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List of Papers xi

1 Introduction 1
1.1 Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Power Markets and Optimization . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Bilevel Models in Power Markets . . . . . . . . . . . . . . . . . . . . . . 8

2 Efficiently solving Linear Bilevel Programming Problems using Off-the-shelf
Optimization Software 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Linear bilevel programming problem . . . . . . . . . . . . . . . . . . . . 16
2.3 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Test and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 The Impact of Short-term Variability and Uncertainty on Long-Term Power
Planning 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Investment optimisation and aggregation of data . . . . . . . . . . . . . . 34
3.4 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 A Parametric Programming Approach to Bilevel Optimization with lower-
level Variables in the upper Level 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Bilevel programming with lower-level primal and dual information in the

upper level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Parametric programming . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Reformulation and linearization . . . . . . . . . . . . . . . . . . . . . . 61

v



4.6 Strategic investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 A Parametric Programming Approach to Bilevel Transmission Investment
Problems in Power 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 The parametric programming method . . . . . . . . . . . . . . . . . . . 79
5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 89

A Appendix to Chapter 2 101
A.1 Results tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B Appendix to Chapter 3 105
B.1 Nomenclatures of the case studies . . . . . . . . . . . . . . . . . . . . . 105
B.2 MILP formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C Appendix to Chapter 5 111
C.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



Summary

Bilevel optimization problems are very applicable to economic models in general and in
energy in particular. However, they are theoretically NP -hard and, thus, solving them
implies a large computational burden. This thesis tries to overcome the computational
burden of bilevel optimization models, particularly in energy models. Hence, it allows for
implementation of long-term strategic problems.

The thesis consists of five chapters. The first is an introduction to the methodologies of
optimization and background of the energy market. It is followed by four self-contained
chapters.

The second chapter Efficiently solving Linear Bilevel Programming Problems using
Off-the-shelf Optimization Software provides an overview of existing state-of-the-art so-
lution methods to bilevel optimization methods. Furthermore it presents a new method to
linear bilevel optimization problems based on a reformulation to mathematical programs
with equilibrium constraints (MPEC). First, a regularization method is used to solve the
MPEC using an off-the-shelf, non-linear solver to find a local optimal solution. Local
optimal information is then used to reduce the computational burden of solving a mixed-
integer reformulation of the MPEC to global optimality using off-the-shelf mixed-integer
solvers. Extensive numerical studies are presented using a wide range of randomly gen-
erated examples. The results show that our method outperforms existing state-of-the-art
methods in terms of computational burden and global optimality.

The third chapter The Impact of Short-term Variability and Uncertainty on Long-Term
Power Planning considers specific long-term models in power planning. This chapter
investigates methods for aggregating data and reducing model size to obtain tractable
yet close-to-optimal investment planning decisions. We consider including short-term
variability and/or uncertainty and analyze under which circumstances these effects are
relevant. In particular, we consider a generation expansion problem and compare various
representations of short-term variability and uncertainty of demand and renewable supply.
Numerical results are derived from a case study on the Danish power system. Our analysis
shows that the inclusion of representative days is crucial for the feasibility and quality of
long-term power planning decisions.

The fourth chapter A Parametric Programming Approach to Bilevel Optimization with
lower-level Variables in the upper Level examines linearly constrained bilevel program-
ming problems in which the upper-level objective function depends on both the lower-
level primal and dual optimal solutions. We argue that a parametrized upper-level objec-
tive may be non-convex and even discontinuous. However, when the upper-level objective
is affine in the lower-level primal optimal solution, the parametric function is piece-wise
affine. We show how this property facilitates the application of parametric programming
and demonstrate how the approach allows for decomposition of a separable lower-level
problem. When the upper-level objective is bilinear in the lower-level primal and dual
optimal solutions, we also provide an exact linearization method that reduces to a single-
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level mixed-integer linear programming (MILP) formulation of the bilevel problem. We
present two numerical case studies of strategic investment in electricity markets and we
benchmark the proposed method against state-of-the-art MILP and non-linear solution
methods for bilevel optimization problems. Results indicate computational advantages
over several standard solvers. We furthermore show that the parametric programming ap-
proach succeeds in solving problems to global optimality for which standard methods can
fail.

The fifth chapter A Parametric Programming Approach to Bilevel Transmission In-
vestment Problems in Power is an extension of Chapter 4 where the proposed parametric
programming method is applied to a transmission investment problem. Specifically, we
formulate the stochastic transmission expansion problem of a merchant investor collect-
ing congestion rents that are determined by the differences between nodal market prices.
The corresponding bilevel program can be recast as an MPEC, but does not allow for
linearization and reformulation by mixed-integer linear programming. Instead, the para-
metric programming approach from chapter 4 is adapted to handle binary upper-level
variables.
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Resumé

To-niveau optimeringsproblemer er meget anvendelige i økonomiske modeller generelt
og især indenfor energi, men teoretisk set er de NP -svære og derfor er løsningen af dem
beregningsmæssigt svært. Denne afhandling prøver at overvinde beregningsbyrden ved
to-niveau optimeringsproblemer især inden for energimodeller og tillader som resultat
implementeringen af langsigtede strategiske problemer.

Denne afhandling består af fem kapitler. Det første er en introduktion til optimer-
ingsmetoder og baggrunden i energimarkeder. Derefter følger fire selvstændige kapitler.

Det andet kapitel med titlen Efficiently solving Linear Bilevel Programming Problems
using Off-the-shelf Optimization Software giver et overblik over eksisterende state-of-the-
art løsningsmetoder til to-niveau optimeringsproblemer. Derudover præsenteres en ny
løsningsmetode til lineære, to-niveau optimeringsproblemer baseret på omformulering til
et matematisk program med ligevægtsbetingelser (MPEC). Først bliver en reguleringsme-
tode brugt til at løse et MPEC med off-the-shelf heltalsløsningssoftware. Vi præsenterer
omfattende numeriske studier med et bredt udvalg af tilfældigt genererede eksempler.
Resultaterne viser at vores metode giver bedre resultater end eksisterende state-of-the-art
metoder med hensyn til beregningsbyrden og globalt optimalitet.

Det tredje kapitel The Impact of Short-term Variability and Uncertainty on Long-
Term Power Planning betragter specifikt langsigtede planmodeller med energi. Kapitlet
undersøger metoder til at aggregere data og reducere størrelsen af modellen for at opnå
løselige investeringsbeslutninger, som er tæt på optimale. Vi betragter inklusionen af ko-
rtsigtet variabilitet og/eller usikkerhed og analyserer under hvilke omstændigheder disse
effekter er relevante. Specifikt betragter vi et problem om udvidelse af elproduktionen og
sammenligner forskellige reprænsentationer af forbrugets og den fornyende energis kort-
sigtet variabilitet og usikkerhed. Vi præsenterer numeriske resultater fra et casestudie i det
danske elsystem. Vores analyse viser at inklusionen af reprænsentative dage er afgørende
for en mulig kvalitetsløsning i langsigtede energiplanlægningsbeslutninger.

Det fjerde kapitel A Parametric Programming Approach to Bilevel Optimization with
lower-level Variables in the upper Level undersøger lineært betingede to-niveau program-
meringsproblemer, hvor det øverste niveaus objektfunktion afhænger af både primære og
duale optimale løsninger fra det nederste niveau. Vi argumenterer for at en parametris-
eret objektfunction i det øverste niveau kan være ikke-konveks og endda diskontinuert.
Dog vil den parametriske funktion være stykkevis lineær hvis det øverste niveaus ob-
jektfuntion er affin med hensyn til den primære optimale løsning i det nederste niveau.
Vi viser hvordan denne egenskab gør det muligt at anvende parametrisk programmering,
og vi demonstrerer hvordan en sådan tilgang gør det muligt at dekomponere det ned-
erste niveaus problem, hvis det er seperabelt. Hvis det øverste niveaus objektfunction er
bilineær i det nederste niveaus primære og duale optimale løsninge, så giver vi også en ek-
sakt lineariseringsmetode, der reducerer to-niveau problemet til et enkelt-niveaus, lineært
heltalsproblem. Vi præsenterer to numeriske casestudier om strategiske investeringer i
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elmarkeder, og vi benchmarker den foreslåede metode mod state-of-the-art heltals- og
ikke-lineære metoder til løsning af to-niveau optimeringsproblemer. Resultaterne viser en
beregningsmæssig fordel over adskillige standard løsningsmetoder, og vi viser endvidere
at parametrisk programmeringstilgangen lykkedes med at løse problemer, som standard-
metoder ikke kan.

Kapitel 5 A Parametric Programming Approach to Bilevel Transmission Investment
Problems in Power er en udvidelse af kapitel 4, hvor den foreslåede parametrisk pro-
grammeringsmetode er anvendt til et investeringsproblem om transmission. Specifikt
formulerer vi et stokastisk transmissionudvidelsesproblem fra en profitmaksimerende in-
vestors perspektiv. Investoren profiterer af trængselsafgiften givet ved forskellen mellem
knudepunktspriser. Det tilsvarende to-niveaus optimeringsproblem kan blive omformuleret
til et MPEC, men tillader ikke linearisering og omformulering til et lineært heltalsprob-
lem. I stedet bliver den parametrisk programmeringstilgang fra kapitel 4 tilpasset til at
håndtere binær variable i det øverste niveau.
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Chapter 1

Introduction

This chapter provides an overview of the four problems addressed in Chapters 2, 3, 4
and 5, including the relevant background and the applied methodology. First, we intro-
duce optimization and bilevel optimization problems in general, as this subject is present
in Chapters 2, 4 and 5. In Chapters 2 and 4, solution methods to bilevel optimization
problems are presented in more detail. Second, we present a short overview of power
markets and the connection to optimization. Two standard problems in power markets,
the economic dispatch and optimal power flow, are presented. Finally, in Section 1.3, we
introduce some applications of BPPs to power markets and the computational challenges
these problems pose. As an example, a generation expansion problem is presented. The
four main chapters are self-contained articles, except for the common reference list and
appendix at the end of the thesis.

1.1 Bilevel Optimization
This section starts with defining optimization in general, before defining stochastic opti-
mization and bilevel optimization.

1.1.1 Optimization
Optimization is the process of selecting a best element (or decision) in a set with regard
to a specified criterion. Given a function f : P → R with P ⊆ Rn, we wish to find
an element x∗ ∈ P such that f(x∗) ≤ f(x) for all x ∈ P in the case of minimization,
or f(x∗) ≥ f(x) for all x ∈ P in the case of maximization. In general, this thesis
considers minimization problems. Such an x∗ ∈ P is called an optimal solution while x
is called the vector of decision variables. In constrained optimization, the feasible set P is
often described by inequality and/or equality constraints, g(x) ≤ 0 and/or h(x) = 0 with
g : Rn → Rq and h : Rn → Rr. The optimization problem is usually written as (Boyd
and Vandenberghe, 2009)

min f(x) (1.1a)
s.t. g(x) ≤ 0 (1.1b)

h(x) = 0. (1.1c)

Note that 0 is used for a vector of all zeroes of appropriate dimensions. The complexity of
the optimization problem is determined by the functions f, g and h. For example, if f, g

1



1. INTRODUCTION

and h are linear functions, (1.1) is a linear programming problem. If f and g are convex
functions and h is an affine function, then (1.1) is a convex optimization problem. Note
that linear optimization problems are a special case of convex optimization problems.

1.1.2 Stochastic Optimization

As part of the three functions f, g and h there are fixed, problem-dependent parameters
that are exogenous to the optimization model. The optimal solution naturally depend on
these parameters. In some cases, however, these parameters are stochastic and uncertain,
and rather than a fixed value, we have a probability distribution to describe them. As an
example, stochastic parameters in this thesis are production levels of non-dispatchable
renewable power sources in Chapter 3 and uncertain demand in Chapter 5. To cope
with this uncertainty, we introduce stochastic optimization. A simple and common model
of this type is a two-stage stochastic optimization problem where the decision variables
are divided into two time dependent stages, a first stage and a second stage (Birge and
Louveaux, 2011). The first-stage variables are decisions taken before realization of the
stochastic parameters while the second-stage variables are decisions taken after the out-
come of the stochastic parameters is known.

To describe a two-stage stochastic programming problem in more detail, let ω be the
outcome of random events and Ω be the set of all outcomes. The second-stage random
data is dependent on ω and denoted by random variable ξ(ω) with a corresponding prob-
ability measure. For simplicity, we consider a linear two-stage stochastic program. The
general formulation is given by (Birge and Louveaux, 2011):

min cTx+ Eξ[min q(ω)Ty(ω)] (1.2a)
s.t. Ax = b (1.2b)

T (ω)x+Wy(ω) = h(ω) (1.2c)
x ≥ 0, y(ω) ≥ 0. (1.2d)

Here, x ∈ Rn1 is the first-stage decision variables, y(ω) ∈ Rn2 is the second-stage de-
cision variables. ξ(ω) = (q(ω), h(ω), T1(ω), T2(ω), . . .) contains the second-stage data,
where T1(ω), T2(ω), . . . are the rows of T (ω). The objective function in (1.2a) minimizes
the first-stage costs, given by cTx, and the expected (optimal) second-stage costs, given
by Eξ[min q(ω)Ty(ω)]. Note, that in the second-stage expected costs, there is also a min-
imization, since we have decision y(ω) to be made after the realization of the random
event. We have first-stage constraints (1.2b) and second stage constraints (1.2c). The
parameters in the latter depend on the random event ω and the first-stage decision x.

In stochastic programming, the stochastic parameters are usually assumed with dis-
crete probability distributions, i.e., where the outcomes of the parameters can be described
as a finite number of scenarios with corresponding probabilities. We write the K scenar-
ios as ξ1, ξ2, . . . , ξK with corresponding probabilities ρ1, ρ2, . . . , ρK . The expectation in
the (1.2a) then becomes a weighted sum over all scenarios and the two-stage stochastic
program can be solved as one large linear programming problem. In the cases where ξ has
infinitely many outcomes, scenarios can be generated to match the moments of the prob-
ability distribution, enabling an approximated solution using the above solution approach
(Birge and Louveaux, 2011).

2



1.1. BILEVEL OPTIMIZATION

1.1.3 Bilevel Optimization
In this thesis, we focus on bilevel optimization problems, defined as optimization prob-
lems for which some of the variables are constrained to be optimal solutions to another
optimization problem (Dempe et al., 2015). A bilevel optimization problem has two levels
of optimization which we write as

min f(x, y∗) (1.3a)
s.t. g1(x, y∗) ≤ 0 (1.3b)

h1(x, y∗) = 0 (1.3c)
y∗ ∈ argmin{f2(x, y) (1.3d)

s.t. g2(x, y) ≤ 0 (1.3e)
h2(x, y) = 0}. (1.3f)

The decision variables are divided into two sets, upper-level variables x ∈ Rn1 and lower-
level variables y ∈ Rn2 . We likewise have two sets of constraints: the upper-level con-
straints (1.3b) and (1.3c) and the lower-level constraints (1.3e) and (1.3f). However, the
problem has a hierarchical structure, as the upper-level problem includes the optimal so-
lutions to the lower-level problem, as indicated in the constraint (1.3d) but not vice versa.
Instead, in the lower-level problem, the upper-level variables are fixed parameters and not
decision variables.

With a bilevel optimization problem as (1.3), the constraint region is defined as (Bard,
1998)

Ω = {(x, y) ∈ Rn1×n2 : g1(x, y) ≤ 0, h1(x, y) = 0, g2(x, y) ≤ 0, h2(x, y) = 0}, (1.4)

i.e., the points that satisfy both the upper-level and lower-level constraints. However, since
we have two optimization problems, we rather consider the projection of the constraint
region on Rn1 defined as the upper-level feasible region which is

Ω(X) = {x ∈ Rn1 : ∃y : (x, y) ∈ Ω}, (1.5)

i.e., the set of upper-level variables which renders the lower-level problem feasible. As
the lower-level considers the upper-level variable as a parameter, the lower-level feasible
region is defined for x fixed as

Ω(x) = {y ∈ Rn2 : g2(x, y) ≤ 0, h2(x, y) = 0}. (1.6)

As indicated by this definition, the optimal solution of the lower-level depends on the
upper-level variables. That is, for each feasible x, the so-called lower-level rational reac-
tion set is

Π(x) = {y∗ ∈ Rn2 : y∗ ∈ argmin(f2(x, y) : y ∈ Ω(x))}, (1.7)

i.e., the set of optimal solutions for a fixed x. Finally, the feasible region of (1.3) is also
called the inducible (or induced) region (IR) and is defined as (Bard, 1998)

IR = {(x, y) ∈ Rn1×n2 : x ∈ Ω(X), y ∈ Π(x)}. (1.8)

The IR is defined as the set of feasible upper-level variables x and the corresponding
lower-level optimal solutions, given by the set Π(x).

3



1. INTRODUCTION

With this definition, the bilevel optimization problem (1.3) can be reformulated as

min f1(x, y) (1.9a)
s.t. (x, y) ∈ IR. (1.9b)

For the bilevel optimization problem to be well-defined, we consider the lower-level
rational reaction set Π(x) in further detail. This is the set of solutions to an optimization
problem, and thus not necessarily a singleton for a fixed x. However, the problem (1.3)
is not well-defined for multiple solutions to the lower-level problem. To overcome this,
two solutions exist: the pessimistic and the optimistic solutions (Dempe et al., 2015).
The optimistic solution to a bilevel optimization problem is determined by a solution
which minimizes the upper-level objective function. This is easy to implement since no
restrictions have to be made on Π(x). The pessimistic solution considers a y∗ ∈ Π(x)
that maximizes the upper-level objective function, that is, the worst-case solution to the
lower-level problem given an upper-level decision x.

For a solution to a bilevel optimization problem to exist, we impose the following
assumptions: f1 is continuous, Π(x) is bounded and Ω is non-empty and bounded (Bard,
1998). These are natural assumptions as the opposite could render the bilevel optimization
problem infeasible or unbounded. With these assumptions, the IR can be proven to be
a bounded and closed set. With IR as a bounded and closed set, (1.9) is equivalent to
minimizing a continuous function over a compact set and the existence of a solution is
given by Weierstrass’ extreme value theorem (Bard, 1998).

The history of bilevel optimization problems traces back to the so-called Stackelberg
games (Stackelberg, 1934) describing a strategic game in economics with two players:
a leader who moves first and a follower who moves subsequently. These two players
solve the upper-level and lower-level optimization problems in the bilevel optimization
problem, respectively, and as such the terms are used interchangeably in this thesis. In a
game theoretic sense, the leader has perfect information about the follower, and thus can
anticipate the follower’s action. From the point of view of the leader, the problem then
chooses x and thereby the follower chooses y and, as a result, the joint solution is the best
possible for the leader.

1.1.4 Computational Complexity
In computational complexity theory, computational problems are evaluated by their inher-
ent difficulty and are subsequently divided into complexity classes. Two main complexity
classes are P and NP (Cormen et al., 2009). P is defined as the class of problems for
which computational time is polynomial in the input size of the problem. Loosely stated,
P is the class of problems that are tractable and can be solved efficiently (Goldreich,
2008). NP is defined as the class of problems for which a solution can be verified in a
time polynomial in the input size. Clearly, P ⊆ NP but whether or not P = NP remains
an unsolved problem (Cormen et al., 2009). As a further (informal) classification, prob-
lems are called NP -hard if they are at least as hard as the hardest problems in NP . This
loose definition also means that NP -hard problems are not necessarily in NP . NP -hard
problems are considered some of the computationally hardest problems to solve (Cormen
et al., 2009).

The bilevel optimization problem is proven be NP -hard (Jeroslow, 1985), meaning
that solving a bilevel optimization problem is a heavy computational burden. For this
reason, developing fast solution methods to bilevel optimization problems has significant
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1.1. BILEVEL OPTIMIZATION

practical implications, although, to a theoretical limit, as per the NP -hard classification.
In this thesis, Chapter 2 proposes a general method to solve linear bilevel optimization
problems using standard solvers and proves effectiveness through extensive numerical
studies. Chapter 4 presents a more specialized algorithm that allows for decomposition
of certain bilevel optimization problems and demonstrates computational advantages over
state-of-the-art methods.

1.1.5 MPEC Reformulation

A related problem to the bilevel optimization problem is a Mathematical Program with
Equilibrium Constraints (MPEC). The MPEC is a two-level optimization problem with
an upper-level optimization problem and, contrary to the bilevel optimization problem, a
lower-level complementary problem. A complementarity problem, or equilibrium prob-
lem, is a system of equations and inequalities that relates to equilibrium or optimality
conditions (Gabriel et al., 2013). The bilevel optimization problem is equivalent to an
MPEC if the lower-level problem can be replaced by necessary and sufficient Karush-
Kuhn-Tucker (KKT) optimality conditions (Gabriel et al., 2013).

The KKT conditions are a set of equations and inequalities that determine the optimal
solutions of an optimization problem (Boyd and Vandenberghe, 2009). These conditions
are necessary if the optimization problem satisfies certain constraint qualifications. One
of the most common constraint qualifications is the linear independence constraint qual-
ification, where the gradients of h(x) = 0 and the binding constraints of g(x) ≤ 0 are
supposed to be linear independent. Linear optimization problems qualify for this con-
straint qualification. The KKT conditions are sufficient if the Hessian of the Lagrangian
is positive-definite (Gabriel et al., 2013). With necessary and sufficient KKT conditions,
the bilevel optimization problem can be reformulated as an MPEC. In particular, (1.3)
becomes

min f(x, y) (1.10a)
s.t. g1(x, y) ≤ 0 (1.10b)

h1(x, y) = 0 (1.10c)
g2(x, y) ≤ 0 (1.10d)
h2(x, y) = 0 (1.10e)
λ ≥ 0 (1.10f)
∇yf2(x, y) + λ∇yg2(x, y) + µ∇yh2(x, y) = 0 (1.10g)
λg2(x, y) = 0, (1.10h)

where λ holds the dual variables to (1.3e) and µ holds the free dual variables to (1.3f).
Note that we use the notation ∇y for the gradient with respect only to the lower-level
variables y. The constraints (1.10h) are the complementary slackness constraints, making
(1.10) a non-linearly constrained problem, irrespective of the original constraints.

Many popular solution approaches to bilevel optimization problems are based on re-
formulating the problem to an MPEC. Chapter 2 provides a detailed overview of existing
solution methods and proposes a method to efficiently solve linear bilevel optimization
problems. Chapter 4 proposes a method that does not reformulate the bilevel optimization
problem to an MPEC but rather solves the bilevel optimization problem using parametric
programming.
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1.2 Power Markets and Optimization

Electricity markets are similar to other markets in many ways. Consumers and producers
submit buying and selling offers to the market, and then the market clearing settles the
price and the volume e.g. by matching an aggregated supply curve with an aggregated
demand curve. However, electricity is characterized by physical laws that further com-
plicates the market process. Electricity cannot be efficiently stored and, furthermore, an
imbalance between demand and supply leads to undesired blackouts or melt downs of
e.g., cables. Thus, the supply and demand must match at all times, leading to a need for
real-time optimization of the market. To handle uncertainty of production and/or demand
under such constraints, many markets have implemented sequential market clearing. First,
a day-ahead spot market is cleared the day ahead of production, to allow scheduling of
slow units that need several hours to turn on/off or change production level. Then a subse-
quent intra-day or balancing market is run close to real-time operations in order to handle
imbalances that have occurred in the meantime, often changes in demand or wind power
production etc. This is the way the markets function in e.g. U.K., Germany and the Nordic
Countries (Nord Pool AS, 2017).

Throughout this thesis, we assume inelastic demand of power. This is a common
assumption in energy economics, meaning that consumers do not change consumption in
response to price changes (Sorokin et al., 2012). In many power markets, risk connected
to price changes is not passed on to the consumer, and as such, the consumer has no
incentive to change consumption according to electricity prices.

The market-clearing optimization is handled by a system operator (SO) that receives
the producers supply bid and then dispatches the production units to meet demand at
the lowest cost. Because of inelastic demand, cost minimization is equal to maximizing
social welfare or minimizing social costs (Gabriel et al., 2013). The market-clearing opti-
mization problem is called the economic dispatch (ED) where the solution is to dispatch
the generation units in the order of the lowest generation costs to the highest cost. To
model the ED problem, we introduce a set of time periods T = {1, . . . , T} and a set of
generation units G = {1, . . . , G}. The simplest model has linear cost functions for the
generation units, i.e. units has marginal cost cg, and a demand for each time period of
dt. The decision variables are the production of each generation unit in each time pe-
riod, given by pgt, and limited by maximum capacity pmaxg . The formulation of the ED is
(Sorokin et al., 2012)

min
∑
t∈T

∑
g∈G

cgpgt (1.11a)

s.t.
∑
g∈G

pgt = dt ∀t ∈ T (1.11b)

0 ≤ pgt ≤ pmaxg ∀g ∈ G, t ∈ T (1.11c)

The constraint (1.11b) is the balancing constraint for each time period, ensuring supply
is equal to demand, and (1.11c) is the capacity constraint for each generation unit. Both
the objective function and constraints are linear functions, and so (1.11) is a linear pro-
gramming problem. In a linear programming problem, we have strong duality (Boyd and
Vandenberghe, 2009). Hence for an optimal primal solution, we have an optimal dual so-
lution with each variable corresponding to a constraint. The dual solution to the balancing
constraint (1.11b) is the price of electricity in each time period.
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The ED problem in (1.11) does not account for transmission of electricity to and from
different generation and demand locations. Such transportation is facilitated by the power
network which is subject to physical constraints on transmission cables and transformers.
Electricity current running through a cable can both be alternating current (AC) or direct
current (DC). From an optimization point of view, however, DC is the simplest to model
and often AC networks are approximated by a DC formulation. When taking a power
network into consideration, the ED becomes an Optimal Power Flow (OPF) problem. To
model this, we introduce a set of nodes, N = {1, . . . , N}. At each node i, we have
demand for each time period, dit, and a set of units, G(i). In a DC power network, the
flow on each line is determined by the voltage angles at the sink and source node and by
the susceptance of the transmission line, given by parameter Bij (where i is the source
node and j is the sink node). The voltage angles are determined by decision variables
θit and the corresponding flow is defined as variable fijt from node i to node j. N (i) is
the set of all nodes connected to node i. The OPF model is formulated as (Sorokin et al.,
2012)

min
∑
t∈T

∑
g∈G

cgpgt (1.12a)

s.t.
∑
g∈G(i)

pgt −
∑
j∈N (i)

fijt = dit ∀t ∈ T , ∀i ∈ N (1.12b)

fijt = Bij(θit − θjt) ∀t ∈ T ,∀i ∈ N ,∀j ∈ N (i) (1.12c)
0 ≤ pgt ≤ pmaxg ∀t ∈ T ,∀g ∈ G (1.12d)

− fmaxij ≤ fijt ≤ fmaxij ∀t ∈ T ,∀i ∈ N ,∀j ∈ N (i) (1.12e)

− π ≤ θit ≤ π ∀t ∈ T ,∀i ∈ N (1.12f)
θit = 0 ∀t ∈ T , i = ref (1.12g)

The objective function is again to minimize production costs. Meeting the demand at
each node is enforced by constraint (1.12b) where the flow to and from the nodes is
included. The power flow from node i to node j is defined in constraint (1.12c). The
power generation is limited by capacity for each generating unit in constraint (1.12d).
The flow through each line is constrained by (1.12e). The voltage angles at each node is
restricted by constraint (1.12f) and finally (1.12g) defines a reference node in the network
to be zero.

Both (1.11) and (1.12) are simple models of the ED and OPF. We could add phys-
ical constraints on the generation units such as ramp limits on the production changes
from a time period to the next. Due to the increase of non-dispatchable renewable en-
ergy sources, such as wind and photo-voltaic, uncertainty of the power production has
an increasing effect on operation and the market clearing. In short-term operations, such
details are often added to the model, resulting in a unit commitment model or a stochastic
unit commitment model, using stochastic programming. In the unit commitment model,
ramping limits as well as minimum up- and downtimes for the generating units are added
to the model (Sorokin et al., 2012). In a stochastic unit commitment problem, the pro-
duction from wind and or PV energy is first realized after a dispatch schedule is obtained,
meaning some adjustments in dispatch is needed to balance the stochastic production
(Pritchard et al., 2010).

In economics, market-clearing prices and quantities constitute an equilibrium deter-
mined by the intersection of the aggregated demand and supply curves. The demand curve
here is a vertical line since we have assumed inelastic demand. The aggregated supply
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curve, however, is supplied by the producers’ supply bids. Producers have market power
if they can affect the market outcome by changing their supply bid in order to obtain a
greater profit. In this thesis, however, we assume perfect competition, making all produc-
ers price-takers, i.e., unable (or unaware of their ability to) affect the market by changing
their supply. In this case, the producers bid their marginal cost and the supply curve is
equal to the cost function of producing. Perfect competition is a common assumption
in economic models (Sorokin et al., 2012). With supply curves equal to production cost
functions, it can be shown that finding an equilibrium has exactly the same outcome as if
the market is solved using social welfare maximization (Gabriel et al., 2013).

1.2.1 Long-Term Planning
Long-term decisions, e.g., investments in generation and/or transmission, in power mar-
kets has to include a sufficient amount of data to represent operation and market clearing
throughout the planning horizon. These data are usually historical or simulated data of
demand, stochastic production, etc., with a typical time resolution of hours. Long-term
planning models are categorized as static if they include decisions for a single future year
and dynamic if they involve several decisions over a span of years. In both cases, includ-
ing hourly data for the entire planning horizon can result in intractable models. Instead,
representative hours or days are used, where each hour or day is weighted by the number
of hours or days that it represents. Including more representative hours or days results
in more precise models at the expense of tractability. This trade-off is examined in de-
tail in Chapter 3 with focus on power markets with increased penetration of renewable
non-dispatchable power sources and the challenges therein.

As an example of a long-term planning model, we extend the ED model from (1.11)
to include a long term decision on capacity expansion. We assume the perspective of a
central planer who wishes to build new capacity of one or more power generation units.
We divide the generation units into subsets of existing units, GE , and candidate units, GC .
With these subsets, we have G = GE ∪ GC . The objective is to minimize the total costs
of the power market, including investment costs from new capacity. The investment costs
are linear with marginal cost cIg and the decision variables xg are the investment variables
for g ∈ GC . The planning problem is then

min
∑
g∈GC

cIgxg +
∑
t∈T

∑
g∈G

cgpgt (1.13a)

s.t.
∑
g∈G

cgpgt = dt ∀t ∈ T (1.13b)

0 ≤ pgt ≤ pmaxg ∀g ∈ GE,∀t ∈ T (1.13c)

0 ≤ pgt ≤ xg ∀g ∈ GC , ∀t ∈ T . (1.13d)

This is a linear program and relatively simple and could be extended with more detailed
constraints or include a power network as (1.12). If so, including hours to correctly rep-
resent the planning horizon could result in an intractable problem as seen in Chapter 2.

1.3 Bilevel Models in Power Markets
In the long-term planning model in (1.13), the perspective is of a central planner whose
objective is aligned with the market clearing objective of minimizing costs. A long-term
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planning model with another perspective, e.g. a strategic decision from a market player,
cannot be formulated as a similar single-level model. Instead, we adopt bilevel optimiza-
tion and let a leader take a strategic decision with the market clearing acting as a follower.
This is possible, since as we have seen in Section 1.2, market-clearing in power markets
can be formulated as an optimization problem. The bilevel optimization problem has
a market-clearing problem as the lower-level problem and a strategic decision maker in
the upper-level problem anticipating the market outcome. Such strategic decisions could
be supply bidding, investment decisions, policy adjustments etc. Strategic decisions are
fixed parameters in the lower-level problem and the market feedback of any decision is
captured in the structure of the bilevel model. For example, if an investment is made in
a new generation unit in order to profit from selling power, this new capacity will poten-
tially change the order of the market dispatch. Consequently, the price that determines
sales profits also changes.

A common determinant for a strategic decision is the price of electricity in all time pe-
riods of the planning horizon. As noted above, the price can be found as the dual variable
to the balancing constraint of a market-clearing problem. When the lower-level problem
meets the conditions of strong duality, the optimal dual solution can be interpreted as the
price of electricity and be included in the upper-level problem. However, including lower-
level dual solutions in the upper-level problem introduces some complications, especially
if dual solutions are included in a bilinear term. This is often the case when considering
revenue from producing or transporting power, as revenue is given as production or power
flow, lower-level primal variables, times price, lower-level dual variables. If a bilevel op-
timization problem with a bilinear term in the upper-level objective is reformulated as
an MPEC, the bilinear term is again present in the objective of the MPEC. Such a non-
linear objective is difficult to solve to global optimality. Chapter 4 further examines such
problems in detail and presents a solution method to deal with these.

1.3.1 Generation Expansion Example

As an example of a bilevel optimization problem in a power market, we consider a gen-
eration expansion problem. A similar problem also serves as a case study in Chapter 4.
The perspective is that of a power producer who wishes to invest in new capacity of one
or more power generation units. We use (1.11) as a lower-level market clearing, but di-
vide the generation units into subsets of existing competing units, GE , existing units that
belong to the investor, GI , and candidate units that can be built by the investor, GC . With
these subsets, we have G = GE ∪ GI ∪ GC . The objective in the upper-level investment
problem is to maximize profits from new and existing generation units. Revenues are off-
set by construction costs of the new generation units, given as linear costs with marginal
cost cIg. The bilevel formulation is then

min
∑
g∈GC

cIgxg +
∑
t∈T

∑
g∈GI∪GC

(cg − λ∗t )p∗gt (1.14a)

s.t. xg ≥ 0 ∀g ∈ GC (1.14b)
p∗gt are primal optimal solutions to (1.15) (1.14c)

λ∗t are dual optimal solutions to (1.15) (1.14d)
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where the lower level problem is formulated as

min
∑
t∈T

∑
g∈G

cgpgt (1.15a)

s.t.
∑
g∈G

cgpgt = dt : λt ∀t ∈ T (1.15b)

0 ≤ pgt ≤ pmaxg ∀g ∈ GE ∪ GI ,∀t ∈ T (1.15c)

0 ≤ pgt ≤ xg ∀g ∈ GC ,∀t ∈ T . (1.15d)

Note, that xg acts as the maximum capacity for the newly installed units and is a parameter
in (1.15). In the upper-level objective function, we have the bilinear revenue term, λ∗tp

∗
gt.

Under some assumptions this term can be linearized using the KKT conditions and strong
duality of the lower-level problem. These cases are specified in Chapter 4.

Often, the time resolution of the lower-level problem is hours, meaning that we solve
the ED for all hours of the planning horizon of the investment problem. Simplifications
can be made by clustering the hours into representative hours, as mentioned in Section
1.2.1. When clustering the hours, however, some inaccuracies can occur when choosing
the representation period and which constraints to include in the ED. These trade-offs are
discussed and analyzed through numerical studies in Chapter 2

To solve such a generation expansion problem, Chapter 4 introduces a method that
allows for decomposition of the lower-level problem into subproblems for each hour.
This method involves solving more but smaller problems using parametric programming
and can have significant computational advantages.
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Chapter 2

Efficiently solving Linear Bilevel
Programming Problems using
Off-the-shelf Optimization Software
S. PINEDA, H. BYLLING AND J.M. MORALES

Chapter Abstract

A lot of optimization models in engineering are formulated as bilevel prob-
lems. Bilevel optimization problems are mathematical programs where a
subset of variables is constrained to be an optimal solution of another math-
ematical program. Due to the lack of optimization software that can directly
handle and solve bilevel problems, most existing solution methods reformu-
late the bilevel problem as a mathematical program with complementarity
conditions (MPCC) by replacing the lower-level problem with its necessary
and sufficient optimality conditions. MPCCs are single-level non-convex op-
timization problems that do not satisfy the standard constraint qualifications
and therefore, non-linear solvers may fail to provide even local optimal so-
lutions. In this paper we propose a method that first solves iteratively a set
of regularized MPCCs using an off-the-shelf non-linear solver to find a local
optimal solution. Local optimal information is then used to reduce the com-
putational burden of solving the Fortuny-Amat reformulation of the MPCC
to global optimality using off-the-shelf mixed-integer solvers. This method is
tested using a wide range of randomly generated examples. Obtained results
show that our method outperforms existing general purpose methods in terms
of computational burden and global optimality.

2.1 Introduction

Decentralized environments are characterized by multiple decisions makers with diver-
gent objectives that interact with each other in a hierarchical organization. In the simplest
case with only two decision makers, one player, called the leader, makes her decisions
first and then the other player, called the follower, determines the optimal reaction to the
leader’s decisions. This non-cooperative sequential game is known as Stackelberg game
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and was first investigated in Stackelberg (1934). A Stackelberg game can be mathemati-
cally formulated as a bilevel problem (BLP) as follows Bard (1998); Dempe (2002):

min
x

F (x, y) (2.1a)

s.t. Gi(x, y) ≥ 0, ∀i (2.1b)
min
y

f(x, y) (2.1c)

s.t. gj(x, y) ≥ 0, ∀j (2.1d)

where F (x, y) and f(x, y) are, respectively, the leader’s and follower’s objective func-
tions, and Gi(x, y) and gj(x, y) are the leader’s and follower’s constraint functions, re-
spectively. Even if F (x, y), f(x, y), Gi(x, y) and gj(x, y) are all linear functions, solving
bilevel problem (2.1) is a very challenging task because its feasible region is non-convex
in most of the cases. Furthermore, the BLP is proven to be NP-hard Jeroslow (1985); Bard
(1991) and therefore the solution methods to solve BLP are computationally intensive. A
review of the different solution approaches to solve the bilevel problem (2.1) can be found
in Dempe (2003); Colson et al. (2005a, 2007).

From a practical point of view, methods to solve linear bilevel problems can be di-
vided into two main categories. The first category includes those methods that make use
of dedicated solution algorithms to solve bilevel problems Bialas and Karwan (1984); Shi
et al. (2005a); Calvete et al. (2008); Li and Fang (2012); Sinha et al. (2013); Jiang et al.
(2013); Bard and Falk (1982); Bard and Moore (1990); Hansen et al. (1992); Shi et al.
(2006). While these methods are usually efficient and ensure global optimality, they in-
volve substantial additional and ad-hoc coding work to be implemented in commercially
available off-the-shelf optimization software such as CPLEX IBM Corp. (2015). The
second category includes the methods that can be implemented in or in combination with
general purpose optimization software without any further ado Fortuny-Amat and Mc-
Carl (1981); Ruiz and Conejo (2009); Gabriel and Leuthold (2010); Siddiqui and Gabriel
(2013); Scholtes (2001); Ralph and Wright (2004); White and Anandalingam (1993); Hu
and Ralph (2004); Lv et al. (2007); Fletcher and Leyffer (2004, 2002). Although these
methods are sometimes preferred due to their straightforward implementation, they may
involve a high computational burden or only guarantee local optimality. The method pro-
posed in this paper belongs to this second group and is shown to outperform existing
methods within its category in terms of computational efficiency and global optimality.

An important property of a linear bilevel problem (LBLP) with a bounded constraint
region is that its solution set contains at least one extreme point of such a constraint region
Bialas and Karwan (1984). Therefore, the first dedicated methods to solve LBLP were
based on vertex enumeration. For instance, the Kth best method that computes global
solutions of LBLP by enumerating the extreme points of the polyhedral constraint region
is introduced in Bialas and Karwan (1984); Candler and Townsley (1982). Authors of
Shi et al. (2005a) propose an extended Kth best approach when the upper-level constraint
functions are of an arbitrary linear form. Although quite robust, the Kth best method is
computationally costly, specially for large-size problems.

If the lower-level problem (2.1c)-(2.1d) is convex and satisfies some constraint qual-
ification, problem (2.1) can be reformulated as a one-level optimization problem by re-
placing the lower-level problem with its KKT optimality conditions as follows Dempe
and Zemkoho (2012); Dempe et al. (2015):

min
x,y,λj

F (x, y) (2.2a)
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s.t. Gi(x, y) ≥ 0, ∀i (2.2b)
gj(x, y) ≥ 0, ∀j (2.2c)

∇yf(x, y)−
∑
j

λj∇ygj(x, y) = 0 (2.2d)

λj ≥ 0, ∀j (2.2e)
λj · gj(x, y) = 0, ∀j (2.2f)

where λj denotes the dual variable corresponding to each lower-level constraint (2.1d).
Although (2.2) is the most commonly used approach, there exist alternative single-level
reformulations of bilevel problems. Also under convexity assumptions, a bilevel problem
(BLP) can be replaced by its primal KKT reformulation that does not need additional
variables λj but requires determining the normal cone to the follower’s feasible region for
each value of x. Alternatively, problem (2.1) can be recast as a nonsmooth and noncon-
vex single-level optimization problem using an optimal value function of the lower-level
problem. Further details about these two approaches can be found in Dempe et al. (2015).

Problem (2.2) is a mathematical program with complementarity conditions (MPCC)
Outrata (2000). As proven in Dempe and Dutta (2010), if (x∗, y∗, λ∗j) is a global optimal
solution of problem (2.2), and the lower-level problem (2.1c)–(2.1d) is convex and satis-
fies some constraint qualification, then (x∗, y∗) is a global optimal solution of the original
bilevel problem (2.1). Besides, if the lower-level problem is convex and Slater’s condition
holds, the local optimal solutions of problem (2.2) are also local optimal solutions of the
bilevel problem (2.1) Dempe and Dutta (2010). Note that these conditions are always
satisfied for the linear bilevel problems analyzed in this paper.

Note also that although constraint (2.2d) remains affine provided that f and gj are
linear or convex quadratic functions, problem (2.2) is non-convex due to the nonlinear
complementarity conditions (2.2f). Besides, as shown in Scheel and Scholtes (2000),
problem (2.2) violates the Mangasarian-Fromovitz constraint qualification at every feasi-
ble point of the problem, which makes both the formulation of (necessary and sufficient)
optimality conditions and the computation of global optimal solutions difficult.

Taking the single-level optimization problem (2.2) as a starting point, we can also
find methods within the two categories previously discussed. For example, some dedi-
cated methods take advantage of the intrinsically combinatorial structure of problem (2.2)
to handle the complementarity constraints using ad-hoc branch-and-bound algorithms as
first proposed in Bard and Falk (1982) and further developed in Bard and Moore (1990);
Hansen et al. (1992); Shi et al. (2006). In these methods, the root node solves the prob-
lem obtained by removing the complementarity conditions (2.2f). If at a given node one
complementarity constraint j′ is not satisfied, two new nodes are added to the tree, one
with the additional constraint λj′ = 0 and the other with the constraint gj′(x, y) = 0.
By repeating this process and solving the linear problems obtained after each branching,
all possible combinations that satisfy the complementarity conditions are evaluated and
therefore, obtaining the global optimal solution is guaranteed.

Alternatively, Fortuny-Amat and McCarl propose in Fortuny-Amat and McCarl (1981)
a mixed-integer reformulation of problem (2.2) that can be directly implemented using
off-the-shelf optimization software. This approach replaces the complementarity condi-
tions (2.2f) with the following set of disjunctive constraints:

λj ≤ zjM, ∀j (2.3a)
gj(x, y) ≤ (1− zj)M, ∀j (2.3b)
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where zj is a binary variable and M a sufficiently large positive number. Note that
for the linear case, problem (2.2) is reformulated as a mixed-integer linear programming
problem that can be solved to optimality using conventional branch-and-bound or branch-
and-cut techniques available in most mixed-integer optimization solvers. For this rea-
son, this approach is the most commonly used to solve LBLP in practical applications.
Notwithstanding this, the equivalence between problem (2.2) and its mixed-integer re-
formulation using (2.3) is only true provided that the value of M is large enough so
that constraints (2.3a) and (2.3b) are only binding for zj = 0 and zj = 1, respectively.
On the other hand, choosing a too large constant M may create numerical instabilities
due to scalability issues. Hence, finding suitable values of M a priori is a delicate task.
Although some ad-hoc methods have been proposed to solve this issue for particular ap-
plications of bilevel programming Ruiz and Conejo (2009); Gabriel and Leuthold (2010),
tuning the large constants M for general LBLP requires a nontrivial trial-and-error pro-
cess. In fact, in references Motto et al. (2005); Hasan et al. (2008); Garcés et al. (2009);
Baringo and Conejo (2011); Wogrin et al. (2011); Pozo and Contreras (2011); Kazem-
pour et al. (2011); Kazempour and Conejo (2012); Ruiz et al. (2012); Kazempour and
Conejo (2012); Baringo and Conejo (2012b, 2013); Jenabi et al. (2013); Wogrin et al.
(2013); Pozo et al. (2013); Zugno et al. (2013); Pisciella et al. (2014); Baringo and Conejo
(2014); Lorenczik et al. (2014); Maurovich-Horvat et al. (2014); Morales et al. (2014);
Ruiz and Conejo (2014); Valinejad and Barforoushi (2015); Moiseeva et al. (2015) the
authors solve either MPEC or bilevel problems using the Fortuny-Amat reformulation
approach, but without explaining how the large constants M are determined.

Another approach to solve (2.2) as a mixed-integer problem consists in reformulating
the complementarity conditions using Special Order Sets (SOS) Siddiqui and Gabriel
(2013). Special Order Sets of type 1 (SOS1) are a set of variables for which at most one
member can be strictly positive. Therefore, constraint (2.2f) can be equivalently expressed
as:

sj(1) = λj, ∀j (2.4a)
sj(2) = gj(x, y), ∀j (2.4b)

where the pair {sj(1), sj(2)} is defined as a SOS1 for each j. The main advantages of
this approach are that no large constant is required and that it can be also directly solved
using commercially available mixed-integer optimization solvers. On the other hand,
this method can also be computationally very expensive, especially for large models, as
proven in Section 2.5.

As previously mentioned, optimization problem (2.2) is not regular since it fails to
comply with the standard Mangasarian-Fromovitz constraint qualification and therefore,
off-the-shelf non-linear solvers may even fail to find a local optimal solution. For in-
stance, if the non-linear solver is based on a sequential quadratic programming algorithm
(SQP), the quadratic programming subproblems may be degenerated because the original
problem (2.2) has no strictly feasible points Fletcher and Leyffer (2004). To overcome
this issue, a regularization approach to solve mathematical programs with complementar-
ity conditions (MPCC) was first introduced in Scholtes (2001) and further investigated in
Ralph and Wright (2004). This method proposes to replace each complementarity con-
straint (2.2f) by:

λj · gj(x, y) ≤ t, ∀j (2.5)

where t is a small non-negative scalar. In doing so, problem (2.2) becomes a parametrized
nonlinear optimization problem that typically satisfies constraint qualifications and is thus
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easier to solve. Alternatively, all inequalities in (2.5) can be replaced by a single inequality
as follows: ∑

j

λj · gj(x, y) ≤ t (2.6)

Using (2.6) instead of (2.5) may improve the numerical behaviour of nonlinear solvers
since the number of inequality constraints is reduced. In either case, reference Scholtes
(2001) provides the necessary conditions under which a local minimizer of the original
problem (2.2) is a limit point of a curve of stationary points of the parametrized nonlin-
ear problem as t tends to 0. Although this regularization method significantly reduces
the computational burden of solving problem (2.2), using existing nonlinear optimization
techniques such as SQP only guarantees local optimal solutions of problem (2.2), which
are not necesarily local optimal solutions of the generic bilevel problem (2.1) Dempe
and Dutta (2010). Another advantage of this method is that it can also be directly im-
plemented using off-the-shelf non-linear optimization software since it just consists on
iteratively solving a set of non-linear problems.

Some other works investigate the solution of linear bilevel problems using a penalty
function. For example, the procedure proposed in White and Anandalingam (1993) disre-
gards the complementarity conditions (2.2f) and adds a term to the upper-level objective
function that penalizes the duality gap of the lower-level optimization problem. In the lin-
ear case, the authors of White and Anandalingam (1993) demonstrate that the proposed
procedure guarantees global optimality. Further studies about penalty methods for solving
LBLP can be found in Hu and Ralph (2004); Lv et al. (2007).

Finally, some heuristic methods have been suggested in the literature to solve linear
bilevel problems. For example, the procedure proposed in Hejazi et al. (2002) applies
genetic algorithms to solve the KKT reformulation of the LBLP. Similarly, authors of
Calvete et al. (2008) present a solution algorithm that combines extreme point enumera-
tion techniques with genetic search methods. References Li and Fang (2012); Sinha et al.
(2013) introduce evolutionary algorithms to solve bilevel problems. The approach pro-
posed in Jiang et al. (2013) applies particle swarm optimization to a smooth version of the
KKT reformulation of the bilevel problem. Given the complexity of these approaches and
the amount of extra code required to be implemented in standard optimization software,
they fall into the category of dedicated methods.

In summary, dedicated methods such as Kth best method, ad-hoc branch-and-cut al-
gorithms, or heuristic approaches, can be efficient to provide the global optimal solutions
of linear bilevel problems. However, they cannot be directly coded using off-the-shelf op-
timization software. Among general purpose methods that can be directly implemented
using optimization solvers, the mixed-integer reformulations (Fortuny-Amat or SOS1 ap-
proaches) determine global optimal solutions at the expense of drastically increasing the
computational burden. On the other hand, regularization approaches to solve the KKT re-
formulation of the LBLP using off-the-shelf non-linear optimization software prove to be
fast but cannot guarantee neither global nor local optimality of the original bilevel prob-
lem Dempe and Dutta (2010). In this paper we propose a new procedure that combines
these two approaches to efficiently solve linear bilevel programming problems and that
can be directly implemented using off-the-shelf optimization software. The contribution
of this paper is thus twofold:

- We provide a computationally efficient method to solve linear bilevel programming
problems using available optimization software. The proposed method uses first
a regularization approach to efficiently determine a local optimal solution of the
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KKT reformulation of the LBLP using a non-linear optimization solver. Then,
this local optimal solution is used to significantly reduce the computational burden
of solving the mixed-integer linear reformulation proposed in Fortuny-Amat and
McCarl (1981) using a conventional mixed-integer optimization solver as follows.
First, by setting appropriate values of the large constant M in (2.3) according to
the order of magnitude of the primal and dual variables. Second, by providing
initial values to the binary variables based on which term of the complementarity
conditions is equal to 0 at the local optimal solution.

- We test the performance of the proposed method through a set of comprehensive
computational studies based on a large family of randomly generated examples of
different sizes. The proposed method is compared in terms of computational burden
and global optimality against other general purpose methods to solve LBLP. The
obtained results show that the proposed approach is an efficient generic algorithm
to solve lineal bilevel problems in practice.

The remaining of this paper is organized as follows. Section 2.2 formally presents
the generic formulation of the linear bilevel problem under study together with some
important definitions and properties. Section 2.3 introduces the KKT reformulation of
the LBLP and explains in detail how both existing and the proposed algorithm can be
used to solve it. Section 2.4 elaborates on how test examples are randomly generated
and sets the basis for comparing the results provided by the different methods. The main
computational results are presented and discussed in Section 2.5. Finally, Section 2.6
concludes the paper.

2.2 Linear bilevel programming problem
Given the complexity of bilevel programming problems, in this paper we restrict ourselves
to the simplest case in which functions F (x, y), f(x, y), Gi(x, y) and gj(x, y) are all
linear. Hence, a linear bilevel problem (LBLP) is generally formulated as follows Bard
(1998); Zhang et al. (2015):

min
x

F (x, y) = c1x+ d1y (2.7a)

s.t. A1x+B1y ≤ b1 (2.7b)
min
y

f(x, y) = c2x+ d2y (2.7c)

s.t. A2x+B2y ≤ b2 (2.7d)

where c1, c2, d1, d2, b1, b2, A1, B1, A2, B2 are vectors and matrices of appropriate dimen-
sions. The induced region (IR) of the LBLP is the set of feasible points of the leader and
rational responses from the follower Bard (1998). With this notation, the LBLP can be
equivalently recast as the following one-level optimization problem:

min
x,y

F (x, y) (2.8a)

s.t. (x, y) ∈ IR (2.8b)

If an explicit formulation of the IR as a polyhedron were possible and available, the
solution to (2.7) could be obtained by solving problem (2.8) as a one-level linear pro-
gramming problem using, for example, the simplex method. However, even for simple
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instances of LBLP, the IR cannot be formulated as a polyhedron, which makes (2.8) a
very hard problem to solve Jeroslow (1985); Bard (1991); Ben-Ayed and Blair (1990).
As proven in Bard (1998), if follower’s rational reaction set is bounded and the constraint
region is non-empty and bounded, then an optimal solution to the LBLP (2.8) exists.
Therefore, unless otherwise specified, these assumptions apply to all problems presented
in this paper.

One issue worth discussing is the existence of upper-level constraints that include
both upper-level and lower-level variables. The validity of such joint upper-level con-
straints is beyond the choice of the leader and can only be validated after the follower’s
optimal choice is determined Dempe et al. (2015). Mathematically, joint upper-level con-
straints can lead to disconnected or empty IR Colson et al. (2005a), which may further
complicates the solution of the linear bilevel problem as illustrated in Shi et al. (2005c).
Extended approaches to apply existing solution algorithms to LBLP with upper-level con-
straints of arbitrary form can be found in Shi et al. (2006, 2005b); Mersha and Dempe
(2006). However, for the sake of simplicity, this paper only considers LBLP with upper-
level constraints that do not include lower-level variables, i.e., B1 = 0 in (2.7) unless
otherwise stated.

Another important aspect of LBLP is the existence of multiple optimal solutions to
the lower-level problem. Under such circumstances, the leader’s choice has to be deter-
mined without exactly knowing the reaction of the follower, who can choose among a
set of decisions that lead to the same value of her objective function. To overcome this
indeterminacy, there are two main possibilities, namely, the optimistic and the pessimistic
solution Dempe (2002); Colson et al. (2005a, 2007). The leader can assume that the fol-
lower can be influenced to select the solution that involves a higher leader’s objective
function. This is known as the optimistic solution of a LBLP. Conversely, the pessimistic
solution considers that the leader has no possibility to alter the behavior of the follower,
who can choose the worst solution with respect to the leader’s objective function. In this
paper we focus on the optimistic formulation since it is simpler, is the usual approach
and has been more deeply investigated in the technical literature Dempe et al. (2007);
Strekalovsky et al. (2010b); Dempe and Franke (2014). For further details about the pes-
simistic formulation of a linear bilevel problem, the interested reader is referred to Dempe
et al. (2014) and references therein.

2.3 Solution methods
The original linear bilevel problem (2.7a)-(2.7d) can be reformulated as the single-level
optimization problem (2.9a)-(2.9f) by replacing its lower-level optimization problem with
its KKT optimality conditions. Note that model (2.9a)-(2.9f) is a non-linear optimization
problem because of the products λ · x and λ · y in equation (2.9f), where λ denotes
a vector with the dual variables of the lower-level constraint (2.7d). All the methods
presented in this Section aim at solving this single-level non-linear optimization model
using different approaches. The following subsections provide the detailed steps of the
solution algorithms compared in this paper.

min
x,y,λ

F (x, y) = c1x+ d1y (2.9a)

s.t. A1x+B1y ≤ b1 (2.9b)
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d2 + λB2 = 0 (2.9c)
b2 − A2x−B2y ≥ 0 (2.9d)
λ ≥ 0 (2.9e)
λ (b2 − A2x−B2y) = 0 (2.9f)

2.3.1 Branch-and-bound approach
This method solves the single-level reformulation of the LBLP (2.9) using a binary tree.
The method starts by solving the relaxed linear problem (2.9a)-(2.9e). If all complemen-
tarity conditions are satisfied, then this is the optimal solution to (2.9). Otherwise, the tree
is branched in one of the violated complementarity constrains j′ so that two nodes are
added to the tree. A linear optimization problem is defined for each new node by adding
the constraint λj′ = 0 or (A2x+B2y − b2)j′ = 0 to the problem corresponding to the
predecessor node. This procedure continues until the subproblems corresponding to all
ending nodes are infeasible or have an objective value larger than the current upper bound
Bard and Moore (1990).

Note that this approach only involves the solution of linear programming problems and
therefore, convergence to global optimality is guaranteed. For this reason, and despite the
fact that this approach belongs to the category of dedicated solution methods, the solution
provided by the branch-and-bound is used to check the performance of the other general
purpose methods investigated in this paper. On the other hand, applying this algorithm to
solve LBLP may easily become computationally expensive, even for low size problems.

2.3.2 Mixed-integer approach
Given the combinatorial nature of the complementarity constraints (2.9f), some solution
methods propose to reformulate problem (2.9) as a mixed-integer programming problem
and directly use off-the-shelf integer optimization software. The idea of Fortuny-Amat
is to rewrite these complementarity conditions using disjunctive constraints that require
the use of binary variables and large enough constants Fortuny-Amat and McCarl (1981).
Problem (2.9) is thus reformulated as follows:

min
x,y,λ,u

F (x, y) = c1x+ d1y (2.10a)

s.t. A1x+B1y ≤ b1 (2.10b)
d2 + λB2 = 0 (2.10c)
b2 − A2x−B2y ≥ 0 (2.10d)
λ ≥ 0 (2.10e)
b2 − A2x−B2y ≤ (1− u)M1 (2.10f)
λ ≤ uM2 (2.10g)
u ∈ {0, 1} (2.10h)

where u is a vector of binary variables of appropriate size and M1,M2 are large enough
scalars. Note that formulation (2.10) is obtained from formulation (2.9) by simply replac-
ing the non-linear constraint (2.9f) with constraints (2.10f), (2.10g) and (2.10h). Problem

18



2.3. SOLUTION METHODS

(2.10) is a mixed-integer linear programming problem that can be solved using conven-
tional branch-and-bound algorithms as the one used by CPLEX IBM Corp. (2015).

Alternatively, SOS1 variables can be used to impose the complementarity conditions
by replacing equations (2.10f)-(2.10h) with Siddiqui and Gabriel (2013):

sj(1) = (b2 − A2x−B2y)j , ∀j (2.11a)

sj(2) = λj, ∀j (2.11b)

where the pair {sj(1), sj(2)} is declared as SOS1 for each j. Problem (2.11) can also
be solved using mixed-integer linear solution methods as those in commercially available
optimization software.

If the values of M1,M2 are properly set, both (2.10) and (2.11) can be solved to
global optimality using existing mixed-integer optimization solvers. However, similarly
to the branch-and-bound approach, the computational burden of solving these models
dramatically increases with the size of the bilevel problem.

2.3.3 Regularization approach
As shown in Scheel and Scholtes (2000), all feasible points of (2.9) are nonregular, which
implies that most existing nonlinear optimization solvers may fail even to find a local
optimal solution. If the regularization approach proposed in Scholtes (2001); Ralph and
Wright (2004) is applied to problem (2.9), we obtain the following formulation:

min
x,y,λ

F (x, y) = c1x+ d1y (2.12a)

s.t. A1x+B1y ≤ b1 (2.12b)
d2 + λB2 = 0 (2.12c)
b2 − A2x−B2y ≥ 0 (2.12d)
λ ≥ 0 (2.12e)
λ (b2 − A2x−B2y) ≤ t (2.12f)

where t is a non-negative small scalar. Formulation (2.12) is derived from formulation
(2.9) by replacing the non-linear equality constraint (2.9f) with the non-linear inequal-
ity constraint (2.12f). Notice that both models are, therefore, equivalent for t tending to
0. This approach consists in iteratively solving a set of non-linear regular optimization
problems. In each iteration, the value of t is reduced. The local optimal solution in one
iteration is used as the initial starting point for the following iteration. While being rela-
tively fast and presenting strong theoretical and empirical convergence properties Scholtes
(2001), this regularization approach is only guaranteed to provide local optimal solutions
of the MPCC, which are also local optimal solutions of the original LBLP Dempe and
Dutta (2010).

2.3.4 Penalty approach
Another method to solve the nonregular problem (2.9) consists in penalizing the com-
plementarity constraints in the objective function as follows White and Anandalingam
(1993); Hu and Ralph (2004); Lv et al. (2007):

min
x,y,λ

F (x, y) = c1x+ d1y +
1

t

∑
j

λj (b2 − A2x−B2y)j (2.13a)
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s.t. A1x+B1y ≤ b1 (2.13b)
d2 + λB2 = 0 (2.13c)
b2 − A2x−B2y ≥ 0 (2.13d)
λ ≥ 0 (2.13e)

where t is also a non-negative scalar that is iteratively decreased to make the comple-
mentarity conditions tend to 0. The initial value of t is set to a large value and is reduced
by a factor of ρ > 1 in each iteration. As in the regularization method, a non-linear
optimization problem has to be solved at each iteration.

2.3.5 Proposed approach

The purpose of the proposed solution method is to combine the mixed-integer and the reg-
ularization approaches presented above in order to obtain a global optimal solution while
reducing the computational burden. The main issue with the regularization approach is
that, albeit fast, it only ensures local optimal solutions for the MPCC reformulation. On
the other hand, formulation (2.10) can be solved to global optimality. However, finding
appropriate values of the large constants M1,M2 that allow solving (2.10) in a reasonable
time is usually a difficult task. In fact, very low or very high values of M1,M2 may lead
to infeasible, suboptimal and numerically unstable problems, respectively. The proposed
approach uses the local optimal solution for the MPCC reformulation provided by the
regularization method to soundly determine values of these large constants that allow us
to find the optimal global solution of (2.10) at a low computational cost.

The proposed approach relies on non-linear optimization solvers whose performance
is significantly improved if a feasible initial point is provided. This initial feasible point
is calculated by sequentially solving two linear programming problems. The first linear
optimization problem is obtained by removing the non-linear complementarity condition
from model (2.9) to obtain a pair (x, y) that satisfies all upper- and lower-level constraints,
but that is not optimal for the lower-level problem. We then fix the values of x and
solve the lower-level optimization problem alone, which is also a linear programming
problem, to find values of y that are also optimal for the lower-level problem. Therefore,
by sequentially solving these two linear programming problems, we obtain a feasible
point (x, y) that satisfies all the constraints (2.9b)-(2.9f).

The proposed approach requires the use of the following parameters:

k Iteration counter.

t Non-negative small scalar representing the slackness of the complementarity con-
ditions.

ρ Non-negative scalar used to update the value t.

M Non-negative scaling parameter used to compute the large enough constants.

The steps of the proposed procedure are the following:

- Step 0 (Initialization) Select parameters t > 0, ρ > 1, M > 1 and the number of
iterations K. Set k ← 0 and go to Step 1.
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- Step 1 (Feasible point) Solve the linear programming problem (2.9a)–(2.9e) and denote
the obtained leader’s variables as x0. Solve the lower-level linear programming
problem (2.7c)–(2.7d) in which upper-level variables are fixed at x0. Denote the
optimal values of the primal and dual variables as y0 and λ0, respectively. Go to
Step 2.

- Step 2 (Iteration) Set k ← k + 1. Solve problem (2.12) taking (xk−1, yk−1, λk−1) as an
initial point. Denote its solution as (xk, yk, λk). If k < K, then t ← t/ρ and go to
Step 2. Otherwise, go to Step 3.

- Step 3 (Tuning) Set M1 ←Mmaxj{(b2 − A2xk −B2yk)j} and
M2 ←Mmaxj{(λk)j}. Go to Step 4.

- Step 4 (Warming) Set initial values of binary variables u as follows.
If (b2 − A2xk −B2yk)j > 0, then uj = 0. If λj > 0, then uj = 1. Go to Step 5.

- Step 5 (Solution) Solve the mixed-integer linear problem (2.10) using the values of
M1,M2 determined in Step 3 and the initial values of the binary variables computed
in Step 4. Declare its solution (x∗, y∗, λ∗) as the optimal solution.

The core of the proposed approach relies on Steps 3 and 4, in which the local optimal
solution provided by the regularization method is used to tune the large constants M1 and
M2 and to compute initial values for the binary variables u, respectively. Let us explain
first the reasoning behind Step 3. Note that the mixed-integer approach (2.10) is only
valid provided that constraints (2.10f) and (2.10g) are binding if and only if u = 1 or
u = 0, respectively. This is only true if the following two conditions hold: M1 is larger
than b2 − A2x− B2y for any feasible pair (x, y) and M2 is larger than any feasible value
of the dual variable λ. Even though the solution obtained in Step 2 using regularization
is just locally optimal, we assume that the maximum value of b2 − A2x − B2y over all
lower level constraints at the local optimal solution is a good proxy of M1. Similarly,
the maximum value of the lower-level dual variable λj over all constraints at the local
optimal solution is also a good estimation of the large constant M2. If large constants M1

and M2 are tuned based exclusively on the locally optimal solution computed in Step 2,
two issues may arise. In some cases, the globally optimal solution to the original linear
bilevel problem may be actually infeasible due to the bad adjustment of the large constants
M1 and M2. For other cases, the optimal solution (2.10) may not be globally optimal for
the original optimization problem due to the overly-constrained feasible region. To avoid
these two issues, these values are multiplied by the scaling parameter M > 1, which
needs to be adjusted by trial and error bearing in mind the following trade-off: the larger
the value of M, the lower the risk that the global optimal solution becomes infeasible
or suboptimal, but the higher the computational time required to solve the problem due
to numerical instabilities. The intuition behind Step 4 is the following. Note that the
values of variables u obtained in Step 2 provide information about which term of each
complementarity condition (2.9f) is equal to 0 at the locally optimal solution. Assuming
that the globally optimal solution is not “too different” from the locally optimal solution
obtained by the regularization approach, the terms of the complementarity conditions
equal to 0 are expected to coincide for most of these constraints.

Providing initial values for the binary variables u and tuning the large constantsM1,M2

only seeks to improve the computational performance of the mixed-integer solver without
jeopardizing the optimality of the solution that the solver eventually returns. How much
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the computational burden of solving (2.10) will be reduced by taking advantage of the
locally optimal information provided by (2.12) cannot be exactly established a priori with
full guarantees. To provide some guidance on this issue, however, we conduct and present
an exhaustive numerical analysis in Sections 2.5.1, 2.5.2 and 2.5.3, in which a large set of
linear bilevel problems of different size, sparsity and scale are solved.

Finally, note that the proposed solution algorithm can be directly implemented using
off-the-shelf optimization software since it only involves solving:

- Two linear programming problems using a linear optimization solver to find a point
in the induced region.

- A family of regularized non-linear optimization problems using a non-linear opti-
mization solver to find a local optimal solution.

- A mixed-integer linear programming problem with appropriate large constants and
initial values of the binary variables using a mixed-integer optimization solver to
find the global optimal solution.

2.4 Test and comparison
In this section, we first describe how test bilevel problems are randomly generated and
then explain how the results provided by the different solutions methods are compared.

As previously discussed, the test examples considered in this paper do not include
any joint upper-level constraints and therefore, matrix B1 is empty. In order to avoid
unbounded test problems, it is also imposed that both the coefficients of the upper-level
and lower-level objective functions (c1, d1, c2, d2) and the variables involved (x, y) must be
non-negative. For the sake of generality, test bilevel problems include two sets of lower-
level constraints: the first set of constraints involves upper- and lower-level variables,
while the second only comprises lower-level variables. According to these assumptions,
vectors and matrices of bilevel problem (2.7) are generated as follows:

c1 = |N (1, n)| d1 = |N (1,m)| A1 =

(
N (p, n)
−I

)
B1 =

(
0
0

)
b1 =

(
N (p, 1)

0

)

c2 = |N (1, n)| d2 = |N (1,m)| A2 =

N (q, n)
0
0

 B2 =

N (q,m)
N (r,m)
−I

 b2 =

N (q, 1)
N (r, 1)

0


where N (i, j) denotes a i × j matrix in which each element is randomly generated ac-
cording to a standard normal distribution with mean and variance equal to 0 and 1, re-
spectively. As follows from these definitions, n and m are the number of upper- and
lower-level variables, respectively. Furthermore, each random problem includes p upper-
level constraints, q lower-level joint constraints and r lower-level constraints not involving
upper-level variables.

Given one random problem, let l be an index for the different solution approaches
presented in this paper. The optimal solution, objective function value and solver status
provided by solution approach l are denoted as (x∗l , y

∗
l ), z∗l and sl, respectively, and are

computed as follows:

• Step 1) The bilevel problem is solved using solution method l and the optimal
upper-level variables are denoted as x∗l . If no solution is provided, set sl to 0 and
stop. Otherwise, go to Step 2).
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• Step 2) The upper-level variables are fixed to x∗l and the lower-level problem is
solved again using linear programming to obtain the lower-level optimal variables
y∗l . If the lower-level is infeasible, set sl to 0 and stop. Otherwise, go to Step 3).

• Step 3) Set sl to 1 and compute the value of the objective function z∗l as c1x
∗
l +d1y

∗
l .

This procedure to compare the different methods is particularly relevant for those for-
mulations that include products of binary variables and large numbers. Note that some
mixed-integer solvers may round down this product and thus yield optimal values for the
binary variables different from 0 and 1 due to numerical instabilities. If this happens, the
objective function obtained by these methods may be lower than the optimal one since
complementarity conditions do not hold. However, if we fix the upper-level variables and
then solve the lower-level problem as described above, this issue is avoided and the values
of the upper-level objective function provided by different solution methods can be fairly
compared. For each random problem, the true optimal solution ẑ is defined as:

ẑ = min{z∗l : sl = 1}

In most examples, ẑ will be equal to the solution provided by the branch-and-bound and
SOS1 methods, since these approaches guarantee global optimality. If these methods
do not provide a solution due to time restrictions, then ẑ will be the minimum objective
function among the methods that deliver a solution. The optimality gap for the solution
given by method l is thus computed as:

gl = 100× z∗l − ẑ
ẑ

which is only defined for those methods with sl = 1.
In this paper we compare the following methods to solve linear bilevel problems:

- Branch and bound method (B&B).

- Mixed-integer solution method with SOS1 variables (SOS1).

- Mixed-integer solution method in which disjunctive constraints are modeled as pro-
posed by Fortuny-Amat in Fortuny-Amat and McCarl (1981). The following 11
values for the large constants are used: 5, 10, 20, 50, 100, 200, 500, 1000, 5000,
10000, 100000. Each variant of this method is thus referred to as FA-5, FA-10,
FA-20, etc.

- Regularization method proposed in Scholtes (2001) and Ralph and Wright (2004)
(REG). The number of iterations (K) is set to 20, the initial value of t to 104, and ρ
is equal to 10.

- Penalty approach proposed in White and Anandalingam (1993) (PEN). The number
of iterations (K) is set to 20, the initial value of t to 1, and ρ is equal to 1.2.

- The proposed solution method, which is referred to as REG-FA. The regularized
local optimization method is tuned as in REG. The following 3 values for the pa-
rameter M are used: 2, 5, 10. Each variant of this method is thus referred to as
REG-FA-2, REG-FA-5 and REG-FA-10, respectively.
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Table 2.1: Parameters of randomly generated problems
n m p q r

Small size 50 50 25 25 25
Medium size 100 100 50 50 50
Large size 200 200 100 100 100

2.5 Computational results
This section compiles the main computational results of the methods presented in Section
2.3 to solve linear bilevel problems. First, the results of 300 test problems of different
sizes are provided. Then, the impact of matrix sparsity on the performance of the different
methods is investigated. Finally, we also analyze how bad scaling affects the obtained
results.

All results here presented have been obtained using CPLEX 12.6.0.1 and CONOPT
3.16C optimization solvers under GAMS 24.3.3. The simulations have been run in a
cluster with 288 nodes. Each node consists of Two Intel Xeon Processor E5649 (2.53
GHz, 6 cores) and 24GB of memory. The maximum time for each problem is set to 6
hours. The code and data are available in www.github.com/salvapineda/bilevel.

2.5.1 Impact of size
The solution methods presented in this paper are tested on 100 randomly generated prob-
lems of small size, 100 randomly generated of medium size, and 100 randomly generated
problems of large size. The matrices of these problems are generated according to the pa-
rameters provided in Table 2.1. Note that the number of upper- and lower-level variables
is the same in all cases. Furthermore, the number of each type of constraint is equal to half
of the number of variables since a much higher or a much lower number of constraints
may lead to infeasible or trivial problems, respectively. It is also worth mentioning that
other works providing similar computational results consider randomly test cases with a
maximum size of 150 upper- and lower-level variables Strekalovsky et al. (2010b,a).

Table 2.2 provides the results for the 18 methods compared in this study for the three
problem sizes. For each problem size and solution approach four numerical results are
provided, namely:

• The number of randomly generated problems solved to global optimality, that is,
with zero optimality gap (gl = 0). This is denoted as #opt.

• The number of randomly generated problems that are infeasible, that is, with sl = 0.
This is denoted as #inf.

• The average computational time (in seconds) for those randomly generated prob-
lems with valid solutions, that is, with sl = 1.

• The average optimality gap (in percentage) for those randomly generated problems
with valid solutions, that is, with sl = 1.

Therefore, 100 - #opt - #inf is the number of non-optimal valid solutions.
Let us first analyze the results provided by the SOS1 method. Note that for small size

examples, this method achieves the optimal solution in 98 of the 100 cases in around 1
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Table 2.2: Results: Impact of size
Small (n=50) Medium (n=100) Large (n=200)

#opt #inf time(s) gap(%) #opt #inf time(s) gap(%) #opt #inf time(s) gap(%)
B&B 92 2 2761 0.66 44 0 13556 2.89 8 0 20211 2.54
SOS1 98 2 1 0.00 90 0 4656 0.27 27 0 17652 2.05
FA-5 11 24 12 7.65 8 7 5385 7.15 0 20 21415 4.57
FA-10 72 4 3 0.91 68 3 2798 0.18 44 0 16976 0.27
FA-20 95 4 3 0.01 92 1 3914 0.05 51 0 16981 0.32
FA-50 98 2 5 0.00 94 2 5495 0.04 53 1 16873 0.31
FA-100 97 2 9 0.00 93 0 6678 0.02 45 1 18453 0.60
FA-200 93 2 15 0.09 81 0 7716 0.19 37 0 18634 0.68
FA-500 85 2 36 0.14 78 2 9229 0.15 43 0 19251 0.38
FA-1000 79 2 55 0.29 66 1 10847 0.33 28 0 19241 0.51
FA-5000 49 2 80 2.28 26 4 7578 3.54 2 0 15517 3.63
FA-10000 37 2 36 3.95 13 0 4361 7.71 2 0 6782 10.34
FA-100000 27 2 0 6.44 11 0 0 10.19 2 0 1 9.86
REG 61 2 0 0.55 41 0 1 0.52 30 1 14 0.29
PEN 34 2 0 0.85 10 0 17 1.03 12 0 30 0.78
REG-FA-2 94 2 2 0.02 96 0 660 0.01 82 2 10657 0.07
REG-FA-5 98 2 2 0.00 99 1 767 0.00 71 11 10770 0.08
REG-FA-10 98 2 5 0.00 99 0 2353 0.00 72 0 13258 0.10

second, the remaining 2 cases being infeasible. For the medium size, 90 of the instances
are solved to optimality while the average solution time is increased up to 1.3 hours. The
average gap of 0.27% is due to the fact that some problems were not solved to optimality
after six hours. Finally, for large-sized problems, the SOS1 method only achieved the
optimal solution in 27 cases and the average solution time amounts to 4.9 hours. The
increase in the computational time required by this method with the size of the problem is
thus apparent. As the SOS1 method, the branch-and-bound method guarantees global op-
timality. Note, however, that the number of optimal solutions, the average computational
time and the average optimality gap are worse for the branch-and-bound method for all
problem sizes. Therefore, the SOS1 method is considered in this analysis as a benchmark.

Regarding the Fortuny-Amat method, the following general observations are in order.
Both for very low and very large values of the large constant M , the number of examples
solved to optimality is very low although for different reasons. While small values of
M lead to a high number of infeasible problems, high values of M create numerical
instabilities in the solution algorithm. Note also that the value of M that results in the
largest number of test problems solved to optimality is equal to 50 for the three sets
of examples, being the average time equal to 5 seconds, 90 minutes and 4.5 hours for
small, medium and large problems, respectively. Observe that for the large size case, the
maximum number of optimal solutions achieved by the best Fortuny-Amat method is only
53.

Despite being very fast, the regularization method only provides the global optimal
solution in a low number of cases, which decreases as the dimension of the problems
increases. Note that for large problems, in only 30 examples the local optimal solution
found by this method is also global optimal. Observe as well that the results provided by
the penalty method are even worse than those of the regularization method in terms of
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global optimality, computational time and optimality gap.
For the three problem sizes, the proposed approach provides very similar results for

the three values of M in terms of number of optimal cases, computational time, and
optimality gap. This shows that selecting an appropriate value of M for the proposed
approach is substantially less critical than choosing a high enough value of M for the
Fortuny-Amat approach. Let us then focus on the results for M = 10, for example.
For small size problems, REG-FA-10 also results in 98 instances solved to optimality,
but with an average time higher than that of the SOS1 method. Given the low number
of binary variables, optimization solvers such as CPLEX are quite efficient in solving
problems of this size and that implies that the pre-calculations of the proposed method
significantly increase the computational time in comparative terms. On the other hand,
for medium-sized problems, REG-FA-10 is able to find the optimal solution in 99 cases in
an average time of 40 minutes, thus outperforming the SOS1 method (90 optimal cases,
1.3 hours) and the best Fortuny-Amat method (94 optimal cases, 1.5 hours). These results
demonstrate, therefore, the computational efficiency of the solution method proposed in
this paper. For large problems, REG-FA-10 obtains 72 optimal cases in 3.6 hours, versus
the 27 optimal cases and 4.9 hours of the SOS1 method, and the 53 optimal cases and 4.6
hours of the best Fortuny-Amat method. Notice also that the average gap corresponding
to the non-optimal cases is equal to 0.10%, 2.05% and 0.31% for REG-FA-10, SOS1 and
FA-50, respectively.

It should be noted that the discussion above is based on comparing the proposed ap-
proach with the Fortuny-Amat method providing the best results. However, the value of
M that performs best is not known in advance and can only be determined after a trial-
error process similar to the extensive testing done in this paper, which makes our method
even more advantageous than what this analysis already reveals.

2.5.2 Impact of sparsity

All the randomly generated matrices for the analysis of the previous subsection are full
matrices. In order to investigate the performance of the proposed solution algorithm for
more sparse bilevel problems, three additional sets of 100 randomly generated problems
are solved using the different methods in this section. For this study, half of the elements
of each vector and matrix are randomly set to 0. The rest of parameters to generate the
random problems are equal to those provided in Table 2.1. Table 2.3 contains the results
corresponding to the bilevel problems with 50% sparsity.

As in Table 2.2, we can observe that although the SOS1 method outperforms the B&B
method for all problem sizes, this method provides a number of optimal cases and an
average computational time that drastically worsen as the problem dimension increases.
It is also shown that the results of the Fortuny-Amat method highly depend on the value
ofM , being the best value around 50. Again, the results provided by the proposed method
are not very sensitive to the value ofM and hence, we focus on those of REG-FA-10 to
make the following comparison analysis. For small problems, the results of the proposed
method are similar to those of the SOS1 and the best Fortuny-Amat. For medium-sized
problems, the proposed method achieves 97 optimal cases in 27 minutes, versus the 86
optimal cases in 72 minutes of the SOS1 method and the 92 optimal cases in 71 minutes
of the best Fortuny-Amat. Finally, for large problems, our method provides 61 optimal
cases in 3.5 hours, versus the 29 optimal cases in 4.5 hours of the SOS1 approach and the
48 optimal cases and 5 hours of the best-tuned Fortuny-Amat method. Note also that our
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Table 2.3: Results: Impact of sparcity
Small (n=50) Medium (n=100) Large (n=200)

#opt #inf time(s) gap(%) #opt #inf time(s) gap(%) #opt #inf time(s) gap(%)
B&B 81 3 5100 1.81 42 0 14019 3.19 9 0 19964 2.53
SOS1 97 3 2 0.00 86 0 4293 0.48 29 0 16061 2.19
FA-5 13 24 21 7.14 7 12 4370 8.75 0 11 21366 5.50
FA-10 67 11 5 1.12 67 5 2123 0.62 34 9 15709 0.35
FA-20 90 6 8 0.01 88 3 3109 0.12 44 10 15803 0.21
FA-50 97 3 31 0.00 92 2 4283 0.02 48 0 16049 0.34
FA-100 97 3 40 0.00 87 6 4918 0.08 45 7 16364 0.38
FA-200 94 3 94 0.12 81 6 5498 0.09 37 5 17198 0.45
FA-500 89 3 119 0.24 72 6 6671 0.31 47 3 17801 0.31
FA-1000 83 3 189 0.39 61 13 6641 0.33 26 13 17672 0.42
FA-5000 54 3 121 2.26 30 11 6968 2.77 8 9 15808 1.67
FA-10000 34 3 134 4.04 15 3 5255 6.42 1 3 13094 6.54
FA-100000 20 3 0 8.91 10 0 0 10.58 1 0 16 9.77
REG 61 3 0 0.52 45 0 1 0.67 22 0 11 0.30
PEN 28 3 0 1.41 11 0 11 1.27 5 0 18 0.90
REG-FA-2 91 3 2 0.08 95 2 453 0.00 76 11 10409 0.07
REG-FA-5 96 3 3 0.01 97 3 536 0.00 73 14 10795 0.07
REG-FA-10 97 3 3 0.00 97 1 1644 0.01 61 15 12512 0.08

method attains the lowest average gap (0.07-0.08%) for the non-optimal cases.

2.5.3 Impact of scaling

Real-life optimization problems often have parameters with different orders of magnitude.
For example, some parameters may have values around 103, while other parameters may
take on values around 1. Such problems are badly scaled and are difficult to solve by
optimization solvers. In order to investigate the impact of bad-scaling on the proposed
solution method, the elements of matrices and vectors c1, d1, A1, B1, b1, c2, d2, A2, B2, b2

are multiplied by 10z, where z follows a discrete uniform distribution with values 0, 1, 2, 3
and probability 0.25 each. In doing so, one fourth of the elements is multiplied by 1, one
fourth by 10, one fourth by 100, and one fourth by 1000. Table 2.4 contains the results of
the randomly generated bad-scaled examples for the three sizes considered.

The first observation is that, although B&B and SOS1 still perform reasonably well
for small- and medium-sized problems, none of the large-sized problems are solved to
optimality and the average gap amounts to 57.79% and 57.06%, respectively. Note also
that, for values of M below 1000, the Fortuny-Amat approach was infeasible for all cases
of the three problem sizes. Besides, for larger values of M , the number of optimal cases
is always below 10. The regulation and penalty methods also exhibit a very small number
of optimal cases. On the other hand, the proposed method for M = 5 achieves the
lowest objective function in 91, 80 and 51 cases for small, medium and large problems,
respectively. Furthermore, the average solution time for these sizes is 6 seconds, 1.5 hours
and 6 hours, in that order. This means that none of the random problems with n = 200
was finished before 6 hours. For this reason, the results for large problems should be
interpreted with caution, since few methods are able to provide solutions in most cases.
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Table 2.4: Results: impact of scaling
Small (n=50) Medium (n=100) Large (n=200)

#opt #inf time(s) gap(%) #opt #inf time(s) gap(%) #opt #inf time(s) gap(%)
B&B 55 3 11535 54.58 12 0 19170 47.84 0 0 21605 57.79
SOS1 97 3 12 0.00 56 0 18419 7.02 0 0 21601 57.06
FA-5 0 100 - - 0 100 - - 0 100 - -
FA-10 0 100 - - 0 100 - - 0 100 - -
FA-20 0 100 - - 0 100 - - 0 100 - -
FA-50 0 100 - - 0 100 - - 0 100 - -
FA-100 0 100 - - 0 100 - - 0 100 - -
FA-200 0 100 - - 0 100 - - 0 100 - -
FA-500 0 100 - - 0 100 - - 0 100 - -
FA-1000 0 95 4408 251.92 0 100 - - 0 100 - -
FA-5000 3 22 340 165.59 1 15 14822 57.00 3 4 21603 37.09
FA-10000 9 10 257 177.58 4 11 7878 121.04 0 3 20801 126.56
FA-100000 10 3 0 251.70 3 0 1 202.40 0 0 27 201.24
REG 12 37 1 9.25 4 41 4 6.68 4 85 36 2.51
PEN 3 77 1 38.02 0 89 9 30.60 0 98 16 2.80
REG-FA-2 76 3 4 1.36 68 3 3474 0.92 29 38 20764 1.90
REG-FA-5 90 3 6 0.75 80 11 5637 0.25 51 10 21397 1.61
REG-FA-10 91 3 15 0.54 82 6 10702 0.16 31 0 21788 3.51

Therefore, the average gap of 57.06% linked to the SOS1 method should be understood
as the gap between the best solution provided by this method and the solution given by
the proposed method after six hours of running time. The results in Table 2.4 clearly
prove that the proposed solution approach is superior to the existing ones for bad-scaled
problems.

2.6 Conclusions
Linear bilevel problems are non-convex and NP-hard and therefore, finding their opti-
mal solution is computationally costly. In this paper we focus on methods that allow to
directly solve LBLP using off-the-shelf optimization software. Among these methods,
mixed-integer reformulations provide global optimal solutions at the expense of drasti-
cally increasing the computational time, which implies that they can only be applied to
small problems. On the other hand, regularization approaches based on iteratively solving
non-linear optimization problems can efficiently solve large-sized bilevel problems, but
only guarantee local optimality of the MPCC reformulation.

In this paper we propose a new solution method that combines the advantages of the
two aforementioned approaches. First, the regularization approach is used to efficiently
find a local optimal point of the MPCC reformulation. Local optimal information is then
used in the mixed-integer reformulation of the problem to i) provide initial values for
the binary variables and ii) tune the large-enough constants. The results provided by this
method have been compared with those obtained by other general purpose methods when
solving a set of 900 randomly generated linear bilevel problems with different size, spar-
sity and scaling. These results show that the proposed method substantially outperforms
the others in terms of number of cases solved to global optimality, average computational
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time and average optimality gap. For the largest examples, the proposed method achieved
the optimal solution in 50% more cases than all the other methods, with an average time
30-95% lower, and an average optimality gap lower than 3.5% in all cases. Finally, it is
worth highlighting that the proposed method does not require the adjustment of any large
enough constant, and that setting the scaling parameterM to 5 or 10 is good enough to
solve a wide set of different problems.

As future research, it must be investigated how to adapt the proposed methodology so
that it can be applied to linear bilevel problems with upper-level constraints that involve
both upper- and lower-level variables. Likewise, how to solve bilevel problems with an
upper-level objective function that includes dual variables of the lower-level problem re-
quires further research. Besides, the fact that the coefficients of the upper- and lower-level
objective functions are all positive implies that the angle between the objective function
vectors is statically small, which, in turn, may reduce the computational burden of solving
the LBLP. Therefore, further investigation is required to analyze how the proposed method
perform for arbitrary objective function parameters. The results presented in this paper
could also be complemented by comparing the computational performance of different
commercial solvers, such as GUROBI. Finally, testing the performance of the proposed
solution approach in specific real applications is also left as ground for future research.
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Chapter 3

The Impact of Short-term Variability
and Uncertainty on Long-Term Power
Planning
H. BYLLING, S. PINEDA AND T. BOOMSMA

Chapter Abstract

Traditionally, long-term investment planning models have been the apparent
tool to analyse future developments in the energy sector. With the increasing
penetration of renewable energy sources, however, the modelling of short-
term operational issues becomes increasingly important in two respects: first,
in relation to variability and second, with respect to uncertainty. A model that
includes both may easily become intractable, while the negligence of vari-
ability and uncertainty may result in sub-optimal and/or unrealistic decision-
making. This paper investigates methods for aggregating data and reducing
model size to obtain tractable yet close-to-optimal investment planning deci-
sions. The aim is to investigate whether short-term variability or uncertainty
is more important and under which circumstances. In particular, we con-
sider a generation expansion problem and compare various representations
of short-term variability and uncertainty of demand and renewable supply.
The main results are derived from a case study on the Danish power system.
Our analysis shows that the inclusion of representative days is crucial for the
feasibility and quality of long-term power planning decisions. In fact, we
observe that short-term uncertainty can be ignored if a sufficient number of
representative days is included.

3.1 Introduction
Long-term planning problems related to the electricity market, system and/or network
arise in multiple contexts: generation expansion (Baringo and Conejo, 2012a; Jin et al.,
2011; Pineda and Morales, 2016), transmission expansion (Orfanos et al., 2013; Hemmati
et al., 2014; Pozo et al., 2013), storage investment (Babrowski et al., 2015; Jabr et al.,
2015; Ghofrani et al., 2013) etc. Fundamental to all of these problems is the modelling of
short-term system operation, ideally accounting for both dynamics and uncertainty. With
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the penetration of renewable energy sources in many power systems, not only demand but
also part of supply vary over time and stochastically. For instance, wind and solar power
production is driven by weather conditions and thereby varies from hour to hour and from
day to day and is difficult to accurately predict. To maintain the balance between demand
and supply at all times, the system should be sufficiently flexible. The increasing pene-
tration of renewables implies a greater need for flexibility in conventional generation and
accentuates the effects of inter-temporal constraints and balancing costs (Poncelet et al.,
2016). In particular, if demand is higher or lower than renewable production, conventional
generation sources must be able to increase or decrease production accordingly. To han-
dle variations over time, production must be able to adjust from one hour to the next. This
type of flexibility is restricted by the technical specifications of the operating units, usu-
ally modelled by so-called ramping constraints. Stochasticity is often handled through the
division of the market into a day-ahead market for commitment of predicted demand and
supply and a real-time balancing market that allows for adjustments at additional costs.
In theory, these short-term characteristics could be explicitly modelled in the long-term
planning. In practise, however, the computational effort to solve the planning problem
becomes excessive (Poncelet et al., 2016). In fact, a complete representation of ramp-
ing abilities requires an hourly discretisation of a multi-decade time horizon, whereas the
modelling of balancing decisions involves discretising the continuous distribution of de-
mand and renewable supply. As a result, the model size increases with the number of time
periods and the number of scenarios describing uncertainty.

The negligence of variability and uncertainty may result in sub-optimal and/or unre-
alistic decision-making. Indeed, failure to account for ramping restrictions and balancing
costs may significantly overestimate flexibility and suggest investments in renewable en-
ergy sources beyond what is the physically and/or economically feasible. A compromise
between computational effort and accuracy of the model results is provided by aggregated
representations of time and uncertainty. The present paper investigates and compares
methods for aggregating data to obtain tractable yet close-to-optimal investment planning
decisions. We consider the following types of data aggregation:

• Representative hours: Hours are divided into a number of groups, each representing
a given number of hours. The division is based on clustering of data and carried out
for each hour independently.

• Representative days: Days are divided into a number of groups, each representing
a given number of days. The division is likewise based on clustering of data but
carried out for a day at the time, respecting the chronology of the hours.

• With short-term uncertainty: The distributions of unknown parameters are discre-
tised, using a limited number of scenarios.

• Without short-term uncertainty: The distributions of unknown parameters are re-
placed by their expected values.

By disentangling short-term variability and uncertainty, we investigate which is more
important, under which circumstances and how to obtain suitable data representations. To
the best of our knowledge and as evidenced by the following review, the comparison of
such modelling aspects cannot be found in the existing literature.

In evaluating the impact of short-term dynamics and uncertainty, we use a family
of generation expansion models. All models take the perspective of a central planner,
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minimising total costs of meeting demand and a minimum requirement for renewable
supply by investing and operating accordingly. We consider a planning horizon of a single
year and with an hourly discretisation. Investments are one-time installations, whereas
production decisions are made for every time period. Operation is subject to a number
of technical constraints, including ramping restrictions, and the structure of the market,
including a day-ahead market for commitment of predicted demand and supply and a real-
time balancing market. We consider energy-only markets and the implications of short-
term uncertainty and dynamics in these. Other related markets, e.g. capacity markets, are
not considered.

The performance of these models is compared with respect to both the quality of the
expansion plan and the computation time. The model results are illustrated for a case
study on the Danish power system.

3.2 Literature review
Various methods have been suggested to discretise the time horizon of long-term planning
problems in a way that enables computational tractability (Haydt et al., 2011). Most of
these aim at aggregating hours, days and years to achieve an acceptable model size.

With an hourly representation (often referred to as ’time slices’), time periods are
represented by the values of their state variables (demand, wind power production, etc.)
and grouped according to these. A traditional example is the load duration curve for
which time periods are sorted with respect to demand level and grouped into blocks of
a given duration (Stoft, 2002). This approach is used in the generation expansion plan-
ning of Pineda et al. (2014); Chaton and Doucet (2003) and Jin et al. (2011). Bertsch
and Fichtner (2015) likewise use the PERSEUS-NET model with a load duration curve in
multi-criteria analysis of power generation and transmission planning. As an alternative
to sorting the hours throughout the year, demand can be clustered according to additional
information such as seasonal variation (Pozo et al., 2013). Baringo and Conejo (2013)
include both wind production and demand profiles in the clustering, and the correlation
between the two variables is taken into account. With the same purpose, Wogrin et al.
(2014) introduce another method based on a duration curve and chronological transitions
between states. The method estimates transitions from one state to another and incorpo-
rates inter-connecting constraints on the significant transitions.

Representative days consists of choosing a number of days, or connected time periods
in general, to represent the planning horizon. In this way, inter-temporal dynamics can be
preserved within the time periods. An example is given by Babrowski et al. (2015) who
investigate long-term storage planning. Another example is by Ghofrani et al. (2013) who
use a representative scheduling period of 24 hours to optimize storage placement. A fully
dynamic model including all hours of the entire planning horizon have been proposed
by Jabr et al. (2015). The model relates to storage investment and relies on robust opti-
misation. As the fully dynamic setup may very well be intractable for larger problems,
Pina et al. (2013) use 12 representative days, 3 of each season in a year, for generation
expansion in electricity systems with high penetrations of renewable energy. In a similar
fashion, Ma et al. (2013) select five whole weeks to represent demand variations through-
out the year in a unit construction and commitment problem and use this to analyse power
system flexibility. Representative weeks are also used by Sisternes et al. (2013) to ap-
proximate the net load in a generation expansion problem. The paper demonstrates how
the quality of investments depends on the choice of representative weeks. In contrast,
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however, Nahmmacher et al. (2016) present a clustering technique that determines the
representative days and show that using representative weeks instead of days increases
the required number of hours to obtain a sufficiently good representation of the data.

The main difference between hourly and daily aggregation is the ability to include
short-term operational flexibility. A daily representation may account for short-term flex-
ibility by including inter-temporal constraints. Such constraints cannot be incorporated
with an hourly representation. With an increasing penetration of non-dispatchable re-
newable energy sources, however, the representation of short-term dynamics in long-term
models becomes increasingly important (Pfenninger et al., 2014). This is supported by
Poncelet et al. (2016) who study and compare the effect of using the hourly and daily
representations. More specifically, the results confirm that the need for inter-temporal
techno-economic constraints increases with the penetration of renewable energy. Slednev
et al. (2017) consider a combination of representative days and hours. These are deter-
mined in a k-means clustering method, using an error measure that measures grid-impact.
The time resolution for both the hourly and the daily aggregation is usually hours. An
example of a finer time resolution (such as 15 or 30 minutes) is provided by Schwarz
et al. (2018) who analyse residential heat storage with photo-voltaic power generation.

In addition to variability over time, long-term planning naturally involves uncertainty
of key parameters. Long-term uncertainty relates to the future development of demand
and costs parameters. Nevertheless, uncertainty also arises in the short-term. Tradition-
ally, the main concern has been the stochastic variability of demand. At present, however,
demand can be rather accurately predicted 24 hours in advance (Aneiros et al., 2016). On
the other hand, a high penetration of renewable electricity sources in modern power sys-
tems introduces a significant source of short-term uncertainty. Some authors ignore this
short-term uncertainty by assuming perfect information of future power production and
model system operation as deterministic. This approach can be found in the generation
expansion problem of Jin et al. (2011), who assume long-term demand and price levels to
be uncertain but solve the short-term scheduling problem with perfect information. The
same approach is taken by Pozo et al. (2013) and Ludig et al. (2011).

In contrast, Baringo and Conejo (2013, 2011) and Ma et al. (2013) model the system
operation problem as a two-stage stochastic program with a day-ahead market as the first
stage and a balancing market as the second stage. In the day-ahead market, production
decisions are made according to expected demand and wind production. Uncertainty in
the real-time balancing market is modelled by scenarios for wind production. In each sce-
nario, day-ahead commitments can be adjusted to realised production by making balanc-
ing decisions (with potentially additional costs). Further details are provided by Pineda
and Morales (2016).

The remainder of this paper is organised in the following way. The generation ex-
pansion problem is presented in Section 3.3.1 and the different approaches to including
short-term characteristics are discussed in Section 3.3.2. Section 3.4 provides a small
example which serves as a basis for analysing the effects of short-term variability and
uncertainty on the solutions to the generation expansion problem. A larger case study
further elaborates on this in Section 3.5. Section 3.6 concludes the paper.

3.3 Investment optimisation and aggregation of data
The purpose of this paper is to compare different approaches to represent short-term dy-
namics and uncertainty in long-term planning problems. In particular, we consider four
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Table 3.1: Nomenclature
Sets
G set of production units
Gw set of wind production units
T set of time periods
Td set of time periods, except the last, within an aggregation period

(e.g. {1, . . . , 23} for a day)
S set of scenarios for short-term uncertainty
Parameters
cIg linear investment cost of unit g (e/MW)
cg linear production cost of unit g (e/MWh)
c+
g additional cost of upward balancing of unit g (e/MWh)
c−g opportunity cost of downward balancing of unit g (e/MWh)
rDg ramp down rate of unit g (p.u.)
rUg ramp up rate of unit g (p.u.)
ρgt predicted production factor of unit g at time t (p.u.)
ρ̃gts realised production factor of unit g ∈ Gw at time t in scenario s (p.u.)
κ minimum wind penetration (%)
vL cost of load shedding (e/MWh)
vS cost of wind curtailment (e/MWh)
νt load factor at time t (p.u.)
d̄ maximum load (MWh)
τt duration of time period t
πs probability of short-term scenario s
Variables
p̄g investment capacity of unit g
pgt scheduled production of unit g at time t
kt scheduled load shedding at time t
lt scheduled wind curtailment at time t
p+
gts real-time upward balancing of unit g ∈ G \ Gw at time t in scenario s
p−gts real-time downward balancing of unit g ∈ G \ Gw at time t in scenario s
p̃gts real-time production of unit g ∈ G \ Gw at time t in scenario s
∆kts real-time load shedding at time t in scenario s
∆lts real-time regulating wind curtailment at time t in scenario s

different approaches for aggregation of data in a generation expansion problem. All ag-
gregation approaches are used in combination with the same optimisation model. The
model is presented in Section 3.3.1 whereas the data aggregation approaches are defined
in Section 3.3.2.

3.3.1 Model

The model takes the perspective of a central planner, with the objective of minimising
total costs of meeting a fixed demand by investing and operating accordingly. The deci-
sions obtained by this model coincide with those of a generation expansion equilibrium
with perfectly competitive and risk-neutral power producers (Ehrenmann and Smeers,
2011). Furthermore, since demand is assumed to be inelastic, minimising costs is equiv-
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alent to maximising social welfare (Gabriel et al., 2013). The model includes a minimum
wind penetration constraint that represents a political target for the penetration of renew-
ables, like those imposed as part of the political agenda in the European Union (European
Commision, 2014). Note that the minimum wind penetration is given as an exogenous
parameter, whereas the decision to invest in wind capacity is endogenous to the model.
For simplicity, we focus on short-term uncertainty of wind power production, although
the model could easily be extended to include demand uncertainty, stochastic capacity
availability etc.

The modelling of generation expansion is divided into two: investment and market
clearing.

Investment

Generally, generation expansion models are classified as either static (single-year) or dy-
namic (multiple-year) models (Akbari et al., 2012). For simplicity and as is common
practice in the literature (Baringo and Conejo, 2012a; Wang et al., 2009; Murphy and
Smeers, 2005), our investment model is static with a single-year planning horizon. Thus,
investment variables relate to a one-time installation of generation capacity while system
operation involves production decisions for every time period (e.g. hour) throughout the
year (in the following referred to as the target year). We assume that at the beginning of
the year, there is no existing capacity in the market, i.e. we take a greenfield approach.
We also assume that new generation capacity is available once installed, meaning that
construction time is zero.

Market clearing

Our market model consists of a day-ahead market and a real-time balancing market
(Pineda et al., 2014). For each time period, the day-ahead market is modelled as an
economic dispatch problem in which the generating units are dispatched to meet demand
at minimal costs given the forecasted wind power production. In the balancing market,
stochastic wind power production is realised, and the demand must be met given this
realised wind power production. This may require re-dispatch of power generation and
incurs an additional (positive) balancing cost. Such costs may be justified by increased
stress on the generation units. Balancing costs are further discussed in Section 3.5.1.

Our techno-economical constraints include ramping constraints of the generation units,
but for simplicity, we do not consider a unit commitment problem (Poncelet et al., 2016).
This simplification is likewise discussed in Section 3.3.2.

To ensure that the expansion problem is feasible irrespective of the investment plan,
we include the possibility of load shedding and wind curtailment during economic dis-
patch. If installed capacity is insufficient to meet demand, load shedding occurs. Like-
wise, if the realised wind power production exceeds demand, wind curtailment occurs.
Load shedding and wind curtailment are present in both the day-ahead and the balancing
market. The realised load shedding or wind curtailment is given as the sum of the sched-
uled load shedding or wind curtailment and the adjustments to these. Only the realised
load shedding or wind curtailment is penalised in the objective function. As an estimate
for load shedding and wind curtailment costs, we use the maximum and minimum price
caps for the market in question (Stoft, 2002). These costs serve as compensation to the
consumer and the wind power producer, respectively, should load shedding or wind cur-
tailment occur.

36



3.3. INVESTMENT OPTIMISATION AND AGGREGATION OF DATA

The static generation expansion problem is formulated as follows:

min
∑
g∈G

cIgp̄g +
∑
t∈T

τt

∑
g∈G

cgpgt +
∑

g∈G\Gw

∑
s∈S

πs
(
(cg + c+

g )p+
gts − (cg − c−g )p−gts

)
+
∑
t∈T

τt
∑
s∈S

πs
(
vL(kt + ∆kts) + vS(lt + ∆lts)

)
(3.1a)

s.t.
∑

g∈G\Gw
pgt + kt − lt = νtd̄−

∑
g∈Gw

ρgtp̄g, ∀t ∈ T (3.1b)

0 ≤ pgt ≤ p̄g, ∀g ∈ G \ Gw,∀t ∈ T (3.1c)

− rDg p̄g ≤ pgt − pg(t−1) ≤ rUg p̄g, ∀g ∈ G \ Gw, t ∈ Td (3.1d)

0 ≤ kt ≤ vtd̄, ∀t ∈ T (3.1e)

0 ≤ lt ≤
∑
g∈Gw

ρgtp̄g, ∀t ∈ T (3.1f)

∑
g∈G\Gw

p̃gts + ∆kts −∆lts = νtd̄−
∑
g∈Gw

ρ̃gtsp̄g, ∀t ∈ T, s ∈ S (3.1g)

0 ≤ p̃gts ≤ p̄g, ∀g ∈ G \ Gw, t ∈ T, s ∈ S (3.1h)

− rDg p̄g ≤ p̃gts − p̃g(t−1)s ≤ rUg p̄g, ∀g ∈ G \ Gw, s ∈ S, t ∈ Td (3.1i)

0 ≤ kt + ∆kts ≤ vtd̄, ∀t ∈ T, s ∈ S (3.1j)

0 ≤ lt + ∆lts ≤
∑
g∈Gw

ρ̃gtsp̄g, ∀t ∈ T, s ∈ S (3.1k)

p̃gts = pgt + p+
gts − p−gts, ∀g ∈ G \ Gw, t ∈ T, s ∈ S (3.1l)∑

t∈T

τt
∑
s∈S

πs(
∑
g∈Gw

ρ̃gtsp̄g − (lt + ∆lts)) ≥ κ
∑
t∈T

∑
s∈S

πsτt(νtd̄− (kts + ∆kts))

(3.1m)

p+
gts, p

−
gts ≥ 0, ∀g ∈ G \ Gw, t ∈ T, s ∈ S (3.1n)

p̄g ≥ 0, ∀g ∈ G (3.1o)

The objective function in (3.1a) accumulates investment costs, day-ahead planning
costs and expected real-time balancing costs, including load shedding and wind curtail-
ment costs. Day-ahead planning costs of time period t are weighted by the parameter
τt due to the aggregation of data (see Section 3.3.2) and balancing costs of scenario s
are weighted by the probability πs. The day-ahead operational constraints (3.1b), (3.1c),
(3.1d), (3.1e) and (3.1f) cover demand satisfaction, capacity limits, ramp rate restrictions
and bounds on load shedding and wind curtailment, respectively. Note that there are
no ramping constraints between aggregation periods (e.g. days), as indicated by the set
Td, see also Section 3.3.2. Similar operating constraints apply to the balancing market
in (3.1g), (3.1h), (3.1i), (3.1k) and (3.1j). Moreover, the realised dispatch of generation
is defined in (3.1l). Finally, (3.1m) requires a percentage of κ of the annual demand to
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be covered by wind power production, while (3.1n),(3.1o) ensure non-negativity of the
relevant variables.

3.3.2 Variability and uncertainty
We consider different representations of data with respect to two major short-term aspects:
the aggregation over time and the representation of uncertainty.

Aggregation over time

We consider two approaches to aggregation of data over time: Representative hours and
representative days.

• Representative hours: Aggregation by hours means that hours are evaluated sepa-
rately with respect to their state values, e.g. demand and wind production. Hours are
clustered into a number of groups, each representing a number of ”similar” hours
in a year. The index of a time period t therefore refers to a group. The duration of a
group is given by τt, indicating the number of hours represented. Due to the loss of
chronology, ramping constraints cannot be considered, and hence, the constraints
(3.1d) and (3.1i) are omitted from the model.

• Representative days: Aggregation by days means that hours are evaluated while
respecting the order of their state values throughout a day. Days are likewise clus-
tered into a given number of groups, each representing a number of ”similar” days
in a year. A representative day has an associated weight, referring to the number of
days represented by the group and given by τt. This weight applies to time periods
and is the same for all time periods t of the same representative day. The index of
the hourly time periods t runs from 1 to 24 ∗ N , where N is the number of repre-
sentative days. Moreover, the set Td contains all hours except the last of each day,
i.e. Td includes indices that are not multiples of 24. With preservation of chronol-
ogy within a day, ramping constraints (3.1d) and (3.1i) are included in the model,
although not between days.

Alternative choices of aggregation over time, such as a combination of representative
hours and representative days or time periods of more or less than an hour, could be
considered, see for example Slednev et al. (2017). We briefly discuss the combination of
representative hours and representative days in Section 3.3.2.

Representation of uncertainty

To evaluate the importance of including short-term uncertainty, two different approaches
are considered: one with short-term uncertainty and another without short-term uncer-
tainty.

• With short-term uncertainty: Section 3.3.1 describes the two-stage day-ahead
and balancing market clearing in the presence of short-term uncertainty. In the fol-
lowing, we refer to the model with stochastic market clearing. The distribution of
the state values, e.g. wind power production, is discretised, using a limited number
of scenarios (|S| > 1) with corresponding probabilities. Depending on the repre-
sentation of data over time, scenarios either consist of hourly values of production
or of daily production schedules.
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• Without short-term uncertainty: In the absence of short-term uncertainty, the
balancing market serves no purpose and the day-ahead market clearing is sufficient.
We refer to this as conventional market clearing. The distribution is replaced by the
expected hourly wind power production (|S| = 1).

Overview

We consider four combinations of data aggregation over time and representation of uncer-
tainty and the resulting four models for the generation expansion problem: daily represen-
tation and conventional market clearing (DC), daily representation and stochastic market
clearing (DS), hourly representation and conventional market clearing (HC), and hourly
representation and stochastic market clearing (HS). These four models are found in Table
3.2, where an acronym indicates the model and the number of days or hours included.

Table 3.2: Overview of models for generation expansion planning, categorised by data
aggregation over time and representation of uncertainty.

S-T uncert. Data agg. Acronym Optimisation Problem

Without Rep. days DC-(# of days)
min (3.1a)
s.t. (3.1b)-(3.1o) |S| = 1

With Rep. days DS-(# of days)
min (3.1a)
s.t. (3.1b)-(3.1o) |S| > 1

Without Rep. hours HC-(# of hours)
min (3.1a)
s.t. (3.1b),(3.1c),(3.1g)-(3.1h),(3.1j)-(3.1o) |S| = 1

With Rep. hours HS-(# of hours)
min (3.1a)
s.t. (3.1b),(3.1c),(3.1g)-(3.1h),(3.1j)-(3.1o) |S| > 1

Limitations of the methodology

In our analysis, we use the most simple model that includes both short-term variability
and uncertainty. Focus is on whether variability or uncertainty is more important and in
which situations. Our simplifications, however, do introduce limitations to the scope of
the paper.

A main simplification is to represent flexibility using ramp rates only and not include
the typical features of a unit commitment problem such as start-up costs, minimum up-
and down-time constraints etc. However, we expect that the effects of short-term variabil-
ity and uncertainty will be more pronounced with less flexibility in the power system, and
thus, in the presence of unit commitment constraints.

Furthermore, we confine ourselves to the temporal dimension and do not consider
the spacial dimension of a power network. The representation of the network could pro-
vide both flexibility and restrictions to the optimisation model, and thus, both reduce and
amplify the effects of variability and uncertainty. When clustering days or hours, for ex-
ample, the effect of the peak flow on the network should ideally be considered (Schwarz
et al., 2018).

For simplicity, we use either representative days or representative hours and not a
combination of days and hours. A hybrid approach is proposed by Slednev et al. (2017)
who report promising computational results. The number and selection of representative
days and hours, however, are critical to the performance.
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Finally, we consider a greenfield system to highlight the differences in the expan-
sion plans resulting from the four models of variability and uncertainty. Such differences
would be diluted if existing capacities were considered. In other words, if considering a
brownfield system, the differences between the four models would be much less.

3.4 Illustrative example

We start by illustrating the effects of short-term uncertainty and variability on a stylised
example.

Demand and wind power data is from the pricing zone DK1 (Nord Pool AS, 2017).
We assume deterministic demand, using a single representative day, and stochastic wind
production, characterised by two scenarios with the same probability. These two scenarios
correspond to the wind capacity factor in DK1 for two representative days of 2017 and
were determined by scenario reduction techniques, see Section 3.5.1. Demand and wind
production profiles are shown in Figure 3.1. We consider the models DS-1, including
ramping and stochastic market clearing, DC-1 with ramping only, HS-24 with stochastic
market clearing only, and HC-24 excluding both ramping and stochastic market clearing.
For the notation, see Table 3.2.
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Figure 3.1: Demand and wind production profiles of a representative day and two wind
power scenarios, respectively.

We consider the following generation units named according to the technology with
most similar characteristics: wind turbines, nuclear, gas and coal. To illustrate the dif-
ferences resulting from choice of modelling, we divide the flexible gas units into two
different types: a gas unit that is flexible in the day-ahead market (with ramping abil-
ity, but high balancing costs) and a gas unit that is flexible in the balancing market (with
low balancing costs, but no ramping ability). In reality, as in the case study of Section
3.5, however, most gas units are flexible in both markets. The nuclear unit is assumed
inflexible in both the day-ahead and in the balancing market. The data for these units is
shown in Table 3.3. Furthermore, load shedding and wind curtailment costs are set to
vL = vS = 500 e/MWh.

To evaluate and compare investment decisions across the four models, the following
procedure is used:

1. Solve each of the problems DC-1, DS-1, HC-24 and HS-24, see Table 3.2. for their
definition.
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Table 3.3: Generation unit data for an illustrative example. Source: (Ea Energianalyse,
2014) and (Schröder et al., 2013)

g wind coal gasDA gasBal nuclear
cIg (Te/MW) 124 106 51 51 150
cg (e/MWh) 0 31.4 63.1 63.1 15.4
c+
g , c

−
g (e/MWh) 0 5.23 500 4.51 500

rDg , r
U
g (p.u.) 1 0.3 0.7 0 0

2. For each of the optimal solutions to DC-1, HC-24 and HS-24, fix the investment
decision and solve the generation expansion problem DS-1 (without minimum wind
penetration constraints (3.1m)). Record the objective function value.

Since the DS-1 model includes both short-term variability and uncertainty, we use this as
the baseline for evaluation and comparison. Thus, by definition this model provides the
optimal investment decisions and the minimal costs. We evaluate the objective function
value of using the (feasible, but not necessarily optimal) investment capacities from DC-
1, HC-24 and HS-24, which are at least as high as those of DS-1. The difference in
objective function values can be interpreted as the costs of disregarding variability and/or
uncertainty in the optimisation. Figure 3.2 show the objective function values of the DS-
1 model plotted as functions of the measured wind penetration. Note that whereas the
required wind penetration is exogenous, the measured wind penetration is a function of
capacity, and hence, endogenous. For κ = 0.2 and κ = 0.6, Table 3.4 shows optimal
investment capacities for each of the problems DS-1, DC-1, HS-24 and HC-24.
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Figure 3.2: Total costs from fixing the optimal investment capacities from the problems
DC-1, DS-1, HC-24 and HS-24 in DS-1. As functions of the measured wind penetration.

The results show that since the HC-24 model disregards both variability and uncer-
tainty, investments are mainly in the inflexible base nuclear generation, meaning that load
shedding costs are high, cf. Table 3.4 and Figure 3.2. The minor investment in day-ahead
flexible gas serves to cover peak load hours and is almost the same for all wind penetra-
tions. With higher wind penetration, the major change in investments is substitution of
wind for nuclear. Total costs decrease with wind penetrations up to κ = 0.2 since wind
power provides some flexibility through curtailment. For wind penetrations from κ = 0.2
and up, total costs increase, as the cost savings of wind power are out-weighted by the
costs insufficient balancing capacity and the resulting load shedding.
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Table 3.4: Investment decisions in MW for κ = 0.2 and κ = 0.6. LS is load shedding as
a ratio of demand and WC is wind curtailment as a ratio of realised wind production.

model κ wind nuclear gasDA gasBal coal LS WC
DC-1 0.2 352 355 288 0 0 0.08 0.05
DS-1 0.2 352 300 279 103 24 0 0
HC-24 0.2 352 577 66 0 0 0.07 0.24
HS-24 0.2 352 528 0 173 0 0.12 0.24
DC-1 0.6 1060 134 266 0 0 0.2 0.09
DS-1 0.6 1076 0 208 288 86 0 0.02
HC-24 0.6 1056 326 76 0 0 0.19 0.12
HS-24 0.6 1071 162 48 372 0 0.06 0.08

As with the HC-24 model, the HS-24 model invests in the nuclear unit to cover base
load. Moreover, when accounting for uncertainty, the model also invests in the gas unit
flexible in the balancing market to provide peak load capacity in some hours. The choice
of gas unit, however, means that the total costs of the HS-24 model are higher than those
of the HC-24 model for low wind penetrations. As wind penetration increases, total costs
of the HS-24 model first decreases and then stabilises. The reason for decreasing costs is
that wind power provides cost savings through the flexibility to curtail, but also that the
installed balancing capacity handles the uncertainty with minimal load shedding. As with
the HC-24 model, minor installations in day-ahead flexible gas serve the peak load.

The DC-1 model includes variability and thus invests in day-ahead flexible gas in
addition to nuclear. The deterministic model, however, disregards balancing and there-
fore investment capacities neither include the gas units flexible in this market nor coal
units. This leads to expensive wind curtailment and/or load shedding as wind penetration
increases, and thus, increasing total costs.

By definition, the DS-1 model provides the lowest costs for all wind penetration levels.
By accounting for both variability and uncertainty, this model avoids significant wind cur-
tailment and load shedding costs. The higher wind penetrations, the higher the total costs.
The reason is that higher requirements of wind penetration leads to higher investment
costs of wind investments and, for very high wind penetration, wind curtailment costs in
some hours and scenarios. For low penetrations, the DS-1 model produces a combination
of all generation technologies to serve flexibility needs both in terms of ramping and bal-
ancing. For wind penetrations of κ = 0.6 and up, however, nuclear is substituted by the
other technologies.

We conclude this example by noting that our model clearly captures the impact of
the two short-term effects: uncertainty and variability. The results in Figure 3.2 show that
representative days are very valuable for incorporating the short-term variability, although
cost savings are less for high wind penetration levels. In contrast, for wind penetrations
above a certain level, the inclusion of the stochastic market clearing provides significant
cost savings.

3.5 Case study
We continue by applying the modelling framework introduced in Section 3.3 to data from
the Nordpool bidding region DK1 covering the Western part of Denmark (Nord Pool AS,
2017). The wind penetration target is set to 30%, as is the Danish 2020 renewable energy
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target (The Danish Government, 2013).

3.5.1 Data
We use historical market data from 2014. The data includes aggregated demand, wind
power forecasts and realised wind power production for the entire region. The data is
available on an hourly basis and is normalised by total capacity.

With data available for both forecasted and realised wind power production, we model
the hourly forecast error:

ρ̃t = ρt + et, (3.2)

where ρ̃t is the realised wind production, ρt is the wind production forecast and et is the
forecast error, all given as capacity factors. Recall that only the forecast is known when
the day-ahead market clears, whereas the forecast error is realised at the time of clearing
the balancing market.

For simplicity, we fit the wind forecast errors to an ARMA time series model, as-
suming that the process is stationary with decaying autocorrelations. More detailed ap-
proaches to modelling wind forecasting errors are given by Bludszuweit et al. (2008) and
Box et al. (1994). By inspection of the autocorrelation functions, we choose an AR(2)
model on the following form:

et = φ1et−1 + φ2et−2 + εt, εt ∼ N(0, σ2). (3.3)

Here, the error terms εt capture variations in the historical data that are not explained by
previous observations, and are assumed independent and identically normally distributed
around zero. Fitting this model to the forecast errors from DK1 in 2014, we obtain the es-
timates φ1 = 1.186 and φ2 = −0.294 and the z-test statistics indicate that the coefficients
are statistically significant (Pr(> |z|) < 2.2 ·10−16 for both coefficients). The assumption
of normally distributed residuals is confirmed to a satisfying extent by histograms and
QQplots.

The time series model is used to generate scenarios for realised wind power production
for each day of the target year. The model takes as input the observed forecast errors
of the last two hours from the previous day. For the following 24 hours, we sample
the error term and recursively compute the forecast errors. We generate 1000 scenarios
of wind forecast errors and reduce these to 10 by the scenario reduction technique of
Dupacova et al. (2003). The aim is to accurately represent uncertainty while the model
remains computationally tractable (Morales et al., 2009). Using (3.2), these scenarios
are translated into realised production. The result is 10 24-dimensional scenario vectors,
(ρ̃1s, . . . , ρ̃24s), s = 1, . . . , 10 of realised wind power production for each of the 365 days
of the year. In Figure 3.3 we plot the scenarios and the observed historical wind power
production of three selected days.

The data for conventional generation taken from Ea Energianalyse (2014) and Schröder
et al. (2013), and chosen to represent a diverse selection of production units. All costs
taken from Ea Energianalyse (2014) are 2020 predictions and investment costs are an-
nualised with expected lifetime of the technology and using a discount rate of 4%. The
expected lifetime is defined as the minimum of the technical and the economical lifetime
of a unit, where the technical lifetime is taken from Danish Energy Agency (2012) and
the economical lifetime captures the number of years operation is profitable, taking future
discounted fuel and CO2 prices into account. The four production units are: wind power
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Figure 3.3: Scenarios of wind production (dashed lines) and historical wind production
(solid line) for 3 selected days.

(wind), coal-fired pulverised fuel power plant (coal), combined-cycle gas turbine (gas)
and nuclear. Table 3.5 provides the data.

Table 3.5: Generation unit data for the case study. Source: Ea Energianalyse (2014) and
Schröder et al. (2013)

g wind coal gas nuclear
cIg (Te/MW) 124 106 51 150
cg (e/MWh) 0 31.4 63.1 15.4
c+
g , c

−
g (e/MWh) 0 5.23 4.51 25.67

rDg , r
U
g (p.u.) 1 0.3 0.7 0.03

Ramp rates of the gas and coal units are not publicly available. We, therefore, derive
the ramp rates from the aggregated hourly output for each technology, collected from
Entsoe (2016) and with outliers removed. More specifically, we use the maximum hourly
change in aggregate output to approximate the aggregate ramp rate. The ramp rate is
finally normalised by the maximum hourly output. For simplicity and supported by the
data, upward and downward ramp rates are the same.

Balancing costs are modelled as follows. We assume that the balancing costs are
increasing in production costs and decreasing in ramp rates and consider the following
relation for c+

g and c−g :

c+
g = M · cg

rug
and c−g = M · cg

rdg
, (3.4)

whereM is an adjustment factor. ThisM is estimated from historical balancing prices, cf.
Nord Pool AS (2017). The average balancing price in DK1 for 2014 is 6.30 e/MWh, and
thus, we set M = 0.05 to achieve the balancing costs in Table 3.5. We further consider
the case of a zero balancing cost for all units and present both cases in the results.

The load shedding costs are estimated by the maximum price of electricity. From
Nord Pool AS (2017) we note that the maximum price in DK1 is 3000 e/MWh, and thus,
we set vL = 3000 e/MWh. Similarly, we estimate the wind curtailment costs by the
minimum price. The minimum price of electricity in DK1 is -500 e/MWh, and the wind
curtailment costs are therefore set to vS = 500 e/MWh.
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Data Aggregation

The technical literature includes several methods to select representative days or hours. In
Hastie et al. (2009) and ElNozahy et al. (2013), representative days or weeks are chosen
using classical clustering techniques such as K-means or hierarchical clustering. New
methods to select representative days have recently been proposed. For instance, Poncelet
et al. (2017) provide a novel optimisation-based approach to select representative periods.
Similarly, Liu et al. (2017) propose a modified hierarchical clustering procedure to choose
a reduced set of representative days that retains important statistical features of the input
data such as correlation.

Our data aggregation is carried out using the GAMS/SCENRED tool (Römisch, 2002).
Although this tool is intended for scenario reduction, the clustering algorithm may like-
wise apply for the reduction of hours or days to a smaller subset, with each day or hour of
a year being equally probable. The GAMS/SCENRED tool is an out-of-the-box tool and
the reduction selects a specific hour or day as representative. When clustering by hour,
we consider all 8760 hours of historical wind production and demand data and reduce to
the required number of representative hours, as indicated by the suffix of the model name,
e.g. HC-24. When clustering by day, we likewise use all 365 days of historical data and
reduce to the required number of days, likewise revealed by the suffix of the model name,
e.g. DC-1.

3.5.2 Results
We consider the four combinations of data aggregation over time and representation of
uncertainty and the resulting models for the generation expansion problem, cf. Section
3.3.2. The results are divided into two sections: First, we analyse these models using
the full data set (we refer to the models HC-8760, HS-8760, DC-365 and DS-365 as full
models). Secondly, we include only a subset of the data obtained via aggregation and
benchmark against the full DS-365 model, using the procedure of Section 3.4. The full
results are included in Appendix A.1.

Technical Details

Our model is implemented using GAMS 24.7.4 and solved using CPLEX 12.6.3.0 on a
HP ProLiant server with 4 AMD 2.50 Ghz CPUs, with a total of 64 cores and 256 GB
RAM. The reported runtimes are as measured by GAMS (Rosenthal, 2014).

Results from the full models

The optimal investment decisions and resulting costs of the four models are provided in
Table 3.6 with respectively non-zero and zero balancing costs.

Regarding the investment decisions, we note that all models in Table 3.6 install ap-
proximately the same wind capacity (around 2560 MW) due to the minimum wind pene-
tration constraint. The small differences in wind investments is due to load shedding and
wind curtailment.

When comparing representative days and hours in Table 3.6 the main difference is in
nuclear investment capacities. Representative hours results in approximately 35% larger
nuclear capacities; 1929 MW versus 1417 MW in the deterministic models (HC-8760 and
DC-365) and 1841 MW versus 1354 MW in the stochastic models (HS-8760 and DS-365)
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Table 3.6: Optimal investment decisions and model runtimes for the different full models.
Total costs (TC), investment costs (IC), operating costs (OC), load shedding costs (LSC)
and wind curtailment costs (WCC), all in Me, from evaluating the investment decisions
in DS-365.

(a) c+
g = 0.05

cg
rug

and c−g = 0.05
cg
rdg

.

Model wind coal gas nuclear Runtime (s) TC IC OC LSC WCC

DS-365 2562 983 796 1354 30859 990 665 316 3 7
HS-8760 2559 339 939 1841 1829 1020 676 322 4 18
DC-365 2561 935 747 1417 217 990 666 312 4 8
HC-8760 2559 241 902 1929 32 1035 677 326 7 25

(b) c+
g = c−g = 0

Model wind coal gas nuclear Runtime (s) TC IC OC LSC WCC

DS-365 2561 950 777 1406 24512 981 668 304 3 6
HS-8760 2559 244 937 1937 1162 1019 680 315 3 20
DC-365 2561 935 747 1417 88 981 666 303 4 7
HC-8760 2559 241 902 1929 32 1022 677 316 7 23

including balancing costs. The reason is that ramping needs are ignored and nuclear is
inexpensive baseload. For representative days accounting for ramping, nuclear is replaced
by coal, the capacity of which is 2-3 times larger than for representative hours. Somewhat
surprisingly gas investment capacity is around 20% less for representative days than for
representative hours; 747 MW versus 902 MW in the deterministic models and 796 versus
939 MW in the stochastic models. This can be explained by the larger installation of coal
that to some extend covers the need for flexibility.

Note that the optimal investment decisions from the deterministic models are the same
with non-zero or zero balancing costs while they differ for the stochastic models, e.g. coal
investment in HS-8760 is 339 MW with balancing costs and 244 MW without balancing
costs. The reason is that in the deterministic models it is never optimal to use the balancing
market. Nevertheless, balancing costs do influence the costs of the investment decisions
when evaluated in the DS-365 model.

The differences between the deterministic and stochastic models are less than 5%,
except when comparing the coal investments for representative hours (HC-8760 and HS-
8760) with non-zero balancing costs. These small differences in the case study are in
contrast to the example in Section 3.4, for which we observed significant differences
between the investments from the stochastic and the deterministic models. Since the
example in Section 3.4 is a stylised, illustrative example, this is not surprising. The units
of the example are either flexible with respect to ramping and balancing, whereas this is
rarely the case in reality. In contrast, some units of the case study such as coal and gas are
flexible with respect to both ramping and balancing, with relatively high ramp rates and
low balancing costs. Thus, the flexibility needs in a stochastic market clearing are already
partly covered by the flexible units installed to cope with variability of demand and wind
power production. In fact, the only significant difference between the deterministic and
stochastic models is for the representative hours in Table 3.6(a). Here, the HS-8760 model
results in 40% higher investment capacities in the flexible coal than the HC-8760 model,
that is, 339 MW versus 241 MW. The same does not apply for the results in Table 3.6(b)
since the assumption of zero balancing costs produces the less realistic conclusion that
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nuclear is the best option for balancing. To summarise, the inclusion of stochastic market
clearing improves the results for representative hours when balancing costs are non-zero
but not much for representative days.

The same tendency is observed for the costs, for which the main differences are be-
tween representative days and representative hours and not between the deterministic and
stochastic models. The higher nuclear capacities lead to higher investment costs for rep-
resentative hours than representative days. The higher nuclear capacities, however, also
generate higher realised operating costs as gas satisfy the flexibility needs for represen-
tative hours whereas coal serves this purpose for representative days. Moreover, wind
curtailment costs are very different for representative days and hours because the large
inflexible nuclear capacities act as baseload and peaks in wind production must be cur-
tailed. Finally, since the objective functions are based on expected costs, security of
supply is only accounted for through expected load shedding penalties. Lower penalties
reveal that the stochastic models have slightly higher reliability rates.

Table 3.7: The number of variables and constraints and the runtimes for the four different
models with non-zero balancing costs.

Model # of variables # of constraints runtime (s)
DS-365 13 · 105 12 · 105 30859
HS-8760 13 · 105 7 · 105 1829
DC-365 2 · 105 2 · 105 217
HC-8760 2 · 105 1 · 105 32

The number of variables and constraints in the different models is specified in Table
3.7. When comparing the deterministic models to the stochastic models with 10 scenarios,
we observe that the runtimes increase with a factor between 60 and 200. The number
of variables and constraints increase with a factor slightly less than 10, indicating that
the computational burden increases more than linearly in the number of variables and
constraints. When comparing the representative days and hours, the increase in runtimes
is with a factor between 3 and 11 and is due to the additional constraints for representative
days.

We conclude this section by comparing the optimal investment decisions, the total
costs and the model runtimes of the four full models. The trade-off between runtime and
total costs clearly points at DC-365 as the preferred model. Representative hours do not
perform as well as representative days and DS-365 does not perform significantly better
than DC-365, even with a runtime significantly larger. Hence, when faced with the choice
between modelling variability or uncertainty, the inclusion of dynamics is preferable.

Results from the models with aggregated data

We evaluate the performance of the different models for an increasing number of days
and hours. For example, we solve each of the problems DC-10, DS-10, HC-240 and HS-
240. For each of the optimal solutions to DC-10, DS-10, HC-240 and HS-240, we fix the
investment decision and solve the full DS-365. We do the same for higher numbers of
days and hours. Figure 3.4 shows the differences between the resulting objective function
values and the minimal costs of DS-365 in percentage.

In both Figure 3.4(a) and Figure 3.4(b), we observe that with representative days the
cost differences approach zero when the number of days increases. As expected, the in-
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Figure 3.4: Total costs differences between the models with aggregated data and the full
model. The x-axis refers to the number of representative days and hours.

clusion of more days results in investment decisions closer to those of the full model. The
same is not observed with representative hours. The cost differences do not improve for
an increasing number of hours, and thus, even for the highest number of hours included,
2400, the level of detail in representative hours is insufficient. When comparing the rep-
resentative days and hours, the former outperform the latter when including 30 days or
more. In fact, we confirm that the effect of taking short-term variability into account is
crucial, even for a limited number of days.

When comparing the deterministic and stochastic models, we note that for 30 days
or more, the models produce very similar cost differences from the full model. When
including 30 representative days, the costs difference is already less than 2%, indicating
that 30 representative days offset the effects of uncertainty in this specific case study.
We, therefore, stipulate that you can ignore uncertainty by adding a sufficient number of
representative days, which is computationally much less expensive than doing stochastic
optimisation.

Analysing the differences between Figure 3.4(a) and Figure 3.4(b), the main differ-
ence is that the stochastic model with representative hours performs better in Figure 3.4(a)
than in Figure 3.4(b). This is because the non-zero balancing costs in Figure 3.4(a) incen-
tivise investment in more flexible units which in turn then reduce the difference in costs
from the full model. Observe also that the the stochastic model with representative hours
performs slightly worse than the deterministic counterpart in Figure 3.4(b) which seems
counter-intuitive. In the stochastic model with zero balancing costs, the inflexible nuclear
unit can be used as a balancing unit at zero costs because there are no ramping constraints.
Thus, the stochastic model invests more in nuclear than the deterministic, which is more
costly when evaluated in the full model.

Figure 3.5 shows the runtimes of each model plotted against the number of hours
or days. Note that the y-axis is logarithmic. The results are very similar with zero and
non-zero balancing cost. In both cases, the stochastic models are by far the most com-
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Figure 3.5: Runtimes as a function of number of days/hours for all models. Note the
y-axis is logarithmic and that runtimes have a lower bound of 1 second.

putationally heavy. The reason is that the stochastic models are larger by an order of
magnitude of 50-150 with representative days and 25-50 with representative hours.
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Figure 3.6: Runtime versus total costs for all models (except DS-365).

To illustrate the trade-off between the quality of the investment decisions and the
computational effort, Figure 3.6 plots the runtimes against the total costs for all models
and all days/hours. With hourly representation, the points are all close, with small relative
differences in both runtime and total costs. The stochastic models, however, always have
lower total costs and higher runtime than the deterministic. With daily representation,
all models have relative low runtime, whereas the best deterministic models also have
relatively low total costs. The stochastic models have the lowest total costs but only for
models with a very high runtime.
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To summarise the findings of the case study, the DC-30 model yields investment deci-
sions with less than a 2% difference in total costs to the full DS-365 model. Furthermore,
the computational burden of the DC-30 model is far less than DS-365, with runtimes un-
der 1 second for the DC-30 model and over 30,000 seconds for the DS-365 model when
considering non-zero balancing costs.

3.6 Conclusion
With higher shares of renewable energy sources in many power systems, it is increasingly
important to account for short-term variability and uncertainty in long-term power plan-
ning. Nevertheless, this often requires a level of techno-economical detail in modelling
that significantly affects computational tractability. In this paper, we compare different
approaches to represent variability and uncertainty in a model, while reducing runtime.
We use an example to illustrate the effects of variability and uncertainty, whereas a Danish
case study provides more realistic results.

Our example shows that accounting for short-term variability through ramping con-
straints and/or uncertainty via balancing costs has significant impact on the quality of
investment decisions. In our more realistic case study, however, the inclusion of repre-
sentative days and ramping constraints has the most significant effect, both regarding the
quality of the solution and the computational burden of solving the model. In particular,
we observe that the impact of short-term uncertainty is less important as the number of
representative days increase.

Our model can be extended in various directions. For computational reasons, we cap-
ture inter-temporal restrictions through ramping constraints only. Our results may there-
fore underestimate the importance of including short-term techno-economical details in
a long-term power planning problem. At the expense of longer runtimes, however, the
model can be extended to account for unit commitment. Our model can likewise be ex-
tended to include network and transmission expansion. Network expansion may provide
further system flexibility, whereas transmission constraints may impose restrictions on
flexibility in generation. This trade-off may be subject of future research. Moreover, the
market structure with perfect competition could be further investigated, from the perspec-
tive of both investors and policy makers. Allowing for market power, the model may
become a mathematical programming problem with equilibrium constraints, for which
computational tractability is of an even higher concern.
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Chapter 4

A Parametric Programming Approach
to Bilevel Optimization with lower-level
Variables in the upper Level
H. BYLLING, S. GABRIEL AND T. BOOMSMA

Chapter Abstract

This paper examines linearly constrained bilevel programming problems in
which the upper-level objective function depends on both the lower-level pri-
mal and dual optimal solutions. We parametrize the lower-level solutions and
thereby the upper-level objective function by the upper-level variables and
argue that it may be non-convex and even discontinuous. However, when
the upper-level objective is affine in the lower-level primal optimal solution,
the parametric function is piece-wise affine. We show how this property fa-
cilitates the application of parametric programming and demonstrate how the
approach allows for decomposition of a separable lower-level problem. When
the upper-level objective is bilinear in the lower-level primal and dual opti-
mal solutions, we also provide an exact linearization method that reduces to
a single-level mixed-integer linear programming (MILP) formulation of the
bilevel problem. We assess the performance of the parametric programming
approach on two case studies of strategic investment in electricity markets
and benchmark against state-of-the-art MILP and non-linear solution meth-
ods for bilevel optimization problems. Preliminary results indicate substan-
tial computational advantages over several standard solvers, especially when
the lower-level problem separates into a large number of subproblems. Fur-
thermore, we show that the parametric programming approach succeeds in
solving problems to global optimality for which standard methods can fail.

4.1 Introduction

Despite its complexity, bilevel programming has become a well-studied subject in op-
timization due to its many application areas, including economics and engineering. In
economics, for example, bilevel programming is used for modeling a Stackelberg game
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(Stackelberg, 1934), in which a leader makes optimal decisions while anticipating the re-
actions of one or more followers. For reviews of applications, see Dempe et al. (2015),
Saharidis et al. (2013), Colson et al. (2007), Colson et al. (2005b) and Bard (1998).

In this paper, we specifically consider linearly constrained bilevel programming prob-
lems with lower-level primal and dual optimal solutions in the upper-level objective func-
tion (abbreviated BPP-Ds). The structure of BPP-Ds arises in many applications. Im-
portant examples are economic decision problems in which a strategic agent maximizes
profit at an upper level, while anticipating market-clearing at a lower level. The upper-
level objective function includes a bilinear product of lower-level primal and dual optimal
solutions such as a revenue. For example, the prices are the market-clearing constraint
dual prices and the quantity the primal solutions. Often, the lower-level problem repre-
sents a number of separate market-clearing conditions, e.g., for representative hours of
a day or days of a year. Besides leader-follower games in economics, some other well-
known problems for bilevel optimization or the related mathematical program with equi-
librium constraints (MPEC) include: production and marketing models, robotics, continu-
ous transportation design and facility location and production, see Luo et al. (1996), Bard
(1998) and Dempe (2018). More specific to energy economics, examples of upper-level
strategic decisions include generation capacities, as by Conejo et al. (2016), Kazempour
et al. (2011), Baringo and Conejo (2012a) and Koschker and Möst (2016), transmission
capacitites, cf. Garcés et al. (2009), or price-offering decisions as by Ruiz and Conejo
(2009). Furthermore, bilinear products of primal and dual variables occur in many com-
plementarity models and mathematical problems with equilibrium constraints (MPECs),
cf. Ehrenmann and Smeers (2011), Gabriel et al. (2006), Chen et al. (2006), Ruiz and
Conejo (2009) and Gabriel et al. (2010).

In this paper, we provide a formal analysis of the BPP-D with a view towards para-
metric programming. In particular, we parametrize the lower-level optimal solutions and
thereby the upper-level objective function by the upper-level variables only and discuss
why it may be non-convex and even discontinuous. When the upper-level objective is
affine in the lower-level primal optimal solution, and hence, also when the upper-level
objective is bilinear in the primal and dual optimal solutions, we show that the parametric
function is likewise affine on its critical regions, i.e., the regions of upper-level solutions
for which the same lower-level basis is optimal.

As our main contribution, we demonstrate how the upper-level objective function is
piece-wise affine which facilitates the application of parametric programming. In the
spirit of Gal (1995) and Faı́sca et al. (2007), we iteratively determine neighboring critical
regions and thereby completely specify the parametric function. As a result, we reduce
the bilevel problem to solving a number of single-level linear programming (LP) problems
over each region. In contrast to state-of-the-art non-linear solution methods, this approach
guarantees global optimality. Moreover, we extend the parametric programming approach
to allow for decomposition when the lower level separates into a number of subproblems
for a given upper-level solution.

When the upper-level objective is bilinear in the lower-level primal and dual optimal
solutions, we also provide sufficient conditions for exact linearization, using the optimal-
ity conditions and strong duality of the lower-level problem. This produces a single-level
mathematical program with equilibrium constraints and linear objective function, which
again warrants a mixed-integer linear programming (MILP) reformulation under certain
assumptions. The MPEC and MILP can be solved by standard software for non-linear or
mixed-integer programs, respectively. To the best of our knowledge, the existing literature
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does not cover such conditions for linearization of the general BPP-D.
We illustrate the characteristics of the parametric function on a stylized problem of

investment in generation capacity. For two more detailed case studies of investment in
generation and transmission capacity, respectively, we assess the performance of the para-
metric programming approach and benchmark against the MILP (when reformulation is
possible) and standard non-linear solution solvers to bilevel optimization problems.

4.2 Literature review
Many reformulations and algorithms have been suggested for the highly challenging class
of bilevel optimization problems (and the closely related class of mathematical program-
ming problems with equilibrium constraints (MPECs)) that are generally NP-hard, cf.
Ben-Ayed and Blair (1990). When the lower-level problem is convex, one reformulation
is obtained by replacing this by its Karush-Kuhn-Tucker (KKT) optimality conditions, see
Dempe (2018) and Mirrlees (1999). As a result, the bilevel problem becomes an MPEC,
which is single-level but non-convex. Such MPECs can be solved using an equivalent
mixed-integer linear program (MILP), descent algorithms or penalty function methods,
see Colson et al. (2005b). Another reformulation is obtained via the optimal value func-
tion, cf. Outrata (1988). For linearly constrained bilevel optimization problems, some
algorithms that are particularly relevant for the present paper. These include the vertex
enumeration and descent method by Han et al. (2000) and enumeration of the basis matri-
ces of the lower-level problem, which is of polynomial time according to Liu and Spencer
(1995) and Dempe (2018). For reviews of solution methods to bilevel optimization we
refer to Vicente and Calamai (1994) and Dempe (2018) and for approaches using descent
methods or penalty functions, see also Colson et al. (2005b). Due to the non-linearity of
the upper-level objective function, however, these methods may not immediately apply to
the general BPP-D and/or do not guarantee global optimality.

Closest to our work is the global optimization approach of Faı́sca et al. (2007) for lin-
early and quadratically constrained bilevel optimization problems. As the present paper,
the method relies on parametric programming methods from e.g. Gal (1995) or Dua et al.
(2002). Whereas our approach can handle bilinear terms of lower-level primal and dual
variables in the upper-level objective, however, Faı́sca et al. (2007) only consider lower-
level primal variables in a linear or quadratic upper-level objective function. Furthermore,
no decomposition of the BPP-D is offered.

In the current literature, a bilinear objective term which is used in the current paper
has been dealt with in various ways. Certain problem structures allow for linearization
using optimality conditions and duality theory. This strategy has been used in many ap-
plications, for examples in energy markets, see Gabriel et al. (2013) and Conejo et al.
(2016). For the specific problem of Hobbs et al. (2000), the complementarity constraints
of the lower-level problem allow the authors to replace the upper-level objective function
by a concave quadratic function. Other approaches use integer variables and/or logi-
cal constraints to approximate the bilinear product, cf. Koschker and Möst (2016) and
Gabriel et al. (2010). Alternatively, bilinear products can be approximated using Schur’s
decomposition and special ordered sets of variables, see Gabriel et al. (2006). Since
exact linearization of the bilinear term has been applied only to specific problems, the
present paper suggests sufficient conditions that allow exact linearization in more general
instances.

For many applications of bilievel optimization, the lower-level problem separates into
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a number of subproblems for a given upper-level solution. In such cases, decomposition
could provide computational advantages. However, the parametric functions involved, be
it an upper-level objective term or a lower-level value function, are non-convex. Nev-
ertheless, Kazempour and Conejo (2012) present a Benders’ decomposition approach,
for which the lower-level value function is argued to be sufficiently convex. The single-
level MPEC and MILP reformulations are generally not separable and decomposition is
likewise difficult, as the subproblems are also non-convex. In contrast, the parametric
programming approach is easily extended to allow for decomposition.

The remainder of this paper is organized as follows: In Section 4.3, we define and ana-
lyze the BPP-D. Section 4.4 presents the parametric programming approach, whereas 4.5
contains reformulation and linearization of the BPP-D. Examples and numerical results
are provided in Section 4.6 and the conclusion is given in Section 4.7.

4.3 Bilevel programming with lower-level primal and dual
information in the upper level

We consider a linearly constrained bilevel programming problem with lower-level primal
and dual optimal solutions in the upper-level objective function (BPP-D). The problem is
defined as follows:

min cTx+ f(y∗, λ∗) (4.1a)
s.t. Ax = b (4.1b)

x ≥ 0 (4.1c)

y∗ ∈ argmin{pTy (4.1d)
s.t. Cy = Dx+ e (4.1e)

y ≥ 0} (4.1f)

λ∗ ∈ argmax{λT (Dx+ e) (4.1g)

s.t. CTλ ≤ p} (4.1h)

The upper-level objective function (4.1a) involves a linear function of the upper-level
variables, x ∈ Rn, and a function f : Rl × Rk → R of lower-level primal and dual
optimal solutions, y∗ ∈ Rl and λ∗ ∈ Rk, respectively. For simplicity, we assume that the
upper-level constraints (4.1b) depend only on x and not on y∗ and λ∗. This assumption
is common in the bilevel programming literature, as such dependence could result in a
disjoint or empty feasible region of the BPP-D, cf. Colson et al. (2005b) and Shi et al.
(2005b).

The linear programming (LP) problem (4.1d)-(4.1f) is the lower-level primal problem
and (4.1g)-(4.1h) is the corresponding dual problem. The upper-level variables x are fixed
parameters in the right-hand side of the lower-level primal problem and the objective
function of the dual problem. Hence, y∗ and λ∗ are parameterized by x and so is the
function f(y∗, λ∗).

The upper-level cost vector and the vector of right-hand sides have dimensions c ∈ Rn

and b ∈ Rm, and the lower-level cost vector and right-hand side have dimensions p ∈ Rl

and e ∈ Rk. All constraints are linear. Accordingly, the constraint matrices have the
dimensions A ∈ Rn×m, C ∈ Rk×l and D ∈ Rk×n.
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THE UPPER LEVEL

We define the feasibility sets

S = {x ∈ Rn |Ax = b, x ≥ 0},

and for a fixed solution x ∈ Rn,

P (x) = {y ∈ Rl |Cy = Dx+ e, y ≥ 0},

of the upper-level and lower-level problems, respectively. Moreover, we let

S∗ = S ∩ {x ∈ Rn | ∃y ∈ P (x)},

i.e., the set of solutions that are feasible in the upper-level problem and produces a feasible
lower-level problem. Clearly, P and S are (closed and convex) polyhedra. The set S∗ is
likewise a polyhedron, see Gal (1995).

The following assumptions ensure feasibility and boundedness of the BPP-D.

Assumption 4.3.1. Assume that {λ ∈ Rl |CTλ ≤ p} is non-empty and S∗ is non-empty
and bounded.

Moreover, for fixed x ∈ S∗, the assumption guarantees primal and dual feasibility and
thereby also optimality of the lower-level problem.

With these assumptions, we can define y∗(x) and λ∗(x) to be lower-level primal and
dual optimal solutions for fixed x ∈ S∗. Hence, the parameterized solutions y∗ := y∗(x)
and λ∗ := λ∗(x) in (4.1a)-(4.1h) are well-defined. For non-unique primal and dual op-
timal solutions to (4.1d)-(4.1f) and (4.1g)-(4.1h), y∗(x) and λ∗(x) may be chosen as so-
called optimistic or pessimistic solutions to a bilevel programming problem, as defined
by Colson et al. (2005b). The optimistic and pessimistic solutions are the best and worst
lower-level solutions, respectively, with respect to the upper-level objective function. If
these are also non-unique, one of them may simply be chosen.

If choosing only one optimal solution to the lower-level problem, we can likewise
define the function F : Rn → R such that

F (x) = f(y∗(x), λ∗(x)), x ∈ S∗.

With this parametrization, the BPP-D becomes

min cTx+ F (x) (4.2a)
s.t. x ∈ S∗ (4.2b)

This is a single-level linearly constrained optimization problem with regard to x, albeit
F (x) is generally not known in closed form. However, we aim to characterize the function
F in certain cases that allow for computational tractability of the BPP-D.

We start by analyzing the lower-level LP in more detail. Let therefore x ∈ S∗ be
given. Assume that the rank of the matrix C is k. Let B ∈ Rk×k be a basis for
P (x), i.e., a non-singular k × k submatrix of C. The primal basic solution is y(x) =
(yB(x)T , yN(x)T ), where yB(x) = B−1(Dx + e) and yN(x) = 0 are the subvectors with
k basic and l − k non-basic variables, respectively. The complementary dual basic solu-
tion is λ(x) = (B−1)TpB, where pB is the subvector of p with entries corresponding to
the k basic variables.

For the lower-level LP, a basic solution is either degenerate or non-degenerate. For
convenience, we include the definition of degeneracy below.
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Definition 4.3.2. (Bertsimas and Tsitsiklis, 1997) Let B ∈ Rk×k be a basis for P (x). A
basic solution y(x) = (B−1(Dx+e), 0)T is degenerate if more than l−k of the l variables
are zero.

Consequently, a basic solution is non-degenerate if k variables are non-zero and l− k
variables are zero. For a non-degenerate solution, B is uniquely defined. For a degenerate
primal basic solution, however, B is no longer uniquely defined and the complementary
dual basic solution is non-unique.

The following defines critical regions.

Definition 4.3.3. (Gal, 1995) Let B ∈ Rk×k be a basis for P (x). The critical region
corresponding to B is ΛB = {x ∈ S∗ |B−1(Dx+ e) ≥ 0}.

The critical region corresponding to B is the set of x ∈ S∗ for which (4.1d)-(4.1f)
has a basic solution y(x) = (B−1(Dx + e), 0)T that satisfies non-negativity y(x) ≥ 0.
Since the constraints Cy(x) = Dx + e are satisfied by construction, this implies that
y(x) is primal feasible. The complementary dual basic solution λ(x) likewise satisfies
CTλ(x) ≤ p by construction and is therefore dual feasible. As a result, the basis B is
optimal for all x ∈ ΛB. Note that like S∗, ΛB is a polyhedron. Note also that on the
boundaries of the critical regions, the basis may not uniquely defined, or equivalently, the
lower-level primal problem may be degnerate and the dual problem may have multiple
optimal solutions.

Now, let B be the set of all optimal bases to (4.1d)-(4.1f) for x ∈ S∗. Evidently,

S∗ =
⋃
B∈B

ΛB,

i.e., S∗ is the union of all critical regions.
We proceed to determine the gradient of F on the interior of the critical regions and

address the special case in which it is constant. For a given basisB, we denote the interior
of ΛB by Λo

B .

Proposition 4.3.4. Let ΛB ⊆ S∗ be the critical region corresponding to the basis B.
Then, F (x) is differentiable on Λo

B with gradient

∇F (x) = (B−1D)T
∂f

∂yB
(y∗(x), λ∗(x)), x ∈ Λo

B.

where ∂f/∂yB is the vector of the k derivatives of f with respect to the basic variables
yB. If f(·, λ) is an affine function for any given λ, then F (·) is an affine function on Λo

B.

Proof. Let x ∈ Λo
B. The primal optimal basic solution is given as y∗(x) =

(y∗B(x)T , y∗N(x)T ) = (B−1(Dx + e), 0)T , and hence, y∗N(x) does not depend on x at
optimality. The complementary dual basic solution is λ∗(x) = (B−1)TpB, and so, λ∗(x)
likewise does not depend on x at optimality.

Using the chain rule to find the gradient of F , we obtain

∂F

∂xi
(x) =

k∑
j=1

∂f

∂y∗j
(y∗, λ∗)

∂y∗j
∂xi

(x) +
k∑
j=1

∂f

∂λ∗j
(y∗, λ∗)

∂λ∗j
∂xi

(x)

=
∑
j∈B

∂f

∂y∗j
(y∗, λ∗)(B−1D)ji, i = 1, . . . , n,

56



4.4. PARAMETRIC PROGRAMMING

where y∗i , i ∈ B refer to the basic variables (with a slight abuse of notation).
If f is affine, then ∂f/∂y∗j , j = 1, . . . , k are constant. As a result, ∂F/∂xi, i =

1, . . . , n are constants, and thus, F is affine.

As a result of Proposition 4.3.4, F is a piece-wise affine (but not necessarily contin-
uous) on S∗. To see that F is not necessarily continuous, recall that on the boundaries
of the critical regions, the lower-level dual problem may have multiple optimal solutions.
Moreover, within a critical region, the dual solution is constant. If the chosen dual solu-
tions (e.g., optimistic or pessimistic) to two neighboring critical regions are different, a
discontinuous jump occurs in the parametric function F .

The piece-wise affinity facilitates the application of parametric programming. In par-
ticular, F is completely specified by its gradient on the interiors of the critical regions and
thereby easily on its entire domain. For the remainder of this paper, we therefore make
the following assumption, unless otherwise specified.

Assumption 4.3.5. Assume that for any given λ, f(·, λ) is an affine function.

An important special case of a BPP-D is when f(·, ·) is a bilinear function on the
general form

f(y, λ) = dTy + hTλ+ λTHy,

with d ∈ Rl, h ∈ Rk and H ∈ Rk×l. For a given basis B and x ∈ Λo
B, by Proposition

4.3.4, the gradient of F is

∇F (x) = (B−1D)T (dB +HT
Bp

T
BB
−1),

where dB is the subvector of d with entries corresponding to the basis B and HB is the
submatrix of H with columns corresponding to the basis B.

4.4 Parametric programming
To solve the BPP-D, we utilize (4.2) and propose a parametric programming approach.
The approach takes advantage of the critical regions and Proposition 4.3.4, characterizing
the parametric function F on these.

The first step to solve the BPP-D is to determine the critical regions. To do this, we
follow Gal (1995). We introduce the so-called neighboring critical regions of the lower-
level primal problem (4.1d)-(4.1f).

Definition 4.4.1. (Gal, 1995) Two critical regions, Λ1,Λ2, are neighbors if the following
holds for their corresponding bases B1, B2:

1. There exists an x ∈ S∗ for which B1 and B2 both are optimal bases to (4.1d)-(4.1f).
2. It is possible to pass from B1 to B2 in one iteration of the dual simplex method.

Note that a neighboring basis is defined in terms of an iteration of the dual simplex
method, but not the primal simplex method.

Instead of determining all critical regions corresponding to optimal bases of (4.1d)-
(4.1f), by (Gal, 1995) (Theorem IV-6 and IV-7), it is sufficient to iterate through neigh-
bors. More precisely, let B∗ be the set of optimal bases, obtained by starting from some
initial basis and iteratively finding all neighbors to the current basis. Then,

S∗ =
⋃
B∈B∗

ΛB.
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Furthermore, when a neighboring basis is defined in terms of an iteration of the dual
simplex method, Λo

B1
∩ Λo

B2
= ∅ for B1, B2 ∈ B∗, i.e., neighbors overlap only at their

boundaries, cf. Gal (1995) (Theorem IV-5). Although it could sometimes be possible to
pass from one basis to another by an iteration of the primal simplex method, the interiors
of the critical regions overlap in this case (Gal, 1995).

We now describe how to find a neighbor. Consider a basis B and the corresponding
critical region ΛB. Let x ∈ ΛB and consider the primal basic solution y := y(x) =
(B−1(Dx + e), 0)T . To determine if a neighbor exists, examine the potential variables to
leave the basis. By dual simplex, yi can only leave the basis if

(B−1C)ij < 0 for at least one non-basic variable yj, (4.3)

i.e., the value of the basic variable yi decreases as a yj enters the basis and increases.
Moreover, yi can only leave the basis if there exist an x∗ ∈ S∗ such that

(B−1(Dx∗ + e))i = 0, (4.4)

i.e., the value of the objective function does not decrease, and thus, the current and new
bases are both optimal. To find such an x∗, we solve the LP problem

min (B−1(Dx+ e))i (4.5a)
s.t. B−1(Dx+ e) ≥ 0 (4.5b)

Ax = b (4.5c)
x ≥ 0 (4.5d)

If the optimal solution, x∗, to (4.5) has an optimal value of zero, then ΛB has a neighbor.
The neighbor is determined by replacing x by x∗ in (4.1d)-(4.1f) and carrying out an
iteration of the dual simplex method, letting the leaving variable be yi and the entering
variable yj be determined by the minimum ratio test. The new optimal basic solution to
the lower-level problem is clearly degenerate with two different bases corresponding to
the neighboring critical regions.

On the basis of the above, we state the procedure for iteratively finding all neighbors.

Algorithm 4.4.2. Parametric Programming

Step 0 (initialization) Set h := 0. Given an initial solution x0, let x := x0 in (4.1d)-(4.1f)
and solve the problem. Store an optimal basis B0 and determine F (x0),∇FB0(x0),
ΛB0 . Set B := {B0}.

Step 1 (iteration h) If B = ∅, then stop. Otherwise, set h := h + 1, select Bh ∈ B and set
B := B \ {Bh}.

Step 2 (determine leaving variable) Let B := Bh. Select a basic i that satisfies (4.3), solve
the problem (4.5), let xhi be an optimal solution and determine if a neighbor exists.
If not, select another basic i. If all basic variables have been considered, return to
Step 1.

Step 3 (determine entering variable) Let x := xhi in (4.1d)-(4.1f) and carry out an iter-
ation of the dual simplex method. Store a neighboring basis Bj and determine
F (xhi),∇FBj

(xhi),ΛBj
. Set B := B ∪ {Bj}. Return to Step 2.
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In Algorithm 4.4.2, B is a pool of bases to be investigated. In Step 0, the algorithm
starts with some initial upper-level feasible solution, stores an optimal lower-level basis
and determines the critical region and characteristics of the parametric function F . Since
the function is affine, it is sufficient to evaluate it and its gradient at the initial solution.
If in Step 1 there are no more bases in the pool B, the algorithm terminates. Otherwise,
a basis Bh is selected. In Steps 2 and 3, all neighbors to this critical region are found
by iterating through potential variables to leave the basis and for each such variable, de-
termining the variables to enter by the minimum ratio test. If a neighbor is determined
by dual simplex, the algorithm stores an optimal basis, determines the critical region and
evaluates the parametric function. Only bases that have not yet been investigated in pre-
vious iterations need to be considered. These new bases are added to the pool. Algorithm
4.4.2 terminates when all neighbouring critical regions of S∗ have been found. This finite
termination is proven by Manas and Nedoma (1968).

To start the procedure, we assume an initial upper-level feasible solution is available.
If no apparent initial feasible solution exists, then one can be found by solving (4.1) while
omitting (4.1d) and (4.1g), i.e., assuming that all variables are determined by a single-level
optimization problem. By further omitting any non-linear terms of f , the approximate
problem becomes an LP. With the upper-level variables fixed to their optimal values, the
lower-level problem is likewise an LP. The combination of the solutions to the upper-level
approximation and the lower-level problems is feasible in (4.1).

Having determined all neighboring critical regions of S∗, the next step is to solve
the restrictions of (4.2) to each region. For critical region ΛB and given xB ∈ ΛB, the
restricted problem is

min cTx+ FB(xB) +∇FB(xB)T (x− xB) (4.6a)
s.t. x ∈ ΛB (4.6b)

This is an LP, as ΛB = {x ∈ S∗|B−1(Dx + e) ≥ 0)} is a polyhedron. Thus, there exists
an optimal basic solution, i.e., in a vertex of the critical region. Recall, however, that in
a vertex, the lower-level primal problem may be degenerate and the dual problem may
have multiple optimal solutions. To obtain a global optimal solution to the BPP-D, we
solve the LP problem (4.6) for all neigboring critical regions and compare their optimal
solutions.

The parametric programming approach relies on finding critical regions of S∗. Finding
all regions can be computationally demanding if the number of regions is high. An upper
bound is the number of distinct bases in the lower-level problem, given by the binomial
coefficient (

l
k

)
=

l!

k!(l − k)!
.

Fortunately, it is sufficient to determine critical regions by iterating through all neighbors,
the interiors of which do not overlap. Thus, the number of bases to investigate may be
much lower.

The solution approach is particularly useful in two respects: Since the parametric
programming method determines F (x) for every x ∈ S∗, near optimal solutions are au-
tomatically provided ex post. For other solution methods to non-convex optimization
problems such as the BPP-D, this postoptimal information is difficult to obtain if at all
available. More importantly, the method allows for decomposition of a BPP-D for which
the lower-level separates into a number of subproblems for a given upper-level solution.
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Decomposition is described in Section 4.4.1. We propose two variants of the decompo-
sition approach: An exact solution method that finds the global optimum and a heuristic
with some computational advantages.

4.4.1 Decomposition
Consider a BPP-D of the form

min cTx+
s∑
t=1

ft(y
∗
t , λ

∗
t ) (4.7a)

s.t. Ax = b (4.7b)
x ≥ 0 (4.7c)

y∗t ∈ argmin{pTt yt (4.7d)
s.t. Ctyt = Dtx+ et (4.7e)

yt ≥ 0} ∀t (4.7f)

λ∗t ∈ argmax{λTt (Dtx+ et) (4.7g)

s.t. CT
t λt ≤ pt} ∀t (4.7h)

Note that for fixed x ∈ S∗, the lower level separates into a number of LP problems
indexed by t = 1, . . . , s. Moreover, the upper-level objective function involves a sum of
functions ft : Rlt × Rkt → R of lower-level primal and dual optimal solutions y∗t ∈ Rlt

and λ∗t ∈ Rkt . The lower-level cost vector and right-hand side have dimensions pt ∈ Rlt

and et ∈ Rkt and the constraint matrices Ct ∈ Rkt×lt and Dt ∈ Rkt×n. Thus, the vectors
and matrices of the BPP-D are partitioned into blocks such that p = (pT1 , p

T
2 , . . . , p

T
s ),

e = (eT1 , e
T
2 , . . . , e

T
s ) and

C =


C1 0 . . . 0
0 C2 . . . 0
...

... . . .
0 0 Cs

 , D =


D1

D2
...
Ds

 .

For fixed x ∈ Rn, we define the feasibility sets

Pt(x) = {y ∈ Rlt |Cy = Dtx+ et, y ≥ 0},

and let
S∗t = S ∩ {x ∈ Rn | ∃y ∈ Pt(x)}.

We further define the parametric function as the sum

F (x) =
s∑
t=1

Ft(x),

where the function Ft : Rn → R is such that

Ft(x) = ft(y
∗
t (x), λ∗t (x)), x ∈ S∗.

Finally, we let x ∈ S∗ be given and let Bt ∈ Rkt×kt be a basis for Pt(x). The critical
region corresponding to Bt is then defined as ΛBt = {x ∈ S∗ |B−1

t (Dtx+ et) ≥ 0)}.
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Let B∗t be the set of all optimal bases to the lower-level subproblem indexed by t,
obtained by starting from some initial basis and iteratively finding new neighbors to the
current basis by Algorithm 4.4.2. By Gal (1995),

S∗t =
⋃

Bt∈B∗t

ΛBt .

In solving the BPP-D of the form (4.7), the lower-level subproblems can be handled
separately. In particular, the lower-level subproblem indexed by t is processed by Al-
gorithm 4.4.2, with the result being a set of critical regions. By such decomposition of
the problem, the algorithm processes a higher number of smaller problems. To speed up
computations, these smaller problems can be processed in parallel.

Proposition 4.4.3 shows that it is indeed sufficient to determine critical regions by
iterating through neighbors, for one lower-level subproblem at a time.

Proposition 4.4.3. For a BPP-D of the form (4.7), the following holds

S∗ =
s⋂
t=1

S∗t =
s⋂
t=1

( ⋃
Bt∈B∗t

ΛBt

)
=

⋃
(B1,B2,... )∈B∗1×B∗2×···×B∗s

( s⋂
t=1

ΛBt

)
.

By Proposition 4.4.3, the BPP-D can be handled by solving restrictions of (4.7). For
critical regions ΛB1 ,ΛB2 , . . . ,ΛBs , the restricted problem is

min cTx+
s∑
t=1

Ft(x)

s.t. x ∈ ΛB1 ∩ ΛB2 ∩ · · · ∩ ΛBs

where Ft is affine on ΛBt and therefore F is affine on ΛB1 ∩ ΛB2 ∩ · · · ∩ ΛBs . Thus, the
restricted problem is an LP, and hence, there exists an optimal solution in a vertex of its
feasible set.

As opposed to carrying out the optimization of a restricted problem, we may find all
vertices of ΛB1 ∩ ΛB2 ∩ · · · ∩ ΛBs and evaluate these. These are contained in the vertices
of the sets ΛB1 ,ΛB2 , . . . ,ΛBs . For this reason, we find all vertices of all critical regions
in B1,B2, . . . ,Bs and avoid the exponential number of combinations of critical regions to
examine. To determine all vertices of a critical region, we use the vertex enumeration of
Avis (2000), see also Avis and Fukuda (1996).

Since vertex enumeration is computationally expensive, we also propose a heuristic
that replaces vertex enumeration by solving the following LP over each critical region

min cTx+ Ft,Bt(xBt) +∇Ft,Bt(xBt)
T (x− xBt)

s.t. x ∈ ΛBt

A global optimal solution is not guaranteed by the heuristic. We do, however, maintain
the advantages of decomposition.

4.5 Reformulation and linearization
As an alternative to the parametric programming approach, we discuss the possibilities
of reformulation and linearization. If the lower level is an LP it can be replaced by its
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Karush-Kuhn-Tucker (KKT) optimality conditions (including primal and dual feasibil-
ity and complementarity), and the bilevel programming problem can be formulated as a
(single-level) mathematical programming problem with equilibrium constraints (MPEC).
By introducing binary variables to handle the complementarity constraints, the MPEC
can, in turn, be formulated as a mixed-integer programming (MIP) problem. Such refor-
mulation, however, may not facilitate a solution to the general BPP-D when the resulting
MIP is neither linear nor convex, and thus, is challenging to many solvers.

Linearization is possible for special cases of a BPP-D. Our linearization is based
on exploiting the complementarity constraints of the lower-level LP, which are bilinear.
Throughout this section, we therefore assume that f(·, ·) is a bilinear function.

Assumption 4.5.1. Assume that f(·, ·) is a bilinear function on the form

f(y, λ) = dTy + hTλ+ λTHy.

In the following, we establish conditions under which the bilinear term can be lin-
earized and the bilevel problem can be reformulated to an MPEC or a MILP with linear
objective function and that can be solved using standard solvers.

As a prerequisite, we make a number of definitions. Define the sets

J0 , {j ∈ {1, 2, . . . , l} : Hij = 0 ∀i},
I0 , {i ∈ {1, 2, . . . , k} : Dij = 0 ∀j}.

Hence, J0 holds the indices of the columns of H that contain only zeros and I0 holds the
indices of the rows of D that contain only zeros. Moreover, we let J̄0 , {1, 2, . . . , l}\J0,
Ī0 , {1, 2, . . . , k}\I0. Finally, define

K1 , {j ∈ J0 : Cij = 0∀i ∈ Ī0},
K2 , J0\K1.

With the definition of J0, I0, K1 and K2, we define the following partition of the vec-
tors and matrices of the BPP-D into blocks (by permutations of columns and rows, without
loss of generality). The matrix of the bilinear term is:

H =
J̄0 J0

Ī0

I0

(
H11 H12

H21 H22

)
,

J̄0 J0

Ī0

I0

(
H11 0
H21 0

)
The lower-level constraint matrices are divided into the following blocks:

C =
J̄0 K1 K2

Ī0

I0

(
C11 C12 C13

C21 C22 C23

)
,

J̄0 K1 K2

Ī0

I0

(
C11 0 C13

C21 C22 C23

)
D =

Ī0

I0

(
D1

D2

)
,

Ī0

I0

(
D1

0

)
The lower-level vectors of variables and parameters are divided as follows:

λ =
Ī0

I0

(
λ1

λ2

)
e =

Ī0

I0

(
e1

e2

)

y =
J̄0

K1

K2

 y1

y2

y3

 p =
J̄0

K1

K2

 p1

p2

p3
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4.5.1 Complementarity constraints and linearization
The following assumptions allow for linearization.

Assumption 4.5.2. Assume that:

1. H11 = 0

2. C21 = αH21 for some α ∈ R\{0}

3. C23 = 0

By replacing the lower level by its KKT-conditions and linearizing the bilinear term,
we obtain an MPEC that is a linear program with linear complementarity constraints. We
state and prove this result below. Note that we refer to two equivalent formulations when
their optimal solutions are the same.

Proposition 4.5.3. Under Assumptions 4.5.1 and 4.5.2, an equivalent formulation of the
BPP-D is the following linear program with linear complementarity constraints:

min cTx+ dTy + hTλ+ (λT2 e2 − pT2 y2)/α (4.10a)

s.t. Ax = b (4.10b)
x ≥ 0 (4.10c)

Cy = Dx+ e (4.10d)

0 ≤ y ⊥ p− CTλ ≥ 0 (4.10e)

Proof. Since the lower-level is an LP problem, the KKT-conditions are necessary and
sufficient for optimality. These conditions are

Cy = Dx+ e (4.11a)
y ≥ 0 (4.11b)

CTλ ≤ p (4.11c)

yTµ = 0 (4.11d)

p− CTλ− µ = 0 (4.11e)

including primal feasibility (4.11a)-(4.11b), dual feasibility (4.11c), stationarity (4.11d)
and complementarity (4.11e), and are equivalent to (4.10d)-(4.10e).

To linearize the upper-level objective function, we utilize the strong duality property
for the lower-level linear program (second equality), the lower-level constraints (4.11a)
(fourth equality) and the definitions of I0 and K1:

pT1 y1 + pT2 y2 + pT3 y3 = pTy

= λT (Dx+ e)

= λT1 (D1x+ e1) + λT2 e2

= λT1 (C11y1 + C13y3) + λT2 e2.

By rearranging terms and noting that yT1 C
T
11λ1 = λT1C11y1, we obtain

yT1 (p1 − CT
11λ1) = −pT2 y2 − pT3 y3 + λT1C13y3 + λT2 e2. (4.12)
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From the complementarity constraints (4.11d)-(4.11e) and Assumption 4.2 we have that

yT1 (p1 − CT
11λ1) = αyT1 H

T
21λ2. (4.13)

The complementarity constraints (4.11d)-(4.11e) and Assumption 4.3 likewise give us

yT3 p3 = yT3 C
T
13λ1. (4.14)

Substituting (4.13) and (4.14) into (4.12) we arrive at

αyT1 H
T
21λ2 = −pT2 y2 + λT2 e2. (4.15)

Using the definitions of J0 and Assumption 4.1, (4.15) becomes

λTHy = (λT2 e2 − pT2 y2)/α. (4.16)

The MPEC (4.10) can be solved using standard non-linear programming (NLP) soft-
ware or designated MPEC solvers. We refer to these solution approaches as NLP and
MPEC, respectively. Note that since the MPEC (4.10) is a non-convex optimization prob-
lem, NLP and MPEC solvers can only guarantee local optimality.

4.5.2 Integer programming formulations
The equivalent MPEC (4.10) can be solved to global optimality by introducing bina-
ries to handle the disjunctive complementarity constraints, see Fortuny-Amat and McCarl
(1981). The resulting problem is the following MILP:

min cTx+ dTy + hTλ+ (λT2 e2 − pT2 y2)/α (4.17a)
s.t. Ax = b (4.17b)

Cy = Dx+ e (4.17c)
0 ≤ yj ≤Mδj ∀j (4.17d)

0 ≤ pj −
k∑
i=1

Cijλi ≤M(1− δj) ∀j (4.17e)

x ≥ 0, y ≥ 0, δ ∈ {0, 1}l (4.17f)

Here, M is a sufficiently large constant and δ is a vector of binary variables. The choice
of M can be difficult, since a small constant may cut off feasible solutions while a large
constant may produce a weak LP-relaxation. For a general method to find suitable M ’s,
see also Pineda et al. (2017).

A related formulation is based on special ordered sets (SOS). More specifically, we
introduce SOS1 variables, for which only one element of a set is allowed to be non-zero.
This likewise guarantees global optimality, cf. Siddiqui and Gabriel (2013). The problem
is:

min cTx+ hTy + kTλ+ (λT2 e2 − pT2 y2)/α (4.18a)
s.t. Ax = b (4.18b)

Cy = Dx+ e (4.18c)

64



4.6. STRATEGIC INVESTMENT

sj(1) = yj ∀j (4.18d)

sj(2) = pj −
k∑
i=1

Cijλi ∀j (4.18e)

y ≥ 0, x ≥ 0, (4.18f)

where the sets {sj(1), sj(2)} are declared as SOS1 for each j.
We refer to these reformulations as MILP and SOS, respectively.

4.6 Strategic investment
The structure of a bilevel programming problem with lower-level primal and dual infor-
mation in the upper-level objective function may arise in many applications. Important
examples are strategic investment problems, in which an investor maximizes the profit of
investing (upper level), while anticipating the clearing of the market (lower level). The
revenue of is often given by the bilinear product of a lower-level primal solution (produc-
tion) times a lower-level dual solution (market price).

We illustrate the parametric programming method on three examples of strategic in-
vestment in electricity markets. The first example is a stylized problem of investment in
generation capacity that serve to illustrate the characteristics of the parametric function.
The second and third examples are more detailed numerical case studies of investment in
generation and transmission capacity, respectively.

4.6.1 Investment in production capacity
We consider a strategic investor, participating in a perfectly competitive market for dis-
patch of production and with inelastic demand. We adopt the following problem formu-
lation by Conejo et al. (2016):

min 40000x+ 8760(10y∗1 − λ∗1y∗1) (4.19a)
s.t. 0 ≤ x ≤ 250 (4.19b)

y∗1 ∈ argmin{10y1 + 12y2 + 15y3 (4.19c)
s.t. y1 + y2 + y3 = 200, 0 ≤ y1 ≤ x, (4.19d)

0 ≤ y2 ≤ 150, 0 ≤ y3 ≤ 100} (4.19e)
λ∗1 ∈ argmax{200λ1 + xλ2 + 150λ3 + 100λ4 (4.19f)

s.t. λ1 + λ2 ≤ 10, λ1 + λ3 ≤ 12, (4.19g)
λ1 + λ4 ≤ 15, λ2, λ3, λ4 ≥ 0} (4.19h)

The upper-level variable, x, is generation capacity. The lower-level variables represent
dispatch of production from the investor, y1, and its rivals in the market, y2, y3. Moreover,
λ1 is the market (shadow) price of production, and λ2, λ3, λ4 are the shadow prices of ca-
pacity. The upper-level objective function (4.19a) includes linear investment costs (40000
e/MW), and the number of hours in a year (8760) times the hourly operational (negative)
profit. Profit is given by linear production costs (10 e/MWh) less the revenue, which is
bi-linear. The upper-level constraints (4.19b) are upper and lower bounds on investment
capacity. The lower-level primal problem consists of minimizing total production costs,
cf. (4.19c), such that supply meets demand and is bounded by the generation capacities
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in (4.19d)-(4.19e). The lower-level dual problem, (4.19f)-(4.19h), determines the market
price of production. Note that the upper-level variable, x, is a lower-level parameter of
(4.19c)-(4.19d) and (4.19f)-(4.19h).

The parametric function is

F (x) = 8760(10y∗1(x)− λ∗1(x)y∗1(x)),

which includes a bilinear product of the lower-level primal and dual variables. The criti-
cal regions are the intervals [0, 50], [50, 200] and [200, 250]. In Figure 4.1 (a) we plot the
parametric function F (x) and confirm that it is affine on the critical regions but discon-
tinuous at x ∈ {50, 200}. Clearly, the upper-level objective function plotted in Figure 4.1
(b) is likewise piecewise affine but discontinuous.

Figure 4.1: Parametric function.
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(b) Upper-level objective function.

To explain the behavior of F (x) note that for 0 < x < 50, all producers are dispatched
to meet demand. The market price equals the production costs of the marginal producer,
i.e., 15, and the marginal operational profit is 15−10 = 5. For 50 < x < 200, producers 1
and 2 are dispatched, the market price is 12 and the marginal operational profit is 12−10 =
2. For x > 200, only producer 1 is dispatched, the market price is 10 and the marginal
operational profit is 10 − 10 = 0. Evidently, on the interiors of the intervals [0, 50],
[50, 200] and [200, 250], the basis of the market-clearing problem is unique and the market
price is constant. On their boundaries {50, 200}, however, the basis is no longer unique
and there are multiple dual optimal solutions. This demonstrates the ambiguous-price
fallacy of power markets noted by Stoft (2002).

It should be remarked that the number of distinct bases of the lower-level problem is
at most (

6
4

)
= 15, (4.20)

but the number of critical regions to investigate is only 3.
With the parametrization of F , problem (4.19) becomes

min 40000x+ 8760F (x) (4.21a)
s.t. 0 ≤ x ≤ 250. (4.21b)

The optimal solution is x∗ = 50 with the objective function value being -190,000.
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As an alternative to the parametric programming approach, it is possible to use refor-
mulation and linearization. To see that Assumption 4.5.2 holds, note that

H =


0 0 0 0 0 0

−8760 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , C =


1 0 0 0 0 1
1 1 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0

 ,

where slack-variables have been introduced in the inequality constraints, the columns are
ordered according to (J̄0, K1, K2) and the rows are ordered according to (Ī0, I0). Clearly,
H11 = C23 = 0 and C21 = −8760H21.

We extend the example to three lower-level market-clearing problems with different
demands (150MWh, 200MWh and 250MWh, respectively). The critical regions are then
the intervals [0, 50], [50, 200], [200, 250] (corresponding to the first lower-level problem),
[0, 150], [150, 250] (second lower-level problem) and [0, 100], [100, 250] (third lower-level
problem). In Figure 4.2 we confirm that the parametric functions F1, F2, F3 are affine
on the corresponding critical regions but discontinuous at their boundaries, and hence,
F (x) is affine on the intervals [0, 50], [50, 100], [100, 150], [150, 200] and [200, 250] but
discontinuous at x ∈ {50, 100, 150, 200}.

Figure 4.2: Parametric functions.
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4.6.2 Implementation
We proceed with the two case studies. To obtain numerical results, the parametric pro-
gramming approach of Section 4.4 is implemented in R using the interfaces by Berkelaar
(2015) to solve LPs and Robere (2015) for vertex enumeration. The MILP formulation
is implemented in the General Algebraic Modeling System, GAMS (GAMS, 2017) and
solved using CPLEX 12.6.3.0. The non-linear methods are also implemented in GAMS
and solved using the CONOPT solver for NLP and the NLPEC solver for MPEC, see
GAMS (2017) for details. The problems are solved on an HP ProLiant server with 4
AMD 2.50 GHz CPUs, with a total of 64 cores and 256 GB RAM. Unless otherwise
specified, a time limit of 2 hours is imposed on all runs.

4.6.3 Case study I: Investment in production capacity
The first case study is an extension of the problem in Section 4.6.1, i.e., strategic invest-
ment in generation capacity. The extension includes a representation of the transmission
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network by regions and transmission lines connecting the regions. The strategic investor
decides how much capacity to install in each region.

Data

In the first case study, we use data from the Danish power market. This market is divided
into two price regions connected with a DC cable of 600 MW capacity, cf. Nord Pool
AS (2017). We represent each of these price regions by a node and divide the existing
power plant capacity into central power plants and de-central power plants as in Danish
District Heating Association and Danish Energy Association (2016), which also provide
production cost estimates.

Hourly demand data is available at Nord Pool AS (2017). We cluster this data using k-
means clustering such as to obtain a set of so-called representative hours. A representative
hour replaces a number of hours with similar operating conditions and is weighted by the
number of such hours. For methods to reduce a data set in this fashion, see Baringo and
Conejo (2013). In the following, we vary the number of representative hours to investigate
problems of different sizes.

Model

Our model is a simplified version of a that by Conejo et al. (2016). We assume a perfectly
competitive power market, such that the offer price of each producer equals their pro-
duction cost. Market-clearing accounts for network flow, which is modeled using a DC
representation to. The strategic investor has the opportunity to invest in capacity at each
node of the network and there are two rivals at each node. The time horizon is a year, and
thus, we consider a static investment problem.

The bilevel problem faced by the strategic producer is the following:

min
n∑
i=1

(
Cixi +

s∑
t=1

ρt
(
c1
i y

1
it − λity1

it

))
(4.22a)

s.t. 0 ≤
n∑
i=1

xi ≤ xmax (4.22b)

y1
it, λit are optimal solutions to (4.23) ∀i, t (4.22c)

The lower-level problem involves market-clearing for each time period t. Subproblem
t is

min
n∑
i=1

∑
g∈G

cgi y
g
it (4.23a)

s.t.
∑
g∈G

ygit −
∑
j∈Ji

Bij(θit − θjt) = dit : λit ∀i (4.23b)

0 ≤ y1
it ≤ xi : µ1

it ∀i (4.23c)

0 ≤ ygit ≤ ymax,gi : µgit ∀i, g 6= 1 (4.23d)

Bij(θit − θjt) ≤ Fmax
ij : ηijt ∀j ∈ Ji (4.23e)

− π ≤ θit ≤ π : αit, βit ∀i (4.23f)
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θit = 0 : γt i = ref (4.23g)

The upper-level variable, xi, is generation capacity in node i. The set G defines all market
participants. The lower-level variables represent dispatch of production in node i and
time period t, from the investor, y1

it, and its rivals in the market, ygit, g 6= 1. Moreover, λit
is the market’s nodal price of production, and µgit, ηijt, αit, βit, γt are the remaining dual
variables. The upper-level objective (4.22a) is to maximize profits from investment and
operation, operational profits being the sum of profits for each time period t weighted by
the number of time periods represented by t, ρt. The upper-level constraint (4.22b) bounds
total investment capacity. The lower-level constraints include a power balance (4.23b) for
each node and the dual variable λit that determines the nodal price. The set Ji defines all
nodes connected to node i, Bij denotes the subsceptance of the transmission line between
nodes i and j and θit is the voltage angle in node i and time period t, determining the flow.
Thus, the sum on the left-hand-side of the equality is the net outflow from node i. Further
constraints are generation capacity constraints (4.23c) and (4.23d), transmission capacity
constraints (4.23e) and bounds on the voltage angles (4.23f). Finally, (4.23g) fixes the
voltage angle of some reference node to zero. A complete nomenclature is provided in
the Appendix B.1. For more details regarding the model, we refer to Conejo et al. (2016).

The equivalent MILP is formulated in Appendix B.2.

Results

We solve 59 instances of the investment problem, varying the number of lower-level sub-
problems from 10 to 100 with a step size of 10 and from 200 to 5000 with a step size
of 100. For each of the solutions methods of Sections 4.4 and 4.5, we report the number
of instances for which the method terminates, the time limit is reached and the method
returns infeasibility, respectively, see Table 4.1. As seen from the table, the NLP and

Table 4.1: Number of instances for which a solution method terminates, the time limit is
reached and the method returns infeasibility, respectively.

Solved Time Limit Reported Local Infeasible
decomp 59 0 0
heuristic 59 0 0
full 9 50 0
MILP 16 43 0
SOS 15 44 0
NLP 0 0 59
MPEC 0 0 59

MPEC methods return local infeasibility for all instances, even when we provide an ini-
tial feasible solution as in the parametric programming approaches. As shown by Scheel
and Scholtes (2000), all feasible points of the MPEC (4.10) are non-regular (i.e., the gra-
dients of the binding constraints are linearly dependent), which is the reason that most
non-linear optimization solvers fail. The MILP and SOS solve 16 and 15 instances, re-
spectively, while the full parametric programming method solves only 9 instances within
the time limit. In contrast, however, both decomposition by parametric programming and
the parametric programming heuristic solve all instances to optimality.

We further investigate the MILP and parametric programming approaches. Figure 4.3
shows the solution times for MILP, the decomposition by parametric programming and
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the parametric programming heuristic, plotted as functions of the number of lower-level
subproblems. Figure 4.3 (a) and (b) cover the number of lower-level problems from 10
to 100 and from 200 to 5000, respectively. Note that running times for the MILP are
truncated to the time limit of 2 hours (43 out of 49 runs are above the time limit). Note
also that the figure does not include parametric programming without decomposition,
since solution times are substantially larger and the method does not terminate within the
time limit for more than 100 lower-level subproblems. A complete list of results can be
found in Table B.3 of Appendix B.3.

Figure 4.3: Solution times (seconds) as a function of the number of lower-level (LL)
subproblems.
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From the results, we notice that for less than 100 subproblems, the MILP has the
lower solution times, whereas for more than 100 problems, the heuristic is faster. For
more than 800 subproblems, the MILP does not solve within the time limit (except with
1900 subproblems), and thus, although parametric programming cannot compete with the
heuristic, this method also solves faster than the MILP.

Decomposition by parametric programming solves all problems to optimality. The
average relative deviation in upper-level objective function values from the optimal is
4.26% for the heuristic and 3.37% for the cases in which the MILP does not solve within
the time limit (and thus only returns a feasible solution), see also Appendix B.3.

The parametric approach shows a significant increase in solution times as the number
of subproblems increases. Although solution times behave similarly for the heuristic, the
increase is less. In spite of this increase in solution times, the decomposition approaches
are much less sensitive to increasing the number of subproblems than the MILP. The
reason is that only the number of problems increases with decomposition, whereas the
size of the problem increases with MILP.

The solution quality of the heuristic increases as the number of subproblems increases,
whereas it is almost constant for the MILP. We explain this as follows. With a larger
number of lower-level subproblems, the number of critical regions considered during the
heuristic is larger. Solution quality may increase since the approximation error has less
impact, this error resulting from using an optimal solution rather than inspecting all ver-
tices of a critical region. The reason for a constant solution quality of the MILP is the
structure of the investment problem. In this problem, the lower level problem represents
a number of separate market-clearing conditions, e.g. for representative hours of a year.
The problem is therefore almost the same, irrespective of the number of lower-level sub-
problems.
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To further explore MILPs that do not solve within the time limit, we have solved
the instance with 5000 lower-level problems and a higher time limit. The problem has
215,000 variables, including 90,000 binary, and 260,000 constraints. The MILP did not
solve within a week’s time limit (604,800 seconds) and, hence, is intractable in any practi-
cal aspect. In contrast, the decomposition by parametric programming solved this instance
to global optimality in 6487 seconds and the heuristic with a deviation from the global
optimal value of 3.61% in 1658 seconds.

Figure 4.4: Feasible solutions found by the parametric programming approach. Divided
into intervals of deviation (in %) in objective function value from the optimal.
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In Figure 4.4, we examine the case with 10 lower-level subproblems and depict the
feasible solutions found by the parametric programming approaches by solving the re-
stricted problems or by enumeration of the vertices. The solutions are plotted with the
investment decisions in DK1 and DK2 on the x-axis and y-axis, respectively. For each
feasible solution, we indicate the corresponding deviation (in percentage) in upper-level
objective function value from the optimal. All parametric programming approaches find
the optimal solution (0, 1000), but only the exact approaches automatically provide near-
optimal solutions. For example, the solution (486, 514) has an optimality gap of less than
0.5% and may, therefore, be relevant for further inspection.

The figure also reveals the non-convexity of the upper-level objective function. In fact,
the straight line from the optimal solution (0, 1000) to the solution (486, 514) includes
objective function values with an optimality gap of up to 10%.

4.6.4 Case study II: Transmission investment
The next case study concerns investment in transmission capacity. A merchant investor
decides how much capacity to install on selected connections between regions of the
transmission network.

Data

In the second case study, we use data from the Danish, Swedish and Norwegian power
markets and represent the two Danish price regions, Norway and Sweden with four nodes.
We assume that two DC cables are already in place: One connecting the two Danish price
regions and one connecting the western Danish pricing region and Sweden. Four potential
DC cables can be installed, providing connections where not already.

Hourly demand data is the same as for Case study I.
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Model

We continue to assume a perfectly competitive power market and market-clearing that
accounts for network flow. For the problem to be linearly constrained, however, we use a
more simple network representation than above.

The bilevel programming problem of the merchant investor is to decide on the upper-
level transmission capacity while anticipating the lower-level market-clearing:

min
∑

(i,j)∈J 1

(
Cijxij −

s∑
t=1

ρtfijt (λit − λjt)
)

(4.24a)

s.t. 0 ≤
∑

(i,j)∈J 1

Cijxij ≤ xmax (4.24b)

0 ≤ xij ≤ Fmax
ij ∀(i, j) ∈ J 1 (4.24c)

fijt, λit are optimal solutions to (4.25) ∀i, j, t (4.24d)

The lower-level subproblems are:

min
∑
g∈G

cgygt (4.25a)

s.t.
∑
g∈Gi

cgygt −
∑
j∈Ji

fijt = dit : λit ∀i (4.25b)

0 ≤ ygt ≤ ygmax : µgt ∀g ∈ G (4.25c)

− xij ≤ fijt ≤ xij : α1
ijt, β

1
ijt ∀(i, j) ∈ J 1 (4.25d)

− Fmax
ij ≤ fijt ≤ Fmax

ij : αijt, βijt ∀(i, j) /∈ J 1 (4.25e)

The set J 1 defines all potential transmission lines of the merchant. The upper-level ob-
jective is to maximize the profits from building new transmission lines and receiving con-
gestion rents, cf. Joskow and Tirole (2005). Congestion rents are defined as the flow on a
line times the difference in nodal prices for the two connected nodes, see Khanabadi and
Ghasemi (2011) and Sorokin et al. (2012). Constraint (4.24b) introduces an investment
budget, whereas (4.24c) constrain the maximum capacity to be installed. The lower-level
subproblems are simplifications of Case study I, obtained by replacing the DC represen-
tation by flow balancing only and assuming only one market participant in each node of
the network.

Results

Note that the investment problem (4.24)-(4.25) satisfies Assumption 3 but not Assumption
4.5.2. More specifically, the submatrices C21 andH21 defined in Section 4.5 do not satisfy
Assumption 4.5.2.2. For this reason, the liearization and the MILP and SOS reformula-
tions do not apply. Moreover, based on the experience with NLP and MPEC from Case
study I, we restrict attention to the parametric programming approaches. We report the
results of decomposition by parametric programming and the parametric programming
heuristic. We do not include those of parametric programming without decomposition,
since method does not solve the problem within the time limit.

Figure 4.5 plots the solution times as functions of the number of lower-level subprob-
lems.
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Figure 4.5: Solution times (seconds) as a function of the number of lower-level (LL)
problems.
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We note that decomposition by parametric programming has a significantly longer
solution times for the second case study than for the first, cf. Figure 4.5 versus Figure
4.3. For Case study II, the method only solves instances with less than 400 lower-level
subproblems within the time limit. This is due to larger lower-level subproblems and thus
critical regions of higher dimensions, which makes vertex enumeration computationally
expensive. The expensive vertex enumeration is also the reason that the heuristic largely
outperforms decomposition. In fact, the heuristic method solves problems with up to 900
lower-level subproblems within the time limit.

Considering this particular investment problem, for all instances solved by the para-
metric programming method within the time limit (and returning a global optimal solu-
tion), the heuristic method returns the same solution, and hence, also solves the instances
to global optimality.

4.7 Conclusions
This paper examines linearly constrained bilevel programming problems in which the
upper-level objective function depends on both the lower-level primal and dual optimal
solutions. We provide a formal analysis of the BPP-D and suggest solution strategies
based on parametric programming. In particular, we propose an exact algorithm and a
heuristic that both facilitate decomposition of the problem and thereby the potential to
provide computational advantages.

We assess the performance of the parametric programming approach on two case stud-
ies of strategic investment in electricity markets and benchmark against mixed-integer lin-
ear programming and standard non-linear solution methods to bilevel optimization prob-
lems. Preliminary results reveal substantially lower solution times to obtain high-quality
feasible solutions and/or reach global optimality over state-of-the-art methods, especially
when the lower-level separates into a large number of subproblems. Furthermore, we
show that the parametric programming approach succeeds in solving problems to global
optimality, for which linearization does not apply and non-linear methods fail.

For future work, one could test computational performance in other application do-
mains. Furthermore, throughout the analysis we assume that the upper-level objective is
affine in one of its arguments or even bilinear in both arguments, which covers a wide
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range of applications. One could, however, investigate whether the parametric program-
ming approach maintains its advantages for more general BPP-Ds or other bilevel opti-
mization problems.
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Chapter 5

A Parametric Programming Approach
to Bilevel Transmission Investment
Problems in Power
H. BYLLING, T. BOOMSMA AND S. GABRIEL

Chapter Abstract

Nowadays, transmission investments are undertaken in a liberalized market
environment, in which the transmission system operator, the market, pro-
ducers and investors have different objectives. The transmission expansion
problem can account for this through the use of bilevel programming, with
an investor making expansion decisions in an upper-level while anticipating
the result of a lower-level market-clearing. In this work, we formulate the
stochastic transmission expansion problem of a merchant investor collecting
congestion rents that are determined by the differences between nodal market
prices. The corresponding bilevel program can be recast as a mathematical
program with equilibrium constraints (MPEC), but does not allow for lin-
earization and reformulation by mixed-integer linear programming. Instead,
we present a parametric programming approach that facilitates decomposition
with respect to both time periods and scenarios. A numerical study indicates
its advantages over a non-linear MPEC representation.

5.1 Introduction
Transmission expansions in a power market may involve many players with different ob-
jectives. For instance, a system operator aims to improve the functioning of the power sys-
tem, e.g. through social welfare maximization or with respect to reliability of the network.
Generation companies assess the effects of transmission expansions on their profits, since
changes to the network topology involve changes to supply and demand. In this chapter,
we take the perspective of a merchant transmission investor, i.e. a company that installs
new transmission lines in order to profit from their use. We assume a power network with
nodal prices, also known as locational marginal prices (LMPs). As a producer sells its
power in the node it is located and at the local LMP, flow of power to another node with a
different LMP may involve profits to the owner of the line. Indeed, the profits from using
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both existing and newly installed transmission lines consist of congestion rents defined
by differences in nodal prices (Sorokin et al., 2012). In many cases, a transmission sys-
tem operator (TSO) owns and operates the network and the profits translate into financial
transmission rights (FTRs) which are sold in a secondary market or auction. In contrast,
the merchant investor perspective to transmission investments is based on profits from
long-term financial transmission right (LTFTR) offsetting the investment costs (Rosellón
et al., 2013). This market setup can for example be found in PJM, New York, California
and New England (Kristiansen, 2004).

As transmission expansions change the network topology, supply and demand is af-
fected and the market adopts new LMPs. In particular, the installation of new transmission
lines can connect producers to new nodes, in which the merit order and therefore the lo-
cal LMP changes. To model this feedback mechanism between investment decisions and
LMPs and the different objectives of the merchant and the market, we use bilevel pro-
gramming. A bilevel programming problem (BPP) consists of an upper level and a lower
level, often illustrated by the leader-follower problem (or Stackelberg game) in which a
leader makes an upper-level decision while accounting for the reaction of a follower in the
lower-level. We consider the merchant investor as a leader making upper-level investment
decisions that anticipate the following lower-level market-clearing. Our problem of long-
term transmission expansions is static, but account for short-term dynamics of the power
system, including market clearing. Moreover, by including demand uncertainty, our prob-
lem becomes a two-stage stochastic program, with the first stage and second stages being
the upper level and lower level, respectively.

A popular approach to solving a BPP is based on replacing the lower-level problem
by its Karush-Kuhn-Tucker (KKT) optimality conditions, assuming these are sufficient
(Dempe et al., 2015). The resulting problem is a mathematical program with equilibrium
constraints (MPEC), for which solution approaches include reformulation by mixed in-
teger programming (MIP), non-linear methods or heuristics. In case the BPP has linear
constraints and objectives, a widely applied method uses linearization and reformulation
by mixed-integer linear programming. In our case, the lower-level problem of the BPP is
a linear program, meaning that the KKT conditions are necessary and sufficient for op-
timality. Also, the upper-level problem has linear constraints. However, the upper-level
objective function includes bilinear congestion rents, determined by LMPs (lower-level
dual variables) times line flow (lower-level primal variables). This bilinear term makes
the resulting MPEC non-linear, and thus, difficult to solve to global optimality.

Instead, we propose a solution approach for the merchant investor BPP based on para-
metric programming. The method has the advantage that it solves a BPP with bilinear
objective to global optimality. Furthermore, it allows for decomposition of the lower-
level problem with respect to both time periods and scenarios. In a numerical study, we
compare its performance to the non-linear MPEC representation.

The main objectives of this chapter are:

• To formulate a bilevel programming problem for transmission expansion of a mer-
chant investor.

• To illustrate the application of parametric programming and its advantages for the
transmission investment problem.

• To obtain numerical results for a case study of investments in transmission lines.
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5.2. LITERATURE REVIEW

The rest of this chapter is organized as follows: Section 5.2 gives an overview of the
existing literature and positions this chapter within recent research. In Section 5.3, we
present the bilevel programming problem of transmission investment and in Section 5.4,
the proposed solution method is described. Numerical results from a case study are given
in Section 5.5 and Section 5.6 concludes.

5.2 Literature Review
In the current literature, BPPs have often been used to formulate transmission expansion
problems. For a review of transmission expansion problems in general, we refer to (Hem-
mati et al., 2013).

For instance, Conejo et al. (2016) present a bilevel transmission and generation ex-
pansion problem with market clearing in the lower-level and profit maximization at the
upper-level. Similarly, Garcés et al. (2009) propose a bilevel problem of a transmis-
sion planner who minimizes network expansion costs in the upper level subject to market
clearing at the lower level. Also, Baringo and Conejo (2012a) consider a joint generation
and transmission expansion with the objective to minimize consumer payments when in-
stalling wind power units and the required network reinforcements. Conejo et al. (2016),
Garcés et al. (2009) and Baringo and Conejo (2012a) solve the bilevel programming prob-
lem by reformulation to a mixed-integer linear program (MILP) via KKT-conditions and
disjunctive constraints. In fact, although the upper-level objective function by (Conejo
et al., 2016) and (Baringo and Conejo, 2012a) is bilinear, it can be linearized using the
KKT-conditions and strong duality of the lower-level problem. Unfortunately, to the best
of our knowledge, the structure of our problem does not allow for linearization and refor-
mulation by MILP.

The perspective of a merchant investor is proposed by Joskow and Tirole (2005).
(Maurovich-Horvat et al., 2014) formulate a stochastic bilevel problem and use it to com-
pare transmission expansions from a merchant investor and a TSO. Buijs and Belmans
(2012) likewise propose a bilevel transmission expansion problem and analyze different
upper-level objectives. More specifically, Rosellón et al. (2013) investigate a merchant
mechanism to transmission expansion, using LTFTR as incentive to construct new lines.
The resulting problem becomes an MPEC, which is solved via its KKT-conditions. Since
the MPEC is non-convex, the KKT conditions may not be sufficient for optimality, and
thus, the solution may not be globally optimal. In this chapter, we continue to consider
a merchant perspective on transmission expansion, but introduce a new solution method
that guarantees global optimality.

Other solution approaches to bilevel programming include genetic heuristics, e.g.
(Buijs and Belmans, 2012). For a review of solution methods to BPPs, we refer to (Dempe
et al., 2015) and (Colson et al., 2007). Neither of these solution methods, however, solve
general bilevel transmission expansion problems with bilinear objective to global opti-
mality.

5.3 Model
This section presents the bilevel programming model for transmission investments. Our
model consists of two levels; a lower-level market-clearing problem and an upper-level
investment problem. A nomenclature is provided in Table C.1 in the appendix.
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In the lower-level market-clearing problem, we assume a perfectly competitive power
market, such that producers offer generation at their marginal production cost. By further
assuming inelastic demand, market-clearing can be formulated as a linear cost minimiza-
tion problem, cf. Gabriel et al. (2013). In our setup, market clearing accounts for network
flow, which is modeled using a DC representation. To capture the short-term dynamics,
we consider a number of time periods, e.g. hours, for which the power market clears.
To represent demand uncertainty, we assume a discrete distribution with a finite number
of scenarios. For fixed upper-level decisions, the lower-level problem decomposes into
a number of subproblems; one for each time period and each scenario. The lower-level
subproblem of time period t and scenario s is the following:

minyts,pts,θts

∑
g∈G

cgygts (5.1a)

s.t.
∑
g∈G(i)

ygts −
∑
j∈Ω(i)

pijts = dits : λits ∀i ∈ Ω (5.1b)

0 ≤ ygts ≤ ymaxg : µygts ∀g ∈ G (5.1c)

pijts = Bij(θits − θjts) : µpijts ∀(i, j) /∈ C (5.1d)

pijts = xijBij(θits − θjts) : µp,Cijts ∀(i, j) ∈ C (5.1e)

− Fmax
ij ≤ pijts ≤ Fmax

ij : µF,minijts , µF,maxijts ∀(i, j) /∈ C (5.1f)

−Fij ≤ pijts ≤ Fij : µF ,minijts , µF ,maxijts ∀(i, j) ∈ C (5.1g)

− π ≤ θits ≤ π : µθ,minits , µθ,maxits ∀i ∈ Ω (5.1h)

θits = 0 : µθ,refts i = ref (5.1i)

where yts = {ygts}g,pts = {pijts}i,j and θts = {θits}i. The objective function minimizes
production costs, while the constraints (5.1b) balances demand and supply at each node.
Power generation is limited by the existing capacity for each generating unit in constraint
(5.1c). Power flow from node i is defined for existing lines in constraint (5.1d) and for
potential lines in (5.1e). Since the upper-level investment decision is fixed in the lower
level, we know whether a candidate line has been installed (xij = 1) or not (xij = 0). The
flow through each line is likewise constrained by the capacity (5.1f) for existing lines and
in constraint (5.1g) for candidate lines. The voltage angle at each node is restricted by the
constraint (5.1h), and finally, (5.1i) defines the voltage angle of some reference node of
the network to be zero.

In the upper-level investment problem, the merchant maximizes profits, i.e. congestion
rents less investment costs, subject to a total budget. The formulation of the upper-level
problem is the following:

maxx,F ,p,λ
∑
t∈T

ρt
∑
s∈S

φs
∑

i,j∈Ω:i<j

pijts (λits − λjts)

−
∑

(i,j)∈C

(Kijxij + kijFij)
(5.2a)

s.t. 0 ≤
∑

(i,j)∈C

Kijxij + kijFij ≤ Kmax (5.2b)

0 ≤ Fij ≤ xijFmaxij ∀i, j ∈ Ω (5.2c)

xij ∈ {0, 1}, ∀i, j ∈ Ω (5.2d)
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pts primal solution to (5.1), ∀t ∈ T, s ∈ S (5.2e)
λts dual solution to (5.1) ∀t ∈ T, s ∈ S (5.2f)

where x = {xij}i,j,F = {Fij}i,j,p = {pijts}i,j,t,s and λ = {λts}t,s. The objective
function maximizes the profits from installing new lines. Profits consists of accumulated
hourly congestion rents determined by the differences between nodal market prices less
fixed and linear investment costs. Constraint (5.2b) ensure compliance with the invest-
ment budget and (5.2c) constrain the maximum capacity installed at each line.

5.4 The parametric programming method
By replacing the lower-level problem of the BPP by its Karush-Kuhn-Tucker (KKT) op-
timality conditions, the resulting problem is a mathematical program with equilibrium
constraints (MPEC). The bilinear term of the upper-level objective function makes the
MPEC non-linear. To the best of our knowledge, it is not possible to linearize this bilinear
term and the problem can only be solved to local optimality.

Instead, we propose a solution approach for the BPP based on parametric program-
ming. The approach applies to a linearly constrained BPP with continuous variables in
both levels, and thus, does not apply directly to the transmission investment problem with
binary variables in the upper level. For a limited number of potential transmission lines,
the number of binaries is moderate (for |C| potential lines, the number of binaries is 2|C|).
We therefore use the parametric programming approach in combination with an enumer-
ation method. Our method has the advantage that it solves the problem with bilinear
objective to global optimality. In Section 5.4.1 we present the parametric programming
method for a BPP with only continuous variables and in Section 5.4.2 we briefly explain
the enumeration method to deal with binary variables.

5.4.1 Continuous Upper Level
In this section, we fix the binary decisions to install a line or not x ∈ {0, 1}|C| and consider
only the continuous line capacities F ∈ R|C| as upper-level decision variables.

We define the upper-level feasibility set S ⊆ R|C| as the set of upper-level solutions
that satisfy the upper-level constraints (5.2b),(5.2c) and render the lower-level problem
(5.1) feasible.

The idea behind the parametric programming method is to parameterize the lower-
level primal and dual optimal solutions by the upper-level feasible solutions, i.e.

p(F) and λ(F), F ∈ S,

such the upper-level objective function can be expressed in terms of upper-level variables
only.

To inspect the optimal solutions to the lower-level problem, let the upper-level solu-
tion F ∈ S be fixed and let B be a basis for the lower-level linear programming problem,
i.e. a set of linearly independent columns of the constraint matrix. We refer to the corre-
sponding basis solution to the lower-level problem. Variables corresponding to columns
of the basis are called basic variables. The remaining variables are called non-basic and
equal zero.

The following definition stems from parametric programming (Gal, 1995).
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Definition 5.4.1. The critical region ΛB ⊆ S corresponding to the basis B is the set of
solutions for which the corresponding basis solution is optimal.

Thus, the critical region corresponding to a basis is the set of upper-level solutions
for which the corresponding lower-level basis solution is optimal. It can be shown that a
critical region is a polyhedron, cf. Gal (1995).

On each critical region we can characterize and explicitly express the upper-level ob-
jective function in terms of upper-level variables only. This result follows from Bylling
et al. (2018).

Proposition 5.4.2. Let ΛB be the critical region corresponding to the basis B. Then the
bilinear term pijts(F)(λits(F)−λjts(F)) is an affine function of F on the interior of ΛB

and for all i, j, t, s.

In other words, the upper-level objective function is a piece-wise linear (but not nec-
essarily continuous) function with affine segments on each critical region. Hence, with
the gradient of the upper-level objective function on a critical region, we can obtain an
exact description of the upper-level objective function. Furthermore, with an affine objec-
tive function and a polyhedral feasibility set, the restriction of the BPP to a single critical
region is a linear programming problem. We use this to solve the BPP.

Our strategy is to find a cover of the upper-level feasibility set by critical regions, i.e.
a set of bases B such

S =
⋃
B∈B

ΛB,

solve the restricted problems for all critical regions in the cover and finally obtain the
global optimal solution by simply comparing solutions.

To find a cover of S by critical regions, we define neighboring critical regions (Gal,
1995).

Definition 5.4.3. Two critical regions, Λ1,Λ2, are neighbors if the following holds for
their corresponding bases B1, B2:

1. There exists an F ∈ S for which B1 and B2 are both optimal bases to (5.1).

2. It is possible to pass from B1 to B2 in one iteration of the dual simplex method.

By Gal (1995), the union of all neighboring critical regions forms a cover of S. Thus,
it is unnecessary to consider all possible bases of the lower-level problem. Neighbor-
ing critical regions are obtained by the following algorithm (Gal, 1995), based on dual
simplex.

Algorithm 5.4.4. Parametric programming algorithm

Step 0 (initialization) Set h := 0. Given an initial upper-level solution, solve the lower-
level problem (5.1). Store an optimal basis B0 and set B := {B0}.

Step 1 (iteration h) If B = ∅, then stop. Otherwise, set h := h + 1, select Bh ∈ B and set
B := B \ {Bh}.

Step 2 (determine leaving variable) Let B := Bh. Select a basic variable i and determine
if a neighbor exists. If not, select another basic variable i. If all basic variables have
been considered, return to Step 1.
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Step 3 (determine entering variable) Carry out an iteration of the dual simplex method
with basic variable i as the leaving variable. Store a neighboring basis Bj and set
B := B ∪ {Bj}. Return to Step 2.

For further details on our parametric programming approach, see Bylling et al. (2018).

Decomposition

For fixed upper-level decisions, the lower-level problem of the BPP decomposes into a
number of subproblems; one for each time period and each scenario. We refer to the
BPP with one time period and one scenario as a BPP subproblem. We process the sub-
problems individually, which allows for parallel computations and most likely provide
computational advantages.

By processing a BPP subproblem, we obtain neighboring critical regions for one time
period and scenario. By processing all subproblems, the union of all critical regions forms
a cover of S. Observe that an optimal solution to the restricted BPP can found in a vertex
of the critical region. Unfortunately, the optimal solution to the BPP may not be found
among the optimal solutions to the restricted BPP subproblems. However, the vertices of
the critical region must be found among the vertices of the critical regions obtained for
one time period and scenario. Thus, to find an optimal solution to the BPP, we enumerate
and evaluate all vertices of the critical regions of the BPP subproblems. This will provide
a global optimal solution. For vertex enumeration, we use the procedure of (Avis and
Fukuda, 1996).

The algorithm is as follows:

Algorithm 5.4.5. Decomposition

Step 1 (parametric programming) Apply the parametric programming algorithm 5.4.4 to
the BPP subproblem.

Step 2 (vertex enumeration) Use vertex enumeration for each of the critical regions ob-
tained in Step 1.

Step 3 (comparison) Collect all vertices from Step 2 and evaluate the upper-level objective
function at these.

As an alternative to Algorithm 5.4.5, we also propose a heuristic that omits the com-
putationally costly vertex enumeration. In Step 2, we obtain optimal solutions to the
restricted BPP subproblems.

The heuristic can be summarized as:

Algorithm 5.4.6. Heuristic

Step 1 (parametric programming) Apply the parametric programming algorithm 5.4.4 to
the BPP subproblem.

Step 2 (restricted optimization) Solve the BPP subproblem restricted to each critical region
obtained in Step 1.

Step 3 (comparison) Collect all vertices from Step 2 and evaluate their upper-level objec-
tive function values.

81



5. PARAMETRIC PROGRAMMING APPROACH TO TRANSMISSION INVESTMENT PROBLEMS

5.4.2 Binary Upper Level
This section outlines the combination of the parametric programming approach and the
enumeration method. The idea is simply to iterate through the upper-level solutions, i.e.
all potential configurations of the network. For fixed binary decisions to install candidate
lines or not x ∈ {0, 1}|C|, we apply parametric programming.

The procedure is as follows:

Algorithm 5.4.7. Enumeration

Step 1 (enumeration) Enumerate all binary solutions, x.

Step 2 (parametric programming) For each solution, solve the BPP using the algorithm
5.4.5 or the heuristic 5.4.6.

Step 3 (comparison) Collect all solutions from Step 2 and their upper-level objective func-
tion values.

5.4.3 Non-Linear Programming
As benchmarks, we also implement a non-linear MPEC formulation of the problem and
mixed-integer non-linear programming (MINLP) model. Both can be solved using stan-
dard software, with the upper-level variables x defined as binary variables. However,
since these problem are non-convex, only local optimality is guaranteed.

A challenge for the standard solver is that all feasible points of the MPEC are non-
regular, i.e. the gradients of the binding constraints are linearly dependent. Most non-
linear optimization solvers even fail to obtain a locally optimal solution. A way to over-
come the non-regularity is by the regularization approach of (Scholtes, 2001) and (Ralph
and Wright, 2004). Using this approach, the equality constraints of complementary slack-
ness are replaced by inequalities and the infeasibility gap is iteratively reduced. With
inequality constraints, the MPEC is regular.

Alternatively, the complementary slackness constraints can be linearized using dis-
junctive constraints. Disjunctive constraints introduces a binary variable for each con-
straint and a large parameter. This parameter, usually denoted by M, has to be sufficiently
large not cut off any feasible solutions. A too large M, however, may create computational
difficulties, see (Pineda et al., 2017) for more details. The resulting problem is a MINLP
(it is a mixed-integer problem but remains non-linear programming due to the bilinear
term in the objective function) and can only be solved to local optimality.

5.5 Numerical Results
We present a case study of transmission expansion in the Nordic region, with 4 nodes
representing Norway, Sweden and the two Danish pricing regions DK1 and DK2, cf.
Nord Pool AS (2017).

5.5.1 Data
We assume that three DC cables are already in place: One connecting the two Danish price
regions, one connecting the eastern Danish pricing region and Sweden and one connect-
ing Sweden and Norway. These existing cables each have a capacity of 1.000 MW. Three
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additional DC cables can be installed, providing connections where not already. These
are the cables (N,DK1), (N,DK2) and (SE,DK1), see Figure 5.1. The topology of
the network is not as the current, but is chosen for the purpose of illustration. The vari-
able investment costs of each candidate line is assumed to be 20.000 DKK/MW, whereas
we disregard fixed investment costs. We likewise disregard a budget and limitations for
installed capacities of candidate transmission lines.

DK1 DK2

SE

N
(N
,D
K
1)

(N
.D
K
2)

(SE
,DK

1)

Figure 5.1: Network topology.

Hourly demand data at each node is available at (Nord Pool AS, 2017). We use the
year of 2015. This data is clustered into a number of representative hours using k-means
clustering (Hartigan and Wong, 1979). We obtain results for different numbers of repre-
sentative hours. For simplicity, we disregard demand uncertainty.

Generation capacity and costs for DK1 and DK2 is taken from (Ea Energianalyse,
2014) that divides generation into and decentralized units. Generation capacities are ad-
justed to the Norwegian and Swedish nodes by considering historical and production data.
As opposed to Denmark, Norway and Sweden have considerable amounts of hydropower,
which is reflected in the lower production costs of the centralized plants. The generation
capacities and production costs are found Table 5.1.

DK1 DK2 SE N
Centralized cap. (MW) 1.800 2.400 13.800 15.000
Decentralized cap. (MW) 1.200 1.600 10.000 9.200
Centralized cost (DKK/MWh) 500 450 400 300
Decentralized cost (DKK/MWh) 760 760 700 700
Average demand (MWh) 2299 1526 15275 14369

Table 5.1: Generation capacity and production costs.

5.5.2 Investments

The parametric programming approach to decomposition and the heuristic have been im-
plemented in R using the interfaces by (Berkelaar, 2015) to solve LPs and (Robere, 2015)
for vertex enumeration. The software is open source and free. The MPEC and MINLP
have been implemented in GAMS (GAMS, 2017) and solved using the DICOPT solver.
All problems are solved on an HP ProLiant server with 4 AMD 2.50 GHz CPUs and with
a total of 64 cores and 256 GB RAM.
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For the most detailed case with 1000 representative hours, the optimal solution is

(xN,DK1, xN,DK2, xSE,DK1) = (1, 1, 1)

(FN,DK1,FN,DK2,FSE,DK1) = (1000, 1000, 16),

meaning investment are made in all candidate lines with maximum capacity on (N,DK1)
and (N,DK2) and investments of 16 MW capacity on (SE,DK1). We use this solution
as benchmark.

The investments in all candidate lines are justified by total congestion rents offsetting
the investment costs. In fact, the transmission of power and differences in nodal prices
generate significant revenues for the merchant investor. We explain this as follows.

Since the costs of centralized generation is significantly lower than those of decentral-
ized generation, demand is satisfied by central production unless generation capacity is
binding. As the production costs of Norway and Sweden are lower than those of the Dan-
ish nodes, demand of all nodes is satisfied by central production in Norway and Sweden,
using both existing and newly constructed transmission lines. Thus, power is transmit-
ted from Norway and Sweden to Denmark unless transmission capacities are binding, i.e.
congestion occurs. As a result, the nodal prices are determined by the marginal costs
of centralized Norwegian and Swedish generation in many of the representative hours.
When congestion occurs, however, market prices of the Danish nodes are higher than for
Norway and Sweden.

Average nodal prices are given in Table 5.2. As expected, average prices are higher
for the Danish nodes than for the Norwegian and Swedish nodes, but the same for the
Danish nodes.

DK1 DK2 SE N
491 491 451 357

Table 5.2: Average prices at the four nodes in DKK/MWh

In Table 5.3, we list the number of hours (out of the 1000 representative hours) for
which the transmission line are congested. Furthermore, the direction of the power flow
is indicated by the number of hours with positive and negative flow. We note that power

(N,SE) (N,DK1) (N,DK2) (SE,DK1) (SE,DK2) (DK1,DK2)
Congested Lines 947 980 997 1000 812 0
Positive Flow 981 990 1000 1000 1000 90
Negative Flow 19 10 0 0 0 907

Table 5.3: Number of hours (our of 1000) with congested lines, positive flow and negative
flow on all transmission lines.

always flows into the Danish nodes from the (N,DK1), (S,DK1) and (S,DK2) lines,
clearly confirming the low-cost generation from Norway and Sweden supplied to the Dan-
ish market. The (N,S) and (N,DK1) lines mainly have flow from Norway to DK1 and
Sweden (in 981 and 990 out of 1000 hours, respectively). All but the (DK1, DK2) line
have power flow during all hours and the (DK1 − DK2) line only have 3 out of 1000
hours without flow of power. Thus, the markets exploits the network at all times.

As can be seen, the line connecting Sweden and DK1 is always congested, meaning
the merchant investor collects congestion rents in all hours. Also, the transmission lines
connecting Norway and Sweden, Norway and DK1, Norway and DK2 and Sweden and
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DK2 are almost always congested (between 812 and 997 hours out of the 1000 represen-
tative hours). The only line that is never congested is the one connecting the two Danish
regions, DK1 and DK2.

5.5.3 Solution Methods
We suggested two solution methods based on parametric programming: The parametric
programming approach to decomposition (abbreviated Decomp.) guaranteeing global op-
timality and the heuristic. We compare with the tree non-linear programming methods: A
standard MPEC solver, a regularization approach (Reg. MPEC) and a reformulation by
disjunctive constraints (MINLP). We solve the BPP with all these methods, varying the
number of representative hours by 10 from 10 to 1000, the result of which is a total of 19
problem instances of increasing size.

The standard MPEC solver returned local infeasibility for all instances, and thus, we
do not report further results of using this solution method. The MINLP method likewise
did not provide any results, with the solver reporting that the search stopped as the ob-
jective function of the NLP subproblems started to deteriorate. While the regularization
approach returned local optimal solutions for all 19 instances, all these solutions were

(xN,DK1, xN,DK2, xSE,DK1) = (0, 0, 0)

(FN,DK1,FN,DK2,FSE,DK1) = (0, 0, 0),

i.e. no investments were made. This results in an optimality gap of 99% and is of no
practical use.

To compare the solutions of the decomposition approach and the heuristic, we report
the investment capacities of the three candidate lines in Table 5.4. We see that the two
solution methods agree in 14 out of 19 cases, as also indicated by the optimality gap in
Table 5.5. For both methods, investments are made in lines (N,DK1) and (N,DK2)
at maximum capacity in all but one instance (50 representative days). The investment
in line (SE,DK1) is of a smaller capacity, although in many instances (14 and 11 out
of 19 for the decomposition approach and the heuristic, respectively), some investment
is profitable. In fact, a small capacity is enough to create congestion and generate some
revenue. The two methods, however, occasionally disagree regarding investment in line
(SE,DK1). We conclude that the heuristic does well in terms of detecting congested
lines, but fails to obtain optimal investment capacities when these are small. The larger
the instances, the worse the heuristic solutions. In fact, for 600-1000 representative days,
the exact approach justifies investment a low-capacity line, whereas in four out of five
instances, the heuristic does not invest at all.

Table 5.5 provides the solution times of the exact parametric programming approach
and the heuristic and their differences in objective function values, i.e. optimality gaps.
For a number of representative days higher than 500, the optimality gaps produced by the
heuristic varies from 0.1% to 10.1%. When the number of representative days is 500 or
lower, the heuristic obtains the optimal solution. Since this is a heuristic, we can only
attribute this to the model structure and data. For instances with 100 representative days
or lower, the heuristic obtains the optimal solution 15-70 times as fast. For problems
with 200 representative days or more, the heuristic maintains lower solution time for
almost all instances but with a factor between 4 and 7. While the heuristic provides no
guarantees of optimality, our case study suggests that for small to moderate sized bilevel
problems, it works very well. Furthermore, it solves even large problems relatively fast
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No. of rep. days Decomp L1 Decomp L2 Decomp L3 Heuristic L1 Heuristic L2 Heuristic L3
10 1000 1000 275 1000 1000 275
20 1000 1000 126 1000 1000 126
30 1000 1000 33 1000 1000 33
40 1000 1000 128 1000 1000 128
50 1000 994 0 994 1000 0
60 1000 1000 77 1000 1000 77
70 1000 1000 0 1000 1000 0
80 1000 1000 0 1000 1000 0
90 1000 1000 51 1000 1000 51

100 1000 1000 11 1000 1000 11
200 1000 1000 38 1000 1000 38
300 1000 1000 38 1000 1000 62
400 1000 1000 0 1000 1000 0
500 1000 1000 0 1000 1000 4
600 1000 1000 9 769 1000 0
700 1000 1000 10 913 1000 0
800 1000 1000 11 1000 1000 4
900 1000 1000 16 993 1000 0

1000 1000 1000 16 901 1000 0

Table 5.4: Investment decisions from the two solution methods, the decomposition ap-
proach (Decomp.) and the heuristic (Heuristic). All numbers in MW.

No. of rep. days Sol. time decomp. (s) Sol. time heuristic (s) Optimality Gap (%)
10 150.7 2.2 0
20 134.7 3.6 0
30 177.6 6 0
40 201.1 9.1 0
50 363.8 15.5 0
60 373.3 16.3 0
70 378.9 21.7 0
80 421.8 28.2 0
90 537.1 34 0

100 838.3 40.7 0
200 1013.9 143 0
300 1182.5 305.5 0
400 2308.9 528.2 0
500 3391 818.7 0.1
600 6764.8 1146.4 1.7
700 9142.5 1587.8 7.8
800 10222 2567 0
900 13543 3215.5 10.1

1000 16733.8 4238.5 7

Table 5.5: Solution times and optimality gaps.

and provides solutions within a 10% optimality gap. Its main disadvantage is that the
solutions may be structurally different from the optimal, and thus, it may be better suited
for cost assessments than for investment planning.

5.6 Conclusion

This chapter adopts a merchant investor perspective on transmission expansion. Invest-
ment is incentivized by the merchant collecting congestion rents on the installed transmis-
sion lines. We formulate a bilevel programming problem in which investment decisions
are made in an upper level and in anticipation of lower-level market-clearing. With the in-
clusion of congestion rents, the formulation involves a bilinear revenue term in the upper-
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level objective function. This makes the problem difficult to solve to global optimality by
standard approaches, such as MPEC or MILP reformulations.

Instead, we present an exact algorithm based on parametric programming that solves
the bilinear bilevel programming problem to global optimality. Furthermore, it allows for
decomposition of the lower-level problem and thereby has potential to provide computa-
tional advantages. We also present a faster, but heuristic version of the algorithm.

We illustrate the problem and the solution methods on a case study of the Nordic re-
gion. The numerical results demonstrates the profitability of being a merchant investor in
a transmission network. The parametric programming approach is able to solve problem
instances with up to 1000 representative days within 4.5 hours while the heuristic termi-
nates in 1.2 hours and with an optimality gap of 7%. The heuristic found the optimal
solution in 14 out of 19 cases with significantly lower solution time than the parametric
approach. For large instances, however, the structure of the solutions produced by the
heuristic may differ from the optimal.
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Appendix A

Appendix to Chapter 2

A.1 Results tables
All results listed in two tables: one for non-zero balancing costs and one for balancing
costs equal to zero.
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Table A.1: Investment decisions and runtimes for the different models in the case of
c+
g = 0.05cg/r

u
g and c−g = 0.05cg/r

d
g .

Model wind coal gas nuclear Runtime TC IC OC LSC WCC Meas. Wind Pen.

DC-365 2561 935 747 1417 217 990.22 666.45 311.59 4.41 7.76 0.3
DS-365 2562 983 796 1354 30859 989.68 664.57 315.65 2.66 6.8 0.3
HC-240 2575 259 963 1971 0 1033.85 690.07 322.76 1.26 19.76 0.3
HC-480 2550 276 979 1978 0 1029.83 690.81 321.24 0.72 17.05 0.298
HC-720 2557 262 977 1994 0 1032.87 692.44 321.73 0.76 17.95 0.298
HC-960 2564 270 972 1990 1 1032.87 693.34 320.79 0.75 17.98 0.299
HC-1200 2567 271 965 1989 1 1033.06 693.23 320.63 0.83 18.38 0.299
HC-1440 2566 271 965 1989 1 1033.03 693.19 320.64 0.83 18.37 0.299
HC-1680 2566 271 965 1989 2 1033.01 693.17 320.65 0.83 18.37 0.299
HC-1920 2566 266 965 1994 2 1033.71 693.41 320.88 0.83 18.58 0.299
HC-2160 2566 266 965 1995 3 1033.8 693.45 320.91 0.83 18.61 0.299
HC-2400 2567 267 964 1995 3 1033.76 693.52 320.8 0.83 18.61 0.299
HC-8760 2559 241 902 1929 32 1035.44 676.94 326.48 6.94 25.08 0.298
HS-240 2693 383 976 1796 2 1031.47 692.38 317.77 2.01 19.31 0.314
HS-480 2721 344 955 1856 8 1040.91 699.57 316.61 2.07 22.65 0.317
HS-720 2695 346 967 1842 18 1036.38 695.16 318.14 2.05 21.03 0.314
HS-960 2670 335 970 1844 22 1033.81 691.27 319.92 2.25 20.37 0.311
HS-1200 2656 328 944 1861 33 1033.75 690.09 319.59 2.88 21.19 0.31
HS-1440 2621 335 933 1857 74 1028.56 685.26 319.98 3.27 20.05 0.306
HS-1680 2613 338 919 1847 94 1027.59 682.42 320.39 4.37 20.41 0.305
HS-1920 2593 340 902 1846 135 1025.64 679.14 320.57 5.42 20.51 0.302
HS-2160 2594 333 935 1847 109 1024.82 680.31 321.6 3.72 19.19 0.302
HS-2400 2594 331 941 1845 134 1024.89 680.23 321.98 3.61 19.07 0.303
HS-8760 2559 339 939 1841 1829 1019.59 675.99 322.4 3.54 17.66 0.299
DC-10 2653 843 420 1511 0 1091.08 665.52 300.38 101.18 23.99 0.309
DC-20 2652 925 447 1402 1 1085.5 659.12 306.6 100.91 18.87 0.31
DC-30 2685 871 732 1464 1 1006.98 681.19 306.31 6.78 12.71 0.314
DC-40 2652 870 779 1420 2 1002.21 672.61 311.89 6.7 11.01 0.31
DC-50 2590 876 790 1404 3 994.71 663.82 315.31 6.63 8.96 0.303
DC-60 2576 910 763 1396 4 992.77 663.2 314.54 6.61 8.41 0.301
DC-70 2566 892 766 1413 5 991.84 662.59 314.28 6.6 8.36 0.3
DC-80 2552 908 763 1400 8 990.11 660.54 315.11 6.59 7.87 0.299
DC-90 2562 904 746 1420 9 991.44 663.57 312.94 6.6 8.33 0.3
DC-100 2561 911 735 1424 12 991.32 664.27 312.12 6.6 8.34 0.3
DS-10 2654 904 537 1436 6 1034.79 666.77 306.22 45.8 16.01 0.31
DS-20 2652 944 551 1383 26 1033.37 663.53 309.48 45.74 14.62 0.31
DS-30 2686 926 780 1382 77 1004.84 677.28 311.25 5.06 11.25 0.314
DS-40 2653 933 816 1338 243 1000.73 669.19 316.73 5.08 9.72 0.31
DS-50 2591 939 830 1327 450 993.5 661.17 319.93 4.6 7.8 0.303
DS-60 2576 959 808 1329 455 991.76 660.66 319.08 4.62 7.4 0.302
DS-70 2566 945 809 1341 631 990.67 659.89 318.86 4.63 7.29 0.3
DS-80 2552 961 794 1333 825 989.32 657.79 319.37 5.19 6.97 0.299
DS-90 2563 959 786 1344 1017 990.43 660.07 317.87 5.18 7.31 0.3
DS-100 2562 962 779 1347 2094 990.28 660.41 317.39 5.18 7.3 0.3
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Table A.2: Investment decisions and runtimes for the different models in the case of zero
balancing costs for all units.

Model wind coal gas nuclear Runtime TC IC OC LSC WCC Meas. Wind Pen.

DC-365 2561 935 747 1417 88 981.02 666.45 303.41 4.4 6.75 0.3
DS-365 2561 950 777 1406 24512 980.7 667.92 303.91 2.67 6.2 0.3
HC-240 2575 259 963 1971 0 1020.68 690.07 311.68 1.04 17.9 0.3
HC-480 2550 276 979 1978 0 1016.82 690.81 310.27 0.56 15.18 0.298
HC-720 2557 262 977 1994 0 1019.75 692.44 310.68 0.57 16.06 0.298
HC-960 2564 270 972 1990 0 1019.73 693.34 309.71 0.57 16.11 0.299
HC-1200 2567 271 965 1989 1 1019.9 693.23 309.53 0.63 16.52 0.3
HC-1440 2566 271 965 1989 1 1019.88 693.19 309.54 0.63 16.51 0.3
HC-1680 2566 271 965 1989 1 1019.85 693.17 309.55 0.63 16.51 0.299
HC-1920 2566 266 965 1994 1 1020.53 693.41 309.77 0.63 16.71 0.3
HC-2160 2566 266 965 1995 2 1020.61 693.45 309.79 0.63 16.74 0.3
HC-2400 2567 267 964 1995 2 1020.57 693.52 309.68 0.63 16.74 0.3
HC-8760 2559 241 902 1929 32 1022.39 676.94 315.62 6.55 23.28 0.298
HS-240 2693 295 974 1886 1 1028.88 696.45 309.56 1.91 20.97 0.314
HS-480 2721 250 949 1956 4 1040.62 704.28 308.73 2.05 25.56 0.317
HS-720 2695 247 965 1943 9 1036.3 699.67 310.89 2 23.74 0.314
HS-960 2670 241 967 1941 14 1033.38 695.66 312.57 2.18 22.96 0.311
HS-1200 2656 232 943 1958 23 1034.04 694.39 312.49 2.82 24.34 0.309
HS-1440 2621 238 932 1955 33 1028.95 689.58 312.92 3.19 23.26 0.305
HS-1680 2613 244 917 1942 46 1027.67 686.66 313.01 4.28 23.72 0.304
HS-1920 2593 247 900 1941 55 1025.87 683.39 313.09 5.35 24.04 0.302
HS-2160 2594 242 932 1941 74 1024.61 684.61 314.24 3.63 22.14 0.302
HS-2400 2594 237 939 1941 98 1024.94 684.5 314.88 3.52 22.03 0.302
HS-8760 2559 244 937 1937 1162 1019.49 680.24 315.38 3.45 20.43 0.298
DC-10 2653 843 420 1511 0 1080.53 665.52 290.84 100.97 23.21 0.31
DC-20 2652 925 447 1402 1 1075.97 659.12 298.05 100.62 18.18 0.31
DC-30 2685 871 732 1464 1 996.84 681.19 297.24 6.72 11.7 0.314
DC-40 2652 870 779 1420 1 992.59 672.61 303.31 6.68 9.99 0.31
DC-50 2590 876 790 1404 2 985.49 663.82 307.11 6.61 7.95 0.303
DC-60 2576 910 763 1396 2 983.66 663.2 306.44 6.6 7.42 0.302
DC-70 2566 892 766 1413 3 982.64 662.59 306.09 6.59 7.37 0.3
DC-80 2552 908 763 1400 5 981.07 660.54 307.09 6.57 6.87 0.299
DC-90 2562 904 746 1420 5 982.2 663.57 304.7 6.58 7.34 0.3
DC-100 2561 911 735 1424 6 982.05 664.27 303.86 6.58 7.34 0.3
DS-10 2653 868 505 1505 3 1026.69 671.44 292.4 45.59 17.26 0.31
DS-20 2652 918 531 1428 13 1024.54 666.52 297.57 45.49 14.97 0.31
DS-30 2685 903 749 1436 30 995.55 681.26 298.4 5.05 10.84 0.314
DS-40 2652 902 792 1394 68 991.55 672.9 304.28 5.08 9.29 0.31
DS-50 2590 910 809 1377 115 984.47 664.4 308.23 4.61 7.23 0.303
DS-60 2576 933 787 1376 303 982.77 663.85 307.5 4.62 6.81 0.302
DS-70 2566 918 788 1389 260 981.69 663.1 307.25 4.63 6.71 0.3
DS-80 2552 935 772 1381 329 980.39 661.09 307.73 5.18 6.39 0.299
DS-90 2562 931 764 1392 412 981.47 663.3 306.26 5.17 6.73 0.3
DS-100 2561 936 757 1395 536 981.32 663.66 305.77 5.17 6.72 0.3
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Appendix B

Appendix to Chapter 3

B.1 Nomenclatures of the case studies

B.1.1 Case study I: Investment in production capacity

Indices
t Operating time periods.
g Producers/generators
i, j Transmission nodes
Parameters
Ci Annualized investment costs of the strategic investor at node i [$/MWh].
cgi Production cost of the strategic investor or its rivals at node i[$/MWh].
ρt Weight of time period t [hours].
xmax Total maximum capacity allowed by the strategic investor [MW].
dit Demand in time period t at node i [MWh].
ymax,gi Capacity of the strategic investor or its rivals at node i [MW].
Bij Subsceptance of the transmission line from node i to node j
Fmax
ij Maximum flow of the transmission line from node i to node j [MW].

Primal continuous variables
xi Investment capacity of the strategic producer at node i [MW].
ygit Power produced by the strategic investor or its rivals in time period t

at node i [MWh].
θit Voltage angle in time period t at node i
Dual continuous variables
λit Dual variable of the balancing constraint/market-clearing price in time

period t at node i [$/MWh].
µgit Dual variable of generation capacity constraint in time

period t at node i.
ηijt Dual variable of the transmission capacity constraints between node i

and node j in time period t.
αit Dual variable to the minimum nodal angle constraint in time period t

at node i.
βit Dual variable to the maximum nodal angle constraint in time period t

at node i.
γit Dual variable to the reference nodal angle constraint in time period t.
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B.1.2 Case study II: Transmission investment

Indices
t Operating time periods.
g Producers/generators
i, j Transmission nodes
(i, j) Transmission lines
Parameters
Cij Annualized investment costs of the strategic investor between node i

and node j [$/MWh].
ρt Weight of time period t [hours].
xmax Total maximum capacity allowed by the strategic investor [MW].
Fmax
ij Maximum flow of the transmission line from node i to node j [MW].
cg Production cost of the strategic investor or its rivals [$/MWh].
dit Demand in time period t at node i [MWh].
ymax,g Capacity of the strategic investor or its rivals [MW].
Primal continuous variables
xij Investment capacity of the strategic producer between node i

and node j [MW].
ygt Power produced by the strategic investor or its rivals in time period t [MWh].
fijt Flow of the transmission line from node i to node j at time period t [MWh]
θit Voltage angle in time period t at node i
Dual continuous variables
λit Dual variable of the balancing constraint/market-clearing price in

time period t at node i [$/MWh].
µgt Dual variable of generation capacity constraint in time period t.
ηijt Dual variable of the transmission capacity constraints between node i

and node j in time period t.
αgijt Dual variable to the minimum flow constraint in time period t

between node i and node j.
βgijt Dual variable to the maximum flow constraint in time period t

between node i and node j.

B.2 MILP formulations

For Case study I, the MILP formulation is the following:

min
n∑
i=1

(
Cixi +

s∑
t=1

ρt

(∑
g∈G

cgi y
g
it − λity1

it +
∑
j∈Ji

Fmax
ij ηijt + π(αit + βit)

))

s.t. 0 ≤
n∑
i=1

xi ≤ xmax∑
g∈G

ygit −
∑
j∈Ji

Bij(θit − θjt) = dit : λit ∀i

0 ≤ y1
it ≤ xi ∀i

0 ≤ ygit ≤ ymax,gi ∀i, g 6= 1
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Bij(θit − θjt) ≤ Fmax
ij ∀j ∈ Ji

− π ≤ θit ≤ π ∀i
θit = 0 i = ref

Cg
i − λit + µgit ≥ 0 ∀t, i∑

j∈Ji

[Bij (λi − λj) +Bij (ηijt − ηjit)]

− αit + βit = 0 ∀t,∀i 6= ref.∑
j∈Ji

[Bij (λi − λj) +Bij (ηijt − ηjit)]

− αit + βit + γt = 0 ∀t, i = ref.

xi − y1
it ≤ δ1

itM1 ∀t, i
ymax,g − ygit ≤ δgitM1 ∀t, i, g 6= 1

µgit ≤ (1− δgit)M2 ∀t, i, g
ygit ≤ νgitM1 ∀t, i, g
cgi − λit + µgit ≤ (1− νgit)M2 ∀t, i, g
Fmax
ij −Bij (θit − θjt) ≤ uijtM1 ∀t, i, j ∈ Ji
ηijt ≤ (1− uijt)M2 ∀t, i, j ∈ Ji
π + θit ≤ vitM1 ∀t, i
αit ≤ (1− vit)M2 ∀t, i
π − θit ≤ witM1 ∀t, i
βit ≤ (1− wit)M2 ∀t, i
δgit, ν

g
it, uijt, vit, wit ∈ {0, 1} ∀t, i, g

Note that the constants are set to M1 = 1000 and M2 = 5000 as by Conejo et al. (2016).
For brevity, we leave out the MILP formulation of Case study II.

B.3 Results

B.3.1 Case study I

Table B.3 lists the solution times for all solution methods and varying the number of
lower-level problems. It further lists the relative deviations in the objective function val-
ues from the optimal, for the heuristic and the MILP methods. For the full parametric
programming method, no solution time is provided with more than 100 lower-level sub-
problems since these instances reached the time limit. This is also the case for the MILP,
for which 43 out of 59 cases did not solve within the time limit of 2 hours. All running
times above the time limit of 2 hours are marked as not available (N/A).
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Table B.3: Solution times (in secs) and deviations (in %) in the objective function val-
ues from the optimal, for different solutions methods and as a function of the number of
lower-level (LL) problems. The solution methods include the full parametric program-
ming method without decomposition, parametric programming method with decomposi-
tion, the heuristic with decomposition and the MILP. N/A means that the method did not
solve within the time limit of 2 hours.

No. of LL prob. full time (s) decomp. time (s) heuristic time (s) heuristic dev. (%) MILP time (s) MILP dev. (%)
10 0.57 13.84 0.92 0 0.75 0
20 10.07 16.2 0.85 16.43 0.86 0
30 42.52 19.87 1.12 11.15 0.66 0
40 129.96 28.34 1.45 7.39 0.89 0
50 398.19 16.24 1.62 7.11 1.2 0
60 752.59 21.27 2.01 3.94 0.99 0
70 1905.29 21.87 2.22 8.51 1.1 0
80 3114.58 22.94 2.5 3.91 1.38 0
90 4218.53 22.9 2.33 5.71 1.44 0
100 10288.31 25.2 2.72 5.29 3.56 0
200 N/A 45.47 3.67 4.68 5.63 0
300 N/A 73.12 7.36 3.57 129.87 0
400 N/A 93.71 11.64 4.12 73.84 0
500 N/A 142.81 18.68 3.24 N/A 2.93
600 N/A 170.73 23.44 3.86 84.64 0
700 N/A 213.11 33.32 3.73 N/A 3.34
800 N/A 273.44 43.95 3.9 108.4 0
900 N/A 314.73 58.81 3.77 N/A 3.3
1000 N/A 377.02 67.7 3.79 N/A 3.4
1100 N/A 442.21 81.43 3.78 N/A 3.31
1200 N/A 526.41 100.58 3.78 N/A 3.34
1300 N/A 604.18 117.83 3.65 N/A 3.29
1400 N/A 664.8 134.71 3.72 N/A 3.38
1500 N/A 743.72 149.28 3.85 N/A 3.38
1600 N/A 826.94 175.7 3.76 N/A 3.42
1700 N/A 962.94 214.32 3.68 N/A 3.33
1800 N/A 1020.66 216.63 3.76 N/A 3.38
1900 N/A 1114.72 244.04 3.76 60.04 0
2000 N/A 1238.18 273.74 3.77 N/A 3.4
2100 N/A 1348.78 298.37 3.66 N/A 3.35
2200 N/A 1485 342.66 3.75 N/A 3.38
2300 N/A 1603.75 364.89 3.78 N/A 3.44
2400 N/A 1717.35 385.07 3.73 N/A 3.37
2500 N/A 1818.17 420.66 3.62 N/A 3.28
2600 N/A 1936.25 447.28 3.65 N/A 3.29
2700 N/A 2054.09 486.73 3.72 N/A 3.34
2800 N/A 2215.49 523.73 3.65 N/A 3.28
2900 N/A 2320.08 551.85 3.72 N/A 3.41
3000 N/A 2536.97 606.4 3.64 N/A 3.29
3100 N/A 2666.36 640.12 3.68 N/A 3.36
3200 N/A 2834.04 678.75 3.71 N/A 3.37
3300 N/A 3000.7 734.29 3.64 N/A 3.27
3400 N/A 3195.28 772.95 3.61 N/A 3.32
3500 N/A 3352.07 819.54 3.63 N/A 3.38
3600 N/A 3513.92 863.1 3.67 N/A 3.39
3700 N/A 3670.31 898.6 3.64 N/A 3.36
3800 N/A 3905.5 963.87 3.63 N/A 3.35
3900 N/A 3981.64 995.31 3.62 N/A 3.35
4000 N/A 4221.82 1059.53 3.65 N/A 3.31
4100 N/A 4493.08 1103.64 3.63 N/A 3.48
4200 N/A 4637.07 1175.24 3.65 N/A 3.36
4300 N/A 4907.6 1225.41 3.66 N/A 3.38
4400 N/A 5103.96 1293.24 3.64 N/A 3.37
4500 N/A 5323.46 1347.49 3.65 N/A 3.41
4600 N/A 5512.33 1402.82 3.58 N/A 3.45
4700 N/A 5765.68 1468.47 3.61 N/A 3.34
4800 N/A 6065.63 1538.58 3.62 N/A 3.72
4900 N/A 6154.55 1587.39 3.61 N/A 3.84
5000 N/A 6486.67 1658.31 3.61 N/A 3.32

B.3.2 Case Study II

Table B.4 lists the solution times for decomposition by parametric programming and the
parametric programming heuristic. For the exact parametric programming approach, no
solution time is provided with more than 300 lower-level subproblems since these in-
stances reached the time limit. In contrast, the heuristic solves all instances with less than

108



B.3. RESULTS

900 lower-level subproblems.

Table B.4: Solution times (in secs) and deviations (in %) in the objective function values
from the optimal, for different solutions methods and as a function of the number of lower-
level (LL) problems. The solution methods include the parametric programming method
with decomposition and the heuristic with decomposition. N/A means that the method
did not solve within the time limit of 2 hours. Deviations are not available for more than
300 lower-level problems since the exact method did not solve within the time limit.

No. of LL prob. decomp. time (s) heu. time (s) heu. dev. (%)
10 255.37 2.45 0
20 291.18 4.9 0
30 308.74 7.81 0
40 475.1 15.5 0
50 520.52 32.4 0
60 565.94 28.05 0
70 677.45 35.35 0
80 946.85 56.95 0
90 1087.08 64.91 0
100 1169.27 77.56 0
200 2585.28 279.32 0
300 5230.5 636.27 0
400 N/A 1125.35 N/A
500 N/A 1658.92 N/A
600 N/A 2306.44 N/A
700 N/A 3406.25 N/A
800 N/A 4309.51 N/A
900 N/A 5122.1 N/A
1000 N/A N/A N/A
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Table C.1: Nomenclature
Sets
T set of time periods
S set of scenarios
Ω set of network nodes
Ω(i) set of nodes connected to node i
C set of candidate lines
G set of all production units
G(i) set of production units at node i
Parameters
ρt duration of time period t (p.u.)
φs probability of scenario s (p.u.)
kij linear investment cost for candidate line

between nodes i and j (e/MW)
Kij fixed investment cost for candidate line

between nodes i and j (e)
Kmax investment budget (e)
Fmaxij capacity available for candidate transmission line

between nodes i and j (MW)
Fmax
ij maximum capacity of existing transmission line

between nodes i and j (MW)
cg linear production cost for unit g (e/MWh)
ymaxg maximum production for generation unit g (MW)
dits demand for time t, scenario s at node i (MW)
Variables
xij binary investment decision on candidate line

between nodes i and j
Fij installed capacity of candidate transmission line

between nodes i and j (MW)
pijts power flow between node i and j in time t and scenario s (MWh)
θits voltage angle at node i in time t and scenario s
ygts production for unit g for time t and scenario s
λits shadow price/dual variable of the balancing constraint at node i

time t and scenario s (e/MWh)
µygts dual variable of the capacity constraint of unit g

time t and scenario s
µpijts, µ

p,C
ijts dual variable of the flow constraint between nodes i and j

time t and scenario s
µF,minijts , µF,maxijts , dual variable of the capacity constraint between nodes i and j

time t and scenario s
µF ,minijts , µF ,maxijts dual variable of the capacity constraint between nodes i and j

time t and scenario s
µθ,minits , µθ,maxits , µθ,refts dual variable of the voltage angle constraint of nodes i

time t and scenario s

Note: Bold-face represent vectors of variables, e.g. x = {xij}i,j and λ = {λits}i,t,s.
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