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ON K-THEORY, GROUPS, AND TOPOLOGICAL DYNAMICS

Abstract. — This thesis studies the K-theory of groupoid C∗-algebras and its
applications to topological dynamics and index theory.

Chapter 1 introduces a homology theory for groupoids admitting an open “com-
putable” subgroupoid. This is part of a work-in-progress project whose objective is
computing the K-groups of C∗-algebras associated to hyperbolic dynamics.

Paper A (joint work with Jens Kaad) focuses on the assembly map for principal
bundles with fiber a countable discrete group. We derive Atiyah’s L2-index theorem
in the general context of flat C∗-module bundles over compact Hausdorff spaces. Our
approach does not rely on geometric K-homology but rather on a Chern character
construction for Alexander-Spanier cohomology.

Paper B deals with the homology groups for Smale spaces defined by Putnam. We
introduce a simplicial framework by which the various complexes attached to this
theory can be understood as suitable “symmetric” Moore complexes. We prove they
are all quasi-isomorphic and discuss a parallel with sheaf cohomology by computing
the projective cover of a Smale space.

Appendix A contains an induction-restriction adjunction result in the setting of
equivariant Kasparov categories. As a consequence, the KKG-category is described
through a complementary pair of subcategories, and a general formulation of the
strong Baum-Connes conjecture for étale groupoids is given.

Résumé. — Denne afhandling studerer K-teorien af gruppoid-C∗-algebraer og dens
applikationer til topologisk dynamik og indeksteori.

Kapitel 1 introducerer en homologiteori for gruppoider der indeholder en åben
beregnelig undergruppoid. Dette er en del af et igangværende projekt, hvis mål er at
beregne K-grupperne på C∗-algebraer forbundet med hyperbolsk dynamik.

Artikel A (fælles arbejde med Jens Kaad) fokuserer på den såkaldte “assembly
map” for principalbundter med fiber en tællelig diskret gruppe. Vi udleder Atiyahs
L2-indekssætning i den generelle kontekst af flade C∗-modulbundter over kompakte
Hausdorffrum. Vores metode er ikke afhængig af geometrisk K-homologi men snarer
af en Chern-karakterkonstruktion for Alexander-Spanier-kohomologi.

Artikel B omhandler homologigrupperne for Smalerum defineret af Putnam. Vi
introducerer en simpliciel opsætning, hvormed de forskellige komplekser forbundet til
denne teori kan forstås som passende “symmetriske” Moore komplekser. Vi beviser,
at de alle er quasi-isomorfe og diskuterer en parallel med knippekohomologi ved at
beregne det projektive overlegning af et Smalerum.

Appendiks A indeholder et resultat om en induktionrestriktionsadjungering i kon-
tekst af ækvivariante Kasparovkategorier. Som en følge heraf beskrives KKG-kategorien
gennem et komplementært par af underkategorier, og en generel formulering af den
stærke Baum-Connes-formodning for étale gruppoider er givet.
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INTRODUCTION

The first introduction provides some basic intuition for the topics of this thesis and
more generally for a field of mathematics called noncommutative topology. It has been
written with the non-technical reader in mind and it includes a number of references.

The second introduction assumes familiarity with groupoids, C∗-algebras, and
K-theory. It gives a summary for each part of this thesis and briefly explains the main
mathematical results and their interrelations.

The contents of this thesis, in one example

The analysis of symmetry is one of the fundamental motivations for the development
of mathematics. In essence, whenever a system is left structurally invariant under a
given transformation, we are in the presence of symmetry. As an example, the triangle
in Figure 1 stays the same after reflection across the vertical axis.

The operations that do not change a given system, i.e., the symmetries, enjoy two
important features: they are reversible and they can be composed with each other,
giving rise to further symmetries. In mathematical terms, we say these operations
form a group. Groups are among the simplest mathematical objects that are used to
capture symmetry.

Figure 1. Reflection across the vertical axis.
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Figure 2. Clockwise rotation of 120 degrees.

Because symmetry can occur in a wide variety of contexts, the general structure of
a group can be quite complicated. Nonetheless, by imposing certain constraints on the
system we wish to study, we can import techniques from other areas of mathematics
and extract information on the group of interest.

The common mathematical model for physical space is a vector space equipped
with an inner product. The self-transformations of this system are called orthogonal
operators and it is natural to attempt to realize any given group as a subgroup of the
orthogonal operators. This idea belongs to a field called representation theory.

As illustration of this technique, let us consider again the equilateral triangle of
Figure 1. Its group of symmetries consists of all possible permutations of the set
{1, 2, 3}. For instance, the reflection of Figure 1 corresponds to swapping 2 and 3,
while the clockwise rotation described in Figure 2 corresponds to moving 1 in place of
3, 3 in place of 2, and finally 2 in place of 1.

There are in total six permutations of the three-element set, and together they form
the so-called symmetric group, denoted S3. Consider a three-dimensional vector space
with basis e1, e2, e3. Let the symmetric group permute the basis vectors, and consider
the induced action on the vector space. This is a three-dimensional representation as
orthogonal operators.

The two-dimensional subspace of all vectors of the form x1e1+x2e2+x3e3, where x1+
x2 + x3 = 0, gives a two-dimensional sub-representation, which precisely corresponds
to the symmetries of the triangle in the figures. For each of these symmetries, we can
record whether it preserves the standard orientation of the plane, and discover in this
way the sign representation.

It turns out that S3, along with many other groups, can be completely reconstructed
from the information encoded in these representations. This can be considered a
success of the basic idea underlying representation theory, i.e., analyzing groups
through the tools of linear algebra.

Aside from linear algebra, is there another field of mathematics from which we can
import techniques which aid in the study of groups? The answer is “yes”, and this
brings us to the branch of mathematics known as algebraic topology. In this field,
the interest is in classifying geometrical shapes “up to continuous deformation”. The
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Figure 3. This is the basis for a geeky joke that a topologist does not
know the difference between a doughnut and a coffee mug.

intuition for this notion is provided in Figure 3, where a coffee mug is morphed into a
toroidal shape.

The formal counterpart of the idea of “deformation class” is known as homotopy
type and it encompasses shapes as well as mappings between them. Indeed, it is a
central idea in mathematics that, in order to extract information about a given object
X, it is often useful to understand the “morphisms out of X”, or in other words the
maps from X into a predetermined target space Y . In algebraic topology, one takes
this a step further by defining a cohomology theory, i.e., a family of “targets” {Yn}n∈N
satisfying certain desirable properties, inasmuch as the collection of homotopy types of
mappings X → Yn is supposed to encode the n-dimensional stable-under-deformation
geometric information about X.

To see this idea in action, we take X to be a circle and consider the target space
Y = S∞/ ∼, obtained by identifying the nonzero opposite vectors in an infinite-
dimensional “punctured” vector space. In mathematical terms, we are considering the
set of homotopy classes of maps γ ∈ [S1, S∞/∼]. Each γ can be viewed as a “loop” in
the target space and admits a “lift” to a path γ̃ on S∞ whose endpoints belong to the
same ∼-equivalence class, inducing a fiber-preserving self-transformation of the sphere.

In other words, each element in [S1, S∞/∼] expresses a certain symmetry of S∞.
It can be shown there is only one (nontrivial) symmetry of this kind, namely the
one given by interchanging the antipodal points of the sphere. We have outlined the
following computation:

[S1, S∞/∼]
∼= // Sym(S∞,∼)

∼= // O(1) = {±1} . (1)

In geometric terms this means there are only two topologically distinguishable
shapes which fiber over the circle in a linear fashion, or more precisely there are
exactly two non-isomorphic line bundles having the circle as a base space. The line
bundle corresponding to the unique non-trivial symmetry is represented by the Möbius
band, depicted in Figure 4 along with the cylinder (i.e., the trivial bundle).

The space Y in the previous example is part of a parametrized family of spaces
denoted BO(n), n ∈ N. By piecing together these spaces we get a “universal” object
which serves as a basis for a cohomology theory called (real) K-theory. By expanding
on the calculation in (1), one can prove that K̃0(S1) ∼= O(1), i.e., the zeroth K-theory
group of the circle is cyclic of order two.



4 INTRODUCTION

Figure 4. Line bundles over the circle: the cylinder is given by juxtaposing
vertical lines going through each point in the circle, the Möbius band is
obtained by cutting the cylinder along a vertical line, performing a half-twist,
and gluing back along the cut.

A =




. . . . . . . . . . . . . . . . . .

. . . a0 a−1 a−2 a−3 . . .

. . . a1 a0 a−1 a−2 . . .

. . . a2 a1 a0 a−1 . . .

. . . a3 a2 a1 a0 . . .

. . . . . . . . . . . . . . . . . .



.

Figure 5. A Toeplitz matrix has constant diagonals.

After this excursus in the realm of algebraic topology, we go back to the original
problem of studying the structure of groups. We seek for a mathematical construct
which encapsulates the information about a given group G, while being amenable to
analysis through the combined lenses of representation theory and K-theory.

The solution to this problem is found in the field of operator algebras and it’s called
the group C∗-algebra construction, which associates an object denoted C∗(G) to our
group of interest G.

The defining axioms of C∗-algebras make them a suitable mathematical model for
the phase space observables of a physical system. In particular, the commutative algebra
of coordinates of a topological shape naturally recovers its geometric information,
while more general C∗-algebras model the finer structure of a quantized system, in
alignment with the predictions of quantum mechanics.

For instance, the observables for a simple spin system consisting of a single electron
generate a noncommutative C∗-algebra isomorphic to M2(C). A more sophisticated
example is obtained by the quantum disk, obtained by introducing a deformation
parameter in the defining relations for the coordinate algebra of the unit disk:

zz∗ = qz∗z + (1− q) · 1 − 1 ≤ q ≤ 1.

When −1 < q < 1, the associated algebra Tq is called the Toeplitz algebra and is
concretely realized as bi-infinite matrices in which descending diagonals are constant
(see Figure 5). The entries along these diagonals can be interpreted as Fourier
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Figure 6. Two water particles at the top of each water spring are considered
stably equivalent because they will eventually flow down into the stream
and become indistinguishable.

coefficients, i.e., they describe the decomposition of a periodic signal (e.g., a continuous
function of S1) into simple oscillating waves. The algebra Tq can thus be considered
as the result of a quantization process applied to the circle.

Furthermore, the algebra T−1 is described by a noncommutative analogue of the
familiar equation x2 + y2 = 1, representing a kind of “noncommutative circle” whose
fine structure can be carefully analyzed, and ultimately leads to a proof of a deep
theorem known as Bott periodicity. This roughly states that complex K-theory is a
cohomology theory defined by a 2-periodic family of target spaces, i.e., Yn = Yn+2.

We have argued that C∗-algebras are sufficiently close to topological spaces, so it
should be hardly surprising that K-theory admits an alternative definition which can
be readily extended to cover this class of algebras. In essence, this means the group
C∗-algebra C∗(G) can be studied through the methods of algebraic topology.

In addition, one has a recipe to “upgrade” each representation of G to a linear repre-
sentation of C∗(G), and this process is reversible, yielding a one-to-one correspondence
between the representation theory of G and of its associated C∗-algebra:

g 7→ π(g) ←→ f 7→ π̃(f) =
∫

G

f(g)π(g) dg.

There are situations where only partial symmetry is observed, therefore it is desirable
to have a mathematical gadget which is more “flexible” than a group, being able to
capture more general “long-range order” phenomena. A case in point is the theory of
dynamical systems, which is concerned with studying configurations of points which
move according to an evolution law, and often requires keeping track of various
pseudo-symmetric relations between points.

Figure 6 depicts a real-life example of a dynamical system: the laws of physics
prescribe how the masses of water progress down the river step. In this thesis we
consider a simple equivalence relation which encodes a key property of many dynamical
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1 ρ ρ−1

11

σ1

σρ−1

1ρ

σρ

1ρ−1

Figure 7. The groupoid Z3 o Z2 associated to S3.

systems called stable equivalence, and is used to categorize configurations of points
which get closer and closer under the evolution rule.

A groupoid is a mathematical structure which generalizes groups and equivalence
relations, providing a unified perspective in the study of symmetry. In essence, a
groupoid is formed by a a collection of points (the objects) together with invertible
arrows (the morphisms) between them. From this standpoint, a group corresponds
to a groupoid with only one object, while an equivalence relation corresponds to a
groupoid where the morphisms are completely determined by their source and range.

By changing the viewpoint on the group S3, we can give a simple example of the
usage of groupoids in modeling dynamical systems. If we denote by σ the operation of
Figure 1 and by ρ the rotation in Figure 2, then it is easy to verify that σ−1ρσ = ρ−1.
In words, this amounts to saying that if we perform a horizontal reflection followed
by a rotation and finally a reflection in the opposite direction, we end up rotating
counterclockwise the original triangle.

In mathematical language we say S3 is a semidirect product, which simply means
that σ prescribes a rule by which the configuration (1, ρ, ρ−1) is transformed into
(1, ρ−1, ρ). We thus obtain an elementary dynamical system whose associated groupoid
is given in Figure 7.

In complete analogy with the case of groups, we can construct a C∗-algebra starting
from a given groupoid G. Let us construct C∗(G) where G = Z3 o Z2 as in Figure 7.
Evidently, G can be decomposed in two subgroupoids, G1 and G2, where G1 consists
of one point and two loops, while G2 is made of two points and four arrows in total. By
the previous description, we see that G1 is a group and G2 is an equivalence relation.

Since G1 is a commutative 2-element group, its associated C∗-algebra simply records
the possible coordinate values of two isolated points, thus it is given by two copies
of the complex numbers, i.e., C∗(G1) ∼= C⊕ C. The algebra associated to G2 should
express the nontrivial interaction between two states, which should remind the reader
of the simple spin-system (see Figure 8) whose associated algebra is M2(C).
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Figure 8. A superposition of “spin up” and “spin down” states.

In summary, we obtain the following expression for the groupoid C∗-algebra associ-
ated to G:

C∗(G) ∼= C⊕ C⊕M2(C). (2)

Notice how the formula for C∗(G) retains information about the representation theory
of S3. The first copy of C corresponds to the trivial representation, the second copy of
C corresponds to the sign representation, and M2(C) stands for the two-dimensional
representation as symmetries of the regular triangle.

We conclude this introduction by computing the complex K-theory groups of
C∗(G). The group K0(C∗(G)) is obtained by considering the free abelian group on the
“symbols” appearing in (2). Thus we get K0(C∗(G)) ∼= Z3, and we see that K-theory
recognizes the number of (irreducible) representations of S3. Finally, it can be proved
that K1(C∗(G)) vanishes, intuitively because the system we are considering is discrete,
hence zero-dimensional, but as we previously explained the K1-group exclusively keeps
track of higher-dimensional data.

At its core, this thesis is concerned with the K-theoretical analysis of groups
and groupoids associated to (topological) dynamical systems. It is our hope that
this introduction has shed some light on the basic motivations underlying this area
of mathematics, as well as on the methods and problems which characterize its
development.

Some references. — The reader who wishes to expand his knowledge on the topics
discussed above (and much more) may find the following books and papers useful.
This is not to be considered a complete list of references.

For groups and representation theory see [20, 49]. For a general introduction to
algebraic topology and homotopy theory we suggest [22, 40]. Topological K-theory is
treated in [4, 26], while an operator-theoretic approach can be found in [6, 59]. For the
general theory of C∗-algebras, and constructions related to groups and group actions,
consult [17, 74]. The quantum disk and the noncommutative circle are discussed in
[45, 46]. For K-homology and index theory, including a proof of Bott periodicity using
the Toeplitz algebra, see [24]. For the applications of noncommutative geometry to
quantum physics, consult [33, 64]. Groupoids and C∗-algebras are treated in [1, 57].
Concerning topological dynamics and operator algebras we suggest [55, 67].
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The contents of this thesis, reprise

This thesis consists of the following parts:
1. Chapter 1. Homology and topological dynamics;
2. Appendix A. The strong Baum-Connes conjecture;
3. Paper A. Index theory on the Miščenko bundle;
4. Paper B. A note on homology for Smale spaces.

A summary of each item is given in the next paragraph. The leitmotif underlying each
part is the study of K-theory groups associated to group and groupoid C∗-algebras.
This is done mainly through the lenses of homological algebra and index theory. The
groupoids of interest originate from topological dynamics, but many of our methods
are applicable to a wider range of objects, including groupoid crossed products. The
Baum-Connes conjecture fundamentally permeates this circle of ideas. It will be
discussed from two angles: in the abstract framework of triangulated categories, and
in the concrete analytical picture of Kasparov’s bivariant K-theory.

Chapter 1 contains material from a work-in-progress project with the objective
of computing K-theory and homology groups associated to a class of hyperbolic
dynamical systems called Smale spaces. These are compact metric spaces endowed
with two transversal foliations and a self-map whose local structure along the leaves is
the product of a contraction and a dilation.

Our main results are in the context of Smale spaces with a totally disconnected leaf.
Examples include tiling systems and generalized solenoids. We define a chain complex
by combining Putnam’s lifting result for factor maps [53] and the induction-restriction
adjunction proved in the appendix (Theorem A.2).

Theorem. — Let (X,φ) be an irreducible Smale space with totally disconnected
stable sets. There is an irreducible shift of finite type (Σ, σ) and an s-bijective map
f : (Σ, σ)→ (X,φ). Denote by G and H the unstable equivalence relations affiliated to
X and Σ, respectively. Then f × f : H → G is an open inclusion inducing a comonad
Lf acting on the KKG-category. We obtain an augmented simplicial object L•fX → X

and an associated chain complex K∗(L•fX oG).

The triangulated structure of the equivariant Kasparov category KKG can be
exploited to import machinery from homological algebra and homotopy theory. This
allows defining cellular approximations with respect to a given homological ideal. In
our setting, this leads to a spectral sequence of the following type:

Theorem. — There exists a homological spectral sequence converging towards the
crossed product of G and the cellular approximation,

E2
pq = Hp(Kq(L•fX oG))⇒ Kp+q(PX oG).
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Moreover, there exists a natural comparison map K∗(PX oG)→ K∗(C∗(G)), which
is an isomorphism whenever G satisfies the strong Baum-Connes conjecture.

The chapter also presents some partial computations and conjectures which we
believe should work as guiding principles in future research on this topic.

Appendix A studies the Baum-Connes conjecture for groupoids in the setting of
triangulated categories and localization, partly generalizing results from [38], where
this program was initiated in the case of locally compact groups. The main result is
an induction-restriction statement of the following form:

Theorem. — Let G be a groupoid with a Haar system and H an open subgroupoid.
There is a natural restriction functor ResHG : KKG → KKH between the associated
equivariant Kasparov categories. A corresponding induction functor, defined on ob-
jects as

IndGH : KKH −→ KKG

A 7−→ (C0(G)⊗A) oH,

gives rise to an adjunction
(ε, η) : IndGH a ResHG

with explicitly described unit η and counit ε.

A number of corollaries are derived, including a structural theorem for the KKG-
category in terms of complementary subcategories. Given a proper G-algebra over
EG, we can locally express properness through a slice theorem, allowing to identify a
class of “compact actions” Q ⊆ G which we collectively denote by F .

Define the full subcategory of compactly induced objects,
CI = {IndGQ(A) | A ∈ KKQ, Q ∈ F}.

There is a homological ideal I defined as the kernel of a single functor

F : KKG →
∏

Q∈F
KKQ

A 7→ (ResQG(A))Q∈F .

Theorem. — The projective objects for I are the retracts of direct sums of objects
in CI and the ideal I has enough projective objects. If NI denotes the class of I-
contractible objects, we have that (〈CI〉, NI) is a pair of complementary subcategories.

This leads to defining the strong Baum-Connes conjecture as follows: for a locally
compact Hausdorff groupoid G, the localizing subcategory 〈CI〉 equals KKG.

Paper A is in joint work with Jens Kaad. It discusses a generalization of Atiyah’s
L2-index theorem for G-coverings X̃ → X. In this summary G is assumed discrete
and torsion-free. The Miščenko line bundle is defined through the associated bundle
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construction X̃ ×G C∗r (G) → X with fiber the group C∗-algebra. Our main results
are summarized in the following theorem.

Theorem. — Let p ∈MN (C(X)⊗C∗r (G)) denote the projection which represents the
Miščenko line bundle. Set M to be the associated module of sections.

– There exists a group H, containing G, such that L(H) is a von Neumann
II1-factor and the equality [p] = [1] holds in K0(C(X)⊗ L(H)).

– There is a tensor product presentation

M ∼= Y ∗ ⊗̂C0(X̃)orG Z or G,

where Y is Rieffel’s imprimitivity bimodule [58], and Z is a C0(X̃)-C(X) G-C∗-
correspondence such that

[Z] ⊗̂− : KK(C(X),C)→ KKG
∗ (C0(X̃),C)

provides an inverse to the dual Green-Julg isomorphism.

The equality of projection classes involves a “diagonal-localization” technique in the
spirit of Teleman’s results in cyclic homology [65], and relies on an explicit description
of the Chern character for tracial algebras with values in Alexander-Spanier cohomology.
Our methods involve minimal analysis and do not appeal to smoothness.

In particular, the index theorem below can be expressed completely K-theoretically
and holds in the general context of compact Hausdorff spaces and flat bundles, which
was not known before. This also provides an alternative proof of the idempotent
conjecture for groups whose K-theory is in the image of the assembly map.

Corollary. — After the identification given by the dual Green-Julg isomorphism, the
Baum-Connes assembly map coincides with the Miščenko-Fomenko index map

RKK∗(C0(BG),C)→ KK∗(C, C∗r (G)).

The L2-index of an elliptic differential operator on X̃, commuting with G, coincides
with the ordinary index of the operator on the base space X (i.e., Atiyah’s L2-index
theorem holds). If G satisfies the Baum-Connes conjecture, then C∗r (G) contains no
nontrivial idempotents, i.e., it satisfies the Kadison-Kaplansky idempotent conjecture.

Paper B deals with the homology theory for Smale spaces defined by Putnam [54].
Smale spaces were introduced by Ruelle as a purely topological description of the basic
sets of Axiom A diffeomorphisms [63].

There are many interesting and open questions concerning Putnam’s homology, e.g.,
the search for machinery such as long exact sequences, excision, homotopy invariance,
etc. The results of this paper represent a first step in the direction of a more conceptual
definition which could shed light on these issues.
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Theorem. — The s/u-bijective pair [54, Section 2.6] associated to a Smale space
gives rise to a bisimplicial shift of finite type. Krieger’s dimension group is applied
to functorially map such bisimplicial object to a simplicial group, and the chain
complex defining Putnam’s homology is obtained through the Dold-Kan correspondence.
Moreover, the bisimplicial group admits a symmetric structure, and the associated
“symmetric” Moore complexes yield all of Putnam’s complexes.

Corollary. — There are spectral sequences which can be used to simplify many
arguments from [54]. In particular, the complex Cs(π) is quasi-isomorphic to the
remaining three double complexes, solving a conjecture posed in [54, page 90].

Finally, we prove a characterization of Krieger’s invariant [31] and introduce a
discussion on projective resolutions.

Theorem. — Given a shift of finite type Σ, there exists a category C(Σ) whose K-
theory (in the sense of Grothendieck) is isomorphic to Krieger’s dimension group
Ds(Σ). The projective cover of a Smale space X is obtained by taking the limit over
the projective system of shift spaces and factor maps onto X.





CHAPTER 1

HOMOLOGY AND TOPOLOGICAL DYNAMICS

This chapter introduces a homology theory for groupoids admitting an open “com-
putable” subgroupoid, e.g., an AF-equivalence relation [42]. These homology groups
approximate the K-groups for the associated groupoid C∗-algebras in a sense made
precise by a spectral sequence (see Theorem 1.22).

Our main motivation for the development of this machinery is an application to
topological dynamics. However, many of the arguments hold in greater generality
and ultimately derive from the triangulated structure of the equivariant Kasparov
category. On that basis some proofs have been postponed to Appendix A where they
are presented in a more general context.

Here we focus on a class of hyperbolic dynamical systems known as Smale spaces.
Sections 1.1 to 1.4 provide background on these objects and cover their associated
groupoids, C∗-algebras, and K-theory groups. The chain complex which defines the
homology groups is finally introduced in Section 1.5. The last section includes partial
computations and conjectures which are meant to clarify the extent to which our theory
is useful in studying Smale spaces. As this is part of an ongoing project, the reader
will find some missing details; we plan on filling these gaps in future investigations.

1.1. Smale spaces

A Smale space (X,φ) is a dynamical system consisting of a homeomorphism φ on a
compact metric space (X, d) such that the space is locally the product of a coordinate
that contracts under the action of φ and a coordinate that expands under the action
of φ. The precise definition requires the definition of a bracket map satisfying certain
axioms [54, 60].

Definition 1.1. — A Smale space (X,φ) consists of a compact metric space X with
metric d, along with a homeomorphism φ : X → X such that there exist constants
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εX > 0, 0 < λ < 1, and a continuous map

{(x, y) ∈ X ×X | d(x, y) ≤ εX} 7→ [x, y] ∈ X
satisfying the bracket axioms for any x, y, z in X when both sides are defined:

– [x, x] = x;
– [x, [y, z]] = [x, z];
– [[x, y], z] = [x, z];
– φ([x, y]) = [φ(x), φ(y)].

In addition, (X,φ) is required to satisfy the contraction axioms:
– for x, y ∈ X such that [x, y] = y, we have d(φ(x), φ(y)) ≤ λd(x, y);
– for x, y ∈ X such that [x, y] = x, we have d(φ−1(x), φ−1(y)) ≤ λd(x, y).

Suppose x ∈ X and 0 < ε ≤ εX . We define

Xs(x, ε) = {y ∈ X | d(x, y) < ε, [y, x] = x}
Xu(x, ε) = {y ∈ X | d(x, y) < ε, [x, y] = x}.

The set Xs(x, ε) is called the local stable set and the set Xu(x, ε) is called the local
unstable set. For x, y ∈ X such that d(x, y) < εX/2, the bracket map [x, y] is the
unique point where the local stable set of x intersects the local unstable set of y and
vice versa, as in Figure 1. This means that, locally, we can choose coordinates. For
ε ∈ (0, εX/2) and x ∈ X,

[·, ·] : Xu(x, ε)×Xs(x, ε)→ X

is a homeomorphism onto an open neighborhood of x ∈ X.

Xs(x, εX)

Xu(x, εX)

x [x, y]

Xs(y, εX)

Xu(y, εX)

y[y, x]

Figure 1. The local coordinates of x, y ∈ X and their bracket maps.

It is worth noting that if a bracket map exists on (X,φ), then it is unique.
The most essential feature of Smale spaces is given by the definition of two equiva-

lence relations, named respectively stable and unstable, which reads as follows:
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– given x, y ∈ X, we say they are stably equivalent if

lim
n→∞

d(φn(x), φn(y)) = 0;

– given x, y ∈ X, we say they are unstably equivalent if

lim
n→∞

d(φ−n(x), φ−n(y)) = 0.

The orbit of x ∈ X under the stable (respectively unstable) equivalence relation
is called the global stable (resp. unstable) set and is denoted Xs(x) (resp. Xu(x)).
These satisfy the following identities:

Xs(x) =
⋃

n≥0
φ−n(Xs(φn(x), ε)) (3)

Xu(x) =
⋃

n≥0
φn(Xs(φ−n(x), ε)).

A point x ∈ X is called non-wandering if for all nonempty opens U ⊆ X, containing
x, there exists N ∈ N with U ∩ fN (U) 6= ∅. We will assume that each point in a Smale
space is non-wandering. This condition holds in virtually all interesting examples.

We can make a further simplification by focusing on irreducible spaces. This means
that for every (ordered) pair U, V of nonempty open sets in X, there exists N ∈ N
such that U ∩ fn(V ) 6= ∅, n ≥ N . It can be shown that any non-wandering Smale
space (X,φ) can be partitioned in a finite number of φ-invariant clopens X1, . . . , Xn,
in a unique way, such that (Xk, φ|Xk) is irreducible for k = 1, . . . , n [52]. In view of
this we shall work almost exclusively with irreducible Smale spaces.

Example 1.2. — A directed graph G = (G0, G1, i, t) consists of finite sets G0 and
G1, called vertices and edges, such that each edge e ∈ G1 is given by a directed arrow
from i(e) ∈ G0 to t(e) ∈ G0.

The standard definition of a shift of finite type is given in [35, Definition 2.1.1].
However, an equivalent and more convenient definition is to start out with a finite
directed graph G. Then a shift of finite type (ΣG, σ) is defined as the space of bi-infinite
sequences of paths

ΣG = {e = (ek)k∈Z ∈ (G1)Z | t(ek) = i(ek+1)},
together with the left shift map σ(e)k = ek+1. The metric is such that d(e, f) ≤ 2−n−1

if e, f coincide on the interval [−n, n]. In particular, d(e, f) = 2−1 means that e, f
share the central edge, i.e., e0 = f0. Then we can define

[e, f ] = (. . . , f−2, f−1, e0, e1, e2, . . . ).

The pair (ΣG, σ) is a Smale space with constant ε = 1/2.
For instance, if G is as is in Figure 2 then any e ∈ ΣG is such that either e0 = a or

e0 = b. Therefore, ΣG is the disjoint union of two clopens, {e0 = a} t {e0 = b}. Each
of these is homeomorphic (via the bracket map) to a product space, as is shown in
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va b

Figure 2. The graph consisting of one vertex and two edges is simply
depicted as two loops. The associated shift of finite type is the full 2-shift,
i.e., the shift of bi-infinite sequences on two symbols.

Xu

Xs

e1e2e3 · · ·

· · · f−3f−2f−1
[e, f ]

e0 = a
t

Xu

Xs

e1e2e3 · · ·

· · · f−3f−2f−1
[e, f ]

e0 = b

Figure 3. The local product structure of the shift of finite type associated
to the graph in Figure 2

Xu

Xs

be2e3 · · ·

· · · y−3y−2y−1

· · · z−3z−2z−1

y

z

e0 = a

σ→

Xu

Xs

e2e3e4 · · ·

· · · y−2y−1a
· · · z−2z−1a

y
z

e0 = b

Figure 4. After applying σ the paths agree on a larger interval and are
therefore closer, i.e., their distance contracts.

Figure 3. The contracting dynamical behavior for points lying on a local stable set is
represented in Figure 4.

Example 1.3. — This next example belongs to a class of systems known as one-
dimensional solenoids. These were firstly introduced in [15] and later generalized by
Williams in [75]. They can also be obtained as a special case of a general construction
involving branched manifolds and inverse limits [73].
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Consider the doubling map on the circle,

S1 S1z2← [ zoo S1z2←[ zoo · · ·z2←[ zoo (4)

and define X to be the projective limit of (4). The map φ : X → X sending (z0, z1, . . . )
to (z2

0 , z
2
1 , . . . ) is a homeomorphism. Indeed notice that the k-th coordinate zk of any

point z ∈ X satisfies z2
k = zk−1, so that the shift map provides a continuous inverse to

φ, as follows:

(z2
0 , z

2
1 , z

2
2 , . . . ) = (z2

0 , z0, z1, . . . ) 7→ (z0, z1, z2, . . . ).

Denote by π the canonical projection X → S1 on the first factor. For any z0 ∈ S1 we
see that

π−1(z0) ∼=
∞∏

n=1
{0, 1} = Σ,

where Σ is our notation for the Cantor set. Moreover, π is a fiber bundle: each
z = (zk)∞k=0 ∈ X admits a neighborhood which is homeomorphic to a product space
of the form

{z ∈ S1 | |z − z0| < ε} × Σ

for a small enough ε > 0. If we identify x = (x0, (an)∞n=1) with the coordinate
representation above, then we can define local stable and unstable sets

Xs(x, ε) = {x0} × Σ (5)
Xu(z, ε) = {z ∈ S1 | |z − x0| < ε} × {(an)∞n=1}.

More precisely, Xs(x, ε) and Xu(z, ε) are the sets in X indentified with the ones
given in (5). The contractive dynamics within local stable sets is clear: if z and z′ share
the same 0-th coordinate, then in the product metric d(φ(z), (φ(z′))) = 2−1 · d(z, z′),
because applying φ has the same effect of shifting a sequence to the right and inserting
z2

0 in the 0-th place.

Other examples of Smale spaces include hyperbolic toral automorphisms [9, 18] and
more generally Anosov diffeomorphisms [3] (see in particular [27, Exercises 6.4.1 and
6.4.2]). Substitution tiling systems are also examples of Smale spaces. This is proved
in [2, Theorem 3.3]. The K-theory of C∗-algebras associated with tiling systems has
been subject of extensive study in the literature (see [61] for an overview).

1.2. Groupoids and C∗-algebras

We begin this section by briefly recalling the groupoid C∗-algebra construction.
Details in full generality are found in [57], here we shall focus on the setting which
arises when considering Smale spaces.
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Let G be a locally compact Hausdorff groupoid with Hausdorff unit space X. We
will assume that G is étale, i.e., the source and range maps are local homeomorphisms.
In this case X is open in G and the Haar system is given by the counting measure.

To such a groupoid G, we associate its reduced groupoid C∗-algebra as follows. Let
Cc(G) denote the (vector space of) compactly supported continuous functions on G.
For f1, f2, f ∈ Cc(G) we define multiplication and involution by

(f1 · f2)(γ) =
∑

µν=γ
f1(µ)f2(ν)

f∗(γ) = f(γ−1).

for all elements γ ∈ G. With these operations Cc(G) is a ∗-algebra. For every x ∈ X,
let `2(s−1(x)) denote the Hilbert space of square-summable functions on s−1(x).

From this we can define a ∗-representation

πx : Cc(G)→ B(`2(s−1(x)))

(πx(f)g)(γ) =
∑

µν=γ
f(µ)g(ν)

for f ∈ Cc(G), g ∈ `2(s−1(x)), γ ∈ s−1(x).
The reduced groupoid C∗-algebra, denoted C∗r (G) is the completion of Cc(G) with

respect to the norm
‖f‖ = sup

x∈X
‖πx(f)‖.

One may also define a full groupoid C∗-algebra C∗(G). In the case that the groupoid
is amenable [1], the two coincide. See also Remark 1.6.

The groupoids associated to a Smale space are given by its equivalence relations.
More precisely, given a Smale space (X,φ), we define

Rs(X,φ) = {(x, y) ∈ X ×X | lim
n→∞

d(φn(x), φn(y)) = 0} (6)

Ru(X,φ) = {(x, y) ∈ X ×X | lim
n→∞

d(φ−n(x), φ−n(y)) = 0}.

Occasionally we write x ∼s y meaning that (x, y) ∈ Rs(X, f), and x ∼u y meaning
that (x, y) ∈ Ru(X, f).

These are locally compact Hausdorff groupoids (in the subspace topology of the
product) with the following definitions for source, range, and composition:

s(x, y) = y r(x, y) = x

(x, y) ◦ (w, z) = (x, z) if y = w.

Although these groupoids are not étale, one can construct and analyze their
associated C∗-algebras following [51]. We now turn to explaining a technique for
turning the groupoids in (6) into equivalent étale groupoids. This method consists in
finding an abstract transversal T ⊆ X and considering the restriction groupoid GTT
given by all arrows with source and range in T .
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A “retopologizing” procedure is applied to T and GTT , resulting in a new groupoid,
say G′, which can be shown to be “Morita equivalent” (more accurately, equivalent in
the sense of [43]) to the original groupoid G. Note that K-theory does not detect the
difference between G and G′. The details of this construction are spelled out in [56].

If G is an equivalence relation, the relevant topologies are also discussed in [66].
The basic idea is as follows: once a suitable topology for T has been chosen (cf. the
Wagoner topology [66, Section 4.1]), the groupoid GTT can be endowed with a topology
of “local conjugacies”. In details, given (x, y) ∈ GTT , a neighborhood base is given
by triples (U, V, γ) where U, V are open neighborhoods of x, y in T , respectively, and
γ : V → U is a homeomorphism such that γ(y) = x and (γ(z), z) is in G′ for all z ∈ V .

Let (X,φ) be an irreducible Smale space. Hereafter we consider Xs(x) and Xu(s)
(for any x ∈ X) as topological spaces with respect to the inductive limit topology
associated to the increasing unions in (3). In addition, for a subset P ⊆ X, we write
Xs(P ) meaning the union of all Xs(x)’s for x ∈ P , with the disjoint union topology.
Analogously we define Xu(P ) = ∪x∈PXu(x).

Definition 1.4. — We define the following groupoids associated to the stable and
unstable equivalence relations. Let P and Q be finite φ-invariant sets of periodic
points of (X,φ).

Rs(X,P ) = {(x, y) ∈ X ×X | x ∼s y and x, y ∈ Xu(P )}
Ru(X,Q) = {(x, y) ∈ X ×X | x ∼u y and x, y ∈ Xs(Q)}.

To define a topology on Rs(X,P ) we follow the strategy outlined above. It turns
out that the local conjugacies are determined by the bracket map.

Let (x, y) ∈ Rs(X,P ). Then there exists N > 0 such that d(φN (x), φN (y)) < εX/2.
Now by continuity there is 0 < δ < εX/2 such that, for 0 ≤ n ≤ N , we have

φn(Xu(x, δ)) ⊆ Xu (φn(x), εX/2)
φn(Xu(y, δ)) ⊆ Xu(φn(y), εX/2).

From this we define a map γ : Xu(y, δ)→ Xu(x, δ) via

z 7→ φ−N ([φN (z), φN (x)]).

The results in [56] show that γ : Xu(y, δ)→ Xu(x, δ) is a local homeomorphism,
mapping Xu(y, δ) homeomorphically to a neighborhood of x. For such a 5-tuple
(x, y, δ, γ,N) as above, we define an open set

V (x, y, δ, γ,N) = {(γ(z), z) | z ∈ Xu(y, δ)} ⊆ Rs(X,P ).

Such sets are the basic sets generating the topology for Rs(X,P ).

Proposition 1.5 ([29, Theorem 2.17]). — We have the following properties of
Rs(X,P ) and the basic sets introduced in the previous paragraph.

– The map γ is a local homeomorphism;
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– The V (x, y, δ, γ,N)’s form a neighborhood base for a topology on Rs(X,P );
– Rs(X,P ) is an étale groupoid in this topology;
– the unit space of Rs(X,P ) is Xu(P ); it is locally compact, but not compact.

The topology on Ru(X,Q) is completely analogous and hence the details are omitted.
Since we have chosen φ-invariant sets P and Q, it is clear that φ×φ : X×X → X×X
defines an automorphism on each of Rs(X,P ) and Ru(X,Q).

Remark 1.6. — It is shown in [56, Theorem 1.1] that each of these groupoids is
amenable. In this case, the completion of any faithful ∗-representation of the compactly
supported functions on the groupoid will be ∗-isomorphic to the reduced and full
groupoid C∗-algebras. The choice of the set P (or Q) only affects the C∗-algebra up
to stable isomorphism.

Example 1.7. — The construction presented here is well known and can be found
for example in [50] or [66]. Let G be a strongly connected graph, i.e., a graph where
every vertex is reachable form any other vertex. This condition ensures that the
associated shift of finite type ΣG is irreducible. We are going to assume, for simplicity,
that there is a loop ē at a vertex v̄. By repeating ē over and over, we get a fixed point,
which we keep denoting ē, in ΣG. Let Rn denote the set of pairs of paths (ξ, η) of
length 2n satisfying i(ξ) = i(η) = v̄ and t(ξ) = t(η). In words, these are pairs of paths
starting at v̄ and terminating at some common vertex.

For (ξ, η) ∈ Rn, we define

E(ξ, η) = {(e, f) ∈ Rs(ΣG, σ) | ek = fk = ē ∀k ≤ −n,
(e−n+1, . . . , en) = ξ, (f−n+1, . . . , fn) = η,

ek = fk ∀k > n}.

It is easy to see that each set E(ξ, η) is a compact open subset of Rs(ΣG, ē). The
collection of all sets E(ξ, η) with n ≥ 1 and (ξ, η) ∈ Rn is a base for the topology of
Rs(ΣG, ē). It is useful to think of E(ξ, η) as of the form (γ(x), x), where γ is the local
conjugacy operation given by replacing η with ξ.

Define e(ξ, η) to be the indicator function of E(ξ, η). For a vertex v ∈ G0, the set

Sn(v) = span{e(ξ, η) | (ξ, η) ∈ Rn, t(ξ) = v}

is a finite-dimensional C∗-subalgebra of Cc(Rs(ΣG, ē)) and is isomorphic toMk(n,v)(C),
where k(n, v) is the number of paths of length 2n with source in v̄ and target in v.
Then it is a simple matter to see that

Sn = span{e(ξ, η) | (ξ, η) ∈ Rn} =
⊕

v∈G0

Sn(v).
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Now notice that below is a union of pairwise disjoint sets,

E(ξ, η) =
⋃

e∈G1

i(e)=t(ξ)

E(ēξe, ēηe). (7)

In particular we have Sn ⊆ Sn+1 and the union ∪n≥1Sn is dense in C∗(Rs(ΣG, ē)),
therefore we obtain an AF-algebra.

Example 1.8. — Let (X,φ) be the dyadic solenoid from Example 1.3. From the
description of stable orbits as increasing unions, it is easy to see that x ∼s y in X if
and only if there exists N ∈ N with x2N

0 = y2N
0 . Define the subset of the circle

D = {exp
(
2πin2−k

)
| n ∈ Z, k ∈ N},

called the dyadic roots of unity. If π : X → S1 denotes the projection onto the 0-th
coordinate, then we can rephrase stable equivalence by saying x ∼s y if and only if
π(x) = π(y)d for some d ∈ D. This quickly leads to a proof that

C∗(Rs(X,φ)) ∼= (C(S1)⊗K(L2(Σ))) oD ∼= (C(S1) oD)⊗K. (8)

This observation has been made before in [51]. The indexing by the natural numbers
for elements in D naturally gives an inductive limit presentation D = lim−→k∈NDk,
where Dk is a cyclic group of order 2k. This suggest an inductive limit structure for
the crossed product C(S1) oD. This approach allows identifying C(S1) oD with the
so-called Bunce-Deddens algebra of type 2∞ [13]; we simply state the result since we
won’t need this computation:

C(S1) oD ∼= lim−→
k∈N

(M2k(C(S1)), ι2k),

where ιn : Mn(C(S1))→M2n(C(S1)) is the standard twice-around embedding given
by

ιn(f)(t) = ut · diag(f
( t

2

)
, f
( t+ 1

2

)
) · u∗t ,

and the conjugation action of ut is induced by the unitary matrix
[
cos
(
π
2 t
)
− sin

(
π
2 t
)

sin
(
π
2 t
)

cos
(
π
2 t
)
]
.

The structure of the unstable C∗-algebra associated to the dyadic solenoid is
explained in [76]. It is not hard to see that Fourier transform gives a ∗-isomorphism

C(S1) oD ∼= C(Σ) o Z. (9)

It turns out that C∗(Ru(X,φ)) is stably isomorphic to the crossed product on the
right of (9). Let us briefly explain this structure from a dynamical viewpoint. There
is a natural flow Ft on X given by

Ft(z0, z1, z2, . . . ) = (e2πitz0, e
2πit2−1

z1, e
2πit2−2

z2, . . . )
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1

0
0

Figure 5. The point y ∈ X with (y1, y2, y3, . . . ) = (−1, eπ2 i, e
π
4 i, . . . ) is

turned into the sequence of bits (1, 0, 0, . . . ).

and its orbits exactly coincide with the unstable equivalence classes. As a result,

C∗(Ru(X,φ)) ∼= C(X) oF R.

Evidently the first return map F1 admits a natural cross-section given by
π−1(1, 1, . . . ) ∼= Σ and it can be described by the so-called 2∞-odometer, i.e.,
the translation action of Z on the 2-adic numbers. In other words, the action groupoid
X oF R is Morita equivalent to ΣoF1 Z, and this explains why C∗(Ru(X,φ)) is stably
isomorphic to the C∗-algebra on the right-hand side of (9).

Let us take a moment to understand the odometer action. We start by restricting
the groupoid Ru(X,φ) to the transversal given by Xs(x, ε), where x is the constant
sequence (1, 1, . . . ) ∈ X. This means the unit space of the restricted groupoid is
homeomorphic to Σ. In this representation, the point x is given by the constant
sequence (0, 0, . . . ). More generally, if y ∈ Xs(x, ε), we need to explain a rule to
convert each yk, k ≥ 1 into a bit ak ∈ {0, 1}. This will give the representation of y
in the coordinates of Σ. Note that yk+1 is one of the two square roots of yk. The
number ak+1 will determine which square root is picked, based on the following recipe:
if the point yk+1 is met before the other possible square root of yk, when moving
counter-clockwise from 1 ∈ S1, then ak+1 equals 0, otherwise it equals 1. Figure 5
may help visualizing this rule.

Now the odometer action is simply given as “addition by 1” in Σ. We want to see,
at least in one example, that this is the same as applying the first return map F1.
Indeed, consider

F1(1, 1, 1, . . . ) = (1,−1, eπ2 i, eπ4 i, . . . ). (10)
As is shown in Figure 5, the point on the right of (10) is given in Σ as (1, 0, 0, . . . ) =
1 + (0, 0, 0, . . . ), which is what we wanted to check.

1.3. K-theory

In this short section we compute the K-theory groups for Examples 1.7 and 1.8.
For a groupoid G we write K∗(G) as as a shorthand for K∗(C∗r (G)).
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Example 1.9. — Let (ΣG, σ) be a shift of finite type as in Example 1.7. We have
shown that C∗(Rs(ΣG, ē)) is an approximately finite dimensional C∗-algebra (in
particular the odd K-group vanishes). The connecting morphisms in the inductive
limit which represents C∗(Rs(ΣG, ē)) are unital ∗-homomorphisms between direct
sums of matrix algebras.

It is well known that homomorphisms between two such algebras are completely de-
termined, up to inner automorphisms on both sides, by the multiplicity number between
matrix algebra components. Thus an injective homomorphism of ⊕ik=1Mnk(C) into
⊕jh=1Mmh(C) may be represented by a collection of positive numbers ak,h satisfying∑
nkakh = mh. This information is often packaged in a Bratelli diagram [10].
In our setting the matrix algebra components are indexed by the vertices of the

graph and the numbers akh are given precisely by the transpose of the adjacency
matrix of the graph, say AG. This is evident from equation (7).

Since the K-functor is continuous we know that K∗(Rs(ΣG, ē)) is an inductive
limit of groups. All in all, if N denotes the number of vertices in G, since we know
K0(Mn(C)) = Z, 0 for any n ≥ 1, we obtain

K0(Rs(ΣG, ē)) ∼= Zn
AtG // Zn

AtG // Zn
AtG // · · · .

As an example, let us consider the C∗-algebra associated to the full 2-shift. The
graph is given in Figure 2 with edges a and b. A natural choice for the transversal, as
indicated in the construction of Example 1.7, would be ΣsG(ā).

However we can do with an even smaller subset, namely ΣsG(ā, 1). Hence the unit
space of the associated groupoid is simply given by sequences (cn)n≥1 with cn ∈ {a, b}.
This results in a slightly different topological base when compared to Example 1.7. A
generic clopen in Rs(ΣG,ΣuG(ā, 1)) is now given by

E(ξ, η) = {(e, f) ∈ Rs(ΣG, σ) | ek = fk = a ∀k ≤ 0,
(e1, . . . , en) = ξ, (f1, . . . , fn) = η,

ek = fk ∀k > n}.

Once again, it is useful to understand E(ξ, η) as the basic open affiliated to the local
conjugacy operation which replaces η by ξ in a given sequence.

If ιn : Mn(C)→M2n(C) denotes the map ιn(x) = diag(x, x), then the C∗-algebra
of the stable groupoid Rs(ΣG,ΣuG(ā, 1)) is given by

C ι1 // M2(C) ι2 // M4(C) ι4 // · · · ,

which means the K0-group is isomorphic to

lim−→
n∈N

(Z, k 7→ 2k) ∼= Z
[

1
2

]
,

the group of rational numbers whose denominator is a power of 2.
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We now turn to the dyadic solenoid.

Example 1.10. — As we have seen, we can understand the structure of this system
via two Morita equivalent groupoids, namely XoF R and ΣoF1 Z. The latter suggests
a possible computation strategy making use of the Pimsner-Voiculescu exact sequence.
Alternatively, one can make use of Connes’s Thom isomorphism [19], which says

K∗(X oR) ∼= K∗+1(X). (11)

It is worth pointing out that (11) also follows from Paschke’s result on the K-theory
of the mapping torus of an automorphism [48]. Since Σ is the cross-section for the
first return map, it follows by construction that X is homeomorphic to the space of
the suspended action, which is precisely the mapping torus

X ∼= Σ×Z R.

In conclusion, we have reduced ourselves to computing the topological K-theory of
the space X. Since it is given as an inverse limit and the K-functor is continuous, we
easily get

K0(X) ∼= Z id // Z id // Z id // · · ·

K1(X) ∼= Z · 2 // Z · 2 // Z · 2 // · · · ,
because the even K-group of the circle is generated by z 7→ 1, while the odd group
is generated by z 7→ z. Hence the K-theory of the solenoid is given by Z

[ 1
2
]
in even

degree and Z in odd degree.

1.4. Maps and inclusions

A continuous and surjective map f : (X,φ)→ (Y, ψ) between Smale spaces is called
a factor map if it intertwines the respective self-maps, i.e.,

f ◦ φ = ψ ◦ f. (12)

It is rather surprising, at least at first thought, that (12) is enough to guarantee
that f preserves the local product structure.

Proposition 1.11 ([50, Theorem 5.1.4]). — Let f : (X,φ)→ (Y, ψ) be a factor map.
Then there exists εf > 0 such that, for all x1, x2 with d(x1, x2) < εf , it holds that both
[x1, x1] and [f(x1), f(x2)] are defined and

f([x1, x2]) = [f(x1), f(x2)].

Definition 1.12. — Let f : (X,φ) → (Y, ψ) be a factor map. Consider for each
x ∈ X the restrictions

f : Xs(x)→ Y s(f(x)) (13)
f : Xu(x)→ Y u(f(x)). (14)
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– If (13) is injective, we say that f is s-resolving. If it is injective and surjective,
then we say f is s-bijective.

– If (14) is injective, we say that f is u-resolving. If it is injective and surjective,
then we say f is u-bijective.

A first indication that resolving maps are an interesting (and useful) class of
maps to consider is given by the following proposition. In the sequel we will state
results exclusively in the s-resolving case, but completely analogous theorems hold for
u-resolving maps.

Proposition 1.13 ([50, Theorem 5.2.5]). — Let f : (X,φ)→ (Y, ψ) be an s-resolving
map. There is a constant N ≥ 1 such that

– for any y ∈ Y there exists x1, . . . , xn in X, with n ≤ N , satisfying

f−1(Y u(y)) =
n⋃

k=1
Xu(xk).

– for any y ∈ Y , the cardinality of the fiber f−1(y) is less than or equal to N .

Example 1.14. — Let (ΣG, σ) be the shift associated to the graph of Figure 2, with
edges relabeled to a = 0 and b = 1. Denote by (Y, ψ) the solenoid of Example 1.3. We
have a factor map f : (ΣG, σ)→ (Y, ψ), given quite explicitly by

f(e)n = exp
(

2πi
∑

k≥0
2−k−1ek−n

)
. (15)

This map can be constructed as follows. Let ζ :
∏
n≥0{0, 1} → [0, 1] be the binary

expansion of a number in the unit interval. By considering f̄ = exp(2πiζ(·)) we
parametrize the unit circle. Now we “take inverse limits” on both sides.

More precisely, note that as a space ΣG
∼=
∏
n∈Z{0, 1}, and the latter can be

obtained as a projective limit of spaces Xk =
∏
n≥−k{0, 1} for k ∈ N. The map

dk : Xk+1 → Xk simply deletes the first entry in a binary sequence. There is a
commuting square f̄((an))2 = f̄(dk(an)) which induces the mapping in (15).

It is clear from this construction that f is s-bijective and 2-to-1 (at most).

The essential result concerning resolving maps is that they are automatically
bijective under non-wandering dynamics.

Theorem 1.15 ([50, Theorem 5.2.9]). — Let f : (X,φ)→ (Y, ψ) be an s-resolving
map. Suppose that each point in Y is non-wandering. Then f is s-bijective.

Theorem 1.16 ([52, Theorem 3.4]). — Let f : (X,φ) → (Y, ψ) be an s-resolving
map. For each x ∈ X, the map

f : Xs(x)→ Y s(f(x)) (16)
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is continuous and proper, where the sets above are given the inductive limit topology
with respect to (3). In particular, if Y is non-wandering then (16) is a homeomorphism.

The fundamental corollary of the previous theorem is an open inclusion result at
the level of unstable equivalence relations.

Corollary 1.17. — Let f : (X,φ)→ (Y, ψ) be an s-bijective map between irreducible
Smale spaces. Suppose that P is a finite (or countable) subset of X such that no two
points of P are stably equivalent after applying f . Then

f × f : Ru(X,P )→ Ru(Y, f(P ))
is a homeomorphism onto an open subgroupoid of Ru(Y, f(P )).

Proof. — It is enough to prove the result where P = {x}. This corresponds to the
case where X and Y are mixing dynamical systems (cf. [52, Corollary 3.5]).

This means the unit space of Ru(X,x) is given by Xs(x). Since f is a homeo-
morphism when restricted to that subset, it is clear that f × f is injective. To see
that f × f is open (and continuous), suppose (U, V, γ) is a local conjugacy in X.
Then f(U) and f(V ) are open sets in Y s(f(x)) and f ◦ γ ◦ f−1 is a homeomorphism
f(U)→ f(V ). In other words the triple (f(U), f(V ), f ◦ γ ◦ f−1) is a local conjugacy
in Y , therefore the open set associated to (U, V, γ) in Ru(X,x) gets sent to an open
set in Rs(Y, f(x)).

Example 1.18. — Let us analyze further the inclusion of groupoids induced by the
mapping f from Example 1.14. The morphism is given as

f × f : Ru(ΣG,ΣsG(ā, 1))→ Ru(Y, Y s((1, 1, 1, . . . ), ε)), (17)
where G is the graph with one vertex and two edges labeled a = 0 and b = 1. On the
right-hand side, we have chosen as a transversal the local stable set through the point
(1, 1, 1, · · · ) ∈ Y . Both transversal are homeomorphic to Σ and the map f becomes
the identity after this identification.

In Example 1.8 we explained that Ru(Y ) = Ru(Y, Y s((1, 1, 1, . . . ), ε) has the struc-
ture of an action groupoid, namely the translation action of Z on the group of binary
sequences. In practice, this means that each arrow in this groupoid can be represented
as a pair γ = ((cn)n≥1,m) with m ∈ Z, r(γ) = (cn), and s(γ) = (cn)−m.

Our aim is recognizing which arrows among the γ’s actually come from the groupoid
on the left of (17). We can categorize all arrows in two types: the ones which modify
a finite string of bits, and those which affect an infinite number of bits. The following
equations represent respectively both kinds:

1 + (0, 0, 0, . . . ) = (1, 0, 0, . . . ) (18)
1 + (1, 1, 1, . . . ) = (0, 0, 0, . . . ). (19)

We have explained in Example 1.9 that the arrows coming from the full 2-shift can be
understood as “the operation of replacing a path of finite length by another one of the
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same length”. Therefore Equation (18) represents an arrow in the image of f × f . In
the notation of Example 1.9, the basic open E(1, 0) is also an open in Ru(Y ). On the
other hand, Equation (19) shows a “new” kind of arrow, which cannot possibly come
from the unstable relation of the shift.

The following straightforward observation is fundamental: these “new” arrows
in the solenoid can only occur between sequences which are definitely constant.
This is because of the amount carried over after the addition. Let γ0 be the arrow
associated to the operation in (19). Any other arrow in the solenoid’s groupoid can be
written in the form µγν, where µ, ν ∈ (f × f)(Ru(ΣG)), and γ is either in {γ0, γ

−1
0 }

or in the unit space (this representation is not unique when γ is a unit, but the
interesting case is the first one). This is best understood with an example: the pair
((1, 0, 0, . . . ), (0, 0, 1, 1, . . . )) evidently belongs to Ru(Y ). Indeed, in the action groupoid
picture, that pair corresponds to ((1, 0, 0, . . . ),+5). Now consider the expression

(0, 0, 1, 1, . . . ) + 3 = (20)
(1, 1, 1, 1, . . . ) + 1 =
(0, 0, 0, 0, . . . ) + 1 = (21)
(1, 0, 0, 0, . . . ),

and set “ν =(20)” and “µ =(21)”.

A technical result by Putnam [53] allows us to find open subgroupoids inside the
unstable equivalence relation of any Smale space with totally disconnected stable sets.
Putnam’s result is actually more general than the form presented here, however the
statement below is the one we are going to use.

Theorem 1.19 ([53, Corollary 3]). — Let (Y, ψ) be an irreducible Smale space such
that Y s(y, ε) is totally disconnected for every y ∈ Y and 0 < ε < εY . Then there is an
irreducible shift of finite type (ΣG, σ) and an s-bijective map

f : (ΣG, σ)→ (Y, ψ).

Note that solenoids and tiling spaces are examples of Smale spaces to which the
previous theorem can be applied. Example 1.14 is an instance of this result.

1.5. A homology theory for open inclusions

In view of the previous section, we start by considering a second countable, locally
compact, Hausdorff groupoid G along with an open subgroupoid H ⊆ G, over the
same second countable, Hausdorff unit space X. We assume the existence of a (left)
Haar system {λx}x∈X on G [57].
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Under these assumptions there is an induction-restriction adjunction in the associ-
ated equivariant Kasparov categories (see [38, 39] and Appendix A)

(ε, η) : IndGH a ResHG
with counit and unit

ε : IndGH ResHG → 1KKG

η : 1KKH → ResHG IndGH .

As a result, the composition L = ResHG IndGH : KKG → KKG is an endofunctor with
the structure of a comonad. In particular, the counit of L is given by ε (the counit of
the adjunction), and the comultiplication can be written as

δA = IndGH(ηResH
G

(B)) : L(A) 7→ L(L(A)),

where η is the unit of the adjunction. Details on the comonad identities can be found
in [72, Paragraph 8.6.2].

We are going to use L to associate a simplicial structure to the groupoid G. This is
done by repeatedly applying the comonad to the C∗-algebra of continuous functions
(vanishing at infinity) of the space X. Let us write X in place of C0(X). Define face
and degeneracy maps

dni = LiεLn−i : Ln+1A→ LnA

sni = LiδLn−i : Ln+1A→ Ln+2A.

Then [72, Paragraph 8.6.4] shows that

L•X = · · ·
−→
...
−→

L3X
−→←−−→←−−→ L2X

d1
0−→←−−→
d1

1

LX
ε−→ X (22)

is an augemented simplicial object in KKG. The expression in (22) can be understood
as a “resolution” of X, see A.11. By choosing a functor with values in abelian groups,
for example A 7→ K∗(AoG), we can map L•X to a simplicial Z/(2)-graded abelian
group K∗(L•X oG).

As is well-known, the Dold-Kan correspondence [72, Theorem 8.4.1] establishes an
equivalence of categories between simplicial groups and chain complexes, hence it can
be used to convert K∗(L•X oG) to a chain complex. The unnormalized version of
this complex looks like

· · · // K∗(L3X oG) δ2 // K∗(L2X oG) δ1 // K∗(LX oG) // 0, (23)

where the boundary map is simply given by the alternating sum of the induced face
maps,

δn =
n−1∑

i=0
(−1)idni : K∗(Ln+1X oG)→ K∗(LnX oG). (24)
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There is a normalized version of this complex, which is quasi-isomorphic to (23),
making use of the degeneracy maps of the simplicial object (see [72, Theorem 8.3.8]).

Definition 1.20. — The homology groups of the pair (G,H) are the homology groups
of the complex in (23). More precisely, we set H(q)

p (G,H) = Hp(Kq(L•X oG)).

In homological algebra one says that Definition 1.20 is an instance of comonadic
homology (sometimes cotriple homology) [72, Section 8.7]. Because of Bott periodicity,
the superscript in H(q)

p can be understood modulo 2.

Example 1.21. — Let us see more concretely how the first boundary map in (23)
looks like. First of all, we need to write a groupoid picture for LX and L2X. Since
the general formula for induction is given by (see Appendix A)

IndGH(A) = (C0(G) ⊗s ρ
C0(X)

A) odiag H,

we see that L1X is simply represented by the right translation groupoid G ort H.
Note that this is a G-object because the groupoid G acts via left translation on it. In
order to compute L2X we look once again at the general formula

IndGH ResHG (IndGH ResHG (A)) = [C0(G) ⊗s r
C0(X)

(C0(G) ⊗s ρ
C0(X)

A) oH] odiag H. (25)

By using the G-action on IndGH ResHG (A), we can balance the first tensor product over
the range map, rather than the source map. This also changes the G-action of (25):
when s is present G acts via left translation on the leftmost C0(G) factor, when r is
used G acts diagonally via left translation on both C0(G) and IndGH ResHG (A). All in
all, the groupoid picture for L2X is

(G ×r r G) ort×rt (H ×H).

Since K∗(−oG) is actually the composition of two functors, namely the Kasparov
descent functor (see Section A.1) and the K-functor, it is useful to analyze the formulas
after descent has been applied. We have

G(LX) = Gn (GoH) (26)
G(L2X) = Gn (G ×r r G) ort×rt (H ×H).

It turns out that both of these formulas can be simplified. The reasoning is the
same: a free and proper groupoid is equivalent (in the sense of [43]) to its quotient (in
particular KK-equivalent, see Section A.2). Since the left and right actions commute,
we can rewrite (26) as

G(LX) = (GnG) oH

G(L2X) = (Gn (G ×r r G)) o (H ×H)
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and proceed by replacing the free and proper actions by their respective quotients,
namely X and G respectively:

G(LX) ∼= H

G(L2X) ∼= Goα (H ×H). (27)

Note that, after the equivalence, the action α in (27) has changed accordingly. It is
given by

α(η1,η2)(γ) = η1γη
−1
2

for γ ∈ G and η1, η2 ∈ H with s(η1) = r(γ) and s(γ) = s(η2).
We now turn to the description of the boundary map δ1 = d1

0 − d1
1. We have

d0
1 = εLX = εIndG

H
ResH

G
(X)

d1
1 = L(ε) = IndGH ResHG (εX).

Evidently we need to make the counit explicit to get a concrete picture. Given any
object A ∈ KKG, denote by

κA : IndGH ResHG (A) = (C0(G) ⊗s ρ
C0(X)

A) oH → (C0(G) ⊗s ρ
C0(X)

A) oG

the natural inclusion induced by H as open subgroupoid of G. Note that the algebra
on the left coincides with IndGG ResGG(A) and is therefore KKG-equivalent to A itself
(see Section A.1). This equivalence is denoted by XG

A ∈ KKG(IndGG ResGG(A), A). With
this information at hand, we can write

εA = XG
A ◦ κA,

so that for example, when A = C0(X),

d1
1 = L(GoH → GoG∼=

X

) = L(GoH∼=

L2X

)→ LX.

Already at this level of generality the homology groups defined above appear on
the second table of a spectral sequence. The general convergence properties of this
spectral sequence are discussed in [37]. In our context, it turns out that the limiting
sheet computes the K-theory groups associated to a certain object PX, which we call
the H-cellular approximation of X. The notation “H” is used as a reminder that PX
is determined (up to homotopy) by the inclusion of H in G.

Theorem 1.22 (cf. Theorem A.12). — There exists a spectral sequence of the
following type,

E2
pq = H(q)

p (G,H)⇒ Kp+q(PX oG).
Moreover, we have a natural comparison map

K∗(PX oG)→ K∗(G). (28)
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...
...

...
...

...
...

... . . .

3 0 0 0 0 · · · 0 · · ·

2 0 H0 H1 H2 · · · Hp · · ·

1 0 0 0 0 · · · 0 · · ·

0 0 H0 H1 H2 · · · Hp · · ·

−1 0 1 2 · · · p · · ·

Figure 6. The E2-page of the spectral sequence in Theorem 1.22 under
the assumptions of Remark 1.23. The differentials have bidegree (−2, 1).

The comparison map is actually induced from a morphism at the KKG-level
PX → X. This is ultimately a consequence of the fact that the localizing triangulated
subcategory generated by H-induced objects is part of a complementary pair of
subcategories (Section A.3). In the next section (Section 1.6) we discuss a strategy
for proving that (28) is an isomorphism, based on the celebrated result of Tu [69] for
groupoids with the Haagerup property.

The spectral sequence above was first introduced, in a slightly different context, by
D. Christensen in [14]. The existence of such sequence per se is not too surprising:
the triangulated category axioms allow embedding the projective objects of a given
resolution recursively into a sequence of exact triangles, which can be turned into an
exact couple after applying a functor to abelian groups. The convergence issue is more
delicate and it is analyzed in details in [37].

On a related note, the reader who’s familiar with algebraic topology may understand
the spectral sequence above as an analogue of the Bousfield-Kan spectral sequence for
homotopy colimits [8]. In that setting, the spectral sequence is obtained by filtering the
simplicial category which is “indexing” the simplicial object of interest. Moreover, it
is true in our case too that the H-cellular approximation is isomorphic to a homotopy
colimit, namely the one associated to the cellular approximation tower induced by the
resolution L•X (the details of this cosntruction can be found in [37, Section 3.2]).

Remark 1.23. — This is a good moment to discuss what could be a good definition
of “computable” for the subgroupoid H. A reasonable approach is requiring the
C∗-algebras associated with L•X to be made of “basic building blocks”. More precisely
we might ask for C∗r (L•X oG) to be an approximately finite-dimensional C∗-algebra.

In particular, since AF-algebras have trivial odd K-groups, we get H(1)
∗ (G,H) = 0

so we can simply set H(0)
∗ = H∗. Then as one can see from Figure 6 the odd rows of

the E2-page vanish and all d2-type differentials are zero, because they either start or
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end at a trivial group. However note that there will be non-trivial d3-type differential
going between the homology groups, e.g., d3 : H3(G,H) → H0(G,H), therefore we
cannot conclude that the spectral sequence degenerates at the E2-page.

Nonetheless in “low homological dimension”, i.e., when we haveHp(G,H) = 0, p ≥ 3,
then all the relevant differentials have their targets on the left of the q-axis, hence we
do get a collapsing spectral sequence.

1.5.1. Smale spaces with totally disconnected stable sets. — In light of the
previous section, the way to use Theorem 1.22 in the setting of Smale spaces is quite
clear: start with an irreducible Smale space (X,φ) whose local stable sets are totally
disconnected. Apply Theorem 1.19 to get a shift of finite type (Σ, σ) along with an
s-bijective map f : Σ→ X. Set H = Rs(Σ, P ) for some set P ⊆ Σ such that Xs(φ(P ))
meets all unstable orbits in X (it suffices that φ(P ) meets every mixing component of
X). Use Corollary 1.17 to identify H with an open subgroupoid of G = Ru(X,φ(P )).
We are now in the setup outlined at the beginning of this section. Note that the unit
space of G is not X, but rather Xu(φ(P )); to avoid confusion, in case G comes from a
Smale space, we write G0 to indicate its unit space. In this setting, Theorem 1.22 is
likely to hold in a stronger form, i.e., with (28) being an isomorphism; see Conjecture
2 for more details.

Let us make a few comments about the existing K-theory computations on tiling
systems. These can be found for example in [2] and more recently in [21]. They
have all been obtained in dimension one or two, which seems to correspond to the
case discussed in Remark 1.23 where the spectral sequence of Theorem 1.22 collapses.
Therefore our approach could provide a conceptual reason for why the computations
are more accessible in lower dimensions.

It is worth pointing out that a certain spectral sequence, suitable specifically for
tiling spaces (beyond the substitution type), has been found in [62]. Our standpoint
is that, in many cases, one does not need to use anything specific about the nature of
the dynamical system in order to establish a computational procedure, because all the
systems falling under the net of Smale spaces admit an open subgroupoid structure
(as per Section 1.4), which can be exploited as indicated in Section 1.5.

1.6. Future outlook: conjectures and computations

Let us discuss the strong Baum-Connes conjecture (see Definition A.18). We are
going to use notation from Appendix A. Our starting point is the following result
proved by J.-L. Tu.

Theorem 1.24 ([69]). — Suppose G is a second countable, locally compact, Hausdorff
groupoid with second countable, Hausdorff unit space X. If G acts properly on a
continuous field of affine Euclidean spaces, then there exists a proper G-C∗-algebra P
such that P ∼= C0(X) in KKG.
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As a consequence, given any other algebra A ∈ KKG, we have that A⊗C0(X) P is
proper and KKG-equivalent to A. In the notation of Section A.4, we have the equality
of categories 〈Pr〉 = KKG.

Our objective is proving the strong Baum-Connes conjecture for all groupoids
satisfying the conclusion of Theorem 1.24. From Definition A.18, it is clear that
it suffices to show that the localizing subcategory generated by compactly induced
objects equals the one generated by proper objects.

Conjecture 1. — Suppose G satisfies the conclusion of Theorem 1.24. Then we have
the equality of categories 〈CI〉 = 〈Pr〉 = KKG. In particular, G satisfies the strong
Baum-Connes conjecture.

Idea of proof. — Suppose A is proper G-C∗-algebra over EG. Recall from the ap-
pendix that V is a countable open cover of EG such that A|V ∈ 〈CI〉 for any V ∈ V.

Given V, V ′ ∈ V , we wish to prove that A|V ∪V ′ = A|V +A|V ′ belongs to 〈CI〉. Notice
that I0 = A|V and I1 = A|V ′ are ideals inside B = A|V ∪V ′ . Indeed they correspond
to C0(V )B and C0(V ′)B respectively. This suggests using the Mayer-Vietoris exact
triangle for the sum of two ideals. Define an auxiliary algebra Q as

Q = {f ∈ C([0, 1], B) | f(0) ∈ I0, f(1) ∈ I1}.
The map f 7→ (f(0), f(1)) gives a short exact sequence

0 // ΣB // Q // I0 ⊕ I1 // 0 . (29)
There is an obvious equivariant completely positive splitting given by taking the convex
combination of (x, y) ∈ I0 ⊕ I1. Hence (29) gives rise to an exact triangle. If Q is in
〈CI〉, then we get ΣB ∈ 〈CI〉, thus B ∈ 〈CI〉. One way to accomplish this would be
showing that Q is KKG-equivalent to I0 ∩ I1 = A|V ∩V ′ ∈ 〈CI〉. Consider the short
exact sequence

0 // C([0, 1], I0 ∩ I1) ψ
// Q // C0 ⊕ C1 // 0 , (30)

where Ci denotes the mapping cone C∗-algebra associated to the identity morphism
of Ii/(I0 ∩ I1), and Q→ Ci is given by

f 7→ (f(1− t) mod I1, f(t) mod I0).
Proving Q ∼= C([0, 1], I0 ∩ I1) is of course equivalent to showing that the generalized
mapping cone of ψ is contractible. This seems plausible because C0⊕C1 is contractible,
so if (30) was an extension triangle, we could conclude cone(ψ) ∼= ΣC0 ⊕ ΣC1, simply
by uniqueness of the mapping cone (and a rotation). Hence we reduced ourselves to
showing that (30) is (equivariantly) semi-split. At this point we don’t know how to
proceed, therefore we assume B ∈ 〈CI〉.

Since B is in 〈CI〉, we can rearrange (by taking finite unions) the open cover of EG
to an increasing cover {Vn}n∈N. The direct limit A∞ = lim−→n∈N(A|Vn , ιn), where ιn
denotes the inclusion A|Vn ↪→ A|Vn+1 , is easily seen to be isomorphic to A. Hence our
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objective is showing that A∞ belongs to 〈CI〉. We can do this by showing that it is
isomorphic to the direct homotopy colimit, i.e., to the object Ah∞ ∈ KKG which fits in
an exact triangle

ΣAh∞ //
⊕
n∈N

A|Vn
D //

⊕
n∈N

A|Vn // Ah∞ ,

where D is defined by (D(an))m+1 = am+1 − ιm(am). Let αn : A|Vn → A∞ be the
canonical map. By [38, Lemma 2.7], it is sufficient to show the existence of equivariant
completely positive contractions βn : A∞ → A|Vn such that the composition αn ◦ βn
converges in the point-norm topology to the identity. Since each Vn is G-invariant,
there exists an invariant partition of unity {ρn}n∈N subordinate to this cover. We can
use this to write the map βn(a) =

∑
k≤n ρna.

We have already emphasized that [56, Theorem 1.1] shows that groupoids arising
from Smale spaces are amenable. In particular, they act properly on a continuous
field of affine Euclidean spaces [69, Lemma 3.5]. This is often stated by saying that
(topological) amenability implies the Haagerup property.

Conjecture 2. — Suppose (G,H) is a pair of groupoids originating from Smale
spaces (X,Σ), as in Subsection 1.5.1. Then the comparison map (28) of Theorem 1.22
is an isomorphism. In other words, H(i)

∗ (G,H) provides a “good approximation” of
the K-theory associated to X.

Proof, assuming Conjecture 1. — Since G is an equivalence relation, it has trivial
isotropy groups. Hence the subcategory of compactly induced objects is simply reduced
to the objects induced from G0, i.e., the objects of the form IndGG0(B), B ∈ KKG0

.
Here we are viewing G0 as an open subgroupoid of G (recall G is étale). Since
IndGG0(B) ∼= IndGH(IndHG0(B)), we have in particular that theH-induced objects entirely
generate KKG, that is H = KKG in the notation of the appendix (cf. Corollary A.11
and Theorem A.17). Therefore the H-cellular approximation of any object is KKG-
equivalent to the object itself.

I. F. Putnam has introduced in [54] a homology theory for non-wandering Smale
spaces. The details of this construction are discussed in greater detail in Paper B. In
the case of a Smale space X with totally disconnected stable sets, the starting point
of Putnam’s theory is exactly the same as ours, namely a shift of finite type and an
s-bijective factor map f : Σ→ X. From this data one defines a chain complex C•(f)
and associated homology groups Hn(X) = Hn(C•(f)).

Conjecture 3. — Suppose (G,H) is a pair of groupoids originating from Smale
spaces (X,Σ) as in Subsection 1.5.1. Then the associated chain complex (of even
K-groups) in Equation (23) is quasi-isomorphic to the chain complex C•(f) which
defines Putnam’s homology groups.
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Figure 7. The graph associated to Σ1.

A few comments are in order about the conjecture above. First of all, Putnam’s
homology groups do not depend on the choice of (Σ, f) [54, Section 5.5], whereas at
least in general the choice of H ⊆ G does affect H(i)

∗ (G,H), for example H = G is a
possible choice which yields vanishing higher homology.

Hence Conjecture 3 would imply that if (G,H ′) is pair of groupoids originating
from Smale spaces (X,Σ′), then the associated chain complex of Equation (23), with
L = IndGH′ ResH

′

G , is quasi-isomorphic to the one associated to (G,H). This is because
they would be both quasi-isomorphic to Putnam’s complex.

A first step towards a comparison between H∗(X) and H
(0)
∗ (G,H) is to obtain

a K-theoretical description of Putnam’s chain complex. Set Σ = Σ0 and denote
by Σn the closed subspace of Σ×(n+1) consisting of tuples (e0, e1, . . . , en) such that
f(e0) = f(e1) = · · · = f(en). It is easy to see that (Σn, σ × · · · × σ) is a Smale space.
By definition, we have Cn(f) = K0(Ru(Σn, σ × · · · × σ)).

Unfortunately, describing the boundary maps appearing in C•(f) requires choosing
many different transversals. This is due to the fact that Σn, n ≥ 1, is not irreducible.
For simplicity, the sequel will focus on the groups {Cn(f)}.

Suppose (G,H) is the pair of groupoids corresponding to (Σ, f) according to
Subsection 1.5.1. We want to show an example where we have Cn(f) ∼= K0(Ln+1G0 o
G). Notice that, if we were able to show these isomorphisms commute with the
respective boundary maps, then we would prove something stronger than Conjecture
3, namely that C•(f) and K0(L•G0 oG) are isomorphic as complexes.

Example 1.25. — As the reader might have guessed, our example is based on the
inclusion of groupoids explained in Example 1.18. Let (Σ0, σ) be the full 2-shift and
(Y, φ) denote the dyadic solenoid. The map f : (Σ0, σ)→ (Y, φ) from Example 1.14 is
s-bijective and induces and open inclusion

(f × f)(Ru(Σ0,Σs0(ā, 1))) ⊆ Ru(Y, Y s((1, 1, 1, . . . ), ε)). (31)

First we compute the groups in Putnam’s complex, namely (omitting transversals)
K0(Ru(Σ0)) and K0(Ru(Σ1)). We already know the answer for the first one from
Example 1.9, K0(Ru(Σ0)) ∼= Z

[ 1
2
]
. In order to compute the K-group for Σ1 we need

to find an edge shift presentation for Σ1, i.e., we need a graph G such that Σ1 ∼= ΣG as
shifts of finite type. It is easy to verify that the graph in Figure 7 furnishes a suitable
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presentation: each path on this graph describes a pair (e0, e1) ∈ Σ0 × Σ0 for which
f(e0) = f(e1). Note how the graph in Figure 7 contains a copy of the “two loops on
one vertex” graph of Figure 2. Deviating from this subgraph forces the pair of binary
sequences to be definitely constant, one being the flipped version of the other, according
to the two ways of expanding 1 in binary form, i.e., 1 · 20 = 0 · 20 +

∑
k≥1 1 · 2−k. The

groupoid Ru(Σ1) can be restricted to the stable orbits of ab, ba ∈ Σ1, namely the fixed
points given by the loops on the two sides of Figure 7. Since these loops are “sinks”,
it is evident that ab is unstably equivalent only to itself, and similarly for ba. All in
all, Ru(Σ1) contains an open sub-equivalence relation isomorphic to Ru(Σ0) and two
isolated points. This implies that K0(Ru(Σ1)) ∼= Z

[ 1
2
]
⊕ Z⊕ Z.

Let us turn to the computation of the corresponding groups for the homology
defined in Section 1.5. Denote the inclusion in (31) by H ⊆ G. The groups involved
have been already studied in Example 1.21, and they are given by

K0(Gn (GoH)) ∼= K0(H)
K0(Gn (G ×r r G) o (H ×H)) ∼= K0(Go (H ×H)).

We see immediately that the first group is exactly the same as the one considered
above, therefore we focus on the second one. First we observe that we have an open
inclusion

H o (H ×H) ↪→ Go (H ×H).
This gives rise to an extension of C∗-algebras

0 // C∗(H o (H ×H)) f∗ // C∗(Go (H ×H)) // C0(GrH) o (H ×H) // 0 .
A rigorous proof of the isomorphism

C∗(H o (H ×H)) ∼= (C∗(H) oH) oH (32)
is given in [12]. Since we know the translation action of H on itself is free and proper,
the C∗-algebra on the right of (32) is Morita equivalent to C∗(H).

Recall that H has an inductive limit structureH ∼= lim−→n∈NRn. From the description
of Example 1.18, where an arrow in GrH is represented as µγ0ν or µγ−1

0 ν, we can
write (GrH) o (H ×H) as the union over n ∈ N of

Rn n (Rn · γ0 ·Rn) oRn ∪Rn n (Rn · γ−1
0 ·Rn) oRn. (33)

Using Morita equivalence, and replacing free and proper actions with their respective
quotients, we see the K0-group for (33) is the free abelian group on {γ0, γ

−1
0 }. Overall

we have K0(Go (H ×H)) ∼= K0(Ru(Σ1)) by direct inspection.
By using techniques from Paper B, one can show that the homology groups in

degree higher than 1 are all zero in this example. The main idea is replacing the
defining complexes with quasi-isomorphic “reduced” versions, for which the groups in
degree ≥ 2 vanish already at the level of the complex (see also [54, Section 7.3]).



APPENDIX A

THE STRONG BAUM-CONNES CONJECTURE

We start by giving an overview of the results contained in this appendix.
Let G be a second countable, locally compact, Hausdorff groupoid with second

countable, Hausdorff unit space X. We let s, r : G→ X denote respectively the source
and range maps. We assume the existence of a (left) Haar system {λx}x∈X on G [57].

Let KKG be the equivariant KK-category of separable and trivially graded C∗-
algebras equipped with an action of G [34]. In particular, all objects in this category
are C0(X)-algebras [7]. Let H ⊆ G be an open subgroupoid.

We have a natural restriction functor ResHG : KKG → KKH . There is a correspond-
ing induction functor which will be defined in Section A.1. Section A.2 is devoted
to proving that these functors satisfy an adjunction relationship. In the less general
setting of action groupoids this result is stated without proof in [38].

Section A.3 explains how to derive a structure theorem for the KKG-category, namely
a complementary pair of subcategories, from the induction-restriction theorem. The
main consequence of this result is the existence of cellular approximations along with
a spectral sequence converging to the localization (at the subcategory of contractible
objects) of a given homological functor. Most results in this section are simple
applications of the material contained in [37, 39].

Section A.4 discusses proper G-C∗-algebras and provides a formulation of the strong
Baum-Connes conjecture for étale groupoids in the style of [38].

A.1. Preliminaries

Given an algebra B ∈ KKH with moment map ρ : C0(X)→ Z(M(B)), we consider
the tensor product, balanced over the source and moment map,

s∗B = C0(G) ⊗s ρ
C0(X)

B
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with its associated diagonal action of H, given by right translation on C0(G). Notice
that G also acts on s∗(B), by left translation on C0(G). These actions commute and
therefore we get a G-algebra by considering the crossed product

s∗B oH = (C0(G) ⊗s ρ
C0(X)

B) odiag H.

The crossed product is understood to be reduced throughout this appendix. We
set IndGH(B) = s∗B o H. Details on the construction of groupoid crossed product
C∗-algebras can be found in [28, 44].

Consider a right Hilbert module E. By using an approximate unit in B, we can
equip E with a compatible C0(X)-action. We can form the module

s∗E = C0(G) ⊗s ρ
C0(X)

E,

which comes with a right action of s∗B by pointwise “multiplication”.
We now describe a crossed product construction which, when applied to s∗E, will

yield a Hilbert module over IndGH(B) = s∗B oH.
Let D be a G-algebra, F a right Hilbert D-module, and ξ ∈ F . Recall we also have

a (left) C0(X)-action on F . We consider projection maps

px : F → F

C0(X r {x}) · F
and, given f ∈ Cc(G), ξ ∈ F , we denote by f ⊗ ξ the function sending γ ∈ G to
f(γ) · pr(γ)(ξ). Let Γe(G, r∗F ) denote the linear span of the f ⊗ ξ’s.

A general compactly supported section is an element in the completion of Γe(G, r∗F )
with respect to nets {fi} such that S = ∪ supp(fi) is compact and {fi|S} is Cauchy in
the uniform norm. We write Γc(G, r∗F ) for the set of compactly supported sections.
Notice that Γc(G, r∗D) makes sense equally well.

Let us denote by α the G-action on D. Given h ∈ Γc(G, r∗F ), f ∈ Γc(G, r∗D), we
define

(hf)(γ) =
∫

G

h(η)αη(f(η−1γ)) dλr(γ)(η).

Define a Γc(G, r∗D)-valued inner product by

〈h|g〉 (γ) =
∫

G

αη−1(〈h(η)|g(ηγ)〉) dλr(γ)(η).

The completion of Γc(G, r∗F ) with respect to the inner product above is a right Hilbert
D oα H-module, denoted F oG.

A G-action β on F is a family of C0(X)-linear operators

βγ : ps(γ)(F )→ pr(γ)(F )

which is compatible with the algebraic structure of G in the obvious sense, and for
which it holds

βγ(ξd) = βγ(ξ)αγ(d)
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for all γ ∈ G, ξ ∈ F, d ∈ D.
Let A be a G-algebra and suppose π : A→ End∗D(F ) is a non-degenerate representa-

tion as adjointable operators. Since π can be extended to M(A), for f ∈ C0(X), ξ ∈ F
the equality π(f)ξ = f · ξ makes sense and will be assumed.

If π is equivariant with respect to the adjoint action of β, we can “integrate” it to
a representation π̃ : AoG→ End∗DoG(F oG).

Let f ∈ Γc(G, r∗A) and h ∈ Γc(G, r∗F ) and define

π̃(f)h(γ) =
∫

G

π(f(η))βη(h(η−1γ)) dλr(γ)(η).

We write F oβ G (rather than F oG) to emphasize the presence of a representation
acting on the left. If (π, F, T ) is an equivariant Kasparov module, i.e., T is an
adjointable operator commuting with the left C0(X)-action and satisfying the usual
compactness conditions [34], then we define

(T̃ h)(γ) = T (h(γ))

for f ∈ Γc(G, r∗F ), γ ∈ G. With this definition, T̃ can be extended to an adjointable
operator of F oβ G and the assignment

(π, F, T ) 7→ (π̃, F oβ G, T̃ )

is well-defined between (A-D)-G-Kasparov modules and (A o G-D o G)-Kasparov
modules. In particular, it descends to a group homomorphism

G : KKG(A,D)→ KK(AoG,D oG)

which generalizes the familiar Kasparov descent in the context of groups, and inherits
all its functorial properties (cf. [32]). Depending on the completion, this construction
works for full and reduced crossed products.

Going back to the B-module E, we assume it carries an action of H (call it β)
along with a non-degenerate equivariant representation π : B0 → End∗B(E) of an H-
algebra B0 as adjointable operators of E. Then we get a representation s∗π : s∗B0 →
End∗s∗B(s∗E) defined by applying π0 pointwise.

Notice that s∗E carries a diagonal H-action combining right translation and β. It
is easy to see that s∗π is equivariant with respect to this action. So s∗E ort⊗β H now
makes sense and is endowed with a left G-action by translation. We set

IndGH(π0, E) = (s̃∗π, s∗E ort⊗β H).

Moreover, if (π,E, T ) is an equivariant Kasparov module then (s∗, s∗E, s∗T ) is also
one, provided s∗T is defined as 1⊗ T , i.e., T is applied pointwise. In this case we set

IndGH(π0, E, T ) = (s̃∗π, s∗E ort⊗β H, s̃∗T ) = H(s∗π, s∗E, s∗T ).

It can be checked that the description so far gives a functor IndGH : KKH → KKG.
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A.2. Induction-restriction adjunction

Recall that if G acts freely and properly on a second countable, locally compact,
Hausdorff space Y , then the C∗-algebra C0(Y ) oG ∼= C∗(Y oG) is strongly Morita
equivalent to C0(Y/G) [11].

Remark A.1. — In the setting above, Y oG is an amenable groupoid so that the
reduced and full crossed products are isomorphic. See for example [1, Corollary 2.1.17
& Proposition 6.1.10].

In particular, when Y equals G itself and the action is given by right translation,
the imprimitivity bimodule gives a ∗-isomorphism C0(G) ort G ∼= K(L2

s(G)), where
we denoted by L2

s(G) the standard continuous field of Hilbert spaces associated to G,
fibered over the source map.

Moreover, if A is a C0(X)-algebra (with moment map ρ) and α : s∗A ∼= r∗A is a
G-action, then there is an isomorphism of C∗-dynamical systems

(s∗A,G, rt⊗ α)→ (r∗A,G, rt⊗ 1)

where the intertwining map is given precisely by α [34]. As a consequence we get an
isomorphism

IndGG ResGG(A) ∼= (C0(G) ort G) ⊗r ρ
C0(X)

A ∼= K(L2
s(G)) ⊗r ρ

C0(X)
A.

After the first isomorphism above, the left G-action goes from left translation to
diagonal, considering the original action of A on the second tensor factor. More
generally, the same argument gives an isomorphism

φ : IndGH ResHG A ∼= (C0(G) oH) ⊗r ρ
C0(X)

A,

where G acts diagonally on the algebra on the right.
Denote by

κ : IndGH ResHG (A) = (C0(G) ⊗s ρ
C0(X)

A) oH → (C0(G) ⊗s ρ
C0(X)

A) oG

the natural inclusion induced by H as open subgroupoid of G.
From the previous discussion we have a KKG-equivalence

XG
A ∈ KKG(IndGG ResGG(A), A)

given by the right A-module L2
s(G) ⊗r ρ A, where A acts pointwise as “constant

functions”. The representation of the crossed product r∗AoG ∼= IndGG ResGG(A) is the
integrated form of the covariant pair given by the right regular representation of G,
and pointwise multiplication of functions in r∗A. We will denote this by MA oRG.

It is worth pointing out that the left action of G on L2
s(G) ⊗r ρA is not decomposable

along the field, i.e., it comes from the range map, because the moment map for the
left action of r∗AoG is given by r∗ ⊗ ρ : C0(X)→M(C0(G) ⊗r ρ A).



A.2. INDUCTION-RESTRICTION ADJUNCTION 41

Let B ∈ KKH and denote by
ι : (C0(H) ⊗s ρ

C0(X)
B) oH → (C0(G) ⊗s ρ

C0(X)
B) oH = ResHG IndGH(B)

the map induced by the ideal inclusion C0(H) ⊆ C0(G).

Theorem A.2. — There is an adjunction
(ε, η) : IndGH a ResHG

with counit and unit
ε : IndGH ResHG → 1KKG

η : 1KKH → ResHG IndGH
described as follows:

εA = XG
A ◦ κ

ηB = ι ◦
(
XH
B

)op
.

Proof. — We need to verify the counit-unit equations. We start by proving that the
following composition equals the identity:

ResHG (B)
ηResH

G
(B)

// ResHG IndGH ResHG (B)
ResHG (εB)

// ResHG (B).

After the isomorphisms
(C0(H) ⊗s ρ

C0(X)
ResHG (H)) oH ∼= K(L2

s(H)) ⊗r ρ
C0(X)

ResHG (B)

(C0(G) ⊗s ρ
C0(X)

ResHG (B)) oG ∼= K(L2
s(G)) ⊗r ρ

C0(X)
ResHG (B)

the map κ ◦ ι gives an inclusion
i : K(L2

s(H))→ K(L2
s(G))

and the required verification is easily seen to be reduced to showing that the (interior)
Kasparov product

[(XH
C0(X))op] ⊗̂K(L2

s(H))i
∗[XG

C0(X)]
equals the class of 1 in KKH(C0(X), C0(X)).

Let us focus on the second factor. The representation of K(L2
s(H)) on L2

s(G) is
induced by i and it fails to be non-degenerate. Its non-degenerate closure can be equally
used to represent the KK-class i∗[XG

C0(X)], and it is easily seen to be (isomorphic to)
L2
s(H). Therefore i∗[XG

C0(X)] = [(XH
C0(X))]. Now a routine computation shows that

[(XH
C0(X))op] ⊗̂K(L2

s(H))[(XH
C0(X))] = 1 ∈ KKH(C0(X), C0(X)).

The next verification in order regards the composition

IndGH(A)
IndGH(ηA)

// IndGH ResHG IndGH(A)
εIndG

H
(A)

// IndGH(A).
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The map κ ◦ IndGH(ι) gives an inclusion
(
C0(G) ⊗s r

[(
C0(H) ⊗s ρ A

)
oH

])
oH

��(
C0(G) ⊗s r

[(
C0(G) ⊗s ρ A

)
oH

])
oG.

By using the isomorphism φ introduced above, we can turn the previous inclusion into
the more convenient

(
C0(G) ⊗s r⊗ρ

[(
C0(H) ⊗r ρ A

)
ort⊗1 H

])
o H

i

��(
C0(

γ

G) ⊗r r

[(
C0(

ν

G) ⊗s ρ A
)
o

µ

H
])

ort⊗lt
η

G.

Above, the greek letters indicate our choice of notation for the variable on the given
groupoid. These will be useful in a moment.

Recall the action on A is denoted by α. Suppressing notation for the inclusions
H ⊆ G and C0(H) ⊆ C0(G), the map i can be understood by

i(f)(η, γ, µ, ν) = αν−1γ(f(η, γ, µ, γ−1ν)),

where f is in Γc(H, r∗(C0(G) ⊗s r⊗ρ (C0(H) ⊗r ρA)ort⊗1H)). Note that the right-hand
side is zero unless γ−1ν ∈ H and η ∈ H.

The composition that we aim to analyze equals the (interior) Kasparov product
(over the domain of i)

[IndGH
((
XH
A

)op)] ⊗̂ i∗[XG
IndG

H
(A)].

The class on the right is represented by the data
(

(M(C0(G)⊗A)oH oRG) ◦ i, L2
s(
γ

G) ⊗r r
C0(X)

(C0(
ν

G) ⊗s ρ
C0(X)

A) o
ζ

H
)
.

Note that the representation is only non-degenerate on the submodule Fγ−1µ of
functions which vanish whenever γ−1ν is not in H (it is easy to check this set is
preserved by the right action and left group action). Passing to this submodule leaves
the KK-class invariant, therefore it is sufficient to show that we have an isomorphism
of Hilbert modules, intertwining the representations and the left group action,

Φ: IndGH
(
XH
A

)
→ Fγ−1µ.

The class [IndGH
(
XH
A

)
] is given by

(
s∗(MA oRH)
∼

,
(
C0(

γ

G) ⊗s r⊗ρ
C0(X)

[
L2
s(

ν

H) ⊗r ρ
C0(X)

A
])

ort⊗(lt⊗α)
ζ

H
)
.
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The map Φ is defined as follows:

Φ(h)(γ, ζ, ν) = αν−1γ(h(γ, γ−1νζ, γ−1ν))

for h in Γc(
ζ

H, r∗(C0(
γ

G) ⊗s r⊗ρ(Cc(
ν

H) ⊗r ρA))). We notice from the start that the
image of Φ is dense, so it will be sufficient to show that it is isometric.

Let us begin by showing that Φ intertwines the representations. We are going to
use left module notation (for the representation) for brevity.

For h ∈ Γc(H, r∗(C0(G) ⊗s r⊗ρ(Cc(H) ⊗r ρA))) and f ∈ Γc(H, r∗(C0(G) ⊗s r

(C0(H) ⊗s ρ A) oH)), we have

fΦ(h)(γ, ζ, ν) =
∫

H

dλs(γ)(η)
∫

H

dλs(ν)(µ) i(f)(η, γ, µ, ν)αµ(Φ(h)(γη, η−1ζ, η−1νµ))

=
∫

H

dλs(γ)(η)
∫

H

dλs(ν)(µ)αν−1γ(f(η, γ, µ, γ−1ν))αν−1γη(h(γη, η−1γ−1νζ, η−1γ−1νµ)).

The representation on IndGH
(
XH
A

)
is given by

fh(γ, ζ, ν) =
∫

H

dλr(ζ)(η)
∫

H

dλs(ν)(µ) f(η, γ, µ, ν)αη(h(γη, η−1ζ, η−1νµ)),

note that r(ζ) = s(ν). Therefore we compute

Φ(fh)(γ, ζ, ν) = αν−1γ(fh(γ, γ−1νζ, γ−1ν))

=
∫

H

dλs(γ)(η)
∫

H

dλs(ν)(µ)αν−1γ(f(η, γ, µ, γ−1ν))αν−1γη(h(γη, η−1γ−1νζ, η−1γ−1νµ)),

from which we see that Φ intertwines the representations.
Let us check that Φ is a right module map.
For h as before and f ∈ Γc(H, r∗(C0(H) ⊗s ρ A)) we have

Φ(h)f(γ, ζ, ν) =
∫

H

dλs(ν)(µ)αγ(h(γ, γ−1νµ, γ−1ν))αµ(f(µ−1ζ, νµ)),

Φ(hf)(γ, ζ, ν) =
∫

H

dλs(γ)(µ)αν−1γ(h(γ, µ, γ−1ν))αν−1γν(f(µ−1γ−1νζ, γµ)).

We can perform the change of coordinate µ 7→ γ−1νµ in the second integral above,
changing the measure from λs(γ) to λs(ν), so Φ commutes with the right action.

We turn to verifying that Φ is an isometry.
Given h1, h2 ∈ Γc(H, r∗(C0(G) ⊗s r⊗ρ(Cc(H) ⊗r ρA))), we compute

〈Φ(h1)|Φ(h2)〉 (ζ, ν) =
∫

G

dλr(ν)(γ)
∫

H

dλs(ν)(µ)αν−1γ(h1(γ, γ−1ν, γ−1νµ)∗h2(γ, γ−1νζ, γ−1νµ)).

It is convenient to exchange order of integration and introduce new coordinates

µ′ = ν−1γ, γ′ = (µ′)−1µ.

We can assume µ′ ∈ H and therefore γ′ ∈ H too. Note r(γ′) = s(µ′).
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Let us rewrite the previous inner product with these new positions and compare it
to the inner product on IndGH

(
XH
A

)
:

〈Φ(h1)|Φ(h2)〉(ζ, ν) =
∫

H

dλs(ν)(µ′)
∫

H

dλs(µ
′)(γ′)αµ′(h1(νµ′, µ′−1, γ′)∗h2(νµ′, µ′−1ζ, γ′)),

〈h1|h2〉(ζ, ν) =
∫

H

dλs(ν)(µ)
∫

H

dλs(µ)(γ)αµ(h1(νµ, µ−1, γ)∗h2(νµ, µ−1ζ, γ)).

All is left to show is that the left action of G commutes with Φ. Let us take η ∈ G
with r(η) = r(γ) and compute

ηΦ(h)(γ, ζ, ν) = Φ(h)(η−1γ, ζ, η−1ν) = αν−1γ(h(η−1γ, γ−1νζ, γ−1ν)),
Φ(ηh)(γ, ζ, ν) = αν−1γ(ηh(γ, γ−1νζ, γ−1ν)) = αν−1γ(h(η−1γ, γ−1νζ, γ−1ν)).

The proof is complete.

A.3. Complementary pairs of subcategories and localization

In this section we draw consequences on the structure of the KKG-category from
the induction-restriction theorem that has just been proved. Many of the results
presented here belong to the general context of triangulated categories. We will not
recall this notion and instead refer the reader to [5, 14, 47].

The framework of triangulated categories is ideal to extend basic constructions
from homotopy theory to categories of C∗-algebras. Much work in this direction has
been carried out by R. Meyer and R. Nest in [37, 38, 39]. Most results in this section
are simple applications of the material contained in these papers.

Proposition A.3. — The equivariant Kasparov category KKG is triangulated.

The most natural triangulated structure lives on the opposite category (KKG)op.
Fortunately the opposite category of a triangulated category inherits a canonical
triangulated category structure, which has “the same” exact triangles. The passage to
opposite categories exchanges suspensions and desuspensions and modifies some sign
conventions. Thus the functor Σ: A→ C0(R, A) becomes the desuspension functor in
KKG. Note that Bott periodicity implies Σ2 ∼= id, so that Σ and Σ−1 agree.

Moreover, depending on the definition of triangulated category, one may want the
suspension to be an equivalence or an isomorphism of categories. In the latter case
KKG should be replaced by an equivalent category (see [38, Section 2.1]); this is not
important and will be ignored in the sequel.

The triangulated category axioms are discussed in greater detail in [47, 71]. Most
of them amount to formal properties of mapping cones and mapping cylinders, which
can be shown in analogy with classical topology. The fundamental axiom requires that
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any morphism A→ B should be part of an exact triangle. In our setting this can be
proved as a consequence of the generalization of [36] to groupoid-equivariant KK-theory.
Having done that, the rest of the proof follows the same outline of [38, Appendix A],
where the triangulated structure is established in the case of action groupoids. There is
an alternative, perhaps more conceptual path which consists in defining the Kasparov
category as a certain localization of the Spanier-Whitehead category associated to the
standard tensor category of G-C∗-algebras and ∗-homomorphisms [16, Appendix A].

The triangulated structure of the Spanier-Whithead category is proved in [16,
Theorem A.5.3]. The argument given there can be directly used to show that KKG is
triangulated, because it makes use of only two facts, which we prove below.

Proposition A.4. — Let C be the standard tensor category of separable G-C∗-
algebras (with the minimal tensor product) and ∗-homomorphisms. Denote by F the
canonical functor from C to KKG. The following hold:

– up to an isomorphism of morphisms in KKG, each morphism of KKG is in the
image of F ;

– up to an isomorphism of diagrams Q→ K → D in KKG, each composable pair
of morphisms of KKG is in the image of F .

Proof. — In order to show the lifting properties above we make use of extension
triangles. Let f ∈ KKG

0 (Q,K) be a morphism and denote by f̃ the corresponding
element f̃ ∈ KKG

1 (ΣQ,K). By applying [32, Lemma A.3.4] we can represent f̃ by
a Kasparov module where the operator T is G-equivariant. Then the proof of [32,
Lemma A.3.2] gives that f̃ is represented by an equivariant semi-split extension, whose
associated triangle (see [38, Section 2.3]) fits a diagram as follows:

Σ2Q
fβ−1
Q
// K

εK

��

// E
pf
// ΣQ

Σ2Q
ιf
// cone(pf ) // E

pf
// ΣQ,

where βQ is the Bott isomorphism and εK is an equivalence. Hence we have that
F (ιf ) ∼= f . Notice how this argument automatically shows that f is contained into an
exact triangle (up to equivalence).
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Now given g ∈ KKG
0 (K,D), set h = g◦ε−1

K , Cf = cone(pf ) and consider the diagram

Q
f

//

βQ

��

K

εK

��

g
// D

Σ2Q
ιf
//

βΣ2Q

��

Cf

βCf
��

h // D

εD

��

Σ4Q
Σ2ιf

// Σ2Cf
ιh // Ch.

This shows that the pair (f, g) can be lifted to a composable pair (Σ2ιf , ιh).

Let F : T → S be an exact functor between triangulated categories. This means
that F intertwines suspensions and preserves exact triangles. The kernel of F , denoted
I = kerF , will be called a homological ideal (see [39, Remark 19]). We say that I is
compatible with direct sums if F commutes with directs countable direct sums (see
[37, Proposition 3.14]). Note that triangulated categories involving KK-theory have
no more than countable direct sums, because separability assumptions are needed for
certain analytical results in the background.

An object P ∈ T is called I-projective if I(P,A) = 0 for all objects A ∈ T . An
object N ∈ T is called I-contractible if idN belongs to I(N,N). Reference to I is
often omitted in the sequel. Let PI , NI ⊆ T be the full subcategories of projective
and contractible objects, respectively.

We denote by 〈PI〉 the localizing subcategory generated by the projective objects,
i.e., the smallest triangulated subcategory that is closed under countable direct sums
and contains PI . In particular, 〈PI〉 is closed under isomorphisms, suspensions, and if

A // B // C // ΣA
is an exact triangle in T where any two of the objects A,B,C are in 〈PI〉, so is the
third. Note that NI is localizing, and any localizing subcategory is thick, that is closed
under direct summands (see [47]).

We are going to prove that (〈PI〉, NI) is a pair of complementary subcategories.
To fully understand what this means and how it is proved, we need a few more
preliminaries.

Definition A.5. — Given an object A ∈ T and a chain complex

· · · δn+1
// Pn

δn // · · · δ1 // P0
δ0 // A (34)

we say that (34) is a projective resolution of A if
– all the Pn’s are projective;
– for all B ∈ S, the chain complex of abelian groups

S(B,F (P•))
(δ0)∗

// S(B,A) // 0
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is a resolution in the classical sense, i.e., it is exact.

We say that T has enough projectives if any object admits a projective resolution.

Remark A.6. — The map δ0 : P0 → A in a projective resolution is I-epic, i.e., when
embedded in a triangle

P0
δ0 // A

f
// C // ΣP0 (35)

we find that f belongs to I(A,C). Therefore, if A is projective then f0 = 0. In this
situation it is easy to show (see [47, Corollary 1.2.7]) that A is a retract of P0, that
is A is a direct summand of P0 up to isomorphism (split triangles are isomorphic to
direct sum triangles).

To prove that δ0 is I-epic, note that for each B ∈ S the functor A 7→ S(B,F (A)) is
homological [39, Proposition 11], that is it sends exact triangles to exact-in-the-middle
sequences. Hence the triangle in (35) gets sent to

S(B,F (P0))
(δ0)∗

// S(B,A) 0 // S(B,C).

We conlclude F (f) = 0, i.e., f ∈ I(A,C).

Proposition A.7 ([39, Proposition 44]). — The construction of projective resolu-
tions yields a functor T → Ho(T ). In particular, two projective resolutions of the
same object are chain homotopy equivalent.

Definition A.8. — We call two thick triangulated subcategories P,N of T comple-
mentary if T (P,N) = 0 for all P ∈ P, N ∈ N and, for any A ∈ T , there is an exact
triangle

P // A // N // ΣP
where P ∈ P and N ∈ N .

Proposition A.9 ([38, Proposition 2.9]). — Let (P,N ) be a pair of complementary
subcategories of T .

– The exact triangle P → A → N → ΣP with P ∈ P and N ∈ N is uniquely
determined up to isomorphism and depends functorially on A. In particular, its
entries define functors

P : T → P N : T → N
A 7→ P A→ N.

– The functors P and N are respectively left adjoint to the embedding functor
P → T and right adjoint to the embedding functor N → T .

– The localizations T /N and T /P exist and the compositions

P −→ T −→ T /N
N −→ T −→ T /P



48 APPENDIX A. THE STRONG BAUM-CONNES CONJECTURE

are equivalences of triangulated categories (see [30] for localization).
– If K : T → C is a covariant functor, then its localization with respect to N is
defined by LK = K ◦ P and the natural maps P (A) → A provide a natural
transformation LK ⇒ K.

We come to the key result of this section.

Theorem A.10 ([37, Theorem 3.16]). — Let T be a triangulated category with
countable direct sums, and let I a be a homological ideal with enough projective objects.
Suppose that I is compatible with countable direct sums. Then the pair of localizing
subcategories (〈PI〉, NI) in T is complementary.

Corollary A.11. — Consider the restriction functor ResHG : KKG → KKH and set
I = ker ResHG . Let H ⊆ T be the full subcategory of objects A ∈ KKG of the form
A = IndGH(B) for some B ∈ KKH . Then 〈PI〉 = 〈H〉 and (H, NI) is a complementary
pair of localizing subcategories.

Proof. — The restriction functor ResHG is exact and commutes with countable direct
sums, therefore I is a homological ideal (see for example [37, Section 7]). We are
going to show that each A ∈ KKG admits a projective resolution P• → A where each
Pn belongs to H. Then Remark A.6 shows that 〈PI〉 = 〈H〉 and the previous theorem
gives the complementarity property.

The composition L = ResHG IndGH : KKG → KKG is a comonad with counit ε (the
counit of the adjunction) and comultiplication

δA = IndGH(ηResH
G

(B)) : L(A) 7→ L(L(A)),

where η is the unit of the adjunction. Details on the comonad identities can be found
in [72, Paragraph 8.6.2]. Given A ∈ KKG define face and degeneracy maps

dni = LiεLn−i : Ln+1A→ LnA

sni = LiδLn−i : Ln+1A→ Ln+2A.

Then it is a simple matter to show that

L•A = · · ·
−→
...
−→

L3A
−→←−−→←−−→ L2A

d1
0−→←−−→
d1

1

LA
ε−→ A

is a simplicial object in KKG (see [72, Paragraph 8.6.4]). Setting Pn = Ln+1(A) and
δ0 = ε, δn =

∑
i(−1)idni transforms L•A into a chain complex. To see that the Pn’s

are projective consider the isomorphism

KKG((IndGH ResHG )n+1(A), B)
∼=−→ KKH(ResHG (IndGH ResHG )n(A),ResHG B)

f 7−→ ResHG (f) ◦ ηResH
G

(IndG
H

ResH
G

)n(A)

and note that it sends I(Pn, B) to zero, which implies I(Pn, B) = 0.
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Now by [72, Proposition 8.6.10] the augmented simplicial object L•A→ A is sent
via ResHG to a (left) contractible object. In particular, the augmented chain complex

KKH(B,ResHG (L•A)) // KKH(B,ResHG (A)) // 0

is split exact [72, Paragraph 8.4.6].

A complementary pair of subcategories helps clarify the degree to which a projective
resolution “computes” a homological functor into the category of abelian groups.

Theorem A.12 ([37, Theorem 4.3 & Theorem 5.1]). — Let (〈PI〉, NI) be a pair of
complementary subcategories of T . Let K : T → Ab be a homological functor with
values in abelian groups, commuting with countable direct sums. Given A ∈ T , suppose
P• → A is an odd projective resolution. Then there is a convergent spectral sequence

E2
pq = LpKq(A)⇒ LKp+q(A).

A few comments are in order about the theorem above. An odd projective resolution
is a projective resolution where the boundary maps of positive index have degree
one, i.e., the morphism δn : Pn → Pn−1 gets replaced, for n ≥ 1, by a morphism
δn : Pn → ΣPn−1. Evidently, if (Pn, δn) is an odd projective resolution, then (P ′n, δ′n)
is an even resolution, where P ′n = Σ−nPn, δ′n = Σ−nδn, and δ′0 = δ0.

The convention is that Kn = KΣ−n. The derived functor appearing on the left
is to be understood (in degree p) as the p-th homology group of the chain complex
Kq(P•). Since this complex is

· · · // Kq+2(P2) // Kq+1(P1) // Kq(P0) // 0,

we see that by reverting to even resolutions we obtain

· · · // Kq(P ′2) // Kq(P ′1) // Kq(P ′0) // 0,

so that LpKq(A) = Hp(Kq(P ′•)).
The limit of the spectral sequence is the localization of K with respect to NI , there-

fore LK(A) = (K ◦ P )(A). The object P (A) is called the PI-cellular approximation
of A and it can be computed as the homotopy colimit of an inductive system (Pn, φn)
with Pn ∈ PnI (this is proved in [37, Proposition 3.18]). Here, an object Pn belongs to
PnI if it is the retract of an object A ∈ T for which

Pn−1 // A // P1 // ΣPn−1

is an exact triangle where Pn−1 ∈ Pn−1
I and P1 ∈ PI .

Corollary A.13. — In the setting of Corollary A.11, there is a convergent spectral
sequence

E2
pq = Hp(Kq(L•AoG))⇒ Kp+q(P (A) oG),

where LnA = (IndGH ResHG )n(A) and P (A) is the H-cellular approximation of A.
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Proof. — The functor “K-theory of the crossed product”, namely

K0(−oG) : KKG → Ab,
is homological because G : KKG → KK is exact (it preserves mapping cone triangles,
see [39, Example 13 & Example 15]).

A.4. The Baum-Connes conjecture

In most cases, one is interested in computing K∗(AoG) rather than K∗(P (A)oG).
Obviously, the KKG-cellular approximation of A is isomorphic to A, therefore it is
desirable to have a measure of the difference between 〈H〉 and KKG. A natural idea is
identifying a “probing” class of objects Pr ⊆ T , that we understand somewhat better
than a generic object of KKG, and for which we can prove 〈Pr〉 = KKG.

Definition A.14. — We say that G is proper if the anchor map (s, r) : G→ X ×X
is proper. Furthermore, if Z is a a second countable, locally compact, Hausdorff
G-space, we say that G acts properly on Z if Z oG is proper. A G-algebra A is called
proper if there is a proper G-space Z such that A is a Z oG-algebra.

We let Pr denote the class of proper objects in KKG.

Evidently, a commutative G-C∗-algebra is proper if and only if its spectrum is
a proper G-space. Recall that G is called étale if its source and range maps are
local homeomorphisms. A bisection is an open W ⊆ G such that s|W , r|W are
homeomorphisms onto an open in X. Hereafter it is assumed that G is étale.

The following proposition clarifies the local picture of proper actions (cf. [41,
Theorem 4.1.1] and [70, Proposition 2.42]).

Proposition A.15. — Suppose G acts properly on Z and denote by ρ : Z → X the
moment map. Then for each z ∈ Z there are open neighborhoods Uρ, U , respectively
of z ∈ Z and ρ(z) ∈ X, satisfying:

– the isotropy group Gz = Gρ(z) acts on U ;
– G|U contains an open copy of U oGz;
– the G-action restricted to Uρ is induced from U oGz.

Proof. — Since the G-action on Z is proper, the isotropy group Gz is finite. Choose a
bisection Wg for each γ ∈ Gz. For any two γ, η ∈ Gz, there is an open neighborhood
V of ρ(z) such that Wγη|V and (WγWη)|V are defined and equal, because both are
bisections containing γη. Likewise, for each γ in Gz there is an open neighborhood V
of ρ(z) where Wγ−1 |V and (Wγ)−1|V are defined and equal. Ranging over the group
Gz, we collect a finite number of V ’s whose intersection we denote by U . Notice U
is an open neighborhood of ρ(z). We now restrict all the Wγ ’s to U . Their union,
say W , is an open copy of U oGz inside G|U . Define U ′ = ρ−1(U). By construction
G|U ′ = (Z o G)|U contains a copy of U ′ oW . The anchor map is proper at z, so
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we can find a neighborhood Uρ ⊆ U ′ such that G|Uρ is Uρ oW , for example the
complement of (s, r)(G|U ′ r U ′ oW ).

Remark A.16. — As a simple corollary of Proposition A.15, the range map
r : s−1(Uρ)→ Z descends to a G-equivariant homeomorphism

G×G|U Uρ → G · Uρ = V. (36)

Moreover, the space s−1(Uρ) provides a principal bibundle implementing a
(G|Uρ , G|V )-equivalence in the sense of [43] (cf. [25]). Hence, as is suggested by
(36), the induction functor KKG|Uρ → KKG|V is essentially surjective, i.e., if A is a
G-algebra over Z then A|V is isomorphic to IndG|VG|Uρ (A|U ) = IndGG|U (A|U ).

In Definition A.14 for a proper G-algebra we can always assume Z to be a realization
of EG, the classifying space for proper actions of G. Indeed if φ : Z → EG is a G-
equivariant continuous map, then φ∗ : C0(EG)→M(C0(X)) can be precomposed with
the structure map Φ: C0(Z)→ ZM(A), making A into an EGoG-algebra.

Note that if G is locally compact, σ-compact, Hausdorff, EG always exists and is
locally compact, σ-compact, and Hausdorff; in our case G is second countable hence
EG is too [68, Proposition 6.15].

A subgroupoid of the form U oGz ⊆ G, as in Proposition A.15, will be called a
compact action around ρ(z). Given a proper G-algebra over Z = EG, for any z ∈ Z
we can find a neighborhood V as in (36). These opens cover Z and we can extract a
countable subcover V (being second countable, Z is a Lindelöf space). Corresponding
to this subcover we get a countable collection of compact actions which we denote
by F . Define the full subcategory of compactly induced objects,

CI = {IndGQ(B) | B ∈ KKQ, Q ∈ F}.
Following [37, page 27], we define a homological ideal I as the kernel of a single
functor

F : KKG →
∏

Q∈F
KKQ

A 7→ (ResQG(A))Q∈F
The functor F commutes with direct sums because each restriction functor clearly
does. Hence I is compatible with countable direct sums.

Theorem A.17. — The projective objects for I are the retracts of direct sums of
objects in CI and the ideal I has enough projective objects. Therefore the pair of
subcategories (〈CI〉, NI) is complementary.

Proof. — Since each Q ∈ F is open in G, the functor IndGQ is left adjoint to ResQG.
Thus we may take

F †((AQ)Q∈F ) =
⊕

Q∈F
IndGQ(AQ).



52 APPENDIX A. THE STRONG BAUM-CONNES CONJECTURE

Since F is countable this definition is legitimate. Then in complete analogy with the
proof of Corollary A.11, we get that I has enough projective objects, and they are all
direct summands of ⊕Q∈F IndGQ(AQ) for suitable families (AQ)Q∈F .

Notice that if G is free, i.e., its isotropy groups are all trivial, then a compactly
induced object is simply an object induced from the unit space X (recall that X ⊆ G
is open because G is étale). In particular, setting H = X, the above theorem becomes
exactly Corollary A.11.

We denote by P (A) the CI-cellular approximation of A.

Definition A.18. — We say that G satisfies the strong Baum-Connes conjecture if
the natural map G(P (A)→ A) = P (A) oG→ AoG is a KK-equivalence.

A stronger variant of the formulation above is requiring P (A) → A to be an
isomorphism in KKG. However it is known that even a weaker form of the conjecture
in Definition A.18 admits counterexamples [23].
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able discrete group. We obtain an index-theoretic interpretation of this homomorphism
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the Miščenko line bundle. In addition, we give a proof of Atiyah’s L2-index theorem
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also reestablish that the surjectivity of the Baum-Connes assembly map implies the
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Introduction

One of the important applications of the Baum-Connes conjecture is to the Kadison-
Kaplansky idempotent conjecture, which asserts that the reduced group C∗-algebra of
a countable discrete torsion-free group contains no non-trivial idempotents. Indeed,
it holds that surjectivity of the Baum-Connes assembly map implies the idempotent
conjecture [28]. The proof of this implication uses two main ingredients, namely the
computation of analytic K-homology for finite CW complexes using geometric K-
homology [7], in combination with Atiyah’s L2-index theorem [4]. In this paper a proof
of this implication is provided which avoids the description of analytic K-homology
using Baum-Douglas geometric K-cycles.

The aim of the present paper is thus twofold: on one hand we wish to clarify the
index-theoretic interpretation of the assembly map for torsion-free groups, on the
other we intend to show Atiyah’s L2-index theorem (Theorem B below) by means of a
purely topological argument, involving nothing more than K-theory and the Chern
character with values in Alexander-Spanier cohomology of the base space.

It is well-known, though maybe not well-documented, that the Miščenko-Fomenko
index map coincides with the Baum-Connes assembly map, once the relevant K-
homology groups are identified (Corollary 1.4 below). To our knowledge, the only
published proof of this result is in [19]. The argument there makes use of propositions
on fixed-point algebras from [11], combined with a clever argument involving dual
coactions on crossed products.

The main obstacle towards a more direct proof, we think, seems to be the usual
description of the module of sections associated to the Miščenko line bundle, which is
not at first glance amenable to be analyzed through the standard tools of KK-theory,
e.g., the Kasparov product and the descent homomorphism.

In the first part of this paper we provide a structure theorem for the Miščenko module
in terms of tensor products and crossed products of Hilbert C∗-modules (Theorem
A below). This presentation is compatible with the basic functorial properties of
KK-theory, and it allows for a different proof of the main theorem in [19]. It turns out
that this structure theorem can also be derived from more general results on weakly
proper actions, which can be found in [10, 11].

The second part of this paper is devoted to the L2-index theorem of Atiyah. We give
a proof of this theorem, which works in the setting of principal bundles defined over
any second-countable compact Hausdorff space. All the proofs known to the authors
are set in a smooth setting, ([2, 3, 4, 12, 25]), where the manifold structure is used
to get a description of the Chern character in terms of connections (i.e., Chern-Weil
theory). This approach can then be used in combination with the Baum-Douglas
picture of K-homology (see [6, 7]) since this describes the entire analytic K-homology
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using data of geometric origin. Remark that geometric K-homology is only known to
be isomorphic to analytic K-homology for (locally) finite CW complexes.

In particular, the use of Baum-Douglas geometric K-cycles has been crucial in
deriving the Kadison-Kaplansky idempotent conjecture (in the context of torsion-free
groups satisfying the Baum-Connes conjecture) as a corollary of the L2-index theorem
(see for example [28, Section 6.3]).

Our main motivation for writing this paper was to provide a “self-contained and
topological” proof of the fact that the surjectivity of the Baum-Connes assembly
map implies the Kadison-Kaplansky idempotent conjecture for countable discrete
torsion-free groups. By this we mean that the proof should not rely on the geometric
K-homology description of analytic K-homology, but rather be based on the original
Kasparov picture of KK-theory, together with purely topological considerations. In
particular, our proof does not involve differential geometric entities such as connections
and differential operators on manifolds.

Instead, our goals are achieved by virtue of Alexander-Spanier cohomology, whose
definition incorporates a “diagonal localization” feature which we exploit to compute
the index pairing with the Miščenko line bundle. An important ingredient is therefore
supplied by the explicit description of the Chern character for compact Hausdorff
spaces with values in Alexander-Spanier cohomology [16].

Acknowledgements

We would like to thank Magnus Goffeng for proposing the use of II1-factors, and
Ryszard Nest for suggesting to look into localization of Hochschild homology. Thanks
also to Philipp Schmitt for our discussion on Lemma 3.5. In addition, this work
benefited from conversations with Paolo Antonini, Sara Azzali, and Georges Skandalis.
We are grateful to these three authors as well.

The first author was partially supported by the DFF-Research Project 2 “Automor-
phisms and Invariants of Operator Algebras”, no. 7014-00145B and by the Villum
Foundation (grant 7423). The second author was supported by the Danish National
Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

1. Preliminaries and main results

Let G be a countable discrete group and let us fix a second-countable, locally
compact, Hausdorff space X̃, equipped with a free and proper action of G. We will
moreover assume that the quotient space X̃/G = X is compact and we note that the
quotient map p : X̃ → X forms a principal G-bundle. The action of G on X̃ induces
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an action on the C∗-algebra C0(X̃), which we denote by

α : G→ Aut(C0(X̃)).

We use the convention that G acts on X̃ from the right and the induced action on the
C∗-algebra is therefore given by αg(f)(x̃) = f(x̃ · g).

Let us turn to the description of the Baum-Connes assembly map

µX̃ : KKG
∗ (C0(X̃),C)→ KK∗(C, C∗r (G))

associated to p : X̃ → X. The left-hand side is the G-equivariant K-homology of
the G-space X̃ whereas the right-hand side is the K-theory of the reduced group
C∗-algebra C∗r (G).

First of all we recall the construction of Rieffel’s imprimitivity bimodule. We merely
sketch the proof, mostly to set up notational conventions, and refer the reader to
[22, 23] for more details (and more general results).

Proposition 1.1. — There exists a C∗-correspondence Y , implementing a strong
Morita equivalence between the reduced crossed product C0(X̃) or G and C(X).

Sketch of proof. — The C∗-correspondence Y is defined as a completion of Cc(X̃).
The unital C∗-algebra C(X) acts from the right as bounded continuous functions
using the pullback along the quotient map p : X̃ → X. The full C(X)-valued inner
product on Cc(X̃) is defined as

〈ξ|η〉 (x) =
∑

p(y)=x

(ξ̄ · η)(y), (1)

where ξ, η ∈ Cc(X̃) and x ∈ X. Define Y to be the completion of Cc(X̃) with respect
to the induced norm. The left action on Y of the reduced crossed product is given by

f · ξ =
∑

g∈G
f(g)αg(ξ), (2)

where f ∈ Cc(G,C0(X̃)) and ξ ∈ Cc(X̃). The assignment

Φ(Θξ,η)(g) = ξαg(η̄) (3)

mapping from rank-one operators (i.e., Θξ,η(ζ) = ξ 〈η|ζ〉 with ξ, η ∈ Cc(X̃)) to
Cc(G,C0(X̃)), extends to a ∗-isomorphism Φ: K(Y )→ C0(X̃)or G from the compact
operators of the Hilbert C∗-module Y to the reduced crossed product.

Remark 1.2. — It follows from [1, Proposition 2.2] that the action of G is amenable
and then by [1, Theorem 5.3] that the full crossed product C0(X̃) oG is isomorphic
to the reduced crossed product C0(X̃) or G. In particular, any covariant pair of
representations for C0(X̃) and G gives rise to a representation of the (reduced) crossed
product C0(X̃) or G, namely the integrated form.
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The Baum-Connes assembly map µX̃ is defined as the composition of the following
maps:

KKG
∗ (C0(X̃),C))

Gr // KK∗(C0(X̃) or G,C∗r (G))

[Y ∗]⊗̂C0(X̃)orG−
��

KK∗(C(X), C∗r (G)) ι∗ // KK∗(C, C∗r (G)),

where we specify that

– the upper horizontal map is the reduced version of Kasparov’s descent homo-
morphism ([18, page 172]);

– the vertical map is given by interior Kasparov product with the class [Y ∗] ∈
KK0(C(X), C0(X̃)orG), induced by the dual of Rieffel’s imprimitivity bimodule;

– the lower horizontal map is the pullback along the inclusion ι : C ↪→ C(X).

Remark 1.3. — The Baum-Connes assembly map is defined more generally for
proper actions of G with cocompact quotient [5]. In this paper we focus on free and
proper actions since we are interested in the link to the Miščenko-Fomenko index map
and the Kadison-Kaplansky idempotent conjecture.

We now turn to the description of the Miščenko-Fomenko index map

ηX̃ : KK∗(C(X),C)→ KK∗(C, C∗r (G)).

This homomorphism is defined as the composition of the following maps:

KK∗(C(X),C)
τC∗r (G)

// KK∗(C(X) ⊗̂C∗r (G), C∗r (G))

[M ]⊗̂
C(X)⊗̂C∗r (G)

−
��

KK∗(C, C∗r (G)).

We specify that the homomorphism τC∗r (G) is defined on Kasparov modules as

(E,F ) 7→ (E⊗̂C∗r (G), F ⊗̂1),

using the exterior tensor product of C∗-correspondences, see [9, Section 17.8.5]. The
second homomorphism is given by interior Kasparov product with a class [M ] ∈
KK0(C, C(X) ⊗̂C∗r (G)), induced by a finitely generated projective Hilbert C∗-module
M . More precisely, M can be identified with the module of sections associated to
the Miščenko line bundle, i.e., the hermitian bundle of C∗-algebras obtained from the
associated bundle construction

X̃ ×G C∗r (G)→ X,

where G acts diagonally, acting on the reduced group C∗-algebra via the left regular
representation [21].
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The link between the Baum-Connes assembly map and the Miščenko-Fomenko
index map is furnished by the dual Green-Julg isomorphism:

JX̃ : KKG
∗ (C0(X̃),C)→ KK∗(C(X),C),

which we will describe in details in Section 2.
Let us recall that any G-C∗-correspondence E between two G-C∗-algebras A and

B gives rise to a reduced crossed product E or G, which is then a C∗-correspondence
between the corresponding reduced crossed product C∗-algebras, thus from Aor G to
B or G, see [18, page 170-171], [13], and Section 2 for more details.

Our first result is the following:

Theorem A. — There exists a G-C∗-correspondence Z from C0(X̃) to C(X), induc-
ing a class [Z] ∈ KKG

0 (C0(X̃), C(X)), such that the inverse of the dual Green-Julg
isomorphism is given by

J−1
X̃

= [Z]⊗̂C(X)− : KK∗(C(X),C)→ KKG
∗ (C0(X̃),C).

Moreover, there is an isomorphism of Hilbert C∗-modules over C(X)⊗̂C∗r (G):

M ∼= Y ∗ ⊗̂C0(X̃)orG Z or G.

In particular, we have the KK-theoretic identity

[M ] = ι∗[Y ∗] ⊗̂C0(X̃)orG 
G
r [Z] ∈ KK0(C, C(X) ⊗̂C∗r (G)).

Corollary 1.4. — The following diagram is commutative:

KKG
∗ (C0(X̃),C)

JX̃

��

µX̃ // KK∗(C, C∗r (G))

KK∗(C(X),C).

ηX̃

66
(4)

The previous corollary is well-known to experts working on the Baum-Connes
conjecture and index theory. It has been proved in [19] with a different method.

We now turn to our second result. Let φ : C∗r (G)→ C denote the canonical tracial
state and denote by φ∗ : K0(C∗r (G))→ R the induced map on even K-theory. Then
the homomorphism

φ∗ ◦ ηX̃ : KK0(C(X),C)→ R (5)

can be interpreted as an index, namely the L2-index of Atiyah [4] and, equivalently,
the Miščenko-Fomenko index [21]. These identifications are explained in [25, Theorem
5.15 & Theorem 5.22]. In view of this, we denote the map in (5) by

indC∗r (G) : KK0(C(X),C)→ R.
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On the other hand, there is a simple index map

ind : KK0(C(X),C)→ Z,

obtained by pairing with the class [1C(X)] ∈ K0(C(X)), or equivalently by applying
the pullback via the unital ∗-homomorphism ι : C ↪→ C(X).

Theorem B. — There is an equality of index maps:

indC∗r (G) = ind : KK0(C(X),C)→ R.

In particular,
indC∗r (G)(x) ∈ Z for all x ∈ KK0(C(X),C).

We emphasize once more that the space X need not be a CW complex but merely
a second-countable, compact Hausdorff space. This provides a generalization of the
already known L2-index theorem.

In [4] the previous theorem is proved when X̃ and X are smooth manifolds and
without reference to KK-theory. More precisely, in the smooth setting, the KK-
classes whose index we consider here, are concretely realized in [4] as coming from
elliptic differential operators, acting on sections of a bundle over X, and their lifts to
equivariant differential operators acting on the corresponding sections of the pullback
bundle. A generalization of Atiyah’s L2-index theorem is also proved in [20], using
the universal center-valued trace instead of the standard trace.

The application of the L2-index theorem to the Kadison-Kaplansky idempotent
conjecture is based on the following well-known argument [24, Corollary 6.3.13].

Proposition 1.5. — Let A be a C∗-algebra with a unit 1, and let φ be a faithful
tracial state on A. If φ∗ : K0(A)→ R only takes integer values, then A contains no
idempotents other than 0 and 1.

Proof. — Let e ∈ A be an idempotent. There is a projection p ∈ A which is similar to
e, in particular φ(e) = φ(p). Since 1− p ≥ 0, we have φ(1)− φ(p) ≥ 0, and therefore
0 ≤ φ(p) = φ(e) ≤ 1. Now, if φ(p) is an integer we must have that φ(p) ∈ {0, 1} and
therefore since φ is faithful and 1 ≥ p ≥ 0 we conclude that p ∈ {0, 1}. Thus, since e
is similar to p, e is equal to either 0 or 1.

Suppose for a little while that the group G is torsion-free. In this case, Corollary
1.4 implies that we have a commutative diagram:

RKKG
∗ (C0(EG),C)

J

��

µ
// KK∗(C, C∗r (G))

RKK∗(C0(BG),C)

η
55

. (6)
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Above, EG→ BG is the universal principal G-bundle. It is known that the classifying
space for proper actions, usually denoted EG, coincides (up to equivariant homotopy)
with EG when G is torsion-free, because in this case proper actions are automatically
free. The groups on the left are K-homology groups with compact support, and are
defined as

RKKG
∗ (C0(EG),C) = lim−→

X̃⊆EG
KKG
∗ (C0(X̃),C)

RKK∗(C0(BG),C) = lim−→
X⊆BG

KK∗(C(X),C),

where X̃ ranges over locally compact Hausdorff proper G-spaces with compact quotient
X. The various homomorphisms are induced on the direct limits by their “localized”
counterparts, namely JX̃ , µX̃ and ηX̃ .

The mentioned application to the Kadison-Kaplansky conjecture is now an immedi-
ate consequence of the commutative diagram in (6), Theorem B, and Proposition 1.5.

Corollary 1.6. — Suppose that G is a discrete countable torsion-free group such
that the assembly map µ : RKKG

∗ (C0(EG),C)→ KK∗(C, C∗r (G)) is surjective. Then
every idempotent e ∈ C∗r (G) is either equal to 0 or 1.

2. Miščenko module — Proof of Theorem A

Recall that G is assumed to be a discrete countable group acting freely, properly,
and cocompactly on a second-countable, locally compact Hausdorff space X̃.

We start this section by taking a closer look at the dual Green-Julg isomorphism

JX̃ : KKG
∗
(
C0(X̃),C

)
→ KK∗(C(X),C).

This map is defined as the composition of two isomorphisms:

ψ : KKG
∗
(
C0(X̃),C

)
→ KK∗

(
C0(X̃) or G,C

)
and (7)

[Y ∗]⊗̂C0(X̃)orG− : KK∗
(
C0(X̃) or G,C

)
→ KK∗

(
C(X),C

)
.

The second of these isomorphisms is given by taking interior Kasparov product
with the C∗-correspondence Y ∗ from C(X) to C0(X̃) or G. This C∗-correspondence
provides the Morita equivalence between the C∗-algebras C(X) and C0(X̃) or G and
the homomorphism [Y ∗]⊗̂C0(X̃)orG− is thus an isomorphism with inverse given by the
interior Kasparov product with the C∗-correspondence Y from C0(X̃) or G to C(X):

[Y ]⊗̂C(X)− : KK∗
(
C(X),C

)
→ KK∗

(
C0(X̃) or G,C

)
,

see Proposition 1.1.
We now explain the first of the two isomorphisms in (7).
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Suppose that H is a countably generated and non-degenerate G-C∗-correspondence
from C0(X̃) to C. Thus, H is a separable Hilbert space equipped with a uni-
tary G-action U : G→ U(H) and a non-degenerate G-equivariant ∗-homomorphism
π : C0(X̃)→ B(H). The left actions of C0(X̃) and U combine into a non-degenerate
left action of the crossed product C0(X̃) or G on H in the following way:

π̃(fλg)ξ = (π(f) ◦ U(g))ξ, f ∈ C0(X̃) , ξ ∈ H. (8)

Remark that the ∗-homomorphism π̃ : C0(X̃) or G → B(H) is indeed well-defined
since the reduced crossed product C0(X̃) or G agrees with the full crossed product
C0(X̃)oG in our setting, see Remark 1.2. Hence we get a C∗-correspondence H̃ from
C0(X̃) or G to C.

The isomorphism

ψ : KKG
∗
(
C0(X̃),C

)
→ KK∗

(
C0(X̃) or G,C

)

is now defined by the formula ψ
(
[H, F ]

)
= [H̃, F ] (the representation is omitted in

this notation for Kasparov modules). We need to explain why ψ is an isomorphism
and this is most conveniently done by providing an explicit inverse.

Indeed, suppose on the other hand that K is a countably generated and non-
degenerate C∗-correspondence from C0(X̃) or G to C. We denote the left action
by ρ : C0(X̃) or G → B(K). Since G is a countable discrete group we have the
inclusion i : C0(X̃)→ C0(X̃) or G and we thus obtain the non-degenerate left action
ρ̂ = ρ◦i : C0(X̃)→ B(K). Moreover, we obtain a group homomorphism V : G→ U(K)
by defining

V (g)(ξ) = lim
n→∞

ρ(fnλg)(ξ), g ∈ G , ξ ∈ K

for some countable approximate identity {fn}n∈N for the σ-unital C∗-algebra C0(X̃).
This data provides us with a G-C∗-correspondence K̂ from C0(X̃) to C.

The inverse

ψ−1 : KK∗
(
C0(X̃) or G,C

)
→ KKG

∗
(
C0(X̃),C

)

is then defined by the formula ψ−1([K, F ]
)

= [K̂, F ].
We are now going to provide a slightly better description of the inverse

J−1
X̃

= ψ−1 ◦
(
[Y ]⊗̂C(X) −

)
: KK∗

(
C(X),C

)
→ KKG

∗
(
C0(X̃),C

)

to the dual Green-Julg isomorphism. As above, using that the left action of C0(X̃)orG
on Y is non-degenerate and that the elements in C(X) are G-invariant, we obtain a
non-degenerate G-C∗-correspondence

Z = Ŷ

from C0(X̃) to C(X). In fact, recalling that Y is obtained as a completion of Cc(X̃),
we see that the left action of C0(X̃) on Z comes from the multiplication operation in
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C0(X̃) and that the G-action on Z is induced by

V (g)(ξ)(x) = ξ(x · g), g ∈ G , ξ ∈ Cc(X̃) , x ∈ X̃. (9)

When considered as right Hilbert C∗-modules over C(X), Z and Y agree. Remark in
particular that C0(X̃) acts as compact operators on Z so that Z determines a class
[Z] = [Z, 0] ∈ KKG

0 (C0(X̃), C(X)).

Proposition 2.1. — We have the formula

J−1
X̃

= [Z]⊗̂C(X)− : KK∗
(
C(X),C

)
→ KKG

∗
(
C0(X̃),C

)

for the inverse to the dual Green-Julg isomorphism

JX̃ : KKG
∗
(
C0(X̃),C

)
→ KK∗

(
C(X),C

)
.

Proof. — This follows immediately by noting that

Z⊗̂C(X)H = Ŷ ⊗̂C(X)H = Y ⊗̂C(X)Ĥ,

whenever H is a (Z/2Z-graded) countably generated C∗-correspondence from C(X)
to C. Indeed, for a Kasparov module (H, F2) from C(X) to C, the interior Kasparov
product

[Y, 0]⊗̂C(X)[H, F2] ∈ KK∗(C0(X̃) or G,C)
is represented by any Kasparov module (Y ⊗̂C(X)H, F ) from C0(X̃) or G to C, where
F is an F2-connection [9, Definition 18.3.1]. We thus have that

J−1
X̃

(
[H, F2]

)
=
[
Y ⊗̂C(X)Ĥ, F

]
=
[
Z⊗̂C(X)H, F

]
.

But the G-equivariant Kasparov module (Z⊗̂C(X)H, F ) from C0(X̃) to C clearly
represents the G-equivariant interior Kasparov product [Z, 0]⊗̂C(X)[H, F2] since F is
still an F2-connection.

The proposition above establishes the first half of Theorem A. In order to proceed
with the second half, we need a more concrete description of the module of sections
associated to the Miščenko line bundle. To this end, we use a proposition found in
[14, page 102]. We present the details here since they are omitted in [14].

Let us choose a finite open cover {Vi}Ni=1 of X together with a local trivialization
φi : p−1(Vi)→ Vi×G for each i ∈ {1, 2, . . . , N}. The transition map φi ◦φ−1

j can then
be identified with a continuous map gij : Vi ∩ Vj → G for each i, j ∈ {1, 2, . . . , N}.
Notice that since G is discrete each gij is in fact locally constant and we may thus
make sense of the element λgij ∈ C(Vi ∩ Vj , C∗r (G)).

Proposition 2.2. — The Miščenko module M is the finitely generated projective
Hilbert C∗-module, described as the completion of Cc(X̃) with respect to the norm
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induced by the following C(X) ⊗̂C∗r (G)-valued inner product:

〈ξ|ζ〉 (t)(x) =
∑

p(y)=x

ξ̄(y)ζ(y · t), (10)

where ξ, ζ ∈ Cc(X̃), t ∈ G, x ∈ X and p : X̃ → X is the quotient map. The right
action of C(X) ⊗̂C∗r (G) on M is defined by

(ξ · f)(y) =
∑

g∈G
f(g)(p(y)) · ξ(y · g−1), (11)

where ξ ∈ Cc(X̃), f ∈ Cc(G,C(X)) and y ∈ X̃.

Proof. — Choose a partition of unity {χi}Ni=1 such that supp(χi) ⊆ Vi for all i ∈
{1, 2, . . . , N}. For each i ∈ {1, 2, . . . , N} we then define the compactly supported
continuous function

ρi(y) =
{

(χi ◦ p)(y) for p(y) ∈ Vi and φi(y) = (p(y), e)
0 elsewhere

on X̃. The following computation shows that the elements {√ρi}Ni=1 form a finite
frame forM , see [15, Theorem 4.1]. Indeed, for each j ∈ {1, 2, . . . , N} and y ∈ p−1(Vj)
with φj(y) = (x, h) (for some x ∈ Vj and h ∈ G) we have that

√
ρj
〈√

ρj
∣∣ξ
〉

(y) =
∑

g∈G

〈√
ρj
∣∣ξ
〉

(g)(x) · √ρj(y · g−1)

=
〈√

ρj
∣∣ξ
〉

(h)(x) · √χj(x) = χj(x)ξ(y).

From this we see that ξ =
∑N
i=1
√
ρi
〈√

ρi
∣∣ξ
〉
for all ξ ∈ Cc(X̃).

But then the projection associated to M takes the form
(
pC∗r (G)

)
ij

=
〈√

ρi
∣∣√ρj

〉

and we compute
〈√

ρi
∣∣√ρj

〉
(g)(x) = √ρi(φ−1

i (x, e)) · √ρj(φ−1
i (x, e) · g)

=
{ √

χi · χj(x) for g = gij(x)
0 for g 6= gij(x) ,

whenever x ∈ Vi ∩ Vj and g ∈ G. We thus obtain that
〈√

ρi
∣∣√ρj

〉
= √χiχj · λgij .

It is now clear that the projection pC∗r (G) ∈MN

(
C(X,C∗r (G))

)
describes the module

of sections of the hermitian bundle of C∗-algebras X̃ ×G C∗r (G)→ X.

We recall that Z = Ŷ is a non-degenerate G-C∗-correspondence from C0(X̃) to
C(X). Remark that the action ofG on C(X) is the trival action and the reduced crossed
product Z or G is therefore a C∗-correspondence from C0(X̃) or G to C(X)⊗̂C∗r (G).
Before proving the second half of Theorem A we recall the formulae for the inner
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product and the left and right actions on the reduced crossed product Z or G. The
C(X)⊗̂C∗r (G)-valued inner product is defined by

〈ξ|ζ〉 =
∑

g∈G
〈ξ(g)|ζ(gt)〉 , (12)

where ξ, ζ ∈ Cc(G,Z) and t ∈ G. The right action of C(X)⊗̂C∗r (G) is determined by
the formula

(ξ · f)(t) =
∑

g∈G
ξ(g) · f(g−1t),

where ξ ∈ Cc(G,Z), f ∈ Cc(G,C(X)) and t ∈ G. The left action of C0(X̃) or G on
Z or G is determined by

(f · ξ)(t) =
∑

g∈G
f(g) · V (g)(ξ(g−1t)), (13)

where f ∈ Cc(G,C0(X̃)), ξ ∈ Cc(G,Z) and t ∈ G.

Proposition 2.3. — The following map extends to an isomorphism of Hilbert C∗-
modules,

Y ∗ ⊗̂C0(X̃)orG (Z or G) Φ−→M (14)

〈ξ| ⊗ ζ 7→
∑

g∈G
V (g−1)

(
ξ · ζ(g)

)
,

where ξ ∈ Cc(X̃), ζ ∈ Cc(G,Cc(X̃)).
In particular, we have the KK-theoretic identity

[M ] = ι∗[Y ∗] ⊗̂C0(X̃)orG 
G
r [Z] ∈ KK0(C, C(X) ⊗̂C∗r (G)).

Proof. — The result at the level of KK-theory follows in a straightforward way from
the isomorphism in (14), hence we turn to the proof of this isomorphism.

It suffices to check that Φ : Cc(X̃)∗ ⊗Cc(G,Cc(X̃))→M (defined on the algebraic
tensor product over C) has dense image and preserves the relevant inner products.

The fact that Φ has dense image follows since for any φ ∈ Cc(X̃) ⊆M we may find
a ψ ∈ Cc(X̃) such that ψ · φ = φ (using the pointwise product here). We then have

Φ(
〈
ψ
∣∣⊗ φ · λe) = ψ · φ = φ.

To check that Φ preserves the inner products we let ξ1, ξ2 ∈ Cc(X̃) and ζ1, ζ2 ∈
Cc(G,Cc(X̃)) and compute, for each x ∈ X and t ∈ G,

〈〈ξ1| ⊗ ζ1|〈ξ2| ⊗ ζ2〉 (t)(x) =
∑

g,h∈G

〈
ζ1(g)

∣∣ξ1 · V (h)
(
ξ2 · ζ2(h−1gt)

)〉
(x)

=
∑

g,h∈G

∑

p(y)=x

(
ζ1(g) · ξ1

)
(y) ·

(
ξ2 · ζ2(h−1gt)

)
(y · h),
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where we are using Equation (1), (3), (12) and (13). On the other hand, we have that

〈Φ(〈ξ1| ⊗ ζ1)|Φ(〈ξ2| ⊗ ζ2)〉 (t)(x)

=
∑

s,r∈G

〈
V (s−1)(ξ1 · ζ1(s))

∣∣V (r−1)(ξ2 · ζ2(r))
〉

(t)(x)

=
∑

s,r∈G

∑

p(z)=x

(ξ1 · ζ1(s))(z · s−1) · (ξ2 · ζ2(r))(z · t · r−1),

where we are using Equation (10). After a few changes of variables, we obtain that

〈〈ξ1| ⊗ ζ1|〈ξ2| ⊗ ζ2〉 (t)(x) = 〈Φ(〈ξ1| ⊗ ζ1)|Φ(〈ξ2| ⊗ ζ2)〉 (t)(x)

and this ends the proof of the proposition.

Remark 2.4. — The previous proposition can be interpreted as a particular case of
[11, Proposition 3.6].

Corollary 2.5. — The following diagram is commutative:

KK∗(C0(X̃),C)

JX̃

��

µX̃ // KK∗(C, C∗r (G))

KK∗(C(X),C).

ηX̃

66
(15)

Proof. — Suppose x is in KKG
∗ (C0(X̃),C). Then by Proposition 2.1 there is a y ∈

KK∗(C(X),C) with
x = J−1

X̃
(y) = [Z] ⊗̂C(X) y.

By functoriality of descent [18, page 172], we obtain that

Gr (x) = Gr ([Z] ⊗̂C(X) y) = Gr ([Z])⊗̂
C(X)⊗̂C∗r (G) 

G
r (y).

Note that, since G acts trivially on both C(X) and C, we have C(X) or G ∼=
C(X) ⊗̂C∗r (G) and

Gr (y) = τC∗r (G)(y).

We thus see that,

µX̃(x) = ι∗[Y ∗]⊗̂C0(X̃)orG 
G
r (x)

= ι∗[Y ∗] ⊗̂C0(X̃)orG 
G
r ([Z]) ⊗̂

C(X) ⊗̂C∗r (G) τC∗r (G)(y).

Applying Proposition 2.3, the expression above simplifies to

µX̃(x) = [M ] ⊗̂
C(X)⊗̂C∗r (G) τC∗r (G)(y) = ηX̃(y).

Hence we have the identity µX̃(x) = ηX̃(JX̃(x)) and this proves the corollary.
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3. Chern characters and flat bundles

Throughout this section A will be a unital C∗-algebra equipped with a faithful
tracial state φ : A→ C and X will be a compact Hausdorff space.

We consider the unital C∗-algebra C(X,A) ∼= C(X)⊗̂A of continuous A-valued
maps on X.

For every positive integer n ≥ 0, we will construct an explicit Chern character

Ch2n
φ : K0

(
C(X,A)

)
→ H2n(X,R)

with values in the Alexander-Spanier cohomology of X. In the case where A = C, we
recover the explicit version of the usual Chern character

Ch2n : K0(C(X))→ H2n(X,R)

discovered in [16].

3.1. Reminders on Alexander-Spanier cohomology. — Here is a short sum-
mary of how Alexander-Spanier cohomology is defined. For more details, we point the
reader to [27, Chapter 6].

Let X be a compact Hausdorff space. Let Cov(X) denote the set of all finite
open coverings of X, and let U ∈ Cov(X). For each k ∈ N ∪ {0}, let Uk denote the
open neighborhood of the diagonal in Xk given by ∪U∈UUk, where the superscript k
indicates the kth Cartesian power.

The real vector space of Alexander-Spanier k-cocycles (corresponding to the finite
open cover U) is denoted by Ck(X,U) and is made of continuous real valued functions
on Uk+1. The coboundary map ∂ : Ck(X,U)→ Ck+1(X,U) is defined by the formula

∂f(x0, x1, . . . , xk+1) =
k+1∑

j=0
(−1)jf(x0, . . . , x̂j , . . . , xk+1), (16)

where f ∈ Ck(X,U) and the notation ·̂ means the term has been omitted.
It can be shown that ∂2 = 0 and the cohomology of the cochain complex

(C∗(X,U), ∂) is called the Alexander-Spanier cohomology of the covering U. It is
denoted H∗(X,U).

If V is a refinement of U, there is an obvious cochain map (restriction) from C∗(X,U)
to C∗(X,V), which defines a map H∗(X,U)→ H∗(X,V).

The (real-valued) Alexander-Spanier cohomology of X is defined as a direct limit
over finite open covers:

H∗(X,R) = lim−→H∗(X,U).
These cohomology groups are vector spaces over the real numbers.
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3.2. Construction of the Chern character. — The construction outlined here
is entirely based on [16]. We simply provide a minor generalization of those ideas
incorporating the faithful tracial state φ : A→ C.

Let us fix a positive integer n ≥ 0. Let p ∈Mm(C(X,A)) be a projection for some
positive integer m ≥ 0 and choose a finite open cover U of X such that

‖p(x)− p(x′)‖ ≤ 1/4 ∀U ∈ U , x, x′ ∈ U.

We now construct an Alexander-Spanier 2n-cocycle

Ch2n
φ (p) ∈ C(U2n+1,R) = C2n(X,U),

which will represent the Chern character in degree 2n.
For n = 0 we put Ch0

φ(p)(x) = φ(p(x)) for all x ∈ X, where the trace

φ : Mm(A)→ C

is given by the formula φ(a) =
∑m
i=1 φ(aii) for all a ∈Mm(A). We remark that Ch0

φ(p)
is constant on every U ∈ U since p(x) and p(x′) are similar for x, x′ ∈ U . In particular,
we see that the continuous map Ch0

φ(p) : X → R defines an Alexander-Spanier
0-cocycle.

We now consider the case where n ≥ 1. For every integer k ≥ 1, we let ∆k denote
the k-simplex

∆k =
{

(t1, t2, . . . , tk) ∈ [0, 1]k |
k∑

i=1
ti ≤ 1

}
.

Let x = (x0, x1, . . . , x2n) ∈ U2n+1. For every t ∈ ∆2n, we define

ap(x, t) = p(x0) +
2n∑

i=1
ti(p(xi)− p(x0))

and remark that ‖ap(x, t)− p(x0)‖ ≤ 1/4, in particular we have a well-defined spectral
projection

ep(x, t) = 1
2πi

∫

|λ−1|=1/2
(λ− ap(x, t))−1 dλ ∈Mm(A), (17)

where the circle of radius 1/2 appearing in the formula is given the usual counterclock-
wise orientation.

The Alexander-Spanier 2n-cocycle

Ch2n
φ (p) ∈ C(U2n+1,R)

is then defined by the explicit formula

Ch2n
φ (p)(x) = (−1)n

n!

∫

∆2n
φ
(
ep(x, t)d(ep(x, t)) ∧ . . . ∧ d(ep(x, t))

)
x ∈ U2n+1,
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where the 2n-simplex ∆2n ⊆ R2n is given the orientation coming from the form
dt1 ∧ dt2 ∧ . . . ∧ dt2n. Notice that the exterior derivative d appearing in the above
expression only differentiates in the direction of the standard simplex ∆2n.

The proof of the next lemma is almost identical to the proofs of [16, Lemma 8 &
Lemma 9] and will not be given here.

Lemma 3.1. — The cochain Ch2n
φ (p) ∈ C(U2n+1,R) is an Alexander-Spanier cocycle

and the class
[
Ch2n

φ (p)
]
∈ H2n(X,R) in Alexander-Spanier cohomology only depends

on the class of p in the abelian semigroup V (C(X,A)), whose Grothendieck completion
gives K0(C(X,A)).

It follows from the above lemmas that we have a well-defined map

Ch2n
φ : V (C(X,A))→ H2n(X,R)

and it can be verified that this map is a homomorphism, thus that

[Ch2n
φ (p⊕ q)] = [Ch2n

φ (p)] + [Ch2n
φ (q)],

whenever p ∈Mm(C(X,A)) and q ∈Mm′(C(X,A)) are projections.
In particular, we have the following:

Definition 3.2. — The Chern character in degree 2n associated to the faithful
tracial state φ : A→ C and the compact Hausdorff space X is the homomorphism of
abelian groups

Ch2n
φ : K0(C(X,A))→ H2n(X,R), Chφ([p]− [q]) = [Ch2n

φ (p)]− [Ch2n
φ (q)].

3.3. Multiplicative properties. — We let

× : K0(C(X))⊗Z K0(A)→ K0
(
C(X,A)

)

denote the exterior product. Recall that for projections p ∈ Mm(C(X)) and q ∈
Mm′(A), the exterior product

[p]× [q] ∈ K0
(
C(X,A)

)

is represented by the projection p⊗q ∈Mm·m′(C(X,A)) ∼= Mm′
(
Mm(C(X,A))

)
given

by the block-matrix

(p⊗ q)ij = p · qij i, j ∈ {1, . . . ,m′}.

We recall that the faithful tracial state φ : A→ C induces a homomorphism

φ∗ : K0(A)→ R, φ∗([p]− [q]) = φ(p− q).
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Lemma 3.3. — For every positive integer n ≥ 0, we have the commutative diagram

K0(C(X))⊗Z K0(A) ×−−−−→ K0
(
C(X,A)

)

1⊗φ∗
y Ch2n

φ

y

K0(C(X))⊗Z R (Ch2n⊗1)−−−−−−→ H2n(X,R)

Proof. — Given p ∈Mm(C(X)) and q ∈Mm′(A), the commutativity of the diagram
follows from the identity

[Ch2n(p)] · φ(q) = [Ch2n
φ (p⊗ q)].

We shall in fact see that this identity holds at the level of cochains. We focus on the
case where n ≥ 1. In this situation, it suffices to show that

ep⊗q(x, t) = ep(x, t)⊗ q, (18)

for all x ∈ U2n+1 and all t ∈ ∆2n. Indeed, if Equation (18) were true, then from
Equation (17) we would have that

Ch2n
φ (p⊗ q)(x) = (−1)n

n!

∫

∆2n
Tr
(
ep(x, t)d(ep(x, t)) ∧ . . . ∧ d(ep(x, t))

)
· φ(q)

= Ch2n(p)(x) · φ(q),

for all x ∈ U2n+1, where Tr : Mm(C)→ C denotes the matrix trace (without normal-
ization). Now, for each λ ∈ C with |λ− 1| = 1/2, it is easily verified that

(λ− ap⊗q(x, t))−1 = (λ− ap(x, t))−1 ⊗ q + 1
λ
⊗ (1− q).

The identity above is exactly what we need, since the function 1
λ ⊗ (1− q) is analytic

on an open set containing {λ ∈ C | |λ− 1| ≤ 1/2}, and therefore its contour integral
along the boundary of that disk is zero.

Proposition 3.4. — Suppose that A is a II1-factor. Then the Chern character

Chφ : K0
(
C(X,A)

)
→ ⊕∞n=0H

2n(X,R) Chφ(x) = {Ch2n
φ (x)}

is an isomorphism.

The previous proposition is proved in [25, Theorem 5.7] in the smooth setting by
using Chern-Weil theory, see also [2, Diagram 3.7].

Proof. — Since A is a II1-factor, it follows as in [8, III.1.7.9, page 242], that the
faithful tracial state φ : A→ C induces an isomorphism K0(A) ∼= R of abelian groups.
Moreover, since A is a von Neumann algebra, we have that K1(A) ∼= {0}. Since R is
torsion-free, the exterior product

× : K0(C(X))⊗Z K0(A)→ K0(C(X,A))
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is an isomorphism by the Künneth theorem, see [26, Proposition 2.11]. Therefore it
suffices to show that the composition

Chφ ◦ × : K0(C(X))⊗Z K0(A)→ ⊕∞n=0H
2n(X,R)

is an isomorphism. However, by Lemma 3.3 we have that

(Chφ ◦ ×) = (Ch⊗ 1) ◦ (1⊗ φ∗),
where Ch : K0(C(X)) → ⊕∞n=0H

2n(X,R) is the usual Chern character with values
in Alexander-Spanier cohomology. This ends the proof of the proposition since Ch
becomes an isomorphism after tensorizing with R, see [17].

3.4. Flat bundles. — We now consider a flat bundle over the compact Hausdorff
space X with fiber a finitely generated projective module qAm over the unital C∗-
algebra A, thus q ∈Mm(A) is a projection. We thus fix an open cover {Vi}Ni=1 of the
compact Hausdorff space X together with locally constant maps

gij : Vi ∩ Vj → U(qAm) i, j ∈ {1, . . . , N},
for some fixed m ∈ N, where U(qAm) denotes the group of unitary transformations of
the Hilbert C∗-module qAm. We identify U(qAm) with the group of (m×m)-matrices
u satisfying the conditions

qu = u = uq and u∗u = uu∗ = q.

Our locally constant maps are supposed to satisfy the cocycle condition:
gii = q and
gij(x) · gjk(x) = gik(x) ∀x ∈ Vi ∩ Vj ∩ Vk,

whenever i, j, k ∈ {1, . . . , N}.
Let us choose a partition of unity {χi | i = 1, . . . , N} for X with supp(χi) ⊆ Vi for

all i ∈ {1, . . . , N}. Our cocycle then gives rise to a projection pA ∈MN ·m(C(X,A)) ∼=
MN (Mm(C(X,A))) defined as the block-matrix

(pA)ij = √χiχj · gij i, j ∈ {1, . . . , N}.
Finally, we have the projection p ∈MN (C(X,A)) defined as the matrix

pij = √χiχj i, j ∈ {1, . . . , N}.

We are going to prove the following:

Theorem 3.1. — We have the identity

Ch2n
φ ([pA]) = Ch2n

φ ([q]) =
{

0 for n > 0
[φ(q)] for n = 0 ,

where [φ(q)] ∈ H0(X,R) refers to the class in Alexander-Spanier cohomology associated
to the constant function on X equal to φ(q) ∈ [0,∞) at every point.
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When the base space is a compact manifold without boundary, the previous result
is proved in [25, Theorem 5.8] and [2, Section 4].

The more general case where the base space is just a compact Hausdorff space
requires extra care. We start with a technical lemma.

Lemma 3.5. — Suppose that K = {K1,K2, . . . ,Kl} is a finite set of closed subsets
of the compact Hausdorff space X. Then there exists a finite open cover U of X such
that the implication

(
(U ∩Ki) 6= ∅ ∀i ∈ I

)
⇒
(⋂

i∈I
Ki 6= ∅

)

holds for all subsets I ⊆ {1, 2, . . . , l} and all U ∈ U.

Proof. — The case where K is empty is trivial, so we suppose that l = ]K ≥ 1.
Define the set

A =
{
∩i∈I Ki | I ⊆ {1, 2, . . . , l} , I 6= ∅

}
∪ {∅}.

Let n ∈ N and suppose that C1, C2, . . . , Cn ∈ A and that U1, U2, . . . , Un ⊆ X are
open subsets such that

1. C1 = U1 = ∅;
2. Cj ∈ A \ {C1, C2, . . . , Cj−1} for all j ∈ {2, 3, . . . , n};
3. it holds for all K ∈ K and all j ∈ {2, 3, . . . , n} that

Cj ∩K = Cj or Cj ∩K ∈ {C1, C2, . . . , Cj−1};
4. Cj ∩ (X \ ∪j−1

i=1Ui) ⊆ Uj for all j ∈ {2, 3, . . . , n};
5. the implication

(
Cj ∩K ∈ {C1, C2, . . . , Cj−1}

)
⇒
(
Uj ∩K = ∅

)

holds for all K ∈ K and all j ∈ {2, 3, . . . , n}.

We remark that ∪ji=1Ci ⊆ ∪ji=1Ui for all j ∈ {1, 2, . . . , n}. Indeed, to see this it
suffices to check that Cj ⊆ ∪ji=1Ui for j ∈ {2, 3, . . . , n}. But this is clear since
Cj ∩ (X \ ∪j−1

i=1Ui) ⊆ Uj by construction and obviously Cj ∩ (∪j−1
i=1Ui) ⊆ ∪j−1

i=1Ui.
Suppose now that A \ {C1, C2, . . . , Cn} 6= ∅. We may then choose Cn+1 ∈ A \

{C1, C2, . . . , Cn} such that it holds for all K ∈ K that

Cn+1 ∩K = Cn+1 or Cn+1 ∩K ∈ {C1, C2, . . . , Cn}.
We define

Ln+1 = Cn+1 ∩
(
X \ ∪ni=1Ui

)

and claim that it holds for all K ∈ K that
(
Cn+1 ∩K ∈ {C1, C2, . . . , Cn}

)
⇒
(
Ln+1 ∩K = ∅

)
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Indeed, if Cn+1 ∩K ∈ {C1, C2, . . . , Cn}, then Cn+1 ∩K ⊆ ∪ni=1Ui so that

K ∩ Ln+1 = K ∩ Cn+1 ∩
(
X \ ∪ni=1Ui

)
= ∅.

Since X is compact Hausdorff, we may choose an open subset Un+1 ⊆ X such that

Ln+1 ⊆ Un+1

and such that the implication
(
Cn+1 ∩K ∈ {C1, C2, . . . , Cn}

)
⇒
(
Un+1 ∩K = ∅

)

holds for all K ∈ K.
Since the set A is finite, we may thus inductively construct C1, C2, . . . , Cm ∈ A

and open subsets U1, U2, . . . , Um ⊆ X satisfying (1)− (5) from above and such that
A = {C1, C2, . . . , Cm}. We define

Um+1 = X \ ∪li=1Ki

and claim that U = {Ui}m+1
j=1 is the desired open cover.

First of all, we prove that U is indeed a cover. To this end, we just need to show
that ∪li=1Ki ⊆ ∪mj=1Uj , but this is clear since ∪li=1Ki = ∪mj=1Cj ⊆ ∪mj=1Uj .

Now suppose that I ⊆ {1, 2, . . . , l} is a non-empty subset, that U ∈ U and that
U ∩Ki 6= ∅ for all i ∈ I. By the definition of U1 and Um+1, we must have that U = Uj
for some j ∈ {2, . . . ,m}. By property (3) and (5), it thus holds that Cj ∩Ki = Cj for
all i ∈ I. But this implies that

Cj = Cj ∩
(
∩i∈I Ki

)
⊆ ∩i∈IKi

and hence since Cj 6= ∅ that ∩i∈IKi 6= ∅. This proves the lemma.

For each i, j ∈ {1, . . . , N} with i 6= j define the closed subset

Kij = supp(χi) ∩ supp(χj) ⊆ X

and define
K =

{
Kij | i, j ∈ {1, 2, . . . , N}

}
.

Let U be a finite open cover of X satisfying the conclusion of Lemma 3.5. By
passing to a refinement we may also arrange that:

– ‖p(x)− p(x′)‖ and ‖pA(x)− pA(x′)‖ ≤ 1/4 for all U ∈ U and x, x′ ∈ U ;
– for all U ∈ U, whenever Vi ∩ Vj ∩ U 6= ∅, the map gij : Vi ∩ Vj ∩ U → U(qAm) is

constant.

The following lemma is exactly what we need to prove Theorem 3.1.
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Lemma 3.6. — Let n ≥ 1, let x = (x0, x1, . . . , x2n) ∈ U2n+1 and let t ∈ ∆2n be
given. We have the identity,

(
epA(x, t)d

(
epA(x, t)

)∧2n
)
ij

= ep(x, t)d
(
ep(x, t)

)∧2n · gij(x0),

for each i, j ∈ {1, . . . , N} indexing the (m×m)-block matrices.

Proof. — Let us choose a U ∈ U, such that x = (x0, x1, . . . , x2n) ∈ U2n+1. We remark
that gij(xs) = gij(x0) for all s ∈ {0, 1, 2, . . . , 2n} and all i, j ∈ {1, 2, . . . , N}.

For λ ∈ C with |λ− 1| = 1/2, we define
γpA(λ, x0) = pA(x0)/(λ− 1) + (1− pA(x0))/λ and

δpA(x, t) =
2n∑

s=1
ts · (pA(xs)− pA(x0)),

so that apA(x, t) = pA(x0) + δpA(x, t) and

(λ− pA(x0)) · γpA(λ, x0) = 1.

In particular, we have the power-series expansion

(λ− apA)−1 =
∞∑

k=0
(γpA(λ) · δpA)kγpA(λ) |λ− 1| = 1/2, (19)

which converges absolutely since ‖δpA‖ ≤ 1
4 . Remark that we are suppressing the

point (x, t) ∈ U2n+1 ×∆2n and the point x0 ∈ U from the notation (and we will often
do so below as well).

Notice that the exterior derivative of (λ − apA)−1 (again in the direction of the
simplex ∆2n) can be easily computed:

d
(
(λ− apA)−1) =

2n∑

s=1
(λ− apA)−1(pA(xs)− pA(x0))(λ− apA)−1dts.

We thus have that

d(epA) = 1
2πi

2n∑

s=1

∫

|λ−1|=1/2
(λ− apA)−1(pA(xs)− pA(x0))(λ− apA)−1 dλ dts

and hence that

epAd(epA)∧2n =
∑

σ∈S2n

sign(σ) · 1
(2πi)2n+1

∫

|λ0−1|=1/2
. . .

∫

|λ2n−1|=1/2

(λ0 − apA)−1
2n∏

r=1
(λr − apA)−1(pA(xσ(r))− pA(x0))(λr − apA)−1

dλ0 . . . dλ2n dt1 ∧ . . . ∧ dt2n,
where S2n denotes the group of all permutations σ of 2n letters.
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Since a similar expression holds when pA is replaced by p, we may focus on proving
the identity

(
(λ0 − apA)−1

2n∏

r=1
(λr − apA)−1(pA(xσ(r))− pA(x0))(λr − apA)−1

)
ij

=
(

(λ0 − ap)−1
2n∏

r=1
(λr − ap)−1(p(xσ(r))− p(x0))(λr − ap)−1

)
ij
· gij(x0),

for each fixed i, j ∈ {1, . . . , N}, each permutation σ ∈ S2n and each λ0, . . . , λ2n ∈ C
with |λr − 1| = 1/2 for all r ∈ {0, . . . , 2n}.

We now apply the power-series expansion from Equation (19) (both for apA and
ap), so we reduce the lemma to proving that

(
(γpA(λ0) · δpA)k0γpA(λ0)

·
2n∏

r=1
(γpA(λr) · δpA)krγpA(λr) · (pA(xσ(r))− pA(x0))(γpA(λr) · δpA)lrγpA(λr)

)
ij

(20)

is equal to
(

(γp(λ0) · δp)k0γp(λ0)

·
2n∏

r=1
(γp(λr) · δp)krγp(λr) · (p(xσ(r))− p(x0))(γp(λr) · δp)lrγp(λr)

)
ij
· gij(x0),

for every (k0, . . . , k2n) ∈ (N ∪ {0})2n+1 and every (l1, . . . , l2n) ∈ (N ∪ {0})2n.
We are going to reduce our task even further. Thus, let us fix (k0, . . . , k2n) ∈

(N ∪ {0})2n+1 and (l1, . . . , l2n) ∈ (N ∪ {0})2n. Using indices α, β ∈ {1, . . . , N} for the
(m×m)-blocks we notice that

(γpA)αβ · q = (γp)αβ · gαβ(x0)
(δpA)αβ = (δp)αβ · gαβ(x0)

(pA)αβ(xs) = pαβ(xs) · gαβ(x0),

for all s ∈ {0, 1, . . . , 2n}. Letting

M = 1 + 6n+ 2k0 + 2
2n∑

r=1
(kr + lr)

denote the number of multiplicative factors involved in the operator in Equation (20),
using block-multiplication, again with (m×m)-blocks, we may rewrite this operator as

N∑

i0,...,iM−2=1
Cii0i1...iM−2j · (gii0gi0i1 · . . . · giM−3iM−2giM−2j)(x0),
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where
N∑

i0,...,iM−2=1
Cii0i1...iM−2j =

(
(γp(λ0) · δp)k0γp(λ0)

·
2n∏

r=1
(γp(λr) · δp)krγp(λr) · (p(xσ(r))− p(x0))(γp(λr) · δp)lrγp(λr)

)
ij
.

Let us now fix indices i0, . . . , iM−2 ∈ {1, . . . , N}. To ease the notation, we put

i−1 = i and iM−1 = j.

It suffices to show that

Ci−1i0...iM−1 · (gi−1i0 · . . . · giM−2iM−1)(x0) = Ci−1i0...iM−1 · gi−1iM−1(x0).

We claim that if Ci−1i0...iM−1 is nonzero, then

Kiαiα+1 ∩ U 6= ∅ ∀α ∈ {−1, 0, . . . ,M − 2} with iα 6= iα+1. (21)

If Equation (21) holds, then by virtue of Lemma 3.5 we must have that
M−2⋂

α=−1
Kiαiα+1 6= ∅,

which in turn means
⋂M−2
α=−1 Viαiα+1 6= ∅, therefore the cocycle relations hold and

(gi−1i0 · . . . · giM−2iM−1)(x0) = gi−1iM−1(x0),

which is what we set out to prove.
So let us suppose that Kiαiα+1 ∩ U = ∅ for some α ∈ {−1, 0, . . . ,M − 2} with

iα 6= iα+1. We are going to show that Ci−1i0...iM−1 = 0. There are three cases: the
pair iαiα+1 can appear in a term of the form γp(λ, x0)iαiα+1 , or (δp(x, t))iαiα+1 , or
(p(xs) − p(x0))iαiα+1 . The expression for Ci−1i0...iM−1 involves products of terms of
the previous three forms, so that if one is zero, then Ci−1i0...iM−1 = 0.

In the first case, since iα 6= iα+1, x0 ∈ U and supp(χiα) ∩ supp(χiα+1) = Kiαiα+1 ,
we have that

γp(λ, x0)iαiα+1 =
√
χiαχiα+1(x0)
λ− 1 −

√
χiαχiα+1(x0)

λ
= 0.

The second case follow from the third case, which is obvious since xs, x0 ∈ U so that

(p(xs)− p(x0))iαiα+1 = √χiαχiα+1(xs)−√χiαχiα+1(x0) = 0.

Proof of Theorem 3.1. — When n = 0, we have that

Ch0
φ(pA)(x) = φ(pA(x)) =

N∑

i=1
χi(x)φ(gii(x)) = φ(q),
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for all x ∈ X. When n > 0, we obtain from Lemma 3.6 that
N∑

i=1
φ
((
epA(x, t)d

(
epA(x, t)

)∧2n
)
ii

)
=

N∑

i=1
Tr
(
ep(x, t)d

(
ep(x, t)

)∧2n
)
· φ(gii(x0)),

for all x ∈ U2n+1 and all t ∈ ∆2n. Hence, since φ(gii(x0)) = φ(q) and the projection p
is Murray-von Neumann equivalent to 1 ∈ C(X), we obtain that

Ch2n
φ ([pA]) = Ch2n([1]) · φ(q) = 0.

4. Index theorem — Proof of Theorem B

In this section we are going to prove the following K-theoretic version of Atiyah’s
L2-index theorem:

Theorem 4.1. — Suppose that G is a countable discrete group and let φ : C∗r (G)→ C
denote the canonical faithful tracial state. Suppose that p : X̃ → X is a principal
G-bundle, where X̃ is a second-countable, locally compact, Hausdorff space and X is
compact and Hausdorff. Then

φ∗ ◦ ηX̃ = indC∗r (G) = ind : KK0(C(X),C)→ R.

In particular,
indC∗r (G)(x) ∈ Z for all x ∈ KK0(C(X),C).

For a countable discrete group H we let L(H) ⊆ B(`2(H)) denote the group von
Neumann algebra of H and we let φ : L(H)→ C denote the faithful tracial state on
L(H) given by φ(x) = 〈δe, x · δe〉, x ∈ L(H).

When H contains G as a subgroup we let ι : C∗r (G)→ L(H) denote the injective
∗-homomorphism coming from the inclusion G ⊆ H via the functoriality of the reduced
group C∗-algebra and the inclusion C∗r (H) ⊆ L(H). We remark that φ(ι(x)) = φ(x)
for all x ∈ C∗r (G).

Let pC∗r (G) be the projection coming from the Miščenko line bundle associated to
the principal bundle X̃ → X and set pL(H) = ι(pC∗r (G)).

Remark 4.2. — If {Vi}Ni=1 is a finite open cover of X, such that {p−1(Vi)}Ni=1 is a
trivializing cover for p : X̃ → X, then we get locally constant transition functions

gij : Vi ∩ Vj → G,

satisfying the cocycle relations gii = e and gijgjk = gik whenever Vi ∩ Vj ∩ Vk is
non-empty. If we compose with the left regular representation, we get locally constant
maps into the unitary group of C∗r (G)

λgij : Vi ∩ Vj → U(C∗r (G)),
which fit the setup outlined in Section 3.4.
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We then have the von Neumann algebraic index map ηL(H) defined by

KK0(C(X),C)

τL(H)

��

KK0(C(X,L(H)),L(H))
[pL(H)]⊗̂C(X,L(H))−

// KK0(C,L(H)),

which we may compose with the character φ∗ : KK0(C,L(H)) → R, obtaining the
index map

indL(H) = φ∗ ◦ ηL(H) : KK0(C(X),C)→ R.

The following two simple lemmas link the various index maps.

Lemma 4.3. — For every countable discrete group H containing the group G we
have the identity

indC∗r (G) = indL(H) : KK0(C(X),C)→ R.

Proof. — We put f = [pC∗r (G)]⊗̂C(X,C∗r (G))− and notice that each subdiagram in the
following diagram is commutative:

KK0(C(X),C)
τC∗r (G)

��

τL(H)
// KK0(C(X,L(H)),L(H))

ι∗

��

[pL(H)]⊗̂C(X,L(H))−

))

KK0(C(X,C∗r (G)), C∗r (G))

f
++

ι∗ // KK0(C(X,C∗r (G)),L(H)) f
// K0(L(H))

φ∗
��

K0(C∗r (G))

ι∗
55

φ∗ // R.

This proves the lemma.

Lemma 4.4. — Let H be a countable discrete group. The index map ind = ι∗ :
KK0(C(X),C)→ Z ⊆ R agrees with the composition

KK0(C(X),C)
τL(H)

// KK0(C(X,L(H)),L(H))

[1]⊗̂C(X,L(H))−
��

KK0(C,L(H)) φ∗ // R.

Proof. — We record that the interior Kasparov product [1]⊗̂C(X,L(H))− agrees with
the pullback via the inclusion ι : C → C(X,L(H)). The result of the lemma now
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follows by noting that the diagram here below is commutative

KK0(C(X),C)

ι∗

��

τL(H)
// KK0(C(X,L(H)),L(H))

ι∗

��

KK0(C,C)

∼=
��

τL(H)
// KK0(L(H),L(H))

ι∗

**

Z ⊆
// R KK0(C,L(H)),

φ∗
oo

where the right vertical ∗-homomorphism ι : L(H)→ C(X,L(H)) sends operators to
constant maps.

Proposition 4.5. — There exists a countable discrete group H containing G and
having infinite conjugacy classes. In particular L(H) is a II1-factor.

Proof. — We can choose H = G ∗ F2, the free product of G with the free group on
two generators. The statement about the associated group von Neumann algebra is
proved in [8, III.3.3.7, page 289].

Proof of Theorem 4.1. — By Proposition 4.5 we may choose a countable discrete
group H containing G such that the group von Neumann algebra L(H) is a II1-factor.
By Proposition 3.4 and Theorem 3.1 we have that [pL(H)] = [1] ∈ KK0(C, C(X,L(H)))
and thus by Lemma 4.3 and Lemma 4.4 that

indC∗r (G)(x) = indL(H)(x) = φ∗
(
[pL(H)]⊗̂C(X,L(H))τL(H)(x)

)

= φ∗
(
[1]⊗̂C(X,L(H))τL(H)(x)

)
= ι∗(x) = ind(x) .

This proves the theorem.
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by

Valerio Proietti

Abstract. — We collect three observations on the homology for Smale spaces defined
by Putnam. The definition of such homology groups involves four complexes. It is
shown here that a simple convergence theorem for spectral sequences can be used
to prove that all complexes yield the same homology. Furthermore, we introduce a
simplicial framework by which the various complexes can be understood as suitable
“symmetric” Moore complexes associated to the simplicial structure. The last section
discusses projective resolutions in the context of dynamical systems. It is shown that
the projective cover of a Smale space is realized by the system of shift spaces and
factor maps onto it.
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Introduction and main results

When Steven Smale initiated his study of smooth maps on manifolds, he defined the
notion of Axiom A diffeomorphism [19]. The main condition is that the map, restricted
to its set of non-wandering points, has a hyperbolic structure. The non-wandering
set of these systems can be canonically decomposed into finitely many disjoints sets,
called basic sets, each of which is irreducible in a certain sense.

One of Smale’s great insights was that, even though one began with a smooth
system, the non-wandering set itself would not usually be a submanifold, but rather
an object of fractal-like nature. This can be taken as a motivation for moving from
the smooth category to the topological one.

Smale spaces were introduced by Ruelle as a purely topological description of the
basic sets of Smale’s Axiom A diffeomorphisms [17].

In this paper we consider the homology theory for Smale spaces introduced by
Putnam in [15]. This can be viewed as a solution to Smale’s problem of classifying
Axiom A systems by relatively simple combinatorial data, in the same fashion that
Morse-Smale systems could be described.

Shifts of finite type are the zero dimensional examples of Smale spaces and are
the basic building blocks of the theory. Putnam’s homology can be viewed as a
far-reaching generalization of Krieger’s dimension groups for shifts of finite type [9].
In the preliminaries of this paper, we review the notion of Krieger’s invariant and
explain its connection to K-theory by examining the stable and unstable equivalence
relations which define the associated C∗-algebras (this is a well-known result, here it
is simply expressed in a slightly unusual form, see Theorem 1.10).

There are many interesting and open questions concerning Putnam’s homology for
Smale spaces. In the literature, computations of the homology groups have been done
mostly by resorting to the definition, e.g., [15, Chapter 7]. It is desirable to have some
machinery, as it occurs with algebraic topology, which would aid in these calculations
by appealing to techniques such as long exact sequences, excision, etc.

Exact analogues are at the moment not so clear, but it is reasonable that an
alternative, perhaps more conceptual definition of the homology could shed some light
on these issues. Moreover, this could also lead to clarifying the relations with Čech
cohomology and K-theory (beyond the case of shifts of finite type). More on these
questions can be found in [15, Chapter 8]. This paper started as an effort to research
in this direction.
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The technical definition of Putnam’s homology groups involves four bicomplexes
[15, Chapter 5]. Only three of these are shown to be quasi-isomorphic, leaving out the
largest (but perhaps most natural) double complex, which has a clear connection to
K-theory. The first result of this paper fills this gap by showing, thanks to a simple
convergence theorem for spectral sequences, that this double complex also yields the
same homology groups. The formal statement is given in Corollary 2.7.

Section 3 is concerned with proving a collection of results that are already proved in
Putnam’s memoir, by taking a slightly different and somewhat more unified perspective.
The key observation stems from the simplicial nature of the homology theory for Smale
spaces: a given Smale space is suitably “replaced” by a bisimplicial shift of finite
type, to which Krieger’s invariant is applied to get (in conjunction with the Dold-Kan
correspondence) a bicomplex which defines the homology groups of interest.

From this viewpoint, the different variants of this bicomplex appear as the associated
Moore complexes (i.e., the normalized chain complexes). There is also an action of the
symmetric group which is exploited to obtain all of Putnam’s complexes as “reduced”
complexes with respect to this mixed simplicial-symmetric structure. The main result
in this section, proved as application of these methods, is Theorem 3.9.

The last section introduces the concept of projectivity for dynamical systems and
attempts to justify the definition of the homology theory for Smale spaces by drawing
a parallel with sheaf cohomology. The main result here is that the projective cover of a
Smale space can be defined as a certain projective limit over the symbolic presentations
for the given space. The rigorous statement is found in Theorem 4.3.

Most of the conventions and notations in this paper are taken directly from [15].
No attempt is made to put the results in broader context or expand on detail. For
these reasons the reader is advised to have a copy of Putnam’s A Homology Theory
for Smale Spaces [15] handy.

Acknowledgements
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tions, and for the warm hospitality I received during my stay at the Department of
Mathematics and Statistics of the University of Victoria. I would also like to thank
Ryszard Nest for proposing to look into projective resolutions.

1. Preliminaries

A Smale space (X,φ) is a dynamical system consisting of a homeomorphism φ on a
compact metric space (X, d) such that the space is locally the product of a coordinate
that contracts under the action of φ and a coordinate that expands under the action
of φ. The precise definition requires the definition of a bracket map satisfying certain
axioms [15, 17].
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The most essential feature of Smale spaces is given by the definition of two equiva-
lence relations, named respectively stable and unstable, which reads as follows:

– given x, y ∈ X, we say they are stably equivalent if

lim
n→∞

d(φn(x), φn(y)) = 0;

– given x, y ∈ X, we say they are unstably equivalent if

lim
n→∞

d(φ−n(x), φ−n(y)) = 0.

The orbit of x ∈ X under the stable (respectively unstable) equivalence relation
is called the global stable (resp. unstable) set and is denoted Xs(x) (resp. Xu(x)).
Given a small enough ε > 0, local stable and unstable sets are also defined, and they
are denoted respectively Xs(x, ε) and Xu(x, ε).

These satisfy the following identities:

Xs(x) =
⋃

n≥0
φ−n(Xs(φn(x), ε))

Xu(x) =
⋃

n≥0
φn(Xs(φ−n(x), ε)).

Let (X,φ) be a Smale space. We will assume that (X,φ) is non-wandering, so that
there exists an s/u-bijective pair π = (Y, ψ, πs, Z, ζ, πu) (see [15, Section 2.6] for this
notion). Recall from [15, Sections 2.5 and 2.6] that we can assume Y and Z to be
non-wandering, and also ψ and ζ to be finite-to-one.

We define a subshift of finite type for each L,M ≥ 0,

ΣL,M (π) = {(y0, . . . , yL, z0, . . . , zM ) |yl ∈ Y, zm ∈ Z,
πs(yl) = πu(zm), 0 ≤ l ≤ L, 0 ≤ m ≤M}.

We have maps

δl : ΣL,M → ΣL−1,M (1)
δ,m : ΣL,M+1 → ΣL,M

which delete respectively entries yl and zm. Theorem 2.6.13 in [15] asserts that the
maps δl are s-bijective and the maps δ,m are u-bijective (these will be defined shortly).

Given a subshift of finite type Σ, we can associate to it an abelian group, denoted
Ds(Σ), defined in [15, Chapter 3] (see also [9]). It will be called the (stable) dimension
group of Σ. This construction is covariant for s-bijective maps and contravariant for
u-bijective maps [15, Sections 3.4 and 3.5]. We summarize here these definitions:

Definition 1.1. — Let f : (X,φ)→ (Y, ψ) be a map of Smale spaces. Consider for
each x ∈ X the restrictions

f : Xs(x)→ Y s(f(x)) (2)
f : Xu(x)→ Y u(f(x)). (3)
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– If (2) is injective, we say that f is s-resolving. If it is injective and surjective,
then we say f is s-bijective.

– If (3) is injective, we say that f is u-resolving. If it is injective and surjective,
then we say f is u-bijective.

1.1. Dimension groups. — Let us start with the definition of Krieger’s dimension
groups.

Definition 1.2. — Let (Σ, σ) be a subshift of finite type. For e ∈ Σ, consider the
family of compact open subsets in the stable orbit Σs(e) and denote it by COs(Σ, σ, e).
Define COs(Σ, σ) = ∪e∈ΣCO

s(Σ, σ, e). Let ∼ be the smallest equivalence relation
such that, for E,F ∈ COs(Σ, σ), we have

– E ∼ F if [E,F ] = E, [F,E] = F , assuming both sets are defined;
– E ∼ F if and only if σ(E) ∼ σ(F ).

We define Ds(Σ, σ) (abbreviated Ds(Σ)) to be the free abelian group on the ∼-
equivalences [E], modulo the subgroup generated by [E ∪ F ]− [E]− [F ], where E,F
belong to COs(Σ, σ) and E ∩ F = ∅.

There is a definition of Du(Σ, σ), which is left to the imagination of the reader,
since it won’t be used in the rest of this paper.

It is easy to see that, in the construction above, it is sufficient to consider clopens
lying in the local stable sets.

Lemma 1.3. — Define a family of sets COsε (Σ, σ), composed of clopens E ⊆ Σs(e, ε)
for some e ∈ Σ and ε < 1/4. Consider the abelian group Ds

ε (Σ, σ), defined as in
Definition 1.2, but replacing COs(Σ, σ) with COsε (Σ, σ).

Then we have Ds(Σ, σ) ∼= Ds
ε (Σ, σ).

Proof. — Given E ∈ COs(Σ, σ), E ⊆ Σs(f), there is a well-defined function E → N,
defined assigning to e ∈ E the minimum number N(e) such that en = fn whenever
n ≥ N(e). In other words, N(e) is the minimum natural number such that

e ∈ σ−N(e)(Σs(σN(e)(f), ε)).

By definition E ∩ σ−n(Σs(σn(f), ε)) is clopen for each n ∈ N, which implies the
assignment e 7→ N(e) is continuous. Since E is compact, there is N(E) ∈ N such that

E ⊆ σ−N(E)(Σs(σN(E)(f), ε)).

Therefore, E can be partitioned in a finite number of disjoint clopens Ei with Ei ∈
COsε (Σ, σ). We conclude [E] ∈ Ds

ε (Σ, σ). All is left to show is the equivalence relation
defining Ds(Σ, σ) is determined within the clopens in COsε (Σ, σ). Let E ∼ F be sets
in COs(Σ, σ) and take N to be the maximum between N(E) and N(F ). By definition
E ∼ F if and only if σN (E) ∼ σN (F ), and of course σN (E) and σN (F ) belong to
local stable sets. This completes the proof.
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Σu(x)

Σs(x)

x

E F

e f

∼

Figure 1. In this figure, E and F are compact opens in COsε (Σ, σ), with
E ⊆ Σs(e, ε) and F ⊆ Σs(f, ε). The shaded area in yellow indicates that
[E,F ] = E, [F,E] = F and therefore E and F are equivalent sets.

A consequence of the previous lemma is that we can illustrate the definition of
dimension group by a simple figure (Figure 1).

When (Σ, σ) is non-wandering we can simplify the computation of the dimension
group even further, because we can decompose Σ in basic pieces as follows (see [15,
Theorem 2.1.13]).

Theorem 1.4. — Given a non-wandering Smale space (X,φ), there are closed pair-
wise disjoint sets X1, . . . , Xn and a permutation α ∈ Sn such that φ(Xi) = Xα(i) for
all i = 1, . . . , n. Moreover, for any i and k such that αk(i) = i, the system (Xi, φ

k) is
a mixing Smale space.

Since the stable and unstable orbits are the same for (X,φ) and (X,φk), it is a simple
matter to see that, applying the previous theorem to (Σ, σ), we get a decomposition

Ds(Σ) ∼= Ds(Σ1)⊕ · · · ⊕Ds(Σn), (4)
(see also [13, Section 2]).

Remark 1.5. — In this paper we consider the dimension group merely as a group-
invariant, without keeping track of the positive cone and of the induced automorphism
(for more details, see [10, Chapter 7]). Since the decomposition in (4) holds at the
level of C∗-algebras, the positive cones decompose along the same shape. The induced
automorphism (which also exists at the C∗-level) permutes the summands according
to α as in Theorem 1.4.

In view of the preceding discussion, for the rest of this subsection we assume that
(Σ, σ) is mixing, in particular the global stable sets are dense.

Lemma 1.6. — Let f ∈ Σ and define COsf (Σ, σ) = {E ∈ COsε (Σ, σ) | E ⊆ Σs(f)}.
Consider the abelian group Ds

f (Σ, σ), defined as in Definition 1.2, but replacing
COs(Σ, σ) with COsf (Σ, σ). Then we have Ds(Σ, σ) ∼= Ds

f (Σ, σ).

Proof. — Given E ∈ COsε (Σ, σ), it is sufficient to prove [E] = [F ] for some F ∈
COsf (Σ, σ). Suppose E ⊆ Σs(e, ε) and let Σ(e, ε) denote the open ball centered
at e of radius ε. Note that Σs(e, ε) ⊆ Σ(e, ε). Since Σs(f) is dense, we can find
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f ′ ∈ Σs(f) ∩ Σ(e, ε) and define F = [f ′, E]. The basic properties of the bracket imply
[E,F ] = E, [F,E] = F .

Remark 1.7. — It is clear that COsf (Σ, σ) is a basis for the topology of Σs(f). Thus
Ds(Σ) is generated by equivalence classes of basic clopens in some global stable set.

Let Ru(Σ, f) be the set of pairs of unstably equivalent points which belong to the
stable orbit through f ∈ Σ. This is an amenable and étale groupoid when endowed
with the topology as in [20, Section 1.2] (see also [16, Theorem 3.6]).

Remark 1.8. — In [12, page 14] the question arises if stable and unstable equivalence
relations of any mixing Smale space are locally compact amenable groupoids. The
answer is positive and the proof is as follows: by [4, Corollary 3.8], in the equivalence
class (in the sense of [11]) of such equivalence relations we can find étale amenable
groupoids, because their corresponding C∗-algebras have finite nuclear dimension (see
[3, Theorem 5.6.18]). Amenability is invariant under this sort of equivalence by [1,
Theorem 2.2.17].

A subbase for the topology on Ru(Σ, f) is given by triples (E,F, γ) where E,F are
basic clopens of the unit space Σs(f) and γ : E → F is homeomorphism such that
(e, γ(e)) ∈ Ru(Σ, f) for all e ∈ E. We consider the following “categorification” of
Ru(Σ, f): define a category C(Σ, f) whose objects are the clopens in COsf (Σ, σ) and
morphisms E → F are inclusions E ↪→ F and triples (E,F, γ) as above.

Recall that the K-theory K0(C) of an additive category (C,⊕) is the abelian
group generated by isomorphism classes [E] of objects E ∈ C subject to the relation
[E ⊕ F ] = E + F . If we interpret isomorphism classes as (E,F, γ)-orbits in C(Σ, f),
and we take E ⊕ F to mean E ∪ F,E ∩ F = ∅, then we obtain a well-defined abelian
group K0(C(Σ, f)).

Remark 1.9. — Note that the condition E⊕F is completely determined by inclusions.
Indeed unions and intersections are specific colimits and limits in C(Σ, f).

Theorem 1.10. — There is an isomorphism Ds(Σ) ∼= K0(C(Σ, f)) for any f ∈ Σ.

Proof. — Let us take E and F such that [E] = [F ]. In particular there is n ∈ N and
f ∈ σ−n(F ) such that [f, σ−n(E)] = σ−n(F ). It is easy to see that the map

γ(e) = σn([f, σ−n(e)]) (5)

is a homeomorphism of E onto F , and obvioulsy σ−n(e) belongs to the local unstable
set of σ−n(γ(e)), therefore (e, γ(e)) ∈ Ru(Σ, f).

Conversely, if (E,F, γ) is an isomorphism in C(Σ, f), then by [20, Lemma 4.14]
(and compactness), we can partitition E in a finite number of clopens E1, . . . , En, and
correspondingly F in F1, . . . , Fn, where Ei is homeomorphic to Fi through a map in
the form of (5). Therefore [Ei] = [Fi] and by the defining relation [E] = [F ].
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If χE is the indicator function of the clopen E inside the groupoid C∗-algebra
C∗(Ru(Σ, f)), then a little thinking over the assignment E 7→ χE gives the following
well-known result (for more details see [20, Section 4.3]).

Corollary 1.11. — There is an isomorphism

K0(C∗(Ru(Σ, f))) ∼= K0(C(Σ, f)) ∼= Ds(Σ)

for any f ∈ Σ.

Remark 1.12. — As was already implicitly noted in Remark 1.8, the reason why
the choice of f ∈ Σ doesn’t affect the K-theory group is to be found in the statement
that reducing a groupoid to a transversal preserves its equivalence class, as explained
in more detail in [11, Example 2.7].

1.2. Complexes. — The maps in (1) will induce group morphisms denoted respec-
tively δsl , δs∗,m. For each L,M ≥ 0, we consider maps

∂sL,M : Ds(ΣL,M (π))→ Ds(ΣL−1,M (π)) (6)

∂sL,M =
∑

0≤l≤L
(−1)lδsl

∂s∗L,M : Ds(ΣL,M (π))→ Ds(ΣL,M+1(π)) (7)

∂sL,M =
∑

0≤m≤M+1
(−1)L+mδs∗,m.

It is clear from the definition that

∂sL,M+1 ◦ ∂s∗L,M = ∂s∗L−1,M ◦ ∂sL,M .

Furthermore, by applying [15, Theorem 2.6.11,2.6.12,4.1.14], we have that
– for each M ≥ 0, (6) is a chain complex;
– for each L ≥ 0, (7) is a cochain complex.
Altogether, we have a double complex (Cs(π)•,•, ∂s, ∂s∗), where

Cs(π)L,M =
{
Ds(ΣL,M (π)) if L ≥ 0 and M ≥ 0
0 else.

The totalization of this complex is the chain complex (Tot⊕(Cs(π))•, ds), where

Tot⊕(Cs(π))N =
⊕

L−M=N
Cs(π)L,M

dsL,M = ∂sL,M + ∂s∗L,M

dsN =
⊕

L−M=N
dsL,M : Tot⊕(Cs(π))N → Tot⊕(Cs(π))N−1.
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L,M + 1

L,M

∂s∗

∂s

L − 1,M

Figure 2. A representation of the complexes Cs(π)•,• and Tot⊕(Cs(π))•.
The direct sums of the groups lying on the dashed diagonals give
Tot⊕(Cs(π))•. The differentials ds (e.g., the zigzag arrow in the top-left
square) run from south-east to north-west, decreasing degree by 1.

By slightly modifying the invariant Σ 7→ Ds(Σ), we can introduce a cochain complex
which is related to (7), and will give rise to another double complex. We summarize
the details of this construction (see [15, Definition 4.1.5]):

– For any L ≥ 0, the symmetric group SM+1 acts by automorphisms (in particular,
s-bijective maps) on ΣL,M (π). Define the group
Ds
,A(ΣL,M (π)) = {a ∈ Ds(ΣL,M (π)) | a = sgn(β)β(a) ∀β ∈ SM+1};

– By [15, Lemma 5.1.6], we have
∂sL,MD

s
,A(ΣL,M (π)) ⊆ Ds

,A(ΣL−1,M (π))
∂s∗L,MD

s
,A(ΣL,M (π)) ⊆ Ds

,A(ΣL,M+1(π));
– Define a bicomplex (Cs,A(π)•,•, ∂s, ∂s∗) by setting

Cs,A(π)L,M = Ds
,A(ΣL,M (π));

– The inclusion map J : Ds
,A(ΣL,M (π))→ Ds(ΣL,M (π)) induces chain maps

(Cs,A(π)•,•, ∂s, ∂s∗)→ (Cs(π)•,•, ∂s, ∂s∗)
(Tot⊕(Cs,A(π))•, ds)→ (Tot⊕(Cs(π))•, ds),

and in particular, for each L ≥ 0, a cochain map
(Cs,A(π)L,•, ∂s∗)→ (Cs(π)L,•, ∂s∗).

The advantage in using the complex just defined lies in the following propositions,
proved in [15, Theorem 4.2.12, Theorem 4.3.1]

Proposition 1.13. — There is N ≥ 0 such that Cs,A(π)L,M = 0 whenever M ≥ N .

Proposition 1.14. — For each, L ≥ 0, the cochain map
J : (Cs,A(π)L,•, ∂s∗)→ (Cs(π)L,•, ∂s∗)

is a quasi-isomorphism, i.e., for each N ∈ Z there are induced isomorphisms
J∗ : HN (Cs,A(π)L,•, ∂s∗) ∼= HN (Cs(π)L,•, ∂s∗).
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Definition 1.15. — By considering the symmetric group action SL+1 on ΣL,M (π),
one can introduce another invariant

Ds
Q(ΣL,M (π)) = Ds(ΣL,M (π))

Ds
B(ΣL,M (π)) ,

where Ds
B(ΣL,M (π)) is the subgroup of Ds(Σ) generated by

– all elements a satisfying α(a) = a for some non-trivial transposition α in the
symmetric group SL+1;

– all elements of the form a− sgn(α)α(a), where α ∈ SL+1.
Associated to this invariant is the bicomplex denoted CsQ(π) in [15, Chapter 5]. This
complex enjoys the analogous property of Proposition 1.13, i.e., it is zero outside a
bounded region in the L-direction.

By combining both approaches, one can also introduce a fourth bicomplex, denoted
CsQ,A(π) and based on the following “dimension group”:

Ds
Q,A(ΣL,M (π)) =

Ds
,A(ΣL,M (π))

Ds
B(ΣL,M (π)) ∩Ds

,A(ΣL,M (π)) .

This complex is zero outside a bounded rectangle of the first quadrant. Further details
on these constructions are found in [15, Definition 5.1.7]. It is proved in [15, Section
5.3] that there are quasi-isomorphisms

Cs,A(π)→ CsQ,A(π)→ CsQ(π).

These results and constructions will be obtained through different methods in the next
sections of this paper.

By definition, the homology groups of (X,φ) are given by (N ∈ Z)

HN (X,φ) = HN (Tot⊕(CsQ,A(π))•, ds).

It is proved in [15, Section 5.5] that this definition does not depend on the particular
choice of s/u-bijective map π.

2. Cs,A(π) is quasi-isomorphic to Cs(π)

We are going to prove in this section that Cs,A(π) is quasi-isomorphic to Cs(π).
This is the missing (but conjectured) result from Putnam’s memoir [15, page 90]. For
brevity, we write C = Cs(π) and CA = Cs(π),A.

There are at least two reasons why this quasi-isomorphism is important: firstly,
it is clear that C is the most straightforward among the definable complexes for the
homology of Smale spaces, and therefore it is a basic fundamental result that it’s
computing the same invariants as the other complexes. Secondly, and maybe more
importantly, C is also the complex with the most evident connection to K-theory for
the associated C∗-algebras. Indeed, if we consider the C∗-morphisms induced by δl
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0

0

0

∂s∗

∂s

p,M

p,M+1

Figure 3. The vetical filtration.

and δ,m as explained in [13], their corresponding K-theory maps agree with δsl and
δs∗,m after the identification given in Corollary 1.11.

2.1. Filtrations. — We proceed by defining the vertical filtration on C•,•, i.e., the
family of subcomplexes given by (p ∈ Z)

FpCL,M =
{
CL,M if L ≤ p
0 else,

in other words everything to the right of the vertical line L = p is set to zero, see
Figure 3.

The resulting family {Tot⊕(FpC)• | p ∈ Z} is a filtration of the totalization chain
complex. Note there is a chain of inclusions

· · · ⊆ Tot⊕(FpC)• ⊆ Tot⊕(Fp+1C)• ⊆ · · · . (8)

In complete analogy, we get a filtration

· · · ⊆ Tot⊕(FpCA)• ⊆ Tot⊕(Fp+1CA)• ⊆ · · · . (9)

The following remarks will be important in the next subsection.

Remark 2.1. — The filtration in (8) is exhaustive, i.e., the union over all p of
Tot⊕(FpC)• is Tot⊕(C)•. Note this implies the induced filtration on homology is also
exhaustive. The same holds for (9).

Remark 2.2. — The filtration in (8) is bounded below, i.e., for each N ∈ Z there
exists s ∈ Z such that Tot(FsC)N = 0. For N ≥ 0 we can take s = N − 1; when
N < 0 we take s = −1. Note this implies the induced filtration on homology is also
bounded below. The same holds for (9).

2.2. Spectral sequences. — A filtration of a chain complex gives rise to a spectral
sequence, see [21, Theorem 5.4.1] for a proof.
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Proposition 2.3. — A filtration F of a chain complex C determines a spectral
sequence:

E0
pq = FpCp+q/Fp−1Cp+q

E1
pq = Hp+q(E0

p•).

In order to discuss convergence for the spectral sequence in Proposition 2.3, we
introduce a bit of terminology (we follow [21, Chapter 5]). The expert reader may
skip to Corollary 2.7.

Recall that a (homology) spectral sequence is bounded below if for each n there
is s = s(n) such that the terms Erpq with p+ q = n vanish for all p < s. A spectral
sequence is regular if for each p and q the differentials drpq leaving Erpq are zero for all
large r.

Remark 2.4. — Bounded below spectral sequences are regular. If F is a bounded
below filtration (see Remark 2.2), then the spectral sequence in Proposition 2.3 is
bounded below, hence regular.

For each n ∈ Z, the homology group Hn(C) receives an induced filtration

· · · ⊆ FpHn(C) ⊆ Fp+1Hn(C) ⊆ · · · ⊆ Hn(C).

We say the spectral sequence abuts to to H∗(C) if, for all p, q, n ∈ Z,
1. there are isomorphisms

βpq : E∞pq ∼= FpHp+q(C)/Fp−1Hp+q(C); (10)

2. Hn(C) = ∪pFpHn(C);
3. ∩FpHn(C) = 0.

When (F , C) = (F,Tot⊕(C)) or (F , C) = (F,Tot⊕(CA)), items 2 and 3 above follow
from Remarks 2.1 and 2.2 respectively.

We say the spectral sequence converges to H∗(C) if it abuts to H∗(C), it is regular,
and it holds for each n ∈ Z that

Hn(C) = lim←−
p∈Z

Hn(C)
FpHn(C) .

Note that a bounded below (hence regular) spectral sequence always satisfies the con-
dition above, therefore it converges to H∗(C) as soon as the abutment condition holds.
This applies to the spectral sequences associated to (F,Tot⊕(C)) and (F,Tot⊕(CA)),
because of Remarks 2.2 and 2.4.

Suppose {Erpq} and {E′rpq} satisfy (10) with respect to H∗ and H ′∗ respectively. We
say that a map h : H∗ → H ′∗ is compatible with a morphism f : E → E′ if

– h(FpHn) ⊆ FpH ′n for all n ∈ Z;
– the induced maps FpHn/Fp−1Hn → FpH ′n/Fp−1H

′
n correspond under β and β′

to f∞pq : E∞pq → E′∞pq , q = n− p.
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We recall the following result [21, Theorem 5.5.1].

Theorem 2.5. — Condition (10) holds for bounded below spectral sequences.
In particular, if (F , C) is a filtered chain complex where F is exhaustive and bounded

below, then the associated spectral sequence is bounded below and converges to H∗(C).
Moreover, the convergence is natural: if f : C → C′ is a map of filtered complexes,
then the map f∗ : H∗(C)→ H∗(C′) is compatible with the corresponding morphism of
spectral sequences.

Corollary 2.6. — With notations as above, if fr : Erpq ∼= E′rpq is an isomorphism for
all p, q and some r (hence for r =∞, see [21, Lemma 5.2.4]), then f∗ : H∗(C)→ H∗(C′)
is an isomorphism.

Corollary 2.7. — There are convergent spectral sequences
E1
pq = Hq((CA)p,•, ∂s∗)⇒ Hp+q(Tot⊕(CA)•, ds) ∼= Hp+q(X,φ)
E′1pq = Hq(Cp,•, ∂s∗)⇒ Hp+q(Tot⊕(C)•, ds).

Furthermore, the inclusion chain map
J : (Tot⊕(CA)•, ds)→ (Tot⊕(C)•, ds)

is a quasi-isomorphism.

Proof. — The spectral sequences arise by applying Proposition 2.3 with (F , C) =
(F,Tot⊕(C)) and (F , C) = (F,Tot⊕(CA)). Convergence follows from Theorem 2.5.
The map J induces isomorphisms

J1 : E1
pq = Hq((CA)p,•, ∂s∗) ∼= E′1pq = Hq(Cp,•, ∂s∗)

for all p, q by Proposition 1.14. The result follows from Corollary 2.6 above.

Corollary 2.8. — Homology groups for the Smale space (X,φ) can be equally defined
as (N ∈ Z)

HN (X,φ) = HN (Tot⊕(C)•, ds).

3. Simplicial viewpoint

The s/u-bijective pair π = (Y, ψ, πs, Z, ζ, πu) for (X,φ) gives rise to a bisimplicial
Smale space (ΣL,M (π))L,M≥0. We will drop the reference to π for brevity.

The face maps are given by (1). We stress that the δl’s are s-bijective and the δ,m’s
are u-bijective. The degeneracy maps are as follows:

sl : ΣL,M → ΣL+1,M

(y0, . . . , yl, . . . , yL, z0, . . . , zM ) 7→ (y0, . . . , yl, yl . . . , yL, z0, . . . , zM )
s,m : ΣL,M → ΣL,M+1

(y0, . . . , yL, z0, . . . , zm, . . . , zM ) 7→ (y0, . . . , yL, z0, . . . , zm, zm, . . . , zM ),
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for l = 0, · · · , L− 1 and m = 0, . . . ,M − 1.

Remark 3.1. — Note that sl(ΣL,M ) ⊆ (ΣL+1,M ) is a closed shift-invariant system,
clearly isomorphic to ΣL,M . The same holds for s,m(ΣL,M ) ⊆ (ΣL,M+1).

Remark 3.2. — It is not difficult to see that, for each l, the map sl is s-bijective
because its inverse is given by δl. The situation is different for the maps s,m: they are
only s-resolving.

Proposition 3.3. — There are induced maps

ssl : Ds(ΣL,M )→ Ds(ΣL+1,M )
ss∗,m : Ds(ΣL,M+1)→ Ds(ΣL,M ).

Moreover, the map ssl is split-injective.

Proof. — Recall that (equivalence classes of) compact open sets inside stable orbits
provide generators for the dimension groups. Given one of such classes [E] ∈ Ds(ΣL,M ),
the assignment [E] 7→ [sl(E)] is a well-defined group morphism because the map
sl : Σs

L,M (e)→ Σs
L+1,M (sl(e)) is a homeomorphism. The splitting for the map ssl is

given by δsl . The definition of ss∗,m is given by E 7→ s−1
,m (E). This preimage is compact

because s,m is proper, as s-resolving maps are proper [15, Theorem 2.5.4]. Since
E ∩ F = ∅ implies s,m(E) ∩ s,m(F ) = ∅, the map respects the group operation.

The theorem below follows easily from the discussion so far (and some simple
verifications). See [21, Chapter 8] for the Dold-Kan correspondence.

Theorem 3.4. — Applying the Ds-functor to the bisimplicial space Σ•,• results in
a simplicial cosimplicial group (Ds(Σ•,•), δsl , ssl , δs,m, ss∗,m). Furthermore the unnor-
malized double complex associated to said group via the Dold-Kan correspondence is
(CL,M , ∂s, ∂s∗), as defined in Section 1.

Remark 3.5. — As was mentioned at the beginning of Section 2, the complex
(CL,M , ∂s, ∂s∗) is also the result of applying the K-theory functor to Σ•,•. The
intermediate step in this case is constructing the associated C∗-algebras, which are
AF [20, Section 4.3], so the odd K-groups vanish.

By considering the normalizations (sometimes called the Moore complexes) associ-
ated to Ds(Σ•,•) we obtain simplicial versions of the bicomplexes CA, CQ, CA,Q that
were previously introduced. It is well-known that these all yield isomorphic homology
groups (see [21, Theorem 8.3.8]). However, it should be noted that these complexes are
not as useful as their “symmetric” counterpart (to be introduced in the next section),
because they don’t allow for computational simplifications as in Proposition 1.13.
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3.1. Symmetric simplicial groups. — Fix M ≥ 0 and consider the simplicial
group (Σ•,M , δsl , ssl ). It carries an action of the symmetric group SL+1. Recall that
this group is generated by the adjacent transpositions tl = (l l + 1), l = 0, . . . , L− 1
(see [8, Section 5, Theorem 3]).

The functorial properties of the Ds-invariant easily give the theorem below. The
notion of symmetric simplicial group is inspired by [7].

Theorem 3.6. — The simplicial group (Σ•,M , δsl , ssl ) is a symmetric object, i.e., it
carries an action of the transpositions ti’s, subject to the defining relations of SL+1
and to the following mixed relations:

δsj ti = tiδ
s
j ssjti = tis

s
j (i < j − 1)

δsi ti = δsi+1 ssi ti = ti+1tis
s
i+1

δsj ti = ti−1δ
s
j ssjti = ti+1s

s
j (i > j)

tis
s
i = ssi .

For some l and j = 1, . . . , L+1− l consider the cycle σj = (l+j l+j−1 · · · l+1) in
SL+1 and the compositions σjsl. Note σ1sl = sl. In other words σjsl is an additional
degeneracy map which repeats entry yl at coordinate l + j:

(y0, . . . , yl, . . . , yL, . . . )
σjsl
// (y0, . . . , yl, . . . , yl+j−1, yl, yl+j , . . . yL, . . . ) ∈ ΣL+1,M .

As composition of s-bijective maps, the σjsl’s induce group morphisms

Ds(ΣL,M )
(σjsl)s

// Ds(ΣL+1,M ).

It is then natural to define the groups of degenerate chains,

D̃CL,M =
∑

l,j

(σjsl)s(CL−1,M ).

The subgroup
∑
l(σ1sl)s(CL−1,M ) is preserved by the differential ∂s thanks to the

simplicial identities, but when j > 1 the identities in Theorem 3.6 give the following
relation:

∂s(D̃CL,M ) ⊆ D̃CL−1,M + 〈σj(a)− sgn(σj)(a) | a ∈ CL,M 〉, (11)

because δsl (σjsl)s(a) = σj(a) and δsl+j(σjsl)s(a) = a.

Lemma 3.7. — There is an equality (a ∈ CL,M )

〈σj(a)− sgn(σj)(a)〉 = 〈ti(a) + a | i = 1, . . . , L− 1〉
= 〈α(a)− sgn(α)(a) | α ∈ SL+1〉.
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Proof. — Since the ti’s are generators we can write α(a) = ti1 · · · tin(a). Then we
have

(ti1 · · · tin(a) + ti2 · · · tin(a))− (ti2 · · · tin(a) + ti3 · · · tin(a))
+ (ti3 · · · tin(a) + ti4 · · · tin(a))− · · · ± (tin(a) + a) = α(a)± a.

The sign is positive when n is odd and negative when n is even, i.e., it is in accordance
with −sgn(α). Note that our notation for σj does not make reference to the index l,
so that σj(a) for j = 2 includes all elements of the form ti(a).

We can now “correct” our definition of degenerate chains by setting DCL,M to be
the group generated by D̃CL,M and 〈α(a)− sgn(α)(a) | a ∈ Ds(ΣL,M ), α ∈ SL+1〉.

Lemma 3.8. — The complex (DC•,M , ∂s) is a well-defined subcomplex of (C•,M , ∂s).

Proof. — In view of the remark in (11), we only need to check what happens to
∂s(ti(a) + a). By looking at the identities in Theorem 3.6, we see that it suffices to
check the expression δsi (ti(a) + a)− δsi+1(ti(a) + a). It is easy to see that δsi+1ti = δsi
so we get

δsi (ti(a) + a)− δsi+1(ti(a) + a) = δsi+1(a) + δsi (a)− δsi (a)− δsi+1(a) = 0.

Therefore ∂s preserves the subgroup 〈α(a)−sgn(α)(a) | a ∈ Ds(ΣL,M ), α ∈ SL+1〉.

Theorem 3.9. — Consider the short exact sequence

0 // DC•,M // C•,M // C•,M

DC•,M

// 0.

The complex DC•,M is acyclic, hence the projection map is a quasi-isomorphism.

Proof. — Set DCL = DCL,M for brevity. We filter DC•,M by setting F0DCL = 0
and

FpDCL =
k∑

l=0

L−l∑

j=1
(σjsl)s(CL−1,M )

+
n∑

j=1
(σjsk+1)s(CL−1,M ) + 〈α(a)− sgn(α)(a)〉

when p = L+(L−1)+ · · ·+(L−k)+n and 0 ≤ n ≤ L−k−1. When p ≥ L(L+1)/2 we
have FpDCL = DCL. The simplicial (and mixed) identities show that each FpDC• is
a subcomplex. This filtration F is bounded, so there is a convergent spectral sequence
(see [21, Theorem 5.5.1])

E1
pq = Hp+q(FpDC•/Fp−1DC•)⇒ Hp+q(DC•).



A NOTE ON HOMOLOGY FOR SMALE SPACES 17

So we have reduced ourselves to showing that each FpDC/Fp−1 is acyclic. We take
x ∈ DCL−1 and compute in FpDC/Fp−1:

∂s(σnsk+1)s(x) =
L∑

i=k+n+2
(−1)i(σnsk+1)s(δsi−1)(x)

∂s(σnsk+1)s(σnsk+1)s(x) + (σnsk+1)s∂s(σnsk+1)s(x)

=
L+1∑

i=k+n+2
(−1)i(σnsk+1)s(δsi−1)(σnsk+1)s(x)

−
L∑

i=k+n+2
(−1)i(σnsk+1)s(σnsk+1)s(δsi−1)(x)

= (−1)p(σnsk+1)s(x).
Hence ψL = (−1)p(σnsk+1)s is a chain contraction of the identity map which implies
FpDC/Fp−1 is acyclic.

Corollary 3.10. — There is an isomorphism of double complexes:

((CQ)•,•), ∂s, ∂s∗) ∼=
(

C•,M
DC•,M

, ∂s, ∂s∗
)
.

In particular, for each M ≥ 0 there is a quasi-isomorphism of chain complexes
((C•,M ), ∂s)→ ((CQ)•,M , ∂s). (12)

Proof. — All we need to do is identifying Ds
B(ΣL,M ) with DCL,M . Obviously

〈α(a)− sgn(α)(a)〉 = 〈a− sgn(α)α(a)〉,
and elements in the image of the degeneracy maps are clearly left invariant by some
non-trivial transposition. Now given [E] ∈ Ds

B(ΣL,M ) such that [E] = [α(E)] for
some transposition, we need to show [E] = [F ] for some clopen F in the image of a
degeneracy map. Now suppose α = (i i+ k) and define F to be (σksi)δi+k(E). Then
the condition [E,F ] = E, [F,E] = F trivially holds separately on each coordinate yl
with l 6= i+ k, and when l = i+ k we can check the condition replacing F by α(E),
because the coordinate of index i+ k is pointwise the same in F and α(E).

Note that (12) is a chain version of Proposition 1.14 and is proved in [15, Theorem
4.3.1]. We have used Proposition 1.14 in order to establish the quasi-isomorphism
(Tot⊕(CA)•, ds)→ (Tot⊕(C)•, ds) given by inclusion. Dually, it is natural to seek a
quasi-isomorphism (Tot⊕(C)•, ds) → (Tot⊕(CQ)•, ds) induced by projection, which
makes use of (12). Of course the strategy is completely similar to Corollary 2.7, but
considering the horizontal filtration instead of the vertical one. We skip the details.

Corollary 3.11. — The projection map in Theorem 3.9 induces a quasi-isomorphism
(Tot⊕(C)•, ds)→ (Tot⊕(CQ)•, ds).
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To complete the picture, we also give the dual version of Proposition 1.13.

Proposition 3.12. — There is N ≥ 0 such that CL,M = DCL,M whenever L ≥ N .
Therefore (CQ)L,M = 0 whenever L ≥ N .

Proof. — Recall that we can choose the s/u-bijective pair π = (Y, ψ, πs, Z, ζ, πu) so
that πs is finite-to-one. Let N − 1 be the maximum cardinality of a fiber of πs and
L ≥ N . A generic generator for Ds(ΣL,M ) is a compact open in some stable orbit
E ⊆ ΣsL,M (e). By the choice of L, there are i and k such that e = (y0, y1, . . . , yL, . . . )
with yi = yi+k. Since δi+k : ΣsL,M (e)→ ΣsL−1,M (δi+k(e)) is a homeomorphism, we see
that E = (σksi)(E).

3.2. Symmetric cosimplicial groups. — As was hinted at the end of the previous
section, the methods so far can be promptly dualized by considering the symmetric
cosimplicial group (ΣL,•, δs∗,m, (σis,m)s∗) for fixed L ≥ 0.

We will omit most details since this is a standard argument, and simply outline
how to define the cochain complex of degenerate chains, which is the essential object
needed to define the relevant “symmetric” Moore complex.

Where we used quotients in the previous section, we now have subgroups; moreover,
by interpreting “coinvariants” to mean equivalence classes modulo 〈a− sgn(α)α(a)〉,
we are led to consider the dual notion of “invariants”. This brings to defining

CCL,M = {a ∈ CL,M | (σjs,m)s∗(a) = 0, a− sgn(α)α(a) = 0
for all m = 0, . . . ,M, j = 1, . . . ,M + 1−m,α ∈ SM},

that is the invariant elements lying in intersection of kernels for all degeneracy maps.
By the (dual) argument of 3.9 one can proceed to show that the quotient complex

CL,•/CCL,• is acyclic, so the inclusion

CCL,• → CL,•

is a quasi-isomorphism. Finally, we mention that the projection map in Theorem 3.9
clearly induces a chain map

CC•,M →
CC•,M

DC•,M ∩ CC•,M
,

which is an isomorphism on homology. An explicit inverse for the map is constructed
in [15, page 98].

4. Projective covers

Given a sheaf S over a paracompact Hausdorff space X, sheaf cohomology H∗(X,S)
is computed from the complex HomX(Z, I•), where I• is an injective resolution of S.
It is true, but perhaps less well-known, that the same calculation can be performed by
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means of the complex HomX(E•X,S), where E•X is a semi-simplicial resolution of
X arising from a projective cover E of X (see [5]).

This alternative path to computing sheaf cohomology calls for an analogy with the
homology theory for Smale spaces. Indeed, we have seen how the defining complex
arises by applying Krieger’s invariant to the bisimplicial space induced by a chosen
s/u-bijective pair. So the role of the global section functor is played, in our context,
by the dimension group construction for subshifts of finite type.

The analogy is stronger when we start with a Smale space with totally disconnected
stable sets. In this case, the homology is computed by the complex (CQ(π)•,0, ∂s) and
the s/u-bijective pair is reduced to a simple s-bijective map

π : Σ0 → X,

where Σ0 is a subshift of finite type (see [15, Section 7.2]). Thus in this case the analogy
calls for considering Σ0 as a “projective” cover of X, together with its associated
simplicial resolution Σ• obtained by taking iterated fibered products over π.

While the usage of the term “resolution” is somewhat justified (since by definition
Σ• computes the “right” homology groups), the attribute projective requires further
reasoning. This section contains a simple theorem in this direction.

In the category of compact Hausdorff spaces and continuous maps, a projective
object is a space E such that, whenever we are given f : E → A and g : B � A (onto),
there is h : E → B with f = g ◦ h.

A projective cover of X is a pair (E, e) with E projective and e : E � X irreducible,
i.e., mapping proper closed sets onto proper subsets.

Gleason [6] has proved that projective covers exist and are unique (up to a homeo-
morphism making the obvious diagram commute). Moreover he showed that a space
is projective if and only if it is extremally disconnected, i.e., the closure of each of its
open sets is open. Recall that Σ0 is a compact, Hausdorff, totally disconnected space.
In general extremally disconnected Hausdorff spaces are totally disconnected, but the
converse does not hold.

Let (X,φ) be a non-wandering Smale space and (E, e) its projective cover. Note that
φ induces a self-homeomorphism φ̃ of E and e intertwines φ̃, φ. Consider the totally
disconnected space Σ0,0(π) associated to a choice of s/u-bijective pair π (this is the
correct analogue of Σ0 when X is not totally disconnected along the stable direction).
The difference between E and Σ0,0(π) can be recast in terms of the dependence of
the latter space on π. This suggests that in order to make sense of projectivity in the
context of Smale spaces we ought to consider all s/u-bijective pairs at the same time.

The discussion on projectivity will inevitably bring us outside the category of
Smale spaces (e.g., extremally disconnected spaces are not metrizable, unless they
are discrete), therefore the following setup is in the context of (invertible) dynamical
systems. See also Remark 4.2 below.
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An open set in a space X is called regular if it is the interior of its closure. A regular
partition P of X is a finite collection of disjoint regular opens whose union is dense.

Let (X,φ) be an invertible dynamical system and P a regular partition of X.
View P as an alphabet and let a1a2 · · · an be a word. We say this word is allowed if
∩ni=1φ

−i(ai) 6= ∅ and let LP be the family of allowed words. It can be checked [10,
Section 6.5] that LP is the language of a shift space that we denote ΣP . Note that for
each x ∈ ΣP and n ∈ N, the set

Dn(x) =
n⋂

i=−n
φ−i(xi) ⊆ X

is nonempty.

Definition 4.1. — We say that P is a symbolic presentation of (X,φ) if for every
x ∈ ΣP the set ∩∞n=0Dn(x) consists of exactly one point. We call P a Markov partition
if ΣP is a subshift of finite type.

Other definitions of Markov partitions are common in the literature, e.g., [2].
Notice that the set of regular partitions is directed: we write P1 ≤ P2 if P2 is a

refinement of P1, i.e., each member of P2 is contained in a member of P1. Given
partitions P1,P2 we can define an upper bound P1 ∩ P2, obtained by taking pairwise
intersections of elements from each partition.

If (X,φ) admits a symbolic presentation P1, then given any regular partition P2 we
have that P1 ∩ P2 is again a symbolic presentation. In other words, once a symbolic
presentation exists, we can guarantee that the family of symbolic presentations is
cofinal among all regular partitions.

Associated to P1 we get a factor map (i.e., an equivariant surjection) πP1 : ΣP1 → X

(see [10, Proposition 6.5.8]). If P2 is a refinement of P1, then πP2 : ΣP2 → X is a
factor map which factors through ΣP1 . Indeed if we view P1 and P2 as alphabets,
there is a code µP1,P2 which assigns to each letter a ∈ P2 the unique letter b ∈ P1
such that a ⊆ b, and πP2 = πP1 ◦ µP1,P2 .

As a result, if I denotes the family of symbolic presentations of (X,φ) (assuming
it is nonempty), then (Σi, µij , πi)i≤j∈I defines a projective system in the category
of dynamical systems over X. Let E be the inverse limit of (Σi, µij , πi)i≤j∈I . Since
E ⊆∏i Σi, the shift map σ applied componentwise turns E into a dynamical system.
Given P ∈ I, denote by pP the canonical projection E → ΣP .

The case of Smale spaces is as follows. A non-wandering Smale space (X,φ)
always admits a Markov partition [17, Section 7]. If we denote such partition by
M, then ΣM is a subshift of finite type endowed with an almost one-to-one factor
map πM : ΣM → X (i.e., an equivariant surjection that is finite-to-one, and the set
of points in X with single preimage is a dense Gδ). If P is a refinement ofM, then
πP : ΣP → X is an almost one-to-one factor map which factors through ΣM. As a
result, in this case we can take I to be the family of refinements ofM.
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Remark 4.2. — It is worth noting that {Σi}i∈I is a collection of shift spaces that
are not necessarily of finite type (in particular, they are not Smale spaces). That is
because the refinement of a Markov partition is not a Markov partition (in general).
It is unclear to the author if there are conditions under which a Smale space admits a
cofinal collection of Markov partitions.

Theorem 4.3. — Let (X,φ) be a dynamical system which admits a symbolic presen-
tation P. Suppose (Σi, µij , πi)i≤j∈I is the projective system associated to the collection
of symbolic presentations of (X,φ) and denote by (E, σ) the associated inverse limit.
Then (E, σ) is a projective cover of (X,φ) and the map e : E → X is given by the
composition

E
pP // ΣP

πP // X .

Proof. — Let J be the family of regular partitions of X. Given P ∈ J , denote by X(P)
the topological space given by the disjoint union ∪Y ∈PY . Then by [18, Proposition
17] we have that

E′ = lim←−
j∈J

(X(j), fjk)

is a projective cover of X (here fjk : X(k) � X(j) when j ≤ k is the obvious surjection
induced by the refinement). First of all we notice that I is cofinal in J so that the
limit can be taken over the index set I. Secondly, notice that for each i ∈ I there
is a natural surjection pi : X(i)→ X. We claim that πi : Σi → X factors through pi.
Indeed, note that if x ∈ Σi, then πi(x) belongs to x0 ∈ i and πi(x) admits a unique
lift x̃ ∈ x0 ⊆ X(i). Define π̃i(x) = x̃ and by construction πi = pi ◦ π̃i.

It is easy to check that (i ≤ j)

Σj
µij

//

π̃j

��

Σi
π̃i

��

X(j)
fij
// X(i)

is a commuting diagram so that {π̃i}i∈I induces a (continuous) map of spaces
π̃ : E → E′. Since π̃ is a map of compact Hausdorff spaces, we only need to
show it is bijective in order to get the required homeomorphism E ∼= E′. In fact, it is
sufficient to show that it is one-to-one, because π̃(E) ⊆ E′ is a closed set mapping
onto X, thus by irreducibility π̃(E) = E′.

Suppose x, y ∈ E, x 6= y, so there is i ∈ I with xi 6= yi. Recall that xi and yi are
bi-infinite sequences in Σi, let us denote their components by (xki )k∈Z, (yki )k∈Z.

There ism ∈ Z with xmi 6= ymi . Note that φ−m(i) is also a symbolic presentation, and
if we set α = i∩φ−m(i) we have i ≤ α, thus there are elements xα, yα ∈ Σα, appearing
at the α-th component of respectively x, y, and satisfying µiα(xα) = xi, µiα(yα) = yi.
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We claim π̃α(xα) 6= π̃α(yα). In fact, there are Ax, Bx, Ay, By ∈ i with
x0
α = x0

i ∩ φ−m(Ax) xmα = xmi ∩ φ−m(Bx)
y0
α = x0

i ∩ φ−m(Ay) xmα = xmi ∩ φ−m(By)

x0
i ∩ φ−m(Ax) ∩ φ−m(xmi ) ∩ φ−2m(Bx) 6= ∅
y0
i ∩ φ−m(Ay) ∩ φ−m(ymi ) ∩ φ−2m(By) 6= ∅.

From the above we derive Ax = xmi , Ay = ymi and in particular Ax 6= Ay. But by
definition

π̃α(xα) ∈ x0
i ∩ φ−m(Ax) ⊆ X(α)

π̃α(yα) ∈ y0
i ∩ φ−m(Ay) ⊆ X(α)

so π̃α(xα) cannot be equal to π̃α(yα). This proves injectivity of π̃ and concludes the
proof.

Remark 4.4. — At first sight, it it reasonable to view E as the “universal” version
of the spaces of the form Σ0,0(π). In the same spirit, one could think of defining a
“universal s/u-bijective pair” π = (Es, ψ̃, es, Eu, ζ̃, eu), where Es and Eu would be
projective with respect to s-bijective and u-bijective maps.

The first step towards this program would be applying Putnam’s lifting theorem
[14] to the projective system {Σi}i∈I of Theorem 4.3 (assuming the system, or a
cofinal replacement, consists entirely of shifts of finite type). Unfortunately, in order
to lift the entire (infinite) system, limits of spaces are necessary, thus we run once
again into the problem that these limits are not Smale spaces, and the notions of s-
and u-bijective maps don’t work well in this context.

This suggests that, if one desires importing the machinery of homological algebra
and studying the homology of Smale spaces under this light, the ambient category
should be chosen with care. A good candidate for this category might be the equivariant
(with respect to the stable or unstable equivalence relation) KK-category, but this
idea will not be pursued in the present paper.
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