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Abstract

Tensor abelian categories provide a framework for studying both the
additive (abelian) and the multiplicative (monoidal) structure of cate-
gories like abelian grups, modules over rings, chain complexes, (di�er-
ential) graded modules, quasi-coherent sheaves and functor categories,
even in the non-commutative setting. In the �rst paper, we prove in this
framework a classic theorem of Lazard and Govorov which states that
�at modules are precisely the direct limit closure of the �nitely gener-
ated projective modules. The general result reproves this and other ad
hoc examples and provide new results in other categories including the
category of di�erential graded modules. In the second paper we study
quiver representations in such categories and characterize various classes
of representations. This again generalizes characterizations in R-Mod,
but provides new insight even in this case. In the last paper we study
a generalization of the prime ideal spectrum in this setting, namely the
atom spectrum. This has many good theoretical properties but concrete
calculations are few. We provide a method for calculating this with sev-
eral concrete examples.

Resumé

Tensor-abelske kategorier er en teori hvormed man kan studere både
de additive og multiplikative strukture af kategorier såsom kategorien af
abelske grupper, moduler over ringe, kædekomplekse, (di�erential) gra-
duerede ringe, kvasi-koherente knipper og funktorkategorier selv i det
ikke-kommutative tilfælde. I det første arbejde løfter vi et klasisk resul-
tat af Lazard og Govorov for moduler over ringe til denne ramme. Dette
generelle resultat specialiserer til �ere lignende velkendte resultater og
giver nye resultater om eksempelvis di�erential graduerede ringe. I det
andet arbejde beskriver vi forskellige klasser af kogger-representationer
i disse kategorier. Dette generaliserer beskrivelser af representationer i
kategorien af moduler men giver ny indsigt også i dette tilfælde. I det
tredje arbejde kikker vi på en generalisering af primeidealspektret til den-
ne ramme kaldet atomspektret. Det har mange �ne teoretiske egenskaber
men der har hidtil ikke været mange konkrete udregninger. Vi giver en
beregningemetode og kommer med �ere konkrete udregninger.
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Introduction

Contents

This thesis consitsts of three papers

[I] Dualizable and semi-�at objects in abstract module categories, Math. Z.
(to appear), arXiv:1607.02609.

An abstract version of the classic Lazard-Govorov theorem with new ap-
plications.

[II] Direct limit closure of induced quiver representations, preprint (2018),
arXiv:1805.04169.

General description of the classes Φ(X ) and Φ(lim−→X ) of quiver repre-
sentations with application to Gorenstein homological algebra.

[III] Computations of atom spectra, preprint (2018), arXiv:1805.04315.

A method for computing atom spectra of Grothendieck categories based
on tilings.

I am the sole author of the �rst two papers. The third is joint work with
Henrik Holm. The �rst paper is accepted for publication in Mathematische
Zeitschrift. The last two has been submitted for publication.

Before introducing the content of the three papers we give an introduction
to the theory of ⊗-abelian categories in a non-commutative setting. We then
explain the results of the three papers in view of this theory.

1 Tensor abelian categories

In abstract algebra a central object of study is that of an abelian category. This
includes the category of abelian groups, Ab, and the category of R-modules,
R-Mod for any ring R. But it also includes categories like chain complexes of R-
modules, Ch(R-Mod), (di�erential) graded R modules R-GrMod, (R-DGMod)
where R is a (di�erential) graded ring, the category QCoh(X) of quasi coherent
sheaves over a scheme X, and functor categories Fun(A ,Ab) where A is a
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small category. The notion of an abelian category captures in some sense
the additive structure of the category. If we wish to study the multiplicative
structure we have have the notion of monoidal categories. But Fun(A , Ab)
and R-Mod, Ch(R-Mod) and R-DGMod, when R is not commutative, are
not monoidal categories. We do have a ⊗-product however, and interesting
questions arise when we look at the interplay between this and the additive
structure. In this thesis we develop an abstract theory of ⊗-abelian categories
which include the non-commutative examples above.

1.1 Additive structure

In an abelian category we have the following notion of an object being small:

De�nition 1 (Breitsprecher [4, Def. 1.1]). An object S in an category A is
said to be �nitely presented (FP1) if for every directed system {Xi} every map
S → lim−→Xi factors through Xi for some i. Another way of saying this is that
the canonical map

lim−→Hom(S,Xi)→ Hom(S, lim−→Xi)

is an isomorphism.

We are interested in categories built out of small objects in the following
way.

De�nition 2 (Crawley-Boevey [6, �1]). An abelian category, A , is locally
�nitely presented if FP1(A ) is a set, and lim−→FP1(A ) = A , i.e. for every
A ∈ A there is a directed system {Xi} ⊆ FP1(A ) s.t. lim−→Xi = A.

The �nitely presented objects are part of a tower of small objects.

FP0 ⊆ FP0.5 ⊆ FP1 ⊆ FP1.5 ⊆ FP2 ⊆ · · · ⊆ FPn ⊆ FPn.5 ⊆ FPn+1 ⊆ · · ·

where an object is FPn (n ≥ 1) if the canonical map

lim−→Extk(X,Yi)→ Extk(X, lim−→Yi)

is an isomorphism for every k < n. It is FPn.5 if further the map is monic for
k = n. We have FP0(A ) = FP0.5(A ) by de�nition and FP1(A ) = FP1.5(A )
by Stenström [28, Prop. 2.1] when A is AB5 (direct limits of exact sequences
are exact). The sets FPn(R-Mod) have been intensely studied and in here
FPn = FPn.5 for all n. The reason for introducing the classes FPn.5(A ) is that
they are more stable in that they are closed under extensions ([II, Lem. 1.3]),
not just �nite sums ([4, Lem. 1.3]).

The direct limit is very well behaved in locally �nitely presented categories
as the following lemma shows

Lemma 3. Let A be a locally �nitely presented category. Then
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1. A is AB5 (Crawley-Boevey [6])

2. If X ⊆ FP1(A ) is closed under �nite sums then lim−→X is closed under
direct limits and summands (Lenzing [21]).

3. If X ⊆ FP2(X) is closed under extensions so is lim−→X ([II, Prop. 1.1]).

1.2 Multiplicative structure

De�nition 4 ([23, XI]). A monoidal category is a triple (A ,⊗, 1) where A
is a category, ⊗ : A ×A → A is an associative bifunctor and 1 ∈ A is a unit
for ⊗ i.e. 1 ⊗ X ∼= X ∼= X ⊗ 1, satisfying natural coherence diagrams. It is
symmetric if we have a natural isomorphism λ : X ⊗ Y ∼= Y ⊗ X interacting
with the associator and unit in a natural way.

When the category is monoidal we have another notion of smallness:

De�nition 5. [Lewis, May and Steinberger [22, III.�1]] An object X in a
symmetric monoidal category A is called dualizable if X ⊗ − has a right
adjoint of the form X∗ ⊗− for some X∗ ∈ A .

When the category is closed, i.e − ⊗ X has a right adjoint [X,−] for
any X ∈ A , then X always has a dual object X∗ = [X, 1]. In this case X
is dualizable precisely when X∗ ⊗ − ∼= [X,−] ([22, III.�1]). Again we are
interested in categories built out of small objects. We say A is generated by
dualizable objects if there is a set of dualizable objects generating A , where a
set S is said to generate A if a morphism X → Y is zero in A i� S → X → Y
is zero for every map S → X with S ∈ S.

The additive and multiplicative structures may interact in the following
way. First it is easy to see that if ⊗ is continuous (respects direct limits)
and 1 is �nitely presented (or even FPn) then so is every dualizable object.
Secondly as in [4, Satz 1.5] we see that if A is AB5 and is generated by a
set of �nitely presented objects, then it is locally �nitely presented. So an
AB5-abelian monoidal category with continuous tensor and �nitely presented
unit is locally �nitely presented if it is generated by dualizable objects.

For dualizable objects in monoidal categories we have the following. For
the last assertion see [I, Thm. 2]. The �rst is by the Yoneda lemma.

Proposition 6. Let A be a monoidal category. An object X ∈ A is dualizable
i� there is an object X∗ ∈ A s.t

Hom(1, X∗ ⊗−) ∼= Hom(X,−).

If X is dualizable so is X∗ and (−)∗ : X → X is a duality where X is the
dualizable objects of A . If A has enough ⊗-�at objects (e.g., it is generated
by dualizable objects) then for any dualizable object X ∈ A we further have

Ext(1, X∗ ⊗−) ∼= Ext(X,−).
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As mentioned in the introduction the theory of monoidal categories is not
�exible enough for the non-commutative cases so we enlarge it as follows:

De�nition 7 ([I, Setup 1]). A ⊗-abelian triple consits of three AB5-abelian
categories (A ,B,C ) together with a continuous bifunctor

⊗ : B ×A → C .

We call A (left) ⊗-abelian.

Inspired by Proposition 6 we de�ne the dualizable objects of an ⊗-abelian
triple as follows

De�nition 8 (I, Setup 1+2). Let (A ,B,C ) be a ⊗-abelian triple and let
1 ∈ FP1(C ). We say X ∈ A is dualizable if

Hom(1, X∗ ⊗−) = Hom(X,−).

It is strongly dualizable if further

Ext(1, X∗ ⊗−) = Ext(X,−).

Similarly for Y ∈ B. We say (A ,B,C ) is generated by (strongly) dualizable
objects if there is a duality

(−)∗ : X →X ∗

between full skeletally small1 subcategories of (strongly) dualizable objects
X ⊆ A and (strongly) dualizable objects X ∗ ⊆ B s.t. X generates A
and X ∗ generates B. In this case we say A is a left ⊗-abelian category with
(strongly) dualizable generators X .

As before the dualizable objects are �nitely presented and if A is generated
by dualizable objects it is locally �nitely presented.

Example 9. If (C ,⊗, 1) is a (possibly non-symmetric) monoidal category,
then (C ,C ,C ,⊗, 1) is a ⊗-triple. Further (C ,⊗, 1) is generated by dualizable
objects in the sense of De�nition 5 i� (C ,C ,C ,⊗, 1) is generated by dualizable
objects in the sense of De�nition 8. These are automatically strong.

The ⊗−abelian categories are stable under many operations used in ab-
stract algebra. In particular, if (A ,B,C ) is a ⊗-abelian triple, so is
(Ch(A ),Ch(B),Ch(C )) and (Fun(D,A ),Fun(Dop,B),C ) for any small cat-
egory D. Another way of getting ⊗-abelian categories is to start from a sym-
metric monoidal category C with a ring-object A. Then (A-Mod, A-Mod,C )
will be a ⊗-abelian triple (see [I, Ex. 1 and Sec. 5] and [II, Ex. 4.2]). Using
these procedures we get all the examples mentioned so far.

1the isomorphisms classes form a set
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In many cases we will have more structure and similarly to De�nition 5
have another tensor ⊗0 : A ×C → A s.t. X ∈ A is dualizable i� X ⊗0− has
a right adjoint given by X∗ ⊗A − for some X∗ ∈ B. We will also have some
global functor (−)∗ : A op → B, s.t. X is dualizable i� this particular X∗ is
the dual. This is for instance the case in A-Mod where A is a ring object in a
symmetric monoidal closed category [I, Lem. 5]).

Examples of dualizable objects are proj(R-Mod) (�nitely generated pro-
jective modules) in R-Mod, the perfect complexes in Ch(R-Mod), the �nitely
generated semi-projective objects in A-DGMod, the representable functors in
Fun(D,R-Mod) where D is a small additive category and the locally free
sheaves of �nite rank in QCoh(X). These are all strong ([I, Sec. 5]).

1.3 Cotorsion pairs

In R-Mod the dualizable objects are projective, and the projective objects play
a key role in homological algebra here. We can build projective resolutions that
we, among many other things, can use to compute the Ext functor. What
makes this work is that the class of projective objects is precovering.

De�nition 10. A class P in a category A is said to be precovering if for
every M ∈ A there is a map ϕ : P → M , called the precover s.t. every map
Q→M with Q ∈ P factors throug ϕ. I.e we can always complete the following
diagram to a commutative one

Q

��}}{
{
{
{

P
ϕ //M .

Whenever we have a precovering class P, every object has a P-resolution
that we can use instead of the projective resolution to build a relative ExtP
functor. In Ch(R-Mod) (and more generally A-DGMod) the dualizable objects
are not projective and even though these categories have enough projective
objects, the projective objects are homologically trivial so homological algebra
using these is not necessarily very interesting. Here it is more fruitful to look
at the so-called DG-projective objects (see Avramov, Foxby and Halperin [2]
or [14] for the case of chain complexes). It might also happen, as in QCoh(X),
that there simply are not enough projective objects.

To develop homological algebra in general ⊗-abelian categories we turn to
the theory of cotorsion pairs.

De�nition 11 (Salce [26]). Let X be a class of objects in an abelian category
C . We de�ne

X ⊥ = {Y ∈ C | ∀X ∈X : Ext1C (X,Y ) = 0} and
⊥X = {Y ∈ C | ∀X ∈X : Ext1C (Y,X) = 0}
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We say (A ,B) is a cotorsion pair if A ⊥ = B and ⊥B = A . It is complete if
every C ∈ C has a presentation

0→ B → A→ C → 0

with A ∈ A and B ∈ B and a presentation

0→ C → B′ → A′ → 0

with A′ ∈ A and B′ ∈ B.

These conditions precisely ensures that the left part of a complete cotorsion
pair is precovering so we can use it to build resolutions in the theory of relative
homological algebra. Luckily there is a canonical way of getting a complete
cotorsion pair:

Lemma 12 (Saorín and �´oví£ek [27, Cor. 2.15 (2)]). Let X be a generating
set of objects in an AB5-abelian category A . Then (⊥(X ⊥),X ⊥) is a com-
plete cotorsion pair. Further ⊥(X ⊥) = sFilt X where sFilt X is the class of
summands of X -�ltered objects (trans�nite extensions of X ).

This motivates the following de�nition.

De�nition 13 ([I, Def. 6]). Let A be a ⊗-abelian category generated by
dualizable objects X . We de�ne

(X -Proj,X -acyclic) = (⊥(X ⊥),X ⊥).

When X is understood we call them the semi-projective and acyclic objects.

If X consists of projective objects, then this gives the categorical cotorsion
pair (Proj A ,A ). In Ch(R-Mod) and A-DGMod we get the cotorsion pair of
(DG-projective,acyclic) mentioned above. We also get an interesting one in
QCoh(X ), see ([I, Ex. 1. and Sec. 4]). In the �rst paper we study this
cotorsion pair and generalizes a classic description of lim−→X by Lazard and
Govorov.

Another important class in relative homological algebra that we will use is
the class of Gorenstein projective objects. This was �rst de�ned in R-Mod (see
Enochs and Jenda [8]) but generalizes straightforwardly to abelian categories
(see for examples Holm [16]).

De�nition 14. Let A be an abelian category. An object in A is called
Gorenstein projective if it is of the form Ker(P1 → P0) for some exact complex
P• ∈ Ch(Proj(A )) s.t. Hom(P•, P ) is exact for all P ∈ Proj(A ).

Even in R-mod it is not known in general whether the Gorenstein projective
objects are the left part of a complete cotorsion pair or even precovering. We
do however in many special cases. In the case of modules over a ring Holm
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[16] proves that if an object has a �nite Gorenstein projective resolution, then
it has a Gorenstein projective precover.

Bravo, Gillespie and Hovey [3] proves that the Gorenstein projective objects
are the left part of a complete cotorsion pair in many situations and suggests
a modi�cation of the above de�nition and show that the new so-called AC-
Gorenstein projective objects ([3, Sec. 9]) are always the left part of a complete
cotorsion pair. Their new de�nition agrees when R is right coherent and has
�nite �nistic projective dimension (combine [16, Prop 2.3], [18, Prop. 6] and
[3, Cor. 2.11]). Their de�nition generalizes readily to ⊗-abelian categories,
but we will not need it here.

1.4 Pontryagin duals

In studying the various classes of projective objects the Pontryagin dual is a
useful tool. In Ab it is de�ned as (−)+ = [−,Q/Z] : Ab→ Ab, and there are
similar ad hoc de�nitions in many other situations. They are all covered by
the following de�nition:

De�nition 15 ([II, Def. 4.1]). Let (A ,B,C ) be a ⊗-abelian triple. A Pon-
tryagin dual consists of two functors

(−)+ : A op → B, (−)+ : Bop → A

that both create exactness (i.e A → B → C is exact i� C+ → B+ → A+ is
exact) together with natural ismorphisms

A (A,B+) ∼= C (B ⊗A,E) ∼= B(B,A+)

for some injective cogenerator E ∈ C , i.e C (−, E) creates exactness.

As before if (A ,B,C ) has a Pontryagin dual in this sense, we get induced
Pontryagin duals in (Ch(A ),Ch(B),Ch(C )) and (Fun(D,A ),Fun(Dop,B),C ).
If (C ,⊗, [−,−], 1) is a symmetric monoidal closed category then a Pontrya-
gin dual of the ⊗-abelian triple (C ,C ,C ,⊗, 1) is of the form [−, E] and in-
duces a Pontryagin dual in (A-Mod, A-Mod,C ). The standard Pontryagin
duals (also sometimes called the character modules) in R-Mod, Ch(R-Mod),
Fun(D,R-Mod), and A-DGMod for any ring R and DGA A are all induced
by the standard Pontryagin dual in Ab in this way ([II, Ex. 4.2]).

Dually to the projective objects we have the injective objects and imme-
diately from the de�nition we see that Proj(A )+ ⊆ Inj(B). De�ning Flat(A )
as the objects in A s.t. −⊗X is exact, we see that

X+ ∈ Inj(B) ⇐⇒ X ∈ Flat(A ).

We also have a dual notion of Gorenstein projective and a notion of Goren-
stein �atness.
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De�nition 16. Let B be an abelian category. An object in B is called
Gorenstein injective if it is of the form Ker(I1 → I0) for some exact complex
I• ∈ Ch(Inj(B)) s.t. Hom(I, I•) is exact for all I ∈ Inj(B). Let (A ,B,C ) be
a ⊗-abelian category. An object in A is called Gorenstein �at (GFlat) if it
is of the form Ker(F1 → F0) for some exact complex F• ∈ Ch(Flat(A )) s.t.
I ⊗ F• is exact for all I ∈ Inj(B).

However, since not all injective objects are necessarily the Pontryagin dual
of a projective object, the Pontryagin dual of a Gorenstein projective object
is not necessarily Gorenstein injective.

Also even though the dual is Gorenstein injective, the object might not
be Gorenstin �at. We call an object X ∈ A weakly Gorenstein �at (wGFlat)
ifX+ is Gorenstein injective, and we do have that GFlat(A ) ⊆ wGFlat(A ). In
the second paper we study these classes in the category of quiver-representations.

1.5 Quiver representations

An important notion in R-Mod is that of a quiver representation (Gabriel [12]).
This generalizes readily to (⊗-)abelian categories (Holm and Jørgensen [17]).
A quiver is a directed graph and a representation of a quiver Q in a category
A is a diagram of shape Q in A . The category of quiver representations
Rep(Q,A ) is equivalent to Fun(Q̄,A ) where Q̄ is the path-category of Q, i.e.
the category with objects the vertices of Q and with morphisms all paths og
Q. As special instances of functor categories, if (A ,B,C ) is a ⊗-abelian triple
so is (Rep(Q,A ),Rep(Qop,B),C ).

The structure of Rep(Q,A ) depends on the shape of Q and one such
important notion is the following:

De�nition 17 ([10]). A quiver Q is left-rooted if there exists no �in�nite path�
(i.e. in�nite sequence of composable arrows) of the form

· · · // • // • // • .

Dually we say Q is right-rooted when Qop (same vertices but reversed arrows)
is left-rooted.

In [1, II] Assem, Simson and Skowr«ski treat �nite quivers with admissible
relations and representations in R-mod. This generalizes readily to in�nite
quivers in abelian categories [III, App. A]. Let k be a commutative ring. A
k-linear relation is a formal k-linear combination of paths with the same source
and target. That is, it is a morphism in kQ̄, the free k-linear category of Q̄.
A quiver Q with a set of relations R is denoted (Q,R). Any set of relations R
generates a two-sided ideal (R) in kQ̄ and we may form the quotient category
kQ̄/(R). We call a relation admissible if it is in the arrow-ideal generated by
all the arrows of Q.
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A represention of a quiver Q with k-linear relations R in a k-linear category
A (i.e. k = Z and A is abelian) is a representation F ∈ Rep(Q,A ) ∼=
Fun(Q̄,A ) ∼= Funk(kQ̄,A ) s.t. F (ρ) = 0 for every ρ ∈ R. That is, the category
of quiver representations Rep((Q,R),A ) is equivalent to Fun(kQ̄/(R),A ).

As before, if A is left ⊗-abelian so is Fun((Q,R),A ), where the opposite
quiver of (Q,R) is (Qop, R). We may extend the de�nition of rooted in the
following way:

De�nition 18 ([III, Def. 4.1]). A quiver Q with relations R is right-rooted
provided that for every in�nite path of the form

• a1 // • a2 // • a3 // · · · ,

we have aN · · · a1 ∈ (R) for someN <∞. Again (Q,R) is left-rooted if (Qop, R)
is right-rooted.

We see that Rep((Q, ∅),A ) ∼= Rep(Q,A ) and Q is left (resp. right) rooted
in the sense of De�nition 17 i� (Q, ∅) is left (resp. right) rooted in the sense
of De�nition 18. Right-rooted quivers with relations are studied in the third
paper where we calculate their atom spectrum.

1.6 Atom spectra

Another very useful tool in R-Mod when R is commutative is the notion of a
prime ideal. Among many other things they give the following correspondence
in terms of the space of prime ideals SpecR.

Theorem 19. Let R be a commutative noetherian ring.

1. There is a bijective correspondence between SpecR and indecomposable
injective objects of R-Mod. (Matlis [24])

2. There is a bijective correspondance between specialization closed subset
of SpecR, localizing subcategories of R-Mod and Serre subcategories of
R-mod (Gabriel [13]).

When R is non-commutative the many descriptions of prime ideals that
are equivalent in the commutative case splits into di�erent classes that all fail
to give the above descriptions. Another approach is that of an atom. The
idea goes back to Storrer [29]). The de�nition is inspired by the following
observation

Observation 20 ([19, Prop 7.1]). Let R be a commutative ring and, let p be a
prime ideal and let N be a submodule of R/p. If N is non-trivial, then R/p and
(R/p)/N have no common submodule. Indeed letM be a common submodule
of R/p and (R/p)/N and assume there is a non-zero element a ∈ M. Then
Ann(a) = p as M is a submodule of R/p and p is prime. On the other hand
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N ∼= I/p for some ideal I ⊇ p and M is a submodule of (R/p)/N ∼= R/I so
I ⊆ Ann(a) ⊆ p, hence N is trivial.

This leads us to the following de�nition:

De�nition 21 ([19]). Let A be an abelian category. An object H ∈ A
is monoform if for every non-zero N ⊆ H there is no common subobject of
H and H/N. Two monoform objects are equivalent if they have a common
subobject. The equivalence classes of monoform objects form a topological
space, ASpec A , called the atom spectrum of A .

We call an ideal p of a (possibly non-commutative ring) R comonoform if
R/p is monoforn. Then every atom is induced by a monoform object ([19,
Prop. 6.2]2), and if R is commutative there is a homeomorphism SpecR ∼=
ASpecR-Mod, when SpecR is equiped with the Hochster dual of the Zariski
topology [19, Prop. 7.2]2.

Using the atom spectrum we can extend the correspondence for commuta-
tive noetherian rings to locally noetherian Grothendieck categories (including
R-Mod when R is a right noetherian ring) as follows:

Theorem 22 ([19, Thm. 5.5 and 5.9]). Let A be a locally noetherian Grothen-
dieck category.

1. There is a bijective correspondence between ASpec A and indecomposable
injective objects of A .

2. There is a bijective correspondance between open subsets of ASpec A ,
localizing subcategories of A and Serre subcategories of noeth A .

In order for the atom spectrum to be truely useful we must know whether
we can calculate it and if the description in these terms provides new insight.
There have so far not been many concrete calculations in the literature and
this is the topic of the last paper.

2 Introduction to paper I

Given a (left) ⊗-abelian category A with dualizable generators X , (De�-
nition 8) we have sFilt X = X - Proj since X - Proj is the left part of the
cotorsion pair generated by X and we have colim X = A since A is lo-
cally �nitely presented and every �nitely presented F ∈ A has a presentation
X1 → X0 → F [4]. But what about lim−→X ?

Lazard [20] and independently Govorov [15] have shown that lim−→X =
Flat(X ) when A = R-Mod. In [I] we show that this always happens when
the dualizable generators are projective [I, Cor. 1]. If they are not, we look to
DGAs for inspiration ([2]) and de�ne

2It is a standing assumption in [19, Sec. 6 and 7] that the rings are noetherian, but it is
not needed for these propositions .
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De�nition 23 ([I, Def. 6]). Let A be a (left) ⊗-abelian category with dual-
izable generators X . We say F is X -�at if it is �at and

X ⊥ ⊗ F ⊆ 1⊥.

When X is understood we call such objects semi-�at.

The main result of [I] is then

Theorem 24 ([I, Thm. 1]). Let A be a (left) ⊗-abelian category with strongly
dualizable generators X s.t. the unit is FP2. Then lim−→X is precisely the
X -�at objects.

Even if the unit is not FP2 and the dualizable generators are not strong
every X -�at object is still in the direct limit closure. If the generators are
not strongly dualizable they might not be semi-�at, if the unit is not FP2 the
semi-�at objects might not be closed under direct limits.

Theorem 24 not only reproves the original theorem of Lazard and Govorov,
but also the version for functor-categories by Oberst and Röhl [25], the version
in Ch(R-Mod) by Christensen and Holm [5] and give the following new results:

Corollary 25. Let R be a graded ring, and let X be the �nitely generated
projective graded modules. Then lim−→X is precisely the �at graded modules.

Corollary 26. Let A be a di�erential graded algebra and let X be the �nitely
generated semi-projective DG-modules, i.e. the summands of �nite extensions
of shifts of A. The cotorsion pair (DG-Proj,acyclic) is generated by X and
lim−→X is precisely the semi-�at (i.e. DG-�at) objets.

Corollary 27. Let X be a noetherian scheme with the strong resolution prop-
erty and let X be the locally free sheaves of �nite rank. Then lim−→X is precisely
the semi-�at sheaves.

Before proving the result we develop the theory of ⊗-abelian categories
in detail and show how all the mentioned examples �t in, with a focus on
categories of modules over ring objects in symmetric monoidal categories. We
do not use the term ⊗-abelian in [I], nor strongly dualizable, but refer to [I,
Setup 1 and Setup 2].

3 Introduction to paper II

In this paper we describe various classes of objects in Rep(Q,A ). In the follow-
ing let (A ,B,C ) be a ⊗-abelian triple with a Pontryagin dual, Q a left-rooted
quiver and let A be locally �nitely presented. Less can be assumed in some
cases; see the precise statements in [II].

In R-Mod we have the following descriptions. See Enochs, Oyonarte and
Torrecillas [10], Enochs and Estrada [7] and Eshraghi, Hafezi and Salarian [11].
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Proposition 28. Let A = R-Mod for some ring R. Then

Proj(Rep(Q,A )) = Φ(Proj(A )) (1)

Flat(Rep(Q,A )) = Φ(Flat(A )) (2)

GProj(Rep(Q,A )) = Φ(GProj(A )). (3)

When R is Iwanaga-Gorenstein3

GFlat(Rep(Q,A )) = Φ(GFlat(A )) (4)

where for any X ⊆ A we de�ne

Φ(X ) =

{
F ∈ Rep(Q,A )

∣∣∣∣
∀v :

⊕
w→v F (w)→ F (v)

is monic and has cokernel in X

}
.

(1) has been generalized to abelian categories with enough projective ob-
jects using cotorsion pairs (see [17]), and the proof of (3) works in any abelian
category. The original proof of (1) and the proof of (2) construct certain �l-
tration for elements of Φ(Add X ) and Φ(lim−→X ) where X = proj A are the
�nitely generated projective objects of A = R-Mod. A general description of
Φ(X ) seems in order and is given in the second paper as follows:

Theorem 29 ([II, Thm. A]).
Let X ⊆ A be be arbitrary. Then

Φ(X ) ⊆ Filt f∗(X ),

Φ(Filt X ) = Filt f∗(X ) = Filt Φ(X ) and

Φ(sFilt X ) = sFilt f∗(X ) = sFilt Φ(X )4.

If X ⊆ FP2.5(A ) is closed under extensions, then

Φ(lim−→X ) = lim−→ ext f∗(X ) = lim−→Φ(X )

where

f∗(X ) = {fv(X) | v ∈ Q,X ∈X }

and fv : A → Rep(Q,A ) is the left adjoint to evaluation at the vertex v.

Using this we get the description (1) from Proposition 28 when A enough
projective objects and (2) in the form lim−→ proj Rep(Q,A ) = Φ(lim−→ proj(A ))
when proj A generate A . Using the Pontryagin dual we can characterize the

3see Enochs and Jenda [9, Def. 9.11]
4If X is a generating set this can also be achieved using cotorsion pairs as in [17]
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�at (and weakly �at Gorenstein) quiver representations in general (see be-
low). The characterization of the Gorenstein �at representations uses that
over Gorenstein rings the Gorenstein �at and weakly Gorenstein �at represen-
tations coincide. In general these classes are di�erent, and di�erent from the
direct limit closure of Gproj(A ) ..= GProj(A ) ∩ FP2.5(A ). Their characteri-
zation depend on the shape of Q and we de�ne:

De�nition 30 ([II, Def 2.1]). A quiver Q is locally path-�nite if there are only
�nitely many paths between any two given verticies. It is target-�nite if there
are only �nitely many arrows with a given target.

We now have

Theorem 31 ([II, Thm. B+C and Prop. 5.6]).

Flat(Rep(Q,A )) = Φ(Flat(A ))

wGFlat(Rep(Q,A )) = Φ(wGFlat(A ))

If Q is target-�nite and locally path-�nite and A has enough projective objects,
then

lim−→Gproj(Rep(Q,A )) = Φ(lim−→Gproj(A )).

If Q is target-�nite and

1. Products in A preserve epis and �atness,

2. Inj(B)+ ⊆ Flat(A ),

3. proj(A ) generate A ,

then

wGFlat(Rep(Q,A )) = GFlat(Rep(Q,A )).

If A = R-Mod the last three conditions precisely says that R is right coherent.

In particular we extend (5) to right coherent rings and show that under
the conditions of Theorem 31, the condition lim−→Gproj = GFlat lifts from A
to Rep(Q,A ). Similarly with the condition lim−→Gproj = wGFlat .

This paper explains the basic facts on quivers (without relations) and in-
troduce the classes of FPn.5 objects and the abstract of Pontryagin dual. The
paper uses de�nitions for Pontryagin duals and Gorenstein �at objects that
work in any abelian, not necessarily ⊗-abelian category. The statements are
proven in this generality and specializes to those given in this introduction.
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4 Introduction to paper III

In this paper we show how to calculate the atom spectrum of a category using
what we here call tilings. A functor F : A → B is said to lift subobjects
([III, Def. 3.1]) if for every X ∈ A, every subobject of F (X) is the image of a
subobject of X.

De�nition 32. Let B be a category. A collection of fully faithful and exact
functors {Fi : Ai → B} that lifts subobjects is called a tiling if the following
three conditions hold:

1. Each Fi has a right adjoint Gi s.t. FiGiB → B is monic for every B ∈ B.

2. If GiB = 0 for every i, then B = 0

3. If FiAi and FjAj have a common non-zero subobject then i = j.

The conditions say that the tiles cannot be deformed, they cover the whole
category and they cannot overlap. When a category has a tiling every atom
lies in one of the tiles

Theorem 33 ([III, Thm. 3.7]). Let B be an abelian category and let
{Fi : Ai → B} be a tiling of abelian categories. Then

ASpec B ∼=
⊔

i

ASpec Ai

both as a set, ordered set and topological space. The map sends the equivalence
class of the monoform Ai ∈ Ai to the equivalence class of Fi(Ai).

We give two abstract examples of tilings:

Proposition 34 ([III, Thm. 4.9]). Let A be a k-linear abelian category and
(Q,R) a right-rooted quiver with k-linear admissible relations.

Then {Si : A → Rep((Q,R),A )}i∈Q is a tiling, where Si(A) is the stalk
representation Si(A)(i) = A and Si(A)(j) = 0 when i 6= j.

Example 35. To see why right-rooted and admissible matters in Proposi-
tion 34 we will look at a simple commutative example with a commutative
ring k and the Jordan quiver

Q : • bb
In this case Rep(Q,k-Mod) ∼= k[x]-Mod, so

ASpec(Rep(Q,k-Mod)) ∼= ASpec(k[x]-Mod) ∼= Speck[x].

The ring k[x] has many interesting primes not coming from primes of k which
is re�ected by the fact that Q is not right-rooted. To make it right-rooted we
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have to impose a relation of the form xn. This precisely kills all interesting
primes, i.e.

ASpec(Rep((Q, {xn}), k)) ∼= Spec(k[x]/(xn)) ∼= Speck.

That nothing else is killed is re�ected by the fact that the imposed relation is
admissible, i.e. contained in the arrow-ideal which in this case is just (x). A
non-admissible relation corresponds to a polynomial, f, s.t. f(0) 6= 0 and we
see that

ASpec(Rep((Q, {xn, f}), k)) ∼= Spec(k[x]/(xn, f)) ∼= Spec(k/f(0)).

That is, any non-admissible relation kills some primes of k. To have an equal-
ity as in Theorem 33 thus precisely requires (Q,R) to be right-rooted with
admissible relations. The theorem says that this is a general phenomena.

Another tiling is of comma categories ([23, II.6]). Let

A
U // C B

Voo

be a diagram of categories. The comma category (U ↓ V ) is the category of
triples (A ∈ A , B ∈ B, θ : UA→ V B) with morphisms
(α : A→ A′, β : B → B′) s.t. the following diagram commutes:

UA
Uα //

θ
��

UA′

θ′
��

V B
V β // V B′ .

The comma category of abelian categories is not always abelian, but when it
is we have the following tiling.

Proposition 36 ([III, Prop. 5.1 + Thm. B]). Let A , B, and C be abelian
categories and assume U : A → C has a right adjoint and V : B → C is left
exact. Then (U ↓ V ) is abelian and (A 7→ (A, 0, 0), B 7→ (0, B, 0)) is a tiling.

As an example of using comma categories [III, Ex. 5.4], the comonoform
ideals of the generalized matrix ring

T =

(
A 0
M B

)
,

where A and B are commutative rings and M is a (B,A)-bimodule, are all of
the form (

p 0
M B

)
and

(
A 0
M q

)

for primes p of A and q of B, and all the induced atoms are di�erent.
In this paper we introduce the reader to the theory of atoms and of quivers

with relations. We then give concrete examples of computations of the atom
spectra of the module category of non-commutative rings.
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DUALIZABLE AND SEMI-FLAT OBJECTS IN ABSTRACT

MODULE CATEGORIES

RUNE HARDER BAK

Abstract. In this paper, we define what it means for an object in an abstract
module category to be dualizable and we give a homological description of the

direct limit closure of the dualizable objects. Our description recovers existing

results of Govorov and Lazard, Oberst and Röhrl, and Christensen and Holm.
When applied to differential graded modules over a differential graded algebra,

our description yields that a DG-module is semi-flat if and only if it can be

obtained as a direct limit of finitely generated semi-free DG-modules. We
obtain similar results for graded modules over graded rings and for quasi-

coherent sheaves over nice schemes.

1. Introduction

In the literature, one can find several results that describe how some kind of “flat
object” in a suitable category can be obtained as a direct limit of simpler objects.
Some examples are:

(1) In 1968 Lazard [22], and independently Govorov [11] proved that over any
ring, a module is flat if and only if it is a direct limit of finitely generated
projective modules.

(2) In 1970 Oberst and Röhrl [25, Thm 3.2] proved that an additive functor
on a small additive category is flat if and only if it is a direct limit of
representable functors.

(3) In 2014 Christensen and Holm [5] proved that over any ring, a complex of
modules is semi-flat if and only if it is a direct limit of perfect complexes
(= bounded complexes of finitely generated projective modules).

(4) In 1994 Crawley-Boevey [6] proved that over certain schemes, a quasi-co-
herent sheaf is locally flat if and only if it is a direct limit of locally free
sheaves of finite rank. In 2014 Brandenburg [3] defined another notion of
flatness and proved one direction for more general schemes.

In Section 3 we provide a categorical framework that makes it possible to study
results and questions like the ones mentioned above. It is this framework that
the term “abstract module categories” in the title refers to. From a suitably nice
(axiomatically described) class S of objects in such an abstract module category C ,
we define a notion of semi-flatness (with respect to S). This definition depends only
on an abstract tensor product, which is built into the aforementioned framework,
and on a certain homological condition. We write lim−→S for the class of objects in
C that can be obtained as a direct limit of objects from S. Our main result shows
that under suitable assumptions, lim−→S is precisely the class of semi-flat objects:

Theorem 1. Let C and S be as in Setup 1 and Setup 2. In this case, an object in
C is semi-flat if and only if it belongs to lim−→S.

2010 Mathematics Subject Classification. Primary 18E15. Secondary 16E45; 18G35.
Key words and phrases. Cotorsion pairs; differential graded algebras and modules; direct limit

closure, dualizable objects; locally finitely presented categories; semi-flat objects.
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2 RUNE HARDER BAK

The proof of this theorem is a generalization of the proof of [5, Thm. 1.1], which in
turn is modelled on the proof of [22, Chap. I, Thm. 1.2]. A central new ingredient in
the proof of Theorem 1 is an application of the generalized Hill Lemma by Stovicek
[32, Thm 2.1].

The abstract module categories treated in Section 3 encompass more “con-
crete” module categories such as the category AC /CA of left/right modules over
a monoid (= ring object) A in a closed symmetric monoidal abelian category
(C0,⊗1, 1, [−,−]); see Pareigis [26]. In this setting, Theorem 1 takes the form:

Theorem 2. Let A be a monoid in a closed symmetric monoidal Grothendieck
category (C0,⊗1, [−,−], 1) and let AC /CA be the category of left/right A-modules.
Let AS be (a suitable subset of, e.g. all) the dualizable objects in AC . If C0 is
generated by dualizable objects and 1 is FP2, then the direct limit closure of AS is
precisely the class of semi-flat objects in AC .

Dualizable objects in symmetric monoidal categories were defined and studied
by Lewis and May in [23, III§1] and investigated further by Hovey, Palmieri, and
Strickland in [19]; we extend the definition and the theory of such objects to cate-
gories of A-modules (see Definition 7).

In the final Section 5, we specialize our setup even further. For some choices
of a closed symmetric monoidal abelian category C0 and of a monoid A ∈ C0, the
category of A-modules turn out to be a well-known category in which the dualizable
and the semi-flat objects admit hands-on descriptions. When applied to differential
graded modules over a DGA, to graded modules over a graded ring, and to sheaves
over a scheme, Theorem 2 yields the following results, which all seem to be new.

Theorem 3. Let S be the class of finitely generated semi-free/semi-projective diffe-
rential graded modules over a differential graded algebra A. The direct limit closure
of S is precisely the class of semi-flat (or DG-flat) differential graded A-modules.

Corollary 4. Over any Z-graded ring, the direct limit closure of the finitely gener-
ated projective (or free) graded modules is precisely the class of flat graded modules.

Theorem 4. Let X be a noetherian scheme with the strong resolution property. In
the category QCoh(X), the direct limit closure of the locally free sheaves of finite
rank is precisely the class of semi-flat sheaves.

In the same vein, it follows that the results (1)–(3), mentioned in the beginning
of the Introduction, are also consequences of Theorems 1 and 2.

2. Preliminaries

2.1. Locally finitely presented categories. We need some facts about locally
finitely presented categories from Breitsprecher [4]. Let C be a category. First
recall:

Definition 1. A collection of objects S is said to generate C if given different
maps f, g : A → B there exists a map σ : S → A with S ∈ S such that fσ and gσ
are different. If C is abelian, this simply means that if A→ B is non-zero there is
some S → A with S ∈ S such that S → A→ B is non-zero.

Definition 2. An object K ∈ C is called finitely presented if C (K,−) commutes
with filtered colimits. Denote by fp(C ) the collection of all finitely presented objects
in C . A Grothendieck category is called locally finitely presented if it is generated
by a small set (as opposed to a class) of finitely presented objects.

Remark 1. By [4, SATZ 1.5] a Grothendieck category is locally finitely presented
if and only if lim−→ fp(C ) = C , and by [6, (2.4)] this is equivalent to saying that C is

abelian, fp(C ) is small, and lim−→ fp(C ) = C .
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Proposition 1. Let C be a Grothendieck category. Then

(1) [4, SATZ 1.11] If S is a set of finitely presented objects generating C , then
N ∈ C is finitely presented iff it has a presentation

X0
// X1

// N // 0

where X0, X1 are finite sums of elements of S.
(2) [4, SATZ 1.9] The finitely presented objects are closed under extensions.

Next we look at some properties of the class lim−→S of objects in C that can be
obtained as a direct limit of objects from S.

Lemma 1. [6, Lemma p. 1664] Let C be a locally finitely presented Grothendieck
category, let M ∈ C and let S be a collection of finitely presented objects closed
under direct sums. If any map from a finitely presented object to M factors through
some S ∈ S, then M ∈ lim−→S. In particular lim−→S is closed under direct limits and
direct summands.

Remark 2. Notice that the converse is true by definition for any S and C .

We will later need the following way of extending the defining isomorphism of
an adjunction to the level of Exts.

Lemma 2. [16, Lem. 5.1] Let F : C � D :G be an adjunction of abelian categories,
where F is left adjoint of G, and let A ∈ C be an object. If G is exact and if F
leaves every short exact sequence 0→ A′ → E → A→ 0 (ending in A) exact, then
there is a natural isomorphism Ext1D(FA,−) ∼= Ext1C (A,G−).

2.2. Cotorsion pairs. The theory of cotorsion pairs goes back to Salce [27] and
has been intensively studied. See for instance Göbel and Trlifaj [10].

Definition 3. Let X be a class of objects in an abelian category C . We define

• X⊥ = {Y ∈ C | ∀X ∈ X : Ext1C (X,Y ) = 0}
• ⊥X = {Y ∈ C | ∀X ∈ X : Ext1C (Y,X) = 0}

Definition 4. Let A and B be classes of objects in an abelian category C . We say
(A,B) is a cotorsion pair, if A⊥ = B and ⊥B = A. It is complete if every C ∈ C
has a presentation

0→ B → A→ C → 0

with A ∈ A and B ∈ B and a presentation

0→ C → B′ → A′ → 0

with A′ ∈ A and B′ ∈ B. In this paper, we are only concerned with the first
presentation.

Definition 5. An S-filtration of an object X in a category C for a class of objects
S is a chain

0 = X0 ⊆ · · · ⊆ Xi ⊆ · · · ⊆ Xα = X

of objects in C such that every Xi+1/Xi is in S, and for every limit ordinal α′ ≤ α
one has lim−→i<α′

Xi = Xα′ . An object X called S-filtered if it has an S-filtration. If

α = ω we say the filtration is countable, and if α < ω that it is finite. In the latter
case we will also say that X is a finite extension of S.
Proposition 2. If S is any generating set of objects in a Grothendieck category,
then (⊥(S⊥),S⊥) is a complete cotorsion pair, and the objects in ⊥(S⊥) are pre-
cisely the direct summands of S-filtered objects.

Proof. See Saoŕın and Šťov́ıček [28, Exa. 2.8 and Cor. 2.15] (for the last assertion
also see Šťov́ıček [32, Prop. 1.7]). �

29



4 RUNE HARDER BAK

When C is locally finitely presented and S consists of finitely presented objects
and is closed under extensions, we can in fact realize any S ∈ ⊥(S⊥) as a direct
limit. This generalizes the idea that an arbitrary direct sum can be realized as a
direct limit of finite sums. The tool that allows us to generalize this idea is the
generalized Hill Lemma. The full statement is rather technical so we just state here
what we need (hence “weak version”):

Lemma 3 (Hill Lemma – weak version). [32, Thm 2.1] Let C be a locally finitely
presented Grothendieck category, S be a set of finitely presented objects, and assume
X has an S-filtration. Given any map f : S → X from a finitely presented object,
then Im(f) ⊆ S′ ⊆ X for some finite extension S′ of elements of S.

We can now prove:

Proposition 3. Let S be a skeletally small class of finitely presented objects closed
under finite extensions in a locally finitely presented Grothendieck category C . Then
any S-filtered object is a direct limit of objects from S. In particular, ⊥(S⊥) ⊆ lim−→S
when S generates C .

Proof. Let X be an S-filtered object. Since C is locally finitely presented, X is
also the direct limit of finitely presented objects Xi, hence also the direct limit of
its finitely generated subobjects (images of finitely presented objects), but these
are majored by S-subobjects by Lemma 3, since S is closed under finite extensions.
The last statement follows from Proposition 2 and Lemma 1. �

3. Abstract module categories

The aim in this section is to desribe the direct limit closure of S in the following
setup:

Setup 1. Let CL, C0 and CR be Grothendieck categories, let SL ⊆ CL and SR ⊆ CR
be generating sets closed under extensions, and let 1 ∈ C0 be finitely presented.
Assume that we have a right continuous bifunctor (i.e. it preserves direct limits in
each variable)

−⊗− : CR × CL → C0

and a natural duality

(−)∗ : SL → SR
such that for any S ∈ SL we have natural isomorphisms (also natural in S):

C0(1, S∗ ⊗−) ∼= CL(S,−) and

C0(1,−⊗ S) ∼= CR(S∗,−)

which is then analogously true for any S ∈ SR by the duality between SL and SR.
For simplicity we will often write C for either CL or CR and S for either SL and SR
(see for example Theorem 1). Hopefully this should not cause any confusion.

Remark 3. Note that in Setup 1 any S ∈ S is finitely presented because 1 is finitely
presented and ⊗ is right continuous, so CL and CR are necessarily locally finitely
presented. When there are notational differences we will work with CL though
everything could be done for CR instead.

Example 1. Some specific examples of Setup 1 to have in mind are:

(1) A is a ring, CL/CR is the category A-Mod/Mod-A of left/right A-modules,
C0 = Ab is the category of abelian groups, 1 is Z, ⊗ = ⊗A is the ordinary
tensor product of modules, SL/SR is the category of finitely generated
projective left/right A-modules, and (−)∗ is the functor HomA(−,AAA).
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(2) A is a graded ring, CL/CR is the category A-GrMod/GrMod-A of left/
right graded A-modules, C0 is Z-GrMod, 1 is Z, ⊗ = ⊗A is the ususal tensor
product of graded modules, SL/SR is the category of finitely generated free
graded left/right A-modules (that is, finite direct sums of shifts of A), and
(−)∗ is the functor HomA(−,AAA).

(3) A is a ring, CL/CR is the category Ch(A-Mod)/Ch(Mod-A) of chain com-
plexes of left/right A-modules, C0 is Ch(Ab), 1 is Z (viewed as a complex
concentrated in degree zero), ⊗ = ⊗A is the total tensor product of chain
complexes, SL/SR is the category of bounded chain complexes of finitely
generated projective left/right A-modules (these are often called perfect
complexes), and (−)∗ is the functor HomA(−,AAA).

(4) A is a DGA, CL/CR is the category A-DGMod/DGMod-A of left/right
DG A-modules, C0 is Ch(Ab), 1 is Z (as in (3)), ⊗ = ⊗A is the ususal
tensor product of DG-modules, SL/SR is the category of finitely generated
semi-free left/right DG A-modules (that is, finite extensions of shifts of A),
and (−)∗ is the functor HomA(−,AAA).

(5) Let (C0,⊗1, 1, [−,−]) be any closed symmetric monoidal abelian category
where 1 is finitely presented. Then one can take CL = C0 = CR and⊗ = ⊗1.
Moreover, SL = SR could be the subcategory of dualizable objects in C0

(see 4.1) and (−)∗ = [−, 1].

These examples are all special cases of the “concrete module categories” studied
in Section 4, and further in Section 5. A special case of (4) is where C0 = QCoh(X)
is the category of quasi-coherent sheaves on a sufficiently nice scheme X and where
SL = SR is the category of locally free sheaves of finite rank; see 5.5 for details.

(6) X is an additive category, CL/CR is the category [X ,Ab]/[X op,Ab] of co-
variant/contravariant additive functors from X to Ab, C0 is Ab, 1 is Z,
⊗ = ⊗X is the tensor product from Oberst and Röhrl [25], SL/SR is the
category of representable covariant/contravariant functors, and the functor
(−)∗ maps X (x,−) to X (−, x) and vice versa (x ∈ X ). See 5.6 for details.

Recall that to simplify notation we often write C for either CL or CR and S for
either SL and SR (see Setup 1). In order to describe lim−→S, we define from S three
new classes of objects in C .

Definition 6. Let C and S be as in Setup 1. Let (P, E) be the cotorsion pair in
C generated by S. By Proposition 2 this cotorsion pair is complete as S is a set.

Objects in P are called semi-projective and objects in E are called acyclic (with
respect to S). An object M ∈ CL is called (tensor-)flat if the functor −⊗M is
exact. A functor F : C → C0 preserves acyclicity if F (E) ⊆ 1⊥. Finally we say that
an object M ∈ CL is semi-flat if M is flat and −⊗M preserves acyclicity.

When necessary we shall use the more elaborate notation (PL, EL) for the cotor-
sion pair in CL generated by SL and similarly for (PR, ER).

Example 2. We immediately see that if 1 ∈ C0 is projective, then semi-flat is the
same as flat. This is for instance the case in A-Mod, A-GrMod and [X ,Ab] (see (1),
(2), and (6) in Example 1), where every object is acyclic, and semi-projective is the
same as projective. In Ch(A) = Ch(A-Mod) and in A-DGMod (see (3) and (4) in
Example 1) this is not the case, and the notions acyclic, semi-projective and semi-
flat agree with the usual ones found in e.g. [2]. More on this and other examples
after the main theorem.

We are now ready for the main lemma. The proof is modelled on [5, Thm 1.1]
which is modelled on [22, Lem 1.1]. We try to use the same notation.
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Lemma 4. With the notation of Setup 1, let M ∈ CL be an object such that −⊗M
is left exact and C0(1, ϕ⊗M) is epi whenever ϕ is epi in CR with kerϕ ∈ ER. Then
M ∈ lim−→SL.
Proof. By Lemma 1 we need to fill in the dashed part of the following diagram

P
u //

v
  A

A
A

A M

L

w

OO�
�
�

for some L ∈ SL, where u is given with P finitely presented. So let u be given.
By Proposition 1, P has a presentation

L1
f // L0

g // P // 0

with L1, L0 ∈ SL. We have an exact sequence

0 // K
k // L∗0

f∗ // L∗1 ,

which, since −⊗M and C0(1,−) are left exact, gives an exact sequence

0 // C0(1,K ⊗M)
k∗ // CL(L0,M)

f∗ // CL(L1,M)

where we have used C0(1, L∗j ⊗M) ∼= CL(Lj ,M) for j = 0, 1.
By completeness of the cotortion pair (PR, ER), the object K has a presentation

0 // E // L′
ϕ // K // 0

with L′ ∈ PR and E ∈ ER. By assumption, ϕ∗ = C0(1, ϕ⊗M) is epi, so we get an
exact sequence

C0(1, L′ ⊗M)
k∗ϕ∗ // CL(L0,M)

f∗ // CL(L1,M).

Now since f∗(ug) = ugf = 0, we have some w′ : 1→ L′⊗M such that (kϕ)∗(w′) =
ug. By Proposition 3 we can realize L′ as a direct limit lim−→L∗i , with Li ∈ SL. This
means that we have

L′ ⊗M ∼= (lim−→L∗i )⊗M ∼= lim−→(L∗i ⊗M),

as ⊗ is right continuous. Since 1 is finitely presented, w′ factors as

1
w // L∗ ⊗M ι⊗M //// L′ ⊗M

for some L ∈ SL and w ∈ CL(L,M) ∼= C0(1, L∗ ⊗M). By the assumed duality
between SL and SR there exists v′ : L0 → L such that v′∗ = kϕι. We now have the
commutative diagram

CL(L,M)

ι∗

��

v′∗

''PPPPPPPPPPPP

C0(1, L′ ⊗M)
k∗ϕ∗ // CL(L0,M)

f∗ // CL(L1,M)

where wv′ = v′∗(w) = k∗(ϕ∗(w′)) = ug. This gives us the commutative diagram

L1
f //

0
((PPPPPPPPPPPPPPP L0

g //

v′

  AAAAAAAA P

v

���
�
�

u

  @@@@@@@@
// 0

L
w // M
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where v′f = 0 since f∗v′∗ = f∗kϕι = 0ϕι = 0. Thus v′ factors through g by some
v as g is the cokernel of f . It remains to note that wv = u, as desired. �

Remark 4. The main difference between this proof and the proof in [5] is that all
the relevant identities have been formalized instead of based on calculations with
elements, in particular, the use of the generalized Hill Lemma instead of element
considerations to find the right S-subobject of a semi-projective object.

Lemma 4 will allow us to prove that every semi-flat object belongs to the direct
limit closure of S (see Theorem 1 below). For the converse statement, we need the
following setup.

Setup 2. With the notation of Setup 1 assume further that 1 is FP2, i.e. ExtC0
(1,−)

respects direct limits, and that for any S ∈ SL we have that − ⊗ S is exact and
there are natural isomorphisms:

ExtC0(1, S∗ ⊗−) ∼= ExtCL
(S,−) and

ExtC0
(1,−⊗ S) ∼= ExtCR

(S∗,−) .

By the duality between SL and SR, similar conditions hold for S ∈ SR. (Note that
the isomorphisms above are the “Ext versions” of the isomorphisms from Setup 1.)

As in Remark 3 one sees that in the setting of Setup 2 every S ∈ S is FP2.
We can now link the direct limit closure to semi-flatness (from Definition 6).

Theorem 1. Let C and S be as in Setup 1. If M ∈ C is semi-flat, then M ∈ lim−→S.
Conversely, if C and S satisfy the conditions of Setup 2, then every M ∈ lim−→S is
semi-flat.

Proof. To use Lemma 4, we just need to see, that if M ∈ CL is semi-flat, then
C0(1, ϕ⊗AM) is epi whenever ϕ is epi and kerϕ is acyclic. This is clear, since if

0 // E // A
ϕ // B // 0

is exact and E is acyclic, then

0 // E ⊗M // A⊗M ϕ⊗M // B ⊗M // 0

is exact and ExtC0
(1, E ⊗M) = 0. But this implies that C0(1, ϕ⊗M) is epi.

For the other direction we show that every S ∈ SL is semi-flat and that the
class of semi-flat objects in CL is closed under direct limits. First observe that if
E ∈ ER = S⊥R and S ∈ SL then

ExtC0
(1, E ⊗ S) ∼= ExtCR

(S∗, E) = 0 ,

so −⊗S preserves acyclicity, and since −⊗S is assumed to be exact, S is semi-flat.
Now if Mi ∈ CL is a direct system of semi-flat objects and M = lim−→Mi, then −⊗M
is exact as ⊗ is right continuous and lim−→(−) is exact. It also preserves acyclicity, as

ExtC0
(1, E ⊗ lim−→Mi) ∼= ExtC0

(1, lim−→(E ⊗Mi)) ∼= lim−→ExtC0
(1, E ⊗Mi) = 0

as ⊗ is right continuous, ExtC0(1,−) respects direct limits and ExtC0(1, E⊗Mi) =
0. Hence M is semi-flat. �

Corollary 1. Let C and S be as in Setup 1 and assume further that that 1 ∈ C0

is projective and that every S ∈ S is (tensor-)flat. Then the direct limit closure of
S is the class of (tensor-)flat objects in C .

Proof. As in Example 2 semi-flat just means flat if 1 is projective, so by Theorem 1
every flat object in C is in the direct limit closure of S. On the other hand any
S ∈ lim−→S is flat as this is preserved by direct limits as in the proof of Theorem 1. �
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As mentioned in the Introduction, we will now see how Theorem 1 recovers
Govorov and Lazard’s original theorem for modules, the theorem by Christensen
and Holm for complexes of modules, the theorem by Oberst and Röhrl for functor
categories, and how it gives new results for graded modules, differential graded
modules, and quasi-coherent sheaves.

Most of these examples are built of categories of left/right objects for some
monoid in a symmetric monoidal category. So in the next section we will explain
this construction with a new definition of dualizable objects in such categories and
show in what cases they satisfy Setup 1 and 2. Then we will go in depth with the
more concrete examples, calculating the different classes of objects.

4. Concrete module categories

Setup 3. The details of this setup can be found in Pareigis [26]. Consider any
closed symmetric monoidal abelian category C0 = (C0,⊗1, [−,−], 1). A monoid (or
a ring object) in C0 is an object, A, together with an associative multiplication
A⊗1 A→ A with a unit 1→ A. We can then consider the category AC of left
A-modules whose objects are objects X ∈ C0 equipped with a left A-multiplication
A⊗1 X → X respecting the multiplication of A on the left and the unit. The
morphisms are morphims in C0 respecting this left A-multiplication. We can also
consider the category CA of right A-modules and the category ACA of (A,A)-
bimodules, that is, simultaneously left and right A-modules with compatible actions.

We can then construct a functor ⊗A : CA × AC → C0 as a coequalizer:

Y ⊗1 A⊗1 X // // Y ⊗1 X // Y ⊗A X .

And we get induced functors ACA×AC → AC and CA×ACA → CA with A⊗AX ∼=
X in AC and Y ⊗A A ∼= Y in CA.

We can also construct A[−,−] : AC × AC → C0 as an equalizer

A[X,X ′] // [X,X ′] //// [A⊗1 X,X
′]

and similarly for [−,−]A : CA×CA → C0. Again we get induced functors A[−,−] : AC×
ACA → CA and [−,−]A : CA × ACA → AC .

There are natural isomorphisms:

AC (X ⊗1 Z,X
′) ∼= C0(Z,A[X,X ′]) ,

CA(Z ⊗1 Y, Y
′) ∼= C0(Z, [Y, Y ′]A) , and

A[X ⊗1 Z,X
′] ∼= [Z,A[X,X ′]] .

That is, X ⊗1 − and A[X,−] (as well as −⊗1 Y and [Y,−]A) are adjoints. Similarly,
−⊗AX and [X,−] (as well as Y ⊗A− and [Y,−]) are adjoints. We denote the unit
and the counit of the adjunctions by η and ε. As A ∈ ACA, we can define functors
(−)∗ = A[−, A] : AC → CA and (−)∗ = [−, A]A : CA → AC with A∗ ∼= A, where on
one side, A is regarded as a left A-module, and on the other side, A is regarded as
a right A-module. Also notice that 1C ∼= C0

∼= C1. Again all the details are in [26].
In accordance with our convention from Setup 1, we often write C for either AC

or CA.

The forgetful functor from AC → C0 creates limits, colimits and isomorphisms
[26, 2.4] and thus we get:

Proposition 4. If C0 is Grothendieck generated by a collection {X} of (finitely pre-
sented) objects, then AC is Grothendieck generated by the collection {A ⊗1 X}
of (finitely presented) objects.
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Proof. We only prove the assertion about the generators (see Definition 1). Assume
that C0 is generated by {X}. Let Y → Y ′ be a non-zero morphism in AC . Then
Y → Y ′ is also non-zero in C0, so we can find some X in the collection {X} and a
morphism f : X → Y such that X → Y → Y ′ is non-zero in C0. Now the morphism
X → A⊗1 X → A⊗1 Y → Y → Y ′ is non-zero as X → A⊗1 X → A⊗1 Y → Y is
equal to f , and hence A⊗1 X → A⊗1 Y → Y → Y ′ must be non-zero as well. Thus
the collection {A⊗1X} generates AC . If X is finitely presented in C0, then A⊗1X
is finitely presneted in AC since AC (A⊗1X,−) ∼= C0(X,A[A,−]) and the forgetful
functor A[A,−] : AC → C0 preserves colimits. �
4.1. Dualizable objects. In [23, III§1] Lewis and May define finite objects in a
closed symmetric monoidal category. Such objects are called (strongly) dualizable
in Hovey, Palmieri, and Strickland [19]. We extend this notion to categories of
left/right modules over a monoid in a closed symmetric monoidal category by the
following definition.

First, ε (introduced above) induces a map

C0(Z,X∗ ⊗A X ′) −→ AC (X ⊗1 Z,X
′),

for any X,X ′ ∈ AC and Z ∈ C0, by X ⊗1 Z −→ X ⊗1 X
∗ ⊗A X ′ ε⊗AX

′
−−−−→ X ′.

Next, ε induces a morphism

ν : A[X,Z]⊗A X ′ −→ A[X,Z ⊗A X ′],

for any X,X ′ ∈ AC and Z ∈ ACA, by the adjoint of X ⊗1 A[X,Z] ⊗A X ′ ε⊗AX
′

−−−−→
Z ⊗A X ′. We can now give the following:

Definition 7. An object X ∈ AC is said to be dualizable if there exists a morphism
η′ : 1→ X∗ ⊗A X in C0 such that the following diagram commutes:

1

η

��

η′ // X∗ ⊗A X

ν
xxrrrrrrrrrr

A[X,X]

Similarly, one defines what it means for an object in CA to be dualizable.

Note that A ∈ AC and A ∈ CA are always dualizable.
Many equivalent descriptions of dualizable objects can be given, and we give

several in the next lemma.

Lemma 5. For X ∈ AC the following conditions are equivalent:

(1) There exists a morphism η′ : 1 → X∗ ⊗A X in C0 making the following
diagram commute:

X

=
��????????

X⊗1η
′
// X ⊗1 X

∗ ⊗A X

ε⊗AX���������

X

(2) C0(1, X∗ ⊗A X)
∼=−→AC (X,X) induced by ε.

(3) C0(1, X∗ ⊗A X ′)
∼=−→AC (X,X ′) induced by ε for all X ′ ∈ AC .

(4) C0(Z,X∗⊗AX ′)
∼=−→AC (X⊗1Z,X

′) induced by ε for all X ′ ∈AC and Z ∈ C0.

(5) C0(Z, Y ⊗A X ′)
∼=−→AC (X ⊗1 Z,X

′) for some Y ∈ CA and all X ′ ∈ AC , Z ∈ C0.

(6) X is dualizable.

(7) ν : X∗ ⊗A X
∼=−→ A[X,X].

(8) ν : A[X,Z]⊗A X ′
∼=−→ A[X,Z ⊗A X ′] for all X ′ ∈ AC and Z ∈ ACA.
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(9) ν : A[X ′, Z]⊗A X
∼=−→ A[X ′, Z ⊗A X] for all X ′ ∈ AC and Z ∈ ACA.

Proof. Clearly (4) ⇒ (3) ⇒ (2) ⇒ (1), and (1) ⇒ (4) as η′ from (1) induces a
map AC (X ⊗1 Z,X

′) → C0(Z,X∗ ⊗A X ′) by Z → X∗ ⊗A X ⊗1 Z → X∗ ⊗A X ′,
and the diagram from (1) precisely says that it is an inverse to the map induced
by ε. Clearly, either of the conditions (8) and (9) imply (7), and (7) ⇒ (6). The
implications (6) ⇒ (8) and (6) ⇒ (9) can be proved as in [23, III Prop. 1.3(ii)].
We also have (1) ⇔ (6) as the diagrams in question are adjoint, so we are left with
noting that (4) ⇒ (5) (trivial) and that (5) ⇒ (6) can be proved as in [23, III
Thm. 1.6]. �

Remark 5. We notice that Lemma 5 (5) makes no mention of the functor [−,−] and
thus this condition can be used to define dualizable objects in, for example, sym-
metric monoidal categories that are not closed. In this case, Y is a “dual” of X. We
chose a definition with a fixed dual object, X∗ = A[X,A], because this emphasizes
the canonical and thereby functorial choice of a dual object.

Next we show three lemmas about closure properties for the class of dualizable
objects.

Lemma 6. (−)∗ induces a duality between the categories of dualizable objects in AC
and dualizable objects in CA. In particular, if X is dualizable, then so is X∗ and the
adjoint of ε gives an isomorphism X

∼=−→ X∗∗.

Proof. As in [23, Prop. 1.3(i)]. �

Lemma 7. Dualizable objects are closed under extensions and direct summands.

Proof. The closure under direct summands follows directly from Lemma 5 (3).
So assume that

0 // X1
// X2

// X3
// 0

is exact and X1, X3 are dualizable (in AC ). Then we have the following commuta-
tive diagram in C0 with exact rows

X∗2 ⊗A X1
//

'
��

X∗2 ⊗A X2
//

��

X∗2 ⊗A X3
//

'
��

0

0 //
A[X2, X1] //

A[X2, X2] //
A[X2, X3] ,

where the outer vertical morphisms are isomorphisms by Lemma 5 (9), so the
middle morphism is an isomorphism by the snake lemma. Hence X2 is dualizable
by Lemma 5 (7). �

Lemma 8. If S is dualizable in C0, then

(X ⊗1 S)∗ ∼= S∗ ⊗1 X
∗

for any X ∈ AC . If X ∈ AC is dualizable then so is X ⊗1 S ∈ AC . In particular,
A⊗1 S ∈ AC and (A⊗1 S)∗ ∼= S∗⊗1 A ∈ CA are dualizable if S ∈ C0 is dualizable.

Proof. If S ∈ C0 is dualizable, then we have

(X ⊗1 S)∗ = A[X ⊗1 S,A] ∼= [S,A[X,A]] ∼= [S, 1⊗1X
∗] ∼= [S, 1]⊗1X

∗ = S∗ ⊗1X
∗.

When X is also dualizable we have

C0(1, (X⊗1S)∗⊗A−) ∼= C0(1, S∗⊗1X
∗⊗A−) ∼= C0(S,X∗⊗A−) ∼= AC (X⊗1S,−)

on AC , and hence X ⊗1 S is dualizable in AC by Lemma 5 (3). �

We now have a large supply of categories satisfying Setup 1 and 2
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Theorem 2. Let A be a monoid in a closed symmetric monoidal Grothendieck
category (C0,⊗1, [−,−], 1) where 1 is finitely presented. Assume that C0 is generated
by a set S of dualizable objects such that S∗ also generates C0 (e.g. if S = S∗).
Assume furthermore that AS is a collection of dualizable objects in AC which is
closed under extensions and contains A⊗1 S (e.g. AS could be the collection of all
dualizable objects in AC ; see Lemmas 7 and 8).

(1) Under the assumptions above, the data CL := AC , CR := CA, ⊗ := ⊗A,
(−)∗ :=A[−, A], SL :=AS and SR := (AS)∗ satisfy Setup 1.

In particular, Theorem 1 yields that every semi-flat object in AC , respec-
tively, in CA, belongs to lim−→AS, respectively, to lim−→SA.

(2) If, in addition, 1 is FP2, then Setup 2 holds as well.
In particular, Theorem 1 yields that the class of semi-flat objects in AC ,

respectively, in CA, is precisely lim−→AS, respectively, lim−→SA.

(3) If, in addition, 1 is projective, then lim−→AS, respectively, lim−→SA, is precisely

the (tensor-)flat objects in AC , respectively, in CA.

Proof. (1): First note that since 1 ∈ C0 is finitely presented, so is every dualizable
object. Indeed, for e.g. S ∈ AC one has AC (S,−) ∼= C0(1, S∗ ⊗A −); cf. Remark 3.
Proposition 4 shows that AC is Grothendieck generated by the set A⊗1 S ⊆ AS.
The objects in the set A ⊗1 S are dualizable, cf. Lemma 8, and hence finitely
presented by the observation above. Consequently, AC is a locally finitely presented
Grothendieck category, and fp(AC ) is small by Remark 1; hence AS ⊆ fp(AC ) is
small. Similarly, CA is Grothendieck generated by the set S∗ ⊗1 A = (A⊗1 S)∗ ⊆
(AS)∗; see Lemma 8. And as AS is small, so is (AS)∗. By Lemma 6 the class (AS)∗

consists of dualizable objects and (−)∗ yields a duality between AS and (AS)∗.
Since AS is closed under extensions, the same is true for (AS)∗ (by the duality).
The natural isomorphisms in Setup 1 hold by Lemma 5 (3). It remains to note that
⊗A is a right continuous bifunctor, as it is a left adjoint in both variables.

(2): Assume that 1 is FP2. Every S ∈ AS is dualizable, so the functor −⊗A S is
exact. Thus, to establish Setup 2 it remains to prove the two natural isomorphisms
herein. We only prove the second of these, i.e. ExtC0

(1,−⊗A S) ∼= ExtCA
(S∗,−)

for S ∈ AS. The first one is proved similarly. To this end, we apply Lemma 2 to
the adjunction S∗⊗1 − : C0 � CA : −⊗AS from Lemma 5 (4). The right adjoint
− ⊗A S is clearly exact as S is dualizable in AC . It remains to show that the left
adjoint functor S∗ ⊗1 − leaves every short exact sequence 0 → D → E → 1 → 0
(ending in 1) exact. To see this, first note that the category C0 has enough ⊗1-
flats, that is, for every object X ∈ C0 there exists an epimorphism F � X in C0

where F is ⊗1-flat. Indeed, this follows from Stenström [31, IV.6 Prop. 6.2] as
C0 has coproducts and is generated by a set of ⊗1-flat (even dualizable) objects.
Consequently, S∗ has a ⊗1-flat resolution F• = · · · → F1 → F0 → 0 in C0. Every
short exact sequence 0 → D → E → 1 → 0 in C0 induces a short exact sequence
0→ F•⊗1D → F•⊗1E → F• → 0 of chain complexes in C0 which, in turn, yields
a long exact sequence in homology,

· · · → H1(F•)→ H0(F•⊗1D)→ H0(F•⊗1E)→ H0(F•)→ H−1(F•⊗1D)→ · · · .

Evidently, H1(F•) = 0 = H−1(F•⊗1D). As the functor −⊗1X is right exact we get
H0(F•⊗1X) ∼= S∗⊗1X for all X ∈ C0, and so 0→ S∗⊗1D → S∗⊗1E → S∗ → 0
is exact, as desired.

(3) Immediate from Corollary 1. �

For closed symmetric monoidal Grothendieck categories we get the following.
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Corollary 2. Let (C0,⊗1, [−,−], 1) be a closed symmetric monoidal Grothendieck
category where 1 is finitely presented. Assume that C0 is generated by the set S of
dualizable objects. Then the following hold:

(1) Every semi-flat object in C belongs to lim−→S.

(2) If 1 is FP2, then the class of semi-flat objects in C is precisely lim−→S.

(3) If 1 is projective, then lim−→S is precisely the (tensor-)flat objects in C .

Remark 6. Consider the situation from Theorem 2. If 1 ∈ C0 is projective, then
all objects in AS are projective. Indeed, consider any S ∈ AS. By Lemma 5 (4)
we have the adjunction S ⊗1 − : C0 � AC :S∗ ⊗A −, and since the right adjoint
functor S∗ ⊗A − is exact, the left adjoint functor S ⊗1 − preserves projective
objects. Hence, if 1 ∈ C0 is projective, then so is S ⊗1 1 ∼= S ∈ AS.

Thus, in the case where 1 ∈ C0 is projective, the cotorsion pair (P, E) in AC
generated by AS is the trivial cotorsion where P is the class of all projective objects
and E = AC (cf. Definition 6). Similarly for SA and CA.

5. Examples

In this final section, we return to the examples from Example 1 and to the results
from the literature mentioned in the Introduction.

5.1. A-Mod. C0 = Ab is a Grothendieck category generated by 1 = Z, which is
finitely presented and projective, and AC is just A-Mod. The condition in Defi-
nition 7 is equivalent to the existence of a finite number of elements fi ∈ X∗ and
xi ∈ X such that x =

∑
i fi(x)xi for any x ∈ X. By the Dual Basis Theorem [24,

Chap. 2.3], this is precisely the finitely generated projective R-modules. Also the
finitely generated free modules are closed under extensions and contains R⊗ZZ ∼= R,
so by Theorem 2(3) we get the original theorem of Lazard and Govorov:

Corollary 3. Over any ring, the flat modules are the direct limit closure of the
finitely generated projective (or free) modules. �

5.2. A-GrMod. C0 = Z-GrMod is a Grothendieck category where 1 = Z is finitely
presented and projective. The category C0 is generated by the set S = {Σi1}i∈Z,
which is self-dual (that is, S∗ = S) and consists of dualizable objects. Also note
that AC is just A-GrMod. A graded A-module is finitely generated free if it is a
finite direct sums of shifts of A, and it is finitely generated projective if it is a direct
summand of a finitely generated free graded A-module. Arguments like the ones
above show that the dualizable objects in AC are precisely the finitely generated
projective graded A-modules. Thus by Theorem 2(3) we get the following version
of Govorov-Lazard for graded modules (which does not seem to be available in the
literature):

Corollary 4. Over any Z-graded ring, the flat graded modules are the direct limit
closure of the finitely generated projective (or free) graded modules. �

5.3. A-DGMod. C0 = Ch(Ab), the category of chain complexes of abelian groups,
is a Grothendieck category where 1 is the complex with Z concentrated in degree 0.
Note that 1 is finitely presented (but not projective!), as C0(1,−) ∼= Z0(−) is the
0th cycle functor which preserves direct limits. The category C0 is generated by
the set S = {ΣiM(Id1)}i∈Z (where M(Id1) is the mapping cone of the identity
morphism on 1), which is self-dual (i.e. S∗ = S) and consists of dualizable objects.

A monoid A in C0 = Ch(Ab) is a differential graded algebra and AC is the cate-
gory A-DGMod of differential graded left A-modules. DG-modules are thus covered
by Setup 3. Clearly any shift of A is dualizable, so by Lemma 7 any finite extension
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of shifts of A will be dualizable, and we call such modules finitely generated semi-
free. Direct summands of those are called finitely generated semi-projectives. I do
not know if the finitely generated semi-projective DG-modules constitute all dual-
izable objects in AC = A-DGMod for a general DGA. Nevertheless, it is not hard
to check that both of the above mentioned classes are self-dual and closed under
extensions. They also contain A⊗Z S and thus satisfy Setup 1 by Theorem 2(1).

Actually, 1 = Z is not just finitely presented but even FP2, so from Theorem 2(2)
we conclude that the direct limit closure of the finitely generated semi-free/semi-
projective DG-modules is precisely the class of semi-flat objects in AC = A-DGMod
in the abstract sense of Definition 6. Before we go further into this, let’s see that our
abstract notions of semi-projective, acyclic and semi-flat objects from Definition 6
agree with the usual ones. These notions originate in the treatise [2] by Avramov,
Foxby, and Halperin, where several equivalent conditions are given.

Definition 8. Let A be any DGA and let AC = A-DGMod.

• A DG-module is called acyclic (or exact) if it has trivial homology.
• A DG-module, P , is called semi-projective (or DG-projective) if AC (P,ψ)

is epi, whenever ψ is epi and kerψ has trivial homology (in other words, ψ
is a surjective quasi-isomorphism).

• A DG-module, M, is called semi-flat (or DG-flat) if −⊗AM is exact and
preserves acyclicity (i.e. E ⊗AM has trivial homology whenever E has).

First we notice that:

Lemma 9. A DG-module P is DG-projective iff Ext1
AC (P,E) = 0 whenever E is

a DG-module with trivial homology.

Proof. If Ext1
AC (P,E) = 0 and

0 // E // A
ϕ // B // 0

is an exact sequence, then clearly AC (P,ϕ) is epi. On the other hand, if

0 // E // X
ϕ // P // 0

is exact and AC (P,ϕ) is epi, then the sequence split, so Ext1
AC (P,E) = 0. �

Next we see that:

Lemma 10. Let A be a DGA. For any N ∈ AC we have Ext1
AC (ΣA,N) = H0(N).

Proof. To compute this, we use the short exact sequence

0 // A // M(IdA) // ΣA // 0

where M(IdA) is the mapping cone of A
IdA // A . Since M(IdA) is projective we

have Ext1
AC (M(IdA), N) = 0, so we get an exact sequence

AC (M(IdA), N) //
AC (A,N) // Ext1

AC (ΣA,N) // 0

Straightforward calculations show that this sequence is isomorphic to

N1

∂N
1 // Z0(N) // Ext1

AC (ΣA,N) // 0

where N1 is the degree 1 part of N and ∂N1 is the differential. Thus we get the
desired isomorphim Ext1

AC (ΣA,N) ∼= H0(N). �

Together we have the following.

39



14 RUNE HARDER BAK

Theorem 3. Let A be any DGA and let S be the class of finitely generated semi-
free/semi-projective DG A-modules (see 5.3). The abstract notions of semi-projec-
tivity, acyclicity, and semi-flatness from Definition 6 agree with the corresponding
DG notions from Definition 8. In the category of DG A-modules, the cotorsion pair
generated by S is complete and it is given by

(DG-projective DG-modules, exact DG-modules) .

The direct limit closure of S is the class of semi-flat (or DG-flat) DG-modules.

Proof. Let P be the class of DG-projective DG-modules, and E the class of exact
DG-modules (i.e. with trivial homology). From Lemma 10 (and by using shift Σ)
we have S⊥ ⊆ E , and from Lemma 9 we have P = ⊥E . Now since S ⊆ P we have
E ⊆ (⊥E)⊥ = P⊥ ⊆ S⊥, and hence (⊥(S⊥),S⊥) = (P, E). This shows that the
abstract notions of semi-projectivity and acyclicity agree with the corresponding
DG notions. Completeness of the cotorsion pair (P, E) follows from Proposition 2,
as already mentioned in Definition 6. It remains to see that the abstract notion of
semi-flatness agrees with the corresponding DG notion. It must be shown that if M
is a left DG A-module that satisfies E ⊗AM ∈ 1⊥, i.e. Ext1Ch(Ab)(Z, E ⊗AM) = 0,
for all acyclic right DG A-modules E, then E ⊗A M has trivial homology for all
such E’s. However, by Lemma 10 we have Ext1Ch(Ab)(Z, E⊗AM) = H−1(E⊗AM),
so the conclusion follows as − ⊗A M preserves shifts. The last statement in the
theorem follows from Theorem 2(2); cf. the discussion in 5.3. �
Remark 7. The cotorsion pair is well-known. It is one of the cotorsion pairs corre-
sponding (via Hovey [18, Thm 2.2]) to the standard projetive model structure on
A-DGMod (see for instance Keller [20, Thm 3.2]). That every S ∈ lim−→S is semi-flat

follows directly from results in [2], where it is proved that any semi-projective is
semi-flat and that the semi-flats are closed under direct limits. That every semi-flat
can be realized as a direct limit of finitely genereated semi-free/projectives is, to
the best of my knowledge, new.

5.4. Ch(A). In the case of complexes over a ring A a direct calculation using the
dual basis theorem component-wise, shows that the dualizable objects in Ch(A) are
precisely the perfect complexes. From above we thus have:

Corollary 5. Let A be any ring and let S be the class of perfect A-complexes. In
the category Ch(A), the cotorsion pair generated by S is complete and it is given
by (semi-projective complexes, acyclic complexes). The direct limit closure of S is
the class of semi-flat complexes. �
Remark 8. This cotorsion pair has already been studied for instance in [9] where
2.3.5 and 2.3.6 proves it is a cotorsion pair, and 2.3.25 that it is complete (with
slightly different notation). It is not mentioned, however, that it is generated by a
set. As already mentioned in the Introduction, the direct limit closure has in this
case been worked out in [5].

5.5. QCoh(X). Let X be any scheme and let QCoh(X) be the category of quasi-
coherent sheaves (of OX -modules) on X. This is an abelian and a symmetric monoi-
dal subcategory of Mod(X) (the category of all sheaves on X), see [15, II Prop. 5.7]
and [30, Tag 01CE]. It is also a Grothendieck category, indeed, most of the relevant
properties of QCoh(X) go back to Grothendieck [12, 13]; the existence of a generator
is an unpublished result by Gabber (1999), see [30, Tag 077K] and Enochs and
Estrada [7] for a proof. The symmetric monoidal category QCoh(X) is also closed:
as explained in [1, 3.7], the internal hom in QCoh(X) is constructed from that
in Mod(X) composed with the quasi-coherator (the right adjoint of the inclusion
QCoh(X)→ Mod(X)), which always exists [30, Tag 077P].
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The dualizable objects in QCoh(X) are also studied in Brandenburg [3, Def. 4.7.1
and Rem. 4.7.2], and [3, Prop. 4.7.5] shows that they are exactly the locally free
sheaves of finite rank. Recall from Schäppi [29, Def. 6.1.1] (see also [3, Def. 2.2.7])
that a scheme X is said to have the strong resolution property if QCoh(X) s gener-
ated by locally free sheaves of finite rank. This is the case if X is e.g. a separated
noetherian scheme with a family of ample line bundles; see Hovey [17, Prop. 2.3]
and Krause [21, Exa. 4.8].

An object M ∈ QCoh(X) is semi-flat if it is so in the sense of Definition 6, that
is, if the functor −⊗OX

M is exact and Ext1QCoh(X)(OX , N ⊗OX
M) = 0 holds for

all N ∈ QCoh(X) for which Ext1QCoh(X)(S,N) = 0 for all locally free sheaves S of
finite rank. Now, from Corollary 2 we get:

Proposition 5. Let (X,OX) be a scheme with the strong resolution property.

(1) If OX is FP1, then every semi-flat object in QCoh(X) is a direct limit of
locally free sheaves of finite rank.

(2) If OX is FP2 then, conversely, every direct limit in QCoh(X) of locally free
sheaves of finite rank is semi-flat. �

Remark 9. It follows from [14, II Thm. 7.18] that if X is locally noetherian, then
every injective object in QCoh(X) is also injective in Mod(X). Thus, in this case
one has ExtiQCoh(X)(M,N) ∼= ExtiMod(X)(M,N) for all M,N ∈ QCoh(X).

Theorem 4. Let X be a noetherian scheme with the strong resolution property. In
the category QCoh(X), the direct limit closure of the locally free sheaves of finite
rank is precisely the class of semi-flat sheaves.

Proof. As X is, in particular, a locally noetherian scheme, Remark 9 and [15, III
Prop. 6.3(c)] shows that ExtiQCoh(X)(OX ,−) ∼= Hi(X,−) for all i > 0. If we view
Hi(X,−) as a functor Mod(X) → Ab, then it preserves direct limits by [15, III
Prop. 2.9] as X is a noetherian scheme (see also [15, III 3.1.1]). But then Hi(X,−)
also preserves direct limits as a functor QCoh(X)→ Ab since colimits in QCoh(X)
are just computed in Mod(X), see [30, Tag 01LA]. We conclude that OX is both
FP1 and FP2 and the desired conclusion follows from Proposition 5. �

This is not the first Lazard-like theorem for quasi-coherent sheaves. The usual
notion of flatness is locally flat, which means that the stalks are flat. Such sheaves
are tensor-flat, and the converse holds if the scheme is quasi-separated [3, Lem. 4.6.2].

In [6, (5.4)] Crawley-Boevey proves that lim−→S is precisely the locally flat sheaves
if X is a non-singular irreducible curve or surface over a field k.

In [3, 2.2.4] Brandenburg proves that if X has the strong resolution property
and M is locally flat and Spec(Sym(M)) is affine, then M ∈ lim−→S.

Thus for a scheme with the strong resolution property we have the relations:

Locally flat + Spec(Sym(−)) affine

��
Semi-flat ks

noetherian +3 lim−→S

��

KS
non-singular irreducible curve or surface

Locally flat

��

KS
quasi-seperated

Tensor-flat

It would be interesting to get a concrete description of the semi-flat, the acyclic
and the semi-projective objects in QCoh(X).
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Some work has been done in this direction. In Enochs, Estrada, and Garćıa-
Rozas [8, 3.1] we see that the semi-projective objects are locally projective, and in
[8, 4.2] we see that they are precisely the locally projective sheaves in the special
case of P1(k) (the projective line over an algebraically closed field k). In this case
a concrete computational description of the (abstract) acyclic objects are given. I
am not aware of anybody explicitly studying semi-flat sheaves.

5.6. Additive functors. Following [25], let C0 = Ab, let X be a small preadditive
category, let X op be the dual category, let CL = [X ,Ab] and CR = [X op,Ab] be
the categories of additive functors, and let S be the class of finite direct sums of
representable functors (recall that the representable functors in CL and CR are the
functors X (x,−) and X (−, x) where x ∈ X ). We define X (−, x)∗ = X (x,−) and
vice versa. As in [25] one can define a tensorproduct

⊗X : [X op,Ab]× [X ,Ab] −→ Ab .

We claim that these data satisfy Setup 1: The categories CL and CR are Grothen-
dieck and generated by S; see [25, Lem. 2.4]. Note that S is small as X is small.
Furthermore, S is closed under extensions; indeed the objects in S are projective (in
fact, every projective object is a direct summand of an object from S), hence any
extension is a direct sum. If X is additive, then X (−, x)⊕X (−, y) ∼= X (−, x⊕ y),
so in this case S is just the class of representable functors (finite direct sums are
not needed). Further, as in [25] the tensor product is such that for any F ∈ CL and
G ∈ CR we have

X (−, x)⊗X F ∼= Fx and G⊗X X (x,−) ∼= Gx ,

which by the Yoneda lemma, and the fact that Ab(1,−) is the identity gives the
required isomorphisms from Setup 1. As the functors X (−, x)⊗X ? and ?⊗XX (x,−)
are nothing but evaluation at x, they are exact. Finally, as 1 = Z ∈ Ab is projective,
Corollary 1 gives a new proof of [25, Thm 3.2]:

Corollary 6. Let X be an additive category, and let S be the finitely generated
projective functors or the representable functors in [X ,Ab] (or the direct sums of
representable functors if X is only preadditive). A functor F is flat iff F ∈ lim−→S.
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DIRECT LIMIT CLOSURE OF INDUCED QUIVER

REPRESENTATIONS

RUNE HARDER BAK

Abstract. In 2004 and 2005 Enochs et al. characterized the flat and projec-
tive quiver-representations of left rooted quivers. The proofs can be understood

as filtering the classes Φ(Add X ) and Φ(lim−→X ) when X is the finitely gener-

ated projective modules over a ring. In this paper we generalize the above and
show that Φ(X ) can always be filtered for any class X in any AB5-abelian

category. With an emphasis on Φ(lim−→X ) we investigate the Gorenstein ho-

mological situation. Using an abstract version of Pontryagin duals in abelian
categories we give a more general characterization of the flat representations

and end up by describing the Gorenstein flat quiver representations over right

coherent rings.

Introduction

Let Q be a quiver (i.e. a directed graph) and consider for a class X of objects in
an abelian category A the class Φ(X ) ⊆ Rep(Q,A ) of quiver representations. This
is the class containing all representations, F , s.t. the canonical map

⊕
w→v F (w)→

F (v) is monic and has cokernel in X for all verteces v - the sum being over all
arrows to v. When Q is left-rooted (i.e Q has no infinite sequence of composable
arrows of the form · · · → • → • → •) it was observed by Enochs, Oyonarte and
Torrecillas in [10] and Enochs and Estrada in [7] that when A is the category of
modules over a ring,

Φ(Proj(A )) = Proj(Rep(Q,A ), and(1)

Φ(Flat(A )) = Flat(Rep(Q,A ).(2)

Here the flat objects are precisely the direct limit closure of the finitely generated
projective objects. This was done by showing, that if X is the finitely generated
projective modules over a ring we can filter the classes Φ(Add X ) and Φ(lim−→X )

by sums of objects of the form f∗(X ) where fv : A → Rep(Q,A ) is the left-adjoint
of the evaluation functor ev : Rep(Q,A )→ A at the vertex v. They show

Φ(Add X ) = Add f∗(X )(3)

Φ(lim−→X ) = lim−→ add f∗(X ).(4)

In 2014 Holm and Jørgensen [14] generalized (1) to abelian categories with enough
projective objects, and combining [14, Thm. 7.4a and 7.9a] with Šťov́ıček [20,
Prop. 1.7] we get the following generalization of (3). If X is a generating set of
objects in a Grothendieck abelian category, then

Φ(sFilt X ) = sFilt f∗(X ),(5)

where sFilt X consists of all summands of X -filtered objects. In this paper we
show that Φ(X ) can always be filtered by f∗(X ). We have the following:

2010 Mathematics Subject Classification. Primary 18E10. Secondary 16G20; 18A30.
Key words and phrases. Direct limit, quiver representation, Gorenstein flat representations.
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2 RUNE HARDER BAK

Theorem A. Let A be an AB5-abelian category, let X ⊂ A and let Q be a
left-rooted quiver. Then

i) Any F ∈ Φ(X ) is f∗(X )-filtered.

If X is closed under filtrations, then

ii) Φ(X ) = Filt f∗(X )

In particular we have the following.

iii) Φ(Filt X ) = Filt f∗(X ) = Filt Φ(X )
iv) Φ(sFilt X ) = sFilt f∗(X ) = sFilt Φ(X )

If X ⊆ FP2.5(A ) and A is locally finitely presented, then

v) Φ(lim−→X ) = lim−→ ext f∗(X ) = lim−→Φ(X )

Here FP2.5(A ) is a certain class of objects which sits between FP2(A ) and
FP3(A ) with the property that it is always closed under extensions. In many
situations (e.g A = R-Mod) FP2.5(A ) = FP2(A ) (Lemma 1.4).

We note that lim−→ ext X = lim−→ add X and Add X = sFilt X when X consists
of projective objects and that the finitely generated projective objects are FPn for
any n. Theorem A is thus a generalization of (3) and (4). It also generalizes (5)
to arbitrary classes in not neccesarily Gorenstein abelian categories. We show how
to use this to reprove (1) in abelian categories with enough projective objects. We
also show (2) (Lemma 2.12) when the category is generated by finitely generated
projective objects and flat is understood as their direct limit closure (see Theorem C
however for a more general version).

We then apply Theorem A v) to the Gorenstein homological situation. We let
GProj(A ) be the Gorenstein projective objects, let Gproj(A ) = GProj(A ) ∩
FP2.5(A ) and immediately get Φ(lim−→Gproj(A )) = lim−→ ext f∗(Gproj(A )). Con-
trary to the case for ordinary projective objects, it is not clear, that this equals
lim−→Gproj(Rep(Q,A )) without some restrictions on Q. In the following target-finite
means that there are only finitely many arrows with a given target and locally path-
finite means that there are only finitely many paths between two given vertices. We
have

Theorem B. Let A be a locally finitely presented category with enough projective
objects, let Q be a left-rooted quiver and assume that either

• Q is target-finite and locally path-finite, or
• lim−→Gproj(A ) = lim−→GProj(A ) (e.g if A = R-Mod and R is Iwanaga-

Gorenstein).

Then

Φ(lim−→Gproj(A )) = lim−→Gproj(Rep(Q,A )) = lim−→Φ(Gproj(A )).

In the latter case, this equals lim−→GProj(Rep(Q,A )).

Again contrary to the ordinary projective objects even for A = R-Mod it is not
true in general that lim−→Gproj(A ) is all the Gorenstein Flat objects, GFlat(A ), nor

those objects with Gorenstein injective Pontryagin dual, wGFlat(A ). In the rest
of the paper we study these classes in Rep(Q,A ). First we must explain what we
mean by an abstract Pontryagin dual and we show how these arise natually and
agree with the standard notion in well-known abelian categories. We go on and
characterize those objects with injective (or Gorenstein injective) Pontryagin dual
as follows.

48



DIRECT LIMIT CLOSURE OF INDUCED QUIVER REPRESENTATIONS 3

Theorem C. Let A be an abelian category with a Pontryagin dual to a category
with enough injective objects and let Q be a left-rooted quiver. Then

Flat(Rep(Q,A )) = Φ(Flat(A ))

wGFlat(Rep(Q,A )) = Φ(wGFlat(A ))

Here Flat(A ) is those objects with injective Pontryagin dual so this result re-
proves (2) using the simpler characterization of injective representations in Enochs,
Estrada and Garćıa Rozas [8, Prop 2.1] instead of going through the proof of (4) as in
[10]. Theorem C tells us that, under the conditions of Theorem B, if lim−→Gproj(A ) =

wGFlat(A ) then also lim−→Gproj(Rep(Q,A )) = wGFlat(Rep(Q,A )). (Corollary

4.7)
In [8] it is proved that wGFlat(Rep(Q,A )) = GFlat(Rep(Q,A )) when A =

R-Mod and R is Gorenstein. We end this paper by showing that this also hold if R
is just assumed to be coherent if we impose proper finiteness conditions on Q.

Theorem D. Let R be a right coherent ring and let Q be a left-rooted and target-
finite quiver. Then

wGFlat(Rep(Q,R-Mod)) = GFlat(Rep(Q,R-Mod)).

See also Proposition 5.6 for a version for abelian categories. If Q is further locally
path-finite (or R is Gorenstein and Q is just assumed to be left-rooted) the condi-
tions for Theorem B and Theorem C are satisfied as well, so in this case (Corollary
5.8) if lim−→Gproj(A ) = GFlat(A ) then

lim−→Gproj(Rep(Q,A )) = GFlat(Rep(Q,A )) = Φ(GFlat(A )).

The equality lim−→Gproj(R-Mod) = GFlat(R-Mod) is known to hold when R is

an Iwanaga-Gorenstein ring (Enochs and Jenda [9, Thm. 10.3.8]) or if R is an
Artin algebra which is virtually Gorenstein (Beligiannis and Krause [3, Thm. 5]).
In general lim−→Gproj(R-Mod) and GFlat(R-Mod) are different (Holm and Jørgensen

[13, Thm. A]).

1. Locally finitely presented categories

In the following let A be an abelian category. First we recall some basic notions.
We say A is (AB4) if A is cocomplete and forming coproducts is exact, (AB4∗)

if A is complete and forming products is exact, (AB5) if filtered colimits are exact,
Grothendieck if it is (AB5) and has a generator (i.e. a generating object or equiv-
alently a generating set). Here a class S ⊆ A is said to generate A if it detects

zero-morphisms i.e. a morphism X Y
f

is zero iff S X Y
g f

is
zero for all g with S ∈ S .

We write X ∈ lim−→X if X = lim−→Xi for some filtered system {Xi} ⊆ X . We
write X ∈ Filt X if there is a chain X0 ⊆ . . . ⊆ Xλ = X for some ordinal λ s.t.
Xα+1/Xα ∈X for all α < λ and lim−→α<α0

Xα = Xα0
, for any limit ordinals α0 ≤ λ.

We say X ∈ Filt X is X -filtered. When λ is finite, we say X is a finite extension of
(objects of) X , and we let ext(X ) denote the class of finite extensions of X . This
is also the extension closure of X i.e. the smallest subcategory of A containing X
and closed under extensions. For example the class

⊕
X is the class of all (infinite)

sums of elements of X . Such a sum,
⊕λ

i=1Xi is a colimit of a diagram with no
arrows, and as such is neither a direct limit nor a filtration. It can however be
realized as a filtration by {⊕α

i=1Xi}, for α < λ and as a direct limit as {⊕i∈I Xi},
for I finite, with arrows the inclusions. In fact

⊕
X = Filt X when X consists of

projective objects. We say that X ∈ A is FPn if the canonical map

lim−→Extk(X,Yi)→ Extk(X, lim−→Yi)

49



4 RUNE HARDER BAK

is an isomorphism for every 0 ≤ k < n. The objects FP1(A ) are called finitely
presented, and the objects s.t the above map is injective for k = 0 is called finitely
generated and denoted FP0(A ). The category A is called locally finitely presented
if it satisfies one (and therefore all) of the following equivalent conditions:

(i) FP1(A ) is skeletally small (i.e. the isomorphism classes form a set) and
lim−→FP1(A ) = A (Crawley-Boevey [6])

(ii) A is Grothendieck and FP1(A ) generate A . (Breitsprecher [4])
(iii) A is Grothendieck and lim−→FP1(A ) = A ( [4]).

The direct limit is very well-behaved in locally finitely presented categories. In
particular we have that if X ⊆ FP1(A ) is closed under direct sums, then lim−→X
is closed under direct limits, and is thus the direct limit closure of X [6, Lemma
p. 1664]. We also have the following. The proof was communicated to me by Jan
Šťov́ıček (any mistakes are mine).

Proposition 1.1. Let A be a locally finitely presented abelian category. If X ⊆
FP2(A ) is closed under extensions then so is lim−→X . It is thus closed under filtra-
tions.

Proof. Let {Si}, {Tj} ⊆X be directed systems and let

0→ lim−→Si → E → lim−→Tj → 0

be an exact sequence. We want to show that E ∈ lim−→X . First by forming the
pullback

0 lim−→Si Ej Tj 0

0 lim−→Si E lim−→Tj 0

p

we see that E = lim−→Ej since A is AB5 as it is locally finitely presented abelian,

hence Grothendieck. Now since Tj is in FP2(A ) for every j we have that

[0→ lim−→Si → Ej → Tj → 0] ∈ Ext1(Tj , lim−→Si)

is in the image of the canonical map from lim−→Ext1(Tj , Ei), that is, it is a pushout

0 Si Eij Tj 0

0 lim−→Si Ej Tj 0
y

for some i and some extension Eij ∈ A .
Now construct for every k ≥ i the pushout

0 Si Eij Tj 0

0 Sk Ekj Tj 0
y

Then lim−→k
Ekj = Ej so Ej ∈ lim−→X as Ekj ∈X when X is closed under extensions.

Finally E = lim−→Ej ∈ lim−→X as lim−→X is closed under direct limits when X ⊂
FP1(A ). �

The classes FPn(A ) are all closed under finite sums (as in [4, Lem. 1.3]). They
are not necessarily closed under extensions, but the following subclasses are:
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Definition 1.2. Let A be an abelian category. We say X ∈ A is FPn.5 if X is
FPn and furthermore, that the natural map lim−→Extn(X,Yi) → Extn(X, lim−→Yi) is

monic for every filtered system {Yi} ⊆ A . We let FP∗ stand for an unspecified (but
fixed) FPn or FPn.5

Note that by definition FP0(A ) = FP0.5(A ) and also FP1(A ) = FP1.5(A ) by
Stenström [19, Prop. 2.1] when A is AB5. We have the following generalization
of [4, Lem. 1.9] for n, ∗ = 1 and A Grothendieck.

Lemma 1.3. Let A be an AB5-abelian category and let

0→ A→ B → C → 0

be an exact sequence. Then

(i) If A and C are FPn.5, then so is B.
(ii) If B is FP∗ then A is FP∗−1 iff C is FP∗.

Proof. (i) Let {Xi} ⊂ A be a filtered system. From the long exact sequence in
homology we get for all k < n :

lim−→Extk−1(A,Xi) lim−→Extk(C,Xi) lim−→Extk(B,Xi) lim−→Extk(A,Xi) lim−→Extk+1(C,Xi)

Extk−1(A, lim−→Xi) Extk(C, lim−→Xi) Extk(B, lim−→Xi) Extk(A, lim−→Xi) Extk+1(C, lim−→Xi)

∼= ∼= ∼=

and

lim−→Extn−1(A,Xi) lim−→Extn(C,Xi) lim−→Extn(B,Xi) lim−→Extn(A,Xi)

Extn−1(A, lim−→Xi) Extn(C, lim−→Xi) Extn(B, lim−→Xi) Extn(A, lim−→Xi)

∼=

And the result follows by the 5-lemma. (ii) is proved similarly. Note that when
∗ = 1 we must use that FP1 = FP1.5 because FP0 = FP0.5. �

Lemma 1.4. Let A be an AB5-abelian category generated by a set of FPn.5-objects.
Then

(i) If X ∈ FP0(A ) there exists an epi X0 → X with X0 ∈ FPn.5(A ).
(ii) FPk(A ) = FPk.5(A ) for all k ≤ n

Proof. For (i) notice that by [4, satz 1.6] if A is generated by X ⊆ FP1(A )
and C ∈ FP0(A ) then we have an epi from a finite sum of elements of X to C.
But FPn (and FPn.5) are all closed under finite sums. The proof of (ii) goes by
induction. The case n = 0 is true by definition, so assume A is generated by a set
of FPn.5-objects and that X ∈ FPn(A ). By (i) we get an exact sequence

0 X1 X0 X 0

with X0 ∈ FPn.5(A ). By Lemma 1.3 (ii) X1 ∈ FPn−1(A ) which by induction
hypothesis equals FP(n−1).5(A ) so X ∈ FPn.5(A ) again by Lemma 1.3 (ii). �

In particular FPn.5(R-Mod) = FPn(R-Mod) is closed under extensions for any
n and any ring R. We think of the objects of FP∗(A ) as beeing small.
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2. Quiver representations

Let Q be a quiver, i.e. a directed graph. We denote the vertices by Q0 and we
denote an arrow (resp. a path) from w to v by w → v (resp. w ; v). A quiver may
have infinitely many vertices and arrows, but we will need the following finiteness
conditions.

Definition 2.1. Let Q be a quiver. We say Q is target-finite (resp. source-finite) if
there are only finitely many arrows with a given target (resp. source). We say Q is
left-rooted (resp. right-rooted) if there is no infinite sequence of composable arrows
· · · → • → • (resp. • → • → · · · ). Finally we say Q is locally path-finite if there is
only finitely many paths between any two given vertices.

Remark 2.2. Notice that Q is target-finite (resp. left-rooted) iff Qop is source-finite
(resp. right-rooted) and that left/right-rooted quivers are necessarily acyclic (i.e
have no cycles or loops). Locally path-finite is self-dual. Even if a quiver satisfies
all of the above finiteness conditions, it can still have infinitely many vertices and
arrows, e.g the quiver · · · ← • → • ← • → • ← • → · · ·

When the quiver is left-rooted we can use the following sets for inductive argu-
ments. Let V0 = ∅ and define for any ordinal λ, Vλ+1 = {v ∈ Q0|w → v ⇒ w ∈ Vλ}
and for limit ordinals Vλ =

⋃
α<λ Vα. Notice that V1 is precisely the sources of Q.

As noted in [10, Prop. 3.6] a quiver is left-rooted precisely when Q0 = Vλ for
some λ.

Example 2.3. Let Q be the (left-rooted) quiver:

•
5

•
4

OO

•
3

OO OO

•
1

II

•
2

UU

For this quiver, the transfinite sequence {Vα} looks like this:

◦
5

◦
4

OO

◦
3

OO OO

◦
1

II

◦
2

UU

◦
5

◦
4

OO

◦
3

OO OO

•
1

II

•
2

UU

◦
5

◦
4

OO

•
3

OO OO

•
1

II

•
2

UU

◦
5

•
4

OO

•
3

OO OO

•
1

II

•
2

UU

•
5

•
4

OO

•
3

OO OO

•
1

II

•
2

UU

V0 = ∅ V1 = {1, 2} V2 = {1, 2, 3} V3 = {1, 2, 3, 4} V4 = Q0

Let now A be an abelian category. A quiver Q generates a category Q, called
the path category, with objects Q0 and morphisms the paths in Q. We define
Rep(Q,A ) = Fun(Q,A ). Note that F ∈ Rep(Q,A) is given by its values on vertices
and arrows and we picture F as a Q-shaped diagram in A .
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DIRECT LIMIT CLOSURE OF INDUCED QUIVER REPRESENTATIONS 7

For v ∈ Q0 the evaluation functor ev : Rep(Q,A )→ A is given by ev(F ) = F (v)
for v ∈ Q0 and ev(η) = ηv for η : F → G. If A has coproducts (or Q is locally path-
finite) this has a left-adjoint fv : A → Rep(Q,A ) given by

fv(X)(w) =
⊕

v;w

X

where the sum is over all paths from v to w and fv(X)(w → w′) is the natural
inclusion. For X ⊆ A we define

f∗(X ) = {fv(X) | v ∈ Q0, X ∈X } ⊆ Rep(Q,A ).

See [10] or [14] for details.

Remark 2.4. Limits and colimits are point-wise in Rep(Q,A ), so ev preserves them
and is in particular exact. Thus its left-adjoint fv preserves projective objects.

Definition 2.5. For any quiver Q, any abelian category A , any F ∈ Rep(Q,A )
and any v ∈ Q0 we have a canonical map ϕFv =

⊕
w→v F (w)→ F (v) and we set

Φ(X ) =
{
F ∈ Rep(Q,A )

∣∣∀v ∈ Q0 : ϕFv is monic and cokerϕFv ∈X
}
.

Remark 2.6. Observe that fv(X ) ⊆ Φ(X ). In fact for any v ∈ Q0, ϕ
fv(X)
w is an

isomorphism, unless w = v in which case it is monic (in fact zero if Q is acyclic)
with cokernel X. As in [14, Prop. 7.3] if Q is left-rooted then Φ(X ) ⊆ Rep(Q,X )
if X is closed under arbitrary sums or Q is locally path-finite and X is closed
under finite sums.

The aim of this section is to show that sums of objects of f∗(X ) filter Φ(X ).
Let us first see how f and Φ play together with various categorical constructions.

Lemma 2.7. Let Q be a quiver, A an abelian category satisfying AB4, and X ⊆ A
arbitrary. Then

(i) f∗(extensions of X ) ⊆ extensions of f∗(X ),
(ii) f∗(summands of X ) ⊆ summands of f∗(X ),

(iii) f∗(lim−→X ) ⊆ lim−→ f∗(X ),

(iv) f∗(Filt X ) ⊆ Filt f∗(X ).

Proof. (i) follows since fv is exact when A is AB4 and (iii) since fv is a left adjoint.
(ii) is clear and (iv) follows from (i) and (iii). �

Lemma 2.8. Let again Q be a quiver, A an abelian category satisfying AB4, and
X ⊆ A arbitrary. Then

(i) Φ(extensions of X ) ⊆ extensions of Φ(X ),
(ii) summands of Φ(X ) ⊆ Φ(summands of X ).

When A is AB5 we further have

(iii) lim−→Φ(X ) ⊆ Φ(lim−→X ),

(iv) Filt Φ(X ) ⊆ Φ(Filt X ).

When A is AB4∗ and Q is target-finite we have

(v)
∏

Φ(X ) ⊆ Φ(
∏

X ).

Proof. (ii) follows as retracts respects kernels and cokernels, (iii) is clear when A
satisfies AB5. For (i) let 0 → F → F ′′ → F ′ → 0, be an exact sequence with
F, F ′ ∈ Φ(X ). For every v ∈ Q0 we have that
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0 0

0 ⊕w→vF (w) ⊕w→vF ′′(w) ⊕w→vF ′(w) 0

0 F (v) F ′′(v) F ′(v) 0

C C ′

0 0

has exact rows since A is AB4 and ev is exact. The condition follows from the
snake lemma, since C,C ′ ∈X .

Again (iv) follows from (i) and (iii). For (v) we notice that for any {Fi} ⊂ A

and vertex v we have
∏
i φ

Fi
v = φ

∏
F

v since the sum in the definition of φ is finite,
hence a product, when Q is target-finite. �

As for smallness we have the following

Lemma 2.9. Let A be an abelian category.

(i) If A satisfies AB5 then fv preserves FP∗
(ii) If Q is locally path-finite, then ev(−) preserves FP∗.

(iii) If Q is target-finite and locally path-finite then

Φ(X ) ∩ FP∗(Rep(Q,A )) ⊆ Φ(X ∩ FP∗(A )).

Proof. (i) This follows from the natural isomorphism ( [14, prop 5.2])

Exti(fv(X),−) ∼= Exti(X, ev(−))

and the fact that ev preserves filtered colimits (Remark 2.4).
(ii) In this case ev has a right adjoint gv(X)(w) =

∏
w;vX (see [14, 3.6]) which

is a finite product, hence a sum, as Q is locally path-finite. So gv(−) preserves
filtered colimits. Thus ev preserves FP∗, by the natural isomorphism ( [14, prop
5.2])

Ext1(ev(X),−) ∼= Ext1(X, gv(−))

(iii) Let F ∈ Φ(X ) be FP∗. Given v ∈ Q0 we only need to show that cokerφFv is
FP∗. Since Q is target-finite, ⊕w→vF (w) is a finite sum of FP∗-objects by (ii) and
since FP∗ is closed under finite sums the result follows from (ii) and Lemma 1.3
(ii). �

The following two lemmas will be used to construct a ⊕f∗(X )-filtration for any
F ∈ Φ(X ) for suitable X ⊂ A when Q is left-rooted. This is the key in proving
Theorem A.

Lemma 2.10. Let Q be an acyclic (e.g. left-rooted) quiver and A an abelian cat-
egory satisfying AB4. If F ∈ Φ(X ) there exists a subrepresentation F ′ ⊆ F such
that

(a) F ′ ∈⊕ f∗(X ),
(b) F ′(v) = F (v) ∀u ∈ V F = {v ∈ Q0|w → v ⇒ F (w) = 0},
(c) F/F ′ ∈ Φ(X ), with cokerφ

F/F ′
v = cokerφFv when v 6∈ V F .
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DIRECT LIMIT CLOSURE OF INDUCED QUIVER REPRESENTATIONS 9

Proof. Define F ′ =
⊕

v∈V F fv(F (v)). We wish to prove that F ′ is a subrepresenta-
tion and that it satisfies (a)-(c).

Clearly F ′ satisfy (a). To see (b) it suffices to prove, that for any non-trivial
path w ; v with v ∈ V F we have F (w) = 0 - because then for any v ∈ V F we
have fv(F (v))(v) = F (v) and fw(F (w))(v) = 0, w 6= v. So let v ∈ V F and assume

there is a path w
p
; w′ → v. Then F (w′) = 0 as v ∈ V F . But then also F (w) = 0

as F (p) is monic since F ∈ Φ(X ).
To see that F ′ is a subrepresentation satisfying (c) we use the map F ′ → F

induced by the counits fvev(F )→ F. If v is not reachable from V F (i.e. there is no
path w ; v with w ∈ V F ) this is trivial since then F ′(v) = 0.

So let Q′ be the subquiver consisting of all vertices Q′0 reacheable from V F (i.e.
Q′0 = {v ∈ Q0 | ∃w ; v, w ∈ V F } with arrows {w → v | w ∈ Q′0}). We want for all
V ∈ Q′0 that there are exact sequences

(1) 0→ F ′(v)→ F (v)
(2) 0→⊕

w→v F/F
′(w)→ F/F ′(v)→ cokerφFv → 0 when v 6∈ V F .

Since Q is acyclic, Q′ is left-rooted with sources V F . We can thus proceed by
induction on the sets V ′λ. The case v ∈ V ′1 = VF is taken care of by (b), so assume
(1) for all w ∈ V ′α and all α < λ 6= 1, and let v ∈ V ′λ. Then we have the following
commutative diagram with exact rows and columns

0

0 ⊕w→vF ′(w) F ′(v) 0

0 ⊕w→vF (w) F (v) cokerφFv 0

⊕w→vF/F ′(w)

0

The first row is exact as v /∈ V F (see Remark 2.6), the second as F ∈ Φ(X ) and
the first column by induction hypothesis and the assumption that A is AB4. Now
(1) and (2) follows for v ∈ Vλ by the snake lemma. �

Lemma 2.11. Let Q be an acyclic quiver, A an AB5-abelian category, and let
X ⊆ A . Then for any F ∈ Φ(X ) there exists a chain 0 = F0 ⊆ F1 ⊆ . . . ⊆ Fλ ⊆
. . . ⊆ F of subrepresentations of F , such that for all ordinals λ

(a) Fλ/Fα ∈
⊕
f∗(X ), if λ = α+ 1

(b) Fλ(v) = F (v) for all v ∈ ⋃α<λ V F/Fα
(c) F/Fλ ∈ Φ(X ) with cokerφF/Fλ = cokerφFv for v 6∈ ⋃α<λ V F/Fα .

Notice that
⋃
α<β+1 V

F/Fα = V F/Fβ

Proof. We will construct such a filtration by transfinite induction. 0 = F0 is evident
so assume Fα satisfying (a)-(c) has been constructed for all α < λ

If λ = α+ 1 then by Lemma 2.10 we have an F ′ ⊆ F/Fα s.t. F ′ ∈⊕ f∗(X ) and
s.t. F ′′ = (F/Fα)/F ′ ∈ Φ(X ) satisfies

F ′′(v) = 0 for all v ∈ V F/Fα = {v ∈ Q0|w → v =⇒ F (w) = Fα(w)}.
and

cokerφF
′′

v = cokerφF/Fαv = cokerφFv for all v 6∈ V F/Fα
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Now let Fλ be the pullback

Fλ F ′

F F/Fα

p

Then (a) follows as Fλ/Fα ∼= F ′ and (b) and (c) follows since F/Fλ ∼= F ′′.
If λ is a limit ordinal, we set

Fλ =
⋃

α<λ

Fα

so that

F (v) = Fλ(v) when v ∈
⋃

α<λ

V F/Fα

Then (a) is void and we get (b) by noting that when v ∈ V F/Fα for some α < λ,
then Fλ(v) is the limit of a filtration eventually equal to F (v)

Fλ(v) = ev

(⋃

α<λ

Fα

)
=
⋃

α<λ

Fα(v) = F (v).

To prove (c) we similarly notice that φ
F/ lim−→Fα
v = lim−→φ

F/Fα
v is monic for any vertex

v as A is AB5 and when v 6∈ ⋃α<λ V F/Fα then

cokerφ
F/ lim−→Fα
v = lim−→ cokerφF/Fαv = lim−→ cokerφFv = cokerφFv

�

The following figure shows an example of this construction.

(x⊕ y ⊕ z0)2 ⊕ z1

(x⊕ y ⊕ z0)2 ⊕ z1

OO

x⊕ y ⊕ z0

OO OO

x

>>

y

``

(x⊕ y)2

(x⊕ y)2

OO

x⊕ y

OO OO

x

JJ

y

SS

z20 ⊕ z1

z20 ⊕ z1

OO

z0

OO OO

0

LL

0

RR

(x⊕ y ⊕ z0)2

(x⊕ y ⊕ z0)2

OO

x⊕ y ⊕ z0

OO OO

x

DD

y

ZZ

z1

z1

OO

0

OO OO

0

SS

0

KK

F F1 F/F1 F2 F/F2

F3 = F

Figure 1. Example of the construction of the subrepresentations Fα

We can now proof Theorem A from the introduction.

Proof of Theorem A.

i) Let F ∈ Φ(X ) and let {Fλ} be the filtration of Lemma 2.11. First we show
that Fλ(v) = F (v) for all v ∈ Vλ. The case λ = 0 is trivial, so let λ = α + 1,
assume Fα(v) = F (v). and let v ∈ Vλ. Then for paths w → v we have w ∈ Vα
so Fα(w) = F (w). This precisely says that v ∈ V F/Fα i.e Fλ(v) = F (v). If λ is
a limit ordinal then Fλ =

⋃
α<λ Fλ so Fλ(v) = F (v) when v ∈ ⋃α<λ Vα = Vλ.

Now since Q is left-rooted, F = Fλ for some λ. This means that Φ(X ) is
⊕f∗(X )-filtered. But any object in ⊕f∗(X ) is f∗(X )-filtered so we just insert
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DIRECT LIMIT CLOSURE OF INDUCED QUIVER REPRESENTATIONS 11

such a filtration in each step as in [20, Lem. 1.6]. In this proof the objects form
a set, but it is not necessarily for this particular statement. Indeed we always
have Filt Filt X = Filt X , for any class X .

ii) When X is closed under filtrations we have

Filt f∗(X )
Rem. 2.6
⊆ Filt Φ(X )

Lem. 2.8
⊆ Φ(Filt X ) ⊆ Φ(X ).

iii) As Filt f∗(X ) is closed under filtrations as mentioned we have

Filt Φ(X )
Lem. 2.8
⊆ Φ(Filt X ) ⊆ Filt f∗(Filt X )

Lem. 2.7
⊆ Filt Filt f∗(X ) ⊆ Filt f∗(X )

Rem. 2.6
⊆ Filt Φ(X )

iv) This is proven similar to iii). Just observe that a filtration of summands is a
summand of a filtration.

v) When X is FP2.5 then f∗(X ) is FP2.5 by Lemma 2.9 and so is ext f∗(X ) by
Lemma 1.3. Hence lim−→ ext f∗(X ) is closed under extensions by Proposition 1.1.
We now have

lim−→Φ(X )
Lem. 2.8
⊆ Φ(lim−→X ) ⊆ Filt f∗(lim−→X )

Lem. 2.7
⊆ Filt lim−→ f∗(X )

⊆ Filt lim−→ ext f∗(X ) ⊆ lim−→ ext f∗(X )
Rem. 2.6
⊆ lim−→ ext Φ(X )

Lem. 2.8
⊆ lim−→Φ(ext X ) ⊆ lim−→Φ(X ).

�

As mentioned in the introduction we also get iii) by combining results in [14]
and [20] when X is a generating set and A is Grothendieck.

As a special case we get the known results from [10] and [7]:

Lemma 2.12. Let A be an AB5-abelian category, let Q be a left-rooted quiver and
let X ⊆ A be a set of projective objects. Then

i) Φ(
⊕
X) =

⊕
f∗(X ) =

⊕
Φ(X )

ii) Φ(AddX) = Add f∗(X ) = Add Φ(X )

If A has enough projectives, then

iii) Φ(Proj A ) = Proj(Rep(Q,A ))

If A is locally finitely presented, generated by proj(A ) (the finitely generated pro-
jective objects) then

iv) Φ(lim−→ proj(A )) = lim−→ proj((Rep(Q,A )))

Proof. For i) and ii) just notice that any filtration is a sum as all extensions of
projective objects are split. For iii) and iv) we notice that if X = Proj(A )
(resp. X = proj(A )) generate A then f∗(X ) ⊆ Proj(Rep(Q,A )) (resp. f∗(X ) ⊆
proj(Rep(Q,A )) generate Rep(Q,A ). Hence Add f∗(X ) = Proj(Rep(Q,A ). (resp.
add f∗(X ) = proj(Rep(Q,A )). Now use Theorem A ii) (resp. v)) �

As noted in the introduction, iii) can be seen by using cotorsion pairs as in [14].
In the rest of the paper we study the Gorenstein situation.

3. Gorenstein projective objects

We will now define the small (i.e. FP2.5) Gorenstein projective objects and de-
scribe their direct limit closure using Theorem A.
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12 RUNE HARDER BAK

Definition 3.1. Let A be an abelian category and P a class of objects in A .
A complete P-resolution is an exact sequence with components in P that stays
exact after applying Hom(P,−) and Hom(−, P ) for any P ∈P.

We say that X has a complete P-resolution if it is a syzygy in a complete
P-resolution, i.e. if there exists a complete P-resolution

. . .→ P1 → P0 → P−1 → . . .

s.t. X = ker(P0 → P−1).

We say that X ∈ A is Gorenstein projective (resp. Gorenstein injective) if it
has a complete P-resolution where P is the class of all projective (resp. injective)
objects.

We let GProj(A ) (resp. GInj(A ))) denote the Gorenstein projective (resp. Goren-
stein injective) objects of A and let Gproj(A ) = GProj(A ) ∩ FP2.5(A ).

Remark 3.2. Notice that the class GProj(A ) is closed under extensions see [12, thm
2.5]. Hence so is Gproj(A ) by Lemma 1.3.

Dually to the already mentioned characterization of the projective representa-
tions, we have a characterization of the injective representations. This was first
noted in [8] and generalized to abelian categories in [14]. A similar description is
possible for Gorenstein projective and Gorenstein injective objects as proven first
for modules over Gorenstein rings in [8] and then modules over arbitrary rings
in [11, Thm. 3.5.1]. This proof work in any abelian category with enough projective
(resp. injective) objects. We collect the results here for ease of reference.

Theorem 3.3. Let Q be a left-rooted quiver, A an abelian category with enough
projective objects, and B a category with enough injective objects. Then

Proj(Rep(Q,A )) = Φ(Proj(A ))

GProj(Rep(Q,A )) = Φ(GProj(A ))

Inj(Rep(Qop,B)) = Ψ(Inj(B))

GInj(Rep(Qop,B)) = Ψ(GInj(B))

where for Y ⊆ B we define

Ψ(Y ) = {F ∈ Rep(Qop,B) | ∀v ∈ Q0 : ψFv epi and kerψFv ∈X }
and

ψFv = F (v)→
∏

v→w
F (w).

As mentioned in the proofs, left-rooted is not needed for the inclusions (⊆) in
the non-Gorenstein cases. We note that fv preserves Gorenstein projectivity:

Lemma 3.4. Suppose A satisfies AB4∗ or has enough projective objects or Q is lo-
cally path-finite. If X ∈ A is Gorenstein projective, then so is fv(X) ∈ Rep(Q,A ).

Proof. Let P• be a complete projective resolution of X. Then fv(P•) is exact and
has projective components by Remark 2.4.

Obviously Hom(P, fv(P•)) is exact for any projective P , and Hom(fv(P•), P ) ∼=
Hom(P•, ev(P )) is exact if ev preserves projective objects.

If A has enough projective objects then Proj(Rep(Q,A )) ⊆ Φ(ProjA ). (The-
orem 3.3) If A satisfies AB4∗ or Q is locally path-finite, then as in the proof of
Lemma 2.9 ev has an exact right-adjoint (see [14, 3.6]). In all cases ev preserves
projective objects. �

Using these and Theorem A we have
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Proof of Theorem B. By Theorem A and Remark 3.2 we have

lim−→Φ(Gproj(A )) = Φ(lim−→Gproj(A )) = lim−→ ext f∗(Gproj(A ))

Now fv preserves smallness (Lemma 2.9 (i)) and Gorenstein projectivity (Lemma
3.4), so

lim−→ ext f∗(Gproj(A )) ⊆ lim−→Gproj(Rep(Q,A )).

If Q is locally path-finite and target-finite, Theorem 3.3 and Lemma 2.9(iii) give

Gproj(Rep(Q,A )) = Φ(GProj(A )) ∩ FP2.5(Rep(Q,A )) ⊆ Φ(Gproj(A ))

so

lim−→Gproj(Rep(Q,A )) ⊆ lim−→Φ(Gproj(A )).

If instead lim−→Gproj(A ) = lim−→GProj(A ) then by Theorem 3.3

lim−→Gproj(Rep(Q,A )) ⊆ lim−→GProj(Rep(Q,A ))

⊆ lim−→Φ(GProj(A ))

⊆ Φ(lim−→GProj(A ))

= Φ(lim−→Gproj(A )). �

4. Weakly Gorenstein flat objects

In this section we will first explain what we mean by an abstract Pontryagin
dual. It mimics the behavior of Ab(−,Q/Z). We will then define and describe the
weakly Gorenstein flat objects and show when they equal lim−→ gP .

Recall that a functor F : C → D creates exactness when A → B → C is exact
in C if and only if FA→ FB → FC is exact in D .

Definition 4.1. A Pontryagin dual is a contravariant adjunction between abelian
categories that creates exactness. I.e. let C ,D be abelian categories. A Pontryagin
dual between C and D consists of two functors

(−)+ : C op → D , (−)+ : Dop → C

that both create exactness together with a natural ismorphism C (A,B+) ∼= D(B,A+).
We call it ⊗-compatible if there is a continuous bifunctor ⊗ : D × C → K to

some abelian category K s.t.

C (A,B+) ∼= K (B ⊗A,E) ∼= D(B,A+)

for some injective cogenerator E ∈ K (i.e. K (−, E) creates exactness). Here con-
tinuous means that it respects direct limits.

Note that Ab(−,Q/Z) : Abop → Ab is a Pontryagin dual compatible with the
usual tensor product ⊗ : Ab×Ab→ Ab with E = Q/Z.

Example 4.2. As the following examples shows, (abstract) Pontyagin duals abound.

1) Let (C , [−,−],⊗, 1) be a symmetric monoidal abelian category. Let E ∈ C be
an injective cogenerator s.t. also [−, E] creates exactness. Then [−, E] is a ⊗-
compatible Pontryagin dual, and any ⊗-compatible Pontryagin dual is of this
form. It will thus also satisfy

[A,B+] ∼= (B ⊗A)+ ∼= [B,A+].

This example includes the motivating example C = Ab, E = Q/Z as well as
C = Ch(Ab), E = Q/Z (i.e. Q/Z in degree 0 and 0 otherwise).
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2) If (−)+ : C op → D is a Pontryagin dual it induces a Potryagin dual Fun(A ,C )op →
Fun(A op,D) for any small category A by applying (−)+ component-wise.

If (−)+ : C op → D is compatible with ⊗ : D × C → K , then (−)+ :
Fun(A ,C )op → Fun(A op,D) is compatible with⊗ : Fun(A op,D)×Fun(A ,C )→
K where G⊗ F is the coend of

A op ×A → D × C → K

i.e. the coequalizer of the two obvious maps
⊕

a→b
G(b)⊗ F (a)⇒

⊕

a∈A

G(a)⊗ F (a)

provided the required colimits exists. (see Oberst and Röhrl [17] or Mac Lane [16,
IX.6] for this construction).

This includes the case Rep(Q,C ) for any quiver Q.
3) As in 2), any Pontryagin dual (−)+ : C op → D gives a component-wise Pon-

tryagin dual Ch(C )op → Ch(D) of chain-complexes. If (−)+ : C op → D
is compatible with ⊗ : D ⊗ C → K with injective cogenerator E ∈ K ,
then (−)+ : Ch(C )op → Ch(D) is compatible with the total tensor product
Ch(D)× Ch(C )→ Ch(K ), the injective cogenerator beeing E in degree 0 and
0 otherwise.

With C = Ab, (−)+ = [−,Q/Z] this construction gives the standard one in
Ch(Ab) as mentioned in 1).

4) If C = D is symmetric monoidal with a ⊗-compatible Pontryagin dual as in

1) then the dual of a map A ⊗ X m→ X gives a map X+ ⊗ A m+

→ X+ via the
isomorphisms

Hom(X+, (A⊗X)+) ∼= Hom(X+, [A,X+]) ∼= Hom(X+ ⊗A,X+).

One can check that if A is a ring object and m is a left multiplication then
m+ is a right multiplication and we get a Pontryagin dual (−)+ : (A-Mod)op →
Mod-A from the category of left A-modules to the category of right A-modules.

This is ⊗-compatible with −⊗A− : (Mod-A)×(A-Mod)→ C , where X⊗AY
is the coequalizer of the two obvious maps

X ⊗A⊗ Y X ⊗ Y .

(See Pareigis [18] for the details of this construction). This gives the standard
Pontryagin dual in R-Mod for any ring R (i.e. a ring object in Ab), and by 3) the
standard one in Ch(R-Mod). It also gives the character module of differential
graded A-modules (DG-A-Mod) when A is a differential graded algebra, i.e. a
ring object in Ch(Ab) (see Avramov, Foxby and Halperin [2]). By 2) we also get
the one in [10, Cor 6.7] for Rep(Q,R-Mod) for any ring R and quiver Q.

Definition 4.3. Let (−)+ : C op → D be a Pontryagin dual. We say that

• X ∈ C is flat if X+ is injective in D ,
• X ∈ C is weakly Gorenstein flat (wGFlat) if X+ is Gorenstein injective.
• F ∈ Ch(C ) is a complete flat resolution if F+ is a complete injective reso-

lution in Ch(D),
• X ∈ C is Gorenstein flat (GFlat) if it has a (i.e. is a syzygy in a) complete

flat resolution,

Gorenstein flat always implies weakly Gorenstein flat. The other implication
requires one to construct a complete flat resolution when the dual has a complete
injective resolution. We will look at when this is possible in the next section.

With ⊗-compatibility these notions agree with the standard notions.

Proposition 4.4. If (−)+ : C op → D is ⊗-compatible, then
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1) F ∈ C is flat if and only if −⊗ F is exact.
2) F• is a complete flat resolution if and only if Fi is flat for all i and I ⊗ F• is

exact for all injective objects I ∈ D .

Proof. 1) We have the following equivalences

F is flat⇔ F+ is injective

⇔ Hom(−, F+) is exact

⇔ Hom(−⊗ F,E) is exact for some injective cogenerator E

⇔ −⊗ F is exact

2) Let F• ∈ Ch(C ). Then F+
i is injective iff Fi is flat and Hom(I, F+

• ) is exact iff
Hom(I ⊗ F•, E) is exact for some injective cogenerator E by ⊗-compatibility, see
Example 4.2 3). But this happens iff I ⊗ F• is exact. �

The following lemma shows how the classes Φ(X ) (Definition 2.5) and Ψ(X )
(see Theorem 3.3) behave with respects to the Pontryagin duals. The proofs are
straightforward.

Lemma 4.5. Let (−)+ : A → B be a Pontryagin dual between abelian categories,
let Q a quiver, let X ⊆ A and Y ⊆ B. Then

Φ(X )+ ⊂ Ψ(X +).

In particular if X = {X ∈ A | X+ ∈ Y } then

F ∈ Φ(X )⇔ F+ ∈ Ψ(Y ).

If Q is target-finite then

Ψ(Y )+ ⊆ Φ(Y +).

Proof. For the first assertion we must notice, that (φFv )+ = ψF
+

v for all F ∈
Rep(Q,A ) and all v ∈ Q0. For the second, that (ψGv )+ = φG

+

v for all G ∈
Rep(Qop,B) and all v ∈ Q0 when Q is target-finite. This is because the product in
the definition of ψGv : G(v)→∏

v→w in Qop G(w) is finite when Qop is source-finite,
thus it is a sum and so is the dual. �

This immediately gives the following:

Proof of Theorem C.

F ∈ Flat(Rep(Q,A ))
Def. 4.3⇐⇒ F+ ∈ Inj(Rep(Qop,B))

Thm. 3.3⇐⇒ F+ ∈ Ψ(Inj(B))

Lem. 4.5⇐⇒ F ∈ Φ(Flat(A ))

The same proof works in the Gorenstein situation. �

Remark 4.6. This gives a straightforward proof of [10, Thm 3.7] using the charac-
terization of the injective representations from [8].

Combining this with Theorem B we get:

Corollary 4.7. Let (−)+ : A op → B be a Pontryagin dual, let Q be a left-rooted
quiver and assume

• A has enough projective objects
• B has enough injective objects
• Q is target-finite and locally path-finite, or lim−→Gproj(A ) = lim−→GProj(A ).

If lim−→Gproj = wGFlat in A then the same is true in Rep(Q,A ).
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5. Gorenstein flat objects

We will now find conditions on the category A and the quiver Q s.t.

wGFlat(Rep(Q,A )) = GFlat(Rep(Q,A )).

Firstly we have the following known result:

Proposition 5.1. [12, Prop. 3.6] Let R be a right coherent ring. Then

wGFlat(R-Mod) = GFlat(R-Mod).

Looking more closely at the proof (see Christensen [5, Thm. 6.4.2]) we arrive at
Lemma 5.3. We include a full proof, as our notions of flatness differ.

Lemma 5.2. Let A be an abelian category. If 0 → X ′ → J → X → 0 is exact
and J is injective (or just Gorenstein injective), X is Gorenstein injective and
Ext1(I,X ′) = 0 for all injective I ∈ A . Then X ′ is Gorenstein injective.

Proof. This is the dual of [12, 2.11]. The proof is for modules but works in any
abelian category. �

Now recall that a class X ⊆ C is preenveloping if for every M ∈ C there is
a map φ : M → X called the preenvelope to some X ∈ X s.t. every map from
M to an object in X factors through φ. It is monic whenever there exists some
monomorphism from M to an object of X .

Lemma 5.3. Let (−)+ : C op → D be a Pontryagin dual and assume

(1) Inj(D)+ ⊆ Flat(C )
(2’) Flat(C ) is preenveloping.
(3’) C has enough flat objects.

Then any weakly Gorenstein flat object of C is Gorenstein flat.

Proof. Let X be weakly Gorenstein flat, i.e. X+ is Gorenstein injective. Our goal
is to construct a complete flat resolution for X. The left part of such a resolution
is easy when C has enough flat objects. As X+ is Gorenstein injective it has an
injective resolution I• s.t. Hom(J, I•) is exact for any injective J . But then this
holds for any injective resolution of X+. In particular F+

• , where F• is a flat (left-)
resolution of X which exists when C has enough flats.

For the right part we construct the resolution one piece at a time by constructing
for any weakly Gorenstein flat X ∈ C a short exact sequence 0→ X → F → X ′ →
0 where F is flat s.t. Ext1(I,X ′+) = 0 for any injective I ∈ D . Then X ′+ is
Gorenstein injective by Proposition 5.1 and this process can be continued to give a
flat (right-) resolution F• of X s.t. Hom(I, F+

• ) is exact for any injective I.
So let again X ∈ C be weakly Gorenstein flat, and let ϕ : X → F be a flat

preenvelope. We first show that φ is monic by showing that there exists some
monomorphism from X to a flat object. Since X+ is Gorenstein injective there exist
an epimorphism E → X+ from some injective E ∈ D . But then X → X++ → E+

is monic, since (−)+ creates exactness and X+++ → X+ is split epi by the unit-
counit relation. Thus φ is monic since E+ is flat by (1). We thus have a short exact

sequence 0 → X
φ→ F → X ′ → 0 inducing for any injective I ∈ D a long exact

sequence

0→ Hom(I,X ′+)→ Hom(I, F+)
ϕ∗→ Hom(I,X+)→ Ext1(I,X ′+)→ Ext1(I, F+).

Now ϕ∗ is epi as ϕ∗ : Hom(F, I+) → Hom(X, I+) is epi because I+ is flat and ϕ
is a flat preenvelope. Since Ext1(I, F+) is 0 because F+ is injective we must have
Ext1(I,X ′+) = 0. �
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We notice that A = R-Mod satisfies these conditions when R is right coherent.
((1) is Xu [21, Lem. 3.1.4]) and (2’) is [9, Prop. 6.5.1]). Our task is thus to find
conditions on Q s.t. the conditions from Lemma 5.3 lift from A to Rep(Q,A ).
Lifting the condition that the flat objects are preenveloping is not obvious. But
being closed under products is sometimes enough as the next lemma shows. We
will reuse standard results on purity and therefore assume our Pontryagin Dual is
⊗-compatible and A to be generated by proj(A ).

Lemma 5.4. Let A be a locally finitely presented abelian category with a Pontrya-
gin dual and assume that

(2) The flat objects are closed under products
(3) A is generated by proj(A )
(4) The Pontryagin dual is ⊗-compatible

Then the flat objects are preenveloping

Proof. Let X ∈ A . The idea (as in [9, Prop. 6.2.1]) is to find a set of flat objects
S s.t. every map X → Y with Y flat factors as X → S ↪→ Y with S ∈ S . Then
we can construct a flat preenvelope as

X →
∏

S ∈ S
ϕ : X → S

Sϕ,

with Sϕ = S because the flat objects are closed under products by (2).
As in in the proof of [9, Lemma 5.3.12] there is a set of objects S ⊆ A s.t. every

map X → Y to some Y ∈ A factors as X → S ↪→ Y for some S ∈ S with the
property that, given a commutative square

L0 L1

S Y

with L0 finitely generated and L1 finitely presented there is a lift L1 → S s.t.
the left triangle commutes. The proof is for modules and bounds size of S by
some cardinality. If we are not interested in the cardinality, the proof works in any
well-powered category, i.e. a category where there is only a set of subobjects of
any given object. As in Adámek and and Rosický [1] any Grothendieck category is
well-powered. We are left with proving that if Y is flat, so is S, i.e. if Y + is injective,
so is S+. Now Jensen and Lenzing [15, Prop. 7.16] shows (using (3)) that the above
lifting property implies (in fact is equivalent to) that S ↪→ Y is a direct limit of
split monomorphisms. [15, Thm 6.4] then shows (using (4)) that this implies, that
Y + → S+ is split epi. (Equivalence of these statements uses that the generators in
R-Mod are dualizable). Thus if Y + is injective, so is S+. �

Lemma 5.5. Let (−)+ : A op → B be a Pontryagin dual where A is AB4∗ and B
has enough injective objects. Let Q be a left-rooted and target-finite quiver. If A
satisfies (1)-(4) (from Lemma 5.3 and 5.4) then so does Rep(Q,A ).

Proof. For (1) we have

Inj(Rep(Qop,B))++
Thm. 3.3
⊆ Ψ(Inj(B))++

Lem. 4.5
⊆ Ψ(Inj(B)++)

⊆ Ψ(Inj(B))
Thm. 3.3
⊆ Inj(Rep(Q,B))
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18 RUNE HARDER BAK

since B has enough injective objects and Q is left-rooted and target-finite. For (2)
we have

∏
Flat(Rep(Q,A ))

Thm. C
⊆ ∏

Φ(Flat A )
Lem. 2.8
⊆ Φ(

∏
Flat A )

⊆ Φ(Flat A )
Thm. C
⊆ Flat(Rep(Q,A )).

since A is AB4∗ and B has enough injective objects and Q is left-rooted and target-
finite. (3) and (4) lifts without conditions on A and Q. For (3), if A is generated
by a set X of finitely generated projective objects then f∗(X ) is a generating set
of finitely generated projective objects by Lem. 2.9(i) and Remark 2.4. (4) is lifted
in Example 4.2. �

Notice that (3)−(4) holds for A = R-Mod over any ring R, and (2) is equivalent
to R being right coherent [9, Prop. 3.2.24].

Proposition 5.6. Let A be a locally finitely presented abelian AB4∗-category. Let
B be an abelian category with enough injective objects, let (−)+ : A op → B be a
⊗-compatible Pontryagin dual. If

• A is generated by proj(A )
• Flat(A ) is closed under products
• Inj(B)+ ⊆ Flat(A )

then Flat(A ) is preenveloping and wGFlat(A ) = GFlat(A ). Assume further that
Q is a left-rooted and target-finite quiver. Then Flat(Rep(Q,A )) is preenveloping
and

wGFlat(Rep(Q,A )) = GFlat(Rep(Q,A )).

Proof. This follows from Lemma 5.3 and 5.4 and 5.5. We also need (3’) to hold and
we could lift this directly by noting that fv respects flatness, but it also follows
from (3). �

We can now prove

Proof of Theorem D. Use Proposition 5.6 and the remark above it. �

Remark 5.7. In [8, Lem 6.9 and proof of Thm. 6.11] it is proved that

wGFlat(Rep(Q,R-Mod)) = GFlat((Rep(Q,R-Mod))

when R is Iwanaga-Gorenstein and Q is only required to be left-rooted. Theorem D
thus weakens the condition of R but must then strengthen the conditions on Q.

Corollary 5.8. Let Q be a left-rooted quiver and let A be as in Proposition 5.6.
If A = R-Mod for some Iwanaga-Gorenstein ring R or

• lim−→Gproj(A ) = GFlat(A ) and
• Q is target-finite and locally path-finite

Then

lim−→Gproj(Rep(Q,R-Mod) = GFlat(Rep(Q,R-Mod) = Φ(GFlat(R-Mod)).

Proof. Apply Corollary 4.7 and Proposition 5.6 (or Remark 5.7 for the Gorenstein
case) to get lim−→Gproj = wGFlat = GFlat in Rep(Q,A ). The last equality then
follows from Theorem C. �
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COMPUTATIONS OF ATOM SPECTRA

RUNE HARDER BAK AND HENRIK HOLM

ABSTRACT. This is a contribution to the theory of atoms in abelian categories recently de-
veloped in a series of papers by Kanda. We present a method that enables one to explicitly
compute the atom spectrum of the module category over a wide range of non-commutative
rings. We illustrate our method and results by several examples.

1. INTRODUCTION

Building on works of Storrer [16], Kanda has, in a recent series of papers [10, 11, 12],
developed the theory of atoms in abelian categories. The fundamental idea is to assign to
every abelian categoryA the atom spectrum, denoted by ASpecA, in such a way that when
k is a commutative ring, then ASpec(k-Mod) recovers the prime ideal spectrum Spec k. In
Section 2 we recall a few basic definitions and facts from Kanda’s theory.

Strong evidence suggests that Kanda’s atom spectrum really is the “correct”, and a very
interesting, generalization of the prime ideal spectrum to abstract abelian categories. For
example, in [10, Thm. 5.9] it is proved that for any locally noetherian Grothendieck cate-
gory A there is a bijective correspondance between ASpecA and isomorphism classes of
indecomposable injective objects in A. This is a generalization of Matlis’ bijective corre-
spondance between Speck and the set of isomorphism classes of indecomposable injective
k-modules over a commutative noetherian ring k; see [15]. Furthermore, in [10, Thm. 5.5]
it is shown that there are bijective correspondances between open subsets of ASpecA,
Serre subcategories of noethA, and localizing subcategories ofA. This generalizes Gabri-
el’s bijective correspondances [6] between specialization-closed subsets of Speck, Serre
subcategories of k-mod, and localizing subcategories of k-Mod for a commutative noether-
ian ring k. From a theoretical viewpoint, these results are very appealing, however, in the
literature it seems that little effort has been put into actually computing the atom spectrum.

In this paper, we add value to the results mentioned above, and to other related results,
by explicitly computing/describing the atom spectrum—not just as a set, but as a partially
ordered set and as a topological space—of a wide range of abelian categories. Our main
technical result, Theorem 3.7, shows that if Fi : Ai→B (i ∈ I) is a family of functors
between abelian categories satisfying suitable assumptions, then there is a homeomorphism
and an order-isomorphism f :

⊔
i∈I ASpecAi → ASpecB. Hence, if all the atom spectra

ASpecAi are known, then so is ASpecB. One special case of this result is:

Theorem A. Let (Q,R) be a quiver with admissible relations and finitely many vertices.
Let kQ be the path algebra of Q and consider the two-sided ideal I = (R) in kQ generated
byR. There is an injective, continuous, open, and order-preserving map,

f̃ :
⊔

i∈Q0
Speck−→ ASpec(kQ/I-Mod) ,

given by (ith copy of Speck) 3 p 7−→ 〈kQ/ p̃(i)〉. If, in addition, (Q,R) is right rooted,
then f̃ is also surjective, and hence it is a homeomorphism and an order-isomorphism.

2010 Mathematics Subject Classification. 16G20; 18E10.
Key words and phrases. Atom spectrum; comma category; quiver with relations; representation of quiver.

1

69



2 RUNE HARDER BAK AND HENRIK HOLM

We prove Theorem A in Section 4, where we also give the definitions of admisible rela-
tions (4.3), right-rooted quivers (4.1), and of the ideals p̃(i) (4.11). Note that in the termi-
nology of Kanda [10, Def. 6.1], Theorem A yields that the comonoform left ideals in the
ring kQ/I are precisely the ideals p̃(i)/I where p is a prime ideal in k and i is a vertex in Q.

Theorem A applies e.g. to show that for every n,m> 1 the map

Spec k−→ ASpec(k〈x1, . . . , xn〉/(x1, . . . , xn)
m-Mod) given by p 7−→ 〈k/p〉

is a homeomorphism and an order-isomorphism; see Example 4.14. Actually, Theorem A
is a special case of Theorem 4.9 which yields a homeomorphism and an order-isomorphism
ASpec(Rep((Q,R),A))∼=⊔i∈Q0

ASpecA for every right rooted quiver (Q,R) with admis-
sible relations (Q may have infinitely many vertices) and any k-linear abelian category A.
From this stronger result one gets e.g. ASpec(ChA)∼=⊔i∈Z ASpecA; see Example 4.10.

In Section 5 we apply the previously mentioned (technical/abstract) Theorem 3.7 to
compute the atom spectrum of comma categories:

Theorem B. Let A U−−→ C V←−−B be functors between abelian categories, where U has a
right adjoint and V is left exact. Let (U ↓V) be the associated comma category. There is a
homeomorphism and an order-isomorphism,

f : ASpecA t ASpecB ∼−→ ASpec(U ↓V) ,

given by 〈H〉 7−→ 〈SAH〉 for 〈H〉 ∈ ASpecA and 〈H〉 7−→ 〈SBH〉 for 〈H〉 ∈ ASpecB.

Theorem B applies e.g. to show that for the non-commutative ring

T =

(
A 0
M B

)
,

where A and B are commutative rings and M = BMA is a (B,A)-bimodule, there is a home-
omorphism and an order-isomorphism Spec A t Spec B−→ ASpec(T -Mod) given by

Spec A 3 p 7−→
〈

T
/(

p 0
M B

)〉
and Spec B 3 q 7−→

〈
T
/(

A 0
M q

)〉
;

see Example 5.4 for details.
We end the paper with Appendix A where we present some background material on

representations of quivers with relations that is needed, and taken for granted, in Section 4.

2. KANDA’S THEORY OF ATOMS

We recall a few definitions and results from Kanda’s theory [10, 11, 12] of atoms.

2.1. LetA be an abelian category. An object H ∈A is called monoform if H 6= 0 and for ev-
ery non-zero subobject N� H there exists no common non-zero subobject of H and H/N,
i.e. if there exist monomorphisms H� X� H/N in A, then X = 0. See [10, Def. 2.1].

Two monoform objects H and H′ in A are said to be atom equivalent if there exists a
common non-zero subobject of H and H′. Atom equivalence is an equivalence relation
on the collection of monoform objects; the equivalence class of a monoform object H is
denoted by 〈H〉 and is called an atom in A. The collection of all atoms in A is called the
atom spectrum of A and denoted by ASpecA. See [10, Def. 2.7, Prop. 2.8, and Def. 3.1].

The atom spectrum of an abelian category comes equipped with a topology and a partial
order which we now explain.

2.2. The atom support of an object M ∈ A is defined in [10, Def. 3.2] and is given by

ASupp M =

{
〈H〉 ∈ ASpecA

∣∣∣∣
H is a monoform object such that
H ∼= L/L′ for some L′ ⊆ L⊆ M

}
.
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A subset Φ ⊆ ASpecA is said to be open if for every 〈H〉 ∈ Φ there exists H′ ∈ 〈H〉
such that ASupp H′ ⊆ Φ. The collection of open subsets defines a topology, called the lo-
calization topology, on ASpecA, see [10, Def. 3.7 and Prop. 3.8], and the collection

{ASupp M |M ∈ A}
is an open basis of this topology; see [12, Prop. 3.2].

2.3. The topological space ASpecA is a so-called Kolmogorov space (or a T0-space), see
[12, Prop. 3.5], and any such space X can be equipped with a canonical partial order 6,
called the specialization order, where x 6 y means that x ∈ {y} (the closure of {y} in X).
This partial order on ASpecA is more explicitly described in [12, Prop. 4.2].

2.4 Lemma. Let X and Y be Kolmogorov spaces equipped with their specialization orders.
Any continuous map f : X→ Y is automatically order-preserving.

Proof. Assume that x 6 y in X, that is, x ∈ {y}. Then f (x) ∈ f ({y})⊆ f ({y}) = { f (y)},
where the inclusion holds as f is continuous, and thus f (x)6 f (y) in Y . �

2.5. For a commutative ring k, its prime ideal spectrum coincides with the atom spectrum
of its module category in the following sense: By [10, Props. 6.2, 7.1, and 7.2(1)], see also
[16, p. 631], there is a bijection of sets:

q : Spec k−→ ASpec(k-Mod) given by p 7−→ 〈k/p〉 .
This bijection is even an order-isomorphism between the partially ordered set (Spec k,⊆)
and ASpec(k-Mod) equipped with its specialization order; see [12, Prop. 4.3]. Via q the
open subsets of ASpec(k-Mod) correspond to the specialization-closed subsets of Speck;
see [10, Prop. 7.2(2)]. In this paper, we always consider Spec k as a partially ordered set
w.r.t. to inclusion and as a topological space in which the open sets are the specialization-
closed ones. In this way, the map q above is an order-isomorphism and a homeomorphism.∗

3. THE MAIN RESULT

In this section, we explain how a suitably nice functor F : A→B between abelian cat-
egories induces a map ASpec F : ASpecA→ ASpecB. The terminology in the following
definition is inspired by a similar terminology from Diers [3, Chap. 1.8], where it is defined
what it means for a functor to lift direct factors.

3.1 Definition. Let F : A→B be a functor. We say that F lifts subobjects if for any A∈A
and any monomorphism ι : B� FA in B there exist a monomorphism ι′ : A′� A inA and
an isomorphism B

∼=−→ FA′ such that the following diagram commutes:

B

∼= ��

//
ι

// FA

FA′ .
Fι′

??

(We will usually suppress the isomorphism and treat it as an equality B = FA′.)

3.2 Remark. Recall that any full and faithful (= fully faithful) functor F : A→B is injec-
tive on objects up to isomorphism, that is, if FA∼= FA′ in B, then A∼= A′ in A.

3.3 Observation. Let M be an object inA. If 〈H〉 ∈ASupp M, then ASupp H⊆ASupp M.
Indeed, if H∼= L/L′ for some L′ ⊆ L⊆M, then [10, Prop. 3.3] applied to the two sequences
0→ L′→ L→H→ 0 and 0→ L→M→M/L→ 0 yield ASupp H ⊆ ASupp L⊆ ASupp M.

∗We emphasize that q is not a homeomorphism when Spec k is equipped with the (usual) Zariski topology!
In the case where k is noetherian, the topological Spec k considered by us and Kanda [10] is the Hochster dual,
in the sense of [8, Prop. 8], of the spectral space Speck with Zariski topology.
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3.4 Proposition. Let F : A→B be a full, faithful, and exact functor between abelian cat-
egories that lifts subobjects. There is a well-defined map,

ASpec F : ASpecA−→ ASpecB given by 〈H〉 7−→ 〈FH〉 ,
which is injective, continuous, open, and order-preserving.

Proof. First we argue that for any object H ∈ A we have:

H is monoform (in A) ⇐⇒ FH is monoform (in B) . (]1)

“⇐”: Assume that FH is monoform. By definition, FH is non-zero, so H must be
non-zero as well. Let M be a non-zero subobject of H and assume that there are monomor-
phisms H� X� H/M. We must prove that X = 0. As F is exact we get monomorphisms
FH� FX� F(H/M)∼= (FH)/(FM). Note that FM 6= 0 by Remark 3.2, so it follows
that FX = 0 since FH is monoform. Hence X = 0, as desired.

“⇒”: Assume that H is monoform. As H 6= 0 we have FH 6= 0 by Remark 3.2. Let
N be a non-zero subobject of FH and let FH� Y� (FH)/N be monomorphisms. We
must prove that Y = 0. Since F lifts subobjects, the monomorphism N� FH is the image
under F of a monomorphisms M� H. As FM = N is non-zero, so is M. Since F is exact,
the canonical morphism (FH)/N = (FH)/(FM)→ F(H/M) is an isomorphism. By pre-
composing this isomorphism with Y� (FH)/N we get a monomorphism Y� F(H/M),
which is then the image under F of some monomorphism X� H/M. The monomorphism
FH � Y is also the image of a monomorphism H � X′, and since FX = Y = FX′ we
have X ∼= X′ by Remark 3.2. Hence there are monomorphisms H� X� H/M, and as H
is monoform we conclude that X = 0. Hence Y = FX = 0, as desired.

Next note that if H and H′ are monoform objects in A which are atom equivalent, i.e.
they have a common non-zero subobject M, then FM is a common non-zero subobject of
FH and FH′, and hence FH and FH′ are atom equivalent monoform objects in B. This,
together with the implication “⇒” in (]1), shows that the map ASpec F is well-defined.

To see that ASpec F is injective, let H and H′ be monoform objects in A for which FH
and FH′ are atom equivalent, i.e. there is a common non-zero subobject FH� N� FH′.
From the fact that F lifts subobjects, and from Remark 3.2, we get that these monomor-
phisms are the images under F of monomorphisms H�M�H′. As FM = N is non-zero,
so if M. Thus, H and H′ are atom equivalent in A.

Next we show that for every object M ∈ A there is an equality:

(ASpec F)(ASupp M) = ASupp FM . (]2)

“⊆”: Let 〈H〉 ∈ ASupp M, that is, H ∼= L/L′ for some L′ ⊆ L⊆ M. As the functor F is
exact we have FL′ ⊆ FL⊆ FM and FH ∼= F(L/L′)∼= (FL)/(FL′) and hence the element
〈FH〉= (ASpec F)(〈H〉) belongs to ASupp FM.

“⊇”: Let 〈I〉 ∈ ASupp FM, that is, I is a monoform object in B with I ∼= N/N′ for
some N′ ⊆ N ⊆ FM. Since N ⊆ FM and F lifts subobjects, there is a subobject L ⊆ M
with FL = N. Similarly, as N′ ⊆ N = FL there is a subobject L′ ⊆ L with FL′ = N′. We
now have L′ ⊆ L ⊆ M and F(L/L′) ∼= (FL)/(FL′) ∼= N/N′ ∼= I. Since I is monoform, we
conclude from (]1) that the object H := L/L′ is monoform, so 〈H〉 belongs to ASupp M.
And by constuction, (ASpec F)(〈H〉) = 〈FH〉= 〈I〉.

Recall from 2.2 that {ASupp M |M ∈ A} is an open basis of the topology on ASpecA
(and similarly for ASpecB). It is therefore evident from (]2) that ASpec F is an open map.

Furthermore, to show that ASpec F is continuous, it suffices to show that for any N ∈B,
the set Φ := (ASpec F)−1(ASupp N) is open in ASpecA. For every 〈H〉 ∈Φ we have

ASupp H ⊆ (ASpec F)−1(ASupp FH) ⊆ (ASpec F)−1(ASupp N) = Φ ,

where the first inclusion follows from (]2) and the second one follows from Observation 3.3
since 〈FH〉 ∈ ASupp N. Hence 〈H〉 ∈ ASupp H ⊆Φ, so Φ is open by 2.2.

From the continuity and from Lemma 2.4 we get that ASpec F is order-preserving. �
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3.5. Let {Xi}i∈I be a family of sets and write
⊔

i∈I Xi for the disjoint union. This is the
coproduct of {Xi}i∈I in the category of sets, so given any family fi : Xi→ Y of maps, there
is a unique map f that makes the following diagram commute:

Xi
��

��

fi

""⊔
i∈I Xi f

// Y .

In the case where each Xi is a topological space,
⊔

i∈I Xi is equipped with the disjoint
union topology, and this yields the coproduct of {Xi}i∈I in the category of topological
spaces. In fact, for the maps fi and f in the diagram above, it is well-known that one has:

f is continuous (open) ⇐⇒ fi is continuous (open) for every i ∈ I .

If each Xi is a Kolmogorov space, then so is
⊔

i∈I Xi (and hence it is the coproduct in the
category of Kolmogorov spaces). In this case, and if Y is also a Kolmogorov space, any
continuous map f in the diagram above is automatically order-preserving by Lemma 2.4.

3.6 Proposition. Let Fi : Ai→B (i ∈ I) be a family of full, faithful, and exact functors
between abelian categories that lift subobjects. There exists a unique map f that makes the
following diagram commute:

ASpecAi
��

��

ASpec Fi

''⊔
i∈I ASpecAi f

// ASpecB .

That is, f maps 〈H〉 ∈ASpecAi to 〈Fi H〉 ∈ASpecB. This map f is continuous, open, and
order-preserving.

Proof. Immediate from Proposition 3.4 and 3.5. �
Our next goal is to find conditions on the functors Fi from Proposition 3.6 which ensure

that the map f is bijective, and hence a homeomorphism and an order-isomorphism.

3.7 Theorem. Let Fi : Ai→B (i ∈ I) be a family of functors as in Proposition 3.6 and
consider the induced continuous, open, and order-preserving map

f :
⊔

i∈I ASpecAi −→ ASpecB .
The map f is injective provided that the following condition holds:

(a) For i 6= j and Ai ∈Ai and Aj ∈A j the only common subobject of Fi Ai and Fj Aj is 0.

The map f is surjective provided that each Fi has a right adjoint Gi satisfying:

(b) For every B 6= 0 in B there exists i ∈ I with GiB 6= 0.
(c) For every i ∈ I and B ∈ B the counit FiGiB→ B is monic.

Thus, if (a), (b), and (c) hold, then f is a homeomorphism and an order-isomorphism.

Proof. First we show that condition (a) implies injectivity of f . Let 〈H〉 ∈ ASpecAi and
〈H′〉 ∈ ASpecA j be arbitrary elements in

⊔
i∈I ASpecAi with f (〈H〉) = f (〈H′〉), that is,

〈Fi H〉= 〈Fj H′〉. This means that the monoform objects Fi H and Fj H′ are atom equivalent,
so they contain a common non-zero subobject N. By the assumption (a), we must have
i = j. As the map ASpec Fi is injective, see Proposition 3.4, we conclude that 〈H〉= 〈H′〉.

Next we show that conditions (b) and (c) imply surjectivity of f . Let H be any mono-
form object in B. Since H 6= 0 there exists by (b) some i ∈ I with GiH 6= 0. This implies
FiGiH 6= 0, see Remark 3.2, so FiGiH is a non-zero subobject of the monoform object H
by (c). Thus [10, Prop. 2.2] implies that FiGiH is a monoform object, atom equivalent to
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H. From (]1) we get that GiH is monoform, so 〈GiH〉 is an element in ASpecAi satisfying
f (〈GiH〉) = 〈FiGiH〉= 〈H〉. �

4. APPLICATION TO QUIVER REPRESENTATIONS

In this section, we will apply Theorem 3.7 to compute the atom spectrum of the cate-
gory ofA-valued representations of any (well-behaved) quiver with relations (Q,R). Here
A is a k-linear abelian category and k is any commutative ring. Appendix A contains some
background material on quivers with relations and their representations needed in this sec-
tion. The main result is Theorem 4.9, and we also prove Theorem A from the Introduction.

Enochs, Estrada, and Garcı́a Rozas define in [4, Sect. 4] what it means for a quiver, with-
out relations, to be right rooted. Below we extend their definition to quivers with relations.
To parse the following, recall the notion of the k-linearization of a category and that of an
ideal in a k-linear category, as described in A.2 and A.3.

4.1 Definition. A quiver with relations (Q,R) is said to be right rooted if for every infinite
sequence of (not necessarily different) composable arrows in Q,

• a1
// • a2

// • a3
// · · · ,

there exists N ∈ N such that the path aN · · ·a1 (which is a morphism in the category kQ̄)
belongs to the two-sided ideal (R)⊆ kQ̄.

4.2 Observation. Let (Q,R) be a quiver with relations. If there exists no infinite sequence
• −→ • −→ • −→ ·· · of (not necessarily different) composable arrows in Q, then (Q,R) is
right rooted, as the requirement in Definition 4.1 becomes void. If Q is a quiver without
relations, i.e.R= /0 and hence (R) = {0}, then Q is right rooted if and only if there exists
no such infinite sequence • −→ • −→ • −→ ·· · ; indeed, a path aN · · ·a1 is never zero in the
absence of relations. Consequently, our Definition 4.1 of right rootedness for quivers with
relations extends the similar definition for quivers without relations found in [4, Sect. 4].

Next we introduce admissible relations and stalk functors.

4.3 Definition. A relation ρ in a quiver Q, see A.3, is called admissible if the coefficient in
the linear combination ρ to every trivial path ei (i ∈ Q0) is zero. We refer to a quiver with
relations (Q,R) as a quiver with admissible relations if every relation inR is admissible.

As we shall be interested in right rooted quivers with admissible relations, it seems in
order to compare these notions with the more classic notion of admissibility:

4.4 Remark. According to [1, Chap. II.2 Def. 2.1], a setR of relations in a quiver Q with
finitely many vertices is admissible if am ⊆ (R)⊆ a2 holds for some m> 2. Here a is the
arrow ideal in kQ, that is, the two-sided ideal generated by all arrows in Q. Note that:

R is admissible as in
[1, Chap. II.2 Def. 2.1] =⇒ R is admissible as in Definition 4.3 and

(Q,R) is right rooted as in Definition 4.1.

Indeed, in terms of the arrow ideal, our definition of admissibility simply means (R)⊆ a†,
and if there is an inclusion am ⊆ (R), then Definition 4.1 holds with (universal) N = m.

If (Q,R) is right rooted, one does not necessarily have am ⊆ (R) for some m. Indeed,
let Q be a quiver with one vertex and countably many loops x1, x2, . . .. For each ` > 1 let
R` = {xu` · · · xu1 x` |u1, . . . ,u` ∈ N} be the set of all paths of length `+ 1 starting with x`.

†Often, not much interesting comes from considering relations in ar a2. To illustrate this point, consider
e.g. the Kronecker quiver K2 = • a //

b // • with one relation ρ := a−b ∈ a= (a,b)⊆ kK2. Clearly, the category
Rep((K2,{ρ}),A) is equivalent to Rep(A2,A) where A2 = • // • . So the representation theory of (K2,{ρ})
is already covered by the representation theory of a quiver (in this case, A2) with relations (in this case, R = /0)
contained in the square of the arrow ideal.
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SetR=
⋃
`>1R`. Evidently, (R)⊆ a2 = (x1, x2, . . .)

2 and (Q,R) is right rooted. As none
of the elements x1, x2

2, x
3
3, . . . belong to (R) we have am * (R) for every m.

However, if Q has only finitely many arrows (in addition to having only finitely many
vertices), then right rootedness of (Q,R) means precisely that am ⊆ (R) for some m.

4.5 Definition. Let Q be a quiver and let A be an abelian category. For every i ∈ Q0 there
is a stalk functor Si : A→ Rep(Q,A) which assigns to A ∈ A the stalk representation Si A
given by (Si A)( j) = 0 for every vertex j 6= i in Q0 and (Si A)(i) = A. For every path p 6= ei
in Q one has (Si A)(p) = 0 and, of course, (Si A)(ei) = idA.

4.6 Remark. Let ρ be a relation in a quiver Q and let xi ∈ k be the coefficient (which may
or may not be zero) to the path ei in the linear combination ρ. If A is any object in a k-linear
abelian category A, then (Si A)(ρ) = xi idA. It follows that the stalk representation Si A
satisfies every admissible relation. Thus, if (Q,R) be a quiver with admissible relations,
then every Si can be viewed as a functor A→ Rep((Q,R),A).

4.7. Let (Q,R) be a quiver with admissible relations and let A be a k-linear abelian cate-
gory. For every i ∈ Q0 the stalk functor Si : A→ Rep((Q,R),A) from Remark 4.6 has a
right adjoint, namely the functor Ki : Rep((Q,R),A)→A given by

Ki X =
⋂

a : i→ j

Ker X(a) = Ker
(

X(i)
ψX

i−→
∏

a : i→ j

X( j)
)
,

where the intersection/product is taken over all arrows a : i→ j in Q with source i, and ψX
i

is the morphism whose ath coordinate function is X(a) : X(i)→ X( j). For a quiver without
relations (R= /0), the adjunctions (Si,Ki) were established in [9, Thm. 4.5], but evidently
this also works for quivers with admissible relations.

Note that the existence of Ki requires that the product
∏

a : i→ j can be formed in A; this
is the case if, for example, A is complete (satisfies AB3*) or if A is arbitrary but there are
only finitely many arrows in Q with source i. We tacitly assume that each Ki exists.

4.8 Lemma. Let (Q,R) be a quiver with admissible relations, let A be a k-linear abelian
category, and let X ∈ Rep((Q,R),A). If X 6= 0 and KiX = 0 holds for all i ∈ Q0, then there
exists an infinite sequence of (not necessarily different) composable arrows in Q,

• a1
// • a2

// • a3
// · · · , (]3)

such that X(an · · ·a1) 6= 0 for every n> 1. In particular, if (Q,R) is right rooted and X 6= 0,
then KiX 6= 0 for some i ∈ Q0.

Proof. As X 6= 0 we have X(i1) 6= 0 for some vertex i1. As Ki1X = 0 we have X(i1)* Ki1X
so there is at least one arrow a1 : i1→ i2 with X(i1)* Ker X(a1), and hence X(a1) 6= 0. As
0 6= Im X(a1)⊆ X(i2) and Ki2X = 0 we have Im X(a1)* Ki2X, so there is at least one arrow
a2 : i2→ i3 such that Im X(a1) * Ker X(a2). This means that X(a2) ◦X(a1) = X(a2a1) is
non-zero. Continuing in this manner, the first assertion in the lemma follows.

For the second assertion, assume that there is some X 6= 0 with KiX = 0 for all i ∈ Q0.
By the first assertion there exists an infinite sequence of composable arrows (]3) such that
X(an · · ·a1) 6= 0 for every n> 1. Hence an · · ·a1 /∈ (R)⊆ kQ̄ holds for every n> 1 by the
lower equivalence in the diagram in A.3 Thus (Q,R) is not right rooted. �

The result below shows that for a right rooted quiver with admissible relations (Q,R),
the atom spectrum of Rep((Q,R),A) depends only on the atom spectrum of A and on the
(cardinal) number of vertices in Q. The arrows and the relations in Q play no (further) role!

4.9 Theorem. Let (Q,R) be a quiver with admissible relations and let A be any k-linear
abelian category. There is an injective, continuous, open, and order-preserving map,

f :
⊔

i∈Q0
ASpecA−→ ASpec(Rep((Q,R),A)) ,
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given by (ith copy of ASpecA) 3 〈H〉 7−→ 〈Si H〉. If, in addition, (Q,R) is right rooted,
then f is also surjective, and hence it is a homeomorphism and an order-isomorphism.

Proof. We apply Theorem 3.7 to the functors Fi = Si and Gi = Ki (i ∈ Q0) from 4.5 and
4.7. The functor Si is obviously exact, and it also lifts subobjects as every subobject of Si A
has the form Si A′ for a subobject A′� A in A. It is immediate from the definitions that
the unit idA→ KiSi of the adjunction (Si,Ki) is an isomorphism, and hence Si is full and
faithful by (the dual of) [14, IV.3, Thm. 1]. Hence the functors Si meet the requirements in
Proposition 3.6 and we get that f is well-defined, continuous, open, and order-preserving.

Evidently condition (a) in Theorem 3.7 holds, so f is injective. Now assume that (Q,R)
is right rooted. To prove that f is surjective we verify conditions (b) and (c) in Theorem 3.7.
Condition (b) holds by Lemma 4.8. For every representation X the counit Si Ki X→ X is
monic, that is, (Si Ki X)( j)→ X( j) is monic for every j ∈ Q0. Indeed, for j 6= i this is clear
as (Si Ki X)( j) = 0; and for j = i we have (Si Ki X)(i) = Ki X =

⋂
a : i→ j Ker X(a), which is a

subobject of X(i). Hence (c) holds as well. �

4.10 Example. The quiver (without relations):

A∞
∞ : · · · // •

2

d2
// •
1

d1
// •
0

d0
// •
−1

d−1
// •
−2

d−2
// · · ·

is not right rooted, but when equipped with the admissible relationsR= {dn−1dn |n∈Z} it
becomes right rooted. For any (Z-linear) abelian categoryA, the category Rep((A∞

∞,R),A)
is equivalent to the category ChA of chain complexes in A. Hence Theorem 4.9 yields a
homeomorphism and an order-isomorphism

⊔
i∈Z ASpecA−→ ASpec(ChA)

given by (ith copy of ASpecA) 3 〈H〉 7−→ 〈· · · → 0→ 0→ H→ 0→ 0→ ···〉 with H in
degree i and zero in all other degrees.

The next goal is to apply Theorem 4.9 to prove Theorem A from the Introduction.

4.11 Definition. Let Q be a quiver with finitely many vertices. For every ideal p in k and
every vertex i in Q set p̃(i) = {ξ ∈ kQ | the coefficient to ei in ξ belongs to p}.

4.12 Lemma. With the notation above, the set p̃(i) is a two-sided ideal in kQ which con-
tains every admissible relation.

Proof. Let p 6= ei be a path in Q and let ξ be an element in kQ. In the linear combinations
pξ and ξp the coefficient to ei is zero. In the linear combinations eiξ and ξei the coefficient
to ei is the same as the coefficient to ei in the given element ξ. Hence p̃(i) is a two-sided
ideal in kQ. By Definition 4.3, every admissible relation belongs to p̃(i). �
Proof of Theorem A. Let f̃ be the map defined by commutativity of the diagram:

⊔
i∈Q0

Spec k
f̃

//

⊔
i∈Q0

q ∼
��

ASpec(kQ/I-Mod)

⊔
i∈Q0

ASpec(k-Mod)
f
// ASpec(Rep((Q,R),k-Mod)) .

∼ ASpecU

OO

(]4)

Here the lower horizontal map is the map from Theorem 4.9 withA= k-Mod; the left verti-
cal map is the order-isomorphism and homeomorphism described in 2.5; and the right verti-
cal map is induced by the equivalence of categories U : Rep((Q,R),k-Mod)→ kQ/I-Mod
given in A.4. An element p∈ (i th copy of Spec k) is by

⊔
i∈Q0

q mapped to the atom 〈k/p〉 ∈
(i th copy of ASpec(k-Mod)), which by f is mapped to the atom 〈Si(k/p)〉. The functor U
maps the representation Si(k/p) to the left kQ/I-module (= a left kQ-module killed by I)
whose underlying k-module is k/p (more precisely, 0⊕·· ·⊕0⊕k/p⊕0⊕·· ·⊕0 with a “0”
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for each vertex 6= i) on which ei acts as the identity and p ·k/p= 0 for all paths p 6= ei. This
means that the left kQ/I-module U(Si(k/p)) is isomorphic to kQ/p̃(i). Indeed, kQ/p̃(i)
is a kQ/I-module as I ⊆ p̃(i) by Lemma 4.12; and as a k-module it is isomorphic to k/p
since the k-linear map kQ→ k/p given by ξ 7→ [(coefficient to ei in ξ)]p has kernel p̃(i).
As noted in the proof of Lemma 4.12, every path p 6= ei multiplies kQ into p̃(i), so one has
p ·kQ/p̃(i) = 0, and ei acts as the identity on kQ/p̃(i). Having proved the isomorphism
U(Si(k/p)) ∼= kQ/p̃(i), it follows that f̃ (p) = 〈kQ/p̃(i)〉. Thus f̃ acts as described in the
theorem. The assertions about f̃ follow from the commutative diagram (]4) and from the
properties of the map f given in Theorem 4.9. �

Below we examine the map f̃ from Theorem A in a some concrete of examples.

4.13 Example. Consider the (n−1)-subspace quiver (no relations), which is right rooted:

Σn :

n•

•
1

a1
66

•
2

a2

<<

· · · •
n−1

an−1
cc

The path algebra kΣn is isomorphic to the following k-subalgebra of Mn(k):

Ln(k) = {(xi j) ∈Mn(k) | xi j = 0 if i 6= n and i 6= j } .
Under this isomorphism the arrow ai in Σn corresponds to the matrix αi ∈ Ln(k) with 1 in
entry (n, i) and 0 elsewhere, and the trivial path ei corresponds to the matrix εi ∈Ln(k) with
1 in entry (i, i) and 0 elsewhere. It follows that, via this isomorphism, the ideal p̃(i)⊆ kΣn
from Definition 4.11 is identified with the ideal

p̄(i) =




k
. . . 0

0 p
. . .

k · · · k · · · k



⊆ Ln(k) .

Now Theorem A yields a homeomorphism and an order-isomorphism,
⊔n

i=1 Spec k−→ ASpec(Ln(k)-Mod)

given by (ith copy of Spec k) 3 p 7−→ 〈Ln(k)/ p̄(i)〉.

4.14 Example. Let Q be any quiver with finitely many vertices. Let m > 0 be any natural
number and let Pm be the relations consisting of all paths in Q of length m. Clearly these
relations are admissible and (Q,Pm) is right rooted. If a denotes the arrow ideal in kQ,
then (Pm) = am, so Theorem A yields a homeomorphism and an order-isomorphism,

⊔
i∈Q0

Spec k−→ ASpec(kQ/am-Mod) ,

given by (ith copy of Speck) 3 p 7−→ 〈kQ/ p̃(i)〉. In the special case where Q is the quiver
with one vertex and n loops x1, . . . , xn one has kQ= k〈x1, . . . , xn〉, the free k-algebra. More-
over, for p∈ Speck we have p̃= p+(x1, . . . , xn) and hence kQ/ p̃∼= k/p, which is a module
over k〈x1, . . . , xn〉 where all the variables x1, . . . , xn act as zero. Thus the map

Spec k−→ ASpec(k〈x1, . . . , xn〉/(x1, . . . , xn)
m-Mod)

given by Speck 3 p 7−→ 〈k/p〉 is a homeomorphism and an order-isomorphism.

We end with an example illustrating the necessity of the assumptions in Theorem A.
We shall see that the map f̃ need not be surjective if (Q,R) is not right rooted and that the
situation is more subtle when the relations are not admissible.
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4.15 Example. Consider the Jordan quiver (which is not right rooted):

J : • Xbb

The path algebra kJ is isomorphic to the polynomial ring k[X], which is commutative, so
via the homeomorphism and order-isomorphism q : Spec k[X]→ASpec(k[X]-Mod) in 2.5,
the map f̃ : Spec k→ ASpec(k[X]-Mod) from Theorem A may be identified with a map

Speck−→ Spec k[X] .

It is not hard to see that this map is given by p 7→ p+(X) = { f (X) ∈ k[X] | f (0) ∈ p}, so it
is injective but not surjective. Typical prime ideals in k[X] that are not of the form p+(X)
are q[X] where q ∈ Spec k. Also notice that for the Jordan quiver, the functor from 4.7,

k[X]-Mod ' Rep(J ,k-Mod) K
// k-Mod ,

maps a k[X]-module M to KM = Ker
(

M X·−→ M
)
. Thus it may happen that KM = 0 (if

multiplication by X on M is injective) even though M 6= 0. This also shows that the last
assertion in Lemma 4.8 can fail for quivers that are not right rooted.

Now let k = Z and consider e.g. the relations R = {X3,2} in J (where “2” means two
times the trivial path on the unique vertex in J). Then (J,R) is right rooted because of the
relation X3, however, the relation 2 is not admissible. In this case,

Rep((J,R),Z-Mod) ∼= Z[X]/(X3,2)-Mod = F2[X]/(X3)-Mod ,

so ASpec(Rep((J,R),Z-Mod)) consists of a single element. This set is not even equipotent
to SpecZ, in particular, there exists no homeomorphism or order-isomorphism between
ASpec(Rep((J,R),Z-Mod)) and SpecZ.

5. APPLICATION TO COMMA CATEGORIES

In this section, we consider the comma category (U ↓V), see [14, II.6], associated to a
pair of additive functors between abelian categories:

A U
// C BV
oo .

An object in (U ↓V) is a triple (A,B, θ) where A ∈ A, B ∈ B are objects and θ : UA→ VB
is a morphism in C. A morphism (A,B, θ)→ (A′,B′, θ′) in (U ↓V) is a pair of morphisms
(α,β), where α : A→ A′ is a morphism in A and β : B→ B′ is a morphism in B, such that
the following diagram commutes:

UA Uα
//

θ

��

UA′

θ′

��

VB
Vβ
// VB′ .

The comma category arising from the special case A U
// B BidB
oo is written (U ↓B).

The notion and the theory of atoms only make sense in abelian categories. In general,
the comma category is not abelian—not even if the categories A, B, and C are abelian and
the functors U and V are additive, as we have assumed. However, under weak assumptions,
(U↓V) is abelian, as we now prove. Two special cases of the following result can be found
in [5, Prop. 1.1 and remarks on p. 6], namely the cases where U or V is the identity functor.

5.1 Proposition. If U is right exact and V is left exact, then (U ↓V) is abelian.

Proof. It is straightforward to see that (U ↓V) is an additive category.
We now show that every morphim (α,β) : (A,B, θ)→ (A′,B′, θ′) in (U ↓V) has a kernel.

Let κ : K → A be a kernel of α and let λ : L→ B be a kernel of β. As V is left exact, the
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morphism Vλ : VL→ VB is a kernel of Vβ, so there is a (unique) morphism ϑ that makes
the following diagram commute:

UK

ϑ

��

Uκ
// UA Uα

//

θ

��

UA′

θ′

��

0 // VL Vλ
// VB

Vβ
// VB′ .

(]5)

We claim that (κ,λ) : (K,L,ϑ)→ (A,B, θ) is a kernel of (α,β). By construction, the compo-
sition (α,β)◦ (κ,λ) is zero. Let (κ′,λ′) : (K′,L′,ϑ′)→ (A,B, θ) be any morphism in (U ↓V)
such that (α,β)◦ (κ′,λ′) is zero. We must show that (κ′,λ′) factors uniquely through (κ,λ).

Note that we have unique factorizations K′ ϕ−→ K κ−→ A of κ′ and L′ ψ−→ L λ−→ B of λ′

by the universal property of kernels since ακ′ = 0 and βλ′ = 0. From these factorizations,
the commutativity of (]5), and from the fact that (κ′,λ′) is a morphism in (U ↓V), we get:

Vλ◦ϑ◦Uϕ = θ ◦Uκ ◦Uϕ = θ ◦Uκ′ = Vλ′ ◦ϑ′ = Vλ◦Vψ◦ϑ′ .
As Vλ is monic we conclude that ϑ◦Uϕ = Vψ◦ϑ′, so (ϕ,ψ) : (K′,L′,ϑ′)→ (K,L,ϑ) is a
morphism in (U ↓V) with (κ,λ)◦ (ϕ,ψ) = (κ′,λ′), that is, (κ′,λ′) factors through (κ,λ).

A similar argument shows that every morphism in (U ↓V) has a cokernel; this uses the
assumed right exactness of U. As for kernels, cokernels are computed componentwise.

Next we show that every monomorphism (α,β) : (A,B, θ)→ (A′,B′, θ′) in (U ↓V) is a
kernel. We have just shown that (α,β) has a kernel, namely (K,L,ϑ) where K is a kernel of
α and L is a kernel of β. Thus, if (α,β) is monic, then (K,L,ϑ) is forced to be zero, so α and
β must both be monic. Let 0−→ A α−→ A′ ρ−→C −→ 0 and 0−→ B β−→ B′ σ−→ D−→ 0
be short exact sequences in A and B. From the componentwise constructions of kernels
and cokernels in (U ↓V) given above, it follows that (ρ,σ) is a morphism in (U ↓V) whose
kernel is precisely the given monomorphism (α,β).

A similar argument shows that every epimorphism in (U ↓V) is a cokernel. �

5.2 Definition. As for quiver representations, see Definition 4.5, there are stalk functors,

A SA
// (U ↓V) BSB

oo ,

defined by SA : A 7−→ (A,0,UA 0−→ V0) and SB : B 7−→ (0,B,U0 0−→ VB).

We now describe the right adjoints of these stalk functors.

5.3 Lemma. The following asertions hold.

(a) The stalk functor SB has a right adjoint KB : (U ↓V)→B given by (X,Y, θ) 7→ Y .
(b) Assume that U has a right adjoint U! and let η be the unit of the adjunction. The stalk

functor SA has a right adjoint KA : (U ↓V)→A given by (X,Y, θ) 7→ Ker(U!θ◦ηX),
i.e. the kernel of the morphism X ηX−→ U!UX U!θ−→ U!UY .

In particular, if an object (X,Y, θ) in (U↓V) satisfies KA(X,Y, θ) = 0 and KB(X,Y, θ) = 0,
then one has (X,Y, θ) = 0.

Proof. (a): Let B∈B and (X,Y, θ)∈ (U↓V) be objects. It is immediate from Definition 5.2
that a morphism SB(B)→ (X,Y, θ) in (U ↓V) is the same as a morphism β : B→ Y in B.

(b): Write η and ε for the unit and counit of the assumed adjunction (U,U!). Let A ∈A
and (X,Y, θ) ∈ (U ↓V) be objects. It is immediate from Definition 5.2 that a morphism
SA(A)→ (X,Y, θ) in (U ↓V) is the same as a morphism α : A→ X in A such that the com-
position θ◦Uα : UA→ VY is zero. We claim that θ◦Uα= 0 if and only if U!θ◦ηX ◦α= 0.
Indeed, the “only if” part follows directly from the identities

U!θ ◦ηX ◦α = U!θ ◦U!Uα◦ηA = U!(θ ◦Uα)◦ηA ,

79



12 RUNE HARDER BAK AND HENRIK HOLM

where the first equality holds by naturality of η. The “if” part follows from the identities

θ ◦Uα = θ ◦εUX ◦UηX ◦Uα = εVY ◦UU!θ ◦UηX ◦Uα = εVY ◦U(U!θ ◦ηX ◦α) ,

where the first equality is by the unit-counit relation [14, IV.1 Thm. 1(ii)] and the second
is by naturality of ε. This is illustrated in the following diagram:

UA

Uα
��

Uα
// UX θ

// VY

UX
UηX

// UU!UX
UU!θ

//

εUX

OO

UU!VY .

εVY

OO

Therefore, a morphism SA(A)→ (X,Y, θ) in (U ↓V) is the same as a morphism α : A→ X
in A with U!θ ◦ ηX ◦α = 0, and by the universal property of the kernel, such morphisms
are in bijective correspondance with morphisms A→ Ker(U!θ ◦ηX). This proves (b).

For the last statement, note that KB(X,Y, θ) = 0 yields Y = 0. Thus θ is the zero mor-
phism UX → 0 and consequently U!θ ◦ ηX is the zero morphism X → 0. It follows that
X = KA(X,Y, θ) = 0, so (X,Y, θ) = 0 in (U ↓V). �

We are now in a position to show Theorem B from the Introduction.

Proof of Theorem B. First note that the under the given assumptions, the comma category
(U ↓V) is abelian by Proposition 5.1, so it makes sense to consider its atom spectrum. We
will apply Theorem 3.7 to the functors SA and SB from Definition 5.2 whose right adjoints
are KA and KB from Lemma 5.3. As shown in the proof of Proposition 5.1, kernels and
cokernels in (U ↓V) are computed componentwise, so the functor SA is exact. It also lifts
subobjects as every subobject of SA(A) has the form SA(A′) for a subobject A′� A in A.
It is clear from the definitions that the unit idA→ KASA of the adjunction (SA,KA) is an
isomorphism, and hence SA is full and faithful by (the dual of) [14, IV.3, Thm. 1]. Similar
arguments show that the functor SB has the same properties as those just established for SA.
Therefore, the functors SA and SB meet the requirements in Proposition 3.6.

It remains to verify conditions (a)–(c) in Theorem 3.7. Condition (a) is straightforward
from Definition 5.2, and (b) holds by Lemma 5.3. For every object T = (X,Y, θ) in (U ↓V)
the counit SAKAT → T is monic as Ker(U!θ◦ηX)� X and 0� Y are monics inA and B.
The counit SBKBT → T is monic as 0� X and Y� Y are monics. Hence (c) holds. �

5.4 Example. Let A and B be rings and let M = BMA be a (B,A)-bimodule. We consider
the comma category associated to U = M⊗A− : A-Mod→ B-Mod and V being the identity
functor on B-Mod. Theorem B yields a homeomorphism and an order-isomorphism,

f : ASpec(A-Mod) t ASpec(B-Mod)−→ ASpec((M⊗A−)↓(B-Mod)) ,

which we now describe in more detail. There is a well-known equivalence of categories,

((M⊗A−)↓(B-Mod)) E−→ T -Mod where T =

(
A 0
M B

)
;

see [5] and [7, Thm. (0.2)]. Under this equivalence, an object (X,Y, θ) in the comma cat-
egory is mapped to the left T -module whose underlying abelian group is X⊕ Y where
T -multiplication is defined by

(
a 0
m b

)(
x
y

)
=

(
ax

θ(m⊗ x)+by

)
for

(
a 0
m b

)
∈ T and

(
x
y

)
∈

X
⊕
Y
.
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For simplicity we now consider the case where A and B are commutative (but T is not).
Define a map f̃ by commutativity of the diagram

Spec A t Spec B
f̃

//

qAt qB ∼
��

ASpec(T -Mod)

ASpec(A-Mod) t ASpec(B-Mod)
f
// ASpec((M⊗A−)↓(B-Mod)) ,

ASpec E∼
OO

where qA and qB are the homeomorphisms and order-isomorphisms from 2.5. By using the
definitions of these maps, it follows easily that

f̃ (p) =
〈

T
/(

p 0
M B

)〉
and f̃ (q) =

〈
T
/(

A 0
M q

)〉

for p∈ Spec A and q∈ Spec B. In the terminology of [10, Def. 6.1] the denominators above
are comonoform left ideals in T . For A = B = M = K, a field, this recovers [10, Exa. 8.3]‡.
For A = B = M = k, where k is any commutative ring, the conclusion above also follows
from Example 4.13 with n = 2.

APPENDIX A. QUIVERS WITH RELATIONS AND THEIR REPRESENTATIONS

In this appendix, we present some (more or less standard) background material on rep-
resentations of quivers with relations that we will need, and take for granted, in Section 4.

A.1. A quiver is a directed graph. For a quiver Q we denote by Q0 the set of vertices
and by Q1 the set of arrows in Q. Unless otherwise specified there are no restrictions on a
quiver; it may have infinitely many vertices, it may have loops and/or oriented cycles, and
there may be infinitely many or no arrows from one vertex to another.

For an arrow a : i→ j in Q the vertex i, respectively, j, is called the source, respectively,
target, of a. A path p in Q is a finite sequence of composable arrows • a1−→ • a2−→ ·· · an−→ •
(that is, the target of a` equals the source of a`+1), which we write p= an · · ·a2a1. If p and q
are paths in Q and the target of q coincides with the source of p, then we write pq for the
composite path (i.e. first q, then p). At each vertex i ∈ Q0 there is by definition a trivial
path, denoted by ei, whose source and target are both i. For every path p in Q with source i
and target j one has pei = p = ej p.

Let Q be a quiver and letA be an abelian category. One can view Q as a category, which
we denote by Q̄, whose objects are vertices in Q and whose morphisms are paths in Q. An
A-valued representation of Q is a functor X : Q̄→A and a morphism λ : X→ Y of repre-
sentations X and Y is a natural transformation. The category of A-valued representations
of Q, that is, the category of functors Q̄→A, is written Rep(Q,A). In symbols:

Rep(Q,A) = Func(Q̄,A). (]6)

It is an abelian category where kernels and cokernels are computed vertexwise.

A.2. Let k be a commutative ring. Recall that a k-linear category is a categoryK enriched
in the monoidal category k-Mod of k-modules, that is, the hom-sets in K have structures
of k-modules and composition in K is k-bilinear. If K and L are k-linear categories, then
we write Funck(K,L) for the category of k-linear functors from K to L. Here we must
require that K is skeletally small in order for Funck(K,L) to have small hom-sets.

If C is any category we write kC for the category whose objects are the same as those
in C and where HomkC(X,Y) is the free k-module on the set HomC(X,Y). Composition in
kC is induced by composition in C. The category kC is evidently k-linear and we call it the

‡This example, which inspired the present paper, was worked out using methods different from what we have
developed here. The approach in [10, Exa. 8.3] is that one can write down all ideals in a lower triangular matrix
ring, see for example [13, Prop. (1.17)], and from this list it is possible to single out the comonoform ones.
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k-linearization of C. Note that there is canonical functor C → kC. For any skeletally small
category C and any k-linear category L there is an equivalence of categories,

Func(C,L) ' Funck(kC,L) . (]7)

That is, (ordinary) functors C → L corrspond to k-linear functors kC → L. This equiva-
lence maps a functor F : C →L to the k-linear functor F̃ : kC →L given by F̃(C) = F(C)
for any object C and F̃(x1ϕ1 + · · ·+ xmϕm) = x1F(ϕ1)+ · · ·+ xmF(ϕm) for any morphism
x1ϕ1 + · · ·+ xmϕm in kC (where xu ∈ k and ϕ1, . . . ,ϕm : C → C′ are morphisms in C). In
the other direction, (]7) maps a k-linear functor kC → L to the composition C → kC → L.

A two-sided ideal I in a k-linear category K is a collection of k-submodules I(X,Y)⊆
HomK(X,Y), indexed by pairs (X,Y) of objects in K, such that

• For every β ∈ HomK(Y,Y ′) and ϕ ∈ I(X,Y) one has βϕ ∈ I(X,Y ′), and
• For every ϕ ∈ I(X,Y) and α ∈ HomK(X′,X) one has ϕα ∈ I(X′,Y).

Given such an ideal I in K one can define the quotient category K/I, which has the same
objects as K and hom-sets defined by (quotient of k-modules):

HomK/I(X,Y) = HomK(X,Y)/I(X,Y) .
Composition in K/I is induced from composition in K, and it is well-defined since I is a
two-sided ideal. It is straightforward to verify the K/I is a k-linear category. There is a
canonical k-linear functor K→K/I, which for any k-linear category L induces a functor
Funck(K/I,L)→ Funck(K,L). It is not hard to see that this functor is fully faithful, so
Funck(K/I,L) may be identified with a full subcategory of Funck(K,L). In fact, one has

Funck(K/I,L) ' {F ∈ Funck(K,L) | F kills I } .
If R is a collection of morphisms in a k-linear category K, then we write (R) for the

two-sided ideal in K generated by R. I.e. (R)(X,Y) consists of finite sums ∑u xu βuϕuαu
where xu ∈ k and αu : X→ Xu, ϕu : Xu→ Yu, βu : Yu→ Y are morphisms inKwith ϕu ∈R.

A.3. Let Q be a quiver and let k be a commutative ring. Consider the k-linear category kQ̄,
that is, the k-linearization (see A.2) of the category Q̄ (see A.1).

A relation (more precisely, a k-linear relation) in Q is a morphism ρ in kQ̄. That is, ρ
is a formal k-linear combination ρ = x1 p1 + · · ·+ xm pm (xu ∈ k) of paths p1, . . . , pm in Q
with a common source and a common taget.

A quiver with relations is a pair (Q,R) with Q a quiver andR a set of relations in Q.
Let A be a k-linear abelian category. For a representation X ∈ Rep(Q,A), as in A.1,

and a relation ρ= x1 p1 + · · ·+ xm pm in Q, define X(ρ) := x1X(p1)+ · · ·+ xmX(pm). One
says that X satisfies the relation ρ if X(ρ) = 0.

If (Q,R) is a quiver with relations, then anA-valued representation of (Q,R) is a repre-
sentation X ∈ Rep(Q,A) with X(ρ) = 0 for all ρ ∈R, that is, X satisfies all relations inR.
We write Rep((Q,R),A) category of A-valued representations of (Q,R). In symbols:

Rep((Q,R),A) = {X ∈ Rep(Q,A) | X(ρ) = 0 for all ρ ∈R} .
We consider Rep((Q,R),A) as a full subcategory of Rep(Q,A). We have a diagram:

Rep(Q,A) '
// Funck(kQ̄,A)

Rep((Q,R),A)
OO

OO

'
// Funck(kQ̄/(R),A) ,

OO

OO

where the upper horizontal equivalence comes from (]6) and (]7). The vertical functors are
inclusions. It is immediate from the definitions that the equivalence in the top row restricts
to an equivalence in the bottom row, so we get commutativity of the displayed diagram.
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A.4. Let Q be a quiver with finitely many vertices(!) and let k be a commutative ring. The
path algebra kQ is the k-algebra whose underlying k-module is free with basis all paths in
Q and multiplication of paths p and q are given by their composition pq, as in A.1, if they
are composable, and pq = 0 if they are not composable. Note that kQ has unit ∑i∈Q0

ei.
There is an equivalence of categories, see e.g. [2, Lem. p. 6] or [1, Chap. III.1 Thm. 1.6]:

Rep(Q,k-Mod) ' kQ-Mod . (]8)

We describe the quasi-inverse functors U and V that give this equivalence. A representation
X is mapped to the left kQ-module UX whose underlying k-module is

⊕
i∈Q0

X(i); multi-
plication by paths works as follows: Let εi : X(i)�⊕

i∈Q0
X(i) and πi :

⊕
i∈Q0

X(i)� X(i)
be the ith injection and projection in k-Mod. For a path p : i j and an element z ∈ UX
one has pz = (εj ◦X(p)◦πi)(z). In the other direction, a left kQ-module M is mapped to
the representation V M given by (V M)(i) = eiM for i ∈ Q0. For a path p : i j in Q the
k-homomorphism (V M)(p) : eiM→ ejM is left multiplication by p.

By definition, see A.3, a relation in Q can be viewed as an element (of a special kind)
in the algebra kQ. If (Q,R) is a quiver with relations and I = (R) is the two-sided ideal in
kQ generated by the subsetR⊆ kQ, then we have a diagram:

Rep(Q,k-Mod) '
// kQ-Mod

Rep((Q,R),k-Mod)
OO

OO

'
// kQ/I-Mod ,

OO

OO

where the upper horizontal equivalence is (]8). The vertical functors are inclusions, where
kQ/I-Mod is identified with the full subcategory {M ∈ kQ-Mod | IM = 0} of kQ-Mod.
It is immediate from the definitions that the equivalence in the top row restricts to an
equivalence in the bottom row, so we get commutativity of the displayed diagram.
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