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Abstract
The thesis addresses the interplay between topological dynamics, groupoids and C∗-
algebras. Ever since the inception of Cuntz–Krieger algebras (and later graph C∗-
algebras), symbolic dynamical systems have been exploited to exhibit new and inter-
esting examples of operator algebras. Via a groupoid reconstruction theory of Kumjian
and Renault (and later refined by many authors), we can now trace finer structures of
the C∗-algebras back to properties of the dynamical systems, and structure-preserving ∗-
isomorphisms between C∗-algebras back to conjugacies, orbit equivalences or flow equiv-
alences of the dynamical systems. The first part of the thesis contains a review of the
literature on this question specifically for shift spaces, while the second part contains
the original contributions of the thesis.

Papers A and B (joint with Toke Meier Carlsen) concern orbit equivalences and flow
equivalences between shift spaces, while paper C characterizes diagonal-preserving and
gauge-intertwining ∗-isomorphisms of graph C∗-algebras in terms of moves on the graphs.
The paper D (joint with Eduardo Scarparo) studies the topological full group of groupoids
and gives conditions for these groups to be C∗-simple.

Resumé
Denne afhandling adresserer sammenspillet mellem topologisk dynamik, gruppoider og
C∗-algebraer. Siden indførelsen af Cuntz–Krieger algebraer (og senere graf-C∗-algebraer),
er symbolske dynamiske systemer blevet anvendt til at frembringe nye og interessante
eksempler på operatoralgebraer. Via en gruppoid-rekonstruktionsteori af Kumjian og
Renault (som senere er blevet raffineret af mange forfattere), kan vi nu spore visse finere
strukturer ved C∗-algebraerne tilbage til egenskaber ved de dynamiske systemer, og
strukturbevarende ∗-isomorfier tilbage til konjugeringer, bane-ækvivalenser eller flow-
ækvivalenser mellem de dynamiske systemer. Afhandlingens første del indeholder en
gennemgang af litteraturen for dette spørgsmål med skiftrum som specifik ledetråd,
mens anden del indeholder afhandlingens originale bidrag.

Artikel A og B (i samarbejde med Toke Meier Carlsen) omhandler baneækvivalenser
og strømningsækvivalenser mellem skiftrum, mens artikel C karakteriserer diagonalbe-
varende og cirkelvirkningssammenflettende ∗-isomorfi af graf-C∗-algebraer i termer af
moves på graferne. Artiklen D (i samarbejde med Eduardo Scarparo) studerer den
topologisk fulde gruppe af en gruppoid og giver betingelser for, hvornår disse grupper er
C∗-simple.
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Preface

Prologar cuentos no leídos aún es tarea casi imposible,
ya que exige el análisis de tramas que no conviene anticipar.

J.L. Borges

The ability of mathematics to accurately model reality is an overwhelming and mysteri-
ous quality only paralleled by its propensity to isolate itself in engaged study of . . . itself.

Dynamical systems is a branch of mathematics which in some sense aims to model time
evolution of a system, be it physical or informational. For discrete systems, we chop up
time into small quanta and see what happens as we let the clock run either forward or
backward. We can think of such a system over the span of time as a string of symbols,
each symbol representing the state of the system. We imagine these strings to be never-
ending, in fact infinitely long, and this hypothesis of infinity actually serves to simplify
matters — another curiosity of mathematics.

On the other hand, the theory of operator algebras, the inception of Hilbert space and
operators on it originated most notably with John von Neumann and the attempt to
find a rigorous mathematical foundation for the newly discovered quantum mechanics.
Almost singlehandedly, he revolutionized mathematics with this gem of a discovery. The
potential of operator algebras and C∗-algebras was not overlooked and many brilliant
minds have contributed to curiously investigating and refining this area of research. Even
if operator algebras started with the study of physics, not much is left of this legacy when
taught today, except for terminology perhaps. A prime characteristic however is its abil-
ity to connect with other branches in order to transport mutually beneficial ideas back
and forth.

For a locally compact space X and a homeomorphism ϕ : X −→ X, the pair (X,ϕ)
defines a topological dynamical system. By Gelfand duality, the complex-valued con-
tinuous functions vanishing at infinity C0(X) is a prominent example of a commutative
C∗-algebra and there is an induced ∗-isomorphism ϕ∗ : C0(X) −→ C0(X); by a slight
stretch of the imagination we think of C0(X) as a system and ϕ∗ as time evolution.
The crossed product construction exemplifies the power of operator algebras by taking
the pair (C0(X), ϕ∗) and constructing a noncommutative C∗-algebra C0(X)oϕ∗ Z which
captures the dynamics in a single object at the expense of commutativity. This funda-
mental idea is also at the core of this thesis!

A finite square and nonnegative integer matrix A determines a finite graph whose path
space naturally carries the structure of a discrete dynamical system, a topological Markov
shift. Vertices represent states and edges determine how one state can be followed by
the next. In symbolic dynamics, the path space is an example of a shift space of finite
type. For strongly connected graphs which are not just a single cycle, Cuntz and Krieger
constructed a rich class of simple C∗-algebras, today known as Cuntz–Krieger algebras.
Their construction differs dramatically from that of the crossed product and this is
reflected in the operator algebraic properties of these C∗-algebras. Recent years have
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seen numerous developments and generalizations of this idea. The construction laid the
ground for a firm connection between finite type symbolic dynamics and C∗-algebras, a
foundation on which this thesis is also built.

The most basic of questions is to determine when a pair of dynamical systems are the
same. From the perspective of operator algebras, much work has then gone into invari-
ance properties: If two systems are the same in a suitable sense, then the C∗-algebras
should be the same in a correspondingly suitable sense. This somehow works as a sanity
check for the utility of a given construction. Cuntz and Krieger knew that conjugate
two-sided shifts of finite type produces stably isomorphic C∗-algebras even in a way
which preserves a canonical abelian subalgebra called the diagonal. In fact, this is also
true for the much coarser (but not less important) relation of flow equivalence. However,
many years should pass before Matsumoto and Matui — with a brilliant use of groupoid
techniques — proved that the stable isomorphism class of the Cuntz–Krieger algebra
together with its canonical diagonal subalgebra completely remembers the flow class of
the underlying dynamical system.

This groundbreaking discovery of Matsumoto and Matui has in recent years spawned
a newfound rapture in the study of the finer structures of C∗-algebras associated to
dynamical systems and structure preserving ∗-isomorphism between them. More gen-
erally, topological groupoids and their C∗-algebras have become mainstream and serve
as a versatile picture of an increasingly (and surprisingly) large body of examples of
C∗-algebras. The present thesis with its contributions is to be viewed under this lens.

Shifts of finite type are but a small (but important) class of symbolic dynamical systems.
The succes of associating C∗-algebras to such systems and as a consequence understand-
ing the dynamics involved naturally begs the question of whether a similar theory (with
a similar payoff) can be developed for general symbolic dynamical systems. Authors
such as Kengo Matsumoto, Toke Meier Carlsen and Klaus Thomsen have worked dili-
gently to extend the results of finite type systems to general shift spaces. Unfortunately,
there have been mistakes in the literature and various (nonisomorphic!) constructions.
Hopefully, this document serves to clarify this story a bit.

Of course, the outline above is not strictly speaking true. Many authors have worked
tirelessly over the coarse of several decades to produce results akin to the theorems de-
scribed above. Similarly, there are many new perspectives flourishing which are beyond
the scope of this thesis to include or mention. I apologize for that.

The thesis consists of two parts. Part 1 contains two chapters the first of which is a
brief review of the story and literature of associating C∗-algebras to general shift spaces.
The second chapter describes various on-going projects and intriguing questions yet to
be answered. Part 2 consists of four papers which comprise the original contributions of
the thesis. Papers A and B are written joint with Toke Meier Carlsen, while paper D is
written joint with Eduardo Scarparo. There is a single list of reference in the end of the
document and this contains all references from both parts.
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CHAPTER 1

C∗-algebras of shift spaces

Allt är kontruktion
The Narrator, Reconstruction

Cuntz–Krieger algebras arising from irreducible and nonpermutation {0, 1}-matrices pro-
vide a rich and interesting class of simple C∗-algebras. This was later generalized to in-
finite matrices and general directed graphs (see, e.g., [47, 65]). and the study of graph
C∗-algebras occupies a prominent corner of C∗-algebra theory because we can see the
algebras in the graphs. On the other hand, the irreducible and nonpermutation {0, 1}-
matrices are intimately connected to irreducible shifts of finite type. The question is:
how can we associate a C∗-algebras to larger classes of shift spaces and, if so, how do
they relate to the underlying dynamical systems? In this chapter we sketch the story of
associating a C∗-algebra to a general shift spaces.

In Section 1.1, we give a detailed introduction to one-sided and two-sided shift spaces,
and in Section 1.2 we describe some of the constructions of C∗-algebras associated to
symbolic dynamical systems. The question of how much the C∗-algebra remembers of
the underlying dynamics and the possibility of reconstructing the dynamical system (up
to some coarse equivalence) using groupoids is described in Section 1.3.
Let Z, N = {0, 1, . . .} and N+ = {1, 2, . . .} be the integers, the nonnegative integers and
the positive integers, respectively.

1.1. Symbolic dynamics

Let A be a nonempty finite set equipped with the discrete topology. We call it the
alphabet and its elements letters or symbols. If A contains N elements, then the full
two-sided N-shift is the space AZ (with the product topology) together with the shift
operation σ : AZ −→ AZ given by σ(x)i = xi+1 for i ∈ Z and x = (xi)i∈Z ∈ AZ. This
is a homeomorphism and AZ is compact and Hausdorff. Replacing Z by N, we obtain
the full one-sided N-shift AN whose shift operation σ : AN −→ AN given by σ(x)i = xi+1

for i ∈ N and x = (xi)i∈N ∈ AN is a surjective local homeomorphism. Topologically,
the full shifts are (homeomorphic to) Cantor sets. In classical symbolic dynamics, much
effort has been devoted to the study of two-sided subshifts (reversible dynamics). From
the point of view of operator algebras and groupoids, however, we shall see that it is
more natural to consider one-sided shift spaces (irreversible dynamics). We introduce
basic notation and results needed for this thesis without proofs. The interested reader
is refered to [68, 62] for excellent introductions to the theory of symbolic dynamics.

3



4 1. C∗-ALGEBRAS OF SHIFT SPACES

1.1.1. Shift spaces. A one-sided shift space over A is a closed subspace X ⊆ AN

which is shift-invariant in the sense that σ(X) ⊆ X (we do not assume equality) together
with the restricted shift operation σX = σ|X : X −→ X. Analogously, a two-sided subshift
is a subspace Λ ⊆ AZ which is closed and shift-invariant in the sense that σ(Λ) = Λ with
the restricted shift operation σΛ = σ|Λ : Λ −→ Λ which is a homeomorphism.

Let X be a one-sided shift space over A. If x = (xi)i∈N ∈ X we write x[i,j] = xi · · ·xj,
for integers 0 6 i 6 j. Similarly, x[i,j) = x[i,j−1] and x(i,j] = x[i+1,j] whenever i < j. We
extend this notation so that x = x[0,∞). A word in X is a finite string α = α1 · · ·αn such
that αk ∈ A for all k = 1, . . . , n and α = x[i,j] for some integers 0 6 i 6 j, and |α| = n
is the length of α. Let Ln(X) be the set of all words in X of length n ∈ N. The empty
word ε is the unique element of L0(X). The language of X is the collection of all finite
words L(X) =

⋃
n>0 Ln(X). Given two words µ, ν ∈ L(X) the concatenation µν is again

a word in X if and only if there exist x ∈ X and i ∈ N such that x[i,i+|µ|+|ν|) = µν. The
language determines its shift space completely in the sense that two languages are equal
if and only if the shifts are the same. Furthermore, given a word µ ∈ L(X) the cylinder
set of µ is the compact and open subset

Z(µ) = {x ∈ X | x[0,|µ|) = µ},
and the collection of cylinder sets constitutes a basis for the topology of X. A two-sided
subshift Λ determines a one-sided shift X with surjective σX by

X = {x[i,∞) | x ∈ Λ, i ∈ Z},
and we write ΛX to emphasize that X is the one-sided part of Λ. Conversely, a one-sided
shift X for which σX is surjective determines a two-sided subshift ΛX as the projective
limit ΛX = lim←−(X, σX).

The language of a shift space contains the allowed words in X. Conversely, any collection
of words F ⊆ L(AN) determines a shift space XF for which the elements of F do not occur.
We think of the elements of F as the forbidden words. Different sets of forbidden words
can determine the same shift space and any shift space has a (not necessarily unique)
collection of forbidden words.

Definition 1.1.1. A shift space is of finite type if the collection of forbidden words can
be chosen to be finite.

The shifts of finite type are arguably the most important class of shift spaces and the
example below indicates this. We say that X is irreducible if for every ordered pair of
words µ, ν ∈ L(X) there exists α ∈ L(X) such that µαν ∈ L(X).

Example 1.1.2. Let E = (E0, E1, r, s) be a finite directed graph. That is, E0 and E1

are finite sets of vertices and edges, respectively, and r, s : E1 −→ E0 are the range and
source maps, respectively. If E contains no sinks (that is, s−1(v) 6= ∅ for every vertex
v ∈ E0), then the path space

E∞ = {x = (xi)i ∈ (E1)
N | r(xi) = s(xi+1), i ∈ N}

with the shift operation σE : E∞ −→ E∞ given by σE(x)i = xi+1 for x ∈ E∞ and i ∈ N
is a shift of finite type over the alphabet E1 called the edge shift of E. The strength of
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this picture is that many properties of the dynamical system can be seen directly on the
graph. E.g., the shift operation is surjective if and only if E contains no sources (that
is, r−1(v) 6= ∅ for all v ∈ E0), and the edge shift is irreducible if and only if the graph is
strongly connected. The edge shift operation is a local homeomorphism; in fact, σX is a
local homeomorphism exactly when X is of finite type, cf. [96].
Every shift space of finite type is (conjugate to) the edge shift of a finite directed graph,
so these examples actually exhaust the class of finite type shifts.

The notion of a conjugacy determines when two systems are the same.

Definition 1.1.3. Let X and Y be a pair of one-sided shift spaces. A conjugacy is a
homeomorphism h : X −→ Y which intertwines the shift operations h ◦ σX = σY ◦ h. A
similar definition applies to two-sided subshifts.

It is not hard to see that the class of finite type shifts is invariant under conjugacy. Ar-
guably, the biggest problem in the field of symbolic dynamics, however, is to determine
when two shift spaces (of finite type) are conjugate. The seminal paper of Williams [116]
made impressive progress on this question. For one-sided shifts of finite type there is
a surprisingly simple answer: An amalgamation process on the adjacency matrices of
the graphs which represent the shifts of finite type completely determines the conjugacy
class, see also [8, 62]. For two-sided subshifts this problem seems much harder. Williams
introduced the notion of shift equivalence (which is more combinatorial in flavor) be-
tween nonnegative integral matrices and thought this was equivalent to conjugacy of
the corresponding subshifts. Although this was not the case (see the counterexamples of
Kim and Roush [60, 61]), this relation is interesting in itself. Shift equivalence is weaker
than conjugacy but it does not seem to be amenable to the approaches and techniques
which have flourished in recent years and which play a pivotal rôle in this thesis (see
Section 2.2 for a brief discussion of this relation and certain problems associated with
it). In Paper C, we briefly relate the complexity of the conjugacy problem to a similar
problem of one-sided finite type shifts.

There is a more general notion of morphism between shift spaces. A sliding block code
ϕ : X −→ Y is a continuous map satisfying ϕ◦σX = σY◦ϕ. Since shift spaces are compact
and Hausdorff, a conjugacy is a bijective sliding block code. Surjective sliding block
codes are called factor maps while injective sliding block codes are called embeddings.
The image of a shift space under a sliding block code is again a shift spaces, but the
image of a finite type shift need not be of finite type. This is an intrinsic problem with
the shifts of finite type. Weiss [114] studied the broader class of shift spaces which
contains the finite type systems and is closed under taking images of sliding block codes
and called them sofic shifts. Whereas finite type shifts are represented by finite directed
graphs, sofic shifts are instead represented by finite directed and labeled graphs.

Example 1.1.4. Let E = (E0, E1, r, s) be a finite directed graph and let A be a finite
set of labels with a surjective labeling map L : E1 −→ A. Then L extends to a map on
the infinite path space L∞ : E∞ −→ AN by L∞(x) = L(x0)L(x1) · · · for x ∈ X. The
labeled path space

XE,L = {λ ∈ AN | ∃x ∈ E∞ : λ = L∞(x)} = L∞(E∞)}
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with the obvious shift operation defines a one-sided sofic shift over the alphabet A. We
say that the sofic shift XE,L is represented by the graph E. The same sofic shift can be
represented by many different graphs and any sofic shift can be represented by a labeled
graph [51].

There are several relevant constructions of graphs associated to sofic shifts, see, e.g., [55].
We shall now describe the Krieger cover which is of central importance here. Consider
the predecessor set

Pl(x) = {µ ∈ Ll(X) | µx ∈ X},
for l ∈ N and x ∈ X, and put P∞(x) =

⋃
l∈N Pl(x). Two elements x, x′ ∈ X are l-past

equivalent, written x ∼l x′, if Pj(x) = Pj(x
′) for j = 0, . . . , l, cf. [71]. This formulation

is slightly different from Matsumoto’s because we want to include the case where σX is
not surjective. This is an equivalence relation, and we let [x]l be the l-past equivalence
class of x. Set Ωl = X/ ∼l. Since x ∼l x′ implies x ∼l−1 x

′, the spaces (Ωl)l>0 define a
projective system which has been studied by Matsumoto [69] among others. Weiss [114]
has shown that X is sofic if and only if the collection of predecessor sets is finite (X is
P -finitary); equivalently, the system (Ωl)l>0 is eventually constant.

Definition 1.1.5 ([63]). Suppose X is a sofic shift and choose l ∈ N such that Ωl = Ωl+i

for all i ∈ N. LetmX be the cardinality of Ωl and let E1, . . . , EmX
be the l-past equivalence

classes of X. The left Krieger cover graph of X is given as follows:
Let A = {1, . . . ,mX} and construct a graph K with vertex set K0 = {E1, . . . , EmX

}.
There is an edge from Ek to Ei with label j ∈ A if and only if there exists x ∈ X such
that Ek = P (jx) and Ei = P (x).

Formally, a cover of a sofic shift X is a shift of finite type equipped with a factor map
onto X. For our purposes, the left Krieger cover graph is the most important cover con-
struction. Alternative constructions such as the Fischer cover [51] of X are irreducible
whenever X is irreducible and enjoy a certain minimality property. Albeit this is not the
case for the Krieger cover this is actually not a disadvantage; instead the Krieger cover
detects certain properties that the Fischer cover does not see.

For general one-sided shifts, we propose a more general definition: A cover is a compact
space equipped with a self-map which is a local homeomorphism (a Deaconu–Renault
system [110]) and a factor map onto the shift space. In this sense, the space X̃ associ-
ated to a one-sided shift space X presented in Paper B is a cover which generalizes the
left Krieger cover. We refer the reader to [55] and references therein for a discussion of
different covers of sofic subshifts. To the author’s knowledge the only theory of covers
associated to general shift spaces are Carlsen’s covers [19] (elaborated in Paper B) and
Matsumoto’s λ-graph systems [74] briefly described below.

Finally, we mention two conditions will be relevant in the next section.

Definition 1.1.6 ([71]). A one-sided shift space X satisfies Matsumoto’s condition (I)
if for any l ∈ N and x ∈ X there exists y ∈ X such that y 6= x and y ∼l x.

Matsumoto’s condition (I) is a generalization of Cuntz and Krieger’s condition (I) [35]
introduced for shifts of finite type to ensure the nonexistence of isolated points. A point
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x in a general one-sided shift X is isolated in past equivalence if [x]l is a singleton for some
l ∈ N. Matsumoto’s condition (I) says that no points are isolated in past equivalence.
In Paper B, we show that this is equivalent to the condition that the cover X̃ contains
no isolated points. For certain purposes we shall instead consider the weaker condition
that no periodic points be isolated in past equivalence.

Definition 1.1.7 ([23]). A two-sided subshift Λ satisfies condition (∗) if for each l ∈ N
and each sequence of words (µi)i∈N satisfying Pl(µi) = Pl(µj) for all i, j ∈ N there exists
x ∈ XΛ such that

Pl(x) = Pl(µi),

for i ∈ N.

1.2. C∗-algebra constructions

In this section, we address the problem of associating C∗-algebra to general shift spaces.
As we shall see, this problem is intimately tied together with the association of covers
to general shift spaces. To improve the readability, we shall denote the C∗-algebras
differently from the original papers in which they appear (since a few of them are defined
using the same symbols). The original Fock space construction of Matsumoto [69] is
here denoted MΛ∗ , (originally OΛ) and the alternative construction of Carlsen and
Matsumoto [23] is here denotedMΛ (originally OΛ). Both of these constructions apply
to two-sided subshifts Λ. However, we are mostly interested in constructions which work
for one-sided shifts X. This was first introduced by Carlsen [20] and denoted OX. The
interested reader is refered to [23, 27, 38] for similar expositions.

1.2.1. Matsumoto’s original construction. We describe Matsumoto’s Fock space
construction of a C∗-algebraMΛ∗ of a two-sided subshift Λ as it appeared in [69].
Let Λ be a two-sided subshift over A. For any n ∈ N+, let {e1, . . . , en} be an orthonormal
basis of Cn. Define

F 0
Λ =Ce0,

F k
Λ =span{eµ = eµ1 ⊗ · · · ⊗ eµk | µ = µ1 . . . µk ∈ Lk(Λ)},

FΛ =
∞⊕
k=1

F k
Λ

where e0 is the vacuum vector and each F k
Λ is understood to be a Hilbert space so that⊕

denotes a sum of Hilbert spaces. For each i ∈ A(Λ), the creation operator of ei
Ti ∈ B(FΛ) is given as

Tie0 = ei, Tieµ =

{
ei ⊗ eµ iµ ∈ L(Λ),

0 otherwise.

for eµ ∈ L(Λ). Note that Ti is a partial isometry. Let P0 denote the projection onto
the subspace spanned by the vacuum vector e0. Then

∑
i∈A(Λ) TiT

∗
i + P0 = 1 in B(FΛ).

The operators of the form TµP0T
∗
ν are rank one partial isometries taking eν to eµ and

the collection of these operators span the compact operators K(FΛ). Let TΛ be the
C∗-algebra generated by the operators {Tµ}µ∈L(Λ) in B(FΛ).
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Definition 1.2.1 ([69]). The C∗-algebra MΛ∗ associated to the two-sided subshift Λ
is defined as the quotient TΛ/K(FΛ). If Si denotes the image of Ti in MΛ∗ for each
i ∈ A(Λ), then

∑
i SiS

∗
i = 1 inMΛ∗ .

Let HΛ be the Hilbert space with orthonormal basis {ex | x ∈ XΛ}. For each i ∈ A,
define operators Ti ∈ B(HΛ) by

Tiex =

{
eix ix ∈ XΛ,

0 otherwise.

Then each Ti is a partial isometry satisfying
∑

i∈A(Λ) TiT
∗
i = 1. In [75, Lemma 4.1],

Matsumoto considers the representationMΛ∗ −→ B(HΛ) given by sending Si 7−→ Ti for
i ∈ A and claims that this is nondegenerate and faithful. This is however not the case
unless Λ satisfies condition (I) and (∗) and this problem is related to the flawed statement
that the C∗-algebra Al in MΛ∗ generated by the projections S∗µSµ, for µ ∈ Ll(Λ), is ∗-
isomorphic to C(Ωl). This observation did, however, inspire the next concrete definition
of Carlsen and Matsumoto.

Definition 1.2.2 ([23]). The C∗-algebraMΛ is defined as the C∗-algebra generated by
the operators Ti in B(HΛ).

The C∗-algebra MΛ satisfies all the results of Matsumoto but in general it does not
admit a gauge action. This is not satisfying.

1.2.2. Carlsen’s construction. We recall a Cuntz–Pimsner construction associ-
ated to any one-sided shift space X over the alphabet A [20]. Consider the commutative
C∗-algebra

DX = C∗{1C(µ,ν) | µ, ν ∈ L(X)}
inside the C∗-algebra of bounded functions on X. The spectrum of DX is (homeomorphic
to) the cover X̃ mentioned above. Let Di ⊆ DX be the ideal generated by the function
1σX(Z(i)) and consider the right Hilbert DX-module

HX =
⊕
i∈A

Di

with the inner product
〈(fi)i, (gi)i〉 =

∑
i∈A

f ∗i gi,

for (fi)i, (gi)i ∈ HX. Since each Di is an ideal there is a right action of DX given by

(fi)i · f = fif i

for (fi)i ∈ HX and f ∈ DX. Furthermore, for each i ∈ A there is a ∗-homomorphism on
the bounded functions of X given by

λi(f)(x) =

{
f(ax) if ax ∈ X,

0 otherwise,

for x ∈ X. Let L(HX) denote the C∗-algebra of adjointable operators on HX. Then this
defines a left action φ : DX −→ L(HX) by

φ(f)((fi)i) = (λi(f)fi)i
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for f ∈ DX and (fi)i ∈ HX. Hence HX is a C∗-correspondence.

Definition 1.2.3 ([20]). Let X be a one-sided shift space. Then OX is defined as the
C∗-algebra of the C∗-correspondence HX.

The C∗-algebra OX enjoys the following universal property.

Theorem 1.2.4 ([20]). Let X be a one-sided shift space over A. Then OX is the universal
unital C∗-algebra generated by partial isometries {Si}i∈A such that SµSν = Sµν and such
that the map

1C(µ,ν) 7−→ SνS
∗
µSµS

∗
ν

extends to a ∗-homomorphism from DX into the C∗-algebra generated by {Si}i, where
Sµ = Sµ1 · · ·Sµ|µ| and Sν = Sν1 · · ·Sν|ν|.

The next result relates the constructions we have seen hitherto.

Theorem 1.2.5 ([27]). Let ΛX be a two-sided subshift and let X be the associated one-
sided shift. Then there are surjective ∗-homomorphisms

MΛ∗ −→ OX −→MΛ

which map the canonical generators to the canonical generators. The first map is injec-
tive if Λ satisfies condition (∗) while the second is injective if Λ satisfies Matsumoto’s
condition (I).

Remark 1.2.6. Carlsen and Matsumoto remark that infinite and irreducible shifts of
finite type satisfy both condition (I) and (∗). This is also the case for the class of β-
shifts and for the context free shift. The shift consisting of a single point does not satisfy
Matsumoto’s condition (I) and the map is not injective. In [23, Section 4] there is an
example of an irreducible sofic shift Λ which does no satisfy condition (∗) and such that
the C∗-algebrasMΛ∗ andMΛ are not stably isomorphic, the latter being simple while
the first is not.

For our purposes, OX is the right C∗-algebra to work with. There are several equivalent
constructions available in the literature. Thomsen described it as a groupoid C∗-algebra
of a semi-étale groupoid (with unit space homeomorphic to X) [113, 30], Carlsen and
Silvestrov viewed it as one of Exel’s crossed product by an endomorphism and derived
K-theory formulae [27, 28], while Dokuchaev and Exel used partial actions and charac-
terized simplicity of OX [38] in terms of properties of X. In this sense, the C∗-algebras
of general shifts are well-studied and well-understood. However, there is a gap in the
literature when it comes to understanding how structure preserving ∗-isomorphisms of
the C∗-algebras relate to dynamical properties of the spaces. In [19, Chapter 2], Carlsen
constructed a cover X̃ from a one-sided shift X and built a Renault–Deaconu groupoid
GX (with unit space homeomorphic to X̃) whose C∗-algebra is OX. This latter approach
is the basis of Paper B. Starling later identified X̃ as the tight spectrum of a certain
inverse semigroup SX associated to X and then identified OX with C∗tight(SX), Exel’s
tight C∗-algebra of SX, [111, 45]. Recently, Exel and Steinberg have further investi-
gated semigroups of shift spaces and shown that there is a universal groupoid which can
be suitably restricted to model either Matsumoto’s C∗-algebra or OX [48].



10 1. C∗-ALGEBRAS OF SHIFT SPACES

Despite the choice of particular construction, the space X̃ seems unavoidable — it is the
spectrum of the ill fated commutative algebra DX . . . which has evaded all attempts at
analysis . . . and whose descriptions are often somewhat terse and obscure.1

1.2.3. Matsumoto’s λ-graph systems. We briefly describe Matsumoto’s λ-graph
systems following [74]. Fix a two-sided subshift Λ. For each l ∈ N, let F l

i , i = 1, . . . ,m(l)
be the l-past equivalence classes and define the matrix IΛ

l,l+1 by

IΛ
l,l+1(i, j) =

{
1 F l+1

j ⊆ F l
i ,

0 otherwise,

for i = 1, . . . ,m(l) and j = 1, . . . ,m(l+ 1). Define an m(l)×m(l+ 1) matrixMΛ
l,l+1 by

(the formal sums)
MΛ

l,l+1(i, j) = a1 + · · ·+ an,

for i = 1, . . . ,m(l) and j = 1, . . . ,m(l+ 1). Here, {a1, . . . , an} ⊆ A is the set of symbols
for which akx ∈ F l

i for some x ∈ F l+1
j . Matsumoto remarks that the matrices satisfy

the commutation relation

Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2. (1.1)

The pair (MΛ, IΛ) := (MΛ
l,l+1, I

Λ
l,l+1)

l
is the canonical symbolic matrix system associated

to Λ.

The symbolic matrix system defines a labeled Bratteli diagram (EΛ, V Λ, λΛ) as follows:
For each l ∈ N+ put Vl = {F l

i | i = 1, . . . ,m(l)} and V Λ =
⋃
l∈N+

Vl. There is an edge
λΛ(a) from F l

i to F l+1
j with label a ∈ A if and only if ax ∈ F l

i for some x ∈ F l+1
j .

Let El,l+1 be the collection of all such edges and put EΛ =
⋃
l∈N+

El,l+1. Finally, given
j = 1 . . . ,m(l + 1), let ιΛl,l+1(j) = i where i = 1, . . . ,m(l) is the unique integer with
Il,l+1(i, j) = 1. This defines the map ιΛ = (ιΛl,l+1)l : V \ V1 −→ V which we may call
the shift operation. Then LΛ = (EΛ, V Λ, λΛ, ιΛ) is the λ-graph system associated with
(MΛ, IΛ). The reader will notice the resemblance with the Krieger cover construction.

An abstract symbolic matrix system over A is a pair (M, I) where I = (Il,l+1) and each
Il,l+1 is a {0, 1}-matrix with no zero rows and such that every column has a unique 1, and
M = (Ml,l+1) where eachMl,l+1 is a matrix whose entries are formal sums of elements
of A satisfying the commutation relation (1.1) above. A symbolic matrix system defines
a labeled Bratteli diagram as above.

Paths (either labeled or not) in the Bratteli diagram starting in V1 together with the
map ι define dynamical systems. If the labeled Bratteli diagram is canonical to Λ (as
above), then Λ can be recovered from this data. However, the same subshift Λ may
have various λ-graph systems associated to it. Under mild conditions, Matsumoto has
constructed groupoids and C∗-algebras from the dynamics on λ-graphs systems and he
has also used them to generalize both shift equivalence and strong shift equivalence.

1Text taken from [38].
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1.3. Reconstruction

We have seen various constructions of C∗-algebras arising from symbolic dynamical sys-
tems. One motivation for this endevour is simply to generate new examples of C∗-
algebras with interesting properties. Another motivation is to recover the underlying
dynamics, possibly up to some coarse equivalence. We can naïvely ask: How much does
the C∗-algebra remember of the underlying dynamics? This is the rigidity question we
are interested in and we shall pursue it via Kumjians philosophy and belief that the
structure of a C∗-algebra is illuminated by an understanding of the manner in which
abelian subalgebras embed in it.2

With the structure theory of C∗-algebras in mind and inspired by Cartan subalgebras
in von Neumann algebras (see, e.g., [50]), C∗-diagonals were introduced by Kumjian
in [64]. Let B be a commutative subalgebra of a C∗-algebra A. The normalizers of B
in A is the collection

N(A,B) = {a ∈ A | aBa∗ ∪ a∗Ba ⊆ B}
which contains B and is closed under multiplication and taking adjoints. The subalgebra
B is regular in A if N(A,B) generates A as a C∗-algebra. A normalizer a is free if a2 = 0;
let Nf(A,B) be the collection of free normalizers of B in A.

Definition 1.3.1 ([64]). Let A be a unital C∗-algebra. A commutative subalgebra B
is a C∗-diagonal if

(i) there is a conditional expectation P : A −→ B;
(ii) spanNf(A,B) is dense in kerP .

A commutative subalgebra B of a non-unital C∗-algebra A is diagonal if the unitization
of B is a diagonal in the unitization of A.

A C∗-diagonal B ⊆ A is maximal abelian and has the unique extension property (that
is, every pure state on B extends to a pure state on A). The definition was modelled
over the complex n×n-matrices with the subalgebra of diagonal matrices. However, this
notion is too restrictive to cover many interesting examples, e.g., C∗-algebras of strongly
connected directed graphs which are not just a single cycle. This leads us to Renault’s
notion of Cartan subalgebras.

Definition 1.3.2 ([102, 101]). Let A be a separable C∗-algebra. A commutative sub-
algebra B is a Cartan subalgebra if

(i) B contains an approximate unit of A;
(ii) B is maximal abelian in A;
(iii) B is regular;
(iv) there is a conditional expectation P : A −→ B.

A C∗-diagonal is exactly a Cartan subalgebra which has the unique extension property.
The raison d’être for this definition is Renault’s reconstruction result: For the reduced
C∗-algebra of an essentially principal, étale and Hausdorff groupoid G, the commutative
subalgebra C0(G(0)) is a Cartan subalgebra — and every Cartan subalgebra arises in

2Taken from [64].
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this way!3 Similarly, Kumjians C∗-diagonals correspond to (twisted) principal étale
groupoids.

Remark 1.3.3. For AF-algebras, Strătilă and Voiculescu introduced a notion of diagonal
in [112]. Drinen [39] studied this construction and showed that these diagonals are C∗-
diagonals in the sense of Kumjian. Renault remarks that these diagonals are privileged
Cartan subalgebras and that they are all conjugate by an automorphism of the ambient
AF-algebra. There are, however, examples of Cartan subalgebras in AF-algebras which
are not C∗-diagonals, cf. [102, 103].

Renault’s theory of reconstructing a groupoid from a pair of C∗-algebras is exactly what
Matsumoto and Matui use to show the following celebrated theorem which is in some
respect the foundation for this thesis.

Theorem 1.3.4 ([84, 22]). Let A and B be finite square {0, 1}-matrices with no zero
rows and no zero columns. The following are equivalent:

(i) the one-sided shifts of finite type XA and XB are continuously orbit equivalent;
(ii) the groupoids GA and GB are isomorphic;
(iii) the C∗-pairs (OA,DA) and (OB,DB) are ∗-isomorphic,

and the following are equivalent:
(iv) the two-sided subshifts ΛA and ΛB are flow equivalent;
(v) the groupoids GA ×R and GB ×R are isomorphic;
(vi) the C∗-pairs (OA ⊗K,DA ⊗ c0) and (OB ⊗K,DB ⊗ c0) are ∗-isomorphic.

The versatility of reconstructing groupoids from C∗-algebras with a distinguished diago-
nal subalgebra was hard to ignore. The étale groupoid is the Rosetta stone4 which allows
us to translate effectively between the dynamical realm and the C∗-algebraic realm. A
reconstruction theory refined specifically for graph C∗-algebra and Leavitt path algebras
was developed by Brownlowe–Carlsen–Whittaker [15] and Brown–Clark–an Huef [14],
respectively. A reconstruction theory for Steinberg algebras was then formulated by
Ara–Bosa–Hazrat–Sims [2]. Recently, an ambitious construction of Carlsen–Ruiz–Sims–
Tomforde [26] reconstructs groupoids from a C∗-algebra with a so-called weakly Cartan
subalgebra and relates it back to orbit equivalences of the underlying Deaconu–Renault
dynamical systems. This latter theory is exactly what we use in Paper B.

Furthermore, Carlsen and Rout [24] showed that for a graph E and its graph C∗-algebra
C∗(E) the possible gauge actions come from cocycles on the graph groupoid, and a ∗-
isomorphism which is diagonal preserving and intertwines the gauge actions comes from
a groupoid isomorphism which intertwines these cocycles. This is then used to char-
acterize one-sided eventual conjugacy of graphs and two-sided conjugacy of finite type
subshifts. A general version of this is also present in [26].

We have now been invited into an investigation of the finer structures of possibly more
general and abstract C∗-algebras. Mediated by groupoids, we can see many properties

3This is only true up to a twist on the groupoid but we shall not bother with the details here,
see [102].

4Taken from [31].
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or relations attributed to the C∗-algebras already reflected in the groupoid. Exam-
ples include a Brown–Green-Rieffel theorem for groupoids by Carlsen–Ruiz–Sims [25],
a Pimsner–Voiculescu sequence by Ortega [94] and a Künneth formula by Matui [89].
Specifically for graph C∗-algebras, a program for characterizing structure-preserving ∗-
isomorphisms via moves on the graphs was recently initiated by Eilers and Ruiz [43].
Paper C is related to this last program.

Remark 1.3.5. There is an almost analogous story of encoding topological dynamical
systems into either partial actions or inverse semigroups and building C∗-algebras from
them. In certain cases, the trinity of groupoids, partial actions and inverse semigroups
is well-understood [1]. We shall not discuss this further here.





CHAPTER 2

Future prospects

2.1. Bowen–Franks invariants for C∗-algebras with diagonals

This project, joint with James Gabe, is based on a profound realization of Matsumoto
and Matui.

Theorem 2.1.1 ([84]). Let A and B be finite square and irreducible matrices which are
not permutations. Then there is a ∗-isomorphism Φ: OA −→ OB satisfying Φ(DA) = DB
if and only if there exists an isomorphism α : BF(A) −→ BF(B) satisfying α(uA) = uB,
and det(I − A) = det(I −B).

Here, uA is the class of the unit in the Bowen–Franks group BF(A) = Z|A|/(I −A)Z|A|.
This group is naturally identified with the K0-group K0(OA) in a way that preserves
the class of the unit [34]. We can therefore compute it from the C∗-algebra OA. The
determinant condition however seems out of place: The theorem tells us that the C∗-pair
(OA,DA) determines the value of the determinant det(I −A) but there is no indication
of how to compute it from the C∗-algebras. In this project, we aim to provide a strategy
to compute the determinant from the C∗-data alone.

The prototypical example of the problem is given by the irreducible matrices

A =

(
1 1
1 1

)
, A− =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ,

see, e.g., the seminal paper on classification theory of simple Cuntz–Krieger algebras [106]
by Rørdam. The cognoscenti will note that A− is the Cuntz-splice of A. We have
det(I − A) = −1 and det(I − A−) = +1 so the two-sided subshifts ΛA and ΛA− de-
termined by A and A−, respectively, are not flow equivalent. Rørdam shows, however,
that there is a ∗-isomorphism OA −→ OA− between the corresponding Cuntz–Krieger
algebras, and that they are ∗-isomorphic to the Cuntz-algebra O2. We emphasize that
only the existence of such a ∗-isomorphism is proved, there is no hope of actually writing
down the map: Colloquially speaking, this ∗-isomorphism is not dynamical. This has
been known all along, but in light of the Matsumoto–Matui result we can be more pre-
cise and say that no such ∗-isomorphism OA −→ OA− can be diagonal-preserving (and
hence be induced by a continuous orbit equivalence between the graphs). Furthermore,
no such ∗-isomorphism can intertwine the canonical gauge actions, cf. Section 2.2 below.

Let us briefly discuss two perspectives.

15
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In [80], Matsumoto has developed a classification theory for simple Cuntz–Krieger alge-
bras with a distinguished diagonal subalgebra.

Theorem 2.1.2 ([80]). Let A and B be finite square and irreducible matrices which
are not permutations and let α : K0(OA) −→ K0(OB) be an isomorphism satisfying
α([1A]) = [1B]. Then det(I−A) = det(I−B) if and only if there exists a ∗-isomorphism
Φ: OA −→ OB satisfying Φ(DA) = DB and K0(Φ) = α.

The particular use of the condition det(I−A) = det(I−B) is in relation to flow equiva-
lence and work of Huang [54] on automorphisms of the Bowen–Franks group. The pure
C∗-algebraist would not consider the above result a (K-theoretic) classification theorem,
but a proper understanding of the determinant condition will open up a classification
theory of simple (and purely infinite) C∗-algebras with distinguished subalgebra. The
reconstruction theory of groupoid C∗-algebras (see Section 1.3) nicely ties these ideas to
a classification theory for groupoids.

A second perspective is connected to the class of sofic shift spaces. If X is a sofic shift
then there is an associated C∗-algebraOX [18]. This C∗-algebra is canonically isomorphic
to the one we consider in Paper B.

Theorem 2.1.3 ([18]). Let X be a sofic shift space and let G be its left Krieger cover
graph. Then there is a ∗-isomorphism Φ: OX −→ C∗(G) satisfying Ψ(DX) = D(G).

This is unfortunate: When we consider the class of sofic shifts which is much richer and
harder to understand than the shifts of finite type, we obtain only graph algebras — even
when we include the canonical diagonal! But there is hope. For a shift of finite type X,
the spectrum of the canonical diagonal DX in OX is canonically homeomorphic to X. For
strictly sofic shifts, however, this is not the case. The spectrum of DX is (homeomorphic
to) the path space of the left Krieger cover graph, but the commutative C∗-algebra C(X)
sits canonically inside of DX in OX. Perhaps we can define a determinant of a C∗-pair
(OX, C(X)) for a strictly sofic X? This is still speculative.

2.2. Shift equivalence

Shift equivalence is a relation between (nonnegative) integral matrices first introduced
by Williams in [116]. He proved that shift equivalence of nonnegative matrices was
equivalent to two-sided conjugacy of the corresponding two-sided subshifts. Although
conjugacy implies shift equivalence there was a mistake in the proof of the other direction.
The shift equivalence problem — whether shift equivalence implies two-sided conjugacy
— was thereafter one of the biggest open questions of symbolic dynamics. This was until
Kim and Roush provided shift equivalent matrices which are not conjugate [60, 61] and
thereby disproved the conjecture. The shift equivalence problem thus went from being
a theorem to a conjecture to a false statement.

Definition 2.2.1 ([68]). Let A and B be finite square matrices over N and let ` ∈ N+.
A shift equivalence of lag ` from A to B is a pair (R, S) of rectangular matrices over N
satisfying

(i) AR = RB, SA = BS,
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(ii) A` = RS, B` = SR.
We write (R, S) : A ∼ B (lag `). A shift equivalence over Z with lag ` from A and B is
defined analogously by replacing N by Z. In this case, we write A ∼Z B (lag `).

It is well-known that A and B are shift equivalent if and only if the two-sided subshifts
ΛA and ΛB are eventually conjugate, cf. [68, Theorem 7.5.15]. For irreducible matrices
(a square matrix A is irreducible if for every entry (i, j) in A there is N ∈ N+ such that
AN(i, j) > 0), shift equivalence is also equivalent to the condition that ΛA and ΛB are
both factors of each other (this is known as weak conjugacy, cf. [68, Theorem 12.2.5]).
For primitive matrices (a square matrix A is primitive if there is N ∈ N+ such that every
entry of AN is strictly positive), shift equivalence over Z implies shift equivalence. There
is much to be said about this relation but we shall emphasize the following question.

Question 2.2.2. Does shift equivalence imply flow equivalence?

For irreducible nonnegative matrices A and B, it is well-known that the Bowen–Franks
groups BF(A) = Z|A|/(I − A)Z|A| and BF(B) = Z|B|/(I − B)Z|B| are isomorphic and
det(I−A) = det(I−B), when A and B are shift equivalent (even over Z), cf. [68, Section
7.4]. Since the Bowen–Franks group together with the determinant condition comprise
a complete invariant for flow equivalence of irreducible subshifts of finite type by Parry–
Sullivan, Bowen–Franks and Franks [97, 5, 52], it follows that shift equivalence (over
Z) implies flow equivalence. However, not much is known for general reducible subshifts
of finite type.

Consider the graphs

E : F :.

.

.

.

.

.

determined by the adjacency matrices

A =

1 1 0
0 2 1
0 0 1

 , B =

1 1 2
0 2 1
0 0 1

 , (2.1)

respectively. These graphs play a central rôle in [42] and are the motivation for the
Pulelehua move in [41]. We know from [42, Lemma 5.1 and Example 5.10] that the
two-sided edge subshifts of E and F are not flow equivalent. They do however give rise
to stably isomorphic Cuntz–Krieger algebras, cf. [42, Example 6.9].

Proposition 2.2.3. Shift equivalence over Z does not imply flow equivalence.
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Proof. Let A and B be as in (2.1). We verify the claim by exhibiting a shift
equivalence over Z of lag 2 between A and B. Consider the integer matrices

R =

1 1 2
0 2 3
0 0 −1

 , S =

1 1 0
0 2 3
0 0 −1


and note that

AR =

1 3 5
0 4 5
0 0 −1

 = RB, SA =

1 3 1
0 4 5
0 0 −1

 = BS.

Furthermore,

RS =

1 3 1
0 4 3
0 0 1

 = A2, SR =

1 3 5
0 4 3
0 0 1

 = B2.

Hence the pair (R, S) defines a shift equivalence over Z between A and B. �

A different example was recently found by Nyland. Since C∗(E) and C∗(F ) are stably
isomorphic we naturally ask the following question.

Question 2.2.4. Does shift equivalence over Z imply stable ∗-isomorphism of Cuntz–
Krieger algebras?

Unfortunately, we have not had the time to make any progress with this question.

We shall see below that A and B defined above are not shift equivalent. A computation
shows that

A` =

1 2` − 1 2` − 1− `
0 2` 2` − 1
0 0 1

 , B` =

1 2` − 1 2` + 1− `
0 2` 2` − 1
0 0 1

 (2.2)

for ` ∈ N+. Further computations show that if R and S are 3 × 3 nonnegative integer
matrices satisfying AR = RB and SA = BS, then they are of the form

R =

0 a b
0 a a
0 0 0

 , S =

0 c d
0 c c
0 0 0

 ,

for some a, b, c, d ∈ N. But then the top left entry of RS is 0. Comparing this with (2.2)
shows that no shift equivalence (R, S) between A and B can exist.

A possible strategy to attack the problem of shift equivalence and flow equivalence is via
C∗-algebras and groupoids. The following result is a consequence of work of Bratteli and
Kishimoto and relates shift equivalence to certain structure-preserving ∗-isomorphisms
of their associated Cuntz–Krieger algebras.

Theorem 2.2.5 ([11]). Let A and B be primitive nonnegative integer matrices. Then A
and B are shift equivalent if and only if there is a ∗-isomorphism Φ: OA⊗K −→ OB⊗K
satisfying Φ ◦ (γA ⊗ id) = (γB ⊗ id) ◦ Φ.
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Two subshifts ΛA and ΛB are flow equivalent if and only if there is a ∗-isomorphism
Φ′ : OA ⊗ K −→ OB ⊗ K which satisfies Φ′(DA ⊗ c0) = DB ⊗ c0, and this condition
is again equivalent to the existence of a groupoid isomorphism GA × R −→ GB × R,
cf. [84, 22]. Combining these results we arrive at the following statement.

Theorem 2.2.6. Let A and B be primitive nonnegative integer matrices. If there exists
a ∗-isomorphism Φ: OA ⊗K −→ OB ⊗K satisfying

Φ ◦ (γA ⊗ id) = (γB ⊗ id) ◦ Φ,

then there exists a (possibly different) ∗-isomorphism Φ′ : OA⊗K −→ OB⊗K satisfying

Φ′(DA ⊗ c0) = DB ⊗ c0.

Remark 2.2.7. We emphasize that this holds for primitive matrices. On-going work of
Eilers and Szabó might result in a generalization to irreducible matrices.

By [24], two-sided conjugacy is characterized by ∗-isomorphism of the stabilized Cuntz-
Krieger algebras which maps the diagonal to the diagonal and intertwines the canonical
gauge actions. Since we know that shift equivalence does not imply two-sided conju-
gacy, it is, in general, necessary to change the isomorphism in the above theorem. It is,
however, not clear how to change the isomorphism in concrete examples.

The theorem is most interesting from a groupoid perspective. At least for primitive
matrices, shift equivalence implies the existence of a groupoid isomorphism even though
shift equivalence itself has evaded all attempts of groupoid descriptions. A thorough
investigation of this question using this perspective will surely shed valuable light on
both relations!

2.3. Open problems

Finally, we briefly discuss some open problems related to the theme of this thesis.

2.3.1. The decidability problem. We cannot discuss open problems related to
symbolic dynamics without mentioning the decidability problem for two-sided conjugacy.
Williams [116] introduced the notion of shift equivalence and showed that this was a
decidable relation in an attempt to answer the above question in the affirmative. The
existence (or nonexistence) of an algorithm which can decide whether two given subshifts
of finite type are conjugate is still open. Althought this thesis contains no contributions
to answer this question, Paper C shows that one-sided eventual conjugacy is surprisingly
closely connected to two-sided conjugacy. Perhaps a further study of this relation is a
viable path to approach the decidability problem. Or perhaps the decidability question
of one-sided eventual conjugacy is just as complex as that of two-sided conjugacy?

2.3.2. β-shifts. For each real β > 1 there is an associated shift space Xβ called
the β-shift [95, 105]. The class of β-shifts is transversal in the sense that it intersects
the finite type shifts (in particular, all the full shifts), the (strictly) sofic shifts and the
nonsofic shifts without exhausting any of them. In [58], Katayama, Matsumoto and
Watatani studied the C∗-algebra Oβ associated to a β-shift Xβ. (the various construc-
tions of C∗-algebras from Section 1.2 coincide for β-shifts, cf. [23, Corollary 3.5]). They
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showed that Oβ is simple and purely infinite for all β > 1, and using classification the-
ory they show that there is a ∗-isomorphism Oβ −→ O∞ whenever Xβ is not sofic (this
includes uncountably many choices of β > 1). However, this ∗-isomorphism cannot in-
tertwine the canonical gauge actions since the fixed-point algebra Oβ is simple while this
is not the case for O∞. Therefore, we cannot simply identify the two. Matsumoto and
Matui later [85] realize Oβ as a groupoid C∗-algebra of an essentially principal, minimal
and purely infinite étale groupoid1 It is not clear, however, if this groupoid is isomorphic
to the canonical groupoid associated to O∞.

The question is: How can we distinguish the C∗-algebras associated to the nonsofic β-
shifts? A first place to look is the canonical gauge action. The C∗-algebra Oβ admits
a unique KMS-state only at the temperature log β and it is unique, cf. [58, Theorem
C]. Another approach is to consider the pair (Oβ, C(Xβ)); when Xβ is not sofic then the
diagonal subalgebra Dβ is not isomorphic to C(Xβ).

2.3.3. Homology of groupoids. A homology theory for étale groupoids was intro-
duced by Matui in [87] based on [33]. This was motivated by an attempt to understand
and compute K-theory of C∗-algebras. He showed that for simple Cuntz-Krieger al-
gebras, the homology of the underlying groupoids coincide with the K-theory of the
C∗-algebras. This was later generalized to two conjectures about essentially principal,
minimal and étale groupoids with unit spaces homeomorphic to the Cantor set [89]: The
HK-conjecture relates the homology of the groupoid with the K-theory of the groupoid
C∗-algebra, while the AH-conjecture relates the homology groups to each other via the
(abelianization of) the topological full group. The interested reader is refered to [89] for
exact statements.

This has spawned much interest, since the conjectures have been verified for a surpris-
ingly large body of examples, [88, 49, 31]. Although the HK-conjecture is known to be
false as stated (see Scarparo’s counterexample [108]), the AH-conjecture and the ques-
tion of the precise relationship between homology andK-theory are left open. Interesting
notions such as almost finiteness still need more exploration.

1Matsumoto and Matui study the associated topological full groups and identify them with the
Higman–Thompson groups whenever Xβ is sofic. In any case, it follows from work in Paper D that the
topological full groups are C∗-simple for all β > 1.
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Summary

The original contributions of this thesis consist of four articles.

A. The paper Cuntz–Krieger algebras and one-sided conjugacy of shift of finite type
and their groupoids is written joint with Toke Meier Carlsen and has been published
in Journal of the Australian Mathematical Society [12]. We show that a pair of shifts
of finite type XA and XB determined by finite square {0, 1} matrices A and B with no
zero columns or rows are one-sided conjugate if and only if there is a ∗-isomorphism
Ψ: OA −→ OB which intertwines certain completely positive maps τA and τB on OA
and OB, respectively.

B. The paper C∗-algebras groupoids and covers of shift spaces is written joint with
Toke Meier Carlsen. We associate to every one-sided shift space X a cover X̃ and use
this to construct a groupoid GX and a C∗-algebra OX. This setup allows us to classify
various orbit equivalences between a pair of one-sided shift spaces X and Y in terms of
certain diagonal-preserving ∗-isomorphisms ofOX andOY (as well as isomorphism of their
groupoids). We also classify conjugacy and flow equivalence of two-sided shift spaces ΛX

and ΛY in terms of diagonal preserving ∗-isomorphism OX ⊗K −→ OY ⊗K and certain
circle actions (and isomorphism of the stabilized groupoids and certain cohomological
data). The paper contains a theorem which generalizes the main result of [12].

C. The paper Eventual conjugacy and the balanced in-split is related to the recent
preprint [43] of Eilers and Ruiz which addresses structure preserving ∗-isomorphisms
of graph C∗-algebras in relation to moves on the graphs. The paper contains a proof
showing that one-sided eventual conjugacy between finite directed graphs with no sinks
is generated by out-splits and balanced in-splits thus answering a question of Eilers and
Ruiz. The balanced in-split is a refinement of the classical in-split move on graphs.

D. The paper C∗-simplicity and representations of topological full groups of groupoids
is written joint with Eduardo Scarparo and has been published in Journal of Functional
Analysis [13]. We investigate the topological full group of ample groupoids via repre-
sentations in the C∗-algebras of the underlying groupoids. Using techniques from Le
Boudec and Matte Bon, we provide conditions for when the topological full group is
C∗-simple. This paper is not directly related to any of the above articles.

The manuscripts appearing here only differ from the published versions in layout. This
document contains a single list of references containing references from all papers.



ARTICLE A

Cuntz–Krieger algebras and one-sided conjugacy of shift of
finite type and their groupoids

Kevin Aguyar Brix and Toke Meier Carlsen

Abstract

A one-sided shift of finite type (XA, σA) determines on the one hand a Cuntz–Krieger
algebra OA with a distinguished abelian subalgebra DA and a certain completely positive
map τA on OA. On the other hand, (XA, σA) determines a groupoid GA together with a
certain homomorphism εA on GA. We show that each of these two sets of data completely
characterizes the one-sided conjugacy class of XA. This strengthens a result of J. Cuntz
and W. Krieger. We also exhibit an example of two irreducible shifts of finite type
which are eventually conjugate but not conjugate. This provides a negative answer to a
question of K. Matsumoto of whether eventual conjugacy implies conjugacy.

A.1. Introduction

In [35], J. Cuntz and W. Krieger initiated what has turned out to be a very fascinating
study of the symbiotic relationship between operator algebras and symbolic dynamics.
Given a finite square {0, 1}-matrix A with no zero rows or zero columns, they construct a
C∗-algebra OA which is now called the Cuntz–Krieger algebra of A with a distinguished
abelian C∗-subalgebra DA called the diagonal subalgebra. Under a certain condition (I)
(this is later generalized to condition (L) of graphs), OA is a universal C∗-algebra and
there is an action of the circle group T y OA called the gauge action.

The matrix A also determines both a one-sided and a two-sided shift space of finite
type (see, e.g., [62], [68]) denoted (XA, σA) and (X̄A, σ̄A), respectively. In fact, any one-
sided (resp., two-sided) shift of finite type is conjugate to (XA, σA) (resp., (X̄A, σ̄A)) for
some finite square {0, 1}-matrix A with no zero rows or zero columns. The spectrum of
the above mentioned abelian C∗-subalgebra DA is homeomorphic to XA in a natural way.

In [35, Proposition 2.17], J. Cuntz and W. Krieger proved that the data consisting of the
C∗-algebra OA, the diagonal DA, the gauge action and the restriction to the diagonal
of a certain completely positive map φA : OA −→ OA is an invariant of the one-sided
conjugacy class of XA provided A satisfies condition (I).

In [34], J. Cuntz also showed the following two results under the hypothesis that the
defining matrices as well as their transposes satisfy condition (I): A flow equivalence

23
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between the two-sided shift spaces (X̄A, σ̄A) and (X̄B, σ̄B) implies the existence of a ∗-
isomorphism OA ⊗ K −→ OB ⊗ K which sends DA ⊗ C onto DB ⊗ C, where C is the
canonical maximal abelian subalgebra of the C∗-algebra K of compact operators on an
infinite-dimensional separable Hilbert space; a two-sided conjugacy between (X̄A, σ̄A)
and (X̄B, σ̄B) implies the existence of a diagonal-preserving ∗-isomorphism between the
stabilized C∗-algebras as above which also intertwines the gauge actions. Both of these
results were also present in [35] under the additional assumptions that the defining ma-
trices are irreducible and aperiodic.

From a one-sided shift space (XA, σA) one can construct an amenable locally compact
Hausdorff étale groupoid GA whose C∗-algebra C∗(GA) is isomorphic to OA in a way
that maps DA onto C(G(0)

A ). Using this groupoid, H. Matui and K. Matsumoto in [84]
improved the work of J. Cuntz and W. Krieger when they showed that flow equivalence
between shift spaces determined by irreducible and non-permutation {0, 1}-matrices A
and B is equivalent to the existence of a diagonal-preserving ∗-isomorphism between
the stabilized Cuntz–Krieger algebras. This result was later proved in [22] to hold for
any pair of finite square {0, 1}-matrices A and B with no zero rows and no zero colums.
In [24], the second-named author and J. Rout used a similar approach to prove that
(X̄A, σ̄A) and (X̄B, σ̄B) are conjugate (only assuming that A and B have no zero rows or
zero columns) if and only if there exists a diagonal preserving ∗-isomorphism between
the stabilized Cuntz–Krieger algebras which intertwines the gauge actions. Thus, one
can recover the two-sided shift space (X̄A, σ̄A) both up to flow equivalence and up to
conjugacy from its Cuntz–Krieger algebra OA.

In [78], K. Matsumoto introduced the notion of continuous orbit equivalence of one-
sided shift spaces of finite type and showed that for irreducible and non-permutation
{0, 1}-matrices A and B, the one-sided shift spaces (XA, σA) and (XB, σB) are continu-
ously orbit equivalent if and only if there is a diagonal preserving ∗-isomorphism (i.e.,
a ∗-isomorphism that maps DA onto DB) between the Cuntz–Krieger algebras OA and
OB. Building on the reconstruction theory of J. Renault in [102], H. Matui and K. Mat-
sumoto observed in [84] that this is equivalent to isomorphism of the groupoids GA and
GB. These results were in [22] shown to hold for any pair of finite square {0, 1}-matrices
A and B with no zero rows and no zero colums.

Given irreducible and non-permutation {0, 1}-matrices A and B, K. Matsumoto proved
that the stronger notion of eventual conjugacy of one-sided shifts is completely char-
acterized by diagonal-preserving ∗-isomorphism of the Cuntz–Krieger algebras which
intertwines the gauge actions, see [81]. This is generalized to any pair of finite square
{0, 1}-matrices A and B with no zero rows and no zero colums in [24]. K. Matsumoto
then asks the question whether eventual conjugacy is equivalent to conjugacy. In the
wake of the above mentioned results, the question can be rephrased as to whether diag-
onal preserving ∗-isomorphism of Cuntz–Krieger algebras intertwining the gauge actions
actually characterizes conjugacy (see [81, Remark 3.6] or [82, p. 1139]).
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In this paper, we address this question and the characterization of one-sided conjugacy
of finite type shift spaces in relation to [35, Proposition 2.17]. Given any finite square
{0, 1}-matrix A with no zero rows or zero columns, we introduce a continuous groupoid
homomorphism εA : GA −→ GA which induces a completely positive map τA : OA −→ OA.
This is different but related to the completely positive map φA : OA −→ OA considered
in [35]. We show that for a pair of finite square {0, 1}-matrices A and B with no zero rows
and no zero colums, the one-sided shift spaces (XA, σA) and (XB, σB) are conjugate if and
only if there is a diagonal preserving ∗-isomorphism Ψ: OA −→ OB that intertwines τA
and τB, if and only if there is a groupoid isomorphism Φ: GA −→ GB that intertwines εA
and εB. We also show that these conditions are equivalent to the existence of a diagonal
preserving ∗-isomorphism between OA and OB that intertwines both the gauge actions
and φA|DA and φB|DB , and thus show that [35, Proposition 2.17] holds also for matrices
that do not satisfy condition (I). Finally, we exhibit an example of two irreducible shifts
of finite type which are eventually conjugate but not conjugate. Another example of two
irreducible shifts of finite type which are eventually conjugate but not conjugate was
given in [7]. This shows that conjugacy is strictly stronger than eventual conjugacy and
this answers K. Matsumoto’s question in the negative.

A.2. Notation and preliminaries

In this section we briefly recall the definitions of the one-sided shift space XA, the
groupoid GA, and the Cuntz–Krieger algebra OA together with the subalgebra DA and
the gauge action γ : T y OA. We let Z, N = {0, 1, 2, . . .} and C denote the integers, the
non-negative integers and the complex numbers, respectively. Let T ⊆ C be the unit
circle group.

A.2.1. One-sided shifts of finite type. Let N be a positive integer and let A ∈
MN({0, 1}) be a matrix with no zero rows and no zero columns. The set

XA := {x = (xn)n∈N ∈ {1, . . . , N}
N | A(xn, xn+1) = 1, n ∈ N}

is a second countable compact Hausdorff space in the subspace topology of {1, . . . , N}N
(equipped with the product topology). Together with the shift operation σA : XA −→ XA
given by (σA(x))n = xn+1 for x ∈ XA and n ∈ N, the pair (XA, σA) is the one-sided shift
of finite type determined by A. In the literature (e.g., [34], [35], [78], [84]), (XA, σA) is
often refered to as the one-sided topological Markov chain determined by A. The reader
is refered to [68] for an excellent introduction to the general theory of shift spaces.

A finite string α = α0α1 · · ·αn−1 with αi ∈ {1, . . . , N} is an admissible word (or just a
word) of length |α| = n if A(αi−1, αi) = 1 for i = 1, . . . , n− 1. Equivalently, there exists
x = x0x1x2 · · · ∈ XA and j ∈ N such that α = x[j,j+n). If α = x[i,j) and β = y[i′,j′) are
words, then αβy[j′,∞) ∈ XA if and only if A(xj−1, yi′) = 1 in which case the concatenation
αβ is again a word. The topology of XA has a basis consisting of compact open sets of
the form

Zα = {x ∈ XA | x[0,|α|) = α} ⊆ XA

where α is a word. Let (XA, σA) and (XB, σB) be one-sided shifts of finite type and
let h : XA −→ XB be a homeomorphism. Then h is a one-sided conjugacy (or just a
conjugacy) if h ◦ σA = σB ◦ h.
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A.2.2. Groupoids. Let A be a finite square {0, 1}-matrix with no zero rows and
no zero columns. The Deaconu-Renault groupoid [36] associated to the one-sided shift
of finite type (XA, σA) is

GA := {(x, n, y) ∈ XA × Z× XA | ∃k, l ∈ N, n = k − l : σkA(x) = σlA(y)}

with unit space G(0)
A = {(x, 0, x) ∈ GA | x ∈ XA}. The range map is r(x, n, y) = (x, 0, x)

and the source map is s(x, n, y) = (y, 0, y). The product (x, n, y)(x′, n′, y′) is well-defined
if and only if y = x′ in which case it equals (x, n + n′, y′) while inversion is given by
(x, n, y)−1 = (y,−n, x). We can specify a topology on GA via a basis consisting of sets
of the form

Z(U, k, l, V ) := {(x, k − l, y) ∈ GA | x ∈ U, y ∈ V },
where k, l ∈ N and U, V ⊆ XA are open such that σkA|U and σlA|V are injective and
σkA(U) = σlA(V ). If α, β are words with the same final letter, we write

Z(α, β) := Z(Zα, |α|, |β|, Zβ).

With this topology, GA is a second countable, étale (i.e., s, r : GA −→ GA are local home-
omorphisms onto G(0)

A ) and locally compact Hausdorff groupoid. Throughout the paper,
we identify the unit space G(0)

A of GA with XA via the map (x, 0, x) 7→ x. By, e.g., [110,
Lemma 3.5], GA is amenable, so the reduced and the full groupoid C∗-algebras coincide.
We shall refer to the groupoid homomorphism cA : GA −→ Z given by cA(x, n, y) = n as
the canonical continuous cocycle. The pre-image c−1

A (0) = {(x, 0, y) ∈ GA | x, y ∈ XA} is
a principal subgroupoid of GA.

A.2.3. Cuntz–Krieger algebras. Let A be an N×N matrix with entries in {0, 1}
and no zero rows and no zero columns. The Cuntz–Krieger algebra [35] OA is the univer-
sal unital C∗-algebra generated by partial isometries s1 . . . , sN subject to the conditions

s∗i sj = 0 (i 6= j), si
∗si =

N∑
j=1

A(i, j)sjsj
∗

for every i = 1, . . . , N . A word α = α1 · · ·α|α| defines a partial isometry sα := sα1 · · · sα|α|
in OA. The diagonal subalgebra DA is the abelian C∗-algebra generated by the range
projections of the partial isometries sα inside OA. The algebras DA and C(XA) are iso-
morphic via the correspondence sαsα∗ ←→ χZα , where χZα is the indicator function on
Zα. If A is irreducible and not a permutation matrix, then OA is simple and DA is max-
imal abelian in OA; in fact, it is a Cartan subalgebra in the sense of [102]. The gauge
action γA : T y OA is determined by γAz (si) = zsi, for every z ∈ T and i = 1, . . . , N .
The corresponding fixed point algebra is denoted FA.

The Cuntz–Krieger algebra is a groupoid C∗-algebra in the sense that there is a ∗-
isomorphism OA −→ C∗(GA) which sends the canonical generators si to the indica-
tor functions χi = χZ(i,r(i)), for i = 1, . . . , N (see, e.g., [65]). This map takes DA
to C(G(0)

A ) (the latter is identified with C(XA)) and FA to C∗(c−1
A (0)). The canonical

cocycle cA : GA −→ Z defines an action γcA on Cc(GA) as

γcAz (f)(x, n, y) = zcA(x,n,y)f(x, n, y) = znf(x, n, y),
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for f ∈ Cc(GA) and (x, n, y) ∈ GA. In particular, γcAz (si) = zsi for i = 1, . . . , N so γcA is
the gauge action γA restricted to Cc(GA).

Throughout the paper we shall suppress this ∗-isomorphism and simply identify the
algebras. The existence of a linear injection j : C∗(GA) −→ C0(GA) allows us to think
of elements in OA as functions on GA vanishing at infinity, cf. [101] or [109]. We shall
do this whenever it be convenient. The inclusion ι : G(0)

A −→ GA induces a conditional
expectation dA : OA −→ DA, see [35, Remark 2.18] and [101, II, Proposition 4.8]. In
light of the above, we can think of dA(f) as the restriction of f ∈ OA ⊆ C0(GA) to XA
where we identify XA with G(0)

A .

A.3. The results

Let A be an N ×N matrix with entries in {0, 1} and no zero rows and no zero columns,
and let s1 . . . , sN be the canonical generators of OA. In [35], J. Cuntz and W. Krieger
consider a completely positive map φA : OA −→ OA given by

φA(y) =
N∑
i=1

siysi
∗,

for y ∈ OA. The map φA restricts to a ∗-homomorphism DA −→ DA. Under the
identification of DA and C(XA) we have the relation φA(f)(x) = f(σA(x)) for f ∈ DA
and x ∈ XA, cf. [35, Proposition 2.5].
Put s :=

∑N
i=1 si. In this paper, we shall also consider the completely positive map

τA : OA −→ OA defined by

τA(y) := sys∗ =
N∑

i,j=1

sjysi
∗, (A.1)

for y ∈ OA. Note that FA is generated by
⋃∞
k=0 τ

k
A(DA) and τA(FA) ⊆ FA. On the level

of groupoids, we consider the homomorphism εA : GA −→ GA given by

εA(x, n, y) := (σA(x), n, σA(y)),

for (x, n, y) ∈ GA. Suppose (xi, ni, yi) −→ (x, n, y) in GA as i −→ ∞ and suppose
Z(µ, ν) is any basic open set containing (σA(x), n, σA(y)). Then ni = n and σA(xi) ∈ Zµ
and σA(ν) ∈ Zν eventually by continuity of σA. Hence (σA(xi), ni, σA(yi)) ∈ Z(µ, ν)
eventually, so (σA(xi), ni, σA(yi)) −→ (σA(x), n, σA(y)) as i −→∞ and εA is continuous.
This induces a map ε∗A : Cc(GA) −→ Cc(GA) given by ε∗A(f) = f ◦ εA, for f ∈ Cc(GA).

Lemma A.3.1. The map τA : OA −→ OA extends the map ε∗A defined above and we have
dA ◦ τA|DA = φA|DA.

Proof. The generators si in OA correspond to the indicator functions χi in Cc(GA).
Inside the convolution algebra we thus have

N∑
i,j=1

χj ? (f ? χi
∗)(x, n, y) =

N∑
j=1

∑
(z,m,y)∈(GA)

χj(x, n−m, z)f(z,m+ 1, σA(y))

= f(σA(x), n, σA(y)),
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for f ∈ Cc(GA) and (x, n, y) ∈ GA. Here, ? denotes the convolution product in Cc(GA).
The maps ε∗A and τA therefore agree on Cc(GA). A computation similar to the above
shows that dA(τA(f)) = φA(f), for f ∈ DA. �

For the proof of Theorem A.3.3, we need the following lemma which might be of interest
on its own.

Lemma A.3.2. Let A and B be finite square {0, 1}-matrices with no zero rows and no
zero columns, and let Ψ: FA −→ FB be a ∗-isomorphism such that Ψ(DA) = DB.
Then Ψ(dA(f)) = dB(Ψ(f)) for all f ∈ FA. If, in addition, Ψ ◦ τA|FA = τB ◦ Ψ, then
Ψ ◦ φA|DA = φB ◦Ψ|DA.

Proof. The groupoids c−1
A (0) and c−1

B (0) are principal. By [102, Proposition 4.13]
(see also [26, Theorem 3.3]) and [87, Proposition 5.7] and its proof, there is a groupoid
isomorphism κ : c−1

B (0) −→ c−1
A (0) and a groupoid homomorphism ξ : c−1

A (0) −→ T such
that

Ψ(f)(η) = ξ(κ(η))f(κ(η)),

for f ∈ FA and η ∈ c−1
B (0). In particular, Ψ(f)(x) = f(κ(x)) for x ∈ XB when we

identify x ∈ XB with (x, 0, x) ∈ G(0)
B . For x ∈ XB, we then see that

Ψ(f)(x) = f(κ(x)) = f |XA(κ(x)) = Ψ(f |XA)(x),

that is, Ψ ◦ dA = dB ◦Ψ. If, in addition, Ψ ◦ τA|FA = τB ◦Ψ, then

Ψ(φA(f)) = Ψ(dA(τA(f))) = dB(τB(Ψ(f))) = φB(Ψ(f)),

for f ∈ DA. �

We now arrive at our main theorem. If A and B are finite square {0, 1}-matrices with
no zero rows and no zero columns, then any isomorphism Φ: GA −→ GB restricts to a
homeomorphism from G(0)

A to G(0)
B and thus induces a homeomorphism from XA to XB

via the identification of XA with G(0)
A and the identification of XB with G(0)

B . We denote
the latter homeomorphism by Φ(0).

Theorem A.3.3. Let A and B be finite square {0, 1}-matrices with no zero rows and no
zero columns, and let h : XA −→ XB be a homeomorphism. The following are equivalent.

(i) The homeomorphism h : XA −→ XB is a conjugacy.
(ii) There is a groupoid isomorphism Φ: GA −→ GB satisfying cB◦Φ = cA, Φ(0) = h,

and
Φ ◦ εA = εB ◦ Φ. (A.2)

(iii) There is a groupoid isomorphism Φ: GA −→ GB satisfying Φ(0) = h and (A.2).
(iv) There is a ∗-isomorphism Ψ: OA −→ OB satisfying Ψ ◦ γAz = γBz ◦ Ψ for all

z ∈ T, Ψ ◦ dA = dB ◦Ψ, Ψ(f) = f ◦ h−1 for all f ∈ DA, Ψ ◦ φA|DA = φB ◦Ψ|DA
and

Ψ ◦ τA = τB ◦Ψ. (A.3)
(v) There is a ∗-isomorphism Ψ: OA −→ OB satisfying Ψ(DA) = DB, Ψ(f) =

f ◦ h−1 for all f ∈ DA, and (A.3).
(vi) There is a ∗-isomorphism Θ: DA → DB satisfying Θ(f) = f ◦ h−1 for all

f ∈ DA, and Θ ◦ φA|DA = φB ◦Θ.
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Remark A.3.4. As we shall see in the proof, if h : XA −→ XB is a conjugacy, then
the groupoid isomorphisms Φ: GA → GB in (ii) and (iii) can be chosen such that
Φ((x, n, y)) = (h(x), n, h(y)) for (x, n, y) ∈ GA. Also, if Φ: GA → GB is a groupoid
isomorphism as in (iii) (or (ii)), then the ∗-isomorphisms Ψ: OA −→ OB in (iv) and (v)
can be chosen to satisfy Ψ(y)(η) = y(Φ−1(η)) for y ∈ OA and η ∈ GB.

Proof. (i) =⇒ (ii): If h : XA −→ XB is a conjugacy we can define a groupoid
homomorphism Φ: GA −→ GB by Φ((x, n, y)) = (h(x), n, h(y)) for each (x, n, y) ∈ GA.
It is clear that Φ is a bijective algebraic homomorphism. In order to see that Φ is
continuous, suppose (xi, ni, yi) −→ (x, n, y) in GA as i −→ ∞ and pick Z(µ, ν) ⊆ GB
containing (h(x), n, h(y)). Note that ni eventually equals n. As h is continuous, we have
h(xi) ∈ Z(µ) and h(yi) ∈ Z(ν) eventually, hence h(xi, n, yi) ∈ Z(µ, ν) eventually, so
h(xi, n, yi) −→ h(x, n, y) as i −→ ∞. The argument for Φ−1 is symmetric, so Φ is a
groupoid isomorphism which satisfies cB ◦ Φ = cA and Φ(0) = h. As h is a conjugacy, Φ
also satisfies (A.2).
The implications (ii) =⇒ (iii) and (iv) =⇒ (v) are obvious.
(iii) =⇒ (v) and (ii) =⇒ (iv): A groupoid isomorphism Φ: GA −→ GB with Φ(0) = h
induces a ∗-isomorphism Ψ: OA −→ OB with Ψ ◦ dA = dB ◦Ψ. In particular, Ψ(DA) =
DB and Ψ(f) = f ◦h−1, for f ∈ DA. Since Φ satisfies (A.2), we also have Ψ◦τA = τB ◦Ψ.
This is (v). If, in addition, Φ satisfies cB ◦ Φ = cA, then Ψ(si) = 1Φ(Z(i,r(i))) ∈ c−1

B ({0})
so

Ψ(γAz (si)) = zΨ(1Φ(Z(i,r(i)))) = γBz (Ψ(si)),

for i = 1, . . . , N . It follows that Ψ ◦ γAz = γBz ◦ Ψ, for every z ∈ T. In particular, this
implies that Ψ(FA) = FB. By Lemma A.3.2, it follows that Ψ ◦ φA|DA = φB ◦ Ψ|DA .
This is (iv).
(v) =⇒ (vi): If Ψ preserves the diagonal and satisfies (A.3), then

Ψ
( ∞⋃
k=0

τ kA(DA)
)

=
∞⋃
k=0

τ kB(DB).

As FA is generated by
⋃∞
k=0 τ

k
A(DA) as a C∗-algebra, it follows that Ψ(FA) = FB.

Lemma A.3.2 then entails that Ψ ◦ φA|DA = φB ◦Ψ|DA .
(vi) =⇒ (i): The relation Θ ◦ φA|DA = φB ◦ Θ and the fact that φA(f)(x) = f(σA(x))
for f ∈ DA and x ∈ XA ensures that h is a conjugacy by Gelfand duality. �

Corollary A.3.5. Let A and B be finite square {0, 1}-matrices with no zero rows and
no zero columns. The following are equivalent.

(i) The one-sided shifts (XA, σA) and (XB, σB) are one-sided conjugate.
(ii) There is a groupoid isomorphism Φ: GA −→ GB satisfying Φ ◦ εA = εB ◦ Φ.
(iii) There is a ∗-isomorphism Ψ: OA −→ OB satisfying Ψ(DA) = DB and Ψ ◦ τA =

τB ◦Ψ.

One-sided shifts (XA, σA) and (XB, σB) are eventually conjugate if there exist a homeo-
morphism h : XA −→ XB and L ∈ N such that

σLB(h(σA(x)) = σL+1
B (h(x)), σLA(h−1(σB(y)) = σL+1

A (h−1(y)),

for x ∈ XA and y ∈ XB. The above theorem should be compared to [81, Corollary 3.5]
and [24, Corollary 4.2] which characterize one-sided eventual conjugacy.
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Example A.3.6. Consider the following two graphs.

E : F :. . . . . .

a

c

d

b

e

f

a′

c′

d′

b′

e′

f ′

Let XE be the one-sided edge shift of E and let XF be the one-sided edge shift of F .
Define a homeomorphism h : XE −→ XF by sending (xn)n>0 ∈ XE to (yn)n>0 ∈ XF where

yn =

{
a′, if n > 0 and xn−1 = e,

(xn)′ otherwise.

E.g., h(ebcaf . . .) = e′a′c′a′f ′ . . . while h(σE(ebcaf . . .)) = h(bcaf . . .) = b′c′a′f ′ . . . and
h−1(a′e′a′f ′ . . .) = aebf . . .. Observe that

σ2
F (h(x)) = σF (h(σE(x))), σ2

E(h−1(y)) = σE(h−1(σF (y))),

for x ∈ XE and y ∈ XF . Hence XE and XF are eventually conjugate. On the other hand,
the total amalgamation of E is the graph

. .

while the total amalgamation of F is F itself. It thus follows that XE and XF are not
conjugate, cf. e.g., [68, Section 13.8] or [62, Theorem 2.1.10].
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C∗-algebras, groupoids and covers of shift spaces

Kevin Aguyar Brix and Toke Meier Carlsen

Abstract

To every one-sided shift space X we associate a cover X̃, a groupoid GX and a C∗-
algebra OX. On the one hand, we characterize one-sided conjugacy, eventual conjugacy
and (stabilizer preserving) continuous orbit equivalence between X and Y in terms of
isomorphism of GX and GY, and diagonal preserving ∗-isomorphism ofOX andOY. On the
other hand, we characterize two-sided conjugacy and flow equivalence of the associated
two-sided shift spaces ΛX and ΛY in terms of isomorphism of the stabilized groupoids
GX×R and GY×R, and diagonal preserving ∗-isomorphism of the stabilized C∗-algebras
OX ⊗ K and OY ⊗ K. Our strategy is to lift relations on the shift spaces to similar
relations on the covers.

Introduction

In [35], Cuntz and Krieger used finite type symbolic dynamical systems to construct a
family of simple C∗-algebras today known as Cuntz–Krieger algebras. Such a dynam-
ical system is up to conjugacy determined by a finite square {0, 1}-matrix A, and the
C∗-algebra OA comes equipped with a distinguished commutative subalgebra DA called
the diagonal and a circle action γ : T y OA called the gauge action. This construction
has allowed for new and fruitful discoveries in both symbolic dynamics and in operator
algebras via translations of interesting problems and results.

One of the most important relations among two-sided subshifts besides conjugacy is flow
equivalence. Cuntz and Krieger showed that if the subshifts ΛA and ΛB, determined by
irreducible matrices which are not permutations A and B, are flow equivalent, then there
is ∗-isomorphism between the stabilized Cuntz–Krieger algebras OA ⊗ K −→ OB ⊗ K
which maps DA ⊗ c0 onto DB ⊗ c0. Here, K is the C∗-algebra of compact operators on
separable Hilbert space and c0 is the maximal abelian subalgebra of diagonal operators.
The stabilized Cuntz–Krieger algebras together with their diagonal subalgebra therefore
constitute an invariant of flow equivalence. However,

A =

(
1 1
1 1

)
, A′ =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


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are examples of irreducible and nonpermutation matrices which are not flow equivalent
but whose Cuntz–Krieger algebras OA and OA− are ∗-isomorphic, cf. [106]. This raised
the question: Is it possible to characterize flow equivalence in terms of the associated
C∗-algebras?

In the striking paper [84] (see also [86]), Matsumoto and Matui employ topological
groupoids to answer this question: Using Renault’s groupoid reconstruction theory [102]
(based on work of Kumjian [64]) they prove that ΛA and ΛB (determined by irreducible
and nonpermutation {0, 1}-matrices A and B) are flow equivalent if and only if there
is a ∗-isomorphism Φ: OA ⊗ K −→ OB ⊗ K satisfying Φ(DA ⊗ c0) = DB ⊗ c0. In the
particular case above, it follows that no ∗-isomorphism OA ⊗ K −→ OA− ⊗ K can be
diagonal-preserving.

In [78] (see also [79]), Matsumoto introduces the notion of continuous orbit equivalence.
He proves that one-sided shift spaces XA and XB (determined by irreducible and nonper-
mutation {0, 1}-matrices A and B) are continuously orbit equivalent if and only if there
is a ∗-isomorphism OA −→ OB which carries DA onto DB. For this reason, Matsumoto
remarks that continuous orbit equivalence is a one-sided analog of flow equivalence.
These results on flow equivalence and continuous orbit equivalence are generalized to
include all finite type shifts in [22].

In the more general setting of directed graphs, the second-named author and Rout used
groupoids to show that XA and XB (for {0, 1}-matrices A and B with no zero rows and
no zero columns) are one-sided eventually conjugate (see [81, 82]) if and only if there
is ∗-isomorphism Φ: OA −→ OB satisfying Φ(DA) = DB and Φ ◦ γA = γB ◦ Φ. Further-
more, they show that ΛA and ΛB are conjugate if and only if there is a ∗-isomorphism
Φ: OA⊗K −→ OB⊗K satisfying Φ(DA⊗c0) = DB⊗c0 and Φ◦(γA⊗ id) = (γB⊗ id)◦Φ.
From this we understand that one-sided eventual conjugacy is a one-sided analog of
two-sided conjugacy. In a similar spirit, one-sided conjugacy for shifts of finite type was
characterized using groupoids in terms of the Cuntz–Krieger algebra with its diagonal
and a certain completely positive map by the authors [12]. Orbit equivalence of general
directed graphs were studied in [15, 3, 29].

The aim of this paper is to study general shift spaces and provide similar characteriza-
tions in terms of groupoids and C∗-algebras. When X is a shift space which is not of
finite type then the shift operation σX is not a local homeomorphism [96] so (X, σX) is
not a Deaconu–Renault system (in the sense of [110]). The Deaconu–Renault groupoid
naturally associated to X therefore fails to be étale. Therefore, a naïve strategy to gen-
eralize Cuntz and Krieger’s results does not work here. The bulk of the work is therefore
to circumvent this problem.

Matsumoto is the first to associate a C∗-algebra to a general two-sided subshift and
study its properties, see [69, 70, 71, 72, 73]. Unfortunately, there was a mistake
in one of the foundational results. Carlsen and Matsumoto [23] then provided a new
construction which is in general not ∗-isomorphic to Matsumoto’s algebra. This new
construction lacks a universal property and therefore has the downside of not always
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admitting a gauge action. Carlsen finally introduced a C∗-algebra OX associated to a
general one-sided shift space X using a Cuntz–Pimsner construction [20] which satisfies
Matsumoto’s results and admits a gauge action. We refer the reader to [23, 27, 38] for
a more detailed description of the story of associating a C∗-algebra to general subshifts.

The C∗-algebra OX has appeared in various guises throughout the literature. In [113]
(see also [30]), Thomsen realized it as a groupoid C∗-algebra of a semi-étale groupoid,
Carlsen and Silvestrov describe it as one of Exel’s crossed products [27, 28], while
Dokuchaev and Exel use partial actions [38]. Matsumoto then took a slightly different
approach and considered certain labeled Bratteli diagrams called λ-graph systems and
associated to each λ-graph system L a C∗-algebra OL [74, 76, 77]. Any two-sided sub-
shift Λ has a canonical λ-graph system LΛ and the spectrum of the diagonal subalgebra
of OL is (homeomorphic to) the λ-graph LΛ. Matsumoto then studied orbit equivalence,
eventual conjugacy and two-sided conjugacy of these λ-graphs and how they are reflected
in the C∗-algebras [79, 83].

Our approach is based on [19]: To any one-sided shift space (X, σX), we construct a cover
X̃ equipped with a local homeomorphism σX̃ : X̃ −→ X̃ and a surjection πX : X̃ −→ X

which intertwines the shifts. The pair (X̃, σX̃) is a Deaconu–Renault system. From the
cover, we construct the Deaconu–Renault groupoid GX which is étale and consider the
associated groupoid C∗-algebra OX. Starling [111] constructed the space X̃ as the tight
spectrum of a certain inverse semigroup SX associated to X and showed that OX is ∗-
isomorphic to the tight C∗-algebra of SX. The construction of X̃ generalizes the left
Krieger cover of a sofic shift. From [18], we therefore know that for sofic shifts OX is
∗-isomorphic to a graph C∗-algebra.

The paper is structured in the following way: In Section B.2 we define the cover X̃ and
the associated groupoid GX. We characterize when GX is principal or essentially principal,
respectively, in terms of conditions on X. In Section B.3, we show that any ∗-isomorphism
OX −→ OY which maps C(X) onto C(Y) is in fact diagonal-preserving under mild con-
ditions on X and Y. Sections B.4, B.5 and B.7 give complete characterizations of one-
sided conjugacy (Theorem B.4.4), one-sided eventual conjugacy (Theorem B.5.3) and
two-sided conjugacy (Theorem B.7.5), respectively, in terms of certain isomorphisms of
groupoids and certain diagonal-preserving ∗-isomorphisms of C∗-algebras. As opposed
to Matsumoto, our results are not limited to the case where the groupoid is essentially
principal, and we characterize the relations on the shift spaces and not only the covers
(or the λ-graphs).

In Section B.6 we study continuous orbit equivalence. We characterize stabilizer preserv-
ing continuous orbit equivalence in terms of isomorphisms of groupoids which respect
certain cocycles, and ∗-isomorphisms of C∗-algebras which respect certain gauge actions
(Theorem B.6.4). Section B.8 concerns flow equivalence. We can characterize flow
equivalence in terms of isomorphism of stabilized groupoids which respects certain coho-
mological data, and ∗-isomorphism of stabilized C∗-algebras which respect certain gauge
actions suitably stabilized (Theorem B.8.9). When the groupoids involved are essentially
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principal, some of the conditions simplify. In particular, we find that continuous orbit
equivalence between sofic shifts whose groupoids are essentially principal implies flow
equivalence, cf. Corollary B.8.12.

In most sections we prove our results by lifting a relation on the shift spaces to a similar
relation on the covers. We can then encode this relation into structure-preserving ∗-
isomorphisms of the C∗-algebras using groupoids as an intermediate step. The recent
and more general reconstruction theory of Ruiz, Sims, Tomforde and the second-named
author [26] allows us to reconstruct the groupoid from the C∗-algebras.

B.1. Preliminaries

We let Z denote the integers and let N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .} denote the
nonnegative and positive integers, respectively.

B.1.1. Symbolic dynamics. Let A be a finite set of symbols (the alphabet) con-
sidered as a discrete space and let |A| denote its cardinality. Then

AN = {x = x0x1x2 · · · | xi ∈ A, i ∈ N}

is a second countable, compact Hausdorff space when equipped with the subspace topol-
ogy of the product topology on AN. The shift-operation σ : AN −→ AN is the continuous
surjection given by σ(x)n = xn+1, for x ∈ AN. A one-sided shift space is a pair (X, σX)
in which X ⊆ AN is closed and shift-invariant in the sense that σ(X) ⊆ X (we do not
assume equality) and where σX := σ|X : X −→ X.

Let X be a one-sided shift space over the alphabet A. If x = x0x1x2 · · · ∈ X, we write
x[i,j) = xixi+1 · · ·xj−1 for 0 6 i < j and x[i,∞) = xixi+1 · · · for 0 6 i. A finite word
µ = µ1 · · ·µk with µi ∈ A, for each i = 0, . . . , k, is admissible in X if x[i,j) = µ for some
x ∈ X. Let |µ| = k denote the length of µ. The empty word ε is the unique word of length
zero which satisfies εµ = µ = µε for any word µ. The collection of admissible words in
X of length l is denoted Ll(X) and the language of X is then the monoid consisting of
the union L(X) =

⋃
l>0 Ll(X); the product being concatenation of words.

The cylinder set of a word µ ∈ L(X) is the compact and open set

ZX(µ) = {µx ∈ X | x ∈ X},

and the collection of sets of the form ZX(µ) constitute a basis for the topology of X. A
point x ∈ X is isolated if there is a k ∈ N such that {x} = ZX(x[0,k)).

A point x ∈ X is periodic if there exists p ∈ N+ such that σpX(x) = x and eventually
periodic if there is an n ∈ N such that σnX(x) is periodic. The least period of an eventually
periodic point x ∈ X is

lp(x) = min{p ∈ N+ | ∃n,m ∈ N : p = n−m,σnX(x) = σmX (x)}.

A point is aperiodic if it is not eventually periodic. The stabilizer of x ∈ X is the group
Stab(x) = {p ∈ Z | ∃k, l ∈ N : p = k − l, σkX(x) = σlX(x)}.
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Following [71], we define for every x ∈ X and l ∈ N the predecessor set as

Pl(x) = {µ ∈ Ll(X) | µx ∈ X}.
Two points x, y ∈ X are l-past equivalent if Pl(x) = Pl(y), in which case we write
x ∼l y. Let [x]l be the l-past equivalence class of x. A point x ∈ X is isolated in past
equivalence if there is an l ∈ N such that [x]l is a singleton. A shift space X satisfies
Matsumoto’s condition (I) [71] if no points are isolated in past equivalence; this is a
generalization of Cuntz and Krieger’s condition (I). We shall also consider the slightly
weaker condition that there are no periodic points which are isolated in past equivalence.

A two-sided shift space is a subset Λ ⊆ AZ which is closed and shift invariant with respect
to the shift operation σ : AZ −→ AZ given by σ(x)n = xn+1, for x = . . . x−1x0x1 . . . ∈ Λ
and n ∈ Z. Let σΛ = σ|Λ : Λ −→ Λ. A pair of two-sided shift spaces (Λ1, σ1) and
(Λ2, σ2) are two-sided conjugate if there is a homeomorphism h : Λ1 −→ Λ2 satisfying
h ◦ σ1 = σ2 ◦ h. We shall consider conjugacy of two-sided shift spaces in Section B.7.

Given a two-sided shift space (Λ, σΛ) there is a corresponding one-sided shift space
defined by

XΛ = {x[0,∞) ∈ AN | x ∈ Λ}
together with the obvious shift operation. Conversely, if (X, σX) is a one-sided shift space
and σX is surjective, then the pair consisting of the projective limit

ΛX = lim←−(X, σX)

together with the induced shift homeomorphism σX : ΛX −→ ΛX given by σX(x)n = xn+1

for x ∈ Λ is the corresponding two-sided shift space (this is called the natural extension of
X in [37, Section 9]). The two operations are mutually inverse to each other. See [68, 62]
for excellent introductions to the general theory of symbolic dynamics.

B.1.2. C∗-algebras of shift spaces. To each shift space X, there is a universal
unital C∗-algebra OX which was first constructed as a Cuntz-Pimsner algebra [20]. In
Section B.2, we follow [19] and construct a second countable, amenable, locally com-
pact, Hausdorff and étale groupoid GX whose C∗-algebra is canonically isomorphic to OX.
For an introduction to (étale) groupoid C∗-algebras see [101, 98] or the introductory
notes [109].

We briefly recall the universal description of OX [20]. Given words µ, ν ∈ L(X), consider
the set

CX(µ, ν) := {νx ∈ X | µx ∈ X}
which is closed (but not necessarily open) in X. We shall refer to the commutative
C∗-algebra

DX := C∗{1CX(µ,ν) | µ, ν ∈ L(X)}
inside the C∗-algebra of bounded functions on X as the diagonal. The C∗-algebra OX is
the universal unital C∗-algebra generated by partial isometries (sµ)µ∈L(X) satisfying

sµsν =

{
sµν µν ∈ L(X),

0 otherwise,
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and such that the map
1C(µ,ν) 7−→ sνs

∗
µsµs

∗
ν ,

for µ, ν ∈ L(X), extends to ∗-homomorphism DX −→ C∗(sµ | µ ∈ L(X)). This map is in-
jective and the projections {sνs∗µsµs∗ν}µ,ν generate a commutative C∗-subalgebra which
is ∗-isomorphic to DX via the above map. We shall henceforth identify DX with this
C∗-subalgebra of OX.

The universal property ensures that there is a canonical gauge action γX : T y OX of
the circle group T given by

γXz (sµ) = z|µ|sµ,

for every z ∈ T and µ ∈ L(X). The fixed point algebra under the gauge action is an
AF-algebra which is denoted FX. Note that DX ⊆ FX.

B.2. The approach

Let X be a one-sided shift space. In this section, we associate a cover X̃ to X and build
a groupoid GX from the cover and its dynamical properties. This construction is due to
the second-named author in [19, Chapter 2]. The C∗-algebra OX is then constructed as
a groupoid C∗-algebra.

B.2.1. The cover X̃. Consider the set I = {(k, l) ∈ N× N | k 6 l} equipped with
the partial order � given by

(k1, l1) � (k2, l2) ⇐⇒ k1 6 k2 and l1 − k1 6 l2 − k2.

For every (k, l) ∈ I we define an equivalence relation on X by

x
k,l∼ x′ ⇐⇒ x[0,k) = x′[0,k) and

⋃
l′6l

Pl′(σ
k
X(x)) =

⋃
l′6l

Pl′(σ
k
X(x′)).

The (k, l)-equivalence class of x ∈ X is denoted k[x]l and each kXl = {k[x]l | x ∈ X} is a
finite set. If (k1, l1) � (k2, l2), then

x
k2,l2∼ x′ =⇒ x

k1,l1∼ x′,

for every x, x′ ∈ X. Hence there is a well-defined map (k1,l1)Q(k2,l2) : k2Xl2 −→ k1Xl1 given
by

(k1,l1)Q(k2,l2)(k2 [x]l2) = k1 [x]l1 ,

for every k2 [x]l2 ∈ k2Xl2 . When the context is clear, we shall omit the subscripts of the
map. The spaces kXl together with the maps Q thus define a projective system.

Definition B.2.1. Let X be a one-sided shift space. The cover of X is the second
countable compact Hausdorff space X̃ defined as the projective limit lim←−

(k,l)∈I
(kXl, Q). We

identify this with

X̃ =

{
(k[kxl]l)(k,l)∈I ∈

∏
(k,l)∈I

kXl | (k1, l1) � (k2, l2) : k1 [k1xl1 ]l1 = k1 [k2xl2 ]l1

}
equipped with the subspace topology of the product topology of

∏
(k,l)∈I kXl.
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The topology of X̃ is generated by compact open sets of the form

U(x, k, l) = {x̃ ∈ X̃ | kxl
k,l∼ x},

for x ∈ X and (k, l) ∈ I. In order to see that sets of the above form constitute a basis,
let x̃ ∈ U(y, k1, l1) ∩ U(z, k2, l2). Set k := max{k1, k2} and l := l1 + l2. The pair (k, l)
thus majorizes both (k1, l1) and (k2, l2), and

x̃ ∈ U(kxl, k, l) ⊆ U(y, k1, l1) ∩ U(z, k2, l2),

Given a word µ ∈ L(X), we also consider the compact open sets

Uµ :=
⋃

x∈C(µ)

U(x, |µ|, |µ|).

We shall now determine a shift operation on X̃ endowing it with the structure of a
dynamical system. For any (k, l) ∈ I with k > 1, observe that

x
k,l∼ y =⇒ σX(x)

k−1,l∼ σX(y).

Therefore, there is a well-defined map kσl : kXl −→ k−1Xl given by

kσl(k[x]l) = k−1[σX(x)]l,

for every k[x]l ∈ kXl, k > 1. When the context is clear, we shall omit the subscripts.
Furthermore, this shift operation intertwines the maps Q in the sense that the diagram

k2Xl2 k2−1Xl2

k1Xl1 k1−1Xl1

σ

Q Q

σ

commutes for every (k1, l1), (k2, l2) ∈ I with (k1, l1) � (k2, l2) and k1 > 1. It follows that
there is an induced shift operation σX̃ : X̃ −→ X̃ given by

kσX̃(x̃)l = k+1σl(k+1[k+1xl]l) = k[σX(k+1xl)]l,

for every x̃ = (k[kxl]l)(k,l)∈I ∈ X̃. The pair (X̃, σX̃) is then a dynamical system.

There is a canonical continuous and surjective map πX : X̃ −→ X given in the following
way: If x̃ ∈ X̃, then x = πX(x̃) ∈ X is the unique element with the property that
x[0,k) = (kxl)[0,k), for every (k, l) ∈ I. This map intertwines the shift operations in the
sense that

σX ◦ πX = πX ◦ σX̃.
We shall refer to πX as the canonical factor map associated to X. It is injective (and
thus a homeomorphism) if and only if X is a shift of finite type.

On the other hand, there is a function ιX : X −→ X̃ given by sending x ∈ X to x̃ ∈ X̃ for
which kxl = x, for every (k, l) ∈ I. This satisfies the relation πX ◦ ιX = idX. If x ∈ X is
isolated, then π−1

X (x) = {ιX(x)}. However, ιX is in general not continuous.
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Example B.2.2. The even shift Xeven is the strictly sofic one-sided shift space over the
alphabet {0, 1} determined by the forbidden words F = {102n+11 | n ∈ N}. The space
Xeven contains no isolated points, but 0∞ is the unique element for which P2(0∞) =

{00, 10, 01}, so 0∞ is isolated in past equivalence. Hence ιeven(0∞) ∈ X̃even is isolated
and ιeven is not continuous.

Lemma B.2.3. The shift operation σX̃ : X̃ −→ X̃ is a local homeomorphism.

Proof. We show that σX̃ is open and locally injective. For the first part, let z ∈ X
and (k, l) ∈ I with k > 1 and suppose a = z0 ∈ A. We claim that

σX̃(U(z, k, l)) = U(σX(z), k − 1, l).

The left-to-right inclusion is straightforward. For the converse let x̃ ∈ U(σX(z), k − 1, l)

and note that (0, 1) � (k−1, l). Since k−1xl
k−1,l∼ σX(z) it thus follows that k−1xl

0,1∼ σX(z).
As a ∈ P1(σX(z)), we see that ak−1xl ∈ X. A similar argument shows that arxs ∈ X, for
every (r, s) ∈ I. Put rys = arxs+1, for every (r, s) ∈ I. Now, if (k1, l1) � (k2, l2) in I,
then ak2xl2+1

k1,l1∼ ak1xl1+1 and so

(k1,l1)Q(k2,l2)(k2 [k2yl2 ]l2) = k1 [ak2xl2+1]l1 = k1 [ak1xl1+1]l1 = k1 [k1yl1 ]l1 .

Hence ỹ = (r[rys]s)(r,s)∈I ∈ X̃. Observe now that

kyl = akxl+1
k,l∼ z,

showing that ỹ ∈ U(z, k, l). Finally, we see that x̃ = σX̃(ỹ) ∈ σX̃(U(z, k, l)) so σX̃ is open.

In order to see that σX̃ is locally injective let z ∈ X with a = z0 ∈ A. We claim that
σX̃ is injective on U(x, 1, 1). Indeed, suppose x̃, ỹ ∈ U(x, 1, 1) and σX̃(x̃) = σX̃(ỹ). In
particular, (kxl)0 = z0 = (kyl)0 for every (k, l) ∈ I. Hence

kxl = aσX(kxl)
k,l∼ aσX(kyl) = kyl

for every (k, l) ∈ I from which it follows that x̃ = ỹ. We conclude that σX̃ is a local
homeomorphism. �

Remark B.2.4. The cover (X̃, σX̃) is a Deaconu–Renault system in the sense of [26,
Section 8], and the construction is a generalization of the left Krieger cover of a sofic
shift space. In particular, the cover of a sofic shift is (conjugate to) a shift of finite type.

The next lemma shows how the topologies of X and X̃ interact.

Lemma B.2.5. Let X be a one-sided shift space and let k : X −→ N be a map. Then the
map kX̃ : X̃ −→ N satisfying kX̃ = k ◦ πX is continuous if and only if k is continuous.

Proof. Define kX̃ : X̃ −→ N by kX̃ = k◦πX. If k is continuous, then kX̃ is continuous.

Suppose k is not continuous. Then there is an element x ∈ X and a convergent sequence
(xn)n with limit x such that k(xn) 6= k(x) for all n ∈ N. In particular, the set

Ck = {xn | n ∈ N} ∩ Z(x[0,k))
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is nonempty. As πX is surjective, C̃k = π−1
X (Ck) is nonempty. Choose t̃k ∈ C̃k for each

k ∈ N. Then πX(t̃k) = xnk for some nk ∈ N so k̃(t̃k) 6= k(x) for all k ∈ N. Furthermore,
the sequence (t̃k)k has a convergent subsequence (t̃kj)j with some limit x̃ which satisfies

πX(x̃) = πX( lim
j→∞

t̃kj) = lim
j→∞

πX(t̃kj) = lim
j→∞

xnkj = x,

so x̃ ∈ π−1
X (x). Then t̃kj −→ x̃ in X̃ and kX̃(x̃) = k(x) 6= kX̃(t̃kj) for every j ∈ N, so kX̃

is not continuous. �

The cover X̃ may contain isolated points even if X does not, cf. Example B.2.2. In [22,
Lemma 4.3(1)], it is shown that every isolated point in a shift of finite type is eventually
periodic. This is also the case for the class of sofic shift space but it need not be true in
general.

Lemma B.2.6. Let X be a one-sided sofic shift. If x ∈ X is isolated, then x is eventually
periodic.

Proof. Let x ∈ X be isolated. Then x̃ ∈ π−1
X (x) is isolated. The cover X̃ is

(conjugate to) a shift of finite type, so x̃ is eventually periodic, cf. [22, Lemma 4.3(1)].
Hence x = πX(x̃) is eventually periodic. �

Example B.2.7. Consider the shift space Xω over the alphabet {0, 1} generated by the
sequence

ω = 01010010001000 · · · .
Since ω is not periodic, Xω is infinite. The shift operation σω is not surjective and Xω is
not minimal. We can identify Xω with the orbit of ω together with all its accumulation
points, i.e.,

Xω = {σiω(ω) : i ∈ N} ∪ {0n10∞ : n ∈ N} ∪ {0∞}
in which {σi(ω) : i ∈ N} are exactly the isolated points of Xω. In particular, ω ∈ Xω
is isolated and aperiodic. It follows from Lemma B.2.6 that Xω is not sofic. Observe
also that 0∞ ∈ Xω is periodic point isolated in past equivalence. In fact, every point in
{0n10∞ : n ∈ N} is isolated in past equivalence, so π−1

Xω
(x) contains an isolated point for

every x ∈ Xω.

B.2.2. The groupoid GX. The pair (X̃, σX̃) is a Deaconu–Renault system in the
sense of [26, Section 8]. The associated Deaconu–Renault groupoid [36] is

GX = {(x̃, p, ỹ) ∈ X̃× Z× X̃ | ∃i, j ∈ N : p = i− j, x̃, ỹ ∈ X̃, σi
X̃
(x̃) = σj

X̃
(x̃)}.

The product of (x̃, p, ỹ) and (ỹ′, q, z̃) is defined if and only if ỹ = ỹ′ in which case

(x̃, p, ỹ)(ỹ′, q, z̃) = (x̃, p+ q, z̃),

while inversion is given by (x̃, p, ỹ)−1 = (ỹ,−p, x̃). The range and source maps are given
as

r(x̃, p, ỹ) = (x̃, 0, x̃), s(x̃, p, ỹ) = (ỹ, 0, ỹ),

respectively, for (x̃, p, ỹ) ∈ GX. The topology of GX is generated by sets of the form

Z(U, i, j, V ) = {(x̃, i− j, ỹ) ∈ GX | (x̃, ỹ) ∈ U × V }
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where U, V ⊆ X̃ are open subsets such that σi
X̃
|U and σj

X̃
|V are injective and σi

X̃
(U) =

σj
X̃
(V ). We naturally identify the unit space G(0)

X = {(x̃, 0, x̃) ∈ GX | x ∈ X̃} with the
space X̃ via the map (x̃, 0, x̃) 7−→ x̃. Equipped with this topology, GX is topological
groupoid which is second countable, locally compact Hausdorff and étale (in the sense
that r, s : GX −→ GX are local homeomorphism onto G(0)

X ). By, e.g., [110, Lemma 3.5],
GX is also amenable.

The isotropy of a point x̃ ∈ X̃ is the set

Iso(x̃) = {(x̃, p, x̃) ∈ GX}
which carries a natural group structure. In our case, the group Iso(x̃) is always (isomor-
phic to) 0 or Z. The stabilizer is Stab(x̃) = {p ∈ Z | (x̃, p, x̃) ∈ Iso(x̃)}. The isotropy
subgroupoid of GX is the group bundle

Iso(GX) =
⋃
x̃∈X̃

Iso(x̃).

Following [102], the groupoid GX is principal if every point in G(0)
X has trivial isotropy,

and essentially principal if the points with trivial isotropy are dense in G(0)
X . Here, the

latter is equivalent to GX being effective, i.e., that Iso(GX)◦ = G(0)
X . Below we characterize

when the groupoid GX is principal and essentially principal in terms of X. We first need
a lemma.

Lemma B.2.8. Let X be a one-sided shift space and let x̃, ỹ ∈ X̃.
(i) If πX(x̃) = πX(ỹ) and σk

X̃
(x̃) = σk

X̃
(ỹ) for some k ∈ N, then x̃ = ỹ.

(ii) If πX(x̃) = πX(ỹ) is aperiodic and σl
X̃
(x̃) = σk

X̃
(ỹ) for some k, l ∈ N, then x̃ = ỹ.

Proof. (i): Fix k ∈ N such that σ̃kX(x̃) = σ̃kX(ỹ) and let 0 6 r 6 s be integers
with r + k 6 s. An (r, s)-representative of σ̃kX(x̃) and σk

X̃
(ỹ) is given by σkX(r+kxs) and

σkX(r+kys), respectively. So
σkX(r+kxs)

r,s∼ σkX(r+kys).

Since πX(x̃) = πX(ỹ) we also have r+kxs
r+k,s∼ r+kys. It follows that x̃ = ỹ.

(ii): Let x = πX(x̃) = πX(ỹ) be aperiodic. If σl
X̃
(x̃) = σk

X̃
(ỹ) for some k, l ∈ N, then

σlX(x) = σkX(x), so k = l. Part (i) implies that x̃ = ỹ. �

Assertion (ii) may fail without the hypothesis of aperiodicity; this happens, e.g., for the
even shift. Thus the preimage under πX of an aperiodic element contains only aperiodic
elements. The preimage under πX of an eventually periodic point contains an eventually
periodic point but we do not know if it consists only of eventually periodic points.

Proposition B.2.9. Let X be a one-sided shift space. The following conditions are
equivalent:

(i) X contains no eventually periodic points;
(ii) X̃ contains no eventually periodic points;
(iii) GX is principal.
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Proof. (i) ⇐⇒ (ii): It follows from Lemma B.2.8 that if x ∈ X is aperiodic, then
any x̃ ∈ π−1

X (x) ∈ X̃ is aperiodic. So if X consists only of aperiodic points, then X̃ con-
tains only aperiodic points. Conversely, if x ∈ X is eventually periodic, then ιX(x) ∈ X̃
is aperiodic.

The equivalence (ii) ⇐⇒ (iii) is obvious. �

Proposition B.2.10. Let X be a one-sided shift space. The conditions
(i) X satisfies Matsumoto’s condition (I);
(ii) X̃ contains no isolated points;

are equivalent and strictly stronger that the following equivalent conditions
(iii) X contains no periodic points isolated in past equivalence;
(iv) X̃ has a dense set of aperiodic points;
(v) GX is essentially principal;

which are strictly stronger than
(vi) X contains a dense set of aperiodic points.

Proof. (i) ⇐⇒ (ii): Suppose x ∈ X is isolated in past equivalence so that
[x]l = {x}, for some l ∈ N. Then {ι(x)} = U(x, 0, l) so ι(x) is isolated in X̃. Con-
versely, if x̃ ∈ X̃ is isolated, say {x̃} = U(x, r, s) for some integers 0 6 r 6 s, then
{σr

X̃
(x̃)} = U(σrX(x), 0, s), so πX(σr

X̃
(x̃)) ∈ X is isolated in s-past equivalence.

The implication (ii) =⇒ (iii) is clear.

(iii) =⇒ (iv): Let EP(X̃) be the collection of eventually periodic points in X̃ and set

EPpn = {x̃ ∈ EP(X̃) | σn+p

X̃
(x̃) = σn

X̃
(x̃)},

for n ∈ N and p ∈ N+. Then EP(X̃) =
⋃
n,p EP

p
n. If there is an open set U ⊆ X̃ consisting

of eventually periodic points, then it follows from the Baire Category Theorem that Perpn
has nonempty interior for some n ∈ N and p ∈ N+. In particular, there are an x ∈ X
and integers 0 6 r 6 s with r 6 n such that U(x, r, s) ⊆ EPpn. Since ιX(x) ∈ U(x, r, s)
it follows that σnX(x) is p-periodic. We claim that σnX(x) is isolated in past equivalence.

Write x = µα∞ for some words µ, α ∈ L(X) with |µ| = n and |α| = p and suppose

y ∼p+n+r−s σ
n
X(x) = σn+p

X (x).

Then µαy ∈ X and ιX(µαy) ∈ U(x, r, s), so αy = y. Hence y = σpX(x) as wanted.

(iv) =⇒ (iii): Suppose x ∈ X is a periodic point and there is an l ∈ N such that
[x]l = {x}. Then U(x, 0, l) = {ιX(x)} is an open set consisting of points with nontrivial
isotropy.

The equivalence (iv) ⇐⇒ (v) is obvious.
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(iv) =⇒ (vi): Suppose X contains an open set U consisting of eventually periodic
points. Then

U =
⋃

α,β∈L(X)

{αβ∞} ∩ U,

and by the Baire Category Theorem there are α, β ∈ L(X) such that {αβ∞} is an isolated
eventually periodic point in U . Then ιX(αβ∞) is an isolated eventually periodic point
in X̃.

To see that (iii) does not imply (i) observe that if X is the shift space generated by
an aperiodic and primitive substitution, then X contains no eventually periodic points
and GX is principal. However, X necessarily contains a point which is isolated in past
equivalence, so it does not satisfy Matsumoto’s condition (I).

Finally, the even shift is an example of a shift with a dense set of aperiodic points but
it contains a periodic point which is isolated in past equivalence. �

Any groupoid homomorphism is assumed to be continuous and a groupoid isomorphism
is assumed to be a homeomorphism. A continuous cocycle on GX is a groupoid homo-
morphism GX −→ Z. Let B1(GX) be the collection of continuous cocycles on GX. There
is a map κX : C(X,Z) −→ B1(GX) given by

κX(f)(x̃, p, ỹ) =
l∑

i=0

f(πX(σi
X̃
(x̃)))−

k∑
j=0

f(πX(σj
X̃
(x̃))),

for f ∈ C(X,Z), (x̃, p, ỹ) ∈ GX and where k, l ∈ N satisfy p = l − k and σl
X̃
(x̃) = σk

X̃
(ỹ).

Observe that κX(f) is the unique cocycle satisfying

κX(f)(x̃, 1, σX̃(x̃)) = f(πX(x̃)),

for x̃ ∈ X̃. The canonical continuous cocycle cX : GX −→ Z is defined by

cX(x̃, p, ỹ) = p,

for (x̃, p, ỹ) ∈ GX. Note that cX = κX(1) and c−1
X (0) = {(x̃, 0, ỹ) ∈ GX} ⊆ GX is a clopen

subgroupoid which is always principal.

B.2.3. The C∗-algebra C∗(GX) = OX. The groupoid GX is second countable, lo-
cally compact Hausdorff and étale. Let Cc(GX) be the ∗-algebra consisting of compactly
supported and complex-valued maps. As GX is also amenable, the full C∗(GX) and the
reduced C∗r (G) groupoid C∗-algebras are canonically ∗-isomorphic, cf. [101, 109].

There is a canonical ∗-isomorphism OX −→ C∗(GX) sending sa 7−→ 1Ua for each a ∈ A,
cf. [19, Chapter 2]. Therefore, we identify the two C∗-algebras and similarly we identify
DX with C(X̃) and FX with C∗(c−1

X (0)). The inclusion X̃ −→ GX induces a conditional
expectation pX : OX −→ DX given by restriction.

Any continuous cocycle c ∈ B1(GX) induces a strongly continuous action βc : T y OX

satisfying
βcz(f) = znf
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for z ∈ T and n ∈ N and f ∈ Cc(GX) with supp(f) ⊆ c−1({n}). The canonical gauge
action γX = βκX(1) is of the form

γXz (g)(x̃, p, ỹ) = zpg(x̃, p, ỹ),

for every z ∈ T, g ∈ Cc(GX) and (x̃, p, ỹ) ∈ GX.

Finally, we let K denote the C∗-algebra of compact operators on separable Hilbert space
and let c0 denote the canonical maximal abelian C∗-subalgebra of diagonal operators in
K.

B.3. Preserving the diagonal

Let X and Y be one-sided shift spaces. A ∗-isomorphism Φ: OX −→ OY is diagonal-
preserving if Φ(DX) = DY. In this section we prove that a ∗-isomorphism Φ: OX −→ OY

satisfying Φ(C(X)) = C(Y) is diagonal-preserving, provided X and Y contain dense sets
of aperiodic points. First we need some preliminary results.

Lemma B.3.1. Let X be a one-sided shift space. Then C∗(Iso(GX)◦) = D′X ⊆ C(X)′. If X
contains a dense set of aperiodic points, then D′X = C(X)′.

Proof. Let ξ ∈ Cc(GX). The condition that ξ ? g = g ? ξ for all g ∈ DX means that
ξ is supported on elements γ ∈ GX with s(γ) = r(γ). It follows that C∗(Iso(GX)◦) = D′X.
The inclusion D′X ⊆ C(X)′ follows from the inclusion C(X) ⊆ DX. �

Consider the equivalence relation ∼ on the space X̃ × T given by (x̃, ζ) ∼ (ỹ, θ) if and
only if x̃ = ỹ and ζp = θp for all p ∈ Stab(x̃). Then the quotient X̃ × T/ ∼ is compact
and Hausdorff and as we shall see (homeomorphic to) the spectrum of C∗(Iso(GX)◦).

Lemma B.3.2. Let ∼ be the equivalence relation on X̃ × T defined above. There is a
∗-isomorphism Ξ: C∗(Iso(GX)◦) −→ C(X̃× T/ ∼) given by

Ξ(f)([x̃, ζ]) =
∑

p∈Stab(x̃)

f(x̃, p, x̃)ζn, (B.1)

for f ∈ Cc(Iso(GX)◦) and [x̃, ζ] ∈ X̃× T/ ∼.

Proof. The map Ξ: Cc(Iso(GX)◦) −→ C(X̃ × T/ ∼) given in (B.1) is well-defined
by the definition of ∼ and linear. If f, g ∈ Cc(Iso(GX)◦) and [x̃, z] ∈ X̃× T/ ∼, then

Ξ(f)([x̃, ζ])Ξ(g)([x̃, ζ]) =
∑

k,l∈Stab(x̃)

f(x̃, k, x̃)g(x̃, l, x̃)ζk+l

=
∑

n,m∈Stab(x̃)

f(x̃, n−m, x̃)g(x̃,m, x̃)ζn

= Ξ(f ? g)([x̃, ζ]),

so Ξ is multiplicative.

In order to see that Ξ is injective, let f, g ∈ Cc(Iso(GX)◦) such that both supp(f) and
supp(g) are bisections and suppose that Ξ(f) = Ξ(g). Suppose f(x̃, p, x̃) 6= 0. The
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p ∈ Iso(x̃) is necessarily unique because supp(f) is a bisection. The assumption implies
the existence of a unique q ∈ Iso(x̃) such that g(x̃, q, x̃), and then

0 6= f(x̃, p, x̃) = Ξ(f)([x̃, 1]) = Ξ(g)([x̃, 1]) = g(x̃, q, x̃).

Similarly,
0 6= f(x̃, p, x̃)ζp = Ξ(f)([x̃, ζ]) = Ξ(g)([x̃, ζ]) = g(x̃, q, x̃)ζq.

for all 1 6= ζ ∈ T. It follows that p = q. Since Cc(Iso(GX)◦) is spanned by functions
whose support is a bisection, we conclude that ξ is injective.

We show that Ξ separates points. First, if [x̃, ζ] 6= [x̃, θ], then there is p ∈ Iso(x̃) such
that ζp 6= θp. Choose a compact open bisection U ⊆ GX satisfying U∩Iso(x̃) = {(x̃, p, x̃)}
and observe that Ξ(1U)([x̃, ζ]) = ζp and ξ(1U)([x̃, θ]) = θp. Second, if x̃ 6= ỹ in X̃ then
we choose a compact open bisection U satisfying (x̃, 0, x̃) ∈ U and Iso(ỹ)∩U = ∅. Then
Ξ(1U)([x̃, ζ]) = 1 while Ξ(1U)([ỹ, θ]) = 0. By the Stone–Weierstrass theorem, the image
of Ξ is dense in C(X̃× T/ ∼) and Ξ thus extends to a ∗-isomorphism as wanted. �

Theorem B.3.3. Let X and Y be one-sided shift spaces with dense sets of aperiodic
points and let Φ: OX −→ OY be a ∗-isomorphism satisfying Φ(C(X)) = C(Y). Then
Φ(DX) = DY.

Proof. If Ψ: OX −→ OY is a ∗-isomorphism satisfying Ψ(C(X)) = C(Y), then
Ψ(C(X)′) = C(Y)′. By Lemmas B.3.1 and B.3.2, there is a homeomorphism

h : X̃× T/ ∼−→ Ỹ × T/ ∼

such that Ψ(f) = f ◦ h−1 for f ∈ C(X̃× T/ ∼).

Define the map qX : X̃ × T/ ∼−→ X̃ by qX([x̃, z]) = x̃. This is well-defined, continuous
and surjective. Furthermore, qX induces the inclusion DX ⊆ C(X)′. Let x̃ ∈ X̃ and put
ỹx̃ = qY(h([x̃, 1])) ∈ Ỹ. The connected component of any [x̃, z] is the set {[x̃, w] | w ∈ T},
so since any homeomorphism will preserve connected components, we have h(q−1

X (x̃)) =

q−1
Y (h([x̃, 1])). We may now define a map h̃ : X̃ −→ Y by

h̃(x̃) = ỹx̃ = qY(h([x̃, 1]))

for x̃ ∈ X̃, which is well-defined, continuous and surjective. The above considerations
show that h is also injective. As both X̃ and Ỹ are compact and Hausdorff, h̃ is a
homeomorphism. The relation h̃ ◦ qX = qY ◦ h ensures that that Ψ(DX) = DY as
wanted. �

Corollary B.3.4. Let X and Y be one-sided shift spaces and let Φ: OX −→ OY be a
∗-isomorphism satisfying Φ(C(X)) = C(Y) and Φ ◦ γX = γY ◦ Φ. Then Φ(DX) = DY.

Proof. This follows from the observation that DX = C(X)′ ∩FX and DY = C(Y)′ ∩
FY. �

Remark B.3.5. Let X be any strictly sofic one-sided shift and let Y = X̃ be its cover.
Then Y is (conjugate to) a shift of finite type so DY = C(Y) but DX = C(Y) 6∼= C(X).
The identity map is a ∗-isomorphism OX −→ OY with sends DX onto DY = C(Y), but
there is no ∗-isomorphism Φ: OX −→ OY which satisfies Φ(C(X)) = C(Y).
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Below, we give a stabilized version of Theorem B.3.3. Consider the product X̃× N× T
equipped with the equivalence relation ≈ defined by (x̃,m1, z) ≈ (ỹ, m2, w) if and only
if x̃ = ỹ and m1 = m2 and zn = wn for all n ∈ Iso(x̃). The spaces X̃ × N × T/ ≈ and
(X̃× T/ ∼)× N are now homeomorphic. An argument similar to the above then yields
the following result.

Corollary B.3.6. Let X and Y be one-sided shift spaces with dense sets of aperiodic
points and let Φ: OX ⊗ K −→ OY ⊗ K be a ∗-isomorphism satisfying Φ(C(X) ⊗ c0) =
C(Y)⊗ c0. Then Φ(DX ⊗ c0) = DY ⊗ c0.

B.4. One-sided conjugacy

A pair of one-sided shift space X and Y are one-sided conjugate if there exists a home-
omorphism h : X −→ Y satisfying h ◦ πX = πY ◦ h. A similar definition applies to the
covers. If X and Y are shifts of finite type, then they are conjugate if and only if the
groupoids GX and GY are isomorphic in a way which preserves a certain endomorphism,
if and only if the C∗-algebras OX and OY are ∗-isomorphic in a way which preserves a
certain completely positive map [12]. In this section we characterize one-sided conjugacy
of general one-sided shift spaces. We start by lifting a conjugacy on the shift spaces to
a conjugacy on the covers. The cover construction is therefore canonical.

Lemma B.4.1 (Lifting lemma). Let X and Y be one-sided shift spaces and let h : X −→ Y
be a homeomorphism. The following are equivalent:

(i) the map h : X −→ Y is a conjugacy;
(ii) there is a conjugacy h̃ : X̃ −→ Ỹ satisfying h ◦ πX = πY ◦ h̃.

Proof. (i) =⇒ (ii): Let h : X −→ Y be a conjugacy and choose an integer C ∈ N
such that

x[0,C+r) = x′[0,C+r) =⇒ h(x)[0,r) = h(x′)[0,r)

for r ∈ N and x, x′ ∈ X. Given integers 0 6 r 6 s, we show that

αx
C+r,C+s∼ αx′ =⇒ h(αx) = h(αx′)

for αx, αx′ ∈ X with |α| = r. Start by writing h(αx) = µy and h(αx′) = µy′ for some
y ∈ Y and µ ∈ L(Y) with |µ| = s and observe that h(x) = y and h(x′) = y′ since h is a
conjugacy. Assume now that νy ∈ Y for some ν ∈ L(Y) with |ν| 6 s. We need to show
that νy′ ∈ Y.

Observe that h−1(νy) = βνx for some βν ∈ L(X) with |βν | = |ν| 6 s and, by hypothesis,
βνx

′ ∈ X. It is now easily verified that h(βνx
′) = νy′ so that νy′ ∈ Y as wanted.

This defines an induced map h̃ : X̃ −→ Ỹ determined by

h̃ : C+r[x]C+s 7−→ r[h(x)]s

for integers 0 6 r 6 s. It is readily verified that h̃ is a conjugacy satisfying h◦πX = πY◦h̃
using that h is a conjugacy.



46 B. C∗-ALGEBRAS, GROUPOIDS AND COVERS OF SHIFT SPACES

(ii) =⇒ (i): Given x ∈ X and any x̃ ∈ π−1
X (x) ⊆ X̃, we observe that

h(σX(x)) = πY(h̃(σX̃(x̃))) = πY(σỸ(h̃(x̃))) = σYh(x).

This shows that h is a conjugacy. �

Let X be a one-sided shift and let GX be the groupoid defined in Section B.2. The map
εX : GX −→ GX given by

εX(x̃, p, ỹ) = (σX̃(x̃), p, σX̃(ỹ)),

for (x̃, p, ỹ) ∈ GX, is a continuous groupoid homomorphism. There is an induced ho-
momorphism ε∗X : Cc(GX) −→ Cc(GX) given by ε∗X(f) = f ◦ εX, for f ∈ Cc(GX). We also
consider two completely positive maps on OX as follows: Let {sa}a∈A be the canonical
generators of OX and consider φX : OX −→ OX given by

φX(y) =
∑
a∈A

says
∗
a,

for y ∈ OX, and map τX : OX −→ OX given by

τX(y) =
∑
a,b∈A

sbys
∗
a,

for y ∈ OX. The next lemma describes the relationship between these maps.

Lemma B.4.2 ([12]). We have τX(f) = f ◦ εX for f ∈ Cc(GX). Hence τX extends ε∗X to
OX. Furthermore, pX ◦ τX|DX

= φX|DX
.

For the next lemma, recall that FX = C∗(c−1
X (0)) is the AF core inside OX.

Lemma B.4.3 ([12]). Let X and Y be one-sided shift spaces. If Φ: FX −→ FY is a
∗-isomorphism satisfying Φ(DX) = DY, then Φ(pX(f)) = pY(Ψ(f)) for f ∈ FX. If, in
addition, Φ ◦ τX = τY ◦ Φ, then Φ ◦ φX|DX

= φY ◦ Φ|DX
.

We now characterize one-sided conjugacy of general one-sided shift spaces.

Theorem B.4.4. Let X and Y be one-sided shift spaces and let h : X −→ Y be a homeo-
morphism. The following are equivalent:

(i) the map h : X −→ Y is a one-sided conjugacy;
(ii) there is a conjugacy h̃ : X̃ −→ Ỹ satisfying h ◦ πX = πY ◦ h̃.
(iii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h ◦ πX = πY ◦ Ψ(0),

cX = cY ◦Ψ and

Ψ ◦ εX = εY ◦Ψ; (B.2)

(iv) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h ◦ πX = πY ◦ Ψ(0)

and (B.2);
(v) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) with Φ(g) =

g ◦ h−1 for g ∈ C(X), Φ ◦ pX = pY ◦ Φ, Φ ◦ γXz = γYz ◦ Φ for z ∈ T, Φ ◦ φX|DX
=

φY ◦ Φ|DX
, and

Φ ◦ τX = τY ◦ Φ. (B.3)

(vi) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) with Ψ(g) =
g ◦ h−1 for g ∈ C(X), and (B.3).
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(vii) there is a ∗-isomorphism Ω: DX −→ DY satisfying Ω(C(X)) = C(Y), Ω(g) =
g ◦ h−1 for g ∈ C(X) and Ω ◦ φX|DX

= φY ◦ Ω.

Proof. The equivalence (i)⇐⇒ (ii) is Lemma B.4.1.

(ii) =⇒ (iii): Let h̃ : X̃ −→ Ỹ be a conjugacy satisfying h ◦ πX = πY ◦ h̃. The map
Φ: GX −→ GY given by

Φ(x̃, p, ỹ) = (h̃(x̃), p, h̃(ỹ)),

for (x̃, p, ỹ) ∈ X̃, is a groupoid isomorphism. Under the identification of Φ(0) and h̃, we
then have πY ◦Ψ(0) = h ◦ πX, cX = cY ◦Ψ and Ψ ◦ εX = εY ◦Ψ.

The implications (iii) =⇒ (iv) and (v) =⇒ (vi) are clear.

(iv) =⇒ (vi) and (iii) =⇒ (v): Let Ψ: GX −→ GY be a groupoid isomorphism as
in (iv). This induces a ∗-isomorphism Φ: OX −→ OY satisfying Φ ◦ pX = pY ◦ Φ and
Φ(C(X)) = C(Y) with Φ(g) = g ◦ h−1 for g ∈ C(X). The relation (B.2) ensures that
Φ◦τX = τY◦Φ. This is (vi). If, in addition, cX = cY◦Φ, then Φ◦γXz = γYz ◦Φ for z ∈ T. In
particular, Ψ(FX) = FY and Lemma B.4.3 implies that Φ◦φX|DX

= φY◦Ψ|DX
. This is (v).

(vi) =⇒ (vii): As Φ satisfies (B.3) and FX is generated as a C∗-algebra by
⋃∞
k=0 τ

k
X(DX),

we also have Φ(FX) = FY. By Corollary B.3.4, Φ(DX) = DY. It therefore follows from
Lemma B.4.3 that Φ ◦ φX|DX

= φY ◦ Φ|DX
.

(vii) =⇒ (ii): Let h̃ : X̃ −→ Ỹ be the homeomorphism induced by Ω via Gelfand dual-
ity. The relation Ω ◦φX|C(X) = φY ◦Ω and the fact that φX(f)(x̃) = f(σX̃(x̃)) for f ∈ DX

and x̃ ∈ X̃ ensures that h̃ is a conjugacy. The condition Ω(C(X)) = C(Y) entails that
h ◦ πX = πY ◦ h̃.

The final remark follows from Theorem B.3.3. �

If XA and XB are one-sided shifts of finite type determined by finite square {0, 1}-matrices
A and B with no zero rows and no zero columns, respectively, then we recover [12,
Theorem 3.3].

Corollary B.4.5. Let X and Y be one-sided shift spaces. The following are equivalent:
(i) the systems X and Y are one-sided conjugate;
(ii) there are a groupoid isomorphism Ψ: GX −→ GY and a homeomorphism h : X −→

Y satisfying h ◦ πX = πY ◦Ψ(0) and Ψ ◦ εX = εY ◦Ψ;
(iii) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) and Φ◦τX =

τY ◦ Φ.

B.5. One-sided eventual conjugacy

Matsumoto has studied one-sided eventual conjugacy of shifts of finite type [81]. A pair
of shifts of finite type X and Y are eventually conjugate if and only if the groupoids
GX and GY are isomorphic in a way which preserves the canonical cocycle, if and only
if the C∗-algebras OX and OY are ∗-isomorphic in a way which preserves the canonical
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gauge actions. We characterize eventual conjugacy for general shift spaces in terms of
groupoids and C∗-algebras. We start by lifting an eventual conjugacy on the shift spaces
to an eventual conjugacy on the covers.

Definition B.5.1. Two one-sided shift spaces X and Y are eventually conjugate if there
exist a homeomorphism h : X −→ Y and an integer ` ∈ N such that

σ`Y(h(σX(x))) = σ`+1
Y h(x), (B.4)

σ`X(h−1(σY(y))) = σ`+1
X h−1(y), (B.5)

for x ∈ X and y ∈ Y. An eventual conjugacy h is a conjugacy if and only if we can
choose ` = 0.

A similar definition applies to the covers.

Lemma B.5.2 (Lifting lemma). Let X and Y be one-sided shift spaces and let h : X −→ Y
be a homeomorphism. The following are equivalent:

(i) the map h : X −→ Y is an eventual conjugacy;
(ii) there is an eventual conjugacy h̃ : X̃ −→ Ỹ satisfying h ◦ πX = πY ◦ h̃.

Proof. (i) =⇒ (ii): Let h : X −→ Y be an eventual conjugacy and choose ` ∈ N
according to (B.4) and (B.5). Then there is a continuity constant C ∈ N with the
property that

x[0,C+r) = x′[0,C+r) =⇒ h(x)[0,`+r) = h(x′)[0,`+r),

for x, x′ ∈ X and r ∈ N. Fix integers 0 6 r 6 s and put K = C + 2`+ s. We will show
that

αx
K+r,K+s∼ αx′ =⇒ h(αx)

r,s∼ h(αx′),

where |α| = ` + r. Since K > C, we can write h(αx) = µy and h(αx′) = µy′ for some
y, y′ ∈ Y and µ ∈ L(Y) with |µ| = r. In particular, y[0,2`) = y′[0,2`). Assume now that
νy ∈ Y for some ν ∈ L(Y) with |ν| 6 s. We need to show that νy′ ∈ Y.

First observe that h−1(νy) = βνx for some word βν ∈ L(X) with |βν | = ` + |ν|. This
follows from the computation

x = σ`+rX (αx) = σ`+rX (h−1(µy)) = σ`X(h−1(y)) = σ
`+|ν|
X (h−1(νy)).

By hypothesis, βνx′ ∈ X and we claim that h(βνx
′) = νy′.

In order to verify the claim first observe that

σ
2`+|ν|
Y (h(βνx

′)) = σ`Y(h(x′)) = σ2`+r
Y (h(αx′)) = σ2`

Y (y′),

and since (βνx)[0,C+2`+|ν|) = (βνx
′)[0,C+2`+|ν|) we have

h(βνx)[0,2`+|ν|) = h(βνx
′)[0,2`+|ν|) = (νy)[0,2`+|ν|) = (νy′)[0,2`+|ν|).

Hence h(βνx
′) = νy′. This shows that there is a well-defined map h̃ : X̃ −→ Ỹ given by

h̃ : K+r[x]K+s 7−→ r[h(x)]s,

for all integers 0 6 r 6 s. It is straightforward to check that h ◦ πX = πY ◦ h̃ and that h̃
is an eventual conjugacy using the fact that h is an eventual conjugacy.



B.5. ONE-SIDED EVENTUAL CONJUGACY 49

(ii) =⇒ (i): Given x ∈ X and any x̃ ∈ π−1
X (x) ⊆ X̃, we have

σ`Y(h(σX(x))) = πY(σ`
Ỹ
(h̃(σX̃(x̃)))) = πY(σ`+1

Ỹ
(h̃(x̃))) = σ`+1

Y (h(x)),

showing that h is an L-conjugacy. �

We can now characterize one-sided eventual conjugacy of general one-sided shifts spaces,
cf. [83, Theorem 1.4]. The proof uses ideas of [24].

Theorem B.5.3. Let X and Y be one-sided shift spaces and let h : X −→ Y be a homeo-
morphism. The following are equivalent:

(i) the map h : X −→ Y is a one-sided eventual conjugacy;
(ii) there is an eventual conjugacy h̃ : X̃ −→ Ỹ such that h ◦ πX = πY ◦ h̃;
(iii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h ◦πX = πY ◦Ψ(0) and

cX = cY ◦Ψ;

(iv) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ ◦ pX = pY ◦ Φ, Φ(C(X)) =
C(Y) with Φ(g) = g ◦ h−1 for g ∈ C(X) and

Φ ◦ γXz = γYz ◦ Φ, (B.6)

for z ∈ T;
(v) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) with Φ(g) =

g ◦ h−1 for g ∈ C(X) and (B.6).

Proof. The equivalence (i) ⇐⇒ (ii) is Lemma B.5.2.

(ii) =⇒ (iii): Let h̃ : X̃ −→ Ỹ be an eventual conjugacy satisfying h ◦ πX = πY ◦ h̃. The
map Ψ: GX −→ GY given by

Ψ(x̃, p, ỹ) = (h̃(x̃), p, h̃(ỹ))

for (x̃, p, ỹ) ∈ GX is a groupoid isomorphism. Under the identification Ψ(0) = h̃, we have
h ◦ πX = πY ◦Ψ(0) and cX = cY ◦Ψ.

(iii) =⇒ (ii): Let Ψ: GX −→ GY be a groupoid isomorphism satisfying h◦πX = πY ◦Ψ(0)

and cX = cY ◦Ψ. Identify X̃ = G(0)
X , Ỹ = G(0)

Y and h̃ = Ψ(0). Then Ψ is of the form

Ψ(x̃, p, ỹ) = (h̃(x̃), p, h̃(ỹ)),

for (x̃, p, ỹ) ∈ GX, and h ◦ πX = πY ◦ h̃. Let A be the alphabet of X and consider the
compact open bisection

Aa = (σX̃(Ua), 0, 1, Ua)

for a ∈ A. Here, Ua =
⋃
x∈ZX(a) U(x, 1, 1) in X̃. Then

Ψ(Aa) = {(h̃(σX̃(x̃)),−1, h̃(x̃)) | x̃ ∈ Ua}

is compact and open and contained in c−1
Y ({−1}). Therefore

Ψ(Aa) =
n⋃
j=1

(Vj, kj, kj + 1,Wj),
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for some n ∈ N and some compact open and mutually disjoint subsets V1, . . . , Vn, and
compact open and mutually disjoint subsetsW1, . . . ,Wn of X̃ and integers k1, . . . , kn ∈ N.
In particular, h̃−1(Ua) is the disjoint union h̃−1(Ua) =

⋃n
j=1 h̃

−1(Wj) and

σ
kj+1

Ỹ
(h̃(x̃)) = σ

kj

Ỹ
(h̃(σX̃(x̃)))

for x̃ ∈ h̃−1(Wj) ⊆ Ua. We can now define a continuous map ka : Ua −→ N by ka(x̃) = kj
for x̃ ∈ h̃−1(Wj) ⊆ Ua. Since X̃ is the disjoint union of Ua, a ∈ A, there is a continuous
map k : X̃ −→ N given by k(x̃) = ka(x̃) for x̃ ∈ Ua ⊆ X̃, and

σ
k(x̃)+1

Ỹ
(h̃(x̃)) = σ

k(x̃)

Ỹ
(h̃(σX̃(x̃))),

for x̃ ∈ X̃. Similarly, there is a continuous map k′ : Ỹ −→ N which satisfies

σ
k′(ỹ)+1

X̃
(h̃−1(ỹ)) = σ

k′(ỹ)

X̃
(h̃−1(σỸ(ỹ))),

for ỹ ∈ Ỹ. Let ` = max{k(X̃), k′(Ỹ)). Then h̃ is an eventual conjugacy satisfying
h ◦ πX = πY ◦ h̃.

(iii) =⇒ (iv): A groupoid isomorphism Ψ: GX −→ GY with h ◦ πX = πY ◦ Ψ(0) induces
a ∗-isomorphism Φ: OX −→ OY satisfying Φ ◦ pX = pY ◦ Φ and Φ(C(X)) = C(Y) with
Φ(g) = g ◦ h−1 for g ∈ C(X). The relation cX = cY ◦Ψ ensures that Φ ◦ γXz = γYz ◦ Φ for
z ∈ T.

The implication (iv) =⇒ (v) is obvious.

(v) =⇒ (iii): By Corollary B.3.4, Φ(DX) = DY. The reconstruction theorem [26,
Theorem 6.2] ensures the existence of a groupoid isomorphism Ψ: GX −→ GY satisfying
Φ(f) = f ◦ h̃−1 for f ∈ DX, where Ψ(0) = h̃ : X̃ −→ Ỹ is the induced homeomorphism
on the unit spaces, and cX = cY ◦ Φ. Since Φ(C(X)) = C(Y) with Φ(g) = g ◦ h−1 for
g ∈ C(X), the groupoid isomorphism Ψ satisfies h ◦ πX = πY ◦Ψ(0). �

When XA and XB are one-sided shifts of finite type determined by finite square {0, 1}-
matrices A and B with no zero rows and no zero columns, respectively, we recover [24,
Corollary 4.2] (see also [81, Theorem 1.2]).

Corollary B.5.4. Let X and Y be one-sided shift spaces. The following are equivalent:
(i) the systems X and Y are one-sided eventually conjugate;
(ii) there exist a groupoid isomorphism Ψ: GX −→ GY and a homeomorphism h : X −→

Y satisfying h ◦ πX = πY ◦Ψ(0) and cX = cY ◦Ψ;
(iii) there is ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) and Φ◦γXz =

γYz ◦ Φ for z ∈ T.
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B.6. Continuous orbit equivalence

The notion of continous orbit equivalence among one-sided shift spaces was introduced
by Matsumoto in [78, 79]. It is proven in [22, Corollary 6.1] (see also [84, Theorem 2.3])
that if X and Y are shifts of finite type, then X and Y are continuously orbit equivalent if
and only if GX and GY are isomorphic, and if and only if there is a diagonal-preserving ∗-
isomorphism between OX and OY. In this section, we shall for general shift spaces X and
Y look at the relationship between continuous orbit equivalence of X and Y, isomorphism
of GX and GY, and diagonal-preserving ∗-isomorphism between OX and OY.

Definition B.6.1. Two one-sided shift spaces X and Y are continuously orbit equivalent
if there exist a homeomorphism h : X −→ Y and continuous maps kX, lX : X −→ N and
kY, lY : Y −→ N satisfying

σ
lX(x)
Y (h(x)) = σ

kX(x)
Y (h(σX(x))), (B.7)

σ
lY(y)
X (h−1(y)) = σ

kY(y)
X (h−1(σY(y))), (B.8)

for x ∈ X and y ∈ Y. The underlying homeomorphism h is a continuous orbit equivalence
and (kX, lX) and (kY, lY) are cocycle pairs for h.

Similar definitions apply to the covers of one-sided shift spaces. Our first aim is to show
that a continuous orbit equivalence between X and Y can be lifted to a continuous orbit
equivalence between X̃ and Ỹ.

Observe that if h : X −→ Y is an orbit equivalence with cocycles kX, lX : X −→ N and we
define

k
(n)
X (x) =

n−1∑
i=0

kX(σiX(x)), l
(n)
X (x) =

n−1∑
i=0

lX(σiX(x)),

then σl
(n)
X
Y (h(x)) = σ

k
(n)
X

Y (h(σnX(x))), for x ∈ X.

We need some additional terminology. Let X and Y be one-sided shift spaces and let
h : X −→ Y be a continuous orbit equivalence with continuous cocycles kX, lX : X −→ N
and kY, lY : Y −→ N. We say that (h, lX, kX, lY, kY) is least period preserving if h maps
eventually periodic points to eventually periodic points,

lp(h(x)) = l
(p)
X (x)− k(p)

X (x),

for any periodic point x ∈ X with lp(x) = p, h−1 maps eventually periodic points to
eventually periodic points, and

lp(h−1(y)) = l
(q)
Y (y)− k(q)

Y (y),

for any periodic point y ∈ Y with lp(y) = q. We say that (h, lX, kX, lY, kY) is stabilizer
preserving if h maps eventually periodic points to eventually periodic points,

lp(h(x)) = |l(p)X (x)− k(p)
X (x)|,

for any periodic point x ∈ X with lp(x) = p, h−1 maps eventually periodic points to
eventually periodic points, and

lp(h−1(y)) = |l(q)Y (y)− k(q)
Y (y)|,
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for any periodic point y ∈ Y with lp(y) = q. cf. [22, p. 1093] and [26, Definition 8.1].
There are analogous definitions for a continuous orbit equivalence between covers.

Remark B.6.2. Not every cocycle pair of a continuous orbit equivalence (even between
finite type shifts) is least period preserving, cf. Remark B.6.5. However, we do not know
if there is a continuous orbit equivalence which does not admit a least period/stabilizer
preserving cocycle pair. In Example B.6.13, we exhibit an example of a continuous orbit
equivalence between shifts of finite type which does not admit a cocycle pair which is
least period preserving on all eventually periodic points.

Lemma B.6.3 (Lifting lemma). Let X and Y be one-sided shift spaces and let h : X −→ Y
be a stabilizer preserving continuous orbit equivalence with continuous cocycles continu-
ous cocycles lX, kX : X −→ N and lY, kY : Y −→ N. Then there is a stabilizer preserving
continuous orbit equivalence h̃ : X̃ −→ Ỹ with continuous cocycles lX̃ = lX ◦ πX, kX̃ =

kX ◦ πX : X̃ −→ N and lỸ = lY ◦ πY, kỸ = kY ◦ πY : Ỹ −→ N.

Proof. We first verify two claims which will allow us to define the map h̃ : X̃ −→ Ỹ.
Then we show that h̃ with the prescribed cocycles is stabilizer preserving.

Let x ∈ X and µ, ν ∈ L(X) and suppose h(x) ∈ CY(µ, ν).

Claim 1. There are integers 0 6 k 6 l such that x′ k,l∼ x =⇒ h(x′) ∈ CY(µ, ν).

Let y := σ
|ν|
Y (h(x)). Then νy, µy ∈ Y and h(x) = νy. From the cocycle relations (B.7)

and (B.8) we have

σ
l
(|ν|)
Y (νy)

X (h−1νy)) = σ
k

(|ν|)
Y (νy)

X (h−1(y)),

and
σ
l
(|µ|)
Y (µy)

X (h−1µy)) = σ
k

(|µ|)
Y (µy)

X (h−1(y)).

Hence if
α′ = h−1(µy)

[0,l
(|µ|)
Y (µy)+k

(|ν|)
Y (νy))

, β′ = (h−1(νy))
[0,l

(|ν|)
Y (νy)+k

(|µ|)
Y (µy))

,

then h−1(µy) = α′z′ and h−1(νy) = β′z′, for some z′ ∈ X. If z′ is eventually periodic,
pick q ∈ N such that z := σqX(z′) is periodic and γ := z′[0,q); if z

′ is aperiodic, let q = 0

and let γ be the empty word. Set α := α′γ and β := β′γ and observe that h(αz) = µy
and h(βz) = νy, and x = βz.

By the cocycle relations we have

σ
l
(|α|)
X (αz)

Y (µy) = σ
l
(|α|)
X (αz)

Y (h(αz)) = σ
k

(|α|)
X (αz)

Y (h(z)),

and
σ
l
(|β|)
X (βz)

Y (νy) = σ
l
(|β|)
X (βz)

Y (h(βz)) = σ
k

(|β|)
X (βz)

Y (h(z)),

from which we deduce that

σ
k

(|α|)
X (αz)+|µ|+l(|β|)X (βz)

Y (h(z)) = σ
l
(|α|)
X (αz)+l

(|β|)
X (βz)

Y (y) = σ
k

(|β|)
X (βz)+|ν|+l(|α|)X (αz)

Y (h(z)).

It now follows that In particular,

k
(|α|)
X (αz) + |µ|+ l

(|β|)
X (βz)−

(
k

(|β|)
X (βz) + |ν|+ l

(|α|)
X (αz)

)
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is a multiple of lp(h(z)) — if h(z) is aperiodic, we set lp(h(z)) = 0. Without loss of
generality, we may assume there is a nonnegative integer m such that

k
(|α|)
X (αz)+|µ|+l(|β|)X (βz)−

(
k

(|β|)
X (βz)+|ν|+l(|α|)X (αz)

)
= m lp(h(z)) = m

(
l
(lp(z))
X (z)−k(lp(z))

X (z)
)
.

The final equality follows from the hypothesis that h is stabilizer preserving. Set

N := l
(|β|)
X (βz) + l

(|α|)
X (αz) +ml

(lp(z))
X (z).

Pick r ∈ N such that k(|β|)
X and l(|β|)X are constant on ZX(x[0,r)) and

h(ZX(x[0,r)))) ⊆ ZY((νy)[0,|ν|+N).

Pick also s ∈ N such that k(|α|)
X and l(|α|)X are constant on ZX((αz)[0,s)) and

h(ZX((αz)[0,s))) ⊆ ZY((µy)[0,|µ|+N)),

and such that l(lp(z))
X and k

(lp(z))
X are constant on ZX(z[0,s)). Set k := r + s + |β| and

l := r + s+ |β|+ |α|.
Let x′ ∈ X and suppose x′ k,l∼ x. Then x′ ∈ ZX(x[0,r)), so h(x′) ∈ ZY((νy)[0,|ν|+N))

and k
(|α|)
X (x′) = k

(|α|)
X (x) and l

(|α|)
X (x′) = l

(|α|)
X (x). Put x′′ := αz[0,m lp(z))σ

(|β|)
X (x′). Then

σ
|α|+m lp(z)
X (x′′) = σ

(|β|)
X (x′) and x′′ ∈ ZX((αz)[0,s)) so h(x′′) ∈ ZY((µy)[0,|µ|+N)).

σ
|ν|+N
Y (h(x′)) = σ

|ν|+l(|β|)X (x′)+l
(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(x′))

= σ
|ν|+k(|β|)

X (x′)+l
(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(σ
|β|
X (x′)))

= σ
|ν|+k(|β|)

X (βz)+l
(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(σ
|β|
X (x′))),

and

σ
|µ|+N
Y (h(x′′)) = σ

|µ|+l(|β|)X (βz)+l
(|α|)
X (x′′)+ml

(lp(z))
X (z)

Y (h(x′′))

= σ
|µ|+l(|β|)X (βz)+k

(|α|)
X (x′′)+mk

(lp(z))
X (z)

Y (h(σ
|α|+m lp(z)
X (x′′)))

= σ
|µ|+l(|β|)X (βz)+k

(|α|)
X (αz)+mk

(lp(z))
X (z)

Y (h(σ
|β|
X (x′)))

= σ
|ν|+k(|β|)

X (βz)+l
(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(σ
|β|
X (x′))).

Thus σ|ν|+NY (h(x′)) = σ
|µ|+N
Y (h(x′′)) so

h(x′′) ∈ CY((µy)[0,|µ|+N), (νy)[0,|ν|+N)) ⊆ CY(µ, ν)

and this proves Claim 1.

Claim 2. For each (k, l) ∈ I there is (m(k, l), n(k, l)) ∈ I such that

x
m(k,l),n(k,l)∼ x′ =⇒ h(x)

k,l∼ h(x′).

Let (k, l) ∈ I and take µ, ν ∈ L(X) with |ν| = k and |µ| 6 l and x ∈ CX(µ, ν). By Claim
1, we may choose

(
r(µ, ν, x), s(µ, ν, x)

)
∈ I such that

h(r(µ,ν,x)[x]s(µ,ν,x)) ⊆ CY(µ, ν).
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The topology on X generated by the sets {r[x]s | x ∈ X, (r, s) ∈ I} is compact, so there
is a finite set F ⊆ L(X)× L(X)× X such that⋃

(µ,ν,x)∈F
r(µ,ν,x)[x]s(µ,ν,x) = X.

Set m(k, l) := max{r(µ, ν, x) | (µ, ν, x) ∈ F} and n(k, l) := max{s(µ, ν, x) | (µ, ν, x) ∈
F}. Then the implication of Claim 2 holds.

We are now ready to prove the lemma. Let (k, l) ∈ I and set

m̃(k, l) := max{m(k′, l′) | (k′, l′) � (k, l)}, ñ(k, l) := max{n(k′, l′) | (k′, l′) � (k, l)}.

Then there is a well-defined and continuous map h̃ : X̃ −→ Ỹ given by

k(h̃(x̃))l = h(m̃(k,l)[x]ñ(k,l)),

for (k, l) ∈ I and x̃ = (r[x]s)(r,s)∈I . A similar argument shows that there for (k, l) ∈ I is
(m′(k, l), n′(k, l)) ∈ I such that

y
m′(k,l),n′(k,l)∼ y′ =⇒ h−1(y)

k,l∼ h−1(y′),

and that there is a continuous map h̃′ : Ỹ −→ X̃ given by

k(h
′(ỹ))l = h−1(m̃′(k,l)[y]ñ′(k,l)),

for (k, l) ∈ I and ỹ = (r[y]s)(r,s)∈I ∈ Ỹ, where m̃′(k, l) = max{m′(k′, l′) | (k′, l′) � (k, l)}
and ñ′(k, l) = max{n′(k′, l′) | (k′, l′) � (k, l)}. Since h′ is the inverse of h̃, the latter map
is a homeomorphism.

It is straightforward to check that h ◦ πX = πY ◦ h̃. Define kX̃, lX̃ : X̃ −→ N and
kỸ, lỸ : Ỹ −→ N by kX̃ = kX ◦ πX, lX̃ = lX ◦ πX and kỸ = kY ◦ πY, lỸ = lY ◦ πY. They
are continuous. It is straightforward to check that σlX̃(x̃)

Ỹ
(h̃(x̃)) = σ

k
X̃

(x̃)

Ỹ
(h̃(σX̃(x̃))) for

x̃ ∈ X̃, and that σlỸ(ỹ)

X̃
(h̃−1(ỹ)) = σ

k
Ỹ

(ỹ)

X̃
(h̃−1(σX̃(x̃))) for ỹ ∈ Ỹ. Thus, (h̃, lX̃, kX̃, lỸ, kỸ) is

a continuous orbit equivalence.

We will now show that (h̃, lX̃, kX̃, lỸ, kỸ) is stabilizer preserving. Pick a periodic element
x̃ ∈ X̃ and let x = πX(x̃) ∈ X. Then x is periodic and if lp(x) = p, then lp(x̃) = np
for some n ∈ N+. Since (h, lX, kX, lY, kY) is stabilizer preserving, h(x) ∈ Y is eventually
periodic and |l(p)X (x)− k(p)

X (x)| = lp(h(x)). Furthermore,

|l(lp(x̃))

X̃
(x̃)− k̃(lp(x̃))

X (x̃)| = n lp(h(x))

is a period for h̃(x̃). In particular, h̃(x̃) is eventually periodic and as above lp(h̃(x̃)) =
m lp(h(x)) for some m ∈ N+. The above computation shows that m divides n. A similar
argument using h−1 instead of h shows that n divides m and thus that n = m. This
shows that lp(h̃(x̃)) = |l(lp(x̃))

X̃
(x̃)−k(lp(x̃))

X̃
(x̃)|. Since h̃ maps periodic points to eventually

periodic points, it also maps eventually periodic points to eventually periodic points. �

We shall next find conditions on GX and GY and for OX and OY that are equivalent to
the existence of a stabilizer preserving continuous orbit equivalence between X and Y.
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Theorem B.6.4. Let X and Y be one-sided shift spaces, let h : X −→ Y be a homeo-
morphism and let dX : X −→ Z and dY : Y −→ Z be continuous maps. The following
conditions are equivalent:

(i) there are continuous maps kX, lX : X −→ N and kY, lY : Y −→ N with dX = lX−kX
and dY = lY−kY such that (h, lX, kX, lY, kY) is a stabilizer preserving continuous
orbit equivalence;

(ii) there are continuous maps kX, lX : X −→ N and kY, lY : Y −→ N with dX = lX−kX
and dY = lY − kY and continuous maps kX̃, lX̃ : X̃ −→ N and kỸ, lỸ : Ỹ −→ N
with lX̃ = lX◦πX, kX̃ = kX◦πX, lỸ = lY◦πY, kỸ = kY◦πY, and a homeomorphism
h̃ : X̃ −→ Ỹ such that (h̃, lX̃, kX̃, lỸ, kỸ) is a stabilizer preserving continuous orbit
equivalence satisfying h ◦ πX = πY ◦ h̃;

(iii) there are
• a groupoid isomorphism Ψ: GX −→ GY such that h ◦ πX = πY ◦ Ψ(0) and
κX(dX) = κY(1) ◦Ψ;
• a groupoid isomorphism Ψ′ : GY → GX such that h−1 ◦πY = πX ◦ (Ψ′)(0) and
κY(dY) = κX(1) ◦Ψ′;

(iv) there are
• a ∗-isomorphism Φ: OX −→ OY such that Φ(C(X)) = C(Y), Φ(f) = f ◦h−1

for f ∈ C(X) and Φ ◦ γXz = β
κY(dY)
z ◦ Φ for each z ∈ T;

• a ∗-isomorphism Φ′ : OY −→ OX such that Φ′(C(Y)) = C(X), Φ′(f) = f ◦h
for f ∈ C(Y) and Φ′ ◦ γYz = β

κX(dX)
z ◦ Φ′ for each z ∈ T.

Proof. (i) =⇒ (ii): This is Lemma B.6.3.

(ii) =⇒ (iii): It follows from [26, Proposition 8.3] that there is a groupoid isomorphism
Ψ: GX −→ GY satisfying

Ψ((x̃, 1, σX̃(x̃))) = (h̃(x̃), lX̃(x̃)− kỸ(x̃), h̃(σX̃(x̃)))

for x̃ ∈ X̃, and a groupoid isomorphism Φ′ : GY → GX satisfying

Φ′((ỹ, 1, σỸ(ỹ))) = (h̃−1(ỹ), lỸ(y)− kỸ(ỹ), h̃−1(σỸ(ỹ)))

for ỹ ∈ Ỹ. We then have that h◦πX = πY◦Φ(0), κX(dX) = κY(1)◦Φ, h−1◦πY = πX◦(Φ′)(0)

and κY(dY) = κX(1) ◦ Φ′.

(iii) =⇒ (i): Let Ψ: GX −→ GY be a groupoid isomorphism satisfying h◦πX = πY ◦Ψ(0)

and κX(dX) = κY(1)◦Ψ. Put h̃ := Ψ(0). Then Ψ(x̃, 1, σX̃(x̃)) = (h̃(x̃), dX(πX(x̃)), h̃(σX̃(x̃)))

and it follows from [26, Lemma 8.4] that the map lX̃ : X̃ −→ N given by

lX̃(x̃) = min{n ∈ N | n > dX(πX(x̃)), σn
Ỹ
(h̃(x̃)) = σỸ(h̃(σX̃(x̃)))}

is continuous. We claim that

lX̃(x̃) = min{n ∈ N | n > dX(πX(x̃)), σn
Ỹ
(h̃(πX(x̃))) = σỸ(h̃(σX̃(πX(x̃))))}. (B.9)

By applying πY, it is easy to see that the left hand side is less than the right hand
side. For the converse inequality, fix x̃ ∈ X̃ and suppose the right hand side of (B.9)
equals n. Set ỹ := σn

Ỹ
(h̃(x̃)) and ỹ′ := σ

n−dX(πX(x̃))

Ỹ
(h̃(σX̃(x̃))). Then πY(ỹ) = πY(ỹ′)
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by hypothesis, and since (h̃(x̃), dX(πX(x̃)), h̃(σX̃(x̃))) ∈ GY there is an m ∈ N such
that σm

Ỹ
(ỹ) = σỸ(ỹ′). It now follows from Lemma B.2.8(i) that ỹ = ỹ′. This means

that there is a map lX : X −→ N such that lX̃ = lX ◦ πX. This map is continu-
ous by Lemma B.2.5. Set kX := dX − lX. Then kX is a continuous map satisfy-
ing dX = lX − kX and σ

l(x)
Y (h(x)) = σ

k(x)
Y (h(σX(x))) for x ∈ X. A similar argument

shows that there are continuous maps lY, kY : Y −→ N satisfying dY = lY − kY and
σ
lY(y)
X (h−1(y)) = σ

kY(y)
X (h−1(σY(y))) for y ∈ Y. Then (h, lX, kX, lY, kY) is a continuous

orbit equivalence.

Finally, we show that (h, lX, kX, lY, kY) is stabilizer preserving. Observe first that an argu-
ment similar to the one used in the proof of [26, Lemma 8.6] shows that (h̃, lX̃, kX̃, lỸ, kỸ)

is stabilizer preserving. Fix an eventually periodic element x ∈ X. Then x̃ = ιX(x) ∈ X̃

is eventually periodic, so h̃(x̃) is eventually periodic. Hence h(x) = πY(h̃(x̃)) ∈ Y is
eventually periodic. Now suppose x is periodic with lp(x) = p. Then ιX(x) ∈ X̃ is
periodic with lp(ιX(x)) = p. Since h̃(ιX(x)) = ιY(h(x)) we also have lp(h(x)) = lp(h̃(x̃)),
and using that h̃ is stabilizer preserving in the middle equality below we see that

|l(p)X (x)− k(p)
X (x)| = |l(p)

X̃
(x̃)− k(p)

X̃
(x̃)| = lp(h̃(x̃)) = lp(h(x))

which shows that (h, lX, kX, lY, kY) is stabilizer preserving.

(iii) =⇒ (iv): It follows from [26, Theorem 6.2] that there is ∗-isomorphism Φ: OX −→
OY such that Φ(DX) = DY, Φ(f) = f ◦ h̃−1 for f ∈ DX, and Φ ◦ γXz = β

κY(dY)
z ◦ Φ

for each z ∈ T. Since h ◦ πX = πY ◦ Φ(0), it follows that Φ(C(X)) = C(Y) and
Ψ(f) = f ◦ h−1 for f ∈ C(X). Similarly, there is a ∗-isomorphism Φ′ : OY −→ OX

such that Φ′(C(Y)) = C(X), Φ′(f) = f ◦ h for f ∈ C(Y), and Φ′ ◦ γYz = β
κX(dX)
z ◦ Φ′ for

each z ∈ T.

(iv) =⇒ (iii): An application of [26, Theorem 6.2] shows that there is a groupoid
isomorphism Ψ: GX −→ GY such that κX(dX) = κY(1) ◦ Ψ. Since Φ(C(X)) = C(Y)
and Ψ(f) = f ◦ h−1 for f ∈ C(X), it follows that h ◦ πX = πY ◦ Ψ(0). Similarly,
there is a groupoid isomorphism Ψ′ : GY −→ GX such that h−1 ◦ πY = πX ◦ (Ψ′)(0) and
κY(dY) = κX(1) ◦Ψ′. �

Remark B.6.5. Notice that if X = Y is the shift space with only one point, then
(id, 1, 0, 0, 1) is a stabilizer preserving continuous orbit equivalence from X to Y (although
it is not least period preserving), but there is no isomorphism Ψ: GX −→ GY such that
κX(dX) = κY(1)◦Ψ and κY(dY) = κX(1)◦Ψ−1. We do not know if there are shift spaces X
and Y such that there is a stabilizer preserving continuous orbit equivalence from X to Y,
but no isomorphism Ψ: GX −→ GY such that h◦πX = πY ◦Ψ(0) for some homeomorphism
h : X → Y, and κY(1) ◦ Ψ = κX(dX) for some dX ∈ C(X,Z), and κX(1) ◦ Ψ−1 = κY(dY)
for some dY ∈ C(Y,Z).

In [79, p. 61] (see also [83, p. 2]), Matsumoto introduces the notion of a continuous
orbit equivalence between factor maps of two one-sided shift spaces X and Y satisfying
condition (I) (implying that the groupoids GX and GY are essentially principal). His
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factor maps can be more general than our πX and πY. In this case, he proves a result
([79, Theorem 1.2] and [83, Theorem 1.3]) which is similar to the theorem below. Our
results applies to all one-sided shifts.

Theorem B.6.6. Let X and Y be one-sided shift spaces and let h : X −→ Y be a homeo-
morphism. The following conditions are equivalent:

(i) there is a stabilizer preserving continuous orbit equivalence h̃ : X̃ −→ Ỹ satisfy-
ing h ◦ πX = πY ◦ h̃;

(ii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h ◦ πX = πY ◦Ψ(0);
(iii) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(DX) = DY and Φ(C(X)) =

C(Y) with Φ(f) = f ◦ h−1 for f ∈ C(X).
If X and Y contain dense sets of aperiodic points, then the condition Φ(DX) = DY in
(iii) is superfluous. Moreover, if h is a stabilizer preserving continuous orbit equivalence,
then the equivalent conditions above hold.

Proof. (i) =⇒ (ii): Let h̃ : X̃ −→ Ỹ be a continuous orbit equivalence and let
kX̃, lX̃ : X̃ −→ N be continuous cocycles for h̃. There is a groupoid homomorphism
Φ: GX −→ GY given by

Φ(x̃,m− n, ỹ) =
(
h̃(x̃), l

(m)

X̃
(x̃)− k(m)

X̃
(x̃)− l(n)

X̃
(ỹ) + k

(n)

X̃
(ỹ), h̃(ỹ))

)
,

for (x̃,m− n, ỹ) ∈ GX, The assumption that h̃ be stabilizer preserving ensures that Φ is
bijective, cf. [26, Lemma 8.8 and Proposition 8.3].

(ii) =⇒ (i): A groupoid isomorphism Φ: GX −→ GY restricts to a homeomorphism
h̃ = Φ(0) : X̃ −→ Ỹ. If cX is the canonical cocycle for GX and cY is the canonical cocycle
for GY, then the maps

lX̃(x̃) = min{l ∈ N | σl
Ỹ
(h̃(x̃)) = σ

l−cYΦ(x̃,1,σ
X̃

(x̃))

Ỹ
(h̃(σX̃(x̃)))},

kX̃(x̃) = lX̃(x̃)− cYΦ(x̃, 1, σX̃(x̃)),

lỸ(ỹ) = min{l ∈ N | σl
X̃
(h̃−1(ỹ)) = σ

l−cXΦ−1(ỹ,1,σ
Ỹ

(ỹ))

X̃
(h̃−1(σỸ(ỹ)))},

kỸ(ỹ) = lỸ(ỹ)− cXΦ−1(ỹ, 1, σỸ(ỹ))

constitute continuous cocycles for h̃ such that (h̃, lX̃, kX̃, lỸ, kỸ) is a stabilizer preserv-
ing continuous orbit equivalence, cf. [26, Lemma 8.5 and Lemma 8.6]. The condition
h ◦ πX = πY ◦ Φ(0) implies that h ◦ πX = πY ◦ h̃.

The equivalence (ii) ⇐⇒ (iii) is [26, Theorem 8.2]. If Φ: GX −→ GY is a groupoid
isomorphism, then the condition h ◦ πX = πY ◦ Φ(0) translates to the condition that the
∗-isomorphism Ψ: OX −→ OY satisfies Ψ(C(X)) = C(Y).

The final remarks follow from Theorem B.3.3 and Lemma B.6.3, respectively. �

Remark B.6.7. We do not know if there exist shift spaces X and Y such that the
conditions in Theorem B.6.6 are satisfied, but there is no stabilizer preserving continuous
orbit equivalence between X and Y.
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Next, we show that we can relax the conditions in Theorem B.6.4 for certain classes of
shift spaces. First we need a preliminary result concerning eventually periodic points.

In [86, Proposition 3.5], Matsumoto and Matui show that any continuous orbit equiv-
alence between shift spaces containing a dense set of aperiodic points maps eventually
periodic points to eventually periodic points. The result is only stated for shifts of fi-
nite type associated with irreducible and nonpermutation {0, 1}-matrices, but the proof
holds in this generality, cf. [22, Remark 3.1]. Below, we give a point-wise version of this
result applicable to all shift spaces. We do not know if any continuous orbit equivalence
between shift spaces preserves eventually periodic points, but we show that this problem
hinges on whether there exists a continuous orbit equivalence which maps an aperiodic
isolated point to an eventually periodic isolated point.

Proposition B.6.8. Let X and Y be one-sided shift spaces and let h : X −→ Y be a
continuous orbit equivalence. Then h maps nonisolated eventually periodic points to
nonisolated eventually periodic points.

Proof. It suffices to verify the claim for nonisolated periodic points. Suppose
x = α∞ ∈ X for some word α ∈ L(X) with |α| = p ∈ N+, and let (xn)n be a se-
quence in X converging to x. We may assume that xn ∈ ZX(α) for all n.

Suppose now that k := k
(p)
X (x) = l

(p)
X (x). The cocycles kX, lX : X −→ N for h are

continuous, so there exists N ∈ N such that k(p)
X (xn) = l

(p)
X (xn) = k for n > N . In

particular,

σkY(h(xn)) = σkY(h(σpX(xn))), (B.10)

for n > N . The sequences h(xn)n and (h(σpX(xn)))n both converge to h(x) in Y, so there
exists an integer M > N such that

h(xn)[0,k) = h(x)[0,k) = h(σpX(xn))[0,k),

whenever n > M . This together with (B.10) means that h(xn) = h(σpX(xn)) and hence
xn = σpX(xn), for n > M . Since xn ∈ ZX(α), the sequence (xn)n is eventually equal to
x, so we conclude that x is an isolated point. If x is not isolated, then l(p)X (x) 6= k

(p)
X (x),

and the observation

σ
l
(p)
X (x)

Y (h(x)) = σ
k

(p)
X (x)

Y (h(σ
(p)
X (x))) = σ

k
(p)
X (x)

Y (h(x))

shows that h(x) is eventually periodic. �

A similar result holds for covers.

Since any homeomorphism respects isolated points, we obtain the corollary below. Sofic
shifts contain no aperiodic isolated points, so this result resolves the problem for this
class of shift spaces.

Corollary B.6.9. Let X and Y be one-sided shift spaces either containing no aperi-
odic isolated points or no isolated eventually periodic points, then any continuous orbit
equivalence h : X −→ Y maps eventually periodic points to eventually periodic points. In
particular, this applies to sofic shift spaces.
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If X and Y contain no periodic points isolated in past equivalence, then X and Y as well
as the covers X̃ and Ỹ contain dense sets of aperiodic points. Hence the condition that
a continuous orbit equivalence be stabilizer preserving is superfluous.

Theorem B.6.10. Let X and Y be one-sided shift spaces with no periodic points iso-
lated in past equivalence and let h : X −→ Y be a homeomorphism. The following are
equivalent:

(i) the map h : X −→ Y is a continuous orbit equivalence;
(ii) there is a continuous orbit equivalence h̃ : X̃ −→ Ỹ satisfying h ◦ πX = πY ◦ h̃;
(iii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h ◦ πX = πY ◦Ψ(0);
(iv) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) and Φ(f) =

f ◦ h−1 for f ∈ C(X).

Proof. (i) =⇒ (ii): Suppose h : X −→ Y is a continuous orbit equivalence with
continuous cocycles kX, lX : X −→ N. Since X and Y contain no periodic points isolated
in past equivalence, it follows from Proposition B.2.10 that X and Y contain dense sets
of aperiodic points. The proof of Theorem B.6.4 (i) =⇒ (ii) shows that there is a
continuous orbit equivalence h̃ : X̃ −→ Ỹ with continuous cocycles kX̃ = kX ◦ πX and
lX̃ = lX ◦ πX which satisfies h ◦ πX = πY ◦ h̃.

(ii) =⇒ (iii): Let h̃ : X̃ −→ Ỹ be a continuous orbit equivalence and let kX̃, lX̃ : X̃ −→ N
be continuous cocycles for h̃. The map Φ: GX −→ GY given by

Φ(x̃,m− n, ỹ) =
(
h̃(x̃), l

(m)

X̃
(x̃)− k(m)

X̃
(x̃)− l(n)

X̃
(ỹ) + k

(n)

X̃
(ỹ), h̃(ỹ))

)
,

for (x̃,m− n, ỹ) ∈ GX, is a groupoid isomorphism satisfying h ◦ πX = πY ◦Ψ(0).

(iii) =⇒ (i): Let Ψ: GX −→ GY be a groupoid isomorphism satisfying h◦πX = πY ◦Ψ(0).
Then h̃ := Ψ(0) : X̃ −→ Ỹ is a continuous orbit equivalence with continuous cocycles
lX̃, kX̃ : X̃ −→ N and lỸ, kỸ : Ỹ −→ N given as in the proof of Theorem B.6.6 (ii) =⇒
(i). We will show that there are continuous maps lX, kX : X −→ N and lY, kY : Y −→ N
which are continuous cocycles for h such that lX̃ = lX ◦ πX, kX̃ = kX ◦ πX, lỸ = lY ◦ πY
and kỸ = kY ◦ πY. By Proposition B.2.10, X and Y have dense sets of aperiodic points,
so it suffices to show that lX̃ and kX̃ are constant on π−1

X (x) for an aperiodic x ∈ X.

Let x ∈ X be aperiodic and take x̃, x̃′ ∈ π−1
X (x). Set cX̃ = lX̃−kX̃ and k := max{kX̃(x̃), kX̃(x̃′)}.

If x is isolated, then π−1
X (x) is a singleton, so we may assume that x is not isolated. Since

σ
c
X̃

(x̃)+k

Ỹ
(h̃(x̃)) = σk

Ỹ
(h̃(σX(x̃))) and σcX̃(x̃′)+k

Ỹ
(h̃(x̃′)) = σk

Ỹ
(h̃(σX(x̃′))), it follows that

σ
c
X̃

(x̃)+k

Y (h(x)) = σ
c
X̃

(x̃′)+k

Ỹ
(h(x)).

By Proposition B.6.8, we know that h(x) is aperiodic, so cX̃(x̃) = cX̃(x̃′).

Set

ṽ := σ
l
X̃

(x̃′)

Ỹ
(h̃(x̃)), w̃ := σ

l
X̃

(x̃′)−c
X̃

(x̃)

Ỹ
(h̃(σX̃(x̃))).



60 B. C∗-ALGEBRAS, GROUPOIDS AND COVERS OF SHIFT SPACES

Since cX̃(x̃) = cX̃(x̃′) we have w̃ = σ
k
X̃

(x̃′)

Ỹ
(h̃(σX̃(x̃))), and πY(ṽ) = πY(w̃). The point x

is aperiodic, so Lemma B.2.8 implies that ṽ = w̃. By minimality in the definition of lX̃,
it follows that lX̃(x̃) 6 lX̃(x̃′). A symmetric argument shows that lX̃(x̃′) 6 lX̃(x̃). Hence
lX̃ and kX̃ are constant on π−1

X (x). There are therefore cocycles lX, kX : X −→ N for h
which satisfy lX̃ = lX ◦ πX and kX̃ = kX ◦ πX, and they are continuous by Lemma B.2.5.
A similar argument shows that there are continuous cocycles lY, kY : Y −→ N satisfying
lỸ = lY ◦ πY and kỸ = kY ◦ πY. Hence h is a continuous orbit equivalence.

(iii) ⇐⇒ (iv): This is [26, Theorem 8.2]. Note that if Φ: OX −→ OY is a ∗-isomorphism
as in (iv), then Φ(DX) = DY by Theorem B.3.3. �

Corollary B.6.11. Let X and Y be one-sided shift spaces with no periodic points which
are isolated in past equivalence. The following are equivalent:

(i) The systems X and Y are continuously orbit equivalent;
(ii) There is a groupoid isomorphism Ψ: GX −→ GY and a homeomorphism h : X −→

Y such that h ◦ πX = πY ◦Ψ(0);
(iii) There is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y).

Remark B.6.12. In [18], the second-named author showed that for sofic shifts OX is
∗-isomorphic to a graph C∗-algebra even in a diagonal preserving way. Corollary B.6.11
shows that if we consider the sofic shifts with no periodic points isolated in past equiv-
alence, then OX remembers the continuously orbit equivalence class of X if we include
the subalgebra C(X) instead of the diagonal DX.

B.6.1. Examples. We consider a few examples.

Example B.6.13. Let XE and XF be the vertex shifts of the reducible graphs

E : .1 . 2

. 3.4

F : .1 . 2

. 3.4

Define a map h : XE −→ XF by exchanging the word (21) with the word 2 except in the
case h(21(34)∞) = 21(34)∞. Furthermore, 1(34)∞ is fixed by h and h((34)∞) = (43)∞

and h((43)∞) = (34)∞. This is a homeomorphism. Consider the cocycles kE, lE : XE −→
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N and kF , lF : XF −→ N given by

kE|XE\Z(2) = 0

kE|Z(2) = 1

lE(1(34)∞) = 2

lE|Z(1)\{1(34)∞} = 1

lE(21(34)∞) = 2

lE|Z(2)\{21(34)∞} = 1

lE((34)∞) = 1

lE((43)∞) = 1

,



kF = 0

lF (1(34)∞) = 2

lF |Z(1)\{1(34)∞} = 1

lF (21(34)∞) = 1

lF |Z(2)\{21(34)∞} = 2

lF ((34)∞) = 1

lF ((43)∞) = 1.

They are continuous and h is a continuous orbit equivalence with the specified cocycles.
Hence XA and XB are continuously orbit equivalent.

We will show that no choice of continuous cocycles of h can be least period preserving on
eventually periodic points. Let kE, lE : XE −→ N be any choice of continuous cocycles
for h. Let x = 1(34)∞ ∈ XE and z = σE(x). The computation

σ
lE(x)
F (1(34)∞) = σ

lE(x)
F (h(x)) = σ

kE(x)
F (h(σE(x))) = σ

kE(x)
F (43)∞

shows that kE(x) and lE(x) have the same parity. On the other hand,

σ
lA(z)
F ((43)∞) = σ

lA(z)
F (h(z)) = σ

kA(z)
F (h(σE(z))) = σ

kA(z)
F (34)∞

shows that kE(z) and lE(z) have different parity. Then l
(2)
E (x) − k

(2)
E (x) is odd while

lp(x) = 2.

Below we revisit an example of Matsumoto [78] of infinite and irreducible shifts of finite
type that are continuously orbit equivalent. We show that they are not eventually
conjugate.

Example B.6.14. Let X be the full shift on the alphabet {1, 2} and let Y be the golden
mean shift determined by the single forbidden word {22}. Then X and Y are infinite
and irreducible shifts of finite type which are continuously orbit equivalent, cf. [78, p.
213].

Suppose h : X −→ Y is an eventual conjugacy and that ` ∈ N is an integer in accordance
with (B.4) and (B.5). Then both σ`Y(h(1∞)) and σ`Y(h(2∞)) are constant sequences in
Y, so they are both equal to 1∞ ∈ Y. However, then

1∞ = σ`X(h−1(σ`Y(h(1∞)))) = σ`X(h−1(σ`Y(h(2∞)))) = 2∞,

which cannot be the case. Therefore, X and Y are not eventually conjugate.

Example B.6.15. Let X = Xeven and Y = Yodd be the even and the odd shift defined by
the following sets of forbidden words

Feven = {ab2n+1a : n ∈ N}, Fodd = {ab2na : n ∈ N},

respectively. The shift spaces are represented in the labeled graphs E and F below.
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Even: . .

.

1
0

1
0

0

Odd: . .

.

0

1

1
0

0

Define a map h : X −→ Y by exchanging the word 1 by the word (10). This is a
homeomorphism. Furthermore, the cocycles kX, lX : X −→ N and kY, lY : Y −→ N given
by {

kX|Z(0) = 0, lX|Z(0) = 1,

kX|Z(1) = 0, lX|Z(1) = 2
,

{
kY|Z(0) = 0, lY|Z(0) = 1,

kY|Z(1) = 1, lY|Z(1) = 1

are continuous. Hence h is a continuous orbit equivalence and X and Y are continuously
orbit equivalent. An argument similar to that of Example B.6.14 shows that X and Y
are not one-sided eventually conjugate.

Observe that h(0∞) = 0∞ and h(1∞) = (10)∞ and
lX(0∞)− kX(0∞) = 1 = lp(0∞),

lX(1∞)− kX(1∞) = 2 = lp((10)∞),

so (kX, lX) is least period preserving. A similar computation shows that (kY, lY) is also
least period preserving.

Example B.6.16. Let XE and XF be the edge shifts determined by the reducible graphs

E : . .

.

e
c

b
d

a

F : . .

.

c′

e′

b′
d′

a′

Define a map h : XE −→ XF by exchanging any occurance of e by e′d′. This is a
homeomorphism. The maps kE, lE : XE −→ N and kF , lF : XF −→ N given by

kE = 0,

lF |Z(a)∪Z(c)∪Z(d) = 1,

lF |Z(b)∪Z(e) = 2,

,


kF |Z(a′)∪Z(c′)∪Z(d′) = 0,

kF |Z(b′)∪Z(e′) = 1,

lF = 1,
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are continuous cocycles for h. Hence h is a continuous orbit equivalence and XE and XF
are continuously orbit equivalent. A computation shows that (h, kE, lE, kF , lF ) is least
period preserving on periodic points but not on eventually periodic points.

In light of Example B.6.15 we can identify XE and XF with the covers X̃even and Ỹodd,
respectively, and the cocycles above are induced from the cocycles on the even and odd
shifts. The maps k1, l1, k2, l2 : XE −→ N given by

k1 = 0

l1|Z(a) = 0

l1|Z(b)∪Z(c)∪Z(d) = 1

l1|Z(e) = 2

,


k2 = 0

l2|XE\Z(e) = 1

l2|Z(e) = 2

are continuous cocycles for h. Then (h, k1, l1, kF , lF ) is not least period preserving and
not constant on the preimages of πeven while (h, k2, l2, kF , lF ) is least period preserving
on all eventually periodic points but not constant on the preimages under πeven.

B.7. Two-sided conjugacy

In [24, Theorem 5.1], the second-named author and Rout show that two-sided subshifts
of finite type ΛX and ΛY are conjugate if and only if the groupoids GX×R and GY×R are
isomorphic in a way which respects the canonical cocycle and if and only if OX×K and
OY⊗K are ∗-isomorphic in a way which intertwines the gauge actions suitably stabilized.
In this section, we characterize when a pair of general two-sided shift spaces are conju-
gate in terms of isomorphism of the groupoids GX ×R and GY ×R and ∗-isomorphism
of OX ⊗K and OY ⊗K.

Recall that if X is a one-sided shift space and σX is surjective, then the corresponding
two-sided shift space ΛX is constructed as the projective limit

ΛX = lim←−(X, σX).

We shall write elements of X as x, y, z · · · and elements of ΛX as x, y, z · · · .

Lemma B.7.1. Let X be a one-sided shift space and let X̃ be the associated cover. Then
σX is surjective if and only if σX̃ is surjective.

Proof. If σX̃ is surjective, then the relation σX ◦ πX = πX ◦ σX̃ ensures that σX is
surjective. On the other hand, suppose σX is surjective and let x̃ ∈ X̃. Take x ∈ X and
integers 0 6 r < s such that x̃ ∈ U(x, r, s). Since σX is surjective, there exists a ∈ A
such that ax ∈ X. We have

x̃ ∈ U(x, r, s) = U(σX(ax), r, s) = σX̃(U(ax, r + 1, s)).

In particular, we may pick ỹ ∈ U(ax, r + 1, s) such that σX̃(ỹ) = x̃. �

Following [25], we letR be the full countable equivalence relation on N×N. The product
of (n,m), (n′,m′) ∈ R is defined exactly when m = n′ in which case

(n,m)(n′,m′) = (n,m′).
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Inversion is given as (n,m)−1 = (m,n), and the source and range maps are

s(n,m) = m, r(n,m) = n,

respectively, for (n,m) ∈ R.

Given a one-sided shift space X, we consider the product groupoid GX × R whose unit
space we shall identify with X̃×N via the correspondence ((x̃, 0, x̃), (0, 0)) 7−→ (x̃, 0). The
canonical cocycle is the continuous map c̄X : GX×R −→ Z given by c̄X

(
(x̃, k, ỹ), (n,m)

)
=

k, for
(
(x̃, k, ỹ), (n,m)

)
∈ GX ×R.

We start by describing two-sided conjugacy in terms of sliding block codes on the cor-
responding one-sided shift spaces. Recall that a sliding block code ϕ : X −→ Y between
one-sided shift spaces X and Y is a continuous map satisfying ϕ ◦ πX = πY ◦ ϕ.

Definition B.7.2. Let X and Y be one-sided shift spaces and let ϕ : X −→ Y be a
sliding block code. We say that ϕ is almost injective (with lag `1) if there exists `1 ∈ N
such that

ϕ(x) = ϕ(x′) =⇒ σ`1X (x) = σ`1X (x′),

for every x, x′ ∈ X. We say that ϕ is almost surjective (with lag `2) if there exists `2 ∈ N
such that for each y ∈ Y there exists x ∈ X such that σ`2Y (ϕ(x)) = σ`2Y (y).

Almost injective and almost surjective sliding block codes between covers is defined
analogously.

Lemma B.7.3. Let ΛX and ΛY be two-sided subshifts. If ΛX and ΛY are two-sided con-
jugate, then there is a surjective sliding block code ϕ : X −→ Y which is almost injective.
Conversely, if there exists a sliding block code ϕ : X −→ Y which is almost injective and
almost surjective, then ΛX and ΛY are conjugate.

Proof. If ΛX and ΛY are two-sided conjugate, we may assume that there exist a
two-sided conjugacy H : ΛX −→ ΛY and ` ∈ N such that

x[0,∞) = x′[0,∞) =⇒ H(x)[0,∞) = H(x′)[0,∞),

y[0,∞) = y′[0,∞) =⇒ H−1(y)[`,∞) = H−1(y′)[`,∞)

for x, x′ ∈ ΛX, y, y′ ∈ ΛY. Therefore, there is a well-defined map ϕ : X −→ Y given by

ϕ(x) = H(x)[0,∞), (B.11)

for every x ∈ X and x ∈ ΛX with x = x[0,∞). The map ϕ is a surjective sliding block
code. Furthermore, if ϕ(x) = ϕ(x′) then σ`X(x) = σ`X(x′) for x, x′ ∈ X.

Conversley, suppose ϕ : X −→ Y is an almost injective and almost surjective sliding block
code with lag `. Define a map h : ΛX −→ ΛY by

h(. . . , x2, x1, x0) = (. . . , ϕ(x2), ϕ(x1), ϕ(x0)),

for (. . . , x2, x1, x0) ∈ ΛX. Note that σY(ϕ(xi+1)) = ϕ(xi) for i ∈ N. Therefore h is a
well-defined sliding block code. We will show that h is injective and surjective.
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Suppose first that (. . . , x2, x1, x0), (. . . , x′2, x
′
1, x
′
0) ∈ ΛX and ϕ(xi) = ϕ(x′i) for every

i ∈ N. Then
xi = σ`X(xi+`) = σ`X(x′i+`) = x′i

for i ∈ N so h is injective.

Now let (. . . , y2, y1, y0) ∈ ΛY and choose x, x′ ∈ X such that

σ`Y(ϕ(x)) = σ`X(y2`) = y`, σ`Y(ϕ(x′)) = σ`X(y2`+1) = y`+1.

Note that
ϕ(σ`+1

X (x′)) = y` = ϕ(σ`X(x))

so σ2`+1
X (x′) = σ2`

X (x) since ϕ is almost surjective with lag `. Put z0 = σ2`
X (x) and

z1 = σ2`
X (x′) and observe that σX(z1) = z0. Continuing this process inductively defines

an sequence (. . . , z2, z1, z0) ∈ ΛX which is sent to (. . . , y2, y1, y0) via h. Hence h is
surjective and thus a two-sided conjugacy. �

Next we lift surjective sliding block codes on one-sided shift spaces to surjective sliding
block codes on the covers.

Lemma B.7.4. Let X and Y be one-sided shift spaces and let ϕ : X −→ Y be a surjective
sliding block code. Then there exists a surjective sliding block code ϕ̃ : X̃ −→ Ỹ satisfying
ϕ ◦ πX = πY ◦ ϕ̃.

If, in addition, σX is surjective and ϕ is almost injective with lag `, then ϕ̃ is almost
injective with lag `.

Proof. Since ϕ is a sliding block code there exists an integer K ∈ N such that

x[0,r+K) = x′[0,r+K) =⇒ ϕ(x)[0,r) = ϕ(x′)[0,r) (B.12)

for r ∈ N and x, x ∈ X. We want to show that

x
r+K,s+K∼ x′ =⇒ ϕ(x)

r,s∼ ϕ(x′), (B.13)

for x, x′ ∈ X and integers 0 6 r 6 s.

Suppose νσrY(ϕ(x)) = νϕ(σkX(x)) where ν ∈ L(Y) with |ν| 6 s. We need to show that
νσkY(ϕ(x′)) ∈ Y. As ϕ is surjective and commutes with the shift, there exists a word µ ∈
L(X) with |µ| = |ν| such that µσkX(x) ∈ X and νϕ(σkX(x)) = ϕ(µσkX(x)). By hypothesis,
µσkX(x′) ∈ X and we claim that ϕ(µσkX(x′)) = νσkY(ϕ(x′)). Indeed, µσkX(x)[0,|µ|+K) =

µσkX(x′)[0,|µ|+K), so
ϕ(µσkX(x′))[0,|ν|) = ϕ(µσkX(x))[0,|ν|) = |ν|

by the choice of K. This proves the claim.

Define ϕ̃ : X̃ −→ Ỹ by
rϕ̃(x̃)s = ϕ(r+Kxs+K),

for x̃ ∈ X̃ and integers 0 6 r 6 s. It is straightforward to check that the induced map
ϕ̃ : X̃ −→ Ỹ is a surjective sliding block code satisfying ϕ ◦ πX = πY ◦ ϕ̃.
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Suppose now that σX is surjective and that there is ` ∈ N such that ϕ(x) = ϕ(x′) implies
σ`X(x) = σ`X(x′) for all x, x′ ∈ X. Equivalently, there exists a surjective sliding block code
ρ : Y −→ X satisfying σ`X = ρ ◦ ϕ. An argument similar to the one above shows that
there is an induced surjective sliding block code ρ̃ : Ỹ −→ X̃ with ρ ◦ πY = πX ◦ ρ̃. It is
straightforward to verify that σ`

X̃
= ρ̃ ◦ ϕ̃. Hence ϕ̃ is almost injective. �

We now arrive at the main theorem of this section which characterizes two-sided conju-
gacy of general shift spaces. The proof uses ideas of [24]. Let πX×N : X̃ × N −→ X × N
be the map πX×N(x̃, n) = (πX(x̃), n), for (x̃, n) ∈ X̃× N.

Theorem B.7.5. Let ΛX and ΛY be two-sided shift spaces. The following are equivalent:
(i) there is a sliding block code ϕ : X −→ Y which is almost injective and almost

surjective;
(ii) there is a two-sided conjugacy h : ΛX −→ ΛY;
(iii) there are a groupoid isomorphism Ψ: GX×R −→ GY×R and a homeomorphism

ψ : X× N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦ Φ(0) and

c̄X = c̄Y ◦Ψ;

(iv) there is a ∗-isomorphism Φ: OX ⊗ K −→ OY ⊗ K satisfying Φ(C(X) ⊗ c0) =
C(Y)⊗ c0 and

Φ ◦ (γX ⊗ id) = (γY ⊗ id) ◦ Φ. (B.14)

Proof. The equivalence (i) ⇐⇒ (ii) is Lemma B.7.3.

(ii) =⇒ (iii): Let H : ΛX −→ ΛY be a conjugacy as in the proof of Lemma B.7.3 and
let ϕ : X −→ Y be the surjective and almost injective sliding block code of (B.11). By
Lemma B.7.4 there exists a surjective and almost injective sliding block code ϕ̃ : X̃ −→ Ỹ
satisfying ϕ ◦ πX = πY ◦ ϕ̃. Since ϕ is continuous, there exists L ∈ N such that

x[0,L) = x′[0,L) =⇒ ϕ(x)[0,`) = ϕ(x′)[0,`),

for x, x′ ∈ X. Define an equivalence relation ∼ on words of length L in the following
way: Two words µ, ν ∈ LL(X) are ∼-equivalent, if there are x ∈ Z(µ) and x′ ∈ Z(ν) such
that ϕ(x) = ϕ(x′). Then ϕ(x) = ϕ(x′) if and only if σ`X(x) = σ`X(x′) and x[0,L) ∼ x′[0,L).
For every ∼-equivalence class [µ] = {ν ∈ X | µ ∼ ν}, fix a partition

N =
∐
ν∈[µ]

Nν

and bijections fν : Nν −→ N. Define ω : X× N −→ N by

ω(x, n) = f−1
x[0,L)

(n),

for (x, n) ∈ X× N. Then ψ : X× N −→ Y × N given by

ψ(x, n) = (ϕ(x), ω(x, n)),

for (x, n) ∈ X×N, is a homeomorphism. Furthermore, the map Φ: GX ×R −→ GY ×R
given by

Φ
(
(x̃, k), n, (ỹ, l)

)
=
(
(ϕ̃(x̃), ω(πX(x̃), k)), n, (ϕ̃(ỹ), ω(πX(ỹ), l))

)
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for
(
(x̃, k), n, (ỹ, l)

)
∈ GX×R, is a groupoid isomorphism satisfying ψ◦πX×N = πY×N◦Φ(0).

(iii) =⇒ (i): Suppose Φ: GX ×R −→ GY ×R is a groupoid isomorphism satisfying the
hypotheses of (iii). Define a map κ̃ : X̃ −→ Ỹ by Φ(0)(x̃, 0) = (κ̃(x̃), n) for x̃ ∈ X̃ and some
n ∈ N. Then κ̃ is well-defined and continuous since Φ(0) is continuous. By an argument
similar to one in the proof of [24, Theorem 5.1], there exists L ∈ N such that ϕ̃ := σL

Ỹ
◦ κ̃

is a sliding block code which is almost injective and almost surjective, say with lag `.
Define also κ : X −→ Y by ψ(x, 0) = (ϕ(x),m) for x ∈ X and some m ∈ N. Then κ is
continuous and κ◦πX = πY◦κ̃. It follows that ϕ := σLY◦κ : X −→ Y is a sliding block code.

Let y ∈ Y and choose ỹ ∈ π−1
Y (y). Pick x̃ ∈ X̃ such that σ`

Ỹ
(ϕ̃(x̃)) = σ`

Ỹ
(ỹ). If x = πX(x̃),

then σ`Y(ϕ(x)) = σ`Y(y) and ϕ is almost surjective.

In order to see that ϕ is almost injective, choose distinct x, x′ ∈ X such that y := ϕ(x) =
ϕ(x′). Choose distinct n, n′ ∈ N such that ψ(x, 0) = (y, n) and ψ(x′, 0) = (y, n′) and
pick ỹ ∈ π−1

Y (y). Since Φ(0) is a homeomorphism, there are unique and distinct x̃, x̃′ ∈ X
such that Φ(0)(x̃, 0) = (ỹ, n) and Φ(0)(x̃′, 0) = (ỹ, n′). It follows that σ`

X̃
(x̃) = σ`

X̃
(x̃′) since

ϕ̃ is almost injective. Since ψ ◦ πX×N = πY×N ◦Φ(0), we have πX(x̃) = x and πX(x̃′) = x′.
Hence σ`X(x) = σ`X(x′) and ϕ is almost injective.

(iii) =⇒ (iv): A groupoid isomorphism Ψ: GX×R −→ GY ×R induces a ∗-isomorphism
Φ: OX ⊗K −→ OY ⊗K satisfying Φ(DX ⊗ c0) = DY ⊗ c0. Since ψ ◦ πX×N = πY×N ◦Ψ(0),
we also have Φ(C(X)⊗ c0) = C(Y)⊗ c0. The relation c̄X = c̄Y ◦Φ ensures that (B.14) is
satisfied.

(iv) =⇒ (ii): By Corollary B.3.4, Φ(DX⊗c0) = DY⊗c0. From [26, Theorem 8.10] there
is a groupoid isomorphism Ψ: GX ×R −→ GY ×R satisfying Φ(f) = f ◦Ψ−1 ∈ DY ⊗ c0

for f ∈ DX ⊗ c0, and c̄X = c̄Y ◦Ψ. Since Φ(g) = g ◦ ψ̃−1 ∈ C(Y)⊗ c0 for g ∈ C(X)⊗ c0,
there is a homeomorphism ψ : X× N −→ Y × N such that ψ ◦ πX×N = πY×N ◦Ψ(0). �

If ΛA and ΛB are the two-sided subshifts associated to finite square {0, 1}-matrices with
no zero rows and no zero columns, then we recover [24, Corollary 5.2]. See also [83,
Theorem 1.5].

Corollary B.7.6. Let ΛX and ΛY be two-sided shift spaces. The following are equiva-
lent:

(i) the two-sided subshifts ΛX and ΛY are two-sided conjugate;
(ii) there is a groupoid isomorphism Ψ: GX×R −→ GY×R and a homeomorphism

ψ : X× N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦ Φ(0) and c̄X = c̄Y ◦Ψ;
(iii) there is a ∗-isomorphism Φ: OX ⊗ K −→ OY ⊗ K satisfying Φ(C(X) ⊗ c0) =

C(Y)⊗ c0 and Φ ◦ (γX ⊗ id) = (γY ⊗ id) ◦ Φ.

B.8. Flow equivalence

It is proven in [22, Corollary 6.3] (see also [84, Theorem 2.3]) that if ΛX and ΛY are
two-sided subshifts of finite type, then ΛX and ΛY are flow equivalent if and only if
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GX × R and GY × R are isomorphic, and if and only if there is a diagonal preserving
∗-isomorphism OX ⊗K −→ OY ⊗K. In this section, we shall for general shift spaces X
and Y look at the relationship between flow equivalence of ΛX and ΛY, isomorphism of
GX×R and GY×R, and diagonal preserving ∗-isomorphism between OX⊗K and OY⊗K.

The ordered cohomology [84] of X is the group

HX = C(X,Z)/{f − f ◦ σX : f ∈ C(X,Z)},
with the positive cone

HX
+ = {[f ] ∈ HX | f > 0}.

The ordered cohomology of the cover X̃ is defined analogously. An isomorphism of
cohomology groups is positive if it maps the positive cone onto the positive cone, and
two maps f, f ′ ∈ C(X,Z) are cohomologous if [f ] = [f ′] in HX.

Remark B.8.1. Recall that B1(GX) is the collection of groupoid homomorphisms from
GX to Z. The first cohomology group of GX is the group

H1(GX) = B1(GX)/{∂(f) | f ∈ C(G(0)
X ,Z)},

where ∂ : C(G(0)
X ,Z) −→ B1(GX) is ∂(f)(γ) = f(r(γ)) − f(s(γ)), for f ∈ C(G(0)

X ,Z)

and γ ∈ GX, cf. [84]. There is a canonical isomorphism Θ: H1(GX) −→ H X̃ given by
Θ([f ]) = [g], where

g(x̃) = f(x̃, 1, σX̃(x̃)),

for x̃ ∈ X̃, cf. [22, Proposition 4,7].

The factor map πX : X̃ −→ X induces a well-defined injective map π∗X : HX −→ H X̃

given by π∗X([f ]) = [f ◦ πX], for f ∈ C(X,Z). Note π∗X(HX
+) ⊆ H X̃

+ and π∗X([1X]) = 1X̃.
The ordered cohomology (HΛX , HΛX

+ ) of a two-sided subshift ΛX is defined analogously,
and there is a canonical isomorphism (HX, HX

+) ∼= (HΛX , HΛX
+ ). This was shown in [84,

Lemma 3.1] for infinite irreducible shifts of finite type but as noted in [22, Section 2.5]
the proof holds for general shifts.

If X is a one-sided shift space, then the stabilization of X is the space X × N with the
shift operation SX : X× N −→ X× N given by

SX(x, n) =

{
(x, n− 1) if n > 0,

(σX(x), 0) if n = 0,

for (x, n) ∈ X× N. We define SX̃ : X̃× N −→ X̃× N in a similar way.

The ordered cohomology for the stabilized system is the group

HX×N = C(X× N,Z)/{f − f ◦ SX : f ∈ C(X× N,Z)},
with the positive cone

HX×N
+ = {[f ] ∈ HX×N | f > 0}.

The ordered cohomology is stable in the following sense.



B.8. FLOW EQUIVALENCE 69

Lemma B.8.2. Let X be a one-sided shift space and let ι0 : X −→ X×N be the inclusion
given by ι0(x) = (x, 0). There is a surjective homomorphism ι∗0 : C(X×N,Z) −→ C(X,Z)
defined by ι∗0(ξ)(x) = ξ(x, 0), and an isomorphism H(ι0) : HX×N −→ HX such that
H(ι0)([ξ]) = [ι∗0(ξ)]. Moreover, H(ι0)(HX×N

+ ) = HX
+ and H(ι0)([1X×N]) = [1X].

Proof. It is straightforward to check that ι∗0 : C(X × N,Z) −→ C(X,Z) is a sur-
jective homomorphism. Since ι0 is a sliding block code, there is a well-defined surjec-
tive map H(ι0) : HX×N −→ HX given by H(ι0)([ξ]) = [ι∗0(ξ)]. Any class [ξ] ∈ HX×N

can be represented by a map ξ ∈ C(X × N,Z) which is supported on X × {0}. If
ξ(x, 0) = b(x)− b(σX(x)), for some b ∈ C(X,Z) and x ∈ X, we may take η ∈ C(X×N,Z)
supported on X×{0} such that η(x, 0) = b(x). Then ξ = η−η ◦SX on X×{0}, so H(ι0)
is injective.

It is clear the ι∗0(ξ) > 0 if ξ > 0. Conversely, let g ∈ C(X,Z) and assume that g > 0.
Take η ∈ C(X×N,Z) supported on X×{0} such that ξ(x, 0) = g(x) for x ∈ X, and note
that ι∗0(ξ) = g and ξ > 0. Hence H(ι0)(HX×N

+ ) = HX
+. Finally, ι∗0(1X×N) = 1X. �

We will write an element of GX×R as
(
(x̃, k), n, (ỹ, l)

)
instead of

(
(x̃, n, ỹ), (k, l)

)
, where

(x̃, k), (ỹ, l) ∈ X̃× N and σj
X̃
(x̃) = σi

X̃
(ỹ) for some i, j ∈ N with n = j − i. We then have

that

GX ×R = {
(
(x̃, k), n, (ỹ, l)

)
| ∃i, j ∈ N : n = j − i, Sk+j

X̃
(x̃, k) = Sl+i

X̃
(ỹ, l), σj

X̃
(x̃) = σi

X̃
(ỹ)}.

Let πX×N : X̃×N −→ X×N be the map defined by πX×N(x̃, n) = (πX(x̃), n), for (x̃, n) ∈
X̃×N. There is an injective homomorphism κX×N : C(X×N,Z) −→ B1(GX×R) defined
by

κX×N(f)
(
(x̃, k), n, (ỹ, l)

)
=

j+k∑
r=0

f
(
πX×N(Sr

X̃
(x̃, k))

)
−

i+l∑
r=0

f
(
πX×N(Sr

X̃
(ỹ, l))

)
where i, j ∈ N are such that σj

X̃
(x̃) = σi

X̃
(ỹ) and n = j − i. In particular, κX×N(f) : GX ×

R −→ Z it the unique cocycle satisfying

κX×N(f)
(
(x̃, k), 1, SX̃(x̃, k)

)
= f

(
πX×N(x̃, k)

)
,

for (x̃, k) ∈ X̃× N.

If ΛX and ΛY are conjugate subshifts, then they have isomorphic ordered cohomology.
We give a one-sided decription below.

Lemma B.8.3. Let ΛX and ΛY be two-sided subshifts that are conjugate. Then there exist
(i) • a surjective and almost injective sliding block code ϕ : X −→ Y and an

injective homomorphism ϕ∗ : C(Y,Z) −→ C(X,Z) given by ϕ∗(g) = g ◦ ϕ;
• a positive isomorphism H(ϕ) : HY −→ HX satisfying H(ϕ)([1Y]) = [1X]
and H(ϕ)[g] = [g ◦ ϕ] for g ∈ C(Y,Z);

(ii) a groupoid isomorphism Ψ: GX×R −→ GY ×R and a homeomorphism ψ : X×
N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦Ψ(0);

(iii) • a homomorphism ψ∗ : C(Y×N,Z) −→ C(X×N,Z) such that κX×N(ψ∗(η)) =
κY×N(η) ◦Ψ for η ∈ C(Y × N,Z),
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• a homomorphism ψ# : C(X×N,Z) −→ C(Y×N,Z) such that κY×N(ψ#(ζ)) =
κX×N(ζ) ◦Ψ−1 for ζ ∈ C(X× N,Z); and
• a positive isomorphism H(ψ) : HY×N −→ HX×N such that H(ψ)([η]) =

[ψ∗(η)] for η ∈ C(Y × N,Z), H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈ C(X × N,Z)
and H(ϕ) ◦H(ι0) = H(ι0) ◦H(ψ).

Proof. (i): Since ΛX and ΛY are conjugate there is a surjective and almost injective
sliding block code ϕ : X −→ Y, cf. Lemma B.7.3. The map ϕ∗ : C(Y,Z) −→ C(X,Z)
given by ϕ∗(g) = g ◦ ϕ for g ∈ C(Y,Z) is an injective homomorphism.

Since ϕ is a sliding block code the map H(ϕ) : HY −→ HX given by H(ϕ)[g] = [g ◦ϕ] is
well-defined and injective. In order to see that H(ϕ) is surjective, recall that ϕ is almost
injective and pick ` ∈ N accordingly. Take f ∈ C(X,Z). Define a map g : Y −→ N by
g(y) = f ◦ σ`X(ϕ−1(y)), for y ∈ Y. Since ϕ is almost injective with lag ` this is well-
defined and g is continuous, and H(ϕ)[g] = [f ◦ σ`X] = [f ]. Hence H(ϕ) is surjective. It
is straightforward to verify that H(ϕ)(HY

+) = HX
+ and H(ϕ)([1Y]) = [1X].

(ii): By (the proof of) Theorem B.7.5, there is a surjective sliding block code ϕ̃ : X̃ −→ Ỹ
such that ϕ ◦πX = πY ◦ ϕ̃ and a map ω : X×N −→ N such that the map Ψ: GX×R −→
GY ×R defined by

Ψ
(
(x̃, k), n, (ỹ, l)

)
=
(
(ϕ̃(x̃), ω(πX(x̃), k)), n, (ϕ̃(ỹ), ω(πX(ỹ), l))

)
(B.15)

is a groupoid isomorphism, and the map ψ : X× N −→ Y × N defined by

ψ(x, n) = (ϕ(x), ω(x, n)),

is a homeomorphism satisfying ψ ◦ πX×N = πY×N ◦Ψ(0).

(iii): Choose ` ∈ N such that ϕ(x) = ϕ(x′) =⇒ σ`X(x) = σ`X(x′) and let ω : X×N −→ N
be the map from (B.15). Define ω′ : Y × N −→ N by letting ω′(y, n) = m where
ψ−1(y, n) = (x,m) for some x ∈ X. Since ψ is a homeomorphism, ω′ is continuous. Let
ψ∗ : C(Y × N,Z) −→ C(X× N,Z) be the map defined by

ψ∗(η)(x, n) =

ω(x,n)∑
r=0

η(SrY(ψ(x, n)))−
ω(x,n−1)∑
r=0

η(SrY(ψ(x, n− 1))),

for η ∈ C(Y × N,Z) and (x, n) ∈ X× N with n ≥ 1, and

ψ∗(η)(x, 0) =

ω(x,0)+1∑
r=0

η(SrY(ψ(x, 0)))−
ω(σX(x),0)∑

r=0

η(SrY(ψ(σX(x), 0))),

for η ∈ C(Y × N,Z) and x ∈ X. Let ψ# : C(X × N,Z) −→ C(Y × N,Z) be the map
defined by

ψ#(ζ)(y, n) =

ω′(y,n)+`∑
r=0

ζ(SrX(ψ−1(y, n)))−
ω′(y,n−1)+`∑

r=0

ζ(SrX(ψ−1(y, n− 1))),
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for ζ ∈ C(X× N,Z) and (y, n) ∈ Y × N with n ≥ 1, and

ψ#(ζ)(y, 0) =

ω′(y,0)+`+1∑
r=0

ζ(SrX(ψ−1(y, 0)))−
ω′(σY(y),0)+`∑

r=0

ζ(SrX(ψ−1(σY(y), 0))),

for ζ ∈ C(X × N,Z) and y ∈ Y. It is straightforward to check that ψ∗ and ψ#

are homomorphisms, and that κX×N(ψ∗(η)) = κY×N(η) ◦ Ψ for η ∈ C(Y × N,Z), and
κY×N(ψ#(ζ)) = κX×N(ζ) ◦Ψ−1 for ζ ∈ C(X× N,Z).

Let η ∈ C(Y × N,Z) and observe that

ψ∗(η − η ◦ SY)(x, n) = η(ω(x, n))− η(ω(x, n− 1)) = (η − η ◦ SX)(x, n)

for (x, n) ∈ X× N with n ≥ 1, and

ψ∗(η − η ◦ SY)(x, 0) = η(ω(x, 0))− η(ω(σX(x), 0)) = (η − η ◦ SX)(x, 0)

for x ∈ X. Hence ψ∗ induces a map H(ψ) : HY×N −→ HX×N given by H(ψ)([η]) = [ψ∗(η)]
for η ∈ C(Y × N,Z).

Suppose η ∈ C(Y × N,Z) is supported on Y × {0}. Then
ι∗0(ψ∗(η))(x) = η(ϕ(x), 0) = ϕ∗(ι∗0(η))(x)

for x ∈ X. Since any element in HY×N can be represented by a map η ∈ C(Y × N,Z)
which is supported on Y×{0}, it follows that H(ϕ) ◦H(ι0) = H(ι0) ◦H(ψ). Therefore,
H(ψ) is a positive isomorphism.

Suppose ζ ∈ C(X× N,Z) is is supported on Y × {0}. Then
φ∗(ι∗0(ψ#(ζ)))(x) = ψ#(ζ)(ϕ(x), 0) = ζ(x, 0) = ι∗0(ζ)(x)

for x ∈ X. It follows that (H(ϕ) ◦H)(ι0)([ψ#(ζ)]) = H(ι0)([ζ]). Since H(ϕ) ◦H(ι0) =
H(ι0) ◦ H(ψ) and H(ι0) is an isomorphism, we conclude that H(ψ)−1([ζ]) = [ψ#(ζ)].
Any element in HY×N can be represented by a map η ∈ C(Y×N,Z) which is supported
on Y × {0}, so it follows that H(ψ)−1([ζ]) = [ψ#(ζ)] for every ζ ∈ C(X× N,Z). �

Let f : X −→ N+ be a continuous map. Following [87], we consider the space

Xf = {(x, i) ∈ X× N | i < f(x)}
with the shift operation σf : Xf −→ Xf given by

σf (x, i) =

{
(x, i− 1) i > 0,(
σX(x), f(σX(x))− 1

)
i = 0,

for (x, i) ∈ Xf . We equip Xf with the subspace topology of X×N with the product topol-
ogy where N is endowed with the discrete topology. Then Xf is compact and Hausdorff,
and σf is surjective if and only if σX is surjective. If A is the alphabet of X, then the pair
(Xf , σf ) is conjugate to a shift space Xf = j(X) over A×{0, 1, . . . ,max{f(x) | x ∈ X}−1}
where j : Xf −→ (A× {0, 1, . . . ,max{f(x) | x ∈ X} − 1})N is the injective sliding block
code given by

j(x, i) = (x0, i)(x0, i− 1) · · · (x0, 0)(x1, f(σX(x))− 1) · · · (x1, 0) · · ·
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for x = x0x1 · · · ∈ X and i = 0, 1, . . . , f(x) − 1. By a slight abuse of notation, we shall
identify Xf and Xf and consider the two-sided subshift ΛXf as well as the cover X̃f . Note
that ΛX and ΛXf are flow equivalent, cf. [22, Section 5]. A similar construction applies
to two-sided subshifts.

We shall make use of the following characterization of flow equivalence. This is probably
known to experts but we have not been able to find a proper reference.

Lemma B.8.4. A pair of two-sided subshifts ΛX and ΛY are flow equivalent, if and only
if there are continuous maps f ∈ C(X,N+) and g ∈ C(Y,N+) such that ΛXf and ΛYg are
conjugate.

Proof. Suppose first that there are continuous maps f ∈ C(X,N+) and g ∈ C(Y,N+)
such that ΛXf and ΛYg are conjugate. It is well-known that ΛX is flow equivalent to ΛXf ,
and that ΛY is flow equivalent to ΛYg , cf. [22, Section 5], so it follows that ΛXf and ΛYg

are flow equivalent.

If ΛX and ΛY are flow equivalent, then there is a compact metric space Z with a flow
γ : Z ×R −→ Z and cross sections X and Y which are conjugate to ΛX and ΛY, respec-
tively, cf., e.g., [97, 6]. Let hX : ΛX −→ X and hY : ΛY −→ Y be such conjugacies.

Set A = X ∪ Y . Consider the return time function τX : Z −→ R given by

τX (z) = min{t > 0 | γ(z, t) ∈ X},

for z ∈ Z, and define the map f̄ : ΛX −→ N by

f̄(x) = |{t ∈ (0, τX (hX(x))) | γ(hX(x), t) ∈ Y}|

for x ∈ ΛX. Then f̄ is continuous and f > 1. Moreover, (ΛX)f̄ is conjugate to A by
construction. By continuity, there is an integer n ∈ N such that x[−n,n] = x[−n,n] implies
f̄(x) = f̄(x). It follows that there is a well-defined continuous map f : X −→ N satisfying

f(x[0,∞)) = f̄(σnΛX
(x))

for x ∈ ΛX. Then (ΛX)f̄ is conjugate to (ΛX)f̄◦σnΛX
, and (ΛX)f̄◦σnΛX

is conjugate to ΛXf . In
particular, ΛXf is conjugate to A.

A similar argument shows that there is a continuous map g : C(Y,N+) such that ΛYg is
conjugate to A. It follows that ΛXf and ΛYg are conjugate. �

Lemma B.8.5. Let X be a one-sided shift space and let f : X −→ N+ be continuous. Then
(i) there are an injective sliding block code ιf : X −→ Xf and a surjective homo-

morphism ι∗f : C(Xf ,Z) −→ C(X,Z) given by

ι∗f (ξ)(x) =

f(σX(x))−1∑
r=0

ξ(σrf (ιf (x))), (B.16)

and a positive isomorphism H(ιf ) : HXf −→ HX given by H(ιf )([ξ]) = [ι∗f (ξ)];
(ii) there are
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• a groupoid isomorphism Ψf : GX ×R −→ GXf ×R and a homeomorphism
ψ : X× N −→ Xf × N satisfying ψ ◦ πX×N = πY×N ◦Ψ

(0)
f ;

• a homomorphism ψ∗ : C(Xf×N,Z) −→ C(X×N,Z) satisfying κX×N(ψ∗(ξ)) =
κXf×N(ξ) ◦Ψf for ξ ∈ C(Xf × N,Z);
• a homomorphism ψ# : C(X×N,Z) −→ C(Xf×N,Z) satisfying κXf×N(ψ#(ζ)) =

κX×N(ζ) ◦Ψ−1
f for ζ ∈ C(X× N,Z);

• a positive isomorphism H(ψ) : HXf×N −→ HX×N such that H(ψ)([ξ]) =
[ψ∗(ξ)], H(ψ)−1([ζ]) = [ψ#(ζ)], and H(ιf ) ◦H(ι0) = H(ι0) ◦H(ψ).

Proof. (i): The inclusion ιf : X −→ Xf given by ιf (x) = (x, 0) is an injective sliding
block code, and ι∗f : C(Xf ,Z) −→ C(X,Z) given by (B.16) is a surjective homomorphism.
Since

ι∗f (ξ − ξ ◦ σX)(x) = ξ(x, 0)− ξ(σX(x), 0) = ι∗0(ξ)(x)− ι∗f (ξ)(σX(x)),

for ξ ∈ C(Xf ,Z) and x ∈ X, the map ι∗f induces a well-defined surjective mapH(ιf ) : HXf −→
HX given by H(ιf )([ξ]) = [ι∗f (ξ)] for ξ ∈ C(Xf ,Z).

To see that H(ιf ) is injective, notice that any element of HXf can be represented by
a map ξ ∈ C(Xf ,Z) which is supported on X × {0} ⊆ Xf . Suppose ξ ∈ C(Xf ,Z) is
supported on X × {0} ⊆ Xf and ι∗f (ξ)(x) = b(x) − b(σX(x)) for some b ∈ C(X,Z).
Let η ∈ C(Xf ,Z) be given by η(x, n) = 0 for n > 0 and η(x, 0) = b(x). Then
ξ(x, 0) = η(x, 0)− η ◦ σf(σX(x))

f (x, 0), so ξ is cohomologous to zero.

Note that ι∗f (ξ) > 0 when ξ > 0. Conversely, let g ∈ C(X,Z) and take ξ ∈ C(Xf ,Z)
such that ξ(x, i) = 0 for all i > 0 and ξ(x, 0) = g(x). Then ι∗f (ξ) = g and ξ > 0 if g > 0.
Hence H(ι∗f ) is a positive isomorphism.

(ii): Define ψ : X× N −→ Xf × N by

ψ(x, j) =
(
(x, i), k

)
where i, k ∈ N with i < f(x) and j = kf(x) + i. Then ψ is a homeomorphism.

Define Ψf : GX ×R −→ GXf ×R by

Ψf ((x̃, j), p, (x̃′, j′)) =
((

(x̃, i), k
)
, l − l′,

(
(x̃′, i′), k′

))
for
(
(x̃, j), p, (x̃′, j′)

)
∈ GX ×R and s, s′ ∈ N such that σs

X̃
(x̃) = σs

′

X̃
(x̃′) and p = s − s′.

Here, i, i′, k, k′ ∈ N with i < f(πX(x̃)) and i′ < f(πX(x̃′)), and j = kf(πX(x̃)) + i and
j′ = k′f(πX(x̃′)) + i′, and

l = i+
s∑
r=1

f(σrX(πX(x̃))), l′ = i′ +
s′∑
r=1

f(σrX(πX(x̃′))).

Then Ψf is a groupoid isomorphism such that ψ ◦ πX×N = πY×N ◦Ψ
(0)
f .
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(iii): Let ψ∗ : C(Xf × N,Z) −→ C(X× N,Z) be defined by

ψ∗(ξ)(x, j) =
k+1∑
r=0

ξ(Srf (ψ(x, j)))−
k∑
r=0

ξ(Srf (ψ(x, j − 1)))

for ξ ∈ C(Xf×N,Z) and (x, j) ∈ X×N with j ≥ 1, where k is the integer part of j/f(x),
and

ψ∗(ξ)(x, 0) =

f(σX(x))−1∑
r=0

ξ(Srf (ψ(x, 0)))

for ξ ∈ C(Xf ×N,Z) and x ∈ X. Then ψ∗ is a homomorphism such that κX×N(ψ∗(ξ)) =
κXf×N(ξ) ◦Ψf for ξ ∈ C(Xf × N,Z).

Define ψ# : C(X× N,Z) −→ C(Xf × N,Z) by

ψ#(ζ)((x, i), k) =

kf(x)+i∑
j=(k−1)f(x)+i+1

ζ(x, j)

for ζ ∈ C(X× N,Z) and
(
(x, i), k

)
∈ Xf × N with k ≥ 1,

ψ#(ζ)
(
(x, i), 0

)
= ζ(x, i)

for ζ ∈ C(X× N,Z) and (x, i) ∈ Xf with i ≥ 1, and

ψ#(ζ)
(
(x, 0), 0

)
= ζ(x, 0)−

f(σX(x))−1∑
j=1

ζ(σX(x), j)

for ζ ∈ C(X×N,Z) and x ∈ X. Then ψ# is a homomorphism such that κXf×N(ψ#(ζ)) =

κX×N(ζ) ◦Ψ−1
f for ζ ∈ C(X× N,Z)

Since

ψ∗(ξ − ξ ◦ Sf )(x, j) = ξ((x, 0), 0)− ξ((σX(x), 0), 0) = ξ((x, 0), 0)− ξ ◦ Sf(σX(x))
X ((x, 0), 0),

for ξ ∈ C(Xf×N,Z) and (x, j) ∈ X×N, ψ∗ induces a well-defined map H(ψ) : HXf×N −→
HX×N given by H(ψ)([ξ]) = [ψ∗(ξ)] for η ∈ C(Xf×N,Z). Since ι∗f ◦ ι∗0 = ι∗0◦ψ∗, it follows
that H(ιf ) ◦H(ι0) = H(ι0) ◦H(ψ). Since H(ι0) and H(ιf ) are positive isomorphisms,
H(ψ) is also a positive isomorphism.

Suppose ζ ∈ C(X× N,Z) is supported on X× {0}. Then

ι∗f (ι
∗
0(ψ#(ζ)))(x) = ζ(x, 0) = ι∗0(ζ)(x),

for every x ∈ X. Since every element of HX×N
+ can be represented by a map ζ ∈ C(X×

N,Z) which is supported on X×{0}, this shows that H(ιf )◦H(ι0)([ψ#(ζ)]) = H(ι0)([ζ])
for every ζ ∈ C(X × N,Z). Since H(ιf ) ◦ H(ι0) = H(ι0) ◦ H(ψ) and H(ι0) is an
isomorphism, it follows that H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈ C(X× N,Z). �

Let us say that a stabilizer preserving continuous orbit equivalence (h, lX, kX, lY, kY) from
X to Y is positive if [lX − kX] ∈ HX

+ and [lY − kY] ∈ HY
+.
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Lemma B.8.6. Let X and Y be one-sided shift spaces and let (h, lX, kX, lY, kY) be a positive
stabilizer preserving continuous orbit equivalence from X to Y. Then (h, lX, kX, lY, kY) is
least period preserving.

Proof. Since [lX − kX] ∈ HX
+ and [lY − kY] ∈ HY

+, there are bX ∈ C(X,Z) and
nX ∈ C(X,N) such that lX− kX = nX + bX− bX ◦σX, and bY ∈ C(Y,Z) and nY ∈ C(Y,N)
such that lY − kY = nY + bY − bY ◦ σY. If x ∈ X is periodic with lp(x) = p, then

l
(p)
X (x)− k(p)

X (x) =

p−1∑
i=0

(
lX(σiX(x))− kX(σiX(x))

)
=

p−1∑
i=0

(
nX(σiX(x) + bX(σiX(x)− bX(σi+1

X (x)
)

=

p−1∑
i=0

nX(σiX(x) > 0.

Since (h, lX, kX, lY, kY) is stabilizer preserving, we thus have that

l
(p)
X (x)− kX(p)(x) = |l(p)X (x)− kX(p)(x)| = lp(h(x)).

A similar argument shows that l(lp(y))
Y (y) − kY(lp(y))(y) = lp(h−1(y)) for any periodic

y ∈ Y. �

Corollary B.8.7. Let ΛX and ΛY be two-sided subshifts and suppose there is a positive
stabilizer preserving continuous orbit equivalence from X to Y. Then ΛX and ΛY are flow
equivalent.

Proof. Let (h, lX, kX, lY, kY) be a positive stabilizer preserving continuous orbit
equivalence from X to Y. It follows from Lemma B.8.6 that (h, lX, kX, lY, kY) is least
period preserving, and thus from [22, Proposition 3.2] that ΛX and ΛY are flow equiva-
lent. �

The proof of [86, Theorem 5.11] shows that any continuous orbit equivalence between
shifts of finite type with no isolated points is least period preserving and positive. How-
ever, if X = Y is the shift space with only one point, then (id, 1, 0, 0, 1) is a stabilizer
preserving continuous orbit equivalence from X to Y which is not positive. It follows
from [22, Proposition 4.5 and Proposition 4.7] that if X and Y are shifts of finite type
that are continuously orbit equivalent, then there is a least period preserving continuous
orbit equivalence between X and Y. We do not know if there are shifts spaces X and
Y that are continuously orbit equivalent, but for which there is no positive stabilizer
preserving continuous orbit equivalence between X and Y.

Remark B.8.8. Suppose G is a second-countable locally compact Hausdorff étale groupoid,
Γ is an abelian group, and that c : G −→ Γ is a cocycle. In [26], a groupoidH(C∗r (G), C0(G(0)), βc)
consisting of equivalence classes of pairs (n, φ), where n is normaliser of C0(G(0)) in
C∗r (G) that is homogeneous with respect to c, and φ is a character of C0(G(0)), is
constructed, and it is shown in [26, Proposition 6.5] that there is an isomorphism
θ(C∗r (G),C0(G(0)),βc) : G −→ H(C∗r (G), C0(G(0)), βc).
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This is used in [26, Theorem 6.2] to prove that if G ′ is another second-countable lo-
cally compact Hausdorff étale groupoid, and d : G ′ → Γ is a cocycle such that there
is a ∗-isomorphism Φ: C∗r (G) −→ C∗r (G ′) such that Φ(C0(G(0))) = C0((G ′)(0)) and
βdγ ◦ Φ = Φ ◦ βcγ for all γ ∈ Γ̂, then there is an isomorphism Ψ: G −→ G ′ such that
d ◦Ψ = c.

If we let c0 denote the unique cocycle from G to the abelian group {0}, then any nor-
maliser of C0(G(0) in C∗r (G) is homogeneous with respect to c0. In particular, a normaliser
n that is homogeneous with respect to c, is also homogeneous with respect to c0, and
there is a homomorphism Φπ : H(C∗r (G), C0(G(0)), βc) −→ H(C∗r (G), C0(G(0)), βc0) that
sends [n, φ] to [n, φ]. Since θ(C∗r (G),C0(G(0)),βc0 ) = Φπ ◦ θ(C∗r (G),C0(G(0)),βc), it follows that Φπ

is an isomorphism.

We thus have that the isomorphism Ψ′ : G −→ G ′ constructed in [26, Theorem 3.3]
is equal to the isomorphism Ψ: G −→ G ′ constructed in [26, Theorem 6.2] such that
d ◦Ψ = c.

We are now ready to characterize flow equivalence of general two-sided subshifts. The
equivalence (i) ⇐⇒ (iv) in Theorem B.8.9 below is a generalization of [22, Theorem
5.3 (5) ⇐⇒ (6)] which is formulated for shifts of finite type.

Theorem B.8.9. Let ΛX and ΛY be two-sided subshifts. The following are equivalent:
(i) the two-sided subshifts ΛX and ΛY are flow equivalent;
(ii) there are

• a groupoid isomorphism Ψ: GX × R −→ GY × R and a homeomorphism
ψ : X× N −→ Y × N such that ψ ◦ πX×N = πY×N ◦Ψ(0);
• a homomorphism ψ∗ : C(Y × N,Z) −→ C(X× N,Z) such that

κX×N(ψ∗(η)) = κY×N(η) ◦Ψ, (B.17)

for η ∈ C(Y × N,Z);
• a homomorphism ψ# : C(X× N,Z) −→ C(Y × N,Z) such that

κY×N(ψ#(ζ)) = κX×N(ζ) ◦Ψ−1, (B.18)

for ζ ∈ C(X× N,Z); and
• a positive isomorphism H(ψ) : HY×N −→ HX×N such that H(ψ)([η]) =

[ψ∗(η)] η ∈ C(Y × N,Z), and H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈ C(X× N,Z).
(iii) there are

• a ∗-isomorphism Φ: OX ⊗K −→ OY ⊗K such that Φ(DX ⊗ c0) = DY ⊗ c0

and Φ(C(X)⊗ c0) = C(Y)⊗ c0;
• a homomorphism ψ∗ : C(Y × N,Z) −→ C(X× N,Z) such that

Φ ◦ βκX×N(ψ∗(η))
z = βκY×N(η)

z ◦ Φ,

for η ∈ C(Y × N,Z) and z ∈ T;
• a homomorphism ψ# : C(X× N,Z) −→ C(Y × N,Z) such that

Φ ◦ βκX×N(ζ)
z = βκY×N(ψ#(ζ))

z ◦ Φ,

for ζ ∈ C(X× N,Z) and z ∈ T;
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• a positive isomorphism H(ψ) : HY×N −→ HX×N such that H(ψ)([η]) =
[ψ∗(η)] η ∈ C(Y × N,Z), and H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈ C(X× N,Z);

(iv) there are f ∈ C(X,N+) and g ∈ C(Y,N+) such that there is a positive stabiliser
preserving continuous orbit equivalence between Xf and Yg.

If X and Y contain dense sets of aperiodic points, then the condition Φ(DX⊗c0) = DY⊗c0

in (iii) is superfluous.

Proof. (i) =⇒ (ii): Suppose ΛX and ΛY are flow equivalent. Then there are
f ∈ C(X,N+) and g ∈ C(Y,N+) such that ΛXf and ΛYg are conjugate. It therefore
follows from Lemmas B.8.3 and B.8.5 that (ii) holds.

(ii) =⇒ (iv): We shall identify GX ×R(0) = X̃× N. Since X̃ is compact and Ψ is contin-
uous, there is an integer n ∈ N such that Ψ(0)(X̃× {0}) ⊆ Ỹ × {0, . . . , n− 1}.

Define g ∈ C(Y,N+) to be constantly equal to n. Then φYg : Y × {0, . . . , n− 1} −→ Yg
given by

φYg(y, k) = (y, k) (B.19)

for (y, k) ∈ Yg, is a homeomorphism and ΦYg : GY ×R|Ỹ×{0,...,n−1} −→ GYg defined by

ΦYg

(
(ỹ, k),m, (ỹ′, l)

)
=
(
(ỹ, k), k +mn− l, (ỹ′, l)

)
,

for
(
(ỹ, k),m, (ỹ′, l)

)
∈ GY × R|Ỹ×{0,...,n−1}, is an isomorphism such that φYg ◦ πY×N =

πYg ◦ Φ
(0)
Yg
.

Define f̃ : X̃ −→ N+ by

f̃(x̃) = |{k ∈ N : Ψ(0)(x̃, k) ∈ Ỹ × {0, . . . , n− 1}}|

for x̃ ∈ X̃. Then f̃ is continuous and f̃ > 1. Note that if πX(x̃) = πX(x̃′) then the
condition ψ ◦ πX×N = πY×N ◦Ψ(0) ensures that

{k ∈ N | Ψ(0)(x̃, k) ∈ Ỹ × {0, . . . , n− 1}} = {k′ ∈ N | Ψ(0)(x̃′, k′) ∈ Ỹ × {0, . . . , n− 1}},

so f̃(x̃) = f̃(x̃′). By Lemma B.2.5, there is a continuous map f : X −→ N+ satisfying
f̃ = f ◦ πX.

For each x ∈ X, there are exactly f(x) integers k(x, 0), . . . , k(x, f(x)− 1) ∈ N such that
ψ(x, k(x, i)) ∈ Y × {0, . . . , n − 1}. Arrange the integers in increasing order and define
φXf : Xf −→ ψ−1(Y × {0, . . . , n− 1}) by

φXf (x, i) = (x, k(x, i)), (B.20)

for (x, i) ∈ Xf . Define ΦXf : GXf −→ GX ×R|π−1
X (ψ−1(Y×{0,...,n−1})) by

ΦXf

(
(x̃, i),m, (x̃′, i′)

)
=
(
(x̃, k(πX(x̃), i)), k − k′, (x̃, k(πX(x̃′), i′))

)
where k, k′,∈ N are such that σk

X̃
(x̃) = σk

′

X̃
(x̃′) and

m = i+
k∑
r=1

f(σrX(πX(x̃)))− i′ −
k′∑
r=1

f(σrX(πX(x̃′))).
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Then ΦXf is an isomorphism such that φXf ◦ πXf = πX×N ◦ Φ
(0)
Xf
.

We have that Φ := ΦYg ◦ Ψ ◦ ΦXf : GXf −→ GYg is an isomorphism and h := φYg ◦ ψ ◦
φXf : Xf −→ Yg is a homeomorphism such that h ◦ πXf = πYg ◦ Φ(0).

Let ξ ∈ C(Y × N,Z) be defined by

ξ(y, i) =

{
1 if i > 0,

n if i = 0,

for (y, i) ∈ Y × N. Then κYg(1) ◦ ΦYg = κY×N(ξ). Set η := ψ∗(ξ) ∈ C(X × N,Z) and
define dXf ∈ C(Xf ,Z) by

dXf (x, i) =

{∑k(x,i)
j=k(x,i−1)+1 η(x, j) if i > 0,

η(x, 0)−
∑k(σX(x),f(σX(x))−1)

j=1 η(σX(x), j) if i = 0,

for (x, i) ∈ Xf . Then κY×N(ξ) ◦ Ψ = κX×N(η) and κX×N(η) ◦ ΦXf = κXf (dXf ). We thus
have κYg(1) ◦ Φ = κXf (dXf ).

Similarly, κXf (1) ◦ Φ−1
Xf

= κX×N(ρ) where ρ ∈ C(X× N,Z) is defined by

ρ(x, j) =


f(σ(x)) if j = 0,

1 if j = k(x, i) for some i ∈ {1, . . . , f(x)− 1},
0 otherwise.

Let χ = ψ#(ρ) ∈ C(Y × N,Z), and let dYg ∈ C(Yg,Z) be defined by

dYg(y, i) =

{
χ(y, i) if i > 0,

χ(y, 0)−
∑n−1

j=1 χ(σY(y), j) if i = 0,

Then κX×N(ρ) ◦ Ψ−1 = κY×N(χ) and κY×N(χ) ◦ ΦYg = κYg(dYg). Hence, κXf (1) ◦ Φ−1 =
κYg(dYg).

It now follows from Theorem B.6.4 that there are continuous maps kXf , lXf : Xf −→ N
and kYg , lYg : Yg −→ N such that (h, kXf , lXf , kYg , lYg) is a stabilizer preserving continuous
orbit equivalence from Xf to Yg and lXf − kXf = dXf and lYg − kYg = dYg .

Note that [ξ] ∈ HY×N
+ and [η] = [ψ∗(ξ)] = H(ψ)([ξ]) ∈ HX×N

+ . Since H(ι0) : HX×N −→
HX is a positive isomorphism, it follows that there are continuous maps α, β : X×N −→ N
such that α is supported on X × {0} and η = α + β − β ◦ SX. Then dXf (x, i) =
β(x, k(x, i))− β(x, k(x, i− 1)) for i > 0 and

dXf (x, 0) = α(x, 0) + β(x, 0)− β(σX(x), k(x, f(σX(x)))− 1)

= α(x, 0) + β(x, 0)− β ◦ σf (x, 0),

for x ∈ X. Thus, [lXf − kXf ] = [dXf ] ∈ H
Xf
+ .
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Similarly, [ρ] ∈ HX×N
+ and [χ] = [ψ#(ρ)] = H(ψ)−1([ρ]) ∈ HY×N

+ , so there are continuous
maps α′, β′ : Y×N −→ N such that γ is supported on Y×{0} and χ = α′+β′−β′ ◦SY,
and then dYg(y, i) = θ(y, i) − θ(y, i − 1) for i > 0, and τ(y, 0) = α(y, 0) + β′(y, 0) −
β′(σY(y), n− 1), for y ∈ Y. This shows that [lYg − kYg ] = [τ ] ∈ HYg

+ .

We conclude that (h, kXf , lXf , kYg , lYg) is a positive stabilizer preserving continuous orbit
equivalence.

(iv) =⇒ (i): We have that ΛXf and ΛYg are flow equivalent according to Corollary B.8.7.
Since ΛX and ΛXf are flow equivalent, and ΛY and ΛYg are flow equivalent, it follows
that ΛX and ΛY are flow equivalent.

(ii) =⇒ (iii): The isomorphism Ψ: GX × R −→ GY × R induces a ∗-isomorphism
Φ: OX ⊗ K = C∗r (GX × R) −→ C∗r (GY × R) = OY ⊗ K satisfying Φ(f) = f ◦ Ψ−1,
for f ∈ Cc(GX ×R). In particular, Φ(DX ⊗ c0) = DY ⊗ c0. The hypothesis, ψ ◦ πX×N =

πY×N ◦ Ψ(0) ensures that Φ(f) = f ◦ ψ−1, for f ∈ C(X) ⊗ c0 ⊆ C(X̃) ⊗ c0 = DX ⊗ c0,
and that Φ−1(g) = g ◦ ψ for g ∈ C(Y) ⊗ c0 ⊆ C(Ỹ) ⊗ c0 = DY ⊗ c0. Therefore,
Φ(C(X)⊗ c0) = C(Y)⊗ c0.

Let η ∈ C(Y × N,Z) and suppose f ∈ Cc(GX ×R) has support in κX×N(ψ∗(η))−1({1}).
By (B.17), Φ(f) = f ◦Ψ−1 has support in Ψ(κX×N(ψ∗(η))−1({1})) = κY×N(η)−1({1}). It
follows that

Φ ◦ βκX×N(ψ∗(η))
z = βκY×N(η)

z ◦ Φ,

for z ∈ T. A similar argument using (B.18) shows that Φ ◦ βκX×N(ζ)
z = β

κY×N(ψ#(ζ))
z ◦ Φ,

for ζ ∈ C(X× N,Z) and z ∈ T.

(iii) =⇒ (ii): It follows from [26, Theorem 3.3] that there is an isomorphism Ψ: GX ×
R −→ GY ×R.

Let η ∈ C(Y × N,Z). It then follows from [26, Theorem 6.2] that there is an isomor-
phism Ψη : GX × R −→ GY × R satisfying κX×N(ψ∗(η)) = κY×N(η) ◦ Ψη, and according
to Remark B.8.8, we have Ψ = Ψη. Therefore, κX×N(ψ∗(η)) = κY×N(η) ◦ Ψ, for every
η ∈ C(Y×N,Z). A similar argument shows that κY×N(ψ#(ζ)) = κX×N(ζ)◦Ψ−1, for every
ζ ∈ C(X × N,Z). Finally, the restriction Φ|C(X)⊗c0 : C(X) ⊗ c0 −→ C(Y) ⊗ c0 induces a
homeomorphism ψ : X× N −→ Y × N such that ψ ◦ πX×N = πY×N ◦Ψ(0).

The final remark follows from Corollary B.3.6. �

If we restrict to the class of shift spaces which produce essentially principal groupoids,
we can relax some of the conditions of Theorem B.8.9.

Theorem B.8.10. Let ΛX and ΛY be two-sided shift spaces such that X and Y contain
no periodic points isolated in past equivalence. The following are equivalent:

(i) the systems ΛX and ΛY are flow equivalent;
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(ii) there is an isomorphism of groupoids Ψ: GX×R −→ GY ×R and a homeomor-
phism ψ : X × N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦ Ψ(0) and a positive
isomorphism θ : HX×N −→ HY×N satisfying θ ◦ κX×N = κY×N ◦H1(Ψ).

Proof. (i) =⇒ (ii): This follows from the proof of Theorem B.8.9 (i) =⇒ (ii).

(ii) =⇒ (i): Let Ψ: GX×R −→ GY ×R be a groupoid isomorphism and ψ : X×N −→
Y × N be a homeomorphism satisfying h ◦ πX×N = πY×N ◦Ψ(0). As in the proof of The-
orem B.8.9 (ii) =⇒ (iv) we choose n ∈ N+ and f ∈ C(X,N+). Let g : Y −→ N be
constantly equal to n. Then there is a groupoid isomorphism Ψ′ : GXf −→ GYg and a
homeomorphism h = φYg ◦ ψ ◦ φXf such that h ◦ πXf = πYg ◦ (Ψ′)(0).

It is not hard to see that the maps φXf : Xf −→ ψ−1(Y×{0, . . . , n−1}) and φYg : Yg −→
Y × {0, . . . , n − 1} defined in (B.20) and (B.19), respectively, are positive continuous
orbit equivalences. Since X and Y contain dense sets of aperiodic points, it follows from
Theorem B.6.10 that ψ : ψ−1(Y× {0, . . . , n− 1}) −→ Y× {0, . . . , n− 1} is a continuous
orbit equivalence. By the hypothesis in (ii), ψ is also positive. Hence h is a positive
continuous orbit equivalence. It this follows from Corollary B.8.7 that ΛXf and ΛYg

are flow equivalent. Since ΛX and ΛXf are flow equivalent, and ΛY and ΛYg are flow
equivalent, we conclude that ΛX and ΛY are flow equivalent. �

Finally, we restrict to the class of sofic shifts whose groupoids are essentially principal.

Theorem B.8.11. Let ΛX and ΛY be two-sided sofic shift spaces such that X and Y
contain no periodic points isolated in past equivalence. The following are equivalent:

(i) the two-sided subshifts ΛX and ΛY are flow equivalent;
(ii) there is an isomorphism Ψ: GX×R −→ GY ×R and a homeomorphism ψ : X×

N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦Ψ(0);
(iii) there is a ∗-isomorphism Φ: OX ⊗ K −→ OY ⊗ K satisfying Φ(C(X) ⊗ c0) =

C(Y)⊗ c0.

Proof. (i) =⇒ (ii): This follows from Theorem B.8.9.

(ii) =⇒ (i): As in the proof of (ii) =⇒ (iv) in Theorem B.8.9, there are f ∈ C(X,N+), g ∈
C(Y,N+), a groupoid isomorphism Ψ′ : GXf −→ GYg and a homeomorphism h : Xf −→ Yg
such that h ◦ πXf = πYg ◦ (Ψ′)(0). It follows from Theorem B.8.10 and its proof that
h is a continuous orbit equivalence and that (Ψ′)(0) : X̃f −→ Ỹg is a continuous orbit
equivalence. Since Xf and Yg are sofic shift spaces, the covers X̃f and Ỹg are (conjugate
to) shifts of finite type. By hypothesis, X and Y have no periodic points isolated in past
equivalence, so X̃ and Ỹ, and thus also X̃f and Ỹg, have no isolated points. It therefore
follows the proof of [86, Theorem 5.11] that the continuous orbit equivalence (Ψ′)(0) is
positive and least period preserving. It follows that h is also positive and least period
preserving. It therefore follows from Corollary B.8.7 that Xf and Yg are flow equivalent.
Since X and Xf are flow equivalent, and Y and Yg are flow equivalent, we conclude that
X and Y are flow equivalent.
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(ii) ⇐⇒ (iii): This is [26, Corollary 11.4]. Note that if Φ: OX ⊗ K −→ OY × K is a
∗-isomorphism as in (iii), then Φ(DX ⊗ c0) = DY ⊗ c0 by Corollary B.3.6. �

Corollary B.8.12. Let X and Y be one-sided sofic shifts with no periodic points isolated
in past equivalence. If X and Y are continuously orbit equivalent, then ΛX and ΛY are
flow equivalent.
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Eventual conjugacy and the balanced in-split

Kevin Aguyar Brix

Abstract
We show that one-sided eventual conjugacy between finite directed graphs with no sinks
is generated by out-splits and balanced in-splits of the vertices in the graph while one-
sided conjugacy is generated by out-splits. The balanced in-split is a variation of the
classical in-split move introduced by Williams in order to study conjugacies of shifts
of finite type. We also relate one-sided eventual conjugacies and two-sided conjugacies
using block maps on the finite paths of the graphs.

C.1. Introduction

In order to study conjugacies of finite type shift spaces, Williams [116] introduced and
studied certain state splittings of the symbolic dynamical systems. Any conjugacy can
be decomposed into a finite sequence of such state splittings, and he successful trans-
lated conjugacy of the shift spaces into strong shift equivalence of the matrices which
define the shift spaces. The coarser relation of flow equivalence was shown by Parry and
Sullivan to be generated by conjugacies and a symbol expansions on the defining matri-
ces [97]. The class of finite type shifts can be modeled by finite essential graphs, and
the state splittings become splittings of vertices and their out-going edges (out-splits)
or incoming edges (in-splits) [68], while the symbol expansion translates to a stretching
(or delaying) of certain vertices.

Splitting and stretching vertices in a graph is an extremely useful tool in the study of
graph C∗-algebras and their K-theory. Bates and Pask [4] generalized these graphical
constructions — which we now call moves — to arbitrary directed graphs and showed
that whereas out-splits (Move (O)) produce ∗-isomorphic graph C∗-algebras, the in-split
(Move (I)) and the delay move only preserve the stable isomorphism class of the graph
C∗-algebras. In fact, it was known since the inception of the graph C∗-algebras of fi-
nite essential graphs (irreducible and not just a cycle) — the Cuntz–Krieger algebras —
that the stabilized graph C∗-algebra together with its canonical diagonal subalgebra is
invariant under flow equivalence [35].

In an ingenious use of groupoid techniques, Matsumoto and Matui [84] much later finally
prove the converse statement: The stable isomorphism class of simple Cuntz–Krieger al-
gebras together with its diagonal (suitably stabilized), entirely captures the flow class
of the underlying shift of finite type. This was later generalized to all finite essential
graphs [22]. A general program for understanding how specific moves on graphs are

83
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reflected in structure-preserving ∗-isomorphisms of the graph C∗-algebras was recently
initiated by Eilers and Ruiz [43].

The present paper addresses one-sided eventual conjugacy as studied by Matsumoto [81]
and one-sided conjugacy of finite graphs with no sinks. The motivation is two-fold.

Firstly, work of recent years [35, 81, 24] have taught us that two-sided conjugacy of
two-sided shifts of finite type and one-sided eventual conjugacy of one-sided shifts of
finite type are structurally related in the following sense: Two finite essential graphs E
and F are two-sided conjugate if and only if there is a ∗-isomorphism Ψ: C∗(E)⊗K −→
C∗(F )⊗K which respects the diagonal Ψ(D(E)⊗ c0) = D(F )⊗ c0 and intertwines the
gauge actions Ψ ◦ (γE ⊗ id) = (γF ⊗ id) ◦Ψ. Here, K is the C∗-algebra of compact oper-
ators on separable Hilbert space and c0 is the C∗-subalgebra of diagonal operators. On
the other hand, E and F are one-sided eventually conjugate (even if we include sources)
if and only if there is a ∗-isomorphism Ψ: C∗(E) −→ C∗(F ) which respects the diagonal
Ψ(D(E)) = D(F ) and intertwines the gauge actions Ψ ◦ γE = γF ◦Ψ.

From a dynamical perspective, two-sided conjugacies are sliding block codes with a finite
“window” (with memory and anticipation) which arise from block maps on finite paths
of the graphs. Similarly, one-sided conjugacies are sliding block codes with anticipation
but no memory. It is possible to make sense of one-sided sliding block codes with
both anticipation and memory and, in fact, such sliding block codes induce all eventual
conjugacies.

Theorem (Corollary C.3.9). Let E and F be finite graphs with no sinks. There is a
one-to-one correspondence between eventual conjugacies h : E∞ −→ F∞ and (`, c)-block
maps ψ : E1+`+c −→ F 1+` satisfying a bijectivity condition.

The connection between two-sided conjugacy and one-sided eventual conjugacy it seems
is present before passing to infinite sequences.

The second motivation is a connection to the recent program of understanding the
relationship between moves on graphs and certain structure-preserving ∗-isomorphisms
of the corresponding graph C∗-algebras [43]. We study a variation of Williams’ classical
in-split called the balanced in-split (Move (I+)) and show that it induces eventually
conjugate graphs. As opposed to the classical in-split, this new move might introduce
sources in the graphs, and if we consider the class of finite graphs with no sinks (but
potentially with sources), we arrive at the following result.

Theorem (Theorem C.4.9). One-sided eventual conjugacy of finite graphs with no sinks
is generated by out-splits and balanced in-splits.

The presence of sources is an essential part of the proof even if the graphs we start with
do not have sources. It also follows from the proof that one-sided conjugacy is generated
by out-splits alone, cf. [116, 8, 62]. Since work of Carlsen and Rout [24] shows that
eventual conjugacy of the graphs is equivalent to diagonal-preserving ∗-isomorphism of
the graph algebras which intertwines the gauge actions — this is a 111-isomorphism in
the terminology of [43] — the result characterizes this particular structure-preserving
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∗-isomorphism in terms of Move (O) and Move (I+).

Even if the present work is in part motivated by operator algebraic questions, our ap-
proach is purely dynamical. It seems reasonable that a thorough investigation of one-
sided eventual conjugacy would shed light on questions concerning two-sided conjugacy
as well.
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C.2. Preliminaries

We first recall the relevant concepts of finite graphs and the dynamics on their path
spaces and fix notation. Let Z, N = {0, 1, 2, . . .} and N+ = {1, 2, . . .} denote the
integers, the nonnegative integers and the positive integers, respectively.

C.2.1. Graphs. A directed graph (or just a graph) is a quadrupelE = (E0, E1, rE, sE)
where E0 is the set of vertices, E1 is the set of edges and sE, rE : E1 −→ E0 are the
source and range maps, respectively. We shall omit the subscripts to simplify notation
when the graph is understood. A vertex v ∈ E0 is a source if r−1(v) = ∅ and a sink if
s−1(v) = ∅. In this paper we consider only finite graphs with no sinks.

A finite path is a finite string µ = µ1 · · ·µn of edges where n ∈ N+ and r(µi) = s(µi+1)
for i = 1, . . . n− 1. The length of µ is |µ| = n. By convention, the length of a vertex is
zero. Let En be all finite paths of length n and let E∗ =

⋃
n∈NE

n be the collection of
all finite paths. The source and range maps naturally extend to E∗ by s(µ) = s(µ1) and
r(µ) = r(µ|µ|). The path space of E is the set

E∞ = {x ∈ (E1)
N | r(xi) = s(xi+1), i ∈ N}

of all infinite paths of edges on the graph. The path space E∞ is compact and Hausdorff
in the subspace topology of the product topology on (E1)

N where E1 is discrete. The
source map extends to E∞ by putting s(x) = s(x0) for x ∈ E∞. Given x ∈ E∞ we write
x[i,j] = xixi+1 · · ·xj for 0 6 i 6 j, and put x[i,j) = x[i,j−1] and x(i,j] = x[i+1,j] when i < j.
Note that any finite path µ ∈ E∗ is of the form x[i,i+|µ|) for some x ∈ E∞ and i ∈ N.
The cylinder set of a finite path µ is the compact open set

Z(µ) = {x ∈ E∞ | x[0,n) = µ},
and the collection of cylinder sets constitutes a basis for the topology of E∞.

Define a shift operation σE : E∞ −→ E∞ by σE(x)i = xi+1 for x ∈ E∞ and i ∈ N.
This is a local homeomorphism, and it is surjective if and only if E contains no sources.
The dynamical system (E∞, σE) is the edge shift of E. Two edge shifts (E∞, σE) and
(F∞, σF ) are conjugate if there exists a homeomorphism h : E∞ −→ F∞ such that
h ◦ σE = σF ◦ h. In this case we say the graphs E and F are conjugate and that h is
a conjugacy. Edge shifts are examples of shifts of finite type and, in fact, every shift of
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finite type is (conjugate to) an edge shift of a finite graph [68].

The N ’th higher block graph E[N ] of a graph E has edges EN and vertices EN−1. The
source and range of µ = µ1 · · ·µN ∈ EN is sN(µ) = µ[1,N) and rN(µ) = µ(1,N ]. Note that
E[1] = E, and that for any N there is a canonical conjugacy ϕ : E∞ −→ (E[N ])

∞ given
by φ(x) = x[0,N)x[1,N+1)x[2,N+2) · · · for x ∈ E∞.

C.3. Eventual conjugacy and block maps

Let us fix two finite graphs with no sinks E and F and let E∞ and F∞ be their infinite
path spaces, respectively.

C.3.1. Eventual conjugacy. A sliding block code ϕ : E∞ −→ F∞ is a continuous
map which intertwines the shift operations in the sense that ϕ◦σE = σF ◦ϕ. A conjugacy
is a bijective sliding block code. In order to describe eventual conjugacies on graphs we
first modify the notion of sliding block codes slightly.

Definition C.3.1. Let ` ∈ N. An `-sliding block code is a continuous map ϕ : E∞ −→
F∞ such that σ`E ◦ ϕ is a sliding block code, that is,

σ`+1
F (ϕ(x)) = σ`F (ϕ(σE(x))),

for every x ∈ E∞. If ` = 0, then ϕ is a sliding block code in the usual sense. An
`-conjugacy is a bijective `-sliding block code.

An `-conjugacy is simply one half of an eventual conjugacy.

Definition C.3.2 ([81]). Two finite graphs with no sinks E and F are eventually con-
jugate if there exist a homeomorphism h : E∞ −→ F∞ and `, `′ ∈ N such that h and
h−1 are `- and `′-conjugacies, respectively. That is,

σ`+1
F (h(x)) = σ`F (h(σE(x))),

σ`
′+1
E (h−1(y)) = σ`

′

E(h−1(σF (y))),

for x ∈ E∞ and y ∈ F∞. We say that h is an eventual conjugacy

If h : E∞ −→ F∞ is an `-conjugacy, then h is an (` + i)-conjugacy for all i ∈ N, and if
h′ : F∞ −→ G∞ is an `′-conjugacy, then h′ ◦h is an (`+ `′)-conjugacy. Furthermore, if h
is an eventual conjugacy, then there is an ` ∈ N such that h and h−1 are `-conjugacies.
Let ` ∈ N and suppose h : E∞ −→ F∞ is an `-sliding block code. Then there is a c ∈ N
such that

h(ZE(x[0,k+c])) ⊆ ZF (h(x)[0,k]) (C.1)

for k > ` and x ∈ E∞. We shall refer to c as a continuity constant for h (relative to `).
Note that if c is a continuity constant for h (relative to `), then c + i is a continuity
constant for h for any i ∈ N. Moreover, if h and h−1 are `- and `′-conjugacies, then we
can choose a continuity constant relative to max{`, `′}.

Definition C.3.3. An (`, c)-sliding block code is an `-sliding block code ϕ : E∞ −→ F∞

with continuity constant c relative to `. An (`, c)-conjugacy is a bijective (`, c)-sliding
block code.
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The following lemma shows that we can always reduce the continuity complexity of an
`-conjugacy, at the expense of increasing the continuity complexity of the inverse.

Lemma C.3.4. Let E and F be finite graphs with no sinks and let h : E∞ −→ F∞

be an (`, c)-conjugacy. There exists a graph Ē with a conjugacy ϕ : E −→ Ē and an
(`, 0)-conjugacy h̄ : Ē∞ −→ F∞ satisfying h̄ ◦ ϕ = h.

Proof. Consider the higher block graph Ē = E[c] and let ϕ : E∞ −→ Ē∞ be the
canonical conjugacy. Define h̄ : Ē∞ −→ F∞ as h̄ = h ◦ ϕ−1, that is,

h̄(x[0,c]x[1,c+1] · · · ) = h(x),

for x ∈ E∞. Then h̄ is an `-conjugacy. Since h̄ = h ◦ ϕ−1 and c is a continuity constant
for h, we have

h̄(ZĒ(x̄[0,`])) = h(ZE(x[0,`+c])) ⊆ ZF (h(x)[0,`])

for x̄ ∈ Ē∞ with ϕ−1(x̄) = x ∈ E∞. Hence h̄ is an (`, 0)-conjugacy. �

C.3.2. Block maps.

Definition C.3.5. Let E and F be finite graphs with no sinks and let `, c ∈ N. An
(`, c)-block map is a map ψ : E1+`+c −→ F 1+` which is compatible with E and F in the
sense that

ψ(x[0,`+c])`ψ(x[1,1+`+c])` ∈ F
2,

for x ∈ E∞.

Let ψ : E1+`+c −→ F 1+` be an (`, c)-block map. The compatibility condition ensures
that there is an extension ψ : E1+`+c+i −→ F 1+`+i given by

ψ(x[0,`+c+i]) = ψ(x[0,`+c])ψ(x[1,`+c+1])` · · ·ψ(x[i,`+c+i])`
whenever x ∈ E∞ and i ∈ N. We shall use the same symbol ψ for the block map and its
extension, this should cause no confusion. Iterating this process ad infinitum, ψ extends
to a map on the infinite path spaces h = hψ : E∞ −→ F∞ by

h(x) = ψ(x[0,`+c])ψ(x[1,`+c+1])` · · ·ψ(x[i,`+c+i])` · · · ,

for x ∈ E∞. In order to see that h is continuous, suppose x(n) −→ x in E∞ as n −→∞.
Given i ∈ N there exists N ∈ N such that x(n) ∈ ZE(x[0,`+c+i]) whenever n > N . Then

h(x(n))[0,`+i] = ψ(x(n)
[0,`+c+i]) = ψ(x[0,`+c+i]) = h(x)[0,`+i],

so h(x(n)) −→ h(x) in F∞ as n −→ ∞. In particular, c is a continuity constant for h
relative to `. We would now like to find conditions on the block maps which ensure that
the induced map on the path spaces is bijective.

Definition C.3.6. An (`, c)-block map ψ : E1+`+c −→ F 1+` satisfies the surjectivity
condition if for every k > ` and every β ∈ F 1+k, there exists α ∈ E1+k+c such that
ψ(α) = β. On the other hand, ψ satisfies the injectivity condition if for every k > `
there is K ∈ N such that

ψ(x[0,k+K]) = ψ(x′[0,k+K]) =⇒ x[0,k] = x′[0,k]

for every x, x′ ∈ E∞. We say that ψ satisfies the bijectivity condition if it satisfies both
the injectivity and the surjectivity conditions.
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Remark C.3.7. Note that for the case c = 0, the surjectivity condition reduces to
surjectivity of the block map while the injectivity condition is, in general, weaker than
injectivity of the block map. The term bijectivity condition is only meant to reflect the
fact that the induced map on the infinite path spaces is bijective (see the proof below).
If ψ : E1+` −→ F 1+` is in fact a bijective block map, then the inverse homeomorphism
hψ
−1 : E∞ −→ F∞ is induced by ψ−1 and has vanishing continuity constant.

We now arrive at the main result of this section.

Theorem C.3.8. Let E and F be finite graphs with no sinks and let `, c ∈ N. There is a
one-to-one correspondence between the collection of (`, c)-block maps ψ : E1+`+c −→ F 1+`

and the collection of (`, c)-sliding block codes h : E∞ −→ F∞. In addition, ψ satisfies
the injectivitiy condition or the surjectivity condition if and only if h is injective or
surjective, respectively.

Proof. Suppose ψ : E1+`+c −→ F 1+` is an (`, c)-block map. Let h = hψ : E∞ −→
F∞ be the continuous extension to the infinite path spaces given by

h(x)[0,k] = ψ(x[0,k+c])

for x ∈ E∞ and k > `. Note that c is a continuity constant for h relative to `. If
ax ∈ E∞, then

σ`+1
F (h(ax)) = σ`+1

F

(
ψ((ax)[0,`+c])ψ((ax)[1,`+c+1])` · · ·ψ((ax)[i,`+c+i])` · · ·

)
= ψ((ax)[1,1+`+c])` · · ·ψ((ax)[i,`+c+i])` · · ·
= ψ(x[0,`+c])` · · ·ψ(x[i,`+c+i])` · · ·

= σ`F

(
ψ(x[0,`+c]) · · ·ψ(x[i,`+c+i])` · · ·

)
= σ`F (h(x)).

Hence h is an (`, c)-sliding block code.

Suppose ψ satisfies the surjectivity condition and let y ∈ F∞. For each k > ` choose
α(k) ∈ E1+k+c such that ψ(α(k)) = y[0,k]. Pick x(k) ∈ ZE(α(k)). Since E∞ is compact the
sequence (x(k))k has a convergent subsequence; let x ∈ E∞ be its limit. Then h(x) = y
and h is surjective.

Next, assume ψ satisfies the injectivity condition and suppose h(x) = h(x′) for some
x, x′ ∈ E∞. Let k > ` and choose K > c in accordance with the injectivity condition.
Then

ψ(x[0,k+K]) = h(x)[0,k+K−c] = h(x′)[0,k+K−c] = ψ(x′[0,k+K]),

from which it follows that x[0,k] = x′[0,k]. As this is the case for every k > `, we see that
x = x′ and that h is injective.

For the other direction, let h : E∞ −→ F∞ be an (`, c)-sliding block code. Define
ψ : E1+`+c −→ F 1+` by

ψ(x[0,`+c]) = h(x)[0,`]
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for x ∈ E∞. This is well-defined by the choice of c and ψ is compatible with E and F .
Hence ψ is an (`, c)-block map. Furthermore, the (`, c)-sliding block code hψ induced by
ψ coincides with h.

Fix β ∈ F 1+k for some k > ` and let βy ∈ ZF (β). If h is surjective, we may choose
x ∈ E∞ such that h(x) = βy. Note that ψ(x[0,k+c]) = h(x)[0,k] = β. Hence ψ satisfies
the surjectivity condition.

If h is injective, then it is a homeomorphism onto its image; let φ : h(E∞) −→ E∞ be
the inverse homeomorphism. Fix k > `. Since φ is continuous there is cφ ∈ N such that
φ(h(x)[0,k+cφ]) = φ(h(x′)[0,k+cφ]) implies x[0,k] = x′[0,k] for x, x

′ ∈ E∞. If ψ(x[0,k+c+cφ]) =

ψ(x′[0,k+c+cφ]), for some x, x′ ∈ E∞, then

h(x)[0,k+cφ] = h(x′)[0,k+cφ]

by the choice of c and

x[0,k] = (φh(x))[0,k] = (φh(x′))[0,k] = x′[0,k]

by the choice of cφ. Hence ψ satisfies the injectivity condition.

Finally, it is straightforward to verify that if ψ : E1+`+c −→ F 1+` is an (`, c)-block map
and h is the (`, c)-sliding block code induced from ψ, then the (`, c)-block map ψh induced
from h coincides with ψ. �

We record the following immediate corollary.

Corollary C.3.9. Let `, c ∈ N. There is a one-to-one correspondence between the
collection of (`, c)-block maps ψ : E1+`+c −→ F 1+` satisfying the bijectivity condition
and the collection of (`, c)-conjugacies h : E∞ −→ F∞. For c = 0, there is a one-to-one
correspondence between the collection of bijective block maps ψ : E1+` −→ F 1+` and the
collection of (`, 0)-conjugacies h : E∞ −→ F∞ whose inverses are also (`, 0)-conjugacies.

Remark C.3.10. At the level of block maps, the index (`, c) can be interpreted as
memory and anticipation, respectively. For one-sided conjugacies, memory is not allowed
(cf. [68, Section 13.8]), however, we have seen that memory of the block map exactly
corresponds to eventual conjugacies. At the level of path spaces, the ` indicates the lag
of the eventual conjugacy while c indicates the continuity complexity of the associated
homeomorphism.

C.4. Moves on graphs

In this section, we relate eventual conjugacies with moves on the graph. We first recall
the definition of the out-split and in-split of [116] modified for graphs (cf. [68, 4]). For
simplicity, we only define these moves for finite graphs with no sinks.

Definition C.4.1 (Move (O)). Let G = (G0, G1, rG, sG) be a finite graph with no sinks.
Let v ∈ G0 be a vertex, let n ∈ N+ and partition s−1

G (v) into finitely many nonempty
sets

s−1
G (v) = E1

v q · · · q Env . (C.2)
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The out-split graph E of G at v with respect to the partition (C.2) is given by

E0 = {v1, . . . , vn} ∪ {w1 | w ∈ G0 \ {v}},
E1 = {e1, . . . , en | rG(e) = v} ∪ {f1 | rG(f) 6= v},

with source and range maps rE, sE : E1 −→ E0 given by

rE(ei) =

{
rG(e)1 if sG(e) 6= v,

vi if sG(e) = v

sE(ei) =

{
sG(e)1 if sG(e) 6= v,

vj if sG(e) = v, e ∈ E jv ,

for ei ∈ E1.

A directed graph is conjugate to its out-split graph, see [15, Corollary 6.2].
Next, we introduce a slight modification of the classical in-split graph, cf. [43].

Definition C.4.2 (Move (I-)). Let G = (G0, G1, rG, sG) be a finite graph with no
sinks. Let v ∈ G0 be a vertex and partition r−1

G (v) into n ∈ N+ possibly empty sets

Ev : r−1(v) = Ev1 q · · · q Evn. (C.3)

The in-split graph E of G at v with respect to the partition E is given by

E0 = {v1, . . . , vn} ∪ {w1 | w ∈ G0 \ {v}},
E1 = {e1, . . . , en | sG(e) = v} ∪ {f 1 | sG(f) 6= v}

with source and range maps sE, rE : E1 −→ E0 given by

sE(ei) =

{
sG(e)1 if sG(e) 6= v,

vi if sG(e) = v,

rE(ei) =

{
rG(e)1 if rG(e) 6= v,

vj if rG(e) = v, e ∈ Evj ,

for ei ∈ E1.

Remark C.4.3. The above definition is a modification of [4] in that we allow the parti-
tion sets to be empty, this is called Move (I-) in [43]. Note that this in-split introduces
new sources, one for each empty partition set. The out-split introduces no new sources.

Definition C.4.4 (Move (I+)). Let G be a finite graph with no sinks. An elementary
balanced in-split of G is a pair of in-split graphs E and F of G at the same vertex using
the same number of partition sets.

Suppose E and F are elementary balanced in-split graphs of G at v ∈ G0. We shall
see in Proposition C.4.6 that E and F are eventually conjugate. The labelings on the
vertices and edges (as in Definition C.4.2) define canonical bijections φ : E0 −→ F 0 and
ψ(0) : E1 −→ F 1 given by φ(viE) = viF for viE ∈ E0 and ψ(0)(eiE) = eiF for eiE ∈ E1,
respectively. In general, ψ(0) is not a block map since it is not compatible with E and
F . We shall identify the vertices and edges of E and F via these bijections.
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Given viE ∈ E0 we can perform an in-split of E at viE using n partition elements to
obtain a graph E(2). Similarily, we obtain a graph F(2) as an in-split of F at viF ∈ F 0

using n partition elements. Again there is a canonical identification of the vertices and
edges in the two graphs. Proposition C.4.6 below shows that E(2) and F(2) are eventually
conjugate and we say that they are a 2-step balanced in-split of G. Iterating this process,
we define an `-step balanced in-split recursively.

Definition C.4.5 (Iterated (I+)). Let G be a finite graph with no sinks and let ` ∈ N.
For ` > 2, two graphs E(`) and F(`) are `-step balanced in-split graphs of G if the following
holds:

• There are graphs E(`−1) and F(`−1) which are (` − 1)-step balanced in-splits of
G;
• E(`) is the in-split graph of E(`−1) at a vertex viE(`−1)

∈ E0
(`−1) using m partition

elements; and
• F(`) is the in-split graph of F(`−1) at the identified vertex viF(`−1)

∈ F 0
(`−1) using

m partition elements.
For ` = 0, we require that E(0) = G = F(0) and for ` = 1 the graphs E(1) and F(1) should
be elementary balanced in-splits of G.

For ` = 2, we depict this as

G

E(1) F(1)

E(2) F(2)

Proposition C.4.6. Let G be a finite graph with no sinks and let ` ∈ N. If E(`) and F(`)

are `-step balanced in-split graphs of G, then E(`) and F(`) are `-conjugate. In particular,
if E and F are elementary balanced in-split graphs of G, then E and F are 1-conjugate.

Proof. Suppose E and F are in-split graphs of G at v ∈ G0 using n sets in the
partitions

Ev : r−1
G (v) = Ev1 q · · · q Evn, Fv : r−1

G (v) = Fv1 q · · · q Fvn.

There is a canonical surjection qE : E2 −→ G2 given by

qE(eif j) = ef,

for eif j ∈ E2. The map simply forgets the indeces of the edges. Similarly, there is a
canonical surjection qF : F 2 −→ G2. We will construct a map ψ(1) : E2 −→ F 2 satisfying
qE = qF ◦ ψ(1).
If ef ∈ G2 and s(e) = v then there is a unique bijection θ : q−1

E (ef) −→ q−1
F (ef) which

preserves the label of the first edge, that is,

θ(eif j) = eif j
′
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for eif j ∈ q−1
E (ef). If instead s(e) 6= v, then the preimage of ef under qE is a singleton.

We may therefore define ψ(1) : E2 −→ F 2 as

ψ(1)(eif j) =

{
q−1
F (ef) if s(e) 6= v,

θ(eif j) if s(e) = v,

for eif j ∈ E2. This is bijective and compatible and satisfies qE = qF ◦ ψ(1). It therefore
induces a 1-conjugacy between E∞ and F∞.

Step 2. Set E(1) = E and F(1) = F and suppose E(2) is an in-split graph of E(1) at
wE ∈ E0

(1) while F(2) is an in-split graph of F(1) at an identified vertex wF ∈ F 0
(1) using

m sets in the partitions

Ew : r−1
E (w) = Ew1 q · · · q Ewm, Fw : r−1

F (w) = Fw1 q · · · q Fwm.
We will use the block map ψ(1) : E2

(1) −→ F 2
(1) constructed in Step 1 to define a 2-block

map ψ(2) : E3
(2) −→ F 3

(2). As before there is a canonical surjection qE(2)
: E3

(2) −→ F 3
(1)

given by
qE(2)

(eif jgk) = efg

for eif jgk ∈ E(2). The map simply forgets the indeces of the edges. Similarily, there is
a canonical surjection qF(2)

: F 3
(2) −→ F 3

(1). Since ψ(1) is compatible, we can extend it to
a 2-block map ψ̄(1) : E3

(1) −→ F 3
(1). We will define a map ψ(2) : E3

(2) −→ F 3
(2) such that

ψ̄(1) ◦ qE(2)
= qF(2)

◦ ψ(2).

If eif jgk ∈ E3
(2) and s(e) = wE, then there is a unique bijection θ : q−1

E(2)
(efg) −→

q−1
F(2)

(ψ̄(1)(efg)) which preserves the label of the first index, that is,

θ(eif jgk) = eif j
′
gk
′
,

for eif jgk ∈ E3
(2). If instead s(e) 6= wE, then s(ψ̄(1))(efg) 6= wF , and the preimage

of efg ∈ E(1) under qE(2)
is a singleton, and the preimage of ψ̄(1)(efg) under qF(2)

is a
singleton. We may therefore define ψ(2) : E3

(2) −→ F 3
(2) by

ψ(2)(eif jgk) =

{
q−1
F(2)

(ψ̄(1)(efg)) if s(e) 6= wE,

θ(eif jgk) if s(e) = wE,

for eif jgk ∈ E3
(2). Then ψ(2) is bijective and compatible and satisfies ψ̄(1) ◦ qE(2)

=

qF(2)
◦ ψ(2). It induces a 2-conjugacy between E∞(2) and F

∞
(2).

Step `: Assume now that E(`) and F(`) are `-step balanced in-split graphs of G. In
particular, there is an (` − 1)-block map ψ(`−1) : E`

(`−1) −→ F `
(`−1). This may be ex-

tended to a block map ψ̄(`−1) : E`+1
(`−1) −→ F `+1

(`−1), and there are canonical surjections
qE(`)

: E`+1
(`) −→ E`+1

(`−1) and qF(`)
: F `+1

(`) −→ F `+1
(`−1) as in Step 2. Using the same strategy

as above, we can define a block map ψ(`) : E`+1
(`) −→ F `+1

(`) which is bijective and compat-
ible and satisfies ψ̄(`−1) ◦ qE(`)

= qF(`)
◦ ψ(`). It therefore induces an `-conjugacy between

E∞(`) and F
∞
(`). �
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Next, we prove a converse to Proposition C.4.6. The proof uses ideas from [8] (see
also [62]).

Theorem C.4.7. Let E and F be finite directed graphs with no sinks. Then E and F
are eventually conjugate if and only if there exists a graph G such that E and F are
(conjugate to) the iterated balanced in-split graphs of G.

Proof. If E and F are the iterated balanced in-split graphs of G, then they are
eventually conjugate by Proposition C.4.6. For the converse implication suppose that
E and F are eventually conjugate. We may assume that there is a homeomorphism
h : E∞ −→ F∞ which is an `-conjugacy and whose inverse h−1 : F∞ −→ E∞ is also an
`-conjugacy and that c ∈ N is a continuity constant for h and h−1.

We start by constructing the graph G as follows: The set of vertices is given by

G0 = {
(
x[`,`+2c], y[`,`+2c]

)
| x ∈ E∞, y ∈ F∞, h(x) = y}

with the following transition rule: There is an edge from (x[`,`+c], y[`,`+c]) to (z[`,`+c], w[`,`+c])
if and only if x(`,`+c] = z[`,`+c) and y(`,`+c] = w[`,`+c).

For each j = 0, . . . , `, define the graph E(`−j) with the following set of vertices

E0
(j) = {

(
x[`−j,`+2c], y[`,`+2c]

)
| x ∈ E∞, y ∈ F∞, h(x) = y}

and a transition rule similar to the above. Define also the graph F(`−j) with vertices

F 0
(j) = {

(
x[`,`+2c], y[`−j,`+2c]

)
| x ∈ E∞, y ∈ F∞, h(x) = y}

and a similar transition rule. Then E(0) = G = F(0). We will show that E(`) and F(`) are
iterated balanced in-splits of G.

Whenever
(
x[`−j,`+2c], y[`,`+2c]

)
is a vertex in E(j) and(

ax[`−j,`+2c], y[`,`+2c]

)
,
(
a′x[`−j,`+2c], y[`,`+2c]

)
,

are distinct vertices in E(j+1), then the vertices have the same future and distinct pasts.
It follows that E(j+1) in an in-split graph of E(j) for j = 0, . . . , ` − 1. Fix a vertex(
x[`,`+2c], y[`,`+2c]

)
∈ G0 and consider the set

A = {z ∈ E∞ | z[`,`+2c] = x[`,`+2c], h(z)[`,`+2c] = y[`,`+2c]}.
It follows from the choice of c ∈ N that if z, z′ ∈ A and h(z)[0,`) = h(z′)[0,`) then
z[0,`) = z′[0,`). By a symmetric argument using h−1, there is a bijection between the words
of length ` which can be appended to x[`,`+2c] and the words of length ` which can be
appended to y[`,`+2c]. In particular, if ` = 1 then E(1) and F(1) are balanced in-splits of G.

Assume now that ` > 0 and take z, z′ ∈ A with z ∈ ZE(a[0,`)) and z′ ∈ ZE(a[0,`)),
for some words a[0,`), a

′
[0,`) ∈ E` with a[1,`) 6= a′[1,`). By the choice of c, we see that

h(σE(z))[0,`) 6= h(σE(z′))[0,`). It follows that there is a bijection between the set of words
of length `−1 which can be appended to x[`,`+2c] and the set of words of length `−1 which
can be appended to y[`,`+2c]. Continuing this process we see that for each j = 0, . . . , `,
the graphs E(`−j) and F(`−j) are iterated balanced in-splits of G. In particular, E(`) and
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F(`) are `-step balanced in-splits of G.

It remains to verify that E(`) can be reached from E by a finite sequence of out-splits,
and that F(`) can be reached from F by a finite sequence of out-splits.

For each i = 0, . . . , 2c, consider the graph E(`+i) with the set of vertices

(E(`+i))
0

=
{(
x[0,`+2c], y[`,`+i]

)
| h(x) = y

}
and an overlapping transition rule similar to the one described above. Then E(`) and
E[`+2c+1] are graph isomorphic, and it is well-known that E[`+2c+1] is conjugate to E
via a sequence of out-splits, see, e.g., [68, Section 2.4]. Furthermore, E(`+(i+1)) is
constructed from E(`+i) by a sequence of out-splits. Indeed, if

(
x(0,`+2c]z, w[`,`+i]

)
and(

x(0,`+2c]z
′, w′[`,`+i]

)
are distinct vertices which follow

(
x[0,`+2c], y[`,`+i]

)
in E(`), then the

latter vertex splits into distinct vertices
(
x[0,`+2c]z, y[`,`+i]w`+i

)
and

(
x[0,`+2c], y[`,`+i]w

′
`+i

)
in E(`+1) with identical pasts but distinct futures. A similar argument shows that F(`)

can be reached from F via a sequence of out-splits.
Hence E and F are conjugate to graphs which are the iterated balanced in-split of the
graph G. �

For ` = 0, we have an immediate consequence.

Corollary C.4.8. One-sided conjugacy among finite graphs with no sinks is generated
by out-splits (Move (O)).

Finally, we will show that `-step balanced in-split graphs can be connected by a sequence
of elementary balanced in-splits.

Theorem C.4.9. Eventual conjugacy of finite graphs with no sinks is generated by out-
splits (Move (O)) and elementary balanced in-splits (Move (I+)).

Proof. Suppose E and F are eventually conjugate graphs. We know from Theo-
rem C.4.7 that E and F are conjugate (via a sequence of out-splits) to graphs which are
`-step balanced in-splits of a graph G. We may assume that ` > 2. If E and F are `-step
balanced in-splits of G, we will show that they can be connected by a finite sequence of
elementary balanced in-splits.

Let (E(1), . . . , E(`)) and (F(1), . . . , F(`)) be an `-step balanced in-split connecting E(`) = E
and F(`) = F . More specifically, for i = 0, . . . , `−1, the graph E(i+1) is an in-split of E(i)

at the vertex v(i) using n(i) sets. By a slight abuse of notation, we use the same symbol
v(i) for the vertex in F(i) which is being in-split using n(i) sets to construct F(i+1). We let
qE(i+1)

: E0
(i+1) −→ E0

(i) denote the canonical surjection of vertices which simply forgets
the labeling.

Construct a graph E(`−1,`−2) as an in-split of E(`−1) at v(`−1) using n(`−1) sets where every
edge is placed in the first partition set. This introduces n(`−1) − 1 sources

{v2
(`−1), . . . , v

n(`−1)

(`−1) } ⊆ E0
(`−1,`−2),
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and the graphs E(`−1,`−2) and E(`) are elementary balanced in-splits of E(`−1), by con-
struction. Next we construct a graph E ′(`−2) as E(`−2) with sources attached. More
precisely,

(E ′(`−2))
0

= E0
(`−2) ∪ {v

j
(`−1) | j = 2, . . . , n(`−1)},

(E ′(`−2))
1

= E1
(`−2) ∪ {ej | j = 2, . . . , n(`−2), e ∈ s−1

E(`−1)
(v(`−1)),

with sE′
(`−2)

(ej) = vj(`−1) and rE′
(`−2)

(ej) = qE(`−1)
(rE(`−1)

(e)). The notation reflects the
fact that E(`−1,`−2) is an in-split of E(`−1) (at v(`−1)) and an in-split of E ′(`−2) (at v(`−2)).

If ` = 2, we apply a similar procedure to F(`) to obtain a graph F(`−2,`−1) = F(0,1), and
F(0,1) and F(2) are elementary balanced in-splits of F(1). Furthermore, E(1,0) and F(0,1)

are elementary balanced in-splits of G′ = E ′(0) = F ′(0) at v(0) using n(0) sets.

If ` > 2, construct the graph E(`−2,`−3) as the in-split of E ′(`−2) at v(`−2) using n(`−2) sets
where every edge is placed in the first partition set. This introduces n(`−2) − 1 sources,
and E(`−1,`−2) and E(`−2,`−3) are elementary balanced in-splits of E ′(`−2). Next construct
the graph E ′(`−3) as E(`−3) with additional sources attached as follows:

(E ′`−3)
0

= E0
`−3 ∪ {v

j
`−1 | j = 2, . . . , n(`−1)} ∪ {vk(`−2) | k = 2, . . . , n(`−2),

E(`−3)′
1 = E1

(`−3) ∪ {ej | j = 2, . . . , n(`−1), e ∈ s−1
E(`−1)

(v(`−1))}

∪ {fk | k = 2, . . . , n(`−2), f ∈ s−1
E(`−2)

(v(`−2))

with s(ej) = vj(`−1) and s(f
k) = vk(`−2), and

r(ej) = qE(`−2)
◦ qE(`−1)

(rE(`−1)
(e)), r(fk) = qE(`−2)

(rE(`−2)
(f)).

Note that E(`−2,`−3) is an in-split of E ′(`−3) (at v(`−3)).

Applying the same procedure starting in F(`) and iterating the process, we finally obtain
a graphG′ = E ′(0) = F ′(0) with

∑`−1
i=0(n(i)−1) sources attached, and graphs E(1,0) and F(0,1)

which are elementary balanced in-splits of G′. Therefore, E(`) and F(`) are connected by
2`− 1 elementary balanced in-splits. �

Remark C.4.10. For ` = 2, the procedure in the proof above looks like this

G

G′ F(1)E(1)

E(2) E(1,0) F(2)F(0,1)

We illustrate this in Example C.5.2.

Remark C.4.11. In the proof of Theorem C.4.9 it is crucial to make use of graphs with
sources in order to connect `-step balanced in-split graphs by elementary balanced in-
splits. This clearifies the utility of considering the class of finite graphs with no sinks
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(but potentially with sources) instead of the smaller class of essential finite graphs. It is
not clear if a similar result can be proved without the use of sources.

C.5. Examples

Example C.5.1. This example shows that one-sided conjugacy and eventual conjugacy
can be distinguished among graphs with finite path spaces. Consider the graphs

E : . .
a

. F : . . .
α

The adjacency matrices of the graphs have different total column amalgamations, so
they are not conjugate. However, we can construct E and F as a balanced in-split of
the graph

. . v

at the vertex v. Hence E and F are 1-conjugate. In fact, any bijection of the path
spaces which maps the loop in E to the loop in F is an explicit 1-conjugacy.

Example C.5.2. In this example we generate `-conjugate graphs. Consider the graph

G : .w .

.
v

e

where e is a path of length ` − 1. If we perform balanced in-splits along the vertices
of the path e ending at w we will obtain `-conjugate graphs. The case with ` = 1 and
v = w appeared in [12].
We illustrate the procedure when ` = 2 and e is a path of length one. A balanced in-split
at v is given by

E(1) : .w
1

..
v1

.
v2

e1 e2

F(1) : .w
1

..
v1

.
v2

e1 e2

Next, we perform a balanced in-split at w1 to get
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E(2) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1 e2,1

F(2) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1 e2,1

and the graphs E(2) and F(2) are 2-conjugate.
Finally, we use the procedure of the proof of Theorem C.4.9 for this example, see the
picture of Remark C.4.10. Observe that the graphs E(1,0) and F(0,1) below

E(1,0) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1
e2,1

F(0,1) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1
e2,1

are elementary balanced in-splits of

G′ : .w .

.
v

.

e

Hence E(2) and F(2) are connected by three elementary balanced in-splits.





ARTICLE D

C∗-simplicity and representations of topological full groups of
groupoids

Kevin Aguyar Brix and Eduardo Scarparo

Abstract
Given an ample groupoid G with compact unit space, we study the canonical repre-
sentation of the topological full group [[G]] in the full groupoid C∗-algebra C∗(G). In
particular, we show that the image of this representation generates C∗(G) if and only if
C∗(G) admits no tracial state. The techniques that we use include the notion of groups
covering groupoids.
As an application, we provide sufficient conditions for C∗-simplicity of certain topological
full groups, including those associated with topologically free and minimal actions of
non-amenable and countable groups on the Cantor set.

D.1. Introduction

Topological full groups associated to group actions on the Cantor set have given rise to
examples of groups with interesting new properties. See, e.g., [56] and [92] for recent
developments. In the context of groupoids, the topological full group was introduced by
H. Matui in [87], who investigated their relation with homology groups of groupoids.

Following a slightly different approach, V. Nekrashevych ([93]) defined the topological
full group [[G]] of an ample groupoid G with compact unit space to consist of the clopen
bisections U ⊆ G such that r(U) = s(U) = G(0). In this paper, we study the unitary
representation π : [[G]] −→ C∗(G) given by π(U) := 1U , for every U ∈ [[G]]. Let C∗π([[G]])
denote the C∗-algebra generated by π([[G]]) in C∗(G).
Our main result is as follows:

Theorem (Theorems D.4.3 and D.4.6). Let G be an ample groupoid with compact unit
space such that the orbit of each x ∈ G(0) has at least three points. Then span{1− 1U ∈
C∗(G) | U ∈ [[G]]} is a hereditary C∗-subalgebra of C∗(G). Moreover, C∗(G) admits no
tracial state if and only if C∗π([[G]]) = C∗(G).

This generalizes part of [53, Proposition 5.3] (see Remark D.4.7). If, in addition, G is
second countable, essentially principal and minimal, then C∗r(G) is stably isomorphic to
span{1− 1U ∈ C∗r(G) | U ∈ [[G]]} (Corollary D.4.4).
Given an ample groupoid G with compact unit space, let πr denote the canonical repre-
sentation of [[G]] in C∗r(G).

99
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Recall that a group is said to be C∗-simple if its reduced C∗-algebra is simple. Recently,
there has been a lot of progress in understanding this notion, and new characterizations
of C∗-simplicity have been obtained (see [10], [57], [59]). In [66], A. Le Boudec and
N. Matte Bon showed that a countable group of homeomorphisms on a Hausdorff space
X is C∗-simple if the rigid stabilizers of non-empty and open subsets of X are non-
amenable. By using this result, we show the following:

Theorem (Theorem D.5.2). Let G be a second countable, essentially principal, minimal
and ample groupoid with compact unit space. If

(i) G is not amenable, or
(ii) πr does not weakly contain the trivial representation,

then [[G]] is C∗-simple.

Consequently, the topological full group associated with a topologically free and minimal
action of a countable and non-amenable group on the Cantor set is C∗-simple (Corol-
lary D.5.4). For free actions, this was shown to be true in [66].

The paper is organized as follows. In Section D.2, we collect basic definitions about
groupoids, establish notation and present some relevant examples.
In Section D.3, we study groups covering groupoids. Given an ample groupoid G with
compact unit space, a subgroup Γ 6 [[G]] is said to cover G if G =

⋃
U∈Γ U . We

investigate under which conditions [[G]] covers G and show that C∗π([[G]]) admits a
character if and only if G(0) admits a G-invariant probability measure (Corollary D.3.7).
In Section D.4, we analyze the representation of the topological full group in the full
and the reduced groupoid C∗-algebras to reach the main theorem above.
In Section D.5, we apply the results of Sections D.3 and D.4 in order to study C∗-
simplicity of the topological full group.

D.2. Preliminaries

In this section we introduce relevant concepts and establish notation. Throughout the
paper, we let N = {0, 1, 2, 3 . . .} denote the non-negative integers.

D.2.1. Ample groupoids. A topological groupoid G is ample if G is locally com-
pact, Hausdorff, étale (in the sense that the range and source maps r, s : G −→ G are
local homeomorphisms onto G(0)) and the unit space G(0) is totally disconnected. The
orbit of a point x ∈ G(0) is the set G(x) := r(s−1(x)), and G is said to be minimal if
G(x) = G(0), for every x ∈ G(0).

A bisection is a subset S ⊆ G such that r|S and s|S are injective. Note that, if S is open,
then r|S and s|S are homeomorphisms onto their images. We will denote by S the inverse
semigroup of open bisections of G, and by C ⊆ S the sub-inverse semigroup of compact
open bisections. There is a homomorphism θ from S to the inverse semigroup of home-
omorphisms between open subsets of G(0), given by θU := r ◦ (s|U)−1 : s(U) −→ r(U).
As observed in [102], θ is injective if and only if G is essentially principal (that is,
Int{g ∈ G : r(g) = s(g)} = G(0)).



D.2. PRELIMINARIES 101

In the following we let Cc(G) be the collection of complex valued, continuous and com-
pactly supported functions on G. This is a ∗-algebra with the convolution product

f ? g(γ) =
∑
αβ=γ

f(α)g(β),

for f, g ∈ Cc(G) and γ ∈ G, and ∗-involution f ∗(γ) = f(γ−1), for f ∈ Cc(G) and γ ∈ G.

Let C∗r(G) and C∗(G) denote the reduced and full groupoid C∗-algebras, respectively.
For an introduction to (étale) groupoids and their C∗-algebras, the reader is refered to,
e.g., [99] or [109].
If G is minimal and essentially principal, then C∗r(G) is simple (see, e.g., [109, Proposi-
tion 4.3.7]).

A regular Borel measure µ on G(0) is G-invariant if µ(r(S)) = µ(s(S)), for each S ∈ S.
Clearly, µ is G-invariant if and only if µ(r(U)) = µ(s(U)), for each U ∈ C. The following
proposition is well-known.

Proposition D.2.1. Let G be an ample groupoid with compact unit space. The following
conditions are equivalent:

(i) G(0) admits a G-invariant probability measure;
(ii) C∗r(G) admits a tracial state;
(iii) C∗(G) admits a tracial state.

Proof. The proof of the implications (i) =⇒ (ii) =⇒ (iii) can be found in [99,
Theorem 3.4.4].
(iii) =⇒ (i): Let τ be a tracial state on C∗(G). Given U ∈ C, we have

τ(1r(U)) = τ(1U1U−1) = τ(1U−11U) = τ(1s(U)).

Thus, the probability measure on G(0) induced by τ |C(G(0)) is G-invariant. �

SupposeG(0) admits aG-invariant measure µ. Then there is a representation ρ : Cc(G) −→
B(L2(G(0), µ)) given by

(ρ(f)(ξ))(x) :=
∑

g∈r−1(x)

f(g)ξ(s(g)), (D.1)

for f ∈ Cc(G), ξ ∈ L2(G(0), µ) and x ∈ G(0).

Note that ρ|C(G(0)) is the representation by multiplication operators. Moreover, if U is a
compact open bisection, then

(ρ(1U)(ξ))(x) =

{
ξ(θ−1

U (x)), x ∈ s(U),

0, x /∈ s(U),

for ξ ∈ L2(G(0), µ) and x ∈ G(0).
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D.2.2. Topological full groups. Given an ample groupoid G with compact unit
space, the topological full group of G is

[[G]] := {U ∈ C | r(U) = s(U) = G(0)}.
This definition coincides with the one from [93]. In [87], however, H. Matui defines the
topological full group of G as θ([[G]]). Therefore, if G is essentially principal then θ is
injective and the two definitions coincide.
Two examples to have in mind are as follows.

Example D.2.2. Let ϕ be an action of a group Γ on a compact Hausdorff space X. As a
space, the transformation groupoid associated with ϕ is Gϕ := Γ×X equipped with the
product topology. The product of two elements (h, y), (g, x) ∈ Gϕ is defined if and only if
y = gx in which case (h, gx)(g, x) := (hg, x). Inversion is given by (g, x)−1 := (g−1, gx).
The unit space G(0) is naturally identified with X and Gϕ is ample if X is totally
disconnected.
The topological full group [[Gϕ]] consists of sets of the form

⋃n
i=1{gi} × Ai, where

g1, . . . , gn ∈ Γ and A1, . . . , An ⊆ X are clopen sets such that

X =
n⊔
i=1

Ai =
n⊔
i=1

giAi.

In particular, there is a canonical injective homomorphism Γ −→ [[Gϕ]] sending g 7−→
{g} ×X.

Example D.2.3. LetX := {0, 1}N be the full one-sided 2-shift and consider the Deaconu-
Renault groupoid

G[2] := {(y, n, x) ∈ X × Z×X | ∃l, k ∈ N : n = l − k, yl+i = xk+i ∀i ∈ N}.
The product of (z, n, y′), (y,m, x) ∈ G[2] is well-defined if and only if y′ = y in which
case (z, n, y)(y,m, x) := (z, n+m,x). Inversion is given by (y, n, x)−1 := (x,−n, y).
Let Xf be the set of finite words (including the empty word) on the alphabet {0, 1}.
Given α ∈ Xf , let |α| denote its length and let α := {x ∈ X | xi = αi, 0 6 i < |α|} be
the cylinder set of α. The topology on G[2] is generated by sets of the form

Z(β, α) := {(y, |β| − |α|, x) ∈ G[2] | y ∈ β, x ∈ α, y|β|+i = x|α|+i ∀i ∈ N},
for α, β ∈ Xf . This topology is strictly finer than the one inherited from the product
topology and G[2] is ample with compact unit space. Note as well that G[2] is minimal.
The topological full group [[G[2]]] consists of sets of the form

n⋃
j=1

Z(βj, αj), (D.2)

with X =
⊔n
j=1 α

j =
⊔n
j=1 β

j.
We would now like to recall the isomorphism between Thompson’s group V and [[G[2]]],
observed in [88] (see also [90] and [91]).
Thompson’s group V consists of piecewise linear, right continuous bijections on [0, 1)
which have finitely many points of non-differentiability, all being dyadic rationals, and
have a derivative which is a power of 2 at each point of differentiability.
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Given α, β ∈ Xf , let ψ(α) :=
∑

i αi2
−i ∈ [0, 1) and I(α) := [ψ(α), ψ(α) + 2−|α|). The

isomorphism from [[G[2]]] to V takes
⋃
j Z(βj, αj) as in (D.2) and sends it to the bijection

on [0, 1) which, restricted to I(αj), is linear, increasing and onto I(βj), for every j.

The next example shows that the short exact sequence induced by the quotient θ : [[G]] −→
θ([[G]]) is not always split. Since we are interested in studying the canonical represen-
tation of [[G]] in C∗(G), this illustrates why we have chosen to treat the topological full
group as bisections, rather than homeomorphisms on the unit space.

Example D.2.4. Let X := Z ∪ {∞} be the one-point compactification of Z and define
an action ϕ : Z y X by

ϕn(x) :=

{
(−1)nx, x ∈ Z,
∞, x =∞,

for n ∈ Z. Note that {1}×X is a compact open bisection in the transformation groupoid
Gϕ and that the homeomorphism

θ{1}×X(x) =

{
−x, x ∈ Z,
∞, x =∞,

for x ∈ X, has order 2.
Moreover, for any U ∈ [[Gϕ]] satisfying θU = θ{1}×X , there is an odd integer n such that
(n,∞) ∈ U . In particular, U has infinite order. Therefore, the short exact sequence
induced by θ : [[Gϕ]] −→ θ([[Gϕ]]) is not split.

D.2.3. Unitary representations. Let G be an an ample groupoid with compact
unit space. There is a unitary representation

π : [[G]] −→ C∗(G)

U 7−→ 1U ,

We will denote the analogous representation of [[G]] in C∗r(G) by πr.

If σ and η are unitary representations of a group Γ on unital C∗-algebras, then σ is said
to weakly contain η if ∥∥∥∥∥∑

i

αiη(gi)

∥∥∥∥∥ 6
∥∥∥∥∥∑

i

αiσ(gi)

∥∥∥∥∥ ,
for every

∑
i αigi ∈ CΓ. The trivial representation Γ −→ C satisfies g 7−→ 1, for every

g ∈ Γ.

Given a unitary representation η of Γ on a unital C∗-algebra A, we denote by C∗η(Γ)
the C∗-algebra generated by the image of η. Note that if η weakly contains the trivial
representation, then C∗η(Γ) admits a character whose kernel is span{1A − η(g) | g ∈ Γ}.

Proposition D.2.5. Let η be a unitary representation of a group Γ on a unital C∗-
algebra A. Then η weakly contains the trivial representation if and only if 1A /∈ span{1A−
η(g) | g ∈ Γ}.
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Proof. The forward implication is evident, so we only prove the backward one.
Let B := span{1A−η(g) : g ∈ Γ}. If 1A /∈ B, then, since B is a C∗-algebra, dist(1A, B) =
1. Hence, for every α1, . . . , αn ∈ C and g1, . . . , gn ∈ Γ, we have that∥∥∥∑αiη(gi)

∥∥∥ =
∥∥∥(∑αi

)
.1A −

∑
αi(1A − η(gi))

∥∥∥ > ∣∣∣∑αi

∣∣∣ ,
thus showing that η weakly contains the trivial representation. �

D.3. Groups covering groupoids

An ample groupoid G can always be covered by compact open bisections. We investigate
to which degree G can be covered by compact open bisections U which satisfy r(U) =
s(U) = G(0). We show that if Γ 6 [[G]] covers G and µ is a Γ-invariant probability
measure on G(0), then µ is also G-invariant.

Definition D.3.1. Given an ample groupoid G with compact unit space, we say that
a subgroup Γ 6 [[G]] covers G if G =

⋃
U∈Γ U .

The idea of covering a groupoid G by compact open bisections U such that r(U) =
s(U) = G(0) has already appeared in H. Matui’s study of automorphisms of G, cf. [87,
Proposition 5.7].
If G is essentially principal, then a subgroup Γ 6 [[G]] covers G if and only if, for each
open bisection S and x ∈ s(S), there are U ∈ Γ and a neighborhood W ⊆ s(S) of x
such that θU |W = θS|W .

Example D.3.2. If ϕ is an action of a group Γ on a compact Hausdorff and totally
disconnected space, then the copy of Γ in [[Gϕ]] covers Gϕ.

Example D.3.3. Recall that Thompson’s group T < V consists of the elements of
Thompson’s group V (see Example D.2.3) which have at most one point of discontinuity.
Let G[2] be the groupoid of Example D.2.3. Under the identification of V with [[G[2]]], T
covers G[2]. This follows from the fact that if I, J ⊆ [0, 1) are left-closed and right-open
intervals with endpoints in Z[1/2], then there exists a piecewise linear homeomorphism
f : I −→ J with a derivative which is a power of 2 at each point of differentiability and
with finitely many points of non-differentiability, all of which belong to Z[1/2].

Lemma D.3.4. Let G be an ample groupoid with compact unit space. If |G(x)| > 2 for
every x ∈ G(0), then [[G]] covers G.

Proof. Let g ∈ G. If r(g) 6= s(g), then there is a compact open bisection V
containing g and such that s(V )∩ r(V ) = ∅. Let U := V ∪ V −1 ∪ (G(0) \ (s(V )∪ r(V ))).
Then g ∈ U ∈ [[G]].
If r(g) = s(g), then there is h ∈ s−1(r(g)) such that r(hg) = r(h) 6= s(h) = s(hg) since
|G(r(g))| > 2. As before, there are U,U ′ ∈ [[G]] such that h ∈ U and hg ∈ U ′. Hence,
g ∈ U−1U ′ ∈ [[G]]. �

The purpose of the next example is to show that the above result may fail if one does
not make any assumption on the orbits.

Example D.3.5. Consider X := Z ∪ {±∞} equipped with the order topology and
let ϕ : Z y X be the action given by ϕt(x) := t + x, for t ∈ Z and x ∈ X. The
transformation groupoid Gϕ is ample with compact unit space.



D.3. GROUPS COVERING GROUPOIDS 105

Given x, z ∈ X we put [x, z] := {y ∈ X : x 6 y 6 z}. Then
H := {(t, x) ∈ Z× [0,+∞] : −t 6 x}

is an ample subgroupoid of Gϕ. Incidentally, this is the groupoid of the partial action
obtained by restricting ϕ to [0,+∞] (see [46] and [67] for more details). Observe that
|H((0,+∞))| = 1.
We claim that if U ∈ [[H]], then (1,+∞) /∈ U . Otherwise, there is t ∈ N such that
S := {1}× [t,+∞] ⊆ U and U \S ∈ C. But then s(U \S) = [0, t−1] and r(U \S) = [0, t]
contradicting the fact that r and s are injective on U \S. Hence, (1,+∞) /∈ U and [[H]]
does not cover H.

Recall that a probability measure µ on G(0) is G-invariant if µ(s(S)) = µ(r(S)) for every
S ∈ S. Moreover, if Γ 6 [[G]], then we say µ is Γ-invariant if it is invariant with respect
to the action θ.

Proposition D.3.6. Let G be an ample groupoid with compact unit space and Γ a
subgroup of [[G]]. Consider the following conditions:

(i) G(0) admits a G-invariant probability measure;
(ii) π|Γ weakly contains the trivial representation;
(iii) C∗π(Γ) admits a character;
(iv) G(0) admits a Γ-invariant probability measure.

Then (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). If Γ covers G, then (iv) =⇒ (i) and all conditions
are equivalent.

Proof. (i) =⇒ (ii): Suppose µ is aG-invariant measure onG(0) and let ρ : Cc(G) −→
B(L2(G(0), µ)) be the representation given by (D.1). The vector 1G(0) ∈ L2(G(0), µ) is
invariant for the representation ρ ◦ π|Γ : Γ −→ B(L2(G(0), µ)). Hence, π|Γ weakly con-
tains the trivial representation.

The implication (ii) =⇒ (iii) is evident.

(iii) =⇒ (iv): Let ϕ be a character on C∗π(Γ) and τ a state on C∗(G) which is an ex-
tension of ϕ. Then C∗π(Γ) is in the multiplicative domain of τ . Clearly, τ |C(G(0)) induces
a Γ-invariant probability measure on G(0).

Now, suppose Γ covers [[G]] and let us show that (iv) =⇒ (i). Let µ be a Γ-invariant
probability measure on G(0). We claim that µ is also G-invariant. Indeed, since Γ
covers G, given S ∈ C, we have that S =

⋃
U∈Γ(S ∩ U). As S is compact, there are

S1, . . . , Sn ∈ C and U1, . . . , Un ∈ Γ such that S =
⊔
i Si and Si ⊆ Ui for 1 6 i 6 n. In

particular, θUi(s(Si)) = r(Si) for every i. It follows that

µ(r(S)) =
n∑
i=1

µ(r(Si)) =
n∑
i=1

µ(s(Si)) = µ(s(S)).

Therefore, µ is a G-invariant probability measure on G(0). �

Corollary D.3.7. Let G be an ample groupoid with compact unit space. The following
conditions are equivalent:
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(i) G(0) admits a G-invariant probability measure;
(ii) π weakly contains the trivial representation;
(iii) C∗π([[G]]) admits a character;
(iv) G(0) admits a [[G]]-invariant probability measure.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) follow from Proposition D.3.6.
(iv) =⇒ (i): If, for each x ∈ G(0), |G(x)| > 2, then the result follows from Lemma D.3.4
and Proposition D.3.6.
If there is x ∈ X such that |G(x)| = 1, then point evaluation at x is a G-invariant
probability measure. �

D.4. Representations of topological full groups

In this section, we prove the main results of the article. We start with two technical
lemmas.

Lemma D.4.1. Let G be an ample groupoid with compact unit space. If S, T ∈ [[G]] and
W ⊆ G(0) is a clopen subset such that θS(W ),W, θ−1

T (W ) are mutually disjoint, then
(1− 1S)1W (1− 1T ) ∈ span{1− 1U ∈ Cc(G) | U ∈ [[G]]}.

Proof. We have

(1− 1S)1W (1− 1T ) = 1SWT + 1T−1WS−1 + 1W + 1G(0)\(θS(W )∪W∪θ−1
T (W ))

− (1T−1WS−1 + 1G(0)\(θS(W )∪W∪θ−1
T (W )) + 1SW + 1WT ).

The sets SWT, T−1WS−1,W and G(0) \ (θ−1
T (W ) ∪W ∪ θS(W )) are mutually disjoint

and their union is in [[G]]. This is also the case for the sets T−1WS−1, SW,WT and
G(0) \ (θS(W ) ∪W ∪ θ−1

T (W )) and so the result follows. �

In order to employ Lemma D.4.1, the following result will be useful.

Lemma D.4.2. Let G be an ample groupoid with compact unit space. If x ∈ G(0) and
y ∈ G(x) \ {x}, then

span{1− 1U | U ∈ [[G]]} = span{1L(1− 1S) | S, L ∈ [[G]], θS(x) = y} (D.3)

= span{(1− 1T )1R | T,R ∈ [[G]], θ−1
T (x) = y}. (D.4)

Proof. Let

B := span{1L(1− 1S) | S, L ∈ [[G]], θS(x) = y}
and take U ∈ [[G]]. We will show that 1− 1U ∈ B.
If θU(x) = x, we take L ∈ [[G]] such that θLU(x) = θL(x) = y. Then 1 − 1U =
1L−1(1L − 1) + 1L−1(1− 1LU) ∈ B.

On the other hand, if θU(x) 6= x, we take L ∈ [[G]] such that θL(x) = x and θLU(x) = y.
Then θL−1(x) = x so 1− 1L−1 ∈ B by the above. Hence 1− 1U = (1− 1L−1) + 1L−1(1−
1LU) ∈ B proving (D.3).

By taking adjoints and interchanging x and y, the equality in (D.4) follows from (D.3).
�
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The next result generalizes [107, Theorem 3.7], which was obtained in the setting of
Cantor minimal Z-systems.

Theorem D.4.3. Let G be an ample groupoid with compact unit space. If |G(x)| > 3
for every x ∈ G(0), then span{1− 1U ∈ C∗(G) | U ∈ [[G]]} is a hereditary C∗-subalgebra
of C∗(G).

Proof. Let B := span{1− 1U ∈ C∗(G) | U ∈ [[G]]}. We will first show that

BC(G(0))B ⊆ B. (D.5)

It suffices to prove that, given U, V ∈ [[G]], there is a basis W for G(0) consisting of
compact open sets satisfying (1− 1U)1W (1− 1V ) ∈ B, for each W ∈ W . Take x ∈ G(0)

and let y and z be distinct elements in G(x)\{x}. By Lemma D.4.2, there are n ∈ N and
L1, . . . , Ln ,U1, . . . , Un, V1, . . . , Vn and R1, . . . , Rn in [[G]] and α1, . . . , αn, β1, . . . , βn ∈ C
such that

1− 1U =
n∑
i=1

αi1Li(1− Ui), 1− 1V =
n∑
i=1

βi(1− 1Vi)Ri

with θUi(x) = y and θ−1
Vi

(x) = z for every i = 1, . . . , n. By Lemma D.4.1, we see that
(1 − 1U)1W (1 − 1V ) ∈ B for every sufficiently small compact open neighborhood W of
x. This proves (D.5).

Next we show that BC∗(G)B ⊆ B. It suffices to prove that B1WB ⊆ B, for every W
in a basis for G consisting of compact open sets. Given g ∈ G, take U ∈ [[G]] such that
θU(r(g)) 6= s(g). Then, for W ⊆ G(0) sufficiently small compact open neighborhood of
g, we have that θU(r(W )) ∩ s(W ) = ∅. Let

V := UW ∪ (UW )−1 ∪ (G(0) \ (θU(r(W )) ∪ s(W ))) ∈ [[G]].

Since θU(r(W )) ∩ s(W ) = ∅, we have UWV = θU(r(W )) ⊆ G(0) and, finally,

B1WB = B(1U1W1V )B = B1θU (r(W ))B ⊆ B

by (D.5). �

Corollary D.4.4. Let G be an ample groupoid with compact unit space. If |G(x)| > 3
for every x ∈ G(0), then span{1− 1U ∈ C∗r(G) | U ∈ [[G]]} is a hereditary C∗-subalgebra
of C∗r(G). If, in addition, G is second countable, essentially principal and minimal, then
span{1− 1U ∈ C∗r(G) | U ∈ [[G]]} is stably isomorphic to C∗r(G).

Proof. The first assertion follows directly from Theorem D.4.3 while the second
follows from simplicity of C∗r(G) and Brown’s theorem [16, Theorem 2.8]. �

The next example shows that Theorem D.4.3 does not hold without the hypothesis on
orbits.

Example D.4.5. Let X := Z∪{±∞} with the order topology and let ϕ be the action of
the infinite dihedral group ZoZ2 onX given by ϕ(n,j)(x) := n+(−1)jx, for (n, j) ∈ ZoZ2

and x ∈ X. Then |Gϕ(x)| > 2 for every x ∈ G(0)
ϕ .

By arguing as in Example D.3.5, one concludes that, given U ∈ [[Gϕ]], there is (n, j) ∈
Z o Z2 such that ((n, j),±∞) ∈ U .
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Let E : C∗(Gϕ) −→ C(G
(0)
ϕ ) be the canonical conditional expectation and let δ+∞ and

δ−∞ be the two states on C(G
(0)
ϕ ) given by point-evaluations at +∞ and −∞, respec-

tively. Then δ+∞ ◦ E and δ−∞ ◦ E are two distinct states on C∗(Gϕ) whose restrictions
to B = span{1 − 1U ∈ C∗(Gϕ) | U ∈ [[Gϕ]]} agree. Hence, B is not a hereditary
C∗-subalgebra of C∗(Gϕ).

By combining Theorem D.4.3 with the results of the previous section, we obtain the
following:

Theorem D.4.6. Let G be an ample groupoid with compact unit space. Assume that
|G(x)| > 3 for every x ∈ G(0). The following conditions are equivalent.

(i) C∗(G) admits no tracial state;
(ii) C∗π([[G]]) admits no character;
(iii) π does not weakly contain the trivial representation;
(iv) C∗π([[G]]) = C∗(G).

Proof. The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) follow from Proposition D.2.1 and
Corollary D.3.7.

(iii) =⇒ (iv): By Proposition D.2.5 and Theorem D.4.3, B := span{1− 1U | U ∈ [[G]]}
is a hereditary C∗-subalgebra of C∗(G) and 1C∗(G) ∈ B. Hence, B = C∗(G). Since
B ⊆ C∗π([[G]]) the result follows.

(iv) =⇒ (i): If C∗(G) has a tracial state, then G(0) admits an invariant probability
measure µ, cf. Proposition D.2.1. Since |G(x)| > 1 for each x ∈ G(0), µ cannot be a
point-evaluation. Let ρ be the representation of Cc(G) in B(L2(G(0), µ)) as in (D.1).
Then ρ extends to a representation of C∗(G) and of C∗π([[G]]). Note that the vector
1G(0) ∈ L2(G(0), µ) is invariant under ρ(π([[G]])) and thus under ρ|C∗π([[G]]). Now, if
C∗π([[G]]) = C∗(G), then C(G(0)) ⊆ C∗π([[G]]) but C1G(0) is not invariant under ρ|C(G(0)).
Indeed, if X ⊆ G(0) is any proper, non-empty subset which is compact and open, then
ρ(1X)(1G(0)) = 1X . Therefore C∗π([[G]]) 6= C∗(G). �

Remark D.4.7. In [53, Proposition 5.3], U. Haagerup and K. Olesen considered a
certain representation σ of Thompson’s group V in the Cuntz algebra O2 and showed
that C∗σ(V ) = O2. Under the identifications of V with [[G[2]]] (see Example D.2.3) and
O2 with C∗(G[2]), one can check that σ and π coincide. Hence, Theorem D.4.6 recovers
part of U. Haagerup and K. Olesen’s result.

We now state and prove a version of Theorem D.4.6 regarding C∗r(G).

Theorem D.4.8. Let G be an ample groupoid with compact unit space. Assume that
|G(x)| > 3 for each x ∈ G(0) and consider the following conditions:

(i) C∗r(G) admits no tracial state;
(ii) C∗πr([[G]]) admits no character;
(iii) πr does not weakly contain the trivial representation;
(iv) C∗πr([[G]]) = C∗r(G).

Then (i) =⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).
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Proof. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) are done as in the full case.
(iv) =⇒ (ii). If C∗πr(G) = C∗r(G) admits a character τ , then τ |C(G(0)) is a point evaluation
at some x ∈ G(0). As τ is a tracial state, it follows that for each compact and open
bisection S with x ∈ s(S), we have θS(x) = x. This contradicts the hypothesis that
|G(x)| > 1. �

The next example shows that the implication from (ii) to (i) in the above theorem fails
in general, even in the case when G is a principal, minimal and ample groupoid with
unit space homeomorphic to the Cantor set.

Example D.4.9. Let Γ be a non-amenable, countable and residually finite group. There
is a descending sequence (Γn)n of finite-index normal subgroups of Γ such that the
canonical map j : Γ −→

∏
Γ

Γn
is injective. Then X := j(Γ) is a topological group

homeomorphic to the Cantor set. Furthermore, the action ϕ by multiplication of Γ on
X is free, minimal and the Haar measure on X is Γ-invariant (actions of this sort were
studied in detail in [32]).
Then C∗r(Gϕ) admits a tracial state, whereas C∗πr([[Gϕ]]) does not admit a character,
since C∗r(Γ) embeds unitally in it and Γ is non-amenable.

D.5. C∗-simplicity of topological full groups

As an application of the above results, we provide conditions which ensure that the
topological full group of an ample groupoid is C∗-simple.

Recall that an ample groupoid G is amenable if there exists a net (µi)i in Cc(G) of
non-negative functions such that∑

h∈s−1(r(g))

µi(h) −→ 1 and
∑

h∈s−1(r(g))

|µi(h)− µi(hg)| −→ 0, (D.6)

for g ∈ G, uniformly on compact subsets of G. Amenability of G is equivalent to
nuclearity of C∗r(G), and it implies that C∗(G) and C∗r(G) are canonically isomorphic.
For a proof of these facts, see, e.g., [17] and [104]. R. Willett constructed in [115]
an example of non-amenable groupoid G such that C∗(G) is canonically isomorphic to
C∗r(G).

Lemma D.5.1. Let G be an ample groupoid with compact unit space. If Γ 6 [[G]] is an
amenable subgroup which covers G, then G is amenable.

Proof. We are going to construct functions satisfying (D.6). Let K ⊆ G be a
compact subset and let ε > 0. As Γ covers G and is amenable, there are V1, . . . , Vn ∈ Γ
such that K ⊆

⋃n
i=1 Vi and a finite subset F ⊆ Γ such that

|F4FVi|
|F |

< ε,
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for 1 6 i 6 n. Let µ := 1
|F |
∑

U∈F 1U . For x ∈ G(0) we have
∑

h∈s−1(x) µ(h) = 1. Given
g ∈ K, take Vi such that g ∈ Vi. Then, for h ∈ s−1(r(g)),

|F ||µ(h)− µ(hg)| =

∣∣∣∣∣∑
U∈F

1U(h)− 1UV −1
i

(h)

∣∣∣∣∣
6

∣∣∣∣∣∣
∑

U∈F\(FV −1
i )

1U(h)−
∑

U∈F\(FVi)

1UV −1
i

(h)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

U∈F∩FV −1
i

1U(h)−
∑

U∈F∩FVi

1UV −1
i

(h)

∣∣∣∣∣∣
6

∑
U∈F\(FV −1

i )

1U(h) +
∑

U∈F\(FVi)

1UV −1
i

(h).

Consequently,∑
h∈s−1(r(g))

|µ(h)− µ(hg)| 6 1

|F |
∑
h

 ∑
U∈F\(FV −1

i )

1U(h) +
∑

U∈F\(FVi)

1UV −1
i

(h)


=
|F \ (FV −1

i )|+ |F \ (FVi)|
|F |

< ε.

Therefore, G is amenable. �

The converse implication is not true in general, see, e.g., Remark D.5.5.

Suppose a group Γ is acting on a set X and let U ⊆ X be a subset. The rigid stabilizer
of U with respect to the action is the subgroup ΓU 6 Γ of the elements which pointwise
fix the complement X \ U . Let W ⊆ G(0) be non-empty and clopen and let GW =
r−1(W ) ∩ s−1(W ) be the restricted groupoid. If [[G]]W is the rigid stabilizer of W
with respect to the action θ : [[G]] y G(0), then there is a surjective homomorphism
[[G]]W −→ [[GW ]] given by restriction. If G is essentially principal this map is an
isomorphism.

Theorem D.5.2. Let G be a second countable, essentially principal, minimal and ample
groupoid with compact unit space. If

(i) G is not amenable, or
(ii) πr does not weakly contain the trivial representation,

then [[G]] is C∗-simple.

Proof. Assume [[G]] is not C∗-simple. By [66, Theorem 3.7], there exists a non-
empty and clopen W ⊆ G(0) such that the rigid stabilizer [[G]]W

∼= [[GW ]] is amenable.
Clearly, GW is an essentially principal, minimal and ample groupoid with compact unit
space. By Lemma D.5.1, GW is thus amenable and C∗r(GW ) is nuclear.

Since C∗r(G) is simple, the projection 1W ∈ C∗r(G) is full. It therefore follows from [87,
Lemma 5.2] and Brown’s theorem ([16, Theorem 2.8]) that the full corner C∗r(GW ) =
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1WC∗r(G)1W is stably isomorphic to C∗r(G). Consequently, C∗r(G) is nuclear, and G is
amenable.

Furthermore, amenability of [[GW ]] implies that W admits a [[GW ]]-invariant probabil-
ity measure. Corollary D.3.7 and Proposition D.2.1 then imply that C∗r(GW ) admits a
tracial state. As C∗r(GW ) is simple, the tracial state is faithful. Hence, C∗r(GW ) is stably
finite and, consequently, so is C∗r(G).

Now, [100, Theorem 6.5] (or [9, Theorem 5.14]) implies that C∗r(G) admits a tracial
state. Since C∗r(G) = C∗(G), we conclude from Corollary D.3.7 again that π = πr
weakly contains the trivial representation. �

The next corollary is an immediate consequence of Theorems D.4.8 and D.5.2.

Corollary D.5.3. Let G be a second countable, essentially principal, minimal and
ample groupoid with compact unit space. If C∗r(G) admits no tracial state, then [[G]] is
C∗-simple.

Recall that an action of a group Γ on a topological space X is topologically free if
Int{x ∈ X | gx = x} = ∅, for each g ∈ Γ \ {e}. The following result generalizes [66,
Theorem 4.38], which assumed freeness of the action.

Corollary D.5.4. Let ϕ be a topologically free and minimal action of a countable and
non-amenable group Γ on the Cantor set. Then [[Gϕ]] is C∗-simple.

Proof. Since C∗r(Γ) embeds unitally in C∗πr([[Gϕ]]), non-amenability of Γ implies
that πr does not weakly contain the trivial representation. �

Remark D.5.5. In [44], G. Elek and N. Monod constructed a free and minimal action
ϕ of Z2 on the Cantor set such that [[Gϕ]] is not amenable. This example is not covered
by Theorem D.5.2, and we do not know whether [[Gϕ]] is C∗-simple.
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