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Abstract

Functional data analysis is characterised by relatively small sample sizes, many observations
per curve, and an issue about misaligned data. In this thesis we develop new methods and
models for functional data analysis (FDA). The focus is on multivariate responses, misalign-
ment and local inference, three challenging fields within functional data analysis.

In the first paper of the thesis we consider a new model for multivariate, misaligned functional
data. We develop low-parametric warp and cross-correlation models, and we apply the model
to three different data sets. We also use of the last data set in a classification study, where
we compare our model to a number of state-of-the-art methods.

The second paper of the thesis is about the same topic, but with a very different approach. By
a clever parametrisation using the Cholesky decomposition, we develop a model framework
that potentially allows for very fast computations.

The third paper of the thesis is about local inference for functional data. We develop a
functional analogue to the Benjamini-Hochberg method as a way to deal with the multiple
comparisons problem. The paper contains theoretical results about control of false discovery
rates, two simulation studies and an application to satellite measurements of Earth temper-
atures.

The last paper of the thesis contains a statistical study of conidial discharge, where we extend
the model from the first article in the context of generalised linear models. In the application
we study the intensity of conidial discharge as function of time, for mycelia stored at three
different temperatures.
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Resumé

Funktional dataanlyse er karakteriseret ved relativt små stikprøvestørrelser, mange obser-
vationer for hver kurve og en problemstilling omkring misalignede data. I denne afhandling
udvikles nye metoder og modeller for funktionel dataanalyse (FDA). Fokus er p̊a flerdimen-
sionale responser, misalignment og lokal inferens, tre udfordrende omr̊ader indenfor funktionel
dataanalyse.

I afhandlingens første artikel betragter vi en ny model for multivariate, misalignede funk-
tionelle data. Vi udvikler lavparametriske warp- og krydskorrelationsmodeller, og modellen
anvendes p̊a tre forskellige datasæt. Det sidste af datasættene benyttes til et klassifikation-
sstudie, hvor vi sammenligner vores model med en række state-of-the-art metoder.

Afhandlingens anden artikel omhandler samme emne, men med en meget anderledes tilgang.
Ved p̊a smart vis at parametrisere med cholesky-dekompostionen udvikler vi en modelramme
der potentielt tillader meget hurtige beregninger.

Afhandlingens tredje artikel omhandler lokal inferens for funktionelle data. Vi udvikler en
funktionel analog til Benjamini-Hochberg-metoden til at h̊andtere problemstillingen omkring
multiple tests. Artiklen indeholder teoretiske resultater om kontrol af False Discovery Rates,
to simulationsstudier og en anvendelse p̊a satellitm̊alinger af globale temperaturer.

Afhandlingens sidste artikel omhandler et statistisk studie af afskydning af konidiesporer,
hvor vi videreudvikler en af de førnævnte modeller i konteksten af generaliserede lineære
modeller. I anvendelsen undersøger vi hvordan sporeafskydningsintensiteten udvikler sig som
funktion over tid, for mycelier opbevaret ved tre forskellige temperaturer.
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1
Introduction

1.1 Introduction to functional data

Although functional data analysis today is a well-established field within statistics, few au-
thors on functional data analysis (FDA) textbooks present any rigorous definition of (what
actually is) functional data. Popular textbooks such as Horváth & Kokoszka (2012) and Ram-
say & Silverman (2005) begin by introducing examples of functional data and avoid rigorous
definitions.

This is an approach to which the author agrees; however a very general definition of functional
data is statistical data associated with smooth functions M → M ′, where M and M ′ are
manifolds, typically subsets of Rn and Rn′

, respectively. For the majority of applications, M
is a sub-interval of R, in that case, the smooth functions are smooth curves.

These smooth curves are not observed themselves, but are observed at discrete time points
with noise and/or shifted in domain (misalignment), and the noise is often correlated across
the domain M ; this is referred to as serial correlation. Furthermore, one typically have few
samples but many observations, and the locations and numbers of observations may be dif-
ferent from sample to sample. It might even be that the observed data are actually discrete
but randomly generated from an underlying smooth process of interest.

Some of these features (although rarely all of them) are usually present in functional data,
and the methodology used to analyse and perform inference in this kind of data is, in the
author’s opinion, what constitutes functional data analysis. It should be noted that there
are no clear distinctions between functional data analysis and related fields of statistics such
as spatial, longitudinal and multivariate data analysis, and we will not elaborate further on
this in this thesis. Popular references on multivariate and longitudinal data analysis are Koch
(2013) and Diggle et al. (2002), respectively.

The term ’functional data analysis’ was coined by Jim Ramsay in 1982 (Ramsay 1982) and
since then, it has become a large and diverse field within statistics. The aim of this thesis is
to extend and contribute to some of the methodology of functional data, with a particular
focus on misalignment and multivariate functional data.

This section will look into some typical features of functional data analysis with a focus on
the content of the papers along with the author’s opinion on some of these issues.

Two examples of functional data sets A popular example of functional data is the
Canadian Weather data set (Ramsay & Silverman 2005, Ramsay et al. 2018), which has a
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Figure 1.1: Temperature and precipitation curves from four Canadian weather stations
(black: Montreal, red: Resolute, green: Winnipeg, blue: Kamloops)

simple and interpretable setting. The data set consists of daily temperature and precipitation
averages of 35 Canadian weather stations across the country, see Figure 1.1 for an example.
There might not be an obvious research question to be asked from the data, but under-
standing the variation across weather stations, and comparisons across regions and between
temperatures and precipitation would be of interest. One would need to deal with noise in
data in a clever ways; in particular, the precipitation is very noisy. Identifying and describing
the variation is not a straightforward task either. Tools such as principal component analysis
would be recommended, and with a sound application of functional data methodology, one
gets an understanding of how average temperatures and precipitation varies across Canada.

Another example of functional data is from a study by Thomsen et al. (2010) on data-
driven detection of horse lameness. Data consist of a large number of acceleration profiles
of trotting horses. Figure 1.2 shows acceleration profiles in three directions of a trotting
horse with an artificially introduced (non-permanent) lameness on its left foreleg. This is
multivariate functional data with an obvious periodic structure of data, which can and should
be exploited in a data analysis. Alignment is an obvious issue in these data; timing can
vary substantially between different repetitions/horses and also varies between cycles of the
individual repetitions. By comparing acceleration profiles for different horses under various
settings, the study aims at classifying lameness of the horses, both in terms of severity and
where the lameness is located (ie. which leg is lame).

The nature of functional data While we tend to think of functional data as continuous
objects from a suitable function space, functional data are always observed as discrete data,
due to obvious constraints on measurement and data storage devices. The data is thus always
multivariate in nature, but the special structure of functional data and the high ratio of
”data dimension” to number of samples (in a more general setting known as the ’curse
of dimensionality ’) means that standard tools for multivariate analysis are inadequate for
functional data. Furthermore, the number of data points per curve typically varies between
curves and one would often have some missing data points; a simple consequence of this is
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that models for functional data should be able to handle different data sizes.

Functional data sets and the scopes of corresponding statistical analyses are diverse as the
examples of the previous paragraph illustrate, but some of the topics that often arise in
functional data analysis are stated below.

1. Smoothing of data: Going from discrete observations to continuous curves is always part
of functional data analysis; it can be done on the level of individual curves or population
means.

2. Alignment : Observed data are often misaligned in the sense that they have the same
shape but individual curves have been deformed in one dimension (e.g. time).

3. Regression: There are likely to be some covariates present in data, how do we estimate
and quantify the effects of these in a good way? Here one should take into account that
pre-processing of data may play a large role.

4. Inference: Is there an effect and where is the effect?: Given a set of covariates C for
some parameter space C, we would often like to test a hypothesis C ∈ U for a given
subset U ⊂ C. Secondly we might want to test the hypothesis C(t) ∈ U(t) across the
domain of the functional data allowing us to select ”areas of effect”, also known as
domain selection.

This ordering loosely reflects the frequency in functional data, and also the order which these
steps often are carried out.

There are various other topics often treated in articles and monographs on functional data
analysis such as classification, clustering, prediction, depth analysis. Paper I contains a clas-
sification study, but apart from that, none of these topics will be considered in this thesis.

Multivariate functional data versus univariate functional data The majority of
literature on functional data deals with univariate functional data, that is functional data
[a, b]→ R, whereas multivariate functional data are functions [a, b]→ Rk for k ≥ 2.

Often multivariate functional methods are considered trivial extensions of univariate method-
ology, yet this is rarely done in practice. Two examples of studies, where multivariate func-
tional data are analysed as were they univariate functional data, are Sørensen et al. (2012)
and Raket et al. (2016).

The multivariate response adds an extra dimension af variation in comparison to univariate
functional data, having three layers of variability: across dimension, across time and across
subjects/repetitions. This extra layer of variability adds some challenge compared to univari-
ate responses:

• Alignment : Alignment of multivariate data must compromise between alignment of
individual coordinates. See Section 1.2 for more details.
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• Correlation: Repeated measurements of multivariate data can exhibit two forms of
correlation: serial correlation and cross-correlation. Serial correlation is correlation over
time and also present in univariate functional data. Cross-correlation on the other
hand is correlation between coordinates (x1(t), . . . , xk(t)). Much power and information
may be gained by incorporating cross-correlation into the data analysis; a statistical
analysis that does not use any inner products between coordinates is making an implicit
assumption of no cross-correlation. Papers I and II introduce new models for modelling
cross-correlation that varies over time.

• Visualization and implementation This is a minor issue, but a relevant one. Plotting
univariate functional data is easy: time on one axis and response on the other axis.
Visualisation is a basic descriptive tool and allows us to detect and understand variation
in data.

Furthermore, not all software implementations of functional data can handle multivari-
ate responses which adds a practical challenge.

In this thesis we will look into some new dedicated methods for multivariate functional data
in Papers I and II.

1.1.1 The basi(c)s: a very brief introduction to modelling functional data

A model for functional data If we don’t consider misalignment in data, covariates and
complicated stuff, the ”basic” model for functional data is

yi(t) = θ(t) + εi(t), t ∈ [a, b], i = 1, . . . N (1.1)

where θ : [a, b]→ Rk is the mean function, and ε is residual/amplitude variation.

The observed data consist ofm = m1+· · ·+mN pairs of discrete observations {(t1j , y1j)}m1
j=1, . . . , {(tNj , yNj)}mN

N=1,
and the primary aim is to infer θ from data.

As the set of smooth functions on [a, b] is an infinite-dimensional vector space, one cannot
hope for a complete identification of θ, and one has to rely on a finite representation for θ.
For that we use a pre-specified set of basis functions {φk}Mk=1, φk : [a, b] → R, and define
θ =

∑
φkck, where {ck}Mk=1 are coefficients for the basis functions. The basis functions should

be chosen such that span{φ1, . . . , φK} is ’flexible enough to capture the characteristics of
θ’. Basis functions are usually chosen for their mathematical properties; b-spline bases and
Fourier bases are typical choices. Ramsay & Silverman (2005) lists a number of other basis
systems, including the popular wavelet transforms (Daubechies 1992).

Fitting curves to data The estimation problem now consists of finding the spline coeffi-
cients c. If N = 1 or one models one set of coefficients per curve ie. c = {cn}, we speak of the
smoothing problem. The coefficients of c may be found using least squares:

ĉ = arg min
c

N∑

i=1

(yi − φic)>Σ−1(yi − φic) (1.2)
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Figure 1.3: Canadian weather data: Left: no penalisation. Right: penalisation

where Σ is the residual covariance; Σ = σ2I corresponds to iid. noise; in which (1.2) reduces
to ordinary least squares.

Penalisation Often, in order to control the roughness of the estimated θ, a penalisation
term is introduced. This may be done in form of a differential operator L s.t. ||Lθ||2 is
penalised, where ||Lθ|| is the L2-norm of Lθ. e.g. Lθ = θ′′. If we introduce a roughness
penalty, the smoothing problem becomes:

ĉ = arg min
c

N∑

i=1

(yi − φic)>Σ−1(yi − φic) + λL(θ) (1.3)

where λ is a parameter controlling the amount of regularisation. Without a penalisation on
the roughness, there is a risk of overfitting data when using a large number of basis functions,
and the higher-order derivatives of θ might behave wildly. As θ is a linear function of c, it
generally holds true that ||Lθ||2 = c>Rc for some positive semi-definite matrix R. In that
case, we can rewrite (1.3):

ĉ = arg min
c

N∑

i=1

(yi − φic)>Σ−1(yi − φic) + λc>Rc (1.4)

which has the closed-form solution:

ĉ = (
∑

i

φ>i Σ−1φi + λR)−1
∑

i

φ>i Σ−1yi (1.5)

The optimal value of λ is usually found by generalised cross-validation (GCV) or similar
methods.

As an example of the effect of using a roughness penalty, we will use the precipitation curves
of Fig 1.

We use a Fourier basis with 65 basis functions per curve, and following Ramsay & Silverman
(2005) we use a penalty of Lθ = θ′−θ′′′, such that L maps the first harmonics to zero. Fourier
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bases have the property that all basis functions are orthogonal to each other. This implies that
R is diagonal. Choosing the roughness penalty using the GCV criterion, we get λ = 0.0193.
The smoothed curves, with and without penalisation are displayed in Figure 1.3. We see a
clear effect of penalisation – the penalised curves are much less wiggly and ”more reasonable”,
in particular the green and black curves(Kamloops and Montreal, respectively). One should
not blindly trust the use of penalisation when smoothing functional data. The results when
using GCV depends on number of bases, choice of penalisation operator, covariance structure
and other things.

Smoothing as pre-processing Many functional data analysts would say that the smooth-
ing procedure described in this section constitutes the pre-processing of the raw data. With
the discrete observations {(t1j , y1j)}m1

j=1 replaced by the functions/curves θ1, . . . θN , we are
now ready to continue the analysis and look into issues such as alignment, principal compo-
nents etc. This approach is used in e.g. Ramsay & Silverman (2005) and Srivastava & Klassen
(2016).

The author is sceptical about such approaches. While it is very desirable to convert the
original data into functions, it is important that the pre-processing of data at most has
a negligible influence on the subsequent data analysis. Papers on functional data analysis
tend rarely to reflect on these issues, despite that in many cases it is not evident if making
(reasonable) changes to the pre-processing could have made a difference in the subsequent
data analysis.

Other smoothing techniques There are various alternatives to smoothing than using ba-
sis functions, such as linear interpolation and kernel methods, none of which will be considered
here. It appears that using basis functions for pre-processing is by far the most common ap-
proach in FDA literature. A likely reason for this is the smoothness properties (in terms of
derivatives) and data reduction characteristics resulting from this approach.

Smoothing and derivatives Derivatives of functions often play an important role in FDA;
derivatives are associated with change, and the quantity of change (e.g. growth) is important
in many studies (Ramsay & Silverman 2005).

A fundamental challenge is that derivatives are not observed, but must somehow be pro-
cessed from data. This may be done by models that mimics derivatives in smart ways, or
by appropriate smoothing of the observed data. Particular care should be taken when using
derivatives from pre-processed data. Derivatives are local features of the smoothed data, so
they will be even more sensitive to pre-processing of data than the smoothed signals them-
selves. Despite that many studies and examples within FDA use derivatives of pre-processed
curves, the author is not aware of any robustness studies on this subject.

Derivatives indirectly or directly play a role in the papers; this be in the form of hypotheses
(Papers III and IV), warping and estimation (Papers I, II and IV) or covariance structures
(Papers I and IV).
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1.1.2 Inference for functional data

Functional data analysis is sometimes done in context of scientific questions that relate to
statistical hypotheses. An example of this is the two population test : Let x1, . . . , yn and
y1, . . . , ym be independent realisations of random variables X and Y , respectively, can we

based on data reasonably believe that X
D
= Y , or is there evidence in data to conclude that

X
D
6= Y ? Here

D
= denotes equality in distribution. When realisations of X and Y are curves,

this question becomes hard to answer.

Inference is less often encountered in functional data analysis than in other fields of statistics.
Functional data analysis more often deals with ”summary statistics” such as identifying mean
curves/trajectories and principal modes of variation than inferential problems, and for reasons
stated below inference in functional data carries several issues.

In principle, hypothesis testing in functional data analysis is simple: Set up a correct model
for data, estimate parameters under null and alternative hypotheses, calculate likelihood-
ratio test or some other suitable test statistic and compare this to the distribution under the
null hypothesis. If the distribution is infeasible, use asymptotical theory for approximation.
This is hypothesis testing as it would likely be presented in a book on theoretical statistics.
Unfortunately, functional data rarely follows that theory.

Using the two-population framework as reference/example, some issues regarding inference
for functional data are stated below. Assume that instances of X and Y are functions on the
domain M :

1. Small sample sizes: Although each curve (should) consist of many observations, sample
sizes in functional data are generally small. Many tests used in practice in statistical
inference are based on asymptotical properties of the tests, which one cannot rely on
for small sample sizes.

2. Parametric and semi-parametric tests: Many tests rely on Gaussianity, and though
Gaussian models are convenient for functional data, there is no evidence that this
assumption is generally true. For modelling purposes, non-Gaussianity is not a serious
issue, but for statistical testing, it is important.

3. Identifying differences: Suppose that we are able to conclude X
D
6= Y . This does not

answer how the distributions of X and Y differ, nor which differences are relevant,
something which depends on the application. One possible direction is to explore for

which t ∈M that Xt

D
6= Yt. This is what we call local inference or domain selection.

Some inferential questions are considered in Paper IV. The null hypotheses in that paper are
highly non-linear and formulated in terms of latent variables, which make estimation under
null hypotheses unfeasible in practice.
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Local inference Local inference is a small but interesting topic within functional data
analysis. The main issue in local inference is the multiple comparisons problem since local
inference involves a continuum of hypotheses. Local inference is the main topic of Paper III.
For recent reviews of local inference we refer to Paper III and Abramowicz et al. (2018).

1.2 Functional data with temporal variation

Overview Although time is inherent in functional data, temporal variation between objects
is a curious thing, often considered a ”nuisance” to be filtered away. Temporal variation is
also known as phase variation, and functional data, where temporal variation is present,
is known as misaligned or unregistrered (functional) data. The concept is variously known
as warping, alignment or registration. This section is intended as a reflection on temporal
variation including novel ideas presented in Section 1.2.3. For recent reviews of this subject,
we refer to Wang et al. (2016) and Marron et al. (2015).

Why study temporal variation? When modelling functional or longitudinal data, we
tend to think of a set of idealised, but unobserved, systems X = {xi} where xi is a function
[a, b]→ Rk. Depending on the setup, it could be population means, covariate effects etc.

Generally, t is physical time in this setting, and the aim of the analysis is to understand and
characterise X, and possibly relate it to relevant scientific questions. Although laws of nature
dictate that the effects of time are the same for all entities, it is rarely the case that biological
systems (and many other types of systems) have the exact same temporal evolution; ie. if an
experiment is repeated twice under the same conditions, it is unlikely that timings observed
in the two outcomes are identical.

As an example of this, consider the following setup (Figure 1.4) from (Grimme 2014, chapter
3.6), where a person is to lift a cylinder across another cylinder ten times in total (for
simplicity only the z-coordinate is shown).

25

30
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40

0.00 0.25 0.50 0.75 1.00

time (s)

va
lu

e Figure 1.4: Ten repetitions of
a cylinder experiment
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There are some clear constraints in this experiment: the start and end points are well-defined,
and so is the obstacle in the middle. But it is implausible to assume that timing within the
movement is the same across repetitions; as is also evident in the figure.

So somehow we must incorporate this temporal variation into our analysis. There are many
approaches to this, some better than others. A key concept is warping functions, that model
the temporal deviation from the idealised system; warping functions map the idealised time
into observed time. Some authors prefer the opposite formulation: warping functions map
observed time into idealised time or system time. These formulations are equally good, but
they represent (slightly) different ways of thinking: is it the underlying, unobserved signal,
that should be warped, or is it the observed trajectories that should be back-transformed
into aligned trajectories?

An illustration of the two formulations is shown below:

θ
warping// θ ◦ v // Y

ε

OO
θ // Y ◦ vwarping // Y

ε

OO (1.6)

Here Y denotes the observed curve, θ population mean, ε residual variance, and v is a warping
function.

1.2.1 Some approaches to misaligned functional data

Basically, I would say that there are three approaches of handling misaligned data:

1. registration of the observed curves: Using some suitably chosen method for estimating
individual warping functions vi, the observed data (possibly smoothed versions of this)
are mapped into the registered data ỹi = v−1i ◦ y, which are used in the subsequent
analysis. If there were no variation in data besides misalignment, the registered functions
would all be identical.

2. registration as part of the modelling : One constructs a model on the form yi(t) =
θ(vi(t)) + zi(t), where zi is amplitude variation and (typically) assumed to be uncorre-
lated from the warp vi. Maximum likelihood or similar is then used to predict/estimate
vi and estimate parameters for the model. Such models are highly non-linear and rarely
have closed-form estimators, so estimation methods mostly alternate between estimat-
ing/predicting warps and estimating parameters describing zi.

3. landmark registration: Sometimes, functional data feature ”landmarks”; certain peaks or
other characteristic features (typically of scientific interest) that are present throughout
the data. These landmarks are identified by the data analyst, and the data are mapped
into registered data ỹi such that landmarks have the same temporal position for all
registered curves.
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There are many variations on these approaches and no clear distinction between the methods.
One may consider landmark registration as a methodology in the registration of the observed
curves family, but generally the warping functions are not of interest in landmark registration;
only the warped curves are.

Landmark registration is a simple and very intuitive approach: certain features or ”land-
marks” in data are identified, typically by the researcher, and aligned such that the land-
marks are placed at the same location in time. These landmarks often have importance in the
experimental context of the data; typical landmarks are local maxima or minima of certain
magnitude after initial smoothing of data.

As a simple example, consider the following small example (Figure 1.5), which shows the
vertical position of the left foot of a walking person:
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Figure 1.5: Four repetitions of a walking sequence

There are four repetitions in total and approximately three gait cycles per repetition. We can
clearly identify some landmarks: a small peak shortly after the foot raises from the surface,
and a large peak before it lands again. These peaks differ in timing, but since they represent
the same underlying movement, one would like these landmarks to be aligned. The times for
take-off and landing can also be used as landmarks.

The author believes that landmark registration is a strong tool, at least for a preliminary anal-
ysis, and that it to a reasonable extent can used as benchmark/reference for other methods:
a method for registration of functional data is adequate if it aligns data such that landmarks
are given the same location. An obvious drawback of landmark registration is the fact that
data must have identifiable landmarks that are present in all curves for a registration to work.

A popular family of methods, belonging to the first class of approach listed above and widely
considered among state-of-the-art, uses equivalence classes of functional representations: Let
f1 and f2 be appropriate functions with common domain D, and let W be a family of warping
functions D → D. We say that f1 and f2 are equivalent if there exists h ∈ W , such that
f2 = f1 ◦h (Marron et al. 2015). The key idea is then to have a metric that is invariant under
simultaneous warpings, d(f, g) = d(f ◦ h, g ◦ h). Two popular methods are the square-root
velocity transform (Srivastava & Klassen 2016), which has been used in many applications,
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and the correlation criterion (Sangalli et al. 2009). For a discussion of approaches, we refer
to Vantini (2012) and Marron et al. (2015).

The author prefers the second approach (registration as part of the modelling) combined
with random warping functions. One of the main philosophical reasonings for treating warps
as random variables is that individual warps are associated with individual curves, ie. the
warp for curve i is associated with curve i and only that curve, and if we were to repeat
the experiment again, the warps would presumably be different. It thus makes good sense to
treat warp functions as random and latent quantities with an inherent uncertainty.

Model-based approaches for registration are faithful to data: a mean curve is a mean curve,
and although it may be hard to estimate, there is no need for defining it in terms of some
complicated average of equivalence classes. Furthermore, there is no need for smoothing of
data: the noise can be accounted for using a suitable model for this.

Most models for phase variation assume that phase and amplitude variation are uncorrelated.
This includes models such as landmark registration that do not specify any distance measure
related to warping.

Identifiability Another fundamental issue in misaligned FDA is that of identifiability –
can warping curves be identified? If misalignment were the only kind of variation in data,
the answer should be yes. But with amplitude variation also present in data, this is not so
easy; one has to identify which parts of the variation is due to warp variation and which is
due to amplitude variation. If one has a large population of curves and a correctly specified
model, this should be doable. But sample sizes in FDA are usually small, and checking model
assumptions may be difficult, so identifying/quantifying amplitude and phase variation is
generally hard.

Returning to our previous example of cylinder movement, we have now included the x-
coordinate in Figure 1.6. For the z-coordinate, it is clear that there is some amplitude varia-
tion in data – if the curves were placed on top of each other, there would still be quite some
variation left. If we instead focus on the x-coordinate, we see that the curves can approxi-
mately be warped into each other, but this is not a proof that phase variation explains almost
all of the variation. Indeed, if we combine all three coordinates (y-coordinate not shown here)
as done in Paper I, we reach the conclusion that much variation is also due to amplitude
variation.

1.2.2 Modelling and prediction of warps

If the temporal variation of functional data could easily be inferred from data, there would
be no reason for the many papers on this subject. This is however not the case, and quite
some effort has to be done in terms of modelling and prediction of warping functions.

No matter which approach is applied, some effort has to be done in terms of warp prediction
and there is no default method for penalizing/estimating warps. One has to specify a family of
possible warps and an optimization criterion for warp prediction. The constraints, flexibility
and regularization put on warping functions will naturally affect the results.
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Figure 1.6: Ten repetitions of a cylinder experiment. Left panel: x-coordinate. Right panel:
z-coordinate.

Most models of warping functions define a class of warping functions in terms of a suitable
vector space V , where the modeling takes place. Along with this, there is an injective mapping
φ : V → L2(D), where D is the domain of the warping functions, identifying w ∈ V with
a warping function. An example is shift registration, the most basic non-trivial alignment
procedure: here V = R and (φ(w))(t) = t− w.

Many warping methods follow the generic framework defined below:

Definition 1 (Generic framework for modelling and prediction of warping functions). Let y
be a functional observation and θ : D → Rk a target curve. Let V be real vector space, and
φ an injective mapping φ : V → L2(D).

If we warp the observation y (compare the left panel in Equation (1.6)), warp prediction
amounts to minimising

Lwarp(w) + Lamp(y ◦ φ(w)− θ). (1.7)

If we instead warp the target curve (compare the right panel in Equation (1.6)), the minimi-
sation criterion is

Lwarp(w) + Lamp(y − θ ◦ φ(w)) (1.8)

Here Lwarp and Lamp are parameter-dependent loss functions, and (y−θ◦φ(w)) or (y◦φ(w)−
θ), respectively, is the amplitude signal. Parameters of Lwarp and Lamp needs to estimated
as part of the process, and (1.7) and (1.8) can be viewed as posterior likelihoods for the full
model.

Often the loss functions will be quadratic forms. This implicity amounts to some Gaussianity
assumption on w and the amplitude signal.

Most models assume that phase and amplitude variation are uncorrelated in sense that Lwarp
and Lamp are additive as in Definition 1. This assumption is convenient and plausible in
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many applications. One possible explanation that authors rarely incorporate phase-amplitude
correlation is simply the small sample sizes of FDA: There is too little data to firmly establish
a correlation, taking into account the fact that predicting warping functions is not a trivial
task. A notable paper on correlated phase and amplitude variation is Hadjipantelis et al.
(2015); they argue that phase and amplitude is in fact correlated; their study contains 50000
profiles.

Besides that the modeling of warping could be made easier and natural when defined on
a vector space, vector spaces allow good representations and implementations for warping
functions.

Literature has many examples on registration methods following the generic framework pre-
sented above, and using vector spaces is a good tool for representations and software imple-
mentations of warping functions. As the transformation φ is usually non-linear (and has to be
if the warping functions are required to be monotonous, see below), optimization is inherently
non-linear. Raket et al. (2014) introduced a model where V = Rk for k small, and w ∈ V is
modelled as a latent Gaussian random variable. This model gives a large and flexible class of
warping functions and has been used with success in a number of applications. We use this
model in Papers I and IV.

Properties of warping functions There are natural properties of warping functions,
although some of these are too restrictive for some applications. In the following we let v
refer to a warping function:

• Monotonicity : Timing may vary between repetitions, but things rarely go backwards.
Thus it is commonly required that warping functions are strictly increasing functions,
ie. t2 > t1 ⇒ v(t2) > v(t1).

• Group structure: The set of feasible warps for a given phase variation model should be a
group under composition. Examples are the group of increasing affine transformations
{x 7→ αx+ β|α > 0, β ∈ R}, and the group of increasing diffeomorphisms on [0,1].

• Smoothness: Warping functions are generally assumed to obey some degree of smooth-
ness, often enforced by Lwarp. If f : A→ B and g : B → C are Ck1 and Ck2 functions,
respectively, then g ◦ f is a Cmin(k1,k2) function.

• Fixed end points: If we let [a, b] be the domain of v, we require v(a) = a and v(b) = b.

• The identity as the mean: The identity function should be the ”most central” in the
distribution of warps. In the framework of definition 1, this can defined as E[w] = 0
with v = φ(w).

This is slightly related to the identifiability issue – if we require E[w] = 0, then we
cannot apply a common, non-trivial warping function to the population of warps and
still have E[w] = 0.
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So which of these mathematical properties are important? Well it certainly depends on the
application. In the author’s opinion, monotonicity and the identity as the mean are key
properties, whereas fixed end points depend much on the application, and the group struc-
ture property is too strong and rules out many spline-based approaches. Generally speaking,
we should choose a class of warping functions sufficiently flexible to capture the temporal
variation in data, but there is little advantage of being more flexible than that, and a low-
dimensional class of warping functions may be sufficient as demonstrated in Paper I.

Alignment of multivariate functional data Registration of multivariate functional data
deserves a paragraph on its own. Multivariate functional data, [a, b]→ Rk, have the important
property that the images in Rk of the curves are unchanged by warping. This put a limit on
how much variation in data that can be explained by warping effects; differences in resulting
trajectories must be explained by amplitude or residual variance.

A key issue in registration of multivariate functional data is that any alignment procedure
– directly or indirectly – involves a trade-off between optimal alignment of the individual
coordinates. This generally amounts to introduce some kind of weighting of coordinates,
which must be estimated from data. There is a correspondence between weights and amplitude
variance; a small weight on coordinate xi corresponds to a large amplitude variation for that
coordinate.

1.2.3 Dynamical modelling of functional data using warped solutions of
ODEs

In the previous paragraph we assumed that variation can be separated into two additive
components: amplitude or residual variation and phase variation, which I believe ought to be
estimated and modeled jointly.

However, it might be case that this separation cannot be done, and that the warping does not
take effect on the trajectories but some underlying quantity such as a differential equation.
Using derivatives for modeling functional data has been done to some extent; a notable exam-
ple is principal differential analysis (PDA) introduced by Ramsay (1996). In this paragraph,
we will present a new approach of modeling misaligned functional data.

First presented by Olsen & Tolver (2017), assume that the idealised system is generated by
a differential equation on the form

x(m)(t) = F (x(t), x′(t), . . . , x(m−1)(t), t) (1.9)

where t denotes physical time, we introduce warping effects by changing the time argument
to warped time:

x
(m)
i (t) = F (xi(t), x

′
i(t), . . . , x

(m−1)
i (t), vi(t)) (1.10)

That is, the dynamics of the system is like the idealised system, but with the time param-
eter moved to vi(t). It is a crucial part of this model that the differential equations are
inhomogenous as functions of t.
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Figure 1.7: Twenty cycles of a two-dimensional simulation of functional data generated
using a warped differential equation.

For instance, returning to our hand movement example, movement of the hand is governed
by the laws of physics and inputs sent from the brain. This input (which determines the
acceleration) will go through different phases depending on the state of the movement. These
phases can be assumed to be (roughly) identical across repetitions, but the timing will likely
vary between repetitions. Furthermore, there will be feedback from the current state to the
input sent from the brain – the brain will automatically (and unconsciously) use the perceived
position of the hand and cylinder to adjust the nerve signals sent to the hand.

Whereas all these interactions may be (almost) linear in nature; the result is a complex inter-
play between amplitude and phase variation that cannot be captured by common methods.
An example of this is shown in Figure 1.7: the dynamics of this system is been generated by
a linear (inhomogenous) second-order differential equation, which has been warped. Despite
the fact that the derivative of the warp, v′, differs by less than 6% from the constant function
in this simulation, we observe much variation in data.

This discussion has so far been about locomotion, but these thoughts og ideas should not be
restricted to locomotion; it may apply to other biological systems as well.

Although the best options available, current models for warping may not be the correct
approach to functional data with temporal variation, if data truly are from complex, self-
interacting systems where temporal variation is irremovable from other sources of variation.
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1.3 Motivating introduction to the papers

1.3.1 Paper I

As mentioned in the previous section, multivariate functional data has got little attention
in the FDA literature. In this paper, we look into dedicated methodology for multivariate
misaligned functional data. Using a model by some of the authors as starting point, we extend
this to misaligned, multivariate functional data. As part of the modelling, we develop a new
low-parametric model called dynamical correlation structure, which allows for multivariate
longitudinal data with time-varying cross-correlation.

There are three data examples: growth of Danish boys, repeated walking sequences and a hand
movement experiment. We spent most time and devote more pages to the third data example,
where all features in our model are exploited in full. In the end, we make a classification study
on these nice data, comparing our model to state-of-the-art methods.

The paper is published as Olsen et al. (n.d.).

1.3.2 Paper II

A number of standard and often applied model for multivariate Gaussian data exists, such as
factor analysis and probabilistic prinipal component analysis, but comparatively less literature
exist for multivariate data measured over time. Another issue is the computational speed –
inversion of matrices require O(n3) operations, so fast procedures that scale better with rank
is of much interest.

In this paper we develop a full-scale framework for multivariate functional data called Markov
Component Analysis (MCA). A strong property is that likelihood calculations etc. can be done
in linear speed in terms of observations. The main idea is to use a number of underlying latent
components that resembles a mixed effects model. Put into the right framework we get full-
rank parametric model, where calculations require O(n) operations, where n is the number
of observation points per curve. There is a close connection between Markov Component
Analysis and the Kalman filter, and we also develop a flexible model for warping functions
within the MCA framework. We have preliminary results from a data application on trotting
horses with artificially introduced lamenesses.

1.3.3 Paper III

Domain selection for functional data is a topic that has got little attention in literature.

In this article we extend false discovery rates – a popular and well-known quantifier for the
multiple comparisons problem – to a functional data setting. Along with this, we extend the
Benjamini-Hochberg procedure to functional data. There are many examples of correction
procedures in literature, some which might be better than the BH procedure, but we focus
on this procedure due to its simplicity and popularity.
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Figure 1.8: Data from Paper IV

Our approach can be applied to any open subset of Rk, and weighting is allowed. We use
pointwise p-values to define the the functional BH procedure. This is advantageous as we
do not need to identify covariance structures or make use of fancy tests – the tests used to
define p-values need only consider the pointwise values of the sample data, and so all the
standard statistical tests are available. Theoretical results are shown, which also outline a
simple algorithm.

We have two simulation studies and a really nice data example – satellite measurements of
Earth temperatures. It’s scientifically relevant, it has an unusual domain (S2) and it has a
hugely complicated covariance structure, that we prefer not to model. So we use the functional
BH procedure – easy, fast and interpretable.

1.3.4 Paper IV

This manuscript is a collaboration with biologists using data from a master’s project from
Department of Plant and Environmental Sciences at University of Copenhagen. As the scope
is more oriented towards biology, some background and motivation may be needed for the
more statistically-oriented reader.

The context is a fungus pathogen that infects insects by discharging spores (conidia). It has
a temporal pattern that make functional data methods interesting; previous studies have
applied simple methods that does not take temporal variation into account.

Therefore, we wanted to apply the methodology of Paper I. The challenge is that data is
inherently discrete with lots of zeros (see Figure 1.8), so Gaussian models would be inade-
quate. This calls for generalized linear models approaches. We extend the model of Paper I to
use a negatively binomial response. This is successfully applied to data, and some inferential
questions are also considered.



2
Supplementary material for papers

Scientific papers are usually a collaboration of several authors with individual opinions and
ideas. More importantly, scientific papers must constrain themselves in terms of length and
material and usually have a scope. Thus, a selection of material must take place and there
might interest or relevant (background) material that is omitted. In this chapter we present
supplementary material that was not included in the papers.

2.1 Continuous-time markov component analysis

This is an addendum to Paper II: Markov component analysis for multivariate functional
data. The purpose is to extend the MCA to a continuous setting, and connect this to random
variables and statistics.

Introduction In Manuscript II we are in the continuous-time domain when defining phase
variation, but apart from that everything else is kept in a discrete formulation. As data is
observed discretely, this is a natural approach, and relevant quantities can be defined in terms
of matrices and vectors.

However, the Cholesky calculus of MCA can naturally be defined using a continuous domain,
ie. instead of vectors and matrices we have functions and operators in L2([a, b];Rk), where
[a, b] is the domain of our data. A few things get easier for the continuous-domain MCA;
notably we can easily separate multiplication operators (compare diagonal matrices) and
integral operators.

An important reference is Markussen (2013), which applies differential operators in a func-
tional data setting. In that paper, calculations can be performed in linear time, and the
Green’s functions related to the differential operators can be seen as covariance operators for
Gaussian processes.

Setting and definitions

Setting The context is the function space (L2[a, b] ; Rd), i.e. the set of square integrable
functions [a, b] → Rd equipped with the standard inner product. We’ll omit the d when-
ever possible. We will use B(L2[a, b]) to denote the space of bounded linear operators on
(L2[a, b] ; Rd).

19
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In this paper we deal with certain subclasses within the set of sums of bounded integral
operators and multiplication operators on (L2[a, b];Rd). It is well-known that this set is a
linear subspace of B(L2[a, b]) that is closed under composition.

Definition 2 (Integral operator). An integral operator is an operator K ∈ B(L2[a, b]) given
by

Kf(t) =

∫ b

a
K(t, s)f(s) ds

K(·, ·) is called the kernel of the operator. We will use K to refer both to the function and
the kernel unless otherwise stated.

An integral operator K is self-adjoint iff K(s, t) = K(t, s) for a.a. s, t ∈ [a, b].

Proposition 2.1.1. Let K and L be integral operators in B(L2[a, b]), and let M be a multi-
plication operator in B(L2[a, b]). Then the adjoint of K, K∗, has kernel

K∗(s, u) = K(u, s)>, s, u ∈ [a, b] (2.1)

The composition M = KL is also an integral operator, which has kernel:

M(s, t) =

∫ b

a
K(s, u)L(u, t) du, s, t ∈ [a, b] (2.2)

Proof: Reference.

Definition 3. A lattice operator is an integral operator in B(L2[a, b]) with kernel

K(s, t) =

{
α(s)β(t)> ∈ Rd×d a < t ≤ s < b

β(s)α(t)> ∈ Rd×d a < s ≤ t < b
(2.3)

It assumed that α(t), β(t) ∈ Rd×q for some common q ≥ 1 with α(t)β(t)> symmetric for all t.
We shall refer to q as the order of the lattice operator (whereas d is reserved for dimension).
A lattice operator of order 1 is called a simple or prime lattice operator. Any lattice operator
can viewed as a sum of prime lattice operators. If d = 1, there is no need take care of transpose
matrices and the formula reduces to:

α(s ∨ t)β(s ∧ t)> ∈ Rd×d s, t ∈ [a, b] (2.4)

Notation. We shall identify a multiplication operator M with its pointwise multiplication
function and use the same symbol for both, i.e.

Mf(t) = M(t)f(t) for t ∈ [0, 1]

We’ll always assume that M as a function is continous everywhere.

The most important multiplication operator is of course the identity operator I, which simply
corresponds to a ’white noise’ Gaussian process.
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Definition A factorizable operator (of order q) is the sum of a lattice operator and a positive
definite multiplication operator, where q refers to the order of the lattice operator. Note that
a multiplication operator is positive definite iff its entries are positive definite almost surely.

Definition 4 (Triangular operator). A triangular operator, or alternatively lower triangular
operator, is an integral operator O with kernel:

O(s, u) = 1u≤sα(s)f(u)>, u, s ∈ [a, b] (2.5)

Here it assumed that α(t), f(t) ∈ Rd×q for some common q ≥ 1, which we shall refer to as
the order of the operator.

Definition 5. An MCA operator is the sum of a triangular operator and a multiplication
operator.

Assume an MCA operator is given by

Tg(t) = D(t) + α(t)

∫ t

a
f(s)>g(s) ds (2.6)

Then we shall refer to the triple (D,α, f) as its components, which will be another way of
specifying an MCA operator. The order of MCA operator is defined as the order of the lattice
operator.

It is easily seen that sums and composition of MCA operators are again an MCA operator.
We will consider inverses of MCA operators in Section 2.1

What’s the main idea of using these operators? As we shall see, there is a correspondence
between factorizable operators and MCA operators. Factorizable operators can be viewed
as covariances of Gaussian stochastic processes, while MCA operators have some really nice
computational properties and can be seen as the Cholesky decompositions of factorizable
operators. The interesting details will be described in the following:

Decomposing factorizable operators into MCA operators

In this section we shall see how to decompose a factorizable operator F = K + M into
triangular operators of the same order s.t. F = TT ∗.

First the special case M = I:

Proposition 2.1.2. Let K be a lattice operator of order q. Then I + K = (I + O)(I + O∗)
where O is a triangular operator of order q.

In particular, if K(s, t) =

{
α(s)β(t)> ∈ Rd×d a < t ≤ s < b

β(s)α(t)> ∈ Rd×d a < s ≤ t < b
then the kernel of O is given by:

O(s, u) = 1u≤sα(s)f(u)>, u, s ∈ [a, b] (2.7)
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where α is the same, and f satisfy the non-linear forward integral equation:

β(t) =f(t) + α(t)

∫ t

a
f(s)>f(s) ds (2.8)

Although difficult to solve explicitly, we emphasize that f can be calculated in linear time of
t.

Proof. We have (I+O)(I+O)∗ = I+O+O∗+OO∗ and thus O must satisfyK = O+O∗+OO∗.
Assuming O has components α̃, f it is seen that we have a solution if:

α(s)β(t)> = α̃(s)f(t)> + α̃(s)

∫ t

a
f(u)>f(u)α̃(t)> du a < t ≤ s < b (2.9)

β(s)α(t)> = f(s)α̃(t)> + α̃(s)

∫ s

a
f(u)>f(u)α̃(t)> du a < s ≤ t < b (2.10)

Setting α̃ = α and assuming (2.8), we get the desired result.

Now for the general proposition:

Theorem 2.1.3 (Decompostion of factorizable operators). Let F = K+M be a factorizable
operator of order q, where K is the integral part and M the multiplication part. Then F
decomposes F = TT ∗, where T = O +D is an MCA operator of order q with triangular part
O and multiplication part D.

Assume K has kernel K(s, t) =

{
α(s)β(t)> ∈ Rd×d a < t ≤ s < b

β(s)α(t)> ∈ Rd×d a < s ≤ t < b

Then D(t) = M(t)1/2, and the the kernel of O is given by:

O(s, u) = 1u≤sα(s)f(u)>, u, s ∈ [a, b] (2.11)

where α is the same and f satisfy the non-linear forward integral equation:

β(t) =D(t)f(t) + α(t)

∫ t

a
f(s)>f(s) ds (2.12)

Proof. A slight generalization of propostion 2.

Note that positive semidefiniteness of M is sufficient for Theorem 2.1.3 to work.

Corollary 2.1.4. Let K be a lattice operator of order q. Then K = OO∗, where O is a
triangular operator of order q.

Integral and differential equations It is easily seen that under mild assumptions (2.8)
and (2.11) can be re-written in terms of differential equations for f . However, these differential
equations will not be linear as they contain quadratic terms of f ! It is known that such
differential equations may show explosion behaviour, and are thus not a priori guaranteed
to have a valid solution.
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Inversion of MCA operators

One particularly nice feature of MCA operators is the fact that finding or applying inverses
correspond to solving differential equations.

Theorem 2.1.5. Let T be an MCA operator with T = O + D. Let x ∈ L2[a, b]. Assume
y = T−1x⇔ x = Ty. y can be found using:

y(t) = D(t)−1[x(t)− α(t)

∫ t

a
f(s)>y(s) ds] (2.13)

Alternatively, the following formula using an intermediate variable v may be more suitable to
implementation:

v(0) = 0

y(t) = D(t)−1[x(t)− α(t)v(t)]

v′(t) = f(t)>y(t)

(2.14)

Proof. It is easy to verify that said formula gives both the right and left inverse of T . That
the stated formula gives rise to a linear operator under the assumption that D is bounded
away from 0 is easily verified.

The explicit inversion of an MCA operator as an MCA operator itself is described in the
follwing theorem:

Theorem 2.1.6. Let T = O + D be an MCA operator of order q with D positive definite.
Assume O has kernel:

O(s, u) = 1u≤sα(s)f(u)>, u, s ∈ [a, b] (2.15)

Then T has an inverse T−1 = D−1 + Õ that is also an MCA operator of order q with kernel
for Õ:

O(s, u) = 1u≤sα̃(s)f̃(u)>, u, s ∈ [a, b], (2.16)

if κ given by the forward integral:

κ(a) = Iq, κ′(t) = −f(t)>D(t)−1α(t)κ(t) for t ∈ [a, b] (2.17)

is non-singular for all t ∈ [a, b]. The lattice components of T−1 are given by:

α̃(t) = D(t)−1α(t)κ(t), f̃(t) = −D(t)−1f(t)κ(t)−1,> (2.18)

Note that Theorem 2.1.5 can be applied in some cases in which Theorem 2.1.6 is not appli-
cable.

Proof. If T1 and T2 are two MCA operators with components (D1, α1, f1) and (D2, α2, f2),
respectively, then by changing the order of integration, we get that T1T2g(t) equals:

D1(t)D2(t)g(t)+
∫ t

a

[
D1(t)α2(t)f2(u)>+ α1(t)f1(u)>D2(u) + α1(t)

∫ t

u
f1(s)

>α2(s) ds f2(u)

]
g(u) du (2.19)
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Identifying T = T1, and setting D2(t) = D1(t)
−1, and α2, f2 as in the proposed operator, the

rest is an exercise to verify that the expression inside of the brackets is 0 for all choices of u
and t. It is verified analogously that we also have a left inverse.

Factorizable operators and the Wiener processes

There is a strong connection between lattice operators and stochastic integrals, where the
integrand is deterministic. We refer to Adler & Taylor (2009) for a definition of deterministic
stochastic integration.

Proposition 2.1.7. Let K be a lattice operator of order q with kernel

K(s, t) =

{
α(s)β(t)> ∈ Rd×d a < t ≤ s < b

β(s)α(t)> ∈ Rd×d a < s ≤ t < b
(2.20)

Then K = OO∗, where O is an triangular operator of order q, s.t. O(s, u) = 1u≤sα(s)f(u)>

where f satisfies α(t)
∫ t
af(s)>f(s) ds = β(t).

Furthermore, let X be a (Gaussian) stochastic process given by

X(t) = α(t)

∫ b

a
f(s) dWs (2.21)

where Ws is a q-dimensional Wiener process. Then Cov(X(s), X(t)) = K(s, t).

One can say X is generated by O ”acting” on the Wiener process.

Proof. Corollary 2.1.4.

The last part is a simple way of describing the generating process of X, and Proposition 2.1.7
connects the theory of lattice operators with that of stochastic integrals.

Statistics

Continuous-time MCA has the potential for being used in a statistical setting, similar to
the discrete-time MCA. As data is observed discretely, one has to define an embedding or
smoothing of discrete observations into L2[a, b].

We will not go into details on this, but we remark that since none of the operators use ’local
properties’ (ie. involves derivatives), there is a certain degree of robustness in relation to the
embedding of the data. One approach is to follow that of Markussen (2013).

In order to define likelihood expressions, we need a definition for the log-determinant of MCA
and factorizable operators:
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Definition 6 (Log-determinant). Let T be an MCA operator with components (I, α, f). The
log-determinant of T is defined as the ”diagonal integral”:

log detT = 1
2

∫ b

a
tr(α(t)f(t)>) dt (2.22)

Let K be a factorizable operator with multiplication part I. If K decomposes K = TT ∗, we
define the log-integral of K as log detK = 2 log detT .

Why this seemingly odd definition of a log-determinant? We do not even use the logarithm
at all. However, it makes sense as a limit of matrix approximations of T . If M is a function
[0, 1]→ Rk, then under regularity assumptions we have,

N∑

i=1

log det |I +M( i
N )/N | ≈

N∑

i=1

log(1 + tr[M( i
N )/N ]) ≈

N∑

i=1

tr[M( i
N )/N ] ≈

∫ 1

0
trM(t) dt (2.23)

which should be related to the formula for the log-determinant of a triangular matrix T ∈
Rn×n:

log det T =

n∑

i=1

log Tii (2.24)

The determinant of the inverse behaves in the usual way:

Proposition 2.1.8. Let T be an MCA operator with components (I, α, f). Then log det(T−1) =
− log detT .

Proof. Let (I, α̃, f̃) be the components of T−1. By Theorem 2.1.6 this is valid, and we easily
see that α̃(t)f̃(t)>= −α(t)f(t)>, and thus log det(T−1) = − log detT .

Let N functional observations y1, . . . , yN in L2[a, b] from the MCA model yi ∼ N(0, TT ∗) be
given. Using the framework presented, we define the log-likelihood as:

ly(T ) := 2N log detT +

N∑

i=1

∫ b

a
||T−1yi(t)||2 dt (2.25)

If T−1 is of order q has components (I, α̃, f̃), this becomes:

−N
∫ 1

0
tr α̃(t)f̃(t)>dt +

n∑

i=1

∫ b

a
f̃(s)

∫ s

a
α̃(s)>yi(s) ds dt (2.26)

which can easily be evaluated in linear time.

As the space of possible αs or fs is infinite-dimensional, one has to put restrictions on α and
f (or α̃ and f̃), which could be in terms of a finite basis expansion or by adding a penalisation
term. Note that the relationship between the components of T and T−1 is highly non-linear.
It is possible to write down functional derivatives of (2.25) for α̃ and f̃ which can be used
for gradient descent-algorithms and solving score equations.
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Discussion

We have seen that MCA can naturally be defined in a continuous-time setting, and that it
has similar properties as and formulae reflecting discrete MCA. It has yet to be implemented
in a statistical setting, but we devised a framework and we expect it to be robust in relation
to the embedding of data into function space.

2.2 Interval-wise testing procedure for spherical domains with
application to Earth temperature data

This is an addendum to Paper III: False discovery rates for functional data. The purpose is to
extend the interval-wise testing procedure (IWT) (Pini & Vantini 2017) to spherical domains
and apply it to the Earth temperature data.

For the ease of presentation we consider only the unit sphere, S2. The extension to general
spheres and squares is trivial. Measurability will be assumed whenever needed.

The framework is not restricted to any particular class of tests, but we propose to use permu-
tation tests as done in Pini & Vantini (2017). The main reason for using permutation tests
is that they are exact tests which are asymptotically as powerful as parametric tests; a great
advantage in the setting of functional data.

2.2.1 The one-dimensional interval-wise testing prcedure

Assume that we observe M functional signals ξ1, . . . , ξM : (0, 1) → R. For each interval
I = (a, b) ⊆ (0, 1) define the corresponding interval-wise null hypothesis HI

0 as

HI
0 : ξ1(t)

D
= · · · D= ξM (t) ∀t ∈ I (2.27)

and alternative hypothesis:

HI
A : ξi(t)

D
6= ξj(t) for some t ∈ I, i, j ∈ {1, . . . ,M} (2.28)

Assume we are given interval-wise p-values with the property that (HI
0 true) ⇒ pI ∼ U(0, 1)

for all intervals I.

Define the unadjusted and adjusted p-value functions respectively by:

p, p̃ : (0, 1)→ [0, 1], p(t) = lim sup
I→t

pI , p̃(t) = sup
t∈B

pI

where I → t indicates that the endpoints of the interval converge to t.

Theorem 2.2.1. The adjusted p-value function provides control of the interval-wise error
rate. That is for α ∈ (0, 1):

∀I : HI
0 is true ⇒ P [∀t ∈ I : p̃(t) ≤ α] ≤ α (2.29)

Proof. Theorem A3 of Pini & Vantini (2017).
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2.2.2 Spherical IWT

Definition 7 (Interval-wise testing on spheres). For each point p ∈ S2 and radius r > 0,
let Bp,r be the associated ball, and define BS2 as the set of all balls on S2 with positive
radii. Note that the following construction does not depend on whether we use geodesic or
euclidean distance on the sphere.

Now assume that we observe M real-valued functional signals, ξ1, . . . , ξM : S2 → R. For each
ball B ∈ BS2 , let HB

0 be the null hypothesis and alternative hypothesis

HB
0 : ξ1(t)

D
= · · · D= ξM (t) ∀t ∈ B (2.30)

HB
A : ξi(t)

D
6= ξj(t) for some t ∈ B, i, j ∈ {1, . . . ,M} (2.31)

For each B, let pB be a p-value function that satisfies (HB
0 true) ⇒ P (pB ≤ α) ≤ α.

Define the unadjusted p-value function:

p : S2 → [0, 1], p(t) = lim sup
B→t

pB

where B → t is understood as balls containing t with decreasing radii.

Define the adjusted p-value function

p̃ : S2 → [0, 1], p̃(t) = sup
B3t

pB

The un-adjusted and adjusted p-value functions control the pointwise and ball-wise error-rates
respectively.

Proposition 2.2.2. The adjusted p-value function provides control of the ball-wise? error
rate, that is for α ∈ (0, 1):

∀B ∈ BS2 : HB
0 is true ⇒ P [∀t ∈ B : p̃(t) ≤ α] ≤ α (2.32)

Proof. Analogous to Theorem A3 of Pini & Vantini (2017).

Remark 2.2.3. In this definition of spherical IWT, we adjust the p-value of t ∈ S2 by all
balls containing t. This is but one choice of adjustments, and one could choose smaller as
well as larger adjustment sets, e.g. all convex sets containing t. However (as for most other
multiplicity correction procedures), there is a trade-off between the power of the test and ”the
amount of correction”: using larger adjustment sets leads to less power.

Implementing IWT as permutation tests using uniform sampling

In order to apply spherical IWT, we propose to use permutation tests based on

TB =

∫

B
tx dx, B ∈ BS2 (2.33)
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where tx is an appropriate test statistic, defined pointwise on the sphere. Due to the infi-
nite amount of balls in BS2 we naturally have to rely on a finite approximation. However
unlike Euclidian domains, spheres have positive curvature. This gives some challenge when
implementing IWT on spheres since we cannot use a uniform grid for approximating the test
statistics, which would be the natural choice in rectangular and one-dimensional cases.

Algorithm Assume we have M smooth observations from the sphere, ξ1, . . . , ξM : S2 → R,

such that ξ1
D
= · · · D= ξM under the global null hypothesis. Let t : RM → R+ be a suitable

test statistic. We propose to use the following algorithm:

1. Sample N points uniformly, but not necessarily independently, on the sphere. Denote
these points P = {s1, . . . , sN}.

2. Define the point sets Dij = {s ∈ P : |si − s| ≤ |si − sj |}. These sets approximate the
balls in S2, and will be used as the sets on which to evaluate the test statistics.

3. Calculate the observed test statistics tobsij on observed data yDij1, . . . yDijM , using only
points in Dij for i, j = 1, . . . , N :

tobsij =
∑

s∈Dij

t(ξ1(s), . . . , ξM (s)) (2.34)

4. For each permutation rk = (r1, . . . , rM ) of 1, . . . ,M , do:

Calculate test statistic tr
k

ij on permuted data yDijr1 , . . . , yDijrM , using only those points
in Dij for i, j = 1, . . . , N :

tr
k

ij =
∑

s∈Dij

t(ξr1(s), . . . ξrM (s))

5. For every approximating ball Dij compare test statistics of permutations with test
statistic of observation to obtain ball-wise p-values pDij , ie.

pDij = (#permutations)−1
∑

k∈permutations

1(tobsij ≤ tr
k

ij )

6. Finally, set p(si) = pi = pDii and

p̃(si) = p̃i = max
Dij3si

pDij

to obtain adjusted and unadjusted p-values.

This approximation will give a good picture of the spherical IWT. It avoids using grids and
similar, and has a simple implementation.
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Significance level Unadjusted p-values IWT fBH

0.10 0.410 0.098 0.252
0.05 0.323 0.047 0.169
0.01 0.185 0.011 0.064
0.001 0.085 0.0001 0.022

Table 2.2: Areas of significance at various significance levels as percentage of Earth total

Remark: The aggregated test statistic (2.34) (and similar for the permutations) can be
replaced by any meaningful test. However, the use of a sum in (2.34) has an obvious compu-
tational advantage when evaluating the test across all Dij .

2.2.3 Application to Earth climate data with comparison to fBH procedure

In this section we apply the spherical IWT to Earth climate data of Paper III. We refer to
the manuscript for a description of the data set and setup.

IWT We sampled 10000 points uniformly on the sphere. For each of the 25 years in the
data set we applied a local linear smoother using the kernel K(x, y) = max( π

180 − d(x, y), 0),
where d is geodesic distance on the sphere, measured in radians.

We used the algorithm outlined in section 2.2.2 with B = 2000 permutations. As test statistic
we used t(x1, . . . , x25) = max(T (x1, . . . , x25), 0), where T is the t-statistic from the linear
regression yij = α+ βjyeari + noise.

fBH To perform the fBH procedure, we mapped the sphere into T = (−π, π)× (−π/2, π/2)
by (scaled) polar coordinates, ie. longitude and latitude. This mapping gives rise to a measure
f · µ on T where f is proportional to cos(latitude). This measure gives uniform weights to
all points on Earth, assuming Earth to be a perfect sphere.

To ensure that we got a fair comparison between IWT and fBH approaches, we applied the BH
procedure to the same points that were used in the IWT scheme. Since the chance of sampling
a point is proportional to cos(latitude), this sampling scheme was a good approximation of the
fBH procedure as defined in Paper III. One-sided t-tests were used for obtaining unadjusted
p-values.

Note that due to different implementations, the numbers here are slightly different from those
in Paper III.

Results

The coverage areas at various significance levels are provided in Table 2.2.

There were large differences between adjusted p-value functions and subsequent inference
between fBH procedure and IWT. Interval-wise testing was much more conservative than the
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Figure 2.1: Upper plot: FDR-adjusted p-values. Middle plot: IWT-adjusted p-values.
Dashed lines indicate 5% significance levels. Lower plot: Sampling points for IWT, color-
coded at 5% significance level for IWT.
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fBH procedure in selecting significant areas, and the IWT-selected regions were also much
smoother. A notable reason for this is the fact that the fBH procedure is a global procedure
that does not take proximity into account, while IWT is a local procedure based on proximity
of points. If we take look at the map(s), the North Atlantic Ocean and northern China stands
out; it is evidentr that these regions have experienced temperatures far above the normal in
the latest years with the adverse weather effects this may cause.

2.2.4 Discussion

To the author’s best knowledge, this is the first published extension of the the interval-
wise testing framework to non-interval domains. We devised an algorithm for implementing
IWT on S2, and applied it to the Earth climate data set. No doubt the IWT-procedure can
be extended to other other domains such as 2D and 3D Euclidian domains. As Euclidian
domains have zero curvature, implementation should be easier than for spherical domains,
but choosing ”correction sets” (cf. Remark 2.2.3) will remain an issue.

In our application, IWT turned out to be quite conservative in comparison to the fBH pro-
cedure. For future studies, a comparison with other FWER-controlling procedures would be
interesting. For this particular data set, the inclusion of covariates such land/sea would be
interesting perspectives.
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Simultaneous inference for misaligned multivariate
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Abstract

We consider inference for misaligned multivariate functional data that represents the
same underlying curve, but where the functional samples have systematic differences in
shape. In this paper we introduce a class of generally applicable models where warping ef-
fects are modelled through nonlinear transformation of latent Gaussian variables and sys-
tematic shape differences are modelled by Gaussian processes. To model cross-covariance
between sample coordinates we propose a class of low-dimensional cross-covariance struc-
tures suitable for modeling multivariate functional data. We present a method for doing
maximum-likelihood estimation in the models and apply the method to three data sets.
The first data set is from a motion tracking system where the spatial positions of a large
number of body-markers are tracked in three-dimensions over time. The second data set
consists of longitudinal height and weight measurements for Danish boys. The third data
set consists of three-dimensional spatial hand paths from a controlled obstacle-avoidance
experiment. We use the developed method to estimate the cross-covariance structure, and
use a classification set-up to demonstrate that the method outperforms state-of-the-art
methods for handling misaligned curve data.

Keywords: functional data analysis, curve alignment, nonlinear mixed-effects models, tem-
plate estimation
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1 Introduction

While the literature and available methods for statistical analysis of univariate functional

data have been rapidly increasing during the last two decades, multivariate functional data

has been a largely overlooked topic. Extension of univariate methodology to multivariate

functional data is often considered a trivial task, but is rarely done in practice. As a result,

the non-trivial parts of extending methodology, such as temporal modeling of cross-covariance

or warping of misaligned multidimensional signals, have only received little attention.

A wide range of methods for aligning curves are available. For general reviews of the litera-

ture on curve alignment, we refer to Ramsay & Silverman (2005), Kneip & Ramsay (2008),

and Wang et al. (2015). Curve alignment is a nonlinear problem, so for the vast majority of

methods, one can not generally expect to align data in a globally optimal way. In the multi-

tude of available methods for univariate functional data, the quality of the results obtained

with the available implementations is very variable. Often, good implementations of simple

methods outperform far more advanced methods with less polished implementations, even if

the advanced methods should be more suitable to the data at hand. From the perspective

of multivariate functional data, a major issue is that only very few methods with publicly

available implementations support alignment of multivariate curves.

While misaligned multivariate functional data have been underrepresented in the statistics

literature, similar problems have had a central role in other fields. Analysis of misaligned

curves in multiple dimensions is fundamental in the shape analysis literature (Younes 1998,

Sebastian et al. 2003, Manay et al. 2006), where for example closed planar shapes can be

thought of as functions f : [0, 1] → R2 with f(0) = f(1). In much shape data, one do not

observe the parametrization of these functions, and for closed shapes the start and end points

(0 and 1) of the parametrization are arbitrary in terms of the observed data. As an example,

consider data consisting of cells’ outlines obtained from 2D images that have been manually

annotated. Here the first annotated point on a cell does not bear any significance—in fact

the orientation of the cell is most likely completely random in the image. For this reason,

a fundamental direction of theory in the shape analysis literature is built around invariance

to parametrization of the function (Younes 1998) as well as other classical shape invariances

such as translation, scaling and rotation (Kendall 1989, Dryden & Mardia 1998).

In recent years, the idea of using invariances similar to the shape analysis literature has been

introduced as a general tool to analyze functional data (Vantini 2012). The most notable

class of methods are based on elastic distances for functional data analysis (Srivastava et al.

2011, Kurtek et al. 2012, Tucker et al. 2013, Srivastava & Klassen 2016). The fundamental

idea underlying these methods is to represent data in terms of square-root velocity functions

and take advantage of the invariance properties of distance on the associated function space,

in particular that distances are not affected by warping of the domain in the observed rep-

resentation. An elastic distance between two curves f1 and f2 can be defined as the minimal

distance between the square-root velocity functions associated to f1 and f2 ◦ v where the
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minimum is taken over all possible warps v of f2 (in the original representation). This ap-

proach has proven very successful compared to many conventional approaches, and efficient

high-quality implementations for various data types and types of analyses are available (FSU

n.d., Tucker 2017).

The vast majority of available methods for handling misaligned functional data are heuristic

in the sense that they are based on some choice of data similarity measure that is typically

not chosen because it fits well with important characteristics of the data. Rather, the typical

rationale is computational convenience and/or incremental improvements over other meth-

ods. In the shape literature, methods are perhaps less heuristic and more idealistic, in the

sense that they are derived from principles of how a distance between shapes should ideally

be. This ideal behaviour is typically specified through invariance properties such as the ones

described above. In contrast to these approaches for handling misalignment, we propose a

full simultaneous statistical model for the fundamental types of variation in misaligned mul-

tivariate curves. In particular, we propose to treat amplitude variation and warping variation

equally by modeling them as random effects on their respective domains.

Only few works have previously considered the idea of simultaneously modeling amplitude

and warping as random effects. An early example of an integrated statistical model that

modelled curve shifts as random Gaussian effects is presented in Rønn (2001). The simul-

taneous inference in the model allows data-driven regularization of the magnitude of the

shifts through the estimated variance parameters. The idea has been extended to more gen-

eral warping functions that are modelled by polynomials (Gervini & Gasser 2005, Rønn &

Skovgaard 2009), and lately also to include serially correlated noise within the observations

of an individual curve (Raket et al. 2014). In addition to the data-driven regularization of

the predicted random effects achieved through estimation of variance parameters, the use of

likelihood-based inference naturally relate the discrete observation points and the underly-

ing continuous model. This relation avoids many common issues that arise when developing

methods for continuous data in the form of pre-smoothed curves. In particular, the pinching

problem, where areas with large deviations are compressed by warping to minimize the in-

tegrated residual, does not exist for these methods. Furthermore, the simultaneous modeling

of amplitude and warping effects introduces an explicit maximum likelihood criterion for re-

solving the identifiability problems related to separating warp and amplitude effects (Marron

et al. 2015). The maximum-likelihood estimates induce a separation of the two effects, namely

the most likely given the variation observed in the data.

A related class of models with random affine transformations of both warping and amplitude

variation have become popular in growth curve analysis (Beath 2007, Cole et al. 2010).

Hadjipantelis et al. (2014, 2015) provide an extension to this in term of a simultaneous

mixed-effects model for the scores in separate functional principal component analyses of

the amplitude and the warping effects. The simultaneous model allows not only for cross-

correlation within the amplitude and warping scores, but also across these two modes of

variation. The estimation procedure used in Hadjipantelis et al. (2014, 2015), however, relies
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on a pre-alignment of the curves that separates the vertical and the horizontal variation.

The major contribution of this paper is a new class of multivariate models that both eliminates

the need for pre-smoothing and -alignment of samples and also allows for estimation of cross-

correlation between the coordinates of the amplitude effect. In the proposed framework, even

if we do not assume any cross-correlation of the amplitude effects, the prediction of warping

functions will still take the full multivariate sample into account, and the alignment will thus

typically be superior to alignment of the individual coordinates.

2 Modeling and inference for misaligned multivariate func-

tional data

Figure 1: Data from a motion tracking system where the spatial positions of 41 physical

markers are tracked in three-dimensions over time. A skeleton model based on the markers

is displayed at four temporally equidistant points. The three-dimensional paths of hand and

foot markers are displayed.

Consider the multivariate functional observation in Figure 1. The figure displays a walking

sequence in three-dimensional space of a person equipped with 41 markers from the CMU

Graphics Lab Motion Capture Database (n.d.). The observation is a curve in R123 recorded

at 301 time points with a total of 36,963 observed values (20 marker positions missing due

to occlusion).
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Figure 2: Height and weight measurements over time for 106 healthy boys from the Copen-

hagen Puberty Study. Each individual curve indicates a subject.

This sample illustrates some of the challenges in analyzing multivariate functional data.

Firstly, a repetition of the walking cycle would in all likelihood produce a trajectory that is

visually very similar to the sample, but it would differ in two aspects, the movement timing

and the movement path would be slightly different. Such differences in timing and path

are random perturbations around the person’s ideal walking cycle. A natural model for such

data is thus a nonlinear mixed-effects model where movement timing is modelled as a random

effect whose effect is only observed through the nonlinear transformation of the movement

path as a function of time, and the movement path variation is modelled as a stochastic

process in R123. However, the very large number of observations in a single functional sample

puts strong restrictions on the types of models that can be used. For example, the covariance

matrix between the 41 markers at a single time point is 123× 123, which in practice makes

the problem of estimating a single unstructured covariance (7626 parameters) impossible.

Another example of multivariate functional data is longitudinal measurements of children’s

height and weight. Figure 2 displays such data from the Copenhagen Puberty Study (Aks-

glaede et al. 2009, Sørensen et al. 2010). The data reflects the fact that height and weight

are generally increasing functions during childhood and adolescence. Again, there will be a

nonlinear timing effect; observed age is a proxy for a biological or developmental age process

of the child, and there will be systematic differences in observation values; taller and heavier

children tend to stay taller and heavier than their peers. For height and weight data, one
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would typically have few observations per child, but the possibility of many children. Thus,

the cross-covariance at a given time point could easily be estimated, and one could have a

natural interest in inferring possible changes in the correlation between height and weight

over time.

The two above examples illustrate that the challenges of multivariate functional data can be

very different. In the following we will introduce a class of models to analyze functional data

containing both warp and amplitude variation. To make the model sufficiently flexible, we

will introduce generic models for random warping functions and dynamic cross-correlation

structures that can approximate arbitrary structures, and whose resolution of approximation

can be coarsened by reducing the number of free parameters.

2.1 Statistical model

We consider a set of N discrete observations of q-dimensional curves y1, . . . ,yN : [0, 1]→ Rq
from J subjects. The curves are assumed to be generated according to the following model

yn(t) = θf(n)(vn(t)) + xn(t), n = 1, . . . , N. (1)

Here f : {1, . . . , N} → {1, . . . , J} is a known function that maps sample number to subject

number. The unknown fixed effects are subject specific mean value functions θj : [0, 1]→ Rq
for j = 1, . . . , J that are modelled using a spline basis assumed to be continuously differen-

tiable. Typical choices are B-spline bases and Fourier bases. The phase variation is modelled

by random warping functions vn = v(·,wn) : [0, 1] → [0, 1], which are parametrized by inde-

pendent latent zero-mean Gaussian variables wn ∈ Rmw for n = 1, . . . , N with a common

covariance matrix σ2C. Here v : [0, 1] × Rmw → [0, 1] is a pre-specified function, that is

assumed to be continuously differentiable in its second argument, and mw ∈ N is the dimen-

sion of the latent variable. The amplitude variation is modelled by independent zero-mean

Gaussian processes xn : [0, 1] → Rq for n = 1, . . . , N with a common covariance function

σ2S. The unknown variance parameters are thus a scalar σ2 > 0, a positive definite matrix

C ∈ Rmw×mw and a positive definite function S : [0, 1] × [0, 1] → Rq×q. In sections 2.2 and

2.3 we discuss models for the warping functions and the cross-covariance of the amplitude

variation that are highly expressive, while the number of parameters to be estimated is kept

at a moderate level.

We assume that the nth curve is observed at mn ∈ N prefixed time points tnk, which neither

need to be equally spaced in time nor to be shared by the N samples. Stacking the mn

temporally discrete observations into a vector we have

~yn = {yn(tnk) + εnk}mn
k=1 ∈ Rqmn , n = 1, . . . , N, (2)

where the observation noise is given by independent zero-mean Gaussian variables εnk ∈ Rq
with a common variance σ2Iq. Here Iq ∈ Rq×q denotes the identity matrix.
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Figure 3: Simulated warping functions with the covariance given by (4). The warp values at

the three interior anchor points are marked by points.

The major structural difference of model (1) compared to conventional functional mixed-

effects models (Guo 2002) is the inclusion of a warping effect. When compared to conventional

methods for curve alignment, the proposed model differs by having a random amplitude effect,

by modeling warping functions as random effects, and by handling all effects simultaneously.

2.2 Modeling warping functions

The success of the model relies on its ability to approximate the realizations of the true

warping functions. To accomplish this, the warping functions vn must be sufficiently versatile

and able to approximate a large array of different warps. We achieve this by modeling warping

functions as the identity mapping plus a deformation modelled by interpolating latent warp

variables wn ∈ Rmw at pre-specified (e.g. equidistant) anchor points tk for k = 1, . . . ,mw

vn(t) = v(t,wn) = t+ Ewn(t), (3)

where the interpolation function Ew can, for example, be a linear or a cubic spline.

The behavior of the predicted warping functions will be determined by the combination of

interpolation method (and corresponding boundary conditions) and the estimated covariance

of the latent variables wn. Throughout this paper we will use cubic spline interpolation of the

latent variables. If we think of the parametrization of the nth sample, vn(t), as the internal

time of the sample, it is often natural to assume that the internal time is always moving

forward. To ensure this, we will predict the latent variableswn using constrained optimization

such that the sequence will be increasing along the corresponding anchor points. But for cubic

interpolation, a sequence of increasing values at the interpolation points is not sufficient to

ensure a monotone interpolation function. To force increasing warping functions we will use
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(b) Warping functions corresponding to (a)
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(c) Unit-drift Brownian bridge
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(d) Warping functions corresponding to (c)

Figure 4: Constructions of warping functions from stochastic processes with parametric covari-

ances. (a) simulated trajectories of a unit-drift Brownian motion with scale 0.1, (b) warping

functions using a unit-drift Brownian motion model with mw = 3 interior equidistant anchor

points, fixed interpolation at the left boundary and extrapolation of the rightmost deviation

at the right endpoint, (c) simulated trajectories of a unit-drift Brownian bridge with scale

0.2, (d) warping functions using the unit-drift Brownian bridge model with mw = 3 interior

equidistant anchor points and fixed interpolation at the boundary.
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the Hyman filter (Hyman 1983) to ensure that the entire warping function is increasing. For

some types of data, it may be meaningful to have warps that can go backwards in time, or it

may be useful to include this option to account for uncertainty in the model if the observed

signals contain features where the matching is highly ambiguous. Such types of warp models

will not be considered in this paper.

The covariance matrix of the latent variables will determine the regularity of the predicted

warping functions. When the number of latent variables mw is small compared to the number

of functional samples N and the number of sampling points m1, . . . ,mN for the functional

samples, one can assume an unstructured covariance and estimate the corresponding (m2
w +

mw)/2 variance parameters. If the structure of the warping functions are of key interest, one

may be able to study the underlying mechanism by estimating an unstructured covariance

matrix. Consider for example the simulated warping functions shown in Figure 3. These

warping functions use the increasing cubic spline construction detailed above with mw = 3

interior equidistant anchor points, fixed boundary points and covariance matrix




0.005 0 −0.004

0 0.001 0

−0.004 0 0.005


 . (4)

The interpretation of the strong negative covariance between first and third anchor point

suggest a burnout type of process where samples that are ahead initially slow down toward

the end and vice versa. The low variance of the middle anchor point suggest that the individual

samples are largely synchronized around this time.

In many cases, one can choose a specific interpolation method and specify a reasonable para-

metric covariance for the latent variables based on properties of the data. It is, for example,

often natural to think of warping processes as accumulations of small errors causing desyn-

chronization of the set of observed trajectories that all started in the same state. Thinking

of Gaussian processes, Brownian motion with linear unit drift would offer a simple model for

phenomena where errors are accumulating and increasing the desynchronization of samples

over time. Simulations of unit-drift Brownian motions are shown in Figure 4 (a) and the cor-

responding simulations of warping functions from mw = 3 interior equidistant anchor points,

fixed left boundary point and linear extrapolation of the deviation of the rightmost anchor

point at the right boundary point are shown in Figure 4 (b).

Suppose we are analyzing longitudinal data of children’s heights where we could think of the

warping function as the developmental (height) age of the child. At conception (approximately

−9 months of age), where the child is merely a fertilized egg, all children are the size of a

grain of sand and their developmental ages are synchronized. As the children become older

the desynchronization of their developmental ages increases. This can, for example, be seen

by the vast variation between the age of onset of puberty. The unit-drift Brownian motion

warp model seems like a very suitable model for this desynchronization.
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Other types of data may give rise to other models. Consider an experiment that records

repetitions of a walking sequence such as the data in Figure 1, and assume that all sequences

start from the same pose and end after two completed gait cycles. For such data, the desyn-

chronization is not increasing over time since beginning and end poses are synchronized, but

we would expect maximum desynchronization around the middle of the gait cycle window.

In this setting, a more suitable model would be a unit-drift Brownian bridge as illustrated in

Figure 4 (c) and (d).

Like other hyperparameters, the number of anchor points is a choice of modelling. However, a

low number of anchor points (e.g. 3-5) will generate a class of warp functions that is sufficiently

flexible for many applications; we used mw = 3 in all applications presented in this paper. If,

however, local variation is very strong and complex and the observed functional samples carry

sufficiently clear information about the systematic shapes to recover such complex warps, a

higher number of anchor points should be used.

2.3 Dynamic covariance structures

In the previous section we modelled the covariance structure of smooth warping functions

and saw how one could use domain-specific knowledge of the data to choose models with few

parameters. Even though the nature of the additive amplitude variation components xn from

model (1) is different, we can extend these ideas to construct parametric, low-dimensional

cross-covariance structures that are sufficiently expressive to model a wide array of cross-

covariance structures over time.

Proposition 1. Let f : [0, 1] × [0, 1] → R+ be a positive definite function on the temporal

domain [0, 1]. Let 0 = t1 < · · · < t` = 1 be anchor points, let A1, . . . , A` ∈ Rq×q be a set of

symmetric positive definite matrices, and for each t ∈ [0, 1] define Bt ∈ Rq×q as the unique

positive definite matrix satisfying

B>t Bt =
tk+1 − t
tk+1 − tk

Ak +
t− tk

tk+1 − tk
Ak+1 for t ∈ [tk, tk+1]. (5)

For all s, t ∈ [0, 1], define K(s, t) = f(s, t)B>s Bt ∈ Rq×q. Then the function K : [0, 1]×[0, 1]→
Rq×q is positive definite.

Proof. First we remark that since the space of positive definite matrices is a convex cone,

the linear interpolation B>t Bt is also positive definite, and we may take Bt as the positive

square root. To prove that K : [0, 1] × [0, 1] → Rq×q is positive definite it suffices to show

that the associated finite dimensional marginal matrices are positive definite. Thus, given

s1, . . . , sm ∈ [0, 1] we let the block matrix V ∈ Rqm×qm be defined by

V =




B>s1f(s1, s1)Bs1 B>s1f(s1, s2)Bs2 · · · B>s1f(s1, sm)Bsm
B>s2f(s2, s1)Bs1 B>s2f(s2, s2)Bs2 . . .

...
. . .

B>smf(sm, s1)Bs1 B>smf(sm, s2)Bs2 . . . B>smf(sm, sm)Bsm


 . (6)
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By straightforward calculations we have V = B>(F ⊗ Iq)B, where B ∈ Rqm×qm is the

block-diagonal matrix of {Bs1 , . . . , Bsm} and

F =



f(s1, s1) · · · f(s1, sm)

...
. . .

...

f(sm, s1) · · · f(sm, sm)


 . (7)

For z ∈ Rqm \ {0} we must show that z>Vz > 0. Setting u = Bz 6= 0 and using that F is

positive definite by assumption we have z>Vz = u>(F⊗ Iq)u > 0.

The above proposition gives a general framework for constructing dynamical covariance func-

tions, and it is simple to construct parametric models that allow for estimation of time-varying

cross-correlations in a statistical setting. In the statement of the proposition we assumed a

common marginal covariance function f along all coordinates. The idea of modeling a cross-

covariance structure by linearly interpolating cross-covariances at specific points seamlessly

extends to multivariate diagonal covariance functions (i.e. no cross-covariances), such that

the individual coordinates of the functional samples may be modelled using different types

covariance functions or different parameters.

3 Estimation

Direct likelihood inference in the model (1) is not feasible as the model contains nonlinear

latent variables in combination with possible very large data sizes. Instead we propose a

maximum-likelihood estimation procedure based on iterative local linearization (Lindstrom &

Bates 1990). The procedure is a multivariate extension of the estimation procedure described

in Raket et al. (2014), however with an improved estimation of fixed effects.

The estimation procedure consists of alternating steps of (1); estimating fixed effects (i.e.

spline coefficents) and predicting the most likely warp variables given the data and current

parameter estimates, (2); estimating variance parameters from the locally linearized likelihood

function around the maximum a posteriori predictions w0
1, . . . ,w

0
N of the warp variables. The

linearization in the latent Gaussian warp parameters w1, . . . ,wN means that we approximate

the nonlinearly transformed probability density by the density of a linear combination of

multivariate Gaussian variables. The estimation procedure is thus a Laplace approximation of

the likelihood, and the quality of the approximation is approximately second order (Wolfinger

1993).

Predicting warps In the first step of the estimation procedure we want to predict the

most likely warps from model (1) given the current parameter estimates. The negative log

posterior for a single functional sample is proportional to

(~γwn
− ~yn)>(Iqmn + Sn)−1(~γwn

− ~yn) +w>nC
−1wn (8)

46 Paper I



where ~γwn
∈ Rqmn is the stacked vector {θf(n)(v(tnk,wn))}mn

k=1 and Sn ∈ Rqmn×qmn is the

amplitude covariance {S(tnj , tnk)}j,k=1,...,mn at the sample points. The issue of predicting

warps is thus a nonlinear least squares problem that can be solved by conventional methods.

Estimating variance parameters Since θf(n) ◦ v(tnk, ·) are smooth functions for all n =

1, . . . , N , k = 1, . . . ,mn we can linearize model (1) around a given prediction w0
n using the

first-order Taylor expansion. The linearization is given by

θf(n)(v(tnk,wn)) ≈ θf(n)(v(tnk,w
0
n)) + ∂tθf(n)(v(tnk,w

0
n))(∇wv(tnk,w

0
n))>(wn −w0

n). (9)

For the discrete observation of the nth curve this gives a linearization of model (1) as a

vectorized linear mixed-effects model on the form

~yn ≈ ~γw0
n

+ Zn(wn −w0
n) + ~xn + ~εn, n = 1, . . . , N, (10)

where ~γw0
n
, ~xn,~εn ∈ Rqmn are the stacked vectors

~γw0
n

= {θf(n)(v(tnk,w
0
n))}mn

k=1, ~xn = {xn(tnk)}mn
k=1, ~εn = {εnk}mn

k=1,

and Zn ∈ Rqmn×mw is the row-wise stacked matrix

Zn = {∂tθf(n)(v(tnk,w
0
n))∇wv(tnk,w

0
n)}mn

k=1.

In the approximative model (10) twice the negative profile log-likelihood l(σ2, C,S) for the

variance parameters is given by

N∑

n=1

(
qmn log σ2 + log detVn + σ−2(~yn − ~γw0

n
+ Znw

0
n)>V −1

n (~yn − ~γw0
n

+ Znw
0
n)

)
, (11)

where Vn = ZnCZ
>
n + Sn + Iqmn with Sn = {S(tnj , tnk)}j,k=1,...,mn . In particular, the profile

maximum-likelihood estimate for σ2 is given by

σ̂2 =
1

qm

N∑

n=1

(~yn − ~γw0
n

+ Znw
0
n)>V −1

n (~yn − ~γw0
n

+ Znw
0
n)

where m =
∑N

n=1mn is the total number of observations. Estimation of the variance parame-

ters C and S related to the warping and amplitude effects is done using the profile likelihood

l(σ̂2, C,S).
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Estimating fixed effects As the fixed effects are given by spline bases, estimation of these

can be handled within the framework of linear Gaussian models, remembering that basis func-

tions should be evaluated at warped time points vn(tnk). Since vn(tnk) = v(tnk,wn) changes

with wn, we are required to recalculate the spline basis matrix for each new prediction of

wn. This estimation improves that of Raket et al. (2014), which used a point-wise estimation

based on the inverse warp that ignored the amplitude variance of the curves.

There is no closed-form expression for the maximum-likelihood estimator of the fixed effects

in the linearized model, since spline coefficients also enter the variance terms through the

matrices Zn, as can be seen in equation (11). However, by construction Zn is linear in the

spline coefficients so estimation can be done using an EM algorithm. The details of these

calculations can be found in the supplementary material.

In practice, the estimation in the linearized model can be approximated by estimating from

the posterior likelihood (8) which gives a computationally efficient closed-form solution. The

difference between these two approaches is that the EM algorithm takes the uncertainty in

prediction of wn into account and is guaranteed to decrease the linearized likelihood (11).

However, for a moderate number of warp parameters, there should only be a small conditional

variance on wn.

In the data applications presented in the following sections, we estimated fixed effects from

the posterior likelihood. In the last application on hand movements, these posterior likelihood

estimates were used to initialized the likelihood optimization which were subsequently fine-

tuned by the EM algorithm with a single update per warp prediction. This was done to

evaluate if improved likelihood estimates could be obtained, but the EM algorithm offered

only a very slight improvement in linearized likelihood.

4 Applications

4.1 Motion capture data

Data and model Data consists of four 12-dimensional functional objects. The curves con-

sist of a total of 1284 temporal observations in R12. As can be seen in Figure 5, the trajectories

start and end at different places during the gait cycle. To handle this structure, time was

scaled to the interval [0, 1] such that all samples began at 0.1, and such that the temporally

longest trajectory ended at 0.9. We included random shift parameters sn in our warping func-

tions to model these different temporal onsets of the gait cycle. The shifts sn were modelled

as Gaussian random variables. The full model is

yn(t) = θ(v(t,wn, sn)) + xn(t) (12)

where θ : [0, 1]→ R12 is the mean curve for the observations (modelled using a 3-dimensional

B-spline basis with 30 interior anchor points) and the warping function v is given by

v(t,wn, sn) = t+ sn + Ewn(t)
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Figure 5: Side and frontal view of the motion trajectories of four walking sequences performed

by the same participant.

N.L. Olsen, B. Markussen, L.L. Raket 49



where Ewn is an increasing cubic spline interpolation (Hyman filtered) of wn at mw = 3

equidistant anchor points. No subject-specific effects were included as all responses were

recorded from the same individual. The amplitude effect xn was modelled as a Gaussian

process with a Matérn covariance fMatérn(2,κ)(s, t) with second order smoothness, assuming

independent coordinates and a common range parameter κ (see equation (16) in the supple-

ment). We assumed different scaling parameters for each of the 12 coordinates of xn. Since

the data is roughly cut to include two gait cycles, one would expect high synchronization

of start and end poses in percentual time when corrected for the different onsets. Therefore,

latent variables wn were modelled as discretely observed Brownian bridges with a single scale

parameter.

Results The predicted warping functions are shown in Figure 6, and the corresponding

aligned samples are shown in Figure 7. The samples are nicely aligned, in particular, the

regular elevation profiles of the left and right feet seems very well aligned. The remaining

signals have their key-features aligned, with the residual variation evenly spread out across

the coordinates. This is a feature of the simultaneous multivariate fitting, where the best

alignment given the variation in the different coordinates is found. Individual alignment of

the coordinates would produce warping functions that overfitted the individual aspects of the

movement. In Figure 8, we have displayed the estimated mean trajectories θ and illustrated

the uncertainty after alignment by 95% prediction ellipsoids for the amplitude effect xn.
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Figure 6: Predicted warping functions for the motion capture data

4.2 Height and weight data

Consider the height and weight measurements from the Copenhagen Puberty Study (Aks-

glaede et al. 2009, Sørensen et al. 2010) shown in Figure 2. The data contains 960 pairs

of height and weight measurements for 106 healthy Danish boys. The individual amplitude

effects in the data set are clearly visible in the form of systematic deviations from the mean.

The data also contain warping variation in the sense that age is a proxy for developmental

age; each boy has his own internal clock that determines, for example, the onset of puberty.

Alignment for this warping effect would then align the pubertal growth spurts visible as steep

height increase in the individual boys occuring in the period 11 to 14 years.

Modeling While height is a naturally increasing function of age, weight is not necessarily.

However, looking at the 2014 Danish weight reference Tinggaard et al. (2014), we see a con-

vex increase in the cross-sectional mean weight curve in the relevant age interval. Based on

this, we modelled θ using an increasing spline (integrated quadratic B-splines) basis with 20

equidistant internal knots in the age interval [5, 17] in both dimensions. The warping func-

tions (3) were modelled as increasing cubic (Hyman filtered) splines with mw = 3 equidistant

internal anchor points in the age interval [5, 20] and extrapolation at the right boundary point

as in Figure 4(b). The latent variables wn were modelled as discretely observed Brownian
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Figure 7: Observed and aligned curves from the motion capture data. Data values are the

raw values from the tracking system.
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Figure 8: Estimated mean trajectories with five temporally equidistant ellipsoids indicating

95% (marginal) confidence areas. Two of the intermediate body poses of the fourth sample

have been added as a reference.
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motions with a single scale parameter. The temporally increasing variance of the Brownian

motion seems as a good model for developmental age where one would expect high initial

synchronization, and up to several years desynchronization at the onset of puberty.

To model the amplitude variation, we used a dynamic cross-covariance with equidistant knots

at {5, 10, 15, 20} years as described in Proposition 1, that is,

S(s, t) = fMatérn(2,κ)(s, t)B
>
s Bt.

The temporal covariance structure fMatérn(2,κ)(s, t) is the Matérn covariance function with

fixed smoothness parameter α = 2 and unknown range parameter κ, see equation (16) in

the supplement. This implies twice differentiable sample paths of xi, which is a reasonable

assumption given the nature of the data. Furthermore, since we expected heterogeneous

variances of the measurement error εnk on height and weight in equation (2), we extended

the model with a parameter ρ > 0 such that

Var(εnk) = σ2

(
1 0

0 ρ

)
.

This gives a total of 14 parameters describing the cross-covariance model.

Results The aligned samples and estimated means are displayed in the right-side panels of

Figure 9, and the corresponding predicted warping functions can be found in Figure 10. We

see that the individual growth curves are now aligned more tightly than before, in particular

the pubertal height spurts seem to be well aligned. Although the shapes of the curves are

well aligned, the model still allowed for considerable amplitude variation to be left after

warping. This is as it should be; for increasing curves such as these a perfect fit could be

achieved by warping, but the result would be meaningless and indicate that developmental

age could be perfectly determined from a single measurement of a child’s height. Given the

proposed model-based separation of amplitude and warping effects induced by the maximum

likelihood estimates, the information contained in a child’s longitudinal data about the child’s

developmental age can be quantified through the posterior distribution of the warping effects.

The estimated covariance structure is shown in Figure 11. As one would expect, height and

weight variances increase with age. The covariance increases at a slower rate and has a slight

decrease after 15 years, giving a correlation of 0.42 at 16.5 years.

4.3 Arm movement data

Our third example is an analysis of human arm movements in obstacle avoidance tasks.

Hand-movement paths in two experimental conditions are displayed in Figure 12. In each ex-

perimental condition, a wooden cylindrical object (pink) located at a starting position (green

cylinder) was to be moved 60 centimeters forward and placed on a target cylinder. Between
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Figure 9: Observed and aligned height and weight curves from the Copenhagen Puberty

Study. The estimated template curves are displayed as dashed black lines.
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Figure 10: Predicted warping functions corresponding to the data in Figure 9.
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Figure 12: Recorded movement paths in experiment with small obstacle 15 cm from starting

position (left) and tall obstacle 45 cm from starting position (right).
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the starting and target positions, a cylindrical obstacle was placed. The obstacle height (small,

medium, tall) and obstacle position (five equidistant positions between starting and target

positions) varied with experimental condition. A total of 15 obstacle avoidance conditions

were performed plus a control condition with no obstacle. Ten right-handed participants per-

formed ten repetitions of each experimental condition, and the spatial position of the hand

was recorded at a sampling rate of 110 Hz. The data set thus consists of 1600 functional

samples with a total of m = 175, 535 three-dimensional sampling points giving a total sample

size of 526, 605 observations. The present data set is described in detail in Grimme (2014),

and the experiment is a refined version of the experiment described in Grimme et al. (2012).

The data set is available through a public repository.1

Data processing and modeling We analyzed the data separately for the 16 experimen-

tal conditions. Following the convention for modeling human motor control data, time was

modelled as percentual time rather than observed time. This means that all movement time

intervals were scaled to [0, 1], such that 0 corresponds to the onset of the movement and 1

corresponds to the end of the movement. We used model (1) to model the data separately

for the 16 different experimental conditions. The mean path θj for the jth participants was

modelled in a cubic B-spline basis with 21 interior knots. We modelled the warping func-

tions (3) as increasing cubic spline interpolations (Hyman filtered) with mw = 3 equidistant

anchor points. The choice of three knots was evaluated, and found optimal, in terms of the

cross-validation set-up described in the classification study below. The latent variables wn

were modelled as discretely observed Brownian bridges with a single scale parameter, because

of the fixed endpoints of the data.

The amplitude variation was modelled using a dynamic cross-correlation model with knots

at {0, 0.4, 0.6, 1} as described in Proposition 1, that is,

S(s, t) = fmixture(a)(s, t)fMatérn(α,κ)(s, t)B
>
s Bt.

The temporal covariance structure is given as a combination of stationary and bridge Matérn

serial correlation with mixture parameter a, smoothness parameter α, and range parameter

κ. The details of this covariance structure are described in equations (15) and (16) in the

supplement. This dynamic cross-correlation structure has 27 free parameters.

The knot positions {0, 0.4, 0.6, 1} were chosen such that we were able to model a change

in cross-correlation structure around the middle of the movement in percentual time, in

particular the change that happens when the movement progresses from lift to descend. The

concept of isochrony (Grimme et al. 2012) suggests that the times where the peak heights

are reached are largely invariant to obstacle height and placement, and for the given data the

peak heights generally occur for t ∈ (0.4, 0.6), see for example Figure 13.

The left column of Figure 13 displays the observed x-, y- and z-coordinates in a single experi-

mental condition as functions of percentual time. The right column displays the coordinates in

1https://github.com/larslau/Bochum_movement_data
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Figure 13: Data from the experiment with a small obstacle 30 cm from starting position

plotted in percentual time (left column) and warped percentual time (right column). Coloring

follows the coloring in Figure 12.

predicted warped percentual time. We see that the x- and z-coordinates are very well aligned

within participant, and that the alignment of the y-coordinate seems to contain a relatively

larger proportion of amplitude variation after alignment than the x- and z-coordinates. We

note that the alignment procedure does not change the movement path in (x, y, z)-space. The

predicted maximum-a-posteriori warping functions are displayed in Figure 14.

Parameter estimates The common variance parameter σ and the Matérn parameters α

and κ varied little with experiment. On the other hand the relative weight, a, of the stationary
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Figure 14: Predicted warping functions corresponding to the alignment in Figure 13.

covariance and the bridge covariance varied considerably across experiments. However a was

large in all cases meaning that a large majority of the variance is captured by the stationary

part. We refer to Table 2 in the supplementary material for all parameter estimates.

Variance and cross-correlations The amplitude variation was assumed to be generated

from Gaussian processes xn and white noise εn ∼ N(0, σ2I3mn). Since the observed curves

are very smooth the estimated contributions from the white noise terms were very small.

Figure 15 show the ratios of systematic amplitude variance to linearized systematic variance

(amplitude and linearized warp) as estimated by the model. At the endpoints all variance was

captured by the serially correlated amplitude effect. In the y-direction almost all variation

was captured by the amplitude variance which fits well with the aligned y-coordinates of the

movement path in Figure 13. The warp-related variance accounted for a larger part of the

variation in the x- and z-directions. The temporal structure of the x-coordinate reveals that

the warp effect explained the majority of the variance around the middle of the movement,

while for the z-coordinate it explained the majority of the variance during lift and descend.

Thus, the model predicted warping functions using a trade-off where the (percentual) tempo-

ral midpoints of the transport component and the lift and descend components had highest

influence when measuring the alignment of samples.

The individual participant’s estimated mean trajectories and the systematic amplitude vari-

ation are illustrated in Figure 16. In the right-hand illustration, the prediction ellipsoids in

the middle are relatively small considering that this is the region with most variation. This

is because most of the variation was captured by the participant-specific mean curves and

the warping effect, as one would expect. The amplitude variance around the endpoints seems
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Figure 15: Coordinatewise boxplot of the temporal development of the ratio of Sn to Sn +

ZnCZ
>
n for the 100 samples in the experiment with a small obstacle 30 cm from starting

position.

participant

1 2 3 4 5 6 7 8 9 10

Figure 16: Estimated experiment-specific curve (black) and participant-specific curves for the

experimental set-up with small obstacle 30 cm from starting position (left) and estimated 95%

predictions ellipsoids for the systematic amplitude effect in the same set-up (right). The ellip-

soids are displayed temporally equidistant around the mean trajectory for the experimental

set-up.

somewhat overestimated, which suggests that the chosen anchor points provided a too coarse

model for the dynamics of the true covariance function around the endpoints.

60 Paper I



x/y

20.0 cm

x/y

27.5 cm

x/y

35 cm

x/y

no obstacle

x/z

20.0 cm

x/z

27.5 cm

x/z

35 cm

x/z

no obstacle

y/z

20.0 cm

y/z

27.5 cm

y/z

35 cm

y/z

no obstacle

−0.4

0.0

0.4

0.8

−0.4

0.0

0.4

0.8

−0.4

0.0

0.4

0.8

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Percentual time

C
or

re
la

tio
n

obstacle distance from start

15.0 cm 22.5 cm 30.0 cm 37.5 cm 45.0 cm

Figure 17: Correlation functions over time as estimated by the proposed model in all 16

experimental set-ups.
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Of particular interest is the correlation for the three axes (i.e. x/y, x/z and y/z) and how it

varies over time as seen in Figure 17. From the results, it is clear that the correlations vary

over time, which Figure 16 also illustrates. The variation of correlation with respect to time

is moderate for the x/y- and x/z-correlations, but for the y/z-correlations there is a clear

trend for all experimental set-ups that the correlation goes from positive values to negative

values. This is a surprising and perhaps unexpected feature since all experimental set-ups

are symmetric in the y-coordinate. A plausible explanation is that lifting a centrally placed

object with the right hand is generally associated with moving that hand to the right (in

our set-up, a positive y-value). When the object is raised we observe a positive correlation

in the y/z-plane (faster initial movement timing amplifies the effect), and when the object is

lowered again we observe corresponding negative correlation.

Classification To objectively compare different models, one can fit the models to a subset

of the samples and compare their fits in terms of their classification accuracies of participant

on the remaining data. That is, for a given functional sample that was not used to fit the

model, we wish to determine which of the participants performed the movement. The primary

objective of such an exercise is to compare similar generative models, but not as such to get

the highest possible classification accuracy—a higher score could probably be achievable by

standard machine learning methods that would reveal little about the structure of the prob-

lem. A similar classification-based approach was used to evaluate the hierarchical “pavpop”

model described in Raket et al. (2016), which was applied to the 1-dimensional acceleration

magnitude profiles of the 3-dimensional arm movement data set.

The present classification was done in a chronological 5-fold cross-validation set-up (first fold

consisted of the two first repetitions for each person, second fold of the third and fourth and

so forth). Different models were fitted on the five training sets, each leaving out one of the

folds (test set). For each test set, the samples were classified using the model estimates from

the corresponding training set. The classification accuracy was then computed as the average

classification accuracy across the five folds for each experiment.

In the following, the proposed method is denoted by SIMM (Simultaneous Inference for

Misaligned Multivariate curves). The following models were used in the comparison:

Nearest centroid (NC) The centroids for each person were estimated as the pointwise

means in the training set. The classification was done using minimal Euclidean distance

to the estimated centroid (using linear interpolation).

Nearest centroid weighted (NC-W) The centroids were computed similarly to the NC

method, but the classification was done using a distance with weighted coordinates, the

weights for the x-, y- and z-coordinates were 0.1/0.7/0.2.

Fisher-Rao L2 (FR-L2) Pointwise template functions were estimated using group-wise elas-

tic function alignment and PCA extraction for modeling amplitude variation (Tucker
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et al. 2013, Tucker 2017). The standard setting of using 3 principal components was

used. The elastic curve approach for functional data is widely considered the state-of-

the-art framework for handling misaligned functional data (Marron et al. 2015). The

template functions were estimated separately for each of the three value coordinates

of the trajectories. Classification was done using minimal Euclidean distance to the

estimated template functions.

Fisher-Rao elastic (FRE) Template functions were estimated similarly to FR-L2, but

classification was done using an elastic distance that both measures coordinate-wise

distances as a sum of phase (Tucker et al. 2013, Section 3.1) and amplitude directions

(Tucker et al. 2013, Definition 1). The weighting between phase and amplitude distances

was 0.16/0.84.

Fisher-Rao elastic weighted (FRE-W) Template functions and classification was done

similarly to FRE, except that we include a weighting of the three elastic distances

corresponding to each value coordinate. The weighting between phase and amplitude

distances was 0.14/0.86 and the weights for the x-, y- and z-components of the elastic

distance were 0.3/0.2/0.5.

Elastic curve metric (EM) Multivariate elastic distance between curves is defined as geodesic

distance on L2([0, 1];R3)/Γ, where Γ is the closure of the set of positive diffeomorphisms

on [0, 1]. In the quotient space L2([0, 1];R3)/Γ, all temporal features are removed and

comparison of curves is done using only their image in R3, but in a way that is consistent

with reparametrizations of the original curves (Srivastava & Klassen 2016). Templates

were estimated as the pointwise averages of samples aligned to the Karcher mean in

L2([0, 1];R3)/Γ computed using the fdasrvf R-package (Tucker 2017). Classification

was done using a weighted sum of multivariate elastic distance and phase distance (de-

fined as for the FRE method). The weighting between elastic and phase distances was

0.24/0.76.

SIMM The person-specific templates are estimated using the proposed model with a diag-

onal cross-covariance structure (i.e. no cross-covariance). Classification is done using

nearest posterior distance under the maximum likelihood estimates as a function of the

unknown sample.

SIMM-CC Estimation and classification are done similarly to the SIMM method, but using

the full dynamic cross-covariance structure described in the previous sections.

All weights described in the above methods were chosen by cross-validation on the accuracies

for the three experimental set-ups with d = 30.0 cm. The grids used for determining the

parameters are given in the supplementary material.

The classification accuracies are available in Table 1. If we first consider the NC-type methods

that do not model any warping effect, we see a marked increase in accuracy when weighting
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the different coordinates in the classification, and thus emulating a constant diagonal cross-

covariance structure. If we consider the basic elastic model FR-L2 based on the Fisher-

Rao metric, we see similar results to the simple NC model, even though the FR-L2 method

also accounts for a warping effect when estimating the template. When classifying using an

elastic distance, as was done in FRE, we see a great increase in classification accuracy. The

phase distance contributes considerably to these improvements. When only considering elastic

amplitude distance (i.e. weighting phase/amplitude distances 0/1) the average classification

accuracy is 0.576. Taking the deformation distance into account in the classification, and thus

paying a price for warping the templates, we see a great increase in classification accuracy. The

heuristic idea of having to pay a price for large warps in many ways emulates the proposed idea

of modeling the warping functions as random effects. Finally, the FRE-W method includes a

weighting of the combined phase and amplitude distances across the x-, y- and z-coordinates

of the observed trajectories, which again increases the accuracy.

The elastic metric has many similarities with the Fisher-Rao metric, but is multivariate in

nature. The EM method has higher accuracies than the similar FRE and FRE-W methods.

Exploratory comparison of results suggested that this was caused by more appropriate warp-

ing across all coordinates leading to both better estimates of templates and in turn more

accurate phase distances.

The SIMM model is the proposed model described above, but without a dynamic cross-

correlation structure. Instead we have three scale parameters that describe the weighting of

the marginal variances in the three value coordinates. The model is thus both comparable to

FRE-W and EM, both of which are outperformed in terms of accuracy. It is important to note

that while FRE-W and EM required cross-validation on a subset of the test data to estimate

the parameters, the SIMM model estimates all variance parameters used in the weighting

of the different aspect of the movement from the training data. The final model, SIMM-CC,

includes a full dynamic cross-covariance structure. Even though one could anticipate that this

model was much more prone to overfitting to the training data (the model includes 27 free

amplitude variance parameters compared to the 6 parameters of the SIMM model), we see

a slight increase in accuracy of the method. We remark that the EM, SIMM and SIMM-CC

methods, which make a joint warp of the three spatial coordinates, had the best accuracies

among the methods in consideration. This strongly supports the idea of modeling multivariate

signals with a joint warping of all value coordinates.

5 Discussion

In this paper we have proposed a new class of models for simultaneous inference for misaligned

multivariate functional data. We fitted these types of models to three different data sets and

applied it in one classification scenario.

The idea behind the approach is to simultaneously model the predominant effects in func-
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d obstacle NC NC-W FR-L2 FRE FRE-W EM SIMM SIMM-CC

S 0.62 0.71 0.58 0.77 0.79 0.77 0.80 0.85

15.0 cm M 0.60 0.63 0.62 0.64 0.68 0.77 0.80 0.83

T 0.52 0.57 0.54 0.58 0.58 0.77 0.84 0.81

S 0.51 0.58 0.50 0.68 0.66 0.77 0.69 0.77

22.5 cm M 0.52 0.64 0.56 0.62 0.73 0.70 0.75 0.72

T 0.50 0.62 0.49 0.64 0.73 0.73 0.74 0.79

S 0.53 0.59 0.53 0.69 0.72 0.76 0.70 0.76

30.0 cm M 0.45 0.47 0.48 0.65 0.68 0.70 0.79 0.75

T 0.58 0.63 0.56 0.65 0.73 0.78 0.86 0.83

S 0.51 0.55 0.52 0.67 0.72 0.70 0.77 0.76

37.5 cm M 0.45 0.50 0.43 0.68 0.65 0.69 0.68 0.68

T 0.50 0.53 0.54 0.67 0.73 0.72 0.80 0.80

S 0.49 0.54 0.51 0.66 0.71 0.75 0.69 0.76

45.0 cm M 0.48 0.53 0.44 0.66 0.70 0.71 0.78 0.73

T 0.50 0.54 0.50 0.71 0.75 0.74 0.82 0.83

NA - 0.48 0.56 0.52 0.68 0.72 0.80 0.64 0.70

average 0.515 0.574 0.520 0.666 0.705 0.741 0.761 0.773

Table 1: Classification accuracies of various methods. Bold indicates best result(s), italic

indicates that the given experiments were used for training.
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tional data sets, misalignment and amplitude variation, as random effects. The simultaneous

modeling allows separation of these effects in a data-driven manner, namely by maximum

likelihood estimation. In particular, we saw that this separation resulted in nicely behaving

warping functions that did not seem to over-align the functional samples.

The models enable estimation of dynamic correlation functions between the individual coor-

dinates of the amplitude variation. We demonstrated that one can achieve superior fits and

better classification using the parametric construction from Proposition 1, even when the

number of free parameters is high relative to the number of functional samples. By fitting the

model to two large functional data sets related to human movement, we also demonstrated

the computational feasibility of maximum likelihood inference with such models.

The proposed parametric model class for dynamic covariance structures is very general, but

other modeling approaches could be better suited in some situations. For example, instead of

using a fixed number of parameters to describe each marginal variance and cross-covariance

function, one would often prefer to do this in a data-driven manner. One possibility could

be to model the multivariate amplitude covariance function using a multivariate functional

factor analysis model, for example a multivariate extension of the rank reduced model of

James et al. (2000), where the number of parameters describing the covariance is fixed,

and the covariance is described in terms of functional principal components. However, such

amplitude effects cannot be effectively fitted using conventional optimizers for the likelihood,

and would require development of specialized efficient fitting methods (e.g. generalizing the

methods of Peng & Paul 2009). Another relevant approach would be simultaneous warping

of fixed effects and amplitude variation, and one could also consider extending the domain of

feasible warping functions by modelling the latent warp variables w as more general functional

objects (e.g. stochastic processes) instead of elements belonging to Rmw for some mw. We

will leave these extensions as future work.

SUPPLEMENTARY MATERIAL

Cross-validation grids

The cross-validation used to determine the parameters of the methods NC-W, FRE, FRE-W

and EM in Section 4.3 were given as follows. The possible weights between the three value

coordinates were {w ∈ R3 : wi ∈ {0, 0.1, . . . , 1}, w1 +w2 +w3 = 1} and the possible weights

between amplitude and phase distance were {w ∈ R2 : wi ∈ {0, 0.02, . . . , 1}, w1 + w2 = 1}.
NC-W only uses weighting between value coordinates and FRE and EM only use weighting

between the amplitude and phase distance.

For the SIMM-CC model we explored adding more than three knots to the warp model

(mw = 3, 4, 5), but mw = 3 gave the best cross-validation score.

66 Paper I



Covariance functions

Below we list the covariance functions that are used in the three data examples.

Schur’s theorem states that the pointwise product of covariance functions yields a valid co-

variance function (Schur 1911). This property is used in the arm movement example.

Brownian bridge The covariance function for the Brownian bridge defined on the temporal

domain [0, 1] is given by:

fbridge(s, t) = τ2 min(s, t) · (1−max(s, t)) = τ2(min(s, t)− st), s, t ∈ [0, 1]. (13)

where τ > 0 is a scale parameter.

Brownian motion The covariance function for the Brownian motion defined on the domain

[0,∞) is given by:

fmotion(s, t) = τ2 min(s, t), s, t ≥ 0. (14)

where τ > 0 is a scale parameter.

Mixing stationary and bridge covariances The combination of a stationary and bridge

covariance with mixtures a and b is given by

fmixture(a,b)(s, t) = a+ b · (min(s, t)− st)

In our analysis the parameter b is redundant, so we use

fmixture(a)(s, t) = a+ min(s, t)− st (15)

Note that the bridge covariance is not the same construction as when conditioning a

stochastic process X on its endpoint value.

Matérn covariance function The covariance function for the Matérn covariance with smooth-

ness parameter α and range parameter κ is given by:

fMatérn(α,κ)(s, t) =
21−α

Γ(α)
(|s− t|/κ)αKα(|s− t|/κ), s, t ∈ R. (16)

Here Kα is the modified Bessel function of the second kind. A Gaussian process with

Matérn covariance is stationary, and conversely any stationary continuous Gaussian

process with mean zero has a covariance function that up to scale is given by a Matérn

covariance function (Rasmussen & Williams 2006).
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Parameter estimates for Arm movement data

d obstacle σ α κ a στ

S 0.0012 1.432 0.157 19.56 0.0519

15.0 cm M 0.0012 1.749 0.120 24.60 0.0525

T 0.0013 1.627 0.124 22.54 0.0502

S 0.0013 1.788 0.128 25.13 0.0531

22.5 cm M 0.0011 1.638 0.139 58.20 0.1177

T 0.0012 1.679 0.121 26.37 0.0528

S 0.0012 1.773 0.121 20.96 0.0549

30.0 cm M 0.0014 1.663 0.139 21.31 0.0518

T 0.0012 1.687 0.128 26.63 0.0643

S 0.0012 1.481 0.155 17.69 0.0622

37.5 cm M 0.0013 1.658 0.125 19.80 0.0596

T 0.0010 1.633 0.121 34.29 0.0563

S 0.0013 1.761 0.123 19.10 0.0504

45.0 cm M 0.0016 1.760 0.119 13.09 0.0668

T 0.0010 1.670 0.121 37.46 0.0548

NA - 0.0009 1.786 0.142 47.04 0.0561

Table 2: Parameter estimates for the arm movement data.

EM algorithm for the spline coefficients in the linearized model

First note that by assumption the mean curves θ are the same, expect for warping, for tra-

jectories belonging to the same subject groups and are independent of other subject groups.

Thus, in order to simplify notation and ease argumentation, we will assume that all trajec-

tories belong to the same subject group.

Let f = {fk} be the spline base function for θ and let c be the spline coefficients, i.e.

θ(t) = f(t) · c. Consider the linearized model from Equation (10):

~yn ≈ ~γw0
n

+ Zn(wn −w0
n) + ~xn + ~εn, n = 1, . . . , N

with log-likelihood

N∑

n=1

(
qmn log σ2 + log detVn + σ−2(~yn − ~γw0

n
+ Znw

0
n)>V −1

n (~yn − ~γw0
n

+ Znw
0
n)

)
.

For the remainder we assume that w0
n = {w0

nl}mw
l=1 and all variance parameters (S, C, σ2)

are fixed, and that we have a current estimate of the spline coefficients, c0. The conditional
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expectation and variance of wn given the observations y under the current parameters will

be denoted by w̄n = {w̄nl}mw
l=1 ∈ Rmw and ¯̄wn = { ¯̄wnl1l2}mw

l1,l2=1 ∈ Rmw×mw , respectively.

Using this notation the conditional log-likelihood of ~yn given wn is

l~yn|wn
= (~yn − ~γw0

n
− Zn(wn −w0

n))>S−1
n (~yn − ~γw0

n
− Zn(wn −w0

n)) + log detSn.

The term log detSn does not influence the estimation of c, and hence it will be removed in

the following. The conditional expectation E[l~yn|wn
|~yn] given the observation hence equals

(~yn − ~γw0
n
− Z(w̄n −w0

n))>S−1
n (~yn − ~γw0

n
− Z(w̄n −w0

n)) + tr(S−1
n Zn ¯̄wnZ

>
n ). (17)

Defining Rn = f(v(tk,w
0
n)) and Rnl = ∂tf(v(tk,w

0
n))∂wl

v(tk,w
0
n) for l = 1, . . . ,mw we have

that Zn = {Rnl · c}mw
l=1 and thus Znwn = (

∑mw
l=1wnlRnl) · c. Using this the trace from (17)

can be expanded as a double sum

tr(S−1
n Z ¯̄wnZ

>) =

mw∑

l1,l2=1

¯̄wnl1l2 tr
(
S−1
n Rnl1cc

>R>nl2

)
.

Calculating the gradient of (17) now gives that ∇cE[l~yn|wn
|~yn] is proportional to

−K>n S−1
n (~yn −Knc) +

mw∑

l1,l2=1

¯̄wnl1l2R
>
nl2S

−1
n Rnl1c,

where Kn = Rn +
∑mw

l=1(w̄nl − w0
nl)Rnl. From this it follows that the M-step of the EM

algorithm for the spline coefficients c is given by

cnew =




N∑

n=1

K>n S
−1
n Kn +

mw∑

l1,l2=1

¯̄wnl1l2Rnl1S
−1
n R>nl2



−1

N∑

n=1

K>n S
−1
n yn.
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Abstract

Multivariate functional data analysis has got little attention in literature, and there are
few dedicated methods for this. In this paper we introduce a class of factorizable matrices
and corresponding Cholesky calculus that allow for computations with linear complex-
ity in the data length. This class of matrices and its calculus can also be formulated in
the continuous setting using linear operators. The proposed class of factorizable matrices
is used to construct a model framework for multivariate, possibly misaligned functional
data. Amplitude and phase variation is modelled by the same underlying Gaussian pro-
cess, which allow for correlation between phase and amplitude. We devise a method for
doing maximum-likelihood estimation using the EM algorithm, and the proposed model
is applied to a data set on horse lameness. Whereas the mean structure is easily identified,
our current implementation of the estimation procedure is too slow for identifying phase
variation.

74 Paper II



1 Introduction

Principal component analysis [1], partial least squares [2], factor analysis [3], and canonical

correlation analysis [4] are among the most frequently applied statistical analyses of multi-

variate response data Y ∈ RD. In recent years increasingly more data is not only possibly

multivariate, but also collected over time. The analysis of such data X : [a, b] → RD was

named functional data analysis (FDA) by Ramsay [6]. Most research on FDA has been con-

cerned with univariate functional data, i.e. when D = 1. However, even univariate functional

data can be seen as an instance of multivariate data. This viewpoint arise naturally in two

different ways. Either because the sampling of the functional data at discrete time points

t1 < . . . < tJ is seen as J-dimensional data {X(tj)}Jj=1 ∈ RJ . Or since the functional data is

represented by a finite dimensional basis expansion X(t) =
∑K

i=1 φi(t)ci. The latter viewpoint

is by far most prominent in the literature, and many papers suggest that basis representations

constitute an intrinsic character of functional data analysis. In such a set-up the approxima-

tion dimension K and the basis functions φi must be selected, after which the data is identified

with the K-dimensional data {ci}Ki=1 ∈ RK . One way of doing that is by functional principal

component analysis, which in its most simple variant consists in selecting the basis functions

as some functional interpolation of the loadings from a principal components analysis (PCA)

of the discretely sampled data {X(tj)}Jj=1 ∈ RJ .

The literature contains different variants of functional PCA, which may be used for selecting

a basis representation as discussed above. Beside dimension reduction these methods are

also extensively used for smoothing and denoising. Concerning functional variants of the

three other multivariate analysis methods listed above, i.e. partial least squares (PLS), factor

analysis (FA), and canonical correlation analysis (CCA), the existing literature is comparably

sparse (see e.g. [7, 8, 9, 10]). One explanation for this might be that the literature on other

aspects of analysis of multivariate dataX : [a, b]→ RD, such as alignment and phase variation,

in general is comparable sparse, and that methods like PLS and CCA only make sense when

D > 1. But the explanation might also lie in the mathematical formulation of the multivariate

methods. The original and still mostly used formulations of PCA, PLS and CCA are in

terms of maximization of variance and correlations, respectively. However, in particular the

maximization of raw correlation does not carry any information in the functional set-up,

where perfect correlation may be achieved when the dimension of the response is larger than

the number of observations [7].

To circumvent the caveat imposed by maximization of variances and correlations we propose

to extend the probabilistic formulations of PCA [11] and CCA [12] to the functional setting.

These probabilistic formulations place PCA and CCA in the same model framework as the

original formulation of FA. In Section 2 we review the probabilistic interpretations of PCA

and CCA. Furthermore, we will argue that PLS can be given a similar formulation, in which

we have a natural ordering of the methods as PCA ⊂ PLS ⊂ FA ⊂ CCA.

The generalization of the multivariate models to the functional setting that we propose in
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Section 2.1 leads to the usage of Gaussian Markov processes. The variance-covariance function

K : [a, b]× [a, b]→ RD×D of such processes can be shown to have the structure

K(t, s) =

{
g(t)h(s)> for t ≥ s,
h(t)g(s)> for t < s

(1)

with g, h : [a, b]→ RD×q for some q ∈ N. Kernels on the form Eq. (1) are called factorizable in

[13], and such kernels arise frequently in analysis (ref?) as well as probability theory [16, 17].

In Section 3.1 we devise an efficient computational framework for such covariance structures,

which is employed in Section 4 to do likelihood inference in the proposed probabilistic models.

Finally, in Section 5 we provide further applications including covariance estimation and a

PLS alternative to standard functional regression [18].

2 Probabilistic models for multivariate data

Mathematically, FA as well as the probabilistic model formulations of PCA, PLS and CCA

all can be given the graphical representation

Z
β−→ Y ←− U, (2)

that is Yn = βZn + Un if n = 1, . . . , N denotes the observation index. Here Y ∈ RD is

the observed D-dimensional data, Z ∈ Rq in an unobserved q-dimensional latent variable,

U ∈ RD is the error term, and β ∈ RD×q is the matrix defining the linear transformation

from the latent variable to the observation space.

In the wording of PCA, Z1, . . . , ZN are the scores and β is the matrix of loadings. The

difference between classical PCA and the probabilistic formulation given by [11] may be

understood in terms of the modelling of the scores within the framework of mixed models

(refs?). Here the scores {Zn}Nn=1 ∈ RN×q are fixed effects for classical PCA, but independent

random effects Zn ∼ N (0, Iq) for probabilistic PCA. But in both cases the error terms may

be interpreted as independent normally distributed random variables Un ∼ N (0, σ2 ID), and

the loading matrix β ∈ RD×q as well as the error variance σ2 > 0 are parameters that may be

found by maximum likelihood estimation. In this formulation probabilistic PCA is a linear

random effects model, where β is a common but unknown design matrix for the random

effects. Similarly, classical PCA is a bilinear fixed effects model.

The extension from probabilistic PCA to the other probabilistic multivariate models lies in

the variance assumption on the error terms Un ∼ N (0,Υ). For FA the extension is from

homogeneous variances Υ = σ2 ID to heterogeneous variance, that is Υ = diag(σ21, . . . , σ
2
D).

For CCA the standard set-up is to have two multivariate responses Y [1] ∈ RD1 and Y [2] ∈ RD2 ,

and the graphical representation

U [1] −→ Y [1] β1←− Z β2−→ Y [2] ←− U [2].
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However, if the two response vectors are stacked into a single multivariate response Y =(
Y [1]

Y [2]

)
∈ RD with D = D1 + D2, then [12] shows that classical and probabilistic CCA

finds the same maximum likelihood estimates for the loadings β =

(
β1
β2

)
∈ RD×q, where the

variance assumption on the error terms is

Un =

(
U

[1]
n

U
[2]
n

)
∼ N

(
0,

(
Υ1 0D1×D2

0D2×D1 Υ2

))

with general positive definite matrices Υ1 ∈ RD1×D1 and Υ2 ∈ RD2×D2 . For PLS the standard

set-up is that of regressing a multivariate response Y [1] ∈ RD1 on a multivariate regressor

Y [2] ∈ RD2 . The idea in PLS is to impose a trade-off between explaining as much variation

as possible on Y [1] and using as much variation as possible from Y [2]. This may be done in

the CCA set-up by assuming Υ1 = σ2 ID1 and Υ2 = ξσ2 ID2 , where the trade-off between

variances is parametrized by ξ > 0. This parameter may either be inferred from data, or be

preselected by the user. Although very natural we have not seen this formulation of PLS in

the literature.

In summary, if the trade-off in PLS is inferred from data, then PCA, PLS, FA, and CCA have

the same model structure Eq. (2), with increasingly more general error variances Υ ∈ RD×D.

Namely,

PCA: Υ = σ2 ID, PLS: Υ =

(
σ21 ID1 0D1×D2

0D2×D1 σ22 ID2

)
,

FA: Υ =




σ21 0 · · · 0

0 σ22 · · · 0
...

...
. . .

...

0 0 · · · σ2D


 , CCA: Υ =

(
Υ1 0D1×D2

0D2×D1 Υ2

)
.

(3)

In the following we will only use the probabilistic versions of these models, i.e. with inde-

pendent random scores Zn ∼ N (0, Iq). Beside estimation and interpretation of the model

parameters β ∈ RD×q and Υ ∈ RD×D, the latter subject to the variance restrictions in the

different models, various predictions are also of interest in applications. The interpretation of

PCA and FA is often done via predictions of the scores, i.e. the conditional means E[Zn|Yn].

PLS is often used in a regression set-up, which amounts to E[Y
[1]
n |Y [2]

n ]. And being the most

general CCA often is interpreted and used in both ways.

2.1 Extension to multivariate functional data

To extend FA and probabilistic PCA, PLS, and CCA to multivariate functional data we

propose to extend the q-dimensional random score vector to a stochastic process Z : [a, b]→
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Rq, which we will call the score process throughout this paper. This concept is not to be

confused with the notion of the score process for likelihood analysis of stochastic processes.

The score process is inserted in the generalization of Eq. (2) to the functional setting, which

we propose as

Z(t)
β(t)−→ X(t) ←− U(t), (4)

that is X(tj) = β(tj)Z(tj) + Uj with independent error terms U1, . . . , UJ .

In the multivariate setting the score vector was normally distributed, and so we will assume

that the score process is a Gaussian process. Furthermore, to encompass the ordering of

time inherent in functional data we will assume that the scores process is Markov. [5] gives

a characterization of univariate Gaussian Markov processes. The generalization of this to

multivariate processes states that a continuous Gaussian process Z : [a, b] → Rq is Markov

if and only if there exists a non-vanishing continuous function β̃ : [a, b] → Rq×q, a matrix

γ0 ∈ Rq×q, and a continuous function γ : [a, b]→ Rq×q such that

Cov
(
Z(t), Z(s)

)
= β̃(t)

(
γ0γ
>
0 +

∫ min{t,s}

a
γ(u)γ(u)> du

)
β̃(s)>.

Since the factor β̃(t) may be adsorbed by the matrix of loadings β(t) provided by Eq. (4),

we may without loss of generality for the present usage assume that β̃(t) = Iq. At this point

in the construction a few remarks are in place.

Remark 1. We may without loss of generality assume that γ0 and γ(t) are lower tri-

angular. Doing this implies a Choleskey decomposition of the increasing function f(t) =

γ0γ
>
0 +

∫ t
a γ(u)γ(u)>du taking values in the cone of positive definite matrices. Although the

characterization of Gaussian Markov processes can be stated in terms of such increasing func-

tions, we prefer the Choleskey decomposition as it will become computationally convenient

later on.

Remark 2. In applications, data is typically sampled at discrete time points t1 < . . . < tJ .

In this setting the full function γ : [a, b]→ Rq×q is non-identifiable, so inference will be done

for the terms γ1, . . . , γJ given by the Cholesky decompositions

γ1γ
>
1 = γ0γ

>
0 +

∫ t1

a
γ(u)γ(u)> du, γjγ

>
j
j>1
=

∫ tj

tj−1

γ(u)γ(u)> du.

From this interpolation may be done to other time points t ∈ [a, b].

Remark 3. The bilinear structure of scores and loadings impose an over-parametrization. In

the multivariate setting this over-parametrization is conveniently resolved by assuming that

the coordinates of the score vector are independent with a standard normal distribution, i.e.

Z ∼ N (0, Iq). In the functional setting it is no longer natural to assume independence between

the coordinates of the score process. However, we may still assume that γ1 = Iq.
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The last thing that remains in order to specify what we will understand by functional prob-

abilistic PCA, PLS, and CCA, and by functional FA, is to specify the variance structure

of the error terms. For the error terms we will assume independent and constant variance

Υ ∈ RD×D given by Eq. (3). Furthermore, to emphasize the underlying Markov assump-

tion we propose the following names and acronyms Markov Multivariate Functional Principal

Component Analysis (MMF-PCA), Markov Multivariate Functional Partial Least Squares

(MMF-PLS), Markov Multivariate Functional Factor Analysis (MMF-FA), and Markov Mul-

tivariate Functional Canonical Correlation Analysis (MMF-CCA).

3 Factorizable matrices

The probabilistic models introduced in Section 2.1 are special cases of Gaussian state space

models. And the variance-covariance matrices for Gaussian state space models are exactly

the positive definite matrices with a factorizable structure in the sense of [13]. Motivated by

this we will parametrize lower triangular block matrices with a factorizable structure, which

will be called Lmat-matrices. In Section 3.1 we develop a so-called Cholesky calculus for such

matrices. By this name we simply mean a matrix calculus that works based on the Cholesky

decomposition of positive semi-definite matrices S, i.e. a lower triangular matrix L such that

S = LL>.

The Cholesky calculus has linear computational complexity in the length of the time series,

like the well-known Kalman smoother from time series analysis. Seen from this perspective

the Cholesky calculus simply provides an alternative computational framework for doing

likelihood inference for Gaussian state space models. However, we prefer to use the Cholesky

calculus for three reasons; it directly links to continuous time Gaussian processes via the

factorizable structures, it is easily implemented, and being an ordinary matrix calculus it is

more transparent and versatile. As an example of the latter we in Section 4 implement the

combination of functional and multivariate observations.

3.1 Cholesky calculus

Let dimensions d1, . . . , dp ∈ N, b1, . . . , bp ∈ N, and q ∈ N be given. For parameters α =

{αj}pj=1 ∈ ⊕
p
j=1Rdj×bj , β = {βj}pj=1 ∈ ⊕

p
j=1Rdj×q, γ = {γj}pj=1 ∈ ⊕

p
j=1Rbj×q we introduce

the lower triangular block matrix Lmat(α, β, γ) by

Lmat(α, β, γ) =
{

1i=jαj + 1i>jβiγ
>
j

}p
i,j=1

∈ R(
∑p

j=1 dj)×(
∑p

j=1 bj).

The remaining of this section collects results providing a toolbox for matrix manipulations and

computations within the class of Lmat-matrices. These computations have linear complexity

in the length p of the time series, and use standard matrix computations in dimension dj of
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the response. Thus, the computations are very efficient for long time series in relatively low

dimensions. The results are formulated in terms of parameters

α = {αj}pj=1 ∈ ⊕
p
j=1R

dj×bj , β = {βj}pj=1 ∈ ⊕
p
j=1R

dj×q, γ = {γj}pj=1 ∈ ⊕
p
j=1R

bj×q,

α̃ = {α̃j}pj=1 ∈ ⊕
p
j=1R

d̃j×b̃j , β̃ = {β̃j}pj=1 ∈ ⊕
p
j=1R

d̃j×q̃, γ̃ = {γ̃j}pj=1 ∈ ⊕
p
j=1R

b̃j×q̃.

If the dimensions of the stacked matrices comply with a given matrix operation, then this

operation is defined element-wise in the obvious way, e.g. βγ> = {βjγ>j }pj=1 ∈ ⊕
p
j=1Rdj×bj .

Similarly, if the row dimensions match up, then element-wise column concatenation β|β̃ is

defined by

β|β̃ =
{
βj |β̃j

}p
j=1
∈ ⊕pj=1R

dj×(q+q̃).

In the arithmetic hierarchy, column concatenation is performed after multiplication and ad-

dition unless specified otherwise by inserting parenthesis. The definition of the Lmat-matrices

implies that Lmat(α, 0, 0) is block diagonal, and for matrices with block-wise conformable

dimensions we immediately have multiplication formulae like

Lmat(α, 0, 0) Lmat(α̃, β̃, γ̃) = Lmat(αα̃, αβ̃, γ̃).

The following proposition motivates the naming Cholesky calculus. Thus, the proposition

provides a recursive computation for the Cholesky decomposition of sum of positive definite

matrices. As a consequence of this we can keep all computations within the class of lower

triangular factorizable matrices.

Proposition 1. Assume that αj is invertible for every j. Then we have

Lmat(αα
>, 0, 0) + Lmat(βγ

>, β, γ) Lmat(βγ
>, β, γ)>= Lmat(αδ, β, γ̃) Lmat(αδ, β, γ̃)>,

where recursively for j = 1, . . . , p, with u0 = ũ0 = 0q×q ∈ Rq×q,

uj = uj−1 + γ>j γj ,

δj = cholesky
(

Idj +α−1j βj
(
uj − ũj−1

)
β>j α

−1,>
j

)
, γ̃j = δ−1j α−1j βj

(
uj − ũj−1

)
,

ũj = ũj−1 + γ̃>j γ̃j .

Similarly,

Lmat(α
>α, 0, 0) + Lmat(βγ

>, β, γ)> Lmat(βγ
>, β, γ) = Lmat(ζα, β̃, γ)> Lmat(ζα, β̃, γ),

where recursively for j = p, . . . , 1, with vp+1 = ṽp+1 = 0q×q ∈ Rq×q,

vj = vj+1 + β>j βj ,

ζj =

(
cholesky

(
Idj +α−1,>j γj

(
vj − ṽj+1

)
γ>j α

−1
j

))>
, β̃j = ζ−1,>j α−1,>j γj

(
vj − ṽj+1

)
,

ṽj = ṽj+1 + β̃>j β̃j .

In these recursions uj − ũj and vj − ṽj are positive semidefinite for every j. In particular, δj
and ζj are well defined and invertible for every j.
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Proof. Define u0 = ũ0 = 0q×q and

uj =

j∑

k=1

γ>k γk, ũj =

j∑

k=1

γ̃>k γ̃k.

Identifying the (j, j)’th, respectively, the (j, j+1)’th block elements of the left and right hand

side of the first equation give

αjα
>
j + βjujβ

>
j = αjα

>
j + βj

( j∑

k=1

γ>k γk

)
β>j

= αjδjδ
>
j αj + βj

( j−1∑

k=1

γ̃>k γ̃k

)
β>j = αjδjδ

>
j α
>
j + βj ũj−1β>j ,

βjujβ
>
j+1 = βj

( j∑

k=1

γ>k γk

)
β>j+1

= αjδj γ̃jβ
>
j+1 + βj

( j−1∑

k=1

γ̃>k γ̃k

)
β>j+1 = αjδj γ̃jβ

>
j+1 + βj ũj−1β>j+1,

which implies the formulae for δj and γ̃j . For the second equation we define vp+1 = ṽp+1 =

0q×q and

vj =

p∑

k=j

β>k βk, ṽj =

p∑

k=j

β̃>k β̃k.

Identifying the (j, j)’th, respectively, the (j, j−1)’th block elements of the left and right hand

side of the first equation give

α>j αj + γjvjγ
>
j = α>j αj + γj

( p∑

k=j

β>k βk

)
γ>j

= α>j ζ
>
j ζjαj + γj

( p∑

k=j+1

β̃>k β̃k

)
γ>j = α>j ζ

>
j ζjαj + γj ṽj+1γ

>
j ,

γjvjγ
>
j−1 = γj

( p∑

k=j

β>k βk

)
γ>j−1

= α>j ζ
>
j β̃jγ

>
j−1 + γj

( p∑

k=j+1

β̃>k β̃k

)
γ>j−1 = α>j ζ

>
j β̃jγ

>
j−1 + γj ṽj+1γ

>
j−1,

which implies the formulae for ζj and β̃j .

The formulae stated above require that δj and ζj are well defined and invertible for every j.

This follows if uj− ũj and vj− ṽj are positive semidefinite for every j. Since the formulae are
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derived recursively we are allowed to prove this by induction using the stated formulae. Below

we do this for the u’s, and the proof for the v’s is similar going backwards from j = p+ 1 to

j = 1.

We have that u0−ũ0 = 0q×q is positive semidefinite. Now let j be given and assume that uj−1−
ũj−1 is positive semidefinite. Then uj − ũj−1 also is positive semidefinite. Let (uj − ũj−1)1/2
be the positive semidefinite square root, and let UDV > be the singular value decomposition

of βj(uj − ũj−1)1/2. Then we have

γ̃>j γ̃j = (uj − ũj−1)β>j α−1,>j δ−1,>j δ−1j α−1j βj(uj − ũj−1)

= (uj − ũj−1)1/2V D>U>α−1,>j

(
Idj +α−1j UDV >V D>U>α−1,>j

)−1
α−1j UDV >(uj − ũj−1)1/2

= (uj − ũj−1)1/2V D>
(
U>αjα>j U +DD>

)−1
DV >(uj − ũj−1)1/2

≤ uj − ũj−1,

where the inequality is in the sense of positive semidefinite matrices. This gives ũj = ũj−1 +

γ̃>j γ̃j ≤ uj as required for the induction step.

Remark 4. If Proposition 1 is stated in terms of α−1, then we see that this also works in a

limit with singular αj’s. This will be used later when computing the conditional variances in

a Gaussian state space model.

The following proposition shows that the class of lower triangular factorizable matrices con-

stitutes a matrix algebra. We also show how the application of this matrix algebra on stacked

matrices x = {xj}pj=1 ∈ ⊕
p
j=1Rbj×N can be computed in linear time. Here N ∈ N can be

interpreted as the number of observations.

Proposition 2. For fixed dimensions d1, . . . , dp ∈ N and b1, . . . , bp ∈ N, the class of lower

triangular factorizable matrices with free q ∈ N is an additive matrix group with

−Lmat(α, β, γ) = Lmat(−α,−β, γ),

Lmat(α, β, γ) + Lmat(α̃, β̃, γ̃) = Lmat(α+ α̃, β|β̃, γ|γ̃).

The left application of Lmat(α, β, γ) on x = {xj}pj=1 ∈ ⊕
p
j=1Rbj×N , that is

y = {yj}pj=1 = Lmat(α, β, γ)x ∈ ⊕pj=1R
dj×N ,

can be computed recursively for j = 1, . . . , p by

u0 = 0q×N , yj = αjxj + βjuj−1, uj = uj−1 + γ>j xj .

The right application of Lmat(α, β, γ) on x = {xj}pj=1 ∈ ⊕
p
j=1Rdj×N , that is

y> = {y>j }pj=1 = x> Lmat(α, β, γ) ∈ ⊕pj=1R
N×bj ,
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can be computed recursively for j = p, . . . , 1 by

vp+1 = 0q×N , yj = α>j xj + γjvj+1, vj = vj+1 + β>j xj .

In the remaining statements we assume that bj = dj for j = 1, . . . , p. Then the matrix group

is closed under matrix multiplication. In particular, Lmat(α, β, γ) Lmat(α̃, β̃, γ̃) equals

Lmat

(
αα̃, β|αβ̃ − βγ>β̃ − β B(γ>β̃), α̃>γ + γ̃ B(β̃>γ)|γ̃

)
,

where the backward cumulative sum operator B is defined by

B(z) =

{
1j<p

p∑

i=j+1

zi

}p

j=1

, z = {zj}pj=1.

The matrix Lmat(α, β, γ) is invertible if and only if αj ∈ Rdj×dj is invertible for j = 1, . . . , p.

In this case, the left inverse application of Lmat(α, β, γ) on y = {yj}pj=1 ∈ ⊕
p
j=1Rdj×N , that

is

x = {xj}pj=1 = Lmat(α, β, γ)−1y ∈ ⊕pj=1R
dj×N ,

can be computed recursively for j = 1, . . . , p by

u0 = 0q×N , xj = α−1j
(
yj − βjuj−1

)
, uj = uj−1 + γ>j xj .

And the right inverse application of Lmat(α, β, γ) on y = {yj}pj=1 ∈ ⊕
p
j=1Rdj×N , that is

x> = {x>j }pj=1 = y> Lmat(α, β, γ)−1 ∈ ⊕pj=1R
N×dj ,

can be computed recursively for j = p, . . . , 1 by

vp+1 = 0q×N , xj = α−1,>j

(
yj − γjvj+1

)
, vj = vj+1 + β>j xj .

Moreover, if we also have that Iq −β>j α−1,>j γj is invertible for j = 2, . . . , p − 1, then the

matrix inverse is also a lower triangular factorizable matrix. In particular, Lmat(α, β, γ)−1 =

Lmat(α
−1, β̃, γ̃), where u1 = Iq and recursively for j = 2, . . . , p,

γ̃j−1 = α−1,>j−1 γj−1u
−1
j−1, uj = uj−1(Iq − β>j α−1,>j γj), β̃j = −α−1j βju

>
j−1.

Proof. The formulae for the additive structure follow by straightforward calculations. To

compute the multiplicative structure we start by noting the immediate formulae

Lmat(α, 0, 0) Lmat(α̃, 0, 0) = Lmat(αα̃, 0, 0),

Lmat(α, 0, 0) Lmat(0, β̃, γ̃) = Lmat(0, αβ̃, γ̃),

Lmat(0, β, γ) Lmat(α̃, 0, 0) = Lmat(0, β, α̃
>γ).
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Moreover, we have that Lmat(0, β, γ) Lmat(0, β̃, γ̃) equals

Lmat(βγ
>, β, γ) Lmat(0, β̃, γ̃)− Lmat(0, βγ

>β̃, γ̃),

where the first term applied on x ∈ R(d×q) may be rewritten as

Lmat(βγ
>, β, γ) Lmat(0, β̃, γ̃)x

=

{
βi

i∑

j=1

γ>j β̃j1j>1

j−1∑

k=1

γ̃>k xk

}p

i=1

=

{
1i>1βi

i−1∑

k=1

p∑

j=k+1

γ>j β̃j γ̃
>
k xk

}p

i=1

−
{

11<i<p βi

i−1∑

k=1

p∑

j=i+1

γ>j β̃j γ̃
>
k xk

}p

i=1

= Lmat

(
0, β, γ̃ B(β̃>γ)

)
x− Lmat

(
0, β B(γ>β̃), γ̃

)
x.

Here the second equality sign follows by interchanging and rewriting the double sums ap-

pearing in the cumulative sums. Thus, using linearity we have that Lmat(α, β, γ) Lmat(α̃, β̃, γ̃)

equals

Lmat

(
αα̃, β|αβ̃ − βγ>β̃ − β B(γ>β̃), α̃>γ + γ̃ B(β̃>γ)|γ̃

)
.

For the left application y = {yj}pj=1 = Lmat(α, β, γ){xj}pj=1 we define u0 = 0q×q and uj =∑j
k=1 γ

>
k xk. This gives the stated recursions, that is

yj = αjxj + 1j>1

j−1∑

k=1

βjγ
>
k xk = αjxj + βjuj−1, uj = uj−1 + γ>j xj .

In case that bj = dj and αj is invertible for all j = 1, . . . , p the same definition of the uj ’s

gives

xj = α−1j
(
yj − βjuj−1

)
, uj = uj−1 + γ>j xj .

For the right application y> = {y>j }pj=1 = {x>j }pj=1 Lmat(α, β, γ) we define v>p+1 = 0q×q and

v>j =
∑p

k=j x
>
k βk. This gives the stated recursions, that is

y>j = x>j αj + 1j<p

p∑

k=j+1

x>k βkγ
>
j = x>j αj + v>j+1γ

>
j , v>j = v>j+1 + x>j βj .

In case that bj = dj and αj is invertible for all j = 1, . . . , p the same definition of the vj ’s

gives

x>j =
(
yj − v>j+1γ

>
j

)
α−1j , v>j = v>j+1 + x>j βj .

Concerning the multiplicative inverse, we observe that matrix elements in α = {αj}pj=1 ∈
⊕pj=1Rdj×dj are the diagonal elements in the block matrix representation of Lmat(α, β, γ).
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Hence Lmat(α, β, γ) is invertible if and only if αj are invertible for all j = 1, . . . , p. However,

to show that the inverse also is a lower triangular factorizable matrix and to derive the

inversion formula requires more work.

Using [15, Theorem 10] the matrix inverse can also be stated in terms of a product integral

solving an inhomogeneous Volterra integral equation. This leads to the representation

Lmat(α, β, γ)−1 = Lmat(α
−1,−α−1βu>† , α−1,>γu−1),

where u† =
{

1i=1 · Iq + 1i>1 · ui−1
}p
i=1

, and

u =

{ i∏

j=1

(
Iq − β>j α−1,>j γj

)}p

i=1

∈ (Rq×q)p

with factors ordered from the right to the left with increasing indices. This representation is

easily restated as the recursive formula stated in the proposition.

The following two propositions are useful for computing conditional variances.

Proposition 3. Suppose that bj = dj for j = 1, . . . , p. Then the i’th diagonal block element

in the block matrix Lmat(α, β, γ)−1 Lmat(α, β, γ)−1,> is given by

α−1i α−1,>i + α−1i βiξi−1β>i α
−1,>
i ,

where ξ0 = 0q×q, and recursively for i = 1, . . . , p− 1,

ξi =
(

Iq −γ>i α−1i βi
)
ξi−1

(
Iq −γ>i α−1i βi

)>
+ γ>i α

−1
i α−1,>i γi.

Proof. For every i = 1, . . . , p let y[i] = {1j=i Idj}pj=1 and consider the corresponding right

inverse application of Lmat(α, β, γ), that is x[i] = {x[i]j }
p
j=1 = Lmat(α, β, γ)−1,>y[i]. Using that

x
[i]
j = 0dj for j > i we have, that the i’th diagonal block element of Lmat(α, β, γ)−1 Lmat(α, β, γ)−1,>

is given by
i∑

j=1

x
[i],>
j x

[i]
j .

Proposition 2 states a formula for the right inverse application. The quantities v
[i]
j , here also

indexed by i, are given by v
[i]
j = 0q for j > i and

v
[i]
j = v

[i]
j+1 + β>j x

[i]
j

= v
[i]
j+1 + β>j α

−1,>
j

(
y
[i]
j − γjv

[i]
j+1

)

= β>j α
−1,>
j y

[i]
j +

(
Iq −β>j α−1,>j γj

)
v
[i]
j+1.
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This gives v
[i]
i = β>i α

−1,>
i , and for j < i we have

v
[i]
j =

( i−1∏

k=j

(
Iq −β>k α−1,>k γk

))
β>i α

−1,>
i .

This gives x
[i]
i = α−1,>i , and for j < i we have

x
[i]
j = −α−1,>j γjv

[i]
j+1 = −α−1,>j γj

( i−1∏

k=j+1

(
Iq −β>k α−1,>k γk

))
β>i α

−1,>
i .

Introducing ξ0 = 0q, the definition below, and the associated recursion

ξi−1
def
=

i−1∑

j=1

( i−1∏

k=j+1

(
Iq −β>k α−1,>k γk

))>
γ>j α

−1
j α−1,>j γj

( i−1∏

k=j+1

(
Iq −β>k α−1,>k γk

))

=
(

Iq −β>i−1α−1,>i−1 γi−1
)>
ξi−2

(
Iq −β>i−1α−1,>i−1 γi−1

)
+ γ>i−1α

−1
i−1α

−1,>
i−1 γi−1

we recover the claimed formula for the i’th diagonal block element

i∑

j=1

x
[i],>
j x

[i]
j = α−1i βiξi−1β>i α

−1,>
i + α−1i α−1,>i .

Proposition 4. Suppose that dj = bj = q for j = 1, . . . , p, and let A be the lower triangular

matrix Lmat

(
{Iq}pj=1, {Iq}

p
j=1, {Iq}

p
j=1

)
. Let ξ0 = 0q×q, and let ξi ∈ Rq×q be the i’th diagonal

block element in the block matrix

ALmat(α, β, {Iq}pj=1)
−1 Lmat(α, β, {Iq}pj=1)

−1,>A>.

Then we have, recursively for i = 1, . . . , p,

ξi =
(

Iq −α−1i βi
)
ξi−1

(
Iq −α−1i βi

)>
+ α−1i α−1,>i .

Proof. We start by rewriting ALmat(α, β, {Iq}pj=1)
−1 Lmat(α, β, {Iq}pj=1)

−1,>A> as

(
Lmat(α, β, {Iq}pj=1)A

−1
)−1(

Lmat(α, β, {Iq}pj=1)A
−1
)−1,>

.

It is easily verified that A−1 is a lower triangular block matrix with Iq’s on the diagonal,

− Iq’s on the first lower diagonal, and 0q×q’s elsewhere. This implies

Ã
def
= Lmat

(
α, β, {Iq}pj=1

)
A−1 =

{
1j=iαi + 1j=i−1(βi − αi)

}p
i,j=1

.
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The proof now continuous along the lines of the proof for Proposition 3 using x[i] = Ã−1,>y[i]

with y[i] = {1j=i Iq}pj=1. The relation between x[i] and y[i] is given by x
[i]
j = 0q for j > i, and

y
[i]
j

j≤i
= α>j x

[i]
j + 1j<p

(
βj+1 − αj+1

)>
x
[i]
j+1.

Solving this we find x
[i]
i = α−1,>i , and

x
[i]
j

j<i
= α−1,>j

(
y
[i]
j −

(
βj+1 − αj+1

)>
x
[i]
j+1

)
j<i
= α−1,>j

(
αj+1 − βj+1

)>
x
[i]
j+1

j<i
= α−1,>j

i∏

k=j+1

(
Iq −β>k α−1,>k

)
.

Thus, we have ξ1 = x
[1],>
1 x

[1]
1 = α−11 α−1,>1 and the recursion for i = 2, . . . , p,

ξi =

i∑

j=1

x
[i],>
j x

[i]
j

=

i−1∑

j=1

( i∏

k=j+1

(
Iq −β>k α−1,>k

))>
α−1j α−1,>j

( i∏

k=j+1

(
Iq −β>k α−1,>k

))
+ α−1i α−1,>i

=
(

Iq −α−1i βi
)
ξi−1

(
Iq −α−1i βi

)>
+ α−1i α−1,>i .

4 Simultaneous modelling of phase and amplitude variation

In the following we develop a simultaneous model for phase and amplitude variation in mul-

tivariate functional data Xn(t) ∈ RD sampled at J discrete time points t1 < . . . < tJ . Before

describing the details of this construction in section 4.1 we first list the parameters used in

the model, and the random variables used as the stochastic basis. In section 4.3 we derive

formulae for conditional means and variances, and develop an EM-algorithm for estimation

of model parameters.

The population mean for Xn(t) is modelled via a continuously differentiable functional basis

Φ: R→ RD×K and design matrices Ξn ∈ RK×p, and parametrized by θ ∈ Rp. In applications

Φ could be a spline or Fourier basis as appropriate.

Parameters Let q ∈ N be the dimension of latent stochastic processes describing phase

and amplitude variation (we allow phase and amplitude variation to be correlated). Let there

be given jointly independent random variables

Unj ∼ ND(0, αα>), Vnj ∼ Nq(0, γ>j γj)
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for n = 1, . . . , N and j = 1, . . . , J . Here α ∈ RD×D and γj ∈ Rq×q provides Cholesky

parametrizations of variance terms. Finally, the model also includes regression parameters

and the latent variables, βphasej ∈ R1×q, βamp
j ∈ RD×q.

For notational convenience we introduce the cumulated processes

Znj =

j∑

i=1

Vni ∈ Rq.

Population means are modelled through the spline basis Φ, the known design matrix Ξ ∈
RK×p, and unknown parameters θ ∈ Rp, such that the mean signal at time tj is

Φ(tj + βphasej Znj)Ξnθ

4.1 Phase and amplitude in functional data

Olsen et al. [20] propose a simultaneous modelling of phase and amplitude variation given

observations of multivariate Gaussian processes at J prefixed time points t1 < . . . < tJ , that

is,

signal
(
phasen(tj)

)
+ amplituden(tj) + errornj

for n = 1, . . . , N and j = 1, . . . , J . Here the random phase functions should be increasing, and

in [20] these functions are modelled to be stochastically independent of the serially correlated

amplitude deviations. However, Hadjipantelis et al. [22, 23] argue that the phase and the

amplitude variation may be correlated in some situations. Below we propose a simultaneous

model for phase and amplitude variation following the approach of [20], but which allow for

correlated phase and amplitude variations. We propose to estimate in the model following the

approach of [20]. That is, a first order approximation around the max-posterior of phasen(tj),

with alternating of updating the approximation and updating parameters using the EM

algorithm. We remark that the MCA framework allow us to do computations in linear time

in the number of data points NJ .

For each n = 1, . . . , N let there be given a vector τn = {τnj}Jj=1 ∈ RJ . The vectors τn
parametrize the predicted warping functions via deviations from the time points t = {tj}Jj=1,

that is for the n’th curve the time point tj is shifted to tj + τnj . Restrictions on the warping

functions are reflected by restrictions on the τn’s. Thus, that the slope of warping functions lies

in the interval [smin, smax] with smin < 1 < smax correspond to the following box-constraints

for j = 1, . . . , J − 1,

(smin − 1) · (tj+1 − tj) ≤ τn,j+1 − τnj ≤ (smax − 1) · (tj+1 − tj).

The phase and the amplitude at time tj for the n’th curve are given by

phase = tj + βphasenj Znj , amplitude = βamp
nj Znj .
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Using the same Z allows for correlation between phase and amplitude; in particular phase

and amplitude must be correlated if q = 1. However if we let

Znj =

(
Zphase
nj

Zamp
nj

)
, βphasenj =

(
β̃phasenj 0

)
, βamp

nj =
(

0 β̃amp
nj

)

with Cov(Zphase
nj , Zamp

nj ) = 0, then phase and amplitude are independent.

Concerning the observation Xn(tj) = xnj we invoke the first order Taylor approximation of

the signal part around tj + τnj , which gives

Xn(tj) = Φ(tj + βphasej Znj)Ξnθ + βamp
j Znj + Unj

≈ Φ(tj + τnj)Ξnθ + Φ̇(tj + τnj)(β
phase
j Zphase

nj − τnj)Ξnθ + βamp
j Zamp

nj + Unj ,

where Φ̇ is the derivative of Φ.

This approximation of the multivariate functional data gives:

Xτn
nj=Φ(tj + τnj)Ξnθ + Φ̇(tj + τnj)Ξnθ

(
βphasej Znj − τnj

)
+ βamp

j Znj + Unj

=[Φ(tj + τnj)− τnjΦ̇(tj + τnj)]Ξnθ +
(
Φ̇(tj + τnj)ΞnθXβ

phase
j + βamp

j

)
Znj + Unj

4.2 Prediction of phase deviation

The phase deviation parameters τnj are found by minimising the posterior likelihood, subject

to the previously introduced box-constraints.

By concatenating the observations and the phase deviations we can formulate the posterior

likelihood in an MCA framework for a given τ :

X̃nj =

(
Xnj

τnj

)
, β̃j =

(
βamp
j βphasej

)
, γ̃j = γj ,

α̃α̃> =

(
αα> 0

0 0

)
, E[X̃nj ] =

(
Φ(tj + τnj)Ξnθ

0

)
(5)

The likelihood of this can be calculated in linear time using relevant propositions. Note that

this is a non-linear optimization problem as we optimize in τ .

4.3 Conditional means and variances

In order to apply the apply EM algorithm, expressions for conditional means and variances

are needed. As the approximation is a linear Gaussian model, this can be done only using

linear algebra.
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Theorem 1. Assume that α is invertible. Then the random matrices Vn and Xτn
n have a

joint multivariate normal distribution.

The mean structure is given by

E[Vnj ] = 0q, E[Xτn
n ] = Ξτnn θ

with parameter θ ∈ Rp and design matrix Ξτnn ∈ ⊕Jj=1RD×p given by

Ξτnnj=
(
Φ(tj + τnj)Ξn − Φ̇(tj + τnj)Ξnτnj

)

The covariance structure is given by

Var(Vn) = Lmat(γ
>γ, 0, 0),

Cov(Xτn
n , Vn) = Lmat(βγ

>γ, β, γ>γ),

Var(Xτn
n ) = Lmat(αδ, β, γ̃) Lmat(αδ, β, γ̃)>,

where we for notational convenience have suppressed the dependency of β, γ̃ and δ on θ, τn
and n in the notation. Here the Cholesky decomposition α = {αj}Jj=1 ∈ ⊕Jj=1RD×D of the

error variance is given by

αj=α

the random effect design matrix β = {βj}Jj=1 ∈ ⊕Jj=1RD×q parametrized by βphasej ∈ R1×q and

βamp
j ∈ RD×q for j = 1, . . . , J is given by

βj=Φ̇(tj + τnj)Ξnθβ
phase
j + βamp

j .

Furthermore, δ = {δj}Jj=1 ∈ ⊗Jj=1RD×D and γ̃ = {γ̃j}Jj=1 ∈ ⊗Jj=1RD×q are given by the

forward computations initiated by u0 = ũ0 = 0q×q and recursively for j = 1, . . . , J ,

uj = uj−1 + γ>j γj ,

δj = cholesky
(

ID +α−1j βj(uj − ũj−1)β>j α−1,>j

)
,

γ̃j = δ−1j α−1j βj(uj − ũj−1),
ũj = ũj−1 + γ̃>j γ̃j .

Proof. The stochastic process Xτn
n can be represented as a Gaussian state space model

Xτn
nj = Ξτnnjθ + βjZnj + Unj . (6)

The joint multivariate normal distribution follows since the random matrices Vn and Xτn
n are

build by linear operations from the same underlying normal random variables. Hereby the
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mean structure follows immediately, and concerning the covariance structure we have

Var(Vn) =
{

1i=jγ
>
i γi

}J
i,j=1

= Lmat(γ
>γ, 0, 0),

Cov(Xτn
n , Vn) =

{
1i≥jβiγ>j γj

}J
i,j=1

= Lmat(βγ
>γ, β, γ>γ),

Var(Xτn
n ) =

{
1i=jαiα

>
i + βi

(min{i,j}∑

k=1

γ>k γk

)
β>j

}J

i,j=1

= Lmat(αα
>, 0, 0) + Lmat(βγ

>, β, γ) Lmat(βγ
>, β, γ)>

= Lmat(αδ, β, γ̃) Lmat(αδ, β, γ̃)>,

where the formulae for δ and γ̃ follow by Proposition 1.

Using the Cholesky decomposition we have the following result:

Corollary 1. The log-likelihood ln given the observation of Xτn
n may be computed in linear

time via

ln =

J∑

j=1

log det(αjδj) +
1

2

J∑

j=1

z>njznj ,

{znj}Jj=1 = Lmat(αδ, β, γ̃)−1
(
Xτn
n − Ξτnn θ

)
.

Theorem 2. The conditional mean E[Vn|Xτn
n ] of Vn ∈ Rq×J given Xτn

n ∈ ⊕Jj=1RD is given

by

Lmat(βγ
>γ, β, γ>γ)> Lmat(αδ, β, γ̃)−1,> Lmat(αδ, β, γ̃)−1(Xτn

n − Ξτnn θ).

Thereafter, the conditional mean of Zn can be computed recursively by

E[Znj |Xτn
n ] = E[Zn,j−1|Xτn

n ] + E[Vnj |Xτn
n ].

The conditional variances are given by

Var[Vnj |Xτn
n ] = γ>j ζ

−1
j β̃jξj−1β̃>j ζ

−1,>
j γj + γ>j ζ

−1
j ζ−1,>j γj , Var[Znj |Xτn

n ] = ξj .

Here ζj , β̃j ∈ Rq×q arise from the backward computation given by vJ+1 = ṽJ+1 = 0q×q, and

recursively for j = J, . . . , 1,

vj = vj+1 + β>j α
−1,>
j α−1j βj ,

ζj =

(
cholesky

(
Iq +γj(vj − ṽj+1)γ

>
j

))>
,

β̃j = ζ−1,>j γj(vj − ṽj+1),

ṽj = ṽj+1 + β̃>j β̃j ,
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and the variances are found along the forward computation of ξj ∈ Rq×q given by ξ0 = 0q×q,
and recursively for j = 1, . . . , J ,

ξj =
(

Iq −γ>j ζ−1j β̃j
)
ξj−1

(
Iq −γ>j ζ−1j β̃j

)>
+ γ>j ζ

−1
j ζ−1,>j γj .

Proof. The formula for the conditional mean follows by inserting the representations of the

variance and covariance terms in

E[Vn|Xτn
n ] = Cov(Vn, X

τn
n )Var(Xτn

n )−1(Xτn
n − Ξτnn θ).

Concerning the conditional variances we choose γ̆ = {γ̆j}Jj=1 such that γ̆j ∈ Rq×q has full

rank and approximates γj . Let

V̆j ∼ Nq(0q, γ̆>j γ̆j), for j = 1, . . . , J ,

be independent random variables, set Z̆0 = 0q ∈ Rq, and let the random variables Z̆ =

{Z̆j}Jj=1 ∈ Rq×J and X̆ = {X̆j}Jj=1 ∈ ⊕Jj=1RD be given by

Z̆j = Z̆j−1 + V̆j , X̆j = Ξτnnjθ + βθ,τnj Z̆j + Unj .

Then Var[Xτn
n ] and Var[X̆] both have full rank, and since Var[Xτn

n ] ≈ Var[X̆] we have

Var[Vn|Xτn
n ] ≈ Var[V̆ |X̆]. The conditional variance Var[V̆ |X̆] is more amenable to matrix

manipulations since the matrices γ̆j ∈ Rq×q are invertible. Using the Woodbury inversion

formula, inserting the terms

Var(V̆ ) = Lmat(γ̆
>γ̆, 0, 0), Var[X̆|V̆ ] = Var(Ū) = Lmat(αα

>, 0, 0),

and using the multiplication formulae for Lmat-matrices, we find

Var[V̆ |X̆] = Var(V̆ )− Cov(V̆ , X̆)Var(X̆)−1Cov(X̆, V̆ )

=
(

Var(V̆ )−1 + Var(V̆ )−1Cov(V̆ , X̆)Var[X̆|V̆ ]−1Cov(X̆, V̆ )Var(V̆ )−1
)−1

=
(

Lmat(γ̆
−1γ̆−1,>, 0, 0) + Lmat

(
α−1β, α−1β, {Iq}Jj=1

)>
Lmat

(
α−1β, α−1β, {Iq}Jj=1

))−1

≈
(

Lmat

(
ζγ̆−1,>, β̃, {Iq}Jj=1

)>
Lmat

(
ζγ̆−1,>, β̃, {Iq}Jj=1

))−1

= Lmat

(
ζγ̆−1,>, β̃, {Iq}Jj=1

)−1
Lmat

(
ζγ̆−1,>, β̃, {Iq}Jj=1

)−1,>
,

where ζ, β̃ ∈ ⊕Jj=1Rq×q are given by the backward equations stated in the theorem with γ

replaced by γ̆. Here we have used Proposition 1 and the approximation γ̆j ≈ γj . The forward

equations now follow by Proposition 3 and 4, and by using γ̆j ≈ γj again. Finally, since the

approximations can be chosen to be arbitrarily good the theorem follows.
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4.4 Estimation via the Expectation-Maximization algorithm

To estimate the parameters (α, γ, βphase, βamp, θ) given the observations Xτn
1 , . . . , Xτn

N we

maximize the likelihood using the EM-algorithm, where the associated Vn = {Vnj}Jj=1 ∈ Rq×J
are treated as missing.

Recall that the likelihood computations rely on the Taylor approximations Xn(tj) ≈ Xτn
nj for

j = 1, . . . , J , where

Xτn
nj = Φ(tj + τnj)Ξnθ + Φ̇(tj + τnj)

(
µnj + βphasej Znj − τnj

)
ΞnθX + βamp

j Znj + UXnj

where τn has been chosen as the posterior maximum of Eq. 5; we roughly expect that τnj ≈
E[βphasej Znj |Xτn

n ].

To derive formulae for an EM-step we use the formulae for the conditional means and variances

given the observed variables Xτn
n stated in Theorem 2. These formulae can be computed

simultaneously in linear time using the recursion formulae stated in Proposition 2 with p = J .

The update formulae stated in theorem 3 below have intra-dependencies within the param-

eters. To resolve this we propose to use the conditional expectation-maximization algorithm

[19]. Following that theorem, we update the parameters in turn, where the present values are

used for the parameters that have not yet been updated.

Theorem 3. Let P be the projection on the space of positive semi-definite D-dimensional

matrices that matches the structural assumption on αα>, that is, whether we are doing PCA,

PLS, FA, CCA or no restriction. Furthermore, suppose that the conditional means and vari-

ances are computed at the present parameter values.

The EM-update for θ is given by

θ̂ =

(
N∑

n=1

J∑

j=1

(
Ξ>n (Φ(tj + τnj) + (β̂phasej E[Znj |Xτn

n ]− τnj)Φ̇(tj + τnj))
>

(α̂α̂>)−1(Φ(tj + τnj) + (β̂phasej E[Znj |Xτn
n ]− τnj))Φ̇(tj + τnj))Ξn

+Ξ>n Φ̇(tj + τnj)
>(α̂α̂>)−1Φ̇(tj + τnj)Ξn · β̂phasej Var[Znj |Xτn

n ]β̂phase,>j

))−1

·
(

N∑

n=1

J∑

j=1

(
Ξ>n (Φ(tj + τnj) + (β̂phasej E[Znj |Xτn

n ]− τnj)Φ̇(tj + τnj))
>

(α̂α̂>)−1
(
Xnj − β̂amp

j E[Znj |Xτn
n ]
)

−Ξ>n Φ̇(tj + τnj)
>(α̂α̂>)−1β̂amp

j Var[Znj |Xτn
n ]β̂phase,>j

))
.
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The EM-update for βamp
j for j = 1, . . . , J is given by

β̂amp
j =

(
N∑

n=1

((
Xnj − Φ(tj + τnj)Ξnθ̂ + Φ̇(tj + τnj)Ξnθ̂(τnj − βphasej E[Znj |Xτn

n ])
)
· E[Znj |Xτn

n ]>

+Φ̇(tj + τnj)Ξnθ̂β̂
phase
j Var[Znj |Xτn

n ]

))

·
(

N∑

n=1

(
Var[Znj |Xτn

n ] + E[Znj |Xτn
n ]E[Znj |Xτn

n ]>
))−1

.

The EM-update for βphasej for j = 1, . . . , J is given by

βphasej =

(
N∑

n=1

(
θ̂>Ξ>n Φ̇(tj + τnj)

>(α̂α̂>)−1

·
((
Xnj − Φ(tj + τnj)Ξnθ̂ + Φ̇(tj + τnj)Ξnθ̂τnj − βamp

j E[Znj |Xτn
nj ]
)

E[Znj |Xτn
nj ]
>
)

−β̂amp
j Var[Znj |Xτn

n ]

))

(
N∑

n=1

(
E[Znj |Xτn

n ]E[Znj |Xτn
n ]> + Var[Znj |Xτn

n ]
)
·

(
θ̂>Ξ>n Φ̇(tj + τnj)

>(α̂α̂>)−1Φ̇(tj + τnj)Ξnθ̂

))−1

The EM-update for α is given by

α̂α̂> = P
(

1

NJ

N∑

n=1

J∑

j=1

(
ÂnjVar[ZXnj |Xτn

n ]Â>nj + R̂njR̂
>
nj

))
,

where

R̂nj = Xnj − Φ(tj + τnj)Ξ
X
n θ̂ + Φ̇(tj + τnj)Ξnθ̂Xτnj − ÂnjE[Znj |Xτn

n ]

Ânj = Φ̇(tj + τnj)Ξnθ̂β̂
phase
j + β̂amp

j .

The EM-update for γj for j = 1, . . . , J is given by

γ̂>j γ̂j =
1

N

N∑

n=1

(
Var[Vnj |Xτn

n ] + E[Vnj |Xτn
n ]E[Vnj |Xτn

n ]>
)
.
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Proof. Twice the joint negative log likelihood given the approximation and the latent param-

eters (Xτn
n , Vn)Nn=1 equals

NJ log det(αα>) +N
J∑

j=1

log det
(
γ>j γj

)

+

N∑

n=1

J∑

j=1

trace
[
(αα>)−1RnjR>nj

]

+
N∑

n=1

J∑

j=1

trace
[
(γ>j γj)

−1VnjV >nj
]
,

where we to shorten the notation have introduced

Rnj = Xnj − Φ(tj + τnj)Ξnθ + τnjΦ̇(tj + τnj)Ξnθ −AnjZnj
Anj = Φ̇(tj + τnj)Ξnθβ

phase
j + βamp

j

Thus, the conditional expectation of the joint negative log likelihood given the observations

Xτn
1 , . . . , Xτn

n is given by

NJ log det(αα>) +N
J∑

j=1

log det
(
γ>j γj

)

+

N∑

n=1

J∑

j=1

trace
[
(αα>)−1

(
AnjVar[Znj |Xτn

n ]A>nj + E[Rnj |Xτn
n ]E[Rnj |Xτn

n ]>
)]

+
N∑

n=1

J∑

j=1

trace
[
(γ>j γj)

−1(Var[Vnj |Xτn
n ] + E[Vnj |Xτn

n ]E[Vnj |Xτn
n ]>

)]
.

(7)

One EM-step may be found minimizing the conditional joint negative log likelihood given the

observations.

Formulae for updating parameters for α, and by that finding P, are described in Appendix

A.

Remark 5. For many applications it is necessary that the functional basis Φ(t) ∈ RD×K is

sufficiently rich for the modelling to be successful. This implies that the parameter dimension

p can become large, and a computational bottleneck can be the formation of the matrices

Φ(tj + τnj) and Ξn and the computation of their matrix product. However, if these matrices

have a tensor structure, then the computations can be streamlined. Suppose that there exist

row vectors φnj , φ̇nj ∈ R1×K0 and ξ ∈ R1×p0 such that

Φ(tj + τnj) = ID ⊗φnj , Φ̇(tj + τnj) = ID ⊗φ̇nj , Ξ = ID ⊗ IK0 ⊗ξn,
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which e.g. will be the case if full interactions are used between the coordinates of X(tj), the

coefficients of the functional basis, and the coefficients from the experimental design. Then

K = D ·K0 and p = D ·K0 · p0, and e.g.

J∑

j=1

Ξ>nΦ(tj + τnj)
>(αα>

)−1
Φ(tj + τnj)Ξn =

(
αα>

)−1 ⊗
J∑

j=1

φ>njφnj ⊗ ξ>n ξn.

Using expressions like this the EM-update for θ̂ may be rewritten as

θ̂ =

(
ID ⊗

N∑

n=1

J∑

j=1

φ>njφnj ⊗ ξ>n ξn
)−1

·
(

N∑

n=1

J∑

j=1

((
Xnj − β̂amp

j E[Znj |Xτn
n ]
)
⊗ φ>nj

−β̂amp
j Var[Znj |Xτn

n ]⊗ φ̇>nj
)
⊗ ξ>n

)
.

5 Application to lameness signals

In this section we fit an MCA model to N = 89 three dimensional acceleration signals from

trotting horses with induced lameness [24]. The signals are displayed in Figure 1. There are

J = 101 observation points per curve.

The 89 signals were collected from 8 different horses, and hence a random effect of horse is to

be expected. We will not model this, but we remark that comparing the conditional means

of the latent variables, i.e. E[Znj ] would serve as a good indicator of possible random effects.

We applied the proposed model with q = 3 latent components, and unstructured covariance

for αα>. We used a Fourier basis with p0 = 21 basis functions for each dimension as the

functional basis. Lameness was used as covariate; with five treatment groups this gave p = 5.

5.1 Preliminary results

Although likelihood values decreased in every iteration of our algorithm, the predictions

associated with phase variation did not converge in due time, so these results are preliminary.

Amplitude covariance Pointwise values of amplitude variances as functions of time are

shown in the lower panel of Figure 2 . Although the longitudinal signal has the sharpest peaks

in data, the estimated variances are clearly overestimated.

A novel feature of the MCA model is cross-correlations; results are shown in in the upper

panel of Figure 2. There is definitely some cross-covariance, but no clear pattern; the cross-

correlations change signs many times through the domain.
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Figure 1: Acceleration signals from trotting horses with induced lameness.
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Figure 3: Estimated means for each lameness group

Mean structure Due to the lack of warping effects in our preliminary results, estimated

population means are (and should be) close to the raw data means of the treatment groups;

results are shown in Figure 3.

Phase variation Predicted warping trajectories were all very close to zero, the maximal

deviation from the identity was 0.013. However, we still estimated phase variation at some

locations of the domain, see Figure 4. It is located around a few peaks which roughly corre-

sponds to the extremal values of the vertical signal; this in turn is associated with the take-off

and flight phases of the trotting horses.

6 Discussion

The Markov component analysis has a great potential as one of the few models for functional

data allowing both correlated multivariate responses and correlated phase and amplitude

variation. However, the large number of parameters associated with the flexible MCA struc-
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Figure 4: Estimated pointwise phase variation

ture is a challenge, and there is still work to be done in terms of the application of MCA.

Although we believe our algorithm to be correct, fitting our model to data was harder than

expected.

An interesting perspective is the application of a parametric structure on β similar to that of

θ. This could potentially make the estimation more robust while still making use of the Lmat

framework of Section 3.1.
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Appendix

A Updating coefficients for α

Here we consider different models for α and how to update parameters in an EM step; this in

turn defines P. Note that α only enters the expected likelihood value in formula (7) through:

NJ log det(αα>)

+
N∑

n=1

J∑

j=1

trace
[
(αα>)−1

(
AnjVar[Znj |Xτn

n ]A>nj + E[Rnj |Xτn
n ]E[Rnj |Xτn

n ]>
)]

(8)

If we define

S =
(
AnjVar[Znj |Xτn

n ]A>nj + E[Rnj |Xτn
n ]E[Rnj |Xτn

n ]>
)

(9)

we see that (S,NJ) is a sufficient statistic for αα>.

A.1 Unrestricted covariance

If we put no restriction on αα>, then (8) is minimised by αα> = 1
NJS.

A.2 pPCA

The (probabilistic) principal component analysis model assumes iid. covariance; αα> = σ2ID.

It is easily seen that (8) is minimised by σ2 = 1
NJD trace(S).

A.3 pCCA

We write βamp
j =

(
βamp
j,1

βamp
j,2

)
, where βamp

j,1 ∈ Rd1×q, βamp
j,2 ∈ Rd2×q with d1 + d2 = D. Then we

have

Xnj =

(
β1jZnj + U1

nj

β2jZnj + U2
nj

)
, U1

nj ∼ N(0,Ψ1), U2
nj ∼ N(0,Ψ2)

with U1
nj and U2

nj independent.

Thus αα> = N(0,

(
Ψ1 0

0 Ψ2

)
). Let S =

(
S11 S12
S21 S22

)
, Sij ∈ Rdi×dj . Then (8) is minimised

by:

Ψ̂k =
1

NJ
Sk, k = 1, 2
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A.4 FA

The assumption in the factor analysis model is: αα> = diag(σ21, σ
2
2, . . . , σ

2
D).

The minimiser of (8) is given by

σ̂2k =
1

NJ
diag(S)k, k = 1, . . . , D. (10)

A.5 PLS

The assumption is the partial least squares model is αα> =

(
σ21Id1 0

0 σ22Id2

)
, where d1+d2 =

D. Let S =

(
S11 S12
S21 S22

)
, Sij ∈ Rdi×dj

Then the minimiser of (8) is given by

σ̂21 = 1
NJd1

trace(S11), σ̂22 = 1
NJd2

trace(S22). (11)
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False discovery rates for functional data

Niels Lundtorp Olsen, Alessia Pini, Simone Vantini

Abstract

Since Benjamini and Hochberg introduced false discovery rates (FDR) in their seminal
paper (1995), this has become a very popular approach to the multiple comparisons
problem. An increasingly popular topic within Functional Data Analysis is local inference,
i.e., the continuous statistical testing of a null hypothesis along the domain. The principal
issue in this topic is the infinite amount of tested hypotheses, which can be seen as an
extreme case of the multiple comparisons problem.

In this paper we define and discuss the notion of false discovery rates in a very general
functional data setting. Moreover, a continuous version of the Benjamini-Hochberg pro-
cedure is introduced along with a definition of adjusted p-value function. Some general
conditions are stated, under which the functional Benjamini-Hochberg (fBH) procedure
provides control of FDR. Two different simulation studies are presented; the first study
has a one-dimensional domain and a comparison with the Fmax-method, and second
study has a planar domain.

Finally, the proposed method is applied to satellite measurements of Earth temper-
ature. In detail, we aim at identifying the regions of the planet where temperature has
significantly increased in the last decades. After adjustment, large areas are still signifi-
cant.

Keywords: functional data, local inference, multiple comparisons problem, Benjamini-Hochberg

procedure, nonparametric inference
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1 Hypothesis testing for functional data

Central to the field of statistics is statistical inference, in particular hypothesis testing. Func-

tional data analysis (FDA) more often deals with ”summary statistics” such as identifying

mean curves/trajectories and principal modes of variation, including clustering and classifi-

cation. Yet hypothesis testing is still a key part of FDA, where it is often done in conjunction

with functional regression: What is the effect of a covariate on the response?, where covariates

and response variables can be functions or scalars, depending on the setup.

In the common case of functional response and scalar covariates, functional regression is

usually modelled through a linear model on the form yi = Axi + noise, where yi is a curve

belonging to a suitable function space e.g. L2[0, 1], xi are covariate(s), and A ∈ L is a linear

operator which ought to be estimated. In the simple case of one covariate, the null hypothesis

would be asking whether A = 0, and more generally the null hypothesis would be asking if

A ∈ U for a given subspace U ⊂ L.

This is hard question to ask for functional data and is not that frequently encountered. It

is absent in some textbooks [13, 5] but has extensive treatment in [11]. There are various

approaches to this issue, which importantly also depend on the scope of the test. We will

distinguish between two kinds of tests, (i) global tests: does covariate x have ’influence’ on

curve θ in at least one part of the domain of θ, and (ii) local tests or domain selections: if

covariate x has an influence, which part(s) of the domain of θ are significantly affected?

Global tests Global tests have been studied by various authors, for references see e.g. [11].

However, a crucial feature is that many of the available methods rely on (strong) paramet-

ric assumptions for data/estimators/covariances such as Gaussianity1, which may be valid

asymptotically but can be problematic for the usually small sample sizes and infinite dimen-

sions that are characteristical for functional data analysis.

Non-parametric approaches such as permutation tests are popular alternatives to paramet-

ric tests. Curves are (randomly) permuted wrt. likelihood-independent transformations, and

some suitable test statistic (e.g. deviation from mean) is evaluated for each permutation.

However this is computationally expensive, and permutation tests are only asymptotically

exact in the presence of several covariates.

Local tests Local tests have not been studied to the same extent as global tests. In the

functional data analysis performing local inference carries several issues. The most important

one is how to control the probability of committing a type 1 error globally over the whole

domain. One recent framework for doing local testing on functional data is the Interval-wise

testing by [12] extended to general linear models by [1]. These procedures perform non-

parametric inference based on permutation schemes and provide (asymptotical) control of

1Note: This includes independence of PC scores (among other things)
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the on each sub-interval of the domain. In detail, the probability of falsely selecting at least

part of an interval where the null hypothesis is not violated is controlled. Another procedure

is the Fmax-procedure [10, 17]. The Fmax-procedure is a method that provides strong control

of the family-wise error rate, and like the IWT-framework it is based on permutation tests.

The procedure is multivariate in nature, but it can also be applied to functional data.

An alternative approach to local testing in functional or spatial data is to use discrete features

of the observed curves/fields such as local maxima or zero values. That is, instead of assessing

a continuum of tests, one selects a finite number of data features for testing. Using discrete

features has some challenge wrt. interpretation as one has to specify when two different

observations can be considered instances of the same discrete feature, and there are no obvious

definitions of domain selection. [6, 14] present some interesting methods with this, where they

also proof control of FDR.

The remainder of the paper is organised as follows: Section 2 describes false discovery rates in

the multivariate case and reviews related work. Section 3 presents the novel work of functional

false discovery rates and functional Benjamini-Hochberg procedure. Two different simulation

studies are presented in Section 4, and in Section 5 we apply the spherical IWT and false

discovery rate adjustment procedure to a data set on climate change. Finally in Section 6

we highlight and discuss important points of this article. Proof of the main theorems are

provided in the appendix.

2 False discovery rates for multivariate data

Background A central topic in statistics is multiple testing. Observed within virtually

every area of statistics, it is fundamental in many statistical applications and multiple testing

is recognised as an important statistical issue within many sciences.

Many ways to deal with multiple testing have been proposed with various advantages and

disadvantages – one popular approach is to use the False Discovery Rate (FDR) [2]. The false

discovery rate looks at the proportion of false rejections (”discoveries”) among all among

rejected hypotheses. The procedures controlling the FDR are generally more powerful than

the ones controlling family-wise error rate (FWER), an alternative and more conservative

approach to multiple testing, where the family-wise error is defined as one if any hypothesis

is wrongly rejected (a false positive) and zero otherwise.

FDR is often applied in cases when a single or comparatively few false positives is not con-

sidered a serious issue, as long as their rate among all discoveries can be controlled. In [2]

the Benjamini-Hochberg (BH) FDR-controlling procedure is introduced. In the succeeding

literature, a number of other procedures for controlling FDR have been proposed (see [9] for

a discussion). The paper [4] is important, as it introduces a modification of the BH procedure

that controls FDR without specifying any dependency assumptions. More importantly, they
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show that the original procedure introduced in [2] controls FDR under a weaker assump-

tion than independence, namely positive regression dependence on the subset of true null

hypotheses (PRDS).

Other closely related quantities for assessing the errors within the paradigm of multiple testing

have been proposed such as the weighted false discovery rate (WDFR) [3], (see below) the

positive false discovery rate [15], and the local false discovery rate [7].

However, in this paper we will only focus on the BH procedure and FDR which – due to

its simple interpretation and definition – is still the most popular method for multiplicity

correction. False Discovery Rates are only defined for finite numbers of hypotheses, and one

must be careful when defining FDR on infinite sets of hypotheses.

False discovery rates Assume we are given a set of m null hypotheses, G1, . . . , Gm, each

of which can either be true or false, and can either be accepted or rejected by a statistical test.

Furthermore, let w1, . . . , wm be strictly positive weights with
∑
wi = 1, which we assume

are a priori known. This will be used in the case of weighted false discovery rates. These

weights can e.g. be interpreted as how important the different tests are, where the ”usual”

false discovery rate corresponds to the case of equal weights.

Definition 1 (False discovery rates, unweighted case). The false discovery proportion is

defined as:

Q =
#{i : Gi is true but rejected}

#{i : Gi is rejected} (1)

with Q := 0 whenever the deminator is zero. The false discovery rate is the expected value

of this, E[Q].

Definition 2 (False discovery rates, weighted case). The false discovery proportion in the

weighted case is defined as:

Q =

∑
i:Gi is true but rejected

wi

∑
i:Gi is rejected

wi
(2)

with Q := 0 whenever the denominator is zero. The weighted false discovery rate is the

expected value of this, E[Q].

The Benjamini-Hochberg procedure Let {p(i)}mi=1 be the p-values sorted in increasing

order. Let {G(i)}mi=1 be the corresponding ordering of the hypotheses and {w(i)}mi=1 the cor-

responding ordering of weights. The very popular and easily applicable Benjamini-Hochberg

(BH) procedure for multiple comparison adjustment [2, 3] is defined as follows:

Definition 3 (Benjamini-Hochberg procedure, unweighted case). Define

k = arg max
i

[
p(i) ≤

i

m
α

]
(3)
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The Benjamini-Hochberg procedure is: reject hypotheses G(1), . . . , G(k) corresponding to the

k smallest p-values and accept the rest.

Definition 4 (Benjamini-Hochberg procedure, weighted case). Define

k = arg max
i


p(i) ≤

∑

j:pj≤p(i)
wjα


 (4)

The weighted Benjamini-Hochberg procedure is: reject hypotheses G(1), . . . , G(k) correspond-

ing to the k smallest p-values and accept the rest.

Unlike most adjustment procedures introduced prior to this, the BH procedure is scalable: if

data is duplicated such that one has twice the amount of hypotheses, the inference by using

the BH procedure will still be the same.

Adjusted p-values A concept often used in context of multiple testing is adjusted (or

corrected) p-values. Informally, the adjusted p-values for a multiple testing procedure are

defined as corrections {p̃i} of the original p-values such that a null hypothesis Gi can be

rejected at level α if p̃i ≤ α.

The adjusted p-values for the unweighted Benjamini-Hochberg procedure are

p̃(i) = min(1, mi p(i), . . . ,
m
m−1p(m−1), p(m)) (5)

where p(·) and p̃(·) are the order statistics of p and p̃, respectively. By construction, the

ordering is the same.

We can likewise define adjusted p-values for the weighted Benjamini-Hochberg procedure:

p̃(i) = min

{
1,

p(i)∑
j:pj≤p(i) wj

,
p(i+1)∑

j:pj≤p(i+1)
wj
, . . . ,

p(m−1)∑
j:pj≤p(m−1)

wj
, p(m)

}
, i = 1, . . .m (6)

PRDS and control of the false discovery rate Benjamini and Hochberg showed in

their seminal paper [2] that if the test statistics for different hypotheses are independent,

then the false discovery rate is controlled by m0
m α where m0 is the total number of correct

null hypotheses. The independence assumption was later relaxed by [4] to Positive regression

dependency on one (PRDS).

Below we define the PRDS property and extend it to the infinite-dimensional case, which will

be needed later.

Definition 5 (Positive regression dependency on one (PRDS)). Let ’≤’ be the partial/usual

ordering on Rl. An increasing set D ⊆ Rl is a set satisfying x ∈ D ∧ y ≥ x⇒ y ∈ D.

110 Paper III



A random variable X on Rl is said to be PRDS on I0, where I0 is a subset of {1, . . . , l}, if it

for any increasing set D and i ∈ I0 holds that

x ≤ y ⇒ P (X ∈ D|Xi = x) ≤ P (X ∈ D|Xi = y) (7)

Let Z be an infinite-dimensional random variable, where instances of Z are functions T → R.

We say that Z is PRDS on U ⊆ T if all finite-dimensional distributions of Z are PRDS. That

is, for all finite subsets I = {i1, . . . , il} ⊆ T , it holds that Z(i1), . . . , Z(il) is PRDS on I ∩ U .

We refer to [4] for a discussion on the PRDS property and how it relates to other types of

dependency.

Theorem 6. Given a set of hypotheses {H1, . . . ,Hm} and corresponding p-values (p1, . . . , pm),

let I0 = {i1, . . . , im0} ⊆ {1, . . . ,m} be the index set corresponding to true null hypotheses

{Hi1 , . . . ,Him0
}.

If the joint distribution of the p-values (p1, . . . , pm) is PRDS on I0, the BH procedure controls

the FDR at level m0
m α in the sense that

E[Q] ≤ m0

m
α

where Q is the false discovery rate.

Proof. See [4, Theorem 1.2]

3 False discovery rates for Functional Data

In this section we define the false discovery rate for functional data and propose a functional

extension of the Benjamini-Hochberg procedure. These are the functional versions of the

‘usual’ false discovery rates and the BH procedure, analogous to the discrete cases.

Our definition of false discovery rate is very related to that of [16], although [16] uses a seem-

ingly arbitrary lower bound for the measure of rejection region, not present in other papers

on FDR, and avoids usage of p-values which are natural (albeit sometimes controversial) in

context of multiple testing.

We prove control of the false discovery rate under regularity conditions and outline a simple

algorithm for calculating the functional BH procedure; for simplicity and ease of presentation

we only consider T = (0, 1)D in that theorem, and present it in two versions: an unweighted

version and a weighted version, where the former is a special case of the latter. The unweighted

case requires considerably less notation in formulating the theorem and proof. In section 3.3

we introduce the adjusted p-value function, an important tool for practical applications, and

section 3.4 contains theoretical results about control of FDR.
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General setting For the remainder of this section we assume that we have N functional

samples, y1, . . . , yN : T→ R, where T ⊂ Rd is an open and bounded subset of Rd.

Suppose that we for each point t ∈ T have a null hypothesis H0
t together with an alternative

hypothesis HA
t , that we are interesting in testing. Furthermore, suppose that by pointwise

application of some statistical test we obtain p-values for every t with the property that

(H0
t true) =⇒ pt ∼ U(0, 1), where U(0, 1) is the uniform distribution on (0, 1). The p-values

together make up a function p : T→ [0, 1], the p-value function.

Let U be the set of the domain on which the null hypothesis is true, ie. U = {t ∈ T : Ht
0

is true}. Let ν be a bounded measure on T that is absolutely continuous wrt. the Lebesgue

measure, which we denote by µ. By absolute continuity we have ν = f ·µ for some measurable

function f : T → [0,∞). The function f can be interpreted as a weight function assigning

more weight to some regions of T than others, and is equivalent to the weights used in

Section 2.

3.1 Definition of functional false discovery rates

Given U and an instance of p, let V = {t : H0
t is true and H0

t is rejected} be the region where

the null hypothesis is wrongly rejected, and let S = {t : H0
t is false and H0

t is rejected} be the

region where the null hypothesis is correctly rejected. The set V corresponds to committing

type I errors, and in a given research situation, it is desired that V is as small as possible

and S is as large as possible.

Definition 7 (Functional false discovery rate). Define the functional false discovery rate

(FDR) as

E[Q] = E

[
ν(V )

ν(V ∪ S)
1ν(V ∪S)>0

]
(8)

where Q is the proportion of false discoveries.

Remark 8 (False discovery rates for other manifolds). In this paper we define false discovery

rates for functional data defined on open subsets of Rd. However, many smooth manifolds

can be diffeomorphically mapped into open and bounded subsets of Rd. The mapping gives

naturally rise to a measure on this set, which can be used as measure for functional false

discovery rates.

3.2 The functional Benjamini-Hochberg procedure: the adjusted threshold

Analogous to the multivariate case, we can define the Benjamini-Hochberg procedure for

functional data:

Definition 9 (Functional Benjamini-Hochberg procedure). Let α ∈ (0, 1) be a desired sig-

nificance level for the tests.The functional Benjamini-Hochberg (fBH) procedure is:
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Reject hypotheses H0
t that satisfy

p(t) ≤ α∗ where α∗ = arg max
r

ν({s : p(s) ≤ r})
ν(T)

≥ α−1r

We will refer to α∗ as the adjusted threshold for the procedure, and the function r 7→ ν({s :

p(s) ≤ r}) as the cumulated p-value function.

Two examples of the functional BH procedure are shown in Figure 1.

The main theoretical result of this article is that the fBH procedure can be approximated

by the multivariate BH procedure, and that it controls the expected value of FDR by αµ(U)

under regularity conditions.

3.3 The functional Benjamini-Hochberg procedure: the adjusted p-value
function

As an alternative to adjusting the threshold, we may adjust the p-value function itself.

This is analogous to adjusted p-values, which applies in the discrete case, and plays a similar

role, ie. if p̃(t) ≤ α this means that H0
t will be rejected when the (weighted) BH procedure is

applied with threshold/significance level α.

The adjusted p-value function is defined as:

p̃(t) = min
s≥p(t)

{
1,

ν(T)s

ν(r : p(r) ≤ s)

}
, t ∈ T (9)

Adjusted p-values allow us to quantify significance after adjustment and to simultaneously

compute rejection areas for all values of α.

Proposition 10 (Control of FDR using adjusted p-value function). Under the assumptions

of Proposition 12 or Proposition 14, the adjusted p-value function controls the false discovery

rate at level α in the sense that if we reject hypotheses on the set {t : p̃(t) ≤ α}, then the

false discovery rate,

Q =
ν({p̃(t) ≤ α} ∩ V )

ν{p̃(t) ≤ α} 1ν{p̃(t)≤α}>0

satisfies E[Q] ≤ αν(U).

Proof. Let α ∈ (0, 1) be fixed, and let α∗ be the associated cutoff level for the functional BH

procedure following Definition 9. If we can show that p̃(t) ≤ q ⇔ p(t) ≤ α∗, the control of

FDR follows from Proposition 12 orProposition 14, respectively. This is true since

p(t) ≤ α∗ ⇔ ∃s ≥ p(t) : a(s) ≥ rs⇔ ∃s ≥ p(t) :
s

a(s)
≤ α

p̃(t) ≤ α⇔ ∃s ≥ p(t) :
s

a(s)
≤ α
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Figure 1: Two illustrations of the functional Benjamini-Hochberg procedure and adjusted

p-value functions with α = 0.10. Upper plots: black curves are original p-values; red curves

are adjusted p-values. Lower plots: The red lines denote the cumulated p-value functions,

and the thick lines have slope α−1. Null hypotheses corresponding to the solid red lines are

rejected, while those above are accepted
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3.4 Control of false discovery rates for functional data

In this section, let T = (0, 1)d. Below we prove that the functional Benjamini-Hochberg

procedure controls FDR under PRDS and regularity assumptions. Let ν = f · µ, and assume

that f is a bounded and strictly positive density function T→ R. The case f ≡ 1 corresponds

to equal weighting, ie. ν = ν.

Theorem 11. Let {Sk}∞k=1, S1 ⊂ S2 ⊂ . . . be a dense, uniform grid in T in sense that Sk
weighted by f uniformly approximates all level sets of p and p|U with probability one:

P

[
lim
k→∞

sup
r

∑
i∈Sk∩{s:p(s)≤r} f(i)

#Sk
−
∫

{s:p(s)≤t}
f(x) dx→ 0

]
= 1 (10)

and

P

[
lim
k→∞

sup
r

∑
i∈Sk∩{s:p(s)≤r}∩U f(i)

#Sk
−
∫

{s:p(s)≤t}∩U
f(x) dx→ 0

]
= 1 (11)

Furthermore assume that p is PRDS wrt. the set of true null hypotheses with probability

one, and that the assumptions about p-value function below hold true with probability one:

(a1) All level sets of p have zero measure,

ν{s : p(s) = t} = 0 ∀t ∈ T

(a2) α∗ ∈ (0, α] ⇒: for any open neighbourhood O around α∗ there exists s1, s2 ∈ O s.t.

a(s1) > α−1s1, a(s2) < α−1s2, where a is the cumulated p-value function (Definition

9).

(a3) [α∗ = 0]⇒ min p(t) > 0.

Then the functional BH procedure controls FDR at level αν(U), ie. E[Q] ≤ αν(U), when

applying the functional BH procedure at level α.

Note that the assumptions (16) and (17) are much simplified in the equal-weight case where

f ≡ 1.

Proof. Following Proposition 14, which we prove below, and the notation of that proposition,

it shows that Qk → Q almost surely, and that lim supk→∞ E[Qk] ≤ αν(U). As 0 ≤ Qk ≤ 1

for all k, it is now a simple application of the dominated convergence theorem to show that

E[Q] ≤ αµ(U):

E[Q] = E[ lim
k→∞

Qk] = lim
k→∞

E[Qk] = lim sup
k→∞

E[Qk] ≤ αν(U)

As remarked in [4] the PRDS assumption is sufficient but not necessary, and (7) needs only

to be true for certain sets defined in relation to the order statistics of p. The details are quite

technical, and we refer to [4, Remark 4.2] and the general discussion of that paper.
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Sufficient criteria for the one-dimensional case The assumptions (a1-a3) and equa-

tions (10) and (11) are consequences of the more simple criteria in the one-dimensional case,

which must be true with probability one:

(d1) p is continuous.

(d2) There exists a maximal number of crossings, NC , i.e.:

#{s ∈ [0, D]|p(s) = t} ≤ NC ∀t ∈ (0, 1]

(d3) U is a finite union of disjoint intervals.

These criteria will generally be true for smooth curves as we typically use to model functional

data.

3.5 The functional Benjamini-Hochberg procedure: Finite approximation
and computational cost

As we have a continuous amount of hypotheses and p-values, the functional BH procedure

is in principle unattainable computationally. However, Propositions 12 and 14 show that the

fBH procedure and functional false discovery rates are limits of the discrete BH procedure

and FDR, which also outlines an algorithm for approximating the functional BH procedure.

Proposition 12 and Corollary 13 can be seen as special cases of Proposition 14 and Corol-

lary 15, respectively.

Unweighted case Here we assume equal weights, that si ν = µ (the Lebesgue measure).

Proposition 12. Let {Sk}∞k=1, S1 ⊂ S2 ⊂ . . . be a dense, uniform grid in T in sense that Sk
uniformly approximates all level sets of p and p|U with probability one:

P

[
lim
k→∞

sup
r

#(Sk ∩ {s : p(s) ≤ r})
#Sk

− µ{s : p(s) ≤ r} → 0

]
= 1 (12)

and

P

[
lim
k→∞

sup
r

#(Sk ∩ {s : p(s) ≤ r} ∩ U)

#Sk
− µ({s : p(s) ≤ r} ∩ U)→ 0

]
= 1 (13)

Furthermore assume that p is PRDS wrt. the set of true null hypotheses with probability

one, and that the assumptions about p-value function below hold true with probability one:

(a1) All level sets of p have zero measure,

µ{s : p(s) = t} = 0 ∀t ∈ T
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(a2) α∗ ∈ (0, α] ⇒: for any open neighbourhood O around α∗ there exists s1, s2 ∈ O s.t.

a(s1) > α−1s1, a(s2) < α−1s2, where a is the cumulated p-value function (Definition

9).

(a3) [α∗ = 0]⇒ min p(t) > 0.

Now define the k’th step false discovery proportion Qk by applying the (usual) BH procedure

at level α to p evaluated in Sk.

Mathematically, this can be defined by

Qk =
#{t ∈ Sk : p(t) ≤ bk} ∩ U

#{t ∈ Sk : p(t) ≤ bk}
, bk = arg max

r

#{s ∈ Sk : p(s) ≤ r}
#Sk

≥ α−1r (14)

Then Qk behaves asymptotically as the functional false discovery proportion and asymptot-

ically the false discovery rate E[Qk] is controlled by αµ(U):

lim
k→∞

Qk = Q, lim sup
k→∞

E[Qk] ≤ αµ(U) (15)

where Q is defined as in (8).

Proof. Proposition 21

From the proof of the theorem we have the following important corollary which states that

as the grid Sk becomes tighter and tighter, hypotheses are eventually rejected or accepted:

Corollary 13. For t ∈ ∪∞m=1Sm and k ≥ 1, define Ht,k = (t ∈ Sk) ∧ (p(t) ≤ bk) where bk is

is given by (14). That is, Ht,k is true if the adjusted threshold at step k is larger than p(t).

Assume p(t) 6= α. Eventually, Ht,k is either rejected or accepted.

Proof. Proposition 18

Weighted case The weighted case allows for more general measures than just the Lebesgue

measure, but the notation is more tedious.

Let ν = f · µ, and assume that f is a bounded and strictly positive density function T→ R.

Under almost similar assumptions to the unweighted case, we are able to control the false

discovery rate at level α:

Proposition 14. Let {Sk}∞k=1, S1 ⊂ S2 ⊂ . . . be a dense, uniform grid in T in sense that Sk
weighted by f uniformly approximates all level sets of p and p|U with probability one:

P

[
lim
k→∞

sup
r

∑
i∈Sk∩{s:p(s)≤r} f(i)

#Sk
−
∫

{s:p(s)≤t}
f(x) dx→ 0

]
= 1 (16)
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and

P

[
lim
k→∞

sup
r

∑
i∈Sk∩{s:p(s)≤r}∩U f(i)

#Sk
−
∫

{s:p(s)≤t}∩U
f(x) dx→ 0

]
= 1 (17)

Furthermore assume that p is PRDS wrt. the set of true null hypotheses with probability

one, and that the assumptions about p-value function below hold true with probability one:

(a1) All level sets of p have zero measure,

ν{s : p(s) = t} = 0 ∀t ∈ T

(a2) α∗ ∈ (0, α] ⇒: for any open neighbourhood O around α∗ there exists s1, s2 ∈ O s.t.

a(s1) > α−1s1, a(s2) < α−1s2, where a is the cumulated p-value function (Definition

9).

(a3) [α∗ = 0]⇒ min p(t) > 0.

Now define the k’th step false discovery proportion Qk by applying the (usual) BH procedure

at level α to p evaluated in Sk, weighted by f evaluated in Sk.

Mathematically, this can be defined by

Qk =

∑
t∈Sk∩U :p(t)≤bk f(t)
∑

t∈Sk:p(t)≤bk f(t)
, bk = arg max

r

∑
{s∈Sk:p(s)≤r} f(s)
∑
{s∈Sk} f(s)

≥ α−1r (18)

Then Qk behaves asymptotically as the functional false discovery proportion and asymptot-

ically the false discovery rate E[Qk] is controlled by αν(U):

lim
k→∞

Qk = Q, lim sup
k→∞

E[Qk] ≤ αν(U) (19)

where Q is defined as in (8).

Proof. See appendix

Analogous to Corollary 13 we have the following corollary which states that as the grid

becomes tighter and tighter, hypotheses are eventually rejected or accepted:

Corollary 15. For t ∈ ∪∞m=1Sm and k ≥ 1, define Ht,k = (t ∈ Sk) ∧ (p(t) ≤ bk) where bk is

given by (18). That is, Ht is true if the adjusted threshold at step k is larger than p(t).

Assume p(t) 6= α. Eventually, Ht,k is either rejected or accepted.
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Algorithm Propositions 12 and 14 outline an algorithm for approximating the functional

BH procedure:

Apply the BH procedure to {p(t) : t ∈ Sk} with weights (f(t) : t ∈ Sk) where the weights have

been normalised to one.

By corollaries 13 and 15, we also have that hypotheses will eventually be rejected or not, a

very important property. If there are no weights, the normalising constant is (#Sk)
−1.

Computational cost The fBH procedure adds O(n log n) computational cost to calcu-

lation of adjusted p-values, where n = #Sk is the number of approximation points,. This

extra computational cost is due to the sorting of p-values, which has O(n log n) computa-

tional cost. As a default, calculation of pointwise p-values has complexity O(n), thus the

total computational cost is O(n log n).

However, sorting algorithms on modern computer are very fast, whereas calculating pointwise

p-values can be comparatively slow, in particular if permutation tests are used, such as in

Section 4.1. Thus the computational cost from fBH adjustment procedure is expected to

be negligible in practice. In the simulation studies and the case study presented below, the

calculation times for p-value adjustments were negligible.

4 Simulations

In this section two different simulation studies are performed, which differ both in scope and

setting – in the first simulation study a functional-on-scalar regression is performed using

permutation tests, while in the second simulation we test for mean equal to zero using one-

sided t-tests.

The first simulation study has a more theoretical flavour and compares our proposed method

to the Fmax method. The second study is intended to simulate a more realistic scenario with

a number of disjoint peaks, and the performance of our method for various levels of α is

analysed.

4.1 1D-simulation with comparison to Fmax-method

Description of simulation In this section we wanted to numerically assess the perfor-

mance of our fBH procedure, and to compare it with the Fmax-procedure [10, 17]. The

Fmax-procedure is a method that provides strong control of the family-wise error rate in a

multivariate high-dimensional setting. It can be extended to functional data by applying it

to the discrete point-wise evaluations of the functional data.
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We simulated functional data according to the following functional-on-scalar linear model:

yi(t) = β(t)xi + εi(t) i = 1, . . . , n, t ∈ [0, 1]

where n = 10, xi = i−1
n−1 , and β(t) = d · f(t), with d ranging from 0 to 5. We modelled

the function f(t) with a cubic B-spline expansion with 40 basis functions and equally-spaced

knots. The first h coefficients of the expansion were set to one, and the last 40−h coefficients

to zero. The resulting function assumed value 1 in the first part of the domain, 0 in the second

part of the domain, with a smooth transition. We explored three values of the parameter h:

h ∈ {10, 20, 30}.
The error functions εi(t) were obtained simulating the coefficients of the same cubic B-

spline expansion. The 40 coefficients were sampled independently from a standard normal

distribution. The three panels in the first column of Figure 2 show an instance of the simulated

functional data with d = 5, and h = 10, 20, 30, respectively. The functional data are colored

in a gray scale that is proportional to the value of xi. The study is much similar to the

simulation study presented in [1], but here it is of interest to vary the domain where the null

hypothesis is true.

The fBH and Fmax procedures are applied to test the following hypotheses:

H0
t : β(t) = 0; H1

t : β(t) 6= 0.

The unadjusted p-value at point t was computed with a permutation test based on the

Freedman and Lane method [8].

With d ∈ {0, 1, . . . , 5} and h ∈ {10, 20, 30}, we had 18 scenarios in total, but only 16 different

ones, as the scenarios were identical for d = 0.

Simulation results We measured the performances of the two methods by evaluating the

FWER, FDR, false positivity rate (i.e., the measure of the incorrectly rejected part of the

domain over the measure of the domain where the null hypothesis is true) and sensitivity

(i.e., the measure of the correctly rejected part of the domain relative to the total measure

of the domain where the null hypothesis is false).We performed the tests at nominal level

α = 0.05.

Figure 2 reports the results of the simulation obtained averaging over 1000 instances. Each

row of the figure report the results with a different value of h. Each panel on columns 2-

5 reports one of the measures discussed before as a function of the parameter d for the

unadjusted p-value (black), the fBH procedure (dark grey) and the Fmax procedure (light

grey).

As expected by theory, the unadjusted p-value function does not control the FWER nor the

FDR. It controls instead the false positive rate. The Fmax method controls the FWER, and

by consequence, also the FDR. Finally, the fBH method controls the FWER only weakly
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Figure 2: Simulation study: Familywise error rates, false discovery rates, false positive rate

and sensitivity analysis of three methods for varying values of d. Scenario 1 corresponds to

h = 10, Scenario 2 to h = 20, and Scenario 3 to h = 30. ’Data’ shown in the left panels are

examples of simulated data for d = 1.

(i.e., when d = 0 and by consequence H0
t is true for all t). It controls instead the FDR in

all scenarios. Finally, we notice a trade-off between the type of control and the sensitivity of

the methods. The Fmax, being provided with a stronger control, is also the less sensible to

deviations from the null hypothesis. Instead, the fBH is provided with a less strong control,

but it is more sensible.

4.2 2D-simulation

Description of simulation The base signal θ for this simulation consisted of 9 conical

spikes with height h = 1 and diameter d = 0.2 arranged on the grid {0.25, 0.50, 0.75}2 with

the unit square T = [0, 1]2 as domain. Five spikes had positives values and the remaining four
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Figure 3: Two simulated fields with increasing signal strength

spikes had negative values. On top we added an error signal generated as a smooth Matérn

field xi with varying scale parameter. The observed signal is yi = θ+ xi for i = 1, . . . , N . See

Figure 3 for an illustration.

The simulation was inspired by [6], who also studies false discovery rates in a setting of random

fields, albeit with a quite different scope. We tested against the pointwise null hypothesis

H0(t) : θ(t) = 0 using a pointwise, one-sided t-test over a fine lattice.

The Benjamini-Hochberg procedure was applied, and false positive rates (FPR), false dis-

covery rates and sensitivity values were evaluated, along with false discovery rate for the

unadjusted p-values for comparison. We simulated 2500 samples of the error process at grid

255× 255. We assessed performance of the test in five different setups with varying strengths

of the base signal and varying numbers of samples per t-test. Samples of the error process

were recycled and used for all experimental setups, this is also the reason for the varying

number of replications in table 1.

We remark that the observed data will show a ”bend” at the edges of the spikes, making

these easily detectable by other methods. However, the use of pointwise tests will ignore such

features.

Simulation results We tested at various thresholds, α ∈ {0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10}
for five different experimental setups described in Table 1; results are shown in Figure 4. The

sensitivity values and false positive rates are defined as proportions of rejected/accepted
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Setup

no.

Signal

size

# of samples

per test

Replica-

tions
Sensitivity FPR FDR

FDR,

unadjusted

1 2.0 20 125 0.498 0.00785 0.0252 0.113

2 2.0 10 250 0.226 0.00553 0.0257 0.135

3 2.0 40 62 0.654 0.00810 0.0242 0.117

4 1.0 20 125 0.116 0.00467 0.0249 0.155

5 0.5 20 125 0.0065 0.00295 0.0258 0.235

Table 1: Results from simulation at 5% threshold with 255x255 sample points. The varying

number of replications is due to the upper limit of 2500 signals in total

hypotheses to the total number of false and correct hypotheses, respectively, after p-value ad-

justment. µ(U) = 71.7% of the signal was zero, thus we would expect FDR to be controlled

by 0.717α; for the 5% threshold of table 1, this is roughly 0.036.

Unsurprisingly, power and significance levels and FDR increase with α. Experiment 5 has

almost no power, even at α = 0.10, but still a comparatively large FDR, indicating that the

Benjamini-Hochberg procedure is not too conservative in this setup. The false discovery rate

is remarkably stable across experimental setups, and shows a linear tendency. As expected,

FDR is well below α in all instances, and also below µ(U)α. In comparison, the FDR for

the unadjusted p-values exceeds α in all setups except one, and varies considerably with the

experimental setting.

5 Application: Analysis of Climate Data

Climate change is a huge issue, both politically and scientifically. The main issue are increasing

temperatures with many adverse effects on weather and climate. Knowing that temperature

has increased significantly on a global scale, we wanted to test where on Earth temperature

has increased.

5.1 Data and model

Data consists of yearly averages of temperatures, starting in 1983 and ending in 2007, for

each 1◦ × 1◦ tile on Earth, using standard latitudes and longitudes. Temperatures are satel-

lite measurements collected by NASA. These data were obtained from the NASA Langley

Research Center Atmospheric Science Data Center Surface meteorological and Solar Energy

(SSE) web portal supported by the NASA LaRC POWER Project. 2

One crucial feature is that data was more densely sampled closer to the poles than close

to Equator. Naturally, data also exhibits behaviour depending on local geography. Rather

2http://eosweb.larc.nasa.gov
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Figure 4: Average power, significance levels and FDR for different levels of α in five exper-

imental setups as described in Table 1, along with FDR for the unadjusted p-values. The

dotted lines have slopes 1 and 0.717, respectively.
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Significance level Unadjusted p value fBH-adjusted p value

0.10 0.410 0.229

0.05 0.324 0.150

0.01 0.178 0.062

0.001 0.074 0.023

Table 2: Areas of significance of the correction methods at various significance levels as

percentage of Earth total

than viewing data as truly areal, we considered data to sit on the midpoints of the tiles, e.g.

(73.5◦S, 24.5◦W ) corresponds to the tile (74◦S, 73◦S)× (24◦W, 25◦W ).

We applied the linear regression model yst = as + bsyeart + εst, s ∈ S2, t ∈ {1983, . . . , 2007},
testing for positive trend, i.e. H0

s : bs = 0 with alternative hypothesis HA
s : bs > 0. Figure

5 displays the temperature changes, values of the pointwise t-statistics and corresponding

(unadjusted) p-values. Observe how much the test statistic varies across the globe, and how

differences between land and ocean are more visible in the lower the plot compared to the

upper plot.

To perform the BH procedure, we mapped the sphere into T = (−π, π) × (−π/2, π/2) by

(scaled) polar coordinates, ie. longitude and latitude. This mapping gives rise to a measure

ν = f · µ on T where f is proportional to cos(latitude) cf. Remark 8. This measure gives

uniform weights to all points on Earth, assuming Earth to be a perfect sphere. One-sided t-

tests were used for obtaining unadjusted p-values. We used the same grid as the observations

for approximating the BH procedure, in total 180× 360 = 64800 grid points.

5.2 Results

The coverage areas at various significance levels are provided in Table 2.

Although more conservative by construction than unadjusted p-values, the fBH-adjusted p-

values still retained large significant areas, indicating that the temperature increase observed

in these areas is very unlikely to be a coincidence in but a small fraction of these areas. If

we take look at the map, the North Atlantic Ocean and northern China stands out; it is

evident/clear that these regions have experienced temperatures far above the normal in the

latest years with the adverse weather effects this may cause.

6 Discussion

We successfully defined false discovery rates for functional data with for generic subdomains of

Rk, and by remark 8, this is easily extended to non-euclidean domains such as the sphere used

in the data application. Furthermore, we devised a correction method for controlling FDR,
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Figure 5: Above: Average yearly temperature change in centigrades, 1983-2007. Middle: Point-

wise values of test statistic (t-distribution, 24 degress of freedom). Below: Unadjusted p-values

with marking of the 5% threshold.
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indicate 5% significance levels.
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the functional BH procedure, along with an adjusted p-value function. The fBH procedure

was successfully applied in two simulations and on a data set on climate change.

Two simulation studies allowed us to study the FBH procedure in a setting where the dis-

tributions and true null hypotheses were known. The false discovery rate was controlled by

FBH procedure in all instances, unlike the unadjusted p-value functions. The signal-to-noise

proved to be important: the sensitivity increased with signal strength, but the false discov-

ery rate was remarkably constant. This is a desirable property, and we believe it holds true

generally. The functional BH procedure is easily applicable, although it should be noted that

as generally is the case in functional data analysis, it depends on how the functions are

approximated/smoothed from data, and there are also some computational issues.

We demonstrated the applicability of the method and also gained insight into which regions

of Earth that have seen temperature increases due to global warming in a recent time span.

More advanced models and tests may further increase our understanding of local temperature

changes in connection to warming, but we leave this as future work.

We would like to stress the minimal assumptions required of the fBH approach: the de-

pendence structure of functional data such as the Earth climate data can be complex and

difficult to model. However, our approach does not require specific modelling of the covari-

ance structure of the data, we merely require a certain degree of positive association among

p-values.

Due to its simple applicability, general setting and easy understanding, we expect functional

FDR to have a great potential as a tool for local inference in functional data analysis. The

functional BH procedure require only little computational power, and should at most be a

minor issue in applications.

Functional FDR and the BH procedure suffer from some of the same issues as the discrete

version. As noted in Section 2, many authors have proposed methods or quantities to deal with

multiple testing. Given the success of formulating FDR and the BH procedure in a functional

framework, it is likely that some of these other methods/quantities can be expanded to the

functional case as well.

References
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Appendix

A Proof of Proposition 12 and Proposition 14

A.1 Assumptions

We begin by repeating the assumptions of Theorem 12 and Theorem 14.

Definition (PRDS). Let ’≤’ be the partial/usual ordering on Rl. An increasing set D ⊆ Rl
is a set satisfying x ∈ D ∧ y ≥ x⇒ y ∈ D.

A random variable X on Rl is said to be PRDS on I0, where I0 is a subset of {1, . . . , l}, if it

for any increasing set D and i ∈ I0 holds that

x ≤ y ⇒ P (X ∈ D|Xi = x) ≤ P (X ∈ D|Xi = y) (20)

Let Z be an infinite-dimensional random variable, where instances of Z are functions T → R.

We say that Z is PRDS on U ⊆ T if all finite-dimensional distributions of Z are PRDS. That

is, for all finite subsets I = {i1, . . . , il} ⊆ T , it holds that Z(i1), . . . , Z(il) is PRDS on I ∩ U .

Let {Sk}∞k=1, S1 ⊂ S2 ⊂ . . . be a dense, uniform grid in T in sense that Sk uniformly

approximates all level sets of p and p|U with probability one.

For Theorem 12 that amounts to,

P

[
lim
k→∞

sup
r

#(Sk ∩ {s : p(s) ≤ r})
#Sk

− µ{s : p(s) ≤ r} → 0

]
= 1 (21)

and

P

[
lim
k→∞

sup
r

#(Sk ∩ {s : p(s) ≤ r} ∩ U)

#Sk
− µ({s : p(s) ≤ r} ∩ U)→ 0

]
= 1 (22)

whereas for Theorem 14, we need the density function f :

P

[
lim
k→∞

sup
r

∑
i∈Sk∩{s:p(s)≤r} f(i)

#Sk
−
∫

{s:p(s)≤t}
f(x) dx→ 0

]
= 1 (23)

and

P

[
lim
k→∞

sup
r

∑
i∈Sk∩{s:p(s)≤r}∩U f(i)

#Sk
−
∫

{s:p(s)≤t}∩U
f(x) dx→ 0

]
= 1 (24)

Furthermore, assume that p is PRDS wrt. the set of true null hypotheses with probability

one, and that the assumptions about p-value function below hold true with probability one:

(a1) All level sets of p have zero measure,

µ{s : p(s) = t} = 0 ∀t ∈ T
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(a2) α∗ ∈ (0, α] ⇒: for any open neighbourhood O around α∗ there exists s1, s2 ∈ O s.t.

a(s1) > α−1s1, a(s2) < α−1s2, where a is the cumulated p-value function (Definition

9).

(a3) [α∗ = 0]⇒ min p(t) > 0.

A.2 Proof details

For the ease of presentation, we will only consider Theorem 12. The proof of Proposition 14

is analogous but notationally tedious, as the counts are replaced by sums and the measures

by integrals.

Let ak be the cumulated p-value function for the k’th iteration of the BH procedure:

ak(t) := Nk#{s ∈ Sk : p(s) ≤ t} (25)

and define the k’th step false discovery proportion Qk by applying the (usual) BH procedure

at level q to p evaluated in Sk:

Qk =
#{t ∈ Sk : p(t) ≤ bk} ∩ U

#{t ∈ Sk : p(t) ≤ bk}
, bk = arg max

r

#{s ∈ Sk : p(s) ≤ r}
#Sk

≥ α−1r (26)

or equivalently bk = arg maxt ak(t) ≥ α−1r.

Lemma 16. ak converges to a uniformly as k →∞.

Proof: Follows from assumption (12) and definitions of ak and a.

Lemma 17. bk converges to α∗ as k →∞

Proof. By Lemma 16, ak converges uniformly to a. There are two cases: α∗ = 0 and α∗ ∈
(0, α].

Case 1, α∗ = 0: Let O be any open neighbourhood around zero. OC (where the complement

is wrt. [0,1]) is a closed set that satisfies a(t) < α−1t. By continuity of a there exists an ε > 0

s.t. a(t) < α−1t−ε for all t ∈ OC . As ak converges uniformly to a, eventually for large enough

k, ak(t) < α−1t for t ∈ T\O, and thus bk ∈ O eventually. This was true for any O, and we

conclude bk → 0.

Case 2, α∗ ∈ (0, α]: By assumption, for any open neighbourhood O 3 α∗, there exist

s1, s2 ∈ O s.t. a(s1) > α−1s1, a(s2) < α−1s2.

For t > α∗, t /∈ O, we have α−1t−a(t) > ε for some ε > 0 by continuity of a. Hence by uniform

convergence, it must hold that for k sufficiently large we have ak(t) < α−1t for t > α∗, t /∈ O.

This was true for any O, and we conclude lim sup bk ≤ α∗.
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Conversely, we can show that lim inf bk ≥ α∗, and thus lim bk = α∗.

Define Ak = #{t ∈ Sk : p(t) ≤ bk}, and define Qk as the false dicovery proportion for the

k’th iteration:

Qk :=
#(Ak ∩ U)

#Ak
1Ak 6=∅ (27)

Rejection areas Now we intend to prove that Ht,k converges eventually. Note that p(t) is

independent of k, and that Ht,k = (t ∈ Sk)∩ (p(t) ≤ bk), i.e. the event that the BH threshold

at step k is larger than p(t).

Proposition 18. For all t that satisfies p(t) 6= α∗, Ht,k converges eventually.

Proof. First note that if t /∈ Sk for all k, then Ht,k is trivially zero for all k. So assume t ∈ Sk0
for some k0. As k →∞, bk → α∗, and by assumption p(t) 6= α∗. Eventually, as k →∞, p(t)

is either strictly larger or strictly smaller than bk, proving the result.

Convergence of Qk Finally we need to show that Qk → Q. We show this, by proving

convergence of the nominator and denominator, and arguing that Q = 0 implies that Qk is 0

eventually.

Define H0 = {t|p(t) > α∗}, ie. the acceptance region, and H1 = T\H0, the rejection region.

Note that µ(H1) = a(α∗) = α−1α∗.

Note that H1 = V ∪ S = {t : p(t) ≤ α∗} and H1 ∩ U = V .

Proposition 19. Nk#Ak → µ(H1) and Nk#(Ak ∩ U)→ µ(H1 ∩ U).

Proof. For k, define Jk = {t : p(t) ≤ bk}. Note that Ak = Jk∩Sk. Observe that by assumption

about uniform convergence on levels sets (equation (12)):

Nk#(Jk ∩ Sk)− µ(Jk)→ 0 for k →∞.

Next observe that due to (1) continuity of a, (2) bk → α∗ and (3) the fact that we are

considering sets on the form {t : p(t) ≤ x}, we are able to conclude that

µ(Jk4H1)→ 0 for k →∞. (28)

and we conclude Nk#Ak → µ(H1).

For the second part, observe that (equation (13))

Nk#(U ∩ Jk ∩ Sk)− µ(U ∩ Jk)→ 0 for k →∞.
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We just argued that µ(Jk4H1) → 0. It remains true when ”conditioning” on a measurable

set, in this case U :

µ((Jk ∩ U)4(H1 ∩ U))→ 0 for k →∞. (29)

and we conclude Nk#(Ak ∩ U)→ µ(H1).

For α∗ = 0 we have the following stronger result:

Lemma 20. If α∗ = 0, then #Ak = 0 eventually.

From this lemma it follows that Nk#Ak = 0 (and thus Qk as well) eventually.

Proof. Since α∗ = 0, a(t) < α−1t for all t > 0. By assumption, min p(t) > 0, and thus

ak(s) = 0 for s < min p(t) and all k.

By continuity of a, it follows that there exists ε > 0 s.t. α−1t − a(t) > ε on the interval

[min p(t), 1], and by uniform convergence of ak we get that for large enough k, ak(t) < α−1t
for all t ≥ min p(t).

Combining with ak(t) = 0 for t < min p(t), we get that eventually ak(t) < α−1t for every

t > 0 and thus bk = 0. From this (remember min p(t) > 0) we conclude that all hypotheses

are rejected eventually, ie. #Ak = 0.

Theorem 21. Qk converges to Q almost surely, and lim supk→∞ E[Qk] ≤ αµ(U).

Proof. By Lemma 20, Qk converges to Q when α∗ = 0, and by Proposition 19 Qk converges

to Q when α∗ > 0 since µ(H1) = α∗/α > 0.

Applying Benjamini and Yekuteli’s original proposition, Theorem 6, (now we use the PRDS

assumption), we have E[Qk] ≤ αNk#(Sk ∩ U) for all k. By setting r = 1 it follows from (13)

that limk→∞Nk#(Sk ∩ U) = µ(U), and hence lim supk→∞ E[Qk] ≤ αµ(U).
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Statistical modelling of conidial discharge of entomophthoralean

fungi using a newly discovered Pandora species

Niels Olsen, Pascal Herren,
Bo Markussen, Annette Bruun Jensen, Jørgen Eilenberg

Abstract

Entomophthoralean fungi are characterized by discharging conidia that infect insects.
The temporal pattern of conidial discharge is a crucial for or understanding of the epi-
zootic development and biological control potential.

Mycelia from a newly discovered Pandora species were incubated at various temper-
atures in darkness, and conidial discharge was measured at regular intervals. The aim is
to study the effects of temperature on the discharge and to characterize the variation in
the associated temporal pattern with focus on peak location and shape.

We use a novel modification of a statistical model, that simultaneously estimate warp-
ing and amplitude effects, into a setting of generalized linear models. This model is used
to analyse data, and to test hypotheses of peak location and discharge.

Our findings show that high temperature leads to an early and fast decreasing peak,
whereas there are no significant differences in total number of discharged conidia.
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1 Introduction

There are many examples of shooting mechanisms in living organisms. Among purposes for

shooting mechanisms is reproduction, for example in fungi [1], and there are many different

names for the various mechanisms. [1] list a range of shooting mechanisms in fungi allowing

spores (for example conidia) to be discharged. One category “fluid pressure catapult” seems

designed to allow fungi to convert elastic energy into kinetic energy, ensuring that spores

are discharged at sufficient speeds. The large conidia (mostly between 15 and 40 microns

in length) in fungus order Entomophthorales demands high energy to be discharged. They

are discharged by a rapid pressure-driven eversion of the septum between the spore and the

conidium [2]. Fungi from Entomophthorales are insect or mite pathogens and their infection

success depends, among other things, on the attachment of the discharged conidium after

landing on host cuticle [3]. The conidia of entomophthoralean fungi are discharged with fluid

from the conidiophore, which further assist the conidium to stick to host cuticle after landing

[2, 4].

The temporal pattern of conidial discharge from infected and dead hosts have been studied

for several species of Entomophthorales belonging to for example the genera Entomophthora,

Entomophaga, Pandora and Zoophthora [4, 5, 6, 7, 8]. The studies show the same overall

pattern: after a lag phase of a few hours after the death of the host, conidial discharge is

initiated. Depending on host species, fungus species, and temperature, the peak in discharge

intensity will be reached within one or two days, thereafter the intensity drops although

conidia may still be produced and discharged several days after death of the host. In principle

the same pattern appears when conidia are discharged from in vitro cultures. Here the starting

point will be, when a mycelium mat is transferred to a plate, from where conidial discharge

will be initiated.

Due to the sticky conidia, it is a methodological challenge to study patterns (at a quantitative

level) over time of conidial discharge in Entomophthorales, and people have used various

methods to collect and count discharged conidia. In [9] different methodologies applying

to Entomophthoralean fungi are reviewed, and a common trait is that the setup should as

much as possible reflect the natural condition, where insects are killed and thereafter initiate

discharge of conidia. Different laboratory setups have been used for obtaining discharged

conidia counted on glass slides referring to specific time intervals and/or different distances

[4, 6, 10]. The data treatment in studies on conidial discharge is mostly rather simple and

include for example calculations of mean and standard deviation for replicates, pair wise

comparisons or analysis of variance, and a description in words about peak of intensity and

length of period with conidial discharge. While these methods are valid and may offer a fair

background for conclusions, they nevertheless do not harbor and by that make use of the

total information in the study.

Entomophthoralean conidia (fig. 1, right shows a conidia of Pandora sp. from Cacopsylla

sp.) are the infective units of entomophthoralean fungi, and for the majority of species they
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are actively discharged [11]. The conidial discharge of different species of Entomophthorales

is affected by temperature [12, 6, 13, 14]. In P. neoaphidis, the total number of discharged

conidia is significantly lower at extreme temperatures below 10 and above 25◦C [15, 12] and

highest conidial discharge from mycelium mats is at temperatures between 10◦C and 20◦C
[13]. The duration of conidial discharge from cadavers of Pandora nouryi, another species

infecting aphids, increased with decreasing temperature, and lasted up to 120 hours at 8◦C
[14]. Once the conidia of entomophthoralean fungi are discharged from the conidiophores they

have a short longevity[16, 17].

Pandora fungi as potential biocontrol agents Psyllids from the genus Cacopsylla

(Hemiptera: Psyllidae) cause economic damage to pear trees (Pyrus spp.) and apple trees

(Malus spp.) in Europe. Some of these species not only cause direct damage by sucking on

the phloem and secreting honeydew [18], but they also transmit Candidatus (Ca.) Phyto-

plasma pyri to pear and Ca. Phytoplasma mali to apple trees; diseases known as pear decline

and apple proliferation (AP) respectively [19]. In Germany and Italy losses due to AP can be

very high. [20] calculated annual losses at that time to be up to 125 million Euros.

The most common treatment of these insects is to spray eggs and nymphs with synthetic

insecticides such as spinosyns or tetronic acids of up to six times per year [21]. Such extensive

use of chemical insecticides leads to resistance development, and effective modes of action to

control Cacopsylla spp. become increasingly unavailable due to resistance development and

stricter regulations that must be addressed when new chemical pesticides are being registered

[22]. Therefore, alternative control methods are needed.

In 2016, a potential fungal biocontrol agent of Cacopsylla spp. was found on psyllids from a

pear orchard in Vedbæk near Copenhagen, Denmark. It was shown to have a high virulence

against several Cacopsylla spp. and can be grown in vitro [23]. This new species is from the

genus Pandora (Entomophthorales: Entomophthoraceae) and may appear to be an unde-

scribed species [23]. Most entomopathogenic fungi within the order Entomophthorales have

a very narrow host range and will therefore not affect non-target insects [24]. At the same

time they can cause natural epizootics in many arthropod species, including pest species [25]

and therefore possess attractive characters for being developed as biological control agents.

Statistical modelling of temporal evolution in biological systems using functional

data For biological processes evolving over time, people often like to think in terms of

idealized systems with a clear time-dependent profile. However, it often the case that different

instances/replications of such processes show some variation in timing. Within statistics, this

variation is commonly referred to as temporal variation or phase variation.

The usual interpretation of temporal variation is biological time; that is, the clock of the

underlying biological system is out of synchronization with the idealised system (this may be

for various reasons), but it is the same underlying processes that are taking place. A common
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example is puberty for boys: healthy boys enter the pubertal stage (which has some common

characteristics for all boys) at some point, but when that happens varies a lot betweens

individuals.

Inferring the effect of biological time requires replications of the same experiment, and when

the underlying structure is a continuous process, such data is naturally handled within the

framework of functional data analysis. We believe that the effects of temporal variation are

often forgotten in the biological sciences. This is sometimes a problem, as ignoring temporal

variation can lead to weak or even misleading conclusions.

There are various approaches to modelling functional data with temporal variation (mis-

aligned functional data). We intend to follow the methodology of [26], which we will refer to

as the pavpop model (Phase and Amplitude Variation of POPulation means). This method-

ology has been used in different applications with great success [27, 28]. The main idea of [26]

is simultaneous modelling of amplitude and temporal variation, where temporal variation is

modelled as a spline interpolation of a latent Gaussian variable that represents temporal de-

viation from the idealised system. For a review of methods for handling misaligned functional

data, we refer to [26, 27].

Whereas classification is often part of papers on misaligned functional data, inference in form

of hypothesis testing has got little attention in misaligned functional data. In general, infer-

ence in functional data is not easy and requires either strong parametric assumptions, which

can be wrong, or the use of non-parametric tests, which can be computationally difficult.

Purpose and content of this study From a biological perspective, the duration and

intensity of conidial discharge of the newly discovered Pandora sp. are important factors for

transmission of this fungus in apple and pear orchards. By understanding how temperature

affects the intensity of conidial discharge, we aim at better understanding the development of

epizootics, which is crucial in the development process of this fungus as a biological control

agent. Furthermore we aim at getting a better understanding of the temporal evolution of con-

didial discharge in entomophthoralean fungi by applying dedicated methods from functional

data analysis.

From a statistical perspective, all previous applications using the methodology [26] have so

far dealt with continuous data, where the amplitude variation is assumed to Gaussian. The

novelty of this work is the extension and application of the pavpop model to discrete data,

which are generated from an unobserved biological system with temporal evolution. Further-

more, we also consider inferential questions, which is new to this methodology as well. In a

more broad context, this can be seen as combining the pavpop model with generalized linear

models. In this application we use a negative binomial response model; the supplementary

material describes various other response models.

In this study, discharge of conidia from mycelium mats (Figure 1, left) was studied in dif-

ferent temperatures over time. We hypothesize that high temperature leads to an early and
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fast decreasing peak when looking at (the intensity of) conidial discharge, whereas a low

temperature leads to a late and more slowly decreasing peak, and that a low temperature

leads to a higher total production of conidia in the first 120 hours, as compared with higher

temperatures.

Figure 1: The mycelium of Pandora sp. from Cacopsylla spp. with a primary conidium on top

of a conidiophore (left) and a discharged primary conidium (right).

2 Methods

2.1 Experiment and data collection

Mycelium production An isolate of Pandora sp., designated KVL 16-44, isolated from

an infected Cacopsylla sp. was grown on Sabouraud Dextrose Agar (SDA) supplemented with

egg yolk and milk. To produce fresh material mycelium mats were transferred to petri dishes

(55 mm diameter) and incubated at 18.5 ◦C in dark conditions for 20 days.

Conidia production Filter papers of 18 x 18 mm, moistened with 0.75 ml of autoclaved

water, were placed in the middle of lids of petri dishes (34 mm diameter). Four squares of 5

x 5 mm mycelium mats were cut from the same mycelium mat 20 mm away from the centre

of the petri dish and put upside down in the edges of the moist filter papers. All lids were

put on the counter parts of the empty petri dishes and they were kept in three different

temperatures (12, 18.5 and 25 ◦C) in complete darkness at 100% RH. The mycelium mats

were facing downwards. Five replicates per temperature were 15 in total.
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Conidia discharge over time To measure the conidial discharge a small stripe of Parafilm

with a cover slide (18 x 18 mm) on top was placed inside the lower part of the petri dish and

they were placed in the incubators for 30 min. The cover slides were placed underneath the

four mycelium mats. The cover slides were then removed and the conidia laying on the slide

were stained with lactic acid (95%). This procedure was repeated every eight hours for 120 h,

in total 16 time points with the first time point right after the transfer of the mycelium mat to

the filter paper. Moreover, the lower parts of the petri dishes were cleaned with ethanol (70%)

and demineralised water every eight hours to ensure that primary conidia did not discharge

secondary conidia on the cover slides. The conidia were counted in each of the 4 corners of

the cover slide. In total, we got four observations per time-point, replicate and temperature

(4 counts * 5 replicates * 16 time-points * 3 temperatures = 960 observations). Conidia on

slides were counted with the aid of a light microscope (OLYMPUS) at x 400 magnification

on the whole field of view.

2.2 Statistical modelling

We consider a set of N unobserved or latent mean curves, u1, . . . , uN : [0, 1]→ R. from J = 3

treatment groups. The mean curves are assumed to be generated according to the following

model

un(t) = θf(n)(vn(t)) + xn(t), n = 1, . . . , N (1)

where f maps curves into treatment groups. That is, to each subject corresponds a fixed

effect (θj), which is perturbed in time (vn) and amplitude xn, both assumed to be random.

To each curve corresponds a set of discrete observation (tn1, yn1), . . . , (tnmn , ynmn) ∈ [0, 1]×Y
where (tn1, . . . , tnmn) are mn pre-specified time points and Y ⊆ R is the sample space for the

observations.

We assume that the observations conditionally on the latent mean curves are independently

generated from an exponential family with probability density function

p(y|η) = b(y) exp(η · y −A(η, y)), η ∈ R, y ∈ Y (2)

where η is the value of the latent mean curve at a given time, and y is the canonical statistic

for the observations. A and b are functions defining the exponential family. We assume that

A(·, y) ∈ C2(R) for all y with the property that A′′η(η, y) > 0 for all η, and we assume that

all hyperparameters describing A and b are known and fixed beforehand. More details on

response models can be found in the supplementary material.

The amplitude variation xn is assumed to be a zero-mean Gaussian process. Fixed effects

are modeled using an appropriate spline basis, and phase variation is modelled by random

warping functions characterised by Gaussian variables wn ∈ Rmw where wn = 0 corresponds

to the identity function on [0, 1]. More details on fixed effects and phase variation can be

found in the supplementary material.
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Estimation in this model is presented in the supplementary material. Estimation is a ma-

jor challenge, as direct inference is not feasible due to the large number of latent variables.

Furthermore, unlike [27], the response is not Gaussian, which require some additional consid-

erations. We propose to use a twofold Laplace approximation for doing approximate maximum

likelihood estimation; details on the Laplace approximation are found in the supplementary

material.

2.3 Data analysis

As described in the methods section, data consist of 960 observations (4 counts * 5 replicates

* 16 time-points * 3 temperatures) in N0. The largest count was 211, and a large fraction of

the counts was zero.

Samples no. 7 and no. 13 ”collapsed” during the experiment after 48 and 40 hours, respec-

tively, and measurements after collapse were excluded in the data analysis.

Response model A popular choice for modelling count data (from biological experiments)

are Poisson models. This is backed by a strong theoretical reasoning; using our data as an

example, one would expect that while the fungi are placed in the incubators, they would

independently discharge conidia at random and at a constant rate. This is a typical example

of a Poisson process, for which a statistician would use a Poisson model.

However, a unique feature of the data set was the four samples taken from each batch used

for conidia count, which can reasonably be assumed to be i.i.d. conditionally on the latent

curve u. This allowed us to estimate the dispersion directly, and to assess if Poisson model

was in reasonable agreement with the observed data. The dispersion parameter is a quantity

that relates the variance to the mean. The dispersion is 1 for Poisson models and larger than

1 for negative binomial models.

By comparing sample means and sample variances across the 240 measurements, we validated

if a Poisson assumption was reasonable or not. As indicated in Figure 2, this was clearly not

case. Data were clearly overdispersed; a dispersion of one corresponds to the dotted line.

Therefore we fitted an unstructured negative binomial regression model with common rate

r to the data to investigate goodness-of-fit of using that model. This was validated; the

estimated rate was r0 = 4.658, the dashed line in Figure 2 indicates the corresponding

mean/variance relation. This value was fixed and used in the subsequent analysis.

Having estimated the dispersion, the counts at individual measurements were added for the

subsequent analysis as the sum of counts is a sufficient statistic for our model. The sum of

iid. negative binomial random variables is again negatively binomially distributed; the rate

parameter r is multiplied by the number of counts; thus we got r = 4 · r0 = 18.63. The

summed counts are displayed in Figure 3.
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Figure 2: Sample variance as function of sample means across measurements. Dashed line is

fit using a NB(4.66)-model; dotted line is fit using a Poisson model.

Model for mean curves Time was rescaled to the unit interval such that t = 0 corre-

sponded to 0 hours and t = 1 corresponded to 120 hours. Warping functions were modelled

as increasing cubic (Hyman filtered) splines with mw = 7 equidistant internal anchor points

with extrapolation at the right boundary point. The latent variables wn were modeled us-

ing a Matérn covariance function with smoothness parameter α = 3/2 and unknown range

and scale parameters. This corresponds to discrete observations of an integrated Ornstein-

Uhlenbeck process. This gave a flexible, yet smooth, class of possible warping functions which

also take into account that the internal clocks of individual fungi could be different at the

end of the experiment.

Population means θcold, θmedium, θwarm were modeled using natural cubic splines with 11 basis

functions and equidistant knots in the interval [0, 1]. Natural cubic splines are more regular

near boundary points than b-splines which reduce the effect of warping on estimation of spline

coefficients.

Amplitude covariance x was modelled using a Matérn covariance function with unknown

range, smoothness and scale parameters; see supplementary material for details.
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Figure 3: Summed counts of conidia for the individual fungi as functions of time, color-coded

according to temperature.

Hypotheses We define ’peak location’ as the time with maximal condidial discharge, and

’peak decrease’ as the average decrease in discharge between ’peak location’ and end of the

experiment:

peak locationj = arg max θj , peak decreasej =
max(θj)− θj(120h)

120h− peak locationj

Note that this on log-scale, so peak decrease should be interpreted as a relative decrease of

conidial discharge.

One can qualitatively assess the hypotheses without strict definitions, but in order to do

statistical inference, a mathematical definition is needed. We remark that here we consider

population means; temporal variation may also affect peak location for individual fungi.

3 Results

Predicted mean trajectories for u, evaluated at observed time points, along with population

means are displayed in Figure 4. We observe a slightly odd behaviour around t = 0. This

is an artifice; most observations around t = 0 are zero. When the predicted values of u are

exp-transformed, these are mapped into almost-zero values. The three population means are

clearly separated, which is in concordance with our hypothesis and fit well into what we

144 Paper IV



−4

−2

0

2

4

6

0 25 50 75 100 125

time (h)

lo
g(

E
[c

ou
nt

]) temp

warm

medium

cold

0

200

400

0 25 50 75 100 125

time (h)

E
[c

ou
nt

]

temp

warm

medium

cold

Figure 4: Predicted trajectories for u (dashed lines). Left is on model scale, right is exp-

transformed (same scale as observations). Thick lines indicate estimated population means.

expected: θwarm peaks first and has the highest peak; θmiddle is in-between and θcold peaks

latest and has a smaller and more slowly decreasing peak.

Predicted warping functions are displayed in Figure 5. The scale parameter for the warp

covariance was estimated to be 0.026; this corresponds to a standard deviation of around 3.1

hours on temporal displacement, or a 95% prediction interval of roughly 6 hours.

The results in Figure 5 are closely connected with those in Figure 4: a vertical change in Figure

5 corresponds to a horisontal change in Figure 4. One may interpret the trajectories in figures

4 and 5 as smoothing of the data: Figure 3 shows the raw data counts; Figure 4 displays the

smoothed curves, which are our guesses/predictions of the intensity of conidial discharge (the

underlying biological quantity of interest) for individual fungi; and finally Figure 5 displays

the corresponding predictions of the biological times, the temporal deviations which for an

individual fungi essentially determine the intensity of conidial discharge.

The trajectory for an indivual fungus is of little interest by itself as that fungus is confined

to this experiment. However, when the trajectories are viewed together, they illustrate the

variation on population level allowing us to assess variation between individual fungi from

the same treatment group, and also to compare this to fungi from other treatment groups.

Discharge of conidia above certain levels For practical applications it is relevant to

know when the intensity of conidia discharges reach a given level and for how long this

happens. Although one conidium is enough to infect an insect [29], the chance of a conidium

landing on an insect is small. Therefore we chose a range from low to very high discharge of

conidia. The lowest threshold was 0.5 and and the largest threshold was 5.5 with a step size

of 0.5. One corresponds to an increase in conidia discharge of ≈ 65%. Using the results of the

analysis, we simulated trajectories of u from the model. For a given trajectory and threshold,

we measured the first time this threshold was reached, and for how long u remained above

this level.
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Figure 5: Predicted warp functions. Black line indicates the identity, ie. no temporal deviation.

The results are seen in Figure 6. There are generally some large variations, but according

to the results, fungi at low temperatures are consistently slower at reaching the threshold.

It should be noted duration is only counted until end of experiment (120 h) so the actual

duration values for cold fungi could be larger when viewed over a longer time span.

Total conidia discharge The total number of discharged conidia by individual fungi is

displayed in Table 1. Looking at the numbers, there is a decrease in total conidia count

towards higher temperatures, even when discarding samples 7 and 13.

cold medium warm

1575 2003 1742

2019 902* 1764

1921 1510 787*

2019 1991 1470

2323 1720 1769

Table 1: Sums of discharged conidia. * indicate thats these fungi collapsed during the exper-

iment.

However, a one-way anova test gave a p-value of 0.075 (excluding the collapesed fungi), and

pairwise Wilcoxon tests and a Kruskal-Wallis test gave even larger p-values. So while it is

evident that temperature has an effect on conidia discharge as a function of time, we are not

able to detect a significant effect of temperature on the total amount of conidia discharged

within the first 120 h.
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Figure 6: Left: First time conidial discharge intensity reaches given threshold, for differ-
ent thresholds. Some trajectories didn’t reach given thresholds and have been omitted from
the corresponding boxplots. Right: Duration that conidial discharge intensity is above given
threshold. Blue: 12.0 ◦C, Green: 18.5 ◦C, Red: 25 ◦C.

3.1 Inference for population means

Following the approach outlined in the supplementary material, we estimated the information

matrices for the spline coefficients, Icold, Imedium, Iwarm. The information matrices themselves

are of little interest, but following Berstein-von Mises theorem the inverses evaluated at time

points can be used as quantifiers for the uncertainty and standard errors, see Figure 7. We

have much more uncertainty for small values of θ. This is as expected; small values of θ

corresponds to few conidia counts and thus only little data to estimate from. The pointwise

standard errors for θ in regions with large counts are around 0.20-0.25 or 20-25% when exp-

transformed.

3.2 Peak location and decrease

Using the standard error estimates from the previous section, we made inference on the loca-

tion and decrease of peaks. This was done by simulating from the approximate distributions

of the estimators. 1000 simulations were used, results are in Table 2. As we expected, θcold
peaked late, around 70h after start, while the fungi stored at higher temperatures peaked

much earlier. We observed a large and skewed 95% confidence interval for peak location of

θmedium, even containing the similar confidence interval for θwarm. Regarding the second ele-

ment, peak decrease, we saw a roughly linear relationship between temperature and decrease.
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Figure 7: Left: Pointwise evaluations of 1.96 · I−1, where I is the information matrix. Right:

Corresponding pointwise confidence intervals.

The confidence interval for θwarm is broader than the other confidence intervals; this is due

to the lack of data for small values of θ, cf. Figure 7. However, all confidence intervals are

clearly separated at a 95% level, and we can firmly conclude that lower temperatures leads

to a more slowly decreasing peak, with the consequence of increasing the duration of high

conidial discharge.

2.5% Estimate 97.5%

cold 66.0 70.7 73.7

medium 32.7 43.8 46.6

warm 33.7 35.1 36.1

2.5% Estimate 97.5%

cold 1.29 2.10 2.99

medium 4.14 5.07 5.98

warm 6.78 8.94 11.42

Table 2: Approximate 95% confidence intervals for peak location (left) and peak decrease

(right). Units are hours after start of experiment and %/h, respectively.

Credibility of hypotheses By comparing the approximate distributions of the estimators,

we could assess the credibility of of our hypotheses. This was done by pairwise comparison of

estimators using q = P (f(X̂) < f(Ŷ )), where f(X̂) and f(Ŷ ) are the posterior distributions

of parameter functions, e.g. f(X) = peak(θcold) and f(Y ) = peak(θmiddle).

f(X) = f(Y ) implies q = 0.5, so small or large values of q are evidence against the hypothesis

f(X) = f(Y ). Results are shown in Table 3. Apart from peak(θmiddle) = peak(θwarm), all

q-values are very close to one. As a result, our analysis very strongly supports that higher

temperatures lead to faster decreasing peaks, and that a low temperature gives a late peak

in comparison to middle and high temperatures.
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hypothesis q

peak(θcold) = peak(θmiddle) 1.00

peak(θcold) = peak(θwarm) 1.00

peak(θmiddle) = peak(θwarm) 0.108

slope(θcold) = slope(θmiddle) 0.9999

slope(θcold) = slope(θwarm) 1.00

slope(θmiddle) = slope(θwarm) 0.9993

Table 3: Pairwise comparisons of hypotheses with credibility values.

3.3 Robustness of statistical analysis

Leave-one-out-analysis To assess the uncertainty and robustness of the estimates, a leave-

one-out analysis was performed: One observation (or in our case, one curve) is removed from

the data set, and the model is fitted to the reduced data set. This is done for all N observations

in turn, and the results are compared in the end. These results should preferably not differ

by much; this is called robustness; lack of robustness is an indication of overfitting, that is

too many features or variables are included in the model. Robustness is related to generalised

cross-validation; see e.g. [30] for a reference.

As our model is highly non-linear and consists of several layers, each with different parameters,

it was of interest to study the robustness. As seen in Table 4 we got a fairly large spread on

the amplitude covariance parameters. However, this can be explained by the many kinds of

variation in data; it is more relevant that the mean curves are very robust, as the population

means are main interest of this study. The explanation behind the large spreads observed in

the beginning is that large negative values are mapped into almost-zero values.
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Figure 8: Pointwise estimates, and upper and lower bounds for leave-one-out analysis.
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Parameter nb-dispersion rangeamp smoothnessamp scaleamp rangewarp scalewarp
Lower bound 4.40 0.314 2.30 0.0066 0.072 0.023

Estimate 4.66 0.458 7.21 0.072 0.083 0.026

Upper bound 5.21 0.523 10.0 0.084 0.691 0.034

Table 4: Parameter estimates and leave-one-out results. Note: An upper bound of 10 for the

Matern-smoothness was used in the analysis.

4 Discussion

With the applied statistical methods, we were able to characterize the temporal patterns of

conidial discharge to a much better degree than previous studies, and we characterized the

variation between individual fungi of the same population. With a 95variation is too little

for changing the overall shapes, but still large enough to be important for the analysis and

to shift the peaks for individual fungi significantly.

Good statistical methods are essential when analysing biological systems with a temporal

pattern, and allow researchers to get a better interpretation of data. Advanced statistical

methods are not always better than simple ones, but the applied methods should be able to

capture all essential variations in data.

Examples of statistical analyses (some using the pavpop model) of other biological systems,

where a model of the temporal variation was essential for the data analysis and interpreta-

tion of results, include electroforectic spectra of cheese [31], growth of boys [27] and hand

movements [28, 27].

In this study we demonstrated the flexibility of the pavpop model by successfully fitting to a

complete different kind of data: namely discrete data with a lot of zeros, where a Gaussian

approximation would be unreasonable. With this success, there is reason to believe that this

framework would work well in applications with other commonly used response models, for

example binary response models (logistic regression).

Having several counts per measurement allowed us to look into response models. The Poisson

model was invalidated, so we applied a negative binomial model instead. This is also relevant

for similar/future studies: a negative binomial distribution gives rise to larger standard errors

on estimates than a corresponding Poisson model, which increases the risk of making type I

errors.

There were some uncertainties in the estimation, but given the comparatively small amount

of data, this is adequate. The robustness analysis can be used to asses which parameters are

identifiable. Although some of the variance parameters were not well identified, the dispersion

parameter, average temporal deviation and population means were found to be quite robust.

We were not able to detect significant differences in total number of discharged conidia in this

study. However, the fungi stored at 12 ◦C were still discharging many conidia at t = 120h,
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so there is good reason to believe that there are significant differences when using a longer

time span; the authors have data that supports this, too. In a study conducted on mycelial

mats of Pandora neoaphidis over 168 h this could be observed: At 25 ◦C the mycelium mats

produced less primary conidia compared to mycelium mats incubated at 10, 15 or 20 ◦C [13].

Aphid cadavers infected by P. neoaphidis discharged similar numbers of primary conidia at

temperatures between 5 and 25 ◦C in the first 24 hours [12].

On the other hand, we detected significant differences in peak location and shape: high tem-

perature leads to an early peak but fast decreasing intensity of conidial discharge compared

to low temperature. Other authors also found an earlier peak and faster decreasing intensity

of conidial discharge at 25 ◦C compared to lower temperatures in other species of fungi, but

the position of the peak and decrease of conidial discharge intensity was not statistically

analysed [10, 14].

Our findings agree with those of [14]; lower temperature leads to longer durations of conidial

discharge. When the host population is large, the chance of a conidium landing on a host

is larger and there is no advantage of prolonging the conidial discharge [14]. The effects of

temperature on temporal pattern of conidial discharge are important in practical applications

and for the potential of this species as a biocontrol agent. The most important factor is the

duration of intense conidial discharge, thus we believe the biocontrol potential to be largest

at cold temperatures; the effect is illustrated in Figure 7. To get a better understanding of

the environmental tolerance of a fungus regarding conidial discharge, experiments including

fluctuating temperature, different relative humidity and light levels need to be conducted.

Furthermore, the conidial discharge from insect cadavers can be measured to get a better un-

derstanding of the development of epizootics in the field. The presented statistical framework

will likely be of great benefit for future data analysis of any experiments in which conidial

discharge is measured over time.
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Supplementary material

Statistical estimation

Direct inference in the statistical model (1) and (2) is not feasible due to the large number of

latent variables. Furthermore, unlike the setup in [27], the response is not Gaussian, which

further complicate estimation. One solution would be to use MCMC methods, which are

generally applicable. However, we propose to use a double Laplace approximation for doing

approximate maximum likelihood estimation.

This Laplace approximation actually consists of a linearisation around the warp variables wn
followed by a Laplace approximation on the discretised mean curves u; un = {un(tnk)}mnk=1

for n = 1 . . . , N . When these approximations are done at the maximum posterior values of

(wn,un), this is equivalent to a Laplace approximation jointly on (wn,un).

The main difference from the estimation procedure of [27] is the non-trivial addition second

layer of latent variables u.

Posterior likelihood To perform Laplace approximation, we need the mode of the joint

density of observations and latent variables; this can be found by maximising the posterior

likelihood for the latent variables.

The joint posterior negative log-likelihood for sample n is proportional to

L =
[ mn∑

k=1

A(unk)− unkynk
]

+
1

2
(γwn − un)>S−1n (γwn − un) +

1

2
w>nC

−1wn (3)

where γwn denote the vector {θf(n)(v(tnk, wn))}mnk=1. Spline coefficients for the fixed effects

are indirectly present in the posterior likelihood through γwn ; more details follow below. It

should be noted that under relatively mild assumptions, minimizing (3) for a fixed w is a

convex optimization problem.

Likelihood approximation To approximate the likelihood, we firstly linearise around w0

to approximate p(u) with a Gaussian distribution and secondly we make a Laplace approxi-

mation of the joint linearised likelihood.

The linearization around w0 to approximate the likelihood for density the mean curves,

p(un), is described in detail in [26, 27]. The result of doing this is a Gaussian approximation

of the latent u, ie. un
D≈ ũn where ũn ∼ N(rn, Vn). rn and Vn are obtained from the Taylor

approximation of u around the posterior maximum w0
n; for details we refer to [26, 27].

In general, the Laplace approximation of an integral on the form
∫
Rd e

f(x) dx around the

mode x0 of f is given by

(2π)d/2| − f ′′(x0)|−1/2ef(x0) (4)
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where |−f ′′(x0)| is the determinant of the Hessian of −f , evaluated in x0. This approximation

is exact if f is a second-order polynomial, and generally the approximation is directly related

to the second-order Taylor approximation of f at x0.

Up to some constants, which do not depend on the parameters, the likelihood for a single

curve in the linearized model is given by the following integral, which we want to approximate:

Llin
n ∝

∫

Rmn
|Vn|−1/2 exp

(
−1

2(un − rn)>V −1n (un − rn) +

mn∑

k=1

ynku
0
nk −A(unk)

)
dun (5)

Assuming u0
n to be the maximum of the posterior likelihood (3), one can show that the

negative logarithm of the Laplace approximation around (u0
n, w

0
n) is given by:

1/2 log |Σ̃n|+
mn∑

k=1

(A(u0nk)− ynku0
nk) + p(u0

n)

where Σ̃n = V −1n + 2diag(A′′(u0
n)) and p(·) is the negative log-density for a N(r0n, Vn)-

distribution. By assumption, A′′(u0nk) > 0, so |Σ̃n| > |Vn|−1.
The total log-likelihood for all observations is then approximated by

N∑

n=1

[
log |Σ̃n|+ log |Vn|+ (u0

n − rn)>V −1n (u0
n − rn) + 2

mn∑

k=1

(A(u0nk)− ynku0
nk)

]
(6)

Inference We propose to use alternating steps of (a) estimating spline coefficients for the

fixed effects and predicting the most likely warps and mean curves by minimizing the posterior

log-likelihood (3) and (b) estimating variance parameters from minimizing the approximated

log-likelihood (6).

Fixed effects and phase variation

Fixed effects are modeled using a spline basis that is assumed to be continuously differentiable,

e.g. a Fourier basis or B-spline bases. A typical choice for non-periodic data would be B-

splines; we have used natural cubic splines in the data application. Fixed effects are estimated

using the posterior likelihood (3). For a fixed value of wn, γwn is a linear function of spline

coefficients, and thus the optimal value can be found using standard linear algebra tools.

Phase variation is modelled by random warping functions vn = v(·, wn) : [0, 1] → D,

parametrized by independent zero-mean Gaussian variables wn ∈ Rmw . v : [0, 1]×Rmw → D

is a suitable spline interpolation function, such that v(·, 0) is the identity on [0, 1].

The latent trajectories vn are modelled as deviations from the identity function at pre-

specified time points (tk)
mw
k=1, subject to a Hyman filtered, cubic spline interpolation for

insuring monotonicity, vn(tk) ≈ tk + wnk. A more detailed discussion of modelling phase

variation using increasing spline functions can be found in [27].
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Uncertainty for fixed effects As our model is highly non-linear, we cannot expect to find

closed-form expressions for the uncertainty in parameters. Furthermore, the latent variables

complicates assessment of uncertainty as these are uncertain themselves.

A standard quantifier for assessing uncertainty in statistical models is the information matrix,

which under regularity conditions can be approximated by the second-order derivative of the

log-likelihood at MLE. However, directly using (6) would underestimate the information, as

(6) depend on the optimal value of the posterior likelihood (3), which itself is a function of

parameters.

Let cj denote the spline coefficients which determine the population mean θj for treatment

group j. cj is determined from the posterior likelihood L = L(c, u, w), formula 3. As u and

w are latent, it would be wrong to use the second derivative of L for the information matrix;

instead we use the second derivative of f(c) = L(c, u(c), w(c)), where u and w are viewed as

functions that map c into the max-posteriors of u and w given c.

This will more correctly ensure that the uncertainty of u and w is taken into account when

estimating the information matrix. Furthermore, positive definiteness of L′′ will imply positive

definiteness of f ′′.

Response models

In the application presented in this paper we assume that (y|u) follows a negative binomial

distribution. There are various choices of response models, a list of important ones are stated

below. Note that not all exponential families fits naturally with our methodology; y|u must

be well-defined for all u ∈ R.

Binary response: For binary responses, the sample space is Y = {0, 1}. If we define

p := P (Y = 1|η), and set A(η) = log(1 + eη), we get that η = log(p) − log(1 − p), the

canonical link function for regression models with binomial response.

Poisson model: Y ∈ N0 where A(η) = eη, the canonical link function. The conditional

mean satisfies E[Y |η] = eη.

Negative binomial model: Negative binomial distributions are often viewed as overdis-

persed versions of Poisson models. Let the rate parameter r > 0 be given such that V [Y |η] =

E[Y |η] + E[Y |η]2/r; the limit r →∞ corresponds to the Poisson model.

We get A(η, y) = (r + y) log(1 + eη

r ) and A′′(η; y) = (y + r) reη

(r+eη)2
. Unlike the Poisson

and binomial models, the link function A depends on y, but it is easily seen that A(η, y)

approximates eη in the limit r →∞.
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Normal distribution with known variance σ2: For normal distributions we have Y ∈ R,

and by setting Ỹ = Y/σ2. Then A(η) = η2/2σ2, E[Ỹ |η] = η/σ2, and E[Y |η] = η. This is

the most basic response model, and the used in [26]. [26] use a different formulation and also

treats σ2 as an unknown parameter. The Laplace approximation becomes exact when using

normal distributions, simplifying estimation to become the approach used in [27].

Matern covariance function

The Matérn covariance function is commonly used in functional data analysis and spatial

statistics. It is given by

fσ,α,κ(s, t) = σ2
21−α

Γ(α)

(
α|s− t|

κ

)α
Kα

(
α|s− t|

κ

)
, s, t ∈ R (7)

where Kα is the modified Bessel function of the second kind. Here σ is the scale parameter,

α is the smoothness parameter and κ is the range parameter.
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3
Conclusion and outlook

In this thesis some new dedicated methods for functional data have been presented. The
applicability of the methods was demonstrated on various data sets. Five very different data
sets both in terms of scientific areas and sizes were analysed, and we gained insight into the
statistical variation within these data.

We made a comparison with other methods on the hand movement data; one notable con-
clusion is that warping functions or phase distance is an important feature and not just
nuisance. The methods which incorporate phase distance had markedly better classification
results compared to other methods.

Another subject was that of multivariate functional data, where we in Paper I introduced
the dynamical correlation structure for modelling cross-correlation and applied it on two data
sets. The MCA model also allows for varying cross-correlation, but with a different, high-
parametric approach. It would be of interest for future studies to compare this with the
dynamical correlation structure.

The methodology in Paper IV is strongly related to that in paper I, but looking into a
different direction, namely discrete data consisting of conidia counts. We successfully applied
the proposed model to a data with a negative binomial response, and there is reason to
believe that this study can be helpful in mycology research. From a statistical point of view,
we demonstrated the methodology of Raket et al. (2014) in a generalized linear context.

The scope of paper III and the addendum to it was quite different, namely local inference.
Here we went into a non-parametric setting, where the estimation of parameters or alignment
of data was of little interest. Although the functional BH and the spherical IWT procedures
rely on parametric tests, the dependence structure is of less relevance.

Our results showed that Earth temperatures have increased significantly in many regions. This
is no surprise, but the important thing is that we made functional multiplicity corrections to
account for the multiple comparison problem. We chose to focus on increasing temperatures;
one could also focus on decreasing temperatures. Despite of global warming, there are regions
where temperatures have significantly decreased, although this area is much smaller, and
perhaps less important, than regions with increasing temperatures.

There are many possible variations on the IWT and fBH procedures, which would be inter-
esting to explore in future research. An extensive comparison of local inference methods is
also an interesting perspective.

159



160

There are several future perspectives as presented in the discussion parts of the papers,
although they point in various directions.

Many perspectives lie in modelling of warping functions as discussed in Section 1.2 and paper
I. One perspective is warping functions with continuous space and more general regularity
criteria. Other perspectives are correlations between amplitude and phase variation, and the
combination of warps with differential equations, as discussed in Section 1.2.3. Although
not discussed in this thesis and not relevant in Paper III, warping may be an issue in local
inference. The interesting issue would not so much be if there is an effect of warping but how
much effect there is? – too little alignment would not allow to detect significant differences,
whereas too much alignment could amplify the registered signals too much; where variation
is not due to warping. To sum up, I believe there is much open research in alignment of
functional data, in particular its interplay with other areas of functional data analysis.

Although functional data analysis is a well-established field, many open research problems
still remain. In this thesis we have looked into new methods for functional data with many
interesting perspectives.


