal
map. Applying 𝐹 to the above diagram gives a cosimplicial abelian group and hence a cochain
complex (whose differential is given by the alternating sum of face maps). We define the Čech
cohomology of U ≔ {𝑈 → 𝑋} with coefficients in 𝐹 , written Ȟ∗(U ; 𝐹 ), to be the cohomology
of this cochain complex.

The sipp-topology is the Grothendieck topology on the category 𝐺-Set of finite 𝐺-sets that is
defined as follows: a family of 𝐺-maps {𝛼𝑖∶ 𝑈𝑖 → 𝑋}𝑖∈𝐼 is a covering if, for every 𝑥 ∈ 𝑋 , there
exist an 𝑖 ∈ 𝐼 and 𝑢 ∈ 𝛼−1𝑖 (𝑥)with the index |Stab𝐺(𝑥) ∶ Stab𝐺(𝑢)| being prime to 𝑝. (“Sipp” is an
acronym for either “stabilisers of index prime to 𝑝” or “stabilisateurs d’indice premier à 𝑝”.) We
are interested in the cover U = {𝐺/𝑆 → 𝐺/𝐺} and the constant sipp-sheaf 𝔾𝑚 associated with
the abelian group 𝑘×. More explicitly, 𝔾𝑚 ∶ 𝐺-Setop → Ab is the finite-coproduct-preserving
functor that takes values

𝔾𝑚(𝐺/𝐻) ≅ { 𝑘× if 𝑝 divides |𝐻 | and
0 otherwise,

all of whose restrictions are componentwise either the identity or zero. Balmer’s obstruction
lies in Ȟ2(U ; 𝔾𝑚), and we recall its definition in Remark A.3.
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A.1. Lemma. Let 𝐹 ∶ OS(𝐺)op → Ab be a functor and let ̃𝐹 ∶ 𝐺-Setop → Ab denote the right
Kan extension of 𝐹 along the opposite of the inclusion 𝑖∶ OS(𝐺) ↪ 𝐺-Set. There is a natural
isomorphism

H∗(OS(𝐺); 𝐹 ) ≅ Ȟ∗(U ; ̃𝐹 ).
A.2. Remark. If 𝐹 ∶ OS(𝐺)op → Ab is the constant functor with value 𝑘×, then ̃𝐹 is isomorphic
to 𝔾𝑚 and the lemma implies that H2(OS(𝐺); 𝑘×) ≅ Ȟ2(U ; 𝔾𝑚). To see this, note that for any
𝐺/𝐻 we have

Ran𝑖(𝐹 )(𝐺/𝐻) ≃ lim ((𝑖 / (𝐺/𝐻))op → OS(𝐺)op → Ab)
and that 𝑖/(𝐺/𝐻) ≃ OS(𝐻). This means that if 𝑝 does not divide |𝐻 |, then ̃𝐹 (𝐺/𝐻) = 0, while
if 𝑝 divides |𝐻 |, then ̃𝐹 (𝐺/𝐻) ≅ 𝑘× becauseOS(𝐻) is a connected category. As ̃𝐹 also preserves
finite coproducts, it is isomorphic to 𝔾𝑚.

Proof of Lemma A.1. We can compute a Kan extension along 𝑖 in two steps: we first extend to
𝐺-SetS , the full subcategory of 𝐺-Set on objects whose isotropy subgroups are all non-trivial
𝑝-groups, and from there to 𝐺-Set itself. The category 𝐺-SetS is the free completion of OS(𝐺)
under finite coproducts, so by [JM92, Corollary 4.4] we have

H∗(OS(𝐺); 𝐹 ) ≅ H∗(𝐺-SetS ; ̃𝐹 ).
Observe that for every 𝑛 ≥ 1 the product (𝐺/𝑆)𝑛 exists in 𝐺-SetS , given by discarding all

free orbits from the “ordinary” product (𝐺/𝑆)𝑛 taken in 𝐺-Set. This follows from the fact that
there are no morphisms 𝐺/𝑃 → 𝐺/{1} for 𝑃 ∈ S𝑝(𝐺). We get a simplicial object

⋯ →→→→
𝐺
𝑆 × 𝐺

𝑆 × 𝐺
𝑆

→→→
𝐺
𝑆 × 𝐺

𝑆
→→ 𝐺

𝑆
in 𝐺-SetS ; write 𝑋 •∶ Δop → 𝐺-SetS for the functor that classifies it.

Observe that every object 𝑌 in 𝐺-SetS admits a map 𝑌 → 𝐺/𝑆, so pulling back along the
functor 𝑋 • preserves homotopy colimits [MNN17, Proposition 6.28]. This implies that we have

H∗(𝐺-SetS ; ̃𝐹 ) ≅ H∗(Δ; ̃𝐹 ∘ (𝑋 •)op).
It remains to identify H∗(Δ; ̃𝐹 ∘ (𝑋 •)op) with Ȟ∗(U ; ̃𝐹 ). To this end, let 𝐴•∶ Δ → Ab denote the
cosimplicial abelian group ̃𝐹 ∘ (𝑋 •)op and write ℤ for the constant cosimplicial abelian group
with value ℤ. The functor category [Δ,Ab] is an abelian category [Mac98, p. 199] and we have

H∗(Δ; 𝐴•) ≅ Ext∗[Δ,Ab](ℤ, 𝐴•).
Consider ℤΔ(−, −)∶ Δop × Δ → Ab, the ℤ-linearisation of the morphism sets in the category
Δ. We claim that

… → ℤΔ([2], −) → ℤΔ([1], −) → ℤΔ([0], −) → ℤ
is a projective resolution of ℤ in [Δ,Ab]. Each of the functors ℤΔ([𝑛], −) is projective, since
Yoneda’s lemma implies that Hom[Δ,Ab](ℤΔ([𝑛], −), −) preserves epimorphisms. We can check
exactness pointwise: the chain complex

… → ℤΔ([2], [𝑚]) → ℤΔ([1], [𝑚]) → ℤΔ([0], [𝑚]) → 0
identifies with the simplicial chain complex C•(Δ𝑚), whose homology is concentrated in degree
zero since Δ𝑚 is contractible. Therefore we get a projective resolution as claimed.

Finally, we consider the cochain complex that computes Ext: by another application of
Yoneda’s lemma, the chain complex

0 → Hom[Δ,Ab](ℤΔ([0], −), 𝐴•) → Hom[Δ,Ab](ℤΔ([1], −), 𝐴•) → …
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identifies with
0 → 𝐴0 → 𝐴1 → 𝐴2 → …

and we observe that this complex is precisely the Čech complex Č•(U ; ̃𝐹 ). □

A.3. Remark. Webriefly recall the definition of the obstruction defined in [Bal15, Theorem 10.7].
We consider the cosimplicial diagram of ∞-categories

StMod(𝐺/𝑆) →→ StMod((𝐺/𝑆)2) →→→ …
appearing in the proof of [Mat16, Proposition 9.13] (c.f. the definition of StMod(𝑋) for a 𝐺-set
𝑋 in Section 3). This is the counterpart on the categorical level of the cosimplicial abelian
group 𝐴•; one can recover 𝐴• from this diagram by composing with the functor that takes a
symmetric monoidal ∞-category to the homotopy classes of automorphisms of its unit.

Let 𝑀 ∈ StMod(𝐺/𝑆) be such that 𝑑0𝑀 ≃ 𝑑1𝑀 in StMod((𝐺/𝑆)2); this condition is precisely
saying that the equivalence class of 𝑀 is an element of Ȟ0(U ; Picst), in Balmer’s notation.
Choose an equivalence 𝜉 ∶ 𝑑0𝑀 ∼−−→ 𝑑1𝑀 and define 𝜁 ≔ (𝑑1𝜉 )−1 ∘ 𝑑2𝜉 ∘ 𝑑0𝜉 . This is an auto-
morphism of 𝑑0𝑑0𝑀 , which we can canonically identify with an element of 𝔾𝑚((𝐺/𝑆)3). The
morphism 𝜁 gives a 2-cocycle in Č2(U ; 𝔾𝑚) whose equivalence class in Ȟ2(U ; 𝔾𝑚) depends
only on the equivalence class of 𝑀 , not on the choice of 𝜉 . This is Balmer’s obstruction class.

A.4. Lemma. Under the isomorphism given by Lemma A.1, the obstruction [𝛼] ∈ H2(OS(𝐺); 𝑘×)
defined in Theorem 4.5 identifies with the obstruction in [𝜁 ] ∈ Ȟ2(U ; 𝔾𝑚) recalled in Remark A.3.

Proof. We will trace [𝛼] through the isomorphisms in Lemma A.1 and show that it agrees with
[𝜁 ]. The first isomorphism in Lemma A.1 extended [𝛼] to [𝛼′] ∈ H2(𝐺-SetS ; 𝔾𝑚). A 𝐺-stable
endotrivial module 𝑀𝑆 gives us an element of lim𝐺-SetopS

𝜋0 Pic StMod(−), i.e. an element 𝑀𝑋 ∈
StMod(𝑋) for every finite 𝐺-set 𝑋 , such that 𝑓 ∗(𝑀𝑌 ) ≃ 𝑀𝑋 for every morphism 𝑓 ∶ 𝑋 → 𝑌 in
𝐺-SetS . (Note that although we have made a choice of representative𝑀𝑋 here, the equivalence
class of 𝑀𝑋 is canonical.) For every such 𝑓 , we choose a specific equivalence 𝜆𝑓 ∶ 𝑓 ∗(𝑀𝑌 ) ∼−−→
𝑀𝑋 . The 2-cocycle 𝛼′ is then given by sending

𝑋 𝑓−→ 𝑌 𝑔−→ 𝑍
to the element of 𝔾𝑚(𝑋) determined by the automorphism

𝑓 ∗𝑔∗𝑀𝑍
𝜆𝑔𝑓−−−→ 𝑀𝑋

𝜆𝑓←−− 𝑓 ∗𝑀𝑌
𝑓 ∗𝜆𝑔←−−−− 𝑓 ∗𝑔∗𝑀𝑍

since this restricts to the correct class [𝛼] ∈ H2(OS(𝐺); 𝑘×). The class [𝛼′] ∈ H2(𝐺-Set; 𝔾𝑚)
depends only on the equivalence class of 𝑀𝑆 in StMod𝑘𝑆 , not on 𝑀𝑆 itself, nor on the choices
of 𝑀𝑋 and 𝜆𝑓 .

The next isomorphism in Lemma A.1 was induced by restriction along the simplicial object
𝑋 •∶ Δop → 𝐺-SetS given by

⋯ →→→→
𝐺
𝑆 × 𝐺

𝑆 × 𝐺
𝑆

→→→
𝐺
𝑆 × 𝐺

𝑆
→→ 𝐺

𝑆 .

Let 𝛼″ denote the restriction of 𝛼′ along 𝑋 •. We can describe 𝛼″ ∈ C2(Δ; 𝐴) by choosing
representatives 𝑀[𝑛] ∈ StMod((𝐺/𝑆)𝑛+1) and equivalences 𝜆𝜃 ∶ 𝜃∗(𝑀[𝑛]) ∼−−→ 𝑀[𝑚] for every
𝜃 ∶ [𝑛] → [𝑚]; the resulting cocycle 𝛼″ is given by sending

[𝑛] 𝜃−→ [𝑚] 𝜓−→ [𝑙]
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to the element of 𝔾𝑚((𝐺/𝑆)𝑙+1) determined by the automorphism

(A.5) 𝜓∗𝜃∗𝑀[𝑛]
𝜓∗𝜆𝜃−−−−→ 𝜓∗𝑀[𝑚]

𝜆𝜓−−→ 𝑀[𝑙]
𝜆𝜓𝜃←−−− 𝜓∗𝜃∗𝑀[𝑛]

of 𝜓∗𝜃∗𝑀[𝑛]. As before, the cohomology class [𝛼″] is independent of all the choices we made.
The third and final isomorphism of Lemma A.1 sent H∗(Δ; 𝐴) to H∗(𝐴), which amounts

to removing a subdivision. The cochain complexes 𝐴• and C•(Δ; 𝐴) arise respectively from
the projective resolutions of ℤ ∈ [Δ,Ab] given by ℤΔ([•], −) and C•(Δ/−). We can define
a comparison map between these resolutions by sending the identity in ℤΔ([𝑛], [𝑛]) to the
alternating sum

(A.6) ∑(−1)𝑖1+…+𝑖𝑛 [0] 𝑑 𝑖1−−→ [1] 𝑑 𝑖2−−→ … 𝑑 𝑖𝑛−−→ [𝑛] id−−→ [𝑛]
in C𝑛(Δ/[𝑛]). The sum is indexed over all possible choices of (𝑖1, 𝑖2, … , 𝑖𝑛). The map in (A.6)
determines the natural transformation in every degree by Yoneda’s lemma, and the fact that
it is a chain map follows from the cosimplicial identity 𝑑 𝑗 ∘ 𝑑 𝑖 = 𝑑 𝑖 ∘ 𝑑 𝑗−1 for 𝑖 < 𝑗. Since
this natural transformation lives over the identity ℤ → ℤ, it is the unique-up-to-homotopy
quasi-isomorphism between the resolutions.

We deduce that the image in 𝐴2 of 𝛼″ ∈ C2(Δ; 𝐴) under the above quasi-isomorphism is

∑(−1)𝑖1+𝑖2𝛼″([0] 𝑑 𝑖1−−→ [1] 𝑑 𝑖2−−→ [2]).
We can draw this alternating sum in a diagram:

𝑑0𝑑0𝑀[0] 𝑑0𝑑1𝑀[0] = 𝑑2𝑑0𝑀[0] 𝑑2𝑑1𝑀[0] = 𝑑1𝑑1𝑀[0] 𝑑1𝑑0𝑀[0]

𝑑0𝑀[1] 𝑑2𝑀[1] 𝑑1𝑀[1]

𝑀[2] 𝑀[2] 𝑀[2]

𝑑0𝜆𝑑0 𝑑0𝜆𝑑1 𝑑2𝜆𝑑0 𝑑2𝜆𝑑1 𝑑1𝜆𝑑1 𝑑1𝜆𝑑0

𝜆𝑑0 𝜆𝑑2 𝜆𝑑1

Here the solid arrows come from the terms in the alternating sum, expanded out using the
description of 𝛼″ in (A.5); there are six maps omitted, namely the backwards-facing arrows in
(A.5), which cancel out in pairs. The alternating sum itself is equal to the automorphism of
𝑑0𝑑0𝑀[0] = 𝑑1𝑑0𝑀[0] given by the dashed maps. If we choose 𝜉 to be given by

𝑑0𝑀[0]
𝜆𝑑0−−−→ 𝑀[1]

𝜆𝑑1←−−− 𝑑1𝑀[0]
then these dashed maps are exactly the maps 𝑑0(𝜉 ), 𝑑2(𝜉 ), and 𝑑1(𝜉 ). Comparing with Re-
mark A.3, we see that the image of the class [𝛼″] is equal to [𝜁 ]. □
A.7. Remark. Under the identification of Lemma A.4, Balmer’s [Bal15, Theorem 10.7(e)] is
equivalent to the exactness at limOS (𝐺)op 𝑇 (−) of the sequence appearing in Theorem 4.5.
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DECOMPOSITIONS OF THE STABLE MODULE ∞-CATEGORY

JOSHUA HUNT

Abstract. We show that the stable module ∞-category of a finite group 𝐺 decomposes in three
different ways as a limit of the stable module ∞-categories of certain subgroups of 𝐺. Analo-
gously to Dwyer’s terminology for homology decompositions, we call these the centraliser,
normaliser, and subgroup decompositions. We construct centraliser and normaliser decompo-
sitions and extend the subgroup decomposition (constructed by Mathew) to more collections of
subgroups. The key step in the proof is extending the stable module ∞-category to be defined
for any 𝐺-space, then showing that this extension only depends on the 𝑆-equivariant homotopy
type of a 𝐺-space. The methods used are not specific to the stable module ∞-category, so may
also be applicable in other settings where an ∞-category depends functorially on 𝐺.

1. Introduction

Let 𝐺 be a finite group and 𝑝 be a prime dividing the order of 𝐺. A homology decomposition
of the classifying space B𝐺 is a diagram of spaces 𝐹 ∶ 𝐷 → S such that, for every 𝑑 ∈ 𝐷, the
space 𝐹(𝑑) has the homotopy type of B𝐻 for some 𝐻 ≤ 𝐺, together with a map

hocolim 𝐹 → B𝐺
that induces an isomorphism on mod 𝑝 homology. Homology decompositions have a long
history in algebraic topology, with an early success being their use in [JMO92] to classify self-
maps of classifying spaces of compact, connected, simple Lie groups. They also played an
important role in the classification of 𝑝-compact groups; see [Gro10] for a survey. More re-
cently, similar decomposition techniques have found applications in modular representation
theory, for example in [Mat16], [Gro18], and [BGH].

In [Dwy97], Dwyer was able to give a unified treatment of three different types of homology
decompositions for a fixed collection C of subgroups of 𝐺 (where by the term collection we
always mean a set of subgroups that is closed under conjugation by elements of 𝐺):
Subgroup: let 𝐷 = OC (𝐺), the orbit category, and let 𝐹 ∶ OC (𝐺) → S take 𝐺/𝐻 to B𝐻 .
Centraliser: let 𝐷 = FC (𝐺), the fusion category, and let 𝐹 ∶ FC (𝐺) op → S take 𝐻 to B𝐶𝐺(𝐻).
Normaliser: let 𝐷 = 𝑠𝑆C (𝐺), the orbit simplex category, and let 𝐹 ∶ 𝑠𝑆C (𝐺)op → S take a

simplex 𝜎 = (𝐻0 < … < 𝐻𝑛) to B𝑁𝐺(𝜎), where 𝑁𝐺(𝜎) denotes ⋂0≤𝑖≤𝑛 𝑁𝐺(𝐻𝑖).
We recall the definition of the indexing categories below, in Section 2. Dwyer showed that in
all of these cases, 𝐹 provides a mod 𝑝 homology decomposition of 𝐺 if and only if the natural
map Ch𝐺 → (∗)h𝐺 ≃ B𝐺 induces an isomorphism onmod 𝑝 homology. Dwyer calls a collection
C satisfying this condition ample.

The stable module category StMod𝑘𝐺 of 𝐺 over a field 𝑘 of characteristic 𝑝 is obtained by
“quotienting” the module category Mod𝑘𝐺 by the projective modules. In this paper, we show
that analogues of the subgroup, centraliser and normaliser decompositions exist for StMod𝑘𝐺 ,
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viewed as an∞-category, describing it in three differentways as a limit of∞-categories StMod𝑘𝐻
for subgroups 𝐻 ≤ 𝐺. In this setting, Mathew has already shown the existence of the subgroup
decomposition for certain collections:

Theorem ([Mat16, Corollary 9.16]). Let C be a collection of subgroups of 𝐺 that is closed under
intersection and such that every elementary abelian 𝑝-subgroup of 𝐺 is contained in a subgroup
in C . There is an equivalence of symmetric monoidal ∞-categories

StMod𝑘𝐺 ∼−−→ lim
𝐺/𝐻∈OC (𝐺)op

StMod𝑘𝐻 .

Note that the change from a homotopy colimit (in Dwyer’s result) to a homotopy limit (in
Mathew’s result) is due to the differing variances of the homotopy orbits functor (−)h𝐺 and
the stable module ∞-category functor StMod(−). Following ideas of Dwyer and others, we use
𝐺-spaces to encode decompositions of StMod(−): we formally Kan extend the functor

StMod(−)∶ O(𝐺)op → Ĉat∞
to a functor defined on any 𝐺-space

(1.1) StMod(−)∶ Sop

𝐺 → Ĉat∞.
This extended functor takes small homotopy colimits of 𝐺-spaces to homotopy limits of ∞-
categories, so for any diagram of 𝐺-spaces 𝐹 ∶ 𝐷 → S𝐺 , the canonical map hocolim(𝐹 ) → ∗
induces a comparison map

(1.2) StMod𝑘𝐺 ≃ StMod(∗) → lim𝐷op
StMod(𝐹 (𝑑)).

Dwyer constructed 𝐺-spaces (depending on the collection C ) that encode the three homology
decompositions listed above. For convenience, we will temporarily refer to these 𝐺-spaces as
encoding 𝐺-spaces. Applying StMod(−) to the encoding 𝐺-spaces for C gives functors as in
(1.2) that are candidates for the three decompositions of the stable module ∞-category.

To show that we do get a decomposition of the stable module ∞-category, we need to prove
that the comparison functor (1.2) is an equivalence. For this we use work of Grodal–Smith
[GS06], which lists cases when certain canonical maps between the encoding 𝐺-spaces are 𝑆-
equivalences, where 𝑆 is a Sylow 𝑝-subgroup. (Recall that that a map 𝑓 ∶ 𝑋 → 𝑌 of 𝐺-spaces is
an 𝑆-equivalence if it induces a homotopy equivalence 𝑋 𝑃 ∼−−→ 𝑌 𝑃 on 𝑃-fixed points for every 𝑝-
subgroup 𝑃 ≤ 𝐺.) In Section 5, we prove that the extended functor (1.1) inverts 𝑆-equivalences.
In fact, we prove a more general result (Theorem 4.8):

TheoremA. LetA and B be small ∞-categories, C be an ∞-category with all small colimits, and

A
𝑖−→ B

𝐹−→ C
be functors with 𝑖 fully faithful. Let ̃𝐹 ∶ P(B) → C denote the left Kan extension of 𝐹 along the
Yoneda embedding 𝑦B. There is a factorisation

P(B) C

P(A)
𝑖∗

̃𝐹

̃𝐹 ′

if and only if 𝐹 is the left Kan extension of its restriction to A, i.e. the natural map

colim(𝑖/𝑏 → A
𝐹 𝑖−−→ C) → 𝐹(𝑏)

is an equivalence for every 𝑏 ∈ B.
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From this criterion, we deduce Theorem 5.3:

Theorem B. The right Kan extension of StMod(−)∶ O(𝐺)op → Ĉat∞ along the opposite of the
Yoneda embedding O(𝐺) → S𝐺 factors through the restriction map

Sop

𝐺 ≃ P(O(𝐺))op → P(O𝑝(𝐺))op.
In particular, StMod(−) sends 𝑆-equivalences in S𝐺 to equivalences of ∞-categories.

We note that the only property of StMod(−) used to deduce Theorem B from Theorem A is the
existence of a subgroup decomposition, as in Mathew’s result above. The approach therefore
applies whenever an ∞-category depends functorially on 𝐺 and satisfies an analogous descent
condition.

Given Theorem B, it is enough to find a zig-zag of 𝑆-equivalences from the encoding 𝐺-space
for Mathew’s subgroup decomposition to the encoding 𝐺-space for the decomposition that we
are interested in. This problemwas studied by Grodal–Smith in [GS06] and we use their results
in Section 6 to obtain our main theorem (Theorem 6.4):

Theorem C. Let C be one of the collections S𝑝(𝐺), A𝑝(𝐺), B𝑝(𝐺), I𝑝(𝐺), or Z𝑝(𝐺). There is a
subgroup decomposition

StMod𝑘𝐺 ∼−−→ lim
𝐺/𝑃∈OC (𝐺)op

StMod𝑘𝑃

and a normaliser decomposition

StMod𝑘𝐺 ∼−−→ lim
[𝜎]∈𝑠𝑆C (𝐺)

StMod𝑘𝑁𝐺(𝜎).

If C is S𝑝(𝐺), A𝑝(𝐺), or Z𝑝(𝐺), then there is additionally a centraliser decomposition

StMod𝑘𝐺 ∼−−→ lim
𝑃∈FC (𝐺)

StMod𝑘𝐶𝐺(𝑃).

The collections mentioned in the theorem are defined as follows:
(i) S𝑝(𝐺) is the collection of non-trivial 𝑝-subgroups of 𝐺,
(ii) A𝑝(𝐺) is the collection of non-trivial elementary abelian 𝑝-subgroups,
(iii) B𝑝(𝐺) is the collection of non-trivial 𝑝-radical subgroups, i.e. non-trivial 𝑝-subgroups

𝑃 ≤ 𝐺 such that 𝑃 is the maximal normal 𝑝-subgroup in 𝑁𝐺(𝑃),
(iv) I𝑝(𝐺) is the collection of all non-trivial 𝑝-subgroups that are the intersection of a set

of Sylow 𝑝-subgroups, and
(v) Z𝑝(𝐺) is the subcollection of A𝑝(𝐺) consisting of those 𝑉 such that 𝑉 is the set of

elements in the centre of 𝐶𝐺(𝑉 )whose order divides 𝑝, i.e. such that 𝑉 = Ω1𝑂𝑝𝑍(𝐶𝐺(𝑉 )),
using standard group-theoretic notation such as found in [Asc00].

1.3. Remark. Neither B𝑝(𝐺) nor Z𝑝(𝐺) are closed under intersections, so the subgroup decom-
positions for B𝑝(𝐺) and Z𝑝(𝐺) in Theorem 6.4 are new and do not follow immediately from
Mathew’s subgroup decomposition. For example, if 𝐺 = PSL3(7), then there are rank two
elementary abelian subgroups

(
1 ∗ ∗

1 0
1
) and (

1 0 ∗
1 ∗

1
)

that are contained in both B𝑝(𝐺) and Z𝑝(𝐺), but whose intersection

(
1 0 ∗

1 0
1
)
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is contained in neither collection.
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2. Notation, conventions, and background

Throughout the paper, 𝐺 will refer to a finite group and 𝑝 will be a fixed prime dividing the
order of 𝐺. We let 𝑘 be a field of characteristic 𝑝. A collection of subgroups of 𝐺 is a set of
subgroups that is closed under conjugation by elements of 𝐺.

We letO(𝐺) denote the orbit category of 𝐺, whose objects are transitive left 𝐺-sets andwhose
morphisms are 𝐺-equivariant maps between them. For any collection C of subgroups of 𝐺, we
let OC (𝐺) denote the full subcategory of O(𝐺) on those 𝐺-sets whose isotropy subgroups are
contained in C . Note that every object ofO(𝐺) is isomorphic to a 𝐺-set of the form 𝐺/𝐻 , with
𝐻 a subgroup of 𝐺, and that 𝐺/𝐻 lies in OC (𝐺) if and only if 𝐻 ∈ C . With this identification,
themorphisms in the orbit category are related to subconjugation relations between subgroups:

HomO(𝐺)(𝐺/𝐻 , 𝐺/𝐾) ≅ { 𝑔 ∈ 𝐺 ∶ 𝐻 𝑔 ≤ 𝐾 }/𝐾.
When C is the collection of all 𝑝-subgroups of 𝐺, including the trivial subgroup, we will use
the notation O𝑝(𝐺) instead of OC (𝐺).

We let FC (𝐺) denote the fusion category of 𝐺, whose objects are the subgroups in C and
whose morphisms are homomorphisms that are induced by conjugation by an element of 𝐺.

We let 𝑠𝑆C (𝐺) denote the orbit simplex category of 𝐺, which is the poset of 𝐺-conjugacy
classes of non-empty chains 𝜎 = (𝐻0 < … < 𝐻𝑛) of subgroups in C , ordered by refinement:
that is, we have [𝜎] ≤ [𝜏] if we can find representatives 𝜎 and 𝜏 for the conjugacy classes such
that 𝜎 ⊆ 𝜏 . The objects of 𝑠𝑆C (𝐺) identify with the 𝐺-conjugacy classes of non-degenerate
simplices of the nerve of C .

Since we deal exclusively with homotopy (co)limits, we will drop the adjective “homotopy”
here: when we refer to a “colimit of 𝐺-spaces” we will implicitly mean a homotopy colimit. We
follow Lurie’s convention of using the prefix “∞-” instead of “(∞, 1)-”. We use Ĉat∞ to denote
the ∞-category of large ∞-categories, which has all large limits (though we will only need the
existence of small limits). Let Funcolim(C,D) denote the full subcategory of Fun(C,D) spanned
by the functors that preserve small colimits.

The stable module ∞-category StMod𝑘𝐺 is defined as the localisation of the module category
Mod𝑘𝐺 at the stable equivalences, i.e. at those maps 𝑓 ∶ 𝑀 → 𝑁 and 𝑔 ∶ 𝑁 → 𝑀 such that
𝑓 𝑔 − id𝑁 and 𝑔𝑓 − id𝑀 both factor through a projective module. The homotopy category
of the stable module ∞-category has been studied by representation theorists: for example,
Benson–Iyengar–Krause [BIK11] use it as a way of classifying 𝑘𝐺-modules when Mod𝑘𝐺 has
wild representation type. The objects of the homotopy category are 𝑘𝐺-modules and the hom
sets are given by

𝜋0 Map𝐺(𝑀, 𝑁 ) ≅ Hom𝐺(𝑀, 𝑁 )/(𝑓 ∼ 0 if 𝑓 factors through a projective).
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The stable module ∞-category is a presentable, stable, symmetric monoidal ∞-category. See
[Car96, Section 5] for a discussion of the homotopy category and [Mat15, Definition 2.2] for a
construction of StMod𝑘𝐺 as an ∞-category.

In [Mat16, Section 9.5], Mathew constructs a functor

StMod(−)∶ O(𝐺)op → CAlg(PrL,st)
whose value on 𝐺/𝐻 is equivalent to StMod𝑘𝐻 . Here PrL,st denotes the ∞-category of pre-
sentable, stable ∞-categories and left adjoint functors between them. This functor will play
a crucial role for us, so we spend the rest of this section describing its construction. For any
𝐻 ≤ 𝐺, we have a symmetric monoidal restriction functor res𝐺𝐻 ∶ StMod𝑘𝐺 → StMod𝑘𝐻 ,whose

right adjoint coind𝐺𝐻 ∶ StMod𝑘𝐻 → StMod𝑘𝐺 is consequently lax symmetric monoidal. This im-
plies that coind𝐺𝐻 (𝑘) is a commutative algebra object of StMod𝑘𝐺 , whichwewill denote𝐴𝐺𝐻 . The
underlying module of 𝐴𝐺𝐻 is ∏𝐺/𝐻 𝑘 with its permutation action.

In [Bal15, Theorem 1.2], Balmer proves that the homotopy category of StMod𝑘𝐻 is equivalent
to the category of modules over 𝐴𝐺𝐻 internal to the homotopy category of StMod𝑘𝐺 . Proposi-
tion 9.12 of [Mat16] generalises this result to the ∞-category StMod𝑘𝐻 :

2.1. Theorem (Balmer, Mathew). There is a natural symmetric monoidal equivalence

StMod𝑘𝐻 ∼−−→ ModStMod𝑘𝐺 (𝐴𝐺𝐻 )
induced by coinduction, under which the free/forget adjunction StMod𝑘𝐺 ⟵⟶ ModStMod𝑘𝐺 (𝐴𝐺𝐻 )
corresponds to the restriction/coinduction adjunction StMod𝑘𝐺 ⟵⟶ StMod𝑘𝐻 .

We have a functor

O(𝐺)op → CAlg(StMod𝑘𝐺)
𝐺/𝐻 ↦ 𝐴𝐺𝐻

that on underlying modules sends a morphism 𝐺/𝐻 → 𝐺/𝐾 to the pullback map ∏𝐺/𝐾 𝑘 →
∏𝐺/𝐻 𝑘. This functor can be constructed by composing the analogous functor O(𝐺)op →
CAlg(Mod𝑘𝐺) with the localisation functor Mod𝑘𝐺 → StMod𝑘𝐺 . Theorem 2.1 implies that
we obtain a functor

StMod(−)∶ O(𝐺)op → Ĉat∞
that takes 𝐺/𝐻 to an ∞-category equivalent to StMod𝑘𝐻 . By using the description given in
[MNN17, Construction 5.23] of the inverse to the equivalence in Theorem 2.1, one can check
that a morphism 𝐺/𝐻 → 𝐺/𝐾 in O(𝐺) is sent to the restriction functor StMod𝑘𝐾 → StMod𝑘𝐻 .
Since both StMod𝑘𝐻 and res𝐾𝐻 ∶ StMod𝑘𝐾 → StMod𝑘𝐻 lie in CAlg(PrL,st), we have constructed
a functor

O(𝐺)op → CAlg(PrL,st)
as desired.

3. The stable module ∞-category of a 𝐺-space

Let S denote the ∞-category of small spaces. Recall that the ∞-category S𝐺 of small 𝐺-
spaces is equivalent to Fun(O(𝐺)op,S) and the Yoneda embedding 𝑦 ∶ O(𝐺) → S𝐺 identifies
with the inclusion of O(𝐺) as the transitive, discrete 𝐺-spaces.

The stable module ∞-category determines a functor StMod(−)∶ O(𝐺)op → Ĉat∞ that takes
𝐺/𝐻 to StMod𝑘𝐻 . We can formally extend this functor to 𝐺-spaces by right Kan extension
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along the opposite of the Yoneda embedding:

O(𝐺)op Ĉat∞

Sop

𝐺

𝑦
StMod(−)

Since O(𝐺) is small, the existence of small limits in Ĉat∞ guarantees the existence of the Kan
extension, which we still denote by StMod(−). It sends small (homotopy) colimits of 𝐺-spaces
to limits in Ĉat∞.

3.1. Remark. We could equally well have taken StMod(−) to be a functor to CAlg(PrL,st) while
carrying out the above construction, since CAlg(PrL,st) also has small limits and the compo-
sition CAlg(PrL,st) → PrL,st → Ĉat∞ preserves limits [Lur17, Corollary 3.2.2.4]. In other
words, the “stable module ∞-category of a 𝐺-space” is presentable, stable, and has a symmetric
monoidal structure that preserves finite colimits in each variable. We will not need these facts,
but mention them to point out that the extended definition of the stable module ∞-category
shares many features with the standard definition.

4. Factorising Kan extensions

Our first goal is to show that StMod(−) only sees the 𝑆-equivariant homotopy type of a
𝐺-space: that is, we have a factorisation

Sop

𝐺 ≃ P(O(𝐺))op Ĉat∞

P(O𝑝(𝐺))op
𝑖∗

where 𝑖∶ O𝑝(𝐺) ↪ O(𝐺) is the inclusion of the full subcategory of transitive 𝐺-sets with 𝑝-
group isotropy and P(A) is the ∞-category Fun(Aop,S) of presheaves on A.

For simplicity of notation, we dualise and consider the following question:

4.1. Question. Let A and B be small ∞-categories, C be an ∞-category with all small colimits,
and

A
𝑖−→ B

𝐹−→ C
be functors with 𝑖 fully faithful. When does the left Kan extension ̃𝐹 of 𝐹 along the Yoneda
embedding 𝑦B admit a factorisation through P(A) as indicated in the diagram below?

B

P(B) C

P(A)

𝑦B 𝐹

𝑖∗

̃𝐹

̃𝐹 ′

We answer this question in Theorem 4.8, providing a necessary and sufficient condition on
𝐹 for such a factorisation ̃𝐹 ′ to exist: namely, 𝐹 must be equivalent to the left Kan extension of
𝐹 𝑖 along 𝑖.
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4.2. Notation. In this situation, there are two functors that are induced by restriction along 𝑖
(or its opposite) and hence could reasonably be denoted by 𝑖∗, namely

P(B) → P(A) and Fun(B, C) → Fun(A, C).
We will denote the first functor by 𝑖∗ and the second functor instead by 𝑗∗. We hope that this
prevents more confusion than it causes. Both of these functors have left adjoints given by left
Kan extension, which we will write as

𝑖!∶ P(A) → P(B) and 𝑗!∶ Fun(A, C) → Fun(B, C).
We will similarly use (𝑦B)! to denote left Kan extension along the Yoneda embedding. The
adjunction 𝑖! ⊣ 𝑖∗ induces an adjunction

Fun(P(A), C)

Fun(P(B), C).
(𝑖∗)∗ ⊣ (𝑖!)∗

4.3. Remark. We briefly summarise the proof of Theorem 4.8, making forward reference to
lemmas that we will prove later in the section. We will show that the following statements are
all equivalent:

(i) ̃𝐹 factors through 𝑖∗.
(ii) The natural transformation ̃𝐹 𝑖!𝑖∗ → ̃𝐹 induced by the counit of the 𝑖! ⊣ 𝑖∗ adjunction is

an equivalence.
(iii) ̃𝐹 is equivalent, via the counit of the (𝑖∗)∗ ⊣ (𝑖!)∗ adjunction, to the composition (𝑖∗)∗ ∘

(𝑖!)∗ ∘ (𝑦𝐵)! applied to 𝐹 .
(iv) ̃𝐹 is equivalent, via the counit of the 𝑗! ⊣ 𝑗∗ adjunction, to the composition (𝑦B)! ∘ 𝑗! ∘ 𝑗∗

applied to 𝐹 .
(v) The natural transformation 𝑗!𝑗∗𝐹 → 𝐹 induced by the counit of the 𝑗! ⊣ 𝑗∗ adjunction

is an equivalence.
The equivalence of (i) and (ii) is Lemma 4.4. Since ̃𝐹 is the left Kan extension of 𝐹 along

𝑦B, we see that (iii) is just a rewriting of (ii) with different notation. Lemmas 4.5 and 4.6 show
that (iii) is equivalent to (iv). Checking that the natural transformation in (iv) is still induced
by the counit is a straightforward but tiring diagram chase that we include in Appendix A.
Finally, [Lur09, Theorem 5.1.5.6] shows that restriction along the Yoneda embedding induces
an equivalence

Funcolim(P(B), C) ∼−−→ Fun(B, C),
so (iv) is equivalent to (v).

The rest of the section fills in the details omitted in Remark 4.3. We begin by showing that
if ̃𝐹 does factor through 𝑖∗, then such a factorisation is unique.

4.4. Lemma. Let 𝐻 ∶ P(B) → C be a functor. Any functor 𝐻 ∶ P(A) → C that satisfies 𝐻 ≃
𝐻 ∘ 𝑖∗ must be given by 𝐻 ≃ 𝐻 ∘ 𝑖!. Furthermore, 𝐻 factors through 𝑖∗ if and only if the natural
transformation

𝐻𝜀 ∶ 𝐻 𝑖!𝑖∗ → 𝐻
induced by the counit of the 𝑖! ⊣ 𝑖∗ adjunction is an equivalence in Fun(P(B), C).
Proof. Since 𝑖 is fully faithful, the unit of the adjunction induces an equivalence id ∼−−→ 𝑖∗𝑖!.
Therefore, 𝐻𝑖! ≃ 𝐻𝑖∗𝑖! ≃ 𝐻 . The second claim is a straightforward check using naturality of
the equivalence 𝐻 ≃ 𝐻 ∘ 𝑖∗ and the triangle identities for 𝑖! ⊣ 𝑖∗. □
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The condition in Lemma 4.4 for a factorisation to exist is in terms of ̃𝐹 , so our next goal
is to rewrite this as a condition on 𝐹 . We will need two lemmas regarding properties of Kan
extensions.

4.5. Lemma. There is a canonical equivalence

𝐹 𝑖 ∼−−→ ̃𝐹 𝑖!𝑦A,
which by the universal property of left Kan extension induces a natural transformation

Lan𝑦A(𝐹 𝑖) → ̃𝐹 𝑖!
as functors P(A) → C. This natural transformation is an equivalence; that is,

(𝑦A)! ∘ 𝑗∗ ∼−−→ (𝑖!)∗ ∘ (𝑦B)!
as functors Fun(B, C) → Funcolim(P(A), C).
Proof. Since 𝑦B is fully faithful, we have a commutative diagram

A B C

P(A) P(B)

𝑖

𝑦A

𝐹

𝑦B
𝑖!

̃𝐹≔Lan𝑦B (𝐹 )

that gives rise to the first equivalence.
The three functors ̃𝐹 , 𝑖!, and Lan𝑦A(𝐹 𝑖) all preserve small colimits, so it is enough to check

that they restrict along the Yoneda embedding 𝑦A to equivalent functors in Fun(A, C), by [Lur09,
Theorem 5.1.5.6]. We then observe that Lan𝑦A(𝐹 𝑖) restricts to 𝐹 𝑖, because 𝑦A is also fully faithful.

□

4.6. Lemma. Let 𝐻 ∶ A → C be a functor. There is a natural equivalence

Lan𝑦A(𝐻) ∘ 𝑖∗ ≃ Lan𝑦B 𝑖(𝐻)
as functors P(B) → C. That is,

(𝑖∗)∗ ∘ (𝑦A)! ≃ (𝑦B)! ∘ 𝑗!
as functors Fun(A, C) → Funcolim(P(B), C).
Proof. We have a commutative diagram

A B

P(A) P(B)

𝑖

𝑦A 𝑦B
𝑖!

that induces a commutative diagram of pullback functors:

(4.7)

Fun(A, C) Fun(B, C)

Funcolim(P(A), C) Funcolim(P(B), C)

𝑗∗

(𝑦A)∗
(𝑖!)∗

(𝑦B)∗
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The adjunction 𝑖! ⊣ 𝑖∗ induces an adjunction (𝑖∗)∗ ⊣ (𝑖!)∗, so all of the functors in the above
diagram have left adjoints. Thus, we obtain another commutative diagram:

Fun(A, C) Fun(B, C)

Funcolim(P(A), C) Funcolim(P(B), C)

𝑗!

(𝑦A)! (𝑦B)!
(𝑖∗)∗

This is what we aimed to prove. □

Combining the above lemmas, we deduce:

4.8. Theorem. Let A and B be small ∞-categories, C be an ∞-category with all small colimits,
and

A
𝑖−→ B

𝐹−→ C

be functors with 𝑖 fully faithful. Let ̃𝐹 ∶ P(B) → C denote the left Kan extension of 𝐹 along the
Yoneda embedding 𝑦B. There is a factorisation

P(B) C

P(A)
𝑖∗

̃𝐹

̃𝐹 ′

if and only if 𝐹 is the left Kan extension of its restriction to A, i.e. the natural map

colim(𝑖/𝑏 → A
𝐹 𝑖−−→ C) → 𝐹(𝑏)

is an equivalence for every 𝑏 ∈ B.

Proof. In Lemma 4.4 we showed that ̃𝐹 factors through 𝑖∗ if and only if the natural transforma-
tion

̃𝐹 𝑖!𝑖∗ → ̃𝐹
induced by the counit of the 𝑖! ⊣ 𝑖∗ adjunction is an equivalence. By Lemma 4.5, the left-hand
side of this is equivalent to Lan𝑦A(𝐹 𝑖) ∘ 𝑖∗, while by Lemma 4.6, this in turn is equivalent to
Lan𝑦B 𝑖(𝐹 𝑖). Since both sides of

(4.9) Lan𝑦B 𝑖(𝐹 𝑖) → ̃𝐹

preserve colimits in P(B), we can check whether (4.9) is an equivalence after restricting along
𝑦B. Therefore, ̃𝐹 factors through 𝑖∗ if and only if the natural transformation

Lan𝑖(𝐹 𝑖) → 𝐹
is an equivalence. □
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5. The stable module ∞-category is 𝑆-homotopy invariant

We can now return to the specific case that interests us, namely

O𝑝(𝐺)op 𝑖−→ O(𝐺)op StMod(−)−−−−−−−−→ Ĉat∞.

We wish to show that we have an induced functor ̃𝐹 ′∶ P(O𝑝(𝐺))op → Ĉat∞. By the dual of
Theorem 4.8, this happens if and only if the natural map

StMod(𝐺/𝐻) → lim ((𝑖/(𝐺/𝐻))op → O𝑝(𝐺)op StMod−−−−−→ Ĉat∞)

is an equivalence for every 𝐻 ≤ 𝐺. The slice category 𝑖/(𝐺/𝐻) is naturally equivalent to the 𝑝-
orbit category O𝑝(𝐻), with the functor O𝑝(𝐻) → O𝑝(𝐺) being given by 𝐻/𝑃 ↦ 𝐺/𝑃 . Mathew
proves a subgroup decomposition of StMod𝑘𝐻 over the orbit category:

5.1. Theorem ([Mat16, Corollary 9.16]). Let C be a collection of subgroups of 𝐻 that is closed
under intersection and such that every elementary abelian 𝑝-subgroup of 𝐻 is contained in a
subgroup in C . There is an equivalence of symmetric monoidal ∞-categories

StMod𝑘𝐻 ∼−−→ lim
𝐻/𝐾∈OC (𝐻)op

StMod𝑘𝐾 .

In light of Theorem 2.1, it is therefore enough to transport the above decomposition, applied
to C = S𝑝(𝐻) ∪ {1}, up to StMod𝑘𝐺 :
5.2. Lemma. The natural map

StMod(𝐺/𝐻) ∼−−→ lim
𝐻/𝑃∈O𝑝(𝐻)op

StMod(𝐺/𝑃)

is an equivalence.

Proof. Let M denote ModStMod𝑘𝐺 (𝐴𝐺𝐻 ); recall from Section 2 that 𝐴𝐺𝐻 is coind𝐺𝐻 (𝑘) and that
StMod(𝐺/𝐻) is equal to M by definition. By [Lur17, Corollary 3.4.1.9], for any 𝐴 ∈ CAlg(M)
we have a natural equivalence

ModM(𝐴) ∼−−→ ModStMod𝑘𝐺 (𝐴)

given by forgetting the 𝐴𝐺𝐻 -module structure. Therefore, we wish to prove that

M → lim
𝐻/𝑃∈O𝑝(𝐻)op

ModM(𝐴𝐺𝑃 )

is an equivalence.
Recall from Theorem 2.1 that coinduction induces a functor

coindG
H∶ StMod𝑘𝐻 ∼−−→ M
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that is an equivalence of symmetric monoidal ∞-categories. We obtain a commutative diagram

M lim
𝐻/𝑃∈O𝑝(𝐻)op

ModM(𝐴𝐺𝑃 )

lim
𝐻/𝑃∈O𝑝(𝐻)op

ModM(coind𝐺𝐻 (𝐴𝐻𝑃 ))

StMod𝑘𝐻 lim
𝐻/𝑃∈O𝑝(𝐻)op

ModStMod𝑘𝐻 (𝐴𝐻𝑃 )

∼

coindG
H

∼
coindG

H

whose bottom arrow is an equivalence by Mathew’s Theorem 5.1. □

We have therefore established:

5.3. Theorem. The right Kan extension of StMod(−)∶ O(𝐺)op → Ĉat∞ along the opposite of
the Yoneda embedding O(𝐺) → S𝐺 factors through the restriction map

Sop

𝐺 ≃ P(O(𝐺))op → P(O𝑝(𝐺))op.
In particular, StMod(−) sends 𝑆-equivalences in S𝐺 to equivalences of ∞-categories.

5.4. Remark. As noted in the introduction, the only part of this argument that was non-formal
was checking the descent statement in Lemma 5.2. Therefore, given a collection F of sub-
groups of 𝐺 that is closed under intersections and a functor 𝐹 ∶ O(𝐺)op → Ĉat∞ that has a
subgroup decomposition associated with F , the extended functor ̃𝐹 ∶ Sop

𝐺 → Ĉat∞ inverts the
weak equivalences associated with F .

6. Decompositions of the stable module ∞-category

In this section, we recall Dwyer’s construction [Dwy98, Sections 3.4–3.7] of𝐺-spaces that en-
code candidates for the subgroup, centraliser, and normaliser decompositions. These 𝐺-spaces
are (homotopy) colimits, so applying StMod(−) gives a limit of∞-categories that receives a com-
parison map from StMod𝑘𝐺 ; the 𝐺-space encodes a decomposition precisely when this map is
an equivalence. We also have 𝑆-homotopy equivalences between these 𝐺-spaces, so can use
the fact that StMod(−) inverts 𝑆-homotopy equivalences of 𝐺-spaces to “propagate” Mathew’s
subgroup decomposition to centraliser and normaliser decompositions.

Let C be a collection of subgroups of 𝐺. Note that we can consider a 𝐺-set as a discrete
𝐺-space.
Centraliser: Recall from Section 2 that the fusion category FC (𝐺) has objects given by the

elements of C and morphisms given by group homomorphisms that are induced by
conjugation in 𝐺. We have a functor 𝛼 ∶ FC (𝐺) op → S𝐺 that takes 𝐻 ∈ C to the
conjugacy class of the inclusion 𝐻 ↪ 𝐺, which is isomorphic to 𝐺/𝐶𝐺(𝐻) as a 𝐺-set.
The colimit of 𝛼 is a 𝐺-space that we will denote EFC (𝐺).

Subgroup: We have an inclusion functor 𝛽 ∶ OC (𝐺) → S𝐺 . We let EOC (𝐺) denote the colimit
of 𝛽 .

Normaliser: Recall from Section 2 that the orbit simplex category 𝑠𝑆C (𝐺) is the poset of 𝐺-
conjugacy classes of non-degenerate simplices in the nerve ofC , ordered by refinement.
We have a functor 𝛿 ∶ 𝑠𝑆C (𝐺)op → S𝐺 that takes a 𝐺-orbit of simplices [𝜎] to itself,
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considered as a discrete 𝐺-space. This 𝐺-set is isomorphic to 𝐺/𝑁𝐺(𝜎), where for 𝜎 =
(𝑃0 < … < 𝑃𝑛) we define 𝑁𝐺(𝜎) ≔ ⋂0≤𝑖≤𝑛 𝑁𝐺(𝑃𝑖). We let sd(C ) denote the colimit of 𝛿 .

6.1. Remark. Note that colim(𝛿) really is 𝐺-equivalent to the subdivision of the nerve of the
posetC , justifying our notation. This can be checked directly using themodel for colim 𝛿 given
by the diagonal of a bisimplicial set that is explained in [BK72, XII 5.2].

6.2. Remark. Dwyer calls these three spaces 𝑋 𝛼
C , 𝑋 𝛽

C , and sd𝑋 𝛿
C , respectively. For historical

reasons, EFC (𝐺) is sometimes called EAC elsewhere in the literature.

Since StMod(−) sends small colimits of 𝐺-spaces to limits of ∞-categories, we get

StMod(EFC (𝐺)) ≃ lim
𝐻∈FC (𝐺)

StMod(𝛼(𝐻))
≃ lim

𝐻∈FC (𝐺)
StMod(𝐺/𝐶𝐺(𝐻))

≃ lim
𝐻∈FC (𝐺)

StMod𝑘𝐶𝐺(𝐻).

The natural map EFC (𝐺) → ∗ induces a restriction functor StMod𝑘𝐺 → limFC (𝐺) StMod𝑘𝐶𝐺(𝐻),
so in this way EFC (𝐺) encodes a candidate for a centraliser decomposition for StMod𝑘𝐺 . Sim-
ilarly, EOC (𝐺) → ∗ induces a functor

StMod𝑘𝐺 → lim
𝐻∈OC (𝐺)op

StMod𝑘𝐻

corresponding to a subgroup decomposition and sd(C ) → ∗ induces a functor

StMod𝑘𝐺 → lim
𝜎∈𝑠𝑆C (𝐺)

StMod𝑘𝑁𝐺(𝜎)

corresponding to a normaliser decomposition. However, for a general collection C there is
no reason for any of these functors from StMod𝑘𝐺 to be an equivalence. We have comparison
maps between the 𝐺-spaces associated with a collection:

sd(C )

EOC (𝐺) C EFC (𝐺)

∼

Here the map from sd(C ) is the 𝐺-equivalence sending a simplex 𝑃0 < … < 𝑃𝑛 to 𝑃0; the map
from EOC (𝐺) sends a point 𝑥 ∈ 𝐺/𝐻 to its stabiliser 𝐺𝑥 ; and the map from EFC (𝐺) sends an
inclusion 𝐻 ↪ 𝐺 to 𝐻 .

Let S𝑝(𝐺) denote the collection of all non-trivial 𝑝-subgroups and A𝑝(𝐺) denote the sub-
collection of non-trivial elementary abelian 𝑝-subgroups. Recall that Mathew’s Theorem 5.1
shows that for certain collections, including C = S𝑝(𝐺) ∪ {1} and C = A𝑝(𝐺) ∪ {1}, we obtain
a subgroup decomposition. However, to obtain a useful centraliser or normaliser decomposi-
tion, we need to remove the trivial subgroup from the collection, otherwise StMod𝑘𝐺 itself will
appear in the decomposition on the right hand side. We therefore need a minor variation of
Theorem 5.1:

6.3. Lemma. Let C be a collection of subgroups of 𝐺 that is closed under intersection and such
that every elementary abelian 𝑝-subgroup of 𝐺 is contained in a subgroup in C . Let C ∗ denote
the non-trivial subgroups in C . There is an equivalence of symmetric monoidal ∞-categories

StMod𝑘𝐺 ∼−−→ lim
𝐺/𝐻∈OC ∗ (𝐺)op

StMod𝑘𝐻 .
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Proof. Since StMod(𝐺/{1}) ≃ ∗, the diagram of ∞-categories that includes the trivial subgroup
is a right Kan extension of the diagram that omits it, so the limits of the two diagrams agree. □

Lemma 6.3 shows we have a subgroup decomposition for C ∗ = S𝑝(𝐺) and C ∗ = A𝑝(𝐺). We
now transfer this result to other collections and decompositions using the fact that StMod(−)
inverts 𝑆-equivalences. We consider the following collections of 𝑝-subgroups: let B𝑝(𝐺) be the
collection of non-trivial 𝑝-radical subgroups, i.e. non-trivial 𝑝-subgroups 𝑃 ≤ 𝐺 such that 𝑃
is the maximal normal 𝑝-subgroup in 𝑁𝐺(𝑃). Let the collection I𝑝(𝐺) consist of all non-trivial
subgroups that are intersections of a set of Sylow 𝑝-subgroups in 𝐺. Finally, let Z𝑝(𝐺) be the
subcollection of A𝑝(𝐺) consisting of those subgroups 𝑉 such that 𝑉 is the set of elements in
the centre of 𝐶𝐺(𝑉 ) whose order divides 𝑝, i.e. such that 𝑉 = Ω1𝑂𝑝𝑍(𝐶𝐺(𝑉 )).
6.4. Theorem. Let C be one of the collections S𝑝(𝐺), A𝑝(𝐺), B𝑝(𝐺), I𝑝(𝐺), or Z𝑝(𝐺). There is a
subgroup decomposition

StMod𝑘𝐺 ∼−−→ lim
𝐺/𝑃∈OC (𝐺)op

StMod𝑘𝑃

and a normaliser decomposition

StMod𝑘𝐺 ∼−−→ lim
[𝜎]∈𝑠𝑆C (𝐺)

StMod𝑘𝑁𝐺(𝜎).

If C is S𝑝(𝐺), A𝑝(𝐺), or Z𝑝(𝐺), then there is additionally a centraliser decomposition

StMod𝑘𝐺 ∼−−→ lim
𝑃∈FC (𝐺)

StMod𝑘𝐶𝐺(𝑃).

Proof. We can restate the conclusion of Lemma 6.3 for S𝑝(𝐺) and A𝑝(𝐺) as saying that

(6.5) EOS𝑝(𝐺)(𝐺) → ∗ and EOA𝑝(𝐺)(𝐺) → ∗
are both sent to equivalences by StMod(−).

We now transport this information along 𝑆-homotopy equivalences. The following table
is taken from [GS06, Theorem 1.1]; a solid line denotes a 𝐺-homotopy equivalence, while a
dashed line denotes an 𝑆-homotopy equivalence. The column labels represent the different
collections of subgroups, where for concision we omit 𝑝 and 𝐺 from the notation.

B I S A Z
EOC (𝐺)

C

EFC (𝐺)

The subgroup decompositions arising from themaps in (6.5) correspond to the points EOS(𝐺)
and EOA(𝐺), marked in red. The equivalences in the first row show that we have a subgroup
decomposition for all of the collections in the table. More interestingly, the 𝑆-equivalence
EOS(𝐺) → S𝑝(𝐺) induces a normaliser decomposition

limOS (𝐺)op StMod(𝐺/𝑃) StMod(S𝑝(𝐺)) lim𝜎∈𝑠𝑆S (𝐺) StMod(𝐺/𝑁𝐺(𝜎))

StMod(𝐺/𝐺)

∼ ∼

∼
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and hence (via the equivalences in the second row of the table) a normaliser decomposition
for all the collections in the table. Finally, the same argument applied to the 𝑆-equivalence
EFS(𝐺) → S𝑝(𝐺) gives centraliser decompositions for the collections S𝑝(𝐺),A𝑝(𝐺), andZ𝑝(𝐺).

□
6.6. Remark. We don’t have a condition analogous to Dwyer’s “ampleness” for decompositions
of the stable module ∞-category. Recall that C is ample if the natural map

Ch𝐺 → (∗)h𝐺 ≃ B𝐺
induces an isomorphism on mod 𝑝 homology, and that there are subgroup, centraliser, and
normaliser decompositions associated with C if and only if C is ample. This latter statement
is due to the maps

sd(C )

EOC (𝐺) C EFC (𝐺)
being h𝐺-homotopy equivalences, i.e. 𝐺-maps that are homotopy equivalences. Since these
maps are not always 𝑆-equivalences, there is no analogous condition for the stable module ∞-
category. The same phenomenon is discussed in [Dwy98, Remark 3.10] in the context of the
behaviour of spectral sequences associated with the decompositions.

Appendix A. All relevant natural transformations are counits

In this section, we prove the assertion made in Remark 4.3 that the natural transformation
in each step of the outline of Theorem 4.8 is given by the counit of some adjunction. The only
step for which this is not obvious is the following:

A.1. Lemma. Under the equivalence

(𝑖∗)∗(𝑖!)∗(𝑦B)! ∼−−→ (𝑦B)!𝑗!𝑗∗
given by Lemmas 4.5 and 4.6, the natural transformation

(A.2) (𝑖∗)∗(𝑖!)∗(𝑦B)! → (𝑦B)!
induced by the counit of the (𝑖∗)∗ ⊣ (𝑖!)∗ adjunction corresponds to the natural transformation

(A.3) (𝑦B)!𝑗!𝑗∗ → (𝑦B)!
induced by the counit of the 𝑗! ⊣ 𝑗∗ adjunction.
Proof. This amounts to a large diagram chase; the diagram is reproduced below. We first ex-
plain why the diagram proves the lemma, then explain why the diagram commutes. Every map
in the diagram is an equivalence. For functors 𝐹 , 𝐹 ′ ∈ Fun(C,D), we denote the mapping space
of natural transformations from 𝐹 to 𝐹 ′ by Map(𝐹 , 𝐹 ′).

The natural transformation (A.2) is an element of the top-left mapping space in the diagram,
and the two vertical maps on the left-hand edge are induced by the equivalences of Lemmas 4.5
and 4.6. We therefore aim to show that (A.2) is sent to (A.3) in the bottom-left corner of the
region labelled 3⃝.

Since (A.2) is induced by the counit of the (𝑖∗)∗ ⊣ (𝑖!)∗ adjunction, it is sent to the identity
natural transformation in the top-right corner of the square labelled 2⃝. The maps along the
right-hand edge of the diagram are either induced by cancelling inverse equivalences or by
applying the identity 𝑦∗A (𝑖!)∗ ≃ 𝑗∗𝑦∗B of Diagram 4.7. One can check that these maps send the
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identity natural transformation in the top-right corner of 2⃝ to the identity natural transforma-
tion in the bottom-right corner of the diagram, which in turn is sent to (A.3) in the bottom-left
corner of the region labelled 3⃝.

Therefore, it remains to establish that the diagram commutes. The square labelled 2⃝ com-
mutes by definition of its left-hand edge; see Lemma 4.5. The region labelled 3⃝ also commutes
by definition of its left-hand edge; see Lemma 4.6. All the other regions are easily seen to
commute. □

Map((𝑖∗)∗(𝑖!)∗(𝑦B)!, (𝑦B)!) Map((𝑖!)∗(𝑦B)!, (𝑖!)∗(𝑦B)!) Map(𝑦∗A (𝑖!)∗(𝑦B)!, 𝑦∗A (𝑖!)∗(𝑦B)!)

Map(𝑗∗𝑦∗B (𝑦B)!, 𝑦∗A (𝑖!)∗(𝑦B)!)

Map(𝑗∗, 𝑦∗A (𝑖!)∗(𝑦B)!)

Map((𝑖∗)∗(𝑦A)!𝑗∗, (𝑦B)!) Map((𝑦A)!𝑗∗, (𝑖!)∗(𝑦B)!) Map(𝑦∗A (𝑦A)!𝑗∗, 𝑦∗A (𝑖!)∗(𝑦B)!)

Map(𝑗∗, 𝑦∗A (𝑖!)∗(𝑦B)!)

Map((𝑦B)!𝑗!𝑗∗, (𝑦B)!) Map(𝑗!𝑗∗, 𝑦∗B (𝑦B)!) Map(𝑗∗, 𝑗∗𝑦∗B (𝑦B)!)

Map(𝑗!𝑗∗, id) Map(𝑗∗, 𝑗∗)

(𝑖∗)∗⊣ (𝑖!)∗

1⃝

𝑦∗
A

2⃝

3⃝

(𝑖∗)∗⊣ (𝑖!)∗ 𝑦∗
A

(𝑦A)! ⊣𝑦∗
A

(𝑦B)! ⊣𝑦∗
B 𝑗! ⊣ 𝑗∗

𝑗! ⊣ 𝑗∗
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