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ABSTRACT

Next-Generation Sequencing technologies have been a revolution for researchers in genetics, providing them
quickly and at low cost with large amounts of DNA data from many individuals. This new flow of information
has helped in revealing unanswered questions in many branches of genetics. However, NGS data suffers of
intrinsical errors and quality issues due to the sequencing process, therefore SNP and genotype calling are not
reliable. Such an uncertainty can bias research results, leading to the impossibility of making conclusions based
on data, or even worse, leading to wrong results.

The first part of this thesis explores two different ways of handling uncertainty in NGS data by analyzing
and implementing two computational tools. The first tool is illustrated in a tool called D-statistic, that is used
for testing the genetic relationship amongst four populations. Here we implemented and studied an improved
version of the D-statistic that does not need to call genotypes or SNP, and uses all reads from all available
genomes. This results in a more powerful and reliable instrument to test genetic relationships.

The second tool integrates information about coverage and unobserved genotypes into a Hidden Markov
Model to infer ploidy levels in a genome. The application on a dataset of whole genomes of the fungus Batra-
chochytrium dendrobatis, which is a parasitic fungus of frogs, shows inferred ploidy levels compatible with the
ones that can be detected from the sequencing coverage.

In the second and last part of this thesis, a mathematical background for genetic relationships between pop-
ulations is laid out. A genetic relationship between populations is typically modelled through a type of graph
called admixture graph, that takes into account migrations between populations. Computational methods to test
or infer a genetic relationship are now a standard in research publications, but the necessary mathematical back-
ground has not been laid out. Here we formalize a mathematical theory that connects to the current applications
in population genetics, and creates a relationship between the topology of the graph and the parameters that
characterize a genetic relationship between populations.

3





RESUME PÅ DANSK

Next-Generation Sequencing (NGS) data har været en revolution for forskere i genetik. NGS data har gjort
det muligt hurtigt og billigt at generere store mængder DNA-data fra mange individer. Selvom denne nye
informationsstrøm har hjulpet med at afsløre ubesvarede spørgsmål indenfor genetikken, lider NGS-data af
iboende fejl og kvalitetsproblemer på grund af sekventeringsprocessen. Derfor er bestemmelsen af SNPs og
genotyper ikke altid pålidelig. Sådan en usikkerhed kan gøre det vanskeligt at drage konklusioner baseret på
data, eller endnu værre, føre til forkerte resultater.

Den første del af denne afhandling analyserer to forskellige måder at håndtere problemer i NGS data på, ved
implementeringen af to forskellige stykker software. Det første implementering er D-statistikken. Det bruges
til at teste det genetiske slægtskab imellem fire populationer. Her implementerer jeg en forbedret version af D-
statistikken, der ikke bruger genotype og SNP bestemmelse, men indlæser alle sekvensdata. Denne forbedrede
D-statistik er en mere robust og pålidelig måde at teste genetiske slægtskabsforhold.

Den anden software integrerer information om sekventeringsdækning og uobserverede genotyper i en Hid-
den Markov Model for at udlede ploiditetsniveauer i et genom. En test på et genom af svampen Batrachochytrium
dendrobatis, som er en parasitisk svamp på frøer, viste udledte ploiditetsniveauer, der stemmer overens med dem,
der blev estimeret ud fra sekventeringsdækningen alene.

I den anden og sidste del af denne afhandling vises der en matematisk baggrund for det genetiske slægtsk-
absforhold mellem populationer. Et genetisk slægtskabsforhold mellem populationer modelleres typisk gennem
en type graf der kaldes en admixture graph. En admixture graph modellerer også migrationer mellem pop-
ulationer. Implementering af software til at teste eller aflede et genetisk slægtskabsforhold er nu standard i
forskningspublikationer, men den nødvendige matematiske baggrund er ikke blevet lagt ud. Her formaliserer
jeg en matematisk teori, der forbinder de nuværende applikationer i populationsgenetik, og definerer et forhold
mellem grafens topologi og de parametre, der karakteriserer et genetisk slægtskabsforhold.
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Introduction
The overall focus of this thesis is the theoretical study, the statistical analysis and implementation of models
targeted to genetics data. I will analyze two methods implemented for Next Generation Sequencing (NGS) data,
where the issues related to such data are tackled in different ways, and illustrate a background theory for graphs
used to relate populations.

Overview of the Thesis

The first analyzed and implemented method is an extension of the D-statistic, and has been published on the
February 2018 issue of G3: Genes, Genomes, Genetics. The D-statistic is used to define a formal test, also
known as the four-populations test or the ABBA-BABA test, to verify the fulfillment of the hypothesized genetic
relationship in Figure 1 between four populationsH1,H2,H3,H4. Here we use multiple genomes per population
to reduce the bias in the calculated value of D, and both SNP and genotype calling are avoided. Moreover the
implementation illustrated in this thesis is able to correct for errors due to deamination of the genome and to
accomodate the introgression caused by a population external to the hypothesized tree, in order to unbias the
four-population test.

Closely related to this method is the theoretical analysis of admixture graphs and F -statistic. A manuscript
on this topic ready for submission in the Bulletin of Mathematical Biology is part of this thesis. The admixture
graphs are used to describe the genetic relationship between populations, where each population is represented
by a node (see Figure 2). With the use of moment statistics, namely F -statistics, calculated from genetic data,
it is possible to infer a graph or test its fitness to the data. In this thesis, a background theory for the admixture
graphs and the F -statistics is proposed, in connection with the population genetics framework. The F -statistics
are the basis of many methods based on admixture graphs, including the four-population test, where the graph
of Figure 1 is described by an admixture graph.

The second method discussed and implemented is a preliminary and minor work of this Ph.d. thesis, and
originates from an exchange period at Imperial College London under the supervision of Dr. Matteo Fuma-
galli. The method proposes a Hidden Markov Model (HMM) for detecting and inferring variations in the ploidy
number (or ploidy) from NGS data, where ploidy is the number of sets of chromosomes in a cell. The imple-
mentation is able to detect the ploidy and uses genotype likelihoods as an aid to achieve the result (see Figure 3).
From another point of view, the method can also be used to detect errors in mapping sequenced data if the true
ploidy numbers are already known.

A page illustrating scientific contributions and future perspectives of the three aforementioned works is in
the page preceding each manuscript at the end of this introduction.
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Figure 1: Tree topology for the D-statistic. Hypothesis of genetic relationship between four popula-
tions H1,H2,H3,H4, on which the four-population test is developed. Note that H4 is assumed to be
an outgroup.

Figure 2: Example of admixture graph. Admixture graph (with four admixture events) representing
the ancestry of some present-day populations. Source: [1].

Yw1 Yw2
⋯⋯ YwN

Cw1 Ow1 Cw2 Ow2 CwN OwN

Figure 3: Hidden Markov Model for ploidy inference. Graphical representation of the Hidden Markov Model
used to infer the ploidy numbers. The Markov chain {Ywi}Ni=1 represents the unknown ploidy numbers on
N windows of loci. The observations Cwi , Owi are the average coverage and sequenced bases at window i,
respectively, for i = 1, . . . ,N .
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Background

Elements of Biology for Beginners

This section contains the key definitions related to the biology of DNA. This background section is necessary to
understand the terminology of the topics of this thesis.

Cells and DNA

Cells are the basic element of living organisms. They give structure to the body, intake nutrients and convert
them into energy, and carry out special tasks. Cells contain the hereditary material of an organism and can copy
themselves. A cell is composed by many parts and organs, amongst which the nucleus. The nucleus is the
control room of the cell, and contains the DNA (deoxyribonucleic acid), in which the hereditary information
of the organism is stored. The DNA present in a cell is called the genome. The organisms whose cells have a
nucleus are called eukaryotic (e.g. mammals), otherwise prokaryotic (e.g. bacteria).

The DNA consists of small molecules called nucleotides. There are four possible nucleotides decoded by
four letters corresponding to four chemical bases: A (Adenine), C (Cytosine), G (Guamine), T (Thymine).
We can consider the DNA molecule as a word of a certain length over the set of letters {A,C,G,T} that is
characterized (for chemical reasons) by a direction: from the 5′ side to 3′ side, where the numbers 5′,3′ are due
to chemical conventions.

Each nucleotide of the DNA is chemically bonded with a complementary one, specifically A with T and G
with C, to form a basepair (bp). The DNA is then seen as a word written from the direction 5′ to 3′ complemented
by a word written in the opposite direction, that is, from 3′ to 5′. Basepairs are found sequentially on a DNA
and are tied together by two backbones of sugar and phospate. The position of a basepair on the DNA is called
locus and the length of a genome is its number of basepairs (see Figure 4).

Figure 4: Representation of a cell and the DNA contained in the nucleus. Illustration of a cell’s
structure and detail of the basepairs in a section of the DNA helix, finally wrapped around a histone to
form a chromosome.

Chromosomes and ploidy

The DNA is wrapped around proteins called histones to form structured threads called chromosomes (see Fig-
ure 4). Each chromosome is grouped with its homologue, e.g. in singletons, pairs, triplets, etc., and the organ-
ism is then called haploid, diploid, triploid, etc. The bases of the 5′-to-3′ DNA sequences at the same locus in
grouped chromosomes form the genotype.

Sexual organisms such as mammals are usually diploid, that is, they have N paired copies of chromosomes
(N = 22 for humans, plus two sex chromosomes), where each chromosome of a pair comes from each mating
parent. After male and female gametes (haploid sex cells) are generated through a process called cell division,

10



they can mate and form a new organism (zygote). Starting from the union of the two haploid gametes, the
zygote will develop into a diploid organism, essentially through a process of cell replication.This process of
reproduction happens essentially in all eukaryotes organisms (plants, animals, fungi, humans, etc.), with some
minor differences.

The diploid state seems to be the favoured one in nature to enable sexual reproduction. However, genomes
more than diploid have been observed in plants and fungi already more than one hundred years ago. Such
property is called polyploidy and is considered being a very important mechanism in speciation of organisms.
Haploidy, diploidy and polyploidy are prevalently observed in plants and fungi, ranging from haploid (some
types of fungi) up to dodecaploid plants, while animals are in general diploid.

In some cases it can happen that some steps of cell division prior to mating happen erroneously, leading
for example to a wrong number of chromosomes in a gamete and causing aneuploidy (abnormal number of
chromosomes in a cell), that can cause death or developmental problems of some organism (e.g. Down syndrome
in humans, where chromosome 21 is triploid). Other variations can lead to small aneuploidy portions of the
genome without consequences.

Cancer cells are often characterized by aneuploidy in the host organisms. Cancer cells are essentially cells
that do not respond anymore to the normal signals governing their growth and death. Normally, a cell reproduces
a finite number of times, and destroy itself when its genetic material results too damaged. This does not happen
in cancer cells. Here, mutations (see next section) in the parts of DNA governing those mechanism lead to
abnormal behaviours: accelerated cell replication, fast generation of new mutations, altered cell duplication
resulting in aneuploidy, etc.

Sources of Genetic variations in a Population

The DNA can undergo changes that are cause of genetic variation, that is, variation of genomes between mem-
bers of species, or between groups of species located in different parts of the world. Genetic variations can
be essential elements in the future survival of organisms over different geographical locations and environmen-
tal conditions. Through the study of genetic variations scientists aim for example at tracking history of past
populations, characterizing pathologies, determining the lineage dynamic of species of organisms.

Genetic variations are first introduced through mutations. Mutations can be of different types:

• single nucleotide variation (SNV): inheritable base substitution at one or more loci of the DNA,

• insertion or deletion: insertion or deletion of a string of DNA sequence,

• copy number variation (CNV): replication of a section of DNA a certain number of times.

Once mutations are introduced, ulterior variability is introduced through recombinations. This is the exchange of
information between chromosomes in the process of creating of a zygote. In such a way the correlation between
different loci can be changed and eventually broken, and mutations can change their position in a genome. Loci
that are physically close to each other on the DNA are more unlikely to be separated by effect of recombination.
The more those loci keep being close through time, the more they are said to be genetically linked. Two loci are
said to be unlinked when they are found on two different groups of chromosomes.

The rate at which an SNV happens at each nucleotide is of the order 10−9/year in humans [2, 3]. A Sin-
gle Nucleotide Polymorphism (SNP) is a variation at a single locus in a DNA sequence between individuals.
Usually, if more than 1% of a population does not carry the same nucleotide at a specific position in the DNA
sequence, then this variation can be classified as a SNP.

Mutations can be useful, e.g. when caused by the pressure for adapting to an environment. In this case they
are said to be advantageous mutation. A mutation can otherwise be neutral (no effect in terms of adaptation) or
deleterious (negative effect in terms of adaptation).
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Mathematical Modeling of Genetic Data: The Wright-Fisher Model

This section illustrates the Wright-Fisher model for genetic data at a single locus [4, 5]. This is a basic mathemat-
ical model to explain how a population of N individuals (genes) evolves through non-overlapping generations.
Here we assume a population of N haploid individuals with alleles (types) A and B. We overlook some de-
tails that in reality influence the behaviour of the system, e.g. population structure, population size distribution,
selection etc. Main references for a deeper mathematical treatment of this model are [6, 7].

The Wright-Fisher model illustrates how the allele frequencies evolve in a population of finite size N . Each
individual is of one type (A or B) and we ignore the effects of mutations. At each non-overlapping generation
the population of N parents is sampled with replacement with probability 1/N to form children in the next
generation.

Let Zi be the r.v. that describes the number of offspring of individual i ∈ {1, . . . ,N}; the multivariate
random variable (Z1, . . . , ZN) is multinomially distributed with sampling probabilities 1/N . Therefore each Zi
is a Bin(N, 1

N ). Consider the random variables {Cr = number of A alleles at generation r}r∈N. Given Cr = i
for some r ≥ 0 and x ∈ {1, . . . ,N}, let i

N =∶ xi be the observed frequency of A alleles. Then

Cr+1∣Cr = i ∽ Bin(N,xi) (1)

defines a time-homogeneous Markov Chain {Cr}r≥0 with state space S = {0, . . . ,N}. States 0 and N are
absorbing states for the chain (see Figure 5B). The change in the frequency of allele A through this random
process is called drift. Figure 5A shows an example of Wright-Fisher model.

Let Xr denote the frequency of the A allele at generation r. The expected frequency of the A alleles at
generation r + 1, conditionally on the count at generation r, remains the same as in generation r:

E[Xr+1∣Xr] =Xr. (2)

It follows that the expected frequency at each generation is the same as the one at generation r = 0. Let
hr be the heterozygosity at the r-th generation, that is, the probability that two random individuals from the
population at generation r have different alleles. The heterozygosity at the r-th generation is hr = λrh0, implying
that hr Ð→r 0 (see Figure 5B). Therefore the genetic drift reduces a population’s diversity and increases the
divergence between different populations.
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Figure 5: Wright-Fisher model and allele frequency. (A) A possible Wright-Fisher model with N = 6 indi-
viduals and following the sampling in (1). Note that it is possible that some individuals never get sampled. (B)
Behavior of the allele frequency over generations for N = 1000 individuals and a proportion of 1/2 for the two
types at generation r = 0. Note that one of the two types is not present anymore in the population after around
500 generations, in accordance with the fact that the heterozygosity tends to zero as r → +∞.
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Ancestral Process and Coalescent Times

One can assume a different perspective when studying the Wright-Fisher model, by using a bottom-to-top point
of view (thus backward in time) in the genealogy of the individuals. In this way, we can try to answer to different
questions, e.g. Where did an individual come from? What are the ancestral relationships?

Denote by gkj the probability of having j different ancestors for k individuals. This is given by

gkj = N(N − 1)(N − 2)⋯(N − (j − 1))
Nk

S
(j)
k , (3)

where S(j)k is the Stirling number of the first kind, that is, the way of assigning k children to the j fathers.
Let t be the time variable. Denote by {ANn (t)}t≥0 the process representing the number of ancestors of n

individuals at time t, given a population size N . The ancestral process is given by

P(ANn (t + 1) = j∣ANn (t) = k) = gkj ,
with border condition ANn (0) = N . The approximation gkk + gk,k−1 ≈ 1 holds for (3). It is therefore highly
probable to remain in the same state of the ancestral process (i.e. to have the same number of parents) or to jump
to the next state (i.e. to have one parent less) as in Figure 6.

Consider a large population size N , ideally N →∞. Rescale the time in unit of N generation by r = ⌊N ⋅ t⌋.
Let Tk be, for k ≥ 2, the time while a sample of size k has exactly k ancestors. In other words, the time until
which k individuals coalesce. It follows that for N → +∞ the distribution of Tk is exponential of parameter(k
2
). Note that E(T2) = 1 and ∑Nk=2 Tk = 2, hence almost half of the time spent in coalescing N individuals is

necessary to coalesce the two main ancestral branches (see Figure 6).

Gene 1  Gene2              Gene3  Gene4      Gene5
T5

T4

T3

T2

time

t=0

Coalescent time

Figure 6: Example of coalescent times. Example of coalescent process of five genes present at
time t = 0. Much time is spent in T2, and exponentially distributed coalescent times decrease when
the number of genes grow.

Wright-Fisher Infinitely-many Sites Model

The Wright-Fisher Infinitely-many Sites Model [8, 9] maintains the binomial sampling nature of the Wright-
Fisher model. Here each gene of the Wright-Fisher model is considered as a sequence with infinite number
of sites, where each allele is drawn from the set {0,1}. The sampling of allele 1 is a mutation, and happens
with probability u, called mutation rate. Whenever a mutation is verified at a locus, a new type is created and
randomly sampled from an uniform variable in the interval [0,1]. In this way it is possible to keep track of the
mutations that happen along the lineages (see Figure 7).

The infinitely-many sites model is considered to be a reliable mathematical explanation of genetic data.
Speaking in terms of biology, it is possible to observe that in a DNA sequence there are very few loci where
variations happen, and those correspond often to one or two alleles, suggesting that at most one mutation can
happen at a locus.
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Consider the rescaling θ = limN→∞ 2Nu, meaning that the mutation rate is of order reciprocal to the popula-
tion size, and r = Nt. The number of mutations at time t (backward) on a lineage has Poisson( θ2 t) distribution
for N → ∞. This means that mutations are very unlikely to happen on a range of generations relatively short
when the mutation rate is very small, such as when we consider recent splits between human populations. The
Poisson nature of the number of mutations on a lineage implies that mutations are uniformly distributed along
the lineage length.

Gene 1  Gene2              Gene3  Gene4     Gene5

X

X

X

X

X

time

t=0
X

X

X

X

X

Position: 0.13 0.28 0.62 0.7 0.91
Gene 1 1 0 0 0 0
Gene 2 1 1 0 0 0
Gene 3 1 1 0 0 0
Gene 4 0 0 1 1 0
Gene 5 0 0 1 1 1

A B

Figure 7: Coalescence and representation of sequences. (A) Coalescence of five sequences
subject to mutations according to the infinitely-many sites model. The sequences are represented by
blue lines, and a dot is added randomly on a line to mark the locus at which a mutation happen. Each
mutation on a lineage is denoted with a cross and the mutated gene. Each mutation is reported on
the time line. (B) Table representing the sequences only at the random positions where mutations
happen. Each mutation is characterized by the allele 1.

The Importance of Allele Frequencies in Modeling Genetic Relationships

Mutation rates alone are not responsible of many changes in allele frequencies, if not over very long time
frames. Due to the Poisson nature of mutation events as a function of both time and mutation rate [7], mutations
happen very rarely when mutation rates are low, and only few of them aren’t lost in the population of interest.
Therefore mutations are generally not considered when modeling allele frequencies within different lineages of
the same species [10]. Note that this causes the expected allele frequencies to fulfill (2) under the Wright-Fisher
model. Moreover the conditional variance V ar(Xr+1∣Xr = xi) is given by xi(1 − xi)/N , for i = 1, . . . ,N , as
a consequence of the binomial sampling in (1). Hence one expects small variations in allele frequencies in a
Wright-Fisher model with absence of mutations and with large population size.

However, changes in the genetic drift (the sampling process of types) are introduced when taking into ac-
count other factors [10, 11] that are function of the population size, such as:

• bottlenecks: the population size is greatly reduced. In this case allele frequencies increase their variance
and the drift varies more.

• founder effect: similarly to bottlenecks, it happens when a fraction of a population becomes isolated from
the rest of the individuals.

Moreover, allele frequencies can be altered as a result of the following processes [10]:

• selection: some types gain reproductive advantage, and therefore alter the random process of sampling a
new generation.

• population structure: individuals in a population do not mate randomly because of geographical factors,
leading them into mating preferences.

• gene flow: gene flow occur when a population of individuals intakes other individuals from a different
population. Given allele frequency x and x′ of the two populations, respectively, the allele frequency of
the newly generated population is modeled as αx+ (1−α)x′. In other words, the gene flow is considered
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as an instantaneous pulse such that two portions of genetic material are inherited from the previously
separated populations [12, 13].

Allele frequencies have become of increasing interest in studying relationship between populations. The use
of frequencies has given rise to different methods to estimate which relationships are wrongly hypothesized
or best fitted by available genetic data [13–18]. In the first manuscript of this thesis [19], observed allele
frequencies are used to characterize a computational method to detect the presence of admixture. In the second
manuscript, a stochastic model for graphs relating populations is developed. Here we will also focus on the
analysis of the moment statistics called F -statistics, calculated from allele frequencies [12, 13]. The F -statistics
are a fundamental building block of computational applications [12, 13, 15, 20, 21] for understanding the past
history of different populations. Many of the assumptions in the analysis of Manuscript 1 [19] and 2 follow the
properties of allele frequencies treated in this section.

Next Generation Sequencing Data

The recent technological developments in the field of DNA sequencing data has provided scientists with a
large amounts of genetic data produced faster and cheaper than in the past. In this thesis the focus is on Next
Generation Sequencing (NGS) data [22–24]. More properly, this is the second generation of NGS data and
includes various protocols, amongst which Illumina [25], the one primarily used for sequencing the data applied
in this thesis.

Sequencing Pipeline 101

The generation of sequenced data follows an NGS protocol characterized by some essential steps [22] (see
Figure 8A). Firstly, DNA is extracted and DNA fragments are prepared from it. Then fragments are subject
to enrichment (essentially some of them are selected), and PCR amplification, after which a larger library of
fragments is available. Thereafter, the sequencing process generates short reads.

Raw data

The output data of an NGS system is given by reads whose length is of the order of hundreds of pairs. Each base
is an i.i.d. sample from the true genotype at its locus. In term of file format, the sequenced reads are collected
in a .fastq or .fq file [26], in which each read takes four lines as follows:

1. identifier of the sequence and eventual description,

2. sequence of bases in the read,

3. a + symbol and eventual other identifiers and comments,

4. encoded representation of quality values, one character for each base.

Quality values are taken from the ASCII alphabet of characters that corresponds to numeric values ranging
from 33 to 126. From those values it is possible to calculate the quality scores. There are two standards for
the quality scores (Phred and Solexa); we work with the Phred system since it is the one our data is based on.
The quality score of a base, that is, the probability that the nucleotide’s base of a read is wrongly sequenced, is
calculated as

ε = 10
−(Q−33)

10 ,

where Q is the ASCII integer value at that base. The obvious use of this coding system for .fastq files is the
compression of floating numbers into single characters, even though the probabilities become discretized.
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Processed data

The output of the sequencing process is given by the reads and their quality scores. This data has to undergo a
preprocessing step to accomodate for various artifacts and filter reads and bases. Thereafter reads are assembled,
that is, aligned to a reference sequence or de novo (see Figure 8B). At each locus the aligned bases are samples
with replacement from the true genotype. The resulting file (in .bam format [27]) contains the reads with the
coordinates of their alignment. Depending on the alignment technique that is used, every locus has assigned a
mapping quality score mapQ, that can be converted into probabilities with the Phred score formula. This is the
probability that the estimated alignment of reads is wrong at a specific locus.

The depth (or coverage) at a locus of the sequenced genome is the number of times a base is read at that
locus from aligned reads. The whole genome coverage is the ratio between the total number of sequenced bases
and the length of the sequenced genome. The depth can be modeled using a Poisson distribution, but often the
allele counts are overdispersed, therefore the negative binomial distribution is preferred [28].

A B C

D

Figure 8: NGS Data pipeline. (A) Sequencing pipeline from a high-throughput sequencing machine.
The DNA is first extracted from the cell’s nucleus and reduced into small fragments. Thereafter some
of the fragments can be enriched. In other words they are selected according to some characteristic
and preserved for the next step. Through Polymerase Chain Reaction (PCR) the fragments are re-
peatedly duplicated to form a larger library. The last step is sequencing: here single base pairs on the
fragments are identified and output in a digital memory as reads, that is, strings containing basepairs
and other information such as quality scores (identification error for each basepair). (B) Once reads
are output from the sequencing machine, they can be aligned against a reference genome or denovo.
In the first case, each read is mapped to a reference sequence, and reads might be completely or
partially stacked when matching the same portion of sequence. Denovo assembly builds a genome
without mapping it to a reference. (C) A variety of operations can be carried out using aligned data,
such as calculating the D-statistic, the genotype likelihoods, call SNPs and genotypes, etc. (D) After
the necessary calculations are performed, statistical analysis (e.g. ABBA-BABA test, ploidy inference,
etc.) can be carried out to obtain the necessary results (admixture detection, poliploidy, etc.).
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Given the overview and background for the thesis, the following section introduces a broad overview of
NGS data and some of the challenges that scientists face in its analysis.

NGS Data and its Challenges

The advances in sequencing technologies in the last decade have provided scientists with high-throughput data,
for example through NGS techniques [23, 29], that have allowed increased speed and reduced cost of the se-
quencing process. There are many different protocols available on the market to produce NGS data (e.g. 454,
SOLiD, GeneReader, Ion Torrent, Illumina) [23, 24, 29], where all of them essentially provide at the end of
the sequencing scheme an output that consists of reads of a certain length (in the order of 100 bases for Illu-
mina technology), that are either aligned to an available reference genome, or organized in scaffolds (denovo
assembly) when a reference is not available.

However, the use of NGS data encounters multiple challenges that need to be addressed. In situations where
large genomes are sequenced, and as long as there is no further reduction in sequencing costs, the reasonable
trade-off “costs vs. size” of the samples leads to the use of low-depth data, that is, with a depth lower than 5X .
In other words each base is sequenced on average less than five times. Low sequencing depth can be even more
problematic in ancient genomes, where the depth can be greatly lower than 1X , and alleles are characterized by
high error rates due to deamination of the sample (a chemical process) before sequencing [30, 31].

Why is low depth a problem in the analysis of NGS data? NGS data is affected by relatively high sequencing
error. For example, current Illumina sequencing shows higher sequencing error when compared to the Sanger se-
quencing [32, 33], a method established in the late 1970s, and the most used one for many decades. Sequencing
errors cause the wrong sequencing of an allele, and together with low depth can make it problematic to perform
SNP calling (the inference of polymorphic sites), because a polymorphism might just be a sequencing error,
and there are not enough bases to determine if the locus is in effect polymorphic. Similarly it becomes difficult
to perform reliably genotype calling (the inference of genotypes). In fact the genotype could be inferred just
looking at the proportion of alleles at a site if the depth would be high enough. For example, a diploid individual
with genotype CT at a certain locus, is expected to have a 50% proportion of aligned C alleles at that locus (see
Figure 9A). With low depth data this proportion is easily altered due to the lack of observed reads, sequencing
and alignment errors (see Figure 9B) and immediate inference of the reference genotype is not allowed.

A B

Figure 9: High- and low-depth reads (black) aligned to a reference genome (blue). Sequenced
reads aligned to a reference genome, and details of the bases at a locus where the true genotype is
CT. In figure (A) the depth is high and there are enough reads to estimate the genotype, even though
there is an allele that is wrongly sequenced or misaligned. In figure (B) the estimation of the genotype
is not possible due to lack of data and an erroneous base.

The two computational methods developed in this thesis will tackle the problems of NGS data in two differ-
ent ways by
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• using all the aligned reads from multiple genomes to determine an unbiased estimator of the allele fre-
quency [19, 34],

• characterizing genotypes probabilistically through the so-called genotype likelihoods [35] to help deter-
mining ploidy numbers.

The genotype likelihood is the probability of observing a particular genotype given the sequenced data. In
the simplest form, this can be calculated by taking into account individual base qualities as probabilities of
observing an incorrect nucleotide, and assuming the bases to be independent over reads.

Let R be the number of sequenced reads at a locus, O the observed data, or and qr the observed nucleotide
and the Phred base quality for read r, r = 1, . . . ,R, respectively. The i-th base of genotype g is denoted by gi,
i ∈ 1, . . . , y. The genotype likelihood of g for ploidy number y is expressed as

lnp(O∣g, y) = R∑
r=1

ln ( y∑
i=1

1

y
p(or ∣gi, qr, y))

where

p(or ∣gi, qr, y) = ⎧⎪⎪⎨⎪⎪⎩
1 − εr, if or = gi
εr
3 otherwise

and εr is the phred probability for the base at read r. The probability ε of observing an incorrect nucleotide is
considered homogeneous through the possible nucleotides.

Population Genetics: NGS Data and Methods

Many different fields of genetics have found beneficial the vast amount of information provided by NGS tech-
nologies. With the new information it has been possible to untangle long asked issues. Amongst those fields,
there is population genetics. Population genetics is the analysis of the genetic variations amongst populations
and the evolutionary processes that influence them. A crucial role in learning and understanding the genetic
variation of populations and their history is played by the detection of contacts between them in past times.

Such contacts can result in gene flow and admixture between populations and therefore might leave traces of
a population’s history in the DNA of individuals. With the term gene flow we denote the migration of individuals
from one population of a species to another, with transfer of genetic material to the receiving population through
interbreeding of individuals. The consequence of gene flow is admixture, that is, the generation of a new lineage
in the population receiving the gene flow. A gene flow is often denoted archaic (or ancient) when it involves
both modern and ancient populations.

There has been a growing research focus in both validating and inferring scenarios of gene flows and ad-
mixtures between both moderns and ancient populations, where the term populations includes - and is not only
restricted to - human and ancient human populations [12, 15, 16, 30, 36–43].

In fact not only NGS technologies have made it possible to obtain a large amount of sequenced DNA data
from modern individuals, but this has happened even in the case of ancient DNA, of which there are many
examples amongst humans. The genome of a more than 10,000 years old Anzick-Clovis (from North America)
was sequenced with an average depth of 14.4X [40]. A draft sequence of the Neandertal genome was built using
samples from three Neandertal individuals [15]. It was also possible to sequence the genome of a more than
8000 years old individual found in Kennewick (Washington) [44].

However, it has to be remembered that NGS data suffers of the drawbacks induced by sequencing errors and
low depth. Those biases have shown for example to affect many summary statistics that are of common use in
population genetics [45], including the D-statistic [46]. When possible, part of this bias is avoided by setting a
reasonable lower boundary to the depth and to the quality of the bases in each locus. For example the authors of
[39] set a lower bound of 10X for the depth when they call genotypes to apply the D-statistic.

A large number of statistical methods have been developed to study the relationship between populations
through genetic data. A wide class of methods embraces the model-free methods. In this case the genetic
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relationship between populations is based on probabilistic assumptions not related to any sort network or graph
structure. Some of those methods are based on probabilistically assigning an individual to a certain number
of admixing populations (clusters) without specifying a model for the populations’ history. This results in an
assignment of admixture proportions to the clusters. Even though it is not possible to infer which structure relates
the different populations, those methods provide an interpretation of the clusters as originating populations, or
simply the proof of admixture between populations.

Some methods that fall in this category are STRUCTURE [47], ADMIXTURE [48], BAPS [49], iADMIX [50]
and fastNGSADMIX [51, 52]. Such tools estimate in which proportion the genome of an individual results from
the admixture ofK ancestral populations. All those methods are based on allele frequencies,while iADMIX and
fastNGSADMIX use also genotype likelihoods from NGS data. The background model of all these methods
is the admixture pulse. Here each j-th ancestral populations admixes with proportion αj into the individual of
interest, providing the admixed individual with a proportion of alleles that corresponds to a fraction αj of the
allele frequency. Thus for a locus i = 1, . . . ,M , where M is the number of available loci, the allele frequency
xi of the individual of interest is the linear combination of the allele frequencies xij , j = 1, . . . ,K of the K
admixing populations:

xi = K∑
j=1

αjxij .

Moreover it is assumed that there is ideally no time span between the time of admixture and the time at which
data was acquired. The software STRUCTURE first assigns each individual randomly to one of theK predefined
populations. Thereafter the variant allele frequencies are estimated for each individual, and admixture propor-
tions are re-estimated for the K admixing populations. The process is repeated until a convergence criteria is
met.

The implementation of BAPS is very similar but assumes K as an unknown variable, that is then estimated
to avoid an excess or lack of fragmentation in the admixing groups. The software ADMIXTURE tries to achieve
analogous results by maximization of the likelihood of the assumed model. The implementation of iADMIX
and fastNGSADMIX start by calculating the genotype likelihoods. Afterwards they perform the EM algorithm
[53, 54] on the likelihood of the admixture proportions.

Despite the popularity of the clustering techniques in population genetics, they do not work well with a
limited number of individuals per population and they are not appropriate to detect ancient gene flow. In fact
population frequencies are not well estimated when few individuals are available, and the assumption on the
time of admixture is influenced by genetic drift. For example, the application of fastNGSADMIX on the
configuration in Figure 10B (taken from Figure 2A in Manuscript 1) shows no sign of admixture in Figure 10A,
because the admixture happened 8000 generations in the past.

Another category of methods is used to reveal patterns of population structure, based on a suitable measure
of dissimilarity. A widely applied technique is the PCA [55], that reveals those patterns through the eigenvectors
of a matrix measuring the pairwise genetic dissimilarity between individuals. In such a way different groups
that are genetically similar can be seen as being close in the patterns. PCA is performed by tools such as
EIGENSOFT [56] and TASER-PC [57]. The former is able not only to perform the PCA on provided samples,
but also implements a formal test to detect the presence of underlying structure between the individuals. The
latter has been developed for NGS data and makes use of genotype likelihoods.

A Model-based Method: The D-statistic

The model-free methods mentioned above are not well suited in applications involving ancient admixtures.
Other methods, called model-based methods, are often used to describe ancient gene flow. In such tools, the
probabilistic formulation of the relationship between populations is based on a representation through a type of
graph or network, whose nodes represent in which way populations are supposed to be genetically related.

A model-based method of recent development is the D-statistic. The D-statistic is used to define a formal
test to verify the fulfillment of the hypothesized genetic relationship in Figure 1. Here, H1,H2,H3,H4 are four
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Figure 10: Failed detection of ancient admixture from a clustering method. (A) Application of the
clustering method fastNGSADMIX on the tree (((H1,H2)H3)H4) in the configuration in Figure (B),
Taken from Figure 2A of [19] and simulated with the same parameters. Here there is migration from
an external population with rate m = 0.2%. The method fails because it assumes recent - ideally at
zero time in the past - gene flow, and is influenced by the genetic drift from the time of admixture until
present.

populations represented by the leaves of the tree, where H4 is an outgroup population. The first application
of the D-statistic can be found in [12]. Here, using a slightly different quantity called F4-statistic, the authors
are able to verify in which proportion the Indian populations of the Cline group are affected by external gene
flow. In [15] the D-statistic is used to discover and quantify the genetic affinity between three non-african
individuals and a Neandertal. It has been furthermore deduced that humans in Eastern Asia are subject to a
higher proportion of gene flow from the Neanderthals, if compared to non-African populations located farther
west [38]. The application of the four-population test to many different configurations of the hypothesis tree
lead to the possibility that certain Native American populations were the result of admixture, e.g. it has been
detected that Australasian populations admixed into New World Populations [16, 39].

In order to avoid SNP and genotype calling, often problematic when working with NGS data, the D-statistic
relies on sampling a base at each locus according to the relative frequency of each allele in the reads [15].
This technique is the one available in widely used computational tools. For example the sampling approach
is implemented for NGS data in the doAbbababa program of ANGSD [35]. An implementation for di-allelic
genotype data of multiple individuals can be found in the routine qpDstat of ADMIXTOOLS [36], while the
fourpop program of TreeMix [20] supports also microsatellite data.

Since the scenarios in which the D-statistic is applied often involve ancient admixtures, the DNA used
in the analysis might be affected by deamination. Deamination is a process through which the DNA of an
organism degrades post-mortem and results in low sequencing depth, low quality scores of the sequenced data
and high frequency of base transitions. Therefore the available methods for the D-statistic cannot be always
relied upon in applications involving ancient data, due to the uncertainty in calling procedures and the bias in
relative frequencies of the alleles at each locus.

This part of the thesis focuses on addressing the problematics that are encountered when applying the D-
statistic to NGS data. In the method we propose - called extended D-statistic - and implemented in the program
doAbbababa2 of ANGSD for low-depth NGS data, we calculate the D-statistic using all reads of the genomes.
Differently from what happens in the sampling approach, the use of multiple individuals for each population
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is allowed, and furthermore there is no requirement on the sequencing depth of the different individuals. The
extended D-statistic is approximated by a standard normal distribution and our improvements do not alter the
unbiasedness of the estimated frequencies used to calculate D.

In order to address the issue of type-specific errors, we correct for type-specific error rates in the data, so
that the reads used to calculate the D-statistic will not bias the result. Moreover, we show how to remove the
effect of known introgression from an external population into either H1, H2 or H3, and indirectly estimate the
admixture rate using the D-statistic. In the results section it is shown through simulated and real data that this
approach amplifies the test’s sensitivity in detecting the presence of gene flow, hence it makes the method more
reliable compared to the sampling approach or the methods based on calling procedures.

Standard D-statistic

The D-statistic is applied to formally test if the relationship between four populations H1,H2,H3,H4, repre-
sented in Figure 1 is fulfilled by the data. Population H4 is assumed to be an outgroup and the correctness of
the tree is stated as the absence of gene flow between either H3 and H2 or H3 and H1. In what follows, a
statistical test based on the allele frequencies and the null hypothesisH0 that the four-population tree is correct,
is developed.

Here, the j-th population consists of Nj individuals sequenced without error, with nij observed bases at
locus i from aligned reads. In order to keep the notation uncluttered, the treatment of the D-statistic is limited
to a di-allelic model with alleles A and B, where B is the non-outgroup allele, but the extension to four alleles
is straightforward. Only the M loci with at least a sequenced base from aligned reads in each population are
considered, where M is allowed to grow to infinity. Each j-th population has frequency of the A allele xij at
locus i, with j = 1,2,3,4, and i = 1, . . . ,M .

The idea behind the D-statistic is to characterize the differences within the pairs of populations (H1,H2) and(H3,H4) represented in the tree of Figure 1. Given a random allele drawn independently from each population,
consider two specific combinations of alleles: ABBA and BABA. In the former pattern, populations H1,H4

share allele A and the non-outgroup allele is shared by H2,H3. In the latter combination allele A is shared by
H1,H3, while H2,H4 share allele B.

In the model of four-population tree considered in Figure 1 we assume that each branch undergoes indepen-
dently a genetic drift. Therefore the ABBA and BABA patterns, conditionally to the populations’ frequencies,
will be verified in rare occasions.

Consider the probabilities of ABBA and BABA patterns at locus i. Those can be calculated as the following
expectations:

P(ABBAi) = E[xi1xi4(1 − xi2)(1 − xi3) + (1 − xi1)(1 − xi4)xi2xi3] (4)

P(BABAi) = E[(1 − xi1)xi2(1 − xi3)xi4 + xi1(1 − xi2)xi3(1 − xi4)]. (5)

The formal statement of the null hypothesis passes through the two equations above. In fact the objective is
to test if the A allele is shared equally between the pairs H1,H3 and H1,H2. The idea is to study when the
difference between (4) and (5) is equal to zero, leading to the null hypothesis:

H0 ∶ E[(xi1 − xi2)(xi3 − xi4)] = 0 for i = 1, . . . ,M.

Let x̂ij be the empirical allele frequency for population j at locus i. The D-statistic is defined as the normalized
test statistic

DM ∶= X(M)
Y(M)

= ∑Mi=1(x̂i1 − x̂i2)(x̂i3 − x̂i4)∑Mi=1(x̂i1 + x̂i2 − 2xi1x
i
2)(x̂i3 + x̂i4 − 2xi3x

i
4) , (6)

with X(M) and Y(M) denoted as the numerator and the denominator of the D-statistic, respectively. A way of
interpreting DM is to see it as the difference between the probabilities of having an ABBA and BABA pattern
of alleles over all loci, conditionally on observing only ABBA or BABA patterns.
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In Manuscript 1 it is proven that as M → +∞, DM converges in distribution to a standard normal variable
under a specific set of conditions. This result makes it possible to useDM as a test-statistic for a standard normal
test in order to verify the nullH0.

Extended D-statistic

In the extended D-statistic the issues arising in the current methods, intrinsically related to NGS data, are
addressed. The improvements implemented in the extended D-statistics do not alter the unbiasedness of the
frequency estimators used to calculate it.

To avoid calling procedures the sampling method is not applied in the extended D-statistic. Instead we use
all aligned bases in multiple individuals per population, in order to estimate the population frequency at each
locus. At each locus i, such an estimator is a weighted combination of the estimated allele frequency of each
individual in the j-th population of interest, that is,

q̂ij ∶= ∑Nj
`=1

wij,` ⋅ x̂ij,`,
where each weight wij,` is the linear coefficient of the `-th individual within population j. The weights are
determined in order to minimize the variance of q̂ij within respect to the weights. Further, they make it possible to
consider datasets with a wide range of coverages within the same population. The obtained frequency estimator
can be proven to be unbiased for the population frequency and has been first applied to reveal signatures of
natural selection [58].

Since the aim of the D-statistic is the application in studies often involving ancient data, the type-specific
error, that is the probability eee(a, b) of observing base b when the true base is a, is calculated for every pair of
bases and for each individual. The estimated type-specific errors of all individuals are organized into an error
matrix eee for the four-population tree, where each entry corresponds to the probability that a combination of four
alleles is mistakenly observed instead of another combination. Applying the product of this matrix to the vector
of observed combinations, it is possible to obtain true (error-corrected) combinations of alleles.

The rejection of the null hypothesis can arise when there is gene flow between an external populationH5 and
one between H1,H2,H3 and H4. Let p1∶4 and pout be the probabilities of allele patterns in the four-population
tree whereH5 is removed and substitutes the population affected by introgression, respectively. If the admixture
rate α is known, it is possible to calculate the probability of allele patterns pun where the portion of introgressed
genome from H5 is removed:

pun = 1

1 − α(p1∶4 − αpout).
If the admixture rate is unknown, it is possible to indirectly estimate it as the value of α for which pun makes
E[DM ] = 0. Note that the source of gene flow must be always known in order to determine the probabilities
pout, and that this model assumes recent admixture (ideally no drift after the admixture pulse).

Results and perspectives

The extended D-statistic has been tested on both simulated and real-data scenarios to study the effectiveness of
the implemented improvements.

The use of all bases in multiple individuals per populations shows a higher sensitivity to introgression, be-
cause the estimated frequencies are less biased when using all available information. In our simulations, the
power of the test based on the extended D-statistic with five individuals per populations is almost as high as per-
forming the four-population test with the true genotypes at depth 2X , and it greatly outperforms the power of the
sampling approach. The test on a real-data scenario representing the admixture of southwestern Europeans into
Native Americans [37] provides a more significant rejection with the extendedD-statistic, when compared to the
sampling approach. Moreover, the standard deviation of D is reduced by increasing the available individuals.
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Using a simulated four-population tree in absence of admixture, where the type-specific errors affect pop-
ulations H1 and H3, the scenario is rejected because the number of ABBA and BABA patterns is biased by
the errors. This problem is solved using the error correction method implemented for the extended D-statistic.
In the real-data scenario represented by the tree (((Saqqaq,Dorset)French)Chimpanzee), the ancient genomes
of Saqqaq and Dorset - that are known having a common ancestral population [39] - are heavily affected by
deamination and the scenario is rejected with high significance. Using the estimated type-specific errors for
each population, we are able to restore acceptance of the configuration.

The extendedD-statistic proves to be effective in simulated scenarios after removal of the bias in the number
of ABBA and BABA patterns due to introgression from an external population. We successfully obtained
the acceptance of a simulated scenario comparable to the tree (((Han Chinese,Dinka)Yoruban)Chimpanzee),
with introgression from the Neandertal into the Han chinese population, representing the admixture between
Neandertal and out-of-Africa populations [15, 38]. In the application with real data, it was possible to estimate
almost the same admixture proportion with similar uncertainty compared to the one calculated in [38], in relation
to the introgression into the Han Chinese population. Furthermore the correction for introgression seems not
to be affected by drift in the simulated scenarios aforementioned, and is performed correctly with the time of
admixture being 4000 generations in the past, due to a split that happened 8000 generations ago.

The extended D-statistic is therefore well-suited to detect gene-flow from low-depth sequencing data with
high sensitivity. Such a property can result in the drawback of interpreting results in the wrong way when the
underlying structure between populations is more complex, for example with multiple admixture pulses between
H3 and both H1 and H2, drift after the moment of admixture, or introgression from a distant ancestor of the
population whose data is available. Note that the presence of structure between H1 and H2 does not influence
the power of the test, since it changes only the sign of the numerator of DM . One of the possible alternative
scenarios in case of rejection has been explored when correcting for introgression from an external populations,
but there are of course unnumbered complex scenarios that can occur.

An example of bias introduced by post-admixture drift and introgression from an ancestor of the available
data (that again, introduces bias through drift), is given by the correction for introgression of the Mal’ta popula-
tion into the Peruvian group for the tree (((Peruvian,Han Chinese)Central European)Yoruban), representing the
fact that the Mal’ta population is strictly related to the modern Native Americans, but has no affinity to Eastern
Asians [37] (see Figure 11B). More precisely, the relatedness with the Mal’ta population is due to admixture
between its ancestor and the ancestral population of the Native Americans [16, 17]. Here the adjustment for
external introgression reveals both higher admixture rate and uncertainty when compared to the results in [16,
17], where the effect of the ancestry and the post-admixture drift have been considered. In fact, the correction
for introgression through the D-statistic assumes recent admixture with an instantaneous pulse, that is, ideally
no drift before and after the admixture.

Another drawback of the extended D-statistic resides in the error correction method. In theory the appli-
cation of the error correction works when applied locus-by-locus to each individual of interest, for which the
type-specific errors have been previously estimated. This generates in practice two problems: the first consists
in a great computational cost that makes the estimation of the D-statistic unacceptably slow, the second consists
in over correcting the observed allele frequencies into negative values on loci not affected by error.
Solutions to the latter issue could be approached in different ways. An easy fix is to set a lower threshold of 0
when overcorrection happens, but this would probably generate a bias in theD-statistic. Another possibility is to
check on which loci allele frequencies become negative after correction, and therefore avoid correcting on such
loci. The approach that seems more reasonable and suitable for future development of the error correction is to
study a weighted error matrix for each population. The weights should be related to the ones of the population
frequency estimator for the extended D-statistic.

The proposals above do not solve the problem of computational speed. In the extended D-statistic the
problem has been tackled by correcting the unobserved pattern frequencies over blocks of loci, and without
considering the depth of each individual when building the error matrix. This means that the individuals with
low depth might undergo an excessive error correction and bias the numerator of the D-statistic.

This effect will likely increase with growing estimates of type-specific errors and/or variability in the depth
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Figure 11: Inference of Mal’ta gene flow into a Native American population. (A) Inference of
admixture rate from the Mal’ta population into the Peruvian (Native American), based on when E[D] =
0 (admixture proportion 0.56). The value 0.40 inferred in Skoglund’s paper is in the uncertainty range
of the plotted D-statistic, but not the proportion 0.37 from Moreno-Mayar’s study. (B) Configuration for
the ABBA-BABA test affected by external introgression of the Mal’ta population into Native Americans.
(C) Detail of the configuration from [17], where the drift after admixture and the ancestry of the Mal’ta
and Native American populations are taken into account.

of the different individuals within a group. Analogously as suggested before, a future development could be a
weighting system for the type-specific errors based on the linear coefficients of each population frequency in the
whole block of loci.

Theory for Gene Flow Inference in Model-based Methods

The evolution of populations is often characterized by many factors in its history, such as gene flow due to
migrations, admixtures and splits. Such a complexity has always been a challenge for population geneticists.
Many traditional analysis in population genetics have been based on statistics calculated from genetic data, e.g.
heterozygosity, and then compared to their expectation under a specific setup of demography and mutations,
allowing for parameter inference [59].

The mathematical development of the coalescent theory [60, 61] lead to an increasing focus on methods to
infer populations’ history and mutation rates from molecular data, e.g. with MCMC techniques using simulated
genetic data [62] or likelihood-based methods [63, 64]. An example is the study of population size variations to
deduce past genealogical events [62]. However, those methods are computationally intensive and not useful in
cases of complex evolutionary histories.

However, the techniques mentioned above are considerably demanding in terms of computation complexity
even when inference happens on a single locus [63]. Further, those techniques also rely on mutation rates and
are hardly applicable when short time scales and low per-locus mutation rates are considered. A low mutation
rate implies that there might not be enough mutations to trace coalescent events back in time.

Another genetic characteristic, the allele frequency, have instead become of increasing interest in studying
genetic relationship between populations. Compared to mutations, the allele frequency is more informative of
evolutionary changes in different populations. In fact, mutations contributes very little to variations in allele
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frequencies over relatively short periods of time. But allele frequencies change remarkably as a consequence of
genetic drift and other factors (e.g. selection, population structure, gene flow and admixture) [10].

With the advent of high-throughput genetic data, such as NGS data [22, 24, 29], a large amount of data
has become available to scientists. Computationally demanding methods to study populations’ history have
therefore become ineluctably unusable. In recent years, an explicit model illustrating past gene flow between
populations, the admixture graph [13, 14, 65, 66], have been proposed as a generalization of the phylogenetic
tree [67, 68].

The phylogenetic tree is an attempt to model genetic relationships between populations through a graph
that admits only the split of a node that gives rise to two descendant populations. This model has generated
many applications. For example the Neighbor Joining Tree [69] method infers a tree using a measure of genetic
distance as clustering metric (see Figure 12). This method has become popular already with microsatellite data,
and it is still used in modern tools to infer a tree, to which mixtures are added in other steps [21].

Step 1 Step 2 Step 3
Figure 12: Neighbor Joining Tree method: toy example. The Neighbor Joining Tree method starts from a
star-shaped unrooted tree and pulls out a split that is optimal in term of a measure of genetic distance calculated
from the available data. The added branches are highlighted in red

An admixture graph admits a more elaborated evolutionary history. Here the model’s formulation includes
gene flow between populations, so that populations can merge and generate new lineages. At each locus, the
alleles of a sequence have frequency given by a linear combination of the allele frequencies of the admixing
populations [13, 14]. The linear coefficients of this combination are called admixture rates.

Some simple examples of admixture graphs are the ones used for the four-populations test in Figure 10B and
Figure 11B, where only one admixture and a limited amount of populations is involved. The admixture graph in
Figure 2 shows many populations and four different admixture events.

A tool that works on admixture graphs is qpgraph [70], where the authors use a heuristic method to exclude
unlikely edges, by building specific subgraphs denoted as qp-graphs. More recent methods based on admixture
graphs use moment statistics, called F -statistics, between populations.

The F -statistics, namely F2, F3 and F4, are based on allele frequencies. Their formulation allows for a
greater computational efficiency when compared to earlier studies based on computationally intensive likelihood
optimizations [65, 66]. The F -statistics are a particularly successful tool in population genetics not only because
of their applicability on genome-scale data, e.g. NGS data, but also because of their properties. In fact, the F2-
statistic, defined between two nodes, is interpretable in different ways and allow for a deeper understanding and
easier applicability to computational methods.

For example, F2 can be expressed in terms of variances on each independent lineage, and F2s are additive
on adjacent lineages in absence of admixture [13, 21, 71]. Moreover, the F3- and F4-statistic can be written as
combination of F2-statistics [12], and are the base of testing for admixtures in the three-population test and the
ABBA-BABA test [12, 13].
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Amongst methods for admixture graphs based on the F -statistics there are AdmixTools [13], TreeMix
[20] and MixMapper [21]. The first is used to infer admixture rates from a hypothesized graph. The latters
essentially build a tree, and then add admixtures in steps evaluating the fitness to the data. All those methods use
the fact that the additivity of F2 on lineages is not possible in case of admixtures [13, 21], but such sum involves
further terms and admixture proportions. This allows for inference on the admixture proportions based on the
topology of the graph, by equating the F2-statistics calculated from data to their theoretical value.

In this thesis a formalization of the admixture graphs and their properties are analyzed. The definition of
a stochastic structure on the graphs allows to study in depth the F -statistics and to find useful results, amongst
which the most important are a general formula to express the F2-statistics, and their properties in terms of
linear independence. The results of this theory can be related to the population genetics framework used in
recent computational tools and provide a solid background to future studies of the admixture graphs.

Admixture graphs and stochastic structure

An admixture graph is formalized as an acyclic directed graph with multiple roots. The use of multiple roots
describes a situation in which there is no hypothesis on the relation between the corresponding populations.
Therefore edges between each pair of roots are undirected to avoid making assumptions on which population is
ancestor of the other. The edges of such graph have labels that correspond to admixture proportions. Each edge
can be seen as a lineage.

To describe the genetic relationship between two populations in terms of their common ancestry, admixture
paths between them are defined. Each path is the composition of the connection between each of the two
populations and one of their common ancestors (there can be more than one ancestor because of admixtures).
Overlapping lineages are not considered, because those are verified when a common ancestor has been already
reached. Each path is assigned a label. This is the product of edges’ labels encountered by such path.

Figure 13 shows an example of admixture graph and the paths between nodes 4 and 5. Paths have a direction
identified by the starting node. Consider for example the paths starting in 4 and ending in 5 in Figure 13. One
can simply write them as sequence of connected nodes. For example the green path can be written as (4,3,5).
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Figure 13: Example of admixture graph and admixture paths. (A) Admixture graph where nodes 1,2 are
roots, 3 is an admixed node (population) and 4,5 are leaves that have only one parent population. (B) Paths
between populations 4 and 5 traced in different colours. The edges of the graph are not represented to avoid
confusion; note that while going backward from either node 4 or 5 to a common ancestor, all the edges of the
graph are met from the end to the beginning of the arrow. This corresponds to the backward point of view when
considering lineages in the Wright-Fisher model.

A stochastic structure for admixture graphs is formalized using assumption that can be matched with prop-
erties of the allele frequencies in population genetics. Each node i of the admixture graph has attached a random
variable Vi, modeling for example the allele frequencies. Moreover, one would like to take into account changes
in allele frequencies along a lineage. For each node i and each branch going to a population j, we introduce an
additional variable Cij . In terms of population genetics, Cij describes how the frequency of Vi has changed at
the time in which population j is generated.

The random variables are characterized by further assumptions to fit into the population genetics framework.
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For example, any variable Vj whose node has parents is given by∑i∈par(j) αijCij , where par(j) are the parents
of node j in the graph. This corresponds to the model of admixture pulse adopted, for example, in the four-
population test, and commonly applied in population genetics, where an admixed population inherits a fraction
of alleles from each ancestor [13, 14]. Another characteristic of methods based on allele frequencies is that
mutation are often not considered since they have a negligible effect compared to other factors affecting the
frequencies. In accordance with the property of frequency in (2) for the Wright-Fisher model without mutations,
it is here assumed that E(Cij ∣Vi) = Vi for each node i.

Results and perspectives

Using the stochastic structure introduced above, it is possible to describe the drift between two nodes. In terms
of allele frequencies, this can be seen as the difference in frequencies between two populations. Intuitively, each
frequency depends on a combination of admixture rates and parents according to the model of admixture pulse.

Therefore the drift between two nodes should depend on labels and nodes found recursively in paths from
the two nodes to some common parents. It is shown that a drift can be characterized using admixture paths and
labels. Each path contributes to the drift with an additive term proportional to the labels on the edges of the path.
This matches the intuition based on the model for admixtures adopted in population genetics.

The drift proves to be fundamental in analyzing the F -statistics. Amongst those, we consider mainly the
F2-statistic, because F3 and F4 can be written as linear combination of F2s [12]. The F2-statistic is defined
between two nodes i, j by E[(Vj − Vi)2]; its objective in population genetics is to measure how different two
populations are in terms of allele frequencies [12].

In manuscript 2 it is proven, using the properties of drifts, that the F2-statistic between two nodes can be
decomposed using admixture paths. One needs to consider the edges where at least a pair of paths between the
two nodes overlaps, and the labels involved in all those pairs of paths. Each edge k → ` of the graph contributes
with an additive term to the F2-statistic with the product of the squared expectation E(d2k`) ∶= E((Ck` − Vk)2),
properly scaled by paths’ labels. In other words, the F2-statistic highlights shared changes in allele frequencies
on the possible lineages to common ancestors (see Figure 14).
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Figure 14: Decomposition of the F2-statistic. Possible pairs of paths between nodes 3 and 4 used to interpret
the decomposition of the statistic F2(3,4). In (A) and (B) the two paths overlap on all edges, while in (C) they
overlap only between nodes 2 and 3. Below the graphs are written the additive terms that contributes to the
F2-statistic in each of the three pairs of paths.

The decomposition matches the graphical method proposed in [13, 14] on admixture graphs, where the
authors propose it to take into account that lineages are not independent in presence of admixture. In absence of
admixtures, the F2 is the sum of F2-statistics between adjacent nodes on the unique path between two nodes.

In a similar way one can interpret the F3- and F4-statistic. The former is interpreted as the amount of shared
frequency change between pairs of paths starting in the same node and ending in two different nodes. The latter
highlights the amount of shared drift between two different pairs of nodes. The F4-statistic is used in the first
application of the ABBA-BABA test [12], and is the numerator of the D-statistic. The idea behind the ABBA-
BABA test when using F4 is that, in absence of admixture as in Figure 15A, the paths between 4,5 and 6,7 do
not have shared drift, and therefore the F4-statistic has value zero (see Figure 15).
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Figure 15: Relationship between F4 and the ABBA-BABA test. (A) Possible paths on the four-population tree
used for the ABBA-BABA test in absence of admixture. Here the paths between nodes 4,5 (blue) and 6,7 (red)
do not overlap and therefore the F4-statistic between the two pairs is equal to zero. (B) Here the two possible
paths between 4,5 (blue) overlap in one case (solid blue line) with the red path between 6,7 on edge 2 → 8.
Therefore F4(4,5; 6,7) is not equal to zero in this case.

Using the canonical decomposition for the F2-statistic and the fact that the F2 between adjacent nodes
can be expressed as a difference of variances [71], one could in some cases express F2 as a sum of variances
along paths. An application that is possible to explore is the existence of a variance decomposition. In some
specific cases, such as in [72], a variance decomposition has been studied for undirected gaussian graphical
models. Gaussian variables are often used to describe frequencies in the F -statistics-based computational tools
for admixture graphs [20, 21].

A natural question that arises when studying the F -statistic is the possibility of defining Fk-statistics with
k > 4. For example, consider k = 5. In a definition of F -statistic involving five nodes where drifts are multiplied,
one would expect the product of at least three drifts, so that all nodes are considered. This would make it
impossible to express an F5-statistic as combination of F2-statistics (as it happens for F3 and F4). In fact F2 has
terms at most quadratic in the partial drifts, while F5 would contain terms cubic in the partial drifts. However, it
is a possible development to research more into this aspect of the topic to understand if it possible to find further
F -statistics - or to prove for example that this is not possible.

The F2-statistic can also be interpreted, in some cases, as a metric between two nodes. This property is
strictly related to the F3-statistic and to the topology of the admixture graph. A result giving a condition for
verifying if the F2-statistic is a metric, based on admixture paths, has been deduced and discussed.

The conditions for verifying that F2 is a metric between a pair of nodes i, j are relatively complicated, but
possible to implement. In few words, it is necessary to find in which pairs of paths between i and j there are
coincident nodes in opposite order, so that F2 does not fulfill the triangular inequality for metrics. The problem
is therefore redirected to listing all paths between two nodes.

A further development related to the F2-statistic as a metric is to study if there is a relationship between the
F2-statistic and the split decomposition [73, 74]. Here, a metric is decomposed as the sum of weighted metrics
on elementary subgraphs called splits and a non-metric residual. This proves to be extremely complicated
even on elementary examples of admixture graphs, primarily due to the difficulty of understanding when the
decomposition of the F2-statistic allows to define splits.

An important part of the theory of admixture graphs here proposed is the analysis of the linear independence
of the F2-statistic in a set of nodes. In fact, this property is fundamental when a linear system of decomposed
F2-statistics is considered in applications for admixture graphs [13, 20, 21].

The study of the linear independence involves all the elements introduced in the admixture graph theory, such
as the graph topology, the admixture paths, the decomposition of the F2-statistics and their additivity property.

Firstly, it is proven the additivity is verified only under some specific conditions. Already in [13, 14] it has
been pointed out that in presence of admixtures, the additivity does not hold. In [13] the renowned graphical
method to determine the F2-decomposition has been proposed, and an insight to its proof has been given in [21].
Here the graphical method is a consequence of the F2-decomposition along admixture paths.
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Lastly, a theorem giving conditions under which the F2-statistics are linearly independent is proven. This
result sets a relationship between admixture rates, additivity property, decomposition of the F2s and admixture
paths. Specifically, the linear independence is explored using the system of equations of decomposed F2s from
pairs of populations to formulate another system of equations. Each equation of this system has terms based
shared edges of the decomposed F2s. When some shared edges appear on the same decompositions with the
same coefficients, the linear independence might be broken.

The theorem for the linear independence of the F2-statistics holds only in cases where there are at most
two roots in the admixture graph of interest. It is still to be proved if there are conditions under which the
F2-statistics on a subset of nodes of a graph with an arbitrary number of roots fulfill the linear independence.

Inference of Ploidy Numbers from NGS Data

The ploidy number (or ploidy) is the number of sets of chromosomes that are found in a cell. If the chromosomes
are grouped one by one, then an organism is said to be haploid. Chromosomes that go in pairs are found in
diploid organisms. Organisms with higher number of chromosome copies grouped together (triploid, tetraploid,
pentaploid, etc. organisms) are said to be polyploidy.

Humans are known to be diploid, as it is often the case for animals, but other species are often characterized
by a different ploidy. Especially plants and fungi are known to have many polyploidy species, eventually with
different ploidy within different chromosome sets in the same individual [75, 76]. The polyploidy state is often
the consequence of hybridization or whole genome duplications (see Figure 16) and is mostly observed in plants
and fungi [77]. The genus of the Spartina, a perennial, has split into triploid, hexaploid and dodecaploid species
[78, 79].

The changes in ploidy are considered to be playing an essential role in the evolution of plants in natural
populations [76] and is probably the most important factor concurring in speciation of plants [80]. Moreover,
polyploidy can be an advantage for adapting to environmental factors when it causes alterations of the morphol-
ogy and phenology of the organisms [81]. Those alterations can happen even as fast as in one generation [82].
Polyploidy events have been detected in the ancestry of some types of crops and tomatoes [75], in lineages of
the maize [83, 84], in the common ancestry of cotton types [85, 86] and soybeans [75], and in fungi [87, 88].

Figure 16: Inferred times of whole-genome
duplications in the past evolutionary his-
tory of angiosperms. Tree representing the
inferred times (in million of years in the past)
at which whole-genome duplications creating
new polyploidy states happened for the evo-
lutionary history of angiosperm [86]. Source:
[75].
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An experimental method to detect ploidy numbers in a genome is the flow cytometry procedure [89]. Flow
cytometry is a high-throughput technique with which scientists are able to obtain a quantification of optical
properties, such as fluorescence, from particles floating in a special fluid. When flow cytometry is applied to a
cell, it is possible to determine very precisely the amount of genetic material in the nucleus, and estimate the
ploidy. Modern flow cytometry instruments are very sensible and reliable, but their cost is high [90, 91] and not
feasible if the only focus of an analysis is on the detection of ploidies.

The advances in high-throughput sequencing techniques of the recent years, such as Next Generation Se-
quencing (NGS) [23, 29], have rapidly resulted in a vast amount of cost-effective high-throughput data available
for a wide range of genetic studies. The available NGS protocols [23, 24, 29] essentially result into an output
that consists of short reads whose length is in the order of hundreds of bases, that are further aligned to a ref-
erence genome or denovo assembled in scaffolds. It is often the norm that studies based on NGS data rely on
low-depth sequencing (< 10X) because of cost-efficiency and/or degradation of the samples; moreover NGS
data is usually affected by a relatively high sequencing error, if compared for example to the traditional Sanger
sequencing [32, 33].

This results in potentially unreliable estimates of allele frequencies in the data, and consequently a bad
estimation of genotypes. Moreover, note that allele frequencies themselves can be misleading in revealing
ploidy numbers through genotypes. For example, consider the simple setup of having sequenced a set of di-
allelic chromosomes that have same ploidy, so that the sequencing depth is not necessarily informative. Assume
tha,t at a locus, allele C has been observed with a proportion of 2/3, and allele T with a proportion 1/3. This
might point to genotype CCT and ploidy equal to three, but also to genotype CCCCTT and ploidy six, and so
on with the ploidies multiple of three (see Figure 17).

Figure 17: Misleading ploidy inference from allele frequencies. Representation of the case in which triploid
and hexaploid sequence have the same proportions of alleles at a locus. It is not possible to say if the aligned
reads are due to sequencing of the triploid individual at depth 4X, or of the hexaploid individual at depth 2X.
The word depth is referred to the haploid depth, that is, the number of reads expected for each copy of the
chromosome.

Many of the current methods for the estimation of ploidy numbers in NGS data are based on loci’s depth
and allele frequencies. For example conPade [92] detects the ploidy of a given contig/scaffold using allele
frequencies. The tool ploidyNGS [93] estimates allele frequencies and provides a visualization tool through
which ploidy can be estimated visually. The visual approach is very commonly used to empirically estimate
the ploidy [94]. AbsCN-seq [95] combines the information on depth and allele counts to estimate, amongst
other parameters related to tumor-specific applications, the ploidies from NGS data. Analogous information are
applied to cancer cells’ data with in the package sequenza [96].

Changes in ploidy numbers can also be detected because of Copy Number Variations (CNV) When se-
quenced reads are aligned, the ones from the copied segments will be mapped to the same region of the reference
genome. This results in a multiplying factor for the sequencing depth, that is therefore detected as a change in
ploidy. Studies have reported that CNVs are present in humans [97, 98] and can be connected to the possibility
of developing diseases [99, 100].
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We propose a method called hiddenMarkovPloidy, dedicated to infer ploidy numbers from NGS data.
The method builds a Hidden Markov Model [101, 102] with a double set of observations that consists of sequenc-
ing depths and observed reads. The formers are used to detect changes in ploidy, while the latters are based on
the so-called genotype likelihoods [35], and contribute in assigning each hidden state to its corresponding ploidy.

Results and perspectives

Preliminary results show that the implemented model is able to recognize ploidy numbers from one to five at
low-depth (2X). However, at lower depth (0.5X) the ploidy number five is almost completely missed. In fact,
the drawback of this model is that many individuals are needed to estimate minor allele frequencies. If there
are not enough individuals, then the estimates might be biased, and consequently genotype probabilities would
be of little use for high ploidies. However, it is possible to calculate the expected frequency over all sites when
only one individual is available.

Moreover, high ploidies need the inference of the correct genotypes. If depth is too low, there will not be
enough reads to estimate genotypes on poliploidies. Those depth scenarios are quite extreme and not really
expected when using real data.

The performances on a strain of Bd fungi shows promising results for applications on real data. It is possible
to match the ploidy numbers that can be deduced by looking at the sequencing depth.

Further directions in the development of the model are being taken. An idea is to apply the Hidden Markov
Model to the detection of CNVs. The idea behind it is to proceed in two steps. Firstly, hidden states are detected
according only to the sequencing depth. Secondly, if the change of state is not followed by a new ploidy that
maximizes the probability of sequenced data, then the state is marked as CNV.

Moreover, the Hidden Markov Model uses only the depth of a single individual, even though genotypes like-
lihoods come from all genomes. The EM algorithm for multiple observations, assuming same ploidy numbers
on each window, and same haploid depth, is under development. The Hidden Markov Model could be applied
only on a subset of individuals with the same ploidy and haploid depth to develop a test for aneuploidy based on
the likelihood of the model for other individuals.

The window size used in this application is predefined by the user. Therefore, a window could overlap a
change of ploidy number. A further improvement would be developing automatic windows that do not need to
be predefined in input, but follow a criteria to perform unsupervised selection of the window size.

It is planned to use the data from more than 200 fungi to detect their ploidy numbers. The focus is on the
chytrid fungus Batrachochytrium dendrobatidis (Bd), whose spreading has become worrying, since it causes the
losses of amphybians worldwide. By performing a mapping of the ploidy numbers at different lineages, it might
be possible to understand the genetic mechanisms at the bases of the worrisome spreading trend of the Bd.
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Contribution

This paper contributes with a new implementation of the D-statistic and a thorough statistical analysis that
motivates its application. The proposed implementation is especially aimed at low-depth high-throughput data.
In fact, it is possible to use multiple genomes with different sequencing depths for each population. Moreover,
issues related to ancient DNA are solved thanks to the possibility of applying type-specific error correction.
Finally, we avoid calling procedures by using all reads available at each locus, instead of applying a sampling
approach.

As a results, the power of the newly implemented test is as high as the power of the D-statistic for known
genotype when the depth is 2X. The error correction performs well when ancient data with high error rates is
involved in the analysis, and it is possible to estimate admixture rates within reasonable intervals of uncertainty.

The D-statistic is implemented in C++ for the tool ANGSD [35] and illustrated at the address http://
popgen.dk/angsd/index.php/Abbababa2.

Future perspectives

Many possible developments for the implemented method are explorable. First of all there is the necessity of
building a better model to correct for type-specific errors. Here we correct for errors on blocks of loci, without
weighting the correction factors by the sequencing depth of the individuals. There is therefore need for a model
that is still computationally fast, but considers the sequencing depth of each genome involved in the estimation
of error rates.

Another possible extension of this method is to follow the idea of [103], where allele combinations are used
to detect the polarization of gene flow, considering that a fifth population must be available.

Further, one could look into developing a way to calculate the F2- and F3- statistic with a similar approach,
that is, by including multiple individuals and considering the allele counts at each locus. Another possible
framework could be determining the F2-, F3 and D-statistic by using the genotype likelihoods, so that the
uncertainty of each read could be taken into account.

The D-statistic is often applied on many combinations of four populations to detect gene flows. Using this
results as a starting point to roughly build the past genetic interactions of those populations, the reticulate of gene
flows is inferred or tested with tools working on admixture graphs and considering the effect of drift. However,
it could be interesting to implement an ABBA-BABA test that considers the effect of drift and can aid in better
estimates of admixture proportions and more precise values of the D-statistic.
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ABSTRACT The detection of ancient gene flow between human populations is an important issue in population
genetics. A common tool for detecting ancient admixture events is the D-statistic. The D-statistic is based
on the hypothesis of a genetic relationship that involves four populations, whose correctness is assessed by
evaluating specific coincidences of alleles between the groups.
When working with high throughput sequencing data calling genotypes accurately is not always possible,
therefore the D-statistic currently samples a single base from the reads of one individual per population.
This implies ignoring much of the information in the data, an issue especially striking in the case of ancient
genomes.
We provide a significant improvement to overcome the problems of the D-statistic by considering all reads from
multiple individuals in each population. We also apply type-specific error correction to combat the problems of
sequencing errors and show a way to correct for introgression from an external population that is not part of
the supposed genetic relationship, and how this leads to an estimate of the admixture rate.
We prove that the D-statistic is approximated by a standard normal. Furthermore we show that our method
outperforms the traditional D-statistic in detecting admixtures. The power gain is most pronounced for
low/medium sequencing depth (1-10X) and performances are as good as with perfectly called genotypes at a
sequencing depth of 2X. We show the reliability of error correction on scenarios with simulated errors and
ancient data, and correct for introgression in known scenarios to estimate the admixture rates.
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INTRODUCTION

An important part in the understanding of a population’s history
and its genetic variability is past contacts with other populations.
Such contacts could result in gene flow and admixture between
populations and leave traces of a population’s history in genomic
data. In fact, the study of gene flow between populations has
been the basis to uncover demographic histories of many species,
including human and archaic human populations (Patterson et al.
2012; Raghavan et al. 2013; Green et al. 2010; Reich et al. 2009; Wall
et al. 2013; Raghavan et al. 2015; Rasmussen et al. 2010, 2014; Reich
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et al. 2010, 2011; Lalueza-Fox and Gilbert 2011; Skoglund et al. 2015).

The study of the history of human populations using both
modern and ancient human genomes has become increasingly
topical with the recent availability of new high-throughput
sequencing technologies (Stoneking and Krause 2011), such as
Next Generation Sequencing (NGS) technologies (Black et al.
2015). These technologies have made it possible to obtain massive
quantities of sequenced DNA data even from ancient individuals,
such as an Anzick-Clovis individual from the Late Pleistocene
(Rasmussen et al. 2014), a Neandertal individual (Green et al. 2010)
and a Paleoamerican individual (Chatters 2000).

There are many different methods for inferring and analyzing
admixture events using genome-scale data. Popular methods such
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as STRUCTURE (Pritchard et al. 2000) and ADMIXTURE (Alexander
et al. 2009) estimate how much a sampled individual belongs to K
clusters that often can be interpreted as the individual’s admixture
proportion to the K populations. However, these approaches are
not appropriate to detect ancient gene flow and do not work well
with a limited number of individuals per population.

A recent alternative to the above methods is the D-statistic.
The D-statistic is based on the di-allelic patterns of alleles
between four groups of individuals, and provides a way to test
the correctness of a hypothetical genetic relationship between
the four groups (see Figure 1). A variant of the D-statistic
(called the F4-statistic) was first used in (Reich et al. 2009) to
identify that subgroups of the Indian Cline group are related to
external populations in term of gene flow. Also the amount of
gene flow might be estimated using the F4-statistic (Wall et al. 2013).

In the pivotal study (Green et al. 2010) the D-statistic was
used to show that 3 non-African individuals are more genetically
similar to the Neandertal sequence than African San and Yoruban
individuals are. Moreover, it has been shown that the Eastern
Asian populations have a higher amount of Neandertal shared
genetic material (Wall et al. 2013).
Using the D-statistic on many Old World and Native Americans
it has been suggested gene flow into some Native American
populations, such as evidence of admixture from Australasian
populations into New World Populations (Raghavan et al. 2015;
Skoglund et al. 2015).
In another study the affinity between the Anzick genome and
the Native Americans genome was analyzed with the D-statistic
to compare different hypotheses regarding their ancestry (Ras-
mussen et al. 2014). Using the D-statistic, it has been reported
that the remains of an individual from the Mal’ta population
in south-central Siberia have contributed to the gene pool of
modern-day Native Americans, with no close affinity to east
Asians (Raghavan et al. 2013).

Figure 1 Tree topology for the D-statistic. Hypothesis of genetic
relationship between four populations H1, H2, H3, H4.

The first use of the D-statistic was based on a sampling
approach that allowed to perform the test without the need
to call SNPs or genotypes (Green et al. 2010). This approach
is still widely used, and amongst the available computational
tools implementing this approach is the doAbbababa program of
ANGSD (Nielsen et al. 2011) (supporting low depth NGS data) or
the fourpop program of TreeMix (Pickrell and Pritchard 2012)

(supporting di-allelic genotype data and microsatellite data). The
program qpDstat of ADMIXTOOLS (Patterson et al. 2012) computes
the D-statistic from populations with multiple individuals from
di-allelic genotype data. The program doAbbababa relies on
sampling one base from every locus, using the sequenced reads to
define the sampling probabilities.
The D-statistic is often applied to scenarios involving ancient
individuals, that are commonly affected by deamination, i.e. the
natural degradation of DNA after death of the organism that leads
to there being few molecules remaining in ancient specimens and
often results in a low sequencing depth. Furthermore, deamination
can cause high frequency of specific transitions of the bases, low
quality of the SNPs and very low depth of the data. The current
methods for the D-statistic can be very ineffective and unreliable
when applied to ancient data, since both sampling and genotype
calling procedures are subject to high uncertainty.

The focus of this paper is to address the problems stated
above. We propose a D-statistic - implemented in the program
doAbbababa2 of ANGSD - that supports low depth NGS data and is
calculated using all reads of the genomes, and therefore allows for
the use of more than one individual per group. We prove that the
improved D-statistic is approximated by a standard normal distri-
bution, and using both simulated and real data we show how this
approach greatly increases the sensitivity of gene-flow detection
and thus improves the reliability of the method, in comparison
to sampling a single read. We also illustrate that it is possible to
correct for type-specific error rates in the data, so that the reads
used to calculate the D-statistic will not bias the result due to type-
specific errors. Moreover, our improved D-statistic can remove
the effect of known introgression from an external population into
either H1, H2 or H3, and indirectly estimates the admixture rate.

MATERIALS AND METHODS

This section introduces the traditional D-statistic and the theory
that leads to its approximation as a normal distribution. Thereafter
we explain how to extend the D-statistic to use multiple individuals
per population, without genotype calling and still preserving the
same approximation property of the D-statistic. Lastly, we will
show how to deal with type-specific errors and introgression from
a population external to the tree topology.

Standard D-statistic
The objective of the D-statistic is to assess whether the tree of
Figure 1 that relates four present-day populations H1, H2, H3, H4,
is correct. When H4 is an outgroup, the correctness of the tree
corresponds to the absence of gene-flow between H3 and either
H2 or H1. This objective is achieved by developing a statistical
test based on the allele frequencies and a null hypothesis H0
saying that the tree is correct and without gene flow. We limit
the explanation to a di-allelic model with alleles A and B to keep
the notation uncluttered; the extension to a 4-allelic model is
fairly straightforward. We do not make assumption on which
allele is derived, but we assume that B is the non-outgroup allele.
Population H4 is an outgroup, that splits off at the root of the tree
from the other branches. For each population Hj, j = 1, 2, 3, 4, in
the tree, we consider the related allele frequencies xj.

For each population Hj, the observed data consists of a certain
number of individuals sequenced without error. At every locus
i there are ni

j sequenced bases observed from aligned reads.
We consider only the M loci for which there is at least one
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sequenced base from aligned reads in all four groups. Moreover,
in this theoretical treatment we allow the number M of loci to
grow to infinity. Assume that at a locus i the allele frequencies
in the four groups of individuals xxxi ∶= (xi

1, xi
2, xi

3, xi
4) and let

x̂xxi ∶= (x̂i
1, x̂i

2, x̂i
3, x̂i

4) be an unbiased estimator of xxxi, such as the
relative frequencies of the allele A in each population.

The D-statistic focuses on di-allelic sites where the differences
are observed within the pairs (H1, H2) and (H3, H4). Consider a
random allele drawn from each of the four groups of genomes and
the resulting combination of the four alleles. We are interested in
two patterns:

• ABBA, meaning that we have the same allele in populations
H1 and H4 and another allele from the individuals in popula-
tions H2 and H3;

• BABA, where an allele is shared by individuals in populations
H1 and H3 and the other allele by individuals in populations
H2 and H4.

The tree of Figure 1 is subject to independent genetic drifts of
the allele frequencies along each of its branches. Consequently the
probabilities of ABBA and BABA patterns conditionally to popula-
tion frequencies would rarely be same. Therefore it is interesting
to focus on their expected values with respect to the frequency
distribution:

P(ABBAi) = E[xi
1xi

4(1− xi
2)(1− xi

3) + (1− xi
1)(1− xi

4)xi
2xi

3] (1)

P(BABAi) = E[(1− xi
1)xi

2(1− xi
3)xi

4 + xi
1(1− xi

2)xi
3(1− xi

4)]. (2)

To verify that allele A is shared between genomes in H1, H3 as
often as it happens between genomes in H2, H3, we require as null
hypothesis that at each i-th locus the probability (1) equals the
probability (2). This condition can be written as

H0 ∶ E[(xi
1 − xi

2)(xi
3 − xi

4)] = 0 for i = 1, . . . , M,

where the expectation is the difference between 1 and 2.
Using the empirical frequencies of the alleles as unbiased estima-
tors for the population frequencies, we define the D-statistic as the
following normalized test statistic

DM ∶= X(M)
Y(M) = ∑M

i=1(x̂i
1 − x̂i

2)(x̂i
3 − x̂i

4)∑M
i=1(x̂i

1 + x̂i
2 − 2xi

1xi
2)(x̂i

3 + x̂i
4 − 2xi

3xi
4) . (3)

The values X(M) and Y(M) are the numerator and denominator,
respectively. Using Y(M) to normalize the numerator leads to the
interpretation of DM as difference over all loci of the probabilities
of having an ABBA or a BABA events, conditional to the event
that only ABBA or BABA events are possible.
Appendix 1 shows that, under the hypothesisH0, the test statistic
can be approximated by a standard normal variable. Specifically,
the approximation holds with a proper rescaling, since DM would
narrow the peak of the Gaussian around zero for large M (note
that this rescaling is an embedded factor in the estimation of the
variance of DM using the block jackknife method (Busing et al.
1999) in the software implementation of ANGSD). More generally
the treatment could be extended to blockwise independence of the
allele counts to take into account linkage disequilibrium.

The convergence results of Appendix 1 apply to the following
special cases of the D-statistic:

1. the original D-statistic DM calculated by sampling a single
base from the available reads (Green et al. 2010) to estimate
the sampling probabilities,

2. the D-statistic DM evaluated by substituting the frequencies
x̂i

j with the estimated population frequencies q̂i
j defined in

eq 4 for multiple individuals (see Appendix 2).

3. the D-statistic DM evaluated only over loci where the out-
group is mono-allelic, such as when the Chimpanzee is set as
an outgroup to test for gene flow from the Neandertal pop-
ulation into modern out-of-Africa populations (Green et al.
2010).

Multiple individuals per group
The D-statistic defined in equation 3 is calculated using population
frequencies. In case only one individual per population is chosen,
it is easy to get an estimator of the populations’ frequencies by
simply counting observed bases. In what follows we are interested
in getting a meaningful estimate of the frequencies in the case we
want to use all the available sequenced individuals without calling
genotypes.

This is done using a weighted sum of the estimated allele fre-
quencies for each individual in every group. Assume that given
the allele frequency xi

j, j = 1, 2, 3, 4, at locus i for the jth population,
we model the observed data as independent binomial trials with
parameters ni

j and xi
j, where ni

j is the number of trials. We take the
frequency of allele A in the reads of each jth population as an unbi-
ased estimator of the population frequency. Let Nj be the number
of individuals in population j. For the `th individual within the
jth population, let xi

j,` be the frequency of allele A at locus i, with

estimator x̂i
j,` the frequency of allele A for ` = 1, . . . , Nj. Define q̂i

j
as the weighted sum

q̂i
j ∶= ∑Nj

`=1 wi
j,` ⋅ x̂i

j,`, (4)

where each wi
j,` is a weight, that is proportional to a quantity

depending on ni
j,`, the number of sequenced bases at locus i for

individual `:

wi
j,` ∝ 2ni

j,`

ni
j,` + 1

. (5)

The estimator q̂i
j in equation (4) is an estimator for the jth popu-

lation frequency at locus i with minimal variance (the derivation
of the weights as minimizer of the frequency estimator’s variance
can be found in Appendix 2). Substituting the estimated popu-
lation frequencies in equation (3) with the weighted estimators
determined by formula (4), it is possible to account for multiple
individuals per population. Since the weighted estimator is also
unbiased, it does not affect the approximation of the D-statistic
with a standard normal distribution.
A first application of this method has been the estimation of popu-
lation frequencies to reveal signatures of natural selection (Li et al.
2010). The weights have a strong impact on loci with low number
of reads, where they assume a low value, leading to a stronger
impact of population frequency estimated from high-depth indi-
viduals in each group.

Error estimation and correction
The study of genetic relationships between populations often
involves the use of ancient genomes that are subject to high
error-rates. We introduce error correction following the idea
illustrated in (Orlando et al. 2013) to take errors into account and
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to obtain a more reliable D-statistic.

The estimation of the type specific error rates is possible using
two individuals (one affected by type-specific errors, and one
sequenced without errors) and an outgroup, denoted by T, R
and O, respectively. Those individuals are considered in the tree
((T,R),O) (see Appendix 3).

After the error matrix is estimated for each individual it is
possible to obtain error-adjusted frequencies of alleles in locus i
through the following matrix-vector product:

pppi
G = eee−1pppi

T . (6)

where pppi
G and pppi

T are the true and observed vectors of allele
frequencies locus i, respectively, and eee is the 4 × 4 type-specific
error matrix whose entry eee(a, b) is the probability of observing a
base of type b when the true base is of type a. Note that estimating
eee and correcting the allele frequencies is a process best applied
before the calculation of weighted allele frequencies for multiple
individuals.

Using error-corrected estimators of the population frequencies
to calculate the D-statistic does not prevent it to be approximated
by a standard normal, because the error-corrected estimators are
unbiased for the true population frequency (see Appendix 3).

According to equation (6) one is able to perform the error cor-
rection at every locus for every individual. In this way it is possible
to build a weighted frequency estimator for each population after
the error correction. However the implementation of equation
(6) involves the inversion of a matrix and a matrix-vector mul-
tiplication at every locus for each individual in all populations.
Moreover, as a consequence of the error estimation, there might be
negative entries of the inverse eee−1, which might cause the product
of formula (6) to result in negative entries in the vector pppi

G.
Consequently we have decided to implement a less precise ver-
sion of the error correction that is applied to each whole group of
individuals instead of every single individual. Assume that the
populations’ frequencies have been estimated from equation(4),
and that it is possible to estimate the probabilities of the 256 alleles
combinations AAAA, AAAC, . . . , TTTT between the four popula-
tions.
In each jth population of individuals, let eee(j) be the mean of their
error matrices. Then build the error matrix for the four groups,
EEE. This has dimension 256 × 256 and its entry (a1∶4, b1∶4), where
a1∶4 = (a1, a2, a3, a4) and b1∶4 = (b1, b2, b3, b4) are two possible allele
patterns of the four populations, is defined as the probability of
observing b1∶4 instead of a1∶4, assuming independence of the error
rates between the four populations:

EEE(a1∶4, b1∶4) = eee1(a1, b1) ⋅ eee2(a2, b2) ⋅ eee3(a3, b3) ⋅ eee4(a4, b4).

The equation states that the change from pattern a1∶4 to b1∶4 hap-
pens with a probability that is the product of the error rates of
each population. Note that each error rate is the sum of the error
rates of each individual in that population, and so does not take
into account how every individual is weighted according to the
frequency estimator of formula (4).
Let PPPerror be the vector of length 256 that contains the estimated
probabilities of observing allele patterns between the four popula-
tions, affected by type-specific errors. Denote by PPPcorr the vector
containing the estimated probabilities of patterns not affected by

errors. With an approach similar to the one leading to equation 6 it
holds that

PPPcorr = EEE−1PPPerror.

Using the error-corrected estimated probabilities of combinations
of alleles of the type ABBA and BABA it is then possible to calculate
numerator and denominator of the D-statistic. This procedure is
fast but has the drawback that in every group the error matrix
takes into account every individual within a population without
its associated weight of equation 5. This means that the portion of
alleles related to individuals with lower weights might undergo
an excessive error correction.

Correction for introgression from an external population

The improved D-statistic proves to be very sensitive to introgres-
sion, but a hypothesized genetic relationship might be rejected
because of an admixture involving a population not part of the
considered tree. We propose a way to correct this issue and obtain
an estimate of the amount of introgression when the source of
gene-flow is available.

In this section we analyze the case in which the null hypothesis
might be rejected in favor of the alternative hypothesis, but the
cause of rejection is not the presence of gene flow between H3
and either H1 or H2, but instead gene flow between an external
population H5 and either H2 or H1. Consider the case of Figure
S6A, where the null hypothesis might be rejected because of intro-
gression from an external population H5 into H2 with rate α. We
assume that the external sample for H5 represents the population
that is the source of introgression. Consider H2 being the popu-
lation subject to introgression from H5, and define H′

2 the same
population when it has not undergone admixture.
The four population subtrees of interest (see Figure S3) are T1∶4 =(((H1, H2)H3)H4), which includes the 4-population tree exclud-
ing the admixing population, Tout = (((H1, H5)H3)H4), where
the population source of introgression replaces the admixed pop-
ulation, and Tun = (H1(H′

2(H3, H4))), in which H2 has not yet
undergone admixture and therefore reflects the null hypothesisH0.
Consider the patterns of four alleles for the three subtrees men-
tioned above, whose estimated probabilities are respectively de-
noted as p1∶4, pout and pun. Using the frequency estimators of
equation (4) it is possible to estimate p1∶4 and pout, but not pun
since H′

2 is not an observed population.
Assume that testing with the D-statistic on the tree T1∶4 leads to
a rejection of H0 because the allele frequencies of H2 are altered
by the gene flow from H5. In fact, any combination of four alleles
observed in T1∶4 has probability

p1∶4 = (1− α)pun + αpout.

By solving for pun it follows that

pun = 1
1− α

(p1∶4 − αpout). (7)

Note that if the admixture proportion α is known, then admixture
correction is possible. If α is not known and we assume the tree
is accepted for E[Dun] = 0, where Dun is the D-statistic related to
the tree Tun, then α can be estimated. In this case, pun has to be
determined for all values of α, and the correct one will be the value
for which E[Dun] = 0. In this way an estimate of the admixture
rate is obtained for the topology of Figure S3A.
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Simulations
Different scenarios have been generated using msms (Ewing and
Hermisson 2010) to reproduce the trees of Figure 2A, Figure 2B and
Figure 2C, in which times are in units of generations. Each topol-
ogy has been simulated 100 times for a constant population size
of Ne = 104. Mutation and recombination of the simulations are
consistent with human data (Ewing and Hermisson 2010). Migra-
tions and admixtures, respectively, for the scenarios of Figure2A
and Figure 2C, were simulated with specific options of msms. For
each simulation we generated 200 regions of size 5MB for each
individual and considered only variable sites, except for the case
of Figure 2B, where the null hypothesis is affected by type-specific
error on some of the individuals. We used a type-specific error of
eA→G = 0.005 in populations H1, H3. The choice of the region size
is compatible with the one estimated for applications with human
genomes in (Rasmussen et al. 2010). The regions are used by the
jackknife estimator (Busing et al. 1999) to estimate the standard de-
viation of the D-statistic accomodating for the non-independence
of loci.
As a second step, the simulated genotypes from msms were given
as input to msToGlf, a tool that is provided together with ANGSD.
Using msToGlf it is possible to simulate NGS data from msms out-
put files by generating the pileup files; that are used as input for
ANGSD. As parameters for msToGlf, we set up the depth as mean
of a poisson distribution and we hardcoded the error rates in the
program when necessary for the scenario of Figure 2B.

Sequenced human populations
For the real data scenarios of Figure 3A, Figure 3B and Figure
3C we used Illumina sequenced individuals from several human
populations. See Table 1 for an overview of the data. The depth
of each individual has been calculated using the program doDepth
of ANGSD. The Peruvian individuals used in our study were un-
admixed with proportion ≥ 0.95. Estimation of the admixture
proportions of these individuals was performed using ADMIXTURE
(Alexander et al. 2009). In every individual, only the autosomal
regions of all individuals were taken into consideration and bases
were filtered out according to a minimum base quality score of 20
and a mapping quality score of 30. Type-specific error estimates for
the Saqqaq, Mi’kmaq and French individuals were performed us-
ing the program doAncError of ANGSD, where the Chimpanzee was
used as outgroup and the consensus sequence of human NA12778
as error-free individual (See Figure S4 for the barplot of the esti-
mates of the type-specific error).

Data Availability
The real data used is specified in Table 1. The simulated data
has been produced using msms (Ewing and Hermisson 2010). The
msms code for simulations is in the caption of Figure 2. From the
output of msms NGS pileup files were simulated with the tool
msToGlf integrated in ANGSD (Nielsen et al. 2011). The 1-sample
D-statistic and the extended D-statistic implemented in this paper
are performed on both real and simulated data with the program
doAbbababa2 of ANGSD. ANGSD can be downloaded here. A detailed
guide including a tutorial for the program doAbbababa2 is found
here.

RESULTS AND DISCUSSION

In the study of our results we compare different implementations
of the D-statistic on simulated and real scenarios. We briefly
define as Dext the extended D-statistic that we implemented,
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Figure 2 Simulated Scenarios. (A) Simulation of a tree in which
migration occurs from population H3 to H1. The variable m is the
(rescaled) migration rate varying between 0, 8, 16, 24, 32, 40 up to
280 with steps of size 20. Expressed in percentage, the migration
rate varies between 0%, 0.02%, 0.04%, 0.06%, 0.08%, 0.1% up to
0.7%. Command: msms -N 10000 -ms 40 200 -I 4 10 10 10
10 0 -t 100 -r 100 1000 -em 0.2 3 1 $m -em 0.201 3 1 0
-ej 0.5 1 2 -ej 0.75 2 3 -ej 1 3 4. The same command line
has been applied with the option -I 4 40 40 40 40 0 to gener-
ate populations of 20 diploid individuals, used to study the power of
the method using subsets of 1, 2, 5, 10, 20 individuals of such pop-
ulations. (B) Simulation of a tree in which no migration occurs, but
type-specific errors on some individuals provide a rejection when
testing for correctness of the null hypothesis. Command: msms -N
10000 -ms 8 200 -I 4 2 2 2 2 0 -t 100 -r 100 1000 -ej
0.5 1 2 -ej 0.75 2 3 -ej 1 3 4. (C) Simulation of a tree in
which H5 admix with H1 with an instantaneous unidirectional admix-
ture of rate α = 0.1. In this case we expect the null hypothesis to
be rejected since H5 will alter the counts of ABBA and BABA pat-
terns, but the alternative hypothesis does not involve gene flow with
H3. Command: msms -N 10000 -ms 50 200 -I 5 10 10 10 10
10 0 -t 100 -r 100 1000 -es 0.1 1 0.9 -ej 0.2 6 5 -ej
0.25 1 2 -ej 0.5 2 3 -ej 0.75 3 4 -ej 30 4 5.
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Figure 3 Real Data Scenarios. (A) Tree representing the south-
western European migration into the Americas during the European
colonization. (B) Tree representing two independent migrations into
northwestern Canada and Greenland. (C) Tree representing the
presence of Neandertal genome into a modern non-african popula-
tion, specifically the Han Chinese.
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n Table 1 List of the Genomes Used in Real Data Scenarios.

Genome Id Major population division Depth Reference study

HG01923 Peruvian (PEL) 6.3X (Altshuler et al. 2010)

HG01974 Peruvian (PEL) 11.9X (Altshuler et al. 2010)

HG02150 Peruvian (PEL) 7.3X (Altshuler et al. 2010)

HG02259 Peruvian (PEL) 6.5X (Altshuler et al. 2010)

HG02266 Peruvian (PEL) 3.8X (Altshuler et al. 2010)

NA18526 Han Chinese (CHB) 6.6X (Altshuler et al. 2010)

NA18532 Han Chinese (CHB) 7.3X (Altshuler et al. 2010)

NA18537 Han Chinese (CHB) 2.9X (Altshuler et al. 2010)

NA18542 Han Chinese (CHB) 7.3X (Altshuler et al. 2010)

NA18545 Han Chinese (CHB) 6.2X (Altshuler et al. 2010)

NA06985 CEPH (CEU) 12.8X (Altshuler et al. 2010)

NA06994 CEPH (CEU) 5.5X (Altshuler et al. 2010)

NA07000 CEPH (CEU) 9.4X (Altshuler et al. 2010)

NA07056 CEPH (CEU) 4.9X (Altshuler et al. 2010)

NA07357 CEPH (CEU) 5.7X (Altshuler et al. 2010)

NA12778 CEPH (CEU) 6.9X (Altshuler et al. 2010)

NA18501 Yoruba (YRI) 6.4X (Altshuler et al. 2010)

NA18502 Yoruba (YRI) 4.9X (Altshuler et al. 2010)

NA18504 Yoruba (YRI) 10.1X (Altshuler et al. 2010)

NA18505 Yoruba (YRI) 6.1X (Altshuler et al. 2010)

NA18507 Yoruba (YRI) 3X (Altshuler et al. 2010)

HGDP00778 Han Chinese (CHB) 23.4X (Consortium 2003)

DNK02 Dinka 25.8X (Meyer et al. 2012)

HGDP00927 Yoruban (YRI) 28X (Consortium 2003)

AltaiNea Neanderthal 44.9X (Green et al. 2010)

pantro2 Chimpanzee - (Kent et al. 2002)

saqqaq Saqqaq 15.7X (Rasmussen et al. 2010)

MARC1492
Ancient Canadian Dorset

(Mi’kmaq - New England)
1.1X (Raghavan et al. 2014)

HGDP00521 French 23.8X (Consortium 2003)

6 | Soraggi et al.



D1base the D-statistic calculated by sampling 1 sequenced base
per locus (Green et al. 2010) and Dgeno the D-statistic calculated
with equation (3) using the allele frequencies estimated from the
true genotype (the true genotype is only available in the case of
simulated data).

The D-statistic is computed on blocks of 5Mb, to ensure that
every block is not subject to linkage disequilibrium from the other
blocks, and that the number of loci in each block is large enough
to make the D-statistic approach the approximation by a standard
normal distribution (see Appendix 1). The use of blocks allows for
estimation of a proper normalization constant for the D-statistic
using the m-block jack-knife method (Busing et al. 1999). The
threshold for rejection of the null hypothesis is set to a p-value
0.001, corresponding approximately to the two-tailed acceptance
region [−3, 3].

The formula for calculating the D-statistic is given in equation
(3) and finds amongst its current implementations, the ones in
(Patterson et al. 2012) and (Nielsen et al. 2011), with sampling of
one base per locus from only one individual in each population.
Such an implementation is computationally fast but has many
drawbacks:

• when genomes are sequenced at low or medium depth (1X-
10X), sampling one base might lead to a process with high
uncertainty;

• base transition errors might affect the sampling of the base
adding more uncertainty;

• only one individual per population is used;
• for a chosen individual chosen from a population, the reads

are not used to evaluate the D-statistic, but only to sample one
base.

We have proposed a solution to these problems with the extended
version of the D-statistic Dext implemented in ANGSD and we will
show in the following results how all the problems mentioned
above are addressed.

Comparison of Power Between the Different Methods
Using simulated and real data we compare the different types of
D-statistics to study their sensitivity to gene flow, and illustrate
how the improved D-statistic Dext is not affected by the issues
faced by the current D-statistic D1base, and even reach the
performances of the D-statistic based on true genotype Dgeno at a
rather low sequencing depth.

To evaluate the power of the different methods we first simu-
lated NGS data based on coalescent simulations with mutation
and recombination rates consistent with human populations
(Ewing and Hermisson 2010). We simulated without sequencing
error four populations with a varying amount of migration from
H3 to H1 (see Figure 2A) and applied the D-statistic based on five
individuals from each population for two different sequencing
depths. Figure 4A and Figure 4B show the power of the methods
for depth 0.2X and 2X. Here power is the rejection rate of the null
hypothesis when there is a migration from H3 to H1 in the tree(((H1, H2)H3)H4).

The extended D-statistic proves to be effective in detecting gene
flow even when the simulated depth is very low. For the scenario
with sequencing depth 0.2X, D1base is not able to detect almost any
case of migration from H3, while Dext reacts with an acceptable
rejection rate already for a migration rate as low as m = 0.15%.

Of course such a very low depth does not allow the D-statistic to
perform as well as Dgeno. In the case of sequencing depth 2X, D1base
does not always detect the alternative hypothesis and has also a
considerable delay in terms of the migration rate necessary to do
that, when compared to Dext. Furthermore Dext follows almost
exactly the behavior of the power related to Dgeno. This means
that with a depth above 2X we can expect the D-statistic Dext to
perform as well as knowing the exact genotypes of the data.
A deeper analysis to study the effect of using multiple individuals
per group is illustrated in Figure S1. Here we simulated again
the scenario with depth 0.2X, and compared the use of 1, 2, 5, 10
and 20 individuals per population. The graph shows that using
multiple individuals increases the power of the method and at the
same time decreases the standard deviation of Dext.
From 5000 simulations of the null hypothesis at depth 0.2X we
produced the QQ-plot of Supplementary Figure 8. Here we can see
that, despite we simulated only 200 blocks of 5Mb length for each
individual, the D-statistic already shows its asymptotic property
of convergence to a standard normal.

The power of Dext and D1base are compared in a real data sce-
nario using Illumina sequenced modern human populations from
the 1000 Genomes Project with a varying sequenced depth in the
range 3-13X. We specifically used PEL=Peruvian, CEU=European,
CHB=Han Chinese and YRI=African Yoruban individuals to form
the tree (((PEL,CHB)CEU)YRI) shown in Figure 3A. This scenario
represents the southwestern European gene flow into the ances-
tors of the Native Americans (Raghavan et al. 2013). Each of the
four populations consists of 5 sequenced individuals when evalu-
ating Dext, and a distinct one of those individuals when evaluating
D1base five times (see Figure 4C). The extended D-statistic Dext has
much lower standard errors, that corresponds to a smaller p-value
than in the case of D1base, and therefore a more significant rejection.
See Table S1 for a better comparison of the values of the different
D-statistics.
It is worth to underline that the presence of structured populations
might lead to false positives because the structure is not considered
in the model. If there is structure within H1, H2, the properties
of the D-statistic are preserved. However, if the population was
structured prior to the split of H1 and H2, then it will affect the
D-statistics.

Error Impact and Correction

Sequencing or genotyping errors are known to have a large
impact on the D-statistic (Orlando et al. 2013). Using simulation
we show that if the type-specific error rates are known then
we can correct the D-statistic accordingly. We simulate the tree
under the null hypothesis. However, we add base A → G error
rate of 0.005 in populations H1 and H3 in order to alter the
observed number of ABBA and BABA combination of alleles,
and consequently lead to a possible rejection of the null hypothesis.

In the plot of Figure 5A are represented the estimated
distributions of the Z-scores related to Dext before and after
error estimation and error correction, for 100 simulations of a
tree (((H1, H2)H3)H4) without any gene flow, where we have
also introduced type-specific error for transitions from allele A
to another allele for the individuals in H1, H2, H3 at different
rates. The test statistic has high values due to the error while all
simulations fall in the acceptance interval if we perform error
correction.
The uncorrected D-statistic performs poorly because of the
errors in the data that cause rejection of the null hypothesis in
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all simulations. It is remarkable to observe that Dext has good
performances already at depth 0.5X. This means that even small
error rates in the data make the D-statistic very sensible to the
rejection ofH0. Therefore we require to apply error correction to
our data. The result is that the Z-scores fall into the acceptance
threshold and the null hypothesis is fulfilled. The distribution
of corrected Z-scores is not perfectly centered in 0 because of
imperfect error correction.

The most obvious need for error correction in real applications
is the use of ancient genomes, which have a large amount of errors,
especially transitions. To illustrate the effect of errors in real data
and our ability to correct for them we use two ancient genomes
which contain a high sequencing error rate due to post mortem
deamination. The tree (((Saqqaq,Dorset)French)Chimpanzee) of
Figure 3B illustrates the migrations to western Canada (Canadian
Dorset Mi’kmaq genome) and southwestern Greenland (Saqqaq
genome). Due to the effect of deamination prior to sequencing
(Rasmussen et al. 2010; Raghavan et al. 2014), the two ancient
genomes have high type-specific error rates as shown in Table S2
and Figure S4. The error rates alter the counts of ABBA and BABA
patterns, which bias the uncorrected D-statistic.
We expect the tree to be true under the null since Saqqaq and
Dorset have a recent common ancestor (Raghavan et al. 2015). In
Figure 5B we compare the extended D-statistic Dext in four cases:
firstly using observed data, secondly removing all transitions
which are related to most of the errors, thirdly applying error
correction and lastly combining error correction and transitions
removal. Note that the removal of transitions related to the
pairs of alleles A,C and G,T is the current standard technique
to avoid high error rates when calculating the D-statistic from
damaged low-coverage data. The uncorrected D-statistic rejects
the null hypothesis whereas correction or transition removal
gives a non-significant test. Error correction performs better
than transition removal, providing a value of the D-statistic
that is closer to 0 and has smaller standard deviation. Table S3
shows the values related to the four D-statistics in this scenario.
Supplementary Figure 11 illustrates the effect of increasing
and decreasing the removal of error for the base transition
C → G and C → T for one of the Saqqaq, Dorset and French
genomes. This correspond to add a value to the estimated
error rate matrix of one of the individuals. Observe that the
French individual is less affected by the addition or removal of
error than the first two individuals. Moreover all 3 individuals
are more sensible to the error rate in the case of transversion C → T.

Correction for External Introgression

We use simulations of a scenario with external introgression to
verify the performance of correction for gene-flow in restoring
a four-population tree configuration that lead to the acceptance
of the null hypothesis H0. In the simulation case we know the
value of α, that is the amount of introgression, therefore correction
is possible. Thereafter we use a known genetic relationship
involving the Neandertal introgression into out-of-Africa modern
individuals in Europe and Asia (Green et al. 2010; Wall et al. 2013)
to correct for the effect of admixture. In addition we show that, if
we assume the absence of gene flow in the tree topology, then we
can estimate the amount of introgression, and compare it with the
estimation involving the original D-statistic tools.

For some species there are introgression events from an external

source which can affect the D-statistic when performing test for
admixture among the species. We performed 100 simulations of
the null hypothesis (((H1, H2)H3)H4) of Figure 2C, for which
an external population H5 is admixed with H2 with rate α = 0.1.
The plot of Figure 6A shows the estimated distribution of the
Z-scores related to the observed and admixture-corrected Dext.
The observed D-statistic is positive and has Z-scores that reject
the null hypothesis. Applying equation (7) we are able to remove
the effect of gene flow from H2. The result of removal of the gene
flow’s effect is that the estimated probabilities of ABBA and BABA
combinations of alleles are altered and the resulting calculated
values of the D-statistic lead to acceptance of the null hypothesisH0.

For human populations it is problematic to use the D-statistics
when applied to both African and non-African populations be-
cause of ancient gene-flow from other hominids into non-Africans.
Therefore, H0 might not fulfilled for any tree (((H1, H2)H3)H4)
where an ingroup consists of both an African and a non-African
population. This leads to rejection of the tree and to the natural
conclusion that there is gene flow between H3, H2 (resp. H3, H1).
However, if there is known external admixture from a population
H5, it is possible to correct for admixture from this external
contribution.

We illustrate the problem and our ability to correct for it
using the tree shown in Figure 3C, which shows introgression of
the Neanderthal genome into the ancestors of the Han Chinese
population. The correction is performed for the admixture
proportion α in the range [0, 0.05] in steps of 0.01. The value of
α for which the Dext is closest to 0 might be considered as an
estimate of the admixture rate. We choose these populations
because we can compare our result with the estimate from
previous studies of the same populations (Green et al. 2010; Wall
et al. 2013). The study of (Green et al. 2010) estimated α to be
in the range [0.01, 0.04], while (Wall et al. 2013) estimated it as
being α = 0.0307 with standard deviation 0.0049. The result is
shown in Figure 6B for the tree (((Han Chinese, Dinka) Yoruban)
Chimpanzee) for different admixture rates α used to correct for the
introgression of the Neandertal population into the Han Chinese
population. The red polygon is the interval in which α is estimated
to be (Green et al. 2010). The black dot coincides with the value
of α = 0.0307 calculated in (Wall et al. 2013). The blue polygon
is 3 times the standard deviation of Dext. For almost the whole
range of reported admixture proportions, the tree is not rejected
after adjustment for admixture, indicating that the uncorrected
D-statistic concluded the presence of gene flow. When Dext is 0,
we estimate α = 0.03 with standard deviation 0.0042, which is
similar to previous estimates.

In both the cases of simulated and real data we have thus been
able to distinguish the case in which the alternative hypothesis is
due to an external introgression and not to admixture from H3.
In our simulations, the admixture correction seems not to suffer
from the effect of drift, which is not modeled in the correction. In
fact the branch leading to H5 splits 8000 generations in the past
and admixes 4000 generations in the past on the branch leading
to H1. Thus there is a drift affecting gene frequencies of both the
admixing and admixed populations.
In the case of real data the exact amount of admixture α is not
previously known. Therefore we calculated the D-statistic for
the tree (((Han Chinese, Dinka) Yoruban) Chimpanzee) using
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admixture-corrected values of the probabilities of allele patterns,
considering values of the admixture rate falling in the interval
estimated in (Green et al. 2010). Without admixture correction,
the obvious conclusion would have been that for the tree (((Han
Chinese,Dinka)Yoruban)Chimpanzee) there is gene flow between
the Yoruban and Dinka populations.

Conclusions
In summary we have implemented a different D-statistic that
address the drawbacks of the current implementations of the
D-statistic, but still preserve the approximation as a standard
normal distribution (see Appendix 1) that allows for a statistical
test. The extended D-statistic Dext allows for multiple individuals
per population and instead of sampling one base according to
the estimated allele frequencies, uses all the available sequenced
bases.
Using both simulations and real data we have shown that
1) the extended D-statistic Dext has more power than the alterna-
tive methods, with an increased sensibility to admixture events.
Moreover, even without a large amount of data, the extended
D-statistic shows a good asymptotic convergence and therefore a
low false positive rate;
2) the performance of the extended D-statistic is the same as when
true genotype is known for a depth of at least 2X,
3) we can accomodate type-specific errors to prevent that en
eventually wrong acceptance or rejection of the null hypothesis is
caused by error-affected allele frequencies. The error estimation
and correction reveal to be especially suited in the case of ancient
genomes, where error rates might be high due to chemical
treatments prior to sequencing and degradation over time;
4) we can calculate the D-statistic after correcting for admixture
from an external known population, such as in the case of
Neandertal gene flow into the Han Chinese population.

The extended D-statistic Dext is especially effective compared
to the standard D-statistic D1base when applied to data with low/
variable depth, multiple individuals and ancient DNA.

APPENDICES

The setup of the theoretical treatment consists of four sampled
genomes representing four populations H1, H2, H3, H4, for which
we assume the relationship illustrated in Figure 1. Each genome is
considered to have M di-allelic loci. We will consider the situation
in which M grows to infinity. Each locus i consists of a certain
number ni

j of alleles A and B, where j = 1, 2, 3, 4, is the index of the
jth genome. Moreover we assume independence between the loci.
Assume that at a locus i the allele frequencies in the four groups
of individuals xxxi ∶= (xi

1, xi
2, xi

3, xi
4) follow a locus-dependent

distribution Fi(xxx), i = 1, . . . , M and let x̂xxi ∶= (x̂i
1, x̂i

2, x̂i
3, x̂i

4) be an
unbiased estimator of xxxi at locus i, such as the relative frequencies
of the allele A in each population. The populations’ frequencies
are considered to be a martingale process.

The null hypothesis that the tree of Figure 1 is correct can be
rewritten as follow:

H0 ∶ E[(xi
1 − xi

2)(xi
3 − xi

4)] = 0 for i = 1, . . . , M,

where the expectation is done on the difference between the proba-
bilities of ABBA and BABA events deduced in equations (1) and 2.
Using the empirical frequencies as proxies for the expected values,
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Figure 4 Detection of Admixture and Migration. (A,B) Rejection
rate of the null hypothesis as a function of the migration rate in the
tree (((H1, H2)H3)H4), where a migration from H3 to H1 occurs.
The yellow and blue solid lines represent respectively the power
of the method related to Dext and D1base. The yellow dashed line
represents the rejection rate when the genotypes of the 5 individuals
in each population are known and thus equation (3) can be applied.
The blue dashed line illustrates the power of the method when only
one genome per population has known genotypes. Dext performs
almost as well as knowing the true genotypes already with depth 2X.
(C) Value of Dext (black square) and values of D1base (black circles)
using respectively 5 genomes per population and one of them from
each population. Each D statistic shows its associated standard
deviation multiplied by 1 and 3. On the left side of the graph, the
stickmen represent for each column the composition of the group by
number of individuals.

Figure 5 Effect of Error Estimation and Correction. (A) Esti-
mated distributions of the Z-scores related to Dext for the null hy-
pothesis (((H1, H2)H3)H4) in which H1, H3 and H2 has probability
0.005 and 0.01 of transition from base A, respectively. The blue poly-
gon represents the interval where a Z-score would accept the null
hypothesis. The red line represents the distribution of Z-scores be-
fore type-specific errors are corrected. In blue we have the Z-scores
after correction. (B) Values of Dext in four different cases for the tree
(((Saqqaq,Dorset)French)Chimpanzee). The black circles are the
values of the uncorrected D-statistic, removal of ancient transitions,
error correction, error correction and ancient transitions removal.
The red and blue lines represent the standard deviations and the
value they need to reach the threshold of ∣Z∣ = 3, respectively.
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Figure 6 Effect of Correction from External Introgression. (A)
Estimated distribution of the Z-scores related to Dext from the 100
simulations of the null hypothesis (((H1, H2)H3)H4) with introgres-
sion of rate α = 0.1 from an external population H5 into H2. The
Z-scores of the observed tree are far off the acceptance interval
because of the admixture from H5. Once the portion of genome
from the external population is removed from H2, the tree fulfills the
null hypothesis and the Z-scores all fall in the acceptance interval
defined by ∣Z∣ ≤ 3. (B) Behavior of the Dext of the tree (((Han Chi-
nese,Dinka)Yoruban)Chimpanzee) as a function of the admixture
rate α used to correct for the introgression of the Neandertal popula-
tion into the Han Chinese population. The red polygon is the interval
in which (Green et al. 2010) estimates α to fall in. The black dot co-
incides with the value of α = 0.0307 calculated by (Wall et al. 2013)
using the tree (((Han Chinese,Yoruban)Neandertal)Chimpanzee),
with standard deviation 0.0049. The blue polygon is 3 times the stan-
dard deviation of Dext. When Dext is 0, we estimate α = 0.03 with
standard deviation 0.0042.

we build the following normalized test statistic, also known as
D-statistic:

DM = ∑M
i=1(x̂i

1 − x̂i
2)(x̂i

3 − x̂i
4)∑M

i=1(x̂i
1 + x̂i

2 − 2xi
1xi

2)(x̂i
3 + x̂i

4 − 2xi
3xi

4) ,

where the values

X(M) = ∑M
i=1(x̂i

1 − x̂i
2)(x̂i

3 − x̂i
4),

Y(M) = ∑M
i=1(x̂i

1 + x̂i
2 − 2xi

1xi
2)(x̂i

3 + x̂i
4 − 2xi

3xi
4)

are the numerator and denominator of the D-statistic, respectively.

Appendix 1
Convergence of the D-Statistic. In this paragraph we prove that
the D-statistic defined as

DM = X(M)
Y(M)

converges in distribution to a standard normal variable up to a
constant.
Rewrite the numerator and denominator as

X(M) = ∑M
i=1 Xi

Y(M) = ∑M
i=1 Yi,

where the values Xi and Yi are defined for each i = 1, . . . , M by

Xi = (x̂i
1 − x̂i

2)(x̂i
3 − x̂i

4),

Yi = (x̂i
1 + x̂i

2 − 2xi
1xi

2)(x̂i
3 + x̂i

4 − 2xi
3xi

4).

Consider the series of independent variables Xi in the numerator
of DM, having means µi. Every term Xi of the numerator is an

unbiased estimate of (xi
1 − xi

2)(xi
3 − xi

4), assuming the observed
allele counts are binomially distributed (Reich et al. 2009). We show
in the following proposition that every term of the numerator of
the D-statistic has expectation µi = 0 for i = 1, . . . , M by calculating
the expectation of (xi

1 − xi
2)(xi

3 − xi
4).

Theorem 1. Given the tree topology of Figure 1, it holds that E[(x1
1 −

xi
2)(x1

3 − xi
4)] = 0 for i = 1, . . . , M.

Proof. Let xi
1∶2, xi

1∶3 and xi
1∶4 be the frequencies of the ancestral pop-

ulations of (xi
1, xi

2), (xi
1, xi

2, xi
3) and the root of the tree, respectively,

as illustrated in Figure 1. LetX be the set of those three frequencies.
Using the martingale properties of the frequencies it follows that

E[(xi
1 − xi

2)(xi
3 − xi

4)] = E[E[(xi
1 − xi

2)(xi
3 − xi

4)∣X ]] (8)

= E[E[xi
1 − xi

2∣X ]E[xi
3 − xi

4∣X ]]
= E[E[xi

1 − xi
2∣x1∶2]E[xi

3 − xi
4∣X ]]

= E[0 ⋅E[xi
3 − xi

4∣X ]] = 0

Therefore Xi has mean 0 for all i = 1, . . . , M.

To prove convergence of the D-statistic for large M we assume
the following:

1. Let σ2
i be the variance of every term Xi. Denote with vM the

sum ∑M
i=1 σ2

i , then

vM →∞ for M →∞. (9)

2. Let Yi, i = 1, . . . , M, be the series of independent variables in
the denominator of DM, having means γi. Then

1
M∑M

i=1 γi → γ for M →∞. (10)

3. Denote with τ2
i the variance of Yi. Then

1
M2 ∑M

i=1 τ2
i → 0 for M →∞. (11)

If the numerator and denominator are sums of iid variables,
conditions (9), (10) and (11) are fulfilled. In fact, if every term Xi
has variance σ2, the sum of variances is vM = Mσ2 and (9) holds.
If every term Yi has mean and variance γ and τ2, respectively,
equation (10) is still valid because the arithmetic mean is done on
identical values. Moreover, equation (11) holds because

1
M2 ∑M

i=1 τ2 = 1
M

τ2,

that converges to zero for M →∞.

The convergence of the D-statistic DM is proved in steps,
analyzing separately the numerator and the denominator. We
begin by stating all the necessary theorems. Firstly, we consider
an extension of the central limit theorem (CLT) (Johnson 2004),
that will be applied to the numerator X(M). Subsequently we
state the law of large number (LLN) (Lamperti 1996) for not i.i.d.
variables that is used for the denominator Y(M) of the D-statistic.
Thereafter we enunciate one of the consequences of Slutsky’s
theorem (Slutsky 1925; Pesaran 2015). The last step is a theorem
for the convergence of the D-statistic, proved by invoking all the
previous statements, applied to the specific case of the D-statistic.
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Theorem 2 (CLT for independent and not identically distributed
variables). Let {Xi}M

i=1 be a sequence of independent (but not necessarily
identically distributed) variables with zero mean and variances σ2

i . Define
vM as ∑M

i=1 σ2
i . Consider the following quantity

Λε(M) ∶= ∑M
i=1 E

⎡⎢⎢⎢⎢⎣
⎛⎝ Xi√

vM

⎞⎠
2

I
⎛⎝
RRRRRRRRRRR

Xi√
vM

RRRRRRRRRRR ≥ ε
⎞⎠
⎤⎥⎥⎥⎥⎦,

where I(⋅) defines the indicator function. If for any ε > 0 it holds that
limM→∞ Λε(M) = 0, then the normalized sum UM = ∑M

i=1 Xi/√vM
converges in distribution to a standard normalN(0, 1).

Theorem 3 (LLN for independent and not identically distributed
variables). Let {Yi}M

i=1 be a sequence of uncorrelated random variables.
Define ȲM as the empirical average 1

M ∑M
i=1 Yi. Denote with γi and τ2

i
the expectation and variance of each variable. If conditions (10) and (11)
are fulfilled, then for each ε > 0

lim
M→∞P(∣ȲM − 1

M∑M
i=1 γi ∣ ≥ ε) = 0.

Equivalently the empirical average ȲM converges in probability to
limM→∞ 1

M ∑M
i=1 γi = γ.

Theorem 4 (Slutsky’s Theorem). Let X(M) and Y(M) be two sums of
not iid random variables. If the former converges in distribution to X and
the latter converges in probability to a constant γ for M →∞, then the
ratio X(M)/Y(M) converges in distribution to X/γ.

The last step is a theorem for the convergence of the D-statistic,
proved by invoking all the previous statements, applied to the
specific case of the D-statistic.

Theorem 5 (Convergence in distribution of the D-statistic). Con-
sider the D-statistic defined by

Dn = X(M)
Y(M) = ∑M

i=1 Xi∑M
i=1 Yi

∈ [−1,+1],
where numerator and denominator are sum of independent (but not
necessarily identically distributed) variables. Under the assumptions of
(9), (10) and (11), the D-statistic converges in distribution to a standard
normal if rescaled by the constant:

cMDM
dÐ→N(0, 1) for M →∞.

The arrow denotes the convergence in distribution and cM is defined as

cM ∶= γ
M√
vM

.

Here vM is the sum of the variances of the first M terms of the numerator,
and γ is the convergence value of thee arithmetic mean of the denomina-
tor’s expectations for M →∞.

Proof. First consider Theorem 2 applied to the rescaled numerator
UM = X(M)/√vM. It is necessary to prove that for any ε > 0 it holds
that limM→∞ Λε(M) = 0 to ensure the convergence in distribution.
First observe that ∣Xi ∣ ≤ 1 for any index i. Consequently we have
the inequality

Λε(M) ≤ ( 1√
vM

)2∑M
i=1 E[I

⎛⎝
RRRRRRRRRRR

1√
vM

RRRRRRRRRRR ≥ ε
⎞⎠
⎤⎥⎥⎥⎥⎦

= 1
vM

P(∣Xi ∣ ≥ ε
√

vM) ≤ 1
vM

E[Xi]
ε
√

vM
≤ 1

vM

1
ε
√

vM
,

where Markov’s inequality is applied to the last line of the
equation. Thus UM converges in distribution to a standard normalN(0, 1)

Since conditions (10) and (11) are fulfilled by assumption, it is
possible to invoke Theorem 3 to state that the empirical average of
the denominator Y(M)/M converges in probability to a constant
γ, which is positive since every term of the denominator is positive.

Finally, we apply Theorem 4 using the proper constants that
follows from Theorems 2 and 3 applied to the numerator and de-
nominator, respectively. We proved that the sum X(M)/√vM con-
verges in distribution to a standard normal N(0, 1) and Y(M)/M
converges in probability to the constant γ, that is the limit of the
arithmetic mean of equation 10. Thus the ratio

M√
vM

X(M)
Y(M)

converges in distribution to a gaussian N(0,
√

γ−1). The conver-
gence in distribution of DM to a standard normal variable is ac-
complished by rescaling by the following multiplicative constant

cM = γ

√
vM

M
.

The results of this proof apply also in the following cases of the
D-statistic:

1. the original D-statistic DM calculated by sampling a single
base at each site from the available reads (Green et al. 2010) to
estimate the sampling probabilities. In this case every term on
the numerator has possible values −1, 0, +1. Each population
frequency xi

j is parameter of a binomial distribution Bin(1, xi
j),

and is estimated by the frequency of the observed base A at
locus i in population j,

2. the D-statistic is evaluated using the estimated population
frequencies q̂i

j defined in equation 4 for multiple individu-
als in a population (see Appendix 2). In fact, the estimator
for multiple individuals is still an unbiased estimate for the
population frequency (Li et al. 2010), therefore every term of
the numerator is still an unbiased estimate for the difference
between the probabilities of ABBA and BABA events.

3. the D-statistic is evaluated only over loci with allele frequency
x4 = 1 for population H4. This special case of D-statistic has
been used, for example, to assess the presence of gene flow
from the Neandertal population into modern out-of-Africa
individuals, setting a Chimpanzee as outgroup, and consid-
ering only loci where the outgroup showed uniquely allele
A (Green et al. 2010). in fact, Theorem 1 still holds because in
equation (8) the term E[xi

1 − xi
2∣x1∶2] is zero, independently of

which values xi
4 assumes.

Appendix 2
Multiple Genomes. We assume a di-allelic model with alleles A
and B and the four populations H1, H2, H3, H4 that consist each of
a number of distinct individuals Nj, j = 1, 2, 3, 4, where j indexes

the populations. Given the allele frequency xi
j, j = 1, 2, 3, 4, at locus

i, we model the observed data as independent binomial trials with
parameters ni

j and xi
j for j = 1, 2, 3, 4, where ni

j is the number of
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trials. One possible unbiased estimator of the population frequency
is

x̂i
j ∶= ni,A

j

ni
j

,

where ni,A
j is the total number of As and ni

j the total number of
bases observed for the selected population and locus.
For locus i denote the allele frequency of individual ` in population
j as xi

j,`. We use as its unbiased estimator

x̂i
` ∶= ni,A

j,`

ni
j,`

,

namely the ratio between the number of observed As and the total
number of observed alleles at locus i in genome `. The idea is to
condense all the quantities x̂i

` into a single value q̂i
j that minimizes

the variance of the sum of the estimated individuals’ frequencies
w.r.t. a set of normalized weights

{wi
j,`}Nh

`=1, ∑Nh
`=1 wi

j,` = 1

such that
q̂i

j ∶= ∑Nh
`=1 wi

j,` ⋅ x̂i
j,`.

The estimated population frequency q̂i
j is an unbiased estimator of

the frequency of population j at the ith locus (Li et al. 2010). The
aim of the weight estimate is to determine the set of weights that
minimizes the variance of q̂i

j. To do this, we first determine the
variance of each individual’s frequency.
Consider a genome ` in population j. We approximate the fre-
quency estimator of genome ` in population j, namely x̂i

j,`, defin-
ing

Yi
j,` ∶= ∑

ni
j,`

m=1 Im

ni
j,`

,

where ni
j,` is the total number of reads for individual ` and Im ∽

Bin(1, xi
j) for m = 1, . . . , ni

j,`. Note that the Binomial variables are

parametrized by xi
j and not by xi

j,`. The variance of Yi
j,` is

V[Yi
j,`] = 1(ni

j,`)2

⎛⎝∑ni
j,`

m=1 V[Im] + 2∑ni
j,`

r<t Cov[Ir, It]⎞⎠. (12)

The variance of the indicator function Im

V[Im] = xi
j(1− xi

j).

It remains to find the covariance

Cov[Ir, It] = E[Ir It] −E[Ir]E[It] = E[Ir It] − xi
j
2
,

where, marginalizing on the underlying genotype G and assuming
HWE, it follows that

E[Ir It] = ∑
g∈{AA,AB,BB}P(Ir It = 1, G = g)

= P(Ir It = 1∣G = AA)P(G = AA)
+ 2P(Ir It = 1∣G = AB)P(G = AB)
+P(Ir It = 1∣G = BB)P(G = BB)
= 0+ 1

2
⋅ 1

2
⋅ 2xi

j(1− xi
j) + 1 ⋅ xi

j
2 = 1

2
xi

j(1− xi
j) + xi

j
2
.

Considering that the sum over r < t in equation (12) is made over
1
2 ni

j,`(ni
j,` − 1) equal expectations, we can write

V[Yi
j,`] = 1(ni

j,`)2
[ni

j,`x(1− x) + 2
ni

j,`(ni
j,` − 1)
2

1
2

xi
j(1− xi

j)]
= 1(ni

j,`)2
[ni

j,`xi
j(1− xi

j) + 2
ni

j,`(ni
j,` − 1)
2

1
2

xi
j(1− xi

j)]
= ni

j,` + 1

2ni
j,`

xi
j(1− xi

j) = Ri
j,`xi

j(1− xi
j),

where for practical purposes we have defined, for each `th individ-
ual, Ri

j,` as the ratio

ni
j,` + 1

2ni
j,`

.

Consider at this point the approximation of the variance of the
weighted “pseudo-individual", having estimated frequency q̂i

j ∶=
∑Nj

`=1 wi
j,` ⋅ x̂i

j,`.

V[x̂i
j] = Nj∑̀=1

(wi
j,`)2

V[x̂i
j,`] ≈ Nj∑̀=1

(wi
j,`)2

V[Yi
j,`]. (13)

Our objective is to perform a Lagrange-constrained optimization
w.r.t. the weights, being sure to find a minimum since equation
(13), as function of the weights, is convex. This is easily done since
the Lagrange-parametrized function is

L(wi
j,1∶Nj

, λ) = Nj∑̀=1
(wi

j,`)2xi
j(1− xi

j)Ri
j,` − λ( Nj∑̀=1

wi
j,` − 1)

and it originates a linear system of equations of the form

2 ⋅wi
j,1 ⋅xi

j(1− xi
j)Ri

j,1 −λ= 0

⋮ ⋮ = ⋮
2 ⋅wi

j,Nj
⋅ xi

j(1− xi
j)Ri

j,Nj
−λ= 0

∑Nj

`=1 wi
j,` −1= 0

whose solution provides us with the minimum values of the
weights as follows ∀` ∈ { 1, . . . , Nj}:

wi
j,` = ∏Nj

m=1,m≠` Ri
j,m

∑Nj

k=1∏Nj

m=1,m≠k Ri
j,m

= (Ri
j,`)−1

∑Nj

k=1(Ri
j,k)−1

.

Appendix 3
Error estimation and correction. Estimation of the type-specific
errors follows the supplementary material of (Orlando et al. 2013).
Assume having one observed sequenced individuals affected by
base-transition errors. This individual has an associated 4× 4 error
matrix eee, such that the entry eee(a, b) is the probability of observing
a base of type b when the true base is of type a. Consider the tree
((T,R),O), in which the leaves are sequenced genomes affected
by type-specific errors (T), an individual without errors, used as
reference for the error correction (R), and an outgroup individual
(O).
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Assume that loci are independent and that the errors between
pairs of alleles are independent given a base o in the outgroup and
the error matrix eee. Then the likelihood of the base t in the observed
individual can be decomposed as a product through the loci:

P(T = t∣O = o, eee) =∏M
i=1 P(Ti = ti ∣Oi = oi, eee).

Marginalize any ith factor of the above equation over the true alle-
les before error gi ∈ {A, C, G, T} of the underlying true genotype:

P(Ti = ti ∣Oi = oi, eee) = ∑
gi∈{A,C,G,T}P(Ti = ti, Gi = gi ∣Oi = oi, eee)

= ∑
gi∈{A,C,G,T}P(Ti = ti ∣Gi = gi, Oi = oi, eee)P(Gi = gi ∣Oi = oi)

= ∑
gi∈{A,C,G,T} eee(gi, ti)P(Gi = gi ∣Oi = oi),

where the true genotype gi is independent of the error rates for
each i = 1, . . . , M. One can approximate the probability of observ-
ing gi conditionally to oi with the relative frequency of the base
gi in the error-free individual R, for loci where the outgroup is oi,
that is

P(Gi = gi ∣Oi = oi) = P(Ri = gi ∣Oi = oi).

It is possible to perform a maximum likelihood estimation by nu-
merical optimization to obtain an estimate of the error matrix. Note
that every entry eee(gi, ti) is the same over all loci.
The rationale behind the error correction is that the count of each
base in the genomes T and R should be the same, otherwise an
excess of counts in T is due to error.This approach to error estima-
tion has been applied in (Orlando et al. 2013) to study type-specific
errors in ancient horses’ genomes.
Assume that the error matrix eee` has been estimated for every in-
dividual ` in each jth group. For a specific genome ` we have the
following equation for each locus i

P(Ti = ti ∣eee`) = P(Ti = ti ∣eee`, G → ti)eee`(ti, ti)+∑t̃i≠ti
P(Ti = ti ∣eee`, G = t̃i)eee`(t̃i, ti).

The same equation can be expressed in matrix form as follows:

pppi
T = eee`pppi

G,

where pppi
T and pppi

G are the vectors of probabilities of observing alleles
at locus i, respectively in the T and R genome. If the error matrix
e` is invertible, we can find the error corrected allele frequencies as

pppi
G = eee−1

` pppi
T . (14)

The correction performed in equation (14) makes the estimated
allele frequencies unbiased. The unbiasedness allows the numera-
tor of the D-statistic to have mean zero, and makes the D-statistic
calculated with error-corrected frequencies convergent to a stan-
dard normal distribution (see Appendix 1). In fact, consider for a
certain locus the di-allelic scenario with alleles A and B. Let n be
the number of observed bases. The number of alleles A in absence
of errors is

m ∼ Bin(n, x),

where x is the population frequency. Let εA,B and εB,A be the
probabilities of having a transition from A to B and from B to A,
respectively. Then the total number of observed A alleles is given
by the sum of the two following variables:

m0 ∼ Bin(m, 1− εA,B),

m1 ∼ Bin(n −m, εB,A).

The expected population frequency is given by

1
n

E[m0 +m1] = 1
n

E[E[m0∣m]] + 1
n

E[E[m1∣m]]
= x(1− εA,B) + (1− x)εB,A.

The error matrix and its inverse for the di-allelic case are expressed
as follows:

eee =
⎡⎢⎢⎢⎢⎢⎣

1− εA,B εB,A

εA,B 1− εB,A

⎤⎥⎥⎥⎥⎥⎦
, eee−1 = 1

C

⎡⎢⎢⎢⎢⎢⎣
1− εB,A −εB,A

−εA,B 1− εA,B

⎤⎥⎥⎥⎥⎥⎦
,

where C = (1 − εA,B)(1 − εB,A) − εA,BεB,A is the constant arising
from the inversion of a 2× 2 matrix.
The formula in equation (14) is rewritten as

⎡⎢⎢⎢⎢⎢⎣
x̂

1− x̂

⎤⎥⎥⎥⎥⎥⎦
= 1

C

⎡⎢⎢⎢⎢⎢⎣
1− εB,A −εB,A

−εA,B 1− εA,B

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ẑ

1− ẑ

⎤⎥⎥⎥⎥⎥⎦
, (15)

where x̂ is the estimator of the error-corrected population fre-
quency, while ẑ is the estimated population frequency prior to
error correction:

ẑ = m0 +m1
n

.

From equation (15) it is possible to deduce the following equality:

E[x̂] = 1
C
(1− εB,A)E[ẑ] − 1

C
(1−E[ẑ])εB,A

= 1
C

x(1− εB,A − εA,B) = x.

This proves that the error-corrected estimators of the allele
frequencies are again unbiased, therefore calculating the D-statistic
using error-corrected allele frequencies leaves the convergence
results unchanged.
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Supplemental Material.

The Supplemental Material contains two tables with numeric results related to a real
data scenario, and five figures regarding the power of the method, the asymptotic
behaviour of Dext, the estimates of type-specific errors, the behaviour of the D-statistic
and the correction for external introgression.

Table S1. European Introgression into Native American Individuals. The
table contains the values of the different types of D-statistics used to create the plot of
Figure 4C, reporting the D-statistic for the tree (((PEL,CHB)CEU)YRI). The first
column denote if we are illustrating either the extended D-statistic, Dext, or the
D-statistic that uses a sampled base, D1base. The column denoted by D is the
D-statistic over all blocks of loci, used to estimate the standard deviation (third column)
by bootstrapping. The Z-score represents the D-statistic normalized by its standard
deviation. The last column represents the ratio between the estimated standard
deviations of D1base and Dext.

D-statistic D stdev(D) Z-score σ1base

σext

Dext -0.032638 0.002449 -13.114101 -
D1base -0.038171 0.006164 -6.223641 2.51
D1base -0.032786 0.006244 -5.253267 2.54
D1base -0.030950 0.006708 -4.602315 2.74
D1base -0.038730 0.006480 -5.999972 2.64
D1base -0.033640 0.006244 -5.353646 2.55

Table S2. Estimated Error Rates. Estimated type-specific error rates for the
ancient individuals Saqqaq and Canadian Dorset Mi’kmaq used in the tree of Figure 3B.

Individual A→ C A→ G A→ T C → A C → G C → T

Saqqaq 1.90e-04 6.08e-04 3.27e-04 7.52e-04 1.22e-04 6.32e-04
Dorset 8.86e-05 1.15e-03 1.62e-04 2.04e-04 8.52e-05 5.22e-03

G→ A G→ C G→ T T → A T → C T → G
Saqqaq 6.35e-04 1.26e-04 7.52e-04 3.28e-04 6.08e-04 1.91e-04
Dorset 5.21e-03 9.01e-05 2.06e-04 1.64e-04 1.15e-03 9.04e-05

Table S3. Extended D-Statistic in Real Data Scenario with Ancient
Genomes. Table comparing the extended D-statistic with the application of error
correction and/or transition removal for the tree of Figure 5B, where the ancient
individuals Saqqaq and Canadian Dorset Mi’kmaq are affected by high type-specific
error rates.
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Correction Dext sd(Dext) Z − score p − value
None -5.26e-2 5.4e-3 -9.81 0

Trans.Rem. 1.01e-2 7.1e-3 1.41 1.57e-1
Error.Corr. 5.64e-3 6.1e-3 0.93 3.51e-1

Err.Corr & Tr.Rem 8.77e-4 7.3e-3 0.12 9.04e-1

Figure S1. Effect of the number of individuals per population in detecting
admixture. Results from the simulation of the scenario of Figure 2A, subject to a
migration from H3 to H1, using either 1, 2, 5, 10 or 20 individuals per population
sequenced at depth 0.2X. (A) Power of the extended D-statistic for increasing values of
the number of individuals per group. (B) The value of the standard deviation of Dext

for different number of individuals per population.

A                                           B
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Figure S2. Asymptotic convergence of the extended D-statistic. QQ-plot of
the observed log-pvalues from 5000 simulations of the null hypothesis of Figure 2B,
where we have used 5 individuals per population and depth 2X. Each individual has 200
regions of length 5Mb. Despite that, the extended D-statistic Dext shows already good
properties of asymptotic convergence to the standard normal, with a slight problem due
to few extreme pvalues.

Figure S3. Subtrees of interest in a scenario subject to external
introgression. (A) Case of a 4-population tree subject to introgression from an
external population H5. Consider H2 being the population subject to introgression from
H5. (B) The subtree T1∶4 includes the 4-population tree excluding the admixing
population. (C) The subtree Tout replaces the admixed population with the population
source of introgression. (D) The subtree Tun, where H ′

2 represents H2 when it has not
yet undergone admixture, reflects the null hypothesis of correctness for the genetic
relationship between four populations.
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Figure S4. Estimates of Type-Specific Errors for Ancient Genomes.
Estimated type-specific error rates for the Saqqaq, Mi’qmak and French genomes of the
real data scenario illustrated in Fig 4B.

Type specific error rates for the individuals in H1, H2, H3

E
rr

o
r

Transition

A
−

−
>

C

A
−

−
>

G

A
−

−
>

T

C
−

−
>

A

C
−

−
>

G

C
−

−
>

T

G
−

−
>

A

G
−

−
>

C

G
−

−
>

T

T
−

−
>

A

T
−

−
>

C

T
−

−
>

G

0

0.0002

0.0005

0.0008

0.0011

0.0014

0.0017

0.0020

0.0022

0.0025

0.0028

0.0031

0.0034

0.0037

0.0040

0.0043

0.0045

0.0048

0.0051

0.0054

0.0057
H1=Saqqaq H2=Canad.Dorset H3=French

Southwestern European A dmixture into
Type-speci�c error

E
rr

o
r

Figure S5. Behaviour of the D-Statistic in Function of the Type-Specific
Error. Effect of increasing and decreasing the removal of error for the base transitions
C → G and C → T for one of the Greenlandic Saqqaq, Canadian Dorset and French
genomes. This corresponds to the addition of a value in the entry eee(G,C) or eee(T,C) of
the estimated error matrix of one of the individuals, as if the estimated error rate was
higher or lower. In solid lines are represented the values of Dext for which the correction
is performed. The dashed lines represent the analogous values where ancient transitions
are not considered.
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Contribution

In this manuscript the admixture graphs and the F-statistics (F2, F3 and F4) are analyzed in a mathematical
framework under the point of view of applications in population genetics. In fact, admixture graphs are at the
basis of many computational tools for inferring or testing for gene flow [13, 20, 21], but their properties have
not been formalized.

Here, formal definitions and proofs of properties for the admixture graphs and the F -statistics are provided.
It is possible to relate some topological properties of the graphs to admixture rates and paths between nodes, and
the renowned graphical method to calculate the F -statistics [13] is proven as a consequence of this theory.

Moreover, the relationship between this background theory and population genetics are highlighted in the
formalization of the drifts and their role in defining the F-statistics. For the F2-statistics, a canonical decom-
position related to the graph topology and a theorem with minimal condition for their linear independence are
proven.

Future perspectives

The results in this manuscript are related to the studies applying admixture graphs and F-statistics for infer-
ence/test of genetic relationships between populations [13, 20, 21]. However, assumptions and intuitions on the
graphs and the F-statistics used in those studies are not always proven or fulfilled. The formalization for the
necessary hypothesis that lead to such properties are given in this manuscript and could be implemented in the
computational tools to perform a preliminary test on the topology.

Other interesting directions can be explored in relation to admixture graphs and F-statistic. For example,
one could look into the possibility of implementing further F-statistic apart from the current ones (F2, F3 and
F4).

Moreover, the F2 is a metric under some specific conditions. This fact connects to the topic of split theory
[73, 74]. Here, a metric is decomposed as the sum of weighted metrics on subgraphs called splits and a residual
term. Such a decomposition is not trivial because of the relation between F2, the graph topology and the
admixture rates, but it is an interesting development of the theory.

A fundamental result of this manuscript is the set of conditions for the linear independence of F2-statistics.
Here the result holds for a graph with two potential roots (ancient populations with unknown genetic relation-
ship). it is still necessary to study the possibility of proving a similar theorem for an arbitrary number of roots.

51



Noname manuscript No.
(will be inserted by the editor)

Background theory for admixture graphs and F-statistics

Samuele Soraggi · Carsten Wiuf

Received: date / Accepted: date

Abstract The widespread availability of genome data for many organisms - includ-
ing humans - has lead to a deeper understanding of the genetic relationships between
populations. An important role in inferring and testing such relationships is played
by model-based methods, where the evolutionary history of populations is modeled
through graphs or networks, based on which a mathematical formulation of the prob-
lem can be expressed.

In particular, the admixture graph has become popular in methods to infer and test
complex reticulates involving complex histories of populations. Most recent methods
are based on moment statistics called F-statistics. However, a formal mathematical
formulation of the admixture graphs and the F-statistics and their properties has been
lacking.

The goal of this paper is to provide a background mathematical theory where the
admixture graphs are defined, and their properties formally demonstrated. Applying
the theory of chain graphs, the properties of the F-statistics are deduced in a stochastic
framework. Assumptions and motivations for the population genetics framework are
analyzed, and some examples from applications in population genetics are studied.
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1 Introduction

The inference of demographic history from a genetic perspective, that is the study of
gene flow and introgression between populations, the assessment of migrations and
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admixture or splitting of populations using genetic data, has been a topic of wide
interest in population genetics [3,4,19,7,17,22,21] since the early availability of ge-
netic data.

Inferring information on the past history of populations have been a challenge for
population geneticists. Early traditional population genetics methods are based on
comparing the expected value of genetic statistics under demographic and mutation
scenarios, such as heterozygosity, to their value calculated from genetic data [15].
In this way, it is possible to infer information about the past history of a population.
For example, the study of variations in population size can be indirectly informative
on past migrations [25]. With the advent of Kingman’s theory of the coalescent, and
the possibility of genetic simulations [11,10], the focus on populations’ history have
increased and lead to new inference techniques based on the MCMC framework or
likelihood-based approaches [16,8,25].

With the development of high-throughput techniques [14,20] such as NGS, sci-
entists have been provide with large amounts of data, with the potential for providing
much more informations. However, computational methods that are computationally
performant and model complex populations’ history are needed. A possible way to
describe such complex genetic relationships between populations is through graphs
or network, where each node represents a population. In term of data, those models
associate a genetic characteristic, such as allele frequency, to each node. In this way,
one is also able to bypass mutation-based models, that are not reliable on relatively
short time periods, due to the low frequency of mutations.

Two first attempt to describe past histories of populations with a graph is through
the phylogenetic tree [3,4] and the admixture graph [19,17,18]. A phylogenetic tree
describes the evolutionary relationship between a set of populations admitting only
splits giving rise to two descendants. Distinct nodes cannot be merged, therefore a
phylogenetic tree does not describe gene flow or migrations. A more complex retic-
ulate of relationships is described with the admixture graphs. Those admit gene flow
between populations. In such a model more populations can merge and generate an
admixed population [23,5,17,19]. Even though an admixture graph is still a simpli-
fied model of a more complex genetic history, it is able to describe more complex
scenario compared to a phylogenetic tree.

Many computational model-based methods have been developed to infer demo-
graphic histories through admixture graphs. A first example is the tool qpgraph [2],
where the authors use a heuristic method to exclude unlikely edges, by building spe-
cific subgraphs denoted as qp-graphs. The software AdmixTools [17] formulates the
relationships of an user-defined graph in terms of quantities called F-statistics. The
F-statistics are calculated from allele frequencies, and in the software Admixtools

are used to define a system of equations from which admixture parameters can be
inferred, and the graph can be tested for fitness to the data. The softwares TreeMix
[1] and MixMapper [13] first build a graph without admixtures. Thereafter they apply
different techniques to add best-fitting admixture branches according to the data, and
solving equations in the same way as in Admixtools.

The methods TreeMix, AdmixTools and MixMapper use the F-statistics as main
tool in their implementations. The F-statistics have been a particularly successful in
population genetics [19,7,17,18], since they allow a greater computational efficiency
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in graph-based methods, compared for example to earlier studies based on computa-
tionally intensive likelihood optimizations [5,23], that limit the applications to small
sets of populations. The F-statistics are three parameters defined between two, three
and four populations, respectively, in an admixture graph. The interpretation of the
F-statistics is based on the analogy between common branches on paths between pop-
ulations and shared amount of genetic drift that characterizes such populations [19,
7,17]. Other possible interpretations consider the F-statistics in term of expected co-
alescent times between populations, covariances between population frequencies and
heterozygozities [17,18] under specific model topologies.

The mentioned softwares and interpretations lack a formal treatment and analysis
of the properties of the admixture graphs and the F-statistics. Nonetheless they apply
a wide range of assumptions by characterizing the F-statistics through admixture
proportions and a specific type of paths between nodes of the admixture graph. The
relationships between admixture graphs and F-statistics is essential in many of those
assumptions and turn out to be as important in analyzing the F-statistics [18,17].

In this paper, the goal is to provide and analyze a formal mathematical back-
ground for the admixture graphs and their properties. In this way it is possible to
motivate and extend the interpretations and definitions considered in the current lit-
erature. The definition of a stochastic structure through the Markov chain graphs [6,
12,24] allows to study in depth the F-statistics and to find fundamental results for
current applications. For example, the graphical method to calculate the F2-statistics
[17,13,19], the additivity of the F2-statistics and their linear independence [17,13]
are are proven in the theoretical framework of this paper. Those are at the base of the
methods used to infer or test admixture graphs, because they connect the topology of
the graph and the genetic distances between populations through equations involving
admixture proportions. Finally, connections with the interpretation of the theory in
terms of population genetics is provided through examples related to applications of
the three- and four-populations test.

2 Admixture Graphs

In this section, admixture graphs are defined. We consider labeled graphs with di-
rected and undirected edges, and use the notations i↔ j (equivalently j ↔ i) and
i→ j (equivalently j ← i) for an undirected edge between i and j, and a directed
edge from i to j, respectively. An edge i→ j is said to be ingoing to j and outgoing
of i. The undirected egde’s notation is symmetric but we consider its two associated
roots as an ordered pair according some criteria. In what follows we consider two
roots i, j ordered as (i, j), where i < j, and the nodes of a directed edge i→ j or-
dered as (i, j). This will also be the order used whenever the nodes are indices in the
notation. For brevity we will also use the alternative notation e for an edge of type
i→ j or for an undirected edge i↔ j. The set par(i) denotes the parents of j, that is,
par( j) = {i | i→ j}.
Definition 1 (Admixture graph) An admixture graph is an edge labeled graph G =
(V ,E ,L ) without directed cycles. The triplet consists respectively of the set of
nodes, edges and labels. The set of nodes V is divided into:



4 Samuele Soraggi, Carsten Wiuf

– roots R, nodes without ingoing edges. All pairs of roots are connected by an
undirected edge and only these,

– admixed nodes A , nodes that have ingoing directed edges,
– leaves A0 ⊆A , admixed nodes without outgoing directed edges.

An edge between two roots r1,r2 ∈R has label αr1r2 = 1. For labels between par( j)
and j ∈A we assume

∑
i∈par( j)

αi j = 1,

where αi j ∈ (0,1] denotes the label of the edge i→ j. We will often denote αe = αi j
if e involves nodes i, j.

By definition, the graph is connected. In the following, we assume that an admix-
ture graph is not trivial, meaning that it does not consist of only roots and undirected
edges. To keep the notation uncluttered, we do not put any order in the two indices of
a label, so α ji = αi j. See Figure 1 for examples.

1 2 3
α12 = 1 α23 = 1

1

2 3

α 12
=

1 α
13 =

1

A B

1

2 3

4

α
24 α 34

α 12
=

1 α
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1

5

4

1 2 3

6

α12 = 1

α13 = 1

α23 = 1

α
14 α 24

α
36

=
1

α
45

C D

Fig. 1 Examples of admixture graphs. (A) An admixture graph where node 1 is the root, 2 an admixed
node and 3 a leaf. All edges’ labels are equal to one. (B) An admixture graph where node 2 and 3 are
leaves. (C) An admixture graph where node 4 is a leaf with two parents. (D) An admixture graph with
three roots and two leaves.

Definition 2 (Admixture path between two nodes) Given an admixture graph G
and two nodes i, j ∈ V , i 6= j, an admixture path (or just path) γ from i to j is an
ordered sequence of nodes that starts i and ends in j such that

(ik, ik−1, . . . , i1, i0, i′0, i′1, . . . , i′k′−1, i′k′),

with no nodes being repeated and ik = i, i′k′ = j, where k,k′ ≥ 0. Two adjacent nodes
im, im−1 are connected by an edge im← im−1 for m = 1, . . . ,k, and by im−1→ im for
m = 1, . . . ,k′. The case i0 6= i′0 is admitted only if i0, i′0 are roots. If k = 0 then i′0 = i,
and if k′ = 0 then i0 = j. A path from i to j is denoted by i⇒ j and the set of such
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paths is denoted by Γi j. A subpath γ ′ of a path γ , or with an abuse of notation γ ′ ⊆ γ ,
is an ordered sequence of nodes found in γ with the same order.
An edge e = i→ j or e = i↔ j is in a path γ if its nodes are adjacent in γ . With a
slight abuse of notation this is denoted by e ∈ γ . The sign of an edge e in a path γ ,
sgnγ(e), has value +1 if the nodes of e have the opposite order than in γ , otherwise
sgnγ(e) =−1.

The label pγ of a path γ ∈ Γi j is the product of labels

pγ := ∏e∈γ αe.

A path can at most contain two roots, in particular, a path from the root r1 to
the root r2 consists of the roots themselves. A path γ ∈ Γi j is not symmetric, mean-
ing that it is not considered the same as the path γ ′ ∈ Γji composed by the edges of γ
in the opposite order. Therefore Γi j 6=Γji. Note that the labels of γ and γ ′ are identical.

Remark. Note that an admixture path γ ∈ Γi j is not a path according to the stan-
dard definition of graphs, where a path is defined by following the direction of the
edges [9]. An admixture path is defined through a sequence of ordered nodes whose
connecting edges follow specific constraints. For example (ik, ik−1, . . . , i1, i0), where
k > 0, ik = i and i0 = j, is an admixture path from i to j with edges of type im← im−1
for m = 1, . . . ,k.

Example 1 In Figure 1B, there is only one possible path between the nodes 2 and
3, defined by γ = (2,1,3), with label pγ = α12α13 = 1. In Figure 1C, the path γ =
(2,1,3) is the only path of Γ23, because the sequence (2,4,3) does not fulfill Defini-
tion 2. In Figure 1C, γ1 = (3,1) and γ2 = (3,2,1) are the only two paths of Γ31. Their
labels are α13 and α23α12, respectively.

Proposition 1 Consider two nodes i, j ∈ V of an admixture graph G . Then Γi j 6= /0.
Further, the sum of the labels is one, ∑γ∈Γi j pγ = 1.

In what follows we characterize - in terms of paths and labels - when an admixture
graph is a tree or a forest with connected roots. Here a forest is a set of trees with roots
connected by undirected edges.

Theorem 1 For an admixture graph G , the following statements are equivalent:

1. for each pair of nodes in V , there is only one path γ connecting them,
2. every path γ on G has probability 1,
3. the admixture graph consists of a forest of R trees, where R is the number of roots,

pairwise connected by undirected edges linking the roots.

Definition 3 (Root weights of a node) Let ` ∈A be an admixed node and r ∈R a
root of an admixture graph G . Let Ω`r ⊆ Γ̀ r be the set of paths from ` to r that do not
contain another root. The root weight of r with respect to ` is the probability

q`r = ∑γ∈Ω`r
pγ .

Proposition 2 Given an admixture graph, the root weights of the roots with respect
to an admixed node form a probability distribution.
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If the admixture graph is a tree or a forest (in the sense of Theorem 1), then for
each node ` and root r, the probability q`r is equal to 1 if the node is in the tree with
root r, and otherwise q`r = 0.

For a subset of nodes of an admixture graph, we consider the subgraph given by
all paths connecting any two nodes of the subset.

Definition 4 (Admixture graph spanned by a subset of nodes) Let G = (V ,E ,L )
be an admixture graph and let C ⊆ V . We define the admixture graph spanned by C
as the graph GC =

(
VC,EC,LC

)
, where

VC =
{

i | i is in a path of Γjk for some j,k ∈C
}
,

EC =
{

e | e ∈ E connects two nodes of VC
}
,

and LC is the set of labels inherited from G . In particular, GV = G .

It is immediate to verify that the graph GC defined above is an admixture graph.

Definition 5 (Operations on paths)
Given two paths γ1,γ2 on the same admixture graph, their intersection, denoted

by γ1∩ γ2 with an abuse of notation, is the set of nodes that appear in both paths.

Proposition 3 Let G be an admixture graph and C ⊆ V a subset of the nodes. Let
GC be the admixture graph spanned by C and let C0 be the leaves of GC. One of the
following two equivalent conditions holds

1. for each node k ∈C\C0, there is a pair i, j ∈C0 such that γ ∩ δ = {k} for some
γ ∈ Γik, δ ∈ Γk j,

2. for each node k ∈C\C0, there is an admixture path from i to j that includes node
k, for some i, j ∈C0,

if and only if GC = GC0 .
Moreover C0 is the smallest set spanning GC, meaning that any other set that spans
GC contains C.

Corollary 1 If an admixture graph G is such that V fulfils the hypothesis of Propo-
sition 3, then G is spanned by its leaves A0, that is, GA0 = G .

3 Stochastic Admixture Graphs

In this section we will add a stochastic structure to an admixture graph, such that
the graph encodes conditional independencies. Specifically, we will assume the ad-
mixture graph with the stochastic structure is a chain graph, which is a special type
of Markov graphical model [12,6,24]. Conditional independencies of this form are
typically assumed in models in population genetics.

We first define how an admixture graph can be divided into blocks, based on the
maximum number of edges necessary to reach a node starting from one of the roots.
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Definition 6 (Blocks of an admixture graph) The blocks of an admixture graph
consist of a ordered sequence B1, . . . ,BN , that forms a partition of V . If two nodes i, j
are connected by a path such that (i, i′1, . . . , i′k′−1, j) for some i′1, . . . , i

′
k′−1 ∈ V , then

i ∈ Bni , j ∈ Bn j and ni < n j. If i, j ∈R are roots, then they are in the same block B1.

Definition 7 (Stochastic admixture graph) Let G = (V ,E ,L ) be an admixture
graph. Construct a new graph G ∗ = (V ∗,E ∗) by augmenting the node set

V ∗ = V ∪
{
(i, j) | i→ j ∈ E

}
,

and splitting all directed edges into two, leaving the undirected edges as they are.
That is, for i→ j ∈ E , create i→ (i, j) ∈ E ∗ and (i, j)→ j ∈ E ∗, and erase i→ j. A
stochastic variable with finite mean is associated with each node in V ∗, denoted by
Vj if j ∈ V ∗ and Ci j if (i, j) ∈ V ∗. The variables Ci j are called contribution variables
and the nodes (i, j) contribution nodes.

The admixture graph G is said to be a stochastic admixture graph if

(i) G ∗ is a chain graph (see Appendix A for the precise definition)
(ii) Vj = ∑i∈par( j) αi jCi j for any admixed node j ∈A

(iii) E(Ci j|Vi)=Vi for any admixed node i∈A , where E(X |Y ) denotes the conditional
expectation of a variable X given a variable Y .

An example of a stochastic admixture graph is shown in Figure 2. Here and else-
where, an equality between two stochastic variables is equality almost surely with
respect to the underlying probability measure.

The Markov structure of the chain graph implies in particular that for two contri-
bution variables Ci j,Ck`, where Vi,Vk are not necessarily distinct, it holds that

Ci j ⊥Ck` |{Vi,Vk}. (1)

Further, for a contribution variable Ci j, let Bni be the block in which node i is located.
Then

Ci j ⊥
⋃ni

n=1

⋃
j∈Bn

Vj|Vi. (2)

As a consequence of (2), if a node k is an element of
⋃n j

n=1 Bn, it follows that

Ci j ⊥Vk|Vi. (3)

The property in Definition 7(iii) does not hold between distinct root variables,
unless these are identical variables, as shown below.

Theorem 2 Let G be an admixture graph, and R1, . . . ,Rk the variables associated
with the roots, assuming Var(Ri) < +∞, i = 1, . . . ,k. Then E(Ri |R j) = R j holds for
any pair of roots if and only if R1 = R2 = · · ·= Rk.

Definition 8 (Drifts) Consider an admixture graph G and a pair of nodes i, j ∈ V .
The drift between i and j is defined as the difference between the associated variables,

Di j :=Vj−Vi.
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Fig. 2 Contribution nodes. (A) Admixture graph as in Definition 7. (B) The augmented graph derived
from Figure A. The black dots represent the nodes associated to contribution variables.

Given an edge e = k→ ` or e = k↔ ` with k < `, the partial drift of e is defined as
the difference between the contribution variable from k to ` and the variable of the
parent generating it:

de = dk` :=Ck`−Vk,

The partial drift of e on a path γ such that e ∈ γ is defined as

dγ
e = sgnγ(e)de.

Note that D ji = −Di j. In case e is undirected or when k is the only parent of `,
the partial drift coincides with the drift between k and `.

Remark. The sign in a path γ of an undirected edge i↔ j ∈ γ is independent on the
order chosen between the nodes.

We show that the drift between two nodes can be decomposed along the paths
connecting the nodes as a linear function of the probabilities of such paths and of the
partial drifts.

Theorem 3 (Canonical decomposition of a drift along paths) Given i, j ∈ V , the
drift Di j is the sum over Γji of the probabilities of the paths multiplied by the sum of
the partial drifts between subsequent nodes of each path, that is,

Di j = ∑γ∈Γji

(
pγ ∑e∈γ dγ

e

)
. (4)

The Markov structure implies that the partial drifts are on average orthogonal to
each other.

Proposition 4 Consider two edges e1,e2, where at least one is directed. The product
of their partial drifts is on average orthogonal in the sense that

E(de1de2) = 0. (5)

Note that the same statement holds for the partial drifts dγ1
e1 , dγ2

e2 in any pair of paths
γ1,γ2.
The same statement does not apply for two undirected edges. In fact, in this case
it is not possible to use conditional independencies to make two partial drifts along
distinct undirected edges orthogonal. In terms of chain graphs, this happens because
the roots form a chain component.
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4 F-statistics

This section defines the F-statistics F2, F3 and F4, and gives various results for these.
The F2-statistic describes the distance between two nodes as the averaged squared
difference of the drift. It is often assumed that the F2-statistic is additive [17,19,
18]. We give conditions under which additivity holds. Further, we show that the F2-
statistics form a basis of a vector space [17]. Lastly some specific models that involve
the F3- and F4-statistics to infer the presence of populations admixture in population
genetics [19,7,17,18] are analyzed and commented.

Definition 9 (F2-statistic) Let i, j in V . The F2-statistic between i and j is defined as

F2(i, j) = E(D2
i j). (6)

Note that the F2-statistic is guaranteed to be non-negative and symmetric by defi-
nition. According to Theorem 3, it is possible to write the drift Di j as a sum of partial
drifts over the paths j⇒ i. In the following theorem, using the drift decomposition
and the orthogonality of the partial drifts, we rewrite (6) in terms of squared partial
drifts along the paths of Γji.

We first define some quantities concerning partial drifts. Let Γ e
i j denote the set of

paths of Γi j containing edge e.

Definition 10 (A- and B-coefficients on edges) Let i, j be two nodes of an admixture
graph. For a directed edge e consider the quantity Ae taking takes values in [0,1] and
defined by

Ae = ∑
(γ1,γ2)∈(Γ e

i j×Γ e
i j )

sgnγ1
(e)sgnγ2

(e)pγ1 pγ2 .

Let e1 and e2 be two undirected edges and define Be1e2 as

Be1e2 = ∑
(γ1,γ2)∈Γ e1

i j ×Γ e2
i j

sgnγ1
(e1)sgnγ2

(e2)pγ1 pγ2 .

The quantities Ae and Be1e2 are denoted respectively as the A-coefficient of edge
e and the B-coefficient of edges e1,e2. Each term of the A-coefficient is influenced
by the sign of e in pairs of paths γ1,γ2 where e appears. The sign of the edges allows
to take into account if an edge assumes opposite sign in the two paths. Similarly, the
B-coefficient considers pairs of paths where two undirected edges (not necessarily
coincident) appear. Observe that the A- and B-coefficient are simmetric within respect
Γi j and Γji.

The A- and B-coefficients can be interpreted as weights of a directed edge e and a
pair of undirected edges e1,e2, respectively. Note that Ae = 1 if and only if Γ e

i j = Γi j,
and a similar consideration holds for Be1,e2
Let Ei j be the set of edges involved in at least one path of Γi j.

Proposition 5 Given i, j ∈ V , a directed edge e ∈ E and a pair of undirected edges
e1,e2 ∈ E , then the following properties hold:

1. Ae ≥ 0 and Ae = 0 if and only if e /∈ Ei j (equivalently Γ e
i j = /0),
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2. Be1,e1 +Be2,e2 +Be1,e2 ≥ 0 and it takes value zero if and only if e1,e2 /∈ Ei j (equiv-
alently Γ e

i j = /0).

For the following theorem we partition Ei j into two subsets, the set E u
i j of undi-

rected edges and the set E d
i j of directed edges.

Theorem 4 (Canonical decomposition of the F2-statistics along paths) Given i, j∈
V , the statistic F2(i, j) can be decomposed in term of A- and B-coefficients and par-
tial drifts as follows:

F2(i, j) = E

(
∑

e∈E d
ji

Aed2
e + ∑

e1,e2∈E u
ji

Be1e2de1de2

)
, (7)

Note that the partial drifts appear without dependence on the paths of Γji because
such dependence is taken into account in the A- and B-coefficients.

Assuming the contribution has larger variance than the variable of the node gen-
erating it, then the squared partial drifts might be given in terms of variances [18],

E(d2
i j) = Var(Ci j)−Var(Vi).

In the special case of an admixture graph with only one root, the second term in (7)
vanishes and the canonical decomposition of the F2-statistic becomes

F2(i, j) = ∑
k→`∈E d

ji

Ak→`

(
Var(Ck`)−Var(Vk)

)
.

In [17,19], a visual method to decompose the F2-statistic is introduced. We for-
mally motivate it here. The steps to calculate the F2-statistic between two nodes i, j
based on the visual method are the following:

1. Consider all possible (ordered) pairs of paths γ1,γ2 ∈ Γi j, including coincident
paths,

2. For each pair γ1,γ2, multiply by pγ1 pγ2 the sum of squared partial drifts related to
edges found in both paths,

3. For each pair γ1,γ2, multiply by pγ1 pγ2 the sum of partial drifts related to undi-
rected edges in the two paths,

4. Sum over the pairs of paths the quantities determined above and calculate the
expectation.

In step 2. the partial drifts involved in the sum are related to the edges that overlap
when the paths γ1,γ2 are traced on the admixture graph by connecting the ordered
nodes. The paths do not necessarily overlap between roots in step 3. Some of the
products of partial drifts can appear in more than one term of a sum, and can be
therefore collected as common factors, with coefficient resulting in either the A- or
the B-coefficients.
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Example 2 Consider the statistic F2(5,6) in the admixture graph of Figure 1D. There
are only two possible paths, namely

γ1 = (5,4,1,3,6) and γ2 = (5,4,2,3,6),

highlighted in Figure 3, where the four possible pairs of paths (γ1,γ1), (γ2,γ2), (γ1,γ2)
and (γ2,γ1) are represented with two distinct colours. Note that there are two pairs
containing two distinct paths. For each pair of paths apply the visual method. We
obtain the following:

F2(5,6) = E
(

p2
γ1
(d2

45 +d2
14 +d2

13 +d2
36)+ p2

γ2
(d2

45 +d2
24 +d2

23 +d2
36)

+2pγ1 pγ2(d
2
45 +d2

36 +d13d23)
)
.

By collecting terms with the same partial drift, we obtain

F2(5,6) = E
(

d2
45 +d2

36 + p2
γ1
(d2

14 +d2
13)+ p2

γ2
(d2

24 +d2
23)
)

= E
(

d2
45 +d2

36 + p2
γ1

d2
14 + p2

γ1
d2

13 + p2
γ2

d2
24 + p2

γ2
d2

23 +2pγ1 pγ2 d13d23

)
.

Here we recognize the A- and B-coefficients,

A45 = A36 = 1, A14 = A24 = p2
γ1
,

B23,23 = p2
γ2
, B13,13 = p2

γ1
, B13,23 = B23,13 = pγ1 pγ2 .

The F2-statistic is often assumed to be additive, which means that given three
nodes i, j,k, where i→ k, k→ j, then F2(i, j) = F2(i,k)+F2(k, j) [15,19,17]. This
is true in some cases depending on the stochastic admixture graph. Here we give
conditions that guarantee additivity of the F2-statistics.

Proposition 6 (Additivity of the F2-statistic) Consider three distinct nodes i, j,k. If
any path of Γi j passes through k, then the F2-statistic between i, j can be split as the
sum of the F2-statistics between i,k and k, j,

F2(i, j) = F2(i,k)+F2(k, j).

The following definition illustrates the F3- and F4-statistics. These are often used
as parameters to detect the presence of population admixture in specific admixture
graphs [19,7,17,22,18]. We end by showing two applications of the F-statistics and
their properties.

Definition 11 (F3- and F4-statistics) Let i, j,k, l ∈ V be four nodes of an admixture
graph. The F3-statistic between nodes i, j,k and the F4-statistic between nodes i, j,k, `
are defined as

F3(i; j,k) = E(Di jDik) and F4(i, j;k, l) = E(Di jDk`),

respectively.



12 Samuele Soraggi, Carsten Wiuf

5 6 5 6

A B

5 6 5 6

C D

Fig. 3 Visual method for the F2-statistic. Illustration of the visual method to calculate F2(5,6). Each
of the four figures represent a possible pair of paths γ1,γ2. The overlapping directed edges and pairs of
roots have the term contributing to the F2-statistic written aside. (A,B) Each edge of γ1 appears also in γ2.
Therefore their squared partial drifts contribute to the F2-statistic between 5 and 6. (C,D) Edges 4→ 5 and
3→ 6 contribute with squared partial drifts to the F2(5,6). The pairs of undirected edges (1↔ 3,2↔ 3)
and (2↔ 3,1↔ 3) contribute through the product of their drifts.

It is possible to apply the visual method to the F3- and F4-statistics and provide
the following interpretations:

– the F3-statistic is the weighted amount of overlapping edges of paths i⇒ j and
i⇒ k. If there is not any overlapping path, then the F3-statistic assumes value
zero,

– the F4-statistic is the weighted amount of shared partial drifts along paths j⇒ i
and `⇒ k.

The F3-statistic has an important role in defining the F2-statistic as a distance
between nodes. In fact the F2-statistic does not necessarily comply with the defini-
tion of distance, depending on the configuration of admixed nodes in the admixture
graph. Note that F2(i, j) can be rewritten as F2(i,k)+F2(k, j)−2F3(k; i, j), therefore
it fulfills the definition of metric only when F3(k; i, j)≥ 0. We introduce a schematic
representation of subgraphs to study in depth the properties of F3 and the effect on F2
as a metric.

Consider the schematic representation of a subgraph in Figure 4A (from now on
denoted by cycle of type A). Here each directed dashed edge is a set of adjacent edges
following the same direction. Some nodes are made explicit and represented by let-
ters, and γ,δ represent two admixture paths.
If u,u′ are roots, the thick edge between them represents an undirected edge, other-
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wise a subpath of type (u, ik−1, . . . , i0, i′0, . . . , i′k′−1, u′). Along this part of the graph
the two paths γ ∈ Γki and δ ∈ Γk j overlap with nodes in opposite order. In such a
situation F3(k; i, j) has negative terms contributing to its value. There is no negative
contribution if u = u′. Figure 4B illustrates a configuration (from now on denoted by
cycle of type B) where there are at least two paths of type u⇒ k. Figure 4C illustrates
a sequence of cycles of type B followed by a cycle of type A.

Remark. The subgraph of Figure 4C is the only possible one where F3(k; i, j) has
negative terms in its decomposition, because each path γ ∈ Γki and δ ∈ Γk j must
respect the definition of admixture path. The cycles of type B and eventually some
subpaths of the cycle of type A provide positive terms when γ,δ overlap, while the
overlapping between u and u′ provides negative terms if u 6= u′.

Consider two paths γ ∈ Γki and δ ∈ Γk j in one of the configurations of Figure 4.
To ease the notation, we denote a subpath of γ and δ from ` to m by γ`m and δ`m,
respectively, where `,m are two nodes of the graph.

u

i

u′

j

t

k

γδ

u

t

k

k . . .

j

i

A B

C

Fig. 4 Schematic representation of cycles in an admixture graph. Representation of two subgraphs
where two admixture paths starting from k can form a cycle. The dashed arrows represent sequence of
edges following the same direction. Note that each configuration allows peculiar cases by collapsing other
nodes into one. For example the subgraph of type t → ·· · → k is done with t = u in configuration B. (A)
Subgraph in which the two paths γ,δ starting in k overlap in the subpaths between nodes u,u′ on edges
with different sign. The products of the coincident partial drifts on this subpath can contribute to make
F3(k; i, j)< 0. This is the only configuration in which this can happen. (B) In this subgraph any two paths
γ and δ starting in k overlap only on edges with the same sign. (C) In general any pair of paths contributing
with negative terms to F3(k; i, j) starts in k, goes through a sequence of cycles of type B and ends in a cycle
of type A.

Let a pair of paths γ ∈ Γki, δ ∈ Γk j involve cγ,δ ≥ 0 cycles in the configuration of
Figure 4C, of which cγ,δ − 1 of type B and one of type A. The set of pairs of such
paths is denoted by Γk;i j. Denote by V c

i j the subset of nodes k ∈ V such that Γk;i j 6= /0.
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The F3-statistics of type F3(k; i, j) that contain negative terms in their canonical
decomposition, and therefore might assume negative value, are characterized in term
of the nodes of V c

i j . The proof is a consequence of the remark discussed above.

Lemma 1 The statistic F3(k; i, j) contains negative terms if and only if k ∈ V c
i j .

The next theorem describes a necessary condition for having a non-negative F3-
statistic and therefore F2 as a metric between two nodes. Given a pair (γ,δ ) ∈ Γk;i j,
let E +

γ,δ and E −γ,δ be the set of edges that have identical and opposite sign on the two
paths, respectively.

Theorem 5 (Necessary and sufficient condition for F2 being a metric) Consider
two nodes i, j of an admixture graph. Then F2(i, j) is a metric between i, j if the
condition

∑
(γ,δ )∈Γk;i j

pγ pδ ∑
e∈E+

γ,δ

E(d2
e )≥ ∑

(γ,δ )∈Γk;i j

pγ pδ ∑
e∈E−γ,δ

E(d2
e ) (8)

is fulfilled for each node k ∈ V c
i j .

Note that the right-hand side of (8) is zero on a tree, because a cycle of type A is
not possible, since it involves an admixed node with more than one parent.

Corollary 2 The F2-statistic is always a measure if G is a tree.

Example 3 Let i = 4, j = 3, k = 5, in the tree of Figure 5A. The value of F3(5;3,4)
is the length of the segment spanning from node 5 to the parent of nodes 3 and 4. In
this setting F3(5;3,4) = F2(2,5). The F3-statistic is equal to zero if the length of such
a segment is zero.

4.1 Application of the F3- and F4-statistics

In this subsection we analyze some specific models of admixture graphs (see Fig-
ure 5 and 6) on which the F3- and F4-statistics are applied in the population genetics’
literature. Here the nodes of an admixture graph correspond to populations, and an
admixture is the sum of contributions as in Definition 7(ii).

The F3-statistic is often used to detect the recent admixture of two populations[19,
17], as represented in Figure 5B by node 4. The term recent refers to the assumption
that branches 1→ 2 and 1→ 6 are significantly greater than 2→ 7,6→ 7 and 7→ 4
in term of F2-statistic [19] (in other words 1→ 2 and 1→ 6 have been undergoing a
drift for longer time).
The recent admixture that generates population 4 is often detected through a negative
value of F3(4;3,5). In fact

F3(4;3,5) = F2(7,4)+α2
27E(d2

27)+α2
67E(d2

67)−2α27α67
(
F2(1,2)+F2(1,6)

)
.

If 2α27α67
(
F2(1,2)+F2(1,6)

)
is larger than the sum of the other terms, then it holds

that F3(4;3,5)< 0.
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1

2

3 4 5

1

2 67

43 5

α67α27

A B

1

2

3

4 5 6 7

1

2

3 89

54 6 7

α39 α89

C D

Fig. 5 Admixture graphs used to test for admixtures. (A) Admixture graph with three leaves, where no
admixture is present. (B) Admixture graph involving 3 leaves and subject to an admixture. (C) Admixture
graph with four leaves in which there are not admixed nodes. (D) Admixture graph with 4 leaves involving
one node having two parents.

1

28

A1 AM. . .

6 9

B1 BN. . .

7

4

3 5

ε1 εM
γ1 γN

1

28

A1 AM. . .

6 9

B1 BN. . .

7

4

3 5

A B

1

28 6 97

4

3 5

SUBGRAPH SUBGRAPH

1

28 6 97

4

3 5

SUBGRAPH SUBGRAPH

C D

Fig. 6 Configurations for the analysis of the F3-statistic. (A) Graph where F3(4;3,5) can assume nega-
tive values because of the presence of a cycle of type A. (B) A more general case of the graph in subfigure
A, where the cycle of type A is still present. (C) In this general case, whichever structure is present in
the subgraphs (that can have edges, represented with dashed arrows, connecting to nodes 3 and 5), edges
1→ 6 and 1→ 2 still contribute with negative terms to F3(4;3,5). (D) in this generic admixture graph it
always holds F3(4;3,5)> 0 because the cycle of type A is missing.

The negative F3-statistic has been proven to be stable even if there is a more
complex history for the parents of the admixed node 4 [19], where 3 and 5 have an
arbitrary number of parents. However, this is true only in configurations of the type
of Figure 6A-B (where eventually nodes 2,6 can be connected by an edge to each
node Ai, i = 1, . . . ,M and B j, j = 1, . . . ,N, respectively, bypassing nodes 8,9). Those
are of the type in Figure 4C. The nodes of Figure 4A can be matched in Figure 6A-B
as it follows:

k = 4, t = 7, u = 2, u′ = 6, i = 3, j = 5.

The admixture graph of Figure 6A involves an arbitrary number M and N of
parents for node 3 and 5, respectively. For every n = 1, . . . ,N and m = 1, . . . ,M, all
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positive terms of the decomposition of F3(4;3,5) are of type

α2
27εmγn(F2(7,4)+F2(2,7))+α2

67εmγn(F2(7,4)+F2(6,7)). (9)

The edges overlapping with opposite signs contribute to F3(4;3,5) with the following
negative terms:

−2α27α67εmγn(F2(1,2)+F2(1,6)) for n = 1, . . . ,N, m = 1, . . . ,M. (10)

Note that the sum of the quantities in (9) and (10) correspond to the left- and right-
hand term of (8) fixing node k = 4, respectively (apart from the negative sign due to
the inequality). Again the F3-statistic can be negative depending on the value of the
partial drifts and labels. Analogous considerations hold for Figure 6B.

In general F3(4;3,5) will always contain negative terms in a structure of the type
in Figure 6C. However the value of F2(4,7)+F2(6,7) has to increase to compensate
an increasing number of both labels and edges.
Any configuration of the type in Figure 6D provides a positive value of F3(4;3,5)
because it misses a cycle of type B with k = 4, i = 3, j = 5.

Another insight in the presence of admixture between two populations is given
by the F4-statistic. The F4-statistic is applied to detect the presence of admixture in
a graph with four leaves. Consider the tree of Figure 5C. Here F4(4,5;6,7) = 0 be-
cause Γ54 and Γ76 consist respectively of the path γ = (5,3,4) and δ = (7,1,2,6), that
do not overlap. In Figure 5D node 5 has two parents. The value of F4(4,5;6,7) is
α2

89F2(2,8). Analogously, the F4-statistic is negative if the node with two parents is
4. Therefore the F4-statistic also discerns which nodes are involved in the admixture.

We provide a definition for sets of edges that appear in some decompositions of
F2-statistics with the same A-coefficient.

Definition 12 (Bottleneck edge) Let C ⊂ V and consider S ⊂ E a subset of edges
with |S|> 1. If each edge of S has the same A- or B-coefficient between different pairs
of nodes of C, and S is maximal w.r.t. such a property, then S is called bottleneck. The
bottleneck number of C is defined as follows:

nC
bot = ∑S∈bot(C)

(|S|−1),

where bot(C) is the set of possible bottlenecks of C.

Denote by FC
2 the set of possible F2-statistics between nodes of C. Then a bottle-

neck S can be seen as the set of edges having the same coefficients in the canonical
decomposition of a subset of FC

2 related to the pairs of nodes of the bottleneck.
It is possible to prove[19,17] that FC

2 spans the linear space FC of the F-statistics
between nodes of C. Moreover, given a node k ∈C, the set

Fk
2,3 =

{
F2(k, j), j ∈C\{k}

}
∪
{

F3(k; i, j), i, j ∈C\{k}
}
,

can be written in function of the elements of FC
2 , and vice versa [19]. Further, note

that the canonical decompositions of the elements of FC
2 involve only the nodes and

edges of GC.
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Theorem 6 Let C be a subset of n nodes in an admixture graph G . Let GC have nd
edges and at most 2 roots. If for any triplet of nodes of C the hypothesis of Proposition
6 is not verified, and the following condition

(
n
2

)
< nd−nC

bot

holds, then

– the set FC
2 is a basis for FC;

– a basis of FC is also defined by Fk
2,3, where k ∈C;

– dimFC =
(n

2

)
.

Proof The theorem is proved for the set FC
2 , and it will hold also for the set Fk

2,3.
We keep the notation of the proof uncluttered by indexing with F1,F2, . . . ,FN the
elements of FC

2 and with d1, . . . ,dnd the partial drifts on the edges of EC.
Consider the canonical decomposition of the F2-statistic (7) and F t ∈ FC

2 . Then

F t = ∑e A(t)
e E
(
(d(t)

e )2), (11)

The index of the sum represents the edges involved in the canonical decomposition of
F t . Note that, in presence of 2 roots and only one directed edge e′, the B-coefficient
B(t)

e′,e′ is the same as A(t)
e′ (where the sign of the undirected edge is used). Therefore

(11) admits the presence of an undirected edge in case GC has two roots.
Observe that each A-coefficient is dependent on the F2-statistic F t . Such a dependence
is shown by the index (t). Every partial drift is independent of the F2-statistic because
is not influenced by the probabilities of the paths between nodes.

The objective is to prove that the elements of FC
2 are linearly independent, that is

∑N
t=1 ωtF t = 0 ⇐⇒ ω1 = · · ·= ωN = 0 (12)

over all the values that can be assumed by the partial drifts. The left-hand side of the
double implication above can be rewritten as

∑N
t=1 ωtF t = ∑N

t=1 ωt

(
∑e A(t)

e E(d2
e )
)
= E

(
∑e d2

e

(
∑N

t=1 ωtA
(t)
e

))
.

The coefficients A(t)
e are positive (see Proposition 5). Rewrite (4.1) as it follows:

∑N
t=1 ωtF t = ∑N

t=1 ωt

(
∑e A(t)

e E(d2
e )
)
= E

(
∑e d2

e

(
∑N

t=1 ωtA
(t)
e

))
.

The terms d2
e and their expectations are positive. Thus the condition in (12) becomes

a system in the edges e of the admixture graph:

∑N
t=1 ωtA

(t)
e = 0 (13)

The system of equations above has
(n

2

)
variables and nd−nC

bot equations. In fact,
for every bottleneck S there are nS coincident equations involving wi 6= 0 for each F i ∈
FC

2 that contains the elements of the bottleneck. It is not possible to find other linear
dependence relationships between equations, because by hypothesis the additivity of
F2-statistics is not verified. By hypothesis

(n
2

)
< nd−nC

bot , therefore the only solution
of equation (13) is wt = 0 for every t = 1, . . . ,N.
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Remark. The linear independence requires the presence of at most two roots in
GC. The presence of more than two roots would change (4.1) into

N

∑
t=1

ωtF t =
N

∑
t=1

ωt

(
∑
e

A(t)
e E(d2

e )+ ∑
e1,e2

B(t)
e1,e2E(de1de2)

)
= E

(
∑
e

d2
e

( N

∑
t=1

ωtA
(t)
e

))

+E

(
∑

e1,e2

N

∑
t=1

ωt
(
B(t)

e1,e1d2
e1
+B(t)

e2,e2d2
e2
+2B(t)

e1,e2de1de2

)
)
.

It is not possible to factorize the second term of the sum between the B-coefficients
and the partial drifts, therefore one cannot obtain a system of equations as in (13) and
a similar statement for the theorem with more than 2 roots.

Example 4 Consider the tree of Figure 5C, and let C be the subset of nodes {4,5,6,7}.
The set FC

2 contains 6 elements and there are nd = 6 directed edges in EC. The set
S = {1→ 3, 1→ 7} is a bottleneck for C, since the F2-statistics between (4,7),(5,7)
and (6,7) have those edges with same coefficients in their decomposition. There-
fore nC

bot = 1. Thus the considered tree does not fulfill the hypothesis of Theorem 6,
because N = 6 and nd − nC

bot = 5. It is immediate to see that decomposing the six
F2-statistics, there is a linear dependence relationship.
In an analogous way the same subset of nodes does not originate linearly independent
F2-statistics for the more complex admixture graph of Figure 5D, where N = 6 and
nd = 9. The set S1 = {1→ 3, 1→ 7, 9→ 5} is a bottleneck related to the pairs of
nodes (4,5),(5,6) and (5,7), while S2 = {1→ 3, 1→ 7} is a bottleneck related to
the pairs (4,7),(5,7) and (6,7). Thus nC

bot = 2+1 = 3. In this case N = nd−nC
bot .

The system in (13) is expressed in this case as follows:

ω1 +ω2 +ω3 = 0 F2(4,3)

ω1 +ω4 +ω5 = 0 F2(5,9),E(d2
29),E(d

2
89) (14)

α2
89ω1 +ω2 +ω3 +α2

29ω4 +α2
89ω5 = 0 F2(2,3)

α2
89ω1 +ω2 +α2

29ω4 +α2
89ω5 +ω6 = 0 F2(3,8)

ω2 +ω4 +ω6 = 0 F2(8,6)
ω3 +ω5 +ω6 = 0 F2(3,1),F2(1,7) (15)

On the right hand side is reported to which F2-statistic or partial drift the equation
is referred to. Equation (14) appears three times and (15) appears twice, as expected
with nC

bot = 2+ 1. The total number of distinct equations is therefore nd − nC
bot = 6,

and the solution of the system is unique and in general different from ωi = 0 for
i = 1, . . . ,6.

5 Appendix 1

Any graph where the nodes are connected by either directed or undirected edges, and
without directed cycles, is called a chain graph. The nodes of a chain graph can be
partitioned in subsets, denoted as components, through an equivalence relation. Two
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nodes i, j are part of the same component if there exist a path from i to j and vice
versa. In this case a path is meant with the usual definition in the context of graphs,
that is, following the direction of the edges. Following the notation for chain graphs,
we denote by i > j a path from i to j.

The future and the past of a node i are respectively defined as

φ(V ) := {Q : V > Q} and π(V ) := {Q : Q >V}.

An analogous definition applies for the future and past of a component τ . A compo-
nent τ is terminal if its future is empty. A set of nodes is an anterior set if it can be
generated from the graph with a stepwise removal of terminal components.

Consider a subset of nodes A of a chain graph. Its border is defined as

bd(A ) :=
{

V ∈ V : V → A or V ↔ A for some A ∈A
}
,

where V → A and V ↔ A denote the presence of a directed edge from V to A and
an undirected edge between the two nodes, respectively. Given a chain graph G =
(V ,E ), its moral graph is G m = (V ,E m), where Em consists of the union between

– the set E u where all elements of E are turned into undirected edges,
– the undirected edges connecting all pairs of nodes that are in the border of a

component of G .

The probabilistic conditional dependence that we assume in our treatment is the
Global G -markovian (GM) property. A probability measure defined on (V1, . . . ,VN)
is GM if

V ⊥P Q |C
whenever C separates V and Q in Gan(V∪Q∪C)m , the moral graph of the smallest ante-
rior set containing V ∪Q∪C.

6 Appendix 2

This appendix contains the proofs of some statements presented in this paper. In this
setup we consider admixture graphs, denoted by G = (V ,E ,L ), that are not trivial,
that is, they cannot contain only roots and undirected edges. The set V contains the
nodes of the graph, E its edges and L its edges’ labels.

A directed edge from i to j is written as i→ j, if it is undirected it is denoted
by i↔ j. Edges can be briefly denoted by e. An edge i→ j is said to be ingoing
to j and outgoing from i. Two nodes are connected by an undirected edge only if
they are roots, from which only directed edges are only outgoing. Any other node is
admixed if it has both ingoing and outgoing edges, or a leaf if it has only ingoing
nodes. Each edge is ordered: directed edges i→ j are considered ordered from i to
j, while undirected edges can have an arbitrary order. The label of an edge i→ j is
denoted by αi j or α ji, and undirected edges have label 1. Directed edges ingoing to a
node have positive labels that sum to 1.
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Let i, j be two nodes. An admixture path γ from i to j consists of an ordered
sequence (i, ik−1, . . . , i1, i0, i′0, i′1, . . . , i′k′−1, j) of adjacent nodes beginning in i and
ending in j. Any two adjacent nodes amongst the first k ≥ 0 ordered nodes are con-
nected by a directed edge with order opposite to the nodes’ order. The node i0 can be
a root. Only a root can be adjacent to another root i′0, otherwise i0 = i′0. Two adjacent
nodes amongst the following k′ ≥ 0 are connected by a directed edge ordered in the
same way as the nodes are. The set of all paths from i to j is denoted by Γi j. An edge
has positive sign in γ , sgnγ(e) = +1, if the order of the edge is the same of its nodes
in γ , otherwise sgnγ(e) =−1. The label of a path γ , pγ , is the product of the labels of
edges between the adjacent nodes of the paths.

Given an admixture graph G = (V ,E ,L ), consider the augmented graph G ∗ =
(V ∗,E ∗) with nodes V ∗ = V ∪

{
(i, j) | i→ j ∈ E

}
, where each directed edge i→

j ∈ E is split into i→ (i, j) ∈ E ∗ and (i, j)→ j ∈ E ∗, and where undirected edges
are unchanged. For each node of G ∗ associate a stochastic variable with finite mean
denoted by Vj if j ∈V ∗ and Ci j if (i, j)∈V ∗. The variables Ci j are called contribution
variables and the nodes (i, j) contribution nodes. We denote G a stochastic admixture
graph if:

(i) G ∗ is a chain graph, that is, it has no directed cycles.
(ii) Vj = ∑i∈par( j) αi jCi j for any admixed node j.

(iii) E(Ci j|Vi) = Vi for any admixed node i, with E(X |Y ) being the expectation of a
variable X conditionally to a variable Y .

Define the drift between nodes i, j as Di j = Vj −Vi. Given an edge e = i→ j
or e = i↔ j, the partial drift between i, j is defined as di j = Ci j −Vi. The partial
drift between i, j in a path γ is dγ

i j = sgnγ(e)di j. Given four nodes i, j,k, `, the F-
statistics are defined as F2(i, j) = E[D(i j)2], F3(k; i, j) = E[DikD jk] and F4(i, j;k, `) =
E[Di jDk`]. Those are respectively the F2-statistic between i, j, the F3-statistic between
i, j,k and the F4-statistic between i, j,k, `.

We consider coefficients that assume value in [0,1] for directed and undirected
edges called A- and B-coefficients, respectively. Given two nodes i, j ∈ V and e ∈ E ,
the A-coefficient of such edge is

Ae = ∑
γ1,γ2∈Γ e

i j

sgnγ1
(e)sgnγ2

(e)pγ1 pγ2 .

The B-coefficient of two undirected edges e1 and e2 is

Be1e2 = ∑
(γ1,γ2)∈Γ e1

i j ×Γ e2
i j

sgnγ1
(e1)sgnγ2

(e2)pγ1 pγ2 .

Proof of Proposition 1. Given i, j ∈A , there exists r1,r2 ∈R such that they define
two paths (i, ik−1, . . . , i1, r1) and (r2, i′1, . . . , i′k′−1, j) for some nodes i1, . . . , ik−1, i′1,
. . . , i′k′−1 ∈ A , k,k′ ≥ 1 (because the admixture graph is connected and there are no
directed cycles). Either all these nodes are distinct (except perhaps for r1,r2) in which
case they form a path from i to j, or there is i` = i′`′ for some `,`′. Choose `,`′ such
that `+`′ ≤ k+k′ is as large as possible. Then (i, ik−1, . . . , i`+1, i`, i′`′+1, . . . , i′k′−1, j)
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is a path from i to j by definition of a path. There cannot be any repeated nodes. If
there was, then `+ `′ would not be as large as possible. Hence Γi j 6= /0.

If i, j ∈R, then they are trivially connected by a path. If i ∈R and j ∈A , then
there is a path ( j, ik−1, . . . , i1, i) for some i1, . . . , ik−1 ∈A (as before).

To prove the second part of the proposition, we proceed by induction in the length
of the paths. For i, j ∈ V , i 6= j, consider Γi j and let lγ denote the number of edges
in a path γ ∈ Γi j. Assume lγ ≤ 1 for all γ ∈ Γi j. Then either i→ j, i← j or i↔ j is
the edge involved in a path (i, j). In the latter case the label is 1. In the former cases,
there cannot be any node i′ such that i← i′ (similarly if i← j) because then there
would be a path from i to j via i′ as Γii′ 6= /0, implying the length is larger than one.
Hence the label of i→ j is by definition 1. Hence ∑γ∈Γi j pγ = 1.

Assume now the statement holds if ∑γ∈Γi j pγ = 1 and lγ ≤ k, γ ∈ Γi j, for some
k ≥ 1. Consider two nodes i, j ∈ V such that all paths between them fulfil lγ ≤ k+1.
Then

∑
γ∈Γi j

pγ = ∑
`∈par( j)

∑
γ∈Γi`

pγ α` j = ∑
`∈par( j)

α` j ∑
γ∈Γi`

pγ = ∑
`∈par( j)

α` j = 1

(potentially by reverting the roles of i, j such that all paths are ingoing to j), as all
paths in Γi` must have length at most k. ut
Proof of Theorem 1. We first prove the double implication between 1 and 2. Assume
1. Let γ be the unique path i⇒ j, where i, j ∈V . Since γ is unique, the admixed nodes
of the path must have exactly one parent. In fact, if a node i` ∈ γ had a second parent,
say ĩ`−1, then since G is connected it would be possible to create a new path involving
the edge ĩ`−1 → i`, not present in γ . But this contradicts uniqueness. It follows that
the product of labels is one. Oppositely, if the label pγ of a path is one, then Γi j = {γ},
according to Proposition 1.

Next we prove the double implication between 1 and 3. Assume 1. Let Ar be
the nodes in A for which there is a (unique) path from r ∈ R to a node in A , not
involving any other root. Any i ∈A is in at least one Ar, and cannot be in two such
sets Ar1 ,Ar2 , because then there would be paths (r1, . . . , i) and (r1,r2, . . . , i) from r1
to i, contradicting uniqueness of paths. Assume 3. This implication is straightforward
using the definition of a forest and taking into account the undirected edges between
the roots.

ut
Proof of Proposition 2. Consider r1 ∈R. Let γ be a path from the leaf ` to another
root r2. The union of γ and the undirected edge between r2 and r1 is a path of Γ̀ r1
and its label is pγ . Therefore ∪r∈RΩ`r = Γ̀ r and it follows that

∑
r∈R

q`r = ∑
r∈R

∑
γ∈Ω`r

pγ = ∑
γ∈Γ̀ r1

pγ = 1.

ut
We define some operations on paths. Note that the notation is a slight abuse of the
one used for operations on sets.
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Definition 13 (Operations on Paths) Let γ1,γ2 be two paths on the same admixture
graph, such that the last m nodes of γ1 and the first m nodes of γ2 are the same, where
m ≥ 1. The union of the two paths, denoted by γ1 ∪ γ2, is the ordered sequence of
nodes consisting of the ordered nodes of γ1 followed by the ordered nodes of γ2. The
nodes shared by γ1 and γ2 are not repeated.
Let γ be a path and C a set of nodes. Define γ\C as γ where the nodes of C are
removed from the path.

Lemma 2 Let γ1,γ2 and m be defined as in Definition 13. At least one between
γ1\{γ1∩γ2} and γ2\{γ1∩γ2} is of type (ik, ik−1, . . . , im+1, im) or (i′0, i′1, . . . , i′k′−m′−1, i′k′−m′),
where m = 0, . . . ,k and m = 0, . . . ,k′, if and only if γ = γ1∪ γ2 is an admixture path.

Proof Let γ1\{γ1∩ γ2} be of type (ik, ik−1, . . . , im+1, im). Since γ2 is a path, it is such
that ( j`, j`−1, . . . , j1, j0, j′0, j′1, . . . , j′`′−1, j′`′), where `,`′ ≥ 0 and eventually j0 = j′0.
Then the union γ1\{γ1∩γ2}∪γ2 = γ1∪γ2 still fulfills the definition of admixture path.
Analogous considerations hold if γ1\{γ1 ∩ γ2} is of type (i′0, i′1, . . . , i′k′−m−1, i′k′−m),
and if the roles of γ1,γ2 are inverted.
Let γ be the path (ik, ik−1, . . . , i1, i0, i′0, i′1, . . . , i′k′−1, i′k′) union of two subpaths γ1,γ2.
If γ1\{γ1∩ γ2},γ2\{γ1∩ γ2} are neither of the first nor the second type in hypothesis,
then γ1 ∪ γ2 contains three adjacent nodes in−1, in, in+1 such that in−1→ in and in←
in+1 contradicting the definition of admixture path. ut

Lemma 2 holds in the specific case of m = 1, where the two paths γ1,γ2 have only
one node in common. The hypothesis can be further simplified without including the
paths’ intersection.

Corollary 3 Let γ1,γ2 and m = 1 be defined as in Definition 5. At least one between
γ1 and γ2 is of type (ik, ik−1, . . . , i0) or (i′0, i′1, . . . , i′k′) if and only if γ = γ1 ∪ γ2 is an
admixture path.

Proof of Proposition 3. The equivalence between conditions 1. and 2. holds from
Corollary 3. From assumption 2 it follows that VC = VC0 , therefore we prove that
EC = EC0 . Consider e = k→ ` ∈ EC\EC0 , then there is no path γ ′ between two leaves
such that e ∈ γ ′. Since k /∈ C0 and GC is connected it is possible to find i ∈ C0 and
γ ∈ Γik of type i← . . .← k, such that e ∈ γ . Since k ∈ VC0 and e /∈ EC0 , there exist an
edge e′ = k→ `′. There is another leaf j such that a path δ ∈ Γjk, e′ ∈ δ ; moreover
δ ∩γ = {k}, otherwise there would be δ ′ ∈Γjk such that e ∈ δ ′. But from Corollary 3
γ ∪δ is an admixture path. Thus e ∈ EC0 and GC = GC0 .
Let GC = GC0 . Then hypothesis 2 is fulfilled by definition of spanned graph.
Let C′0 ⊂ C0 such that GC′0

= GC0 . Consider e = k→ i ∈ EC′0
, i ∈ C0\C′0. All paths

involving e must contain node i, therefore e /∈ EC′0
and GC′0

6= GC0 , against the initial
assumption. Thus C0 is the smallest subset of nodes spanning GC. ut
Proof of Theorem 2
Let Ri,R j be two root variable, corresponding to distinct roots in R. Assume

E
(
Ri |R j

)
= R j and E

(
R j |Ri

)
= Ri. (16)
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Applying the law of total variance to Ri, it follows that

Var
(
Ri
)
= E

(
Var
(
Ri|R j

))
+Var

(
E
(
Ri|R j

))
.

Analogous equation holds for R j. Applying (16) to the right-hand side of the equation
above it holds that

Var
(
Ri
)
= E

(
Var
(
Ri|R j

))
+Var

(
R j

)
, Var

(
R j
)
= E

(
Var
(
R j|Ri

))
+Var

(
Ri

)
.

Consider their sum:

Var
(
Ri
)
+Var

(
R j
)
= Var

(
Ri
)
+Var

(
R j
)
+E

(
Var
(
Ri|R j

))
+E

(
Var
(
R j|Ri

))
.

Hence,

E
(

Var
(
Ri|R j

))
+E

(
Var
(
R j|Ri

))
= 0.

As the two variances are non-negative almost surely, then

Var
(
Ri|R j

)
= Var

(
R j|Ri

)
= 0. (17)

Using (17) and the definition of Var
(
Ri|R j

)
= E

((
Ri−E(Ri|R j)

)2 |R j

)
, we get Ri =

E(Ri|R j), because
(
Ri−E(Ri|R j)

)2 is non-negative. However by assumption R j =
E(Ri|R j), so Ri = R j. It completes the proof. ut
Remark. Note that, for any two nodes i, j ∈ V , at least one between Γi j and Γji
contains only paths involving a parent of i and j, respectively.

Proof of Theorem 3 (Canonical decomposition of a drift along paths)
Assume that j is such that any path of Γji involves a parent of j. We prove the state-
ment by induction on the maximum number of edges n of the paths γ ∈ Γji. If n = 1,
there is only one path γ = ( j, i) from j to i, where j ← i. Therefore pγ = 1 and
∑e∈γ dγ

e = Vj−Vi. Let (4) be true for n = ` and consider n = `+ 1 for some ` ≥ 1.
Since a path γ ∈ Γji always contains a node j′ ∈ par( j), then it holds that

∑
γ∈Γji

pγ = ∑
j′∈par( j)

α j′ j ∑
γ ′∈Γj′i

pγ ′ . (18)

Using (18) and the inductive hypothesis, the decomposition in (4) can be rewritten
as:

∑
γ∈Γji

pγ ∑
e∈γ

dγ
e = ∑

j′∈par( j)
α j′ j

(
d( j, j′)

j′ j + ∑
γ ′∈Γj′i

pγ ′ ∑
e∈γ ′

dγ ′
e

)

= ∑
j′∈par( j)

α j′ j

(
C j′ j−Vj′ +Vj′ −Vi

)

= ∑
j′∈par( j)

α j′ jC j′ j− ∑
j′∈par( j)

α j′ jVi =Vj−Vi.
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Note that D ji =−Di j. Thus

D ji =− ∑
γ∈Γji

pγ ∑
e∈γ

dγ
e = ∑

γ∈Γi j

pγ ∑
e∈γ

dγ
e ,

using the fact that the sign of an edge changes along a path, if the nodes of such a
path are reordered from the last to the first. ut
Proof of Proposition 4. Denote e1 = i→ j and e2 = k→ ` (with one of the two
eventually undirected). Let us assume that the blocks Bni ,Bnk , related to the nodes i,k
are such that ni ≥ nk. The expected value in (5) can be rewritten as

E(di jdk`) = E(Ci jCk`)−E(Ci jVk)−E(Ck`Vi)+E(ViVk).

Consider the first expectation,

E(Ci jCk`) = E(E(Ci jCk`|Vi,Vk)) = E(E(Ci j|Vi,Vk)E(Ck`|Vi,Vk)) (19)
= E(E(Ci j|Vi)E(Ck`|Vi,Vk)) = E(ViE(Ck`|Vi,Vk)). (20)

Here we used (1) ,(3) in (19) and Definition 7 in (20). With similar considerations, it
follows that

E(Ck`Vi) = E(E(Ck`Vi|Vi,Vk)) = E(ViE(Ck`|Vi,Vk)).

Using the properties of conditional expectation, it holds that

E(ViVk) = E(E(ViVk|Vi)) = E(ViE(Vk|Vi)).

The remaining term results in the following equation:

E(Ci jVk) = E(E(Ci jVk|Vi)) (21)
= E(E(Ci j|Vi)E(Vk|Vi)) (22)
= E(ViE(Vk|Vi)),

where we have applied (3) and Definition 7(ii) in (21) and (22), respectively. Hence
E(di jdk`) = 0. ut
Proof of Proposition 5 (Properties of the A- and B-coefficients)
If both paths of the pair (γ1,γ2) contain edge e, then this is in both paths of the pairs
(γ1,γ1) and (γ2,γ2). Therefore the A-coefficient can be rewritten as

Ae = ∑
(γ1,γ2)∈Γ e

ji×Γ e
ji

(
pγ1 + sgnγ1

(e)sgnγ2
(e)pγ2

)2
, (23)

where each term of the sum is non-negative. Similar considerations lead to express
the sum of B-coefficients as

Be1e1 +Be2e2 +Be1e2 = ∑
(γ1,γ2)∈Γ e1

ji ×Γ e2
ji

(
pγ1 + sgnγ1

(e)sgnγ2
(e)pγ2

)2
. (24)

Each term in the sums of (23) and (24) are non-negative and become zero if the sets
Γ e

ji ,Γ
e1
ji ,Γ e2

ji are empty. ut
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Proof of Theorem 4 (Canonical decomposition of the F2-statistics along paths)
Rewrite the definition of F2(i, j) using the canonical decomposition of drifts:

F2(i, j) = E

(
∑

γ1∈Γji

pγ1 ∑
e1∈γ1

dγ1
e1 ∑

γ2∈Γji

pγ2 ∑
e2∈γ2

dγ2
e2

)
. (25)

Distributing the products and exploiting the linearity of the expectation, (25) is equiv-
alent to

F2(i, j) = ∑
γ1,γ2∈Γji

∑
e1∈γ1

∑
e2∈γ2

pγ1 pγ2E(dγ1
e1

dγ2
e2
). (26)

Note that Γji = ∪e∈E jiΓ
e
ji . Therefore (26) can be rewritten as follows

F2(i, j) = ∑
e1,e2∈E ji

∑
(γ1,γ2)∈Γ e1

ji ×Γ e2
ji

pγ1 pγ2E(dγ1
e1

dγ2
e2
).

Observe that E ji is partitioned by E d
ji ,E

u
ji. Moreover, the product of two distinct edges

(where at least one is undirected) has expectation zero (see Proposition 4). Thus

F2( j, i) = ∑
e∈E d

ji

∑
(γ1,γ2)∈Γ e

ji×Γ e
ji

sgnγ1
(e)sgnγ2

(e)pγ1 pγ2E(d2
e )

+ ∑
e1,e2∈E u

ji

∑
(γ1,γ2)∈Γ e1

ji ×Γ e2
ji

sgnγ1
(e1)sgnγ2

(e2)pγ1 pγ2E(de1de2)

= ∑
e∈E d

ji

AeE(d2
e )+ ∑

e1,e2∈E u
ji

Be1,e2E(de1de2).

ut
Proof of Proposition 6 (Additivity of the F2-statistic)
Assume any path γ ∈ Γji is of type ( j, j`−1, . . . , k, . . . , j0, j′0, j′1, . . . , j′`′−1, i), where
`,`′ ≥ 1 and eventually k = j0. By simmetry of the F2-statistic the proof works also
for k in the subpath j′0⇒ i. Any two paths γ1 ∈Γjk, γ2 ∈Γki are such that E d

jk∩E d
ki = /0.

Therefore

F2(i, j) = ∑
e∈E d

ji

AeE(d2
e )+ ∑

e1,e2∈E u
ki

Be1e2E(de1de2)

= ∑
e∈E d

jk

AeE(d2
e )

︸ ︷︷ ︸
F2(k, j)

+ ∑
e′∈E d

ki

Ae′E(d2
e′)+ ∑

e1,e2∈E u
ki

Be1e2E(de1de2)

︸ ︷︷ ︸
F2(i,k)

.

ut
Proof of Theorem 5 (Necessary and sufficient condition for F2 being a metric)
Consider k /∈ Vi j. Then F3(k; i, j)≥ 0 because edges overlap only with the same sign
in two paths of Γki and Γk j, thus F2(i, j) is a measure between i, j.
Assume k ∈ Vi j. Then F3(k; i, j) can be written as

∑
(γ,δ )∈Γk;i j

pγ pδ ∑
e∈Eγ,δ

E(d2
e ),
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where Eγ,δ is the set of edges that overlap on γ and δ . Such a set can be partitioned
in the edges overlapping with identical and opposite signs, that is, Eγ,δ = E +

γ,δ ∪E −γ,δ .
Therefore

F3(k; i, j) = ∑
(γ,δ )∈Γk;i j

pγ pδ ∑
e∈E+

γ,δ

E(d2
e )− ∑

(γ,δ )∈Γk;i j

pγ pδ ∑
e∈E−γ,δ

E(d2
e ),

where the subtraction is due to the opposite sign of edges in ∪E −γ,δ . The theorem is
proved by setting F3(k; i, j)≥ 0. ut
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Status: both manuscript and results are preliminary. Note: This is just a preliminary template, NOT a submission
in the journal GENETICS.

Contribution

This preliminary manuscript illustrates a discrete states Hidden Markov Model to infer ploidy numbers from
NGS data. In this framework, the emissions of the hidden Markov chain consist of mean coverage and sequenced
data. The aim is to use the sequencing depth to detect changes in ploidy, and to assign each variation to the
right ploidy number through genotype likelihoods [35]. This overcomes the limitations of other computational
techniques that are based on sequencing depth and/or allele frequencies to detect ploidy changes, and that are
subject to wrong interpretations when ploidy numbers can be high (such as in plants) [93, 95, 104].

Future perspectives

The results are still preliminary, but show good performances on low-depth samples. However, more idea are
still in the process of being implemented and tested. One idea is that this tool could be used to detect Copy
Number Variations (CNV). The detection of CNVs could be achieved by detecting changes in ploidy, and see
if the changes in depth are compatible with the ploidy suggested by genotype likelihoods, otherwise flag the
change in ploidy as CNV.

Moreover, allele frequencies are calculated over all individuals, but the Hidden Markov Model is so far
applied to the depth of a single individual. A possible development is to implement the EM algorithm for
multiple observations. From another point of view, one could use the Hidden Markov Model on a subset of
individuals (with same ploidy number and haploid depth) and develop a test for aneuploidy by comparing the
likelihood of the model on different datasets.

All data is reduced into windows of loci to reduce the noise from overdispersed sequenced reads and have
more informative values of the probability of sequenced data. However, the window size has to be arbitrarily
chosen by the user. This could cause a change of ploidy to happen inside a window. It would be interesting
to find a way to automatically choose each window, in order to have a size such that both depth and genotype
likelihoods will not be used to infer a single ploidy number, when they actually contain information about two
different ones.

As an application of this tool, it is planned to use the data of more than 200 Bd fungi to detect their ploidy
numbers. This genus of fungi is acting as parasite on a host populations of frogs in UK, that suffering a heavy
loss of biodiversity. Knowing the ploidy numbers could play an important role in determining mechanism of
adaptation/speciation of the Bd fungi on the host organisms.
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Inference of Chromosomal Ploidy from Short-Read
Sequencing Data
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ABSTRACT The inference of ploidy numbers from genetic data is an important yet challenging task for deciphering the
evolutionary mechanisms underpinning genome evolution. High-throughput sequencing machines are now providing researchers
with massive amount of genomic data. However, the data produced is typically affected by large sequencing errors and the
assignment of individual genotypes is challenging when a low-depth strategy is employed.
Statistical methods that take genotype uncertainty into account have been introduced, allowing for an accurate estimation of
nucleotide diversity even when little data is present. However, most of the available software and approaches are based on
classic assumptions of random mating and diploidy. To solve this issue, we propose a novel statistical framework to estimate
ploidy from sequencing data, taking into account base qualities and depth, through a Hidden Markov Model.
The method shows good performances in estimating trajectories of ploidy numbers even at low depth (2X) from simulated data.
We also discuss how this method can be adopted to perform variant and genotype calling and estimation of summary statistics
under an arbitrary number of ploidy directly from genotype likelihoods.
We finally demonstrate the utility of such method for estimating the chromosomal copy number variation in Batrachochytrium
dendrobatis (Bd) from whole genome sequencing data. Bd is an amphibian fungus that is imposing a huge burden on its
host. Genomes of Bd strains have been shown to be highly dynamic, with changes in ploidy observed even over short
timescales. By analysing more than 200 samples from worldwide geographical locations, we aim to assess whether such rapid
changes in chromosomal number copies are indeed associated to increased virulence. Unveiling how ploidy variation relates to
fungal pathogenicity might hold the key for effective molecular monitoring of one of the most threatening epidemics for animal
biodiversity.

KEYWORDS Ploidy; Genotipe Likelihoods; Poliploidy; Next Generation Sequencing; Genomics

Introduction

Ploidy number (or ploidy) is the number of sets of chromosomes
in a cell. Humans are known to be diploid, but other species
are often characterized by a different ploidy. When the ploidy
of an organism is higher than two, it is usually referred to as
poliploidy. The polyploidy state is often the consequence of
hybridization or whole genome duplications, as often observed
in plants. For instance, the genus of the perennial Spartina is
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characterized by triploid, hexaploid and dodecaploid species
(Ainouche et al. 2003).

The changes in ploidy are considered to be playing an essen-
tial role in evolution of plants in natural populations (Adams and
Wendel 2005) and is probably the most important factor concur-
ring in speciation of plants (Otto and Whitton 2000). Moreover
poliploidy can be an advantage for adapting to environmental
factors when it causes alterations of the morphology and phenol-
ogy of the organisms (Soltis and Soltis 2012). Those alterations
can happen even as fast as one generation. For instance, poli-
ploidy events have been detected in the ancestry of some types
of crops and tomatoes (Schlueter et al. 2004), in lineages of the
maize (Messing et al. 2004; Lai et al. 2004), in the common ances-
try of cotton types (Rong et al. 2004; Blanc and Wolfe 2004) and
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soybeans (Schlueter et al. 2004), and in fungi (Todd et al. 2017;
Wertheimer et al. 2016).

An experimental method to detect ploidy numbers in a
genome is by using flow cytometry procedures (Kron et al. 2007).
Flow cytometry is a high-throughput technique to obtain a quan-
tification of optical properties, such as fluorescence, from parti-
cles floating in a special fluid. When flow cytometry is applied
to a cell, it is possible to accurately determine the amount of
genetic material in the nucleus, and estimate the ploidy num-
ber. Modern flow cytometry instruments are very sensible and
reliable. However their cost is high (bennett and Leitch 2005;
Greilhuber et al. 2007) and not justifiable when we are solely
interested in the detection of ploidy numbers.

The advances in high-throughput sequencing techniques of
the recent years, such as Next Generation Sequencing (NGS)
(Goodwin et al. 2016; Reuter et al. 2015), have rapidly resulted in
a vast amount of cost-effective high-throughput data available
for a wide range of genetic studies. The available NGS protocols
(Goodwin et al. 2016; Reuter et al. 2015; Metzker 2010) essentially
result into an output that consists of short reads whose length is
in the order of hundreds of bases, that are further aligned to a
reference genome or de novo assembled in scaffolds. Many stud-
ies based on NGS data rely on low-depth sequencing (< 10X)
because of cost-efficiency and/or degradation of the samples.
Additionally NGS data is affected by a higher sequencing error
than the one typical of Sanger sequencing (Ratan et al. 2013; Lam
et al. 2012). These conditions may result in potentially unreliable
estimates of allele frequencies in the data, and consequently a
poor frequency-based estimation of genotypes.

Many of the current methods for the estimation of ploidy
numbers in NGS data are based on analysis of sequencing depth
and allele frequencies. For instance, conPade (Margarido and
Heckerman 2015) detects the ploidy of a given contig/scaffold
using allele frequencies. The tool ploidyNGS (Augusto Corrêa
dos Santos et al. 2017) estimates allele frequencies and provides
a visualization tool through which ploidy can be assigned. The
visual approach is very commonly used to empirically estimate
the ploidy (Yoshida et al. 2013). AbsCN-seq (Bao et al. 2014)
combines the information on depth and allele counts to estimate,
amongst other parameters related to tumor-specific applications,
the ploidy from NGS data. Analogous data is applied to cancer
cells’ data with a different approach in the package sequenza
(Favero et al. 2015).

We propose a method, called hiddenMarkovPloidy, dedi-
cated to infer ploidy numbers from NGS data. In our method
we build a Hidden Markov Model (HMM) (Cappe et al. 2005;
Rabiner 1989) with a double set of observations, that consists of
sequencing depths and observed reads. The formers are used
to detect changes in ploidy, while the latters are based on the
genotype likelihoods (Nielsen et al. 2011), and contribute in as-
signing each hidden state to its corresponding ploidy number.
Notably this method is able to output the optimal number of
ploidy numbers given an arbitrary initial interval of ploidies.

Simulations at haploid depth 2X show good performances
in estimating ploidy numbers as high as five. We believe that
this implementation can be also applied to the detection of Copy
Number variants (CNV). Tools such as CNVnator Abyzov et al.
(2011), HadoopCNV Yang et al. (2017) and CNVfinder Mccallum
and Wang (2013) detect CNVs using sequencing depth and even-
tually allele frequencies. Here, we aim at using sequencing
depth to detect changes in ploidy, and guess the levels based
only on depths. Further, we can use genotype likelihoods to

compare the guess on ploidy numbers to the ones estimated
from genotype likelihoods, and flag the loci where those two
estimates are different.

Emerging infectious diseases caused by fungi are a serious
threat to global biodiversity and food security. The chytrid fun-
gus Batrachochytrium dendrobatidis (Bd) is responsible for the
dramatic decline of amphibians worldwide, causing one of the
largest losses of biodiversity in recent times Fisher et al. (2012).
Despite much interest, the genetic mechanisms that underpin
Bd’s virulence are not yet known but appear to be driven by
a highly dynamic genomic landscape with frequent events of
gain/loss of chromosomal copies. The geographic origins and
the timing of Bd’s spread are yet to be fully unravelled, making
this one of the most controversial problems in disease ecology
(Fisher 2017). Understanding the genetic mechanisms under-
lying Bd’s virulence through an accurate mapping of ploidy
numbers at different lineages is a fundamental goal to plan
molecular monitoring.

Materials and Methods

This section describes the statistical framework in which the data
is modelled and the Hidden Markov Model is built. In what
follows data is assumed to be diallelic, without loss of generality.

Consider N sequenced individuals with M sequenced bases.
Only the loci that are covered by at least one of the genomes
are considered. For i ∈ 1, . . . , M, and j ∈ 1, . . . , N, let Yj,i be
the ploidy number and Gj,i be the genotype of individuals j at
locus i. Denote with Sy the set of possible genotypes with ploidy
Yj,i = y, expressed as

Sy
j,i = {0, 1, ..., y},

where {0, 1, ..., y} is the number of alternate (or derived) alleles
per genotype.

Probability of Sequenced Data

Denote by O the sequenced data, and consider it independent
between loci and individuals. Let Rj,i the number of sequenced
reads at locus i for individual j and Oj,i,r be the r-th sequenced
read for individual j at locus i, for j = 1, . . . , N, i = 1, . . . , M
and r = 1, . . . , Rj,i. Denote with Oj,i,∗ all the sequenced reads
of individual j at locus i. The probability of Oj,i,∗ conditionally
on the ploidy number Yj,i = yj,i, the alternate allele frequency
xi at locus i and the inbreeding coefficient Ij of individual j is
expressed by

p(Oj,i,∗|yj,i, xi, Ij) = ∑
gj,i∈Sy

j,i

p(Oj,i,∗|gj,i, yj,i)p(gj,i|yj,i, xi, Ij), (1)

where the left-hand side of the equation has been marginalized
over the genotypes, and the resulting probabilities have been
rewritten as product of two terms using the tower property of
the probability. The first factor of the product is the genotype
likelihood (Nielsen et al. 2011); the second factor is the proba-
bility of the genotype given the frequency, the ploidy and the
inbreeding coefficient. Throughout the analysis carried out in
this paper, we assume absence of inbreeding and model such a
probability with a binomial distribution.
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Genotype Likelihood for Arbitrary ploidy number
The genotype likelihood is the probability of observing genotype
gj,i for individual j at locus i, for j = 1, . . . , N, and i = 1, . . . , M,
given the observed data. In its simplest formulation the geno-
type likelihood is determined considering the individual’s base
qualities as probabilities of incorrect sequenced bases, and as-
suming independence of the bases through the reads.
Let Rj,i be the number of sequencing reads at a locus i for in-
dividual j, Oj,i,∗ the individuals’s observed data at that locus,
oj,i,r and qj,i,r the observed nucleotide and the Phred base qual-
ity for the individual’s read r at locus i, respectively. The i-th
base of genotype g is denoted by gi, i ∈ 1, . . . , y. The genotype
likelihood of gj,i for ploidy number yj,i is expressed as

ln p(Oj,i,∗|gj,i, yj,i) =
R

∑
r=1

ln
( yj,i

∑
i=1

1
yj,i

p(oj,i,r|gj,i, qj,i,r, yj,i)
)

where

p(oj,i,r|gj,i, qj,i,r, yj,i) =

{
1− εj,i,r, if oj,i,r = gj,i
εj,i,r

3 otherwise

and εj,i,r is the Phred probability related to the score qj,i,r. The
probabilities of observing incorrect nucleotides are considered
homogeneous through the possible nucleotides.

Consider L1, . . . , LW a set of W > 0 non-overlapping win-
dows of adjacent loci. We write i ∈ Lw, with abuse of nota-
tion, when locus i is in the w-th window, for i = 1, . . . , M and
w = 1, . . . , W. In each window only loci that are covered by
at least one individual are considered. Under the hypothesis
that loci are independent and the samples have the same ploidy
number in each window, define

pj,Lw = ∏
i∈Lw

N

∏
j=1

p(Oj,i,∗|yj,i, xi, Ij) (2)

as the probability of the sequenced data in the w-th window for
the j-th samples.

Estimation of population frequencies
If multiple samples are available, the population frequency xi
at each locus i = 1, . . . , M is estimated assuming infinite ploidy.
Consider, for each individual j = 1, . . . , N, the estimator x̂j,i
given by the relative frequency of the A allele. In each individual,
the sequenced reads are a sample with replacement from the
true genotype.

By assuming infinite ploidy, and therefore an infinitely long
genotype for each individual, each sample can be considered as
drawn from a different position of the genotype. Hence the reads
are considered independent, and the amount of information
contained in the estimator x̂j,i is proportional to the number
of reads at locus i for individual j. We define the population
frequency estimator for xi, say x̂i, as the weighted sum

x̂i =
N

∑
j=1

Rj,i

R∗,i
x̂j,i,

where Rj,i is the number of reads at locus i for individual j, and
R∗,i = ∑N

j=1 Rj,i.
In case the sample size is limited, or even one single sample

is analysed, x̂i is not a valuable estimator of the population size
and therefore (1) might be biased. In fact, in the case of a single

sample the derived allele frequency provides the genotype, and
therefore does not contain additional information. In this case it
is thus assumed that the frequency is the same at each locus, in
order to approximate the expected population allele frequency
over all loci. Under this scenario, we further assume that one of
the two alleles can be assigned to an ancestral (e.g. wild-type)
state, while the other to a derived (e.g. mutant) state.

Under the standard coalescent model with infinite sites mu-
tations (Tavaré 2004; Ewens 2004), the probability mass function
of the population derived allele frequencies x in a sample of N
individuals is (Kingman 1982):

fX(x) =
1/xk

∑−1
j=1

1
jk

, (3)

with X the random variable describing the allele frequency and
k ∈ (0, ∞) being a positive real number, that determines whether
the population is deviating from a model of constant population
size. For instance, k = 1 is equal to the distribution of x un-
der constant population size, while k > 1 models a population
shrinkage and k < 1 population growth. Given the probabil-
ity distribution (3), the expected derived allele frequency in a
population of size n is:

E(X) =
n−1

∑
j=1

x−k

∑n−1
j=1

1
wk

. (4)

Using the expected value of the frequency it is then possible to
calculate quantities that involve the allele frequencies when only
few samples are available.

Unknown or Uncertain Ancestral Allelic State. One of our main
assumptions for the single-sample case is that we know which
allele can be assigned to an ancestral state, and which one to a
derived state. However, in many practical cases, such assign-
ment is either not possible or associated with a certain level of
uncertainty due to, for instance, ancestral polymorphisms or
genome from a closely related species not being available. Un-
der these circumstances, we extend our formulation by adding a
parameter underlying the probability that the assigned ancestral
state is incorrectly identified.

Let us define v as the ancestral state. This can take value in V,
the set of the two most likely alleles from {A, C, G, T}. Assume
that the true ancestral state is contained in V .

The log-probability of the data for a single sample is

ln p(O|y) =
N

∑
i=1

ln
(

∑
v∈V

∑
g∈Sy

p(O|gi, yi)p(gi|yi, v)p(v)
)

(5)

where p(v) denotes the probability that allele v is the ancestral
state and is invariant across sites. Note that ∑v∈V p(v) = 1. If
p(v) = 0.5 for each v ∈ V, then (5) refers to the scenario of
folded allele frequencies, where each allele is equally probable
to be the ancestral state.

Hidden Markov Model for Ploidy Inference
Under the assumption that in each window of loci the ploidy is
constant, we infer the ploidy numbers using a hidden markov
model (HMM) with double emissions. Let an HMM for ploidy
inference be defined by a discrete process

{Yj,Lw , Cj,Lw , Oj,Lw ,∗}W
w=1,
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where W is the number of windows of adjacent loci considered.
The unobservable chain Yj,Lw represents the unknown ploidy
numbers, Cj,Lw the observed depth and Oj,Lw ,∗ the observed se-
quenced data for the j-th individual in the w-th window. The
transition probabilities of the unknown markov chain are de-
noted by AAA = {aij}T

i,j=1, and the stationary probability of the
chain by the vector πππ of length T, where T is the number of
ploidy numbers considered in the model.

Yj,L1 Yj,L2 · · · · · · Yj,LW

Cj,L1 Oj,L1,∗ Cj,L2 Oj,L2,∗ Cj,LW Oj,LW ,∗

Figure 1 Hidden markov model for the detection of the un-
known ploidy numbers Yj,Lw of an individual j in adjacent
windows of loci Lw, for j = 1, . . . , N and w = 1, . . . , W. The
ploidy-dependent emissions consist of the average coverage
Cj,Lw and the sequenced data Oj,Lw ,∗.

Using the HMM defined above implies that some probabilis-
tic relationships are assumed, amongst which:

• conditionally on the sequence of ploidy numbers, the av-
erage depth and the data in a window both depend on the
ploidy at that window,

• the average depth and the data in a window are condition-
ally independent, given the ploidy number.

At each window, the average coverage given the ploidy num-
ber is modelled by a negative binomial distribution to capture
the behaviour of overdispersed values. The observed data given
the ploidy number at a certain window is described by the prob-
ability in equation (2).

The estimation of the parameters AAA, πππ, θθθ, where θθθ charac-
terizes the ploidy-dependent distributions of the depth, is per-
formed through the EM-algorithm (Cappe et al. 2005; Rabiner
1989). The EM-algorithm is modified using the AIC criterion
(Bishop 2006) to find the optimal number of ploidy numbers by
following an approach similar to the one (Li and Biswas 1999).
Here the EM algorithm is started with the maximum number
of hidden states T of the Markov chain. When the convergence
criteria of the EM procedure is met, one of the states is removed
and the EM algorithm restarted. If the AIC criteria suggests that
removing a state is not necessary, then the optimal number of
states is found.

The genotype likelihoods solve the problem of the identifia-
bility of the states (given T hidden states of the chain, there are
T! relabeled HMMs that provides the same result with the EM
algorithm) (Rabiner 1989; Bishop 2006). The optimal sequence
of ploidy numbers is inferred using the Viterbi algorithm, that
detects the most probable sequence of ploidies once the param-
eters of the model have been optimized (Rabiner 1989; Bishop
2006; Viterbi and A. 1967; Forney 1973).

Simulations

To assess the accuracy of estimating ploidy from sequencing
data, mapped reads in mpileup format are simulated for different

scenarios of haploid depth and changes in ploidy numbers. Each
site i, for i = 1, . . . , M, is treated as an independent observation,
without modelling the effect of linkage disequilibrium. The
number of reads is distributed as a Poisson(cyi), where c is the
haploid depth and yi the ploidy at locus i.

At each locus, individual genotypes are randomly drawn
according to a probability distribution defined by set of popu-
lation parameters (e.g. shape of the site frequency spectrum).
Once genotypes are assigned, sequencing reads (i.e. nucleotides’
bases) are sampled with replacement with a certain probability.
Such a probability is given by the quality scores.

All simulated configurations involve 20 individuals, known
ancestral allele and absence of inbreeding. In the simulated
scenario, 104 loci are simulated in two situations, with haploid
depth 0.5X and 2X. Here the ploidy changes every 1000 loci
increasing from 1 to 5, and decreasing from 5 to 1.

Real Data

We applied our method to detect ploidy numbers to whole-
genome sequencing data of Bd strains (Farrer et al. 2013). The
assembled genome is 20Mbp long comprising more than 20 su-
percontigs. We first investigated changes in ploidy for a sample
previously discovered to be highly variables in chromosomal
copies. We will then aim at analysing more than 200 samples
of Bd for different geographical locations, comprising the sug-
gestive source of the panzootic (South Africa, North America,
South America, Japan and East Asia).

Results and Discussion

In both simulations and real data scenarios, non overlapping
windows with size of ten loci are used. In those, only the loci
where the allele frequencies estimated with ANGSD fall in the
interval [0.1, 0.9] are selected.

In the simulated scenario of Figure 2, the Hidden Markov
Model is able to recognize the simulated ploidy numbers from 1
to 4 with few errors at depth 0.5X. However it does not identify
ploidy number 5. This is likely due to two causes. The first is a
poor estimation of allele frequencies from low-depth samples,
causing the probability of observed data to be maximum for a
lower ploidy number. Indeed, the higher is the ploidy number,
the easier is that the bias on allele frequencies confound the
selection of the correct ploidy value. The second cause is the
lack of reads, and therefore the difficulty in inferring some of the
genotypes. In fact, in some loci the number of reads available
from the 20 individuals might be lower than five. However, the
case of depth 0.5X is extreme and real data is in general at higher
depth. Only minor issues are observed in case of haploid depth
2X, where ploidy is estimated correctly except in few windows
for levels 4 and 5.

Figure 3 shows the performances on 15 contigs of one strain
of Bd. Each window of loci has a size of 50Kb. In the graph rep-
resenting the depth, red lines represent the mean of the depth
distribution. The bottom plot shows the minor allele frequencies
estimated with ANGSD as an additional sanity check. Here the in-
ferred ploidies are compatible with the ones that can be deduced
by visual analyse at the sequencing depth variation. Minor
errors observable are caused by oscillations in the sequencing
depth.

Note that the frequency estimation needs a high number avail-
able samples, especially at low depth. In case of few samples,
or even only one, are available, the use of the expect frequency
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over all loci calculated in (4) is an alternative to estimate the
frequencies used in the Hidden Markov Model framework.
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Figure 2 Ploidy inference from simulated data. Inference of
simulated ploidy numbers (red), where the ploidy changes
from 1 to 5 and is constant in each window of loci. In all plots
the window size is 10 loci. The results are shown in blue dots
for depth 0.5X and 2X.

Figure 3 Ploidy inference from a strain of the Bd fungi. Infer-
ence of ploidy numbers from a strain of the Bd fungi. For each
window of loci of size 50Kb, the plot shows the inferred ploi-
dies, the average sequencing depth and the estimated minor
allele frequencies.
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6. Tavaré, S. Ancestral Inference in Population Genetics 1–188. doi:10.1007/978-3-540-39874-
5_1 (Springer, Berlin, Heidelberg, 2004).

7. Ewens, W. J. Mathematical population genetics : 1. Theoretical introduction 417. ISBN: 9781441918987
(Springer, 2004).

8. Kimura, M. The Number of Heterozygous Nucleotide Sites Mainained in a Finite Population due to
Steady Flux of Mutations. Genetics 61 (1969).

9. Tajima, F. Infinite-allele model and infinite-site model in population genetics. Journal of Genetics 75,
27–31. ISSN: 0022-1333 (1996).

10. Nielsen, R. & Slatkin, M. An introduction to population genetics : theory and applications ISBN: 1605351539
(Sinauer Associates, 2013).

11. Gillespie, J. H. Population genetics : a concise guide 214. ISBN: 9780801880094 (Johns Hopkins Uni-
versity Press, 2004).

12. Reich, D., Thangaraj, K., Patterson, N., Price, A. & Singh, L. Reconstructing Indian Population History.
Nature 461, 489–494 (2009).

13. Patterson, N. J. et al. Ancient Admixture in Human History. Genetics 192, 1065–1093 (2012).

14. Reich, D., Thangaraj, K., Patterson, N., Price, A. & Singh, L. Reconstructing Indian population history.
Nature 461, 489–94 (2009).

15. Green, R. E. et al. A Draft Sequence of the Neandertal Genome. Science 328, 710–722. ISSN: 0036-8075
(2010).

16. Skoglund, P. et al. Genetic evidence for two founding populations of the Americas. Nature 525, 104.
ISSN: 0028-0836 (2015).

17. Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of
Native Americans. Nature 553, 203–207. ISSN: 0028-0836 (2018).

18. Wall, J. D. et al. Higher levels of Neanderthal ancestry in east Asians than in Europeans. Genetics 194,
199–209 (2013).

19. Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful Inference with the D-Statistic on Low-Coverage Whole-
Genome Data. G3 (Bethesda, Md.) g3.300192.2017. ISSN: 2160-1836 (2017).

20. Pickrell, J. K. & Pritchard, J. K. Inference of Population Splits and Mixtures from Genome-Wide Allele
Frequency Data. PLoS Genet 8, 1–17 (Nov. 2012).

21. Lipson, M. et al. Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow.
Molecular Biology and Evolution 30, 1788–1802 (2013).

22. Black, J. S., Salto-Tellez, M., Mills, K. I. & Catherwood, M. A. The impact of next generation sequencing
technologies on haematological research - A review. Pathogenesis 2, 9–16. ISSN: 2214-6636 (2015).

86

http://dx.doi.org/10.1007/978-3-540-39874-5_1
http://dx.doi.org/10.1007/978-3-540-39874-5_1


23. Goodwin, S., McPherson, J. D. & Richard McCombie, W. Coming of age: ten years of next-generation
sequencing technologies. doi:10.1038/nrg.2016.49 (2016).

24. Metzker, M. L. Sequencing technologies — the next generation. Nature Reviews Genetics 11, 31–46.
ISSN: 1471-0056 (2010).

25. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry.
Nature 456, 53–59. ISSN: 0028-0836 (2008).

26. Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic acids research 38, 1767–
71. ISSN: 1362-4962 (2010).

27. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25,
2078–9. ISSN: 1367-4811 (2009).

28. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biology 11,
R106. ISSN: 1465-6906 (2010).

29. Reuter, J., Spacek, D. V. & Snyder, M. High-Throughput Sequencing Technologies. Molecular Cell 58,
586–597. ISSN: 10972765 (2015).

30. Rasmussen, M et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–
762. ISSN: 1476-4687 (Electronic) 0028-0836 (Linking) (2010).

31. Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345. ISSN: 0036-8075.
doi:10.1126/science.1255832 (2014).

32. Ratan, A. et al. Comparison of sequencing platforms for single nucleotide variant calls in a human sample.
PloS one 8, e55089. ISSN: 1932-6203 (2013).

33. Lam, H. Y. K. et al. Performance comparison of whole-genome sequencing platforms. Nature biotech-
nology 30, 78. ISSN: 1546-1696 (2012).

34. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleis-
tocene horse. Nature 499, 74–78 IF:38.597 (2013).

35. Nielsen, R., Paul, J., Albrechtsen, A. & Song, Y. Genotype and SNP calling from next-generation se-
quencing data. Nature Reviews. Genetics 12, 443–451. ISSN: 1471-0056 (2011).

36. Patterson, N. J. et al. Ancient Admixture in Human History. Genetics. ISSN: 0016-6731. doi:10.1534/
genetics.112.145037 (2012).

37. Raghavan, M. et al. Nature 505, 87–91. ISSN: 0028-0836 (2013).

38. Wall, J. D. et al. Higher Levels of Neanderthal Ancestry in East Asians Than in Europeans. Genetics.
ISSN: 0016-6731. doi:10.1534/genetics.112.148213 (2013).

39. Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Amer-
icans. Science. ISSN: 0036-8075. doi:10.1126/science.aab3884 (2015).

40. Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western
Montana. Nature 506, 225–229. ISSN: 0028-0836 (2014).

41. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468,
1053–1060. ISSN: 00280836 (Dec. 2010).

42. Reich, D. et al. Denisova Admixture and the First Modern Human Dispersals into Southeast Asia and
Oceania. The American Journal of Human Genetics 89, 516–528. ISSN: 0002-9297 (2011).

43. Lalueza-Fox, C. & Gilbert, M. T. P. Paleogenomics of archaic hominins. Current Biology 21, R1002–
R1009. ISSN: 09609822 (2011).

44. Chatters, J. C. The Recovery and First Analysis of an Early Holocene Human Skeleton from Kennewick,
Washington. American Antiquity 65, 291–316. ISSN: 00027316 (2000).

87

http://dx.doi.org/10.1038/nrg.2016.49
http://dx.doi.org/10.1126/science.1255832
http://dx.doi.org/10.1534/genetics.112.145037
http://dx.doi.org/10.1534/genetics.112.145037
http://dx.doi.org/10.1534/genetics.112.148213
http://dx.doi.org/10.1126/science.aab3884


45. Johnson, P. L. F. & Slatkin, M. Accounting for Bias from Sequencing Error in Population Genetic Esti-
mates. Molecular Biology and Evolution 25, 199–206. ISSN: 0737-4038 (2007).

46. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely
related populations. Molecular Biology and Evolution. doi:10.1093/molbev/msr048 (2011).

47. Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype
data. Genetics 155, 945–959 (June 2000).

48. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated indi-
viduals. Genome Research. doi:10.1101/gr.094052.109 (2009).
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