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Abstract
This thesis consists of seven papers contributing to the understanding of periods of auto-
morphic forms and their connections to questions in arithmetic statistics.

In Paper A, we obtain a normal distribution result for central values of additive twists of
L-functions of holomorphic cusp forms. This is a generalization to higher weight of a recent
breakthrough due to Petridis and Risager, resolving a (-n average version of a) conjecture
due to Mazur and Rubin. We furthermore present applications to certain “wide” families of
automorphic L-functions.

In Paper B, we study the distribution of period polynomials associated to a fixed holo-
morphic cusp form. We determine the asymptotic joint distribution of the coefficients and
obtain an asymptotic expression for the zeroes of the polynomials. This complements recent
work of Jin, Ma, Ono and Soundararajan (and others).

In Paper C, we prove that additive twists associated to holomorphic cusp forms (with
general level) define a quantum modular form in the sense of Zagier. We use this to obtain
a reciprocity formula for a certain twisted first moment of L-functions, similar to reciprocity
relations obtained by Conrey.

In Paper D, which is joint with Petru Constantinescu, we introduce an automorphic
method for studying the residual distribution of modular symbols. We obtained a refinement
of a result due to Lee and Sun (which resolved an average version of a conjecture of Mazur
and Rubin), and furthermore generalize the results to quotients of general hyperbolic spaces.
Finally, we resolve the conjecture of Mazur and Rubin in some very special cases using
algebraic methods.

In Paper E, which is joint with Peter Humphries, we study sparse equidistribution of
certain hyperbolic orbifolds associated to real quadratic fields introduced by Duke, Imamoḡlu
and Tóth. Our main insight is that the Weyl sums that appear in the distribution problem
can be related to automorphic periods, which in turn by work of Martin and Whitehouse
can be related to central values of Rankin–Selberg L-functions.

In Paper F, we obtain a uniform sup norm bound for Eisenstein series using exponen-
tial sum methods, improving on a result due to Blomer. We use this to obtain a hybrid
subconvexity bound for class group L-functions.

In Paper G, which is joint with Yiannis Petridis and Morten Risager, we study the mass
distribution of holomorphic cusp forms on shrinking regions around infinity. In particular,
we obtain an asymptotic formula for the quantum variance (extending results due to Luo
and Sarnak), which exhibits a phase transition.
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Resumé
Denne afhandling består af syv artikler, der bidrager til forståelsen af automorfe perioder og
deres forbindelse til spørgsmål i aritmetisk statistik.

I Artikel A viser vi et normalfordelings-resultat for central værdier af additive twist af
L-funktioner for holomorfe spidsformer. Dette er en generalisering af et nyligt gennembrud
af Petridis og Risager, som løste (en gennemsnitlig version) af en formodning af Mazur og
Rubin. Ydermere viser vi anvendelser til visse “brede” familier af automorfe L-funktioner.

I Artikel B undersøger vi fordelingen af periodepolynomierne tilknyttet til en fastholdt
holomorf spidsform. Vi bestemmer den samlede asymptotiske fordelingen af koefficienterne
og opnår et asymptotisk udtryk for nul-punkterne for polynomierne. Dette komplementerer
nylige resultater af Jin, Ma, Ono og Soundararajan (blandt andre).

I Artikel C beviser vi at additive twist hørende til holomorfe spidsformer (med vilkårligt
niveau) definerer en kvante-modulform i Zagiers terminologi. Vi benytter dette til at vise
en reciprocitetsrelation for visse twistede første-momenter af L-funktioner, der minder om
reciprocitetsrelationer opnået af Conrey.

I Artikel D, som er skrevet i samarbejde med Petru Constantinescu, introducerer vi en
automorf metode til at studere den residuale fordeling af modulære symboler. Vi opnår en
raffinering af et resultat af Lee og Sun (som løste en gennemsnitlig version af en formodning
af Mazur og Rubin). Ydermere generaliserer vores resultater til generalle hyperbolske rum.
Endeligt løser vi den fulde formodning af Mazur og Rubin i nogle specialtilfælde ved at bruge
algebraiske metoder.

I Artikel E, som er skrevet i samarbejde med Peter Humphries, undersøger vi udtyndet
ligefordeling for visse hyperbolske orbifolde associeret til reelle kvadratiske legemer, som er
blevet defineret af Duke, Imamoḡlu og Tóth. Vores hovedindsigt er at Weyl-summerne som
optræder i fordelingsproblemet kan relateres til automorfe perioder, som så igen kan relateres
til Rankin–Selberg L-funktioner ved at bruge resultater af Martin of Whitehouse.

I Artikel F opnår vi uniforme sup-norms-begrænsninger for Eisenstein-rækker ved at
bruge metoder i teorien for eksponentielle summer og forbedrer derved et resultat af Blomer.
Vi anvender dette til at opnå en hybrid-sub-konveksitetsbegrænsning for klassegruppe-L-
funktioner.

I Artikel G, som er skrevet i samarbejde med Yiannis Petridis og Morten Risager, under-
søger vi masse-fordeling af holomorfe spidsformer på skrumpende områder omkring uendelig.
Vi opnår blandt andet en asymptotisk formel for kvante-variansen (hvilket udbygger et re-
sultat af Luo og Sarnak), som udviser en faseovergang.
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CHAPTER 1

A GENTLE INTRODUCTION TO ARITHMETIC
STATISTICS AND PERIODS

This thesis consists of the following seven papers within the field of analytic number
theory.

Paper A: Central values of additive twists of cuspidal L-functions (submitted)
Paper B: On the distribution of periods of holomorphic cusp forms and zeroes of
period polynomials (published in International Mathematics Research Notices)
Paper C: A note on additive twists, reciprocity laws and quantum modular forms
(published in The Ramanujan Journal)
Paper D: Residual equidistribution of modular symbols and cohomology classes for
quotients of hyperbolic n-space (preprint, joint with Petru Constantinescu)
Paper E: Sparse equidistribution of hyperbolic orbifolds (joint with Peter Humphries)
Paper F: Hybrid subconvexity for class group L-functions and uniform sup norm
bounds of Eisenstein series (published in Forum Mathematicum)
Paper G: Small scale equidistribution of Hecke eigenforms at infinity (preprint, joint
with Yiannis Petridis and Morten Risager)

The methods employed in the papers range from exponential sums, classical au-
tomorphic forms, spectral theory, to representation theory. Judging from the titles,
it should be clear that the problems also range over a variety of subjects. There is
however one common feature; they all touch upon questions related to arithmetic
statistics. This should be interpreted in the widest possible sense to include distribu-
tion properties, extremal behavior and symmetry properties of arithmetic objects. If
one takes a closer look at the approaches employed in the papers, one will notice that
despite the differences in the techniques applied there is one common theme luring
in the background. This is the notion of periods of automorphic forms. Since the
birth of the theory of automorphic forms, periods of automorphic forms have played
an important role and continue to be a central theme to this day. In the first part of

3



4 CHAPTER 1. A GENTLE INTRODUCTION

this thesis, we give some general background on arithmetic statistics and automor-
phic forms with a special emphasis on periods. This focus will hopefully tie the seven
papers together and shed some new light on some of the topics dealt with.

We will begin by giving a pictorial introduction to arithmetic statistics using a
variety of examples from outside of mathematics. Then we will go on to explain a
“toy example” of periods of automorphic forms. Both of these sections are intended
for a general, non-mathematical audience and will be delivered in a rather informal
style. After this, we will give a short account of the history of automorphic forms
with a special emphasis on the role of periods. The exposition will be in the style of
a survey. In particular, we will not give any of the required background but instead
refer to some of the many excellent sources that already exist. This will lead to a
more detailed discussion of the problems dealt with in this thesis. Finally, we will
give summaries of the seven papers, which can be found in the second part of this
thesis.

1.1 Statistics in number theory, and beyond
The overall topic of this thesis is arithmetic statistics. This is the field concerned with
the statistical and distributional properties of arithmetic objects. We will begin by
considering a very accessible example; the last digit of prime numbers. Recall that a
prime number is a natural number (greater than 1) which is only divisible by 1 and
the number itself. The list of primes begins as follows:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . .

We notice that except for the primes 2 and 5 all primes end with one of the digits 1, 3, 7
or 9 in their decimal representation. One can now wonder how the primes distribute
among these digits. The following shows how the first 10.000 primes distribute among
the four digits:

1 : 24.84%, 3 : 25.15%, 7 : 25.08%, 9 : 24.91%,

It looks like the primes distribute quite evenly among the four possible last digits!
More precisely, we suspect that the primes equidistribute in the sense that if we
count more and more primes, then the percentages as above should come closer and
closer to 25% (formalized through the mathematical notion of convergence). Note
that computations such as the above do not bring us any closer to concluding that
the primes equidistribute; however many primes we check, it might just be that if
we go a little further, then from some point on all primes have the same last digit,
say. In this case, we however know that this cannot happen, since our suspicion has
been proved mathematically! The result is known as the Prime Number Theorem for
Arithmetic Progressions and was proved over a hundred years ago following the work
of Dirichlet, Hadamard and de la Vallée Poussin. This is an example of a result in
arithmetic statistics. It is useful to think of each prime number as representing a
certain “experiment” and the last digit as being the “outcome” of this experiment.
In this case the outcomes are limited to 4 options (excluding the primes 2 and 5). A
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Figure 1.1: Histogram of heights of American males, resp. females age 30-39 (Data
taken from U.S. National Center for Health Statistics, unpublished data, https://www2.census.gov/
library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf)

similar setting is encountered when looking at the biological sex of newborns, left and
right handedness and many other examples from everyday life. It is an interesting
exercise to consider, which kind of distribution one would expect in these more familiar
cases.

This set-up is closely related to the subject of Paper D. As is the case with the
last digit of primes, the main result in Paper D is that certain “experiments” equidis-
tribute among a finite number of possible outcomes.

There are also many familiar situations where the outcome is not limited to a
finite number of possibilities. Take for instance the sizes of snowflakes, heights of a
population or the velocities of particles in a hot gas. Data for the two last examples
are shown in Figures 1.1 and 1.2.

We notice something interesting; the data sets in these two examples are both
following approximately the same “bell”-shape (up to translation and dilation). This
shape arises all over the place in the natural and social sciences and is known as
the normal distribution (or Gauß curve). It might seem like a miracle that this
particular shape shows its face in such a variety of situations. Mathematics offers
some kind of explanation to this phenomenon via the Central Limit Theorem. In
loose terms this mathematical principle says that if your experiment depends on a
large number of independent variables (or factors), then the outcome should be “bell”-
shaped when plotted (although the validity of this explanation can be questioned [66]).
This perspective is especially relevant in the case of Figure 1.1.

The normal distribution can also be derived from a set of simple axioms (or as-
sumptions) as is explained beautifully in the introduction of [15]. This can for in-
stance be used to derive the theoretical distribution underlying Figure 1.2, known
as the Maxwell–Boltzman distribution. These axioms were referred to by the Greek-
French composer Iannis Xenakis as “one of the “logical poems”, which the human
intelligence creates in order to trap the superficial incoherencies of physical phenom-
ena”, [101, page 13]. The normal distribution plays a central role in his theory of

https://www2.census.gov/library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf
https://www2.census.gov/library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf
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TEST OP MAXWELL'S DISTRIBUTION IAS" 933

the intermediate discs tend to diminish the effective aperture for the mole-
cules with the larger deHections; this difficulty is easily remedied by making
the slots of the intermediate discs somewhat wider than those of the two
end discs and by introducing a partially compensating twist in lining up
the discs.

Fig. 2. Photograph of film obtained in a typical run.

Fig. 2 shows the film obtained in a typical run and the points in Fig. 3
give the measured densities as read with a microphotometer by measuring
films of known density ratios. The abscissas of the curve and the distances
from the base line to a point in the velocity spectrum are proportional to
1/s instead of to v.

0o

mm

A 1

0.001 0 00& 0.00o 0.004
1

300

Fig. 3. Densities of the film as measured with a microphotometer.

There are two reasons why the blackening of the film or the ordinate of
the curve do not correspond to the ordinate of the Maxwell curve. (1) The
densities for low velocities are reduced because these slowly moving molecules
are spread out between the center of density and infinity, and the faster
molecules, concentrated between the center of density and the origin, have
' The photograph (Fig. 2) of the cadmium deposit was taken several months after deposi-

tion. It shows the peculiar evaporation or absorption which takes place locally in such films.
The dark spots are air bubbles in the glass but the prominent white spot and the smaller white
spots in the deposit as well as the disappearance of the central portion of the undisplaced line
are phenomena which took place gradually during the course of several months. The "evapora-
tion" seems to be entirely local; a remeasurement of the density of deposit agreed within
experimental error with those taken at the time of deposit except in those places where the
metal had very obviously and almost completely disappeared.

Figure 1.2: Velocity spectrum of a metallic vapor (Reprinted figure with permission from
John A. Eldridge, Phys. Rev., vol. 30, p. 933, 1927. Copyright 2020 by the American Physical
Society, https://link.aps.org/doi/10.1103/PhysRev.30.931)

music, which he called Stochastic Music. Xenakis was the first to introduce ran-
domness and statistical methods into classical music. Using the randomness that
mathematics could provide he found a profound and novel kind of beauty prior un-
known to mankind. In the orchestral work Pithoprakta (meaning “action through
probability” in Greek), Xenakis aims to capture the sensation of a roaring crowd and
the sound of the wind in the trees. To approach this he uses an analogy between
the movement of molecules in a gas and the movement of sounds through a pitch
range. Because the molecules in a gas behave according to the Maxwell–Boltzman
distribution, this lead Xenakis to create the glissandi of the strings using the normal
distribution. A graphic plot by the composer of the glissandi can be found in Figure
1.3, which when listened to possess a supreme beauty.

All of the above examples should be a testament to the wide applicability and
frequent occurrence of the normal distribution in all aspects of human life. The
normal distribution also arises many places in pure mathematics (whether this is to
be considered as part of “human life”, we will leave for the reader to decide). In
number theory in particular, one could mention Selberg’s work on the distribution of
the zeta function (Selberg never published his results, see instead [53]) or the work of
Erdös and Kac [29] on the distribution of the number of prime divisors of integers. In
this thesis, we encounter at least two different settings where the normal distribution
arises. One is in Paper A where we study the distribution of certain numbers called
modular symbols connected to the “doughnut”-shaped elliptic curves. The data that
one gets in this case is shown in Figure 1.4 and we immediately recognize the shape!
The other occurrence of the normal distribution in this thesis is in the Papers F and
G, which deal with arithmetic aspects of quantum chaos. In this case it has been
predicted by physicist that quantum particles (for classically ergodic systems) should
behave like “random waves” when the energy is large. The randomness in this setting

https://link.aps.org/doi/10.1103/PhysRev.30.931


1.1. STATISTICS IN NUMBER THEORY, AND BEYOND 7

Figure 1.3: Graphic plot of the glissandi in Pithoprakta by the composer (Taken from
https://music7703lsu.wordpress.com/2017/04/02/pithoprakta-by-iannis-xenakis/)

is exactly predicted to be that which comes from the normal distribution (see [5] for
details).

Obviously, one might encounter distribution which are not “bell”-shaped nor lim-
ited to a finite number of outcomes. A very relevant example being the contagion
graphs for a pandemic in a population with no immunity (nor social distancing),
where the distribution is expected to follow a logistical curve. We will also encounter
other kinds of distributions in Papers B and E.

1.1.1 Reduced fractions and Gauß points
This thesis is concerned with a number of problems in arithmetic statistics, which
all take place on the so-called modular curve. This is a very important mathematical
object, which shape reminds one of a parsnip as illustrated in Figure 1.5. We will study
the distribution of a variety of objects that “live” on the surface of the modular curve
and their connections to some very intricate objects called periods of automorphic
forms.

In order to get a feeling for the flavor of the problems dealt with in this thesis, we
will now go into the details of one specific example. The ideas surrounding periods
of automorphic forms seem hard to explain in layman terms, but we will try to illus-
trate the underlying philosophy in a quite simple setting. The point that we would
like to emphasise is that although the distribution problems that we care about are
often very hard to get a grip on, they are connected to automorphic periods, which
in many cases are easier to handle. This then has implications for the distribution
questions that we wanted to understand in the first place (in some cases we are able
to solve them completely!). We admit that this is very abstract and hard to grasp,
but the overall philosophy can be summarized as follows: we cannot understand a

https://music7703lsu.wordpress.com/2017/04/02/pithoprakta-by-iannis-xenakis/ 
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Figure 1.4: Histogram of modular symbols for the elliptic curve E = 11A1 and
denominator 100003 (Created using unpublished data by Mazur and Rubin [72, page 34])

Figure 1.5: The “parsnip”-shaped modular curve
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Figure 1.6: Reduced fractions with denominator resp. 7, 20 and 105

certain problem directly, so we relate to something else, which we understand better.
In explaining the example, we will only make use of elementary arithmetics, simple
manipulations of vectors in the (Euclidean) plane and a tiny bit of clock (or modular)
arithmetics. Hopefully with a background in high school mathematics and an open
mind, one can get something valuable out of what follows. For a more concise version
of this “toy example”, consult the introduction of Paper B.

The thing that will serve as a simple model for automorphic periods are reduced
fractions. These are fractions of the form n

m , where n, m are natural numbers, which
do not share a common factor other than 1. So for instance 2

3 and 5
7 are reduced

fractions, whereas 3
6 is not (since 3 and 6 share the factor 3). We will consider re-

duced fractions which lie in the interval between 0 and 1 with fixed denominator,
and study how they distribute on this interval. For example when the denominator
is respectively 7, 20 and 105, we get pictures as shown in Figure 1.6. It looks like the
reduced fractions distribute quite evenly on the interval! To test this in a different
way, we can take some fixed subinterval and count the percentage of points that land
within this interval. If we for instance consider the interval from 1

4 to 1
2 , then for

denominator 123798 the percentage is 24.995% and for denominator 524234242 one
gets 25.000%. We observe that the percentages are very close to 25%, which is exactly
the size of the interval from 1/4 to 1/2 relative to the whole interval. In fact, it can
be proved (quite easily) mathematically that if you fix some interval between 0 and 1,
then the percentage of reduced fractions with a fixed denominator lying in this inter-
val, will tend to the size of the interval as the denominator grows. This phenomenon
we describe by saying that reduced fractions equidistribute on the interval from 0 to 1.

What we will draw from the above is that reduced fractions are quite nicely be-
haved and relatively easy to understand. Below we will describe an intricate “recipe”,
which from reduced fractions will produce some new, very interesting points called
Gauß points. In order to define these, we have to go to a slightly more complicated
setup; we move from the line to the plane. The complexity of the Gauß points has
its root in a complicated interaction between multiplication and addition. It will un-
doubtably be hard to see the bigger picture when following this “recipe”, but in the
end a very nice picture will arise. So hold tight!

For now we will focus on reduced fractions with denominator 7. First of all we
consider powers of the number 3 and the residues that one gets when performing
division by 7:

31 = 3 = 7 · 0 + 3, 32 = 9 = 7 · 1 + 2, 33 = 27 = 7 · 3 + 6,
34 = 81 = 7 · 11 + 4, 35 = 243 = 7 · 24 + 5, 36 = 729 = 7 · 104 + 1.
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Figure 1.7: Reduced fraction with denominator 7

We see that the residues that occur among the first 6 powers are 3, 2, 6, 4, 5, 1, which
interestingly are all possible residues except 0. This property makes 3 special from
the perspective of 7 and means in technical terms that 3 is a primitive root mod 7. We
use this to assign a number to the reduced fractions with denominator 7 according
to the position of the nominator in the above list. So for instance, we assign #6 to
1/7 since 1 is the residue of the sixth power of 3 when divided by 7. This leads to the
following pairs:

1
7 ↔ #6, 2

7 ↔ #2, 3
7 ↔ #1, 4

7 ↔ #4, 5
7 ↔ #5, 6

7 ↔ #3.

Now given a number k between 1 and 5, we construct a new set of fractions as follows:
Given a reduced fraction (with denominator 7), we take the associated number as
above, multiply it by k, take the fraction with this nominator and denominator 6 and
add this fraction to the reduced fraction we started with. For k = 1 and k = 2, this
leads to;

k = 1 1 · 6
6 + 1

7 = 8
7 ,

1 · 2
6 + 2

7 = 13
21 ,

1 · 1
6 + 3

7 = 25
42 , . . .

k = 2 2 · 6
6 + 1

7 = 15
7 ,

2 · 2
6 + 2

7 = 20
21 ,

2 · 1
6 + 3

7 = 16
21 , . . .

We will now use these fractions to define points on a circle. To do this we identify the
interval from 0 to 1 with the circumference of the unit circle in the plane such that
0 and 1 are both identified with the point with coordinates (1, 0). This means that
the reduced fractions with denominator 7 are now identified with the points shown
in Figure 1.7. Now for each value of k, we plot the constructed fractions on the circle
using clock arithmetics; if the time is 11 o’clock and 2 hours pass, then a watch does
not go to 13, but to 1 instead. We do the same; for instance, we plot 8

7 on the circle
by starting at the point with coordinates (1, 0) and then going around the circle (in
an anti-clockwise direction) a total of one and one-seventh times. For each of the
fractions above we plot them on the circle this way and then draw a vector (or line)
from the origin (or center of the circle) to this point. The resulting vectors for k = 1
and k = 2 are show in Figure 1.8.

Now we do something which takes us away from the circle: For each k = 1, . . . , 5,
we add the 6 vectors that we have constructed; that is, we follow the direction all of
them combined define. The end-points one gets this way define 5 new points (one for
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Figure 1.8: Vectors for k = 1 and k = 2

each k = 1, . . . , 5), which we call the Gauß points with denominator 7. This last step
of the “recipe” is illustrated in Figure 1.9. We admit that the steps above are quite
involved and complicated to follow. This makes the following observation even more
amazing; the Gauß points constructed from denominator 7 all lie on the same circle!
This fact is very far from obvious from just staring at the “recipe”, and was firstly
proved by the great Carl Friedrich Gauß (which explains the naming of these points),
see [47, Chapter 8].

The Gauß points in Figure 1.9 were constructed starting from reduced fractions
with denominator 7, but we can follow a similar recipe with 7 replaced by a different
prime number p (here it is actually important that the denominator is prime). This
way we get a total of p − 2 Gauß points for each prime denominator p. Again the
Gauß points will all lie on the same circle (this time with radius √p). If you have
paid attention to the above, it will hardly be a surprise that we now ask the following
question: How do Gauß points distribute on the circle as the denominator becomes
larger and larger? This is a very hard question, which maybe comes as no surprise
due to the complexity of the “recipe” described above. In Figure 1.10 are shown
the Gauß points constructed from reduced fractions with denominator, respectively
17 and 59. We observe that although the Gauß points appear to be rather sporadic
compared to reduced fractions, they again distribute quite evenly on the circle. One
might speculate whether the Gauß points should also equidistribute on the circle as
the denominator p grows. It turns out that this suspicion is correct, and the mathe-
matical result is known as Equidistribution of Gauß Sums. As opposed to the case of
reduced fractions above, this result is extremely profound and was proved by Deligne
and Katz [55] in the 1980’s using some very advanced mathematics.

In this setting the distribution of the Gauß points is the interesting question that
we would like to understand, but this is very difficult. These Gauß points are however
connected to reduced fractions, which are much easier to understand. This mirrors the
situation in the theory of automorphic forms; here one studies some very complicated
objects called L-functions, which we think of as analogues to the above defined Gauß
points. L-functions are in general very hard to understand, but in some cases one



12 CHAPTER 1. A GENTLE INTRODUCTION

Figure 1.9: Construction of Gauß points with denominator 7

can relate these complicated objects to certain periods of automorphic forms. At
least in the examples that occur in this thesis, we are able to obtain results about
the automorphic periods. This then sheds light on the complicated objects that we
wanted to understand in the first place.
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Figure 1.10: Gauß points constructed from denominators 17 and 59
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CHAPTER 2

PERIODS IN THE THEORY OF
AUTOMORPHIC FORMS

We will now go on to explain in more detail the kind of periods that arise in this
thesis. The necessary background on classical modular forms or general automorphic
forms will not be provided, but we will rather refer to the following excellent sources,
respectively [49], [104] and [36], [16].

Periods play a prominent role in the theory of automorphic forms and have done
so since the beginning through their connection to L-functions. As we well see below,
periods of automorphic forms have turned out to have connections to a variety of
other fields in number theory, and mathematics in general. In Section 2.1 we will
give a short overview of the history of automorphic forms with an emphasize on the
role of periods (and their relations to L-functions). Such periods seem to lack a
unifying formal definition and many different notions exist throughout the literature.
In Section 2.2 we will explain exactly what we mean by a period of an automorphic
form in this thesis. For now we will just think of a period as an integral representation
of the L-function of an automorphic form.

2.1 A short history of periods
It is fair to say that the (systematic) theory of automorphic forms began with the
work of Hecke on modular forms building on the investigations of Jacobi, Dirichlet,
Riemann, Ramanujan and many others (see [26] for an introduction to the history).
Hecke introduced the important Hecke operators and obtained analytic continuation,
functional equation and Euler product for the L-functions associated to a Hecke cusp
form f ∈ Sk(Γ0(N)) of weight k and level N by the following (period) integral repre-
sentation:

Γ
(
s+ k − 1

2

)
(2π)−s−

k−1
2 L(f, s) =

∫ ∞

0
f(iy)ys+

k−1
2
dy

y
,

where L(f, s) =
∑
af (n)n−s− k−1

2 for Re s > 1 with af (n) the Fourier coefficients of
f . Hecke’s proof of the functional equation was inspired by Riemann’s second proof of

15



16 CHAPTER 2. PERIODS IN THE THEORY OF AUTOMORPHIC FORMS

the functional equation for the zeta function, which also has an automorphic period
(of a theta-series) at its core.

The next important development with regards to periods is the work of Rankin [82]
and Selberg [88]. Their idea was to study the analytic properties of the L-function
Lf (s) =

∑
n≥1 |af (n)|2n−(s+k−1) for f ∈ Sk(Γ0(N)) via the following integral repre-

sentation:

(4π)−(s+k−1)Γ(s+ k − 1)Lf (s) =
∫

Γ0(N)\H
yk|f(z)|2E(z, s)dµ(z),

where E(z, s) =
∑
γ∈Γ∞\Γ0(N) Im(γz)s is the non-holomorphic Eisenstein series (of

level N). As an important application Rankin obtained an asymptotic formula for
the sum

∑
n≤X |af (n)|2, and furthermore this method inspired Deligne in his proof

of the final piece of the Weil Conjectures.

2.1.1 After Langlands
Langlands letter to Weil [58] from 1967 changed forever the landscape of automorphic
forms and bridged the worlds of Galois representations and modular forms. He laid
out the far-reaching web of conjectures known as the Langlands Program, which es-
tablished automorphic representations as the proper generalization of modular forms
(see [31] for an accessible introduction). From this perspective, a classical modular
form corresponds to an automorphic representation of the group GL2 over Q, which
means considering the representation theory of the adèlic group GL2(AQ). Langlands
introduced the notion of an automorphic representation of any reductive algebraic
group over a number field and defined an associated L-function. As part of the the-
ory, Jacquet and Godement [33] gave an adèlic period formula for these L-functions
for general number fields and general GLn (for GL1 this had already been achieved
by Tate in his thesis [95]). Furthermore, the Rankin–Selberg method was general-
ized in the adèlic setting by Jacquet, Piatetski-Shapiro and Shalika [51] to general
GLm ×GLn.

Following this, another important development in the theory of periods of auto-
morphic forms is the work of Waldspurger [98]. He obtained a period formula for the
Rankin–Selberg L-function L(π⊗Θχ, 1/2) where π in an automorphic representation
of GL2(AQ) and Θχ is the theta-series associated to a Hecke character χ on E×\A×E ,
where E/Q is a quadratic extension. The formula reads

|Pχ(φ)|2
〈φ, φ〉 = cχ,φ

L (π ⊗Θχ, 1/2)
L(sym2π, 1) , (2.1.1)

where φ is any nonzero vector in π, cχ,φ is a finite product of local factors, L(sym2π, s)
is the symmetric square L-function of π and the automorphic period is given by

Pχ(φ) :=
∫

A×Q E×\A
×
E

φ(x)χ−1(x) dx,

for an embedding A×QE×\A×E ↪→ GL2(Q)\GL2(AQ). In the special case where φ is an
Eisenstein series such formulas had been discovered earlier by Hecke and Siegel. In
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the case of Eisenstein series the proofs are elementary, but in general one needs the
full power of the representation theoretic language.

A profound generalization of Waldspurger’s period formula has been proposed by
Gan, Gross and Prasad [32] (or more precisely the global refinements due to Ichino and
Ikeda [46] and N. Harris [39]), who have conjectured a period formula for Rankin–
Selberg L-functions on SO(V ) × SO(W ) for any quadratic space V over a number
field F and W ⊂ V a non-degenerate hyperplane. By an accidental isomorphism the
formula (2.1.1) corresponds exactly to the case where W is 2-dimensional over Q.

Motivated by questions in quantum chaos (see Section 3.3 below for more details),
Watson [99] obtained a period formula for triple convolution L-functions:

∣∣∣∣∣

∫

SL2(Z)\H
φ1(z)φ2(z)φ3(z)dxdy

y2

∣∣∣∣∣

2

= Λ(φ1 ⊗ φ2 ⊗ φ3, 1/2)
Λ(sym2φ1, 1/2)Λ(sym2φ2, 1/2)Λ(sym2φ3, 1/2) , (2.1.2)

where φi are Hecke–Maaß cusp forms of level 1 and the quotient consists of completed
L-functions. Notice that if φ3 is an Eisenstein series, this reduces (essentially) to the
classical Rankin–Selberg formula. The formula (2.1.2) has been generalized to general
automorphic representations of GL2 over number fields by Ichino [45] (resolving a
refinement of a conjecture due to Jacquet). By another accidental isomorphism, this
resolves the conjecture of Gan–Gross–Prasad in the case of SO4 × SO3.

In order to keep the exposition relatively short, we have left out many important
results on periods (most prominently the work of Gross and Zagier [37]). The relation
between automorphic periods and L-functions remain mysterious in general. There
is however an emerging philosophy describing a relative Langlands picture as in the
work of Sakellaridis and Venkatesh [86], which gives some conceptual framework for
the role of periods in the theory of automorphic forms.

2.1.2 Cohomology and modular symbols
A different kind of periods of automorphic forms emerged in the work of Eichler and
Shimura on cohomological models for modular forms. The Eichler–Shimura isomor-
phism for Γ ⊂ SL2(R) discrete, cofinite subgroup is the isomorphism:

Sk(Γ)⊗ Sk(Γ) ∼−→ H1
P (Γ, Vk−2(C)), (2.1.3)

where Vk−2(C) is the space of degree k− 2 homogenous polynomials in two variables
equipped with a certain action of Γ and H1

P denotes parabolic cohomology (see [90,
Chapter 8] for details). More precisely, the isomorphism is given by mapping (f, g)
to the element of cohomology defined by γ 7→ σf (γ) + σg(γ) where

σf (γ)(X,Y ) =
∫ ∞

γ∞
f(z)(X + zY )k−2dz. (2.1.4)

These polynomials are what Eichler calls the period polynomials of f and Shimura [89]
refers to the coefficients of the period polynomials {

∫∞
γ∞ f(z)zjdz}0≤j≤k−2 as the

periods of f ∈ Sk(Γ).
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Inspired by this Manin [68] (and independently Birch) introduced what are called
modular symbols. For Hecke congruence subgroups Γ0(N), we define the associated
modular symbols as the Q-vector space generated by pairs of cusps {a, b}, a, b ∈
Q ∪ {∞} modulo two explicit relations (given in terms of the action of Γ0(N) on the
cusps). These symbols provide a combinatorial model for the (rational) homology
of modular curves (relative to the cusps), and have been used with great success for
computing modular forms (see [20]). We will mainly be interested in what is known
as the modular symbols map, which is obtained via the Poincaré pairing between
homology and cohomology. More precisely given f ∈ S2(Γ0(N)), we get a 1-form
f(z)dz and consider the map

Q 3 r 7→ 〈r, f〉 := 2πi
∫ i∞

r

f(z)dz ∈ C. (2.1.5)

Modular symbols (and the above pairing) have been used with great success in the
study of the arithmetics of L-functions (see [3], [70] and the references therein) due
to the Birch–Stevens formula: For χ a primitive Dirichlet character modulo q with
(q,N) = 1, we have

τ(χ)L(f, χ, 1/2) =
∑

a∈(Z/qZ)×
χ(a)〈a/q, f〉, (2.1.6)

where L(f, χ, s) =
∑
n≥1 λf (n)χ(n)n−s is the (naively) twisted L-function.

These cohomological ideas have been pushed much further. We will not go further
into this but simply point to [57].

2.2 A notion of periods for automorphic forms
We will now present a definition of what we mean by a “period of an automorphic
form”, which encompasses all the examples alluded to in the previous section. This
notion will be general enough to encompass the kind of periods encountered in this
thesis. But (hopefully) narrow enough so that it still offers a useful perspective on
the topics of the papers in this thesis.

Definition 2.2.1. Let Γ ⊂ G be a lattice in an S-arithmetic group and Y ⊂ Γ\G a
subset equipped with a measure ν. Let VY be a vector space consisting of measurable
functions on Y , and fix a basis {ψi} for VY . Then given a (sufficiently nice) function
F on Γ\G, we define the numbers

∫
Y
Fψidν as the periods of F along Y (with

respect to the basis {ψi}).
This notion is a slight generalization of the one presented by Venkatesh in the first

paragraph of [97]. This is (intentionally) a very general definition as it for instance
depends on the choice of space VY and basis {ψi}. This thesis is a testament to
the scope of such periods of automorphic forms, and we will encounter connections
to topics ranging from reciprocity formulas, quantum modular forms, equidistribu-
tion, quantum chaos and the theory of automorphic L-functions. In the context of
equidistribution problems, it is natural to consider the setup where ν is a probability
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measure and VY = L2(Y, ν), which is exactly the definition given in [97]. We will
encounter many different examples of periods of automorphic forms; modular sym-
bols, additive twists, period polynomials, Heegner traces, shifted convolution sums,
pairings between homology and cohomology. In the next chapter we will explain the
history and problems surrounding these different kind of periods and how the papers
of this thesis fit into the story. Below we have collected the data, which when plugged
into Definition 2.2.1 gives rise to these periods. We will consider four different main
settings, each corresponding to a specific choice of G,Γ, F, Y, ν and VY . In each of
these cases there are a number of different choices of bases, which will all be important
in different settings.

(1) G = PSL2(R), Γ = Γ0(N), F is the lift to Γ\G of f ∈ Sk(Γ0(N)),

Y = Yq =
{(

y a/q
0 1

)
| y ∈ R>0, a ∈ (Z/qZ)×

}
.

where q is a positive integer and dν =
∑ϕ(q)
i=1 dyi, with y1, . . . , yϕ(q) the y-variables

of each of the components (one for each a ∈ (Z/qZ)×). We will be interested in
the periods in the setting where VY consists of functions of the form

∑ϕ(q)
i=1 Pi(yi)

with Pi polynomials of degree at most k−2. In this case we have three interesting
bases.

(P1.1) We can consider the basis consisting of maps of the form
(
y a/q
0 1

)
7→ 1a=a0y

j−k/2,

where 1a=a0 is an indicator function for a0 ∈ (Z/qZ)× and 0 ≤ j ≤ k − 2.
In this case the periods correspond to special values of the additive twists of
the L-function of f . When k = 2, one recovers the modular symbols (2.1.5).

(P1.2) Alternatively, we can consider the basis consisting of
(
y a/q
0 1

)
7→ 1a=a0(a/q + iy)jy−k/2,

for a0 ∈ (Z/qZ)× and 0 ≤ j ≤ k − 2. This corresponds to the coefficients of
the period polynomials of f in the sense of Eichler (2.1.4).

(P1.3) Finally, we can consider the basis consisting of
(
y a/q
0 1

)
7→ χ(a)yj−k/2,

for χ a Dirichlet character modulo q and 0 ≤ j ≤ k − 2. This corresponds
to the special values of the automorphic L-function L(f ⊗ χ, s) (with some
fudge factors if (N, q) > 1 and/or χ is non-primitive) using the Birch–Stevens
formula (2.1.6).

All of these choices of periods are interesting in their own right as we will see in
Papers A, B, C and D; the first one gives rise to a normal distribution and residual
equidistribution, the second one is natural from the perspective of cohomology,
and the last one is evidently important in the theory of automorphic forms.
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(2) G = PSL2(R), Γ = PSL2(Z), F is the lift of the non-holomorphic Eisenstein series
E(z, 1/2 + it) to Γ\G, and

Y = YD = {za | a ∈ ClD},

where ClD denotes the class group of the imaginary quadratic field of discriminant
D < 0 and za is the associated Heegner point (considered as points in Γ\G in an
appropriate way). We equip Y with the counting measure and let VY be functions
on ClD. In this case we have two dual bases.

(P2.1) One is given by maps of the form za 7→ χ(a), where χ is a class group
character of ClD. The periods with respect to this basis are related to class
group L-functions by a special case of Waldspurger’s formula (2.1.1) (see
also (3.3.3) below).

(P2.2) The other basis is given by the maps za 7→ 1a=a0 where a0 ∈ ClD. The
periods in this context are treated in Paper F and can be bounded using
methods from the theory of exponential sums.

There is a similar picture for negative discriminants using Heegner cycles, which
are certain closed geodesics associated to elements of the class group of real
quadratic fields.

(3) G = PSL2(R), Γ = PSL2(Z), F is the lift of a Hecke–Maaß cusp form φ to Γ\G,
and

Y = YD = {Γa\Na ⊂ H | a ∈ Cl+D},
with D > 0 a positive fundamental discriminant, Cl+D the (narrow) class group
of discriminant D and Γa\Na a certain hyperbolic orbifold constructed in [25]
(again considered as a subset of Γ\G in an appropriate way). As above, we equip
Y with the counting measure and put VY equal to functions on Cl+D.

(P3.1) In this case we will be interested in the basis given by Γa\Na 7→ χ(a), where
χ is a class group character of Cl+D. The periods with respect to this basis are
related to the central values of Rankin–Selberg L-functions L(φ⊗Θχ, 1/2),
which is the main result proved in Paper E.

These periods are furthermore used in Paper E to obtain sparse equidistribution
results for the hyperbolic orbifolds Γa\Na.

(4) G = PSL2(R)×PSL2(R), Γ = PSL2(Z)×PSL2(Z), F = (Fk, Fk) where Fk is the
lift of a holomorphic cusp form of weight k and level 1 to PSL2(Z)\PSL2(R), and
Y ∼= PSL2(Z)\PSL2(R) is the diagonal equipped with the (left) Haar measure
of G and VY = L2

cusp(SL2(Z)\H, dxdyy2 ), where we view functions on SL2(Z)\H as
functions on Y the standard way. In this case there are two interesting bases.

(P4.1) The first basis is given by Hecke–Maaß cusp forms. In this case it follows by
the formula of Ichino and Watson (2.1.2) that the periods are connected to
triple convolution L-functions.
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(P4.2) The other basis is constructed from Poincaré series;

Ph,m(z) =
∑

γ∈Γ∞\SL2(Z)

e(mγz)h(Im γz),

for h smooth and compactly supported and m ∈ Z. In this case the periods
are connected to shifted convolution sums (see Section 3.3.3 below). In
particular, this connection is a key input in Paper G.

Remark 2.2.2. It is worth mentioning that all of the above periods can be written
down nicely in the adèlic language and are in some cases more naturally defined in
this setting. We have however sticked to the classical language, since this makes the
comparison with the papers of this thesis clearer.
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CHAPTER 3

SOME PROBLEMS IN ARITHMETIC
STATISTICS

It is an amazing fact that periods of automorphic forms show up in many different
parts of mathematics. In particular, the focus of this thesis is the connections between
automorphic periods and arithmetic statistics. As will be apparent later in this thesis,
automorphic periods can often can be studied using a variety of powerful tools. This
can then be used to obtain information about the statistical questions, we wanted to
understand in the first place (that being rational points on elliptic curves, automor-
phic L-function, equidistribution or quantum chaos). This observation is part of an
emerging philosophy that one can use “geometric” methods to study periods of au-
tomorphic forms. This shows maybe most prominently in the work of Venkatesh [97]
and Michel and Venkatesh [75], where they use (among other things) ergodic meth-
ods to obtain subconvexity bounds of certain L-functions. Interestingly, subconvexity
bounds for L-functions were originally studied using techniques from analytic num-
ber theory motivated by their connections (through automorphic periods) to certain
distribution problems. Venkatesh in [97], however showed that one can “turn the ta-
bles” and study the L-functions using the period representations. Recently, a variety
of other methods have been used successfully to study automorphic periods; spectral
theory [81], dynamical systems [59], [8] and micro-local analysis [76].

The results of the papers in this thesis touch upon a variety of questions of sta-
tistical nature, which can be separated into three main topics; modular symbols,
geometric invariants of quadratic fields and arithmetic quantum chaos. For
the two latter, there exist a vast literature including many excellent surveys. The
situation is quite different for the results relating to modular symbols, where no com-
plete overview of the current state of affairs seems to exist. Thus we will put our
emphasize on the history of the distribution of modular symbols below, and refer
to other sources for in-depth surveys on the study of the distribution of geometric
invariants of quadratic fields and arithmetic quantum chaos.

23
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3.1 Around the distribution of modular symbols
In the 90’s inspired by a connection to Szpiro’s conjecture (relating the conductor and
the discriminant of elliptic curves), Goldfeld initiated the study of the distribution
of modular symbols [34], [35]. Furthermore, he introduced the following Eisenstein
series twisted by modular symbols, known as the Goldfeld Eisenstein series;

∑

γ∈Γ∞\Γ0(N)

〈γ∞, f〉n Im(γz)s,

where f ∈ S2(Γ0(N)) is a cusp form of weight 2 and level N and Γ∞ = 〈( 1 1
0 1 )〉. In

his thesis, O’Sullivan [77] proved meromorphic continuation and functional equation
in the case n = 1. The first to obtain precise analytic information about these series
for all n were Petridis and Risager, who used this information to prove that modular
symbols 〈a/q, f〉 are asymptotically normally distributed when ordered by a2 +q2 and
appropriately normalized [78, Theorem A].

Theorem 3.1.1 (Petridis and Risager, 2004). Let f ∈ S2(Γ0(N)) be a cusp form of
weight 2 and level N . Then as Q→∞, the distribution of the numbers

{
Re〈a/q, f〉√
log(a2 + q2)

|
√
a2 + q2 ≤ Q, (a, q) = 1, N |q

}

tend to a normal distribution with mean 0 and a certain explicit variance.

Petridis and Risager used their methods to obtain a number of results [80], [83],
[79], and the ideas of Goldfeld also inspired the notion of a second order modular
form [17].

In 2016 (unaware of the results of Petridis and Risager), Mazur and Rubin (and
Stein) initiated the study of the arithmetic statistics of modular symbols. This time
their motivation was to obtain heuristics for the following question regarding the
Diophantine stability of elliptic curves E/Q:

(Q1) How often is rankZE(K) > rankZE(Q)
as K/Q ranges over abelian extensions?

Assuming the BSD-conjecture (in a sufficiently general form), we have

rankZE(K) = ords=1L(E/K , s),

where L(E/K , s) is the Hasse–Weil L-function of the base-change of E to K. For K/Q
abelian, we have the following factorization:

L(E/K , s) =
∏

χ∈ ̂Gal (K/Q)

L(E,χ, s),

where L(E,χ, s) =
∑
aE(n)χ(n)n−s is the χ-twisted L-function of E. This implies

that the question (Q1) is related to the vanishing properties of the central values
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of the twisted L-functions L(fE , χ, 1/2), where χ is a Dirichlet character and fE is
the weight 2 cusp form corresponding to E. These L-functions are in turn related to
modular symbols through the Birch–Stevens formula (2.1.6), as we saw above.

This led Mazur and Rubin to study the statistics of modular symbols with an
arithmetic ordering. Using this, Mazur and Rubin develop a heuristics, from which
they obtain a (conjectural) answer to (Q1) in certain families. In particular, they
recover predictions due to David, Fearnley and Kisilevsky [21] obtained using Random
Matrix Theory. The ordering originally used by Petridis and Risager came naturally
out of the Goldfeld Eisenstein series, whereas from an arithmetic point of view it
is more convenient to order the modular symbols by the denominator of the cusps.
Mazur and Rubin conjectured among other things that with this ordering the modular
symbols should be asymptotically normally distributed.

Conjecture 3.1.2 (Mazur and Rubin, 2016). Let f ∈ S2(Γ0(N)) be a cusp form of
weight 2 and level N . Then as q →∞, the distribution of the numbers

{
Re〈a/q, f〉√

log q
| a ∈ (Z/qZ)×

}

tend to a normal distribution with mean 0.

This conjecture seems to be extremely hard. First of all, the size of the family in
the conjecture above is the square-root of the family appearing in Petridis and Risager
(relative to the largest denominator appearing in the families). Secondly, calculating
the second moment for this family amounts (using Parseval and Birch–Stevens (2.1.6))
to calculating the second moment of Dirichlet twists L(f, χ, 1/2), which was only
achieved very recently by the combination of the work of Blomer, Fouvry, Kowalski,
Michel, Milićević and Sawin [14], [10], [56]. The methods are extremely profound
using the full power of spectral and algebro-geometric methods.

It was soon after Mazur and Rubin’s work realized by Petridis and Risager that
their methods from [78] could be adapted to the arithmetic setting as well. They were
able to obtain an average version of Conjecture 3.1.2 with the further refinement that
they could restrict the cusp to a fixed interval. Finally, they also obtained a beautiful
formula for the variance. The following result is [81, Theorem 1.7].

Theorem 3.1.3 (Petridis and Risager, 2018). Let f ∈ S2(Γ0(N)) be a cusp form of
weight 2 and square-free level N . Fix an interval I ⊂ R/Z. Then as Q → ∞, the
distribution of the numbers

{
Re〈a/q, f〉√

log q
| a ∈ (Z/qZ)× , 0 < q ≤ Q, a/q ∈ I

}

tend to a normal distribution with mean 0 and variance

Cf = 6/π2
∏

p|N
(1 + p−1)−1L(sym2f, 1).

Furthermore the methods of Petridis and Risager apply to cusp forms of any
discrete, cofinite subgroup of SL2(R) with cusps.
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Later, Lee and Sun [59] obtained a different proof of Theorem 3.1.3 using dy-
namical methods. Their approach relies on Manin’s trick, which expresses a general
modular symbol in a convenient basis called Manin symbols. This basis is related to
continued fraction expansions, which enabled Sun and Lee to employ the dynamics
of such expansions as in the work of Baladi and Vallée [4]. This method is however
restricted to the case of arithmetic subgroups and furthermore their method does not
give a formula for the variance (see [59, page 23]).

Mazur and Rubin (together with Stein) also put forth a number of other con-
jectures in [73] regarding modular symbols, many of which have been (partially)
resolved [22], [94], [11, Thm. 9.2]. We will not touch upon these interesting results in
this thesis but instead refer to [73, Sec. 4] for a nice overview of the known results.

3.1.1 Residual distribution of modular symbols
At a talk at the number theory seminar at the California Institute of Technology,
Mazur put forth a conjecture concerning the mod p distribution of modular symbols
(see the unpublished note [71]). More precisely, let fE ∈ S2(Γ0(N)) be a cusp form of
weight 2 and level N corresponding to an elliptic curve E/Q. Then it is known that

m±E(a/q) := 1
Ω± (〈a/q, fE〉 ± 〈−a/q, fE〉) ∈ Z (3.1.1)

for all a/q ∈ Q, where Ω± are the Néron periods of E (see [73, Sec. 1]). Now one can
ask how the values of m±E(a/q) distribute among the residue classes modulo primes
p. Mazur and Rubin conjecture that the residues should equidistribute under some
assumptions on p and E.

Conjecture 3.1.4 (Mazur and Rubin, 2016). Let p be a prime such that the residual
representation of E mod p is surjective and p is an ordinary and good prime of E.
Then the distribution of the residues

{
m±E(a/q) mod p | a ∈ (Z/qZ)×

}

tend to the uniform distribution on Z/pZ as q →∞.

Lee and Sun were able to adapt their dynamical approach to this setting as well,
and as above they obtained an averages version of this conjecture, see [59, Theorem
C.3].

Theorem 3.1.5 (Lee and Sun, 2019). Let p and E be as above. Then the distribution
of the residues {

m±E(a/q) mod p | 0 < q ≤ Q , a ∈ (Z/qZ)×
}

tend to the uniform distribution on Z/pZ as Q→∞,.

In Paper D (joint with Constantinescu) we give a new automorphic proof of this
result and obtain a number of refinements and (most importantly) extend the results
to hyperbolic spaces of arbitrary dimension. In certain special cases we can actually
prove the full conjecture using a connection to Eisenstein congruences.
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3.1.2 Generalizations of the conjectures of Mazur and Rubin
We will now discuss certain generalizations of Theorems 3.1.3 and 3.1.5. From the
automorphic perspective it is natural to ask whether there exists generalizations to
higher weight cusp forms, Maaß forms, GL2 over general number fields or different
algebraic groups. Whereas from the dynamical perspective other generalizations are
appealing (as we will see below).

The case of higher weight

Regarding a generalization to higher weight, the first question is what the appropriate
analogue of modular symbols should be, so that one will see a normal distribution
appearing. Many different generalizations of modular symbols exist in the higher
weight case, and at some point it was believed that the period polynomials attached
to a cusp form would be the correct analogue. We recall from Section 2.1.2 that
period polynomials are defined as follows:

σf (γ)(X,Y ) =
∫ ∞

γ∞
f(z)(X + zY )k−2dz,

for f ∈ Sk(Γ0(N)) and γ ∈ Γ0(N). This notion is the natural generalization of
modular symbols from a cohomological perspective in view of the Eichler–Shimura
isomorphism (2.1.3). The coefficients of these polynomials correspond to the periods
(P1.2) above. The analytic properties of period polynomials have been studied a
lot recently, see [23] for a survey of results. These works have mainly studied the
properties of the zeroes of σf (S) as f varies (where S =

( 0 −1
1 0

)
), which have been

shown to satisfy an analogue of the Riemann Hypothesis. In Paper B we study the
distribution of period polynomials and their zeroes when f is fixed and γ varies. In
particular, we determine the limiting joint distribution of the coefficients of period
polynomials, which turns out to be very far from normal.

In order to get a proper generalization of Theorem 3.1.3, the key turned out to
be the Birch–Stevens formula (2.1.6). For higher weight cusp forms f ∈ Sk(Γ0(N))
what take the place of modular symbols are additive twists, defined as:

L(f, r, s) :=
∑

n≥1
af (n)e(nr)n−s,

for Re s > (k + 1)/2 and r ∈ Q, where af (n) are the Fourier coefficients of f and
e(x) = e2πix. They satisfy analytic continuation and functional equation relating
s↔ k− s (see Section 3.3 in Paper A for details). The special values s = 1, . . . , k− 1
of the additive twists correspond exactly to the periods (P1.1) above. In this case
we have the following generalization of the Birch–Stevens formula: For a primitive
Dirichlet character χ modulo q, we have

τ(χ)L(f, χ, 1/2) =
∑

a∈(Z/qZ)×
χ(a)L(f, a/q, k/2), (3.1.2)

where L(f, χ, s) =
∑
λf (n)χ(n)n−s is the (naively) twisted L-function of f and τ(χ)

is a Gauß sum. This formula is exactly encoding the relation between the two periods
(P1.1) and (P1.3).
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To explain why one should expect additive twists to be asymptotically normally
distributed, one has to look at the problem from a “moments of L-functions” perspec-
tive: If we consider the moments of the additive twists, use an approximate functional
equation and look at the contribution of the diagonal term, then one sees exactly the
moments of the normal distribution appearing from the combinatorics. Assuming
that the off-diagonal terms are negligible (which is only known for the 1st and 2nd
complex moments by [11]) the normal distribution will follow by the method of mo-
ments. This heuristics applies equally well for all weights and also for Hecke–Maaß
cusp forms. We hope to pursue these ideas further in the future.

In Paper A we prove that indeed additive twists are asymptotically normally
distributed (again with the extra average) using an extension of the approach of
Petridis and Risager. We also provide interesting applications to automorphic L-
functions using the Birch–Stevens formula. Independently, Bettin and Drappeau [8]
obtained a different proof of the normal distribution result using dynamical methods.
Their method however only works for cusp forms with trivial level. The starting point
for them is the fact that for f ∈ Sk(SL2(Z)), the map Q 3 r 7→ L(f, r, k/2) defines
a quantum modular form in the sense of Zagier [105]. Quantum modularity in this
context means concretely that we have

L(f, r, k/2) = L(f,−1/r, k/2) + h(r), (3.1.3)

for all r ∈ Q\{0}, where h : R → R is some continuous function, which in this case
can be estimated easily. Now iterating this we get (using that h is even) that

L(f, r, k/2) = h(r) + h(T (r)) + . . .+ h(Tm(r)),

for some m ≥ 1, where T (x) = { 1
x} is the Gauß map. Now one can employ the

dynamics of the Gauß map using an extension of the methods in [4] to get a normal
distribution result. The property (3.1.3) corresponds to quantum modularity with
respect to the matrix S =

( 0 −1
1 0

)
, which is the reason why the method does not

directly generalize to non-trivial level. In return, the method of Bettin and Drappeau
applies to a much larger class of quantum modular forms of level 1. In particular, they
are able to show that the central values of the Estermann function are asymptotically
normally distributed. This is a major achievement since the method of moments does
not work in this case (as follows from the moment calculation of Bettin [7]).

Further symmetries, quantum modular forms and reciprocity formulas

Quantum modular forms were introduced by Zagier [105] motivated by certain sym-
metries satisfied by invariants appearing in quantum field theory. In words, a quan-
tum modular form of level N and weight k is a function on Q, which is “almost
modular” with respect to the action of Γ0(N) given by the weight k slash operator
(i.e. f|k,γ(r) := j(γ, r)−kf(γr)). More precisely “almost modular” means that the
discrepancy:

gγ(r) := f(r)− j(γ, r)−kf(γr), r ∈ Q,
for γ ∈ Γ0(N) fixed, can be extended to a continuous/analytic/smooth function on
R\{γ−1∞} (the choice of regularity varies from case to case). In Paper C, extending
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the results of [8], we prove that the central value of additive twists L(f, ·, k/2) with
f ∈ Sk(Γ0(N)) define a quantum modular form of weight 0 and level N (with reg-
ularity=continuous). This can be seen as a further (approximate) symmetry that is
satisfied by the periods (P1.1).

In earlier work of Bettin [6], it is proved that the Estermann function defines
a quantum modular form, which is used to give a refinement of a reciprocity rela-
tion discovered by Conrey [18]. The reciprocity relation is related to twisted second
moments of Dirichlet L-functions and takes the following form:

∑

χ mod q

|L(χ, 1/2)|2χ(l) 
∑

χ mod l

|L(χ, 1/2)|2χ(−q), (3.1.4)

for primes q 6= l, where the sums run over Dirichlet characters modulo q, respectively
l. Recently, many other reciprocity relations for moments of L-functions have been
discovered, see [13], [12], [2].

Noticing that |L(χ, 1/2)|2 = L(E ⊗ χ, 1/2), where E is an appropriate Eisenstein
series (in representation theoretic language E should correspond to the isobaric sum
1� 1), it is natural to expect that a generalization of the reciprocity law should exist
when we replace E by a GL2 cuspidal automorphic representation. In Paper C we
show that this is indeed the case for holomorphic cusp forms. Furthermore, building
on these ideas we have work in progress, which aims to generalize the reciprocity
relations above to Hecke–Maaß cusp forms. Combining this with the methods in [8],
this might furthermore lead to a normal distribution result for additive twists of
Hecke–Maaß cusp forms.

Residual distribution for Lorentz groups

A question that begs an answer is whether the automorphic method can be adapted
to deal with residual distribution of modular symbols as in Conjecture 3.1.4. This
is the topic of Paper D, where we show that this indeed can be done using analytic
properties of twisted Eisenstein series. This can be seen as a discrete version of the
method of Petridis and Risager introduced in [78]. Furthermore, this method allows
for a generalization to quotients of higher dimensional hyperbolic spaces Hn+1 or more
precisely cohomology classes in H1(Γ,Fp) where Γ ⊂ SO(n + 1, 1) is a discrete and
cofinite subgroup with cusps.
Remark 3.1.6. A different possible generalization is to study the residual distribution
of the coefficients of period polynomials. These coefficients are known to have good
arithmetic properties and it would thus be interesting to obtain results about their
residual distribution. Nothing seems to be known at present.

As a final remark, we will emphasize that the dynamical and automorphic ap-
proach supplement each other as they allow for generalizations in different directions.
The results in Papers A, B and C and D apply equally well to general discrete and
cofinite subgroups of SL2(R), and in a different direction it has been shown by Con-
stantinescu [19] that the automorphic method generalizes very naturally to the case of
Bianchi modular forms (i.e. GL2 over imaginary quadratics). Interestingly, the proof
in [19] avoids the method of moments and uses instead the Berry–Esseen inequality
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to obtain the distribution result. On the other hand, the dynamical methods can
be used to obtain distribution results for very general quantum modular forms, as
mentioned above.

3.2 Distribution of geometric invariants of quadratic
fields

We will now describe a different circle of ideas, surrounding geometric invariants of
quadratic fields. For a beautiful and informative summary of the history, we will
recommend [74]. Below we will highlight some developments, which are relevant for
this thesis.

In the 80’s, Duke [24] discovered a connection between some classical questions
about quadratic forms and the theory of automorphic forms. He observed that certain
periods of automorphic forms were closely related to the distribution of integral points
of quadratic forms. Duke studied the distribution on the modular surface X0(1) :=
SL2(Z)\H of Heegner points and Heegner cycles associated to class groups of quadratic
fields. Recall that the (wide) class group of fundamental discriminant D is defined as
the quotient of fractional ideals ofK by principal fractional ideals, whereK = Q(

√
D)

is the quadratic field of discriminant D. Given a negative fundamental discriminant
D, we can associate to each element a ∈ ClD of the class group a point on the
modular surface za ∈ X0(1) known as the Heegner point (associated to a). Similarly,
for positive discriminants D > 0 and a ∈ ClD, we can associate a closed geodesic
γa ⊂ SL2(Z)\H, which we call the Heegner cycle associated to a. Duke proved that
as |D| → ∞ the Heegner points (respectively cycles) equidistribute on the modular
surface with respect to the hyperbolic measure. This means more concretely that for
any continuity set A ⊂ X0(1), we have

#{a ∈ ClD | za ∈ A}
#ClD

= vol(A)
vol(X0(1)) + o(1),

as −D →∞ (with D a negative fundamental discriminant), where the volume is with
respect to the hyperbolic measure dxdy

y2 . Similarly, Duke proved that for D > 0;
∑

a∈ClD
∫
γa∩A 1 ds

∑
a∈ClD

∫
γa

1 ds = vol(A)
vol(X0(1)) + o(1),

as D → ∞, where ds is the hyperbolic line element (in this case one can actually
refine the result to an equidistribution result on the unit tangent bundle of X0(1)).

These questions turn out to be the dual formulations of the classical problem of
determining the distribution of integral points of quadratic forms on the appropriate
level set as explained in [74, Section 1]. Such problems have been intensively studied
by Linnik [62] in the 60’s using his ergodic method with great success. The ergodic
method is however only able to obtain the equidistribution results under a certain
congruence condition (for positive discriminants an ergodic proof without the congru-
ence condition has now been given [28]). Duke was the first to remove this condition.
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The approach of Duke is to use harmonic analysis; by Weyl’s criterion it is enough
to show cancelation in the Weyl sums

∑

a∈ClD

φ(za),

where D < 0 and φ is a Hecke–Maaß cusp form or an Eisenstein series (and similarly
for D > 0). These Weyl sums turn out to be connected to Fourier coefficients of
half-integral Maaß forms as was proved by Maaß [67] (and revisited by Katok and
Sarnak [54]). Duke managed to bound the Fourier coefficients of half-integral Maaß
forms using a breakthrough of Iwaniec [48].

A slightly different approach is to employ the formula of Waldspurger (2.1.1); if we
pick the automorphic representation π to be the one associated to a Hecke–Maaß cusp
form of level 1 and let the Hecke character χ be the trivial one, then the automorphic
period in (2.1.1) reduces exactly to the Weyl sums studied by Duke. This implies that
equidistribution of Heegner points (and cycles) follows from a subconvexity bound for
certain twisted L-functions. Furthermore, this approach opened up for a number of
different generalizations. First of all, by choosing non-trivial Hecke characters (and
using some easy Fourier analysis), one could deduce sparse equidistribution for Heegner
points associated to subgroups of the class group assuming subconvexity estimates
for certain Rankin–Selberg L-functions. Such subconvexity bounds were obtained by
Harcos and Michel [38] using the amplification method from analytic number theory.
A different case of sparse equidistribution is to consider the distribution of Heegner
points with level structure and allow the level to change with the discriminant as
was carried out by Liu, Masri and Young [63]. All of these applications requires a
version of Waldspurger’s formula completely explicit in all parameters. Such versions
are available due to the work of many people (see [30] and the references therein).
Variants of Duke’s theorem have been studied extensively [69], [38], [27], [1]. Very
recently a generalization was studied by Duke, Imamoḡlu and Tóth [25], which is the
starting point for Paper E.

3.2.1 The work of Duke, Imamoḡlu and Tóth

In [25], Duke, Imamoḡlu and Tóth revisit the geometric invariants associated to pos-
itive discriminant D > 0. They define certain geometric invariants associated to
elements of the narrow class group Cl+D. The narrow class group is defined as the
quotient of fractional ideals of K with principle ideals with a generator of positive
norm. If there is a unit of norm −1 then Cl+D = ClD but otherwise the two versions of
the class group are different. Associated to a ∈ Cl+D there is a certain hyperbolic orb-
ifold Γa\Na whose boundary is the Heegner cycle γa mentioned above. The surfaces
Γa\Na are very interesting objects and were introduced with the hope of shedding
light on the class groups of real quadratic fields.

The authors study the distribution of these surfaces when projected to the modular
surface X0(1) = Γ\H, where Γ = SL2(Z). They manage to show that for any sequence
of genera HD ⊂ Cl+D (i.e. a coset of (Cl+D)2) and any continuity set A ⊂ X0(1), we
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have
∑

a∈HD vol(Γa\Na ∩ ΓA)∑
a∈HD vol(Γa\Na) = vol(A)

vol(X0(1)) + o(1), (3.2.1)

as D → ∞, where the volume is with respect to the measure dxdy
y2 . Equidistribution

for the surfaces of the whole class group turns out to be trivial since when projected
down they cover X0(1) evenly (i.e. the above is true without error term).

By using simple Fourier analysis, the equidistribution statement (3.2.1) follows if
one can show cancellation in the Weyl sum for this distribution problem twisted by
class group characters. These twisted Weyl sums can be shown to be related to the
product of two Fourier coefficients of half-integral Hecke–Maaß cusp forms using a
generalization of the work of Katok and Sarnak [54]. These Fourier coefficients have
been bounded by Duke and thus (3.2.1) follows.

A general limitation when using the Katok–Sarnak approach to these equidistribu-
tion questions is that one can only deal with Weyl sums twisted by genus characters.
To deal with twists by general class group characters, one has to use the connection to
central values of Rankin–Selberg L-functions as in the work of Waldspurger. In Paper
E (joint work with Humphries) we give an adèlic interpretation of the twisted Weyl
sums and manage to relate them to L-functions. These Weyl sums are exactly the
periods (P3.1) above. As an application we obtain a sparse equidistribution result
for the hyperbolic orbifolds.

3.3 Arithmetic quantum chaos
We will now turn to the last topic touched upon in this thesis. The point of de-
parture is a classical problem of quantum physics going all the way back to Bohr,
Sommerfeld and Einstein; to understand the behavior of quantizations of classical
Hamiltonians (the correspondence principle). In the case of the hyperbolic arithmetic
surface X0(1) = SL2(Z)\H, we will be interested in the quantization of the classical
Hamiltonian generating the geodesic flow, which gives rise to the hyperbolic Laplacian
∆ = −y2( ∂2

∂x2 + ∂2

∂y2 ). It is known that the geodesic flow is ergodic and thus chaotic,
which puts us in the realm of quantum chaos. The eigenfunction of the Laplacian are
exactly the Hecke–Maaß forms (forgetting the continuous spectrum for the moment),
and the problem becomes to understand their behavior as the energy (i.e. eigenvalue)
goes to infinity. In particular, the Quantum Ergodicity Conjecture (QE) states that
for a density 1 subsequence of L2-normalized eigenfunctions {φ} with Laplace eigen-
values {λφ}, we should have for any sufficiently nice test function ψ : X0(1) → C
that

〈ψ, |φ|2〉 → 3
π
〈ψ, 1〉,

as λφ → ∞, where 〈·, ·〉 denotes the Petersson inner product. This was resolved
by Zeldich [106] in a much more general setting. More generally, the Random Wave
Conjecture of Berry [5] predicts that the eigenfunctions of the Laplacian should behave
like “ Gaußian random waves”. This has deep implications for the possible localization
of the eigenfunctions.
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Following these lines of thinking, Rudnick and Sarnak [85] conjectured that for
X0(1) mass equidistribution should actually hold for the full sequence of Laplace
eigenfunction, which came to be known as the Quantum Uniqueness Ergodicity Con-
jecture (QUE). Secondly, Rudnick and Sarnak conjectured that the sup norms of
Hecke–Maaß cusp forms φ should satisfy

sup
z∈C
‖φ‖∞ �ε,C tεφ

for any ε > 0, where C ⊂ X0(1) is compact and λφ = 1/4+t2φ is the Laplace eigenvalue
of φ. This is known as the Sup Norm Conjecture. Both of these conjectures are in
accordance with the Random Wave Conjecture.

The QUE conjecture for X0(1) was famously proved by Lindenstrauss [61] using
ergodic methods (with an additional key input by Soundararajan [92]). The Sup
Norm Conjecture is still wide open. The best result to date is due to Iwaniec and
Sarnak [50] who obtained the bound �ε t

5/24+ε
φ improving on the convexity exponent

1/4 (which can be obtained easily).

3.3.1 Mass equidistribution for holomorphic forms
The same questions can also be asked for holomorphic cusp forms (although there is
no clear physical interpretation in this case). This time the QUE conjecture predicts
that for Hecke eigenforms f ∈ Sk(SL2(Z)), we have

〈ψ, yk|f |2〉 → 3
π
〈ψ, 1〉, (3.3.1)

as k → ∞ (where we use the normalization 〈yk|f |2, 1〉 = 1) . As an important
corollary it was shown by Rudnick [84] that QUE for holomorphic forms implies that
the zeroes of Hecke eigenforms equidistribute on X0(1).

QUE for holomorphic forms was proved by a combination of the works of Holowin-
sky and Soundararajan [41], [93], [42], see also [91] for a nice and more in-depth sur-
vey. The starting point for both the approach of Holowinsky and of Soundararajan is
Weyl’s criterion; in order to conclude QUE for holomorphic forms it is enough to show
(3.3.1) for a basis of L2(X0(1)). Holowinsky considered the generating set consisting
of Poincare series defined by

Ph,m(z) :=
∑

γ∈Γ∞\Γ
e(mγz)h(Im γz),

where h : (0,∞) → (0,∞) is smooth with compact support and m ∈ Z (for m = 0
the Poincare series are known as incomplete Eisenstein series). This gives rise to the
periods (P4.2) defined above. It is a fact observed firstly by Luo and Sarnak [64] that
bounding the periods 〈Ph,m, yk|f |2〉 reduces to bounding shifted convolution sums of
length k of the form

∑
n�k λf (n)λf (n+m). This was achieved by Holowinsky for most

f (even after taking absolute values of the Hecke eigenvalues) using sieve methods.
Soundararajan considered instead the basis consisting of Hecke–Maaß cusp forms

{φ}, which are exactly the periods (P4.1). In this case, it follows from the formula



34 CHAPTER 3. SOME PROBLEMS IN ARITHMETIC STATISTICS

of Watson and Ichino (2.1.2) that the square of the periods 〈yk|f |2, φ〉 are equal (up
to some manageable factors) to the triple convolution L-function L(f ⊗ f ⊗ φ, 1/2).
Soundararajan succeeded in obtaining what he calls a weak subconvexity bound for
such L-functions, which again is strong enough to resolve mass equidistribution for
most f . As it turns out, the exceptions in the works of Soundararajan and Holowinsky
complemented each other, which lead to the full resolution of QUE for holomorphic
cusp forms.

In his investigations of quantum chaos, Zelditch [107] introduced the quantum
variance associated to a compact Riemannian manifold (M, g):

∑

λφ≤X

∣∣〈ψ, |φ|2〉 − 〈ψ, 1〉
∣∣2 ,

where ψ : M → C is a test function and φ are eigenfunctions for the Laplace–Beltrami
operator on M with eigenvalues λφ. Luo and Sarnak [65] studied the analogous
quantum variance for holomorphic forms on the modular surface and were able to
obtain an asymptotic formula for the quantum variance when averaging over k:

∑

k�K

∑

f∈Hk
L(1, sym2f)〈ψ1, y

k|f |2〉〈ψ2, yk|f |2〉 = Bω(ψ1, ψ2)K + oψ1,ψ2(K),

as K →∞, where ψ1, ψ2 are sufficiently nice cuspidal test functions. The main term
Bω is a very interesting Hermitian form diagonalized by Hecke–Maaß cusp forms
φ with Bω(φ, φ) being equal to a constant times L(φ, 1/2). Interestingly, in their
investigations Luo and Sarnak employ both choices of periods (P4.1) and (P4.2). As
a surprising corollary, they deduce the deep fact that L(φ, 1/2) ≥ 0.

3.3.2 The case of Eisenstein series
One can ask the same questions as above for the non-holomorphic Eisenstein series;

E(z, s) =
∑

γ∈Γ∞\SL2(Z)

Im(γz)s,

on the line of symmetry s = 1/2 + it, which corresponds to the continuous spectrum
of the Laplacian. The statements require suitable modifications. The case of QUE
for Eisenstein series was resolved early on by Luo and Sarnak [64] who proved that

1
2 log t 〈ψ, |E(·, 1/2 + it)|2〉 → 3

π
〈ψ, 1〉,

as t→∞ for ψ sufficiently nice. In this case the periods that appear are much easier
to handle than in the Maaß case.

The problem of sup norm bounds for Eisenstein series has also been studied. In
this case the method of Iwaniec and Sarnak yields the bound

sup
z∈C
|E(z, 1/2 + it)| �C,ε t

5/12+ε, (3.3.2)
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with C ⊂ H compact. Note that in this case, the convexity bound is �C,ε t
1/2+ε.

Young [103] using a slight modification of the method of Iwaniec and Sarnak, obtained
the improved exponent 3/8 + ε in the Eisenstein case. Blomer [9] realized that the
classical work of Titchmarsh [96] using exponential sum methods could be applied
and obtained the Weyl type exponent 1/3 + ε. In Paper F, we upgrade Blomer’s
bound to a uniform sup norm bound with an explicit dependence of C.

It was observed by Sarnak [87, (4.19)] that the sup norm problem has applications
to subconvexity bounds for L-functions using the following formula due to Hecke:

LK(s, χ) = 2s+1ζ(2s)|D|−s/2
ωD

∑

a∈ClD

χ(a)E(za, s), (3.3.3)

where ClD is the class group of discriminant D < 0 and ωD ∈ {2, 4, 6} (there is
a similarly formula for real quadratic fields due to Siegel). The right-hand side of
(3.3.3) is exactly the periods (P2.1) above. In Paper F, we use this to obtain (hybrid)
subconvexity bounds for class group L-functions.

3.3.3 Mass distribution at small scales
It is natural to ask whether mass equidistribution also holds at smaller scales. This
means that we want to study mass equidistribution on shrinking sets or (what amounts
to the same thing) when we allow our test function ψ to vary with the spectral
parameter. This problem has been studied in the physics literature and it seems to
suggest that that mass equidistribution should hold all the way down to the scale of
the de Broglie wavelength (see [40]). This means that we expect equidistribution to
hold when we shrink our test function at a rate above 1/

√
λ, where λ is the eigenvalue.

Small scale equidistribution has been studied extensively in many aspect [102], [44].
In particular, in the holomorphic case Lester, Matomäki, and Radziwiłł [60] study
QUE for shrinking sets and the distribution of zeroes high in the cusp.

In Paper G we contribute to the question of small scale mass distribution in the
holomorphic case and consider the setting of shrinking “balls around infinity”. Among
other things we calculate the quantum variance when the test function ψ is “squeezed”
up towards the cusp ∞. In this setting the connection to L-functions seizes to exist
for the periods (P4.1). Instead we consider certain “squeezed periods” of the type
(P4.2) corresponding to the Poincaré series basis, which again are related to shifted
convolution sums. The results follows from solving this shifted convolution problem.
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CHAPTER 4

SUMMARIES OF PAPERS

Paper A: Central values of additive twists of cuspidal L-
functions
In this paper we study the distribution of central values of additive twists of holomor-
phic cusp forms. This is a generalization of the results of Petridis and Risager [81]
on the arithmetic statistics of modular symbols to higher weight holomorphic cusp
forms.

To explain our results, let f ∈ Sk(Γ0(q)) be a cusp form of even weight k and level
q. Then we define the additive twist by x ∈ R as the following Dirichlet series which
converges absolutely for Re s > (k + 1)/2:

L(f, x, s) :=
∑

n≥1

af (n)e(nx)
ns

,

where af (n) are the Fourier coefficients of f . When x ∈ Q, the additive twist L(f, x, s)
admits analytic continuation satisfying a functional equation relating s↔ k − s.

We will study the distribution of the central values s = k/2 as x varies through ra-
tional numbers ordered by their denominators. More precisely, we consider L(f, ·, k/2)
as a random variable defined on the outcome space

T (X) := {a/c | 0 < a < c ≤ X, (a, c) = 1, q|c}
endowed with the uniform probability measure. This defines a sequence of random
variable, which we show (when appropriately normalized) converges in distribution
to a standard normal.
Theorem 4.0.1 (Paper A, Theorem 1.1). Let f ∈ Sk(Γ0(q)) be a cusp form of even
weight k and level q. Then for any fixed box Ω ⊂ C, we have

PT (X)

(
L(f, a/c, k/2)
(Cf log c)1/2 ∈ Ω

)
:=

#
{
a/c ∈ T (X) | L(f,a/c,k/2)

(Cf log c)1/2 ∈ Ω
}

#T (X) (4.0.1)

=P(NC(0, 1) ∈ Ω) + o(1),

37
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as X →∞, where NC(0, 1) denotes the standard complex normal distribution and the
variance is given by

Cf := (4π)k‖f‖2
(k − 1)! vol(Γ0(q)) , (4.0.2)

with ‖f‖ the Petersson-norm of f and vol(Γ0(q)) the hyperbolic volume of Γ0(q)\H.
(Here P(NC(0, 1) ∈ Ω) denotes the probability of the event NC(0, 1) ∈ Ω.)

This result has applications to automorphic L-functions; the proof proceeds by
the method of moments and as a by-product we obtain an asymptotic expression for
high moments of additive twists. By combining this with the Birch–Stevens formula,
we obtain a calculation of a certain “wide” moment of automorphic L-functions.

More precisely given a newform f ∈ Sk(Γ0(q)) of weight k and level q and a prim-
itive Dirichlet character χ of conductor co-prime to q, we define the multiplicatively
twisted L-function of f ;

L(f ⊗ χ, s) :=
∑

n≥1

λf (n)χ(n)
ns

, Re s > 1,

where λf (n) denotes the nth Hecke eigenvalue of f . This series admits analytic
continuation to the entire complex plane satisfying a functional equation s ↔ 1 − s.
Because of the co-primality condition the above Dirichlet series defines (the finite
part of) the L-function of the automorphic representation πf ⊗ χ. We then get the
following asymptotic formula of a “wide” family of L-functions.

Corollary 4.0.2 (Paper A, Corollary 1.9). Let f ∈ Sk(Γ0(q)) be a newform of even
weight k and level q and n a non-negative integer. Then we have for all ε > 0

∑

0<c≤X,
(c,q)=1

1
ϕ(c)2n−1

∑

χ1,...,χ2n mod c,
χ1···χ2n=χprincipal

εχ1,...,χn

2n∏

i=1
ν(f, χ∗i , c/c(χi))L(f ⊗ χ∗i , 1/2)

= Pn(logX)X2 +Oε(X4/3+ε), (4.0.3)

where χ∗ mod c(χ) denotes the primitive character inducing χ, χprincipal is the prin-
cipal character mod c, Pn is a certain degree n polynomial with leading coefficient

q(2Cf )n n!
π vol(Γ0(q)) ,

εχ1,...,χn = χ1(−1) · · ·χn(−1) is a sign, and ν is an arithmetic weight given by

ν(f, χ, n) := τ(χ)
∑

n1n2n3=n,
(n1,q)=1

χ(n1)µ(n1)χ(n2)µ(n2)λf (n3)n1/2
3 . (4.0.4)

Actually, the results apply more generally to any discrete and cofinite subgroup Γ
of SL2(R) with cusps. The proof has as a key input the analytic properties of resolvent
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operators and is inspired by the approach introduced by Petridis and Risager [78].
There are however some substantial new difficulties which arises for higher weights,
due essentially to the fact that Γ 3 γ 7→ L(f, γ∞, k/2) is not additive for higher
weight. This leads to the analysis being much more involved and essential new ideas
were needed.
Remark 4.0.3. One natural question to ask (which has been asked on many occasions)
is whether one can generalize the above results to additive twists of Maaß forms. There
are some serious obstacles when trying to generalize the approach taken in this paper
to the Maaß case, since holomorphicity plays a crucial role. We do however have some
ideas on how to use the dynamical methods of Bettin and Drappeau [8] to the deal
with the Maaß case as well. This is work in progress (with Drappeau).
Remark 4.0.4. As mentioned above, we rely on the analytic properties of Eisenstein
series to calculate the moments of the additive twists, but there is another possible
approach; Bettin [7] succeeded in calculating all moments of the Esterman function
(which is an analogue of the additive twists of L-functions of holomorphic cusp forms)
using a classical approximate functional equation approach. It would be interesting
to see whether this can be done for additive twists of cuspidal automorphic forms as
well. This would give another approach to the Maaß case and maybe allow one to
obtain results for function fields as well.

Paper B: On the distribution of periods of holomorphic cusp
forms and zeroes of period polynomials
In this paper we study the distribution of period polynomials attached to higher weight
cusp forms. Let f ∈ Sk(Γ0(N)) with k ≥ 4 even. Then we define the period polyno-
mials of f as

rf,γ(X) :=
∫ ∞

γ∞
f(z)(z −X)k−2dz,

for γ ∈ Γ0(N). These polynomials are the natural cohomological generalization of
modular symbols to higher weight because of the Eichler–Shimura isomorphism. In
this paper we study the properties of rγ,f as γ varies and f is fixed. In analogy with
Paper A, we order the matrices γ by the size of their lower left entry. First of all we
study the location of the zeroes and obtain a result saying that the zeroes all cluster
together close to each other.

Theorem 4.0.5 (Paper B, Theorem 1.6). Let f ∈ Sk(Γ0(N)) be a newform of even
weight k ≥ 6 and level N . Then rf,γ is a polynomial of degree k−2 for any γ ∈ Γ0(N).
Furthermore, all zeroes x0 of rf,γ satisfy

x0 = a/c+Ok((|a/c|+ 1)(k−4)/(k−2)c−2/(k−2)),

where a, c are the entries in the left column of γ (i.e. γ∞ = a/c).

This result complements results of Jin, Ma, Ono and Soundararajan [52], which
handle the case of γ =

( 0 −1
1 0

)
fixed and f varying.
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Inspired by conjectures of Mazur and Rubin [73] on modular symbols, we also
study the joint distribution of the coefficients of the period polynomial. The distri-
bution is highly degenerate as it is the transformation of two independent random
variables uniformly distributed on R/Z, and thus in particular, very far from normal.
The transformation involved is a special value of additive twists of the L-function of
f .

More precisely we put

Ωc := {a/c ∈ Q | a, c ∈ Z≥0, (a, c) = 1, 0 ≤ a < c}, (4.0.5)

and

uf (a/c) = (uf,0(a/c), uf,1(a/c), . . . , uf,k−2(a/c)) (4.0.6)

:=
(∫ ∞

a/c

f(z)dz,
∫ ∞

a/c

f(z)zdz, . . . ,
∫ ∞

a/c

f(z)zk−2dz

)T
∈ Ck−1,

which one checks are the coefficients of the period polynomial associated to γ (up to
explicit constants), where γ∞ = a/c. Then we get the following result regarding the
distribution.

Theorem 4.0.6 (Paper B, Theorem 1.1). Let f ∈ Sk(Γ0(N)) be a cusp form of even
weight k ≥ 4 and level N . Then we have for any fixed box A ⊂ Ck−1 that

#{ac ∈ Ωc | uf (a/c)
Ckck−2 ∈ A}

#Ωc
= P (F (Y, Z) ∈ A) + o(1)

as c→∞ with N |c, where Y, Z are two independent random variables both distributed
uniformly on [0, 1), F : [0, 1)× [0, 1)→ Ck−1 is given by

F (y, z) := L(f, y, k − 1)
(
1, z, . . . , zk−2)T ,

and Ck = iΓ(k−1)
(2π)k−2 .

(Here P (F (Y,Z) ∈ A) denotes the probability of the event F (Y,Z) ∈ A).
We also obtain results for general cofinite, discrete subgroups of Γ, but then we

have to take an extra average over the lower left entries of the matrices γ or equiv-
alently over the denominators of the twists a/c. The idea of the proof is to write
the coefficients of the period polynomial as a linear combination of special values of
additive twists L(f, a/c, l) with l = 1, . . . k− 1. Now the results follows from a rather
careful analysis of the analytic properties of additive twists and uniform bounds for
Kloosterman sums.

Paper C: A note on additive twists, reciprocity laws and
quantum modular forms
In this paper we study generalizations of certain reciprocity laws proved by Conrey
in an unpublished paper [18] and connections to quantum modular forms. We study
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the case of holomorphic cusp forms of even weight and obtain a reciprocity relation
of the following kind, for q 6= l primes:

∑

χ mod q,
χ primitive

τ(χ)L(f, χ, k/2)χ(l) 
∑

χ mod l,
χ primitive

τ(χ)L(f, χ, k/2)χ(−q), (4.0.7)

where L(f, χ, s) denotes the analytic continuation of
∑
n≥1 af (n)χ(n)n−s with af (n)

the Fourier coefficients of f ∈ Sk(Γ0(1)), τ(χ) is a Gauß sum and χ runs through
primitive Dirichlet characters of conductor, respectively q and l.

We also obtain results when l, q are replaced by arbitrary integers and where we
allow f to have non-trivial level. In this case the result is not as clean, but takes the
following form.

Theorem 4.0.7 (Paper C, Theorem 2.1). Let f ∈ Sk(Γ0(N)) be a primitive newform
of even weight k and level N with eigenvalue ωf under the Fricke involution. Then
we have the following reciprocity relation for any pair of integers 0 < l < q with
(q,Nl) = 1;

1
ϕ(q)

∑

χ mod q

ν(f, χ∗, q/c(χ))L(f, χ∗, k/2)χ(l) (4.0.8)

− ωf
ϕ(lN)

∑

χ mod lN

ν(f, χ∗, lN/c(χ))L(f, χ∗, k/2)χ(−q)

= L(f, k/2) +Of (l/q),

where χ∗ mod c(χ) denotes the primitive character inducing χ, L(f, χ, s) is as above
and the arithmetic weights ν are given by

ν(f, χ, n) := τ(χ)
∑

n1n2n3=n,
(n1,N)=1

χ(n1)µ(n1)χ(n2)µ(n2)af (n3)n1−k/2
3 .

The proof is inspired by the approach of Bettin in [6], and begins by relating the
twisted sums in the reciprocity relation to additive twists;

L(f, a/q, k/2) = 1
ϕ(q)

∑

χ mod q

ν(f, χ∗, q/c(χ))L(f, χ∗, k/2)χ(a), (4.0.9)

with χ∗ mod c(χ) and ν as above. Now the proof boils down to the fact that
L(f, ·, k/2) as a function on Q defines a quantum modular form in the sense of Za-
gier [105]. This is a result of independent interest.

Theorem 4.0.8 (Paper B, Theorem 4.4). Let f ∈ Sk(Γ0(N)) be a cusp form of even
weight k and level N . Then the map Q→ C defined by

Q 3 r 7→ L(f, r, k/2)
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is a quantum modular form of weight zero for Γ0(N). More precisely, for γ ∈ Γ0(N)
and r ∈ Q with γr 6=∞ and γ∞ 6=∞, we have

L(f, γr, k/2)−L(f, r, k/2)

= L(f, γ∞, k/2) +
k/2−1∑

j=1

(
k/2−1
j

)

(c−1j(γ, r))j
(−2πi)−jΓ(k/2 + j)

Γ(k/2) L(f, r, k/2 + j)

+
k/2−1∑

j=1

(
k/2−1
j

)

(cj(γ, r))j
(−2πi)jΓ(k/2− j)

Γ(k/2) L(f, γ∞, k/2− j), (4.0.10)

where c is the lower-left entry of γ.
If we put N = 1 and γ = S =

( 0 −1
1 0

)
, then the left hand encodes exactly the

difference between the left- and right hand side of the reciprocity relation (4.0.7). Now
quantum modularity implies that this difference is archimedean in nature and thus
it can be estimated in terms of the archimedean size of q/l, which yields the wanted
reciprocity relation. For general level, we use quantum modularity with respect to
the Fricke involution defined as;

Wf(z) := N−k/2z−kf(−1/(Nz)). (4.0.11)

Remark 4.0.9. A natural question is whether one can extend the results to additive
twists of Maaß forms. We have work in progress that hopes to answer this question in
the affirmative. Secondly, we observe that the above reciprocity formula corresponds
to “GL2 twisted by GL1”. It would be interesting to obtain reciprocity formulas in
the case GLn × GL1 for some n 6= 2. Especially the simplest case n = 1 begs for an
answer.

Paper D: Residual equidistribution of modular symbols and
cohomology classes for quotients of hyperbolic n-space
In this paper we study the residual distribution of modular symbols and more gener-
ally the residual distribution of cohomology classes for quotients of higher dimensional
hyperbolic space. The question of residual distribution of modular symbols seems to
appear for the first time in unpublished work of Mazur and Rubin [71].

For f ∈ S2(Γ0(N)) a Hecke-eigenform, we define the modular symbols map as

〈r, f〉 := 2πi
∫ ∞

r

f(z)dz,

for r ∈ Q. Now if we fix a prime p, then it is a fact that there exists numbers Ω±
such that

m±f,p(a/q) = 〈a/q, f〉 ± 〈−a/q, f〉Ω± ∈ Z

for all a/q ∈ Q with N |q, but not all values are divisible by p. In this setting it
is conjectured by Mazur and Rubin that the values of m±f,p modulo p on the sets
{a/q | 0 < a < q, (a, q) = 1} tend to the uniform distribution on Z/pZ as q →∞.
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This conjecture was settled by Lee and Sun [59] using dynamical methods after
taking an extra average over q. In this paper we give a simple automorphic proof of this
statement, which furthermore allows for a number of refinements and generalizations.
In some very special cases we are also able to resolve the full conjecture without the
extra average.

Theorem 4.0.10 (Paper D, Theorem 3.1). Let N ≥ 5 and p | N − 1 be odd primes.
Then there exists a new form f ∈ S2(Γ0(N)) of weight 2 and level N such that the
values of m+

f,p on {aq | (a, q) = 1, 0 < a < q} equidistribute modulo p as q → ∞ with
N |q.

To state the result we obtain in general, let f1, . . . , fd be a Hecke basis for
S2(Γ0(N)) and consider the following random variable

mN,p(a/q) := (m+
f1,p

(a/q), . . . ,m−fd,p(a/q), a/q)

defined on the outcome space ΩQ = {a/q | 0 < a < q ≤ Q, (a, q) = 1, N |q} (endowed
with the uniform probability measure). Then we have the following simultaneous
distribution result.

Theorem 4.0.11 (Paper D, Theorem 1.2). The random variables mN,p defined on
the outcome spaces ΩQ are asymptotically uniformly distribution on (Z/pZ)2d×(R/Z)
as Q→∞.

Furthermore, we obtain results for higher dimensional hyperbolic spaces. So let
Γ ⊂ SO(n + 1, 1) be a discrete subgroup such that Γ\Hn+1 has finite volume and a
cusp at ∞ (here we use the usual action of SO(n + 1, 1) on Hn+1). Then we will
study the distribution of unitary characters of Γ, which is exactly computed by the
cohomology group H1(Γ,R/Z). We will now describe a slightly simplified case of our
most general result.

Fix a prime p and let ω1, . . . , ωd be an Fp-basis for H1
Γ∞(Γ,Z/pZ) (corresponding

to unitary characters of order p trivial on the stabilizer Γ∞ of∞ which we assume for
simplicity to be exactly the translation by Zn). As in the case n = 1, we can associate
an invariant γ∞ ∈ Rn ∪ {∞}/Zn using the action of Γ on the cusps of Γ\Hn+1. Now
given X > 0, we consider

ω(γ) := (ω1(γ), . . . , ωd(γ), γ∞)

as a random variable with values in (Z/pZ)d× (Rn/Zn) defined on the outcome space

TΓ(X) = {γ ∈ Γ∞\Γ/Γ∞ | 0 < cγ ≤ X},

endowed with the uniform probability measure. Here cγ is a certain invariant of γ,
which for n = 1 reduced to the absolute value of the lower-left entry of γ (actually this
remains true using the Vahlens model of SO(n+ 1, 1)). Then we obtain the following
result.

Theorem 4.0.12 (Paper D, Theorem 1.4). The random variables ω defined on the
outcome spaces TΓ(X) are asymptotically uniformly distributed on (Z/pZ)d×(Rn/Zn)
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as X → ∞. This means in concrete terms that for any residue a ∈ (Z/pZ)d and
B ⊂ Rn/Λ, we have

# {γ ∈ TΓ(X) | (ω1(γ), . . . , ωd(γ)) = a, γ∞ ∈ B}
#TΓ(X) = 1

pd
· |B|+ o(1)

as X →∞.

To phrase the results we obtain for general elements of H1
Γ∞(Γ,R/Z) requires some

more notation, and we will refer to the paper itself for details. The proof relies on
realizing the generating series for the Weyl sums for the distribution question above as
the Fourier coefficients of twisted Eisenstein series. This idea can be seen as a discrete
analogue of the method pioneered by Petridis and Risager in [78]. We also obtain
results when we order the matrices of Γ by trace, in which case the proof proceeds by
an application of an appropriate trace formula.

Paper E: Sparse equidistribution of hyperbolic orbifolds
In this paper we study a certain refinement of a recent distribution result on geometric
invariants of real quadratic fields due to Duke, Imamoḡlu and Tóth [25]. The set-
up is as follows. Let E/Q be a real quadratic field of discriminant D > 0 with
narrow class group Cl+D. Associated to a ∈ Cl+D there is an oriented, closed geodesic
γa on SL2(Z)\H, which we will call the Heegner cycle of a. In [25] a hyperbolic
orbifold Γa\Na is defined which boundary is exactly γa. It is shown that if we choose
a genus HD ⊂ Cl+D (i.e. a coset of (Cl+D)2) for each D > 0, then the orbifolds
{Γa\Na | a ∈ HD} equidistribute (with respect to the hyperbolic measure) as D →∞
when projected to the modular surface SL2(Z)\H.

To prove this, we use Weyl’s criterion; it is enough to show cancelation in the
Weyl sums

∑

a∈HD

∫

Γa\Na

φ(z)dxdy
y2

where φ is either a Hecke–Maaß form or E(z, 1/2 + it). By some simple Fourier
analysis it suffices to show cancelation in Weyl sums for all of Cl+D, but twisted by
genus characters. The proof in [25] proceeds by relating the relevant Weyl sums to
Fourier coefficients of half-integral Maaß forms using an extension of the methods of
Katok and Sarnak [54]. It is a general limitation to the Katok–Sarnak approach that
one can only treat twists by genus characters.

The main insight of this paper is that one can relate Weyl sums twisted by general
class group characters to central values of Rankin–Selberg L-functions in the spirit of
Waldspurger. The proof of this proceeds by relating the twisted Weyl sums to certain
automorphic periods, which can then be related to Rankin–Selberg L-functions using
the refinement of Waldspurger’s work due to Martin and Whitehouse [69]. This
requires a careful local analysis at the archimedean place. This allows us to prove the
following refinement of the results of [25].
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Theorem 4.0.13 (Paper E, Theorem 1.1). Fix δ ≥ 0. For each positive fundamental
discriminant D choose a coset CH with H = HD a subgroup of Cl+D satisfying #H �
D−δh+

D and C ∈ Cl+D. Then for each fixed continuity set B ⊂ SL2(Z)\H,
∑

a∈CH vol(Γa\Na ∩ SL2(Z)B)∑
a∈CH vol(Γa\Na) = vol(B)

π/3 + oB,δ(1)

as D tends to infinity for δ < 625
3309568 ≈ 0.0001888 unconditionally and for δ < 1

4
assuming the generalised Lindelöf hypothesis. Here the volume is with respect to the
hyperbolic measure dxdy

y2 .
Remark 4.0.14. Our approach opens up for even more refinements. If one could define
a level q version of the hyperbolic orbifolds Γa\Na and prove the required properties,
then one could prove sparse equidistribution in the level aspect as in [63]. This is
work in progress (with Humphries).

Paper F: Hybrid subconvexity for class group L-functions
and uniform sup norm bounds of Eisenstein series
This paper is concerned with what we call the uniform sup norm problem, which asks
for bounds of the type

sup
z∈C

E(z, 1/2 + it)| �C,ε (|t|+ 1)θ+ε, (4.0.12)

with an explicit dependence on C ⊂ H. If we assume that y � 1, then it follows quite
easily from work of Young [103] that we have the bound y1/2(|t|+ 1)3/8+ε. The main
technical contribution of the paper is the following improvement.
Theorem 4.0.15 (Paper F, Theorem 1.6). For z ∈ F , the standard fundamental
domain for SL2(Z)\H, we have

E(z, 1/2 + it)�ε y
1/2(|t|+ 1)1/3+ε, (4.0.13)

for any ε > 0.
Without the explicit dependence on y, this result is due to Blomer [9] building on

work of Titchmarsh [96]. Note that the factor y1/2 is the same as what you get from
Young’s method, and this is actually optimal: we prove that any uniform sup norm
bound for Eisenstein series of the form yδtθ has to satisfy δ ≥ 1/2, since for y very
large the constant term in the Fourier expansion becomes dominant.

The motivation for studying the uniform sup norm problem is that it has appli-
cations to subconvexity of class group L-functions. The connection between the sup
norm problem and subconvexity was noticed along time ago by Sarnak [87, (4.19)],
but our results together with the recent work of Hu and Saha [43] seem to be the first
times this connected has been utilized. The idea in our paper is to use a classical
formula due to Hecke to transfer a sup norm estimate to a subconvexity bound. To
do this we need to prove certain upper bounds for sums over Heegner points (we avoid
any use of Duke’s Theorem and actually the versions available in the literature do not
suffice for our purposes), and from this we obtain the following.
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Corollary 4.0.16 (Paper F, Corollary 1.7). Let K/Q be a quadratic extension (real
or imaginary) of discriminant D and χ a (wide) class group character of K. Then

LK(1/2 + it, χ)�ε |D|1/4+ε (|t|+ 1)1/3+ε, (4.0.14)

and
∑

χ∈Ĉl(K)

|LK(1/2 + it, χ)|2 �ε |D|1/2+ε (|t|+ 1)2/3+ε, (4.0.15)

for any ε > 0, where Ĉl(K) denotes the class group characters of K.

This hybrid subconvexity bound beats the current record due to Wu [100] in
certain regimes of t and D. Combining the two yields the following “state of the art”
hybrid subconvexity bound.

Corollary 4.0.17 (Paper F, Corollary 1.10). Let K/Q be a quadratic extension of
discriminant D and χ a (wide) class group character of K. Then we have

LK(1/2 + it, χ)�ε

{
|D|1/4+ε (|t|+ 1)1/3+ε, for t > |D|3/74
(
|D|1/4 (|t|+ 1)1/2)1−1/40

, for t ≤ |D|3/74 , (4.0.16)

for any ε > 0.

Paper G: Small scale equidistribution of Hecke eigenforms
at infinity
In this paper we study small scale mass distribution of holomorphic cusp forms. More
precisely, we investigate the distribution of mass of holomorphic cusp forms high in
the cusp.

Let f ∈ Sk(SL2(Z)) be a cusp form of weight k and level 1, and let ψ be a test
function. Then we are interested in whether we have

〈M(k−1)θψ, y
k|f |2〉 ∼ 3

π
〈M(k−1)θψ, 1〉

as k →∞, for some fixed θ > 0 where MH is a certain squeezing operator defined by

MHψ(x+ iy) := ψ(x+ iy/H), x+ iy ∈ F ,

where F is the standard fundamental domain for SL2(Z)\H. When θ = 0, this
has been proved by Holowinsky and Soundararajan [42] and is known as QUE for
holomorphic forms. Physicists expect that mass equidistribution should hold for all
θ < 1, with θ = 1 corresponding to the de Broglie wavelength.

Our first result is that for θ ≥ 1 mass equidistribution fails, as predicted. Secondly
we show that for test functions ψ supported on B := {x + iy ∈ F | y > 1} and
sufficiently nice, mass equidistribution holds on average over f ∈ Sk(SL2(Z)) and
k all the way down to the Planck scale (that is above the scale of the de Broglie
wavelength).
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Theorem 4.0.18 (Paper G, Theorem 1.2). Let 0 < θ < 1 and ψ. Then for sufficiently
nice test function ψ supported in B, we have

∑

k�K

∑

f∈Hk
L(1, sym2f)|〈M(k−1)θψ, y

k|f |2〉 − 3
π
〈M(k−1)θψ, 1〉|2

= o


∑

k�K

∑

f∈Hk
L(1, sym2f)|〈M(k−1)θψ, 1〉|2


 , (4.0.17)

where Hk is a Hecke basis for Sk(SL2(Z)).

The left hand side (4.0.17) is known as the quantum variance and was introduced
by Zeldich [106]. If we restrict further to test function ψ, which are orthogonal to 1,
then we can actually obtain an asymptotic formula for the quantum variance.

Theorem 4.0.19 (Paper G, Theorem 1.3(i)). Let 0 < θ < 1. There exists a Hermi-
tian form Bθ defined on sufficiently nice test functions supported on B and orthogonal
to 1 such that

∑

k�K

∑

f∈Hk
L(1, sym2f)|〈M(k−1)θψ, y

k|f |2〉|2

∼ Bθ(ψ,ψ)
(∫

u(y)y−θdy
)
K1−θ,

for ψ as above.

For θ = 0, this was proved by Luo and Sarnak [65]. The Hermitian forms Bθ
satisfy a very interesting “phase transition” at θ = 1/2. We summarize the properties
of Bθ as follows.

Theorem 4.0.20 (Paper G, Theorem 1.3(ii)-(iv)). 1. The Hermitian forms Bθ have
three different regimes in the sense that Bθ is constant on each of the three in-
tervals 0 < θ < 1/2, θ = 1/2 and 1/2 < θ < 1.

2. The decomposition of test function into the cuspidal and the Eisenstein part is
orthogonal with respect to Bθ for all 0 < θ < 1. Furthermore Bθ restricted to
the Eisenstein part is independent of θ.

3. The Hermitian forms Bθ can be extended continuously to the larger set 1BC∞0,0(M).
If φi are Hecke–Maaß cusp forms with eigenvalue si(1−si), then the Hermitian
form satisfies Bθ(1Bφ1, 1Bφ2) = 0 unless φ1, φ2 are both even. If φi are both
even, then

Bθ(1Bφ1, 1Bφ2) = 4π
∑

m,n≥1

τ1((m,n))λφ1(m)λφ2(n)
(mn)1/2 Is1,s2

θ (m,n),

where

Is1,s2
θ (m,n) =

∫ ∞

max(m,n)
Ks1−1/2(2πy)Ks2−1/2(2πy)fθ,m,n(y)dy

y
(4.0.18)
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with

fθ,m,n(y) =





1, if 0 < θ < 1/2,
e−2π2y2(m2+n2), if θ = 1/2,
0, if θ > 1/2.

In particular, we obtain the following quite surprising consequence of number
theoretic nature.

Corollary 4.0.21 (Paper G, Corollary 1.4). If φ is an even Hecke–Maaß cusp form
with eigenvalue sφ(1− sφ) and Hecke eigenvalues λφ(n), then

∑

m,n≥1

τ1((m,n))λφ(m)λφ(n)
(mn)1/2

∫ ∞

max(m,n)
|Ksφ−1/2(2πy)|2 dy

y
≥ 0. (4.0.19)

Remark 4.0.22. Whether the left-hand side of (4.0.19) has any relation to L-functions
is unclear, but would obviously make Corollary 4.0.21 very interesting.
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CENTRAL VALUES OF ADDITIVE TWISTS OF CUSPIDAL
L-FUNCTIONS

ASBJØRN CHRISTIAN NORDENTOFT

Abstract. Additive twists are important invariants associated to holomorphic
cusp forms; they encode the Eichler–Shimura isomorphism and contain informa-
tion about automorphic L-functions. In this paper we prove that central values of
additive twists of the L-function associated to a holomorphic cusp form f of even
weight k are asymptotically normally distributed. This generalizes (to k ≥ 4) a
recent breakthrough of Petridis and Risager concerning the arithmetic distribu-
tion of modular symbols. Furthermore we give as an application an asymptotic
formula for the averages of certain ‘wide’ families of automorphic L-functions,
consisting of central values of the form L(f⊗χ, 1/2) with χ a Dirichlet character.

1. Introduction

In this paper we study the statistics of central values of additive twists of the L-
functions of holomorphic cusp forms (of arbitrary even weight). Additive twists of
cuspidal L-functions are important invariants; on the one hand they show up in the
parametrization of the Eichler–Shimura isomorphism and on the other hand additive
twists shed light on central values of Dirichlet twists of cuspidal L-functions.
We prove that when arithmetically ordered, the central values of the additive twists
of a cuspidal L-function are asymptotically normally distributed. As an application
we calculate the asymptotic behavior (as X → ∞) of the averages of certain ‘wide’
families of automorphic L-functions;

∑∗

π∈Fn, cond(π)≤X
L(π, 1/2),(1.1)

where cond(π) denotes the conductor of the automorphic representation π, the asterisk
on the sum denotes a certain weighting and the families consist of isobaric sums of
twists;

Fn = {(πf ⊗ χ1)� · · ·� (πf ⊗ χ2n) | χ1 · · ·χ2n = 1} ,
where χ1, . . . , χ2n are automorphic representations of GL1(AQ), 1 denotes the trivial
automorphic representation of GL1(AQ) and πf is the automorphic representation of
GL2(AQ) associated to a fixed holomorphic newform f (suppressed in the notation).
For the precise statements of our main results, see Theorem 1.1 and Corollary 1.9
below.

Date: December 3, 2020.
2010 Mathematics Subject Classification. 11F67(primary), and 11M41(secondary).
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Our distribution result is a higher weight analogue of a recent result of Petridis
and Risager [29], which settled (an averaged version of) a conjecture due to Mazur
and Rubin [23] concerning the normal distribution of modular symbols (a different
proof was later given by Lee and Sun [21] using dynamical methods).
The conjecture of Mazur and Rubin concerns the arithmetic distribution of the mod-
ular symbol map;

{∞, a} 7→ 〈a, f〉 := 2πi
∫ a

∞
f(z)dz,

where f ∈ S2(Γ0(q)) is a cusp form of weight 2 and level q and {∞, a} is the homology
class of curves between the cusps ∞ and a. Petridis and Risager prove that this map
is asymptotically normally distributed when ordered by the denominator of the cusp
a and appropriately normalized [29, Theorem 1.10]. See Section 1.3 below for more
background on the conjectures of Mazur and Rubin and their motivation.

1.1. Statement of results. We will now state a special case of our main result and
refer to Theorem 5.1 below for the most general version. Let f ∈ Sk(Γ0(q)) be a cusp
form of (arbitrary) even weight k and level q with Fourier expansion (at ∞) given by

f(z) =
∑

n≥1
af (n)qn, q = e2πiz.

Then we define the additive twist (by r ∈ R) of the L-function associated to f as

L(f, r, s) :=
∑

n≥1

af (n)e(nr)
ns

,

where e(x) = e2πix. The additive twists converge absolutely for Re s > k+1
2 and when

r ∈ Q, they admit analytic continuation. If furthermore r is Γ0(q) equivalent to ∞,
we have simple functional equations relating s ↔ k − s (see Section 3.3 below for
details). For k = 2 the additive twists coincide with modular symbols (see Remark
1.5 below for details).

Now we will explain what we mean by saying that additive twists are asymptoti-
cally normally distributed: Given X > 0, we consider L(f, ·, k/2) as a random variable
defined on the following outcome space endowed with the uniform probability mea-
sure;

T (X) := {a/c ∈ Q | 0 < a < c ≤ X, (a, c) = 1, q | c} .(1.2)

Then our main theorem is the following.

Theorem 1.1. Let f ∈ Sk(Γ0(q)) be a cusp form of even weight k and level q. Then
for any fixed box Ω ⊂ C, we have

PT (X)

(
L(f, a/c, k/2)
(Cf log c)1/2 ∈ Ω

)
:=

#{a/c ∈ T (X) | L(f,a/c,k/2)
(Cf log c)1/2 ∈ Ω}

#T (X)(1.3)

=P(NC(0, 1) ∈ Ω) + o(1),



CENTRAL VALUES OF ADDITIVE TWISTS OF CUSPIDAL L-FUNCTIONS 61

as X →∞, where NC(0, 1) denotes the standard complex normal distribution and the
variance is given by

Cf := (4π)k||f ||2
(k − 1)! vol(Γ0(q)) ,(1.4)

with ||f || the Petersson-norm of f and vol(Γ0(q)) the hyperbolic volume of Γ0(q)\H.
(Here P(NC(0, 1) ∈ Ω) denotes the probability of the event NC(0, 1) ∈ Ω.)

Remark 1.2. With our methods, we can generalize the above theorem in three aspects,
which can all be combined:

(1) We can consider more general outcome spaces corresponding to twists at an
arbitrary cusp. Note that T (X) corresponds exactly to additive twists at
cusps, which are Γ0(q)-equivalent to ∞. See (5.1) below for the definition of
the outcome space for general cusps.

(2) We can consider cusp forms for a general discrete and co-finite subgroup of
PSL2(R) with a cusp at ∞.

(3) We can consider the joint distribution of an orthogonal basis of cusp forms.
See Theorem 5.1 below for the most general version of our main theorem, incorporat-
ing all of the three above aspects.

Remark 1.3. The constant Cf is a higher weight analogue of the variance slope defined
by Mazur and Rubin (see [29, Theorem 1.9]). Note that Cf is independent of the
embedding f ↪→ Sk(Γ0(N)).

Remark 1.4. Independently, a different proof of Theorem 1.1 in the special case of
trivial level q = 1 was obtained by Bettin and Drappeau [2] using dynamical methods
similar to those used by Sun and Lee. It is still an open problem to extend the
dynamical approach to deal with general level, but in return the dynamical approach
of Bettin and Drappeau applies to much more general quantum modular forms in the
sense of Zagier [34]. It is unclear whether the automorphic methods of this paper
can be generalized to deal with quantum modular forms as well. The similarities
and differences between the automorphic and dynamical approach deserve further
exploration.

Remark 1.5. In more concrete terms the above theorem says that for any fixed real
numbers x1 < x2 and y1 < y2, we have

#
{
a
c ∈ T (X) | x1 ≤ Re

(
L(f,a/c,k/2)
(Cf log c)1/2

)
≤ x2, y1 ≤ Im

(
L(f,a/c,k/2)
(Cf log c)1/2

)
≤ y2

}

#T (X)

→ 1
2π

∫ x2

x1

∫ y2

y1

e−(x2+y2)/2dxdy,

as X →∞, which is exactly the formulation used in [29]. One can see that restricting
to the case k = 2 and letting f ∈ S2(Γ0(q)), Theorem 1.1 above recovers [29, Theorem
1.10]. Here one has to use the integral representation (3.10) for the additive twist of
the L-function, which shows 〈a, f〉 = L(f, ra, 1), where ra ∈ R represents the cusp a
(i.e. ra is fixed by the parabolic subgroup Γa).
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1.2. Moment calculations. The proof of Theorem 1.1 uses the method of moments.
The calculation of the moments of additive twists is of independent interest and is
used in the application to automorphic L-functions, in Corollary 1.9 below. In the
course of the paper we will evaluate a number of different moments. In particular
we will prove the following result at the end of Section 5.5, which is exactly what we
need to conclude Corollary 1.9.
Theorem 1.6. Let f ∈ Sk(Γ0(q)) be a cusp form of even weight k and level q and n
a non-negative integer. Then we have

∑

0<a<c≤X
(qa,c)=1

|L(f, a/c, k/2)|2n = Pn(logX)X2 +Oε(X4/3+ε),(1.5)

where Pn is a polynomial of degree n with leading coefficient
q(2Cf )n n!
π vol(Γ0(q)) ,

with Cf as in (1.4) above.
Remark 1.7. The above moments correspond to additive twists at cusps which are
Γ0(q)-equivalent to the cusp 0 (the set of all such twist is denoted T∞0 in (5.1) below).
Remark 1.8. The determination of the moments follows from the analytic properties
of a certain Eisenstein series Em,n(z, s) generalizing series introduced by Goldfeld
in [14] and [15]. Determining the location of the dominating pole, the corresponding
pole order and leading Laurent coefficient of the original Goldfeld Eisenstein series
was firstly achieved by Petridis and Risager in [28] using perturbation theory and the
analytic properties of the hyperbolic resolvent. This allowed them to prove normal
distribution for a certain more geometrically flavored ordering of the modular symbols
(ordered by c2 +d2, where c, d are the lower entries of the matrix γ). In order to prove
(an averaged version of) the conjecture of Mazur and Rubin, Petridis and Risager [29]
essentially had to derive the analytic properties of the constant Fourier coefficient
of Em,n(z, s). This is reminiscent of the Shahidi–Langlands method [13, Section 8].
The strategy of proof in this paper is inspired by the overall strategy introduced by
Petridis and Risager.
1.3. Applications to automorphic L-functions. The motivation behind the con-
jectures of Mazur and Rubin was to gain information about the vanishing/non-
vanishing of the central values of the twisted L-functions L(E,χ, 1) where E/Q is
an elliptic curve and χ is a Dirichlet character. By a sufficiently general version of
the Birch–Swinnerton-Dyer conjecture, this is related to the following problem in
Diophantine stability (see [23] for details):

How likely is it that rankZE(K) > rankZE(Q)
as K ranges over abelian extensions of Q?

If χ is a primitive Dirichlet character modulo c, then the Birch–Stevens formula [23,
Theorem 2.3] relates these central values to modular symbols;

τ(χ)L(E,χ, 1) =
∑

a∈(Z/cZ)×
χ(a)〈a/c, fE〉,
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where fE is the weight 2 newform corresponding to E via modularity and τ(χ) is a
Gauss-sum. This led Mazur and Rubin to the study of the distribution of modular
symbols, and based on computational experiments, they made a number of conjec-
tures about the distribution of modular symbols, one of which predicted a normal
distribution. In this paper we will not contribute to the other conjectures put forth
by Mazur and Rubin, consult instead [8] and [3, Theorem 9.2].

Following these lines of thinking, we apply our methods to the study of families
constructed from certain twisted L-functions. Given a newform f ∈ Sk(Γ0(q)) of
weight k and level q and a primitive Dirichlet character χ of conductor co-prime to
q, we define the multiplicatively twisted L-function of f ;

L(f ⊗ χ, s) :=
∑

n≥1

λf (n)χ(n)
ns

, Re s > 1,

(where λf (n) denotes the nth Hecke eigenvalue of f), which admits analytic continua-
tion satisfying a functional equation. Note that because of the co-primality condition
the above Dirichlet series defines (the finite part of) the L-function corresponding to
the automorphic representation πf ⊗ χ (justifying the notation).
The study of averages of multiplicative twists of cuspidal L-functions has a long his-
tory (see for instance the work of Rohrlich [30], Duke, Friedlander and Iwaniec [9],
and Chinta [5]). Recently Blomer, Fouvry, Kowalski, Michel, Milićević and Sawin [3]
have given an extensive account of the second moment theory for such twists. We are
able to obtain new results for these automorphic L-functions:
Combining Theorem 1.6 and the (generalized) Birch–Stevens formula (see Lemma 6.1
below), we obtain asymptotic formulas for the following (arithmetically weighted) av-
erages of certain ‘wide’ families of multiplicatively twisted L-functions, making (1.1)
precise.

Corollary 1.9. Let f ∈ Sk(Γ0(q)) be a newform of even weight k and level q and n
a non-negative integer. Then we have for all ε > 0

∑

0<c≤X,
(c,q)=1

1
ϕ(c)2n−1

∑

χ1,...,χ2n mod c,
χ1···χ2n=χprincipal

εχ1,...,χn

2n∏

i=1
ν(f, χ∗i , c/c(χi))L(f ⊗ χ∗i , 1/2)

= Pn(logX)X2 +Oε(X4/3+ε),(1.6)

where χ∗ mod c(χ) denotes the primitive character inducing χ, χprincipal is the prin-
cipal character mod c, Pn is the degree n polynomial from (1.5),

εχ1,...,χn = χ1(−1) · · ·χn(−1)

is a sign, and ν is an arithmetic weight given by

ν(f, χ, n) := τ(χ)
∑

n1n2n3=n,
(n1,q)=1

χ(n1)µ(n1)χ(n2)µ(n2)λf (n3)n1/2
3 .(1.7)

In particular for n = 1, the above corollary reduces to an average second moment
(see Corollary 6.3 below), which was calculated without the extra averaging in [3,
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Theorem 1.17]. Interestingly our methods completely avoid the use of approximate
functional equations.

Remark 1.10. Observe that the sum in the arithmetic weight ν can be expressed as
the triple convolution

(δ(·,q)=1 × χ× µ) ∗ (χ× µ) ∗ (λf × (·)1/2).

This was exploited by Bruggeman and Diamantis in [4] in their study of Fourier
coefficients of the Goldfeld Eisenstein series E1,0(z, s). Furthermore for χ primitive,
we have

ν(f, χ∗, c/c(χ)) = ν(f, χ, 1) = τ(χ),
and in general, we have the bound |ν(f, χ, n)| � (c(χ)n)1/2 using Deligne’s bound for
the Hecke eigenvalues.

Remark 1.11. S. Bettin [1] has considered the Eisenstein case of the above theorems,
which amounts to studying the Estermann function defined as

D(a/c, s) :=
∑

n≥1

d(n)e(na/c)
ns

,

where d(n) is the divisor function and a/c ∈ Q. Bettin managed to calculate all
moments averaging over a ∈ (Z\cZ)× using an approximate functional equation. He
similarly applied his results to studying certain iterated moments of central values of
Dirichlet L-functions.

Acknowledgements. I would like to express my gratitude to my advisor Morten
Risager for suggesting this problem to me and for our countless stimulating discus-
sions. I would also like to thank Yiannis Petridis for his time and insight.

2. Method of proof

Let f ∈ Sk(Γ0(q)) be a cusp form of even weight k and level q. In this section
we will describe the overall strategy of the proof of Theorem 1.1. Our approach is
an extension of the techniques developed by Petridis and Risager in [28] and [29].
We would like to point out that many technical difficulties show up when k ≥ 4 and
some essential new ideas were needed. This includes using the lowering and raising
operators in the analysis of the recursion formula (see for instance the proof of Lemma
4.8), the automorphic completion step as described in Section 5.1 and the use of what
we call N -shifted Golfeld Eisenstein series defined in (5.8).

2.1. The strategy. We will use a classical result of Fréchet and Shohat [31, p.17]
known as the method of moments; in order to get the sought-after convergence in
distribution, it is enough to show that (after a suitable normalization) the asymptotic
moments (as X →∞) of the central values;

∑

a/c∈T (X)

L(f, a/c, k/2)mL(f, a/c, k/2)n,
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agree with those of the standard complex normal distribution.
By a standard complex analysis argument, this can be reduces to understanding the
analytic properties of the following Dirichlet series

Dm,n(f, s) :=
∑

γ∈Γ∞\Γ0(q)/Γ∞

L(f, γ∞, k/2)mL(f, γ∞, k/2)n

(cγ)2s ,(2.1)

where γ∞ = aγ/cγ and aγ , cγ denote the upper-left and lower-left entry of γ, respec-
tively. Note that L(f, γ∞, k/2) and cγ are indeed well-defined on the double coset
Γ∞\Γ0(q)/Γ∞ and that γ 7→ γ∞ defines a bijection

Γ∞\Γ0(q)/Γ∞ → {a/c ∈ Q | 0 < a < c, (a, c) = 1, q | c} ∪ {∞}.

For the convenience of the reader and since we will care about the error-terms in our
applications (see Corollary 1.9 above), we have in Appendix A included a detailed
exposition of the contour integration argument with explicit error-terms that is used
in this step.

We will derive the analytic properties of Dm,n(f, s) by studying the following gen-
eralized Goldfeld Eisenstein series;

Em,n(z, s) :=
∑

γ∈Γ∞\Γ0(q)

L(f, γ∞, k/2)mL(f, γ∞, k/2)n Im(γz)s,(2.2)

where Γ∞ = {( 1 n
0 1 ) | n ∈ Z} is the stabilizer of∞ in Γ0(q). The series (2.1) and (2.2)

are connected since the constant term in the Fourier expansion of Em,n(z, s) (at ∞)
is given by

π1/2y1−sΓ(s− 1/2)
Γ(s) Dm,n(f, s).

For the proof see Lemma 5.6 below. This will allow us to pass analytic information
from Em,n(z, s) to Dm,n(f, s) as one does in the Langlands–Shahidi method.

In order to get information about the analytic properties of Em,n(z, s), we will use
ideas from an unpublished paper by Chinta and O’Sullivan [6]; we express Em,n(z, s)
as a linear combination of certain Poincaré series GA,B,l(z, s), which are weight l
automorphic forms. This is known as automorphic completion and will allow us to
employ the spectral theory of automorphic forms.
In particular we will use the analytic properties of the higher weight resolvent operators
to recursively understand the pole order at s = 1 and the leading Laurent coefficient
of GA,B,l(z, s). The overall strategy can be illustrated as follows:



66 ASBJØRN CHRISTIAN NORDENTOFT

1. Analytic properties of higher weight resolvent operators
↓Induction argument

2. Analytic properties of the Poincaré series GA,B,l(z, s)
↓A formula for the central value of additive twists

3. Analytic properties of Em,n(z, s)
↓Fourier expansion

4. Analytic properties of Dm,n(f, s)
↓Contour integration

5. Asymptotic moments of L(f, a/c, k/2)
↓Fréchet–Shohat (method of moments)

6. Normal distribution of L(f, a/c, k/2)/(Cf log c)1/2.

The rest of the paper is structured as follows; in Section 3 we will introduce the
needed background on weight k Laplacians and additive twists. In Section 4, we will
study the analytic properties of the Poincaré series GA,B,l(z, s). In Section 5, we
will prove the normal distribution of additive twists; in order to keep the exposition
as simple as possible, we will restrict to the case of a single cusp form and additive
twists corresponding to the cusp ∞ and then explain how to extend the methods to
the general setting. In Section 6, we will present applications to certain ‘wide’ families
of automorphic L-functions. Finally in Appendix A, we included a version of contour
integration with explicit error-terms for the convenience of the reader.

3. Background: Weight k Laplacians and additive twists

In this section we will recall some standard facts about higher weight Laplacians
and additive twists of modular L-functions. We will work with a general discrete and
co-finite subgroup Γ of PSL2(R) with a cusp at ∞ of width 1 (see [16, Section 2] for
definitions). But one does not loose much by restricting to the case Γ = Γ0(q) :=
{γ ∈ SL2(Z) s.t. q | cγ} of Hecke congruence subgroups.

3.1. Weight k Laplacians. We will refer to [10, Chapter 4], [25, section 2.1.2] and
[16, Chapter 4] for a more comprehensive account on automorphic Laplace operators.
Let k be an even integer. The space of automorphic functions of weight k with respect
to Γ are (measurable) functions g : H→ C satisfying

g(γz) = jγ(z)kg(z), for all γ ∈ Γ,

where jγ(z) := j(γ, z)/|j(γ, z)| = (cz+ d)/|cz+ d| with c, d the bottom-row entries of
γ. Note that we have the cocycle relation;

jγ1γ2(z) = jγ1(γ2z)jγ2(z).(3.1)
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Given an automorphic function g of weight k, we define the Petersson norm by

||g||2 :=
∫

Γ\H
|g(z)|2dµ(z),

where dµ(z) = dxdy/y2 is the hyperbolic measure on H. From this we define the
Hilbert space of all square integrable weight k automorphic functions;

L2(Γ, k) := {g automorphic of weight k with respect to Γ s.t. ||g|| <∞}.
(modulo the kernel of || · ||) with inner-product given by

〈g, h〉 :=
∫

Γ\H
g(z)h(z)dµ(z),

for g, h ∈ L2(Γ, k). Maaß defined raising- and lowering operators, which maps between
spaces of different weights. In terms of local coordinates they are given by

Kk := (z − z) ∂
∂z

+ k

2 ,

Lk := (z − z) ∂
∂z

+ k

2
for z ∈ H (acting on, say, smooth automorphic functions).
The raising and lowering operators are adjoint to each other in the following sense;

〈Kkgk, hk+2〉 = 〈gk, Lk+2hk+2, 〉(3.2)

and satisfy the following product rule;

Kk+l(gkgl) = (Kkgk)gl + gk(Klgl),
Lk+l(hkhl) = (Lkhk)hl + hk(Llhl),(3.3)

where gk, gl, hk, hl are smooth automorphic functions of appropriate weights.

Remark 3.1. In most modern expositions the raising operator is denoted Rk (see [10,
Chapter 4]), but in order to avoid confusion with the resolvent operator, we follow
the notation of Fay [12]. We note that our definition of the lowering operator is equal
to minus the one of Fay.

Using these two operators, the weight k Laplacian can be defined as follows acting
on smooth automorphic functions;

∆k := Kk−2Lk + λ(k/2) = Lk+2Kk + λ(−k/2),(3.4)

where λ(s) = s(1 − s). The operator ∆k defined on the space of all smooth and
rapidly decaying automorphic functions, defines a non-negative and essentially self-
adjoint operator on the Hilbert space L2(Γ, k). We denote (by abuse of notation) the
unique self-adjoint extension also by ∆k with domain D(∆k) dense in L2(Γ, k). We
define a Maaß form as an eigenfunction ϕ ∈ D(∆0) of ∆0.
One sees by direct computation that for f ∈ Sk(Γ), we have (z 7→ yk/2f(z)) ∈
D(∆k) ⊂ L2(Γ, k) and

Lky
k/2f(z) = 0.(3.5)
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Combining this with (3.4), we see that yk/2f(z) is an eigenfunction for ∆k with eigen-
value λ(k/2) = (1− k/2)k/2.

Using the raising- and lowering operators one can show that

spec∆k ⊂ [1/4,∞) ∪ {λ0 = 0, λ1, . . . , λm} ∪ {λ(1), . . . , λ(k/2)}(3.6)

where the three sets above correspond to respectively the continuous part consti-
tuted by the Eisenstein series, the constant eigenfunction together with the so-called
exceptional Maaß forms (Maaß forms with eigenvalue 0 < λi < 1/4) and finally holo-
morphic cusp forms Sj(Γ) with 2 ≤ j ≤ k and j ≡ k (2). Recall that by the work of
Selberg when Γ = Γ0(q) there are always (an abundance of) embedded Maaß forms
(with eigenvalue λ ≥ 1/4).
It is a famous conjecture of Selberg that there are no exceptional Maaß forms when
Γ = Γ0(q) is a Hecke congruence subgroup. Kim and Sarnak [19] have proved that
the smallest eigenvalue λ1 > 0 for a Hecke congruence subgroup satisfies;

λ1 ≥
1
4 −

(
7
64

)2
.

We define the singular set of Γ as;

PΓ := {s0 = 1, s1, . . . , sm},(3.7)

where si > 1/2 and λ(si) = λi, i = 0, . . . ,m are the exceptional eigenvalues (together
with the trivial eigenvalue λ = 0). When Γ is clear from context, we will shorten
notation and write P = PΓ. The quantity s1 (where we define s1 = 1/2 if P = {1})
will turn out to control the error-terms of our moment calculation in (1.5). Observe
that the bound of Kim and Sarnak shows that for Hecke congruence subgroups, we
have Re s1 ≤ 39/64.

3.2. Weight k resolvent operators. Associated to the weight k Laplacian, we have
the associated resolvent operator, which defines a meromorphic operator;

R(·, k) : {s ∈ C | Re s > 1/2} → B(L2(Γ, k)),

where B(L2(Γ, k)) denotes the space of bounded operators on the Hilbert space
L2(Γ, k). The resolvent operator is (uniquely) characterized by the property:

(∆k−λ(s))R(s, k) = IdL2(Γ,k), for all s ∈ {s′ ∈ C | Re s′ > 1/2}\(P∪{1, . . . , k/2}).
The analytic properties of weight k resolvent operators have been studied intensively
by Fay in [12]. We will however not use any of these deep results.

It follows from general properties of resolvent operators and (3.6) that R(s, k)
defines a meromorphic operator in the half-plane Re s > 1/2 with poles contained in
the set P ∪ {1, . . . , k/2} (which is why we called P singular). Furthermore for any
λ0 = λ(w0) with Rew0 > 1/2, we have the following representation in a neighborhood
of w0;

(3.8) R(s, k) = Pλ0,k

s− w0
+Rreg,w0(s, k),
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where Pλ0,k is the projection to the eigenspace of ∆k corresponding to the eigenvalue
λ0 (which might be empty) and Rreg,w0(s, k) is regular at s = w0.
Finally we also quote the following useful bound on the norm of the resolvent [16,
Appendix A].

Lemma 3.2. For s ∈ {s′ ∈ C | Re s′ > 1/2}\(P ∪ {1, . . . , k/2}), we have

||R(s, k)|| ≤ 1
dist(λ(s), spec(∆k)) ,

where || · || is the operator norm and dist(·, ·) is the distance function.

3.3. Additive twists of cuspidal L-functions. Fix a discrete and co-finite sub-
group Γ of PSL2(R) with a cusp at infinity of width 1 and let f ∈ Sk(Γ) be a cusp
form of even weight k with Fourier expansion (at ∞) given by

f(z) =
∑

n≥1
af (n)qn.

Then we define the additive twist (by r ∈ R) of the L-function of f ;

L(f, r, s) :=
∑

n≥1

af (n)e(nr)
ns

,

where e(z) = e2πiz. We also define L(f,∞, s) ≡ 0.
For all r ∈ R, the above Dirichlet series converges absolutely for Re s > (k + 1)/2 by
Hecke’s bound [16, Theorem 3.2];

∑

n≤X
|af (n)|2 �f X

k.(3.9)

Furthermore if r corresponds to a cusp (i.e. r is fixed by a parabolic subgroup of Γ),
then L(f, r, s) admits analytic continuation to the entire complex plane.
Associated to additive twists by real numbers of the form a/c = γ∞ with γ =

(
a b
c d

)
∈

Γ, we define the completed L-function as;

Λ(f, a/c, s) := Γ(s)
( c

2π

)s
L(f, a/c, s).

These completed L-functions admit analytic continuation, which satisfy the following
functional equation (generalizing [18, Lemma 1.1], see also [20, Section A.3]).

Proposition 3.3. For γ ∈ Γ, the completed L-function Λ(f, a/c, s) admits analytic
continuation to the entire complex plane, which satisfies the functional equation

Λ(f, a/c, s) = (−1)k/2Λ(f,−d/c, k − s),
where a/c = γ∞ and −d/c = γ−1∞.

Proof. We mimic Hecke’s proof of analytic continuation and functional equation of
cuspidal L-functions. In the range of absolute convergence of L(f, a/c, s), we have
the following period integral representation;

∫ ∞

0
f(a/c+ iy/c)ys dy

y
= Λ(f, a/c, s).(3.10)
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If we let zγ := −d/c− 1/(iyc) then we have the following two relations;

γzγ =
(
a b
c d

)
zγ = a/c+ iy/c, j(γ, zγ) = −(iy)−1.

This yields
∫ ∞

0
f(a/c+ iy/c)ys dy

y

=
∫ 1

0
f(a/c+ iy/c)ys dy

y
+ (−1)k/2

∫ 1

0
f(−d/c+ iy/c)yk−s dy

y
,(3.11)

using modularity of f and a change of variable y 7→ 1/y. Now we get analytic
continuation to the entire complex plane by the vanishing of f at the cusps a/c = γ∞
and −d/c = γ−1∞. Furthermore (3.11) yields the functional equation immediately.
This completes the proof. �

Remark 3.4. In the special case Γ = Γ0(q), the above proposition applies to additive
twists by rational numbers a/c where (a, c) = 1 and q|c. The functional equation for
twists by general rational numbers is much more involved, see [8, Theorem 3.1].

3.3.1. The convexity bound for additive twists. As a basic application of the func-
tional equation, we will derive a preliminary bound for the central value (s = k/2)
of additive twists by a/c, which are Γ-equivalent to ∞, using the Phragmén–Lindelöf
principle [17, Theorem 5.53]. This is known as the convexity bound.

By the absolute convergence of L(f, a/c, s) for Re s > (k + 1)/2, we get for any
ε > 0

Λ(f, a/c, (k + 1)/2 + ε+ it)�ε c
k/2+1/2+ε,

where the implied constant also depends on f (here we also use Stirling’s approxi-
mation, which shows that Γ(k/2 + 1/2 + ε + it) is bounded in t). By the functional
equation, we derive similarly that

Λ(f, a/c, (k − 1)/2− ε+ it)�ε c
k/2+1/2+ε.

Finally by the period integral representation (3.10), we get the bound
Λ(f, a/c, s)�c 1,

for (k − 1)/2− ε ≤ Re s ≤ (k + 1)/2 + ε.
Thus the Phragmen-Lindelöf principle applies and we conclude that

L(f, a/c, k/2)�ε c
k/2+1/2+εc−k/2 = c1/2+ε.(3.12)

Although this is a crude bound, it shows together with

#
{

(a, c) | 0 ≤ a < c, 0 < c ≤ X,
(
a ∗
c ∗

)
∈ Γ
}
�Γ X

2

(see [16, (2.37)]) that the main generating series Dm,n(f, s), defined in (2.1) for Γ =
Γ0(q) and in (5.4) for general Γ, converges absolutely (and locally uniformly) in some
half-plane Re s�m,n 1 to an analytic function.We will later see (Corollary 5.8) that
in fact additive twists satisfy a Lindelöf type bound; L(f, a/c, k/2)�ε c

ε for all ε > 0.
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3.3.2. Additive twists and the Eichler–Shimura isomorphism. The additively twisted
L-functions show up in many papers in the analytic theory of L-functions in the
disguise of the Voronoi-summation formula (which is equivalent to the functional
equation for additive twists), but they also have arithmetic significance in themselves
as they appear in the Eichler–Shimura isomorphism. We recall how this isomorphism
is constructed following [33, Section 8.2].
Let f be a cusp form of weight k and level N and let γ ∈ Γ0(N). Then we can
associate the following (k − 1)-dimensional real vector

uf (γ) =
(

Re
∫ ∞

γ∞
f(z)dz,Re

∫ ∞

γ∞
f(z)zdz, . . . ,Re

∫ ∞

γ∞
f(z)zk−2dz

)
.

The map uf : Γ → Rk−1 defines a parabolic co-cycle in group cohomology, i.e. an
element of Z1

P (Γ, X) in Shimura’s notation where X = Rk−1 is a certain Γ-module.
From this we get a map

f 7→ {cohomology class of uf} ∈ H1
P (Γ, X),

which by [33, Theorem 8.4] induces an R-linear isomorphism from Sk(Γ) to the par-
abolic cohomology group H1

P (Γ, X). This is what is known as the Eichler–Shimura
isomorphism and it can also be described in terms of the period polynomials, which
were introduced by M. Eichler [11];

σf,γ(X) := 1
(k − 1)!

∫ ∞

γ∞
f(z)(z −X)k−2dz.

Note that the entries of uf (γ) are the real parts of the coefficients of σf,γ(X), up
to a scaling by binomial-coefficients. The theory of period polynomials has been
used to prove important rationality results for (multiplicative twists of) cuspidal L-
functions [22].
Now for any 0 ≤ l ≤ k − 2, we have

∫ ∞

γ∞
f(z)zldz = i

∫ ∞

0
f(a/c+ iy)(a/c+ iy)ldy

=
l∑

j=0

(
l

j

)
(a/c)l−j j!

(−2πi)j+1L(f, a/c, j + 1),(3.13)

which shows that the special values of additive twists encode the Eichler–Shimura
isomorphism. This formula was the starting point for the author in [27], where the
distribution of the Eichler–Shimura map is determined.

4. Poincaré series defined from antiderivatives of cusp forms

In this section, we will construct a certain Poincaré series GA,B,l(z, s) starting from
a fixed holomorphic cusp form. Then we will study the analytic properties of these
Poincaré series, which will be crucial in proving our main results. The method intro-
duced for studying these Poincaré series might have independent interest.
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Let Γ be a co-finite, discrete subgroup of PSL2(R) with a cusp at ∞ of width 1
and f ∈ Sk(Γ) a cusp form of even weight k. Then we define for n ≥ 1;

In(z) = In(z; f) :=
∫ z

i∞

∫ zn−1

i∞
· · ·
∫ z2

i∞

∫ z1

i∞
f(z0)dz0dz1 . . . dzn−1

and I0(z) := f(z). It is clear that we have I ′n+1 = In and thus In is the n-fold
antiderivative of f which vanishes at ∞. By taking derivatives, we see that

In(z) = (−1)n−1

(n− 1)!

∫ z

i∞
f(w)(w − z)n−1dw.(4.1)

Furthermore we let A,B denote two multi-sets (sets where elements have multi-
plicities) with all elements contained in {0, . . . , k/2}. We call such a multi-set positive
if all elements are positive or if the multi-set is empty. We let |A| and |B| denote the
sizes of the multi-sets counted with multiplicity.
For A,B multi-sets of the above type and l an even integer, we define

GA,B,l(z, s) :=
∑

γ∈Γ∞\Γ
jγ(z)−l

(∏

a∈A

Ia(γz)
(−2i)a

)(∏

b∈B

Ib(γz)
(2i)b

)
Im(γz)s+α(A,B),(4.2)

where

α(A,B) :=
(∑

a∈A
k/2− a

)
+
(∑

b∈B
k/2− b

)
.

We will see below that these series converges absolutely when Re s� 1. We observe
that by (3.1) these Poincaré series are (formally) automorphic;

GA,B,l(γz, s) = jγ(z)lGA,B,l(z, s), γ ∈ Γ.

The scaling α(A,B) has the nice property that

GA∪{0},B,l(z, s) = yk/2f(z)GA,B,l−k(z, s),(4.3)
GA,B∪{0},l(z, s) = yk/2f(z)GA,B,l+k(z, s),(4.4)

which follows from the modularity of f .
Observe that with A and B as above, we always have α(A,B) ≥ 0, which will be
crucial in many argument. We also have the following symmetry

GA,B,l(z, s) = GB,A,−l(z, s).(4.5)

This shows that it is enough to consider the case l ≥ 0.

Firstly we will show that (4.2) defines an element of L2(Γ, l) in some half-plane
following unpublished work of Chinta and O’Sullivan [6].

Lemma 4.1. For |A| + |B| > 0 the series GA,B,l(z, s) converges absolutely (and
locally uniformly in z and s) in the half-plane

Re s > 1 + |A|+ |B|
to an element of L2(Γ, l).
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Proof. By Hecke’s bound on the coefficients of cusp forms |af (n)| � nk/2 (coming
from (3.9)), we have

(4.6) In(z)�
∞∑

m=1
mk/2−ne−2πmy � (k/2− n)!

yk/2+1−n ,

using that r! = Γ(r + 1) =
∫∞

0 e−xxrdx. This gives

∑

γ∈Γ∞\Γ

∣∣∣∣∣jγ(z)−l
(∏

a∈A

Ia(γz)
(−2i)a

)(∏

b∈B

Ib(γz)
(2i)b

)
Im(γz)s+α(A,B)

∣∣∣∣∣

�A,B

∑

γ∈Γ∞\Γ
Im(γz)σ−|A|−|B|(4.7)

= E (z, σ − |A| − |B|) ,

where s = σ + it. Since the non-holomorphic Eisenstein series converges absolutely
for Re s > 1, we get that GA,B,l(z, s) convergences absolutely (and locally uniformly
in s and z) in the desired half-plane.
For any cusp b of Γ we have by [29, Lemma 3.2]

∑

Id6=γ∈Γ∞\Γ
(Im γσbz)w � y1−Rew,

as y → ∞ and uniformly for Rew ∈ [1 + ε, Y ] with Y > 1 and ε > 0. Thus we get
using (4.7) the following bound at any cusp b of Γ and σ = Re s ∈ [1 + ε, Y ]

GA,B,l(σbz, s)

�A,B

(∏

a∈A
|Ia(σbz)|

)(∏

b∈B
|Ib(σbz)|

)
Im(σbz)σ+α(A,B) + y1−(σ−|A|−|B|).

Furthermore (4.6) shows that In(z) � e−πy as y → ∞. At other cusps we see
that In(σbz) is bounded as y → ∞ and we conclude that the contribution from the
identity is� y−σ as y →∞ in these cases. Thus we conclude for Re s > 1 + |A|+ |B|
that GA,B,l(z, s) → 0, as z → b for any cusp b. This implies that GA,B,l(z, s) ∈
L2(Γ, l). �

4.1. The recursion formula. In order to understand the pole structure ofGA,B,l(z, s),
we will use certain recursion formulas involving the resolvent and the raising and low-
ering operators. First of all we will record how the raising and lowering operators act
on the constituents of Poincaré series.
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Lemma 4.2. Let h : H → C be a smooth function and l an even integer. Then we
have

Kl[h(γz) Im(γz)sjγ(z)−l]

=
(

2i∂h
∂z

(γz) Im(γz)s+1 + (s+ l/2)h(γz) Im(γz)s
)
jγ(z)−l−2,

Ll[h(γz) Im(γz)sjγ(z)−l]

=
(

2i∂h
∂z

(γz) Im(γz)s+1 − (s− l/2)h(γz) Im(γz)s
)
jγ(z)−l+2

for any γ ∈ PSL2(R).

Proof. Using the intertwining relation;

Kl

(
jγ(z)−lF (γz)

)
= jγ(z)−l−2(KlF )(γz),

valid for any smooth function F : H → C, we reduce the problem to proving the
following identity;

Klh(z)ys ?=
(
y

(
i
∂

∂x
+ ∂

∂y

)
+ k

2

)
h(z)ys,

and similar for the lowering operator. This can be done by a straightforward calcula-
tion. �

This yields the following useful formula.

Corollary 4.3. Let h : H→ C be a smooth function and l an even integer. Then we
have

(∆l − λ(s))[h(γz) Im(γz)sjγ(z)−l] =− 4 ∂2h

∂z∂z
(γz) Im(γz)s+2jγ(z)−l

− 2i(s− l/2)∂h
∂z

(γz) Im(γz)s+1jγ(z)−l

+ 2i(s+ l/2)∂h
∂z

(γz) Im(γz)s+1jγ(z)−l

for s ∈ C and γ ∈ SL2(R).

From the above we will deduce the main recursion formula which will allow us to
inductively understand the pole structure of GA,B,l(z, s). To write down the formula
we will introduce the following convenient notation for a ∈ A;

Aa := (A\{a}) ∪ {a− 1}.
In this notation we have for positive multisets A the following useful relation;

∂

∂z

∏

a∈A
Ia(z) =

∑

a∈A

∏

a′∈Aa
Ia′(z),

by the Leibniz rule. Thus by summing over γ ∈ Γ∞\Γ and using Lemma 4.1, we
arrive at the following lemma.
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Lemma 4.4. Let A,B be positive multisets and GA,B,l(z, s) as above. Then we have

KlGA,B,l(z, s) = (s+ α(A,B) + l/2)GA,B,l+2(z, s)−
∑

a∈A
GAa,B,l+2(z, s),(4.8)

LlGA,B,l(z, s) = −(s+ α(A,B)− l/2)GA,B,l−2(z, s) +
∑

b∈B
GA,Bb,l−2(z, s)(4.9)

and

GA,B,l(z, s) = R(s+ α(A,B), l)
(
−

∑

a∈A,b∈B
GAa,Bb,l(z, s)

+ (s+ α(A,B)− l/2)
∑

a∈A
GAa,B,l(z, s)

+ (s+ α(A,B) + l/2)
∑

b∈B
GA,Bb,l(z, s)

)
,(4.10)

valid apriori for Re s > 1 + |A|+ |B|.
This lemma will turn out to be extremely useful.

Remark 4.5. The recursion formula (4.10) is the reason why we have 2i and −2i in
the denominators in the definition of GA,B,l(z, s) and why we have the shift α(A,B).

Define the total weight of A,B (and of GA,B,l(z, s)) as the quantity

Σ(A,B) :=
∑

a∈A
a+

∑

b∈B
b.

Then we observe that all Poincaré series on the right-hand side in the recursion for-
mula (4.10) have strictly smaller total weight than the one on the left-hand side. This
will allow us to do an inductive argument on the total weight, when determining the
pole structure of the Poincaré series.

As a first application of Lemma 4.4, we will show meromorphic continuation of
GA,B,l(z, s) to Re s > 1/2. Firstly we will handle the case l = 0 using (4.10). This
case is easiest to handle since the poles of R(s, 0) all satisfy Re s ≤ 1. Then we will
use (4.8) and (4.9) to get the result for general (even) weights l.

Proposition 4.6. Let A,B be two multi-sets such that |A| + |B| > 0 and l an even
integer. Then the Poincaré series GA,B,l(z, s) admits meromorphic continuation to
the half-plane Re s > 1/2 satisfying the following;
(i) GA,B,l(z, s) defines an element of L2(Γ, l) at all regular points.
(ii) The poles of GA,B,l(z, s) in 1/2 < Re s ≤ 1 are contained in P (defined as in

(3.7)).
(iii) GA,B,l(z, s) is regular for Re s > 1.

Proof. We prove the claims by an induction on the total weight Σ(A,B). If Σ(A,B) =
0 then by (4.3) and (4.4), we can write

GA,B,l(z, s) = (yk/2f(z))|A|(yk/2f(z))|B|El−k(|A|−|B|)(z, s).(4.11)
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Now El−k(|A|−|B|)(z, s) is meromorphic in Re s > 1/2 with poles contained in P and
is regular for Re s > 1 (see [10, Chapter 4]). Furthermore since f(z) decays rapidly
at all cusps, the above defines an element of L2(Γ, l) at all regular points.

Now assume Σ(A,B) > 0. By using (4.3) and (4.4) we may assume that A,B are
positive multi-sets. Firstly we consider the case l = 0.
By (4.10), we can write

GA,B,0(z, s)
=R(s+ α(A,B), 0) (linear combinations of GA′,B′,l(z, s)’s with Σ(A′, B′) < Σ(A,B)) ,

where by the induction hypothesis, all terms inside the parenthesis satisfy the prop-
erties (i), (ii), (iii). Since the resolvent operator R(s + α(A,B), 0) is regular in the
half-plane Re s > 1 and meromorphic in Re s > 1/2 with poles contained in P, the
wanted properties follow for GA,B,0(z, s) as well. Observe that, if α(A,B) ≥ 1, then
the resolvent is actually regular for Re s > 1/2.

Now to get the claim for all positive weights l, we do an induction on the weight.
For l ≥ 0, the identity (4.8) gives

GA,B,l+2(z, s) =
KlGA,B,l(z, s) +

∑
a∈AGAa,B,l+2(z, s)

(s+ α(A,B) + l/2) .

We know by the induction hypothesis that all the Poincaré series on the right-hand
side of the above satisfy (i), (ii), (iii) of this proposition. So since s + α(A,B) + l/2
is non-zero for Re s > 1/2, we see that also GA,B,l+2(z, s) satisfies (i), (ii), (iii).
A similar argument applies to negative weights using (4.9). This finishes the induction
and thus the proof. �

This allows us to extend the range of validity of Lemma 4.4 by uniqueness of
analytic continuation.

Corollary 4.7. The equations (4.8), (4.9) and (4.10) are valid in the half-plane
Re s > 1/2 as equalities of meromorphic functions.

4.2. Bounds on the pole order at s = 1. Next step is to determine the pole order
at s = 1 of GA,B,l(z, s). In this section we will prove certain bounds on the pole
order. We will proceed by induction relying on the formulas (4.8), (4.9) and (4.10).
We firstly need the following key lemma.

Lemma 4.8. Let A,B be positive multi-sets and l an even integer. Then we have for
l ≥ 0;

〈GA,B,lk(z, s), (yk/2f(z))l〉 =
∑
a∈A〈GAa,B,lk(z, s), (yk/2f(z))l〉
s+ α(A,B) + lk/2− 1 ,(4.12)

and for −l ≤ 0;

〈GA,B,−lk(z, s), (yk/2f(z))l〉 =
∑
b∈B〈GA,Bb,−lk(z, s), (yk/2f(z))l〉

s+ α(A,B) + lk/2− 1 .(4.13)
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Proof. Assume l ≥ 0 then by the identity (4.9), we have
〈GA,B,lk(z, s), (yk/2f(z))l〉

=
〈Kkl−2GA,B,lk−2(z, s) +

∑
a∈AGAa,B,lk(z, s), (yk/2f(z))l〉

s+ α(A,B) + lk/2− 1 .

By the adjointness properties of the raising and lowering operators (3.2), we get
〈Kkl−2GA,B,lk−2(z, s), (yk/2f(z))l〉 = 〈GA,B,lk−2(z, s), Llk(yk/2f(z))l〉 = 0,

using (3.5). This yields the desired formula. The case −l ≤ 0 is proved similarly using
(4.8). �

From this we conclude the following key result.

Proposition 4.9. The pole order of GA,B,l(z, s) at s = 1 is bounded by
min(#{a ∈ A | a = k/2},#{b ∈ B | b = k/2}) + 1.

Proof. We will do an induction on the total weight Σ(A,B). If Σ(A,B) = 0 then the
result is clear by the properties of the non-holomorphic Eisenstein series. In general
by applying modularity (as in (4.3) and (4.4)), we may assume that both A and B
are positive. By the symmetry (4.5) we may also assume that |A| ≥ |B|.

We proceed by induction on the total weight; assume that the total weight is
positive; Σ(A,B) > 0 and that we have proved the claim for all smaller Σ(A,B)-
values.
We begin with the case l = 0. The recursion formula (4.10) gives the following;

GA,B,0(z, s) = R(s+ α(A,B), 0)


−

∑

a∈A,b∈B
GAa,Bb,l(z, s) + · · ·


 ,

where the terms inside the parenthesis satisfy the claim of the proposition by the
induction hypothesis. If α(A,B) > 0 then the claim also follows for GA,B,0(z, s),
since the resolvent operator R(s+ α(A,B), 0) is regular at s = 1.
If α(A,B) = 0, then we must have

A = {k/2, . . . , k/2}︸ ︷︷ ︸
n

, B = {k/2, . . . , k/2}︸ ︷︷ ︸
m

for some n ≥ m ≥ 0.
Now we claim that 〈GA,B,0(z, s), 1〉 has a pole of order at most m+ 1.

To see this we do an induction on m. If m = 0, then by Lemma 4.8, we see directly
that

〈GA,B,0(z, s), 1〉 = 0.
If m > 0 then we get by Lemma 4.8

〈GA,B,0(z, s), 1〉 =
m〈GA,Bk/2,0(z, s), 1〉

s− 1
and by the induction hypothesis, GA,Bk/2,0(z, s) has a pole of order at most m, which
proves the claim.

We observe that if GA,B,0(z, s) has a pole of order greater than m + 1, then by
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(4.10) and the induction hypothesis there has to be an increase in the pole order com-
ing from the pole in the singular expansion of the resolvent (3.8). This implies that
the leading Laurent coefficient is constant. But we just showed that 〈GA,B,0(z, s), 1〉
has a pole of order at most m+ 1. This finishes the induction in the case l = 0.

By using (4.8) and (4.9) as in the proof of Proposition 4.6, we get by induction the
pole bound for all even weights l as well. This finishes the induction and hence the
proof. �

4.3. Finding the leading pole. For m 6= n, Proposition 4.9 yields the desired
bound needed to prove Theorem 1.1 (see (5.11) below). Next step is to determine the
exact pole order and leading Laurent coefficient of GA,A,0(z, s) at s = 1 when

A = {k/2, . . . , k/2︸ ︷︷ ︸
n

}.

By Proposition 4.9 the pole order is bounded by n+1 and we will see that this bound
is sharp.

Theorem 4.10. Let

A = {k/2, . . . , k/2︸ ︷︷ ︸
n

}.

Then GA,A,0(z, s) has a pole of order n+ 1 at s = 1 with leading Laurent coefficient

(n!)2||f ||2n
((k − 1)!)nvol(Γ)n+1 .

Proof. We do an induction on n. For n = 0 the claim follows by the analytic properties
of the non-holomorphic Eisenstein series [16, (6.33)].
Now assume n ≥ 1. First of all we see by (4.10) that

GA,A,0(z, s)
= R(s, 0)

(
−n2GAk/2,Ak/2,0(z, s) + nsGAk/2,A,0(z, s) + nsGA,Ak/2,0(z, s)

)

By the bounds on the pole order from Proposition 4.9, all the terms inside the paren-
theses above have a pole of order at most n. This shows that if GA,A,0(z, s) has a pole
of order n + 1, then the leading pole is contained in the image under the projection
onto the constant subspace, since (as above) the increase in the pole order has to
come from the resolvent.
We will show that indeed

〈GA,B,0(z, s), 1〉/〈1, 1〉,

has a pole of order n+ 1 at s = 1 with the claimed leading Laurent coefficient.
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Applying Lemma 4.8 twice and using the pole bound from Proposition 4.9, we get;

〈GA,A,0(z, s), 1〉

=
〈nGA,Ak/2,0(z, s), 1〉

s− 1

=
〈n∑a∈Ak/2

GA,(Ak/2)a,0(z, s), 1〉
(s− 1)s

=
n〈GA,(Ak/2)k/2−1,0(z, s), 1〉+ (pole of order at most n− 1 at s = 1)

(s− 1)s ,

where
(Ak/2)k/2−1 = {k/2, . . . , k/2︸ ︷︷ ︸

n−1

, k/2− 2}.

By repeated applications of Lemma 4.8 (and Proposition 4.9), we arrive at

〈GA,A,0(z, s), 1〉 =
n〈GA,A′∪{0},0(z, s), 1〉+ (pole of order at most n− 1 at s = 1)

(s− 1)s · · · (s+ k/2− 2)

where
A′ = {k/2, . . . , k/2︸ ︷︷ ︸

n−1

}.

Now by applying modularity as in (4.4), we get

〈GA,A′∪{0},0(z, s), 1〉 = 〈GA,A′,k(z, s), yk/2f(z)〉.

By a similar repeated application of Lemma 4.8 (now with l = k), we arrive at

〈GA,A,0(z, s), 1〉

=n2〈GA′,A′,k(z, s), yk|f(z)|2〉+ (pole of order at most n− 1 at s = 1)
(s− 1)s · · · (s+ k/2− 2) · (s+ k/2− 1) · · · (s+ k − 2) .

By the induction hypothesis, we know that GA′,A′,0(z, s) has a pole of order n at
s = 1 with leading Laurent coefficient given by

((n− 1)!)2||f ||2n−2

((k − 1)!)n−1vol(Γ)n .

Thus we see that

〈GA,A,0(z, s), 1〉/〈1, 1〉 =
n2
〈

((n−1)!)2||f ||2n−2

((k−1)!)n−1vol(Γ)n , y
k|f(z)|2

〉

(k − 1)!(s− 1)n+1vol(Γ)
+ (pole of order at most n at s = 1),

which yields the wanted. �

With this theorem established we can improve Proposition 4.9 in the following
special case.
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Corollary 4.11. Let
A = {k/2, . . . , k/2︸ ︷︷ ︸

n

}

and l 6= 0 a non-zero even integer. Then the order of the pole of GA,A,l(z, s) at s = 1
is at most n.

Proof. By the symmetry (4.5), it is enough to prove it for l > 0. We prove it by
induction on l. For l = 2 we get by (4.9)

GA,A,2(z, s) =
K0GA,A(z, s) + nGAk/2,A,2(z, s)

s
.

From Theorem 4.10 we know that the leading Laurent coefficient of GA,A,0(z, s) is
constant, and thus it is annihilated by K0. Furthermore we know by Proposition 4.9
that GAk/2,A,2(z, s) has a pole of order at most n at s = 1. Thus we conclude that
also GA,A,2(z, s) has a pole of order at most n at s = 1.
Now assume l > 2. We get again by (4.9) the following;

GA,A,l+2(z, s) =
KlGA,A,l(z, s) + nGAk/2,A,l+2(z, s)

s+ l/2 .

Thus by the induction assumption and Proposition 4.9, we see that also GA,A,l+2(z, s)
has a pole of order at most n at s = 1. This finishes the induction and hence the
proof. �

4.4. Growth on vertical lines. In this section we will prove bounds on the L2-
norm of GA,B,l(z, s) with s in a horizontal strip, bounded away from the singular set
P. This we will use to get bounds on vertical lines for the main generating series
Dm,n(f, s) defined in (2.1), which is needed in order to apply Theorem A.2 in the
appendix.
We will firstly consider the case of total weight zero; Σ(A,B) = 0. We will use the
idea used in the proof of [28, Lemma 3.1]. Following Petridis and Risager, we will in
the proof assume that Γ has only one cusp for simplicity. The same argument applies
in the general case.

Lemma 4.12. Let ε > 0 and s = σ+ it satisfying 1/2+ε ≤ σ ≤ 3/2 and dist(s,P) ≥
ε. Let A,B be multi-sets such that |A| + |B| > 0 and Σ(A,B) = 0 and let l be an
even integer. Then we have the following bound;

||GA,B,l(z, s)|| �ε 1,
where the implied constant might depend on |A|, |B|, l.
Proof. By the assumption Σ(A,B) = 0, we can write

GA,B,l(z, s) = (yk/2f(z))|A|(yk/2f(z))|B|El′(z, s),
with l′ appropriately adjusted.
Let F be fundamental domain for Γ\H with a cusp at infinity. For Re s > 1/2 and
z ∈ F , we write (following Colin de Verdière [7]);

El′(z, s) = h(y)ys + g(z, s),
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where g(z, s) ∈ L2(F) and h(y) ∈ C∞(0,∞) is smooth with h(y) = 1 near the cusp
at ∞.
Since El′(z, s) is a formal eigenfunction for the Laplacian, we have

(∆l′ − λ(s))g(z, s) = (∆l′ − λ(s))(El′(z, s)− h(y)ys)
= λ(s)h(y)ys + sh′(y)ys+1 + h′′(y)ys+2 − λ(s)h(y)ys

= sh′(y)ys+1 + h′′(y)ys+2.

Now we extend g(z, s) periodically to an element of L2(Γ, l′). Then the above yields
g(z, s) = R(s, l′)(sh′(y)ys+1 + h′′(y)ys+2),

i.e. g(z, s) equals the resolvent applied to a function with compact support.
Now by the bound on the norm of the resolvent from Lemma 3.2, we get

||g(z, s)|| ≤ ||sh
′(y)ys+1 + h′′(y)ys+2||
dist(λ(s), spec∆l′)

.

Since ∆l′ is self adjoint, all eigenvalues are real. Thus using the assumption dist(s,P) ≥
ε, we get

dist(λ(s), spec∆l′)� | Im(λ(s))|+ ε = (2σ − 1)|t|+ ε.

This gives

||g(z, s)|| � ||sh
′(y)ys+1 + h′′(y)ys+2||

(2σ − 1)|t|+ ε
� |s|
|t|+ ε

�ε 1.

Now by the above, we have
||GA,B,l(z, s)||

≤ ||(yk/2f(z))|A|(yk/2f(z))|B|h(y)ys||+ ||(yk/2f(z))|A|(yk/2f(z))|B|g(z, s)||.
The second term is bounded by what we showed above and by the rapid decay of f ,
the first term is bounded uniformly in s as well. Thus we conclude ||GA,B,l(z, s)|| �ε 1
as wanted. �

With this done, we can do the general case by induction on the total weight Σ(A,B)
using the recursion formula (4.10) and the bound on the operator norm of the resolvent
in Lemma 3.2.

Proposition 4.13. Let ε > 0 and s = σ + it satisfying 1/2 + ε ≤ σ ≤ 3/2 and
dist(s,P) ≥ ε. Let A,B be multi-sets satisfying |A|+ |B| > 0 and l an even integer.
Then we have

||GA,B,l(z, s)|| �ε 1,
where the implied constant depends on |A|, |B|, l.
Proof. We proceed by induction. Above we have done the base case so we may assume
that Σ(A,B) > 0. By applying modularity we may assume that A and B are positive
(since yk/2f(z) is bounded). Now by (4.10) and Lemma 3.2, we get

||GA,B,l(z, s)|| ≤
||RHS of (4.10)||

dist(λ(s+ α(A,B)), spec(∆l))
.

By the induction assumption and the triangle inequality, we see that
||RHS of (4.10)|| �ε |t|+ 1,
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using
s+ α(A,B)± l/2� |t|+ 1,

where the implied constant depends on |A|, |B|, l.
Now since the spectrum of ∆l is real, we get

dist(λ(s+ α(A,B)), spec(∆l))�ε |t(2σ − 1)|+ ε�ε |t|+ ε,

using the assumption dist(s,P) ≥ ε. This gives

||GA,B,l(z, s)|| �ε
|t|+ 1
|t|+ ε

�ε 1,

as wanted. �

5. Central values of additive twists

In this section we will use the results from the preceding section to study the central
values of additive twists. To state our main theorem in the most general version, we
will need to work with more general twists than the ones described in the introduc-
tion (as was alluded to in Remark 1.2). To do this we need to introduce some notation:

Given a discrete, co-finite subgroup Γ of PSL2(R) with a cusp at ∞ of width 1
and two cusps a and b of Γ (not necessarily distinct), we define the following set
(following [29]);

TΓ,ab = Tab :=
{
r = a/c mod 1 |

(
a b
c d

)
∈ Γ∞\σ−1

a Γσb/Γ∞, c > 0
}
,(5.1)

where Γ∞ denotes the parabolic subgroup of Γ fixing ∞ and σa denotes a (fixed)
scaling matrix of a (see [16, (2.1)] for background). Observe that T∞b contains exactly
the additive twists by the cusps Γ-equivalent to b (thought of as real numbers).
Any r ∈ Tab uniquely determines an element in the double quotient Γ∞\σ−1

a Γσb/Γ∞
[29, Proposition 2.2]. Thus given r ∈ Tab, we can define c(r) as the left-lower entry
of any such representative. Using this we define

TΓ,ab(X) = Tab(X) := {r ∈ Tab | c(r) ≤ X}.(5.2)

We observe that for Γ = Γ0(q), we get T∞∞(X) = T (X) with T (X) defined as in
(1.2). We will below continue to use the shorthand T (X) = T∞∞(X), when there is
no danger for confusion.

Using this notation we can now state the most general statement that we can prove
with our methods.

Theorem 5.1. Let Γ be a discrete and co-finite subgroup of PSL2(R) with a cusp
at infinity of width 1, b a cusp of Γ, k an even integer and f1, . . . , fd an orthogonal
basis for the space of weight k cusps forms Sk(Γ) with respect to the Petersson inner
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product. Then for any fixed box Ω ⊂ Cd, we have

PT∞b(X)

((
L(fi, r, k/2)

(Cfi log c(r))1/2

)

1≤i≤d
∈ Ω

)

: =
#
{
r ∈ T∞b(X) |

(
L(fi,r,k/2)

(Cfi log c(r))1/2

)
1≤i≤d

∈ Ω
}

#T∞b(X)
= P

(
(Y1, . . . , Yd)T ∈ Ω

)
+ o(1)

as X →∞, where Y1, . . . , Yd are mutually independent random variables all of which
are distributed with respect to the standard complex normal distribution NC(0, 1) and

Cf = (4π)k||f ||2
(k − 1)! vol(Γ) ,(5.3)

with ||f || the Petersson-norm of f and vol(Γ) the hyperbolic volume of Γ\H.
(Here P((Y1, . . . , Yd)T ∈ Ω) denotes the probability of the event (Y1, . . . , Yd)T ∈ Ω.)

Recall from Section 2 that our strategy of proof is to use the method of moments.
To obtain asymptotic formulas for the moments of additive twists, we will be studying
the associated generating series. For additive twists at arbitrary cusps this generating
series is defined as follows;

Dm,n
b (f, s) :=

∑

r∈T∞b

L(f, r, k/2)mL(f, r, k/2)n

c(r)2s .(5.4)

We study this generating series by studying the associated Goldfeld Eisenstein series
(defined in (5.15) below), which is linked to the Poincaré series GA,B,l(z, s) via a
formula for the central values of additive twists that we will prove shortly.

To make the proof more readable, we will restrict to the case of b =∞ and a single
cusp form f ∈ Sk(Γ). In Section 5.5 and Section 5.6, we will then explain how the
proof can be extended to the general case.

Remark 5.2. To make our argument work, we will need to know apriori that (5.4)
converges absolutely in some half-plane Re s > σ0. By the argument given in Section
3.3.1, it is enough to show that

L(f, r, k/2)� c(r)K ,

for some K ≥ 0. Since we do not have a nice functional equation for general additive
twists (see the discussion in Remark 3.4 above), the easiest way to achieve this seems
to be to combine the (generalized) Birch–Stevens formula (see (6.2) below) with the
convexity bound for the twisted central values L(f, χ, 1/2). We will not go into the
details, but just make it clear that one can easily show an apriori polynomial bound
of L(f, r, k/2). We will later see that actually L(f, r, k/2)�ε c(r)ε for all ε > 0 (see
Corollary 5.8 below).
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5.1. A formula for the central value. In this section we will prove the promised
formula, which expresses the generalized Goldfeld series Em,n(z, s) defined in (2.2)
as a sum of the Poincaré series GA,B,l(z, s) studied in the preceding section. This
generalizes to higher weight what Bruggeman and Diamantis [4] for weight 2 call au-
tomorphic completion.

So let Γ be a discrete and co-finite subgroup with a cusp at ∞ of width 1 and fix
a cusp form f ∈ Sk(Γ) of even weight k. Then we will be interested in the central
values L(f, r, k/2) of the additive twists by r ∈ T = T∞∞, which we will try to relate
to the anti-derivatives of f (denoted by In above).
The starting point is the period integral representation of L(f, γ∞, s) with γ ∈ Γ
given in (3.11). A slight variation of this yields with a/c = γ∞ the following;

i(2π)−k/2Γ(k/2)L(f, a/c, k/2) =
∫ i∞

γ∞
f(w)

(
w − a/c

i

)(k−2)/2
dw.

Observe that the integrand above is holomorphic and thus it follows by the vanishing
of f at the cusps that we can shift the contour and arrive at

(−2πi)−k/2Γ(k/2)L(f, a/c, k/2)

=
∫ γz

γ∞
f(w)(w − a/c)(k−2)/2dw +

∫ i∞

γz

f(w)(w − a/c)(k−2)/2dw(5.5)

for any z ∈ H.
This expression will allow us to prove the following formula for the central value

(here it is crucial that k is even).

Lemma 5.3. Let z ∈ H and γ =
(
a b
c d

)
∈ Γ. Then we have

L(f, γ∞, k/2) =
(

(−1)k/2
∑

0≤j≤(k−2)/2

(k−2
2 )!
j! c−jj(γ, z)−jIk/2−j(γz)

+
∑

0≤j≤(k−2)/2

(−1)j
(k−2

2 )!
j! c−jj(γ, z)jIk/2−j(z)

)
(−2πi)k/2

Γ(k/2) ,(5.6)

where In is the n-fold anti-derivative of f defined in (4.1).

Proof. We treat the two integrals in (5.5) separately.
Using the fact that

a/c = γ∞ = γz + c−1

j(γ, z) ,
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we get
∫ i∞

γz

f(w)(w − a/c)(k−2)/2dw

=
∫ i∞

γz

f(w)(w − γz + γz − a/c)(k−2)/2dw

=
∫ i∞

γz

f(w)
(
w − γz − c−1

j(γ, z)

)(k−2)/2

dw

= (−1)k/2
∑

0≤j≤(k−2)/2

((k − 2)/2)!
j! c−jj(γ, z)−jIk/2−j(γz)

using the integral representation (4.1) of Ij(z). To treat the other integral we use the
identity

w − a/c = γγ−1w − a/c = − c−1

j(γ, γ−1w) ,

which yields
∫ γz

γ∞
f(w)(w − a/c)(k−2)/2dw =

∫ γz

γ∞
f(γγ−1w)

(
− c−1

j(γ, γ−1w)

)(k−2)/2

dw

=
∫ z

i∞
f(γw)

(
− c−1

j(γ,w)

)(k−2)/2

j(γ,w)−2dw

after the change of variable w 7→ γ−1w. Now by using modularity of f and the
following identity

j(γ,w)
c

= w − z + j(γ, z)
c

,

the above equals

(−1)(k−2)/2
∫ z

i∞
f(w)j(γ,w)k−2

(
− c−1

j(γ,w)

)(k−2)/2

dw

=(−1)(k−2)/2
∫ z

i∞
f(w)

(
w − z + j(γ, z)

c

)(k−2)/2
dw

=
∑

0≤j≤(k−2)/2

(−1)j ((k − 2)/2)!
j! c−jj(γ, z)jIk/2−j(z).

�

Remark 5.4. The above formula is very closely related to the fact that the additive
twists L(f, ·, k/2) define a quantum modular form in the sense of Zagier [34]. The
quantum modularity of additive twists for level 1 cusp forms combined with dynamical
methods, enabled Bettin and Drappeau in [2] to give a different proof of the normal
distribution of additive twists (in the special case of level 1). In [26] the author,
inspired by this connection, proved quantum modularity for central values of additive
twists of cusp forms of general level and used this to prove a certain ‘reciprocity law’
for multiplicative twists L(f, χ, 1/2).
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5.2. Analytic properties of Goldfeld Eisenstein series. What we would like to
do now is the following; take the formula in Lemma 5.3, sum over γ ∈ Γ∞\Γ, use the
identity

c = j(γ, z)− j(γ, z)
2iy(5.7)

and then finally use the binomial formula to express Em,n(z, s) as a sum of the
Poincaré series GA,B,l(z, s). The only slight complication is that when k ≥ 4 we have
negative powers of c in our formula for the central values. In order to bypass this we
multiply by a power cN on both sides of (5.6) for some even N ≥ (k − 2)/2. With
this in mind, we define the following N -shifted Goldfeld Eisenstein series;

Em,n(z, s;N) :=
∑

γ∈Γ∞\Γ
cNL(f, γ∞, k/2)mL(f, γ∞, k/2)n Im(γz)s.(5.8)

By (3.12) we know that the above series converges absolutely (and locally uniformly)
for Re s � 1. The series Em,n(z, s;N) also has a very nice Fourier expansion at ∞
with constant term related to Dm,n(f, s) as we will see below.
We will now derive the analytic properties of Em,n(z, s;N) from the results of the
preceding sections. This is a major step towards our main result.

Proposition 5.5. Let N ≥ (n+m)(k−2)/2 be an even integer. Then the Eisenstein
series Em,n(z, s;N) admits meromorphic continuation to Re s > N/2+1/2 satisfying
the following;
(i) Em,n(z, s;N) is regular for Re s > N/2 + 1 and all poles in the strip

N/2 + 1/2 < Re s ≤ N/2 + 1
are contained in the set {p+N/2 | p ∈ P}.

(ii) The pole order of Em,n(z, s;N) at s = N/2 + 1 is bounded by min(m,n) + 1.

(iii) En,n(z, s;N) has a pole at s = N/2 + 1 of order n + 1 with leading Laurent
coefficient

(4π)nky−N/2
(
N
N/2
)

2N
(n!)2||f ||2n

((k − 1)!)nvol(Γ)n+1 .

Proof. By (5.6) we can write

cNL(f, γ∞, k/2)nL(f, γ∞, k/2)m

as a linear combination of terms of the type

h(z)j(γ, z)tj(γ, z)t
′

cN
′
Ik/2−j1(γz) · · · Ik/2−jm′ (γz)Ik/2−jm′+1

(γz) · · · Ik/2−jn′+m′ (γz)
where h : H→ C is a smooth function (this will be a product of Ij(z) for 1 ≤ j ≤ k/2),
t, t′ are integers, m′ ≤ m, n′ ≤ n are non-negative integers and finally N ′ is a non-
negative integer. By inspecting (5.6), we see that t, t′ and N ′ satisfy

t+ t′ +N ′ = N − 2
m′+n′∑

v=1
jv.
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Now we use (5.7) and expand using the binomial formula (here it is essential that
N ′ ≥ 0) to get terms of the type

h(z)j(γ, z)tj(γ, z)t
′

Ik/2−j1(γz) · · · Ik/2−jm′ (γz)Ik/2−jm′+1
(γz) · · · Ik/2−jm′+n′ (γz)

where now

t+ t′ = N − 2
m′+n′∑

v=1
jv.(5.9)

Now we multiply by Im(γz)s and use the identity

j(γ, z)tj(γ, z)t
′

Im(γz)s = y(t+t′)/2jγ(z)t−t
′
Im(γz)s−(t+t′)/2.

Thus summing over γ ∈ Γ∞\Γ, we can express Em,n(z, s;N) (for Re s large enough)
as a linear combination of terms of the type

h(z)GA,B,l(z, s−N/2)(5.10)
where the h’s are smooth functions (more precisely; products of powers of y’s and
Ij(z)’s), |A| ≤ m, |B| ≤ n and l is even (which follows from (5.9)).
Notice that (5.9) fits beautifully with the the factor α(A,B) in the definition of
GA,B,l(z, s), which is why we get the argument s−N/2 for all terms.

Now it follows directly from Proposition 4.6 that Em,n(z, s;N) has meromorphic
continuation to Re s > N/2 + 1/2 satisfying property (i) of Proposition 5.5. Further-
more by Proposition 4.9 it follows that the Poincaré seriesGA,B,l(z, s−N/2) has a pole
of order at most min(m,n)+1 at s = N/2+1. Thus the same is true for Em,n(z, s;N).

Now finally let us consider the diagonal case m = n. We see by Corollary 4.11 and
Proposition 4.9, that all terms (5.10) have a pole of order at most n, except the one
with

A = B = {k/2, . . . , k/2︸ ︷︷ ︸
n

}

and l = 0. Now let us calculate the coefficient of GA,A,0(z, s−N/2) in the expansion
of En,n(z, s;N); we have

(2π)nkcN |Ik/2(γz)|2n = (2π)nk
(2y)N |Ik/2(γz)|2n

N∑

v=1
(−1)v

(
N

v

)
j(γ, z)vj(γ, z)N−v.

Now we multiply by Im(γz)s and sum over γ ∈ Γ∞\Γ. By the pole bound from
Corollary 4.11, we see that only the term with v = N/2 above can contribute with a
pole of order n+ 1 at s = N/2 + 1. Thus we can write

En,n(z, s;N) =(4π)nky−N/2
(
N
N/2
)

2N GA,A,0(z, s−N/2)

+ (terms with a pole of order at most n at s = N/2 + 1),
where

A = {k/2, . . . , k/2︸ ︷︷ ︸
n

}.
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(The extra factor of 2nk comes from 2i and −2i in the denominator in the definition
of GA,A,0(z, s)). Now the result follows directly from Theorem 4.10. �

5.3. Analytic properties of Dm,n(f, s). Using the above we can now extract an-
alytic information about Dm,n(f, s) using that it is essentially the constant term in
the Fourier expansion of Em,n(z, s;N) at ∞.

Lemma 5.6. Let N ≥ 0 be an even integer. Then the constant term in the Fourier
expansion of Em,n(z, s;N) (at ∞) is equal to

π1/2y1−sΓ(s− 1/2)
Γ(s) Dm,n(f, s−N/2).

Proof. By the double coset decomposition (see [16, Theorem 2.7]), we have

Γ∞\Γ/Γ∞ ↔
{

(c, d) | 0 ≤ d < c,

(
∗ ∗
c d

)
∈ Γ
}
∪ {(0, 1)}

Now since L(f, γ∞, k/2) is well-defined in the above double coset and L(f,∞, k/2) =
0 per definition, we can write

Em,n(z, s;N)

=
∑

c>0

∑

0≤d<c
cNL(f, γc,d∞, k/2)mL(f, γc,d∞, k/2)n

∑

l∈Z

ys

|c(z + l) + d|2s ,

where γc,d is any representative of (c, d) in Γ∞\Γ/Γ∞. Now the result follows by
computing the inner sum using Poisson summation as in [16, Section 3.4]. �

With this lemma at our disposal, we can easily derive the analytic properties of
Dm,n(f, s) from the results already established.

Theorem 5.7. Let m,n ≥ 0 be non-negative integers. Then the Dirichlet series
Dm,n(f, s) admits meromorphic continuation to Re s > 1/2 satisfying the following.
(i) Dm,n(f, s) is regular for Re s > 1 and the poles in the strip

1/2 < Re s ≤ 1

are contained in the singular set P.

(ii) The pole order of Dm,n(f, s) at s = 1 is bounded by min(m,n) + 1.

(iii) Dn,n(f, s) has a pole of order n+ 1 at s = 1 with leading Laurent coefficient

(n!)2(4π)nk||f ||2n
π((k − 1)!)nvol(Γ)n+1 .

(iv) For s = σ+ it with 1/2 +ε ≤ σ ≤ 2 and dist(λ(s),P) ≥ ε, we have the following
bound

Dm,n(f, s)�ε (1 + |t|)1/2,

where the implied constant may depend on m,n.
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Proof. Fix some even integer N ≥ (n+m)(k − 2)/2. By Lemma 5.6 we have

Dm,n(f, s−N/2) = Γ(s)
π1/2y1−sΓ(s− 1/2)

∫ 1

0
Em,n(z, s;N)dx.

Thus we conclude directly from Proposition 5.5 the following properties; meromorphic
continuation of Dm,n(f, s), the claim about the position of the possible poles and the
bound on the order of the pole at s = 1.
Now to treat the case m = n, we recall that the leading Laurent coefficient of
En,n(z, s;N) at s = N/2 + 1 is constant. Thus we see directly from Proposition
5.5 that Dn,n(f, s) has a pole of order n+ 1 at s = 1 with leading Laurent coefficient

Γ(N/2 + 1)
π1/2y1−(N/2+1)Γ(N/2 + 1/2)(4π)nky−N/2

(
N
N/2
)

2N
n!2||f ||2n

((k − 1)!)nvol(Γ)n+1 .

Using that for even N , we have

Γ(N/2 + 1/2) = π1/2(N − 1) · · · 3 · 1
2N/2 , Γ(N/2 + 1) = (N/2)!,

(
N
N/2
)

2N = N · (N − 1) · · · 1
2N/2(N/2)! · 2N · 2(N − 1) · · · 2 = (N − 1) · · · 3 · 1

2N/2(N/2)! ,

the claim about the leading Laurent coefficient follows.

To get the claim about growth on vertical lines, we need to somehow bring the
bounds on the L2-norms of GA,B,l(z, s) from Proposition 4.13 into play.
First step is to integrate Dm,n(f, s−N/2) with respect to y over some finite segment,
say [1, 2], which gives

Dm,n(f, s−N/2) = Γ(s)
π1/2Γ(s− 1/2)

∫ 2

1

∫ 1

0
ys−1Em,n(z, s;N)dxdy.

By the proof of Proposition 5.5 we can write the above as a linear combination of
terms of the type

Γ(s)
Γ(s− 1/2)

∫ 2

1

∫ 1

0
h(z)GA,B,l(z, s−N/2)dxdy,

with h(z) some smooth function. Since h(z) is bounded in the region [0, 1] × [1, 2],
the Cauchy-Schwarz inequality implies the following;

∫ 2

1

∫ 1

0
y1−sh(z)GA,B,l(z, s−N/2)dxdy

�
((∫ 2

1

∫ 1

0
y4−2σ|h(z)|2 dxdy

)
·
(∫ 2

1

∫ 1

0
|GA,B,l(z, s−N/2)|2 dxdy

y2

))1/2

�h ||GA,B,l(z, s−N/2)||.
Thus for s = σ + it with

1/2 +N/2 + ε ≤ σ < 3/2 +N/2
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and s−N/2 bounded at least ε away from P, we get by Proposition 4.13 that

Dm,n(f, s−N/2)�ε
|Γ(s)|

|Γ(s− 1/2)| ,

where the implied constant may depend on m,n and f .
Now Stirling’s formula implies for s in the given range;

Γ(s)
Γ(s− 1/2) �N (1 + |t|)1/2,

and thus
Dm,n(f, s)�ε (1 + |t|)1/2

for s = σ + it with 1/2 + ε ≤ σ < 1 and s being ε-bounded away from P. �

This result implies a Lindelöf type bound in the c-aspect for additive twists.

Corollary 5.8. Let r ∈ T = T∞∞ and ε > 0. Then we have
L(f, r, k/2)�ε c(r)ε

where the implied constant may depend on f .

Proof. By combining Landau’s Lemma [17, Lemma 5.56] and Theorem 5.7 above, we
see that

Dn,n(f, s) =
∑

r∈TΓ

|L(f, r, k/2)|2n
c(r)2s

converges absolutely for Re s > 1 for all n ≥ 0. In particular this implies for all ε > 0
that

|L(f, r, k/2)|2n
c(r)2+ε

is bounded as c(r)→∞. This yields;

L(f, r, k/2)�ε,n c(r)1/n+ε,

as wanted. �

5.4. Normal distribution. In this section we will show that the central values
L(f, r, k/2), r ∈ T = T∞∞

with a suitable normalization are normally distributed when ordered by the size of
c(r). This is done by determining all asymptotic moments and then appealing to a
classical result of Fréchet and Shohat [31, Theorem B on p. 17] known as the methods
of moments.
To evaluate the asymptotic moments, we firstly apply Theorem A.2 of the appendix
to the Dirichlet series Dm,n(f, s). This allows us to prove the following theorem.

Theorem 5.9. Let f ∈ Sk(Γ) be a cusp form of even weight k and let m,n be non-
negative integers. Then we have

∑

r∈T (X)

L(f, r, k/2)mL(f, r, k/2)n � X2 log(X)min(m,n).(5.11)
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Let n be a non-negative integer. Then we have
∑

r∈T (X)

|L(f, r, k/2)|2n = Pn(logX)X2 +Oε(Xmax(4/3,2s1)+ε),(5.12)

where s1 ∈ P corresponds to the smallest positive eigenvalue of ∆ as in (3.7) (here
s1 = 1/2 if P = {1}) and Pn is a polynomial of degree n with leading coefficient

2nn!
π vol(Γ)(Cf )n,

with Cf as in (5.3).

Proof. The bound (5.11) follows directly from Theorem 5.7 using a standard con-
tour integration argument (even though the coefficients of Dm,n(f, s) are not positive
numbers, we do not need to be careful, since we do not care about error-term).
For m = n we apply Theorem A.2 to Dm,n(f, s) with

Spoles = 2P = {2s0 = 2, 2s1, . . . , 2sm}, a = 1 and A = 1/2.
We know from Theorem 5.7 that s 7→ Dn,n(f, s/2) has a pole at s = 2 of order n+ 1
with leading Laurent coefficient

bn+1 = 2n+1(n!)2(4π)nk||f ||2n
π((k − 1)!)nvol(Γ)n+1 ,

where the extra factor of 2n+1 comes from (s/2− 1)−n−1 = 2n+1(s− 2)−n−1.
Thus it follows directly from Theorem A.2 that we get the wanted asymptotic formula
(1.5) with error-term

Oε(Xmax((1+2·1/2)/(1+1/2),2 Re s1)+ε) = Oε(Xmax(4/3,2s1)+ε).
�

Remark 5.10. If we instead considered smooth moments, we would get the slightly
better error-term Oε(X2s1+ε) using Theorem A.1 in the appendix.

Remark 5.11. One can check that in the weight 2 case, the main term agrees with
Petridis and Risager [29, Corollary 7.7].

From the above we can deduce the asymptotic moments of L(f, a/c, k/2) by partial
summation.

Corollary 5.12. Let m 6= n be non-negative integers. Then we have

(5.13)

∑
r∈T (X)

(
L(f,r,k/2)

(Cf log c(r))1/2

)m (
L(f,r,k/2)

(Cf log c(r))1/2

)n

#T (X) → 0,

as X →∞.
Let n ≥ 0 be a non-negative integer. Then we have

(5.14)

∑
r∈T (X)

∣∣∣ L(f,r,k/2)
(Cf log c(r))1/2

∣∣∣
2n

#T (X) → 2nn!,

as X →∞.
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Proof. The corollary follows immediately from partial summation using Theorem 1.6
and the asymptotic formula [29, Lemma 3.5];

#T (X) ∼ X2

π vol(Γ) .

�

Recall that the coordinates
(
Y
Z

)
of a standard complex normal distribution (or

equivalently a standard 2-dimensional normal distribution with diagonal variance-
matrix) has moments given by

E(Y mZn) =
{

(m− 1)!!(n− 1)!! if m and n are even
0 otherwise

,

where (n−1)!! = (n−1) · (n−3) · · · 1. By taking linear combinations of the moments
in Corollary 5.12, it follows that the asymptotic moments of

(
Re L(f,r,k/2)

(Cf log c(r))1/2

Im L(f,r,k/2)
(Cf log c(r))1/2

)
, r ∈ T (X)

as X → ∞ are the same as those of the 2-dimensional standard normal. This fact
and the above corollary allow us to prove Theorem 1.1.

Proof of Theorem 1.1. We would like to use the result of Fréchet and Shohat coming
from probability theory [31, p. 17] mentioned before. To make it fit into the prob-
ability theoretical framework of the Fréchet–Shohat Theorem, we consider for each
X > 0 the 2-dimensional random variable

(
YX(r)
ZX(r)

)
=
(

Re L(f,r,k/2)
(Cf log c(r))1/2

Im L(f,r,k/2)
(Cf log c(r))1/2

)
, r ∈ T (X)

where the outcome space T (X) is endowed with the discrete σ-algebra and the uniform
probability measure. Note that the Fréchet–Shohat Theorem, as stated in [31, p.
17], is only directly applicable for 1-dimensional distribution functions, but we can
get around this by using the Cramér–Wold Theorem, which says that it is enough
to check that the moments of all linear combinations of the coordinates (marginal
distributions) converge to the expected. To be precise; it follows from Corollary
5.12 that for (a, b) ∈ R2\(0, 0) the moments of the random variables aYX + bZX
converges to the moments of a normal distribution with mean 0 and variance a2 + b2

as X → ∞. Thus it follows from the Fréchet–Shohat Theorem that the random
variables aYX + bZX converges in distribution to the normal distribution with mean
0 and variance a2 + b2 as X →∞ (the normal distribution is uniquely determined by
its moments).

Now by the Cramér–Wold Theorem (see [31, p. 18]) it follows that
(
YX
ZX

)
converges

in distribution to the 2-dimensional standard normal distribution as X →∞. �
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5.5. Additive twists at a general cusp. We will now explain how to deal with
additive twists associated to general cusps b and in particular how to prove Theorem
1.6.
In the case of weight 2, the modular symbol 〈γ, f〉 is well-defined for γ ∈ Γ∞\Γ/Γb

with b any cusp of Γ, which implies that you get a nice Fourier expansion of Em,n(z, s)
at every cusp. This is however not true for additive twists L(f, γ∞, k/2) of L-functions
of cusp forms f of weight k ≥ 4.
Thus in order to access the cusp b, we need to consider the generalized Goldfeld series
at b;

Em,n,b(z, s) :=
∑

γ∈Γ∞\Γ
L(f, γb, 1/2)mL(f, γb, 1/2)n(Im γz)s.(5.15)

The constant term of the Fourier expansion of Em,n,b(z, s) at b is exactly given by
π1/2y1−sΓ(s− 1/2)

Γ(s) Dm,n
b (f, s)

with Dm,n
b (f, s) defined as in (5.4).

Now by a slight modification of Lemma 5.3, we conclude that for r ∈ T∞b, we have

L(f, r, k/2) =
( ∑

0≤j≤(k−2)/2

(k−2
2 )!
j!

(
z − b

j(γ, b)j(γ, z)

)j
(−1)k/2−jIk/2−j(γz)

+
∫ z

b

f(w)
(

(w − b)(j(γ, z)(w − z)− j(γ, z)(w − z))
2iyj(γ, b)

)k/2−1

dw

)
(−2πi)k/2

Γ(k/2) .

(5.16)

Observe that j(γ, b) is well-defined for γ ∈ Γ∞\Γ/Γb. Thus we can define the Goldfeld
Eisenstein series at b;

Em,n,b(z, s;N) :=
∑

γ∈Γ∞\Γ
j(γ, b)NL(f, γb, 1/2)mL(f, γb, 1/2)n(Im γz)s,

whose Fourier expansion at b has constant term equal to;
π1/2y1−sΓ(s− 1/2)

Γ(s) Dm,n
b (f, s−N/2).

Similarly to the case b =∞ we can write

j(γ, b) = j(γ, z)b− z2iy − j(γ, z)
b− z
2iy

where we consider b as a real number. Combining this trick with (5.16), we see that we
can express Em,nb (z, s;N) in terms of the Poincaré series GA,B,l(z, s) and we conclude
by an argument as in the case b =∞ the following.

Theorem 5.13. Let Γ be a discrete and co-finite subgroup of PSL2(R) with a cusp
at ∞ of width 1, b a cusp of Γ and f ∈ Sk(Γ) a cusp form of even weight k. Then
we have ∑

r∈T∞b(X)

L(f, r, k/2)mL(f, r, k/2)n � X2(logX)min(m,n)
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and ∑

r∈T∞b(X)

|L(f, r, k/2)|2n = Pn(logX)X2 +Oε(Xmax(4/3,2s1)+ε),(5.17)

with Pn as in Theorem 5.9 and s1 as in (3.7).

Using the above we deduce easily Theorem 5.1 in the case of (marginalizing to)
a single cusp form f ∈ Sk(Γ) with twists at a general cusp b. The argument being
exactly as in the case b =∞.

Furthermore Theorem 5.13 allows us to prove Theorem 1.6, which we will need in
order to obtain an asymptotic formula for the averages of certain families consisting of
automorphic L-functions of the form L(f⊗χ, 1/2). The proof of this result (Corollary
1.9) will be given in Section 6 below.

Proof of Theorem 1.6. In the case where Γ = Γ0(q) and b corresponds to the real
number 0, we have coming from [16, p. 47] the following scaling matrix;

σ0 = σb =
(

0 −1/√q√
q 0

)
.

This implies that

T∞0 = {r = a

c
mod 1 | (a, c) = 1, (c, q) = 1}

and c(r) = c
√
q.

Thus we conclude from Theorem 5.13 with Γ = Γ0(q), f ∈ Sk(Γ0(q)) and b = 0;
∑

0<c≤X,
(c,q)=1

∑

a∈(Z/cZ)×
|L(f, a/c, k/2)|2n

=
∑

r∈T∞0(√qX)

|L(f, r, k/2)|2n

= q(2Cf )n n!
π vol(Γ0(q)) (logX)nX2 +

n−1∑

i=0
βdf,i(logX)iX2 +Oε(Xmax(4/3,2s1)+ε).

By the approximation towards Selberg’s conjecture by Kim and Sarnak [16, p. 167],
we know that Re s1 ≤ 39/64 < 2/3, which yields exactly Theorem 1.6. �

5.6. The joint distribution of additive twists of a basis of cusp forms. Instead
of considering a single cusp form f , we can consider an orthogonal basis f1, . . . , fd for
Sk(Γ) with respect to the Petersson inner product. We will restrict to the case b =∞
and then the discussion in the previous section carries directly over to this setting as
well.
In this case for any two sequences g = (g1, . . . , gm), h = (h1, . . . , hn) with gj , hj ∈
{f1, . . . , fd}, we define the corresponding Goldfeld Eisenstein series

Eg,h(z, s) :=
∑

γ∈Γ∞\Γ




m∏

j=1
L(gj , γ∞, k/2)






n∏

j=1
L(hj , γ∞, k/2)


 (Im γz)s.
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The constant term in the Fourier expansion of Eg,h(z, s) (at ∞) is given by
π1/2y1−sΓ(s− 1/2)

Γ(s) Dg,h(s),

where

Dg,h(s) :=
∑

r∈T∞∞

(∏m
j=1 L(gj , r, k/2)

)(∏n
j=1 L(hj , r, k/2)

)

c(r)2s .

We can express the Goldfeld Eisenstein series as a linear combinations of certain
Poincaré series, which generalizes GA,B,l(z, s) above. Consider tuples of integers
u = (u1, . . . , um′), v = (v1, . . . , vn′) with m′ ≤ m,n′ ≤ n and 0 ≤ ui, vj ≤ k/2 and
define

Gu,v,l(z, s) :=
∑

γ∈Γ∞\Γ
jγ(z)−l




m′∏

j=1

Iuj (γz; gj)
(−2i)uj






n′∏

j=1

Ivj (γz;hj)
(2i)vj


 Im(γz)s+α(u,v),

(5.18)

where

α(u, v) =


∑

j

k/2− uj


+


∑

j

k/2− vj


 .

Then the analogue of Proposition 4.9 holds for the above Poincaré series as well, with
essentially the same proof. Using this, it can be shown by the methods from the
preceding sections that Dg,h(s) has a pole of order at most min(m,n) + 1 at s = 1.
Furthermore when m = n, we have

Dg,h(s) =


 ∑

σ,σ′∈Sn

n∏

j=1
〈gσ(j), hσ′(j)〉


 (4π)nk

(s− 1)n+1π((k − 1)!)nvol(Γ)n+1

+ (pole order at most n at s = 1),
where Sn denotes the group of permutation on n letters. Observe that this generalizes
our previous results since |Sn| = n!. In particular Dg,h(s) has a pole of order n + 1
exactly if g and h are permutations of each other.
Now consider the random variable 



Y1,X
Z1,X
...

Yd,X
Zd,X




on the outcome space T (X) endowed with uniform probability measure, defined by

Yj,X(r) = ReL(fj , r, k/2)/
√
Cfj log c(r),

Zj,X(r) = ImL(fj , r, k/2)/
√
Cfj log c(r)

for r ∈ T (X) and j = 1, . . . , d. Then by the above we can evaluate all asymptotic
moments and show using a combination of the results of Fréchet–Shohat and Cramér
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that as X → ∞, this random variable converges in distribution to d independent
standard complex normal distributions.

By combining the methods described in this and the preceding section, one con-
cludes the proof of Theorem 5.1.

6. Applications to L(f ⊗ χ, 1/2)

We now apply our results to the averages of certain families constructed from
the multiplicative twists L(f ⊗ χ, 1/2) and thus giving a proof of Corollary 1.9. The
connection between multiplicative and additive twists is for primitive characters given
by the Birch–Stevens formula [23, Theorem 2.3], but some cleverness has to be applied
in order to deal with non-primitive characters.
Our results apply to a newform f ∈ Sk(Γ0(q)) of even weight k and level q with
Fourier expansion (at ∞) given by

f(z) =
∑

n≥1
λf (n)n(k−1)/2qn,

where λf (n) denotes the nth Hecke eigenvalue of f . In what follows it is essential
that f is an eigenform for all Hecke operators.
Associated to such a newform f ∈ Sk(Γ0(q)) and a Dirichlet character χ mod c, we
define the (naively) twisted L-function;

L(f, χ, s) :=
∑

n≥1

λf (n)χ(n)
n
k−1

2 +s
,

which admits analytic continuation and a functional equation. Note that this is not
necessarily equal to (the finite part) of the L-function of the automorphic repre-
sentation πf ⊗ χ (where πf is the automorphic representation corresponding to f).
However in the special case when (q, c) = 1, then this is actually true and we will
write L(f ⊗ χ, s) = L(f, χ, s).

6.1. Averages of multiplicative twists. The first step is to establish a connection
between additive twists and multiplicative ones. The formula below is a generalization
of the Birch–Stevens formula [23, Theorem 2.3] to non-primitive characters.
Proposition 6.1 (Birch–Stevens formula for non-primitive characters).
Let f ∈ Sk(Γ0(q)) be a newform of weight k and level q and χ a Dirichlet character
mod c. Then we have

ν(f, χ∗, c/c(χ))L(f, χ∗, 1/2) =
∑

a∈(Z/cZ)×
χ(a)L(f, a/c, k/2),(6.1)

and

L(f, a/c, k/2) = 1
ϕ(c)

∑

χ mod c
χ(a)ν(f, χ∗, c/c(χ))L(f, χ∗, 1/2),(6.2)

where χ∗ mod c(χ) denotes the unique primitive character that induces χ and

ν(f, χ, n) := τ(χ)
∑

n1n2n3=n,
(n1,q)=1

χ(n1)µ(n1)χ(n2)µ(n2)λf (n3)n1/2
3 .
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Proof. For Re s > 1, we have because of absolute convergence;

∑

a∈(Z/cZ)×
χ(a)L(f, a/c, s+ (k − 1)/2) =

∑

n≥1

λf (n)
ns


 ∑

a∈(Z/cZ)×
χ(a)e(na/c)


 .(6.3)

The inner sum is a Gauss sum and by [32, Lemma 3], we get
∑

a∈(Z/cZ)×
χ(a)e(na/c) = τ(χ∗)

∑

d|(n,c/c(χ))

dχ∗
(

c

c(χ)d

)
µ

(
c

c(χ)d

)
χ∗
(n
d

)
,

where χ∗ mod c(χ) denotes the unique primitive character that induces χ. Plugging
this into (6.3), interchanging the sums and putting n = dl, we arrive at

∑

a∈(Z/cZ)×
χ(a)L(f, a/c, s+ (k − 1)/2)

= τ(χ∗)
∑

d|c/c(χ)

χ∗
(

c

c(χ)d

)
µ

(
c

c(χ)d

)
d
∑

l>0

λf (dl)
(dl)s χ

∗(l).

Now we use that f is a newform, which implies that

λf (ld) =
∑

h|(l,d),
(h,q)=1

µ(h)λf
(
l

h

)
λf

(
d

h

)
.

With m = l/h and δ = d/h, we get

τ(χ∗)
∑

δh|c/c(χ)
(h,q)=1

χ∗
(

c

c(χ)δh

)
µ

(
c

c(χ)δh

)
λf (δ)
δs−1 h

1−2sχ∗(h)µ(h)
∑

m>0

χ∗(m)λf (m)
ms

=τ(χ∗)L(f ⊗ χ∗, s)
∑

δh|c/c(χ),
(h,q)=1

χ∗
(

c

c(χ)δh

)
µ

(
c

c(χ)δh

)
λf (δ)
δs−1 h

1−2sχ∗(h)µ(h).

Since the sum above is finite, we can extend the equality to s = 1/2 by analytic
continuation. The second equality of this lemma follows from the first by orthogonality
of characters. �

Remark 6.2. A similar formula has been considered previously by Merel in [24,
Théorème 1], where the formula is applied in a more algebraic context.

Using this formula, Corollary 1.9 is an immediate consequence of Theorem 1.6.

Proof of Corollary 1.9. Since (q, c) = 1, it follows that (q, c(χ)) = 1 for all Dirichlet
characters χ appearing on the left-hand side of (1.6), where c(χ) denotes the conductor
of χ. This implies by the above discussion that we have L(f, χ∗, 1/2) = L(f⊗χ∗, 1/2).
The corollary now follows from Theorem 1.6 by expressing the additive twists in terms
of L(f ⊗ χ∗, 1/2) using Lemma 6.1, interchanging the sums, using orthogonality of
Dirichlet characters and the fact that

ν(f, χ∗, c/c(χ))L(f ⊗ χ∗, 1/2) = χ(−1)ν(f, χ∗, c/c(χ))L(f ⊗ χ∗, 1/2).
�
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In the special case n = 1, we derive the following result, which is an average version
of the second moment calculation in [3, Theorem 1.17] with improved error-term.

Corollary 6.3. Let f ∈ Sk(Γ0(q)) be a newform of even weight k and level q. Then
we have

∑

c≤X,(q,c)=1

1
ϕ(c)

∑

χ mod c
|ν(f, χ∗, c/c(χ))|2|L(f ⊗ χ∗, 1/2)|2

= q(4π)k||f ||2
π(k − 1)! vol(Γ0(q))2 (logX)X2 + βf,1X

2 +Oε(X4/3+ε)(6.4)

with χ∗ mod c(χ) and ν as above and βf,1 a constant.

Appendix A. Contour integration with explicit error-terms

This appendix follows closely an unpublished note of M. Risager. We are grateful
to Risager for allowing us to include it here.

A.1. Smooth cut-offs. For a compactly supported smooth function ψ on [0,∞), we
define the Mellin transform as

ψ̂(s) =
∫ ∞

0
ψ(y)ys−1dy

which converges absolutely for Re s > 0. We have the following inversion formula

ψ(y) = 1
2πi

∫

(c)
ψ̂(s)y−sds

valid for c > 0. By the compact support of ψ and repeated partial integration, we get
the bound

ψ̂(s)�N |s|−N(A.1)
for any N ≥ 1.

Now let (cn)n≥1 be a sequence of positive real numbers such that cn → ∞ as
n→∞ and (an)n≥1 a sequence of complex numbers such that the Dirichlet series

D(s) =
∑

n≥1

an
(cn)s ,(A.2)

converges absolutely in the half-plane Re s > σ0 > 0. Assume further that D(s)
admits meromorphic continuation to Re s > a− ε > 0 for some ε > 0 and that there
is a finite number of poles in the half-plane Re s > a− ε. Denote these poles by

Spoles = {s0, . . . , sM}(A.3)
with Re s0 = σ0 ≥ . . . ≥ Re sM and let the singular expansion at s = sm, 0 ≤ m ≤M
be given by

D(s) =
dm∑

j=0

bm,j
(s− sm)j + rm(s),(A.4)
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where rm(s) is regular at s = sm. Assume further that we have the following bound
on the growth

D(s)� (1 + |t|)A(A.5)
valid for a ≤ Re s ≤ σ0 + ε. Under these condition we have the following theorem.

Theorem A.1. Assume that the Dirichlet series D(s) in (A.2) satisfies the condition
above. Then for a compactly supported smooth function ψ on [0,∞), we have for
X > 0

∑

n≥1
anψ

(cn
X

)
=

M∑

m=0
Pm(logX)Xsm +O

(
Xa

∫ ∞

−∞
|ψ̂(a+ it)|(1 + |t|)Adt

)
,(A.6)

where Pm are explicit polynomials of respective degrees dm − 1 given by

Pm(x) =
dm−1∑

k=1

1
k!

(
dm−1−k∑

l=0

ψ̂(l)(sm)
l! bm,k+l+1

)
xk.(A.7)

Proof. Follows directly from Mellin inversion by moving the contour to Re s = a. �
In many respects the above smooth cut-off sum may be the more natural result

but it is desirable to also obtain asymptotic formulas for the sharp cut-off;
∑

cn≤X
an.

For this we let ψ be a smooth approximation of the indicator function of [0, 1]. Below
we present an explicit such construction and work out the exact error-terms.

A.2. Sharp cut-offs. We will now restrict to the case where an ≥ 0 for all n. First
step is to construct a smooth approximation to the indicator function 1[0,X]. The first
step is a smooth approximation of the Dirac measure at t = 0. So let ϕ : R → R≥0

be a smooth function supported in [−1, 1] with
∫ 1
−1 ϕ(t)dt = 1.

Then for δ < 1/2 we define
ϕδ(t) = δ−1ϕ(t/δ),

which is supported in [−δ, δ] and satisfies
∫ 1
−1 ϕδ(t)dt = 1. This will serve as an

approximation of the Dirac measure at t = 0.
From this we define the functions ψδ,± : R+ → R as the following convolutions

ψδ,±(y) =
∫ ∞

0
1[0,1±δ](yt)ϕδ(t− 1)dt.

Observe that this defines a smooth function and that the support of ψδ,+ is contained
in [0, (1 + δ)/(1− δ)] and for y < 1 we have ψδ,+(y) = 1 and similarly ψδ,−(y) = 0 for
y > 1 and ψδ,−(y) = 1 for y ∈ [0, (1− δ)/(1 + δ)]. The functions ψδ,±(y) will serve as
respectively an upper and lower bound for the indicator function 1[0,X]. In the end
we will use the parameter δ to balance the error-terms.

Now let us bound the error-term∫ ∞

−∞
|ψ̂δ,±(a+ it)|(1 + |t|)Adt.(A.8)
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For this we need estimates for ψ̂δ,±(a+ it). By using the definition of ψδ,± we get

ψ
(n)
δ,±(y)�n (yδ)−n.

For n ≥ 1 the support of ψ(n)
δ,±(y) is contained in

[(1− δ)/(1 + δ), (1 + δ)/(1− δ)].
Thus we get by repeated partial integration

ψ̂δ,±(a+ it)�
∫ ∞

0
|ψ(n)
δ,±(y)| ya+n

|a+ it|n dy

�
∫ (1+δ)/(1−δ)

(1−δ)/(1+δ)

1
(δy)n

ya+n

|a+ it|n dy

� δ

(δ|a+ it|)n
for any n ≥ 1. By interpolation this is true for all r ∈ R≥1. Now we need to choose
a small n in order to make δ1−n small but large enough so that the integral in (A.8)
converges, i.e. r = A+ 1 + ε. This yields

∫ ∞

−∞
|ψ̂δ,±(a+ it)|(1 + |t|)Adt�ε δ

−A−ε.

By a straight forward computation, we see that for 0 ≤ m ≤M
ψ

(n)
δ,±(sm) = (−1)nn!sn−1

m +O(δn+1).
Now since ∑

n

anψδ,−(cn/X) ≤
∑

cn≤X
an ≤

∑

n

anψδ,+(cn/X),

we get by Theorem A.1
∑

cn≤X
an =

M∑

m=0
Pm(logX)Xsm +Oε(δXσ0+ε + δ−A−εXa)

where

Pm(x) =
dm−1∑

k=1

1
k!

(
dm−1−k∑

l=0
(−1)lsl−1

m bm,k+l+1

)
xk.

To balance the error-term we put
δ = X−(σ0−a)/(1+A)

which yields an error-term �ε X
(a+σ0A)/(1+A)+ε. Absorbing Pm for m 6= 0 into the

error-term, we arrive at the following theorem.

Theorem A.2. Let D(s) be the Dirichlet series (A.2) satisfying (A.3), (A.4) and
(A.5). If we assume that the coefficients an are non-negative, then we have the fol-
lowing;

∑

cn≤X
an = P (logX)Xs0 +Oε(Xmax((a+σ0A)/(1+A),Re s1)+ε),(A.9)
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where P = P0 is a polynomial of degree d0 − 1 with leading coefficient
b0,d0

s0(d0 − 1)! .

Remark A.3. If the coefficients an are not assumed non-negative, then one needs the
extra assumption

∑

X<cn≤(1+δ)X

|an| � δXσ0+ε +XRe s1+ε,(A.10)

but then the conclusion of Theorem A.2 still holds. This assumption is needed to
control the error term coming from;

∑

n≤X
an −

∑

n≥1
anψδ,+(n/X).
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ON THE DISTRIBUTION OF PERIODS OF HOLOMORPHIC
CUSP FORMS AND ZEROES OF PERIOD POLYNOMIALS
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Abstract. In this paper we determine the limiting distribution of the image
of the Eichler–Shimura map or equivalently the limiting joint distribution of
the coefficients of the period polynomials associated to a fixed cusp form. The
limiting distribution is shown to be the distribution of a certain transformation of
two independent random variables both of which are equidistributed on the circle
R/Z, where the transformation is connected to the additive twist of the cuspidal
L-function. Furthermore we determine the asymptotic behavior of the zeroes of
the period polynomials of a fixed cusp form. We use the method of moments and
the main ingredients in the proofs are additive twists of L-functions and bounds
for both individual and sums of Kloosterman sums.

1. Introduction

Understanding the special values of L-functions is a notoriously hard problem and
has deep arithmetic content due to the conjectures of Birch–Swinnerton-Dyer and
Bloch–Kato. As a striking example of the connection between L-functions and arith-
metics, Kolyvagin [11] proved that if E/Q is an elliptic curve such that the central
value of the Hasse–Weil zeta function L(E, 1) is non-zero, then the set of rational
points E(Q) is finite.
Periods of automorphic forms have been an indispensable tool in the study of L-
functions since the beginning of the theory (Hecke, Rankin–Selberg, Shimura, Manin)
and continue to be so to this day ( [7], [19], [14]). This paper is concerned with the
distribution properties of automorphic periods, which in many cases are much more
well-behaved and easier to handle than the values of the L-functions themselves (see
below for a toy example of this phenomena).

The Eichler–Shimura map defines an isomorphism between the space of weight k
holomorphic cusp forms and a parabolic cohomology group introduced by Eichler,
by sending a cusp form to its periods. Our main result (see Theorem 1.1) describes
the asymptotic distribution of the periods of a fixed cusp form or equivalently the
asymptotic joint distribution of the coefficients of period polynomials. Furthermore
we use our methods to derive an asymptotic expression for the zeroes of the period
polynomials of a fixed cusp form (see Theorem 1.6), supplementing recent work of
Jin, Ma, Ono, and Soundararajan [9], see also [4].

Date: December 4, 2020.
2010 Mathematics Subject Classification. 11F67(primary), and 11L05(secondary).
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For k = 2 the period polynomials degenerate to constants and are known as modu-
lar symbols introduced by Birch and Manin. Petridis and Risager [17], [18] showed
that modular symbols appropriately ordered are asymptotically normally distributed.
From a cohomological point of view, the period polynomials are the natural general-
ization of modular symbols, but in this paper we show however that for k ≥ 4 the
coefficients of the period polynomials behave very differently from modular symbols.

1.1. A toy example. To illustrate the relation between periods and L-functions, let
us consider a toy example of such automorphic periods given by the rational values of
the complex exponential; e2πir, r ∈ Q. These periods are connected to Gauss sums,
which will serve as analogues of L-functions in this discussion;

τ(χ) :=
∑

a∈(Z/qZ)×
χ(a)e2πia/q,

where q is a positive integer and χ : (Z/qZ)× → C is a primitive Dirichlet char-
acter (see (1.1) below for one possible justification for the analogy between Gauss
sums and L-functions). Gauss sums are in fact intimately connected to L-functions
since i−κτ(χ)q−1/2 is the root number of the Dirichlet L-function L(χ, s), where
κ = 1−χ(−1)

2 . More precisely the functional equation for Dirichlet L-functions takes
the form;

Λ(χ, s) := Γ
(
s+ κ

2

)( q
π

)s/2
L(χ, s) = i−κτ(χ)

q1/2 Λ(χ, 1− s).

To illustrate the difference in difficulty between dealing with periods and L-functions,
we will consider the problem of determining the distribution of respectively the ra-
tional values of the complex exponential and the Gauss sums. It is easy to show that
the periods themselves;

Pq := {e2πia/q | (a, q) = 1}
equidistribute on the unit circle as q → ∞ (notice that this is not completely trivial
because of the co-primality condition). In this case the Weyl sums for the distribution
problem are Ramanujan sums, which can be evaluated explicitly.
On the other hand Gauss showed that τ(χ) always has absolute value equal to q1/2.
But understanding the value distribution of

Lq := {τ(χ) | χ : (Z/qZ)× → C,primitive Dirichlet character},
as q →∞ turned out to be a much more difficult problem. This problem was solved
by Katz [10] who showed (for q prime) that the Gauss sums also equidistribute (now
on the circle with radius q1/2) using deep input from algebraic geometry.
This example illustrates in a very simple setting the difference in difficulty between
dealing with automorphic periods and L-functions themselves.

1.2. The periods of holomorphic cusp forms. In this paper we study periods of
holomorphic cusp forms. The most famous example of a cusp form is probably the
modular ∆-function introduced by Ramanujan as the following q-series;

∆(z) := q
∏

n≥1
(1− qn)24 = τ(1)q + τ(2)q2 + τ(3)q3 + . . . , q = e2πiz.
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In this case, given a primitive Dirichlet character χ : (Z/qZ)× → C, we define the
twisted L-function;

L(∆, χ, s) :=
∑

n≥1
χ(n)τ(n)n−s,

which converges absolutely for Re s > 13/2 and admits analytic continuation with a
functional equation relating s ↔ 12− s. In this case the special values s = 1, . . . , 11
can be written as a twisted rational linear combination of the periods of ∆;

π−mL(∆, χ,m) =
∑

−q/2<a<q/2,
0≤l≤10

c(a/q, l,m)χ(a)
∫ i∞

a/q

∆(z)zldz
︸ ︷︷ ︸

periods

,(1.1)

where m ∈ {1, . . . , 11} and c(a/q, l,m) ∈ Q (see [13] for details, where this is used to
prove rationality results for L(∆, χ,m) and to construct p-adic L-functions). Notice
the similarity between this formula for the twisted special values and the formula for
Gauss sums in the toy example above.
We will study the distribution of the periods of holomorphic cusp forms appearing in
(1.1) or equivalently of the image of the Eichler–Shimura map.

To be more precise let Sk(Γ0(N)) denote the space of cusp forms of even weight
k and level N . To each cusp form f ∈ Sk(Γ0(N)) and each γ ∈ Γ0(N), the Eichler–
Shimura map associates the following (k − 1)-dimensional complex vector consisting
of the periods of f ;

uf (γ) = (uf,0(γ), uf,1(γ), . . . , uf,k−2(γ))(1.2)

:=
(∫ ∞

γ∞
f(z)dz,

∫ ∞

γ∞
f(z)zdz, . . . ,

∫ ∞

γ∞
f(z)zk−2dz

)T
∈ Ck−1,

where T denotes matrix transpose and γ∞ = a/c with a, c the left-upper and -lower
entry of γ. The map uf : Γ0(N)→ Ck−1 can be shown to satisfy a 1-cocycle relation
with respect to a certain action of Γ0(N) on Ck−1, which we will make precise below
in Section 2.1. Thus uf defines an element of the cohomology group H1(Γ0(N),M),
where M is given by Ck−1 equipped with the just mentioned action of Γ0(N). The
association f 7→ uf is a constituent of the Eichler–Shimura isomorphism as we will
see below.
When ordered by the denominator of the cusp γ∞, we show that the limiting dis-
tribution of uf (γ) is the distribution of a certain transformation of two independent
random variables both of which are uniformly distributed on the circle R/Z (see The-
orem 1.1 and Theorem 1.8 below for the precise statements).

1.3. Results for Γ0(N). Let f ∈ Sk(Γ0(N)) be a cusp form of weight k with Fourier
expansion;

f(z) =
∑

n≥1
af (n)qn, q = e2πiz.
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Then for each x ∈ R, we define the following Dirichlet series called the additive twist
by x of the L-function of f ;

L(f, x, s) :=
∑

n≥1

af (n)e(nx)
ns

,(1.3)

where e(x) = e2πix. This Dirichlet series converges absolutely for any x ∈ R when
Re s > (k + 1)/2 by Hecke’s bound;

∑

n≤X
|af (n)|2 �f X

k,(1.4)

which is known to hold for cusp forms for general Fuchsian groups of the first kind.
When x corresponds to a cusp (i.e. x ∈ Q), the additive twist by x satisfies analytic
continuation to the entire complex plane and if x is Γ0(N) equivalent to ∞, we also
have a functional equation relating s and k − s (see Section 2.3 for details).
For c > 0 such that N |c, we consider the periods uf as a (k−1)-dimensional complex
random variable defined on the outcome space;

Ωc := {a/c ∈ Q | a, c ∈ Z≥0, (a, c) = 1, 0 ≤ a < c},(1.5)
endowed with the uniform probability measure, where uf (a/c) := uf (γ) for a/c = γ∞
(i.e. a, c are the left upper- and lower entries of γ ∈ Γ0(N)).
Our main result is that the limiting distribution as c → ∞ (when appropriately
normalized) is the tranformation of two independent distributions on the circle.

Theorem 1.1. Let f ∈ Sk(Γ0(N)) be a cusp form of even weight k ≥ 4 and level N .
Then we have for any fixed box A ⊂ Ck−1 that

PΩc

(
uf (a/c)
Ckck−2 ∈ A

)
:=

#{ac ∈ Ωc | uf (a/c)
Ckck−2 ∈ A}

#Ωc
=P (F (Y, Z) ∈ A) + o(1)(1.6)

as c→∞ with N |c, where Y, Z are two independent random variables both distributed
uniformly on [0, 1), F : [0, 1)× [0, 1)→ Ck−1 is given by

F (y, z) := L(f, y, k − 1)
(
1, z, . . . , zk−2)T ,

and Ck = iΓ(k−1)
(2π)k−2 .

(Here P (F (Y,Z) ∈ A) denotes the probability of the event F (Y,Z) ∈ A).
Remark 1.2. As was noted in [1, Section 1.4.1] the individual distribution of the critical
values of L(f, γ∞, s) for s 6= k/2 are not that interesting since for Re s > (k + 1)/2
the critical values are rational values of a continuous function and consequently the
limiting distribution is just the pullback by this continuous function of the Lebesgue
measure on the circle R/Z, since reduced fractions equidistribute (and similarly for
Re s < (k + 1)/2 using the functional equation). In order to handle the distribution
of the Eichler–Shimura map (or equivalently the coefficients of period polynomials),
we however need to control the dependence between the different critical values of
L(f, γ∞, s) and maps of the type γ 7→ (γ∞)j . In the end, the specific shape of the
limiting distribution amounts to the non-trivial cancellation in sum of Kloosterman
sums with uniformity in the frequencies and thus non-trivial input is needed.



DISTRIBUTION OF PERIODS OF HOLOMORPHIC CUSP FORMS 109

Remark 1.3. Given an orthogonal basis f1, . . . , fd for Sk(Γ0(N)), we can also compute
the joint distribution of

uk,N := (uf1 , . . . , ufd)T ∈ Cd(k−1),

when appropriately normalized, with a similar proof. We have however restricted
the exposition to a single cusp form f for notational simplicity. For the complete
orthogonal basis the result is that the random variables defined from (2π/c)k−2

iΓ(k−1) uk,N
converge in distribution (in the same sense as in Theorem 1.1 above) to the random
variable

Fk,N (Y, Z),
where Y, Z are two independent and uniformly distributed random variables on [0, 1)
and Fk,N : [0, 1)× [0, 1)→ Cd(k−1) is given by

Fk,N (y, z) :=
(
L(f1, Y, k − 1), . . . , L(f1, Y, k − 1)zk−2,

. . . , L(fd, Y, k − 1)zk−2

)T
∈ Cd(k−1).

In particular it is worth noticing that ufi(γ) and ufj (γ) for i 6= j are highly dependent
as opposed to the case k = 2 (see [15, Theorem 5.1]).

Remark 1.4. If f ∈ Sk(Γ0(N)) then it follows from work of Jin, Ma, Ono and
Soundararajan [9, Theorem 1.2] that for k ≥ 6 the period polynomials rf,S(

√
NX)

(see (1.7) for a definition) converge coefficient for coefficient to Xk−2 − 1 as N →∞.

Remark 1.5. The author [15] and independently Bettin and Drappeau [1] (for level 1)
have considered the distribution of central values of additive twists of L-functions of
cusp forms of arbitrary even weight and showed that they are normally distributed.
As was also noted in [15, Section 3.3.2] the coefficients of the period polynomial can
be expressed as linear combinations of critical values of additive twists (including the
central value). However the left-most critical value at s = 1 will be the dominating
term, which is why we see that the distribution degenerates (and in particular is not
normal).

1.4. Zeroes of period polynomials. The vector uf encodes the periods of f ∈
Sk(Γ0(N)), which were introduced in a slightly different setting by M. Eichler in his
study of parabolic cohomology [5]. He defined the period polynomials associated to f
as

rf,γ(X) : =
∫ ∞

γ∞
f(z)(z −X)k−2dz(1.7)

=
k−2∑

j=0
Xj(−1)j

(
k − 2
j

)∫ ∞

γ∞
f(z)zk−2−jdz,

where γ ∈ Γ0(N). Note that the periods of f are equal to the coefficients of this
polynomial (up to a scaling by factorials). The Eichler–Shimura isomorphism can
also be described intrinsically and naturally in terms of period polynomials as was
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done in [16]. Our results can be interpreted as determining the joint distribution of
the coefficients of the period polynomials.
Recently there has been a lot of study in the analytic properties of period polyno-
mials, especially the location of the zeroes of rf,S , where S =

( 0 −1
1 0

)
(see [4] for a

complete list of references). The results of this paper should be seen more in relation
with these results rather than with those of Petridis and Risager [18].

For f ∈ Sk(Γ0(N)) a newform of even weight k ≥ 6, we can use our methods to
understand the zeroes of rf,a/c asymptotically as c→∞. The assumptions on f are
made in order to ensure that L(f, x, k − 1) is non-zero for all x ∈ R.

Theorem 1.6. Let f ∈ Sk(Γ0(N)) be a newform of even weight k ≥ 6 and level N .
Then rf,γ is a polynomial of degree k − 2 for any γ ∈ Γ0(N). Furthermore all zeroes
x0 of rf,γ satisfy

x0 = a/c+Ok((|a/c|+ 1)(k−4)/(k−2)c−2/(k−2)),

where a, c are the entries in the left column of γ (i.e. γ∞ = a/c).

Remark 1.7. Analogously Jin, Ma, Ono and Soundararajan [9, Theorem 1.2] building
on works of others (see [4]) determined the zeroes of rf,S as either the weight k or
level N tend to infinity. In their case the zeroes satisfy a version of the Riemann
Hypothesis, of which no analogue seems to exist in our setting.

1.5. Results for general cofinite Fuchsian groups. We also obtain results for a
general cofinite, discrete subgroup Γ of PSL2(R) with a cusp at infinity of width 1
(see [8, Chapter 2] for definitions), but we have to take an extra average. Given a cusp
form f ∈ Sk(Γ), we can similarly define the additive twists L(f, x, s) of the associated
L-function, which satisfy the same properties as in the case of Hecke congruence
groups, as we will explain in Section 2.3 below.
To state our results, we introduce the following set;

T≤1 = T≤1,Γ := {r = γ∞ ∈ R | γ ∈ Γ/Γ∞, 0 ≤ r < 1} .(1.8)

This is a slight modification of the set T = TΓ defined in [18], which parametrizes
the double coset Γ∞\Γ/Γ∞. In this paper we need to choose a representative, since
uf (γ) is not invariant under the action of Γ∞ from the left. One would get similar
results by choosing different representatives.
Using the argument in the proof of [18, Proposition 2.2], we see that to any r ∈ T≤1
there is a unique γ ∈ Γ/Γ∞ with lower-left entry c > 0 such that r = γ∞ and we
define c(r) := c. Now for X > 0, we consider uf as a random variable on the outcome
space;

Ω̃X := {r ∈ T≤1 | c(r) ≤ X}.(1.9)

endowed with the uniform probability measure. In this setting our result is the
following.



DISTRIBUTION OF PERIODS OF HOLOMORPHIC CUSP FORMS 111

Theorem 1.8. Let f ∈ Sk(Γ) be a cusp form of even weight k ≥ 4. Then we have
for any fixed box A ⊂ Ck−1 that

PΩ̃X

(
uf (r)

Ckc(r)k−2 ∈ A
)

:=
#{r ∈ Ω̃X | uf (r)

Ckc(r)k−2 ∈ A}
#Ω̃X

=P (F (Y,Z) ∈ A) + o(1)(1.10)
as X → ∞, where Y, Z are two independent random variables both distributed uni-
formly on [0, 1), F : [0, 1)× [0, 1)→ Ck−1 and Ck as in Theorem 1.1.
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2. Preliminaries and Background

In this section we will introduce some background on respectively the Eichler–
Shimura isomorphism, bounds on sums of Kloosterman sums and finally additive
twists of modular L-functions.

2.1. Background on the Eichler–Shimura isomorphism. The purpose of this
section is to show how the periods of f appear "in nature". We will see that from a
cohomological point of view, uf defines the natural higher weight analogue of modular
symbols. We will refer to [22] for a comprehensive background.
Let G be any group and letM be a left Z[G]-module. Then one can define cohomology
groups;

Hi(G,M) := Zi(G,M)/Bi(G,M),
consisting of a quotient of certain maps

u : G× . . .×G︸ ︷︷ ︸
i

→M,

corresponding to a specific choice of injective resolution.
In particular for i = 1 we have the following explicit description;

Z1(G,M) = {u : G→M | u(g1g2) = u(g1) + g1u(g2), ∀g1, g2 ∈ G},
B1(G,M) = {v : G→M | ∃xv ∈M such that v(g) = (g − 1)xv, ∀g ∈ G}.

Now fix a subset P ⊂ G and consider
Z1
P (G,M) := {u ∈ Z1(G,M) | u(p) ∈ (p− 1)M,∀p ∈ P},

which we note still contains the boundaries B1(G,M). From this we define the first
P -cohomology group as;

H1
P (G,M) := Z1

P (G,M)/B1(G,M).
In our case we consider G = Γ, a discrete, co-finite, torsion-free subgroup of PSL2(R),
and let P be the set of parabolic elements of Γ. We note that parabolic cohomology
groups carry a natural Hecke action.
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Now consider M = Vk−2(C) ∼= Symn(C2), the space of homogenous polynomials
in two variables of degree k − 2 with coefficients in C, equipped with the following
left-action of Γ;

(γ.P )(X,Y ) := P ((X,Y )γ) = P ((aX + cY, bX + dY )),
for γ =

(
a b
c d

)
∈ Γ and P ∈ Vk−2(C) ⊂ C[X,Y ]. From this data we form Eichler’s

parabolic cohomology group H1
P (Γ, Vk−2(C)).

Given a cusp form f ∈ Sk(Γ) of weight k, we can define a map σf : Γ→ Vk−2(C) as;

σf (γ)(X,Y ) :=
∫ ∞

γ∞
f(z)(Xz + Y )k−2dz,

and it can be shown that σf ∈ Z1
P (Γ, Vk−2(C)). We similarly define
σf ∈ Z1

P (Γ, Vk−2(C)),

for f ∈ Sk(Γ) an anti-holomorphic cusp form of weight k. Note that when k = 2, σf
is exactly the modular symbol map of [18, (1.1)].
The main theorem of Eichler–Shimura [22, Proposition 6.2.3,Proposition 6.2.5] is now
that the C-linear map;

Sk(Γ)⊕ Sk(Γ)→ H1
P (Γ, Vk−2(C))

(f, g) 7→ (γ 7→ σf (γ) + σg(γ))
is an isomorphism, which carries a natural action of the Hecke algebra as explained
in [21, Section 8.3] (see also the seminal paper [2] for a purely algebraic proof of these
facts).

Observe that the periods that we will study in this paper uf (γ) are (up to simple
scaling by binomial coefficients) given by the coefficients of σf (γ)(X,Y ), and one
can use the above to define an (equivalent) action of Γ on Ck−1 directly (similar to
the action of Γ on Rk−1 described in [21, Chapter 8]), which was alluded to in the
introduction. Thus we see that from a cohomological point of view the periods uf
define a natural generalization of modular symbols when f ∈ Sk(Γ), k ≥ 4.
Furthermore we notice the following obvious connection with the period polynomials
defined in (1.7);

rf,γ(X) = σf (γ)(1,−X).
The reason why we used the definition (1.7) of the period polynomials was to make
the connection to the results listed in [4] clear.

Remark 2.1. In fact there is a notion of modular symbols associated to Sk(Γ) for all
weights k [22, Section 1.2], and one can show that the parabolic cohomology groups
H1
P (Γ, Vk−2(C)) are isomorphic to the cuspidal modular symbols (see [22, Theorem

5.2.1] for details)

2.2. Spectral bounds of sums of Kloosterman sums. An important ingredient
when proving our main results is the cancellation in Kloosterman sums. For arith-
metic subgroups we have very strong bounds for individual Kloosterman sums from
Weil’s work on the Riemann Hypothesis over finite fields, but for general Fuchsian
groups of the first kind, we only have non-trivial bounds when we average over the
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moduli. Below we will collect the results we will need on Kloosterman sums.

Let Γ be a co-finite, discrete subgroup of PSL2(R) with a cusp at infinity of width
1. Then we define the Kloosterman sum with frequencies m,n and modulus c (the
lower-left entry of some matrix γ ∈ Γ) as;

S(m,n; c) :=
∑

(
a ∗
c d

)
∈Γ∞\Γ/Γ∞

e

(
m
d

c
+ n

a

c

)
.(2.1)

It can be shown that

#
{(

a ∗
c d

)
∈ Γ∞\Γ/Γ∞ | 0 ≤ c ≤ X

}
� X2,

which yields the following trivial bound
S(m,n; c)� c2,

uniformly in m,n, see [8, Proposition 2.8]. If Γ = Γ0(N) is a Hecke congruence group,
we can do much better by Weil’s bound;

|S(m,n; c)| ≤ d(c)c1/2(m,n, c)1/2,(2.2)
where d is the divisor function. The point is now that if we average over the moduli
c, we can also detect cancelation in Kloosterman sums for general Γ.

2.2.1. Spectral theory of Kloosterman sums. The most powerful tools for obtaining
bounds for sums of Kloosterman sums come from the spectral theory of automorphic
forms following an approach initiated by Selberg. We refer to [8] for a comprehensive
background on the spectral theory of automorphic forms.
In this approach the spectrum of the automorphic Laplacian ∆ = ∆Γ plays a promi-
nent role, which in local coordinates is given by

∆Γ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
.

It can be shown that ∆Γ with domain given by smooth and bounded functions on
Γ\H, defines a non-negative, unbounded operator with a unique self-adjoint extension
(which we also denote ∆ = ∆Γ). We observe that λ = 0 is always an eigenvalue of ∆Γ
corresponding to the constant function. Furthermore the famous Selberg conjecture
predicts that for congruence subgroups Γ0(N) the first non-zero eigenvalue is ≥ 1/4.
It is known that there exist non-congruence subgroups Γ such that ∆Γ has non-zero
eigenvalues arbitrarily close to 0 as explained in [8, (11.15)].
For n = 0 the Kloosterman sums reduce to a generalization of the classical Ramanujan
sums and the mth Fourier coefficient of the Eisenstein series;

E(z, s) = EΓ(z, s) =
∑

γ∈Γ∞\Γ
Im(γz)s

is exactly

Γ(s)ζ(2s)−1
∑

c>0

S(m, 0; c)
c2s

,
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where the sum is taken over lower-left entries of matrices in Γ. Recall that by the
general theory of Eisenstein series due to Selberg, E(z, s) has its rightmost pole at
s = 1, which is a simple pole with residue vol(Γ)−1, [8, Proposition 6.13]. All the
other finitely many poles in 1/2 < Re s < 1 are also simple and the residues are
eigenfunctions for ∆.
First of all lets see how to use the analytic properties of Eisenstein series to understand
the asymptotic size of the outcome space Ω̃X : This is possible since we have a bijection

Γ∞\Γ/Γ∞ ↔ T≤1,Γ ∪ {∞},
with T≤1,Γ as defined in (1.8). Thus we see that the constant term in the Fourier
expansion of E(z, s) is exactly the generating series for T≤1,Γ. Since the pole of E(z, s)
is a constant, the constant term in the Fourier expansion of E(z, s) also has a simple
pole (with the same residue). Now by a standard complex analysis argument we get

#Ω̃X = X2

vol(Γ) +O(X2−δΓ),(2.3)

for some δΓ > 0 depending on the spectral gap for Γ, with Ω̃X as in (1.9).
Furthermore since the pole at s = 1 of the Eisenstein series has constant residue, it
follows that for m 6= 0 the Dirichlet series

∑

c

S(m, 0; c)
c2s

,

where the sum is over lower-left entries of matrices in Γ, has analytic continuation to
Re s > Re s1 ≥ 1/2 where λ1 = s1(1 − s1) is the smallest non-zero eigenvalue. From
this one easily proves ∑

c≤X
S(m, 0; c)�Γ |m|1/2X2−δΓ ,

for some δΓ > 0 (see [18, (3.6)]).
For mn 6= 0 the corresponding Dirichlet series

∑

c

S(m,n; c)
c2s

,

shows up in the Fourier coefficients of the Poincaré series

Pm(z, s) =
∑

γ∈Γ∞\Γ
e(mγz)(Im γz)s,

as was brilliantly used by Goldfeld and Sarnak in [6] to obtain bounds on sums
of Kloosterman sums. Using analytic properties of the resolvent of ∆Γ, they show
that Pm(z, s) has meromorphic continuation with possible poles only at the spectrum
of ∆Γ and from this they obtain bounds for sums of Kloosterman sums. For our
applications the dependence on m,n is essential, but this dependence is not clear
from the statement of their theorem [6, Theorem 2]. However using [6, Remark 1]
one can easily adapt their arguments to deduce the bound

∑

c≤X
S(m,n; c)�Γ mnX

2−δΓ ,(2.4)
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for some δΓ > 0 depending on the spectral gap of Γ. We will omit the details.

2.3. Additive twists. The idea behind the proofs of the main theorems is to relate
the periods of f ∈ Sk(Γ) to critical values of additive twists of the L-function of f .
The additive twists are defined as

L(f, r, s) :=
∑

n≥1

af (n)e(nr)
ns

,

where r ∈ R and e(x) = e2πix which apriori converges for Re s > (k + 1)/2 by
Hecke’s bound (1.4). If r corresponds to a cusp of Γ then L(f, r, s) admits analytic
continuation by the integral representation;

L(f, r, s) = (2π)s
Γ(s)

∫ ∞

0
f(r + iy)ys dy

y
.

Furthermore if r = a/c = γ∞ with

γ =
(
a b
c d

)
∈ Γ,

the completed L-function satisfies the following functional equation;

Λ(f, a/c, s) := Γ(s)
( c

2π

)s
L(f, a/c, s)

= (−1)k/2Λ(f,−d/c, k − s),(2.5)

where −d/c = r = γ−1∞ (see for instance [12, Section A.3]).
The relation between the periods of f and additive twists is given by the following.

Lemma 2.2. Let l ∈ Z≥0 be a non-negative integer, γ ∈ Γ and f as above. Then we
have

∫ ∞

γ∞
f(z)zldz =

l∑

j=0

(
l

j

)
(a/c)l−j(−2πi)−j−1Γ(j + 1)L(f, a/c, j + 1),(2.6)

where a/c = γ∞.

Proof. By a straight forward computation we have
∫ ∞

γ∞
f(z)zldz = i

∫ ∞

0
f(a/c+ it)(a/c+ it)ldt

=
l∑

j=0
ij+1(a/c)l−j

∫ ∞

0
f(a/c+ it)tjdt

=
l∑

j=0
ij+1(a/c)l−j(2π)−j−1Γ(j + 1)L(f, a/c, j + 1),

as wanted. �

It turns out that the dominating term for all of these periods will be the left-most
critical value L(f, a/c, 1). This is hinted to by the following proposition.
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Proposition 2.3. For a/c ∈ T≤1,Γ (i.e. a, c are respectively, the left upper and left
lower entries of some matrix in Γ such that 0 < a/c < 1), we have the following
bounds;
(i) L(f, a/c, σ)� 1 for σ ≥ k/2 + 1,
(ii) L(f, a/c, k/2)�ε c

ε,
(iii) L(f, a/c, σ)� ck−2σ for σ ≤ k/2− 1,
as c→∞.

Proof. Case (i) For σ ≥ k/2 + 1 we get by Hecke’s bound (1.4) the following uniform
bound;

L(f, a/c, σ)�
∑

n≥1

|af (n)|
nσ

≤
∑

n≥1

|af (n)|
nk/2+1 <∞,

which is independent of a/c and σ ≥ k/2 + 1.

Case (ii) The bound on the central value was proved by the author [15, Corollary
5.8].

Case (iii) Finally for σ ≤ k/2 − 1, we get by the functional equation (2.5) the
following;

L(f, a/c, σ) = (−1)k/2Γ(k − σ)(2π)−k+σ

Γ(σ)(2π)−σ ck−2σL(f,−d/c, k − σ),

and since k−σ ≥ k/2 + 1 the result follows from (i). Observe that we avoid the poles
of the Γ-function in the numerator. �

3. On the zeroes of the period polynomials

In this section we will apply the bounds in Proposition 2.3 to determine the as-
ymptotic behavior of the zeroes of the period polynomials associated to a fixed cusp
form as the denominator of the cusp varies.
Let f ∈ Sk(Γ0(N)) be a fixed newform of even weight k ≥ 6. Consider the period
polynomials associated to f ;

rf,γ(X) =
∫ ∞

γ∞
f(z)(z −X)k−2dz = bf,k−2(γ)Xk−2 + . . .+ bf,0(γ),

where γ ∈ Γ and

bf,l(γ) = (−1)l
(
k − 2
l

)∫ ∞

γ∞
f(z)zk−2−ldz

=
k−2−l∑

j=0

(−1)l
(
k−2
l

)(
k−2−l
j

)

(−2πi)j+1 (a/c)k−2−l−jΓ(j + 1)L(f, a/c, j + 1)

are the coefficients of rf,γ . We have the following bound on the Fourier coefficients
of f due to Deligne [3];

|af (n)| ≤ d(n)n(k−1)/2,



DISTRIBUTION OF PERIODS OF HOLOMORPHIC CUSP FORMS 117

where d is the divisor function. This implies that
∑

n≥2

|af (n)|
nk−1 ≤

∑

n≥2

d(n)
n(k−1)/2 = ζ((k − 1)/2)2 − 1 ≤ ζ(5/2)2 − 1 = 0.799... < 1.

This shows that L(f, x, k − 1) is bounded both from above and away from zero uni-
formly in x ∈ R. Combining this observation with the functional equation for additive
twists we conclude that

bf,k−2(γ) = L(f, γ∞, 1)
−2πi

= (−1)k/2iΓ(k − 1)
(2π)k−1 L(f, γ−1∞, k − 1)ck−2 6= 0.(3.1)

Thus rf,γ is actually a polynomial of degree k−2 and normalizing it so that it becomes
a monic polynomial the coefficients become;

b̃l(γ) = b̃f,l(γ) := bf,l(γ)/bf,k−2(γ), l = 0, . . . , k − 2.
We can now prove the promised asymptotic expression for the zeroes of rf,γ as c→∞.

Proof of Theorem 1.6. Let r = γ∞ = a/c. Using (3.1) we see that bf,k−2(γ)�k c
k−2.

Combining this with the expression (2.6) and the bounds from Proposition 2.3, we
conclude the following;

b̃l(γ) = (−1)l
(
k − 2
l

)
r k−2−l +Ok



k−2−l∑

j=1
|r|k−2−l−j |L(f, r, j + 1)|

|bf,k−2(γ)|




= (−1)l
(
k − 2
l

)
r k−2−l +Ok



k−2−l∑

j=1
|r|k−2−l−jcmax(0,k−2j−2)c−(k−2)


 .

One easily checks that |r|k−2−l−jcmax(0,k−2j−2)c−(k−2) � |r|k−4−lc−2 for all j =
1, . . . , k − 2− l using that |r| ≥ c−1. Thus we conclude

b̃l(γ) = (−1)l
(
k − 2
l

)
r k−2−l +Ok(|r|k−4−lc−2),(3.2)

and in particular b̃l(γ)�k |r|k−2−l.
Now we will show that any zero x0 of rf,γ is bounded by Ok(|r|). So assume that a
zero x0 of rf,γ satisfies |x0| ≥ |r|. Then using (3.2), we get the bound

|x0|k−2 = | − b̃k−3(γ)xk−3
0 − . . .− b̃0(γ)| �k |r||x0|k−3,

which implies x0 �k |r| as wanted.
Now combining x0 �k |r| with (3.2), we conclude for any root x0 of rf,γ we have that

0 = xk−2
0 + b̃k−3(γ)xk−3

0 + . . .+ b̃0(γ) = (x0 − r)k−2 +Ok((|r|+ 1)k−4c−2),
which implies that |x0 − r| �k (|r|+ 1)(k−4)/(k−2)c−2/(k−2) as wanted. �

If we restrict to γ ∈ Γ∞\Γ0(N) such that r = a/c = γ∞ ∈ Ωc (i.e. 0 < r = a/c <
1) we conclude that the zeroes of rf,γ satisfy

x0 = a/c+Ok(c−2/(k−2)).
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4. On the distribution of the Eichler–Shimura map

In this section we will prove Theorem 1.1 and Theorem 1.8 using the method
of moments. More precisely this is done by firstly computing all the moments of
the random variable uf on respectively Ωc and Ω̃X and then applying a result from
probability theory due to Fréchet–Shohat to determine the limiting distribution.

4.1. Computation of the moments of uf . To state our results we let (as above)

f(z) =
∑

n≥1
af (n)qn,

be the Fourier expansion of a cusp form f ∈ Sk(Γ). Then we define the following
Dirichlet series for α, β ∈ Z≥0;

Lf,α,β(s) : =
∑

n1,...,nα+β>0
n1+...+nα=nα+1+...+nα+β

af (n1) · · · af (nα)af (nα+1) · · · af (nα+β)
(n1 · · ·nα+β)s(4.1)

=
∫ 1

0
L(f, x, s)α,βdx,

which converges absolutely for Re s > (k+1)/2 by Hecke’s bound (1.4), where we use
the notation zα,β = zαzβ .
For Γ = Γ0(N) a Hecke congruence group, we get the following calculation of the
moments.

Theorem 4.1. Let f ∈ Sk(Γ0(N)) be a cusp form of even weight k ≥ 4. Then for
any non-negative integers;

α0, . . . , αk−2, β0, . . . , βk−2,

not all zero and c ≡ 0 (N), we have that

1
ϕ(c)

∑

0≤a<c,
(a,c)=1

k−2∏

j=0

(
(2π/c)k−2

Γ(k − 1)i

∫ ∞

a/c

f(z)zjdz
)αj ,βj

= Lf,α,β(k − 1)
1 +

∑k−2
j=0 j · (αj + βj)

+Oε,α,β,f (c−1/6+ε),(4.2)

where α = α0 + . . .+ αk−2 and β = β0 + . . .+ βk−2.

For a general cofinite Fuchsian group Γ, we have to take an extra average in order
to calculate the moments.

Theorem 4.2. Let Γ be a cofinite Fuchsian group with a cusp at∞ of width 1 and let
f ∈ Sk(Γ) be a cusp form of even weight k ≥ 4. Then for any non-negative integers;

α0, . . . , αk−2, β0, . . . , βk−2,
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not all zero, we have that

1
#Ω̃X

∑

r∈Ω̃X

k−2∏

j=0

(
(2π/c(r))k−2

Γ(k − 1)i

∫ ∞

r

f(z)zjdz
)αj ,βj

= Lf,α,β(k − 1)
1 +

∑k−2
j=0 j · (αj + βj)

+Oα,β(X−δΓ),(4.3)

for some δΓ > 0 depending on the spectral gap of Γ, where α = α0 + . . . + αk−2 and
β = β0 + . . .+ βk−2.

Remark 4.3. Observe that the main terms above are exactly what we expect from
the statements of Theorem 1.1 and Theorem 1.8, since Lf,α,β(k − 1) is precisely the
(α, β)-moment of L(f, Y, k − 1) with Y equidistributed on [0, 1) (see (4.1)) and

∫ 1

0
zα1+β1z2(α2+β2) · · · z(k−2)(αk−2+βk−2)dz = 1

1 +
∑k−2
j=0 j · (αj + βj)

.

Proof of Theorem 4.1 and Theorem 4.2. In the following all implied constants may
depend on f , α and β. In view of (2.6) we can express the periods of f as a linear
combination of critical values of the additive twists L(f, r, s) and by the functional
equation, we have the equality

L(f, r, 1) = c(r)k−2 Γ(k − 1)
(2π)k−2 L(f, r, k − 1)

with r = γ∞ and r = γ−1∞. Using Proposition 2.3 this implies that
k−2∏

j=0

(
(2π/c(r))k−2

Γ(k − 1)i

∫ ∞

r

f(z)zjdz
)αj ,βj

(4.4)

=L(f, r, k − 1)α,βrM +O(c(r)−2)

where zα,β = zαzβ and

M = M(α1, . . . , αk−2, β1, . . . , βk−2) :=
k−2∑

j=0
j · (αj + βj).

In order to deal with the term rM , we apply a standard smooth approximation. So
let ϕ : R → R≥0 be a smooth function with compact support in (0, 1) such that∫ 1

0 ϕ(x)dx = 1. Then we define the following approximation to the Dirac measure at
x = 0;

ϕδ(x) := δ−1ϕ(x/δ),
where δ > 0 is some small constant to be chosen appropriately. Notice that ϕδ is
supported in (0, δ) and satisfies

∫
R ϕδ(x)dx = 1. We think of ϕδ as a function on the

circle R/Z by extending its values on [0, 1) periodically.
Associated to the periodic functions hj : R/Z→ R given by hj(x) = xj for x ∈ [0, 1)
with j ∈ Z≥0, we define the following smooth approximation;

hj,δ := hj ∗ ϕδ,
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where ∗ denotes the (additive) convolution product on R/Z. The approximation
hj,δ satisfies the following standard properties (which can be proved easily by partial
integration using the compact support of ϕδ);

ĥj,δ(l)�A
1

(δ(1 + |l|))A , ĥj,δ(0) = ĥj(0) = 1
j + 1 ,(4.5)

where A > 0 and ĥj,δ denotes the Fourier transform on R/Z. And furthermore

hj,δ(x) = hj(x) +
∫ x

x−δ
(hj(t)− hj(x))ϕδ(x− t)dt = hj(x) +Oj(δ),

for δ ≤ x < 1 using that hj is differentiable. This estimate fails for 0 ≤ x ≤ δ, but
it is standard to show that the contribution from r ∈ Ω̃X (respectively r ∈ Ωc) with
r < δ is negligible and will not affect the error terms. More precisely it is obvious
that {r ∈ Ωc | r < δ} � δc and by using the cancellation in Kloosterman sums one
can easily show that {r ∈ Ω̃X | r < δ} � δX2.
The upshot is that we can replace rM by the approximation hM,δ at the cost of
changing the error term in (4.4) to O(δ + c(r)−2) (at least when we average over Ωc,
respectively Ω̃X).

Finally we replace hM,δ by its Fourier expansion to arrive at the following expres-
sion for the main term;

L(f, r, k − 1)α,βhM,δ(r)

=
∑

l∈Z
ĥM,δ(l)e(lr)L(f, r, k − 1)α,β

=
∑

l∈Z
ĥM,δ(l)

∑

n1,...,nα+β>0

af (n1) · · · af (nα)af (nα+1) · · · af (nα+β)
(n1 · · ·nα+β)k−1

× e(lr + r(n1 + . . .+ nα − nα+1 − . . .− nα+β)),(4.6)

using that L(f, r, k − 1) is absolutely convergent and so is the Fourier expansion of
hM,δ in view of (4.5).

Now the case where Γ = Γ0(N) is a Hecke congruence group, we average (4.4) over
r ∈ Ωc. Since all of the r-dependence is in the exponential, we see the Kloosterman
sums entering the picture. The main contribution comes from the diagonal terms
corresponding to l = 0 and n1 + . . .+ nα = nα+1 + . . .+ nα+β , which contribute

Lf,α,β(k − 1)ĥM,δ(0) = Lf,α,β(k − 1) 1
M + 1 .(4.7)
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In order to handle the off-diagonal contributions, we apply Weil’s bound (2.2), which
bounds the off-diagonal terms by the following;

� d(c)c1/2
ϕ(c)

∑

l 6=0

∑

n1,...,nα+β

|ĥM,δ(l)|
|af (n1) · · · af (nα+β)|

(n1 · · ·nα+β)k−1


l, c,

α∑

i=1
ni −

α+β∑

j=α+1
nj




1/2

�ε,α,β
c1/2+ε

ϕ(c)


∑

l 6=0
|ĥM,δ(l)|




·


 ∑

n1,...,nα+β

|af (n1) · · · af (nα+β)|
(n1 · · ·nα+β)k−1 max(n1, . . . , nα+β)1/2−ε




�ε,α,β
c1/2+ε

ϕ(c)
∑

l 6=0
|ĥM,δ(l)|,

using Hecke’s bound (1.4) to show finiteness of the sum over n1, . . . , nα+β . Combining
the above with the fact that ϕ(c)�ε c

1−ε, we arrive at the following;

1
ϕ(c)

∑

0≤a<c
(a,c)=1

k−2∏

j=0

(
(2π/c)k−2

iΓ(k − 1)

∫ ∞

a/c

f(z)zjdz
)αj ,βj

=Lf,α,β(k − 1)ĥM,δ(0) +Oε


δ + c−2 + c−1/2+ε

∑

l 6=0
|ĥM,δ(l)|


 .(4.8)

Next we apply (4.5) with A = 2 + ε to ensure convergence of the sum
∑
l 6=0 |ĥM,δ(l)|

and arrive at the following error term Oε(δ+ c−2 + c−1/2+εδ−2−ε). Finally we choose
δ = c−1/6 to balance the error terms.

The argument when Γ is a general cofinite Fuchsian group is similar, only now we
average (4.4) over r ∈ Ω̃X . In this case we also see Gauss sums enter the picture since
we have ∑

r∈Ω̃X

e(nr +mr) =
∑

0<c≤X
SΓ(m,n; c),

where the sum is taking over lower left entries c of matrices in Γ and SΓ(m,n; c) is a
(generalized) Kloosterman sum defined by (2.1).

Again the main contribution is given by (4.7). When dealing with the off-diagonal
contribution, we first of all have to trivially bound the terms in (4.6) with

min(n1, . . . , nα+β) > Xδ1 ,

for some δ1 > 0 to be chosen appropriately. This is necessary since the dependence
on the frequencies in (2.4) is not as strong as in Weil’s bound (actually this extra step
is only needed when k = 4).
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Now using the trivial bound for the exponentials, this truncation yields
1

#Ω̃X

∑

r∈Ω̃X

L(f, r, k − 1)α,βhM,δ(r)

=
∑

l∈Z
ĥM,δ(l)

∑

0<n1,...,nα+β<Xδ1

af (n1) · · · af (nα)af (nα+1) · · · af (nα+β)
(n1 · · ·nα+β)k−1

× 1
#Ω̃X

∑

r∈Ω̃X

e(lr + r(n1 + . . .+ nα − nα+1 − . . .− nα+β)) +O(X−δ1(k−3)/2).

(4.9)

Now we apply the bound for sums of Kloosterman sums (2.4) which yields the fol-
lowing bound for the remaining off-diagonal contribution from (4.9);

�α,β X
−δΓ

(∑

l

|ĥM,δ(l)| · |l|
)

×
∑

0<n1,...,nα+β<Xδ1

|af (n1) · · · af (nα+β)|
(n1 · · ·nα+β)k−1 max(n1, . . . , nα+β)

�α,β X
−δΓ

(∑

l

|ĥM,δ(l)| · |l|
)

max(1, X−δ1(k−5)/2),

using also that #Ω̃X � X2 by (2.3).
Now we apply (4.5) with A = 3 + ε to ensure finiteness of the first sum above and
then choose δ and δ1 to balance the error terms. This yields a power savings, which
we will not make explicit. This finishes this case as well. �

4.2. Determining the limiting distribution. In order to conclude the proofs of
Theorem 1.1 and Theorem 1.8, we need to setup our problem in a probability theo-
retical framework.
Let f ∈ Sk(Γ) be as above and consider the following normalization of the periods of
f ;

ũf,j(r) := (2π/c(r))k−2

iΓ(k − 1) uf,j(r) = (2π/c(r))k−2

iΓ(k − 1)

∫ ∞

r

f(z)zjdz, j = 0, . . . , k − 2,

where r = γ∞ with γ ∈ Γ. According to whether Γ is a congruence subgroup or not,
we consider for each c ≡ 0 (N) (respectively X > 0) the renormalized periods;

ũf := (ũf,0, . . . , ũf,k−2),

as random variables defined on the outcome space Ωc (respectively Ω̃X) endowed with
the discrete σ-algebra and the uniform probability measure. Then one can easily check
as in Remark 4.3 that Theorem 4.1 (respectively Theorem 4.2) implies that as c→∞
(respectively X →∞), the moments of the random variables ũf converge to those of
the random variable

F (Y, Z) = (F0(Y,Z), . . . , Fk−2(Y,Z))T ,
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where Y, Z are two independent random variables uniformly distributed with respect
to the Lebesgue measure on [0, 1) and F : [0, 1)×[0, 1)→ Ck−1 is given (as in Theorem
1.1) by

F (y, z) = L(f, y, k − 1)(1, z, . . . , zk−2)T ∈ Ck−1.

As an example let us consider the (complex) moment of F (Y, Z) corresponding to the
tuple ((1, 1), (1, 1), . . . , (1, 1));

E
(
F (Y, Z)((1,1),(1,1),...,(1,1))

)
:=
∫ 1

0

∫ 1

0
|F0(y, z)|2 · · · |Fk−2(y, z)|2dydz

=
(∫ 1

0
|L(f, y, k − 1)|2(k−1)dy

)(∫ 1

0
z0+2+...+2(k−2)dz

)

=




∑

n1+...+nk−1
=nk+...+n2(k−1)

af (n1) . . . af (n2(k−1))
(n1 · · ·n2(k−1))k−1


 ·

1
1 + (k − 2)(k − 1) ,

which we see match the corresponding moment in Theorem 4.1 and Theorem 4.2.

In order to conclude that the random variables associated with ũf converge in
distribution to F (Y,Z) as c → ∞ (respectively X → ∞), we will combine three
results from probability theory due to Fréchet–Shohat, Cramér–Wold and Carleman
respectively. A similar but slightly simpler argument was carried out in [15, Section
5.4].

Proof of Theorem 1.1 and Theorem 1.8. Given a sequence of 1-dimensional real ran-
dom variables (X ′n)n≥1 such that all moments exist and converge as n → ∞ to the
moments of some other random variable Y ′ then it follows from the Fréchet–Shohat
Theorem [20, p. 17] that if Y ′ is uniquely determined by its moments then the random
variables (X ′n)n≥1 converge in distribution to Y ′.
Our random variables are however multidimensional so we have to combine the
Fréchet–Shohat Theorem with a result of Cramér and Wold [20, p. 18], which says
that if (X ′n)n≥1 is a sequence of (d+ 1)-dimensional real random variables;

X ′n = (X ′n,0, . . . , X ′n,d),

and Y ′ = (Y ′0 , . . . , Y ′d) is a (d+ 1)-dimensional random variable such that

t0X
′
n,0 + . . .+ tdX

′
n,d

converge in distribution as n→∞ to

t0Y
′
0 + . . .+ tdY

′
d

for any (d + 1)-tuple (t0, . . . , td) ∈ Rd+1, then X ′n converges in distribution to Y ′ as
n→∞.
Thus by combining Fréchet–Shohat and Cramér–Wold with our calculation of the
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moments in Theorem 4.1 (respectively Theorem 4.2), it is enough to show that for
any (say non-trivial) linear combination, the following random variable;

t0 ReL(f, Y, k − 1) + t1 ReL(f, Y, k − 1)Z+(4.10)
. . .+ tk−2 ReL(f, Y, k − 1)Zk−2

+ tk−1 ImL(f, Y, k − 1) + tk ImL(f, Y, k − 1)Z+
. . .+ t2k−3 ImL(f, Y, k − 1)Zk−2

is uniquely determined by its moments. By a condition due to Carleman (see (4.11)
below), this boils down to showing that the moments are sufficiently bounded from
above, which is clear in our case since Z is bounded by 1 and

|L(f, Y, k − 1)| ≤
∑

n≥1

|af (n)|
nk−1 <∞,

both with probability one. To sum up and be precise; if we denote by α2m the 2m’th
moment of (4.10), then we have

∑

m≥1
α
−1/2m
2m ≥

∑

m≥1





c(t0, . . . , t2k−3)

∑

n≥1

|af (n)|
nk−1




2m



−1/2m

=∞,(4.11)

where c(t0, . . . , t2k−3) is a certain constant depending on t0, . . . , t2k−3. Thus it follows
from the Carleman condition [20, p. 46] that the random variable (4.10) is uniquely
determined by its moments. Thus we conclude the proof of Theorem 1.1 and Theorem
1.8 using the results of Fréchet–Shohat and Cramér–Wold mentioned above. �
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A NOTE ON ADDITIVE TWISTS, RECIPROCITY LAWS AND
QUANTUM MODULAR FORMS

ASBJØRN CHRISTIAN NORDENTOFT

Abstract. We prove that the central values of additive twists of a cuspidal L-
function define a quantum modular form in the sense of Zagier, generalizing recent
results of Bettin and Drappeau. From this we deduce a reciprocity law for the
twisted first moment of multiplicative twists of cuspidal L-functions, similar to
reciprocity laws discovered by Conrey for the twisted second moment of Dirichlet
L-functions. Furthermore we give an interpretation of quantum modularity at
infinity for additive twists of L-functions of weight 2 cusp forms in terms of the
corresponding functional equations.

1. Introduction

In an unpublished paper [5, Theorem 10], Conrey discovered a certain reciprocity
law satisfied by the twisted second moment of Dirichlet L-functions. The reciprocity
law relates the following two twisted moments;

∑

χ mod q

|L(χ, 1/2)|2χ(l) 
∑

χ mod l

|L(χ, 1/2)|2χ(−q),(1.1)

for primes q 6= l. Conrey’s results were then generalized and refined by Young [12]
and Bettin [1]. In this paper we prove a reciprocity law for twists of GL2-cusp forms,
which in the simplest case relates the following two twisted first moments;

∑

χ mod q,
χ primitive

τ(χ)L(f, χ, k/2)χ(l) 
∑

χ mod l,
χ primitive

τ(χ)L(f, χ, k/2)χ(−q),(1.2)

where f ∈ Sk(SL2(Z)) is a cusp form of weight k and level 1, τ(χ) is a Gauss-sum
and q, l > 2 are primes. The exact moments involved for general level N and general
q, l are more involved (see Theorem 2.1 below).

Our proof uses an interpretation of the twisted moments (1.2) in terms of additive
twists of L-functions. The additive twists associated to the L-function of a weight k
cusp form f ∈ Sk(Γ0(N)) are defined as

L(f, a/c, s) :=
∑

n≥1

af (n)e(na/c)
ns

,

for Re s > (k + 1)/2, where af (n) denote the Fourier coefficients of f , a/c ∈ Q and
e(x) := e2πix. The Dirichlet series above admit analytic continuation to the entire

Date: March, 2020.
2010 Mathematics Subject Classification. 11F67(primary).
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complex plane, which satisfy functional equations (see Section 3.1 below for details).
The reciprocity law will now follow from the fact that the central value at s = k/2
of the additive twists define a quantum modular form of weight zero in the sense of
Zagier [14] (see Theorem 4.4 below for the precise statement). The quantum modu-
larity result is of independent interest.

The inspiration for this approach comes from Bettin’s work [1], which gives an
interpretation of the twisted second moment (1.1) in terms of the central value of the
Estermann zeta function defined for Re s > 1 by

D(a, c; s) :=
∑

n≥1

d(n)e(na/c)
ns

,

where d(n) denotes the number of divisors of n and a, c ∈ Z. One can think of this as
an additive twist of ζ(s)2, which in turn is the L-function associated to the GL2-object
∂
∂sE(z, s)s=1/2. Bettin’s results [1, Theorem 1] can be interpreted as showing that
D(a/c; 1/2) := D(a, c; 1/2) defines a quantum modular form as a function of a/c ∈ Q.
Recently Bettin and Drappeau [2, Lemma 8.3] showed quantum modularity in the
case of level 1 cusp forms, which they ingeniously combined with dynamical meth-
ods to determine the limiting distribution of the central values of additive twists of
L-functions of level 1 cusp forms [2, Corollary 1.5]. The results of this paper extend
the quantum modularity proved by Bettin and Drappeau to general discrete and co-
finite subgroups of SL2(R) with a cusp at infinity (with an appropriate definition of
quantum modularity). Quantum modularity for general levels will be needed if one
wants to extend the methods of Bettin and Drappeau to general level (see the remark
on page 8 of [2]).

Finally we discuss quantum modularity at ∞ and show that for weight 2 cusp
forms, this is in a precise sense equivalent to the functional equation at the central
point for the additive twists of the associated L-function.
Remark 1.1. A different proof of the Gaussian behavior of central values of addi-
tive twists [2, Corollary 1.5] was obtained independently by the author [11] using the
theory of Eisenstein series twisted by modular symbols. The methods in [11] further-
more apply to general Fuchsian groups of the first kind with a cusp at ∞, and thus
in particular to general level.
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2. Statement of results

In order to state our results, let f ∈ Sk(Γ0(N)) be a primitive newform of even
weight k and level N . Let ωf denote the eigenvalue under the Fricke involution W
(see (4.3) below) and let

f(z) =
∑

n≥1
af (n)qn, q = e2πiz,
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be the Fourier expansion. Then given a Dirichlet character χ, we consider the follow-
ing twisted L-function;

L(f, χ, s) :=
∑

n≥1

af (n)χ(n)
ns

, Re s > (k + 1)/2,(2.1)

which admits analytic continuation satisfying a functional equation relating s↔ k−s.
Our result is the following reciprocity law for a certain appropriately weighted twisted
first moment of these L-functions at the central point s = k/2.

Theorem 2.1. Let f ∈ Sk(Γ0(N)) be a primitive newform of even weight k and level
N . Then we have the following reciprocity relation for any pair of integers 0 < l < q
with (q,Nl) = 1;

1
ϕ(q)

∑

χ mod q

ν(f, χ∗, q/c(χ))L(f, χ∗, k/2)χ(l)(2.2)

− ωf
ϕ(lN)

∑

χ mod lN

ν(f, χ∗, lN/c(χ))L(f, χ∗, k/2)χ(−q)

= L(f, k/2) +Of (l/q),

where χ∗ mod c(χ) denotes the primitive character inducing χ, L(f, χ, s) is as in
(2.1) and the arithmetic weights ν are given by

ν(f, χ, n) := τ(χ)
∑

n1n2n3=n,
(n1,N)=1

χ(n1)µ(n1)χ(n2)µ(n2)af (n3)n1−k/2
3 .

Remark 2.2. To see where the arithmetic weights ν(f, χ, n) come from, consult Lemma
3.1 below. Note that for primitive characters χ, the weight is exactly given by the
Gauss-sum τ(χ).

In the simplest case where q, l are both prime and the level is 1, we get the following
precise version of (1.2).

Corollary 2.3. Let f ∈ Sk(SL2(Z)) be a primitive newform of even weight k and
level 1. Then we have the following reciprocity relation for any primes q > l > 2;

1
q − 2

∑

χ mod q
χ primitive

τ(χ)L(f, χ, k/2)χ(l)− 1
l − 2

∑

χ mod l
χ primitive

τ(χ)L(f, χ, k/2)χ(−q)

= L(f, k/2) +Of (l/q + 1/
√
l),

where the sums are taken over all primitive characters modulo q and modulo l, re-
spectively.

3. Twisted first moments and additive twists

In this section we will recall some standard properties of additive twists of cuspi-
dal L-functions and furthermore for congruence subgroups show a connection to the
twisted first moments in (1.2) using (an extension of) a formula due to Birch and
Stevens.
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3.1. Additive twists. We refer to [11, Section 3.3] and [7, Section A.2] for a more
detailed account on additive twists.
Let Γ be a discrete and co-finite subgroup of SL2(R) with a cusp at ∞ of width 1
(see [6, Chapter 2] for definitions) and consider a cusp form f ∈ Sk(Γ) of even weight
k with Fourier expansion (at ∞) given by

f(z) =
∑

n≥1
af (n)qn.

Then we define the additive twist by r ∈ R of the L-function of f as

L(f, r, s) :=
∑

n≥1

af (n)e(nr)
ns

,(3.1)

which converges absolutely (and locally uniformly) for Re s > (k + 1)/2 by Hecke’s
bound;

∑

n≤X
|af (n)|2 � Xk.(3.2)

Thus the Dirichlet series (3.1) defines a continuous function in r when s is fixed with
Re s > (k + 1)/2.
Furthermore if r corresponds to a cusp of Γ (i.e. r is fixed by a parabolic subgroup
of Γ), then L(f, r, s) admits analytic continuation to the entire complex plane as a
function of s, given by the following integral representation;

L(f, r, s) = (2π)s
Γ(s)

∫ ∞

0
f(r + iy)ys−1dy,(3.3)

well-defined for all s ∈ C.
Finally if r is in the Γ-orbit of∞, say r = γ∞ with γ ∈ Γ, then we have the following
functional equation;

Λ(f, γ∞, s) :=
( c

2π

)s
Γ(s)L(f, γ∞, s)

= (−1)k/2Λ(f, γ−1∞, k − s),(3.4)
where c is the lower-left entry of γ.

3.2. The Birch–Stevens formula. In the special case where Γ = Γ0(N), the set of
cusps corresponds to Q ∪ {∞} and the classical Birch–Stevens formula [10, Theorem
2.3] expresses the central value L(f, χ, k/2) for a primitive Dirichlet character χ mod q
in terms of additive twists;

τ(χ)L(f, χ, k/2) =
∑

a∈(Z/qZ)×

L(f, a/q, k/2)χ(a),(3.5)

where τ(χ) denotes the Gauss-sum of χ.
For k = 2 the central values L(f, a/q, 1) are known as modular symbols and the above
equality has been used for computations of the central values of L-functions of base-
changes of elliptic curves over Q.
If we furthermore assume that f is a primitive newform (in particular an eigenform
for all Hecke operators), then we have the following generalization to non-primitive
characters χ.
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Lemma 3.1. Let f ∈ Sk(Γ0(N)) be a primitive newform of even weight k and level
N and χ mod q a Dirichlet character. Then we have

ν(f, χ∗, q/c(χ))L(f, χ∗, k/2) =
∑

a∈(Z/qZ)×

L(f, a/q, k/2)χ(a),(3.6)

where χ∗ mod c(χ) denotes the primitive character inducing χ and the weight is given
by

ν(f, χ, n) := τ(χ)
∑

n1n2n3=n,
(n1,N)=1

χ(n1)µ(n1)χ(n2)µ(n2)af (n3)n1−k/2
3 .

For a proof see [11, Proposition 6.1].

Remark 3.2. This formula was also the essential ingredient for Bruggeman and Dia-
mantis in [4, Theorem 1.1], where they give an explicit formula for the constant Fourier
coefficient of Eisenstein series twisted by modular symbols.

From the above formula we conclude, using orthogonality of characters on the finite
group (Z/qZ)×, the following identity.

Corollary 3.3. Let f ∈ Sk(Γ0(N)) be a primitive newform of even weight k and level
N . Then we have

L(f, a/q, k/2) = 1
ϕ(q)

∑

χ mod q

ν(f, χ∗, q/c(χ))L(f, χ∗, k/2)χ(a),(3.7)

with χ∗ mod c(χ) and ν as above.

Thus for l = o(q), it follows from (2.2) that
L(f, l/q, k/2)− L(f,−q/(Nl), k/2) = L(f, k/2) + o(1),

as q →∞. This is in sharp contrast with the average behavior since we know from the
distribution result [11, Theorem 1.1] that the numbers L(f, l/q, k/2) with (l, q) = 1
and q � Q are of magnitude

√
logQ with probability one.

4. Quantum modularity of additive twists

The notion of quantum modular forms was introduced by Zagier in [14] with one of
the first examples appearing in earlier work with Lawrence [8] on certain symmetries
of quantum invariants of 3-knots (hence the name). In Zagier’s original definition,
quantum modular forms are maps P1(Q)\S → C with S a finite set which satisfy a
variation of the modular transformation rule with respect to congruence subgroups
Γ0(N) ⊂ SL2(Z) acting on P1(Q). One should think of the equivalence classes of
P1(Q) under the action of Γ0(N) as the boundary components of the symmetric
space Γ0(N)\H.
In this paper we study quantum modularity for general co-finite, discrete subgroups
Γ ⊂ SL2(R) with a cusp at ∞ of width 1 (see [6, Section 2] for definitions of these
notions). Although quantum modularity with respect to general such Γ has not been
explicitly defined before in the literature, the definition is implicit in the introduction
of [14]. To make this precise, denote by s(Γ) ⊂ P1(R) = R ∪ {∞} the set of cusps of
Γ (i.e. fix-points of parabolic subgroups of Γ). In particular if Γ = Γ0(N), we have
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s(Γ) = Q ∪ {∞} = P1(Q).
Then we have the following definition.

Definition 4.1. Let Γ be a discrete, co-finite subgroup of SL2(R) with a cusp at
∞ of width 1 and consider a map f : s(Γ)\S → C with S a finite set. Then f is
a quantum modular form of weight k for Γ if the following holds; for any fixed
γ ∈ Γ the function gγ(r) : s(Γ)\(S ∪ γ−1S)→ C defined by

gγ(r) := f(γr)− j(γ, r)kf(r),(4.1)

extends to a continuous function P1(R)\(S ∪ γ−1S)→ C.

Remark 4.2. Here continuous can be replaced by different notions of regularity (C1,
smooth, real-analytic, . . .), and indeed Zagier in [14] requires the discrepancy (4.1) to
extend to a real-analytic function.

Remark 4.3. Note that with our definition of quantum modularity, all restrictions of
continuous maps P1(R)\S → C (with S a finite set) trivially satisfy the condition of
being a quantum modular form.

4.1. Proof of quantum modularity. In this section we present a proof of the
quantum modularity for the central values of additive twists of cuspidal L-functions.
The proof uses the integral representation of the additive twist (3.3) and is similar
in spirit to the treatment of Eichler integrals associated to half-integral cusp forms
by Bringmann and Rolen in [3]. One can also consider the Eichler integrals of an
integral weight k cusp form f , which corresponds to the special value L(f, r, k − 1)
of the additive twists. For k > 2 this is however a trivial example with our definition
of quantum modularity since this is the restriction of a continuous function1, because
of the absolute convergence of the Dirichlet series (3.1) at the special value s = k− 1
(as was also noted in [2, Section 1.4.1]).
It follows from [11, Theorem 1.4] that L(f, r, k/2) considered as a function of the
twisting parameter r ∈ s(Γ) is unbounded on any interval and thus it is not the
restriction of a continuous function P1(R)\S → C with S a finite set. Our result is
that this does however define a quantum modular form.

Theorem 4.4 (Quantum modularity). Let Γ be a discrete, co-finite subgroup of
SL2(R) with a cusp at ∞ of width 1 and let f ∈ Sk(Γ) be a cusp form of even
weight k. Then the map s(Γ)\{∞} → C defined by

r 7→ L(f, r, k/2)

1Eichler integrals of integral weight cusp forms were some of the earliest examples of quantum
modular forms considered by Zagier [13, Section 11] (see also Lee [9]). In these works the discrepancy
(4.1) is required to extend to a polynomial instead of just a continuous function. Now one gets a
non-trivial result since the Eichler integrals are certainly not restrictions of polynomials (not even
restriction of smooth functions).
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is a quantum modular form of weight zero for Γ. More precisely for γ ∈ Γ and
r ∈ s(Γ)\{∞} with γr 6=∞ and γ∞ 6=∞, we have

L(f, γr, k/2)−L(f, r, k/2)

= L(f, γ∞, k/2) +
k/2−1∑

j=1

(
k/2−1
j

)

(c−1j(γ, r))j
(−2πi)−jΓ(k/2 + j)

Γ(k/2) L(f, r, k/2 + j)

+
k/2−1∑

j=1

(
k/2−1
j

)

(cj(γ, r))j
(−2πi)jΓ(k/2− j)

Γ(k/2) L(f, γ∞, k/2− j),(4.2)

where c is the lower-left entry of γ.

Remark 4.5. Theorem 4.4 in the special case Γ = SL2(Z) is exactly [2, Lemma 8.3].

Proof. We have to show continuity of the discrepancy (4.1) for all γ ∈ Γ. First of all
if γ∞ =∞ then it is easy to see that

L(f, γr, k/2) = L(f, r, k/2),

for all r ∈ s(Γ)\{∞} since f is 1-periodic. Thus quantum modularity for such γ is
clear.

Recall that by (3.2), the additive twists L(f, x, k/2+ j) for j ≥ 1 define continuous
functions in x ∈ R. Thus for γ fixed the two sums on the right-hand side of (4.2)
both extend to continuous functions R\{γ−1∞} → C. Thus it suffices to prove the
identity (4.2). To do this, we begin with the following integral representation;

L(f, γr, k/2) = (2π)k/2

Γ(k/2)

∫ ∞

0
f(γr + iy)yk/2−1dy

= (−2πi)k/2

Γ(k/2)

∫ i∞

γr

f(z)(z − γr)k/2−1dz,

where the integral is taken along the vertical line from γr to i∞. Now the integrand
is holomorphic and we can apply Cauchy’s theorem to write

L(f, γr), k/2) = (−2πi)k/2

Γ(k/2)

(∫ γ∞

γr

f(z)(z − γr)k/2−1dz +
∫ i∞

γ∞
f(z)(z − γr)k/2−1dz

)
.

We will now treat the two integrals separately. In the first integral we do the change
of variable z 7→ γz and use the following simple formulas;

γz − γr = z − r
j(γ, z)j(γ, r) , j(γ, z) = j(γ, r) + c(z − r),
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to arrive at
∫ γ∞

γr

f(z)(z − γr)k/2−1dz

=
∫ i∞

r

f(γz)(γz − γr)k/2−1 dz

j(γ, z)2

=
(

c

j(γ, r)

)k/2−1 ∫ i∞

r

f(z)
(

(z − r)(z − r + j(γ, r)
c

)
)k/2−1

dz

=
k/2−1∑

j=0

(
k/2− 1

j

)(
c

j(γ, r)

)j ∫ i∞

r

f(z)(z − r)k/2+j−1dz

=
k/2−1∑

j=0

(
k/2− 1

j

)(
c

j(γ, r)

)j Γ(k/2 + j)
(−2πi)k/2+j L(f, r, k/2 + j).

A similar treatment of the other integral gives
∫ i∞

γ∞
f(z)(z − γ∞+ (γ∞− γr))k/2−1dz

=
k/2−1∑

j=0

(
k/2− 1

j

)(
1

cj(γ, r)

)j ∫ i∞

γ∞
f(z)(z − γ∞)k/2−j−1dz

=
k/2−1∑

j=0

(
k/2− 1

j

)(
1

cj(γ, r)

)j Γ(k/2− j)
(−2πi)k/2−j L(f, γ∞, k/2− j),

which finishes the proof. �

Remark 4.6. For k = 2 we observe that the right-hand side of (4.2) is just a constant.
From this it follows immediately that the central value of the additive twists (i.e.
modular symbols) define a strong quantum modular form in the sense of Zagier [14].

Remark 4.7. The proof and statement of Theorem 4.4 is very similar to [11, Lemma
5.2], which was used to reduce the study of Eisenstein series twisted by additive twists
to the study of certain "completions" in the sense of [4, page 6]. This was a key step for
the author in [11] in order to determine the distribution of central values of additive
twists and thus there seem to be some similarities with the methods in [2], which
would be interesting to understand better.

If Γ = Γ0(N) is a congruence group and we assume that f ∈ Sk(Γ0(N)) is a
primitive newform, we get a similar result for the Fricke involution defined as;

Wf(z) := N−k/2z−kf(HNz),(4.3)

where

HN =
(

0 −1
N 0

)
.

The proof is essentially the same and we will omit it.



ADDITIVE TWISTS, RECIPROCITY LAWS AND QUANTUM MODULAR FORMS 137

Theorem 4.8. Let f ∈ Sk(Γ0(N)) be a primitive newform of even weight k and level
N . Then we have for all r ∈ Q\{0} that

L(f,−1/(Nr), k/2)− ωfL(f, r, k/2)

= L(f, k/2) + ωf

k/2−1∑

j=1

(
k/2−1
j

)

rj
(−2πi)−jΓ(k/2 + j)

Γ(k/2) L(f, r, k/2 + j)

+
k/2−1∑

j=1

(
k/2−1
j

)

(Nr)j
(−2πi)jΓ(k/2− j)

Γ(k/2) L(f, k/2− j),(4.4)

where ωf = ±1 is the eigenvalue of f under the Fricke involution W defined in (4.3).

4.2. Quantum modularity at ∞ and the functional equation. A natural ques-
tion to ask is whether we can extend our quantum modular forms to ∞. This is
equivalent to whether we can assign a value at ∞ such that for all γ ∈ Γ, the right-
hand side of (4.2) converges as respectively r → ∞ and r → γ−1∞ to the left-hand
side of (4.2) with respectively r =∞ and r = γ−1∞. In the special case when k = 2
this can be done by putting L(f,∞, 1) = 0. It turns out that quantum modularity at
∞ amounts to the functional equation for L(f, γ∞, s) at the central point.

Theorem 4.9. Let Γ be a discrete, co-finite subgroup of SL2(R) with a cusp at ∞ of
width 1 and let f ∈ S2(Γ). Then the map s(Γ)→ C defined by

r 7→ L(f, r, 1)

where we put L(f,∞, 1) = 0, is a quantum modular form of weight zero for Γ.

Proof. First of all if γ∞ =∞, it is clear. Furthermore when k = 2, (4.2) reduces to

L(f, γr, 1)− L(f, r, 1) = L(f, γ∞, 1),(4.5)

and since the right-hand side is constant we can ignore convergence completely.
Using Theorem 4.4 we only need to check that (4.5) still holds at r = ∞ and r =
γ−1∞. The first case is immediate and the second case reduces to

L(f, γ−1∞, 1) ?= −L(f, γ∞, 1),

which is exactly the functional equation (3.4) at the central point s = k/2 = 1. This
finishes the proof. �

Remark 4.10. This seems to be a very special phenomena for k = 2 and we have
numerical data suggesting that it is not true for the Ramanujan ∆-function. The
author was however not able to disprove it for higher weights. Notice that for k > 2
one gets poles at r = γ−1∞ from both sums on the right-hand side of (4.4), but we
are not able to rule out the possibility that these poles cancel out (corresponding to
the question of whether the special value L(f, x, k/2 + 1) is differentiable at points
x ∈ Γ∞). It would be interesting to investigate quantum modularity at ∞ for other
quantum modular forms in the literature.
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5. From quantum modularity to reciprocity laws

In this final section, we will prove the reciprocity laws Theorem 2.1 and Corollary
2.3 using the quantum modularity for the Fricke involution of additive twists proved
above.

5.1. Proof of Theorem 2.1 and Corollary 2.3. By combining Corollary 3.3 and
Theorem 4.8 with r = −q/(lN), we get an explicit formula for the left-hand side of
(2.2). The expression for the error-term on the right-hand side of (2.2) follows by the
following estimate of the right-hand side of (4.4);

L(f, k/2) + ωf

k/2−1∑

j=1

(
k/2−1
j

)

rj
(−2πi)−jΓ(k/2 + j)

Γ(k/2) L(f, r, k/2 + j)

+
k/2−1∑

j=1

(
k/2−1
j

)

(N2r)j
(−2πi)jΓ(k/2− j)

Γ(k/2) L(f, k/2− j)

= L(f, k/2) +Of



k/2−1∑

j=1
r−j




= L(f, k/2) +Of (r−1),
where we again used the following uniform bound;

|L(f, r, k/2 + j)| ≤
∑

n≥1

|af (n)|
nk/2+1 <∞,

for j ≥ 1. This proves Theorem 2.1.
Furthermore if l and q are both primes then the only non-primitive character modulo l
and q are the principal characters. Now using Deligne’s bound |af (n)| ≤ d(n)n(k−1)/2

on the Fourier coefficients of f , we derive
ν(f, χ∗0, q/c(χ0)) = ν(f, 1, q) = af (q)q1−k/2 − 1� q1/2,

and similarly for l. Using that
1

ϕ(q) = 1
q − 2 +O(q−2),

for q > 2 prime, we conclude the proof of Corollary 2.3.
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Abstract. We provide a simple automorphic method using Eisenstein series to
study the equidistribution of modular symbols modulo primes, which we apply to
prove an average version of a conjecture of Mazur and Rubin. More precisely, we
prove that modular symbols corresponding to a Hecke basis of weight 2 cusp forms
are asymptotically jointly equidistributed mod p while we allow restrictions on the
location of the cusps. Additionally, we prove the full conjecture in some particular
cases using a connection to Eisenstein congruences. We also obtain residual
equidistribution results for modular symbols where we order by the length of the
corresponding geodesic. Finally, and most importantly, our methods generalise
to equidistribution results for cohomology classes of finite volume quotients of
n-dimensional hyperbolic space.

1. Introduction

Modular symbols are certain periods of weight 2 cusp forms introduced by Birch
and Manin and are important objects in number theory. Modular symbols are an
indispensable tool for studying (twisted) L-functions of holomorphic cusp forms [29],
[31] and for computing modular forms [9]. Modular symbols define elements of certain
cohomology groups and the results of this paper thus fit into a bigger picture of the
study of (co)homology of arithmetic groups, which has received a lot of attention
recently [2], [5] due to their deep connections with number theory coming from [43].

Recently, Mazur and Rubin initiated the study of the arithmetic distribution of
modular symbols and put forward a number of conjectures [32], which have received
a lot of attention recently [38], [27], [50], [3], [35], [13], [8]. One of these conjectures
(see [33]) predicts that (normalised) modular symbols should equidistribute among
the residue classes modulo p. An average version of this conjecture was settled by Lee
and Sun [27, Theorem I] recently using dynamical methods.

In this paper we introduce a new automorphic method for studying the mod p
distribution of modular symbols, which also applies to more general cohomology
classes. As is the case in [27], we obtain an average version of the mod p conjecture
of Mazur and Rubin (and its generalisations), but with further refinements. Using
different arguments, we can actually prove the full conjecture in some special cases
(specific p and specific cusp forms), see Section 3.

Date: December 4, 2020.
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Our automorphic methods enable us to deal with a much more general setup
compared to the work of Lee and Sun and thus we obtain a number of new results:

(1) First of all we obtain joint equidistribution for the mod p values of modular
symbols (appropriately normalised) associated to a Hecke basis of weight 2
cusp forms restricted to cusps which lie in a fixed interval of R/Z.

(2) We show that the values of (unnormalised) modular symbols restricted to
cusps lying in a fixed interval of R/Z equidistribute mod 1.

(3) We also obtain equidistribution results for modular symbols ordered by the
length of the geodesic associated to the corresponding matrices (as opposed
to the denominator of the cusp).

(4) Lastly (and most interestingly) we extend the equidistribution results to classes
in the cohomology of general finite volume quotients of higher dimensional
hyperbolic spaces.

We note that in the case of higher dimensional hyperbolic spaces there is interesting
torsion in the cohomology. The breakthrough of Scholze [43] established that such
torsion classes have associated Galois representations. This was actually our original
motivation for studying the higher dimensional cases. Furthermore Bergeron and
Venkatesh [2] have conjectured that at least in the three dimensional case there is an
abundance of torsion in the cohomology. In this paper we are able to shed light on the
distribution properties of these cohomology classes. In Section 8 we will survey what
is know about the dimensions of the cohomology groups, which our results apply to.
Remark 1.1. Our method is automorphic in nature and relies on the theory of Eisen-
stein series. It can be seen as a discrete version of the method introduced by Petridis
and Risager in [36] for studying the distribution of modular symbols. They consider
the perturbation of the family of characters χε as ε → 0, whereas we consider the
discrete family χm for m ∈ Z. In particular, we find it is interesting that residual
equidistribution of modular symbols is an almost direct consequence of the meromor-
phic continuation of twisted Eisenstein series.
1.1. Results for modular symbols. Let us state the result in the simplest case for
the 2 dimensional hyperbolic space in an arithmetic setup. We define the modular
symbol map associated to a weight 2 and level N cusp form f ∈ S2(Γ0(N)) as the map

(1.1) Q 3 r 7→ 〈r, f〉 := 2πi
∫ i∞

r

f(z)dz,

where the contour integral is taken along a vertical line. One way to think about this
map is as the Poincaré pairing on Γ0(N)\H2 between the 1-form 2πif(z)dz and the
homology class of paths containing the geodesic from r to i∞.

Now assume that f is a Hecke newform with associated elliptic curve E/Q and
N ≥ 3. If we let Ω+ and Ω− be the real and imaginary Néron periods of E, then it is
a fact that

1
Ω±

(〈r, f〉 ± 〈−r, f〉) ∈ Q(1.2)

for all r ∈ Q (see [32, Sec. 1]).
Given a prime p there is a minimal p-adic evaluation v±p (f) of (1.2) among all

a/q ∈ Q with N |q (since the image under the modular symbols map is a lattice).
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We define

m±f,p(r) := p−v
±
p (f)

Ω±
(〈r, f〉 ± 〈−r, f〉) ,

which is p-integral for r = a/q with N |q, but not all divisible by p. Then given a basis
of newforms f1, . . . , fd, we can consider the map Q→ (Z/pZ)2d × (R/Z) given by

mN,p(r) := (m+
f1,p

(r),m−f1,p
(r), . . . ,m+

fd,p
(r),m−fd,p(r), r)

as a random variable defined on the outcome space
ΩQ,N := {a/q | 0 < a < q ≤ Q, (a, q) = 1, N |q}

endowed with the uniform probability measure. Then we have the following equidis-
tribution result.

Theorem 1.2. The random variables mN,p defined on the outcome spaces ΩQ,N
converge in distribution to the uniform distribution on (Z/pZ)2d × (R/Z) as Q→∞.
This means in concrete terms that for any fixed a ∈ (Z/pZ)2d and any interval
I ⊂ R/Z, we have

#
{
a/q ∈ ΩQ,N ∩ I | (m+

f1,p
(a/q), . . . ,m−fd,p(a/q)) ≡ a mod p

}

#ΩQ,N
= |I|
p2d + o(1)

as Q→∞.

Secondly we can consider the map Q→ (R/Z)2d+1 given by
mN,R/Z(r) = (Re〈r, f1〉, Im〈r, f1〉, . . . , Im〈r, fd〉, r), r ∈ Q,(1.3)

as a random variable defined also on ΩQ,N as above. It follows from a classical result
of Schneider [42] in transcendental theory that Re〈·, fn〉, Im〈·, fn〉 for n = 1, . . . , d all
take some non-rational values. It is therefore tempting to think that the values should
equidistribute on the circle R/Z, which is exactly what we prove.

Theorem 1.3. The random variables mN,R/Z defined on the outcome spaces ΩQ,N
converge in distribution to the uniform distribution on (R/Z)2d+1 as Q → ∞. This
means in concrete terms that for any fixed product of intervals

∏2d+1
n=1 In ⊂ (R/Z)2d+1,

we have
#
{
a/q ∈ ΩQ,N ∩ I2d+1 | (Re〈a/q, f1〉, . . . , Im〈a/q, fd〉) ∈

∏2d
n=1 In

}

#ΩQ,N
=

2d+1∏

n=1
|In|+o(1)

as Q→∞.

We observe that the modular symbols map gives rise to a map Γ0(N) → C by
putting 〈γ, f〉 := 〈γ∞, f〉, where γ∞ = a/c with a, c the left upper and lower entries
of γ ∈ Γ0(N). By shifting the contour and doing a change of variable we see that

〈γ1γ2, f〉 = 〈γ1, f〉+ 2πi
∫ γ1γ2∞

γ1∞
f(z)dz = 〈γ1, f〉+ 〈γ2, f〉,

which shows that modular symbols define an additive character on Γ0(N) and thus an
element of (the cuspidal part of) the cohomology group H1(Γ0(N),C). Furthermore,
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by the integrality conditions, we see that the normalised modular symbols m±f,p define
elements of H1(Γ0(N),Fp). This view point is useful for generalisations.

Remark 1.4. We note that in [27], the slightly larger outcome space {a/q | 0 < a <
q ≤ Q, (a, q) = 1} is considered (following Mazur and Rubin), that is, without the
condition that N |q. In fact, equidistribution on this outcome space does not hold in
the generality above. One has to exclude some bad primes p (see Remark 3.2 below).
Our methods can also deal with this larger outcome space, by considering the Fourier
expansion of Eisenstein series at different cusps, as is done in [38]. The outcome
space ΩQ,N above is, however, very natural from the cohomological perspective and
for simplicity we will restrict to this case.

1.2. Distribution of cohomology classes. More generally, let SO(n+ 1, 1) be the
special orthogonal group with signature (n+ 1, 1), which we identity with the group
of isometries of the (n+ 1)-dimensional upper half space Hn+1. Now, for a co-finite
subgroup with cusps Γ < SO(n + 1, 1), we will study the distribution of unitary
characters of Γ or, equivalently, cohomology classes in H1(Γ,R/Z). These cohomology
groups have been studied in many contexts ( [41], [16, Chap. 7]) and especially the case
n = 2 is very appealing as it corresponds to Kleinian groups due to the exceptional
isomorphism SO(3, 1) ∼= SL2(C).

1.2.1. Results with arithmetic ordering. Let Γ ⊂ SO(n+ 1, 1) be as above and assume
that the associated symmetric space Γ\Hn+1 has a cusp at ∞. Let Γ′∞ ⊂ Γ be the
parabolic subgroup fixing the cusp at ∞. Note that since Γ is discrete, there exists
a lattice Λ < Rn such that Γ′∞ is exactly the group of motions corresponding to
translations by Λ. We will study the distribution of unitary characters trivial on Γ′∞
or, equivalently, elements of the cohomology group H1

Γ′∞(Γ,R/Z).
Our distribution results are with respect to a natural arithmetic ordering on

Γ′∞\Γ/Γ′∞ which generalises the ordering in the definition of ΩQ,N above. To de-
fine this, we use the model SVn−1 ∼= Iso+(Hn+1), where SVn−1 is the Vahlen group
consisting of 2 × 2 matrices over a specific Clifford algebra, introduced in [1] (see
Section 4.2 below for a detailed construction). This model provides a natural generali-
sation to n > 2 of the familiar models SV0 = SL2(R) and SV1 = SL2(C). The Vahlen
model has been used before to study automorphic forms on Hn+1, for example by
Elstrodt, Grunewald, and Mennicke [15] to prove a generalisation of the Selberg Con-
jecture regarding the first non-zero eigenvalue of the Laplacian and by Södergren [48]
for proving equidistribution of horospheres on Hn+1.

We will order by the norm of the lower left entry in this matrix, which generalises
the arithmetic ordering considered in the literature for the cases n = 1 and n = 2,
see [38], [8], [35]. We define the following outcome space:

(1.4) TΓ(X) = {γ ∈ Γ′∞\Γ/Γ′∞ | 0 < |cγ | < X} ,

where γ =
(
aγ bγ
cγ dγ

)
∈ SVn−1 in the Vahlen group model and | · | denotes the norm

on the Clifford algebra. The ordering defining TΓ(X) can also be described relatively
naturally using the standard model for SO(n+ 1, 1), see Remark 4.6 for details.
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Now let ω1, . . . , ωd be elements of H1
Γ′∞(Γ,R/Z) in general position, meaning for

any (n1, . . . , nd) ∈ Zd, we have

n1ω1 + . . .+ ndωd = 0 ∈ H1
Γ′∞(Γ,R/Z)⇔

(
niωi = 0 ∈ H1

Γ′∞(Γ,R/Z),∀i = 1, . . . , d
)
.

As an example one can pick ω1, . . . , ωd to be a basis for the non-torsion part of the
cohomology group or a Fp-basis for H1

Γ′∞(Γ,Fp). We notice that the image of ωi is
either dense in R/Z or finite (recall that ωi defines an additive character Γ→ R/Z).
In the first case we put Ji = R/Z and in the latter case we put Ji = Z/miZ, where
mi is the cardinality of the image of ωi. We equip R/Z and Z/mZ with the obvious
choices of probability measures, Lebesque and uniform respectively. Finally associated
to γ ∈ Γ′∞\Γ/Γ′∞, we define the invariant γ∞ ∈ (Rn ∪ {∞})/Λ, see Section 4.4 for
more details.

Now given X > 0, we consider
ω(γ) := (ω1(γ), . . . , ωd(γ), γ∞)

as a random variable with values in
∏d
i=1 Ji × (Rn/Λ) defined on the outcome space

TΓ(X) endowed with the uniform probability measure. Then we have the following
equidistribution result.
Theorem 1.5. The random variables ω defined on the outcome spaces TΓ(X) are
asymptotically uniformly distributed on

∏d
i=1 Ji × (Rn/Λ) as X →∞. This means in

concrete terms that for any fixed (continuity) subsets Ai ⊂ Ji and B ⊂ Rn/Λ, we have

#
{
γ ∈ TΓ(X) | (ω1(γ), . . . , ωd(γ)) ∈∏d

i=1Ai, γ∞ ∈ B
}

#TΓ(X) =
d∏

i=1

|Ai|
|Ji|
· |B|
vol(Rn/Λ)+o(1)

as X →∞.
Remark 1.6. The assumption on the existence of cusps is essential in Theorem 1.5
since we rely on the theory of Eisenstein series. Besides this, our methods are pretty
robust and apply to non-arithmetic subgroups equally well.
Remark 1.7. Notice that the number of choices of cohomology classes in H1

Γ′∞(Γ,R/Z)
in general position is infinite unless Γ/〈[Γ,Γ],Γ′∞〉 is torsion. See Section 8 for results
on the size of H1

Γ′∞(Γ,R/Z).
1.2.2. Results when ordered by length of geodesics. We can also obtain equidistribution
of the cohomology classes if we order by the length of the associated geodesics. We
denote by Conjhyp(Γ) the set of conjugacy classes in Γ which do not correspond to
the identity, parabolic or elliptic elements. Then, for each {γ} ∈ Conjhyp(Γ), there is
a unique corresponding closed geodesic on Γ\Hn+1 whose length we denote by l(γ).
Theorem 1.8. Let ω = (ω1, . . . , ωd) be defined from a set of cohomology classes
in general position as above. The random variables ω defined on conjugacy classes
ordered by the length of the geodesics are asymptotically equidistributed on

∏d
i=1 Ji.

This means in concrete terms that for any fixed (continuity) subsets Ai ⊂ Ji, we have

#{{γ} ∈ Conjhyp(Γ) | l(γ) ≤ X, (ω1(γ), . . . , ωd(γ)) ∈∏d
i=1Ai}

#{{γ} ∈ Conjhyp(Γ) | l(γ) ≤ X} =
d∏

i=1

|Ai|
|Ji|

+ o(1)
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as X →∞.

Remark 1.9. In the case of Theorem 1.8, we can remove the assumption that Γ has
cusps. In fact the proof becomes more complicated in the presence of cusps.
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2. Proof sketch in the case of H2

The key ideas of the proofs of our main theorems are quite simple, having at their
core the analytic continuation of twisted Eisenstein series and twisted trace formulas
respectively. We will sketch the proof of Theorem 1.2 in the simplest case, which is
the one dealt with in [27], where we consider only one cusp form and no restrictions
on the location of r = a/q in R/Z.

Let f ∈ S2(Γ0(N)) be a newform of weigth 2 and level N and let m±f,p : Γ0(N)→ Fp
be the associated normalised modular symbols defined above. Recall that this defines
a non-trivial additive character. We would like to show that the values of m±f,p on the
set ΩQ,N = {a/q | 0 < a < q ≤ Q, (a, q) = 1, N |q} equidistribute on Z/pZ as Q→∞.

To do this we introduce for any l ∈ (Z/pZ)× the unitary character χl : Γ0(N)→ C×
defined by;

χl(γ) := e2πim±
f,p

(γ)l/p, γ ∈ Γ0(N).
By Weyl’s Criterion [24, page 487] in order to conclude equidistribution, it suffices to
detect cancelation in the Weyl sums; that is to prove for all l ∈ (Z/pZ)× that

∑

a/q∈ΩQ,N

χl(a/q)� X2−δ,

for some δ > 0 where χl(a/q) := χl (γ) with γ ∈ Γ0(N) such that γ∞ = a/q.
The key observation is now that the generating series for these Weyl sums appears

very naturally as the constant term of an appropriate Eisenstein series. The cancelation
in the Weyl sums is now a simple analytic consequence of the analytic properties of
the corresponding Eisenstein series.

To be precise; associated to χl we have the following twisted Eisenstein series:

E(z, s, χl) =
∑

γ∈Γ∞\Γ0(N)

χl(γ) Im(γz)s,

where Γ∞ = 〈( 1 1
0 1 )〉. This Eisenstein series defines a holomorphic function for Re s > 1

and by the work of Selberg [44, Chap. 39] admits meromorphic continuation to the
entire complex plane with a pole at s = 1 if and only if χl is trivial. Note that in
general the character χl might not come from an adelic one, but Selberg’s theory
applies equally well.

Now a standard calculation using Poisson summation shows that the constant term
of the Fourier expansion of E(z, s, χl) is given by

ys + π1/2y1−sΓ(s− 1/2)
Γ(s) Ll(s),
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with

Ll(s) :=
∑

c>0,N |c


 ∑

0<d<c,(c,d)=1

χl
((

a b
c d

))

 c−2s,

where
(
a b
c d

)
is a matrix in Γ0(N) with lower entries c, d. We observe that Ll(s) is

exactly the generating series for the Weyl sums above, as promised.
Now from the meromorphic continuation of the Eisenstein series itself, we also get

meromorphic continuation of the generating series Ll(s), and since χl is non-trivial
we conclude that Ll(s) is analytic for Re s > 1− δ for some δ > 0. Thus we get the
wanted cancelation in Weyl sums using the standard machinery from complex analysis
if we can get bounds on vertical lines of Ll(s). It turns of that such bounds follow
from the general bound for matrix coefficients also due to Selberg, and thus we are
done.

This shows how to deduce equidistribution of modular symbols using Eisenstein
series. The proof for classes in the first cohomology of quotients of higher dimensional
hyperbolic spaces uses the same idea, although some parts of the argument require
some more technical work.

In order to obtain equidistribution results when restricting the cusps to a specific
interval I ⊂ R/Z, we will have to use all the Fourier coefficients of the Eisenstein
series as is done in [38]. To deal with equidistribution for modular symbols defined on
conjugacy classes ordered by the length of the associated geodesic, we will use twisted
Selberg trace formulas to study the corresponding Weyl sums.

3. Some special cases of the conjecture of Mazur and Rubin

In this section we explain a specific case of the conjecture of Mazur and Rubin on
the residual distribution of modular symbols, which we can resolve without taking an
extra average. We consider modular symbols of Hecke congruence subgroups Γ0(N)
modulo primes p > 2 dividing ϕ(N), which are connected to congruences between
Eisenstein series and cusp forms. These types of congruences have been studied
extensively before in number theory [30, Section 9], [31]. We will assume for simplicity
that N ≥ 5 is prime (in particular Γ0(N) is torsion-free) as is done in [30].

From the perspective of cohomology, the congruence phenomena manifests itself
through the fact that Dirichlet characters modulo N define cohomology classes. The
distribution for this specific cohomology class is much easier to understand, and we
would thus like to connect it to a modular symbol of a cusp form. Thus we have to
somehow rule out that this cohomology class is a linear combination of ones coming
from modular symbols associated to different cusp forms. Using a multiplicity one
result, we get the desired conclusion. The precise result we can prove is the following.

Theorem 3.1. Let p and N ≥ 5 be odd primes such that p|(N −1). Then there exists
a newform f ∈ S2(Γ0(N)) of weight 2 and level N such that the values of m+

f,p on
{aq | (a, q) = 1, 0 < a < q} equidistribute modulo p as q →∞ with N |q.

Proof. Given a prime p | N−1 with p > 2, we know that the space of order p Dirichlet
characters modulo N is one dimensional as an Fp-vector space (since (Z/NZ)× is
cyclic). Given a generator χ mod N of order p we get an element of H1(Γ0(N),Fp)
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defined by γ 7→ χ(aγ) (which we denote by σχ), where we identify Fp with the image
of χ and aγ is the upper-left entry of γ.

First of all we observe that σχ is trivial on the parabolic subgroups of Γ0(N); since
N is prime we only have to check it for 〈( 1 1

0 1 )〉 and 〈( 1 0
1 1 )〉 corresponding to the two

cusps ∞ and 0. This implies that σχ defines a class in the parabolic cohomology
group H1

P (Γ0(N),Fp) (see Section 7.1 below or [46, Chapter 8] for a definition). It
follows by a mod p version of Eichler–Shimura isomorphism (see [27, (3.5)]) that the
associations f 7→ m±f,p defined for newforms f induce an isomorphism

H1
P (Γ0(N),Fp) ∼= S2(Γ0(N))Fp ⊕ S2(Γ0(N))Fp(3.1)

where S2(Γ0(N))Fp denotes the space of cusp forms of weight 2 and level N with
coefficients in Fp (which we will just think of as the formal Fp-vector space generated
by Hecke eigenforms of weight 2 and level N).

To relate σχ to cusp forms, we need to consider the Hecke action. Recall that we
have an action by the Hecke operators on the cohomology group defined as follows
(see [45, Chapter 8.3]). Let

αr,l = ( 1 r
0 l ), r = 0, . . . , l − 1 and αl,l = ( l 0

0 1 ),
for l 6= N prime. Then given γ ∈ Γ0(N), we define γr,l ∈ Γ0(N) by αr,lγ = γr,lασ(r),l
for r = 0, . . . , l and some σ(r) ∈ {0, . . . , l}. Then we define the operator Tl as follows:

(Tlω)(γ) :=
l∑

r=0
ω(γr,l),

for ω ∈ H1(Γ0(N),Fp) and γ ∈ Γ0(N). At the prime l = N , we have the Atkin–Lehner
operator U defined by

(Uω)(γ) := ω
(

( 0 1
N 0 )γ( 0 1

N 0 )−1
)
.

One sees directly that Uσχ = −σχ. Furthermore it is a small computation that if l|c
(where c is the lower left entry of γ), then

γr,l =
(
a+cr ∗
cp ∗

)
, for r = 0, . . . , l − 1, and γl,l =

( a ∗
c/p ∗

)
.

And if l 6 |c, then γl,l = ( ap ∗c ∗ ) and for r = 0, . . . , l − 1 we have

γr,l =
{(

(a+cr)/p ∗
c ∗

)
, r ≡ −ac mod l,(

a+cr ∗
cp ∗

)
, else.

It follows that Tlσχ = (l + 1)σχ. Now we employ a general multiplicity one result of
Mazur [30, Proposition 9.2], which implies that a cusp form of weight 2 and level N is
uniquely determined by its Hecke eigenvalues (i.e. the eigenvalues under the action of
U and the operators Tl for l 6= N) modulo p, for p 6= N prime. Thus from the above
calculations we conclude that there exists a unique Hecke eigenform f ∈ S2(Γ0(N))
such that σχ is a linear combination of m+

f,p and m−f,p (considered as elements of
H1
P (Γ0(N),Fp) the obvious way).
Finally, we recall that H1

P (Γ0(N),Fp) can be diagonalised by the involution ι given
by conjugation with

(−1 0
0 1
)
(here we need p > 2) as follows from [33, Sec. 1]. We

observe that the eigenvalue of σχ under the action of ι is +1 (since the order of χ is odd).
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Thus we conclude that m+
f,p = m · σχ for some m ∈ Fp\{0} (see also [30, Proposition

9.6], which draws a closely related conclusion).
Now it is easy to see that the values of m+

f,p (with f as above) on {a/q | (a, q) =
1, 0 < a < q} equidistribute modulo p as q →∞ with N |q. This follows directly from
the fact that

m+
f,p(a/q) = m · χ(a) mod p,

and that the values of χ clearly equidistribute. Notice that actually the values equidis-
tribute exactly. �

This settles the conjecture of Mazur and Rubin in these very special cases, whereas
in general the conjecture seems out of reach without the extra average both with the
automorphic and the dynamical approach.
Remark 3.2. Strictly speaking the conjectures of Mazur and Rubin [33] are only
formulated for primes p and cusp forms corresponding to elliptic curves E where the
residual representation of E mod p is surjective and p is an ordinary and good prime
of E. This is not the case in the example considered above. We, however, expect
the statement of Theorem 3.1 to be true for general m±f,p with f ∈ Sk(Γ0(N)) and p
prime.

4. Geometry of Hn+1

We introduce two models for the (n + 1)-dimensional hyperbolic space and the
connections between them. We look at the upper half-space (Poincaré) model Hn+1

and the hyperboloid (Klein) model Kn+1. We briefly describe some geometric and
arithmetic properties of the space Γ\Hn+1, where Γ is a cofinite discrete subgroup of
isometries. Our main references for this section are [1], [14] and [15].

We denote by Iso+(Hn+1) the space of orientation preserving isometries of the
hyperbolic (n + 1)-space. We say that γ ∈ Iso+(Hn+1) is elliptic if it has exactly
one fixed point in Hn+1. A non-elliptic isometry is called parabolic if it has exactly
one fixed point on the boundary Rn ∪ {∞} and hyperbolic if it has 2 fixed points on
Hn+1 ∪Rn ∪{∞} (hence both of them on the boundary or both of them inside Hn+1).
We note that our definition of a hyperbolic motion includes what is known in the
literature as loxodromic motions, so any isometry is either the identity or one of the
three types described. We quote [19] for a thorough discussion of the three classes.

4.1. Definitions. We will now describe the upper-half space model Hn+1 for hyper-
bolic (n + 1)-space. Let q : Rn → R a quadratic non-degenerate form and C(q) the
associated Clifford algebra, i.e. the free R-algebra on {e1, . . . , en} modulo the relations

e2
i = q(ei), eiej = −ejei, where i, j = 1, · · · , n, i 6= j,

where e1, . . . , en is the standard basis for Rn. We denote by En the set of all subsets
of {1, . . . , n}. Then for M = {i1, . . . , ik} ∈ En with i1 < · · · < ik, we define

eM := ei1 · · · · · eik , e∅ := 1 ∈ C(q).
Then one can check that {eM |M ∈ En} is a R-basis for C(q).

We have two linear involutions on C(q) given by
eM := (−1)|M |(|M |+1)/2eM , e∗M := (−1)|M |(|M |−1)/2eM , where M ∈ En.
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They satisfy
v w = w v, v∗w∗ = w∗v∗, for all v, w ∈ C(q).

From now on we assume that q = −In, the negative definite unit form. In this
case we write Cn for C(q). We denote by Vn ⊂ Cn the vector space spanned by
{1, e1, . . . , en}. It is easy to see that V0 ∼= R and V1 ∼= C as R-algebras.
Vn is equipped with the inner product

〈v, w〉 = 1
2(vw + vw).

We note that this coincides with the standard Euclidean inner product if we identify
Vn with Rn+1 using the basis {1, e1, . . . , en}.

For x =
∑
M∈En λMeM ∈ Cn, we define the norm

(4.1) |x| :=
( ∑

M∈En
λ2
M

)1/2

.

We note that for x ∈ Vn,
|x|2 = 〈x, x〉 .

Now, if Λ < Vn is a lattice, we define the dual lattice as

Λ◦ := {w ∈ Vn | 〈v, w〉 ∈ Z for all v ∈ Λ}.
We now define the following model of hyperbolic (n+ 1)-space:

Hn+1 := {x0 + x1e1 + · · ·+ xnen | x0, x1, . . . , xn−1 ∈ R, xn > 0} .
We have the maps x : Hn+1 → Vn−1 and y : Hn+1 → (0,∞) given by

x(P ) := x0 + x1e1 + · · ·+ xn−1en−1, y(P ) := xn,

where P = x0 + x1e1 + · · ·+ xnen ∈ Hn+1. We can think of x(P ) as an element of Rn
via the above. Then from (4.1) we see that

|P |2 = |x(P )|2 + |y(P )|2.
We equip Hn+1 with the hyperbolic metric coming from the line element:

ds2 = dx2
0 + dx2

1 + · · ·+ dx2
n

x2
n

,(4.2)

which makes Hn+1 a Riemannian manifold with constant negative curvature −1. The
volume element is given by

dv = dx0dx1 . . . xn

xn+1
n

.

The hyperbolic Laplace–Beltrami operator is given by

(4.3) ∆ = x2
n

(
∂2

∂x2
0

+ ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
− (n− 1)xn

∂

∂xn
,

in this model.
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4.2. Vahlen group. We will use the above upper-half space model to describe the
group of (oriented) isometries in a way that is convenient for our purposes. We let
Tn ⊂ Cn be the multiplicative subgroup generated by Vn \ {0}. As in [1, p. 219]
or [15, p. 648], we define the Vahlen group SVn to be

(4.4) SVn :=





(
a b
c d

)
∈M2(Cn)

(i) a, b, c, d ∈ Tn ∪ {0}
(ii) ab, cd ∈ Vn

(iii) ad∗ − bc∗ = 1



 .

We can easily check that SV0 = SL2(R) and SV1 = SL2(C) as R-algebras. Then SVn

is a group under matrix multiplication with inverse

(4.5)
(
a b
c d

)−1
=
(
d∗ −b∗
−c∗ a∗

)
.

We can now define the action of SVn−1 on Hn+1, which resembles the actions of
SL2(R) and SL2(C) on H2 and H3, respectively, as can be seen from the following
result.

Theorem 4.1 ( [15], Theorem 1.3). Let γ =
(
a b
c d

)
∈ SVn−1 and P ∈ Hn+1. Then

cP + d ∈ Tn and we define
(4.6) γP := (aP + b)(cP + d)−1 ∈ Hn+1.

The map P 7→ γP is an orientation preserving isometry of Hn+1. Moreover, all
orientation preserving isometries are obtained in this way and we have the induced
isomorphism SVn−1/{I,−I} ∼= Iso+(Hn+1).

What is convenient about this description of Iso+(Hn+1) is that one gets very
familiar expressions for the coordinate-projections of the image under the action of
γ ∈ SVn−1 on P = (x, y) ∈ Hn+1.

Lemma 4.2 ( [15], page 648). Let γ =
(
a b
c d

)
∈ SVn−1 and P = x+ yen ∈ Hn+1.

Then

(4.7) x(γP ) = (ax+ P )(cx+ d) + acy2

|cx+ d|2 + |c|2y2

and
(4.8) y(γP ) = y

|cx+ d|2 + |c|2y2 .

4.3. Hyperboloid model. We recall the hyperboloid (or Klein) model for the hy-
perbolic (n+ 1)-space given by

Kn+1 := {z ∈ Rn+2 | z2
0 − z2

1 − . . .− z2
n+1 = 1, z0 > 0},

where z = (z0, . . . , zn+1). The line element
(4.9) ds2 = −dz2

0 + dz2
1 + · · ·+ dz2

n+1

defines the hyperbolic metric on Kn+1.
The group

(4.10) SO(n+ 1, 1) :=
{
γ ∈ SLn+2(R) | γT I1,n+1γ = I1,n+1

}
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acts on Kn+1 by left multiplication, where I1,n+1 =
(−1 0

0 In

)
. We can identify the

set of orientation preserving isometries by SO0(n+ 1, 1), where SO0(n+ 1, 1) is the
component of the identity element in SO(n+ 1, 1). Hence we have the identifications

Iso+(Kn+1) ∼= SO0(n+ 1, 1),
Kn+1 ∼= SO0(n+ 1, 1)/O(n+ 1).

We have the following important result which connects the two models.

Theorem 4.3 ( [14], Section 5). We can go between the two models Hn+1 and Kn+1

as follows.
(i) There exists a bijection Φ : Hn+1 → Kn+1 which is also an isometry, i.e. the

pullback of the line element (4.9) via Φ is the line element (4.2).
(ii) There exists an isomorphism Ψ : SVn−1/{±I} ∼−→ SO0(n+ 1, 1) such that Φ

is Ψ-equivariant, i.e.

Φ(γ · P ) = Ψ(γ)Φ(P ),

for all γ ∈ SVn−1 and P ∈ Hn+1.

Remark 4.4. The maps Φ and Ψ are explicitly constructed in [14, Section 5]. This result
allows us to move freely between the two identifications of hyperbolic (n+ 1)-space.

4.4. Hyperbolic quotients. Let Γ be a discrete group of hyperbolic motions such
that the surface Γ\Hn+1 has finite hyperbolic volume. From Theorem 4.3 we note
that we can choose freely between the two models Γ < SVn−1 ∼= Iso+(Hn+1) or
Γ < SO0(n+ 1, 1) ∼= Iso+(Kn+1). We will mainly work with the Vahlen model since
it provides nicer arithmetic descriptions.

We say that a ∈ Rn ∪ {∞} is a cusp for Γ if it is fixed by a parabolic element in Γ.
There exists a scaling matrix σa ∈ SVn−1 such that σa∞ = a. We let Γa := {γ ∈ Γ :
γa = a} be the stabilizer of a in Γ. We define

Γ′a := Γa ∩ σa
{(

1 b
0 1

)
∈ SVn−1

}
σ−1
a .

We note that Γ′a consists of the parabolic elements in Γa together with the identity.
There exists a lattice Λa ≤ Rn such that

σ−1
a Γ′aσa =

{(
1 λ
0 1

)
: λ ∈ Λa

}
.

We let Pa be a period parallelogram for Λa with Euclidean area vol(Λa).
We define the dual lattice of Λa as follows:

(4.11) Λ◦a := {µ ∈ Rn : 〈µ, λ〉 ∈ Z for all λ ∈ Λa} ,
where 〈·, ·〉 is the usual scalar product on Rn.

Say a1, · · · , ah ∈ Rn ∪ {∞} are representatives for the equivalent-classes of cusps
under the action of Γ. For Y > 0, we define the cuspidal sectors as follows:

Fai(Y ) := σai{(x, y) : x ∈ Pai , y ≥ Y } .
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Then for Y large enough, there exists a fundamental domain F for Γ\Hn+1 which we
can write as a disjoint union

(4.12) F = F0 ∪ Fa1(Y ) ∪ · · · ∪ Fah(Y ) ,

where F0 is a compact set, see [48, p. 8] or [41, p. 5].
For notational convenience, from now on we will focus only at the cusp at ∞. We

drop the subscript by denoting Λ := Λ∞, P := P∞ etc. Our theory can be generalised
to take all cusps into account.

We will now define our outcome space (1.4) in precise terms, and describe it
explicitly in some arithmetic examples. First we note that all elements in such a coset
share the lower left entry. Thus it makes sense to define

TΓ(X) :=
{(
∗ ∗
c ∗

)
∈ Γ′∞\Γ/Γ′∞ | 0 < |c| ≤ X

}

which is the natural generalisation of the outcome space considered by Petridis–Risager
in [38, p. 1002]. In (6.7) we provide an asymptotic formula for the size of TΓ(X).

If γ =
(
a b
c d

)
∈ Γ, then by the definition of SVn−1 and of the action (4.6) we see

that γ∞ = ac−1 ∈ Vn−1, where γ∞ is defined as the limit of γP as P tends to the
cusp at ∞. We observe that γ∞ is well-defined on double cosets in Γ′∞\Γ/Γ′∞ up to
translations by the lattice Λ. Therefore we see that the map

Γ′∞\Γ/Γ′∞ → Rn/Λ ∪ {∞}
γ 7→ γ∞

is well-defined using the identification of Vn−1 with Rn as above. A simple consequence
of our main theorems is that γ∞ become equidistributed on Rn/Λ as we vary along
γ ∈ TΓ(X) as X →∞.

Let

(4.13) C(Γ) :=
{
c ∈ Tn | ∃a, b, d ∈ Tn :

(
a b
c d

)
∈ Γ
}
.

We will now provide explicit descriptions for both C(Γ) and Γ′∞\Γ/Γ′∞ in the case
of congruence subgroups. To define these, let J ⊂ Cn be an order stable under the
involutions − and ∗. We put SVn(J) := SVn ∩M2(J). We also define V (J) := J ∩Vn
and T (J) = J ∩ Tn. For N ∈ N, we define the principle congruence subgroup

(4.14) SVn(J ;N) :=
{(

a b
c d

)
∈ SVn(J) | a− 1, b, c, d− 1 ∈ NJ

}
.

A subgroup Γ < SVn(J) is called a congruence group if SVn(J ;N) < Γ, for some
N ∈ N. We quote [15, Section 4] to provide an explicit description for representatives
of Γ′∞\Γ/Γ′∞ in the case Γ = SVn(J ;N). In this case, C(Γ) = N · T (J) and a set of
representatives for ( a bc d

)
∈ Γ′∞\Γ/Γ′∞ with c 6= 0 is given by

{(
a b
c d

)
∈ SVn(J) | c ∈ N · T (J), (a, d) ∈ D(c)

}

where

D(c) :=
{

(a, d) a ∈ J/(N · V (J) · c), d ∈ J/(N · c · V (J)),
a− 1, d− 1 ∈ N · J, ac, cd ∈ N · V (J)

}
.

In the more familiar cases n = 1 and n = 2, the above reduces to the following.
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• n = 1. Then SV0 = SL2(R), J = Z and SV1(J ;N) = Γ1(N). Representatives
in Γ1(N)′∞\Γ1(N)/Γ1(N)′∞ with c 6= 0 are uniquely determined by

{(a, c) | c > 0, N | c, a ∈ (Z/cNZ)∗, a ≡ 1 mod N} .
If we consider Γ = Γ0(N), then representatives are uniquely determined by

{(a, c) | c > 0, N | c, a ∈ (Z/cZ)∗} .
• n = 2. Then SV1 = SL2(C). We take J = OK , where OK is the ring of
integers of a quadratic imaginary field K. Let n < OK be an ideal. We
consider congruence subgroups of the form

Γ1(n) :=
{(

a b
c d

)
∈ SL2(OK) | a− 1, b, c, d− 1 ∈ n

}
,

Γ0(n) :=
{(

a b
c d

)
∈ SL2(OK) | c ∈ n

}
.

In the case Γ1(n), representatives are uniquely provided by
{(a, c) | c ∈ n \ {0}, a ∈ (OK/(c · n))∗, a− 1 ∈ n} ,

while for Γ0(n) we have
{(a, c) | c ∈ n \ {0}, a ∈ (OK/(c))∗} .

Remark 4.5. There is also a notion of congruence groups for SO(n+ 1, 1). To define
them, let Γ be the integral automorphisms of an isotropic quadratic form of signature
(n+ 1, 1) defined over Q. Then a congruence subgroup is any subgroup of Γ containing
{γ ∈ Γ | γ ≡ In+2 mod N} for some positive integer N , see [41, p. 7]. If Γ <
SO0(n + 1, 1) is a congruence subgroup, then Ψ−1(Γ) is a congruence subgroup in
SVn−1. This fact will be useful when comparing our results with the results mentioned
in Section 8. However the converse is not true, there exists a congruence subgroup
Γ < SVn−1 such that Ψ(Γ) is not a congruence subgroup in SO0(n + 1, 1), see [15,
Section 3] for more details.

Remark 4.6. We can also describe the ordering defining TΓ(X) explicitly using the
model SO(n+ 1, 1) for the isometry group of Hn+1. In this case we have

|cγ | =
1
2(a00 + a0(n+1) − a(n+1)0 − a(n+1)(n+1)),

for γ = (aij) ∈ SO0(n+ 1, 1) as in (4.10), where cγ is the lower left entry of Ψ−1(γ),
i.e in the Vahlen model.

4.5. Conjugacy classes. We now look at certain invariants associated to the con-
jugacy classes {γ} of Γ alluded to in Theorem 1.8. We refer to [18, Section 5] for
more details. We denote by Conjhyp(Γ) the set of conjugacy classes of hyperbolic
elements in Γ. For each {γ} ∈ Conjhyp(Γ), there exists a unique closed geodesic on
Γ\Hn+1 whose length we denote by l(γ). The geodesic can be defined as follows:
Each conjugacy class corresponds to a free homotopy class on Γ\Hn+1 via the map
γ 7→ {P, γP} ⊂ Hn+1, for some point P , and the corresponding geodesic is the path
of minimal length among all paths in that class. See [18, Sections 1 and 5] for explicit
descriptions of the lengths l(γ). Every γ ∈ Γ can be written uniquely as γ = γ

j(γ)
0 ,

where γ0 is primitive and j(γ) ∈ N. We put
(4.15) πΓ(X) := {{γ0} ∈ Conjhyp(Γ) | γ0 primitive, l(γ0) ≤ X},
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which is exactly the outcome space considered in Theorem 1.8. The Prime Geodeseic
Theorem for Hn+1 gives asymptotics for πΓ(X) and was firstly proved by Gangolli [17]
in the compact case and by Gangolli and Warner [18, Prop. 5.4] in the non-compact
case.

5. Twisted Eisenstein series for Hn+1

Let Γ < SVn−1, Γ′∞ and Λ be as in the previous section. We now fix χ a unitary
character of Γ which is trivial on Γ′∞. From this we define the twisted Eisenstein
series

(5.1) E(P, s, χ) =
∑

Γ′∞\Γ
χ(γ)y(γP )s.

It is absolutely convergent for Re(s) > n. It satisfies

E(γP, s, χ) = χ(γ)E(P, s, χ),
∆E(P, s, χ) = s(n− s)E(P, s, χ).

We see that E(P, s, χ) is invariant under the action by the lattice Λ and hence
it has a Fourier expansion. It is well-known that the constant term in the Fourier
expansion has the form ys + φ(s, χ)yn−s, where φ(s, χ) is called the scattering matrix.
Its basic properties are well-known, see [6, Ch. 6].

For µ, ν ∈ Λ◦ and c ∈ C(Γ), we define the generalised Kloosterman sum as in [15,
Section 4] using the Vahlen model:

(5.2) S(µ, ν, c, χ) :=
∑

(
a b
c d

)
∈Γ′∞\Γ/Γ′∞

χ

((
a b
c d

))
e
(〈
ac−1, µ

〉
+
〈
dc−1, ν

〉)
.

We can rewrite this as

(5.3) S(µ, ν, c, γ) =
∑

γ∈Γ′∞\Γ/Γ′∞
cγ=c

χ(γ)e(〈γ∞, µ〉+
〈
(γ−1∞)∗, ν

〉
),

where cγ is the lower-left entry of γ in the Vahlen model. We now calculate the
Fourier expansion of the Eisenstein series explicitly using (higher dimensional) Poisson
summation:

E(P, s, χ)

= [Γ∞ : Γ′∞]ys +
∑

γ∈Γ′∞\Γ/Γ′∞
cγ 6=0

χ(γ)
∑

l∈Λ
y(γ(x+ l, y))s

= [Γ∞ : Γ′∞]ys + 1
vol(Λ)

∑

γ∈TΓ

χ(γ)
∑

µ∈Λ◦

(∫

Rn
y(γ(t, y))se(−〈t, µ〉)dt

)
e(〈x, µ〉).
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Now by applying (4.8), we get for γ =
(
a b
c d

)
∈ SVn−1:∫

Rn
y(γ(t, y))se(−〈t, µ〉)dt

=
∫

Rn

(
y

|ct+ d|2 + |c|2y2

)s
e(−〈t, µ〉)dt

= ys

|c|2s
∫

Rn

(
1

|t+ c−1d|2 + y2

)s
e(−〈t, µ〉)dt

= ys

|c|2s e(
〈
dc−1, µ

〉
)
∫

Rn

(
1

|t|2 + y2

)s
e(−〈t, µ〉)dt

= ys

|c|2s e(
〈
dc−1, µ

〉
)
∫

Rn

(
1

|t|2 + y2

)s
e(−|µ|t0) dt

where the last equality follows by applying the orthogonal linear transformation which
sends µ to (|µ|, 0, . . . , 0).

When µ = 0, we obtain
∫

Rn

(
1

|t|2 + y2

)s
dt = yn−2sπn/2Γ (s− n/2)

Γ(s) ,

while for µ 6= 0
∫

Rn

(
1

|t|2 + y2

)s
e(−|µ|t0) dt = 2πsyn/2−s|µ|s−n/2

Γ(s) Ks−n/2(2π|µ|y).

This follows from [15, p. 678]. Alternatively it follows from combining [49, p. 213]
and [20, 6.565.4]. Hence we get

E(P, s, χ) = [Γ∞ : Γ′∞]ys + yn−s
πn/2Γ

(
s− n

2
)

vol(Λ)Γ(s) L(s, χ)

+ 2πsyn/2
vol(Λ)Γ(s)

∑

µ∈Λ◦\{0}
L(s, µ, χ)|µ|s−n/2Ks−n/2(2π|µ|y),(5.4)

where

(5.5) L(s, χ) :=
∑

γ∈TΓ

χ(γ)
|cγ |2s

=
∑

c∈C(Γ)

S(0, 0, c, χ)
|c|2s ,

and for µ 6= 0,

(5.6) L(s, χ, µ) :=
∑

γ∈TΓ

χ(γ)
e(
〈
dγc
−1
γ , µ

〉
)

|cγ |2s
=

∑

c∈C(Γ)

S(0, µ, c, χ)
|c|2s .

For χ = 1 the trivial character, we just denote L(s, µ) := L(s, µ, 1). We note that the
explicit Fourier expansion we obtain in (5.4) is closely related to [15, Thm. 9.1].

At other cusps a 6=∞ of Γ, we will also need some information about the Fourier
expansion. For this let P a = (xa, ya) = σ−1

a P denote the coordinates at a. Then the
Fourier expansion at a is given by [6, Ch. 6, Prop. 1.42]:

E(P a, s, χ) = φa(s)(ya)n−s +
∑

µ∈Λ◦a\{0}
φa(s, µ)(ya)n−sKs−n/2(2πn|µ|ya)e(〈xa, µ〉),
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where φa(s, µ) are the Fourier coefficients, which decay rapidly in |µ| (for s fixed). In
particular we observe that E(P, s, χ) is square integrable when restricted to Fa(Y )
for a 6=∞ (for Y sufficiently large as in (4.12)).

Remark 5.1. By inverting γ in the definition of L(s, χ, µ), we observe that

L(s, χ, µ) =
∑

γ∈TΓ

χ(γ)
e(
〈
(γ−1∞)∗, µ

〉
)

|cγ |2s

=
∑

γ−1∈TΓ

χ(γ)e(〈γ∞, µ〉)|cγ |2s

=
∑

γ∈TΓ

χ(γ)e(〈γ∞, µ〉)|cγ |2s
.(5.7)

5.1. Short discussion on spectral properties. We say that a (measurable) func-
tion f : Hn+1 → C is χ-automorphic if it satisfies

f(γP ) = χ(γ)f(P ) ,

for P ∈ Hn+1 and γ ∈ Γ.
Denote by L2(Γ\Hn+1, χ) the space of square integrable χ-automorphic functions

with respect to the hyperbolic metric. For f, g ∈ L2(Γ\Hn+1, χ), we note that fg is
Γ-invariant. Hence we can define the inner product

〈f, g〉 :=
∫

F
fg dv .

We let D(χ) ⊂ L2(Γ\Hn+1, χ) be the subspace consisting of all C2-functions such
that ∆f ∈ L2(Γ\Hn+1, χ). Then one can see that −∆ : D(χ) → L2(Γ\Hn+1, χ) is a
symmetric and nonnegative operator, its spectrum consists of discrete and continuous
parts with finitely many discrete points in the interval [0, n2/4). Let

0 ≤ λ0(χ) ≤ λ1(χ) ≤ · · · ≤ λk(χ) < n2/4

be the eigenvalues in the interval [0, n2/4) (see [41] and [6, Ch. 6]). The Eisenstein
series E(z, s, χ) admits meromorphic continuation to s ∈ C and satisfies the functional
equation

E(P, n− s, χ) = φ(n− s, χ)E(P, s, χ) ,
where φ(s, χ) is the scattering matrix. Moreover, E(P, s, χ) has poles where φ(s, χ)
has poles and viceversa. There are finitely many poles in the region Re(s) > n/2, all
of them simple and on the real line. If n/2 < σ0 ≤ n is a pole of E(P, s, χ), denote by
uσ0 its residue at σ0. Then

uσ0 ∈ L2(Γ\Hn+1, χ) and ∆uσ0 + σ0(n− σ0)uσ0 = 0 .

For 0 ≤ j ≤ k, let sj(χ) ∈ (n/2, n] be such that sj(χ)(n− sj(χ)) = λj(χ). We denote
by

Ω(χ) := {s0(χ), . . . , sk(χ)}.
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Then the poles of E(P, s, χ) in Re s > n/2 form a subset of Ω(χ). Moreover, we can
see from [6, Ch 6, p. 37] that for χ trivial, we have

(5.8) Ress=nE(P, s) = [Γ∞ : Γ′∞]vol(Λ)
vol(Γ\Hn+1) .

5.2. Key lemmas. In this section we will prove certain key analytic lemmas that we
will need in the proofs of our theorems. First of all we will show that we can only
have λ0(χ) = 0 when χ is trivial. Secondly we obtain meromorphic continuation of
the Fourier coefficients of the twisted Eisenstein series, which will serve as generating
series for our distribution problems. Finally we will prove a bound on vertical lines
for these generating series.

The most conceptual way to see the first claim above is probably to use Green’s
identity ∫

F
(−∆u)udv =

∫

F
∇u.∇u dv +

∫

∂F
u(∇u.n)dS.

If we have ∆u = 0, then the first integral is 0. The third integral should vanish
since contributions from “opposing sides” in the boundary of the fundamental domain
should cancel each other. This would force the second integral to be 0, which means u
is constant. This argument works in principle, but for example in [16, Theorem 4.1.7]
they spend several pages making it rigorous. Instead we will give an argument using
the Fourier expansion and the mean value theorem for harmonic functions.

Lemma 5.2. We have that λ0(χ) = 0 if and only if χ is trivial.

Proof. Suppose λ0(χ) = 0 and let u be a corresponding eigenvector, i.e. u ∈
L2(Γ\Hn+1, χ) and ∆u = 0. Then we can consider the Fourier expansion of u at
a cusp a of Γ. We know from [6, Ch. 6, p.10] that the Fourier expansion of u takes
the form

c1,a + c2,a(ya)n +
∑

µ∈Λ◦a\{0}
au,a(µ)(ya)n/2Kn/2(2πn|µ|y)e(〈x, µ〉).

From the rapid decay of the K-Bessel function we see that if c2,a 6= 0, then u behaves
like (ya)n close enough to a and thus

∫
Fa(Y ) |u(x, y)|2dxdy is divergent contradicting

the fact that u is square integrable. Thus c2,a = 0 and we conclude again using
the rapid decay of the K-Bessel functions that u is bounded on Fa(Y ). Since a
was an arbitrary cusp we conclude that u is bounded on all of F . Thus since χ is
unitary, we conclude that u is bounded on all of Hn+1. Now it follows from the Mean
Value Theorem for Harmonic Functions on Hn+1 that u is constant. By definition,
u(γP ) = χ(γ)u(P ), for all γ ∈ Γ and P ∈ Hn+1. Thus we conclude that χ is the
trivial character.

Therefore, if χ is trivial the unique eigenfunction of eigenvalue 0 is the constant
one, and for χ non-trivial there are no eigenfunctions of eigenvalue 0. This finishes
the proof. �

We now obtain meromorphic continuation of the Fourier coefficients of the Eisen-
stein series and crucial information about the location of the poles.
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Proposition 5.3. The Dirichlet series L(s, µ, χ) admits meromorphic continuation to
the entire complex plane. The possible poles in the half-plane Re s > n/2 are contained
in Ω(χ). Furthermore, there is a pole at s = n exactly if χ is trivial and µ = 0. In
this case the residue is equal to

[Γ∞ : Γ′∞]Γ(n)vol(Λ)2

πn/2Γ
(
n
2
)

vol(Γ\Hn+1)
.

Proof. From (5.4), we know that for µ ∈ Λ◦\{0}

L(s, µ, χ) = Γ(s)
2πsyn/2|µ|s−n/2Ks−n/2(2π|µ|y)

∫

P
E((x, y), s, χ)e(−〈x, µ〉)dx,

and
L(s, χ) = ys−nΓ(s)

πn/2Γ
(
s− n

2
)
(∫

P
E((x, y), s, χ)dx− [Γ∞ : Γ′∞]ys

)
,

where P is a fundamental parallelogram for Λ. Now for y > 0 fixed , the Bessel
function Ks(y) defines an analytic function in s, which is non-zero for some y large
enough. Similarly the Gamma function define a meromorphic function. Thus we get
the meromorphic continuation of L(s, µ, χ) from that of the Eisenstein series. We
also note that in the half-plane Re s > n/2, L(s, µ, χ) has possible poles only where
E(P, s, χ) has poles, i.e. the poles are contained in Ω(χ). By Lemma 5.2, we see that
L(s, µ, χ) is regular at s = n unless χ is trivial.

If χ is trivial, we see that L(s, µ) with µ 6= 0 is regular at s = n, since the pole of
the Eisenstein series is constant. For µ = 0 the residue is given by

Ress=n L(s, 0) = Γ(n)
πn/2Γ

(
n
2
)
∫

P

[Γ∞ : Γ′∞]vol(Λ)
vol(Γ\Hn+1) dx = [Γ∞ : Γ′∞]Γ(n)vol(Λ)2

πn/2Γ
(
n
2
)

vol(Γ\Hn+1)
,

as wanted. �

In order to obtain bounds on vertical lines for our generating series, we will employ
an idea due to Colin de Verdière [7], which employs the analytic properties of resolvent
operators. Alternatively one could use Poincaré series for µ 6= 0 and Maaß–Selberg for
µ = 0 as is done in [38] and [8]. In the end the two methods are essentially equivalent.

Let h : R+ → R+ be a smooth function which is equal to [Γ∞ : Γ′∞] for y > Y + 1
and 0 for y < Y , where Y is as in (4.12). Then for Re(s) > n/2 we define a χ-
automorphic function on Hn+1 by P 7→ h(y)ys for P ∈ F and extended periodically
(twisted accordingly by χ). Then from the above mentioned results on the Fourier
expansions of the Eisenstein series at the different cusps, we see that

g(P, s, χ) := E(P, s, χ)− h(y)ys ∈ L2(Γ\Hn+1, χ),

which satisfies for z ∈ F
(∆−s(n−s))g(P, s, χ) = −(∆−s(n−s))h(y)ys = h′′(y)ys+2 +(2s−n+1)h′(y)ys+1.

We observe that the right hand side above is compactly supported with L2-norm
bounded by O(|s|+ 1) for n/2 + ε < Re s < n+ 2. Now we put

H(P, s, χ) := R(s, χ)(h′′(y)ys+2 + (2s− n+ 1)h′(y)ys+1) ∈ L2(Γ\Hn+1, χ),
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where R(s, χ) = (∆− s(n− s))−1 denotes the resolvent operator associated to ∆. By
a general bound for the operator norm of resolvent operators [23, Lemma A.4], we
conclude that

||H(·, s, χ)||L2 �ε 1,
when s is bounded at least ε away from the spectrum of ∆. We can now write
(5.9) E(P, s, χ) = H(P, s, χ) + h(y)ys, P ∈ F
where we have good control on the L2-norm of H(P, s, χ). We will now use this to
obtain bounds on vertical lines for the Fourier coefficients of E(P, s, χ). We mimic [35,
Section 4.4].

Proposition 5.4. Let µ ∈ Λ◦. Then we have
L(s, µ, χ)�ε,µ (|s|+ 1)n/2,

for n/2 + ε < Re s < n+ 2 and s bounded at least ε away from the spectrum of ∆.

Proof. We have

L(s, µ, χ) =
∫

P
fs(y, µ)E((x, y), s, χ)e(−〈x, µ〉)dx− 1µ=0[Γ∞ : Γ′∞]ysfs(y, µ),

(5.10)

where

fs(y, µ) =
{ Γ(s)

2πsyn/2|µ|s−n/2Ks−n/2(2πn|µ|y) , µ 6= 0,
Γ(s)

yn−sπn/2Γ(s−n/2) , µ = 0.
The idea is now to bound the right hand side of (5.10) using (5.9). In order to bring the
information we have about H(P, s, χ) into play, we need to make an extra integration
over y. So let Y be a fixed quantity such that {(x, y) | x ∈ P, y > Y } ⊂ F , then we
see that ∫ Y+1

Y

∫

P
fs(y, µ)E((x, y), s, χ)e(−〈µ, x〉)dxdy

=
∫ Y+1

Y

∫

P
fs(y, µ)H((x, y), s, χ)e(−〈µ, x〉)dxdy

+
∫ Y+1

Y

∫

P
fs(y, µ)h(y)yse(−〈µ, x〉)dxdy

Now we observe that by Cauchy–Schwarz we have
∫ Y+1

Y

∫

P
fs(y, µ)H((x, y), s, χ)e(−〈µ, x〉)dxdy

≤
(∫ Y+1

Y

∫

P
|H((x, y), s, χ)|2dxdy

)1/2(∫ Y+1

Y

∫

P
|fs(y, µ)|2dxdy

)1/2

� ||H(·, s, χ)||L2

(∫ Y+1

Y

|fs(y, µ)|2dy
)1/2

,

where we use that {(x, y) | x ∈ P, y > Y } ⊂ F . To finish the proof we need an upper
bound for fs(y, µ).
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For µ = 0 we get by Stirling’s approximation the upper bound
fs(y, 0)�ε y

n−σ(|s|+ 1)n/2,
for s = σ + it with n/2 + ε < σ < n+ 2.

For µ 6= 0, we use the Fourier expansion for the K-Bessel function (coming from
combining [23, (B.32)] and [23, (B.34)]) to obtain a good approximation. By applying
Stirling’s approximation, this gives for s = σ + it with t� 1

Ks−n/2(2π|µ|y) =
π1/2tσ−n/2−1/2eπt/2

(
t
e

)it

2
√

2 sin(π(s− n/2))
(π|µ|y)−s+n/2 (1 +Oµ,y(t−1))

�µ,y e
−πt/2tσ−n/2−1/2,

where the implied constants depend continuously on y. From this we conclude that
when y ∈ (Y, Y + 1), we have

fs(y, µ)�µ (1 + |s|)n/2.
Inserting this and using the bound ||H(·, s, χ)||L2 �ε 1, we conclude that

L(s, µ, χ)�ε,µ (|s|+ 1)n/2,
for s bounded ε away from the spectrum of ∆, as wanted. �

6. Proof of Theorem 1.5

In this section we will use the analytic properties of twisted Eisenstein series proved
in the previous section to proof our main results. First of all we deduce the following
result using a standard complex analysis argument.

Proposition 6.1. Let χ be a unitary character of Γ trivial on Γ′∞ and µ ∈ Λ◦. Then
there exists a constant ν(χ) > 0 such that

∑

γ∈TΓ(X)

χ(γ)e (〈γ∞, µ〉) = Xs0(χ)

s0(χ)

(
Ress=s0(χ) L(s, χ, µ) +Oχ,µ(X−ν(χ))

)
.

Proof. Let φU : R→ R be a family of smooth non-increasing functions with

(6.1) φU (t) =
{

1 if t ≤ 1− 1/U,
0 if t ≥ 1 + 1/U

and φ(j)
U (t) = O(U j) as U →∞. For Re(s) > 0, we consider the Mellin transform

(6.2) RU (s) =
∫ ∞

0
φU (t)ts dt

t
.

We can easily see that

(6.3) RU (s) = 1
s

+O

(
1
U

)
as U →∞

and for any N > 0,

(6.4) RU (s) = O

(
1
|s|

(
U

1 + |s|

)N)
as |s| → ∞ ,
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where the last estimate follows from repeated partial integration. Now we use Mellin
inversion and (5.7) to obtain

∑

γ∈TΓ

χ(γ)e (〈γ∞, µ〉) φU

( |c|2
X

)

=
∑

γ∈TΓ

χ(γ)e (〈γ∞, µ〉) 1
2πi

∫

Re(s)=n+1

Xs

|c|2sRU (s)ds

= 1
2πi

∫

Re(s)=n+1
L(s, χ, µ)XsRU (s)ds.

Next, we recall Proposition 5.4 and equation (6.4) to deduce that the last integral is
absolutely convergent. We want to move the line of integration to Re(s) = h = h(χ)
for some h > n/2 such that s1(χ) < h(χ) < s0(χ). We use the fact that we have
polynomial growth on vertical lines for L(s, χ, µ) guaranteed by Lemma 5.4 and that
L(s, χ, µ) has only a possible pole at s0(χ) in the region Re(s) > h(χ). We conclude
that

1
2πi

∫

Re(s)=n+1
L(s, χ, µ)XsRU (s)ds = 1

2πi

∫

Re(s)=h
L(s, χ, µ)XsRU (s)ds

+ Ress=s0(χ) (L(s, χ, µ)XsRU (s)) .

Setting N = (n+ 1)/2 in (6.4), we observe from Proposition 5.4 that

(6.5)
∫

Re(s)=h
L(s, χ, µ)XsRU (s)ds� XhU (n+1)/2 .

Now, (6.3) gives us
(6.6)

Ress=s0(χ) (L(s, χ, µ)XsRU (s)) = Xs0(χ)

s0(χ) Ress=s0(χ) L(s, χ, µ)
(

1 +O

(
1
U

))
.

Since we want this to be the main contribution, we choose U = Xa(χ), where a(χ) :=
(s0(χ)− h(χ))/(n+ 1).

Now if χ is the trivial character and µ = 0, we obtain
∑

γ∈TΓ

φU

( |c|2
X

)
= Xn

n

(
Ress=n L(s) +O(X−δ)

)
,

for some fixed δ > 0. We now choose φ1
U and φ2

U as in (6.1) with the further
requirements that φ1

U (t) = 0 for t ≥ 1 and φ2
U (t) = 1 for 0 ≤ t ≤ 1. Then

∑

γ∈TΓ

φ1
U

( |c|2
X

)
≤

∑

γ∈TΓ(X)

1 ≤
∑

γ∈TΓ

φ2
U

( |c|2
X

)
,

so the previous two equations and Proposition 5.3 give us

(6.7) #TΓ(X) = X2n

n

(
[Γ∞ : Γ′∞]vol(Λ)2Γ(n)
πn/2vol(Γ)Γ(n/2) +O(X−δ)

)
.
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Now we return to (6.6). Indeed,
(6.8)
∑

γ∈TΓ

χ(γ)e (〈γ∞, µ〉)φU
( |c|2
X

)
= Xs0(χ)

s0(χ)

(
Ress=s0(χ) L(s, χ, µ) +O(X−a(χ))

)
.

Also, from the definition of φU ,
∑

γ∈TΓ

χ(γ)e (〈γ∞, µ〉)φU
( |c|2
X

)

=
∑

γ∈TΓ(
√
X)

χ(γ)e (〈γ∞, µ〉) +O

(
#
{
γ ∈ Γ′∞\Γ/Γ′∞ : 1− 1

U
≤ |c|

2

X
≤ 1 + 1

U

})
.

But now we use (6.7) to bound the size of the error term

#
{
γ ∈ Γ′∞\Γ/Γ′∞ : 1− 1

U
≤ |c|

2

X
≤ 1 + 1

U

}

= TΓ

(√
X

(
1 + 1

U

))
− TΓ

(√
X

(
1− 1

U

))

= O
(
Xn−ν) ,

for some ν(χ) > 0. The conclusion follows. �

Remark 6.2. As a consequence of Proposition 6.1, we conclude that for all unitary
characters χ as above there exist ν(χ) > 0 such that

∑

γ∈TΓ(X)

χ(γ)e (〈γ∞, µ〉) = 1χ,µ
vol(Λ)2Γ(n)

nπn/2vol(Γ\Hn+1)Γ(n/2)X
2n +Oχ(X2n−ν(χ)),

where 1χ,µ is 1 if µ = 0 and χ is trivial and 0 otherwise.

6.1. Applications to equidistribution. Using the the above proposition we are
now ready to finish the proof of Theorem 1.5 and from this deduce Theorems 1.2 and
1.3.

We recall the setup from the definition. Consider the cohomology groupH1
Γ′∞(Γ,R/Z)

(see Section 8 for details), which can be identified with the set of unitary characters
of Γ trivial on Γ′∞.

Definition 6.3. We say that ω1, . . . , ωd ∈ H1
Γ′∞(Γ,R/Z) are in general position if

for any (l1, . . . , ld) ∈ Zd, we have

n1ω1 + . . .+ ndωd = 0 ∈ H1
Γ′∞(Γ,R/Z)⇔

(
niωi = 0 ∈ H1

Γ′∞(Γ,R/Z),∀i = 1, . . . , d
)
.

As an example one can pick ω1, . . . , ωd to be a basis for the non-torsion part of
H1

Γ′∞(Γ,R/Z). Also we could pick a Fp-basis for H1
Γ′∞(Γ,Fp), where we consider

Fp ⊂ R/Z via Fp 3 a 7→ a/p.
Observe that the image of ωi is an additive subgroup of R/Z and thus is either

dense in R/Z or finite. In the first case we put Ji = R/Z and in the latter case we put
Ji = Z/miZ where mi is the cardinality of the image of ωi. That is, Ji is the closure
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of the image of ωi. We equip R/Z and Z/mZ with respectively the Lebesque measure
and the uniform probability measure.

Let ω1, . . . , ωd ∈ H1
Γ′∞(Γ0(N),R/Z) be in general position. Then for any tuple

l = (l1, . . . , ld) ∈ Zd such that liωi 6= 0 ∈ H1
Γ′∞(Γ0(N),R/Z) for all i = 1, . . . , d, we

get a non-trivial element of H1
Γ′∞(Γ,R/Z) defined by

ωl := l1ω1 + . . .+ ldωd.

Now we consider the associated non-trivial unitary character χl : Γ→ C×;

χl(γ) := e
(
ωl(γ)

)
,

where e(x) = e2πix. Observe that this is indeed well-defined and that we get an
induced map χl : Γ′∞\Γ/Γ′∞ → C× since ωl is trivial on Γ′∞.

By Weyl’s Criterion [24, p. 487] in order to conclude equidistribution of the values
of

ω(γ) := (ω1(γ), . . . , ωd(γ), γ∞)

inside
∏d
i=1 Ji× (Rn/Λ), we have to show cancelation in the corresponding Weyl sums.

These are exactly given by:
∑

γ∈TΓ(X)

χl(γ)e(〈γ∞, µ〉),

where l ∈ Zd and µ ∈ Λ◦. We see that it follows from combining Proposition 6.1 and
Remark 5.1 that we have

∑

γ∈TΓ(X)

χl(γ)e(〈γ∞, µ〉) = o


 ∑

γ∈TΓ(X)

1


 ,

as X →∞ unless µ = 0 and χl is trivial. This finishes the proof of Theorem 1.5 using
Weyl’s Criterion.

Now let us see how Theorem 1.2 and 1.3 follow from Theorem 1.5. We restrict to
n = 1 and Γ = Γ0(N). By the mod p-version of the Eichler–Shimura isomorphism
(3.1), we see that m±f with f ∈ S2(Γ0(N)) gives a basis for H1

P (Γ0(N),Fp), and thus
it follows directly that they are in general position.

Similarly, by Eichler–Shimura, we know that the cohomology classes associated to
Re f(z)dz and Im f(z)dz are in general position, where f ∈ S2(Γ0(N)) ranges over
Hecke newforms. From a classical result of Schneider [42] we know that the Néron
periods Ω± are transcendental. Using the rationality (1.2), this implies that the
cohomology class associated to a newform f given by

Γ0(N) 3 γ 7→
∫ ∞

γ∞
Re(f(z)dz)

takes some irrational value (and similarly for Im(f(z)dz)).
Thus we see that in these two cases Theorem 1.5 reduces to Theorem 1.2 and 1.3.
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7. Proof of Theorem 1.8

We now give a proof of Theorem 1.8 showing equidistriburion of the values of
cohomology classes when ordered by the lengths of the geodesics corresponding to
conjugacy classes of Γ. This will be an almost direct consequence of a twisted trace
formula for SO(n+ 1, 1). Our method is in the spirit of [37], where Petridis–Risager
show that for cocompact subgroups of SL2(R) the values of modular symbols are
asymptotically normally distributed when ordered by the length of the corresponding
geodesics. This was in turn inspired by ideas of Phillips and Sarnak [39].

We firstly consider the case n = 1. If γ =
(
a b
c d

)
∈ SL2(R) is hyperbolic, then

γ is conjugate in SL2(R) to a unique element
(
λ 0
0 λ−1

)
with λ > 1. Let Γ be a

discrete, cofinite subgroup of SL2(R). We know that for each hyperbolic conjugacy
class {γ} ∈ Conjhyp(Γ) there is a corresponding geodesic of length l(γ) = log λ2. It is
a consequence of the twisted trace formula for Γ that for any unitary character χ of
Γ, we have ∑

{γ0} primitive
l(γ0)≤X

χ(γ0) =
∑

s∈Ω(χ)

li(esX) +Oχ(e 3
4X),

where li(x) =
∫ x

2 t
−1dt is the logarithmic integral (see [22, p. 475]). Hence we obtain
∑

{γ}∈Conjhyp(Γ)
l(γ)≤X

χ(γ) ∼
∑

{γ0} primitive
l(γ0)≤X

χ(γ0) ∼ li(es0(χ)X)

where the first sum is over all hyperbolic classes. Therefore, using Lemma 5.2, we
obtain that for some ν(χ) > 0,

1
|{{γ} ∈ Conjhyp(Γ) : 0 < l(γ) ≤ X}|

∑

{γ}∈Conjhyp(Γ)
l(γ)≤X

χ(γ) = 1χ +O(e−ν(χ)X),

where 1χ is 1 if χ is trivial and 0 otherwise. Now the proof follows using the Weyl
criterion as in Section 6.1.

We now discuss the general case n. As mentioned eariler, the first proof of the
Prime Geodesic Theorem in the general case was given by Gangolli and Warner [18].
The trace formula for cofinite subgroups of SO(n+1, 1) acting on Hn+1 was developed
by Cohen and Sarnak in [6, Ch. 7]. As a consequence, they obtain the following
stronger version of Prime Geodesic Theorem for Hn+1 [6, Thm. 7.37]:

πΓ(X) =
∑

n/2<sj≤n
li(esjX) +O

(
e(n− n

n+2 )X
)

where the sum is taken over all n/2 ≤ sj ≤ n such that sj(n− sj) is an eigenvalue of
−∆ acting on L2(Γ\Hn+1). Now we would like to apply a trace formula where we allow
twists by characters. We did not find a place in literature where it is written down
explicitly, and to keep the exposition simple we wil leave out the details. The analysis
should be similar to the case n = 1 and is furthermore implied to hold by Sarnak
in [41, p. 6]. Similarly Phillips and Sarnak [39] prove a theorem about distribution
of geodesics in homology classes for quotients of Hn+1, but only treat the case n = 1
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in detail. The twisted trace formula for Hn+1 that we need is exactly the same one
which is implicit [39].

As in the 2 dimensional case, we would get
∑

{γ}∈Conjhyp(Γ)
l(γ)≤X

χ(γ) ∼ li(es0(χ)X)

from which Theorem 1.8 follows by Weyl’s Criterion as above.

8. On the size of certain cohomology groups

In this paper we study the distribution of certain cohomology classes which can
be identified with the unitary characters of cofinite subgroups Γ < SO(n + 1, 1)
(or equivalently Γ < SVn−1) with cusps. It is now a natural question to ask how
many unitary characters our results actually apply to. This amounts to finding
the dimensions of the relevant space of unitary characters or equivalently of certain
cohomology groups. This last perspective is most useful when comparing it to the
existing literature. First of all we will define the cohomology groups that are relevant
and then survey what is known about their size.

8.1. The first cohomology group. We refer to [45, Chapter 8] for a comprehensive
account. The first cohomology group of Γ with coefficients in a Z[Γ]-module A is
defined as the quotient between the corresponding coboundaries and cocycles;

H1(Γ, A) := Z1(Γ, A)/B1(Γ, A),

where

Z1(Γ, A) := {ω : Γ→ A | ω(γ1γ2) = ω(γ1) + γ1.ω(γ2),∀γ1, γ2 ∈ Γ}
and

B1(Γ, A) := {ω : Γ→ A | ∃a ∈ A : ω(γ) = γ.a− a,∀γ ∈ Γ}.
Furthermore given a subset P ⊂ Γ, we will be studying the first P -cohomology group
of Γ with coefficients in A defined by;

H1
P (Γ, A) := {ω ∈ H1(Γ, A) | ω(p) ∈ (p− 1)A,∀p ∈ P}.

We will in particular study the distribution of P -cohomology group in the case where
P = Γ′∞ is the set of parabolic elements of Γ fixing ∞ and A is given by the circle
R/Z equipped with the trivial Γ-action. In this case H1

P (Γ,R/Z) computes exactly
the unitary characters of Γ trivial on Γ′∞. Now we will make some general comments
on the structure and size of H1

P (Γ,R/Z).

8.2. On the structure of the cohomology groups. We recall that for A a trivial
Γ module we have

H1(Γ, A) ∼= HomZ(Γ/[Γ,Γ], A),
which is a special case of the Universal Coefficients Theorem since H1(Γ,Z) ∼= Γ/[Γ,Γ].
From this we see that H1(Γ,R/Z) can be identified with the unitary characters of Γ.
It is known [44, p. 484] that Γ is finitely represented and thus Γ/[Γ,Γ] is a finitely
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generated abelian group. From this we see that we have a splitting of the cohomology
group H1(Γ,R/Z) in a free part and a torsion part;

H1(Γ,R/Z) ∼= H1
free(Γ,R/Z)⊕H1

tor(Γ,R/Z),
where the R/Z rank of H1

free(Γ,R/Z) is the same as the dimension of H1(Γ,R) and
the size of H1

tor(Γ,R/Z) is equal to the size of the torsion in H1(Γ,Z) ∼= Γ/[Γ,Γ].

We have a further Eichler–Shimura splitting of the free part due to Harder [21];
(8.1) H1(Γ,R) ∼= H1

cusp(Γ,R)⊕H1
Eis(Γ,R),

where H1
cusp(Γ,R) is the cuspidal part corresponding to certain automorphic forms for

Γ (as we will see shortly) and H1
Eis(Γ,R) is the (remaining) Eisenstein part, which can

be canonically defined. The cuspidal part H1
cusp(Γ,R) can be identified with H1

P (Γ,R)
where P is the set of all parabolic elements of Γ and furthermore all of the above
splittings are compatible with the Hecke action, when Γ is arithmetic.

There has been a lot of work recently on the study of the size of respectively
H1

cusp(Γ,R), H1
Eis(Γ,R) and H1

tor(Γ,R/Z), and we will now collect the relevant results
for our problem. We observe that the image of Γ′∞ in Γ/[Γ,Γ] is either trivial, finite
or isomorphic to Z. Thus we conclude that H1

Γ′∞(Γ,R/Z) is non-trivial as soon as, say
H1(Γ,R/Z) is not generated by a single element or H1(Γ,R) is non-trivial.

8.3. The dimension of cohomology groups. It is a result of Kazhdan [25] that for
discrete, cofinite subgroups of real Lie groups of rank larger than 1, the abelianization
is always torsion. In our case, since SO(n+1, 1) is of rank one, we can however hope to
see some free part. In the case of cofinite subgroups Γ ⊂ SO(n+ 1, 1), the dimension
of H1(Γ,R) (or equivalently the free part of Γ/[Γ,Γ]) is not very well understood for
arbitrary n. The best lower bounds of the rank available in the literature seem to be
what follows from the work of Millson [34] and Lubotzky [28], which gives that any
arithmetic subgroup Γ (with a few restrictions when n = 3, 7) contains a subgroup
such that the dimension of H1(Γ,R) is at least one. In certain arithmetic situations,
we will be able to say more using a connection to automorphic forms.

8.3.1. Cohomology classes associated to automorphic forms. Recall the splitting (8.1)
due to Harder of the cohomology into a cuspidal and an Eisenstein part. We give
a brief overview of the description of H1

cusp(Γ,R) in terms of automorphic forms, as
in [41]. We recall the canonical isomorphism between H1(Γ,R) and the de Rham
cohomology group H1

dR(Γ\Hn+1,R) consisting of 1-forms. Inside H1
dR(Γ\Hn+1,R) we

define the subset of cuspidal harmonic 1-forms.

Definition 8.1. A harmonic 1-form α = f0dx0 + f1dx1 + · · ·+ fndxn on Γ\Hn+1

is a cuspidal 1-form if
(1) α is rapidly decreasing at all cusps of Γ,
(2) for each cusp a and y ≥ 0, we have

∫

Pa

fa,i(x, y)dx = 0 , i = 0, . . . , n ,

where σ∗aα = fa,0dx0 + fa,1dx1 · · ·+ fa,ndxn.
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We denote by Har1
cusp(Γ\Hn+1,R) the space of harmonic cuspidal 1-forms on

Γ\Hn+1. Then we have the following identification

Har1
cusp(Γ\Hn+1,R) ∼= H1

cusp(Γ,R),

coming from [41, (2.14)]. This reduces the task of lower bounding the dimension of
H1

cusp(Γ,R) to constructing cuspidal automorphic forms. For congruence subgroups
Γ < SVn−1, this can be achieved using certain theta lifts developed by Shintani [47]
of GL2 holomorphic forms of weight (n + 1)/2 + 1 (for details see [41, page 21]).
This gives us non-trivial examples for which Theorem 1.5 applies for any n. In the
low-dimensional cases n = 1, 2 a lot more can be said, as we will see below.

Finally let us see explicitly how to construct a unitary characters from cuspidal
automorphic forms. We let

Φ : Γ→ H1(Γ,Z), γ 7→ {∞, γ∞}
which induces the canonical isomorphism H1(Γ,Z) ∼= Γ/[Γ,Γ]. For γ ∈ Γ and ω ∈
Har1

cusp(Γ\Hn+1,R), we define the Poincaré pairing

〈γ, ω〉 := 2πi
∫

Φ(Γ)
ω = 2πi

∫ γP

P

ω for any P ∈ Hn+1.

We note that that when n = 1 and f is a classical Hecke cusp form of weight 2 for Γ,
then f(z)dz is indeed a harmonic cuspidal 1-form on Γ\H2 and the Poincaré symbol
is equal to (minus) the standard modular symbol (1.1):

〈γ, f(z)dz〉 = 2πi
∫ aγ/cγ

∞
f(z)dz = −〈aγ/cγ , f〉 .

We observe that if γ ∈ Γ is parabolic, then 〈γ, α〉 = 0. Hence if we define χα(γ) :=
e(〈γ, α〉) then χα defines a unitary character trivial on Γ′∞. The kernel of the map α 7→
χα is a full rank lattice L inside Har1

cusp(Γ\Hn+1,R). If we assume that Γ is torsion-
free, we indeed obtain the identification H1

free(Γ,R/Z) ∼= Har1
cusp(Γ\Hn+1,R)/L.

8.3.2. The case of H2. When n = 1, we have explicit formulas for the dimensions of
both the cuspidal and the Eisenstein part. More precisely we have coming from [51,
Prop. 6.2.3] that

H1
cusp(Γ,Z) ∼= R2g, H1

Eis(Γ,R) ∼= R2(h−1),

where g is the genus and h is the number of inequivalent cusps of the Riemann surface
Γ\H2. In particular if Γ = Γ0(N) is a standard Hecke congruence subgroup, we know

that g ∼
N ·
∏

p|N (1+p−1)
12 and h =

∑
d|N ϕ(d,N/d) and we conclude that we can find

towers of Hecke congruence subgroups such that both the cuspidal and Eisenstein part
goes to infinity.

8.3.3. The case of H3. When n = 2 there has been a lot of activity recently and we
refer to the survey of Şengün [11] for an excellent and more thorough overview. In
this case no formulas are known in general for the ranks of the cuspidal and Eisenstein
part and the best one can hope for are lower bounds.
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Regarding the Eisenstein part, we can describe it explicitly when Γ is torsion-
free. In this case, we have that H1

Eis(Γ,R) ∼= Rh, where h is the number of cusps of
Γ\H3, see [16, Proposition 7.5.6]. The same conclusion holds for co-finite subgroups
Γ ≤ SL2(OD), where OD is the ring of integers of the imaginary quadratic field
Q(
√
D) with D < 0 a fundamental discriminant not equal to −4,−3 (in which case

there might be torsion in Γ). In the case of co-finite subgroups Γ ≤ SL2(OD) with
D = −4,−3 the picture is much more mysterious, but a lot of numerics are available
in [10] and [16, Ch. 7.5].

For the cuspidal part there are some useful results giving lower bounds on the rank.
First of all Rohlfs [40] showed that

dimH1
cusp(SL2(OD),R) ≥ ϕ(D)

6 − 1
2 − h(D),

where h(D) denotes the class number of Q(
√
D). Furthermore Şengün and Turkelli [12]

proved that if D is a fundamental discriminant such that h(D) = 1, p is a rational
prime which is inert in Q(

√
D) and Γ0(pn) ⊂ SL2(OD) is a congruence subgroup, then

we have
dimH1

cusp(Γ0(pn),R) ≥ p6n,

as n→∞ (an upper bound of p10n has been proved by Calegari and Emerton [4]). In
the case of cocompact groups stronger results were obtained by Kionke and Schwermer
[26].

8.4. Torsion in the (co)homology of arithmetic groups. Now we will discuss
what is known about the torsion part of H1(Γ,Z) when Γ ⊂ SO(n+ 1, 1) is a cofinite,
arithmetic subgroup. In the simplest case n = 1, we know that all the torsion in
the abeliazation comes from the torsion in the subgroup itself and thus in particular
Γ/[Γ,Γ] is torsion-free when Γ is so.

It was noticed a long time ago in unpublished work by Grunewald and Mennicke
that in the case n = 2 there is a lot of torsion in the abeliazation of congruence
subgroups. See Şengün’s work [10] for some recent extensive computations.

The study of torsion in the abelianization of Γ fits into a more general framework
of understanding the torsion in the homology of arithmetic groups as in the work of
Bergeron and Venkatesh [2]. Bergeron and Venkatesh have conjectured that when Γ is
a congruence subgroup of SL2(OD) with D < 0 a negative fundamental discriminant,
then the torsion in Γ/[Γ,Γ] grows exponentially with the index [SL2(OD) : Γ].

More generally the conjectures predicts that the torsion in the cohomology of
symmetric spaces associated to a semisimple Lie group G will grow exponentially
in towers of congruence subgroups exactly if we consider the middle dimensional
cohomology and if the fundamental rank (or “deficiency”) δ(G) := rank(G)− rank(K)
is 1 (here K is a maximal compact). It follows from [2, 1.2] that the fundamental
rank of SO(n+ 1, 1) is equal to 1 exactly if n is even. And thus we see that we will
have exponential growth of the torsion of Γ/[Γ,Γ] when Γ runs through a tower of
congruence groups exactly when n = 2 (corresponding to Kleinian groups).

For n > 2 the torsion should conjecturally not grow exponentially, but there might
still be torsion, which is equally arithmetically interesting in view of [43]. There seems
however to be no experimental or theoretical work available in this case.
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SPARSE EQUIDISTRIBUTION OF HYPERBOLIC ORBIFOLDS

PETER HUMPHRIES AND ASBJØRN CHRISTIAN NORDENTOFT

Abstract. Duke, Imamoḡlu, and Tóth have recently constructed a new geomet-
ric invariant, a hyperbolic orbifold, associated to each narrow ideal class of a real
quadratic field. Furthermore, they have shown that the projection of these hy-
perbolic orbifolds onto the modular surface Γ\H equidistributes on average over
a genus of the narrow class group as the fundamental discriminant D of the real
quadratic field tends to infinity.

We study refinements of this result by exploring sparse equidistribution in the
subgroup aspect; we prove equidistribution on average over small subgroups of
the narrow class group as D tends to infinity.

Behind this refinement is a new interpretation of the Weyl sums arising in
these equidistribution problems; we show that these Weyl sums can be expressed
in terms of adèlic period integrals instead of in terms of Fourier coefficients of
half-integral weight Maaß forms.

1. Introduction

1.1. Equidistribution of hyperbolic orbifolds. Let E := Q(
√
D) be a real qua-

dratic number field, where D > 1 is a positive fundamental discriminant. In [DIT16],
Duke, Imamoḡlu, and Tóth introduced a new geometric invariant, a hyperbolic orb-
ifold ΓA\NA, associated to each narrow ideal class A of the narrow class group Cl+D of
E. The group ΓA ⊂ PSL2(Z) is a Fuchsian group of the second kind whose construc-
tion is in terms of certain invariants of A, while NA ⊂ H is the Nielsen region of ΓA,
namely the smallest nonempty ΓA-invariant open convex subset of H. Furthermore,
they showed that these hyperbolic orbifolds equidistribute as D tends to infinity when
projected onto the modular surface Γ\H, where Γ := SL2(Z).

More precisely, for each positive fundamental discriminant D, we choose a genus
GD in the group of genera GenD := Cl+D/(Cl+D)2, so that GD is a coset C(Cl+D)2 of
narrow ideal classes for some C ∈ Cl+D. Then Duke, Imamoḡlu, and Tóth prove that
for every continuity set B ⊂ Γ\H,∑

A∈GD vol(ΓA\NA ∩ ΓB)∑
A∈GD vol(ΓA\NA) = vol(B)

vol(Γ\H) + oB(1)

as D tends to infinity through fundamental discriminants [DIT16, Theorem 2]. Here
the volume measure on the upper half-plane H 3 z = x+ iy is dµ(z) = y−2 dx dy, so
that vol(Γ\H) = π/3.

The first author investigated a refinement of this equidistribution result in [Hum18],
namely small scale equidistribution, in which the volume of B shrinks as D grows. In
this paper, we study a further refinement in a different direction.

The first author is supported by the European Research Council grant agreement 670239.
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1.2. Sparse equidistribution in the subgroup aspect. Our refinement consists
of studying the equidistribution of hyperbolic orbifolds averaged over sparse subsets
of Cl+D. Previously, we averaged over a genus GD, which has cardinality 21−ω(D)h+

D,
where h+

D := #Cl+D denotes the narrow class number and ω(D) denotes the number
of distinct prime divisors of D, so that #GD �ε D

−εh+
D for every ε > 0. We instead

consider an arbitrary subgroup H = HD of the narrow class group Cl+D in place of
the subgroup (Cl+D)2 and with an arbitrary coset CH in place of a genus GD, where
now #H may be significantly smaller than h+

D.
Theorem 1.1. Fix δ ≥ 0. For each positive fundamental discriminant D choose a
coset CH with H = HD a subgroup of Cl+D satisfying #H � D−δh+

D and C ∈ Cl+D.
Then for each fixed continuity set B ⊂ Γ\H,∑

A∈CH vol(ΓA\NA ∩ ΓB)∑
A∈CH vol(ΓA\NA) = vol(B)

π/3 + oB,δ(1)

as D tends to infinity for δ < 625
3309568 ≈ 0.0001888 unconditionally and for δ < 1

4
assuming the generalised Lindelöf hypothesis.

This result is motivated by a conjecture of Michel and Venkatesh [MV06, Con-
jecture 1], where the analogous statement for Heegner points is conjectured to hold
for any fixed δ < 1

2 , and it is noted that the generalised Lindelöf hypothesis implies
such a conjecture in the range δ < 1

4 . Harcos and Michel have proven this conjecture
in the range δ < 1

23042 [HM06, Theorem 1.2]. More recently, a toy model of this
problem was resolved by the first author [Hum20, Theorem 1.10], namely the sparse
equidistribution as q tends to infinity of the points{(

d

q
,
d′

q

)
∈ T2 : d ∈ CH, dd′ ≡ 1 (mod q)

}

in the torus T2 = (R/Z)2 indexed by a coset CH of the group (Z/qZ)× with q a prime
and #H � qδ for some fixed δ > 0; it is shown that this is as a simple consequence
of a deep result of Bourgain on cancellation in certain exponential sums [Bou05].

The condition that CH be a coset of Cl+D in Theorem 1.1 may be thought of
as imposing the requirement that we restrict to a subset of Cl+D with an algebraic
structure. By comparing to related results on the sparse equidistribution of closed
geodesics, we expect that such an algebraic condition is necessary if this subset is
smaller than D−δh+

D for some δ > 0 (cf. [AE16, Theorem 4.1] and [BoKo17, Theorem
1.8]); on the other hand, we expect that Theorem 1.1 holds for subsets without any
algebraic structure provided that the cardinality of this subset divided by h+

D/ logD
tends to infinity with D (cf. [AE16, Theorem 1.2]). We also observe that by taking
H to be the trivial subgroup, Theorem 1.1 implies the equidistribution of individual
hyperbolic orbifolds as D tends to infinity along fundamental discriminants for which
h+
D � Dδ for some fixed δ < 625

3309568 (cf. [Pop06, Theorem 6.5.1]).
In [DIT16, Section 4], it is observed that Theorem 1.1 is trivial when H = Cl+D is

the whole narrow class group, for then for every fixed continuity set B ⊂ Γ\H, we
have the equality

(1.2)
∑
A∈CH vol(ΓA\NA ∩ ΓB)∑

A∈CH vol(ΓA\NA) = vol(B)
vol(Γ\H)
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with no error term. Moreover, if H = (Cl+D)2, so that CH ∈ GenD is a genus, then
we also have the equality (1.2) if J lies in the principal genus (Cl+D)2 ∈ GenD, where
J ∈ Cl+D is the narrow ideal class containing the different d := (

√
D) =

√
DOE , so that

J2 is the principal narrow ideal class I; this occurs if and only if D is not divisible by a
prime congruent to 3 modulo 4. We show that this generalises to arbitrary subgroups.

Proposition 1.3. Let D be a positive fundamental discriminant. Let CH be a coset
of Cl+D with H a subgroup of Cl+D and C ∈ Cl+D. Then we have the equality (1.2) for
every fixed continuity set B ⊂ Γ\H if C2J ∈ H.

2. Hyperbolic orbifolds

2.1. Ideals, quadratic forms, embeddings, and closed geodesics. We begin by
recording several details relating oriented ideals and narrow ideal classes of real qua-
dratic fields, integral binary quadratic forms, embeddings of real quadratic fields into
spaces of matrices, and closed geodesics on the level q modular surface Γ0(q)\H. We
will in this section work with general level as much as possible with future applications
in mind (see Remark 4.9). Useful references for this material include [GKZ87, Section
1], [Dar94, Section 1], and [Pop06, Section 6]. We work throughout with a positive
fundamental discriminant D > 1 and a squarefree integer q for which every prime
dividing q splits in E := Q(

√
D). We also fix once and for all a residue class r modulo

2q for which r2 ≡ D (mod 4q).

2.1.1. Oriented ideals. Let a be a nonzero fractional ideal of E. If a is generated over
Z by α1, α2 ∈ E, so that a = Zα1 + Zα2, then the (absolute) norm of a is

N(a) = |α1σ(α2)− α2σ(α1)|√
D

,

where σ denotes the nontrivial Galois automorphism of E. The ideal a is said to be
oriented with respect to the generators α1, α2 if α1σ(α2)− α2σ(α1) > 0 and to be of
level q if

N(α1)
N(a) ≡ 0 (mod q) and Tr(α1σ(α2))

N(a) ≡ r (mod 2q).

We denote by [a;α1, α2] the oriented ideal a with respect to the generators α1, α2.
The congruence subgroup Γ0(q) 3 γ acts on the set of such triples [a;α1, α2] by acting
trivially on the ideal a and mapping the pair of generators (α1, α2) ∈ E2, viewed as
a row vector, to (α1, α2)γ. This action preserves oriented ideals of level q. The set

I := {(α) = αOE ⊂ E : α ∈ E, α, σ(α) > 0}

of totally positive principal ideals — equivalently, the identity in the narrow class
group — acts on an oriented ideal [a;α1, α2] of level q via the map (α) · [a;α1, α2] :=
[(α)a;αα1, αα2], and this action commutes with the action of Γ0(q). In this way,
each narrow ideal class of Cl+D may be bijectively identified with equivalence classes
of oriented ideals of level q modulo the action of Γ0(q) and I.
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2.1.2. Binary quadratic forms. For each trio of integers (a, b, c) ∈ Z3 having greatest
common divisor equal to 1 and satisfying b2 − 4ac = D, a ≡ 0 (mod q), and b ≡ r
(mod 2q), we define the integral binary quadratic form
(2.1) Q(x, y) = ax2 + bxy + cy2,

which is a primitive form of level q and discriminant b2 − 4ac = D. We write Q =
[a, b, c] to denote this form and call such a form a Heegner form, following [Dar94];
we denote the set of such forms by QD(q). The congruence subgroup Γ0(q) 3 γ acts
on integral binary quadratic forms via

(γ ·Q)(x, y) := Q(γ(x, y)),
where we view (x, y) as a column vector; moreover, this action preserves QD(q).

To each equivalence class I · [a;α1, α2] of oriented ideals of level q, we associate the
Heegner form Q = QI·[a;α1,α2] ∈ QD(q) given by

Q(x, y) := N(α1x+ α2y)
N(a) .

Conversely, associated to each Heegner form Q = [a, b, c] ∈ QD(q) as in (2.1) is the
equivalence class of oriented ideals of level q given by

(2.2)





I ·
[
a; a, b−

√
D

2

]
if a > 0,

I ·
[
a;−a

√
D,

D − b
√
D

2 ,

]
if a < 0.

This map is a bijection between QD(q) and equivalence classes of oriented ideals of
level q. This association descends to a bijection between narrow ideal classes of the
narrow class group Cl+D and equivalence classes of primitive integral binary quadratic
forms of level q and discriminant D modulo the action of Γ0(q).

2.1.3. Oriented embeddings. Again let (a, b, c) ∈ Z3 have greatest common divisor
equal to 1 and satisfy b2 − 4ac = D, a ≡ 0 (mod q), and b ≡ r (mod 2q). We define
an embedding Ψ : E ↪→ Mat2×2(Q) by

(2.3) Ψ(x+
√
Dy) :=

(
x+ by 2cy
−2ay x− by

)

for x, y ∈ Q. This satisfies
Ψ(E) ∩ {g ∈ Mat2×2(Z) : g2,1 ≡ 0 (mod q)} = Ψ(OE),

whereOE denotes the ring of integers of E; that is, Ψ is an oriented optimal embedding
of level q. Conversely, every oriented optimal embedding of level q arises from such
a trio of integers (a, b, c) ∈ Z3. The congruence subgroup Γ0(q) acts on the set of
optimal oriented embeddings of level q by conjugation, namely

(γ ·Ψ)(x+
√
Dy) := γ−1Ψ(x+

√
Dy)γ

for γ ∈ Γ0(q), and this action preserves optimal oriented embeddings of level q.
There is a natural bijection between oriented optimal embeddings Ψ of level q as

in (2.3) and Heegner forms Q = [a, b, c] as in (2.1), since these are both completed
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determined by (a, b, c) ∈ Z3; in turn, there is a bijection with equivalence classes of
oriented ideals of level q as in (2.2). Again, this descends to a bijection between narrow
ideal classes A of the narrow class group Cl+D and equivalence classes of oriented
optimal embeddings of level q modulo the action of Γ0(q).

2.1.4. Closed geodesics. Associated to a Heegner form Q = [a, b, c] ∈ QD(q) as in (2.1)
is an oriented geodesic in the upper half-plane connecting the two points −b−

√
D

2a and
−b+
√
D

2a , namely the Euclidean semicircle

(2.4)
{
z ∈ H : a|z|2 + b<(z) + c = 0

}

oriented anticlockwise if a > 0 and clockwise if a < 0.
Let εD > 1 be the least unit with positive norm in OE , so that εD = u+

√
Dv with

u, v positive half-integers that satisfy Pell’s equation u2 − Dv2 = 1 and minimise v
among all such positive half-integral solutions. For the oriented optimal embedding
Ψ of level q as in (2.3) associated to Q, define

γQ := Ψ(εD) =
(
u+ bv 2cv
−2av u− bv

)
∈ Γ0(q).

Together with
(−1 0

0 −1
)
, this generates the group of automorphs of Q,

Γ0(q)Q := {γ ∈ Γ0(q) : γ ·Q = Q} .
Let A be the narrow ideal class associated to the equivalence class of Heegner forms
modulo Γ0(q) that contains Q. We let CA(q) denote the reduction modulo Γ0(q) of
the oriented geodesic segment from zQ to γQzQ, where
(2.5)

zQ :=





−b+ i
√
D

2a if a > 0,

b+ i
√
D

−2a if a < 0,
γQzQ =





−b(u2 +Dv2)− 2Duv + i
√
D

2a(u2 +Dv2) if a > 0,

b(u2 +Dv2) + 2Duv + i
√
D

−2a(u2 +Dv2) if a < 0.

This is an oriented closed geodesic in Γ0(q)\H.

2.2. Hyperbolic orbifolds. We will now briefly recall the definition of the Fuchsian
groups ΓA and the hyperbolic orbifolds ΓA\NA as in [DIT16, Section 3]. In particular
we will work with trivial level q = 1.

Let A be a narrow ideal class of E. Then we know that A contains an ideal of the
form ωZ+Z with ω ∈ E and ω > ωσ, where σ is the non-trivial Galois automorphism
of E. Then we consider the minus continuous fraction expansion of ω:

w = a0 −
1

a1 −
1

a2 −
1

a3 −
1
. . .

,

where aj ∈ Z with aj ≥ 2 for j ≥ 1. The sequence a0, a1, . . . is eventually period
and we denote by ((n1, . . . , nl)) its unique primitive cycle (only defined up to cyclic
permutation).
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Now we let S :=
( 0 −1

1 0
)
and T := ( 1 1

0 1 ) and consider the following elements of Γ:

Sk = T (n1+...+nk)ST−(n1+...+nk),

for k = 1, . . . , l. Then we define
ΓA := 〈S1, . . . , Sl, T

(n1+...+nl)〉,
which one can show is a Fuchsian group of the second kind. Let NA be the associated
Nielsen region, which is the smallest nonempty ΓA-invariant open convex subset of
H. Then ΓA\NA is a hyperbolic orbifold with boundary component equal to CA(1),
when projected down to Γ\H.

Unlike for geodesics the area of the surfaces ΓA\NA might be different for different
A. However using the explicit construction described above it follows from [DIT16,
Proof of Proposition 1] that we have the following lower bound

(2.6)
∑

A∈CH
vol(ΓA\NA) > #H log εD

log(
√
D + 1)

,

where H is a subgroup of Cl+D and C ∈ Cl+D.

3. Adèlisation of Maaß cusp forms

We review some standard notions about Maaß cusp forms of weight k, level q, and
principal nebentypus, with an emphasis on forms of weight 0 and the action of raising
and lowering operators on such forms. We then describe the relation between such
classical automorphic forms and adèlic automorphic forms, highlighting the corre-
spondence between Whittaker functions of representations of GL2(R) and GL2(Qp),
the Whittaker expansion of an adèlic automorphic form, and the Fourier expansion of
a classical automorphic form. This explicit correspondence is invaluable in Section 4,
where we prove an identity between integrals of Maaß forms over hyperbolic orbifolds
and period integrals of adèlic automorphic forms. Useful references for this material
include [DFI02, Section 4], [GH11, Chapters 3 and 4], [Sch02], and [Pop08].

3.1. Maaß cusp forms. Let k be an integer, q be a positive integer, and denote by
Ck(Γ0(q)) the vector subspace of L2(Γ0(q)\H) spanned by Maaß cusp forms of weight
k, level q, and principal nebentypus, in the sense of [DFI02, Section 4]. Such a Maaß
cusp form is a real-analytic function f : H→ C for which

• f is an eigenfunction of the weight k Laplacian

∆k = −y2
(
∂2

∂x2 + ∂2

∂y2

)
+ iky

∂

∂x
,

so that ∆kf(z) = λff(z) for some λf ∈ C (and necessarily λf ∈ [ 1
4 −( 7

64
)2
,∞)),

• f is automorphic, so that jγ(z)−kf(γz) = f(z) for all z ∈ H and γ ∈ Γ0(q),
where for g =

(
a b
c d

)
∈ GL+

2 (R), the space of 2× 2 matrices with real entries
and positive determinant,

(3.1) gz := az + b

cz + d
, jg(z) := cz + d

|cz + d| ,
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• f is of moderate growth, and
• f is cuspidal, so that for each cusp b of Γ0(q)\H,

∫ 1

0
jσb

(z)−kf(σbz) dx = 0

for all y > 0, where σb ∈ SL2(R) is a scaling matrix for b.

3.1.1. The Fourier expansion and Hecke eigenvalues of a Maaß cusp form. The Fourier
expansion at the cusp at infinity of a weight 0 Maaß cusp form f ∈ C0(Γ0(q)) is

(3.2) f(z) =
∞∑

n=−∞
n6=0

ρf (n)W0,itf (4π|n|y)e(nx),

where Wα,β is a Whittaker function and tf ∈ R∪ i[− 7
64 ,

7
64 ] is the spectral parameter

of f , so that λf = 1/4 + t2f . If f is additionally a Hecke–Maaß newform, namely an
eigenfunction of the n-th Hecke operator Tn for all n ∈ N as well as the reflection op-
erator X : C0(Γ0(q))→ C0(Γ0(q)) given by (Xf)(z) := f(−z), the Fourier coefficients
ρf (n) and Hecke eigenvalues λf (n) of f satisfy

• ρf (1)λf (n) =
√
nρf (n) for n ∈ N,

• ρf (n) = εfρf (−n) for n ∈ Z, where εf ∈ {1,−1} is the parity of f , so that
Xf = εff ,

• for all m,n ∈ N, the Hecke eigenvalues satisfy the multiplicativity relations

λf (m)λf (n) =
∑

d|(m,n)
(d,q)=1

λf

(mn
d2

)
, λf (mn) =

∑

d|(m,n)
(d,q)=1

µ(d)λf
(m
d

)
λf

(n
d

)
,

• for each p - q, there exists αf (p) ∈ C satisfying p− 7
64 ≤ |αf (p)| ≤ p

7
64 such

that for all r ≥ 0,

(3.3) λf (pr) =
r∑

m=0
αf (p)mα−1

f (p)r−m.

• for each p ‖ q, there exists αf (p) ∈ {1,−1} such that for all r ≥ 0,

(3.4) λf (pr) = αf (p)r
pr/2

,

• for each prime p for which p2 | q, we have that λf (pr) = 0 for all r ≥ 0.

3.1.2. Raising and lowering operators. The weight k raising operator

Rk := k

2 + (z − z) ∂

∂z
= k

2 + iy

(
∂

∂x
− i ∂

∂y

)

acts on Ck(Γ0(q)) and raises the weight by 2; that is, its image lies in Ck+2(Γ0(q)).
Similarly, the weight k lowering operator

Lk := −k2 − (z − z) ∂

∂z
= −k2 − iy

(
∂

∂x
+ i

∂

∂y

)
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maps Ck(Γ0(q)) to Ck−2(Γ0(q)). From [GH11, Proposition 3.9.13], if f ∈ C0(Γ0(q))
is a Hecke–Maaß newform of weight 0 and level q with Fourier expansion (3.2), then
the Fourier expansion of the weight k Maaß cusp form Fk ∈ Ck(Γ0(q)) defined by

(3.5) Fk :=
{
Rk−2 · · ·R0f if k ∈ 2N ∪ {0},
Lk+2 · · ·L0f if k ∈ −2N,

is given by

(3.6) Fk(z) =
Γ
(
k+1

2 + it
)

Γ
(
k+1

2 − it
)

Γ
( 1

2 + it
)

Γ
( 1

2 + it
) εfρf (1)

−1∑

n=−∞

λf (|n|)√
|n|

W− k2 ,itf (4π|n|y)e(nx)

+ (−1) k2 ρf (1)
∞∑

n=1

λf (n)√
n
W k

2 ,itf
(4πny)e(nx)

if k ∈ 2N ∪ {0}, while if k ∈ −2N, the Fourier expansion is

(3.7) Fk(z) = (−1) k2 εfρf (1)
−1∑

n=−∞

λf (|n|)√
|n|

W− k2 ,itf (4π|n|y)e(nx)

+
Γ
( 1−k

2 + it
)

Γ
( 1−k

2 − it
)

Γ
( 1

2 + it
)

Γ
( 1

2 + it
) ρf (1)

∞∑

n=1

λf (n)√
n
W k

2 ,itf
(4πny)e(nx).

3.2. Adèlic automorphic forms.

3.2.1. The adèlic lift of a Maaß cusp form. Following [GH11, Sections 4.11 and 4.12],
we describe the adèlic lift of a Maaß cusp form f ∈ Ck(Γ0(q)). We first lift f ∈
Ck(Γ0(q)) to a function f̃ : GL+

2 (R)→ C defined via

(3.8) f̃(g) := jg(i)−kf(gi).

For all g ∈ GL+
2 (R) and θ ∈ [0, 2π), this satisfies

f̃

(
g

(
cos θ sin θ
− sin θ cos θ

))
= eikθf̃(g).

Next, we lift f̃ to an adèlic automorphic form φ = φf on GL2(AQ), where AQ
denotes the ring of adèles of Q. To describe this lift, we first let K0(q) 3 k =
(k∞, k2, k3, k5, . . .) denote the congruence subgroup of GL2(AQ) of the form
(3.9)

K0(q) :=
{
k ∈ GL2(AQ) : k∞ = 1, kp =

(
ap bp
cp dp

)
∈ GL2(Zp), cp ∈ prZp if pr ‖ q

}
.

Here 1 denotes the 2 × 2 identity matrix. We view GL+
2 (R) 3 g∞ as a subgroup of

GL2(AQ) via the embedding g∞ 7→ (g∞, 1, 1, . . .). Finally, we view GL2(Q) 3 γ as
a subgroup of GL2(AQ) via the diagonal embedding γ 7→ (γ, γ, γ, . . .). Then via the
strong approximation theorem,

(3.10) GL2(AQ) = GL2(Q) GL+
2 (R)K0(q),
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so that every g ∈ GL2(AQ) can be written (non-uniquely) as g = γg∞k for some
γ ∈ GL2(Q), g∞ ∈ GL+

2 (R), and k ∈ K0(q). The adèlic lift φ = φf of a Maaß cusp
form f ∈ Ck(Γ0(q)) is then given by

(3.11) φ(g) = φ(γg∞k) := f̃(g∞).
This is well-defined even though the decomposition g = γg∞k is not unique. In
particular,
(3.12) φ(g) = f(x+ iy)

for g = g∞ = ( y x0 1 ) ∈ GL+
2 (R) ⊂ GL2(AQ) with y > 0 and x ∈ R.

3.2.2. The Whittaker expansion of an adèlic automorphic form. Let ψ : Q\AQ → C
be the standard adèlic additive character defined as in [GH11, Definition 1.7.1], so
that ψ(u) = ψ∞(u∞)

∏
p ψp(up) for u = (u∞, u2, u3, . . .) ∈ AQ with ψ∞ : R → C

the additive character ψ∞(u∞) := e(u∞) := e2πiu∞ and ψp : Qp → C the standard
unramified additive character defined in [GH11, Definition 1.6.3]. The Whittaker
function Wφ : GL2(AQ)→ C of a cuspidal adèlic automorphic form φ is

Wφ(g) :=
∫

Q\AQ
φ

((
1 u
0 1

)
g

)
ψ(u) du,

which satisfies

(3.13) Wφ

((
1 u
0 1

)
g

)
= ψ(u)Wφ(g)

for all u ∈ AQ and g ∈ GL2(AQ). The automorphic form φ has the Whittaker
expansion

(3.14) φ(g) =
∑

α∈Q×
Wφ

((
α 0
0 1

)
g

)
.

3.2.3. The Whittaker expansion of an adèlic lift. Let φ = φFk be the adèlic lift of a
Maaß cusp form Fk ∈ Ck(Γ0(q)) of weight k associated to a Hecke–Maaß newform
f ∈ C0(Γ0(q)) of weight 0 as in (3.5). Then φ is a pure tensor lying in the vector
space of a cuspidal automorphic representation π = πf = π∞ ⊗

⊗
p πp of GL2(AQ),

where each πp is a generic irreducible admissible unitary representation of GL2(Qp)
and π∞ is a generic irreducible unitary Casselman–Wallach representation of GL2(R).
In particular, for g = (g∞, g2, g3, . . .) ∈ GL2(AQ), we have the factorisation

(3.15) Wφ(g) = cφW∞(g∞)
∏

p

Wp(gp),

where cφ is a constant independent of g, each Wp is a Whittaker function in the
Whittaker model W(πp, ψp) of πp, and similarly W∞ ∈ W(π∞, ψ∞).

We show in Section 3.2.4 that the Whittaker functionsWp are such that for α ∈ Q×,

∏

p

Wp

(
α 0
0 1

)
=





λf (|n|)√
|n|

if α = n ∈ Z \ {0},

0 otherwise.
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In Section 3.2.5, we will show that for n ∈ Z \ {0} and y > 0,

W∞

(
ny 0
0 1

)

=





(−1) k2W k
2 ,it

(4πny), n ∈ N, k ∈ 2N ∪ {0},

εf
Γ
(
k+1

2 + it
)

Γ
(
k+1

2 − it
)

Γ
( 1

2 + it
)

Γ
( 1

2 − it
) W− k2 ,it(4π|n|y), n ∈ −N, k ∈ 2N ∪ {0},

Γ
( 1−k

2 + it
)

Γ
( 1−k

2 − it
)

Γ
( 1

2 + it
)

Γ
( 1

2 − it
) W k

2 ,it
(4πny), n ∈ N, k ∈ −2N,

εf (−1) k2W− k2 ,it(4π|n|y), n ∈ −N, k ∈ −2N.

From this, we see that the constant cφ in (3.15) is equal to ρf (1) by taking g = g∞ =
( y x0 1 ) ∈ GL+

2 (R) ⊂ GL2(AQ) with y > 0 and x ∈ R in (3.14), so that by (3.12) and
(3.13),

Fk(x+ iy) = φ(g) = cφ
∑

α∈Q×
W∞

(
αy 0
0 1

)∏

p

Wp

(
α 0
0 1

)
e(αx),

and comparing this adèlic Whittaker expansion to the classical Fourier expansion at
the cusp at infinity (3.6) and (3.7).

3.2.4. Nonarchimedean Whittaker functions. Let φ = φFk be the adèlic lift of a Maaß
cusp form Fk ∈ Ck(Γ0(q)) associated to a Hecke–Maaß newform f ∈ C0(Γ0(q)) as
in (3.5) with q squarefree. For each prime p, the local Whittaker functions Wp ∈
W(πp, ψp) are of a distinguished form. One can explicitly describe the values of the
Whittaker function Wp(gp) for gp = ( a 0

0 1 ) with a ∈ Q×p ; see [Sch02, Section 2.4].
• For p - q, the representation πp is a spherical principal series representa-
tion ωp � ω−1

p , where ωp is an unramified character of Q×p satisfying p− 7
64 ≤

|ωp(p)|p ≤ p
7
64 and | · |p denotes the p-adic absolute value normalised such

that |p|p = p−1. This character is such that ωp(p) is equal to αf (p) as in
(3.3). For a ∈ Q×p , let v(a) ∈ Z be such that |a|p = p−v(a). There is a distin-
guished Whittaker function, the spherical Whittaker function, that is right
GL2(Zp)-invariant and satisfies

Wp

(
a 0
0 1

)
=





v(a)∑

m=0
ωp(p)mω−1

p (p)v(a)−m|a|1/2p if 0 < |a|p ≤ 1, so that v(a) ≥ 0,

0 if |a|p ≥ p, so that v(a) ≤ −1.

• For p | q, the representation πp is a special representation ωp Stp, where ωp
is an unramified unitary character of Q×p , so that ωp(p) ∈ {1,−1}. This
character is such that ωp(p) is equal to αf (p) as in (3.4). There is a distin-
guished Whittaker function, the Whittaker newform, that is right-invariant
under the congruence subgroup of GL2(Zp) consisting of elements

(
a b
c d

)
for
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which c ∈ pZp and satisfies

Wp

(
a 0
0 1

)
=
{
ωp(a)|a|p if 0 < |a|p ≤ 1, so that v(a) ≥ 0,
0 if |a|p ≥ p, so that v(a) ≤ −1.

3.2.5. Archimedean Whittaker functions. Let φ = φFk be the adèlic lift of a Maaß cusp
form Fk ∈ Ck(Γ0(q)) associated to a Hecke–Maaß newform f ∈ C0(Γ0(q)) as in (3.5).
The local Whittaker function W∞ = W k

∞ ∈ W(π∞, ψ∞) is again of a distinguished
form. Since f has weight 0, the representation π∞ is a principal series representation
of the form sgnκ | · |it∞ � sgnκ | · |−it∞ with κ = κf ∈ {0, 1} and t = tf ∈ R ∪ i[− 7

64 ,
7
64 ]

such that (−1)κf = εf is the parity of f and tf is the spectral parameter of f , so
that 1/4 + t2f = λf is the Laplacian eigenvalue of f . Here | · |∞ = | · | is the usual
archimedean absolute value on R.

The following claims are essentially implicit (albeit with some typographical errors)
in the seminal work of Jacquet–Langlands [JL70, Section 2.5], as further detailed by
Godement [God18, Sections 2.3–2.6]; see also [Pop08]. For the sake of completeness,
we give explicit proofs.

• For each k ∈ 2Z, there exists a distinguished Whittaker function W k
∞ ∈

W(π∞, ψ∞), where π∞ = sgnκ | · |it∞� sgnκ | · |−it∞ , that is of weight k, so that
for all g∞ ∈ GL2(R) and θ ∈ [0, 2π), it satisfies

(3.16) W k
∞

(
g∞

(
cos θ sin θ
− sin θ cos θ

))
= eikθW k

∞(g∞).

• For all a ∈ R×, this distinguished Whittaker function satisfies

W k
∞

(
a 0
0 1

)

=





(−1) k2W k
2 ,it

(4πa), a > 0, k ∈ 2N ∪ {0},

(−1)κ
Γ
(
k+1

2 + it
)

Γ
(
k+1

2 − it
)

Γ
( 1

2 + it
)

Γ
( 1

2 − it
) W− k2 ,it(4π|a|), a < 0, k ∈ 2N ∪ {0},

Γ
( 1−k

2 + it
)

Γ
( 1−k

2 − it
)

Γ
( 1

2 + it
)

Γ
( 1

2 − it
) W k

2 ,it
(4πa), a > 0, k ∈ −2N,

(−1)κ+ k
2W− k2 ,it(4π|a|), a < 0, k ∈ −2N.

(3.17)

• For κ′ ∈ {0, 1} and <(s) ≥ 1/2, we have that

(3.18)
∫

R×
W 2
∞

(
a 0
0 1

)
sgnκ

′
(a)|a|s− 1

2 d×a

=





−2π−sΓ
(
s+ 1 + it

2

)
Γ
(
s+ 1− it

2

)
if κ ≡ κ′ + 1 (mod 2),

(
1
2 − s

)
π−sΓ

(
s+ it

2

)
Γ
(
s− it

2

)
if κ ≡ κ′ (mod 2),

where d×a := |a|−1 da denotes the multiplicative Haar measure on R×.
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• We have that

(3.19)
∫

R×

∣∣∣∣W 2
∞

(
a 0
0 1

)∣∣∣∣
2
d×a =

(
1
4 + t2

)
Γ
(

1
2 + it

)
Γ
(

1
2 − it

)
.

Proof of (3.16). Let π∞ = sgnκ | · |t1∞ � sgnκ | · |t2∞ be a principal series representation
with κ ∈ {0, 1} and t1, t2 ∈ C. We initially assume that <(t1) > <(t2). For each
k ∈ 2Z and (x1, x2) ∈ R2, let

Φk(x1, x2) := (x2 − sgn(k)ix1)|k|e−π(x2
1+x2

2)

=
{

(x2 − ix1)ke−π(x2
1+x2

2), k ∈ 2N ∪ {0},
(x2 + ix1)−ke−π(x2

1+x2
2), k ∈ −2N.

(3.20)

Define the Godement section

(3.21) ϕk∞(g∞) := π
|k|
2 sgnκ(det g∞) |det g∞|t1+ 1

2

∫

R×
|y|t2−t1−1Φk((0, y−1)g∞) d×y.

This Godement section converges absolutely and defines an element of the induced
model of π∞ of weight k; that is,

ϕk∞

((
a b
0 d

)
g∞

)
= sgnκ(a)|a|t1+ 1

2 sgnκ(d)|d|t2− 1
2ϕk∞(g∞),

ϕk∞

(
g∞

(
cos θ sin θ
− sin θ cos θ

))
= eikθϕk∞(g∞)

for all a, d ∈ R×, b ∈ R, g∞ ∈ GL2(R), and θ ∈ [0, 2π). Moreover, the Jacquet
integral

W k
∞(g∞)

:=
∫

R
ϕk∞

((
0 −1
1 0

)(
1 u
0 1

)
g∞

)
e−2πiu du

= π
|k|
2 sgnκ(det g∞) |det g∞|t1+ 1

2

∫

R×
|y|t2−t1

∫

R
Φk((y−1, u)g∞)e−2πiyu du d×y

(3.22)

converges absolutely and defines an element of the Whittaker model W(π∞, ψ∞) of
π∞ of weight k. The Whittaker function W k

∞ extends holomorphically as a function
of the complex variables t1, t2 ∈ C to (t1, t2) = (it,−it) with t ∈ R ∪ i[− 7

64 ,
7
64 ]. This

holomorphic extension defines a weight k element of the Whittaker modelW(π∞, ψ∞)
of π∞ = sgnκ | · |it∞ � sgnκ | · |−it∞ . �

Proof of (3.17). For a ∈ R×, we have that

(3.23) W k
∞

(
a 0
0 1

)
= π

|k|
2 sgnκ(a)|a|it+ 1

2

∫

R×
|y|−2it

∫

R
Φk(y−1a, u)e−2πiyu du d×y

from (3.22). Since Φk(x1, x2) = Φ−k(−x1, x2), we see that

(3.24) W k
∞

(
a 0
0 1

)
= (−1)κW−k∞

(
−a 0
0 1

)
.

Thus it suffices to prove (3.17) for a > 0.
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For a > 0 and k ∈ 2N ∪ {0}, we have that

W k
∞

(
a 0
0 1

)
= 4π k2

√
ae2πa

∫ ∞

0
cos(2ty)

∫

R
uke−πu

2
e−4πiu

√
a cosh y du dy

upon inserting the identity (3.20) for Φk into (3.23), making the change of variables
u 7→ u + iy−1a, shifting the contour of integration back to the line =(u) = 0 via
Cauchy’s integral theorem, and making the change of variables y 7→ √aey. By [GR15,
9.241.1], the inner integral is

(−2π)− k2 e−2πa cosh2 yDk(2
√

2πa cosh y),

where Dk is a parabolic cylinder function. Then by [GR15, 7.731.1], we deduce that

W k
∞

(
a 0
0 1

)
= (−1) k2W k

2 ,it
(4πa).

Similarly, for a > 0 and k ∈ −2N, we have that

W k
∞

(
a 0
0 1

)
= 4π− k2

√
ae−2πa

∫ ∞

0
cos(2ty)

∫

R
u−ke−πu

2
e−4πiu

√
a sinh y du dy.

Via Parseval’s identity and [GR15, 8.432.4], this is

4π1− k2
√
ae−2πa

Γ
( 1

2 + it
)

Γ
( 1

2 − it
)
∫

R
u−ke−πu

2
K2it(4π

√
au) du,

whereK2it is a modified Bessel function of the second kind, which, by [GR15, 6.631.3],
is equal to

Γ
( 1−k

2 + it
)

Γ
( 1−k

2 − it
)

Γ
( 1

2 + it
)

Γ
( 1

2 − it
) W k

2 ,it
(4πa). �

Proof of (3.18). We insert the identity (3.23) forW 2
∞ into the left-hand side of (3.18),

make the change of variables a 7→ ya and u 7→ u + ia, then shift the contour of
integration back to the line =(u) = 0, yielding

π

∫

R×
sgnκ+κ′(a)|a|s+it

∫

R×
sgnκ+κ′(y)|y|s−ite2πya

∫

R×
u2e−πu

2
e−2πi(y+a)u du d×y d×a.

The innermost integral may be evaluated via integration by parts, leading to

1
2

∫

R×
sgnκ+κ′(a)|a|s+ite−πa2

d×a
∫

R×
sgnκ+κ′(y)|y|s−ite−πy2

d×y

− π
∫

R×
sgnκ+κ′(a)|a|s+ite−πa2

d×a
∫

R×
sgnκ+κ′(y)|y|s+2−ite−πy

2
d×y

− π
∫

R×
sgnκ+κ′(a)|a|s+2+ite−πa

2
d×a

∫

R×
sgnκ+κ′(y)|y|s−ite−πy2

d×y

− 2π
∫

R×
sgnκ+κ′+1(a)|a|s+1+ite−πa

2
d×a

∫

R×
sgnκ+κ′+1(y)|y|s+1−ite−πy

2
d×y.

The first three expressions vanish if κ ≡ κ′+1 (mod 2), while the last vanishes if κ ≡
κ′ (mod 2). The result then follows via the recurrence relation Γ(s+ 1) = sΓ(s). �
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Proof of (3.19). The left-hand side of (3.19) is
∫ ∞

0

(
W1,it(4πa)2 +

(
1
4 + t2

)2
W−1,it(4πa)2

)
da

a

from (3.17). The desired identity then follows from the change of variables a 7→ a/4π
together with [GR15, 7.611.4, 8.365, and 8.368]. �

4. Weyl sums

4.1. Weyl sums for newforms and L-Functions. Let f ∈ C0(Γ) be a Hecke–
Maaß newform of level 1, and let χ be a narrow class character of E. Our goal is to
relate the twisted Weyl sum

(4.1) Wχ,f :=
∑

A∈Cl+
D

χ(A)
∫

ΓA\NA

f(z) dµ(z)

to a special value of the Rankin–Selberg L-function L(s, f ⊗Θχ), where Θχ denotes
the theta series associated to χ, as in [HK20, Appendix A.1], which is a newform
of weight 0, level D, nebentypus χD, Laplacian eigenvalue λΘχ = 1/4, and parity
εΘχ = χ(J) ∈ {1,−1}, where J is the narrow ideal class containing the different. The
automorphic form Θχ is a cusp form if and only if χ is complex; otherwise Θχ is an
Eisenstein series and χ is a genus character.

Proposition 4.2. Let f ∈ C0(Γ) be a Hecke–Maaß newform of level 1 normalised
such that ∫

Γ\H
|f(z)|2 dµ(z) = 1,

and let χ be a narrow class character of E. We have that

|Wχ,f |2 =





2
√
D

(
1
4 + t2f

)2

Γ
(

3
4 + itf

2

)2
Γ
(

3
4 −

itf
2

)2

Γ
( 1

2 + itf
)

Γ
( 1

2 − itf
) L

( 1
2 , f ⊗Θχ

)

L(1, sym2 f) if εf = −χ(J),

0 if εf = χ(J),

where tf ∈ R∪ i[− 7
64 ,

7
64 ] denotes the spectral parameter and εf ∈ {1,−1} denotes the

parity of f .

Remark 4.3. In terms of the completed L-functions

Λ(s, f ⊗Θχ) := π−2(s+|κf−κχ|) Γ
(
s+ |κf − κχ|+ itf

2

)2

· Γ
(
s+ |κf − κχ| − itf

2

)2
L(s, f ⊗Θχ),

Λ(s, sym2 f) := π−
3s
2 Γ
(s

2 + itf

)
Γ
(s

2

)
Γ
(s

2 − itf
)
L(s, sym2 f),

this is
2π2√D
(

1
4 + t2f

)2
Λ
( 1

2 , f ⊗Θχ

)

Λ(1, sym2 f) .
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Remark 4.4. It is instructive to consider the case where χ is a genus character as-
sociated to the pair of primitive quadratic Dirichlet characters χD1 and χD2 modulo
|D1| and |D2| respectively, where D1 and D2 are fundamental discriminants for which
D1D2 = D. Then Θχ is the Eisenstein newform associated to χD1 and χD2 , as de-
scribed in [You19], and so L(s, f ⊗ Θχ) = L(s, f ⊗ χD1)L(s, f ⊗ χD2). Since D > 0,
either D1, D2 > 0 or D1, D2 < 0; in the former case, we have that χ(J) = 1, while
χ(J) = −1 in the latter case. Proposition 4.2 then gives the identity
(4.5)

|Wχ,f |2 =





2
√
D

(
1
4 + t2f

)2

Γ
(

3
4 + itf

2

)2
Γ
(

3
4 −

itf
2

)2

Γ
( 1

2 + itf
)

Γ
( 1

2 − itf
) L

( 1
2 , f ⊗ χD1

)
L
( 1

2 , f ⊗ χD2

)

L(1, sym2 f)

if εf = − sgn(D1) = − sgn(D2),
0 if εf = sgn(D1) = sgn(D2).

We see that the Weyl sum Wχ,f vanishes if f is even and D1, D2 > 0 or if f is odd
and D1, D2 < 0; additionally, Wχ,f vanishes if f is odd and D1, D2 > 0, for then
the root numbers of f ⊗ χD1 and f ⊗ χD2 are both equal to −1 [HK20, Lemma A.2],
and hence L(s, f ⊗ χD1) and L(s, f ⊗ χD2) both vanish at s = 1/2. These vanishing
results and the identity (4.5) when f is even and D1, D2 < 0 are in exact accordance
with the work of Duke, Imamoḡlu, and Tóth [DIT16, Theorem 4 and (5.17)].

Similarly, letting E(z, s) denote the Eisenstein series on Γ\H, which has parity 1,
we wish to relate the Weyl sum

(4.6) Wχ,t :=
∑

A∈Cl+
D

χ(A)
∫

ΓA\NA

E

(
z,

1
2 + it

)
dµ(z)

to a special value of L(s,Θχ) = L(s, χ).

Proposition 4.7. Let χ be a narrow class character of E. For t ∈ R, we have that

Wχ,t =





2D 1
4 + it

2

1
4 + t2

Γ
( 3

4 + it
2
)2

Γ
( 1

2 + it
) L

( 1
2 + it,Θχ

)

ζ(1 + 2it) if χ(J) = −1,

0 otherwise.

Remark 4.8. This is
2πD 1

4 + it
2

1
4 + t2

Λ
( 1

2 + it,Θχ

)

Λ(1 + 2it)
in terms of the completed L-functions

Λ(s,Θχ) := π−s−1Γ
(
s+ 1

2

)2
L(s,Θχ), Λ(s) := π−

s
2 Γ
(s

2

)
ζ(s).

The proofs of Propositions 4.2 and 4.7 are given in Section 4.5. Our method is
to first prove identities relating certain adèlic period integrals to L-functions, then
show that these adèlic period integrals are equal to integrals over closed geodesics,
and finally relate these integrals over closed geodesics to integrals over hyperbolic
orbifolds.
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Remark 4.9. The automorphic setup allows very naturally to work with general level.
Thus it is tempting to try to obtain sparse equidistribution results in the level aspect
in the spirit of [LMY13]. All of our arguments goes through, except that we at the
moment do not have a satisfactory definition of the hyperbolic orbifolds in the higher
level case. This is work in progress.

4.2. Adèlic period integrals and choice of test vectors. The first step towards
proving Proposition 4.2 is to apply a formula due to Martin and Whitehouse [MW09],
which relates certain adèlic period integrals to a ratio of special values of L-functions.
In this section, we describe in some detail how the results of Martin and Whitehouse
apply in our specific case. This part of the argument applies equally well for general
levels, and so we will work in this generality.

4.2.1. Waldspurger-type formulæ. Following the pioneering work of Waldspurger
[Wal85], there has been considerable work in obtaining explicit formulæ relating
adèlic period integrals and central values of Rankin–Selberg L-functions, as in work
of Gross [Gro88], Zhang [Zha01], Martin and Whitehouse [MW09], and File, Martin,
and Pitale [FMP17], among others. The setting is as follows: let π be an automorphic
representation of GL2(AF ) for some number field F , let E be a quadratic extension
of F embedded in a quaternion algebra D defined over F , let Ω : E×\A×E → C× be
a unitary Hecke character for which Ω|A×

F
is equal to the central character of π, and

let φ be a test vector in the automorphic representation πD of D×(AF ) corresponding
to π via the Jacquet–Langlands correspondence. Then we define the adèlic period
integral

PD
Ω (φ) :=

∫

A×
F
E×\A×

E

φ(x)Ω−1(x) dx.

Note that implicitly this depends on a choice of embedding A×E ↪→ D×(AF ), which is
suppressed in the notation, as well as a choice of normalisation of the measure dx.

An amazing result of Waldspurger [Wal85] is the following formula;

(4.10) |PD
Ω (φ)|2
〈φ, φ〉 = cΩ,φ

Λ
( 1

2 , πE ⊗ Ω
)

Λ(1, sym2 π) ,

where φ is any nonzero test vector in πD and cΩ,φ is a finite product of local fac-
tors. Here πE denotes the base change of π to an automorphic representation of
GL2(AE); alternatively, we may write Λ(s, πE ⊗Ω) = Λ(s, π ⊗ πΩ), where πΩ denote
the automorphic induction of Ω to an automorphic representation of GL2(AF ).

4.2.2. An explicit formula. For applications in analytic number theory, it is essential
that we have at our disposal a completely explicit form of Waldspurger’s formula
(4.10). Martin and Whitehouse [MW09, Theorem 4.1] provide such a formula for a
specific choice of test vector φ ∈ πD (assuming some local compatibility between Ω
and π, which were slightly relaxed by File, Martin, and Pitale [FMP17]). For this
specific choice of test vector, the local factors (whose product we denoted by cΩ,φ in
(4.10)) are described in [MW09, Section 4.2].

For our application, we can restrict to the case where F = Q, E = Q(
√
D) with

D > 1 a positive fundamental discriminant, π = πf = π∞ ⊗
⊗

p πp is a cuspidal
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automorphic representation of GL2(AQ) associated to a Hecke–Maaß newform f of
weight 0, principal nebentypus, and squarefree level q for which every prime diving q
splits in E, and Ω is the idèlic lift of a narrow class character χ. With this choice of
data, the quaternion algebra D is simply the matrix algebra Mat2×2, so that πD = π.
We will shorten notation and write PΩ(φ) := PD

Ω (φ) in this case.
The choice of test vector φ ∈ π used in [MW09] is characterised by some local

compatibilities with the Hecke character Ω and thus implicitly depends on the choice of
embedding ΨAQ = (Ψ∞,Ψ2,Ψ3, . . .) : AE ↪→ D(AQ). The properties that characterise
the local test vectors φp and φ∞ are described in [MW09, p. 172] and are as follows.

• At a nonarchimedean place p, Martin and Whitehouse pick φp ∈ πp to be the
unique nonzero and invariant under the units R× of a certain order R in the
local quaternion algebra (which determines φp up to scaling). In our setting,
R is simply the Eichler order in GL2(Qp) of reduced discriminant pc(πp) such
that

R ∩Ψp(Ep) = Ψp(OEp),

where c(πp) denotes the conductor exponent of πp and Ep := E ⊗Qp.
• At the archimedean place, we let K∞ ∼= O(2) be a maximal compact sub-

group of GL2(R) such that K∞ ∩Ψ∞(E×∞) ∼= (Z/2Z)2 is a maximal compact
subgroup of Ψ∞(E×∞) ∼= (R×)2, where E∞ := E ⊗ R ∼= R2. Martin and
Whitehouse pick φ∞ such that K∞ ∩ Ψ∞(E×∞) acts (via π) on φ∞ in the
same way as Ω∞ : E×∞ → C× and φ∞ lies in the minimal such K∞-type in
the sense of Popa [Pop08, Theorem 1] (which also uniquely determines φ∞
up to scaling).

In our application, we slightly modify the choice of test vector φ∞.
In order to get an explicit formula, we now need to specify an embedding ΨAQ :

AE ↪→ Mat2×2(AQ) and then determine which choice of local test vectors φp the above
described conditions imply.

4.2.3. A specific test vector. We construct an embedding ΨAQ using an oriented op-
timal embedding Ψ : E ↪→ Mat2×2(Q) of level q as described in (2.3) associated to
a Heegner form Q = [a, b, c] ∈ QD(q) as in (2.1). By tensoring with AQ, we get an
embedding

ΨAQ = (Ψ∞,Ψ2,Ψ3,Ψ5, . . .) : AE ↪→ Mat2×2(AQ).

Since Ψ is an optimal embedding, the Eichler order R is exactly the standard order
of level pc(πp) for each prime p, so that

∏

p

R× = K0(q),

where K0(q) ⊂ GL2(AQ) is the congruence subgroup of level q as in (3.9). This means
that we can choose the local component of φ at each finite prime to be the same as
those of the adèlisation φF2 of the Maaß cusp form F2 = R0f of weight 2.

At the archimedean place, there is the slight complication that Ψ∞ : E∞ ↪→
Mat2×2(R) is not the diagonal embedding. If, however, we conjugate Ψ∞ by the



194 PETER HUMPHRIES AND ASBJØRN CHRISTIAN NORDENTOFT

matrix γ∞ ∈ GL2(R) given by

γ∞ :=
(
b+
√
D b−

√
D

−2a −2a

)
,

where (a, b, c) ∈ Z3 are associated to Ψ as in Section 2.1.3, then we obtain the diagonal
embedding, namely

(γ∞ ·Ψ∞)(x+
√
Dy, x−

√
Dy) := γ−1

∞ Ψ∞(x+
√
Dy, x−

√
Dy)γ∞(4.11)

=
(
x+
√
Dy 0

0 x−
√
Dy

)
.

We shall only consider oriented optimal embeddings Ψ of level q for which γ∞ ∈
GL+

2 (R), which is to say that a < 0. As we shall show in Lemma 4.20, this is without
loss of generality, for then PΩ(φ) turns out to be independent of the choice of oriented
optimal embedding Ψ of level q within an the equivalence class of embeddings modulo
the action of Γ0(q), and every equivalence class of optimal embeddings of level q
contains an embedding for which a < 0.

With this in mind, Martin and Whitehouse choose the local component of φ at the
archimedean place to be

{
π∞(γ∞)φF0,∞ if εf = χ(J),
π∞(γ∞)φF2,∞ − π∞(γ∞)φF−2,∞ if εf = −χ(J),

where φF0,∞, φF2,∞, and φF−2,∞ are the local components of the adèlisations φF0 ,
φF2 , and φF−2 of F0 = f , F2 = R0f , and F−2 = L0f respectively. We instead merely
take the local component of φ at the archimedean place to be π∞(γ∞)φF2,∞.

Altogether, the above implies that when using the embedding

ΨAQ : AE ↪→ Mat2×2(AQ),

our test vector is
φ = π(γ∞)φF2 ,

where we view γ∞ ∈ GL+
2 (R) as an element of GL2(AQ).

4.3. A formula for certain adèlic periods. Let φF2 : GL2(AQ) → C denote the
adèlic lift of F2 := R0f ∈ C2(Γ0(q)), which is an element of the cuspidal automorphic
representation π = πf of GL2(AQ) associated to f . Let Ω ∈ Ê×\A1

E be the idèlic lift of
χ, so that Ω is a unitary Hecke character that is unramified at every nonarchimedean
place of E and has local components at the two archimedean places of E of the form
(sgnκΩ , sgnκΩ) with κΩ ∈ {0, 1} such that (−1)κΩ = χ(J). We study the adèlic period
integral

(4.12) PΩ(π(γ∞)φF2) :=
∫

A×Q E×\A
×
E

φF2(ΨAQ(x)γ∞)Ω−1(x) dx.

The measure dx is normalised such that A×QE×\A×E has volume

2ΛL(1, χD) = 2L(1, χD),
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where
Λ(s, χD) := π−

s
2 Γ
(s

2

)
L(s, χD).

Lemma 4.13. We have that
|PΩ(π(γ∞)φF2)|2

=





2
q
√
D

Γ
(

3
4 + itf

2

)2
Γ
(

3
4 −

itf
2

)2

Γ
( 1

2 + itf
)

Γ
( 1

2 − itf
) L

( 1
2 , f ⊗Θχ

)

L(1, sym2 f) if εf = −χ(J),

0 if εf = χ(J).

Proof. We apply [MW09, Theorem 4.1] with F = Q, E = Q(
√
D), ϕ = π(γ∞)φF2

(so that π = πf ), and Ω as above. With this choice of data, we have that S′(π) =
S(Ω) = ∅, Ram(π) = {p : p | q}, ∆F = 1, ∆E = D, c(Ω) = 1, and Σ∞F = {∞} in the
notation of [MW09, Theorem 4.1].

There is a slight caveat, however; [MW09, Theorem 4.1] does not quite apply, since
although the automorphic form φF2 has the same local Whittaker functions at every
nonarchimedean place to that appearing in [MW09, Theorem 4.1] (compare Section
3.2.4 to [MW09, Section 2]), the local Whittaker function at the archimedean place, as
in Section 3.2.5, has a slightly different form than that appearing in [MW09, Theorem
4.1]. This issue is readily circumvented: we replace the term C∞(E, π,Ω) appearing
in [MW09, Theorem 4.1] with its definition in [MW09, Section 4.2.2] in terms of local
archimedean L-functions and J̃π∞(f∞), where now

J̃π∞(f∞) =

∣∣∣∣
∫

R×
W 2
∞

(
a 0
0 1

)
sgnκΩ(a) d×a

∣∣∣∣
2

∫

R×

∣∣∣∣W 2
∞

(
a 0
0 1

)∣∣∣∣
2
d×a

.

This local distribution is just as in [MW09, Section 3.3] except that we have pro-
jected onto the local Whittaker function W 2

∞ ∈ W(π∞, ψ∞) associated to φF2 in-
stead of the local Whittaker function W∞ ∈ W(π∞, ψ∞) for which the numerator
is equal to the local archimedean L-function and additionally satisfying W∞( a 0

0 1 ) =
(−1)κΩW∞

(−a 0
0 1
)
for all a ∈ R×.

With this minor modification at the archimedean place, we deduce from [MW09,
Theorem 4.1] that

|PΩ(π(γ∞)φF2)|2

= π

2
√
D

∏

p|q

1
1− p−1 J̃π∞(f∞)

L
( 1

2 , πf ⊗ πΩ
)

L(1, sym2 πf )

∫

Z(AQ) GL2(Q)\GL2(AQ)

|φF2(g)|2 dg,

(4.14)

where Z(AQ) denotes the centre of GL2(AQ) and the measure dg is normalised such
that

(4.15) vol(Z(AQ) GL2(Q)\GL2(AQ)) = 2Λq(2) = π

3
∏

p|q

(
1− 1

p2

)
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since the Tamagawa number of GL2 is 2, where

Λq(s) := π−
s
2 Γ
(s

2

)
ζ(s)

∏

p|q

(
1− 1

ps

)
.

From (3.18) and (3.19) with κ = κf , κ′ = κΩ, t = tf , and s = 1/2,
(4.16)

J̃π∞(f∞) =





4
π
(

1
4 + t2f

)
Γ
(

3
4 + itf

2

)2
Γ
(

3
4 −

itf
2

)2

Γ
( 1

2 + itf
)

Γ
( 1

2 − itf
) if κf ≡ κΩ + 1 (mod 2),

0 if κf ≡ κΩ (mod 2),

while

∫

Z(AQ) GL2(Q)\GL2(AQ)

|φF2(g)|2 dg = 1
q

∏

p|q

(
1− 1

p

)∫

Γ0(q)\H
|(R0f)(z)|2 dµ(z)

= 1
q

∏

p|q

(
1− 1

p

)(
1
4 + t2f

)∫

Γ0(q)\H
|f(z)|2 dµ(z),

(4.17)

where the first equality holds via the strong approximation theorem, (3.10), while the
second equality follows from [DFI02, (4.38)]. We can check that the normalisation of
measures in the first equality is correct by replacing φF2 with the constant function 1
and recalling (4.15) and the fact vol(Γ0(q)\H) = π

3 ν(q). Combining (4.14), (4.16), and
(4.17) and noting that L(s, πf⊗πΩ) = L(s, f⊗Θχ) and L(s, sym2 πf ) = L(s, sym2 f),
we obtain the result. �

4.4. From adèlic period integrals to cycle integrals. We relate the adèlic period
integral (4.12) to a certain sum of cycle integrals over oriented geodesics in Γ0(q)\H
indexed by narrow ideal classes. We first define these cycle integrals and show that
they are well-defined. Given a Heegner form Q ∈ QD(q), we consider the cycle integral

(4.18)
∫ γQzQ

zQ

(R0f)(z) dz

=(z) ,

where zQ and γQzQ are as in (2.5) and the contour of integration is the geodesic
segment between these two points.

Lemma 4.19. For all γ ∈ Γ0(q), the cycle integral (4.18) is invariant under replacing
Q with γ ·Q.

For this reason, we may write (4.18) as
∫

CA(q)
(R0f)(z) dz

=(z)

without ambiguity, where CA(q) denotes the oriented geodesic in Γ0(q)\H associated
to a narrow ideal class A corresponding to Q as in Section 2.1.4, since this cycle
integral is independent of the choice of Heegner form Q associated to A.
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Proof. Suppose that Q′ = γ ·Q for some γ ∈ Γ0(q). We make the change of variables
z 7→ γ−1z in (4.18). The integrand remains unchanged since

(R0f)(γz) = jγ(z)2(R0f)(z), d

dz
(γz) = =(γz)

=(z) jγ(z)−2.

It is easily checked that γ−1γQγ = γQ′ , and so the new contour of integration is
the geodesic segment from γzQ to γQ′γzQ on the semicircle (2.4) associated to Q′.
Further changes of variables by powers of γQ′ rotate the contour of integration along
this semicircle while leaving the integrand intact, and so there is an appropriate
power of γQ′ for which the resulting geodesic segment intersects nontrivially with
the geodesic segment from zQ′ to γQ′zQ′ . We then break up the integral into two
parts, and for the part that does not intersect this geodesic segment, we make one
last change of variables by either γQ′ or γ−1

Q′ as appropriate; recombining, we obtain
(4.18) with Q′ in place of Q. �

Lemma 4.20. We have that

PΩ(π(γ∞)φF2) = − iχ(AΨ)√
D

∑

A∈Cl+
D

χ(A)
∫

CA(q)
(R0f)(z) dz

=(z) ,

where AΨ ∈ Cl+D is the element of the narrow class group associated to the oriented
optimal embedding Ψ. In particular, PΩ(π(γ∞)φF2) is independent of the choice of
oriented optimal embedding Ψ of level q within an equivalence class of embeddings
modulo the action of Γ0(q).

The proof of Lemma 4.20 closely follows that of a similar result of Popa [Pop06,
Section 6].

Proof. Since Ω is the idèlic lift of a narrow class group character, it is trivial on both
Ô×E and A×Q . Furthermore, we have the inclusion ΨAQ(Ô×E) ⊂ K0(q) since Ψ is an
optimal embedding. As the newform f has level q, it follows that both π(γ∞)φF2 and
Ω are well-defined on the double quotient A×QE×\A×E/Ô×E . Since Ô×E has measure 1,
we deduce that

PΩ(π(γ∞)φF2) =
∫

A×Q E×\A
×
E
/Ô×

E

φF2(ΨAQ(x)γ∞)Ω−1(x) dx.

Via the strong approximation theorem, we have the decomposition

A×QE
×\A×E/Ô×E ∼=

⊔

A∈Cl+
D

A · εZD\E1
∞,

where A = (Av) ∈ A×E runs through a set of finite idèle representatives of the nar-
row class group Cl+D (so that Av = 1 if v is an archimedean place of E), which
we freely identify with elements of the narrow class group, while E1

∞ := {(t, t−1) ∈
E∞ : t > 0} ∼= R×+, which we view as a subgroup of A×E via the embedding (t, t−1) 7→
(t, t−1, 1, 1, . . .), and εZD := {(εmD , ε−mD ) ∈ E∞ : m ∈ Z}. Thus every x ∈ A×QE×\A×E/Ô×E
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can be written as x = A(t, t−1, 1, 1, . . .) with t ∈ [1, εD). From this, we may write

PΩ(π(γ∞)φF2) = 2√
D

∑

A∈Cl+
D

χ(A)
∫ εD

1
φF2(ΨAQ(A)Ψ∞(t, t−1)γ∞) d×t.

We can check that the normalisation of measures here is correct by replacing π(γ∞)φF2

with the constant function 1 and taking χ to be the trivial character, noting that
vol(A×QE×\A×E) is 2L(1, χD), whereas h+

D log εD =
√
DL(1, χD) by the narrow class

number formula.
Let gA denote the inverse of the GL+

2 (R)-component in the representation (3.10).
By the definition (3.11) and (3.8) of the adèlic lift together with our assumption that
det γ∞ > 0, we have that

PΩ(π(γ∞)φF2)

= 2√
D

∑

A∈Cl+
D

χ(A)
∫ εD

1
jg−1
A

Ψ∞(t,t−1)γ∞(i)−2(R0f)(g−1
A Ψ∞(t, t−1)γ∞i) d×t.(4.21)

We make the change of variables z = g−1
A Ψ∞(t, t−1)γ∞i = g−1

A γ∞(it2); the contour
of integration in (4.21) then becomes the oriented geodesic segment from g−1

A γ∞i =
g−1
A zQ to g−1

A γQzQ parametrised by g−1
A Ψ∞(t, t−1)zQ, where zQ and γQzQ are as in

(2.5) with Q = QΨ = [a, b, c] the Heegner form associated to the optimal embedding
Ψ. We have that

d×t = − i2jγ−1
∞ gA

(z)−2 dz

=(z) ,

since t2 = −iγ−1
∞ gAz and

d

dz
(gz) = =(gz)

=(z) jg(z)
−2

for any g ∈ GL2(R), while the cocycle relation jg1g2(z) = jg2(z)jg1(g2z) implies that

jg−1
A

Ψ∞(t,t−1)γ∞(i)jγ−1
∞ gA

(z) = jγ−1
∞ Ψ∞(t,t−1)γ∞(i) = 1,

where the last equality follows upon recalling (3.1) and (4.11). We deduce that (4.21)
is equal to

− i√
D

∑

A∈Cl+
D

χ(A)
∫ g−1

A
γQzQ

g−1
A
zQ

(R0f)(z) dz

=(z) .

It is shown in [Pop06, Theorem 6.2.2 (i)] that as A runs through the narrow
class group Cl+D, g−1

A ΨgA runs through a set of representatives of equivalence classes
of oriented optimal embeddings of level q modulo the action of Γ0(q). Further-
more, letting Q′ denote the Heegner form of level q associated to the oriented op-
timal embedding g−1

A ΨgA, we have that the contour of integration from g−1
A zQ and

g−1
A γQzQ = γQ′g

−1
A zQ is a geodesic segment of length 2 log εD of the semicircle (2.4)

associated to Q′, and hence
∫ g−1

A
γQzQ

g−1
A
zQ

(R0f)(z) dz

=(z) =
∫

CA′ (q)
(R0f)(z) dz

=(z)
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by the proof of Lemma 4.19, where A′ ∈ Cl+D is the element of the narrow class group
associated to Q′. It remains to note that by [Pop06, Theorem 6.2.2 (ii)], the oriented
optimal embedding g−1

A ΨgA is associated to AAΨ ∈ Cl+D, where AΨ is the element of
Cl+D corresponding to Ψ. �

4.5. Proofs of Propositions 4.2 and 4.7. We are finally in a position to prove
Proposition 4.2. For this we restrict to q = 1 in the sections above.

Proof of Proposition 4.2. Lemmata 4.20 with q = 1 and [DIT16, Lemma 1] imply
that the Weyl sum Wχ,f defined in (4.1) satisfies the identity

Wχ,f = − iχ(AΨ)
√
D

1
4 + t2f

PΩ(π(γ∞)φF2),

at which point the result follows from Lemma 4.13. �

The proof of Proposition 4.7 is a little simpler, since we can circumvent the adèlic
formulation of this Weyl sum.

Proof of Proposition 4.7. From [DIT16, (7.3)], we have that
∑

A∈Cl+
D

χ(A)
∫

CA(1)
(R0E)(z, s) dz

=(z) = (1− χ(J))D s
2

Γ
(
s+1

2
)2

Γ(s)
L(s, χ)
ζ(2s)

for <(s) > 1. Via analytic continuation, this identity extends to s = 1/2 + it. The
result then follows via [DIT16, Lemma 1]. �

5. Proof of Theorem 1.1

Proof of Theorem 1.1. Using the Weyl equidistribution criterion together with the
lower-bound (2.6), it suffices to show that for each f ∈ B∗0(Γ), and for each t ∈ R,

∑

A∈CH

∫

ΓA\NA

f(z) dµ(z) = otf

(
#H
h+
D

√
DL(1, χD)
h+
D logD

)
,

∑

A∈CH

∫

ΓA\NA

E

(
z,

1
2 + it

)
dµ(z) = ot

(
#H
h+
D

√
DL(1, χD)

logD

)
,

where we have used the narrow class number formula h+
D log εD =

√
DL(1, χD). Via

character orthogonality these expressions are respectively equal to
#H
h+
D

∑

χ∈H⊥
χ(C)Wχ,f ,

#H
h+
D

∑

χ∈H⊥
χ(C)Wχ,t,

where the Weyl sums Wχ,f and Wχ,t are as in (4.1) and (4.6). From Propositions 4.2
and 4.7, the bounds L(1, sym2 f) � 1/ log(|tf | + 3) and ζ(1 + 2it) � 1/ log(|t| + 3),
and Stirling’s formula, we have that

|Wχ,f |2 �
√
D log((|tf |+ 3))

(|tf |+ 1)3 L

(
1
2 , f ⊗Θχ

)
,
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|Wχ,t|2 �
√
D log(|t|+ 3)2

(|t|+ 1)3 L

(
1
2 + it,Θχ

)
L

(
1
2 − it,Θχ

)
.

We obtain Theorem 1.1 for δ < 1
4 under the assumption of the generalised Lin-

delöf hypothesis, the fact that #H⊥ = h+
D/#H, and the (ineffective) Siegel bound

L(1, χD) �ε D
−ε. Furthermore, Theorem 1.1 for δ < 625

3309568 holds unconditionally
due to the estimates

|Wχ,f |2 �q1,tf ,ε D
1− 625

1654784 +ε,

|Wχ,t|2 �t D
1− 2

1889 .

These bounds for the Weyl sums Wχ,f and Wχ,t follow from the subconvex bounds

L

(
1
2 , f ⊗Θχ

)
�q1,tf ,ε D

1
2− 625

1654784 +ε,(5.1)

L

(
1
2 + it,Θχ

)
�t D

1
4− 1

1889 .(5.2)

The first bound is due to Harcos and Michel [HM06, Theorem 1], while this second
is due to Blomer, Harcos, and Michel [BHM07, Theorem 2]. �

Remark 5.3. Improvements of the bound (5.2) exist in the literature (see, for example,
[BlKh19, Theorem 1] forD prime); the obstacle in unconditionally enlarging the range
of δ in Theorem 1.1 is an improvement of the bound (5.1).

Proof of Proposition 1.3. It follows from [DIT16, (2.5)] that the oriented closed geodesics
CA(1) and CJA−1(1) are the same curve with opposite orientations, which means that
ΓA\NA and ΓJA−1\NJA−1 cover Γ\H evenly. Thus (1.2) holds if JA−1 ∈ CH for
every A ∈ CH. This condition is met precisely when C2J ∈ H. �

References
[AE16] Manny Aka and Manfred Einsiedler, “Duke’s Theorem for Subcollections”, Ergodic Theory

and Dynamical Systems 36:2 (2016), 335–342.
[BHM07] Valentin Blomer, Gergely Harcos, and Philippe Michel, “Bounds for Modular L-Functions

in the Level Aspect”, Annales Scientifiques de l’École Normale Supérieure 40:5 (2007),
697–740.

[BlKh19] Valentin Blomer and Rizwanur Khan, “Uniform Subconvexity and Symmetry Breaking
Reciprocity”, Journal of Functional Analysis 276:7 (2019), 2315–2358.

[Bou05] J. Bourgain, “Mordell’s Exponential Sum Estimate Revisited”, Journal of the American
Mathematical Society 18:2 (2005), 477–499.

[BoKo17] Jean Bourgain and Alex Kontorovich, “Beyond Expansion II: Low-Lying Fundamental
Geodesics”, Journal of the European Mathematical Society 19:5 (2017) 1331–1359.

[Dar94] Henri Darmon, “Heegner Points, Heegner Cycles, and Congruences”, in Elliptic Curves
and Related Topics, editors Hershy Kisilevsky and M. Ram Murty, CRM Proceedings &
Lecture Notes 4, American Mathematical Society, Providence, 1994, 45–59.

[DFI02] W. Duke, J. B. Friedlander, and H. Iwaniec, “The Subconvexity Problem for Artin L-
Functions”, Inventiones Mathematicae 149:3 (2002), 489–577.
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HYBRID SUBCONVEXITY FOR CLASS GROUP L-FUNCTIONS
AND UNIFORM SUP NORM BOUNDS OF EISENSTEIN SERIES

ASBJØRN CHRISTIAN NORDENTOFT

Abstract. In this paper we study hybrid subconvexity bounds for class group
L-functions associated to quadratic extensions K/Q (real or imaginary). Our
proof relies on relating the class group L-functions to Eisenstein series evaluated
at Heegner points using formulas due to Hecke. The main technical contribution
is the following uniform sup norm bound for Eisenstein series;

E(z, 1/2 + it)�ε y1/2(|t|+ 1)1/3+ε, y � 1,

extending work of Blomer and Titchmarsh. Finally we propose a uniform version
of the sup norm conjecture for Eisenstein series.

1. Introduction

This paper is concerned with the family of L-functions LK(s, χ) associated to a char-
acter χ of the (wide) class group Cl (K) of a quadratic field extension K/Q (real or
imaginary) of discriminant D. One of our results is a hybrid subconvexity bound in
terms of the discriminant D and the archimedian parameter t where s = 1/2+it (both
for individual class group L-functions and for the second moment of the entire fam-
ily). We will do this by relating the subconvexity bound for class group L-functions
to sup norm bounds of Eisenstein series via formulas due to Hecke. Our second main
result is what we will call a uniform sup norm bound of Eisenstein series.

1.1. Class group L-functions. The study of analytic properties of the family of
class group L-functions was initiated by Duke, Friedlander and Iwaniec in [6] where
they computed the second moment of class group L-functions in the limit D → −∞.
Other notable works on the family of class group L-functions include [2], [7], [4] [20].
Our approach in the imaginary quadratic case is to use a classical formula of Hecke,
which relates class group L-functions to Eisenstein series evaluated at Heegner points;

LK(s, χ) = 2s+1ζ(2s)|D|−s/2
ωK

∑

a

χ(a)E(za, s),(1.1)

where the sum runs over a complete set of representatives for the class group of the
imaginary quadratic field K of discriminant D, za ∈ H is the associated Heegner
point and ωK ∈ {2, 4, 6}. There is a real quadratic analogue also due to Hecke (see
(2.4) below). These formulas give a connection between subconvexity bounds and the
so-called sup norm problem for Eisenstein series, which we will introduce shortly.

Date: December 4, 2020.
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Remark 1.1. The connection between the sup norm problem and subconvexity esti-
mates can be traced back to Sarnak [18, (4.19)]. However this paper together with
the recent work of Hu and Saha [10] seem to be the first time sup norm results have
been used to obtain new subconvexity results. Hu and Saha apply sup norm bounds
of automorphic forms on quaternion algebras (in the depth aspect) to obtain sub-
convexity estimates in the depth aspect for L(1/2, f ⊗ θχ), where f is a quaternionic
automorphic form and θχ is an essentially fixed theta series.

Remark 1.2. The formula (1.1) was also the starting point for Templier in [20], where
it was combined with equidistribution of Heegner points to give an alternative com-
putation (compared with [6]) of the second moment of the family of class group
L-functions as D → −∞. Similarly Michel and Venkatesh [15] used an analogue
of (1.1) in the case of cusp forms due to Zhang [27], [28] to deduce non-vanishing
results for the central values of the corresponding Rankin-Selberg L-functions. The
approach of Michel and Venkatesh was then applied by Dittmer, Proulx and Seybert
in [5] to deduce non-vanishing for class group L-functions as well (their method only
shows non-vanishing for one class group character for each K, whereas Blomer in [2]
achieved a much stronger result using mollification).

1.2. The sup norm problem. Now let Γ0(1) = PSL2(Z) and denote by X0(1) :=
Γ0(1)\H the modular curve. The sup norm problem for X0(1) is concerned with
bounds of the following form for some fixed θ > 0;

sup
z∈C
|uj(z)| �C tθj ,

where uj is a Maass form of level 1, tj is the spectral parameter and C ⊂ H is compact.
The case θ = 1/4 + ε is known as the convexity bound and is elementary to prove,
but it is conjectured [18, Conjecture 3.10] that any θ > 0 is admissible. Iwaniec and
Sarnak in their seminal paper [14] were the first to go beyond the convexity bound
by proving the bound �ε t

5/24+ε
j .

In this paper we will focus on the analogue for the continuous spectrum which is
constituted by Eisenstein series. This means that we are concerned with bounds of
the type

sup
z∈C
|E(z, 1/2 + it)| �C (|t|+ 1)θ,(1.2)

where θ > 0 is fixed and C is compact. In this case the convexity bound is θ =
1/2 + ε, and again the sup norm conjecture predicts that any θ > 0 is admissible.
Iwaniec and Sarnak’s method also applies in this case and yields similarly the bound
�ε (|t| + 1)5/12+ε. In [26] Young used a slight modification of the Iwaniec–Sarnak
method to prove the bound �ε (|t| + 1)3/8+ε. In [3] Blomer improved this using
exponential sum methods, building on earlier work of Titchmarsh [22], and proved
the Weyl type bound �ε (|t|+ 1)1/3+ε. Finally the sup norm problem for Eisenstein
series over general number fields has been dealt with in the work of Assing [1].

Plugging Blomer’s result into (1.1) yields immediately a subconvexity bound for
LK(s, χ) in the t-aspect, which recovers a result of Söhne [19] (the conductor of
LK(s, χ) is |D|(|t|+ 1)2, which means that the convexity bound is �ε |D|1/4+ε(|t|+
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1)1/2+ε). If one however wants a hybrid subconvexity estimate, one needs to control
the D-dependence in (1.1). This leads to what we will call the uniform sup norm
problem, which are sup norm bounds with an explicit dependence on z. In a similar
vein Huang and Xu [11] studied sup norm bounds of Eisenstein series with level and
obtained bounds uniform in both the spectral parameter and the level.

1.3. Statement of results. Our first result is the following translation between
uniform sup norm bounds of the Eisenstein series E(z, s) and hybrid subconvexity
bounds for LK(s, χ). Let

F := {z ∈ H | −1/2 ≤ Re z ≤ 0, |z| ≥ 1 or 0 < Re z < 1/2, |z| > 1},(1.3)
denote the standard fundamental domain for Γ0(1).

Theorem 1.3. Assume the following uniform bound uniformly for all z = x+iy ∈ F ;
E(z, 1/2 + it)� yδ(|t|+ 1)θ,(1.4)

with 1/2 ≤ δ ≤ 1 and θ > 0. Then it follows that

LK(1/2 + it, χ)�ε |D|1/4+ε (|t|+ 1)θ+ε,(1.5)

for any ε > 0 and χ ∈ Ĉl (K), a (wide) class group character of a quadratic extension
K/Q (real or imaginary) of discriminant D.
Furthermore it also follows from (1.4) that

∑

χ∈Ĉl (K)

|LK(1/2 + it, χ)|2 �ε |D|δ+ε (|t|+ 1)2θ+ε,(1.6)

for any ε > 0.

The second part of this paper is concerned with proving a result of the type (1.4). As
we will see in Section 3.1 below, the results of Young [26] imply the following.

Theorem 1.4 (M. Young). For z ∈ F , the standard fundamental domain (1.3) for
Γ0(1), we have

(1.7) E(z, 1/2 + it)�ε y
1/2(|t|+ 1)3/8+ε,

for any ε > 0.

Remark 1.5. Huang and Xu [11, Theorem 1.1] obtained the slightly stronger bound
E(z, s)�ε y

1/2 + |t|3/8+ε.

It turns out however to be a much more delicate task to upgrade Blomer’s Weyl type
estimate to a uniform one, which is the main technical contribution of this paper.
Our result is the following.

Theorem 1.6. For z ∈ F , the standard fundamental domain (1.3) for Γ0(1), we
have
(1.8) E(z, 1/2 + it)�ε y

1/2(|t|+ 1)1/3+ε,

for any ε > 0.

Combining this bound with Theorem 1.3, we arrive at the following.
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Corollary 1.7. Let K/Q be a quadratic extension (real or imaginary) of discriminant
D and χ a (wide) class group character of K. Then

(1.9) LK(1/2 + it, χ)�ε |D|1/4+ε (|t|+ 1)1/3+ε,

and
∑

χ∈Ĉl (K)

|LK(1/2 + it, χ)|2 �ε |D|1/2+ε (|t|+ 1)2/3+ε,(1.10)

for any ε > 0.

Remark 1.8. Observe that for imaginary quadratic fields, (1.10) corresponds to Lin-
delöf on average in the D-aspect, since h(K)� |D|1/2−ε. On the other hand if K/Q
is a real quadratic fields with class number 1, (1.10) just recovers (1.9).

Remark 1.9. As mentioned above it has been conjectured [18, Conjecture 3.10] that
the following should hold for all ε > 0;

sup
z∈C
|E(z, 1/2 + it)| �ε,C (|t|+ 1)ε,(1.11)

where C ⊂ H is a compact set. This implies the Lindelöf hypothesis in the t-aspect
for the class group L-function. In the last section we will speculate what the uniform
analogue of (1.11) should be.

1.3.1. Hybrid subconvexity bounds for class group L-functions. The first to obtain
subconvexity for class group L-functions seems to be Söhne [19] in the t-aspect and
Duke, Friedlaner and Iwaniec [7] in the D-aspect (which was then improved numer-
ically by Blomer, Harcos and Michel [4]). The first to achieve subconvexity in both
aspects simultaneously (with an unspecified exponent) was Michel and Venkatesh [16]
as a consequence of their solution of the subconvexity problem for GL2 automorphic
L-functions (for general number fields). The results of Michel and Venkatesh were
then later made explicit by Wu [24]. More precisely [24, Corollary 1.4] states that if
π is an automorphic representation of GL2(AQ) with (unitary) central character ω,
then we have

L(π, 1/2)� C(π)1/4
(

C(π)
C(ω)

)− 1−2θ
40

C(ω)−1/160,(1.12)

where C(π),C(ω) denote the analytic conductors of respectively π, ω and θ is any
approximation towards the Ramanujan–Petersson conjecture. Let us briefly explain
how to extract a subconvexity bound for class group L-functions from (1.12).
Let χ be a (wide) class group character of the quadratic extension K/Q of conductor
D, θχ ∈ M1(Γ0(|D|), χD) the theta series associated to χ (see [13, Section 14.3])
and πχ the corresponding automorphic representation of GL2(AQ). The analytic
conductor of the automorphic representation πχ ⊗ | · |itAQ is given by D(|t| + 1)2 and
the same is true for the analytic conductor of its central character. By plugging this
into (1.12) above, we thus get

L(πχ ⊗ | · |itAQ , 1/2) = LK(1/2 + it, χ)�
(
|D|1/4 (|t|+ 1)1/2

)1−1/40
,
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which is the state of the art for hybrid subconvexity. We observe that the bound
(1.9) improves on this in certain regimes of t and D. Combining the result of Wu
with ours, we arrive at the following improvement.

Corollary 1.10. Let K/Q be a quadratic extension of discriminant D and χ a (wide)
class group character of K. Then we have

(1.13) LK(1/2 + it, χ)�ε

{
|D|1/4+ε (|t|+ 1)1/3+ε, for t > |D|3/74
(
|D|1/4 (|t|+ 1)1/2)1−1/40

, for t ≤ |D|3/74 ,

for any ε > 0.

Remark 1.11. The state of the art hybrid subconvexity bound for GL1 automorphic L-
functions [23, Corollary 1.2] is very similar to the above; the best hybrid subconvexity
bound is obtained by combining the results of Wu [23] and those of Söhne [19]. Notice
that the bounds obtained in these two papers depend on the number field and are
thus not relevant in our hybrid setting.

Remark 1.12. In the special case where χ is a genus character, we have the following
factorization in terms of quadratic Dirichlet L-functions;

LK(s, χ) = L(s,
(
d1
·
)
)L(s,

(
d2
·
)
),

where χ corresponds to the factorization d1d2 = D. In this case it follows from [25,
(1.8)] that we have the following improvement on the above;

LK(1/2 + it, χ)�ε |D|1/6+ε(|t|+ 1)1/3+ε.
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2. From sup norm bounds to subconvexity

In this section we will prove Theorem 1.3. First of all we will introduce some back-
ground on quadratic fields and the formulas due to Hecke mentioned above.

2.1. Quadratic fields. We will now recall a few standard facts about quadratic fields
and refer to [13, Chapter 22], [17, Section 1] and [9, Section 2] for more background.
Let K/Q be a quadratic extension of number fields, then we can write K = Q[

√
D]

where D is the discriminant of K. We denote by Cl (K) the class group of K consist-
ing of classes of fractional ideals modulo principal ideals. According to Gauss each
fractional ideal class a corresponds to an equivalence class of integral binary quadratic
forms of discriminant D modulo integral linear transformations. When D < 0 we can
to each a ∈ Cl (K) associate a Heegner point on the modular curve given by;

za := −b+ i
√
|D|

2a ∈ X0(1),
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where Q = aX2 + bXY + cY 2 is any representative of a. We denote by h(K) the size
of the class group and we have the following (ineffective) bound due to Siegel;

|D|1/2−ε �ε h(K)�ε |D|1/2+ε.(2.1)

When D > 0, we can analogously to any ideal class a in the (wide) class group of K
associate a certain primitive, closed geodesic Ca on X0(1). If a corresponds to some
integral binary quadratic form Q = aX2 + bXY + cY 2, then Ca is defined as the
projection onto X0(1) of a certain arc on the semi-circle SQ ⊂ H defined by the end-
points −b±

√
D

2a (see the references above for the precise definition). The hyperbolic
line element on X0(1) is given by |ds| = |dz|/y and Ca has hyperbolic length 2 log εK ,
where εK is the fundamental unit of K. Similar to the imaginary quadratic case we
have the (ineffective) bound;

|D|1/2−ε �ε h(K) log εK �ε |D|1/2+ε,(2.2)

also due to Siegel.

2.2. Hecke’s formula for class group L-functions. For a real or imaginary qua-
dratic extension K/Q and a character χ of Cl (K), we associate the class group
L-function absolutely convergent for Re s > 1;

LK(s, χ) :=
∑

a

χ(a)NK(a)−s =
∏

p

(1− χ(p)NK(p)−s),(2.3)

where NK is the norm and the sum runs over all integral ideals of K and the product
is taken over integral prime ideals of K. The class group L-functions admit analytic
continuation and functional equations, which we will see shortly follows from the same
properties for the non-holomorphic Eisenstein series.

The connection between class group L-functions and Eisenstein series is given by a
beautiful formula due to Hecke. In the introduction we already mentioned that for
imaginary quadratic extensions K/Q, the formula reads [13, (22.58)];

LK(s, χ) = 2s+1ζ(2s)|D|−s/2
ωK

∑

a

χ(a)E(za, s),

where the sum runs over a complete set of representatives for the class group of K,
za is the associated Heegner point and ωK ∈ {2, 4, 6} denotes the number of roots of
unity in K.
For real quadratic fields, we have similarly the following formula [9, (7.7)];

LK(s, χ) = ζ(2s)D−s/2Γ(s)
Γ(s/2)2

∑

a

χ(a)
∫

Ca

E(z, s)y−1|dz|.(2.4)

We observe that analytic continuation and functional equation for LK(s, χ) now fol-
lows from the corresponding properties of the Eisenstein series [12, Theorem 6.5].



HYBRID SUBCONVEXITY AND UNIFORM SUP NORM BOUNDS 211

2.3. Proof of Theorem 1.3. In this section we will prove Theorem 1.3. To do
this we will need a lemma that bounds averages over Heegner points (resp. cycles)
of the function y : X0(1) → R+ defined by y(z) := Im(zF ), where zF ∈ H is the
representative of z ∈ X0(1) which lies in F , the standard fundamental domain (1.3)
for Γ0(1). Observe that this function is continuous.

Lemma 2.1. Let K/Q be a quadratic field of discriminant D. Then we have for any
δ > 0 and ε > 0;

∑

a∈Cl (K)

{
y(za)δ if D < 0,∫
Ca
y(z)δ |ds| if D > 0,

�ε |D|max(δ,1)/2+ε.

Proof. Assume D < 0. The representative of za ∈ X0(1) which lies in F , is exactly
given by

(za)F = −b+ i
√
|D|

2a ,

where the integral binary quadratic form aX2 + bXY + cY 2 of discriminant D corre-
sponds to a and (a, b, c) is reduced [13, (22.12)], meaning that;

−a < b ≤ a ≤ c or − a ≤ b ≤ a = c.

Since F ⊂ {z ∈ H | Im z ≥
√

3/2}, we conclude that a�
√
|D| and thus we get;

∑

a∈Cl (K)

y(za)δ =|D|δ/2
∑

a>0

#{a, b, c | b2 − 4ac = D, (a, b, c) reduced}
(2a)δ

�|D|δ/2
∑

0<a�|D|1/2

ρD(a)
aδ

,

where ρD(a) = #{0 < b ≤ 2a | b2 ≡ D mod 4a}. It is well-known [13, p. 521] that ρD
is multiplicative with ρD(pα) = 1 + χD(p) if p 6 |D, ρD(p) = 1 if p|D and ρD(pα) = 0
if p|D, α > 1, which implies the bound ρD(a) � ∑

d|a 1 �ε a
ε. Thus we conclude

that ∑

a∈Cl (K)

y(za)δ �ε |D|δ/2
∑

0<a�
√
|D|

aε

aδ
� |D|1/2 max(δ,1)+ε,

as wanted.

Now we turn to the case D > 0. We denote by ΩD all integral binary quadratic forms
of discriminant D and for Q = aX2 + bXY + cY 2 ∈ ΩD, we denote by SQ the semi-
circle in H with end-points −b±

√
D

2a . Then it follows from an easy lemma [8, Lemma
6] (observe that they use a different looking but equivalent measure) that;

∑

a∈Cl (K)

∫

Ca

y(z)δ |ds| =
∑

Q∈ΩD

∫

SQ∩F
y(z)δ |ds|,(2.5)

where F is the standard fundamental domain (1.3) for Γ0(1).
Now we take the quotient from the left by Γ∞ = 〈T 〉 where T = ( 1 1

0 1 ), which rewrites
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(2.5) as the following;
∑

[Q]∈Γ∞\ΩD

∫

SQ∩F(∞)
y(z)δ |ds|,(2.6)

where F (∞) := ∪n∈ZT (n)F is the union of all horizontal translates of F (notice that
the integral above does not depend on the choice of Q). Since F (∞) ⊂ {z ∈ H | Im z ≥√

3/2}, we only get contributions in (2.6) from quadratic forms Q = aX2+bXY +cY 2

with a �
√
D and furthermore we can pick representatives of Γ∞\ΩD satisfying

|b| ≤ 2a. Now we recall that |ds| = y−1|dz| and use the trivial fact that the Euclidean
circumference of SQ is � D1/2

a , which implies;
∑

[Q]∈Γ∞\ΩD

∫

SQ∩F(∞)
y(z)δ |ds| =

∑

0<a�D1/2

∑

[Q]∈Γ∞\ΩD,
Q(1,0)=a

∫

SQ∩F(∞)
y(z)δ−1|dz|

�
∑

0<a�D1/2

∑

[Q]∈Γ∞\ΩD,
Q(1,0)=a

D1/2

a

(
max

z∈SQ∩F(∞)
y(z)δ−1

)

� D1/2+max(δ−1,0)/2
∑

0<a�D1/2

ρD(a)
a

.

Now the conclusion follows exactly as in the case of negative D using the bound
ρD(a)�ε a

ε (which also holds for D > 0 by the above). �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Consider the case D < 0. By feeding (1.4) into (1.1), we see
that

LK(1/2 + it, χ)�ε
(|t|+ 1)ε
|D|1/4

∑

a

y(za)δ(|t|+ 1)θ,(2.7)

where we used some standard estimates for ζ on Re s = 1.
Now since we assumed δ ≤ 1, it follows from Lemma 2.1 that

LK(1/2 + it, χ)�ε |D|1/4+ε(|t|+ 1)θ+ε.
as wanted.

To prove (1.6), we observe that by orthogonality, the formula (1.1) implies that
∑

χ

|LK(1/2 + it, χ)|2 = 8h(K)|ζ(1 + 2it)|2
ω2
K |D|1/2

∑

a

|E(za, 1/2 + it)|2.

Thus by the assumption (1.4), Siegel’s bound (2.1) and standard estimates for the
zeta function, we get

∑

χ

|LK(1/2 + it, χ)|2 �ε (|t|+ 1)2θ+ε|D|ε
∑

a

y(za)2δ,

and the result follows directly from Lemma 2.1.
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The proof of (1.5) for D positive is exactly the same using Lemma 2.1 and Hecke’s
formula (2.4) in the case D > 0.
In order to prove (1.6), we use orthogonality as above to get

∑

χ

|LK(1/2 + it, χ)|2 �ε (|t|+ 1)2θ+εh(K)
D1/2

∑

a

∣∣∣∣
∫

Ca

y(z)δ|ds|
∣∣∣∣
2
.

Now we apply Cauchy-Schwarz to bound the above by

(|t|+ 1)2θ+εh(K) log εK
D1/2

∑

a

∫

Ca

y(z)2δ|ds|,

and the results follows from Lemma 2.1 and Siegel’s bound (2.2). �

Remark 2.2. If one believes the sup norm conjecture (1.11), Theorem 1.3 tells you
in particular that the cancellations in individual Eisenstein series are strong enough
to give the Lindelöf hypothesis for class group L-functions in the t-aspect. It is
however conjectured that (1.2) holds for eigenfunctions on any hyperbolic surface
[18, Conjecture 3.10]. So in some sense the t-aspect is not essentially arithmetic.
This method is however not able to give subconvexity estimates in the D-aspect for
individual L-functions. This is due to the fact that the sup norm bounds do not “see”
the arithmetics of the Heegner points (it is uniform for z in a fixed compact set) and
the cancellation between Eisenstein series evaluated at the different Heegner points is
exactly what gives rise to subconvexity behavior in the D-aspect. In the last section
(see (5.2)), we will state a uniform analogue of the conjecture (1.2), which using (1.6)
does give Lindelöf on average in the D-aspect for imaginary quadratic fields.

3. Uniform sup norm bounds of Eisenstein series

In this section we will prove the hybrid bound (1.7) and (1.8) for the classical Eisen-
stein series. The proof of (1.7) follows directly from [26]. The proof of (1.8) requires
much more work and is an adaptation (and elaboration) of the argument in [3] build-
ing on [21], which in turn is an extension of the van der Corput method [13, Section
8.3].

3.1. Uniform bounds for Eisenstein series following Young. In [26] Young ex-
tends the method used by Iwaniec and Sarnak in [14] to give the first non-trivial result
towards the sup norm conjecture for the modular curve. The main insight of Young
was that one can choose a more efficient mollifier, which improves the bound for the
continuous spectrum. The method of Iwaniec and Sarnak embeds respectively the
cusp form and Eisenstein series into the entire spectrum of the modular curve. Then
an application of the Selberg trace formula (with a carefully chosen test function)
reduces the sup norm bound to a bound of the geometric side, which can be done
with elementary means. The action of the Hecke operators plays a crucial role in the
argument.
In [26] the sup norm bound is stated as a bound in the t-aspect with z in a fixed com-
pact set, but as Young also mentions the method yields something slightly stronger
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(this was also observed by Huang and Xu [11, p. 2]).
The main inequality in Young’s paper is [26, (6.3)], which gives

|E(z, 1/2 + it)|2 �ε (N |t|)ε
( |t|
N

+ |t|1/2(N +N1/2y)
)
,(3.1)

where N is some parameter to be chosen appropriately. By inspecting [26, Lemma
4.1, Lemma 5.1] one sees that the restrictions on the variables are logN � (log t)2/3+δ

for some fixed δ > 0 and y � |t|100. In particular in the range y � |t|1/4, we can put
N = |t|1/4 and get

|E(z, 1/2 + it)|2 �ε |t|3/4+ε + |t|3/4+ε + |t|5/8+εy.

From this we conclude
|E(z, 1/2 + it)| �ε y

1/2|t|3/8+ε, 1� y � |t|1/4.
In the range y � |t|1/4, we have the trivial bound [26, (3.2)], which yields

|E(z, 1/2 + it)| �ε y
1/2 + |t|3/8+ε.

Combining the two, concludes the proof of Theorem 1.4.

3.2. Titchmarsh’s method for bounding Epstein zeta functions. Now we turn
to the proof of Theorem 1.6. The following serves first of all as an extension of Blomer
and Titchmarsh’s work but secondly as an elaboration of some of the details, which
are left out in [3]. The approach expresses the non-holomorphic Eisenstein series in
terms of an Epstein zeta function, which is then bounded using the van der Corput
method from the theory of exponential sums. Originally Titchmarsh considered only
Epstein zeta functions associated to diagonal matrices and there are some technical
difficulties to deal with general Epstein zeta functions. Furthermore in order to get
a bound uniform in the entries of the matrix defining the Epstein zeta function, one
has to modify parts of the argument.

Given any positive definite matrix Z ∈ GL2(R), we can consider the quadratic form
Q(x) = xZ xT , x = (x1, x2) ∈ R2 and the associated Epstein zeta function

EEpstein(Z, s) :=
∑

x∈Z2\(0,0)

Q(x)−s,

which satisfies the functional equation
ΓR(2s)EEpstein(Z, s) = (detZ)−1/2ΓR(2(1− s))EEpstein(Z−1, 1− s),

where ΓR(s) := π−s/2Γ(s/2).
Recall that this is related to the non-holomorphic Eisenstein series as follows

(3.2) ζ(2s)E(z, s) = ysEEpstein(Z, s), Z =
(
x2 + y2 x

x 1

)
,

which reduces the sup norm problem for Eisenstein series to bounding the Epstein
zeta function. We may restrict to the case where z ∈ F , the standard fundamental
domain (1.3) for X0(1), which corresponds to considering only matrices of the form

Z =
(
a b
b 1

)
,
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where a ≥ 1 and |b| ≤ 1/2.
The trivial estimate [26, (3.2)];

E(z, 1/2 + it)� y1/2 + (t/y)1/2

yields (1.8) in the range |t|1/6 � y and thus in the sequel we may assume a� |t|1/3
and thus also |t| � 1.

3.3. Reduction to an exponential sum. As in [3] we start by applying an approx-
imate functional equation [13, Theorem 5.3] with G(u) = eu

2 , but deviate slightly by
using a balanced version (corresponding to putting X = a1/2 in [13, Theorem 5.3]).
By estimating the contribution coming from the pole of EEpstein(Z, s) at s = 1 triv-
ially, the approximate functional equation yields

EEpstein(Z, 1/2 + it) =
∑

x6=0

W+
t (Q+(x)a−1/2)
Q+(x)1/2+it

+ ΓR(1− 2it)
ΓR(1 + 2it)(detZ)1/2

∑

x6=0

W−t (Q−(x)a1/2)
Q−(x)1/2−it +O(1)(3.3)

where Q±(x) = xZ±1 xT and

W±t (y) = 1
2πi

∫

(1)
eu

2 ΓR(2(u+ 1/2± it))
ΓR(2(1/2± it)) y−u

du

u
.

The weight W±t can be nicely bounded as follows; we move the contour to the line
(A) with A > 0 and bound the integrand using Stirling’s approximation as follows;

eu
2/2 ΓR(2(u+ 1/2± it))

ΓR(2(1/2± it)) u−1 � eA
2/2e−b

2/2π−A/2e−A(|t|A + (b+A)A)
A+ |b| �A |t|A,

with u = A+ ib using that e−b2/2(b+A)A → 0 as b→∞. Thus we get the bound

W±t (y)�A |t|A/yA
∫ ∞

−∞
e−x

2/2dx� |t|A/yA,

and more generally one deduces ∂n

∂ynW
±
t (y)�A |t|A/yA+n as in [13, Proposition 5.4].

From this we see that the contributions in (3.3) from x such that Q±(x)� a±1/2|t|1+ε

are negligible.

To deal with the remaining sums in (3.3), we divide the range of summation into
dyadic rectangles of the form (X1, 2X1) × (X2, 2X2). Observe that we get O(log2 t)
such rectangles, which implies that it suffices to bound each of these dyadic sums
individually.
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For each such rectangle we get by two-dimensional partial summation;
∑

X1≤x1≤2X1
X2≤x2≤2X2

W+
t (Q+(x)a−1/2)
Q+(x)1/2+it = F+(2X)

∑

X1≤x1≤2X1
X2≤x2≤2X2

eit logQ+(x)(3.4)

−
∫ 2X1

X1




∑

X1≤x1≤x
X2≤x2≤2X2

eit logQ+(x)


F

(1,0)
+ (x, 2X2)dx

−
∫ 2X2

X2




∑

X1≤x1≤2X1
X2≤x2≤y

eit logQ+(x)


F

(0,1)
+ (2X1, y)dy

+
∫ 2X1

X1

∫ 2X2

X2




∑

X1≤x1≤x
X2≤x2≤y

eit logQ+(x)


F

(1,1)
+ (x1, x2) dxdy,

where X = (X1, X2), F+(x) = W+
t (Q+(x)a−1/2)/Q+(x)1/2 and F (i,j)

+ := ∂i+jF+
∂xi1∂x

j
2
.

Similarly we get
∑

X1≤x1≤2X1
X2≤x2≤2X2

W−t (Q−(x)a1/2)
(detZ)1/2Q−(x)1/2−it = F−(2X)

∑

X1≤x1≤2X1
X2≤x2≤2X2

eit logQ−(x) + . . . ,(3.5)

where F−(x) = W−t (Q−(x)a1/2)/ ((detZ)Q−(x))1/2.
Now we have reduced the desired bound on the Epstein zeta function to proving a
certain estimate on exponential sums. The result we need is the following.
Proposition 3.1. For X = (X1, X2) satisfying Q+(X) � a1/2|t|1+ε, we have the
following bound;

(3.6) 1
Q+(X)1/2

∑

X1≤x1≤X′1
X2≤x2≤X′2

eit logQ+(x) �ε |t|1/3+ε,

uniformly in a ≥ 1, where Xi ≤ X ′i ≤ 2Xi. Similarly for X = (X1, X2) satisfying
Q−(X)� a−1/2|t|1+ε, we have

(3.7) 1
((detZ)Q−(X))1/2

∑

X1≤x1≤X′1
X2≤x2≤X′2

eit logQ−(x) �ε |t|1/3+ε,

where Xi ≤ X ′i ≤ 2Xi.
Remark 3.2. Observe that when proving (3.6), we may assume
(3.8) X1 � |t|1/3 and X2 � |t|1/3a1/2,

and similar when proving (3.7), we may assume
(3.9) X1 � |t|1/3a1/2 and X2 � |t|1/3,
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since otherwise the bounds follows from the trivial estimate on the exponentials.

Now let us see how Theorem 1.6 follows from the above proposition.

Proof of Theorem 1.6 assuming Proposition 3.1. We will begin by deducing from Propo-
sition 3.1 that EEpstein(Z, s)�ε (|t|+ 1)1/3+ε for all Z as above; by the above reduc-
tions, it suffices to prove the same bound for each of the dyadic sums (3.4) and (3.5)
with X1, X2 satisfying respectively Q±(X) � a±1/2|t|1+ε. We do this by bounding
each of the four terms, we get after applying partial summation separately (observe
that we may assume |t| � 1).
The above estimates for W+

t imply W+
t (Q+(x)a−1/2) � |t|ε, which together with

(3.6) implies that we can bound the first sum on the right-hand side of (3.4) by the
following;

F+(2X)
∑

X1≤x1≤2X1
X2≤x2≤2X2

eit logQ+(x) � |t|1/3+ε.

Similarly using ∂n

∂ynW
+
t (y)� |t|A/yA+n and the chain rule, we get

F
(1,0)
+ (x)� |t|

εa1/2

Q+(X) , F
(0,1)
+ (x)� |t|ε

Q+(X) , F
(1,1)
+ (x)� |t|εa1/2

Q+(X)3/2 ,

which together with (3.6) implies

∫ 2X1

X1




∑

X1≤x1≤x
X2≤x2≤2X2

eit logQ+(x)


F

(1,0)
+ (x, 2X2)dx

� X1|t|1/3+εQ+(X)1/2 a1/2

Q+(X) � |t|
1/3+ε,

using X1a
1/2 � Q+(X)1/2, and similarly for the other one-dimensional integral.

Finally a similar calculation gives

∫ 2X1

X1

∫ 2X2

X2




∑

X1≤x1≤x
X2≤x2≤y

eit logQ+(x)


F (1,1)(x, y) dxdy

� X1X2a
1/2Q+(X)1/2|t|1/3+ε

Q+(X)3/2 ,

which yields the desired bound for the Q+-sum.
The sum involving Q− can be bounded similarly using

F
(1,0)
− (x)� |t|ε

(detZ)Q−(X) , F
(0,1)
− (x)� |t|εa1/2

(detZ)Q−(X) ,

F
(1,1)
− (x)� |t|εa1/2

((detZ)Q−(X))3/2 ,
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which yields the desired bound for the Epstein zeta function.
Thus we conclude that

E(z, 1/2 + it) = y1/2+it

ζ(1 + 2it)EEpstein(Z, 1/2 + it)�ε y
1/2(|t|+ 1)1/3+ε,

using ζ(1 + 2it)�ε (|t|+ 1)−ε. This finishes the proof. �

4. A uniform bound for an exponential sum in two variables

In this section we will prove Proposition 3.1 using an extension of the ideas of Titch-
marsh and Blomer building on the work of van der Corput.
Firstly we will make a simplification; if we multiply with the phase (detZ)it in (3.7),
the summands become;

eit log(detZ)eit logQ−(x) = eit log((detZ)Q−(x)),

where (detZ)Q−(x) = x2
1 − 2bx1x2 + ax2

2. Since detZ � a, the ranges Q+(X) �
a1/2|t|1+ε and (detZ)Q−(X) � (detZ)a−1/2|t|1+ε are the same just with X1 and
X2 interchanged. Thus by symmetry the two bounds (3.6) and (3.7) are equivalent,
which is exactly why we used a balanced approximate functional equation in the first
place.
Thus we see that it suffices to prove (3.6) under the assumption Q+(x)� a1/2|t|1+ε.
To lighten notation, we put Q := Q+.

4.1. Some lemmas of Titchmarsh. Titchmarsh [21] extended the van der Corput
method for bounding exponential sums [13, Section 8.3] to two-dimensional sums. In
this section we will quote some lemmas due to Titchmarsh, which we will employ
later.
Through-out this section we assume that

f : (X1, X
′
1)× (X2, X

′
2)→ R

has algebraic partial derivatives of order one to three. We will as above use the nota-
tion f (i,j) := ∂i+jf

∂xi1∂x
j
2
.

The first lemma is a version of Weyl differencing in the two-dimensional setting.
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Lemma 4.1 (Lemma β, [21]). Let ρ ≤ min(X ′1 −X1, X
′
2 −X2) be a positive integer.

Then we have
∑

X1≤x1≤X′1
X2≤x2≤X′2

eif(x) � (X ′1 −X1)(X ′2 −X2)
ρ

+ (X ′1 −X1)1/2(X ′2 −X2)1/2

ρ




∑

1≤µ1≤ρ−1
0≤µ2≤ρ−1

|S1(µ)|




1/2

+ (X ′1 −X1)1/2(X ′2 −X2)1/2

ρ




∑

0≤µ1≤ρ−1
1≤µ2≤ρ−1

|S2(µ)|




1/2

,(4.1)

where x = (x1, x2), µ = (µ1, µ2) and

S1(µ) =
∑

X1≤x1≤X′1−µ1
X2≤x2≤X′2−µ2

ei[f(x+µ)−f(x)], S2(µ) =
∑

X1≤x1≤X′1−µ1
X2+µ2≤x2≤X′2

ei[f(x+(µ1,−µ2))−f(x)].

The above lemma reduces the task to bounding the sums S1(µ) and S2(µ) with µ1, µ2
in the appropriate ranges. The idea of the van der Corput method is to reduce the
bound of the sums S1(µ) and S2(µ) to bounding a certain integral. We will use the
following extension of van der Corput’s result due to Titchmarsh.

Lemma 4.2 (Lemma γ, [21]). Let l = max(X ′1 − X1, X
′
2 − X2) and assume that f

satisfies
|f (1,0)(x)| ≤ 3π

2 , |f (0,1)(x)| ≤ 3π
2 .

Then
∑

X1≤x1≤X′1
X2≤x2≤X′2

eif(x) =
∫

(X1,X′1)×(X2,X′2)
eif(x)dx+O(l).(4.2)

Finally we gonna bound this integral by a second derivative test.

Lemma 4.3 (Lemma ε, [21]). Let Ω ⊂ R2 be a rectangle and l its maximal side length.
If f : Ω→ R is a function satisfying the conditions mentioned in the beginning of the
section and

r � |f (2,0)(x)| � r, r � |f (0,2)(x)| � r, |f (1,1)(x)| � r(4.3)
|f (2,0)(x)f (0,2)(x)− (f (1,1)(x))2| � r2, x ∈ Ω.(4.4)

Then ∫

Ω
eif(x)dx� 1 + log l + log r

r
,

where the implied constant depends only on the angle of the rectangle to the coordinate
axes.
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Remark 4.4. Note that as stated, [21, Lemma ε] (or more precisely Lemma δ) assumes
that

|f (2,0)(x)|, |f (0,2)(x)| ≥ r, |f (2,0)(x)f (0,2)(x)− (f (1,1)(x))2| ≥ r2,

that is; without an implicit constant in the lower bounds. By inspecting the proof
of [21, Lemma ε], one however sees that Lemma 4.3 as stated above follows with the
exact same proof (this observation is also implicit in [3]).

4.2. Applying the lemmas. With these results of Titchmarsh at our disposal, we
are now ready to make some reductions in the direction of proving (3.6).
By applying Lemma 4.1 with f(x) = t logQ(x) and Q(x) = ax2

1 + 2bx1x2 +x2
2 to the

left hand side of (3.6), we reduce the task to bounding sums of the following kind;

S′(µ) =
∑

X1≤x1≤X′1
X2≤x2≤X′2

eigµ(x),(4.5)

where
gµ(x) := t(logQ(x+ µ)− logQ(x)),(4.6)

X ′i ≤ 2Xi and µ = (µ1, µ2) ∈ [0, ρ] × [0, ρ] with ρ = o(min(X1, X2)) to be chosen
appropriately later.

The first step is to divide the rectangle of summation in S′(µ) into rectangles ∆p,q

(where p, q runs through an appropriate indexing set) each with side lengths l1 × l2,
where

l1 �
Q(X)3/2

a|t|1+2εQ(µ)1/2 , l2 �
Q(X)3/2

a1/2|t|1+2εQ(µ)1/2 .(4.7)

We denote the sub-sum associated to ∆p,q by Sp,q(µ) and observe that the number
of such sub-sums is bounded by;

X1X2
l1l2

� X1X2
a−3/2Q(x)3|t|−2−2εQ(µ)−1 .

We will bound the sub-sums Sp,q(µ) individually.

Remark 4.5. There is some balancing in choosing the values l1, l2; one the hand l1, l2
have to be small enough so that gµ and its derivatives are close to being constant
in ∆p,q (i.e. the variation is small), and on the other hand the number of rectangles
∆p,q grows reciprocally with l1, l2. The reason for choosing these specific values will
become clear later.

4.3. Bounds on derivatives of gµ. In this subsection we will prove upper bounds
on partial derivates of gµ and a lower bound on the determinant of the Hesse-matrix
of gµ. Titchmarsh [21] only considers diagonal matrices and the fact that b 6= 0
creates some minor technical difficulties, which were also addressed by Blomer in [3].
We need to be a bit more careful since we need to consider the a-dependence as well,
so our methods of computation differ a bit from those in [3]; to handle the upper
bounds on the derivates we apply a Taylor expansion around µ and to lower bound
the Hesse determinant we use an explicit calculation.
First of all we will need the following lemma.
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Lemma 4.6. Let f(x) = t log(Q(x)) with Q(x1, x2) = ax2
1 + 2bx1x2 + x2

2 where
|b| ≤ 1/2 and a ≥ 1. Then we have

f (i,j)(x)�i,j
ai/2|t|

Q(x)(i+j)/2 ,(4.8)

where the implied constant depends on i, j but is independent of a, b.

Proof. Observe that f(x) is the composition of the function h(x) := t log(x2
1 + x2

2)
with the linear map

x 7→
(

(a− b2)1/2 0
b 1

)
xT ,

where a− b2 > 0 by the assumptions. Now one sees by a direct computation that

h(i,j)(x) = t
∑

0≤k≤i,k≡i (2)
0≤l≤j,l≡j (2)

ck,l
xk1x

l
2

(x2
1 + x2

2)(i+j+k+l)/2 ,

for some constants ck,l. Thus we get the bound

h(i,j)(x)�i,j
|t|

(x2
1 + x2

2)(i+j)/2 ,(4.9)

using the elementary inequality xy �α x
1/α + y1/(1−α) for 0 < α < 1.

By the chain rule we have

f (i,j)(x) =
i∑

l=0

(
i

l

)
(a− b2)(i−l)/2blh(i−l,j+l)((a− b2)1/2x1, bx1 + x2),

and thus the results follows from (4.9) since b is bounded. �
From this we can now prove the following bounds.

Lemma 4.7. Let µ, x and X satisfy the constraints coming from Lemma 4.1.Then
we have

∣∣∣g(i,j)
µ (x)

∣∣∣� ai/2
|t|Q(µ)1/2

Q(X)(i+j+1)/2 ,(4.10)

det(Hess(gµ(x))�
(
a1/2 |t|Q(µ)1/2

Q(X)3/2

)2

.(4.11)

Proof. It follows from a two-dimensional Taylor expansion that

gµ(x) =
∑

α∈{(1,0),(0,1)}

1
α! µ

α

∫ 1

0
fα(x+ tµ)dt,(4.12)

where we use the multi-exponential notation (x1, x2)(i,j) := xi1x
j
2.

Using Lemma 4.6, we see that for α = (α1, α2) ∈ {(1, 0), (0, 1)}, we have

µαfα+(i,j)(x)�i,j µ
α |t|a(α1+i)/2

Q(X)(i+j+1)/2

� ai/2
|t|Q(µ)1/2

Q(X)(i+j+1)/2 ,
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using that µ1a
1/2 � Q(µ)1/2, respectively µ2 � Q(µ)1/2.

Thus by applying ∂i+j

∂xi1∂x
j
2
term by term in (4.12) and the bound above, we conclude

(4.10).

To prove the last inequality, we apply the following direct computation;

det(Hess(gµ(x)) = t2(detQ)Q(2x+ µ)Q(µ)
Q(x)2Q(x+ µ)2 � a

|t|2Q(µ)
Q(X)3 ,

where we used ||µ|| = o(min(X1, X2)).
�

4.4. Proof of Proposition 3.1. Now we would like to apply Lemma 4.2, but obvi-
ously we need to alter gµ a bit in order for the conditions on the derivatives to be
satisfied. We observe that the maximum variation in ∆p,q of g(1,0)

µ is bounded by

l1 · max
x∈∆p,q

∣∣∣g(2,0)
µ (x)

∣∣∣+ l2 · max
x∈∆p,q

∣∣∣g(1,1)
µ (x)

∣∣∣� |t|−ε,

where we used (4.10), and similarly for g(0,1)
µ , in which case the variation is even

smaller.
Thus for sufficiently large t the variation in each sub-sum Sp,q is less than π, which
was exactly why we chose l1, l2 as in (4.7). Thus (following Titchmarsh) we can,
associated to each ∆p,q, find integers M,N such that

Gµ(x) := gµ(x)− 2πMx1 − 2πNx2,

satisfies ∣∣∣G(1,0)
µ (x)

∣∣∣ ≤ 3π/2 and
∣∣∣G(0,1)
µ (x)

∣∣∣ ≤ 3π/2,

for all x ∈ ∆p,q. Thus we get by Lemma 4.2

(4.13)
∑

x∈∆p,q

eigµ(x) =
∑

x∈∆p,q

eiGµ(x) =
∫

∆p,q

eiGµ(x)dx+O(l).

Observe that all partial derivates of order at least two of Gµ and gµ coincide.

We would like to apply Lemma 4.3, but we cannot do this directly since the required
lower bounds on the order two derivatives do not hold in general. By considering
different cases and doing an appropriate change of variable, we can however put us in
a situation where we can apply Lemma 4.3. Titchmarsh makes similar considerations
in the proof of [21, Lemma ζ] and on [21, p. 497], but his argument gets simplified
by the fact that G(2,0)

µ = −aG(0,2)
µ when b = 0 (which is not true for b 6= 0).

The idea to deal with the non-diagonal case is quite simply to consider two cases; if
the partial derivative G(1,1)

µ is small then the lower bound on the Hesse-determinant
forces the two other partial derivatives to be large. If on the other hand G

(1,1)
µ is

large then after a change of variable, we can force the new partial derivatives (2, 0)
and (0, 2) to be large. This will allow us to prove the following key lemma.
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Lemma 4.8. With notation as above we have
∫

∆p,q

eiGµ(x)dx� |t|−1+ε Q(X)3/2

a1/2Q(µ)1/2 .

Proof. Firstly we make a change of variables to the new variables y = (y1, y2) =
(a1/4x1, a

−1/4x2), under which the integral becomes
∫

∆̃p,q

eiG̃µ(y)dy,(4.14)

where G̃µ(y) = Gµ(a−1/4y1, a
1/4y2) and the new rectangle ∆̃p,q has side lengths

(a1/4l1)× (a−1/4l2).
The reason for doing this change of variable is that by the bounds in Lemma 4.7 and
the chain rule, it now follows that all order two partial derivates of G̃µ are bounded
by

� |t|a1/2Q(µ)1/2Q(X)−3/2 =: r.(4.15)

Let λ1, λ2 > 0 be constants independent of a, b and t (large enough) such that

|G̃αµ(y)| ≤ λ1r,(4.16)
|G̃(2,0)
µ (y)G̃(0,2)

µ (y)− (G̃(1,1)
µ (y))2| ≥ λ2r

2,(4.17)

for α ∈ {(2, 0), (1, 1), (0, 2)} and y ∈ ∆̃p,q. We now split into different cases depending
on the sizes of the order two partial derivatives.

Case 1: Assume that (G̃(1,1)
µ (y))2 < λ2r

2/2 for all y ∈ ∆̃p,q.
Then it follows from (4.17) that

|G̃(2,0)
µ (y)G̃(0,2)

µ (y)| > λ2r
2/2.

Thus we conclude using the bound (4.16) above

λ2r
2/2 < |G̃(2,0)

µ (y)G̃(0,2)
µ (y)| < λ1r|G̃(2,0)

µ (y)|,

and thus |G̃(2,0)
µ (y)| � r and similarly for G̃(0,2)

µ (y). The result now follows from
Lemma 4.3.

Case 2: Assume that |G̃(1,1)
µ (y)|2 ≥ λ2r

2/2 for some y ∈ ∆̃p,q.
This we will show implies that for any δ > 0, we have

|G̃(1,1)
µ (y)| ≥ (2−1/2 − δ)λ1/2

2 r

for all y ∈ ∆̃p,q when t is sufficiently large. To see this we bound the variation of
G̃

(1,1)
µ in ∆̃p,q; we observe that by the chain rule

G̃(i,j)
µ (y) = a(j−i)/4G(i,j)

µ (a−1/4y1, a
1/4y2),
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and thus by applying (4.10), we can bound the variation of G̃(1,1)
µ in ∆̃p,q by;

a1/4l1 · max
y∈∆̃p,q

|G̃(2,1)
µ (y)|+ a−1/4l2 · max

y∈∆̃p,q

|G̃(1,2)
µ (y)|

= l1 · max
x∈∆p,q

|G(2,1)
µ (x)|+ l2 · max

x∈∆p,q

|G(1,2)
µ (x)|

� Q(X)3/2

aQ(µ)1/2|t|1+2ε ·
aQ(µ)1/2|t|
Q(X)2 + Q(X)3/2

a1/2Q(µ)1/2|t|1+2ε ·
a1/2Q(µ)1/2|t|

Q(X)2

� |t|−2εQ(X)−1/2,

which is o(r) as t → ∞ since Q(X) � a1/2|t|1+ε (recall the definition (4.15) of r).
Now we have two further sub-cases.

Case 2.1: If
|G̃(2,0)
µ (y)|, |G̃(0,2)

µ (y)| > 2−2λ−1
1 λ2r,

for all y ∈ ∆̃p,q, then we can apply Lemma 4.3 directly.
Case 2.2: So we may assume that, say, |G̃(2,0)

µ (y)| ≤ 2−2λ−1
1 λ2r for some y ∈ ∆̃p,q.

As above, we see using (4.10) that the variation of G̃(2,0)
µ in ∆̃p,q is bounded by

a1/4l1 · max
y∈∆̃p,q

|G̃(3,0)
µ (y)|+ a−1/4l2 · max

y∈∆̃p,q

|G̃(2,1)
µ (y)|

= a−1/2l1 · max
x∈∆p,q

|G(3,0)
µ (x)|+ a−1/2l2 · max

x∈∆p,q

|G(2,1)
µ (x)|

� Q(X)3/2

a3/2Q(µ)1/2|t|1+2ε ·
a3/2Q(µ)1/2|t|

Q(X)2 + Q(X)3/2

aQ(µ)1/2|t|1+2ε ·
aQ(µ)1/2|t|
Q(X)2

� |t|−2εQ(X)−1/2,

which as above is o(r) as t→∞. Thus we conclude that for any δ′ > 0;

|G̃(2,0)
µ (y)| ≤ (2−2 + δ′)λ−1

1 λ2r

holds for all y ∈ ∆̃p,q when t is sufficiently large.
If we write

z = (z1, z2) = (dy1 − cy2, dy1 + cy2),(4.18)

with cd = 1/2, then after a change of variable the integral (4.14) becomes
∫

Ωp,q
eih(z)dz,

where h(z) = G̃µ(cz1 + cz2,−dz1 + dz2) and Ωp,q is a new rectangle with angle π/4
to the coordinate axis and maximum side length� a1/4l1 max(c, d). We observe that

h(2,0) = c2G̃(2,0)
µ + d2G̃(0,2)

µ − G̃(1,1)
µ ,

h(0,2) = c2G̃(2,0)
µ + d2G̃(0,2)

µ + G̃(1,1)
µ ,

h(1,1) = c2G̃(2,0)
µ − d2G̃(0,2)

µ .
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Thus by choosing c = λ
1/2
1 λ

−1/4
2 , d = λ

−1/2
1 λ

1/4
2 /2 and δ, δ′ sufficiently small, we get

for all z ∈ Ωp,q the following bounds;

r � (2−1/2 − 1/2− δ − δ′)λ1/2
2 r ≤ |h(2,0)(z)|, |h(0,2)(z)| � r, |h(1,1)(z)| � r.

Since the determinant of the Hesse-matrix is unchanged under the change of variable
corresponding to (4.18), the result follows from Lemma 4.3. Observe that the implied
constant we get from Lemma 4.3 is indeed uniform in a, b and t since the angles of
the rectangles Ωp,q to the coordinate axes are fixed. �

We are now ready to finish the proof of our main theorem.

Proof of Proposition 3.1 and Theorem 1.6. Combining (4.13) and Lemma 4.8, we get
the following bound for all µ as above;

S′(µ) =
∑

p,q

Sp,q(µ)

�
∑

p,q

(
|t|−1+ε Q(X)3/2

a1/2Q(µ)1/2 + l2

)

� X1X2
a−3/2Q(X)3|t|−2−4εQ(µ)−1 ·

(
|t|−1+ε Q(X)3/2

a1/2Q(µ)1/2 + Q(X)3/2

a1/2|t|1+2εQ(µ)1/2

)

� a1/2 |t|1+5εQ(µ)1/2

Q(X)1/2 ,

where we used a1/2X1X2 � Q(X). Plugging this into Lemma 4.1 yields;
1

Q(X)1/2

∑

X1≤x1≤X′1
X2≤x2≤X′2

eif(x1,x2)

� X1X2
Q(X)1/2ρ

+ (X1X2)1/2

Q(X)1/2ρ


 ∑

0≤µ1,µ2≤ρ

a1/2|t|1+5εQ(µ)1/2

Q(X)1/2




1/2

� Q(X)1/2

a1/2ρ
+ |t|1/2+3ε

Q(X)1/4ρ


 ∑

0≤µ1,µ2≤ρ
Q(µ)1/2




1/2

� Q(X)1/2

a1/2ρ
+ |t|

1/2+3εa1/4

Q(X)1/4ρ


 ∑

||µ||≤ρ
||µ||




1/2

� Q(X)1/2

a1/2ρ
+ |t|

1/2+3εa1/4ρ1/2

Q(X)1/4 .

Finally we choose an integer ρ � Q(X)1/2|t|−1/3a−1/2 to balance the terms, which
yields the desired bound �ε |t|1/3+3ε. This choice of ρ is admissible with respect to
the conditions in Lemma 4.1 since first of all

ρ � a1/4|t|1/2+ε|t|−1/3a−1/2 = |t|1/6+εa−1/4,
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which is less than X1 and X2 by (3.8) and secondly we have ρ � 1, which again
follows from (3.8).
This proves Proposition 3.1 and consequently we conclude the proof of Theorem
1.6. �

5. Lower bounds for the sup norm and a conjecture

As a concluding remark we will make some consideration on the best possible bound
of the type (1.4). First of all the appearance of yδ in (1.4) is necessary in the sense
that for a fixed t, the Eisenstein series is unbounded because of the constant Fourier
coefficient. We will now show that the lower bound δ ≥ 1/2 holds for any bound of the
form (1.4) and state a uniform version of the sup norm conjecture for Eisenstein series.

We have for t fixed the following crude bound for the K-Bessel function [12, p. 60];

Kit(y)�t y
−1/2e−y,

as y → ∞. Thus from the Fourier expansion of the Eisenstein series [12, Theorem
3.4];

E(z, s) = ys + ϕ(s)y1−s + 4√y
∑

n≥1

Ks−1/2(2πyn)τs−1/2(n)
Γ(s)ζ(2s)π−s cos(2πxn),

we see that

E(z, 1/2 + it) = y1/2+it + ϕ(1/2 + it)y1/2−it +Ot(e−πy).(5.1)

Now observe that for fixed t ≥ 1, we can choose arbitrarily large y such that

1 + ϕ(1/2 + it)y−2it = 2,

using that |ϕ(1/2 + it)| = 1.
For such y, we thus have

E(z, 1/2 + it) = y1/2(2yit + ot(1))� y1/2,

when t is sufficiently large. Since we can let y →∞, we conclude that any bound of
the form (1.4) has to satisfy δ ≥ 1/2.

One might speculate that the following holds for any ε > 0;

(5.2) Conjecture: E(z, 1/2 + it)�ε y
1/2(|t|+ 1)ε,

uniformly for z ∈ F , the standard fundamental domain (1.3) for Γ0(1). Note that
this conjecture together with (1.6) implies simultaneous Lindelöf in the t-aspect and
on average in the D-aspect for the family of class group L-functions of imaginary
quadratic fields.
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SMALL SCALE EQUIDISTRIBUTION OF HECKE EIGENFORMS
AT INFINITY

ASBJØRN C. NORDENTOFT, YIANNIS N. PETRIDIS, AND MORTEN S. RISAGER

Abstract. We investigate the equidistribution of Hecke eigenforms on sets that
are shrinking towards infinity. We show that at scales finer than the Planck scale
they do not equidistribute while at scales more coarse than the Planck scale they
equidistribute on a full density subsequence of eigenforms. On a suitable set of
test functions we compute the variance showing interesting transition behavior
at half the Planck scale.

1. Introduction

It is a fundamental consequence of Berry’s random wave conjecture [1] that we
expect the eigenfunctions of the Laplace operator on a hyperbolic manifold M =
Γ\H to ‘spread out’ in the large eigenvalue limit. For a measure dν′ on Γ\H and a
sufficiently nice function ψ on Γ\H we write

〈ψ, dν′〉 =
∫

Γ\H
ψ(z)dν′(z).

Let ϕλ be L2-normalized eigenfunctions of the Laplacian with eigenvalue λ, and con-
sider the measures

dµλ = |ϕλ|2 dµ, dν = dµ

vol (Γ\H) ,

where dµ(z) = y−2dxdy is the uniform measure on the surface.
The question about whether the eigenfunctions are indeed spread out is quantified

by the question of whether
(1) 〈ψ, dµλ〉 → 〈ψ, dν〉 , as λ→∞
for a suitable set of test functions ψ.

For the full modular group Γ = PSL2(Z) with ϕλ being Hecke–Maass forms this
(and much more) was famously proved by Lindenstrauss [14] and Soundararajan [26].
Zelditch [29] had previously studied the variance sum

∑

λ≤Λ
|〈ψ, dµλ〉 − 〈ψ, dµ〉|2
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providing weak but non-trivial upper bounds on this to conclude (1) for a full density
subsequence of λ (See also [25,28]). For the full modular group Sarnak and Zhao [24]
were able to prove asymptotics for the variance sum on a suitable set of test functions,
and Nelson [19–21] has recently found a way to determine the asymptotics also for
arithmetic compact hyperbolic surfaces arising from maximal orders in quaternion
algebras.

It is natural to ask if the equidistribution (1) still holds if we allow the support of
the test function ψ to shrink as a function of λ. An interesting special case is when
ψ is the indicator function of a hyperbolic ball of radius R with R going to zero as a
function of λ. This is the question of equidistribution in ‘shrinking sets’, which has
been analyzed e.g. by Young [27, Prop 1.5]. The physics literature seems to suggest
(see also [5]) that we may expect equidistribution to hold all the way down to the
scale of the de Broglie wavelength, which is of the order of 1/

√
λ. Humphries [8] has

shown that if we go below this threshold, also called the Planck scale, then there are
cases where equidistribution does not hold.

Humphries and Khan [9] proved that individual equidistribution holds all the way
to the Planck scale, if we restrict to dihedral forms, which form a very thin set of
Maass forms.

It should be noted that ergodic theory methods provide equidistribution in shrink-
ing balls for general negatively curved manifolds but typically only for a slow loga-
rithmic rate, see e.g. [4, 6].

On the other hand for the eigenfunctions on the Euclidean torus Granville and
Wigman [3] showed individual equidistribution close to the Planck scale and failure
of equidistribution at scales finer than the Planck scale. This was previously proved
by Lester and Rudnick [13] along a full density subsequence.

1.1. Mass equidistribution for holomorphic Hecke cusp forms. We may ask
questions analogous to the above if we replace the eigenfunction ϕλ by yk/2f(z), where
f(z) is a holomorphic cusp form of weight k. In fact yk/2f(z) is an eigenfunction of
the weight k Laplacian ∆k for the full modular group with eigenvalue −k/2(1−k/2),
which is the bottom of the spectrum for ∆k . Holowinsky and Soundararajan [7]
proved that in analogy with (1) we have

µf (ψ) := 〈ψ, dµf 〉 → 〈ψ, dν〉 , as k →∞,
where

dµf = yk |f(z)|2 dµ.
Luo and Sarnak [18] computed the quantum variance of these measures on the

modular surface. More precisely they proved that for a fixed compactly supported
function u on the positive reals we have

∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f) |µf (ψ)|2 = Bω(ψ,ψ)K +Oε,ψ(K1/2+ε).

Here Hk is an orthonormal basis of Hecke eigenforms, L(s, sym2 f) is the symmet-
ric square L-function of f , and ψ is a rapidly decaying smooth function of mean zero
whose zero-th Fourier coefficient vanishes sufficiently high in the cusp, and Bω(ψ1, ψ2)
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is a Hermitian form diagonalized by cusp forms. The eigenvalues of Bω are arithmeti-
cally significant: they are π/2 times the central value of the corresponding Hecke
L-function.

1.2. Equidistribution on shrinking sets. The question of equidistribution on
shrinking sets in the holomorphic setting was considered by Lester, Matomäki, and
Radziwiłł [12]. They proved an effective version of the result of Holowinsky and
Soundararajan, allowing to shrink the test function at the rate of a small negative
power of log k.

We consider the following variant of the ‘shrinking sets’ problem: Let H be a large
number and define the set

BH = {z ∈ Γ\H : =(z) > H},
considered to be a shrinking ball around infinity. We study the distribution of com-
pactly supported functions on B1 squeezed into BH using the operator MH defined
by

MHψ(z) = ψ(x+ iy/H).

This may be formulated in a coordinate-independent way. See Section 3.1. Similar
shrinking has been considered before by Ghosh and Sarnak [2] as well as by Lester,
Matomäki, and Radziwiłł [12].

The length scale of BH is of the order ofH−1 so we might expect equidistribution to
hold all the way down to H−1 � k−1, as this is the order of the de Broglie wavelength
of yk/2f(z).

Let B := B1. We will consider the following class of functions:

C∞0 (M,B) = {ψ ∈ C∞0 (M) | suppψ ⊂ B},
where C∞0 (M) consists of all smooth functions on M = Γ\H decaying rapidly at the
cusp, and such that the zero-th Fourier coefficient vanishes sufficiently high in the
cusp. Given ψ ∈ C∞0 (M,B), we investigate upper bounds and asymptotics for

∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)

∣∣µf (MH(k)ψ)− ν(MH(k)ψ)
∣∣2 ,

where H(k) = (k − 1)θ for some 0 ≤ θ < 1, and u : R+ → R≥0 is smooth with
compact support. It turns out that the asymptotics depends crucially on θ.

1.3. Mass equidistribution below and above the Planck scale. We first prove
that mass equidistribution fails on shrinking sets around infinity as above for scales
finer than the Planck scale. This is consistent with the above prediction.

Proposition 1.1. Let θ ≥ 1, i.e. shrinking below the Planck scale. Then there exists
ψ ∈ C∞0 (M,B) such that µf (M(k−1)θψ) = o(ν(M(k−1)θψ)).

Secondly we obtain a power-saving bound for the quantum variance sum for general
observables all the way down to the Planck scale. This implies that mass equidistri-
bution holds for a density one subsequence of holomorphic cusp forms.
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Theorem 1.2. Let 0 < θ < 1 and ψ ∈ C∞0 (M,B). Then
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)

∣∣µf (M(k−1)θψ)− ν(M(k−1)θψ)
∣∣2

= Oψ,u(K2−2θ−min (1/5,1−θ)+ε).

Since ν(M(k−1)θψ) is of size about k−θ this supplements [12, Theorem 1.3] as
it shows that equidistribution holds on average at a much finer scale than proved
individually in [12]. The precise polynomial saving of 1/5 can probably be improved;
its proof has as its input the convexity bound in the k-aspect of L(s, sym2 f).

1.4. Asymptotics of the quantum variance. We let C∞0,0(M,B) denote functions
in C∞0 (M,B) that are orthogonal to the constant function. We note that for ψ ∈
C∞0,0(M,B) we have ν(M(k−1)θψ) = 0. If we restrict to test functions in this space we
can improve on Theorem 1.2 and obtain an asymptotic result.

Theorem 1.3. Let 0 < θ < 1 and fix u : R+ → R≥0 smooth with compact support.
(i) There exists a Hermitian form Bθ on C∞0,0(M,B) and δθ > 0 such that
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)

∣∣µf (M(k−1)θψ)
∣∣2

= Bθ(ψ,ψ)
(∫

u(y)y−θdy
)
K1−θ +Oψ,θ(K1−θ−δθ ),

for ψ ∈ C∞0,0(M,B).
(ii) The Hermitian forms Bθ have three different regimes in the sense that Bθ is

constant on each of the three intervals 0 < θ < 1/2, θ = 1/2 and 1/2 < θ < 1.
The decomposition

C∞0,0(M,B) = C∞cusp(M,B)⊕ C∞Eis(M,B),
into the cuspidal and the Eisenstein part is orthogonal with respect to Bθ for
all 0 < θ < 1. Furthermore Bθ restricted to C∞Eis(M,B) is independent of θ.

(iii) The Hermitian forms Bθ can be extended to the larger set 1BC∞0,0(M) such
that the following holds: On the subset 1BC∞cusp(M) of functions with the zero-
th Fourier coefficient vanishing, the form Bθ is continuous with respect to a
certain Sobolev norm ‖·‖2,1. The set C∞cusp(M,B) is dense in 1BC∞cusp(M)
with respect to the same norm ‖·‖2,1.

(iv) If φi are Hecke–Maass forms with eigenvalue si(1 − si), then the Hermitian
form satisfies Bθ(1Bφ1, 1Bφ2) = 0 unless φ1, φ2 are both even. If φi are both
even, then

Bθ(1Bφ1, 1Bφ2) = 4π
∑

m,n≥1

τ1((m,n))λφ1(m)λφ2(n)
(mn)1/2 Is1,s2

θ (m,n),

where

Is1,s2
θ (m,n) =

∫ ∞

max(m,n)
Ks1−1/2(2πy)Ks2−1/2(2πy)fθ,m,n(y)dy

y
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with

fθ,m,n(y) =





1, if 0 < θ < 1/2,
e−2π2y2(m2+n2), if θ = 1/2,
0, if θ > 1/2.

For the precise form of Bθ and ‖·‖2,1 we refer to (21) and (32).
Luo and Sarnak [18, p.773] proved that L(φ, 1/2) is non-negative for φ a Hecke–

Maass cusp form by realizing it as eigenvalue of the Hermitian form B0. One may
speculate whether Bθ(1Bφ, 1Bφ) for 0 < θ ≤ 1/2 is also related to central values of
L-functions. Irrespectively, we may use Theorem 1.3 to prove that Bθ(1Bφ, 1Bφ) ≥ 0.
Seeing this directly from the series representation in Theorem 1.3 (iv) seems difficult,
and is as such surprising.

In fact this was our original motivation for extending Bθ in Theorem 1.3 (iii) to
a set containing 1Bφ. Notice that 1Bφ together with incomplete Eisenstein series
provide a basis for 1BC∞0,0(M).

Corollary 1.4. If φ is an even Hecke–Maass cusp form with eigenvalue sφ(1 − sφ)
and Hecke eigenvalues λφ(n), then

∑

m,n≥1

τ1((m,n))λφ(m)λφ(n)
(mn)1/2

∫ ∞

max(m,n)

∣∣Ksφ−1/2(2πy)
∣∣2 dy

y
≥ 0.

Remark 1. Let w : R→ R be any smooth and bounded weight function with support
contained in [1,∞). Then one can similarly show by using the explicit expression for
Bθ in (21) combined with Theorem 1.3 (i) for ψ(z) = w(y)φ(z) that

∑

m,n≥1

τ1((m,n))λφ(m)λφ(n)
(mn)1/2

∫ ∞

0

∣∣Ksφ−1/2(2πy)
∣∣2 w

( y
m

)
w
( y
n

) dy
y
≥ 0.

Remark 2. We expect that the techniques and results in this paper will work with
some modifications also for Maass cusp forms in the same way that the results in [16]
are extended to the Maass case by Sarnak and Zhao [24]. For simplicity and clarity
we restrict ourselves to the holomorphic case.

1.5. The behavior of holomorphic cusp forms high in the cusp. Ghosh and
Sarnak [2] considered the distribution of the zeroes of holomorphic modular forms high
in the cusp as the weight grows. By the work of Rudnick [23] mass equidistribution for
holomorphic forms implies equidistribution of their zeroes in the fundamental domain.
Ghosh and Sarnak observed that, although the proportion of zeroes in a shrinking
ball around infinity (more precisely H � √K log k) was proportional to the area of
the domain, the statistical behavior of the zeroes was very different. They observed
experimentally that the zeroes tend to localize on the two "real" lines <z = −1/2 and
<z = 0, conjectured that 100% of the zeroes in these shrinking balls around infinity
should lie on these two lines, and obtained some results in this direction. These results
were then strengthened by Lester, Matomäki, and Radziwiłł [12].

The reason for the qualitative change in the behavior of holomorphic cusp forms
high in the cusp has its roots in the fact that for all integers 1 � l �

√
k/ log k, we
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have

(2)
(e
l

)k−1
f(x+ iyl) = λf (l)e(xl) +O(k−δ),

where yl = (k− 1)/4πl, and δ > 0 is some constant. This means that counting zeroes
on the real lines reduces to detecting sign-changes of the Hecke eigenvalues λf (l),
which is exactly what was done in [12].

We observe that our bilinear form Bθ exhibits a phase transition at θ = 1/2,
which coincides exactly with the threshold in [2] and [12]. Combined, these results
point towards the phenomenon that, although the mass of holomorphic cusp forms
equidistribute all the way down to the Planck scale, the qualitative behavior changes
high in the cusp at half the Planck scale.

The asymptotic (2) implies that yk|f(x + iy)|2 is essentially constant as x varies,
at least when y = yl for some l as above. This provides intuition for the phenomena
observed in this paper: yk|f(x+ iy)|2 exhibits very strong cancellation with cuspidal
test functions when we go to scales finer than halfway to the Planck scale. On the
other hand for incomplete Eisenstein series the behavior is the same all the way down
to the Planck scale, according to Theorem 1.3 (ii).

2. The variance of shifted convolution sums over a Hecke basis

An essential tool in understanding questions of equidistribution of Hecke eigenforms
is understanding shifted convolution sums.

Let f be a weight k, level 1 holomorphic cuspidal Hecke eigenform, normalized
such that its Fourier expansion

f(z) =
∞∑

n=1
λf (n)n

k−1
2 e(nz), where e(z) = e2πiz

satisfies λf (1) = 1. The normalized Hecke eigenvalues satisfy the Hecke relations

(3) λf (n)λf (m) =
∑

d|(m,n)

λf

(mn
d2

)
,

see [10, (6.38)]. Consider the shifted convolution sum

AWf (X,h) :=
∑

n∈N
λf (n)λf (n+ h)W ((n+ h/2)/X)

=
∑

d|h

∑

r∈N
λf (r(r + d))W

(
h
d (r + d/2)

X

)
,(4)

where W : R+ → R is smooth and supported in a compact interval, and where in the
second line we have used the Hecke relations (3).

Let τ1(n) =
∑
d|n d, and let L(s, sym2 f) be the the symmetric square L-function

associated to f , i.e.

L(s, sym2 f) = ζ(2s)
∞∑

n=1

λf (n2)
ns

, when <(s) > 1,

and defined on C by analytic continuation.
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We investigate the variance of the smooth shifted convolution sums AWf (X,h) over
an orthonormal basis of Hecke eigenforms Hk and over k of size K. Let u : R+ → R≥0
be a compactly supported function. We want to understand

(5)
∑

2|k
u

(
k − 1
K

)
2π2

k − 1
∑

f∈Hk

AW1
f (h1, X(k))AW2

f (h2, X(k))
L(1, sym2, f) ,

where

X(k) = (k − 1)1−θ

for some 0 < θ < 1.
In order to better describe the dependence on W,h we use Sobolev norms

‖W‖pl,p =
∑

0≤i≤l

∥∥∥∥
di

dyi
W

∥∥∥∥
p

p

‖W‖l,∞ =
∑

0≤i≤l

∥∥∥∥
di

dyi
W

∥∥∥∥
∞
.

For all compactly supported functions W we choose aW > 0, AW > 1 such that
suppW ⊆ [aW , AW ]. For h1, h2 ≥ 1 we denote ‖h‖∞ = max(h1, h2).

The main tool in understanding (5) is the Petersson formula, which states that
2π2

k − 1
∑

f∈Hk

λf (n1)λf (n2)
L(1, sym2(f))

= δn1,n2 + 2π(−1)k/2
∑

c≥1

S(n1, n2; c)
c

Jk−1

(4π√n1n2

c

)
,(6)

see e.g. [18, p. 776]. We will use the following estimate for the J-Bessel function:

(7) Jk−1(x)�
(ex

2k

)k−1
,

see e.g. [15, p. 233].
To state our theorem we define, for functions W1,W2 : R+ → R and h1, h2 ∈ N,

Bh1,h2(W1,W2) = τ1((h1, h2))
∫ ∞

0
W1(h1y)W2(h2y)dy.

We now prove the following result.

Theorem 2.1. Let u : R+ → R≥0 be a smooth compactly supported weight function,
and let W1,W2 : R+ → R be smooth functions compactly supported below AWi

≥ 1.
Then

∑

2|k
u

(
k − 1
K

)
2π2

k − 1
∑

f∈Hk

AW1
f (h1, X(k))AW2

f (h2, X(k))
L(1, sym2, f)

=Bh1,h2(W1,W2)K
2−θ

2

∫ ∞

0
u(y)y1−θdy +OWi,hi,θ(K).
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The implied constant in the error term may be bounded by a constant depending only
on θ times

(1 + ‖h‖∞)1+ε(AW1AW2)C ‖W1‖C,∞ ‖W2‖C,∞
for C sufficiently large depending on θ.

Proof. Using (4) and the Petersson formula (6) we find, for all X ≥ 1,

2π2

k − 1
∑

f∈Hk

AW1
f (h1, X)AW2

f (h2, X)
L(1, sym2 f)

=
∑

d1|h1
d2|h2

∑

r1,r2∈N
δr1(r1+d1)=r2(r2+d2)W1

(
h1(r1 + d1/2)

d1X

)
W2

(
h2(r2 + d2/2)

d2X

)

+2π(−1)k/2
∑

d1|h1
d2|h2

∑

r1,r2∈N
W1

(
h1(r1 + d1/2)

d1X

)
W2

(
h2(r2 + d2/2)

d2X

)

×
∑

c≥1

S(r1(r1 + d1), r2(r2 + d2); c)
c

Jk−1

(
4π
√
r1(r1 + d1)r2(r2 + d2)

c

)
.

We refer to the line with the Kronecker delta as the diagonal term, and the rest as
the off-diagonal term.

To handle the diagonal term, we observe that for fixed positive d1 6= d2 the equation

(8) r1(r1 + d1) = r2(r2 + d2)

has only finitely many positive solution. To see this we rewrite (8) as

(2r1 + d1)2 − (2r2 + d2)2 = d2
1 − d2

2

Factoring the left-hand-side as (2r1 + d1 + 2r2 + d2)(2r1 + d1 − 2r2 − d2) we see that
any solution gives a factorization of d2

1 − d2
2, and that any factorization of d2

1 − d2
2

comes from at most 1 solution. This shows that there are at most d(d2
1 − d2

2) (where
d(n) denotes the number of divisors of n) solutions to with d1 6= d2; indeed we see
that the total contribution from these terms is O(‖h‖ε∞ ‖W1‖∞ ‖W2‖∞).

For the remaining terms, i.e. d1 = d2 = d, r1 = r2 = r we apply first Poisson
summation in the r-variable and use that the Fourier transform of the function y 7→
W1

(
h1(y+d1/2)

d1X

)
W2

(
h2(y+d2/2)

d2X

)
at r is bounded by an absolute constant times

(9) |r|−n (dX)−n+1 ‖W1(h1·)W2(h2·)‖n,1 ,
which follows from repeated integration by parts. We now see that

∑

d1|h1
d2|h2
d1=d2

∑

r∈N
W1

(
h1(r + d1/2)

d1X

)
W2

(
h2(r + d2/2)

d2X

)
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equals the same expression with the sum over r ∈ N replaced by the same sum over
r ∈ Z up to an error term of O(‖h‖1+ε

∞ ‖W1‖∞ ‖W2‖∞). We then observe that

∑

d|(h1,h2)

∑

r∈Z
W1

(
h1(r + d/2)

dX

)
W2

(
h2(r + d/2)

dX

)

=
∑

d|(h1,h2)

∑

r∈Z

∫ ∞

−∞
W1

(
h1(y + d/2)

dX

)
W2

(
h2(y + d/2))

dX

)
e(−ry)dy

= τ1((h1, h2))
∫ ∞

−∞
W1(h1y)W2(h2y)dyX +O(‖h‖ε∞ ‖W1(h1·)W2(h2·)‖2,1 ,

where we have extended trivially the r-sum to all of r, then used Poisson summation
and the bound (9) with n = 2. Now we average over k and apply Poisson summation
in the k-variable. Using integration by parts on the dual side we find that for any
A > 0, we have

∑

2|k
u

(
k − 1
K

)
X(k) = K2−θ

2

∫ ∞

0
u(y)y1−θdy +Ou,A(K−A),

∑

2|k
u

(
k − 1
K

)
= K

2

∫ ∞

0
u(y)dy +Ou,A(K−A),

which yields the desired main term up to the stated error term.
For the off-diagonal terms we need to bound
∑

2|k
u

(
k − 1
K

)
2π(−1)k/2

∑

d1|h1
d2|h2
r1,r2∈N

W1

(
h1(r1 + d1/2)
d1(k − 1)1−θ

)
W2

(
h2(r2 + d2/2)
d2(k − 1)1−θ

)

×
∑

c≥1

S(r1(r1 + d1), r2(r2 + d2); c)
c

Jk−1

(
∆
c

)
,

where ∆ = 4π
√
r1(r1 + d1)r2(r2 + d2). We mimic the arguments of Luo and Sarnak

[17, p 880–881]. We start by noticing that
(i) the summation over k is supported in K �u k �u K,
(ii) the summations over ri are supported in

aWi

di
hi

(k − 1)1−θ ≤ (ri + di/2) ≤ AWi

di
hi

(k − 1)1−θ
(
�u AWi

di
hi
K1−θ

)
.

Using again ri(ri + di) = (ri + di/2)2 − d2
i /4 we see that

(iii) in the support of the above sums, we have

∆�u ‖h‖ε∞AW1AW2

d1d2
h1h2

K2(1−θ).

We want to truncate the sum over c and notice that for r1, r2 in the support of the
sums we may use the bound (7) on the Bessel function and the trivial bound on the
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Kloosterman sum to see that

∑

c≥M

S(r1(r1 + d1), r2(r2 + d2); c)
c

Jk−1

(
∆
c

)

�
∑

c≥M

(
CuAW1AW2d1d2K

1−2θ

h1h2c

)k−1

�u

(
CuAW1AW2d1d2K

1−2θ

h1h2M

)k−1
M

K
.

We conclude that, if M = CuAW1AW2
d1d2
h1h2

K1−2θ+ε, this term decays exponentially
in K. Therefore

(iv) the sum in c above may be truncated at

c�u AW1AW1

d1d2
h1h2

K1−2θ+ε

up to an additional error of �u ‖W1‖∞ ‖W2‖∞AW1AW2K
−A. We now quote lem-

mata 4.1 and 4.2 in [17] stating that for g a smooth function compactly supported
function on R+ we have

∑

2|k
2π(−1)k/2Jk−1(x)g(k − 1) = −2π

∫ ∞

−∞
ĝ(t) sin(x cos(2πt))dt,(10)

∫ ∞

−∞
ĝ(t) sin(x(1− 2π2t2)))dt =

∫ ∞

0

g(
√

2yx)
(πy)1/2 sin(y + x− π/4)dy,

∫ ∞

−∞
ĝ(t) cos(x(1− 2π2t2)))dt =

∫ ∞

0

g(
√

2yx)
(πy)1/2 cos(y + x− π/4)dy.(11)

In our case we apply (10) to the function

g(y) = u(y/K)W1

(
h1(r1 + d1/2)

d1y1−θ

)
W2

(
h2(r2 + d2/2)

d2y1−θ

)
.

This shows that the remaining part of the non-diagonal contribution can be bounded
by an absolute constant times

∑

di|hi

∑

ri≥1

∑

c≥1

∣∣∣∣
∫ ∞

−∞
ĝ(t) sin

(
∆
c

cos(2πt)
)
dt

∣∣∣∣ ,(12)

with restrictions on the sums as (ii)-(iv) above. Here we have used the trivial estimate
on the Kloosterman sums.
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As in [17, Eq (4.4)] we now use a trigonometric identity and Taylor expansions to
get

sin(x cos(2πt)) = sin


x(1− 2π2t2) + x

∑

n≥2
(−1)n (2πt)n

(2n)!




= sin(x(1− 2π2t2))


 ∑

0≤n,m≤N−1
cm,n(xt4)2nt2m


(13)

+ cos(x(1− 2π2t2))




∑

1≤n≤N
0≤m≤N−1

dm,n(xt4)2n−1t2m




+O((xt4)2N + (xt4)4N + t2N + t4N ),
for any N , where cm,n and dm,n are real constants. In order to bound the term
coming from the error-term above, we observe that all derivatives g(m) are supported
in K · supp (u) and we claim that, when r1, r2 satisfy (i)–(iv), we have the bound
(14) g(m)(y)�u,m CW1,W2,mK

−m,

where CW1,W2,m =
∏
i=1,2 ‖Wi‖m,∞AmWi

.
To see why the claim is true we observe from Leibniz’ rule that g(m)(y) is bounded

by an absolute constant (depending on m) times

max
p1+p2+p3=m

∣∣∣∣
dp1

dyp1
u(y/K) d

p2

dyp2
W1

(
h1(r1 + d1/2)

d1y1−θ

)
dp3

dyp3
W2

(
h2(r2 + d2/2)

d2y1−θ

)∣∣∣∣ .

Now we observe that by the chain rule
dp

dyp
u(y/K) = u(p)(y/K)K−p �u,p K

−p.

Using Faà di Bruno’s formula for the higher derivative we see that
dp

dyp
Wi

(
hi(ri + di/2)

diy1−θ

)
�p ‖Wi‖p,∞

∑ p∏

j=1

(
hi(ri + di/2)
diy−θ+1+j

)mj

= ‖Wi‖p,∞
∑(

hi(ri + di/2)
diy−θ+1

)∑
i
mi

y−p.

The sum is over p-tuples of integers satisfying m1 + 2m2 + · · · pmp = p. Using that
Wi is supported in [aWi

, AWi
] we see that we may bound the big parenthesis in the

last equation by AWi
. For y in the support of g we have y ∈ K · suppu so for such y

we get
dp

dyp
Wi

(
hi(ri + di/2)

diy1−θ

)
�u,p ‖Wi‖p,∞A

p
Wi
K−p.

Combining these bounds proves the claim (14).
From (14) it follows that ĝ(m)(y) �u,m CW1,W2,mK

−(m−1). Additionally partial
integration gives ĝ(m)(t) �u,m CW1,W2,m+l |t|−lK−(m+l−1) so by using ĝ(m)(y) =
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(−2πiy)mĝ(y) we may conclude, by using the first bound for |t| ≤ K−1 and the
second bound with l = 2 when |t| > K−1 that

∫ ∞

−∞
|ĝ(t)tm| dt�u,m CW1,W2,m+2K

−m.

Using this bound we see that, when we use the Taylor expansion (13), the contri-
bution from

(1) ((∆/c)t4)2N is �u ‖h‖ε∞ CW1,W2,8N+2
∏
i=1,2A

2N+1
Wi

K(1−θ)2(2N+1)−8N ,
(2) ((∆/c)t4)4N is �u ‖h‖ε∞ CW1,W2,16N+2

∏
i=1,2A

4N+1
Wi

K(1−θ)2(4N+1)−16N ,
(3) t2N is �u ‖h‖ε∞ CW1,W2,2N+2

∏
i=1,2A

2
Wi
K(3−4θ)−2N ,

(4) t4N is �u ‖h‖ε∞ CW1,W2,4N+2
∏
i=1,2A

2
Wi
K(3−4θ)−4N .

We note that for N = 1 all terms are �u ‖h‖ε∞ CW1,W2,18
∏
i=1,2A

5
Wi
K.

To bound the remaining terms involving

e(x, t) := sin(x(1− 2π2t2))c00 + cos(x(1− 2π2t2))d01xt
4

coming from the Taylor expansion, we combine ĝ(m)(y) = (−2πiy)mĝ(y) with (11)
which gives the bound
(15)∫ ∞

−∞
ĝ(t)e(∆

c
, t)dt� max

(m,m′)=(4,1),(0,0)
±

∣∣∣∣∣

(
∆
c

)m′ ∫ ∞

0
g(m)

(√
2∆
c
y

)
y−1/2e±iydy

∣∣∣∣∣ ,

where we used Euler’s formulas for sine and cosine. Now we apply partial integration
to the integral with eiy as one of the functions.

For r1, r2,∆, c as in (ii)–(iv) (i.e. where the terms in the sum (12) might be non-
vanishing) we claim that for any n,m ∈ Z≥0

dn

dyn

(
g(m)

(√
2∆
c
y

)
y−1/2

)
�u,n,m

CW1,W2,m+n
Kmy1/2+n .

To see this we note that the left-hand side is non-zero only if ∆y/c �u K2. By
using the Leibniz rule and Faà di Bruno’s formula we see that

dn

dyn

(
g(m)

(√
2∆y
c

)
y−1/2

)
�n

n∑

i=0

∣∣∣∣∣
di

dyi

(
g(m)

(√
2∆y
c

))
y−1/2−(r−i)

∣∣∣∣∣

�u,n

n∑

i=0

∣∣∣∣∣∣
∑

m1,...,mi

(
g(m+m1+...mi)

(√
2∆y
c

))
i∏

j=1

(√
2∆y
c
y−j
)mj ∣∣∣∣∣∣

y−1/2−(n−i)

�u,n CW1,W2,m+nK
−my−1/2−n.

Here the inner sum is over m1, . . . ,mi satisfying m1 + 2m2 + . . .+ imi = i and in the
last line we have used (14) and that ∆y/c �u K2.

For (m,m′) = (4, 1) in (15) we use the claim with n = 0 and for (m,m′) = (0, 0) we
take a general n which will eventually depend on θ, and we find, by using integration
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by parts as described above,
∫ ∞

−∞
ĝ(t)e(∆

c
, t)dt�u CW1,W2,4

K−3∆1/2

c1/2
+ CW1,W2,n

K1−2n∆n−1/2

cn−1/2 .

Plugging this bound back in the sum (12) and using the restriction (ii)-(iv) gives the
result by choosing n sufficiently large depending on θ. �

Remark 3. Note the resemblance between Theorem 2.1 and [22, Thm 1.3]. Whereas
[22, Thm 1.3] is restricted to a range where the contribution of the individual off-
diagonals are essentially trivial due to the decay of the J-Bessel function (correspond-
ing to θ > 1/2), we note that for θ ≤ 1/2 we need to exploit additional cancellation
between the Jk−1-Bessel functions for different k.

3. Computing the quantum variance

We now explain how the above results may be used to understand quantum variance
for shrinking sets around infinity.

3.1. Squeezing sets towards cusps. Let M = Γ\H be a finite volume hyperbolic
surface. Then M admits a decomposition

M = M0 ∪ Z1 ∪ . . . ∪ Zl
where M0 is compact and Zi is isometric to

Zi ' S1×]ai,∞[,

for some ai > 0 with the metric on S1×]ai,∞[ equal to

ds2 = dx2 + dy2

y2

for (x, y) ∈ S1×]ai,∞[. In the literature the regions Zi are called horoball cusp
neighboorhoods, horocusps, cuspidal zones, Siegel sets, horocyclic regions, or simply
(by an abuse of notation) cusps. These subregions Zi are unbounded regions whose
boundary is a horocycle (S1 × {ai}) and a point (the cusp).

Let Z = Z1 which we may assume corresponds to a cusp at infinity. We now
consider a measurable set B ⊆ Z of volume vol (B) > 0 and define, for every H ≥
vol (B)−1 the injective map

SBH : B Z

x+ iy x+ ivol (B)Hy,

pushing the region B up towards the cusp at infinity. We note that this may be
formulated as a scaling along a geodesic going to the cusp thereby defining SBH in
a coordinate free way. We let BH = SBH(B) and notice that by a simple change of
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variables

vol (BH) =
∫ ∞

a1

∫ 1

0
1B((SBH)−1z)dxdy

y2

= 1
vol (B)H

∫ ∞

0

∫

0,1
1B(z)dxdy

y2 = 1
H
.

For A ⊆M we let
L2(M,A) = {f ∈ L2(M) : supp f ⊆ A}

and define the squeezing operator

MB
H : L2(M,B) L2(M,BH)

f f ◦ (SBH)−1

i.e. MB
Hf(z) = f(x + iy/(vol (B)H)). We note that MB

H loosely speaking squeezes
the function f into the region BH which moves towards the cusp at infinity.

A simple change of variable computation – similar to the volume computation of
vol (B) above – shows that for ϕ ∈ L2(M,B)

∥∥MB
Hϕ
∥∥2 = 1

vol (B)H ‖ϕ‖
2
,
〈
MB
Hϕ, 1

〉
= 1

vol (B)H 〈ϕ, 1〉 .

We now specialize to Γ = PSL2(Z) and and Z = S1×]1,∞[. For T > 1 we let
BT (∞) = {z ∈ Z : =(z) > T},

which we consider to be a ball around the cusp at infinity. A trivial computation
shows that vol (BT (∞)) = 1/T . Fix now T0 > 1 and let B = BT0(∞) ⊆ Z. We
observe that we have BH = SBH(B) = BH(∞). In particular – with this choice of
B = BT0(∞) – the squeezed set BH does not depend on T0. Note, however, that the
squeezing operator MB

H still depends on the choice of T0.

3.2. Mass equidistribution in squeezed sets. We now want to consider the notion
of mass equidistribution in the context of the squeezed sets as above: Fix H, ϕ ∈
L2(M,B). It follows from the mass equidistribution theorem of Soundararajan and
Holowinsky [7] that∫

BH

(MB
Hϕ)(z)yk |f(z)|2 dµ(z) = 1

vol (M)

∫

BH

(MB
Hϕ)(z)dµ(z) + oMB

H
ϕ(1)

as k →∞.
We investigate what condition on H as a function of k →∞ implies that

∫

BH

(MB
Hϕ)(z)yk |f(z)|2 dµ(z) = 1

vol (M)

∫

BH

(MB
Hϕ)(z)dµ(z) + o

(∫

BH

∣∣MB
Hϕ
∣∣ dµ

)

as k,H →∞.
Choosing ϕ = 1B this simplifies to the question of when

∫

BH

yk |f(z)|2 dµ(z) = 1
Hvol (Γ\H) + o(H−1),

as H, k →∞. However, we want to investigate also more general test functions ϕ.
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For the rest of the paper we fix B = B1(∞), and consider the above when H =
(k − 1)θ for some θ > 0, i.e. we consider

M(k−1)θ := MB
(k−1)θ ,

i.e. M(k−1)θf(z) = f(x+iy/(k−1)θ).We want to investigate the mass equidistribution
when the test function is squeezed via this operator. We will do this by considering
the squeezing of the non-holomorphic Poincaré series

PV,h(z) =
∑

γ∈Γ∞\Γ
V (y(γz))e(hx(γz)),

where V : R+ → C is a smooth compactly supported function with support con-
tained in (1,∞). In other words, we want to understand, as k →∞, the asymptotic
properties of

µf (M(k−1)θPV,h) := 〈M(k−1)θPV,h(z), yk |f(z)|2〉.
We note that with our assumption on V the function PV,h is supported on B, and
that these actually series span L2(M,B). In fact

PV,h(z) = V (y)e(hx).
For h1h2 6= 0 we define

Bθ(PV1,h1 , PV2,h2) = π

4 τ1((|h1| , |h2|))
∫ ∞

0
V1( y

|h1|
)V2( y

|h2|
)fθ,h1,h2(y)dy

y2 ,

where

fθ,h1,h2(y) =





1 if 0 < θ < 1/2,
e−2π2y2(h2

1+h2
2) if θ = 1/2,

0 if θ > 1/2.
When θ = 0 we define B0 to be the form Bω defined by Luo and Sarnak in [18, Eq

(15)].
Theorem 3.1. Let u : R+ → R≥0 be a smooth compactly supported weight function,
and let V1, V2 be as above. For h1h2 6= 0 and 0 ≤ θ < 1, we have
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)µf (M(k−1)θPV1,h1)µf (M(k−1)θPV2,h2)

= Bθ(PV1,h1 , PV2,h2)
∫ ∞

0
u(y)y−θdyK1−θ +Oθ,ε,Vi,hi(K1−θ−δθ+ε),

where

δθ =





(1 + θ)/2 θ ∈ (0, 1/5),
1− 2θ θ ∈ [1/5, 1/2),
1/2 θ = 1/2,
1 + 2θ θ ∈ (1/2, 1).

The implied constant in the error term may be bounded by a constant depending only
on θ, ε times

(1 + ‖h‖∞)C(AW1AW2)C ‖W1‖C,∞ ‖W2‖C,∞ ,
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for C sufficiently large depending on θ.

Proof. We start by observing that µf (M(k−1)θPV,h) is a real number (as is seen
by unfolding and using that |f |2 is even). Therefore we have µf (M(k−1)θPV,h) =
µf (M(k−1)θPV,−h). So we may assume hi > 0 below. We also notice that if V is sup-
ported in (1, AV ] then, up to an absolute constant times a power of h times a power
of AV , the functions Wi(y) = V ((4πy)−1)yi, W ∗(y) = V (4πy)−1) exp(−h2y−2/8) all
have Sobolev norms less than or equal to the corresponding Sobolev norm of V . This
will be used below without mention.

The case θ = 0 is [18, Thm 2]. To handle the other cases we proceed as in the
proof of [17, Prop 2.1]. Doing this, noticing in the proof that the Mellin transform
satisfies

∫ ∞

0
V

(
y−1

(k − 1)θ

)
ys
dy

y
= (k − 1)−sθ

∫ ∞

0
V
(
y−1) ys dy

y
,

we find that

µf (M(k−1)θPV,h) = 2π2

(k − 1)L(1, sym2 f)
∑

n∈N
λf (n)λf (n+ h)(16)

× V
(

(k − 1)1−θ

4π(n+ h/2)

)(√
n(n+ h)
n+ h/2

)k−1

+OV,h(k−1−θ+ε),

where the implied constant is less than a constant depending on θ, ε times

(17) (1 + hB)ABV ‖V ‖B,∞
for B sufficiently large. This holds also for h = 0.

We now assume that 0 < θ < 1/2, and observe that in the above sum we may
restrict to n such that (n+h/2) � k1−θ, which implies that (k−1)/(n+h/2)2 = o(1)
as k →∞. Therefore, we can employ the following Taylor expansion

(√
n(n+ h)
n+ h/2

)k−1

= exp
(
k − 1

2 log
(

1− h2

(2n+ h)2

))

= exp
(
−k − 1

2
h2

(2n+ h)2 +O

(
kh4

(2n+ h)4

))

= exp
(
−k − 1

2
h2

(2n+ h)2

)
+O

(
kh4

(2n+ h)4

)

=
N−1∑

i=0

(
−h2

2
k−1

(2n+h)2

)i

i! +ON

(
(kh2)N

(2n+ h)2N + kh4

(2n+ h)4

)

=
N−1∑

i=0

(
−h2

8
k−1

(n+h/2)2

)i

i! +ON (h2Nk2N(θ−1/2) + h4k4θ−3).
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This gives us that

µf (M(k−1)θPV,h) = 2π2

(k − 1)L(1, sym2 f)

N−1∑

i=0

(
−h2

8 (k − 1)2θ−1
)i

i! AWi

f ((k − 1)1−θ, h)

+OV,h,N ((h2Nk2N(θ−1/2)−θ+ε + h4k3θ−3+ε) + k−1−θ+ε),(18)

whereWi(y) = V
(

1
4πy

)
y−2i for y ∈ R+, and the implied constant is of the form (17).

Since θ < 1/2, we can choose N large enough such that the dominating error-term in
k is k−1−θ+ε.
We now plug (18) into the expression we want to evaluate. The terms involving the
products of error terms is easily seen to be OV,h,N (K−2θ+ε).

To bound the mixed terms we note that (k − 1)(2θ−1)i is largest when i = 0, so it
suffices to observe that

K−1−θ+ε∑

2|k
u

(
k − 1
K

)
1

k − 1
∑

f∈Hk

∣∣∣AWi

f ((k − 1)1−θ), h
∣∣∣

�V,h,N K−1−θ+εK1/2+ε



∑

k≥1,2|k
u

(
k − 1
K

) ∑

f∈Hk

∣∣∣AWi

f ((k − 1)1−θ, h)
∣∣∣
2

L(1, sym2 f)




1/2

�V,h,N K1/2−3θ/2+ε,

where we have used Cauchy–Schwarz, the positivity of L(sym2 f, 1), and Theorem
2.1. The implied constant is of the claimed form. This implies that

∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)µf (M(k−1)θPV1,h1)µf (M(k−1)θPV2,h2)

=
∑

2|k
u

(
k − 1
K

)
(2π2)2

(k − 1)2

∑

0≤i,j≤N−1

h2i
1 h

2j
2

i!j!

(
−1

8(k − 1)2θ−1
)i+j

×
∑

f∈Hk

A
W1,i
f (h1, (k − 1)1−θ)AW2,j

f (h2, (k − 1)1−θ)
L(1, sym2 f)

+OV,h,N (K1/2−3θ/2+ε),

with an allowed implied constant. Now for each pair i, j ∈ {0, . . . , N − 1}, we apply
Theorem 2.1 with smooth weights W1,i W2,j and weight function

uij(y) = u(y)y(2θ−1)(i+j)−1.
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This gives
∑

k≥1,2|k
u

(
k − 1
K

)
(2π2)2

(k − 1)2
h2i

1 h
2j
2

i!j!

(
−1

8(k − 1)2θ−1
)i+j

×
∑

f∈Hk

A
W1,i
f (h1, (k − 1)1−θ)AW2,j

f (h2, (k − 1)1−θ)
L(1, sym2 f)

= 2π2h2i
1 h

2j
2

(−1
8

)i+j
K2(i+j)(θ−1/2)−1

∑

k≥1,2|k
uij

(
k − 1
K

)
2π2

(k − 1)

×
∑

f∈Hk

A
W1,i
f (h1, (k − 1)1−θ)AW2,j

f (h2, (k − 1)1−θ)
L(1, sym2 f)

= 2π2h2i
1 h

2j
2

(−1
8

)i+j (∫ ∞

0
uij(y)y1−θdy

)
τ1((h1, h2))

·Bh1,h2(W1,i,W2,j)K1−θ−(i+j)(1−2θ) +Ohi,Vi,θ,N,ε

(
K−(i+j)(1−2θ)+ε

)
,

with an implied constant of the desired form. For (i, j) 6= (0, 0) we see that the
contribution is bounded by O(Kθ), and for i = j = 0, we get the wanted main-term.
So in this case we have an error of O(Kmax (θ,1/2−3θ/2)) which translates to the claimed
δθ.

Now assume that θ = 1/2, which implies that k−1
(n+h/2)2 � 1 for non-zero terms in

the sum (16). Again by a Taylor expansion, we see that
(√

n(n+ h)
n+ h/2

)k−1

= exp
(
−h

2

8
k − 1

(n+ h/2)2

)
+O

(
h4

k

)
,

which is the source of the different main term in this case. We proceed as above to
write

∑

k≥1,2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)µf (M(k−1)θPV1,h1)µf (M(k−1)θPV2,h2)

=
∑

k≥1,2|k
u

(
k − 1
K

)
(2π2)2

(k − 1)2

∑

f∈Hk

A
W∗1
f (h1, (k − 1)1−θ)AW

∗
2

f (h2, (k − 1)1−θ)
L(1, sym2 f)

+OVi,hi(K−1/4+ε),

where W ∗i (y) = Vi

(
1

4πy

)
exp

(
−m2

8 /y
2
)
for i = 1, 2, and where the implied constant

is of the desired form. Again by an application of Theorem 2.1, we get the desired
main term with error-term OVi,hi(Kε) and an implied constant of the desired form.

Finally when θ > 1/2, we see that for non-zero terms in the sum (16) we have
k−1

(n+h/2)2 � k2θ−1, which implies
(√

n(n+ h)
n+ h/2

)k−1

� exp
(
−ck2θ−1) ,
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for some c > 0 depending only on V , and hence we get exponential decay of the sum
in (16). Therefore we can even get the desired bound without any averaging. By
summing up we arrive at the error-term O(‖V1‖∞ ‖V2‖∞K−2θ+ε). �

Remark 4. The above theorem also holds, with the same proof, when we allow Vi to
have support in R+, if we interpret M(k−1)θPV,m as the Poincaré series PVk,θ related
to Vk,θ = V (y/(k − 1)θ).

Remark 5. We now give a quick sketch of what happens in the case when h1 = 0 and∫∞
0 V1(y)y−2dy = 0 (i.e. in the case where PV1,0 is an incomplete Eisenstein series
orthogonal to 1) and h2 6= 0. The translation to a shifted convolution sum as in (16)
is still valid.

To analyze the resulting shifted convolution sum we imitate the proof of Theorem
2.1. In this case we use the Hecke relations (3) to write

AW1
f (0, X) =

∑

d∈N

∑

r∈N
λf (r2)W1

(
dr

X

)
.

Here W1(y) = V1(1/(4πy) and X = (k − 1)1−θ. We deal with the off-diagonal terms
as above and the diagonal term from the Petersson formula becomes

∑

d1∈N,d2|h2
r1,r2∈N

δr2
1=r2(r2+d2)W1

(
X

d1r1

)
W2

(
X

h2
d2

(r2 + d2/2)

)
.

Now we observe that for fixed d2 the equation r2
1 = r2(r2 +d2) has only finitely many

solutions (r1, r2) and for any such solution, we have by Poisson summation
∑

d1∈N
W1

(
X

d1r1

)
=
∫ ∞

0
W1

(
X

r1y

)
dy +Oh2,A(X−A)

= X

4πr1

∫ ∞

0
V1 (y) dy

y2 +Oh2,A(X−A) = Oh2,A(X−A).

Therefore Theorem 3.1 holds in this case with Bθ(PV1,0, PV2,h2) = 0.

Now if hi = 0 and
∫∞

0 Vi(y)y−2dy = 0, using a similar analysis (in this case we

observe that since the factor
(√

n(n+hi)
n+hi/2

)k−1
equals 1 we do not have to distinguish

between various regimes of θ) we find that
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)µf (M(k−1)θPV1,0)µf (M(k−1)θPV2,0)

= 2π2
∑

2|k

u
(
k−1
K

)

k − 1
∑

r,d1,d2∈N
V1

(
(k − 1)1−θ

4πrd1

)
V2

(
(k − 1)1−θ

4πrd2

)
(19)

+O(max (K1/2−3θ/2+ε, 1)).
Analogous to [18, p. 781] we find that by using successive Euler–Maclaurin sum-

mation on the di sums ( [11, Eq. (4.20)]), followed by Poisson summation on the r
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sum and on the k sum we have that also in this case Theorem 3.1 holds with

Bθ(PV1,0, PV2,0) = π

4

∫ ∞

0

∫ ∞

0

∫ ∞

0
b2(y1)b2(y2)Ṽ1

(
t

y1

)
Ṽ2

(
t

y2

)
dy1
y2

1

dy2
y2

2

dt

t2
,

with error term O(maxK1/2−3θ/2+ε, 1), and the same type of implied constant. Here
Ṽi(y) = (V ′i (y)y2)′ and 2b2(y) = B2(y−byc), where B2(y) = y2−y+1/6 is the second
order Bernoulli polynomial. Note that the yi integrals vanishes for t sufficiently small
so the t-integral converges (although not absolutely).

4. Extension of Bθ and quantum variance for more general observables

Let

C∞0 (M,B) :=
{
ψ : M → C smooth

∣∣∣∣∣
suppψ⊂B
ψ decays rapidly at ∞∫ 1

0
ψ(z)dx=0 for y large enough

}
,

where B = {x + iy ∈ M | y > 1} ⊂ X is the standard horocyclic region. In this
section we will extend the above variance results to the space

C∞0,0(M,B) = {ψ ∈ C∞0 (M,B) : 〈ψ, 1〉 = 0}.
For ψ ∈ C∞0,0(M,B) we let V ψm be its mth Fourier coefficient. Note that, since ψ is

supported in B, the coefficient V ψm (y) are supported in y > 1 and we have

(20) ψ(z) =
∑

m∈Z
V ψm (y)e(mx) =

∑

m∈Z
PV ψm ,m(z),

where V ψ0 has compact support, and satisfies
∫∞

0 V ψ0 (y)y−2 dy = 0. Inspired by
Theorem 3.1 and Remark 5 we define, for ψ1, ψ2 ∈ C∞0,0(M,B), the Hermitian form

Bθ(ψ1, ψ2) = π

4
∑

m,n 6=0
τ1((|m| , |n|))

∫ ∞

0
V ψ1
m

(
y

|m|

)
V ψ2
n

(
y

|n|

)
fθ,m,n(y)dy

y2

+ π

4

∫ ∞

0

∫ ∞

0

∫ ∞

0
b2(y1)b2(y2)Ṽ ψ1

0

(
t

y1

)
Ṽ ψ2

0

(
t

y2

)
dy1
y2

1

dy2
y2

2

dt

t2
.(21)

Note that if ψ1, ψ2 consist of a single Fourier coefficient, and if this coefficient is
not just of rapid decay but of compact support then (21) agrees with the result of
Theorem 3.1 and Remark 5. To see that Bθ(ψ1, ψ2) is well defined we argue as follows.
By smoothness and rapid decay of ψ we see, using integration by parts, that

V ψm (y)�A,B,ψ y
−Am−B ,

for any A,B ≥ 0. It follows that
∫ ∞

0
V ψ1
m

(
y

|m|

)
V ψ2
n

(
y

|n|

)
dy

y2 �A (|mn|)−A,

and so the first sum in (21) converges absolutely. The second term in (21) is well-
defined by the discussion in Remark 5.

We observe that, when restricted to incomplete Eisenstein series, the form Bθ is
independent of 0 < θ < 1, while for cuspidal test functions Bθ exhibits a phase
transition at θ = 1/2 as claimed in Theorem 1.3 (ii).
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We can now show that the variance result of Theorem 3.1 can be extended to the
space C∞0,0(M,B).

Theorem 4.1. Let u : R+ → R≥0 be a smooth compactly supported weight function,
and let ψ ∈ C∞0,0(M,B) and 0 < θ < 1. Then we have

∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)

∣∣µf (M(k−1)θψ)− ν(M(k−1)θψ)
∣∣2(22)

= Bθ(ψ,ψ)
(∫ ∞

0
u(y)y−θdy

)
K1−θ +Oψ,θ(K1−θ−δθ ),

for δθ > 0 as in Theorem 3.1.

Proof. Consider a partition of unity

∑

l≥0
ul(y) = 1≥1(y) =

{
1, y > 1
0, y < 1

,

where ul : R+ → [0, 1] with suppul ⊂ (3l, 2 ·3l+1), ul smooth for l > 0 and u0 smooth
on (1,∞) and u(n)

l (y) �n y
an for some an > 0 independently of l. Multiplying this

partition of unity on ψ as in (20) we find

ψ(z) = V ψ0 (y) +
∑

l≥0,m6=0
V ψl,m(y)e(mx),

where V ψl,m(y) = ul(y)V ψm (y) and V ψ0 (y) are smooth with compact support. We have

(23) V ψl,m
(n)

(y)�C y−C |m|−C ,

for any C > 0 and independent of l. To see this we note that by the definition and
partial integration

V ψl,m
(n)

(y) = 1
(2πim)C

n∑

j=0

(
n

j

)
u

(n−j)
l (y)

∫ 1

0

(
∂C+j

∂xC∂yj
ψ

)
(z)e(−mx)dx.

Now by using the rapid decay of ψ and the bound of the derivatives of ul, we arrive
at (23). This implies in particular that for every C ≥ 0 we have

∥∥∥V ψl,m
∥∥∥
C,∞

�C,ψ

3−Cl · |m|−C .
This implies, using Theorem 3.1, that for m1,m2 and l1, l2 ≥ 0
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)µf (M(k−1)θPVl1,m1 ,m1)µf (M(k−1)θPVl2,m2 ,m2)

= Bθ(PVl1,m1 ,m1 , PVl2,m2 ,m2)
(∫ ∞

0
u(y)y−θdy

)
K1−θ

+Oψ,θ

(
K1−θ−δθ

3l1+l2((1 + |m1|)(1 + |m2|))2

)
.
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Therefore by summing up all the contributions we get
∑

k,2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)|µf (M(k−1)θψ)|2

=


 ∑

m1,m2,l1,l2

Bθ(Phl1,m1 ,m1 , Phl2,m2 ,m2)



(∫ ∞

0
u(y)y−θdy

)
K1−θ

+Oψ,θ


K1−θ−δθ



∑

l1,l2>0
m1,m2

3−l1−l2
((1 + |m1|)(1 + |m2|))2







= Bθ(ψ,ψ)
(∫ ∞

0
u(y)y−θdy

)
K1−θ +Oψ,θ(K1−θ−δθ ),

which finishes the proof. �

5. Small scale quantum ergodicity around infinity

In this section we show that if we average over f ∈ Hk and over the weight k
quantum ergodicity holds for appropriately chosen sets shrinking towards infinity all
the way down to the Planck scale.

Theorem 5.1. Let 0 < θ < 1 and ψ ∈ C∞0 (M,B). Then
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)

∣∣µf (M(k−1)θψ)− ν(M(k−1)θψ)
∣∣2

= Oψ,u(Kmax (2−2θ−1/5,1−θ)).

Proof. Note that ψ ∈ C∞0 (M,B) can be written as ψ = ψ0+ψ1 where ψ1 ∈ C∞0,0(M,B)
and ψ0 = PV,0 is an incomplete Eisenstein series with V supported in (1,∞). Since
trivially

∣∣µf (M(k−1)θψ)− ν(M(k−1)θψ)
∣∣2 ≤ 2

∑

i=1,2

∣∣µf (M(k−1)θψi)− ν(M(k−1)θψi)
∣∣2 ,

we may use Theorem 4.1 to see that we only need to prove Theorem 5.1 in the case
where ψ = PV,0, which we assume for the rest of the proof. In order to do so we open
up the square and compute asymptotics with error terms for each of the averages
over each of the terms

∣∣µf (M(k−1)θψ)
∣∣2,
∣∣ν(M(k−1)θψ)

∣∣2, µf (M(k−1)θψ)ν(M(k−1)θψ)
and its conjugate. Since ν(M(k−1)θψ) = (k − 1)−θν(ψ) we see that this essentially
corresponds to computing the second, zero-th, and first moment of µf (M(k−1)θψ).

We start by showing that
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f)

∣∣µf (M(k−1)θψ)
∣∣2(24)

= |ν(ψ)|2 ζ(2)2

12

∫ ∞

0
u(y)y1−2θdy

K2−2θ

2 +Oψ,u(K1−θ).(25)
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To prove this we start as in Remark 5 and arrive at (19). We then evaluate the sum
over d = di using the second order Euler–Maclaurin formula and find that we have
for any X > 0

∑

d

V

(
X

rd

)
=
∫ ∞

0
V

(
X

ry

)
dy −

∫ ∞

0
b2(y)Ṽ

(
X

ry

)
dy

y2(26)

= X

r

∫ ∞

0
V (y)dy

y2 −
∫ ∞

0
b2(y)Ṽ

(
X

ry

)
dy

y2 ,

where 2b2(y) = B2(y−byc) and B2(y) = y2−y+1/6 is the second Bernoulli polynomial
and Ṽ (y) = (V ′(y)y2)′. Here we have used that ∂2

∂y2V
(
X
ry

)
= Ṽ

(
X
ry

)
y−2. We know

by the assumptions on V that the above defines a smooth function in r and that∑
d V

(
X
dr

)
vanishes for r > AX.

We can now evaluate
∑

r,d1,d2∈N
V

(
X

rd1

)
V

(
X

rd2

)

by inserting (26) and evaluating the four terms coming from opening the square. The
contribution coming from the absolute square of the first term on the right of (26)
equals

X2
∣∣∣∣
∫ ∞

0
V (y)dy

y2

∣∣∣∣
2 ∑

1≤r≤AX

1
r2 = X2

∣∣∣∣
∫ ∞

0
V (y)dy

y2

∣∣∣∣
2
ζ(2) +O(X).

A change of variables combined with the fact that b2(v) is uniformly bounded shows
that

∫∞
0 b2(y)Ṽ

(
X
ry

)
dy
y2 �V r/X. This implies that the remaining contributions are

O(X). Plugging these estimates back in (19) with X = (k − 1)1−θ/4π and using
Poisson summation in the k variable proves (25).

We next show that
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f) = ζ(2)2

12
K2

2

∫ ∞

0
u(y)ydy +O(K2− 1

5 +ε).(27)

To approximate L(1, sym2 f) we use e−x = 1
2πi
∫

(σ) Γ(s)x−sds to see that
∞∑

n=1

λf (n2)
n

e−n/T = 1
2πi

∫

(2)
Γ(s)L(s+ 1, sym2)

ζ(2(s+ 1)) T sds.

Here T ≥ 1 is a parameter which will be chosen later. For now we assume that
T = Ka with 1 < a < 2. Moving the line of integration to σ = −1/2 we pick up a
pole of the Gamma function at s = 0 and we find that

(28)
∞∑

n=1

λf (n2)
n

e−n/T = L(1, sym2)
ζ(2) + If (T ),

where If (T ) = 1
2πi
∫

(−1/2) Γ(s)L(s+1,sym2)
ζ(2(s+1)) T sds. Using any bound of the form

L(s, sym2 f)�A (1 + |s|)A(k2)1/4−ρ
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for <(s) = 1/2 we see, that If (T )�A T
−1/2k1/2−2ρ+ε. In fact the convexity estimate

ρ = 0 will suffice for what we need. We have
∞∑

n=1

λf (n2)
n

e−n/T =
∑

n≤T 1+ε

λf (n2)
n

e−n/T +OA(K−A),

for any A > 0. We observe also that since λf (n2)� nε we have
∑
n∈N

λf (n2)
n e−n/T �

T ε. Using these observations we see that
∑

2|k
u

(
k − 1
K

) ∑

f∈Hk
L(1, sym2 f) =

= ζ(2)2
∑

2|k
u

(
k − 1
K

) ∑

n1,n2≤T 1+ε

e−(n1+n2)/T

n1n2

∑

f∈Hk

λf (n2
1)λf (n2

2)
L(1, sym2 f)

+O


∑

k

u

(
k − 1
K

) ∑

f∈Hk
Kε(|If (T )|+ |If (T )|2) +K−A


 .

By using convexity (ρ = 0) to bound If (T ) the error is O
(
K2+ε

((
K
T

)1/2 + K
T

))
. Up

to this error term the sum we want to estimate therefore equals

ζ(2)2K

2π2

∑

2|k
ũ

(
k − 1
K

) ∑

n1,n2≤T 1+ε

e−(n1+n2)/T

n1n2

2π2

(k − 1)
∑

f∈Hk

λf (n2
1)λf (n2

2)
L(1, sym2 f) ,

where ũ(y) = u(y)y. We now use the Petersson formula (6) on the last sum. The
diagonal term gives the claimed main term

ζ(2)2K

2π2

∑

2|k
ũ

(
k − 1
K

) ∑

n1≤T 1+ε

e−2n1/T

n2
1

= ζ(2)3

2π2
K2

2

∫ ∞

0
u(y)ydy +O(K2/T ).

We also need to bound the non-diagonal contribution which is done as in the proof
of Theorem 2.1. This consists of a k sum with k supported around K, sums over
n1, n2 ≤ T 1+ε, and a c-sum. The c-sum can be truncated at c ≤M at the expense of
an error which is big O of

K
∑

k�K

∑

n1,n2≤T 1+ε

1
n1n2

∑

c>M

(
e∆
2kc

)k−1
� K

∑

k�K
T ε
(
e4πT 2+2ε

2kM

)k−1
M

K
,

where ∆ = 4πn1n2 ≤ 4πT 2+2ε and we have used (7) on the Bessel function. If we
chooseM = CT 2+2εK−1+ε for a suitably big constant C the parentesis is� K−ε(k−1)

which decays exponentially so this contribution is OA(K−A) for every positive A.
By using (10), as in the proof of Theorem 2.1, we see that it suffices to bound

K
∑

n1,n2≤T 1+ε

1
n1n2

∑

c≤M

∣∣∣∣
∫ ∞

−∞
ĝ(t) sin

(
∆
c

cos(2πt)
)
dt

∣∣∣∣
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with g(y) = ũ(y/K). Here it is clear that g is supported in y � K and gm(y)� K−m

and we conclude as before that
∫ ∞

−∞
|ĝ(t)tm| dt� K−m.

We use (13) with N = 1 and we estimate the contribution form the error terms by

K
∑

n1,n2≤T 1+ε

1
n1n2

∑

c≤M

∫ ∞

−∞
|ĝ(t)|

(
∆
c

)α
|t|β dt� K1−β


 ∑

n1≤T 1+ε

nα−1




2
∑

c≤M
c−α.

For the four contributions (α, β) = (2, 8), (4, 16), (0, 2), (0, 4) this gives an error term of
(K((T/K2)4+(T/K2)8)+T 2/K2+T 2/K4)Kε which are all less that (K+T 2/K2)Kε

To bound the last term we see as before

(29) dn

dyn

(
g(m)

(√
2∆
c
y

)
y−1/2

)
�u,n,m K−my−1/2−n,

so again we find

(30)
∫ ∞

−∞
ĝ(t)e(∆

c
, t)dt�u

K−3∆1/2

c1/2
+ K1−2n∆n−1/2

cn−1/2 .

It turns out to be convenient to interpolate and use n = 3/2 such that the last
contribution is

K
∑

n1,n2≤T 1+ε

1
n1n2

∑

c≤M

∫ ∞

−∞
ĝ(t)e(∆

c
, t)dt� T 2K−5/2+ε +K−1+εT 2.

The total error therefore become � K2+ε (K
T

)1/2 + K1+ε + T 2K−1+ε, as all other
contributions are smaller. Choosing T = K7/5 proves (27).

Lastly we use a similar strategy to prove that
∑

2|k
u(k − 1

K
)
∑

f∈Hk
L(1, sym2 f)µf (M(k−1)θPV,0)(31)

= ν(PV,0)
∫ ∞

0
u(y)y1−θdy

ζ(2)2

12
K2−θ

2 +O(K2−θ−(1/4+3θ/8)+ε +K1+ε).

We use (28) to approximate L(1, sym2 f) by ζ(2)
∑
n≤T 1+ε

λf (n2)
n e−n/T at the cost of

an error satisfying � K2−θ+ε K1/2−2ρ

T 1/2 . We then use (16) and the Hecke relations (3)
to arrive at

ζ(2)
∑

2|k
u

(
k − 1
K

) ∑

n1≤T 1+ε

n2∈N
d|n2

e−n1/T

n1
V

(
(k − 1)1−θ

4πn2

)
2π2

(k − 1)
∑

f∈Hk

λf (n2
1)λf (d2)

L(1, sym2(f)) ,
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at the expense of an additional error which is � K1−θ+ε. We then use the Petersson
formula (6). The diagonal gives

ζ(2)
∑

2|k
u

(
k − 1
K

) ∑

n1≤T 1+ε

e−n1/T

n1

∞∑

r=1
V

(
(k − 1)1−θ

4πrn1

)
,

which, after using Poisson in the r variable, a change of variables, and then Poisson
again in the k variable, gives the claimed main term up to an error which is �
K2/T + K1+ε. The off diagonal is handled as before: We truncate the c-sum at
M = CK−θ+εT 1+ε with C sufficiently large at the expense� K−A. We then use (10)
with g(y) = u(y/K)v

(
y1−θ

4πn2

)
and find that in the support of the sums g(m)(y)� K−m

which allows us to bound the error coming from the approximation (with N = 1) of
sin(∆

c cos(2πt)) with ∆ = 4πn1n2 by big O of

T 2K(1−θ)3−8+ε + T 4K(1−θ)5−16+ε + TK−1−2θ+ε + TK−3−2θ+ε.

We also find, using Faà di Bruno’s formula as before that (29) and (30) holds. Using
(30) with n = 2 we get the final error contribution to be bounded by TK−3/2−2θ+ε +
T 3/2K−1/2−5θ/2. Balancing T 3/2K−1/2−5θ/2 = K2−θ K1/2

T 1/2 gives T = K3/2−3θ/4. This
proves (31) as with this choice of T all error contributions are less than the claimed
one.

We can now finish the proof: We open up the square of the expression on the
right-hand side of the theorem and use the expressions in (24), (27), and (31). The
main terms cancel and we are left with the claimed error term.

�

Remark 6. It is obvious from the above proof that a subconvexity result in the
k-aspect for L(s, sym2 f) would give an improvement of the exponent. In fact a
non-trivial bound on the second moment of L(s, sym2 f) in the weight aspect would
suffice.

Theorem 5.1 shows that if 0 < θ < 1 then mostly (i.e. in a full-density set of
f ∈ Hk ) we have

µf (M(k−1)θψ) = ν(M(k−1)θψ) + o(k−θ).
If we go below the Planck scale, i.e. if we let θ ≥ 1, then this is not the case i.e. mass
equidistribution fails.

Proposition 5.2. Let θ ≥ 1 and let V : R+ → R be a smooth function with compact
support in (1,∞), which satisfies

∫∞
0 V (y)dy/y2 6= 0 and let ψV be the associated

incomplete Eisenstein series. Then
µf (M(k−1)θψV ) = o(ν(M(k−1)θψV )),

as k → ∞. This means in particular that mass equidistribution fails for shrinking
annuli around infinity below the Planck scale i.e. when θ ≥ 1.

Proof. We use (16) and observe that the sum is identically zero since (k−1)1−θ/(4πn)
is less than one which is outside the support of V . Therefore

µf (M(k−1)θψV ) = Oε(k−1−θ+ε),
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and since ν(MkθψV ) � k−θ the proposition follows. �

6. Further extensions of Bθ and computations at truncated
eigenfunctions.

Before we extend Bθ we notice that on the set C∞0,0(M,B), Bθ is symmetric with
respect to the Laplacian.

Lemma 6.1. The map B∞ : C∞0,0(M,B) × C∞0,0(M,B) → C satisfies B∞(∆ψ,ϕ) =
B∞(ψ,∆ϕ).

Proof. Writing ψ as in (20) we note that ∆PV ψm ,m(z) = PLmV ψm ,m(z) where Lm =
y2 d2

dy2 − 4π2m2y2 and that the support of LmV ψm is contained in (1,∞] if this is the
case for V ψm . The argument is now a straightforward modification of [18, p. 782]. �

We now extend Bθ(ψ1, ψ2) defined in (21) on C∞0,0(M,B) to the slightly larger
space 1BC∞0,0(M). This space includes for instance 1B · φ where φ is a Hecke–Maass
form, which together with the incomplete Eisenstein series of mean 0 actually span
this entire space. We may define Bθ(ψ1, ψ2) on this slightly larger space by the same
formula (21). The same arguments as after (21) shows that the infinite sum converges.

Unfortunately we do not know how to extend Lemma 6.1 to this larger space.
When trying to do the obvious generalization we are faced with certain boundary
terms which we cannot dismiss. This means also that, contrary to the situation when
θ = 0 studied by Luo and Sarnak [18], we do not know if truncated Hecke–Maass
forms diagonalize Bθ for θ > 0.

On the subspaces C∞cusp(M,B) ⊂ C∞0,0(M,B) and 1BC∞cusp(M,B) ⊂ 1BC∞0,0(M)
consisting of functions where the zero-th Fourier coefficient vanishes completely we
can make the following analysis. It is straightforward to check that the Sobolev norm
on 1BC∞cusp(M) defined by

(32) ‖1Bψ‖22,N =
∑

j≤N

∥∥∥∥1B
djψ

dxj

∥∥∥∥
2

L2(M)

is indeed a norm. Note that for 1Bψ ∈ C∞cusp(M) we may write

ψ =
∑

n 6=0
V (ψ)
m (y)e(nx),

and we have
∥∥∥∥1B

djψ

dxj

∥∥∥∥
2

L2(M)
=
∑

n 6=0
|2πn|2j

∫ ∞

0

∣∣∣1y≥1V
(ψ)
m

∣∣∣
2 dy

y2 .

Proposition 6.2. (1) The set C∞cusp(M,B) is dense in 1BC∞cusp(M) with respect
to ‖·‖2,N .

(2) There exist an absolute constant c > 0 such that for 1Bψi ∈ 1BC∞cusp(M)
|Bθ(1Bψ1, 1Bψ2)| ≤ c ‖1Bψ1‖2,1 ‖1Bψ2‖2,1 .

(3) The form Bθ(·, ·) is continuous on 1BC∞cusp(M)× 1BC∞cusp(M) with respect to
‖·‖2,1.
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Proof. To see that C∞cusp(M,B) is dense in 1BC∞cusp(M) we approximate 1B by a
smooth cut-off as follows: Fix w : R → R≥0 smooth and supported in [1/2, 1] with∫ 1

0 w(t)dt = 1. For 0 < δ < 1/2 we define wδ(t) := δ−1w(t/δ). This is supported in
[δ/2, δ] and satisfies

∫ 1
0 wδ(t)dt = 1. We then define the function 1δB : R+ → R as the

convolution of 1y>1 and wδ i.e.

1δB(y) :=
∫ ∞

0
1t>1(t)wδ(y − t)dt.

We observe that 1δB is smooth and supported in [1+δ/2,∞]. It satisfies 0 ≤ 1δB(y) ≤ 1
and 1δB(y) = 1 for y ≥ 1 + δ.

Let now 1Bψ ∈ 1BC∞cusp(M), and observe that 1δBψ ∈ C∞cusp(M,B), where we use
the same notation for y 7→ 1δB(y) and x+ iy 7→ 1δB(y). Furthermore

∥∥1Bψ − 1δBψ
∥∥

2,N =
∥∥1B(ψ − 1δBψ)

∥∥
2,N

≤ max
1≤=(z)≤2
j≤N

∣∣∣∣
djψ

dxj
(z)
∣∣∣∣
√
N + 1

∫ 2

1

∣∣1− 1δB(y)
∣∣ dy
y2 ,(33)

which goes to zero as δ → 0. This proves that C∞cusp(M,B) is dense in 1BC∞cusp(M)
with respect to ‖·‖2,N .

To prove the inequality for Bθ we see from (21), the bound τ1((|m| , |n|)) �ε

|mn|1+ε, and Cauchy–Schwarz on the involved integral that for 1Bψi ∈ 1BC∞cusp(M)
we have that |Bθ(1Bψ1, 1Bψ2)| is bounded by a constant times

∑

m,n6=0
|mn|1+ε

√∫ ∞

0

∣∣∣∣1y/|m|≥1V
(ψ1)
m

(
y

|m|

)∣∣∣∣
2
dy

y2

∫ ∞

0

∣∣∣∣1y/|n|≥1V
(ψ2)
n

(
y

|n|

)∣∣∣∣
2
dy

y2 .

Doing a change of variables this splits as a product of
∑

m 6=0
|m|ε

√∫ ∞

0

∣∣∣1y≥1V
(ψ1)
m (y)

∣∣∣
2 dy

y2

times the same expression for ψ2. Dividing and multiplying the terms by |m|1/2+ε we
can use Cauchy–Schwarz to see that this is bounded by

√∑

m6=0

1
|m|1+2ε

√√√√
∑

m6=0
|m|1+4ε

∫ ∞

0

∣∣∣1y≥1V
(ψ1)
m (y)

∣∣∣
2 dy

y2 .

Comparing with (33) and (32) we see that this is bounded by a constant times
‖1Bφ1‖2,1, which proves the inequality for Bθ.

To see that Bθ(·, ·) is continuous on 1BC∞cusp(M) we observe that if 1Bψ(ni)
i → 1Bψi

with respect to ‖·‖2,1 as ni →∞ then we can use that

Bθ(1Bψ(n1)
1 , 1Bψ(n2)

2 )−Bθ(1Bψ1, 1Bψ2)

= Bθ(1Bψ(n1)
1 − 1Bψ1, 1Bψ(n2)

2 ) +Bθ(1Bψ1, 1Bψ(n2)
2 − 1Bψ2),
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and the claim now follows easily from the inequality satisfied by Bθ.
�

If φ is a Hecke–Maass form then 1Bφ ∈ 1BC∞cusp(M) and we consider we consider
the expansion

1Bφ(z) =
∑

m 6=0
P1y>1a

(φ)
m ,m

(z).

with a(φ)
m (y) = εφ,m2λφ(|m|)y1/2Ks−1/2(2π |m| y) and where εφ,m = 1 if φ is an even

and εφ,m = sgn (m) if φ is odd. It follows from this and (21) that Bθ(1Bφ1, 1Bφ2) = 0
if either φ1 or φ2 is odd. This is also the case when θ = 0 as proved in [18] as follows
from L(φ, 1/2) = 0 for φ odd. If φ1, φ2 are both even Hecke–Maass forms with Laplace
eigenvalues s1(1− s1) and s2(1− s2), respectively, we see that Bθ(1Bφ1, 1Bφ2) equals

4π
∑

m,n≥1

τ1((m,n))λφ1(m)λφ2(n)
(mn)1/2

∫ ∞

max(m,n)
Ks1−1/2(2πy)Ks2−1/2(2πy)dy

y
,

for 0 < θ < 1/2 and for θ = 1/2, the number B1/2(1Bφ1, 1Bφ2) equals

4π
∑

m,n≥1

τ1((m,n))λφ1(m)λφ2(n)
(mn)1/2

∫ ∞

max(m,n)
Ks1−1/2(2πy)Ks2−1/2(2πy)e−2π2y2(m2+n2) dy

y
,

as claimed in Theorem 1.3 (iv).
It is a deep number-theoretic fact that the central value of L(φj , s) is non-negative.

Luo and Sarnak [18] observed that this follows from noticing that these numbers
are essentially the eigenvalues of the non-negative Hermitian form B0. We are now
ready to draw a similar conclusion for Bθ(1Bφ, 1Bφ) as computed above from the
fact that Bθ is non-negative on C∞0,0(M,B) for any 0 ≤ θ < 1 . Since we only
know beforehand that Bθ is non-negative on the smaller space C∞0,0(M,B), we use the
continuity properties of Bθ(·, ·).
Proof of Corollary 1.4. We have seen above that the expression on the right of Corol-
lary 1.4 equals, up to a positive constant, the value Bθ(1Bφ, 1Bφ). It follows from
Proposition 6.2 there exist {ψn} ⊂ Ccusp(M,B) such that ψn → 1Bφ with respect
to ‖·‖2,1. By Theorem 4.1 we may conclude, since the left-hand side of (22) is non-
negative, that Bθ(ψn, ψn) ≥ 0. By the continuity properties of Bθ in Proposition 6.2
we conclude that Bθ(1Bφ, 1Bφ) ≥ 0 which proves the result. �

Of course one may make a conclusion analogous to that of Corollary 1.4 for the
case θ = 1/2 where the integrand gets multiplied by e−2π2y2(m2+n2).
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