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Abstract

Pure maximally entangled states are the most powerful resource provided by quantum
mechanics. Entanglement distillation is the process of producing these states with high-
fidelity between two distant parties, starting from a source of noisy entanglement. The
rate at which this can be done is called distillable entanglement. The maximally entangled
states can be used for teleportation of quantum information, Bell inequality violation,
and, most importantly from the point of view of this thesis, generation of perfect key.
Maximally entangled states are pure and in product with the environment, and thus they
guarantee that a simple local measurement done by the parties will produce perfect key,
namely perfectly equal and perfectly random strings shared between the two distant
parties, with the absolute guarantee that they will be secret to anybody else. The process
of using quantum states to share perfect key between distant parties is called quantum
key distribution, and the rate at which it can be done is called distillable key. It turns out
that there exist noisy entangled states, the private states, that also lead to perfect key just
by measurement and, most surprisingly, that the distillable key equals the distillation rate
of such states. Proving this equivalence allowed the authors to show that distillable entan-
glement and distillable key can be very different. There even exists a low-dimensional
experimental realization. However, these are very peculiar correlations that have been
shown only for parties that interact together directly on the noisy entanglement. In the
future of quantum processing, and in the not so distant future of quantum key distribution,
parties will be distributed in a network, where the entanglement will have to be generated
by parties that are directly connected, and then relayed to arbitrary nodes using quantum
teleportation. The intermediate parties are then known as quantum repeater stations, or
simply quantum repeaters. In light of this, it is natural to ask how much the separation
between distillable key and distillable entanglement extends to general network scenarios,
and in particular whether it persists if we insert a repeater station between the two parties.

In this thesis, we provide a new perspective on key distillation, and thus quantum
key distribution, by relating private states to quantum data hiding, the phenomenon of
having perfect classical correlations that are not accessible by separated parties. This
provides a tool for the study of quantum key distribution involving intermediate repeater
stations, where for the first time we are able to show a close connection with entanglement
distillation. We show the first bounds on the distillable key in quantum repeaters in
terms of the distillable entanglement between the nodes, holding in particular for private
states, and thus for states that do indeed provide perfect key between the nodes. To
develop the tools, we expand the understanding of private states. For them we provide
a simplification, that allows us to connect the distillable entanglement and the repeater
distillable key to the recoverability of classical information by local parties, when these
private states are used as encoders. We also show that in general most private states will
have low recoverability of this classical information, which is the intuition behind private
states with low distillable entanglement, and show that, under mild assumptions, this
implies a low key in some realistic repeater. Our results add toward the intuition that the
distillable entanglement is the only relevant resource that survives the relay of quantum
information.
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Resumé

Rene, maksimalt sammenfiltret stater er den mest kraftfulde ressource ved kvantemekanik.
Sammenfiltring destillation er processen med at producere disse stater med høj pålide-
lighed mellem to fjerntliggende parter, der starter fra en kilde til støjende sammenfil-
tring. Den hastighed, hvormed dette kan gøres, kaldes destillerbar sammenfiltring. De
maksimalt sammenfiltret stater kan bruges til teleportation af kvante oplysninger, Bell-
ulighedskrænkelse, og vigtigst af afhandlings synspunkt, generering af perfekt nøgle.
Maksimalt sammenfiltret stater er rene og i produkt med miljøet, og dermed garanterer
de, at en enkelt lokal måling foretaget af parterne vil producere perfekt nøgle, nemlig
helt lige og perfekt tilfældig data delt mellem de to fjerne parter, med absolut garanti for,
at den vil være hemmelig for nogen andre. Processen med at bruge kvante stater til, at
dele perfekt nøgle mellem fjerne parter kaldes kvante nøglefordeling, og den hastighed,
hvormed den kan gøres, kaldes destillerbar nøgle. Det viser sig, at der findes støjende
sammenfiltret stater, de private stater, som også fører til en perfekt nøgle bare ved måling,
og det mest overraskende den destillerbare nøgle svarer til destillationshastigheden af
sådanne tilstande. At bevise denne ækvivalens tillod forfatterne at vise, at den destiller-
bare sammenfiltring og destillationsnøgle kan være meget anderledes. Der eksisterer
endog en lav dimensionel eksperimentel realisering. Men disse er meget ejendommelige
korrelationer, der er blevet vist kun for parter, der interagerer direkte sammen på den
støjende sammenfiltring. I fremtiden for kvantebehandling, og i den ikke så fjerne fremtid
med kvantenøglefordeling, parter vil være fordelt i et netværk, hvor sammenfiltring vil
være nødt til at blive genereret af parter, der er direkte forbundet, og derefter videregivet
til vilkårlige knudepunkter ved hjælp af quantum teleportation. De mellemliggende
parter er så kendt som kvante relæstationer, eller blot kvante relæ. I lyset af dette er det
naturligt at spørge, hvor meget adskillelsen mellem destillerbar nøgle og destillerbar
sammenfiltring strækker sig til generelle netværks scenarier, og især om det fortsætter
hvis vi indsætter en relæstation station mellem de to parter.

I denne afhandling giver vi et nyt perspektiv på nøgledestillation, og dermed kvante
nøglefordeling, ved at forbinde private stater til kvante skjult data, fænomenet at have
perfekte klassiske korrelationer der ikke er tilgængelige af adskilte parter. Dette giver
et værktøj til undersøgelse af kvante nøglefordeling med involveret mellemliggende
relæstationer, hvor vi for første gang kan vise en tæt forbindelse med sammenfiltring
destillation. Vi viser de første grænser på destillationsnøglen i kvante relæer i form af
destillable sammenfiltring mellem knuderne, især for private stater, og dermed for stater,
som faktisk giver perfekt nøgle mellem knuderne. For at udvikle værktøjerne udvider
vi forståelsen af private stater. For dem giver vi en forenkling, der tillader os at forbinde
den destillerbare sammenfiltring, og relæ destillationsnøglen til nyttiggørelse af klassiske
oplysninger af lokale parter, når disse private stater bruges som encodere. Vi viser også,
at de fleste private stater generelt vil have lav sammenfiltring evne for denne klassiske
information, som er intuitionen bag private stater med lavt destillerbar sammenfiltring,
og viser, at under milde antagelser, dette indebærer en lav nøgle i nogle realistiske kvante
relæer. Vores resultater tilføjer i retning af intuitionen, at destillable sammenfiltring er den
eneste relevante ressource, som overlever kvanteinformationsrelæet.
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Errata

• Section 1.3.1, page 27: Any global entangled measurement is a separability- and
PPT-preserving operation that is not a separable operation. However, there are
entangled measurements that are PPT operations.

• Section 1.4.2, page 31: “L is informationally complete if for all operators K ∈ L(AB)
. . . ”.

• Conjecture 9: ρ and ρ′ do not need to be ε-close.

• Section 2.4.3, page 59, the two equations before Equation (2.18): Because separable
states are not close under PPT measurements operators, the correct equations should
be:

ED,L 6 D∞
L(A:B)(ρ‖P(A:B)).

ED,L 6 D∞
L(A:B)(ρ‖P(A:B)) 6 D∞

L(A:B)(ρ‖σ) 6 D∞
L(A:B)(ρ‖σ).

Since σ ∈ P(A:B), then it applies also for σ ∈ S(A:B).

• Section 3.1.3, page 72:
ER(Φ) 6 E∞

R (γ) 6 ER(γ).

is not straightforward and does not derive from the unitary invariance of the relative
entropy, It is a theorem in [Hor+09].

• Section 3.1.3, page 72: E∞
R (γm) = ER(γ

m) = m if γ is strictly irreducible but not only
if.

• Section 4.5, page 135 after Equation (28): A factor of 1/E is consistently missing in
the expressions for I and II.
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Prologue

Today, most of the internet uses private-key encrypted communication. The messages
are encrypted with random strings using modulo addition. The random string, known
as the key, needs be known to both communicating parties, so that it can be added at
the sender and be removed at the receiver. If the keys are as long as the message and
provably uniformly random, then this scheme is provably secure. Namely if the key is
secret to anyone else (private), and anybody, usually called an eavesdropper, intercepts the
encryption, they will get the same amount of information about the original message as
making a random guess. Equivalently, from the eavesdropper point of view, any message
will be equally likely, but for this to happen it is of paramount importance for the key
to be perfect, namely uniformly random and secret. However, pure provably uniform
randomness is hard to come by, thus producing as much randomness as the amount of
communication that is secured is extremely impractical, if not impossible. The current
solution is to acknowledge that malicious adversaries, like an eavesdropper, have physical
limitations and thus limited computational power. A specific type of conjectured hard
problem is then used to produce, from a relatively small perfect key, deterministically and
quickly a large amount of seemingly random keys. Under the hardness assumption, an
adversary will need to spend an impossible amount of computation to break the scheme.
However, it is still of paramount importance that the initial key be perfect.

We are thus still left with the problem of sharing the initial perfect key. The solution is
again to use another specific type of conjectured hard problems, that allows for public-key
encryption schemes. In such schemes, the key for encryption and the key for decryption
are different, and it should be impractical for any physical adversary to figure out how to
decrypt even knowing the encryption key. The result is that a party Alice can publish the
encryption key, so that other parties can communicate private keys to Alice secretly from
each other. The security guarantee is quite remarkable, as it allows two distant parties
to share a (computationally secure) key from a distance without ever having interacted
before. The communication itself to generate the key is assumed to be insecure; the result
is that two persons can actually follow such a scheme, literally shout the messages by
voice across a room full of people, and nonetheless end sharing a key almost as if it were
whispered between each other.

Some of the conjectured hard problems that are currently used to implement classical
cryptography are also solvable efficiently by quantum computers [Sho99]. Fortunately,
we have learned about this before quantum computers capable of solving current key
sizes become a reality, giving time to find a solution. Namely, giving time to find and test
problems that we think are also hard for quantum computers, and that we can use to build
quantum-secure classical cryptography [Che+16]. At the same time, the same quantum
mechanics that makes current classical cryptographic schemes insecure, also give us a
way to share perfect keys between two parties, from a distance, without computational
assumptions on the eavesdropper [Wie83; Ben+83; BB84; Eke91]. Such schemes are known
as quantum key distribution schemes. While classical cryptography with computational
security can be thought as allowing the messages to be shouted, quantum key distribution
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schemes can be thought as going to a noise regime so low, that quantum mechanics allows
us to tell if anybody has been listening to the communication, allowing two parties to
“whisper” to each other remotely.

Quantum key distribution will be a complementary addition to classical quantum-
secure cryptography. Computationally secure schemes suffer from the unavoidable flaw
that to be used, a key size needs to be chosen. While a choice can always be made to make
the message secure for the foreseeable future, advances in the computational power of
computers will eventually break the security of messages encrypted with old instances
of cryptographic schemes. Computational security cannot protect forever, but it is the
perfect solution to encrypt message for which their confidentiality has an expiry date (like
appointments). On the other hand, well implemented quantum key distribution provides
perfect security, and thus can secure messages without an expiry date. However, quantum
key distribution schemes are affected by costly set-up and high susceptibility to noise,
that make the key produced expensive. Once quantum-secure classical cryptography and
quantum key distribution will be both available, they will nicely complement each other
and allow to choose the best scheme based on the security requirements and cost.

To be able to perform quantum key distribution, two parties need to be able to re-
ceive and share entangled states. There are quantum key distribution schemes that use
continuous variables, but we will assume that the key is shared by means of finite dimen-
sional quantum systems, the analogue of classical digital systems. To provide its security
guarantees, quantum key distribution uses quantum mechanics to bound the information
contained in any eavesdropper. The information held by any eavesdropper can then be
kept track of, and be shown to be uncorrelated from the output of the scheme. An impor-
tant contribution to the understanding of quantum key distribution has been the discovery
that despite bounding the information of an eavesdropping third party, the problem of
distilling key is purely bipartite. In such description the corresponding states of perfect
key are a class of entangled states known as private states, an the eavesdropper is simply
the environment. This result allowed to determine why some quantum key distribution
protocols give larger key rates than then ones achieved by entanglement distillation, even
though there are strong connections between key distillation and entanglement distillation.
In this thesis we explore this difference further, and investigate what happens to it when
performing quantum key distribution in a network.

The first two chapters are dedicated to introducing the basic concepts of finite dimen-
sional quantum systems and of quantum informations. In this chapters we also develop
new tools and formalism which are needed to present the results coherently. Most im-
portantly we allow distance measures to be hybrid. Before the present work, all distance
measures have been either functions on the states themselves, or functions of outcomes
of measurements (where the argument in favour of such measures is that measurement
outcomes are the only objects we can access to estimate the distance). We allow distance
measures to be computed on states that have a part of measurement outcome and a part of
quantum states. We then apply our tools to the study of private states in Chapter 3 where
we simplify them, introducing what we call Bell private states and showing that they are
a fully equivalent description. This allows to give a precise intuition to all private states
as follows. Instead of simply sharing a maximally entangled state, Alice and Bob share a
maximally entangled state where a phase error might have been introduced. Usually this
would destroy some entanglement, but in private states the information about the error is
saved and encoded in orthogonal states also held by Alice and Bob. However these states
are bipartite states, and thus do not need to be locally accessible. Assume now that the
encoding states are data hiding, meaning that Alice and Bob can barely distinguish them
when separated. It is then the intuition that Alice and Bob cannot distill entanglement,
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since they have poor access to the phase information to be corrected in the entanglement
distillation process. We will show cases where this is true and others where the opposite
happens, even if the states are data hiding the phase is still correctable. However we show
that if the distillable entanglement is reduced then the states must be data hiding in a
strong sense, and by choosing the encoding states at random, we can show that the private
states must be indistinguishable from states with no entanglement.

Finally in the last chapter, Chapter 4, we apply our findings to quantum repeaters. In a
repeater, noisy entanglement is distributed independently between the end points and the
repeater, and the repeater station is used to mediate the entanglement between end points.
We consider the problem of extending the distance of quantum key distribution with help
of intermediate repeater stations. We show that for both private states and protocols that
first distill private states, it is essentially optimal to use the standard quantum repeater
protocol based on entanglement distillation and entanglement swapping, and thus any
excess key in the bipartite setting will be lost. We then distribute private states constructed
randomly between the nodes and show that, despite the fact that the private states contain
readily extractable perfect key, a broad class of repeater protocols will fail to extract
secrecy: the key rate is vanishing for large dimensions, indicating that the states might
have small distillable entanglement. These result are indications that the separation
between the distillable key and distillable entanglement does not survive in all general
network scenarios.
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Chapter 1

Preliminaries

In quantum mechanics the state of a complete (or isolated) system is a unit vector in
a complex separable Hilbert space. This state is not by itself “observable” (it cannot
be seen or measured), it just describes the system and its evolution. The observable
objects, commonly just observables (any measurable variable like momentum, energy,
mass, position, . . . ), are described by different constructs on the Hilbert space.

It needs to be mentioned that, while in classical mechanics the value of observables
can be well defined from the state of the system, in general within quantum mechanics it
is possible to define the value of an observable only on specific orthogonal states. While
observables behave very differently in classical and quantum mechanics, in both cases
most observables are continuous, meaning in particular, that they can take uncountably
many values. This implies that the dimension of the Hilbert space describing most physical
systems is itself uncountably infinite to host uncountably many orthogonal states.

However, in this thesis all quantum systems are finite dimensional. Finite dimensional
quantum systems are the quantum counterpart of classical systems with finitely many
state, like controllable digital devices. We expect the state of classical digital devices to
change only under the control we provide and not under external physical evolution.
Similarly we will expect a quantum digital device to change only under the unitaries we
provide and not under the physical unitary evolution. Therefore in our quantum systems
there is no Hamiltonian, which would usually describe the evolution of the system.

1.1 Linear Algebra

Since quantum systems are described by Hilbert spaces under unitary evolution, the
study of finite dimensional quantum systems reduces mathematically to the study of finite
dimensional Hilbert spaces and their linear transformations. Thus, many concepts are
not exclusive to quantum information theory. Before starting we will recall some of them,
many of which can be found in [NC02], and introduce some notation.

1.1.1 Complex Hilbert spaces

For any finite dimensional complex Hilbert space H, we denote with 〈·|·〉 the complex
inner product linear in the second argument, and with |H| its dimension. Given any
subset K ⊆ H, we denote by conv(K) the convex hull and by conv(K) its closure. We
also define R+K as the cone generated by multiplying the elements of K with the positive
real numbers R+. Given any symmetric convex subset K ⊆ H, we denote by ‖x‖K :=
inf {t : x ∈ tK} its gauge (a norm), also known as Minkowski’s functional, and by K◦ :=
{y : ∀ x ∈ K, 〈x|y〉 6 1} its polar, which satisfies the relations ‖x‖K = supy∈K◦ | 〈x|y〉 |
and ‖x‖K◦ = supy∈K | 〈x|y〉 |.
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1.1.2 Linear operators

The set of linear operators from H to another finite dimensional complex Hilbert space
H′ is denoted L(H, H′). For an operator K ∈ L(H, H′) we denote with K† ∈ L(H′, H) the
adjoint. If H = H′ we write more concisely L(H) ≡ L(H, H). We denote with 1H ∈ L(H)
the identity operator, but might omit the subscript from time to time, and use simply 1 if
the system is clear from the context.

An operator K ∈ L(H) is said to be normal if K†K = KK†. It is said to be unitary
if K−1 = K†, namely KK† = K†K = 1, and the set of all unitary operators forming the
unitary group is denoted U (H). K is said to be Hermitian if K† = K, and anti-Hermitian
if K† = −K; we denote the set of Hermitian operators withH(H). Finally, an Hermitian
operator K ∈ H(H) is said to be positive semidefinite (or just positive if clear from the
context) if K = K̃†K̃ for some K̃ ∈ L(H), and we denote the convex cone of positive
operators with H+(H). As is customary, we write K > K̃ to denote K − K̃ ∈ H+(H)
for any operators K, K̃ ∈ L(H). We reserve the term projector for Hermitian projectors,
namely positive operators K such that K2 = K.

An Hermitian operator K ∈ H(H) can be decomposed into a difference K = K+ − K−
where K± are positive and orthogonal (K+K− = K−K+ = 0). For any operator K ∈ L(H),
we denote with |K| the positive operator satisfying K†K = |K|2. If K is Hermitian then
|K| = K+ + K−.

On L(H) we have the trace norm ‖K‖1 = tr |K|, the Hilbert-Schmidt norm ‖K‖2 =√
tr |K|2 and the operator norm ‖K‖∞ = inf {t : |K| 6 t1H}, which are all unitary in-

variant norms. Furthermore, we write B1 ≡ B1(H), B2 ≡ B1(H), B∞ ≡ B∞(H) for the
corresponding unit balls.

1.1.3 Linear maps (superoperators)

We denote the set of linear operators from L(H) to L(H′), from now on called linear
maps (but also known as superoperators), with LM(H〉H′), which is otherwise already
defined by L(L(H),L(H′)). Depending on convenience, like when composing subsets of
channels, we will write the same set of linear maps as LM(H′〈H), a convention that we
apply also to any subset of the linear maps we define1. We denote with idH ∈ LM(H〉H)
the identity map and with trH ∈ LM(H〉C) the trace, and again we might simply write
“id” and “tr” if clear from the context. The space L(H) is itself a finite dimensional Hilbert
space with inner product tr

(
K†K̃

)
for K, K̃ ∈ L(H). Any linear map Λ ∈ LM(H〉H′) can

be written (not uniquely) as Λ(Y) = ∑i∈I KiYK̃i for some finite index set I, and operators
Ki ∈ L(H, H′) and K̃i ∈ L(H′, H). Its adjoint Λ† ∈ LM(H′〉H) is then Λ†(Y) = ∑i∈I K̃iYKi.

We introduce the following notations. Given a linear map Λ ∈ LM(H〉H′) and a subset
K ⊆ L(H), we write Λ(K) ⊆ L(H′) for the set of Λ(K) where K ∈ K. Furthermore,
given two subsets of channels L ⊆ LM(H〉H′′) and L′ ⊆ LM(H′′〉H′), we define their
composition as

L′ ◦ L:=
{

Λ′ ◦Λ : Λ′ ∈ L′, Λ ∈ L
}

.

For singleton sets, we will write Λ ◦ L′ and L ◦Λ′, instead of {Λ} ◦ L′ and L ◦ {Λ′}. Since
we can also think of an operator K as a constant linear map, we abuse our notation and
define for K ∈ L(H) and any subset of operators K ⊆ L(H)

L ◦ K = {Λ(K) : Λ ∈ L}
L ◦ K = {Λ(K) : Λ ∈ L, K ∈ K} .

1So we can write the composition, defined in the next paragraph, as L(H′′〈H′) ◦ L(H′〈H) instead of
L(H′〉H′′) ◦ L(H〉H′). The arrow always points from the input spaces to the output spaces.
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A linear map Λ ∈ LM(H〉H′) is said to be positive if Λ(H+(H)) ⊆ H+(H′). Further-
more, it is said to be trace preserving if tr Λ(Y) = tr Y for all operators Y ∈ L(H). Λ is
trace preserving if and only if, when written in the form Λ(Y) = ∑i∈I KiYK̃i, it satisfies
∑i∈I K̃iKi = 1H.

1.1.4 Tensor product

For two finite dimensional Hilbert spaces H and H′, the finite dimensional Hilbert space
HH′ ≡ H⊗H′ is the span of {x⊗ y : x ∈ H, y ∈ H′}modded as to make x⊗ y a bilinear
operation, with inner product the linear extension of 〈a⊗ b|x⊗ y〉 = 〈a|x〉 〈b|y〉. Some-
times it will be necessary to make the tensor product of x ∈ H1H′1 and y ∈ H2H′2 in
L(H1H2H′1H′2), we will then add subscripts to make the reordering of x⊗ y implicit, and
simply write xH1H′1

⊗ yH2H′2
∈ L(H1H2H′1H′2).

Because the linear operators also form a Hilbert space, this also defines the tensor
product of linear operators L(H1, H′1)⊗L(H2, H′2), and it coincides with the linear opera-
tors L(H1H2, H′1H′2) on the tensor product spaces. More specifically, the tensor product
K⊗ K̃ of two operators coincides with the operator Y defined by the linear extension of
Y(x⊗ y) = Kx⊗ K̃y. A particular operator we define on any two spaces H and H′ is the
swap SHH′ ∈ L(HH′, H′H) as the unique linear extension of x⊗ y 7→ y⊗ x. Again, we
might simply write S when clear from the context. Notice that SHH′ is unitary according
to the broader definition of S†S = 1HH′ and S†S = 1H′H.

Similarly, we have LM(H1〉H′1) ⊗ LM(H2〉H′2) = LM(H1H2〉H′1H′2), and the tensor
product Λ⊗Λ′ of two linear maps coincides with the linear map Π defined by the linear
extension of Π(K⊗ K̃) = Λ(K)⊗Λ′(K̃). Most notably, we have idHH′ = idH⊗ idH′ and
trHH′ = trH⊗ trH′ . Extending the notation for the composition of subsets of linear maps,
we define the tensor product of L ⊆ LM(H〉H′′) and L′ ⊆ LM(H′′〉H′) as

L⊗ L′ :=
{

Λ⊗Λ′ : Λ ∈ CPTP, Λ′ ∈ L′
}

,

We will also just write Λ⊗ L′ and L⊗Λ′ instead of {Λ} ⊗ L′ and L⊗ {Λ′}.

1.1.5 Complete positivity

Finally, a map Λ ∈ LM(H〉H′) is said to be completely positive if idH′′ ⊗Λ is positive
for any other finite dimensional Hilbert space H′′, which holds if and only if Λ can be
written (again not uniquely) in the form Λ(Y) = ∑i∈I KiYK†

i , where the operators Ki
are known as Kraus operators. We denote with CP(H〉H′) the maps that are completely
positive. We also denote with CPTP(H〉H′) the maps that are completely positive and
trace preserving, which notably includes the identity map and trace map. Again, these
properties are preserved under composition, which we can write using our notation as
CP(H′〈H) ⊇ CP(H′〈H′′) ◦CP(H′′〈H) and CPTP(H′〈H) ⊇ CPTP(H′〈H′′) ◦CPTP(H′′〈H).
Stinespring’s dilation theorem shows that Λ is completely positive and trace preserving
(CPTP) if and only if there exist another system H′′ with an isometry K̃ ∈ L(H, H′′H′)
(namely K̃†K̃ = 1H) such that Λ(Y) = trH′′ ⊗ idH′(K̃YK̃†); the choice of H′′ and the
isometry are not unique.

1.1.6 Bra-ket notation

In Dirac’s bra-ket notation for a Hilbert space H, the vectors are written as |α〉 ∈ H, and
they are actually treated as linear operators, more precisely as elements of L(C, H) acting
as z 7→ z |α〉. Then 〈α| = (|α〉)†, namely they are the adjoint of |α〉, equivalently they are
the linear operators 〈α| : |β〉 → 〈α|β〉. The outer product is then denoted with |α〉〈β|,
and the set of linear operators L(H, H′) is then conveniently described by the span of all
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|α〉〈β| for |α〉 ∈ H′ and |β〉 ∈ H. The inner product then gains an additional notation as
〈β| |α〉 ≡ 〈β|α〉, which is especially useful when considering other linear operators. Let
|α〉 ∈ H, |β〉 ∈ H′ and K ∈ L(H, H′). Then in particular 〈β|K |α〉 is both the inner product
in H′ of |β〉 and K |α〉, and the innerproduct in H of K† |β〉 and |α〉. The tensor product can
additionally be denoted as |αβ〉 ≡ |α〉 |β〉 ≡ |α〉 ⊗ |β〉.

Any operator K ∈ L(H, H′) admits a singular value decomposition, namely there
exist an integer k 6 min {|H|, |H′|} (the rank), singular values si > 0 for i = 1, . . . , k, and
orthonormal vectors {|ri〉}k

i=1 ⊂ H, {|li〉}k
i=1 ⊂ H′, so that the operator can be written as

K = ∑k
i=1 si |li〉〈ri|.

We denote by Zn = Z/nZ ≡ {0, . . . , n − 1} the integers with addition modulo n,
which we use to index orthonormal bases in H. An operator K is unitary diagonalizable
if and only if it is normal, in which case there exist eigenvalues ei ∈ C for i ∈ Z|H| and
a basis {|vi〉}i∈Z|H|

⊂ H, such that T = ∑i∈Z|H|
ei |vi〉〈vi|. In particular, Hermitian opera-

tors are diagonalizable with real eigenvalues, positive operators are diagonalizable with
positive eigenvalues, and unitary operators are diagonalizable with phase eigenvalues
(eigenvalues in the complex unit circle). If two normal operators commute, then they can
be diagonalized using a common basis.

1.1.7 Computational basis

Some definitions are basis dependent. We call the computational basis the choice of
orthonormal basis {|i〉H}i∈Z|H|

⊂ H, as customary in quantum information, with bra

denoted 〈i|H and operators denoted |i〉〈j|H. For an operator K ∈ L(H) we denote with K
the complex conjugate on this basis. We also denote with KTH the transpose, also basis
dependent. When needed, we will denote the transposition map ϑH ∈ L(H). In the case
of multiple systems like HH′ we fix the computational basis to be the tensor product of
the computational basis of H and H′, namely {|ij〉HH′ = |i〉H ⊗ |j〉H}i∈Z|H|,j∈Z|H′ |

. Then the
transposition also satisfies ϑH ⊗ ϑH′ = ϑHH′ , is its own adjoint and is positive but not
completely positive. Also, for the computational basis and the transposition, it is common
to omit the subscript when clear from the context.

1.2 Quantum systems

A finite quantum system is any finite dimensional complex Hilbert space H. If the system
is completely isolated and has never interacted with any other system, then quantum
mechanics dictates that system state is completely described by a unit vector in H. Multiple
systems are described by unit vectors in the tensor product of their Hilbert spaces. As
it is customary in quantum mechanics, we follow Dirac’s bra-ket notation (only) for the
Hilbert space of the quantum system. However, the definition is not flexible, in the sense
that it only describes such complete systems. If |ψ〉 ∈ HH′ is the state describing the joint
system of H and H′, it is in general not possible to find an |α〉 ∈ H and |β〉 ∈ H′ that
describes the state of the single systems. For this reason, the unit vector states like |ψ〉
are usually called pure states. At the same time, the only physically relevant quantities
in quantum mechanics (because they are the only testable ones) are expectation values,
namely quantities of the form 〈ψ|K |ψ〉 = tr(|ψ〉〈ψ|K) for some operator K ∈ L(HH′). The
expectation value is said to be only of system H′, if K = 1H⊗ K̃ for some K̃ ∈ L(H′). Then
trHH′(|ψ〉〈ψ|K) = trH′((trH⊗ idH′ |ψ〉〈ψ|)K̃), and therefore trH⊗ idH′ |ψ〉〈ψ| is regarded as
the state of the single system H′, as it gives the correct expectation values even if there is no
pure state. Since the trace is a completely-positive trace-preserving map, trH⊗ idH′ |ψ〉〈ψ|
is a positive operator of unit trace, just like |ψ〉〈ψ|, also known as a density matrix.
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The evolution of a pure quantum state predicted by quantum mechanics is always the
action of a unitary operator. Computing the density matrix of the new system results in a
state which is the output of a CPTP map on the original state. At the same time, we can
interpret Stinespring’s dilation theorem, as saying that any CPTP map is the result of the
unitary evolution of the density matrix in a larger system. Thus CPTP maps produce valid
states that correctly describe the statistics resulting from possibly unknown interaction in
a larger system.

Therefore we lose no power in describing quantum systems with density matrices,
while at the same time we gain the ability of describing incomplete systems2. As is
common in quantum information, we thus abstract from the physical axioms of quantum
mechanics using the formalism described below.

1.2.1 States and channels

A state on a quantum system H is a positive-semidefinite operator with unit trace. The set
of all states is closed and convex and is denoted by D(H) ⊂ H+(H). A state is said to be
pure if it is a rank-1 projector |ψ〉〈ψ|, otherwise it is said to be mixed. We say that a state is
a uniform mixture on a subspace if it is of the form P/ tr P, where P is the projector on said
subspace. The uniform mixture on the whole space 1/|H| is called the maximally mixed
state. As customary, on multiple systems like HH′ we may omit the identity map when
tensored with the trace, namely we can write trH ≡ trH⊗1H′ . Similarly, we can omit the
system of the trace when acting on a whole state, so that tr(trH(ρ)) ≡ trH′(trH⊗ idH′(ρ))
for a state ρ ∈ D(HH′). The state trH ρ is called the reduced state, or marginal, of ρ on H′,
and, when useful, we use the convention of writing it even more concisely as ρH′ ≡ trH ρ;
the original state can then be recovered by explicitly specifying all the systems as ρHH′ .

A channel is a completely-positive trace-preserving map, and the set CPTP(H〉H′) of
channels is all the allowed operations from system H to system H′. Because channels are
then linear maps, the first consequence is that there exists no channel that implements
ρ 7→ ρ⊗ ρ for all states ρ ∈ D(H), which is clearly quadratic and not linear in ρ; this is
known as the no-cloning theorem [Par70; WZ82]. When defining channels, we will usually
define them implicitly only on states, but because the span of D(H) is H(H), by linear
extension this defines it on all Hermitian operators.

A mixed unitary channel Λ ∈ CPTP(H〉H) is a channel of the form

Λ(ρ) =
1
|I|∑i∈I

UiρU†
i

where I is some finite index set and {Ui}i∈I is a set of unitaries that are sampled uniformly
at random. If the set of unitaries forms a subgroup, then the channel is called a twirl and
it maps into the set of states invariant under the twirl. Let now ρ ∈ D(CT), we say that a
unitary U ∈ U (CT) is a controlled unitary if it is of the form U = ∑i∈Z|C|

|i〉〈i|C ⊗Ui,T. We
then call C the control system and T the target system, and call controlled unitary channel
the resulting unitary conjugation.

A dephasing is a channel Λ ∈ CPTP(H〉H), also known as pinching, of the form

Λ(ρ) = ∑
i∈I′

PiρPi

where {Pi}i∈I′ are projectors (and thus an orthogonal partition of the identity). Finally,
when dealing with multiple systems H1H2, we call local channels those channels that act
of the systems independently, namely any Λ ∈ CPTP(H1〉H′1)⊗ CPTP(H2〉H′2).

2A pure state is described equivalently by eiφ |ψ〉 as well as |ψ〉 (because the expectations values are the
same), even though these might be different vectors in the Hilbert space. This is automatically taken care of in
the density matrix, as the resulting density matrix is |ψ〉〈ψ| in both cases.
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1.2.2 Instruments

Consider systems H, H′, M, and let {|i〉M}i∈Z|M|
be a choice of computational basis. A

quantum instrument is a channel Λ ∈ CPTP(H〉H′M) of the form

Λ(ρ) = ∑
i∈Z|M|

Λi(ρ)⊗ |i〉〈i|M

where Λi are completely positive maps, namely Λi ∈ CP(H〉H′), that can be thought as
partial channels. The constraint of Λ being a channel, imposes the sum of Λi being also a
channel (as it is easily checked by tracing out M). The projectors on the computational
basis are to be thought of as those states that can be stored in a classical memory instead of
the quantum system itself. Instruments are hybrid channels, in the sense that they contain
a quantum and a classical part.

We denote the set of all instruments as IN(H〉H′M)3 indicating with M the fact that
the output on M for any channel in IN is always classical, irrespective of the input to the
channel (in particular · does not denote a different system, but merely a property of the
subset of channels IN).

1.2.3 Purification and extensions

Given a state ρ ∈ D(H), we call an extension of ρ any state ρ′ ∈ D(HH′) such that
ρ = trH′ ρ

′. If the extension is a pure state, we call it a purification. A purification
can always be made by taking the eigenvalue decomposition ρ = ∑i∈Z|H|

pi |vi〉〈vi| and
constructing |ρ〉〈ρ| ∈ HH as |ρ〉〈ρ| = ∑ij∈Z|H|

√
pi pk |vi vi〉〈vk vk|. Purifications are not

unique, but they are related by local isometries on the purifying system. Furthermore, any
purification of a pure state is a product state.

Given a channel Λ ∈ CPTP(H〉H′), we call a purification of Λ, any channel Π ∈
CPTP(H〉H′H′′) such that Λ = trH′′ ◦Π and Π(ρ) = KρK† for some isometry K ∈
L(H, H′H′′). A purification can always be made using Stinespring’s dilation theorem.

1.2.4 Unspecified output systems

Quite often we will be optimizing over channels that do not have a specific output
dimension, or equivalently we will be optimizing both over channels and over the output
systems. To deal with such different channels together (when possible), we will often
define unions of channels with different outputs spaces. This will of course lose any linear
structure on these sets, and we will not be able to sensibly define their composition. Our
first such definition are the set of all channels on H

CPTP(H) :=
⋃
H′

CPTP
(
H
〉
H′
)
.

Notice that defining the set of all instruments makes no sense, as it will include all channels
already for |M| = 1.

1.3 Bipartite systems

While we have already seen multiple quantum systems in the previous section, the
purpose of this section is to introduce the models for the interaction of systems that are
spatially separated. If two systems A and B are spatially separated from each other then

3Note that in [2], we use H for systems that are measured and H for systems that stay quantum.
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there are limitations on the operations that can be performed, coming from the physical
principle that all interactions must be local. To perform any global operations, the two
systems must be brought together first, which requires quantum communication. We
will see that global operations can also be mediated by a third quantum system, however
this only shifts the problem of the quantum communication to the third system. Even
without quantum communication though, classical communication can allow for non
trivial interactions, while being much easier to implement (the outcome of a measurement
can be communicated to condition an operation on the other systems, or the operations
could depend on some common classical information). As mentioned, the purpose of
this section is to introduce the models of interaction that we will use, together with the
operations that can be done by spatially separated systems using classical communication.
To do this, it is convenient to introduce a layer of abstraction through the concept of parties,
among which all the systems are distributed. The parties are usually labelled with names
such as Alice, Bob, Charlie, etc. We then separate the systems from different parties in a
colon separated list, as A:B, AA′:BB′, A:C:B, etc. In this section we consider systems of
two parties (bipartite systems), but most of the contents are straightforwardly generalized
to multipartite systems.

1.3.1 Separability and the PPT criterion

Let A:B be a bipartite system of Alice and Bob. We have already classified the computa-
tional basis state |i〉〈i| as the classical ones. A state (up to normalization) like ∑i |ii〉〈ii|AB
thus represents shared classical information between Alice and Bob. If Alice and Bob are
separated and decide to produce a new quantum state, they will only be able to perform
local channels to produce the quantum state, but they can do this conditioned on some
shared classical state like the above. The resulting state will not be classical, but we say it
will be separable. The separable states of a bipartite system are defined as

S(A:B) := conv {ρ⊗ σ : ρ ∈ D(A), σ ∈ D(B)} ,

If a state is not separable, it is said to be entangled. If Alice and Bob start with a separable
state, then any operation they do while spatially separated and unable to send each other
quantum states will result in another separable state. We call separable operations [Rai99b]
the channels with this property, namely a channel Λ ∈ CPTP(Ain:Bin〉Aout:Bout), is sep-
arable if it maps separable states into separable states even when applied to arbitrary
subsystems [Rai01], namely if for all systems A and B it satisfies

idAB⊗Λ(S(AAin:BBin)) ⊆ S(AAout:BBout).

Such a condition is satisfied if and only if Λ can be written with product Kraus operators,
namely if and only if there exist Ki ∈ L(Ain, Aout) and K̃i ∈ L(Bin, Bout) over some finite
index i ∈ I such that

Λ(ρ) = ∑
i∈I

(K⊗ K̃)ρ(K⊗ K̃)†.

We denote the set of separable operations with SEP(Ain:Bin〉Aout:Bout), and the set of all
separable operations on A and B as

SEP(A:B) :=
⋃

Aout,Bout

SEP(A:B〉Aout:Bout).

Generally checking whether any state is separable is a hard problem [Gur03], meaning
that we have no easily computable criterion that is necessary and sufficient to deter-
mine separability. However, positive maps that are not completely positive are easily
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computable necessary criterions: for any separable state ρ ∈ S(A:B) it is easily checked
that any positive map Λ ∈ P(A〉A′) produces a positive-semidefinite operator, namely
Λ ⊗ idB(S(A:B)) ⊆ H+(A′B). Checking for separability of ρ is actually equivalent to
checking that all positive maps produce a valid state [HHH01], however already determin-
ing separability within an error that decreases with the dimension of the system requires
intractably many positive maps [AS17]. Still, knowing as many positive maps outside of
CPTP as possible can only improve our understanding of separable states.

Within such positive maps, the partial transpose is of particular interest because,
among other reasons that will be mentioned later, it gives a criterion that is preserved by
separable operations. For bipartite systems we reserve a special notation to denote the
action of the transposition. For any bipartite system A:B we define the partial transpose of
a state ρ ∈ D(AB) as ρΓ := idA⊗ϑB(ρ). Because the transpose is an involution, the choice
to act on the second party is without loss of generality. If ρΓ > 0 then we say that ρ is
PPT (positive under partial transposition), otherwise we say it is NPT (non-positive under
partial transposition), and we define P(A:B) to be the set of all PPT states. Since if ρ is
PPT then ρΓ is also a valid state, we have:

P(A:B) = {ρ ∈ D(AB) : ρΓ ∈ D(AB)} = D(AB) ∩D(AB)Γ ,

which is also a closed convex set. Most importantly, while the partial transpose itself is
basis dependent, the PPT condition, and thus the set of PPT states, is not. The condition is
also preserved under the trace. As for separable states, we define PPT operations [Rai99b]
as those channels Λ∈CPTP(Ain:Bin〉Aout:Bout) that preserve the PPT property, even when
applied to arbitrary subsystems, namely if for any systems A and B they satisfy

idAB⊗Λ(P(AAin:BBin)) ⊆ P(AAout:BBout).

We denote with PPT(Ain:Bin〉Aout:Bout) the set of PPT operations, and with

PPT(A:B) :=
⋃

Aout,Bout

PPT(A:B〉Aout:Bout)

the set of all PPT operations on A and B, like for separable operations.
In low dimensions the PPT criterion is also sufficient, more precisely it was shown

in [HHH01] that P
(
C2:C2) = S(C2:C2) and P

(
C2:C3) = S(C2:C3). However in other

dimensions they are different, with the first examples of entangled PPT states being
presented in [Tan86; Hor97]. Since then we have learned of situations, some of which will
be explained in this thesis, where separability and PPTness behave much alike, and others
in which they behave in disparate ways.

Other bipartite channels

Notice that the definitions of separable and PPT operations have the same structure as
the definition of completely positive maps. In [BP10] the authors defined the larger sets
of separability-preserving operations and PPT-preserving operations as those channels
Λ∈CPTP(Ain:Bin〉Aout:Bout) satisfying

Λ(S(Ain:Bin)) ⊆ S(Aout:Bout)

and

Λ(P(Ain:Bin)) ⊆ P(Aout:Bout),

respectively. Separable and PPT operations can then be thought as the completely
separability-preserving and the completely PPT-preserving operations. An example



1.3. BIPARTITE SYSTEMS 27

of separability- and PPT-preserving operations that are neither separable or PPT, are the
swap and any global entangled measurement.

If in the conditions above we impose that all input states are to be mapped into
separable or PPT states, we get entanglement-annihilating [MZ10] and PPT-inducing
channels [Fil14]. More precisely, entanglement-annihilating channels are those channels
Λ ∈ CPTP(Ain:Bin〉Aout:Bout) for which

Λ(D(Ain:Bin)) ⊆ S(Aout:Bout).

and PPT-inducing channels are the ones for which

Λ(D(Ain:Bin)) ⊆ P(Aout:Bout).

Notice that there are no “completely” entanglement-annihilating or PPT-inducing channels.
Entanglement-annihilating and PPT-inducing are not to be confused with entanglement-
breaking [HSR03] and PPT-binding channels [HHH00]. Entanglement-breaking channels
are those channels Λ ∈ CPTP(Bin〉Bout) for which

idA⊗Λ(D(ABin)) ⊆ S(A:Bout)

and PPT-inducing channels are the ones for which

idA⊗Λ(D(ABin)) ⊆ P(A:Bout).

Namely, these channels impose the separability and PPT condition with respect to outer
systems.

1.3.2 Local Operations and Classical Communication

Separable operations, though, are not the channels that describe what operations spatially
separated parties can do. The difference is subtle but it has physical consequences. Without
any interactions, two parties can always perform their operations independently of one
another, we call this local operations, which is simply all the local channels on the system
of the two parties:

LO(Ain:Bin〉Aout:Bout) := CPTP(Ain〉Aout)⊗ CPTP(Bin〉Bout),

and
LO(A:B) :=

⋃
AoutBout

LO(A:B〉Aout:Bout).

We will now allow Alice and Bob to send classical messages to each other. We just need a
description of channels that have a classical part, and those are the quantum instruments.

One-way LOCC

First we allow Alice to send messages to Bob after his local operations, and allow Bob to
do his local operations conditioned on the messages, but we will not allow Bob to send
messages to Alice; in this case the communication is said to be one way. To introduce the
classical communication between two parties, we simply give to one party the classical
part of an instrument on the other. We can thus define a single round of local operation
with classical communication (LOCC) from Alice to Bob as:

LOCC→(Aout:Bout〈Ain:Bin) :=
⋃
M

[idAout ⊗CPTP(Bout〈MBin)] ◦ [IN(AoutM〈Ain)⊗ idBin ],
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Similarly if the message is from Bob to Alice we define

LOCC←(Aout:Bout〈Ain:Bin) :=
⋃
M

[CPTP(Aout〈AinM)⊗ idBout ] ◦ [idAin ⊗IN(MBout〈Bin)].

We then have the sets of all one-way LOCC operations on A and B:

LOCC→(A:B) :=
⋃

Aout,Bout

LOCC→(A:B〉Aout:Bout)

LOCC←(A:B) :=
⋃

Aout,Bout

LOCC←(A:B〉Aout:Bout).

Other than to define general LOCC below, without loss of generality it is normally enough
to deal only with LOCC→.

We could envision the parties sending multiple rounds of messages, but if the com-
munication is restricted to be only one-way, then a single round actually defines all the
one-way LOCC channels [DW05]. The reason is, since the operations of the sender do
not depend on the ones of the receiver, the receiver can just wait until all the messages
have arrived. This also means that there is no reason for the sender to perform its in-
struments in multiple steps. This is particularly relevant practically, because it means
that if the sender’s final outcome is purely classical, there is no requirement of keeping
the quantum part of the instrument alive. Because keeping the quantum information
alive is currently challenging, having to wait for two-way communication is sometimes
undesirable, and current proposals for quantum repeaters are shifting toward purely
one-way operations [Mur+16].

Two-way LOCC

If we allow two-way classical communication, then there is no such simplification on the
number of rounds. First we define a single round of two-way LOCC as:

LOCC1(Aout:Bout〈Ain:Bin) :=
⋃
A,B

LOCC←(Aout:Bout〈A:B) ◦ LOCC→(A:B〈Ain:Bin).

and then define n-rounds of two-way LOCC recursively as

LOCCn(Aout:Bout〈Ain:Bin) :=
⋃
A,B

LOCC1(Aout:Bout〈A:B) ◦ LOCCn−1(A:B〈Ain:Bin).

Notice that this construction in no way imposes Alice or Bob to be the first one to perform a
non-trivial operation, because the identity channel is included in the instruments. Having
Bob be the first instead of Alice simply changes the number of rounds by at most one.
Finally, LOCC can be defined as [Rai99b]

LOCC(Ain:Bin〉Aout:Bout) :=
⋃

n∈N

LOCCn(Ain:Bin〉Aout:Bout),

together with

LOCC(A:B) :=
⋃

Aout,Bout

LOCC(A:B〉Aout:Bout).

Hierarchy. By construction we have:

LO(A:B) ⊆ LOCC→(A:B) ⊆ LOCC(A:B) ⊆ SEP(A:B) ⊆ PPT(A:B). (1.1)
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1.4 Measurements

We have defined LOCC, SEP, and PPT in the form of operations, suitable for describing
the transformations that can be performed by Alice and Bob. Usually when defining
measurements, the whole system is measured, however to prove our results we need
a more flexible definition of measurement, where only some parties are measured, as
otherwise some of the statements will be false. The purpose of this section is to give a
framework to work with partial measurements in LOCC, SEP, and PPT.

Consider again systems H and H′, and let {|i〉H′}i∈Z|H′ |
be a choice of computational

basis. A measurement on H is a channelM ∈ CPTP(H〉H′) such that

M(ρ) := ∑
i∈Z|H′ |

tr(Miρ) |i〉〈i|H′ ,

for some positive operators Mi ∈ H+(H). To satisfy the trace-preserving condition
these operators will satisfy ∑i∈Z|H′ |

Mi = 1H, and thus {Tr Miρ}i∈Z|H′| forms a probability
distribution. The i are known as the measurement outcomes, Tr Miρ as the measurement
probabilities, the Mi as the measurement operators, {Mi}i∈Z|H′ |

as the positive operator-

valued measure (POVM), and |H′| as the number of outcomes. A measurement is called
projective if its measurement operators are projectors. A measurement on a basis of H,
also known as a von Neumann measurement, is a projective measurement with rank-
one measurement operators, namely they are the projectors onto an orthonormal basis
{|vi〉}i∈Z|H|

of H. Finally, the dephasing on the computational basis is the same channel

as the von Neumann measurementM ∈ CPTP(H〉H) on the computational basis4. We
denote by M

(
H
〉
H′
)

the set of measurements. For the set of all measurements on H

M(H) :=
⋃
H′

M
(
H
〉
H′
)
.

where we use · on the input, to denote that any output system has classical output.
Let now L(H〉H′) ⊆ CPTP(H〉H′) be any subset of channels. We define L

(
H
〉
H′
)
⊆

L(H〉H′) as those channels that ends with a measurement on H′. By definition, this is the
intersection with the measurements on H:

L
(
H
〉
H′
)

:= L
(
H
〉
H′
)
∩M

(
H
〉
H′
)
.

Notice that L
(
H
〉
H′
)

could be empty even if L(H〉H′) is not, as is the case for the set of
unitary conjugations. L

(
H
〉
H′
)

is a subset of the measurements achieved by composing
H′ with any measurement, and in general the two sets are not the same:

L
(
H′
〈
H
)
⊆ M

(
H′
〈
H′
)
◦ L
(
H′
〈
H
)
.

The inclusion is due to the fact that there always exist a non-disturbing measurement in
M
(
H′
〈
H′
)
. However, while all the measurements in L are preserved, M

(
H′
〈
H′
)
◦ L(H′〈H)

will in general also include new measurements and the inclusion will be strict. In the
example of unitary conjugations, we do not get the empty set. If L(H〉H′) is defined for all
systems H′, then we have the set of all measurements in L given by

L(H) :=
⋃
H′

L
(
H
〉
H′
)
.

A subset L ∈ L(H) is said to be informationally complete [MWW09], if for all operators
K ∈ L(H) there exist Λ ∈ L such that Λ(K) 6= 0.

4We could make a definition of instrument and measurements where the classical registry is any basis,
however this would let us call measurements also any dephasing channel on a basis, which we want to avoid.
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1.4.1 Partial measurements

It is a straightforward observation to see that measurements are obtained by tracing out the
quantum part of an instrument, thus we could have also defined the set of measurements
as

M(H〉M) = IN(H〉M).

We can think of instruments as measuring a subsystem, and thus we can call
them also partial measurements. Let H, H′, H′′ be any systems and let L(H〉H′H′′) ⊆
CPTP(H〉H′H′′), we thus define the subset L of partial measurements on H′′, like in the
case of measurements, as the intersection with the instruments that are classical on H′′

L
(
H
〉
H′H′′

)
:= L

(
H
〉
H′H′′

)
∩ IN

(
H
〉
H′H′′

)
,

where now we view H′′ as being the classical output system of the instruments (the M in
IN(H〉H′M)). Like for measurement, L

(
H
〉
H′H′′

)
is in general a non trivial subset of the

partial measurements achieved by composing with any local measurement on H′′ [2],

L
(
H′H′′

〈
H
)
⊆
[
idH′ ⊗M

(
H′′
〈
H′′
)]
◦ L
(
H′H′′

〈
H
)
.

In the particular case where L is invariant under local channels, so we have

L
(
H′H′′

〈
H
)
⊇
[
idH′ ⊗CPTP

(
H′′
〈
H′′
)]
◦ L
(
H′H′′

〈
H
)
,

then the opposite inclusion becomes trivial and we get the equality:

L
(
H′H′′

〈
H
)
=
[
idH′ ⊗M

(
H′′
〈
H′′
)]
◦ L
(
H′H′′

〈
H
)
. (1.2)

Finally, while M
(
H
〉
H′′
)

itself is not invariant under local channels, we still have:

M
(
H′′
〈
H
)
= M

(
H′′
〈
H′′
)
◦M

(
H′′
〈
H
)
,

and even

M
(
H′′
〈
H
)
= M

(
H′′
〈
H′′
)
◦ CPTP

(
H′′
〈
H
)
.

Notice that it makes no sense, just like for instruments, to define for example L
(
HH′′

)
,

namely to define partial measurements for input systems, unless the are some restriction
between the input and the output systems. This becomes possible for bipartite channels
due to the extra structure imposed by bipartite systems, which is the reason for introducing
partial measurements.

1.4.2 Bipartite classes

If K defines a subset of states K(H) ⊆ D(H) for any system H, then we also call it a
class states. Similarly, if L defines a subset of channels L(H〉H′) ⊆ CPTP(H〉H′) for any
systems H and H′, then we also call it a class of channels. Separable and PPT states share
some common properties as classes of states, and, similarly, LOCC, SEP, and PPT also
share some common properties as classes of channels. The purpose of this section is
to define these properties for channels and for states, so that we can use them in more
generality. The definitions for bipartite systems also induce these definitions on single
party systems by taking one of the parties to be trivial. However giving the definitions for
single party only, does not imply the definition for bipartite systems, because it does not
fix the freedom in grouping the parties. In principle, we should therefore reiterate these
definitions for multipartite systems when we get there, instead we will leave this implicit.
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We call L a class of bipartite channels, if it defines

L(Ain:Bin〉Aout:Bout) ⊆ CPTP(Ain:Bin〉Aout:Bout)

for any systems Ain, Bin, Aout, Bout, and define the sets of all its channels on AB as

L(A:B) :=
⋃

Aout:Bout

L(A:B〉Aout:Bout).

We then define the following properties, where it is implicit that they need to hold for all
mentioned systems.

• L is closed under tensor products if

L
(
A1:B1

〉
A′1:B′1

)
⊗ L
(
A2:B2

〉
A′2:B′2

)
⊆ L

(
A1A2:B1B2

〉
A′1A′2:B′1B′2

)
.

• L is close under composition if

L(Aout:Bout〈Ain:Bin) ⊇ L(Aout:Bout〈A:B) ◦ L(A:B〈Ain:Bin).

• L is closed under local operations if

L(Aout:Bout〈Ain:Bin) ⊇ LO(Aout:Bout〈A:B) ◦ L(A:B〈Ain:Bin).

In particular this property implies that we can write those channels where a party is
removed simply by tracing the party, namely:

L(C:Bout〈Ain:Bin) = trAout ◦L(Aout:Bout〈Ain:Bin). (1.3)

• L is a class of operations if it contains local operations and is closed under tensor
product and composition. In particular, measurement classes are not classes of
operations.

• L contains classical communication from Alice to Bob if

L(Ain:Bin〉AoutM:Bout) ⊆ L(Ain:Bin〉Aout:MBout), (1.4)

or from Bob to Alice if

L(Ain:Bin〉Aout:MBout) ⊆ L(Ain:Bin〉AoutM:Bout).

• L is informationally complete if for all operators K ∈ L(AB) there exist Λ ∈ L(A:B)
such that Λ(K) 6= 0.

Some comments about these properties are due. Local operations are informationally
complete, closed under composition and tensor product, and trivially closed under them-
selves. It implies that classes of operations, their measurements and partial measurements
are informationally complete. A class of channels can be informationally complete, with-
out its measurements being too (again the class of unitary conjugations is an example,
having an empty subset of measurements). However if L is informationally complete and
closed under local operations, then its measurements will be informationally complete. If
L is a class of operations containing classical communication from Alice to Bob, then it
will contain LOCC→, and if it contains communication both ways, then it will contain also
LOCC. Therefore LOCC are the smallest classes satisfying these properties and they are
informationally complete.

We now abstract the properties of classes of states. We call K a class of bipartite states,
if it defines K(A:B) ⊆ D(AB) for all systems A and B. We then have the following natural
properties.
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• K is convex if K(A:B) is convex.

• K is closed under tensor products if

K(A:B)⊗K
(
A′:B′

)
⊆ K

(
AA′:BB′

)
.

• K is closed under the trace if

trABK
(
AA′:BB′

)
⊆ K

(
A′:B′

)
.

• K is closed under L if

K(Aout:Bout) ⊇ L(Ain:Bin〉Aout:Bout) ◦ K(Ain:Bin).

• K is closed under measurement operators in L, if for any σ ∈ K(A′A:B′B) and any
measurement operator M of a measurement in L

(
A′:B′

)
, we have

trA′B′ [(M⊗ 1AB)σ]

tr[(M⊗ 1AB)σ]
∈ K(A:B),

namely if K is closed under conditioning on a measurement outcome in L.

The class of pure states is an example of a class closed under tensor product but not
under the trace, while the Werner states (presented in Section 2.5) are a class that is closed
under the trace but not under tensor product. Notice that the class of PPT states is closed
under PPT measurement operators and consequently under measurements operators for
all subclasses of PPT. Similarly the class of separable states is closed under separable
measurement operators, and consequently under LOCC measurement operators.

1.4.3 Bipartite measurements

For a bipartite class of channels L, the sets of measurements in L are simply L
(
A:B

〉
A′:B′

)
,

and the sets of partial measurement are L
(
A:B

〉
A′:B′

)
and L

(
A:B

〉
A′:B′

)
, where we have

by construction
L
(
A:B

〉
A′:B′

)
⊆ L

(
A:B

〉
A′:B′

)
, L
(
A:B

〉
A′:B′

)
.

When L is closed under local operations, then we can use Equation (1.2) and think of
these measurement sets as the ones achieved by composing the channels with local mea-
surements. Finally, the restrictions imposed by bipartite channels allows us to define
measurements and partial measurements with unspecified output (something that other-
wise we said does not make sense). We define

L(A:B) :=
⋃

Aout,Bout

L(A:B〉Aout:Bout)

L(A:B) :=
⋃

Aout,Bout

L(A:B〉Aout:Bout)

L(A:B) :=
⋃

Aout,Bout

L(A:B〉Aout:Bout)

for which we again have L(A:B) ⊂ L(A:B), L(A:B). It still makes no sense though to
have some systems measured and some not within a single party, for example something
like L(A:BM), especially for classes closed under local operations. The above definitions
preserve inclusion and thus they preserve Equation (1.1) under measurements.



1.4. MEASUREMENTS 33

Simplifications

As LO, LOCC, LOCC→, SEP and PPT are all closed under composition and tensor prod-
ucts, to work with their measurements and their partial measurements we can use Equa-
tion (1.2), which says (omitting idBout)

L(Aout:Bout〉Ain:Bin) = M(Aout〈Aout) ◦ L(Aout:Bout〉Ain:Bin).

and similarly for partial measurements on Bob, and for full measurements. Because of
this local measurements have the simple characterization

LO(A:B〉Aout:Bout) = M(A〉Aout)⊗M(B〉Bout).

The set of all local measurements on A:B is then:

LO(A:B) =
⋃

Aout,Bout

LO(A:B〉Aout:Bout) = M(A)⊗M(B)

while the local partial measurements are

LO(A:B) =M(A)⊗ CPTP(B)
LO(A:B) =CPTP(A)⊗M(B).

We get a simplification also for the one-way LOCC channels, and without loss of generality
let us consider only LOCC→(A:B). If Alice is measured then we can relax the channel on
Bob to global channels, which is formalized by the following equation

LOCC→(A:B) =
⋃
Bout

LOCC→(C:Bout〈A:B)

=
⋃

Bout,M

CPTP(Bout〈MB) ◦ [M(M〈A)⊗ idB], (1.5)

The second equality follows from the first by definition, while the first one is readily
verified using the classical communication from Alice to Bob in the form of Equation (1.4)

LOCC→(A:B) =
⋃

Aout,Bout

LOCC→(Aout:Bout〈A:B)

⊆
⋃

Aout,Bout

LOCC→(C:AoutBout〈A:B)

⊆
⋃
Bout

LOCC→(C:Bout〈A:B)

⊆ LOCC→(A:B).

Namely, we can think of LOCC→(A:B) both as Alice sending all the measurement outcomes
to Bob, or as Alice being completely removed. This implies that, in completing to full
measurements, we can relax the measurement on Bob to global measurements, namely

LOCC→(A:B) =
⋃

Bout,M

M(Bout〈MB) ◦ [M(M〈A)⊗ idB].

Classical communication

Next, inspired by the previous comments about LOCC→ measurements, we will make
two similar remarks to simplify the use of general partial measurements. These appeared
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stated imprecisely in [2]5. The first one is fairly simple, if L is closed under local operations
and contains classical communication from Alice to Bob, then indeed a measured Alice
can always be removed by sending the measurement outcomes to Bob. Namely, let Alice
be measured without loss of generality, then we have

L(A:B) =
⋃
Bout

L(A:B〉C:Bout). (1.6)

as it is shown by

L(A:B) =
⋃

Aout,Bout

L(A:B〉Aout:Bout) ⊆
⋃
Bout

L(A:B〉C:AoutBout)

⊆
⋃
Bout

L(A:B〉C:Bout) ⊆
⋃

Aout,Bout

L(A:B〉Aout:Bout) = L(A:B).

Because of Equation (1.3) we can think of this as a form of “L(A:B) = trA L(A:B)”. This
can be straightforwardly generalized to any multipartite setting, as long as the measured
party has classical communication to at least one other party.

The second remark is of complementary flavour, and says that when Alice is already
measured and we want to complete the measurement on Bob, we can relax to global
measurements.

Lemma 1. Let L be a class of bipartite channels that contains classical communication from A to
B and that is closed under local operations. Then

L(A:B) =
⋃

M,Aout,Bout

M(M〈AoutBout) ◦ L(Aout:Bout〈A:B).

Lemma 1 should be thought as a kind of “L(A:B) = M(AB) ◦ L(A:B)”. This formula-
tion will be enough in the next chapter to lift measurements in the trace norms. Again
this should generalize to the multipartite setting, the condition being that there is only
one party that is not yet measured and, directly or indirectly, it can receive classical
communication from any other party.

Proof. By the assumption that L is closed under local operations we can use Equation (1.2),
which says that we can write the partial measurements as composition with the all the
measurements on the measured system, and by simply relaxing to global measurements
we get

L(A:B) =
⋃

Aout,Bout

L(Aout:Bout〈A:B)

=
⋃

Aout,Bout

(M(Aout〈Aout)⊗M(Bout〈Bout)) ◦ L(Aout:Bout〈A:B)

⊆
⋃

M,Aout,Bout

M(M〈AoutBout) ◦ L(Aout:Bout〈A:B).

5In [2] we would allow to compose two classes of channels L and L′ by simply composing any channels
with matching input/output. The flaw in this definition is that, while we are allowed to split the Hilbert space
in tensor product spaces to define the channel, two Hilbert spaces of the same dimension, like Cd ⊗Cn and
Cn ⊗Cd, are actually the same Hilbert space independently of how they where built. Therefore composing
(e.g.) separable channels, gives separable channels only if we keep track of the input/output systems, and
make sure that the bipartitions match in the composition.
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where we also made use of M(Aout〈Aout) = M(Aout〈Aout) ◦M(Aout〈Aout). By assumption
on the presence of classical communication we then have

L(A:B) ⊆
⋃

M,Aout,Bout

M(M〈AoutBout) ◦ L(Aout:Bout〈A:B)

⊆
⋃

M,Aout,Bout

M(M〈AoutBout) ◦ L(C:AoutBout〈A:B)

⊆
⋃
M

L(C:M〈A:B)

⊆ L(A:B).

1.5 Qudit systems

So far we have reviewed the formalism and the basics concepts of quantum information,
while at the same time only talking generally about “quantum systems”. But who am I
kidding? There is no way I can slip through this thesis without the mentioning “quantum
computer”. We have hinted at the fact that finite dimensional quantum systems are the
quantum analogue of digital systems, while carefully dodging mentioning that classical
computers are the emblematic example of digital systems. The finite systems handled by
classical computers are called bits, and while there are many examples of everyday finite
systems (coins, alphabets, etc) that are not called bits, it is natural to call them bits when
the topic involves some form of computation. In this section we will review some more
specific aspects of finite dimensional quantum systems and call them quantum bits, or
quantum dits, to highlight the more computational nature of these properties.

1.5.1 One qudit - Bit flips and phase flips

A single finite dimensional quantum system H is also known as a qudit, or qubit if the
dimension is two6. Let d = |H| be its dimension. We define the d-th root of unity ω = ei 2π

d

and, given the choice of computational basis {|i〉H}i∈Zd
, we define the following unitary

operators

XH := ∑
j∈Zd

|j + 1〉〈j|H ZH := ∑
j∈Zd

ω j |j〉〈j|H , (1.7)

which satisfy Xd
H = Zd

H = 1H. We define also their corresponding channels:

X j
H(ρ) := X j

HρX−j
H Z j

H(ρ) := Zj
HρZ−j

H

As usual we allow the system subscript to be implicit. For d = 2 we will allow the notation
Z+ = Z0 and Z− = Z1. The operators obey the commutation relation ZX = ωXZ. Since
commuting them picks up only a phase which cancels out under conjugation, we have
that X and Z commute. For d = 2 they reduce to the Pauli X and the Pauli Z

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
,

also known as the bit flip and the phase flip, we will thus keep calling them bit flip and
phase flip for arbitrary d.

6“qubits are neato” cit. mAlexander
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We also define the discrete Fourier transform with unitary normalization:

FH :=
1√
d

∑
ij∈Zd

ω−ij |i〉〈j|H . (1.8)

or just F when then system is implicit. The Fourier transform is a change of basis from the
computational basis to the eigenbasis of X, also known as the conjugate basis. Furthermore,
X and Z have the same spectrum and F is the transform between them, as displayed by
XF |i〉 = ωiF |i〉 = FZ |i〉 for i ∈ Zd, namely we have the transformation rules

XF = FZ XF−1 = F−1Z−1.

If we denote the channel of the Fourier transform with

FH(ρ) := FHρF†
H

then we can rewrite the relations as X ◦ F = F ◦ Z and X ◦ F−1 = F−1 ◦ Z−1.
The bit flips and phase flips generate the unitary subgroup known as the Weyl or

Weyl-Heisenberg group [Wey27]. Up to phases, all the elements of the group are given
by XiZj for i, j ∈ Zd, known as the Weyl operators. Therefore X iZ j ≡ X i ◦ Z j are all
the channels generated by the Weyl group on a single qudit. The fourier transform then
transforms these channels nicely as

X iZ j ◦ F = F ◦ X jZ i.

We will denote the Weyl operators also as Σij, and they satisfy the following basic proper-
ties:

Σij := XiZj ΣijT = ω−ijΣ−i,j

Σij
= Σi,−j Σij† = ωijΣ−i,−j

The Weyl operators satisfy the following commutation relation

ΣijΣkl = ω jkΣi+k,j+l = ω jk−ilΣklΣij.

and all except the identity are traceless, namely tr
(
Σij†) = δi0δj0, where δ is the Kronecker

delta. More precisely, the Weyl operators form an orthogonal basis forH(H), namely

tr
(

Σij†Σkl
)
= dδikδjl ,

so scaling them by 1/
√

d makes them into an orthonormal basis.
Finally, we can rewrite the measurement on the computational basis as a twirl on the

phase flips, namely we have:

∑
i∈Zd

|i〉〈i| ρ |i〉〈i| = 1
d ∑

j∈Zd

Z i(ρ)

and similarly the measurement on the conjugate basis can be rewritten as a twirling over
bit flips. If we twirl over bit flips and phase flips, then the result is always the maximally
mixed state.
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XiZj •

XkZl

=

• XkZj−l

Xk+iZl

Figure 1.1: Effect of commuting CNOT with arbitrary bit/phase flips.

1.5.2 Two qudits - Bell states

Consider the system HH, or equivalently a system HH′ with |H′| = |H|. We call this a two
qudit system. Let again d = |H|. Having fixed a choice of computational product basis on
the two qudit system {|i〉H ⊗ |j〉H′}ij∈Zd

we define the maximally entangled state7

ΦHH′ :=
1
d ∑

ij∈Zd

|ii〉〈jj|HH′ = |Φ〉〈Φ|HH′

|Φ〉HH′ :=
1√
d

∑
i∈Zd

|ii〉HH′ .

We will also use Φlog d ≡ ΦCd⊗Cd to denote the maximally entangled state on the anony-
mous qudits Cd⊗Cd. For any operator K we have the following two useful properties, the
second one known as the mirror lemma, that we can use to move operators and channels
around

tr((K⊗ 1)Φ) = tr(K), (K⊗ 1) |Φ〉 = (1⊗ KT) |Φ〉 .

We also have dΦ = SΓ (where S is the swap operator defined in the preliminaries).
Acting with bit flips and phase flips (the Weyl operators) on Φ we can generate a basis

for HH. We define for i, j ∈ Zd:8

φij,HH′ := idH⊗X i
H′Z

j
H′(ΦHH′) =

∣∣φij
〉〈

φij
∣∣
HH′ . (1.9)∣∣φij

〉
HH′ := (1H ⊗ Xi

H′Z
j
H′) |Φ〉HH′ .

In d = 2 these are known as the Bell states, for which we have the common notation

Φ+ ≡ φ00 Φ− ≡ φ01

Ψ+ ≡ φ10 Ψ− ≡ φ11,

We will thus continue to call φij Bell states in arbitrary dimension. Notice that we can write
Φ± = Z±(Φ). A nice property that the Bell states satisfy, and that we will use further on,
is that the Fourier transform can swap the indexes of the Bell states

[F ⊗F ](φij) = [id⊗(F ◦ X iZ j ◦ F †)](Φ) = [id⊗X jZ i](Φ) = φji, (1.10)

using the mirror lemma and the relations from the previous section. It is worth to remark,
that in d = 2 there are additional product unitaries that make it possible to achieve any
permutations of the Bell states [Ben+96c], however to the best of my knowledge, we do
not know if it is possible in arbitrary dimension.

7where the reason for “maximally” is left for later.
8The decision of acting on the first or second system is in principle arbitrary, but it does generate a

permuted basis.
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On two qudits, the controlled-not is the controlled unitary defined as

CNOTHH′ := ∑
ij∈Zd

|i, i + j〉〈ij|HH′ = ∑
i∈Zd

|i〉〈i|H ⊗ Xi
H′

CNOT HH′(ρ) := CNOTHH′ρCNOT†
HH′ ,

namely the quantum analogue of addition in Zd. The CNOT manifestly commutes with
Z⊗ 1 and 1⊗ X, and it can be checked easily that CNOT(X⊗ 1) = (X⊗ X)CNOT and
CNOT(1⊗ Z) = (Z−1 ⊗ Z)CNOT, which put together give the commutation relation for
the Weyl operators (see Figure 1.1 for the corresponding quantum circuit):

CNOT(XiZj ⊗ XkZl) = (XiZj−l ⊗ Xi+kZl)CNOT. (1.11)

The CNOT can thus be used to transform between the Bell basis and the computational
basis as follows:9

φij = (id⊗X iZ j) ◦ CNOT ◦ (F−1 ⊗ id)(|00〉〈00|)
= CNOT ◦ (Z j ⊗X iZ j) ◦ (F−1 ⊗ id)(|00〉〈00|)
= CNOT ◦ (F−1 ⊗ id) ◦ (X j ⊗X iZ j)(|00〉〈00|)
= CNOT ◦ (F−1 ⊗ id)(|ji〉〈ji|).

We define Φ̂HH′ , which we call the maximally correlated state, to be the state after mea-
suring ΦHH′ in the computational basis. IfM is the measurement on the computational
basis of HH′, andM′ the measurement on the computational basis of H or H′, then:

Φ̂ =M(Φ) = id⊗M′(Φ) =M′ ⊗ id(Φ) =
1
d ∑

i∈Zd

|ii〉〈ii| .

Furthermore, we define φ̂ij,HH′ to be the outcome of measuring φij,HH′ on the computational
basis. For the Bell states with no bit flips, the outcome is also Φ̂, namely we have for all
j ∈ Zd

φ̂0j =M(φ0j) = id⊗M′(φ0j) =M′ ⊗ id(φ0j)

= Φ̂ =
1
d ∑

i∈Zd

|ii〉〈ii| = 1
d ∑

k∈Zd

φ0k.

The maximally correlated state is the uniform mixture on what we call the maximally
correlated subspace; we denote the projector onto this subspace by

1Φ̂,HH′ := ∑
i∈Zd

|ii〉〈ii|HH′ = ∑
j∈Zd

φ0j,HH′ .

Finally, the twirl on Σab ⊗ Σab, which we can call the Weyl or Pauli twirl, can be used
to implement the dephasing channel on the Bell basis. Namely:

1
d2 ∑

ab∈Zd

(
Σab ⊗ Σab)

ρ
(
Σab ⊗ Σab)†

= ∑
kl∈Zd

φklρφkl .

Proof. The statement can be checked by first writing:

Xa ⊗ Xa = ∑
kl∈Zd

ω−alφkl Zb ⊗ Z−b = ∑
kl∈Zd

ωbkφkl ,

9With X, Z, F and CNOT defined as we did, acting on the first system would map |φij〉 to |j,−i〉 instead.
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and using them to verify that

Σab ⊗ Σab
= ∑

kl∈Zd

ω−al+bkφkl φkl =
1
d2 ∑

ab∈Zd

ω−bk+alΣab ⊗ Σab.

Then:

1
d2 ∑

ab∈Zd

(Σab ⊗ Σab
)ρ(Σab ⊗ Σab

)† =
1
d2 ∑

abkl∈Zd

ωbk−alφklρφk̃l̃ω
−bk̃+al̃ = ∑

kl∈Zd

φklρφkl .

1.5.3 Three qudits - Quantum teleportation

One of the reasons for calling Φ “maximally” entangled is that it can be used to imple-
ment the identity channel, through the protocol of quantum teleportation [Ben+93]. In
this protocol Alice holds a qudit system A, while sharing with Bob also the maximally
entangled state ΦAinBout , meaning we have the bipartite system AAin:Bout. In quantum
teleportation, it is possible, using only LOCC, for Alice to send the quantum state of A to
Bob. The steps of the LOCC protocol are

1. Alice measures the Bell basis φij on AAin;

2. Alice sends the measurement outcome ij (two classical dits) to Bob;

3. Bob applies ΣabT to Bout;

4. The measurement outcome can be discarded.

The resulting channel Λ has separable Kraus operators

〈φab| ⊗ ΣabT =
[
〈Φ| (1⊗ Σab†)

]
⊗ ΣabT.

Verifying that Λ is the identity channel is a simple application of the mirror lemma. Let
K ∈ L(H), then

Λ(K⊗ΦAinBout) := ∑
a,b∈Zd

(
〈φab|AAin

⊗ ΣabT
Bout

)
(K⊗ΦAinBout)

(
|φab〉AAin

⊗ Σab
Bout

)
= ∑

a,b∈Zd

(
〈Φ|AAin

⊗ 1Bout

)
(K⊗ΦAinBout)

(
|Φ〉AAin

⊗ 1Bout

)
= ∑

a,b,i,j∈Zd

(
〈Φ|AAin

⊗ 1Bout

)
(Kij |i〉〈j|A ⊗ΦAinBout)

(
|Φ〉AAin

⊗ 1Bout

)
= Kij |i〉〈j|Bout

.

The teleportation protocol works with any Bell state, the only difference is that the correct-
ing Weyl operator will need to be adjusted. The implication of the quantum teleportation
protocol is that quantum channels need not be tangible (as an optical fiber, or a system
ready to receive photons at any time) but it can be stored in memory like any other
quantum state. Maximally entangled state can be shared and then stored at a later time,
effectively storing identity channels for later use.

1.5.4 Four qudits - BNOT

We conclude our background on Bell states with the bilateral CNOT, the unitary on four
qudits tensor product of two CNOT’s. We let d be again the dimension of the four systems,
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C1
XiZj •

T1
XkZl

|Φ〉
⊗ BNOT
|Φ〉 C2

•

T2

=

C1
XiZj−l

T1
Xk+iZl

|Φ〉
⊗
|Φ〉 C2

T2

(1.12)

Figure 1.2: Effect of the BNOT on Bell states.

and to keep track of them we will name C = C1C2 the two control qudits, and T = T1T2
the two target qudits. Then the bilateral CNOT, or BNOT for short, is defined as:

BNOTCT := CNOTC1T1 ⊗ CNOTC2T2

BNOT CT(ρ) := BNOTCT · ρ · BNOT†
CT.

This unitary was introduced for d = 2 in [Ben+96b], where it was called Bilateral XOR
(BXOR). Like in [Ben+96c], our interest in this gate lies in its effect on Bell states.

Lemma 2 ([1]). For all i, j, k, l ∈ Zd:

BNOTCT

(∣∣φij
〉

C ⊗ |φkl〉T
)
=
∣∣φi,j−l

〉
C ⊗ |φk+i,l〉T (1.13)

Lemma 2 follows because Φ⊗Φ is invariant under the action of the BNOT, namely

BNOTCT · (|Φ〉C ⊗ |Φ〉T) = |Φ〉C ⊗ |Φ〉T . (1.14)

Applying Equation (1.14) and the commutation relation of the CNOT Equation (1.11)
to the definition of the Bell states in Equation (1.9), proves Lemma 2, as displayed in
Figure 1.2. From Lemma 2, it follows in particular that

BNOT (φ00 ⊗ φ0j) = φ0j ⊗ φ0j. (1.15)

This will be our crucial tool in the simplification of private states in Chapter 3.



Chapter 2

Quantum Information

Often in quantum communication problems, such as key distillation considered in this
thesis, the goal of Alice and Bob is to share some specific target states. However, because
of noise in the input, the target states cannot be produced exactly in general. Instead,
the target states must be approximated as well as possible from what is given as input
using LOCC. To even define what it means to approximate these states, we need some
distance measure. However, there are many distance measures. For distillation the
relevant distance needs to measure how different two states are in the space of quantum
states. But other times we only need to measure how different the observations, and
thus the outcomes of measurements, are on the states. Sometimes the measurements are
restricted, like in the case of bipartite systems, or they are only partial measurements.
The purpose of this section is to present the distances induced by the trace norm, the
Holevo information and the relative entropy, and to present their relevant properties.
These will be used extensively throughout the thesis, to describe the connection between
distinguishability, entanglement distillation and distillation of key across repeaters in the
upcoming chapters.

2.1 Trace norm

As a norm, the trace norm induces the trace distance 1
2‖ρ− σ‖1 for ρ, σ ∈ D(H). By

definition the norm of any state is one, and thus ‖ρ− σ‖1 6 2, which is saturated for
orthogonal states. The trace distance of ρ from a subset of states K ⊆ D(H) is defined as:

‖ρ−K‖1 := inf
σ∈K
‖ρ− σ‖1

and the distance of two subsets K,K′ ⊆ D(H) as∥∥K′ −K∥∥1 := inf
ρ∈K′
‖ρ−K‖1.

Let ε > 0, we say that two states ρ and σ are ε close if their trace distance is lower than
ε, for which use the notation

ρ ≈ε σ ⇔ 1
2
‖ρ− σ‖1 < ε.

Similarly we say that ρ and K are ε close if their distance it lower than ε:

ρ ≈ε K ⇔ 1
2
‖ρ−K‖1 < ε

K′ ≈ε K ⇔ 1
2

∥∥K′ −K∥∥1 < ε.
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The trace norm is a monotone under quantum channels, namely for all channels Λ ∈
CPTP(H〉H′) we have:

‖Λ(ρ)−Λ(σ)‖1 6 ‖ρ− σ‖1,

and similarly for ‖Λ(ρ)−Λ(K)‖1.

2.1.1 Restricted norms

Because of the monotonicity of the trace distance, if we look from the outcomes of a
measurement at two states, they might look closer than they are. However the outcomes
of a measurement are the only thing we can physically access to estimate their distance. If
we then have a restriction on our measurements, it makes sense to compute the maximum
distance achieved under such restriction. Therefore we have the following definition,
generalized to include partial measurements.

Definition 3 (L norm [MWW09; 2]). Let L be a subset of channels on H. For any Hermitian
operator X ∈ H(H), the trace norm in restriction to L, or L norm, is defined as:

‖X‖L := sup
Λ∈L
‖Λ(X)‖1. (2.1)

Let now K ⊆ D(H) be a subset of states. For any state ρ ∈ D(H), the trace distance from K in
restriction to L, or L distance from K, is defined as:

‖ρ−K‖L := inf
σ∈K
‖ρ− σ‖L.

Notice that we defined the L norm on general Hermitian operators, but for our pur-
poses they can be thought of as just the difference of two states. ‖·‖L is also convex, and
if L is informationally complete, then ‖X‖L = 0 if and only if X = 0, and the L norm is
indeed a norm. If L contains the identity channel, then the latter is always the optimal
channel. In such case the above definition is not very interesting. However, if we consider
partial measurements as defined in Section 1.4, then they all exclude the identity. When L
is some form of PPT, SEP or LOCC measurement or partial measurement, then we will
generally refer to ‖·‖L as a “local norm”.

Since the trace norm is just the trace of the positive part and the negative part, namely
‖X‖1 = tr |X| = tr X+ + tr X−, and because said parts are orthogonal, it turns out that the
trace norm can always be achieved with a projective measurement (which depends on X),
see [MWW09] for further details. Formally we have

‖X‖1 = ‖X‖M(H) = ‖X‖M(H〉C2). (2.2)

Let us emphasize that, in restricting to measurements, the trace distance on two states
‖M(ρ)−M(σ)‖1 is equal to its classical counterpart (the statistical distance) on the
measurement outcomes.

If L is a subset of measurements, then the L norm can always be expressed in the
following convenient form [MWW09]:

‖X‖L = sup
T∈KL

tr(TX), (2.3)

where KL ⊆ B∞ is a symmetric convex body, generated by the course graining of the
measurement operators of measurements in L. The set KL always contains ±1H, since
unless L is empty, the value of the L norm on states is always one (‖ρ‖L = 1). By
construction, the polar K◦L is then the unit ball for ‖·‖L and we have ‖·‖K◦L

= ‖·‖L. When
there exists a positive semidefinite closed convex cone R+C ⊆ H+(H) that generates L,
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namely such that L is all the measurements with measurement operators in R+C, then the
symmetric convex body KL simplifies to

KL = {R+C − 1H} ∩ {1H −R+C} (2.4)

2.1.2 Bipartite norms

If L is a class of bipartite channels closed under tensor product, we then find that the local
norms are super-multiplicative, namely for any Hermitian operators X ∈ H(A′B′) and
Y ∈ H(AB) we have first

‖Y‖L(A:B)‖X‖L(A′:B′) 6 ‖Y⊗ X‖L(AA′:BB′)

from which it follows that (using ‖ρ‖L = 1)

‖X‖L(A′:B′) 6 ‖ρ⊗ X‖L(AA′:BB′) (2.5)

and that
KL(A:B) ⊗ KL(A′:B′) ⊂ KL(AA′:BB′).

If L is a class of bipartite channels that contains classical communication from Alice to
Bob, then an immediate consequence of Equation (2.2), namely the fact that measurements
achieve the trace norm, is that by Lemma 1 we have [2]

‖X‖L(A:B) = ‖X‖L(A:B). (2.6)

as showed by

‖X‖L(A:B) = sup
Λ∈L(A:B)

‖Λ(X)‖M(H)

= sup
A′B′M

sup
Λ∈L(A:B〉A′:B′)

sup
M∈M(A′B′)|M)

‖M ◦Λ(X)‖1

= sup
{
‖Λ(X)‖1 : Λ ∈

⋃
M,A′,B′

M
(
M
〈
A′B′

)
◦ L
(
A′:B′

〈
A:B

)}
= sup

Λ∈L(A:B)
‖Λ(X)‖1

= ‖X‖L(A:B).

There would thus be no need to define restricted trace distances for channels other
than measurements. The necessity of restricting beyond sets of measurements is imposed
by the relative entropy, where the analogue of Equation (2.2) does not hold. There again,
the definition will be interesting when the identity channel is excluded.

2.1.3 Separable and PPT norms

The separable and PPT measurements SEP(A:B) and PPT(A:B) can indeed be character-
ized as the measurements with measurement operators in the cones generated by S(A:B)
and P(A:B), respectively. By Equation (2.4), the associated convex bodies KSEP(A:B) and
KPPT(A:B) are

KSEP(A:B) = {R+S(A:B)− 1AB} ∩ {1AB −R+S(A:B)},
KPPT(A:B) = {R+P(A:B)− 1AB} ∩ {1AB −R+P(A:B)}

= B∞(AB) ∩ B∞(AB)Γ .

As we would expect, since separable and PPT operations are defined as those operations
that preserve separability and PPTness, separable and PPT states do not increase the
respective local norms.
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Fact 4. Let (L,K) be either (PPT,P) or (SEP,S). For any state ρ ∈ K(A:B) and any Hermitian
operator X ∈ H(A′B′) we have

‖X‖L(A′:B′) = ‖ρ⊗ X‖L(AA′:BB′).

Proof. One inequality is given by Equation (2.5). For the opposite inequality, we have that
the state preparation channel Λ(X) = ρ⊗ X is in L(A′:B′〉AA′:BB′), namely it is a local
channel, and therefore for any Hermitian operator X on A′B′,

‖ρ⊗ X‖L(AA′:BB′) = ‖Λ(X)‖L(A′:B′) 6 ‖X‖L(A′:B′)

which proves the claim.

Since not all states increase the local norms, it is then interesting to investigate how
much of an increase is possible. Namely, we study how tensoring a Hermitian operator
X with a state ρ changes the PPT or SEP norm. More precisely, we are now interested in
finding upper bounds on ‖ρ⊗ X‖L(AA′:BB′) in terms of ‖X‖L(A′:B′). For our statements we
need the robustness of entanglement [VT99], which for any state ρ on AB is defined as

RA:B(ρ) := inf
σ∈S(A:B)

RA:B(ρ‖σ). (2.7)

where

RA:B(ρ‖σ) := inf
{

s :
1

1 + s
(ρ + sσ) ∈ S(A:B)

}
.

This is not to be confused with the global robustness of entanglement where σ is allowed
to vary over all states in D(AB) [Dat09].

Proposition 5 ([2]). For any Hermitian operator X on A′B′ and any state ρ on AB, we have

‖ρ⊗ X‖SEP(AA′:BB′) 6 (2RA:B(ρ) + 1)‖X‖SEP(A′:B′),

‖ρ⊗ X‖PPT(AA′:BB′) 6 ‖ρ
Γ‖1‖X‖PPT(A′:B′).

Setting k = min(|A|, |B|), we therefore have

‖ρ⊗ X‖SEP(AA′:BB′) 6 (2k− 1)‖X‖SEP(A′:B′),

‖ρ⊗ X‖PPT(AA′:BB′) 6 k‖X‖PPT(A′:B′).

Proof. The second set of inequalities in the proposition is easily derived from the first one,
after upper bounding the maximal value ofR(ρ) and ‖ρΓ‖1. The fact that ‖ρΓ‖1 6 k is well-
known, see also [VW02], while it was shown in [VT99, Theorem C.2] thatR(ρ) 6 k− 1.
In both cases the maximal value is achieved by ΦAB (and its generalization to A and B
with different dimensions).

For the SEP norm, we follow an argument inspired by [LPW18, Theorem 16]. We know
that there exists a separable state σ which is such that, setting r := RA:B(ρ), the following
state is also separable:

ρ′ =
1

1 + r
ρ +

r
1 + r

σ.

Because the SEP norm is left unchanged under tensoring with a separable state, we have

‖X‖SEP(A′:B′) =
∥∥ρ′ ⊗ X

∥∥
SEP(AA′:BB′)

>
1

1 + r
‖ρ⊗ X‖SEP(AA′:BB′) −

r
1 + r

‖σ⊗ X‖SEP(AA′:BB′)

=
1

1 + r
‖ρ⊗ X‖SEP(AA′:BB′) −

r
1 + r

‖X‖SEP(A′:B′),
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where we used the triangle inequality and the separability of ρ′ and σ. Hence, we obtain
as claimed that (2r + 1)‖X‖SEP(A′:B′) > ‖ρ⊗ X‖SEP(AA′:BB′).

For the PPT, norm notice first that the polar of B∞ ∩ BΓ
∞ is simply

conv (B1 ∪ BΓ

1) = {λY + (1− λ)Z : ‖Y‖1, ‖ZΓ‖1 6 1, λ ∈ [0, 1]}.

Therefore we have

‖ρ⊗ X‖PPT(AA′:BB′) = inf
{

µ : ρ⊗ X ∈ µ conv
(

B1(AA′BB′) ∪ B1(AA′BB′)Γ
)}

= inf {µ : ρ⊗ X = λY + (1− λ)Z ∧ ‖Y‖1, ‖ZΓ‖1 6 µ ∧ λ ∈ [0, 1]}
= inf {max(‖Y‖1, ‖ZΓ‖1) : ρ⊗ X = λY + (1− λ)Z ∧ λ ∈ [0, 1]} ,

where Y, Z ∈ L(AA′BB′). Now, let X = λ0Y0 + (1− λ0)Z0 such that ‖X‖PPT(A′:B′) =

max
(
‖Y0‖1, ‖ZΓ

0‖1

)
with Y0, Z0 ∈ L(A′B′), as just derived. Since ρ⊗ X = λ0ρ⊗Y0 + (1−

λ0)ρ⊗ Z0, we then have

‖ρ⊗ X‖PPT(AA′:BB′) 6 max
(
‖ρ⊗Y0‖1,

∥∥(ρ⊗ Z0)
Γ
∥∥

1

)
= max (‖ρ‖1‖Y0‖1, ‖ρΓ‖1‖Z

Γ

0‖1)

6 ‖ρΓ‖1 max (‖Y0‖1, ‖ZΓ

0‖1)

= ‖ρΓ‖1‖X‖PPT(A′:B′),

the first equality being by multiplicativity of the trace norm under tensoring and the
second inequality being because ‖ρΓ‖ 1 > ‖ρ‖1.

A legitimate question at this point is whether the inequalities in Proposition 5 are tight.
In the next proposition we show that at least the scaling is optimal, in the sense that we
can always find a Hermitian operator that can take full advantage of ΦAB and achieve an
almost optimal increase in local norm.

Proposition 6. For any k = |A| = |B| there exists a Hermitian operator X ∈ H(A′B′) such that
for L being either SEP or PPT it holds that

‖ΦAB ⊗ X‖L(AA′:BB′) >
k + 1

2
‖X‖L(A′:B′)

Proof. Let L be either SEP or PPT, and let |A′| = |B′| = k. Then, we know from [DLT02]
that the following holds: the symmetric and antisymmetric states ρs and ρa are orthogonal,
but they are close under PPT and thus separable measurements. However, Φ⊗ ρs and
Φ⊗ ρa are orthogonal under one-way LOCC measurements, and thus under separable and
PPT measurements, because Φ can be used to teleport the state wholly to one of the parties,
where a global projective measurement can be performed yielding orthogonal outcomes.
Quantitatively, setting X = ρs − ρa, we have ‖Φ⊗ X‖L = 2 and ‖X‖L = 4/(k + 1), which
concludes the proof.

2.2 Holevo information

We have just mentioned an example of what are called data hiding states in Proposition 6,
namely the symmetric and antisymmetric states as an example of states that are orthogonal,
but O(1/d)-close under separable or PPT measurements. Since they are orthogonal, they
can be used to encode a bit of classical information that can be recovered using a global
measurement. We can think of somebody wanting to send a classical bit as a message
to Alice and doing it by sending either the symmetric or the antisymmetric state (the
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encoding). If Alice receives the whole state, she can read the message with a projective
measurement (the decoding). Symmetric and antisymmetric states are two qudit states,
and thus we can split the message into two parties Alice and Bob, but since they are
close under PPT measurements, most of the time Alice and Bob will get outcomes that
are uncorrelated with the original classical message. (In particular the best they can do
is perform a measurement in the computational basis and conclude that they shared
the symmetric state if the outcomes are correlates, something that happens only with
probability O(1/d)). Thus Alice and Bob cannot read the message unless they join together
or use quantum communication. This is called quantum data hiding [TDL01; DLT02;
EW02]. In this section we study the relevant measure of information and relate it to the
trace distance.

2.2.1 Entropies

We define the following commonly used real functions: η(x) := −x log x defined for x > 0
by setting η(0) = 0, the binary entropy h(x) := η(x) + η(1− x) defined for x ∈ [0, 1],
and g(ε) := η(x) − η(1 + x) = (1 + x)h(x/(1 + x)) defined for x > 0; notice that g is
monotonically increasing. The logarithm log will always be in base two unless otherwise
stated. Let K ∈ H+(A) with eigenvalue decomposition K = ∑i∈Z|A|

pi |vi〉〈vi|. We define
η(K) by defining it on the eigenvalues:

η(K) = ∑
i∈Z|A|

η(pi) |vi〉〈vi| .

The von Neumann entropy, or simply entropy, of a state ρ ∈ D(A) is then defined as

H(ρ) := trA η(ρ) = ∑
i∈Z|A|

η(pi)

which is always positive, and in particular zero only for pure states, and maximal for
the maximally mixed state. It is also additive on tensor products, namely H(ρ⊗ σ) =
H(ρ) + H(σ), and unitary invariant. A common notation for the entropy of states on
multiple systems is H(A)ρ ≡ H(ρA), that allows to make statements for the entropy
function H(A) independently of the actual state. If ρ ∈ D(AB) is a pure state, then
H(A)ρ = H(B)ρ. Let now ρ ∈ D(ABC); using the entropy we then have:

• The conditional entropy H(A|B) and coherent information I(A〉B)

H(A|B)ρ := H(AB)ρ − H(B)ρ =: −I(A〉B)ρ.

• The mutual information

I(A:B)ρ := H(A)ρ + H(B)ρ − H(AB)ρ.

The mutual information is always positive (sub-additivity) and is manifestly sym-
metric on A and B.

• The conditional mutual information

I(A:B|C)ρ := H(AC)ρ + H(BC)ρ − H(C)ρ − H(ABC)ρ

= H(A|C)ρ + H(B|C)ρ − H(AB|C)ρ

= I(A:BC)ρ − I(A:C)ρ

= I(A〉BC)ρ − I(A〉C)ρ.
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The conditional information is also always positive (strong sub-additivity), and
is again manifestly symmetric on A and B. The purifying system is always an
equivalent choice for conditioning, namely for pure states |ψ〉〈ψ| ∈ D(ABCE), it
holds I(A:B|C)|ψ〉〈ψ| = I(A:B|E)|ψ〉〈ψ| [DY08]. In particular for pure states |ψ〉〈ψ| ∈
D(ABC), the conditional mutual information reduces to the mutual information,
I(A:B|C)|ψ〉〈ψ| = I(A:B)|ψ〉〈ψ|.

Strong sub-additivity implies that mutual information and conditional mutual information
are monotone (decreasing) under tracing out systems at Alice or Bob, while the coherent
information is monotone under tracing out systems at Bob:

I
(
A〉BB′

)
− I(A〉B) = I(A:B|B) > 0

I
(
A:BB′

)
− I(A:B) = I

(
A:B′|B

)
> 0

I
(
A:BB′|E

)
− I(A:B|E) = I

(
A:B′|BE

)
> 0.

Together with Stinespring’s dilation, the additivity of the entropy on tensor products,
and the unitary invariance of the entropy, the above implies monotonicity under local
operations at Alice and Bob for the mutual information and the conditional mutual
information, and at Bob for the coherent information. Namely, for any local channel at
Bob Λ ∈ idA⊗CPTP(Bin〉Bout), we have

I(A〉Bout)Λ(ρ) 6 I(A〉Bin)ρ

I(A:Bout)Λ(ρ) 6 I(A:Bin)ρ

I(A:Bout|E)Λ(ρ) 6 I(A:Bin|E)ρ.

The coherent information I(A〉B) is not monotone under local operations at A, as can be
verified by adding local randomness.

The conditional information and the coherent information satisfy

|H(A|B)| = |I(A〉B)| 6 log |A|,

which can be proven using a purifying system E. The extremes are achieved by the
maximally entangled state and the maximally mixed state. The consequence for both the
mutual and conditional mutual information is

I(A:B), I(A:B|E) 6 2 min {log |A|, log |B|} .

which is saturated for the maximally entangled state on Alice and Bob.

2.2.2 Restricted Holevo Information

Let M be the system for a classical message, so that |M| is the size of the message, and let
H be a system for encoding the message into. More precisely, we have now a classical
source π = ∑i pi |i〉〈i|, where pi are probabilities, and a quantum encoding E that maps
|i〉〈i| 7→ σi ∈ D(H). The amount of information about the classical source contained by
the quantum encoding is the mutual information between the message and the encoding
states, namely the mutual information of:

ξ := ∑
i∈Z|M|

pi |i〉〈i| ⊗ E(|i〉〈i|) = ∑
i∈Z|M|

pi |i〉〈i| ⊗ σi ∈ D(MH).

This is known as the Holevo information χ [Hol73] of the encoded source ensemble:

χ
(
{pi, σi}i∈Z|M|

)
:=H

(
∑iinZ|M|

piσi

)
− ∑

i∈Z|M|

pi H(σi) = I(M:H)ξ.
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The Holevo information is an upper bound on the accessible information, which measures
the amount of mutual information that can be actually achieved after decoding back into
a classical message, namely after a measurement. The accessible information is thus

χM(H)

(
{pi, σi}i∈Z|M|

)
:= sup
M∈M(H)

χ
(
{pi,M(σi)}i∈Z|M|

)
and since the mutual information is monotone under local operations, we have

χM(H)({pi, σi}) 6 χ({pi, σi}).

In the case we are interested in, however, we have orthogonal states, which in principle
achieve perfect encoding: a global measurement can recover the message and thus the
accessible information and the mutual information are the same. Namely, when the
encoding states are orthogonal we have

χM(H)({pi, σi}) = χ({pi, σi}).

Our restrictions come from bipartite systems H = A:B, namely, we will have restrictions in
our measurements coming from a class of bipartite channels L such as LOCC. The relevant
quantity is then the L locally accessible information [Bad+03], which is defined as

χL(A:B)({pi, σi})[i ∈ Z|M|] := sup
M∈L(A:B)

χ({pi,M(σi)})[i ∈ Z|M|]

which is again upper bounded by the Holevo information:

χL(A:B)({pi, σi}) 6 χ({pi, σi}).

Whenever the inequality is strict we say that some of the information is hidden to local
observers. The term data hiding though, is usually reserved for families of states for
which the locally accessible information decreases as we increase the local dimension of
the states, like is the case for the symmetric and antisymmetric states. If we allow any
class of maps L instead of just measurements, then we define the L Holevo information as

χL(H)({pi, σi}) := sup
Λ∈L(H)

χ({pi, Λ(σi)})

that again is a sensible definition only when the identity channel is excluded, which would
otherwise always be the optimal channels, by monotonicity of the mutual information
under local operations.

2.2.3 Asymptotic continuity and Indistinguishability

Recall that the way we stated the indistinguishability of the symmetric and antisymmetric
states was in terms of their local norms. To see that this implies indistinguishability
in the Holevo information, it is enough to use the asymptotic continuity of the mutual
information. Asymptotic continuity is a strong continuity property of entropic quantities,
stating that their change is at most linear in the distance between two states and in the
number of qubits (namely logarithmically in the dimension of the system). This property
has many applications, and the first example we will see now is the asymptotic continuity
of the mutual information, which is derived from the asymptotic continuity of the entropy
and of the coherent information (conditional entropy) as follows. Let H be any system, let
ρ and ρ̃ be two states on H, and let ε := 1

2‖ρ− ρ̃‖1, namely let ρ and ρ̃ be two ε-close states.



2.2. HOLEVO INFORMATION 49

For the entropy we have the sharp version of Fannes inequality [Fan73; Aud07; Zha07;
Pet07] ∣∣∣H(H)ρ − H(H)ρ̃

∣∣∣ 6 f (ε) 6 ε log |H|+ h(ε),

where

f (ε) =

{
ε log(1− |M|) + h(ε) ε 6 1− 1

|H|
log |H| ε > 1− 1

|H|

and we recall that h(x) = −x log x− (1− x) log(1− x) is the binary entropy. We mention
the bound on f (ε) because it is monotone. The second bound is not monotone in ε but
it is easier to deal with. Since the actual bound f (ε) is monotone, we can always use
its monotonicity first, and then relax to the second bound, to the effect that it will seem
that we are claiming monotonicity of the second. Let now ρ and ρ̃ be ε-close states on
HH′. For the coherent information we have the refined version of the Alicki-Fannes
inequality [AF04; Win16]∣∣∣I(H〉H′)ρ

− I
(
H〉H′

)
ρ̃

∣∣∣ 6 2ε log |H|+ g(ε).

where we recall that g(ε) = (1+ ε)h(ε/(1+ ε)) and we point out that this bound is indeed
monotone. Together, since H(H) + I(H〉H′), they give∣∣∣I(H:H′

)
ρ
− I
(
H:H′

)
ρ̃

∣∣∣ 6 3ε log |H|+ h(ε) + g(ε).

Notice that the bounds above depend on only one of the system dimensions (by symmetry
we can pick the smallest dimension for the mutual information).

The importance of scaling linearly in the number of qubits, and thus logarithmically in
the dimension, becomes evident if we let ρ and ρ̃ be families of states. If their distance ε
goes to zero polynomially in the dimension, then their mutual information will also go
to zero, because the asymptotic continuity will not change the limit of the scaling. We
thus define two states ρ and ρ̃, implicitly a family of states on systems H of increasing
dimension, to be indistinguishable if ε goes to zero polynomially in the dimension.

2.2.4 Holevo Information and Norm distances

Let us now go back to the Holevo information. Recall that we defined the classical source
π = ∑i pi |i〉〈i| ∈ D(M). Let now ρ ∈ D(H) be any state, and let us apply the asymptotic
continuity bound to π ⊗ ρ. Let Λ ∈ L(H〉H′). Clearly the mutual information of both
π ⊗ ρ and π ⊗Λ(ρ) is zero, being product states, and thus we get

I
(
M:H′

)
id⊗Λ(ξ)

=
∣∣∣I(M:H′

)
id⊗Λ(ξ)

− I
(
M:H′

)
π⊗Λ(ρ)

∣∣∣ 6 3δ log |M|+ h(δ) + g(δ)

where ξ defined in Section 2.2.2 is the ensemble correlating the message to the encoding,
and where

δ =
1
2
‖id⊗Λ(ξ)− π ⊗Λ(ρ)‖1.

We can then easily check that we can expand the norm and get

‖id⊗Λ(ξ)− π ⊗Λ(ρ)‖1 = ∑
i

pi‖Λ(σi)−Λ(ρ)‖1 6 ∑
i

pi‖σi − ρ‖L(H).
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Alice

Bob

|c〉

|c〉

c, c

|0〉

|0〉
( |c 〉±

|0
〉) ⊗

|0
〉

|0〉 ⊗
(
|c〉 ± |0 + 1〉

)
|1〉

|1〉 ( |c 〉±
|1
〉) ⊗

|1
〉

|1〉 ⊗
(
|c〉 ± |1 + 1〉

)

Figure 2.1: Domino states on qutrits.

Alice

Bob

±, 1

|0〉

|0〉 0, 0

|1〉

|1〉 1, 0

Figure 2.2: Locking states on qubits.

We now define ε to be the minimal average of the trace distances

ε := inf
ρ∈D(H)

∑
i

pi
1
2
‖σi − ρ‖L(H)

and by the monotonicity of the asymptotic continuity bound, and because it holds for any
measurement in L, we get

χL(H)({pi, σi}) 6 3ε log |M|+ h(ε) + g(ε).

Thus if there is a state that is on average indistinguishable from all the encoding states,
then the L Holevo information, the information that can be recovered using maps in L,
must be low. Generally a good guess will be σ = ∑i piσi. Notice how the output dimension
of the measurement does not affect the bound, because we can make it depend only on
the original message size.

In the case of a uniformly-random single bit message
{ 1

2 , σ±
}

, like that which is
encoded by the symmetric and antisymmetric states with uniform probability, we get a
particular simplification. Using σ = 1

2 σ+ + 1
2 σ− we find

1
2

∥∥σ+ − σ−
∥∥
L(A:B) =

∥∥σ± − σ
∥∥
L(A:B).

The local trace distance of σ± thus becomes an upper bound on the locally accessible
information. This in particular will apply to private bits in Chapter 3.

2.2.5 Domino states

Restricted Holevo informations can be found for example in the proof that LOCC and
separable operations are actually different. The fact that at the base of the construction of
LOCC we have local operations distinguishes it from separable operations. Indeed, it has
been shown that there are encoding bipartite states, for which the Holevo information is
achieved by separable measurements, but not by LOCC measurements. The emblematic
example of states displaying the distinction, are the so-called domino states [Ben+99].
Let the bipartite system be two qutrits C3:C3 and let {|0〉 , |c〉 , |1〉} be a basis for C3. The
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domino basis can be defined as

|c, c〉 := |c〉 ⊗ |c〉∣∣ψijk
〉

:= Sk
(

1√
2
(|c〉+ (−1)j |i + k〉)⊗ |i〉

)
where i, j, k ∈ Z2 and S is the swap operator on C3 ⊗C3, which in Figure 2.1 corresponds
to a reflection along the main diagonal. The domino states are a product basis and thus
the projective measurement in this basis is separable, as the measurement operators are
product operators. However what was shown quantitatively in [Ben+99] is that there is
no such channel in LOCC, and thus the domino states cannot be perfectly distinguished
by two separated parties no matter the amount of communication or number of rounds
used. Namely, even ignoring the centre piece |c, c〉, we have

χLOCC(C3:C3)

({ 1
8 , ψijk

})
< χSEP(C3:C3)

({ 1
8 , ψijk

})
= χ

({ 1
8 , ψijk

})
. (2.8)

2.2.6 Locking states

The LOCC vs SEP result for the Domino states, can be reduced (although only qualitatively)
to the difference between LOCC→ vs LOCC using simpler states [WH02]. Let Alice and
Bob now share a qudit and a qubit respectively, namely the bipartite system Cd:C2. Let
i ∈ Zd and j ∈ Z2, we define the locking states, displayed in Figure 2.2 for d = 2, as

ψij := F j(|i〉〈i|)⊗ |j〉〈j|

where F is the Fourier transform channel. Essentially Alice has log d bits of information,
but Bob decides whether it is stored in the computational or the conjugate basis. They are
called locking states because the lack of a single classical bit makes the loss of information
grow boundlessly as d grows [DiV+04; CW05]. Namely we have

χM(Cd)

({
1

2d ,F j(|i〉〈i|)
})

=χ
({

1
2d ,F j(|i〉〈i|)

})
=

1
2

log d

but

χM(C2d)

({
1

2d ,F j(|i〉〈i|)⊗ |j〉〈j|
})

=χ
({

1
2d ,F j(|i〉〈i|)⊗ |j〉〈j|

})
= 1 + log d.

It was shown in [WH02] for d = 2, that the locking states cannot be distinguished perfectly
without communication from Bob to Alice. More specifically, Alice cannot do any non-
trivial operations, only reversible ones, until she has received the basis information from
Bob. Because the domino states contain locking states such as the ones highlighted by the
contour in Figure 2.1, it is then argued that neither Alice or Bob can begin the protocol,
therefore excluding all LOCC operations. Separable operations thus contain channels that
do not begin with any local operation.

Here we compute the LOCC→ Holevo information and show that the best Alice and
Bob can do is a local measurement.

Lemma 7. For any choice of L = LO(Cd:C2), LOCC→(Cd:C2), LOCC→(Cd:C2), we have

χL

({ 1
2d , ψij

})
= 1 +

1
2

log d
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Proof. For the lower bound, it is sufficient to check that the mutual information of the local
measurement in the computational basis achieves 1 + 1

2 log d. We will thus only show the
upper bound for LOCC→(C

d:C2). Let A = Cd and B = C2. By the monotonicity of the
mutual information under local operations, we can lift the measurement at Bob and by
Equation (1.5) we thus have

χLOCC→(A:B)
({ 1

2d , ψij
})

6 χM(A)⊗idB

({ 1
2d , ψij

})
Let nowM ∈ M(A〉M), and let I = Cd be the system for the log d bits of message and
J = Cd the system for the additional bit of message. The Holevo information after the
measurement is the mutual information of the state ξ ∈ D(IJMB) given by:

ξ =
1

2d ∑
i∈Zd,j∈Z2

|ij〉〈ij|IJ ⊗
[
M◦F j(|i〉〈i|A)

]
M
⊗ |j〉〈j|B

It is straightforward to check that tracing out Bob does not change the entropy, as his
state is just a repetition of J, therefore H(IJMB)ξ = H(IJM)ξ. At the same time we have
H(MB)ξ = H(M)ξ + H(B)ξ, as tracing out the message IJ leaves AB maximally mixed.
The result is that we can rewrite the mutual information as

I(IJ:MB)ξ = H(IJ)ξ + H(MB)ξ − H(IJMB)ξ
= H(IJ)ξ + H(M)ξ + H(B)ξ − H(IJM)ξ

= I(IJ:M)ξ + H(B)ξ.

Taking the supremum over measurements we thus have

χM(A)⊗idB

({ 1
2d , ψij

})
= χM(A)

({
1

2d ,F j(|i〉〈i|)
})

+ H(B)ξ =
1
2

log(d) + 1.

2.3 Relative entropy

Let now ρ, σ ∈ D(A) and let supp denote the support; the relative entropy is defined as

D(ρ‖σ) :=

{
trA[ρ log ρ− ρ log σ] supp ρ ⊆ supp σ

+∞ otherwise

where the logarithm of K = ∑i∈Z|H|
pi |vi〉〈vi| ∈ H+(H) is defined only on the non-zero

eigenvalues:
log(K) = ∑

i:pi>0
log(pi) |vi〉〈vi| .

The relative entropy is non-negative, and zero if and only if ρ = σ. If ρ and σ commute,
then it equals the Kullback–Leibler of the eigenvalues, namely

D(ρ‖σ) = ∑
i:ri 6=0

ri(log ri − log si)

where ri and si are the eigenvalues of any decomposition ρ = ∑i∈Z|A|
ri |vi〉〈vi| and σ =

∑i∈Z|A|
si |vi〉〈vi|. This is in particular the case of D(M(ρ)‖M(σ)) for a measurementM,

as the measurement always produces a state on the computational basis, and thus all the
outcomes commute.

The relative entropy is monotonically decreasing under quantum channels, namely for
any Λ ∈ CPTP(A〉B) we have

D(Λ(ρ)‖Λ(σ)) 6 D(ρ‖σ),
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which is, remarkably, a property equivalent to strong sub-additivity. Monotonicity then
implies joint convexity, namely for any quantum states ρi, σi ∈ D(A) and probabilities pi
for i over some finite set I, we have

D
(
∑i∈I piρi

∥∥∥∑i∈I piσi

)
6 D

(
∑i∈I pi |i〉〈i| ⊗ ρi

∥∥∥∑i∈I pi |i〉〈i| ⊗ σi

)
= ∑i∈I piD(ρi‖σi).

The relative entropy can be used to compute the mutual information via I(A:B) =
D(ρAB‖ρA ⊗ ρB), and it is additive on tensor products, namely D(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) =
D(ρ1‖σ1) + D(ρ2‖σ2).

2.3.1 Restricted relative entropies

We can use the relative entropy expression of the mutual information to get a similar
expansion for the Holevo information in terms of the relative entropy. With σ := ∑i piσi
and ξ defined in Section 2.2.2 we have

χL(H)({pi, σi}) = sup
Λ∈L(H)

D(id⊗Λ(ξ)‖π ⊗Λ(σ))

= sup
Λ∈L(H)

∑i piD(Λ(σi)‖Λ(σ))

6∑i sup
Λ∈L(H)

piD(Λ(σi)‖Λ(σ)).

By the monotonicity of the relative entropy, this relaxation is still lower than the unre-
stricted Holevo information, which is simply

χ({pi, σi}) =∑i piD(σi‖σ).

We give the above as a mild justification for the definition we give below, but we will
see later that the restricted relative entropy gives rise to various useful bounds and
entanglement measures.

Definition 8 ([Pia09; 1]). Let L be a subset of channels on H. For any states ρ and σ on H, the
relative entropy in restriction to L, or L relative entropy, is defined as:

DL(ρ‖σ) := sup
Λ∈L

D(Λ(ρ)‖Λ(σ)). (2.9)

Let now K ⊆ D(H) be a subset of states. For any state ρ ∈ D(H), the relative entropy from K in
restriction to L, or the L relative entropy from K, is defined as:

DL(ρ‖K) := inf
σ∈K

DL(ρ‖σ).

The unrestricted relative entropy of ρ from K is defined as [DH99]:

D(ρ‖K) := inf
σ∈K

D(ρ‖σ).

Just like for the trace norm, DL is still jointly convex and non-negative. If L is infor-
mationally complete, then DL(ρ‖σ) if and only ρ = σ. If K is convex, then DL(ρ‖K) and
D(ρ‖K) are also convex.

These definitions for restricted distinguishability, were introduced in [Pia09], but only
using measurements. The reason for needing more than measurements is that for the
relative entropy the analogue of Equation (2.2) does not hold: the relative entropy between
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two states ρ and σ in general is not achieved through the relative entropy of a global
measurement outcome. We have by monotonicity

DM(H)(ρ‖σ) 6 D(ρ‖σ), (2.10)

but equality holds if and only if ρ and σ commute [BFT17]. By Equation (2.10) we still
have DL(A:B)(ρ‖K) 6 DL(A:B)(ρ‖K), but in Chapter 4 it will be possible to prove upper
bounds only in terms of some DL(A:B)(ρ‖K) and not in terms of DL(A:B)(ρ‖K), the bound
with the latter being likely false.

The unrestricted relative entropy with respect to K is asymptotically continu-
ous [DH99], with the following improved bound [Win16, Lemma 7]. For any convex set of
states K ∈ D(H) such that κ = supρ D(ρ‖K) < +∞, and for any two ε-close states ρ and
ρ̃ on H, it holds:

|D(ρ‖K)− D(ρ̃‖K)| 6 εκ + g(ε). (2.11)

Note that, if K contains the maximally mixed state 1/|H|, then

D(ρ‖K) 6 D(ρ‖1/|H|) 6 log |H|,

so that κ 6 log |H|. However, this upper bound is often not optimal in bipartite systems.
The asymptotic continuity for the restricted relative entropy was proven for measure-

ments in [LW14]. Let L ⊆ M(H), and let K ⊆ D(H) be star shaped around the maximally
mixed state. Let ε := ‖ρ− ρ̃‖L 6 1/e for any two states ρ and ρ̃ on H, then we have

|DL(ρ‖K)− DL(ρ̃‖K)| 6 4ε log(3|H|) + 4η(ε).

Notice how this asymptotic continuity is qualitatively different from the other ones.
On one side the scaling factor depends on the input dimension, but on the other the
distinguishability is the one at the output. Almost as if the optimal distinguishability
where achieved for output dimensions comparable to the input dimension.

We conjecture that the restricted relative entropy is asymptotically continuous even
for general subset of channels, as we will need such asymptotic continuity in Chapter 4.

Conjecture 9. Let L ∈ CPTP(H) be the set of quantum channels and let K be a closed convex
set of states on H containing the maximally mixed state. Let ε := ‖ρ− ρ̃‖L 6 1/e for two ε-close
states ρ and ρ̃ on H, then it should hold

|DL(ρ‖K)− DL(ρ̃‖K)| = O(ε log |H|)

We will only need the conjecture for LOCC/SEP, and thus we can relax the conjecture
to only classes of channels that also contain the channels with the corresponding records of
the Kraus operators. We display a failed attempt of the proof in Section 4.5 and comment
on its likeness.

2.3.2 Bipartite relative entropies

The typical first example example is the relative entropy of entanglement, namely the
relative entropy from separable states [Ved+97]. It is common notation to denote the
relative entropy of entanglement

ER(ρ) := D(ρ‖S(A:B))

which we will keep using when there is no ambiguity in the systems. The relative entropy
of entanglement is upper bounded by min{log |A|, log |B|}, achieved by the maximally
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ρ⊗n

Alice

LOCC

Bob

≈ε ΦnE

Alice

Bob

Figure 2.3: Quantum circuit for entanglement distillation. The circuit in the dashed box is
the LOCC map Λ, optimized to get ε-close to ΦnE with the highest nE possible. The double
lines represent the classical communication going back and forth.

entangled state (for which the infimum is achieved by the maximally correlated state).
The asymptotic continuity of the relative entropy of entanglement is thus

|ER(ρ)− ER(ρ̃)| 6 ε min {log |A|, log |B|}+ g(ε). (2.12)

for ε-close states ρ and ρ̃. The relative entropy with respect to PPT states yields the smaller
measure

D(ρ‖P(A:B)) 6 ER(ρ)

which is monotone under PPT, while ER is monotone only under SEP.

2.4 Entanglement Distillation

We have seen that entanglement, in particular the maximally entangled state, can be a
powerful resource. However, it is also extremely susceptible to noise. Any attempt to
produce real maximally entangled states will instead produce some mixed state, which
can still be useful, but need to be best made use of in a non trivial way. More specifically,
if the produced noisy state ρ is close enough to Φ, there exist protocols that can take two
copies ρ⊗ ρ (where each copy is shared between Alice and Bob) and produce a single
copy ρ̃ closer to Φ than ρ was. If Alice and Bob want maximally entangled states, there are
thus ways, given enough noisy entanglement, to get arbitrarily close to one. This is called
entanglement distillation, sometimes called entanglement purification.

The scenario we consider is the one where Alice and Bob have a source that tries to
produce the maximally entangled state Φ, but instead produces a mixed state ρ. Quantum
information cannot be cloned and thus ρ⊗2 ≡ ρ⊗ ρ cannot be produced from ρ alone.
Here we will assume that Alice and Bob can run the source n times and get out the tensor
product of n copies of ρ (an independent identically distributed source), which we denote
with ρ⊗n, where each copy is shared between Alice and Bob. All the entanglement Alice
and Bob can share is described by the source, which they can use arbitrarily many times
as required, but otherwise they can only perform their bipartite operations.

In this section we review the known methods of quantifying and bounding entan-
glement distillation. Many concepts in this section are not exclusive to entanglement
distillation, and thus we will try to highlight the general statements when possible.
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2.4.1 Distillable Entanglement

To introduce the concept of distillation, consider for a moment the state

1
2

Φ+
AB ⊗ |0〉〈0|A′ +

1
2

Φ−AB ⊗ |1〉〈1|A′

This is a mixed state with a maximally entangled state phase flipped with uniform proba-
bility. Usually the mixture would result in a separable state, but in this case Alice has a
second register A′, which is actually classical, with the record of the phase flip. Alice can
thus read the record, use it to correct the phase, and then discard the record, resulting in
Φ being perfectly shared between Alice and Bob. Thus maximally entangled states might
not be available, but they can be extracted using LOCC (in this specific case even local
operations). Recall that we defined the classes of operations as those classes containing
local operations and being closed under tensor product and composition1. For any class
of operations within PPT, this includes LO, LOCC→, LOCC and SEP, then the amount of
maximally entangled states that can be extracted directly from a state ρ is

E0
D,L(A:B)(ρ) := sup

{
log e : Φlog e ∈ L(Ce:Ce〈A:B) ◦ ρ

}
,

usually called zero-error single-copy rate. The base two logarithm results in this quantity
being measured in units of qubit maximally entangled states Φ+. The maximally entangled
states are the target states of the distillation. Different distillation tasks under the same
class of maps, like the key distillation we will see in the next chapter, can generally be
described by simply changing the target states.

When noise is unavoidable, which is especially the case for quantum systems, it will
be enough to just get close to the target state. If we then allow some error ε, the amount of
entanglement that can be extracted becomes the single-copy rate

Eε
D,L(A:B)(ρ) := sup

{
log e : Φlog e ≈ε L(C

e:Ce〈A:B) ◦ ρ
}

,

which now, for example, is non zero for the isotropic states with ε noise. If the protocols
can take advantage of many copies, then their finite rate is defined by the amount of
extracted target states —maximally entangled states in our case— averaged over the
number of copies (Figure 2.3). For entanglement distillation, the best finite L entanglement
rate for a given error ε and a given amount of copies n is thus

1
n

Eε
D,L(A:B)(ρ

⊗n).

A finite rate E is called achievable if for any choice of ε > 0 there exists a sequence of
protocols on increasing number of copies, with finite rate limiting to E. Equivalently, a
rate E is achievable if for all ε > 0

E 6 lim sup
n→∞

1
n

Eε
D,L(A:B)(ρ

⊗n).

Since Eε,n
D (ρ) is monotonically decreasing in ε, the highest achievable rate is obtained

taking the infimum over ε. The distillable entanglement under L is defined as the highest
achievable L entanglement rate [Rai99b], namely:

ED,L(A:B)(ρ) := lim
ε→0

lim sup
n→∞

1
n

Eε
D,L(A:B)(ρ

⊗n).

1Being close under composition is in particular important to make the rate monotone under the defining
class of operations itself.
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When clear from the context we will let the systems in the class of channels be implicit,
and simply write ED,L. Because of the hierarchy of bipartite channels we have

ED,LO 6 ED,LOCC→ 6 ED,LOCC 6 ED,SEP 6 ED,PPT.

If the set of channels is not specified, then it is assumed to be LOCC, so that we can write
ED for ED,LOCC, and E→D for ED,LOCC→ .

By construction such rates are always additive on tensor products, namely ED,L(ρ
⊗n) =

nED,L(ρ); they are said to be regularized.

2.4.2 Known achievable rates

The distillable entanglement for pure states is known. Furthermore the process is reversible
and can be done with one-way LOCC. For pure states |ψ〉〈ψ| ∈ D(A:B), the distillable
entanglement equals the entropy of entanglement [Ben+96a]:

ED,LOCC→ = ED,PPT = H(trA |ψ〉〈ψ|) = H(trB |ψ〉〈ψ|).

More generally, it was shown in [DW05] that the coherent information is an achievable
rate for one-way distillation. This is known as the hashing bound:

E→D (ρ) > I(A〉B)ρ.

It is important to notice that, while it is valuable to prove lower bounds on the distil-
lable entanglement (and is the only known computable bound), having zero coherent
information gives no statement about the distillable entanglement of a state, because the
coherent information is not monotone under local operations at Alice. Indeed, even for the
maximally entangled state, the bound can be made zero by simply generating local ran-
domness. Finally, the distillable entanglement is also known for states with support only
on the maximally correlated subspace, as it is then proved that the hashing bound matches
known upper bounds on the distillable entanglement [HH04], and is thus optimal.

2.4.3 Upper bounds

All known easily computable upper bounds on entanglement distillation are actually
bounds on ED,PPT. The simplest of them is arguably the logarithmic negativity [Rai99a],
defined as [VW02]

EN(ρ) = log ‖ρΓ‖. (2.13)

There are other computable bounds on ED,PPT [Rai01; WD16], but we will only make use
of the logarithmic negativity. In particular, all PPT states have zero distillable entangle-
ment [HHH98]. The argument is simple and it generalizes to any tensor stable positive
map [MRW16], which in this case is the transpose map. Namely, because ρ⊗n is PPT if ρ is
PPT, then any PPT protocol will necessarily output a PPT state. Formally

L(Ce:Ce〈A⊗n:B⊗n) ◦ ρ⊗n ⊆ P(Ce:Ce). (2.14)

However, the distance of maximally entangled states from PPT states is large, namely∥∥Φlog e −P(Ce:Ce)
∥∥ > 1− 1

e , which is shown by simply twirling the set of PPT states into
isotropic states.

In this respect, separable and PPT states behave similarly, in the sense that their distill-
able entanglement ED,L is always zero, irrespective of the choice of L = LOCC,SEP,PPT.
At the same time we expect ED and ED,PPT to behave very differently for NPT states.
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Indeed, one of the themes of this thesis is that intuitively, the entanglement distillation
property of states such as

γ±AA′BB′ =
1
2
(
Φ+

AB ⊗ σ+
A′B′ + Φ−AB ⊗ σ−A′B′

)
.

should roughly be determined by the distinguishability properties of the states σ±. More
precisely, we expect that if we choose σ± to be indistinguishable under LOCC, but dis-
tinguishable under PPT, then we should obtain states like the above with vanishing ED
but constant ED,PPT. While we are not able to prove this, almost all of our results seem to
point in this direction.

Regularization

An important tool in defining upper bounds on distillation rates is the regularization
of entanglement measures, which together with asymptotic continuity, is able [DHR02]
to deal with the regularization already present in such rates, namely the limit for many
copies. Let E be a function on states, like a general entanglement measure, the standard
regularization defines E∞(ρ) = limn→∞

1
n E(ρ⊗n), whenever the limit is well defined. We

will use it a bit more generally, and define regularizations also for functions E of two states,
like the restricted relative entropies, as E∞(ρ, σ) = limn→∞

1
n E(ρ⊗n, σ⊗n), again whenever

the limit is well defined. The usual tools to show that the limit is well defined, are super-
additivity and sub-additivity. A sequence En is called super-additive if it satisfies for any
n and m

Em+n > En + Em, (2.15)

while it is called sub-additive if

Em+n 6 En + Em. (2.16)

Fekete’s lemmas [Fek23] state that super-additive and sub-additive sequences produce
sequences 1

n En that are either convergent or divergent. More specifically, if En is super-
additive, limn→∞

1
n En = supn∈N

1
n En, while if it is sub-additive, then limn→∞

1
n En =

infn∈N
1
n En.

These lemmas guarantee that we can regularize DL(·‖K) as long as the combinations
of L and K make it super- or sub-additive. The unrestricted relative entropy is always
sub-additive for classes of states K closed under tensor product, and thus for such classes
the regularized relative entropy from K is defined as

D∞(ρ‖K(H⊗n)) := lim
n→∞

1
n

D(ρ⊗n‖K(H⊗n)) 6 D(ρ‖K(H)).

For the relative entropy of entanglement we will keep the notation

E∞
R (ρ) := lim

n→∞

1
n

ER(ρ
⊗n).

Similarly, if L is a class closed under tensor products, like LOCC, SEP and PPT, then the
L relative entropy is easily checked to be super-additive. Thus the regularized L relative
entropy is defined as

D∞
L (ρ‖σ) := lim

n→∞

1
n

DL(H⊗n)(ρ
⊗n‖σ⊗n) > DL(H)(ρ‖σ). (2.17)
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To distinguish between measurements, partial measurements, different bipartitions, etc,
we will use the input systems to denote the parties, and write for example

D∞
SEP(A:B) = lim

n→∞

1
n

DL(A⊗n:B⊗n)(ρ
⊗n‖σ⊗n)

D∞
SEP(A:B) = lim

n→∞

1
n

DL(A⊗n:B⊗n)(ρ
⊗n‖σ⊗n)

as done for the distillable entanglement.
The L relative entropy from K can also be regularized if it is super-additive. However,

it is only known to be super-additive for measurements closed under tensor product,
when the set of states is closed under its measurement operators [Pia09, Theorem 2(d)].
These properties are enough to guarantee that the L relative entropy with respect to K
is also super-additive. While the original statement only considers separable states, PPT
states, separable measurements and LOCC measurements, the proof is made in generality
using only these properties. Thanks to this theorem, the following regularization is now
well defined. Let L be a class of measurements, and let K be a convex class of states closed
under measurement operators in L, then the regularized L relative entropy with respect to
K is defined as:

D∞
L (ρ‖K) := lim

n→∞

1
n

DL(H⊗n)(ρ
⊗n‖K(H⊗n)).

Therefore the regularization is well defined for the LOCC, SEP and PPT relative entropy
with respect to PPT state, and for the LOCC and SEP relative entropy with respect to
separable states.

Relative-entropy upper bounds

The regularized relative entropy of entanglement and from PPT states have been shown
to be upper bounds on the PPT distillable entanglement [Hor+09]

ED,PPT(ρ) 6 D∞(ρ‖P(A:B)) 6 E∞
R (ρ)

thus showing

ED,PPT(ρ) 6 D(ρ‖P(A:B)) 6 ER(ρ).

The regularized restricted relative entropies can also lead to upper bounds on distilla-
tion rates, however the normal restricted relative entropies generally are not themselves
upper bounds. For L between LO, LOCC→, LOCC, SEP or PPT

ED,L 6 D∞
L(A:B)(ρ‖S(A:B)).

Following the proof of asymptotic continuity for the measured relative entropy, the authors
in [LW14] also proved the above bound for LOCC; an expanded proof for LOCC→ can
be found in [1]. While we do not have asymptotic continuity for partial measurements,
since these include all measurements, we can prove regularized upper bounds for partial
measurements by simple relaxation. Namely for any separable state σ ∈ S(A:B) we have:

ED,L 6 D∞
L(A:B)(ρ‖S(A:B)) 6 D∞

L(A:B)(ρ‖σ) 6 D∞
L(A:B)(ρ‖σ).

where we used that separable states are closed under tensor product.
In particular we will use the case of LOCC→. By monotonicity of the relative entropy,

the supremum in DL(A:B) and its regularization is always achieved for Bob performing
the identity channels in his step of the one-way protocol. By Equation (1.5), we can then
remove the classical communication and reduce to just measurement on Alice. We thus
have

ED,LOCC→ 6 D∞
LOCC(A:B)(ρ‖σ) = D∞

M(A)(ρ‖σ) (2.18)

where we left implicit the identity channel in M(A) ≡ M(A)⊗ idB.
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2.5 Werner and Isotropic symmetries

We will now discuss two important twirls and the states they produce, namely the isotropic
twirl [HH99] and the Werner twirl [Wer89], which have become canonical tools in quan-
tum information. Let U ∈ U (A) = U (B), then the Werner twirl is defined as the twirl
over all the unitaries U ⊗U ∈ U (AB), while the isotropic twirl is over all the unitaries
U ⊗U ∈ U (AB). Werner and isotropic states, and more generally Werner and isotropic
operators, are defined as the invariants of the Werner and isotropic twirls. While in
principle these twirls are defined continuously over the unitary group, they can be im-
plemented [DLT02] by sampling over the Clifford subgroup C(A) [Got98], which is fi-
nite [Cal+98]. Notice that while the Werner twirl is basis independent, the isotropic twirl
is basis dependent, as it involves complex conjugation. Therefore, the Werner states will
be basis independent, while the isotropic states will be basis dependent (just like the Pauli
twirl is basis-dependent, because the Bell states are basis dependent).

Both the Werner and isotropic twirl can be implemented using one-way LOCC. Fur-
thermore, it is easily checked that[

(U ⊗U)K(U ⊗U)†]Γ = (U ⊗U)KΓ (U ⊗U)†.

Therefore the partial transpose maps the invariant subspace of the Werner twirl into the
invariant subspace of the isotropic twirl.

Werner

The invariant operators for the Werner twirl are the subspace generated by the identity
1AB and the swap SAB. This is the same subspace generated by the projectors onto the
symmetric and antisymmetric subspace. More precisely, let us define the projectors

Ps :=
1+ S

2
= ∑

i>j∈Zd

1
2
(|ij〉+ |ji〉)(h.c.)

Pa :=
1− S

2
= ∑

i>j∈Zd

1
2
(|ij〉 − |ji〉)(h.c.),

the dimensions ds := tr Ps = d(d + 1)/2 and da := tr Pa = d(d− 1)/2, and the uniform
mixtures

ρs :=
Ps

tr Ps
=

2Ps

d(d + 1)

ρa :=
Pa

tr Pa
=

2Pa

d(d− 1)
.

Any Werner invariant operator is a linear combination of Ps and Pa. The Werner twirl can
then be rewritten as

WAB(K) :=
1

|C(A)| ∑
U∈C(A)

(U ⊗U)K(U ⊗U)†

= tr(PsK)ρs + tr(PaK)ρa.

Let p ∈ [0, 1], then a general Werner state has the form

ρW(p) := pρs + (1− p)ρa,

therefore ρs and ρa are also called the extremal Werner states. ρW(1 + 1
d ) gives the maxi-

mally mixed state. By twirling the uniform mixture on 1− PΦ̂ we obtain ρW(
1
2 ) =

1
2 ρs +

1
2 ρa
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which lies on the boundary of the separable states. This is easily verified by checking that
for any p > 1

2 the Werner states are NPT. All PPT Werner states are thus separable.
The local norms for the extremal Werner states mentioned in Proposition 6 are easily

computed to be

‖ρa − ρa‖LO(A:B) = ‖ρa − ρa‖LOCC(A:B) = ‖ρa − ρa‖SEP(A:B) = ‖ρa − ρa‖PPT(A:B) =
4

d + 1
.

For LO the most intuitive measurement to achieve this value is measurement one in the
computational basis, while for LOCC and SEP the most straightforward choice is the
measurement on the maximally correlated subspace with POVM {PΦ̂,1− PΦ̂}. Twirling
the measurement on the correlated subspace gives the extremal PPT Werner measurement
that proves the upper bound, and the twirled POVM is given by

{
d
ds

Ps, Pa +
da
ds

Ps

}
.

Isotropic

First we define the projector orthogonal to Φ and its uniform mixture:

Φ⊥,AB := 1AB −ΦAB

φ⊥,AB :=
Φ⊥,AB

tr Φ⊥,AB
.

The invariant operators for the isotropic twirl are the subspace generated by Φ and Φ⊥.
The action of the isotropic twirl I on any operator K ∈ H+(AB) is

I(K) :=
1

|C(A)| ∑
U∈C(A)

(
U ⊗U

)
K
(
U ⊗U

)†

= (tr KΦAB)ΦAB + (tr KΦ⊥,AB)φ⊥,AB.

where tr(KΦ) is known as the fidelity to the maximally entangled state. Let p ∈ [0, 1],
then a general isotropic state of fidelity p has the form

ρI(p) := pΦ + (1− p)Φ⊥,

The maximally mixed state is obtained for ρI(
1
d2 ), and the separable state on the boundary

to the entangled states is ρI(
1
d ), which is again verified by twirling the uniform mixture

on PΦ̂ and checking that otherwise the isotropic states are NPT for fidelities larger than 1
d .

Under partial transposition the separable Werner and isotropic states map intro each other,
with the maximally mixed state as the only invariant state under partial transposition and
the (separable) extremes mapping into each other as:

φ⊥ ↔
1
2

ρs +
1
2

ρa and
1
d

Φ +

(
1− 1

d

)
φ⊥ ↔ ρs.

Distinguishability. With the above parametrization the norm distance and the relative
entropy between two isotropic states is quickly computed as

‖ρI(p)− ρI(q)‖1 = 2|p− q|
D(ρI(p)‖ρI(q)) = η(p‖q) + η(1− p‖1− q)
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where η(x‖y) := x(log x− log y). Namely, because the states in the mixture are orthogonal,
the distances coincide with the classical norm and relative entropy of the input binary
probability distributions given by p and q. If ρ is entangled (p > 1/d) then the minimal
distance from the separable states and relative entropy of entanglement are

‖ρI(p)− S(A:B)‖ = 2
(

p− 1
d

)
ER(ρI(p)) = D(ρI(p)‖S(A:B)) = η

(
p
∥∥∥∥1

d

)
+ η

(
1− p

∥∥∥∥1− 1
d

)
which are simply the values achieved for q = 1/d, the separable isotropic state on the
boundary. In particular ER(Φ) = log d. The isotropic twirl can always be used to reduce
the output of an entanglement distillation protocol to an isotropic state, without changing
the finite rates. More generally, if a state is ε-close to Φ then the isotropic twirl will always
produce an isotropic state with fidelity larger than 1− ε. Indeed, if σ is ε-close to Φ, then

ε >
1
2
‖Φ− σ‖1 >

1
2
‖I(Φ− σ)‖1 =

1
2
‖Φ− I(σ)‖1 = 1− tr(Φσ).

The proof normally used to compute the norm and relative entropy distances of
isotropic states, has been generalized in [LW14] to compute the local restricted distances
for the maximally entangled state. In the following lemma we generalize the proof further
to arbitrary isotropic states. We will use this later in Section 3.2, to lower bound the
distinguishability between two states after using the isotropic twirl as part of a distillation
protocol.

Lemma 10. Let |A| = |B|. For any isotropic states ρ = ρI(p) and σ = ρI(q) on AB we have

‖ρ− σ‖LO(A:B) = ‖ρ− σ‖PPT(A:B) = 2
d

d+1
|p− q|

DLO(A:B)(ρ‖σ) = DPPT(A:B)(ρ‖σ) =
d

d+1

[
η

(
p +

1
d

∥∥∥∥q +
1
d

)
+ η(1− p‖1− q)

]
,

and consequently if ρ is entangled then

‖ρ− S(A:B)‖LO(A:B) = ‖ρ− S(A:B)‖PPT(A:B) = 2
d

d+1

(
p− 1

d

)
DLO(A:B)(ρ‖S(A:B)) = DPPT(A:B)(ρ‖S(A:B)) =

d
d+1

[
η

(
p+

1
d

∥∥∥∥2
d

)
+ η

(
1− p

∥∥∥∥1− 1
d

)]
.

Proof. The proof follows step by step the proof for the local relative entropy of Φ found
in [LW14, Proposition 4]. First we estimate the lower bounds using the (local) measurement
in the computational basis. For that purpose, let τ = 1/d2 be the maximally mixed state
and consider the following parametrization of the isotropic states:

ρ = pΦ + (1− p)Φ⊥ = aΦ + (1− a)τ
σ = qΦ + (1− q)Φ⊥ = bΦ + (1− b)τ

which gives

p = a
d2 − 1

d2 +
1
d2

q = b
d2 − 1

d2 +
1
d2

|p− q| = d2 − 1
d2 |a− b|.
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For any L norm we then have

‖ρ− σ‖L = |p− q| · ‖Φ−Φ⊥‖L = |a− b| · ‖Φ− τ‖L,

implying that the optimal measurement is independent of the isotropic states. In particular
we obtain

d2 − 1
d2 ‖Φ−Φ⊥‖L = ‖Φ− τ‖L.

The measurement in the computational basis then gives

‖Φ− τ‖LO(A:B) > 2
d− 1

d
. (2.19)

For the relative entropy the same measurement yields

DLO(A:B)(ρ‖σ)

> ∑
ij

η

(
a
d

δij +
1− a

d2

∥∥∥∥ b
d

δij +
1− b

d2

)
>

d− 1
d

(
η
(
a + 1

d−1

∥∥b + 1
d−1

)
+ η(1− a‖1− b)

)
=

d
d + 1

(
η
(

p + 1
d

∥∥q + 1
d

)
+ η(1− p‖1− q)

)
(2.20)

Notice that in both cases, the outcome of the local measurement is the same as the outcome
of the binary projective measurement on the maximally correlated subspace and the
remaining orthogonal subspace.

To upper bound ‖Φ− τ‖PPT (and thus ‖ρ− σ‖PPT), we use that any measurement
acting on ρ and σ can be reduced to an isotropic measurement using tr MρI(p) =
tr I(M)ρI(p), where M is any positive-semidefinite operator [HH99]. If M is a PPT
operator, then I(M) will be a PPT isotropic operator, all of which can be decomposed into
a combination of the two extremal PPT isotropic operators Φ⊥ and Φ + Φ⊥/(d + 1), see
Figure 2.4. We can thus fine grain the measurement into operators proportional to the
two extremal ones and then join them into an isotropic binary measurement. The same
is true for the relative entropy using first joint convexity to fine grain the measurement
into the extremal operators, and then using η(ax‖ay) + η(bx, by) = η((a + b)x‖(a + b)y)
to join them into a binary measurement. The result is, that we can restrict to binary
measurements without loss of generality, and that the optimal measurement is the binary
measurement with the two extremal PPT points as measurement operators.

Let x, y ∈ [0, 1], since a general isotropic measurement operator has the form Ix,y =
xΦ+ yΦ⊥, see Figure 2.4, then a general isotropic binary measurementM = (Ix,y,1− Ix,y)
has dual operator of the form:

Kx,y
I := 2Ix,y − 1 = (2x− 1)Φ + (2y− 1)Φ⊥.

We thus find that: ∥∥M(
Φ−Φ⊥

)∥∥
1 = tr

[
Kx,y

I (Φ−Φ⊥)
]
= 2 · |x− y|. (2.21)

The extremal separable operators are at x = 1 and y = 1
d+1 , giving

‖Φ−Φ⊥‖PPT(A:B) 6 2
d

d + 1

and matching the lower bound of Equation (2.19). This proves

‖ρ− σ‖LO(A:B) = ‖ρ− σ‖PPT(A:B) = 2
d

d + 1
|p− q|.



64 CHAPTER 2. QUANTUM INFORMATION

yΦ⊥

xΦ

•1•
Φ + 1

d+1 Φ⊥
•Φ

•
Φ⊥

PPT = SEP

Figure 2.4: The space of isotropic operators. The rectangle is the space of measurement
operators, the grey area are separable measurement operators. Notice that any separable
operator can be written as positive linear combination of Φ⊥ and Φ + 1

d+1 Φ⊥.

Similarly for the relative entropy we find that the extremal measurement achieves

DPPT(A:B)(ρ‖σ)

6 η

(
p +

1− p
d + 1

∥∥∥∥q +
1− q
d + 1

)
+ η

(
(1− p)d

d + 1

∥∥∥∥ (1− q)d
d + 1

)
=

1
d + 1

η(pd + 1‖qd + 1) +
d

d + 1
η(1− p‖1− q)

=
d

d + 1

(
η

(
p +

1
d

∥∥∥∥q +
1
d

)
+ η(1− p‖1− q)

)
matching the lower bound in Equation (2.20) and proving

DLO(A:B)(ρ‖σ) = DPPT(A:B)(ρ‖σ)

=
d

d + 1

(
η

(
p +

1
d

∥∥∥∥q +
1
d

)
+ η(1− p‖1− q)

)
. (2.22)

Let us omit (A:B) for the remainder of the proof. For the second part of the claim, we
need to use the isotropic twirl to argue that it is enough to look at isotropic separable states
to compute ‖ρ− S‖LO and DLO(ρ‖S). However, as a channel, the isotropic twirl needs
shared randomness/communication and thus is not in LO. We need to use the convexity
of the LO norm and the joint convexity of the LO relative entropy to de-randomize it.
Namely, let ς ∈ S be such that ‖ρ− S‖LO = ‖ρ− ς‖LO, then

‖ρ− I(ς)‖LO = ‖I(ρ)− I(ς)‖LO 6
1

|C(A)| ∑
U∈C(A)

∥∥∥(U ⊗U)(ρ− ς)(U ⊗U)†
∥∥∥
LO

.

Since U⊗U is a reversible local operation, we use
∥∥(U ⊗U)X(U ⊗U)†

∥∥
LO

= ‖X‖LO and
get

‖ρ− I(ς)‖LO 6 ‖ρ− ς‖LO = ‖ρ− S‖LO 6 ‖ρ− S‖PPT 6
∥∥ρ− ρI(

1
d )
∥∥
PPT

.

Similarly, if ς ∈ S is such that DLO($‖S) = DLO($‖ς), then using joint convexity we get

DLO(ρ‖I(ς)) 6 DLO(ρ‖ς) = DLO(ρ‖S) 6 DPPT(ρ‖S) 6 DPPT(ρ‖ρI(
1
d )).

However it is straightforward to check that over the separable isotropic states, Equa-
tions (2.21) and (2.22) achieve the minimum for σ = ρI(

1
d ) and therefore we find∥∥ρ− ρI(

1
d )
∥∥
LO

6 ‖ρ− I(ς)‖LO
DLO(ρ‖ρI(

1
d )) 6 DLO(ρ‖I(ς))

concluding the proof.



Chapter 3

Private states

In this thesis, one of the main topics is the study of perfect keys, uniformly random strings
shared between two parties but secret from anybody else, which are the targets of quantum
key distribution. A quantum key distribution scheme generally needs to perform key
distillation, the task of extracting almost perfect key, from noisy input states. If we fix
the input state and ask what is the maximal amount of perfect key that can be extracted,
like for entanglement distillation this defines a rate called the distillable key, which is
another entanglement measure. Maximally entangled states contain perfect correlations
that are pure and in product with the environment, and thus measuring them leads to
perfect key. It turns out that there exist mixed states, the private states, that also lead
to perfect key just by measuring. An important contribution to the understanding of
quantum key distribution has been the discovery of private states from which secret key,
but no maximally entangled states, can be extracted. The construction of those states was
based on an intuition that the quantum mechanical phenomena of data hiding and privacy
might be related. We have mentioned that there exist experimental realizations of these
states, these can be found in [Dob+11].

In this chapter, after reviewing the basics of key distillation and private states, we prove
an equivalent characterization of private states that reduces to classical the correlations
between the source of the perfect key and the impurity of the privates states. This will
allow us to derive a formal connection with quantum data hiding, confirming the intuition
behind the construction of the states from which key but not pure entanglement can be
extracted, that the separation between the distillable key and distillable entanglement is
due to quantum data hiding. We will connect to this in the final chapter, where we will
argue that this could be a purely bipartite property that does not survive the teleportation
process.

3.1 Key Distillation

In key distillation we assume that the adversary is not an attacker (active), but he is
passive, in which case we usually refer to as an eavesdropper, which we call Eve. In
particular, Eve can only listen to the classical communication between two parties, but not
tamper with it. With an attacker, the equivalent requirement is that the communication
between Alice and Bob is authenticated. An eavesdropper also cannot actively attack Alice
and Bob’s local operations, and thus we assume that Alice and Bob can ensure that the
environment of their local noisy operations does not leak to the outer environment and
thus is not collected by Eve. The quantum part of the eavesdropping is the assumption
that Eve can collect the information that leaks from the quantum communication to the
environment, and thus can have an extension of the state shared by Alice and Bob. Since
any extension can be derived from purifying environments, the worst case scenario is
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to assume that Eve holds the purification of the quantum communication. Since the
purification also holds all the quantum information about the quantum communication
that is theoretically possible, the worst case eavesdropping is also the worst case attack on
the quantum communication.1

3.1.1 Local Operations and Public Communication

We will return to the quantum part of the eavesdropping in the next section. In this section
we modify the class of LOCC operations to include the effect of the eavesdropping on the
classical communication, modelling the information that is leaked to the environment in
the process of distilling the key. Since the eavesdropper Eve can listen to any message,
the worst case scenario is her collecting all messages. Equivalently we can think of the
communication as holding a public record that anyone can read, including Eve; this is
called public communication.

Public instruments and one-way LOPC

We thus define a public instrument as an instrument that outputs two copies of the
measurement outcome. Namely, let C be the system for the message/communication and
let M = C be the system for the public record. Then we define public instruments as any
channel Λ ∈ CPTP(Hin〉HoutCM) of the form

Λ = ∑
i∈Z|C|

Λi(ρ)⊗ |i〉〈i|C ⊗ |i〉〈i|M

where Λi ∈ CP(Hin〉Hout). We denote with P.IN(Hin〉HoutC|M), or P.IN(HoutC|M〈Hin),
the set of public instruments, using the conditioning “|M” to highlight that when we
compose further operations, we consider only one of CM as part of the available output,
while the other one as an inaccessible third party. Later we will match this conditioning
with the one in the conditional mutual information.

As for LOCC, in a one-way protocol all the instruments can be grouped together
and the messages can be sent in a single round. One-way local operation with public
communication (LOPC) from Alice to Bob are then defined as

LOPC→(Aout:Bout|M〈Ain:Bin)

:= [idAoutM⊗CPTP(Bout〈CBin)] ◦ [P.IN(AoutC|M〈Ain)⊗ idBin ],

while from Bob to Alice as

LOPC←(Aout:Bout|M〈Ain:Bin)

:= [CPTP(Aout〈AinC)⊗ idBoutM] ◦ [idAin ⊗P.IN(CBout|M〈Bin)].

Two-way LOPC

Two-way LOPC is also defined similarly to LOCC. However, because fixing a global
system M for the communication in the protocols does not tell us the systems of each
communication round, we need to keep track of the system for each round individually.

1There can still be a big difference between quantum eavesdroppers and quantum attackers with regard to
the local operations. Current devices might be secure against quantum eavesdroppers, but we can safely say
that Vadim Makarov is not one.
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First we define a single round of two-way LOPC as a function of the input/output systems
for Alice and Bob, and a list of two systems for the public communication:

LOPC1(Aout:Bout| {M→, M←}〈Ain:Bin)

:=
⋃
A,B

[LOPC←(Aout:Bout|M←〈A:B)⊗ idM→ ] ◦ LOPC→(A:B|M→〈Ain:Bin).

We then group the messages together in a single system as

LOPC1(Aout:Bout|M〈Ain:Bin) :=
⋃

M→M←=M

LOPC1(Aout:Bout| {M→, M←}〈Ain:Bin)

The first definition contains in principle more information, but this second definition
will be enough for our purposes, as LOPC1(Ain:Bin〉Aout:Bout|M) is used in a way that is
independent of the public communication. This will be enough to define key distillation,
as the goal of Alice and Bob is to distill key independently of any eavesdropper, and thus
independently of the communication. It should be enough also when upper bounding the
power of the eavesdropper, as this will involve optimizing over all of his operations, which
include the ones that perfectly match the global public system to the communication in
each round.

Since the public system is never touched by Alice and Bob, from now on we will omit
the identity maps on the public systems. We now define the n-rounds of two-way LOPC
recursively. Similarly we first define the n-rounds explicitly with each message, and then
define them with a global public system. Now the list of two systems becomes a list of
2n-systems

LOPCn(Aout:Bout| {Mm
→, Mm

←}
n
m=1

〈
Ain:Bin

)
:=
⋃
A,B

LOPC1(Aout:Bout| {Mn
→, Mn

←}〈A:B) ◦ LOPCn−1(A:B| {Mm
→, Mm

←} n−1
m=1〈Ain:Bin)

where as mentioned we omitted the identity map on the public systems of the previous
n− 1 rounds. Then to group all the public communication together we define:

LOPCn(Ain:Bin〉Aout:Bout|M) :=
⋃

LOPCn(Ain:in
〉
Aout:Bout| {Mm

→, Mm
←}

n
m=1

)
where the union is over systems {Mm

→, Mm
←}

n
m=1 such that M1

→M1
← . . . Mn−1

→ Mn−1
← = M.

Finally, we allow arbitrary rounds of communication and define LOPC as

LOPC(Ain:Bin〉Aout:Bout|M) :=
⋃

n∈N

LOPCn(Ain:Bin〉Aout:Bout|M),

We then have all the LOPC channels defined by

LOPC(A:B) :=
⋃

Aout,Bout,M

LOPC(A:B〉Aout:Bout|M).

LOPC measurements

The additional public systems do not interfere with measurements. Measurements and
partial measurements are thus simply defined taking the intersection with measurements
or instruments in the relevant systems as done in Section 1.4. Namely we have that
the LOPC measurements are LOPC(A:B〉Aout:Bout|M) and LOPC(A:B) for two way LOPC,
and similarly for one-way LOPC. Analogously, LOPC partial measurements are given by
LOPC(A:B〉Aout:Bout|M) and LOPC(A:B), and similarly for Bob and for one-way LOPC.
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Monotonicity

We have already mentioned that strong sub-additivity implies the monotonicity of the
mutual and conditional mutual information under local operations. It is easy to check that
these quantities are not monotone under classical communication, exactly because it can
create correlations. Making the communication public makes these quantities monotone.
More specifically, through the conditioning inequality

I(A:BC|E) 6 I(A:B|CE),

strong sub-additivity also implies monotonicity under conditioning on the outcomes
of the public instruments, because I(A:B|CE) is exactly the effect of sending the public
message, as we will see below. The result is that the conditional mutual information is
monotone under LOPC. Note that the same proof applies to the two known multipartite
generalizations of the conditional mutual information [Yan+09], namely they will be
monotone under the multipartite version of LOPC (however we have no use for these
generalizations here). The reason is that the conditioning system is present in every
entropy term, thus allowing us to use strong sub-additivity after removing the public
message from the parties (which does not change the conditional mutual information).

This monotonicity opens the possibility to define a measured conditional mutual
information for states ρ in ABE as

ILOPC(A:B)(ρ) := sup
Λ∈LOPC(A:B〉Aout:Bout|M)⊗idE

I(Aout:Bout|ME)Λ(ρ).

where the supremum is also over systems Aout, Bout, M. The same holds for partial mea-
surements LOPC(A:B). We will see later how to use this to construct an entanglement
measure in Section 3.1.4, which is of independent interest. The next lemma contains the
proof of the claimed monotonicity.

Lemma 11. The mutual and conditional mutual information are LOPC monotones.
More precisely, let ρ ∈ D(AinBinE) and Λ ∈ LOPC(Ain:Bin〉Aout:Bout|M)⊗ idE, then

I(Ain:Bin|E)ρ > I(Aout:Bout|ME)Λ(ρ).

Proof. The result for the mutual information follows from the conditional mutual informa-
tion one, by making Eve’s system trivial. Therefore we only need to show the latter. We
already know that the conditional mutual information is monotone under local operations.
We thus only need to show monotonicity under the public communication. Let ρ be a state
on AinBE and Λ ∈ P.IN(Ain〉AC|M)⊗ idBE, so that Λ(ρ) is a state on ACMBE. It is easily
verified that we can trace out C if M is also present in an entropy, and thus

H(ACMBE) = H(ABME),
H(ACME) = H(AME),
H(CBME) = H(BME).

where the conditions hold for any ρ ∈ D(AinBE). We thus have by strong sub-additivity

I(ACM:B|E) =I(AM:B|E) 6 I(A:B|ME) = I(A:CB|ME)

Combining with monotonicity under local operations, this gives that the conditional
mutual information is monotone under LOPC→. A mirroring argument gives monotonicity
also under LOPC←, and thus LOPC.
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3.1.2 Distillable Key

We have seen how to model the information leaked to the eavesdropper (the passive
adversary) in the process of distilling the key. We also mentioned that the quantum part
of the eavesdropping is, in the worst case scenario, Eve holding the purification of the
quantum communication. We can assume that Alice and Bob have a source that they can
run multiple times to produce a tensor product state ρ⊗n like for entanglement distillation,
but it requires some justification.

In key distillation, there are in general no tensor product sources. Even if an underlying
pure source could be considered in tensor product (for example the photons generated
locally before being sent through a fibre), assuming that the noise is also in tensor product
puts assumptions on the power of the eavesdropper. Fortunately, it was proven [CKR09;
Ren07] that the security of a fully general noise model, can be reduced to the security of a
tensor product source without changing the achievable rates (the finite rates might differ
though, as the reduction needs an active operation from Alice and Bob). We will thus
assume that Alice and Bob’s source produces states ρ⊗n.

The goal of key distillation is to extract key, namely classical bits that are perfectly
correlated between Alice and Bob, and independent from any eavesdropper. If E is the
system of the eavesdropper, then the states of perfect key have the form

Φ̂AoutBout ⊗ σ

for some state σ ∈ D(E) and where the maximally correlated state Φ̂ was defined in
Section 1.5. This class of states is closed under tensor product and, like for the distillable
entanglement, the distillable key will be a measure of key in units of Φ̂+ ⊗ σ. To verify
that the distillation procedure achieves this state, we need to keep track of the system
of Eve, including the public communication, from the beginning of the protocol, where
we assume that Eve holds the purification, to the end. Let ρ ∈ D(AB) be the mixed
state produced by the source, and denote by |ρ〉〈ρ| ∈ D(ABE) a purification. Then the
single-shot, zero-error key rate of ρ is given by

K0
D(ρ) := sup

{
log κ :

[
Φ̂log κ ⊗D(ME)

]
∩
[
LOPC(Cκ:Cκ|M〈A:B)⊗ idE ◦ |ρ〉〈ρ|

]
6= ∅

}
where the supremum is also over the public system M. The maximally entangled state Φm

clearly has single-shot zero-error key rate larger than m, as it is already a pure state and
thus the purification will be in product. The measurement in the computational basis then
achieves the perfect key. More generally, distilling the maximally entangled state implies
that we can also distill key with the same size, simply by performing the measurement
after the distillation.

We now allow for a small error, as in the case for distillable entanglement, and define
the best finite key rate of ρ as

Kε
D(ρ) := sup

{
log κ : Φ̂log κ ⊗D(ME) ≈ε LOPC(C

κ:Cκ〈A:B|M)⊗ idE ◦ |ρ〉〈ρ|
}

.

The distillable key is defined as the best achievable rate for Kε
D(ρ):

KD(ρ) := lim
ε→0

lim sup
n→∞

1
n

Kε
D(ρ

⊗n).

We then have ED(ρ) 6 KD(ρ). The same definition applies for one-way LOPC protocols,
defining the one-way distillable key K→D (ρ), also satisfying E→D (ρ) 6 K→D (ρ).
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The following achievable rate for the one way distillable key was proven together with
the hashing bound, and is known as the Devetak-Winter rate [DW05]:

K→D (ρ) > sup
M∈M(A〉M)

[I(M:B)− I(M:E)]M⊗idBE(|ρ〉〈ρ|)

= sup
M∈M(A〉M)

[I(M〉B)− I(M〉E)]M⊗idBE(|ρ〉〈ρ|).

3.1.3 Private states

We have already mentioned that the maximally entangled state Φ+ contains a perfect bit
of key, which is extracted simply with a measurement in the computational basis. Private
states are those states that generalize this property, namely they are all those states that
produce perfect key when measured in the computational basis. More precisely, let Alice
and Bob now hold two pairs of systems:

• The key systems A¤B¤, of equal dimension |A¤| = |B¤|, where we want to perform
the measurement in the computational basis and get the perfect key (as indicated by
the key symbol ¤).

• The shield systems A�B� of arbitrary dimension for the generalization. The perfect
key in A¤B¤ might be correlated with A�B� but it will be secret from any purifying
environment, (as indicated by the shield symbol �).

If the shield systems are trivial (A� = B� = C), then the only states that produce perfect
key just by measuring are the maximally entangled states. Aside from Φ though, we have
already seen an example of a private state in Section 2.4, when we explained that the state

1
2

Φ+
AB ⊗ |0〉〈0|A′ +

1
2

Φ−AB ⊗ |1〉〈1|A′ (3.1)

is perfectly distillable. Of course, we can first distill the entanglement by correcting
the phase and then extract the key. However, it is straightforward to verify that this
state produces perfect key simply by measuring the maximally entangled state, without
applying any correction. This will work in full generality also if, instead of the classical
local states |0〉〈0| and |1〉〈1|, this information is stored in any pair of bipartite orthogonal
states σ0 and σ1. Recalling the terminology of Section 2.2 for the Holevo information, we
would say that measuring directly the maximally entangled states will produce perfect
key if the information of the phase is perfectly encoded in any bipartite ensemble. The
the perfect encoders |i〉〈i| are the shield of this example, which being local allow for
perfect distillation of entanglement. The interesting private states with low distillable
entanglement emerge for some perfect encoders that are data hiding states, and thus do
not allow for the correction of the phase flip by accessing the information on the shield
locally. However, encoding the phase information in data hiding states does not guarantee
reduced distillable entanglement. The purpose of this chapter is to make the connection
with data hiding formal and provide interesting edge cases, but before that we need to
introduce private states in full generality.

Given any state ρ ∈ D(A¤B¤A�B�), the outcome of measuring the computational
basis of A¤B¤ is called the key-attacked state of ρ, and we will denote it with ρ̂. This
is compatible with the notation for the maximally correlated state Φ̂, which is indeed
the key-attacked state of the maximally entangled state Φ. It was proven in [Hor+05b;
Hor+09] that γ ∈ D(A¤B¤A�B�) is a private state if and only if:

γ = T (ΦA¤B¤
⊗ σ) (3.2)
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for some shield state σ ∈ D(A�B�) and some controlled unitary channel T . Notice that
because Φ is the maximally entangled state, only the part of T that controls on |ii〉〈ii| has
an effect of the definition of γ. We will see below where does the rest of the controlled
unitary play a role. In the example of Equation (3.1), the shield state is the maximally
mixed state of one qubit, and the controlled unitary is a controlled phase, controlled on
either of the key qubit at Alice or Bob.

To be more precise, for any control system H and target system T let CU(H:T) ⊂
CPTP(HT〉HT) denote the subset of controlled unitary channels, which is a subgroup of
the unitary channels. Then for any pure states γ ∈ D(A¤B¤A�B�E) and σ ∈ D(A�B�E)
the result from [Hor+05b] says that γ̂A¤B¤E is a state of perfect key if and only if γA¤B¤A�B�

is of the form of Equation (3.2), or equivalently

γ̂A¤B¤E = Φ̂A¤B¤
⊗ σE ⇔ γA¤B¤A�B�

∈ CU(A¤B¤, A�B�) ◦ (ΦA¤B¤
⊗ σA�B�

)

In particular, the controlled unitaries are exactly the invariant operations for γ̂A¤B¤E.
Noticethe ordering between taking the purification and measuring the key, in particular
notice that γ̂A¤B¤E is not the reduced state of the purification of γ̂A¤B¤A�B�

, which actually
equals

γ̂A¤B¤A�B�
= T

(
Φ̂A¤B¤

⊗ σA�B�

)
.

Indeed, measuring the key first and then computing the purification actually gives away
the information about the key to Eve, because it gives her the purifying system of the
measurement.

Twisting

We will soon define a distillation rate of private states, where we do not care about their
shield, but only about their key size, it will then be useful to have a well defined set of
private states for a fixed key size, which we do now. The process of tensoring with a state
on the shield and conjugating with a controlled unitary, is called twisting, and can be
generalized to any pair of control/target system. Let ρ ∈ D(C), we can construct the set
of all the twistings of ρ on T as

Υ(ρ, T) := CU(C, T) ◦ (ρ⊗D(T)).

where now for general states ρ, all of the controlled unitary will be relevant, and not just
the part controlled on |ii〉〈ii|, as is the case for the maximally entangled states. Furthermore,
just like we have mentioned before for γ̂A¤B¤E, CU(C, T) are all the invariant operations
for ρ̂CE, where ρCTE ∈ D(CTE) is any purification of ρ.

The set of all private states on A¤B¤A�B� is then easily constructed as the set of all the
twisting of ΦA¤B¤

on the shield, namely as

Υ(ΦA¤B¤
, A�B�).

As for the maximally entangled state, we will also use the notation γm for states γm ∈
Υ(Φm, A�B�). We will also call private bits the private states with single-qubit key systems,
namely the elements of Υ(Φ+, A�B�), and just like for maximally entangled states we
denote with γ± := Z±B¤

(γ) the encodings for the particular case of private bits (notice that
the phase can be applied also on Alice). The class of private states is also closed under
tensor product, and private bits are the units in this class.
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Private state distillation

All private states are very entangled states, in particular they are all at least as entangled as
the maximally entangled state Φ in terms of the relative entropy of entanglement. Namely,
using the unitary invariance of the relative entropy, it is straightforward to check that for
all private states γ ∈ Υ(Φ, A�B�) it holds

ER(Φ) 6 E∞
R (γ) 6 ER(γ).

In particular, this means that private states are a resource, since they cannot be produced
from bipartite systems under separable operations, and we can thus define the following
finite rate for the distillation of private states as

K̃ε
D(ρ) := sup

{
log k : Υ(Φlog k, A�B�) ≈ε LOCC(C

kA�:CkB�〈A:B) ◦ ρ
}

,

and the corresponding best achievable rate

K̃D(ρ) := lim
ε→0

lim sup
n→∞

1
n

K̃ε
D(ρ

⊗n).

As for the distillable entanglement, changing the maps from LOCC to LOCC→ defines
the smaller rate K̃→D (ρ). Similarly, changing to separable maps defines the larger rate
K̃D,SEP(ρ). These rates are always larger than their distillable entanglement counterparts.
Namely, we have ED,L(ρ) 6 K̃D,L(ρ), because distilling entanglement, in comparison
to distilling private states, is just a restriction on the target states. The relative entropy
of entanglement and its regularization, that we mentioned to be upper bounds on the
distillable entanglement, are actually upper bounds on private state distillation [Hor+09].
Namely,

K̃D,SEP(ρ) 6 E∞
R (ρ) 6 ER(ρ). (3.3)

Private states might be a bit confusing because there is no restriction on what state can
go in the shield. For example, Φm ⊗ΦA�B�

is a valid private state, but the shield should
clearly be part of the key. Therefore, this state will never be the output of an optimal
protocol in private state distillation. The supremum in the rate will be achieved by private
states for which the key part cannot be made larger asymptotically. These are called
irreducible private states. More precisely, a private state γm for states γm ∈ Υ(Φm, A�B�)
is said to be irreducible if [Hor+09]

K̃D(γ
m) = m. (3.4)

These are the private states that are actually interesting in the definition of distillable key
because they are the ones approximated by optimal distillation protocols.

However, the only feasible way to prove that a private state is irreducible is to upper
bound the distillable key via some other entanglement measure. In particular, it was also
shown in [Hor+09] that:

E∞
R (γm) 6 m + E∞

R (γ̂)

ER(γ
m) 6 m + ER(γ̂).

We thus have that for any private state γ ∈ Υ(Φm, A�B�), the relative entropy of en-
tanglement and its regularization are exactly E∞

R (γm) = ER(γ
m) = m if and only if the

key-attacked state γ̂ is separable, namely γ̂ ∈ S(A¤A�:B¤B�), in which case γ is also an
irreducible private state. Such states are sometimes called strictly irreducible [1; Hor+16].
The example given in Equation (3.1) is strictly irreducible, and in general, if τ ∈ D(A�B�)
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is the maximally mixed state, then any private state γ ∈ Υ(Φ, τ) will be strictly irreducible,
because the key attacked state will simply be the separable state Φ̂⊗ τ.

There are no known examples of irreducible private states that are not strictly irre-
ducible. As we will see in the next section after we introduce Bell private state, finding
such an example would solve a long-standing important open problem in key distillation.

Equivalence with key distillation

Arguably a significant advance in the understanding of key distillation, was the proof
in [Hor+05b] that the rate of distillable private states equals the distillable key

K̃D(ρ) = KD(ρ)

K̃→D (ρ) = K→D (ρ),

together with examples of private states with small distillable entanglement, and of PPT
states ε-close to private states for arbitrary ε. This result was used to show that a quantum
key distribution protocol, that could not be purified into an entanglement distillation
protocol, could indeed be purified into a private states distillation protocol [RS07].

There are various consequences of the above. The equality shows through Equa-
tion (3.3), that the relative entropy of entanglement and its regularization are upper
bounds on the distillable key

K̃D,SEP(ρ) 6 E∞
R (ρ) 6 ER(ρ). (3.5)

The existence of private state with negligible distillable entanglement implies that distill-
able entanglement and distillable key are different and their difference can be unbounded.
The existence of PPT states arbitrarily close to private states, means that PPT operations
can generate key even though they cannot generate distillable entanglement, and thus
K̃D,PPT is not well defined and will be infinite. Finally, the equality of the rates implies that
key distillation is actually a bipartite problem. The intuition behind this is the following.
We can decide to purify an LOPC protocol at any time, however the system of Eve is al-
ready accounted for, so the purifying systems are secure. This comes from the assumption
that the local operations at Alice and Bob are not attacked, and thus these systems are
actually the auxiliary systems at Alice and Bob’s lab that we called shields. Since the total
system is pure at all times, we have the equivalent choice of either keeping track of the
key systems and Eve’s system, or of the key systems and the shields/lab systems. In
the second case Eve is determined by the assumption that she holds the purification at
all times. The public communication is then taken care of by this assumption, because
the purification of the classical communication always contains a coherent copy of the
message.

Private states explain why some quantum key distribution protocols can have a rate
much larger than entanglement based distillation protocols [SS07]. Such protocols can
have quite unintuitive processes, whereby adding local noise to key actually allows to
achieve larger rates [RGK05]. The noise is indeed part of the shield and allows for some
phases to not be corrected [RS07], an interpretastion that will become general and clear in
the next section.

Encoding

Each private state γ with a k-dimensional key system, can be thought of as a set of states
for encoding a classical message of dimension k as explained in Section 2.2. What is more,
it is a straightforward observation that the message can be encoded locally by Alice or
Bob acting on the “raw” private state γ, as shown below. Let, without loss of generality,
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Bob be the encoder of the message. Let γ be a private state on A¤A�:B¤B�, and define for
the moment the states γj := Z

j
B¤

(γ), where Z is the phase flip on B¤ with the identities on
the remaining systems omitted. Since any controlled unitary commutes with the phase
flips on the control, it is readily verified that

γj = T (φ0j ⊗ σ), (3.6)

and therefore γj are orthogonal states (because the orthogonality of the Bell states is pre-
served under the unitary). Therefore, any private state can encode a classical source

{
pj
}

,
into the ensemble

{
pj, γj

}
, and the message can be recovered with a global measurement.

Private states are thus both perfect encoders and perfect key distillable.
Because private states are bipartite states, Alice and Bob might thus not have access to

global measurements. Private states can thus have low restricted Holevo information, just
like they might have low distillable entanglement. This chapter is indeed dedicated to
formally connecting these behaviours, and to exploring the limitations of this connection.

3.1.4 Interlude — Measured Squashed Entanglement

The content of this section is unpublished work in collaboration with Karol Horodecki.
This section is not necessary for the understanding of the remaining material, but it

is a simple result that might be of independent interest. We have already seen various
entanglement measures. Among them we have seen the relative entropy of entanglement
as an upper bound on the distillable key, and the relative entropy from PPT states as an
upper bound on the distillable entanglement. Another interesting upper bound on the
distillable key is the squashed entanglement [CW04; Tuc99; Tuc02]:

Esq(ρ) :=
1
2

inf
Λ∈CPTP(E〉E′)

I
(
A:B|E′

)
idAB⊗Λ(|ρ〉〈ρ|)

where |ρ〉〈ρ| ∈ D(ABE) is any purification of ρ ∈ D(AB). Because different purifications
are related by reversible operations on Eve, their choice does not change the squashed
entanglement.

The relative entropy of entanglement and the squashed entanglement are incompara-
ble, as the squashed entanglement of the antisymmetric state is arbitrarily smaller than
the relative entropy of entanglement [CSW12], and the relative entropy of entanglement
of the so-called flower private state (which we will see as an example in Section 3.4) is
arbitrarily smaller than the squashed entanglement [Hor+05a; CW05]2. One important
property of squashed entanglement is that it is additive on tensor products, and it is thus
its own regularization. The peculiar aspect that is the reason for this section, is that there
are no known definitions of squashed entanglement restricted to measurements (or partial
measurements). Since defining restricted measures is a recurring theme in this thesis,
we dedicate this section to illustrate how to insert measurements and define a form of
restricted squashed entanglement, which can be of independent interest. We leave as
future work the development of its possible applications.

Measured intrinsic information

Squashed entanglement is inspired by a classical optimized conditional mutual infor-
mation known as intrinsic information [MW99; RW03], which is an upper bound on

2The squashed entanglement is lockable, while the relative entropy of entanglement is not.
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the classical distillable key of a tripartite probability distribution. The corresponding
definition for the quantum intrinsic information of a tripartite system ρ ∈ D(ABE) is

I(A:B↓E)ρ := inf
ξ∈CPTP(E〉Eout)

I
(
A:B|Eout)

idAB⊗ξ(ρ)

where the optimization is also over the output system E′. For any state ρ ∈ D(AB),
squashed entanglement is then simply

Esq(ρ) =
1
2

I(A:B↓E)|ρ〉〈ρ| (3.7)

Notice that, while the squashed entanglement is additive on tensor products, this additivity
comes from computing the intrinsic information on a pure state. In general the intrinsic
information is simply sub-additive (proven in [CW04] as part of the proof of additivity of
squashed entanglement). The intrinsic information can also be proven to be asymptotically
continuous, but is not strictly necessary for our purpose.

The infimum over channels at Eve makes the intrinsic information monotonically
increasing under local channels at Eve, as these only reduce the set of channels in the
optimization. The intrinsic information is also monotone under LOPC. For completeness,
we prove these properties at the end of the section. Because of the monotonicity under
LOPC, it is now quite natural to give the following definition.

Definition 12. Let ρ ∈ D(ABE) be a tripartite state. We define the measured intrinsic informa-
tion of ρ as:

ILOPC(A : B↓E)ρ := sup
M∈LOPC(A:B〉Aout:Bout|C)

I
(
Aout:Bout↓CE

)
M⊗idE(ρ)

where the supremum is also over the output systems Aout, Bout and C.

Since the optimization over LOPC measurements has no access to Eve’s system, it
preserves the monotonicity at Eve, and thus the measured intrinsic information is mono-
tonically increasing under channels at Eve. The measured intrinsic information is also an
LOPC monotone by definition, because of the supremum over LOPC measurements. We
prove these properties below for completeness. Monotonicity of the intrinsic information
guarantees that ILOPC(A : B↓E) is indeed finite, as it immediately follows that

ILOPC(A : B↓E) 6 I(A:B↓E).

Furthermore, the inequality will in general be strict for entangled states. Indeed while the
universal upper bound for the conditional mutual information is

I(A:B|E) 6 2 min {log |A|, log |B|} ,

values above min {log |A|, log |B|} can only be achieved by entangled states. For any
separable state ρ ∈ S(A:B), we have instead I(A:B) 6 min {log |A|, log |B|}3 which then
implies that if ρ ∈ D(ABE) is classical on Alice and Bob, as is the case with the outcome
of an LOPC measurement, then I(A:B|E)ρ 6 min {log |A|, log |B|}. We thus have

ILOPC(A : B↓E) 6 min {log |A|, log |B|} , (3.8)

even though
I(A:B↓E) 6 2 min {log |A|, log |B|} .

3This is shown using the monotonicity under local operations. More precisely the mutual information of
∑i piρi ⊗ σi will be smaller than the mutual information of ∑i pi |i〉〈i| ⊗ σi, the Holevo information of {pi, σi},
which is upper bounded by log |B|.
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Proofs of the monotonicities.

1. The Intrinsic information is monotonically increasing under channels at Eve. For
any channel Λ ∈ CPTP

(
Ein〉E) and any state ρ ∈ D

(
ABEin):

I(A:B↓E)idAB⊗Λ(ρ) = inf
ξ∈CPTP(E〉Eout)

I
(
A:B|Eout)

idAB⊗(ξ◦Λ)(ρ)

> inf
ξ◦Λ∈CPTP(Ein〉Eout)

I
(
A:B|Eout)

idAB⊗(ξ◦Λ)(ρ)

= I
(
A:B↓Ein)

ρ
.

2. The intrinsic information is monotonically decreasing under LOPC. Let Λ ∈
LOPC

(
Ain:Bin〉Aout:Bout|C

)
be an LOPC operation and let ρ be any input state on AinBinE.

By the monotonicity of the conditional mutual information we have

I
(
Aout:Bout↓CE

)
Λ⊗idE(ρ)

= inf
ξ∈CPTP(CE〉E′)

I
(
Aout:Bout|E′

)
(idAB⊗ξ)◦(Λ⊗idE)(ρ)

6 inf
ξ∈CPTP(E〉E′)

I
(
Aout:Bout|CE′

)
Λ⊗ξ(ρ)

6 inf
ξ∈CPTP(E〉E′)

I
(
Ain:Bin|E′

)
idAB⊗ξ(ρ)

= I
(
Ain:Bin↓E

)
ρ
.

3. The measured intrinsic information is monotonically increasing under channels at
Eve. For any channel Λ ∈ CPTP

(
Ein〉E) and any state ρ ∈ D

(
ABEin):

ILOPC(A : B↓E)idAB⊗Λ(ρ) = sup
M∈LOPC(A:B〉Aout:Bout|C)

I
(
Aout:Bout↓CE

)
M⊗ΛE(ρ)

> sup
M∈LOPC(A:B〉Aout:Bout|C)

I
(
Aout:Bout↓CEin)

M⊗idE(ρ)

= ILOPC(A : B↓E ∈)ρ.

4. The measured intrinsic information is monotonically decreasing under LOPC. Let
ρ ∈ D

(
AinBinE

)
and let Λ ∈ LOPC

(
Ain:Bin〉A:B|M

)
, then

ILOPC(A : B↓ME)Λ⊗idE(ρ) = sup
M∈LOPC(A:B〉Aout:Bout|M′)

I
(
Aout:Bout↓M′ME

)
(M⊗idCE)◦(Λ⊗idE)(ρ)

6 sup
M◦Λ∈LOPC(Ain:Bin〉Aout:Bout|M′M)

I
(
Aout:Bout↓M′ME

)
(M◦Λ)⊗idE(ρ)

6 ILOPC(A ∈: B ∈ ↓E)ρ

Measured squashed entanglement

Having defined the measured intrinsic information, inserting the measurements in the
squashed entanglement is now as simple as generalizing Equation (3.7).

Definition 13. Let ρ be any state of AB. We define the measured squashed entanglement as:

Esq(ρ) := ILOPC(A : B↓E)|ρ〉〈ρ|

where |ρ〉〈ρ| ∈ D(ABE) is any purification of ρ.
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Notice that there is no factor of 2, to account for Equation (3.8). The measured squashed
entanglement will likely not be additive on tensor products any more, and we do not
know whether it is sub- or super-additive. Therefore we cannot claim that it admits
a regularization. However by monotonicity of the measured intrinsic information we
immediately know that

Esq(ρ) 6 2Esq(ρ),

and thus by the additivity of squashed entanglement we have

lim sup
n→∞

1
n

Esq(ρ
⊗n) 6 2Esq(ρ).

The measured squashed entanglement is indeed and entanglement measure, as shown
by the properties proven below. The proof of the last one is particularly simple given
the LOPC monotonicity of the measured intrinsic information, and it implies an equally
simple proof that squashed entanglement is an upper bound on the distillable key.

Lemma 14. On pure states ρ ∈ D(AB) we have Esq(ρ) = H(A)ρ = H(B)ρ.

Lemma 15. Esq(ρ) is an LOCC monotone.

Lemma 16. For any bipartite state ρ ∈ D(AB)

KD(ρ) 6 lim sup
n→∞

1
n

Esq(ρ
⊗n).

Proof of Lemma 14. Let ρ = |ρ〉〈ρ| ∈ D(AB) be a pure state. We need to prove that Esq(ρ) =
H(A)ρ. Notice that on pure states we have H(A)ρ = I(A:B)ρ. We thus need to prove
Esq(ρ) = I(A:B)ρ. First notice that because ρ is pure

Esq(ρ) := ILOPC(A : B↓E)|ρ〉〈ρ| = ILOPC(A : B)ρ.

Now, Esq(ρ) 6 I(A:B)ρ follows immediately from the monotonicity of the conditional
mutual information. The lower bound is achieved using local measurement on the
Schmidt-decomposition basis of |ρ〉 (see for example [NC02]).

Proof of Lemma 15. Let ρ ∈ D
(
Ain:Bin) and Λ ∈ LOCC

(
Ain:Bin〉Aout:Bout). We need to

show that
Esq(Λ(ρ)) 6 Esq(ρ). (3.9)

To show monotonicity under local operations, we can use the Stinespring dilation as done
in the proof of squashed entanglement in [CW04]. Then addition of pure ancillas and
local unitaries leave the measured squashed entanglement unchanged, because they are
reversible operations in LOPC. For the partial trace, it is enough to notice that |ρ〉ÃABE is
both a purification of ρAB and of ρÃAB and thus

Esq(ρÃAB) = sup
M∈LOPC(ÃA:B〉A′:B′|M)

inf
ξ∈CPTP(ME〉E′)

I
(
A′:B′|E′

)
(idA′B′ ⊗ξ)◦(M⊗idE(|ρ〉〈ρ|)

> sup
M∈LOPC(A:B〉A′:B′|M)

inf
ξ∈CPTP(ME〉E′)

I
(
ÃA′:B′|E′

)
(idÃA′B′ ⊗ξ)◦(M⊗idÃE(|ρ〉〈ρ|)

> sup
M∈LOPC(A:B〉A′:B′|M)

inf
ξ∈CPTP(ME〉E′)

I
(
A′:B′|ÃE′

)
(idÃA′B′ ⊗ξ)◦(M⊗idÃE(|ρ〉〈ρ|)

> sup
M∈LOPC(A:B〉A′:B′|M)

inf
ξ∈CPTP(ÃME〉E′)

I
(
A′:B′|E′

)
(idA′B′ ⊗ξ)◦(M⊗idÃE(|ρ〉〈ρ|)

= Esq(ρAB)
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where the first inequality follows because we are taking the supremum over a smaller
set, the second follows from the chain rule and strong sub-additivity, and the third one
follows because we are taking the infimum over a larger set.

It remains only to prove monotonicity for the classical communication. Let C be the
classical system to be communicated, let ρ ∈ D(CAB) be a state that is classical on C

ρ = ∑
i

pi |i〉〈i|C ⊗ ρi,AB,

and let us distinguish with ρCA:B and ρA:CB the cases where the message system is at Alice
or Bob. This state has the following purification |ρ〉〈ρ| ∈ D(ACBE):

|ρ〉 = ∑
i

√
pi |ii〉CE′ ⊗ |ρi〉ABE ,

where with |ρi〉 ∈ D(ABE) we denote the purification of ρi ∈ D(AB).
Then we start with C at Alice and compute:

Esq(ρCA:B) = ILOPC(CA : B↓E′E)|ρ〉〈ρ|
> ILOPC(CA : B↓E′E)∑|ii〉〈ii|CE′⊗|ρi〉〈ρi |ABE

simply by letting Alice perform the local measurement in the computational basis on
C. We now send the message using public communication and by monotonicity of the
measured intrinsic information we get

Esq(ρCA:B) > ILOPC(A : CB↓ME′E)∑|iii〉〈iii|CME′⊗|ρi〉〈ρi |ABE
.

The current state can be equivalently achieved by measuring |ρ〉〈ρ| in the computational
basis at E′, and making a copy at M. We let ξ ∈ CPTP(E′〉E′M) be such map. Then, because
the measured intrinsic information is monotonically increasing under local channels at
Eve, we have

Esq(ρCA:B) > ILOPC(A : CB↓ME′E)∑|iii〉〈iii|CME′⊗|ρi〉〈ρi |ABE

= ILOPC(A : CB↓ME′E)idABC⊗ξ(|ρ〉〈ρ|)

> ILOPC(A : CB↓E′E)|ρ〉〈ρ|
= Esq(ρA:CB).

Proof of Lemma 16. Fix ε > 0 and the number of copies n. Let |ρ〉〈ρ| ∈ D(ABE) be a
purification. Let Λ ∈ LOPC(A⊗n:B⊗n〉Ck:Ck|M)⊗ idE⊗n be a protocol that acting on |ρ〉〈ρ|⊗n,
gets ε-close to the state with perfect key Φ̂log k ⊗ σME⊗n . Then, by the monotonicity proved
in Lemma 15:

1
n

Esq(ρ
⊗n) =

1
n

ILOPC(A⊗n : B⊗n↓E⊗n)|ρ〉〈ρ|⊗n

>
1
n

ILOPC(C
k : Ck↓ME⊗n)Λ(|ρ〉〈ρ|⊗n).

We now letM ∈ LO(Ck:Ck) be the local measurement in the computational basis. By
definition we then have

1
n

Esq(ρ
⊗n) > I(Ck:Ck↓ME⊗n)(M⊗idME⊗n )◦Λ(|ρ〉〈ρ|)

= inf
ξ∈CPTP(ME⊗n〉Eout)

I
(
Ck:Ck|Eout)

(M⊗ξ)◦Λ(|ρ〉〈ρ|⊗n)
.
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By the monotonicity of the trace distance, since Λ(|ρ〉〈ρ|⊗n) and Φ̂log k ⊗ σME⊗n are ε-close,
then (M⊗ ξ) ◦Λ(|ρ〉〈ρ|⊗n) and (M⊗ ξ) ◦ (Φ̂log k ⊗ σME⊗n) = Φ̂log k ⊗ ξ(σ)Eout will also be
ε-close. We now use the continuity of the conditional mutual information [Shi17], which
says that for ε-close states $ and ς, the conditional mutual information satisfies

|I(A:B|E)$ − I(A:B|E)ς| 6 2ε log d + 2g(ε)

where d = min {|A|, |B|}. Thus we find:

1
n

Esq(ρ
⊗n) >

1
n

inf
ξ∈CPTP(ME⊗n〉Eout)

(
I
(
Ck:Ck|Eout)

Φ̂log k⊗ξ(σ) − 2ε log k + 2g(ε)
)

=
1
n
(I(Ck:Ck)Φ̂log k − 2ε log k + 2g(ε))

= (1− 2ε)
log k

n
+

1
n

2g(ε).

Taking the supremum over the all protocols then gives

1
n

Esq(ρ
⊗n) > (1− 2ε)

1
n

Kε
D(ρ

⊗n) +
1
n

2g(ε).

Since this is true for all n we then have

lim sup
n→∞

1
n

Esq(ρ
⊗n) > lim sup

n→∞

[
(1− 2ε)

1
n

Kε
D(ρ

⊗n) +
1
n

2g(ε)
]

.

= (1− 2ε) lim sup
n→∞

1
n

Kε
D(ρ

⊗n).

Taking the limit ε→ 0 ends the proof.

We have shown how to make use of the LOPC monotonicity of the conditional mu-
tual information to insert measurements in the squashed entanglement. We have also
mentioned that there exist some states, like the flower private state that will be presented
in Section 3.4, where the squashed entanglement is very large compared to the relative
entropy of entanglement. Forcing Alice and Bob to measure is exactly what could kill
Alice and Bob’s correlations to the advantage of Eve.

3.2 Bell Private states

The content of this section can be found in [1].
The first example of a private state with low distillable entanglement was constructed

as follows [Hor+05b]:

γ = p+ ·Φ+ ⊗ σ+ + p− ·Φ− ⊗ σ− (3.10)

γ̂ = p+ · Φ̂+ ⊗ σ+ + p− · Φ̂− ⊗ σ−

= Φ̂⊗ (p+σ+ + p−σ−) (3.11)

with σ± orthogonal states. If σ± are chosen to be the extremal Werner states ρs, ρa, and
the probabilities p+ = ds/d2 and p− = da/d2, then the logarithmic negativity, and thus
the distillable entanglement, can be quickly computed to be O(1/d). The intuition behind
the example is the following. Indistinguishable orthogonal states σ± like the Werner
states, should hinder the ability to correct the phase flip locally, and thus they should
suppress the distillable entanglement. Nevertheless, because the states are orthogonal,
the perfect secret bit is still protected from the environment. Private states like the ones
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in Equation (3.10) are only an example of what we call Bell private states; we will see
different examples of Bell and non-Bell private states in Section 3.4. The purpose of this
section is to show that all private states can be converted in a form diagonal in the Bell
basis for any dimension. In this way, we can argue that all private states are phase flipped
maximally entangled states, with the phase information stored in perfectly encoding states,
so that later we can formalize the connection with quantum data hiding for all private
states. The conversion to Bell private states acts only on the key systems, preserves the key
size, it can be implemented with just local operations and shared randomness (and thus it
is in LOCC→), and most importantly it is reversible (with just local operations). Because
this map is reversible, any entanglement property of a private state will be preserved in
the transformation to Bell private states, and therefore the value of any entanglement
measure4 will not change. At the end of the section we will bound the distinguishability
of Bell private bits in terms of the distinguishability of their shields. This will be useful
later at the end of the chapter, when we will choose the encoding shield states at random.

Key-correlated states

Let now the key systems A¤ and B¤ have equal dimension, let m = log |A¤| = log |B¤|,
and let all the implicit indexes in this section be summed over Z2m , unless otherwise
stated. We define key-correlated states as those states on A¤B¤A�B� supported only on
the maximally correlated subspace of A¤B¤. They have no bit-flip error and we can write
them as:

ρ := ∑
ij∈Z2m

∣∣φ0i
〉〈

φ0j
∣∣
A¤B¤

⊗ Pij,A�B�
(3.12)

ρ̂ =
1

2m ∑
i∈Z2m

Z i
B¤

(ρ)

where Pij ∈ L(A�B�) are the block matrices of the shield, and Z i are the phase-flip
channels. We introduce the states above because, some of the statements will also be true
for this class of states. Notice that key-correlated states include some separable states, as
for example the maximally correlated state. We say that a key-correlated state is diagonal
in the Bell basis, if it can be written in the form

ρ = ∑
i

pi · φ0i ⊗ σi (3.13)

ρ̂ = Φ̂⊗∑
i

piσi

for some states σi ∈ D(A�B�) and probabilities pi. Notice that because the Bell states φ0i
are orthogonal and pure, as global states on A¤B¤ they encode the classical information
just as good as |i〉〈i| and thus we have that the Holevo information of the ensemble of
shield states is the same as the mutual information between the key and the shield:

χ({pi, σi}) = I(A¤B¤:A�B�)ρ.

Finally, notice that because the key systems are in a mixture of Bell states, their distillable
entanglement, which we recall is equal to the coherent information for states on the
maximally correlated subspace, is simply

ED(ρA¤B¤
) = m− H

(
∑i pi |i〉〈i|

)
,

which for uniform probabilities is zero.

4more specifically any function that is LOCC→ monotone.
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Bell private states

We finally define Bell private states as those key-correlated states that are diagonal in the
Bell basis, with shield states σi all orthogonal to each other. All Bell private states are
private states. This can be proved either by checking that the measurement in A¤B¤ gives
perfectly secure bits or by showing that they admit an expression as private states, here we
show the latter. Pσ⊥ below plays no active role, it is only needed to complete the twisting,
so that the shield state is not required to have full support.

Lemma 17. γm is a Bell private state if and only if it can be written as γm = T(Φ⊗ σ)T†, where

T = ∑
ij∈Z2m

|ij〉〈ij| ⊗Ui
σ σ = ∑

i∈Z2m

piσi

and

Uσ := ∑
i∈Z2m

ωiPσi + Pσ⊥ Pσ⊥ :=1−∑
i

Pσi

with Pσi the projectors onto the supports of σi.

Proof. We simply provide the sequence of equalities to transform ∑ pkφ0k ⊗ σk back and
forth to the form above.

γm = ∑
k

pkφ0k ⊗ σk

= ∑
ijk

pk
1

2m ωik |ii〉〈jj|ω−jk ⊗ Pσk σkPσk

= ∑
ijk

1
2m |ii〉〈jj| ⊗ (ωikPσk) · (pkσk) · (ω−jkPσk)

= ∑
ijkab

1
2m |ii〉〈jj| ⊗ (ωiaPσa) · (pkσk) · (ω−jbPσb)

= ∑
ij

1
2m |ii〉〈jj| ⊗ (∑

a
ωaPσa + Pσ⊥)

i · σ · (∑
b

ωbPσb + Pσ⊥)
−j

= ∑
ij

1
2m |ii〉〈jj| ⊗Ui

σσU−j
σ

= ∑
ij
(|i〉〈i| ⊗Ui

σ) ·
( 1

2m |ii〉〈jj| ⊗ σ
)
· (|j〉〈j| ⊗U j†

σ )

= T(Φm ⊗ σ)T†

where we used the orthogonality of the σk in the identity ∑ka Pσa σk = ∑k Pσk σk.

As a consequence of the above theorem, for Bell private states in any dimension we
can provide a block form, which is usually used to display the properties of some private
states [PH10]. For |A¤| = |B¤| = 2, any private state admits a block form [Hor+09],
namely it can be written as:

γ1 =
1
2


√

K†K 0 0 K†

0 0 0 0
0 0 0 0
K 0 0

√
KK†


where K is a suitable matrix of unit trace norm. This can be easily seen by recalling that
any matrix K admits a singular value decomposition and noticing that the decomposition
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can be used to extract the initial σ and the unitaries U0 and U1 in the controlled unitary.
However, this does not work in higher dimension because then additional unitaries are
needed to specify the controlled unitary. This is not true for Bell private states, indeed,
a Bell private state only needs to specify a single unitary Uσ. This allows one to write a
block form for all private states by exploiting the fact that Uσ and σ commute.

Corollary 18. γm is a Bell private state if and only if

γm =
1

2m ∑
ij
|ii〉〈jj| ⊗ |K|

(
K
|K|

)i−j

for some normal operator K such that ‖K‖1 = 1 and K2m
> 0, and where K−1 is the pseudo

inverse.

Proof. Set K = σUσ. Then |K| = σ, K
|K| = Uσ and

Ui
σσU−j

σ = σUi−j
σ = |K|

(
K
|K|

)i−j

.

With the definitions in place we can now move onto the main result of the section.

The reversible map

To define the reversible LOCC map, consider two copies of the key systems, A¤B¤ and
A′¤B′¤. We use the BNOT channel BNOT with A′¤B′¤ as target systems, as defined in
Section 1.5.4, and the swap channel S between A¤B¤ and A′¤B′¤.

Lemma 19. Let ρ ∈ D(A¤B¤) and define EBell
A¤B¤

∈ CPTP(A¤B¤〉A′¤B′¤A¤B¤) as

EBell
A¤B¤

(ρ) := SA¤B¤,A′
¤

B′
¤
◦ BNOT −1

A¤B¤,A′
¤

B′
¤

(
ρ⊗ Φ̂A′

¤
B′
¤

)
.

Then if ρ is a key-correlated state on A¤B¤A�B�:

EBell
A¤B¤

(ρ) =
1

2m ∑
i∈Z2m

φi,A′
¤

B′
¤
⊗Z i

B¤
(ρ) (3.14)

EBell
A¤B¤

(ρ̂) = Φ̂A′
¤

B′
¤
⊗ ρ̂.

Proof. From Equation (1.11) we know that the effect of the CNOT on phase flips is, for all
i, k ∈ Z2m

(Zk+i ⊗ Zi)CNOT† = CNOT†(Zk ⊗ Zi).

Namely, the target adds its phase to the control, and thus we get through Lemma 2, that
for all i, k, l ∈ Z2m

BNOT −1
(
|φ0k〉〈φ0l |A¤B¤

⊗ φ0i,A′
¤

B′
¤

)
= Z i

B¤

(
|φ0k〉〈φ0l |A¤B¤

)
⊗ φ0i,A′

¤
B′
¤

.

We now add Φ̂ = 1
2m ∑i φ0i as a target, we decompose ρ as in Equation (3.12) (general

key-correlated states), and complete the operation with the swap channel to get the result

EBell
A¤B¤

(ρ) = ∑
kl

[
S ◦ BNOT −1(|φ0k〉〈φ0l | ⊗ Φ̂

)]
⊗ Pkl

=
1

2m ∑
ikl
S
(
Z i

B¤
(|φ0k〉〈φ0l |)⊗ φ0i

)
⊗ Pkl
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=
1

2m ∑
ikl

φ0i ⊗Z i
B¤

(|φ0k〉〈φ0l |)⊗ Pkl

=
1

2m ∑
i

φ0i ⊗Z i
B¤

(ρ).

The phase flips on the control systems commute with the BNOT and thus for the key-
attacked state, we get

EBell
A¤B¤

(ρ̂) =
1

2m ∑
i
EBell

A¤B¤
◦ Z i

B¤
(ρ)

=
1

2m ∑
i
Z i

B¤
◦ EBell

A¤B¤
(ρ)

=
1

22m ∑
ij

φ0j ⊗Z
i+j
B¤

(ρ)

=
1

2m ∑
j

φ0j ⊗∑
i
Z i

B¤
(ρ)

= Φ̂⊗ ρ̂.

Because Φ̂ is separable, it can be produced simply with shared randomness or one
way LOCC. The BNOT and the swap are local as long as the system is partitioned as
A¤A′¤:B¤B′¤. The map can be reversed by simply inverting the BNOT and tracing out the
target, which requires only local operations. Notice that the output key systems are the
same as A¤B¤, but the output shield systems are now A¤A�B¤B�. Bell private states now
come as a special case. For a private state γ we know from Section 3.1.3 that Z i

B¤
(γ) are

perfect encoding states, namely they are all orthogonal to each other, we thus et a Bell
private state at the output. In other words, the private states get mapped into Bell private
states that are encoded by the original private states.

Because of the reversible map, we can now always assume without loss of generality
that the key distillation protocols distill Bell private states, namely that the distillable key
is given by the best achievable rate of distilling Bell private states. The reversible map
also proves that after using the key of a private state, the remaining shield can be distilled
independently. Namely for any private state γ ∈ Υ(Φ, A�B�), we have

KD(γ) > K(Φ) + KD(γ̂)

as shown using a bound from [Hor+16] in the following chain of inequalities

KD(γ
log k) = KD(EBell(γ)) > log k +

1
k

KD(γ̂
⊗k) = log k + KD(γ̂).

This implies that for all irreducible private states we have KD(γ̂) = 0, and thus all optimal
distillation protocols can be thought of as putting all the input state in the shield, and
then concentrating the key in the key systems until there is no key left in the shield.
Whether the remaining shield is separable at the end of the protocol, namely whether
all irreducible private states are also strictly irreducible, depends on whether there exist
so-called key-bound entangled states [Hor+16]. Key-bound entangled states are entangled
states that have zero distillable key, and are a long-standing open question even in the
classical setting (see [OSS14] and references there in). The existence of irreducible but not
strictly irreducible private states would imply the existence of key-bound entangled states,
as shown by the schema below

ER

> if γ̂ is key-bound entangled

(γ̂) > ER(γ)− ER(Φ) >

> if γ not strictly irred.

KD(γ)− KD(Φ) = KD(γ̂) = 0.

γ irred. assump
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3.2.1 Single-shot Data Hiding

The content of this section comes from [2].
We have seen that we can reduce private states to Bell private states, however the

resulting shield states are simply the encoding of the classical information onto the private
states itself. It will be a useful tool in the next section, but it will not tell us anything new
about the distinguishability of the ensemble of private states γj = Z j(γ). If we construct a
Bell private state from arbitrary orthogonal states, then there will be a non trivial relation
between the distinguishability of the shields and the distinguishability of the Bell private
states. In this section we will compute bounds on the local distance of Bell private bits, as
a function of the local distance of their shields. Thus relating the data hiding property of
the shield to the data hiding properties of the private bits. These will, by construction, be
bounds only on the distinguishability of single copies of the private states, but it will be
enough for our purposes when we choose the shield states at random in the end of the
chapter. In the next section we will see how the distillable entanglement provides a bound
on the asymptotic distinguishability of private states.

Recall that for any pair of orthogonal states σ± on A�B�, we have the (Bell) private
states on A¤A�B¤B�

γ± =
1
2
(
Φ+ ⊗ σ± + Φ− ⊗ σ∓

)
.

The key-attacked state is indeed γ̂ = 1
2 γ+ + 1

2 γ−. With the results of Section 2.1.3, it is now
not hard to see that, if σ± on A�B� are data-hiding for PPT or separable measurements
on A�B�, then so are the constructed private states γ± on A¤A�B¤B� for PPT or separable
measurements on A¤A�B¤B�.

Lemma 20. Let |A¤| = |B¤| = 2 and let γ± ∈ D(A¤A�B¤B�) be Bell private states with
shields σ± ∈ D(A�B�). Then,

1
2

∥∥γ+ − γ−
∥∥
SEP(A¤A�:B¤B�)

6
3
2

∥∥σ+ − σ−
∥∥
SEP(A�:B�)

,

1
2

∥∥γ+ − γ−
∥∥
PPT(A¤A�:B¤B�)

6
∥∥σ+ − σ−

∥∥
PPT(A�:B�)

.

If the key-attacked state is separable, this implies

∥∥γ± − S(A¤A�:B¤B�)
∥∥
SEP(A¤A�:B¤B�)

6
3
2

∥∥σ+ − σ−
∥∥
SEP(A�:B�)

,∥∥γ± − S(A¤A�:B¤B�)
∥∥
PPT(A¤A�:B¤B�)

6
∥∥σ+ − σ−

∥∥
PPT(A�:B�)

.

Proof. Let ∆ = σ+ − σ−. Note that the states γ and γ̂ are such that

γ± − γ̂ = ±1
2
(γ+ − γ−) = ±1

4
(
Φ+ −Φ−

)
⊗ ∆.

Therefore the second pair of bounds derives directly from the first. For the first pair of
bounds, we have that for any class of channels closed under local operations, the L norm
satisfies

1
2

∥∥γ+ − γ−
∥∥
L
6

1
4

∥∥Φ+ ⊗ ∆
∥∥
L
+

1
4

∥∥Φ− ⊗ ∆
∥∥
L
=

1
2

∥∥Φ+ ⊗ ∆
∥∥
L
.

We impose closure under local operations so that ‖Φ+ ⊗ ∆‖L = ‖Φ− ⊗ ∆‖L. The two
announced inequalities then follow from Proposition 5, which tells us that ‖Φ± ⊗ ∆‖SEP 6
3‖∆‖SEP and ‖Φ± ⊗ ∆‖PPT 6 2‖∆‖PPT.
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The result for PPT measurements was provided only for completeness, as later we will
actually want to prove that the privates states we construct are not data-hiding for PPT
measurements. The following lemma will be useful in this context.

Lemma 21. Let |A¤| = |B¤| = 2, let γ± ∈ D(A¤A�B¤B�) be Bell private states with shields
σ± ∈ D(A�B�), and let L be either separable or PPT measurements. Then we have∥∥γ± − S(A¤A�:B¤B�)

∥∥
L(A¤A�:B¤B�)

>
1
3

∥∥σ+ − σ−
∥∥
L(A�:B�)

.

Proof. Let c := 1
2‖σ+ − σ−‖L(A�:B�)

. By definition, this means that there exists a binary
measurement (M,1−M) ∈ L(A�:B�) such that without loss of generality we have

tr Mσ+ − tr Mσ− = c = tr(1−M)σ− − tr(1−M)σ+.

We now apply to γ the distillation protocol Λ that first tries to distinguish σ± using the
above measurement, and then corrects the phase flip of the maximally entangled state
accordingly. This only needs additional one way communication and local operations,
and thus Λ is still in L. Since after the correction the measurement outcome is not needed
anymore, it is traced out at the end of the protocol. The resulting state is

Λ(γ) =
1
2

tr
(

Mσ+ + (1−M)σ−
)
Φ+ +

1
2

tr
(

Mσ− + (1−M)σ+
)
Φ−

=
1
2
(1 + c)Φ+ +

1
2
(1− c)Φ−.

We now apply the isotropic twirl to A¤B¤ to produce the isotropic state with fidelity
(1 + c)/2, and denote by Λ̃ the operation Λ followed by a twirl. Since the twirl again only
needs one-way LOCC, then Λ̃ is also in L. Notice that Λ̃(γ) is always entangled, indeed it
was proven in [MWW09] that for separable and PPT measurements we have c > 1/|A¤|,
which is the threshold for separable isotropic states.

Since Λ̃ maps PPT states into PPT states, together with the fact that all PPT isotropic
states are also separable, we find that the L distance from separable states of γ can only
decrease. Namely, for any separable state σ ∈ S(A¤A�:B¤B�) we have Λ̃(σ) ∈ S(A¤:B¤),
and thus

‖γ− σ‖L(A¤A�:B¤B�)
>
∥∥Λ̃(γ)− Λ̃(σ)

∥∥
L(A¤:B¤)

>
∥∥Λ̃(γ)− S(A¤:B¤)

∥∥
L(A¤:B¤)

.

Taking the infimum then gives

‖γ− S(A¤A�:B¤B�)‖L(A¤A�:B¤B�)
>
∥∥Λ̃(γ)− S(A¤:B¤)

∥∥
L(A¤:B¤)

.

Since Λ̃(γ) is an isotropic state, Lemma 10 now gives us the desired lower bounds:

∥∥Λ̃(γ)− S(A¤:B¤)
∥∥
L(A¤:B¤)

=
4
3

(
1 + c

2
− 1

2

)
=

2
3

c.

3.3 Entanglement Distillation and Data Hiding

The content of this section is a refined version of [1].
So far we have seen how to convert private states into Bell private states, and given

some bounds on their single-copy distinguishability. We now show that Bell private states
with low distillable entanglement are states that hide the phase of the maximally entangled
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states from local detection, even asymptotically. Specifically, we give a lower bound for
the distillable entanglement in terms of the Holevo information. This lower bound is
the rate achieved by the best protocol that first distinguishes the shield states and then
corrects the phase, as done in Lemma 21. In the next chapter we will be able to use these
bounds to connect the distillable entanglement with the key rate in the quantum repeater.

Lemma 22. Let ρ be a Bell-diagonal key-correlated state, namely of the form ρ = ∑i piφ0i ⊗ σi.
Let L be either LOCC→, LOCC, SEP or PPT. Then:

ED,L(ρ) > ED(ρA¤B¤
) + χL(A�:B�)

({pi, σi})

where σ = ∑i piσi, and ED(ρA¤B¤
) = I(A¤〉B¤)ρ is independent of the choice of L.

Notice that we can use any class of operations L contained in t PPT, that contains
classical communication from Alice to Bob. L simply needs to achieve the hashing bound
for states in the maximally correlated subspace. Since L being a class and containing
one-way communication imply that L contains LOCC→, this is enough to ensure that the
hashing bound can be achieved.

Proof. Let Λ ∈ L(A�:B�). Because of the classical communication, we can assume without
loss of generality that Λ ∈ L(A�:B�)|C : M) for some system M (see Equation (1.6)). We
now let Alice and Bob perform their channel Λ and define:

ρ̃ := ∑
i

piφ0i ⊗Λ(σi). (3.15)

We have ED,L(ρ) > ED,L(ρ̃). Alice and Bob now use the hashing protocol to achieve the
rate given by the hashing bound [DW05]. We find:

ED,L(ρ̃) > I(A¤〉B¤M)

= H(B¤M)ρ̃ − H(A¤B¤M)ρ̃.

However, because the key systems are in a mixture of Bell states, tracing out A¤ will leave
B¤ in product with M. Therefore:

ED,L(ρ̃) > H(B¤)ρ̃ + H(M)ρ̃ − H(A¤B¤M)ρ̃

= [H(A¤B¤)ρ̃ + H(M)ρ̃ − H(A¤B¤M)ρ̃]

+[H(B¤)ρ̃ − H(A¤B¤)ρ̃]

= I(A¤B¤:M)ρ̃ + ED(ρA¤B¤
), (3.16)

where in the last steps we added and removed the entropy of A¤B¤ and then used that
I(A¤〉B¤) is the distillable entanglement of the key part [Rai01; HH04], see also Section 3.2.
Since I(A¤B¤:M) is monotone under local operations on A¤B¤, and in particular invariant
under unitary operations on A¤B¤ and under tracing out pure ancillas, we have

I(A¤B¤:M)ρ̃ =I(A¤B¤:M)∑i pi |0i〉〈0i|⊗Λ(σi)

=I(B¤:M)∑i pi |i〉〈i|⊗Λ(σi)
= χ({pi, Λ(σi)}).

Taking the supremum over Λ proves the claim.

The Holevo information quantifies the distinguishability between states, measuring
how well they encode classical data; the restricted Holevo information then quantifies
how much of this distinguishability is left when Alice and Bob can only act locally. In the
particular case of private states, the σi states of Equation (3.13) are orthogonal and thus
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encode perfectly, and i can be recovered with a global measurement. However, Lemma 22
implies that if the distillable entanglement is low, then the local distinguishability of σi
is low and i cannot be determined accurately locally: the σi are data hiding. We will
now see that because of the reversible map, we can think of the private state itself as the
data-hiding state, where i is encoded using the local phase flip. This is important, as we
will see examples where the L Holevo information of the private states is strictly larger
than the one for the shields.

Corollary 23. Let m = log |A¤| = log |B¤|. Let ρ be any key-correlated state of A¤B¤A�B�

and let ρi := Z i
B¤

(ρ). For any L = LOCC→, LOCC, SEP,PPT, it holds:

ED,L(ρ) > χL(A¤A�:B¤B�)

({ 1
2m , ρi

})
Proof. We can use Lemma 22 after using Lemma 19, since the reversible map is contained
in any class of operations with communication from Alice to Bob:

ED,L(ρ) = ED,L(EBell(ρ)) = ED,L

(
∑i

1
2m φ0i ⊗Z i

B¤
(ρ)
)

> χL(A¤A�:B¤B�)

({ 1
2m , ρi

})
.

where the distillable entanglement of the key part is now zero, because of the uniform
probability distribution.

Finally, we remark that these bounds can be regularized. Notice the conceptual dis-
crepancy between the left and the right side of Corollary 23. The distillable entanglement
is allowed to perform operations on many copies of the shield, but the Holevo information
is single copy. Because the distillable entanglement is already regularized we have for any
n

ED,L(ρ) =
1
n

ED,L(ρ
⊗n) >

1
n

χL(A⊗n
¤

A⊗n
�

:B⊗n
¤

B⊗n
� )

({ 1
2m , ρi

}⊗n
)

.

If L is closed under tensor product, then the L Holevo information is super-additive, its
regularization is well defined and we have

ED,L(ρ) > χ∞
L(A¤A�:B¤B�)

({ 1
2m , ρi

})
.

Therefore proving that the distillable entanglement is low, also proves “asymptotic” indis-
tinguishability.

3.4 Interesting classes of private states

Bell private states connect explicitly data hiding and entanglement distillation. Consider a
private bit

γ± = p+ ·Φ+ ⊗ σ± + p− ·Φ− ⊗ σ∓.

If we consider them encoding states, then we have shown that even if we give Alice and
Bob the information of the phase flip, the power of the maximally entangled state is limited,
and thus if the shields are disproportionally large, the distinguishability properties of the
private bit will not be very different from the ones of the shields. On the other side if we
consider private bits for entanglement distillation, then trying to use the distinguishability
of the shield can only provide so much entanglement, and if the distillable entanglement
is actually low, then the shield state must be data hiding, even asymptotically.

We might be tempted to think, because φ± is not actually available as resource, that
distinguishing the shields asymptotically has to be the best protocol, and that touching φ±
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could only add noise. Indeed, if Alice and Bob simply perform the teleportation protocol
using Φ± without the knowledge of the phase, they will introduce a phase error. However,
this is not true, the private states can be strictly more distinguishable than their shield.

In this section we present various examples. The first two examples show some private
states that are strictly more distinguishable than their shields, showing that the reversible
protocol is actually necessary, in that the bound in Corollary 23 can be strictly better than
the bound in Lemma 22. In the remaining examples we present private states that have
provably small distillable entanglement and thus they are provably data hiding, even for
arbitrarily many copies.

3.4.1 The BNOT private states

The Bell states, as a basis, are actually perfect encoders (indeed they are a special instance
of private states). While the Bell states φ0i are perfectly distinguishable even locally, any
additional Bell states will not be recoverable by local observers [Bad+03, Equation 8]. In
this example we show that using the Bell states to encode the phase flips leads to perfectly
distillable private states. Giving an unbounded separation between the restricted Holevo
information of the shields and the restricted Holevo information of the private state.

We let |A¤| = |B¤| = |A′¤| = |B′¤| = |A�| = |B�| and m = log |A¤|, namely we let the
key systems be two copies of A¤B¤. We define the BNOT private states [1] as:

γ2m ∑
ij∈Z2m

1
22m φ0i,A¤B¤

⊗ φ0j,A′
¤

B′
¤
⊗ φij,A�B�

γ̂2m = Φ̂m
A¤B¤

⊗ Φ̂m
A′

¤
B′
¤
⊗ τm

A�B�

where τm is the maximally mixed state.
We now show that using the reversible map is necessary, namely for these states the

bound of Lemma 22 is strictly suboptimal, while the bound of Corollary 23 achieves
equality. The bound of Lemma 22 computes to

χLOCC

({ 1
22m , φij

})
= m,

which is proven using the measurement on the computational basis and the upper bound
of [Bad+03, Equation 8].

However, this state is distillable into 2m maximally entangled states with just a se-
quence of unitaries. We recall from Equation (1.10) in Section 1.5, that

[F ⊗F ](φij) = φji,

where F is the Fourier transform channel. We also recall from Lemma 2 that the BNOT
channel acts as:

BNOT (φ0j ⊗ φkl) = φ0,j−l ⊗ φkl .

The unitary that distills Φ2m is then obtained by the following sequence (we omit the
identity channels):

BNOT A¤B¤,A�B�
◦ [FA�

⊗FB�
] ◦ BNOT A′

¤
B′
¤

,A�B�

which results in

BNOT A¤B¤,A�B�
◦[FA�

⊗FB�
] ◦ BNOT A′

¤
B′
¤

,A�B�
(φ0,i+k ⊗ φ0,j+l ⊗ φij)

= BNOT A¤B¤,A�B�
◦ [FA�

⊗FB�
](φ0,i+k ⊗ φ0l ⊗ φij)

= BNOT A¤B¤,A�B�
(φ0,i+k ⊗ φ0l ⊗ φji)

= φ0k ⊗ φ0l ⊗ φji,
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and thus there exist a local unitary achieving the transformation

BNOT ◦ [F ⊗F ] ◦ BNOT (Z k
B¤
Z l

B′
¤
(γ2m)) = φ0k ⊗ φ0l ⊗ τm

thus proving that ED,LO(γ
2m) = 2m.

We have computed the distillation procedure on Z k
A¤
Z l

B′
¤
(γ2m), because the same

unitary now shows that the LO Holevo information of the private states of Corollary 23
achieves the distillable entanglement. Namely, by using the distillation protocol and
tracing out the shield, we get by monotonicity

χLO

({
1

22m ,Z k
A¤
Z l

B′
¤
(γ2m)

})
> χLO

({ 1
22m , φ0k ⊗ φ0l

})
= χLO

({ 1
22m , φk0 ⊗ φl0

})
> 2m,

where the value is achieved measuring the computational basis. This bound is now
optimal and performs strictly better than Lemma 22.

3.4.2 The Locking private states

The content of this section is unpublished work in collaboration with Māris Ozols and
Matthias Christandl.

We have seen with the BNOT private states, that the Holevo information can increase
when constructing the private state. In this section we show that this can happen even
when the shield states are actually separable. However, in this case the separation holds
only for one-way LOCC, and we do not have a family of states with asymptotically
unbounded separation, but only a specific example. More precisely, we will take the
locking basis for two qubits, which is not perfectly distinguishable with LOCC→, namely
it has χLOCC→ < χ, and show that the resulting private state is distillable with LOCC→.
Recall that the locking states from Section 2.2 are defined for Cd:C2 as

ψij := F j(|i〉〈i|)⊗ |j〉〈j|

where i ∈ Zd and j ∈ Z2, and they satisfy

χLOCC→(Cd:C2)

({ 1
2d , ψij

})
= 1 +

1
2

log d.

Let now A¤ = B¤ = A� = B� = C2, and let ψij be the locking states in A�:B�. To
construct the private state we use the qubit in A�, which is locked, to decide the phase of
the maximally entangled state, expecting that it will not be possible to correct it without a
message from Bob. The resulting private state is

γ :=
1
4 ∑

ij∈Z2

φ0i ⊗ ψij.

Notice that because the qubit at Bob is classical and readily accessible, and the phase/bit
flips on the maximally entangled states can be done locally, the above private state is
locally equivalent to

1
4 ∑

ij∈Z2

φji ⊗ ψij.

For a similar reason, the alternative choice

γ′ :=
1
4 ∑

ij∈Z2

φ0i ⊗ φ0j ⊗ ψij
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is locally equivalent to the original choice with an additional distilled maximally entangled
state

1
4 ∑

ij∈Z2

φ0i ⊗ φ00 ⊗ ψij,

and thus our initial choice is without loss of generality.

Lemma 24. The zero-error single-shot distillable entanglement of the Locking private state satisfies:

E0
D,LOCC→(γ) > 1.

Proof. For the purpose we define the “x” and “y” bases of C2:

|jx〉 :=
1√
2
(|0〉+ (−1)j |1〉) = F |j〉∣∣jy〉 :=

1√
2
(|0〉+ i(−1)j |1〉),

where we will for now stop using i as and index, so that the i’s outside the bra-ket’s
are the imaginary unit. For these states we have

〈
j
∣∣ky
〉
= 1√

2
(i)j(−1)jk and

〈
jx
∣∣ky
〉
=

1
2 (1 + i(−1)j+k), and thus

〈
ky
∣∣a〉〈a

∣∣ly〉 =1
2
(−1)ka(−1)la

〈
ky
∣∣ax
〉〈

ax
∣∣ly〉 =1

4
([1 + (−1)k+l ]− i(−1)a[(−1)k − (−1)l ])

=
1
2
(δkl − i(−1)a+k[1− δkl ]).

where the Kronecker deltas have the effect of selecting 1 if k and l are equal, or selecting
−i(−1)a+k if they are different. We use these expressions, in the next step, where we
define the following orthogonal projectors on C2 ⊗C2 at Alice

Pj := ∑
x∈Z2

|x〉〈x| ⊗
∣∣(x + j)y

〉〈
(x + j)y

∣∣ .

and by plugging in the formulas above, we can now compute

Pj(|k〉〈l| ⊗ |a〉〈a|)Pj = |k〉〈l| ⊗
∣∣ky + jy

〉〈
ky + jy

∣∣a〉〈a
∣∣ly + jy

〉〈
ly + jy

∣∣
= |k〉〈l| ⊗

∣∣ky + jy
〉〈

ly + jy
∣∣ 1

2
(−1)(k+j)a(−1)(l+j)a

=
1
2
(−1)ka |k〉〈l| (−1)la ⊗

∣∣ky + jy
〉〈

ly + jy
∣∣

Pj(|k〉〈l| ⊗ |ax〉〈ax|)Pj = |k〉〈l| ⊗
∣∣ky + jy

〉〈
ky + jy

∣∣ax
〉〈

ax
∣∣ly + jy

〉〈
ly + jy

∣∣
= |k〉〈l| ⊗

∣∣ky + jy
〉〈

ly + jy
∣∣ 1

2
(δkl − i(−1)a+k+j[1− δkl ]).

This is a piece of the action of Pj on the Locking private state. Indeed, by expanding the
Bell states, the Locking private state equals:

γ :=
1
8 ∑

akl∈Z2

(
(−1)ka |kk〉〈ll|A¤B¤

(−1)la ⊗ |a〉〈a|A�
⊗ |0〉〈0|B�

+

+ (−1)ka |kk〉〈ll|A¤B¤
(−1)la ⊗ |ax〉〈ax|A�

⊗ |1〉〈1|B�

)
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Again we plug in the last expression above and, making heavy use of the effect of the
Kronecker deltas, we compute

(Pj ⊗ 1B¤B�
)
(
(−1)ka |kk〉〈ll| (−1)la ⊗ |a〉〈a| ⊗ |0〉〈0|

)
(Pj ⊗ 1B¤B�

)

=
1
2

∣∣kk, ky + jy
〉〈

ll, ly + jy
∣∣⊗ |0〉〈0|

(Pj ⊗ 1B¤B�
)
(
(−1)ka |kk〉〈ll| (−1)la ⊗ |ax〉〈ax| ⊗ |1〉〈1|

)
(Pj ⊗ 1B¤B�

)

=
1
2

∣∣kk, ky + jy
〉〈

ll, ly + jy
∣∣⊗ |1〉〈1| ·

· ((−1)a(k+l)δkl − i(−1)a+k+j(−1)a(k+l)[1− δkl ])

=
1
2

∣∣kk, ky + jy
〉〈

ll, ly + jy
∣∣⊗ |1〉〈1| ·

· (δkl − i(−1)k+j[1− δkl ]).

We are almost there. The qubit
∣∣ky + jy

〉〈
ly + jy

∣∣ is at Alice, and has the same expression
independently of the measurement outcome j. Therefore, Alice can change from the y
basis to the computational basis, and then remove k and l controlling a CNOT on her key
qubit. This amounts to the following operation∣∣k, ky + jy

〉〈
l, ly + jy

∣∣
A¤A�

→ |k, j〉〈l, j|A¤A�

which is local, unitary and independent of the measurement outcome j. We even get |j〉〈j|
for free at A�, without having recorded the measurement outcome explicitly. We thus have
that Alice, with only a local operation, can transform into the following state

γ̃ :=
1
8 ∑

klj∈Z2

(
|kk〉〈ll|A¤B¤

⊗ |j〉〈j|A�
⊗ |0〉〈0|B�

+

+ |kk〉〈ll|A¤B¤
⊗ |j〉〈j|A�

⊗ |1〉〈1|B�
(δkl − i(−1)k+j[1− δkl ])

)
(notice that the original locked bit of information a has been summed over, absorbing a
factor of 1

2 ). Finally, the only remaining thing is a phase gate, which depends on Bob’s
bit of information. Bob can remove (−1)k with a controlled phase gate conditioned on
his bit B�; this can be done without knowing the measurement outcome j. The last phase
depends jointly on Bobs qubit and the measurement outcome, Alice can now send j to
Bob, who can then correct the phase. A way to write this precisely is to again, exploit the
properties of the Kronecker product and compute

(δkl − i(−1)k+j[1− δkl ]) =(δkl + (−i)k+l(−1)k+j[1− δkl ])

=(δkl + (i)k(−1)k(−i)l(−1)k+j[1− δkl ])

=((i)k(−i)lδkl + (i)k(−i)l(−1)j[1− δkl ])

=(i)k(δkl + (−1)j[1− δkl ])(−i)l

which extract’s j-independent the phase flip. To extract the j dependent phase flip we
compute

(δkl + (−1)j[1− δkl ]) =(((−1)j)k+lδkl + ((−1)j)k+l [1− δkl ])

=((−1)j)k+l = (−1)jk(−1)jl .
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Therefore, we can rewrite γ̃ as

γ̃ :=
1
8 ∑

klj∈Z2

(|kk〉〈ll| ⊗ |j〉〈j| ⊗ |0〉〈0|+

+ (−1)jk(i)k |kk〉〈ll| (−i)l(−1)jl ⊗ |j〉〈j| ⊗ |1〉〈1|
)

=
1
8 ∑

kljb∈Z2

(−1)jkb(i)kb |kk〉〈ll| (−i)lb(−1)jlb ⊗ |j〉〈j| ⊗ |b〉〈b|

=
1
8 ∑

jb∈Z2

Πb
B¤

φ0,jbΠ−b
B¤
⊗ |j〉〈j| ⊗ |b〉〈b|

where Π = |0〉〈0|+ i |1〉〈1| is the phase gate. Controlling the phase gate and the phase
flips using the classical information j and b, Bob can distill

Φ⊗ ∑
jb∈Z2

|j〉〈j| ⊗ |b〉〈b| .

The shields are now independent of the maximally entangled states, and can be traced
out, completing the protocol.

This leads to the following corollary, which shows a separation between the distin-
guishability of the private state and the distinguishability of the shield states, even when
the shield states are separable.

Corollary 25.
χLOCC→(A¤A�:B¤B�)

({ 1
2 , γ±

})
= 1

Proof. This is a consequence of the distillation protocol only needing to apply phase gates
on Bob’s key. Z±B¤

thus commutes with the distillation and we have

χLOCC→(A¤A�:B¤B�)

({ 1
2 , γ±

})
> χLOCC→(A¤A�:B¤B�)

({ 1
2 , Φ±

})
= 1. (3.17)

The Locking private state is irreducible, therefore distillable key and thus distillable
entanglement are at most one, giving the upper bound.

It may be worth remarking that all the known results about the imperfect distinguisha-
bility of domino and locking state are single-copy, and we do not know if sampling the
source multiple times, and performing operations on multiple copies, achieves asymptoti-
cally perfect distinguishability for the locking states. In particular it is not known whether
the regularized restricted Holevo information achieves the Holevo information for these
ensembles.

Regarding the dimension of the locking states, we do not know if the distillation
protocol is generalizable to Cd : C2. The protocol seems to use only the interplay between
mutually unbiased bases. Since there always exist at least three of them [Sch60], two of
them being the computational and the conjugate bases, it is possible that the measurement
in the third is enough to achieve the perfect distillation with one-way LOCC→ of the
locking states in higher dimension.

Finally, we would like to remark that while Bob cannot communicate to Alice, he can
still perform operations that simplify the Locking private states locally. This is not the case
if we define the Domino private state

γdomino := ∑
ijk∈Z2

φ0i ⊗ φ0j ⊗ φ0k ⊗ ψijk
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where ψijk are the outer Domino states presented in Section 2.2.5. We leave as an open
question whether there exist an LOCC protocol that can perfectly distill the Domino private
state. However, the existence of such a protocol would also imply the existence of a one-
way LOCC first step that changes the state without destroying the distillable entanglement,
and thus it seems that the imperfect discrimination of the Domino states should be more
robust than the imperfect discrimination of the locking states.

3.4.3 The Swap private states

We have just seen two cases were the distinguishability is made perfect by constructing
private states, thus showing that using the maximally entangled state can be useful and
necessary in the distillation of entanglement. Notice that in either case the classical infor-
mation about the phase was never recovered. Now we will see opposite examples, where
the distillable entanglement is provably low, thus showing that the private states them-
selves are indistinguishable even when acting on many copies. The first such examples
are he swap private states γS [Hor+05b], defined for each dimension d = |A�| = |B�| as
the following Bell private bits:

γS =
1
2

(
1 +

1
d

)
Φ+ ⊗ ρs +

1
2

(
1− 1

d

)
Φ− ⊗ ρa (3.18)

for each dimension d > 1, where ρs and ρa are the symmetric and anti-symmetric states in
Cd ⊗Cd. In private state form, they are defined by:

σ =
1

d2 T = 12 ⊗ (|0〉〈0| ⊗ 1+ |1〉〈1| ⊗ S)

where S is the swap operator. Because the swap is hermitian, it gives the following block
form:

γS =
1
2

1
d2


1 0 0 S
0 0 0 0
0 0 0 0
S 0 0 1

.

This is a strictly irreducible private state so KD(γS) = 1. By the logarithmic negativity,
we have the following upper bound on the distillable entanglement which vanishes for
large enough d, and that we can use in Corollary 23. Thus the Swap private states are data
hiding.

Corollary 26.

χ∞
L(A:B)

({ 1
2 , γ±S

})
6 ED,L(γS) 6 EN(γS) = log

(
1 +

1
d

)
with L a choice between LOCC→, LOCC, SEP and PPT.

The swap private states display the worst case scenario of indistinguishability, as it was
shown that orthogonal states always have a minimal distinguishability even under local
operations, that indeed scales inversely with the dimension of the local systems [MWW09].

3.4.4 The Fourier and Flower private states

In general, any unitary matrix can be used to define a private state [Hor+08]. Here we
focus only on the following special case:

U = ∑ij
1√
d

uij |i〉〈j| (3.19)
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such that |uij| = 1, an example being the discrete Fourier transform. For each such U we
then define the following operators, to be used in the examples to follow:

U:= ∑ij uij |ii〉〈jj|

UΓ := ∑ij uij |ij〉〈ji|

where (·)Γ denotes the partial transpose. Notice that UΓ is a unitary and U√
d

is unitary in
the maximally correlated subspace, namely

U√
d

U†
√

d
=

U†
√

d
U√

d
= 1Φ̂

UΓ †
UΓ = UΓUΓ † = 1 .

The privates bits stemming from these operators are building blocks for the construc-
tion of PPT examples.

Fourier

The Fourier private bits γUΓ [Hor+08] are defined for each d = |A�| = |B�| and for each
unitary U from Equation (3.19) as

σ =
1

d2 T = 12 ⊗ (|0〉〈0| ⊗ 1+ |1〉〈1| ⊗UΓ )

or in block form:

γUΓ =
1
2

1
d2


1 0 0 UΓ

0 0 0 0
0 0 0 0

UΓ † 0 0 1

 . (3.20)

Notice that in general these are not Bell private states because UΓ is in general not
hermitian. U is usually taken to be the discrete Fourier transform, thus the name.

These are also strictly irreducible private states, thus KD(γUΓ ) = 1, and again we have
an upper bound on distillable entanglement via the logarithmic negativity, showing with
Corollary 23 that they are also data hiding.

Corollary 27.

χ∞
L(A:B)

({ 1
2 , γ±

UΓ

})
6 ED,L(γUΓ ) 6 EN(γUΓ ) = log

(
1 +

1√
d

)
.

with L a choice between LOCC→, LOCC, SEP and PPT.

We will see in the next section that when choosing the orthogonal shield states at ran-
dom, the above scaling is indeed the resulting one for separable measurements with high
probability. However, the Fourier private bits are indistinguishable under PPT measure-
ments, while picking the shield states at random will result in private bits distinguishable
under PPT measurements (but we will only be able to prove this in the single-copy regime).

Flower

The Flower private bits γU [Hor+08] similarly are defined for each d = |A�| = |B�| and
for each unitary U as:

σ =
1Φ̂

d
T = 12 ⊗ (|0〉〈0| ⊗ 1+ |1〉〈1| ⊗U)
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or in block form:

γU =
1
2

1
d


1Φ̂ 0 0 U√

d
0 0 0 0
0 0 0 0

U†
√

d
0 0 1Φ̂

 . (3.21)

Again, these are not Bell private states in general and they are strictly irreducible, because
the key-attacked state is separable. However, for the same reason that makes the logarith-
mic negativity of the Fourier private states small, the logarithmic negativity of the Flower
private states becomes large and thus it cannot be used to find a meaningful bound on the
distillable entanglement:

EN(γU) = log
(

1 +
√

d
)

.

On the other hand, the distillable entanglement is indeed high. We can actually compute it
explicitly via the hashing bound, because γU has support only on the maximally correlated
subspace of A¤B¤A�B� [HH04]. Since U√

d
is a unitary in the maximally correlated subspace,

it can be diagonalized in this subspace with phases eigenvalues. In short, we find

I(A¤A�〉B¤B�) = H(B¤B�)γU
− H(A¤B¤A�B�)γU

= (1 + log d)− log d.

Therefore, for the class of Flower private states:

ED(γU) = KD(γU) = 1. (3.22)

While they might not seem interesting, they are used in connection with the Fourier
private states to create states close to private states that are also PPT, as we will see below.

3.4.5 The PPT Fourier private states

The PPT Fourier private states γ̃UΓ [Bäu+15] are not exact private states, they are approxi-
mate private bits that can be made arbitrarily close to the Fourier private states while still
being PPT. The class of PPT Fourier private states defines (for each d = |A�| = |B�| and
for each U from Equation (3.19)):

γ̃UΓ =
1

1 + 1√
d

(
γUΓ +

1√
d

XA¤
γ̂UXA¤

)
(3.23)

where XA¤
is the bit flip on A¤, and its function is to move the key-attacked state γ̂U to

the orthogonal subspace. Namely, in block form:

γ̃UΓ =
1
2

1
1 + 1√

d


1

d2 0 0 UΓ

d2

0 1√
d
1Φ̂
d

0 0
0 0 1√

d
1Φ̂
d

0
UΓ †

d2 0 0 1

d2

.

One can check that this O(1/
√

d) noise is just enough to make the states PPT, and remark-
ably, the amount of noise needed in the mixture goes to zero for large d. The PPT Fourier
private states are engineered to become close to the set of separable states after partial
transposition. Indeed, since 1 and 1Φ̂ are PPT invariant, we find

γ̃Γ

UΓ =
1
2

1
1 + 1√

d


1

d2 0 0 0
0 1√

d
1Φ̂
d

1√
d

U

d
√

d
0

0 1√
d

U†

d
√

d
1√
d
1Φ̂
d

0
0 0 0 1

d2
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and thus:

γ̃Γ

UΓ =
1

1 + 1√
d

(
γ̂UΓ +

1√
d

XA¤
γUXA¤

)
which is suddenly mostly a separable key-attacked state with a vanishing mixture of a
Flower private state.

Since the PPT Fourier private states are PPT, their distillable entanglement is exactly
zero, but we cannot use this because the bounds on the Holevo information do not apply.
However, γ̃UΓ is obtained by adding separable noise to γUΓ , and thus by monotonicity,
their Holevo information must be small. Namely

Corollary 28.

χ∞
L(A:B)

({ 1
2 , γ̃±

UΓ

})
6 χ∞

L(A:B)

({ 1
2 , γ±

UΓ

})
6 ED,L(γUΓ ) 6 log

(
1 +

1√
d

)
.

with L a choice between LOCC→, LOCC, SEP and PPT.

3.4.6 The PPT invariant private states

The PPT invariant private states γ̃Γ [Hor+08] are another class of approximate private bits
that are PPT invariant, namely they satisfy γ̃Γ

Γ = γ̃Γ By substituting in Equation (3.23) the
key-attacked state with the Flower private state, the expression becomes PPT invariant.
Namely, the class of PPT invariant private states defines

γ̃Γ =
1

1 + 1√
d

(
γUΓ +

1√
d

XA¤
γUX†

A¤

)
= (γ̃Γ )

Γ . (3.24)

with block form

γ̃Γ =
1
2

1
1 + 1√

d


1

d2 0 0 UΓ

d2

0 1√
d
1Φ̂
d

1√
d

U

d
√

d
0

0 1√
d

U†

d
√

d
1√
d
1Φ̂
d

0
UΓ †

d2 0 0 1

d2


which is manifestly PPT invariant.

Similarly to the Fourier private state, we cannot use Corollary 23 directly, but a bound
can still be computed combining monotonicity and the bound in terms of the relative
entropy from PPT states. To do this we introduce a qubit system H and define on system
A¤A�:B¤B�H the following private bits:

γΓ =
1

1 + 1√
d

(
γUΓ ⊗ |0〉〈0|+

1√
d

γU ⊗ |1〉〈1|
)

,

and the following PPT state:

γ̃Γ =
1

1 + 1√
d

(
γ̃UΓ ⊗ |0〉〈0|+

1√
d

γ̂U ⊗ |1〉〈1|
)

.

Who holds the additional qubit is irrelevant, but by making it part of the shield it is
straightforward to show that γΓ is actually a strictly irreducible private state. One can
obtain γ̃Γ from γΓ with local operations: use the additional qubit to locally bit flip the key
of γU ⊗ |1〉〈1| but not of γUΓ ⊗ |0〉〈0|, then trace out H. Furthermore, γ̃Γ is clearly PPT,
since it is mixture of the PPT states γ̃UΓ and γ̂U.
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Lemma 29.

χ∞
L(A:B)

({ 1
2 , γ̃±Γ

})
6 χ∞

L(A:B)

({ 1
2 , γ±Γ

})
6 ED,L(γΓ ) 6

1 + log e
1 +
√

d
.

with L a choice between LOCC→, LOCC, SEP and PPT.

Proof. We find that γΓ is close to γ̃Γ :

D(γΓ‖γ̃Γ ) =
1

1 + 1√
d

(
D(γUΓ ‖γ̃UΓ ) +

1√
d

D(γU‖γ̂U)

)
=

1
1 + 1√

d

(
log
(

1 +
1√
d

)
+

1√
d

)

6

√
d

1 +
√

d

(
log e√

d
+

1√
d

)
=

1 + log e
1 +
√

d
. (3.25)

Thus by monotonicity under local operations we have

D(γ̃Γ‖P(A¤A�:B¤B�)) 6 D(γΓ‖P(A¤A�:B¤B�H)) 6 D(γΓ‖γ̃Γ ) 6
1 + log e
1 +
√

d

It was shown in [Aud+02] that this is an upper bound on the PPT distillable entanglement,
namely ED,PPT(ρ) 6 D(ρ‖P). Together with Corollary 23, this ends the proof.

3.5 Random shield states

The content of this section comes from [2].
The study of random states with probabilistic tools and high dimensional analysis has

in recent years significantly advanced our understanding of entanglement [HLW06; ASY14;
AL14]. In this section, we use such techniques in order to construct bipartite quantum
states that exhibit a large gap between their key and their distinguishability. In order to do
so, we follow the prescription of [AL14] to choose the shield states at random and in high
dimension, which with high probability produces states that are indistinguishable under
separable measurements but distinguishable under PPT measurements. This property
is preserved when constructing the private states. The result are private states that are
distillable under PPT operations, but that should behave like undistillable states under
separable operations. Because they are distillable under PPT operations all the computable
upper bounds on the distillable entanglement will be useless, because, as we mentioned,
they are actually upper bounds on the distillable entanglement under PPT operations.
Nonetheless, proving their indistinguishability under separable measurements will find
applications in the next chapter.

3.5.1 Random states

Construction 30 (Random orthogonal states [AL14, Section 6.1]). Let |A�| = |B�| = d
and without loss of generality assume that d is even, and let P be an orthogonal projector on some
fixed d2/2-dimensional subspace of A�B�. Define first the two following orthogonal states:

σ̄+ :=
P

tr P
σ̄− :=

P⊥

tr P⊥
.
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Then, let U be a Haar-distributed random unitary on A�B�, and define the two following random
orthogonal states:

σ± := Uσ̄±U†.

It was proved in [AL14, Section 6.1] that such random orthogonal states σ± have
interesting data-hiding properties. More precisely, with high probability separable (and
thus LOCC) measurements almost do not distinguish them, while PPT ones do. So our
goal is now to construct random private states out of them, and show that they exhibit
some similar features. However random states are still highly entangled states. We recall
the following bound from Proposition 5. For any Hermitian operator K on A′B′ and any
state ρ on AB, we have

‖ρ⊗ K‖SEP(AA′:BB′) 6 (2RA:B(ρ) + 1)‖K‖SEP(A′:B′),

To bound the increase in distinguishability provided by using random states as a resource
for distinguishability, we estimate their robustness in the next lemma. Again this will
need to wait until the next chapter to find its application.

Lemma 31. Let σ be a random state on A�B� as in Construction 30 and let τ = 1/d2 be the
maximally mixed state on A�B�. Namely, let σ = UPU†/(d2/2) where P is the projector on a
d2/2-dimensional subspace of A�B� and U is a Haar-distributed random unitary on A�B�. Then

P
(
RA� :B�

(σ‖τ) 6 C
√

d log d
)
> 1− e−c0d3 log2 d

and consequently

P
(
RA� :B�

(σ) 6 C
√

d log d
)
> 1− e−c0d3 log2 d.

where C, c0 > 0 are universal constants (independent of d).

Proof. The second claim follows from the first by the definition in Equation (2.7), so we
only need to prove the upper bound estimate on RA� :B�

(σ‖τ). Let S ≡ S(A�:B�) and
R ≡ RA�:B�

.
We use the same notation as in [ASY14] and define S0 = S − τ as the set of separable

states translated to the subspace of traceless Hermitian operators with the maximally
mixed state at the origin. From the definition we have that for any state $

R($‖τ) = inf
{

s :
1

1 + s
($ + s τ) ∈ S

}
= inf

{
s :

1
1 + s

($− τ) ∈ S0

}
. (3.26)

Let us, with some abuse of notation, denote by ‖·‖S0
the gauge of S0 (it is not homogeneous

because S0 is not symmetric, and hence is not actually a norm). From Equation (3.26), we
thus have that if $ is entangled

‖$− τ‖S0
= R($‖τ) + 1 (3.27)

(if $ is separable this does not hold, as is the case for $ = τ).
Let σ̄ = P/ tr P = 2P/d2, and let us introduce the notation $0 ≡ $− τ for any state

$. Notice that σ0 = Uσ̄0U†. We have reduced the problem of estimating R(σ‖τ) to the
problem of estimating ‖σ0‖S0

and the statement to prove is thus

P
(∥∥∥Uσ̄0U†

∥∥∥
S0

6 C
√

d log d
)
> 1− e−c0d3 log2 d .
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For this purpose, we first compute the expectation value E
∥∥Uσ̄0U†

∥∥
S0

over the random
variable U. Then we estimate the Lipschitz constant of

∥∥Uσ̄0U†
∥∥
S0

as a function of U
and use it to argue that being close to the expected value happens with high probability.
Notice that ‖X‖S0

is not unitary invariant, however the function E
∥∥UXU†

∥∥
S0

is unitary
invariant on X, and is still convex.

Let us compute the expectation value E
∥∥Uσ̄0U†

∥∥
S0

. With minor modifications, we
know from [AL14, Lemma 6] that for any unitary-invariant convex function g of any
traceless Hermitian operators X and Y on Cd ⊗Cd, we have5

g(X)

‖X‖∞
6 2d2 g(Y)

‖Y‖1
, (3.28)

which applied twice leads to

1
2d2
‖X‖1
‖Y‖∞

6
g(X)

g(Y)
6 2d2 ‖X‖∞

‖Y‖1
. (3.29)

Now, we let Y = σ̄0 for which ‖σ̄0‖1 = 1 and ‖σ̄‖∞ = 1/d2:

1
2
‖X‖1 6

g(X)

g(σ̄0)
6 2d2‖X‖∞.

Then we let g(X) = E
∥∥UXU†

∥∥
S0

, which is unitary invariant by construction and convex
by the convexity of ‖X‖S0

:

1
2
‖X‖1 6

E
∥∥UXU†

∥∥
S0

E ‖Uσ̄0U†‖S0

6 2d2‖X‖∞.

We now let X be a Gaussian vector G on the traceless Hermitian operators (gaussian
unitary ensemble) on Cd ⊗ Cd. This makes E

∥∥UGU†
∥∥
S0

= E ‖G‖S0
. We then take the

expectation values over the remaining random variable G on each side of the inequalities
and get

1
4

E ‖G‖1 6
E ‖G‖S0

E ‖Uσ̄0U†‖S0

6 2d2 E ‖G‖∞.

For such a Gaussian random matrix, it is well know that E ‖G‖1 ∼ d3 and E ‖G‖∞ ∼ d,
where with “∼” we denote having the same order. This proves

E
∥∥∥Uσ̄0U†

∥∥∥
S0
∼ E ‖G‖S0

/d3. (3.30)

In particular, we know from [ASY14, Section 4] that E ‖G‖S0
is at most of order d7/2 log d

and therefore there exists a universal constant C > 0 such that

E ‖σ0‖S0
= E

∥∥∥Uσ̄0U†
∥∥∥
S0

6 C
√

d log d. (3.31)

Now we have to show that this average behaviour is generic for large d, because
f (U) :=

∥∥Uσ̄0U†
∥∥
S0

is regular enough. We claim that f is 4-Lipschitz (in the Euclidean

5The original [AL14, Lemma 6] is stated only for permutation invariant norms. However, what is proven
in the proof is the more general statement that if x and y are zero-sum vectors in Rd, then x/‖x‖∞ ≺
2d y/‖y‖1 where ≺ denotes majorisation. A direct application of [Bha13, Theorem II.3.3] then proves [AL14,
Lemma 6] and more generally g(x)/‖x‖∞ 6 2d g(y)/‖y‖1 for all permutation-invariant convex functions g.
Applying the latter to the spectrum of traceless Hermitian operators for a unitary invariant function gives us
Equation (3.28).
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norm). Indeed, for any unitaries U, V on Cd ⊗Cd, we have by the triangle inequality for
‖·‖S0

| f (U)− f (V)| =
∣∣∣∣∥∥∥Uσ̄0U†

∥∥∥
S0
−
∥∥∥Vσ̄0V†

∥∥∥
S0

∣∣∣∣
6
∥∥∥Uσ̄0U† −Vσ̄0V†

∥∥∥
S0

=
∥∥∥Uσ̄U† −Vσ̄V†

∥∥∥
S0

=
2
d2

∥∥∥UPU† −VPV†
∥∥∥
S0

.

It was proven in [GB02] that
1

d
√

d2 − 1
B2 ⊆ S0,

which implies
‖·‖S0

6 d
√

d2 − 1‖·‖2 6 d2‖·‖2 .

Therefore we get

| f (U)− f (V)| 6 2
∥∥∥UPU† −VPV†

∥∥∥
2

6 2
∥∥∥(U −V)PU†

∥∥∥
2
+ 2
∥∥∥VP(U −V)†

∥∥∥
2

= 4‖(U −V)P‖2

6 4‖U −V‖2‖P‖∞

= 4‖U −V‖2 .

where the first inequality is by the triangle inequality and the last inequality is by Hölder
inequality ‖XY‖2 6 ‖X‖2‖Y‖∞.

Now, we know from [MM+13, Corollary 17] that any L-Lipschitz function g on the
unitaries on CD (equipped with the Euclidean metric) satisfies the concentration estimate:
if U is a Haar-distributed unitary on CD, then for all ε > 0, P(g(U) > E g + ε) 6 e−c0Dε2/L2

,
where c0 > 0 is a universal constant. Combining the above estimate on the Lipschitz
constant of f with the estimate on its expected value from Equation (3.31), we thus get for
all ε > 0

P
(

f (U) > C
√

d log d + ε
)
6 P

(
f (U) > E f + ε

)
6 e−c′0d2ε2

.

The advertised result follows from choosing ε = C
√

d log d in the above deviation proba-
bility, and combining it with Equation (3.27) .

As we would expect this holds for both random states simultaneously.

Corollary 32. Let σ± be random orthogonal states on A�B� as in Construction 30. Then

P
(

max
{
RA� :B�

(σ+),RA�:B�
(σ−)

}
6 C
√

d log d
)
> 1− e−c0d3 log2 d.

where C, c0 > 0 are universal constants.

Proof. This is a direct consequence of Lemma 31. By the union bound, we have

P
(
R(σ+) > C

√
d log d orR(σ−) > C

√
d log d

)
6 P

(
R(σ+) > C

√
d log d

)
+ P

(
R(σ−) > C

√
d log d

)
6 2e−c0d3 log2 d
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3.5.2 Random private states

We will now use the random orthogonal states just introduced to construct a Bell privat bit.
Together with the single-shot results, in particular Lemmas 20 and 21, we show that with
the shield states picked at random, the resulting private state will be data hiding under
separable measurements, but distinguishable under PPT measurements. In particular, the
distinguishability under PPT measurements of the shield implies that the resulting random
private state is distillable with PPT operations (by just performing the measurement and
correcting the phase). Since the PPT distillable entanglement is upper bounded by the
distance from the PPT set, the constructed private states will be far from the set of PPT
states. For these random private states we thus have no useful upper bound on the LOCC
distillable entanglement, as all the upper bound we know are upper bounds on the PPT
one. It is interesting that this is a generic behaviour, and it will be particularly interesting
when we will still be able to show a repeater bound under the asymptotic continuity
conjecture.

Construction 33. Let |A| = |B| = 2 and let σ± be two random orthogonal states on A�B� as
in Construction 30. We define a random private state γ on AA�BB� to be a private state as in
Section 3.2.1 with random states σ± as shield states, namely

γAA�BB�
=

1
2

(
Φ+

A¤B¤
⊗ σ+

A�B�
+ Φ−A¤B¤

⊗ σ−A�B�

)
.

Observe that, for such a construction the key-attacked state is always separable.
Indeed, since P + P⊥ = 1, we simply have (σ+ + σ−)/2 = 1/d2 and therefore γ̂ =
(Φ+ + Φ−)/2⊗ 1/d2. These are thus strictly irreducible private states, and the distillable
key is thus exactly one bit [Hor+09]. Finally, note that σ± are orthogonal by construction
but, as we already know from [AL14, Section 6.1], this orthogonality is completely hidden
to local observers. The results from Section 3.2 now directly imply that this is true also for
the constructed private states in the limit for large shield sizes.

Theorem 34. Let γ be a random private state on AA�BB� as defined by Construction 33. Then,

P
(
‖γ− S(AA�:BB�)‖SEP(A¤A�:B¤B�)

6
C√

d

)
> 1− e−c0d3

P
(
‖γ− S(AA�:BB�)‖PPT(A¤A�:B¤B�)

> c
)
> 1− e−c0d4

where c0, c, C > 0 are universal constants.

Proof. For the first claim, we know from [AL14, Section 6.1] that there exist universal
constants c0, C > 0 such that,

P
(∥∥σ+ − σ−

∥∥
SEP

6 C/
√

d
)
> 1− e−c0d3

.

Hence by Lemma 20 above, we have (just relabelling 3C/2 as C), that

P
(
‖γ− S‖SEP 6 C/

√
d
)
> 1− e−c0d3

.

For the second claim, we know from [AL14, Theorem 5] that there exist universal constants
c0, c > 0 such that

P
(∥∥σ+ − σ−

∥∥
PPT

> c
)
> 1− e−c0d4

.

Hence by Lemma 21 above, we have (just relabelling c/3 as c),

P(‖γ− S‖PPT > c) > 1− e−c0d4
.

This concludes the proof of Theorem 34.
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In words, Theorem 34 tells us the following: the considered random private state γ
is, with probability going to 1 as the dimension d grows, at a SEP distance of at most
C/
√

d and at a PPT distance of at least c from the set of separable states. So in conclusion,
what we learn from it is that there exist private states which are barely distinguishable
from being separable for observers which can only perform separable (and even more
so LOCC) measurements on them. However, this data hiding property is not maintained
when relaxing to PPT measurements, since these private states keep a constant distin-
guishability from separable states under PPT measurements. We now derive the analogue
of Theorem 34 when distinguishability is measured in local relative entropy.

Theorem 35. Let γ be a random private state on A¤A�B¤B� as defined by Construction 33. Then

P
(

DSEP(A¤A�:B¤B�)

(
γ‖S

(
AA′:BB′

))
6 C

log d√
d

)
> 1− e−c0d

P
(

DPPT(A¤A�:B¤B�)

(
γ‖S

(
AA′:BB′

))
> c
)
> 1− e−c0d4

where c0, c, C > 0 are universal constants.

The upper bound on DSEP(γ‖S) in Theorem 35 above is not tight: the log d factor
can actually be removed. The derivation of this improved upper bound is relegated to
Section 3.5.3 as it is much more involved, and requires developing several additional tools
(which might be of independent interest).

Proof. For the first probability estimate, we know from Theorem 34 that, with probability
greater than 1− e−c0d, ‖γ− γ̂‖SEP 6 C/

√
d. Hence by Equation (2.12), we get that, with

probability greater than 1− e−c0d,

DSEP (γ‖S) = |DSEP(γ‖S)− DSEP(γ̂‖S)|

6
C√

d
log(2d) + g

(
C√

d

)
6

C′ log d√
d

,

where the equality is due to γ̂ ∈ S , so that DSEP(γ̂‖S) = 0.
For the second probability estimate, we know from Theorem 34 that, with probability

greater than 1− e−c0d4
, ‖γ− S‖PPT > c. By Pinsker’s inequality[Pin60; Ver14], this implies

that, with probability greater than 1− e−c0d4
,

DPPT(γ‖S) >
1

2 ln 2
‖γ− S‖2

PPT >
c2

2 ln 2
= c′.

Remark 36. Note that the proof of Theorem 35 in fact establishes something slightly stronger,
namely that C log d/

√
d is also an upper bound on DSEP(A¤A�:B¤B�)

(γ‖S). Indeed, since
SEP(A¤A�:B¤B�) contains classical communication from A¤A� to B¤B�, we know by
Equation (2.6) that we actually have

‖γ− γ̂‖SEP(A¤A�:B¤B�)
= ‖γ− γ̂‖SEP(A¤A�:B¤B�)

.

And thus Theorem 35 holds for DSEP(A¤A�:B¤B�)
exactly as it holds for DSEP(A¤A�:B¤B�)

.

Theorem 35 teaches us that the same qualitative conclusion as that of Theorem 34 holds
when measuring distance from the set of separable states in relative entropy rather than
trace norm: with probability going to one as the dimension d grows, our random private
state γ has a very small relative entropy of entanglement when restricted to separable
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(and even more so LOCC) measurements, but a high one when only restricted to PPT
measurements.

Finally, let us emphasize that because our random private states are distinguishable
under PPT operations, then they will also be distillable under PPT operations, and thus all
the upper bounds on the distillable entanglement will be bounded away by the distillable
entanglement itself. The usual computable measures based on the PPT criterion will be
useless. For instance, the logarithmic negativity of our random private state γ, i.e. EN(γ) :=
log ‖γΓ‖1, is with high probability high. Indeed, in matrix notation we have

γΓ =
1
2


1/d2 0 0 0

0 0 (σ+ − σ−)
Γ/2 0

0 (σ+ − σ−)
Γ/2 0 0

0 0 0 1/d2

 ,

and we thus easily see that ‖γΓ‖1 = 1+
∥∥(σ+ − σ−)

Γ
∥∥

1. Now, the spectrum of the random
matrix (σ+ − σ−)

Γ can be precisely studied (see e.g. [Mon13, Section 3]), but for our
purposes it is in fact enough to simply know that there exists a universal constant c > 0
such that

∥∥(σ+ − σ−)
Γ
∥∥

1 > c with high probability. And therefore, EN(γ) > log(1 + c)
with high probability.

3.5.3 Improvement

In this section we give a lengthier proof of Theorem 35, that does away with the log d
factor in the scaling of the SEP relative entropy.

Restricted operator ordering

Contrary to the definitions of L norm and L relative entropies (see Section 2.1), the defini-
tion below, as far as we are aware of, has not been introduced in the literature before.

Definition 37 (L (partial) ordering). For any Hermitian operators X, Y on H, we define the
notion of ordering in restriction to a set of measurements L by:

X 6L Y if ∀M ∈ L, M(X) 6M(Y) .

Note that the condition in Definition 37 above can be rewritten as point-wise ordering,
namely if {Mi}i∈I , are the measurement operators ofM

M(X) 6M(Y) if ∀ i ∈ I, tr(TiX) 6 tr(TiY).

We now explore how this notion of measurement ordering connects to that of mea-
surement distance. We begin with the following easy observations in Lemmas 38 and 39
below. Lemma 38 will be used later in the section, while Lemma 39 is just stated here as
an independent comment.

Lemma 38. Let ρ, σ be states and L be a set of measurements on H. If ρ 6L (1 + ε)σ for some
ε > 0, then DL(ρ ‖ σ) 6 log(1 + ε).

Proof. If p, q are probability distributions satisfying p 6 (1 + ε)q for some ε > 0, then
clearly

D(p ‖ q) = ∑
i

pi log
(

pi

qi

)
6 ∑

i
pi log(1 + ε) = log(1 + ε).

Now, for anyM ∈ L,M(ρ) andM(σ) are classical probability distributions. So what
we have shown is that, ifM(ρ) 6 (1 + ε)M(σ) for allM ∈ L, then D (M(ρ)‖M(σ)) 6
log (1 + ε) for allM ∈ L. And this is exactly the statement in Lemma 38.
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Lemma 39. Let ρ, σ be states and L be a set of measurements on H. If ρ 6L (1 + ε)σ and
σ 6L (1 + ε)ρ for some 0 < ε < 1, then ‖ρ− σ‖L 6 ε/(1− ε/2) 6 2ε.

Proof. If p, q are probability distributions satisfying p 6 (1 + ε)q and q 6 (1 + ε)p for
some 0 < ε < 1, then for all i

pi − qi 6 εqi

qi − pi 6 εpi.

Hence as a consequence,

∑
i
|pi − qi| 6 ε ∑

i
max(pi, qi)

= ε ∑
i

pi + qi + |pi − qi|
2

= ε

(
1 +

1
2 ∑

i
|pi − qi|

)
.

Now, for anyM ∈ L,M(ρ) andM(σ) are classical probability distributions. So what
we have shown is that, ifM(ρ) 6 (1 + ε)M(σ) andM(σ) 6 (1 + ε)M(ρ) for allM ∈ L,
then ‖M(ρ)−M(σ)‖1 6 ε/(1− ε/2) for allM ∈ L. And this is exactly the statement in
Lemma 39.

SEP ordering

We start with establishing a technical result about the maximum overlap with separable
states for the difference of two random orthogonal states. It has some similarities with the
SEP data hiding result of [AL14, Theorem 5], but cannot be directly derived from it, which
is why we re-do the whole argument.

Proposition 40. Let σ± be random orthogonal states on A�B� as defined by Construction 30.
Then, there exist universal constants c0, C > 0 such that

P

(
sup

σ∈S(A�:B�)

∣∣tr (σ[σ+ − σ−]
)∣∣ 6 C

d5/2

)
> 1− e−c0d .

Proof. With some abuse of notation, let us define the following function on the traceless
Hermitian operators

‖X‖S◦ := sup
σ∈S(A�:B�)

∣∣tr (σX)
∣∣

and let us remark that it satisfies the triangle inequality. To be more precise, ‖X‖S◦ is
the support function of the symmetrization Σ = conv {−S ∪ S} of the separable states
around the origin, and thus ‖X‖S◦ is actually ‖X‖Σ◦ , namely it is the gauge of the polar
of Σ, see [AS06] for more details. Notice that ‖X‖S◦ is not to be confused with ‖X‖S0
introduced in Lemma 31. In particular the former is always smaller than the ∞-norm,
while the latter is always larger than the trace norm. Still, we will follow the same proof
structure of Lemma 31.

Recall that the random states are defined by σ± = Uσ̄±U†, where U is a Haar-
distributed unitary on Cd ⊗Cd and σ̄± some fixed orthogonal maximally mixed states on
d2/2-dimensional subspaces of Cd ⊗Cd. Let

∆̄ = σ̄+ − σ̄−

∆ = σ+ − σ− = U∆̄U†.
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The statement to prove therefore is

P
(
‖∆‖S◦ 6

C
d5/2

)
> 1− e−c0d.

To prove the statement, we compute the expectation value E ‖∆‖S◦ = E
∥∥U∆̄U†

∥∥
S◦ over

the random variable U, then we estimate the Lipschitz constant of
∥∥U∆̄U†

∥∥
S◦ as a function

of U and use this to argue that being close to the expected value happens with high
probability. ‖X‖S◦ is not unitary invariant, however the function E

∥∥UXU†
∥∥
S◦ is unitary

invariant on X, while still being convex.
As explained in Lemma 31 leading to Equation (3.29), we know from [AL14, Lemma 6]

that for any unitary-invariant convex function g of any traceless Hermitian operators X
and Y on Cd ⊗Cd, we have

1
2d2
‖X‖1
‖Y‖∞

6
g(X)

g(Y)
6 2d2 ‖X‖∞

‖Y‖1
.

Now, we let Y = ∆̄ for which
∥∥∆̄
∥∥

1 = 2 and
∥∥∆̄
∥∥

∞ = 2/d2:

1
4
‖X‖1 6

g(X)

g(∆̄)
6 d2‖X‖∞ .

Then we let g(X) = E
∥∥UXU†

∥∥
S◦ , which is unitary invariant by construction and convex

by the convexity of ‖X‖S◦ :

1
4
‖X‖1 6

E
∥∥UXU†

∥∥
S◦

E
∥∥U∆̄U†

∥∥
S◦

6 d2‖X‖∞ .

We now let X be again a Gaussian vector G on the traceless Hermitian operators (Gaussian
unitary ensemble) on Cd ⊗ Cd. This makes E

∥∥UGU†
∥∥
S◦ = E ‖G‖S◦ . As in Lemma 31,

taking expectation values over the inequalities gives

1
4

E ‖G‖1 6
E ‖G‖S◦
E ‖∆‖S◦

6 d2 E ‖G‖∞ ,

and using that E ‖G‖1 ∼ d3 and E ‖G‖∞ ∼ d further gives:

E ‖∆‖S◦ ∼
1
d3 E ‖G‖S◦ .

We now know from [AS06, Equation 7] 6 that E ‖G‖S◦ is at most of order
√

d and, therefore
there exists a universal constant C > 0 such that

E ‖∆‖S◦ 6
C

d5/2 . (3.32)

Now we have to show that this average behaviour is generic for large d, because the
function f (U) :=

∥∥U∆̄U†
∥∥
S◦ is regular enough in the Euclidean norm: we claim that it is a

6As remarked in [AS06, Section 2.1], for a convex set K of Rn we have E ‖G‖K◦ = γ w(K) > γ vrad(K),
where γ = E ‖G‖2, w is the mean width and vrad is the volume radius. Furthermore, [AS06] shows that
in particular w(Σ) ∼ vrad(Σ). What [AS06, Equation 7] and the remarks below show, is that we have
vrad(Σ) ∼

√
d/γ, which gives us E ‖G‖S◦ ∼

√
d.
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8/d2-Lipschitz function. Indeed by the triangle inequality for ‖ · ‖S◦ , for any unitaries U
and V on Cd ⊗Cd we have

| f (U)− f (V)|

=
∣∣∣∥∥∥U∆̄U†

∥∥∥
S◦
−
∥∥∥V∆̄V†

∥∥∥
S◦

∣∣∣
6
∥∥∥U∆̄U† −V∆̄V†

∥∥∥
S◦

6
∥∥∥Uσ̄+U† −Vσ̄+V†

∥∥∥
S◦

+
∥∥∥Uσ̄−U† −Vσ̄−V†

∥∥∥
S◦

.

We can then use that S ⊂ B1, together with duality of the 1-norm and the ∞-norm, to get

| f (U)− f (V)|

6
∥∥∥Uσ̄+U† −Vσ̄+V†

∥∥∥
B◦1

+
∥∥∥Uσ̄−U† −Vσ̄−V†

∥∥∥
B◦1

=
∥∥∥Uσ̄+U† −Vσ̄+V†

∥∥∥
∞
+
∥∥∥Uσ̄−U† −Vσ̄−V†

∥∥∥
∞

6
∥∥∥Uσ̄+(U† −V†)

∥∥∥
∞
+
∥∥∥(U −V)σ̄+V†

∥∥∥
∞

+
∥∥∥Uσ̄−(U† −V†)

∥∥∥
∞
+
∥∥∥(U −V)σ̄−V†

∥∥∥
∞

= 2
∥∥(U −V)σ̄+

∥∥
∞ + 2

∥∥(U −V)σ̄−
∥∥

∞

6 2
∥∥σ̄+

∥∥
∞‖U −V‖∞ + 2

∥∥σ̄−
∥∥

∞‖U −V‖∞

=
8
d2 ‖U −V‖∞ 6

8
d2 ‖U −V‖2.

which shows that f is 8/d2-Lipschitz.
Now, we know from [MM+13, Corollary 17] that any L-Lipschitz function g on the

unitaries on CD (equipped with the Euclidean metric) satisfies the concentration estimate:
if U is a Haar-distributed unitary on CD, then for all ε > 0, P(g(U) > E g + ε) 6 e−c0Dε2/L2

,
where c0 > 0 is a universal constant. Combining the above estimate on the Lipschitz
constant of

∥∥U∆̄U†
∥∥
S◦ with the estimate on its expected value from Equation (3.32), we

thus get for all ε > 0

P
(
‖∆‖S◦ >

C
d5/2 + ε

)
6 P

(
‖∆‖S◦ > E ‖∆‖S◦ + ε

)
6 e−c0d6ε2/64.

The advertised result follows from choosing ε = C/d5/2 (and suitably relabelling the
constants).

Thanks to Proposition 40, we can now show that our random private states and their
key-attacked versions are with high probability SEP ordered with a constant close to 1.

Proposition 41. Let γ and γ̂ on A¤A�B¤B� be a random private state and its key-attacked state
as defined by Construction 33. Then, there exist universal constants c0, C > 0 such that

P
(

γ 6SEP(A¤A�:B¤B�)

(
1 +

C√
d

)
γ̂

)
> 1− e−c0d.

Proof. By Definition 37, to prove Proposition 41 it suffices to show that, with probability
greater than 1− e−c0d, forall positive-semidefinite operators 0 6 M, N 6 1

tr (M⊗ Nγ) 6
(

1 +
C√

d

)
tr (M⊗ Nγ̂). (3.33)
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Now, let ∆ = σ+ − σ− and observe that, for any ε > 0, we have

(1 + ε)γ̂− γ =
1
2


ε
1

d2 0 0 −∆
2

0 0 0 0
0 0 0 0

−∆
2

0 0 ε
1

d2

 .

Given 0 6 M 6 1 on A¤A� and 0 6 N 6 1 on BB′, we write them in the block-form

M =

(
M1 M̃
M̃† M2

)
and N =

(
N1 Ñ
Ñ† N2

)
,

where M1, M2, M̃ are operators on A� and N1, N2, Ñ are operators on B′, with 0 6
M1, M2 6 1 and 0 6 N1, N2 6 1. A straightforward calculation shows that

tr
(

M⊗ N
[
(1 + ε) γ̂− γ

])
= ε

tr K
d2 −

1
2

tr
(
K̃∆
)

(3.34)

where K =
(

M1 ⊗ N1 + M2 ⊗ N2
)
/2 > 0 and K̃ = K̃† =

(
M̃⊗ Ñ + M̃† ⊗ Ñ†)/2, satisfy-

ing ±K̃ 6 K.
We now expand K̃ into the difference of the positive-semidefinite components of M̃

and Ñ. Any operator K ∈ L(H) can be decomposed into the sum of an Hermitian and anti-
Hermitian operator as K = KRe + iKIm where KRe = (K + K†)/2 and KIm = (K− K†)/2i
are Hermitian. Also recall that if K is Hermitian then we denote with K± the positive- and
negative-semidefinite part. Then we have

tr
(
∆′(ρ− σ)

)
6 ∑

x,y∈{+,−}, z∈{Re,Im}

∣∣ tr
(

M̃z,x ⊗ Ñz,y∆
)∣∣,

where for each term we have M̃z,x, Ñz,y > 0, tr M̃z,x 6 (tr M1 tr M2)1/2 and tr Ñz,y 6
(tr N1 tr N2)1/2. So for all x, y ∈ {+,−}, z ∈ {Re, Im},∣∣tr (M̃z,x ⊗ Ñz,y∆

)∣∣ 6 (tr M̃z,x tr Ñz,y
)

sup
σ∈S
|tr(σ∆)|

6 (tr M1 tr M2)
1/2(tr N1 tr N2)

1/2 sup
σ∈S
|tr(σ∆)|

6
tr M1 tr N1 + tr M2 tr N2

2
sup
σ∈S
|tr(σ∆)|

= tr(K) sup
σ∈S
|tr(σ∆)|.

Then

tr
(
K̃∆
)
6 8 tr K sup

σ∈S
|tr(σ∆)| .

Now we apply Proposition 40 and get that there exist constants C, c0 > 0 such that with
probability greater than 1− e−c0d

tr
(
K̃∆
)
6 8 tr(K)

C√
d

1
d2 .

Inserting the above in Equation (3.34) we obtain that with probability greater than 1− e−c0d

we have for all 0 6 M, N 6 1

tr
(

M⊗ N
[
(1 + ε) γ̂− γ

])
>
(

ε− 4
C√

d

)
tr K
d2 .

The right-hand-side is positive as soon as ε > 4C/
√

d, in which case Equation (3.33)
indeed holds completing the proof.
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Improved bound

Using Proposition 41, we are now able to prove an upper bound which is better than the
one appearing in Theorem 35.

Theorem 42. Let γ on A¤A�B¤B� be a random private state as defined by Construction 33. Then,
there exist universal constants c0, C > 0 such that

P
(

DSEP(A¤A�:B¤B�)
(γ‖S(A¤A�:B¤B�)) 6

C√
d

)
> 1− e−c0d .

Proof. We know from Proposition 41 that, with probability greater than 1− e−c0d, γ 6SEP

(1 + C/
√

d)γ̂. Because γ̂ is a separable state, we have by Lemma 38 that, with probability
greater than 1− e−c0d,

DSEP(γ ‖ S) 6 DSEP (γ ‖ γ̂) 6 log
(

1 +
C√

d

)
6

C√
d

.

This concludes the proof.

For the sake of clarity, we focused on one particular way of constructing random
private states. However, the properties that we described would hold true for many
other random private state models. For instance, one could think of picking as states
σ±, two independent uniformly distributed mixed states on A�B�, or mixtures of order
d2 independent uniformly distributed pure states on A�B�. These would be with high
probability approximately orthogonal, so that the random state γ on A¤A�B¤B� formed
out of them would be with high probability an approximate private state. Moreover, it
would have with high probability all the previously observed features. It thus appears as
a generic aspect of private states that their amount of distillable entanglement and their
amount of data-hiding have to obey some trade-off. One important open question at this
point would nonetheless be: what is the actual distribution of the random private states
which are produced in “usual” quantum key distribution protocols? Indeed, however
wide the range of models our results apply to, it would be interesting to know whether
or not the outputs of error correction and privacy amplification procedures which are
performed in practice fall into this general framework.

3.6 Summary

We have dedicated this chapter to the study of states of the form

γ± = p+ ·Φ+ ⊗ σ± + p− ·Φ− ⊗ σ∓.

We have seen that the maximally entangled states can allow for strictly more distillable
entanglement than what would be achieved distinguishing the shield locally, in particular
even if the shield states are known to hide the data from local observer. However, we have
also seen that in large dimension this behaviour disappears, as shown in the last section,
and the states are actually generically data hiding. In the very specific case when we can
upper bound the distillable entanglement, we can upgrade the statement to asymptotic
indistinguishability, where even arbitrarily many copies are allowed to distinguish the
states. In the next chapter we will use the proven indistinguishability, to show that these
correlations cannot be mediated by an untrusted party, indicating that the difference
between entanglement distillation and key distillation induced by data hiding states is a
purely bipartite property, and does exist in a general network scenario.



Chapter 4

Quantum Repeaters for Key
Distillation

An immediate application of quantum teleportation is entanglement swapping. Consider
Alice and Bob sharing a maximally entangled state ΦAinBout , and Imagine that Alice also
shares a maximally entangled state with another system A′ so that the total initial state
is ΦA′A ⊗ΦAinBout . Applying the teleportation protocol as explained in Section 1.5, will
result in an identity channel from A to Bout, and thus in the state ΦA′Bout , “swapping” the
roles of A′ and Ain. However, the entanglement swapping protocol does not perform any
operation on A′ and thus there is no reason for it to be held by Alice. System A′ could be
held by a third party that, as manifest from the input state, has never interacted with Bob.
Nonetheless the result is a maximally entangled state with Bob. Quantum teleportation
thus allows parties that cannot interact directly to share maximally entangled states, and
thus any quantum information, as long as there is a third party to mediate the interaction.
The protocol can be repeated indefinitely, with many parties sharing maximally entangled
states in series or, more generally, in a network, working together to provide a maximally
entangled state between two designated end points. The end points are our from now on
Alice and Bob, while the intermediate parties are called repeater stations.

The task of distilling target states between Alice and Bob in a repeater is plagued
by the same noise in the quantum communication that would affect Alice and Bob in
direct entanglement distillation. However, if we consider the distillation of maximally
entangled states, this scenario is not more difficult that entanglement distillation. Namely,
the best protocol is the one that distils maximally entangled states globally and then
applies entanglement swapping. Because the rate of entanglement distillation with Charlie
reduces to the bipartite case, initially the setting has been interesting only when modelling
the noise also in the bipartite operations [Bri+98; Dür+99]. As soon as the fidelity of
the maximally entangled state that can be achieved between the links is capped, the
teleportation protocols collects the noise from all the links, exponentially decreasing
the fidelity in the the number of links. Still to overcome the increased noise after the
teleportation protocol, the best known protocols simply involve further entanglement
distillation after the entanglement swapping[Dür+99; Jia+07], or using codes equivalent
to entanglement distillation [Ben+96c; KL96; Mur+16].

However, if the goal is to distill perfect key across the repeater station, the situation
is non-trivial already when considering perfect operations. The results reviewed in the
previous chapter, displaying a strong separation between distillable key and distillable
entanglement, open the possibility that a similar separation might exist in quantum
networks. No example of such separation exist, on the contrary, it has been shown that
some states might contain a lot of key between the nodes, but still almost no key can be
extracted across a repeater station. In this chapter we will expand this no-go result to



110 CHAPTER 4. QUANTUM REPEATERS FOR KEY DISTILLATION
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BobCharlie

Figure 4.1: Source of entanglement for Alice, Charlie and Bob. Alice and Bob share no
entanglement themselves, but they both share entanglement with Charlie, who can act
globally on his two systems to mediate the generation of entanglement between Alice and
Bob, as is the case of entanglement swapping.

general classes of states and protocols. Our results point at a potentially important pitfall
to be aware of in the implementation of real QKD networks. A network might have a
good key rate between adjacent nodes and have good operations at the repeater stations,
but this is not enough to guarantee a good key rate between distant nodes. Our results are
another step pointing toward the distillable entanglement being the only relevant resource
for repeating quantum information. If this turned out to be true, then small deviations
from the designed distributed states might have a large effect on the key rate between non
adjacent nodes.

4.1 Repeater Entanglement Distillation

Ultimately, we would like to have a full understanding of key distillation in a general
network scenario. In this chapter we will be studying the limitations in the rates of key
that can be achieved. Thus, while realistic repeaters have multiple stations, we can always
reduce to single repeater stations by grouping all the stations together, this only gives
more power to the network and can only increase the rate. The reduction to a single
station thus provides upper bounds without loss of generality. We will consider the
simplest scenario beyond bipartite distillation, namely where we add a single third party
Charlie to mediate the distillation between two parties Alice and Bob. This setting has
been introduced in [Bäu+15]. The help of Charlie makes sense if Alice and Bob cannot
generate useful entanglement by themselves, and thus we will assume that the source
produces states that are independent for Alice and for Bob. More precisely, we will assume
that the source produces product states α ⊗ β, of entangled states α ∈ D(AC) shared
between Alice and Charlie, and β ∈ D(DB) shared between Charlie and Bob, as displayed
in Figure 4.1. Using only tripartite operations, Alice and Bob are supposed to distill the
maximal amount entanglement, and later the maximal amount of perfect perfect key,
where the task is made possible because Charlie can act globally on his share of the states.
However, while Charlie is essential to achieve the goal, in the key distillation scenario he
is also untrusted, therefore the key must be secret also from Charlie. Equivalently, we will
say that Charlie’s systems are given to the eavesdropper at the end of the protocol, namely
that he is traced out. We will now generalize the classes of bipartite operations we have
seen to the tripartite setting, and formally define the repeater distillable entanglement as a
warm up to the repeater distillable key.

Multipartite operations and measurements

The generalization of separable states to multipartite systems is straightforward if we look
at states that are fully separable across all parties. For three parties, the fully separable
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Alice

α⊗n

TrCharlie

β⊗n

Bob

≈ε Φe, γk, . . .

Alice

Bob

Figure 4.2: Quantum circuit for single-node repeater protocols distilling key. The dashed
box is a tripartite LOCC protocol. The double lines are the classical communication. Be-
cause the communication with Charlie is two-way, it also implies two-way communication
between Alice and Bob, and thus we omitted their communication lines.

states of Alice, Charlie and Bob with respective systems A, C and B are defined as

S(A:C:B) := conv(D(A)⊗D(C)⊗D(B)).

As for the bipartite case, they define the set of tripartite separable operations as those
channels Λ ∈ CPTP

(
Ain:Cin:Bin〉Aout:Cout:Bout) such that for all systems A, C and B

idACB⊗Λ(S
(
AAin:CCin:BBin)) ⊆ S(AAout:CCout:BBout). (4.1)

We will not need a similar generalization for PPT operations.
As usual, we denote with SEP

(
Ain:Cin:Bin〉Aout:Cout:Bout) the set of operations satisfy-

ing Equation (4.1), and with SEP(A:C:B) the set or all separable operations on ACB. This
still defines a class of tripartite operations. Namely SEP contains local operations, which
are simply

LO(A:C:B) := CPTP(A)⊗ CPTP(C)⊗ CPTP(B),

and it is closed under composition and tensor products, with an analogous generalization
of these properties definition from Section 1.4.2, which we leave implicit. If L is a class of
tripartite operations like SEP(A:C:B), we call repeater operations, or tripartite operations
from Alice, Charlie and Bob to Alice and Bob, those operations L(A:C:B〉Aout:C:Bout)
where Charlie is removed at the end.

Bipartite LOCC was constructed explicitly in Section 1.3.2. In Section 1.4.2 though, we
remarked that the various bipartite LOCC classes are the smallest classes of operations
that are closed under local operations and contain a specific combination of classical
communication. We thus define tripartite LOCC axiomatically as the minimal class of
operations LOCC

(
Ain:Cin:Bin〉Aout:Cout:Bout) containing two-way classical communication

from Charlie to Alice and Bob, where again the definition of classical communication
from Section 1.4.2 generalizes straightforwardly to the multipartite setting. Notice that
just requiring Charlie to be connected to Alice and Bob with two-way communication,
implies Alice and Bob being connected with two-way communication. Later we will
restrict the communication of Charlie to be only a sender to Alice and Bob, and not a
receiver. In that case, we will explicitly mention that Alice and Bob are connected by
two-way communication.
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Repeater distillable entanglement

Let us first consider the rate of entanglement distillation achieved by Alice, Charlie and
Bob, namely by a repeater with a single node. The repeater distillable entanglement
is defined in analogy to the other distillation rates, and in particular the to distillable
entanglement defined in Section 2.4. For any class of tripartite operations L the best finite
rate for entanglement distillation under repeater operations is

Eε
DR,L(α, β) := sup

{
log e : Φlog e ≈ε L(C

e:C:Ce〈A:CD:B) ◦ (α⊗ β)
}

and the repeater distillable entanglement is the the best achievable rate

EDR,L(α, β) = lim
ε→0

lim sup
n→∞

1
n

Eε
DR(α

⊗n, β⊗n).

(ER is the common notation we use for the relative entropy of entanglement and so we
avoid it here). Notice how the output state is a bipartite state, as imposed by the fact
that the output system is trivial (C) at Charlie. The physical rates are of course the ones
achievable with LOCC operations:

EDR(α, β) ≡ EDR,LOCC(A:CD:B)(α, β) (4.2)

Because we can group Charlie with either Alice or Bob, namely because we have the
inclusion into the bipartite LOCC as

LOCC(A:CD:B) ⊆ LOCC(A:CDB), LOCC(ACD:B),

then we have

EDR(α, β) 6 ED,LOCC(A:CB)(α⊗ β) = ED,LOCC(A:C)(α)

EDR(α, β) 6 ED,LOCC(AC:B)(α⊗ β) = ED,LOCC(C:B)(β)

giving the trivial upper bound

EDR(α, β) 6 min {ED(α), ED(β)} .

As anticipated this upper bound is matched by the minimum of the distillable entan-
glements being also an achievable rate

min {ED(α), ED(β)} 6 EDR(α, β).

Indeed if α and β are states, which we can always assume to be isotropic states that are
ε-close to respectively Φe and Φe′ , coming from an entanglement distillation protocol
between the links, then it is easily checked that the teleportation protocols yields a state
2ε-close to Φmin{e,e′}1. Therefore if e and e′ are achievable, min {e, e′} is also achievable.

Therefore, for the task of entanglement distillation using perfect operations, the re-
peater setting is not more difficult than entanglement distillation, and the optimal noise-
free protocol for the quantum repeater is the one that performs entanglement distillation
between Alice and Charlie, and between Charlie and Bob, followed by entanglement
swapping. Because the rate of entanglement distillation with Charlie reduces to the bipar-
tite case, initially repeaters have been studied only when modelling the noise also in the
operations [Bri+98; Dür+99]. However we will see that this is not the case if we are tasked
with distilling key across the repeater station.

1More precisely the steps are: embed the smaller one in the larger dimension (it will not be an isotropic
state any more in general), use the larger isotropic state to teleport, map back down to the smaller dimension
(the state will still not be isotropic in general). We can optionally twirl again to produce an isotropic state.
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4.2 Repeater Key Distillation

The repeater key rates from [Bäu+15] are now defined changing the target states of the
repeater distillable entanglement. Recall that we now have three parties: Alice and Charlie
(A and C) share α and Charlie and Bob (D and B) share β. Tripartite PPT operations
(whatever they are) will not be allowed, because they will be able to produce infinite
amounts of key, as explained in Section 3.1. Thus we require the repeater operations to be
contained in SEP. Let L be a class of tripartite operations included in SEP, then the best
finite rate for key distillation under repeater operations is

Kε
R,L(α, β) := sup

{
log κ : Υ(Φlog κ, A�B�) ≈ε L(C

κA�:C:CκB�〈A:CD:B) ◦ (α⊗ β)
}

, (4.3)

where we recall from Section 3.1.3 that Υ(Φlog κ, A�B�) is the set of all private states with
key size κ. The repeater distillable key is then defined as a the best achievable rate

KR,L(ρ) := lim
ε→0

lim sup
n→∞

1
n

Kε
R,L(α

⊗n, β⊗n).

We reserve KR for the repeater key rate defined by LOCC with two-way communication
between the parties. A schematic LOCC repeater protocol is given in Figure 4.2.

As in the case of entanglement distillation by joining the parties we get the trivial
upper bound

KR(α, β) 6 min {KD(α), KD(β)} .

This upper bound is the rate achieved by distilling the key between the nodes, and then
using the one-time pad to send one of the keys from Charlie to the opposite party. As
far as we known this is the only way to achieve this rate, and thus it requires a trusted
repeater station Charlie, where the information held by Charlie is not traced out. Trusted
repeater nodes are being considered [Sal+10], but while they might be viable options for
private networks that have other security guarantees, they will provide no security in a
public network. The information theoretic security guarantees are lost if we do not give
the residual state of the repeater station to the eavesdropper.

The rate will of course be larger than the entanglement distillation rate

min {ED(α), ED(β)} = EDR(α, β) 6 KR(α, β)

But there are also instances where the inequality is strict, as a direct consequence of
the difference between distillable key and distillable entanglement. In the case where
ED(α) > log |D|, namely when one link can teleport the other fully, then the trivial
teleportation protocol on β gives us

EDR(α, β) = ED(β) 6 KD(β) = KR(α, β)

thus displaying the same edge case behaviour as for distillable key and distillable entangle-
ment. The repeater distillable entanglement and the repeater distillable key can be made
arbitrarily different by teleporting private states with low distillable entanglement, and
the repeater distillable key can be large even when the repeater distillable entanglement
is zero by teleporting PPT approximate private states. Therefore the question about the
difference between key and entanglement in the repeater setting has to be more subtle.

A way to avoid these extreme edge cases is to consider the case were the state in both
links is the same. More precisely a well posed question is to ask whether there can a be
strict inequalities in

ED(ρ) = EDR(ρ, ρ) 6 KR(ρ, ρ) 6 KD(ρ) (4.4)
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with the hope that there exists a state for which the first inequality is strict and arbitrarily
large. So far, including the work presented in this thesis, we only have no-go results
around perfect key, namley for ρ being either a private state or an approximate private
state, indicating that there is no gap, and that the repeater distillable key collapses to
the repeater distillable entanglement. Most importantly, these no-go results are not a
consequence of some noise emerging from imperfect operations. They are information
theoretic results about the impossibility for Charlie, to mediate correlations that are hidden
to local observers.

In short, while for repeater entanglement distillation the active area of research studies
the effect of noisy operations, for quantum repeater key there are open questions even
with perfect operations. In this chapter we will see these no-go results, which are obtained
by connecting distinguishability and repeater key distillation, and then applying the
connection to the examples from of the previous chapter, namely to the undistillable
private states and to the random private states. For the private states that have equal
distillable entanglement and distillable key (the BNOT, locking and flower private states
of Section 3.4) there is nothing particular to say, the trivial bounds on the repeater rate give

ED(γ) = KR(γ, γ) = KD(γ) (4.5)

Notice that this is for the two-way repeater key rate, but the same holds for the one-way
repeater rate, as these private states are distillable with one-way LOCC. We will see the
remaining private states in the upcoming sections.

4.2.1 Upper bounds

To show the no-go results, we will upper bound the repeater distillable key of private
and approximate private states. To do this, we use some general upper bounds in-
spired from [Bäu+15]. The original upper bound on KR(α, β) provided there is in terms
of a regularized LOCC-restricted relative entropy distance to quadri-partite separable
states [Bäu+15, Theorem 4]. For any states α on AC and β on DB

KR(α, β) 6 D∞
LOCC(AB:CD)(α⊗ β‖S(A:C:D:B)). (4.6)

The intuition is that if Alice and Bob are joined together, the produced private state at
the output looks like a maximally entangled state (because the twisting can be lifted with
global operations), while if the input was separable then . It means that α ⊗ β can be
viewed as a bipartite state, namely if we now make α ∈ D(A:C) and β ∈ D(A′C′), then
the repeater protocols can be transferred to this setting and can be used to distinguish
α⊗ β from S(A:A′:C:C′) by applying the protocol, untwisting and checking if the state at
AA′ is separable.

We can improve this upper bound with a simple observation. A crucial passage of the
original proof is that no repeater protocol will ever output entanglement between Alice
and Bob if the inputs are substituted with fully quadri-partite separable states. Formally
the proof uses that

S
(
Aout:Bout) ⊇ LOCC

(
Aout:C:Bout〈A:CD:B

)
◦ S(A:C:D:B).

However, only separability of the output is used, which holds already if we make a single
input link is separable. Namely the inclusion still holds if instead we feed either S(A:CDB)
or S(ACD:B) to the tripartite LOCC maps, thus these classes of separable states also give
valid upper bounds. This works more generally for any class of states that gets mapped
into separable states by the repeater protocols, as formalized by the bound below. To state
it we need a more flexible regularization that arguably misses the point of the standard
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regularization, but we will be able to recover a standard regularization later after some
relaxations.

Let L be a class of channels and K a class of states. For ease of notation define the
maximal regularization of the L relative entropy from K as

D∞
L(H)(ρ‖K(H)) := lim sup

n→∞

1
n

DL(H⊗n)(ρ
⊗n‖K(H⊗n)). (4.7)

This will in general not be a useful definition for upper bounds, because if the normal
regularization is not guaranteed, then estimating the sequence of relative entropies for
finite number of copies gives no information about the regularization as an upper bound.
However, in the following bounds where we use the max-regularization, we can always
make a relaxation to a regularizable quantity.

Before we show the improvement mentioned above, we present another bound. We
can prove a similar but new bound that does not join Alice and Bob in a single party.
Instead of allowing global operations at Alice and Bob, we can simply let their system stay
quantum in the distinguishability. We present it first because it is conceptually simpler.

Theorem 43 (Unpublished). Let L be a class of repeater operations contained in SEP, and let
K be any class of tripartite states such that it is mapped into separable bipartite states by the L
repeater protocol, namely such that (for all systems)

S
(
Aout:Bout) ⊇ L

(
Aout:C:Bout〈A:C:B

)
◦ K(A:C:B).

Then, for any states α on AC and β on DB, we have

KR,L(α, β) 6 D∞
L(A:CD:B)(α⊗ β‖K(A:CD:B)).

Proof. Let σ ∈ K(A⊗n:C⊗nD⊗n:B⊗n), let A¤ = B¤ = Ck, and let

Λ ∈ L(A⊗n:C⊗nD⊗n:B⊗n)|A¤A� : C : B¤B�) ⊆ L(A⊗n:C⊗nD⊗n:B⊗n),

be a repeater protocol that distills the approximate private state γ̃log k. Then, by the
assumption that σ is mapped into separable states by Λ, we have

DL(A⊗n:C⊗nD⊗n:B⊗n)(α
⊗n ⊗ β⊗n‖σ) > D(Λ(α⊗n ⊗ β⊗n)‖Λ(σ))

> D(γ̃log k‖S(A¤A�:B¤B�))

Ideally, at this point we would further lower bound by the relative entropy of entanglement
and use its asymptotic continuity to change γ̃log k into γlog k at the cost of some factor that
goes to zero in the limits n → ∞ and ε → 0. However, the dimensions of the shield
systems of γlog k are in principle unbounded, so that we cannot argue directly that these
factors go to zero. We need to remove the shield systems first, exploiting that by definition
γlog k is a twisted version of a maximally entangled state Φlog k. This is the same argument
used in [Hor+09, Theorem 9]. We give the statement and a contained proof below for
completeness. For any state ρ that is ε-close to a private state γm,

ER(ρ) > (1− 2ε)m− g(ε). (4.8)
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Proof. Let us denote by Π the map that inverts the twisting, see Section 3.1.3.
Namely the map that inverts the controlled unitary of the private state and traces
out the shield, leaving a maximally entangled state. Then, by monotonicity of the
trace distance, we have:

Π(γ̃m) ≈ε Π(γm) = Φm.

Furthermore, while Π ◦ S(A¤A�:B¤B�) contains entangled states, it is still a
convex set. We can apply Π by monotonicity of the relative entropy, thus we find
that for any separable state σ ∈ S(A¤A�:B¤B�):

D(ρ‖σ) > D(Π(ρ)‖Π(σ))

> D(Π(ρ)‖Π ◦ S(A¤A�:B¤B�)).

We can now use the asymptotic continuity of the relative entropy from convex
sets, as explained in Section 2.3.

D(ρ‖σ) > D(Φm‖Π ◦ S(A¤A�:B¤B�))− ε2m− g(ε)

It was then proven in [Hor+09, Lemma 7], that

D(Φm‖Π ◦ S(A¤A�:B¤B�)) > m

and thus

D(ρ‖σ) > (1− 2ε)m− g(ε).

Taking the infimum over separable states ends the proof.
By Equation (4.8) we thus have

1
n

DL(A⊗n:C⊗nD⊗n:B⊗n)(α
⊗n ⊗ β⊗n ‖ σ) > (1− 2ε)

log k
n
− 1

n
g(ε).

Taking the supremum over all channels gives

1
n

DL(A⊗n:C⊗nD⊗n:B⊗n)(α
⊗n ⊗ β⊗n ‖ σ) > (1− 2ε)Kε

R,L(α
⊗n, β⊗n)− 1

n
g(ε).

Taking the limit supremum for n→ ∞ and the limit for ε→ 0 ends the proof.

We now show the actual generalization of the original upper bound of Equation (4.6).
We do not have examples that show a separation between this and the new bound, but
they are in principle incomparable.

Theorem 44 ([Bäu+15]). Let L be a class of repeater operations contained in SEP, and let K be
any class of tripartite states such that it is mapped into separable bipartite states by the L repeater
protocol, namely such that (for all systems)

S
(
Aout:Bout) ⊇ L

(
Aout:C:Bout〈A:C:B

)
◦ K(A:C:B).

Let L′ be a bipartite class of operations such that L(A:C:B) ⊆ L′(AB:C), then, for any states α on
AC and β on DB, we have

KR,L(α, β) 6 D∞
L(AB:CD)(α⊗ β‖K(A:CD:B)).

The proof is exactly the same as the one given in [Bäu+15], with the difference that
the regularization of the relative entropy is not guaranteed and thus the limit supremum
must be used instead.
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Proof. Let σ ∈ K(A⊗n:C⊗nD⊗n:B⊗n), let A¤ = B¤ = Ck, and let

Λ ∈ L(A⊗n:C⊗nD⊗n:B⊗n)|A¤A� : C : B¤B�) ⊆ L′(A⊗nB⊗n:C⊗nD⊗n),

be a repeater protocol that distill the approximate private state γ̃log k. Then let M ∈
M(A¤B¤A�B�) be a global measurement at Alice and Bob. We then have

M◦Λ ∈ L′(A⊗nB⊗n:C⊗nD⊗n),

and

DL′(A⊗nB⊗n:C⊗nD⊗n)(α
⊗n ⊗ β⊗n‖σ) > D(M◦Λ(α⊗n ⊗ β⊗n)‖M ◦Λ(σ)).

Since this holds for any measurementM we have

DL′(A⊗nB⊗n:C⊗nD⊗n)(α
⊗n ⊗ β⊗n‖σ) > DM(A¤B¤A�B�)

(Λ(α⊗n ⊗ β⊗n)‖Λ(σ)).

This time the lower bound on such measured relative entropy was proven in [Bäu+15,
Lemma 3], showing that, because Λ(σ) is separable,

DM(A¤B¤A�B�)
(Λ(α⊗n ⊗ β⊗n)‖Λ(σ)) > (1− ε)m− h(ε),

and thus

1
n

DL′(A⊗nB⊗n:C⊗nD⊗n)(α
⊗n ⊗ β⊗n ‖ σ) > (1− ε)

log k
n
− 1

n
h(ε).

Taking the supremum over all channels gives

1
n

DL′(A⊗nB⊗n:C⊗nD⊗n)(α
⊗n ⊗ β⊗n ‖ σ) > (1− ε)Kε

R,L(α
⊗n, β⊗n)− 1

n
h(ε).

Taking the limit supremum for n→ ∞ and the limit for ε→ 0 ends the proof.

As discussed in Section 2.4, only the Theorem 44 bound is known to be regularizable,
and only for convex classesK that are closed under measurement operators in L, when L is
closed under tensor product. This happens in particular for S(A:C:D:B), but fails already
for S(A:CDB) and S(ACD:B). As promised we now make the regularizable relaxation. If
L and K are closed under tensor product, it is easily verified that then

KR,L(α, β) 6 D∞
L′(AB:CD)(α⊗ β‖σ), (4.9)

KR,L(α, β) 6 D∞
L(A:CD:B)(α⊗ β‖σ).

where the existence of the regularization comes from super-additivity, see Section 2.4.
Namely, if we are allowed to take tensor product states in the minimization, then we
know that the regularization exists for all classes of channels closed under tensor product
(see again Section 2.4). In particular we have for any separable state α̃ ∈ S(A:C) and
β̃ ∈ S(D:B)

KR(α, β) 6 D∞
LOCC(AB:CD)(α⊗ β‖α̃⊗ β),

KR(α, β) 6 D∞
LOCC(AB:CD)

(
α⊗ β

∥∥α⊗ β̃
)
.

These bounds solve the “factor of 2” issue about tightness of the original upper bound
in some obvious simple cases. For example, suppose that both inputs are maximally
entangled states, α = β = Φm, then the bounds are tight, both sides being equal to m,
but the right hand side of Equation (4.6) yields 2m. Intuitively, while the original bound



118 CHAPTER 4. QUANTUM REPEATERS FOR KEY DISTILLATION

measures the distinguishability of both input states from separable, the new bounds can
measure only the distinguishability of a single state and consider the other one as an
assisting resource to the measurement.

By both joining Alice and Bob and relaxing to partial measurements, the two bounds
of Equation (4.9) have a common upper bound, which is what we will use in the next
section. Namely, we have

D∞
L′(AB:CD)(α⊗ β‖K(A:CD:B))

D∞
L(A:CD:B)(α⊗ β‖K(A:CD:B))

6 D∞
L′(AB:CD)(α⊗ β‖K(A:CD:B)).

If L and K are closed under tensor product, then

KR,L(α, β) 6 D∞
L′(AB:CD)(α⊗ β‖σ). (4.10)

Finally notice that the common lower relative entropy

D∞
L(A:CD:B)(α⊗ β‖K(A:CD:B)) 6

D∞
L′(AB:CD)(α⊗ β‖K(A:CD:B)),

D∞
L(A:CD:B)(α⊗ β‖K(A:CD:B)).

is the one that, as an upper bound, would really squeeze the repeater distillable key
close to the repeater distillable entanglement, because it is the one that can drop if data-
hiding states are produced at Alice and Bob. Still the known bounds allow us to join
the results from the previous chapter, and transform the indistinguishability results into
undistillability results in the repeater setting. This will be the content of the remainder of
the thesis.

4.3 One-way repeater

The content of this section comes from [1].
We consider the one-way repeater where Charlie can send classical communication but

cannot receive, while Alice and Bob can still communicate with each other (and cannot be
done through Charlie any more) [Bäu+15]. We thus define LOCC←→(A:C:B) as the minimal
class of operations that contains the above communication, and consider the repeater
distillable key defined by this class, for which we reserve the notation

K←→R (α, β) := KR,LOCC←→(A:CD:B)(α, β)

when the context is clear. Joining Alice and Bob we find that, this class is contained in the
bipartite one-way operations from Charlie to Alice/Bob

LOCC←→(A:C:B) ⊆ LOCC→(C:AB).

and thus using Equation (4.10) we have

KR,LOCC←→(A:CD:B)(α, β) 6 D∞
LOCC→(CD:AB)(α⊗ β‖σ).

where σ is any appropriate state that becomes separable under any repeater distillation
protocol. We can now use Equation (1.5) from Section 1.4.3, to simplify the above bound.
Namely, we can lift the measurement at Alice and Bob from the bipartite one-way LOCC
using monotonicity of the relative entropy, thus obtaining the following corollary.

Corollary 45. For any states α on AC and β on DB and any separable state σ in S(A:CDB) or
S(ACD:B):

KR,LOCC←→(A:CD:B)(α, β) 6 D∞
M(CD)⊗idAB

(α⊗ β‖σ).
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We now connect it to private states with the bound in terms of the distillable entan-
glement in Section 3.3. For our case Corollary 23 gives the following statement. Let
m = log |A¤| = log |B¤| and let ρ be any key-correlated state on A¤B¤A�B� (with support
only on the maximally correlated subspace of A¤B¤).

ED,LOCC→(A¤A�:B¤B�)
(ρ) > χLOCC→(A¤A�:B¤B�)

({
1

2m ,Z i
B¤

(ρ)
})

= χM(A¤A�)⊗idB¤B�

({
1

2m ,Z i
B¤

(ρ)
})

where the equality is due to M⊗ id being both a restriction of LOCC→ and a relaxation
due to monotonicity of the Holevo information. We can now exploit the measurement
being local to simplify this bounds. The result is the following theorem:

Theorem 46. For any key-correlated state ρ on A¤B¤A�B�, it holds:

DM(A¤A�)⊗idB¤B�
(ρ ‖ ρ̂) 6 E→D (ρ) (4.11)

D∞
M(A¤A�)⊗idB¤B�

(ρ ‖ ρ̂) 6 E→D (ρ) (4.12)

If ρ̂ is also separable then:
D∞

M(A¤A�)⊗idB¤B�
(ρ‖ρ̂) = E→D (ρ). (4.13)

Proof. It is straightforward to check that Z i
B¤

(ρ̂) = ρ̂. LetM ∈ M(A¤A�) be any measure-
ment at Alice. Because the measurement is local at Alice, it commutes with the unitary
Z i

B¤
at Bob, thus we have:

D(M⊗Z i
B¤

(ρ)‖M(ρ̂)) = D(M⊗Z i
B¤

(ρ)‖M⊗Z i
B¤

(ρ̂)) = D(M(ρ)‖M(ρ̂))

where we omitted the identity maps and used the unitary invariance of the relative entropy.
By Corollary 23 then:

E→D (ρ) > χM(A¤A�)⊗idB¤B�

({
1

2m ,Z i
B¤

(ρ)
})

= sup
M∈M(A¤A�)

1
2m ∑

i
D(M⊗Z i

B¤
(ρ)‖M(ρ̂))

= sup
M∈M(A¤A�)

1
2m ∑

i
D(M(ρ)‖M(ρ̂))

= sup
M∈M(A¤A�)⊗idB¤B�

D(M(ρ)‖M(ρ̂))

= DM(A¤A�)⊗idB¤B�
(ρ ‖ ρ̂)

proving Equation (4.11). For Equation (4.12) we have:

E→D (ρ) =
1
n

E→D (ρ⊗n) >
1
n

DM(A¤A�)
(ρ⊗n ‖ ρ̂⊗n) ∀ n

because the distillable entanglement is already regularized and ρ⊗n is still a key-correlated
state. Since DM(A¤A�)

is super-additive, taking the limit n → ∞ proves Equation (4.12).
Equality in Equation (4.13) follows because if ρ̂ is separable, then we get the opposite
inequality from Equation (2.18):

D∞
M(A¤A�)

(ρ‖ρ̂) = D∞
LOCC→(A¤A�:B¤B�)

(ρ‖ρ̂)
> D∞

LOCC→(A¤A�:B¤B�)
(ρ‖S(A¤A�:B¤B�))

> E→D (ρ)

> D∞
M(A¤A�)

(ρ‖ρ̂)
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where in the first equality we used the same argument as for the Holevo information. The
upper bound on the distillable entanglement D∞

LOCC→(A:B)(ρ‖S(A:B)) for general states
ρ ∈ D(AB) was proven in [LW14].

Namely, implicit in the theorem is the fact that the optimal LOCC→ measurement is
independent of the phase flip, which is what allowed us to remove the phase flip and
regularize. We can now directly combine Theorem 46 with Corollary 45 in the corollary
below by choosing σ = α̂ ⊗ β̂, finally connecting the repeater distillable key with the
bipartite distillable entanglement.

Corollary 47. For any key-correlated states α and β with at least one separable key-attacked state,
it holds:

KR,LOCC←→(A:CD:B)(α, β) 6 ED,LOCC→(CD:AB)(α⊗ β).

So far, the bound of Equation (4.6) could only be estimated via a relaxation that only
works for states that are PPT. With this bound we can now show no-go results for the gap
between the repeater distillable key and repeater distillable entanglement (Equation (4.4)),
for states beyond the ones that are close to separable after partial transposition, like the
Fourier private bits. Still because the only known bounds on distillable entanglement are
for the PPT distillable entanglement, we cannot fully exploit Corollary 47 for states that are
far from PPT. Up to technical factors, Corollary 47 does show though that in Equation (4.4)
that the repeater distillable key is determined by the repeater distillable entanglement for
key-correlated states with separable key-attacked state:

E→D (ρ) 6 K←→R (ρ, ρ) 6 2E→D (ρ).

Examples

We can now give examples of private states with asymptotically zero repeater key, that
were out of reach for [Bäu+15]. For the Swap private states and the Fourier private states
we can immediately apply Corollary 47 to Corollary 26:

K←→R (γS, γS) 6 2 log
(

1 +
1
d

)
, (4.14)

K←→R (γUΓ , γUΓ ) 6 2 log
(

1 +
1√
d

)
. (4.15)

Since all private states are NPT (Non-positive under Partial Transposition) [Hor+09], this
gives the first examples of NPT states with a high distillable key but low one-way repeater
key rate. The swap private bit was implemented experimentally for d = 2 [Dob+11]. The
key was distilled at a rate K ≈ 0.69, enough to break the bound at EN(γ) = log 3

2 ≈ 0.58.
However, because of the factor of 2, an implementation with d = 4 at the same key rate
is required for the same proof of concept. Still, scaling up the implementation should be
experimentally feasible, since in d = 4 the swap operator is tensor product of qubit gates.

For the approximate private states, we cannot use the bound on distillable entangle-
ment directly, because this is actually zero. Therefore we need to use monotonicity first
to reduce to an actual private state, since the approximate private states we consider are
obtained by mixing private states with LOCC→ noise; then we can use Corollary 47:

K←→R (γ̃UΓ , γ̃UΓ ) 62 log
(

1 +
1√
d

)
,

K←→R (γ̃Γ , γ̃Γ ) 62
1 + log e
1 +
√

d
. (4.16)
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Proof. For the PPT Fourier private states, using monotonicity from γUΓ we get the same
upper bound as in Equation (4.14).

For the PPT invariant private states we need to use monotonicity from γΓ , which was
was shown in Lemma 29 to satisfy

ED,PPT(γΓ ) 6
1 + log e
1 +
√

d
.

Now, we use one-way LOCC monotonicity of K←→R , Corollary 47 and the above bound, in
this order, to show the claim:

K←→R (γ̃Γ , γ̃Γ ) 6 K←→R (γΓ , γΓ ) 6 2E→D (γΓ ) 6 2
1 + log e
1 +
√

d

However for the Fourier private bits this bound is not optimal. Until [1], the PPT
Fourier private states were the only example in the literature for which the repeater key
rate could be upper bounded by a computable quantity. Because Charlie is traced out at
the end of the repeater key distillation protocol, the repeater key rate is invariant under
transposition of the input on Charlie’s systems, thus giving the following upper bound on
the repeater key rate [Bäu+15]:

KR(α, β) 6 min{KD(α
Γ ), KD(βΓ )}. (4.17)

The previous upper bound on KR(γ̃UΓ , γ̃UΓ ) was computed in [Bäu+15, Theorem 5] by
estimating an upper bound on KD(γ̃

Γ

UΓ ):

KR(γ̃UΓ , γ̃UΓ ) 6 O
(

log d√
d

)
.

which is still not optimal; used properly, Equation (4.17) yields the improved bound:

KR(γ̃UΓ , γ̃UΓ ) 6
1√

d + 1
.

Proof. By Equation (4.17) and convexity of the relative entropy of entanglement we find:

KR(γ̃UΓ , γ̃UΓ ) 6 KD(γ̃
Γ

UΓ ) 6 ER(γ̃
Γ

UΓ )

6
1

1 + 1√
d

(
ER(γ̂UΓ ) +

1√
d

ER(γU)

)
.

However γ̂UΓ is separable and, according to Equation (3.22), ER(γU) = 1. Therefore:

KR(γ̃UΓ , γ̃UΓ ) 6
1√

d + 1
.

This bound is still better than Equation (4.16) and holds for two-way protocols, but it
will not work for the PPT invariant state. Corollary 47 only holds for private states, but
we have shown how to use it for states that are close to private states, if the noise is local.
We can extend the bound to all states if instead of restricting the input states, we restrict
the distillation protocols. This is the content of the next section.
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4.3.1 Key-swapping

Recall that we call strictly irreducible the private states with separable key-attacked state.
For the purpose of this section let us denote such states with ‹γ› or γ‹m›.We now show that
the one-way distillable entanglement upper bound of Corollary 47 gives an upper bound
for all states, not just key-correlated ones, for all protocols that try to distill key across the
repeater by first distilling perfect key between the links in the form of strictly irreducible
private states shared with Charlie. First, we define the following rate for such protocols.

Definition 48. For all states α on AC and α̃ on C̃B, we define the one-way key-swapping distillable
key as the best achievable rate:

KS(α, α̃) := lim
δ→0

lim
ε,ε̃→0

lim sup
n→∞

1
n

Kδ,ε,ε̃
S (α⊗n, α̃⊗n)

Kδ,ε,ε̃
S (α, α̃) := sup

{
K :

Λ(γ‹r› ⊗ γ‹r̃›) ≈δ γK

Γ(α) ≈ε γ‹r›, Γ′(α̃) ≈ε̃ γ‹r̃›

}
,

where the supremum is over dimensions such that

Γ ∈ LOCC←
(
A:C

〉
Ain

¤ Ain
� :Cin

¤ Cin
�

)
Γ′ ∈ LOCC→

(
C̃:B
〉
C̃in

¤ C̃in
� :Bin

¤ Bin
�

)
Λ ∈ LOCC←→

(
Ain

¤ Ain
� :Cin

¤ Cin
� C̃in

¤ C̃in
� :Bin

¤ Bin
�

〉
Aout

¤ Aout
� :C:Bout

¤ Bout
�

)
.

Notice that the restriction to strictly irreducible private states is only in the intermediate
step, and not at the output on Alice and Bob. To write the rate concisely we had to explicit
the optimization over maps. The supremum has to be taken over all dimensions, such
that there exist maps and systems fulfilling the conditions inside the finite rate. The
restricted protocols still include one-way entanglement distillation and swapping; thus,
the new repeater key rate is still lower bounded by the minimum of the one-way distillable
entanglements. With the definition in place we can now show that such rate is bounded
by the distillable entanglement unconditionally.

Theorem 49. For all input states α on AC and α̃ on C̃B, we have

KS(α, α̃) 6 E→D (α⊗ α̃).

Proof. First notice that the tensor product of two strictly irreducible private states is still a
strictly irreducible private state, namely γ‹a› ⊗ γ‹b› = γ‹a+b›.

Then, for the sake of the proof, let us introduce the following convenient bold short-
hand notation:

r := r + r̃ α := α⊗ α̃

γ‹r› := γ‹r› ⊗ γ‹r̃› Γ := Γ⊗ Γ′

then with ε := ε + ε̃ we have

Γ(α⊗n) ≈ε γ‹r›. (4.18)

We also define:
EBell = EBell

Ain
¤

Cin
¤
⊗ idAin

�
Cin
�
⊗EBell

Bin
¤

C̃in
¤

⊗ idBin
�

C̃in
�

where EBell is the reversible map of Lemma 19.
Proof idea: just like in the proof of Lemma 22, we use the distillable entanglement as

an upper bound on the rate of the protocols that perform a measurement on the shield
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followed by hashing. However, we need to insert a step in the proof to substitute the
approximate private state with exact private state, otherwise the proofs of Corollary 23
and Theorem 46 do not work. We will do this at the level of the coherent information
using its asymptotic continuity.

First, let Γ be an intermediate one-way distillation protocol that gets ε-close to strictly
irreducible private states γ‹r›. We apply the reversible protocol on the output of Γ

E→D (α) =
1
n

E→D (α⊗n) >
1
n

E→D (EBell ◦ Γ(α⊗n)).

Here we used that E→D is an LOCC→ monotone, and that

EBell ◦ Γ ∈ LOCC→
(
C⊗n:A⊗n〉Cin

¤
⊗2Cin

� :Ain
¤
⊗2Ain

�

)
⊗ LOCC→

(
C̃⊗n:B⊗n〉C̃in

¤
⊗2C̃in

� :Bin
¤
⊗2Bin

�

)
where at the output of the reversible map there are two copies of the original key systems.
Let now

M ∈ M
(
Cin

¤ Cin
� C̃in

¤ C̃in
�

〉
M
)
⊗ idCin

¤
C̃in
¤

Ain
¤
⊗2Ain

�
Bin
¤
⊗2Bin

�

be the measurement at Charlie, in the final one-way protocol that distils δ-close to a private
state γK, (by Equation (1.5) the one-way protocol that ends with tracing out Charlie can be
written as a measurement at Charlie followed by a global operation). After applyingM,
we lower bound the one-way distillable entanglement with the coherent information, just
like in Corollary 23:

E→D (α) >
1
n

I
(
Cin

¤ C̃in
¤ 〉Ain

¤
⊗2Ain

� MBin
¤
⊗2Bin

�

)
M◦EBell◦Γ(α⊗n)

.

Here is where we want to change the approximate private state Γ(α⊗n) into the exact
private state γ‹r› as mentioned before. In the form of [Win16] the asymptotic continuity of
the coherent information [AF04], which we have seen before, says that:

|I
(
H〉H′

)
$
− I
(
H〉H′

)
$̃
| 6 2ε log |H|+ 2g(ε)

for arbitrary ε-close states $, $̃ ∈ D(HH′). Since combining Equation (4.18) and the
monotonicity of the trace distance gives

M◦ EBell(Γ(α⊗n)) ≈ε M◦ EBell(γ‹r›),

we can use the asymptotic continuity, where the dimension factor is now log |Cin
¤ C̃in

¤ | = r.
Notice that it is necessary to perform the measurement first, as to remove the unbounded
shield systems from entering the dimension factor in the asymptotic continuity. We then
get:

E→D (α) >
1
n

I
(
Cin

¤ C̃in
¤ 〉Ain

¤
⊗2Ain

� MBin
¤
⊗2Bin

�

)
M◦EBell(γ‹r›)

− 1
n
(2εr + g(ε))

=
1
n

I
(
Cin

¤ C̃in
¤ 〉Ain

¤
⊗2Ain

� MBin
¤
⊗2Bin

�

)
M◦EBell(γ‹r›)

+ O
( rε

n

)
.

Now, as shown in Corollary 23 and Theorem 46, we can rewrite the conditional
information as a relative entropy and then, by the unitary invariance of the relative
entropy, correct the phase flip on the Alice/Bob side of γ‹r›. This results in:

E→D (α) >
1
n

D(M(γ‹r›) ‖ M(γ̂‹r›)) + O
( rε

n

)
.

We can now finish the distillation protocol using monotonicity of the relative entropy. Let

Λ ∈ LOCC
(
Ain

¤
⊗2Ain

� M:Bin
¤
⊗2Bin

�

〉
Aout

¤ Aout
� :Bout

¤ Bout
�

)
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be the completion of the LOCC←→ protocol that distills δ-close to a private state γK, where
we have given the measurement outcome to Alice without loss of generality because Alice
and Bob can communicate with each other:

E→D (α) >
1
n

D(Λ ◦M(γ‹r›) ‖ Λ ◦M(γ̂‹r›)) + O
( rε

n

)
.

Notice that Λ ◦M(γ̂‹r›) is a separable state in S(Aout
¤ Aout

� :Bout
¤ Bout

� ), because we distilled
to strictly irreducible private states.

At this point using Equation (4.8), because Λ ◦M(γ‹r›) ≈δ γK, we can lower bound
the relative entropy as follows:

E→D (α) >
1
n
((1− 2δ)K− g(δ)) + O

( rε

n

)
Taking the supremum over all the distillation maps used we get

E→D (α) > (1− 2δ)
1
n

Kδ,ε,ε̃
S (α⊗n, α̃⊗n)− 1

n
2εr− 1

n
(g(δ) + g(ε))

for all number of copies n, security parameters δ, ε and rate r. Because in the intermediate
private states we cannot distill more than if we had maximally entangled states as input,
therefore r 6 n log |AB| and taking lim sup for n→ ∞ we get

E→D (α) > (1− 2δ) lim sup
n→∞

1
n

Kδ,ε,ε̃
S (α⊗n, α̃⊗n)− 2ε log |AB|

Taking the limits ε→ 0 and δ→ 0 concludes the proof.

This section was dedicated to show that the one-way repeater distillable key is upper
bounded by some form of distillable entanglement for private states, and thus to show that
the key is not by itself a useful resource that can be transmitted across a repeater station,
that resource is the distillable entanglement. We even generalized it to specific distillation
protocols, that we called key-swapping, so that we could generalize to all input states.
However, we still hit the limitation of upper bounding the distillable entanglement of the
input states, which can currently be done only with the very loose relaxation to the PPT
distillable entanglement, and thus works only for states close to PPT. To overcome this in
the next section we will try to bound the repeater rate without the help of the distillable
entanglement, using the random private states from Section 3.5 in a way that should apply
to states that are very distillable under PPT operations.

4.4 Bounded repeater

Like [Bäu+15] and [1], we consider another variation of the quantum repeater key rate,
namely the bounded-repeater key rate KB. This will allow us to avoid the regularization
in the bound on the repeater distillable key, and thus avoid the distillable entanglement
and directly use the single copy estimates of Section 3.5. The operational interpretation for
the bounded repeater goes as follows: instead of letting Charlie act jointly on arbitrarily
many copies of the input, we restrict him to act only on one. This should model, for
example, bounded-memory repeater stations that can only act on a finite number of copies
at the same time (this should include for example memory-less repeater stations that
perform their operations fast and do not allow for distillation). Alice and Bob then proceed
to distill key as usual, and still apply their distillation protocols without restriction on
the outcomes of the operations with Charlie. We make Charlie perform the same joint
tripartite operation Λ on α⊗ β and we remove him after that, the resulting remaining
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state is Λ(α⊗ β)⊗n, on which we let Alice and Bob perform any LOCC operation. Because
the optimization over the tripartite channels commutes with the optimization over the
bipartite channels, for any states α on AC and β on DB, we define the bounded-repeater
finite key rate as

Kε,n
B (α, β) := sup

Λ∈LOCC(A:CD:B)
Kε

D
(
[Λ(α⊗ β)]⊗n).

If we leave implicit that the measurement outcomes at Charlie are given to either Alice or
Bob, we can simply write

Kε,n
B (α, β) := sup

Λ∈LOCC(A:CD:B)
Kε

D
(
[Λ(α⊗ β)]⊗n).

Note that this time the expression of the finite rate depends on the number of copies.
Namely, the finite rate for n copies is not of the form f (ρ⊗n) for some n-independent
function f . Still the definition of achievable rate is that for all ε, there exist a sequence
of protocols with finite rate limiting to it as the number of copies goes to infinity, and
does not rely on the finite rate having the form f (ρ⊗n). The bounded-repeater key rate is
defined as the best achievable rate for the bounded-repeater finite key rate above

KB(α, β) := lim
ε→0

lim sup
n→∞

1
n

Kε,n
B (α, β)

In [Bäu+15] and [1], the bounded-repeater key rate was defined using the equivalent
expression in Lemma 50 below, which will be more convenient to use later. Lemma 50
rewrites KB(α, β) as an optimization over bipartite distillable keys.

Lemma 50. For any states α on AC and β on DB, we have

KB(α, β) = sup
Λ∈LOCC(A:CD:B)

KD(Λ(α⊗ β)).

Proof. The inequality supΛ KD(Λ(α⊗ β)) 6 KB(α, β) comes from exchanging the limits
with the supremum, so let us now concentrate on showing the other direction. By def-
inition, KB(α, β) is an achievable rate and thus for all ε, δ > 0, there exists Λ, Π, n and
R > KB(α, β)− δ such that

Π
(
Λ(α⊗ β)⊗n) ≈ε γnR .

However, it was shown in [Hor+09, Lemma 6, pg 26] that if σ ≈ε γk, then KD(σ) >
(1− 4ε)k− (2− ε)h(ε), where we used the improved bounds from [Win16; Shi17] (as the
proof uses the continuity bounds to estimate the Devetak-Winter rate of σ). This means
that we have

nR− 4εnR− 2h(ε) 6 KD
(
Π
(
Λ(α⊗ β)⊗n))

6 KD
(
Λ(α⊗ β)⊗n)

= nKD(Λ(α⊗ β)) .

Thus for all ε, δ > 0 there exists Λ such that

KD(Λ(α⊗ β)) > (1− 4ε)KB(α, β)− δ− 2h(ε)

which implies that supΛ KD(Λ(α⊗ β)) > KB(α, β).

The interpretation of Lemma 50 is that the optimal operations performed with the
repeater station do not depend on the finite parameters of the protocol used by Alice and
Bob to distill the key. We now move onto proving the upper bounds we will use to argue
that the bounded-repeater distillable key of random private states is small.
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4.4.1 Upper bounds

The content of this section comes from [1].
It is possible to prove an upper bound in terms of a single copy relative entropy

measure. Namely, while the general upper bound of Theorem 43 for the repeater key
rate is regularized, for the bounded-repeater rate it is possible to prove an un-regularized
upper bound, which is much easier to deal with. The price to pay is that it is only in terms
of a restriction to partial measurements, and cannot be reduced to a restriction on full
measurements.

Theorem 51 ([Bäu+15; 1; 2]). Let K ∈ D(ACDB) be a set of states such that

LOCC
(
A:CD:B

〉
Aout:C:Bout) ◦ K ⊆ S(Aout:Bout).

Then, for any states α on AC and β on DB, we have

KB(α, β) 6 DLOCC(A:CD:B)(α⊗ β‖K).

Proof. By assumption, for any Λ ∈ LOCC(A:CD:B〉Aout:C:Bout) and σ ∈ K, we have
Λ(σ) ∈ S(A:B). Therefore, using Equation (1.6) for any such σ,

DLOCC(A:CD:B)(α⊗ β||σ) = sup
Λ∈LOCC(A:CD:B)

D(Λ(α⊗ β)||Λ(σ))

> sup
AoutBout

Λ∈LOCC(A:CD:B〉Aout:C:Bout)

D(Λ(α⊗ β)||S
(
Aout:Bout))

> sup
AoutBout

Λ∈LOCC(A:CD:B〉Aout:C:Bout)

KD(Λ(α⊗ β))

= sup
LOCC(A:CD:B)

KD(Λ(α⊗ β))

= KB(α, β)),

where the last equality is due to Lemma 50 and the last inequality is the relative entropy
of entanglement upper bound on the distillable key [Hor+05b]. Taking the infimum over
σ ends the proof.

As for the original repeater bound, the tripartite LOCC partial measurements can be
relaxed to bipartite LOCC by joining any combinations of the parties. We can still combine
this bound with Corollary 23 to get a bound in terms of the distillable entanglement.
Compared to Corollary 47, which also gives an upper bound in terms of the distillable
entanglement, this bound is valid also for two-way LOCC. However, we trade in a
multiplicative factor in the dimension of the key.

Corollary 52. Let α on A¤A�C¤C� and β on D¤D�B¤B� be any pair of key-correlated states
with at least one separable key-attacked state. Then:

KB(α, β) 6 |A¤B¤| · ED(α⊗ β) .

Proof. α⊗ β is still a key-correlated state across the cut between Alice/Bob and Charlie,
therefore let us recall the statement of Corollary 23 for α⊗ β for two-way LOCC partial
measurements.

ED(ρ) > χLOCC(C¤C�D¤D�:A¤A�B¤B�)

({
1

|A¤B¤|
,Z i

A¤B¤
(ρ)
})

= sup
Λ∈LOCC(C¤C�D¤D�:A¤A�B¤B�)

1
|A¤B¤|∑i

D(Λ ◦ Z i
B¤

(ρ) ‖ Λ(ρ̂))
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As a direct application to Theorem 51, we get

KB(α, β) 6 DLOCC(A¤A�:C¤C�D¤D�:B¤B�)
(α⊗ β ‖ α̂⊗ β̂)

6 DLOCC(C¤C�D¤D�:A¤A�B¤B�)
(α⊗ β ‖ α̂⊗ β̂)

= sup
Λ∈LOCC(C¤C�D¤D�:A¤A�B¤B�)

D(Λ(α⊗ β) ‖ Λ(α̂⊗ β̂))

6 sup
Λ∈LOCC(C¤C�D¤D�:A¤A�B¤B�)

∑
i

D(Λ ◦ (Z i
A¤B¤

)(α⊗ β) ‖ Λ(α̂⊗ β̂))

6 |A¤B¤| · ED(α⊗ β)

For private bits the resulting factor is just another factor of two off from the dimen-
sionless bound on the one-way repeater of Corollary 47. In particular, all the examples
from the previous section will also have asymptotically zero two-way bounded-repeater
key rate.

4.4.2 Random private states

The content of this section comes from [2].
We now user the upper bound of Theorem 51 on KB(α, β), to show that two random

private states have with high probability a small bounded-repeater key rate. Remember
that random private states are states that stay distinguishable under PPT operations, and
thus remain distillable under PPT operations. For these states the upper bounds we have
proven in terms of the distillable entanglement will not work, because the bounds we
know are all on the PPT distillable entanglement. We still expect the LOCC distillable
entanglement of such states to be small, but we have no way to prove it. To prove that the
real LOCC distillable entanglement of random private states is small we would need to
prove a regularized version of the indistinguishability. However, because two copies of a
uniformly random state are not uniformly random in the larger system, this task is hard.
Here we can circumvent this problem because bounding the operations of the repeater
station to single copies implies a single-copy upper bound.

Theorem 53. Let |A�| = |C�| = d and |D| = |B| = k, and let γ be a random private bits on
A¤A�C¤C� as defined by Construction 33. Then under the assumption of Conjecture 9, for any
state β on DB it holds

P
(

KB(γ, β) 6 O
(

k√
d

log dk
))

> 1− e−c0d3
,

where c0 > 0 is a universal constant.

Proof. For convenience, let us first bound

‖(γ− γ̂)⊗ β‖LOCC(A¤A�:C¤C�D:B).

First, we relax to a set of bipartite partial measurements, and then we use Equation (2.6) to
restrict from partial measurements to measurements:

‖(γ− γ̂)⊗ β‖LOCC(A¤A�:C¤C�D:B) 6 ‖(γ− γ̂)⊗ β‖LOCC(A¤A�B:C¤C�D)

= ‖(γ− γ̂)⊗ β‖LOCC(A¤A�B:C¤C�D)

6 ‖(γ− γ̂)⊗ β‖SEP(A¤A�B:C¤C�D). (4.19)

Notice that we cannot use Equation (2.6) to restrict directly from LOCC(A¤A�:C¤C�D:B) to
LOCC(A¤A�:C¤C�D:B) because systems A¤A� and B are separated. Now let ∆ = σ+− σ−,
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where σ± are the random orthogonal states on A�C� appearing in the shield of γ. Observe
that by Proposition 5

‖(γ− γ̂)⊗ β‖SEP(A¤A�B:C¤C�D)

=
1
4

∥∥(Φ+ −Φ−)⊗ ∆⊗ β
∥∥
SEP(A¤A�B:C¤C�D)

6
1
2

∥∥Φ+ ⊗ ∆⊗ β
∥∥
SEP(A¤A�B:C¤C�D)

6
1
2
(2R(Φ+ ⊗ β) + 1)‖∆‖SEP(A�:C�)

6
1
2
(4k− 1)‖∆‖SEP(A�:C�)

6 2k‖∆‖SEP(A�:C�)
.

Yet, we know from [AL14, Section 6.1], that ‖∆‖SEP 6 C′/
√

d with probability greater
than 1− e−c0d3

. Therefore, joining with Equation (4.19), we get

P
(
‖(γ− γ̂)⊗ β‖LOCC 6 C

k√
d

)
> 1− e−c0d3

(4.20)

with LOCC ≡ LOCC(A¤A�:C¤C�D:B).
Under the assumption of Conjecture 9, with κ = log 4d2k2 = 2 log 2dk, we use asymp-

totic continuity on the fact that γ̂⊗ β ∈ S(A¤A�:C¤C�DB) to find

DLOCC(A¤A�:C¤C�D:B)(γ⊗ β‖S(A¤A�:C¤C�DB))

=
∣∣∣DLOCC(A¤A�:C¤C�D:B)(γ⊗ β‖S(A¤A�:C¤C�DB))

− DLOCC(A¤A�:C¤C�D:B)(γ̂⊗ β‖S(A¤A�:C¤C�DB))
∣∣∣

6 O
(

κ‖(γ− γ̂)⊗ β‖LOCC(A¤A�:C¤C�D:B)

)
.

We join this with Equation (4.20) giving

P
(

DLOCC(A¤A�:C¤C�D:B)(γ⊗ β‖S) 6 O
(

k√
d

log dk
))

> 1− e−c0d3
(4.21)

where again LOCC ≡ LOCC(A¤A�:C¤C�D:B) and S ≡ S(A¤A�:C¤C�DB).
To conclude , notice that any state in S(A¤A�:C¤C�DB) is mapped into S(A:B) by any

map in LOCC(A¤A�:C¤C�D:B), therefore by Theorem 51

KB(γ, β) 6 DLOCC(A¤A�:C¤C�D:B)(γ⊗ β‖S(A¤A�:C¤C�DB))

which together with Equation (4.21) proves the theorem.

Theorem 53 tells us that the bounded-repeater rate of our random private states
KB(γ, β) should be with high probability small, as its shield dimension d grows in size,
because eventually even a maximally entangled state at β eventually cannot help. Since
most states are not as robust as the maximally entangled states, we obtain an improved
scaling if β is another random private state.

Theorem 54. Let |A�| = |C�| = d and |D�| = |B�| = k, and let γ on A¤A�C¤C� and γ′ on
D¤D�B¤B� be random private bits as defined by Construction 33. Then under the assumption of
Conjecture 9 we have

P

(
KB(γ, γ′) 6 O

(√
k
d

log kd

))
> 1− e−c0d3 − e−c′0k3 log2 k. (4.22)

where c0, c′0 > 0 are universal constants.
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Proof. Just like in Equation (4.19) we have:∥∥(γ− γ̂)⊗ γ′
∥∥
LOCC(A¤A�:C¤C�D¤D�:B¤B�)

6
∥∥(γ− γ̂)⊗ γ′

∥∥
SEP(A¤A�B¤B�:C¤C�D¤D�)

. (4.23)

Now let σ± on A�C� be the random orthogonal shield states of γ and define ∆ = σ+ − σ−.
Similarly let ς± on D�B� be the random orthogonal shield states of γ̃. Then by Proposition 5

‖(γ− γ̂)⊗ γ̃‖SEP(A¤A�B¤B�:C¤C�D¤D�)

6
1
2

∥∥Φ+ ⊗ ∆⊗ γ̃
∥∥
SEP(A¤A�B¤B�:C¤C�D¤D�)

6
1
4

∥∥Φ+ ⊗ ∆⊗Φ+ ⊗ ς+
∥∥
SEP(A¤A�B¤B�:C¤C�D¤D�)

+
1
4

∥∥Φ+ ⊗ ∆⊗Φ− ⊗ ς−
∥∥
SEP(A¤A�B¤B�:C¤C�D¤D�)

6
1
4
(2R(Φ+⊗2) + 1)(2RD� :B�

(ς+) + 1)‖∆‖SEP(A�:D�)

+
1
4
(2R(Φ+⊗2) + 1)(2RD� :B�

(ς−) + 1)‖∆‖SEP(A�:D�)

=
7
2
(RD� :B�

(ς+) +RD� :B�
(ς−) + 1)‖∆‖SEP(A�:D�)

Yet, we know from [AL14, Section 6.1] that ‖∆‖SEP 6 C′/
√

d with probability greater
than 1− e−c0d3

, and from Corollary 32 thatR(ς±) 6 C′′
√

k log k with probability greater
than 1− e−c0k3 log2 k. Therefore, joining the above with Equation (4.23), we get (albeit with
different constants)

P

(
‖(γ− γ̂)⊗ γ̃‖LOCC(A¤A�:C¤C�D¤D�:B¤B�)

6 C

√
k
d

log kd

)
> 1− e−c0d3 − e−c′0k3 log2 k.

(4.24)

Again under the assumption of Conjecture 9 with κ = 2 log 4d2k2, we use the fact that
γ̂⊗ γ′ ∈ S ≡ S(A¤A�:C¤C�D¤D�B¤B�), and find

DLOCC

(
γ⊗ γ′

∥∥S) 6 O
(
κ
∥∥(γ− γ̂)⊗ γ′

∥∥
LOCC

)
.

for LOCC ≡ LOCC(A¤A�:C¤C�D¤D�:B¤B�) and S as above. We then join this with
Equation (4.24)

P

(
DLOCC

(
γ⊗ γ′

∥∥S) 6 C

√
k
d

log k log d

)
> 1− e−c0d3 − e−c′0k3 log2 k (4.25)

with again LOCC and S as above. Since any state in S is mapped into S(A¤A�:B¤B�) by
any map in LOCC, we conclude by Theorem 51 that

KB(γ, γ′) 6 DLOCC(γ⊗ $‖S)

where LOCC ≡ LOCC(A¤A�:C¤C�D¤D�:B¤B�) and S ≡ S(A¤A�:C¤C�D¤D�B¤B�) as
above, which together with Equation (4.25) ends the proof.

We have shown that for random private states the bounded repeater rate will be low,
under the assumption of asymptotic continuity of general restricted relative entropies.
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Finally notice that the bounded repeater distillable key gives an upper bound on the
bounded repeater distillable entanglement. Namely, we have for any channel Λ

ED(Λ(α⊗ β)) 6 KD(Λ(α⊗ β)) 6 KB(α, β)

showing that random private states have indeed some form of low distillable entangle-
ment which will be forcibly close to the small bounded repeater distillable key for high
dimension.

4.5 Summary

We have given general results showing that in Equation (4.4) the resulting behaviour is

ED(ρ) = EDR(ρ, ρ) ∼ KR(ρ, ρ)� KD(ρ) (4.26)

While the general case is still out of our reach, it seems more and more likely, and there
might even be equality in the two repeater distillation rates.

Motivated by the question whether the repeater key rate can be zero for states with
non-zero key rate, the PPT2 conjecture was introduced in [Chr12]. In our context, it states
that any repeater protocol acting on states α and β that are both PPT will be separable
at Alice and Bob. If true, it would imply that the repeater key rate of two PPT states
(which are the only known examples for bound entangled states) is zero, including if the
two states are bound entangled states with key. That is, if α and β are PPT states, then
KR(α, β) = 0 even if KD(α), KD(β) > 0. Just like in the case of Equation (4.26), there have
only been progress in support of the conjecture, but the general case is still open, see
also [CMW18] and references there in.

Our results for random private states give a complementary view on the PPT2 conjec-
ture, by providing states far from PPT that nonetheless behave like separable states across
a repeater station. Our work might thus be viewed as pointing to extensions of the PPT2

conjecture. We would also like to mention an implication for the older NPT bound entan-
glement conjecture, which postulates that there exist undistillable NPT states [Dür+00;
DiV+00]. Since the states that we have constructed have low LOCC-restricted relative
entropy of entanglement, and since the regularised LOCC-restricted relative entropy of
entanglement is an upper bound on the distillable entanglement, our states are candidates
for NPT states with zero distillable entanglement.



Epilogue

Corollary 47 bounds the repeater key rate of a restricted class of states and protocols. While
being restrictive, we would like to stress that the communication between Alice and Bob
is two way, and also that if the two-way step is limited to bipartite distillation between the
nodes, we can always apply the result to the outcomes of the distillation. In particular even
if the two-way recurrence protocol is used to distill between the nodes, as in the case of
heralded entanglement generation and purification, we can apply the bound on swapping
key rate to the outputs of the recurrence protocol. The bound also applies to repeater key
schemes based on quantum error correction. The link with outgoing communication from
the station is trivially covered. For the link with incoming communication, the bound on
swapping key rate applies to the output of the code (as mentioned above), since usually the
code is decoded or corrected at the station rendering it a bipartite distillation protocol. As
such, we can apply our bound in some way to most repeater schemes (see also [Mur+16]
and references therein for an overview of the repeater schemes) and where it applies, any
attempt to improve the rate of key distillation above that of entanglement distillation will
not work. For example, attempting to use the noisy processing protocol[RGK05] would
yield no advantage. We are not aware that there exist any protocol that contains a truly
two-way tripartite step. Finally, we note that, because optimal one-way protocols exist
when close to the target states, the optimal two-way protocols are composed of a two-way
“lift-off” protocol followed by a one-way “conclusion” protocol [KW04].

We leave as an open problem whether Corollary 47 generalizes to all states and
protocols, including two-way communication. Such a result would show that all entangled
states with zero distillable entanglement, including those with distillable key, have zero
repeater key rate. Another open problem, called the PPT2 conjecture [Chr12], asks whether
swapping PPT states in all dimensions always yields separable states. If the conjecture is
true, then it would imply that all PPT states have zero repeater key rate. In that, the results
here presented support the conjecture. Since our results are asymptotic in nature, they
give insight on the PPT2 conjecture that cannot be achieved with the study of swapping
specific states in specific dimensions.

The connection made between key distillation, entanglement distillation and quantum
data hiding raises the possibility of finding a rate at which data hiding states can be dis-
tilled, HD (which we refrain from defining formally). Namely, in performing entanglement
distillation on private states, it may be possible to retain the undistillable correlations
into data hiding states with zero distillable entanglement so that they could be used as a
resource, such that

KD(ρ) = HD(ρ) + ED(ρ).

We have also shown that to separated parties random private states are indistin-
guishable from separable states. Ultimately we would like to show is that this remains
true asymptotically, namely under regularization, as this would imply actually upper
bounding both the distillable entanglement and the repeater distillable key with such
indistinguishability. To prove such a result new tools are needed that can deal with the
non-uniform randomness of tensor product or random states. Let us emphasize once
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more that the “usual” bounds on quantities such as the quantum repeater key rate or the
distillable entanglement, are based on the partial transposition and would thus be useless
for random private states. Finally, we acknowledge that the states between adjacent nodes
in a network will generally be specifically designed states rather than random states.
However private states will generally also not be the designed input states. Private states
are to be thought as the result of performing key distillation, with the shield including, for
instance, all the classical communication and the randomness used in the classical part of
the protocols. The output of quantum key distribution protocols thus is indeed a random
variable over private states. This argument has its limitations though. If we consider states
for which the distillable key and the distillable entanglement are the same, the output
will still be a random variable, but it will not be a random private state because, well, it is
distillable. It would be interesting to determine, what is the distribution of private states
generated by common quantum key distribution protocols.



Appendix - Asymptotic continuity
conjecture

In Section 2.3 we have conjectured that any restricted relative entropy is asymptotically
continuous. Here we display a failed attempt at the proof. This section heavily builds on
the proof of [LW14, Proposition 3, page 10].

In the asymptotic continuity proof of DL(·‖K) for measurements, a simple but crucial
step is the smoothing of K. Namely the first step is defining Kx := (1− x)K + xτ and
σx := (1− x)σ + xτ for any state σ, where τ is the maximally mixed state. It is then a few
steps to show that

DL($‖K) 6 DL($‖Kx) 6 DL($‖K)− log(1− x). (27)

The main part of the proof then takes the outcome probabilities tr Miσx and rescales them
to tr Miσx/ tr Mi 6 1, where the factor gets absorbed into another term, the asymptotic
continuity of which is not affected. The smoothing of σ then provides a lower bound
on the value of tr Miσx/ tr Mi and asymptotic continuity can be proven. This breaks for
general channels.

We can assume that our class of channels is such that, if Λ ∈ L is a channel in this class,
then there exist a Kraus decomposition

Λ(ρ) = ∑
i

KiρK†
i

such that the following instrument, that we call Λ with records,

Λ̂(ρ) = ∑
i
|i〉〈i| ⊗ KiρK†

i

is also in L. Because the original channel is always recovered by tracing out the record, by
monotonicity of the relative entropy, the supremum in DL(·‖K) can always be achieved
by channels with records. Going back to the proof argument, we could not find a way to
rescale KiσxK†

i as to provide a lower bound on the minimal eigenvalue, while keeping the
maximal eigenvalue lower that 1. We can recover the asymptotic continuity provided by
the smoothing step, by also smoothing the maps with smoothed, completable versions of
the Kraus operators, extracted from the weak measurements of [KKB11], as shown in the
proof below. However using weak Kraus operators does not provide a similar guarantee
as the smoothing of the states. Namely the analogue of Equation (27) is missing and the
proof does not work. This missing step could be thought as a warning that indeed the
jump, that would make DL(·‖K) not asymptotically continuous, could happen exactly in
the completion of the smoothed map.

Proof of the step with weak measurements. Let us consider maps Λ̂ of the form

Λ̂(ρ) = ∑
i
|i〉〈i| ⊗ K̂iρK̂†

i .
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Using the polar decomposition of K̂i we can further write

Λ̂(ρ) = ∑
i
|i〉〈i| ⊗UiKiρKiU†

i .

where Ki are positive semidefinite operators on H, and Ui are projections/isometries that
can be reversed2, meaning that if we define the map

Λ(ρ) = ∑
i
|i〉〈i| ⊗ KiρKi

then we have
D(Λ̂($)‖Λ̂(ς)) = D(Λ($)‖Λ(ς)).

for any states $ and ς. We now need to smooth Λ into a map Λ̃, so that we can have a
lower bound on the eigenvalues produced on σx. To do this, we use the pseudo-weak
measurement construction of [KKB11]. Let ε > 0, and define

ε i := ε
∥∥K2

i
∥∥

∞ K := ∑
i

∥∥K2
i
∥∥

∞

E := 1 + ∑i ε i = 1 + εK,

and then define the positive-semidefinite operators

K̃i := (K2
i + ε i1)

1
2 = (K2

i + ε
∥∥K2

i
∥∥

∞1)
1
2 .

Notice that K̃2
i /E sum to the identity, thus

Λ̃($) = ∑
i
|i〉〈i| ⊗ K̃i

ρ

E
K̃i

is a valid channel. The original channel can be recovered with the Kraus operators

Rki = |k〉〈i| ⊗ (δki + ε i)
1
2 KkK̃−1

i

defining the channel

P($) = ∑
ki

RkiρR†
ki.

Namely it is straightforward to check that for all states $

P ◦ Λ̃($) = Λ($)

and thus
D(Λ̃($)‖Λ̃($)) > D(Λ($)‖Λ($)).

We can now begin. For any constant ai > 0 we have

D{Λ̃}($‖σx) = ∑
i

tr
[
K̃i

$

E
K̃i

[
log
(

K̃i
$

E
K̃i

)
− log

(
K̃i

σx

E
K̃i

)]]
= ∑

i
tr
[
K̃i

$

E
K̃i
[
log
(
K̃i$K̃i

)
− log

(
K̃iσxK̃i

)]]
2We can write any operator as K̂ = ∑r

k=0 sk |lk〉〈rk| where r 6 d is the rank, sk > 0 are the non-zero
singular values, and {|lk〉} as well as {|rk〉} are orthogonal to each other. Then K = ∑r

k=0 sk |rk〉〈rk| is positive
semidefinite and U = ∑r

k=0 |lk〉〈rk|. It then holds that K̂ = UK and K = U†K̂, meaning that the action of U
can be reversed even if U itself is not invertible.
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= ∑
i

tr
[
K̃i

$

E
K̃i log

(
aiK̃i$K̃i

)]
−∑

i
tr
[
K̃i

$

E
K̃i log

(
aiK̃iσxK̃i

)]
=: II($)− I($)

where we defined the sums II($) and I($) just like in [LW14].
For the σ-dependent term I($) we have

|I($)− I(ς)| =
∣∣∣∣∣∑i

tr
[

K̃i
$− ς

E
K̃i log

(
aiK̃iσxK̃i

)]∣∣∣∣∣
6 ∑

i

∣∣∣∣tr[K̃i
$− ς

E
K̃i log

(
aiK̃iσxK̃i

)]∣∣∣∣
6 ∑

i

∥∥∥∥K̃i
$− ς

E
K̃i

∥∥∥∥
1

∥∥log
(
aiK̃iσxK̃i

)∥∥
∞

We now have
K̃iσxK̃i 6

∥∥K̃i
∥∥2

∞‖ςx‖∞ 6
∥∥K̃i
∥∥2

∞ = (1 + ε)
∥∥K2

i
∥∥

∞

and
K̃iσxK̃i > xK̃iτK̃i =

x
d

K̃2
i >

x
d

ε
∥∥K2

i
∥∥

∞.

By choosing c 6 1 and fixing

ai :=
c

(1 + ε)
∥∥K2

i

∥∥
∞

(28)

the above implies

1 > c1 > aiK̃iσxK̃i > c
x
d

ε

1 + ε
.

We can now use this to further bound |I($)− I(ς)|:

|I($)− I(ς)| 6 ∑
i

∥∥K̃i($− ς)K̃i
∥∥

1

∥∥log
(
aiK̃iσxK̃i

)∥∥
∞

6 ∑
i

∥∥K̃i($− ς)K̃i
∥∥

1

∣∣∣∣log
cxε

d(1 + ε)

∣∣∣∣
= ‖Λ($− ς)‖1 log

d(1 + ε)

cxε
. (29)

Let η be the operator function η(t) = −t log t; then for the second term II($) we have:

|II($)− II(ς)| =
∣∣∣∣∣∑i

1
ai

tr
[
η(aiK̃i$K̃i)− η(aiK̃iςK̃i)

]∣∣∣∣∣
6

1
ai

∑
i

∣∣tr[η(aiK̃i$K̃i)− η(aiK̃iςK̃i)
]∣∣

We now define:

$̃i = aiK̃i$K̃†
i ς̃i = aiK̃iςK̃†

i .

Notice that |tr[η($̃i)− η($̃i)]| is an entropy-like difference for which we would like to
get a Fannes-like upper bound, but $i and ςi are not normalized. However we do have
c1 > $̃i, ς̃i > 0, and since $ and ς have rank at most d, the rank of $i and ςi will also be at
most d. One can check that the argument used in [NC02] still works for unnormalized
operators if we chose c 6 1

2 . Namely, let for a moment ρ and σ be positive-semidefinite
rank-d operators satisfying c1 > ρ, σ > 0, and let ρ↓ = (r1 . . . rd) and σ↓ = (s1 . . . sd)
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be the vectors of eigenvalues in descending order for ρ and σ respectively. Notice that
they do not need to be operators on a d dimensional space, or have support on the same
d-dimensional subspace. Then

| tr η(ρ)− tr η(σ)| 6
∥∥∥ρ↓ − σ↓

∥∥∥
1

log d + η
(∥∥∥ρ↓ − σ↓

∥∥∥
1

)
.

Therefore we find

|II($)− II(ς)| 6 ∑
i

1
ai

(∥∥∥$̃↓i − ς̃↓i

∥∥∥
1

log d + η(
∥∥∥$̃↓i − ς̃↓i

∥∥∥
1
)
)

.

Furthermore we have
∥∥∥$̃↓i − ς̃↓i

∥∥∥
1
6 ‖$̃i − ς̃i‖1 and

‖$̃i − ς̃i‖1 6 ‖$̃i‖1 + ‖ς̃i‖1

6 ai
∥∥K̃2

i
∥∥

∞‖$‖1 + ai
∥∥K̃2

i
∥∥

∞‖ςi‖1

6
2c

1 + ε
6 2c

Since y log d + η(y) is monotone for y 6 d
e (where we can assume d > 2), if we further

reduce c down to c = 1
e we can then write

|II($)− II(ς)|

6 ∑
i

1
ai

(
‖$̃i − ς̃i‖1 log d + η(‖$̃i − ς̃i‖1)

)
= E

∥∥Λ̃($− ς)
∥∥

1 log d + ∑
i

1
ai

η(‖$̃i − ς̃i‖1).

We now call A := ∑i a−1
i and by the concavity of η we have

|II($)− II(ς)|

6 E
∥∥Λ̃($− ς)

∥∥
1 log d + A ∑

i

a−1
i
A

η(‖$̃i − ς̃i‖1)

6 E
∥∥Λ̃($− ς)

∥∥
1 log d + Aη

(
∑

i

a−1
i
A
‖$̃i − ς̃i‖1

)

= E
∥∥Λ̃($− ς)

∥∥
1 log d + Aη

(
E
A
∥∥Λ̃($− ς)

∥∥
1

)
.

= E
∥∥Λ̃($− ς)

∥∥
1

(
log d + log

E
A

+ log
∥∥Λ̃($− ς)

∥∥
1

)
.

A refined version of the asymptotic continuity conjecture could look like

Conjecture 55. Let |D(H)| = d and let K ∈ D(H) be a set of states star shaped around the
maximally mixed state τ = 1/d. Let L be a class of quantum channels on D(H) such that if
ρ 7→ ∑i KiρK†

i ∈ L then ρ 7→ ∑i |i〉〈i| ⊗ KiρK†
i ∈ L. Then for any states $ and ς on H satisfying

ε := ‖$− ς‖L 6 1
2e we have∣∣DL($‖K)− DL(ς‖K)

∣∣ 6 ε log 4e2d3 + 2η(ε)− log(1− ε)

where d = |H|.
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