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Abstract

This thesis consists of seven papers contributing to the understanding of periods of auto-
morphic forms and their connections to questions in arithmetic statistics.

In Paper A, we obtain a normal distribution result for central values of additive twists of
L-functions of holomorphic cusp forms. This is a generalization to higher weight of a recent
breakthrough due to Petridis and Risager, resolving a (-n average version of a) conjecture
due to Mazur and Rubin. We furthermore present applications to certain “wide” families of
automorphic L-functions.

In Paper B, we study the distribution of period polynomials associated to a fixed holo-
morphic cusp form. We determine the asymptotic joint distribution of the coefficients and
obtain an asymptotic expression for the zeroes of the polynomials. This complements recent
work of Jin, Ma, Ono and Soundararajan (and others).

In Paper C, we prove that additive twists associated to holomorphic cusp forms (with
general level) define a quantum modular form in the sense of Zagier. We use this to obtain
a reciprocity formula for a certain twisted first moment of L-functions, similar to reciprocity
relations obtained by Conrey.

In Paper D, which is joint with Petru Constantinescu, we introduce an automorphic
method for studying the residual distribution of modular symbols. We obtained a refinement
of a result due to Lee and Sun (which resolved an average version of a conjecture of Mazur
and Rubin), and furthermore generalize the results to quotients of general hyperbolic spaces.
Finally, we resolve the conjecture of Mazur and Rubin in some very special cases using
algebraic methods.

In Paper E, which is joint with Peter Humphries, we study sparse equidistribution of
certain hyperbolic orbifolds associated to real quadratic fields introduced by Duke, Imamoglu
and Téth. Our main insight is that the Weyl sums that appear in the distribution problem
can be related to automorphic periods, which in turn by work of Martin and Whitehouse
can be related to central values of Rankin—Selberg L-functions.

In Paper F, we obtain a uniform sup norm bound for Eisenstein series using exponen-
tial sum methods, improving on a result due to Blomer. We use this to obtain a hybrid
subconvexity bound for class group L-functions.

In Paper G, which is joint with Yiannis Petridis and Morten Risager, we study the mass
distribution of holomorphic cusp forms on shrinking regions around infinity. In particular,
we obtain an asymptotic formula for the quantum variance (extending results due to Luo
and Sarnak), which exhibits a phase transition.



iv



Resumé

Denne afhandling bestar af syv artikler, der bidrager til forstaelsen af automorfe perioder og
deres forbindelse til spgrgsmal i aritmetisk statistik.

I Artikel A viser vi et normalfordelings-resultat for central veerdier af additive twist af
L-funktioner for holomorfe spidsformer. Dette er en generalisering af et nyligt gennembrud
af Petridis og Risager, som lgste (en gennemsnitlig version) af en formodning af Mazur og
Rubin. Ydermere viser vi anvendelser til visse “brede” familier af automorfe L-funktioner.

I Artikel B undersgger vi fordelingen af periodepolynomierne tilknyttet til en fastholdt
holomorf spidsform. Vi bestemmer den samlede asymptotiske fordelingen af koefficienterne
og opnar et asymptotisk udtryk for nul-punkterne for polynomierne. Dette komplementerer
nylige resultater af Jin, Ma, Ono og Soundararajan (blandt andre).

I Artikel C beviser vi at additive twist hgrende til holomorfe spidsformer (med vilkarligt
niveau) definerer en kvante-modulform i Zagiers terminologi. Vi benytter dette til at vise
en reciprocitetsrelation for visse twistede fgrste-momenter af L-funktioner, der minder om
reciprocitetsrelationer opnaet af Conrey.

I Artikel D, som er skrevet i samarbejde med Petru Constantinescu, introducerer vi en
automorf metode til at studere den residuale fordeling af modulsere symboler. Vi opnar en
raffinering af et resultat af Lee og Sun (som lgste en gennemsnitlig version af en formodning
af Mazur og Rubin). Ydermere generaliserer vores resultater til generalle hyperbolske rum.
Endeligt lgser vi den fulde formodning af Mazur og Rubin i nogle specialtilfeelde ved at bruge
algebraiske metoder.

I Artikel E, som er skrevet i samarbejde med Peter Humphries, undersgger vi udtyndet
ligefordeling for visse hyperbolske orbifolde associeret til reelle kvadratiske legemer, som er
blevet defineret af Duke, Imamoglu og Téth. Vores hovedindsigt er at Weyl-summerne som
optraeder i fordelingsproblemet kan relateres til automorfe perioder, som sa igen kan relateres
til Rankin—Selberg L-funktioner ved at bruge resultater af Martin of Whitehouse.

I Artikel F opnar vi uniforme sup-norms-begraensninger for Eisenstein-raekker ved at
bruge metoder i teorien for eksponentielle summer og forbedrer derved et resultat af Blomer.
Vi anvender dette til at opna en hybrid-sub-konveksitetsbegraensning for klassegruppe-L-
funktioner.

I Artikel G, som er skrevet i samarbejde med Yiannis Petridis og Morten Risager, under-
sgger vi masse-fordeling af holomorfe spidsformer pa skrumpende omrader omkring uendelig.
Vi opnar blandt andet en asymptotisk formel for kvante-variansen (hvilket udbygger et re-
sultat af Luo og Sarnak), som udviser en faseovergang.
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CHAPTER 1

A GENTLE INTRODUCTION TO ARITHMETIC
STATISTICS AND PERIODS

This thesis consists of the following seven papers within the field of analytic number
theory.

Paper A: Central values of additive twists of cuspidal L-functions (submitted)

Paper B: On the distribution of periods of holomorphic cusp forms and zeroes of
period polynomials (published in International Mathematics Research Notices)

Paper C: A note on additive twists, reciprocity laws and quantum modular forms
(published in The Ramanujan Journal)

Paper D: Residual equidistribution of modular symbols and cohomology classes for
quotients of hyperbolic n-space (preprint, joint with Petru Constantinescu)

Paper E: Sparse equidistribution of hyperbolic orbifolds (joint with Peter Humphries)

Paper F: Hybrid subconvexity for class group L-functions and uniform sup norm
bounds of Fisenstein series (published in Forum Mathematicum)

Paper G: Small scale equidistribution of Hecke eigenforms at infinity (preprint, joint
with Yiannis Petridis and Morten Risager)

The methods employed in the papers range from exponential sums, classical au-
tomorphic forms, spectral theory, to representation theory. Judging from the titles,
it should be clear that the problems also range over a variety of subjects. There is
however one common feature; they all touch upon questions related to arithmetic
statistics. This should be interpreted in the widest possible sense to include distribu-
tion properties, extremal behavior and symmetry properties of arithmetic objects. If
one takes a closer look at the approaches employed in the papers, one will notice that
despite the differences in the techniques applied there is one common theme luring
in the background. This is the notion of periods of automorphic forms. Since the
birth of the theory of automorphic forms, periods of automorphic forms have played
an important role and continue to be a central theme to this day. In the first part of
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this thesis, we give some general background on arithmetic statistics and automor-
phic forms with a special emphasis on periods. This focus will hopefully tie the seven
papers together and shed some new light on some of the topics dealt with.

We will begin by giving a pictorial introduction to arithmetic statistics using a
variety of examples from outside of mathematics. Then we will go on to explain a
“toy example” of periods of automorphic forms. Both of these sections are intended
for a general, non-mathematical audience and will be delivered in a rather informal
style. After this, we will give a short account of the history of automorphic forms
with a special emphasis on the role of periods. The exposition will be in the style of
a survey. In particular, we will not give any of the required background but instead
refer to some of the many excellent sources that already exist. This will lead to a
more detailed discussion of the problems dealt with in this thesis. Finally, we will
give summaries of the seven papers, which can be found in the second part of this
thesis.

1.1 Statistics in number theory, and beyond

The overall topic of this thesis is arithmetic statistics. This is the field concerned with
the statistical and distributional properties of arithmetic objects. We will begin by
considering a very accessible example; the last digit of prime numbers. Recall that a
prime number is a natural number (greater than 1) which is only divisible by 1 and
the number itself. The list of primes begins as follows:

2,3,5,7,11,13,17,19,23, 29,31, 37, 41, . ..

We notice that except for the primes 2 and 5 all primes end with one of the digits 1, 3,7
or 9 in their decimal representation. One can now wonder how the primes distribute
among these digits. The following shows how the first 10.000 primes distribute among
the four digits:

1:24.84%, 3:25.15%, 7:25.08%, 9:24.91%,

It looks like the primes distribute quite evenly among the four possible last digits!
More precisely, we suspect that the primes equidistribute in the sense that if we
count more and more primes, then the percentages as above should come closer and
closer to 25% (formalized through the mathematical notion of convergence). Note
that computations such as the above do not bring us any closer to concluding that
the primes equidistribute; however many primes we check, it might just be that if
we go a little further, then from some point on all primes have the same last digit,
say. In this case, we however know that this cannot happen, since our suspicion has
been proved mathematically! The result is known as the Prime Number Theorem for
Arithmetic Progressions and was proved over a hundred years ago following the work
of Dirichlet, Hadamard and de la Vallée Poussin. This is an example of a result in
arithmetic statistics. It is useful to think of each prime number as representing a
certain “experiment” and the last digit as being the “outcome” of this experiment.
In this case the outcomes are limited to 4 options (excluding the primes 2 and 5). A
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Figure 1.1: Histogram of heights of American males, resp. females age 30-39 (Data
taken from U.S. National Center for Health Statistics, unpublished data, https://www2. census.gov/
library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf)

similar setting is encountered when looking at the biological sex of newborns, left and
right handedness and many other examples from everyday life. It is an interesting
exercise to consider, which kind of distribution one would expect in these more familiar
cases.

This set-up is closely related to the subject of As is the case with the
last digit of primes, the main result in is that certain “experiments” equidis-
tribute among a finite number of possible outcomes.

There are also many familiar situations where the outcome is not limited to a
finite number of possibilities. Take for instance the sizes of snowflakes, heights of a
population or the velocities of particles in a hot gas. Data for the two last examples
are shown in Figures and

We notice something interesting; the data sets in these two examples are both
following approximately the same “bell”-shape (up to translation and dilation). This
shape arises all over the place in the natural and social sciences and is known as
the normal distribution (or Gaufl curve). It might seem like a miracle that this
particular shape shows its face in such a variety of situations. Mathematics offers
some kind of explanation to this phenomenon via the Central Limit Theorem. In
loose terms this mathematical principle says that if your experiment depends on a
large number of independent variables (or factors), then the outcome should be “bell”-
shaped when plotted (although the validity of this explanation can be questioned [66]).
This perspective is especially relevant in the case of Figure (1.1

The normal distribution can also be derived from a set of simple axioms (or as-
sumptions) as is explained beautifully in the introduction of [15]. This can for in-
stance be used to derive the theoretical distribution underlying Figure [[.2] known
as the Maxwell-Boltzman distribution. These axioms were referred to by the Greek-
French composer Iannis Xenakis as “one of the “logical poems”, which the human
intelligence creates in order to trap the superficial incoherencies of physical phenom-
ena”, [101, page 13]. The normal distribution plays a central role in his theory of
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https://www2.census.gov/library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf
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Figure 1.2: Velocity spectrum of a metallic vapor (Reprinted figure with permission from
John A. Eldridge, Phys. Rev., vol. 30, p. 933, 1927. Copyright 2020 by the American Physical
Society, https://link.aps.org/doi/10.1103/PhysRev.30.931)

music, which he called Stochastic Music. Xenakis was the first to introduce ran-
domness and statistical methods into classical music. Using the randomness that
mathematics could provide he found a profound and novel kind of beauty prior un-
known to mankind. In the orchestral work Pithoprakta (meaning “action through
probability” in Greek), Xenakis aims to capture the sensation of a roaring crowd and
the sound of the wind in the trees. To approach this he uses an analogy between
the movement of molecules in a gas and the movement of sounds through a pitch
range. Because the molecules in a gas behave according to the Maxwell-Boltzman
distribution, this lead Xenakis to create the glissandi of the strings using the normal
distribution. A graphic plot by the composer of the glissandi can be found in Figure
which when listened to possess a supreme beauty.

All of the above examples should be a testament to the wide applicability and
frequent occurrence of the normal distribution in all aspects of human life. The
normal distribution also arises many places in pure mathematics (whether this is to
be considered as part of “human life”, we will leave for the reader to decide). In
number theory in particular, one could mention Selberg’s work on the distribution of
the zeta function (Selberg never published his results, see instead [53]) or the work of
Erdos and Kac [29] on the distribution of the number of prime divisors of integers. In
this thesis, we encounter at least two different settings where the normal distribution
arises. One is in where we study the distribution of certain numbers called
modular symbols connected to the “doughnut”-shaped elliptic curves. The data that
one gets in this case is shown in Figure [[.4] and we immediately recognize the shape!
The other occurrence of the normal distribution in this thesis is in the Papers [F] and
[Gl which deal with arithmetic aspects of quantum chaos. In this case it has been
predicted by physicist that quantum particles (for classically ergodic systems) should
behave like “random waves” when the energy is large. The randomness in this setting
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Figure 1.3: Graphic plot of the glissandi in Pithoprakta by the composer (Taken from
https://music77031lsu.wordpress.com/2017/04/02/pithoprakta-by-iannis-xenakis/)

is exactly predicted to be that which comes from the normal distribution (see [5] for
details).

Obviously, one might encounter distribution which are not “bell”-shaped nor lim-
ited to a finite number of outcomes. A very relevant example being the contagion
graphs for a pandemic in a population with no immunity (nor social distancing),
where the distribution is expected to follow a logistical curve. We will also encounter
other kinds of distributions in Papers [B] and

1.1.1 Reduced fractions and Gauf3 points

This thesis is concerned with a number of problems in arithmetic statistics, which
all take place on the so-called modular curve. This is a very important mathematical
object, which shape reminds one of a parsnip as illustrated in Figure[I.5] We will study
the distribution of a variety of objects that “live” on the surface of the modular curve
and their connections to some very intricate objects called periods of automorphic
forms.

In order to get a feeling for the flavor of the problems dealt with in this thesis, we
will now go into the details of one specific example. The ideas surrounding periods
of automorphic forms seem hard to explain in layman terms, but we will try to illus-
trate the underlying philosophy in a quite simple setting. The point that we would
like to emphasise is that although the distribution problems that we care about are
often very hard to get a grip on, they are connected to automorphic periods, which
in many cases are easier to handle. This then has implications for the distribution
questions that we wanted to understand in the first place (in some cases we are able
to solve them completely!). We admit that this is very abstract and hard to grasp,
but the overall philosophy can be summarized as follows: we cannot understand a


https://music7703lsu.wordpress.com/2017/04/02/pithoprakta-by-iannis-xenakis/ 
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Figure 1.4: Histogram of modular symbols for the elliptic curve £ = 1141 and
denominator 100003 (Created using unpublished data by Mazur and Rubin page 34])

Figure 1.5: The “parsnip”-shaped modular curve
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Figure 1.6: Reduced fractions with denominator resp. 7, 20 and 105

certain problem directly, so we relate to something else, which we understand better.
In explaining the example, we will only make use of elementary arithmetics, simple
manipulations of vectors in the (Euclidean) plane and a tiny bit of clock (or modular)
arithmetics. Hopefully with a background in high school mathematics and an open
mind, one can get something valuable out of what follows. For a more concise version
of this “toy example”, consult the introduction of

The thing that will serve as a simple model for automorphic periods are reduced
fractions. These are fractions of the form -, where n, m are natural numbers, which
do not share a common factor other than 1. So for instance % and % are reduced
fractions, whereas % is not (since 3 and 6 share the factor 3). We will consider re-
duced fractions which lie in the interval between 0 and 1 with fixed denominator,
and study how they distribute on this interval. For example when the denominator
is respectively 7,20 and 105, we get pictures as shown in Figure It looks like the
reduced fractions distribute quite evenly on the interval! To test this in a different
way, we can take some fixed subinterval and count the percentage of points that land
within this interval. If we for instance consider the interval from % to %, then for
denominator 123798 the percentage is 24.995% and for denominator 524234242 one
gets 25.000%. We observe that the percentages are very close to 25%, which is exactly
the size of the interval from 1/4 to 1/2 relative to the whole interval. In fact, it can
be proved (quite easily) mathematically that if you fix some interval between 0 and 1,
then the percentage of reduced fractions with a fixed denominator lying in this inter-
val, will tend to the size of the interval as the denominator grows. This phenomenon
we describe by saying that reduced fractions equidistribute on the interval from 0 to 1.

What we will draw from the above is that reduced fractions are quite nicely be-
haved and relatively easy to understand. Below we will describe an intricate “recipe”,
which from reduced fractions will produce some new, very interesting points called
Gauf points. In order to define these, we have to go to a slightly more complicated
setup; we move from the line to the plane. The complexity of the Gauf§ points has
its root in a complicated interaction between multiplication and addition. It will un-
doubtably be hard to see the bigger picture when following this “recipe”, but in the
end a very nice picture will arise. So hold tight!

For now we will focus on reduced fractions with denominator 7. First of all we
consider powers of the number 3 and the residues that one gets when performing
division by 7:

31=3=7.0+3, 32=9=7-1+2, 33=27=7-3+6,
31 =81=7-114+4, 3%=243=7-24+5, 3°=720=7-104+1.
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Figure 1.7: Reduced fraction with denominator 7

We see that the residues that occur among the first 6 powers are 3,2,6,4,5, 1, which
interestingly are all possible residues except 0. This property makes 3 special from
the perspective of 7 and means in technical terms that 3 is a primitive root mod 7. We
use this to assign a number to the reduced fractions with denominator 7 according
to the position of the nominator in the above list. So for instance, we assign #6 to
1/7 since 1 is the residue of the sizth power of 3 when divided by 7. This leads to the
following pairs:

1 2 3 4 5 6
?9#6, §<—>#2, ?H#l, ?9#4, ?H#5, ?9#3.

Now given a number k between 1 and 5, we construct a new set of fractions as follows:
Given a reduced fraction (with denominator 7), we take the associated number as
above, multiply it by &, take the fraction with this nominator and denominator 6 and
add this fraction to the reduced fraction we started with. For £k = 1 and k& = 2, this
leads to;

poq) L6 1 8 12 2 13 11 3 %
— 6 7T 6 7 21’ 6 T 42777
pzg) 26,1 15 22 2 20 2.1 3 16

— 6 77 6 7210 6 72107

We will now use these fractions to define points on a circle. To do this we identify the
interval from 0 to 1 with the circumference of the unit circle in the plane such that
0 and 1 are both identified with the point with coordinates (1,0). This means that
the reduced fractions with denominator 7 are now identified with the points shown
in Figure Now for each value of k, we plot the constructed fractions on the circle
using clock arithmetics; if the time is 11 o’clock and 2 hours pass, then a watch does
not go to 13, but to 1 instead. We do the same; for instance, we plot % on the circle
by starting at the point with coordinates (1,0) and then going around the circle (in
an anti-clockwise direction) a total of one and one-seventh times. For each of the
fractions above we plot them on the circle this way and then draw a vector (or line)
from the origin (or center of the circle) to this point. The resulting vectors for k = 1
and k = 2 are show in Figure

Now we do something which takes us away from the circle: For each k =1,...,5,
we add the 6 vectors that we have constructed; that is, we follow the direction all of
them combined define. The end-points one gets this way define 5 new points (one for
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Figure 1.8: Vectors for k =1 and k = 2

each k =1,...,5), which we call the Gauf points with denominator 7. This last step
of the “recipe” is illustrated in Figure We admit that the steps above are quite
involved and complicated to follow. This makes the following observation even more
amazing; the Gaufl points constructed from denominator 7 all lie on the same circle!
This fact is very far from obvious from just staring at the “recipe”, and was firstly
proved by the great Carl Friedrich Gaufl (which explains the naming of these points),
see |47, Chapter 8§].

The Gaufl points in Figure [[.9] were constructed starting from reduced fractions
with denominator 7, but we can follow a similar recipe with 7 replaced by a different
prime number p (here it is actually important that the denominator is prime). This
way we get a total of p — 2 Gaufl points for each prime denominator p. Again the
Gauf3 points will all lie on the same circle (this time with radius /p). If you have
paid attention to the above, it will hardly be a surprise that we now ask the following
question: How do Gauf§ points distribute on the circle as the demominator becomes
larger and larger? This is a very hard question, which maybe comes as no surprise
due to the complexity of the “recipe” described above. In Figure are shown
the GauBl points constructed from reduced fractions with denominator, respectively
17 and 59. We observe that although the Gaufl points appear to be rather sporadic
compared to reduced fractions, they again distribute quite evenly on the circle. One
might speculate whether the Gaufl points should also equidistribute on the circle as
the denominator p grows. It turns out that this suspicion is correct, and the mathe-
matical result is known as Equidistribution of Gaufl Sums. As opposed to the case of
reduced fractions above, this result is extremely profound and was proved by Deligne
and Katz [55] in the 1980’s using some very advanced mathematics.

In this setting the distribution of the Gauf} points is the interesting question that
we would like to understand, but this is very difficult. These Gauf} points are however
connected to reduced fractions, which are much easier to understand. This mirrors the
situation in the theory of automorphic forms; here one studies some very complicated
objects called L-functions, which we think of as analogues to the above defined Gauf3
points. L-functions are in general very hard to understand, but in some cases one
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Figure 1.9: Construction of Gaufl points with denominator 7

can relate these complicated objects to certain periods of automorphic forms. At
least in the examples that occur in this thesis, we are able to obtain results about
the automorphic periods. This then sheds light on the complicated objects that we
wanted to understand in the first place.
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CHAPTER 2

PERIODS IN THE THEORY OF
AUTOMORPHIC FORMS

We will now go on to explain in more detail the kind of periods that arise in this
thesis. The necessary background on classical modular forms or general automorphic
forms will not be provided, but we will rather refer to the following excellent sources,
respectively [49], |104] and [36], [16].

Periods play a prominent role in the theory of automorphic forms and have done
so since the beginning through their connection to L-functions. As we well see below,
periods of automorphic forms have turned out to have connections to a variety of
other fields in number theory, and mathematics in general. In Section we will
give a short overview of the history of automorphic forms with an emphasize on the
role of periods (and their relations to L-functions). Such periods seem to lack a
unifying formal definition and many different notions exist throughout the literature.
In Section we will explain exactly what we mean by a period of an automorphic
form in this thesis. For now we will just think of a period as an integral representation
of the L-function of an automorphic form.

2.1 A short history of periods

It is fair to say that the (systematic) theory of automorphic forms began with the
work of Hecke on modular forms building on the investigations of Jacobi, Dirichlet,
Riemann, Ramanujan and many others (see [26] for an introduction to the history).
Hecke introduced the important Hecke operators and obtained analytic continuation,
functional equation and Euler product for the L-functions associated to a Hecke cusp
form f € Si(To(N)) of weight k and level N by the following (period) integral repre-
sentation:

k - k—1 o k—1 d
r(s+ 550 ) e are = [ e Y,

where L(f,s) = Zaf(n)n_s_% for Res > 1 with af(n) the Fourier coefficients of
f. Hecke’s proof of the functional equation was inspired by Riemann’s second proof of

15
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the functional equation for the zeta function, which also has an automorphic period
(of a theta-series) at its core.

The next important development with regards to periods is the work of Rankin [82]
and Selberg [88]. Their idea was to study the analytic properties of the L-function
Li(s) =3, 51 lag(n)Pn= 6= for f € §(To(N)) via the following integral repre-
sentation:

(4m)~CTEDT(s 1k — 1)Ly(s) = / VIO EG ),

where E(z,8) = > cr_\ry(v) Im(72)* is the non-holomorphic Eisenstein series (of
level N). As an important application Rankin obtained an asymptotic formula for
the sum Y,y |af(n)|?, and furthermore this method inspired Deligne in his proof
of the final piece of the Weil Conjectures.

2.1.1 After Langlands

Langlands letter to Weil [58] from 1967 changed forever the landscape of automorphic
forms and bridged the worlds of Galois representations and modular forms. He laid
out the far-reaching web of conjectures known as the Langlands Program, which es-
tablished automorphic representations as the proper generalization of modular forms
(see [31] for an accessible introduction). From this perspective, a classical modular
form corresponds to an automorphic representation of the group GLy over QQ, which
means considering the representation theory of the adélic group GL2(Ag). Langlands
introduced the notion of an automorphic representation of any reductive algebraic
group over a number field and defined an associated L-function. As part of the the-
ory, Jacquet and Godement [33] gave an adeélic period formula for these L-functions
for general number fields and general GL,, (for GL; this had already been achieved
by Tate in his thesis [95]). Furthermore, the Rankin—Selberg method was general-
ized in the adelic setting by Jacquet, Piatetski-Shapiro and Shalika [51] to general
GL,, x GL,,.

Following this, another important development in the theory of periods of auto-
morphic forms is the work of Waldspurger [98]. He obtained a period formula for the
Rankin-Selberg L-function L(m ® ©,,1/2) where 7 in an automorphic representation
of GLy(Ag) and ©, is the theta-series associated to a Hecke character y on E*\AZ,
where F/Q is a quadratic extension. The formula reads

PA@P _, L(r®6y1/2)
(p.0) % L(sym?r,1)

where ¢ is any nonzero vector in , ¢, 4 is a finite product of local factors, L(sym?r, s)
is the symmetric square L-function of m and the automorphic period is given by

(2.1.1)

@)= [ s @

for an embedding Ag E*\Af < GL2(Q)\GL2(Ag). In the special case where ¢ is an
Eisenstein series such formulas had been discovered earlier by Hecke and Siegel. In
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the case of Eisenstein series the proofs are elementary, but in general one needs the
full power of the representation theoretic language.

A profound generalization of Waldspurger’s period formula has been proposed by
Gan, Gross and Prasad [32] (or more precisely the global refinements due to Ichino and
Tkeda [46] and N. Harris |39]), who have conjectured a period formula for Rankin—
Selberg L-functions on SO(V) x SO(W) for any quadratic space V over a number
field F and W C V a non-degenerate hyperplane. By an accidental isomorphism the
formula corresponds exactly to the case where W is 2-dimensional over Q.

Motivated by questions in quantum chaos (see Section below for more details),
Watson [99] obtained a period formula for triple convolution L-functions:

2
/ 61(2)a(2) ba2) 22V
SLo(Z)\H y

_ A1 @ ¢o ® ¢3,1/2) (2.1.2)

A(sym?¢1,1/2)A(sym? 2, 1/2)A(sym?¢3,1/2)’
where ¢; are Hecke—Maaf} cusp forms of level 1 and the quotient consists of completed
L-functions. Notice that if ¢3 is an Eisenstein series, this reduces (essentially) to the
classical Rankin—Selberg formula. The formula has been generalized to general
automorphic representations of GLy over number fields by Ichino [45] (resolving a
refinement of a conjecture due to Jacquet). By another accidental isomorphism, this
resolves the conjecture of Gan—Gross—Prasad in the case of SO4 x SOg.

In order to keep the exposition relatively short, we have left out many important
results on periods (most prominently the work of Gross and Zagier [37]). The relation
between automorphic periods and L-functions remain mysterious in general. There
is however an emerging philosophy describing a relative Langlands picture as in the
work of Sakellaridis and Venkatesh [86], which gives some conceptual framework for
the role of periods in the theory of automorphic forms.

2.1.2 Cohomology and modular symbols

A different kind of periods of automorphic forms emerged in the work of Eichler and
Shimura on cohomological models for modular forms. The Eichler—Shimura isomor-
phism for T' C SLy(R) discrete, cofinite subgroup is the isomorphism:

Sk(T) ® Sp(T') = Hp(T, Vi_o(C)), (2.1.3)

where Vj,_o(C) is the space of degree k — 2 homogenous polynomials in two variables
equipped with a certain action of I' and H} denotes parabolic cohomology (see [90),
Chapter 8] for details). More precisely, the isomorphism is given by mapping (f,q)
to the element of cohomology defined by v — o¢(y) + og(7y) where

or(M(X,Y) = F)(X + 2Y)F2dz. (2.1.4)
Yoo
These polynomials are what Eichler calls the period polynomials of f and Shimura [89)
refers to the coefficients of the period polynomials {f;; f(2)z7dz}o<j<k—2 as the
periods of f € Si(T).
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Inspired by this Manin [68] (and independently Birch) introduced what are called
modular symbols. For Hecke congruence subgroups I'o(N), we define the associated
modular symbols as the Q-vector space generated by pairs of cusps {a,b}, a,b €
QU {oo} modulo two explicit relations (given in terms of the action of I'o(N) on the
cusps). These symbols provide a combinatorial model for the (rational) homology
of modular curves (relative to the cusps), and have been used with great success for
computing modular forms (see [20]). We will mainly be interested in what is known
as the modular symbols map, which is obtained via the Poincaré pairing between
homology and cohomology. More precisely given f € S3(T'o(N)), we get a 1-form
f(2)dz and consider the map

Qar—=(rf):=2mi /iOO f(z)dz € C. (2.1.5)

Modular symbols (and the above pairing) have been used with great success in the
study of the arithmetics of L-functions (see [3], [70] and the references therein) due
to the Birch-Stevens formula: For x a primitive Dirichlet character modulo ¢ with
(¢, N) =1, we have

TOL(fx.1/2) = Y xla)la/a, f), (2.1.6)

a€e(Z/q2)*

where L(f,x,s) =, 1 Af(n)x(n)n~?° is the (naively) twisted L-function.
These cohomological ideas have been pushed much further. We will not go further
into this but simply point to [57].

2.2 A notion of periods for automorphic forms

We will now present a definition of what we mean by a “period of an automorphic
form”, which encompasses all the examples alluded to in the previous section. This
notion will be general enough to encompass the kind of periods encountered in this
thesis. But (hopefully) narrow enough so that it still offers a useful perspective on
the topics of the papers in this thesis.

Definition 2.2.1. Let T’ C G be a lattice in an S-arithmetic group and Y C T\G a
subset equipped with a measure v. Let Vy be a vector space consisting of measurable
functions on'Y', and fix a basis {1);} for Vy-. Then given a (sufficiently nice) function
F on T'\G, we define the numbers fY Fi;dv as the periods of F along Y (with
respect to the basis {1;}).

This notion is a slight generalization of the one presented by Venkatesh in the first
paragraph of [97]. This is (intentionally) a very general definition as it for instance
depends on the choice of space Vy and basis {¢;}. This thesis is a testament to
the scope of such periods of automorphic forms, and we will encounter connections
to topics ranging from reciprocity formulas, quantum modular forms, equidistribu-
tion, quantum chaos and the theory of automorphic L-functions. In the context of
equidistribution problems, it is natural to consider the setup where v is a probability
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measure and Vi = L?(Y,v), which is exactly the definition given in [97]. We will
encounter many different examples of periods of automorphic forms; modular sym-
bols, additive twists, period polynomials, Heegner traces, shifted convolution sums,
pairings between homology and cohomology. In the next chapter we will explain the
history and problems surrounding these different kind of periods and how the papers
of this thesis fit into the story. Below we have collected the data, which when plugged
into Definition gives rise to these periods. We will consider four different main
settings, each corresponding to a specific choice of G,I', F,Y,v and Vy. In each of
these cases there are a number of different choices of bases, which will all be important
in different settings.

(1) G = PSLy(R), I' = ['o(N), F is the lift to T\G of f € Si(To(N)),
Y =Y, ={(Y “/4) |y € Rso,a € (Z/qZ)"} .

where ¢ is a positive integer and dv = Zf:(’{) dy;, with y1,. .., y,(q) the y-variables
of each of the components (one for each a € (Z/qZ)*). We will be interested in
the periods in the setting where V3 consists of functions of the form Zf:(‘i) Pi(y;)
with P; polynomials of degree at most k—2. In this case we have three interesting

bases.

(P1.1) We can consider the basis consisting of maps of the form
j—k
(547) = Lazapy’ /2,

where 1,4, is an indicator function for ag € (Z/qZ)* and 0 < j < k — 2.
In this case the periods correspond to special values of the additive twists of
the L-function of f. When k = 2, one recovers the modular symbols (2.1.5)).

(P1.2) Alternatively, we can consider the basis consisting of
(40 = Lamag (/g +ig) y™""2,

for ag € (Z/qZ)* and 0 < j < k — 2. This corresponds to the coefficients of
the period polynomials of f in the sense of Eichler (2.1.4).

(P1.3) Finally, we can consider the basis consisting of

(57) = x(a)y’ ™2,
for x a Dirichlet character modulo ¢ and 0 < j < k — 2. This corresponds
to the special values of the automorphic L-function L(f ® x,s) (with some
fudge factors if (N, ¢) > 1 and/or x is non-primitive) using the Birch-Stevens

formula (2.1.6).

All of these choices of periods are interesting in their own right as we will see in
Papers[A] B] [Cland [D} the first one gives rise to a normal distribution and residual
equidistribution, the second one is natural from the perspective of cohomology,
and the last one is evidently important in the theory of automorphic forms.
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G = PSLy(R), I' = PSLy(Z), F is the lift of the non-holomorphic Eisenstein series
E(z,1/2 + it) to I'\G, and

YZYD:{ZG|(1€CID},

where Clp denotes the class group of the imaginary quadratic field of discriminant
D < 0 and z, is the associated Heegner point (considered as points in I'\G in an
appropriate way). We equip Y with the counting measure and let V3 be functions
on Clp. In this case we have two dual bases.

(P2.1) One is given by maps of the form z, — x(a), where x is a class group

character of Clp. The periods with respect to this basis are related to class
group L-functions by a special case of Waldspurger’s formula (2.1.1)) (see

also (3.3.3) below).

(P2.2) The other basis is given by the maps zq — 1q—q, wWhere ag € Clp. The

periods in this context are treated in and can be bounded using
methods from the theory of exponential sums.

There is a similar picture for negative discriminants using Heegner cycles, which
are certain closed geodesics associated to elements of the class group of real
quadratic fields.

G = PSLy(R), I = PSLy(Z), F is the lift of a Hecke-Maaf cusp form ¢ to I'\G,
and
Y =Yp={l.\N, CH|aeCl}},

with D > 0 a positive fundamental discriminant, CIB the (narrow) class group
of discriminant D and I';\\, a certain hyperbolic orbifold constructed in [25]
(again considered as a subset of I'\G in an appropriate way). As above, we equip
Y with the counting measure and put Vy equal to functions on Clg.

(P3.1) In this case we will be interested in the basis given by I'q\N, — x(a), where

X is a class group character of Clj{,. The periods with respect to this basis are
related to the central values of Rankin-Selberg L-functions L(¢ ® ©,,1/2),
which is the main result proved in

These periods are furthermore used in to obtain sparse equidistribution
results for the hyperbolic orbifolds I'q\Nj.

G = PSLy(R) x PSLy(R), T’ = PSLy(Z) x PSLy(Z), F = (Fy, Fy) where Fy, is the
lift of a holomorphic cusp form of weight k and level 1 to PSLy(Z)\PSL2(R), and
Y = PSLy(Z)\PSLy(R) is the diagonal equipped with the (left) Haar measure
of G and Vy = L2, (SL2(Z)\H, djjgly), where we view functions on SLy(Z)\H as
functions on Y the standard way. In this case there are two interesting bases.

(P4.1) The first basis is given by Hecke-Maaf} cusp forms. In this case it follows by

the formula of Ichino and Watson (2.1.2) that the periods are connected to
triple convolution L-functions.
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(P4.2) The other basis is constructed from Poincaré series;

Pum(z)= Y e(myz)h(lnyz),
Y€l \SL2(Z)

for h smooth and compactly supported and m € Z. In this case the periods
are connected to shifted convolution sums (see Section below). In

particular, this connection is a key input in

Remark 2.2.2. Tt is worth mentioning that all of the above periods can be written
down nicely in the adelic language and are in some cases more naturally defined in
this setting. We have however sticked to the classical language, since this makes the
comparison with the papers of this thesis clearer.
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CHAPTER 3

SOME PROBLEMS IN ARITHMETIC
STATISTICS

It is an amazing fact that periods of automorphic forms show up in many different
parts of mathematics. In particular, the focus of this thesis is the connections between
automorphic periods and arithmetic statistics. As will be apparent later in this thesis,
automorphic periods can often can be studied using a variety of powerful tools. This
can then be used to obtain information about the statistical questions, we wanted to
understand in the first place (that being rational points on elliptic curves, automor-
phic L-function, equidistribution or quantum chaos). This observation is part of an
emerging philosophy that one can use “geometric” methods to study periods of au-
tomorphic forms. This shows maybe most prominently in the work of Venkatesh [97]
and Michel and Venkatesh [75], where they use (among other things) ergodic meth-
ods to obtain subconvexity bounds of certain L-functions. Interestingly, subconvexity
bounds for L-functions were originally studied using techniques from analytic num-
ber theory motivated by their connections (through automorphic periods) to certain
distribution problems. Venkatesh in |97], however showed that one can “turn the ta-
bles” and study the L-functions using the period representations. Recently, a variety
of other methods have been used successfully to study automorphic periods; spectral
theory [81], dynamical systems [59], |8] and micro-local analysis |76].

The results of the papers in this thesis touch upon a variety of questions of sta-
tistical nature, which can be separated into three main topics; modular symbols,
geometric invariants of quadratic fields and arithmetic quantum chaos. For
the two latter, there exist a vast literature including many excellent surveys. The
situation is quite different for the results relating to modular symbols, where no com-
plete overview of the current state of affairs seems to exist. Thus we will put our
emphasize on the history of the distribution of modular symbols below, and refer
to other sources for in-depth surveys on the study of the distribution of geometric
invariants of quadratic fields and arithmetic quantum chaos.

23
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3.1 Around the distribution of modular symbols

In the 90’s inspired by a connection to Szpiro’s conjecture (relating the conductor and
the discriminant of elliptic curves), Goldfeld initiated the study of the distribution
of modular symbols [34], [35]. Furthermore, he introduced the following Eisenstein
series twisted by modular symbols, known as the Goldfeld FEisenstein series;

> (oo, )" Im(y2)’,

'YGFOC\FO(N)

where f € S3(T'o(IN)) is a cusp form of weight 2 and level N and I'ss = (($1)). In
his thesis, O’Sullivan [77] proved meromorphic continuation and functional equation
in the case n = 1. The first to obtain precise analytic information about these series
for all n were Petridis and Risager, who used this information to prove that modular
symbols (a/q, f) are asymptotically normally distributed when ordered by a?+¢? and
appropriately normalized [78, Theorem A].

Theorem 3.1.1 (Petridis and Risager, 2004). Let f € Sa(T'o(N)) be a cusp form of
weight 2 and level N. Then as Q — oo, the distribution of the numbers

CRelo/af) | o
{\/W|W<Q’(m 1,Nq}

tend to a normal distribution with mean 0 and a certain explicit variance.

Petridis and Risager used their methods to obtain a number of results [80], [83],
[79], and the ideas of Goldfeld also inspired the notion of a second order modular
form [17].

In 2016 (unaware of the results of Petridis and Risager), Mazur and Rubin (and
Stein) initiated the study of the arithmetic statistics of modular symbols. This time
their motivation was to obtain heuristics for the following question regarding the
Diophantine stability of elliptic curves E/Q:

(Q1) How often is ranky E(K) > ranky E(Q)

as K/Q ranges over abelian extensions?
Assuming the BSD-conjecture (in a sufficiently general form), we have
rankz E(K) = ords—1 L(E/, s),

where L(E/ g, s) is the Hasse-Weil L-function of the base-change of E to K. For K/Q
abelian, we have the following factorization:

L(E/K,S): H L(E,X,S),

—

x€Gal (K/Q)

where L(E, x,s) = Y. ag(n)x(n)n~* is the x-twisted L-function of E. This implies
that the question (Q1) is related to the vanishing properties of the central values
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of the twisted L-functions L(fg,x,1/2), where x is a Dirichlet character and fg is
the weight 2 cusp form corresponding to E. These L-functions are in turn related to
modular symbols through the Birch-Stevens formula (2.1.6), as we saw above.

This led Mazur and Rubin to study the statistics of modular symbols with an
arithmetic ordering. Using this, Mazur and Rubin develop a heuristics, from which
they obtain a (conjectural) answer to (Q1) in certain families. In particular, they
recover predictions due to David, Fearnley and Kisilevsky [21] obtained using Random
Matriz Theory. The ordering originally used by Petridis and Risager came naturally
out of the Goldfeld Eisenstein series, whereas from an arithmetic point of view it
is more convenient to order the modular symbols by the denominator of the cusps.
Mazur and Rubin conjectured among other things that with this ordering the modular
symbols should be asymptotically normally distributed.

Conjecture 3.1.2 (Mazur and Rubin, 2016). Let f € S2(T'0(N)) be a cusp form of
weight 2 and level N. Then as ¢ — oo, the distribution of the numbers

{ Re(a/q. f)
Vlog g

tend to a mnormal distribution with mean 0.

ac @/}

This conjecture seems to be extremely hard. First of all, the size of the family in
the conjecture above is the square-root of the family appearing in Petridis and Risager
(relative to the largest denominator appearing in the families). Secondly, calculating
the second moment for this family amounts (using Parseval and Birch—Stevens )
to calculating the second moment of Dirichlet twists L(f, x,1/2), which was only
achieved very recently by the combination of the work of Blomer, Fouvry, Kowalski,
Michel, Mili¢evi¢ and Sawin [14], [10], [56]. The methods are extremely profound
using the full power of spectral and algebro-geometric methods.

It was soon after Mazur and Rubin’s work realized by Petridis and Risager that
their methods from [78] could be adapted to the arithmetic setting as well. They were
able to obtain an average version of Conjecture [3.1.2| with the further refinement that
they could restrict the cusp to a fixed interval. Finally, they also obtained a beautiful
formula for the variance. The following result is [81, Theorem 1.7].

Theorem 3.1.3 (Petridis and Risager, 2018). Let f € Sa(T'o(N)) be a cusp form of
weight 2 and square-free level N. Fiz an interval I C R/Z. Then as Q@ — oo, the
distribution of the numbers

{ Re(a/q, f)
Vioggq

tend to a normal distribution with mean 0 and variance

C;=6/7? H(l +p )T L(sym?f,1).
pIN

IGG(Z/qZ)X,0<q§Q,a/q€I}

Furthermore the methods of Petridis and Risager apply to cusp forms of any
discrete, cofinite subgroup of SLy(R) with cusps.
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Later, Lee and Sun [59] obtained a different proof of Theorem using dy-
namical methods. Their approach relies on Manin’s trick, which expresses a general
modular symbol in a convenient basis called Manin symbols. This basis is related to
continued fraction expansions, which enabled Sun and Lee to employ the dynamics
of such expansions as in the work of Baladi and Vallée [4]. This method is however
restricted to the case of arithmetic subgroups and furthermore their method does not
give a formula for the variance (see [59), page 23]).

Mazur and Rubin (together with Stein) also put forth a number of other con-
jectures in |73] regarding modular symbols, many of which have been (partially)
resolved [22], [94], [11, Thm. 9.2]. We will not touch upon these interesting results in
this thesis but instead refer to |73| Sec. 4] for a nice overview of the known results.

3.1.1 Residual distribution of modular symbols

At a talk at the number theory seminar at the California Institute of Technology,
Mazur put forth a conjecture concerning the mod p distribution of modular symbols
(see the unpublished note [71]). More precisely, let fr € S2(T'o(N)) be a cusp form of
weight 2 and level N corresponding to an elliptic curve E/Q. Then it is known that

wH(a/a) = o ((0/q, fe) + (~a/g, f5)) € 2 (3.11)

for all a/q € Q, where QF are the Néron periods of E (see [73, Sec. 1]). Now one can
ask how the values of m%(a/q) distribute among the residue classes modulo primes
p. Mazur and Rubin conjecture that the residues should equidistribute under some
assumptions on p and FE.

Conjecture 3.1.4 (Mazur and Rubin, 2016). Let p be a prime such that the residual
representation of E mod p is surjective and p is an ordinary and good prime of E.
Then the distribution of the residues

{mE(a/gymodp | a € (2/g2)" }
tend to the uniform distribution on Z/pZ as ¢ — oo.

Lee and Sun were able to adapt their dynamical approach to this setting as well,
and as above they obtained an averages version of this conjecture, see [59, Theorem
C.3].

Theorem 3.1.5 (Lee and Sun, 2019). Let p and E be as above. Then the distribution
of the residues

{mE(a/g)modp|0<q<Q,ae(z/e2)"}
tend to the uniform distribution on Z/pZ as @ — o,.

In (joint with Constantinescu) we give a new automorphic proof of this
result and obtain a number of refinements and (most importantly) extend the results
to hyperbolic spaces of arbitrary dimension. In certain special cases we can actually
prove the full conjecture using a connection to Eisenstein congruences.
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3.1.2 Generalizations of the conjectures of Mazur and Rubin

We will now discuss certain generalizations of Theorems [3.1.3] and From the
automorphic perspective it is natural to ask whether there exists generalizations to
higher weight cusp forms, Maafl forms, GLs over general number fields or different
algebraic groups. Whereas from the dynamical perspective other generalizations are
appealing (as we will see below).

The case of higher weight

Regarding a generalization to higher weight, the first question is what the appropriate
analogue of modular symbols should be, so that one will see a normal distribution
appearing. Many different generalizations of modular symbols exist in the higher
weight case, and at some point it was believed that the period polynomials attached
to a cusp form would be the correct analogue. We recall from Section 2:1.2] that
period polynomials are defined as follows:

o0
arMNXY) = [ f(2)(X +2Y)"2dz,
Yoo
for f € Sp(To(IN)) and v € T'o(IN). This notion is the natural generalization of
modular symbols from a cohomological perspective in view of the Eichler—Shimura
isomorphism . The coefficients of these polynomials correspond to the periods
(P1.2)| above. The analytic properties of period polynomials have been studied a
lot recently, see [23] for a survey of results. These works have mainly studied the
properties of the zeroes of o(S) as f varies (where S = (9 7!)), which have been
shown to satisfy an analogue of the Riemann Hypothesis. In we study the
distribution of period polynomials and their zeroes when f is fixed and ~ varies. In
particular, we determine the limiting joint distribution of the coefficients of period
polynomials, which turns out to be very far from normal.
In order to get a proper generalization of Theorem the key turned out to
be the Birch-Stevens formula (2.1.6). For higher weight cusp forms f € Sp(T'o(NN))
what take the place of modular symbols are additive twists, defined as:

L(f,r,s):= Z ar(n)e(nr)n™*,
n>1
for Res > (k +1)/2 and r € Q, where ay(n) are the Fourier coefficients of f and
e(r) = €22, They satisfy analytic continuation and functional equation relating
s <> k — s (see Section 3.3 in for details). The special values s =1,...,k—1
of the additive twists correspond exactly to the periods above. In this case
we have the following generalization of the Birch—Stevens formula: For a primitive
Dirichlet character y modulo ¢, we have

TOLx1/2) = Y x(a@)L(f.a/q,k/2), (3.1.2)
a€(Z/qL)>

where L(f,x,s) = > Ag(n)x(n)n~* is the (naively) twisted L-function of f and 7(¥)
is a Gaufl sum. This formula is exactly encoding the relation between the two periods

(P1.1) and P1.3H
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To explain why one should expect additive twists to be asymptotically normally
distributed, one has to look at the problem from a “moments of L-functions” perspec-
tive: If we consider the moments of the additive twists, use an approximate functional
equation and look at the contribution of the diagonal term, then one sees exactly the
moments of the normal distribution appearing from the combinatorics. Assuming
that the off-diagonal terms are negligible (which is only known for the 1st and 2nd
complex moments by [11]) the normal distribution will follow by the method of mo-
ments. This heuristics applies equally well for all weights and also for Hecke-Maaf}
cusp forms. We hope to pursue these ideas further in the future.

In we prove that indeed additive twists are asymptotically normally
distributed (again with the extra average) using an extension of the approach of
Petridis and Risager. We also provide interesting applications to automorphic L-
functions using the Birch—Stevens formula. Independently, Bettin and Drappeau [8]
obtained a different proof of the normal distribution result using dynamical methods.
Their method however only works for cusp forms with trivial level. The starting point
for them is the fact that for f € S,(SL2(Z)), the map Q > r — L(f,r, k/2) defines
a quantum modular form in the sense of Zagier |[105]. Quantum modularity in this
context means concretely that we have

L(f,r,k/2) = L(f,—1/r,k/2) + h(r), (3.1.3)

for all r € Q\{0}, where h : R — R is some continuous function, which in this case
can be estimated easily. Now iterating this we get (using that h is even) that

L(f,r,k/2) = h(r) + h(T(r)) + ...+ h(T™(r)),

for some m > 1, where T(z) = {2} is the Gaul map. Now one can employ the
dynamics of the Gaufl map using an extension of the methods in [|4] to get a normal
distribution result. The property corresponds to quantum modularity with
respect to the matrix S = (? _01), which is the reason why the method does not
directly generalize to non-trivial level. In return, the method of Bettin and Drappeau
applies to a much larger class of quantum modular forms of level 1. In particular, they
are able to show that the central values of the Estermann function are asymptotically
normally distributed. This is a major achievement since the method of moments does
not work in this case (as follows from the moment calculation of Bettin [7]).

Further symmetries, quantum modular forms and reciprocity formulas

Quantum modular forms were introduced by Zagier [105] motivated by certain sym-
metries satisfied by invariants appearing in quantum field theory. In words, a quan-
tum modular form of level N and weight k is a function on Q, which is “almost
modular” with respect to the action of I'g(N) given by the weight k slash operator
(ie. fir(r) :== j(y,7)"*f(yr)). More precisely “almost modular” means that the
discrepancy:
03(r) = £(r) — (1) f (), T EQ,

for v € To(N) fixed, can be extended to a continuous/analytic/smooth function on
R\{v~!oo} (the choice of regularity varies from case to case). In extending
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the results of [8], we prove that the central value of additive twists L(f,-, k/2) with
f € Sk(To(NN)) define a quantum modular form of weight 0 and level N (with reg-
ularity=continuous). This can be seen as a further (approximate) symmetry that is
satisfied by the periods

In earlier work of Bettin [6], it is proved that the Estermann function defines
a quantum modular form, which is used to give a refinement of a reciprocity rela-
tion discovered by Conrey |18]. The reciprocity relation is related to twisted second
moments of Dirichlet L-functions and takes the following form:

> OILOGL/2)Px0) ~ > L(x 1/2)1Px(—), (3.1.4)

x mod g x mod [

for primes ¢ # [, where the sums run over Dirichlet characters modulo ¢, respectively
l. Recently, many other reciprocity relations for moments of L-functions have been
discovered, see [13], [12], [2].

Noticing that |L(x,1/2)|?> = L(E ® x,1/2), where E is an appropriate Eisenstein
series (in representation theoretic language E should correspond to the isobaric sum
1H1), it is natural to expect that a generalization of the reciprocity law should exist
when we replace E by a GLy cuspidal automorphic representation. In we
show that this is indeed the case for holomorphic cusp forms. Furthermore, building
on these ideas we have work in progress, which aims to generalize the reciprocity
relations above to Hecke—Maaf$l cusp forms. Combining this with the methods in [§],
this might furthermore lead to a normal distribution result for additive twists of
Hecke—Maaf} cusp forms.

Residual distribution for Lorentz groups

A question that begs an answer is whether the automorphic method can be adapted
to deal with residual distribution of modular symbols as in Conjecture [3.1.4] This
is the topic of where we show that this indeed can be done using analytic
properties of twisted Eisenstein series. This can be seen as a discrete version of the
method of Petridis and Risager introduced in [78]. Furthermore, this method allows
for a generalization to quotients of higher dimensional hyperbolic spaces H™*! or more
precisely cohomology classes in H'(I',F,) where I' C SO(n 4 1,1) is a discrete and
cofinite subgroup with cusps.

Remark 3.1.6. A different possible generalization is to study the residual distribution
of the coefficients of period polynomials. These coefficients are known to have good
arithmetic properties and it would thus be interesting to obtain results about their
residual distribution. Nothing seems to be known at present.

As a final remark, we will emphasize that the dynamical and automorphic ap-
proach supplement each other as they allow for generalizations in different directions.
The results in Papers [A] [B] and [C] and [D] apply equally well to general discrete and
cofinite subgroups of SL2(R), and in a different direction it has been shown by Con-
stantinescu [19] that the automorphic method generalizes very naturally to the case of
Bianchi modular forms (i.e. GLg over imaginary quadratics). Interestingly, the proof
in [19] avoids the method of moments and uses instead the Berry—Esseen inequality
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to obtain the distribution result. On the other hand, the dynamical methods can
be used to obtain distribution results for very general quantum modular forms, as
mentioned above.

3.2 Distribution of geometric invariants of quadratic
fields

We will now describe a different circle of ideas, surrounding geometric invariants of
quadratic fields. For a beautiful and informative summary of the history, we will
recommend [74]. Below we will highlight some developments, which are relevant for
this thesis.

In the 80’s, Duke [24] discovered a connection between some classical questions
about quadratic forms and the theory of automorphic forms. He observed that certain
periods of automorphic forms were closely related to the distribution of integral points
of quadratic forms. Duke studied the distribution on the modular surface Xo(1) :=
SLo(Z)\H of Heegner points and Heegner cycles associated to class groups of quadratic
fields. Recall that the (wide) class group of fundamental discriminant D is defined as
the quotient of fractional ideals of K by principal fractional ideals, where K = Q(+/D)
is the quadratic field of discriminant D. Given a negative fundamental discriminant
D, we can associate to each element a € Clp of the class group a point on the
modular surface z, € Xo(1) known as the Heegner point (associated to a). Similarly,
for positive discriminants D > 0 and a € Clp, we can associate a closed geodesic
Yo C SLo(Z)\H, which we call the Heegner cycle associated to a. Duke proved that
as |D| — oo the Heegner points (respectively cycles) equidistribute on the modular
surface with respect to the hyperbolic measure. This means more concretely that for
any continuity set A C X(1), we have

#{acClp|za € A} vol(A)
#Clp ~ vol(Xp(1))

as —D — oo (with D a negative fundamental discriminant), where the volume is with
respect to the hyperbolic measure 2% . Similarly, Duke proved that for D > 0;

y2

ZaeClD f%mA lds _ vol(A)
2acclp f% lds vol(Xo(1))

as D — oo, where ds is the hyperbolic line element (in this case one can actually
refine the result to an equidistribution result on the unit tangent bundle of X(1)).
These questions turn out to be the dual formulations of the classical problem of
determining the distribution of integral points of quadratic forms on the appropriate
level set as explained in |74, Section 1]. Such problems have been intensively studied
by Linnik [62] in the 60’s using his ergodic method with great success. The ergodic
method is however only able to obtain the equidistribution results under a certain
congruence condition (for positive discriminants an ergodic proof without the congru-
ence condition has now been given [28]). Duke was the first to remove this condition.

+ o(1),

+o(1),
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The approach of Duke is to use harmonic analysis; by Weyl’s criterion it is enough
to show cancelation in the Weyl sums

Z P(za),

aeClp

where D < 0 and ¢ is a Hecke-Maaf} cusp form or an Eisenstein series (and similarly
for D > 0). These Weyl sums turn out to be connected to Fourier coefficients of
half-integral Maaf} forms as was proved by Maaf} [67] (and revisited by Katok and
Sarnak [54]). Duke managed to bound the Fourier coefficients of half-integral Maaf
forms using a breakthrough of Iwaniec [48].

A slightly different approach is to employ the formula of Waldspurger ; if we
pick the automorphic representation 7 to be the one associated to a Hecke—-Maafl cusp
form of level 1 and let the Hecke character x be the trivial one, then the automorphic
period in reduces exactly to the Weyl sums studied by Duke. This implies that
equidistribution of Heegner points (and cycles) follows from a subconvexity bound for
certain twisted L-functions. Furthermore, this approach opened up for a number of
different generalizations. First of all, by choosing non-trivial Hecke characters (and
using some easy Fourier analysis), one could deduce sparse equidistribution for Heegner
points associated to subgroups of the class group assuming subconvexity estimates
for certain Rankin—Selberg L-functions. Such subconvexity bounds were obtained by
Harcos and Michel [38] using the amplification method from analytic number theory.
A different case of sparse equidistribution is to consider the distribution of Heegner
points with level structure and allow the level to change with the discriminant as
was carried out by Liu, Masri and Young [63]. All of these applications requires a
version of Waldspurger’s formula completely explicit in all parameters. Such versions
are available due to the work of many people (see [30] and the references therein).
Variants of Duke’s theorem have been studied extensively [69], [38], |27], [1]. Very
recently a generalization was studied by Duke, Imamoglu and Téth [25], which is the

starting point for

3.2.1 The work of Duke, Imamoglu and Téth

In |25], Duke, Imamoglu and T6th revisit the geometric invariants associated to pos-
itive discriminant D > 0. They define certain geometric invariants associated to
elements of the narrow class group CIB. The narrow class group is defined as the
quotient of fractional ideals of K with principle ideals with a generator of positive
norm. If there is a unit of norm —1 then CIB = Clp but otherwise the two versions of
the class group are different. Associated to a € Clj{) there is a certain hyperbolic orb-
ifold T'y\V; whose boundary is the Heegner cycle 7, mentioned above. The surfaces
Iy \\N, are very interesting objects and were introduced with the hope of shedding
light on the class groups of real quadratic fields.

The authors study the distribution of these surfaces when projected to the modular
surface Xo(1) = T'\H, where I' = SLy(Z). They manage to show that for any sequence
of genera Hp C Clf; (i.e. a coset of (C15)?) and any continuity set A C Xo(1), we
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have

ZaEHD VOI(Fa\Na n FA) _ VOI(A) .
S acry VolTa\Wa)  vol(Xo(1)) (1), (3.2.1)

as D — oo, where the volume is with respect to the measure dzdy Equidistribution

for the surfaces of the whole class group turns out to be trivial since when projected
down they cover X((1) evenly (i.e. the above is true without error term).

By using simple Fourier analysis, the equidistribution statement follows if
one can show cancellation in the Weyl sum for this distribution problem twisted by
class group characters. These twisted Weyl sums can be shown to be related to the
product of two Fourier coeflicients of half-integral Hecke-Maaf} cusp forms using a
generalization of the work of Katok and Sarnak [54]. These Fourier coefficients have
been bounded by Duke and thus follows.

A general limitation when using the Katok—Sarnak approach to these equidistribu-
tion questions is that one can only deal with Weyl sums twisted by genus characters.
To deal with twists by general class group characters, one has to use the connection to
central values of Rankin-Selberg L-functions as in the work of Waldspurger. In[Paper]
(joint work with Humphries) we give an adeélic interpretation of the twisted Weyl
sums and manage to relate them to L-functions. These Weyl sums are exactly the
periods above. As an application we obtain a sparse equidistribution result
for the hyperbolic orbifolds.

3.3 Arithmetic quantum chaos

We will now turn to the last topic touched upon in this thesis. The point of de-
parture is a classical problem of quantum physics going all the way back to Bohr,
Sommerfeld and Einstein; to understand the behavior of quantizations of classical
Hamiltonians (the correspondence principle). In the case of the hyperbolic arithmetic
surface Xo(1) = SLy(Z)\H, we will be interested in the quantization of the classical
Hamiltonian generating the geodesic flow, which gives rise to the hyperbolic Laplacian
A= —y?( 8‘9—:2 + 88—;2). It is known that the geodesic flow is ergodic and thus chaotic,
which puts us in the realm of quantum chaos. The eigenfunction of the Laplacian are
exactly the Hecke-Maaf} forms (forgetting the continuous spectrum for the moment),
and the problem becomes to understand their behavior as the energy (i.e. eigenvalue)
goes to infinity. In particular, the Quantum Ergodicity Conjecture (QE) states that
for a density 1 subsequence of L?-normalized eigenfunctions {¢} with Laplace eigen-
values {A,}, we should have for any sufficiently nice test function 7 : Xo(1) — C
that

(w,161) = 1),

as Ay — 00, where (-,-) denotes the Petersson inner product. This was resolved
by Zeldich [106] in a much more general setting. More generally, the Random Wave
Congjecture of Berry [5] predicts that the eigenfunctions of the Laplacian should behave
like ¢ Gauflian random waves”. This has deep implications for the possible localization
of the eigenfunctions.
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Following these lines of thinking, Rudnick and Sarnak [85] conjectured that for
Xo(1) mass equidistribution should actually hold for the full sequence of Laplace
eigenfunction, which came to be known as the Quantum Uniqueness Ergodicity Con-
jecture (QUE). Secondly, Rudnick and Sarnak conjectured that the sup norms of
Hecke—Maaf} cusp forms ¢ should satisfy

sup [|¢lloc <e0 g
zeC

for any € > 0, where C' C X((1) is compact and Ay = 1/4—4—% is the Laplace eigenvalue
of ¢. This is known as the Sup Norm Conjecture. Both of these conjectures are in
accordance with the Random Wave Conjecture.

The QUE conjecture for Xy(1) was famously proved by Lindenstrauss [61] using
ergodic methods (with an additional key input by Soundararajan [92]). The Sup
Norm Congjecture is still wide open. The best result to date is due to Iwaniec and
Sarnak [50] who obtained the bound <. t‘;/ e improving on the convezity exponent
1/4 (which can be obtained easily).

3.3.1 Mass equidistribution for holomorphic forms

The same questions can also be asked for holomorphic cusp forms (although there is
no clear physical interpretation in this case). This time the QUE conjecture predicts
that for Hecke eigenforms f € S;(SL2(Z)), we have

WP = S (w,1), (33.1)

as k — oo (where we use the normalization (y*|f|?,1) = 1) . As an important
corollary it was shown by Rudnick [84] that QUE for holomorphic forms implies that
the zeroes of Hecke eigenforms equidistribute on X(1).

QUE for holomorphic forms was proved by a combination of the works of Holowin-
sky and Soundararajan [41], [93], [42], see also [91] for a nice and more in-depth sur-
vey. The starting point for both the approach of Holowinsky and of Soundararajan is
Weyl’s criterion; in order to conclude QUE for holomorphic forms it is enough to show
for a basis of L?(X(1)). Holowinsky considered the generating set consisting
of Poincare series defined by

P (2) = Z e(mvyz)h(Im~z),

YET o\

where h : (0,00) — (0,00) is smooth with compact support and m € Z (for m = 0
the Poincare series are known as incomplete Eisenstein series). This gives rise to the
periods defined above. It is a fact observed firstly by Luo and Sarnak [64] that
bounding the periods (P .., y*|f|?) reduces to bounding shifted convolution sums of
length & of the form ), Af(n)As(n+m). This was achieved by Holowinsky for most
f (even after taking absolute values of the Hecke eigenvalues) using sieve methods.
Soundararajan considered instead the basis consisting of Hecke—-Maaf} cusp forms
{#}, which are exactly the periods In this case, it follows from the formula
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of Watson and Ichino that the square of the periods (y*|f|?, ¢) are equal (up
to some manageable factors) to the triple convolution L-function L(f ® f ® ¢,1/2).
Soundararajan succeeded in obtaining what he calls a weak subconvezity bound for
such L-functions, which again is strong enough to resolve mass equidistribution for
most f. As it turns out, the exceptions in the works of Soundararajan and Holowinsky
complemented each other, which lead to the full resolution of QUE for holomorphic
cusp forms.

In his investigations of quantum chaos, Zelditch [107] introduced the gquantum
variance associated to a compact Riemannian manifold (M, g):

Z |<7/)a |¢|2> - <77/}7 1>‘23

Np<X

where ¢ : M — C is a test function and ¢ are eigenfunctions for the Laplace—Beltrami
operator on M with eigenvalues A,. Luo and Sarnak [65] studied the analogous
quantum variance for holomorphic forms on the modular surface and were able to
obtain an asymptotic formula for the quantum variance when averaging over k:

D0 L sym® £ (n, yF [ P (W2, yFIF2) = Bu(th1, ¥2) K + 0y, 0, (K,

k<K feH,

as K — oo, where 1,1, are sufficiently nice cuspidal test functions. The main term
B, is a very interesting Hermitian form diagonalized by Hecke-Maafl cusp forms
¢ with B, (¢, ¢) being equal to a constant times L(¢,1/2). Interestingly, in their
investigations Luo and Sarnak employ both choices of periods [[P4.1)|and [[P4.2)] As
a surprising corollary, they deduce the deep fact that L(¢,1/2) > 0.

3.3.2 The case of Eisenstein series
One can ask the same questions as above for the non-holomorphic Eisenstein series;
E(zs)= Y Im(y2)’,
Y€l \SL2(Z)

on the line of symmetry s = 1/2 + it, which corresponds to the continuous spectrum
of the Laplacian. The statements require suitable modifications. The case of QUE
for Eisenstein series was resolved early on by Luo and Sarnak [64] who proved that

3
E(-,1/2+it)]?) — =(¥,1
o7 U1 B 172 i0F) = 240 1),
as t — oo for ¢ sufficiently nice. In this case the periods that appear are much easier
to handle than in the Maaf} case.
The problem of sup norm bounds for Eisenstein series has also been studied. In
this case the method of Iwaniec and Sarnak yields the bound

sup |E(2,1/2 +it)| <c o t7/12F, (3.3.2)
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with C C H compact. Note that in this case, the convexity bound is ¢ tl/2+e
Young [103] using a slight modification of the method of Iwaniec and Sarnak, obtained
the improved exponent 3/8 + ¢ in the Eisenstein case. Blomer [9] realized that the
classical work of Titchmarsh [96] using exponential sum methods could be applied
and obtained the Weyl type exponent 1/3 +¢. In we upgrade Blomer’s
bound to a uniform sup norm bound with an explicit dependence of C.

It was observed by Sarnak [87), (4.19)] that the sup norm problem has applications
to subconvexity bounds for L-functions using the following formula due to Hecke:

2°41¢(25)| D]/
- >

WD

Lk(s,x) x(a)E(zq, 8), (3.3.3)

aeClp

where Clp is the class group of discriminant D < 0 and wp € {2,4,6} (there is
a similarly formula for real quadratic fields due to Siegel). The right-hand side of

(3.3.3) is exactly the periods|(P2.1)labove. In we use this to obtain (hybrid)

subconvexity bounds for class group L-functions.

3.3.3 Mass distribution at small scales

It is natural to ask whether mass equidistribution also holds at smaller scales. This
means that we want to study mass equidistribution on shrinking sets or (what amounts
to the same thing) when we allow our test function 3 to vary with the spectral
parameter. This problem has been studied in the physics literature and it seems to
suggest that that mass equidistribution should hold all the way down to the scale of
the de Broglie wavelength (see [40]). This means that we expect equidistribution to
hold when we shrink our test function at a rate above 1/ VA, where ) is the eigenvalue.
Small scale equidistribution has been studied extensively in many aspect [102], [44].
In particular, in the holomorphic case Lester, Matoméiki, and Radziwill [60] study
QUE for shrinking sets and the distribution of zeroes high in the cusp.

In we contribute to the question of small scale mass distribution in the
holomorphic case and consider the setting of shrinking “balls around infinity”. Among
other things we calculate the quantum variance when the test function v is “squeezed”
up towards the cusp oco. In this setting the connection to L-functions seizes to exist
for the periods Instead we consider certain “squeezed periods” of the type
corresponding to the Poincaré series basis, which again are related to shifted
convolution sums. The results follows from solving this shifted convolution problem.
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CHAPTER 4

SUMMARIES OF PAPERS

Paper A: Central values of additive twists of cuspidal L-
functions

In this paper we study the distribution of central values of additive twists of holomor-
phic cusp forms. This is a generalization of the results of Petridis and Risager [81]
on the arithmetic statistics of modular symbols to higher weight holomorphic cusp
forms.

To explain our results, let f € Sp(I'0(g)) be a cusp form of even weight k and level
q. Then we define the additive twist by x € R as the following Dirichlet series which
converges absolutely for Res > (k+1)/2:

L(f,,5) := ZM,

ns
n>1

where ay(n) are the Fourier coefficients of f. When z € Q, the additive twist L(f, z, s)
admits analytic continuation satisfying a functional equation relating s <> k — s.

We will study the distribution of the central values s = k/2 as « varies through ra-
tional numbers ordered by their denominators. More precisely, we consider L(f, -, k/2)
as a random variable defined on the outcome space

T(X):={a/c|0<a<ec< X, (a,¢)=1,q|c}

endowed with the uniform probability measure. This defines a sequence of random
variable, which we show (when appropriately normalized) converges in distribution
to a standard normal.

Theorem 4.0.1 (Paper A, Theorem 1.1). Let f € S;(To(q)) be a cusp form of even
weight k and level q. Then for any fized box Q2 C C, we have

o, (Lnfekf2) g\ _#{o/e €T L <o)
T(X) <(C’flogc)1/2 € > = 05
=P(Nc(0,1) € Q) + o(1),

(4.0.1)

37
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as X — 0o, where N¢(0,1) denotes the standard complex normal distribution and the
variance is given by

(4m)* L £

Cp:= (k —1)!vol(To(q))’

(4.0.2)

with ||f|| the Petersson-norm of f and vol(To(q)) the hyperbolic volume of To(q)\H.
(Here P(Nc(0,1) € Q) denotes the probability of the event N¢(0,1) € §.)

This result has applications to automorphic L-functions; the proof proceeds by
the method of moments and as a by-product we obtain an asymptotic expression for
high moments of additive twists. By combining this with the Birch—Stevens formula,
we obtain a calculation of a certain “wide” moment of automorphic L-functions.

More precisely given a newform f € Si(T'0(q)) of weight k and level ¢ and a prim-
itive Dirichlet character x of conductor co-prime to ¢, we define the multiplicatively
twisted L-function of f;

Ar(n)x(n)

nS

L(f@x,8) =Y

n>1

, Res>1,

where Af(n) denotes the nth Hecke eigenvalue of f. This series admits analytic
continuation to the entire complex plane satisfying a functional equation s <+ 1 — s.
Because of the co-primality condition the above Dirichlet series defines (the finite
part of) the L-function of the automorphic representation 7y ® x. We then get the
following asymptotic formula of a “wide” family of L-functions.

Corollary 4.0.2 (Paper A, Corollary 1.9). Let f € Sp(T'o(q)) be a newform of even
weight k and level ¢ and n a non-negative integer. Then we have for all € > 0

Y o X e eI @0 12)

2n—1
c
0cezx, PLO) X1roenrX2m m0d £,
(c,q):l X1-"*X2n=Xprincipal

= P,(log X) X2 + O.(X*/3%%), (4.0.3)

where x* mod ¢(x) denotes the primitive character inducing X, Xprincipal S the prin-
cipal character mod ¢, P, is a certain degree n polynomial with leading coefficient

q(2Cy)" n!
mvol(To(q))’
Extrxn = X1(=1) -+ xn(=1) is a sign, and v is an arithmetic weight given by
v(f,x;n) = T7(X) Z X(m)ﬂ(nl)Y(”z)ﬂ(%))\f(ns)”ép- (4.0.4)
nina2n3z=mn,
(n1,9)=1

Actually, the results apply more generally to any discrete and cofinite subgroup I'
of SLy(R) with cusps. The proof has as a key input the analytic properties of resolvent
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operators and is inspired by the approach introduced by Petridis and Risager [78].
There are however some substantial new difficulties which arises for higher weights,
due essentially to the fact that I' o v — L(f,v00,k/2) is not additive for higher
weight. This leads to the analysis being much more involved and essential new ideas
were needed.

Remark 4.0.3. One natural question to ask (which has been asked on many occasions)
is whether one can generalize the above results to additive twists of Maafl forms. There
are some serious obstacles when trying to generalize the approach taken in this paper
to the Maaf case, since holomorphicity plays a crucial role. We do however have some
ideas on how to use the dynamical methods of Bettin and Drappeau [§] to the deal
with the Maaf} case as well. This is work in progress (with Drappeau).

Remark 4.0.4. As mentioned above, we rely on the analytic properties of Eisenstein
series to calculate the moments of the additive twists, but there is another possible
approach; Bettin [7] succeeded in calculating all moments of the Esterman function
(which is an analogue of the additive twists of L-functions of holomorphic cusp forms)
using a classical approximate functional equation approach. It would be interesting
to see whether this can be done for additive twists of cuspidal automorphic forms as
well. This would give another approach to the Maafl case and maybe allow one to
obtain results for function fields as well.

Paper B: On the distribution of periods of holomorphic cusp
forms and zeroes of period polynomials

In this paper we study the distribution of period polynomials attached to higher weight
cusp forms. Let f € Sg(I'o(N)) with k > 4 even. Then we define the period polyno-
mials of f as

o0
rpn(X) ::/ o) (= — X)F2d,
Yoo

for v € To(N). These polynomials are the natural cohomological generalization of
modular symbols to higher weight because of the Eichler—Shimura isomorphism. In
this paper we study the properties of ., ¢ as v varies and f is fixed. In analogy with
we order the matrices « by the size of their lower left entry. First of all we
study the location of the zeroes and obtain a result saying that the zeroes all cluster
together close to each other.

Theorem 4.0.5 (Paper B, Theorem 1.6). Let f € Si(To(N)) be a newform of even
weight k > 6 and level N. Then ry ~ is a polynomial of degree k—2 for anyy € T'o(N).
Furthermore, all zeroes xo of ry . satisfy

zo = a/c+ Op((Jajc| + 1)F~1/(k=2) =2/ (k=2))
where a,c are the entries in the left column of v (i.e. yoo = a/c).

This result complements results of Jin, Ma, Ono and Soundararajan [52], which
handle the case of v = ((1) _01) fixed and f varying.
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Inspired by conjectures of Mazur and Rubin [73] on modular symbols, we also
study the joint distribution of the coefficients of the period polynomial. The distri-
bution is highly degenerate as it is the transformation of two independent random
variables uniformly distributed on R/Z, and thus in particular, very far from normal.
The transformation involved is a special value of additive twists of the L-function of
f.

More precisely we put
Q. :={a/ceQ|a,c€Zsp,(a,c)=1,0<a <c}, (4.0.5)
and

us(afe) = (ugola/c).upa(afe).... ugs(a/c)) (4.0.6)

T
::< f(Z)dZ, f(Z)ZdZ7, f(Z)Zk2d2,'> c (Ckfl’
a/c a/c ajc

which one checks are the coefficients of the period polynomial associated to v (up to
explicit constants), where yoo = a/c. Then we get the following result regarding the
distribution.

Theorem 4.0.6 (Paper B, Theorem 1.1). Let f € Sp(To(N)) be a cusp form of even
weight k > 4 and level N. Then we have for any fived box A C CF=1 that

#{2 e Q.| 499 e A}

Crch—2
#Qe

as ¢ — 0o with N|c, where Y, Z are two independent random variables both distributed
uniformly on [0,1), F :[0,1) x [0,1) = C*~1 4s given by

P (F(Y,Z) € A) +o(1)

F(y,Z) = L(fvyvk_l) (172a"'azk_2)T7

and C, = il(k—1)

(27’r)k’2 .

(Here P (F(Y,Z) € A) denotes the probability of the event F(Y,Z) € A).

We also obtain results for general cofinite, discrete subgroups of I'; but then we
have to take an extra average over the lower left entries of the matrices v or equiv-
alently over the denominators of the twists a/c. The idea of the proof is to write
the coefficients of the period polynomial as a linear combination of special values of
additive twists L(f,a/c,l) with l =1,...k — 1. Now the results follows from a rather
careful analysis of the analytic properties of additive twists and uniform bounds for
Kloosterman sums.

Paper C: A note on additive twists, reciprocity laws and
quantum modular forms

In this paper we study generalizations of certain reciprocity laws proved by Conrey
in an unpublished paper [18] and connections to quantum modular forms. We study
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the case of holomorphic cusp forms of even weight and obtain a reciprocity relation
of the following kind, for ¢ # [ primes:

S LKD)~ S LU xGE/2x(—e),  (40.7)
x mod g, x mod [,
X primitive X primitive

where L(f, X, s) denotes the analytic continuation of ) -, ar(n)x(n)n™° with as(n)
the Fourier coefficients of f € S,(I'g(1)), 7(X) is a Gaufl sum and x runs through
primitive Dirichlet characters of conductor, respectively ¢ and I.

We also obtain results when [, g are replaced by arbitrary integers and where we
allow f to have non-trivial level. In this case the result is not as clean, but takes the
following form.

Theorem 4.0.7 (Paper C, Theorem 2.1). Let f € Sp(To(N)) be a primitive newform
of even weight k and level N with eigenvalue wy under the Fricke involution. Then

we have the following reciprocity relation for any pair of integers 0 < | < q with
(¢, Nl) = 1;

S 2 M gL k2D (4.0.8)

x mod ¢q
wr

@(IN)

> vl X IN/O)) LI, Xk 2)X(—q)

x mod IN

= L(f,k/2) + O0;(1l/q),

where x* mod ¢(x) denotes the primitive character inducing x, L(f, x, s) s as above
and the arithmetic weights v are given by

_ — 1—k/2

v(fxom) =1 D x(m)p(m)X(ne)u(ne)ag(ng)ny 2.

nina2n3=mn,
(n1,N)=1

The proof is inspired by the approach of Bettin in [6], and begins by relating the
twisted sums in the reciprocity relation to additive twists;

Lfofakf2) = 5 3 vl afebO) L /2 (a), (4.0.9)

x mod ¢q

with x* mod ¢(x) and v as above. Now the proof boils down to the fact that
L(f,-,k/2) as a function on Q defines a quantum modular form in the sense of Za-
gier [105]. This is a result of independent interest.

Theorem 4.0.8 (Paper B, Theorem 4.4). Let f € Sp(To(N)) be a cusp form of even
weight k and level N. Then the map Q — C defined by

Q3r— L(f,rk/2)
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is a quantum modular form of weight zero for To(N). More precisely, for v € T'o(N)
and r € Q with yr # oo and yoo # oo, we have

L(f7’y7“,k/2)—L(f77’7]€/2)
(PP (comi)in(ky2 + )

= L(f,v00,k/2) + ; (7)) r'(k/2)
M (Y (—2mi)yiT(k)2 — )

L ey TR

j=1

L(f,rk/2+ j)

L(f,y00,k/2 —j), (4.0.10)

where ¢ is the lower-left entry of .

If we put N =1 and v =S = (9 7!), then the left hand encodes exactly the
difference between the left- and right hand side of the reciprocity relation . Now
quantum modularity implies that this difference is archimedean in nature and thus
it can be estimated in terms of the archimedean size of ¢/I, which yields the wanted
reciprocity relation. For general level, we use quantum modularity with respect to
the Fricke involution defined as;

Wf(z) = NF2.7Ff(—1/(N2)). (4.0.11)

Remark 4.0.9. A natural question is whether one can extend the results to additive
twists of Maafl forms. We have work in progress that hopes to answer this question in
the affirmative. Secondly, we observe that the above reciprocity formula corresponds
to “GLso twisted by GL1”. It would be interesting to obtain reciprocity formulas in
the case GL, x GL; for some n # 2. Especially the simplest case n = 1 begs for an
answer.

Paper D: Residual equidistribution of modular symbols and
cohomology classes for quotients of hyperbolic n-space

In this paper we study the residual distribution of modular symbols and more gener-
ally the residual distribution of cohomology classes for quotients of higher dimensional
hyperbolic space. The question of residual distribution of modular symbols seems to

appear for the first time in unpublished work of Mazur and Rubin [71].
For f € S3(T'o(N)) a Hecke-eigenform, we define the modular symbols map as

o fyi=2mi [ ),
for € Q. Now if we fix a prime p, then it is a fact that there exists numbers QF

such that N
m;iip(a/q) _ <a/q7f> Qi_a/qvf> c7Z

for all a/q € Q with N|g, but not all values are divisible by p. In this setting it
is conjectured by Mazur and Rubin that the values of m?p modulo p on the sets
{a/q|0< a<gq,(a,q) =1} tend to the uniform distribution on Z/pZ as g — cc.
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This conjecture was settled by Lee and Sun [59] using dynamical methods after
taking an extra average over ¢g. In this paper we give a simple automorphic proof of this
statement, which furthermore allows for a number of refinements and generalizations.
In some very special cases we are also able to resolve the full conjecture without the
extra average.

Theorem 4.0.10 (Paper D, Theorem 3.1). Let N >5 and p | N — 1 be odd primes.
Then there exists a new form f € Sa(To(N)) of weight 2 and level N such that the
values of m}"p on {g | (a,q) = 1,0 < a < q} equidistribute modulo p as ¢ — oo with
Nlq.

To state the result we obtain in general, let fi,...,f; be a Hecke basis for
S2(T'o(N)) and consider the following random variable

myp(a/q) = (my (a/q),....mp (a/q).a/q)

defined on the outcome space Qg = {a/q |0 <a<q< Q,(a,q) =1,N|g} (endowed
with the uniform probability measure). Then we have the following simultaneous
distribution result.

Theorem 4.0.11 (Paper D, Theorem 1.2). The random variables my , defined on
the outcome spaces Q¢ are asymptotically uniformly distribution on (Z/pZ)* x (R/Z)
as () — oo.

Furthermore, we obtain results for higher dimensional hyperbolic spaces. So let
I' € SO(n + 1,1) be a discrete subgroup such that I\H"*! has finite volume and a
cusp at oo (here we use the usual action of SO(n + 1,1) on H"*!). Then we will
study the distribution of unitary characters of I, which is exactly computed by the
cohomology group H'(I',R/Z). We will now describe a slightly simplified case of our
most general result.

Fix a prime p and let wy, ..., wq be an Fj-basis for Hllw (T',Z/pZ) (corresponding
to unitary characters of order p trivial on the stabilizer I'o, of co which we assume for
simplicity to be exactly the translation by Z™). As in the case n = 1, we can associate
an invariant yoo € R™ U {oo}/Z™ using the action of I" on the cusps of T\H"*!. Now
given X > 0, we consider

w(y) = (w1(7), - - - wa(y),70)

as a random variable with values in (Z/pZ)¢ x (R™/Z"™) defined on the outcome space
Tr(X) ={y€Tl\['/T | 0 < ¢y < X},

endowed with the uniform probability measure. Here c, is a certain invariant of ~,
which for n = 1 reduced to the absolute value of the lower-left entry of v (actually this
remains true using the Vahlens model of SO(n+1,1)). Then we obtain the following
result.

Theorem 4.0.12 (Paper D, Theorem 1.4). The random variables w defined on the
outcome spaces Tr(X) are asymptotically uniformly distributed on (Z/pZ)% x (R™/Z"™)
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as X — oo. This means in concrete terms that for any residue a € (Z/pZ)% and
B C R™/A, we have

as X — 00.

To phrase the results we obtain for general elements of H%OC (I, R/Z) requires some
more notation, and we will refer to the paper itself for details. The proof relies on
realizing the generating series for the Weyl sums for the distribution question above as
the Fourier coeflicients of twisted Eisenstein series. This idea can be seen as a discrete
analogue of the method pioneered by Petridis and Risager in |78]. We also obtain
results when we order the matrices of I" by trace, in which case the proof proceeds by
an application of an appropriate trace formula.

Paper E: Sparse equidistribution of hyperbolic orbifolds

In this paper we study a certain refinement of a recent distribution result on geometric
invariants of real quadratic fields due to Duke, Imamoglu and Téth [25]. The set-
up is as follows. Let E/Q be a real quadratic field of discriminant D > 0 with
narrow class group CIB Associated to a € Clg there is an oriented, closed geodesic
Ya on SLo(Z)\H, which we will call the Heegner cycle of a. In [25] a hyperbolic
orbifold T'y\ N, is defined which boundary is exactly 7,. It is shown that if we choose
a genus Hp C Cl}, (ie. a coset of (Cl})?) for each D > 0, then the orbifolds
{Tq\ N, | a € Hp} equidistribute (with respect to the hyperbolic measure) as D — oo
when projected to the modular surface SLo(Z)\H.

To prove this, we use Weyl’s criterion; it is enough to show cancelation in the

Weyl sums
dxdy
3 / o(2) 28
Fa\WNa )

acHp

where ¢ is either a Hecke-Maa$l form or E(z,1/2 + it). By some simple Fourier
analysis it suffices to show cancelation in Weyl sums for all of Clg, but twisted by
genus characters. The proof in [25] proceeds by relating the relevant Weyl sums to
Fourier coefficients of half-integral Maafl forms using an extension of the methods of
Katok and Sarnak [54]. It is a general limitation to the Katok—Sarnak approach that
one can only treat twists by genus characters.

The main insight of this paper is that one can relate Weyl sums twisted by general
class group characters to central values of Rankin—Selberg L-functions in the spirit of
Waldspurger. The proof of this proceeds by relating the twisted Weyl sums to certain
automorphic periods, which can then be related to Rankin—Selberg L-functions using
the refinement of Waldspurger’s work due to Martin and Whitehouse [69]. This
requires a careful local analysis at the archimedean place. This allows us to prove the
following refinement of the results of |25].
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Theorem 4.0.13 (Paper E, Theorem 1.1). Fiz § > 0. For each positive fundamental
discriminant D choose a coset CH with H = Hp a subgroup of CIE satisfying #H >
D=°h}; and C € Cl},. Then for each fived continuity set B C SLo(Z)\H,

ZaeCH VOI(Fu\Na N SLQ(Z)B) - VOI(B)
ZaeCH VOI(Fa\Na) N 7T/3

as D tends to infinity for § < % =~ 0.0001888 wunconditionally and for § < %
assuming the generalised Lindeldf hypothesis. Here the volume is with respect to the

hyperbolic measure dz;ly,

+op,s(1)

Remark 4.0.14. Our approach opens up for even more refinements. If one could define
a level ¢ version of the hyperbolic orbifolds I';\V, and prove the required properties,
then one could prove sparse equidistribution in the level aspect as in [63]. This is
work in progress (with Humpbhries).

Paper F: Hybrid subconvexity for class group L-functions
and uniform sup norm bounds of Eisenstein series

This paper is concerned with what we call the uniform sup norm problem, which asks
for bounds of the type
sup E(z,1/2 4+ it)| <c.e (|t| +1)77<, (4.0.12)
zeC
with an explicit dependence on C' C H. If we assume that y > 1, then it follows quite
easily from work of Young [103] that we have the bound y'/2(|¢| 4+ 1)3/8+¢. The main
technical contribution of the paper is the following improvement.

Theorem 4.0.15 (Paper F, Theorem 1.6). For z € F, the standard fundamental
domain for SLa(Z)\H, we have

E(z,1/2 +it) <. y'/2(|t| + 1)/3F¢, (4.0.13)
for any e > 0.

Without the explicit dependence on y, this result is due to Blomer [9] building on
work of Titchmarsh [96]. Note that the factor y'/2 is the same as what you get from
Young’s method, and this is actually optimal: we prove that any uniform sup norm
bound for Eisenstein series of the form y°t has to satisfy § > 1/2, since for y very
large the constant term in the Fourier expansion becomes dominant.

The motivation for studying the uniform sup norm problem is that it has appli-
cations to subconvexity of class group L-functions. The connection between the sup
norm problem and subconvexity was noticed along time ago by Sarnak [87, (4.19)],
but our results together with the recent work of Hu and Saha [43] seem to be the first
times this connected has been utilized. The idea in our paper is to use a classical
formula due to Hecke to transfer a sup norm estimate to a subconvexity bound. To
do this we need to prove certain upper bounds for sums over Heegner points (we avoid
any use of Duke’s Theorem and actually the versions available in the literature do not
suffice for our purposes), and from this we obtain the following.
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Corollary 4.0.16 (Paper F, Corollary 1.7). Let K/Q be a quadratic extension (real
or imaginary) of discriminant D and x a (wide) class group character of K. Then

L (1/2 +it, x) <o |D[Y4Fe (|t +1)Y/3+=, (4.0.14)
and
> L (1/2+it,x)|* < [DIYE ([t 4 1)/, (4.0.15)
x€CI(K)

for any e > 0, where C/I(\K) denotes the class group characters of K.

This hybrid subconvexity bound beats the current record due to Wu [100] in
certain regimes of ¢t and D. Combining the two yields the following “state of the art”
hybrid subconvexity bound.

Corollary 4.0.17 (Paper F, Corollary 1.10). Let K/Q be a quadratic extension of
discriminant D and x a (wide) class group character of K. Then we have

| D|M/AFE ([t 4 1)1/3 =, fort > D™

(\D\l/“ (1t + 1)1/2)1—1/40 fort < |D|3/74 ; (4.0.16)

Li(1/2 +it,x) <« {

for any € > 0.

Paper G: Small scale equidistribution of Hecke eigenforms
at infinity

In this paper we study small scale mass distribution of holomorphic cusp forms. More
precisely, we investigate the distribution of mass of holomorphic cusp forms high in
the cusp.

Let f € Sk(SL2(Z)) be a cusp form of weight k and level 1, and let ¢ be a test
function. Then we are interested in whether we have

3
(Mg—1yo 0, 4" | f1?) ~ =(Mp_1)e9), 1)

—
as k — oo, for some fixed 6 > 0 where My is a certain squeezing operator defined by
Mpy(x +iy) = (x +iy/H), x+iy € F,

where F is the standard fundamental domain for SLy(Z)\H. When 6 = 0, this
has been proved by Holowinsky and Soundararajan [42] and is known as QUE for
holomorphic forms. Physicists expect that mass equidistribution should hold for all
0 < 1, with 8 = 1 corresponding to the de Broglie wavelength.

Our first result is that for § > 1 mass equidistribution fails, as predicted. Secondly
we show that for test functions ¢ supported on B := {x +iy € F | y > 1} and
sufficiently nice, mass equidistribution holds on average over f € S;(SL2(Z)) and
k all the way down to the Planck scale (that is above the scale of the de Broglie
wavelength).
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Theorem 4.0.18 (Paper G, Theorem 1.2). Let 0 < 6 < 1 and . Then for sufficiently
nice test function 1 supported in B, we have

S > Lsym )| (Moo y* |1 P) —

k=<K feHy

3w

<M(k71)9w7 1>|2

o > D Lt sym* My nyow, DI |, (4.0.17)

k=<K feH,
where Hy, is a Hecke basis for Si(SLa(Z)).

The left hand side (4.0.17)) is known as the quantum variance and was introduced
by Zeldich [106]. If we restrict further to test function 1, which are orthogonal to 1,
then we can actually obtain an asymptotic formula for the quantum variance.

Theorem 4.0.19 (Paper G, Theorem 1.3(i)). Let 0 < 8 < 1. There exists a Hermi-
tian form By defined on sufficiently nice test functions supported on B and orthogonal
to 1 such that

Z Z L(l,sym2f)|<M(k_1)“/J,yk|f|2>|2

k<K feHy
~ Bo(t, ) ( / u(y)y—edy) K,

for v as above.

For 6§ = 0, this was proved by Luo and Sarnak [65]. The Hermitian forms By
satisfy a very interesting “phase transition” at § = 1/2. We summarize the properties
of By as follows.

Theorem 4.0.20 (Paper G, Theorem 1.3(ii)-(iv)). 1. The Hermitian forms By have
three different regimes in the sense that By is constant on each of the three in-
tervals 0 < 6 <1/2,0=1/2 and 1/2 <0 < 1.

2. The decomposition of test function into the cuspidal and the Fisenstein part is
orthogonal with respect to By for all 0 < 6 < 1. Furthermore By restricted to
the Fisenstein part is independent of 6.

3. The Hermitian forms By can be extended continuously to the larger set 15C5%(M).
If ¢; are Hecke—Maaf3 cusp forms with eigenvalue s;(1—s;), then the Hermitian
form satisfies Bo(1po1,1p¢p2) = 0 unless ¢1, o are both even. If ¢; are both
even, then

71((m ), (Mo, () 1o, s,
(mn)1/2 0

(m,n),

Bo(1pgr, 1pgs) =4 >

m,n>1

where

S S > T /a_ N\ dy
I;°% (m,n) :/ Ksl—1/2(Qﬂy)KSQ—1/2(27Ty)f9,m,n(y); (4.0.18)

max(m,n)
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with
L, if0<60<1/2,
fomn(y) = e 20V ™40 - yrg — 179,
0, if 0 >1/2.

In particular, we obtain the following quite surprising consequence of number
theoretic nature.

Corollary 4.0.21 (Paper G, Corollary 1.4). If ¢ is an even Hecke—Maaf$ cusp form
with eigenvalue s4(1 — s¢) and Hecke eigenvalues Ay(n), then

> 71((m,1))Ag(m)Ag(n) /°° |KS¢71/2(2wy)\2dy > 0. (4.0.19)

T O N -

Remark 4.0.22. Whether the left-hand side of (4.0.19)) has any relation to L-functions
is unclear, but would obviously make Corollary very interesting.
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ABSTRACT. Additive twists are important invariants associated to holomorphic
cusp forms; they encode the Eichler—Shimura isomorphism and contain informa-
tion about automorphic L-functions. In this paper we prove that central values of
additive twists of the L-function associated to a holomorphic cusp form f of even
weight k are asymptotically normally distributed. This generalizes (to k > 4) a
recent breakthrough of Petridis and Risager concerning the arithmetic distribu-
tion of modular symbols. Furthermore we give as an application an asymptotic
formula for the averages of certain ‘wide’ families of automorphic L-functions,
consisting of central values of the form L(f ® x,1/2) with x a Dirichlet character.

1. INTRODUCTION

In this paper we study the statistics of central values of additive twists of the L-

functions of holomorphic cusp forms (of arbitrary even weight). Additive twists of
cuspidal L-functions are important invariants; on the one hand they show up in the
parametrization of the Eichler—Shimura isomorphism and on the other hand additive
twists shed light on central values of Dirichlet twists of cuspidal L-functions.
We prove that when arithmetically ordered, the central values of the additive twists
of a cuspidal L-function are asymptotically normally distributed. As an application
we calculate the asymptotic behavior (as X — oo) of the averages of certain ‘wide’
families of automorphic L-functions;

(1.1) S L),

wEFy, cond(m)<X

where cond(7) denotes the conductor of the automorphic representation 7, the asterisk
on the sum denotes a certain weighting and the families consist of isobaric sums of
twists;

]:n:{(ﬂ—f®X1)EHBH(7Tf®X2n) | Xl"'XZn:1}7
where X1, ..., X2n are automorphic representations of GL1(Ag), 1 denotes the trivial
automorphic representation of GL;(Ag) and 7y is the automorphic representation of
GL2(Ag) associated to a fized holomorphic newform f (suppressed in the notation).

For the precise statements of our main results, see Theorem 1.1 and Corollary 1.9
below.

Date: December 3, 2020.
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Our distribution result is a higher weight analogue of a recent result of Petridis
and Risager [29], which settled (an averaged version of) a conjecture due to Mazur
and Rubin [23] concerning the normal distribution of modular symbols (a different
proof was later given by Lee and Sun [21] using dynamical methods).

The conjecture of Mazur and Rubin concerns the arithmetic distribution of the mod-

ular symbol map;
a

{o0,a} = (a, f) := 2m’/ f(z)dz,

o0
where f € 83(T'g(gq)) is a cusp form of weight 2 and level ¢ and {oo, a} is the homology
class of curves between the cusps co and a. Petridis and Risager prove that this map
is asymptotically normally distributed when ordered by the denominator of the cusp
a and appropriately normalized [29, Theorem 1.10]. See Section 1.3 below for more
background on the conjectures of Mazur and Rubin and their motivation.

1.1. Statement of results. We will now state a special case of our main result and
refer to Theorem 5.1 below for the most general version. Let f € Si(I'g(¢)) be a cusp
form of (arbitrary) even weight k and level ¢ with Fourier expansion (at co) given by

()= asn)g", g =

n>1

Then we define the additive twist (by r € R) of the L-function associated to f as

ns
n>1

where e(z) = €*™®. The additive twists converge absolutely for Re s > k“ and when

r € Q, they admit analytic continuation. If furthermore r is T'g(q) equwalent to oo,
we have simple functional equations relating s <+ k — s (see Section 3.3 below for
details). For k = 2 the additive twists coincide with modular symbols (see Remark
1.5 below for details).

Now we will explain what we mean by saying that additive twists are asymptoti-
cally normally distributed: Given X > 0, we consider L(f, -, k/2) as a random variable
defined on the following outcome space endowed with the uniform probability mea-
sure;

(1.2) T(X):={a/ceQ|0<a<c<X, (a,c)=1,q]c}.
Then our main theorem is the following.

Theorem 1.1. Let f € S§x(T0(q)) be a cusp form of even weight k and level q. Then
for any fixed box Q C C, we have

L(f,a/c, k/2)  #Hafe e T(X) | s € )
09 P (G g <0) = FT(X)
=P(Nc(0,1) € Q) + o(1),
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as X — oo, where Nc(0,1) denotes the standard complex normal distribution and the
variance is given by

(4m)*|Lf11?
(k—1)!vol(To(q))’

with ||f|| the Petersson-norm of f and vol(T'o(q)) the hyperbolic volume of T'o(q)\H.
(Here P(Nc(0,1) € Q) denotes the probability of the event Nc(0,1) € Q.)

(14) Cf =

Remark 1.2. With our methods, we can generalize the above theorem in three aspects,
which can all be combined:

(1) We can consider more general outcome spaces corresponding to twists at an
arbitrary cusp. Note that T'(X) corresponds exactly to additive twists at
cusps, which are I'g(g)-equivalent to co. See (5.1) below for the definition of
the outcome space for general cusps.

(2) We can consider cusp forms for a general discrete and co-finite subgroup of
PSL2(R) with a cusp at co.

(3) We can consider the joint distribution of an orthogonal basis of cusp forms.

See Theorem 5.1 below for the most general version of our main theorem, incorporat-
ing all of the three above aspects.

Remark 1.3. The constant C/ is a higher weight analogue of the variance slope defined
by Mazur and Rubin (see [29, Theorem 1.9]). Note that Cy is independent of the
embedding f < Sg(To(V)).

Remark 1.4. Independently, a different proof of Theorem 1.1 in the special case of
trivial level ¢ = 1 was obtained by Bettin and Drappeau [2] using dynamical methods
similar to those used by Sun and Lee. It is still an open problem to extend the
dynamical approach to deal with general level, but in return the dynamical approach
of Bettin and Drappeau applies to much more general quantum modular forms in the
sense of Zagier [34]. It is unclear whether the automorphic methods of this paper
can be generalized to deal with quantum modular forms as well. The similarities
and differences between the automorphic and dynamical approach deserve further
exploration.

Remark 1.5. In more concrete terms the above theorem says that for any fixed real
numbers x; < z9 and y; < y2, we have

a ,a/c,k ,a/ck
#{g €T(X)|z1 <Re (W) < x2,y1 <Im (W) < yz}

#T'(X)
. i /:E2 /'!42 e—(12+y2)/2dxdy7
2m Z1 Y1

as X — oo, which is exactly the formulation used in [29]. One can see that restricting
to the case k = 2 and letting f € S2(T'o(¢)), Theorem 1.1 above recovers [29, Theorem
1.10]. Here one has to use the integral representation (3.10) for the additive twist of
the L-function, which shows (a, f) = L(f,74,1), where r, € R represents the cusp a
(i.e. 74 is fixed by the parabolic subgroup T'y).
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1.2. Moment calculations. The proof of Theorem 1.1 uses the method of moments.
The calculation of the moments of additive twists is of independent interest and is
used in the application to automorphic L-functions, in Corollary 1.9 below. In the
course of the paper we will evaluate a number of different moments. In particular
we will prove the following result at the end of Section 5.5, which is exactly what we
need to conclude Corollary 1.9.

Theorem 1.6. Let f € S,(To(q)) be a cusp form of even weight k and level ¢ and n
a non-negative integer. Then we have

(1.5) > IL(f,a/e, k/2)]P" = Pa(log X)X? 4 O (X*/3%¢),
0<a<c<X
(ga,c)=1
where P, is a polynomial of degree n with leading coefficient
q(2C)" n!
mvol(T'o(q))’

with Cy as in (1.4) above.

Remark 1.7. The above moments correspond to additive twists at cusps which are
To(g)-equivalent to the cusp 0 (the set of all such twist is denoted T in (5.1) below).

Remark 1.8. The determination of the moments follows from the analytic properties
of a certain Eisenstein series E"™(z,s) generalizing series introduced by Goldfeld
in [14] and [15]. Determining the location of the dominating pole, the corresponding
pole order and leading Laurent coefficient of the original Goldfeld Eisenstein series
was firstly achieved by Petridis and Risager in [28] using perturbation theory and the
analytic properties of the hyperbolic resolvent. This allowed them to prove normal
distribution for a certain more geometrically flavored ordering of the modular symbols
(ordered by ¢ +d?, where ¢, d are the lower entries of the matrix «). In order to prove
(an averaged version of) the conjecture of Mazur and Rubin, Petridis and Risager [29]
essentially had to derive the analytic properties of the constant Fourier coefficient
of E™™(z,s). This is reminiscent of the Shahidi-Langlands method [13, Section §].
The strategy of proof in this paper is inspired by the overall strategy introduced by
Petridis and Risager.

1.3. Applications to automorphic L-functions. The motivation behind the con-
jectures of Mazur and Rubin was to gain information about the vanishing/non-
vanishing of the central values of the twisted L-functions L(E,y,1) where E/Q is
an elliptic curve and y is a Dirichlet character. By a sufficiently general version of
the Birch—Swinnerton-Dyer conjecture, this is related to the following problem in
Diophantine stability (see [23] for details):

How likely is it that rankz E(K) > rankz E(Q)
as K ranges over abelian extensions of Q7

If x is a primitive Dirichlet character modulo ¢, then the Birch—Stevens formula [23,
Theorem 2.3] relates these central values to modular symbols;

T(Y)L(E’)Ql) = Z 7(a)<a/c7 fE>7

a€(Z/cL)*
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where fg is the weight 2 newform corresponding to E via modularity and 7(X) is a
Gauss-sum. This led Mazur and Rubin to the study of the distribution of modular
symbols, and based on computational experiments, they made a number of conjec-
tures about the distribution of modular symbols, one of which predicted a normal
distribution. In this paper we will not contribute to the other conjectures put forth
by Mazur and Rubin, consult instead [8] and [3, Theorem 9.2].

Following these lines of thinking, we apply our methods to the study of families
constructed from certain twisted L-functions. Given a newform f € Si(I'g(q)) of
weight k£ and level ¢ and a primitive Dirichlet character x of conductor co-prime to
q, we define the multiplicatively twisted L-function of f;

L(f@X,S) :ZM

, Res>1,
nS
n>1

(where Af(n) denotes the nth Hecke eigenvalue of f), which admits analytic continua-
tion satisfying a functional equation. Note that because of the co-primality condition
the above Dirichlet series defines (the finite part of) the L-function corresponding to
the automorphic representation 7y @ x (justifying the notation).

The study of averages of multiplicative twists of cuspidal L-functions has a long his-
tory (see for instance the work of Rohrlich [30], Duke, Friedlander and Iwaniec [9],
and Chinta [5]). Recently Blomer, Fouvry, Kowalski, Michel, Miliéevié¢ and Sawin [3]
have given an extensive account of the second moment theory for such twists. We are
able to obtain new results for these automorphic L-functions:

Combining Theorem 1.6 and the (generalized) Birch—Stevens formula (see Lemma 6.1
below), we obtain asymptotic formulas for the following (arithmetically weighted) av-
erages of certain ‘wide’ families of multiplicatively twisted L-functions, making (1.1)
precise.

Corollary 1.9. Let f € S;(To(q)) be a newform of even weight k and level ¢ and n
a non-negative integer. Then we have for all € > 0

S LY T e B @ X 1/2)

2n—1
C
0<c<LX, SO( ) X1seees X2n mod c, i=1
(c7q):1 X1°*X2n=Xprincipal

(1.6) = P,(log X)X? 4 O.(X4/3+5),

where x* mod ¢(x) denotes the primitive character inducing X, Xprincipal %S the prin-
cipal character mod ¢, P, is the degree n polynomial from (1.5),

Extrmxn = X1(=1) -+ Xn (1)
is a sign, and v is an arithmetic weight given by

(1.7) v(foen) =1(x) > x(na)p(ny)X(n2)u(n2)As(ns)ny>.

nin2n3=mn,
(n1,9)=1

In particular for n = 1, the above corollary reduces to an average second moment
(see Corollary 6.3 below), which was calculated without the extra averaging in [3,
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Theorem 1.17]. Interestingly our methods completely avoid the use of approximate
functional equations.

Remark 1.10. Observe that the sum in the arithmetic weight v can be expressed as
the triple convolution

(B¢.qp=1 X x X ) % (X % ) % (Ap x (%),

This was exploited by Bruggeman and Diamantis in [4] in their study of Fourier
coefficients of the Goldfeld Eisenstein series E1°(z,s). Furthermore for y primitive,
we have

v(fix" e/e(x) =v(f,x. 1) =7(X),

1/2

and in general, we have the bound |v(f, x,n)| < (¢(x)n)'/# using Deligne’s bound for

the Hecke eigenvalues.

Remark 1.11. S. Bettin [1] has considered the Eisenstein case of the above theorems,
which amounts to studying the Estermann function defined as

D(a/c,s) = Z d(n)e(na/c)

)
ns
n>1

where d(n) is the divisor function and a/c € Q. Bettin managed to calculate all
moments averaging over a € (Z\cZ)* using an approximate functional equation. He
similarly applied his results to studying certain iterated moments of central values of
Dirichlet L-functions.

Acknowledgements. I would like to express my gratitude to my advisor Morten
Risager for suggesting this problem to me and for our countless stimulating discus-
sions. I would also like to thank Yiannis Petridis for his time and insight.

2. METHOD OF PROOF

Let f € Sp(To(g)) be a cusp form of even weight k and level ¢. In this section
we will describe the overall strategy of the proof of Theorem 1.1. Our approach is
an extension of the techniques developed by Petridis and Risager in [28] and [29].
We would like to point out that many technical difficulties show up when k& > 4 and
some essential new ideas were needed. This includes using the lowering and raising
operators in the analysis of the recursion formula (see for instance the proof of Lemma
4.8), the automorphic completion step as described in Section 5.1 and the use of what
we call N-shifted Golfeld Fisenstein series defined in (5.8).

2.1. The strategy. We will use a classical result of Fréchet and Shohat [31, p.17]
known as the method of moments; in order to get the sought-after convergence in
distribution, it is enough to show that (after a suitable normalization) the asymptotic
moments (as X — o00) of the central values;

S L(f.a/c.k/2™L(f a/c k]2)",

a/ceT(X)
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agree with those of the standard complex normal distribution.
By a standard complex analysis argument, this can be reduces to understanding the
analytic properties of the following Dirichlet series

(21) Dm,n(f7 S) — Z L(f, Yoo, k/Z()C"’:W ,

Y€l \T'0(q)/T'oo

where yo0 = a. /¢, and a~, ¢, denote the upper-left and lower-left entry of -y, respec-
tively. Note that L(f,vyoo,k/2) and ¢, are indeed well-defined on the double coset
I'o\I'0(¢)/Tw and that v +— oo defines a bijection

Foc\l0(q)/Toe = {a/c € Q[0 <a <, (a,¢) =1, ¢ | ¢} U{oo}.

For the convenience of the reader and since we will care about the error-terms in our
applications (see Corollary 1.9 above), we have in Appendix A included a detailed
exposition of the contour integration argument with explicit error-terms that is used
in this step.

We will derive the analytic properties of D™"( f, s) by studying the following gen-
eralized Goldfeld Eisenstein series;

(22)  E™"(z,s):= Y. L(f.700,k/2)"L(f.700,k/2) Im(y2)*,
7ET s \To(q)

where I'oo = {(§ ) | n € Z} is the stabilizer of co in I'y(g). The series (2.1) and (2.2)
are connected since the constant term in the Fourier expansion of E™"(z,s) (at co)
is given by

/2yl =50 (s — 1/2)
I(s)

D™ (f,s).

For the proof see Lemma 5.6 below. This will allow us to pass analytic information
from E™"(z,s) to D™"(f,s) as one does in the Langlands—Shahidi method.

In order to get information about the analytic properties of E™"(z, s), we will use
ideas from an unpublished paper by Chinta and O’Sullivan [6]; we express E""(z, s)
as a linear combination of certain Poincaré series Ga p,(z,s), which are weight [
automorphic forms. This is known as automorphic completion and will allow us to
employ the spectral theory of automorphic forms.

In particular we will use the analytic properties of the higher weight resolvent operators
to recursively understand the pole order at s = 1 and the leading Laurent coefficient
of Ga,B,i(z,s). The overall strategy can be illustrated as follows:
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1. Analytic properties of higher weight resolvent operators

J/Induction argument

2. Analytic properties of the Poincaré series G4 5 (2, s)

J,A formula for the central value of additive twists

3. Analytic properties of E™"(z, s)

\LFouricr expansion

4. Analytic properties of D" (f,s)

J/Contour integration

5. Asymptotic moments of L(f,a/c,k/2)
\LFréchetfshohat (method of moments)

6. Normal distribution of L(f,a/c, k/2)/(C}logc)'/2.

The rest of the paper is structured as follows; in Section 3 we will introduce the
needed background on weight k Laplacians and additive twists. In Section 4, we will
study the analytic properties of the Poincaré series G4 p,(z,s). In Section 5, we
will prove the normal distribution of additive twists; in order to keep the exposition
as simple as possible, we will restrict to the case of a single cusp form and additive
twists corresponding to the cusp oo and then explain how to extend the methods to
the general setting. In Section 6, we will present applications to certain ‘wide’ families
of automorphic L-functions. Finally in Appendix A, we included a version of contour
integration with explicit error-terms for the convenience of the reader.

3. BACKGROUND: WEIGHT k LAPLACIANS AND ADDITIVE TWISTS

In this section we will recall some standard facts about higher weight Laplacians
and additive twists of modular L-functions. We will work with a general discrete and
co-finite subgroup I' of PSLy(R) with a cusp at co of width 1 (see [16, Section 2] for
definitions). But one does not loose much by restricting to the case I' = T'y(q) :=
{y € SL2(Z) s.t. q | cy} of Hecke congruence subgroups.

3.1. Weight k Laplacians. We will refer to [10, Chapter 4], [25, section 2.1.2] and
[16, Chapter 4] for a more comprehensive account on automorphic Laplace operators.
Let k be an even integer. The space of automorphic functions of weight k with respect
to I' are (measurable) functions ¢ : H — C satisfying

9(72) = jy(2)"g(2), forally €T,

where j,(2) := j(v, 2)/]7(7, 2)| = (cz+d)/|cz + d| with ¢, d the bottom-row entries of
~. Note that we have the cocycle relation;

(31) j’Yl’Y2(Z) :j71(722)j72(z)'
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Given an automorphic function g of weight k, we define the Petersson norm by
ol = [ loC:)PduCe)
T\H

where du(z) = dxdy/y? is the hyperbolic measure on H. From this we define the
Hilbert space of all square integrable weight k automorphic functions;

L*(T', k) := {g automorphic of weight k with respect to I' s.t. ||g|| < oo}.

(modulo the kernel of || - ||) with inner-product given by

(9,1} = / LICREYCE)

for g,h € L*(T, k). Maaf} defined raising- and lowering operators, which maps between
spaces of different weights. In terms of local coordinates they are given by

g k

g k

for z € H (acting on, say, smooth automorphic functions).
The raising and lowering operators are adjoint to each other in the following sense;

(32) <Kkgkv hk+2> = <gk7 Lk+2hk+27 >

and satisfy the following product rule;

Kivi(grg) = (Krgr) gt + 91 (Kig1),
(3.3) Ly i(hihy) = (Lihi)h + hi(Liha),

where gg, g, b, h; are smooth automorphic functions of appropriate weights.

Remark 3.1. In most modern expositions the raising operator is denoted Ry, (see [10,
Chapter 4]), but in order to avoid confusion with the resolvent operator, we follow
the notation of Fay [12]. We note that our definition of the lowering operator is equal
to minus the one of Fay.

Using these two operators, the weight k Laplacian can be defined as follows acting
on smooth automorphic functions;

(3.4) Ap = KoL + A(k/2) = L2 K + A(—k/2),

where A(s) = s(1 —s). The operator Ay defined on the space of all smooth and
rapidly decaying automorphic functions, defines a non-negative and essentially self-
adjoint operator on the Hilbert space L?(T', k). We denote (by abuse of notation) the
unique self-adjoint extension also by Ay with domain D(Ay) dense in L?(T, k). We
define a Maaf§ form as an eigenfunction ¢ € D(Ag) of Ag.

One sees by direct computation that for f € Si(T), we have (z — y*/2f(2)) €
D(Ag) € L*(T, k) and

(3.5) Liy®%f(2) = 0.
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Combining this with (3.4), we see that y*/2f(z) is an eigenfunction for Aj with eigen-
value \(k/2) = (1 — k/2)k/2.

Using the raising- and lowering operators one can show that
(3.6) specAg C [1/4,00) U{ g =0,A1,..., A} U{AQ), ..., A(k/2)}

where the three sets above correspond to respectively the continuous part consti-
tuted by the Eisenstein series, the constant eigenfunction together with the so-called
exceptional Maaf$ forms (Maa8l forms with eigenvalue 0 < A; < 1/4) and finally holo-
morphic cusp forms S;(I") with 2 < j < k and j = k(2). Recall that by the work of
Selberg when I' = T'g(q) there are always (an abundance of) embedded Maafl forms
(with eigenvalue A > 1/4).

It is a famous conjecture of Selberg that there are no exceptional Maafl forms when
I’ =Ty(q) is a Hecke congruence subgroup. Kim and Sarnak [19] have proved that
the smallest eigenvalue A\; > 0 for a Hecke congruence subgroup satisfies;

1 7\°
>-—(— .
A2 g (64)

We define the singular set of T' as;
(3.7) Pr:={so=1,81,...,8m},

where s; > 1/2 and A(s;) = A, =0,...,m are the exceptional eigenvalues (together
with the trivial eigenvalue A = 0). When T is clear from context, we will shorten
notation and write P = Pr. The quantity s; (where we define s; = 1/2 if P = {1})
will turn out to control the error-terms of our moment calculation in (1.5). Observe
that the bound of Kim and Sarnak shows that for Hecke congruence subgroups, we
have Re s; < 39/64.

3.2. Weight k resolvent operators. Associated to the weight k& Laplacian, we have
the associated resolvent operator, which defines a meromorphic operator;

R(-,k): {s € C|Res > 1/2} — B(L*(T',k)),
where B(L%(T,k)) denotes the space of bounded operators on the Hilbert space
L?(T', k). The resolvent operator is (uniquely) characterized by the property:
(A —=A(s))R(s, k) =Idp2r ), forallse{s'e C|Res >1/2}\(PU{L,...,k/2}).

The analytic properties of weight k£ resolvent operators have been studied intensively
by Fay in [12]. We will however not use any of these deep results.

It follows from general properties of resolvent operators and (3.6) that R(s,k)
defines a meromorphic operator in the half-plane Re s > 1/2 with poles contained in
the set PU{1,...,k/2} (which is why we called P singular). Furthermore for any
Ao = AM(wp) with Rewy > 1/2, we have the following representation in a neighborhood
of wo;

P
(3.8) R(s,k) = —22% 4+ Riep o (5, k),

S — Wo



CENTRAL VALUES OF ADDITIVE TWISTS OF CUSPIDAL L-FUNCTIONS 69

where Py, i is the projection to the eigenspace of Ay corresponding to the eigenvalue
Ao (which might be empty) and Ryeg w, (s, k) is regular at s = wy.
Finally we also quote the following useful bound on the norm of the resolvent [16,
Appendix A].
Lemma 3.2. For s {s' € C|Res > 1/2}\(PU{1,...,k/2}), we have
I< -

~ dist(A\(s),spec(Ag))’

where || - || is the operator norm and dist(-,-) is the distance function.

[1R(s, k)

3.3. Additive twists of cuspidal L-functions. Fix a discrete and co-finite sub-
group I' of PSLy(R) with a cusp at infinity of width 1 and let f € Sg(T') be a cusp
form of even weight k& with Fourier expansion (at co) given by

f(2) = as(n)q".

Then we define the additive twist (by r € R) of the L-function of f;

ag(n)e(nr)
L = -
(Fir8) =D =2
n>1
where e(z) = 2™, We also define L(f, 0, s) = 0.
For all r € R, the above Dirichlet series converges absolutely for Res > (k +1)/2 by
Hecke’s bound [16, Theorem 3.2];

(3.9) Z lay(n)]? <5 X*.
n<X

Furthermore if r corresponds to a cusp (i.e. r is fixed by a parabolic subgroup of T'),
then L(f,r, s) admits analytic continuation to the entire complex plane.
Associated to additive twists by real numbers of the form a/c = yoo with v = (’é Z) €
I', we define the completed L-function as;

c

A(f,a/e,s) :==T(s) (27T>S L(f,a/c,s).

These completed L-functions admit analytic continuation, which satisfy the following
functional equation (generalizing [18, Lemma 1.1], see also [20, Section A.3]).

Proposition 3.3. For v € T, the completed L-function A(f,a/c,s) admits analytic
continuation to the entire complex plane, which satisfies the functional equation
A(f,a/c,s) = (=) 2A(f,—d/c,k — s),

where a/c = yoo and —d/c =y 1oo.

Proof. We mimic Hecke’s proof of analytic continuation and functional equation of
cuspidal L-functions. In the range of absolute convergence of L(f,a/c,s), we have
the following period integral representation;

(3.10) / " fafet v/ = A(f.afe.s).
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If we let z, := —d/c — 1/(iyc) then we have the following two relations;
a b . . N —1
Yoy =\ g) = eletiy/e (v z) = —(iy)T
This yields
oo ‘ . dy
| faerivren
0 Y
1 1
) dy . _.dy
Gry = [ faerivey (0 [ pdfer iy,
0 0

using modularity of f and a change of variable y +— 1/y. Now we get analytic
continuation to the entire complex plane by the vanishing of f at the cusps a/c = yoo
and —d/c = v~ !oo. Furthermore (3.11) yields the functional equation immediately.
This completes the proof. O

Remark 3.4. In the special case I' = I'y(g), the above proposition applies to additive
twists by rational numbers a/c where (a,c¢) =1 and ¢|c. The functional equation for
twists by general rational numbers is much more involved, see [8, Theorem 3.1].

3.3.1. The convezity bound for additive twists. As a basic application of the func-
tional equation, we will derive a preliminary bound for the central value (s = k/2)
of additive twists by a/c, which are I'-equivalent to oo, using the Phragmén-Lindelof
principle [17, Theorem 5.53]. This is known as the convezity bound.

By the absolute convergence of L(f,a/c,s) for Res > (k + 1)/2, we get for any
e>0

A(f,aje, (k+1)/2 + e+ it) <. F/2H1/2+e

where the implied constant also depends on f (here we also use Stirling’s approxi-
mation, which shows that T'(k/2 4+ 1/2 + ¢ + it) is bounded in ¢). By the functional
equation, we derive similarly that

A(f,afe, (k—1)/2 — e +it) < cF/2H1/2+e,
Finally by the period integral representation (3.10), we get the bound
A(f,a/c,s) <. 1,
for (k—1)/2—e<Res<(k+1)/2+e¢.
Thus the Phragmen-Lindel6f principle applies and we conclude that
(3.12) L(f,a/c,k)2) <. cF/2H1/2re=h/2 — (1/2+e

Although this is a crude bound, it shows together with
#{(a,c)|0§a<c,0<c§X, <Z I) EF} <r X2

(see [16, (2.37)]) that the main generating series D™"(f, s), defined in (2.1) for ' =
To(g) and in (5.4) for general T, converges absolutely (and locally uniformly) in some
half-plane Re s >, ,, 1 to an analytic function.We will later see (Corollary 5.8) that
in fact additive twists satisfy a Lindeldf type bound; L(f,a/c, k/2) <. ¢® foralle > 0.
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3.3.2. Additive twists and the Eichler—-Shimura isomorphism. The additively twisted
L-functions show up in many papers in the analytic theory of L-functions in the
disguise of the Voronoi-summation formula (which is equivalent to the functional
equation for additive twists), but they also have arithmetic significance in themselves
as they appear in the Eichler—Shimura isomorphism. We recall how this isomorphism
is constructed following [33, Section 8.2].

Let f be a cusp form of weight & and level N and let v € T'g(N). Then we can
associate the following (k — 1)-dimensional real vector

o0 (o) oo
up(y) = (Re f(z)d&Re/ f(2)zdz,...,Re f(z)zk_2dz> .
Yoo Yoo Yoo
The map uy : I' — R*¥~! defines a parabolic co-cycle in group cohomology, i.e. an
element of ZL(T, X) in Shimura’s notation where X = R¥~! is a certain T-module.
From this we get a map

f +— {cohomology class of us} € Hp(T', X),

which by [33, Theorem 8.4] induces an R-linear isomorphism from Si(I") to the par-
abolic cohomology group HL(T, X). This is what is known as the Eichler—Shimura
isomorphism and it can also be described in terms of the period polynomials, which
were introduced by M. Eichler [11];

1 (o]
ofr(X) = ——+ 2)(z — X)F2dz.
12 X) = gy | SR

Note that the entries of us(vy) are the real parts of the coefficients of o7 (X), up
to a scaling by binomial-coefficients. The theory of period polynomials has been
used to prove important rationality results for (multiplicative twists of) cuspidal L-
functions [22].

Now for any 0 <[ < k — 2, we have

()t = / " fafe+ iy)(aje + iy)dy

(3.13) ¥ (l) (/) —2L(fafe,j+1)
| 2 Camgpri He/ed +1)

which shows that the special values of additive twists encode the Eichler—-Shimura
isomorphism. This formula was the starting point for the author in [27], where the
distribution of the Eichler—Shimura map is determined.

4. POINCARE SERIES DEFINED FROM ANTIDERIVATIVES OF CUSP FORMS

In this section, we will construct a certain Poincaré series Ga g (7, s) starting from
a fixed holomorphic cusp form. Then we will study the analytic properties of these
Poincaré series, which will be crucial in proving our main results. The method intro-
duced for studying these Poincaré series might have independent interest.
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Let T' be a co-finite, discrete subgroup of PSLa(R) with a cusp at co of width 1
and f € Si(T") a cusp form of even weight k. Then we define for n > 1;

Ln(2) = In(z: f) = / / / / Feo)dzodz . de,

and Io(z) := f(z). It is clear that we have I}, ,, = I, and thus I, is the n-fold
antiderivative of f which vanishes at co. By taking derivatives, we see that

(4.1) L.(2) n—l /f — 2)" duw.

Furthermore we let A, B denote two multi-sets (sets where elements have multi-
plicities) with all elements contained in {0, ..., %k/2}. We call such a multi-set positive
if all elements are positive or if the multi-set is empty. We let |A| and |B| denote the
sizes of the multi-sets counted with multiplicity.

For A, B multi-sets of the above type and [ an even integer, we define

(4.2) GA’BJ(Z,S) = Z j,y(z)—l <H (Ia(;jt>1> (H I&(:;)) Im(’yz)s+a(A’B),

YEL\T acA beB

B) := (gkﬂ—a> + (ék/Q—b).

We will see below that these series converges absolutely when Res > 1. We observe
that by (3.1) these Poincaré series are (formally) automorphic;

where

GA,B,Z('YZ, 8) = j’Y(Z)lGA,B,l(Zﬂ S)a v E I
The scaling «(A, B) has the nice property that
(4.3) G augoy,B,1(2,8) = Y2 F(2)Ga i k(2 5),
(4.4) Ga.Bufoyi(2:8) =y F(2)Gaisk(2,9),

which follows from the modularity of f.
Observe that with A and B as above, we always have «(A, B) > 0, which will be
crucial in many argument. We also have the following symmetry

(4.5) GA,BJ(Z,S) = GB,A,—Z(Z7§)~
This shows that it is enough to consider the case [ > 0.
Firstly we will show that (4.2) defines an element of L?(T,l) in some half-plane

following unpublished work of Chinta and O’Sullivan [6].

Lemma 4.1. For |A| + |B| > 0 the series Ga,B,(2,s) converges absolutely (and
locally uniformly in z and s) in the half-plane

Res > 1+ |A|+|B|
to an element of L*(T,1).
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Proof. By Hecke’s bound on the coefficients of cusp forms |as(n)| < n*/? (coming
from (3.9)), we have

(k/2 —n)!

(46) ]n(Z) < Z mk/Q_”e_%my < W,

m=1

oo

using that 7! = I'(r + 1) = [~ e"*2"dx. This gives

>

'YGFOO\F
(4.7) <A4,B Z Im(yz)o~ 14~ IBl
YET o\
= E(Z7U_ |A‘ - |B|),

acA

e (ILEG) () e
beB

where s = o + it. Since the non-holomorphic Eisenstein series converges absolutely
for Res > 1, we get that G4 p,(z,s) convergences absolutely (and locally uniformly
in s and z) in the desired half-plane.

For any cusp b of T’ we have by [29, Lemma 3.2]

Z (Irn ,Yo,bz)w < ylfRew7
Id#y€ET oo\

as y — oo and uniformly for Rew € [1 +¢,Y] with Y > 1 and € > 0. Thus we get
using (4.7) the following bound at any cusp b of I' and 0 = Res € [1 +¢,Y]

Ga.B,i(0pz,3)

<AB (H |Ia(0'bz)|> (H |Ib(0'bz)|> Im(UbZ)0+a(A’B) + yl—(0—|A\—\B|).

acA beB

Furthermore (4.6) shows that I,(z) < e ™ as y — oo. At other cusps we see
that I,,(op2) is bounded as y — oo and we conclude that the contribution from the
identity is < y~7 as y — oo in these cases. Thus we conclude for Res > 1+ |A| +|B]|
that G4 Bi(2,5) = 0, as z — b for any cusp b. This implies that G4 B(2,s) €
L2(T,0). 0

4.1. The recursion formula. In order to understand the pole structure of G4 g (2, s),
we will use certain recursion formulas involving the resolvent and the raising and low-
ering operators. First of all we will record how the raising and lowering operators act
on the constituents of Poincaré series.
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Lemma 4.2. Let h : HH — C be a smooth function and l an even integer. Then we
have

Kal(y2) Tm(y2)*7, ()
- (%Z’;(w) In(y2)"* 4+ (s + 1/2)h(72) Imwz)S) Jr (22,
Li[h(vz) Im(v2)% 3, (2) ']
<2iah<vz> In(y2)™* — (s — 1/2)h(72) Im”Z)S) Jr(e)
az Yy

for any v € PSLy(R).

Proof. Using the intertwining relation;

Ky (jy(2) "' F(v2)) = 5y (2) 7 2 (K F) (),

valid for any smooth function F' : H — C, we reduce the problem to proving the
following identity;

s 2 .0 0 k s
Kih(z)y® = <y (Zax + 8y) + 2) h(2)y®,

and similar for the lowering operator. This can be done by a straightforward calcula-
tion. O

This yields the following useful formula.

Corollary 4.3. Let h: H — C be a smooth function and l an even integer. Then we
have
2

(A1 = A($)[h(72) Im(72)° 5 (2) 1) = = 45—

~2i(s — 1/2) 2 (y2) (7))

(v2) Im(v2)**%j,(2) 7!

oh
+ 2i(s + l/2)£(*yz) Tm(yz)*T 1, (2) 7
for s € C and v € SLy(R).

From the above we will deduce the main recursion formula which will allow us to
inductively understand the pole structure of G4 g (7, s). To write down the formula
we will introduce the following convenient notation for a € A;

Ay = (A\{a}) U{a —1}.
In this notation we have for positive multisets A the following useful relation;
0
2 =X 11 1)
acA acAa’€A,

by the Leibniz rule. Thus by summing over v € I'.,\I' and using Lemma 4.1, we
arrive at the following lemma.
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Lemma 4.4. Let A, B be positive multisets and G a p,(z,s) as above. Then we have

(4.8) KiG4spi(z,8) =(s+a(4d,B)+1/2)Ga,B+2(2,5) — Z Ga, Bi+2(%,8),
a€A

(4.9) LiGapu(z,8)=—(s+a(A,B)—1/2)Ga p,i-2(z ) + Z Ga.B,,1-2(%,9)
beB

and

GA,B,Z(Z,S)R(s+a(A,B),1)< > Ga,u(zs)

acA,beB

+(s+a(AB)=1/2) > Ga, pi(z5)

a€cA

(4.10) + (8+a(A, B) +l/2)ZGA,Bb,l(Z,5)>,

beB
valid apriori for Res > 1+ |A| + |B|.

This lemma will turn out to be extremely useful.

Remark 4.5. The recursion formula (4.10) is the reason why we have 2i and —2i in
the denominators in the definition of G4 p(%, s) and why we have the shift (A, B).

Define the total weight of A, B (and of G4 p,(z,s)) as the quantity

S(A,B)=> a+Y b
acA beB
Then we observe that all Poincaré series on the right-hand side in the recursion for-
mula (4.10) have strictly smaller total weight than the one on the left-hand side. This
will allow us to do an inductive argument on the total weight, when determining the
pole structure of the Poincaré series.

As a first application of Lemma 4.4, we will show meromorphic continuation of
Ga,B,i(2,8) to Res > 1/2. Firstly we will handle the case | = 0 using (4.10). This
case is easiest to handle since the poles of R(s,0) all satisfy Res < 1. Then we will
use (4.8) and (4.9) to get the result for general (even) weights .

Proposition 4.6. Let A, B be two multi-sets such that |A| + |B| > 0 and [ an even
integer. Then the Poincaré series Ga,pi(z,s) admits meromorphic continuation to
the half-plane Re s > 1/2 satisfying the following;
(i) Ga.p.i(z,s) defines an element of L*(T',1) at all reqular points.
(i) The poles of Ga pi(z,8) in1/2 < Res < 1 are contained in P (defined as in
(3.7)).

(iii) Ga.B,(z,s) is regular for Res > 1.

Proof. We prove the claims by an induction on the total weight (A, B). If ¥(A, B) =
0 then by (4.3) and (4.4), we can write

(4.11) Gau(zs) = W2 F ()@ F(2) P E a8 (2, 5)-
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Now Ej_y(ja|—|B|)(2,5) is meromorphic in Res > 1/2 with poles contained in P and
is regular for Res > 1 (see [10, Chapter 4]). Furthermore since f(z) decays rapidly
at all cusps, the above defines an element of L?(T,[) at all regular points.

Now assume (A, B) > 0. By using (4.3) and (4.4) we may assume that A, B are
positive multi-sets. Firstly we consider the case [ = 0.
By (4.10), we can write

Ga,Bo(z, )
=R(s+ a(A, B),0) (linear combinations of Gar g 1(z,s)’s with ©(A’, B") < £(A, B))

where by the induction hypothesis, all terms inside the parenthesis satisfy the prop-
erties (7), (47), (444). Since the resolvent operator R(s + «(A, B),0) is regular in the
half-plane Res > 1 and meromorphic in Res > 1/2 with poles contained in P, the
wanted properties follow for G4, g o(z,s) as well. Observe that, if «(A, B) > 1, then
the resolvent is actually regular for Res > 1/2.

Now to get the claim for all positive weights [, we do an induction on the weight.
For [ > 0, the identity (4.8) gives

KiGapi(2,8) + Y uea Ga, Biv2(2, )
(s+a(A,B)+1/2)

We know by the induction hypothesis that all the Poincaré series on the right-hand
side of the above satisfy (i), (i), (4¢7) of this proposition. So since s + «(A4, B) +1/2
is non-zero for Res > 1/2, we see that also G4 g 12(2, s) satisfies (4), (i7), (4i7).

A similar argument applies to negative weights using (4.9). This finishes the induction
and thus the proof. O

Ga,Bit2(z,8) =

This allows us to extend the range of validity of Lemma 4.4 by uniqueness of
analytic continuation.

Corollary 4.7. The equations (4.8), (4.9) and (4.10) are valid in the half-plane
Res > 1/2 as equalities of meromorphic functions.

4.2. Bounds on the pole order at s = 1. Next step is to determine the pole order
at s = 1 of G4 p,(z8). In this section we will prove certain bounds on the pole
order. We will proceed by induction relying on the formulas (4.8), (4.9) and (4.10).
We firstly need the following key lemma.

Lemma 4.8. Let A, B be positive multi-sets and l an even integer. Then we have for

>0

Za€A<GAa,B7lk(Z, S), (yk/Qf(Z))l>
s+ oA B)+1k/2-1 ’

(4.12) (Gau(zs), " f(2)) =
and for —1 <0;

_ Zb€B<GA,Bb7*lk(2a 8)7 (yk/zm)l> ]

(4.13) (Gap—w(z,s), W f(2)h s+ oA, B)+1lk/2—-1
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Proof. Assume [ > 0 then by the identity (4.9), we have
<GA,B,lk:(Za 8)7 (yk/Qf(Z))l>

 (Kri—2Ga,Bik-2(2,8) + D pe 4 Ga,,Buk(z, 8), (y*2 f(2))h)
B s+a(A,B)+1k/2-1 '

By the adjointness properties of the raising and lowering operators (3.2), we get

(Kni—2G a,pan—2(2,8), (W2 f(2))") = (Ga,pur—2(2, ), Lu(y*/* f(2))") = 0,

using (3.5). This yields the desired formula. The case —I < 0 is proved similarly using
(4.8). O

From this we conclude the following key result.

Proposition 4.9. The pole order of Ga,p(2,s) at s =1 is bounded by
min(#{a € Ala=k/2},#{be B|b=Fk/2})+ 1.

Proof. We will do an induction on the total weight ¥(A, B). If 3(A, B) = 0 then the
result is clear by the properties of the non-holomorphic Eisenstein series. In general
by applying modularity (as in (4.3) and (4.4)), we may assume that both A and B
are positive. By the symmetry (4.5) we may also assume that |A| > |B|.

We proceed by induction on the total weight; assume that the total weight is
positive; 3(A, B) > 0 and that we have proved the claim for all smaller ¥(A, B)-
values.

We begin with the case | = 0. The recursion formula (4.10) gives the following;

Gapo(z8)=R(s+a(A,B),0) |- Y Ga,.pulzs)+- |,

acA,beB

where the terms inside the parenthesis satisfy the claim of the proposition by the
induction hypothesis. If a(A, B) > 0 then the claim also follows for G4 g (2, $),
since the resolvent operator R(s + a(A, B),0) is regular at s = 1.
If a(A, B) = 0, then we must have

A=A{k/2,....k/2}, B={k/2,...,k/2}

—_———— —_——
for some n > m > 0.
Now we claim that (Ga, 5 0(z,$),1) has a pole of order at most m + 1.
To see this we do an induction on m. If m = 0, then by Lemma 4.8, we see directly
that
<GA,B,0('Z, 5)7 1> =0.

If m > 0 then we get by Lemma 4.8

(Gao(z,8),1) = {GaBa0(2 9 1)
s—1
and by the induction hypothesis, GA,Bk/27O(z, s) has a pole of order at most m, which
proves the claim.
We observe that if Ga po(2,s) has a pole of order greater than m + 1, then by
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(4.10) and the induction hypothesis there has to be an increase in the pole order com-
ing from the pole in the singular expansion of the resolvent (3.8). This implies that
the leading Laurent coefficient is constant. But we just showed that (G4 po(z,s),1)
has a pole of order at most m + 1. This finishes the induction in the case [ = 0.

By using (4.8) and (4.9) as in the proof of Proposition 4.6, we get by induction the
pole bound for all even weights [ as well. This finishes the induction and hence the
proof. (Il

4.3. Finding the leading pole. For m # n, Proposition 4.9 yields the desired
bound needed to prove Theorem 1.1 (see (5.11) below). Next step is to determine the
exact pole order and leading Laurent coefficient of G4, 4,0(2,s) at s =1 when

A={k/2,... k/2}.

By Proposition 4.9 the pole order is bounded by n+ 1 and we will see that this bound
is sharp.

Theorem 4.10. Let
A={k/2,...,k/2}.
—_——
n
Then Ga,a0(z,s) has a pole of order n+ 1 at s = 1 with leading Laurent coefficient

()] f11>
((k — 1)Hnvol(T")n+1"

Proof. We do an induction on n. For n = 0 the claim follows by the analytic properties
of the non-holomorphic Eisenstein series [16, (6.33)].
Now assume n > 1. First of all we see by (4.10) that

Ga,a,0(2,9)

= R(s,0) (—nQGAk/%Ak/z,O(z, s) + nsGAk/Q}A,O(z, s) + nsGAAk/z,o(z, s))

By the bounds on the pole order from Proposition 4.9, all the terms inside the paren-
theses above have a pole of order at most n. This shows that if G4, 4,0(2, s) has a pole
of order n + 1, then the leading pole is contained in the image under the projection
onto the constant subspace, since (as above) the increase in the pole order has to
come from the resolvent.
We will show that indeed

<GA,B70(Zﬂ S)ﬂ 1>/<17 1>7

has a pole of order n + 1 at s = 1 with the claimed leading Laurent coefficient.
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Applying Lemma 4.8 twice and using the pole bound from Proposition 4.9, we get;

<GA’A’0(Z,S), 1)
<nGA,Ak/270(z,s), 1)
s—1
(n ZaeAk/2 GA,(AIC/'z)a,O(Z? s),1)
(s—1)s
”<GA,(Ak/2)k/2_1,O(Za s), 1) + (pole of order at most n —1 at s =1)
(s—1)s ’

where
(Ak/g)k/g_l ={k/2,...,k/2,k/2 —2}.
1
e

By repeated applications of Lemma 4.8 (and Proposition 4.9), we arrive at

n(Ga,a'0{0},0(%,5),1) + (pole of order at most n —1 at s = 1)

(Ga,a0(z,8),1) = (s—1)s--(s+k/2—2)

where
A ={k/2,...,k/2}.
-1

Now by applying modularity as in (4.4), we get
(Ga,au501,0(2,8),1) = (Gaak(z,58), Y2 f(2)).
By a similar repeated application of Lemma 4.8 (now with [ = k), we arrive at
(Ga,a0(z,8),1)

~ n2(Gar k(2. 8), y*| f(2)]?) + (pole of order at mostn —1 at s =1)
(s—1)s- - (s+k/2=2)-(s+k/2=1)---(s+k—2)

By the induction hypothesis, we know that Gas as0(z,s) has a pole of order n at
s = 1 with leading Laurent coeflicient given by

((n = D2 fI>2
((k — D))n—Tyol(T)"”

Thus we see that
n—1)! 2 2n—2
n? { ety 117 ()2
(k —1D)!(s — 1) *+1vol(T)
+ (pole of order at most n at s = 1),

<GA,A,0(Z7 S)’ 1>/<15 1> =

which yields the wanted. O

With this theorem established we can improve Proposition 4.9 in the following
special case.
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Corollary 4.11. Let
A={k/2,...,k/2}
——

and I # 0 a non-zero even integer. Then the order of the pole of Ga, a1(2,s) at s =1
s at most n.

Proof. By the symmetry (4.5), it is enough to prove it for [ > 0. We prove it by
induction on {. For | = 2 we get by (4.9)

KOGA,A(Z7 S) + nGAk/27A72(Z’ S)

S

Ga,ap2(z,8) =

From Theorem 4.10 we know that the leading Laurent coefficient of G4 4,0(2,s) is
constant, and thus it is annihilated by Ky. Furthermore we know by Proposition 4.9
that G a,,, 42(2,5) has a pole of order at most n at s = 1. Thus we conclude that
also G4, 4.2(z,s) has a pole of order at most n at s = 1.
Now assume [ > 2. We get again by (4.9) the following;

KiGaa1(2,8) +nGa, , a1+2(2,8)
s+1/2 '
Thus by the induction assumption and Proposition 4.9, we see that also G4 4 142(2, s)

has a pole of order at most n at s = 1. This finishes the induction and hence the
proof. (]

Gaai42(2,8) =

4.4. Growth on vertical lines. In this section we will prove bounds on the L2-
norm of Ga,g,(2,s) with s in a horizontal strip, bounded away from the singular set
P. This we will use to get bounds on vertical lines for the main generating series
D™"(f,s) defined in (2.1), which is needed in order to apply Theorem A.2 in the
appendix.

We will firstly consider the case of total weight zero; 3(A, B) = 0. We will use the
idea used in the proof of [28, Lemma 3.1]. Following Petridis and Risager, we will in
the proof assume that I' has only one cusp for simplicity. The same argument applies
in the general case.

Lemma 4.12. Lete > 0 and s = o+ it satisfying 1/2+¢ < o < 3/2 and dist(s, P) >
€. Let A, B be multi-sets such that |A| + |B] > 0 and £(A,B) = 0 and let [ be an
even integer. Then we have the following bound;

IGaBa(28)]] < 1,
where the implied constant might depend on |A|, |B|,1.
Proof. By the assumption X(A, B) = 0, we can write
Gapi(zs) = W2 f ()N ()P B (2, ),

with I’ appropriately adjusted.
Let F be fundamental domain for I'\H with a cusp at infinity. For Res > 1/2 and
z € F, we write (following Colin de Verdiére [7]);

Ey(z,5) = h(y)y® +9(z, ),
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where g(z,s) € L?(F) and h(y) € C*(0,00) is smooth with h(y) = 1 near the cusp
at oo.
Since Ey (z, s) is a formal eigenfunction for the Laplacian, we have

(Ar = X(8))g(z,8) = (Ar — A(s))(Ev (2, 8) — M(y)y*)
= Ms)h(y)y® + sh'(y)y*™ + 1" (y)y" = A(s)h(y)y®
= sh'(y)y™™ + b (y)y* .
Now we extend g(z, s) periodically to an element of L?(T,1’). Then the above yields
9(z,8) = R(s,1')(sh ()y™"" + 1" (y)y**?),

i.e. g(z,s) equals the resolvent applied to a function with compact support.
Now by the bound on the norm of the resolvent from Lemma 3.2, we get

[[sh ()y> " + 1" (y)y>*2||

dist(A(s),specA )
Since Ay is self adjoint, all eigenvalues are real. Thus using the assumption dist(s, P) >
€, we get

llg(z; s)l| <

dist(A(s),specAy) > | Im(A(s))| + & = (20 — 1)|¢| + &.
This gives

|[sh' (y)y*** + 1" (y)y* 2| E
z,8)|| K <
gz, s)ll (20 —1)|t| + ¢ lt| +e

< 1.

Now by the above, we have
IGaB.(z 9)ll

<12 FEN M G2 FEN P Ry)y? |+ (162 £ () A M2 F () Plg (2, 9.
The second term is bounded by what we showed above and by the rapid decay of f,
the first term is bounded uniformly in s as well. Thus we conclude ||G . 5,(2, s)|| << 1
as wanted. g

With this done, we can do the general case by induction on the total weight (A, B)
using the recursion formula (4.10) and the bound on the operator norm of the resolvent
in Lemma 3.2.

Proposition 4.13. Let ¢ > 0 and s = o + it satisfying 1/2+¢ < 0 < 3/2 and
dist(s,P) > €. Let A, B be multi-sets satisfying |A| + |B| > 0 and l an even integer.
Then we have

1Ga.B.(28)]] < 1,
where the implied constant depends on |A|,|B],!.
Proof. We proceed by induction. Above we have done the base case so we may assume

that (A, B) > 0. By applying modularity we may assume that A and B are positive
(since y*/2 f(z) is bounded). Now by (4.10) and Lemma 3.2, we get

< |RHS of (4.10)]]
~ dist(A(s + a(A4, B)),spec(A;))
By the induction assumption and the triangle inequality, we see that
IRHS of (410)]| <. It] +1,

|Ga,B,i(2,5)]
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using
s+a(A,B)+l/2 < |t|+ 1,

where the implied constant depends on |A4|,|B], 1.
Now since the spectrum of A; is real, we get

dist(A(s + a(A, B)),spec(A})) >: [t(20 — 1)| + & >, |t| + ¢,
using the assumption dist(s,P) > . This gives

[t] +1
[t| + ¢

HGA,BJ(Z’S)H <e < 1,

as wanted. 0

5. CENTRAL VALUES OF ADDITIVE TWISTS

In this section we will use the results from the preceding section to study the central
values of additive twists. To state our main theorem in the most general version, we
will need to work with more general twists than the ones described in the introduc-
tion (as was alluded to in Remark 1.2). To do this we need to introduce some notation:

Given a discrete, co-finite subgroup I' of PSLy(R) with a cusp at co of width 1
and two cusps a and b of ' (not necessarily distinct), we define the following set
(following [29]);

(5.1) Trap = Top = {r =a/cmod 1 | (i Z) € FOO\O';lFO'b/FomC > 0} ,

where T', denotes the parabolic subgroup of T' fixing co and o, denotes a (fixed)
scaling matrix of a (see [16, (2.1)] for background). Observe that Twp contains exactly
the additive twists by the cusps I'-equivalent to b (thought of as real numbers).

Any 7 € T,p uniquely determines an element in the double quotient I's,\o; 'T'op /T
[29, Proposition 2.2]. Thus given r € Typ, we can define ¢(r) as the left-lower entry
of any such representative. Using this we define

(5.2) Tt a6(X) = Tap(X) = {r € Tap | c(r) < X}

We observe that for T' = T'g(q), we get Toooo(X) = T(X) with T(X) defined as in
(1.2). We will below continue to use the shorthand T'(X) = Toooo (X ), when there is
no danger for confusion.

Using this notation we can now state the most general statement that we can prove
with our methods.

Theorem 5.1. Let T be a discrete and co-finite subgroup of PSLs(R) with a cusp
at infinity of width 1, b a cusp of I, k an even integer and f1,..., fq4 an orthogonal
basis for the space of weight k cusps forms Si(I') with respect to the Petersson inner
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product. Then for any fized box Q C C?, we have

L(fi,r k/2) >
P _ e L vA) Y
freet) <<(Cfi loge(r)'? ) <icq
L(fi,r,k/2)
# {r € Toon(X) | (W)lgigd © Q}

=P((Y1,...,Y)" €Q) +0(1)

as X — oo, where Y7,...,Yy are mutually independent random variables all of which

are distributed with respect to the standard complex normal distribution N¢(0,1) and
4 k 2

65 ¢, — Ul

(k — 1)!vol(T)’

with || f|| the Petersson-norm of f and vol(T') the hyperbolic volume of T\H.
(Here P((Yy,...,Yq)T € Q) denotes the probability of the event (Yi,...,Yq)T € Q.)

Recall from Section 2 that our strategy of proof is to use the method of moments.
To obtain asymptotic formulas for the moments of additive twists, we will be studying
the associated generating series. For additive twists at arbitrary cusps this generating
series is defined as follows;

L(f,r k/2)"L(f,r, k/2)"
C(’I“)QS :

(5.4) DY (fys) = >

T€Tn

We study this generating series by studying the associated Goldfeld Eisenstein series
(defined in (5.15) below), which is linked to the Poincaré series G4 g (z,s) via a
formula for the central values of additive twists that we will prove shortly.

To make the proof more readable, we will restrict to the case of b = co and a single
cusp form f € Si(T'). In Section 5.5 and Section 5.6, we will then explain how the
proof can be extended to the general case.

Remark 5.2. To make our argument work, we will need to know apriori that (5.4)
converges absolutely in some half-plane Re s > 0g. By the argument given in Section
3.3.1, it is enough to show that

L(f,r k/2) < c(r)X,

for some K > 0. Since we do not have a nice functional equation for general additive
twists (see the discussion in Remark 3.4 above), the easiest way to achieve this seems
to be to combine the (generalized) Birch—Stevens formula (see (6.2) below) with the
convexity bound for the twisted central values L(f, x,1/2). We will not go into the
details, but just make it clear that one can easily show an apriori polynomial bound
of L(f,r k/2). We will later see that actually L(f,r, k/2) <. ¢(r)¢ for all € > 0 (see
Corollary 5.8 below).
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5.1. A formula for the central value. In this section we will prove the promised
formula, which expresses the generalized Goldfeld series E™"(z,s) defined in (2.2)
as a sum of the Poincaré series G4 p (7, s) studied in the preceding section. This
generalizes to higher weight what Bruggeman and Diamantis [4] for weight 2 call au-
tomorphic completion.

So let I' be a discrete and co-finite subgroup with a cusp at co of width 1 and fix
a cusp form f € Sk(T") of even weight k. Then we will be interested in the central
values L(f,r, k/2) of the additive twists by r € T = T\x00, which we will try to relate
to the anti-derivatives of f (denoted by I,, above).
The starting point is the period integral representation of L(f,~yoo,s) with v € T
given in (3.11). A slight variation of this yields with a/¢ = yoo the following;

ioc w— ae\ +-2/2
i L ae s = [ fw) (S aw

Yoo ¢

Observe that the integrand above is holomorphic and thus it follows by the vanishing
of f at the cusps that we can shift the contour and arrive at

(—=2mi)~* 2T (k/2)L(f,a/c, k/2)

65 = [ st s [ ) - o/t

Yoo z
for any z € H.
This expression will allow us to prove the following formula for the central value

(here it is crucial that k is even).

Lemma 5.3. Let z € H and v = (‘g Z) € I'. Then we have

(u)! ) )
L(f,voow/z):((—l)k/? S 2 T2 e (v2)

|
0<j<th2)/2 7

j(ﬁ)! —j j (*QWi)k/2
(5.6) + Z (-1) ;! c7j(v,2) Ik/2—j(z)>r(k/2),

0<j<(k—2)/2

where I, is the n-fold anti-derivative of f defined in (4.1).

Proof. We treat the two integrals in (5.5) separately.
Using the fact that

c—l

afc =00 =vz+ —,
3(v:2)
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we get

/ ™ pw)w — af ) dw

z

= /l00 fw)(w—~yz+~yz— a/c)(k—Q)/2dw
¥

z

100 Cil (k—2)/2
= w) | w—vz— —— dw
o (w) ( J(%Z))

(k=2)/2)! ;.
= (—1)k/? Z TC 15y, 2) M i pa—j(72)
0<j<(k—2)/2
using the integral representation (4.1) of I;(z). To treat the other integral we use the
identity
—1

w—a/c= 71wfac:—,07,
fe=m / 3y, v~ w)
which yields
Yz (k 2)/2 Yz 1 C—l (kfz)/Q
flw)(w—a/c)\"™ dw:/ fv’y_w(—.) dw
/m (w)( /) oo ( ) iy~ tw)
z 1\ (k=2)/2 )
= w) | —= (v, w)” “dw
o (-55) o

after the change of variable w — !

following identity

w. Now by using modularity of f and the

10w _ oy, 1002
c c

the above equals

(—1)-2)/2 /oo F ()i ) (—[1))(“)/2 duw

7w

; (k=2)/2
@2 [ ) (- 10T

- Y 6 i )

0<j<(k—2)/2
g

Remark 5.4. The above formula is very closely related to the fact that the additive
twists L(f,-,k/2) define a quantum modular form in the sense of Zagier [34]. The
quantum modularity of additive twists for level 1 cusp forms combined with dynamical
methods, enabled Bettin and Drappeau in [2] to give a different proof of the normal
distribution of additive twists (in the special case of level 1). In [26] the author,
inspired by this connection, proved quantum modularity for central values of additive
twists of cusp forms of general level and used this to prove a certain ‘reciprocity law’
for multiplicative twists L(f, x,1/2).
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5.2. Analytic properties of Goldfeld Eisenstein series. What we would like to
do now is the following; take the formula in Lemma 5.3, sum over v € I'o,\I', use the
identity

(57) c= j(’YvZ) 7.](772)

2y
and then finally use the binomial formula to express E™"(z,s) as a sum of the
Poincaré series G 4,5(%,$). The only slight complication is that when k& > 4 we have
negative powers of ¢ in our formula for the central values. In order to bypass this we
multiply by a power ¢V on both sides of (5.6) for some even N > (k — 2)/2. With
this in mind, we define the following N -shifted Goldfeld Eisenstein series;

(5.8) E™"(z,8;N) := Z N L(f,y00, k/2)™ L(f, o0, k‘/2)n Im(yz)°.

YET o\
By (3.12) we know that the above series converges absolutely (and locally uniformly)
for Res > 1. The series E™™(z,s; N) also has a very nice Fourier expansion at co
with constant term related to D™ ™ (f,s) as we will see below.

We will now derive the analytic properties of E™"(z,s; N) from the results of the
preceding sections. This is a major step towards our main result.

Proposition 5.5. Let N > (n+m)(k—2)/2 be an even integer. Then the Fisenstein
series E™"(z, s; N) admits meromorphic continuation to Res > N/2+1/2 satisfying
the following;

(i) E™"™(z,s; N) is reqular for Res > N/2+ 1 and all poles in the strip
N/24+1/2<Res < N/2+1
are contained in the set {p + N/2 | p € P}.

(i) The pole order of E™™(z,s;N) at s = N/2 + 1 is bounded by min(m,n) + 1.

(iii) E™™(z,s;N) has a pole at s = N/2+ 1 of order n + 1 with leading Laurent
coefficient

S ) B i
(myty ™ 55 (k= )Yrvol Ty 1’

Proof. By (5.6) we can write
N L(f,~00,k/2)"L(f, 700, k/2)
as a linear combination of terms of the type

. t’ ’
h(2)j (v, Z)tj(% 2) N Iy jo—j, (y2) - Ik:/27jm/ (’YZ)Ik/zfjm/H(’YZ) T Ik/27jn,+m/ (v2)

where h : H — C is a smooth function (this will be a product of I;(z) for 1 < j < k/2),
t,t" are integers, m’ < m, n’ < n are non-negative integers and finally N’ is a non-
negative integer. By inspecting (5.6), we see that ¢, t’ and N’ satisfy

m'+n'

t+t' + N =N -2 Z o
v=1
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Now we use (5.7) and expand using the binomial formula (here it is essential that
N’ > 0) to get terms of the type

) t’
h2)j(v,2)'5(7,2) Tkjo—jy(v2) -+ Iijaj | (Ve kj2—j,0 0 (V2)  Tiya—i (V2)

where now

’ ’
m +n

(5.9) tHt'=N-2 > j,.
v=1
Now we multiply by Im(vz)® and use the identity

. —t’ s ’ . o . ,
§12) 70 2) Tm(y2)* = y®/2 () T (yz) =+,

Thus summing over v € T',,\I', we can express E"™"(z,s; N) (for Re s large enough)
as a linear combination of terms of the type

(5.10) h(2)Ga,Bi(z,s — N/2)

where the h’s are smooth functions (more precisely; products of powers of y’s and
I;(2)’s), |A] <m,|B| <n and!is even (which follows from (5.9)).

Notice that (5.9) fits beautifully with the the factor a(A, B) in the definition of
Ga.B,(z,s), which is why we get the argument s — N/2 for all terms.

Now it follows directly from Proposition 4.6 that E™"(z, s; N) has meromorphic
continuation to Res > N/2+ 1/2 satisfying property (i) of Proposition 5.5. Further-
more by Proposition 4.9 it follows that the Poincaré series G4 g (2, s—N/2) has a pole
of order at most min(m,n)+1 at s = N/2+1. Thus the same is true for E™"(z, s; N).

Now finally let us consider the diagonal case m = n. We see by Corollary 4.11 and
Proposition 4.9, that all terms (5.10) have a pole of order at most n, except the one
with

A=B={k/2,...,k/2}
n

and [ = 0. Now let us calculate the coefficient of G4 4 0(z,s — N/2) in the expansion
of E™"(z,s; N); we have

N —v

nk N 2n (Zﬂ-)nk 2n Y v N . v
@) |2 (1) = S My (72) 00, )i )ik
Now we multiply by Im(vz)® and sum over v € ' ,\I'. By the pole bound from
Corollary 4.11, we see that only the term with v = N/2 above can contribute with a
pole of order n+ 1 at s = N/2 + 1. Thus we can write
(y2)
N/2

E™"™(z,s;N) :(47r)"ky_N/227NGA)A)O(z, s—N/2)

v=1

+ (terms with a pole of order at most n at s = N/2+ 1),

where
A={k/2,...,k/2}.
—_———

n
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(The extra factor of 2"* comes from 2i and —2i in the denominator in the definition
of Ga,a0(z,s)). Now the result follows directly from Theorem 4.10. O

5.3. Analytic properties of D" "(f,s). Using the above we can now extract an-
alytic information about D™"™(f, s) using that it is essentially the constant term in
the Fourier expansion of E"™"(z,s; N) at oco.

Lemma 5.6. Let N > 0 be an even integer. Then the constant term in the Fourier
expansion of E™™(z,s;N) (at 0o) is equal to

7l /21— (s — 1/2)
I'(s)

Proof. By the double coset decomposition (see [16, Theorem 2.7]), we have

To\[/To ¢+ {(c, d0<d<e, (z 2) € F} U{(0,1)}

Now since L(f,~v00, k/2) is well-defined in the above double coset and L(f, 00, k/2) =
0 per definition, we can write

D™ (f, s — N/2).

E™"(z,s;N)

_ N m y*
=3 3 ML a0 KT e K Y e
c>00<d<c ez

where 7.4 is any representative of (¢,d) in I'o,\I'/T'oc. Now the result follows by
computing the inner sum using Poisson summation as in [16, Section 3.4]. |

With this lemma at our disposal, we can easily derive the analytic properties of
D™ (f,s) from the results already established.

Theo