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Summary

The research presented in this thesis lies in the field of applied algebraic geometry. The
main focus is on developing algebraic methods for studying the local dynamics of steady
states in systems of polynomial differential equations with parametric coefficients. In
particular, in systems arising from chemical reaction network models of biochemical
processes.

In this thesis we present the contributions made in two topics: effective methods
for detecting bistability and Hopf bifurcations in a chemical reaction network, and
detection of Absolute Concentration Robustness in chemical reaction networks.

This document has three parts. In the first part we present the background required
for our contributions. It contains the basic definitions of chemical reaction network
theory, a small survey on methods for assessing the presence of multistationarity, and
background in polytopes and the Newton polytope of a polynomial. The second part
contains our contributions regarding bistability and Hopf bifurcations. We outline an
algorithm to guarantee or preclude bistability in chemical reaction networks satisfying
certain conditions. This algorithm is symbolic and can be used to find parameter regions
for bistability. Additionally, we use the Newton polytope and its outer normal fan to
effectively compute a set of parameters and a steady state where a Hopf bifurcation
arises in a model of ERK regulation and in a MAPK cascade. Finally, in the third part,
we present our contributions related with Absolute Concentration Robustness (ACR).
In particular, we present a graphic method for finding ACR in small networks and then,
we study whether ACR is preserved under structural modifications of the network.
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Dansk resumé

Forskningen præsenteret i denne afhandling ligger inden for anvendt algebraisk geo-
metri. Hovedfokus er p̊a at udvikle algebraiske metoder til undersøgelse af den lokale
dynamik i stabile tilstande i systemer med polynomale differentialligninger med para-
metriske koefficienter. Især i systemer, der stammer fra kemiske reaktionsnetværksmo-
deller af biokemiske processer.

I denne afhandling præsenterer vi bidragene, der er fremsat i to emner: effektive
metoder til at detektere bistabilitet og Hopf bifurcationer i et kemisk reaktionsnetværk,
og p̊avisning af Absolute Concentration Robustness i kemiske reaktionsnetværk.

Dette dokument har tre dele. I den første del præsenterer vi den nødvendige bag-
grund for vores bidrag. Det indeholder de grundlæggende definitioner af kemisk reak-
tionsnetværksteori, en lille undersøgelse af metoder til vurdering af til stedeværelsen
af multistationatitet og baggrund i polytoper og Newton polytopen af et polynom.
Den anden del indeholder vores bidrag vedrørende bistabilitet og Hopf-bifurcationer.
Vi skitserer en algoritme til at garantere eller udelukke bistabilitet i kemiske reaktions-
netværk, der opfylder visse betingelser. Denne algoritme er symbolsk og kan bruges
til at finde parameterregioner for bistabilitet. Derudover bruger vi Newton polytopen
og dens ydre normale ventilator til effektivt at beregne et sæt parametre og en stabil
tilstand, hvor en Hopf-bifurcation opst̊ar i en model af ERK-regulering og i en to-lags
kaskade. Endelig i tredje del præsenterer vi vores bidrag relateret til Absolute Concen-
tration Robustness (ACR). Især præsenterer vi en grafisk metode til at finde ACR i sm̊a
netværk, og derefter undersøger vi, om ACR er bevaret under strukturelle ændringer
af netværket.
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Introduction

This work lies on the field of applied algebraic geometry. The main focus is on de-
veloping algebraic methods for studying the local dynamics of equilibrium points in
systems of polynomial differential equations with parametric coefficients. In particular
in systems arising from chemical reaction network models of biochemical processes.

The field of Chemical Reaction Network Theory (CRNT) was started in the decade
of the seventies, by Feinberg, Horn and Jackson, in works such as [17, 18, 33], as a way
to provide mechanisms to study the behaviour of biochemical systems. In this setting,
a biochemical process is represented as a graph, indicating the interactions of different
species. For instance, the activation of a substrate S with an enzyme E to produce a
product P, could be represented in a graph as

E + S
κ1−−⇀↽−−
κ2

ES
κ3−−→ E + P

and it is known as the Michaelis-Menten mechanism. The reaction labelled as κ1 rep-
resents an association of the substrate and the enzyme, and the reaction labelled as κ3

represents the catalysis of the process. An association could also break, leading to the
reaction labelled as κ2. In this process it is said that E catalyses the transformation of
S into P.

Once the graph representation of a biochemical process is done, the main goal is to
study how the concentration of each species in the system changes through time. This
study is done by associating a system of ordinary differential equations (ODEs) to the
graph, and studying its dynamics. The definition of this system of ODEs depends on
assumptions on the rates at which the reactions occur. In practice, one of the most
common assumptions is that the rate of occurrence of a reaction is proportional to the
product of the concentrations of the species at the beginning of each reaction. This
assumption is called mass action kinetics and generates an autonomous polynomial
system of ODEs.

With a system of ODEs in place, tools coming from dynamical systems are key to
understand properties on these systems. However, this is not an easy task. Some of the
issues that arise from this approach are
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• The size of the network: some biochemical processes involve a large amount of
species and reactions that are complex. This generates large dynamical systems
that, in practice, are very difficult to study.

• Estimation of parameters in the system: as mentioned above, the system of ODEs
depends on the rate of occurrence of each reaction, and as the rates change, the
behaviour of the system does too. Depending on the rates, a system could have
oscillatory behaviour or just one equilibrium point, and finding the value of these
parameters in general is a difficult task.

With these issues in mind, how can we answer questions regarding the dynamic
behaviour of a system? In particular, could we guarantee the existence of a steady
state in a system of ODEs? Could we preclude the presence of oscillatory behaviour for
some reaction rate constants? Can we explore the presence of two stable steady states
in the system of ODEs?

Under the assumption of mass action kinetics, these questions can be addressed with
tools of algebraic geometry as the ODEs are polynomial and the steady states form an
algebraic variety. In this case, the parameters are regarded as symbolic and, since we
are interested in concentration variables, we only study the intersection of the algebraic
variety with the positive orthant [17]. We call this intersection the positive steady state
variety. For the systems of ODEs in this setting it is possible to prove that, given an
initial condition x0 ∈ Rn

>0, the trajectories starting at x0 are confined to a linear space
determined by this point. These spaces are called stoichiometric compatibility classes,
and depend on x0. Since the dynamics of the system occurs within each stoichiometric
compatibility class, questions regarding the existence of steady states or oscillatory
behaviour are considered within each class.

With this in mind, one question that has been extensively studied is whether it is
possible for the positive steady state variety to intersect some stoichiometric compa-
tibility class in more than one point. Since the systems of ODEs depend on different
parameters, the answer to this question depends on their value, but in case of an affir-
mative answer for a set of parameters, it is said that the network admits multistation-
arity. Several methods have been developed to preclude or guarantee multistationarity.
These methods rely on different tools. For example, in [15] and [12] the positive steady
state variety is completely understood for chemical reaction networks with deficiency
zero and deficiency one. The deficiency is a structural property that depends on the
graph associated with the network, and not on the rate of occurrence of the reactions.
Using the implications of having small deficiency, the deficiency one and deficiency zero
theorems, preclude the existence of multistationarity for all reactions of deficiency zero
and for reactions with deficiency one that satisfy additional conditions. In works as
[11, 19, 35, 36, 44], the approach to study multistationarity is different, as it is more
algebraic. In [11, 35, 44] multistationarity in systems with mass action kinetics, can be
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linked to the sign of a polynomial arising from the determinant of the Jacobian of a
polynomial function.

The results presented in this work, explore mainly three properties of the systems of
ODEs coming from chemical reaction networks with mass action kinetics: Bistability,
oscillations and Absolute Concentrarion Robustness.

Bistability is the existence of two stable steady states in a dynamical system. This
property is linked to switch-like behaviour in different biological networks and to cellular
decision making. It has been observed experimentally in a variety of systems [29, 45, 47].
However, proving the presence of bistability remains a difficult problem.

In previous works, stability of steady states has been studied using a variety of
methods. In [1], the stability analysis comes from Piecewise Linear in Rates Lyapunov
Functions and establishing necessary conditions for their existence. In [8–10] the ap-
proach is based on the Hurwitz criterion and graphical methods to detect sign changes
on the Hurwitz determinants. In addition to this, as part of the zero deficiency Theorem,
asymptotic stability has been established for mass action systems that are complex bal-
anced [2, 13, 14, 32]. However, ensuring the presence of bistability, is much harder and
typically solved by first deciding whether the network admits multiple steady states,
and then numerically computing the steady states and their stability for a suitable
choice of parameter values. Formal proofs of bistability require advanced analytical
arguments such as bifurcation theory and geometric singular perturbation theory, as
in [20, 30] for futile cycles.

One of the main contributions in this work, is to outline an algorithm for detecting
bistability. This algorithm uses algebraic parametrizations of the positive steady state
variety, the Center Manifold Theorem and the Hurwitz criterion for polynomials, and
provides a symbolic proof of the presence of bistability in chemical reaction networks
satisfying certain conditions. This method is computationally challenging, due to the
large amount of parameters in the networks. Since all the computations are symbolic,
the Hurwitz determinants can be large functions. In our method, we get around this
issue relying on structural reduction techniques, in particular removal of intermediates
and reversible reactions [23, 36].

In addition to the method mentioned above, we explore the presence of bistability
and oscillations in two specific networks where the method mentioned above cannot be
applied. These networks are a model of ERK regulation and a MAPK cascade.

The first of these networks, comprises extracellular signal-regulated kinase (ERK)
regulation by dual-site phosphorylation by the kinase MEK and dephosphorylation by
the phosphatase MKP3. This network,which we call the ERK network, has an impor-
tant role in regulating many cellular activities, with deregulation implicated in many
cancers [55]. It was proven by Rubinstein, Mattingly, Berezhkovskii and Shvartsman [52]
that the ERK network is bistable and exhibits oscillations (for some choices of rate con-
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stants). However, some reductions made on this network yield monostationary systems.
The main contribution in this project is to find a set of reactions necessary for bistabil-
ity and to explore whether oscillations are lost when doing structural modifications of
the network. The oscillatory behaviour in the ERK network and its reductions, came
from a simple Hopf bifurcation detected through the analysis of Hurwitz determinants.
Due to the amount of variables and parameters, one of the main tools for finding a set
of parameters where a Hopf bifurcation arises, was the Newton polytope.

Regarding our contributions on the MAPK cascade, bistability was precluded when
it was proven that this network is monostationary for every set of parameters [21], and
oscillations in the network had not been proven. However, when considering MAPKK
and MAPKKK cascades [34, 42, 51], containing the MAPK cascade as a subnetwork,
bistability and oscillations had been found. Using the Newton polytope and its outer
normal cone, we were able to find a set of parameters where a Hopf bifurcation of the
MAPK cascade arises.

The final part of this thesis is devoted to the exploration of Absolute Concentration
Robustness. A network has Absolute Concentration Robustness (ACR) in a species
Xi if the positive steady state variety is constant in xi. This is equivalent to say that
for every pair of positive steady states of the system, the value for the concentration
of xi is the same. This property had been precluded in networks with deficiency zero
where the positive steady state variety is nonempty [57]. However, there are not many
sufficient conditions to ensure the presence of ACR in a network. One of the main
results is proved in [38], and is applicable on networks only with deficiency one. ACR
has also been explored using translation networks in [60] as part of a more general
study of robust ratios. Our contribution is to characterize ACR in small networks and
study whether ACR is preserved under certain structural modifications of the network.

This document is structured as follows. In Chapter 1, we introduce the background
in chemical reaction networks necessary for setting our contributions. We start by defin-
ing a chemical reaction network and all its structure, then we present the main results
for assessing multistationarity. We also include in this chapter an introduction to poly-
topes and define the Newton polytope of a polynomial. In Chapter 2, we present our
contributions related to detection of bistability and Hopf bifurcations in a chemical
reaction network. This chapter starts with some background on dynamical systems
and stability of steady states, then we summarize the contributions made in papers I
and II. Finally in this chapter, we present the advances in ongoing projects, also aimed
to study the stability of positive steady states. Finally in Chapter 3, we present our con-
tributions related to Absolute Concentration Robustness, first we explore ACR in small
networks; afterwards we study how ACR is preserved under structural modifications of
the network.



Contributions

The contributions presented in this work correspond to research exploring options for
solving two problems: detection of bistability and oscillations, and detection of Absolute
Concentration Robustness (ACR) in chemical reaction networks.

Regarding the detection of bistability, we outline a procedure to assess the existence
of at least two exponentially stable positive steady states in the same stoichiometric
compatibility class of a Chemical Reaction Network. This procedure relies on algebraic
parametrizations of the positive steady state variety and on the Theorems (9) and (10)
about structural reductions and multistarionarity. The procedure is symbolic and can
be used for detecting parameter regions for bistability. This work corresponds to the
first paper called Detecting parameter regions for bistability [61], with Elisenda Feliu
and currently under review.

A second contribution regarding bistability is presented in paper II called Oscilla-
tions and bistability in a model of ERK regulation[46], with Nida Obatake and Anne
Shiu from University of Texas A&M and with Xiaoxian Tang from Beihang University.
In this work we analysed a model for ERK regulation in search of key features for
the presence of bistability and oscillations. It was proven before that the model was
bistable [52]; however, it was also proven that the network limits to a network that is not
bistable. We used the reduction techniques in Section 1.4 and effective parametrizations
of the positive steady state variety to detect two reactions characterizing the presence
of bistability. Additionally, we used the Hurwitz criterion and Newton polytopes to
effectively compute sets of parameters and steady states where the system exhibits
oscillatory behaviour arising from a Hopf bifurcation.

These two contributions correspond to papers I and II enclosed at the end of the
thesis. We present the arXiv version of paper I and the published version of paper II.

An additional contribution regarding oscillations is connected with the MAPK cas-
cade. Using the Newton polytope and its outer normal fan, we also explore the presence
of oscillatory behaviour in a MAPK cascade [34], a network that is monostationary for
every set of parameters [21]. For this network we found a set of parameters where a
simple Hopf bifurcation arises.

Finally, we explore whether the stability of steady states of small networks, like the

5



6

Michaelis-Menten mechanism, is the same as the stability of the steady states of the
reduction of these networks obtained by removing one reverse reaction. This analysis
consists on studying the coefficients of the characteristic polynomials associated with
the Jacobian of both networks, and establishing whether there are sets of parameters
for both networks such that they yield the same characteristic polynomial.

Contributions in the area of ACR are presented in Chapter 3. The first contribution
is to prove that ACR in a core species is preserved under the removal or addition of
intermediates. The second contribution consists in giving a graphic way for identifying
ACR in networks with two reactions and n species.



1
Framework

Notation: Given a vector κ ∈ Rm, diag(κ) denotes the diagonal matrix of size m
whose diagonal entries correspond to the entries of κ. Given vectors x, b ∈ Rn, xb =
xb11 x

b2
2 · · · xbnn .

1.1 Chemical Reaction Networks

A Chemical Reaction Network N = (S,R, C) is a finite directed graph with no loops,
whose nodes are linear combinations of the elements in a set S = {X1, . . . , Xn}. The set
S is called the set of species, the nodes of the graph are called complexes and form the
set C, and each arrow is called a reaction. According to this definition, and assuming
that the graph has m reactions R = {r1, . . . , rm}, every reaction rj has the form

rj =
n∑

i=1

αijXi −→
n∑

i=1

βijXi for j = 1, . . . ,m (1.1)

with αij 6= βij for some i. The complex on the left side of the arrow is called the reactant
and the complex on the right side is called the product of the reaction.

The concentration of Xi at time t is denoted by xi(t), and we refer to the vector
x(t) = (x1(t), . . . , xn(t)) as the vector of concentrations. In order to understand the
behaviour of the system, we assign to each reaction rj a function vj(x) : Ωv → R≥0,
where its domain is such that Rn

>0 ⊂ Ωv ⊂ Rn
≥0. The vector v = (v1, . . . , vm) is called

the vector of kinetics. Intuitively, each function vj(x) represents the rate to which the
reaction rj occurs. Some of the commonly used kinetics are

1. Mass action kinetics: With the assumption of these kinetics, each reaction
rj is assigned a positive real number κj, called reaction rate constant and each
entry of the vector of kinetics is vj(x) = κjx

α1j

1 · · ·x
αnj
n . This definition means

that the rate of occurrence of each reaction is proportional to the product of
the concentrations of its reactants. In this case a reaction cannot occur if the
concentration of one of the reactants is zero.

7



8 Chapter 1. Framework

2. Power-law kinetics: Similarly to mass action, each reaction rj is assigned a

positive reaction rate constant κj and the function vj(x) is equal to κjx
b1j
1 · · ·x

bnj
n

for some (b1j, . . . , bnj) ∈ Rn. However, the choice of bj does not depend on the
reactant complex and can have negative entries. In this case Ωv corresponds to
Rn
≥0 minus the hyperplanes xi = 0 for every i such that bij < 0 for some j.

3. Michaelis-Menten kinetics: For this choice of kinetics a function vj(x) is de-
fined as vj(x) = V xi

KM+xi
for some i and some V,KM > 0. This kind of function

arises when the network is obtained by doing simplifications, like a quasi-steady
state approximation [27], on more complex networks. In the vector of kinetics,
these functions can be combined with mass action.

Note that whenever a reaction rj occurs, the amount of units of Xi changes in βij−αij.
This, together with a vector of kinetics, allows to model the variation of xi(t) through
time with the differential equation

ẋi =
m∑

j=1

(βij − αij)vj(x) for i = 1, . . . , n and x ∈ Rn
≥0, (1.2)

where ẋi = dxi
xt

. The system of Ordinary Differential Equations (ODEs) defined by
the equations above, models the evolution of the whole system through time. Since
these ODEs are autonomous, we normally write xi instead of xi(t) to denote the con-
centration of species Xi. Defining N as the matrix whose j-th column is the vector
(β1j − α1j, . . . , βnj − αnj), the system of ODEs can be written as ẋ = Nv(x). N is
called the stoichiometric matrix and the function f(x) := Nv(x) is called the rate
function. The column span of N is called the stoichiometric subspace S of the network.

With the stoichiometric subspace, define an equivalence relation in Rn as follows.

Definition 1. Two vectors x, z ∈ Rn are stoichiometrically compatible if x − z ∈ S.
This is an equivalence relation and the intersection of each equivalence class with Rn

≥0

is called a stoichiometric compatibility class.

Given x0 ∈ Rn, its stoichiometric compatibility class is

(x0 + S) ∩ Rn
≥0 = {x ∈ Rn

≥0 : x is stoichiometrically compatible with x0}.
The importance of the stoichiometric compatibility classes comes from the fact that
the trajectories defined by an initial solution x0 are confined to (x0 +S)∩Rn

≥0, as long
as the coordinates remain non-negative. This is proven in the following lemma.

Lemma 1. Let f(x) = Nv(x) be the rate function associated with a chemical reaction
network with vector of kinetics v(x), and denote the stoichiometric subspace as S.
Then, the trajectories of the dynamical system ẋ = Nv(x), x ∈ Rn

≥0, are confined to
the stoichiometric compatibility classes.
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Proof. Let ω ∈ Rn be an element of S⊥. Since every column of N is in S, we have
that ω · ẋ = ω · Nv(x) = 0. This means that ω · x is constant through time and
the concentrations are always constrained to their stoichiometric compatibility classes.
Proving that the trajectories also remain in the non-negative orthant is not trivial and
we refer the reader to [62].

The equations defining the stoichiometric compatibility classes are called conserva-
tion laws and, in order to find them, we choose a row reduced matrix W , whose rows
form a basis of S⊥. The stoichiometric compatibility class containing x0 has equations
Wx0 = Wx, and the entries of the vector Wx0 are called total amounts. Typically
we denote the vector of total amounts as T , and the stoichiometric compatibility class
defined by these equations as PT . Observe that the conservation laws do not depend
on the choice of kinetics, they only depend on the stoichiometric subspace and are
inherent to the structure of the network.

As an example, consider the reaction network

X1
κ1−−→ X2 X2 + X3

κ2−−→ X1 + X4 X4
κ3−−→ X3. (1.3)

This network is a simplified model of a two-component system, consisting of a his-
tidine kinase HK and a response regulator RR [11]. Both occur unphosphorylated
and phosphorylated (subscript p) and they are represented in the system as follows:
X1 = HK, X2 = HKp, X3 = RR and X4 = RRp.

The set of species is S = {X1, X2, X3, X4}, the set of complexes is

{X1, X2, X3, X4, X2 +X3, X1 +X4},

and the reaction rate constants are κ1, κ2, κ3. With mass action kinetics, the system of
ODEs modelling the dynamics of the network is

ẋ1 = −κ1x1 + κ2x2x3 ẋ3 = −κ2x2x3 + κ3x4

ẋ2 = κ1x1 − κ2x2x3 ẋ4 = κ2x2x3 − κ3x4.

This system can also be written as




ẋ1

ẋ2

ẋ3


 =




−1 1 0
1 −1 0
0 −1 1
0 1 −1







κ1x1

κ2x2x3

κ3x4


 , (1.4)

where the 4×3 matrix on the right side is the stoichiometric matrix N , and the vector
is the vector of kinetics v. The stoichiometric subspace is

S = 〈(−1, 1, 0, 0), (1,−1,−1, 1), (0, 0, 1,−1)〉,
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which has dimension two, and a basis for S⊥ is {(0, 0, 1, 1), (1, 1, 0, 0)}. In this case, we
choose

W =

(
1 1 0 0
0 0 1 1

)
(1.5)

and for a vector x0 = (c1, c2, c3, c4) of initial conditions its stoichiometric compatibility
class is defined by the equations

x1 + x2 = c1 + c2 x3 + x4 = c3 + c4.

These are the conservation laws, and the amounts c1 + c2 and c3 + c4 correspond to the
total amounts T1 and T2 of the system.

In our work we focus mainly in networks with mass action kinetics and, unless said
otherwise, we assume that each network has the vector of kinetics defined by the mass
action assumption. The reaction rate constant will be represented as a label on each
arrow of the graph defining the chemical reaction network. For these systems the rate
function has polynomial entries and hence the system of ODEs (1.2) is polynomial.
Additionally, every trajectory starting at a point x0 ∈ Rn

>0 remains positive through
time, which means that both he positive orthant and the nonnegative orthant are
invariant under trajectories of the system [17, 62].

1.2 Steady states

Recall that f(x) = Nv. The steady states (or equilibrium points) of the system are the
non-negative solutions of the system of equations

0 =
m∑

j=1

(βij − αij)vj(x) for i = 1, . . . , n (1.6)

or equivalently 0 = f(x). Note that only non-negative solutions are meaningful. We
say that the steady state is positive if all the concentrations are strictly greater than
zero. Under mass action kinetics, we refer to the set of positive steady states as the
positive steady state variety, which is the intersection of the algebraic variety given by
0 = f(x) with the positive orthant.

Since the dynamics take place in the stoichiometric compatibility classes, steady
states are regarded within each class. These positive steady states correspond to the
positive solutions to

f(x) = 0 and Wx = T.

The existence of conservation laws implies that some of the steady state equations are
linearly dependent. That is, if the conservation laws of a network are given by Wx = T
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and ω is a row of W , then ω · ẋ = ω · f(x) = 0, which means that the steady state
equations fi(x) = 0 for i ∈ Supp(ω) are linearly dependent. As W is row reduced,
defining {i1, . . . , id} as the indices of the first non-zero coordinate of each row of W ,
the linear combinations determined by the rows of W allow to write the equations
fik = 0 for k = 1, . . . , d as linear combinations of the other equations, hence they are
redundant.

With this in mind, for every T ∈ Rd, define the function FT as

FT (x)i =

{
fi(x) i /∈ {i1, . . . , id}
(Wx− T )i i ∈ {i1, . . . , id}.

(1.7)

This function replaces the redundant equations of the rate function f with the conser-
vations laws for some set of total amounts T , and the solutions to these equations are
the steady states in the stoichiometric compatibility class given by T .

In example (1.3) the positive steady states are the positive solutions to the equations

0 = −κ1x1 + κ2x2x3 0 = −κ2x2x3 + κ3x4

0 = κ1x1 − κ2x2x3 0 = κ2x2x3 − κ3x4.

For W in (1.5), we have i1 = 1 and i2 = 3, and for a vector T of total amounts, the
function FT is

FT =




x1 + x2 − T1

κ1x1 − κ2x2x3

x3 + x4 − T2

κ2x2x3 − κ3x4


 .

By solving the two linearly independent steady state equations, we find that any posi-
tive solution has the form

φ(x2, x4) =

(
κ3x4

κ1

, x2,
κ3x4

κ2x2

, x4

)
. (1.8)

This defines a parametrization of the positive steady states, by the concentrations of
x2 and x4, satisfying that whenever x2 and x4 are positive, so are the first and third
entries of the vector.

In general, when the positive steady state variety admits a parametrization (a sur-
jective map) of the form

φ : Rd
>0 → {x ∈ Rn

>0 | f(x) = 0} (1.9)

ξ 7→ φ(ξ),

we say that the parametrization is positive. In practice, since f is polynomial, the
entries of φ will be rational functions in ξ. A strategy that often works for realistic



12 Chapter 1. Framework

networks to find parametrizations is to consider a subset of variables of size d and solve
the steady state equations with respect to this subset using software such as Maple or
Mathematica. Then it is necessary to verify that the entries of the parametrization are
positive rational functions in Rd

>0. In this case, at most
(
n
d

)
subsets must be considered,

but there is no guarantee that this will work, nor is the existence of a parametrization.

The existence of positive parametrizations, and methods to find them, have been
established for some networks relying on their structure [22, 24, 28, 49, 54, 59].

We now define non-degeneracy of a steady state and show how to determine whether
a positive steady state is non-degenerate.

Definition 2. Given a chemical reaction network N with rate function f and a steady
state x∗, we say that x∗ is non-degenerate if the Jacobian matrix Jf (x

∗) is injective on
the stoichiometric subspace S.

The injectivity on the previous definition refers to the injectivity of the linear map
defined by Jf (x

∗). If the stoichiometric subspace has full dimension, then Jf (x
∗) is

injective if and only if det(Jf (x
∗)) 6= 0. However, in our setting, the existence of con-

servation laws implies that this is not always the case, which means that a different
criterion for checking the injectivity of Jf (x

∗) on the stoichiometric subspace is nec-
essary. The following lemma relates the determinant of JFT (x∗), defined in (1.7), with
the injectivity that we require.

Lemma 2. A positive steady state x∗ is non-degenerate if and only if, for every choice
of matrix W such that Wx = T are the equations defining the stoichiometric com-
patibility class for total amounts T , the Jacobian of FT is non-singular at x∗, that is,
det JFT (x∗) 6= 0.

Proof. Since f(x) = Nv(x), we have Jf (x) = NJv(x). Define g(x) as the function
obtained by considering only s = dim(S) linearly independent steady state equations.
This function can be written as g(x) = N ′v(x) for a matrix N ′ with rank(N) =
rank(N ′). By the definition of g we have that Jg(x) = N ′Jv(x), which implies that
ker(Jf (x)) = ker(Jg(x)). The Jacobian Jf (x

∗) defines a linear map that is injective on
S if and only if, ker(Jf (x

∗)) ∩ S = {0}. This is equivalent to say that there is not a
positive vector z such that Wz = 0 and Jf (x

∗)(z) = 0, but the last equality holds if
and only if Jg(x

∗)(z) = 0. Note now that the conditions Wz = 0 and Jg(x
∗)(z) = 0

are equivalent to JFT (x∗)(z) = 0, and no z ∈ S satisfy this if and only if, JFT (x∗) is
injective in S and det JFT (x∗) 6= 0, which is what we wanted.

1.3 Multistationarity

A network exhibits multistationarity if there exist two distinct positive steady states in
one stoichiometric compatibility class, that is, the system FT (x) = 0 has at least two
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Kr + S −−⇀↽−− KrS −−→ Kr + Sp

Kt + S −−⇀↽−− KtS −−→ Kt + Sp

Sp −−→ S

Kr −−⇀↽−− Kt

Figure 1.1: Allosteric network.

distinct positive solutions. If there is one positive steady state in each stoichiometric
compatibility class, we say that the network is monostationary.

Deciding whether a network exhibits multistationarity is a problem that has been
studied extensively [4, 6, 11, 19, 35, 36, 49, 53, 63]. Now we mention some results
regarding multistationarity, focusing on those that played a significant role on this
work. We start with the deficiency zero and deficiency one theorems, then we present
results on injectivity of networks used to preclude multistationarity and, finally, we
present an algebraic criteria for detecting parameter regions for multistationarity.

1.3.1 Deficiency zero and deficiency one theorems

As their names indicate, the deficiency zero and deficiency one theorems rely on the
concept of deficiency. To define it, we start by defining the linkage classes of a network.

Definition 3 (Linkage class). For a chemical reaction network N = (S,R, C, ), a
linkage class is defined as a connected component of the associated graph.

In our previous example (1.3), there are 6 complexes and the linkage classes are
{X1,X2}, {X2 + X3,X1 + X4} and {X4,X3}. In this example, the linkage classes are
given exactly by the complexes that are adjacent.

As a second example, consider the network in Figure 1.1 Here, K corresponds to the
kinase that exists in two conformations: Kr (relaxed state) and Kt (tensed state). Each
conformation acts as a kinase for a common substrate S. We denote by Sp the phos-
phorylated form of the substrate. We assume that the intermediate kinase-substrate
complexes, KrS and KtS, also undergo conformational change [25]. In this network we
have 3 linkage classes given by {Kr + S,KrS,Kr + Sp,KtS,Kt + S,Kt + Sp}, {Sp, S} and
{Kr,Kt}.
Definition 4. A chemical reaction network is weakly reversible if every connected
component of the associated graph is strongly connected.

Intuitively, being weakly reversible means that if one complex reacts to another,
then it is possible to reverse this reaction through some sequence of complexes. The
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property of reacting through complexes is defined as ultimately reacts to and it allows
us to define a strong linkage class. We now formalize these concepts.

Definition 5. • A complex c ultimately reacts to c′ if one of the following conditions
holds: (i) they are equal, (ii) c → c′ is a reaction in the network, or (iii) if
there is a sequence of complexes C1, . . . , Ck such that the sequence of reactions
c→ C1 → · · · → Ct → c′ is in the network.

• Two complexes c and c′ are strongly connected if c ultimately reacts to c′ and c′

ultimately reacts to c. We denote this relation as c ≈ c′. This is an equivalence
relation over the set of complexes and each equivalence class is called a strong-
linkage class.

• A terminal strong-linkage class is a strong-linkage class whose complexes do not
react to complexes outside the class.

• A complex is called terminal if it belongs to a terminal strong-linkage class.
Otherwise it is called non-terminal.

Having the previous definitions, we now present the definition of deficiency.

Definition 6 (Deficiency). Given a chemical reaction network N = (S, C,R), its defi-
ciency δ is defined as

δ = ν − `− s
where ν is the number of complexes, ` is the number of linkage classes and s is the
dimension of the stoichiometric subspace.

In the previous examples, network (1.3) has deficiency δ = 6 − 3 − 2 = 1, and
network (1.1) has deficiency δ = 10− 3− 4 = 3.

Note that the deficiency is independent of the kinetics, it is entirely a structural
property of the network. However, under mass action kinetics, this structural property
has implications on the existence of positive steady states.

Theorem 1 (Deficiency zero theorem). Let N = (S,R, C) be a network with deficiency
zero and mass action kinetics.

1. If the network is not weakly reversible, then for every set of reaction rate constants
and total amounts, the system of differential equations admits neither a positive
steady state nor a periodic orbit.

2. If the network is weakly reversible, then for every set of reaction rate constants
and total amounts each stoichiometric compatibility class contains precisely one
positive steady state, which is asymptotically stable, and there is no nontrivial
periodic orbit.
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This theorem was proved by Horn, Jackson and Feinberg [7, 15] and it characterizes
the steady states of networks under mass action and with deficiency zero. Namely, the
positive steady state variety of deficiency zero networks is nonempty for every set of
parameters if, and only if, the network is weakly reversible. Furthermore, if this is the
case, there is not multistationarity and the only steady state is asymptotically stable.
We will go back to the stability property later.

This theorem cannot be used to study the positive steady state variety of examples
(1.1) and (1.3) as they do not have deficiency zero. Consider the network in Figure 1.2
This network has 5 species, 5 complexes and 2 linkage classes. The stoichiometric

X1

κ1−−⇀↽−−
κ2

2X2 X1 +X3

κ3−−⇀↽−−
κ4

X4
κ6−−→ X2 +X5

κ5

Figure 1.2: Network with deficiency zero

subspace has dimension 3, hence the deficiency of the network is δ = 5 − 2 − 3 = 0.
Additionally, this network is weakly reversible. Therefore, the deficiency-zero theorem
allows us to conclude that for every set of parameters, the network is monostationary.

For networks with deficiency 1, the deficiency one theorem [15, 16] provides analo-
gous conditions for a network to have a positive steady state.

Theorem 2 (Deficiency one theorem). Let N = (S,R, C) be a reaction network of
deficiency δ, let δL denote the deficiency of the linkage class L and suppose that the
following conditions hold

(i) δL ≤ 1 for every linkage class L,

(ii)
∑
L∈C/∼ δL = δ, where C/ ∼ represent the set of linkage classes of N , and

(iii) each linkage class contains only one terminal strong-linkage class.

If for a particular set of parameters, the mass action system admits a positive steady
state, then each stoichiometric compatibility class contains precisely one steady state.
If the network is weakly reversible, then, for every set of parameters the mass action
system admits a positive steady state.

Similarly to the deficiency zero theorem, the deficiency one theorem characterizes
the positive steady state variety of networks with mass action kinetics satisfying the de-
ficiency conditions in (i) and (ii). These conditions are structural and allow to preclude
multistationarity without computing the steady states.
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1.3.2 Injectivity

The deficiency zero and deficiency one theorems in the previous section rely on struc-
tural conditions of the network. However, for networks not satisfying them there is no
insight on how the positive steady state variety is. We will now present some results
[44] that preclude multistationarity using an algebraic approach.

The underlying idea behind the results in this section is to find sufficient conditions
for the rate function f to be injective. If f is injective it is not possible for two different
points x, y ∈ Rn to be positive steady states as f(x) = 0 = f(y) cannot hold for x 6= y.
The results presented in this section are valid, not only for mass action, but for more
general kinetics as well; however, we will focus on mass action as it is the main focus
of our work.

Since the rate function depends on a set of parameters κ and the injectivity property
depends on κ, we define the family of functions

FN,B = {fκ : κ ∈ Rm
>0}

where N ∈ Mn×m(R) and B ∈ Mm×n(R) are defining the rate function, namely
fκ(x) = N diag(κ)xB with xB = (xb1 , xb2 , . . . , xbm) and bi is the i-th row of B for
i = 1 . . .m and study the injectivity of these families. Note that N and B are fixed,
so FN,B just corresponds to the different rate functions obtained when varying the
parameters of the system.

Definition 7. The family FN,B is S-injective if for every fκ ∈ FN,B the following
statement holds: for every x, y ∈ Rn

>0 such that 0 6= x−y and x−y ∈ S, fκ(x) 6= fκ(y).

In this case we say that the network N is injective.

With the following theorem (Theorem 1.4 in [? ]) it is proven that the injectivity
of a function fκ is related to the injectivity of a linear map, which depends on the sign
of the entries of certain vectors. The sign function is defined as

sign(a) =




−1 if a < 0
0 if a = 0
1 if a > 0,

for every a ∈ R. The sign of a vector x ∈ Rn is defined as σ(x) = (sign(x1), . . . , sign(xn))
and the sign set of V ⊂ Rn is σ(V ) = {sign(x) : x ∈ V }. Consider now the family of
linear transformations

LN,B = {N diag(κ)B diag(λ) : κ ∈ Rm
>0 and λ ∈ Rn

>0}.

In the same way as FN,B, the matrices N and B defining LN,B, are fixed and the
elements of LN,B vary depending on κ and λ.
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Theorem 3. Let N ∈Mn×m(R), B ∈Mm×n(R) and S be the stoichiometric subspace
of a network N . The following statements are equivalent:

(i) The family FN,B is S-injective,

(ii) the linear transformation N diag(κ)B diag(λ) ∈ LN,B is injective on S, for every
κ ∈ Rm

>0 and λ ∈ Rn
>0,

(iii) σ(ker(N)) ∩ σ(B(Σ(S∗))) = ∅,

where S∗ = S \ {0} and Σ(S∗) = {x ∈ Rn : σ(x) = σ(v) for some v ∈ S∗}.

Remark 1. The set Σ(S∗) can be defined also for every subset V ⊂ Rn as Σ(V ) = {x ∈
Rn : σ(x) = σ(v) for some v ∈ V } and it can described also as Σ(V ) = {diag(λ)v : λ ∈
Rn
>0 and v ∈ V }. This set contains all the vectors whose components have the same

sign as one of the vectors in V .

Before proving the theorem, we prove a lemma on an alternative description of the
set Σ(V ).

Lemma 3. Given a subset V ⊆ Rn, the following equality holds:

Σ(V ) = {ln(x)− ln(y) : x, y ∈ Rn
>0 and x− y ∈ V }

where ln(x) = (ln(x1), . . . , ln(xn)).

Proof. Denote the set on the right side of the equality as Λ(V ). We begin the proof by
showing that Λ(V ) ⊆ Σ(V ). Given x, y ∈ Rn

>0 with x− y ∈ V , the monotonicity of the
logarithm guarantees that σ(x−y) = σ(ln(x)−ln(y)), which means that ln(x)−ln(y) ∈
Σ(V ) and Λ(V ) ⊆ Σ(V ). For the other inclusion, given diag(λ)v ∈ Σ(V ) for some
λ ∈ Rn

>0 and v ∈ V , define the entries of x and y as follows:

yi =

{
vi

eλivi−1
if vi 6= 0

1 if vi 6= 0
and xi =

{
yie

λivi if vi 6= 0
1 if vi 6= 0.

These vectors satisfy ln(xi)− ln(yi) = λivi and x−y ∈ V , which means that diag(λ)v ∈
Λ(V ) and Σ(V ) ⊆ Λ(V ).

With this lemma, we now prove Theorem 3.

Proof of Theorem 3. The proof of this theorem consists in showing that statements
(i) and (ii) are equivalent to (iii). We start proving that (ii) ⇔ (iii). Since each
N diag(κ)B diag(λ) is linear, being injective in S means that the kernel of its restriction
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to S is equal to {0}, which holds if and only if N diag(κ)B diag(λ)u 6= 0 for every
u ∈ S∗. This is equivalent to the statement

N diag(κ)Bv 6= 0 for every v ∈ Σ(S∗)

because λ has positive entries. Note now that a vector w is in ker(N diag(κ)) if and
only if σ(w) ∈ σ(ker(N)), due to the positivity of the entries of κ. With this remark
we have now that N diag(κ)Bv 6= 0 holds if and only if σ(Bv) /∈ σ(ker(N)) for every
v ∈ Σ(S∗), or equivalently σ(BΣ(S∗)) ∩ σ(ker(N)) = ∅, which is what we wanted to
prove.

Now we show that (i)⇔ (iii). If FN,B is S-injective, then for every pair of vectors
x, y ∈ S, with x 6= y, fκ(x) 6= fκ(y). This implies

0 6= fκ(x)− fκ(y) = N diag(κ)xB −N diag(κ)yB = N diag(κ)(xB − yB),

which holds if, and only if, (xB − yB) /∈ ker(N diag(κ)). But, given that all the entries
of κ are positive, this occurs if, and only if, σ(xB − yB) /∈ σ(ker(N)) for every x 6= y in
S. If we prove that σ({xB − yB : x, y ∈ S and x 6= y}) = σ(B(Σ(S∗))), then we have
that σ(ker(N)) ∩ σ(B(Σ(S∗))) = ∅ which is what we want to prove. Recall that given
a vector in Rn

>0, its logarithm is the vector obtained applying the logarithm function
componentwise. From this definition, we have

ln(xB) =(ln(xb1), ln(xb2), . . . , ln(xbm))

=

(
n∑

j=1

b1j ln(xj),
n∑

j=1

b2j ln(xj), . . . ,
n∑

j=1

bmj ln(xj)

)

= (b1 · ln(x), b2 · ln(x), . . . , bm · ln(x))

=B ln(x).

Doing analogous computations for yB, we get ln(yB) = B ln(y). Since the logarithm is
a monotonous function,

σ(xB − yB) = σ(ln(xB)− ln(yB)) = σ(B(ln(x)− ln(y)))

for every x, y ∈ Rn
>0 and x − y ∈ S. Using Lemma 3 we deduce that {ln(x) − ln(y) :

x,∈ Rn
>0 and x− y ∈ S} = Σ(S); therefore,

σ({xB − yB : x, y ∈ S and x 6= y}) = σ(B(Σ(S∗)))

and our proof is complete.

Theorem 3 is an important tool to preclude multistationarity because checking
whether a linear function is injective is computationally more efficient than verifying
injectivity in a function with polynomial entries. Furthermore, this theorem guarantees
that it is not necessary to find the kernel of a linear function, it is enough to study the
signs of vectors in ker(N) and B(Σ(S∗)).
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1.3.3 Parameter regions for multistationarity

Now we present a method for detecting parameter regions for multistationarity. This
method will be connected with our contributions in bistability as multistationarity is
a necessary condition for bistability.

The results proven in the previous section allow us to preclude multistationarty of
a network. However, they do not give a sufficient condition to exhibit multistationarity.
We now present the main results of [11] as they are a method for detecting the presence
of multistationarity and, additionally, finding parameter regions where a network has
multistationarity. The results rely on algebraic parametrizations of a variety and the
sign of values attained by certain polynomials.

We start by giving some definitions on networks and then we present the criteria
for detecting multistationarity.

Definition 8. Consider a chemical reaction network N = (S,R, C).

• N is dissipative if for every set of total amounts T such that PT 6= ∅, there exists
a compact set KT ⊂ PT such that every trajectory starting in x ∈ PT eventually
ends up in KT .

• N is conservative if S⊥ contains a positive vector. This holds if, and only if, every
concentration variable appears in at least one conservation law with all non-zero
coefficients positive.

In [5] it was proven that a network is conservative if, and only if, the stoichiometric
compatibility classes are compact subsets of Rn. This implies that every conservative
network is dissipative.

The following theorem gives a criterion for deciding whether a chemical reaction
network exhibits multistationarity using an algebraic parametrization of the steady
state variety as in (1.9) and the function FT defined in (1.7).

Theorem 4. Let N = (S,R, C) be a chemical reaction network with mass action
kinetics and assume that the stoichiometric subspace S has dimension s. Assume also
that the network is dissipative, there are no boundary steady states in any stoichiometric
compatibility class with nonempty intersection with the positive orthant, and the positive
steady state variety admits an algebraic parametrization ϕ : Rd

>0 → Rn
>0. Then, the

following holds:

a) If sign(det(JF (ϕ(x)))) = (−1)s for all x ∈ Rd
>0, then there is exactly one positive

steady state in each stoichiometric compatibility class. Furthermore, this steady state
is non-degenerate.
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b) If sign(det(JF (ϕ(x̂)))) = (−1)s+1 for some x̂ ∈ Rd
>0, then there are at least two

positive steady states in the stoichiometric compatibility class containing ϕ(x̂), at
least one of which is non-degenerate. If all positive steady states are non-degenerate
then there are at least three and always an odd number.

This theorem corresponds to Corollary 1 in [11], which is obtained from Theorem
1 in [11], stated below.

Theorem 5. Let N = (S,R, C) be a chemical reaction network with mass action kinet-
ics and assume that the stoichiometric subspace S has dimension s. Assume also that
the network is dissipative and there are no boundary steady states in any stoichiometric
compatibility class PT whose intersection with the positive orthant is nonempty. Then,
the following holds:

a) If sign(det(JF (x))) = (−1)s for all positive steady states x ∈ PT ∩ Rn
>0, then there

is exactly one positive steady state in PT . Furthermore, this steady state is non-
degenerate.

b) If sign(det(JF (x̂))) = (−1)s+1 for some positive steady state x̂ ∈ PT ∩ Rn
>0, then

there are at least two positive steady states in PT , at least one of which is non-
degenerate. If all positive steady states in PT are non-degenerate then there are at
least three and always an odd number.

The proof of this theorem relies on the Brouwer degree of a special class of functions.
In general, the proof consists in using the Brouwer degree of FT in an appropriate open
set, to conclude that (−1)s = Σx∈VT sign(det(JF (x))), where VT denotes the positive
steady state variety intersected with PT . This equality allows us to estimate whether
there are one or multiple positive steady states in VT as the sum on the right hand side
of the equality has as many terms as points in the variety.

Remark 2. Recall that under mass action kinetics, the vector v depends on a set of
parameters κ ∈ Rm

>0, which means that the coefficients of det(JF (ϕ(x))) are parametric
and their variation might affect the sign of det(JF (ϕ(x))). With this is mind, it is
possible to detect parameter regions for multistationarity by studying the coefficients
of det(JF (ϕ(x))) for which is possible to guarantee that a value with sign (−1)s+1 is
attained. In practice, one of the most useful tools to find said regions has been the
Newton polytope which we will explain in Section 1.5.

To illustrate the use of Theorem 5 for detecting multistationarity, we consider ex-
ample (1.3). The conservation laws of the network are x1+x2 = T1 and x3+x4 = T2 and
from them we see that every concentration variable appears in one conservation law with
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positive coefficient. Thus, the network is conservative. We now compute det(JF (ϕ(x)))
and study its sign.

det(JF (ϕ(x))) =
κ1κ2x

2
2 + κ1κ3x2 + κ2

3x4

x2

is a positive function for every positive value of x2 and x4. Since the dimension of the
stoichiometric subspace is 2, we have that (−1)s = (−1)2 = 1, and thus this network
is monostationary for every set of parameters.

An example of the use of Theorem 5 to establish mutistationarity is given at the
end of Section 1.4.1 with network (1.14).

1.4 Reduction of networks

In the previous sections we went through some results for detecting multistationarity,
and they range from methods depending on the structure of the network to the use of
algebraic parametrizations and signs of polynomials to detect regions for multistation-
arity. These methods can be applied to each specific network; however, in doing so it
is possible to encounter issues such as:

• Is it always possible to compute det(JF (ϕ(x))) and detect whether it attains a
value with sign (−1)s+1?

• Do the conclusions of the theorems change when considering different models of
one system?

The first issue is affected by the size of the network, and gives rise to computational
problems. We now present results on how multistationarity is preserved when modifying
the structure of the network. In particular, we consider the removal and addition of
intermediate species [23, 53] and addition and removal of reactions [36]. These results
are critical for the work presented in paper I and in 3.

1.4.1 Intermediates

Definition 9. Let N = (S,R, C) be a chemical reaction network. An intermediate
Y ∈ S is a species that is produced and consumed, and additionally does not interact
with any other species. That is, Y is the reactant of at least one reaction, the product
of at least one reaction and the only complex containing Y is the complex Y itself.



22 Chapter 1. Framework

As an example consider the following network:

X1 + X2
−−⇀↽−− X3 −−→ X1 + X4

X3 + X4
−−⇀↽−− Y1 −−→ X2 + X3.

(1.10)

In this network, the species Y1, in red, is the only intermediate; it is both produced
and consumed and it does not interact with any other species.

If a species Y is an intermediate of N , it is possible to construct a new network N ′
that does not contain Y by collapsing all the reaction paths yi −−→ Y −−→ yj, where
Y is an intermediate into a reaction yi −−→ yj, and keeping only meaningful reactions,
that is reactions where yi 6= yj.

In the example above, the removal of Y1 leads to the reduced network

X1 + X2
−−⇀↽−− X3 −−→ X1 + X4

X3 + X4 −−→ X2 + X3.
(1.11)

Note that reactions like X3+X4
−−⇀↽−− Y1 −−→ X2+X3 are a graphic way to represent the

sequences of reactions X3 +X4 −−→ Y1 −−→ X2 +X3 and X3 +X4 −−→ Y1 −−→ X3 +X4

that, after the removal of Y1, become X3 + X4 −−→ X2 + X3 and X3 + X4 −−→ X3 + X4

respectively. Since the last of these reactions is not meaningful, we only keep the first
one in the reduced model.

Removing all the intermediate species produces a network called the core network
and all its complexes are called core complexes. It is also said that the original network
is an extension model of the core network. In our example, (1.11) is the core network
of (1.10) and the core complexes are X1 + X2,X3, X1 + X4, X3 + X4 and X2 + X3. It is
also said that (1.10) is an extension model of (1.11). Extension models are defined in
general as follows:

Definition 10. A network N = (S,R, C) is an extension model of N ′ = (S ′,R′, C ′) if

• the set of core complexes of N is equal to the set of complexes of N ′,

• every reaction in R occurs between two core complexes, two intermediates or
between an intermediate and a core complex; and

• N ′ can be obtained from N by collapsing all reaction paths

ci −−→ Y1 −→ · · · −→ Yt −−→ cj for ci 6= cj

into a single reaction ci −−→ cj, where Y1, . . . ,Yt are intermediate species in
S \ S ′, and there might be none.
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The removal or addition of intermediates is an operation that is purely structural
and does not depend on the kinetics. However, we are interested in studying the relation
between the positive steady state varieties of extension models and core models, when
the systems are considered under mass action kinetics. This analysis can be found in
[23], but here we highlight the main results.

We start by establishing the relation between the steady state equations of both
networks. First denote the species in the core complexes of N by X1, . . . , Xn and the
intermediates as Y1, . . . , Y`. The set of species is the union of species in core complexes
and intermediates.

Since the intermediates do not interact with any other species, they appear as linear
terms in the steady state equations and, solving the equations ẏi = 0, it is possible to
solve the concentration of each intermediate in terms of the concentration of the core
complexes that ultimately react to them. This corresponds to the following theorem.

Theorem 6. The system of equations formed by the steady state equations of the
intermediates yi for i = 1, . . . , ` in N , can be solved in terms of the core species, and
yi is expressed at steady state as a sum

yi = Σc∈C̄µYi,cx
c (1.12)

where µYi,c is a non-negative constant that is different from zero if, and only if, there
is a reaction path c→ · · · → Yi involving exclusively intermediates, and C̄ denotes the
set of core complexes.

The proof of this theorem relies on the Cramer’s rule for solving systems of linear
equations, and on the Matrix-Tree theorem. The outline of this proof is to write the
system of steady state equations for the intermediates, as system of linear equations in
the concentration of the intermediates and use the Matrix-Tree theorem to guarantee
that the system has a unique solution. Then, this same theorem is used to find the
constants µYi,c. For a detailed proof we refer the reader to the proof of Theorem 3.1
in [23].

Using these solutions to substitute the value of the intermediates at steady state in
the equations of the core complexes, we are left with a system depending only on the
concentrations of the core species. The following theorem, corresponds to Theorem 3.2
proved in [23], ensures that this system is actually a mass action system for the core
network.

Theorem 7. After substituting the expressions yi = Σc∈C̄µYi,cx
c into the ODEs for

non intermediate species xi of the extension model, we obtain a mass action system for
the core model whose reaction rate constants are derived from the paths connecting the
complexes in the extension model.
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This theorem is proved by defining a function

ψ(κ) : Rm
>0 → Rm′

>0 (1.13)

from the set of parameters of the extension model to the set of parameters of the core
model, such that the vectors κ ∈ Rm and ψ(κ) ∈ Rm′ determine the same system of
polynomial equations in the concentrations of the core species. Namely, for a reaction
ci −−→ cj in N ′ define its reaction rate constant as

τci→cj = ψ(κ)ci→cj = κci→cj + Σ`
k=1κYk→cjµYk,ci ,

where some of the terms on the sum can be zero. With this definition, the positive steady
state variety of the core model for parameters ψ(κ), is equal to the positive solutions
of the steady state equations of the extension model with parameters κ after doing the
substitution in (1.12). The vector κ and ψ(κ) are called matching rate constants. Given
τ ∈ Rm′

>0, it is said that every element κ ∈ ψ−1(τ) realizes τ and, if ψ−1(τ) = ∅, then
the parameter τ is not realizable.

Recall example (1.10). Writing in the graph the labels corresponding to the reaction
rate constants, the network is

X1 + X2

κ1−−⇀↽−−
κ2

X3
κ3−−→ X1 + X4

X3 + X4

κ4−−⇀↽−−
κ5

Y1
κ6−−→ X2 + X3,

and the system of ODEs is

ẋ1 = −κ1x1x2 + (κ2 + κ3)x3

ẋ2 = −κ1x1x2 + κ2x3 + κ6y1

ẋ3 = κ1x1x2 − (κ2 + κ3)x3 − κ4x3x4 + (κ5 + κ6)y1

ẋ4 = κ3x3 − κ4x3x4 + κ5y1

ẏ1 = κ4x3x4 − (κ5 + κ6)y1.

The steady state equation for the intermediate is 0 = κ4x3x4− (κ5 +κ6)y1, and solving
it for y1 we have

y1 =
κ4

κ5 + κ6

x3x4.

The concentration of Y1 at steady state can be written in terms of the monomial
x3x4 that corresponds to the complex X3 + X4, which is the only core complex that
ultimately reacts to Y1. With the notation of the theorem, this is equivalent to the
sum y1 = Σc∈C̄µY1,cx

c, with µY1,X3+X4 = κ4
κ5+κ6

and µY1,c = 0 for any other complex c.
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Substituting this value for y1 in the differential equations for the core species we are
left with the system

ẋ1 = −κ1x1x2 + (κ2 + κ3)x3

ẋ2 = −κ1x1x2 + κ2x3 +
κ6κ4

κ5 + κ6

x3x4

ẋ3 = κ1x1x2 − (κ2 + κ3)x3

ẋ4 = κ3x3 −
κ6κ4

κ5 + κ6

x3x4.

Defining τi = κi for i = 1, 2, 3 and τ4 = κ4κ6
κ5+κ6

we have that this system corresponds
to the dynamics of the core network under mass action kinetics and with reaction rate
constants as follows,

X1 + X2

τ1−−⇀↽−−
τ2

X3
τ3−−→ X1 + X4

X3 + X4
τ4−−→ X2 + X3.

The previous theorems shows that there is a natural projection from the steady state
variety of the extended model, to the steady state variety of the core model, when
the sets of parameters of each network satisfy the appropriate relations. However, for
studying multistationarity, it is also necessary to analyse how the conservation laws
change from the extension model to the core model. This question is answered in the
following theorem.

Theorem 8. The conservation laws in the core model N ′ are in one to one corre-
spondence with the conservation laws in any extension model N . The correspondence
is obtained by adding a suitable linear combination of the concentration variables of the
intermediates to each conservation law of the model.

Proof. Let S and S ′ denote the stoichiometric subspace of N and N ′ respectively. The
proof of this theorem consists on defining a correspondence between a basis of S⊥ and a
S ′⊥, which will define a correspondence between the conservation laws of the extension
model and the conservation laws of the core model.

Let {ω′1, . . . , ω′d} ⊆ Rn
≥0 be a basis for S ′⊥. Assume additionally that N ′ has L

linkage classes and for k = 1, . . . , L select a complex ck belonging to the k-th linkage
class. Now for each vector ω′i with i = 1, . . . , d we define component wise a vector ωi
contained in Rn+`

≥0 as follows

ωij =

{
ω′ij for j = i, . . . , n
ω′i · ck if j = n+ 1, . . . , n+ ` and Yj−n is in the k-th linkage class.

With this definition, the vectors ω′i and ωi coincide in the first n components corre-
sponding to the core species in the models. If we prove that the set {ω1, . . . , ωd} is



26 Chapter 1. Framework

a basis for S⊥ then we have a correspondence between the conservation laws of both
models. To prove it we show first that each ωi ∈ S⊥, then we prove that the vectors
are linearly independent and, finally, we prove that they generate S⊥.

A vector ωi is in S⊥ if, and only if, for each reaction cj1
−−→ cj2

, the inner product
ωi ·(cj2

−cj1
) = 0. If cj1

and cj2
are core complexes, then ωi ·(cj2

−cj1
) = ω′i ·(cj2

−cj1
) = 0.

If cj1
is a core complex and cj2

= Yj for some intermediate Yj, then

ωi · (cj2
− Yj) = ωi · cj2

− ωi · Yj

= ω′i · cj2
− ω′i · ck

= ω′i(cj2
− ck)

= 0,

where the last equality holds because both cj2
and ck are in the same linkage class,

hence cj2
− ck ∈ S ′⊥. Finally, if both cj1

and cj2
are intermediate complexes, then the

reaction is Yj1
−−→ Yj2

and ωi · (yi1 − yi2) = ω′i · ck − ω′i · ck = 0. This proves that each
ωi ∈ S⊥.

The linear independence is deduced from the fact that {ω′1, . . . , ω′d} is a basis.
It is left to see that {ω1, . . . , ωd} generates S⊥, and this will be done checking that
dim(S⊥) = d. Since S⊥ contains d linearly independent vectors dim(S⊥) ≥ d, Now,
note that for every reaction cj1

−−→ ccj2
in N ′, the natural inclusion of the vector

cj2
− cj1

into Rn+` is actually contained in S, due to the fact that in the extension
model N , this reaction comes from a path cj1

−−→ Y1 → . . . → Yt −−→ ccj2
. This

implies that there is an inclusion S ′ ↪→ S and dim(S ′) ≤ dim(S). Which means that
d = dim(S ′⊥) ≥ dim(S⊥). We conclude that dim(S⊥) = d and the set {ωi, . . . , ωd} is a
basis.

With this procedure we have established a correspondence between basis of S ′⊥ and
S⊥, and this correspondence can be reversed. That is, given a basis {ω1, . . . , ωd} of S⊥,
the natural projection on the first n coordinates forms a basis of S ′⊥.

Remark 3. In the previous proof, the value of ωi · ck is independent of the selection
of the complex ck in each linkage class.

After understanding the positive steady state variety and the conservation laws,
we proceed to establish how multistationarity is preserved or lost between core and
extension models. The following theorem guarantees that multistationarity is preserved
from core models to extension models, that is, that multistationarity in the core model
implies multistationarity in any extension model subject to realization conditions on
the reaction rate constants of both models.

Theorem 9. If the core model has η non-degenerate positive steady states for some
reaction rate constants and total amounts, then any extension model that realizes the
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reaction rate constants has at least η corresponding non-degenerate positive steady states
for some reaction rate constants and total amounts. Oppositely, if the extension model
has at most one positive steady state for any reaction rate constants and total amounts,
then the core model has at most one positive steady state for any matching rate constants
and total amounts. The reaction rate constants and total amounts can be chosen such
that the correspondence preserves unstable steady states with at least one eigenvalue
with positive real part and asymptotic stability for hyperbolic steady states.

We now present an outline for the proof of this result. For a detailed proof we refer
the reader to [23], where this result corresponds to Theorem 5.1. Denote by fκ and
f ′τ the rate functions of the extension model and core model respectively, for a pair of
matching constants τ = ψ(κ). Consider now the functions FT and F ′T ′ as in (1.7) for
both models. Since we are assuming that the core network exhibits multistationarity,
this means that the system of equations F ′T ′(x) = 0 has at least two positive solutions
for certain set of total amounts T ′. If we consider only the entries of F ′T ′ corresponding to
the steady state equations, their solutions are also solutions of the equations fκ(x) = 0
arising from core species. As we saw before, with the concentrations of the core species
at steady state, it is possible to find the concentrations of the intermediate species at
steady state, and we get at least two points in the positive steady state variety of the
extension model; however, these points are not necessarily in the same stoichiometric
compatibility class. The proof then consists on using the solutions of F ′T ′(x) = 0 to find
a set of total amounts T and parameters κ′ depending on T ′ and κ, in such a way that
it is possible to find at least two positive solutions of FT (x) = 0.

To illustrate how this theorem can be applied, recall example (1.10). We showed
that the core network is (1.11) and that the function ψ : R6

≥0 → R4
≥0 was given by

(κ1, κ2, κ3, κ4, κ5, κ6) 7→ (κ1, κ2, κ3,
κ4κ6
κ5+κ6

). The steady states of (1.10) can be parametrized
as

φ(x1, x2) =

(
x1, x2,

κ1x1x2

κ2 + κ3

,
κ3(κ5 + κ6)

κ4κ6

,
κ1κ3x1x2

(κ2 + κ3)κ6

)

and doing some computations we have that

det(JFT (φ(x1, x2))) =
(2κ1κ3x1 + κ1κ3x2 + κ1κ6x1 + κ1κ6x2 + κ2κ6 + κ3κ6)κ1κ4x1x2

κ2 + κ3

.

Using Theorem (5), we conclude that the network (1.10) is monostationary and using
Theorem (9) this implies that the network (1.11) is monostationary for matching sets
of parameters.

As an additional example on the use of this theorem consider the following network

X1
κ1−−→ X2

κ2−−→ X3
κ3−−→ X4 X3 + X5

κ4−−→ X1 + X6

X6
κ6−−→ X5 X4 + X5

κ5−−→ X2 + X6.
(1.14)
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For this system we have

FT =




x1 + x2 + x3 + x4 − T1

κ5x4x5 + κ1x1 − κ2x2

−κ4x3x5 + κ2x2 − κ3x3

−κ5x4x5 + κ3x3

x5 + x6 − T2

κ4x3x5 + κ5x4x5 − κ6x6




for some total amounts T1 and T2, and the positive steady state variety can be parametrized
as

φ(x4, x5) =

(
κ4κ5x4x

2
5

κ3κ1
,
κ5x4x5(κ4x5 + κ3)

κ3κ2
,
κ5x4x5
κ3

, x4, x5,
κ5x4x5(κ4x5 + κ3)

κ3κ6

)
.

For detecting whether this network exhibits multistationarity we compute det(JFT (φ(x4, x5)))
and study its sign:

det(JFT (φ(x4, x5))) =
1

κ3

(
(κ1 − κ3)κ2κ4κ

2
5x4x

2
5 + 2κ1κ2κ3κ4κ5x4x5 + κ1κ2κ

2
3κ5x4+

(κ1κ3κ4κ5κ6 + κ2κ3κ4κ5κ6)x25 + (κ1κ2κ3κ5κ6 + κ1κ
2
3κ5κ6)x5 + κ1κ2κ

2
3κ6
)
.

Considering the numerator of the last function as a polynomial in x4 and x5, the
first term is the term with highest total degree and it is the only one with a neg-
ative coefficient. For κ3 > κ1 it is possible to find values of x4 and x5 such that
sign(det(JFT (φ(x4, x5)))) = −1 = (−1)s+1. By Theorem 5 this implies that the net-
work exhibits multistationarity. Furthermore, Theorem 9 allows us to deduce that any
extension model of this network obtained by adding intermediates, also exhibits mul-
tistationarity for matching reaction rate constants. For instance, models like

X1 −−→ X2 −−→ X3 −−→ X4 X3 + X5
−−⇀↽−− Y1 −−→ X1 + X6

X6
−−⇀↽−− Y3 −−→ X5 X4 + X5

−−⇀↽−− Y2 −−→ X2 + X6.

or

X1 −−→ X2 −−→ X3 −−→ X4 X3 + X5 −−→ X1 + X6

X6 −−→ Y2 −−→ Y3 −−→ X5 X4 + X5 −−→ X2 + X6
−−⇀↽−− Y1.

under mass action kinetics, exhibit multistationarity for matching sets of parameters.

1.4.2 Subnetworks and embedded networks

Now we present structural modifications on a network, corresponding to the removal or
addition of reactions and removal or addition of species [36] . Similarly to the previous
section, the goal is to understand how the steady state variety changes when doing this
modifications and if the multistationarity property is preserved.
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Definition 11. Let N = (S,R, C) be a chemical reaction network and let S ′ ⊆ S,
R′ ⊆ R and C ′ ⊆ C.

• The restriction ofR to S ′, denoted R|S′ , is the set of reactions obtained by taking
the reactions in R and removing all species not in S ′ from the reactant and the
product complexes. Trivial reactions and repeated copies of the same reaction are
removed.

• The restriction of C to R′, denoted C|R′ , is the set of complexes of the reactions
in R′, including both reactants and products.

• The restriction of S to C ′, denoted S|C′ , is the set of species that are in the
complexes in C.

Remark 4. When removing repeated copies of the same reaction, the reaction rate
constant of the reaction left in the restriction, is considered as the sum of the rate
constants of all the copies.

Definition 12. Let N = (S,R, C) be a chemical reaction network.

1. Given a subset of reactions R′ ⊆ R, the subnetwork defined by R′ is N ′ =
(S|C|R′ , C|R′ ,R

′).

2. Given a subset of species S ′ ⊆ S, the embedded network defined by S ′ is N ′ =
(S ′, C|R|S′ , R|S′).

To illustrate these definitions, recall example 1.10. The subnetwork determined by
R′ = R \ {X1 + X2 −−→ X3,Y1 −−→ X2 + X3} is

X1 + X2 ←−− X3 −−→ X1 + X4

X3 + X4
−−⇀↽−− Y1,

with C|R′ = {X1+X2,X3,X1+X4,X3+X4,Y1} and S|C|R′ = S. The embedded network

determined by S ′ = S \ {X1,X4} is

X2
−−⇀↽−− X3 −−→ 0

X3 + X4
−−⇀↽−− Y1 −−→ X2 + X3,

with C|R|S′ = {X2,X3,X3 + X4,Y1,X2 + X3}.
In [36] some theorems regarding whether multistationarity of networks could be

deduced from reduced or embedded networks were proven. We now mention some of
them, corresponding to Theorems 3.1 and 4.2 in [36].
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Theorem 10. Let N ′ be a subnetwork of N such that both networks have the same
stoichiometric subspace. Then the following holds:

(i) If N ′ admits multiple non-degenerate positive steady states, then N does as well.
Additionally, if N ′ admits finitely many such steady states, then N admits at
least as many.

(ii) If N ′ admits multiple positive exponentially stable steady states, then N does as
well. Additionally, if N ′ admits finitely many such steady states, then N admits
at least as many.

The proof of this theorem relies on the following lemma.

Lemma 4. Let S ⊆ Rn be a vector subspace, let P ⊂ Rn be a polyhedron contained
in an affine translation of S, and let Ω ⊂ int(P ) be a bounded domain in the relative
interior of P . Assume that gλ : Ω̄→ S, for λ ∈ [0, 1], is a continuously-varying family
of smooth functions such that

(i) for all λ ∈ [0, 1], gλ has no zeros in the boundary of Ω, and

(ii) for λ = 0 and λ = 1, ker(Jgλ(x)) ∩ S = {0} for all x ∈ Ω.

Then the number of zeros of g0 in Ω equals the number of zeros of g1 in Ω.

A definition of polyhedron is given in Section 1.5. With this lemma, the proof of
Theorem 10 consists on defining a family of functions satisfying the hypotheses of the
Lemma, in such a way that each positive solution of the rate function ofN ′ is associated
with a positive solution of the rate function of N . Namely, let fκ(x) and f ′κ′(x) be the
rate functions of N and N ′ respectively. By hypothesis, N ′ and N have the same
stoichiometric subspace S, which implies that the set of species for both networks,
denoted S, is the same. Additionally, since N ′ exhibits multistationarity there is a set
of parameters κ′ and a set of total amounts T ′ such that FT ′(x) = 0, with the reaction
rate constants equal to κ′, has at least two nondegenerate solutions x∗ and x∗∗. The
fact that x∗ is nondegenerate means that there is an open set Ω containing x∗ such
that x∗ is the only solution of f ′κ′(x) = 0 in Ω and such that ker(Jf (x)) ∩ S = {0} for
every x ∈ Ω. Now, let κ′ = (κ′1, . . . , κ

′
m′) and denote by κm′+1, . . . , κm the labels of the

reactions in R \R′. Define the following family of functions for λ ∈ [0, 1]

gκλ(x) = f ′κ′(x) + Σm
j=m′+1(c′j − cj)λκjxc

where c′j and cj are the product and reactant of the reaction with label κj for j =
m′ + 1, . . . ,m. Note that gκ0 (x) = f ′κ′(x) and gκ1 (x) = fκ(x) for a set of parameters κ.
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Applying Lemma 4 for this family of functions and adjusting the parameters if neces-
sary, for it to satisfy the hypothesis of the Lemma, it is possible to prove that fκ(x) = 0
has a solution in Ω. The lifting of multistationarity follows from doing this same pro-
cedure for x∗∗ and choosing a new set Ω accordingly and noting that P corresponds to
the intersection of the positive orthant with the stoichiometric compatibility class.

Regarding embedded networks, we prove Theorem 11 below. First we define a flow
type subnetwork.

Definition 13. A mass action flow type subnetwork for a species Xi of a chemical
reaction network N is a nonempty subnetwork N ′ of N such that

• the reactions in N ′ only involve the species Xi, and

• there exists a choice of reaction rate constants for the reactions of N ′, such that
for the resulting mass action system of N ′, xi = 1 is a non-degenerate steady
state.

Theorem 11. Let N ′ be an embedded network of a network N such that the stoichio-
metric subspace of N ′ is full dimensional and for each species Xi that is in N not in
N ′, there exists a mass action flow type subnetwork of N for Xi. Then, the following
holds

(i) If N ′ admits multiple non-degenerate positive steady states, then N does as well.
Additionally, if N ′ admits finitely many such steady states, then N admits at
least as many.

(ii) If N ′ admits multiple positive exponentially stable steady states, then N does as
well. Additionally, if N ′ admits finitely many such steady states, then N admits
at least as many.

The proof of this theorem consists in proving the result first for embedded networks
where the set of species of both networks differ only in one species. That is, for networks
where S \ S ′ = {Xi} with S and S ′ the set of species of N and N ′ respectively. In
this case, given a steady state x∗ of N ′, it is proven that N has a positive steady state
in a neighbourhood of (x∗, 1). With this case proven, multistationarity is lifted from
embedded networks where S \ S ′ has more than one element, one species at a time.

To illustrate the use of the previous theorems consider example (1.1) and consider
the subnetwork depicted in Figure 1.3. Using Theorem 5 it is possible to prove that
this network with mass action kinetics exhibits multistationarity. This implies that
network (1.1) also exhibits multistationarity for a certain set of parameters. If instead
of considering this subnetwork, we study the subnetwork obtained by removing all the
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Kr + S −−→ KrS −−→ Kr + Sp

Kt + S −−→ KtS −−→ Kt + Sp

Sp −−→ S

Kr −−⇀↽−− Kt

Figure 1.3: Subnetwork of the Allosteric network in 1.1

reverse reactions in (1.1), it is not possible to ensure multistationarity in the original
network, because this subnetwork does not have positive steady states.

To illustrate Theorem 11 consider the network N given by

0 −−⇀↽−− X1 3 X1
−−⇀↽−− 2 X1

with mass action kinetics. The steady state equation for this network is a polynomial
of degree 3 in x1 and the stoichiometric subspace is equal to R. It is possible to find
a set of parameters for which the steady state equation has at least two positive roots
and the network exhibits multistationarity. Theorem 11 implies that the network

X2
−−⇀↽−− 0 −−⇀↽−− X1 3 X1

−−⇀↽−− 2 X1 + X2

also exhibits multistationarity because N can be obtained from it by removing the
species X2 and there is a flow-type subnetwork involving only this species, namely
X2
−−⇀↽−− 0. If we consider the network

0 −−⇀↽−− X1 3 X1
−−⇀↽−− 2 X1 + X2

it is not possible to guarantee multistationarity from N despite the fact that N can be
obtained from it removing species X2. This is due to the non-existence of a flow-type
subnetwork involving X2.

1.5 Newton Polytope

The Newton Polytope is going to be one of the main tools for finding Hopf bifurcations
later in this work. In this section we present the background required to understand
the Newton Polytope and then we present two results used in Paper II.
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Figure 1.4: The set D is depicted on the left. On the right, conv(D).

1.5.1 Polytopes

Polytopes in Rn are sets that can be defined as the convex hull of a finite set of points
or as the intersection of half spaces. We now present both definitions and study the
basic structure of these sets.

Definition 14. Let D ⊂ Rn be a set of points. D is convex if for any pair of points
u, v ∈ D, the segment joining u and v is contained in D, that is, if tu + (1 − t)v ∈ D
for every t ∈ [0, 1]. The convex hull of D, denoted conv(D), is defined as the smallest
convex set containing D.

Remark 5. If D = {v1, . . . , v`} is finite, then it is possible to define its convex hull
constructively as

conv(D) = {ζ1v1 + . . .+ ζ`v` : ζi ≥ 0 and Σ`
i=1ζi = 1}.

As an example, consider in R2 the set D = {(0, 0), (1, 1), (2, 2), (3, 1), (1, 2)}. In
Figure 1.4 we present the convex hull of the set D. Note that the point (1, 1) is an
interior point of conv(D).

Definition 15. A hyperplane in Rn is defined as

H = {(x1, . . . , xn) ∈ Rn : a1x1 + . . .+ anxn = b}
for some a1, . . . , an, b ∈ R. This can also be denoted as {x ∈ Rn : a · x = b}, which we
denote Ha,b.

Each hyperplane divides Rn in two regions, called the positive and negative half-
spaces, defined as

H+
a,b = {x ∈ Rn : a · x ≥ b} H−a,b = {x ∈ Rn : a · x ≤ b}
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Figure 1.5: On the left the hyperplanes H(0,1),2,H(−2,1),0,H(1,−3),0and H(1,1),4. On the right

the H-polyhedron defined by the intersection of the negative half-spaces.

respectively. With this definition we define an H-polyhedron, as the intersection of
finitely many closed half spaces. Note that H+

a,b = H−−a,b, which means that by choosing
the vector a we are also choosing an orientation of the hyperplane.

As an example, consider the following hyperplanes

H(0,1),2, H(−2,1),0, H(1,−3),0, H(1,1),4,

presented on the left side of Figure 1.5. If we consider the intersection of all the neg-
ative half-spaces defined by them, we obtain the H-polyhedron on the right side of
Figure (1.5).

Note that the H-polyhedron in Figure 1.5 is equal to conv(D) in Figure 1.4. This is
due to the fact that D is a finite set and, in this case, the convex hull defines a polytope
that can be defined also as the intersection of some closed half-spaces. We now present
the formal definition of a polytope and its representations.

Proposition 1 (See [65]). Let P ⊆ Rn. P is the convex hull of a finite set of points if,
and only if, it is a bounded intersection of closed half-spaces.

Definition 16. A set P satisfying any of the equivalent conditions of Proposition 1 is
a polytope. The V-representation of P is a set of points whose convex hull is equal to
P , and the H-representation of P is a list of closed half-spaces whose intersection is
equal to P .

The proof of the equivalence between theH-representation and the V-representation
of a polytope relies on the Minkowski sum of polyhedrons, and it can be found in [65].
A polyhedron is a set that is described as the intersection of half spaces, and polytopes
are bounded polyhedrons.
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We now define the faces of a polytope and then, we define the outer normal cone
of a polytope.

Definition 17. Let P be a polytope. A linear inequality a · x ≤ b is valid for P if it is
satisfied for every x ∈ P . A face F of P is any set of the form

F = P ∩ {x ∈ Rn : a · x = b}

for a valid inequality a · x ≤ b for P . Note that the inequalities 0 · x ≤ 0 and 0 · x ≤ 1
are valid for every P , and the equalities 0 · x = 0 and 0 · x = 1 define the faces P and
∅ respectively. If F is a face different from P and ∅, then F is called a proper face.

Every proper face of a polytope is contained in at least one hyperplane of its H-
representation [65]. For example, in the polytope P of Figure 1.5, if we intersect P with
the hyperplane x2 = 2, we obtain the segment on the top of the polytope connecting
(1, 2) and (2, 2); this segment is a face of P . Similarly, if we intersect P with the
hyperplane x1 + 2x2 = 5, we obtain the point (2, 2) which is also a face.

Definition 18. Let P be a polytope. The dimension of P is defined as the dimension
of the linear space generated by the vectors {u− v ∈ Rn : u, v ∈ P}. Since a face of a
polytope is a polytope itself, the dimension of a face F is the dimension of the linear
space generated by {u − v ∈ Rn : u, v ∈ F}. For a polytope P with dim(P ) = n, all
the faces of dimension n− 1 are called facets, all the faces of dimension one are called
edges, and the faces of dimension zero are called vertices.

The dimension of the polytope in Figure (1.5) is 2, the facets are the edges as
they have dimension 1, and the vertices are {(0, 0), (3, 1), (2, 2), (1, 2)}. Note that this
polytope was obtained as the convex hull of D = {(0, 0), (1, 1), (2, 2), (3, 1), (1, 2)};
however not all of these points are vertices. In general, the set of vertices of a polytope
P is the minimal set required to obtain P as a convex hull of points. Furthermore,
the faces of P can be obtained as convex hulls of subsets of the set of vertices. This is
summarized in the following proposition.

Proposition 2. Let P be a polytope.

(i) Every polytope is the convex hull of its vertices, and if P = conv(D) for some D,
then D contains the vertices of P .

(ii) If F is a face of P , then the vertices of F are also vertices of P .

(iii) If F and F ′ are faces of P , then F ∩ F ′ is also a face of P .

(iv) If F is a face of P , then the set of faces of F is {F ′ ∩ F : F ′ is a face of P}.
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Figure 1.6: On the left two polytopes P and Q and on the right its Minkowski sum.

This proposition gives us an insight on the structure of a polytope. Their faces are
polytopes themselves and any intersection of faces is again a face of the polytope. With
this structure, the set of faces of a polytope, ordered by inclusion, forms a lattice called
the face lattice of P .

We now define an operation to construct polytopes. This operation is the Minkowski
sum.

Definition 19. Let P,Q ⊂ Rn be two polytopes. The Minkowski sum of P and Q,
denoted P +Q, is defined as

P +Q := {u+ v : u ∈ P and v ∈ Q}.

As an example consider the polytopes P = conv({(1, 0), (0, 1), (3, 2)}) and Q =
conv({(3, 3), (1, 1)}), depicted on the left part of Figure (1.6). Both polytopes are
contained in R2 and dim(P ) = 2 and dim(Q) = 1. Their Minkowski sum is the 2
dimensional polytope on the right side of the figure.

Proposition 3. Let vert(P ) and vert(Q) denote the set of vertices of P and Q respec-
tively. Then,

P +Q = conv({u+ v : u ∈ vert(P ) and v ∈ vert(Q)}).

This proposition gives us a procedure for finding the Minkowski sum of two poly-
topes. As a remark, note that vert(P + Q) ⊂ vert(P ) + vert(Q), but they are not
necessarily equal.
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Figure 1.7: On the left the set D of points. On the right its conical hull cone(D) in yellow

and the set D in blue.

Cones and fans

We now define a different kind of polyhedral sets. We start by defining a cone, then we
proceed to define a fan, and finally we define the outer normal cone associated with a
polytope.

Definition 20. A subset C ⊂ Rn is a cone if it contains all the finite non-negative
linear combinations of its elements. For a set Y ⊂ Rn, we define its conical hull, denoted
cone(Y ), as

cone(Y ) = {ζ1v1 + · · ·+ ζtvt : vi ∈ Y and ζi ≥ 0 for i = 1, . . . , t}.

From the previous definition we deduce that every cone contains the origin and, if
v is in the cone, then λv is also in the cone for every λ ≥ 0. As an example consider
again the set D = {(0, 0), (1, 1), (2, 2), (3, 1), (1, 2)}, instead of computing its convex
hull, we now show its conical hull on the right side of Figure 1.7. Note that this hull
contains the origin and every positive multiple of each element.

A cone can also be obtained as the intersection of half spaces; however, the hy-
perplanes defining each half-space must contain the origin. In our example cone(D) =
H−(1,−3),0∩H−(−2,1),0 and both hyperplanes H(1,−3),0 and H(−2,1),0 contain the origin. The
faces of a cone can be defined in the same way as the faces of a polytope. In this case
the faces are not bouded, for instance the faces of dimension 1 will be rays starting in
the origin. In our example in Figure 1.7, the faces of dimension one are {λ(3, 1) : λ ≥ 0}
and {λ(1, 2) : λ ≥ 0}.
Definition 21. A fan in Rn is a family of nonempty cones F = {C1, . . . , Ct} satisfying
the following properties.

(i) Every nonempty face of a cone in F is also a cone in F.
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Figure 1.8: On the left the polytope P . On the right we see the outer normal fan of P , each

cone has the same color as the vertex generating it.

(ii) The intersection of any two cones in F is a face of both.

Now we define the outer normal fan associated with a polytope.

Definition 22. Let P be a full dimensional polytope in Rn. The outer normal cone of
a face F of P is defined as

CF := {c ∈ (Rn)∗ : c · v = max{c · x : x ∈ P} for every v ∈ F}.
The outer normal fan of P is defined as {CF : F is a face of P}.

Note that the outer normal cone of a face F contains all the linear functions whose
maximum value on P is attained at F . If we come back to the polytope P = conv(D)
in Figure 1.5, the outer normal cone C(0,0) is the conical hull of {(−2, 1), (1,−3)}. On
the left part of Figure 1.8 we have the polytope P and on the right side we have the
outer normal fan of P .

If a polytope P has full dimension and dim(F) = m, then dim(CF) = n − m.
In Figure 1.7, dim((0, 0)) = 0 and dim(C(0,0)) = 2. Note additionally that if u, v are
adjacent vertices of P , then Cu ∩ Cv is the outer normal cone of the edge [u, v]. In
general, the computation of the outer normal fan can be done by finding the outer
normal cones of the vertices, and including the intersections of cones associated to the
vertices defining each face of P .

1.5.2 Newton polytope

We now define a specific polytope associated with a multivariate polynomial. This
polytope is an important tool in our work, as it allows to bound the number of complex
solutions of a system of polynomial equations and, under certain conditions, it allows
to find a solution in the positive orthant.
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Definition 23. Let p(x) = a1x
α` + · · ·+ a`x

α` be a multivariate polynomial with real
coefficients, and where xαi = xαi11 · · · xαinn for αi ∈ Zn≥0. The Newton polytope associated
with p, denoted Newt(p), is defined as the convex hull of the exponents:

Newt(p) := conv({α1, . . . , α`}).

The Newton polytope is contained in Rn
≥0, where n is the number of variables of

p. As an example consider p(x1, x2) = x3
1x2 + 3x2

1x
2
2 − x1x

2
2 + 7x1x

3
2 − 8, Newt(p) =

conv({(0, 0), (2, 2), (3, 1), (1, 2)}) which is precisely the polytope in Figure 1.4. Note
that for g(x1, x2) = 5x3

1x2 − 10x2
1x

2
2 + x1x

2
2 − 11x1x

3
2 + 10 and h(x1, x2) = −x3

1x2 +
3x2

1x
2
2 − x1x

2
2 + 7x1x

3
2 + x1x2 + 7, we have that Newt(g) = Newt(h) = Newt(p) even if

the polynomials are different.

The Newton polytope can be used to determine whether a polynomial attains a
positive or negative value. We will say that a vertex σi of Newt(p), is a positive vertex
(respectively, negative vertex ) if the corresponding monomial of p is positive, i.e., ai > 0
(respectively, ai < 0).

Proposition 4. For a real, multivariate polynomial p(x) = a1x
α1 +a2x

α2 +· · ·+a`xα` ∈
R[x1, . . . , xn], if αi is a positive vertex (respectively, negative vertex) of Newt(p), then
there exists x∗ ∈ Rn

>0 such that p(x∗) > 0 (respectively, p(x∗) < 0).

Proof. Let αi be a vertex of Newt(p). Pick w = (w1, w2, . . . , wn) in the relative interior
of the outer normal cone Cσi . Then, by construction, the linear functional w · − is
maximized over the exponent vectors α1, α2, . . . , α` at αi. Thus, we have the following
univariate function in t:

p(tw1 , tw2 , . . . , twn) = a1t
w·α1 + a2t

w·α2 + · · ·+ a`t
w·α` = ait

w·σi + lower-order terms .

So, for t large, sign(p(tw1 , tw2 , . . . , twn)) = sign(ai). Note that (tw1 , tw2 , . . . , tws) ∈ Rn
>0.

This proposition guarantees that the monomials whose exponents are vertices of
Newt(p) are dominant monomials, in the sense that the polynomial attains values with
the sign of the corresponding coefficients. With this in mind, it is possible to use the
outer normal fan to find a solution of a polynomial, under certain conditions. Now we
prove a proposition that allows us to use the previous result to find a solution of a
multivariate polynomial, under certain conditions.

Proposition 5. Let p, q ∈ R[x1, . . . xn]. Assume that α is a positive vertex of Newt(p),
β+ is a positive vertex of Newt(q), and β− is a negative vertex of Newt(q). Then, if
int(Cα)∩int(Cβ+) and int(Cα)∩int(Cβ−) are both nonempty, then there exists x∗ ∈ Rn

>0

such that p(x∗) > 0 and q(x∗) = 0.
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The proof of this result is included in the appendix of Paper II as Proposition B.2.
This paper can be found at the end of this thesis. It is proved in the context of Hurwitz
determinants for the detection of Hopf bifurcations. The proof is not constructive but we
provide an algorithm to find an approximation of a point. We now present this algorithm
with the notation pw(t) := p(tw1 , tw2 , . . . , twn), for t ∈ R and w = (w1, w2, . . . , wn) ∈ Rn.

Algorithm 1: Newton-polytope method

input : polynomials p, q, and vertices α, β+, β−, as in Proposition 5
output: a point x∗ ∈ Rn

>0 s.t. p(x∗) > 0 and q(x∗) = 0
define L0 := int(Cα) ∩ int(Cβ+) and L1 := int(Cα) ∩ int(Cβ−);
pick ` = (`1, `2, . . . , `n) ∈ L0 and m = (m1,m2, . . . ,mn) ∈ L1;
define p`(t) := p(t`1 , t`2 , . . . , t`n); define pm(t); define q`(t); define qm(t);
define τ` := inf{t∗ ∈ R>0 | p`(t) > 0 and q`(t) > 0 for all t > t∗};
define τm := inf{t∗ ∈ R>0 | pm(t) > 0 and qm(t) < 0 for all t > t∗};
define T := max{τ`, τm}+ 1;
define h(r) := pr`+(1−r)m(T );
while min{h(r) | r ∈ [0, 1]} ≤ 0 do

T := 2T ;
h(r) := pr`+(1−r)m(T );

define r∗ := argmin{
(
qr`+(1−r)m(T )

)2 | r ∈ [0, 1]} (pick one r∗ if there are
multiple);

return : T r
∗`+(1−r∗)m :=

(
T r
∗`1+(1−r∗)m1 , T r

∗`2+(1−r∗)m2 , . . . , T r
∗`n+(1−r∗)mn

)

Remarks about Algorithm 1: First, ` and m exist by hypothesis. Additionally, τ`
and τm exist by Proposition 4. Note now that minh(r) exists because h is a continuous
univariate function defined on a compact interval.

By construction and by the convexity of the cones, the vector r` + (1 − r)m, is in
the relative interior of Cα for all r ∈ [0, 1]. Thus, (r` + (1 − r)m) · (α − αi) > 0 for
the other exponents αi of p and for all r ∈ [0, 1]. This (together with a straightforward
argument using continuity and compactness) implies the following:

δ := inf
r∈[0,1]

min
αiexponents of p

(r`+ (1− r)m) · (α− αi) > 0.

Next, let β := infr∈[0,1](r`+ (1− r)m) · α. Then, for all r ∈ [0, 1] and t > 0,

fr`+(1−r)m(t) = a+t
(r`+(1−r)m)·α +

(
a1t

(r`+(1−r)m)·α1 + · · ·+ adt
(r`+(1−r)m)·αd)

> a+t
β − (|a1|+ |a2|+ · · ·+ |ad|)tβ−δ =: f̃(t) . (1.15)

In f̃(t), the term a+t
β dominates the other term, for t large, so there exists T ∗ > 0

such that f̃(t) ≥ 0 when t ≥ T ∗. This implies that the while loop ends when T ≥ T ∗

(or earlier).



1.5. Newton Polytope 41

Finally, r∗, τl, τm and the condition on the while loop are defined as argmin or
minimums of functions, and finding an approximation for these numbers depends on
numerical methods that might not halt. However, in practice, numerical methods can
stop after achieving certain precision or after a specific number of iterations. Therefore,
in practice it is possible to use Algorithm 1 to compute an approximation of these
values.

Algorithm 1 is correct: For T fixed, the minimum of ψ(r) :=
(
q(T r`+(1−r)m)

)2
over

the compact set [0, 1] is attained, because ψ is continuous. Next we show that for
χ(r) := q(T r`+(1−r)m) there exists some r∗ ∈ (0, 1) such that χ(r∗) = 0. But this follows
from the Intermediate Value Theorem, because χ is continuous, χ(0) = q(Tm) < 0
(because T > τm), and χ(1) = q(T `) > 0 (because T > τ`).

Finally, the inequality p(T r
∗`+(1−r∗)m) > 0 holds by the definition of T , so taking

x∗ := T r
∗`+(1−r∗)m ∈ Rn

>0 we obtain the vector satisfying p(x∗) > 0 and q(x∗) = 0.



42 Chapter 1. Framework



2
Local dynamic behaviour of
Chemical Reaction Networks

In the previous chapter we mentioned the stability property of steady states, specially
in Theorems 9 and 10, where part of the results were related to this property. In this
chapter we formally define what stability means and present an algebraic criterion for
exploring stability. This criterion is going to be the main tool in our contributions and,
the Hurwitz determinants will also be used for detecting Hopf bifurcations.

In what follows, we give an introduction to stability and Hopf bifurcations for any
dynamical system, then we present the Hurwitz criterion. Afterwards, we use these
tools to study the local dynamics of steady states of chemical reaction networks and
present our contributions.

2.1 Background on Stable steady states and Hopf

bifurcations

In this section we define stability and Hopf bifurcations for any system of ODEs given
by ẋ = f(x). We are particularly interested in non-linear systems of ODEs as these are
the systems that often arise in our setting.

2.1.1 Stability of steady states

Consider an autonomous ODE ẋ = f(x), with f a continuously differentiable function
in an open set E ⊂ Rn.

Definition 24. A steady state x∗ ∈ E is called hyperbolic if none of the eigenvalues of
the matrix Jf (x

∗) have zero real part. The linear ODEs system given by ẋ = Jf (x
∗)x

is called the linearization of ẋ = f(x) at x∗.

The linearization of a system allows us to classify steady states with the definition
below.

43
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Figure 2.1: Vector field of a planar dynamic system. The horizontal axis corresponds to x1

and the vertical axis to x2.

Definition 25. A steady state x∗ of ẋ = f(x) is called a sink if all of the eigenvalues of
the matrix Jf (x

∗) have negative real part; it is called a source if all of the eigenvalues
of Jf (x

∗) have positive real part; and it is called a saddle if it is a hyperbolic steady
sate and Jf (x

∗) has at least one eigenvalue with positive real part and at least one
eigenvalue with negative real part.

As an example consider the ODEs system given by

ẋ = f(x) :=

(
x2

1 − x2
2 − 1

2x2

)
.

The steady states of the system are (1, 0) and (−1, 0). The Jacobian of f is given by

Jf (x) =

[
2x1 −2x2

0 2

]
,

and the linearization of the system at (1, 0) and (−1, 0) are

ẋ = Jf (1, 0)x =

[
2 0
0 2

](
x1

x2

)
and Jf (x) =

[
−2 0
0 2

](
x1

x2

)

respectively. Additionally, from the eigenvalues of Jf (1, 0) and Jf (−1, 0) we conclude
that (1, 0) is a source and (−1, 0) is a saddle. The vector field associated with the ODEs
system is presented in Figure 2.1 and from it we see that the trajectories starting near
the source will tend to move away from it as time increases. Sinks are going to be
very important in our work as they can be detected by checking the eigenvalues of the
linearization of the system at the steady state, in particular sinks are going to be a
special case of stable steady states. We define what stability means in the following
definition.
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Definition 26. Let θt(x0) be the trajectory of the ODEs system ẋ = f(x) starting at
a point x0 ∈ Rn. A steady state x∗ ∈ Rn is stable if for every ε > 0, there exists a δ > 0
such that for all x0 ∈ Bδ(x∗) and t ≥ 0 we have that θt(x0) ∈ Bε(x∗); the steady state
is unstable if it is not stable. The steady state x∗ is asymptotically stable if it is stable
and if for every ε > 0 there exists a δ > 0 such that for all x0 ∈ Bδ(x∗) we have that

lim
t→+∞

θ(x0) = x∗.

Intuitively a steady state is stable if trajectories starting near it, remain in a neigh-
bourhood of the steady state; and asymptotic stability holds when the trajectories not
only remain in a neighbourhood of the steady state, but tend to it as time increases.

One of the main results for detecting whether a hyperbolic steady state is stable,
unstable or a saddle, is the Stable Manifold theorem. Before stating it, we need some
definitions regarding linear ODes systems.

Definition 27. Let A be a square matrix of size n, and consider the ODE system
given by ẋ = Ax. Suppose that A has k real negative eigenvalues λ1, . . . , λk and n −
k real positive eigenvalues λk+1, . . . , λn and that these eigenvalues are distinct. Let
{v1, . . . , vn} be a corresponding basis of eigenvectors. Then the stable and unstable
subspaces, Es and Eu, are the subspaces spanned by {v1, . . . , vk} and {vk+1, . . . , vn}
respectively.

Note that under the assumptions of this definition, 0 is a steady state and the matrix
A is diagonalizable, which implies that if we write the system ẋ = Ax with respect to
the basis formed by the eigenvectors, we obtain a diagonal system ẏ = diag(λ1, . . . , λn)y
whose solution is given by yi(t) = exp(λit)y0i, where y0 ∈ Rn is an initial condition.
From this solution we have that Es and Eu are invariant under trajectories of the
system; specifically, if y0 ∈ Es, then the coordinates of y0 in the basis given by the
eigenvectors are zero for {vk+1, . . . , vn}, which means that all the trajectory lies on
Es and, additionally, all the entries of yi(t) = exp(λit)y0; tend to zero as t tends to
infinity. Similarly, we see that Eu is invariant, as initial conditions y0 ∈ Eu have zero
coordinates for the vectors {v1, . . . , vk}.

With this solution for the diagonal system and, doing the reverse change of basis,
we obtain a solution for the original system ẋ = Ax. This change of basis preserves the
direction of the trajectories, which gives an intuition as to why the subspaces Es and
Eu are called stable and unstable subspaces as the trajectories starting on Es remain
in Es and tend to zero, whereas the trajectories starting in Euremain in Eu but do not
tend to zero.

As an example for the stable and unstable subspaces consider the ODEs system
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Figure 2.2: Vector field associated with the linear dynamic system ẋ1 = x1 + 3x2 and ẋ2 =

3x1 + x2. The horizontal axis corresponds to x1 and the vertical axis to x2.

given by

ẋ =

[
1 3
3 1

]
x,

with x ∈ R2. The eigenvalues of the matrix are -2 and 4 and their corresponding
eigenvectors are (−1, 1) and (1, 1) respectively. This means that the stable subspace is
the subspace spanned by (−1, 1), and the unstable subspace is the one spanned by (1, 1).
In Figure 2.2 we see the vector field associated with the system. Note that trajectories
starting in the subspace given by x1 = −x2 tend to zero, and trajectories starting in the
subspace x1 = x2 do not. We now extend these definitions to linear systems where the
matrix A is not necessarily diagonalizable. In order to do so, we define the generalized
eigenvectors for matrices with at least one eigenvalue with multiplicity larger than 1.

Definition 28. Let λ be an eigenvalue of a real matrix A of size n, of multiplicity
1 < m. Then for k = 1, . . . ,m, any nonzero solution v of (A − λI)kv = 0 is called a
generalized eigenvector of A.

Consider the matrix

A =




1 0 0
−1 2 0
1 1 2


 . (2.1)

This matrix has eigenvalues 1 and 2 with multiplicities 1 and 2 respectively. The eigen-
vector associated with λ1 = 1 is (1, 1,−1) and the eigenvector associated with λ2 = 2 is
(0, 0, 1). Since λ2 has multiplicity 2, we can find an additional generalized eigenvector
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associated with λ2 as a solution of the equation (A− 2I)2v = 0. In this case, one solu-
tion is given by the vector (0, 1, 0) and this corresponds to a generalized eigenvector of
A.

Note that, in the last definition, λ could be a complex number, in this case the
entries of the generalized eigenvector can also be complex numbers, and the following
theorem holds.

Theorem 12. Let A be a real square matrix of size 2n, with complex eigenvalues
λj = aj + ibj and λ̄j = aj − ibj for j = 1, . . . , n. Then there exists generalized complex
eigenvectors wj = uj + ivj and w̄j = uj− ivj, j = 1, . . . , n such that {u1, v1, . . . , un, vn}
is a basis for R2n.

As an example of the generalized eigenvectors of a matrix with complex eigenvalues
consider

A =




0 −1 0 0
1 0 0 0
0 0 0 −1
2 0 1 0


 . (2.2)

The eigenvalues of A are λ = i and λ = −i each one with multiplicity 2. The eigenvector
associated with λ = i is w1 = (0, 0, i, 1) which can be written as w1 = (0, 0, 0, 1) +
i(0, 0, 1, 0). A generalized eigenvector is obtained by solving (A − iI)2w = 0, and one
solution is given by w2 = (i, 1, 0, 1) which can be written as w2 = (0, 1, 0, 1)+i(1, 0, 0, 0).
In this case the basis obtained for R4 is {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 0)}.

With the definition of generalized eigenvalues and eigenvectors we define the stable,
unstable and central subspaces of Rn associated with a matrix A.

Definition 29. Let wj = uj + ivj be a generalized eigenvector of the real matrix A
corresponding to an eigenvalue λj = aj + ibj. Then the stable, central and unstable
subspaces correspond to the following sets

Es = span{uj, vj : uj + ivj is the eigenvector corresponding to aj + ibj and aj < 0},

Ec = span{uj, vj : uj + ivj is the eigenvector corresponding to aj + ibj and aj = 0},
Eu = span{uj, vj : uj + ivj is the eigenvector corresponding to aj + ibj and aj > 0}.

The stable, central and unstable subspaces are invariant under trajectories of the
ODEs system ẋ = Ax. Revisiting the previous matrices, for (2.2), all the eigenvalues
are purely imaginary numbers. This implies that the stable and unstable subspaces
are the trivial subspaces, and Ec = R4. For the matrix in (2.1), we have two positive
eigenvalues. In this case, Es and Ec are trivial and Eu = R3.
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After giving the definition of the stable, unstable and central subspace we can now
present the Center Manifold Theorem. This theorem allows to study the behaviour of
the system near a steady state by exploring its linearization.

Theorem 13 (The Center Manifold Theorem). Let E be an open subset of Rn con-
taining the origin, let f ∈ Cr(E) with r > 1, and let θt(x0) represent the trajectory
of the non linear system ẋ = f(x) starting at x0. Suppose that f(0) = 0 and that
Jf (0) has k eigenvalues with negative real part, j eigenvalues with positive real part,
and m = n−k− j eigenvalues with zero real part counted with multiplicity. Then there
exists an m-dimensional center manifold C of class Cr tangent to the center subspace
Ec of the linear system ẋ = Jf (0)x at zero, there exists a k-dimensional stable manifold
S of class Cr tangent to the stable subspace Es of ẋ = Jf (0)x at zero, and there exists
a j-dimensional unstable manifold U of class Cr tangent to the unstable subspace Eu

of ẋ = Jf (0)x at zero. Furthermore C,S and U are invariant under trajectories θt.

This theorem guarantees the existence of three manifolds that near to 0, are tangent
to the stable, unstable and center subspaces and such that the trajectories of the system
starting in these manifolds have the same behaviour as the one of the linearization
problem. We will not present the proof of this theorem as it is not the main goal of
this work; however we refer the reader to [50]. However, as a remark we say that while
the unstable and stable manifolds are unique, the center manifold is not necessarily
unique.

This theorem and the definition of a sink, allow us to conclude that in a ODEs
system ẋ = f(x), a sink x∗ is an asymptotically stable point. This holds because by
definition Jf (x

∗) has only negative eigenvalues, which means that the stable subspace
of the linearization is Rn, and therefore all the trajectories starting near x∗ remain in
a neighbourhood of x∗. Furthermore, it is possible to find an upper bound, depending
on an exponential function, for the distance between the points of the trajectory and
x∗.

Theorem 14. If x∗ is a sink of the nonlinear system ẋ = f(x), and Re(λj) < α < 0
for all of the eigenvalues λj of the matrix Jf (x

∗), then given ε > 0 there exists a δ > 0
such that for all x ∈ Bδ(x∗), the trajectories θt(x) satisfy

|θt(x)− x∗| ≤ εeαt

for all t ≥ 0.

Due to this bound, we will say that if the steady state is a sink, it is exponentially
stable.
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2.1.2 Hurwitz criterion

In the previous section we defined the sinks that are exponentially stable steady states
of a ODEs system ẋ = f(x). By definition, detecting whether a steady state is a sink (a
source or saddle) corresponds to study the sign of the eigenvalues of Jf (x

∗). Depending
on the system, this is not always an easy procedure, specially for parametric systems
of ODEs as computationall problems arise. We now present a criterion for studying the
sign of the real part of the roots of a polynomial. The criterion will be a fundamental
tool in our work when applying it to the characteristic polynomial of Jf (x

∗) in papers I
and II.

The Hurwitz criterion [3, 58, 64] is used in systems control to determine whether a
polynomial is stable. A polynomial is stable if all its roots lay on the open left side of
the complex plane, that is, have negative real part.

Theorem 15 (Hurwitz criterion). Let p(x) = asx
s + as−1x

s−1 + . . . + a1x + a0 be a
polynomial with ai ∈ R, as > 0 and a0 6= 0. Define the Hurwitz matrix associated with
p, as the matrix H whose entries are defined by hi,j = as−2i+j for i, j = 1, . . . , s and
ak = 0 if k < 0 or k > s:

H =




as−1 as 0 0 · · · 0
as−3 as−2 as−1 as · · · 0

...
...

...
...

...
...

0 0 0 a6−s · · · a2

0 0 0 0 · · · a0



.

Define the i-th Hurwitz determinant, denoted by Hi, as Hi = det(HI,I), with I =
{1, . . . , i}. All the roots of p have negative real part if, and only if, Hi > 0 for all
i = 1, . . . , s. Additionally, if Hi < 0 for some i, then there exists a root of p whose real
part is positive.

This criterion guarantees that all roots of a polynomial p have negative real part
if, and only if, the corresponding Hurwitz determinants are positive. This criterion is
particularly useful when the ODEs system depends on certain parameters. In this case
it is not always possible to compute the eigenvalues, but the Hurwitz criterion might
allow to determine the sign of their real parts. We present an example of the the use
of the criterion.

Consider the ODEs system given by

ẋ =− y + x(µ− x2 − y2)

ẏ =x+ y(µ− x2 − y2).
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Figure 2.3: Vector field for the ODE system ẋ = −y+x(µ−x2− y2), ẏ = x+ y(µ−x2− y2).

The figure on the left corresponds to µ = 1, and the figure on the right corresponds to µ = −1.

The only steady state is the origin. The linearization of the system at the origin is
determined by the Jacobian

Jf (0, 0) =

[
µ −1
1 µ

]
.

In this case, Jf (0, 0) depends on the parameter µ. We will apply the Hurwitz criterion
to this polynomial to see if the dynamics near the origin change depending on µ. The
characteristic polynomial is

pJf (λ) = λ2 − 2µλ+ µ2 + 1.

This is a polynomial of degree 2; therefore, the Hurwitz matrix has size 2 and corre-
sponds to

H =

[
−2µ 1

0 µ2 + 1

]
. (2.3)

The Hurwitz determinants are H1 = −2µ and H2 = −2µ(µ2 + 1). According to the
Hurwitz criterion, the roots of pJf (λ) have negative real part if, and only if, H1 and H2

are positive. Notice that both H1 and H2 are positive for every µ < 0, in which case
the roots of pJf have negative real part which implies that (0, 0) is an exponentially
stable steady state of the original system. On the other hand, for µ > 0, the Hurwitz
determinants are negative and the Hurwitz criterion guarantees that pJf has at least
one root with positive real part. In the ODEs system, this means that (0, 0) would
be an unstable steady state. In Figure 2.3 we see the vector field associated with this
system for a positive value and a negative value of µ.

Note that the Hurwitz criterion does not say anything about the roots of the poly-
nomial when the determinants are zero. Therefore, we cannot say anything about the
dynamics of the system for µ = 0, using this criterion. However, it is possible to study
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this particular case by assuming that µ = 0 from the beginning. If µ = 0, then pJf has
a pair of imaginary roots. This generates a Hopf bifurcation, which we explore in the
next subsection.

2.1.3 Hopf bifurcations

In the previous sections, we have studied the behaviour of a dynamical system ẋ = f(x)
in a neighbourhood of the steady states, and showed that it is linked with the sign
of the real part of the eigenvalues of the Jacobian defining the linearization of the
dynamical system. Additionally, we presented the Hurwitz criterion that, when used
on the characteristic polynomial of Jf (x

∗), allow us to determine whether a steady
state is exponentially stable or unstable. As we saw in example (2.3), if the system
depends on a parameter, the dynamics could change as the parameter varies. In this
example, when varying µ, the system always has one steady state (the origin); however
its stability changes once µ = 0. It is said that the system has a bifurcation in µ = 0.

When talking about bifurcations, we are referring to a structural property of the
system. That is, we are not studying the dynamics near a steady state, but we are
studying how these dynamics change when a parameter of the system varies. In partic-
ular, in a Hopf bifurcation a steady state loses stability when the parameter reaches the
bifurcation value. As we saw before, the stability of a steady state depends on the sign
of the real part of the eigenvalues of Jf (x

∗), then it is not surprising if a bifurcation can
be detected by analising again these eigenvalues. We define now these ideas formally.

A simple Hopf bifurcation is a bifurcation in which a single complex-conjugate pair
of eigenvalues of the Jacobian matrix crosses the imaginary axis, while all other eigen-
values remain with negative real parts. Such a bifurcation, generates nearby oscillations,
i.e. periodic orbits [41].

To detect simple Hopf bifurcations, we will use a criterion of Liu [41] that charac-
terizes Hopf bifurcations in terms of Hurwitz determinants.

Consider an ODE system parametrized by µ ∈ R:

ẋ = fµ(x),

where x ∈ Rn, and fµ(x) varies smoothly in µ and x. Assume that x0 ∈ Rn is a steady
state of the system defined by µ0, that is, fµ0(x0) = 0. Assume, furthermore, that we
have a smooth curve of steady states:

µ 7→ x(µ) (2.4)

(that is, fµ (x(µ)) = 0 for all µ) and that x(µ0) = x0. Denote the characteristic poly-
nomial of the Jacobian matrix of fµ, evaluated at x(µ), as follows:

pµ(λ) := det
(
λI − Jfµ

)
|x=x(µ) = λn + b1(µ)λn−1 + · · ·+ bn(µ),
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and, for i = 1, . . . , n, define Hi(µ) to be the i-th Hurwitz matrix of pµ(λ).

Proposition 6 (Liu’s criterion [41]). Assume the above setup. Then, there is a simple
Hopf bifurcation at x0 with respect to µ if and only if the following hold:

(i) bn(µ0) > 0,

(ii) detH1(µ0) > 0, detH2(µ0) > 0, . . . , detHn−2(µ0) > 0, and

(iii) detHn−1(µ0) = 0 and d(detHn−1(µ))
dµ

|µ=µ0 6= 0.

This criterion will be used extensively in our work as it allows us to use the Hurwitz
determinants for detecting Hopf bifurcations in parametric systems, specifically in a
model for ERK regulation and in a MAPK cascade.

2.1.4 Jacobian of Chemical Reaction Networks

In the previous sections we have seen that the stability of a steady state can be ex-
plored using the Jacobian of the function. However, in the Chemical Reaction Networks
setting, we know that the dynamics are constrained to a stoichiometric compatibility
class and that the Jacobian has a special structure. We now present in more detail
some properties of Jf (x), when f is the rate function of a CRN, and how it can be
restricted to the stoichiometric subspace. These properties will be very important in
the results presented in the papers.

The first remark is that for a rate function f(x) = Nv(x), its Jacobian can be
written as

Jf (x) = NJv(x).

This is deduced straightforward from the definition of f . With this remark we consider
now the projection of Jf (x

∗) onto the stoichiometric subspace S. That is, we write the
ODE system restricted to the stoichiometric compatibility class (x∗+S)∩Rn

≥0 in local
coordinates.

Consider a matrix R0 ∈ Rn×s whose columns form a basis of S. This basis is the
system of coordinates in S, such that given coordinates z = (z1, . . . , zs), the vector
R0z is the vector of coordinates in the canonical basis of Rn. In order to write a vector
x ∈ S in local coordinates, we consider a matrix R1 ∈ Rs×n such that R1R0 = Is×s.
Now, using these matrices, the ODE system restricted to (x∗ + S) ∩ Rn

≥0 in local S
coordinates is

ż = R1f(R0z + x∗)

after translating the steady state x∗ to the origin. The Jacobian matrix associated with
this system at 0 is R1Jf (x

∗)R0.

The following proposition shows some basic properties of R1Jf (x
∗)R0.



2.1. Background on Stable steady states and Hopf bifurcations 53

Proposition 7. Recall f(x) = Nv(x). With the definitions above, we have:

(i) R1Jf (x
∗)R0 = LJv(x

∗)R0 with L ∈ Rs×m the matrix such that N = R0L. In
particular, R1Jf (x

∗)R0 does not depend on the choice of R1.

(ii) Let p(λ) be the characteristic polynomial of Jf (x
∗). Then p(λ) = λdq(λ), with q(λ)

the characteristic polynomial of LJv(x
∗)R0 for any choice of R0. Furthermore, the

independent term of q(λ) (or the coefficient of degree d of p(λ)) is the determinant
of JFT (x∗), with FT given in (1.7).

(iii) Given two matrices R0, R
′
0 ∈ Rn×s whose columns form a basis of S, and L,L′ as

in (ii) for R0, R
′
0, then the matrices L′Jv(x∗)R′0 and LJv(x

∗)R0 are similar.

Proof. (i) Since the columns of N belong to S, we can uniquely write N = R0L with
L ∈ Rs×m. Since f(x) = Nv(x), we have Jf = NJv. So

R1Jf (x
∗)R0 = R1NJv(x

∗)R0 = R1R0LJv(x
∗)R0 = LJv(x

∗)R0.

(ii) Extend the matrix R0 to a square matrix R ∈ Rn×n by adding columns such
that R has full rank n. Then the eigenvalues of the matrices Q = R−1Jf (x

∗)R and
Jf (x

∗) coincide. Since Im(Jf (x
∗)) ⊆ S, the matrix Q has the form

Q =

(
Q′ Q′′

0 0

)
,

where Q′ is equal to R1Jf (x
∗)R0 = LJv(x

∗)R0, after choosing R1 as the first columns
of R−1. Clearly, the characteristic polynomial of Q in the variable λ agrees with the
characteristic polynomial of Q′ times λn−s. This proves the first part of (ii).

(iii) Let M ∈ Rs×s be the matrix of change of basis from R0 to R′0 such that
R0M = R′0. Since N = R′0L

′ = R0ML′, it follows that L = ML′. This gives

L′Jv(x
∗)R′0 =M−1ML′Jv(x

∗)R0M = M−1LJv(x
∗)R0M.

Note that the total amounts T do not appear in the entries of JFT (x∗).

In Example (1.3) we consider the following matrix R0 and corresponding matrix L:

R0 =




−1 0
1 0
0 1
0 −1


 , L =

(
1 −1 0
0 −1 1

)
.
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By using the parametrization of the positive steady states in (1.8), the Jacobian matrix
of f and v evaluated at a steady state x∗ are

Jf (x
∗) =




−κ1
κ3x4
x2

κ2x2 0

κ1 −κ3x4
x2

−κ2x2 0

0 −κ3x4
x2

−κ2x2 κ3

0 κ3x4
x2

κ2x2 −κ3


 .

Using L and R0 above, we will be interested in the eigenvalues of the following matrix

Qκ,x2,x4 =

( −κ1 − κ3x4
x2

−κ2x2

−κ3x4
x2

−κ2x2 − κ3

)
. (2.5)

By studying the eigenvalues of Qκ,x2,x4 for all values of the reaction rate constants κ
and x2, x4 > 0, we are considering the eigenvalues of all possible positive steady states
of the network. In the notation of (1.9), we have ξ = (x2, x4).

For an arbitrary reaction network, given a parametrization as in (1.9) with indeter-
minate ξ, using matrices R0, L as introduced now, we obtain a family of matrices Qκ,ξ

whose entries are rational function in κ, ξ.

2.2 Contributions in Bistability and Oscillations in

Chemical Reaction Networks

Now we give an overview of our contributions regarding the presence of bistability and
oscillations in Chemical Reaction Networks.

2.2.1 Algorithm for detecting bistability

This work corresponds to paper I in the last section of this thesis, currently under
revision. The main contribution here is to give an algorithm for exploring the presence
of bistability in a Chemical Reaction Network.

In our setting the steady states will be given by an algebraic parametrization of the
positive steady state variety. In practice, under mass-action kinetics, the entries of φ
are rational functions in ξ. Strategies for finding positive parametrizations are reviewed
in [11].

When the positive steady state variety can be parametrized, we study the eigenval-
ues of Jf (φ(ξ)) restricted to a stoichiometric compatibility class. We proved that when
all but the last Hurwitz determinants are positive and it is possible to parametrize the
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solutions of all but one entries of FT (x) with a univariate function ϕ(z) : E → Rn
>0,

then there are as many positive steady states as positive roots of a rational function.
Furthermore, their stability depends on the derivative of said function. We state now
formally these results

Proposition 8. Fix W ∈ Rd×n, T ∈ Rd and FT as in Eq. (1.7). Assume there exist an
open interval E ⊆ R, a differentiable function ϕ : E → Rn

>0, and indices i, j such that
ϕ′i(z) 6= 0 and FT,`(ϕ(z)) = 0 for all ` 6= j. Then, for any solution z∗ to

FT,j(ϕ(z)) = 0, z ∈ E , (2.6)

x∗ = ϕ(z∗) is a positive solution to FT (x) = 0 and further

det(JFT (x∗)) =
(−1)i+j

ϕ′i(z
∗)

(FT,j ◦ ϕ)′(z∗) det(JFT (x∗)J,I),

where I = {1, . . . , n} \ {i} and J = {1, . . . , n} \ {j}.

With this proposition (corresponding to Proposition 2 in Paper I) we proved the
theorem below associated with detecting bistability. This result corresponds to Theorem
1 in Paper I at the end of this Thesis.

Theorem 16. Let T, E , ϕ, i, j, I, J be as in Proposition 8. Assume that

• the sign of 1
ϕ′i(z)

det(JFT (ϕ(z))J,I) is independent of z ∈ E and is nonzero, and

• the first s− 1 Hurwitz determinants of qx∗(λ) are positive for all positive steady
states x∗.

If z1 < · · · < z` are the positive solutions to Eq. (2.6) and all are simple, then either
ϕ(z1), ϕ(z3), . . . are exponentially stable and ϕ(z2), ϕ(z4), . . . are unstable, or the other
way around. Specifically, ϕ(z1) is exponentially stable if and only if

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT (ϕ(z1))J,I) > 0.

This theorem allows us to propose a method for detecting bistability in Chemical
Reaction Networks, that is summarized in Figure 2.4. The method was successfully
applied in the networks in Figure 2.5 coming from cell signalling. Each item in this
figure shows the original network, where Theorem 16 could not be applied, and the
reduced network that satisfy the hypotheses of Theorem 16, which we used to ensure
the presence of bistability.
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Input N
and v(x)

Can qx(λ) and
Hi be computed?

Is Hi(x) > 0 for all x ∈ Rn
>0

or Hi(φ(ξ)) > 0 for ξ ∈ Rd
>0,

for i = 1, . . . , s − 1?

Is Hs(x) > 0 for all x ∈ Rn
>0

or Hs(φ(ξ)) > 0 for ξ ∈ Rd
>0?

All positive
steady states are

exponentially stable

Does Theorem 1
apply? Deduce stability

Reduce network and
update N and v(x)

yes yes yes

no

no yes

no
no

Figure 2.4: Flow chart depicting method for detecting bistability.

As an example to illustrate the use of the theorem, consider the network on the left
of item (a) in Figure 2.5. This network is the combination of two one-site modification
cycles where the same kinase E activates the phosphorylation process and two different
phosphates F1 and F2 catalyze the dephosphorylation process:

S0 + E
κ1−−⇀↽−−
κ2

S0E
κ3−−→ S1 + E S1 + E

κ4−−⇀↽−−
κ5

S1E
κ6−−→ S2 + E

S1 + F1

κ7−−⇀↽−−
κ8

S1F1
κ9−−→ S0 + F1 S2 + F2

κ10−−⇀↽−−
κ11

S2F2
κ12−−→ S1 + F2 ·

The species are renamed as S0 = X1, S1 = X2, S2 = X3, E = X4, F1 = X5, F2 =
X6, S0E = X7, S1E = X8, S1F1 = X9, S2F2 = X10 and their concentrations are denoted
in lower case letters.

For this network it is necessary to compute 6 Hurwitz determinants, which could
be effectively computed and whose signs were analyzed up to H4. They have positive
coefficients. However, the analysis of the sign of H5 was interrupted as it was taking
a long time to finish and it was not possible to store the polynomial in the expanded
format in a regular PC. To compute and study this determinant more effectively, we
use a monomial positive parametrization φ of the steady state variety, given by

x1 =
(κ2 + κ3)(κ5 + κ6)κ7κ9κ10κ12

κ1κ3κ4κ6(κ8 + κ9)(κ11 + κ12)

x3x5x6

x2
4

x8 =
κ10κ12

κ6(κ11 + κ12)
x3x6

x2 =
(κ5 + κ6)κ10κ12

κ4κ6(κ11 + κ12)

x3x6

x4

x9 =
(κ5 + κ6)κ7κ10κ12

κ4κ6(κ8 + κ9)(κ11 + κ12)

x3x5x6

x4

x7 =
(κ5 + κ6)κ7κ9κ10κ12

κ3κ4κ6(κ8 + κ9)(κ11 + κ12)

x3x5x6

x4

x10 =
κ10

κ11 + κ12

x3x6.

Using this parametrization, it was possible to compute H5(φ). However, the sign of this
function remains unclear since it has coefficients with different signs.

We consider next the reduced network obtained by first removing all the reverse
reactions and then the intermediates S1F1 and S2F2. When removing these intermedi-
ates the reactions S1 + F1 −−→ S1F1 −−→ S0 + F1 and S2 + F2 −−→ S2F2 −−→ S1 + F2

become S1 + F1 −−→ S0 + F1 and S2 + F2 −−→ S1 + F2 respectively. The reduced
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network is depicted on the right side of Figure 2.5. The species are now renamed as
S0 = X1, S1 = X2, S2 = X3, E = X4, F1 = X5, F2 = X6, S0E = X7, S1E = X8, and
their concentrations are denoted in lower case letters. For this reduced network it was
necessary to compute 4 Hurwitz determinants. In this case H1, H2 and H3 are positive.
However the sign of H4 is unclear even after evaluating in a positive parametrization
of the steady state variety φ. In this situation we explore the possibility of applying
Theorem 16 to deduce bistability.

The conservation laws of the system are

x1 + x2 + x3 + x7 + x8 = T1, x4 + x7 + x8 = T2, x5 = T3 and x6 = T4.

Taking the indices i1, i2, i3, i4 as 1, 4, 5, 6 respectively, we construct FT . The solutions
of FT,` = 0 for ` = 2, 3, 4, 5, 6 are written in terms of z = x2 as

ϕ(z) =

(
τ2τ5T3(τ3z + τ4)z

τ1τ4(τ2T2 − τ5T3z)
, z,

τ3τ4z(τ2T2 − τ5T3z)
τ2τ6T4(τ3z + τ4)

,
τ4(τ2T2 − τ5T3z)
τ2(τ3z + τ4)

, T3, T4,
τ5T3z

τ2
,
τ3(τ2T2 − τ5T3z)z

τ2(τ3z + τ4)

)
,

for every z ∈ E , where E =
(

0, T2τ2
T3τ5

)
.

Note that ϕ2(z) = z and ϕ′2(z) = 1 6= 0. This means that the positive steady states
in the stoichiometric compatibility class defined by T are in one to one correspondence
with the positive roots of FT,1(ϕ(z)) in E . This rational function, presented below, has
as numerator a polynomial of degree 3.

FT,1(ϕ(z)) =
1

T4τ1τ2τ4τ6(T3τ5z − T2τ2)(τ3z + τ4)

(
−T3τ3τ5(T3τ1τ

2
4 τ5 − T4τ1τ2τ4τ6 + T4τ

2
2 τ3τ6)z3−

τ4(T1T3T4τ1τ2τ3τ5τ6 − T2T3T4τ1τ2τ3τ5τ6 − T 2
3 T4τ1τ4τ

2
5 τ6 − 2T2T3τ1τ2τ3τ4τ5 + T2T4τ1τ

2
2 τ3τ6 − T3T4τ1τ2τ4τ5τ6

+ 2T3T4τ
2
2 τ3τ5τ6)z2 + τ2τ4(T1T2T4τ1τ2τ3τ6 − T1T3T4τ1τ4τ5τ6 − T 2

2 T4τ1τ2τ3τ6 − T2T3T4τ1τ4τ5τ6
− T 2

2 τ1τ2τ3τ4 − T2T4τ1τ2τ4τ6 − T3T4τ2τ4τ5τ6)z + T1T2T4τ1τ
2
2 τ

2
4 τ6
)
.

We have already shown that the second hypothesis of Theorem 16 holds. For the first
hypothesis, a straightforward computation shows that

det(JFT (ϕ(z))J,I) = τ1τ4τ6T4(τ5T3z − τ2T2),

which is negative for every z ∈ E . We further have s = 4, i = 2, j = 1, and the
independent term of the numerator of FT,1(ϕ(z)) is negative, meaning that (FT,j ◦
ϕ)′(z1) > 0. This gives that the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT (ϕ(z1))J,I)

is (−1)4+1+2(+1)(−1) = 1 positive. Using Theorem 16, we conclude that for every set
of parameters such that FT,1(ϕ(z)) has three roots z1 < z2 < z3 in E , the steady states
ϕ(z1), ϕ(z3) are exponentially stable and ϕ(z2) is unstable.
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Network Reduced network Network Reduced network

(a)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + E−⇀↽− S1E−→ S2 + E

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

S2 + F2 −⇀↽− S2F2 −→ S1 + F2

S0 + E−→ S0E−→ S1 + E

S1 + E−→ S1E−→ S2 + E

S1 + F1 −→ S0 + F1

S2 + F2 −→ S1 + F2

(b)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + F−⇀↽− S1F−→ S0 + F

P0 + S1 −⇀↽− P0S1 −→ P1 + S1

P1 + F−⇀↽− P1F−→ P0 + F

S0 + E−→ S1 + E

S1 + F−→ S0 + F

P0 + S1 −→ P0S1 −→ P1 + S1

P1 + F−→ P1F−→ P0 + F

(c)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

P0 + S1 −⇀↽− P0S1 −→ P1 + S1

P0 + E−⇀↽− P0E−→ P1 + E

P1 + F2 −⇀↽− P1F2 −→ P0 + F2

S0 + E−→ S1 + E

S1 + F1 −→ S1F1 −→ S0 + F1

P0 + S1 −→ P1 + S1

P0 + E−→ P0E−→ P1 + E

P1 + F2 −→ P0 + F2

(d)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + E−⇀↽− S1E−→ S2 + E

S2 + F−⇀↽− S2F−→ S1 + F

S1 + F−⇀↽− S1F−→ S0 + F

S0 + E−→ S0E−→ S1 + E

S1 + E−→ S2 + E

S2 + F−→ S1 + F

S1 + F−→ S0 + F

(e)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + F−⇀↽− S1F−→ S0 + F

P0 + E−⇀↽− P0E−→ P1 + E

P1 + F−⇀↽− P1F−→ P0 + F

S0 + E−→ S1 + E

S1 + F−→ S1F−→ S0 + F

P0 + E−→ P0E−→ P1 + E

P1 + F−→ P0 + F

(f)

S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S0 + E2 −⇀↽− S0E2 −→ S1 + E2

E1 −⇀↽− E2

S0E1 −⇀↽− S0E2

S1 −→ S0

S0 + E1 −→ E1S0 −→ S1 + E1

S0 + E2 −→ S1 + E2

E2 + S0 −→ E1S0

E1 −→ E2

S1 −→ S0

1
Figure 2.5: Multistationary networks and reductions to explore bistability.

All that is left is to show that the reduced network admits three positive steady
states in some stoichiometric compatibility class for some choice of τ , or what is the
same, that FT,1(ϕ(z)) admits three roots in E . To this end, we apply the method from
[11], which consists of finding values for the rate constants and concentration variables
such that det(JFT (φ)), where φ is a parametrization of the steady states, is negative.
We have

φ(x3, x4, x5, x6) =

(
τ5τ6x3x5x6

τ1τ3x2
4

,
τ6x3x6

τ3x4

, x3, x4x, x5, x6,
τ5τ6x3x5x6

τ2τ3x4

,
τ6x3x6

τ4

)
and

det(JFT (φ)) = τ1τ2τ
2
6x3x

2
6 − τ1τ4τ5τ6x3x5x6 + 2

τ2τ5τ
2
6x3x5x

2
6

x4
+
τ4τ

2
5 τ

2
6x3x

2
5x

2
6

τ3x2
4

+ τ1τ2τ3τ6x
2
4x6 + τ1τ4τ5τ6x4x5x6 + τ1τ2τ3τ4x

2
4 + τ1τ2τ4τ6x4x6 + τ2τ4τ5τ6x5x6.

By letting τi = 1, for i = 1, . . . , 6 and x3 = 100, x4 = 10, x5 = 10, x6 = 1, this deter-
minant is −280, which is negative. This implies that the stoichiometric compatibility
class containing φ(100, 10, 10, 1) has more than one positive steady state. Specifically,
this class corresponds to T1 = 320, T2 = 210, T3 = 10, T4 = 1. Either by solving the
steady state equations or finding the roots of FT,1(ϕ(z)) for this choice of parameters,
we confirm that the system has three positive steady states.

Therefore, the reduced network is bistable for all choice of parameter values for
which there are three positive steady states, and the original network admits bistability
in some region of the parameter space.
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S00 + E
k1−−→←−−
k2

S00E
k3−−→ S01E

kcat−−→ S11 + E

−−
→
←
−−kon koff

S01 + E

−−
→m3

S10E

−−
→
←
−−m2 m1

S10 + E

S11 + F
`1−−→←−−
`2

S11F
`3−−→ S10F

`cat−−→ S00 + F

−−
→
←
−−`on `off

S10 + F

−−
→n3

S01F

−−
→
←
−−n1 n2

S01 + F

1

Figure 2.6: ERK regulation network.

2.2.2 Bistability and oscillations in a model of ERK regulation

This is a joint project with Anne Shiu and Nida Obatake from Texas A&M and with
Xiaoxian Tang from Beihang University. In this project we study the presence of bista-
bility and oscillations in the network in Figure 2.6. This network comprises extracellular
signal-regulated kinase (ERK) regulation by dual-site phosphorylation by the kinase
MEK (denoted by E) and dephosphorylation by the phosphatase MKP3 (F ) [52]. This
network, which we call the ERK network, has an important role in regulating many
cellular activities, with dysregulation implicated in many cancers [55]. Accordingly, an
important problem is to understand the dynamical properties of the ERK network,
with the goal of predicting effects arising from mutations or drug treatments [26]. It
had been proven by Rubinstein, Mattingly, Berezhkovskii, and Shvartsman [52] that
this network exhibits bistability and oscillations for some choice of rate constants. How-
ever, when the reaction rates kcat and `cat are much larger than koff and `off, then the
behaviour of the network tends to the fully processive network (obtained from the
figure by removing all the vertical reactions) that does not have the capacity for mul-
tistationarity. In this project we studied how bistability and oscillations are preserved
or lost under structural modifications of the network. The aim with this work was to
give an insight on how bistability arises from the fully processive network to the full
ERK regulation network.

We found that bistability only arises when the reaction rates kon or `on are positive.
If both of these reactions are removed from the network, then multistationarity is lost,
and thus bistability. Opposite to this, the presence of oscillations is more robust under
modifications. We found oscillations in the full network, an irreversible version of the
network (obtained by removing all the reactions with blue labels on Figure 2.6) and in
a reduced model depicted in Figure 2.7. To prove that oscillations arise in the different
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S00 + E
k1−−→ S00E

k3−−→ S01E
kcat−−→ S11 + E

←
−−koff

S01 + E

−−
→m

S10 + E

S11 + F
`1−−→ S11F

`3−−→ S10F
`cat−−→ S00 + F

←
−−`off

S10 + F

−−
→n

S01 + F

1

Figure 2.7: Reduced model of ERK regulation obtained by removing reverse reactions and

intermediate species.

models, we used algebraic parametrizations of the steady state varieties, the Hurwitz
determinants associated to the characteristic polynomials of the Jacobian associated
with each network and the Newton polytopes and outer normal cones arising from the
Hurwitz determinants.

The use of the outer normal cones and the Newton polytope allowed us to com-
pute effectively parameter values and positive steady states where a Hopf bifurcation
appeared and generated oscillatory behaviour in the different systems.

2.2.3 Hopf bifurcations in MAPK cascade

Mitogen-activated protein kinase (MAPK) cascades represent a step of chemical signal
transduction in cellular systems. They are involved in various positive and negative
feedback loops regulating intracellular processes and, even though they are intercon-
nected with other networks, the study of the cascade by itself has proven to be of great
importance [31, 34, 42, 51].

Consider the Huang-Ferrell model on the left part of Figure 2.9. The building blocks
of this network are Michaelis-Menten mechanisms in each layer. The labelled curved
arrows linking a substrate and its phosphorylation, represent each catalysis as presented
in Figure 2.8. Additionally, the product of each layer, acts as an enzyme for the next
layer.

This cascade has three layers. In [39] it was shown that actually having a negative
feedback as depicted on the right side of Figure 2.9 produced oscillatory behaviour.
Additionally, in [42] it was proven that actually bistability arises only in the network
circled in the right side of Figure 2.9, and it was believed that this bistability was
the cause for the oscillatory behaviour in the MAPK cascade as presented on the left
side. In this work we proved that actually the network depicted in Figure 2.10 has
oscillatory behaviour arising from a Hopf bifurcation. It is known that this network
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is monostationary; however the stability of the steady states had not been stablished.
Using Propositions 4 and 5 we actually found a set of parameters and a steady state
such that the network admits Hopf bifurcations. This precludes the possibility of the
steady states being asymptotically stable. We now expand the details of the procedure.
The network in Figure 2.10 represents the following set of reactions.

A + E −−⇀↽−− AE −−→ Ap

Ap + F1
−−⇀↽−− Ap −−→ A + F1

B + Ap
−−⇀↽−− BAp −−→ Bp + Ap

Bp + F2
−−⇀↽−− BpF2 −−→ B + F2.

We consider the reduced network obtained by removing the reverse reactions and the
intermediate BpF2 as explained in Section 1.4.1, obtaining the network

A + E
κ1−−→ AE

κ2−−→ Ap

Ap + F1
κ3−−→ Ap

κ4−−→ A + F1

B + Ap
κ5−−→ BAp

κ6−−→ Bp + Ap

Bp + F2
κ7−−→ B + F2.

This network has 10 species, its stoichiometric subspace has dimension 5, and the
positive steady state variety can be parametrized as

ϕ =

(
κ3κ6x4x7x6

κ4x3κ1x5
,
κ6x4x7

κ4x3
, x3, x4, x5, x6, x7,

κ3κ6x4x7x6

κ4x3κ2
,
κ3κ6x4x7x6

κ4x3κ7
,
κ6x4x7

κ5

)
.

The characteristic polynomial p associated with the Jacobian of the rate function eval-
uated at ϕ(x), has degree 5. For studying the sign of the real part of p, we use the
Hurwitz criterion 15. For this polynomial we found that all the Hurwitz determinants
were rational functions with positive coefficients, except for the second to last determi-
nant, H4. This determinant has monomials with positive and negative signs. We then
used the Newton Polytope and Propositions 5 and 4 to find values for the reaction
rate constants and a steady state where H4(ϕ) = 0, and a Hopf bifurcation arises. The
values that we found for the reaction rate constants are are follows,

κ1 =1, κ3 = 1, k2 = 0.0002212391389, κ4 = 2.613954709 ∗ 1010,

κ5 =1, κ6 = 7.283594782 ∗ 10−6, k7 = 0.0002212391389,

X1 X2

E

represents X1 + E −−⇀↽−− X1E −−→ X2 + E

Figure 2.8: Two species X1 and X2 linked by a curved arrow with label E, denote the

Michaelis-Menten mechanism where the transformation of X1 into X2 is catalysed by the

enzyme E, as depicted on the right.
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MAPKKK A Ap

E

F1

MAPKK B Bp Bpp

F2 F2

MAPK C Cp Cpp

F3 F3

MAPKKK A Ap

E

F1

MAPKK B Bp Bpp

F2 F2

MAPK C Cp Cpp

F3 F3

Figure 2.9: on the left we have MAPK cascade. Huang, Ferrell model. On the right a MAPK

cascade. Huang, Ferrell model with negative feedback. The circled network is bistable.

and the steady state is

[A] =3.694678854× 10−8, [Ap] = 1.768358432× 10−11, [B] = 0.00001575714096, [Bp] = 1, [E] = 0.0004786230419,

[F1] =1, [F2] = 1, [AE] = 7.992972856× 10−8, [ApF1] = 7.992972856× 10−8, [BAp] = 7.283594782× 10−6,

where [X] denotes the concentration of species X. So far, with this set of parameters,
we found an approximation to a Hopf bifurcation for the system. However, we have
not been able to numerically visualize the oscillations. We believe that this is due to a
numerical issue as the parameters are either too big or too small. This is still work in
progress and we will explore different methods for finding a better approximation of a
Hopf bifurcation.

2.2.4 Characteristic polynomial in Chemical Reaction Net-
works

Consider the chemical reaction network N1 given by

α1X1 + α2X2 + · · ·+ αtXt
κ1−−⇀↽−−
κ2

Xn
κ3−−→ β1X1 + β2X2 + · · ·+ βn−1Xn−1. (2.7)

In this network the set of species {X1, . . . , Xn} is ordered in such a way that the first
t species form the reactant and the last species, Xn, is an intermediate.

A Ap

E

F1

B Bp

F2

Figure 2.10: MAPK cascade.
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Consider now the network N2 given by

α1X1 + α2X2 + · · ·+ αtXt
τ1−−→ Xn

τ2−−→ β1X1 + β2X2 + · · ·+ βn−1Xn−1. (2.8)

N2 is a subnetwork of N1 with the same stochiometric subspace, this implies that N1

has at least as many steady states asN2 as mentioned in Section 1.4.1. In this particular
case, the parameters can be chosen in such a way that the positive steady states are
actually the same. With this in mind we now pursue the following question: given
κ1, κ2 and κ3 is it possible to find values for τ1 and τ2, such that both networks have
the same characteristic polynomial arising from the Jacobian of their rate function?
Furthermore, given a chemical reaction network N that has N1 as a subnetwork, is it
possible to find a set of parameters for G such that the characteristic polynomials of
N and the reaction obtained by removing the same reverse reaction in N1, are equal?
These questions are directed to explore whether removing the reverse reaction with
label κ2 could change the stability properties of the steady states.

Note that if it is possible to find parameters that preserve both characteristic poly-
nomials, the stability of the steady states will be the same for both networks. This
means that we are comparing the families of networks given by varying parameters,
in particular explore whether the stability properties of the network and possible be-
haviours are the same.

Networks N1 and N2

In this section we prove that, under certain condition, the first question above has an
affirmative answer. Specifically, we prove the following theorem.

Theorem 17. Consider the networks N1 and N2 as in (2.7) and (2.8), and let f1 and
f2 be their rate functions. Then, given positive parameters κ1, κ2 and κ3, it is possible
to find values τ1 and τ2 for N2 such that the characteristic polynomial of Jf1 and Jf2
are equal.

Before proving the theorem, we find the system of ODEs modelling the dynamics of
each network and compute the corresponding characteristic polynomials. Under mass
action kinetics the system of ODEs associated with N1 is given by

ẋi =− αiκ1x
α1
1 x

α2
2 · · ·xαtt + αiκ2xn + βiκ3xn for i = 1, . . . , t

ẋj =βjκ3xj for j = t+ 1, . . . , n− 1

ẋn =κ1x
α1
1 x

α2
2 · · · xαtt − κ2xn − κ3xn.
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The steady state equations can be written as




0
...
0


 = f1(x) =




−α1 α1 β1

−α2 α2 β2
...

...
...

−αt αt βt
0 0 βt+1
...

...
...

0 0 βn−1

1 −1 −1







κ1x
α1
1 x

α2
2 · · · xαtt
κ2xn
κ3xn


 ,

and the stochiometric matrix has rank at most 2. With these steady state equations,
the positive steady state variety can be parametrized as

ϕ(x1, x2, . . . , xn−1) =

(
x1, x2, . . . , xn−1,

κ1

κ2 + κ3

xα1
1 x

α2
2 · · ·xαtt

)

and the stability of a positive steady state x∗ = ϕ(x1, x2, . . . , xn−1) is given by the roots
of the characteristic polynomial of Jf (x

∗).

If we denote by G1 the gradient of κ1x
α1
1 x

α2
2 · · · xαtt with respect to the variables

x1, . . . , xn−1, we can write Jf (x) as

J1 =




−α1G1 α1κ2 + β1κ3

−α2G1 α2κ2 + β2κ3
...

...
−αtG1 αtκ2 + βtκ3

0 βt+1κ3
...

...
0 βn−1κ3

G1 −κ2 − κ3




,

taking into account that G1 is a row vector of length n − 1 where the last n − 1 − t
entries are zero.

In order to compute the characteristic polynomial of J1, it is necessary to evaluate
the Jacobian in the steady state. In this case, after evaluating J1 in the parametrization,
we obtain the same matrix, because the variable xn does not appear in J1. Therefore,
the characteristic polynomial of J1 is

p1(λ) = λn + c1λ
n−1 + c2λ

n−2 (2.9)

where

c1 = κ2+κ3+κ1

t∑

i=1

α2
ix
α1
1 · · ·xαi−1

i · · ·xαtt and c2 = κ1κ3

t∑

i=1

(αi−βi)αixα1
1 · · ·xαi−1

i · · ·xαtt .
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Recall that c1 is the sum of the diagonal of J1 and c2 corresponds to the sum of all
the principal minors of J1 of size 2× 2. Since the rank of the stoichiometric matrix is
at most 2, all the minors of size greater or equal than 3 are zero, which implies that
the coefficients of λ` are equal to zero for ` > n− 2 (see [48]).

Following the same procedure to compute the characteristic polynomial associated
with N2, we have the steady state equations given by




0
...
0


 =




−α1 β1

−α2 β2
...

...
−αt βt

0 βt+1
...

...
0 βn−1

1 −1




(
τ1x

α1
1 x

α2
2 · · ·xαtt
τ2xn

)
.

The Jacobian J2 can be written as

J2 =




−α1G2 β1τ2

−α2G2 β2τ2
...

...
−αtG2 βtτ2

0 βt+1τ2
...

...
0 βn−1τ2

G2 −τ2




,

where G2 is the gradient of τ1x
α1
1 x

α2
2 · · ·xαtt with respect to x1, . . . , xn−1. The character-

istic polynomial is
(λ) = λn + d1λ

n−1 + d2λ
n−2 (2.10)

where

d1 = τ2 + τ1

t∑

i=1

α2
ix
α1
1 · · ·xαi−1

i · · ·xαtt and d2 = τ1τ2

t∑

i=1

(αi − βi)αixα1
1 · · ·xαi−1

i · · ·xαtt .

With these computations, we proceed to prove the theorem.

Proof. Case 1: αi = βi for every i = 1, . . . , t. If αi = βi for every i = 1, . . . , t the
coefficients c2 and d2, of p1 and p2 respectively, are equal to zero, therefore it is only
necessary to study the coefficients c1 and d1. Consider the functions

Φκ : R3
>0 × Rn−1

>0 −→ R>0 : (κ1, κ2, κ3, x1, . . . , xn−1) 7→ c1



66 Chapter 2. Local dynamic behaviour of Chemical Reaction Networks

and
Φτ : R2

>0 × Rn−1
>0 −→ R>0 : (τ1, τ2, x1, . . . , xn−1) 7→ d1.

If we show that Im(Φκ) = Im(Φτ ), we can conclude that given a set of parameters
τ1, τ2 for N2 it is possible to find parameters κ1, κ2, κ3 for N1 such that c1 = d1. In
this case we can prove that these functions are actually surjective: Let a ∈ R>0 and
consider the vector (κ1, κ2, κ3,

1
s
, 1
s
, . . . , 1

s
). We have that

Φκ

(
κ1, κ2, κ3,

1

s
,
1

s
, . . . ,

1

s

)
=κ2 + κ3 + κ1

t∑

i=1

α2
i

(
1

s

)α1

· · ·
(

1

s

)αi−1

· · ·
(

1

s

)αt

=κ2 + κ3 + κ1

t∑

i=1

α2
i

(
1

s

)α1+···+αt−1

=κ2 + κ3 + κ1

(
1

s

)α1+···+αt−1 t∑

i=1

α2
i .

If α1 + · · ·+ αt = 1, then

Φκ

(
κ1, κ2, κ3,

1

s
,
1

s
, . . . ,

1

s

)
= κ2 + κ3 + κ1

t∑

i=1

α2
i

and taking κ2 = κ3 = a
3

and κ1 = a
3
∑t
i=1 α

2
i

we found an element in R3
>0 × Rn−1

>0 such

that Φκ

(
κ1, κ2, κ3,

1
s
, 1
s
, . . . , 1

s

)
= a.

If α1 + · · ·+ αt > 1, then we can take κ1 = 1 and κ2 = κ3 = a
3

and find c such that

(
1

c

)α1+···+αt−1 t∑

i=1

α2
i =

1

3
,

which gives us an element in R3
>0 × Rn−1

>0 such that Φκ

(
κ1, κ2, κ3,

1
s
, 1
s
, . . . , 1

s

)
= a.

With an analogous procedure it is possible to show that the function Φτ is surjective
over R>0. This implies that Im(Φκ) = Im(Φτ ) and it is possible to find parameters for
N1 and N2 such that p1 = P2.

Case 2: αi 6= βi for some i = 1, . . . , t. If αi 6= βi for some i = 1, . . . , t, the
coefficients c2 and d2 of p1 and p2 respectively, are different from zero. We define the
functions

Φκ : R3
>0 × Rn−1

>0 −→ R2
>0 : (κ1, κ2, κ3, x1, . . . , xn−1) 7→ (c1, c2)

and
Φτ : R2

>0 × Rn−1
>0 −→ R2

>0 : (τ1, τ2, x1, . . . , xn−1) 7→ (d1, d2).
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Our goal is to prove that Im(Φκ) ⊂ Im(Φτ ). Consider an element (a, b) ∈ Im(Φκ). If
(a, b) ∈ Im(Φκ) there exist (κ1, κ2, κ3, x1 . . . , xn−1) ∈ R3

>0 × Rn−1
>0 such that

Φκ(κ1, κ2, κ3, x1 . . . , xn−1) = (a, b)

, in particular, this implies that a > 0 for every element in Im(Φκ). Now, note that
from the definition of b we have that

κ3 =
b

κ1

∑t
i=1(αi − βi)αixα1

1 · · ·xαi−1
i · · ·xαtt

.

Replacing the value of κ3 in the definition of a we get the following identity

κ2
1

(
t∑

i=1

α2
i x
α1
1 · · ·xαi−1

i · · ·xαtt

)(
t∑

i=1

(αi − βi)αixα1
1 · · ·xαi−1

i · · ·xαtt

)
−

κ1(a− κ2)

(
t∑

i=1

(αi − βi)αixα1
1 · · ·xαi−1

i · · ·xαtt

)
+ b = 0.

To simplify the notation we will factor X := xα1−1
1 · · · xαi−1

i · · ·xαt−1
t from the sums and

we will denote the monomial x1 · · ·xi−1xi+1 · · ·xt by xi, so we can write the expression
above as

κ2
1X

2

(
t∑

i=1

α2
ixi

)(
t∑

i=1

(αi − βi)αixi
)
− κ1(a− κ2)X

(
t∑

i=1

(αi − βi)αixi
)

+ b = 0.

Since κ1 > 0 is a component of the preimage of (a, b), this specific value of κ1 is a
positive root of the quadratic equation in κ1 given by this identity. In particular this
means that

(a− κ2)2X2

(
t∑

i=1

(αi − βi)αixi
)2

− 4bX2

(
t∑

i=1

α2
ixi

)(
t∑

i=1

(αi − βi)αixi
)
≥ 0

and, given that a2 > (a− κ2)2, we have

a2X2

(
t∑

i=1

(αi − βi)αixi
)2

− 4bX2

(
t∑

i=1

α2
ixi

)(
t∑

i=1

(αi − βi)αixi
)
≥ 0.

This is precisely the discriminant of the quadratic equation on τ1

τ 2
1X

2

(
t∑

i=1

α2
ixi

)(
t∑

i=1

(αi − βi)αixi
)
− τ1aX

(
t∑

i=1

(αi − βi)αixi
)

+ b = 0. (2.11)
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Hence, this equation has real solutions. If we prove that one of these solutions is positive,
taking τ1 as this root, and taking

τ2 =
b

τ1X
∑t

i=1(αi − βi)αixi
we find an element (τ1, τ2, x1, . . . , xn−1) ∈ R2

>0×Rn−1
>0 such that Φτ (τ1, τ2, x1, . . . , xn−1) =

(a, b).

In order to prove that (2.11) has a positive root, notice that b and
∑t

i=1(αi−βi)αixi
have the same sign, this means that the signs of the coefficients of (2.11) alternate. If
both roots were negative, all the coefficients of the polynomial would be positive, which
contradicts the definition of b.

We have proven that Im(Φκ) ⊂ Im(Φτ ). Which completes the proof of the theorem.

Network N1 as a subnetwork of a bigger network N

We consider the network N1 as a subnetwork of another network N . In particular, we
assume that N1 is one linkage class of N . Removing the reaction labelled with κ2 in
N1, produces a subnetwork N ′ of N , that has N2 as one of its linkage classes. The
goal now is to study whether, given a set of parameters for N , it is possible to find
a set of parameters for N ′ such that the characteristic polynomials coming from their
Jacobian, are the same. With this in mind, we proved the following theorem.

Theorem 18. Let the networks N1 and N2 be the reactions (2.7) and (2.8). Let N
be a network that has N1 as a linkage class, that is N = N1 ∪ G for some reaction
network G, and consider N ′ as the subnetwork of N defined as N ′ = N2 ∪ G. If the
reactant of N1 and G do not have any species in common, then given a set of positive
reaction rate constants for N , there exists a set of positive values for the reaction rate
constants of N ′ such that the characteristic polynomials associated with both networks
are equal.

Proof. Assume that the set of species is ordered in a way such that the first s species and
Xn are the species in the reactant of N1. This means that the species Xs+1, . . . , Xn−1

might be part of complexes in G. The rate function of N is given by

f(x1, . . . , xn) =




−α1 α1 β1
...

...
... 0

−αs αs βs
0 0 βs+1
...

...
... NG

0 0 βn−1

1 −1 −1 0 · · · 0







κ1x
α1
1 xα2

2 · · ·xαss
κ2xn
κ3xn
vG
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where vG is the vector of kinetics for reactions in G and NG are the rows of the
stoichiometric matrix of G. The equation for the concentration of Xn is

ẋn = κ1x
α1
1 · · ·xαss − (κ2 + κ3)xn,

so the positive steady state variety is contained in the variety parametrized as

xn =
κ1

(κ2 + κ3)
xα1

1 · · ·xαss .

Note that under these conditions, the monomials in vG do not involve any of the
variables x1, . . . , xs.

To simplify the notation on the computation of the Jacobian, we denote by G1 the
gradient of κ1x

α1
1 x

α2
2 · · ·xαts with respect to the variables x1, . . . , xt. We have that Jf is

equal to

Jf =




−α1G1
...

−αtG1

0

−α1κ2 + β1κ3
...

−αtκ2 + β1κ3

0 βt+1κ3
... NGJvG

...
0 βnκ3

G1 0 · · · 0 −κ2 − κ3




.

Reordering of the rows and columns we get the following block matrix

Jf =




−α1G1
...

−αtG1

−α1κ2 + β1κ3
...

−αtκ2 + β1κ3

0

G1 −κ2 − κ3

0 βt+1κ3
...

... NGJvG
0 βnκ3




.

This is a block lower-triangular matrix, and so is λI − Jf , which implies that the
characteristic polynomial of Jf is equal to de product of the characteristic polynomial
of the blocks in the diagonal. The characteristic polynomial associated with N1 is given
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by the characteristic polynomial of the matrix




−α1G1
...

−αtG1

−α1κ2 + β1κ3
...

−αtκ2 + β1κ3

0

G1 −κ2 − κ3

0 βt+1κ3 0 · · · 0
...

...
...

0 βnκ3 0 · · · 0




.

This is also a block lower-triangular matrix that has the characteristic polynomial of
the first block as a factor. This factor determines the coefficients of the characteristic
polynomial, this means that this factor is equal to the polynomial p1(λ) = λ2 +c1λ+c2

in (2.9) defined before for N1. We have proven that there exist a set of parameters τ1, τ2

such that the characteristic polynomial of N2 has the same coefficients of the charac-
teristic polynomial of N2, so using these parameters for N2 and the same parameters
for G we have that the characteristic polynomials of N1∪G and N2∪G have the same
coefficients.

Now, if we consider the case where the reactant ofN1 andG have species in common,
we do not get a block matrix when computing the associated Jacobian. However, for
the case where the species in the reactant of N1 appear only in the products of G, it
was possible for us to give an insight on whether it was possible to find parameters
that preserve the characteristic polynomial. Namely, consider an order of the set of
species such that the first s species are in N1, additionally, from this s species, the first
t appear only in the reactant of N1. This implies that the stoichiometric coefficient of
the variables x1, . . . , xt is equal to 0 in G. In this case, the rate function is

f(x1, . . . , xn) =




−α1 α1 β1
...

...
... 0

−αs αs βs
−αs+1 αs+1 βs+1

...
...

... NG[s+ 1, . . . , t]
−αt αt βt

0 0 βt+1
...

...
... NG[t+ 1, . . . , n]

0 0 βn−1

1 −1 −1 0 · · · 0







κ1x
α1
1 xα2

2 · · ·xαtt
κ2xn
κ3xn
vG




Where vG is the vector of kinetics for reactions in G and NG[t+ 1, . . . , s] and NG[s+
1, . . . , n] are the rows of the stoichiometric matrix of G. Note that the vector vG does
not depend on the variables x1, . . . , xt. Denoting by G1 the gradient of κ1x

α1
1 x

α2
2 · · · xαts
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with respect to the variables x1, . . . , xs, and by G2 the gradient of κ1x
α1
1 x

α2
2 · · ·xαtt with

respect to the variables xs+1, . . . , xt, we can write the Jacobian of f as follows.

Jf =




−α1G1
...

−αsG1

−α1G2
...

−αsG2

0

α1κ2 + β1κ3
...

αsκ2 + βsκ3

−αs+1G1
...

−αtG1

−αs+1G2
...

−αtG2

NG[s+ 1, . . . , t]JvG

αs+1κ2 + βs+1κ3
...

αtκ2 + βtκ3

0
...
0

0
...
0

NG[t+ 1, . . . , n]JvG

βt+1κ3
...

βn−1κ3

G1 G2 0 −κ2 − κ3




.

As before, this matrix has the same characteristic polynomial as the following matrix
obtained by reordering rows and columns




−α1G1
...

−αsG1

−α1G2
...

−αsG2

α1κ2 + β1κ3
...

αsκ2 + βsκ3

0

−αs+1G1
...

−αtG1

αs+1κ2 + βs+1κ3
...

αtκ2 + βtκ3

−αs+1G2
...

−αtG2

NG[s+ 1, . . . , t]JvG

G1 G2 −κ2 − κ3 0
0
...
0

0
...
0

βt+1κ3
...

βn−1κ3

NG[t+ 1, . . . , n]JvG




.

This is a block matrix of the form

(
A B
C D

)
where the blocks are defined by the

straight lines. Note that A is the matrix associated to the factor of the characteristic
polynomial of N1 that determines its coefficients, that is det(λI−A) = λ2 +c1λ+c2. To
compute the characteristic polynomial associated with N1∪G we have to compute the

determinant of the matrix

(
λI − A B
C λI −D

)
, which is equal to det(λI−A) det(λI−

D−C(λI −A)−1B). This could give us conditions for finding matching parameters in
some cases. However, this is a work in progress and we will pursue some results on this
conditions in the future.
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3
Absolute Concentration Robustness

3.1 What is Absolute Concentration Robustness?

In this chapter we focus on Absolute Concentration Robustness (ACR). This property
has been studied extensively as it identifies species whose concentration is robust to
changes on other concentrations in a system. We start with the definition of ACR and
then we discuss previous results and summarize our contributions.

Definition 30. Let N be a Chemical Reaction Network with fixed kinetics and assume
that N has positive steady states. The network N has ACR in the species Xi if there
exists c∗ ∈ R>0 such that for every positive steady state, the concentration of Xi is
equal to c∗.

Having ACR means that the concentration of Xi does not depend on the total
amounts of the system, that is, it does not depend on the stoichiometric compatibility
class. We consider systems with mass action kinetics. In this case, ACR in a species Xi

means that the positive steady state variety is constant in the i-th variable.

As an example consider the network

X1 + X2
κ1−−→ 2 X2

X2
κ2−−→ X1

(3.1)

The steady state equations are

0 = −κ1x1x2 + κ2x2

0 = κ1x1x2 − κ2x2,

and its positive steady state variety can be parametrized as

ϕ(x2) =

(
κ1

κ2

, x2

)
.

From this parametrization we see that the concentration of X1 at steady state is the
same for every stoichiometric compatibility class. This implies, that the network has
ACR in X1.

73
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Detecting whether a network has ACR is not an easy task. However, some structural
conditions relying on the deficiency of the network have been shown to ensure the
presence of ACR. We now expand on these results and discuss other approaches coming
from computational algebraic geometry.

We start with a theorem by Shinar and Feinberg for precluding ACR in networks
with deficiency zero[56].

Theorem 19 (Shinar and Feinberg). Consider a Chemical Reaction Network with
mass-action kinetics in which the underlying reaction network is weakly reversible and
has a deficiency of zero. Then, no matter what values the rate constants take, there is
no species with absolute concentration robustness.

This result precludes the presence of ACR in any network with deficiency zero whose
positive steady state variety is nonempty. For networks with deficiency one, Shinar and
Feinberg also proved the following result [56].

Theorem 20 (Shinar and Feinberg). Consider a Chemical Reaction Network with
mass-action kinetics, that admits a positive steady state and for which the underly-
ing reaction network has a deficiency of one. If, in the network, there are distinct
non-terminal complexes that differ only in species Xi, then the system has absolute
concentration robustness in Xi.

This last result is one of the most relevant sufficient conditions for ACR. It appears
in [38] as a consequence of what they call Type 1 complex-linear invariants and it
is the main tool on the computational approach for detecting ACR in module-based
combinatorial networks presented in [40]. Theorem 20 is a consequence of a more general
result.

Theorem 21. Let N be a Chemical Reaction Network with mass action kinetics, that
admits a positive steady state x∗ and for which the underlying reaction network has a
deficiency of one. If c, c′ are non-terminal complexes, then each positive equilibrium x∗∗

of the system satisfies the equation

(c′ − c) · ln
(
x∗∗

x∗

)
= 0,

where x∗∗
x∗ denotes the vector

(
x∗∗1
x∗1
, . . . , x

∗∗
n

x∗n

)
and the natural logarithm of the vector

corresponds to applying logarithm component-wise.

With this theorem, if two non-terminal complexes only differ in one species Xi, then
all the entries of c′ − c are zero, except for the i-th entry. This implies that the inner
product (c′ − c) · ln

(
x∗∗
x∗
)

= 0, becomes

(c′i − ci) (ln(x∗∗i )− ln(x∗i )) = 0.
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Since c′i − ci 6= 0, we have that ln(x∗∗i ) − ln(x∗i ) = 0 and using the injectivity of the
logarithm function, we conclude that x∗∗i = x∗i . This computation is valid for any pair
of positive steady states; therefore, the network has ACR in Xi and Theorem 20 is
proved.

ACR is also studied from a purely algebraic point of view in the PhD thesis of
Mercedes Pérez Millán [43]. One part of the analysis is based on the radical of the sat-
uration of the steady state ideal with the monomial x1 · · ·xn; if a univariate polynomial
with a unique positive root is contained in this saturation ideal, then the network has
ACR. Another part of the analysis consists in defining Complex Absolute Concentra-
tion Robustness (CACR) and studying its relation with ACR. Namely, a network with
n species has CACR in the species Xi if there is a constant c∗ ∈ C \ {0} such that for
every solution x∗ ∈ Cn of the steady state equations, the value of x∗i is equal to c∗. If
in this definition, the value c∗ is real and positive, then the network also has ACR in
Xi.

Finally, we mention the work by Tonello and Johnston [60] where a more general
type of robustness is considered. In their work, network translations are used to compute
robust ratios. In this setting Theorem 20 is also a consequence of a robust ratio between
two non-terminal complexes that differ only in one species. In addition to detecting
ACR, with the tools proposed in [60], it is possible to find the value of the concentration
of the species that exhibits ACR.

In the rest of this chapter, we present our results regarding two questions:

1. Is it possible to characterize ACR for small networks? In particular, for networks
with 2 reactions?

2. Is ACR preserved under some structural changes of the network?

In the first section of this chapter we explore question 1. This work was initiated
during a research visit to Anne Shiu at Texas A&M and is a joint work with her and
Nicolette Meshkat at Santa Clara University. In the second section we study question
2, and we consider removal and addition of intermediates, and removal and addition of
inflow-outflow reactions.

3.2 ACR in networks with two reactions

In this section we explore the detection of ACR in networks with n species, two reactions
and n − 1 conservation laws using similar techniques as the ones in [37] for detecting
multistationarity. These techniques rely on a graphic representation of chemical reaction
networks and the relation between them and the positive steady states.
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We will deduce algebraic conditions for ACR, that will be translated to the graphic
setting. Additionally, we study the stability properties of the steady states arising from
these networks.

3.2.1 ACR in networks with two reactions, n species and n−1
conservation laws

Consider a network of the form

α11X1 + α21X2 + · · ·+αn1Xn
κ1−−→ β11X1 + β21X2 + · · ·+βn1Xn

α12X1 + α22X2 + · · ·+αn2Xn
κ2−−→ β12X1 + β22X2 + · · ·+βn2Xn

(3.2)

with n ≥ 2. With mass action kinetics, the dynamics of the network are modelled by
the system of ODEs

ẋi = κ1(βi1 − αi1)xα1 + κ2(βi2 − αi2)xα2 for i = 1, . . . , n

where α1 = (α11, α21, . . . , αn1), α2 = (α12, α22, . . . , αn2) and xαj = x
α1j

1 x
α2j

2 · · ·x
αnj
n for

j = 1, 2.

We now make some remarks regarding the existence of positive steady states and
conservation laws.

alg 1. If (βi1 − αi1) = (βi2 − αi2) = 0 for some i, then ẋi = 0 and the concentration
of xi is constant through time. In this case, the species Xi does not have ACR
as its concentration is equal to its initial amount and, clearly, depends on the
stoichiometric compatibility class.

alg 2. If for some i, (βi1 − αi1) = 0 and (βi2 − αi2) 6= 0 or the other way around, then
the differential equation for xi is

ẋi = κ2(βi2 − αi2)xα2 or ẋi = κ1(βi1 − αi1)xα1

respectively. This means that there are only boundary steady states.

alg 3. If βi1−αi1 and βi2−αi2 have the same sign for some i, then the equation ẋi = 0
does not have positive solutions and the system only has boundary steady states.

alg 4. If the network has n − 1 conservation laws, then there is a matrix W , of size
(n − 1) × n that is row reduced and such that the equations given by Wx = T
define the stoichiometric compatibility class determined by the total amounts in
the vector T = (T1, . . . , Tn−1). Since the rank of this matrix is n− 1 and it is row
reduced, the identity matrix of size n − 1, In−i, is a submatrix of W . Let j be
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the index of the column of W that is not part of the In−1, and let {i1, . . . , in−1}
be the index corresponding to the first nonzero entry of the k-th row of W . The
conservation laws can be written as

wkikxik + wkjxj = Tk

for k = 1, . . . , n− 1. That is,

wkik ẋik + wkjẋj = 0.

If we define wk =
−wkj
wkik

then ˙xik = wkẋj.

From now on we assume that the situations mentioned on remarks alg 1, alg 2 and
alg 3 above do not hold. That is, we assume that βi1 6= αi1 and βi2 6= αi2 for every
i = 1, . . . , n and that βi1 − αi1 and βi2 − αi2 have different signs. This assumption is a
necessary condition for the existence of positive steady states.

Under these assumptions, we prove the following theorem.

Theorem 22. Let N be a network with n species and 2 reactions as in (3.2). As-
sume that N has n − 1 conservation laws and that the positive steady state variety is
nonempty. Then the species Xi0 has ACR if and only if, αi1 = αi2 for every i 6= i0 and
αi01 6= αi02.

Proof. We start by proving that if αi1 = αi2 for every i 6= i0 and αi01 6= αi02, then the
species Xi0 has ACR. Under this hypothesis the steady state equations are

0 = κ1(βi1 − αi1)xα1 + κ2(βi2 − αi2)xα1+(αi02−αi01)ei0 for i = 1, . . . , n

where ei0 is the canonical vector with zero in all but the i0-th entry. Factoring xα1 , the
steady state equations are given by

0 = xα1
[
κ1(βi1 − αi1) + κ2(βi2 − αi2)x(αi02−αi01)ei0

]

and the positive steady states are determined by the solutions of the factor on the
right. Since the network has n− 1 conservation laws, the positive steady state variety
is determined only by one equation. We take the i0-th equation, and after finding its
solutions, the positive steady states can be parametrized as

φ(x1, . . . , xi0−1, xi0+1, . . . , xn−1) = (x1, . . . , xi0−1,M, xi0+1, . . . , xn−1) (3.3)

with M =
(
−κ1(βi01−αi01)

κ2(βi02−αi02)

) 1
αi02

−αi01 > 0 as the positive steady state variety is nonempty

(recall remarks alg 1, alg 2 and alg 3). From this parametrization we conclude that the
network has ACR in Xi0 .
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Now we prove that if the network has ACR in Xi0 , then αi1 = αi2 for every i 6= i0
and αi01 6= αi02. Let

0 = κ1(βj1 − αj1)xα1 + κ2(βj2 − αj2)xα2

be the steady state equation that determines the positive steady state variety. The
positive steady state equation can be written as

0 = xα1
[
κ1(βj1 − αj1) + κ2(βj2 − αj2)xα2−α1

]

and the positive steady states satisfy

xα2−α1 =
−κ1(βj1 − αj1)

κ2(βj2 − αj2)
.

If i0 6∈ Supp(α2 − α1), then the positive steady states do not depend on xi0 and this
variable can take any positive value, that is, Xi0

does not have ACR. On the other
hand, if i0 ∈ Supp(α2 − α1) but Supp(α2 − α1) 6= {i0}, then there is another k such
that αk1 6= αk2. Thus, it is possible to express xi0 in terms of xk and it is possible
to find two positive steady states with different values of xi0 , which contradicts the
assumption of ACR. Therefore, αi1 = αi2 for every i 6= i0 and αi01 6= αi02, which is
what we wanted to prove.

So far, these conditions are related to the structural conditions in Theorems 20
and 19. Note that, if the network (3.2) has 3 or 4 complexes, there are 1 or 2 linkage
classes respectively and, since the dimension of the stoichiometric subspace is always 1,
the deficiency of the network is 1. In this case, using Theorem 20 we obtain the same
sufficient condition for ACR. However, for these small networks, this condition is also
necessary. If the network has 2 complexes, then the network corresponds to only one
reversible reaction, its deficiency is equal to zero and Theorem 19 guarantees that there
is no ACR.

Graphic representation of a network

We represent network 3.2 graphically with two arrows in Rn going from (α11, α21, . . . , αn1)
to (β11, β21, . . . , βn1) and from (α12, α22, . . . , αn2) to (β12, β22, . . . , βn2). For example, the
graphic representation of network (3.1) is presented in Figure 3.1 With this represen-
tation we explore graphic conditions for the network to have ACR in one species. First
note that remarks alg 1-3, regarding the existence of positive steady states, and the
condition alg 4, regarding conservation laws, are equivalent to some conditions on the
graphic representation.
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1 2

1

2

Figure 3.1: Graphic representation of network (3.1)

gr 1. The condition (βi1 − αi1) = (βi2 − αi2) = 0 for some i means that the projection
of both arrows on the i-th axis is equal to two points. As mentioned before,
this implies that ẋi = 0 and the concentration of this species depends on the
stoichiometric compatibility class.

gr 2. The condition (βi1−αi1) = 0 and (βi2−αi2) 6= 0, or the other way around, means
that the projection of the arrows on the i-th coordinate axis is equal to one point
and one arrow. In this case the network does not have positive steady states.

gr 3. The condition (βi1 − αi1) and (βi2 − αi2) having the same sign is equivalent to
the projections of both arrows on the i-th coordinate axis being arrows pointing
in the same direction.

gr 4. The condition ˙xik = wkẋj, is equivalent to

κ1(βik1−αik1)xα1 +κ2(βik2−αik2)xα2 = κ1wk(βj1−αj1)xα1 +κ2wk(βj2−αj2)xα2 .

This means that (βik1−αik1) = wk(βj1−αj1) and (βik2−αik2) = wk(βj2−αj2), and
in the graphic representation this corresponds to the condition that the projection
of the arrows on the ik-th coordinate axis is equal to two arrows pointing in

opposite directions and satisfying
βik1−αik1
βik2−αik2

=
βj1−αj1
βj2−αj2 .

Under this setting we can detect ACR in the species Xi0 graphically as follows.

Theorem 23. Let N be a network with n species and 2 reactions as in (3.2). As-
sume that N has n − 1 conservation laws and that the positive steady state variety is
nonempty. Then the species Xi0 has ACR if and only if, in the graphic representation of
the network, the projection of the arrows on the i-th coordinate axis corresponds to one
of the options in Figure 3.2 for i 6= i0 and the projection on the i0-th axis corresponds
to one case in Figure 3.3.
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0 xjαj1 = αj2 βj1βj2

(a)

(b)

0 xjαj1 = αj2 βj2βj1

Figure 3.2: Projection of the arrows arising from the graphic representation of N on the i-th

axis.

(a)

0 xi0αi02 αi01 βi01βi02

(b)

0 xi0αi01 αi02 βi02βi01

(c)

0 xi0αi02αi01 βi01 βi02

(d)

0 xi0αi01αi02 βi02 βi01

Figure 3.3: Projection of the arrows arising from the graphic representation of N on the

i0-th axis.

ACR in networks with two variables and two reactions

To have a better understanding of the graphic representation and Theorems 22 and 23,
we present the particular case of networks with two species and two reactions:

α11X1 + α21X2
κ1−−→ β11X1 + β21X2

α12X1 + α22X2
κ2−−→ β12X1 + β22X2

(3.4)

In this case the graphic representation corresponds to two arrows in the plane and
conditions gr 1-3 refer to the slope of the arrows and their direction. In particular gr
1. and gr 2. correspond to one of the arrows (or both) being parallel to one of the axis;
and gr 4. means that both arrows have the same slope. Theorem 23 becomes

Theorem 24. Network 3.4 has ACR in X1 if, and only if, the graphic representation
of the network is as in Figure 3.4. Similarly, the network has ACR in X2 if, and only
its graphic representation is as in Figure 3.5.

3.2.2 Stability

After characterizing the presence of ACR in a network N in terms of its graphic
representation, we proceed to link said representation with the stability of the steady
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Figure 3.4: Networks with ACR in X1. The networks on the left column have exponentially

stable steady states and the networks on the right column have unstable steady states.

states in each stoichiometric compatibility class.

Theorem 25. Let N be a chemical reaction network with n species and two reactions
as in (3.2). Assume that the network has n−1 conservation laws and that it has ACR in
species Xi0. Then a steady state in a stoichiometric compatibility class is exponentially
stable if and only if, the projection on the i0-th axis is as in options (c) and (d) from
Figure 3.3, and it is unstable if, and only if, the projection on the i0-th axis is as in
options (a) and (b) from Figure 3.3.

Proof. The stability proof relies on the Hurwitz criterion and on the Center Manifold
Theorem as seen in Chapter 2. We start by computing the Jacobian Jf and then we
evaluate at a parameterization φ. Recall from remark alg 4. above, that the existence of
n−1 conservation laws means that there is an index j such that the for every ik with k =
1, . . . , n−1, ˙xik = ωkẋj. This implies that the entries of the rate function f correspond
to the j-the entry times the associated scalar ωik . Additionally, the assumption of ACR
in Xi0 means that αi1 = αi2 for every i 6= i0. We can write then the rate function f as
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Figure 3.5: Networks with ACR in X2. The networks on the left have exponentially stable

steady states and the networks on the right have unstable steady states.

follows,

f =




ω1x
α1
[
κ1(βj1 − αj1) + κ2(βj2 − αj2)x(αi02−αi01)ei0

]

...

ωj−1x
α1
[
κ1(βj1 − αj1) + κ2(βj2 − αj2)x(αi02−αi01)ei0

]

xα1
[
κ1(βj1 − αj1) + κ2(βj2 − αj2)x(αi02−αi01)ei0

]

ωj+1x
α1
[
κ1(βj1 − αj1) + κ2(βj2 − αj2)x(αi02−αi01)ei0

]

...

ωnx
α1
[
κ1(βj1 − αj1) + κ2(βj2 − αj2)x(αi02−αi01)ei0

]




.

Its Jacobian Jf is a matrix with rank 1 whose characteristic polynomial is

pJf (λ) = λn−1 (λ− tr(Jf )) ,
where tr(Jf ) denotes the trace of Fj. Now, we take the parameterization φ given by
equation (3.3) and study pJf after evaluating at φ. First note that tr(Jf ) = 〈w,∇fj〉,
where∇fj is the gradient of the j-th component of f , and w = (w1, . . . , wj−1, 1, wj+1, . . . , wn).
The i-th entry of ∇fj is equal to

(∇fj)i =κ1(βj1 − αj1)αi1x
α1−ei + κ2(βj2 − αj2)αi2x

α2−ei

=xα1−ei
[
κ1(βj1 − αj1)αi1 + κ2(βj2 − αj2)αi2x

αi02−αi01

i0

]
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and evaluating at φ we have

(∇fj(φ))i =xα1−ei


κ1(βj1 − αj1)αi1 + κ2(βj2 − αj2)αi2

((−κ1(βj1 − αj1)

κ2(βj2 − αj2)

) 1
αi02−αi01

)αi02−αi01



=xα1−ei [κ1(βj1 − αj1)αi1 − κ1(βj1 − αj1)αi2]

and note that the last expression is equal to zero for every i 6= i0 because αi1 = αi2. If
i = i0, then (∇fj(φ))i0 = xα1−ei0k1(βj1 − αj1)(αi01 − αi02). Thus,

tr(Jf ) = 〈w,∇fj〉 = xα1−ei0k1wi0(βj1−αj1)(αi01−αi02) = xα1−ei0k1(βi01−αi01)(αi01−αi02)

and the sign of this term determines the stability of a steady state. If tr(Jf ) > 0, then
the steady state is unstable and if tr(Jf ) < 0, then the steady state is exponentially
stable. We conclude that if (βi01 − αi01) and (αi01 − αi02) have the same sign (or
equivalently the projection on the i0-h axis is as in (a) and (b) in Figure 3.3), then the
steady state is unstable. Similarly, if (βi01 − αi01) and (αi01 − αi02) have opposite signs
(or equivalently the projection on the i0-h axis is as in (c) and (c) in Figure 3.3), then
the steady state is exponentially stable.

Using the previous theorem we can asses the stability of a steady state by looking
at its graphic representation. In the particular case of two variables, the result states
that the networks with ACR and exponentially stable steady states have a graphic
representation as in the left columns of Figures 3.4 and 3.5, and the networks with
unstable steady states have a graphic representation as in the right column of said
figures.

Remark: We have completely determined which networks with two reactions, two
variables and one conservation law have ACR. Note that when the graphical repre-
sentation is used, it is easy to see that ACR is preserved under equal translations of
both reactions, under horizontal or vertical translation of only one of the reactions
(depending on which variable has ACR) and scaling of the reactions.

3.3 Preservation and loss of ACR

The main goal of this section is to give an overview of how ACR is preserved when
performing structural modifications of the network.

The modifications that we consider here are removal and addition of intermediates,
removal and addition of inflow and outflow reactions and removal and addition of
reactions that preserve the stoichiometric subspace. These modifications have been
explained in detail in the framework 1.
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3.3.1 Removal and addition of intermediates

First we prove that ACR in one species is inherited by the networks obtained when
removing one intermediate, for the reaction rate constants that satisfy the realization
conditions mentioned in Section 1.4

Theorem 26. Let G = (S, C,R) be a reaction network and G∗ = (S∗, C∗,R∗) be the
network obtained by removing one intermediate Y . G has ACR in a species Xi, that is
not an intermediate, for some reaction rate constants κ, if and only if G∗ has ACR in
Xi for any matching rate constants ψ(κ).

This results follows from Theorem 7, because for matching reaction rate constants
the steady state equations of the species different from Y are the same in both cases,
after evaluating the equations of the extension model in the solutions of the equation
ẏ = 0. As an example consider the network

X1 + X2 −−→ Y1 −−→ 2 X2

X2 −−→ X1 ·
(3.5)

If we remove the intermediate Y1, we are left with the network (3.1). Since network (3.1)
has ACR in X1, the previous theorem guarantees that the network with the intermediate
also has ACR in X1.

Using the theorem on the networks obtained by adding one intermediate at a time,
we can guarantee that networks such as

X1 + X2 −−→ Y1 −−→ Y2 −−→ 2 X2

X2
−−⇀↽−− Y3 −−→ X1

(3.6)

or

X1 + X2 −−→ 2 X2
−−⇀↽−− Y1

X2
−−⇀↽−− Y2 −−→ X1

(3.7)

also have ACR in X1.

3.3.2 Removal and addition of inflow and outflow reactions

We now consider the addition of inflow and outflow reactions on a network with ACR
in a species Xi. The first result relates to the addition of inflow and outflow reactions
for the species with ACR and the second result analyses the addition of inflow and
outflow reactions of a species in a conservation law.
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Theorem 27. Let G = (S, C,R) be a reaction network with mass action kinetics and

let G∗ = (S∗, C∗,R∗) be the network obtained by adding the reactions 0
κin−−→←−−
κout

Xi.

1. If G has ACR in the species Xi, then then G∗ has a positive steady state if the
quotient κin

κout
is equal to the steady state concentration of Xi in G.

2. If Xi is in the support of some conservation law for G, then G∗ has ACR on Xi.

Proof. Let x∗ be a positive steady state of G. By definition fG(x∗) = 0, where fG is
the rate function associated with G. Note that the rate function of G∗, fG∗ , only differs
from fG in the i-th entry, and additionally fG∗,i = fG,i + κin − κoutxi.

1. Note that fG∗,i(x
∗) = κin − κoutx

∗
i , and this monomial vanishes if x∗i = κin

κout
.

As a result, every positive steady state of G is a positive steady state for G∗ if
x∗i = κin

κout
, and the positive steady state variety associated with G∗ is nonempty.

2. Let
∑n

j=1 ωjẋj = 0 be a conservation law forG such that ωi 6= 0. This conservation
law implies that

∑n
j=1 ωjfG,j = 0 and, adding κin − κoutxi to both sides of the

equation, we have that
∑n

j=1 ωjfG∗,j = κin − κoutxi. This guarantees that the
monomial κin − κoutxi is contained in the steady state ideal; thus, the steady
state variety is constant in xi and Xi has ACR.
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Abstract

Deciding whether and where a system of parametrized ordinary differential equa-
tions displays bistability, that is, has at least two asymptotically stable steady states
for some choice of parameters, is a hard problem. For systems modeling biochemical
reaction networks, we introduce a procedure to determine, exclusively via symbolic
computations, the stability of the steady states for unspecified parameter values. In
particular, our approach fully determines the stability type of all steady states of a
broad class of networks. To this end, we combine the Hurwitz criterion, reduction
of the steady state equations to one univariate equation, and structural reductions
of the reaction network. Using our method, we prove that bistability occurs in open
regions in parameter space for many relevant motifs in cell signaling.

1 Introduction

Bistability, that is, the existence of at least two stable steady states in a dynamical system,
has been linked to switch-like behavior in biological networks and cellular decision making
and it has been observed experimentally in a variety of systems [25, 32, 33]. However,
proving the existence of bistability in a parameter-dependent mathematical model is in
general hard.

We focus on (bio)chemical reaction networks with associated kinetics, giving rise to
systems of Ordinary Differential Equations (ODEs) that model the change in the con-
centration of the species of the network over time. These systems come equipped with
unknown parameters and, ideally, one wishes to determine properties of the family of
ODEs for varying parameter values. Here we are concerned with stability of the steady
states, and focus on the following three questions: (1) if the network admits only one
steady state for all parameter choices, is it asymptotically stable? (2) can parameter
values be chosen such that the system is bistable? (3) does it hold that for any choice of
parameters yielding at least three steady states, two of them are asymptotically stable?

1



As the parameters are regarded unknown, explicit expressions for the steady states
are rarely available. Problem (1) has been shown to be tractable for certain classes
of networks. For example, the only steady state of complex balanced networks admits
a Lyapunov function making it asymptotically stable [18, 27]. The use of Lyapunov
functions and the theory of monotone systems has been employed more broadly to other
classes of networks [15, 1, 3]. Finally, algebraic criteria as the Hurwitz criterion or the
study of P-matrices also provide asymptotic stability of steady states, often in combination
with algebraic parametrizations of the steady state variety. In [9] the Hurwitz criterion is
analyzed using graphical methods.

Problem (2) is much harder and typically tackled by first deciding whether the net-
work admits multiple steady states using one of the many available methods [30], and
then numerically computing the steady states and their stability for a suitable choice of
parameter values. Rigorous proofs of bistability require advanced analytical arguments
such as bifurcation theory and geometric singular perturbation theory, as employed in
[26, 20] for futile cycles. The use of the Hurwitz criterion to prove bistability is anecdotal,
as rarely explicit descriptions of the steady states can be found. Problem (3) has been
addressed for small systems using case-by-case approaches, but no systematic strategy
has been proposed.

We devise a flow chart to solve the problems (1)-(3) using computer-based proofs
relying only on symbolic operations. This is achieved by combining three key ingredients.
First, we apply the Hurwitz criterion [5, 2] on the characteristic polynomial of the Jacobian
of the ODE system evaluated at a parametrization of the steady states. Second, we observe
that when all but the last Hurwitz determinants are positive (meaning that instabilities
only arise via an eigenvalue with positive real part), and further the solutions to the
steady state equations are in one to one correspondence with the zeros of a univariate
function, then the stability of the steady states is completely determined and question
(3) can be answered (Theorem 2). We claim that the hypotheses of Theorem 2 often
hold when the network is small in terms of number of variables and reactions. Third, if
Theorem 2 does not apply, we reduce the network to a smaller one for which Theorem 2
applies. Afterwards, we infer stability properties of the steady states of the original
network in an open parameter region. To this end, many reduction techniques have been
proposed [4, 23], but often removal of reactions [29] and of intermediates [23] suffice for
(bio)chemical networks.

Even though our approach demands heavy symbolic computations, we illustrate how
problem (3) can successfully be tackled for small networks, and further, we prove the
existence of bistability in open regions of the parameter space for several relevant cell
signaling motifs. In particular, for many networks we provide the first proof of bistability
in an open region of the parameter space, with the exception of the double phosphorylation
cycle, whose bistability was proven in [26].

2 Mathematical framework

We use the following notation: Jf is the Jacobian matrix of a function f . We denote by
V ⊥ the orthogonal complement of a vector space V . For A ∈ Rn×n and I, J ⊆ {1, . . . , n},
we let AI,J be the submatrix of A with rows (resp. columns) with indices in I (resp. J).
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Finally, we denote by pA(λ) the characteristic polynomial of A.

2.1 Reaction networks

We consider reaction networks over a set of species S = {X1, . . . , Xn} given by a collection
of reactions

rj :
∑n

i=1
αijXi −→

∑n

i=1
βijXi for j = 1, . . . ,m (1)

with αij 6= βij for at least one index i. Let xi denote the concentration of Xi. Given a
differentiable kinetics v : Rn

≥0 → Rm
≥0, the dynamics of the concentrations of the species

in the network over time t are modeled by means of a system of autonomous ODEs,

dx
dt

= Nv(x), x = (x1, . . . , xn) ∈ Rn
≥0, (2)

where N ∈ Rn×m is the stoichiometric matrix with jth column (β1j − α1j, . . . , βnj − αnj).
We write f(x) := Nv(x). With mass-action kinetics, we have vj(x) = κjx

α1j

1 · · ·x
αnj
n

where κj > 0 is a rate constant, shown often as a label of the reaction.
Under mild conditions, satisfied by common kinetics including mass-action, Rn

≥0 and
Rn
>0 are forward invariant by Eq. (2), [37]. Furthermore, any trajectory of Eq. (2) is

confined to a so-called stoichiometric compatibility class (x0 + S) ∩ Rn
≥0 with x0 ∈ Rn

≥0,
where S is the column span of N and called the stoichiometric subspace [19]. The set (x0+
S) ∩ Rn

≥0 is the solution set of the equations Wx = T with W ∈ Rd×n any matrix whose
rows form a basis of S⊥ and T = Wx0 ∈ Rd. These equations are called conservation
laws and the defined stoichiometric compatibility class is denoted by PT .

2.2 Steady states

The steady states (or equilibria) of the network are the non-negative solutions to Nv(x) =
0. The positive steady states, that is, the solutions in Rn

>0, define the positive steady state
variety V +. The existence of d linearly independent conservation laws implies that d
steady state equations are redundant. We let s = dim(S), d = n − s, and W ∈ Rd×n be
row reduced with i1, . . . , id the indices of the first non-zero coordinate of each row. For
T ∈ Rd, define

FT (x)i =

{
fi(x) i /∈ {i1, . . . , id}
(Wx− T )i i ∈ {i1, . . . , id},

(3)

which arises after replacing redundant equations in Nv(x) = 0 with Wx = 0. Hence,
the solutions to FT (x) = 0 are the steady states in PT [10, 38]. A steady state x∗ is
non-degenerate if ker(Jf (x

∗))∩S = {0}, or equivalently, if det(JFT
(x∗)) 6= 0 [38]. Observe

that JFT
(x∗) is independent of T .

As an example, consider the following reaction network

X1
κ1−−→ X2 X2 + X3

κ2−−→ X1 + X4 X4
κ3−−→ X3. (4)

This is a simplified model of a two-component system, consisting of a histidine kinase HK
and a response regulator RR [10]. Both occur unphosphorylated (X1, X3) and phospho-
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rylated (X2, X4). With mass-action kinetics, the ODE system is

dx1
dt

= −κ1x1 + κ2x2x3
dx3
dt

= −κ2x2x3 + κ3x4
dx2
dt

= κ1x1 − κ2x2x3 dx4
dt

= κ2x2x3 − κ3x4,

and we consider PT defined by x1 + x2 = T1 and x3 + x4 = T2. With this choice, FT (x) is
(
x1 + x2 − T1, κ1x1 − κ2x2x3, x3 + x4 − T2, κ2x2x3 − κ3x4

)
.

In this example, the positive steady states are the positive solutions to the equations
dx2
dt

= dx4
dt

= 0, which when solved for x1 and x3 lead to the following parametrization of
V +:

φ(x2, x4) =
(
κ3x4
κ1
, x2,

κ3x4
κ2x2

, x4

)
, (x2, x4) ∈ R2

>0. (5)

In general, we refer to a positive parametrization as any bijective map of the form

φ : Rd
>0 → V + with ξ 7→ φ(ξ). (6)

In practice, under mass-action kinetics, the entries of φ are rational functions in ξ. Strate-
gies for finding positive parametrizations are reviewed in [10].

2.3 Multistationarity and bistability

A network is multistationary if it has at least two positive steady states in some PT , that
is, FT (x) = 0 has at least two positive solutions for some T ∈ Rd. A monostationary
network has exactly one positive steady state in each PT . Under some conditions, if
the sign of det(JFT

(x∗)) is (−1)s for all positive steady states x∗, then the network is
monostationary; if the sign is (−1)s+1 for some x∗, then it is multistationary [10]. Using a
positive parametrization, this result yields inequalities in the rate constants that guarantee
or preclude multistationarity [11, 10].

Given dx
dt

= f(x), a steady state x∗ is stable if for each ε > 0 small enough, there
exists δ > 0 such that solutions starting within distance δ of x∗, remain within distance
ε. If additionally δ can be chosen such that solutions tend to x∗ as time increases, x∗ is
asymptotically stable. If x∗ is not stable, then it is unstable. If all eigenvalues of Jf (x

∗)
have negative real part, then x∗ is exponentially stable. Exponential stability implies
asymptotic stability (§2.7-2.8 in [35]). If one eigenvalue has positive real part, then x∗ is
unstable. For further discussions on stability we refer to [35].

The stability of a steady state is studied relatively to PT . A network that admits
two asymptotically stable positive steady states in some PT is called bistable. Detecting
multistationarity and bistability is challenging already for medium sized networks. To
overcome computational difficulties one may employ structural modifications of the net-
work, such as removal of intermediates or reactions. Specifically, given two networks G and
G ′, G ′ is a subnetwork of G if it arises after removing reactions of G [29]. An intermediate
Y is a species that appears only in the form Y at either side of a reaction, and is both a
product and a reactant in the network. Removal of intermediates leads to a new network
after collapsing into one reaction all paths of reactions from and to non-intermediates and
through intermediates [23]. For example, the species S0E in S0 + E −−⇀↽−− S0E −−→ S1 + E
is an intermediate. Its removal yields the reaction S0 + E −−→ S1 + E.
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Assume mass-action kinetics and that G ′ either is a subnetwork of G such that both
stoichiometric subspaces agree, or arises from G by removal of intermediates and satisfies
a technical condition on the rate constants [23, 36]. If G ′ has `1 exponentially stable and
`2 non-degenerate unstable steady states in some PT for some rate constants κ, then G has
at least `1 exponentially stable and `2 non-degenerate unstable steady states in some PT
for some rate constants κ̃. If G ′ is a subnetwork of G, then κ̃ agrees with κ for the common
reactions and is small enough for the reactions that only are in G. A more intricate but
explicit description of the rate constants κ̃ exists also for the removal of intermediates
[23].

2.4 The Jacobian matrix of reaction networks

In the context of reaction networks, we determine stability based on the eigenvalues of
the Jacobian of the restriction of Eq. (2) to PT . To this end, we consider the projection of
Jf (x) onto the stoichiometric subspace S by writing the ODE system in local coordinates
of PT . Let R0 ∈ Rn×s be a matrix whose columns form a basis of S and L ∈ Rs×m such
that N = R0L. Then the projection of Jf (x) onto S is LJv(x)R0.

Proposition 1. The characteristic polynomials pJf (x) and pLJv(x)R0 satisfy

pJf (x)(λ) = λn−spLJv(x)R0(λ).

Further, the independent term of pLJv(x)R0(λ) is (−1)s det(JFT
(x)), with FT as in Eq. (3)

for any choice of W .

The proof of Proposition 3 can be found in A. According to Proposition 3, the s eigen-
values of Qx := LJv(x)R0 are the eigenvalues of Jf (x) once zero counted with multiplicity
d is disregarded. In order to study the (sign of the real part of the) spectrum of the
matrices Qx when x is a positive steady state, we use a positive parametrization. We
denote the characteristic polynomial pQx(λ) by qx(λ).

For example, for the network in Eq. (4), we consider the matrices R0, L, Jv(x) respec-
tively to be 


−1 0

1 0
0 1
0 −1


 ,

[
1 −1 0
0 −1 1

]
,

[
κ1 0 0 0
0 κ2x3 κ2x2 0
0 0 0 κ3

]
,

and we are interested in the eigenvalues of the matrix

Qx = LJv(x)R0 =

[
−κ1 − κ2x3 −κ2x2
−k2x3 −κ2x2 − κ3

]
(7)

evaluated at a steady state x∗ = φ(x2, x4). Thus, by analyzing the eigenvalues of Qφ(x2,x4)

for all values of κ and x2, x4 > 0, we study the stability of all positive steady states.

We conclude this part with a key technical result (proven in A) on the determinant
of Jf (x

∗) in the particular case where system FT (x) = 0 is reduced to one univariate
equation.
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Proposition 2. Fix W ∈ Rd×n, T ∈ Rd and FT as in Eq. (3). Assume there exist an open
interval E ⊆ R, a differentiable function ϕ : E → Rn

>0, and indices i, j such that ϕ′i(z) 6= 0
and FT,`(ϕ(z)) = 0 for all ` 6= j. Then, for any solution z∗ to

FT,j(ϕ(z)) = 0, z ∈ E , (8)

x∗ = ϕ(z∗) is a positive solution to FT (x) = 0 and further

det(JFT
(x∗)) =

(−1)i+j

ϕ′i(z
∗)

(FT,j ◦ ϕ)′(z∗) det(JFT
(x∗)J,I),

where I = {1, . . . , n} \ {i} and J = {1, . . . , n} \ {j}.

In practice, ϕi(z) = z, E ⊆ R>0, and the solutions to FT (x) = 0 are in one to one
correspondence with the solutions to Eq. (9). In this case, given the positive solutions z1 <
· · · < z` of Eq. (9), the sign of the derivative of FT,j(ϕ(z)) evaluated at z1, . . . , z` alternates
if all the steady states are non-degenerate. If additionally the sign of 1

ϕ′i(z)
det(JFT

(ϕ(z))J,I)

is independent of the choice of z, then the sign of det(JFT
(ϕ(z`))) depends only on the

sign of the derivative of (FT,j ◦ ϕ) at z`. We will exploit this fact below.

2.5 Algebraic criteria for stability

We present now the Hurwitz criterion [5, 2], which determines whether all the roots of a
polynomial have negative real part.

Criterion 1 (Hurwitz). Let p(x) = asx
s + . . . + a0 be a real polynomial with as > 0 and

a0 6= 0. The Hurwitz matrix H = (hij) associated with p has entries hi,j = as−2i+j for
i, j = 1, . . . , s, by letting ak = 0 if k /∈ {0, . . . , s}:

H =




as−1 as 0 0 · · · 0
as−3 as−2 as−1 as · · · 0

...
...

...
...

...
...

0 0 0 a6−s · · · a2
0 0 0 0 · · · a0


 ∈ Rs×s.

The ith Hurwitz determinant is Hi = det(HI,I), I = {1, . . . , i}. Then, every root of p has
negative real part if and only if Hi > 0 for all i = 1, . . . , s. If Hi < 0 for some i, then a
root of p has positive real part.

Note that Hs = a0Hs−1. Pairs of imaginary roots (leading to Hopf bifurcations) arise
when at least one of the Hi vanish [39] (see [12] in the context of reaction networks).

For the polynomial qx(λ) or qφ(ξ)(λ), the Hurwitz determinants are typically rational
functions in x or ξ. In Example in Eq. (4), the polynomial qx(λ) for Qx as in Eq. (7) is

λ2 + (κ2x2 + κ2x3 + κ1 + κ3)λ+ κ1κ2x2 + κ2κ3x3 + κ1κ3,

and the Hurwitz determinants are H1 = κ2(x2 + x3) + κ1 + κ3 and H2 = ((κ1x2 +
κ3x3)κ2 + κ1κ3)H1. Both determinants are polynomials in κ, x with positive coefficients
and hence positive for all κ, x ∈ R3

>0. By the Hurwitz criterion any positive steady state
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is exponentially stable. This network has exactly one steady state in each PT [10], and
we now additionally conclude that the only steady state is exponentially stable.

Often for small networks, all but the last Hurwitz determinants are positive. Then, the
stability of a steady state x∗ is fully determined by the sign of Hs, which agrees with the
sign of the independent term of qx∗(λ), which in turn is (−1)s det(JFT

(x∗)) by Proposition
3. Together with Proposition 4 we obtain the following theorem, proved in Appendix A.

Theorem 1. Let T, E , ϕ, i, j, I, J be as in Proposition 4. Assume that

• the sign of 1
ϕ′i(z)

det(JFT
(ϕ(z))J,I) is independent of z ∈ E and is nonzero, and

• the first s − 1 Hurwitz determinants of qx∗(λ) are positive for all positive steady
states x∗.

If z1 < · · · < z` are the positive solutions to Eq. (9) and all are simple, then either
ϕ(z1), ϕ(z3), . . . are exponentially stable and ϕ(z2), ϕ(z4), . . . are unstable, or the other
way around. Specifically, ϕ(z1) is exponentially stable if and only if

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I) > 0.

In practice, FT,j(ϕ(z)) = a(z)
b(z)

is a rational function in z with b(z) > 0 in E . Then the

zeros of FT,j(ϕ(z)) are the roots of a(z), and the signs of (FT,j ◦ ϕ)′(z∗) and a′(z∗) agree
for all z∗ ∈ E such that a(z∗) = 0 (Lemma 1 in A).

We illustrate Theorem 2 with a hybrid histidine kinase network with mass-action ki-
netics [31], see Fig. 1. We rename the species as follows: X1=HK00, X2=HKp0, X3=HK0p,
X4=HKpp, X5=Htp and X6=Htpp. The associated ODE system is

dx1
dt

= −κ1x1 + κ4x3x5
dx4
dt

= κ3x3 − κ5x4x5
dx2
dt

= κ1x1 − κ2x2 + κ5x4x5
dx5
dt

= −κ4x3x5 − κ5x4x5 + κ6x6
dx3
dt

= −κ3x3 + κ2x2 − κ4x3x5 dx6
dt

= κ4x3x5 − κ6x6 + κ5x4x5.

The conservation laws of the system are T1 = x1 + x2 + x3 + x4, T2 = x5 + x6. Hence

FT (x) =




x1 + x2 + x3 + x4 − T1
κ5x4x5 + κ1x1 − κ2x2
−κ4x3x5 + κ2x2 − κ3x3
−κ5x4x5 + κ3x3
x5 + x6 − T2

κ4x3x5 + κ5x4x5 − κ6x6



.

Here s = 4. The existence of three positive steady states for this network was established
in [31]. We compute qx(λ) and the Hurwitz determinants in Maple 2019 and obtain that
all but the last are polynomials in x and κ with positive coefficients, hence positive when
evaluated at a positive steady state (see Appendix C).

We proceed to decide whether Theorem 2 applies. In [31], it was shown that the
assumptions of Proposition 4 hold with i = j = 5, with z = x5 being the concentration
of Htp, FT,5 corresponding to the conservation law with T2, and E = R>0. That is, the
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Hybrid histidine kinase
HK00−→HKp0−→HK0p−→HKpp Htpp−→Htp

HK0p + Htp−→HK00 + HtppHKpp + Htp−→HKp0 + Htpp

Two substrate enzyme catalysis

E + S1−⇀↽−ES1 E + S2−⇀↽−ES2

S2 + ES1−⇀↽−ES1S2

ES1S2−⇀↽−E + P

S1 + ES2−⇀↽−ES1S2

Gene transcription network

X1−→X1 + P1 X2−→X2 + P2 P1−→ 0 P2−→ 0

X2 + P1−⇀↽−X2P1 2 P2−⇀↽−P2P2 X1 + P2P2−⇀↽−X1P2P2

1

Figure 1: Three networks where stability of steady states is fully determined.

solutions to the four steady state equations together with the conservation law associated
with T1 can be parametrized by a function ϕ that only depends on x5. The denominator
of (FT,5 ◦ ϕ)(z) is positive and its numerator is a polynomial of degree 3 in z, which
can have 1, 2 or 3 positive roots, depending on the choice of parameters. Additionally,
det(JFT

(ϕ(xi))J,I) is a rational function with all coefficients positive. Thus, we are in the
situation of Theorem 2. Since the independent term of the numerator of (FT,5 ◦ ϕ)(z) is

negative, its first root has positive derivative. Further, the sign of (−1)s+i+j

ϕ′5(z)
= (−1)4+5+5

is +1, and hence, the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is positive as well. We conclude, using Theorem 2, that whenever the network has three
positive steady states coming from the roots z1 < z2 < z3 of (FT,5 ◦ϕ)(z), then the steady
states ϕ(z1) and ϕ(z3) are exponentially stable and the steady state ϕ(z2) is unstable. We
have shown that this network displays bistability whenever there are three positive steady
states

3 Symbolic determination of stability

We now combine the ingredients introduced in the previous section into a strategy to
determine the stability of positive steady states and, importantly, detect bistability, using
(mainly) the Hurwitz criterion and Theorem 2. Given a reaction network with kinetics
v(x) the steps taken are depicted in Fig. 2. Specifically, we find qx(λ) and the Hurwitz
determinants. If all determinants are positive, then the positive steady states are expo-
nentially stable. If only the last Hurwitz determinant can be negative, then we attempt
to apply Theorem 2. We only find a parametrization φ as in Eq. (6) when the sign of Hi

is not determined for arbitrary positive x.
If some of the steps fail, then we consider reduced networks by removing either re-

actions that do not change the stoichiometric subspace, or intermediates. If stability is
determined for a reduced network, then we conclude that the original network has at least
the same number of positive steady states and stability properties as the reduced network
in an open parameter region. In particular, if the reduced network has bistability, then
so does the original network.
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Input N
and v(x)

Can qx(λ) and
Hi be computed?

Is Hi(x) > 0 for all x ∈ Rn
>0

or Hi(φ(ξ)) > 0 for ξ ∈ Rd
>0,

for i = 1, . . . , s − 1?

Is Hs(x) > 0 for all x ∈ Rn
>0

or Hs(φ(ξ)) > 0 for ξ ∈ Rd
>0?

All positive
steady states are

exponentially stable

Does Theorem 1
apply? Deduce stability

Reduce network and
update N and v(x)

yes yes yes

no

no yes

no
no

Figure 2: Flow chart of our approach to study the stability of steady states. Here φ is a positive

parametrization.

We now use this approach on the remaining networks in Fig. 1. We consider a two
substrate enzyme catalysis mechanism, comprising an enzyme E that binds two sub-
strates, S1 and S2, and catalyzes the reversible conversion to P . Taken with mass-action
kinetics this network has one positive steady state in each PT for any κ [10]. All but
the last of the four Hurwitz determinants are positive for x ∈ R6

>0. We find a positive
parametrization φ by solving the steady state equations in the concentrations of ES1,
ES2, ES1S2 and P using the procedure in [22], see Appendix C. After evaluating at φ, H4

becomes a rational function with only positive coefficients. Hence, all Hurwitz determi-
nants are positive at a positive steady state, showing that the only positive steady state
is exponentially stable.

Next, we consider the gene transcription network in Fig. 1 with mass-action
kinetics. For any choice of rate constants there exist at least two positive steady states
in some PT [10]. The computation of the Hurwitz determinants for arbitrary x ∈ R7

>0

gives that only H1, H2 are positive, but after evaluating at a positive parametrization, all
but the last Hurwitz determinants are positive. We proceed to verify the assumptions
of Theorem 2, see Appendix C. We obtain that the maximum number of positive steady
states in any PT is 3, and that, whenever the network has one positive steady state, then
it is exponentially stable, and if it has three positive steady states, then two of them are
exponentially stable and one is unstable.

3.1 Bistability in cell signaling

After having illustrated our approach with selected examples, we now investigate relevant
cell signaling motifs. All networks in Fig. 3 are known to be monostationary under
mass-action [21]. All Hurwitz determinants of qx(λ) are positive for positive x, without
the need of a positive parametrization, see Appendix C. Hence for any rate constants,
each network in Fig. 3 has exactly one positive steady state in each PT , which further is
exponentially stable.

In the examples so far, we have not employed network reduction techniques, because
all steps of the method could be carried through and the stability of a steady state
depended only on the sign of the determinant of the Jacobian. This scenario is quite
restrictive, as it implies that instabilities arise from a unique eigenvalue with positive real
part. The networks in Fig. 4 are all known to be multistationary with mass-action
[21, 24]. Our method fails on the original networks: for network (c), the computation of
the Hurwitz determinants was not possible in a regular PC due to lack of memory, and
for the rest of the networks Hi > 0 for i 6= s does not hold. However, Theorem 2 applies
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to the reduced networks in Fig. 4. In particular, all reduced networks in Fig. 4 display
bistability whenever they have three positive steady states. Hence, after lifting stability
to the original network, for all networks in Fig. 4, there is an open parameter region where
the network has two exponentially stable positive steady states.

4 Computational challenges

In our context the Hurwitz determinants are symbolic and depend on κ and x or ξ. Their
computation requires the storage of functions with many terms, which easily becomes un-
feasible in a regular PC. For example, for network (6) in Fig. 3, H4 and H5 are polynomials
in κ and x with respectively 1,732,192 and 37,609,352 monomials, before the evaluation
at a parametrization.

For medium sized networks some tricks can be applied under mass-action. A first
strategy is to parametrize the positive steady state variety using convex parameters intro-
duced by Clarke [9, 17]. This conversion may reduce the number of parameters, mainly
if the network has few reversible reactions.

The second strategy encodes a monomial η xa11 · · ·xann as an (n+1)-tuple (η, a1, . . . , an),
and exploits relations among the Hi obtained by expanding recursively along the last
column, e.g. H3 = as−3H2 − as−1(as−4H1 + asas−5) for a generic polynomial. Assume
Hi is written as a sum of terms that can be computed. We gather the (n + 1)-tuples of
each term into a list L1 and create a list L2 of the exponents for which η is not a positive
function. For each element in L2, we consider the tuples in L1 with that exponent, sum
the coefficients and inspect the sign. If all coefficients are nonnegative, then so is Hi.
This procedure requires substantially less memory, but it might take time as lists are
long. With this strategy we have determined the sign of H5 in networks (5) and (6) in
Fig. 3.

In special situations, Hi can be computed for x, but evaluating at a parametrization
and expanding the resulting polynomial to inspect its sign encounters memory issues.

(1)
S0 + E−⇀↽− S0E−→ S1 + E

S1 + F−⇀↽− S1F−→ S0 + F
(2)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + E−⇀↽− S1E−→ S0 + E

(3)
S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S0 + E2 −⇀↽− S0E2 −→ S1 + E2

S1 + F−⇀↽− S1F−→ S0 + F

(4)
S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S0 + E2 −⇀↽− S0E2 −→ S1 + E2

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

S1 + F2 −⇀↽− S1F2 −→ S0 + F2

(5)

S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S1 + E2 −⇀↽− S1E2 −→ S2 + E2

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

S2 + F2 −⇀↽− S2F2 −→ S1 + F2

(6)

S0 + E−⇀↽− S0E−→ S1 + E

P0 + E−⇀↽− P0E−→ P1 + E

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

P1 + F2 −⇀↽− P1F2 −→ P0 + F2

1

Figure 3: Monostationary networks. In all networks, the symbols E, F, S, P refer to kinases, phos-

phatases, and substrates respectively. Taken with mass-action kinetics, all networks admit exactly one

positive steady state in PT , which further is exponentially stable. Networks (1)-(4) model the phospho-

rylation of one substrate via different mechanisms. Network (5) models a substrate with two phosphory-

lation sites, while network (6) models the phosphorylation of two different substrates.
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This problem can be addressed if there exists a monomial positive parametrization of the
form φ(ξ) = α ◦ ξB with B ∈ Zd×n such that φ(ξ)i = αi(ξ

B)i = αiξ
b1i
1 · · · ξbdid , with α

depending on the rate constants [34]. In this case, a monomial ηxa11 · · · xann of Hi becomes
ηαa11 · · ·αann ξBa. Hence, we first write all monomials as an (n + 1)-tuple and record the
evaluation with a new (n + d + 1)-tuple (η, a1, . . . , an, (Ba)1, . . . , (Ba)d). We proceed as
before to group the tuples and study the sign of the coefficients. With this approach, we
computed the Hurwitz determinants of networks(a), (b), (d) and (e) in Fig. 4. However,
Hs−1 is not positive and Theorem 2 does not apply.

To verify that a polynomial with both positive and negative coefficients attains both
signs, one can study the associated Newton polytope, as employed in the context of
reaction networks in [10, 12] to cite a few. To assert that a polynomial only attains positive
values despite having negative coefficients, one can employ techniques from sum-of-squares
[7] and polynomial optimization via sums of nonnegative circuit polynomials [16, 28].
However, the size of the polynomials we encounter make these approaches challenging.

Network Reduced network Network Reduced network

(a)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + E−⇀↽− S1E−→ S2 + E

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

S2 + F2 −⇀↽− S2F2 −→ S1 + F2

S0 + E−→ S0E−→ S1 + E

S1 + E−→ S1E−→ S2 + E

S1 + F1 −→ S0 + F1

S2 + F2 −→ S1 + F2

(b)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + F−⇀↽− S1F−→ S0 + F

P0 + S1 −⇀↽− P0S1 −→ P1 + S1

P1 + F−⇀↽− P1F−→ P0 + F

S0 + E−→ S1 + E

S1 + F−→ S0 + F

P0 + S1 −→ P0S1 −→ P1 + S1

P1 + F−→ P1F−→ P0 + F

(c)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

P0 + S1 −⇀↽− P0S1 −→ P1 + S1

P0 + E−⇀↽− P0E−→ P1 + E

P1 + F2 −⇀↽− P1F2 −→ P0 + F2

S0 + E−→ S1 + E

S1 + F1 −→ S1F1 −→ S0 + F1

P0 + S1 −→ P1 + S1

P0 + E−→ P0E−→ P1 + E

P1 + F2 −→ P0 + F2

(d)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + E−⇀↽− S1E−→ S2 + E

F + S2 −⇀↽− S2F−→ F + S1

F + S1 −⇀↽− S1F−→ F + S0

S0 + E−→ S0E−→ S1 + E

S1 + E−→ S2 + E

F + S2 −→ F + S1

F + S1 −→ F + S0

(e)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + F−⇀↽− S1F−→ S0 + F

P0 + E−⇀↽− P0E−→ P1 + E

P1 + F−⇀↽− P1F−→ P0 + F

S0 + E−→ S1 + E

S1 + F−→ S1F−→ S0 + F

P0 + E−→ P0E−→ P1 + E

P1 + F−→ P0 + F

(f)

S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S0 + E2 −⇀↽− S0E2 −→ S1 + E2

E1 −⇀↽− E2

S0E1 −⇀↽− S0E2

S1 −→ S0

S0 + E1 −→ E1S0 −→ S1 + E1

S0 + E2 −→ S1 + E2

E2 + S0 −→ E1S0

E1 −→ E2

S1 −→ S0

1
Figure 4: Multistationary networks and reductions to assert bistability. (a) E1 and E2 are two con-

formations of a kinase that catalyzes the phosphorylation of S0 [24]. The reduced network is obtained

by removing the intermediate E2S0 and all reverse reactions. (b) A cascade of two one-site modification

cycles with the same phosphatase F. The reduced network is obtained by removing the intermediates

S0E and S1F and all reverse reactions. (c) A cascade of one-site modification cycles where the same

kinase E acts in both layers. The reduced network is obtained by removing the reverse reactions and

intermediates S0E, P0S1 and P1F2. (d) Distribute and sequential phosphorylation of a substrate. The

reduced network is obtained by removing the intermediates S1E, S2F and S1F and all reverse reactions.

(e) Phosphorylation of two substrates by the same kinase and phosphatase. The reduced network is

obtained by removing the intermediates S0E and P1F and all reverse reactions. (f) Phosphorylation of

a substrate with two sites catalyzed by the same kinase and two different phosphatases. The reduced

network is obtained by removing all reverse reactions and the intermediates S1F1 and S2F2.
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5 Discussion

All the steps of our procedure to determine the stability are symbolic and therefore provide
computer-assisted proofs for bistability. In the most favorable scenario where Theorem 2
applies, the number of unstable and exponentially stable steady states is completely de-
termined, and question (3) in the Introduction is answered. In particular, if the reduced
univariate equation has at least three solutions and the first steady state is exponentially
stable, the parameter region of bistability agrees with the parameter region giving three
positive steady states. Finding the latter poses a simpler (though still hard) challenge,
which can be addressed using recent methods [10, 6].

Under mass-action kinetics, reduction of the steady state equations to one polyno-
mial can in principle be achieved using Groebner bases and invoking the Shape Lemma
[13]. However, positivity is not addressed and the interval E in Proposition 4 is rarely
explicit. Reduction to one polynomial arises often after exploiting the inherent linearity
the equations have [22].

In our procedure, the Hurwitz criterion can be replaced by other criteria of algebraic
nature, namely the Liénard-Chipart criterion in [14] or checking whether the matrix Qx∗

is both a P-matrix and sign-symmetric. However, these criteria can only be used to assert
exponential stability (see Appendix B, where these criteria are applied to the network in
Eq. (4)).

We have illustrated with numerous realistic examples that our approach determines
bistability after performing network reduction. To our knowledge, this is a new result for
all networks in Fig. 4 but network (d). For this one, bistability was formally proven in
[26] using methods from geometric singular perturbation theory and the accurate study
of a reduced network. We see our approach as a big step towards the automatic detection
of bistability in open parameter regions, which relies on purely algebraic manipulations
instead of advanced analytic arguments. Although the approach is applicable to arbi-
trary ODE systems, the special structure of the systems arising from reaction networks,
specifically linearity, the existence of conservation laws and reduction techniques, make
the approach particularly suited for this scenario.

Methods. All computations were made in Maple 2019. We first compute the Hurwitz
determinants of a generic degree n polynomial and then evaluate at the coefficients of
qx(λ). We disregarded the Routh table from the package DynamicSystems for using more
memory.
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Appendices

In the Appendix A we provide the proofs of the results in the main text, in Appendix B
expand on the stability criteria, and finally in Appendix C provide the details of the
examples.

A Proofs of the results in the main text

We prove here the results in the main text. For completeness, we include the notation
and the statements here, sometimes in an expanded form.

A.1 Proof of Proposition 3

Consider a matrix R0 ∈ Rn×s whose columns form a basis of S. This basis gives the system
of coordinates in S. Therefore, given coordinates z = (z1, . . . , zs) in S, the vector R0z
is the vector of coordinates in the canonical basis of Rn. Conversely, selecting a matrix
R1 ∈ Rs×n such that R1R0 = Is×s, we can write a vector x ∈ S given in the canonical
basis of Rn, as a vector in local coordinates, by doing the product R1x.

Using these matrices, the ODE system restricted to (x∗+S)∩Rn
≥0 in local S coordinates

is
ż = R1f(R0z + x∗)

after translating the steady state x∗ to the origin. The Jacobian matrix associated with
this system at 0 is R1Jf (x

∗)R0. The following proposition shows some basic properties of
R1Jf (x

∗)R0.
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Proposition 3. Consider a reaction network with rate function f(x) = Nv(x). Let
R0 ∈ Rn×s and R1 ∈ Rs×n be matrices such that the columns of R0 form a basis of the
stoichiometric subspace S, and R1R0 = Is×s. The following statements hold:

• R1Jf (x
∗)R0 = LJv(x

∗)R0, where L ∈ Rs×m is the matrix such that N = R0L. In
particular, R1Jf (x

∗)R0 does not depend on the choice of R1.

• If R0, R
′
0 ∈ Rn×s are two matrices with column span S, and L,L′ are as in (i) for

R0, R
′
0 respectively, then the matrices L′Jv(x∗)R′0 and LJv(x

∗)R0 are similar.

• For a positive steady state x∗, the characteristic polynomials pJf (λ) and pLJv(x∗)R0(λ)
satisfy pJf (λ) = λn−spLJv(x∗)R0(λ) for any choice of R0.

• The independent term of pLJv(x∗)R0(λ) (or the coefficient of degree n− s of pJf (λ))
equals (−1)s det(JFT

(x∗)), with FT given in the main text, for any choice of row-
reduced matrix of conservation laws W .

Proof. (i) Since the columns of N belong to S, we can uniquely write N = R0L with
L ∈ Rs×m. Given that Jf (x) = NJv(x), we have

R1Jf (x
∗)R0 = R1NJv(x

∗)R0 = R1R0LJv(x
∗)R0 = LJv(x

∗)R0.

(ii) Let M ∈ Rs×s be the matrix of change of basis from R0 to R′0 such that R0M = R′0.
From N = R′0L

′ = R0L, it follows that R0ML′ = R0L and thus L′ = M−1L. This gives

L′Jv(x
∗)R′0 = M−1LJv(x

∗)R0M,

which implies that L′Jv(x∗)R′0 and LJv(x
∗)R0 are similar.

(iii) Extend the matrix R0 to a square matrix R ∈ Rn×n by adding columns such that
R has full rank n. Then the eigenvalues of the matrices Q = R−1Jf (x∗)R and Jf (x

∗)

coincide. We choose R1 as the first s rows of R−1 =

(
R1

R′1

)
. Then R1R0 = Is×s and

R′1R0 = 0. Since Im(Jf (x
∗)) ⊆ S, the column span of Jf (x

∗) and R0 agree, and hence
R′1Jf (x

∗) = 0. Then, the matrix Q is for the form

Q =

(
R1

R′1

)
Jf (x

∗)
(
R0 R′0

)
=

(
R1Jf (x

∗)
0

)(
R0 R′0

)
=

(
R1Jf (x

∗)R0 R1Jf (x
∗)R′0

0 0

)
.

Clearly, the characteristic polynomial pQ(λ) is equal to λn−spR1Jf (x∗)R0(λ). Using R1Jf (x∗)R0 =

LJv(x
∗)R0, this concludes the proof of (iii).

(iv) was proven in [38], Proposition 5.3.

A.2 Proof of Proposition 4

We now turn into the proof of Proposition 4, whose statement we recall here.
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Proposition 4. Let W ∈ Rd×n, T ∈ Rd be fixed and consider FT as in the main text.
Assume that there exist an open interval E ⊆ R, a differentiable function ϕ : E → Rn

>0,
and indices i, j such that FT,`(ϕ(z)) = 0 for all ` 6= j and ϕ′i(z) 6= 0. Then, the set of
positive solutions of the system FT (x) = 0 contains the solutions to

FT,j(ϕ(z)) = 0, x` = ϕ`(z), ` = 1, . . . , n and z ∈ E, (9)

and for a positive steady state x∗ = ϕ(z) it holds

det(JFT
(x∗)) =

(−1)i+j

ϕ′i(z)
(FT,j ◦ ϕ)′(z) det(JFT

(x∗)J,I),

where I = {1, . . . , n} \ {i} and J = {1, . . . , n} \ {j}.

Proof. In order to prove this identity, we make first three observations that rely on the
definition of ϕ and on the chain rule for multivariate functions:

(1) By hypothesis, ϕ(z) = (ϕ1(z), . . . , ϕn(z)). Therefore, ϕ′(z) = (ϕ′1(z), . . . , ϕ′n(z)).

(2) Since FT,`(ϕ(z)) = 0 for all ` 6= j, we have that (FT ◦ϕ)(z) is a vector with zeros in
every entry except for the j-th entry, which is equal to (FT,j ◦ ϕ)(z). This implies
that (FT ◦ ϕ)′(z) is also a vector with zero in every entry except in the j-th, that is
equal to (FT,j ◦ ϕ)′(z).

(3) By the chain rule (FT ◦ ϕ)′(z) = JFT
(ϕ(z))ϕ′(z).

From observations (2) and (3) we have that

JFT
(ϕ(z))ϕ′(z) = (0, . . . , 0, (FT,j ◦ ϕ)′(z), 0, . . . , 0)

tr
, (10)

which means that the linear combination of the columns of JFT
(ϕ(z)) given by the entries

of ϕ′(z) is equal to the vector on the right side of the equation. Now, using observation
(1), we compute det(JFT

(x∗)). Indeed, denoting by J `FT
the `-th column of JFT

, (10) gives

ϕ′i(z)J iFT
(ϕ(z)) = (0, . . . , 0, (FT,j ◦ ϕ)′(z), 0, . . . , 0)

tr −
n∑

k=1,k 6=i
ϕ′k(z)JkFT

(ϕ(z)).

Let ĴFT
(x∗) be the matrix obtained by replacing the i-th column of JFT

(ϕ(z)) by the
vector (

0, . . . , 0,
(FT,j ◦ ϕ)′(z)

ϕ′i(z)
, 0, . . . , 0

)tr
.

Then, det(JFT
(ϕ(z))) and det

(
ĴFT

(ϕ(z))
)

agree. Now, expanding the determinant of

ĴFT
(ϕ(z)) along the i-th column gives

det(JFT
(x∗)) =

(−1)i+j

ϕ′i(z)
(FT,j ◦ ϕ)′(z) det(JFT

(x∗)J,I).

This concludes the proof.
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A.3 Proof of Theorem 2 and Lemma 1

Theorem 2. Consider a reaction network and fix T . Let E , ϕ, i, j, I, J be as in Proposi-
tion 4. Assume that

[itemsep=0pt]

• the sign of 1
ϕ′i(z)

det(JFT
(ϕ(z))J,I) is independent of z ∈ E and is nonzero, and

• the first s − 1 Hurwitz determinants of qx∗(λ) are positive for all positive steady
states x∗.

If z1 < · · · < z` are the positive solutions to the equation FT,j(ϕ(z)) = 0, and all have
multiplicity one, then either ϕ(z1), ϕ(z3), . . . are exponentially stable and ϕ(z2), ϕ(z4), . . .
are unstable, or the other way around. Specifically, ϕ(z1) is exponentially stable if

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I) > 0,

and unstable if it is negative.

Proof. By the second hypothesis, the first s−1 Hurwitz determinants are positive, so the
stability only depends on the sign of the last Hurwitz determinant, which as discussed
in the main text, agrees with the sign of (−1)s det(JFT

(ϕ(z))). According to Proposi-

tion 4, it further coincides with the sign of (−1)s+i+j

ϕ′i(z)
(FT,j ◦ ϕ)′(z) det(JFT

(ϕ(z))J,I). Since

det(JFT
(ϕ(z))J,I) has a constant sign for every z ∈ E, the sign of the last Hurwitz determi-

nant changes when the sign of (FT,j ◦ϕ)′(z) does, and this is the derivative of a univariate
differentiable function whose real positive roots z1 < · · · < z` have multiplicity one and are
ordered in an increasing way. Given that (FT,j◦ϕ) is differentiable, the sign of its derivative
evaluated at consecutive roots alternates, that is (FT,j ◦ϕ)(z1)

′ > 0, (FT,j ◦ϕ)(z3)
′ > 0, . . .

and (FT,j ◦ ϕ)(z2)
′ < 0, (FT,j ◦ ϕ)(z4)

′ < 0, . . . or the other way around.
In our setting this means that, once the sign of (FT,j◦ϕ)′(zk) is multiplied by (−1)s+i+j

and by the sign of 1
ϕ′i(z)

det(JFT
(ϕ(z))J,I), either ϕ(z1), ϕ(z3), . . . are exponentially stable

and ϕ(z2), ϕ(z4), . . . are unstable, or the other way around. In particular, if the sign of
(FT,j ◦ ϕ)(z1)

′ times the sign of (−1)s+i+j 1
ϕ′i(z)

det(JFT
(ϕ(z))J,I) is positive, then ϕ(z1) is

exponentially stable.

Lemma 1. Under the assumptions of Theorem 2, assume (FT,j ◦ϕ)(z) = a(z)
b(z)

is a rational

function in z such that b(z) is positive in E. Then the zeros of (FT,j ◦ ϕ)(z) agree with
the roots of a(z) and the sign of (FT,j ◦ ϕ)′(z∗), and a′(z∗) agree for all z∗ ∈ E such that
a(z∗) = 0.

Proof. The first part is straightforward, since the denominator of (FT,j ◦ ϕ)(z) does not

vanish in E . For the second part, we have FT,j(ϕ(z∗))′ = a′(z∗)b(z∗)−a(z∗)b′(z∗)
b(z∗)2 = a′(z∗)

b(z∗) , and

the conclusion follows from the fact that b(z∗) > 0.
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B Other algebraic criteria for stability

In this section we discuss two other criteria to decide the stability of the steady states.
Similarly to the Hurwitz criterion, the Liénard-Chipart criterion in [14], determines

whether all the roots of a polynomial have negative real part, and requires a smaller
amount of computations than the Hurwitz criterion. Before introducing the criterion, we
need some ingredients.

Definition 1. • The Bezout matrix of two polynomials h(x) = hnx
n + hn−1xn−1 +

· · ·+ h1x+ h0 and g(x) = gmx
m + gm−1xm−1 + · · ·+ g1x+ g0 with n ≥ m, denoted

by Bh,g, is defined as the representation matrix of the bilinear form given by

B(h, g;x, y) =
h(x)g(y)− h(y)g(x)

x− y =
n−1∑

i,j=0

bikx
iyk,

that is, Bh,g := (bik). This is a symmetric matrix of size n× n.

• A square matrix A ∈ Rn×n is called a P-matrix if all its principals minors are
positive, that is, det(AI,I) > 0 for every subset I ⊆ {1, . . . , n}. If A is symmetric,
this is equivalent to A being positive definite.

We now present the first additional stability criterion.

Criterion 2 (Liénard-Chipart). All the roots of a polynomial p(x) = xs + ps−1xs−1 +
. . .+ p1x+ p0 with pi ∈ R and p0 6= 0 have negative real part if and only if, after writing
p(x) = h(x2) + xg(x2), the Bezout matrix Bh,g of h and g is positive definite and pi > 0
for i = 1, . . . , s.

In this criterion the polynomials h and g are associated with the even and odd parts
of p respectively. Note that the degrees of h and g are at most b s

2
c, therefore the size of

Bh,g is b s
2
c. Additionally, since Bh,g is symmetric, Bh,g is positive definite if and only if it

is a P-matrix.
Unlike the Hurwitz criterion, Liénard-Chipart does not give a result regarding insta-

bility. If Bh,g is not a P-matrix, it is not possible to determine whether the eigenvalues
that do not have negative real part, have positive or zero real part.

In order to apply the criterion to the running example in the main text (Eq. (4)), we
write qx(λ) as h(λ2) + λg(λ2), with

h(λ) = λ+ κ1κ2x2 + κ2κ3x3 + κ1κ3 and g(λ) = κ2x2 + κ2x3 + κ1 + κ3.

The Bezout matrix is then Bh,g = (x2 + x3)κ2 + κ1 + κ3, which is clearly a P-matrix.
By the Liénard-Chipart criterion, we conclude that all the roots of qx(λ) have negative
real part, recovering thereby that the only positive steady state in each stoichiometric
compatibility class is exponentially stable.

The Liénard-Chipart criterion is the most efficient if we consider the amount of deter-
minants that have to be computed to reach a decision. Given that the Bezout matrix is
symmetric, to check that is positive definite, it is only necessary to compute the principal
minors and check whether they are positive. Thus the required amount of determinants
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is at most
∑bn+1

2
c

i=0

(bn+1
2
c

i

)
. Although this criteria computes the smallest amount of deter-

minants, for some examples, the entries of the Bezout matrix are larger than the entries
of the Jacobian. In those cases the memory of a regular PC is still not enough to store
the computations.

We conclude the list of stability criteria of algebraic nature with one more criterion,
which does not rely on the computation of the characteristic polynomial. For a square
matrix A, we say that A is sign symmetric if det(AI,J) det(AJ,I) ≥ 0 for every I, J ⊂
{1, . . . , n} with the same cardinality.

Criterion 3 (P-matrices that are sign symmetric). If a square matrix A is both a P-matrix
and sign symmetric, then all its eigenvalues have positive real part.

With this criterion, proved in [8], if −A is a P-matrix and sign-symmetric, then all its
eigenvalues have negative real part. For reaction networks, we apply the criterion to the
matrix −Qx. In the running example in the main text, we compute the minors of size
1 and 2 of A = −Qx. The minors of size 1 are the entries of the matrix, which are all
positive. The only minor of size 2 is

det(A) = κ1κ2x2 + κ2κ3x3 + κ1κ3.

All minors are polynomials that are positive for all x ∈ R4
>0 and positive κ. Therefore

−Qx is a P-matrix and sign symmetric. Hence, with this new criterion we recover the
conclusion that the only positive steady state is exponentially stable.

While the Hurwitz and Liénard-Chipart criteria are applied to the characteristic poly-
nomial of LJv(x

∗)R0, which is independent of the choice of R0, Criterion 3 is applied
directly to the matrix −LJv(x∗)R0. By Proposition 3, two different choices of R0 give rise
to two similar matrices. However, the properties of being P-matrix and sign symmetric
are not preserved on similar matrices. As a small example consider

A =

(
2 1
3 4

)
and B =

(
−1 −4
3 7

)
;

these matrices are similar through M =

(
1 1
0 1

)
,but A is both a P-matrix and sign

symmetric and B is neither.
A comparison of the amount of operations required for each stability criterion shows

that deciding whether a matrix is a P-matrix and sign-symmetric requires the largest

amount of operations. In this case, all
∑s

i=1

(
s
i

)2
minors of the matrix must be computed,

which requires the storage of a large amount of information given that the entries of the
Jacobian are typically polynomials.

C Examples

In this section we provide extra details on the examples of the main text. For more details
on the computations, you may request the Maple file to the authors.
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C.1 Hybrid histidine kinase

We consider the following network with mass-action kinetics

HK00
κ1−−→ HKp0

κ2−−→ HK0p
κ3−−→ HKpp HK0p + Htp

κ4−−→ HK00 + Htpp

Htpp
κ6−−→ Htp HKpp + Htp

κ5−−→ HKp0 + Htpp.

We rename the species as follows: X1=HK00, X2=HKp0, X3=HK0p, X4=HKpp, X5=Htp
and X6=Htpp. The concentration of the species Xi is denoted by xi. With mass-action
kinetics, the associated ODE system is

dx1
dt

= −κ1x1 + κ4x3x5
dx4
dt

= κ3x3 − κ5x4x5
dx2
dt

= κ1x1 − κ2x2 + κ5x4x5
dx5
dt

= −κ4x3x5 − κ5x4x5 + κ6x6
dx3
dt

= −κ3x3 + κ2x2 − κ4x3x5 dx6
dt

= κ4x3x5 − κ6x6 + κ5x4x5.

The conservation laws of the system are

T1 = x1 + x2 + x3 + x4 T2 = x5 + x6.

Hence

FT (x) =




x1 + x2 + x3 + x4 − T1
κ5x4x5 + κ1x1 − κ2x2
−κ4x3x5 + κ2x2 − κ3x3
−κ5x4x5 + κ3x3
x5 + x6 − T2

κ4x3x5 + κ5x4x5 − κ6x6



.

Here s = 4. The existence of three positive steady states for this network was established
in [31]. We compute qx(λ) and the Hurwitz determinants in Maple and obtain that all
but the last are polynomials in x and κ with positive coefficients, hence positive when
evaluated at a positive steady state.

We proceed to decide whether Theorem 2 applies. In [31], it was shown that the
assumptions of Proposition 4 hold with i = j = 5, ϕ5(z) = z and FT,5 corresponds to the
conservation law with T2. That is, the solutions to the four steady state equations together
with the conservation law associated with T1 can be parametrized by a function ϕ that
only depends on z = x5 and whose domain is E = R>0. The denominator of (FT,5 ◦ ϕ)(z)
is positive and its numerator is a polynomial of degree 3 in z, which can have 1, 2 or 3
positive roots, depending on the choice of parameters. Additionally, det(JFT

(ϕ(xi))J,I) is a
rational function with all coefficients positive. Thus, we are in the situation of Theorem 2
and can employ Lemma 1. Since the independent term of the numerator of (FT,5 ◦ ϕ)(z)

is negative, its first root has positive derivative. Further, the sign of (−1)s+i+j

ϕ′5(z)
= (−1)4+5+5

is +1, and hence, the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is positive as well. We conclude, using Theorem 2, that whenever the network has three
positive steady states coming from the roots z1 < z2 < z3 of (FT,5 ◦ϕ)(z), then the steady
states ϕ(z1) and ϕ(z3) are exponentially stable and the steady state ϕ(z2) is unstable.
We have shown that this network displays bistability whenever there are three positive
steady states.
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C.2 Two substrate enzyme catalysis

We consider now the following network with mass-action kinetics

E + S1

κ1−−⇀↽−−
κ2

ES1 E + S2

κ3−−⇀↽−−
κ4

ES2 S2 + ES1

κ5−−⇀↽−−
κ6

ES1S2 ES1S2

κ7−−⇀↽−−
κ8

E + P S1 + ES2

κ9−−⇀↽−−
κ10

ES1S2.

This network consists of an enzyme E that binds two substrates, S1 and S2, in order
to catalyze the reversible conversion to the product P . The binding is unordered. It
was proven in [10] that this network has a unique steady state in each stoichiometric
compatibility class for every set of reaction rate constants. We now prove that this steady
state is exponentially stable. First, denote the species as X1=E, X2=S1, X3=ES1, X4=S2,
X5=ES2, X6=ES1S2 and X7=P. The concentration of species Xi is denoted by xi. With
this notation the ODE system is

dx1

dt = −κ1x1x2 − κ3x1x4 − κ10x1x7 + κ2x3 + κ4x5 + κ9x6
dx5

dt = κ3x1x4 − κ8x2x5 − κ4x5 + κ7x6
dx2

dt = −κ1x1x2 − κ8x2x5 + κ2x3 + κ7x6
dx6

dt = κ5x3x4 + κ8x2x5 + κ10x1x7
dx3

dt = κ1x1x2 − κ5x3x4 − κ2x3 + κ6x6 − κ6x6 − κ7x6 − κ9x6
dx4

dt = −κ3x1x4 − κ5x3x4 + κ4x5 + κ6x6
dx7

dt = −κ10x1x7 + κ9x6,

and the conservation laws are

x1 + x5 + x5 + x6 = T1, x2 + x3 + x6 + x7 = T2 and x4 + x5 + x6 + x7 = T3.

With this choice of conservation laws we have

FT (x) =




x1 + x5 + x5 + x6 − T1
x2 + x3 + x6 + x7 − T2

κ1x1x2 − κ5x3x4 − κ2x3 + κ6x6
x4 + x5 + x6 + x7 − T3

κ3x1x4 − κ8x2x5 − κ4x5 + κ7x6
κ5x3x4 + κ8x2x5 + κ10x1x7 − κ6x6 − κ7x6 − κ9x6

−κ10x1x7 + κ9x6




.

Here s = 4. We compute qx(λ) and the Hurwitz determinants in Maple, and find that all
but the last have all coefficients positive, and thus are positive.

We find next a positive parametrization by solving the steady state equations in the
variables x3, x5, x6, x7 following the methods proposed in [22, 10]:

x3 =
x1x2(κ1κ6κ8x2 + κ3κ6κ8x4 + κ1κ4κ6 + κ1κ4κ7)

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
x5 =

x1x4(κ1κ5κ7x2 + κ3κ5κ7x4 + κ2κ3κ6 + κ2κ3κ7)

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7

x6 =
x1x2x4(κ1κ5κ8x2 + κ3κ5κ8x4 + κ1κ4κ5 + κ2κ3κ8)

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
x7 =

x2x4κ9(κ1κ5κ8x2 + κ3κ5κ8x4 + κ1κ4κ5 + κ2κ3κ8)

(κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7)κ10
.

After evaluation of the independent term of qx(λ) at the parametrization, H4 becomes
positive. We conclude that for any choice of reaction rate constants, the network for two
substrate enzyme catalysis has exactly one positive steady state in each stoichiometric
compatibility class, which is exponentially stable.

C.3 Gene transcription network

We consider now the following gene transcription network shown in the main text:
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X1
κ1−−→ X1 + P1 X2

κ2−−→ X2 + P2 P1
κ3−−→ 0 P2

κ4−−→ 0

X2 + P1

κ5−−⇀↽−−
κ6

X2P1 2 P2

κ7−−⇀↽−−
κ8

P2P2 X1 + P2P2

κ9−−⇀↽−−
κ10

X1P2P2.

We denote the species as X1 =X1, X2 =X2, X3=P1, X4= P2, X5 = X2P1, X6 = P2P2,
and X7 = X1P2P2 and denote their concentrations with lower case letters. Additionally,
we are under the assumption of mass-action kinetics. It was proven in [10] that for each
set of positive reaction rate constants there is a stoichiometric compatibility class that
contains at least two positive steady states. The ODE system is

dx1
dt

= −κ9x1x6 + κ10x7
dx2
dt

= −κ5x2x3 + κ6x5
dx3
dt

= −κ5x2x3 + κ1x1 − κ3x3 + κ6x5
dx4
dt

= −2κ7x
2
4 + κ2x2 − κ4x4 + 2κ8x6

dx5
dt

= κ5x2x3 − κ6x5 dx6
dt

= κ7x
2
4 − κ9x1x6 − κ8x6 + κ10x7

dx7
dt

= κ9x1x6 − κ10x7,

and the conservation laws are

x1 + x7 = T1 and x2 + x5 = T2.

These give rise to the function FT (x):

FT (x) =




x1 + x7 − T1
x2 + x5 − T2

−κ5x2x3 + κ1x1 − κ3x3 + κ6x5
−2κ7x

2
4 + κ2x2 − κ4x4 + 2κ8x6
κ5x2x3 − κ6x5

κ7x
2
4 − κ9x1x6 − κ8x6 + κ10x7

κ9x1x6 − κ10x7




.

Here s = 5. We find qx(λ) and compute the 5 Hurwitz determinants for x ∈ R7
>0. We

find that H3, H4, H5 have coefficients of both signs. We proceed to find a parametrization
by solving the steady state equations in x3, . . . , x7, which gives:

x3 =
κ1x1
κ3

, x4 =
κ2x2
κ4

, x5 =
κ1κ5x1x2
κ3κ6

, x6 =
κ22κ7x

2
2

κ24κ8
, x7 =

κ22κ7κ9x1x
2
2

κ24κ8κ10
.

After evaluating H3, H4 and H5 in this parametrization, H3 and H4 become rational
functions in x1, x2 and κ with all coefficients positive. Hence they are positive as well.

This means that the stability of the steady state is determined by the sign of H5. We
check whether we can apply Theorem 2. By solving FT (x) = 0 in x2, . . . , x7 after removal
of the conservation law with total amount T1, we obtain

x2 =
κ3κ6T2

κ1κ5x1 + κ3κ6
, x3 =

κ1x1
κ3

, x4 =
κ2κ3κ6T2

(κ1κ5x1 + κ3κ6)κ4
,

x5 =
κ1κ5x1T2

κ1κ5x1 + κ3κ6
, x6 =

κ22κ
2
3κ

2
6κ7T

2
2

(κ1κ5x1 + κ3κ6)2κ24κ8
, x7 =

κ22κ
2
3κ

2
6κ7κ9x1T

2
2

(κ1κ5x1 + κ3κ6)
2 κ24κ8κ10

.
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These expressions define ϕ, with z = x1, ϕ1(z) = z and E = R>0. By inserting these
expressions into the conservation law with T1, we conclude that the solutions of FT (x) = 0
are in one to one correspondence with the zeroes of the function

(FT,1 ◦ ϕ)(z) =
1

(κ1κ5z + κ3κ6)2κ24κ8κ10

[
κ21κ

2
4κ

2
5κ8κ10z

3 + (−T1κ1κ5 + 2κ3κ6)κ1κ
2
4κ5κ8κ10z

2+

(T 2
2 κ

2
2κ

2
3κ

2
6κ7κ9 − 2T1κ1κ3κ

2
4κ5κ6κ8κ10 + κ23κ

2
4κ

2
6κ8κ10)z − T1κ23κ24κ26κ8κ10

]

The numerator of this function has degree 3 in z, so using Lemma 1, the maximum
number of positive steady states in each stoichiometric compatibility class is 3. We next
verify that the first hypothesis in Theorem 2 is satisfied. Specifically,we compute

1

ϕ′i(z)
det(JFT

(ϕ(z))J,I) = det(JFT
(ϕ(z)){2,...,7},{2,...,7}) = −(κ1κ5x1 + κ3κ6)κ4κ8κ10 < 0.

Since the sign of this polynomial is constant in E , we apply Theorem 2. We have that the
sign of

(−1)s+1+1

ϕ′1(z1)
(FT,1 ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is positive since s+ i+ j = 7 and the sign of (FT,1 ◦ϕ)′(z1) is positive as the independent
term of the numerator of (FT,1 ◦ ϕ)(z1) is negative. Therefore, the stability of the steady
states alternate with z starting with an exponentially stable steady state. Specifically, if
a stoichiometric compatibility class has one positive steady state, then it is exponentially
stable. If it has three positive steady states, then two of them are exponentially stable
and the other one is unstable. Bistability is guaranteed whenever the network has three
positive steady states.

C.4 Monostationary networks from Fig. 3 in the main text

Networks (1) to (4) are straightforward to analyze, since all coefficients of the Hurwitz
determinants in x and κ are positive; hence the Hurwitz determinants are positive for all
x ∈ Rn

>0 and κ ∈ Rm
>0.

For networks (5) and (6) the computation was interrupted as it took long. In both
networks s = 6, and the first four Hurwitz determinants could be computed. These
determinants are polynomials in κ and x with positive coefficients, thus they are positive
for every positive steady state. In order to compute H5, we rely on an identity that holds
for the Hurwitz determinants of a generic polynomial of degree 6. Namely, for a generic
polynomial h(t) = a6t

6 +a5t
5 +a4t

4 +a3t
3 +a2t

2 +a1t+a0, the fifth Hurwitz determinant
can be written in terms of the previous ones as follows

H5 = a1H4 + a0(−a0a35 + a1a5H2 − a3H3).

With this identity, we analyze the sign of the coefficients of H5 by studying separately
the coefficients of A = a0(−a0a35 + a1a5H2 − a3H3) and B = a1H4 after substituting ai
for the coefficient of λi in qx(λ). First note that the coefficients of B are positive because
both a1 and H4 are polynomials with positive coefficients. Now, to study the sign of A we
identify each term καx

α with a tuple of the form (κα, α), that is, each term corresponds to
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a tuple whose first entry is its coefficient and the other entries correspond to the powers
of the variables x1, . . . , x11 respectively. With this identification it is possible to store the
polynomial using less memory and the sign of each coefficient can be explored by studying
the first entry of each tuple. Note that each κα is a polynomial in the rate constants κ;
furthermore, after analyzing their sign we found that these polynomials have negative
coefficients. This implies that if H5 has terms with negative coefficients, they come from
monomials in A. We use this to find the coefficients of H5 by adding only monomials of
B that have the same exponents to monomials in A. In networks (5) and (6) this meant
that we were analyzing only 24196 and 27982 coefficients instead of 37319 and 36970
coefficients respectively. After these computations we found that H5 is a polynomial with
positive coefficients. Therefore, positive for every positive steady state.

Knowing this about H5, we also conclude that H6 = a0H5 is a polynomial with
positive coefficients and the unique steady state in each stoichiometric compatibility class
is exponentially stable for every set of parameters. Note that in these computations we
do not need to evaluate at a positive parametrization, meaning all Hurwitz determinants
are positive for arbitrary positive κ and x.

C.5 Multistationary networks from Fig. 4 in the main text

We consider now the networks in Fig. 4 in the main text, which all are known to be
multistationary We sketch here why the procedure fails for each network, and how it
applies to the reduced network.

Network (a). This network is the combination of two one-site modification cycles where
the same kinase E activates the phosphorylation process and two different phosphates F1

and F2 catalyze the dephosphorylation process:

S0 + E
κ1−−⇀↽−−
κ2

S0E
κ3−−→ S1 + E S1 + E

κ4−−⇀↽−−
κ5

S1E
κ6−−→ S2 + E

S1 + F1

κ7−−⇀↽−−
κ8

S1F1
κ9−−→ S0 + F1 S2 + F2

κ10−−⇀↽−−
κ11

S2F2
κ12−−→ S1 + F2 ·

The species are renamed as S0 = X1, S1 = X2, S2 = X3, E = X4, F1 = X5, F2 =
X6, S0E = X7, S1E = X8, S1F1 = X9, S2F2 = X10 and their concentrations are denoted
in lower case letters.

Since the polynomial qx(λ) has degree 6, it is necessary to compute 6 Hurwitz deter-
minants. These determinants were computed and their signs were analyzed up to H4, and
they have positive coefficients. However, the analysis of the sign of H5 was interrupted
as it was taking a long time to finish and it was not possible to store the polynomial
in the expanded format in a regular PC. To compute and study this determinant more
effectively, we use a monomial positive parametrization φ of the steady state variety, given
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by

x1 =
(κ2 + κ3)(κ5 + κ6)κ7κ9κ10κ12
κ1κ3κ4κ6(κ8 + κ9)(κ11 + κ12)

x3x5x6
x24

x8 =
κ10κ12

κ6(κ11 + κ12)
x3x6

x2 =
(κ5 + κ6)κ10κ12
κ4κ6(κ11 + κ12)

x3x6
x4

x9 =
(κ5 + κ6)κ7κ10κ12

κ4κ6(κ8 + κ9)(κ11 + κ12)

x3x5x6
x4

x7 =
(κ5 + κ6)κ7κ9κ10κ12

κ3κ4κ6(κ8 + κ9)(κ11 + κ12)

x3x5x6
x4

x10 =
κ10

κ11 + κ12
x3x6.

This parametrization, written with the notation of the manuscript, corresponds to

α =

(
(κ2 + κ3)(κ5 + κ6)κ7κ9κ10κ12
κ1κ3κ4κ6(κ8 + κ9)(κ11 + κ12)

,
(κ5 + κ6)κ10κ12
κ4κ6(κ11 + κ12)

, 1, 1, 1, 1,
(κ5 + κ6)κ7κ9κ10κ12

κ3κ4κ6(κ8 + κ9)(κ11 + κ12)
,

κ10κ12
κ6(κ11 + κ12)

,
(κ5 + κ6)κ7κ10κ12

κ4κ6(κ8 + κ9)(κ11 + κ12)
,

κ10
κ11 + κ12

)
,

B =




1 1 1 0 0 0 1 1 1 1
−2 −1 0 1 0 0 −1 0 −1 0
1 0 0 0 1 0 1 0 1 0
1 1 0 0 0 1 1 1 1 1


 and ξ = (x3, x4, x5, x6).

Using this parametrization and the identification of the monomials with tuples, it was
possible to compute H5(φ). However, the sign of this function remains unclear since it
has coefficients with different signs.

We consider next the reduced network obtained by first removing all the reverse
reactions and then the intermediates S1F1 and S2F2. When removing these intermediates
the reactions S1 + F1 −−→ S1F1 −−→ S0 + F1 and S2 + F2 −−→ S2F2 −−→ S1 + F2 become
S1 + F1 −−→ S0 + F1 and S2 + F2 −−→ S1 + F2 respectively. The reduced network is

S0 + E
τ1−−→ S0E

τ2−−→ S1 + E S1 + E
τ3−−→ S1E

τ4−−→ S2 + E

S1 + F1
τ5−−→ S0 + F1 S2 + F2

τ6−−→ S1 + F2.

The species are now renamed as S0 = X1, S1 = X2, S2 = X3, E = X4, F1 = X5, F2 =
X6, S0E = X7, S1E = X8, and their concentrations are denoted in lower case letters. The
polynomial qx(λ) associated with this network has degree 4 and, when computing the
Hurwitz determinants we have that H1, H2 and H3 are positive. However the sign of H4 is
unclear even after evaluating in a positive parametrization of the steady state variety φ.
In this situation we explore the possibility of applying Theorem 2 to deduce bistability.

The conservation laws of the system are

x1 + x2 + x3 + x7 + x8 = T1, x4 + x7 + x8 = T2, x5 = T3 and x6 = T4.

Taking the indices i1, i2, i3, i4 as 1, 4, 5, 6 respectively, we construct FT as in equation [3]
in the manuscript. The solutions of FT,` = 0 for ` = 2, 3, 4, 5, 6 are written in terms of
z = x2 as

ϕ(z) =

(
τ2τ5T3(τ3z + τ4)z

τ1τ4(τ2T2 − τ5T3z)
, z,

τ3τ4z(τ2T2 − τ5T3z)
τ2τ6T4(τ3z + τ4)

,
τ4(τ2T2 − τ5T3z)
τ2(τ3z + τ4)

, T3, T4,
τ5T3z

τ2
,
τ3(τ2T2 − τ5T3z)z
τ2(τ3z + τ4)

)
,
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for every z ∈ E , where E =
(

0, T2τ2
T3τ5

)
.

Note that ϕ2(z) = z and ϕ′2(z) = 1 6= 0. This means that the positive steady states
in the stoichiometric compatibility class defined by T are in one to one correspondence
with the positive roots of FT,1(ϕ(z)) in E . This rational function, presented below, has as
numerator a polynomial of degree 3.

FT,1(ϕ(z)) =
1

T4τ1τ2τ4τ6(T3τ5z − T2τ2)(τ3z + τ4)

(
−T3τ3τ5(T3τ1τ24 τ5 − T4τ1τ2τ4τ6 + T4τ

2
2 τ3τ6)z

3−

τ4(T1T3T4τ1τ2τ3τ5τ6 − T2T3T4τ1τ2τ3τ5τ6 − T 2
3 T4τ1τ4τ

2
5 τ6 − 2T2T3τ1τ2τ3τ4τ5 + T2T4τ1τ

2
2 τ3τ6 − T3T4τ1τ2τ4τ5τ6

+ 2T3T4τ
2
2 τ3τ5τ6)z

2 + τ2τ4(T1T2T4τ1τ2τ3τ6 − T1T3T4τ1τ4τ5τ6 − T 2
2 T4τ1τ2τ3τ6 − T2T3T4τ1τ4τ5τ6

− T 2
2 τ1τ2τ3τ4 − T2T4τ1τ2τ4τ6 − T3T4τ2τ4τ5τ6)z + T1T2T4τ1τ

2
2 τ

2
4 τ6

)
.

We have already shown that the second hypothesis of Theorem 2 holds. For the first
hypothesis, a straightforward computation shows that

det(JFT
(ϕ(z))J,I) = τ1τ4τ6T4(τ5T3z − τ2T2),

which is negative for every z ∈ E . We further have s = 4, i = 2, j = 1, and the independent
term of the numerator of FT,1(ϕ(z)) is negative, meaning that (FT,j ◦ ϕ)′(z1) > 0. This
gives that the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is (−1)4+1+2(+1)(−1) = 1 positive. Using Theorem 2, we conclude that for every set
of parameters such that FT,1(ϕ(z)) has three roots z1 < z2 < z3 in E , the steady states
ϕ(z1), ϕ(z3) are exponentially stable and ϕ(z2) is unstable.

All that is left is to show that the reduced network admits three positive steady states
in some stoichiometric compatibility class for some choice of τ , or what is the same, that
FT,1(ϕ(z)) admits three roots in E . To this end, we apply the method from [10], which
consists of finding values for the rate constants and concentration variables such that
det(JFT

(φ)), where φ is a parametrization of the steady states, is negative. We have

φ(x3, x4, x5, x6) =

(
τ5τ6x3x5x6
τ1τ3x24

,
τ6x3x6
τ3x4

, x3, x4x, x5, x6,
τ5τ6x3x5x6
τ2τ3x4

,
τ6x3x6
τ4

)
and

det(JFT
(φ)) = τ1τ2τ

2
6x3x

2
6 − τ1τ4τ5τ6x3x5x6 + 2

τ2τ5τ
2
6x3x5x

2
6

x4
+
τ4τ

2
5 τ

2
6x3x

2
5x

2
6

τ3x24
+ τ1τ2τ3τ6x

2
4x6 + τ1τ4τ5τ6x4x5x6 + τ1τ2τ3τ4x

2
4 + τ1τ2τ4τ6x4x6 + τ2τ4τ5τ6x5x6.

By letting τi = 1, for i = 1, . . . , 6 and x3 = 100, x4 = 10, x5 = 10, x6 = 1, this determinant
is −280, which is negative. This implies that the stoichiometric compatibility class con-
taining φ(100, 10, 10, 1) has more than one positive steady state. Specifically, this class
corresponds to T1 = 320, T2 = 210, T3 = 10, T4 = 1. Either by solving the steady state
equations or finding the roots of FT,1(ϕ(z)) for this choice of parameters, we confirm that
the system has three positive steady states.

Therefore, the reduced network is bistable for all choice of parameter values for which
there are three positive steady states, and the original network admits bistability in some
region of the parameter space.
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Network (b). This network is the combination of two one-site modification cycles in a
cascade, where the same phosphatase F acts in both layers.

S0 + E
κ1−−⇀↽−−
κ2

S0E
κ3−−→ S1 + E S1 + F

κ4−−⇀↽−−
κ5

S1F
κ6−−→ S0 + F

P0 + S1

κ7−−⇀↽−−
κ8

P0S1
κ9−−→ P1 + S1 P1 + F

κ10−−⇀↽−−
κ11

P1F
κ12−−→ P0 + F.

We rename the species as E = X1, F = X2, S0 = X3, S1 = X4, P0 = X5, P1 = X6, S0E =
X7, S1F = X8, P0S1 = X9, P1F = X10, and their concentrations are denoted by lower case
letters. For this network the polynomial qx(λ) has degree 6; and after some computations
it was possible to prove that H1, H2, H3 are positive polynomials. However, the sign of H4

is unclear and the direct computation of H4(φ) was not feasible as the memory in a regular
PC was not enough. The positive steady state variety has a monomial parametrization φ.
We use the identification of monomials with tuples, to compute and analyze H4(φ) more
efficiently. With the notation of the manuscript φ corresponds to

α =

(
κ4κ6κ10κ12(κ2 + κ3)(κ8 + κ9)

κ1κ3κ7κ9(κ5κ11 + κ5κ12 + κ6κ11 + κ6κ12)
, 1, 1,

(κ8 + κ9)κ10κ12
(κ11 + κ12)κ7κ9

, 1, 1,

κ4κ6κ10κ12(κ8 + κ9)

κ3κ7κ9(κ5κ11 + κ5κ12 + κ6κ11 + κ6κ12)
,

κ4κ10κ12(κ8 + κ9)

κ7κ9(κ5κ11 + κ5κ12 + κ6κ11 + κ6κ12)
,

κ10κ12
κ9(κ11 + κ12)

,
κ10

κ11 + κ12

)
,

B =




2 1 0 2 0 0 2 2 1 1
−1 0 1 0 0 0 0 0 0 0
−1 0 0 −1 1 0 1 −1 0 0
1 0 0 1 0 1 1 1 1 1


 and ξ = (x2, x3, x5, x6).

Using this identification it was possible to compute H4(φ). However, its sign was still
unclear as we encountered both positive and negative coefficients.

We then proceed to reduce the network by removing all reverse reactions and
the intermediates S0E and S1F. That is, the reactions S0 + E −−→ S0E −−→ S1 + E and
S1+F −−→ S1F −−→ S0+F are transformed into S0+E −−→ S1+E and S1+F

τ2−−→ S0+F
respectively. We are left with the following reduced network

S0 + E
τ1−−→ S1 + E S1 + F

τ2−−→ S0 + F

P0 + S1
τ3−−→ P0S1

τ4−−→ P1 + S1 P1 + F
τ5−−→ P1F

τ6−−→ P0 + F.

In this network we rename the species as E = X1, F = X2, S0 = X3, S1 = X4, P0 =
X5, P1 = X6, P0S1 = X9, P1F = X10. Their concentrations are denoted with lower case
letters. The polynomial qx(λ) has degree 4 and, after computing the Hurwitz determi-
nants, we have that H1, H2, H3 are positive. Therefore, the stability of the positive steady
states depends on the sign of H4(φ). In this situation we explore the possibility of applying
Theorem 2 to ensure bistability.

The conservation laws of the system are

x1 = T1, x5 + x6 + x9 + x10 = T2, x3 + x4 + x9 = T3, x2 + x10 = T4.

Taking the indices i1 = 1, i2 = 2, i3 = 3, i4 = 5 we define FT as in equation [3] in
the manuscript. Furthermore, the solutions of FT,` = 0 for ` 6= 5 can be positively
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parametrized in terms of z = x6 as

ϕ(z) =

(
T1,

τ6T4
τ5z + τ6

,
T4τ2τ6((T3τ4 − T4τ6)τ5z + T3τ4τ6)

τ4(T1τ1τ5z + T1τ1τ6 + T4τ2τ6)(τ5z + τ6)
,
T1τ1((T3τ4 − T4τ6)τ5z + T3τ4τ6)

τ4(T1τ1τ5z + T1τ1τ6 + T4τ2τ6)
,

τ5τ6T4τ4(T1τ1τ5z + T1τ1τ6 + T4τ2τ6)z

T1τ1τ3((T3τ4 − T4τ6)τ5z + T3τ4τ6)(τ5z + τ6)
, z,

τ5τ6T4z

τ4(τ5z + τ6)
,
T4τ5z

τ5z + τ6

)

for every z ∈ E , where E = R>0 if T3τ4−T4τ6 > 0 or E =
(

0, T3τ4τ6
−τ5(T3τ4−T4τ6)

)
if T3τ4−T4τ6 ≤

0. Note that the positive steady states in the stoichiometric compatibility class defined
by T are in one to one correspondence with the zeros of FT,5(ϕ(z)), below, contained in
E .

FT,5(ϕ(z)) =
1

T1τ1τ3τ4(T3τ4τ5z − T4τ5τ6z + T3τ4τ6)(τ5z + τ6)

[
T1τ1τ3τ4τ

2
5 (T3τ4 − T4τ6)z3 − T1τ1τ5(T2T3τ3τ

2
4 τ5

− T2T4τ3τ4τ5τ6 − T3T4τ3τ24 τ5 − T3T4τ3τ4τ5τ6 + T 2
4 τ3τ4τ5τ6 + T 2

4 τ3τ5τ
2
6 − 2T3τ3τ

2
4 τ6 + T4τ3τ4τ

2
6

− T4τ24 τ5τ6)z2 − τ4τ6(2T1T2T3τ1τ3τ4τ5 − T1T2T4τ1τ3τ5τ6 − T1T3T4τ1τ3τ4τ5
− T1T3T4τ1τ3τ5τ6 − T1T3τ1τ3τ4τ6 − T1T4τ1τ4τ5τ6 − T 2

4 τ2τ4τ5τ6)z − T1T2T3τ1τ3τ24 τ26 ].

The numerator of this univariate rational function has degree 3 and the denominator
is positive in E . Additionally, ϕ6(z) = z and ϕ′6(z) = 1 6= 0. With this parametrization
where i = 6, j = 5, we have all the elements required in the statement of Theorem 2. We
also know from the analysis of the Hurwitz determinants that the second hypothesis of
Theorem 2 holds. It remains to see that the first hypothesis of the theorem holds, but
this is verified with a simple computation: The polynomial

det(JFT
(ϕ(z))J,I) = −τ3T1τ1((T3τ4 − T4τ6)τ5z + T3τ4τ6)

is negative for every z ∈ E . Using Theorem 2, and the fact that the independent term of
FT,5(ϕ(z)) is negative, we conclude that for every set of parameters such that FT,5(ϕ(z))
has 3 positive roots z1 < z2 < z3 in E , the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is (−1)6+5+4(1)(−1) = 1 positive and thus ϕ(z1), ϕ(z3) are exponentially stable and ϕ(z2)
is unstable.

It remains to see that there is a set of parameters such that the network admits
three positive steady states. To do so, we apply the method from [10] and find a set of
parameters and a steady state such that det(JFT

(φ)) < 0 given a parametrization φ. We
have

φ(x2, x3, x5, x6) =

(
τ2τ5x

2
2x6

τ1τ3x3x5
, x2, x3,

τ5x2x6
τ3x5

, x6,
τ5x2x6
τ4

,
τ5x2x6
τ6

)
and

det(JFT
(φ)) =

1

τ3x3x25

(
τ2τ5x

2
2(τ3τ4τ5x2x3x5x6 − τ3τ4τ5x3x25x6 + τ3τ4τ5x3x5x

2
6 + τ3τ5τ6x2x3x5x6

+ τ3τ5τ6x2x
2
5x6 + τ4τ

2
5x

2
2x

2
6 + τ4τ

2
5x2x

3
6 + τ25 τ6x

2
2x

2
6 + τ3τ4τ6x3x

2
5 + τ3τ4τ6x3x5x6

+ τ4τ5τ6x2x5x6 + τ4τ5τ6x2x
2
6)
)
.

Taking τi = 1 for i = 1, . . . , 6 and x2 = 1, x3 = 10, x5 = 20, x6 = 10 this determinant is
-4500. This implies that the stoichiometric compatibility class containing φ(1, 10, 20, 10)
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has more than one positive steady state. The total amounts defining it are T1 = 1
20
, T2 =

50, T3 = 41
2
, T4 = 11. Using these parameters and solving either FT (x) = 0 or finding the

roots of FT,5(ϕ) we verify that this stoichiometric compatibility class has in fact three
positive steady states.

We conclude that the reduced network is bistable for every set of parameters for which
there are three positive steady states, and the original network admits bistability in some
region of the parameter space.

Network (c). This network is the combination of two one-site modification cycles in a
cascade, where the same kinase E acts in both layers:

S0 + E
κ1−−⇀↽−−
κ2

S0E
κ3−−→ S1 + E

S1 + F1

κ4−−⇀↽−−
κ5

S1F1
κ6−−→ S0 + F1

P0 + S1

κ7−−⇀↽−−
κ8

P0S1
κ9−−→ P1 + S1

P0 + E
κ13−−⇀↽−−
κ14

P0E
κ15−−→ P1 + E

P1 + F2

κ10−−⇀↽−−
κ11

P1F2
κ12−−→ P0 + F2.

The species are renamed as S0 = X1, S1 = X2, P0 = X3, P1 = X4, E = X5, F1 = X6, F2 =
X7, S0E = X8, S1F1 = X9, P0S1 = X10, P1F2 = X11, P0E = X12 and their concentrations
are denoted with lower case letters. For this network, the polynomial qx(λ) has degree
7 and the determinants H1, H2, H3 are positive polynomials. However, the computations
of the other determinants was not possible as there was not enough memory to store the
computations in a regular PC. In this case, we could not parametrize the positive steady
state variety by monomials; therefore, it is not possible to use the identification between
monomials and tuples to analyze the sign of the remaining determinants.

We proceed directly to reduce the network by removing all the reverse reactions
first, and then the intermediates S0E,P0S1 and P1F2. That is, the reactions S0 + E −−→
S0E −−→ S1 + E, P0 + S1 −−→ P0S1 −−→ P1 + S1 and P1 + F2 −−→ P1F2 −−→ P0 + F2

are transformed into S0 + E −−→ S1 + E, P0 + S1 −−→ P1 + S1 and P1 + F2 −−→ P0 + F2

respectively. We are left with the following network

S0 + E
τ1−−→ S1 + E

S1 + F1
τ2−−→ S1F1

τ3−−→ S0 + F1

P0 + S1
τ4−−→ P1 + S1

P0 + E
τ6−−→ P0E

τ7−−→ P1 + E

P1 + F2
τ5−−→ P0 + F2.

The species are renamed as S0 = X1, S1 = X2, P0 = X3, P1 = X4, E = X5, F1 = X6, F2 =
X7, S1F1 = X9, P0E = X12 and their concentrations are denoted by lower case letters.
The polynomial qx(λ) associated to this network has degree 4 and H1, H2, H3 are positive
after evaluating in the following positive parametrization φ of the steady state variety:

φ(x1, x2, x3, x6, x7) =

(
x1, x2, x3,

x2x3(τ1τ4x1 + τ2τ6x6)

τ1τ5x1x7
,
τ2x2x6
τ1x1

, x6, x7,
τ2x2x6
τ3

,
τ6x3τ2x2x6
τ1x1τ7

)
.
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However, the sign of H4 is unclear. We now explore the use of Theorem 2 to ensure
bistability. The conservation laws of the system are

x1 + x2 + x9 = T1, x3 + x4 + x12 = T2, x5 + x12 = T3, x6 + x9 = T4, x7 = T5.

Taking i1 = 1, i2 = 3, i3 = 5, i4 = 6, i5 = 7 we define FT (x) as in equation [3] of the
manuscript. Additionally, the solutions of FT,`(x) = 0 for ` 6= 6 can be parametrized in
terms of z = x3 as

ϕ(z) =
( b1(z)τ3

(τ3τ6z + T3τ1τ7 + τ3τ7)τ4z
,

b2(z)

τ4z(τ6z + τ7)
, z,

(−τ6z2 + (T2τ6 − T3τ6 − τ7)z + T2τ7)

τ6z + τ7
,

T3τ7
τ6z + τ7

,

b1(z)T3τ1τ3τ7
τ2(τ3τ6z + T3τ1τ7 + τ3τ7)b2(z)

, T5,
b1(z)T3τ1τ7

τ4z(τ6z + τ7)(τ3τ6z + T3τ1τ7 + τ3τ7)
,
τ6T3z

τ6z + τ7

)
,

where

b1(z) = (T1τ4 + T5τ5)τ6z
2 + (−T2T5τ5τ6 + T3T5τ5τ6 + T1τ4τ7 + T3τ6τ7 + T5τ5τ7)z − T2T5τ5τ7,

b2(z) = −T5τ5τ6z2 + (T2T5τ5τ6 − T3T5τ5τ6 − T3τ6τ7 − T5τ5τ7)z + T2T5τ5τ7.

The parametrization is positive if and only if b1(z), b2(z) > 0. This happens for every
z ∈ E , where E = (β1, β2) with β1 and β2 the (only) positive roots of the polynomials b1
and b2 respectively.

The steady states in each stoichiometric compatibility class are in one to one correspon-
dence with the roots of FT,6(ϕ(z)) in E . The numerator of this function is a polynomial of
degree 5 and the denominator is positive in E . Additionally, ϕ3(z) = z and ϕ′3(z) = 1 6= 0.
With this parametrization and taking i = 3, j = 6, s = 4, we have all the elements in
the statement of Theorem 2. From the computations before, we know that the first three
Hurwitz determinants are positive and thus, the second hypothesis of the theorem holds.
We only need to verify the first hypothesis of the theorem, but this is done by computing
the required determinant

det(JF (ϕ(z))J,I) =
−τ2(τ3τ6z + T3τ1τ7 + τ3τ7) b2(z)

τ6z + τ7
,

which is negative for every z ∈ E . We are then in the setting of Theorem 2. We need to
decide the sign of (FT,j ◦ ϕ)′(z1) at the first root of the numerator of FT,j ◦ ϕ. Indirect
evaluation of FT,j ◦ ϕ at β1, by isolating T2 from b2(z) = 0 and substitution into FT,j ◦ ϕ,
shows that FT,j ◦ ϕ is negative at β1. Hence the derivative at z1 is positive. We conclude
that for every set of parameters such that FT,6(ϕ(z)) has more than two positive roots
z1, z2, . . ., the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is (−1)3+6+4(1)(−1) = 1 positive. Therefore, the steady states ϕ(z1), ϕ(z3), . . . are expo-
nentially stable and ϕ(z2), . . . are unstable.

It remains to see that there is a set of parameters such that the stoichiometric com-
patibility class in fact contains more than two positive steady states. This is done with
the method presented in [10], that relies on the sign of det(JF (φ)), with φ as above. Ac-
cording to the method, we have to find a set of parameters and a steady state such that
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det(JF (φ)) is negative. The stoichiometric compatibility class containing these steady
states, contains at leas another one. In this network

det(JF (φ)) =− τ1τ 22 τ4τ6x21x22x3x6 + τ1τ2τ3τ5τ6x
2
1x3x6x7 + τ1τ2τ3τ4τ7x

2
1x2x6 + τ1τ2τ3τ5τ7x

2
1x6x7

+ τ1τ
2
2 τ4τ6x1x

3
2x3x6 + τ1τ

2
2 τ4τ7x1x

3
2x6 + τ1τ

2
2 τ4τ6x1x

2
2x3x

2
6 + τ1τ

2
2 τ5τ6x1x

2
2x3x6x7

+ τ1τ
2
2 τ4τ7x1x

2
2x

2
6 + τ1τ

2
2 τ5τ7x1x

2
2x6x7 + τ1τ2τ3τ4τ6x1x

2
2x3x6 + τ1τ2τ3τ4τ7x1x

2
2x6

+ τ1τ
2
2 τ5τ6x1x2x3x

2
6x7 + τ1τ2τ3τ5τ6x1x2x3x6x7 + τ 22 τ5(τ1τ7 + τ3τ6)x1x2x7x

2
6

+ τ1τ2τ3τ5τ7x1x2x6x7 + τ 22 τ3τ6τ7x1x2x
2
6 + τ 32 τ5τ6x

3
2x

2
6x7 + x22τ5x7τ

3
2 τ6x

3
6

+ τ 32 τ6τ7x
3
2x

2
6 + τ 32 τ6τ7x

2
2x

3
6 + τ 22 τ3τ5τ6x

2
2x

2
6x7 + τ 22 τ3τ6τ7x

2
2x

2
6.

Taking τi = 1 for i = 1, . . . , 7 and x1 = 40, x2 = 10, x3 = 1, x6 = 1, x7 = 1, this determi-
nant is −32000. This implies that the stoichiometric compatibility class containing φ(x)
has more than one positive steady state. The total amounts defining the stoichiometric
compatibility class are T1 = 60, T2 = 23

2
, T3 = 1

2
, T4 = 11, T5 = 1. Using these param-

eters and solving either FT (x) = 0 or FT,6(ϕ(z)) = 0 we verify that this stoichiometric
compatibility class has three positive steady states as desired.

We conclude that the reduced network is bistable for every set of parameters for which
there are three positive steady states, and the original network admits bistability in some
region of the parameter space.

Network (d). In this network a kinase E and a phosphatase F act on a substrate S0

and the two sites of its phosphorylation S1 and S2.

E + S0

κ1−−⇀↽−−
κ2

S0E
κ3−−→ E + S1

κ7−−⇀↽−−
κ8

S1E
κ9−−→ S2 + E

F + S2

κ10−−⇀↽−−
κ11

S2F
κ12−−→ F + S1

κ4−−⇀↽−−
κ5

S1F
κ6−−→ F + S0

The species are renamed as E = X1, F = X2, S0 = X3, S1 = X4, S2 = X5, S0E =
X6, S1E = X7, S2F = X8, S1F = X9 and their concentrations are denoted with lower case
letters. In this network the polynomial qx(λ) has degree 6 and, the first three Hurwitz
determinants are polynomials with positive coefficients; therefore, they are positive for
every positive steady state. Regarding the determinants H4 and H5, the sign of H4 is
unclear and the analysis of the sign of H5 was stopped as the computations could not be
stored in a regular PC. In this case, the positive steady state variety can be parametrized
by monomials as follows

x3 =
(κ2 + κ3)κ4κ6κ10κ12(κ8 + κ9)

κ1κ3κ7κ9(κ5 + κ6)(κ11 + κ12)

x22x5
x21

x7 =
κ10κ12

κ9(κ11 + κ12)
x2x5

x4 =
(κ8 + κ9)κ10κ12
κ7κ9(κ11 + κ12)

x2x5
x1

x8 =
κ10

κ11 + κ12
x2x5

x6 =
κ4κ6κ10κ12(κ8 + κ9)

κ3κ7κ9(κ5 + κ6)(κ11 + κ12)

x22x5
x1

x9 =
κ4κ10κ12(κ8 + κ9)

κ7κ9(κ5 + κ6)(κ11 + κ12)

x22x5
x1

.

With the notation of the manuscript, this parametrization φ corresponds to

α =

(
1, 1,

(κ2 + κ3)κ4κ6κ10κ12(κ8 + κ9)

κ1κ3κ7κ9(κ5 + κ6)(κ11 + κ12)
,
(κ8 + κ9)κ10κ12
κ7κ9(κ11 + κ12)

, 1,
κ4κ6κ10κ12(κ8 + κ9)

κ3κ7κ9(κ5 + κ6)(κ11 + κ12)
,

κ10κ12
κ9(κ11 + κ12)

,
κ10

κ11 + κ12
,

κ4κ10κ12(κ8 + κ9)

κ7κ9(κ5κ11 + κ5κ12 + κ6κ11 + κ6κ12)

)
,
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B =




1 0 −2 −1 0 −1 0 0 −1
0 1 2 1 0 2 1 1 2
0 0 1 1 1 1 1 1 1


 and ξ = (x1, x2, x5).

Using the identification between monomials and tuples, it was possible to compute both
H4(φ) and H5(φ) and, after studying their sign, we found that H4(φ) is a positive poly-
nomial, but the sign of H5(φ) was not clear.

We then proceed to reduce the network by removing all the reverse reactions and
the intermediates S1E, S2F and S1F. That is, the reactions S1 + E −−→ S1E −−→ S2 + E,
S2 + F −−→ S2F −−→ S1 + F and S1 + F −−→ S1F −−→ S0 + F become S1 + E −−→ S2 + E,
S2 + F −−→ S1 + F and S1 + F −−→ S0 + F respectively. The reduced network is

S0 + E
τ1−−→ ES0

τ2−−→ S1 + E
τ3−−→ S2 + E

S2 + F
τ4−−→ S1 + F

τ5−−→ S0 + F.

We rename the species as E = X1, F = X2, S0 = X3, S1 = X4, S2 = X5, S0E = X6 and
their concentrations are denoted with lower case letters. The polynomial qx(λ) has degree
3 and, after computing the Hurwitz determinants, it was possible to prove that H1 and
H2 are polynomials with positive coefficients and, thus positive for every positive steady
state. However, the sign of H3 was unclear even after evaluating at the parametrization
φ of the positive steady state variety below;

φ(x1, x2, x3) =

(
x1, x2, x3,

τ1x1x3
τ5x2

,
τ3x

2
1τ1x3

τ4τ5x22
,
τ1x1x3
τ2

)
.

We now check if it is possible to apply Theorem 2 to deduce bistability. The conservation
laws of the system are

x1 + x6 = T1, x2 = T2 and x3 + x4 + x5 + x6 = T3.

Taking i1 = 1, i2 = 2, i3 = 3 we define FT (x) as in equation [3] of the manuscript. The
solutions of FT,`(x) = 0 for ` = 2, . . . , 6 can be parametrized in terms of z = x1 as

ϕ(z) =

(
z, T2,

T 2
2 T3τ2τ4τ5

τ1τ2τ3z2 + T2τ1τ4(T2τ5 + τ2)z + T 2
2 τ2τ4τ5

,
T2T3τ1τ2τ4z

τ1τ2τ3z2 + T2τ1τ4(T2τ5 + τ2)z + T 2
2 τ2τ4τ5

,

T3τ1τ2τ3z
2

τ1τ2τ3z2 + T2τ1τ4(T2τ5 + τ2)z + T 2
2 τ2τ4τ5

,
T 2
2 T3τ1τ4τ5z

τ1τ2τ3z2 + T2τ1τ4(T2τ5 + τ2)z + T 2
2 τ2τ4τ5

)
.

This parametrization is positive for every z ∈ E = R>0 and the positive steady states in
the stoichiometric compatibility class are in one to one correspondence with the positive
roots of FT,1(ϕ(z)). This is a rational function whose numerator is a polynomial of degree
3 and positive denominator:

FT,1(ϕ(z)) =
1

τ1τ2τ3z2 + T2τ1τ4(T2τ5 + τ2)z + T 2
2 τ2τ4τ5

[
τ1τ2τ3z

3 + (T 2
2 τ1τ4τ5 − T1τ1τ2τ3 + T2τ1τ2τ4)z

2+

(−T1T 2
2 τ1τ4τ5 + T 2

2 T3τ1τ4τ5 − T1T2τ1τ2τ4 + T 2
2 τ2τ4τ5)z − T1T 2

2 τ2τ4τ5
]
.

Therefore, there are at most three positive steady states in each stoichiometric compati-
bility class. Additionally ϕ1(z) = z and ϕ′1(z) = 1 6= 0. With this parametrization, where,
i = j = 1 and s = 3, we have all the elements in the statement of Theorem 2. From the
analysis of the Hurwitz determinants we know that the second hypothesis of the theorem
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holds. It remains to see whether the first hypothesis also holds. The determinant that we
have to study is

det(JF (ϕ(z))J,I) = −T 2
2 τ1τ4τ5z − τ1τ2τ3z2 − T2τ1τ2τ4z − T 2

2 τ2τ4τ5,

which is negative for every z ∈ R>0. We are in the setting of Theorem 2 and we conclude
that for every set of parameters such that FT,1(ϕ(z)) has three positive roots z1 < z2 < z3,
the sign of (FT,j ◦ ϕ)′(z1) is positive as the independent term of (FT,j ◦ ϕ)(z) is negative.
Furthermore, the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,j ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is equal to (−1)1+1+3(1)(−1) = 1, which is positive. This implies that the steady states
ϕ(z1), ϕ(z3) are exponentially stable and ϕ(z2) is unstable.

We now verify that there exist a set of parameters such that the network has three
positive steady states. In order to do so, we use the method from [10] and find values for
the parameters and a steady state such that det(JFT

(φ)) is negative. In this case

det(JFT
(φ)) = −τ 21 τ3x21x3 + τ1τ4τ5x1x

2
2 + τ1τ4τ5x

2
2x3 + τ1τ2τ3x

2
1 + τ1τ2τ4x1x2 + τ2τ4τ5x

2
2.

Taking τi = 1 for i = 1, . . . , 5 and x1 = 5, x2 = 1, x3 = 5 this determinant is equal to -84.
This means that the stoichiometric compatibility class containing φ(x) has more than one
positive steady state. The total amounts defining it are T1 = 30, T2 = 1, T3 = 180. Using
these parameters and solving either FT (x) = 0 or FT,1(ϕ(z)) = 0 we prove that there are
three positive steady states in his stoichiometric compatibility class, as desired.

We conclude that the reduced network is bistable for every set of parameters for which
there are three positive steady states, and the original network admits bistability in some
region of the parameter space.

Network (e). In this network two substrates S0 and P0 are phosphorylated by the
same kinase E, and dephosphorylated by the same phosphatase F.

S0 + E
κ1−−⇀↽−−
κ2

S0E
κ3−−→ S1 + E

S1 + F
κ4−−⇀↽−−
κ5

S1F
κ6−−→ S0 + F

P0 + E
κ7−−⇀↽−−
κ8

P0E
κ9−−→ P1 + E

P1 + F
κ10−−⇀↽−−
κ11

P1F
κ12−−→ P0 + F.

We rename the species as E = X1, F = X2, S0 = X3, S1 = X4, P0 = X5, P1 = X6, S0E =
X7, S1F = X8, P0E = X9, P1F = X10, and their concentrations are denoted by lower
case letters. For this network the polynomial qx(λ) has degree 6 and from the 6 Hurwitz
determinants, the first three are positive for every positive steady state. The sign of H4 is
unclear and the analysis of the sign of H5 was interrupted as the expanded computations
could not be stored in a regular PC.
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The positive steady state variety associated with this network can be parametrized by
monomials as follows

x3 =
κ4κ6(κ2 + κ3)

κ1κ3(κ5 + κ6)

x2x4
x1

x8 =
κ10κ12

κ9(κ11 + κ12)
x2x6

x5 =
(κ8 + κ9)κ10κ12
(κ11 + κ12)κ7κ9

x2x6
x1

x9 =
κ4

κ5 + κ6
x2x4

x7 =
κ4κ6

κ3(κ5 + κ6)
x2x4 x10 =

κ10
κ11 + κ12

x2x6.

With the notation of the manuscript, this parametrization φ corresponds to

α =

(
1, 1,

κ4κ6(κ2 + κ3)

κ1κ3(κ5 + κ6)
, 1,

(κ8 + κ9)κ10κ12
(κ11 + κ12)κ7κ9

, 1,
κ4κ6

κ3(κ5 + κ6)
,

κ10κ12
κ9(κ11 + κ12)

,
κ4

κ5 + κ6
,

κ10
κ11 + κ12

)
,

B =




1 0 −1 0 −1 0 0 0 0 0
0 1 1 0 1 0 1 1 1 1
0 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1 0 1


 and ξ = (x1, x2, x4, x6).

Using the identification between monomials and tuples it was possible for us to compute
H4(φ) and H5(φ) and, after studying the signs of their coefficients, we have that H4(φ) is
positive but the sign of H5(φ) is still unclear.

We proceed to reduce the network by removing all the reverse reactions and the
intermediates S0E and P1F. That is, the reactions S0 + E −−→ S0E −−→ S1 + E and
P1 + F −−→ P1F −−→ P0 + F become S0 + E −−→ S1 + E and P1 + F −−→ P0 + F
respectively. The reduced network is

S0 + E
τ1−−→ S1 + E

S1 + F
τ2−−→ S1F

κ3−−→ S0 + F

P0 + E
τ4−−→ P0E

κ5−−→ P1 + E

P1 + F
τ6−−→ P0 + F.

The species are renamed as E = X1, F = X2, S0 = X3, S1 = X4, P0 = X5, P1 = X6, S1F =
X8, P0E = X9 and their concentrations are denoted by lower case letters. The polynomial
qx(λ) associated with this network has degree 4. The Hurwitz determinants H1, H2 and
H3 are positive for every positive steady state. However, the sign of H4 is unclear even
after evaluating at the parametrization φ below:

φ(x1, x2, x4, x6) =

(
x1, x2,

τ2x2x4
τ1x1

, x4,
τ6x2x6
τ4x1

, x6,
τ6x2x6
τ5

,
τ2x2x4
τ3

)
.

We explore the possibility of using Theorem 2 to ensure bistability.
The conservation laws of the system are

x1 + x8 = T1, x2 + x9 = T2, x3 + x4 + x9 = T3 and x5 + x6 + x8 = T4.

35



Taking i1 = 1, i2 = 2, i3 = 3, i4 = 5 we define FT (x) as in equation [3] in the manuscript.
Furthermore, the solutions of FT,`(x) = 0 for ` 6= 2 can be positively parametrized in
terms of z = x5 as

ϕ(z) =

(
T1τ5

τ4z + τ5
,
−T1τ4τ5z
τ6 b1(z)

,
(τ4z + τ5)T3τ2τ3τ4z

b2(z)
,
−τ1T3τ3τ6 b1(z)

b2(z)
, z,
−b1(z)

τ4z + τ5
,
τ4T1z

τ4z + τ5
,
T3T1τ1τ2τ4τ5z

b2(z)

)

where

b1(z) := τ4z
2 + ((T1 − T4)τ4 + τ5)z − T4τ5,

b2(z) := (−τ1τ3τ4τ6 + τ2τ3τ
2
4 )z2 + (T1τ1τ2τ4τ5 − T1τ1τ3τ4τ6 + T4τ1τ3τ4τ6 − τ1τ3τ5τ6 + τ2τ3τ4τ5)z

+ T4τ1τ3τ5τ6.

Here E = (0, β1) where β1 is the positive root of b1(z), such that b1(z) < 0 and b2(z) > 0
in E .

The positive steady states in the stoichiometric compatibility class are in one to one
correspondence with the roots of FT,2(ϕ(z)). This is a rational function whose numerator
is a polynomial of degree four with positive independent term and the denominator is
positive in E . Additionally, ϕ5(z) = z and ϕ′5(z) = 1 6= 0 and taking i = 5, j = 2 we
have all the elements in the statement of Theorem 2. From the analysis of the Hurwitz
determinants we know that the second hypothesis in the theorem holds. We now compute
the relevant determinant to verify the first hypothesis:

det(JF (ϕ(z))J,I) =
−T1τ5 b2(z)

τ4z + τ5
.

This determinant is negative for every z ∈ E . We are then in the setting of Theorem 2.
The sign of (FT,2◦ϕ)′(z1), for z1 the first root of (FT,2◦ϕ)(z1), is positive as the independent
term of (FT,2 ◦ ϕ)(z) is negative. Hence, the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,2 ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is (−1)5+2+4(1)(−1) = 1, which is positive. Thus, we conclude that the steady states
ϕ(z1), ϕ(z3) are exponentially stable and ϕ(z2), . . . are unstable.

It is left to see that there exists a set of parameters such that the stoichiometric
compatibility class has three positive steady states. In order to do so, we use the method
from [10] and search for parameters and values of the concentration variables such that
det(JF (φ)) is negative:

det(JF (φ)) =τ1τ2τ4τ6x
2
1x

2
2 + τ1τ2τ4τ6x

2
1x2x4 + (τ2τ5 + τ3τ6)τ1τ4x

2
1x2 + τ1τ2τ4τ5x

2
1x4 + τ1τ3τ4τ5x

2
1

+ (τ1τ5 + τ3τ4)τ2τ6x1x
2
2 + τ1τ2τ5τ6x1x2x4 + (τ1τ6 + τ2τ4)τ3τ5x1x2 + τ1τ2τ

2
6x

3
2x6 + τ2τ3τ5τ6x

2
2

−
(
τ2
τ1
− τ6
τ4

)
τ1τ2τ4τ6x6x4x

2
2 + τ1τ3τ

2
6x6x

2
2 +

τ2τ3τ
2
6x

3
2x6

x1
.

Taking τ3 = 1, τ5 = 1, τ1 = 1, τ4 = 1, τ2 = 2, τ6 = 1 and x1 = 1, x2 = 1, x4 = 9, x6 = 9
the value of the determinant is -48. This implies that the stoichiometric compatibility
class containing φ(1, 1, 9, 9) has more than one positive steady states and, solving either
FT (x) = 0 or FT,2(ϕ(z)) = 0 we verify that it has three positive steady states.
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We conclude that the reduced network is bistable for every set of parameters for which
there are three positive steady states, and the original network admits bistability in some
region of the parameter space.

Network (f). E corresponds to a kinase that exists in two conformations: E1 (relaxed
state) and E2 (tensed state). Each conformation acts as a kinase for a common substrate
S0. We denote by S1 the phosphorylated form of the substrate. We assume that the
intermediate kinase-substrate complexes, E1S0 and E2S0, also undergo conformational
change.

E1 + S0

κ1−−⇀↽−−
κ2

E1S0
κ3−−→ E1 + S1

E2 + S0

κ4−−⇀↽−−
κ5

E2S0
κ6−−→ E2 + S1

E1

κ8−−⇀↽−−
κ9

E2

E1S0

κ10−−⇀↽−−
κ11

E2S0

S1
κ7−−→ S0.

The species are renamed as E1 = X1, E2 = X2, E1S0 = X3, E2S0 = X4, S0 = X5, S1 =
X6 and their concentrations are denoted by lower case letters. The polynomial qx(λ)
associated with this network has degree 4. After computing and evaluating the Hurwitz
determinants at a positive parametrization φ of the positive steady state variety, the sign
of H3 and H4 is unclear. Since the hypotheses of Theorem 2 do not hold, we reduce
the network by removing the intermediate E2S0 and all the reverse reactions. When
removing E2S0 the reactions E2 + S0

−−⇀↽−− E2S0 −−→ E2 + S1 become E2 + S0 −−→ E2 + S1

and the path E2 + S0
−−⇀↽−− E2S0

−−⇀↽−− E1S0 is collapsed to E2 + S0 −−→ E1S0. After
removing the reverse reactions the reduced network is

E1 + S0
τ1−−→ E1S0

τ2−−→ E1 + S1

E2 + S0
τ3−−→ E2 + S1

E2 + S0
τ6−−→ E1S0

E1
τ5−−→ E2

S1
τ4−−→ S0.

The species are renamed as E1 = X1, E2 = X2, E1S0 = X3, S0 = X5, S1 = X6 and
their concentrations are denoted by lower case letters. We have s = 3. For this reduced
network, qx(λ) has degree 3 and the determinants H1, H2 are positive for every positive
steady state. This means that the stability of steady states depends on the sign of H3.
We explore the possibility of applying Theorem 2 to ensure bistability. The conservation
laws of the network are

x1 + x2 + x3 = T1 and x3 + x5 + x6 = T2.

Taking i1 = 1 and i2 = 3 we define FT (x) as in equation [3] from the manuscript. The
solutions of FT,`(x) = 0 for ` 6= 3 can be parametrized in terms of z = x5 as

ϕ(z) =

(
T1τ2τ6z

b(z)
,
T1τ2τ5
b(z)

,
T1τ6z(τ1z + τ5)

b(z)
, z,

T1τ2z(τ1τ6z + τ3τ5 + τ5τ6)

τ4 b(z)

)
,
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with b(z) = τ1τ6z
2 + (τ2 + τ5)τ6z + τ2τ5, and this parametrization is positive for every

z ∈ E = R>0. Additionally ϕ4(z) = z and ϕ′4(z) = 1 6= 0. With this parametrization,
the positive steady states in one stoichiometric compatibility class are in one to one
correspondence with the positive roots of FT,3(ϕ(x)) = 0, that is a rational function
whose numerator is a polynomial of degree 3 and has positive denominator:

FT,3(ϕ(x)) =
1

(τ1τ6z2 + τ2τ6z + τ5τ6z + τ2τ5)τ4

[
τ1τ4τ6z

3 + (T1τ1τ2τ6 + T1τ1τ4τ6 − T2τ1τ4τ6 + τ2τ4τ6 + τ4τ5τ6)z
2+

(T1τ2τ3τ5 + T1τ2τ5τ6 + T1τ4τ5τ6 − T2τ2τ4τ6 − T2τ4τ5τ6 + τ2τ4τ5)z − T2τ2τ4τ5] .

Here i = 4, j = 3. After studying the Hurwitz determinants we know that the second
hypothesis of Theorem 2 holds. We now check the sign of det(JF (ϕ(z)J,I) on the first
hypothesis of Theorem 2:

det(JF (ϕ(z)J,I) = τ4 b(z),

which is positive for every z ∈ E . We are now in the setting of Theorem 2. The sign of
(FT,3 ◦ ϕ)′(z1), for z1 the first positive root of FT,3(ϕ(z)), is positive as the independent
term of (FT,3 ◦ ϕ)(z) is negative. Furthermore, the sign of

(−1)s+i+j

ϕ′i(z1)
(FT,3 ◦ ϕ)′(z1) det(JFT

(ϕ(z1))J,I)

is (−1)3+3+4(1)(1) = 1 positive, and the steady states ϕ(z1), ϕ(z3), . . . are exponentially
stable and ϕ(z2), . . . are unstable.

It remains to see that there exists a set of parameters such that the stoichiometric
compatibility class has three positive steady states. In order to do this we use the method
proposed in [10] and find values for the parameters and concentration variables such that
det(JF (φ)) is negative for the parametrization φ given as:

φ(x2, x5) =

(
τ6x2x5
τ5

, x2,
τ6x2x5(τ1x5 + τ5)

τ2τ5
, x5,

x2x5(τ1τ6x5 + τ3τ5 + τ5τ6)

τ4τ5

)
.

We obtain

det(JF (φ)) = τ1(τ2τ6 − τ3τ5 + τ4τ6)τ6x2x
2
5 + 2(τ2 + τ4)τ1τ5τ6x2x5 + (τ2τ3 + τ2τ6 + τ4τ6)τ

2
5x2

+ τ1τ4τ5τ6x
2
5 + (τ2 + τ5)τ4τ5τ6x5 + τ2τ4τ

2
5 .

Taking τi = 1 for i = 1, . . . , 6 and x2 = 2, x5 = 6 the value of the determinant is -35.
This means that the stoichiometric compatibility class containing φ(x) has three positive
steady states. The total amounts defining this class are T1 = 98, T2 = 222 and solving
FT (x) = 0 or FT,3(ϕ(z)) = 0 we verify that there are three positive steady states.

We conclude that the reduced network is bistable for every set of parameters for which
there are three positive steady states, and the original network admits bistability in some
region of the parameter space.
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Abstract

This work concerns the question of how two important dynamical properties, oscilla-
tions and bistability, emerge in an important biological signaling network. Specifically,
we consider a model for dual-site phosphorylation and dephosphorylation of extracellu-
lar signal-regulated kinase (ERK). We prove that oscillations persist even as the model
is greatly simplified (reactions are made irreversible and intermediates are removed).
Bistability, however, is much less robust – this property is lost when intermediates are
removed or even when all reactions are made irreversible. Moreover, bistability is char-
acterized by the presence of two reversible, catalytic reactions: as other reactions are
made irreversible, bistability persists as long as one or both of the specified reactions
is preserved. Finally, we investigate the maximum number of steady states, aided by
a network’s “mixed volume” (a concept from convex geometry). Taken together, our
results shed light on the question of how oscillations and bistability emerge from a
limiting network of the ERK network – namely, the fully processive dual-site network
– which is known to be globally stable and therefore lack both oscillations and bista-
bility. Our proofs are enabled by a Hopf bifurcation criterion due to Yang, analyses of
Newton polytopes arising from Hurwitz determinants, and recent characterizations of
multistationarity for networks having a steady-state parametrization.

Keywords: chemical reaction network, Hopf bifurcation, oscillation, bistable, Newton
polytope, mixed volume

1 Introduction

In recent years, significant attention has been devoted to the question of how bistability and
oscillations emerge in biological networks involving multisite phosphorylation (Conradi &
Shiu 2018). Such networks are of great biological importance (Cohen 2000). The one we
consider is the network, depicted in Figure 1, comprising extracellular signal-regulated ki-
nase (ERK) regulation by dual-site phosphorylation by the kinase MEK (denoted by E) and
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dephosphorylation by the phosphatase MKP3 (F ) (Rubinstein et al. 2016). This network,
which we call the ERK network, has an important role in regulating many cellular activi-
ties, with dysregulation implicated in many cancers (Shaul & Seger 2007). Accordingly, an
important problem is to understand the dynamical properties of the ERK network, with the
goal of predicting effects arising from mutations or drug treatments (Futran et al. 2013).

S00 + E
k1−−→←−−
k2

S00E
k3−−→ S01E

kcat−−→ S11 + E

−−
→
←
−−kon koff

S01 + E

−−
→m3

S10E

−−
→
←
−−m2 m1

S10 + E

S11 + F
`1−−→←−−
`2

S11F
`3−−→ S10F

`cat−−→ S00 + F
−−
→
←
−−`on `off

S10 + F

−−
→n3

S01F

−−
→
←
−−n1 n2

S01 + F

1

Figure 1: The (full) ERK network, from Rubinstein et al. (2016), with notation of Dicken-
stein et al. (2019). Each Sij denotes an ERK phosphoform, with subscripts indicating at
which of two sites phosphate groups are attached. The fully processive network is obtained
by deleting all vertical reactions (those labeled by kon, koff ,m1,m2,m3, `on, `off , n1, n2, n3).
We also consider irreversible versions of the ERK network obtained by deleting some of
the reactions labeled k2, kon,m1, l2, `on, n2 (in blue). In particular, deleting all six of those
reactions yields the fully irreversible ERK network.

The ERK network was shown by Rubinstein, Mattingly, Berezhkovskii & Shvartsman
(2016) to be bistable and exhibit oscillations (for some choices of rate constants). Rubinstein
et al. also observed that the ERK network “limits” to a network without bistability or
oscillations. Namely, when the rate constants kcat and `cat are much larger than koff and `off ,
respectively, this yields the “fully processive” network obtained by deleting all vertical arrows
in Figure 1, which is globally convergent to a unique steady state (Conradi & Shiu 2015,
Eithun & Shiu 2017, Rao 2017). Accordingly, Rubinstein et al. asked, How do bistability
and oscillations in the ERK network emerge from the processive limit? This question was
subsequently articulated as follows by Conradi & Shiu (2018):

Question 1.1. When the processivity levels pk := kcat/(kcat + koff) and p` := `cat/(`cat + `off)
are arbitrarily close to 1, is the ERK network still bistable and oscillatory?
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One of our main contributions is to lay foundation toward answering Question 1.1. Speci-
fically, we answer a related question, How do bistability and oscillations emerge from simpler
versions of the ERK network? Our main results, summarized in Table 1, are that oscillations
are surprisingly robust to operations that simplify the network, while bistability is lost
more easily. Specifically, oscillations persist even as reactions are made irreversible and
intermediates are removed (see Section 4.1), while bistability is lost more quickly, when only
a few reactions are made irreversible (Section 4.2). Taken together, our results form a case
study for the problem of model choice – an investigation into the simplifications of a model
that preserve important dynamical properties.

ERK Maximum # Maximum #
network Oscillations? Bistability? steady states over C
Full Yes* Yes* Conjecture: 3 7
Irreversible Yes** If kon > 0 or `on > 0 1 5*
Reduced Yes No 1 3

Table 1: Summary of results. Yes* indicates results of Rubinstein et al. (2016). Yes** in-
dicates that the fully irreversible ERK network exhibits oscillations (see Figure 3), and 5*
indicates that 5 is the maximum number of complex-number steady states for the network
obtained from the full ERK network by setting kon = 0. For details on results, see Proposi-
tions 4.1, 4.5, and 5.9, and Theorem 4.6.

Our focus here – on determining which operations on the ERK network preserve oscilla-
tions and bistability – is similar in spirit to the recent approach proposed by Sadeghimanesh
& Feliu (2018). Indeed, there has been significant interest in understanding which operations
on networks preserve oscillations (Banaji 2018), bistability (Banaji & Pantea 2018, Feliu &
Wiuf 2013, Joshi & Shiu 2013), and other properties (Gross et al. 2018).

A related topic – mentioned earlier – is the question of how dynamical properties arise
in phosphorylation systems. Several works have examined this problem at the level of pa-
rameters, focusing on the question of which rate constants and/or initial conditions give
rise to oscillations (Conradi et al. 2019) or bistability (Conradi et al. 2017, 2018). Our
perspective is slightly different; instead of allowing parameter values to change, we modify
the network itself. Accordingly, our work is similar in spirit to recent investigations into
minimal oscillatory or bistable networks (Banaji 2018, Banaji & Pantea 2018, Hadač et al.
2017, Hernansaiz-Ballesteros et al. 2018, Joshi & Shiu 2017).

A key tool we use is a parametrization of the steady states. Such parametrizations
have been shown in recent years to be indispensable for analyzing multistationarity (multi-
ple steady states, which are necessary for bistability) and oscillations (Giaroli et al. 2018,
Johnston et al. 2019, Thomson & Gunawardena 2009). Indeed, here we build on previous
results (Conradi et al. 2017, 2019, Dickenstein et al. 2019).

Specifically, following the work of Conradi, Mincheva & Shiu (2019), we investigate os-
cillations by employing a steady-state parametrization together with a criterion proposed
by Yang (2002) that characterizes Hopf bifurcations in terms of determinants of Hurwitz
matrices. Using this approach, Conradi et al. (2019) showed that the Hopf bifurcations of a
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mixed-mechanism phosphorylation network lie on a hypersurface defined by the vanishing of
a single Hurwitz determinant. For our ERK networks, however, the problem does not reduce
to the analysis of a single polynomial, and the size of these polynomials makes the system
difficult to solve. To this end, we introduce an algorithm for analyzing these polynomials,
through their Newton polytopes, by using techniques from polyhedral geometry. Using this
algorithm, we succeed in finding, for the reduced ERK network, a Hopf bifurcation giving
rise to oscillations.

Finally, we investigate the precise number of steady states in ERK networks. For general
networks, much has been done for determining which networks admit multiple steady states
– see e.g., the articles of Conradi, Feliu, Mincheva & Wiuf (2017), Craciun & Feinberg
(2006), Dickenstein, Pérez Millán, Shiu & Tang (2019), Feinberg (1980), Giaroli, Bihan &
Dickenstein (2018), Joshi & Shiu (2015), and Müller, Feliu, Regensburger, Conradi, Shiu
& Dickenstein (2016) – but there are few techniques for determining a network’s maximum
number of steady states. To this end, we introduce two related measures of a network, the
maximum number of complex-number steady states and the “mixed volume”. In general,
the mixed volume is an upper bound on the number of complex-number steady states, but
we show that these numbers are equal for ERK networks (Section 5).

The outline of our work is as follows. Section 2 contains background on chemical reaction
systems, steady-state parametrizations, and Hopf bifurcations. We present steady-state
parametrizations for the ERK network and the reduced ERK network in Section 3. Section 4
contains our main results on oscillations and bistability. Section 5 investigates the number of
steady states and the relationship to mixed volumes. We end with a Discussion in Section 6.

2 Background

Here we introduce chemical reaction systems (Section 2.1), their steady-state parametriza-
tions (Section 2.2), and Hopf bifurcations (Section 2.3).

2.1 Chemical reaction systems

Following Dickenstein et al. (2019), our notation closely matches that of Conradi et al.
(2017). A reaction network G (or network for short) comprises a set of s species
{X1, X2, . . . , Xs} and a set of m reactions:

α1jX1 + α2jX2 + · · ·+ αsjXs → β1jX1 + β2jX2 + · · ·+ βsjXs , for j = 1, 2, . . . ,m ,

where each αij and βij is a non-negative integer. The stoichiometric matrix of G, denoted
by N , is the s ×m matrix with (i, j)-entry equal to βij − αij. Let d = s − rank(N). The
stoichiometric subspace, denoted by S, is the image of N . A conservation-law matrix of G,
denoted by W , is a row-reduced d × s-matrix whose rows form a basis of the orthogonal
complement of S. If there exists a choice of W for which every entry is nonnegative and each
column contains at least one nonzero entry (equivalently, each species occurs in at least one
nonnegative conservation law), then G is conservative.
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We denote the concentrations of the species X1, X2, . . . , Xs by x1, x2, . . . , xs, respectively.
These concentrations, under the assumption of mass-action kinetics, evolve in time according
to the following system of ODEs:

ẋ = f(x) := N ·




κ1 x
α11
1 xα21

2 · · ·xαs1
s

κ2 x
α12
1 xα22

2 · · ·xαs2
s

...
κm x

α1m
1 xα2m

2 · · ·xαsm
s


 , (1)

where x = (x1, x2, . . . , xs), and each κj ∈ R>0 is called a reaction rate constant. By consid-
ering the rate constants as a vector of parameters κ = (κ1, κ2, . . . , κm), we have polynomials
fκ,i ∈ Q[κ, x], for i = 1, 2, . . . , s. For ease of notation, we often write fi rather than fκ,i.

A trajectory x(t) beginning at a positive vector x(0) = x0 ∈ Rs
>0 remains, for

all positive time, in the following stoichiometric compatibility class with respect to the

total-constant vector c := Wx0 ∈ Rd:

Sc := {x ∈ Rs
≥0 | Wx = c} . (2)

A steady state of (1) is a positive concentration vector x∗ ∈ Rs
≥0 at which the right-hand sides

of the ODEs (1) vanish: f(x∗) = 0. We distinguish between positive steady states x∗ ∈ Rs
>0

and boundary steady states x∗ ∈ Rs
≥0\Rs

>0. Also, a steady state x∗ is nondegenerate if
Im (Jac(f)(x∗)|S) is the stoichiometric subspace S. (Here, Jac(f)(x∗) is the Jacobian matrix
of f , with respect to x, at x∗.) A nondegenerate steady state is exponentially stable if each
of the σ := dim(S) nonzero eigenvalues of Jac(f)(x∗) has negative real part.

A network is multistationary if there exists a positive rate-constant vector κ ∈ Rm
>0 such

that there exists two or more positive steady states of (1) in some stoichiometric compatibility
class (2). Similarly, a network is bistable if there exists a positive rate-constant vector
κ ∈ Rm

>0 such that there exists two or more exponentially stable positive steady states of (1) in
some stoichiometric compatibility class (2). Thus, every bistable network is multistationary.
A network is monostationary1 if, for every choice of positive rate constants, there is exactly

one positive steady state in every stoichiometric compatibility class.
To analyze steady states within a stoichiometric compatibility class, we will use con-

servation laws in place of linearly dependent steady-state equations, as follows. Let
I = {i1 < i2 < · · · < id} denote the indices of the first nonzero coordinate of the rows
of conservation-law matrix W . Consider the function fc,κ : Rs

≥0 → Rs defined by

fc,κ,i = fc,κ(x)i :=

{
fi(x) if i 6∈ I,
(Wx− c)k if i = ik ∈ I.

(3)

We call system (3), the system augmented by conservation laws. By construction, positive
roots of the system of polynomial equations fc,κ = 0 are precisely the positive steady states
of (1) in the stoichiometric compatibility class (2) defined by the total-constant vector c.

1Some authors define monostationary to be non-multistationary; the two definitions are equivalent for
the ERK networks in this work.
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2.2 Steady-state parametrizations

Here we introduce steady-state parametrizations (Definition 2.2) and recall from (Dickenstein
et al. 2019) how to use them to determine whether a network is multistationary (Proposi-
tion 2.4). Later we will see how to use parametrizations to detect Hopf bifurcations (Propo-
sition 4.1).

Definition 2.1. Let G be a network with m reactions and s species, and let ẋ = f(x)
denote the resulting mass-action system. Denote by W a d×s row-reduced conservation-law
matrix and by I the set of indices of the first nonzero coordinates of its rows. Enumerate the
complement of I as follows: [s] \ I = {j1 < j2 < · · · < js−d}. A set of effective parameters
for G is formed by polynomials ā1(κ), ā2(κ), . . . , ām̄(κ) ∈ Q(κ) for which the following hold:

(i) āi(κ
∗) is defined and, moreover, āi(κ

∗) > 0 for every i = 1, 2, . . . , m̄ and for all κ∗ ∈ Rm
>0,

(ii) the reparametrization map below is surjective:

ā : Rm
>0 → Rm̄

>0 (4)

κ 7→ (ā1(κ), ā2(κ), . . . , ām̄(κ)) ,

(iii) there exists an (s−d)× (s−d) matrix M(κ) with entries in Q(κ) := Q(κ1, κ2, . . . , κm)
such that:

(a) for all κ∗ ∈ Rm
>0, the matrix M(κ∗) is defined and, moreover, detM(κ∗) > 0, and

(b) letting (h̄j`) denote the functions obtained from (fj`) as follows:

(h̄j1 , h̄j2 , . . . , h̄js−d
)> := M(κ) (fj1 , fj2 , . . . , fjs−d

)> , (5)

every nonconstant coefficient in every h̄j` is equal to a rational-number multiple
of some āi(κ).

Given such a set of effective parameters, we consider for ` = 1, 2, . . . , s− d, polynomials
hj` = hj`(a;x) ∈ Q[a1, a2, . . . , am̄][x] (here, the ai’s are indeterminates) such that:

h̄j` = hj` |a1=ā1(κ), ... , am̄=ām̄(κ) . (6)

For i = 1, 2, . . . , s and any choice of c ∈ Rd
>0 and a ∈ Rm̄

>0, set

hc,a(x)i :=

{
hi(a;x) if i /∈ I
(Wx− c)k if i = ik ∈ I.

(7)

We call the function hc,a : Rs
>0 → Rs an effective steady-state function of G.

The “steady-state parametrizations” that we will use in this work belong to a subclass
of the ones introduced by Dickenstein et al. (2019). Thus, for simplicity, Definition 2.2
below is more restrictive than Definition 3.6 of (Dickenstein et al. 2019). Specifically, our
parametrizations have the form φ(â;x), while those of (Dickenstein et al. 2019) are of the
form φ(â; x̂).
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Definition 2.2. Let G be a network with m reactions, s species, and conservation-
law matrix W . Let fc,κ arise from G and W as in (3). Suppose that hc,a is an ef-
fective steady-state function of G, as in (7), arising from a matrix M(κ), as in (5), a
reparametrization map ā, as in (4), and polynomials hj` ’s as in (6). The positive steady
states of G admit a positive parametrization with respect to hc,a if there exists a function

φ : Rm̂
>0 × Rs

>0 → Rm̄
>0 × Rs

>0, for some m̂ ≤ m̄, which we denote by (â;x) 7→ φ(â;x), such
that:

(i) φ(â;x) extends the vector (â;x). More precisely, there exists a natural projection
π : Rm̄

>0 × Rs
>0 → Rm̂

>0 × Rs
>0 such that π ◦ φ is equal to the identity map.

(ii) Consider any (a;x) ∈ Rm̄
>0 ×Rs

>0. Then, the equality hi(a;x) = 0 holds for every i /∈ I
if and only if there exists â∗ ∈ Rm̂

>0 such that (a;x) = φ(â∗;x).

We call φ a positive parametrization or a steady-state parametrization.

Definition 2.3. Under the notation and hypotheses of Definition 2.2, assume that the
steady states of G admit a positive parametrization with respect to hc,a. For such a positive
parametrization φ, the critical function C : Rm̂

>0 × Rs
>0 → R is given by:

C(â;x) = (det Jac hc,a) |(a;x)=φ(â;x) ,

where Jac(hc,a) denotes the Jacobian matrix of hc,a with respect to x.

The following result is a specialization2 of Theorem 3.12 of (Dickenstein et al. 2019):

Proposition 2.4. Under the notation and hypotheses of Definitions 2.1–2.3, assume also
that G is a conservative network without boundary steady states in any compatibility class.
Let N denote the stoichiometric matrix of G.

(A) Multistationarity. G is multistationary if there exists (â∗;x∗) ∈ Rm̂
>0×Rs

>0 such that

sign(C(â∗;x∗)) = (−1)rank(N)+1 .

(B) Monostationarity. G is monostationary if for all (â;x) ∈ Rm̂
>0 × Rs

>0,

sign(C(â;x)) = (−1)rank(N) .

2.3 Hopf bifurcations

A simple Hopf bifurcation is a bifurcation in which a single complex-conjugate pair of eigen-
values of the Jacobian matrix crosses the imaginary axis, while all other eigenvalues remain
with negative real parts. Such a bifurcation, if it is supercritical, generates nearby oscillations
or periodic orbits (Liu 1994).

To detect simple Hopf bifurcations, we will use a criterion of Yang that characterizes
Hopf bifurcations in terms of Hurwitz-matrix determinants (Proposition 2.6).

2As noted earlier, here we consider parametrizations of the form φ(â;x), while Dickenstein et al. (2019)
allowed those of the form φ(â; x̂). Also, “conservative” in Proposition 2.4 can be generalized to “dissipa-
tive” (Dickenstein et al. 2019).
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Definition 2.5. The i-th Hurwitz matrix of a univariate polynomial p(λ) = b0λ
n+ b1λ

n−1 +
· · ·+ bn is the following i× i matrix:

Hi =




b1 b0 0 0 0 · · · 0
b3 b2 b1 b0 0 · · · 0
...

...
...

...
...

...
b2i−1 b2i−2 b2i−3 b2i−4 b2i−5 · · · bi


 ,

in which the (k, l)-th entry is b2k−l as long as n ≥ 2k − l ≥ 0, and 0 otherwise.

Consider an ODE system parametrized by µ ∈ R:

ẋ = gµ(x) ,

where x ∈ Rn, and gµ(x) varies smoothly in µ and x. Assume that x0 ∈ Rn is a steady
state of the system defined by µ0, that is, gµ0(x0) = 0. Assume, furthermore, that we have
a smooth curve of steady states:

µ 7→ x(µ) (8)

(that is, gµ (x(µ)) = 0 for all µ) and that x(µ0) = x0. Denote the characteristic polynomial
of the Jacobian matrix of gµ, evaluated at x(µ), as follows:

pµ(λ) := det (λI − Jac gµ) |x=x(µ) = λn + b1(µ)λn−1 + · · ·+ bn(µ) ,

and, for i = 1, . . . , n, define Hi(µ) to be the i-th Hurwitz matrix of pµ(λ).

Proposition 2.6 (Yang’s criterion (Yang 2002)). Assume the above setup. Then, there is a
simple Hopf bifurcation at x0 with respect to µ if and only if the following hold:

(i) bn(µ0) > 0,

(ii) detH1(µ0) > 0, detH2(µ0) > 0, . . . , detHn−2(µ0) > 0, and

(iii) detHn−1(µ0) = 0 and d(detHn−1(µ))
dµ

|µ=µ0 6= 0.

2.4 Using parametrizations to detect Hopf bifurcations

Here we prove a new result on how to use steady-state parametrizations to detect Hopf
bifurcations (Theorem 2.8). The result, which uses Yang’s criterion, is a straightforward
generalization of the approach used by Conradi et al. (2019). We include it here to use later
in Section 4, and we also expect it to be useful in future work.

Lemma 2.7. Let G be a network with s species, m reactions, and d conservation laws.
Denote the ODEs by ẋ = f(x), as in (1). Assume that the positive steady states of G admit
a positive parametrization φ with respect to an effective steady-state function for which the
reparametrization map (4) is just the identity map. In other words, the effective parameters
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āi are the original rate constants κi, and so we write φ : Rm̂
>0×Rs

>0 → Rm
>0×Rs

>0 as (κ̂;x) 7→
φ(κ̂;x). Assume moreover that each coordinate of φi is a rational function: φi(κ̂;x) ∈ Q(κ̂;x)
for i = 1, 2, . . . ,m + s. Then the following is a univariate, degree-(s − d) polynomial in λ,
with coefficients in Q(κ̂;x):

q(λ) :=
1

λd
det (λI − Jac f) |(κ;x) = φ(κ̂;x) . (9)

Proof. This result is straightforward from the fact that the characteristic polynomial of
Jac(f) is a polynomial of degree s and has zero as a root with multiplicity d (because of the
d conservation laws).

Theorem 2.8 (Hopf-bifurcation criterion). Assume the hypotheses of Lemma 2.7. Let hi
(for i = 1, 2, . . . , s− d) be the determinant of the i-th Hurwitz matrix of q(λ) in (9). Let κj
be one of the rate constants in the vector κ̂. Then the following are equivalent:

(1) there exists a rate-constant vector κ∗ ∈ Rm
>0 such that the resulting system (1) exhibits

a simple Hopf bifurcation with respect to κj at some x∗ ∈ Rs
>0, and

(2) there exist κ̂∗ ∈ Rm̂
>0 and x∗ ∈ Rs

>0 such that

(i) the constant term of the polynomial q(λ), when evaluated at (κ̂;x) = (κ̂∗;x∗), is
positive,

(ii) h1(κ̂∗;x∗) > 0, h2(κ̂∗;x∗) > 0, . . . , hs−d−2(κ̂∗;x∗) > 0 , and

(iii) hs−d−1(κ̂∗;x∗) = 0 and ∂hs−d−1

∂κj
|(κ̂;x)=(κ̂∗;x∗) 6= 0.

Moreover, given κ̂∗ and x∗ as in (2), a simple Hopf bifurcation with respect to κj occurs at x∗

when the vector of rate constants is taken to be κ∗ := π̃(φ(κ̂∗;x∗)). Here, π̃ : Rm
>0×Rs

>0 → Rm
>0

is the natural projection.

Proof. Due to the d conservation laws, we apply Yang’s criterion (Proposition 2.6) to:

1

λd
det(λI − Jac f)|x=x∗, κi=κ∗i for all i6=j .

Now our result follows directly from Proposition 2.6 and Definition 2.2.

Remark 2.9. Theorem 2.8 easily generalizes beyond parametrizations of the form φ(κ̂;x)
to those of the form φ(κ̂; x̂) or φ(κ; x̂). Indeed, one of the form φ(κ; x̂) was used by Conradi
et al. (2019) to establish Hopf bifurcations in a mixed-mechanism phosphorylation system.

3 ERK networks and steady-state parametrizations

Here we introduce steady-state parametrizations for the full ERK network and also irre-
ducible and reduced versions of the network (Propositions 3.1 and 3.3).
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S00 E F S11F S10F S01F S01E S10E S01 S10 S00E S11

Table 2: Assignment of variables to species for the ERK network in Figure 1.

3.1 The (full) ERK network

For the full ERK network shown earlier in Figure 1, we let x1, x2, . . . , x12 denote the con-
centrations of the species in the order given in Table 2. The resulting ODE system (1) is as
follows:

ẋ1 = −k1x1x2 + k2x11 + `catx5 + n3x6

ẋ2 = −k1x1x2 − konx2x9 −m2x2x10 + k2x11 + kcatx7 + koffx7 +m1x8 +m3x8

ẋ3 = −`1x3x12 − `onx3x10 − n1x3x9 + `2x4 + `catx5 + `offx5 + n2x6 + n3x6

ẋ4 = `1x3x12 − `2x4 − `3x4

ẋ5 = `onx3x10 + `3x4 − `catx5 − `offx5

ẋ6 = n1x3x9 − n2x6 − n3x6

ẋ7 = konx2x9 + k3x11 − kcatx7 − koffx7

ẋ8 = m2x2x10 −m1x8 −m3x8

ẋ9 = −konx2x9 − n1x3x9 + koffx7 + n2x6

˙x10 = −`onx3x10 −m2x2x10 + `offx5 +m1x8

˙x11 = k1x1x2 − k2x11 − k3x11

˙x12 = −`1x3x12 + kcatx7 + `2x4 +m3x8

(10)

There are 18 rate constants ki, `i,mi, ni. The 3 conservation laws correspond to the total
amounts of substrate S, kinase E, and phosphatase F , respectively:

x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 = Stot =: c1

x2 + x7 + x8 + x11 = Etot =: c2

x3 + x4 + x5 + x6 = Ftot =: c3.

(11)

A steady-state parametrization for the full ERK network was given by Examples 3.1
and 3.7 in the article of Dickenstein et al. (2019). That parametrization, however, can not
specialize to accommodate irreversible versions of the network (in the effective parameters
given by Dickenstein et al. (2019), two of the denominators are kon and `on, so we can not
set those rate constants to 0). So, in the next subsection, we give an alternate steady-
state parametrization that, although quite similar to the one of Dickenstein et al. (2019),
specializes when considering irreversible versions of the network (see Proposition 3.1).

3.2 Irreversible versions of the ERK network

Here we consider networks obtained from the full ERK network (Figure 1) by making some
reversible reactions irreversible. Specifically, we delete one or more of the reactions marked
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in blue in Figure 1. Our motivation for removing those specific reactions (the ones with rate
constants k2, kon,m1, `2, `on, n2) rather than any of their opposite reactions is to preserve the
main reaction pathways (from S00 to S11, as well as S10 to S11, S11 to S00, and S01 to S00).
At the same time, we do not remove the reactions for koff or `off , so that we can still pursue
Question 1.1 (which involves koff and `off) in a model with fewer reactions. We instead allow
the removal of reactions kon and `on.

Proposition 3.1 (Steady-state parametrization for full and irreversible ERK networks). Let
N be the full ERK network or any network obtained from the full ERK network by deleting
one or more the reactions corresponding to rate constants k2, kon,m1, `2, `on, n2 (marked in
blue in Figure 1 ). Let 1k2 denote the indicator function that is 1 if the reaction labeled by k2 is
in N and 0 otherwise; analogously, we also define 1kon, 1m1, 1`2, 1`on, and 1n2. Also, define
â := (a2, a4, a6, a8) if N contains the reactions labeled by kon and `on, and â := (a2, a4, a6) if
N contains the reaction `on but not kon, and â := (a2, a4, a8) if N contains kon but not `on,
and â := (a2, a4) if N contains neither kon nor `on. Then N admits an effective steady-state
function hc,a : R12

>0 → R12 given by:

hc,a,1 = x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 − c1 ,

hc,a,2 = x2 + x7 + x8 + x11 − c2 ,

hc,a,3 = x3 + x4 + x5 + x6 − c3 ,

hc,a,4 = a12x3x12 − x4 ,

hc,a,5 = a3x4 − x5 − a2x8 ,

hc,a,6 = a13x3x9 − x6 , (12)

hc,a,7 = a5x11 − a4x6 − x7 ,

hc,a,8 = a11x2x10 − x8 ,

hc,a,9 = a9x7 − 1kona8x2x9 − x6 ,

hc,a,10 = a7x5 − 1`ona6x3x10 − x8 ,

hc,a,11 = a10x1x2 − x11 ,

hc,a,12 = x7 − a1x5 .

Moreover, with respect to this effective steady-state function, the positive steady states of N
admit the following positive parametrization:

φ : R2+1kon+1`on+12
>0 → R13+12

>0

(â; x1, x2, . . . , x12) 7→ (a1, a2, . . . , a13, x1, x2, . . . , x12) ,

given by

a1 :=
x7

x5

a3 :=
a2x8 + x5

x4

a5 :=
a4x6 + x7

x11

a7 :=
1`ona6x3x10 + x8

x5

a9 :=
1kona8x2x9 + x6

x7

a10 :=
x11

x1x2

(13)

a11 :=
x8

x2x10

a12 :=
x4

x3x12

a13 :=
x6

x3x9

.

11



Proof. We will show that the map ā : R12+1k2
+1kon+1m1+1`2

+1`on+1n2
>0 → R11+1kon+1`on

>0 , defined
as follows, is a reparametrization map as in (4):

ā1 = `cat
kcat

, ā2 = m3

`cat
, ā3 = `3

`cat
, ā4 = n3

kcat
, ā5 = k3

kcat
,

ā6 =
1`on`on

m3
, ā7 = `off

m3
, ā8 =

1konkon

n3
, ā9 = koff

n3
, ā10 = k1

1k2
k2+k3

,

ā11 = m2

1m1m1+m3
, ā12 = `1

1`2
`2+`3

, ā13 = n1

1n2n2+n3
.

(14)

In particular, we remove the effective parameter ā6 (respectively, ā8) if 1`on = 0 (respectively,
1kon = 0). Notice that each āi (if it is not removed) is defined and positive for all κ =

(k1, . . . , n3) ∈ R12+1k2
+1kon+1m1+1`2

+1`on+1n2
>0 .

We must show that the map ā is surjective. Indeed, given a ∈ R11+1kon+1`on
>0 , it is easy

to check that a is the image under ā of the vector obtained by removing every 0 coordinate
from the following vector:

(k1, k2, k3, kcat, kon, koff , `1, `2, `3, `cat, `on, `off ,m1,m2,m3, n1, n2, n3) =

((1k2 + a5)a10,1k2 , a5, 1,1kona4a8, a4a9, (1`2 + a1a3)a12,1`2 , a1a3, a1,1`ona1a2a6, a1a2a7,1m1 ,

(1m1 + a1a2)a11, a1a2, (1n2 + a4)a13,1n2 , a4) .

With an eye toward applying Definition 2.1, consider the following 9× 9 matrix:

M(κ):=




1
1`2

`2+`3
0 0 0 0 0 0 0 0

0 1
`cat

0 0 1
`cat

0 1
`cat

0 0

0 0 1
1n2

n2+n3
0 0 0 0 0 0

0 0 1
kcat

1
kcat

0 1
kcat

0 0 0

0 0 0 0 1
1m1m1+m3

0 0 0 0

0 0 1
n3

0 0 1
n3

0 0 0

0 0 0 0 1
m3

0 1
m3

0 0

0 0 0 0 0 0 0 1
1k2

k2+k3
0

1
kcat

1
kcat

0 0 1
kcat

0 1
kcat

0 1
kcat




. (15)

It is straightforward to check that detM(κ) is the product of all diagonal terms, and hence

is positive for all κ ∈ R12+1k2
+1kon+1m1+1`2

+1`on+1n2
>0 .

The mass-action ODEs of N are obtained from those (10) of the full ERK network by
replacing the rate constants k2, kon,m1, `2, `on, n2, respectively, by 1k2k2, 1konkon, 1m1m1,
1`2`2, 1`on`on, and 1n2n2, respectively. To the right-hand sides of these ODEs, we apply the
recipe given in equations (5)–(7), using the effective parameters āi in (14), the matrix M(κ)
in (15), and the conservation-law matrix W arising from the conservation laws (11). It is
straightforward to check that the result is the function hc,a(x) given in (12).

Observe that, for the non-conservation-law equations hc,a,4, . . . , hc,a,12 in (12), each non-
constant coefficient is, up to sign, one of the ai’s. Hence, the āi’s in (14) are effective
parameters, and the function in (12) is an effective steady-state function. Finally, the fact
that φ is a positive parametrization with respect to (12) (as in Definition 2.2) follows directly
from comparing equations (12) and (13).
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Remark 3.2 (Multistationarity depends on only kon and `on). Proposition 3.1 considers any
network obtained by deleting any (or none) of the six reactions labeled by k2, kon, m1, `2, `on,
n2. Nonetheless, the resulting steady-state parametrization (13) depends on kon and `on but
not any of the other rate constants. Thus, multistationarity for these irreversible networks
depends only on whether the network contains kon and `on (see Theorem 4.6).

3.3 The reduced ERK network

In the previous subsection, we consider irreversible versions of the ERK network. Now
we further reduce the network by additionally removing some “intermediate complexes”
(namely, S10E and S01F ). These operations yield the reduced ERK network in Figure 2.
Note that in the process of removing intermediates, the reactions m2 and m3 (similarly,
n1 and n3) are collapsed into a single reaction labeled m (respectively, n). A biological
motivation for collapsing these reactions is the fact that intermediates are usually short-
lived, so the simpler model may approximate the dynamics well.

S00 + E
k1−−→ S00E

k3−−→ S01E
kcat−−→ S11 + E

←
−−koff

S01 + E
−−
→m

S10 + E

S11 + F
`1−−→ S11F

`3−−→ S10F
`cat−−→ S00 + F

←
−−`off

S10 + F

−−
→n

S01 + F

1

Figure 2: Reduced ERK network.

Our notion of removing intermediates matches that of Feliu & Wiuf (2013), who initi-
ated the recent interest in the question of when dynamical properties are preserved when
intermediates are added or removed (e.g., S10 + E � S10E → S11 + E versus S10 → S11).
Our work, therefore, fits into this circle of ideas (Cappelletti & Wiuf 2017, Marcondes de
Freitas et al. 2017, Sadeghimanesh & Feliu 2018).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

S00 E S00E S01E S11 S01 S10 F S11F S10F

Table 3: Assignment of variables to species for the reduced ERK network in Figure 2. (Many
of the variables that are also in the full ERK, in Table 2, have been relabeled.)
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In the reduced ERK network, the remaining 10 rate constants are as follows:
k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n. Letting x1, x2, . . . , x10 denote the species concentrations
in the order given in Table 3, the resulting mass-action kinetics ODEs are as follows:

ẋ1 = − k1x1x2 + nx6x8 + `catx10 =: f1

ẋ2 = − k1x1x2 + kcatx4 + koffx4 =: f2

ẋ3 = k1x1x2 − k3x3 =: f3

ẋ4 = k3x3 − kcatx4 − koffx4 =: f4

ẋ5 = mx2x7 − `1x5x8 + kcatx4 =: f5 (16)

ẋ6 = − nx6x8 + koffx4 =: f6

ẋ7 = −mx2x7 + `offx10 =: f7

ẋ8 = − `1x5x8 + `offx10 + `catx10 =: f8

ẋ9 = `1x5x8 − `3x9 =: f9

˙x10 = − `offx10 + `3x9 − `catx10 =: f10.

The 3 conservation equations are:

x1 + x3 + x4 + x5 + x6 + x7 + x9 + x10 = Stot =: c1

x2 + x3 + x4 = Etot =: c2 (17)

x8 + x9 + x10 = Ftot =: c3.

Proposition 3.3 (Steady-state parametrization for reduced ERK network). The reduced
ERK network (Figure 2) admits an effective steady-state function hc,a : R10

>0 → R10 given by:

hc,a,1 = x1 + x3 + x4 + x5 + x6 + x7 + x9 + x10 − c1, hc,a,2 = x2 + x3 + x4 − c2,
hc,a,3 = −(kcat + koff)`catx10 + k1kcatx1x2, hc,a,4 = k3x3 − (kcat + koff)x4,
hc,a,5 = `offx10 −mx2x7, hc,a,6 = `1x5x8 − (`cat + `off)x10,
hc,a,7 = `3x9 − (`cat + `off)x10, hc,a,8 = x8 + x9 + x10 − c3,
hc,a,9 = kcatx4 − `catx10, hc,a,10 = koff`catx10 − kcatnx6x8.

(18)

Moreover, with respect to this effective steady-state function, the positive steady states admit
the following positive parametrization:

φ : R3+10
>0 → R10+10

>0 (19)

(kcat, koff , `off , x1, x2, . . . , x10) 7→ (k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n, x1, x2, . . . , x10) ,

given by

k1 :=
(kcat + koff)x4

x1x2

k3 :=
(kcat + koff)x4

x3

m :=
`offx10

x2x7

`1 :=
`offx10 + kcatx4

x5x8

`3 :=
`offx10 + kcatx4

x9

`cat :=
kcatx4

x10

n :=
koffx4

x6x8

. (20)
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In particular, the image of φ is the following set of pairs of positive steady states and rate
constants:

{(k∗;x∗) ∈ R10+10
>0 | x∗ is a steady state of (16) when k = k∗} .

Here, k denotes the vector (k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n).

Proof. Let W denote the conservation-law matrix arising from the conservation laws (17)
for the reduced ERK network. Then I = {1, 2, 8} is the set of indices of the first nonzero
coordinates of the rows of W . We take Q(kcat, koff)-linear combinations of the fi’s in (16),
where i /∈ I, to obtain the following binomials in the xi’s:

h3 := (kcat + koff)(f5 + f7 + f9 + f10) + kcat(f3 + f4) = − (kcat + koff)`catx10 + k1kcatx1x2

h4 := f4 = k3x3 − (kcat + koff)x4

h5 := f7 = `offx10 −mx2x7

h6 := f9 + f10 = `1x5x8 − (`cat + `off)x10

h7 := f10 = `3x9 − (`cat + `off)x10

h9 := f5 + f7 + f9 + f10 = kcatx4 − `catx10

h10 := kcatf6 − koff(f5 + f7 + f9 + f10) = koff`catx10 − kcatnx6x8.

Consider the (above) linear transformation from fi to hi (i 6∈ I). Let M denote the
corresponding matrix representation (M plays the role of the matrix denoted by M(κ) in
Definition 2.1). It is straightforward to check that detM = k2

cat, which is positive when
kcat > 0.

Consider the reparametrization map ā : R10 → R10 defined by the identity map (and
so is surjective). Then ā, together with the conservation-law matrix W and the matrix M ,
yield (as in Definition 2.13) the effective steady-state function hc,a(x) given in (18).

To show that φ is a positive steady-state parametrization with respect to (18), as in
Definition 2.2, it suffices to show the following claim:
Claim: For every (k∗;x∗) ∈ R10+10

>0 , the steady-state condition holds – namely, hi(k
∗;x∗) = 0

for all i ∈ {3, 4, 5, 6, 7, 9, 10} – if and only if φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗).

For the “⇒” direction, assume hi(k
∗;x∗) = 0 for all i. Then h9(k∗;x∗) = 0 implies that

`∗cat =
k∗catx

∗
4

x∗10

. (21)

In other words, λcat – when evaluated at (kcat, koff , `off ;x) = (k∗cat, k
∗
off , `

∗
off ;x∗) – equals `∗cat.

Next, the equality h3(k∗;x∗) = 0 implies that

k∗1 =
(k∗cat + k∗off)`∗catx

∗
10

k∗catx
∗
1x
∗
2

=
(k∗cat + k∗off)x∗4

x∗1x
∗
2

, (22)

3In this case, Definition 2.1(iii)(b) requires every nonconstant coefficient in the effective steady-state func-
tion (18) to be a rational-number multiple of one of the rate constants. However, for the non-conservation-law
equations in (18), many of the non-constant coefficients – such as koff`cat – are not rational-number multiples
of one of the rate constants. Nonetheless, these coefficients are all polynomials in the rate constants, and
the relevant results by Dickenstein et al. (2019) hold in that generality.
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where the final equality follows from equation (21). Thus, the expression for k1 given af-
ter (20) – when evaluated at (kcat, koff , `off ;x) = (k∗cat, k

∗
off , `

∗
off ;x∗) – equals k∗1.

Similarly, the equality h4(k∗;x∗) = 0 (respectively, h5(k∗;x∗) = 0, h6(k∗;x∗) = 0,
h7(k∗;x∗) = 0, or h10(k∗;x∗) = 0) implies that κ3 (respectively, m, `1, `3, or n) – when
evaluated at (kcat, koff , `off ;x) = (k∗cat, k

∗
off , `

∗
off ;x∗) – equals k∗3 (respectively, m∗, `∗1, `∗3, or n∗).

Thus, φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗).

The “⇐” direction is similar. Assume φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗). That is, the expres-

sions for k1, k3, m, `1, `3, `cat, and n evaluate to, respectively, k∗1, k∗3, m∗, `∗1, `∗3, `∗cat, and
n∗, when (kcat, koff , `off ;x) = (k∗cat, k

∗
off , `

∗
off ;x∗). In particular, equation (21) holds, and so

h9(k∗;x∗) = 0. Similarly, hi(k
∗;x∗) = 0 for all other i (here we also use equation (21)).

Remark 3.4. The proof of Proposition 3.3 proceeds by performing linear operations on the
steady-state polynomials to yield binomials gi, and then solving for one kj from each binomial
to obtain the parametrization (19). This is similar in spirit to – but more general than –
the approach prescribed in (Dickenstein et al. 2019, §4) for “linearly binomial” networks.
Also, our linear operations were found “by hand”, and so an interesting future direction is to
develop efficient and systematic approaches to finding such operations leading to binomials.

Remark 3.5. The proof of Proposition 3.3 shows that the “steady-state ideal” (the ideal
generated by the right-hand sides of the ODEs) of the reduced ERK network is generated
by the binomials gi. This network, therefore has, “toric steady states” (Pérez Millán et al.
2012). In contrast, the steady-state ideal of the full ERK network is not a binomial ideal
(it is straightforward to check this computationally, e.g., using the Binomials package in
Macaulay2 (Grayson & Stillman n.d.)). As for the irreversible versions of the ERK network,
when the reactions with rate constants kon and `on are deleted, we see from (12) that the
steady-state ideal becomes binomial. Hence, irreversible ERK networks that are missing
both kon and `on are “linearly binomial” as defined by Dickenstein et al. (2019).

Remark 3.6. All networks considered in this section are conservative, which can be seen
from the conservation laws (11) for the full and irreversible ERK networks, and (17) for the
reduced ERK network. Also for these networks, there are no boundary steady states in any
compatibility class (it is straightforward to check this using results from (Angeli et al. 2007)
or (Shiu & Sturmfels 2010)).

4 Main Results

Each ERK network we investigated admits oscillations via a Hopf bifurcation (Section 4.1).
Bistability, however, is more subtle (Section 4.2).

4.1 Oscillations

The full ERK system (Figure 1) exhibits oscillations for some values of the rate con-
stants (Rubinstein et al. 2016). We now investigate oscillations in the fully irreversible
and reduced ERK networks.
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4.1.1 Fully irreversible ERK network

As shown in Figure 3, the fully irreversible ERK network admits oscillations. That figure
was generated using the following rate constants:

(k1, k3, kcat, koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (5241, 5314.5, 1291, 76.203, 64.271, (23)

44.965, 924970, 27238, 2.76250× 106,

2.0451, 2.1496× 106, 1.3334) .

These rate constants (23) come from the ones that Rubinstein et al. showed generate oscil-
lations for the full ERK network (Rubinstein et al. 2016, Table 2) (we simply ignore their
rate constants for the six deleted reactions). The approximate initial species concentrations
used to generate Figure 3 are as follows (see supplementary file ERK-Matcont.txt):

(x1, x2, . . . , x12) ≈ (1.215× 10−5, 4.722× 10−5, 8.777× 10−4, 1.396× 10−3,

6.590× 10−8, 2.698× 10−3, 2.873× 10−4, 1.150× 10−3, (24)

3.072× 10−3, 2.262× 10−6, 0.042, 0.849) .

In Figure 3, we notice some peculiarities in the graphs xi(t) of the species concentra-
tions. The species concentrations x1 and x2 (corresponding to S00 and E, respectively) peak
dramatically, while x3 and x6 (F and S01F) stabilize momentarily at each peak. Also, each
of x1, x2, x3, x4, x5, x10, x11 deplete for some time in each period, whereas x12 (S11) never
depletes. Finally, the graphs of the pairs x1 and x2 are qualitatively similar, and also the
pair x3 and x6, the pair x4 and x5, and the pair x10 and x11.

Going beyond the fully irreversible ERK network, all other irreversible ERK net-
works – those obtained from the full ERK network by deleting one or more the reactions
k2, kon,m1, `2, `on, n2 – also admit oscillations. This claim follows from Proposition 4.1 in
the article by Banaji (2018), which “lifts” oscillations when one or more reactions are made
reversible.

4.1.2 Reduced ERK network

We saw in the previous subsection that the fully irreversible ERK network exhibits oscilla-
tions. We now show that a simpler network - the reduced ERK network - also undergoes
oscillations via a Hopf bifurcation. These oscillations are shown in Figure 4, and the rate
constants that yield the corresponding Hopf bifurcation are specified in Theorem 4.3.

Compared to the oscillations for the irreversible ERK network (Figure 3), the oscillations
in the reduced ERK network (Figure 4) are more uniform. Also, the period of oscillation is
much shorter, and the amplitudes for species x3, x8, and x10 are small (this may be due to the
choice of rate constants). Finally, three of the six species shown do not deplete completely,
whereas nearly all the species of the fully irreversible ERK do deplete in each period.

We discovered oscillations by finding a Hopf bifurcation. How we found this bifurcation
– via the Hopf-bifurcation criterion in Section 2.4 – is the focus of the rest of this subsection.
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Figure 3: The fully irreversible ERK network undergoes oscillations when the rate constants
are as in (23) and the initial species concentrations are as in (24). Displayed in this figure are
all species concentrations, except x7, x8, and x9. This figure was generated using MATCONT,
a numerical bifurcation package (Dhooge et al. 2004). For details, see the supplementary
file ERK-Matcont.txt.

Proposition 4.1 (Hopf criterion for reduced ERK). Consider the reduced ERK network, and
let the polynomials fi denote the right-hand sides of the resulting ODEs, as in (16). Let κ̂ :=
(kcat, koff , `off) and x := (x1, x2, . . . , x10), and let φ be the steady-state parametrization (19).
Then the following is a univariate, degree-7 polynomial in λ, with coefficients in Q(x)[κ̂]:

q(λ) :=
1

λ3
det (λI − Jac(f)) |(κ;x)=φ(κ̂;x) . (25)

Now let hi, for i = 4, 5, 6, denote the determinant of the i-th Hurwitz matrix of the polyno-
mial q(λ) in (25). Then the following are equivalent:

(1) there exists a rate-constant vector κ∗ ∈ R10
>0 such that the resulting system (16) exhibits

a simple Hopf bifurcation, with respect to kcat, at some x∗ ∈ R10
>0, and
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Figure 4: The reduced ERK network exhibits oscillations when the rate constants are ap-
proximately those in Theorem 4.3 and the initial species concentrations are close to the Hopf
bifurcation. Details are in the supplementary file ERK-Matcont.txt. This figure, generated
using MATCONT, displays all species concentrations, except x3, x4, x6, and x9.

(2) there exist x∗ ∈ R10
>0 and κ̂∗ ∈ R3

>0 such that

h4(κ̂∗;x∗) >0 , h5(κ̂∗;x∗) > 0 , h6(κ̂∗;x∗) = 0 , and (26)

∂

∂kcat

h6(κ̂;x)|(κ̂;x)=(κ̂∗;x∗) 6= 0 .

Moreover, given κ̂∗ and x∗ as in (2), a simple Hopf bifurcation with respect to kcat occurs at
x∗ when the rate constants are taken to be κ∗ := π̃(φ(κ̂∗;x∗)). Here, π̃ : R10

>0 × R10
>0 → R10

>0

is the natural projection to the first 10 coordinates.

Proof. The fact that q(λ) is a degree-7 polynomial follows from Lemma 2.7, and the fact
that its coefficients are in Q(x)[κ̂] follows from inspecting equations (16) and (19). The
rest of the result will follow immediately from Theorem 2.8 and Proposition 3.3, once we
prove that h1, h2, h3, and the constant term of q(λ) are all positive when evaluated at any
(κ̂;x) ∈ R3

>0 × R10
>0. Indeed, this is shown in the supplementary file reducedERK-hopf.mw.
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(In fact, even before substituting the parametrization (κ;x) = φ(κ̂;x), the corresponding
Hurwitz determinants are already positive polynomials.)

Remark 4.2. Note that kcat is the only free parameter, so it is the natural bifurcation
parameter.

We now prove that the reduced ERK network gives rise to a Hopf bifurcation.

Theorem 4.3 (Hopf bifurcation in reduced ERK). The reduced ERK network exhibits a
simple Hopf bifurcation with respect to the bifurcation parameter kcat at the following point:

x∗ ≈ (0.05952457867, 0.002204614024, 1, 1, 0.1518056972, 1, 1, 0.00001239529511, 1, 1) ,

when the rate constants are as follows:

(k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) ≈ (5.562806640× 106, 730, 729, 1, 453.5941390,

3.879519315× 108, 730, 729, 1, 80675.77183)

Here, φ is the parametrization (19), and π̃ is the projection to the first 10 coordinates.

Proof. By Proposition 4.1, we need only show that the inequalities and equality in (26) are
satisfied at x = x∗ (with x∗ given in the statement of the theorem) and κ̂ = κ̂∗ = (9, 1, 1).
These are verified in the supplementary file reducedERK-hopf.mw.

Remark 4.4. The Hopf bifurcation given in Theorem 4.3 was found by analyzing the Newton
polytopes of h4, h5, and h6. The theory behind this approach is presented in Appendix B,
and the steps we took to find the Hopf bifurcation are listed in Appendix C. We include
these appendices for readers who wish to apply similar approaches to other systems.

4.2 Bistability

Although the full ERK network is bistable (Rubinstein et al. 2016), we now prove that the
reduced ERK network is not bistable (Proposition 4.5). As for irreversible ERK networks,
some of them are bistable, and we show that bistability is controlled by the two reactions
kon and `on (Theorem 4.6).

Proposition 4.5. The reduced ERK network is not multistationary, and hence not bistable.

Proof. Let N denote the reduced ERK network. By definition and Proposition 3.3, we
obtain the following critical function for N :

C(â;x) = (det Jac hc,a) |(a;x)=φ(â;x) , (27)

where â = (kcat, koff , `off), the function hc,a is as in (18), and φ(â;x) is as in (19).
This critical function C(â;x) (see the supplementary file reducedERK-noMSS.mw) is a

rational function, where the denominator is the following monomial: x1x2x3x5x6x7x8x9.
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The numerator of C(â;x) is the following polynomial, which is negative when evaluated at
any (â;x) ∈ R3

>0 × R10
>0:

− k3
cat(kcat + koff)2x3

4(kcatx4 + `offx10)2`offkoff(x1x2x8 + x1x3x8 + x1x4x8 + x10x2x5

+ x10x2x6 + x10x2x8 + x2x3x8 + x2x4x8 + x2x5x8 + x2x5x9 + x2x6x8 + x2x6x9

+ x2x7x8 + x2x8x9 + x3x7x8 + x4x7x8) .

Thus, the following holds for all (â;x) ∈ R3
>0 × R10

>0:

sign(C(â;x)) = −1 = (−1)rank(N) ,

where the final equality uses the fact that the stoichiometric matrix N has rank 10− 3 = 7.
So, by Proposition 2.4 and the fact that N is conservative with no boundary steady

states in any stoichiometric compatibility class (Remark 3.6), N is monostationary. Thus,
N is not multistationary and so, by definition, is not bistable.

Although the reduced ERK network is not bistable (Proposition 4.5), the next result
shows that irreversible versions of the full ERK network are bistable, as long as one of the
reactions labeled by kon and `on is present. That is, this result tells us which reactions can
be safely deleted (in contrast to standard results concerning reactions that can be added,
e.g., the articles of Banaji (2018) and Banaji & Pantea (2018)) while preserving bistability.
(In the next section, we investigate the precise number of steady states of ERK networks;
see Proposition 5.9).

Theorem 4.6 (Bistability in irreversible ERK networks). Consider any network N obtained
from the full ERK network by deleting one or more of the reactions corresponding to rate
constants k2, kon,m1, `2, `on, n2 (blue in Figure 1). Then the following are equivalent:

(1) N is multistationary,

(2) N is bistable, and

(3) N contains at least one of the reactions labeled by kon and `on.

Proof. By definition, every bistable network is multistationary, so (2) ⇒ (1). We therefore
need only show (1) ⇒ (3) ⇒ (2). (All computations below are found in our supplementary
file irreversibleERK.mw).

For (1)⇒ (3), we will prove ¬(3)⇒ ¬(1): Assume that N contains neither the reaction
labeled by kon nor the reaction `on. Our proof here is analogous to that of Proposition 4.5.
By Proposition 3.1, we obtain a critical function, C(â;x), for N of the form (27), where now
hc,a is as in (12) (with 1kon = 1`on = 0) and φ(â;x) is as in (13) (with â = (a2, a4)).

Here, det Jac(hc,a) is a rational function with denominator equal to koffx2(n2 +
n3)`catl3k3m3, which is always positive. The numerator is a polynomial of degree 5 in the
variables x2, x3, and x9 with coefficients that are always negative (see the supplementary file).
The critical function C(â;x) is obtained by substituting the positive parametrization into
det Jac(hc,a). Hence, for all (â;x) ∈ R2

>0×R12
>0, the equality sign(C(â;x)) = −1 = (−1)rank(N)
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holds, because the stoichiometric matrix N has rank 12−3 = 9. So, by Proposition 2.4 (recall
from Remark 3.6 thatN is conservative with no boundary steady states in any stoichiometric
compatibility class), N is not multistationary.

Now we show (3) ⇒ (2), that is, if N contains at least one of the reactions labeled by
kon and `on then N is bistable. By symmetry (from exchanging in the network E, S00, and
S01 with, respectively, F , S11, and S10), we may assume that N contains kon.

Consider the network N ′ obtained from the full ERK network by deleting all reactions
marked in blue in Figure 1, except for kon (equivalently, we set k2 = m1 = `2 = `on = n2 = 0).
We will show that the following total constants and rate constants yield bistability:

(c1, c2, c3) = (46, 13, 13) , and

(k1, k3, kcat, kon, koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (28)

(2, 1.1, 1, 5, 15, 2, 1.1, 1, 10, 20, 10, 20, 10) .

Among the resulting three steady states (see the supplementary file), one of them is
approximately:

(20.72107755, 0.2956877203, 3.248789181, 7.821850626, 0.7821850626, 1.147175131,
0.7821850626, 0.7821850626, 0.1765542587, 1.322653950, 11.13994215, 1.324191138) .

At the above steady state, the Jacobian matrix (of the system obtained from (10) by
making the substitutions (28) and k2 = m1 = `2 = `on = n2 = 0) has three zero eigenvalues
(due to the three conservation laws). For the remaining eigenvalues, the real parts are
approximately:

-76.0913958200572, -70.7106617930401 , -16.3022723748274,
-10.9324829878475, -10.9324829878475, -8.81318904794782 ,
-4.88866989801728, -4.88866989801728 , -0.0545784672515179 ,

Thus, the nonzero eigenvalues have strictly negative real part, so the steady state is expo-
nentially stable.

Another steady state is approximately

(0.1782157709, 8.088440520, 0.2275355904, 11.45336411, 1.145336411, 0.1737638914,
1.145336411, 1.145336411, 0.3818389270, 0.07080081803, 2.620886659, 27.68512059) .

At this steady state, the real part of the eigenvalues of the Jacobian matrix of the system
are, in addition to the three zero eigenvalues, approximately as follows:

-163.308657649675, -68.5596972162577 , -57.0205793889569 ,
-16.4435472947534, -12.1029003142539, -9.27515541335710,
-9.27515541335710, -3.08709626767693 , -0.209550347944487.

This steady state is also exponentially stable. (A third steady state, not shown, is
unstable.) Hence, N ′ is bistable. Finally, as N ′ is a subnetwork obtained from N by making
some reversible reactions irreversible, then by (Joshi & Shiu 2013, Theorem 3.1), bistability
“lifts” from N ′ to N . Thus, N is bistable.
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We obtain the following consequence of Theorem 4.6.

Corollary 4.7. The fully irreversible ERK network is monostationary.

Proof. The fully irreversible ERK network contains neither the reaction labeled by kon nor
the one labeled `on, so Theorem 4.6 implies that the network is not multistationary. Thus,
by a standard application of Brouwer’s fixed-point theorem, together with the fact that the
network is conservative and has no boundary steady states in any stoichiometric compati-
bility class (cf. Remark 3.9 in the article by Pérez Millán et al. (2012)), there is – for every
choice of positive rate constants – exactly one positive steady state in every stoichiometric
compatibility class.

5 Maximum number of steady states

In the previous section, we saw that the full ERK network and some irreversible ERK
networks (those with kon or `on) are bistable, admitting two stable steady states in a stoi-
chiometric compatibility class. The question arises, Do these networks admit three or more
such steady states? We suspect not (Conjecture 5.10).

As a step toward resolving this problem, here we investigate the maximum number of
positive steady states in ERK networks, together with some related measures we introduce,
the maximum number of (non-boundary) complex-number steady states and the “mixed vol-
ume”. The mixed volume is always an upper bound on the number of complex steady states
(Proposition 5.8), but we show these numbers are equal for ERK networks (Proposition 5.9).

5.1 Background and new definitions

Here we recall a network’s maximum number of positive steady states (Joshi & Shiu 2017),
and then extend the definition to allow for complex-number steady states.

Definition 5.1. A network admits k positive steady states (for some k ∈ Z≥0) if there exists
a choice of positive rate constants so that the resulting mass-action system (1) has exactly
k positive steady states in some stoichiometric compatibility class (2).

Joshi & Shiu (2017) allowed k = ∞ when there are infinitely many steady states in a
stoichiometric compatibility class. Here, however, we do not allow k =∞ so that we consider
isolated roots only (as in Proposition 5.5 below).

Definition 5.2. Let G be a network with s species, m reactions, and a d×s conservation-law
matrix W , which results in the system augmented by conservation laws fc,κ, as in (3). The
network G admits k steady states over C∗ if there exists a choice of positive rate constants

κ ∈ Rm
>0 and a total-constant vector c ∈ Rd such that the system fc,κ = 0 has exactly k

solutions in (C∗)s = (C \ {0})s.

It is straightforward to check that Definition 5.2 does not depend on the choice of W .
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Definition 5.3. The maximum number of positive steady states (respec-
tively, maximum number of steady states over C∗) of a network G is the maximum value
of k for which G admits k positive steady states (respectively, k steady states over C∗).

Next we recall, from convex geometry, the concept of mixed volume, which we will apply
to reaction networks. For background on convex and polyhedral geometry (such as polytopes
and Minkowski sums), we direct the reader to the book of Ziegler (1995). In particular, for
a polynomial f = b1x

σ1 + b2x
σ2 + · · ·+ b`x

σ` ∈ R[x1, x2, . . . , xs] , where the exponent vectors
σi ∈ Zs are distinct and bi 6= 0 for all i, the Newton polytope of f is the convex hull of its
exponent vectors: Newt(f) := conv{σ1, σ2, . . . , σ`} ⊆ Rs.

Definition 5.4. Let P1, P2, . . . , Ps ⊆ Rs be polytopes. The volume of the Minkowski
sum λ1P1 + λ2P2 + . . . + λsPs is a homogeneous polynomial of degree s in nonnega-
tive variables λ1, λ2, . . . , λs. In this polynomial, the coefficient of λ1λ2 · · ·λs, denoted by
Vol(P1, P2, . . . , Ps), is the mixed volume of P1, P2, ..., Ps.

The mixed volume counts the number of solutions in (C∗)s of a generic polynomial system.

Proposition 5.5 (Bernshtein’s theorem (Bernshtein 1975)). Consider s real polynomi-
als g1, g2, . . . , gs ∈ R[x1, x2, . . . , xs]. Then the number of isolated solutions in (C∗)s,
counted with multiplicity, of the system g1(x) = g2(x) = · · · = gs(x) = 0 is at most
Vol(Newt(g1), . . . ,Newt(gs)).

Definition 5.6. Let G be a network with s species, m reactions, and a d×s conservation-law
matrix W , which results in the system augmented by conservation laws fc,κ, as in (3). Let
c∗ ∈ Rd

6=0, and let κ∗ ∈ Rm
>0 be generic. Let P1, P2, . . . , Ps ⊂ Rs be the Newton polytopes of

fc∗,κ∗,1, fc∗,κ∗,2, . . . , fc∗,κ∗,s, respectively. The mixed volume of G (with respect to W ) is the
mixed volume of P1, P2, . . . , Ps.

A closely related definition is introduced and analyzed by Gross & Hill (2019).

Remark 5.7. The mixed volume (Definition 5.6) is well defined. Indeed, it is straightforward
to check that the exponents appearing in fc∗,κ∗ are the same as long as c∗ ∈ Rd

6=0 and κ∗

is chosen generically (so that no coefficients of fc∗,κ∗ vanish, or equivalently certain linear
combinations of the κj’s do not vanish).

5.2 Results

Every positive steady state is a steady state over C∗. Also, the mixed volume pertains
to polynomial systems with the same supports (i.e., the exponents that appear in each
polynomial) as the augmented system fc,κ = 0 (but without constraining the coefficients to
come from a reaction network). We obtain, therefore, the bounds in the following result:

Proposition 5.8. For every network, the following inequalities hold among the maximum
number of positive steady states, the maximum number of steady states over C∗, and the
mixed volume of the network (with respect to any conservation-law matrix):

max # of positive steady states ≤ max # of steady states over C∗ ≤ mixed volume .
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Proof. This result follows from Proposition 5.5 and Definitions 5.1–5.3.

We investigate the numbers in Proposition 5.8 for ERK networks in the following result.

Proposition 5.9. Consider four ERK networks: the full ERK network, the full ERK net-
work with the reaction kon removed, the fully irreversible network, and the reduced network.
For these networks, the following numbers (or bounds on them) are given in Table 4: the
maximum number of positive steady states, the maximum number of steady states over C∗,
and the mixed volume of the network (with respect to the consveration laws (11) or (17)).

ERK Max # Max # Mixed
network positive steady states over C∗ volume
Full ≥ 3 7 7
Full with kon = 0 ≥ 3 5 5
Fully irreversible 1 3 3
Reduced 1 3 3

Table 4: Results on ERK networks.

Proof. The results on the mixed volume were computed using the PHCpack (Gross et al.
2013) package in Macaulay2 (Grayson & Stillman n.d.). See the supplementary file
ERK-mixedVol.m2.

The mixed volume is an upper bound on the maximum number of steady states over
C∗ (Proposition 5.8), so we need only show that each network admits the number shown in
Table 4 for steady states over C∗.

The full ERK network admits 7 steady states over C∗ (including 3 positive steady
states) (Dickenstein et al. 2019, Example 3.18). Next, we consider the remaining three
networks (see the supplementary file ERK-MaxComplexNumber.nb).

For the full ERK network with kon = 0, when (c1, c2, c3) = (1, 2, 3) and (k1, k2,
k3, kcat, kon, koff , `1, `2, `3, `cat, `on, `off ,m1,m2,m3, n1, n2, n3) = (3, 25, 1, 5, 0, 6, 5, 23, 11, 13,
43, 41, 12, 7, 8, 12, 31, 21), we obtain 5 steady states over C∗, three real and one complex-
conjugate pair, which are approximately as follows:

(21.7475, 1.97705, 2.40601, 2.64849, 0.760404, 0.564871, -24.1306, -0.973762,
-2.51373, -0.28488, -7.81077, -18.495),
(5.4105 + 14.8132 i, 0.491864 + 1.34665 i, 1.97942 - 3.45492 i, 1.66315 - 1.90055 i,
0.189178 + 0.517943 i, 0.140532 + 0.384758 i, -5.88178 - 12.7049 i, 1.00714 + 0.997852 i,
1.13283 + 0.533085 i, 0.470121 + 0.662785 i, -9.72843 - 0.81303 i, -0.749157 - 12.0899 i),
(5.4105 - 14.8132 i, 0.491864 - 1.34665 i, 1.97942 + 3.45492 i, 1.66315 + 1.90055 i,
0.189178 - 0.517943 i, 0.140532 - 0.384758 i, -5.88178 + 12.7049 i, 1.00714 - 0.997852 i,
1.13283 - 0.533085 i, 0.470121 - 0.662785 i, -9.72843 + 0.81303 i, -0.749157 + 12.0899 i)
(9.63546, 0.875951, -0.488295, 0.0430355, 0.336904, 0.250272, -8.02311, 2.36979,
0.45764, 0.173889, -10.4083, 0.123488), and
( 0.163415, 0.0148559, 0.00111949, 0.00756688, 0.00571382, 0.00424455, 1.82061, 2.98247,
0.00616705, 0.00175686, 0.777908, 0.0172524).
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For the fully irreversible ERK network, when (c1, c2, c3) = (1, 2, 3) and (k1, k3, kcat,
koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (3, 1, 5, 6, 5, 11, 13, 41, 7, 8, 12, 21), there are 3 steady
states over C∗, all real, with approximate values:

(14.199, 1.29082, 2.5444, 2.43721, 0.496468, 0.368805, -16.0342, -0.302478,
-2.13373, -0.181355, -0.295181, -17.7264),
( 0.490202, 0.0445638, 0.0878422, 0.0841415, 0.0171399, 0.0127325, 1.37739, 2.88599,
0.00772073, 0.0728849, 0.118631, 0.0641415), and
(1.9419, 0.176536, 0.34798, 0.33332, 0.0678986, 0.050439, -0.466416, 2.54834,
0.0346375, -0.852654, -1.38782, 0.287758).

For the reduced ERK network, let (c1, c2, c3) = (1, 2, 3) and (k1, k3, kcat, koff ,m, n, `1,
`3, `cat, `off) = (3, 4, 1, 5, 6, 8, 7, 11, 12, 5). We obtain 3 steady states over C∗, all real, which
are approximately:

( -0.843105, -37.1185, 23.4711, 15.6474, -9.92245, -30.6429, -0.0292745, -0.319149,
2.0152, 1.30395),
(0.314129, 1.4361, 0.338341, 0.22556, 0.015463, 0.0477534, 0.0109073, 2.95215,
0.0290494, 0.0187967), and
(-2.47545, -0.954967, 1.77298, 1.18199, 0.087009, 0.268704, -0.0859532, 2.74928,
0.152226, 0.0984989).

Finally, we examine the maximum number of positive steady states. We already saw that
the fully irreversible and reduced networks are monostationary (Corollary 4.7 and Propo-
sition 4.5, respectively). For the “partially irreversible” network, we saw in the proof of
Theorem 4.6 that it admits 3 positive steady states. As for the full network, as noted above,
3 positive steady states were shown in (Dickenstein et al. 2019, Example 3.18).

Table 4 suggests that the mixed volume is a measure of the complexity of a network. The
full ERK network is multistationary, and its mixed volume is 7. The mixed volume drops to
5 when kon = 0. When the network is further simplified to the fully irreversible, or even to
the reduced ERK network, the mixed volume becomes 3, and bistability is lost as well.

Finally, we conjecture that the bounds in Table 4 are strict, and ask about stability.

Conjecture 5.10. For the full ERK network and the full ERK network with kon = 0, the
maximum number of positive (respectively, positive stable) steady states is 3 (respectively, 2).

6 Discussion

Phosphorylation plays a key role in cellular signaling networks, such as mitogen-activated
protein kinase (MAPK) cascades, which enable cells to make decisions (to differentiate,
proliferate, die, and so on) (Chang & Karin 2001). This decision-making role of MAPK
cascades suggests that they exhibit switch-like behavior, i.e., bistability. Indeed, bistability
in such cascades has been seen in experiments (Bagowski & Ferrell 2001, Bhalla et al. 2002).
Oscillations also have been observed (Hilioti et al. 2008, Hu et al. 2013), hinting at a role in
timekeeping. Indeed, multisite phosphorylation is the main mechanism for establishing the
24-hour period in eukaryotic circadian clocks (Ode & Ueda 2017, Virshup & Forger 2009).
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These experimental findings motivated the questions we pursued. Specifically, we inves-
tigated robustness of oscillations and bistability in models of ERK regulation by dual-site
phosphorylation. Bistability, we found, is quickly lost when reactions are made irreversible.
Indeed, bistability is characterized by the presence of two specific reactions. Oscillations, in
contrast, persist even as the network is greatly simplified. Indeed, we discovered oscillations
in the reduced ERK network. Moreover, this network has the same number of reactions (ten)
as the mixed-mechanism network which Suwanmajo and Krishnan surmised “could be the
simplest enzymatic modification scheme that can intrinsically exhibit oscillation” (Suwan-
majo & Krishnan 2015, §3.1). Our reduced ERK network, therefore, may also be such a
minimal oscillatory network.

Returning to our bistability criterion (Theorem 4.6), recall that this result elucidates
which reactions can be safely deleted while preserving bistability – in contrast to standard
results concerning reactions that can be added (Banaji & Pantea 2018, Feliu & Wiuf 2013,
Joshi & Shiu 2013). We desire more results of this type, so we comment on how we proved
our result. The key was the special form of the steady-state parametrization. In particular,
following the article by Dickenstein et al. (2019), our parametrizations allow both species
concentrations and rate constants to be solved (at steady state) in terms of other variables.
Additionally, a single parametrizations specialized (by setting rates to zero for deleted reac-
tions) to obtain parametrizations for a whole family of networks. Together, these properties
gave us access to new information on how bistability is controlled. We are interested, there-
fore, in the following question: Which networks admit a steady-state parametrization that
specializes for irreversible versions of the network?

Our results on oscillations were enabled by new mathematical approaches to find Hopf
bifurcations. Specifically, building on the article by Conradi et al. (2019), we gave a Hopf-
bifurcation criterion for networks admitting a steady-state parametrization. Additionally,
we successfully applied this criterion to the reduced ERK network by analyzing the Newton
polytopes of certain Hurwitz determinants. We expect these techniques to apply to more
networks.

Finally, our work generated a number of open questions. First, what are the mixed
volumes of irreversible versions of the ERK network (beyond those shown in Table 4)? In
particular, is there a mixed-volume analogue of our bistability criterion, which is in terms of
the reactions kon and `on? And, what is the maximum number of (stable) steady states in
the full ERK network (Conjecture 5.10)? Progress toward these questions will yield further
insight into robustness of bistability and oscillations in biological signaling networks.
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A Files in the Supporting Information

Table 5 lists the files in the Supporting Information, and the result/proof each file supports.
All files can be found at the online repository: https://github.com/neeedz/ERK.

Name File type Result
ERK-Matcont.txt text file with MATCONT instructions Figures 3 and 4
irreversibleERK.mw Maple Theorem 4.6
reducedERK-noMSS.mw Maple Proposition 4.5
reducedERK-hopf.mw Maple Theorem 4.3
reducedERK-cones.sws Sage Theorem 4.3
ERK-mixedVol.m2 PHCPack Proposition 5.9
ERK-MaxComplexNumber.nb Mathematica Proposition 5.9

Table 5: Supporting Information files and the results they support.
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B Newton-polytope method

Here we show how analyzing the Newton polytopes of two polynomials can reveal whether
there is a positive point at which one polynomial is positive and simultaneously the other is
zero (Proposition B.2 and Algorithm 1). In Appendix C, we show how we used this approach,
which we call the Newton-polytope method, to find a Hopf bifurcation leading to oscillations
in the reduced ERK network (in Theorem 4.3).

Notation B.1. Consider a polynomial f = b1x
σ1 + b2x

σ2 + · · · + b`x
σ` ∈ R[x1, x2, . . . , xs],

where the exponent vectors σi ∈ Zs≥0 are distinct and bi 6= 0 for all i. A vertex σi of
Newt(f), the Newton polytope of f , is a positive vertex (respectively, negative vertex) if
the corresponding monomial of f is positive, i.e., bi > 0 (respectively, bi < 0). Also, Nf (σ)
denotes the outer normal cone of the vertex σ of Newt(f), i.e., the cone generated by the
outer normal vectors to all supporting hyperplanes of Newt(f) containing the vertex σ.
Finally, for a cone C, let int(C) denote the relative interior of the cone.

For an extensive discussion on polytopes and normal cones, see the book of Ziegler (1995).

Proposition B.2. Let f, g ∈ R[x1, x2, . . . xs]. Assume that α is a positive vertex of Newt(f),
β+ is a positive vertex of Newt(g), and β− is a negative vertex of Newt(g). Then, if
int(Nf (α))∩ int(Ng(β+)) and int(Nf (α))∩ int(Ng(β−)) are both nonempty, then there exists
x∗ ∈ Rs

>0 such that f(x∗) > 0 and g(x∗) = 0.

To prove Proposition B.2 we use the following well-known lemma and its proof.

Lemma B.3. For a real, multivariate polynomial f = b1x
σ1 + b2x

σ2 + · · · + b`x
σ` ∈

R[x1, x2, . . . , xs], if σi is a positive vertex (respectively, negative vertex) of Newt(f), then
there exists x∗ ∈ Rs

>0 such that f(x∗) > 0 (respectively, f(x∗) < 0).

Proof. Let σi be a vertex of Newt(f). Pick w = (w1, w2, . . . , ws) in the relative interior of the
outer normal cone Nf (σi), which exists because σi is a vertex. Then, by construction, the
linear functional 〈w,−〉 is maximized over the exponent-vectors σ1, σ2, . . . , σ` at σi. Thus,
we have the following univariate “polynomial with real exponents” in t:

f(tw1 , tw2 , . . . , tws) = b1t
〈w,σ1〉 + b2t

〈w,σ1〉 + · · ·+ b`t
〈w,σ`〉 = bit

〈w,σi〉 + lower-order terms .

So, for t large, sign(f(tw1 , tw2 , . . . , tws)) = sign(bi). Note that (tw1 , tw2 , . . . , tws) ∈ Rs
>0.

Our proof of Proposition B.2 is constructive, through the following algorithm, where we
use the notation fw(t) := f(tw1 , tw2 , . . . , tws), for t ∈ R and w = (w1, w2, . . . , ws) ∈ Rs.
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Algorithm 1: Newton-polytope method

input : polynomials f, g, and vertices α, β+, β−, as in Proposition B.2
output: a point x∗ ∈ Rs

>0 s.t. f(x∗) > 0 and g(x∗) = 0
1 define C0 := int(Nf (α)) ∩ int(Ng(β+)) and C1 := int(Nf (α)) ∩ int(Ng(β−));
2 pick ` = (`1, `2, . . . , `s) ∈ C0 and m = (m1,m2, . . . ,ms) ∈ C1;
3 define f`(t) := f(t`1 , t`2 , . . . , t`s); define fm(t); define g`(t); define gm(t);
4 define τ` := inf{t∗ ∈ R>0 | f`(t) > 0 and g`(t) > 0 for all t > t∗};
5 define τm := inf{t∗ ∈ R>0 | fm(t) > 0 and gm(t) < 0 for all t > t∗};
6 define T := max{τ`, τm}+ 1;
7 define h(r) := fr`+(1−r)m(T );
8 while min{h(r) | r ∈ [0, 1]} ≤ 0 do
9 T := 2T ;

10 h(r) := fr`+(1−r)m(T );

11 define r∗ := argmin{
(
gr·`+(1−r)m(T )

)2 | r ∈ [0, 1]} (pick one r∗ if there are multiple);

return : T r
∗`+(1−r∗)m :=

(
T r

∗`1+(1−r∗)m1 , T r
∗`2+(1−r∗)m2 , . . . , T r

∗`s+(1−r∗)ms
)

Proof of Proposition B.2. Let a+x
α be the term of f corresponding to the vertex α of

Newt(f), and similarly let b+x
β+ (respectively, b−xβ−) be the term of g correspond-

ing to the vertex β+ (respectively, β−) of Newt(g). Thus, a+ > 0, b+ > 0, and
b− < 0. Let {a1, a2, . . . , ad} ⊆ R denote the remaining set of coefficients of f , so that
f = a+x

α + (a1x
σ1 + a2x

σ2 + · · ·+ adx
σd), for some exponent vectors σi ∈ Zs≥0.

Algorithm 1 terminates: First, ` and m in line 2 exist by hypothesis. Also, τ` and τm
in lines 4–5 exist by the proof of Lemma B.3 and by construction. Next, minh(r) in line 8
exists because h is a continuous univariate function defined on a compact interval.

By construction and because cones are convex, the vector r` + (1 − r)m, which is a
convex combination of ` and m, is in the relative interior of Nf (α) for all r ∈ [0, 1]. Thus,
〈r`+ (1− r)m, α− σi〉 > 0 for all i = 1, 2, . . . , d and for all r ∈ [0, 1]. This (together with a
straightforward argument using continuity and compactness) implies the following:

δ := inf
r∈[0,1]

min
i=1,2,...,d

〈r`+ (1− r)m, α− σi〉 > 0.

Next, let β := infr∈[0,1]〈r`+ (1− r)m, α〉. Then, for all r ∈ [0, 1] and t > 0,

fr`+(1−r)m(t) = a+t
〈r`+(1−r)m),α〉 +

(
a1t
〈r`+(1−r)m),σ1〉 + · · ·+ adt

〈r`+(1−r)m),σd〉)

> a+t
β − (|a1|+ |a2|+ · · ·+ |ad|)tβ−δ =: f̃(t) . (29)

In f̃(t), the term a+t
β dominates the other term, for t large, so there exists T ∗ > 0 such that

f̃(t) ≥ 0 when t ≥ T ∗. So, by (29), the while loop in line 8 ends when T ≥ T ∗ (or earlier).

Algorithm 1 is correct: For T fixed, the minimum of ψ(r) :=
(
g(T r`+(1−r)m)

)2
over the

compact set [0, 1] is attained, because ψ is continuous. Next we show that this minimum
value is 0, or equivalently that for χ(r) := g(T r`+(1−r)m) there exists some r∗ ∈ (0, 1) such
that χ(r∗) = 0. Indeed, this follows from the Intermediate Value Theorem, because χ is
continuous, χ(0) = g(Tm) < 0 (because T > τm), and χ(1) = g(T `) > 0 (because T > τ`).
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Finally, the inequality f(T r
∗`+(1−r∗)m) > 0 holds by construction of T , so defining x∗ :=

T r
∗`+(1−r∗)m ∈ Rs

>0 yields the desired vector satisfying f(x∗) > 0 and g(x∗) = 0.

C Using the Newton-polytope method

Here we show how we used Algorithm 1 to find the Hopf bifurcation in Theorem 4.3.
(For details, see the supplementary files reducedERK-hopf.mw and reducedERK-cones.sws).
Recall from the proof of that theorem, that our goal was to find some x∗ ∈ R10

>0 and
κ̂∗ = (k∗cat, k

∗
off , `

∗
off) ∈ R3

>0 satisfying the following conditions from Proposition 4.1:

h4(κ̂∗;x∗) >0 , h5(κ̂∗;x∗) > 0 , h6(κ̂∗;x∗) = 0 , and
∂

∂kcat

h6(κ̂;x)|(κ̂;x)=(κ̂∗;x∗) 6= 0 . (30)

Step One. Specialize some of the parameters: set koff = `off = 1 and x3 = x4 = x6 =
x7 = x9 = x10 = 1. (Otherwise, h5 and h6 are too large to be computed.)

Step Two. Do a change of variables: let yi = 1/xi for i = 1, 2, 5, 8. These variables xi
were in the denominator, so switching to the variables yi yield polynomials.

LetH4,H5, andH6 denote the resulting polynomials in Q[kcat, y1, y2, y5, y8] after perform-
ing Steps One and Two. Accordingly, our updated goal is to find (k∗cat, y

∗
1, y
∗
2, y
∗
5, y
∗
8) ∈ R5

>0

at which H4 and H5 are positive and H6 is zero. (In a later step, we must also check the
partial-derivative condition in (30).)

Step Three. Apply (a straightforward generalization of) Algorithm 1 as follows.

(i) Find a positive vertex of H4 and a positive vertex of H5 whose outer normal cones
intersect (denote the intersection by C), and a positive vertex and a negative vertex
of H6 (denote their outer normal cones by D+ and D−, respectively) for which:

(a) the intersection D+ ∩D− is 4-dimensional, and

(b) the intersections C ∩D+ and C ∩D− are both 5-dimensional.

(ii) By Proposition B.2, a vector (k∗cat, y
∗
1, y
∗
2, y
∗
5, y
∗
8) that accomplishes our updated goal,

is guaranteed. To find such a point, we follow Algorithm 1 to obtain k∗cat = 729, y∗1 ≈
16.79978292, y∗2 ≈ 453.5941389, y∗5 ≈ 6.587368051, and y∗8 ≈ 80675.77181.

Recall the specializations in Step One and change of variables in Step Two, to obtain
κ̂ = (729, 1, 1) and

x∗ ≈ (0.05952457867, 0.002204614024, 1, 1, 0.1518056972, 1, 1, 0.00001239529511, 1, 1) .

Step Four. Verify that the conditions in (30) hold.

34


	Introduction
	Contributions
	Framework
	Chemical Reaction Networks
	Steady states
	Multistationarity
	Deficiency zero and deficiency one theorems
	Injectivity
	Parameter regions for multistationarity

	Reduction of networks
	Intermediates
	Subnetworks and embedded networks

	Newton Polytope
	Polytopes
	Newton polytope


	Local dynamic behaviour of Chemical Reaction Networks
	Background on Stable steady states and Hopf bifurcations
	Stability of steady states
	Hurwitz criterion
	Hopf bifurcations
	Jacobian of Chemical Reaction Networks

	Contributions in Bistability and Oscillations in Chemical Reaction Networks
	Algorithm for detecting bistability
	Bistability and oscillations in a model of ERK regulation
	Hopf bifurcations in MAPK cascade
	Characteristic polynomial in Chemical Reaction Networks


	Absolute Concentration Robustness
	What is Absolute Concentration Robustness?
	ACR in networks with two reactions
	ACR in networks with two reactions, n species and n-1 conservation laws 
	Stability

	Preservation and loss of ACR
	Removal and addition of intermediates
	Removal and addition of inflow and outflow reactions


	Bibliography
	Detecting parameter regions for bistability in reaction networks
	Oscillations and bistability in a model of ERK regulation


