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Abstract: In this thesis, we study C∗-simplicity of locally compact étale groupoids with
compact unit space, and applications to a class of C∗-algebras constructed from uniformly
recurrent subgroups.

Our novel methods for describing groupoid C∗-simplicity are largely enabled by a new
induction procedure for actions of étale groupoids. This procedure allows us to construct
injective objects in the category of operator systems with an action by a given groupoid G,
starting with injective C∗-algebras fibred over its unit space G(0). Adapting work of Hamana
on group-equivariant injective envelopes, we are thereby able to construct their groupoid-
equivariant counterparts, and define the boundary groupoid G̃ of G arising from the action on
the equivariant envelope of C(G(0)). Using the boundary groupoid, we prove a new criterion
for C∗-simplicity of G by relating the ideal structures of G and G̃.

In the latter part of this thesis, we study a class of C∗-algebras associated with a uniformly
recurrent subgroup Z of a finitely generated discrete group G via the Schreier graph, recently
described by G. Elek. We reframe Elek’s algebras as the reduced C∗-algebra of a groupoid
designed to model the original construction. This groupoid turns out to be a quotient of (the
opposite of) the transformation groupoid associated with the action of G on Z. Using well-
known results about reduced groupoid C∗-algebras, our new construction provides simpler
proofs of Elek’s results that the C∗-algebra is nuclear if the Schreier graph has local property
A and simple if the uniformly recurrent subgroup is generic. Furthermore, we show that local
property A is in fact neccesary for the C∗-algebra to be nuclear, establishing it as an equivalent
criterion. Finally, we apply our new criterion for C∗-simplicity from the first part of the thesis
to give examples of simple Elek algebras whose uniformly recurrent subgroups are not generic.

To establish the necessary background, Chapters 2 and 3 of this thesis provide a self-
contained discussion of the recent successful characterisations of C∗-simplicity for discrete
groups by Kalantar–Kennedy, Breuillard–Kalantar–Kennedy–Ozawa, and Kennedy, as well as
for crossed products of discrete groups with commutative unital C∗-algebras by Kawabe.



Résumé: Denne afhandling undersøger C∗-simplicitet af lokal kompakte étale gruppoider
med kompakt enhedsrum gennem en ny randgruppoid som generaliserer metoder der for
nylig blev brugt til at bresvare spørgsmålet om C∗-simplicitet for diskrete grupper og deres
krydsprodukter. Derudover bruger vi vores nye resultater til at give nye eksempler på simple
Elek algebraer.

Vores nye metoder for at beskrive gruppoid simplicitet er for det meste baseret på en ny
induktionsfremgangsmåde af virkninger af étale gruppoider på operatorsystemer. Dette induk-
tionsskema tillader os at konstruere injektive objekter i kategorien af operatorsystemer med
virkning af en fast gruppoid G, med injektive C∗-algebraer som er fibreret over enhedsrummet
G(0) som udgangspunkt. Baseret på Hamanas ækvivariante injektive hylstre for grupper, kon-
struerer vi ækvivariante injektive hylstre for gruppoider og definerer randgruppoiden G̃, som
er tilknyttet til virkningen af G på det gruppoid-ækvivariante hylster af C(G(0)). Vi relaterer
idealstrukturen af G̃ og G og beviser derved et nyt tilstrækkeligt kriterium til C∗-simplicitet.

I den anden del af afhandlingen undersøger vi en ny klasse af C∗-algebraer tilknyttet til
“uniformly recurrent” delgrupper Z af endelig genererede diskrete grupper G, som for nyligt
blev beskrevet af G. Elek gennem deres “Schreier” grafer. Inspireret af Eleks konstruktion
beskriver vi en konkret étale gruppoid, en kvotient af transformationsgruppoiden for virkningen
af G på Z, og vi viser, at dens reducerede C∗-algebra er Eleks algebra tilknyttet til Z. Sådan
giver vi kortere beviser for Eleks resultater at C∗-algebraen er nukleær hvis Schreier grafen
har local property A og er simpel hvis Z er generisk, og viser derudover at local property A er
faktisk ækvivalent med nuklearitet. Til sidst giver vi nye exempler af simpel Elek algebraer
tilknyttet til uniformly recurrent delgrupper ikke er generisk.

Kapitler 2 og 3 rekapitulerer baggrunden for Kalantar–Kennedys, Breuillard–Kalantar–
Kennedy–Ozawas and Kennedys resultater om C∗-simplicitet af diskrete grupper, såvel som
Kawabes arbejde vedrørende simplicitet af reducerede krydsprodukter af diskrete grupper med
kommutative unitale C∗-algebraer.
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Introduction

The field of Operator Algebras is well-known for its tendency to borrow objects from different
branches of mathematics, relate them to its own language, and build a rich theory on top
of the already existing structure. A prime example of this modus operandi is the theory of
group C∗-algebras, which provide a handy way to generate concrete examples of C∗-algebras
with desired properties - as long as you understand how to translate back and forth between
group-theoretic and operator-algebraic statements. A recent success story in making these
translations concerns the question of when the reduced group C∗-algebra C∗r (G) is simple, the
group G consequently being called C∗-simple, which was completely resolved for discrete
groups by Kennedy [40]. In this thesis, we generalise Kennedy’s characterisation of C∗-
simplicity to Hausdorff étale groupoids with compact unit space, providing a new sufficient
criterion for simplicity of their associated C∗-algebras. We then apply this criterion to a class
of C∗-algebras recently defined by G. Elek, for which we provide a new groupoid model.

The earliest C∗-simplicity result goes back to 1975, when Powers [52] proved that the non-
abelian free group on two generators F2 is C∗-simple. His proof used a variant of the Dixmier
property, showing that conjugates of every element of C∗r (F2) can be made to approximate a
scalar. For several decades, Powers’ techniques formed the de-facto only method to prove
C∗-simplicity of (discrete, countable) groups and many more groups to which his arguments
applied could be identified. These are now called Powers groups, see for example de la Harpe’s
2007 survey [19].

A group G satisfies another operator algebraic property, the unique trace property, if
the canonical trace on C∗r (G) is its only tracial state. Since Power’s methods for proving
C∗-simplicity also forced uniqueness of the trace, all examples of C∗-simple groups known at
the time of de la Harpe’s survey also had unique trace. Both properties had been shown to force
the group to be not only non-amenable, but also to rule out the presence of non-trivial normal
amenable subgroups. This is often easier stated as the largest normal amenable subgroup, the
amenable radical, being trivial. However, no other relation between C∗-simplicity, the unique
trace property, and triviality of the amenable radical was known: It remained open whether
there were any groups satisfying either C∗-simplicity or unique trace, but not the other, and de
la Harpe [19] raised the question of whether there were any non-C∗-simple countable groups
with trivial amenable radical, besides the trivial group.

Progress on these questions was only made in 2014, when Kalantar and Kennedy [36], for
the first time, gave a dynamic characterisation of C∗-simplicity. Shortly after, in a joined effort
with Breuillard and Ozawa [9], this led to a group-theoretic characterisation of the unique
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2 CHAPTER 1. INTRODUCTION

trace property, which indeed turned out to be equivalent to the amenable radical being trivial.
When Le Boudec [41] answered de la Harpe’s question in 2016 by giving an example of a
non-C∗-simple group with unique trace, all implications between the three properties were
known: C∗-simplicity implies unique trace, which is equivalent to having trivial amenable
radical, but the converse does not hold.

Kalantar–Kennedy’s dynamical description was largely enabled by their new description
of an old tool: The injective envelope I(A) of a C∗-algebra A, defined and proved to exist by
Hamana [29] in 1979, is the smallest injective C∗-algebra into which A embeds. Hamana
developed his theory further in the following years [30, 34], providing among other things a
group-equivariant version IG(A) of the injective envelope for a C∗-algebra A with an action
of a group G. On the other hand, Furstenberg [25] coined a notion of boundary of a discrete
group G, a strongly proximal, minimal, compact space with G-action, and proved in 1973
the existence of a universal boundary ∂FG, of which every other boundary is a factor. This
boundary ∂FG is now called the Furstenberg boundary. Kalantar and Kennedy realised that the
Furstenberg boundary is G-equivariantly homeomorphic to the spectrum of the G-equivariant
injective envelope IG(C) of the complex numbers C equipped with the trivial action of G.
Leveraging the new connection, they proved that G is C∗-simple, if and only if the action
of G on IG(C) is topologically free, providing the first non-operator theoretic description of
C∗-simplicity.

Shortly after, Kennedy [40] developed these ideas further and arrived at a purely group-
theoretic characterisation of C∗-simplicity. A subgroup H of a discrete group G is called
recurrent, if there is a finite subset F of G \ {e} such that every subgroup conjugate to H
intersects F. Kennedy’s characterisation, in its simplest form, states that G is C∗-simple if and
only if G contains no non-trivial amenable recurrent subgroups. Since any non-trivial normal
subgroup is invariant under conjugation, it is clearly recurrent and we obtain an easy proof that
every C∗-simple group has unique trace, as not having recurrent amenable subgroups implies
not having normal amenable subgroups.

Kennedy’s work has since been generalised in several directions [4, 13, 43, 44]. In
particular, Kawabe [38] has derived an analogous characterisations for simplicity of the
crossed product of a compact space by a discrete group in his PhD thesis under the supervision
of Ozawa. Kawabe’s techniques are remarkably straightforward: Considering the crossed
product C(X) or G, the role of the injective envelope IG(C) with respect to C∗-simplicity
of G is replaced by the injective envelope IG(C(X)) of the algebra on which G acts, which
specialises to Kennedy’s proof since C∗r (G) is isomorphic to the crossed product C or G for
the trivial action of G on C. Proving simplicity of a crossed product C(X) or G is usually
done in two steps. First, the action of G on X has to be minimal, that is, every orbit is dense
in X, to make sure that C(X) does not have G-invariant ideals. Then, one should prove the
intersection property, introduced by Svensson and Tomiyama [58], demanding that every
non-trivial ideal of C(X) or G intersects C(X) non-trivially. Kawabe proves that C(X) or G has
the intersection property if and only if IG(C(X)) or G does, and that this is furthermore the
case if and only if the action of G on the spectrum of IG(C(X)) is topologically free. From
this he derives a simplicity criterion for minimal actions of G, which we restate in slightly
simpler language: The crossed product is simple if and only if no stabiliser contains a recurrent
amenable subgroup of G.

The central piece of original research presented in this thesis is a further generalisation of
Kennedy’s and Kawabe’s work to Hausdorff étale groupoids with compact unit space and their
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associated reduced C∗-algebras. These generalise group C∗-algebras and crossed products,
but instead of a single group acting on a space, the set of available elements to act may vary
from point to point. Consequently, group-equivariant injective envelopes cannot meaningfully
be applied to the theory of groupoid C∗-algebras. Instead, we supply a new framework of
induction of groupoid actions, allowing us to construct injective objects in the category of
operator systems with an action by a fixed groupoid G from an injective C∗-algebra fibred
over its unit space G(0). Following Hamana’s scheme for the construction of group-equivariant
injective envelopes, we are able to adapt the theory to provide the groupoid-equivariant
analogues. For a suitable groupoid G we obtain a boundary groupoid G̃ from the action of G
on the spectrum of the G-equivariant injective envelope of C(G(0)), the boundary groupoid
of G. As it was the case for groups and crossed products, C∗-simplicity and the intersection
property are closely linked to the dynamics of the boundary groupoid and we prove that G has
the intersection property if G̃ does. The boundary groupoid furthermore shares the properties
of the Furstenberg boundary for groups that make its dynamics more tractable, like extremal
disconnectedness of its unit space and amenability of its stabilisers. We leverage these into a
sufficient criterion for C∗-simplicity of G solely in terms of certain subgroups of the isotropy
groups of G we call dynamically recurrent.

We then apply our results to a class of C∗-algebras constructed from uniformly recurrent
subgroups and recently devised by G. Elek. These algebras arise as a completion of the algebra
of local kernels on a Schreier graph associated with the uniformly recurrent subgroups. We
develop a groupoid picture that closely models Elek’s construction. This groupoid turns out to
be a quotient of (the opposite of) the transformation groupoid associated with the action of the
surrounding group on its uniformly recurrent subgroup. As the groupoid model enables us to
use the powerful tools available to the theory of ample étale groupoids, we are able to simplify
and strengthen several of Elek’s proofs. In particular, we show that Elek’s sufficient condition
for nuclearity, the so-called local property A of the Schreier graph, is in fact an equivalent
condition. Finally, we apply our new results on groupoid simplicity to obtain new examples of
Elek algebras that are not covered by Elek’s simplicity criteria.

In addition to this introduction there are four Chapters. Chapter 2 provides a self-contained
review of Kalantar–Kennedy’s work, including Hamana’s theory of injective envelopes. For
almost all statements in this chapter, we provide proofs with very little or no modification from
the original papers. In Chapter 3, we review Kawabe’s generalisations of these techniques
to crossed products, and the main results regarding their simplicity. As Kawabe’s work
remains unpublished, we have taken the liberty to modify its statements and language slightly,
providing alternative or streamlined proofs. We introduce our new notion of dynamically
recurrent subgroup of a stabiliser which generalises well to our own results for groupoids
and add an equivalent condition to his theorem on simplicity of minimal crossed products
(see Proposition 3.3.12). Our own original research is presented in Chapter 4. Section 4.2
contains the main results establishing new simplicity criterion for groupoid C∗-algebras along
with the construction of the groupoid Furstenberg boundary, based on a pre-print [8] currently
under review for publication. In Section 4.3 we provide a new groupoid model for the Elek
algebras associated with uniformly recurrent subgroups. We then provide new examples of
simple Elek algebras using one of our simplicity conditions. This section is based on a paper
[7] to appear in Mathematica Scandinavica. Finally, Chapter 5 collects some open questions
for further research on the groupoid Furstenberg boundary and simplicity of reduced groupoid
C∗-algebras.
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Groups

We start out by reviewing the recent breakthrough results on C∗-simplicity of discrete groups,
which the later chapters will generalise. After providing the necessary background in Section
2.1, the fundamental insights regarding the connection between injective envelopes and
the Furstenberg boundary are presented in Section 2.2. This enables us to prove Kalantar–
Kennedy’s characterisations in Section 2.3.

2.1 Group Basics

C∗-algebras associated with groups and their many generalisations give a particularly rich
class of examples in operator algebras and are essential in tying the field to many other areas
of mathematics.

In order to fix notation and be self-contained, we introduce some basic terminology.

2.1.1 Group C∗-algebras

In its essence, the group C∗-algebra of a group G models the group structure as unitaries acting
on some Hilbert space H via a representation of G, that is, a group homomorphism from
G into the groupU(H) of unitaries on H . Immediately, there is a choice of representation
with one of the most important candidates being the so-called left-regular representation.
Throughout this thesis we will consider this representation and its generalisations, giving
rise to the so-called reduced C∗-algebras. In general, we will assume discrete groups to be
countable, unless explicitly stated otherwise. If the countability assumption is particularly
important, we will repeat it in the affected statements.

The left-regular representation λ represents G on the Hilbert spaceH = `2(G). It sends a
group element g ∈ G to the unitary λg ∈ U(`2(G)) acting as

λgδh = δgh.

Here, δh ∈ `
2(G) denotes the canonical basis vector which takes value one at h ∈ G and zero

everywhere else. For ease of notation, we will refer to the left-regular representation simply
as the regular representation. The reduced group C∗-algebra of G is then isomorphic to the
C∗-algebra generated by the image λ(G) inside B(`2(G)). Slightly more abstractly, we consider
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6 CHAPTER 2. GROUPS

the group algebra C[G] consisting of all formal linear combinations of finitely many group
elements over the field C equipped with multiplication(∑

g∈G

ag g
)(∑

g∈G

bg g
)

=
∑

g,h∈G

agh−1 bh g

and involution (∑
g∈G

ag g
)∗

=
∑
g∈G

ag−1 g.

This multiplication and involution make the representation of G on C[G] by sending g ∈ G to
g ∈ C[G] a unitary representation. In fact, asking for this map to be a unitary representation
determines the multiplication and involution on C[G] uniquely. Furthermore, we equip C[G]
with the norm induced by the representation λ, that is,∥∥∥∑

g∈G

ag g
∥∥∥
λ

=
∥∥∥∑

g∈G

agλg

∥∥∥
B(`2(G)),

and define the reduced C∗-algebra C∗r (G) of G to be the completion of C[G] in that norm.
For a more thorough introduction including proofs that C[G] and C∗r (G) as described are

indeed a ∗-algebra and a C∗-algebra, we refer to the excellent exposition of Brown–Ozawa
[12, Chapter 4.1].

Another important C∗-algebra associated with the discrete group G is the universal C∗-
algebra C∗u(G). It is given by the completion of C[G] in the universal norm ‖·‖u taking into
account “all representations” of G, but there are some subtle size issues as the collection of
“all representations” of the group is not a set. However, the collection of unitary equivalence
classes of cyclic representations of G is a set, where a representation π of G on a Hilbert
spaceH is called cyclic if there is a vector ξ ∈ H such that π(G)ξ spansH densely and two
representations π and π′ onH andH ′ are unitarily equivalent, if there is a unitary operator
T : H → H ′ such that Tπ(g) = π′(g)T for all g ∈ G. We say that such T intertwines π and
π′. We denote the set of cyclic representations of G up to unitary equivalence by cRep(G)/∼.
Then we define the universal norm for f ∈ C[G] as

‖ f ‖u B sup{‖π( f )‖B(H) | [π] ∈ cRep(G)/∼}. (2.1)

Clearly, if π and π′ are unitarily equivalent representations, then ‖π( f )‖B(H) = ‖π′( f )‖B(H ′)
for all f ∈ C[G], which makes the choice of representing element π for [π] in Equation (2.1)
irrelevant. Note that for g ∈ G ⊆ C[G] we have ‖π(g)‖B(H) = 1 for every representation π, and
hence ∥∥∥∑

g∈G

ag g
∥∥∥

u ≤
∑
g∈G

|ag| ‖g‖u =
∑
g∈G

|ag|,

which is finite as the sum is finite, and therefore the supremum in Equation (2.1) is finite.
Furthermore, ‖·‖ is easily seen to indeed be a norm onC[G]. We define the universal C∗-algebra
C∗u(G) associated with G to be the completion of C[G] in the universal norm.

If ξ ∈ H and π is a (not necessarily cyclic) representation of G on H , then π(G) leaves
Hξ B span π(G)ξ invariant and we obtain a representation πξ of G onHξ by restricting. It is
not hard to see that ‖π( f )‖B(H) = sup{‖πξ( f )‖B(Hξ) | ξ ∈ H}. Hence ‖π( f )‖B(H) may be approx-
imated by ‖π′( f )‖B(H ′) for cyclic representations π′. Combining this with the observation that
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‖π( f )‖B(H) depends on π only up to unitary equivalence, we find that ‖π( f )‖B(H) ≤ ‖ f ‖u for
any representation π and f ∈ C[G]. Consequently, C∗u(G) has the universal property that for
every representation π of G on H there is a unique ∗-homomorphism C∗u(G) → B(H) with
g 7→ π(g) for g ∈ G ⊆ C[G] ⊆ C∗u(G). In particular, there is a surjective ∗-homomorphism
ρ : C∗u(G)→ C∗r (G).

In this thesis we explore the fundamental question of when a reduced C∗-algebra is simple.

Definition 2.1.1: A two-sided ideal in a C∗-algebra A is a linear subspace closed under
multiplication with arbitrary elements of A from the left and right. The C∗-algebra A is called
simple, if it contains no proper closed two-sided ideals; that is, if I C A is a closed two-sided
ideal then I = {0} or I = A.

A discrete group G is called C∗-simple if its reduced algebra C∗r (G) is simple.

Due to the canonical surjective ∗-homomorphism ρ : C∗u(G)→ C∗r (G) obtained from the
universal property, the universal C∗-algebra C∗u(G) is never simple, unless C∗r (G) happens to
be simple and ρ is an isomorphism. Hence simplicity of C∗u(G) is completely characterised by
simplicity of C∗r (G), assuming that we can describe when ρ is an isomorphism, which we will
do in the next section.

2.1.2 Amenability

Recall that the famous Banach-Tarski paradox states that the ball in three dimensions can be
decomposed into finitely many disjoint subsets which may then be moved by only translations
and rotations such that they assemble again into two translated copies of the original ball. This
is a property of the action of the group G of translations and rotations on R3 and we say that
the action admits a paradoxical decomposition. That is, the unit ball of R3 contains disjoint
subsets Ai and B j and group elements gi, h j ∈ G for 1 ≤ i ≤ n and 1 ≤ j ≤ m such that such
that the unit ball equals

n⋃
i=1

gi.Ai =

m⋃
j=1

h j.B j.

On the contrary, amenability has been conceived as a property of groups that prevents its
actions from having such paradoxical compositions.

Let G be a discrete group and let G act on `∞(G) by shifting the argument; that is,

(g. f )(h) = f (g−1h)

for g, h ∈ G and f ∈ `∞(G).

Definition 2.1.2: A mean on G is a positive linear functional m : `∞(G)→ C of norm one. If

m(g. f ) = m( f )

for all g ∈ G and f ∈ `∞(G) the mean is called invariant, and G is amenable if it admits an
invariant mean.
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Any finite or commutative group is amenable, while the easiest example of a non-amenable
group is given by the free group in two generators [52]. In fact it was a long-standing conjecture
by Day and von Neumann that every non-amenable group contains a copy of the free group on
two generators, until proven false by Olšanskiı̆ [45].

There is a plethora of equivalent criteria for amenability. For reference we collect some of
them from [12, Theorem 2.6.8] without explaining the additional terminology not required
elsewhere:

Proposition 2.1.3: Let G be a discrete group. The following are equivalent:

1. G is amenable, i.e. it admits an invariant mean.

2. The universal and the reduced norm coincide on C[G]; in other words, the canonical
∗-homomorphism ρ : C∗u(G)→ C∗r (G) is an isomorphism.

3. C∗r (G) is nuclear.

4. C∗r (G) has a character.

5. G satisfies the Følner condition.

6. The trivial representation τG of G is weakly contained in the regular representation λG

of G, i.e. ‖τG( f )‖ ≤ ‖λG( f )‖ for all f ∈ C[G].

7. There is a net ϕλ of finitely supported positive definite functions on G such that
limλ ϕλ(g) = 1 for all g ∈ G.

Note that, as in the previous proposition, we will often denote nets simply as elements
indexed by some index λ without making the underlying directed set explicit.

Amenability questions are deeply intertwined with the question of C∗-simplicity. One
of the obstructions to C∗-simplicity discovered first is the existence of a non-trivial normal
amenable subgroup, see for example the exposition of de la Harpe [19, Proposition 3]. Note
that the trivial subgroup {e} is always normal and amenable. In fact, every group G contains a
unique maximal normal amenable subgroup, called the amenable radical of G, that conains
all other normal amenable subgroups by a result of Day [18, Section 4, Lemma 1]. We will go
into more details on these results in Section 2.3.

2.1.3 Completely Positive Maps
In many places, we will deal not with C∗-algebras, but operator systems:

Definition 2.1.4: An operator system S is linear subspace of a unital C∗-algebra A that
contains the unit and is closed under the adjoint operation of A.

To avoid some subtlety later on, we keep the surrounding C∗-algebra A explicit in the
definition of S .

Definition 2.1.5: An element a of a C∗-algebra A is positive if it is of the form a = b∗b for
some b ∈ A. A linear map ϕ between two operator systems S ⊆ A and T ⊆ B is positive if it
sends every element of S that is positive in A to an element of T that is positive in B.
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The matrix algebra Mn(A) over a C∗-algebra A is the C∗-algebra of all n-by-n matrices
[ai j] with entries in A equipped with the usual matrix multiplication

[ai j][bi j] = [ci j] where ci j =

n∑
k=1

aikbk j

and adjoint operation
[ai j]∗ = [a∗ji].

If A is represented on B(H) for some Hilbert spaceH , we may represent Mn(A) on B(H⊕n)
and equip it with the operator norm of B(H⊕n). Likewise, the matrix algebra Mn(S ) ⊆ Mn(A)
is an operator system inside Mn(A) for any operator system S ⊆ A. A linear map ϕ : S → T
between two operator system S ,T has amplification ϕ(n) : Mn(S )→ Mn(T ) defined by

ϕ(n)([ai j]) = [ϕ(ai j)].

This yields a stronger notion of positivity:

Definition 2.1.6: Let ϕ : S → T be a linear map between two operator systems S and T .
Then ϕ is called n-positive if ϕ(n) is positive and completely positive if it is n-positive for every
n ∈ N.

If ϕ is n-positive, then it is clearly m-positive for every m ≤ n. For a simple example of a
positive map which is not completely positive, consider the transposition t : M2(C)→ M2(C),
which is not even 2-positive.

Any positive map ϕ is bounded and if the domain is unital with unit 1, then in fact
‖ϕ‖ = ‖ϕ(1)‖B by [50, Corollary 2.9]. A completely positive map ϕ that satisfies ‖ϕ(n)‖ ≤ 1 for
all n ∈ N is furthermore called completely contractive, or ccp for short. A completely positive
map that is unital is called unital completely positive or ucp, and any ucp map is ccp. A ucp
map with ucp inverse is called a complete order isomorphism. If every amplification ϕ(n) is an
isometry, ϕ is called a complete isometry.

As an operator system is not closed under multiplication, ucp maps offer the “next best”
replacement for ∗-homomorphisms and in fact exhibit several useful properties that make them
almost as tractable as if they were multiplicative. We therefore form a category with operator
systems as objects and unital completely positive maps between these as morphisms, called
the category of operator systems.

Note that the order on (the self-adjoint elements of) a C∗-algebra A is determined by the
cone of positive elements, that is a ≤ b for a, b ∈ A self-adjoint if and only if b− a is a positive
element of A.

Proposition 2.1.7: If ϕ : S → T is a ucp map between two operator systems S and T , it
satisfies the Schwarz inequality

ϕ(a)∗ϕ(a) ≤ ϕ(a∗a)

for all a ∈ S .

This is a simple consequence of the Stinespring dilation for ucp maps, see [12, Proposi-
tion 1.5.7].
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Definition 2.1.8: Let ϕ : A → B be a ucp map between two C∗-algebras A and B. The
multiplicative domain mult(ϕ) is given by

mult(ϕ) = {a ∈ A | ϕ(a)∗ϕ(a) = ϕ(a∗a) and ϕ(a)ϕ(a)∗ = ϕ(aa∗)}.

The multiplicative domain lends its name from the fact that ϕ is multiplicative whenever
at least one of the factors in the multiplication comes from the multiplicative domain. That
is, whenever x ∈ mult(ϕ) and y ∈ A, we have ϕ(xy) = ϕ(x)ϕ(y) and ϕ(yx) = ϕ(y)ϕ(x). If
the domain of ϕ is a C∗-algebra A then mult(ϕ) is a sub-C∗-algebra of A and in fact the
largest sub-C∗-algebra on which ϕ restricts to a ∗-homomorphism. We will sometimes use the
following description of the multiplicative domain:

Lemma 2.1.9: Let ϕ : A→ B be a ucp map between two C∗-algebras A and B. Then

mult(ϕ) = span
{
u ∈ A | ‖u‖A = 1 and ϕ(u) unitary

}
.

Proof. If u ∈ A with ‖u‖ = 1 is such that ϕ(u) is unitary, then 1B = ϕ(u)∗ϕ(u) ≤ ϕ(u∗u)
by the Schwarz inequality, but ‖ϕ(u∗u)‖ ≤ ‖u‖2 = 1 and hence ϕ(u∗u) ≤ 1B. We conclude
ϕ(u)∗ϕ(u) = ϕ(u∗u). Similarly, ϕ(u)ϕ(u)∗ = ϕ(uu∗), so u is contained in the multiplicative
domain of ϕ.

Conversely, mult(ϕ) is a unital ∗-subalgebra of A and as such spanned by the unitaries
that it contains. But if u ∈ mult(ϕ) is a unitary, then ϕ(u)∗ϕ(u) = ϕ(u∗u) = ϕ(1A) = 1B and
likewise ϕ(u)ϕ(u)∗ = 1B, so ϕ(u) is a unitary in B. We conclude that

mult(ϕ) ⊆ span
{
u ∈ A | ‖u‖A = 1 and ϕ(u) unitary

}
and thereby the statement. �

A particularly useful class of completely positive maps is formed by the so-called condi-
tional expectations.

Definition 2.1.10: Let A be a C∗-algebra and B ⊆ A a sub-C∗-algebra. A conditional expecta-
tion E : A→ B from A onto B is a ccp map that restricts to the identity on B.

For example, consider a discrete group G with normal subgroup N. Then C[N] ⊆ C[G]
and a quick calculation detailed in [12, Proposition 2.5.8] shows that we may extend this to an
inclusion of C∗-algebras C∗r (N) ⊆ C∗r (G). The map EN : C∗r (G)→ C∗r (N) given by

EN(λg) =

λg if g ∈ N,
0 else,

(2.2)

is a conditional expectation by [12, Proposition 2.5.9, 2.5.12]. Further examples include the
canoncial conditional expectation EX from a crossed product C(X) or G onto C(X) introduced
later in Equation (3.2) and the analogue expectation onto the diagonal for groupoids.

2.2 Injective Envelopes and the Furstenberg Boundary
In this section we review the results leading to Kalantar–Kennedy’s identification of the
Hamana and Furstenberg boundaries, paving the way for the simplicity results of Section 2.3.
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2.2.1 The Furstenberg Boundary
Recall that an action of a discrete group G on a Hausdorff topological space X is simply a
group homomorphism from G into the group of homeomorphisms of X. For a discrete group
G a boundary of G is a non-empty compact topological space X with a G-action, such that the
action is minimal and strongly proximal. Minimality is simply the assertion that the G-orbit of
every point in X is dense in X. To define strong proximality, note that G also acts via shifting
of the argument on the spaceM(X) of Radon probability measures on X equipped with the
weak-∗-topology of C(X) and that X embeds intoM(X) as the point measures. The action on
X is then called strongly proximal if any measure µ contains a point measure in the closure of
its G-orbit G.µ inM(X).

The Furstenberg Boundary ∂FG is the universal G-boundary in the sense of the following
proposition. We follow Ozawa [48, Section 1] to prove existence and uniqueness:

Proposition 2.2.1 (Furstenberg): Let G be a discrete group. Up to G-equivariant home-
omorphism, there is a unique G-boundary ∂FG such that every other G-boundary is G-
equivariantly homeomorphic to a quotient of ∂FG with the quotient relationship respecting the
G-action. Then ∂FG is called the Furstenberg boundary of G.

Proof. Existence: Let {Xi} be the representing elements of all G-homeomorphism classes
of G-boundaries and consider

∏
i Xi, equipped with the coordinate-wise action of G. Then

the action of G on
∏

i Xi is strongly proximal. Indeed, if X and Y are two strongly proximal
G-spaces, then X × Y is strongly proximal: given a measure µ ∈ M(X × Y), we obtain a
measure q(µ) on X by q(µ)(A) B µ(A × Y) for A ⊆ X measurable. As the action on X is
strongly proximal, the orbit closure of q(µ) contains a point measure δx for some x ∈ X
and as the action of G is coordinate-wise, q is G-equivariant, there is a net gλ ∈ G such
that q(gλ.µ) = gλ.q(µ) approximates δx. SinceM(X × Y) is compact and q continuous, we
may pass to a convergent subnet and obtain a measure µ′ in the orbit closure of µ such that
q(µ′) = δx. Hence µ′(B) = µ′(π−1

1 ({x}) ∩ B) for π1 the projection on the first coordinate and
therefore clearly µ′ = δx ⊗ ν for a measure ν ∈ M(Y) defined by ν(A) = µ′({x} × A) for
A ⊆ Y measurable. As the action on Y is strongly proximal, there is a net g′λ ∈ G such that
g′λ.ν converges to δy for some y ∈ Y and since X is compact we may again pass to a subnet
such that g′λ.x converges to some x′ ∈ X. Then g′λ.µ

′ = δg′λ.x ⊗ g′λ.ν converges to the point
measure δx′ ⊗ δy and we conclude that the action on X × Y is strongly proximal. By induction,
finite products of strongly-proximal G-spaces are strongly proximal and hence so are infinite
products, as the topology is defined by convergence in every finite selection of coordinates.

Therefore the product of all G-boundaries
∏

i Xi is compact and strongly proximal, and as
every compact space contains a minimal closed subspace, we may choose a minimal closed
subspace K of

∏
i Xi, which is a G-boundary. Since the image of K under the projection πi

onto the i-th coordinate is non-empty and Xi is minimal, πi(K) is all of Xi, so any G-boundary
Xi is a quotient of K, up to G-equivariant homeomorphism.

Uniqueness: Let X and Y be two universal G-boundaries in the sense of the proposition.
Then there are G-equivariant quotient maps ϕ : X → Y and ψ : Y → X. We show that ψ ◦ ϕ
is the identity on X and uniqueness follows by symmetry. Let ι be the embedding of X into
M(X) and consider the map η : X →M(X) defined by η(x) = (ι(x) + ι(ψ ◦ ϕ(x))/2. Then η is
a G-equivariant map hence η(X) is a G-invariant compact subset ofM(X). As the action on X
is strongly proximal, η(X) contains ι(X). But as X is minimal, η−1(ι(X)) contains all of X, so η
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only takes values in point measures. Since η(x) = (δx + δψ◦ϕ(x))/2 is only a point measure if
ψ ◦ ϕ(x) = x, we conclude that ψ ◦ ϕ is the identity on X. �

An extensive list of examples and constructions of group boundaries has been compiled by
Bryder [13, Section 2.2].

2.2.2 Equivariant Injective Envelopes
On the other side of the story sits another old and well-known tool, Hamana’s equivariant
injective envelopes.

Despite being C∗-algebras, injective envelopes are described in the larger category of
operator systems with unital completely positive maps, as presented in Section 2.1.3. A
discrete group G can act on an operator system S by invertible morphisms in the category
of operator systems, that is, ucp maps with ucp inverse. These are called the complete order
automorphisms of S and the group action is simply a group homomorphism from G into the
group of complete order automorphisms of S .

Injective operator systems, as intensely studied by Choi and Effros [17], are exactly the
injective objects in the category of operator systems. In more detail:

Definition 2.2.2: An operator system I is called injective, if for any pair of operator systems
V , W with a unital completely isometric map κ : V ↪→ W and a ucp map ϕ : V → I there is a
ucp map ϕ̃ : W → I that extends ϕ, that is, ϕ̃ ◦ κ = ϕ as in Diagram 2.3 below.

W I

V

ϕ̃

κ
ϕ (2.3)

Note that the extension ϕ̃ does not need to be unique. We sometimes refer to a unital
completely isometric map between operator systems as an embedding.

Hamana developed a rich theory of so-called injective envelopes for operator systems [30]
as well as C∗-algebras [29], with and without a group action [34]. The following definitions
are taken from [30, Section 2]:

Definition 2.2.3: Let V be an operator system. An extension of V is an operator system W
with a unital completely isometric map κ : V ↪→ W.

Definition 2.2.4: An extension κ : V ↪→ W of an operator system V is called. . .

• injective if W is injective as an operator system.

• essential if whether a map out of W is a complete isometry can be decided on V; that is,
if any ucp map ϕ : W → Z into a third operator system Z is completely isometric if and
only if ϕ ◦ κ is.

• rigid if any ucp map that fixes V inside W pointwise also fixes all of W pointwise; that
is, the only ucp map ϕ : W → W such that ϕ ◦ κ = κ is the identity on W.
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• the injective envelope of V if it is injective and essential.

When working in the category of operator systems with G-action, there are analogous
definitions for a G-extension being G-injective, G-essential, G-rigid, or a G-equivariant
injective envelope, in which all operator systems carry an action of a discrete group G and all
ucp maps are G-equivariant.

One might wonder what the role of rigidity is, as it is seemingly not involved in the
definition of an injective envelope. However, rigidity provides a convenient stepping stone to
prove essentiality:

Proposition 2.2.5 (Hamana [30, Lemma 3.7]): Let κ : V → W be an extension of the
operator system V . If the extension is rigid and injective, then it is essential:

Proof. Let ϕ : W → Z be a ucp map into a third operator system Z, such that ϕ ◦ κ is an
embedding of V into Z. As W is injective, we may therefore extend the ucp map κ : V → W to
a ucp map ψ : Z → W such that ψ ◦ (ϕ ◦ κ) = κ.

W Z

V

ϕ

ψ

κ ϕ◦κ

Then ψ ◦ ϕ is a ucp map W → W fixing κ(V) pointwise, so by rigidity of the extension it is
the identity of W. We conclude that ϕ is a unital complete isometry since it has a ucp left
inverse. �

The analogous statement and proof work for G-operator systems. Even more generally,
essentiality implies rigidity even if the extension is not injective, but the proof will have to
wait until after we have established the existence of an injective envelope.

For the rest of this section we follow Hamana’s proof of the existence of an equivariant
injective envelope from [34]. As it contains the case of a classical injective envelope by
letting the trivial group act, we formulate all results for the G-equivariant injective envelope of
operator systems with G-action.

Hamana’s procedure works in two steps, first identifying any G-injective G-extension, and
then cutting it down with a Zorn’s argument to obtain the actual envelope.

For plain operator systems without a group action, the existence of an injective extension
is guaranteed by Arveson extension [12, Theorem 1.6.1], which simply states that B(H) is an
injective operator system for any Hilbert spaceH , and the GNS construction [35, Chapter 4.5],
ensuring that any C∗-algebra embeds intoB(H) for someH . For G-operator systems, however,
we need to find a G-extension. Luckily, any injective extension can be made G-equivariant
via induction, a process we will generalise to groupoids in Section 4.2.1. Given any operator
system S and a discrete group G, note that `∞(G, S ), the algebra of bounded S -valued functions
on G, carries a G-action by acting on the argument. That is,

(h. f )(g) = f (h−1.g)
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for f ∈ `∞(G, S ) and g, h ∈ G. If S sits inside the C∗-algebra A represented on B(H) for some
Hilbert spaceH , then `∞(G, S ) sits as an operator system inside of B(H ⊗ `2(G)). Thus, we
construct G-injective operator systems from injective ones:

Proposition 2.2.6 (Hamana [34, Lemma 2.2]): Let I be an injective operator system and
G a discrete group. Then `∞(G, I) is a G-injective G-operator system.

Proof. Let ι : V ↪→ W be a G-extension of G-operator systems and ϕ : V → `∞(G, I) a
G-equivariant ucp map. We have to show that it extends to some G-equivariant ucp map
ϕ̃ : W → `∞(G, I). First note that evale : `∞(G, I) → I, which maps f ∈ `∞(G, I) to its
evaluation f (e) at the neutral element of G is a unital ∗-homomorphism. As I is injective as an
operator system, we may extend evale ◦ ϕ to a ucp map ψ : W → I as in Diagram (2.4).

W

I `∞(G, I)

V

ψ

ϕ̃

evale

evale◦ϕ

ι

ϕ

(2.4)

This, however, induces a G-equivariant ucp map ϕ̃ : W → `∞(G, I) by

(ϕ̃(w))(g) B ψ(g−1.w)

for w ∈ W and g ∈ G. Indeed, it is easily verified that ϕ̃ is linear and unital and since every
amplification (ϕ̃)(n) is simply a shift of ψ(n), it is ucp. For v ∈ V we calculate

(ϕ̃(ι(v)))(g) = ψ(ι(g−1.v)) = evale(ϕ(ι(g−1.v))) = (g−1.ϕ(ι(v)))(e) = ϕ(ι(v))(g).

Hence, ϕ̃ restricts to ϕ on ι(V) as desired and we conclude that `∞(G, I) is a G-injective
G-operator system. �

As promised, the next step is to cut this G-injective G-extension down by the appropriate
family of seminorms, defined as follows:

Definition 2.2.7: Let ι : V ↪→ W be a G-extension of G-operator systems. A G-equivariant
ucp map ϕ : W → W is called a V-projection if it is idempotent and restricts to the identity on
ι(V). Furthermore, a V-seminorm on W is defined as the seminorm given by ‖w‖ψ B ‖ψ(w)‖W
for a G-equivariant ucp self-map on W. The set of V-projections on W is partially ordered by
≺ with ‖•‖ψ ≺ ‖•‖ψ′ if and only if ‖w‖ψ ≤ ‖w‖ψ′ for all w ∈ W.

Clearly, every V-projection has an associated V-seminorm, and the partial order between
V-projections ϕ and ψ, can be restated as ϕ ≺ ψ ⇔ ϕ ◦ ψ = ϕ: If the latter holds, then
‖ϕ(w)‖ = ‖ϕ ◦ ψ(w)‖ ≤ ‖ψ(w)‖. On the other hand, if ‖ϕ(w)‖ ≤ ‖ψ(w)‖ for all w ∈ W then

‖ϕ(w − ψ(w))‖ ≤ ‖ψ(w − ψ(w))‖ = ‖ψ(w) − ψ2(w)‖ = 0

since ψ is idempotent and so ϕ = ϕ ◦ ψ.
Hamana’s main argument is the existence of a minimal such V-seminorm:
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Proposition 2.2.8 (Hamana [34, Lemma 2.4]): Let ι : V ↪→ W be a G-extension of G-
operator systems. Any decreasing net of V-seminorms on W has a lower bound and hence
there is a minimal V-seminorm on W with respect to the partial order ≺.

For the proof recall that for an operator system W and a von-Neumann algebra M the point-
weak∗ topology on B(W,M) is characterised by bounded nets ϕλ converging if and only if they
converge pointwise ultraweakly in M and that the unit ball of B(W,M) is point-weak∗-compact
by Banach–Alaoglu [54, Theorem 3.15].

Proof. Let ϕλ be the ucp maps W → W defining a decreasing net of V-seminorms ‖•‖ϕλ .
Assume that W ⊆ B(H) is represented on some Hilbert spaceH and embed W G-equivariantly
into `∞(G,B(H)) as in the proof of Proposition 2.2.6 by sending w ∈ W to g 7→ g−1.w. Then
we may regard the ϕλ as ucp maps W → `∞(G,B(H)) and as they are contractions, we obtain
a net inside the unit ball of B(W, `∞(G,B(H))). By compactness, we may pick a point-weak∗

limit ϕ̃ ∈ B(W, `∞(G,B(H))) of ϕλ, after passing to a subnet. It remains to verify that ϕ̃ is the
desired lower bound. As the necessary conditions are pointwise and preserved under weak∗-
convergence, ϕ̃ is again a ucp map that on ι(V) restricts to the embedding into `∞(G,B(H)) and
since the G-action on `∞(G,B(H)) is weak∗-continuous, ϕ̃ is again G-equivariant. Composing
with the evaluation evale at the identity of G we obtain a G-equivariant ucp map ϕ : W → W
that restricts to the identity on ι(V), giving rise to the V-seminorm ‖•‖ϕ. Then for w ∈ W

‖w‖ϕ = ‖evale ◦ ϕ̃(w)‖ ≤ ‖ϕ̃(w)‖ ≤ lim supλ ‖ϕλ(w)‖,

and since ‖ϕλ(w)‖ is decreasing, ‖•‖ϕ is a lower bound for ‖•‖ϕλ as desired. �

This minimal V-seminorm must indeed come from a minimal V-projection, as we will see
in the proof of the following proposition:

Proposition 2.2.9: Let ι : V ↪→ W be a G-extension of G-operator systems. There exists a
minimal V-projection with respect to the partial order ≺.

Proof. From Proposition 2.2.8 we know of the existence of a ucp map ϕ : W → W that restricts
to the identity on ι(V) and which gives rise to a minimal V-seminorm. For n ∈ N consider

ϕ̄(n) B
1
n

(ϕ + ϕ2 + . . . + ϕn),

the average over the first n powers of ϕ. As in the proof of Proposition 2.2.8, we may
understand ϕ̄(n) as a sequence in the unit ball of B(W, `∞(G,B(H))) for an appropriate Hilbert
space H on which W is represented. Continuing in the spirit of said proof we may pick a
point-weak∗ convergent subnet ϕ̄(nλ) of ϕ̄(n) and argue that after composition with evale its
limit ϕ̄ is a G-equivariant ucp self-map of W which restricts to the identity on ι(V). Then note
that for w ∈ W

‖evale ◦ ϕ̄(w)‖ ≤ ‖ϕ̄(w)‖ ≤ lim supλ ‖ϕ̄(nλ)(w)‖

= lim supλ
1
nλ
‖ϕ(w) + ϕ2(w) + . . . ϕnλ (w)‖ (2.5)

≤ ‖ϕ(w)‖
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and since the latter defines a minimal V-seminorm, all of these are in fact equal so ϕ and evale◦ϕ̄
define the same V-seminorm. In particular, the above shows that ‖ϕ(w)‖ = lim supλ ‖ϕ̄(nλ)(w)‖
whence also

‖ϕ(w − ϕ(w))‖ = lim supλ ‖ϕ̄(nλ)(w) − ϕ̄(nλ)(ϕ(w))‖ = lim supλ
1
nλ
‖ϕ(w) − ϕnλ+1(w)‖ = 0

and we may conclude that the original ucp self-map ϕ defining the minimal V-seminorm was
in fact idempotent and therefore a V-projection. �

This minimal V-projection gives rise to a G-rigid G-extension as follows:

Proposition 2.2.10: Let ι : V ↪→ W be a G-extension of G-operator systems and let ϕ
be a minimal V-projection on W. Then ϕ(W) is an operator system containing ι(V) and
ι : V ↪→ ϕ(W) is a G-rigid G-extension.

Proof. Clearly, ϕ(W) contains ι(V), as ϕ restricts to the identity there. Since ϕ is G-equivariant,
ϕ(W) is G-invariant and forms a G-operator system.

We proceed to show that it is a G-rigid G-extension. Let ψ : ϕ(W) → ϕ(W) be a G-
equivariant ucp self-map of ϕ(W) that restricts to the identity on ι(V). Consider again

(ψ ◦ ϕ)(n) B
1
n

(
(ψ ◦ ϕ) + (ψ ◦ ϕ)2 + . . . + (ψ ◦ ϕ)n

)
.

As in the proof of Proposition 2.2.9 we may pick a point-weak∗ limit of a subnet (ψ ◦ ϕ)(nλ) to
obtain χ ∈ B(W, `∞(G,B(H))) and in analogy to Equation (2.5) we have

‖evale ◦ χ(w)‖ ≤ ‖χ(w)‖ ≤ lim supλ ‖(ψ ◦ ϕ)(nλ)(w)‖ ≤ ‖ψ ◦ ϕ(w)‖ ≤ ‖ϕ(w)‖

where consequently all of these terms have to be equal by minimality of the V-projection ϕ.
Then

‖w − ψ(w)‖ = ‖ϕ(w − ψ ◦ ϕ(w))‖ = lim supλ ‖(ψ ◦ ϕ)(nλ)(w − ψ ◦ ϕ(w))‖

= lim supλ
1
nλ
‖(ψ ◦ ϕ)(w) − (ψ ◦ ϕ)nλ+1(w)‖

= 0

as ϕ(w) = w for w ∈ ϕ(W) since it is a projection and we conclude that ψ is the identity on all
of ϕ(W). �

We collect these results into Hamana’s existence and uniqueness theorem for G-equivariant
injective envelopes:

Theorem 2.2.11 (Hamana [30, Theorem 4.1], [34, Theorem 2.5]): Let V be a G-operator
system. There exists an operator system IG(V) and a ucp embedding ι : V → IG(V) that
forms a G-injective G-essential G-extension. Then IG(V) is called the G-equivariant injective
envelope of V. Given any other G-injective G-essential G-extension κ : V → W, there is a
G-equivariant ucp map ψ : IG(V) → W with G-equivariant ucp inverse that preserves the
embedding of V as ψ ◦ ι = κ. In other words, the G-equivariant injective envelope is unique
up to G-equivariant complete order isomorphism.
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Proof. Assume that V is represented on B(H) for some Hilbert space H and recall that V
embeds G-equivariantly into `∞(G,B(H)). Let ϕ be a minimal V-projection on `∞(G,B(H)).
Define IG(V) B ϕ(`∞(G,B(H))), then by Proposition 2.2.10 IG(V) is a G-rigid G-extension
of V and we denote the embedding of V by ι. Since ϕ is idempotent and `∞(G,B(H)) is
G-injective, ϕ(`∞(G,B(H))) is also G-injective: Given an embedding X ↪→ Y of G-operator
systems, any G-equivariant ucp map χ : X → ϕ(`∞(G,B(H))) is a map into `∞(G,B(H)) and
can therefore be extended to a G-equivariant ucp map χ̃ : Y → ϕ(`∞(G,B(H))). Then ϕ ◦ χ̃ is
a G-equivariant ucp map from Y into IG(V) that restricts to χ on X.

Hence ι : V → IG(V) is a G-injective G-rigid G-extension of V and by Proposition 2.2.5 it
is G-essential as claimed.

Given any other G-injective G-essential G-extension κ : V → W, consider Diagram (2.6).

IG(V) W

V

ψ

ψ̂

ι κ
(2.6)

By G-injectivity of W we may extend κ to a G-equivariant ucp map ψ : IG(V) → W and by
G-injectivity of IG(V) we may extend ι to a G-equivariant ucp map ψ̂ : W → IG(V) as in the
diagram. Then ψ̂ ◦ψ is a self-map of IG(V) which restricts to the identity on ι(V) and therefore
the identity by G-rigidity of IG(V). On the other hand, ψ̂ is injective by G-essentiality of W
and therefore ψ ◦ ψ̂ = idW since

ψ̂(w − ψ ◦ ψ̂(w)) = ψ̂(w) − (ψ̂ ◦ ψ)(ψ̂(w)) = ψ̂(w) − ψ̂(w) = 0.

We conclude that ψ is a G-equivariant complete order isomorphism with inverse ψ̂. �

Having proven the existence of a G-injective envelope, we get the promised implication of
G-rigidity as a bonus in adaptation of the remark after [30, Lemma 3.7]:

Proposition 2.2.12 (Hamana [30]): Every G-essential G-extension is G-rigid.

Proof. Let ι : V → W be a G-essential G-extension of the G-operator system V and let
ϕ : W → W be a G-equivariant ucp map such that it restricts to the identity on ι(V). Let
κ : V → IG(V) be the embedding into the G-equivariant injective envelope. Then we may
extend κ to a G-equivariant ucp map κ̃ : W → IG(V) by G-injectivity of IG(V).

IG(V)

W W IG(V)

V

ϕ κ̃

κ̃◦ϕ
ψ

ι
ι κ

(2.7)
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By G-essentiality of W, we know that κ̃ is a complete isometry and therefore κ̃ ◦ ϕ can be
extended from W along the embedding κ̃ to a G-equivariant ucp map ψ : IG(V)→ IG(V) as in
the upper right corner of Diagram (2.7). Consequently, κ̃ ◦ ϕ = ψ ◦ κ̃. Since ϕ restricts to the
identity on ι(V), a simple diagram chase yields

ψ ◦ κ = ψ ◦ κ̃ ◦ ι = κ̃ ◦ ϕ ◦ ι = κ̃ ◦ ι = κ

and we conclude that ψ restricts to the identity on κ(V). By G-rigidity of IG(V), however, this
means that ψ is the identity on all of IG(V) and consequently κ̃ ◦ ϕ = κ̃. Now, as κ̃ is injective,
ϕ is the identity on all of W as desired. �

While we have alluded to it, we have not yet argued that injective envelopes are in fact
C∗-algebras, not merely operator systems. This is in fact due to an older and more general
result of Choi and Effros [17, Theorem 3.1], equipping any injective operator system with a
C∗-algebra-structure. Recall that a G-operator system V ⊆ B(H) embeds G-equivariantly into
`∞(G,B(H)) by sending v ∈ V to the function g 7→ g−1.v. The following observation makes
Choi–Effros’ results apply to G-equivariant envelopes:

Proposition 2.2.13: Let I ⊆ B(H) be a G-operator system represented on some Hilbert
spaceH . Then I is a G-injective G-operator system, if and only if it is injective as an operator
system and there is a G-equivariant ucp map `∞(G, I)→ I that restricts to the identity on I.

Proof. First assume that I is G-injective. Then the identity on I extends along the embedding
I ↪→ `∞(G,B(H)) to a G-equivariant ucp map ψ : `∞(G,B(H)) → I. Let V ↪→ W be
an extension of operator systems without G-action and let ϕ : V → I be a ucp map. As
`∞(G,B(H)) is an injective C∗-algebra since it is a direct sum of copies of the injective
C∗-algebra B(H), we may extend ϕ to a ucp map ϕ̃ : W → `∞(G,B(H)) and consequently
ψ ◦ ϕ̃ : W → I is the desired extension of ϕ showing that I is an injective operator system. The
restriction of ψ to `∞(G, I) is furthermore the desired G-equivariant ucp map as claimed in the
proposition.

Conversely, let I be an injective operator system and ψ : `∞(G, I) → I a G-equivariant
ucp map that restricts to the identity on I. Since I is an injective operator system, `∞(G, I)
is a G-injective G-operator system by Proposition 2.2.6. Consequently, every G-equivariant
ucp map ϕ : V → I for an embedding V ↪→ W of G-operator systems has a G-equivariant
extension ϕ̃ : W → `∞(G, I) and ψ ◦ ϕ̃ : W → I once again shows that I is G-injective. �

The C∗-algebra-structure on an injective operator system I is given by the Choi–Effros
product associated with an idempotent on I:

Definition 2.2.14: Let A be a C∗-algebra and ϕ : A → A a unital idempotent contraction
satisfying the Schwarz inequality

ϕ(a)∗ϕ(a) ≤ ϕ(a∗a)

for all a ∈ A. The Choi–Effros product ◦ on ϕ(A) is defined by

a ◦ b B ϕ(ab)

for a, b ∈ A with ab their multiplication in A.
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Indeed, this gives rise to a C∗-algebra-structure on ϕ(A):

Theorem 2.2.15 (Hamana [29, Theorem 2.3], Choi–Effros [17, Section 3]): Let A be a
C∗-algebra and ϕ : A → A a ucp idempotent. Then ϕ(A) equipped with the Choi–Effros
product ◦ associated with ϕ and the norm and adjoint operation of A is a unital C∗-algebra
that is completely order isomorphic to ϕ(A) as an operator system.

By [17, Theorem 3.1], this C∗-algebra-structure is even unique up to ∗-isomorphism
respecting the canonical complete order isomorphisms to ϕ(A), but we omit the proof.

Proof. Since ϕ is a continuous idempotent, its range is closed and therefore complete in the
norm of A. We first prove the C∗-identity for a ∈ ϕ(A). Then ϕ(a) = a as ϕ is idempotent and
by the Schwarz-inequality, which holds for ucp maps, we have ϕ(a)∗ϕ(a) ≤ ϕ(a∗a) = a∗ ◦ a
whence

‖a‖2 = ‖a∗a‖ ≤ ‖a∗ ◦ a‖.

However, ϕ is ucp and therefore of norm one, so

‖a∗ ◦ a‖ = ‖ϕ(a∗a)‖ ≤ ‖a∗a‖ = ‖a‖2

and we conclude that all of these inequalities are in fact equalities. Furthermore, it clearly
holds for b ∈ ϕ(A) that

(a ◦ b)∗ = ϕ(ab)∗ = ϕ(b∗a∗) = b∗ ◦ a∗.

To see that ◦ is associative, first note that

ϕ(aϕ(x)) = ϕ(ax) and ϕ(ϕ(x)a) = ϕ(xa) (2.8)

for a ∈ ϕ(A) and arbitrary x ∈ A, which we will justify in a separate proof below. Then for
a, b, c ∈ ϕ(A)

(a ◦ b) ◦ c = ϕ(ϕ(ab)c) = ϕ(abc) = ϕ(aϕ(bc)) = a ◦ (b ◦ c).

All other requirements for ϕ(A) to be a C∗-algebra do not involve the multiplication and
therefore hold trivially.

We next show that ϕ(A) is complete order isomorphic to (ϕ(A), ◦) equipped with the
product ◦. Denote by (Mn(ϕ(A)), ◦) the algebra of n-by-n matrices over (ϕ(A), ◦). Then for
[ai j], [bi j] ∈ Mn(ϕ(A)) we have

[ai j] ◦ [bi j] =

n∑
k=1

aik ◦ bk j =

ϕ n∑
k=1

aikbk j

 = ϕ(n)([ai j][bi j]).

Hence there is no difference between passing from A to ϕ(A) via ϕ and then taking the matrix
algebras Mn(ϕ(A)) or taking matrix algebras first and passing from Mn(A) to ϕ(n)(Mn(A))
via the amplification ϕ(n). Consequently, the norms on the two coincide as the norm of a
C∗-algebra is determined algebraically. Likewise, positivity is determined by the norm, since
a self-adjoint element x in any C∗-algebra is positive if and only if

‖(‖x‖ · 1) − x‖ ≤ ‖x‖
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and therefore [ai j] ∈ Mn(ϕ(A)) is positive if and only if it is positive in Mn(A). Consequently,
the identity map from ϕ(A) as an operator system inside A to ϕ(A) as a C∗-algebra equipped
with ◦ sends exactly the positive elements to the positive elements in every amplification and
we conclude that it is a complete order isomorphism. �

Proof of Equation (2.8). Let ϕ : A → A be a ucp idempotent as above and let both a ∈ ϕ(A)
and x ∈ A be self-adjoint. Then the matrix (

0 a
a x

)
is self-adjoint and by the Schwarz inequality we find that

ϕ(2)
(
0 a
a x

)
ϕ(2)

(
0 a
a x

)
≤ ϕ(2)

((
0 a
a x

)(
0 a
a x

))
⇔

(
a2 aϕ(x)

ϕ(x)a a2 + ϕ(x)2

)
≤

(
ϕ(a)2 ϕ(ax)
ϕ(xa) ϕ(a2 + x2)

)
,

and applying ϕ(2) to both sides yields

⇒

(
ϕ(a2) ϕ(aϕ(x))

ϕ(ϕ(x)a)) ϕ(a2 + ϕ(x)2)

)
≤

(
ϕ(a)2 ϕ(ax)
ϕ(xa) ϕ(a2 + x2)

)
⇔ 0 ≤

(
0 ϕ(ax) − ϕ(aϕ(x))

ϕ(xa) − ϕ(ϕ(x)a) ∗

)
,

disregarding the entry marked ∗. Hence, there is a self-adjoint matrix [yi j] ∈ M2(A) such that(
0 ϕ(ax) − ϕ(aϕ(x))

ϕ(xa) − ϕ(ϕ(x)a) ∗

)
=

(
y11 y12
y∗12 y22

)(
y11 y12
y∗12 y22

)
=

(
y2

11 + y12y∗12 y11y12 + y12y22
y∗12y11 + y22y∗12 ∗

)
.

But then y11 = 0 = y12 from the upper left entry and we conclude that ϕ(ax) − ϕ(aϕ(x)) = 0
and ϕ(xa) − ϕ(ϕ(x)a) = 0, proving Equation (2.8). �

We can easily apply Theorem 2.2.15 to equip G-equivariant injective envelopes with a
C∗-algebra-structure:

Proposition 2.2.16: Let I be a G-injective operator system. Then I is completely order
isomorphic to a unital C∗-algebra with G-action.

Proof. Let I be represented as a subset of a G-C∗-algebra A, for example by representing
on some B(H) and embedding in `∞(G,B(H)). Then, since I is G-injective, there is a G-
equivariant ucp map ϕ : A→ I that extends the identity on I along the embedding of I into A.
Consequently, ϕ(A) = I and we may equip I with the Choi–Effros product associated with ϕ.
Since I is G-invariant and by G-equivariance of ϕ

g.a ◦ g.b = ϕ((g.a)(g.b)) = ϕ(g.(ab)) = g.ϕ(ab) = g.(a ◦ b)

for a, b ∈ I, the C∗-algebra-structure on I carries the same G-action as I. �
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Employing the uniqueness statement of [17, Theorem 3.1], this C∗-algebra-structure is
furthermore unique up to ∗-isomorphism.

Finally, note that the Choi–Effros product is commutative if the surrounding C∗-algebra
was commutative. As a consequence, the the G-equivariant injective envelope of a commutative
G-C∗-algebra C is again commutative, since IG(C) sits inside the commutative C∗-algebra
`∞(G,C) and using A = `∞(G,C) in the proof above shows that the Choi–Effros product is
commutative.

2.2.3 Kalantar–Kennedy’s Identification
The novel approach of Kalantar and Kennedy [36] towards simplicity of reduced group C∗-
algebras largely rests on their identification of the Furstenberg boundary with the spectrum of
the appropriate G-equivariant injective envelope, sometimes called Hamana boundary:

Definition 2.2.17: Let G be a discrete group and let G act trivially on the C∗-algebra C of
complex numbers. Then IG(C) is a unital, commutative C∗-algebra and hence isomorphic
to C(∂HG) for some compact Hausdorff space ∂HG with a G-action and ∂HG is called the
Hamana boundary of G.

Indeed, the Hamana boundary is a boundary in the sense of Furstenberg:

Proposition 2.2.18 (Kalantar–Kennedy [36, Proposition 3.4, Proposition 3.7]): The ac-
tion of G on its Hamana boundary ∂HG is minimal and strongly proximal; that is, ∂HG is a
boundary in the sense of Furstenberg.

Proof. We first show that the action is minimal. Let x ∈ ∂HG and consider its orbit closure G.x.
This is a closed, G-invariant subspace and the restriction map res G.x : C(∂HG) → C(G.x) ⊆
C(∂HG) is unital and completely positive. Note that C(∂HG) = IG(C) is a G-essential G-
extension of C, with the embedding sending z ∈ C to the scalar z1 ∈ C(∂HG) for the unit
1 ∈ C(∂HG). Hence res G.x is a ucp map on IG(C) that restricts to the identity on the embedding
of C and therefore it is a complete isometry by G-essentiality. We conclude that G.x is all of
∂HG, as the restriction to G.x is injective.

We furthermore show that the action is strongly proximal. Let µ ∈ M(∂HG) be a Radon
probability measure. The Poisson map Pµ : C(∂HG)→ `∞(G) associated with µ is defined by

(Pµ( f ))(g) B
∫
∂HG

f dg.µ

for f ∈ C(∂HG) and g ∈ G and is clearly linear, G-equivariant, positive, and unital. As
a positive map into a commutative C∗-algebra, it is furthermore completely positive and
therefore a complete isometry as it restricts to a complete isometry on the scalars and C(∂HG)
is a G-essential G-extension. Assume for contradiction that the point measure δx of some
x ∈ ∂HG was not contained in the weak∗-closed convex hull K of the G-orbit of µ inside
M(∂HG). Then, using the Hahn–Banach separation theorem [54, Theorem 3.4], δx can be
separated from K by a linear functional described by some positive function f ∈ C(∂HG) with
f (x) =

∫
∂HG f dδx = 1 such that

(Pµ( f ))(g) =

∫
∂HG

f dg.µ < 1 − ε
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for all g ∈ G and some ε > 0. Hence Pµ( f ), which is real-valued as f is positive, only takes
values between 0 and 1 − ε, although f (x) = 1 in contradiction to Pµ being an isometry.
Therefore, the closed convex hull of G.µ inside M(∂HG) contains all point measures of
M(∂HG) and as these are exactly the extreme points of the compact, convex spaceM(∂HG),
we conclude that K =M(∂HG) by Krein–Milman [54, Theorem 3.23]. By Milman’s partial
converse [54, Theorem 3.25], the orbit G.µ approximates all extreme points δx for x ∈ ∂HG
and the action is strongly proximal. �

Remark. Note that the proof works not only for the injective envelope, but for every commuta-
tive G-essential G-extension of the trivial action on the complex numbers, hence the spectrum
of every commutative G-essential G-extension is a boundary in the sense of Furstenberg.

2.2.4 An Incomplete Digression on Monotone Completeness
Some of Hamana’s original arguments require a few results and constructions involving
monotone complete C∗-algebras.

Definition 2.2.19: A C∗-algebra A is called monotone complete if every norm-bounded,
increasing net of self-adjoint elements of A has a least upper bound in A.

By work of Takesaki [59, Proposition III.1.7], a commutative C∗-algebra C0(X) is mono-
tone complete if and only if its spectrum X is extremally disconnected, that is, the closure of
every open set in X is again open. If X is compact and extremally disconnected, it is called
Stonean.

Proposition 2.2.20: Any unital, commutative, injective C∗-algebra is monotone complete.

Proof. Let X be a compact Hausdorff space such that C(X) is an injective C∗-algebra. By
injectivity we may extend the identity on C(X) along the embedding C(X) ↪→ `∞(X) to a
conditional expectation E from `∞(X) onto C(X). Note that `∞(X) is monotone complete since
we may form a least upper bound simply by taking the pointwise supremum. Let aλ be an
increasing, norm-bounded net of self-adjoint functions in C(X) and a a least upper bound
for aλ in `∞(X). Then E(a) ≥ E(aλ) = aλ and given any upper bound b ∈ C(X) such that
b ≥ aλ for all λ we have b ≥ a inside `∞(X) since a is a least upper bound and therefore
b = E(b) ≥ E(a). We conclude that E(a) is a least upper bound for aλ in C(X), so C(X) is
monotone complete. �

Consequently, the G-equivariant injective envelope of a commutative C∗-algebra with
G-action is monotone complete, since it is an injective C∗-algebra by Proposition 2.2.13 and
the Choi–Effros product of Definition 2.2.14 is commutative.

The remainder of this section is dedicated to Hamana’s monotone complete crossed
products as defined in [33, Chapter 3].

Let A ⊆ B(H) be an operator system and G a discrete group. Define the operator system

A⊗B(`2(G)) B
{
[xg,h] ∈ B(H ⊗ `2(G))

∣∣∣ xg,h ∈ A for all g, h ∈ G
}
⊆ B(H ⊗ `2(G)),

that is, understand the operators in B(H ⊗ `2(G)) as B(H)-valued matrices and consider only
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those operators x whose matrix elements

xg,h B (idH ⊗ δg)∗x(idH ⊗ δh)

lie in A for all g, h ∈ G. If A is a monotone complete C∗-algebra, A⊗B(`2(G)) is Hamana’s
monotone complete tensor product from [32, Theorem 3.12], which again carries the structure
of a monotone complete C∗-algebra.

Definition 2.2.21: Let A be a monotone complete C∗-algebra with an action by a discrete
group G. The monotone complete crossed product M(A,G) is given by

M(A,G) B
{
[xg,h] ∈ A⊗B(`2(G))

∣∣∣ s−1.xg,h = xgs,hs for all g, h, s ∈ G
}
⊆ A⊗B(`2(G)).

This is an operator system which, by [33, Chapter 3], may be equipped with the structure of a
monotone complete C∗-algebra with a G-action.

We cite Hamana’s results that we will need in our applications of the montone com-
plete crossed product, but refer the reader to the original papers, as they require significant
background and we have nothing to add to the proofs.

Proposition 2.2.22 (Hamana [33, Lemma 3.1]): Let A be a monotone complete C∗-algebra
with an action by a discrete group G. Then A is G-injective if and only if M(A,G) is injective.

The following statement is contained in the proof of [33, Lemma 3.1] with added details
from [13, before Lemma 5.3.2]:

Proposition 2.2.23 (Hamana): The map E : M(A,G)→ A given by evaluation at the matrix
entry

E(x) = xe,e

for x ∈ M(A,G) is a faithful G-equivariant conditional expectation from M(A,G) onto A.

2.3 Simplicity of Reduced Group C∗-algebras
The identification of the Hamana and Furstenberg boundaries immediately yielded a dynamical
characterisation of C∗-simplicity by Kalantar–Kennedy. After presenting streamlined proofs of
their results, we briefly discuss implications regarding the unique trace property as discovered
by Breuillard–Kalantar–Kennedy–Ozawa and then finally turn to Kennedy’s group-theoretic
characterisation of C∗-simplicity.

2.3.1 Kalantar–Kennedy’s Dynamical Charcterisation
The main application of the Furstenberg boundary and its reinterpretation as the spectrum of a
G-equivariant injective envelope we are considering is simplicity of reduced group C∗-algebras.
Indeed, the reduced C∗-algebra C∗r (G) associated with a discrete group G is simple, if and only
if the reduced crossed product C∗-algebra associated with the action of G on ∂FG is simple,
as established in Kalantar–Kennedy’s original work [36, Theorem 6.2]. We offer a slightly
more in-depth treatment of reduced crossed product algebras in Section 3.1. For now let it be
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said that the reduced crossed product C(X) or G associated with a discrete group G acting on
a commutative C∗-algebra C(X) arises much like C∗r (G) from completing the group-algebra
C(X)[G] with coefficients in C(X). The completion is done with respect to the norm of a
left-regular representation π o λG on B(H) ⊗ `2(G) built from the left-regular representation
λG of G and a faithful representation of C(X) on some Hilbert spaceH .

Theorem 2.3.1 (Kalantar–Kennedy [36, Theorem 6.2]): Let G be a discrete group and
∂FG its Furstenberg boundary. Then C∗r (G) is simple if and only if C(∂FG) or G is simple.

We will follow the original proof from [36, Theorem 6.2], relying on technical arguments
from [34] and [33]. Although there is a more straightforward method we will later present
in Theorem 3.3.2, we chose to present this approach since we feel that both methods offer
different perspectives which will be useful when attempting generalizations.

Before we prove Theorem 2.3.1, we collect a couple of auxiliary results.

Lemma 2.3.2 (Hamana [34, Theorem 3.4]): Let A be a G-C∗-algebra and let I(A or G)
denote the non-equivariant injective envelope of the crossed product A or G. Then IG(A) or G
embeds into I(A or G), respecting the embedding of A or G as in the following diagram:

IG(A) or G I(A or G)

A or G

κ

ιG
ι

Proof. We want to find an embedding κ as in the diagram in the statement. Since I(A or G) is
injective, there is such a ucp map κ extending the embedding of ι : A or G ↪→ I(A or G) along
the embedding ιG : A or G ↪→ IG(A) or G coming from A ↪→ IG(A). We have to show that it is
a complete order isomorphism.

Consider the monotone complete crossed product M(IG(A),G) as in Definition 2.2.21.
Since IG(A) is G-injective, M(IG(A),G) is injective by Proposition 2.2.22. Both A or G ⊆
IG(A)or G and M(IG(A),G) are defined as subalgebras of B(H ⊗ `2(G)) up to a representation
of A ⊆ IG(A) on some Hilbert spaceH . After that identification M(IG(A),G) clearly contains
A or G. Hence by injectivity of M(IG(A),G) we may extend this inclusion along ι to a ucp
map η : I(A or G)→ M(IG(A),G) which is furthermore a complete isometry by essentiality of
I(A or G). We may therefore consider all algebras involved as subsets of M(IG(A),G) and κ a
ucp map between operator systems inside M(IG(A),G). We want to show that κ is the identity
on IG(A) or G and to do so adapt arguments from [34, Lemma 3.3].

First consider κ|IG(A) restricted to IG(A) as a subset of M(IG(A),G) and let E : M(IG(A),G)→
IG(A) be the conditional expectation from Proposition 2.2.23. Then E ◦ κ|IG(A) : IG(A)→ IG(A)
is a G-equivariant ucp map that restricts to the identity on A and therefore the identity by
G-rigidity. Furthermore, for x ∈ IG(A) the Schwarz inequality for κ yields

E(κ(x)∗κ(x)) ≤ E(κ(x∗x)) = x∗x

while on the other hand the Schwarz inequality for E yields

x∗x = E(κ(x))∗E(κ(x)) ≤ E(κ(x)∗κ(x))
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and we conclude that
E(κ(x)∗κ(x)) = x∗x.

Therefore, both κ(IG(A)) and IG(A) are contained in the multiplicative domain of E and so
x − κ(x) ∈ mult(E) for every x ∈ IG(A). Consequently,

‖E((x− κ(x))∗(x− κ(x)))‖ = ‖(E(x− κ(x)))∗(E(x− κ(x)))‖ = ‖E(x)− E ◦ κ(x)‖2 = ‖x− x‖ = 0.

Since E is faithful, we conclude that x − κ(x) = 0 for x ∈ IG(A) so κ|IG(A) is indeed the identity
on IG(A).

However, κ also restricts to the identity on A or G and hence fixes λg ∈ B(H ⊗ `2(G)) for
all g ∈ G so that it also restricts to the identity on C∗r (G) ⊆ IG(A) or G. But IG(A) and C∗r (G)
span IG(A) or G densely, whence κ is simply the identity. Stated differently, κ is the inclusion
of one subset of M(IG(A),G) into another, larger subset. We conclude that κ is a complete
isometry. �

The next lemma is particularly useful to kill off ideals of IG(A) or G:

Lemma 2.3.3 (Hamana [31, Lemma 1.2]): Let A be a unital C∗-algebra and I(A) its
injective envelope. For sake of notation consider A ⊆ I(A) to be a subalgebra of I(A). Let
B be a C∗-subalgebra of I(A) such that A ∩ B = {0} and xB + By ⊆ B for all x, y ∈ A. Then
B = {0}.

Proof. By the assumptions, A + B is closed under multiplication and therefore a unital C∗-
subalgebra of I(A) and B is a closed, two-sided ideal of A + B. Let π denote the quotient
∗-homomorphism π : A+B→ (A+B)/B. Then its restriction to A is injective, since A∩B = {0}.
We want to show that the inclusion A ⊆ A+ B is an essential extension, so that we can conclude
that π is injective by essentiality because π|A is. Then the conclusion B = {0} follows.

Indeed, consider Diagram (2.9), where ι denotes the embedding of A into its injective
envelope.

I(A)

A + B (A + B)/B I(A)

A

ψ

π ϕ

π|A
ι

(2.9)

By injectivity of I(A) we may extend ι along the embedding π|A to a ucp map ϕ : (A + B)/B→
I(A). Then, using injectivity of I(A) once more we may extend ϕ ◦ π from A + B along the
inclusion A + B ⊆ I(A) to another ucp map ψ : I(A)→ I(A). But ψ restricts to the identity on
A and as I(A) is rigid, it is therefore the identity on all of I(A). We conclude that ϕ ◦ π and
therefore π are injective. �

These are enough to make a simple argument for the first implication of Theorem 2.3.1,
as known already by Hamana [34]. For the converse, we streamline the proof by Kennedy–
Kalantar [36, Theorem 6.2] as inspired by Ozawa [48, Lemma 16] in a way that will later be
easier to generalize for groupoids in Lemma 4.2.22 and 4.2.23.
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Proof of Theorem 2.3.1: First assume that G is C∗-simple and note that C∗r (G) is canonically
isomorphic toCor G. Then by Lemma 2.3.2 we have that C(∂FG)or G ⊆ I(Cor G) � I(C∗r (G))
since C(∂FG) � IG(C). Now if J C C(∂FG) or G is a non-trivial, closed, two-sided ideal,
then J ∩ C∗r (G) is a closed, two-sided ideal of C∗r (G) and is not all of C∗r (G), since it would
otherwise contain the unit of C∗r (G) and therefore be trivial as an ideal of C(∂FG) or G. By
simplicity of C∗r (G), it follows that J ∩C∗r (G) = {0}. Now since JC∗r (G) + C∗r (G)J ⊆ J inside
I(C∗r (G)), we may conclude from Lemma 2.3.3 that J = {0} and have proven simplicity of
C(∂FG) or G.

Conversely, assume that G is not C∗-simple and let J be a non-trivial, closed, invariant
ideal of C∗r (G). Assume that C∗r (G)/J ⊆ B(H) is represented on some Hilbert space H
and let π : C∗r (G) → C∗r (G)/J be the associated quotient map. By Arveson’s injectivity
of B(H), we may extend π along the embedding C∗r (G) ⊆ C(∂FG) or G to a ucp map
π̃ : C(∂FG) or G → B(H), which includes C∗r (G) in its multiplicative domain as it restricts to
a ∗-homomorphism on C∗r (G).

Let E denote the C∗-algebra generated by π̃(C(∂FG)) inside B(H) and note that G acts
on E with g ∈ G acting by adjoining π̃(λg). As C(∂FG) is G-injective and both C(∂FG)
and E are unital, we may extend the embedding of C into C(∂FG) along the embedding of
C into E to a G-equivariant ucp map ϕ : E → C(∂FG). Then ϕ ◦ π̃ is a G-equivariant ucp
map C(∂FG) → C(∂FG) and therefore the identity by G-rigidity of C(∂FG) � IG(C) as it
fixes C pointwise. Consequently, π̃(C(∂FG)) is contained in the multiplicative domain of
ϕ as ϕ ◦ π̃|C(∂FG) is a ∗-homomorphism and therefore ϕ itself is a ∗-homomorphism since
π̃(C(∂FG)) generates its domain E. Hence ker(ϕ) is a closed, two-sided ideal of E and as
ϕ is G-equivariant, its kernel is G-invariant. Let F B ker(ϕ) · π(C∗r (G)) which sits inside
the sub-C∗-algebra D of B(H) generated by ϕ̃(C(∂FG) or G). It is clearly a closed, right-
sided ideal by construction and since ker(ψ) is G-invariant, it is a two-sided ideal. If fλ is
an approximate identity of ker(ϕ) then d ∈ D belongs to F if and only if limλ fλd = d and
therefore F ∩ E = ker(ϕ). Let Φ denote the quotient ∗-homomorphism D → D/F and note
that ϕ by design factors through Φ to an injective ∗-homomorphism ϕ̄. Since ϕ ◦ π̃|C(∂FG) was
the identity, so is ϕ̄ ◦ (Φ ◦ π̃)|C(∂FG), but now ϕ̄ is an injective left inverse ∗-homomorphism to
Φ ◦ π̃ as depicted in Diagram (2.10).

C(∂FG) D C(∂FG)

D/F

π̃

idC(∂F G)

Φ

ϕ

ϕ̄
(2.10)

This means that the a-priori ucp map (Φ ◦ π̃)|C(∂FG) is a ∗-homomorphism, since for f , f ′ ∈
C(∂FG) we have

ϕ ◦ (Φ ◦ π̃)( f f ′) = f f ′ = (ϕ ◦ (Φ ◦ π̃)( f ))
(
ϕ ◦ (Φ ◦ π̃)( f ′)

)
= ϕ

(
(Φ ◦ π̃)( f )(Φ ◦ π̃)( f ′)

)
and ϕ is injective. On the other hand, (Φ ◦ π̃)|C∗r (G) = Φ ◦ π is also a ∗-homomorphism
and since C(∂FG) and C∗r (G) generate C(∂FG) or G, indeed Φ ◦ π̃ is a ∗-homomorphism.
However, Φ ◦ π̃ can neither be zero, since it is injective on C(∂FG), nor injective, since π is
not injective on C∗r (G), so we conclude that ker(Φ ◦ π̃) is a non-trivial, closed, two-sided ideal
of C(∂FG) or G. �
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One advantage of the description of C∗-simplicity through simplicity of C(∂FG) or G is
that the action on the envelope has many special properties. The following is one of them: Let
Gx denote the stabiliser subgroup that consists of exactly these elements g ∈ G that fix x as
g.x = x for some x ∈ ∂FG.

Lemma 2.3.4: Let G be a discrete group and ∂FG its Furstenberg boundary. Then the
stabiliser group Gx is amenable for every x ∈ ∂FG.

Proof. Note that the C∗-algebra `∞(G) carries a G-action by acting on the argument. Hence we
may extend the embedding C ↪→ C(∂FG) along the embedding C ↪→ `∞(G) to a G-equivariant
ucp map ϕ : `∞(G) → C(∂FG) by G-injectivity of C(∂FG). For x ∈ ∂FG, the map evalx ◦ ϕ
is a positive linear functional on `∞(G) that is invariant under the action of Gx. This shows
so-called relative amenability of Gx ≤ G and by [16, Theorem 2] Gx is amenable, but we give
a more direct proof of amenability of Gx by embedding `∞(Gx) unitally and Gx-equivariantly
into `∞(G). To do so let K ⊆ G be a choice of representing elements, one for each right
coset in Gx\G = {Gxg | g ∈ G}. Then every group element g ∈ G can uniquely be written
as g = hk for h ∈ Gx and k ∈ K the representing element of Gxg in K. The embedding
ι : `∞(Gx) ↪→ `∞(G) takes a function f ∈ `∞(Gx) and copies it equivariantly on each of the
disjoint Gx orbits of G, with the neutral element of Gx matched with the chosen representing
element in K. That is, ι is given by ι( f )(g) = f (h) for g ∈ G with g = hk for h ∈ Gx and k ∈ K
as above. Consequently, evalx ◦ ϕ ◦ ι is a left-invariant mean on `∞(Gx) and we conclude that
Gx is amenable by Definition 2.1.2. �

Lemma 2.3.5 (Kalantar–Kennedy [36, Remark 3.16], BKKO [9, Proposition 2.4]): Let
G be a discrete group and ∂FG its Furstenberg boundary. Then ∂FG is extremally disconnected,
that is, the closure of every open subset of ∂FG is open.

Proof. By Proposition 2.2.13, C(∂FG) is an injective C∗-algebra and therefore monotone
complete by Proposition 2.2.20. As remarked after Definition 2.2.19, it follows that ∂FG is
extremally disconnected. �

In the following theorem we see how both extremal disconnectedness of ∂FG and amenabil-
ity of the stabilisers of the G-action on ∂FG are helpful in characterising simplicity of
C(∂FG) or G. The theorem and its proof use the concepts of topological freeness and topo-
logical stabiliser G◦x. We provide detailed definitions of these in the chapter on crossed
products, see Definition 3.2.1 and Proposition 3.2.2, and therefore postpone most of the proof
of Theorem 2.3.6 to Lemma 3.2.5.

Theorem 2.3.6 (KK [36, Theorem 6.2], BKKO [9, Theorem 3.1], O [48, Theorem 14]):
Let G be a discrete group and ∂FG its Furstenberg boundary. Then C(∂FG) or G is simple if
and only if the action of G on ∂FG is topologically free if and only if the action is free.

Proof. By Lemma 2.3.4 all (topological) stabilisers of the action of G on ∂FG are amenable,
hence Lemma 3.2.5 applies and we conclude that C(∂FG) or G is simple if and only if the
action is topologically free.

Furthermore, ∂FG is extremally disconnected by Lemma 2.3.5 and hence the fixed point
set of any homeomorphism of ∂G is open by Frolík’s theorem [24], [51, Proposition 2.7].
Consequently, if some g ∈ G fixes a point x ∈ ∂FG then y 7→ g.y and hence g fix a whole
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neighbourhood of x pointwise. Therefore the action of G on ∂FG is free if and only if it is
topologically free. �

2.3.2 Unique Trace
Further building on the description of the Furstenberg boundary as the spectrum of the
equivariant injective envelope of the trivial action, Breuillard–Kalantar–Kennedy–Ozawa
characterised another property of discrete groups closely related to C∗-simplicity: the unique
trace property.

Definition 2.3.7: For a discrete group G the canonical trace τ on C∗r (G) is

τ : C∗r (G)→ C given by τ(x) = 〈xδe, δe〉`2(G)

for x ∈ C∗r (G) with δe the canonical basis vector of `2(G) supported at the neutral element
e ∈ G. A discrete group G is said to have the unique trace property, if the canonical trace is
the only tracial state on C∗r (G), that is, τ is the only positive linear functional of norm one on
C∗r (G) that satisfies τ(ab) = τ(ba) for a, b ∈ C∗r (G).

A non-trivial discrete amenable group N never has the unique trace property since the
trivial representation of N on C, in which every group element is sent to the unit, extends
continuously to a character τ′ on C∗r (N). As τ′(λn) = 1 for every n ∈ N, τ is not the canonical
trace as long as N is non-trivial. Likewise, the existence of a non-trivial normal amenable
subgroup N ≤ G of a discrete group G always gives rise to a non-canonical trace on C∗r (G). Let
τ′ be the trace obtained from the trivial representation as above and consider the composition
τ′ ◦ EN with the conditional expectation EN of C∗r (G) onto C∗r (N) sending λg ∈ C∗r (G) to
λg ∈ C∗r (N) if g ∈ N ⊆ G and to zero otherwise. For g, h ∈ G we have gh ∈ N if and only if
hg ∈ N as N is normal. Hence, τ′ ◦ EN(λgλh) = 0 = τ′ ◦ EN(λhλg) if gh < N. On the other
hand, if gh ∈ N then

τ′ ◦ EN(λgλh) = τ′(λgh) = 1 = τ′(λhg) = τ′ ◦ EN(λhλg)

and we conclude that τ′ ◦ EN is a trace on C∗r (G) by linearity. Since τ′ ◦ EN(λg) = 1 for
g ∈ N \ {e}, it is not the canonical trace.

Breuillard–Kalantar–Kennedy–Ozawa showed that absence of normal amenable subgroups
is indeed sufficient to satisfy the unique trace property. The same statement was independently
obtained by Haagerup [28], who gave a simpler proof without the need invoke the theory of
injective envelopes.

Theorem 2.3.8 (BKKO [9, Corollary 4.3], Haagerup [28, Theorem 3.3]): A discrete
group G has the unique trace property if and only if its amenable radical is the trivial
subgroup {e}.

As a consequence, C∗-simplicity of a discrete group G implies the unique trace property
with a proof due to de la Harpe [19, Proposition 3] which we sketch briefly: If G does not have
the unique trace property, then by Theorem 2.3.8 we know that it contains a non-trivial normal
amenable subgroup N. The trivial representation τ′ of N induces a representation IndG

Nτ
′

of G which is weakly contained in the left regular representation of G, since τ′ is weakly
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contained in the left regular representation of N (see [23, Chapter 6] and [22]). Working out
the definition of IndG

Nπ, it is the unitary representation of G on `2(G/N), sending g ∈ G to λgN .
Since τ′ is weakly contained in the left regular representation of G it extends continuously
and linearly to a ∗-homomorphism π : C∗r (G)→ C∗r (G/N) ⊆ `2(G/N). The kernel of π is then
a closed, two-sided ideal of C∗r (G), which is not {0} since λn − λe ∈ ker(π) for n ∈ N \ {e} and
not all of C∗r (G) since π(λe) = λeN .

The converse, however, does not hold, with the first example of a non-C∗-simple discrete
group with the unique trace property given by Le Boudec [41]. In the next section, we shed
some light on exactly why .

2.3.3 Kennedy’s Intrinsic Characterisation
While C∗-simplicity of a discrete group G is defined as an operator-algebraic property attached
to C∗r (G), Kalantar–Kennedy first gave a dynamical description when characterising it as
freeness of the action on the Furstenberg boundary. In a further break-through result, Kennedy
gave several intrinsic characterisations of C∗-simplicity in purely group-theoretic terms.

Let Sub(G) be the space of subgroups of G equipped with the topology of pointwise
convergence, understanding a subgroup of G as an indicator function on G. Alternatively, but
equivalently, think of Sub(G) as a subset of the power set {0, 1}G and equip it with the subspace
topology of the product topology of {0, 1}G. As Sub(G) ⊆ {0, 1}G is closed, this shows that it is
compact Hausdorff. This topology is otherwise known as the Chabauty topology or sometimes
the Fell topology. We equip Sub(G) with the G-action by conjugation.

Definition 2.3.9: A uniformly recurrent subgroup of G is a minimal closed G-invariant
subspace Z ⊆ Sub(G). It is called amenable if all subgroups contained in Z are amenable and
non-trivial if Z , {{e}}.

Note that for a discrete group G amenability is a closed condition in Sub(G) with the
Chabauty topology and therefore, by minimality, a uniformly recurrent subgroup Z is amenable
if and only if all contained subgroups are amenable if and only if any contained subgroup is
amenable. We prove this fact for later reference:

Proposition 2.3.10: Let G be a discrete group and Hλ ∈ Sub(G) a net of subgroups converg-
ing to some group H ∈ Sub(G) in the Chabauty topology. If all Hλ are amenable, then so is H.

Proof. Assume that the net Hλ is indexed by λ ∈ Λ for a directed set Λ. Define

H′λ B
⋂

µ∈Λ:λ≤µ

Hµ.

Then H′λ1
≤ H′λ2

whenever λ1 ≤ λ2 and we consider the direct limit and claim that

H =
⋃
λ∈Λ

H′λ.

Indeed, if g ∈ G is not contained in H, then g < Hλ eventually and therefore g < H′λ for all
λ ∈ Λ. On the other hand, if g ∈ H, then g is eventually contained in Hλ, so there exists a
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λ ∈ Λ such that g ∈ Hµ for all µ ≥ λ and therefore g ∈ H′λ. Since amenability is closed under
taking subgroups, all H′λ ≤ Hλ are amenable and since it is closed under taking direct limits so
is H. �

Theorem 2.3.11 (Kennedy [40, Theorem 4.1]): A discrete group G is C∗-simple if and
only if Sub(G) contains no non-trivial amenable uniformly recurrent subgroup.

Proof. First suppose that Z is a non-trivial amenable uniformly recurrent subgroup of G and
let H ∈ Z. LetM(∂FG) be the space of probability measures on the Furstenberg boundary
∂FG of G. As H is amenable, it acts amenably on ∂FG and so there is a measure µ ∈ M(∂FG)
which is invariant under the action of H. As ∂FG is a boundary, there is a net gλ ∈ G such
that limλ gλ.µ = δx for some x ∈ ∂FG. Since Sub(G) is compact, we may assume that gλ.H
converges to some subgroup K ∈ Z after possibly passing to a subnet. In particular, we may
assume that

⋂
λ gλ.H , {e} after possibly passing to a second subnet. Indeed, if

⋂
η gλη .H = {e}

for all subnets gλη , then K = {e} which would make Z trivial by minimality. Now pick a
non-trivial h ∈

⋂
λ gλ.H. Then g−1

λ hgλ.µ = µ for all λ, since g−1
λ hgλ ∈ H and µ is H-invariant.

Consequently, hgλ.µ = gλ.µ and hence h.δx = δx by taking limits. Therefore, h ∈ G \ {e}
fixes x ∈ ∂FG, so the action of G on ∂FG is not free. We conclude that G is not C∗-simple by
Theorem 2.3.6.

For the converse assume that G is not C∗-simple. We will show that the collection of
stabilisers of the action on the Furstenberg boundary forms the desired uniformly recurrent
subgroup. Indeed let Z B {Gx | x ∈ ∂FG}. By Lemma 2.3.4, all subgroups contained in
Z are amenable and since G is not C∗-simple, at least one subgroup contained in Z is not
trivial. Since g.Gx = Gg.x, the subset Z is furthermore G-invariant and it remains to show that
it is minimal and closed. Consider the map ∂FG → Sub(G) that assigns every point to its
stabiliser x 7→ Gx. Recall from the proof of Theorem 2.3.6 that Lemma 2.3.5 implies that
every homeomorphism on ∂FG has open fixed point set. Hence for a convergent net xλ → x in
∂FG we find that if g ∈ Gx then g ∈ Gxλ eventually, as xλ eventually enters the neighbourhood
of x that g fixes pointwise. On the other hand, if g < Gx, then there is no subnet xλη of xλ such
that g ∈ Gxλη for all η, since otherwise g.xλη = xλη implies g.x = x. Hence g < Gxλ eventually,
and we conclude that Gxλ converges to Gx in the Chabauty topology. Consequently, the map
x 7→ Gx is a continuous, G-equivariant map ∂FG → Sub(G) with image Z and we conclude
that Z is compact and minimal. �

To translate Theorem 2.3.11 into a characterisation that is truly only in elementary group-
theoretic terms, consider the following definition:

Definition 2.3.12: Let G be a discrete group and H ≤ G a subgroup. Then H is called
recurrent if and only if there is a finite set F ⊆ G \ {e} such that F intersects every subgroup
gHg−1 conjugate to H.

Remark. Kennedy has since changed his terminology to call these subgroups residually
normal, but we prefer the previous term and continue to call them recurrent.

Lemma 2.3.13: Let H be a subgroup of a discrete group G. Then H is recurrent if and only
if the trivial subgroup {e} is not contained in the orbit closure of H inside Sub(G).

Proof. Assume that H is recurrent, so there is a finite set F ⊆ G \ {e} that intersects every
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conjugate of H. If there was a net of conjugates of gλHg−1
λ approximating {e}, then f < gλHg−1

λ

eventually for all f ∈ F, contradicting the assumption on F.
Conversely, assume that H is not recurrent, so for every finite set F ⊆ G \ {e} there exists

some gF ∈ G such that gF Hg−1
F does not intersect F. Note that the set F of finite subsets of

G \ {e} is directed with respect to the inclusion ⊆ since two sets F, F′ ∈ F have upper bound
F ∪ F′ ∈ F . Then limF∈F gF Hg−1

F = {e}, since every group element g , e is eventually not
contained in gF Hg−1

F and we conclude that {e} is contained in the orbit closure of H. �

Lemma 2.3.14: Let X be a compact space with G-action. There is a non-empty, closed,
G-invariant subset Y ⊆ X such that the G-action on Y is minimal.

We are not aware of the origin of Lemma 2.3.14 and consider it folklore.

Proof. Conider the collection K of all non-empty, closed, G-invariant subsets of X, ordered
by inclusion. Let S ⊆ K be a totally ordered family of such subsets. As it is totally ordered,
every finite choice of subsets S 1, . . . , S n in S has a lower bound; that is, one of the subsets S i

is contained in all other subsets S j for j = 1, . . . , n. Hence
⋂n

j=1 S j = S i is non-empty, so S
has the finite intersection property and since X is compact we conclude that

Z B
⋂
S∈S

S

is non-empty. Clearly, Z is closed and G-invariant as an intersection of closed, G-invariant
sets and hence it forms a lower bound of S in K .

As every totally ordered family in K has a lower bound, by Zorn’s lemma there is a
minimal element of K , say Y ∈ K . Then Y is a non-empty, closed, G-invariant subset of X
whose only closed, G-invariant subsets are ∅ and Y itself. As for arbitrary x ∈ Y the orbit
closure of x is a non-empty, closed, G-invariant subset of Y , it must be all of Y and so every
x ∈ Y has dense orbit in Y . Hence Y is minimal as desired. �

Lemma 2.3.15 (Kennedy [40, Section 5]): A discrete group G has a recurrent amenable
subgroup H if and only if it has a non-trivial amenable uniformly recurrent subgroup Z.

Proof. Let H be a recurrent amenable subgroup of G and consider the orbit closure G.H of
H in Sub(G). Then the trivial subgroup {e} is not contained in G.H by Lemma 2.3.13. As H
is amenable and amenability is a closed condition in Sub(G) by Proposition 2.3.10, G.H is a
compact G-invariant subspace of Sub(G) containing only amenable groups. By Lemma 2.3.14,
G.H contains a (non-empty) minimal closed G-invariant subspace and since {e} < G.H this
subspace forms a non-trivial amenable uniformly recurrent subgroup of G.

On the other hand, assume that Z ⊆ Sub(G) is a non-trivial amenable uniformly recurrent
subgroup of G and pick any H ∈ Z. Then H is amenable and {e} is not contained in the orbit
closure G.H of H since otherwise {e} ∈ Z but hence Z = {{e}} by minimality contradicting
non-triviality. So H is recurrent by Lemma 2.3.13. �

Theorem 2.3.16 (Kennedy [40, Theorem 5.3]): A discrete group G is C∗-simple if and
only if it contains no amenable recurrent subgroups.

Proof. This is a simple combination of Theorem 2.3.11 and Lemma 2.3.15. �
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Crossed Products

We turn our focus to C∗-simplicity of crossed products. While group C∗-algebras already
provide a wide variety of examples, an even larger class of examples is provided by the crossed
product construction, with only a mild increase in complexity. After recalling the basic theory
in Section 3.1 we turn to simplicity of reduced crossed products in Sections 3.2 and 3.3.

3.1 The Reduced Crossed Product
Consider a compact Hausdorff topological space X and a discrete group G. An action of G
on X is a group homomorphism ϕ from G into the group Homeo(X) of homeomorphisms
from X to X, that is, the group of continuous bijections X → X (with continuous inverse).
Via precomposition with the inverse, ϕ can be understood as an action of G on C(X), the
C∗-algebra of complex-valued continuous functions on X; that is, a group homomorphism
from G into the automorphism group Aut(C(X)) consisting of automorphisms C(X)→ C(X).
In more precise terms, for a group element g ∈ G and a function f ∈ C(X) the action ϕ∗ of G
on C(X) is given by

ϕ∗(g)( f )(x) = f (ϕ(g−1)(x)) (3.1)

for x ∈ X. We will often drop ϕ and ϕ∗ from our notation in favour of the abbreviated
g.x B ϕ(g)(x). In this notation, Equation (3.1) becomes

(g. f )(x) B f (g−1.x).

Recall that the left-regular representation λG of G on `2(G) gives rise to the reduced group
C∗-algebra by completion of the group ring C[G] of G with coefficients in C in the associated
norm. To construct a C∗-algebra associated with the action of G on C(X), consider the group
ring C(X)[G] of G with coefficients in C(X) instead, that is, the ring of finitely supported
functions on G taking values in C(X) with pointwise addition and multiplication derived from

( fλg)( f ′λg′ ) = f (g. f ′)λgg′ ,

where for f , f ′ ∈ C(X) and g, g′ ∈ G we denote by fλg the function from G to C(X) supported
only on g ∈ G where it takes the value f . An involution on C(X)[G] is defined by

( fλg)∗ = (g−1. f ∗)λg−1

33
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with f ∗ the involution in C(X) given by pointwise complex conjugation. Note that C(X)[G]
contains a copy of C(X) as a sub-∗-algebra by identifying a function f with fλe for e the
neutral element of G. As we restricted ourselves to X being compact so that C(X) is unital
with unit 1, we may also identify a copy of C[G] by sending λg to 1λg and 1λe is the identity
of C(X)[G]. In that case, the elements λg are unitaries implementing the action of G on C(X)
as inner automorphism of C(X)[G], since

λg fλg−1 = (g. f )λgλg−1 = (g. f )λe.

Let π be a faithful representation of C(X) on some Hilbert spaceH . We denote by π o λG the
(left-)regular representation of C(X)[G] on B(H) ⊗ `2(G) associated with π. It is given by

(π o λG)( fλg)(ξ ⊗ δh) = (π(h−1g−1. f )ξ) ⊗ δgh

for ξ ∈ H and δh the canonical basis vector of `2(G) supported in h ∈ G.

Definition 3.1.1: Let X be a compact Hausdorff topological space and G a discrete group.
Choose a faithful representation π of C(X) on some Hilbert space. The reduced crossed
product C(X) or G is the completion of C(X)[G] with respect to the norm induced by the
regular representation π o λG.

Indeed, C(X) or G forms a C∗-algebra and the construction is independent of the choice
of faithful representation π, see e.g. [12, Proposition 4.1.5] or [61, Chapter 7.2]. As in the
construction of group C∗-algebras, there is a notion of universal crossed product C(X) oG,
which we will only rarely use in this thesis.

The reduced crossed product construction generalises the construction of the reduced
group C∗-algebra: In the case of X consisting of a single point fixed by the action of G, C(X)
specialises to C with the trivial action of G in which every group element acts neutrally. Hence
C(X)[G] matches the group ring C[G] and the regular representation π o λG will be equivalent
to λG, giving rise to C∗r (G) as C or G.

On the other hand, there are several further generalisations of reduced crossed products.
While we have notationally restricted ourselves to the case of a group acting on a unital
commutative C∗-algebra C(X), there is an obvious generalisation to actions on a not necessarily
commutative, not necessarily unital C∗-algebra A replacing C(X). One possible generalisation
of the results in this chapter to such crossed products has been investigated by Bryder [13].
Keeping the commutativity of the algebra, but relaxing the notion of a “group” acting, the
reduced C∗-algebras of locally compact Hausdorff étale groupoids are a generalisation in a
different direction, which we will describe in detail in Section 4.1.

An important tool in the study of reduced crossed products are conditional expectations
as defined in Definition 2.1.10. In particular, the canonical conditional expectation EX from
C(X) or G to C(X) is obtained as in the group case by extending evaluation at the neutral
element of the group, that is,

EX( fλg) =

 f if g = e,
0 otherwise,

(3.2)

and extended by linearity. Identifying C(X) or G with the closure of the image of C(X)[G]
in B(H) ⊗ `2(G) under the regular representation π o λG, EX is given by compression with
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the projection 1 ⊗ |δe〉 〈δe| and this shows that it is continuous on C(X) or G and ucp. Noting
furthermore that C(X) or G is even a subalgebra of B(H) ⊗C∗r (G) ⊆ B(H) ⊗ `2(G), where EX

is given by 1 ⊗ τ for τ the faithful canonical expectation of C∗r (G) shows that EX is faithful,
see further [12, Lemma 4.1.9]. In addition, we will make use of conditional expectations
onto the algebras of the stabiliser subgroups: For a discrete group G acting on a compact
Hausdorff space X, the stabiliser Gx of a point x ∈ X is the subgroup of G consisting of all
group elements fixing x. As for any subgroup, there is a conditional expectation EGx from
C∗r (G) onto C∗r (Gx) given by cutting the representation on `2(G) down with the projection onto
`2(Gx), that is

EGx (λg) =

λg if g ∈ Gx,

0 else,

and extended by linearity. Pre-composed with evaluation at x, this gives rise to a conditional
expectation Ex of the crossed product onto C∗r (Gx) given by

Ex( fλg) = f (x)EGx (λg) (3.3)

and extended by linearity. For a more detailed treatment of crossed products, the reader is
advised to consult the books by Brown–Ozawa [12] or Williams [61].

3.2 Early Work on Crossed Product Simplicity

The first observation concerning simplicity of reduced crossed products is that ideals of the
algebra acted upon that are invariant under the group action give rise to ideals in the crossed
product. In the case of a commutative, unital C∗-algebra C(X), closed, two-sided ideals
correspond to closed subsets K of the compact space X, with the ideal IK C C(X) given by
IK B { f ∈ C(X) | f |K ≡ 0}. The ideal IK is invariant under the G-action on C(X) if and only
if K is invariant under the G-action on X. Then IK or G, seen as a subset of C(X) or G, is an
ideal in the reduced crossed product, and clearly proper if and only if IK is a proper ideal of
C(X). If X has no closed G-invariant subsets, or equivalently if C(X) has no proper G-invariant
closed ideals, the action of G on X is called minimal. While the crossed product associated
with a minimal action does not have any proper ideals coming from C(X) in this way, it might
still have other proper ideals. The easiest example of a minimal non-simple crossed product is
any non-C∗-simple discrete group acting trivially on a one-point space.

Given a closed, two-sided ideal J of C(X) or G, its intersection with C(X) is again a
closed, two-sided ideal of C(X) and is furthermore invariant, as the G-action on C(X) can be
implemented by conjugation with the associated unitaries λg if X is compact. The action of G
on C(X) is said to have the intersection property, coined by Svensson and Tomiyama [58], if
this intersection J ∩C(X) is non-zero for every non-zero ideal J of C(X) or G. It immediately
follows that the crossed product of a minimal action is simple if and only if the action has the
intersection property, and as minimality is well-understood, we focus our further efforts on
describing the intersection property.

As a first experiment, note that in the case of the reduced C∗-algebra of a group G, thought
of as the crossed product of G acting trivially on a single point, the intersection property is
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simply stating that every non-zero ideal of C∗r (G) contains a non-zero scalar and is therefore
all of C∗r (G).

Next, we make the case that every action which is “free enough” has the intersection
property. We introduce some common notation:

Definition 3.2.1: Let G be a discrete group acting on a space X. The topological stabiliser
G◦x of a point x ∈ X is the subgroup of G consisting of all group elements for which there is a
neighbourhood of x that they are fixing pointwise. The fixed point set Xg of a group element
g ∈ G is the set of all points in X which g fixes. In other words,

Gx B {g ∈ G | g.x = x},

G◦x B {g ∈ G | ∃U ⊆ X s.th. x ∈ U◦ and g.y = y∀y ∈ U},

Xg B {x ∈ X | g.x = x}.

The action is called topologically free if all topological stabilisers G◦x for x ∈ X are trivial.

It is important to note that both the stabiliser and the topological stabiliser translate nicely
under the group action:

Gg.x = gGxg−1 and G◦g.x = gG◦xg−1

for g ∈ G and x ∈ X, since the action of G is by homeomorphism and therefore transports open
sets to open sets. There are several different definitions of topological freeness in the literature,
but in the case of a countable discrete group acting on a space, most of them are equivalent:

Proposition 3.2.2: Let G be a countable discrete group acting on a compact Hausdorff space
X. The following are equivalent:

1) The set of points x ∈ X with trivial stabiliser Gx is dense in X.

2) The action is topologically free in the sense of Definition 3.2.1.

3) For any g ∈ G \ {e} the set of points Xg fixed by g has empty interior.

Proof. 1) ⇒ 2): If a dense set of points has trivial stabiliser, every open subset of X will
contain a point with trivial stabiliser, and so every topological stabiliser has to be trivial.

2)⇒ 3): If Xg does not have empty interior for some nontrivial g ∈ G, then it contains a
neighbourhood of some x and clearly e , g ∈ G◦x.

3)⇒ 1): As Xg is closed and has empty interior, X \ Xg is an open, dense subset of X. If
G is countable, then by the Baire category theorem [54, Theorem 2.2],

⋂
g∈G\{e} X \ Xg will

again be dense in X and is exactly the set of points with trivial stabiliser. �

Note that 2) and 3) are equivalent even without the countability assumption on G, since
condition 3) prevents any non-trivial element of G from fixing a non-empty open set pointwise.

By an early result of Archbold and Spielberg [3], every topologically free action of a
discrete group G on a compact Hausdorff space X has the intersection property. Instead of
giving their proof, we provide a stronger result given by Ozawa [48, Theorem 14 (1)] in the
minimal and Kawabe [38, Lemma 2.4 (i)] in the general setting.
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Lemma 3.2.3 (Kawabe–Ozawa): Let G be a discrete group acting on a compact Hausdorff
space X such that the set of points x with C∗-simple stabiliser Gx is dense. Then the action has
the intersection property. In particular, if the action is minimal and has at least one C∗-simple
stabiliser then the associated crossed product C(X) or G is simple.

Note that the statement also follows as a special case from our later results of Corollary
4.2.29 in the étale groupoid setting.

We elaborate on the proofs from [38, Lemma 2.4 (i)] and [48, Theorem 14 (1)]:

Proof. Assume that the set of points with C∗-simple stabiliser is dense in X. Let I be an ideal
of C(X) or G such that I ∩C(X) = {0}. We want to show that I = {0}. Let us momentarily fix
an x ∈ X such that C∗r (Gx) is C∗-simple. As the conditional expectation Ex is the identity on
C∗r (Gx) seen as a subalgebra of C(X) or G, this subalgebra is contained in the multiplicative
domain of Ex and therefore Ex(I) is again a two-sided ideal of C∗r (Gx), although a-priori not
necessarily closed. As C∗r (Gx) is simple and unital, it is algebraically simple and therefore
Ex(I) has to be either zero or all of C∗r (Gx).

Consider the sub-C∗-algebra C(X) + I of C(X) or G. As C(X) ∩ I = {0}, the quotient
(C(X) + I)/I � C(X)/(C(X) ∩ I) is isomorphic to C(X) and by evaluating at x we obtain a
∗-homomorphism

C(X) + I
[·]I
−−→ (C(X) + I)/I � C(X)

evalx
−−−→ C

which extends to a state ϕ : C(X) or G → C by Hahn-Banach [54, Theorem 3.3]. Then ϕ
vanishes on I, while its multiplicative domain contains C(X), where it is given by evaluation
at x. Hence, for f ∈ C(X) and g ∈ G we obtain

f (x)ϕ(λg) = ϕ( fλg) = ϕ(λg(g−1. f )) = ϕ(λg)(g−1. f )(x) = f (g.x)ϕ(λg).

If g < Gx, then we may choose f ′ ∈ C(X) such that it separates x and g.x. From the above
statement ( f ′(x) − f ′(g.x))ϕ(λg) = 0 we can therefore conclude that ϕ(λg) = 0 if g < Gx and
hence ϕ(Ex( fλg)) = 0 = ϕ( fλg) for arbitrary f ∈ C(X). On the other hand, if g ∈ Gx then

ϕ(Ex( fλg)) = ϕ( f (x)λg) = f (x)ϕ(λg) = ϕ( f )ϕ(λg) = ϕ( fλg)

again using that C(X) is contained in the multiplicative domain of ϕ. As elements of the form
fλg span C(X) or G densely, we conclude that ϕ = ϕ ◦ Ex and hence ϕ(Ex(I)) = ϕ(I) = {0}.
Since ϕ(λe) = 1, λe cannot be contained in Ex(I) ⊆ C∗r (Gx) and hence Ex(I) , C∗r (Gx) so that
it must have been zero.

Let S = {x ∈ X | C∗r (Gx) is C∗-simple} be the set of points with C∗-simple stabiliser, which
is dense in X by assumption. We have just shown that Ex(I) = {0} for x ∈ S . Let a be any
element of I and note that a∗a is a positive element contained in I. Since evalx ◦ EX = τGx ◦ Ex

with τGx the canonical trace of C∗r (Gx) and EX the canonical conditional expectation of
C(X) or G onto C(X), we see that EX(a∗a) ∈ C(X) vanishes on the dense set S ⊆ X and
therefore EX(a∗a) = 0 by continuity so that a∗a = 0 and therefore a = 0 by faithfulness of EX .
Hence I = {0}.

If the action is minimal and has a single C∗-simple stabiliser, then all stabilisers on the
same orbit are also C∗-simple and as the orbit is dense, the crossed product is simple. �
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Corollary 3.2.4: Let G be a (not necessarily countable) discrete group acting on a compact
Hausdorff space X. If the action is topologically free, it has the intersection property. If it is
furthermore minimal, the associated crossed product is simple.

Proof. Assume that the action of G on X is topologically free and let I be an ideal of C(X)or G
such that I ∩ C(X) = {0}. Let a be any element of I and choose a countable subgroup H of
G such that a is contained in C(X) or H, which is possible since C(X) or G is the closure
of C(X)[G] whose elements are finitely supported. As the action of H on X is likewise
topologically free, characterisation 1) of Proposition 3.2.2 tells us that there is a dense set of
points x ∈ X whose stabiliser Gx intersects the countable subgroup H trivially. Therefore, the
action of H on X has a dense set of points with trivial, hence C∗-simple, stabiliser. Applying
the above Lemma 3.2.3 to I ∩C(X) or H CC(X) or H shows that a ∈ I ∩C(X) or H vanishes
and since a was arbitrary, we once again conclude that I = {0}. �

Topological freeness is, as Lemma 3.2.3 suggests, a rather strong condition. In the special
case of group C∗-algebras where the group is acting on a single point, the action is topologically
free if and only if the group is trivial and the lemma above degenerates to the trivial statement
that C∗r (G) is simple if G is C∗-simple. Notably, however, Kawamura and Tomiyama proved
in [39, Theorem 4.1] a partial converse: If the group acting is amenable then the action has
the intersection property if and only if it is topologically free. We provide their statement
in the slightly more general version given by Kawabe [38, Lemma 2.4 (ii)] and Ozawa [48,
Theorem 14 (2)]:

Lemma 3.2.5 (Kawabe–Ozawa): Let G be a discrete group acting on a compact Hausdorff
space X such that the set of points x with amenable topological stabiliser G◦x is dense. The
action has the intersection property, if and only it is topologically free.

In particular, if the action is minimal and has at least one amenable topological stabiliser
then the associated crossed product C(X)or G is simple if and only if the action is topologically
free.

We elaborate on the proofs from [38, Lemma 2.4 (ii)] and [48, Theorem 14 (2)]:

Proof. Using Corollary 3.2.4, we only need to show that the action is topologically free if it
has the intersection property. Let X be as in the statement and assume that the action has the
intersection property. For x ∈ X such that G◦x is amenable consider the representation πx of the
universal crossed product C(X) o G on `2(G/G◦x) given by πx( fλg)δhG◦x = f (gh.x)δghG◦x and
extended linearly and continuously to all of C(X) oG. Let ϕ : C(X) oG → C(X) or G be the
canonical surjective ∗-homomorphism. The amenability of G◦x ensures that πx factors through
ϕ to a representation of the reduced crossed product C(X) or G: First, a quick calculation
shows that

〈π(a)δeG◦x , δeG◦x〉 = τG◦x ◦ EG◦x ◦ Ex ◦ ϕ

for a ∈ C(X) o G with τG◦x the trivial representation of G◦x, which extends continuously to
C∗r (G◦x) since the topological stabiliser is amenable, EG◦x the conditional expectation of C∗r (Gx)
onto C∗r (G◦x) defined in Equation 2.2, and Ex the conditional expectation of C(X) or G onto
C∗r (Gx) defined in Equation 3.3. Hence, if a ∈ ker(ϕ) then

〈π(a)δgG◦x , δhG◦x〉 = 〈π(λh−1 aλg)δeG◦x , δeG◦x〉 = 0
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since λh−1 aλg ∈ ker(ϕ) and consequently π(a) ∈ B(`2(G/G◦x)) vanishes. We conclude that πx

factors through ϕ to a continuous representation of C(X) or G on `2(G/G◦x), which we again
denote by πx.

We denote the dense set of x ∈ X with amenable topological stabiliser G◦x by S ⊂ X and
consider the representation π =

⊕
x∈S πx. Note that πx( fλe)δeG◦x = f (x)δeG◦x , so π( fλe) , 0

for f , 0 and hence ker(π) ∩C(X) = {0}. By the intersection property, π is therefore faithful.
Assume that Xg has non-empty interior for some g ∈ G and pick a non-empty open set U
contained in Xg. Clearly, g.x = x for all x ∈ U. Pick a non-zero f ∈ C(X) supported on U.
Note that since g fixes U pointwise, so does g−1 and therefore g.x is contained in U if and
only if x already is. Hence g. f = f since either g.x = x if x ∈ U or f (g.x) = 0 = f (x) if x < U.
Then for x ∈ S we find

πx( f (λg − λe))δhG◦x = f (gh.x)δghG◦x − f (h.x)δhG◦x

= f (h.x)
(
δghG◦x − δhG◦x

)
For h such that h.x is not contained in U, the term vanishes as f vanishes. If on the other hand
h.x ∈ U, then note that g ∈ G◦h.x = hG◦xh−1 since U is a neighbourhood of h.x and therefore
gh ∈ hG◦x, so δghG◦x = δhG◦x and the term above vanishes again. Hence πx( f (λg − λe)) = 0 for
any x ∈ S and by faithfulness of π, we conclude that f (λg − λe) vanishes. As f was non-zero,
g must have been the neutral element e. Since g ∈ G was chosen arbitrarily such that Xg has
non-empty interior, we conclude topological freeness by condition 3) of Proposition 3.2.2.

If the action has a single amenable topological stabiliser, then all topological stabilisers
on the same orbit are likewise amenable, since they are conjugate to each other. Hence our
lemma applies to a minimal action with at least one amenable topological stabiliser, as every
orbit is dense. As, in the minimal case, the intersection property is furthermore equivalent to
simplicity of the crossed product, the second claim follows. �

3.3 Kawabe’s Simplicity Characterisation
We take this opportunity to present Kawabe’s results in our own language of Section 4.2.4.
Recall that the compact Chabauty topology on the space of subgroups Sub(G) of a given
discrete group G is given by the topology of pointwise convergence of the characteristic
functions associated with the subgroups. For Kennedy’s characterisation of C∗-simplicity of
discrete groups it was essential in defining the notion of a recurrent subgroup. To describe
the intersection property of crossed products coming from discrete groups acting on compact
spaces, we will provide a generalised notion of recurrent subgroup: For a discrete group G
acting on a compact space X, let Sub(X,G) denote the space {(x,H) ∈ X × Sub(G) | H ≤ Gx}

of subgroups of the stabiliser groups together with a base point, seen as a subspace of the
product space X × Sub(G). Clearly, G acts on X × Sub(G) component-wise via its action
on X and conjugation of subgroups of G. Since the stabiliser subgroups are closed under
conjugation as gGxg−1 = Gg.x for any g ∈ G and x ∈ X, this action restricts to Sub(X,G).

Definition 3.3.1: Let G be a discrete group acting on a compact space X. Let H be a subgroup
of the stabiliser Gx at some x ∈ X. We call H a dynamically recurrent subgroup of Gx, if
(x, {e}) is not contained in the orbit closure of (x,H) in Sub(X,G). That is, if there is no net gλ
of group elements such that gλ.x→ x in X, while gλHg−1

λ → {e} in Sub(G).
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Furthermore, choosing a subgroup Hx of Gx at every x ∈ X, we call Λ = {(x,Hx) | x ∈ X}
a section of stabiliser subgroups. We call such a section recurrent, if its orbit closure does not
contain all trivial subgroups, that is, if there is x0 ∈ X such that (x0, {e}) cannot be approximated
by any net gλ.(xλ,Hxλ ) for (xλ,Hxλ ) ∈ Λ and gλ ∈ G.

Our terminology for dynamically recurrent was inspired by the webcomic of Figure 3.1.

Figure 3.1: “Despite years of effort by my physics professors to normalize it, deep down I
remain convinced that ‘dynamical’ is not really a word”. Available at xkcd.com/2318.

Just as Kalantar–Kennedy’s characterizations of C∗-simplicity of discrete groups, Kawabe’s
results rely heavily on the use of Hamana’s injective G-equivariant envelopes. Recall that the
Furstenberg boundary of a group G was G-equivariantly homeomorphic to the spectrum of the
injective G-equivariant envelope of the trivial action of G on a single point.

Let X be a compact Hausdorff space with an action of a discrete group G. The G-injective
envelope of the commutative unital C∗-algebra C(X) with G-action is again a commutative
unital C∗-algebra with a G-action. We denote its spectrum by X̃. As C(X) is identified with a
unital G-invariant C∗-subalgebra of C(X̃), every pure state on C(X̃) restricts to a unique pure
state on C(X) and we obtain a continuous surjection q : X̃ → X determined by evalx̃|C(X) =

evalq(x̃) for x̃ ∈ X̃. Since the inclusion is G-equivariant and evalg.x( f ) = evalx(g−1. f ), the
surjection q is likewise G-equivariant.

The key observation in Kawabe’s work is a generalisation of Theorem 2.3.1, namely that
the action of G on X has the intersection property, if and only if the action of G on X̃ does:

Theorem 3.3.2 (Kawabe [38, Theorem 3.4]): Given a compact Hausdorff space X with an
action of a discrete group G, let X̃ be the spectrum of the G-equivariant injective envelope of
C(X), equipped with its associated G-action. The action of G on C(X) has the intersection
property if and only if the action of G on C(X̃) does.

xkcd.com/2318


3.3. KAWABE’S SIMPLICITY CHARACTERISATION 41

The proof is surprisingly elementary, leveraging only the definitions of the intersection
property and the G-equivariant injective envelope themselves. Below, we elaborate on the
proof given in [38, Theorem 3.4], while preparing the language we will later use in the proofs
of Section 4.2.4. The second half of the proof is not remarkably different from the proof of the
same implication for Theorem 2.3.1.

Proof. We first show that the action of G on the envelope C(X̃) has the intersection property,
if the action on C(X) does.

Suppose that the action of G on C(X) has the intersection property and that I is a closed,
two-sided ideal of C(X̃) or G such that I ∩C(X̃) = {0}. Let π : C(X̃) or G → (C(X̃) or G)/I be
the associated quotient ∗-homomorphism with kernel I. Treating C(X) or G as a subalgebra
of C(X̃) or G, the restriction of π to C(X) or G is faithful, since the action of G on X has the
intersection property and I ∩ C(X) = {0}. Note that the canonical conditional expectation
EX : C(X) or G → C(X) is a ucp map into C(X̃) via the inclusion of C(X). Furthermore,
C(X) or G carries a natural action of G by conjugation with the associated unitaries:

g.( fλh) = λg( fλh)λg−1 = (g. f )λghg−1 .

Consequently, as ghg−1 = e if and only if h = e, the conditional expectation EX is G-
equivariant. As C(X̃) is the G-injective envelope of C(X), we obtain a G-equivariant ucp
map ϕ : (C(X̃) or G)/I → C(X̃) that restricts to the conditional expectation on the subalgebra
C(X) or G as in the following diagram:

C(X̃) or G (C(X̃) or G)/I C(X̃)

C(X) C(X) or G C(X)

π ϕ

id

EX

(3.4)

As visible from Diagram (3.4), the G-equivariant ucp map ϕ ◦ π restricts to the identity on
C(X) and by G-rigidity of C(X) inside C(X̃) it therefore also restricts to the identity on C(X̃),
whence C(X̃) is contained in the multiplicative domain of ϕ ◦ π. Therefore,

ϕ ◦ π( fλg) = ϕ ◦ π( f )ϕ ◦ π(λg) = f EX(λg) =

 f ifg = e
0 else

and hence ϕ ◦ π = EX̃ is the faithful canonical conditional expectation of C(X̃) or G. As π is
faithful we conclude that I = {0}.

Conversely, we show that the action of G on C(X) has the intersection property, if the
action on the envelope C(X̃) does.

Suppose that the action of G on C(X̃) has the intersection property and that I is a closed,
two-sided ideal of C(X)or G such that I∩C(X) = {0}. Let π : C(X)or G → (C(X)or G)/I be the
associated quotient ∗-homomorphism and let ρ be a faithful representation of (C(X)or G)/I on
some Hilbert space B(H). Since B(H) is injective, ρ◦π extends to a ucp map π̃ : C(X̃)or G →
B(H). Let D denote the C∗-algebra generated by π̃(C(X̃) or G) inside B(H). Once again, G
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acts on D by conjugation with the associated unitaries, for d ∈ D and g ∈ G defined by

g.d B
(
ρ ◦ π(λg)

)
d
(
ρ ◦ π(λg−1 )

)
.

Since π̃ restricts to the ∗-homomorphism ρ ◦ π on C∗r (G) ⊆ C(X) or G ⊆ C(X̃) or G, it is
G-equivariant if we equip C(X̃) or G with the G-action by conjugation with the unitaries λg.
Let E denote the C∗-algebra generated by π̃(C(X̃)) inside B(H), which contains C(X) as a
sub-C∗-algebra, since ρ ◦ π and therefore π̃ are faithful on C(X). Extending the embedding of
C(X) into C(X̃) from this subalgebra to E by G-injectivity, we obtain a G-equivariant ucp map
ϕ : E → C(X̃) as in the diagram below:

C(X̃) E C(X̃)

C(X) C(X)

π̃ ϕ

(3.5)

Since ϕ ◦ π̃ restricts to the identity on C(X), ϕ ◦ π̃|C(X̃) is the identity on C(X̃) by G-rigidity of
C(X) inside C(X̃). In such a composition of ucp maps yielding the identity, the left inverse
can readily seen to be a ∗-homomorphism: Recall from Definition 2.1.8 that the multiplicative
domain of ϕ can be characterised as the closed span of all u ∈ E of norm one such that ϕ(u) is
a unitary in C(X̃). As ϕ ◦ π̃|C(X̃) = idC(X̃), π̃|C(X̃) is an isometry, and so π̃(u′) is contained in the
multiplicative domain of ϕ for every unitary u′ in C(X̃). As such unitaries span C(X̃) densely,
their images under π̃ span E densely, and we conclude that the multiplicative domain of ϕ is
all of E and ϕ is therefore a ∗-homomorphism.

Like in the proof of Theorem 2.3.1, we want to show that π̃|C(X̃) is a ∗-homomorphism
which we could readily conclude if ϕ were injective. As before we work around this issue by
passing to the appropriate quotient: Let F denote the closure of ker(ϕ) · π̃(C(X̃) or G) inside
B(H). Since ϕ is G-equivariant, so is its kernel and as

π̃( f )ρ ◦ π(λg) = ρ ◦ π(λg−1 g.(π̃( f ))

for π̃( f ) ∈ ker(ϕ) we see that ker(ϕ) · π̃(C(X̃) or G) = π̃(C(X̃) or G) · ker(ϕ). Therefore, F
is a closed, two-sided ideal of D, namely all elements of D fixed by an approximate unit of
ker(ϕ). Let Φ denote the quotient ∗-homomorphism D → D/F and consider the ucp map
Φ ◦ π̃ : C(X̃) or G → D/F. By definition of F, ϕ factors through the restriction of Φ to E
as ϕ̄ and ϕ̄ ◦ (Φ ◦ π̃)|C(X̃) = idC(X̃). As ϕ̄ is injective on E/F, we may now conclude that
(Φ ◦ π̃)|C(X̃) is in fact a faithful ∗-homomorphism. Since π̃ restricts to the ∗-homomorphism π
on C∗r (G) ⊂ C(X̃) or G, both C∗r (G) and C(X̃) are contained in the multiplicative domain of
Φ ◦ π̃ and as their product is dense in C(X̃) or G, Φ ◦ π̃ itself is a ∗-homomorphism. Applying
the intersection property of the action on X̃, we may conclude that Φ ◦ π̃ itself is faithful, as it
is injective on C(X̃). In particular, π is faithful as a restriction of π̃ as claimed. �

We continue to denote the spectrum of the G-equivariant injective envelope of a unital
commutative C∗-algebra C(X) with G-action by X̃. Recall from Proposition 2.2.13 that C(X̃) is
an injective C∗-algebra and hence X̃ is Stonean by Proposition 2.2.20. Recall furthermore that
all stabilisers of the action on X̃ are amenable by Lemma 2.3.4. Both of these circumstances
make the action on X̃ significantly more tractable than the action on X. The main benefit
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of passing the intersection property on to the action on the injective envelope is the drastic
simplification provided by the following proposition:

Proposition 3.3.3 (Kawabe [38, Theorem 3.4]): Let X̃ be the spectrum of the G-equivariant
injective envelope of C(X) for X a compact space with G-action. The following are equivalent:

1) The action of G on X has the intersection property.

2) The action of G on X̃ has the intersection property.

3) The action of G on X̃ is topologically free.

4) The action of G on X̃ is free.

This generalises Theorem 2.3.6.

Proof. The equivalence of 1) and 2) is given in Theorem 3.3.2 and only repeated for complete-
ness, while the implications 4)⇒ 3)⇒ 2) are clear, using Corollary 3.2.4.

Noting that the topological stabiliser groups are subgroups of the stabiliser groups at the
same point, the intersection property of X̃ implies topological freeness by Lemma 3.2.5, as
all stabiliser groups of the G-action on X̃ are amenable by Lemma 2.3.4. This proves the
implication 2)⇒ 3).

Finally, since C(X̃) is injective by Proposition 2.2.13, X̃ is Stonean and therefore free
if the action is topologically free: By Frolík’s theorem [24] the fixed point set of every
homeomorphism is clopen, in particular the set X̃g of points fixed by a given element g ∈ G is
open. In other words, whenever a group element g fixes a single point x ∈ X, it fixes a whole
neighbourhood U of x pointwise. Therefore, g ∈ G◦y for all y ∈ U. Assuming topological
freeness, the points with trivial topological stabiliser are dense, so there is some y ∈ U for
which g ∈ G◦y = {e}, hence g is trivial and the action is free. �

We rephrase Kawabe’s characterisations in a language that will generalise well to our
results for groupoid algebras in Section 4:

Recall the definition of sections of stabiliser subgroups from Definition 3.3.1. We call such
a section amenable, if all its constituent groups are amenable. Just like absence of recurrent
amenable subgroups describes C∗-simplicity of discrete groups, the absence of recurrent
amenable sections of stabiliser subgroups begets the intersection property of the action:

Theorem 3.3.4 (Kawabe [38, Theorem 5.2]): Let G be a discrete group acting on a com-
pact space X. If the action has no recurrent amenable sections of stabiliser subgroups it has
the intersection property.

To prove the above theorem, we provide a brief lemma:

Lemma 3.3.5 (Kawabe [38, Proposition 3.3]): Let G be a discrete group acting on a
compact space X and let X̃ be the spectrum of the G-equivariant injective envelope of C(X)
with surjection q : X̃ → X associated with the embedding of C(X) into C(X̃).

If Y ⊂ X̃ is a closed, G-invariant subset of X̃ such that q(Y) = X, then Y = X̃.
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Proof. Let Y be as in the statement of the lemma. As Y is G-invariant, G acts on Y and both
q|Y : Y → X, as well as the inclusion Y ↪→ X̃ are G-equivariant. Since q(Y) = X, we may
embed C(X) into C(Y) by precomposition with q, that is

C(X) ↪→ C(Y)
f 7→ f ◦ q.

By G-injectivity of C(X̃), we can extend the embedding C(X) ↪→ C(X̃) along the embedding
C(X) ↪→ C(Y) to a G-equivariant ucp map ϕ : C(Y)→ C(X̃) as in Diagram 3.6 below. On the
other hand, restriction to Y is a G-equivariant quotient ∗-homomorphism resY : C(X̃)→ C(Y)
which preserves the embedding of C(X) as in the same diagram:

C(Y) C(X̃)

C(X)

ϕ

res|Y

(3.6)

Clearly, ϕ ◦ res|Y is a G-equivariant ucp map C(X̃) → C(X̃) fixing C(X) pointwise and is
therefore the identity on C(X̃) by G-rigidity. Consequently, the restriction res|Y to Y is injective
and since X̃ is Hausdorff, Y must be all of X̃. �

Theorem 3.3.4 is the first half of the statement [38, Theorem 5.2]. We give a simpler proof
than is provided there.

Proof. Let G act on the compact space X such that there are no amenable recurrent sections
of stabiliser subgroups. Note that if a group element g ∈ G stabilises a point x̃ ∈ X̃ then
g.q(x̃) = q(g.x̃) = q(x̃) as q is G-equivariant and so the stabiliser G x̃ of the action of G on
X̃ is a subgroup of the stabiliser Gq(x̃) of the action of G on X. Let Φ : X̃ → Sub(G) be
the map sending a point x̃ in the boundary X̃ to its stabiliser subgroup G x̃. Using Frolík’s
theorem [24] again, we see that the stabiliser G x̃ and the topological stabiliser G◦x̃ coincide
for every x̃ ∈ X̃, as the fixed point set of the homeomorphism of X̃ associated with g is open
and therefore x̃ is fixed by g if and only if a neighbourhood of x̃ is fixed pointwise. This
shows continuity of Φ: Recall that a neighbourhood subbasis of H ∈ Sub(G) is given by
the sets of subgroups Ug,H = {H′ ≤ G | g ∈ H′ ⇔ g ∈ H}. Let Φ(x̃) ∈ Ug,H and assume
that g ∈ H. Then g ∈ G x̃ = G◦x̃ and so g ∈ Gỹ for y in some neighbourhood O ⊆ X̃ of x̃.
Therefore, x̃ is contained in the interior of Φ−1(Ug,H). The case g < H is analogous, and this
proves continuity at x̃. Hence, Φ(X̃) is a compact G-invariant subset of Sub(G), containing
at least one amenable subgroup of every stabiliser Gx for x ∈ X since all stabilisers of the
boundary X̃ are amenable. Pick a section of stabiliser subgroups consisting of groups in Φ(X̃),
which is not recurrent by assumption. Then for every x ∈ X we find nets gλ and x̃λ such that
(gλ.q(x̃λ), gλ.G x̃λ )→ (x, {e}). As q × Φ : X̃ → X × Sub(G) is continuous, q × Φ(X̃) is compact
and therefore closed, so it contains (x, {e}). In other words, for every x ∈ X there is x̃ ∈ X̃
with q(x̃) = x such that G x̃ = {e} and so Y B Φ−1({e}) is a closed, G-invariant subspace of X̃
satisfying q(Y) = X. By Lemma 3.3.5 we conclude that Y = X̃ and hence the action of G on
X̃ is free. By Proposition 3.3.3, we conclude that the action of G on X has the intersection
property. �
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As for discrete groups, absence of recurrent amenable sections of stabiliser subgroups is
actually equivalent to the action having the intersection property.

Theorem 3.3.6 (Kawabe [38, Theorem 5.2]): Let G be a discrete group acting on a com-
pact space X. If the action has the intersection property, then no amenable section of stabiliser
subgroups is recurrent.

By Theorem 3.3.4, having the intersection property is therefore equivalent to not having
recurrent amenable sections of stabiliser subgroups.

To prove Theorem 3.3.6, we need to establish what Kawabe calls the analogue of the
unique trace property for group actions.

Lemma 3.3.7 (Kawabe [38, Lemma 4.1]): Let G be a discrete group acting on a compact
space X. If the action is topologically free, the only conditional expectation from C(X) or G
onto C(X) is the canonical conditional expectation EX . Conversely, if X is Stonean, all
stabilisers of the action of G on X are amenable, and the conditional expectation onto C(X) is
unique, then the action is topologically free.

Seen in a wider context, uniqueness of the conditional expectation stems from the fact
that C(X) is a Cartan subalgebra of C(X) or G if the action is topologically free (see e.g [53,
Theorem 5.2]) and that conditional expectations onto Cartan subalgebras are unique (see [53,
Corollary 5.10]). The theory of Cartan subalgebras is already well-developed in a groupoid
contex, in fact, every pair of C∗-algebras (A, B) where B is a Cartan subalgebra of A can be
modeled by a (twisted) groupoid C∗-algebra of a topologically free groupoid and its diagonal
subalgebra (see [53, Theorem 5.9]).

We repeat the proof given by Kawabe in [38].

Proof. Let E be a conditional expectation from C(X) or G onto C(X). Let x ∈ X and g ∈ G
be such that g.x , x. This forces E(λg) to vanish at x: Since g.x , x and the action is by
homeomorphism, we may choose a neighbourhoodU of x such thatU and g.U are disjoint.
Let f ∈ C(X) be supported inU with f (x) = 1 and note that f · g. f = 0. Then

E(λg)(x) = ( f · E(λg) · f )(x),

and as f ∈ C(X) is in the multiplicative domain of E,

E(λg)(x) = E( fλg f )(x) = ( f · g. f )(x) · E(λg)(x) = 0.

As the action of G on X is topologically free, the set of points x in X with trivial stabiliser Gx is
dense by Proposition 3.2.2. That is, for every g ∈ G\{e}we can find a dense set of points x such
that g < Gx and therefore E(λg) = 0 = EX(λg) by the above. Clearly E(λe) = 1X = EX(λe), as
this is the inclusion of C(X) into C(X) or G. Hence E is the canonical conditional expectation
EX .

Conversely, we show that if X is Stonean, all stabilisers Gx are amenable, and the action is
not topologically free, there is a non-canonical conditional expectation E given by

E( fλg) = f · χXg
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for g ∈ G with Xg the subspace of points fixed by g. Since X is Stonean, Xg is clopen by
Frolík’s theorem [24] and therefore the indicator function χXg is continuous for any g ∈ G.
The definition of E extends from C(X)[G] to all of C(X) or G: For x ∈ X consider evalx ◦ E
and note that

evalx ◦ E
(∑

g∈G

fgλg
)

=
∑
g∈Gx

fg(x) = τ(
∑
g∈Gx

fg(x)λg) = τ ◦ Ex

(∑
g∈G

fgλg

)
for Ex the conditional expectation onto Gx and τ the trivial representation of Gx which extends
to C∗r (Gx) because the stabiliser is amenable. Hence evalx ◦ E = τ ◦ Ex is a positive linear
functional on C(X) or G and therefore ‖evalx ◦ E‖ = evalx ◦ E(1) = 1 by [62, Theorem 13.5].
Consequently, E as defined on C(X)[G] is a contraction in the norm of C(X)or G and therefore
extends to all of C(X) or G.

If the action is not topologically free, there exists a non-trivial g ∈ G such that Xg is
non-empty and hence E is distinct from EX since EX(λg) = 0 , χXg = E(λg). �

We use uniqueness of the conditional expectation in the following version:

Lemma 3.3.8 (Kawabe [38, Theorem 4.2]): Let G be a discrete group acting on a compact
space X and let X̃ be the spectrum of the G-equivariant injective envelope of X. The action
has the intersection property if and only if the only G-equivariant ucp map C(X) or G → C(X̃)
that fixes C(X) pointwise is the canonical conditional expectation EX .

We elaborate on the proof given by Kawabe in [38].

Proof. Note again that C(X) or G embeds into C(X̃) or G by using the embedding of C(X)
into C(X̃) and that this is G-equivariant if we equip the crossed products with an action of G
where g ∈ G acts by conjugation with the associated unitary λg. Let ϕ : C(X) or G → C(X̃)
be a G-equivariant ucp map fixing C(X) pointwise. By G-injectivity of C(X̃) we may, as
in Diagram (3.7), extend ϕ to a G-equivariant ucp map Φ : C(X̃) or G → C(X̃) along the
embedding described above.

C(X̃) or G C(X̃)

C(X) or G C(X)

Φ

ϕ (3.7)

Restricting Φ to C(X̃) yields a G-equivariant ucp map C(X̃)→ C(X̃) that fixes C(X) pointwise,
hence Φ|C(X̃) = idC(X̃) is the identity by G-rigidity of C(X̃). Therefore, C(X̃) is contained in the
multiplicative domain of Φ and hence

Φ( fλg) = Φ( f )Φ(λg) = fϕ(λg).

Consequently, if ϕ is the canonical conditional expectation onto C(X), then Φ is the canonical
conditional expectation onto C(X̃). Conversely, given any G-equivariant ucp map Φ that fixes
C(X) pointwise, it has to be a conditional expectation onto C(X̃) by G-rigidity and restricts to
the canonical conditional expectation onto C(X) if it is the canonical conditional expectation
onto C(X̃). Existence of a G-equivariant ucp map C(X)or G → C(X̃) that fixes C(X) pointwise
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but is not the canonical conditional expectation onto C(X) is therefore equivalent to the
existence of a non-canonical conditional expectation C(X̃) or G → C(X̃). As X̃ is Stonean by
Proposition 2.2.13 and all stabilisers of the G-action on X̃ are amenable by Lemma 2.3.4, this
is furthermore equivalent to the intersection property of the G-action on X̃ by the previous
Lemma 3.3.7 and finally equivalent to the intersection property of the G-action on X by
Proposition 3.3.3, proving the claim. �

This enables us to prove Theorem 3.3.6, as in the second half of [38, Theorem 5.2]:

Proof. Given an amenable section of stabiliser subgroups, consider its orbit closure Y in
X × Sub(G). This is a closed, G-invariant set. We define a G-equivariant ucp map θ from
C(X) or G to C(Y) by

θ( fλg)(x,H) B f (x)χH(g)

for f ∈ C(X), g ∈ G, H ≤ G a subgroup, and χH the indicator function of H on G. To see
that θ( fλg)(x,H) is indeed continuous on Y , note that f is continuous on X and H 7→ χH(g)
is continuous on Sub(G) for fixed g, since H contains g if and only if all subgroups in a
neighbourhood of H do. Extending linearly, θ is a positive unital map C(X)[G] → C(Y):
Consider

C(X̃) or G C∗r (Gx) C∗r (H) C

fλg f (x)EGx (λg) f (x)EH(λg) f (x)χH(g)

Ex EH τ

With Ex the conditional expectation from C(X̃) or G onto the algebra C∗r (Gx) of the stabiliser
Gx at x, EH the conditional expectation from C∗r (Gx) onto the algebra C∗r (G) of its subgroup H
and τ the trivial representation of H sending every group element to the unit of the unitary
groupU(C) of C. As H is amenable, τ is continuous and since all involved maps are positive,
eval(x,H) ◦ θ is positive on C(X)[G]. Since eval(x,H) ◦ θ is a positive linear functional, we have
that ‖eval(x,H) ◦ θ‖ = θ(1)(x,H) = 1 by [62, Theorem 13.5]. Consequently, θ is bounded in
norm. Positivity on the commutative C∗-algebra C(Y) is decided precisely by positivity after
applying all these extremal states and therefore θ extends by linearity and continuity to a
unital positive map on all of C(X) or G. As C(Y) is commutative, θ is furthermore completely
positive. Finally, θ is G-equivariant as

θ(g.( fλh))(x,H) = θ(λg( fλh)λ−1
g )(x,H) = θ((g. f )λghg−1 )(x,H) = (g. f )(x)χH(ghg−1)

= f (g−1.x)χg−1Hg(h) = θ( fλh)((g−1).x, (g−1).H) = g.(θ( fλh))(x,H)

for g, h ∈ G, f ∈ C(X), x ∈ X, and H ≤ G.
Since Y contains at least one subgroup in every stabiliser, C(X) embeds into C(Y) by

precomposition with projection onto the first coordinate. By G-injectivity of C(X̃), we may
extend the embedding C(X) ↪→ C(X̃) along the embedding C(X) ↪→ C(Y) to a ucp G-map
ϕ : C(Y) → C(X̃). Now ϕ ◦ θ is a G-equivariant ucp map C(X) or G → C(X) that fixes
C(X) pointwise. As the action of G on X has the intersection property by assumption, X̃
is topologically free by Proposition 3.3.3 and therefore ϕ ◦ θ is the canonical conditional
expectation onto C(X) by Lemma 3.3.8.
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Let q again denote the quotient map X̃ → X coming from C(X) ↪→ C(X̃) and let x̃ ∈ X̃.
Consider the functional evalx̃ ◦ϕ : C(Y)→ C. We show that it is supported on {q(x̃)} ×Sub(G):
Let f ∈ C(Y) be such that it vanishes on {q(x̃)} × Sub(G) and letU be an open neighbourhood
of q(x̃). Let hU ∈ C(X) be supported onU with 0 ≤ hU ≤ 1 and hU(q(x̃)) = 1. Then

|evalx̃ ◦ ϕ( f )| = |evalx̃ ◦ ((hU ◦ q) · ϕ( f ))|.

Noting that hU ◦ q is the image of hU under the embedding of C(X) into C(X̃), we have
hU ◦ q = ϕ(hU ◦π1) with π1 the coordinate projection from X ×Sub(G) onto X. Hence hU ◦π1
is contained in the multiplicative domain of ϕ so that

|evalx̃ ◦ ϕ( f )| = |evalx̃ ◦ ((hU ◦ q) · ϕ( f ))|
= |evalx̃ ◦ ϕ((hU ◦ π1) · f )|
≤ ‖(hU ◦ π1) · f ‖C(Y).

As f vanishes on {q(x̃)} × Sub(G) and Sub(G) is compact, for every ε > 0 we may find a
neighbourhood U of q(x̃) such that ‖ f |U×Sub(G)‖C(Y) < ε. Then ‖(hU ◦ π1) · f ‖C(Y) < ε and
the above shows that |evalx̃ ◦ ϕ( f )| < ε. We conculde that evalx̃ ◦ ϕ( f ) = 0 if f vanishes
on {q(x̃)} × Sub(G). Let µx̃ denote the Radon probability measure on Y associated with the
functional evalx̃ ◦ ϕ. The above shows that µx̃ is supported on {q(x̃)} × Sub(G), or in other
words, µx̃({q(x̃)} × Sub(G)) = 1. However, for e , g ∈ G we calculate that

µx̃({(x,H) | g ∈ H}) =

∫
Y
χH(g) dµx̃(x,H) =

∫
Y
θ(λg) dµx̃(x,H) = evalx̃ ◦ ϕ ◦ θ(λg) = 0,

the last equality following from the previous observation that ϕ ◦ θ has to be the canonoical
conditional expectation from C(X) or G onto C(X). If the given amenable section of stabiliser
subgroups was recurrent, we could pick x0 ∈ X such that (x0, {e}) < Y . Hence for x̃0 ∈ X̃ such
that q(x̃0) = x0 we would find that

1 = µx̃0 (Y) ≤ µx̃0

 ⋃
e,g∈G

{(x,H) | g ∈ H}

 ≤ ∑
e,g∈G

µx̃o ({(x,H) | g ∈ H}) = 0,

which is clearly a contradiction. �

While absence of recurrent amenable sections of stabiliser subgroups characterises the
intersection property, the more easily stated absence of dynamically recurrent subgroups
of the stabilisers is instead equivalent to the residual intersection property. Recall from
Definition 3.3.1 that if G is acting on X, we call H ≤ Gx a dynamically recurrent subgroup if
(x, {e}) ∈ X × Sub(G) cannot be approximated by G-conjugates of (x,H). Note that H might
be recurrent in Gx but not dynamically recurrent, as the former notion is only concerned with
conjugation by elements of Gx, while the latter uses all elements of G. For example, the whole
stabiliser Gx is normal and therefore recurrent in Gx, but not dynamically recurrent, unless Gx

was a recurrent subgroup of G.

Definition 3.3.9: Let G be a discrete group acting on a compact space X. We say that the
action of G on X has the residual intersection property, if the action of G on every closed,
G-invariant subspace of X has the intersection property.
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Theorem 3.3.10 (Kawabe [38, Theorem 5.3]): Let G be a discrete group acting on a
compact space X. The action has the residual intersection property, if and only if no stabiliser
has a dynamically recurrent amenable subgroup.

Proof. First assume that the action has no dynamically recurrent amenable subgroups in its
stabilisers and let Y ⊂ X be a closed, G-invariant subspace. Any amenable section of stabiliser
subgroups for the action of G on Y contains an amenable subgroup (y,H) of Gy for every
y ∈ Y . As (y,H) is by assumption not dynamically recurrent, its orbit closure contains (y, {e})
and since this is the case for all y ∈ Y , the orbit closure of the section of stabiliser subgroups
contains Y × {{e}}. By Theorem 3.3.4, the action of G on Y has the intersection property.

Conversely, suppose that the action on X has the residual intersection property and that
H is an amenable subgroup of Gx for some x ∈ X. Let Y be the orbit closure of x in X, then
the action of G on Y has the intersection property by assumption. For every point y in the
orbit of x pick a group element gy such that gy.x = y. Then

{
(gy.x, gyHg−1

y ) | y ∈ G.{x}
}

is a
collection of amenable subgroups of stabilisers and can be extended to an amenable section of
stabiliser subgroups by choosing a limit point (y,Hy) ∈ Y × Sub(G) for every y ∈ Y \G.{x},
which exists as Sub(G) is compact. As the action is continuous, Hy is a subgroup of Gy and
since amenability is a closed condition in Sub(G) by Proposition 2.3.10, it is amenable. The
resulting amenable section of stabiliser subgroups consists only of subgroups which can be
expressed as limits of conjugate subgroups of (x,H) and its orbit closure contains (x, {e}) by
Theorem 3.3.6, so (x, {e}) is likewise a limit of conjugate subgroups of (x,H). Hence H is not
dynamically recurrent by Definition 3.3.1. �

We finish our review of Kawabe’s work by summing up the above criteria in the minimal
case, where the (residual) intersection property is equivalent to simplicity of the reduced
C∗-algebra. Note that there are no non-trivial closed G-invariant subspaces in the minimal
case, hence the intersection property coincides with the residual intersection property.

Proposition 3.3.11 (Kawabe [38, Theorem 6.1]): Let G be a discrete group acting mini-
mally on a compact space X. The following are equivalent:

1) The reduced crossed product C(X) or G is simple.

2) The action has the (residual) intersection property.

3) The action has no dynamically recurrent amenable subgroups of stabilisers.

4) There is x0 ∈ X such that Gx0 has no dynamically recurrent amenable subgroups.

We choose to give a different proof for the equivalence of 3) and 4) than in [38, Theo-
rem 6.1].

Proof. We have already remarked upon the well-known equivalence of 1) and 2) and the
equivalence of 2) and 3) is given in Theorems 3.3.4 and 3.3.6. We show that 4) implies 3), as
the converse clearly holds.

Let x, x0 ∈ X and let H be an amenable subgroup of Gx. As the action is minimal,
there is a net gλ ∈ G such that gλ.x → x0. Since Sub(G) is compact we may assume that
gλ.H → H′ ≤ G for some amenable subgroup H′ of G after possibly passing to a subnet. Using
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that gλ.H ≤ Ggλ.x it follows that H′ ≤ Gx0 . By assumption of 4), (x0,H′) is not dynamically
recurrent, so (x0, {e}) is contained in its orbit closure and therefore in the orbit closure of
(x,H). Finally, since g−1

λ .(x0, {e})→ (x, {e}), we conclude that H is not a dynamically recurrent
subgroup of Gx and 3) follows. �

As we feel it is more insightful, we add the following two equivalent conditions to
Proposition 3.3.11:

Proposition 3.3.12: Let G be a discrete group acting minimally on a compact space X. The
following are equivalent:

1) The reduced crossed product C(X) or G is simple.

5) For all x ∈ X, the stabiliser Gx contains no recurrent amenable subgroups of G.

6) There is x0 ∈ X such that Gx0 contains no recurrent amenable subgroups of G.

Proof. 1) ⇒ 5) If any Gx0 contains a recurrent amenable subgroup H of G, then H is a
dynamically recurrent subgroup of Gx0 and the reuced crossed product is not simple by the
previous proposition.

5)⇒ 6) is clear.
6)⇒ 4)⇔ 1) Let x0 ∈ X be such that Gx0 contains no recurrent amenable subgroup of

G. Then given any amenable subgroup H ≤ Gx0 , there is a net gλ ∈ G such that gλ.H → {e}.
As X is compact, we may pass to a convergent subnet of gλ.x, say gλ.x → y ∈ X, so (y, {e})
is contained in the orbit closure of (x,H). As the action is minimal, x is in the orbit closure
of y and hence conjugates of (y, {e}) approximate (x, {e}), showing that H is not dynamically
recurrent in Gx. This shows condition 4) of the previous Propsition 3.3.11, so the reduced
crossed product is simple. �



Groupoids

We finally get to the heart of this thesis, generalising Kennedy’s results of Section 2.3.3 and
Kawabe’s results of Section 3.3 to étale groupoids. While Bryder–Kennedy [14] and Bryder
[13] investigated C∗-simplicity in the case of crossed products where the commutative algebra
C(X) is replaced by a not-necessarily commutative C∗-algebra, we are taking a different
approach with groupoids, keeping the commutative C∗-algebra over what will be called the
“unit space” of the groupoid, but weakening the assumptions of a “group” acting. We recall the
basic theory of groupoids in Section 4.1 and present our results on C∗-simplicity in Section
4.2. Afterwards, we present a groupoid model for a recent C∗-algebraic construction by G.
Elek in Section 4.3 and apply our simplicity results.

4.1 Groupoid Basics
For decades, C∗-algebras associated with (topological) groups have been studied intensely as
they provide both interesting links between Operator Algebras and other fields of mathematics
like group theory and geometry, as well as an easily manipulated model for examples of
C∗-algebras. The crossed products of Section 3 take this perspective further, allowing to
enter all commutative C∗-algebras into the mix. One possible next step in this process of
generalisation is to investigate the C∗-algebras modelled by groupoids, which mimic the action
of a group on a space, but allow the group acting to vary from point to point. These models
are immensely powerful. For example, every simple classifiable C∗-algebra arises as the
reduced C∗-algebra of a groupoid [46, 42], and although not every C∗-algebra is modelled by
a groupoid [15], we are not aware of an example that is known not to arise from a groupoid
and a twist, a slightly more involved construction which is out of scope here.

A groupoid is often quickly defined as a “small category with inverses”, but we collect the
details in the following definition from [49, p.7]:

Definition 4.1.1: A groupoid G is a set together with a composition map m from a subset G(2)

of the product set G × G into G and an inverse map i : G → G such that

1) (γ, η), (η, κ) ∈ G(2) ⇒ (m(γ, η), κ), (γ,m(η, κ)) ∈ G(2) and m(m(γ, η), κ) = m(γ,m(η, κ)).

2) i ◦ i = idG

3) For all γ ∈ G we have (γ, i(γ)) ∈ G(2)

51
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4) If (γ, η) ∈ G(2), then m(i(γ),m(γ, η)) = η and m(m(γ, η), i(η)) = γ.

We refer to elements of G as “arrows” and pairs of arrows that are contained in G(2)

as “composable”. For simplicity, we write the composition m(γ, η) of a pair of composable
arrows as γη. Condition 1) above then simply states that composition is associative, which
includes the correct pairs of arrows to be composable for the statement to make sense. The
next three conditions establish the inverse map, which we for convenience write as i(γ) = γ−1.
By conditions 2) and 3), arrows are composable with their inverses in either order and by
condition 4) they “revert” the effects of composition. In other words, the map m(i(γ), •) is
inverse to the map m(γ, •).

While the above statement sounds intuitive, we may ask ourselves where the map m(γ, •) is
actually defined. Clearly, it maps the set of arrows η such that (γ, η) is composable bijectively
onto the set of ρ such that (γ−1, ρ) is composable. Upon further inspection, we see that if η1
and η2 ∈ G are such that (γ, ηi) is composable for i = 1, 2, then η1η

−1
1 = η2η

−1
2 , since

ηiη
−1
i = (γ−1(γ(ηiη

−1
i ))) = ((γ−1γ)ηi)η−1

i = γ−1γ for i = 1, 2.

Consequently, we call r(η) B ηη−1 the range of η, defining the range map r : G → G and
s(γ) B γ−1γ the source of γ, defining the source map s : G → G. Indeed, a pair of arrows
(γ, η) is composable if and only if s(γ) = r(η), since

γ−1(γη)η−1 = (γ−1γ)(ηη−1),

which by associativity coincides with both s(γ) and r(η). We call the image of the range and
source maps the unit space G(0) B r(G) = s(G), whose elements are special arrows called units.
Note that the two definitions using range or source coincide, since r(γ) = s(γ−1). As the unit
space will play the role of the space X in our ongoing analogy of a groupoid G generalising
the action of a group G on a space X, we often prefer to use latin letters like x ∈ G(0) for units,
instead of the greek letters for general arrows. We denote by

Gx B {γ ∈ G | r(γ) = x} = r−1(x) and Gx B {γ ∈ G | s(γ) = x} = s−1(x)

the range and source fibres of a unit x ∈ G(0). To answer our previous question, composition
with a fixed element γ is a map m(γ, •) : Gs(γ) → Gr(γ). As a special case, composition with a
unit x ∈ G(0) is the identity map m(x, •) : Gx → Gx.

Example 4.1.2. Any group G is a groupoid G = G in which the composition and inversion
are given by the group law. The unit space G(0) then consists of the neutral element only and
any pair of arrows is composable.

Example 4.1.3. Let G be a group acting on a set X. The transformation groupoid G n X is
given by the set G = G× X. Intuitively, we imagine an arrow (g, x) to be pointing from x to g.x,
that is, r(g, x) = g.x and s(g, x) = x. The set of composable pairs of arrows is hence defined as

G(2) B
{
((g, x), (g′, x′)) ∈ G | g′.x′ = x

}
and the composition of such pairs given by (g, x)(g′, x′) = (gg′, x′) with inverses by (g, x)−1 =

(g−1, g.x). The unit space is simply the copy of X in G given by {e} × X for the neutral element
e ∈ G.
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4.1.1 Topological, Étale, and Ample Groupoids

We wish to employ a groupoid as a model for a C∗-algebra, where the unit space G(0) gives
rise to a commutative C∗-algebra and the groupoid generalises the action of a group on G(0).
Hence we introduce a topology on G that turns G(0) into a topological space and explain what
it means for the “action” to be continuous:

Definition 4.1.4: A topological groupoid is a groupoid G with a locally compact Hausdorff
topology such that the composition, inverse, range, and source maps are continuous.

The unit space G(0) forms a closed subspace of G, since any net of units ηλ converging to
some arrow η ∈ G satisfies ηλ = r(ηλ) and hence η = r(η) if G is Hausdorff. In fact, the unit
space being closed is equivalent to G being Hausdorff, if it is otherwise a topological groupoid
as defined above, see [56, Lemma 2.3.2].

As we will be generalising results characterising the simplicity of C∗-algebras arising from
actions of discrete groups, we may ask what properties of a topological groupoid would make
it an appropriate generalisation of such actions. While it initially seems sensible that these
would be groupoids carrying the discrete topology, note that this would mean we also endow
the unit space with the discrete topology. Building the transformation groupoid as in Example
4.1.3 for the action of a discrete group G on a locally compact Hausdorff topological space X
by automorphisms, we would then lose all information about the topology of X. The correct,
or rather the interesting, analogue of a discrete group action in the groupoid world is therefore
a different one:

Definition 4.1.5: We call a topological groupoid G étale, if its range map r : G → G is a local
homeomorphism. That is, if for every arrow γ ∈ G there is an open neighbourhood U of γ
such that r(U) is open in G and r|U : U → r(U) is a homeomorphism.

As the inverse map on G is a homeomorphism, we could of course equivalently ask the
source map s to be a local homeomorphism. To understand why these generalise actions of
discrete groups, note that in a transformation groupoid of G acting on X, we can identify every
range fibre Gx or source fibre Gx with G. In an étale groupoid, these fibres will turn out to be
discrete, but the proof is best done using another important concept, bisections:

Definition 4.1.6 ([56, Definition 2.4.8]): Let G be an étale groupoid. We call a subset B ⊆ G
a bisection, if there is an open set U containing B such that both s(U) and r(U) are open in
G(0) and the source and range map restrict to homeomorphisms on U.

Note in particular that any bisection intersects a given range or source fibre either in a
unique arrow or not at all. There are plenty of bisections in an étale groupoid. Enough, in fact
to determine the topology:

Proposition 4.1.7: Let G be an étale groupoid. The topology of G has a basis consisting
of open bisections. If the topology is second-countable, a countable basis can be chosen.
Consequently, the range and source fibres are discrete subsets of G.

Proof. As G is étale, every arrow γ is contained in an open set Uγ on which the range map
restricts to a homeomorphism onto an open set. Likewise, there is an open set Vγ = Uγ−1 on
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which the source map restricts to a homeomorphism and Uγ∩Vγ is an open bisection containing
γ. Hence each arrow is contained in an open bisection and noting that the intersection of an
open bisection with any open set is again an open bisection, we see that the topology of G has a
basis containing of open bisections. If G is second countable, the basis can be made countable
by picking γ above from a dense sequence and intersecting with countable neighbourhood
bases for each γ as in [56, Lemma 2.4.9].

If B is an open bisection containing γ ∈ G, then {γ} = B ∩ Gr(γ) is open in Gr(γ) and hence
the range and source fibres are discrete subspaces by the above. �

A class of étale groupoids that is particularly easy to deal with is that of ample groupoids:

Definition 4.1.8: Let G be an étale groupoid. If its topology has a basis of compact open
bisections, G is called ample.

What makes these particularly tractable is the abundance of continuous indicator functions
that come with these compact, open bisections, as we will see in Section 4.2.4 on groupoid
C∗-simplicity.

4.1.2 C∗-algebras of Étale Groupoids
Just as with crossed products or group C∗-algebras, there is a reduced C∗-algebra associated
with a topological groupoid, which is built from the appropriate algebra of functions completed
with respect to the appropriate representation.

Let G be an étale groupoid and consider Cc(G), the algebra of continuous, compactly
supported, complex valued functions on G. We endow Cc(G) with the multiplication ∗ and
involution ∗ defined by

( f ∗ g)(γ) =
∑
η∈Gr(γ)

f (η)g(η−1γ),

f ∗(γ) = f (γ−1),

for functions f , g ∈ Cc(G) and an arrow γ ∈ G. Often, f ∗ g is called the “convolution” of
f and g. To see that f ∗ g is again continuous and compactly supported, note that all sums
involved are finite, since f and g are compactly supported and the range fibres are discrete.

Constructing the regular representation, consider the Hilbert space `2(Gx) for a unit x ∈ G(0)

an let πx be the representation of Cc(G) on `2(Gx) by

πx( f )δγ =
∑
η∈Gr(γ)

f (η)δηγ

for a function f ∈ Cc(G) and δγ the basis vector of `2(Gx) supported on γ ∈ Gx. To obtain the
reduced C∗-algebra C∗r (G) of G, we complete Cc(G) in the reduced norm ‖ • ‖λ given by

‖ f ‖λ = sup
x∈G(0)

‖πx( f )‖`2(Gx)

for f ∈ Cc(G) or equivalently we can take the closure of the image of the representation⊕
x∈G(0) πx in

⊕
x∈G(0) `

2(Gx). This representation is injective on Cc(G) (see [56, Corol-
lary 3.3.4]) and the norm restricts to ‖ f ‖λ = ‖ f ‖∞ for f ∈ Cc(G(0)). The resulting copy
of C0(G(0)) in C∗r (G) is often referred to as the diagonal.
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As for groups, there is also a notion of the maximal C∗-algebra associated with a groupoid
G, given by a universal representation. In the simplest formulation, it is given by completing
Cc(G) with the ∗-algebra-structure above in the norm given by the supremum over all norms of
∗-representations on Hilbert spaces. As we will mainly be concerned with the reduced algebra,
we only mention the maximal algebra in passing.

In analogy to crossed products, there is a conditional expectation E : C∗r (G) → C0(G(0))
onto the commutative “diagonal” by keeping only the parts supported at units:

E( f ) = f |G(0)

for f ∈ C∗r (G).

Example 4.1.9. If a group G is understood as a groupoid G as in Example 4.1.2, then
the associated C∗-algebras C∗r (G) and C∗r (G) are isomorphic with the isomorphism sending
λg ∈ C[G] to the characteristic function χ{g} ∈ Cc(G). Analogously, if the group G acts on a
space X, then the crossed product C0(X)orG is isomorphic to the reduced C∗-algebra C∗r (GnX)
of the associated transformation groupoid with the isomorphism sending a fλh ∈ Cc(X)[G] to
the function (g, x) 7→ f (x) · χ{h}(g) in Cc(G n X).

4.1.3 Isotropy and Topological Principality
Point stabilisers Gx of a point x ∈ X for a group G acting on a space X are generalised by
the so-called isotropy groups in the groupoid setting. The isotropy group Gx

x = Gx ∩ G
x at

x ∈ G(0) is given by the intersection of the range and source fibres at x, containing exactly those
arrows of G that start and end at x. Consequently, all pairs of arrows in Gx

x are composable in
either order and the isotropy group is indeed a group with unit x. The union of all isotropy
groups in G is simply called the isotropy Iso(G) of G and contains at the minimum G(0). In
a Hausdorff groupoid the isotropy is closed, since for any net γλ → γ of arrows γλ in the
isotropy converging to γ ∈ G we have r(γλ) → r(γ) and s(γλ) → s(γ) whence r(γ) = s(γ).
In general, the isotropy might not be open, not even in a Hausdorff étale groupoid. If the
isotropy is trivial, that is, if Iso(G) = G(0), then G is called principal which corresponds to
freeness of the action of G on X in our analogy to group actions. Finding an analogue of
topological stabilisers is more subtle. Recall that a group element g ∈ G is in the topological
stabiliser G◦x of x ∈ X if and only if it fixes a neighbourhood U of x pointwise. In other words,
{g} × U ⊆ G n X is contained in the isotropy of the transformation groupoid G n X. As the
topology on GnX is given by the product topology of G×X, this is an open set if G is discrete
and hence (g, x) is contained in the interior of the isotropy. On the other hand, if (g, x) is
contained in the interior of the isotropy then there exists a neighbourhood U as above and
g is contained in the topological stabiliser of x. The correct generalisation of a topological
stabiliser at x is therefore the intersection of the isotropy group at x with the interior of the
isotropy.

Definition 4.1.10: A groupoidG is called topologically principal, if the interior of the isotropy
is the unit space G(0).

As for group actions in Proposition 3.2.2, this simplifies in case the groupoid is étale:
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Proposition 4.1.11: Let G be a second-countable étale groupoid. The groupoid G is topo-
logically principal if and only if the set of points x ∈ G(0) with trivial isotropy group Gx

x = {x}
is dense in G(0).

Proof. Assume that G is topologically principal, so Iso(G)◦ = G(0). Recall that if G is étale,
its topology has a basis of open bisections. Let B be an open bisection that does not intersect
the unit space G(0). As the isotropy is closed, B \ Iso(G) is open. Hence s(B \ Iso(G)) is
open in G(0) and since B ∩ Iso(G) has empty interior by assumption, B \ Iso(G) is dense in
B and s(B \ Iso(G)) is dense in s(B). Aiming to apply the Baire category theorem as in the
proof of Proposition 3.2.2, we add the interior of the complement of s(B) and obtain the set
s(B \ Iso(G)) ∪ G(0) \ s(B), which is open and dense in G(0). Taking B from a countable basis
of open bisections B, the Baire category theorem yields that

V B
⋂
B∈B

s(B \ Iso(G)) ∪ G(0)
\ s(B \ G(0)) ⊆ G(0),

is dense in G(0). If Gx
x , {x} is non-trivial, and x , γ ∈ Gx

x then there exists an open bisection
B ∈ B such that γ ∈ B and therefore x ∈ s(B \G(0)) but x < s(B \ Iso(G)). Consequently, x < V
and V is therefore a dense subset of points in G(0) whose isotropy groups are trivial.

On the other hand, as G(0) is closed, Iso(G)◦ \ G(0) is open in G and as the range map
is open in an étale groupoid, r(Iso(G)◦ \ G(0)) is likewise an open subset of G(0). Hence, if
Iso(G)◦ \ G(0) is non-empty r(Iso(G)◦ \ G(0)) is non-empty and the units with trivial isotropy
are not dense in G(0). �

The preceding proof is a good example of how concepts from the world of discrete group
actions carry over to the world of étale groupoids, with “global” statements using single group
elements replaced by “local” statements using bisections instead. Indeed, the French word
“étale” means “spread out” and we believe that the nomenclature is motivated by single arrows
of an étale groupoid being able to “spread out” to an open bisection and act locally instead
of on a single point. In the case of a transformation groupoid G n X, an arrow (g, x) may
simply spread out globally to the open bisection {g} × X, but in a general étale groupoid more
care is necessary. An important drawback, which was not an issue in the above proof, is that
this choice of bisection is far from unique and we have to take care to make all arguments
independent of the choice.

A groupoid is minimal, if the orbit of every unit is dense; that is, if r(Gx) is dense in G(0)

for every unit x ∈ G(0). As for crossed products in Lemma 3.2.3, topological principality and
minimality yield a sufficient criterion for simplicity of the reduced groupoid C∗-algebra:

Proposition 4.1.12 (Brown–Clark–Farthing–Sims [11, Theorem 5.1]): Let G be a topo-
logically principal, minimal, Hausdorff étale groupoid. Then C∗r (G) is simple.

We will not give a complete proof of Proposition 4.1.12, but point out the intermediate
results of [11] that it relies on. First, topological principality ensures the analogue of the
intersection property for crossed products by a result of Exel:

Lemma 4.1.13 (Exel [21, Theorem 4.4]): Let G be a topologically principal, Hausdorff
étale groupoid and I a non-trivial ideal of C∗r (G). Then I ∩C0(G(0)) , {0}.
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On the other hand, minimality ensures that such ideals cannot be proper:

Lemma 4.1.14 (Brown–Clark–Farthing–Sims [11, Proposition 5.7]): Let G be a Haus-
dorff étale groupoid. Then G is minimal if and only if for every non-zero f ∈ C0(G(0)) the ideal
of C∗r (G) generated by f is all of C∗r (G).

Together, these imply Proposition 4.1.12:

Proof of Proposition 4.1.12: Let I be a non-zero ideal of C∗r (G). By Lemma 4.1.13 I contains
a non-zero f ∈ C0(G(0)) and hence by Lemma 4.1.14 it is all of C∗r (G). �

Prior to our results of Section 4.2.4, this is the only general criterion for simplicity of étale
groupoids we were aware of, and for second-countable groupoids it follows easily from our
result by Lemma 4.2.30.

4.1.4 Amenability
For discrete or even topological groups, amenability is a relatively clear-cut concept. While
there famously roughly 101010

different characterisations (see [12, Chapter 2.6]), all of these
are equivalent and maybe best described as the maximal and the reduced C∗-algebra of the
group in question coinciding.

For an étale topological groupoid G the situation is quite different and, as far as we are
aware, still under development. Once again the simplest condition imaginable is asking
for the maximal and reduced norms on Cc(G) to coincide, which Sims and Williams call
“metric amenability” in [57]. However, metric amenability is not equivalent to groupoid-
generalisations of the other, more powerful characterisations of amenability for discrete
groups. In particular, the first notion of “amenability” for groupoids by Renault, now often
called “topological amenability”, asks for the existence of a net fλ ∈ Cc(G) such that fλ ∗ f ∗λ |G(0)

is uniformly bounded on the unit space G(0) while fλ ∗ f ∗λ converges to the constant function 1
uniformly on compact subsets of G. This notion was later developed further by Anantharaman-
Delaroche and Renault [2] in what is maybe the most extensive work on groupoid amenabilty.
Among others, they provide the following characterisations:

Definition 4.1.15 [2, Proposition 2.2.13]: LetG be a locally compact Hausdorff étale groupoid.
We call G (topologically) amenable, if one of the following equivalent definitions holds:

1. There is a net of positive functions fλ ∈ Cc(G)+ such that

(a)
∑
γ∈Gx

fλ(γ) ≤ 1 for all x ∈ G(0).

(b) x 7→
∑
γ∈Gx

fλ(γ) converges to 1 uniformly on compact subsets of G(0).

(c) γ 7→
∑

η∈Gr(γ)

∣∣∣ fλ(γ−1η) − f (η)
∣∣∣ converges to 0 uniformly on compact subsets of G.

2. There is a net of functions fλ ∈ Cc(G) such that

(a)
∑
γ∈Gx
| fλ(γ)|2 ≤ 1 for all x ∈ G(0).
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(b) x 7→
∑
γ∈Gx
| fλ(γ)|2 converges to 1 uniformly on compact subsets of G(0).

(c) γ 7→
∑

η∈Gr(γ)

∣∣∣ fλ(γ−1η) − f (η)
∣∣∣2 converges to 0 uniformly on compact subsets of G.

3. There is a net of functions fλ ∈ Cc(G) such that

(a) x 7→ fλ ∗ f ∗λ (x) is uniformly bounded on G(0).
(b) γ 7→ fλ ∗ f ∗λ (γ) converges to 1 uniformly on compact subsets of G.

Characterisations of amenability in terms of an invariant mean are more subtle, starting at
the question of what measure space that invariant mean would be defined on. Indeed, there is a
notion of “quasi-invariant measure” µ on the unit space, which induces a measure ν on G and
a groupoid G is called “measurewise amenable”, if L∞(G, ν) has an invariant mean for every
quasi-invariant measure µ. In general, topological amenability is stronger than measurewise
amenability, but by [2, Theorem 3.3.7] they coincide for étale groupoids. The following easily
defined characterisation of étale groupoid amenability in terms of invariant means is given by
Sims in [56, Definition 4.1.2]:

Proposition 4.1.16: Let G be a locally compact Hausdorff étale groupoid. Then G is
amenable if and only if there is an approximate invariant continuous mean for G. That is, if
there are nets of Radon probability measures (µx

λ)λ∈Λ for every x ∈ G(0) such that

• the support of µx
λ is contained in Gx

• x 7→
∫
G

f dµx
λ is continuous for every λ ∈ Λ and f ∈ Cc(G)

• the net of functions Mλ on G given by

Mλ(γ) =
∥∥∥∥µr(γ)

λ (γ·) − µs(γ)
λ (·)

∥∥∥∥
1

converges to 0 uniformly on compact subsets of G.

For étale groupoids (topological) amenability of G is indeed equivalent to nuclearity of
the reduced C∗-algebra C∗r (G) by [2, Theorem 6.2.14], but while it implies that the maximal
and reduced groupoid C∗-algebras are canonically isomorphic, it is not equivalent to the latter.
A counterexample was famously given by Willett [60] based on a construction by Higson,
Lafforgue, and Skandalis. His example is a group bundle, that is, a groupoid which consists of
isotropy only. It is formed from a single group G by choosing an approximating sequence Kn of
normal, finite-index subgroups of G and placing the groups G/Kn at n ∈ N over the one-point
compactificationN ∪ {∞} ofN as unit space, with G at∞. It turns out that amenability of the
groupoid thus constructed, if equipped with the appropriate quotient topology, is equivalent
to amenability of the group G, while the reduced and maximal C∗-algebras of the groupoid
can be forced to coincide if the quasi-regular representations of G on the quotients G/Kn

approximate the maximal norm on C[G]. Willett gives an example of such an approximating
sequence for G the free group in two generators.

Amenability still provides the partial converse to Proposition 4.1.12 given by Kawamura
and Tomiyama in the context of crossed products. This is again a result by Brown, Clark,
Farthing, and Sims:
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Proposition 4.1.17 (Brown–Clark–Farthing–Sims [11, Theorem 5.1]): LetG be an amenable
Hausdorff étale groupoid. Then C∗r (G) is simple if and only if it is minimal and topologically
principal.

Our results in Section 4.2.4 generalise Proposition 4.1.17 by Lemma 4.2.31.

4.1.5 Groupoid Actions
While the action of a group on a topological space or C∗-algebra can be readily defined as
a homomorphism into the appropriate automorphism group, the fibred nature of a groupoid
makes its actions much more delicate and the objects acted upon will in general have to be
fibred over its unit space. Below we introduce bundles of C∗-algebras and actions of groupoids
on such bundles following the exposition [27] of Goehle.

Definition 4.1.18: For a locally compact Hausdorff space X, a C0(X)-algebra is a C∗-algebra
A equipped with a ∗-homomorphism Φ from C0(X) into the centre of the multiplier algebra
of A such that Φ is non-degenerate in the sense that Φ(C0(X))A is dense in A. A ucp map
between two C0(X)-algebras that respects the multiplication with elements of C0(X) will be
called a C0(X)-map.

For f ∈ C0(X) and a ∈ A we will often suppress Φ in the notation and write f a in-
stead of Φ( f )a. There is a one-to-one correspondence between C0(X)-algebras and upper-
semicontinuous bundles of C∗-algebras over X: see for example Williams [61, Appendix C].
Therefore, we will not define such bundles separately, but instead explain how to interpret a
C0(X)-algebra as a bundle:

Let A be a C0(X)-algebra and take any x ∈ X. Then C0(X \ x) is an ideal in C0(X) and
consequently Ix B C0(X \ x)A is a closed, two-sided ideal in A. We denote by Ax B A/Ix

the quotient of A by the ideal Ix and assemble these as fibres into the bundle A B
⊔
x∈X

Ax.

This bundle then carries a unique topology for which the bundle map p : A → X sending any
element of Ax to x is continuous and open and the C∗-algebra

Γ0(X,A) =

{
f : X → A continuous

∣∣∣ f (x) ∈ Ax, ‖ f (x)‖Ax

x→∞
−−−−→ 0

}
of continuous sections in A vanishing at infinity is isomorphic to A by the isomorphism
A→ Γ0(X,A) sending a ∈ A to the function x 7→ a + Ix ∈ Ax. In this way, we may pass from
bundlesA to C0(X)-algebras A and back by forming the algebra of continuous sections and
by assembling the bundle fibrewise.

Definition 4.1.19: Let τ : Y → X be a continuous map between two locally compact Hausdorff
spaces and A a C0(X)-algebra. The pullback bundle Y ∗τ A is given by

Y ∗τ A B
{
(y, a) ∈ Y ×A

∣∣∣ τ(y) = p(a)
}

with the relative topology of Y ×A. It is an upper-semicontinuous bundle over Y with bundle
map q(y, a) = y.

We are now ready to define the action of a groupoid on a C∗-algebra fibred over its unit
space. Let G be a locally compact Hausdorff étale groupoid and A a C0(G(0))-algebra. An
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action α of G on A is a family of ∗-isomorphisms αγ : As(γ) → Ar(γ) for γ ∈ G such that
αηγ = αη ◦ αγ whenever η and γ are composable and such that the map

G ∗s A → A given by (γ, a) 7→ αγ(a)

is continuous. We then call A a G-algebra. If there is no confusion about the action, we will
abbreviate αγ(a) to γ.a.

A C0(G(0))-map ϕ : A→ B between two G-algebras with G-actions denoted by α and β is
called G-equivariant if the induced maps on the fibres satisfy

ϕr(γ)

(
αγ(a)

)
= βγ

(
ϕs(γ)(a)

)
for all γ ∈ G and a ∈ As(γ).

Accordingly, we provide a definition for an operator system with groupoid action:

Definition 4.1.20: A G-operator system S is an operator system in a unital G-algebra A
that is closed under both the action of C0(G(0)) and the action of G, the latter meaning that
αγ(S/Is(γ)) ⊆ Ar(γ) is contained in S/Ir(γ).

Note that this is a concrete operator system, meaning that it is defined explicitly as a
subset of a G-algebra. While a general operator system may be defined abstractly without
an enveloping C∗-algebra, defining a groupoid action requires a notion of ideals which only
makes sense in the surrounding C∗-algebra and hence we deal only with concrete operator
systems.

4.2 The Groupoid Furstenberg Boundary

This section is based on [8] and contains the main results of this thesis. Building on the work
of Hamana [29, 30, 34], we define the Furstenberg boundary of a groupoid, generalising the
Furstenberg boundary for discrete groups. This is achieved by providing a construction of
a groupoid-equivariant injective envelope through a new induction procedure. Using this
injective envelope, we establish the absence of dynamically recurrent amenable subgroups in
the isotropy as a sufficient criterion for the intersection property of a locally compact Hausdorff
étale groupoid with compact unit space and no fixed points. In turn, this yields a criterion for
C∗-simplicity of minimal groupoids.

Following the recent successes of Kalantar–Kennedy [36] and Kennedy [40] several
authors set forth to generalise Hamana’s construction to obtain Furstenberg-type boundaries
in different settings in the hope of providing similarly powerful tools, compare for example
Bearden–Kalantar [4] and Monod [43]. While these works remain in the realm of groups,
we provide an injective envelope construction that generalises the Furstenberg boundary to
groupoids.

We introduce our new induction functor in Section 4.2.1, allowing us to transport injective
operator systems to the category of operator systems with groupoid action, and enabling us to
construct the boundary of a given groupoid in said category in Section 4.2.2. Consequently,
we examine some properties of the boundaries thus defined in Section 4.2.3 and apply them to
obtain a sufficient condition for C∗-simplicity of an étale groupoid in Section 4.2.4.
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4.2.1 Induction of Groupoid Actions
The first step towards constructing an injective envelope among the G-operator systems is
to find a suitable, but possibly too large, injective object in this category. As injectivity of
operator systems is well-understood in the absence of an action, we aim to obtain a G-injective
object by inducing the trivial action of G(0) to an action of G, and transporting morphisms in a
natural fashion. We are grateful to R. Meyer for pointing out that this is the correct notion
behind the construction of group-equivariant injective envelopes in Proposition 2.2.6.

Let G be a Hausdorff étale groupoid that acts on a G-algebra W, and H ⊆ G a closed
subgroupoid such thatH (0) = G(0). Then W is also anH-algebra and we denote the resulting
restriction functor from G-algebras toH-algebras by res G

H
. As alluded to above, we set out

to find a right adjoint to res G
H

between the categories of G- and H-operator systems with
equivariant unital completely positive maps as morphisms. More precisely, we seek to assign
a G-algebra IndG

H
(A) to everyH-algebra A such that for every G-algebra W there is a natural

bijection
HomG

(
W, IndG

H
(A)

)
� HomH

(
res G
H

W, A
)
. (4.1)

To construct injective envelopes, we may restrict to the case whereH = G(0).
In his recent PhD-thesis [5, Chapter 3], Bönicke provides a method for inducing groupoid-

C∗-algebras from subgroupoids, but this construction does not provide a right adjoint to
restriction. In this section, we modify his construction to obtain an induction functor satisfying
Equation (4.1).

AsH = G(0) consists only of units, there is no additional data in the G(0)-action and any
G(0)-algebra that we want to induce to a G-algebra will have no further structure than that of a
C(G(0))-algebra. Let A be such a G(0)-algebra. As before we letA denote the bundle over G(0)

associated with A. We may then form its pullback G ∗s A along the source map s : G → G(0),
which is a bundle over G. We define the induced C∗-algebra

Ind A B Γb(G,G ∗s A) (4.2)

to be the bounded continuous sections from G into that pullback.

Remark. It is here that we deviate from Bönicke’s construction [5, page 15], where only
sections vanishing at infinity in the appropriate sense are considered: compare condition (2)
on page 15 of [5]. Note that condition (1) on the same page of [5] is trivial for H = G(0),
but could well be added to obtain a more general induction functor. Contrary to [5], our
definition of Ind A does not yield a C0(G)-algebra, as the action of C0(G) is degenerate unless
G is compact.

Pushforward along the range map gives an action of C(G(0)) on Ind A by central multipliers:
For f ∈ Γb(G,G ∗s A) and g ∈ C(G(0)), we set

g f B (g ◦ r) f .

This action is non-degenerate, as C(G(0)) is unital. It is worth pointing out that the fibre of
Ind A at a unit u is not given by Γb(Gu,Gu∗s,A) as in [5], which makes it more difficult to
formulate a G-action on the induced bundle. This is alleviated by the fibre projection only
depending on the restriction to a neighbourhood of Gu, as we will see in the following lemma.
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Recall that for a unit u ∈ G(0) the fibre (Ind A)u at u of the bundle Ind A is given by (Ind A)/Iu,
where Iu = C0

(
G(0) \ u

)
Ind A.

Lemma 4.2.1: Let f , g ∈ Ind A be such that their restrictions to r−1(V) coincide for a
neighbourhood V ⊆ G(0) of a unit u ∈ G(0). Then f + Iu = g + Iu.

Proof. Take f and g as above and pick h ∈ C(G(0)) such that h(u) = 0 and h ≡ 1 outside of
V . Such h since G(0) is normal. Then g = f + h(g − f ) while h(g − f ) ∈ C0(G(0) \ u) Ind A, so
f − g ∈ Iu. �

For f ∈ Ind A and u ∈ G(0) we will write [ f ]u for the fibre projection f + Iu.

Proposition 4.2.2: If A is a G(0)-algebra, then Ind A is a G-algebra.

Remark. In the spirit of Bönicke’s construction [5], where fibre are associated with restric-
tions to Gu, the action should be by composition on the argument. However, as the fibre
projection of a section f ∈ Ind A at a unit u ∈ G(0) is not determined by the values on Gu

alone, we cannot act by the single element γ ∈ G. Given that values on a neighbourhood of
Gu determine the fibres, we may instead choose a bisection around γ and use this to act on the
argument. Using the locality of Lemma 4.2.1, this will turn out to be well-defined.

Proof. We have already seen that Ind A is a C0(G(0))-algebra, so it remains to describe the
G-action.

Let f ∈ Ind A be a section of the induced bundle, u, v ∈ G(0) be units, and γ ∈ Gv
u

be an arrow with source u and range v. Considering [ f ]u ∈ (Ind A)u we want to define
γ.[ f ]u ∈ (Ind A)v. As G is étale, we may pick an open neighbourhood B of γ that is a bisection.
Then U = s(B) and V = r(B) are open neighbourhoods of u and v. We write B. f for the section

B. f (η) B f (B−1η) in Γb(r−1(V), r−1(V) ∗s A),

where η ∈ r−1(V) and B−1η = ξ−1η for the unique ξ ∈ B with r(ξ) = r(η). In order to
extend B. f to a section in Ind A, we choose a function h ∈ C(G(0)) which is identically one
on a neighbourhood of v and vanishes outside of V . Such an h exists by normality of G(0).
Then h(B. f ) extends to a section on all of G that vanishes outside of r−1(V), and we set
γ.[ f ]u = [h · B. f ]v.

The resulting class is independent of the choice of h, as two different choices h1 and h2
coincide on a neighbourhood V ′ of v and therefore the extensions h1(B. f ) and h2(B. f ) coincide
on r−1(V ′). Hence the fibre projections coincide by Lemma 4.2.1.

Similarly, this is independent of the choice of bisection B: For two open bisections B1 and
B2 containing γ, the intersection B1 ∩ B2 is still an open bisection containing γ, so we may
assume B2 ⊆ B1. But then r(B2) ⊆ r(B1) and we can choose the same h for both B2 and B1.
With this choice, h(B1. f ) and h(B2. f ) are equal as sections, even before passing to the fibre
projection.

For simplicity, we may from now on drop h in the construction above and assume that B. f
can be extended to a section on all of G without prior modification, as we can just intersect B
with the r-preimage of the neighbourhood of v on which h is constant.

To finish off the argument that γ.[ f ]u B [B. f ]v is well-defined, we show that it only
depends on the u-fibre projection of f . Assuming that [ f ]u = [g]u, we may for every ε > 0
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find h ∈ C0(G(0) \ u) · Ind A such that g and f + h are ε-close. Writing h = h1 · h2 with
h1 ∈ C0(G(0) \ u) and h2 ∈ Ind A, we consider B.h = B.h1 · B.h2, where the action of B on G(0)

is given by the local homeomorphism s(B)→ r(B) via r ◦ (s|B)−1. By the arguments above, we
can assume that B.h1 and B.h2 can be extended to functions on all of G(0) and G, respectively.
As then B.h1 ∈ C0(G(0) \ v), we find that [B. f ]v = [B. f + B.h]v. But B. f + B.h and B.g are
ε-close on r−1(V) since the action of B is pointwise, and by extending as above with a cut-off

function that is bounded by one, we may modify these to two ε-close functions on all of G
without changing their classes in the v-fibre. Therefore [B. f ]v and [B.g]v are ε-close for all
ε > 0, hence equal.

The G-action satisfies (γη).[ f ]u = γ.(η.[ f ]u), as we can compose open bisections where
defined to obtain another open bisection. As the defined maps act pointwise, they are ∗-
homomorphisms, and as they are invertible we obtain ∗-isomorphisms.

Finally, we check that the G-action is continuous. That is, if for f , fλ ∈ Ind A and γ, γλ ∈ G
we have [ fλ]s(γλ) → [ f ]s(γ) and γλ → γ, then we need to show that γλ.[ fλ]s(γλ) → γ.[ f ]s(γ). If
B is an open bisection containing γ, then we will eventually have γλ ∈ B. Hence, we may use
the same bisection to construct γλ.[ fλ]s(γλ) and γ.[ f ]s(γ). Consequently, we have to show that
[B. fλ]r(γλ) → [B. f ]r(γ), which is equivalent to infr ‖B. fλ − B. f + h′‖∞ → 0 as λ→ ∞, where
infr denotes the infimum taken over all h′ ∈ C0(G(0) \ r(gλ)) · Ind A. We know, however, that
inf s ‖ fλ − f + h‖∞ → 0, where inf s is the infimum taken over all h ∈ C0(G(0) \ s(γλ)) · Ind A.
By choosing h′ as B.h, we may bound

infr ‖B. fλ − B. f + h′‖∞ ≤ inf s ‖ fλ − f + h‖∞ → 0 (4.3)

which yields the claim. �

Remark. Note that we did not require f to be continuous in the proof of the previous lemma.
We will later turn the bounded, not necessarily continuous sections l∞(G,G ∗s A) into a
G-algebra in the same way.

The following notational remark is essential to avoid confusion:

Remark. For a section a ∈ A = Γ(G(0),A) we will denote by au the value a(u) of a at the
unit u ∈ G(0), which is the same as the projection [a]u of a onto the appropriate fibre. This
is straightforward enough for A, but note that we defined elements f ∈ Ind B in the induced
C∗-algebra as functions on G, not G(0). Nevertheless, the associated bundle is of course still
fibred over G(0), taking values in the appropriate quotients of Ind B. As such, while it makes
sense to speak of f (γ) ∈ Bs(γ), this is not the value of the section associated with f at any
given fibre, even if γ were a unit. We will therefore refrain from writing fu for the projection
[ f ]u ∈ (Ind B)u of f in the fibre at a unit u, as this class should not be confused with f (u) ∈ Bu.

Let A be a G-algebra and B a G(0)-algebra. Below, we explain how a G(0)-∗-homomorphism
ϕ : A → B lifts to a G-∗-homomorphism ψ : A → Ind B. First, we note that A embeds into
Ind A as G-algebras, where we drop spelling out the restriction and denote A as a G- and a
G(0)-algebra simultaneously: Let

ι : A = Γ(G(0),A)→ Γb(G,G ∗s A) = Ind A

be given by sending a section a to the section γ 7→ α−1
γ (ar(γ)), where α is the G-action onA.

This is obviously a C(G(0))-linear map, since multiplication is pointwise after the pushforward
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via the range map. The section thus defined is continuous, since it is given by a composition
of continuous maps, namely

G → G ∗r G
(0)
→ G ∗r A → G ∗s A

γ 7→ (γ, r(γ)) 7→ (γ, ar(γ)) 7→ (γ, α−1
γ (ar(γ))),

where the last map is continuous by continuity of the G-action on A. Furthermore, ι is
G-equivariant, as G acts on the argument on Ind A. Note that all sections ι(a) have constant
norm on range-fibres and that this implies that [ι(a)]u is determined by its values on Gu, in
contrast to general sections in Ind A.

Second, from a G(0)-∗-homomorphism ϕ : A→ B, we obtain a G-∗-homomorphism Indϕ
mapping Ind A→ Ind B as follows:

Indϕ : Ind A = Γb(G,G ∗s A)→ Γb(G,G ∗s B) = Ind B

f 7→
(
γ 7→ ϕs(γ)( f (γ))

)
.

This is C(G(0))-linear, since the appropriate fibre of ϕ is applied pointwise; it is also G-
equivariant, since the map is pointwise and G acts on the argument. The assigned section is
obviously bounded, so it only remains to show that it is continuous. Given a net γλ → γ in G
and f ∈ Ind A, we have f (γλ)→ f (γ) and so for all sections a ∈ A with as(γ) = f (γ) we find
that ‖as(γλ) − f (γλ)‖As(γλ ) → 0. Therefore∥∥∥(ϕ(a))s(γλ) − Indϕ( f )(γλ)

∥∥∥
Bs(γλ )

=
∥∥∥∥ϕs(γλ)

(
as(γλ)

)
− ϕs(γλ)( f (γλ))

∥∥∥∥
Bs(γλ )
≤

∥∥∥as(γλ) − f (γλ)
∥∥∥

As(γλ )

vanishes in the limit. As ϕ is continuous, we have ϕ(a) ∈ B with (ϕ(a))s(γ) = ϕs(γ)( f (γ)). We
may conclude that (Indϕ( f ))(γλ) converges to (Indϕ( f ))(γ).

Altogether, the adjoint isomorphism rInd: HomG(0) (res A, B)→ HomG(A, Ind B) is given
by

rIndϕ B Indϕ ◦ ι

for ϕ ∈ HomG(0) (A, B). Explicitly, a section a ∈ A is mapped to the section given by

((rIndϕ)(a))γ = ϕs(γ)

(
α−1
γ

(
ar(γ)

))
. (4.4)

We now see why we had to modify the induction procedure of [5]: The sections defined in
Equation (4.4) do not vanish at infinity.

Conversely, any G-∗-homomorphism ψ : A→ Ind B restricts to a G(0)-∗-homomorphism,
which we denote as resψ : A→ B, by restricting from G to G(0) as

(resψ(a))u B ψ(a)(u).

Extending ϕ and then restricting to res rIndϕ obviously gives back ϕ, since ϕu(α−1
u (au)) =

ϕu(au). On the other hand, we will see that restricting ψ and then extending the result to
rInd resψ also gives back ψ.

For every γ ∈ G we obtain a ∗-homomorphism evalγ : Ind B → Bs(γ) by evaluating a
section in Ind B at γ. As γ ∈ Gr(γ), this ∗-homomorphism factors through the quotient map to
the fibre at r(γ) and satisfies a straightforward equivariance condition:
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Lemma 4.2.3: For br(γ) ∈ Br(γ) with γ, η ∈ G where s(γ) = r(η), we have

evalη
(
γ−1.

(
br(γ)

))
= evalγη

(
br(γ)

)
.

Proof. This comes down to γ acting on the argument. If b ∈ B is a section with value br(γ) in
the appropriate fibre and S is an open bisection containing γ−1, then any lift of γ−1br(γ) to a
section S b in Ind B is given by (S b)(η) = b(S −1η) on a neighbourhood of Gs(γ). Hence for
η ∈ Gs(γ) we find

evalη
(
γ−1br(γ)

)
= b(S −1η) = b(γη) = evalγη

(
br(γ)

)
.

�

Using the previous lemma, restricting ψ ∈ HomG(A, Ind B) and then lifting the restriction
gives

(rInd resψ)(a)(γ) = (resψ)s(γ)

(
γ−1

(
ar(γ)

))
= evals(γ)

(
ψs(γ)

(
γ−1

(
ar(γ)

)))
= evals(γ)

(
γ−1

(
ψr(γ)

(
ar(γ)

)))
= evalγ

(
ψr(γ)

(
ar(γ)

))
= ψ(a)(γ).

Therefore, rInd : HomG(0) (A, B) � HomG(A, Ind B) is a bijection, as the two constructions are
inverse to each other.

We proceed to show that this isomorphism is natural. That is, given a G-∗-homomorphism
j : A → B between G-algebras A and B, as well as a G(0)-algebra C, the following diagram
commutes:

HomG(0) (B,C) HomG(B, Ind C)

HomG(0) (A,C) HomG(A, Ind C)

�

rInd

j∗ j∗

�

rInd

(4.5)

Given ϕ ∈ HomG(0) (B,C) we have to show that rInd (ϕ ◦ j) equals (rIndϕ) ◦ j. Indeed we find,
using equivariance of j, that

(rInd (ϕ ◦ j))(a)(γ) = (ϕ ◦ j)s(γ)

(
γ−1

(
ar(γ)

))
= ϕs(γ)

(
γ−1

(
jr(γ)

(
ar(γ)

)))
= (rIndϕ)( j(a))(γ),

where the action of γ−1 on ar(γ) and br(γ) is the G-action on A or B, respectively.
So far, we have only considered ∗-homomorphisms as morphisms between G-algebras.

To apply our induction procedure in the construction of a G-equivariant injective envelope,
we will need to broaden our scope to also include unital, completely positive, G-equivariant
C(G(0))-maps between G-algebras.

First we note that being positive is a fibre-wise condition:
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Lemma 4.2.4: Let ϕ : A→ B be a C0(X)-map between two C0(X)-algebras A and B. Then
ϕ is positive if and only if ϕx : Ax → Bx is positive for every x in X. Likewise, ϕ : A → B is
completely positive if and only if all ϕx : Ax → Bx are completely positive.

Proof. We may embed A into
⊕

x∈X Ax, and as injective ∗-homomorphisms are order embed-
dings, the first statement follows.

For the second half observe that Mn(A) is a C0(X)-algebra whose fibre can be understood
as (Mn(A))x � Mn(Ax) and that under this identification

(
ϕ(n)

)
x

= (ϕx)(n). �

Now, for a ucp G(0)-map ϕ : A → B from a G-algebra A to a G(0)-algebra B, we may as
above form

Indϕ( f )(γ) B ϕs(γ)( f (γ)) and rIndϕ B Indϕ ◦ ι.

Without any modification to the arguments above, rInd still is natural and an inverse to
the restriction, and rIndϕ is ucp, since a section f ∈ Γb(G,G ∗s A) is positive if and only
if f (γ) is positive for all γ ∈ G. Hence, if ϕ : A → B is completely positive then so are
Indϕ : Ind A→ Ind B and rIndϕ : A→ Ind B.

4.2.2 The Groupoid Furstenberg Boundary

Let G be a locally compact Hausdorff étale groupoid with compact unit space X B G(0). Using
the construction of G-equivariant injective envelopes above, we may now find a G-injective
G-algebra enveloping C(X) in the category of G-operator systems. Note that this generalises
the Furstenberg boundary of a discrete group G, where the unit space X is a single point and
the boundary coincides with the spectrum of the G-equivariant injective envelope of C(X) = C.
The methods below may however be used more generally to construct groupoid-equivariant
injective envelopes.

Consider the (non-dynamic) injective envelope I B I(C(X)). Let X̃ denote its spectrum, so
that I = C(X̃). As C(X) embeds into C(X̃), the latter is a C(X)-algebra and it is furthermore
injective among such: For any two (unital) C(X)-algebras V ⊆ W, we may lift a ucp C(X)-map
ψ : V → C(X̃) to a ucp map W → C(X̃) by disregarding the C(X)-structure, and the result will
necessarily be a C(X)-map if all maps and algebras are unital, as in that case the action of C(X)
on V and W is determined by a subalgebra of V which lies in the multiplicative domain of ψ.

Therefore, the induced C∗-algebra, Ind C(X̃), is a G-injective G-algebra: Given two G-
algebras V ⊆ W and a G-equivariant ucp map ψ : V → Ind C(X̃), we may first restrict to
resψ : V → C(X̃), then use the G(0)-injectivity to extend the restriction to ϕ : W → C(X̃)
and consequently lift to a G-∗-homomorphism rIndϕ : W → Ind C(X̃). By naturality as in
Diagram (4.5), this is the desired extension, as lifting resψ results in rInd resψ = ψ.

W

C(X̃) Ind C(X̃)

V

ϕ

rIndϕ

res

resψ

ψ=rInd resψ

(4.6)
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Having found a G-injective G-extension of the G-C∗-algebra C(X), we follow Hamana’s
scheme [34] from Section 2.2.2 to construct an injective envelope, adapted to a G-equivariant
setting. The following definitions are G-equivariant adaptations of the corresponding notions
from Definitions 2.2.7 and 2.2.4.

Definition 4.2.5: Let A and B be G-C∗-algebras with A a sub-G-C∗-algebra of B. An A-
seminorm on B is a seminorm p on B, such that p(b) = ‖ϕ(b)‖B for some G-equivariant
C(G(0))-linear ucp map ϕ : B→ B that restricts to the identity on A.

The A-seminorms are partially ordered by the pointwise order where an A-seminorm p is
dominated by an A-seminorm q if p(b) ≤ q(b) for all b ∈ B. We write p ≺ q.

Definition 4.2.6: Let A and B be G-C∗-algebras with A a sub-G-C∗-algebra of B. A map ϕ as
above which is furthermore idempotent is called an A-projection on B, that is, a G-equivariant
C(G(0))-linear idempotent ucp map ϕ : B→ B that restricts to the identity on A.

Note that despite the name the range of an A-projection is in general not equal to A, but
merely contains it. To every A-projection ϕ on B there is an associated A-seminorm p defined
by p(b) = ‖ϕ(b)‖B for b ∈ B. The partial order on seminorms translates to a partial order on
A-projections as ϕ ≤ ψ if ϕ ◦ ψ = ϕ.

Definition 4.2.7: Let A be a G-algebra and ι be a G-equivariant embedding of A into another
G-algebra B. We then call (B, ι) a G-extension of A. The extension is said to be G-injective if
B is a G-injective G-algebra.

Definition 4.2.8: A G-extension (B, ι) of A is said to be G-essential if any ucp G-map ϕ : B→
C into a third G-algebra C is injective if ϕ ◦ ι is injective on A.

The G-extension is said to be G-rigid if the identity is the unique ucp G-map ψ : B→ B
that satisfies ψ ◦ ι = ι.

We will set out to show the existence of a minimal A-seminorm from which we will
construct a minimal A-projection. The minimal A-projection then yields a G-rigid G-injective
G-extension by equipping its image with the Choi–Effros multiplication from Definition 2.2.14,
which turns its range into a C∗-algebra without changing the complete order isomorphism
class. As any rigid injective extension is essential, this will be the desired G-injective envelope:

Definition 4.2.9: A G-injective envelope of a G-algebra is a G-extension which is both G-
injective and G-essential.

Aiming to apply Zorn’s lemma, we show that every decreasing net of A-seminorms has a
lower bound in analogy to Proposition 2.2.8. Again we denote by X B G(0) the unit space of
a Hausdorff étale groupoid G and by I = C(X̃) the non-dynamic injective envelope of C(X),
such that Ind I is a G-injective G-algebra.

Lemma 4.2.10: Every decreasing net pi of C(X)-seminorms on Ind I has a lower bound.

Proof. In order to take weak∗-limits we embed Ind I into a von-Neumann algebra. Observe
that the embedding C(X) ↪→ I = C(X̃) yields a surjective continuous map q : X̃ → X and that
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the fibres of I as a C(X)-algebra are of the form C(q−1(x)). We consider `∞(X̃) seen as a C(X)-
algebra with the obvious map of C(X) into its central multipliers, yielding a decomposition of
the associated bundle into fibres as

⊔
x∈X `

∞(q−1(x)). We then denote by

M B `∞
G,G ∗s

⊔
x∈X

`∞
(
q−1(x)

) � `∞({
(γ, x̃) ∈ G × X̃

∣∣∣ s(γ) = q(x̃)
})
,

the bounded sections in the pullback along s that are not necessarily continuous. As noted
before, M can be equipped with a G-action in the same way that Ind I can, making it a G-
algebra. We can embed Ind I into M as a G-algebra by utilizing the inclusion of I = C(X̃) into
`∞(X̃). We denote this inclusion Ind I → M by κ. By G-injectivity of Ind I, we may lift the
identity on Ind I along the inclusion κ : Ind I ↪→ M to a ucp G-map E : M → Ind I, which
necessarily contains the image of Ind I in its multiplicative domain. Using this, we may take
weak limits in M and project them back down to Ind I as follows.

Let pi be the decreasing net of C(X)-seminorms on Ind I, and let ϕi : Ind I → Ind I be the
ucp G-maps fixing C(X) associated with the seminorms defined by pi(x) = ‖ϕi(x)‖Ind I . As the
maps κ ◦ ϕi : Ind I → M are bounded, there is a point-weak∗ convergent subnet of κ ◦ ϕi. For
ease of notation we drop κ and consider ϕi as maps Ind I → M, so that passing to a subnet we
may assume that ϕi( f ) converges to ϕ( f ) in the weak∗-topology for some map ϕ : Ind I → M
and every f ∈ Ind I. The limit ϕ will still be a C(X)-linear ucp map fixing C(X), as all of
these are pointwise conditions, but we need to check that it is a G-map. That is, for every
f , g ∈ Ind I and γ ∈ Gv

u with γ.[ f ]u = [g]v, we need to show that

γ.[ϕ( f )]u = [ϕ(g)]v. (4.7)

Fixing an open bisection B containing γ, we may assume that f is supported in r−1(s(B)) and
that g = B. f .

We claim that ϕ(B. f ) = B.ϕ( f ): The predual of M,

M∗ � `1
({

(γ, x̃) ∈ G × X̃
∣∣∣ s(γ) = q(x̃)

})
� `1

G,G ∗s

⊔
x∈X

`1
(
q−1(x)

),
carries an analogous G-action. For f ∈ Ind I ⊆ M and χ ∈ M∗, the evaluation f (χ) only
depends on the values of χ on the support of f , seen as a function on G(0). Therefore, when f
is supported in s(B), B. f is supported in r(B). To evaluate (B. f )(χ) we may assume that χ is
supported on r(B) and find (B. f )(χ) = f

(
B−1(χ)

)
. Now for supp( f ) ⊆ s(B) and supp(χ) ⊆ r(B)

we calculate

ϕi(B. f )(χ) = (B.ϕi( f ))(χ) = ϕi( f )
(
B−1.χ

)
→ ϕ( f )

(
B−1.χ

)
= (B.(ϕ( f )))(χ).

As the left hand expression converges to ϕ(B. f )(χ), we can conclude that ϕ(B. f ) = B.ϕ( f ).
Since B. f is a valid choice of γ in Equation (4.7), we conclude that

γ.(ϕu([ f ]u)) = γ.[ϕ( f )]u = [B.ϕ( f )]v = [ϕ(B. f )]v = ϕv([B. f ]v) = ϕv(γ.[ f ]u).

As every element of (Ind I)u is of the form [ f ]u for some such f , this proves G-equivariance
of the limit ϕ.
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We may thus define a C(X)-seminorm p on Ind I by p( f ) = ‖E ◦ ϕ( f )‖Ind I . As in [30,
Lemma 3.4], we then find that

p( f ) = ‖E ◦ ϕ( f )‖ ≤ ‖ϕ( f )‖ ≤ lim sup ‖ϕ j( f )‖ = lim pi( f ),

with j indexing the convergent subnet chosen before. Now p is the desired lower bound. �

By Zorn’s lemma we know of the existence of a minimal C(X)-seminorm on Ind I, from
which we obtain a minimal C(X)-projection in analogy to Proposition 2.2.9:

Lemma 4.2.11: There is a minimal C(X)-projection on Ind I.

Proof. We follow Hamana [30, Thm 3.5], which originally followed Kaufman [37, Thm 1].
Let p be a minimal C(X)-seminorm and ϕ the ucp map implementing it. We show that ϕ is a
projection.

Define the net

ϕn : Ind I → Ind I ⊆ M by ϕn B
(
ϕ + ϕ2 + · · · + ϕn

)
/n,

and pass to a point-weak∗ convergent subnet as in the proof of Lemma 4.2.10, and denote the
limit by ϕ∞ : Ind I → M. Using the conditional expectation E : M → Ind I as before, we note
that E ◦ ϕ∞ induces a C(X)-seminorm and for f ∈ Ind I we obtain that

‖E ◦ ϕ∞( f )‖ ≤ ‖ϕ∞( f )‖ ≤ lim sup ‖ϕn( f )‖ ≤ ‖ϕ( f )‖ = p( f ),

which implies ‖ϕ( f )‖ = lim sup ‖ϕn( f )‖ by minimality of p. Hence

‖ϕ( f ) − ϕ2( f )‖ = ‖ϕ( f − ϕ( f ))‖ = lim sup ‖ϕn( f − ϕ( f ))‖ = 0,

so ϕ is idempotent and therefore a C(X)-projection.
Among C(X)-projections, ϕ is also minimal: Given any other C(X)-projection ψ with

ψ ≤ ϕ, or equivalently ψ ◦ ϕ = ψ = ϕ ◦ ψ, we find that

‖ψ( f )‖ = ‖ψ ◦ ϕ( f )‖ ≤ ‖ϕ( f )‖ = p( f ),

and so ψ and ϕ define the same seminorm by minimality of p. In particular, kerψ = kerϕ. As
ψ is idempotent, we have ψ( f )− f ∈ kerψ = kerϕ, for every f ∈ Ind I, and ψ( f ) = ϕ ◦ψ( f ) =

ϕ( f ), so the two projections coincide on all of Ind I. �

From a minimal C(X)-projection ϕ, we build the Choi–Effros algebra C∗(ϕ), as originally
constructed in [17, Theorem 3.1] and described in the context of injective envelopes in
[29, Theorem 2.3]. This is done by equipping its range with the Choi–Effros product from
Definition 2.2.14, turning the range of ϕ into a C∗-algebra that is completely order isomorphic
to the range of ϕ as an operator system. In our setting, we have to verify that C∗(ϕ) is indeed a
G-algebra, and that the ucp map Ind I → C∗(ϕ) induced by ϕ is G-equivariant.

Proposition 4.2.12: For a C(X)-projection ϕ on Ind I, the Choi–Effros algebra C∗(ϕ) can
be given the structure of a G-algebra such that the ucp map Ind I → C∗(ϕ) induced by ϕ is
G-equivariant.
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Proof. First we check that C(X) still acts by central multipliers on C∗(ϕ), giving it the structure
of a C(X)-algebra. The algebra C∗(ϕ) is the range of ϕ inside Ind I as underlying set, equipped
with the norm of Ind I and multiplication ◦ given by x ◦ y = ϕ(xy). As ϕ is a C(X)-map,
its range is closed under multiplication by g ∈ C(X). Inheriting this action still gives an
adjointable map that is its own adjoint, as

x ◦ ( f .y) = ϕ(x( f .y)) = ϕ(( f .x)y) = ( f .x) ◦ y,

for x, y ∈ Ind I and f ∈ C(X̃). We conclude that the action of C(X̃) on Ind I via y 7→ f .y
is by central multipliers. Hence, the surjective ucp map j : Ind I → C∗(ϕ) induced by ϕ as
j(x) = ϕ(x) factors through the fibres to obtain maps ju : (Ind I)u → (C∗(ϕ))u. For j to be
G-equivariant, the G-action on C∗(ϕ) has to be given by

γ.( ju([ f ]u)) = ju(γ.[ f ]u) for f ∈ Ind I,

where the action of γ is the G-action associated with the appropriate C∗-algebra. Picking an
open bisection B around γ and cutting down the section f to be supported in s(B) as above
yields

γ.( ju([ f ]u)) =
[
j(B. f )

]
u =

[
B. j( f )

]
v,

where the action of B on appropriately supported functions in C∗(ϕ) is as a subspace of Ind I.
Continuity of the action is shown just as in Equation (4.3). �

The following arguments need almost no modification to those given in the work of
Hamana. First, we show that C∗(ϕ) is a G-rigid extension by noting that it carries a unique
C(X)-seminorm and repeating the arguments of Lemma 4.2.11. Then we show that every rigid
injective extension is also essential, making it an injective envelope.

Lemma 4.2.13: For ϕ a minimal C(X)-projection on Ind I, the extension C(X) ↪→ C∗(ϕ) is
a G-rigid, G-injective G-extension.

Proof. By Proposition 2.2.13, C∗(ϕ) is injective and even G-injective, as ϕ is a G-map.
From any C(X)-seminorm on C∗(ϕ) given by a ucp G-map ϕ′ we obtain a C(X)-seminorm

on Ind I given by ϕ′ ◦ ϕ. As it is then dominated by the minimal C(X)-seminorm of ϕ, the
C∗-norm on C∗(ϕ) is its unique C(X)-seminorm. Let ψ : C∗(ϕ) → C∗(ϕ) be a ucp G-map
restricting to the identity on C(X). Then, analogously to the proof of Lemma 4.2.11, for
a ∈ C∗(ϕ) we obtain that

lim sup
∥∥∥∥(ψ(a) + ψ2(a) + . . . + ψn(a)

)
/n

∥∥∥∥ = lim sup ‖ψn(a)‖ = ‖a‖

and hence
‖ψ(a) − a‖ = lim sup ‖ψn(ψ(a) − a)‖ = 0.

Therefore ψ is the identity. �

Lemma 4.2.14: Every G-injective G-rigid extension is also G-essential.

Proof. The proof is almost abstract nonsense as in [30, Lemma 3.7].
Let (I, ι) be a G-injective G-extension of A and ϕ : I → B a ucp G-map such that ϕ◦ ι : A→

B is injective. We have to show that ϕ itself is already injective. By G-injectivity of I we find a
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ucp G-map ψ : B→ I that restricts to ι when A is seen as a subalgebra of B via the embedding
ϕ ◦ ι, as in Diagram (4.8):

B I

A

ψ

ϕ◦ι
ι

(4.8)

Now ψ ◦ ϕ is a ucp G-selfmap of I that restricts to the identity on ι(A). By G-rigidity it is
therefore the identity, implying that ϕ is injective. �

Finally, we may remark that this injective envelope is unique up to G-equivariant isomor-
phism preserving the embedding:

Theorem 4.2.15: For an étale groupoidGwith compact unit space X theG-algebra C(X) has
a G-equivariant injective envelope IG(C(X)), such that for any other G-equivariant injective
envelope Z there is a unique G-isomorphism ψ : IG(C(X))→ Z for which

IG(C(X)) Z

C(X)

ψ

(4.9)

commutes. We call the spectrum of IG(C(X)) the Furstenberg boundary of G.

This works as for Hamana in [29, Lemma 3.8]:

Proof. Let IG(C(X)) be theG-injectiveG-rigid extension above and let Z be anotherG-injective
G-essential ectension. We may extend the inclusions of C(X) into one of the envelopes to the
other envelope as in Diagram (4.10) by G-injectivity:

IG(C(X)) Z

C(X)

ψ
IG(C(X)) Z

C(X)

ψ̂

(4.10)

As ψ̂ ◦ ψ restricts to the identity on C(X), it is the identity on IG(C(X)) by G-rigidity, and
in particulat ψ̂ is surjective. Furthermore, ψ̂ is injective by G-essentiality of Z and hence a
G-isomorphism. �

4.2.3 Some Properties of Groupoid Boundaries
Consider a locally compact Hausdorff étale groupoid G with compact unit space X as above.
Denote by X̃ its Furstenberg boundary, the spectrum of the G-equivariant injective envelope
IG(C(X)) of C(X). Passing to the crossed product groupoid G̃ B X̃ o G associated with the
action of G on C(X̃), we treat the boundary as a second, larger groupoid G̃ that contains G as a
quotient. We call G̃ the boundary groupoid of G.

In this section we explore some properties that make G̃ more tractable. The first is a
generalisation of Lemma 2.3.4.
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Proposition 4.2.16: All stabiliser groups of the boundary groupoid G̃ of a Hausdorff étale
groupoid G are amenable.

Proof. Consider the G-algebra L =
{
f ∈ `∞(G) | x 7→ ‖ f |Gx‖∞ is upper-semicontinuous

}
with

left action of G on the argument. Identifying C(X) as a unital sub-G-algebra, we find a
ucp G-map ϕ : L → C(X̃) by G-injectivity. Passing to the fibre at any x ∈ X, we obtain
a Gx

x-equivariant ucp map ϕx : `∞(Gx) → C(q−1(x)). For any x̃ ∈ q−1(x), we may identify
the stabiliser group G̃x̃

x̃ of G̃ at x̃ with a subgroup of Gx
x and obtain a G̃x̃

x̃-equivariant unital
∗-homomorphism `∞(G̃x̃

x̃) → `∞(Gx) since each orbit of G̃x̃
x̃
\G

x
is in bijection with G̃x̃

x̃. Then
composition with the evaluation evalx̃ at x̃,

`∞(G̃x̃
x̃)→ `∞(Gx)

ϕx
−−→ C(q−1(x))

evalx̃
−−−→ C

gives a state on `∞(G̃x̃
x̃) that is invariant under the left action of G̃x̃

x̃. �

Let q : X̃ → X be the quotient map obtained from the embedding C(X) ↪→ C(X̃). The
following is a generalisation of Lemma 3.3.5.

Proposition 4.2.17: Let X̃ be the Furstenberg boundary of a groupoid G with compact unit
space X and q : X̃ → X the continuous surjection obtained from the inclusion C(X) ↪→ C(X̃).
Let Y ⊆ X̃ be a closed G-invariant subset such that q(Y) = X. Then Y = X̃.

Proof. As q restricted to Y is still surjective, we can embed C(X) into C(Y) and, by G-
injectivity of C(X̃), extend the embedding C(X) ↪→ C(X̃) to a ucp map ϕ : C(Y) → C(X̃).
Then the composition with restriction to Y

C(X̃)
resY
−−−→ C(Y)

ϕ
−→ C(X̃)

is a G-equivariant ucp map C(X̃)→ C(X̃) that restricts to the identity on the subalgebra C(X).
By G-rigidity of the G-equivariant injective envelope, it is therefore the identity on all of C(X̃).
Hence, resY is injective and Y is dense. As it is also closed, we get Y = X̃. �

The boundary groupoid being ample is the étale groupoid analogon of the boundary of a
group being Stonean by Proposition 2.2.13 and the remark before Proposition 2.2.20.

Proposition 4.2.18: Any boundary groupoid G̃ is ample.

Proof. As C(X̃) is an injective C∗-algebra, X̃ is Stonean and in particular zero-dimensional.
Any étale groupoid with totally disconnected unit space is ample. �

Proposition 4.2.19: If every orbit of a boundary groupoid G̃ has at least two points, then
the isotropy bundle Iso(G̃) of G̃ is clopen.

If G already has orbits consisting of at least two points, then so does G̃. We are of course
tacitly avoiding the case where G is a group and G(0) is a single point. Note that the proposition
implies that G̃ is principal if and only if it is topologically principal in analogy to ∂FG being
free if and only if it is topologically free as proven in Theorem 2.3.6.
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Proof. For every groupoid the isotropy bundle is closed, so we have to show that it is open.
Consider γ ∈ G̃x̃

x̃. As G̃ is ample, there exists a full open bisection B containing γ, that is, an
open bisection with s(B) = X̃ = r(B) by Brix–Scarparo [10]. Then B defines a homeomorphism
X̃ → X̃ by r ◦ (s|B′)−1 whose fixed point set F contains s(γ) = x̃ = r(γ). By Frolík’s theorem
[24] this fixed point set is open and B ∩ s−1(F) is an open neighbourhood of γ contained in
the isotropy. �

Remark. Proposition 4.2.19 of course works in general for every groupoid with Stonean unit
space and orbits consisting of at least two points. So far we have been unable to drop this
second condition, although it can be dropped for the case of crossed products by groups, where
the existence of enough full bisections for the topological full group to be covering is trivial
(see [10] for definitions). Note that it is however not necessary for every γ ∈ G to be contained
in a full bisection in order to apply Frolík’s theorem as above. It suffices that γ is contained in
an open bisection B whose source s(B) is again a Stonean space that contains the range r(B).

Furthermore, we show that the notion of groupoid Furstenberg boundary generalises the
boundaries of groups and even groups acting on spaces.

Proposition 4.2.20: Let G = X oG be the transformation groupoid of a discrete group G
acting on a compact Hausdorff space X. Then the groupoid-equivariant injective envelope
IG(C(X)) coincides with the group-equivariant injective envelope IG(C(X)).

Hence, the groupoid Furstenberg boundary of a discrete group is its Furstenberg boundary.

Proof. First observe that IG B IG(C(X)) carries a G-action where g. f (x̃) = f (s(x̃, g)), with
g ∈ G, f ∈ IG, and x̃ in the spectrum of IG. The action is continuous by continuity of the
G-action. Likewise, IG B IG(C(X)) carries a G-action: As C(X) embeds into the commutative
C∗-algebra IG, it is a C(X)-algebra and as before we may define a continuous action by
(x, g)[ f ]x B [g. f ]g.x with g ∈ G, f ∈ IG, and x ∈ X.

Using their injectivity in the respective category, we may therefore extend the embeddings
of C(X) into IG and IG to a ucp G-map ϕ : IG → IG and a ucp G-map ψ : IG → IG. We then
calculate that for all x ∈ X

[ψ(g. f )]g.x = ψg.x((x, g).[ f ]x) = (x, g).ψx([ f ]x) = [g.ψ( f )]g.x,

so ψ is also a ucp G-map. On the other hand, ϕ contains C(X) in its multiplicative domain and
is therefore a C(X)-map. Hence for all x ∈ X we find that

ϕg.x((x, g).[ f ]x) = ϕg.x

(
[g. f ]g.x

)
=

[
ϕ(g. f )

]
g.x =

[
g.ϕ( f )

]
g.x = (x, g).ϕx([ f ]x),

so ϕ is G-equivariant.
Now ψ ◦ ϕ is a ucp G-map IG → IG that fixes C(X) and is therefore the identity by

G-rigidity of IG. Likewise, ϕ ◦ ψ is a ucp G-map IG → IG that fixes C(X) and is the identity
by G-rigidity of IG and the two envelopes are isomorphic C∗-algebras. �

4.2.4 Simplicity of Groupoid C∗-algebras
Finally, we apply the theory of boundary groupoids to obtain a sufficient criterion for a
groupoid G to have the intersection property in Theorem 4.2.25. In the case of a minimal
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groupoid, this provides a weaker sufficient criterion for C∗-simplicity than the widely used
notion of topological principality.

We first relate the C∗-algebras of a groupoid and its boundary groupoid:

Lemma 4.2.21: For a locally compact Hausdorff étale groupoid G with compact unit space
there is a canonical embedding of C∗r (G) into the reduced C∗-algebra C∗r (G̃) of its boundary
groupoid G̃.

Proof. Denote again the quotient map X̃ → X by q. As a subset of G × X̃, G̃ is given by{
(γ, x̃)

∣∣∣ γ ∈ G, x̃ ∈ X̃, r(γ) = q(x̃)
}

and the range and source maps are given by r((γ, x̃)) = x̃
and s((γ, x̃)) = γ−1.x̃. Furthermore denote by Q : G̃ → G the surjective groupoid homo-
morphism given by (γ, x̃) 7→ γ, which extends q : X̃ → X. Note that Q is proper so
that Cc(G) embeds into Cc(G̃). Indeed, if K ⊂ G is a compact set, then the preimage
Q−1(K) = {(γ, x̃) | γ ∈ K} is compact, since X̃ is.

Since Q is a groupoid homomorphism, precomposition with Q as a map Q∗ : Cc(G) ↪→
Cc(G̃) is compatible with the convolution and involution on both algebras. It is furthermore
isometric with respect to the reduced norms, ‖ f ‖C∗r (G) = ‖ f ◦ Q‖C∗r (G̃) for f ∈ Cc(G), so that
Q∗ extends from Cc(G) to an embedding of the associated reduced algebras: First note that
Q gives a bijection G̃x̃ → Gq(x̃) between the source fibres by (γ, γx̃) 7→ γ, which makes
U : `2(G̃x̃)→ `2(Gq(x̃)) by δ(γ,γx̃) 7→ δγ, an isomorphism that intertwines the associated source
fibre representations πx̃ and πx:

Uπx̃( f ◦ Q)U∗ δγ = Uπx̃( f ◦ Q) δ(γ,γx̃)

= U
∑
α∈Gx

f ◦ Q((α, αx̃)) δ(αγ,αγx̃)

= U
∑
α∈Gx

f (α) δ(αγ,αγx̃)

=
∑
α∈Gx

f (α) δαγ

= πx( f ) δγ.

Hence the norms of f and f ◦Q coincide and we obtain an embedding of C∗r (G) into C∗r (G̃). �

To relate the intersection properties of G and G̃, we furthermore need the following
technical lemma stating that the above embedding is compatible with the G-action under ucp
extensions:

Lemma 4.2.22: Let G be a groupoid as above and G̃ its boundary groupoid. Let π be a
∗-representation of C∗r (G) on B(H) whose restriction to C(X) is injective, and let π̃ : C∗r (G̃)→
B(H) be a ucp extension of π. Then the C∗-algebra E generated by π̃(C(X̃)) inside B(H)
carries the structure of a G-algebra, such that the restriction π̃|C(X̃) → E is G-equivariant.

Proof. Let E B C∗(π̃(C(X̃))) ⊆ B(H) be the C∗-algebra generated in B(H) by the image of π̃
on C(X̃). As π̃ restricts to π on C(X) and is injective there, we may identify C(X) ⊆ E as a
subalgebra and since π is a ∗-homomorphism, C(X) lies in the multiplicative domain of π̃, so
that its action is central. Therefore E is a unital C(X)-algebra. For π̃ to be G-equivariant, the
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G-action on π̃(C(X̃)) ⊆ E is determined by

γ.
[
π̃( f )

]
x = π̃γ.x

(
γ.

[
f
]

x
)

for f ∈ C(X̃) with x = s(γ) and γ.x = r(γ). Note that if gγ ∈ Cc(G) is supported on a bisection
of G and gγ(γ) = 1, then gγ ∗ f ∗ g∗γ is in C(X̃) and a quick calculation shows that(

gγ ∗ f ∗ g∗γ
)
(x̃) =

∣∣∣∣gγ((r|B)−1(x̃)
)∣∣∣∣2 · f

(
s ◦ (r|B)−1(x̃)

)
, (4.11)

where B ⊆ G̃ is the bisection on which gγ ◦ q is supported. Hence γ.[ f ]x =
[
gγ ∗ f ∗ g∗γ

]
γ.x

and
since gγ is in the multiplicative domain of π̃ we can define

γ.
[
π̃( f )

]
x B π̃γ.x

(
γ.

[
f
]

x
)

=
[
π̃(gγ)π̃( f )π̃(gγ)∗

]
γ.x
.

This extends to general a ∈ E by

γ.[a]x B
[
π̃(gγ)aπ̃(gγ)∗

]
γ.x

(4.12)

and we proceed to show that this is a well-defined G-action. First we show that γ.[a]x

does not depend on the choice of a to represent [a]x, that is, γ.[a]x = 0 if [a]x = 0 for
a ∈ C0(X \ x)E. We may approximate a by finite sums of elements of the form h·π̃( f1) · · · π̃( fn)
with h ∈ C0(X \ x) and fi ∈ C(X̃) while n varies and as the action in Equation (4.12) depends
continuously on a, it suffices to show that γ.

[
h · π̃( f1) · · · π̃( fn)

]
x = 0. As g∗γ ∗ gγ and gγ ∗ g∗γ

are supported on X and
[
gγ ∗ g∗γ

]
γ.x

= 1, we may now calculate that[
π
(
gγ

)
hπ̃( f1)π̃( f2)π

(
gγ

)∗]
x

=
[
π
(
gγ ∗ g∗γ

)]
γ.x

[
π
(
gγ

)
hπ̃( f1)π̃( f2)π

(
gγ

)∗]
x

=
[
π
(
gγ ∗ g∗γ

)
π
(
gγ

)
hπ̃( f1)π̃( f2)π

(
gγ

)∗]
x

=
[
π
(
gγ

)
π
(
g∗γ ∗ gγ

)
hπ̃( f1)π̃( f2)π

(
gγ

)∗]
x

=
[
π
(
gγ

)
hπ̃( f1)π

(
gγ

)∗
π
(
gγ

)
π̃( f2)π

(
gγ

)∗]
x

=
[
π
(
gγ

)
hπ̃( f1)π

(
gγ

)∗]
γ.x

[
π
(
gγ

)
π̃( f2)π

(
gγ

)∗]
x

= π̃γ.x
(
γ.

[
h f1

]
x
)
π̃γ.x

(
γ.

[
f2
]

x
)

= 0

for n = 2 and analogously for arbitrary n. Incidentally, this also shows how the action gives
homomorphisms between the appropriate fibers, that is,

γ.[ab]x = γ.[a]xγ.[b]x.

Next we show that γ.[a]x is independent of the choice of gγ as above. Suppose gγ and g′γ
are as described supported on open bisections B and B′ and evaluate to one at γ. As B ∩ B′ is
an open neighbourhood of γ, the partial homeomorphisms s ◦ (r|B)−1 and s ◦ (r|B′ )−1 coincide
on the neighbourhood r(B ∩ B′) of r(γ) and by Equation (4.11) we find that(

gγ ∗ f ∗ g∗γ
)
−

(
g′γ ∗ f ∗

(
g′γ

)∗)
(x̃) =

(∣∣∣∣gγ((r|B)−1(x)
)∣∣∣∣2 − ∣∣∣∣g′γ((r|B)−1(x)

)∣∣∣∣2)︸                                         ︷︷                                         ︸
∈C0(X\r(γ))

· f
(
s ◦ (r|B)−1(x̃)

)
.
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and therefore [
gγ ∗ f ∗ g∗γ

]
r(γ)

=
[
g′γ ∗ f ∗

(
g′γ

)∗]
r(γ)
.

By approximating arbitrary a ∈ E by finite sums of elements of the form h · π̃( f1) · · · π̃( fn) as
above, we conclude that the same holds for arbitrary a.

As
[
g∗γ ∗ gγ

]
x

= 1 and g∗γ is a valid choice for gγ−1 , the action of γ is invertible by acting
with γ−1 and is therefore by ∗-isomorphisms. Furthermore, as gη ∗ gγ for composable η and
γ ∈ G is supported on a bisection and evaluates to one at ηγ, it is a valid choice for gηγ so that
the action is compatible with composition in G.

Finally, we show that the action is continuous. Let γλ → γ and [aλ]xλ → [a]x with
xλ = s(γλ) and x = s(γ). We have to prove that γλ.[aλ]xλ → γ.[a]x. As the elements of E are
exactly the continuous sections in the associated bundle, the convergence [aλ]xλ → [a]x is
equivalent to

∥∥∥[aλ − a]xλ

∥∥∥
xλ
→ 0 and it therefore suffices to show that γλ.[a]xλ → γ.[a]x. We

do this first for a = π̃( f ) and then generalise to arbitrary a as before. As π̃ is G-equivariant we
find that

γλ.
[
π̃( f )

]
xλ = π̃γλ.xλ

(
γλ.[ f ]xλ

)
→ π̃γ.x

(
γ.

[
f
]

x
)

= γ.
[
π̃( f )

]
x.

With the action by γ being via ∗-homomorphism, the same holds with π̃( f ) replaced
by a linear combination of finite products of this form. Since these are dense, convergence
γλ.[aλ]xλ → γ.[a]x may be tested against such sections: The net converges to γ.[a]x, if and only
if for all ε > 0, n, k ∈ N, and f1,1, . . . , fn,k ∈ C(X̃) with ‖γ.[a]x−[

∑k
i=1 π̃( f1,i) · · · π̃( fn,i)]γ.x‖γ.x <

ε we eventually have ‖γλ.[aλ]xλ − [
∑k

i=1 π̃( f1,i) · · · π̃( fn,i)]γλ.xλ‖γλ.xλ < ε.
Let b =

∑k
i=1 π̃

(
f1,i

)
· · · π̃

(
fn,i

)
such that [b]γ.x approximates γ.[a]x up to ε. Then∥∥∥γλ.[a]xλ − [b]γλ.xλ

∥∥∥
γλ.xλ

=
∥∥∥[a]xλ − γ

−1
λ .[b]γλ.xλ

∥∥∥
xλ

≤

∥∥∥∥[a]xλ −
[
π̃(gγ)∗bπ̃(gγ)

]
xλ

∥∥∥∥
xλ

+
∥∥∥∥[π̃(gγ)∗bπ̃(gγ)

]
xλ
− γ−1

λ .[b]γλ.xλ
∥∥∥∥

xλ
.

By the arguments above the right-hand term vanishes as λ→ ∞ while the left-hand term is
the norm of a section and hence depends upper semi-continuously on xλ. Hence

lim sup
λ→∞

∥∥∥γλ.[a]xλ − [b]γλ.xλ
∥∥∥
γλ.xλ
≤

∥∥∥∥[a]x −
[
π̃(gγ)∗bπ̃(gγ)

]
x

∥∥∥∥
x

=
∥∥∥[a]x − γ

−1.[b]γ.x
∥∥∥

x < ε,

so the action is continuous. �

We are now able to show that a groupoid G inherits the intersection property from its
boundary groupoid G̃, generalising one implication of Theorem 3.3.2.

Lemma 4.2.23: Let G be a locally compact Hausdorff groupoid with compact unit space
and G̃ its boundary groupoid. If G̃ has the intersection property, then so does G.

Proof. Let π : C∗r (G) → B(H) be a representation of C∗r (G) with ker(π) ∩ C(X) = {0}.
By Arveson extension we may find a ucp extension π̃ : C∗r (G̃) → B(H) and we denote
by D = C∗(π̃(C∗r (G̃))) the sub-C∗-algebra of B(H) generated by π̃(C∗r (G)). We consider
E B C∗(π̃(C(X̃))) ⊆ D as in Lemma 4.2.22 and endow it with the G-algebra structure defined
there.

As E contains C(X) as a sub-G-algebra, we may find a ucp G-map ϕ : E → C(X̃) by
extending the inclusion of C(X). Then ϕ ◦ π̃|C(X̃) is a G-map fixing C(X), hence by rigidity
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of C(X̃) it is the identity. Therefore, both ϕ|π̃(C(X̃)) and π̃|C(X̃) are isometries and since the
multiplicative domain of ϕ coincides with span{u | ‖u‖ = 1, ϕ(u) unitary} and contains π̃(u)
for u ∈ C(X̃) unitary which generate E as a C∗-algebra, ϕ is a ∗-homomorphism.

However, π̃|C(X̃) might fail to be a ∗-homomorphism, if ϕ has non-trivial kernel. This

is alleviated as follows: We consider F = ker(ϕ) · π̃(Cc(G̃)) and show that it is an ideal in
D, or equivalently π̃(Cc(G̃)) ker(ϕ) ⊆ ker(ϕ)π̃(Cc(G̃)). Fix a ∈ ker(ϕ), as well as g ∈ Cc(G)
real-valued and vanishing outside of an open bisection B. We want to show that π(g)a is
contained in ker(ϕ)π(Cc(G)). Let h = 3

√
g. Then h∗ ∗ h is supported on the unit space X, since

g is supported on a bisection and given by

(h∗ ∗ h)(x) =

|h(γx)|2 x ∈ s(B)
0

where γx is the unique arrow in B such that Bx = {γx}. Hence h ∗ h∗ ∗ h = g and π(g)a =

π(h ∗ h∗ ∗ h)a. Since h∗ ∗ h ∈ C(X) acts centrally on E, we find that π(g)a = π(h ∗ h∗ ∗ h)a =

(π(h) · a · π(h)∗)π(h).
We proceed to argue that ϕ(π(h)aπ(h)∗) vanishes, or equivalently [π(h)aπ(h)∗]x ∈ ker(ϕx)

for all x ∈ X. First assume x < r(B), or x ∈ r(B) with xB = γ and h(γ) = 0. Then let k =
3√h

and note that k∗ ∗ k ∈ C0(X \ x), so[
π(h)aπ(h)∗

]
x =

[
π(kk∗)π(k)aπ(h)∗

]
x =

[
π(kk∗)

]
x
[
π(k)aπ(h)∗

]
x = 0.

On the other hand, if x ∈ r(B) with xB = γ but h(γ) , 0, we may rescale h to h′ B h/h(γ).
Then by definition of the G-action

h(γ)2 · γ.[a]s(γ) = h(γ)2[π(h′)aπ(h′)∗
]

x =
[
π(h)aπ(h)∗

]
x.

Now, since ϕ is a G-map, γ.[a]s(γ) is in the kernel of ϕx exactly if [a]s(γ) is in the kernel of ϕs(γ),
which holds since a ∈ ker(ϕ). So, for g ∈ Cc(G) real-valued and supported on a bisection, we
find that

π(g)a = (π(h) · a · π(h)∗)π(h) ∈ ker(ϕ) · π(Cc(G)),

and as such g span Cc(G) densely we may conclude that π(Cc(G)) ker(ϕ) ⊆ ker(ϕ)π(Cc(G)).
Note that Cc(G)·C(X̃) spans Cc(G̃) densely and that C(X̃) ker(ϕ) ⊆ ker(ϕ), so that the collection
of all ga for g and a as above spans a dense subset of π̃(Cc(G̃)) ker(ϕ). Therefore F is an ideal
in D whose elements are exactly these fixed by left multiplication with an approximate unit of
ker(ϕ) ⊆ E. Hence F ∩ E = ker(ϕ).

Denoting by Φ the quotient map D → D/F, we consider the ucp map Φ ◦ π̃. As ϕ by
design factors through the restriction of Φ to E to some ϕ̄, and ϕ̄ ◦ (Φ ◦ π̃)|C(X̃) = idC(X̃) we
may now conclude that (Φ ◦ π̃)|C(X̃) is a ∗-homomorphism since ϕ̄ is an injective left inverse
on E/F ⊆ D/F. Additionally, (Φ ◦ π̃)|C∗r (G) = Φ ◦ π is a ∗-homomorphism , so both C(X̃)
and C∗r (G) belong to the multiplicative domain of Φ ◦ π̃. As their product is dense in C∗r (G̃)
it follows that Φ ◦ π̃ itself is a ∗-homomorphism. However, Φ ◦ π̃ is faithful on C(X̃) since
ϕ̄◦ (Φ◦ π̃)|C(X̃) = idC(X̃), and by the intersection property of G̃, it is itself faithful. As π̃ extends
π, we may conclude that π is faithful on C∗r (G). We conclude that G has the intersection
property. �
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Recall that Kawabe’s characterisation [38] of C∗-simplicity of discrete groups acting
on compact spaces from Theorems 3.3.4 and 3.3.6 generalises Kennedy’s results [40] from
Theorem 2.3.16 by identifying it with the absence of recurrent amenable sections of subgroups
in the stabiliser subgroups of the action. Given a discrete group G, both notions rely on
endowing the set Sub(G) of subgroups of G equipped with the Chabauty topology, that is,
the topology of pointwise convergence of indicator functions, as well as the action of G by
conjugating subgroups. Recall from Definition 2.3.12 that a recurrent subgroup of a group
G is a subgroup H, such that the closure of its orbit under the G-action does not contain the
trivial subgroup {e}. The analogous notion in Kawabe’s work, where G acts on a compact
space X, considers amenable subgroups of the point stabilisers Stab(x) of the action of G on X,
equipped with an action of G by conjugation. To keep track of the basepoint, denote a subgroup
H ≤ Stab(x) as (x,H) in X × Sub(G) with the action of g ∈ G by g.(x,H) = (g.x, gHg−1)
and the product topology. We called such a subgroup dynamically recurrent, if the closure
of its orbit does not contain the trivial subgroup (x, {e}) at the same basepoint. For G acting
minimally on X, Kawabe shows that the absence of dynamically recurrent amenable subgroups
in the stabilisers is again equivalent to simplicity of the reduced crossed product C(X) oG,
while in general it is equivalent to the intersection property of every closed, G-invariant subset
of X.

In the following we provide a generalisation of one of Kawabe’s results from Theorems
3.3.4 and 3.3.6 to étale groupoids, establishing a new sufficient criterion for the intersection
property and consequently for C∗-simplicity. Let Sub(G) denote the space of all subgroups of
the isotropy groups of G, that is, the disjoint union of the Sub(Gx

x) ranging over all x ∈ G(0).
Recall that the Chabauty topology is a topology on the power set of G with a subbasis B given
by

B =
{
OU ,O

′
K

∣∣∣ U ⊂ G open,K ⊂ G compact
}

where

OU =
{
Y ⊂ G

∣∣∣ Y ∩ U , ∅
}

and O′K =
{
Y ⊆ G

∣∣∣ Y ∩ K = ∅
}
.

As G is not discrete, this no longer coincides with the topology of pointwise convergence of
indicator functions. We endow Sub(G) with the subspace topology as a subset of the power
set of G with the Chabauty topology. As before we may equip Sub(G) with an action of G by
conjugation, where an arrow γ ∈ G acts on a subgroup (s(γ),Hs(γ)) of Gs(γ)

s(γ) by conjugating it

to the subgroup (r(γ), γHs(γ)γ
−1) of Gr(γ)

r(γ). For ease of notation we will usually drop the fiber
as it is implicit and simply write γ.Hs(γ) = γHs(γ)γ

−1.

Definition 4.2.24: Let G be a locally compact étale Hausdorff groupoid. Choosing a subgroup
Hx ≤ G

x
x of the isotropy group Gx

x at every unit x, we call Λ = {Hx | x ∈ G(0)} a section of
isotropy subgroups. We furthermore call the section recurrent if the closure of its G-orbits
under conjugation does not contain all trivial subgroups of the isotropy groups. That is, if
there is x0 ∈ G

(0) such that {x0} cannot be approximated by subsets of the form γλHxλγ
−1
λ for

γλ ∈ Gxλ and Hxλ ∈ Λ. We call a section of isotropy subgroups Λ amenable if all contained
subgroups Hx ∈ Λ for all x ∈ G(0) are amenable.

Similar to the setting of crossed products in Theorem 3.3.4, the absence of amenable
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recurrent sections of isotropy subgroups forces the boundary groupoid to be principal and
provides therefore a sufficient criterion for the intersection property of G.

Theorem 4.2.25: Let G be a Hausdorff étale groupoid with compact unit space that does
not have recurrent amenable sections of isotropy subgroups, and in which the orbit of any unit
in the groupoid contains at least two points. Then G has the intersection property.

Proof. As before let G̃ be the boundary groupoid of G, let Q : G̃ → G be the continuous
groupoid homomorphism given by (γ, x̃) 7→ γ, and denote the unit spaces of G and G̃ by X and
X̃, respectively. Assume that G has no amenable recurrent sections of subgroups in the isotropy.
Note that all isotropy groups G̃x̃

x̃ of the boundary groupoid are amenable by Proposition 4.2.16,
hence so are the corresponding subgroups Q(G̃x̃

x̃) of G. Let Λ =
{
Q(G̃x̃

x̃) | x̃ ∈ X̃
}

and note

that its orbit closure G.Λ contains the trivial subgroups {{x} | x ∈ X} at every unit of G, since
it contains an amenable section of subgroups in the isotropy which is by assumption not
recurrent. However, Λ is already invariant since γ.G̃x̃

x̃ = G̃
γ.x̃
γ.x̃ and is furthermore closed: Let

Φ : X̃ → Sub(G) be the isotropy map x̃ 7→ Q(G̃x̃
x̃). Then Λ = Φ(X̃) is the range of Φ, and since

X̃ is compact and Sub(G) Hausdorff, Λ is closed provided that Φ is continuous. To verify this,
we calculate

Φ−1(OU) =
{
x̃
∣∣∣ G̃x̃

x̃ ∩ Q−1(U) , ∅
}

and Φ−1(O′K)
=

{
x̃
∣∣∣ G̃x̃

x̃ ∩ Q−1(K) = ∅
}

= s
(
Iso

(
G̃
)
∩ Q−1(U)

)
= X̃ \ s

(
Iso

(
G̃
)
∩ Q−1(K)

)
.

As every orbit in G has at least two points, Iso(G̃) is clopen by Proposition 4.2.19, and
furthermore s is an open surjection while Q−1(U) and Q−1(K) are open and closed, respectively.
Hence, Φ is continuous and Λ = Φ(X̃) is closed. Now, Λ contains {{x} | x ∈ X}, so for every
x ∈ X there is some x̃ ∈ X̃ with q(x̃) = x and G̃ x̃

x̃ = {x̃}. That is, there are enough trivial
isotropies in G̃ to cover X along q. Hence Z B {x̃ ∈ X̃ | G̃x̃

x̃ = {x̃}} is a G-invariant subset of X̃
with q(Z) = X. Furthermore, Z is closed, since its complement X̃ \ Z = s(Iso(G̃) \ X̃) is the
image of an open set under the open, surjective map s. Thus Z = X̃ by Proposition 4.2.17, so
G̃ is principal and hence has the intersection property. By Lemma 4.2.23 we conclude that G
inherits the intersection property from G̃. �

Although slightly weaker, the above theorem looks more familiar when phrased in terms
of dynamically recurrent subgroups instead of sections of subgroups:

Definition 4.2.26: Let G be a locally compact étale Hausdorff groupoid and x ∈ G(0) a unit.
A subgroup H ≤ Gx

x of the isotropy Gx
x at x is called a dynamically recurrent subgroup of the

isotropy group, if the closure of the G-orbit of H under the conjugation action does not contain
the trivial subgroup {x} of Gx

x.

To shorten notation, we call such H ≤ Gx
x a dynamically recurrent subgroup of G, rather

than a dynamically recurrent subgroup of an isotropy group of G.

Corollary 4.2.27: Let G be a Hausdorff étale groupoid with compact unit space that does
not have dynamically recurrent amenable subgroups, and in which the orbit of any unit in the
groupoid contains at least two points. Then the restriction of G to any closed invariant subset
of G(0) has the intersection property.
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Proof. The absence of dynamically recurrent (amenable) subgroups implies absence of recur-
rent (amenable) sections of subgroups in the isotropy: If Λ = {Hy | y ∈ G(0)} was a recurrent
section of subgroups, then its orbit closure would not contain {x} for some unit x ∈ G(0). Hence
the orbit closure of Hx, a subset of the orbit closure of Λ, would not contain {x} either and
therefore Hx would be dynamically recurrent.

Noting that this implication holds for every restricion of G to a closed invariant subset of
G(0), we may apply Theorem 4.2.25 to any such restriction and obtain the desired conclusion.

�

Remark. A groupoid G for which every restriction of G to a closed invariant subset of G(0)

has the intersection property is said to have the residual intersection property, see for example
[6, Def 3.8].

We finally apply Theorem 4.2.25 to describe C∗-simplicity of G. Recall, for example
from [6, Thm A], that a groupoid is C∗-simple exactly if it has the intersection property and
is minimal, that is, if every orbit in G(0) is dense. While minimality is a straightforward
property of the groupoid, the intersection property is hard to describe without passing to
the associated C∗-algebras, and is therefore in applications often replaced by the stronger
assumption of topological principality. See further the works by Archbold–Spielberg [3],
Kawamura–Tomiyama [39], and Sierakowski [55] for crossed products and Brown–Clark–
Farthing–Sims [11], as well as Bönicke–Li [6] for groupoids. Therefore, we may freely restrict
to minimal groupoids when concerned with C∗-simplicity.

Corollary 4.2.28: Let G be a minimal Hausdorff étale groupoid with compact unit space
that does not have recurrent amenable sections of isotropy subgroups. Then G is C∗-simple.

Proof. If G(0) consists of a single point then G is a discrete group and C∗-simple by Kennedy’s
characterisation of Theorem 2.3.16. If G(0) has more than one point, then every orbit has at
least two points since it is dense. Therefore, G has the intersection property by Corollary
4.2.27 and is C∗-simple since it is also minimal. �

Question 1: Does the converse of Theorem 4.2.25 hold? More precisely, let G be a Hausdorff
étale groupoid with compact unit space. Is the absence of recurrent amenable sections
of isotropy subgroups in G equivalent to the intersection property of G? Is the absence
of dynamically recurrent amenable subgroups of G furthermore equivalent to the residual
intersection property of G?

Corollary 4.2.29: Let G be a minimal Hausdorff étale groupoid with compact unit space. If
any isotropy group of G is C∗-simple, then C∗r (G) is also simple.

Proof. If Gx
x is C∗-simple for some unit x ∈ G(0), then Gx

x does not contain recurrent amenable
subgroups by Theorem 2.3.16. Therefore, any amenable subgroup Hx of Gx

x contains {x} in its
orbit closure. As any amenable section of subgroups in the isotropy will contain an amenable
subgroup of Gx

x, its orbit closure will contain {x} and therefore all trivial subgroups in the
isotropy by minimality. Hence G does not have recurrent amenable sections of subgroups in
the isotropy and is therefore C∗-simple. �

Note that for a second-countable groupoid topological principality, where a dense set of
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units in G(0) has trivial isotropy, implies not having recurrent amenable sections of subgroups
in the isotropy, since the choices of Hx must be the trivial subgroup for a dense set of units,
approximating any other trivial subgroup of the isotropy bundle. For minimal G, topological
principality furthermore implies the absence of dynamically recurrent amenable subgroups:

Lemma 4.2.30: Let G be a minimal Hausdorff étale groupoid with compact unit space
that has at least one trivial isotropy group. Then G has no dynamically recurrent amenable
subgroups.

Proof. Let x ∈ G(0) be a unit. We show that conjugates of any given isotropy group Gx
x already

approximate trivial subgroups, so that any subgroup of Gx
x will likewise have to approximate

a trivial subgroup. Assume that Gx0
x0 = {x0} is the trivial isotropy at x0. Since G is minimal,

there are γλ ∈ Gx such that xλ B r(γλ)
λ→∞
−−−−→ x0 and we show that Gxλ

xλ → G
x0
x0 = {x0} in

the Chabauty topology. Note that yλ → y does not in general imply Gyλ
yλ → G

y
y. Any open

set U ⊆ G containing x0 contains a neighbourhood of x0 in G(0), as the latter is open, so it
eventually contains xλ and therefore intersects Gxλ

xλ . On the other hand, every compact set
K ⊆ G that does not contain x0 intersects the closed isotropy in a compact set K ∩ Iso(G) not
containing x0. As the range map is continuous, r(K ∩ Iso(G)) is a compact subset of G(0) that
does not contain x0 and therefore Gxλ

xλ will eventually not intersect K when xλ < r(K ∩ Iso(G)).
Together this shows that γλGx

xγ
−1
λ → {x0} and therefore the same holds for every (amenable)

subgroup Hx of Gx
x. As G is minimal, x is contained in the orbit closure of x0 and therefore

{x} is contained in the orbit closure of {x0}, which is again contained in the orbit closure of
Hx. �

Remark. In the case of minimality, having at least one trivial isotropy subgroup is of course
equivalent to being topologically principal for a second-countable groupoid.

For amenable minimal groupoids, it is known that C∗-simplicity is equivalent to topological
principality, see e.g. [6, Corollary 3.12]. The following Lemma shows that in the above
equivalence one can replace topological principality with the absence of dynamically recurrent
amenable subgroups.

Lemma 4.2.31: Let G be a (not necessarily minimal) locally compact Hausdorff étale
groupoid with compact unit space. Assume that every isotropy group of G is amenable. Then
G is topologically principal if it has no dynamically recurrent amenable subgroups. If G is
furthermore minimal, the two notions are equivalent.

Proof. Assuming that G is not topologically principal, we show that it contains a dynamically
recurrent amenable subgroup in the isotropy. Since the interior of the isotropy Iso(G) of G
does not coincide with the clopen unit space G(0), we may choose a nonempty open set U
contained in Iso(G)◦ \ G(0). Take K′ any compact subset of G that contains U, then K given
by (K′ ∩ Iso(G)) \ G(0) is a compact subset containing U that is disjoint from G(0). Let
x ∈ s(U). We show that Gx

x is dynamically recurrent. If it was not, conjugates of Gx
x would

approximate the trivial subgroup {x}, that is, there would be xλ in the orbit of x such that
G

xλ
xλ → {x}. However, as x is not contained in the compact set K but is contained in the open set

s(U), both O′K and Os(U) are neighbourhoods of {x}, but if Gxλ
xλ ∈ Os(U), then xλ ∈ s(U) ⊆ s(K),

so Gxλ
xλ intersects K and therefore Gxλ

xλ < O
′
K . In other words, the neighbourhood Os(U) ∩ O

′
K
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of {x} does not contain any isotropy groups, so {x} cannot be approximated by conjugates
of Gx

x which necessarily are isotropy groups. Therefore, Gx
x is dynamically recurrent and by

assumption amenable.
If G is minimal, the converse implication is given in Lemma 4.2.30. �

Remark. Note for a minimal groupoid G in which all isotropy groups are amenable the
existence of a dynamically recurrent amenable subgroup of G is equivalent to the existence
of a recurrent amenable section of subgroups in the isotropy, since the orbit closure of any
amenable subgroup in the isotropy will be an amenable section of subgroups in the isotropy by
minimality and the latter is recurrent exactly if the former is. In general, it is unclear whether
amenability is a closed property in the Chabauty topology on Sub(G).

Question 2: Does the equivalence of C∗-simplicity and topological principality extend
from minimal, amenable groupoids to minimal groupoids for which all isotropy groups
are amenable?

If Question 1 were to be answered in the positive, so would Question 2.

4.3 Elek Algebras

This section is based on [7], to appear in Mathematica Scandinavica, in which we reformulate a
construction by Gábor Elek, which associates C∗-algebras with uniformly recurrent subgroups,
in the language of groupoid C∗-algebras. Apart from simplifying several proofs from Elek’s
original papers and adding the converse direction to his characterisation of nuclearity, this
allows us to apply the results from Section 4.2.4 to find new examples of simple Elek algebras.

4.3.1 Introduction
Defined by Glasner and Weiss [26], uniformly recurrent subgroups, or URSs for short, have
recently drawn a lot of attention in the world of C∗-algebras since Kennedy [40] characterised
C∗-simplicity of a discrete group G as the absence of non-trivial amenable uniformly recurrent
subgroups. Another relation between uniformly recurrent subgroups and C∗-algebras was
given by a construction of Elek [20], who defined a C∗-algebra closely tied to the dynamics
of a finitely-generated discrete group G acting on one of its uniformly recurrent subgroups Z.
His construction, the completion of the algebra of “local kernels” on the Schreier graph of
a subgroup in the URS Z in a regular representation, takes more of the combinatorial nature
of Z into account than the crossed product of G acting on C(Z) does. This construction is
thereby very well-suited for finding C∗-algebras with desired properties by rephrasing such
properties at the combinatorial level of URSs. For example, Elek obtains a C∗-algebra with
both a uniformly amenable and a nonuniformly amenable trace, by providing a Schreier graph
with the corresponding properties for URSs.

We recast Elek’s construction from the viewpoint of groupoid C∗-algebras, which allows
us to simplify and extend the ties between properties of the URS and its associated algebra.
Using this new angle, we are able to prove that Elek’s sufficient criterion for nuclearity of his
C∗-algebras, the so-called local property A, is in fact also necessary, providing an equivalent
characterisation of nuclearity of C∗r (Z).
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After recalling the necessary terminology in Section 4.3.2, we construct in Section 4.3.3
an étale groupoid for a given URS Z whose reduced C∗-algebra is canonically isomorphic to
Elek’s C∗-algebra C∗r (Z). In Section 4.3.4 we relate this groupoid to the dynamics of the action
of G on Z by conjugation. Finally, in Section 4.3.5, we use the new framework to give simpler
proofs for some of Elek’s results on simplicity and nuclearity of the associated C∗-algebras
and provide the now equivalent characterisation of nuclearity.

4.3.2 Preliminaries
We recall the definition of Elek’s C∗-algebras associated with uniformly recurrent subgroups.
Let G be a finitely-generated discrete group. Let Sub(G) be the space of its subgroups,
equipped as in Section 2.3.3 with the topology of pointwise convergence of the characteristic
functions associated with the subsets and left G-action g.H = gHg−1 by conjugation, where
H ∈ Sub(G) and g ∈ G. Recall that for a discrete group G, this topology is also known as the
Chabauty topology or Fell topology on Sub(G). As convergence in the topology is a pointwise
condition, and conjugation with a fixed element g is simply a relabelling of G, the action of G
on Sub(G) is continuous. Recall from Definition 2.3.9 that a uniformly recurrent subgroup
(URS) of G is a closed, G-invariant subspace of Sub(G) on which the action is minimal, that
is, on which every orbit is dense. By Elek’s terminology the URS is called generic, if the
stabiliser of any subgroup H ∈ Z is as small as possible, namely H itself.

Note that every normal subgroup of G trivially defines a URS that consists of a single point,
and furthermore every closed, invariant subset of Sub(G) contains a URS by Lemma 2.3.14.
The number of distinct URSs in a given countable discrete group G can vary wildly between
just the trivial normal subgroups {e} and G (for a “Tarski monster” group) and uncountably
many non-isomorphic URSs (for F2), as shown by Glasner and Weiss [26, Example 1.9,
Theorem 5.1].

Fixing a finite, symmetric system of generators Q of G, to each H ∈ Sub(G) we may assign
a rooted, labeled graph S Q

Γ
(H) called its Schreier graph, which has vertex set G/H, root H,

and for every gH ∈ G/H and q ∈ Q an edge from gH to qgH labeled by q. The group G acts
on the vertex set G/H of S Q

Γ
(H) by left multiplication, or, equivalently, by following along the

edges that spell out g in terms of the generators Q. We denote the shortest-path metric on a
graph S by d, or dS if there is ambiguity, and likewise the balls of radius R around a vertex
x ∈ S by BR(x) or BR(S , x). On the space S Q

Γ
of Schreier graphs associated with subgroups of

G, we introduce a metric by
dS Q

Γ
(S 1, S 2) B 2−r (4.13)

for S 1 = S Q
Γ

(H1) and S 2 = S Q
Γ

(H2) two graphs in S Q
Γ

and r the largest integer such that
Br(S 1,H1) and Br(S 2,H2) are root-label isomorphic. This space carries a left G-action, where
g.S Q

Γ
(H) = S Q

Γ
(gHg−1), that is, g acts by changing the root. Elek identifies the graphs S Q

Γ
(H)

for which the orbit closure of H forms a URS as those where any root-label isomorphism
class of balls is repeated with at most bounded distance from any point in the graph (see [20,
Proposition 2.1] for the full description), and the graphs for which it forms a generic URS as
those where vertices with large isomorphic balls are sufficiently far apart (see [20, Proposition
2.3]).

To associate a C∗-algebra with a given URS Z, Elek considers its local kernel algebra CZ
formed by the local kernels K : G/H ×G/H → C of finite width on S Q

Γ
(H) for some subgroup
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H ∈ Z. A kernel K on S Q
Γ

(H) is of width R, if K(p, q) = 0 for any two vertices p, q ∈ S Q
Γ

(H)
with d(p, q) > R. It is furthermore local with width R, if K(p, g.p) = K(q, g.q) for any p and q
with root-label isomorphic R-balls and g ∈ G of length at most R. Equipped with pointwise
addition, convolution KL(p, q) =

∑
z K(p, z)L(z, q), and involution K∗(p, q) = K(q, p) for

local kernels K and L and p, q, and z in G/H, the local kernel algebra forms a ∗-algebra.
Up to isomorphism, this algebra does not depend on the choice of root H ∈ Z. A “regular”
representation of CZ on `2(G/H) is given by (K f )(p) =

∑
K(p, q) f (q) for f ∈ `2(G/H).

The reduced C∗-algebra C∗r (Z) of Z is the completion of CZ in the norm induced by this
representation.

Several C∗-algebraic properties of C∗r (Z) can be read off of the URS Z and its Schreier
graph. Genericity of Z implies simplicity of C∗r (Z), as discussed in Section 4.3.5. Furthermore,
a local version of Yu’s property A for the Schreier graph S Q

Γ
(H), for any subgroup H in the

URS Z, is equivalent to nuclearity of C∗r (Z). Recall that a Schreier graph S Q
Γ

(H) for H ∈ Z ⊆ G
has Elek’s local property A if there is a sequence of local functions

ρn : G/H → `2(G/H), p 7→ ρn
p,

such that ‖ρn
p‖2 = 1, while d(p, q) ≤ n implies ‖ρn

p − ρ
n
q‖ ≤ 1/n. As with kernels, locality of a

function ρ : G/H → `2(G/H) means that there is some R > 0 such that ρp is supported in the
R-ball BR(p) centred at p, and whenever θ is a root-label isomorphism BR(p) → BR(q), we
have ρq ◦ θ = ρp.

4.3.3 URS Algebras as Groupoid Algebras

Construction of the Groupoid

For a given uniformly recurrent subgroup, we construct a groupoid whose regular representa-
tion models Elek’s construction on the local kernel algebra.

Let Z be a uniformly recurrent subgroup of a discrete group G, fix H ∈ Z, and let
S = S Q

Γ
(H) be its Schreier graph. For any n ∈ N we define an equivalence relation on the

vertices V(S ) of S by
p ∼n q⇔ Bn(S , p) �r,l Bn(S , q);

that is, if the n-balls around p and q are isomorphic under an isomorphism preserving the roots
and labels. Such a root-label isomorphism is necessarily unique, since the roots are unique
and every vertex is uniquely described by the labels on any path from the root to said vertex.
Likewise, if a root-label isomorphism of n-balls on a Schreier graph has a fixed point, the two
balls coincide and the root-label isomorphism is the identity, since we may describe every
vertex in the balls by paths relative to the fixed point. The equivalence relation on the vertices
p, q ∈ V(S ) can alternatively be formulated in terms of the group elements gp and gq of G
describing paths from the root of S to p and q, respectively: With the above we have p ∼n q
if and only if gp.S and gq.S are 2−n-close in the metric dS Q

Γ
on S Q

Γ
introduced in Equation

(4.13). Let En = V(S )/∼n denote the finite set of equivalence classes of ∼n equipped with the
discrete topology and the obvious connecting maps en+1 : En+1 → En. Note that these sets do
not depend on the choice of H ∈ Z:
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Proposition 4.3.1: Let H and H′ be two groups contained in a URS Z of a discrete, finitely-
generated group G. Then H and H′ have the same sets of equivalence classes of rooted, labeled
n-balls in their associated Schreier graphs.

Proof. Let Q be a generating set of G, and let En and E′n be the sets of root-label equivalence
classes of n-balls in S = S Q

G(H) and S ′ = S Q
G(H′). We show that for every p ∈ V(S ) there is a

p′ ∈ V(S ′) such that Bn(S , p) �r,l Bn(S ′, p′). If p = gH, then since Z is uniformly recurrent,
the subgroup gHg−1 is in the orbit closure of H′, and therefore S Q

G(gHg−1) is in the orbit
closure of S ′. Hence there is some g′ ∈ G such that

Bn(S , p) �r,l Bn(S Q
G(gHg−1), gHg−1) �r,l Bn(S ′, g′H′)

and p′ = g′H′ gives En ⊆ E′n. The claimed equality follows by symmetry. �

We endow the projective limit lim
←−−

En with the subspace topology of the product topology
on

∏
n∈N En. Then, as in [20, Lemma 6.1], it is easy to check that lim

←−−
En is homeomorphic to

Z as a subspace of Sub(G), which in turn is either a Cantor space or a finite discrete set. It
is noteworthy that under this identification, the orbit of H in Z is exactly described by those
elements in lim

←−−
En that can be represented by the equivalence classes [p]n of a fixed vertex

p ∈ S . This is depicted in Figure 4.1. The other elements, as in Figure 4.2, describe subgroups
in the orbit closure, but not the orbit, of H.

We employ this description of the space Z to construct an ample Hausdorff étale groupoid
GZ with unit space G0

Z homeomorphic to Z, whose reduced groupoid C∗-algebra is C∗r (Z). As
a set, the groupoid GZ is identified with a subset of the projective limit lim

←−−
Fn of the finite,

discrete sets

Fn =
⊔

[xn]∈En

Bn(S , xn) t {∞n}. (4.14)

Here Bn(S , xn) denotes the n-ball in S that is determined uniquely by [xn], even if there is
a choice in the representing vertex xn. To avoid this choice of representing elements, a pair
([xn], y) with y ∈ Bn(S , xn) as in Equation (4.14) can be more readily expressed as a pair
([xn], g) as in Equation (4.15) below, where g is any chosen path from xn to y inside Bn(S , xn),
up to g ≈xn g′ if both paths lead to the same vertex in S ; that is, if g.xn = g′.xn:

Fn �
⊔

[xn]∈En

{g ∈ G | l(g) ≤ n}/≈xn t {∞n}. (4.15)

Implicit in this description is our later identification of GZ with a quotient of the transformation
groupoid Z o G. In this picture, ∞n fills in for choices of vertices that are not contained in
Bn(S , xn), or, respectively, for those g whose length as a word in the generators exceeds n. The
connecting maps Fn+1 → Fn are then given by

([xn+1], g) 7→

(en+1([xn+1]), g) if d(xn+1, g.xn+1) ≤ n
∞n else

∞n+1 7→ ∞n.

Now let GZ B lim
←−−

Fn \ {∞} with∞ = (∞1,∞2, . . .), equipped with the subspace topology
of the projective limit, which itself is equipped with the subspace topology of the product
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p

Figure 4.1: Elements of lim
←−−

En are described by a sequence of isomorphism classes of n-balls

in some fixed Schreier graph S Q
Γ

(H) for a group H ∈ Z. Writing ([p0]0, [p1]1, [p2]2, . . .) ∈
lim
←−−

En, we denote by [pn]n the equivalence class in En represented by the n-ball around a vertex

pn ∈ S Q
Γ

(H). To form a valid element, the sequence of vertices (pn)n has to be compatible in
the sense that [pi]i = [p j]i for all i ≤ j. A particularly easy way to achieve this is by choosing a
constant vertex p such that pn = p for all n. If a path from the root of S Q

Γ
(H) to p is described

by the group element g, then the element ([p]0, [p]1, [p]2, . . .) is sent to the group g.H under
the homeomorphism between lim

←−−
En and Z. This is reflected in the fact that changing the

root of S Q
Γ

(H) to p will yield the Schreier graph S Q
Γ

(g.H). The Schreier graphs depicted are
chosen for ease of drawing with no particular group in mind. Labels and loops are omitted for
readability.
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p0

p1

p2

p3, p4, . . .

Figure 4.2: There might be elements ([p0]0, [p1]1, [p2]2, . . .) ∈ lim
←−−

En that are not described

by a single, constant vertex p ∈ V(S Q
Γ

(H)), but by a choice of vertices pn such that the i-ball
around any p j for j ≥ i is root-label-isomorphic to the i-ball around the vertex pi, without
eventually being constant. These isomorphism classes of balls assemble into a new Schreier
graph, whose n-ball around the root is root-label-isomorphic to the n-ball around pn. If gn ∈ G
describes a path from the root of S Q

Γ
(H) to pn, then then gn.H will converge to another group

K ∈ Z and the Schreier graph assembled from the balls around the vertices pn is S Q
Γ

(K).
Consequently, ([p0]0, [p1]1, [p2]2, . . .) is sent to K under the homeomorphism between lim

←−−
En

and Z.
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topology on
∏

n∈N Fn. Identifying En with a subset of Fn by sending [xn] to ([xn], e), we may
identify Z � lim

←−−
En with a subset of GZ . To simplify notation, we write (x, g) ∈ lim

←−−
En ×G for

the element of lim
←−−

Fn that it represents when making a choice of representing vertex [xn] ∈ En

for every n while identifying ([xn], g) with∞n whenever l(g) > n. Note that (x, g) and (x, g′)
with l(g′) ≥ l(g), represent the same equivalence class in lim

←−−
Fn if g.xl(g′) = g′.xl(g′). The

topology on GZ is then equivalently given by the metric dGZ , where for x and y in Z and
g, g′ ∈ G,

dGZ ((x, g), (y, g′)) = 2−N

for N maximal such that ([xN]N , g.xN) and ([yN]N , g′.yN) coincide in FN .
We define the range and source maps as r(x, g) = (x, e) and s(x, g) = (g.x, e) respectively,

with g.x B ([g.xl(g)]0, [g.xl(g)+1]1, . . .). This is merely acting entry-wise with g, but for the
action to be well-defined we first need to left-shift the representing elements by l(g) steps
because for two vertices p and q, p ∼n q does not imply that g.p ∼n g.q, but p ∼n+l(g) q does,
as depicted in Figure 4.3. Clearly, such a left-shift of representing elements does not change
the described element of lim

←−−
En. If we define an action of G on lim

←−−
En by g.x = s(x, g) as

above, the mentioned homeomorphism between lim
←−−

En and Z is equivariant.
The range and source maps map lim

←−−
Fn onto the subspace where the group element

is simply e, that is, onto the subspace lim
←−−

En in our earlier identification. The unit space
G0

Z = r(GZ) = s(GZ) is therefore homeomorphic to Z. Elements of the range fibre Gx
Z have

the form (x, g) for g ∈ G, and the identification of (x, g) and (x, g′) with l(g′) ≥ l(g) if
g.xl(g′) = g′.xl(g′) is exactly the definition of �xl(g′ ) . Note that, depending on the choice of g, it
might be that d(xl(g), g.xl(g)) is strictly less than l(g), in which case there is another g′ ∈ G of
length d(xl(g), g.xl(g)), such that (x, g) and (x, g′) denote the same arrow. If there is no such g′,
we call g an element of minimal length.

If (x, g) and (y, g′) are composable, that is, if x = g′.y, then we define the composition
(y, g′)(x, g) to be (y, gg′). Note that s(y, gg′) = s(x, g), since ([x0]0, [x1]1, . . .) coincides with
the N-fold left-shift of representing elements ([xN]0, [xN+1]1, . . .) in G0

Z for any N ∈ N. We
see that any x ∈ G0

Z is a unit in GZ when written as (x, e) for e ∈ G the neutral element, and
consequently the equivalence class represented by (x, g) has as its inverse the class represented
by (g.x, g−1).

Intuitively, an arrow with range x such that x is represented by the equivalence classes of a
single, constant vertex in the Schreier graph is thought of as a path from x to g.x, but g.xn is
only well-defined for n ≥ l(g), in which case g.xn determines a unique isomorphism class of
(n − d)-balls and thereby a class in En−d, where d = d(xn, g.xn) as in Figure 4.3. An element
of Gx

Z is therefore represented by a pair (x, g) with g of minimal length, and we can describe
(x, g) as consistent choices of vertices g.xn in the balls described by the classes [xn]n.

This structure indeed gives rise to a groupoid:

Proposition 4.3.2: Let Z be a uniformly recurrent subgroup of a discrete, finitely-generated
group G. Then the associated construction of GZ gives rise to an ample minimal Hausdorff
étale groupoid with unit space homeomorphic to Z.

Proof. It is easy to see that the range and source maps,

r(x, g) = x, s(x, g) = g.x,
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a

b

Figure 4.3: If xn is a class in En, then γxn determines a class in En−l(γ). Here, n = 5 is
depicted with γ = ba for a, b two generators.

together with the composition and inversion

(y, g′)(x, g) = (y, gg′), (x, g)−1 = (g.x, g−1),

indeed turn GZ into a groupoid. Equipping GZ with the locally compact Hausdorff subspace
topology of lim

←−−
Fn, we have to check that the defined operations are continuous. Consider the

basic open sets
UeN ,g = {(x, g) ∈ GZ | [xN]N = eN}

that fix g ∈ G and eN ∈ EN for some N. The range map is obviously continuous, as any
basic open set of lim

←−−
En can be turned into a union of basic open sets of lim

←−−
Fn by letting g

vary. Inversion is continuous since the action of G on Z is, which in turn makes the source
map continuous. To see that the composition is continuous, we fix eN ∈ EN and g ∈ G and
find the preimage of UeN ,g under the composition map. For (x, h)(h−1.x, h′) to be contained in
UeN ,g, we first need that x ∈ UeN ,h, and secondly that h′ = h−1g. Hence the desired preimage is
described by the intersection of ⋃

h∈G

UeN ,h × Ue0,h−1g

with the subspace G(2)
Z of composable pairs in GZ × GZ and therefore open in G(2)

Z . Here we
use e0 to denote the unique equivalence class in E0.

To see that the range map is a local homeomorphism, note that it restricts to a homeomor-
phism onto its image on every basic open set UeN ,g, and GZ is therefore étale. Finally, GZ is
ample as it is an étale groupoid with totally disconnected unit space.

As the orbits of Z and G(0)
Z coincide, GZ is minimal, concluding the proof. �

By Proposition 4.3.2, the groupoid GZ does not depend on a choice of subgroup H ∈ Z to
construct the underlying Schreier graph.
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Identification of the Associated Algebras

In the following, we show that Elek’s algebra associated with a URS Z of a discrete, finitely-
generated group G is isomorphic to the reduced C∗-algebra of our associated groupoid GZ

via a canonical isomorphism. We first identify the local kernel algebra CZ of Z with a dense
subset of Cc(GZ) and then show that Elek’s representation of CZ arises as the restriction of the
regular representations of GZ along this embedding.

Let K ∈ CZ be a local kernel, seen as a function on V(S ) × V(S ), where S = S Q
Γ

(H) is the
Schreier graph of a group H ∈ Z. Recall that there is a minimal N ∈ N called the width of K
such that K vanishes on (p, q) ∈ G/H ×G/H if the distance between p and q is more than N
and such that BN(S , p) �r,l BN(S , q) implies that K(p, gp) = K(q, gq) if l(g) ≤ N; that is, K
only depends on the root-label isomorphism class of N-balls.

Lemma 4.3.3: Let Z be a URS of a discrete, finitely-generated group G, and let GZ be
the associated groupoid. The local kernel algebra CZ of Z is in bijection with the dense
subalgebra of locally constant functions in Cc(GZ). Equipped with convolution and involution,
this is an isomorphism of ∗-algebras.

Proof. Since GZ is equipped with the subspace topology of a projective limit of discrete sets,
we may describe an open set of GZ by fixing a group element g and the first n coordinates
[xn] ∈ En while letting [xm] ∈ Em for m > n vary. Together, these form a basis of the topology
of GZ . If a kernel K on G/H ×G/H for a subgroup H ∈ Z is local of width N, this means that
K only depends on (gH, g′H) up to the equivalence class of gH in EN . Therefore, even though
the range and source of an element ([xn], g) ∈ G might not be described by a single, constant
choice of vertices in S Q

Γ
(H) like in Figure 4.1, we can obtain a function fK on GZ from a

kernel K by picking a representing vertex in G/H corresponding to the component in EN as
in the next paragraph and this choice is made uniformly on a neighbourhood as described
above. This gives a way to translate back and forth between kernels in CZ and locally constant
functions in Cc(GZ), and indeed we built GZ such that the algebraic operations are compatible.

Let K be a local kernel of width N, and define a function fK ∈ Cc(GZ) given by fK((x, g)) =

K(xM , gxM), where M = max{N, l(g)}. If g is chosen of minimal length, we may pick M = N.
Equivalently, fK evaluates (x, g) at its component ([xN]N , g) in FN and assigns K(xN , gxN)
to it, where K(∞N) = 0. This is well-defined, as the vertex xN is given up to root-label
isomorphism of N-balls. The function fK is continuous, because it is uniformly locally
constant: It is constant on any 2−N-ball in GZ . To see that fK is compactly supported, note
that the embedding GZ ↪→ lim

←−−
Fn is the one-point compactification of GZ . Therefore, a set

U ⊆ GZ is relatively compact exactly if there is some M ∈ N such that no element of U has
FM-component ∞M . Equivalently, U as a subset of lim

←−−
Fn does not intersect the 2−M-ball

centred at∞. As fK is supported outside of the 2−N-ball centred at∞ for N the width of K, it
is compactly supported.

Conversely, any locally constant function f ∈ Cc(GZ) defines a kernel K f in CZ. As f
is locally constant, for each g ∈ GZ , we can pick a ball centred at g on which f is constant.
Then finitely many of such balls cover the support of f , and we may pick N ∈ N such that
these have radius at least 2−N . Since two 2−N-balls in GZ or lim

←−−
Fn are either disjoint or equal,

f is constant on any 2−N-ball and supported outside of the 2−N-ball of ∞. Given such f ,
we may now define a local kernel K f with width at most N as follows: For a fixed vertex
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p ∈ V(S ), consider the unit [[p]] B ([p]0, [p]1, . . .) ∈ G0
Z and define K f (p, gp) B f ([[p]], g).

If gp = g′p, then ([[p]], g) = ([[p]], g′), so K f is a well-defined kernel. As the FN-component
of ([[p]], g) is ∞N if d(p, gp) > N, we have K f (p, gp) = 0 in that case. Furthermore, if the
N-balls BN(S , p) and BN(S , q) are root-label-isomorphic for p, q ∈ V(S ) and l(g) ≤ N, then
([[p]], g) and ([[q]], g) are 2−N-close, since their first N components coincide. As f is constant
on 2−N-balls, we have K f (p, gp) = K f (q, gq), so K f is local of width N.

It is easy to check that fK f = f and K fK = K, so the local kernel algebra CZ of Z is in
bijection with the subset of locally constant functions in Cc(GZ), which is dense in Cc(GZ), as
GZ is totally disconnected.

Furthermore, the ∗-algebra structure of CZ is preserved under the described inclusion:
For p ∈ V(S ) and g ∈ G, we have s([[p]], g) = [[g.p]] and the orbit of [[p]] in GZ is
{[[q]] | q ∈ V(S )}. We calculate

fL∗K([[p]], g) = L ∗ K(p, gp) =
∑

q∈V(S )

L(p, q)K(q, gp)

=
∑

([[p]],g′)∈G[[p]]
Z

fL([[p]], g′) fK([[g′p]], g(g′)−1) = fL ∗ fK([[p]], g)

and

( fK)∗([[p]], g) = fK([[gp]], g−1) = K(gp, p) = K∗(p, gp) = fK∗ ([[p]], g).

We conclude that fL∗K = fL ∗ fK and ( fK)∗ = fK∗ on the subset

{([[p]], g) | p ∈ V(S ), g ∈ G} ⊆ GZ

of arrows in GZ , whose range is given by the equivalence classes of a single, constant vertex
p in S . This subset is dense, as the orbit of S is dense in S Q

G(Z), and as the functions in
question are continuous, they coincide on all of GZ . Hence CZ embeds into Cc(GZ) by a
∗-homomorphism onto the sub-∗-algebra of locally constant functions as claimed. �

Recall that Elek’s algebra C∗r (Z) is the completion of CZ in the norm arising from the
faithful representation π on B(`2(G/H)) given by

(π(K)h)(gH) =
∑

g′H∈G/H

K(gH, g′H)h(g′H)

for h ∈ `2(G/H). We show that this norm arises as the restriction of the reduced norm on
Cc(GZ) along the canonical embedding, and furthermore that CZ is dense in Cc(GZ) with
respect to the reduced norm. Consequently, C∗r (Z) is canonically isomorphic to the reduced
groupoid C∗-algebra C∗r (GZ).

Theorem 4.3.4: Let Z be a uniformly recurrent subgroup of a discrete, finitely-generated
group G and GZ the associated groupoid. The C∗-algebras C∗r (Z) and C∗r (GZ) are isomorphic
via the isomorphism extending the canonical embedding of the local kernel algebra CZ as the
subalgebra of locally constant functions in Cc(GZ).
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Recall that for an étale groupoid GZ , the reduced norm on Cc(GZ) is given by ‖ f ‖ =

supx ‖πx( f )‖ with the representations πx : Cc(GZ)→ B(`2((GZ)x)) defined by

(πx( f )ξ)(g) =
∑

g′∈(GZ )s(g)

f (g(g′)−1)ξ(g′)

for x ∈ G0
Z , g ∈ (GZ)x, and ξ ∈ `2((GZ)x).

Proof. We show that the norm on CZ defined by Elek coincides with the reduced norm on
Cc(GZ) restricted to the subset of locally constant functions, which we identified with CZ in
Lemma 4.3.3. In fact, we even show that Elek’s representation π of CZ and the groupoid
representation πx of any x ∈ G0

Z are equivalent. Let us first consider the easiest case of
x = [[H]], the unit represented by the root in S = S Q

Γ
(H), the Schreier graph of H ≤ G. We

obtain a map V(S ) → (GZ)[[H]] by gH 7→ ([[gH]], g−1), mapping a vertex gH in S to the
arrow in GZ that is described by any path from H to gH. This is obviously surjective and is
well-defined, as the arrows ([[gH]], g−1) and ([[g′H]], (g′)−1) are identified if gH = g′H. It is
furthermore injective: If ([[gH]], g−1) = ([[g′H]], (g′)−1), then the N-balls centred at gH and
g′H are root-label isomorphic via an isomorphism mapping H to H if N > l(g) + l(g′). But
a root-label-isomorphism of N-balls in Schreier graphs is the identity if it has a fixed point;
hence, gH = g′H. We have thus established a bijection between (GZ)[[H]] and G/H = V(S ).
This yields a unitary T : `2(V(S )) → `2((GZ)[[H]]) that intertwines the representations π and
π[[H]] on CZ as follows. Let h ∈ `2(V(S )). Then

π(K)h(gH) =
∑

g′H∈V(S )

K(gH, g′H)h(g′H),

and so

T (π(K)h)([[gH]], g−1) =
∑

g′H∈V(S )

K(gH, g′H)h(g′H)

=
∑

g′H∈V(S )

fK([[gH]], g′g−1)h(g′H)

=
∑

g′H∈V(S )

fK([[gH]], g′g−1)(Th)([[g′H]], (g′)−1)

=
∑

g∈(GZ )[[H]]

fK(([[gH]], g−1)g−1)(Th)(g)

=
(
π[[H]]( fK)Th

)
([[gH]], g−1),

and therefore the representations π and π[[H]] define identical reduced norms on the local kernel
algebra CZ as a subalgebra of Cc(GZ).

Morally, this already implies that all source-fibre representations πx for x ∈ G0
Z are

unitarily equivalent to π, since the groupoid GZ does not depend on the choice of H ∈ Z in
its construction, and for every x ∈ G0

Z there is a unique subgroup in Z which is mapped to x
under the homeomorphism Z � G0

Z . For completeness we nevertheless show that all reduced
representations of GZ are equivalent.

As in any groupoid, the representations πx are unitarily equivalent for any two units x
that share an orbit. Therefore we only need to consider πx for x ∈ G0

Z that corresponds to a
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subgroup H′ in Z \G.H. For fixed K ∈ CZ of width R and ε > 0, we may pick h ∈ `2((GZ)[[H]])
of norm one such that

‖π[[H]]( fK)h‖2 > ‖π[[H]]( fK)‖ − ε

and h is supported on arrows ([[gH]], g−1) with l(g) ≤ N for some N ∈ N. As the orbit of H′

in Z is dense, there is a unit y in the orbit of x in G0
Z such that y and [[H]] are 2−(N+R)-close;

that is, their EN+R-components coincide. Hence, for every arrow ([[gH]], g−1) ∈ (GZ)[[H]] with
l(g) ≤ N + R, there is a unique arrow (g.y, g−1) ∈ (GZ)y that is described by the same g−1, since
two paths of length less than N +R starting at H end in the same vertex exactly if the analogous
paths in the isomorphic (N + R)-ball of y do. This yields a bijection between the subspaces
of (GZ)[[H]] and (GZ)y described by elements of G with length at most N + R. Extending
by zero, we transport h ∈ `2((GZ)[[H]]) along this bijection to a function h′ ∈ `2((GZ)y) with
1 = ‖h‖2 = ‖h′‖2. Noting that π[[H]]( fK)h ∈ `2((GZ)[[H]]) is supported on ([[gH]], g−1) with
l(g) ≤ N + R, we may likewise transport this to a function in `2((GZ)y) of the same norm. It is
now easy to see that this function will just be πy( fK)h′, whence

‖πy( fK)‖ ≥ ‖πy( fK)h′‖2 > ‖π[[H]]( fK)‖ − ε,

and by unitary equivalence
‖πx( fK)‖ > ‖π[[H]]( fK)‖ − ε.

By symmetry we obtain the converse direction, implying that all norms on Cc(GZ) induced by
reduced representations are identical and coincide on CZ ⊆ Cc(GZ) with the reduced norm of
CZ as given by Elek’s representation π.

To conclude that the completion of CZ in this norm is the same as the completion of
Cc(GZ) in the reduced norm, and hence C∗r (GZ), we finally show that CZ is dense in Cc(GZ) in
the reduced norm. Let f ∈ Cc(GZ). As f is compactly supported, it vanishes on the 2−R-ball
around ∞ ∈ lim

←−−
Fn for some R, so that f ([[g′H]], g−1) = 0 if g is chosen of minimal length

and yet l(g) > R. We therefore find for h ∈ `2((GZ)[[H]]) that

‖π[[H]]( f )h‖22 =
∑

gH∈G/H

∣∣∣(π[[H]]( f )h
)
([[gH]], g−1)

∣∣∣2
=

∑
gH∈G/H

∣∣∣∣∣ ∑
g′H∈BR(S ,gH)

f ([[gH]], g′g−1)h([[g′H]], (g′)−1)
∣∣∣∣∣2

≤ ‖ f ‖2∞
∑

gH∈G/H

∣∣∣∣∣ ∑
g′H∈BR(S ,gH)

h([[g′H]], (g′)−1)
∣∣∣∣∣2

≤ ‖ f ‖2∞
∑

gH∈G/H

∣∣∣∣∣ ∑
g′H∈BR(S ,gH)

|h([[g′H]], (g′)−1)|
∣∣∣∣∣2

≤ ‖ f ‖2∞
∑

gH∈G/H

∣∣∣∣∣ ∑
g′∈G,l(g′)≤R

h(g′)([[gH]], g−1)
∣∣∣∣∣2

≤ (|Q| + 1)2R‖ f ‖2∞‖h‖
2
2,

with h(g′)([[gH]], g−1) = |h([[g′gH]], (g′g)−1)| denoting copies of |h| shifted by g′. Note that
passing to the absolute value is necessary, since while g′gH for {g′ ∈ G | l(g′) ≤ R} cover
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Br(S , gG), they might not do so uniquely. The last inequality stems from the fact that there
are fewer than (|Q| + 1)R different g′ of length at most R in G, and ‖h(g′)‖2 = ‖h‖2. Hence
‖ f ‖r ≤ (|Q| + 1)2R‖ f ‖∞ for all f ∈ Cc(GZ) supported outside of the 2−R-ball around ∞
with ‖ f ‖r = ‖π[[H]]( f )‖ the unique reduced norm. For any ε > 0, by partitioning GZ into
open 2−N-balls for large N, we may approximate f in Cc(GZ) up to ε by a function fε that
is constant on every 2−N-ball. As two balls are either disjoint or one is contained in the
other, we may choose fε(g) supported outside of the 2−R-ball of ∞ for large N, such that
‖ f − fε‖r ≤ (|Q| + 1)2R‖ f − fε‖∞ = ε(|Q| + 1)2R.

As CZ is dense in Cc(GZ) in the reduced norm, which restricts to Elek’s norm, the
embedding extends to a ∗-isomorphism as claimed. �

In summary, for any uniformly recurrent subgroup Z we have constructed an ample
minimal étale Hausdorff groupoid with unit space homeomorphic to Z, such that the reduced
C∗-algebras C∗r (Z) of Z and C∗r (GZ) of GZ coincide. This enables us to examine C∗r (Z) using
tools for groupoid C∗-algebras.

4.3.4 The Transformation Groupoid

In this section we establish a relationship between our newly-defined groupoid GZ associated
with a uniformly recurrent subgroup Z of a finitely-generated discrete group G and the
transformation groupoid Z oG associated with the action of G on Z by conjugation.

Recall that as a space, the transformation groupoid Z oG is simply the cartesian product
Z ×G equipped with the product topology. The unit space is given by the subspace Z × {e}
and identified with Z, the range and source of an arrow (H, g) are respectively given by H and
g−1.H, while the product of two composable arrows is (H, g)(g−1.H, h) = (H, gh). This turns
Z oG into a Hausdorff étale groupoid, which for a URS Z is furthermore ample and minimal.

To distinguish our groupoid GZ from ZoG, we describe the range fibres GH
Z further. Recall

that the homeomorphism between Z and lim
←−−

En describes every group H ∈ Z as a sequence of

isomorphism classes of balls in S Q
Γ

(H′) for an arbitrary H′ ∈ Z. In particular, the isomorphism
class in En associated with H is given by the n-ball around the root in S Q

Γ
(H). Two arrows

([[H]], g) and ([[H]], h) in GZ will then coincide if and only if the paths in S Q
Γ

(H) that start
at the root and are described by g and h end at the same vertex. That is, they coincide if
gH = hH, or equivalently h−1g ∈ H, and hence the range fibre GH

Z at H is in bijection with
G/H via ([[H]], g) 7→ gH. To simplify this notation and remove the ambiguity in the choice
of g, we denote ([[H]], g) as (H, gH) for the remainder of this section. From this identification
we obtain a surjective map q : Z oG → GZ via (H, g) 7→ (H, g−1H). Note that the range fibres
(Z oG)H of Z oG are simply given by G. Then the map q is a quotient map of topological
groupoids:

Proposition 4.3.5: Let Z be a URS of a finitely-generated discrete group G, and let GZ be
the associated groupoid. Let q : Z oG → GZ be the map given by (H, g) 7→ (H, g−1H) for a
subgroup H ∈ Z and a group element g ∈ G. Then q is a continuous, open, and surjective
groupoid homomorphism. In particular, GZ is a quotient of the transformation groupoid Z oG.

Proof. We first check that q is a groupoid homomorphism. Indeed, q preserves sources and
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ranges, since

q(s(H, g)) = q(g−1.H, e) = (g−1.H, g−1.H) = s(H, g−1H) = s(q(H, g)),

and q(r(H, g)) = q(H, e) = (H,H) = r(H, g−1H) = r(q(H, g)).

Hence the images of two composable arrows (H, g) and (g−1.H, h) in Z oG are composable in
GZ and we calculate

q(H, g)q(g−1.H, h) = (H, g−1H)(g−1.H, h−1(g−1.H))

= (H, h−1g−1H)
= q(H, gh)

= q((H, g), (g−1.H, h)).

Furthermore, q is surjective, since any arrow (H, gH) in GZ clearly has preimage (H, g−1) in
Z oG.

We continue by showing that q is continuous and open. Consider the basis of the topology
of GZ given by the open sets

UH,N,g =

{
(K, gK) | dS Q

Γ
(S Q

Γ
(H), S Q

Γ
(K)) ≤ 2−N

}
indexed by a subgroup H ∈ Z, an element g ∈ G and N ∈ N with l(g) ≤ N, and consisting
of all arrows (K, gK) such that the N-balls around the root in S Q

Γ
(H) and S Q

Γ
(K) coincide.

Equivalently, a group element h ∈ G with l(h) ≤ 2N is contained in K if and only if it is
contained in H. Likewise, we fix a basis

VH,N,g =

{
(K, g) | dS Q

Γ
(S Q

Γ
(H), S Q

Γ
(K)) ≤ 2−N

}
of the topology of Z oG.

It is now easy to see that q is open: Let (K, g−1K) ∈ q(VH,N,g). Then UK,M,g−1 for M =

max{N, l(g)} is a neighbourhood of (K, g−1K) contained in q(VH,N,g).
Conversely,

q−1(UH,N,g−1 ) =

{
(K, gk) | dS Q

Γ
(S Q

Γ
(H), S Q

Γ
(K)) ≤ 2−N , k ∈ K

}
,

and we claim that this is open in Z o G. Indeed, for every (K, gk) ∈ q−1(UH,N,g−1 ) the
neighbourhood VK,M,gk is contained in q−1(UH,N,g−1 ), where M = max{N, l(k)}, so that any
subgroup in the 2−M-ball around K is guaranteed to contain the element k. We conclude that q
is the desired quotient map. �

Remark. Up to the inversion of g, the map q can be thought of as dividing out the subgroup
H from its range fibre (Z o G)H at every H ∈ Z. The inversion is necessary, since we
chose to define our groupoid GZ with the opposite conventions of those commonly used for
transformation groupoids, as this matches Elek’s definition more closely. If we had defined
the groupoid GZ as the opposite of the current definition, the groupoid homomorphism q in
the proof of Proposition 4.3.5 would not need the inversion of g, but to identify CZ with a
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subalgebra of Cc(GZ) in Lemma 4.3.3 we would first need to pass to the opposite to cancel the
effects. In particular, the isomorphism K 7→ fK of Lemma 4.3.3 would satisfy fL∗K = fK ∗ fL

rather than fL∗K = fL∗ fK . An alternative way of defining q in Proposition 4.3.5 would therefore
be to first pass to the opposite groupoid (Z oG)op via the canonical groupoid isomorphism
and then divide out the base group from every source fibre without inversion. We thank the
anonymous reviewer for pointing this out.

Note that the quotient map q can only be injective if Z is the trivial uniformly recurrent
subgroup containing only the trivial subgroup, and in that case C∗r (Z) coincides with the
reduced group algebra of G. In general, if Z is a singleton consisting of a normal subgroup
N, the C∗-algebras C∗r (Z) and C∗r (GZ) will be isomorphic to the reduced group algebra of
the quotient group G/N, since GZ will be the transformation groupoid of G/N acting on a
singleton. In every nontrivial case, when Z is not just the trivial subgroup, the associated
groupoid GZ is different from the transformation groupoid.

4.3.5 Simplicity and Nuclearity

Characterisations of Simplicity and Nuclearity

As before let Z be a URS of a finitely-generated discrete group G, and let GZ be the associated
groupoid. We employ our description of the Elek algebras as groupoid algebras to give
simplified proofs of Elek’s characterisations, explaining why they arise in the language of
groupoids.

Proposition 4.3.6: Let Z be a uniformly recurrent subgroup of a finitely-generated, discrete
group. If Z is generic, then the associated groupoid GZ is principal.

Proof. Suppose GZ is not principal. Then there is a unit x = ([x0]0, [x1]1, . . .) and an arrow
in the isotropy (GZ)x

x that is not a unit. Therefore there is a group element g ∈ G such that
x = g.x but (x, e) , (x, g). In particular, g.xN , xN for large N, while BN−l(g)(S , xN) �r,l

BN−l(g)(S , g.xN) and d(xN , g.xN) ≤ l(g). By [20, Proposition 2.3], Z is not generic, concluding
the proof. �

As an immediate corollary, we reproduce [20, Theorem 7].

Corollary 4.3.7: Let Z be a uniformly recurrent subgroup of a finitely-generated, discrete
group. If Z is generic, then its reduced C∗-algebra C∗r (Z) is simple.

Proof. By Proposition 4.3.6,GZ is a minimal principal étale groupoid, and every such groupoid
has a simple reduced C∗-algebra by Proposition 4.1.17. �

Regarding nuclearity, we are able to add the converse direction to Elek’s characterisation
[20, Theorem 8]. We first describe when our groupoids are amenable:

Theorem 4.3.8: Let Z be a uniformly recurrent subgroup of the finitely-generated discrete
group G, and let GZ be the groupoid associated with Z. The Schreier graph S Q

Γ
(H) of any

group H ∈ Z has local property A if and only if GZ is (topologically) amenable.
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Proof. We first show that local property A of the Schreier graph S Q
Γ

(H) implies topological
amenability of GZ . Let GZ be constructed from H ∈ Z and let ρn : G/H → `2(G/H) implement
local property A of S Q

G(H). Let Rn describe the locality of ρn as in Section 4.3.2. Let x be a unit
ofGZ and let xRn denote any element of the equivalence class of ERn forming the Rn-component
of x. Define fn ∈ Cc(GZ) by fn(x, g) = ρn

xRn
(gxRn ). This is independent of the choice of xRn ,

as the ρn are locally defined and of width at most Rn. In addition, ρn is continuous as it is
constant on 2−Rn -balls and compactly supported as it vanishes on the 2−Rn -ball of ∞. Then,
using the fact that ρn

xRn
is supported in the Rn-ball centred at xRn ,∑

(x,g)∈Gx
Z

| fn(x, g)|2 =
∑

y∈BRn (xRn )

|ρn
xRn

(y)|2 = ‖ρn
xRn
‖22 = 1.

Furthermore, we calculate

fn ∗ f ∗n (x, g) =
∑

(g.x,g′)∈Gg.x
Z

fn((x, g)(g.x, g′)) fn(g.x, g′),

where we may restrict to l(g′) ≤ Rn, as fn(g.x, g′) vanishes otherwise:

fn ∗ f ∗n (x, g) =
∑

(g.x,g′)∈Gg.x
Z ,l(g′)≤Rn

ρn
xRn+l(g)

(g′gxRn+l(g))ρn
gxRn+l(g) (g

′gxRn+l(g))

= 〈ρn
xRn+l(g)

, ρn
gxRn+l(g)

〉,

using again the assumptions on the support of ρn
gxRn+l(g)

. However, for fixed gH, g′H ∈ G/H we
have ∣∣∣1 − 〈ρn

gH , ρ
n
gH〉

∣∣∣ =
∣∣∣〈ρn

gH − ρ
n
gH , ρ

n
gH〉

∣∣∣ ≤ ‖ρn
gH − ρ

n
gH‖2 · ‖ρ

n
gH‖2

(†)
≤ 1/n · 1

n→∞
−−−−→ 0,

where the estimate (†) holds for large n such that d(u, v) ≤ n. But as l(g) is bounded on
compact sets, the same estimate may be used uniformly on any compact set for sufficiently
large n, so that fn ∗ f ∗n converges to 1 uniformly on compact subsets. These functions witness
the (topological) amenability of GZ as in the original definition by Renault, condition 3 in
Definition 4.1.15.

Conversely, suppose that GZ is topologically amenable. By the equivalent characterisation
2 of amenability in Definition 4.1.15, we may assume that there is a sequence fn ∈ Cc(GZ),
such that ∑

(x,g)∈Gx
Z

| fn(x, g)|2
n→∞
−−−−→ 1 (4.16)

uniformly on compact subsets of G0
Z as a function of x ∈ G0

Z , and∑
h∈Gr(g)

Z

| fn(g−1h) − fn(h)|2
n→∞
−−−−→ 0 (4.17)

uniformly on compact subsets of GZ as a function of g. To obtain local maps ρn
x as in the

definition of local property A, we first, for any ε > 0, approximate fn by (uniformly) locally
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constant functions fn,ε ∈ Cc(GZ) such that ‖ fn − fn,ε‖∞ < ε, choosing fn,ε to be zero on the
largest possible ball centred at∞.

We next construct a sequence εn ↘ 0 such that fn,εn satisfies the convergence properties
above: As for fixed n there is Tn ∈ N such that both fn and fn,ε for every ε > 0 vanish on the
2−Tn -ball of ∞, we may restrict summations like in Equation (4.16) and Equation (4.17) to
arrows described by group elements g with length l(g) at most Tn, such that the respective
sums become finite with fewer than (|Q| + 1)Tn terms. First, observe that

∣∣∣∣∣∣∣∣
∑

(x,g)∈Gx
Z

| fn(x, g)|2 −
∑

(x,g)∈Gx
Z

| fn,ε(x, g)|2

∣∣∣∣∣∣∣∣ ≤
∑

(x,g)∈Gx
Z ,

l(g)≤Tn

(| fn(x, g)| + ε)2 − | fn(x, g)|2

≤ (|Q| + 1)Tn (2‖ fn‖∞ + ε)ε
ε→0
−−−→ 0,

with the convergence uniform in x ∈ G0
Z . Then, to verify the condition of Equation (4.17), we

calculate

∑
h∈Gr(g)

Z

| fn,ε(g−1h) − fn,ε(h)|2 ≤
∑

h∈Gr(g)
Z ,l(g)≤Tn

(| fn(g−1h) − fn(h)| + 2ε)2

≤ (4ε2 + 8ε‖ fn‖∞)(|Q| + 1)Tn +
∑

h∈Gr(g)
Z

| fn(g−1h) − fn(h)|2

ε→0
−−−→

∑
h∈Gr(g)

Z

| fn(g−1h) − fn(h)|2,

with the convergence uniform in g ∈ GZ . Picking εn → 0 such that

1/n ≥ (|Q| + 1)Tn (2‖ fn‖∞ + εn)εn

and 1/n ≥ (4ε2
n + 8εn‖ fn‖∞)(|Q| + 1)Tn

does the trick. To such fn,εn we may assign ρn : G/H → `2(G/H) given by ρn
gH(g′gH) =

fn,εn ([[gH]], g′).

Picking Rn such that fn,εn is constant on any 2−Rn -ball, we see that ρn
gH is supported

on BRn (gH), since fn,εn vanishes on the 2−Rn -neighbourhood of ∞. Similarly, ρn
gH(g′gH) =

ρn
hH(g′hH) for l(g′) ≤ Rn if the Rn-balls around gH and hH are isomorphic, as (gH, g′) and

(hH, g′) are 2−Rn -close in that case, and we conclude that ρn is local of width Rn.

Furthermore, we compute that

‖ρn
gH‖

2
2 =

∑
g′H∈G/H

|ρn
gH(g′H)|2 =

∑
([[gH]],g′)∈G[[gH]]

Z

| fn,εn ([[gH]], g′)|2
n→∞
−−−−→ 1
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uniformly on G0
Z . Likewise,

‖ρn
gH − ρ

n
g′H‖

2
2

=
∑

hH∈G/H

∣∣∣ρn
gH(hH) − ρn

g′H(hH)
∣∣∣2

=
∑

hH∈G/H

∣∣∣ fn,εn ([[gH]], hg−1) − fn,εn ([[g′H]], h(g′)−1)
∣∣∣2

=
∑

hH∈G/H

∣∣∣∣ fn,εn

(
([[gH]], g′g−1)([[g′H]], h(g′)−1)

)
− fn,εn ([[g′H]], h(g′)−1)

∣∣∣∣2
=

∑
h∈G[[g′H]]

Z

∣∣∣∣ fn,εn

(
([[gH]], g′g−1)h

)
− fn,εn (h)

∣∣∣∣2 n→∞
−−−−→ 0

uniformly for ([[g′H]], g(g′)−1) in compact subsets of GZ . In particular, the convergence is
uniform when the pair (g, g′) is taken from a subset with bounded difference; that is, if there is
some N > 0 such that l(g(g′)−1) < N. More importantly, this means that for any N ∈ N, we
may choose n0 ∈ N such that ‖ρn

gH −ρ
n
g′H‖

2
2 ≤ 1/N, whenever dS Q

Γ
(H)(gH, g′H) ≤ N and n ≥ n0.

The analogous statement holds after replacing ρn
x with the normed function ρ̂n

x = ρn
x/‖ρ

n
x‖2,

since

‖ρ̂n
gH − ρ̂

n
g′H‖2 ≤

1
‖ρn

gH‖2

(
‖ρn

gH − ρ
n
g′H‖2 +

∣∣∣‖ρn
gH‖2 − ‖ρ

n
g′H‖2

∣∣∣),
while ‖ρn

gH‖2 and
∣∣∣∣‖ρn

gH‖2 − ‖ρ
n
g′H‖2

∣∣∣∣ converge uniformly to 1 and 0, respectively. Then, after

relabelling, ρ̂n witnesses local property A of S Q
Γ

(H), concluding the proof. �

For étale groupoids there is a clear relation between amenability and nuclearity of their
reduced C∗-algebras, which directly translates to our case. See for example [57, Section 2] for
a brief, but broader overview of the different notions of groupoid amenability. This implies the
converse direction of [20, Theorem 8]:

Corollary 4.3.9: Let Z be a uniformly recurrent subgroup and H ∈ Z. The graph S Q
Γ

(H)
has local property A if and only if the C∗-algebra C∗r (Z) is nuclear.

Proof. As the groupoid GZ associated with Z is étale, C∗r (GZ) is nuclear if and only if GZ

is (topologically) amenable by [2, Corollary 6.2.14], as stated after Proposition 4.1.16. By
Theorem 4.3.8 this is the case if and only if the Schreier graph S Q

Γ
(H) has local property A. �

4.3.6 Applications of Groupoid Simplicity
As non-trivial uniformly recurrent subgroups are difficult to construct, Elek’s description of
which Schreier graphs come from uniformly recurrent subgroups (see [20, Proposition 2.1])
gives an interesting new way to construct examples combinatorially. Elek gives such examples
(see [20, Sections 5.2, 10.1]), all of which give rise to simple C∗-algebras, since they are
generic.
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Below we provide examples of non-generic URSs, whose associated C∗-algebras can
nonetheless be proven to be simple via the groupoid picture. To this end, we employ Corollary
4.2.29: If a minimal groupoid with compact unit space has at least one C∗-simple isotropy
group, the reduced groupoid C∗-algebra is simple.

For ease of notation, we describe our examples as quotients of the transformation groupoids
as described in Section 4.3.4, but skip passing to the opposite, since a groupoid and its opposite
are isomorphic and hence so are their reduced C∗-algebras: For a discrete group G with a
subgroup H ≤ G such that its orbit closure Z B G.H forms a uniformly recurrent subgroup,
we consider the transformation groupoid Z oG associated with the action of G on Z and divide
out by the equivalence relation given by

(g,K) ∼ (h,K)⇔ gK = hK

for two group elements g, h ∈ G and a subgroup K ∈ Z. We write G′Z B (Z o G)/∼ so that
C∗r (GZ) � C∗r (G′Z).

Note that the isotropy group of Z oG at unit (e,K) for K ∈ Z is given by the normaliser
N(K) of K, that is, exactly these group elements that fix K under conjugation. After passing to
the quotient G′Z , the isotropy group at (e,K) is N(K)/K, which is sometimes called the Weyl
group of K. Any uniformly recurrent subgroup Z for which a contained subgroup H ∈ Z has
C∗-simple Weyl group will therefore give rise to a C∗-simple Elek algebra by Corollary 4.2.29.

Consider the dihedral group Z3 oZ2, which arises as the semidirect product of the action
of Z2 on Z3, where the non-trivial element [1]2 acts by inversion. The following arguments
also work slightly more generally with Z3 replaced by Z2k+1 for any k ∈ N. Let F be any
non-trivial C∗-simple discrete group, for example, the non-abelian free group in two generators.
Then let G = (Z3 o Z2) × F and H = Z2 ⊆ G be the canonical copy of Z2 inside Z3 o Z2,
which sits inside G. In other words, H = {(([0]3, x), eF) ∈ G | x ∈ Z2} with [0]3 the neutral
element of Z3 and eF the neutral element of F.

Calculating the action of an arbitrary element of G on H as

((n, x), f )H((n, x), f )−1 = {eG, ((2n, [1]2), eF)}

for n ∈ Z3, x ∈ Z2, and f ∈ F, we see that the normaliser of H in G is Z2 × F seen as a subset
of G. The orbit of H in Sub(G) contains exactly three distinct subgroups, described by the
three choices of n ∈ Z3. As it is finite, the orbit is closed in Sub(G), whence the orbit of H
is a URS of G. The Weyl group of H ≤ G is simply (Z2 × F)/Z2 � F, which is simple by
assumption on F. We conclude that H ≤ G provides an example of a simple Elek algebra
that neither arises from a generic URS, nor as the group C∗-algebra of a C∗-simple group, as
would be the case if H were normal in G.

In the above example we avoided the subtleties of finding a uniformly recurrent subgroup
by providing a group with finite orbit under conjugation. However, the example can be adapted
to have infinite orbit without too much work, but will no longer be finitely-generated and
therefore not be covered by Elek’s framework as discussed in [20]. Nonetheless, it stands
to reason that the appropriate quotient G′Z of the transformation groupoid gives rise to a
generalised Elek algebra associated with a URS Z of a not-necessarily finitely-generated
discrete group G.

Let G be the infinite direct sum

G B
⊕
∞

(Z3 oZ2) × F
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with subgroup H B
⊕
∞
Z2, again for a non-trivial C∗-simple group F. Since the conjugation

is component-wise, the normaliser of H is readily identified as
⊕
∞
Z2 × F, and its Weyl

group as
⊕
∞

F, which is C∗-simple. We merely have to verify that H is uniformly recurrent
in G. First note that the convergence in the Chabauty topology of Sub(G) is component-wise
in Sub((Z3 oZ2) × F), and Z2 has finite, discrete orbit in (Z3 oZ2) × F. Further, note that
the orbit of H in G is given by a component-wise choice of conjugate of Z2 in (Z3 oZ2) × F.
That is, the orbit contains exactly the subgroups of the form

⊕∞

i=1 Ki with each Ki one of the
three conjugates of Z2 in (Z3 o Z2) × F while Ki = Z2 for all but finitely many i. As the
set K of all subgroups of G that are of the form

⊕∞

i=1 Ki for Ki arbitrary conjugates of Z2 is
compact in Sub(G), it contains the orbit closure of H, and as the orbit of H is clearly dense,
they coincide. Since any group of the form

⊕∞

i=1 Ki is conjugate to
⊕∞

i=1 K′i if and only if
Ki = K′i for all but finitely many i, any subgroup contained inK again has dense orbit inK , so
the orbit closure of H is minimal and therefore a uniformly recurrent subgroup. In conclusion,
the orbit closure of H ≤ G is an example of a non-generic, infinite URS giving rise to a simple
(generalised) Elek algebra.
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Further Research

5.1 A Converse for the Main Result

Foremost is of course Question 1, asking whether the sufficient condition of Theorem 4.2.25
is in fact equivalent. To this end, consider first the proof of Theorem 3.3.2, in particular the
arguments for the intersection property of the G-action on X implying the intersection property
of the G-action on the spectrum X̃ of the equivariant injective envelope. We would like to
supply a converse to Lemma 4.2.23 by showing that if a groupoid G has the intersection
property, so does its boundary groupoid G̃. Assuming that G has the intersection property
and I CC∗r (G̃) is an ideal which intersects C(X̃) trivially, the proof of Theorem 3.3.2 suggests
constructing a ucp map ϕ : C∗r (G̃)/I → C(X̃) such that ϕ ◦ π is the faithful conditional
expectation of C∗r (G̃) onto C(X̃) for π the projection onto C∗r (G̃)/I. For crossed products
this worked as follows: Since I C C(X̃) or G intersects C(X̃) only trivially, it also intersects
C(X) only trivially, so C(X) or G ∩ I = {0} by the intersection property of C(X) or G.
Hence C(X) or G embeds into (C(X̃) or G)/I and we may extend the canonical expectation
EX : C(X) or G → C(X) ⊆ C(X̃) along this embedding by injectivity of C(X̃). More precisely,
equipping C(X) or G and C(X̃) or G with a G-action by adjoining with the unitaries λg, the
embedding is G-equivariant and we may extend EX to a G-equivariant ucp map ϕ : (C(X̃) or

G)/I → C(X̃). As (ϕ ◦ π)|C(X̃) is a G-equivariant ucp self-map, it is the identity by G-rigidity
of C(X̃) and on the other hand, it restricts to the canonical conditional expectation onto
C∗r (G) ⊆ C(X) or G ⊆ C(X̃) or G. Then, as C(X̃) is contained in the multiplicative domain
of ϕ ◦ π, and C(X̃) and C∗r (G) span C(X̃) or G densely, we may conclude that ϕ ◦ π is the
canonical conditional expectation EX̃ of C(X̃) or G onto C(X̃), which is faithful.

In the groupoid setting, constructing a ucp map ϕ : C∗r (G̃)/I → C(X̃) that restricts to the
identity on C(X̃) ⊆ C∗r (G̃)/I and to the canonical conditional expectation on C∗r (G) ⊆ C∗r (G̃)/I
would yield the analogous result. However, we cannot obtain it in the same way, as there is
no reasonable G-action on C∗r (G) or C∗r (G̃)! In fact, recall an action of G is necessarily on a
C(X)-algebra, and although C(X) embeds into C∗r (G) and C∗r (G̃), it is usually not central. Even
worse, a G-action on a C∗-algebra A requires an abundance of ideals Ix, one for each x ∈ X
given as C0(X \ {x})A, to define the fibres Ax = A/Ix. But C∗r (G) might even be simple, so it
might not have any proper, closed, two-sided ideals at all, so every fibre would either be all of
C∗r (G) or zero. By a partition of unity argument, at most one ideal Ix can be trivial, or else the
action of C(X) is degenerate. Hence a simple C∗-algebra can only be fibred if every fibre but
one is zero, and a groupoid can only act on such an algebra if it has a unit which is fixed by
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all its arrows. In particular, any such G-action on C∗r (G) would not restrict to the canonical
G-action on C(X), unless G was a group to begin with.

Consequently, we cannot simply adapt the proof of Theorem 3.3.2 in a straightforward
way, as there is no sense in talking about a G-equivariant ucp map ϕ : C∗r (G̃)/I → C(X̃).
Note, however, that G-equivariance is only required when talking about the restriction of ϕ
to π(C(X̃)), which indeed carries a G-action, where it is used to conclude that (ϕ ◦ π)|C(X̃) is
the identity by G-rigidity. A construction of ϕ : C∗r (G̃)/I → C(X̃) which extends the canonical
conditional expectation of C∗r (G) and is G-equivariant when restricted to π(C(X̃)) by other
means would consequently show that the boundary groupoid has the intersection property if
and only if the original groupoid does.

Recall that we presented a different proof strategy for the analogous statement for group
C∗-algebras in Theorem 2.3.1. As for a group C∗-algebra the action is on a single point and
hence minimal, simplicity of the associated C∗-algebra coincides with the intersection property.
It crucially relies on Lemma 2.3.3, which applies to the groupoid context, if the analogue of
Lemma 2.3.2 holds. We formulate this as Question 3:

Question 3: Let G be a Hausdorff étale groupoid with compact unit space and G̃ its boundary
groupoid. Is there a canonical embedding

C∗r (G) ⊆ C∗r (G̃) ⊆ I(C∗r (G))

respecting the embedding of C∗r (G) into I(C∗r (G))?

Indeed, if Question 3 was answered in the positive, it immediately follows that the boundary
groupoid has the intersection property if and only if the original groupoid does, using Lemma
2.3.3 as in the proof of Theorem 2.3.1. Hamana’s approach suggests that a variant of the
monotone complete crossed product of Definition 2.2.21 for groupoids would supply a proof,
but we have not succeeded in providing such a construction.

5.2 Ozawa’s Conjecture
The work of Kalantar–Kennedy [36] resolved Ozawa’s conjecture in the case of reduced group
C∗-algebras. The conjecture [47] states that every exact C∗-algebra A embeds tightly into a
nuclear C∗-algebra N(A) in the sense that N(A) sits between A and its injective envelope I(A):

A ⊆ N(A) ⊆ I(A).

Ozawa proved this for the reduced C∗-algebras of free groups [47, Corollary 2], using the
notion of hyperbolic boundary, and Kalantar–Kennedy generalised his result to any reduced
group C∗-algebra by replacing the boundary with the more general Furstenberg boundary:

Proposition 5.2.1 ([36, Theorem 1.3]): Let G be an exact discrete group. Then C(∂FG)orG
is nuclear and

C∗r (G) ⊆ C(∂FG) or G ⊆ I(C∗r (G)).

Proof. The inclusion the C∗-algebras in Proposition 5.2.1 are an immediate consequence of
Lemma 2.3.2 since C∗r (G) = C or G while C(∂FG) = IG(C). On the other hand, Kalantar
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and Kennedy prove that if G is exact, then the action of G on ∂FG is amenable, whence
C(∂FG) or G is nuclear. Their proof [36, Theorem 4.5] passes through the action of G on the
Stone-Cech compactification βG of G, which is amenable if G is exact. In fact, an amenable
action on any compact space is sufficient and having such an action is equivalent to exactness.
The idea is as follows: If X is a compact space with G-action, then by G-injectivity of C(∂FG)
there is a ucp G-map ψ : C(X)→ C(∂FG). Consider ∂FG as the subset of point measures in
the spaceM(∂FG) of Radon probability measures on ∂FG. Then the adjoint of ψ yields a
G-equivariant map ψ∗ : ∂FG ⊆ M(∂FG) →M(X) ⊆ P(X) for P(X) the space of probability
measures on X. By a result of Caprace and Monod [16, Proposition 9], the action of G on
P(X) is amenable, and pulling an invariant mean back to ∂FG with the G-equivariant map ψ∗

yields amenability of the action of G on ∂FG. �

As even étale groupoids offer a powerful model of C∗-algebras, a positive resolution
of Question 3 would be an important step towards the resolution of Ozawa’s conjecture.
Exactness of groupoid C∗-algebras is treated by Anantharaman-Delaroche [1]. In particular, a
locally compact groupoid G is called amenable at infinity, if there is an G-space Y with proper
base point map such that Y or G is amenable, see Definitions 3.4 and 2.5 of [1]. This is a
sufficient, criterion for C∗r (G) to be exact [1, Corollary 6.4], but not necessarily equivalent.

5.3 Groupoids with Trivial Boundary
For a discrete group G, the injective envelope IG(C) is trivial, that is, C, if and only if the group
G is amenable, see [36, Proposition 3.2]. The analogous statement already fails for crossed
products, as for X a G-space IG(C(X)) = C(X) implies that C(X) is injective, which is in no
way necessary for the action of G on X to be amenable. In some sense, the smallest possible
candidate for IG(C(X)) is the non-equivariant injective envelope I(C(X)) and alternatively
triviality of the equivariant injective envelope could be formulated as IG(C(X)) = I(C(X)). It
remains interesting to see which properties of a groupoid force any of these to be the case:

Question 4: For which étale groupoids G with compact unit space G(0) do IG(C(G(0))) and
C(G(0)) coincide so that G̃ = G? For which G do IG(C(G(0))) and I(C(G(0))) coincide?
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