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Abstract. �is thesis consists of three articles in which we make several contributions
to the study of characteristic classes of manifold bundles and closely related topics.

In Article A, we compare the ring of characteristic classes of smooth bundles with
�bre a closed simply connected manifold M of dimension 2n , 4 to the respective ring
resulting from replacing M by the connected sum M]Σ with an exotic sphere Σ. We show
that, a�er inverting the order of Σ in the group of homotopy spheres, the two rings in
question are isomorphic in a range of degrees. Furthermore, we construct in�nite families
of examples witnessing that inverting the order of Σ is necessary.

In Article B, which is joint with Jens Reinhold, we study smooth bundles over surfaces
with highly connected almost parallelisable �bre M of even dimension. We provide
necessary conditions for a manifold to be bordant to the total space of such a bundle and
show that, in most cases, these conditions are also su�cient. Using this, we determine the
characteristic numbers realised by total spaces of bundles of this type, deduce divisibility
constraints on their signatures and Â-genera, and compute the second integral cohomology
of BDi�+(M ) up to torsion in terms of generalised Miller–Morita–Mumford classes.

In Article C, we introduce a framework to study homological stability properties of
E2-algebras and their modules, generalising work of Randal-Williams and Wahl in the
case of discrete groups. As an application, we prove twisted homological stability results
for various families of topological moduli spaces, such as con�guration spaces and moduli
spaces of manifolds, and explain how these results imply representation stability for related
sequences of spaces.





Resumé. Denne a�andling består af tre artikler hver med bidrag til studiet af karakteri-
stiske klasser af mangfoldighedsbundter og tæt relaterede emner.

I Article A sammenligner vi ringen af karakteristiske klasser af gla�e bundter hvis �ber
er en lukket enkeltsammenhængende mangfoldighed M af dimension 2n , 4, med ringen
der fås ved at ersta�e M med den sammenhængende sum M]Σ hvor Σ er en eksotisk
sfære. Vi viser, at hvis ordnen af Σ inverteres som element i gruppen af homotopisfærer,
så er de to ringe isomorfe i et interval af grader. Desuden konstruerer vi uendelige familier
af eksempler som bevidner af det er nødvendigt at inverterer ordnen af Σ.

I Article B, udført sammen med Jens Reinhold, studerer vi gla�e bundter på �ader
med �ber M af høj konnektivitet, næsten paralleliserbar og af lige dimension. Vi giver
nødvendige betingelser for at en mangfoldighed er kobordent med totalrummet for et
sådan bundt, og viser, at i de �este tilfælde, er disse betingelser også tilstrækkelige. Ved
brug af de�e, bestemmer vi de karakteristiske tal som realiseres af totalrummet for bundter
af denne type, deducerer divisibilitetsbegrænsninger på deres signaturer og Â-genera
og beregner den anden heltallige kohomologi af BDi�+(M ) op til torsion i termer af
generaliserede Miller-Morita-Mumford klasser.

I Article C introducerer vi et framework for studiet af homologisk stabilitetsegenskaber
for E2-algebraer og deres moduler. De�e generaliserer arbejde af Randal-Williams og Wahl
i tilfældet af diskrete grupper. Som anvendelse bevises homologisk stabilitet med twistede
koe�cienter for en række familier af topologiske modulirum, så som kon�gurationsrum,
og modulirum af mangfoldigheder, og vi forklarer hvorledes disse resultater implicerer
repræsentationsstabilitet for relaterede følger af rum.
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Introduction

Overview

�is thesis consists of the following three articles.

Article A. On characteristic classes of exotic manifold bundles
Article B. Characteristic numbers of manifold bundles over surfaces with highly con-

nected �bers (joint with Jens Reinhold)
Article C. Homological stability of topological moduli spaces

A�er providing some background, we brie�y summarise each of them.

Background

�e classifying space BDi�(M) of the topological group of di�eomorphisms of a closed
manifold M classi�es smooth �bre bundles with �bre M , so it is hardly surprising that
its homotopy type has been a longstanding object of interest to algebraic and geometric
topologists. Over time, two predominant approaches to studying BDi�(M) have emerged.

�e �rst and more classical strategy stems from the deep connections between geomet-
ric topology and algebraic K- and L-theory. It is based on the idea of introducing a larger
space D̃i�(M) of so-called block di�eomorphisms whose deviation from the space of di�eo-
morphisms Di�(M) is measured in terms of Waldhausen’s algebraic K-theory of spaces,
at least in a range depending only on the dimension of M (see e.g. [WW88]). Studying the
space of block di�eomorphisms instead of Di�(M) is advantageous, since the di�erence
between D̃i�(M) and the more accessible space hAut(M) of homotopy equivalences can
be understood by means of surgery theory (see e.g. [�i70]).

In the course of the last two decades, a new approach for the investigation of BDi�(M)
arose, grounded in Madsen, Tillmann, and Weiss’ [Til97; MT01; MW07] work on Mum-
ford’s conjecture [Mum83] on the moduli space of Riemann surfaces. �is new strategy
primarily targets the ring H∗(BDi�(M)) of characteristic classes of smooth bundles with
�bre M and has so far been developed the furthest for manifolds of even dimension 2n.
At �rst sight, this set of techniques is, like the previous method, restricted to a range of
degrees1—the so-called stable range—but instead of the dimension, this range depends on
the genus of M , de�ned as

д(M) = max{д ≥ 0 | there exists a manifold N such that M � N ](Sn × Sn)]д}.
Turning towards the trailblazing achievement of this line of investigation, we assume M to
be oriented, restrict to the subgroup Di�+(M) of orientation-preserving di�eomorphisms,
and de�ne MTSO(2n) as the �om spectrum �(−γ2n) of the inverse of the universal
bundle over BSO(2n). A parametrised version of the Pontryagin–�om collapse map
results in a canonical homotopy class of maps

BDi�+(M) → Ω∞MMTSO(2n)

1By way of an insight due to Weiss [Wei15] based on comparing di�eomorphisms to self-embeddings, one
can obtain information outside the stable range as well. �is was recently taken up by Kupers [Kup16].
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2 INTRODUCTION

to a certain path component Ω∞MMTSO(2n) of the in�nite loop space of MTSO(2n). Despite
the purely homotopy theoretical nature of its target, it turns out that the parametrised
Pontryagin–�om map knows a surprising amount about BDi�+(M) when M is a surface:
it induces an isomorphism in homology in a range of degrees growing with the genus.
�is remarkable fact for surfaces is a combination of a classical stability result of Harer
[Har85], saying that the homology of BDi�+(M) is independent of д(M) in small degrees
relative to д(M), and the celebrated theorem of Madsen–Weiss [MW07], showing that
the parametrised Pontryagin–�om map becomes an isomorphism in homology in the
limit д(M) → ∞. �e la�er statement was formerly known as the generalised Mumford
conjecture, as it has the classical formulation as a direct consequence, since the rational
cohomology ring of Ω∞MMTSO(2) can, by fairly standard methods, be computed as a
polynomial ring in the so-called Miller–Morita–Mumford classes κi of degrees 2i > 0.

It is thanks to Galatius and Randal-Williams that the success of parametrised Pontryagin–
�om theory is by no means restricted to the case of surfaces anymore. �eir seminal
sequence of articles [GR14; GR17; GR18], building on earlier work of Galatius–Madsen–
Tillmann–Weiss [GMTW09], culminated in a homotopy theoretical formula for the ring of
characteristic classes H∗(BDi�+(M)) in a range of degrees growing with the genus д(M)
for any simply connected manifold M of dimension 2n ≥ 6. More speci�cally, a�er estab-
lishing higher dimensional analogues of Harer’s stability result and the Madsen–Weiss
theorem, they proved that the parametrised Pontryagin–�om map induces an isomor-
phism on homology in a range of degrees for any manifold of the described type, a�er
replacing its target Ω∞MTSO(2n) with a certain re�nement depending on M . Since this
re�nement is still de�ned entirely in homotopy theoretical terms and is thus amenable to
calculation, their work has paved the way for a variety of applications, for instance, to the
study of spaces of homotopy equivalences [BM14], topological Pontryagin classes [Wei15],
mapping class groups [GR16], �niteness properties of automorphism spaces [Kup16], and
spaces of metrics of positive scalar curvature [BER17; ER17].

Articles A and B of the present thesis join the ranks of applications of Galatius and
Randal-Williams’ programme. In Article A, we use their work to investigate the behaviour
of the ring of characteristic classes H∗(BDi�+(M)) under changes to the smooth structure
of M , whereas in Article B, we study bundles over surfaces with highly connected �bres.
Article C, on the other hand, is more foundational in nature and focusses on extending
and conceptualising stability results such as Harer’s.

Article A. On characteristic classes of exotic manifold bundles

In Article A, we study the question of how the ring H∗(BDi�+(M)) of characteristic
classes of smooth oriented bundles with �bre a closed oriented d-manifold M behaves
under changes to the smooth structure of M on an embedded d-disc, or, equivalently, when
replacing M by the connected sum M]Σ with an exotic sphere Σ in Θd . Here Θd denotes
the �nite group of homotopy spheres up to h-cobordism, classically studied by Kervaire
and Milnor [KM63]. In the �rst part of the article, we utilise the work of Galatius and
Randal-Williams to provide an answer to this question for simply connected manifolds M
of dimension 2n , 4 in a range of degrees.

�eorem (Article A, �m A). Let M be a closed, oriented, simply connected manifold of
dimension 2n , 4 and Σ ∈ Θ2n . �ere is a zig-zag of maps of spaces inducing an isomorphism

H∗(BDi�+(M);Z[ 1k ]) � H∗(BDi�+(M]Σ);Z[ 1k ])
in degrees ∗ ≤ д(M )−3

2 , where k denotes the order of Σ ∈ Θ2n .

In the second part of Article A, we focus on the family of manifoldsWд = ]
д(Sd ×Sd ) to

examine whether inverting the order of Σ is necessary for the previous theorem to be valid.
Inspired by work of Kreck [Kre79], we show that, in small degrees, the possible di�erence
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between the homology of BDi�+(Wд) and BDi�+(Wд]Σ) can be detected in a suitable
bordism theory. Combining this with known computations in stable homotopy theory,
we �nd families of homotopy spheres Σ for which the integral homology of BDi�+(Wд)
di�ers from that of BDi�+(Wд]Σ) for all д ≥ 0. We refer the reader to Article A for details,
but state two particular consequences of our considerations.

�eorem (Article A, Cor. C, E). �ere are Σ ∈ Θ2n for in�nitely many values of n such that

H1(BDi�+(Wд);Z) and H1(BDi�+(Wд]Σ);Z)
are not isomorphic for д ≥ 0. Furthermore, for every Σ ∈ Θ10 � Z/6Z of order 3 or 6,

H3(BDi�+(Wд);Z[ 12 ]) and H3(BDi�+(Wд]Σ);Z[ 12 ])
are not isomorphic for д ≥ 0.

Remark. It would be interesting to know whether the rings of characteristic classes
H∗(BDi�+(M);Z[ 1k ]) and H∗(BDi�+(M]Σ);Z[ 1k ]) are isomorphic without assumptions on
the degree. It follows from work by Dwyer–Szczarba [DS83] that this is indeed the case
if one restricts to the unit component Di�0(M) of Di�+(M). Passing from BDi�+(M) to
BDi�0(M), however, usually changes the (co)homology signi�cantly, so one might hope
to �nd an example for which H∗(BDi�+(M);Z[ 1k ]) and H∗(BDi�+(M]Σ);Z[ 1k ]) are not
isomorphic in all degrees. In the light of the theorem above, such a di�erence can only
occur outside the stable range of Galatius–Randal-Williams.

Article B. Characteristic numbers of manifold bundles over surfaces with
highly connected �bres (joint with Jens Reinhold)

Article B is concerned with the problem of determining which manifolds arise, up to
bordism, as total spaces of bundles of oriented closed manifolds over surfaces with �bre a
�xed manifold M of dimension d . Equivalently, this asks for the image of the morphism
(1) ΩSO

2 (BDi�+(M)) → ΩSO
d+2,

de�ned on the bordism group of oriented M-bundles over oriented closed surfaces, which
assigns to a bundle its total space. Work of Meyer [Mey72; Mey73] shows that the signature
σ : ΩSO∗ → Z of classes in this image has to be divisible by 4. Re�ning Meyer’s result, we
provide a complete answer to the posed question in the case of highly connected, almost
parallelisable �bres M of even dimension, assuming a mild additional condition on M
(see Article B, Prop. 1.9). Our results in particular apply to the iterated connected sums
Wд = ](Sn × Sn)]д to which we restrict our a�ention in this summary. Using parametrised
Pontryagin–�om theory, we show that, for this family of manifolds, classes in the image
of the morphism (1) li� to the bordism group Ω 〈n 〉2n+2 of highly connected (i.e. n-connected)
manifolds, and that this property, when combined with the divisibility of the signature by
4, detects such bordism classes for д ≥ 5.

�eorem (Article B, �m A). �e image of the morphism

ΩSO
2

(
BDi�+(Wд)

) → ΩSO
2n+2

is contained in the subgroup

im(Ω 〈n 〉2n+2 → ΩSO
2n+2) ∩ σ−1(4 · Z).

Moreover, equality holds if д ≥ 5. For 2n = 2, requiring д ≥ 3 is su�cient.

�is reduces the initial problem to understanding the image of the canonical morphism

(2) Ω 〈n 〉2n+2 → ΩSO
2n+2,

a task to which the second part of Article B is devoted. We combine work of Kervaire–
Milnor [KM63] and Wall [Wal62] with enhancements due to Brum�el [Bru68] and Stolz
[Sto85; Sto87] to describe this image concretely, both, in terms of explicitly constructed
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manifolds, as well as expressed in characteristic numbers (see Article B, Sect. 2). �ese
descriptions, however, depend on one unknown: the order ord([ΣQ ]) of the class [ΣQ ] in
coker(J )4m−1 of a certain homotopy sphere ΣQ in Θ4m−1. Although key to the classi�cation
of highly connected manifolds, this class is still only known in very special cases (see
Article B, Sect. 2.3). Combining our computations of the image of (2) with the previous
theorem, we derive divisibility constraints on the characteristic numbers, signatures, and
Â-genera of total spaces of Wд-bundles over surfaces, and determine these invariants
completely for д ≥ 5. We point the reader to Article B for the statements of the general
results, but mention one concrete consequence for the divisibility of the signature. In
order to do so, we denote the 2-adic evaluation of an integer by ν2(−).
�eorem (Article B, Cor. C). �ere is an orientedWд-bundle over a closed oriented surface
with 4m-dimensional total space of signature 4 if and only ifm = 1, 2, 4. Form , 1, 2, 4, the
signature of such a total space is divisible by 22m+2 form odd and by 22m−2ν2(m)−3 form even.

In the �nal part of the work, we explain how our results can be used to derive a basis
of the torsion free quotient H2(BDi�+(M);Z)free for most closed, highly connected, almost
parallelisable manifolds in terms of generalised Miller–Morita–Mumford classes κc in
H2(BDi�+(M)) associated to classes c in H2+2n(BSO) (see Article B, �m 3.5). �is extends
the corresponding rational computation, which can be obtained by a direct application
of the work of Galatius–Randal-Williams (see Article B, Sect. 3.2). To state our integral
re�nement in the case of Wд , we denote the ith Bernoulli number by Bi and refer the
reader to the introduction of Article B for the de�nition of the other variables appearing
in the statement; all of them are explicit, aside from the order ord([ΣQ ]) discussed earlier.

�eorem (Article B, �m D). Let 2n ≥ 6 and д ≥ 7. �e group H2(BDi�+(Wд);Z)free is
trivial for 2n ≡ 0 (mod 4); of rank 1 generated by

κpm
2(2m − 1)!jm

for 2n ≡ 2 (mod 8), wherem = (n + 1)/2; and of rank 2 generated by
κp2k

2µka2k ord([ΣQ ])(2k − 1)!2
and

2κp2k − κp2k
2(4k − 1)!j2k

−
|B2k |
4k

(
c2k
|B2k |
4k + 2d2k (−1)k

)
κp2k

2(2k − 1)!2 ,

for 2n ≡ 6 (mod 8), where k = (n + 1)/4.
Remark. Article B leaves open the question of whether the additional assumption on

a highly connected almost parallelisable 2n-manifold M that we impose (see Article B,
Prop. 1.9) is necessary. �is is equivalent to asking whether the images of the bordism
groups ΩSO

2 (BDi�+(M,D2n)) and ΩSO
2 (BDi�+(M)) in ΩSO

2n+2 agree, which is, in turn, closely
related to the torsion in H2(BDi�+(M);Z) (see Article B, Rem. 1.11). It would be desirable
to understand this torsion subgroup be�er; to date, very li�le is known about it, even in
the presence of high genus.

Article C. Homological stability of topological moduli spaces

Harer’s stability theorem [Har85] and Galatius–Randal-Williams’ higher dimensional
analogue [GR18] are special instances of a general phenomenon known as homological
stability—the topic of Article C. A sequence of spaces

. . .→Mд−1 →Mд →Mд+1 → . . .
is said to satisfy homological stability if the induced maps in homology are isomorphisms
in a range of degrees increasing with д. Most proofs of homological stability trace back to
a classical argument of �illen, and in Article C, we conceptualise this pa�ern to provide
a general framework for homological stability results. It is based on the observation that
the majority of the familiesMд known to stabilise homologically assemble into a graded
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E1-moduleM =∐
д≥0Mд over an E2-algebra A—the homotopy theoretical analogue of a

graded module over a braided monoidal category (see Article C, Sect. 2.1). In particular,
they come equipped with a homotopy associative multiplication ⊕ : M ×A →M and a
grading дM : M → N0. We introduce the canonical resolution R•(M) → M associated
to such a moduleM with a stabilising object X ∈ A, i.e. an element of degree 1. Vaguely
speaking, this is an augmented semi-simplicial space up to higher coherent homotopy
whose connectivity controls the stability behaviour of the sequence (−⊕X ) : Mд →Mд+1
of subspacesMд = д

−1
M({д}) of �xed degree. To state one of the results we prove in this

direction, we callM graded φ(дM)-connected for a function φ : N→ Q if its realisation
|R•(M)|д →Mд , restricted to degree д, is bφ(д)c-connected for all д ≥ 1.

�eorem (Article C, �m A). If the canonical resolution of a graded E1-module over an
E2-algebra with stabilising object X is graded (дM−2+kk )-connected for some k ≥ 2, then

(− ⊕ X )∗ : Hi (Mд) −→ Hi (Mд+1)
is an isomorphism for i ≤ д−1

k and an epimorphism for i ≤ д−2+k
k .

Furthermore, we show that under the same conditions as in the preceding theorem, the
sequenceMд stabilises in a stronger, twisted sense, namely with respect to abelian and
�nite degree coe�cients (see Article C, �ms A and C).

Examples. In many cases, the canonical resolution recovers semi-simplicial spaces of
geometric nature that have been studied before and are known to be su�ciently connected
for the previous theorem to apply. As a consequence, we derive various new homological
stability results and improve many known ones by means of more general coe�cients,
be�er ranges, or fewer assumptions. �e following is a selection of the examples presented
in Article C, generalising results contained in [GR18; McD75; Pal18; Seg73; Til16] and
con�rming a conjecture by Palmer [Pal18].

�eorem (Article C, �ms D and H, Cor. F). �e following sequences of spaces satisfy
homological stability with abelian as well as �nite degree coe�cients.

(i) BDi�∂(M](Sn ×Sn)]д), the moduli space of manifolds di�eomorphic toM](Sn ×Sn)]д
relative to the boundary, for a compact simply connected manifold M of dimension
2n ≥ 6 with non-empty boundary.

(ii) Cπд (M), the unordered con�guration space of д points in a manifoldM with labels in a
�bration π : E → M with path connected �bres, whereM is connected, has dimension
at least 2, and has non-empty boundary.

(iii) Ck
д (M), the con�guration space of д unordered embedded k-discs for a �xed k ≥ 0 in a

manifoldM satisfying the assumptions of (ii).
(iv) BDi�k

д, ∂(M), the moduli space of manifolds di�eomorphic to a manifoldM relative to
the boundary, together with д unordered embedded k-discs for a �xed k ≥ 0, whereM
satis�es the assumptions of (ii).

Representation stability. By relating twisted homological stability and representation sta-
bility in the sense of Church and Farb [CF13], we also conclude that our twisted stability
results imply representation stability for related families of moduli spaces equipped with
compatible group actions (see Article C, Sect. 5.3.2).

Applications to group homology. �e classifying space of a module over a braided monoidal
category forms an E1-module over an E2-algebra, so our theory can be applied to the
study of homological stability for families of groups or monoids as well. �is enhances
prior work by Randal-Williams and Wahl [RW17] on the stability behaviour of families
of discrete groups forming a braided monoidal category in various ways (see Article C,
Sect. 7). In particular, we improve their ranges and remove all assumptions that they
impose on the braided monoidal groupoid.
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Article A

On characteristic classes of exotic manifold bundles





ON CHARACTERISTIC CLASSES OF EXOTIC MANIFOLD BUNDLES

MANUEL KRANNICH

Abstract. Given a closed simply connected manifold M of dimension 2n , 4, we
compare the ring of characteristic classes of smooth oriented bundles with �bre M to the
respective ring resulting from replacing M by the connected sum M]Σ with an exotic
sphere Σ. We show that, a�er inverting the order of Σ in the group of homotopy spheres,
the two rings in question are isomorphic in a range of degrees. Furthermore, we construct
in�nite families of examples witnessing that inverting the order of Σ is necessary.

�e classifying space BDi�+(M) of the topological group of orientation-preserving dif-
feomorphisms of a closed oriented manifold M in the smooth Whitney-topology classi�es
smooth oriented �bre bundles with �bre M . Its cohomology H∗(BDi�+(M)) is the ring of
characteristic classes of such bundles and is thus of great interest from the point of view
of geometric topology. Initiated by Madsen–Weiss’ solution of the Mumford conjecture
on the moduli space of Riemann surfaces [MW07], there has been signi�cant progress in
the study of H∗(BDi�+(M)) in recent years, including in high dimensions. A programme
of Galatius–Randal-Williams [GR14; GR17; GR18] culminated in an identi�cation of the
cohomology in consideration in a range of degrees in purely homotopy theoretical terms
for all simply connected manifolds M of dimension 2n ≥ 6. Analogous to the case of
surfaces, this range depends on the genus of M , de�ned as

д(M) = max{д ≥ 0 | there exists a manifold N such that M � N ](Sn × Sn)]д}.
�e present work is concerned with the behaviour of the cohomology H∗(BDi�+(M))
when changing the smooth structure of the underlying d-manifold M on an embedded
disc of codimension zero; that is, when replacing M by the connected sum M]Σ with an
exotic sphere Σ in Θd . Here Θd denotes the �nite abelian group of oriented homotopy
spheres, classically studied by Kervaire–Milnor [KM63]. In the �rst part, we use the work
of Galatius–Randal-Williams to show that for closed simply connected manifolds M of
dimension 2n , 4, the cohomology H∗(BDi�+(M)) is insensitive to replacing M by M]Σ
in a range of degrees, at least a�er inverting the order of Σ. As our methods of proof are
more of homological than of cohomological nature, we state our results in homology.

�eorem A. Let M be a closed, oriented, simply connected manifold of dimension 2n , 4
and Σ ∈ Θ2n an exotic sphere. �ere is a zig-zag of maps of spaces inducing an isomorphism

H∗(BDi�+(M);Z[ 1k ]) � H∗(BDi�+(M]Σ);Z[ 1k ])
in degrees ∗ ≤ д(M )−3

2 , where k denotes the order of Σ ∈ Θ2n .

Remark. Using recent work of Friedrich [Fri17], one can enhance Theorem A to all oriented,
closed, connected manifolds M of dimension 2n , 4 whose associated group ring Z[π1(M)]
has �nite unitary stable rank, as de�ned e.g. in [KM02, Def. 6.3]. �is applies for instance
if the fundamental group is �nite or �nitely generated and abelian.

Remark. By means of parametrized smoothing theory, Dwyer–Szczarba [DS83] compared
the homotopy types of the unit components Di�0(M) ⊆ Di�+(M) for di�erent smooth
structures of M . In particular, their work implies that for a closed manifold M of dimension
d , 4 and a homotopy sphere Σ ∈ Θd , the spaces BDi�0(M) and BDi�0(M]Σ) have the

2010 Mathematics Subject Classi�cation. 55R40, 57R60, 57S05, 55N22.
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2 MANUEL KRANNICH

same Z[ 1k ]-homotopy type for k the order of Σ in Θd , which results in an analogue of
Theorem A for BDi�0(M) without assumptions on the degree. However, the homology of
BDi�+(M) and BDi�0(M) is usually very di�erent and we do not know whether Theorem A
holds outside the stable range of Galatius–Randal-Williams, except in a very special case:
specialised to degree 1, the assumption on degree in Theorem A is д(M) ≥ 5 and from work
of Kreck [Kre79], one can conclude that Theorem A holds in this case without assuming
д(M) ≥ 5 if M is (n − 1)-connected, n-parallelisable, and of dimension 2n , 4.

In the second part of this work, we focus on the family of manifoldsWд = ]
д(Sn × Sn)

to address the question of whether Theorem A fails without inverting the order of the
homotopy sphere, i.e. with integral coe�cients. To state our �rst result in that direction,
we denote by MO〈n〉 the �om-spectrum of the n-connected cover BO〈n〉 → BO.1 By
the classical theorem of Pontryagin–�om, the ring of homotopy groups π∗MO〈n〉 is
isomorphic to the ring Ω 〈n 〉∗ of bordism classes of closed manifolds equipped with a li�
of their stable normal bundle along BO〈n〉 → BO. An oriented homotopy sphere Σ of
dimension 2n has, up to homotopy, a unique such li� that is compatible with its orientation
and hence de�nes a canonical class [Σ] in the bordism group Ω 〈n 〉2n . As is common, we
denote by η ∈ π1S the generator of the �rst stable homotopy group of the sphere spectrum.
�eorem B. For д ≥ 0 and an exotic sphere Σ ∈ Θ2n with 2n , 4, there is an exact sequence

Z/2 −→ H1(BDi�+(Wд);Z) −→ H1(BDi�+(Wд]Σ);Z) −→ 0.
If the product η · [Σ] ∈ π2n+1MO〈n〉 does not vanish, then the �rst map is nontrivial. Moreover,
the converse holds for д ≥ 5.

Note that the �rst homology group H1(BDi�+(Wд);Z) agrees with the abelianisation
of the group π0 Di�+(Wд) of isotopy classes of di�eomorphisms of M . It follows from
a result of Kreck [Kre79, �m. 2] that this group is �nitely generated for 2n ≥ 6, so
the previous theorem implies that H1(BDi�+(Wд);Z) and H1(BDi�+(Wд]Σ);Z) cannot be
isomorphic if the product η · [Σ] is nontrivial in π2n+1MO〈n〉. From computations in stable
homotopy theory, we derive the existence of in�nite families of homotopy spheres for
which this product does not vanish, hence for which the integral version of Theorem A
fails in degree 1. Such examples exist already in dimension 8—the �rst possible dimension.
Combining Theorem B with work of Kreck [Kre79], we also �nd Σ such that π0 Di�+(Wд)
and π0 Di�+(Wд]Σ) are nonisomorphic, but become isomorphic a�er abelianisation.
Corollary C. �ere are exotic spheres Σ ∈ Θ2n in in�nitely many dimensions 2n such that

H1(BDi�+(Wд);Z) and H1(BDi�+(Wд]Σ);Z)
are not isomorphic for д ≥ 0. Furthermore, there are Σ ∈ Θ8k+2 for all k ≥ 1 such that

π1 BDi�+(Wд) and π1 BDi�+(Wд]Σ)
are not isomorphic for д ≥ 0, but become isomorphic a�er abelianisation for д ≥ 5.

By Theorem B, the �rst homology BDi�+(Wд) and BDi�+(Wд]Σ) is isomorphic a�er
inverting 2. More generally, this holds withWд replaced by any simply connected manifold
M , which raises the question of whether the failure for Theorem A to hold integrally is
only 2-primary. We answer this question in the negative by proving the following.
�eorem D. For д ≥ 0 and an exotic sphere Σ ∈ Θ2n with 2n , 4, there is an isomorphism

H∗(BDi�+(Wд);Z[ 12 ]) � H∗(BDi�+(Wд]Σ);Z[ 12 ])
in degrees ∗ ≤ 2 and furthermore an exact sequence

Z[ 12 ] −→ H3(BDi�+(Wд);Z[ 12 ]) −→ H3(BDi�+(Wд]Σ);Z[ 12 ]) −→ 0.
If 2n = 10 and the order of Σ is a positive multiple of 3, then the le�most map is nontrivial.

1Note that, instead of X 〈n 〉, some authors write X 〈n + 1〉 for the n-connected cover of a space X .
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It follows from a recent result of Kupers [Kup16, Cor. C] that H3(BDi�+(Wд);Z) is
�nitely generated for 2n , 4, so we conclude that the two groups H3(BDi�+(Wд);Z[ 12 ]) and
H3(BDi�+(Wд]Σ);Z[ 12 ]) cannot be isomorphic if the �rst morphism in the exact sequence
of Theorem D is nontrivial. As Θ10 is cyclic of order 6, this holds for four of the six
homotopy spheres in dimension 10 by the second part of Theorem D.

Corollary E. For д ≥ 0 and Σ ∈ Θ10 with order a positive multiple of 3, the groups

H3(BDi�+(Wд);Z[ 12 ]) and H3(BDi�+(Wд]Σ);Z[ 12 ])
are not isomorphic.

Remark. Our methods of proof also show that the analogous statements of of Corollary E
and the �rst part of Corollary C hold for homotopy groups instead of homology groups as
well. �is implies the existence of homotopy spheres Σ ∈ Θn for which πi (BDi�+(Wд]S

n))
and πi (BDi�+(Wд]Σ)) are not isomorphic for some i and all д. In the case of д = 0, such
examples have been constructed earlier by Habegger–Szczarba [HS87].
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that led to this work, as well as for many enlightening discussions and his hospitality at
the University of Cambridge. Furthermore, I am grateful to Søren Galatius, Alexander
Kupers, and Jens Reinhold for valuable comments and to Mauricio Bustamante for making
me aware of the work of Dwyer–Szczarba and Habegger–Szczarba. I was supported by the
Danish National Research Foundation through the Centre for Symmetry and Deformation
(DNRF92) and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 682922).

1. Exotic spheres and parametrised Pontryagin–Thom theory

We recall high-dimensional parametrised Pontryagin–�om theory à la Galatius–
Randal-Williams and prove �eorem A.

1.1. Recollection on bordism theory. Let θ : B → BO be a �bration. A tangential,
respectively normal, θ -structure of a manifold M is a li� `M : M → B of its stable tangent,
respectively normal, bundle M → BO along θ , up to homotopy over BO. �e collection
of bordism classes of closed d-manifolds equipped with a normal θ -structure forms an
abelian group Ωθ

d under disjoint union (see e.g. [Sto68, Ch. 2] for details). By the classical
Pontryagin–�om theorem, this group is isomorphic to the dth homotopy group πdMθ of
the �om spectrum Mθ associated to θ . Normal θ -structures of a manifold are in natural
bijection to tangential θ⊥-structures, where θ⊥ : B⊥ → BO is the pullback of θ along the
canonical involution −1 : BO → BO. Justi�ed by this, we do not distinguish between
normal θ -structures and tangential θ⊥-structures.

1.2. Parametrised Pontryagin–�om theory. Let M be a closed, connected, oriented
manifold of dimension 2n. Choose a Moore–Postnikov n-factorisation

M
`M−→ B

θ−→ BSO
of its stable oriented tangent bundle; that is, a factorisation into an n-connected co�bration
`M followed by an n-co-connected �bration θ . �is factorisation is unique up to weak
equivalence under M and over BSO, and we call it the tangential n-type of M . Using this,
the manifold M naturally de�nes a class [M, `M ] in the bordism group Ωθ⊥

2n associated to
its tangential n-type. We denote by θd : Bd → BSO(d) the pullback of θ : B → BSO along
the canonical map BSO(d) → BSO. For d = 2n, this pullback induces a factorisation

M −→ B2n
θ2n−→ BSO(2n)

of the unstable oriented tangent bundle of M , which can be seen to again be a Moore–
Postnikov n-factorisation. We de�ne MTθd to be the �om spectrum �(−θd ∗γd ) of the
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inverse of the pullback of the canonical vector bundle γd over BSO(d) along θd . �e
topological monoid hAut(θd ) of weak equivalences Bd → Bd over BSO(d) acts on θd ∗γd
by bundle automorphisms, inducing an action on the spectrum MTθd and hence on its
associated in�nite loop space. �e homotopy quotient Ω∞MTθd//hAut(θd ) of this action
is the target of the parametrised Pontryagin–�om map with which the following result
of Galatius–Randal-Williams deals (see [GR17, Cor. 1.9]).

�eorem 1.1 (Galatius–Randal-Williams). Let M be a simply connected, closed, oriented
manifold of dimension 2n ≥ 6. �ere is a parametrised Pontryagin–�om map

BDi�+(M) −→ Ω∞MTθ2n//hAut(θ2n)
inducing an isomorphism on homology in degrees ∗ ≤ д(M )−3

2 onto the path component hit.

Here д(M) denotes the genus of the manifold M , as de�ned in the introduction.

Remark 1.2. Theorem 1.1 is the higher-dimensional analogue of a pioneering result for
surfaces obtained by combining a classical homological stability result due to Harer [Har85]
with the celebrated theorem of Madsen–Weiss [MW07].

Remark 1.3. Recent work of Friedrich [Fri17] can be used to strengthen Theorem 1.1 to
manifolds that are not simply connected, but whose associated group ring Z[π1(M)] has
�nite unitary stable rank (compare the remark in the introduction).

1.3. �e path components of MTθ2n . Recall from [GTMW09, Ch. 5] that there is a
co�bre sequence of spectra

MTθd+1 −→ Σ∞+ Bd+1 −→ MTθd .

�e induced maps π0MTθ2n → π0Σ
∞
+ B2n � Z and π0MTθ2n → π−1MTθ2n+1 assemble into

an isomorphism of groups

(1) π0MTθ2n
�−→ {(χ ,y) ∈ Z × π−1MTθ2n+1 | χ mod 2 = w2n(y)},

where w2n(y) denotes the value of the cup product θ ∗2n+1w2n ∪ u−θ2n+1 of the 2nth Stiefel–
Whitney class of θ ∗2n+1γ2n+1 with the �om class of −θ ∗2n+1γ2n+1 on the Hurewicz image of
y ∈ π−1MTθ2n+1 (see [GR16b, Ch. 10]). �ere is a stabilisation map
(2) Σ2n+1MTθ2n+1 −→ Mθ⊥,

which is (2n + 1)-connected (cf. [GTMW09, Ch. 3]) and hence identi�es π−1MTθ2n+1 with
the bordism group Ωθ⊥

2n . Using this, together with the equivalence (1), we regard π0MTθ2n
as a subgroup of Z × Ωθ⊥

2n , and with respect to this identi�cation, π0 hAut(θ2n) acts on
π0MTθ2n by changing the θ -structure of the Ωθ⊥

2n -coordinate while �xing the Z-coordinate.
�e path components of Ω∞MTθ2n//hAut(θ2n) are given by the quotient

π0MTθ2n/π0 hAut(θ2n) ⊆ Z × Ωθ⊥
2n /π0 hAut(θ2n),

and the path component hit by the parametrised Pontryagin–�om map of Theorem 1.1
BDi�+(M) −→ Ω∞MTθ2n//hAut(θ2n)

is the class represented by (χ (M), [M, `M ]) ∈ π0MTθ2n , where χ (M) ∈ Z is the Euler
characterstictic of M (cf. [GTMW09, Ch. 3]). We denote this path component of the
homotopy quotient by

(
Ω∞MTθ2n//hAut(θ2n)

)
M and the one of Ω∞MTθ2n corresponding

to (χ (M), [M, `M ]) by Ω∞(M, `M )MTθ2n . Note that the inclusion Ω∞(M, `M )MTθ2n ⊆ Ω∞MTθ2n
induces a weak equivalence
(3) Ω∞(M, `M )MTθ2n//Stab(M, `M ) '

(
Ω∞MTθ2n//hAut(θ2n)

)
M ,

where Stab(M, `M ) ⊆ hAut(θ2n) is the submonoid de�ned as the union of the path compo-
nents of hAut(θ2n) that �x [M, `M ] ∈ Ωθ⊥

2n .
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1.4. Exotic spheres and Theorem A. Recall from [KM63] that taking connected sum
turns the collection Θd of h-cobordism classes of closed oriented d-manifolds with the
homotopy type of a d-sphere into a �nite abelian group. For d , 4, this group can be
described equivalently as the group of exotic spheres, i.e. the group of oriented d-manifolds
homeomorphic to the d-sphere, modulo orientation-preserving di�eomorphism.

By obstruction theory, the tangentialn-type of a closed oriented 2n-manifoldM depends
only on the manifold M\ int(D2n) obtained by cu�ing out an embedded disc D2n ⊆ M .2
�is implies that the tangential n-type of the connected sum M]Σ of M with an oriented
homotopy sphere Σ has the form

M]Σ
`M ]Σ−→ B

θ−→ BSO
for the same B and θ as for M . Here `M]Σ is the unique (up to homotopy) extension to M]Σ

of the restriction of `M to M\ int(D2n), where D2n ⊆ M is the disc at which the connected
sum was taken. Consequently, the targets of the two parametrised Pontryagin–�om
maps of Theorem 1.1 for M and M]Σ agree,

BDi�+(M) −→ Ω∞MTθ2n//hAut(θ2n) ←− BDi�+(M]Σ),
and both maps induce an isomorphism on homology in a range of degrees onto the
respective path components hit. However, di�erent path components of the target space
will usually have non-isomorphic homology groups; nonetheless, we have the following
lemma comparing the two components in question.

Lemma 1.4. For a closed, oriented 2n-manifold M and Σ ∈ Θ2n , there is a zig-zag between(
Ω∞MTθ2n//hAut(θ2n)

)
M and

(
Ω∞MTθ2n//hAut(θ2n)

)
M]Σ

inducing a homology isomorphism with Z[ 1k ]-coe�cients, k being the order of Σ.

Proof. �e stable oriented tangent bundle Σ → BSO of Σ li�s to a unique tangential
θ -structure `Σ of Σ since θ is n-co-connected. By obstruction theory, the standard bordism
between the connected sum M]Σ and the disjoint union of M and Σ extends to a bordism
that respects the θ -structure. �is gives the relation [M]Σ, `M]Σ] = [M, `M ] + [Σ, `Σ] in
the group Ωθ⊥

2n . By the same argument, we obtain a morphism Θ2n → Ωθ⊥
2n by sending

Σ ∈ Θ2n to [Σ, `Σ], from which we conclude that the order of [Σ, `Σ] in Ωθ⊥
2n divides k . As

the Euler characteristics of M and M]Σ evidently agree, we have the relation
k · (χ (M]Σ), [M]Σ, `M ]Σ]) = k · (χ (M), [M, `M ])

in the abelian group π0MTθ2n , using the identi�cation (1). Consequently, multiplication
by k in the in�nite loop space Ω∞MTθ2n maps the path components (χ (M), [M, `M ]) and
(χ (M]Σ), [M]Σ, `M]Σ]) to the same component, denoted by Ω∞k ·(M, `M )MTθ2n . As observed
above, the homotopy sphere Σ has a unique θ -structure compatible with its orientation,
hence the class [Σ, `Σ] in Ωθ⊥

2n is �xed by the action of hAut(θ ), which in turn implies
Stab(M, `M ) = Stab(M]Σ, `M]Σ) ⊆ hAut(θ2n). Since multiplication by k in Ω∞MTθ2n is
hAut(θ2n)-equivariant, we obtain an induced zig-zag of homotopy quotients

Ω∞k ·(M, `M )MTθ2n//Stab(M, `M )

Ω∞(M, `M )MTθ2n//Stab(M, `M ) Ω∞(M]Σ, `M ]Σ)MTθ2n//Stab(M]Σ, `M]Σ).

k ·− k ·−

�e corresponding zig-zag between the respective path components of Ω∞MTθ2n before
taking homotopy quotients is given by multiplication by k , so induces an isomorphism on

2In fact, it only depends on the n-skeleton of the manifold.
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homology with Z[ 1k ]-coe�cients. �e claim now follows from a comparison of the Serre
spectral sequences of the homotopy quotients, together with the equivalences (3). �

By taking connected sums with the homotopy sphere Σ and its inverse, one sees that
the genera of M and M]Σ agree. Since the group Θd is trivial in dimensions d < 7 by
[KM63], Theorem A now follows from Theorem 1.1 and Lemma 1.4.

2. The collar twisting

In this section, we examine the homotopy �bre sequence

(4) SO(d) t−→ BDi�(M,Dd ) −→ BDi�+(M, ∗)
for a closed oriented d-manifold M , induced by the inclusion Di�(M,Dd ) ⊆ Di�+(M, ∗)
of the subgroups of di�eomorphisms that pointwise �x an embedded disc Dd ⊆ M or
its centre ∗ ∈ Dd , respectively. In particular, we study the e�ect of the �bre inclusion
t on homotopy groups. A�er �xing a collar c : [0, 1] × Sd−1 → M\int(Dd ) satisfying
c−1(∂Dd ) = {1} × Sd−1, the map t can be described geometrically as the delooping of the
map Ω SO(d) → Di�(M,Dd ) sending a smooth loop γ ∈ Ω SO(d) to the di�eomorphism
of M that is the identity on Dd as well as outside the collar, and the twist

[0, 1] × Sd−1 −→ [0, 1] × Sd−1
(t ,x) 7−→ (t ,γ (t)x)

on the collar. Inspired by this geometric description, we call the map
t : SO(d) −→ BDi�(M,Dd )

the collar twisting of M .

Remark 2.1. In dimension d = 2, the collar twisting SO(2) → BDi�(M,D2) is trivial
on homotopy groups, except on fundamental groups, on which the induced map Z →
π0 BDi�(M,D2) is given by a Dehn twist on [0, 1] × S1 ⊆ M .

2.1. Triviality of the collar twisting. As indicated by the following lemma, the collar
twisting serves as a measure for the degree of linear symmetry of the underlying manifold.

Lemma 2.2. Let M be a closed oriented d-manifold that admits a smooth orientation-
preserving action of SO(k) with k ≤ d . If the action has a �xed point whose tangential
representation is the restriction of the standard representation of SO(d) to SO(k), then the
long exact sequence induced by the �bre sequence (4) reduces to split short exact sequences

0 −→ πi BDi�(M,Dd ) −→ πi BDi�+(M, ∗) −→ πi−1 SO(d) −→ 0
for i ≤ k − 1. In particular, the collar twisting is trivial on homotopy groups in this range.

Proof. �e map d : Di�+(M, ∗) → SO(d) resulting from looping the �bre sequence (4) once
is induced by taking the di�erential at ∗ ∈ M . On the subgroup SO(k) ⊆ SO(d), the action
on M provides a le�-inverse to d . As the inclusion SO(k) ⊆ SO(d) is (k − 1)-connected,
we conclude that the map d is surjective on homotopy groups in degree k − 1 and split
surjective in lower degrees, which implies the result. �

�e action of SO(d) on the standard sphere Sd by rotation along an axis satis�es the
assumption of the lemma, so the collar twisting of Sd is trivial on homotopy groups up to
degree d − 1. In fact, one can show that, in this case, it is even nullhomotopic. Another
family of manifolds that admit a smooth action of SO(k) as in the lemma is given by the
д-fold connected sums

Wд = ]
д(Sn × Sn).

Indeed, by [GGR17, Prop. 4.3], there is a smooth SO(n) × SO(n)-action on Wд whose
restriction to a factor can be seen to provide an action of SO(n) as in the lemma. However,
we give an alternative description of this action, kindly pointed out to us by Jens Reinhold.
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Consider the action of SO(n) on Sn ×Sn by rotating the �rst factor around the vertical axis.
Both, the product of the two upper hemispheres of the two factors and the product of the
two lower ones are preserved by the action and are, a�er smoothing corners, di�eomorphic
to a disc D2n acted upon by SO(n) via the inclusion SO(n) ⊆ SO(2n), followed by the
standard action of SO(2n) on D2n . Taking the д-fold equivariant connected sum of Sn × Sn
using these discs results in an action of SO(n) onWд as in Lemma 2.2 and thus has the
following as a consequence.

Corollary 2.3. �e collar twisting πi SO(2n) → πi BDi�(Wд ,D
2n) is trivial for i ≤ n − 1.

2.2. Detecting the collar twisting in bordism. Recall that a manifold M is (stably) n-
parallelisable if it admits a tangential 〈n〉-structure for then-connected cover BO〈n〉 → BO.
�is map factors for n ≥ 1 over BSO and obstruction theory shows that there is a unique
(up to homotopy) equivalence BO〈n〉⊥ ' BO〈n〉 over BSO, so tangential and normal 〈n〉-
structures of a manifold M are naturally equivalent. For oriented manifolds M , we require
that 〈n〉-structures on M are compatible with the orientation; that is, they li� the oriented
stable tangent bundle M → BSO of M . Another application of obstruction theory shows
that the map BSO×BSO → BSO classifying the external sum of oriented stable vector
bundles is, up to homotopy, uniquely covered by a map BO〈n〉 × BO〈n〉 → BO〈n〉 turning
MO〈n〉 into a homotopy commutative ring spectrum.

In the following, we describe a method to detect the nontriviality of certain collar
twistings. For this, we restrict our a�ention to oriented manifolds M that are (n − 1)-
connected, n-parallelisable, and 2n-dimensional. �ese manifolds have by obstruction
theory a unique 〈n〉-structure `M : M → BO〈n〉, so they naturally determine a class
[M, `M ] in the bordism group Ω 〈n 〉2n . �e examples we have in mind are the connected
sumsWд]Σ of the manifoldsWд = ]

д(Sn × Sn) with homotopy spheres Σ.

Remark 2.4. In fact, all (n − 1)-connected n-parallelisable 2n-manifolds M with positive
genus and vanishing signature are of the form Wд]Σ for a homotopy sphere Σ, except
possibly those in the Kervaire invariant one dimensions and in dimension 4. Indeed, the
vanishing of the signature implies that M is stably parallelisable and therefore by the
work of Kervaire–Milnor [KM63] framed bordant to a homotopy sphere. From this, an
application of Kreck’s modi�ed surgery [Kre99, �m. C–D] shows the claim.

For an oriented (n− 1)-connected n-parallelisable 2n-manifold M , we de�ne morphisms

(5) Φi : πi BDi�(M,D2n) −→ Ω 〈n 〉2n+i

as follows. A homotopy class φ in πi BDi�(M,D2n) classi�es a smooth �bre bundle
M → Eφ → S i ,

together with the choice of a trivialised D2n-subbundle S i ×D2n ⊆ Eφ . �e la�er induces a
trivialisation of the normal bundle of S i = S i × {0} in Eφ . Using this, a given 〈n〉-structure
on Eφ induces an 〈n〉-structure on the embedded S i . Conversely, obstruction theory
shows that every 〈n〉-structure on S i is induced by a unique 〈n〉-structure on Eφ in this
manner. We can hence de�ne Φi by sending a homotopy class φ to the total space Eφ of
the associated bundle, together with the unique 〈n〉-structure extending the canonical
〈n〉-structure on S i induced by the standard stable framing of S i .

Remark 2.5. �e morphisms Φi are induced by a map of spaces
BDi�(M,D2n) −→ Ω∞Σ−2nMO〈n〉,

which results from composing the parametrised Pontryagin–�om map BDi�(M,D2n) →
Ω∞MTO(2n)〈n〉 (see e.g. [GR14, �m. 1.2]) with the 2n-fold desuspension MTO(2n)〈n〉 →
Σ−2nMO〈n〉 of the stabilisation map (2) for MTO(2n)〈n〉.
Lemma 2.6. �e following diagram is commutative
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πi SO(2n) πi BDi�(M,D2n)

Ω 〈n 〉i Ω 〈n 〉2n+i ,

t∗

J Φi

−×[M, `M ]

the le� vertical map being the J -homomorphism followed by the natural morphism from
framed to 〈n〉-bordism, and the bo�om map the multiplication by [M, `M ] ∈ Ω 〈n 〉2n .

Proof. Recall from the beginning of the chapter that the map t is given by twisting a collar
[0, 1] × S2n−1 ⊆ M\ int(D2n). �e composition of t∗ with Φi maps a class in πi SO(2n),
represented by a smooth map φ : S i → SO(2n), to the bordism class of a certain manifold
Et (φ), equipped with a particular 〈n〉-structure. �e manifold Et (φ) is constructed using a
clutching function that twists the collar using φ and is constant outside of it. Its associ-
ated 〈n〉-structure is the unique one that extends the canonical one on S i via the given
trivialisation of its normal bundle. Untwisting the collar using the standard SO(2n)-action
on the disc D2n yields a di�eomorphism Et (φ) � S i ×M , which coincides with the twist

D2n × S i −→ D2n × S i
(x , t) 7−→ (φ(t)x , t)

on the canonically embedded S i × D2n and is the identity on the other component of the
complement of the twisted collar S i ×̃([0, 1] × S2n−1) ⊆ Eφ . Hence, the 〈n〉-structure on
S i ×M induced from the one on Et (φ) via this di�eomorphism coincides with the product
of the twist of the canonical 〈n〉-structure on S i by φ with the unique one `M on M . By
the bordism theoretic description of the J -homomorphism, this implies the claim. �

Lemma 2.6 serves us to detect the nontriviality of the collar twisting

SO(2n) −→ BDi�(M,D2n).
Indeed, if there is a nontrivial element in the subgroup im(J )i · [M, `M ] of π2n+iMO〈n〉,
then Lemma 2.6 implies that the collar twisting of M is nontrivial on homotopy groups in
degree i . �e д-fold connected sumWд = ]

д(Sn × Sn) is the boundary of the parallelisable
handlebody \дDn+1 × Sn and is thus trivial in framed bordism, and so also in 〈n〉-bordism.
From this, we obtain the relation

[Wд]Σ, `Wд ]Σ] = [Wд , `Wд ] + [Σ, `Σ] = [Σ, `Σ]

in Ω 〈n 〉2n for all Σ in Θ2n . �is proves the �rst part of the following proposition.

Proposition 2.7. Let д ≥ 0 and let Σ ∈ Θ2n be a homotopy sphere. If the subgroup

im(J )i · [Σ, `Σ] ⊆ π2n+iMO〈n〉
is nontrivial for some i ≥ 1, then the abelianisation of the morphism

t∗ : πi SO(2n) −→ πi BDi�(Wд]Σ,D
2n)

is nontrivial. Assuming 2n , 4, the converse holds for i = 1 and д ≥ 5.

Proof. We are le� to prove the second claim. For i = 1, the group π1 BDi�(Wд]Σ,D
2n) is

the group of isotopy classes of orientation-preserving di�eomorphisms ofWд]Σ that �x the
embedded discD2n pointwise. Le�ing such di�eomorphisms act on the middle-dimensional
homology group Hn(Wд]Σ;Z) provides a morphism π1 BDi�(Wд]Σ,D

2n) → Aut(QWд ]Σ)
to the subgroup Aut(QWд ]Σ) ⊆ GL(Hn(Wд]Σ;Z)) of automorphisms that preserve Wall’s
quadratic formQWд ]Σ associated to the (n−1)-connected 2n-manifoldWд]Σ (see [Wal62a]).
Together with the morphism (5) in degree 1, this combines to a morphism

π1 BDi�(Wд]Σ,D
2n) −→ Aut(QWд ]Σ) ⊕ Ω 〈n 〉2n+1,
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which is the abelianisation of π1 BDi�(Wд]Σ,D
2n) by [GR16a, �m. 1.3], assuming д ≥ 5

and 2n , 4.3 �e isotopy classes in the image of π1 SO(2n) → π1 BDi�(Wд]Σ,D
2n)

are supported in a disc and hence act on homology as the identity. Consequently, on
fundamental groups, the collar twisting is for д ≥ 5 nontrivial in the abelianisation if and
only if it is nontrivial a�er composition with π1 BDi�(Wд]Σ,D

2n) → Ω 〈n 〉2n+1. �e claim
hence follows from Lemma 2.6 and the discussion before Proposition 2.7. �

Remark 2.8. (i) Since the image of the J -homomorphism is cyclic, the condition in
Proposition 2.7 is equivalent to the nonvanishing of a single element, e.g. η · [Σ, `Σ]
in π2n+1MO〈n〉 for i = 1 or ν · [Σ, `Σ] in π2n+3MO〈n〉 for i = 3.

(ii) By obstruction theory, the sphere S i has a unique 〈n〉-structure for i ≥ n + 1, so the
le� vertical morphism in the diagram of Lemma 2.6 is trivial in this range. Hence,
the morphism πi BDi�(M,D2n) → Ω 〈n 〉2n+i can only detect the possible nontriviality
of the collar twisting in low degrees relative to the dimension. Another consequence
of this uniqueness is that the image im(J )i of the J -homomorphism is contained in
the kernel of the canonical morphism from framed to 〈n〉-bordism for i ≥ n + 1.

Remark 2.9. (i) Combining Lemma 2.2 and 2.6, we see that the subgroups im(J )i · [M]
of π2n+iMO〈n〉 obstruct smooth SO(k)-actions on M with a certain �xed point.

(ii) In the case д = 0, the �rst part of Proposition 2.7 is closely related to a result
obtained by Schultz [Sch71, �m. 1.2]. In combination with methods developed by
Hsiang–Hsiang (see e.g. [HH69]), Schultz used this to bound the degree of symmetry
of certain homotopy spheres, i.e. the maximum of the dimensions of compact Lie
groups which act e�ectively.

In the following, we a�empt to detect nontrivial elements in the subgroup
(6) im(J )i · [Σ, `Σ] ⊆ π2n+iMO〈n〉
for homotopy spheres Σ inΘ2n by mappingMO〈n〉 to ring spectra whose rings of homotopy
groups are be�er understood. A natural choice of such spectra are MO〈m〉 for smallm ≤ n
via the canonical map MO〈n〉 → MO〈m〉. As homotopy spheres are stably parallelisable,
the elements [Σ, `Σ] are in the image of the unit S→ MO〈n〉. Conversely, outside of the
Kervaire invariant one dimensions, the work of Kervaire–Milnor [KM63] implies that
all elements in this image are represented by homotopy spheres. Since the image of the
unit S → MO〈2〉 = MSpin lies in degrees 8k + 1 and 8k + 2 for k ≥ 0 [ABP67, Cor. 2.7],
we cannot detect nontrivial elements in (6) by relying on spin bordism. Consequently,
since MO〈2〉 = MO〈3〉, the smallest value of m such that MO〈m〉 might possibly detect
nontrivial such elements is 4. Via the string orientation MString→ tmf (see e.g. [DFHH14,
Ch. 10]), the �om spectrum MO〈4〉 = MString maps to the spectrum tmf of topological
modular forms, whose ring of homotopy groups has been computed (see e.g. [DFHH14,
Ch. 13]). It is concentrated at the primes 2 and 3 and has a certain periodicity of degree
192 at the prime 2 and of degree 72 at the prime 3. �e Hurewicz image of tmf , i.e. the
image of the composition

S −→ MSO〈n〉 −→ MString −→ tmf

on homotopy groups, is known at the prime 3 (see e.g. [DFHH14, Ch. 13]) and determined
in work in progress by Behrens–Mahowald at the prime 2. It is known to contain many
periodic families of nontrivial products with η ∈ π1S and ν ∈ π3S, which thus provide
in�nite families of homotopy spheres Σ for which the subgroup (6) is nontrivial. �e
following lemma carries out this strategy in the lowest dimensions possible.
Proposition 2.10. In the following cases, there exists a homotopy sphere Σ in Θ2n for which
the subgroup im(J )i · [Σ, `Σ] of π2n+iMO〈n〉 is nontrivial at the prime p:

3Although �eorem 1.3 of [GR16a] is stated forWд , the given proof goes through forWд ]Σ and even more
generally for all (n − 1)-connected n-parallelisable 2n-manifolds M , replacing д with the genus д(M ) of M .
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(i) for p = 2 in degree i = 1 and all dimensions 2n ≡ 8 (mod 192),
(ii) for p = 2 in degree i = 3 and all dimensions 2n ≡ 14 (mod 192), and

(iii) for p = 3 in degree i = 3 and all dimensions 2n ≡ 10 (mod 72).
Consequently, in the respective cases, the abelianisation of the morphism

t∗ : πi SO(2n) −→ πi BDi�(Wд]Σ,D
2n)

is nontrivial at the prime p for all д ≥ 0.

Proof. By work of Browder [Bro69], all Kervaire invariant one dimensions have the form
2k − 2 for k ≥ 0, so all elements in π2nS for 2n as in one of the three cases can be
represented by homotopy spheres. �e elements ε ∈ π8S and κ ∈ π14S give rise to two
192-periodic families in π∗S at the prime 2 whose elements are nontrivial when multiplied
with η ∈ im(J )1 and ν ∈ im(J )3, respectively (see e.g. [HM14, Ch. 11]). All of these products
are detected in tmf and hence are also nontrivial in MO〈n〉. �is proves the �rst and the
second case. To prove the third one, we make use of a 72-periodic family in π∗S at the
prime 3 generated by β ∈ π10S. �e products of the elements in this family with ν ∈ π3S
are nontrivial and are detected in tmf (see e.g. [DFHH14, Ch. 13]). �is proves the �rst part
of the proposition. �e second part is implied by the �rst by means of Proposition 2.7. �

From work of Kreck [Kre79], we also derive the existence of homotopy spheres Σ for
which the morphism t∗ : π1 SO(2n) → π1 BDi�(Wд]Σ,D

2n) induced by the collar twisting
is nontrivial, but becomes trivial in the abelianisation.

Proposition 2.11. For all k ≥ 1, there are homotopy spheres Σ in Θ8k+2 for which

t∗ : π1 SO(8k + 2) −→ π1 BDi�(Wд]Σ,D
8k+2)

is nontrivial for д ≥ 0, but vanishes in the abelianisation for д ≥ 5.

Proof. Let Σ be the homotopy sphere that maps via the canonical morphism Θ8k+2 →
coker(J )8k+2 to the class of Adams’ element µ8k+2 in π8k+2S (see [Ada66, �m. 1.8]). By
[Kre79, Lem. 4], the morphism in question is trivial if and only if a certain homotopy
sphere ΣWд ]Σ vanishes in Θ8k+3. Combining [Kre79, Cor. 3] with the fact thatWд bounds
the parallelisable manifold \дD4k+2 × S4k+1, it follows that the element ΣWд ]Σ does not
vanish. However, the product η · µ8k+2 is known to be contained in the image of J (see
e.g. [Rav86, �m. 5.3.7]), so the class η · [Σ, `Σ] is trivial in π8k+3MT〈4k + 1〉 by the second
part of Remark 2.8. �e claim now follows from the second part of Proposition 2.7. �

Remark 2.12. Note that, since π1(BDi�(Σ,D2n)) is abelian, the conclusion of the second
part of Proposition 2.11 fails for д = 0.

Remark 2.13. Recall that the fundamental group π1 BDi�(Wд]Σ,D
2n) is the group of

isotopy classes of di�eomorphisms ofWд]Σ that �x an embedded disc D2n pointwise. �e
image of π1 SO(2n) → π1 BDi�(Wд]Σ,D

2n) is generated by a single di�eomorphism t(η),
which is the higher-dimensional analogue of a Dehn twist for surfaces. It twists a collar
around D2n by a generator in π1 SO(2n) and is the identity elsewhere. Consequently, the
morphism in consideration is trivial if and only if t(η) is isotopic to the identity, and it is
trivial in the abelianisation if and only t(η) is isotopic to a product of commutators.

3. Detecting exotic smooth structures in diffeomorphism groups

Evaluating di�eomorphisms of a closed oriented d-manifold M at a �xed point induces
a homotopy �bre sequence

M −→ BDi�+(M, ∗) −→ BDi�+(M),
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from which we see that for highly connected manifolds M , the map BDi�+(M, ∗) →
BDi�+(M) is also highly connected. Studying the space BDi�+(M, ∗) instead of BDi�+(M)
is advantageous as BDi�+(M, ∗) �ts into a homotopy �bre sequence

(7) BDi�(M,Dd ) −→ BDi�+(M, ∗) −→ BSO(d),
obtained by delooping the sequence (4). Evidently, the rightmost space in (7) is not a�ected
by replacing M by M]Σ for homotopy spheres Σ, and the following lemma shows that the
same holds for the le�most space as well.

Lemma 3.1. For an oriented manifold M of dimension d , 4 and a homotopy sphere Σ in
Θd , there is an isomorphism of topological groups of the form

Di�(M,Dd ) � Di�(M]Σ,Dd ).
Proof. �e group Di�(M]Σ,Dd ) can be equivalently described as the group of di�eomor-
phisms of M]Σ\ int(Dd ) that extend over the disc Dd ⊆ M]Σ by the identity. Manifolds
of dimension d , 4 with nonempty boundary are insensitive to taking the connected
sum with a homotopy sphere, so there is a di�eomorphism M]Σ\int(Dd ) � M\ int(Dd ).
�is di�eomorphism does not necessarily preserve the boundary, but conjugation with it
nevertheless induces an isomorphism of topological groups as claimed. �

Remark 3.2. By Lemma 3.1, the total space of the homotopy �bre sequence

Fr+(M) −→ BDi�(M,Dd ) −→ BDi�+(M)
involving the frame bundle Fr+(M) of M does not change when replacing M by M]Σ for
homotopy spheres Σ and surprisingly, the same holds for Fr+(M) (see e.g. the proof of
[CZ08, �m. 1.2]). However, we will not make use of this fact.

Proof of Theorem B and Corollary C. Since the groupΘd is trivial ford < 7, we may restrict
our a�ention to dimensions 2n ≥ 8. �e �bration (7) induces an exact sequence

Z/2 � π1 SO(2n) t∗−→ π1 BDi�(Wд]Σ,D
2n) −→ π1 BDi�+(Wд]Σ) −→ 0.

�e �rst map is trivial in the case of the standard sphere Σ = S2n by Corollary 2.3—a fact
which, when combined with Lemma 3.1, gives isomorphisms

π1 BDi�(Wд]Σ,D
2n) � π1 BDi�(Wд ,D

2n) � π1 BDi�+(Wд).
We arrive at an exact sequence of the shape

Z/2 −→ π1 BDi�(Wд) −→ π1 BDi�+(Wд]Σ) −→ 0,

whose �rst map agrees with the collar twisting ofWд]Σ on fundamental groups. Abelian-
ising this exact sequence implies �eorem B by virtue of Proposition 2.7. From a result
of Sullivan [Sul77, �m. 13.3], we know that the mapping class group π0 Di�+(Wд) is
commensurable to an arithmetic group and hence �nitely generated and residually �nite.
�is implies that it is Hop�an; that is, every surjective endomorphism is an isomor-
phism. �erefore, the two groups π1 BDi�(Wд) and π1 BDi�(Wд]Σ) are isomorphic if and
only if the morphism π1 SO(2n) → π1 BDi�(Wд]Σ,D

2n) is trivial, and the two respective
abelianisations are isomorphic if and only if the morphism in consideration is trivial a�er
abelianisation. �us, combining Proposition 2.10 and 2.11 proves Corollary C. �

Remark. It follows from Corollary C that there are in�nitely many dimensions in which
the inertia group I (Wд) of Wд is a proper subgroup of Θ2n . Results of Kosinski [Kos67,
�m. 3.1] and Wall [Wal62b] show that I (Wд) is in fact trivial in all dimensions.

Proof of Theorem D. As in the foregoing proof, we may assume 2n ≥ 8. In this range, the
table below displays the homology of BSO(2n) in low degrees (see e.g. [Bro82]).



12 MANUEL KRANNICH

i = 1 i = 2 i = 3 i = 4
Hi (BSO(2n);Z) 0 Z/2 0 Z ⊕ Z/2

Consequently, the homology H∗(BSO(2n);Z[ 12 ]) vanishes in degrees ∗ ≤ 3 and is isomor-
phic to Z[ 12 ] in degree 4. From the Serre exact sequence with Z[ 12 ]-coe�cients of the
homotopy �bre sequence (7), one sees that the induced map

H∗(BDi�(Wд]Σ,D
2n);Z[ 12 ]) −→ H∗(BDi�+(Wд]Σ);Z[ 12 ])

is an isomorphism in degrees ∗ ≤ 2, which, together with Lemma 3.1, proves the �rst part
of the theorem. To show the second, we use the Hurewicz homomorphism to map the
long exact sequence on homotopy groups of the homotopy �bre sequence in consideration
to its Serre exact sequence. �is yields a commutative diagram with exact rows as follows.

π4 BSO(2n) ⊗ Z[ 12 ] π3 BDi�(Wд]Σ,D
2n) ⊗ Z[ 12 ] π3 BDi�+(Wд]Σ) ⊗ Z[ 12 ] 0

H4(BSO(2n);Z[ 12 ]) H3(BDi�(Wд]Σ,D
2n);Z[ 12 ]) H3(BDi�+(Wд]Σ);Z[ 12 ]) 0

t∗

�

�e groups in the le� column are isomorphic to Z[ 12 ] and the upper le� morphism t∗
identi�es with the induced map π3 SO(2n) → π3 BDi�(Wд]Σ,D

2n) of the collar twisting,
tensored with Z[ 12 ]. By Corollary 2.3, this morphism is trivial in the case of the standard
sphere Σ = S2n . We therefore obtain an isomorphism of the form

H3(BDi�(Wд);Z[ 12 ]) � H3(BDi�(Wд ,D
2n);Z[ 12 ]).

�e la�er group is in turn isomorphic to H3(BDi�(Wд]Σ,D
2n);Z[ 12 ]) by Lemma 3.1, so the

lower row of the diagram provides an exact sequence as claimed. To prove the second
part of the theorem, we use the stabilised Pontryagin–�om map BDi�(Wд]Σ,D

2n) →
Ω∞• Σ−2nMO〈n〉 with a path component of Ω∞Σ−2nMO〈n〉 as its target (see Remark 2.5).
Using this map, we arrive at a commutative diagram of the form

π4 BSO(2n) ⊗ Z[ 12 ] π3 BDi�(Wд]Σ,D
2n) ⊗ Z[ 12 ] π3Ω

∞• Σ−2nMO〈n〉 ⊗ Z[ 12 ]

H4(BSO(2n);Z[ 12 ]) H3(BDi�(Wд]Σ,D
2n);Z[ 12 ]) H3(Ω∞• Σ−2nMO〈n〉;Z[ 12 ]).

t∗

�

By the discussion leading to Proposition 2.7, the upper composition is nontrivial for all
homotopy spheres Σ in Θ2n for which the subgroup im(J )3 · [Σ, `Σ] of π2n+3MO〈n〉 is
nontrivial away from the prime 2. In the case 2n = 10, the group Θ10 is cyclic of order 6, so
by Proposition 2.10, the upper composition is nontrivial for all 10-dimensional homotopy
spheres Σ with order a positive multiple of 3. Consequently, in order to �nish the proof, it
su�ces to show that the Hurewicz homomorphism

π3Ω
∞• Σ−10MString ⊗ Z[ 12 ] −→ H3(Ω∞• Σ−10MString;Z) ⊗ Z[ 12 ]

of the desuspended �om spectrum Σ−10MString = Σ−10MO〈5〉 is injective. �is follows
from the subsequent lemma, which concludes the proof. �

Lemma 3.3. �e Hurewicz homomorphism

π3Ω
∞
• Σ
−10MString −→ H3(Ω∞• Σ−10MString;Z)

is an isomorphism.

Proof. �e component Ω∞• Σ−10MString is the in�nite loop space of the 0-connected cover
of the spectrum Σ−10MString. By [Gia71], its �rst homotopy groups are given by the table
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i = 11 i = 12 i = 13
πiMString 0 Z Z/3,

from which we see that the �rst possibly nontrivial k-invariant of the 0-connected cover
of Σ−10MString lies in H2(HZ;Z/3). But this group is isomorphic to the unstable group
H5(K(Z, 3);Z/3), which can be seen to vanish by employing the Serre spectral sequence
of the homotopy �bre sequence K(Z, 2) → ∗ → K(Z, 3). Consequently, the 3-truncation
of the 0-connected cover of Σ−10MString splits into Σ2HZ and Σ3HZ/3. �e result is now
implied by combining the induced spli�ing of the associated in�nite loop space with the
classical Hurewicz theorem for spaces. �

Remark 3.4. By Corollary E, the groups
H3(BDi�+(Wд);Z[ 12 ]) and H3(BDi�+(Wд]Σ);Z[ 12 ])

are not isomorphic for д ≥ 0 and any homotopy sphere Σ in Θ10 with order a positive
multiple of 3. In fact, in this dimension, one can explicitly calculate the homology of
BDi�+(Wд]Σ) in low degrees for large д, at least a�er inverting 2. One starts by computing
H∗(BDi�(Wд ,D

10);Z[ 12 ]) in low degrees for large д. �is can be achieved by combining
computations of the homotopy groups of MString [Gia71; HR95] with a calculation of
the �rst possibly nontrivial k-invariant of the 0-connected cover of MTString(10) and an
extension of a method of Galatius–Randal-Williams [GR16a, Ch. 5]. From this, the groups
in question can be derived using the ideas of the proof of Theorem D. �e following table
describes the ith homology with Z[ 12 ]-coe�cients of BDi�+(Wд]Σ) for д ≥ 2i + 3. �e �rst
row displays the respective homology groups for the two homotopy spheres Σ of order 0
and 2 in Θ10 � Z/6, whereas the second row shows the respective groups for the other
four homotopy spheres in Θ10.

i = 1 i = 2 i = 3
Hi (BDi�+(Wд);Z[ 12 ]) 0 Z[ 12 ] (Z/3)2

Hi (BDi�+(Wд]Σ);Z[ 12 ]) 0 Z[ 12 ] Z/3
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CHARACTERISTIC NUMBERS OF MANIFOLD BUNDLES OVER SURFACES
WITH HIGHLY CONNECTED FIBERS

MANUEL KRANNICH AND JENS REINHOLD

Abstract. We study smooth bundles over surfaces with highly connected almost par-
allelizable �ber M of even dimension, providing necessary conditions for a manifold to
be bordant to the total space of such a bundle and showing that, in most cases, these
conditions are also su�cient. Using this, we determine the characteristic numbers realized
by total spaces of bundles of this type, deduce divisibility constraints on their signatures
and Â-genera, and compute the second integral cohomology of BDi�+(M ) up to torsion
in terms of generalized Miller–Morita–Mumford classes. Along the way, we identify the
la�ices of characteristic numbers of highly connected manifolds and give an alternative
proof of a result of Meyer on the divisibility of the signature.

By work of Chern–Hirzebruch–Serre [CHS57], the signature of a closed oriented
manifold is multiplicative in �ber bundles as long as the fundamental group of the base
acts trivially on the rational cohomology of the �ber. �e necessity of this assumption was
illustrated by Kodaira [Kod67], Atiyah [Ati69], and Hirzebruch [Hir69], who constructed
manifolds of nontrivial signature �bering over surfaces, whereupon Meyer [Mey72; Mey73]
computed the minimal positive signature arising in this way to be 4. �is is in line with a
more recent result of Hambleton–Korzeniewski–Ranicki [HKR07], which establishes the
multiplicativity of the signature modulo 4 for bundles over general bases. �e divisibility
of the signature σ : ΩSO∗ → Z by 4 is therefore a necessary condition for a manifold to
�ber over a surface up to bordism, which, when combined with the vanishing of a certain
Stiefel–Whitney number, is also su�cient (see [AK80, �m 3]).

A more re�ned problem is to decide which manifolds �ber over a surface up to bordism
with prescribed d-dimensional �ber M , or equivalently, to determine the image of the map

ΩSO
2 (BDi�+(M)) → ΩSO

d+2,

de�ned on the bordism group of oriented M-bundles over oriented surfaces, which assigns
to a bundle its total space. �e main objective of this work is to provide a solution to
this problem for highly connected, almost parallelizable, even dimensional manifolds M
satisfying a mild additional condition (see Proposition 1.9). Although we prove versions of
all our results for this class of manifolds, for simplicity’s sake we restrict our a�ention in this
introduction to the family of examples given by theд-fold connected sumsWд = ]

д(Sn×Sn).
In the �rst part of this work, we use parametrized Pontryagin–�om theory as developed

by Galatius, Madsen, Randal-Williams, Tillmann, and Weiss to show that the bordism class
of a manifold �bering over a surface with �ber Wд li�s to the bordism group Ω 〈n 〉2n+2 of
highly-connected (i.e.n-connected) manifolds, and that this property, together with the
divisibility of the signature by 4, detects such bordism classes for д ≥ 5.
�eorem A. �e image of the morphism

ΩSO
2

(
BDi�+(Wд)

) → ΩSO
2n+2

is contained in the subgroup

im(Ω 〈n 〉2n+2 → ΩSO
2n+2) ∩ σ−1(4 · Z).

Moreover, equality holds if д ≥ 5. For 2n = 2, requiring д ≥ 3 is su�cient.

2010 Mathematics Subject Classi�cation. 57R20, 57R75, 55R10, 55R40.
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We refer to Theorem 1.14 for the more general version of Theorem A.
Remark. For 4m , 4, 8, 16, the intersection form of a highly connected 4m-manifold is
even. �erefore, in these cases, the signature is divisible by 8, so the second condition in
the de�nition of the subgroup in Theorem A is vacuous. �is is in contrast to the other
three cases in which there exist manifolds of signature 1, such as CP2, HP2, and OP2.
Remark. Theorem A was already known for small dimensions. For 2n = 2, it follows from
Meyer’s aforementioned results; for 2n = 4 the statement is trivial since ΩSO

6 is trivial; and
for 2n = 6, it was observed by Randal-Williams in an unpublished note [Ran17].
Highly connected bordism. Section 2 is devoted to a closer study of the image of the
morphism Ω 〈n 〉2n+2 → ΩSO

2n+2 appearing in Theorem A. Note that this morphism factors over
the quotient of Ω 〈n 〉2n+2 by Kervaire–Milnor’s [KM63] group Θ2n+2 of homotopy spheres.
A characteristic class argument shows furthermore that the morphism is trivial unless
2n + 2 = 4m, leaving us with the need to understand the image of the morphism

(1) Ω 〈2m−1〉4m /Θ4m → ΩSO
4m .

To this end, we combine Wall’s work on the classi�cation of highly connected manifolds
[Wal62; Wal67] with a theorem due to Brum�el [Bru68] and enhancements by Stolz [Sto85;
Sto87] to derive a concrete description of Ω 〈2m−1〉4m /Θ4m (see Theorem 2.9), which, however,
depends on one unknown: the order ord([ΣQ ]) of the class

[ΣQ ] ∈ coker(J )4m−1
of a certain homotopy sphere ΣQ ∈ Θ4m−1. Although central to the classi�cation of highly
connected manifolds, this class is only known in special cases (see Theorem 2.4); Galatius–
Randal-Williams [GR16, Conj. A] conjectured it to be trivial. Nevertheless, our description
of Ω 〈2m−1〉4m /Θ4m is explicit enough to compute the Pontryagin numbers, signatures, and Â-
genera realized by highly connected manifolds in terms of ord([ΣQ ]) (see Proposition 2.13
and 2.14), resulting in various descriptions of the image of (1) expressed in these invariants.

Divisibility of the signature. Combining these computations with �eorem A in Sec-
tion 3, we derive divisibility constraints for characteristic numbers of total spaces of
Wд-bundles over surfaces and we determine these numbers completely for д ≥ 5. To state
the consequences for the signature, we remind the reader of the minimal positive signature

σm = am22m+1(22m−1 − 1) num
( |B2m |
4m

)
realized by an almost parallelizable 4m-manifold (see [MK60]). Here Bi is the ith Bernoulli
number, and am is 1 ifm is even and 2 otherwise. �e 2-adic valuation is denoted by ν2(−).
�eorem B. Let π : E → S be a smooth oriented bundle over a closed oriented surface S
with (4m − 2)-dimensional �berWд . �e signature of E is divisible by



4 form = 1, 2, 4
σm form , 1 odd
2im gcd(σ 2

m/2,σm) form , 2, 4 even,

where
im = min

(
0,ν2(ord([ΣQ ])) − 2ν2(m) − 4 + 2ν2(am/2)

)
.

Form ≥ 2, the Â-genus of E is integral and divisible by{
2 num( |B2m |

4m ) form odd
gcd(num( |B2m |

4m ), num( |Bm |2m )2) form even.

Moreover, if д ≥ 5, then these numbers are realized as signatures and Â-genera of total spaces
of bundles of the above type. Form = 1, requiring д ≥ 3 is su�cient.
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Corollary C. �ere exists a smooth orientedWд-bundle over a closed oriented surface with
4m-dimensional total space of signature 4 if and only if 4m = 4, 8, 16. For 4m , 4, 8, 16, the
signature of such a total space is divisible by 22m+2 form odd and by 22m−2ν2(m)−3 form even.

Theorem B and Corollary C are special cases of more general results, stated as �eo-
rem 3.3 and Corollary 3.4. �ese generalizations imply in particular that the divisibility
statements of �eorem B and Corollary C remain valid ifWд is replaced by any closed
highly connected almost parallelizable manifold, but at the cost of losing a factor of 2.

Remark. Rovi [Rov18] identi�ed the non-multiplicativity of the signature modulo 8 as an
Arf–Kervaire invariant. As a consequence of Corollary C and its generalization Corol-
lary 3.4, her invariant vanishes for bundles over surfaces with highly connected almost
parallelizable �bers, except possibly for those with total space of dimensions 4, 8, or 16.

Remark. Hanke–Schick–Steimle [HSS14, �m 1.4] constructed manifolds of nontrivial
Â-genus that �ber over spheres, illustrating the non-multiplicativity of the Â-genus. �eir
construction does not yield an explicit description of the �ber, whereas Theorem B provides
bundles of nontrivial Â-genus with �berWд , but over (non simply connected) surfaces.

Generalized Miller–Morita–Mumford classes. Recall the vertical tangent bundle TπE
of a smooth oriented bundle π : E → B with closed d-dimensional �ber M over an l-
dimensional base, de�ned as the kernel TπE = ker(dπ : TE → π ∗TB) of the di�erential.
�e generalized Miller–Morita–Mumford class κc associated to a class c ∈ H∗+d (BSO;k)
with coe�cients in an abelian group k is obtained by integrating c(TπE) along the �bers,

κc (π ) =
∫
M
c(TπE) ∈ H∗(B;k).

In the universal case, this gives rise to κc ∈ H∗(BDi�+(M);k). If B is stably parallelizable,
the bundles TE and TπE are stably isomorphic, so for c ∈ Hd+l (BSO;k), the two charac-
teristic numbers obtained by integrating κc (π ) ∈ Hl (B;k) over B and c(TE) ∈ Hd+l (E;k)
over E coincide. For B a surface, this is expressed in the commutativity of the diagram

ΩSO
2 (BDi�+(M)) ΩSO

d+2

k .
κc

c

All our results on characteristic numbers of total spaces of bundles over surfaces with a
�xed �ber M can thus be expressed in terms of values of classes κc ∈ H2(BDi�+(M);k) for
various c . To exemplify this, note that Theorem B computes the divisibility of the classes
κL4m and κÂ4m

in the torsion free quotient H2(BDi�+(Wд);Z)free for д ≥ 5.
Exploiting this alternative viewpoint, we conclude this work in Section 3 by determining

an explicit basis of H2(BDi�+(M);Z)free for most highly connected almost parallelizable
2n-manifolds M (see Theorem 3.5). To explain this result in the special case of Wд , we
recall that H∗(BDi�+(Wд);Z) was identi�ed by Galatius–Randal-Williams [GR14; GR17;
GR18] in a range of degrees growing with д, which for 2n ≥ 6 and д ≥ 7 in particular gives

H2 (
BDi�+(Wд);Q

)
=



0 if 2n ≡ 0 (mod 4)
Qκp(n+1)/2 if 2n ≡ 2 (mod 8)
Qκp(n+1)/2 ⊕ Qκp2(n+1)/4 if 2n ≡ 6 (mod 8).

Having computed the values of these classes on bundles over surfaces enables us to li�
this rational basis to a basis of H2(BDi�+(Wд);Z)free. To state the outcome, we de�ne

jm = denom
( |B2m |
4m

)
, am =

{
2 form odd
1 form even,

and µm =

{
2 ifm = 1, 2
1 else,
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and �x Bézout coe�cients cm and dm for the numerator and denominator of |B2m |
4m , i.e.,

cm num
( |B2m |
4m

)
+ dm denom

( |B2m |
4m

)
= 1.

�eorem D. Let 2n ≥ 6 and д ≥ 7. �e group H2(BDi�+(Wд);Z)free is generated by

κpm
2(2m − 1)!jm

for 2n ≡ 2 (mod 8), wherem = (n + 1)/2, and by

κp2k
2µka2k ord([ΣQ ])(2k − 1)!2

and
2κp2k − κp2k
2(4k − 1)!j2k

−
|B2k |
4k

(
c2k
|B2k |
4k + 2d2k (−1)k

)
κp2k

2(2k − 1)!2

for 2n ≡ 6 (mod 8), where k = (n + 1)/4.

Remark.

(i) In the case 2n = 2, the groupH2(BDi�+(Wд);Z) is torsion-free forд ≥ 3 (see [Pow78])
and generated by (1/12) · κp1 for д ≥ 5 (see [Har83; MT01, p.537]). Since κp1 = 3κL1 ,
we recover the computation of the divisibility of κp1 as part of Theorem B.

(ii) For 2n ≥ 6,д ≥ 5, the torsion in H2(BDi�+(Wд);Z) has been computed by Galatius–
Randal-Williams [GR16]. It is nontrivial, except when 2n = 6. �erefore, in this case,
the basis of H2(BDi�+(Wд);Z)free in Theorem D is also a basis of H2(BDi�+(Wд);Z).

Acknowledgements. We are grateful to Søren Galatius for various valuable discussions.
MK: I would like to thank Søren Galatius additionally for his kind hospitality during my

stay at Stanford University in the course of which this work originated. I was supported
by the Danish National Research Foundation through the Centre for Symmetry and
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Union’s Horizon 2020 research and innovation programme (grant agreement No 682922).

JR: I am thankful that my studies at Stanford University are supported by the E. K. Po�er
Stanford Graduate Fellowship. I was also supported by the NSF grant DMS-1405001.

1. Bordism classes of manifolds fibering over surfaces

Let M be an oriented closed 2n-manifold. As noted in the introduction, assigning to an
M-bundle over a surface its total space yields a morphism of the form

(2) ΩSO
2 (BDi�+(M)) → ΩSO

2n+2.

�is section begins our study of its image. A�er a recollection on parametrized Pontryagin–
�om theory, we give an alternative proof of the fact that the signature of classes in
the image of (2) is divisible by 4—a result originally due to Meyer [Mey72; Mey73].
�is is then used to identify the image of (2) precomposed with the natural morphism
ΩSO
2 (BDi�(M,D2n)) → ΩSO

2 (BDi�+(M)) for highly connected, almost parallelizable mani-
folds M satisfying an assumption on their genus

д(M) = max{д ≥ 0 | there is a manifold N such that M � ]д(Sn × Sn)]N }.
Here Di�(M,D2n) ⊆ Di�+(M) denotes the subgroup of di�eomorphisms of M that �x
an embedded disc D2n ⊆ M . Hence, the homology group ΩSO

2 (BDi�(M,D2n)) can be
described as the bordism group of oriented M-bundles over closed oriented surfaces
together with a trivialized D2n-subbundle. We �nish this section by arguing that, in our
situation, the images of ΩSO

2 (BDi�+(M,D2n)) and ΩSO
2 (BDi�+(M)) in ΩSO

2n+2 agree in most
cases, proving Theorem A as part of the main result of the section—Theorem 1.14.
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1.1. Parametrized Pontryagin–�om theory. Given a �bration θ : B → BSO(2n), a
θ -structure on an oriented vector bundle E → BSO(2n) is a li� E → B along θ . De�ne
the spectrum MTθ as the �om spectrum �(−θ ∗γ2n) of the pullback of the canonical
bundle γ2n over BSO(2n). �ese spectra—in particular the case θ = id, commonly denoted
as MTθ = MTSO(2n)—are natural recipients of parametrized Pontryagin–�om construc-
tions. More precisely, for a smooth bundle π : E →W with closed 2n-dimensional �bers
and a θ -structure on its vertical tangent bundle, a parametrized version of the Pontryagin–
�om collapse map gives a canonical homotopy classW → Ω∞MTθ (see e.g. [GMTW09]).
In particular, for an oriented closed 2n-manifold M , this results in a map of the form

(3) BDi�+(M) → Ω∞MTSO(2n),
called the parametrized Pontryagin–�om map. For M a surface, the celebrated theorem
of Madsen–Weiss [MW07], combined with classical stability results of Harer [Har85]
(improved by Boldsen [Bol12] and Randal-Williams [Ran16]), implies that, depending on
the genus of M , the map (3) provides a good homological approximation of BDi�+(M).
It follows from recent work by Galatius–Randal-Williams [GR14; GR18; GR17] that this
holds for simply connected manifolds M in higher dimensions as well, a�er replacing
Ω∞MTSO(2n) with a re�nement depending on M . To explain their program in the special
case needed for our purposes, we assume that M is (n − 1)-connected and n-parallelizable;
that is, its tangent bundle M → BSO(2n) admits a θn-structure for the n-connected cover

θn : BSO(2n)〈n〉 → BSO(2n).
Fix an embedded disc D2n ⊆ M and note that the orientation on D2n extends uniquely to
a θn-structure `D2n on the tangent bundle of D2n . For every smooth M-bundle π : E →W
with a trivialized D2n-subbundle, the θn-structure on the vertical tangent bundle of the
D2n-subbundle induced by `D2n extends uniquely to a θn-structure on the vertical tangent
bundle of π by obstruction theory. In the universal case, this results in a map of the form

BDi�(M,D2n) → Ω∞MTθn ,

which hits a particular component of Ω∞MTθn , denoted by Ω∞MMTθn .

�eorem 1.1 (Boldsen, Galatius–Randal-Williams, Harer, Madsen–Weiss). For a closed,
(n − 1)-connected, n-parallelizable 2n-manifold M , the parametrized Pontryagin–�om map

BDi�(M,D2n) → Ω∞MMTθn

induces an isomorphism on homology in degrees 3∗ ≤ 2д(M) − 2 if 2n = 2, and for 2∗ ≤
д(M) − 3 if 2n ≥ 6. Furthermore, it induces an epimorphism in degrees 3∗ ≤ 2д(M) if 2n = 2,
and for 2∗ ≤ д(M) − 1 if 2n ≥ 6.

1.2. Signatures of bundles over surfaces. Using the theory recalled above, we give an
alternative proof of the following result of Meyer, more in the spirit of this work.

�eorem 1.2 (Meyer). �e signature of the total space of a smooth bundle of oriented closed
manifolds over a surface is divisible by 4.

�ere is a stabilization map MTSO(2n) → Σ−2nMSO (cf. [GMTW09, Ch. 3]), which—
combined with the parametrized Pontryagin–�om map (3), the counit Σ∞+ Ω∞MTSO(2n) →
MTSO(2n), and the multiplication MSO ∧MSO→ MSO—induces a factorization

(4) ΩSO
2 (BDi�+(M)) → ΩSO

2 (Ω∞MTSO(2n)) → ΩSO
2 (MTSO(2n)) → ΩSO

2n+2

of (2). To prove Theorem 1.2, it is thus su�cient to show that the signatures of classes in the
image of ΩSO

2 (Ω∞MTSO(2n)) are divisible by 4. As a result of the lemma below, it is enough
to test the image of the Hurewicz homomorphism π2MTSO(2n) → ΩSO

2 (Ω∞MTSO(2n)).
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Lemma 1.3. Let Ω∞• MTSO(2n) ⊆ Ω∞MTSO(2n) be a path component. �e images of

π2MTSO(2n) → ΩSO
2n+2 and ΩSO

2
(
Ω∞• MTSO(2n)) → ΩSO

2n+2

agree.

Proof. We �rst show that the image of the second morphism does not depend on the chosen
path component. For this, note that for an oriented surface S , the composition of the natural
map from the group of homotopy classes [S,Ω∞MTSO(2n)] to ΩSO

2 (Ω∞MTSO(2n)) with
ΩSO
2 (Ω∞MTSO(2n)) → ΩSO

2n+2 is π0MTSO(2n)-equivariant, where π0MTSO(2n) acts on
the domain in the obvious way and on the codomain via the composition π0MTSO(2n) →
ΩSO
2n → ΩSO

2n+2, the �rst map being induced by the stabilization map MTSO(2n) →
Σ−2nMSO and the second one by taking products with S . �is equivariance can, for instance,
be seen by using the geometric description of [S,Ω∞MTSO(2n)] provided by classical
Pontryagin–�om theory. Since ΩSO

2 is trivial, the action of π0MTSO(2n) on ΩSO
2n+2 is triv-

ial, which implies that it su�ces to show the claim for the unit component Ω∞0 MTSO(2n).
By comparing MTSO(2n) to its connected cover and using that the unit S → MSO is
1-connected, one concludes that the images of π2MTSO(2n) and ΩSO

2 (Ω∞0 MTSO(2n)) in
ΩSO
2 (MTSO(2n)) agree, which, given the factorization (4), implies the claim. �

In the light of Lemma 1.3, Theorem 1.2 follows from the computation of the signatures
realized by classes in π2MTSO(2n), which we learnt from W. Gollinger [Gol16, �m 2.0.10].

�eorem 1.4 (Gollinger). �e composition of π2MTSO(4m − 2) → ΩSO
4m with the signature

σ : ΩSO
4m → Z has image 4 · Z.

Proof sketch. By classical Pontryagin–�om theory, the group π2MTSO(4m − 2) can be
described geometrically as the bordism group of closed 4m-manifolds N together with an
oriented (4m−2)-dimensional vector bundle E → N and a stable isomorphismφ : E⊕ε2 �s
TN . �e morphism π2MTSO(4m − 2) → ΩSO

4m is given by assigning to such a triple
the bordism class of N . Since stably, a trivial plane bundle splits o� from TN , the top-
dimensional Stiefel–Whitney class of N vanishes, so the Euler characteristic χ (N ) is even.
�erefore, by taking connected sums with suitable products of spheres, we can assume
that χ (N ) vanishes. In this case, both of the bundles E ⊕ ε2 �s TN have trivial Euler class
and hence, they are (unstably) isomorphic. Consequently, N admits two pointwise linearly
independent vector �elds from which the classical relation between the signature and the
vector �eld problem implies that the signature of N is a multiple of 4 (see e.g. [LM89, �m
IV.2.7]). We are le� to show that there is a class in π2(MTSO(4m − 2)) with signature 4.
Using K-theory, one can show that a trivial plane bundle splits o� stably from T ]4CP2

[Gol16, Cor. 2.2.10], which gives a class as desired form = 1. But this also provides suitable
classes for allm by taking products with CP2, �nishing the proof. �

Remark 1.5. Theorem 1.2 implies that the signature of the total space of a surface bundle
over a surface is divisible by 4. Meyer [Mey73] proved in addition that there exist such
bundles of signature 4 for any �ber genus д ≥ 3. �is can also be derived from our proof
of Theorem 1.2, since the Madsen–Weiss theorem (see Theorem 1.1) implies that, in this
case, the �rst morphism in (4) is surjective onto ΩSO

2 (Ω∞MMTSO(2)).
1.3. Formal bundles with highly connected �bers. We now specialize to the case of
M being (n − 1)-connected and n-parallelizable. For such M , the factorization (4) can with
the help of the natural map MTθn → MTSO(2n) be extended to a commutative diagram

(5)
ΩSO
2

(
BDi�(M,D2n)) ΩSO

2 (Ω∞MTθn) ΩSO
2 (MTθn)

ΩSO
2 (BDi�+(M)) ΩSO

2 (Ω∞MTSO(2n)) ΩSO
2 (MTSO(2n)) ΩSO

2n+2.
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Analogous to MTSO(2n), there is a stabilization map s : MTθn → Σ−2nMSO〈n〉 for MTθn .
�e induced morphism on second homotopy groups �ts into a commutative square

π2MTθn Ω 〈n 〉2n+2

ΩSO
2 (Ω∞MTθn) ΩSO

2n+2.

s∗

Its cokernel can be derived from work of Galatius–Randal-Williams [GR16, Lem. 5.2,5.5,5.6].

Lemma 1.6 (Galatius–Randal-Williams). Let n ≥ 2. �e cokernel of the morphism

s∗ : π2MTθn → Ω 〈n 〉2n+2

is trivial for n , 3, 7 and isomorphic to Z/4 otherwise.

Remark 1.7. Since the signature σ : ΩSO∗ → Z is an isomorphism in dimension ∗ = 4, the
cokernel considered in Lemma 1.6 is by Theorem 1.4 for n = 1 isomorphic to Z/4 as well.

Lemma 1.6 leads to a description of the image of ΩSO
2 (Ω∞MTθn) → ΩSO

2n+2 as follows.

Proposition 1.8. Let Ω∞• MTθn ⊆ Ω∞MTθn be a path component. �e image of the mor-
phism ΩSO

2 (Ω∞• MTθn) → ΩSO
2n+2 agrees with the subgroup

im
(
Ω 〈n 〉2n+2 → ΩSO

2n+2

)
∩ σ−1(4 · Z).

Proof. By the same argument as in the proof of Lemma 1.3, the image of the map in
consideration coincides with the image of the composition π2MTθn → Ω 〈n 〉2n+2 → ΩSO

2n+2.
From this, one inclusion follows by observing that the la�er composition factors through
π2MTSO(2n) → ΩSO

2n+2, which has image in σ−1(4 · Z) by Theorem 1.4. Since π2MTθn →
Ω 〈n 〉2n+2 is surjective if n , 1, 3, 7 by Lemma 1.6, there is nothing le� to prove in these cases.
For n = 1, 3, 7, the group Ω 〈n 〉2n+2 contains a class of signature 1, such as CP2, HP2, and
OP2—a fact which, together with Lemma 1.6 and Remark 1.7, implies that the sequence

π2MTθn → Ω 〈n 〉2n+2 → Z/4→ 0,
where the last map is induced by the signature, is exact. �e assertion follows. �

By virtue of Theorem 1.1, Proposition 1.8 has an analogue of Theorem A for bundles over
surfaces with a trivialized disc-subbundle and �xed highly connected almost parallelizable
�ber of even dimension as a corollary. �is is stated as part of Theorem 1.14 below.

1.4. A reduction of the structure group. To discuss conditions on M for which the
images of ΩSO(BDi�+(M)) and ΩSO(BDi�(M,D2n)) in ΩSO

2n+2 agree, we recall the canonical
ring isomorphisms between Ωfr∗ and π s∗ , and between Ω 〈n 〉∗ and π∗MSO〈n〉, given by the
Pontryagin–�om construction. Here Ωfr∗ is the bordism ring of stably framed manifolds,
π s∗ the stable homotopy groups of spheres, MSO〈n〉 the �om ring spectrum of BSO〈n〉,
and Ω 〈n 〉∗ the bordism ring of oriented manifolds equipped with a BSO〈n〉-structure on their
stable normal bundle. By standard surgery techniques, the group Ω 〈n 〉k is for k ≥ 2n + 2
canonically isomorphic to the bordism group of oriented n-connected k-manifolds, and we
use these two descriptions interchangeably. �e stable normal bundle of an oriented (n−1)-
connected n-parallelizable manifold M admits a unique BSO〈n〉-structure by obstruction
theory, soM canonically de�nes a class [M] in π2nMSO〈n〉. Note furthermore that the chain
of inclusions Di�(M,D2n) ⊆ Di�+(M, ∗) ⊆ Di�+(M) of subgroups of di�eomorphisms
�xing a chosen point or disc, respectively, induces homotopy �ber sequences

(6) M → BDi�+(M, ∗) → BDi�+(M) and BDi�(M,D2n) → BDi�+(M, ∗) d−→ BSO(2n),
where d is the delooping of the map given by taking the di�erential at the �xed point.
Finally, as is common, η ∈ π s1 � Z/2 denotes the nontrivial element in the �rst stable stem.
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Proposition 1.9. Let M be a closed, oriented, (n − 1)-connected, n-parallelizable manifold.
If M satis�es one of the two conditions

(i) η · [M] ∈ π2n+1MSO〈n〉 is not trivial,
(ii) η · [M,α] ∈ π s2n+1 is trivial for a stable framing α of M ,

then the images of ΩSO
2 (BDi�(M,D2n)) and ΩSO

2 (BDi�+(M)) in ΩSO
2n+2 agree.

Proof. For 2n = 2, the conclusion of the statement is always valid by �eorem 1.2 and Re-
mark 1.5. Since ΩSO

6 is trivial, we can assume 2n ≥ 6, so M is in particular 2-connected. �e
�rst �ber sequence of (6) implies that ΩSO

2 (BDi�+(M, ∗)) → ΩSO
2 (BDi�+(M)) is surjective.

It therefore su�ces to show the claim for ΩSO
2 (BDi�+(M, ∗)) instead of ΩSO

2 (BDi�+(M)).
Mapping the long exact sequence in homotopy groups of the second �ber sequence of (6)
to the corresponding Serre exact sequence yields a commutative ladder with exact rows

(7)
π2 BDi�(M,D2n) π2 BDi�+(M, ∗) Z/2 π1(BDi�(M,D2n))

ΩSO
2

(
BDi�(M,D2n)) ΩSO

2 (BDi�+(M, ∗)) Z/2 ΩSO
1

(
BDi�(M,D2n)) ,

π1(t )

id
ΩSO
1 (t )

where t : SO(2n) → BDi�+(M,D2n) is the map obtained by looping the �ber sequence
once. By [Kra18, Lem. 2.6], the �rst condition implies that ΩSO

1 (t) is nontrivial, so the
morphism ΩSO

2 (BDi�(M,D2n)) → ΩSO
2 (BDi�+(M)) is surjective, which proves the claim.

�e second condition implies that π1(t) is trivial [Kre79, Lem. 4,�m 3 c)], so there is
an oriented bundle π : E → S2 with �ber M whose class maps nontrivially to Z/2. �e
argument at the beginning of the proof of [HSS14, Prop. 1.9] shows that the Pontryagin
and Stiefel–Whitney numbers of E vanish, so E is nullbordant. Since ΩSO

2 (BDi�+(M, ∗)) is
generated by the class of this bundle and the image of ΩSO

2 (BDi�(M,D2n)), the images of
these two groups in ΩSO

2n+2 agree, as claimed. �

Remark 1.10. Proposition 1.9 leaves open the cases where η · [M,α] de�nes a nontrivial
element in the kernel of the Hurewicz map π s2n+1 → π2n+1MSO〈n〉. �is morphism
naturally factors over the cokernel of the J -homomorphism,

π s2n+1 → coker(J )2n+1 → π2n+1MSO〈n〉,
and work by Stolz implies that the second morphism in this composition is o�en bijective
(see e.g. [GR16, �m 1.4]). �is can be used to further narrow down the manifolds for
which the images of ΩSO

2 (BDi�(M,D2n)) and ΩSO
2 (BDi�+(M)) in ΩSO

2n+2 might disagree,
but some cases remain, for instance, Σ8k+2](S4k+1 × S4k+1)]д for д,k ≥ 1, where Σ8k+2 is
the homotopy sphere corresponding to Adams’ element µ8k+2 ∈ π s8k+2 (see [Ada66]). �is
is because η · µ8k+2 is nontrivial and contained in im(J )8k+3 (see e.g. [Rav86, �m 5.3.7]).

Remark 1.11. Assuming д(M) ≥ 7, one can show that the images of ΩSO
2 (BDi�(M,D2n))

and ΩSO
2 (BDi�+(M)) in ΩSO

2n+2 agree if and only if η · [M] ∈ π2n+1MSO〈n〉 vanishes or
d∗w2 : Tor(ΩSO

2 (BDi�+(M, ∗))) → Z/2 is nontrivial. Here d∗w2 is induced by the pullback
of w2 ∈ H2(BSO(2n);Z/2) along d : BDi�+(M, ∗) → BSO(2n).
Remark 1.12. From the exactness of the second row of (7), we see that every 2-divisible
class in ΩSO

2 (BDi�+(M)) is contained in the image of ΩSO
2 (BDi�(M,D2n)).

Remark 1.13. For a homotopy d-sphere Σ, the image of ΩSO
2 (BDi�+(Σ)) in ΩSO

d+2 is trivial.
More generally, the total space of any Σ-bundle is nullbordant. Indeed, coning o� the
�bers shows that there exists a topological nullbordism and hence, by the topological
invariance of Stiefel–Whitney and Pontryagin numbers, also a smooth one.

Propositions 1.8 and 1.9, together with Theorem 1.1, imply the following result. It
includes Theorem A, sinceWд satis�es the second condition of Proposition 1.9, being the
boundary of the parallelizable handlebody \д(Dn+1 × Sn).
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�eorem 1.14. Let M be a closed, (n − 1)-connected, n-parallelizable 2n-manifold. �e
image of the morphism ΩSO

2 (BDi�(M,D2n)) → ΩSO
2n+2 is contained in the subgroup

im
(
Ω 〈n 〉2n+2 → ΩSO

2n+2

)
∩ σ−1(4 · Z).

Moreover, equality holds for д(M) ≥ 5, and for д(M) ≥ 3 if 2n = 2. If M satis�es one of the
conditions of Proposition 1.9, then the same conclusions apply to ΩSO

2 (BDi�+(M)).

2. Bordism classes of highly connected manifolds

�is section is concerned with the image of the natural map

(8) Ω 〈n 〉2n+2 → ΩSO
2n+2

from highly connected to oriented bordism, which is by Theorem 1.14 closely related
to smooth bundles over surfaces with highly connected almost parallelizable �bers. As
noted in the introduction, this morphism is trivial unless 2n + 2 = 4m, and factors over
the quotient Ω 〈2m−1〉4m /Θ4m by the group of homotopy spheres. In the �rst part of this
section, we combine work of Brum�el, Kervaire–Milnor, Stolz, and Wall to give an explicit
description of this quotient, which we use therea�er to describe the image of (8) in terms
of characteristic numbers and to derive divisibility constraints for the signature and the
Â-genera of highly connected manifolds. We assumem ≥ 2 throughout the section.

2.1. Wall’s classi�cation of highly connected almost closedmanifolds. A compact
manifold is almost closed if its boundary is a homotopy sphere. We denote by A〈2m−1〉4m
the group of oriented, almost closed, (2m − 1)-connected 4m-manifolds, up to (2m − 1)-
connected oriented bordism restricting to an h-cobordism on the boundary; the group
structure is induced by boundary connected sum. �is group receives a map from Ω 〈2m−1〉4m
given by cu�ing out the interior of an embedded 4m-disk. �is �ts into an exact sequence

(9) Θ4m → Ω 〈2m−1〉4m → A〈2m−1〉4m
∂−→ Θ4m−1.

�e �rst morphism maps a homotopy sphere to its bordism class, and the last one assigns
to an almost closed manifold its boundary. From his pioneering work on the classi�cation
of highly connected manifolds, Wall [Wal62] derived a complete description of the groups
A〈2m−1〉4m . For us, the outcome is most conveniently phrased in terms of two particular
manifolds P and Q , which play a key role in the remainder of this section.
Milnor’s E8-plumbing P . We denote by P Milnor’s E8-plumbing, i.e., the parallelizable man-
ifold of dimension 4m arising from plumbing eight copies of the disk bundle of the tangent
bundle of the 2m-sphere, such that the intersection form of P is isomorphic to the E8-form
(see e.g. [Bro72, Ch. V.2]). Since the la�er has signature 8, so does the manifold P .
�e plumbing Q . Let Q be the plumbing of two copies of a 2m-dimensional linear disk
bundle over the 2m-sphere that generates the image of π2m BSO(2m − 1) in π2m BSO(2m).
�is bundle can be characterized equivalently as having vanishing Euler number and
representing a generator of π2m BSO for m , 2, 4, and twice a generator for m = 2, 4
(cf. [Lev85, §1A)]). Via the isomorphism H2m(S2m) ⊕ H2m(S2m) � H2m(Q) induced by
the inclusion of the 2m-skeleton, the intersection form of Q is given by

( 0 1
1 0

)
, so it has

vanishing signature. For m = 2k even, the kth Pontryagin class of a generator of π2m BSO
is ak (2k−1)![S4k ]∗ ∈ H4k (S4k ) (see e.g. [Lev85, �m 3.8]), where ak equals 1 for k even and
2 otherwise, and [S4k ]∗ denotes the Poincaré dual to 1 ∈ H0(S4k ) . From this, we compute
the square of the kth Pontryagin class of Q as

(10) p2k (Q, ∂Q) = 2λ2ka
2
k (2k − 1)!2 · [Q, ∂Q]∗ ∈ H8k (Q, ∂Q),

with λk being 1 if k , 1, 2 and 2 elsewise.
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�e boundaries of both plumbings P and Q are homotopy spheres (see e.g. [Bro72,
p. V.2.7]). We denote them by ΣP and ΣQ , respectively.

�eorem 2.1 (Wall). �e bordism group A〈2m−1〉4m satis�es

A〈2m−1〉4m �



Z ⊕ Z/2 ifm ≡ 1 (mod 4)
Z ifm ≡ 3 (mod 4)
Z ⊕ Z ifm ≡ 0 (mod 2),

where the �rst summand is generated by P , except for m = 2, 4 where it is generated by HP2

and OP2, respectively. �e second summand in the casesm . 3 (mod 4) is generated by Q .

Proof. �e statement regarding the isomorphism type of the group A〈2m−1〉4m follows from
[Wal62, �m 2; Wal67, �m 11]. Denoting by 〈Q〉 ⊆ A〈2m−1〉4m the subgroup generated by
Q , it follows from the discussion in [Wal67, p. 295] that there is an exact sequence

0→ 〈Q〉 → A〈2m−1〉4m → Z

in which the last morphism is induced by the signature. As HP2 and OP2 have signature 1,
the casesm = 2, 4 follow. �e other cases are concluded by observing that the intersection
form associated to a manifold representing a class in A〈2m−1〉4m is even form , 2, 4, so it has
signature divisible by 8—the signature of the E8-plumbing. �

To treat the di�erent cases form even in a uniform manner, it is convenient to use a
basis of A〈2m−1〉4m that is di�erent from the one described in the previous theorem.

Lemma 2.2.
(i) Two almost closed 8k-manifolds M and N de�ne the same class in A〈4k−1〉8k if and only

if σ (M) = σ (N ) and p2k (M) = p2k (N ).
(ii) �e classes 8 · HP2 and 8 · OP2 in A〈4k−1〉8k equal P +Q for k = 1, 2, respectively.

(iii) �e group A〈4k−1〉8k � Z ⊕ Z is generated by P and Q for k , 1, 2, by P and HP2 for
k = 1, and by P and OP2 for k = 2.

Proof. As opposed to the plumbing Q , the manifolds HP2, OP2, and P have nontrivial
signature. Since we computed the Pontryagin number p2k (Q) to be nontrivial in (10), the
�rst claim follows from Theorem 2.1, as A〈4k−1〉8k is free abelian of rank 2. �e Pontryagin
numbers p2k (HP2) and p2k (OP2) can be computed as a2k (2k − 1)!2 for k = 1, 2, respectively,
which agrees with 1/8 ·p2k (Q) by (10). �e second claim follows from the �rst, remembering
thatσ (P) = 8 andσ (Q) = 0. �e third claim follows from the second using Theorem 2.1. �

2.2. Homotopy (4m−1)-spheres. Recall from [KM63] that the groupΘ4m−1 ofh-cobordism
classes of oriented homotopy spheres �ts into an exact sequence
(11) 0→ bP4m → Θ4m−1 → coker(J )4m−1 → 0
involving the subgroup bP4m ⊆ Θ4m−1 of homotopy spheres bounding parallelizable
manifolds and the cokernel of the stable J -homomorphism in degree (4m − 1). �e
subgroup bP4m is generated by the Milnor sphere ΣP = ∂P . It is of order σm/8 with

σm = am22m+1(22m−1 − 1) num
( |B2m |
4m

)

as de�ned in the introduction (see e.g. [Lev85, Cor. 3.20, Lem. 3.5(2)]). Brum�el [Bru68] has
shown that every homotopy sphere Σ ∈ Θ4m−1 bounds a spin manifoldWΣ with vanishing
decomposable Pontryagin numbers and that the signature σ (WΣ) of such a manifold is
divisible by 8. �is enabled him to establish a decomposition
(12) Θ4m−1 � bP4m ⊕ coker(J )4m−1



CHARACTERISTIC NUMBERS OF MANIFOLD BUNDLES OVER SURFACES WITH HIGHLY CONNECTED FIBERS 11

via a spli�ing sB : Θ4m−1 → bP4m of the exact sequence (11), de�ned by mapping a
homotopy sphere Σ to (σ (WΣ)/8) · ΣP . Re�ning Brum�el’s de�nition, Stolz [Sto87] gave
a formula for sB (Σ) in terms of invariants of any spin manifold that bounds Σ, without
assumptions on its characteristic numbers. To state his result, �x integers cm and dm with

cm num
( |B2m |
4m

)
+ dm denom

( |B2m |
4m

)
= 1,

and de�ne a rational polynomial Sm ∈ H4m(BSO;Q) in Pontryagin classes as

Sm = Lm + σm
am

(
cmÂm + (−1)mdm(Â ph)m

)
,

which involves the L- and Â-class, as well as product of the Â-class with the reduced
Pontryagin character ph. Here reduced refers to the triviality of ph in degree 0. �e
polynomial Sm has no contributions from themth Pontryagin class (see [Sto87, p. 2]), so
its evaluation on an oriented almost closed manifold M can be considered as a relative
class Sm(M) ∈ H4m(M, ∂M ;Q).
�eorem 2.3 (Stolz). For an almost closed spin manifold M of dimension 4m, the invariant

s(M) = 1
8

(
σ (M) − 〈Sm(M), [M, ∂M]〉

)
is integral and computes the value of Brum�el’s spli�ing on the boundary of M , i.e.,

sB (∂M) = s(M) · ΣP .
2.3. Closing almost closed manifolds. By the exactness of the sequence (9), the bor-
dism group Ω 〈2m−1〉4m /Θ4m is naturally isomorphic to the kernel of the morphism

∂ : A〈2m−1〉4m → Θ4m−1,

which leads us to identify these two groups henceforth. Since A〈2m−1〉4m is generated by the
classes of P and Q form , 2, 4 by Theorem 2.1, we need to examine their boundaries ΣP
and ΣQ in Θ4m−1 in order to determine the kernel in question. As mentioned earlier, the
Milnor sphere ΣP is well understood; it generates the subgroup bP4m . Regarding ΣQ , we
use Stolz’s invariant to compute its image under the projection onto bP4m with respect to
the decomposition (12) (see Lemma 2.7). Concerning its image [ΣQ ] in coker(J )4m−1, there
are partial results due to Anderson and Stolz. To state the ones relevant for us, denote by

jn = denom
( |B2n |

4n

)
the size of the image of the stable J -homomorphism in degree 4n − 1 (see [Ada66; �i71]).

�eorem 2.4 (Anderson, Stolz). �e class [ΣQ ] in coker(J )4m−1 satis�es
(i) j2m/2 · [ΣQ ] = 0 form , 2, 4 even, and

(ii) [ΣQ ] = 0 form , 5 odd.

Proof. �e �rst claim follows from the beginning of the proof of [And69, Lem. 1.5]. To
prove the second, observe that the homotopy sphere ΣQ is trivial if m ≡ 3 (mod 4) by
Theorem 2.1. A result by Stolz [Sto85, �m B (i)] se�les the remaining case. �

Despite Anderson’s bound on its order, very li�le is known about the class [ΣQ ] in
coker(J )4m−1 for m even. Galatius–Randal-Williams [GR16, Conj. A] conjectured that
it is trivial. A weaker version of this conjecture appeared independently in work of
Bowden–Crowley–Stipsicz [BCS14, Conj. 5.9].

Conjecture 2.5 (Galatius–Randal-Williams). Form even, [ΣQ ] is trivial in coker(J )4m−1.
Remark 2.6. �e conjecture is known in the �rst two cases m = 2, 4 (cf. [GR16, Ch. 6]) and
is, to the author’s knowledge, already unknown form = 6.
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To state our formula for the image of ΣQ under the projection onto bP4m , we denote by

Tn = 22n(22n − 1) |B2n |
2n

the nth tangent number, which is known to be integral (see e.g. [AIK14, Rem. 1.18]).

Lemma 2.7. Stolz’ invariant s(Q) of Q vanishes ifm is odd. Form = 2k even, it satis�es

s(Q) = −
λ2k
8j2k

(
σ 2
k + a

2
kσ2k num

( |B2k |
4k

) (
c2k num

( |B2k |
4k

)
+ 2(−1)kd2k jk

))
,

as well as

s(Q) =
λ2ka

2
k

4

(
σ2kd2k

|B2k |
4k

( |B2k |
|B4k |

+ (−1)k+1
)
−
T 2
k

4

)
,

where λk = 1 if k , 1, 2 and λk = 2 otherwise.

We postpone the proof of this lemma to the next subsection and continue by elaborating
on some of its consequences instead.

Corollary 2.8. Form even, the homotopy spheres ΣP and ΣQ in Θ4m−1 satisfy
(i) j2m/2 · ΣQ = (σ 2

m/2/8) · ΣP form , 2, 4, and
(ii) ΣQ = −ΣP form = 2, 4.

Proof. We write m = 2k . By Theorem 2.4, the homotopy sphere j2k · ΣQ lies in bP8k for
2k , 2, 4, so Theorem 2.3 gives the relation j2k · ΣQ = j2ks(Q) · ΣP . From the �rst formula
of Lemma 2.7, we see that j2ks(Q) is congruent to σ 2

k/8 modulo σ2k . �is has the �rst claim
as a consequence. Since num(|B4 |/8) = num(|B8 |/16) = 1, we conclude d2 = d4 = 0. �us,
the second formula of the lemma gives s(Q) = −T 2

1 for k = 1 and s(Q) = −T 2
2 /4 for k = 2.

As T1 = 1 and T2 = 2, we have s(Q) = −1 for k = 1, 2, which, together with Theorem 2.3
and Remark 2.6, implies the second claim. �

Combining Wall’s classi�cation, Stolz’ invariant, and Theorem 2.4, we determine the
kernel of the boundary map in the sequence (9), and hence the bordism group Ω 〈2m−1〉4m /Θ4m ,
as follows. �e order of the class [ΣQ ] in coker(J )4m−1 is denoted by ord([ΣQ ]).
�eorem 2.9. �e bordism group Ω 〈2m−1〉4m /Θ4m satis�es

Ω 〈2m−1〉4m /Θ4m �




Z ⊕ Z/2 ifm ≡ 1 (mod 4),m , 5
Z ifm ≡ 3 (mod 4)
(Z ⊕ Z/2) or Z ifm = 5
Z ⊕ Z ifm ≡ 0 (mod 2).

�e �rst summand is generated by (σm/8) ·P in all cases. �e Z/2-summands in the respective
cases are generated by Q . Form even, the second summand is generated by HP2 if m = 2, by
OP2 ifm = 4, and by ord([ΣQ ])

(
Q − s(Q) · P )

otherwise.

Proof. By Theorem 2.1 and Lemma 2.2, the group A〈2m−1〉4m is isomorphic to a direct sum
Z ⊕ C for a cyclic group C , where the �rst summand is generated by P , and the second
summand by Q for m , 2, 4, by HP2 for m = 2, and by OP2 for m = 4. Recall that the
Milnor sphere ΣP generates the cyclic group bP4m of order σm/8. By exactness of (11), the
homotopy sphere ord([ΣQ ])·ΣQ is contained in bP4m , so it coincides with ord([ΣQ ])s(Q)·ΣP
by Theorem 2.3. Using this, it follows from elementary algebraic considerations that the
classes (σm/8) · P and ord([ΣQ ])

(
Q − s(Q) · P )

generate the kernel form , 2, 4. As Q has
in�nite order form even, this se�les the case form , 2, 4 even. �e class of Q has order 2
for m ≡ 1 (mod 4) and is trivial for m ≡ 3 (mod 4) by Theorem 2.1. Together with the fact
that, for m odd, we have s(Q) = 0 by Lemma 2.7 and ord([ΣQ ]) = 1 as long as m , 5 by
Theorem 2.4, this concludes the proof form odd. �e casesm = 2, 4 are immediate. �
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Remark 2.10. �e preceding proof also shows that for m = 5, the kernel in question is
isomorphic to Z ⊕ Z/2 if and only if the class [ΣQ ] ∈ coker(J )19 is trivial.

Remark 2.11. Note that, for m = 2k , 2, 4, Corollary 2.8 implies that (σ 2
k/8) · P − j2k ·Q is

contained in the kernel under consideration.

Remark 2.12. A�er replacing HP2 by 4 · HP2 and OP2 by 4 · OP2, the statement of �eo-
rem 2.9 remains valid if Ω 〈2m−1〉4m /Θ4m is replaced by the subgroup Ω 〈2m−1〉4m /Θ4m∩σ−1(4 ·Z).
�is is because the signatures of P andQ are divisible by 8, whereas σ (HP2) = σ (OP2) = 1.

2.4. Characteristic numbers of highly connected manifolds. �is subsection serves
to prove Lemma 2.7 and to use it in combination with Theorem 2.9 to compute the la�ices
of characteristic numbers realized by closed (2m − 1)-connected 4m-manifolds. Note that
for such manifolds, all Pontryagin classes vanish, except possibly for pm , and pm/2 ifm is
even. As a result of this, the L-class, the Â-class, the reduced Pontryagin character ph,
and the product (Â ph) of the la�er two, have the form (cf. [Hir66, Ch. 1,3])

Lm =
{
smpm ifm is odd
1
2 (s2k − s2k )p2k + s2kp2k ifm = 2k is even,

Âm =

{
ŝmpm ifm is odd
1
2 (ŝ2k − ŝ2k )p2k + ŝ2kp2k ifm = 2k is even,

phm =
{ (−1)m+1
(2m−1)!pm ifm is odd

1
2(4k−1)!p

2
k − 1

(4k−1)!p2k ifm = 2k is even,
and

(Â ph)m =
{ (−1)m+1
(2m−1)!pm ifm is odd
(−1)k+1ŝk
(2k−1)! p

2
k +

1
2(4k−1)!p

2
k − 1

(4k−1)!p2k ifm = 2k is even,
where ŝn and sn are given by

(13) ŝn =
−1

(2n − 1)!
|B2n |
4n and sn = −22n+1(22n−1 − 1)ŝn = σn

an(2n − 1)!jn
for n ≥ 1. Solving L2k for p2k and expressing Â2k in terms of L2k and p2k , we obtain

(14) p2k =
1
s2k
L2k −

s2k − s2k
2s2k

p2k and Â2k =
s2k ŝ

2
k − ŝ2ks2k
2s2k

p2k +
ŝ2k
s2k
L2k .

Substituting the variables with their values, the last equation becomes

(15) Â2k =
T 2
k

(2k − 1)!224k+3(24k−1 − 1)p
2
k −

1
24k+1(24k−1 − 1)L2k .

Proof of Lemma 2.7. AsQ is (2m− 1)-connected, all its decomposable Pontryagin numbers
vanish form odd, and hence so does the characteristic number 〈Sm(Q), [Q, ∂Q]〉, since Sm
does not involve pm (see [Sto87, p. 2]). �e �rst part of the lemma follows therefore from
the triviality of the signature of Q . Form = 2k , we use the formulas above to calculate

S2k (Q) =
(
1
2 (s

2
k − s2k ) + σ2kc2k

1
2 (ŝ

2
k − ŝ2k ) + σ2kd2k ŝk

(−1)k+1
(2k − 1)! + σ2kd2k

1
2(4k − 1)!

)
p2k (Q).

Using the second description of s2k in (13), one obtains the identity
1
2s2k = σ2kd2k

1
2(4k − 1)! − σ2kc2k

1
2 ŝ2k ,

which simpli�es the above formula for S2k (Q) to

S2k (Q) =
(
1
2s

2
k + σ2kc2k

1
2 ŝ

2
k + σ2kd2k ŝk

(−1)k+1
(2k − 1)!

)
p2k (Q).
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Substituting ŝk with its value and using (10) as well as the last identity in (13), we arrive at

S2k (Q) =
(
λ2kσ

2
k

j2k
+ λ2kσ2k

(
a2kc2k (

|B2k |
4k )

2 + 2(−1)kd2k
|B2k |
4k

))
[Q, ∂Q]∗,

from which we obtain the �rst formula of the statement, since s(Q) = −1/8〈S2k (Q), [Q, ∂Q]〉
as σ (Q) = 0. �e second formula follows from the �rst together with the identity

σ2kc2k = 24k+1(24k−1 − 1)
(
1 − denom

( |B4k |
8k

)
d2k

)

by combining two of the summands to −a2kλ2kT 2
k /16 and simplifying the expressions. �

To determine the combinations of Pontryagin numbers, signatures, and Â-genera that
are realized by closed highly connected 4m-manifolds, we recall that, even for almost
closed 4m-manifolds M , these invariants are additive bordism invariants, where the top-
dimensional Pontryagin number pm(M) is de�ned such that the Hirzebruch signature
formula σ (M) = 〈Lm(M), [M]〉 holds. Using this description of pm , the Â-genus of an
almost closed 4m-manifold is de�ned by Â(M) = 〈Âm(M), [M]〉.

Form odd, Theorem 2.9 shows that the torsion free quotient of Ω 〈2m−1〉4m is generated by
the class (σm/8) ·P , whose invariants can be easily computed from σ (P) = 8 and p2k (P) = 0
using the formulas recalled at the beginning of this subsection.

Proposition 2.13. For m , 1 odd, the torsion free quotient of Ω 〈2m−1〉4m is generated by
(σm/8) · P , whose signature, Â-genus and Pontryagin numbers are

σ
((σm/8) · P )

= σm , Â
((σm/8) · P )

= −2 num
( |B2m |
4m

)
, and

pm
((σm/8) · P )

= 2(2m − 1)!jm .
Form even, we compute the occurring characteristic numbers as follows.

Proposition 2.14. �e torsion free quotient of Ω 〈4k−1〉8k agrees with Ω 〈4k−1〉8k /Θ8k , and the
morphisms induced by the respective characteristic numbers

σ , Â,p2k ,p
2
k : Ω

〈4k−1〉
8k /Θ8k → Z

are, with respect to the ordered basis described in Theorem 2.9, given by

σ =

(
σ2k

ord([ΣQ ]) a
2
k
µk

(
Tk 2

2 − 2σ2kd2k |B2k |
4k

(
|B2k |
|B4k | + (−1)

k+1
))) ,

Â =
©­«

− num
(
|B4k |
8k

)
2 ord([ΣQ ]) a

2
k
µk

num
(
|B4k |
8k

)
d2k

|B2k |
4k

(
|B2k |
|B4k | + (−1)

k+1
)ª®¬
,

p2k =

( (4k − 1)!j2k
ord([ΣQ ]) a

2
k
µk

(
(2k − 1)!2 + (4k − 1)!j2k |B2k |

4k

(
c2k
|B2k |
4k + 2d2k (−1)k

))) , and

p2k =

(
0

2 ord([ΣQ ]) a
2
k
µk
(2k − 1)!2

)
,

where µk = 2 if k = 1, 2 and µk = 1 otherwise. Furthermore, a�er replacing µk with its
reciprocal, the same formulas hold for the subgroup Ω 〈4k−1〉8k /Θ8k ∩ σ−1(4 · Z) using the
ordered basis described in Remark 2.12.
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Proof. �e �rst statement follows from Theorem 2.9 and the computation of the invariants
for (σm/8) · P , analogous to Proposition 2.13, using the fact that p2k (P) vanishes since P is
parallelizable. �e second part of Corollary 2.8 and Lemma 2.2 imply that ord([ΣQ ])

(
Q −

s(Q) · P )
equals 8 · HP2 for k = 1 and 8 · OP2 for k = 2. Since µkλ2k is 8 if k = 1, 2 and 1

otherwise, it is su�cient to show that the invariants of the class ord([ΣQ ])
(
Q −s(Q) ·P )

are
in all cases given by the product of µkλ2k with the claimed invariants of the second basis
vector. Forp2k , this is implied byp2k (P) = 0 and (10). �e signature of ord([ΣQ ])

(
Q−s(Q)·P )

is obtained using the second formula in Lemma 2.7, together with σ (P) = 8 and σ (Q) = 0.
Using (15), the values of these signatures, together with p2k (P) = 0 and (10), result in

Â
(
ord([ΣQ ]) (Q − s(Q) · P)

)
= ord([ΣQ ])

(
λ2ka

2
kT

2
k

24k+2(24k−1 − 1) +
s(Q)

24k−2(24k−1 − 1)

)
,

which, using the second formula of Lemma 2.7, gives the desired value. �e calculation of
p2m is obtained by combining (14) with the �rst formula for s(Q) of Lemma 2.7 and

λ2ks
2
k

s2k
a2k (2k − 1)!2 =

λ2kσ
2
k

s2k j
2
k

.

�e last part of the statement follows from Remark 2.12. �

We proceed by computing the signatures and Â-genera realized by highly connected
4m-manifolds. �e following consequences of the von Staudt–Clausen theorem will be
useful. A proof of the la�er can be derived, for instance, from [AIK14, Ch. 3].

�eorem 2.15 (von Staudt–Clausen). �e prime factor decomposition of denom( |B2n |
n ) is

denom
( |B2n |

n

)
=

∏
p−1 |2n

p1+νp (n).

In particular, j2n = denom( |B4n |
8n ) is divisible by jn = denom( |B2n |

4n ), and ν2(jn) = ν2(n) + 3.

Proposition 2.16. �ere exists a closed (2m − 1)-connected 4m-manifold with signature



σm ifm , 1 is odd
2im gcd(σm ,σ 2

m/2) ifm , 2, 4 is even

1 ifm = 1, 2, 4,

where
im = min

(
0,ν2(ord([ΣQ ])) − 2ν2(m) − 4 + 2ν2(am/2)

)
,

and the signature of any closed (2m − 1)-connected 4m-manifold is a multiple of this number.

Remark 2.17. Note that we obtain ν2(ord([ΣQ ])) ≤ 2ν2(m) + 4 from Theorem 2.4 and 2.15.

Remark 2.18. Proposition 2.16 should be compared with the analogous result for (2m − 1)-
connected 4m-manifolds that are assumed to be almost parallelizable. It follows from work
of Milnor–Kervaire [MK60, p. 457] that, under this additional assumption, the minimal
positive signature that occurs is σm , independent of the parity ofm. Since im ≤ 0, one gets

2im gcd(σm ,σ 2
m/2) <

σm

2m−ν2(m)−8
by [ABK72, �m 1.5.2(c)], so the minimal positive signature becomes, form even, signi�-
cantly larger if one restricts to manifolds that are almost parallelizable.

�e proof of Proposition 2.16 owes a signi�cant intellectual debt to a computation due
to Lampe [Lam81, Satz 1.3], to whom the authors would like to express their gratitude for
sending them a copy of his diploma thesis.
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Proof of Proposition 2.16. For m , 1 odd, the claim is a consequence of Proposition 2.13,
and for m = 1, 2, 4, it follows from the existence of the manifolds CP2, HP2, and OP2 of
signature 1. Form = 2k , 2, 4, it is, by Proposition 2.14, su�cient to show that the integer
described in the statement is the greatest common divisor of

σ ((σ2k/8) · P) = σ2k and σ
(
ord([ΣQ ])

(
Q − s(Q) · P ) )

= −8 ord([ΣQ ])s(Q).
From the �rst formula of Lemma 2.7, one sees that there is an odd integer b such that

−8 ord([ΣQ ])s(Q) = 1
j2k

(
ord([ΣQ ])(σ 2

k + σ2ka
2
kb)

)
.

Using ν2(σk ) = ν2(ak ) + 2k + 1 and ν2(jk ) = ν2(k) + 3, we compute

ν2
(
gcd

(
σ2k , 8 ord([ΣQ ])s(Q)

) )
= min

(
4k + 1,ν2

(
ord([ΣQ ])

)
+ 4k + 2ν2(ak ) − 2ν2(k) − 5

)
.

To determine the odd part gcd(σ2k , 8 ord([ΣQ ])s(Q))odd of the greatest common divisor,
we note that, since Tk is an even integer for k > 1, the number jk divides 22k−1(22k − 1).
�is, together with the fact that (22k − 1) and (24k−1 − 1) are coprime, implies that jk and
(24k−1 − 1) are coprime. But since jk is also coprime to num( |B4k |

8k ) by the von Staudten–
Clausen theorem, it cannot share odd prime divisors with σ2m . As ord([ΣQ ]) divides j2k by
Theorem 2.4, the conclusion also holds for ord([ΣQ ]) and σ2m . �is leads to

gcd
(
σ2k , 8 ord([ΣQ ])s(Q)

)
odd = gcd

(
σ2k , ord([ΣQ ])(σ 2

k + σ2ka
2
kb)

)
odd = gcd(σ2k ,σ 2

k )odd,
which implies the statement, because ν2(gcd(σ2k ,σ 2

k )) = 4k + 1. �

Since ν2(σm) = 2m+1+ν2(am) and im ≥ −2ν2(m)−4, we obtain the following divisibility
result for the signature as an immediate corollary of Proposition 2.16.

Corollary 2.19. �e signature of a closed (2m − 1)-connected manifold of dimension 4m for
m , 1, 2, 4 is divisible by 22m+2 ifm is odd and by 22m−2ν2(m)−3 ifm is even.

For m ≥ 2, closed (2m − 1)-connected 4m-manifolds admit a spin structure, so their
Â-genus is integral. We compute it as follows.

Proposition 2.20. �ere exists a closed (2m − 1)-connected 4m-manifold with Â-genus{
2 num( |B2m |

4m ) ifm , 1 is odd
gcd(num( |B2m |

4m ), num( |Bm |2m )2) ifm is even,

and the Â-genus of any closed (2m − 1)-connected 4m-manifold is a multiple of this number.

Proof. Arguing similarly as in the proof of Proposition 2.16, the claim form odd follows
from Proposition 2.13. To prove the remaining case ofm even using Proposition 2.14, we
need to compute the greatest common divisor of num( |B4k |

8k ) and

2 ord([ΣQ ])
a2k
µk

num
( |B4k |

8k

)
d2k
|B2k |
4k

( |B2k |
|B4k |

+ (−1)k+1
)

=
1

j2k µk
ord([ΣQ ])a2kd2k num

( |B2k |
4k

) (
num

( |B2k |
4k

)
j2k + 2(−1)k+1jk num

( |B4k |
8k

))

As jk , j2k ,ak , µk , and d2k are coprime to num( |B4k |
8k ), the number in question agrees with

gcd
(
num

( |B4k |
8k

)
, ord([ΣQ ]) num

( |B2k |
4k

)2)
.

But ord([ΣQ ]) divides j2k by Theorem 2.4, so the von Staudt–Clausen theorem implies that
it has no common divisors with num( |B4k |

8k ). �is yields the result. �
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Remark 2.21. Computer calculations show that form < 2678 even, the greatest common
divisor of σm and σ 2

m/2 is a power of 2, whereas it is 22·2678+1 · 34511 for m = 2678.
Since ν2(gcd(σm ,σ 2

m/2)) = 2m + 1, the minimal positive signature of a closed highly
connected 4m-manifold for m , 2, 4 even, m < 2678, equals 2im+2m+1 by Proposition 2.16.
Similar computations show that num( |B2m |

4m ) and num( |Bm |2m )2 are coprime form < 44000
even, and hence Proposition 2.20 implies that in these dimensions, there exists a closed
(2m − 1)-connected 4m-manifold of Â-genus 1. We do not know whether num( |B2m |

4m ) and
num( |Bm |2m )2 are coprime for allm even.

3. Characteristic numbers of bundles over surfaces with highly connected fiber

Harvesting the fruits of our labor, we derive consequences for characteristic numbers of
bundles over surfaces, as well as for H2(BDi�+(M);Z). �is leads to proofs of Theorem B,
Corollary C, and Theorem D. �roughout the section, we require M to be closed, (n − 1)-
connected, 2n-dimensional, and almost parallelizable (or, equivalently, n-parallelizable).

3.1. Characteristic numbers of total spaces. To treat various cases in a uniform man-
ner, the following auxiliary de�nition turns out to be convenient.

De�nition 3.1. A smooth oriented M-bundle over an oriented surface is called admissible
if its image under ΩSO

2 (BDi�+(M)) → ΩSO
4m is contained in the subgroup

(16) im
(
Ω 〈n 〉2n+2 → ΩSO

2n+2

)
∩ σ−1(4 · Z).

Theorem 1.14 and Remark 1.12 show that most bundles are admissible, as summarized in
the following. See Remark 1.10 for a discussion of which bundles might not be admissible.

Lemma 3.2. Let π : E → S an oriented M-bundle over an oriented closed surface. If one of
the following conditions is satis�ed, then π is admissible.

(i) M satis�es one of the conditions of Proposition 1.9, for instance, if M =Wд .
(ii) π admits a trivial D2n-subbundle for an embedded disc D2n ⊆ M .

(iii) �e class of π in ΩSO
2 (BDi�+(M)) is divisible by 2.

For д(M) ≥ 5, every class in the subgroup (16) is represented by a bundle of type (ii).

In Proposition 2.13 and 2.14, we determined the la�ices of Pontryagin numbers, signa-
tures and Â-genera realized by classes in the subgroup (16), which hence also computes
the respective invariants for total spaces of admissible M-bundles over surfaces. As an
example, note that Proposition 2.16 and Corollary 2.19 imply the following two results.
�ey include �eorem B and Corollary C as special cases.

�eorem 3.3. Let M be a closed, highly connected, almost parallelizable (4m − 2)-manifold.
For an admissible M-bundle π : E → S over a closed oriented surface, σ (E) is divisible by



4 form = 1, 2, 4
σm form , 1 odd
2im gcd(σ 2

m/2,σm) form , 2, 4 even,

where
im = min

(
0,ν2(ord([ΣQ ]) − 2ν2(m) − 4 + 2ν2(am/2)

)
.

Form ≥ 2, the Â-genus of E is integral and divisible by{
2 num( |B2m |

4m ) form odd
gcd(num( |B2m |

4m ), num( |Bm |2m )2) form even.

Moreover, if д(M) ≥ 5, then these numbers are realized as signatures and Â-genera of total
spaces of bundles of the above type. Form = 1, requiring д ≥ 3 is su�cient.
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Corollary 3.4. Let M be a closed, highly connected, almost parallelizable (4m−2)-manifold.
�ere exists a smooth M-bundle over a closed oriented surface with total space of signature 4
if and only if m = 1, 2, 4. If m , 1, 2, 4, then the signature of the total space of an admissible
M-bundle over a surface is divisible by 22m+2 form odd and by 22m−2ν2(m)−3 form even.

Since every 2-divisible class in ΩSO
2 (BDi�+(M)) is admissible, the admissibility assump-

tion in the divisibility statements of �eorem 3.3 and Corollary 3.4 can be dropped, but at
the cost of losing a factor of 2.

3.2. Generalized Miller–Morita–Mumford classes. We conclude with a computation
of the torsion free quotient H2(BDi�+(M,D2n);Z)free for д(M) ≥ 7 and 2n ≥ 6 in terms
of generalized Miller–Miller–Mumford classes (as recalled in the introduction). �is also
applies toH2(BDi�+(M);Z)free as long asM satis�es one of the conditions of Proposition 1.9.
�e root of the computation is the analogous result for rational cohomology due to Galatius–
Randal-Williams: their high dimensional analogue of the Madsen–Weiss theorem (see
Theorem 1.1) provides an isomorphism

H∗
(
BDi�(M,D2n);Z)

� H∗(Ω∞MMTθn ;Z)
for 2n ≥ 6, д(M) ≥ 7, and ∗ ≤ 2. �e cohomology groups H∗(Ω∞MMTθn ;Z) are �nitely
generated and can be computed rationally to be the free graded commutative algebra

H∗(Ω∞MMTθn ;Q) � Λ
(
H∗+2n>0(BSO(2n)〈n〉;Q)) ,

see [GR14, Ch. 2.5]. As H∗(BSO(2n)〈n〉;Q) is a polynomial ring in the Pontryagin classes
pi of degree 4i > n, we arrive at

H2 (
BDi�(M,D2n);Q)

=



0 if 2n ≡ 0 (mod 4)
Qκp(n+1)/2 if 2n ≡ 2 (mod 8)
Qκp(n+1)/2 ⊕ Qκp2(n+1)/4 if 2n ≡ 6 (mod 8)

for 2n ≥ 6 and д ≥ 7. Making use of the Serre exact sequences of the two homotopy
�ber sequences in (6), one sees that this formula, as well as the �nite generation prop-
erty, holds equally well for BDi�+(M) instead of BDi�(M,D2n), an observation which
incidentally yields the description of H2(BDi�+(Wд);Q) mentioned in the introduction.
Excluding the trivial case, we assume 4m = 2n + 2. Since classes in Ω 〈2m−1〉4m have van-
ishing Stiefel–Whitney numbers and are, up to torsion, detected by Pontryagin numbers
(see e.g. Proposition 2.13 and 2.14), the induced morphism (Ω 〈2m−1〉4m )free → ΩSO

4m , de�ned
on the torsion free quotient, is injective, and the rank of its image agrees with that of
ΩSO
2 (BDi�(M,D2n))free. From this, using �eorem 1.14, we conclude that the morphism

ΩSO
2 (BDi�+(M,D4m−2)) → ΩSO

4m induces an isomorphism of the form

ΩSO
2

(
BDi�+(M,D4m−2)) free � im

(
Ω 〈2m−1〉4m → ΩSO

4m

)
∩ σ−1(4 · Z).

In view of the commutative diagram displayed in the introduction, the functional on the
le� hand side induced by a class κc for c ∈ H4m(BSO;Z) corresponds via this isomorphism
to the usual characteristic number de�ned by c on the right hand side. Propositions 2.13
and 2.14 provide an explicit basis for the right hand side and represent the functionals
induced by Pontryagin numbers in terms of this basis. Computing the appropriate change
of basis matrix, the integral dual of this basis can be expressed in terms of Pontryagin
numbers. Ultimately, this results in the following basis of H2(BDi�+(M,D4m−2);Z)free, and
in particular proves Theorem D. �e various variables are de�ned as in the introduction.
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�eorem 3.5. Let M a closed, highly connected, almost parallelizable (4m − 2)-manifold. If
m ≥ 2 and д(M) ≥ 7, then the group H2(BDi�+(M,D4m−2);Z)free is generated by

κpm
2(2m − 1)!jm

form odd, and by

κp2k
2µka2k ord([ΣQ ])(2k − 1)!2

and
2κp2k − κp2k
2(4k − 1)!j2k

−
|B2k |
4k

(
c2k
|B2k |
4k + 2d2k (−1)k

)
κp2k

2(2k − 1)!2
form = 2k even. Moreover, if M satis�es one of the assumptions of Proposition 1.9, then the
same conclusions apply to the group H2(BDi�+(M);Z)free.
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HOMOLOGICAL STABILITY OF TOPOLOGICAL MODULI SPACES

MANUEL KRANNICH

Abstract. Given a graded E1-module over an E2-algebra in spaces, we construct an augmented semi-
simplicial space up to higher coherent homotopy over it, called its canonical resolution, whose graded
connectivity yields homological stability for the graded pieces of the module with respect to constant and
abelian coe�cients. We furthermore introduce a notion of coe�cient systems of �nite degree in this context
and show that, without further assumptions, the corresponding twisted homology groups stabilise as well.
�is generalises a framework of Randal-Williams and Wahl for families of discrete groups.

In many examples, the canonical resolution recovers geometric resolutions with known connectivity
bounds. As a consequence, we derive new twisted homological stability results for e.g. moduli spaces of
high-dimensional manifolds, unordered con�guration spaces of manifolds with labels in a �bration, and moduli
spaces of manifolds equipped with unordered embedded discs. �is in turn implies representation stability for
the ordered variants of the la�er examples.

A sequence of spaces
. . . −→Mn−1 −→Mn −→Mn+1 −→ . . .

is said to satisfy homological stability if the induced maps in homology are isomorphisms in degrees that are
small relative to n. �ere is a well-established strategy for proving homological stability that traces back to
an argument by �illen for the classifying spaces of a sequence of inclusions of groupsGn . Given simplicial
complexes whose connectivity increases with n and on which the groups Gn act simplicially, transitively
on simplices, and with stabilisers isomorphic to groups Gn−k prior in the sequence, stability can o�en be
derived by employing a spectral sequence relating the di�erent stabilisers. In [RW17], Randal-Williams
and Wahl axiomatised this strategy of proof, resulting in a convenient categorical framework for proving
homological stability for families of discrete groups that form a braided monoidal groupoid. �eir work
uni�es and improves many classical stability results and has led to a number of applications since its
introduction [Fri17; GW16; PW16; Ran18; SW14].

However, homological stability phenomena have been proved to occur not only in the context of
discrete groups, but also in numerous non-aspherical situations, many of them of a moduli space �avor,
such as unordered con�guration spaces of manifolds [McD75; Seg73; Seg79], the most classical example, or
moduli spaces of high-dimensional manifolds [GR17; GR18] to emphasise a more recent one. �e majority
of the stability proofs in this context resemble the original line of argument for discrete groups, and one of
the objectives of the present work is to provide a conceptualisation of this pa�ern.

Instead of considering the single spacesMn and the mapsMn →Mn+1 between them one at a time,
it is bene�cial to treat them as a single spaceM =

∐
n≥0Mn together with a grading дM : M → N0

to the nonnegative integers, capturing the decomposition ofM into the piecesMn , and a stabilisation
map s : M → M that restricts to the maps Mn → Mn+1, so it increases the degree by one. From
the perspective of homotopy theory, suchM that result from familiesMn that are known to stabilise
homologically usually share the characteristic of forming a (graded) E1-module over an E2-algebra—the
homotopy theoretical analogue of a module over a braided monoidal category. �is observation is the
driving force behind the present work.

Referring to Section 2.1 for a precise de�nition, we encourage the reader to think of a graded E1-
moduleM over an E2-algebra A as a pair of spaces (M,A) together with gradings дM : M → N0 and
дA : A → N0, a homotopy-commutative multiplication ⊕ : A × A → A, and a homotopy-associative
action-map ⊕ : M ×A →M. �ese are required to satisfy various axioms, among them additivity with
respect to дM and дA (see De�nition 2.3). Given suchM and A, the choice of a stabilising object X ∈ A,
meaning an element of degree 1, results in a stabilisation map

s B (− ⊕ X ) : M →M
2010 Mathematics Subject Classi�cation. 55P48, 55R40, 55R80, 57R19.
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that increases the degree by 1 and hence gives rise to a sequence

. . . −→Mn−1
s−→Mn

s−→Mn+1 −→ . . .
of the subspacesMn = д

−1
M(n) of a �xed degree. �e sequences of spaces arising in this fashion are the

ones whose homological stability behaviour the present work is concerned with.
�e key construction of this work is introduced in Section 2.2. We assign toM its canonical resolution

(1) R•(M) −→M,
which is an augmented semi-simplicial space up to higher coherent homotopy—a notion made precise in
Section 1.5, but which can be thought of as an augmented semi-simplicial space in the usual sense. �e �bre
W•(A) of the canonical resolution at a point A ∈ M is an analogue of the simplicial complex in �illen’s
argument; it is a semi-simplicial space up to higher coherent homotopy whose space of p-simplicesWp (A)
is the homotopy �bre at A of the (p + 1)st iterated stabilisation map sp+1 : M →M. �usW•(A) should be
thought of as the space of destabilisations of A—a terminology that suggests that the canonical resolution
controls the stability behaviour ofM, justi�ed by Theorem A and C.

To state our main theorems, we call the canonical resolution ofM graded φ(дM)-connected in degrees
≥ m for a function φ : N0 → Q if the restriction |R•(M)|n →Mn of the geometric realisation of (1) to
the preimage ofMn is bφ(n)c-connected in the usual sense for all n ≥ m. �e �rst theorem, proved in
Section 3, treats homological stability with constant and abelian coe�cients, the la�er being local systems
on which the commutator subgroups of the fundamental groups at all basepoints act trivially.

�eorem A. LetM be a graded E1-module over an E2-algebra with stabilising object X and L a local system
onM. If the canonical resolution ofM is graded (дM−2+k

k )-connected in degrees ≥ 1 for some k ≥ 2, then

s∗ : Hi (Mn ; s∗L) −→ Hi (Mn+1;L)
(i) is an isomorphism for i ≤ n−1

k and an epimorphism for i ≤ n−2+k
k , if L is constant, and

(ii) is an isomorphism for i ≤ n+1−k
k and an epimorphism for i ≤ n

k , if L is abelian and k ≥ 3.

Remark. In certain cases, discussed in Remark 3.3, the ranges of Theorem A can be improved marginally.

Restricting to homological degree 0, the theorem has the following cancellation result as a consequence.

Corollary B. LetM be a graded E1-module over an E2-algebra with stabilising object X . If the connectivity
assumption of Theorem A is satis�ed, then the fundamental groupoid ofM is X -cancellative for objects of
positive degree, i.e. for objects A and A′ ofM of positive degree, A ⊕ X � A′ ⊕ X in Π(M) implies A � A′.

To cover more general coe�cients, we note that the fundamental groupoid of an E2-algebraA naturally
carries the structure of a braided monoidal category (Π(A), ⊕,b, 0) and the fundamental groupoid of an
E1-moduleM over A becomes a right-module (Π(M), ⊕) over it (see Section 2.1). In terms of this, we
de�ne in Section 4.1 a coe�cient system F forM with stabilising object X as an abelian group-valued
functor F on Π(M), together with a natural transformation σ F : F → F (− ⊕ X ) for which the image of the
canonical morphism Bm → AutA(X ⊕m) from the braid group onm strands acts trivially on the image of
(σ F )m : F → F (− ⊕ X ⊕m) for all n and m. Such a coe�cient system enhances the stabilisation map to a
map of spaces with local systems

(s;σ F ) : (Mn ; F ) → (Mn+1; F )
by restricting F to subspaces of homogenous degree. A coe�cient system F induces a new one ΣF =
F (− ⊕ X ), called its suspension, which comes with a morphism F → ΣF , named the suspension map (see
De�nition 4.3). �e coe�cient system F is inductively said to be of degree r if the kernel of the suspension
map vanishes and the cokernel has degree (r − 1); the zero coe�cient system having degree −1. In fact,
we de�ne a more general notion of being of (split) degree r at N such that F is of degree r in the sense
just described if it is of degree r at 0 (see De�nition 4.1). �is notion of a coe�cient system of �nite
(split) degree generalises the one introduced by Randal-Williams and Wahl [RW17] for braided monoidal
groupoids (see Remarks 4.11 and 4.12), which was itself inspired by work of Dwyer [Dwy80] and van der
Kallen [Kal80] on general linear groups, and work of Ivanov [Iva93] on mapping class groups of surfaces.

Remark. �ere is an alternative point of view on coe�cient systems forM, namely as abelian-group
valued functors on a category 〈M,B〉 constructed from the action of Π(A) on Π(M) (see Remark 4.12).
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Our second main theorem, demonstrated in Section 4.2, addresses homological stability ofM with
coe�cients in a coe�cient system of �nite degree.

�eorem C. LetM be a graded E1-module over an E2-algebra with stabilising object X and F a coe�cient
system forM of degree r at N ≥ 0. If the canonical resolution ofM is graded (дM−2+k

k )-connected in degrees
≥ 1 for some k ≥ 2, then the map induced by stabilisation

(s;σ F )∗ : Hi (Mn ; F ) −→ Hi (Mn+1; F )
is an isomorphism for i ≤ n−rk−k

k and an epimorphism for i ≤ n−rk
k , when n > N . If F is of split degree r at

N ≥ 0 then (s;σ F )∗ is an isomorphism for i ≤ n−r−k
k and an epimorphism for i ≤ n−r

k , when n > N .

As a proof of concept, we apply the developed theory to three main classes of examples to which we
devote the remainder of this introduction.

Con�guration spaces. �e unordered con�guration space Cπn (W ) of a manifold with boundaryW with
labels in a Serre �bration π : E →W is the quotient of the ordered con�guration space

F πn (W ) = {(e1, . . . , en) ∈ En | π (ei ) , π (ej ) for i , j and π (ei ) ∈W \∂W }
by the apparent action of the symmetric group Σn . IfW is of dimension d ≥ 2 and has nonempty boundary,
then the union of its con�guration spacesM =∐

n≥0C
π
n (W ) admits the structure of an E1-module over

the E2-algebra A = ∐
n≥0Cn(Dd ) of con�gurations in a d-disc, graded by the number of points (see

Lemma 5.1). In Section 5.1, we identify its canonical resolution with the resolution by arcs—an augmented
semi-simplicial space of geometric nature that has already been considered in the context of homological
stability (see e.g. [MW16; KM14]) and is known to be su�ciently connected to apply Theorem A and C.

�eorem D. Let W be a connected manifold of dimension at least 2 with nonempty boundary and let
π : E →W be a Serre �bration with path-connected �bres.

(i) For a local system L on Cπn+1(W ), the stabilisation map

s∗ : Hi (Cπn (W ); s∗L) −→ Hi (Cπn+1(W );L)
is an isomorphism for i ≤ n−1

2 and an epimorphism for i ≤ n
2 , if L is constant. It is an isomorphism for

i ≤ n−2
3 and an epimorphism for i ≤ n

3 , if L is abelian.
(ii) If F is a coe�cient system of degree r at N ≥ 0, then the stabilisation map

(s;σ F )∗ : Hi (Cπn (W ); F ) −→ Hi (Cπn+1(W ); F )
is an isomorphism for i ≤ n−2r−2

2 and an epimorphism for i ≤ n−2r
2 , when n > N . If F is of split degree

r at N ≥ 0, then it is an isomorphism for i ≤ n−r−2
2 and an epimorphism for i ≤ n−r

2 , when n > N .

Remark. Employing the improvement of Remark 3.3, one obtains a slightly be�er isomorphism range of
i ≤ n

2 than the one stated in Theorem D.

Con�guration spaces have a longstanding history in the context of homological stability, starting with
work of Arnold [Arn68], who established stability forCn(D2) with constant coe�cients. McDu� and Segal
[McD75; Seg73; Seg79] observed that this behaviour is not restricted to the 2-disc and proved stability for
more general Cπn (W ) with constant coe�cients and π = idW , which can be extended to general π , e.g. by
adapting the proof for a trivial �bration presented in [Ran13] (see [CP15; KM14] for alternative proofs).

As proved for example in [Ran13], the stabilisation map for con�guration spaces is in fact split injective
in homology with constant coe�cients in all degrees—a phenomenon special to con�guration spaces, not
captured by our general approach.

For a trivial �bration, stability ofCπn (W )with respect to a nontrivial coe�cient system F was studied by
Palmer [Pal18], building on work of Betley [Bet02] on symmetric groups. �e second part of Theorem D
extends his result to nontrivial �brations and a signi�cantly larger class of coe�cient systems, partly
conjectured by Palmer [Pal18, Rem. 1.5] (see Remark 5.12 for a more detailed comparison to his work). In
the case of surfaces and a trivial �bration, a result similar to Theorem D, but with respect to a slightly
smaller class of coe�cient systems, is contained in work by Randal-Williams and Wahl [RW17, �m D].

In Section 5.2, we provide a discussion of coe�cient systems for con�guration spaces by relating them,
for instance, to the theory of FI -modules as introduced by Church, Ellenberg, and Farb [CEF15] or to
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coe�cient systems studied in [RW17]. �ese considerations provide numerous nontrivial coe�cient
systems F with respect to which the homology of Cπn (W ) stabilises.

To our knowledge, stability with abelian coe�cients for con�guration spaces of manifolds of dimensions
greater than two has not been considered so far. We next discuss a direct consequence of stability with
respect to this class of coe�cients as the �rst item in a series of applications exploiting Theorem D.

Oriented con�guration spaces. �e oriented con�guration space Cπ ,or
n (W ) with labels in a Serre �bration π

overW is the double cover of Cπn (W ) given as the quotient of the ordered con�guration space F πn (W ) by
the action of the alternating group An , or equivalently, the space of labelled con�gurations ordered up to
even permutations. By the space version of Shapiro’s lemma, the homology of Cπ ,or

n (W ) is isomorphic
to H∗(Cπn (W );Z[Z/2Z]), with the action of π1(Cπn (W )) on the group ring Z[Z/2Z] being induced by the
composition of the sign homomorphism with the morphism π1(Cπn (W )) → Σn , obtained by choosing an
ordering of a basepoint. �ese local systems are abelian and are preserved by pulling back along the
stabilisation map, hence homological stability for Cπ ,or

n (W ) follows as a by-product of Theorem D.

Corollary E. LetW and π be as in Theorem D. �e map induced by stabilisation

s∗ : Hi (Cπ ,or
n (W );Z) −→ Hi (Cπ ,or

n+1 (W );Z)
is an isomorphism for i ≤ n−2

3 and an epimorphism for i ≤ n
3 .

Stability for oriented con�guration spaces of connected orientable surfaces with nonempty boundary
and without labels was proved by Guest, Kozlowsky, and Yamaguchi [GKY96] using computations due to
Bödigheimer, Cohen, Taylor, and Milgram [BCT89; BCM93]. Palmer [Pal13] extended this to manifolds
of higher dimensions with nonempty boundary and labels in a trivial �bration. Corollary E gives an
alternative proof of his result and enhances it by means of general labels and an improved stability range.

Con�guration spaces of embedded discs. �e con�guration space Ck
n (W ) of unordered k-discs in a connected

d-manifoldW is the quotient by the action of Σn on the con�guration space of ordered k-discs

Fkn (W ) = Emb(∐n Dk ,W \∂W ),
equipped with the C∞-topology. For k = d and oriented W , there are variants Fd,+n (W ) and Cd,+

n (W )
by restricting to orientation preserving embeddings. Mapping an embedding of a k-disc to its centre
point, labelled with the k-frame induced by standard framing of Dk at the origin, results in a map
Ck
n (W ) → Cπkn (W ), where πk is the bundle of k-frames in M . �is map can be seen to be a weak

equivalence by choosing a metric and exponentiating frames. For k < d , the �bre of πk is path-connected,
so the homological stability results of Theorem D carry over to Ck

n (W ), comprising part of Corollary F
below. Using the bundle π+d of oriented d-framings, the argument for Cd,+

n (W ) is analogous, since the
orientability condition ensures that the �bres of π+k are path-connected.

�e topological group of di�eomorphisms Di�∂(W ) �xing a neighbourhood of the boundary in the
C∞-topology naturally acts on the con�guration spaces Fkn (W ) and Ck

n (W ), and the resulting homotopy
quotients Fkn (W )//Di�∂(W ) and Ck

n (W )//Di�∂(W ) model the classifying spaces of the subgroups

PDi�k
∂,n(W ) ⊆ Di�k

∂,n(W ) ⊆ Di�∂(W ),
where PDi�k

∂,n(W ) are the di�eomorphisms that �x n chosen embedded k-discs inW and Di�k
∂,n(W ) are

the ones permuting them (see Lemma 5.13). IfW is orientable, the (sub)groups of orientation preserving
di�eomorphisms are denoted with a (+)-superscript. In Example 2.21, we explain how the canonical
resolution of a graded E1-moduleM over an E2-algebra A relates to that of the E1-module EG ×G M
over A in the presence of a graded action of a group G onM that commutes with the action of A. An
application of this consideration to the situation at hand implies the following, carried out in Section 5.3.1.

Corollary F. LetW be a d-dimensional manifold as in Theorem D and let 0 ≤ k < d .
(i) For a local system L, the stabilisation maps

Hi (Ck
n (W ); s∗L) → Hi (Ck

n+1(W );L) and Hi (B Di�k
∂,n(W ); s∗L) → Hi (B Di�k

∂,n+1(W );L)
are isomorphisms for i ≤ n−1

2 and epimorphisms for i ≤ n
2 , if L is constant. If L is abelian, then they are

isomorphisms for i ≤ n−2
3 and epimorphisms for i ≤ n

3 .
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(ii) If F is a coe�cient system of degree r at N ≥ 0, then the maps induced by the stabilisation (s;σ F )
Hi (Ck

n (W ); F ) → Hi (Ck
n+1(W ); F ) and Hi (B Di�k

∂,n(W ); F ) → Hi (B Di�k
∂,n+1(W ); F )

are isomorphisms for i ≤ n−2r−2
2 and epimorphisms for i ≤ n−2r

2 , when n > N . If F is of split degree r
at N ≥ 0, then they are isomorphisms for i ≤ n−r−2

2 and epimorphisms for i ≤ n−r
2 , when n > N .

IfW is oriented, then the analogous statements hold for the variants Cd,+
n (W ) and B Di�d,+

∂,n(W ).
Remark. �e isomorphism range for constant coe�cients in the previous theorem can be improved to
i ≤ n

2 by virtue of Remark 3.3.

For compact manifoldsW , Tillmann [Til16] has proved homological stability with constant coe�cients
for variants of B Di�0

∂,n(W ) and B Di�d,+
∂,n(W ) involving di�eomorphisms that are only required to �x a

disc in the boundary instead of the whole boundary. A Serre spectral sequence argument shows that
stability for these variants follows from stability of the spaces B Di�0

∂,n(W ) and B Di�d,+
∂,n(W ). Hatcher

and Wahl [HW10, Prop. 1.5] have shown stability with constant coe�cients for the mapping class groups
π0(Di�0

∂,n(W )), which can be seen to be equivalent to Di�0
∂,n(W ) for compact 2-dimensionalW as a result

of the homotopy discreteness of the space of di�eomorphisms of a compact surface [EE67; Gra73]. In this
case, stability with respect to some of the twisted coe�cients systems Corollary F deals with is contained
in work by Randal-Williams and Wahl [RW17, �m 5.22].

Representation stability. �e �rst rational homology group of the ordered con�guration space of the 2-disc

H1(Fn(D2);Q) � Q(n2),
as e.g. computed in [Arn69], exempli�es that—in contrast to unordered con�guration spaces—the homology
of the ordered variant does not stabilise. However, by incorporating the action of the symmetric groups
Σn , it does stabilise in a more re�ned, representation theoretic sense. To make this precise, recall the
correspondence between irreducible representations of Σn and partitions of n [FH91, Ch. 4]. We denote
the irreducible Σ |λ |-module corresponding to a partition λ = (λ1 ≥ . . . ≥ λk ) ` |λ | of length |λ | by Vλ and
de�ne for n ≥ |λ | + λ1, the padded partition λ[n] = (n − |λ | ≥ λ1 ≥ . . . ≥ λk ) ` n. Using the Totaro spectral
sequence [Tot96], Church [Chu12] has shown that for a connected orientable manifold of dimension at least
two with �nite-dimensional rational cohomology, the groups Hi (Fn(W );Q) are uniformly representation
stable—a concept introduced by Church and Farb [CF13]. �is implies the existence of a constant N (i),
depending solely on i , such that the multiplicity ofVλ[n] in the Σn-module Hi (Fn(W );Q) is independent of
n for n ≥ N (i). Church’s result has been extended in several directions [CEF15; MW16; Pet17; Tos16].

A twisted Serre spectral sequence argument (see Lemma 5.14) shows that the multiplicity of an irre-
ducible Σn-moduleVλ in Hi (F πn (W );Q) agrees with the dimension of Hi (Cπn (W );Vλ), where π1(Cπn (W )) acts
on Vλ via the morphism π1(Cπn (W )) → Σn . �is fact allows us to derive the stability of these multiplicities
from �eorem D, at least for all manifolds to which the la�er theorem applies (see Section 5.3.2).

Corollary G. LetW and π be as in Theorem D and let Zn be one of the following sequences of Σn-spaces:
(i) F πn (W ),

(ii) Fkn (W ) for 0 ≤ k < d ,
(iii) Fd,+n (W ) ifW is oriented,

(iv) B PDi�k
∂,n(W ) for 0 ≤ k < d ,

(v) B PDi�d,+
∂,n(W ) ifW is orientable.

�e Vλ[n]-multiplicity in Hi (Zn ;Q) for a �xed partition λ is independent of n for n large relative to i .

In Remark 5.16, we discuss explicit ranges for Corollary G and compare them to Church’s. Let us at
this juncture record that our approach leads to ranges that depend on |λ |, so we do not recover uniform
representation stability. On the other hand, in contrast to Church’s result, we neither requireW to be
orientable nor to have �nite dimensional rational cohomology or π to be the identity.

Jiménez Rolland [Jim11; Jim15] has shown uniform representation stability for the cohomology groups
Hi (B PDi�0

∂,n(W );Q) for compact orientable surfaces and for compact connected manifoldsW of dimension
d ≥ 3, assuming that B Di�∂(W ) has the homotopy type of a CW-complex of �nite type. Furthermore, she
proved uniform representation stability for π0(PDi�0

∂,n(W )) for compact orientable surfaces, as well as for
higher-dimensional manifolds under some further assumptions.
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Moduli spaces of manifolds. �e moduli spaceM of compact d-dimensional smooth manifolds with
a �xed boundary P forms an E1-module over the Ed -algebra A given by the moduli space of compact
d-manifolds with a sphere as boundary (see Lemma 6.1). �e homotopy types ofM and A are

M '∐
[W ] B Di�∂(W ) and A '∐

[N ] B Di�∂(N ),
where [W ] runs over di�eomorphism classes relative to P of compact d-manifolds with P-boundary and
[N ] over the ones of compact d-manifolds with a sphere as boundary. Acting with a manifold X ∈ A on
M corresponds to taking the boundary connected sum (−\X ) with X , so the resulting stabilisation map
thus restricts on path components to a map of the form

(2) s : B Di�∂(W ) → B Di�∂(W \X ),
which models the map on classifying spaces induced by extending di�eomorphisms by the identity.

As shown in Section 6.1, the canonical resolution ofM with respect to a choice of a stabilising manifold
X is equivalent to the resolution by embeddings—an augmented semi-simplicial space of submanifolds
W ∈ M, together with embeddings ofX with a �xed behaviour near their boundary. For speci�c manifolds
X andW , this resolution and its connectivity has been studied to prove homological stability of (2), �rst
by Galatius and Randal-Williams in their work [GR18] for X � D2p](Sp × Sp ) and simply-connected
2p-dimensionalW with p ≥ 3. �eir results extend the classical stability result for mapping class groups
of surfaces by Harer [Har85] to higher dimensions. As in Harer’s theorem, the known connectivity of the
resolution by embeddings, and hence the resulting stability ranges, depend on the X -genus ofW ,

дX (W ) = max{k ≥ 0 | there exists M ∈ M such that M\X \k �W relative to P},
which incidentally provides a method of grading E1-modulesM in general (see Section 2.3). Perlmu�er
[Per16a] succeeded in carrying out this strategy for X � Dp+q](Sp × Sq) with certain p , q depending on
whichW is required to satisfy a connectivity assumption. Recently, Friedrich [Fri17] extended the work of
Galatius and Randal-Williams to manifoldsW with nontrivial fundamental group in terms of the unitary
stable rank [KM02, Def. 6.3] of the group ring Z[π1(W )]. �ese connectivity results can be restated in our
context as graded connectivity for the canonical resolution ofM with respect to di�erent gradings (see
Corollary 6.7), allowing us to apply Theorem A and C.

Employing the improvement of Remark 3.3, the ranges with constant and abelian coe�cients obtained
from Theorem A agree with the ones established in [Fri17; GR18; Per16a] (a�er extending [Per16a] to
abelian coe�cients by adapting the methods of [GR18]). �e cancellation result for connected sums of
manifolds that we derive from Corollary B coincides with their cancellation results as well. Our main
contribution with respect moduli spaces of manifolds lies in the application of Theorem C, i.e. homological
stability with respect to a large class of nontrivial coe�cient systems, which has not yet been considered
in the context of moduli spaces of high-dimensional manifolds. On path components, it reads as follows.

�eorem H. LetW be a compact (p + q)-manifold with nonempty boundary and F a coe�cient system of
degree r . Denote by д(W ) the (Sp × Sq)-genus ofW , and set u to be 1 ifW is simply connected and to be the
unitary stable rank of Z[π1(W )] otherwise. �e stabilisation map

(s,σ F )∗ : Hi (B Di�∂(W ); F ) −→ Hi (B Di�∂(W ](Sp × Sq)); F )
(i) is an isomorphism for i ≤ д(W )−2r−u−3

2 and an epimorphism for i ≤ д(W )−2r−u−1
2 , if p = q ≥ 3, and

(ii) an isomorphism for i ≤ д(W )−2r−m−4
2 and an epimorphism for i ≤ д(W )−2r−m−2

2 , if W is (q − p + 2)-
connected and 0 < p < q < 2p − 2 withm = min{i ∈ N0 | there exists an epimorphism Zi → πq(Sp )}.

If F is (split) of degree r at a number N ≥ 0, the ranges in Theorem H change as per Theorem C.

Remark. �e unitary stable rank [KM02, Def. 6.3] of a group ring Z[G] need not be �nite. To provide a
class of examples of �nite unitary stable rank, recall that G is called virtually polycyclic if there is a series
1 = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G such that Gi is normal in Gi+1 and the quotients Gi+1/Gi are either �nite or
cyclic. Its Hirsch length h(G) is the number of in�nite cyclic factors. Crowley and Sixt [CS11, �m 7.3]
showed usr(Z[G]) ≤ h(G) + 3 for virtually polycyclic groups G. In particular, we have usr(Z[G]) ≤ 3 for
�nite groups and usr(Z[G]) ≤ rank(G) + 3 for �nitely generated abelian groups.
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In Remark 6.8, we brie�y elaborate on how to include the case of orientable surfaces in this picture by
utilising high-connectivity of the complex of tethered chains—a result of Hatcher and Vogtmann [HV17].
For constant coe�cients, this implies Harer’s classical stability theorem [Har85] with a be�er, but not
optimal range (see [Bol12; Ran16]). For twisted coe�cients, it extends a result by Ivanov [Iva93] to more
general coe�cient systems. However, in the case of surfaces, stability with respect to most of these more
general coe�cient systems was already known by [RW17].

In Section 6.2, we show that coe�cient systems forM are equivalent to certain families of modules
over the mapping class groups π0(Di�∂(W )) � π1(B Di�∂(W )) and explain how the action of the mapping
class groups on the homology of the manifolds gives rise to a coe�cient system of degree 1 forM. �is
yields the following corollary.

Corollary I. LetW be a compact (p + q)-manifold with nonempty boundary and k ≥ 0. �e stabilisation

Hi (B Di�∂(W ); Hk (W )) −→ Hi (B Di�∂(W ](Sp × Sq)); Hk (W ](Sp × Sq)))
is an epi- and isomorphism for the sameW as in Theorem H and with the same ranges, a�er replacing r by 1.

Furthermore, in Section 6.3, we provide a short discussion of how our methods can be applied to the
case of certain stably parallelisable (2n− 1)-connected (4n+ 1)-manifolds X and 2-connectedW , extending
stability results by Perlmu�er [Per16b]. Similarly, we also brie�y explain how to enhance work of Kupers
[Kup15] on homeomorphisms of topological manifolds and automorphisms of piecewise linear manifolds.

Modules over braided monoidal categories. We close in Section 7 by explaining applicability of our
results to discrete situations, such as groups or monoids, and by drawing a comparison to [RW17].

�e classifying space BM of a graded moduleM over a braided monoidal category is a graded E1-
module over an E2-algebra (see Lemma 7.2), so forms a suitable input for Theorem A and C. In Lemma 7.6,
we identify the space of destabilisationsW•(A) of A ∈ M with a semi-simplicial setW RW• (A) in the case of
M being a groupoid satisfying an injectivity condition. �is identi�cation gives rise to a framework for
homological stability for modules over braided monoidal categories, phrased entirely in terms ofM and
semi-simplicial sets instead of semi-simplicial spaces up to higher coherent homotopy (see Remark 7.8).

Using this, it can, for instance, be concluded that work of Hepworth on homological stability for Coxeter
groups [Hep16] with constant coe�cients implies their stability with respect to a large class of nontrivial
coe�cient systems without further e�ort, as well as stability of their commutator subgroups.

In the case of a braided monoidal groupoid acting on itself, the semi-simplicial sets W RW• (A) were
introduced by Randal-Williams–Wahl in [RW17] as part of their stability results for the automorphisms of
a braided monoidal groupoid, which this work enhances in various ways. We generalise from braided
monoidal groupoids to modules over such, remove all hypotheses on the categories they impose, improve
the stability ranges in certain cases (see Remark 7.10), and enlarge the class of coe�cients systems (see
Remark 7.9). We refer to Section 7.3 for a more detailed comparison of our results in the discrete se�ing to
[RW17] and also for an analysis of their assumptions on the braided monoidal groupoid.
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1. Preliminaries

�is section is devoted to �x conventions and collect general techniques. We work in the category of
compactly generated spaces, use Moore paths throughout, and denote the endpoint of a path µ by ω(µ).
1.1. Graded spaces and categories. We denote by (N̄,+) the discrete abelian monoid obtained by
extending the non-negative integers (N0,+) by an element∞ satisfying k +∞ = ∞ for all k ≥ 0.

A graded space is a space X together with a continuous map дX : X → N̄. A map of graded spaces is a
map that preserves the grading and a map of degree k between graded spaces for a number k ≥ 0 is a map
that increases the degree by k . �e category of graded spaces is symmetric monoidal with the monoidal
product of two graded spaces (X ,дX ) and (Y ,дY ) given by (X × Y ,дX + дY ). �e subspace of elements of
degree n ∈ N̄ is denoted by Xn = д

−1
X ({n}) ⊆ X . By restricting the grading, subspaces of graded spaces

are implicitly considered as being graded. A graded space (X ,дX ), or a map (Y ,дY ) → (X ,дX ) of graded
spaces, is φ(дX )-connected in degrees ≥ m for a function φ : N̄→ Q ∪ {∞} satisfying ϕ(∞) = ∞ if Xn or
Yn → Zn , respectively, is bφ(n)c-connected for all m ≤ n < ∞ in the usual sense. Note that we do not
require anything on X∞ or Y∞ → X∞.

A graded set X is a graded space that is discrete. A graded category C is a category internal to graded sets,
i.e. a category C with a functionдC : obC → N̄ whose value on objects that are connected by morphisms is
constant. �is is equivalent to a grading on the classifying spaceBC. A graded monoidal category is a monoid
internal to graded categories with the monoidal product (C,дC)×(D,дD) = (C×D,дC+дD), i.e. a monoidal
category (A, ⊕, 0) together with a gradingдA onA that satis�esдA(0) = 0 andдA(X⊕Y ) = дA(X )+дA(Y ).
A graded right-module (M, ⊕) over a graded monoidal category (A, ⊕, 0) is a graded categoryM together
with a right-action of (A, ⊕, 0) on D internal to graded categories, i.e. a functor ⊕ : M ×A →M which
is unital and associative up to coherent isomorphisms, and satis�es дM(A ⊕ X ) = дM(A) + дM(X ).
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1.2. Homology with local coe�cients. We adopt the convention of [Whi78, Ch. VI]: for points x and y
in a space X , a morphism in the fundamental groupoid Π(X ) from x to y is a homotopy class of paths from
y to x , resulting in the fundamental group π1(X ,x) being a subgroupoid of Π(X ). A local system on a pair
of spaces (X ,A) with A ⊆ X is a functor F from the fundamental groupoid Π(X ) of X to the category of
abelian groups. It is constant if it is constant as a functor. For a path-connected space X , local systems can
equivalently be described as modules over π1(X ,x), since the fundamental groupoid Π(X ) is equivalent to
the one-object groupoid π1(X ,x). Subspaces of spaces with local systems are implicitly equipped with
the local system obtained by restriction along the inclusion. When we write (X ,A) for a map A→ X that
is not necessarily an inclusion, we implicitly replace X by the mapping cylinder of A→ X . A morphism
(f ;η) between pairs with local systems (X ,A; F ) and (Y ,B;G) is a map of pairs f : (X ,A) → (Y ,B) with a
natural transformation η : F → f ∗G of functors on Π(X ). A homotopy between (f0;η0) and (f1;η1) from
(X ,A; F ) to (Y ,B;G) consists of a homotopy of pairs Ht : (X ,A) → (Y ,B) from f0 and f1 such that

G(f1(−))
F (−)

G(f0(−))
G(Ht (−))

η1

η0

commutes. Taking singular chains with coe�cients in a local system provides a homotopy invariant
functor C∗(−) from pairs with local systems to chain complexes. �e homology H∗(X ,A; F ) of C∗(X ,A; F ) is
the homology of the pair (X ,A) with coe�cients in the local system F . A grading onX results in an additional
grading

⊕
n∈N̄ H∗(Xn ,An ; F ) on H∗(X ,A; F ). For a morphism (X ,A; F ) → (Y ,B;G), the homology of the

mapping cone of C∗(X ,A; F ) → C∗(Y ,B;G) is denoted by H∗((Y ,B;G), (X ,A; F )). If X and Y are graded
and the underlying map X → Y is of degree k , then H∗((Y ,B;G), (X ,A; F )) inherits an extra grading

H∗
((Y ,B;G), (X ,A; F )) =⊕

n∈N̄ H∗
((Yn+k ,Bn+k ;G), (Xn ,An ; F )) .

We refer to [Whi78, Ch. VI] for more details on homology with local coe�cients.

1.3. Augmented semi-simplicial spaces. Denoting by [p] the ordered set {0, 1, . . . ,p}, the semi-simplicial
category is the category ∆inj with objects [0], [1], . . . and order-preserving injections between them. A
semi-simplicial space X• is a space-valued functor on ∆

op
inj, or equivalently, a collection of spaces Xp for

p ≥ 0, together with face maps di : Xp → Xp−1 for 0 ≤ i ≤ p that satisfy the face relations didj = dj−1di for
i < j. An augmented semi-simplicial space X• → X−1 is a semi-simplicial space X• with maps Xp → X−1
for p ≥ 0 that commute with the face maps. As for simplicial spaces, augmented semi-simplicial spaces
X• → X−1 have a geometric realisation—a space over X−1, denoted by |X• | → X−1 (see [ER17, Sect. 1.2]).

Given an augmented semi-simplicial space X• → X−1 and a local system F on X−1, we obtain local
systems on the spaces ofp-simplicesXp and on the realisation |X• | by pulling back F along the augmentation.
Filtering |X• | by skeleta induces a strongly convergent homologically graded spectral sequence

(3) E1
p,q � Hq(Xp ; F ) =⇒ Hp+q+1(X−1, |X• |; F ),

de�ned for q ≥ 0 and p ≥ −1 (see [ER17, Sect. 1.4; MP15, Lem. 2.7]). �e di�erential d1 : Hq(Xp ; F ) →
Hq(Xp−1; F ) is the alternating sum

∑p
i=0(−1)i (di ; id)∗ of the morphisms induced by the face maps for p > 0,

and induced by the augmentation for p = 0. Given a morphism of augmented semi-simplicial spaces
(f•, f−1) : (X• → X−1) → (Y• → Y−1), local systems F on X−1 and G on Y−1, and a morphism of local
systems F → f−1

∗G, we obtain a morphism of augmented semi-simplicial objects in spaces with local
systems, resulting in a relative version of the spectral sequence (3),

(4) E1
p,q � Hq

((Yp ;G), (Xp ; F )) =⇒ Hp+q+1
((Y−1, |Y• |;G), (X−1, |X• |; F )

)
.

If X−1 is graded, all spaces Xp and |X• | inherit a grading by pulling back дX−1 along the augmentation. �is
results in a third grading of the spectral sequence (3), but since the di�erentials preserve the additional
grading, it is just a sum of spectral sequences, one for each n ∈ N̄. Analogously, if the map f−1 of
(f•, f−1) : (X• → X−1) → (Y• → Y−1) is a map of degree k for gradings on X−1 and Y−1, the spectral
sequence (4) splits as a sum, with the nth summand of the E1-page being E1

p,q,n � Hq((Yp,n+k ;G), (Xp,n ; F )).
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1.4. C-spaces and their recti�cation. We set up an ad-hoc theory of spaces parametrised by a topolog-
ically enriched category, serving us as a convenient language in the body of this work.

We call an enriched space-valued functor X• on a topologically enriched category C a C-space, and
write XC for its value at an objectC . An augmentation f• : X• → X−1 of a C-space X• over a space X−1 is a
li� of X• to a functor with values in the overcategory Top/X−1, and an augmented C-space is a C-space
together with an augmentation. We denote the value of an augmented C-space f• : X• → X−1 at an
object C by fC : XC → X−1. A morphism of augmented C-spaces is a natural transformation of functors
C → Top/X−1, and it is called a weak equivalence if it is a weak equivalence objectwise. A morphism
between a C-space X• augmented over X−1 and a C-space Y• over Y−1 consists of a map h : X−1 → Y−1
and a morphism h• : h∗(X•) → Y• of C-spaces augmented over Y−1, where h∗(X•) denotes X• considered
augmented over Y−1 via h. Such a morphism is a weak equivalence if h is a weak equivalence of spaces and
h• is one of C-spaces over Y−1. An augmented C-space f• is �brant if all maps fC are Serre �brations.

Example 1.1. For C being the opposite of the semi-simplicial category, the notion of a C-space agrees with
the one of a semi-simplicial spaces (see Section 1.3). �is example motivated our choice of notation.

De�nition 1.2. �e �brant replacement of an augmented C-space X• → X−1 is the augmented C-space
X �b• → X−1 obtained by applying the path-space construction objectwise,

X �b
C = {(x , µ) ∈ XC × PathX−1 | ω(µ) = fC (x)},

considered as a space over X−1 by evaluating paths at zero. It is �brant and admits a canonical weak
equivalence X• → X �b• of augmented C-spaces, given by mapping x ∈ XC to (x , constfC (x )) ∈ X �b

C .

�e �bre Xx,• of an augmented C-space f• : X• → X−1 at x ∈ X−1 is the C-space that assigns to an
object C the �bre Xx,C = f −1

C (x). Its homotopy �bre ho�bx (X•) at x is the �bre of X �b• → X−1 at x . If
X• → X−1 is �brant, then the weak equivalenceX• → X �b• induces a weak equivalenceXx,• → ho�bx (X•).
De�nition 1.3. Let C be a small topologically enriched category.

(i) �e bar construction B(Y•,C,X•) of a pair of C-spaces (X•,Y•), whereX• is co- andY• is contravariant,
is the realisation of the semi-simplicial space B�(Y•,C,X•) with p-simplices∐

C0, ...,Cp ∈ob C XC0 × C(C0,C1) × . . . × C(Cp−1,Cp ) × YCp .
�e ith face map is induced by composing morphisms in C(Ci−1,Ci ) and C(Ci ,Ci+1) for 1 ≤ i ≤ p−1,
and by the evaluations XC0 × C(C0,C1) → XC1 and C(Cp−1,Cp ) × YCp → XCp−1 for i = p − 1 and
i = p, respectively. An augmentation X• → X−1 naturally induces a map B(Y•,C,X•) → X−1.

(ii) �e homotopy colimit

hocolimC X• −→ X−1

of an augmented C-space X• → X−1 is the bar construction B(∗,C,X•) → X−1.

A C-space is k-connected for a number k ≥ 0 if its homotopy colimit is so. If the base X−1 of an
augmented C-space X• → X−1 is graded, then its values XC and its homotopy colimit inherit gradings
by pulling back дX−1 from X−1. It is graded φ(дX−1 )-connected in degrees ≥ m for φ : N̄ → Q ∪ {∞} if
hocolimC X• → X−1 is. A functor between topologically enriched categories is a weak equivalence if it
induces weak equivalences on morphism spaces and a bijection on the set of objects. Note that this notion
of weak equivalence is slightly stronger than the usual one. With this choice, it is immediate to see that the
map on bar constructions induced by a weak equivalence (X•,C,Y•) → (X ′•,C′,Y ′•) of triples, de�ned in
the appropriate sense, is a weak equivalence, since levelwise weak equivalences of semi-simplicial spaces
realise to weak equivalences (see e.g. [ER17, �m 2.2]). In particular, taking homotopy colimits turns weak
equivalences of C-spaces augmented over X−1 into weak equivalences of spaces over X−1.

Lemma 1.4. Let X• → X−1 be an augmented C-space and x ∈ X−1. �e canonical map

hocolimC(ho�bx (X• → X−1)) → ho�bx (hocolimC X• → X−1)
is a weak equivalence.
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Proof. We show that the map in consideration is even a homeomorphism, providedX−1 is a weak Hausdor�
space. �is implies the claim, since the two functors in comparison both preserve weak equivalences of
augmented C-spaces and every augmented C-space X• → X−1 can be replaced, up to weak equivalence,
by one over a weak Hausdor� space, for instance by pulling back the �brant replacement of X• → X−1
along a CW-approximation ofX−1. We have hocolimC(ho�bx (X• → X−1)) = |B�(∗,C, ho�bx (X• → X−1))|
and ho�bx (hocolimC X• → X−1) = ho�bx (|B�(∗,C,X• → X−1)|), so the statement follows from proving
that both the bar construction B�(∗,C,−) as well as the geometric realisation | − | commute with taking
homotopy �bres ho�bx (−). Unwrapping the de�nitions of B�(∗,C,−) and | − |, these two claims are
implied by the fact that the functor ho�bx (−) : Top/X−1 → Top commutes with colimits and also with
taking products −×Z with a �xed space Z . �e la�er is clear, and the former follows from the fact that the
functor ω∗ : Top/X−1 → Top/(Pathx X−1) given by pulling back the path �bration ω : Pathx X−1 → X−1 is
a le� adjoint [MS06, Prop. 2.1.3], so preserves colimits, together with the observation that the forgetful
functor from Top/X−1 to Top is colimit-preserving as well. �

For an augmented C-space X• → X−1, the composition in C and the evaluation maps X ′C × C(C ′,C) →
XC combine to augmentations B•(C(�,C),C,X�) → XC for eachC in C, which realise to weak equivalences
as they admit extra degeneracies by inserting the identity (see e.g. [ER17, �m 2.2]). �ese equivalences
are natural in C and compatible with the augmentation to X−1, so assemble to a weak equivalence

B
(C(�, •),C,X�) → X•

of augmented C-spaces—the bar resolution of X• → X−1.

Lemma 1.5. Let p : C → D be a weak equivalence of topologically enriched categories. �ere is a functor

p∗ : (Top/X−1)C −→ (Top/X−1)D

that �ts into a zig-zag of natural transformations between endofunctors on (Top/X−1)C ,

p∗p∗ ←− · −→ id(Top/X−1)C ,

where p∗ : (Top/X−1)D → (Top/X−1)C is given by precomposition with p. When evaluated at an augmented
C-space, the zig-zag consists of weak equivalences of augmented C-spaces.

Proof. �e value p∗X• for X• ∈ (Top/X−1)C is the homotopy le� Kan-extension of X• along p, mapping an
object D in D to B(D(p(�),D),C,X�). Its pullback p∗p∗X• �ts into a zig-zag of augmented C-spaces

p∗p∗X• = B
(D(p(�),p(•)),C,X�) ←− B

(C(�, •),C,X�) −→ X•,

in which the le� arrow is induced by p and the right one is the bar resolution of X•, so both are weak
equivalences and compatible with the augmentation. As the zig-zag is natural in X•, the claim follows. �

Lemma 1.6. �e homotopy colimit of an augmented semi-simplicial space X• → X−1 and its geometric
realisation are weakly equivalent as spaces over X−1.

Proof. �e classifying space of the overcategory ∆inj/[p] is isomorphic to the pth topological standard
simplex ∆p , since the nerve of ∆inj/[p] is the barycentric subdivision of the pth simplicial standard
simplex. �is extends to an isomorphism ∆• � B(∆inj/•) of co-semi-simplicial spaces from which [Rie14,
�m 6.6.1] implies that, given an augmented semi-simplicial space X• → X−1, the thin realisation (see
[ER17, Sect. 1.2]) of B•(∗,∆op

inj,X•), considered as a simplicial space, is homeomorphic over X−1 to the
realisation of X•. But for augmented C-spaces X• → X−1 on a discrete category C, the fat and the thin
geometric realisation of B•(∗,C,X ) are weakly equivalent over X−1, because B•(∗,C,X ) is good in the
sense of [Seg74, Prop. A.1]. �

1.5. Semi-simplicial spaces up to higher coherent homotopy. In the course of this work, a number
of constructions that are key to the theory require choices of contractible ambiguity. To deal with such,
we are led to consider objects that are as good as semi-simplicial spaces, but only in a homotopical sense.
To model those, let us de�ne an (augmented) semi-simplicial space up to higher coherent homotopy as an
(augmented) ∆̃inj-space X , de�ned on any topologically enriched category ∆̃inj that comes with a weak
equivalence ∆̃inj → ∆inj. Roughly speaking, these are categories with the same objects as ∆inj and a
(weakly) contractible space of choices for all morphisms in ∆inj. In particular, a ∆̃inj-space X• includes
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spaces Xp for p ≥ 0, together with face maps d̃i : Xp → Xp−1, unique up to homotopy. By precomposing
with ∆̃inj → ∆inj, every semi-simplicial space is a ∆̃inj-space and in the light of Lemma 1.5, every ∆̃inj-space
is equivalent to one arising in this way. By virtue of this recti�cation result and Lemma 1.6, all homotopy
invariant constructions for semi-simplicial spaces carry over to ∆̃inj-spaces, so in particular, we have
analogues of the spectral sequences (3) and (4), the di�erentials being the alternating sum

∑p
i=0(−1)i (d̃i )∗ of

morphisms induced by (weakly) contractible choices d̃i of face maps. A ∆̃inj-space X• induces a simplicial
set π0(X•) by taking path components, together with a morphism X• → π0(X•) of ∆̃inj-spaces, which is a
weak equivalence if and only if X• is homotopy discrete, i.e. takes values in homotopy discrete spaces. To
emphasise similarities and by abuse of notation justi�ed by Lemma 1.6, we call the homotopy colimit of
an augmented ∆̃inj-space X• → X−1 its realisation, and denote it by |X• | → X−1.

2. The canonical resolution of an E1-module over an E2-algebra

2.1. E1-modules over En-algebras and their fundamental groupoids. We recall the notion of an
E1-module over an En-algebra and explain its relation to modules over monoidal categories.

By an operad, we mean a symmetric coloured operad in spaces (see e.g. [BM07, Sect. 1.1]), and an
algebra over such is understood in the usual sense (see e.g. [BM07, Sect. 1.1]). For a subspace X ⊆ Rn , we
let Dk (X ) be the space of tuples of k embeddings of the closed disc Dn into X that have disjoint interiors
and are compositions of scalings and translations. Recall the one-coloured operad D•(Dn) of li�le n-discs
[BV73; May72] with k-operations Dk (Dn) and operadic composition induced by composing embeddings.

De�nition 2.1. Let SCn be the coloured operad with colours m and a whose space of operations
SCn(mk , al ;m) is empty for k , 1 and for k = 1 the space of pairs (s,ϕ) ∈ [0,∞) × Dl (Rn) such that
ϕ ∈ Dl ((0, s) × (−1, 1)n−1), allowing (0, ∅) ∈ [0,∞) × D0(Rn) as a valid element of SCn(mk , a0;m). �e
space SCn(mk , al , a) is empty for k , 0 and equals Dl (Dn) otherwise. �e composition restricted to the
a-colour is given by the composition in D•(Dn) and the composition

γ : SCn(m, al ;m) ×
(
SCn(m, ak ;m) × SCn(ai1 ; a) × . . . × SCn(ail ; a)

)
−→ SCn(m, ak+i ;m)

for i =
∑

j i j by mapping an element ((s,ϕ), ((s ′,ψ ), (φ1, . . . ,φl ))) in the codomain to (s ′ + s, (ψ , (ϕ1 ◦
φ1) + s ′, . . . , (ϕl ◦ φl ) + s ′)) ∈ SCn(m, ak+i ;m), where (− + s ′) denotes the translation by s ′ in the �rst
coordinate. In words, it is de�ned by adding the parameters, pu�ing the discs of SCn(m,ak ;m) to the le�
of the ones of SCn(m, al ;m), and composing the embeddings of discs of the SCn(ai j ; a)-factors with the
ones of SCn(m, al ;m) as in the operad of li�le n-discs. See Figure 1 for an illustration.

1

(0, s)
e ∈ SC 2(m, a;m)

1

(0, s ′)
d ∈ SC 2(m, a;m)

1 2

f ∈ SC 2(a2; a)

1

(0, s ′)

2 3

(s ′, s ′ + s)
γ (e;d, f ) ∈ SC 2(m, a3;m)

Figure 1. �e operadic composition of SCn

�e canonical embedding D•(Dn) → D•(Dn+1) of li�le discs operads (see e.g. [Fre17, Sect. 4.1.5]),
extends to an embedding of two-coloured operads SCn → SCn+1 by taking products with (−1, 1) from the
right. Consequently, any algebra over SCn+1 is also one over SCn .

We call two coloured operads weakly equivalent if there is a zig-zag between them that consists of
morphisms of operads that are weak homotopy equivalences on all spaces of operations.

Remark 2.2. �e operad SCn is weakly equivalent to a suboperad of the n-dimensional version of the
Swiss-Cheese operad of [Vor99], motivating the notation.
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De�nition 2.3. An E1,n-operad is an operad O that is weakly equivalent to SCn . A graded E1-module
M over an En-algebra A is an algebra (M,A) over an E1,n-operad O, considered as an operad in graded
spaces, whereM corresponds to the m- and A to the a-colour. �at is, it consists of two graded spaces
(M,дM) and (A,дA), together with multiplication maps for l ≥ 0 of the form

θ : O(m, al ;m) ×M × Al −→M and θ : O(al ; a) × Al −→ A,
which are graded, where O(m, al ;m) and O(al ; a) are equipped with the grading that is constant at 0,
i.e. the degree of a multiplication of points is the sum of their degrees. �ese structure maps are required to
satisfy the usual associativity, unitality, and equivariance axioms for an algebra over an coloured operad.

�e fundamental groupoid of an algebra over the li�le 2-discs operad has a braided monoidal groupoid
structure; the multiplication is induced by the choice of a 2-operation [Fre17, Ch. 5–6]. Similarly, for
a graded algebra (M,A) over an E1,2-operad O and operations c ∈ O(m, a;m) and d ∈ O(a2; a), the
fundamental groupoid Π(A) is a graded braided monoidal groupoid with multiplication induced by d ,
and Π(M) becomes a graded right-module over Π(A) with the action induced by c . In other words, the
functor ⊕ : Π(M) × Π(A) → Π(M) induced by θ (c;−,−) is associative, unital up to coherent natural
isomorphisms, and compatible with the grading on Π(M) and Π(A) induced by the grading onM andA.

Remark 2.4. Since the path components of a space coincide with the path components of its fundamental
groupoid in the categorical sense, a grading on an E1-module over an En-algebra is equivalent to a grading
of the induced right-module (Π(M), ⊕) over the braided monoidal groupoid (Π(A), ⊕,b, 0).
2.2. �e canonical resolution. LetM be a graded E1-module over an E2-algebra A with underlying
E1,2-operad O and structure maps θ . We call a point X ∈ A of degree 1 a stabilising object forM, and
de�ne the stabilisation map with respect to a stabilising point X ,

s : M −→M,
as the multiplication θ (c;−,X ) by X , using an operation c ∈ O(m, a,m), which we �x once and for all. As
X has degree 1, so does the stabilisation map, which hence restricts to maps s : Mn →Mn+1 between the
subspaces of consecutive degrees for all n ≥ 0. It will be convenient to denote the stabilisation map also
by (− ⊕ X ) : M →M and we use the two notations interchangeably.

Remark 2.5. We chose to restrict to stabilising objects of degree 1 to simplify the exposition. However, by
keeping track of the gradings, the developed theory generalises to stabilising objects of arbitrary degree.

In the following, we assign to a graded E1-moduleM over an E2-algebra with stabilising object X an
augmented semi-simplicial space R•(M) → M up to higher coherent homotopy, called the canonical
resolution. It will be de�ned as an augmented ∆̃inj-space for a topologically enriched category ∆̃inj weakly
equivalent to the semi-simplicial category, constructed from the underlying E1,2-operad O. We begin by
recalling the braided analogue of the category of �nite sets and injections, as introduced in [RW17].

De�nition 2.6. De�ne the category UB with objects [0], [1], . . . as in ∆inj, no morphisms from [q] to [p]
for q > p andUB([q], [p]) for q ≤ p given by the cosets Bp+1/Bp−q , where Bi denotes the braid group on i
strands and Bp−q acts on Bp+1 from the right as the �rst (p − q) strands. �e composition is de�ned as

UB([l], [q]) ×UB([q], [p]) −→ UB([l], [p])
[b], [b ′] 7−→ [b ′(1p−q ⊕ b)],

where 1p−q ⊕ b is the braid obtained by inserting (p − q) trivial strands to the le� of b (see Figure 2).

f ∈ UB([0], [2]) д ∈ UB([2], [4]) (д ◦ f ) ∈ UB([0], [4])

Figure 2. �e categorical composition of UB
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�e category UB admits a canonical functor to the category FI of �nite sets and injections by sending
a class in Bp+1/Bp−q to the injection obtained by following the last (q + 1) strands of a representing braid.
VisualisingUB as indicated by Figure 2, two braids represent the same morphism if and only if they di�er
by a braid of the ◦-ends. Following the braids of the upper •-ends to the lower ends gives the induced
injections. �is functor admits a section on the subcategory ∆inj ⊆ FI , as shown by the following lemma.

Lemma 2.7. �ere is a unique functor ∆inj → UB that maps the face map di ∈ ∆inj([p − 1], [p]) to

[b−1
X ⊕i ,X ⊕ X ⊕p−i ] ∈ UB([p − 1], [p]),

where
∐

n≥0 Bn is considered as the free braided monoidal category on one object X . �e composition of this
functor with the functor UB → FI described above agrees with the inclusion ∆inj ⊆ FI .

Proof. To prove the �rst part, it is su�cient to check the face relations
[b−1
X ⊕j ,X ⊕ X ⊕p+1−j ] ◦ [b−1

X ⊕i ,X ⊕ X ⊕p−i ] = [b−1
X ⊕i ,X ⊕ X ⊕p+1−i ] ◦ [b−1

X ⊕j−1,X ⊕ X ⊕p−j+1]
for i < j in UB([p − 1,p + 1]). �e le� hand side agrees with the class of the braid

(b−1
X ⊕j ,X ⊕ X ⊕p+1−j )(X ⊕ b−1

X ⊕i ,X ⊕ X ⊕p−i ),
which, by applying braid relations, can be seen to agree with the braid

(b−1
X ⊕i ,X ⊕ X ⊕p+1−i )(X ⊕ b−1

X ⊕j−1,X ⊕ X ⊕p−j+1)(b−1
X ,X ⊕ X ⊕p ),

whose class in UB([p − 1,p + 1]) = Bp+2/B2 coincides with the right hand side of the claimed equation.
�e proof is concluded by observing that the two functors ∆inj → FI in question agree on the face maps
by construction, and thus on all of ∆inj. �

Remark 2.8. In the language of [RW17], the category UB is the free pre-braided monoidal category on
one object [RW17, Sect. 1.2]. Unwinding the de�nitions, their semi-simplicial setWn(A,X ) associated to
objects A and X of a pre-braided monoidal category D (see [RW17, Sect. 2]) agrees with the composition

∆
op
inj −→ UBop −→ Dop −→ Sets,

in which the �rst arrow is the described section, the second is induced byX , and the third isD(−,A⊕X ⊕n).
In the following, we introduce topological analogues ofUB and ∆inj for any E1,2-operad O. To that end,

we denote by O(k) the space obtained from O(m, ak ;m) by quotienting out the action of the symmetric
group Σk on the a-inputs. To simplify the construction, we assume that the quotient maps O(m, ak ;m) →
O(k) are covering spaces, although this is not strictly necessary (see Remark 2.22). As the operadic
composition γ on O is equivariant, it induces composition maps γ (−;−, 1ka ) : O(k) × O(l) → O(k + l). �e
�xed operation c ∈ O(1), used to de�ne the stabilisation map, yields iterated operations ck ∈ O(k) by
se�ing c0 as the unit 1m and ck+1 inductively as γ (c; ck , 1a). As a last preparotary step before de�ning the
category UB, we recall that we denote the endpoint of a Moore path µ by ω(µ).
De�nition 2.9. De�ne a topologically enriched category UO = U (O, c) with objects [0], [1], . . . and

UO([q], [p]) = {(d, µ) ∈ O(p − q) × Pathcp+1 O(p + 1) | ω(µ) = γ (cq+1;d, 1q+1
a )},

where Pathcp+1 O(p + 1) is the space of Moore paths in O(p + 1) starting at cp+1. �e composition is

UO([l], [q]) ×UO([q], [p]) −→ UO([l], [p])((e, ζ ), (d, µ)) 7−→ (
γ (e;d, 1q−la ), µ · γ (ζ ;d, 1q+1

a )
)
,

as visualised by Figure 3. Since we are using Moore paths, associativity and unitality follow from the
respective properties of the operadic composition.

�e constructionU (−) is functorial in (O, c) and preserves weak equivalences, sinceUO([q], [p]) agrees
with the homotopy �bre at cp+1 of the map γ (cq+1;−, 1q+1

a ) : O(p − q) → O(p + 1).
Remark 2.10. Using �illen’s bracket-construction 〈−,−〉 for modules over monoidal categories (see
[Gra76, p. 219]), the category UB is given by 〈B,B〉, where B = ∐

n≥0 Bn is the free braided monoidal
category acting on itself. Similarly, UO can be obtained via an analogue of �illen’s construction for
monoidal categories internal to spaces, applied to the path-category of the monoid

∐
n≥0 O(n).
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(e, ζ ) ∈ UO([0], [2]) (d, µ) ∈ UO([2], [4]) (d, µ)(e, ζ ) ∈ UO([0], [4])

Figure 3. �e categorical composition of UO

Lemma 2.11. �e category UO is homotopy discrete and satis�es π0(UO) � UB.

Before turning to the proof of Lemma 2.11, we suggest the reader to compare Figure 2 with Figure 3.

Proof. As U (−) preserves weak equivalences, it su�ces to prove the claim for O = SC 2. Mapping embed-
dings of discs to their centre yields a homotopy equivalence from the space of operations SC 2(n) to the
unordered con�guration space Cn(R2) of the plane, which is an Eilenberg–MacLane space K(Bn , 1) for the
braid group Bn . On fundamental groups, the map γ (cq+1;−, 1q+1

a ) : O(p − q) → O(p + 1) is injective, since
it is given by including Bp−q in Bp+1 as the �rst (p −q) strands. From this, one concludes that its homotopy
�bre ho�bcp+1 (γ (cq+1;−, 1q+1

a )) = UO([q], [p]) is homotopy discrete with path components Bp+1/Bp−q and
that, via this equivalence, the composition coincides with that of UB proving the claim. �

Equipped with Lemma 2.11, we �x an isomorphism π0(UO) � UB once and for all, which we use, for
instance, to identify π1(O(p + 1), cp+1) � π0(UO([p], [p])) with the braid group Bp+1.

De�nition 2.12. �e thickening of the semisimplicial category associated to an E1,2-operad O is the
subcategory ∆̃inj ⊆ UO obtained by restricting UO to the path components hit by the section ∆inj →
UB � π0(UO) of Lemma 2.7. It comes with a weak equivalence to ∆inj, induced by the functor UO → FI .

Before proceeding to the central de�nitions of this section, we remind the reader of the theory of
augmented C-spaces for a topologically enriched category C, set up in Section 1.4.

De�nition 2.13. LetM be a graded E1-module over an E2-algebra with structure maps θ and stabilising
object X . De�ne the contravariantUO-space B•(M) by sending [p] to the path-space construction of sp+1,

Bp (M) = {(A, ζ ) ∈ M × PathM | ω(ζ ) = sp+1(A)},
and by

UO([q], [p]) × Bp (M) −→ Bq(M)((d, µ), (A, ζ )) 7−→ (
θ (d ;A,Xp−q), ζ · θ (µ;A,Xp+1)) .

Functoriality follows from the associativity of the module-structure θ and the composition of Moore paths.
Evaluating paths at zero de�nes an augmentation B•(M) → M, which is a levelwise �bration.

De�nition 2.14. LetM be a graded E1-module over an E2-algebra with stabilising object X .
(i) �e canonical resolution ofM is the �brant augmented ∆̃inj-space

R•(M) −→M
obtained by restricting the augmentedUO-space B•(M) to the semi-simplicial thickening ∆̃inj ⊆ UO.

(ii) �e space of destabilisations of a point A ∈ M is the ∆̃inj-space W•(A) de�ned as the �bre of the
canonical resolution R•(M) → M at A.

Unwrapping the de�nition, the canonical resolution R•(M) → M is an augmented semi-simplicial
space up to higher coherent homotopy with p-simplices

Rp (M) = {(A, ζ ) ∈ M × PathM | ω(ζ ) = sp+1(A)},
augmented over M by evaluating paths at zero. �ere is a contractible space of ith face maps, but
the following lemma provides a particularly convenient one a�er choosing a loop µi ∈ Ωcp+1O(p + 1)
corresponding to the braid b−1

X ⊕i ,X ⊕ X ⊕p−i via the �xed isomorphism Bp+1 � π1(O(p + 1), cp+1).
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Lemma 2.15. �e morphism (c, µi ) ∈ UO([p − 1], [p]) lies in the path component of the image of the ith face
map di ∈ ∆inj([p − 1], [p]) inUB([p − 1], [p]) � π0UO([p − 1], [p]) via the section of Lemma 2.7, so the map

d̃i :
Rp (M) −→ Rp−1(M)
(A, ζ ) 7−→ (

s(A), ζ · θ (µi ;A,Xp+1))
is an ith face map of the canonical resolution R•(M) → M.

Proof. �e choice of µi ensures that, via the isomorphism π0(UO([p − 1], [p])) � UB([p − 1], [p]), the
element (c, µi ) is in the component of the class [b−1

X ⊕i ,X ⊕ X ⊕p−i ] in UB([p − 1], [p]). �is is exactly the
image of di ∈ ∆inj([p − 1], [p]) in UB([p − 1], [p]), as claimed. �

Remark 2.16. We borrowed the term space of destabilisations from [RW17], where it stands for certain
semi-simplicial setsWn(A,X ) associated to a braided monoidal groupoid. In Section 7.3, it is explained
that these semi-simplicial sets are special cases of the spaces of destabilisations in our sense.

Remark 2.17. As R•(M) → M is �brant, its �breW•(A) is equivalent to its homotopy �bre ho�bA(R•(M)),
so by virtue of Lemma 1.4, the homotopy �bre at A of the realisation |R•(M)| → M is equivalent to
|W•(A)|. In particular, the canonical resolution ofM is graded φ(дM)-connected in degree ≥ m for a
function φ : N̄ → Q ∪ {∞} satisfying ϕ(∞) = ∞ if and only if the spaces of destabilisations W•(A) are
(bφ(дM(A))c − 1)-connected for all points A ∈ M with �nite degree дM(A) ≥ m. As points in the same
component have equivalent homotopy �bres, it is su�cient to check one point in each component.

Example 2.18. Recall the free E2-algebra on a point Oa =∐
n≥0 O(an ; a)/Σn , graded in the evident way, with

the free E1-module on a point Om =∐
n≥0 O(m; an ;m)/Σn as a graded E1-module over it. Choosing the unit

1a ∈ O(a; a) as the stabilising object, the space of destabilisationsW•(cp+1) is the ∆̃inj-space obtained by
restricting theUO-spaceUO(•, [p]) to ∆̃inj. As the categoryUO is homotopy discrete with π0(UO) � UB
by Lemma 2.11, the ∆̃inj-spaceW•(cp+1) is equivalent to the semi-simplicial set given as the composition
of the section ∆

op
inj → UBop of Lemma 2.7 with UB(•, [p]). Using [HV17, Prop. 3.2], the realisation of this

semi-simplicial set can be seen to be contractible, but we do not go into details, since the consequences of
Theorem A and C regarding the twisted homological stability of K(Bn , 1) ' O(m; an ;m)/Σn correspond to
the case M = D2 and π = id of Theorem D, which is proved in Section 5.

Remark 2.19. �e choice of a stabilising object X ∈ A for a graded E1-moduleM over an E2-algebra A
induces a graded E1-module structure onM over Oa . �e two canonical resolutions ofM when considered
as an module over A or over Oa are identical. In fact, all our constructions and results solely depend on
the induced module structure ofM over Oa and are in that sense independent of A.

Remark 2.20. LetM be a graded E1-module over an E2-algebra with stabilising object X and considerM
as a graded E1-module over Oa (see Remark 2.19). For a union of path componentsM ′ ⊆ M that is closed
under the multiplication by X , we de�ne a new grading onM as an E1-module over Oa by modifying the
original grading onM ′ by assigning the complement ofM ′ degree ∞ and leaving the grading onM ′
unchanged. We callM with this new grading the localisation atM ′. An example for such a subspace
M ′ is given by the objects stably isomorphic to an object A ∈ M by which we mean the union of the path
components of objects B for which B ⊕ X ⊕n is in the component of A ⊕ X ⊕m for some n,m ≥ 0.

Example 2.21. LetM be a graded E1-module over an E2-algebra A and let G be a group acting onM,
preserving the grading. If the actions of A and G onM commute, then the Borel construction EG ×G M
inherits a graded E1-module structure. �e choice of a point in EG induces a morphism

R•(M) R•(EG ×G M)

M EG ×G M
of augmented ∆̃inj-spaces, which induces weak equivalences on homotopy �bres. An application of
Lemma 1.4 implies that the respective canonical resolutions have the same connectivity.

Remark 2.22. Some constructions of this section work in greater generality. �e category UO and the
augmented UO-space B•(M) can be de�ned for any coloured operad. UO then still admits a functor to
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FI , but might not be homotopy discrete nor admit a section on ∆inj ⊆ FI . �e point-set assumption on the
action of Σk on O(m, ak ;m) can be avoided by constructing UO using O(m, ak ;m) instead of O(k), which
involves taking care of permutations corresponding to preimages of the quotient map O(m, ak ;m) → O(k).
2.3. �e stable genus. We extend the notion of the stable genus of a manifold, as introduced in [GR18],
to our context, providing us with a general way of grading modules over braided monoidal categories and,
by Remark 2.4, also of grading E1-modules over E2-algebras.

Let (M, ⊕) be a right-module over a braided monoidal category (A, ⊕,b, 0). Recall the free braided
monoidal category on one object B = ∐

n≥0 Bn , consisting of the the braid groups Bn . A choice of an
object X in A induces a functor B → A and hence a right-module structure onM over B. With respect
to this module structure, a grading ofM that is compatible with the canonical grading on B is equivalent
to a grading дM onM as a category such that дM(A ⊕ X ) = дM(A) + 1 holds for all objetcs A inM.

De�nition 2.23. Let X be an object of A and A an object ofM.
(i) �e X -genus of A is de�ned as

дX (A) = sup{k ≥ 0 | there exists an object B inM with B ⊕ X ⊕k � A} ∈ N̄.
(ii) �e stable X -genus of A is de�ned as

д̄X (A) = sup{дX (A ⊕ X ⊕k ) − k | k ≥ 0} ∈ N̄.
As д̄X (A ⊕ X ) = д̄X (A) + 1 holds by de�nition, the stable X -genus provides a grading ofM when

considered as a module over B via X . �is stands in contrast with the (unstable) X -genus, which does
in general not de�ne a grading, because the inequality дX (A) + 1 ≤ дX (A ⊕ X ) might be strict. For an
E1-moduleM over an E2-algebra A, the choice of a point X ∈ A induces an E1-module structure onM
over the free E2-algebra on a point Oa (see Remark 2.19). A�er taking fundamental groupoids, this results
in the module structure of Π(M) over B discussed above, so the stable X -genus provides a grading forM
as an E1-module over Oa .
Remark 2.24. If the connectivity assumption of Theorem A is satis�ed for an E1-moduleM, graded with
the stable X -genus, then the cancellation result Corollary B implies дX (A ⊕ X ) = дX (A) + 1 for objects A
of positive stable genus, which, in turn, implies that for such A, the genus and the stable genus coincide.

3. Stability with constant and abelian coefficients

LetM be a graded E1-module over an E2-algebra with stabilising object X and structure maps θ . We
prove Theorem A via a spectral sequence obtained from the canonical resolution R•(M) → M. All spaces
Rp (M) and |R•(M)| are considered graded by pulling back the grading fromM along the augmentation.

3.1. �e spectral sequence. Given a local system L onM, the canonical resolution R•(M) → M (see
Section 2.2) gives rise to a tri-graded spectral sequence

(5) E1
p,q,n �

{
Hq(Rp (M)n ;L) if p ≥ 0
Hq(Mn ;L) if p = −1

=⇒ Hp+q+1(Mn , |R•(M)|n ;L),

with di�erential d1 : E1
p,q,n → E1

p−1,q,n , induced by the augmentation for p = 0 and the alternating sum∑p
i=0(−1)i (d̃i ; id)∗ for p > 0, where d̃i is any choice of ith face map of R•(M) (see Sections 1.3 and 1.5). As

the di�erentials do not change the n-grading, it is a sum of spectral sequences, one for each n ∈ N̄. To
identify the E1-page in terms of the stabilisation s : M →M, recall from Section 2.1 that the fundamental
groupoid (Π(M), ⊕) is a graded module over the graded braided monoidal groupoid (Π(A), ⊕,b, 0).
Lemma 3.1. We have E1

p,q,n+1 � Hq(Mn−p ; (sp+1)∗L) and d1 : E1
p,q,n+1 → E1

p−1,q,n+1 identi�es with∑p
i=0(−1)i (s;ηi )∗ : Hq

(Mn−p ; (sp+1)∗L) → Hq
(Mn−p+1; (sp )∗L),

where ηi denotes the natural transformation

L(− ⊕ bX ⊕i ,X ⊕ X ⊕p−i ) : L(− ⊕ X ⊕p+1) −→ L(− ⊕ X ⊕p+1).
In particular, d1 corresponds for p = 0 to the stabilisation (s; id)∗ : Hq(Mn ; s∗L) → Hq(Mn+1;L). �us, if L
is constant, d1 identi�es with s∗ : Hq(Mn−p ;L) → Hq(Mn−p+1;L) for p even and vanishes for p odd.
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Proof. Using the choice of face maps d̃i : Rp (M)n+1 → Rp−1(M)n+1 of Lemma 2.15, we consider the square

(Mn−p ; (sp+1)∗L) (Rp (M)n+1;L)

(Mn−p+1; (sp )∗L) (Rp−1(M)n+1;L),
(s ;ηi )

(ιp ;id)

(d̃i ;id)
(ιp−1;id)

where ιq denotes the canonical equivalenceMn−q → Rq(M)n+1, mapping A to (A, constsq+1(A)). A point
A ∈ Mn−p is mapped by the two compositions in the square to (s(A),θ (µi ;A,Xp+1)) and (s(A), constsp+1(A)),
respectively, which are connected by a preferred homotopy following the path µi chosen in Lemma 2.15
to its endpoint. �e commutativity of the triangle ensuring that this homotopy extends to one of spaces
with local systems (see Section 1.2) is equivalent to L(θ (µi ;−,Xp+1))ηi = id. But, by the choice of µi , the
path θ (µi ;−,Xp+1) corresponds to the braid − ⊕ b−1

X ⊕i ,X ⊕ X ⊕p−i , so the required relation holds and the
square commutes up to homotopy. Taking vertical mapping cones and homology results in the claimed
identi�cation. If L is constant, the ηi coincide for all i , so the terms in the alternating sum cancel out. �

Lemma 3.2. If the local system L is abelian, then the following compositions are homotopic for all 0 ≤ i ≤ p

(M; (sp+2)∗L) (s ;id)−→ (M; (sp+1)∗L) (s ;ηi )−→ (M; (sp )∗L).
�e proof of Lemma 3.2 uses a self-homotopy of s2 : M → M which is crucial for various other

arguments. Using the notation of Section 2.2, it is given by

(6)
[0, 1] ×M → M

(t ,A) 7→ θ (µ(t);A,X 2),
where µ is a choice of loop of length 1, based at c2 ∈ O(2), such that [(1m, µ)] ∈ π0(UO([1], [1])) corresponds
to the class [b−1

X ,X ] ∈ UB([1], [1]) via the isomorphism π0(UO) � UB �xed in Section 2.2. Since µ is
unique up to homotopy, this describes the homotopy of s2 uniquely up to homotopy of homotopies.

Proof of Lemma 3.2. By the recollection of Section 1.2, the sel�omotopy (6) of s2 extends to a homotopy
of maps of spaces with local systems between the ith and (i + 1)st composition in question if the triangle

L(− ⊕ X ⊕p+2) L(− ⊕ X ⊕p+2)

L(− ⊕ X ⊕p+2)

L(−⊕X ⊕bX⊕i+1,X ⊕X ⊕p−i−1)

L(−⊕X ⊕bX⊕i ,X ⊕X ⊕p−i )
L(−⊕b−1

X ,X ⊕X ⊕p )

commutes. �e braid relations give (− ⊕X ⊕bX ⊕i ,X ⊕X ⊕p−i ) = (− ⊕b−1
X ,X ⊕X ⊕p+1)(− ⊕bX ⊕i+1,X ⊕X ⊕p−i ),

so the claim follows if we show that [bX ⊕i+1,X ⊕ X ] = [X ⊕ bX ⊕i+1,X ] holds in the abelianisation. But
the braid relation (bX ,X ⊕ X )(X ⊕ bX ,X )(bX ,X ⊕ X ) = (X ⊕ bX ,X )(bX ,X ⊕ X )(X ⊕ bX ,X ) abelianises to
[bX ,X ⊕ X ] = [X ⊕ bX ,X ] from which the claimed identity follows by induction on i . �

3.2. �e proof of Theorem A. We prove Theorem A by induction on n, using the spectral sequence
(5). As |R•(M)|n+1 →Mn+1 is assumed to be (n−1+k

k )-connected for a k ≥ 2 in the constant or a k ≥ 3
in the abelian coe�cients case, the summand of degree (n + 1) of the spectral sequence converges to
zero in the range p + q ≤ n−1

k . By Lemma 3.1, the di�erential d1 : E1
0,i,n+1 → E1

−1,i,n+1 identi�es with the
stabilisation map (s; id)∗ : Hi (Mn ; s∗L) → Hi (Mn+1;L). Since there are no di�erentials targeting Ek−1,0,n+1
for k ≥ 1, the stabilisation has to be surjective for i = 0 if E∞−1,0,n+1 vanishes, which is the case, since
we have −1 ≤ n−1

k for all n ≥ 0. In particular, this implies the case n = 0 for both constant and abelian
coe�cients, because the isomorphism claims for n = 0 are vacuous.

Constant coe�cients. Assume the claim for constant coe�cients holds in degrees smaller than n. By
Lemma 3.1, the di�erential d1 : E1

p,q,n+1 → E1
p−1,q,n+1 identi�es with s∗ : Hq(Mn−p ;L) → Hq(Mn−p+1;L)

for p even and is zero for p odd. From the induction assumption, we draw the conclusion that E2
p,q,n+1

vanishes for (p,q) if p is even with 0 < p ≤ n and q ≤ n−p−1
k , and for (p,q) if p is odd with 0 ≤ p < n

and q ≤ n−p−3+k
k . So in particular, E2

p,q,n+1 vanishes if both 0 < p < n and q ≤ n−p−1
k hold. As
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d1 : E1
1,i,n+1 → E1

0,i,n+1 is zero for all i , injectivity of s∗ : Hi (Mn ;L) → Hi (Mn+1;L) holds if E∞0,i,n+1 = 0
and E2

p,q,n+1 = 0 hold for p + q = i + 1 with q < i . �is is the case for i ≤ n−1
k , as claimed, which follows

from the established vanishing ranges of E∞ and E2. Similarly, the map in question is surjective in degree
i if E∞−1,i,n+1 = 0 and E2

p,q,n+1 = 0 hold for p + q = i with q < i , which is true for i ≤ n−1+k
k . �

Abelian coe�cients. Assume the statement holds for degrees smaller thann. �e di�erentiald1 : E1
p,q,n+1 →

E1
p−1,q,n+1 identi�es with

∑
i (−1)i (s,ηi )∗ : Hq(Mn−p ; (sp+1)∗L) → Hq(Mn−p+1; (sp )∗L). By Lemma 3.2, in

the range where (s, id)∗ : Hq(Mn−p−1; (sp+2)∗L) → Hq(Mn−p ; (sp+1)∗L) is surjective, d1 identi�es with the
stabilisation map (s, id)∗ : Hq(Mn−p ; (sp+1)∗L) → Hq(Mn−p+1; (sp )∗L) for p even and vanishes for p odd.
By induction, this happens for (p,q) with 0 ≤ p ≤ n − 1 and q ≤ n−p−1

k , so by using the induction again,
we conclude E2

p,q,n+1 = 0 for (p,q) if p is even satisfying 0 < p ≤ n − 1 and q ≤ n−p+1−k
k , and for (p,q)

with p odd satisfying 0 ≤ p < n − 1 and q ≤ n−p−2
k . �e rest of the argument proceeds as in the constant

case, adapting the ranges and using that d1 : E1
1,i,n+1 → E1

0,i,n+1 is zero for i ≤ n−1
k . �

Remark 3.3. If дM is a grading ofM, then so is дM +m for any �xed number m ≥ 0. Consequently, if the
canonical resolution ofM is graded (дM−m+kk )-connected for anm ≥ 2, then we can apply Theorem A and
C toM, graded by дM + (m − 2), which results in a shi� in the stability range. By adapting the ranges in
the previous proof appropriately, requiring more speci�c connectivity assumptions improve the stability
ranges in Theorem A as follows.

(i) If the canonical resolution is graded (дM−m+kk )-connected for an m ≥ 3, the surjectivity range in
Theorem A for constant coe�cients can be improved from i ≤ n−m+k

k to i ≤ n−m+k+1
k and the one

for abelian coe�cients from i ≤ n−m+2
k to i ≤ n−m+3

k .
(ii) If the canonical resolution is graded (дM − 1)-connected in degrees ≥ 1, then the isomorphism range

in Theorem A for constant coe�cients can be improved from i ≤ n−1
2 to i ≤ n

2 , similar to the proof
of [Ran13, �m 5.1] for symmetric groups.

4. Stability with twisted coefficients

�is section serves to introduce a notion of twisted coe�cient systems and to prove Theorem C. Many
ideas in this section are inspired by [RW17, Sect. 4], which is itself a generalisation of work by Dwyer, van
der Kallen, and Ivanov [Dwy80; Iva93; Kal80]. We use similar notation to [RW17] to emphasise analogies
and refer to Remarks 4.11 and 4.12 for a comparison of their notion of coe�cient systems to ours.

4.1. Coe�cient systems of �nite degree. We de�ne coe�cients system of �nite degree for graded
modules over graded braided monoidal categories, such as fundamental groupoids of graded E1-modules
over E2-algebras, as described in Section 2.1.

Let (M, ⊕) be a graded right-module over a braided monoidal category (A, ⊕,b, 0) in the sense of
Section 1.1. We �x a stabilising object X , i.e. an object ofA of degree 1, and recall the free braided monoidal
category B =∐

n≥0 Bn on one object, built from the braid groups Bn . �e choice of X induces a functor
B → A, so in particular homomorphisms Bn → AutA(X ⊕n) and a module-structure onM over B.

De�nition 4.1. A coe�cient system F forM is a functor

F : M −→ Ab

to the category of abelian groups, together with a natural transformation

σ F : F −→ F (− ⊕ X ),
called the structure map of F , such the image of the canonical morphism Bm → AutA(X ⊕m) acts trivially
on the image of (σ F )m : F → F (− ⊕ X ⊕m) for allm ≥ 0. A morphism between coe�cient systems F and G
forM is a natural transformation F → G that commutes with the structure maps σ F and σG .

Remark 4.2. �e category of coe�cient systems forM is abelian, so in particular has (co)kernels. More
concretely, it is a category of abelian group-valued functors on a category 〈M,B〉 (see Remark 4.12).
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De�nition 4.3. De�ne the suspension ΣF of a coe�cient system F forM as
ΣF = F (− ⊕ X ),

together with the structure map σ ΣF : ΣF → ΣF (− ⊕ X ), de�ned as the composition

ΣF = F (− ⊕ X ) σ F (−⊕X )−−−−−−−→ F (− ⊕ X ⊕2) F (−⊕bX ,X )−−−−−−−−−→ F (− ⊕ X ⊕2) = ΣF (− ⊕ X ).
�e structure map σ F of F induces a morphism F → ΣF , called the suspension map, whose (co)kernel is
the kernel ker(F ) respectively cokernel coker(F ) of F . We call F split if the suspension map is split injective
in the category of coe�cient systems.

Lemma 4.4. �e suspension ΣF and the suspension map F → ΣF are well-de�ned.

Proof. �e triviality condition for ΣF is implied by the one for F , since (σ ΣF )m agrees with F (− ⊕
bX ⊕m,X )σ F (− ⊕ X )m , which follows by induction on m, using the braid relation (X ⊕ bX ,X ⊕m−1 )(bX ,X ⊕
X ⊕m−1) = bX ⊕m,X . �e fact that the suspension map is a morphism of coe�cient system is a consequence
of the triviality condition on F , more speci�cally of F (− ⊕ bX ,X )(σ F )2 = (σ F )2. �

Remark 4.5. �e suspension map gives rise to a natural transformation id→ Σ of endofunctors on the
category of coe�cient systems forM.

For the remainder of the section, we �x a coe�cient system F for the moduleM.

De�nition 4.6. We denote by Fn for n ≥ 0 the restriction of F to the full subcategoryMn ⊆ M of objects
of degree n and de�ne the degree and split degree of F at an integer N inductively by saying that F has

(i) (split) degree ≤ −1 at N if Fn = 0 for n ≥ N ,
(ii) degree r at N for a r ≥ 0 if ker(F ) has degree −1 at N and coker(F ) has degree (r − 1) at (N − 1), and

(iii) split degree r at N for a r ≥ 0 if F is split and coker(F ) is of split degree (r − 1) at (N − 1).
Remark 4.7. Note that for all N ≤ 0, F is of (split) degree r at 0 if and only if it is of (split) degree r at
N , and that the property of being of (split) degree r at 0 is independent of the chosen grading. However,
being of degree r at N depends on the grading if N is positive. If дM is a grading forM, then so is дM + k
for any k ≥ 0 and by induction on r , one proves that for k ≥ 0, F is of (split) degree r at N with respect to
a grading дM if and only if it is of (split) degree r at (N − k) with respect to the grading дM + k

Lemma 4.8. �e iterated suspension ΣiF for i ≥ 0 is given by ΣiF = F (− ⊕ X ⊕i ) with structure map

ΣiF = F (− ⊕ X ⊕i ) σ F (−⊕X ⊕i )−−−−−−−−−→ F (− ⊕ X ⊕i ⊕ X )
F (−⊕bX⊕i ,X )−−−−−−−−−−→ F (− ⊕ X ⊕ X ⊕i ) = ΣiF (− ⊕ X ).

Proof. �is follows by induction on i , using the braid relation (bX ,X ⊕ X ⊕i )(X ⊕ bX ⊕i ,X ) = bX ⊕i ⊕X ,X . �

Lemma 4.9. Let F be a coe�cient system forM.
(i) For all i ≥ 0, Σi (ker(F )) and Σi (coker(F )) are isomorphic to ker(ΣiF ) and coker(ΣiF ), respectively.

(ii) If F is split, then ΣiF is split for all i ≥ 0.
(iii) If F is of (split) degree r at N , then ΣiF is of (split) degree r at (N − i) for i ≥ 0.

Proof. Using Lemma 4.8 and (X ⊕ b−1
X ⊕i ,X )(bX ⊕i+1,X ) = (bX ⊕i+1,X )(b−1

X ⊕i ,X ⊕ X ), the natural transformation

Σi+1F (−) = F (− ⊕ X ⊕i+1)
F (−⊕b−1

X⊕i ,X )−−−−−−−−−−→ F (− ⊕ X ⊕i+1) = Σi+1F (−)
can be seen to commute with the structure map of Σi+1F , so de�nes an automorphism Φ : Σi+1F → Σi+1F .
Lemma 4.8 also implies the relation Σi (σ F ) = Φσ Σi F and therefore Σi ((co) ker(σ F )) = (co) ker(Φσ Σi F ).
Hence, the coe�cient systems in comparison are (co)kernels of morphisms that di�er by an automorphism.
�is proves the �rst claim. Given a spli�ing s : ΣF → F for F , the composition Σi (s)Φ splits ΣiF , which
shows the second. Finally, the third follows from the �rst two by induction on r . �

Remark 4.10. IfM is a groupoid such that all subcategoriesMn are connected, then a coe�cient system
forM is equivalently given as a sequence of Aut(A ⊕ X ⊕n−д(A))-modules Fn for an element A of minimal
degree д(A), together with (− ⊕ X )-equivariant morphisms Fn → Fn+1 such that the image of Bm in
Aut(X ⊕m) acts via (A ⊕ X ⊕n−д(A) ⊕ −) trivially on the image of Fn in Fn+m for all n andm.
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Remark 4.11. A pre-braided monoidal category in the sense of [RW17] is a monoidal category (C, ⊕,b, 0)
whose unit 0 is initial and whose underlying groupoid C∼ is braided monoidal satisfying a certain condition
(see [RW17, Def. 1.5]). In their work, a coe�cient system for C at a pair of objects (A,X ) is an abelian group
valued functor FRW de�ned on the full subcategory CA,X ⊆ D generated byA⊕X ⊕n forn ≥ 0. Considering
C∼A,X as a module over the braided monoidal groupoid C∼0,X , such a functor FRW gives a coe�cient system
F in our sense by restricting FRW to C∼A,X and de�ning the structure map as σ F (−) B FRW(− ⊕ ιX ), where
ιX : 0→ X is the unique morphism. In [RW17], the transformation − ⊕ ιX : idC → − ⊕ X is denoted by
σX , so we have the suggestive identity FRW(σX ) = σ F . Assigning a coe�cient system for C at (A,X ) in
the sense of [RW17] to one for C∼A,X in our sense yields a functor between the respective categories of
coe�cient systems, which can be seen to preserve the suspension and degree in the sense of [RW17] and in
ours, at least up to isomorphism. See Section 7.3 for a general comparison between [RW17] and our work.

Remark 4.12. �e category of coe�cient systems forM is isomorphic to the category of abelian group-
valued functors on a category 〈M,B〉. To construct this category, recall �illen’s bracket construction
〈E,F 〉 of a monoidal category F that acts via ⊕ : E × F → E on a category E [Gra76, p.219]. It has the
same objects as E, and a morphism from C to C ′ is an equivalence class of pairs (D, f ) with D ∈ obF
and f ∈ E(C ⊕ D,C ′), where (D, f ) and (D ′, f ′) are equivalent if there is an isomorphism д ∈ F (D,D ′)
satisfying f ′ = f (C ⊕ д). Using this construction, we obtain the category 〈M,B〉 encoding coe�cient
systems by le�ing the free braided monoidal category on one object B act onM via the functor B → A
induced by X , followed by the action of A onM. �e multiplication by X onM induces an endofunctor

Σ : 〈M,B〉 −→ 〈M,B〉
by mapping a morphism [D, f ] : C → C ′ to [D, (f ⊕ X )(C ⊕ bX ,D )] : C ⊕ X → C ′ ⊕ X . �is functor
comes together with a natural transformation σ : id→ Σ given by [X , id], such that the suspension of a
coe�cient system F , seen as a functor on 〈M,B〉, is the composition (F ◦ Σ) and its suspension map is
F (σ ) : F → (F ◦ Σ). From this point of view and using the notation of the previous remark, the functor
from coe�cient systems in the sense of [RW17] to ones in ours, described in the previous remark, is given
by precomposition with a functor 〈C∼A,X ,B〉 → CA,X that is the identity on objects and maps a morphism
[X ⊕k , f ] in 〈C∼A,X ,B〉 from C to C ′ to f (C ⊕ ιX ⊕k ).
4.2. Twisted stability of E1-modules over E2-algebras. We �x a graded E1-module M over an E2-
algebraA with stabilising object X for the rest of the section. Recall from Section 2.1 that its fundamental
groupoid (Π(M), ⊕) is a graded right-module over the graded braided monoidal category (Π(A), ⊕,b, 0).
De�nition 4.13. A coe�cient system forM is a coe�cient system for Π(M) in the sense of De�nition 4.1.

�e structure map of a coe�cient system F forM enhance the stabilisation map s : M →M to a map
(s;σ F ) : (M; F ) −→ (M; F )

of spaces with local systems, which stabilises homologically by Theorem C if the canonical resolution is
su�ciently connected and F is of �nite degree. �is remainder of this section is devoted to the proof.

Remark 4.14. In the course of the proof of Theorem C, it will be convenient to have �xed a notion of a
homotopy commutative square of spaces with local systems, by which we mean a square

(X ; F ) (Y ;G)

(X ′; F ′) (Y ′;G ′),
together with a speci�ed homotopy between the two compositions, which might be nontrivial, even if the
diagram is strictly commutative. Taking singular chains results in a homotopy commutative square of
chain complexes (see Section 1.2), and taking vertical mapping cones of the square induces a morphism
(7) H∗

((X ′; F ′), (X ; F )) → H∗
((Y ′;G ′), (Y ;G)),

which depends on the homotopy. However, homotopies that are homotopic as homotopies give homotopic
morphisms on mapping cones, hence they induce the same morphism (7). Horizontal composition of such
squares, including the homotopies, induces the respective composition of (7). Even though (7) depends on
the homotopy, the long exact sequences of the mapping cones still �t into a commutative ladder.
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We denote by Rel∗(F ) = H∗((M; F ), (M; F )) the relative groups with respect to the stabilisation (s;σ F ),
equipped with the additional grading Rel∗(F ) =

⊕
n∈N̄ H∗((Mn+1; F ), (Mn ; F )). Although the square

(8)
(M; F ) (M; F )

(M; F ) (M; F ),

(s ;σ F )

(s ;σ F ) (s ;σ F )
(s ;σ F )

commutes strictly, we consider it as homotopy commutative via the homotopy (6) of Section 3.1, which
extends one of spaces with local systems (see Section 1.2), since the triviality condition on coe�cient
systems gives F (−⊕b−1

X ,X )(σ F )2 = (σ F )2. �is homotopy commutative square induces a relative stabilisation

(s;σ F )∼∗ : Rel∗(F ) −→ Rel∗(F )
of degree 1, where the superscript ∼ indicates the twist by the homotopy. �e homotopy commutative
square (8) admits a factorisation into a composition of homotopy commutative squares

(M; F ) (M; ΣF ) (M; F )

(M; F ) (M; ΣF ) (M; F )),

(id;σ F )

(s ;σ F ) (s ;σ ΣF )

(s ;id)

(s ;σ F )
(id;σ F ) (s ;id)

in which the square on the le� strictly commutes because of the triviality condition, and we equip it with
the trivial homotopy. �e square on the right is homotopy commutative using the same homotopy as for
(8). �is induces a factorisation of the relative stabilisation map as

(9) Rel∗(F )
(id;σ F )∗−→ Rel∗(ΣF )

(s ;id)∼∗−→ Rel∗(F ),
with the �rst map being of degree 0 and the second of degree 1.

Lemma 4.15. �e composition Rel∗(F )
(s ;σ F )∼∗−−−−−−→ Rel∗(F )

(s ;σ F )∼∗−−−−−−→ Rel∗(F ) is trivial.

Proof. �e mapping cones de�ning Rel∗(F ) induce a commutative diagram of long exact sequences

. . . H∗(M; F ) H∗(M; F ) Rel∗(F ) H∗−1(M; F ) . . .

. . . H∗(M; F ) H∗(M; F ) Rel∗(F ) H∗−1(M; F ) . . .

. . . H∗(M; F ) H∗(M; F ) Rel∗(F ) H∗−1(M; F ) . . .

h3

h4

h1

h2
h6

h8

h5

h7
h10 h9

in which h7h4 agrees with the composition in consideration. As h1 and h2 both equal (s;σ F )∗, we conclude
0 = h1h3 = h2h3 = h5h4, so the image of h4 is in the kernel of h5, which is the image of h6. Hence it is
enough to show h7h6 = 0. Since h8 = h10 for the same reason as h1 = h2, we obtain the claim from the
identity h7h6 = h9h8 = h9h10 = 0. �

4.3. �e relative spectral sequence. We prove �eorem C via a relative analogue of the spectral se-
quence (5) of Section 3.1, which we derive from a map of augmented ∆̃inj-spaces

R•(M) R•(M)

M Ms

covering the stabilisation map s . Indicated by the do�ed arrow, this morphism will only be de�ned up to
up to higher coherent homotopy, and we obtain it from replacing the canonical resolution R•(M) with an
equivalent bar construction B(UB(•, �),UO,B�(M)) which admits a strict morphism of the desired form.

To this end, recall from Section 2.2 the homotopy discrete category UO, the isomorphism π0(UO) �
UB, and the augmented UO-space B•(M) whose restriction to the subcategory ∆̃inj ⊆ UO is R•(M),
where ∆̃inj is the union of components hit by the section ∆inj → UB. De�ne the (∆̃op

inj × UO)-space
UO(•, �) and the (∆op

inj ×UB)-spaceUB(•, �) by restricting the hom-functors ofUO andUB appropriately.
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Taking components gives a weak equivalence ∆̃
op
inj ×UO → ∆

op
inj ×UB of enriched categories and one

UO(•, �) → UB(•, �) of (∆̃op
inj ×UO)-spaces, which �ts into a chain of weak equivalences of ∆̃inj-spaces

(10) R•(M) '←− B
(
UO(•, �),UO,B�(M)

) '−→ B
(
UB(•, �),UO,B�(M)

)
,

augmented over M, the le� arrow being the restriction of the bar resolution of B•(M) to ∆̃inj (see
Section 1.4). Consider the functor t : UO → UO that maps [p] to [p + 1] and is on morphisms de�ned as

t :
UO ([q], [p]) −→ UO (

t([q]), t([p]))
(d, µ) 7−→ (d,γ (c; µ, 1a)),

using the operadic composition γ and the element c with which we de�ned the iterated operations
cp ∈ O(p) in Section 2.2. Accompanying this functor, there is a morphism of augmented UO-spaces

(11)
B�(M) Bt (�)(M)

M M,s

de�ned by making use of the module structure θ ofM to assign to a p-simplex (A, ζ ) in Bp (M) the element
(A,θ (c; ζ ,X )) in Bp+1(M). Last but not least, we de�ne a morphism of (∆̃op

inj ×UO)-spaces

(12) UB (•, �) −→ UB (•, t(�))
by consider the braid groups

∐
n≥0 Bn as the free braided monoidal category in one object X to de�ne

UB ([q], [p]) = Bp+1/Bp−q −→ Bp+2/Bp−q+1 = UB
([q], t([p]))

[b] 7−→ [(b ⊕ X )(X ⊕p−q ⊕ b−1
X ⊕p+1,X )].

Lemma 4.16. �e assignment (12) de�nes indeed a morphism of (∆̃op
inj ×UO)-spaces.

Proof. Recall thatUB(•, �) is induced from a (∆op
inj×UB)-space via the equivalence ∆̃op

inj×UO → ∆
op
inj×UB.

�e semi-simplicial direction of UB(•, �) comes from the section ∆inj → UB of Lemma 2.7, which maps a
face map di in ∆inj([q − 1], [q]) to the class [b−1

X ⊕i ,X ⊕ X ⊕q−i ] in UB([p − 1], [p]), so (12) is natural in the
semi-simplicial direction if the two braids

(X ⊕p−q ⊕b−1
X ⊕i ,X ⊕X ⊕q−i ⊕X )(X ⊕p−q+1 ⊕b−1

X ⊕q,X ) and (X ⊕p−q ⊕b−1
X ⊕q+1,X )(X ⊕p−q+1 ⊕b−1

X ⊕i ,X ⊕X ⊕q−i )
de�ne the same class in UB([q − 1], [p + 1]) = Bp+2/Bp−q+2. An application of braid relations shows that
these two braids agree up to right-multiplication with (X ⊕p−q ⊕ b−1

X ,X ⊕ Xq), so coincide in Bp+2/Bp−q+2,
which shows the claim since the naturality in the UB-direction is immediate. �

�e functor t : UO → UO, together with the morphisms (11) and (12), induces a map

B(UB(•, �),UO,B�(M)) B(UB(•, �),UO,B�(M))

M M .

t

s

of augmented ∆̃inj-spaces. Pulling back a coe�cient system F for the graded module M along the
augmentations, this morphism enhances to one of graded ∆̃inj-spaces with local coe�cients that covers
the stabilization map (s;σ F ) : (M; F ) −→ (M; F ). Identifying R•(M) with B(UB(•, �),UO,B�(M)) via
the zig-zag (10) by abuse of notation, we get a tri-graded spectral sequence of the form

(13) E1
p,q,n �

{
Hq

((Rp (M)n+1; F ), (Rp (M)n ; F )) if p ≥ 0
Hq

((Mn+1; F ), (Mn ; F )) if p = −1
=⇒ Hp+q+1

((Mn+1, |R•(M)|n+1; F ), (Mn , |R•(M)|n ; F )),
which is a sum of spectral sequences, one for each n ∈ N̄ (see Sections 1.3 and 1.5). Using Lemma 4.8 and

(b−1
X ,X ⊕ X ⊕p )(X ⊕ bX ⊕i ,X ⊕ X ⊕p−i )(bX ⊕p+1,X ) = (X ⊕ bX ⊕p,X )(bX ⊕i ,X ⊕ X ⊕p−i+1),
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one checks that sel�omotopy (6) of s2 witnesses homotopy commutativity of the square

(M; Σp+1F ) (M; ΣpF )

(M; Σp+1F ) (M; ΣpF ),
(s ;σ Σp+1F )

(s ;F (−⊕bX⊕i ,X ⊕X ⊕p−i ))

(s ;σ Σp F )
(s ;F (−⊕bX⊕i ,X ⊕X ⊕p−i ))

which thus induces a morphism (s;ηi )∼∗ : Rel∗(Σp+1F ) → Rel∗(ΣpF ) of degree 1; the superscript ∼ indicates
the twist by the homotopy (6). �is morphism serves us to identify the spectral sequence (13) as follows.

Lemma 4.17. We have E1
p,q,n+1 � Relq(Σp+1F )n−p , and the E1-di�erential identi�es with∑p
i=0(−1)i (s;ηi )∼∗ : Relq(Σp+1F )n−p → Relq(ΣpF )n−p+1.

In particular, the di�erential d1 : E1
0,∗,n+1 → E1

−1,∗,n+1 corresponds to the second map of (9) in degree n.

Proof. On p-simplices, the �rst equivalence of (10) has a preferred homotopy inverse induced by the extra
degeneracy given by inserting the identity of UO([p], [p]) (see Section 1.4). Composing it with the second
equivalence of (10) yields an equivalence that forms the vertical arrows of a square

Rp (M) Rp (M)

B(UB([p], �),UO,B�(M)) B(UB([p], �),UO,B�(M)),
'

t̃

'
t

where t̃ is de�ned by mapping (A, ζ ) to (s(A), s(ζ ) · θ (αp ;A,Xp+2)). Here αp ∈ Ωcp+2O(p + 2) is any loop
that corresponds to b−1

X ⊕p+1,X under the equivalence π1(O(p + 2); cp+2) � Bp+2 (see Section 2.2). �is choice
of αp guarantees that the previous square commutes, which is why it is su�cient to show that

(Mn−p ; Σp+1F ) (Mn−p+1; Σp+1F )

(Rp (M)n+1; F ) (Rp (M)n+2; F )
(ι ;id)

(s ;σ Σp+1F )

(ι ;id)
(t̃ ;σ F )

homotopy commutes in order to prove E1
p,q,n+1 � Relq(Σp+1F )n−p , where ι denotes the canonical equiv-

alence mapping A to (A, constsp+1(A)). On the space-level, the two compositions are given by assign-
ing to A ∈ Mn−p the elements (s(A), constsp+2(A)) and (s(A),θ (αp ;A,Xp+2)), respectively. As we have
σ Σp+1F (−) = F (− ⊕ X ⊕p+1)σ F (− ⊕ X ⊕p+1) by Lemma 4.8, the homotopy induced by following αp to its
endpoint is one of maps with local co�cients, which implies the �rst claim of the lemma. A relative version
of the proof of Lemma 3.1 establishes the identi�cation of the di�erentials and �nishes the proof. �

Lemma 4.18. �e following composition is zero for n ≥ 1,

Rel∗(F )n−1
(id;σ F )−→ Rel∗(ΣF )n−1

(id;σ ΣF )−→ Rel∗(Σ2F )n−1 � E1
1,∗,n+1

d1
−→ E1

0,∗,n+1 � Rel∗(ΣF )n .
Proof. Using Lemma 4.17, the composition in question is the di�erence between the morphisms in degree
(n − 1) induced by the compositions of the two homotopy commutative squares

(M; F ) (M; Σ2F ) (M; ΣF )

(M;F ) (M; Σ2F ) (M; ΣF ),
(s ;σ F )

(id;σ ΣF σ F )

(s ;σ Σ2F )

(s ;F (−⊕bX⊕i ,X ⊕X ⊕1−i ))

(s ;σ ΣF )
(id;σ ΣF σ F ) (s ;F (−⊕bX⊕i ,X ⊕X ⊕1−i ))

for i = 0 and i = 1, where the homotopy of the le� square is trivial. �e nontrivial homotopy of the
right square becomes trivial a�er composing with the le� square by the triviality condition for coe�cient
systems, so the composition in question is the di�erence of the morphisms induced by the two strictly
commutative outer squares. But, again by the triviality condition, we have F (− ⊕ bX ,X )σ ΣFσ F = σ ΣFσ F ,
so the two outer squares coincide and hence the di�erence of the induced morphisms vanishes. �
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4.4. �e proof of Theorem C. �e long exact sequence

. . . −→ Rel∗+1(F ) −→ H∗(M; F ) (s ;σ F )∗−→ H∗(M; F ) −→ Rel∗(F ) −→ H∗−1(M; F ) −→ . . .
exhibits Theorem C as a consequence of the next result.

�eorem 4.19. Let F be a coe�cient system forM of degree r at N ≥ 0. If the canonical resolution ofM is
graded (дM−2+k

k )-connected in degrees ≥ 1 for a k ≥ 2, then
(i) the group Reli (F )n vanishes for n ≥ max(N + 1,k(i + r )), and

(ii) if F is of degree split r at N ≥ 0, then Reli (F )n vanishes for n ≥ max(N + 1,ki + r ).
We prove Theorem 4.19 via a double induction on r and i ≥ 0 by considering the following statement.
(Hr,i ) �e vanishing ranges of Theorem 4.19 hold for all F of degree < r at any N ≥ 0 in all homological

degrees i , and for all F of degree r at any N ≥ 0 in homological degrees < i .
�e claim (Hr,i ) holds trivially if r < 0 or if (r , i) = (0, 0). If (Hr,i ) holds for a �xed r and all i , then (Hr+1,0)
follows, since there is no requirement on coe�cient systems of degree (r + 1). Hence, to prove the theorem,
it is su�cient to show that (Hr,i ) implies (Hr,i+1) for i, r ≥ 0. As the composition

Reli (F )n
(s ;σ F )∼∗−→ Reli (F )n+1

(s ;σ F )∼∗−→ Reli (F )n+2

is zero by Lemma 4.15, it is enough to show injectivity of both maps in the claimed range. Using the
factorisation (9), this is implied by the following lemma.

Lemma 4.20. Let r ≥ 0 and i ≥ 0 satisfying (Hr,i ), and let F be of degree r at some N ≥ 0.
(i) �e morphism (id,σX )∗ : Rel∗(F )n → Rel∗(ΣF )n is injective for n ≥ max(N ,k(i + r )) and surjective

for n ≥ max(N ,k(i + r − 1)). If F is of split degree r at N ≥ 0, then the map is split injective for all n
and surjective for n ≥ max(N ,ki + r − 1).

(ii) �e morphism (s, id)∼∗ : Reli (ΣF )n → Reli (F )n+1 is injective in degrees n ≥ max(N + 1,k(i + r )). If F
is of split degree r at N ≥ 0, then the map is injective for n ≥ max(N + 1,ki + r ).

Proof. We begin by proving the �rst part of the statement. As Rel∗ (−) is functorial in the coe�cient
system, injectivity of the split case is clear. �e remaining claims of the �rst statement follow from the
long exact sequences in Rel∗ (−) induced by the short exact sequences

0→ ker(F ) → F → im(F → ΣF ) → 0 and 0→ im(F → ΣF ) → ΣF → coker(F ) → 0
by applying (Hr,i ), using that ker(F ) has degree −1 at N and that coker(F ) has (split) degree (r − 1) at
(N − 1). To prove (ii), we use the spectral sequence (13) and Lemma 4.17. Since |R•(M)|m → Mm is
assumed to be (m−2+k

k )-connected form ≥ 1, the groups H∗(Mm , |R•(M)|m ; F ) vanish for ∗ ≤ m−2
k , from

which we conclude E∞p,q,n+1 = 0 for p + q ≤ n
k . We claim that the di�erential E1

1,i,n+1 → E1
0,i,n+1 vanishes

for n ≥ max(N + 1,k(i + r )) in the nonsplit case, and for n ≥ max(N + 1,ki + r ) in the split one. By
Lemma 4.18, this is the case if the maps Rel∗(F )n−1 → Rel∗(ΣF )n−1 → Rel∗(Σ2F )n−1 are surjective in that
range, which holds by (i). Since the map we want to prove injectivity of identi�es with the di�erential
E1

0,i,n+1 → E1
−1,i,n+1 by Lemma 4.17, it is therefore enough to show that, in the ranges of the statement,

E∞0,i,n+1 = 0 and E2
p,q,n+1 = 0 holds for (p,q) with p + q = i + 1 and q < i . By the vanishing range of E∞

noted above, we have E∞0,i,n+1 = 0 in the required range. �e claimed vanishing of E2 follows from the
vanishing even on the E1-page, which is proved by observing that, by (Hr,i ) and Lemma 4.17, the groups
E1
p,q,n+1 � Relq(Σp+1F )n−p vanish for (p,q) with q < i and n ≥ max(N − p,k(q + r )) in the nonsplit, and

for (p,q) satisfying q < i and n ≥ max(N − p,kq + r ) in the split case, since Σp+1F has (split) degree r at
(N − p − 1) by Lemma 4.9. �

5. Configuration spaces

�e ordered con�guration space of a manifoldW with labels in a Serre �bration π : E →W is given by
F πn (W ) = {(e1, . . . , en) ∈ En | π (ei ) , π (ej ) for i , j and π (ei ) ∈W \∂W },

and the unordered con�guration space is the quotient by the canonical action of the symmetric group,
Cπn (W ) = F πn (W )/Σn .
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To establish an E1-module structure on the unordered con�guration spaces ofW , we assume thatW has
nonempty boundary, �x a collar (−∞, 0] × ∂W →W , and a�ach an in�nite cylinder to the boundary,

W̃ =W ∪{0}×∂W [0,∞) × ∂W .
Collar and cylinder assemble to an embedding R × ∂W ⊆ W̃ of which we make frequent use henceforth.
We extend the �bration π over W̃ by pulling it back along the retraction W̃ →W and de�ne the space

C̃πn (W ) = {(s, e) ∈ [0,∞) ×Cπn (W̃ ) | π (e) ⊆W ∪ (−∞, s) × ∂W },
which is an equivalent model for Cπn (W ), since the inclusion in C̃πn (W ) as the subspace with s = 0
can be seen to be an equivalence by choosing an isotopy of W̃ that pushes [0,∞) × ∂W into (−∞, 0) ×
∂W . We furthermore �x an embedded cube (−1, 1)d−1 ⊆ ∂W of codimension 0, together with a section
l : (−1, 1)d−1 → E of π , which we extend canonically to a section l on [0,∞) × (−1, 1)d−1 ⊆ R × ∂W ⊆ W̃ .

Lemma5.1. Con�gurations
∐

n≥0Cn(Dd ) in a disc form a gradedEd -algebra with con�gurations
∐

n≥0 C̃
π
n (W )

in a d-manifoldW with nonempty boundary as an E1-module over it, graded by the number of points.

Proof. �e operad D•(Dd ) of li�le d-discs acts on
∐

n≥0Cn(Dd ) by

θ :
Dk (Dd ) × ( ∐

n≥0Cn(Dd ))k −→ ∐
n≥0Cn(Dd )((ϕ1, . . . ,ϕk ), ({d1

i }, . . . , {dki })
) 7−→ ⋃k

j=1 ϕ j ({d ji }),
and this action extends to one of SCd (see De�nition 2.1) on the pair (∐n≥0 C̃

π
n (W ),

∐
n≥0Cn(Dd )) via

θ :
SCd (m, ak ;m) ×∐

n≥0 C̃
π
n (W ) ×

( ∐
n≥0Cn(Dd ))k −→ ∐

n≥0 C̃
π
n (W )((s,ϕ1, . . . ,ϕk ), (s ′, {ei }), {d1

i }, . . . , {dki }
) 7−→ (

s ′ + s, {ei } ∪ (∪kj=1l(ϕ j ({d ji }) + s ′))
)
,

using the section l and the translation (− + s ′) by s ′ in the [0,∞)-coordinate, as illustrated in Figure 4. �

0 s
0 s ′ 0 s ′ s + s ′

d ∈ SC 2(m, a;m) C ∈ C̃π4 (W ) D ∈ C3(Dd ) θ (d ;C,D) ∈ C̃π7 (W )

Figure 4. �e E1-module structure on unordered con�guration spaces

5.1. �e resolution by arcs. LetW be a smooth connected manifold of dimension d ≥ 2 with nonempty
boundary and π : E →W a Serre �bration with path-connected �bre. By Lemma 5.1, the con�guration
spacesM =∐

n≥0 C̃
π
n (W ) form a graded E1-module over A =∐

n≥0Cn(Dd ) considered as an E2-algebra
via the canonical morphism SC 2 → SCd (see Section 2.1). �e stabilisation map s : M →M with respect
to a chosen stabilising object X ∈ C1(Dd ), restricted to the subspace of elements of degree n, has the form

s : C̃πn (W ) −→ C̃πn+1(W ).
Remark 5.2. With respect to the described equivalenceCπn (W ) ' C̃πn (W ), the stabilisation map corresponds
to the map Cπn (W ) → Cπn+1(W ) that adds a point “near in�nity” [McD75; Seg79].

We prove high-connectivity of the canonical resolution ofM (see Section 2.2) by identifying it with the
resolution by arcs—an augmented semi-simplicial space of geometric nature, known to be highly connected.

De�nition 5.3. �e resolution by arcs is the augmented semi-simplicial space R−•• (M) → M with

R−•p (M) ⊆ M ×
(
Emb([−1, 0],W̃ ) ×Maps([−1, 0],E))p+1

,

consisting of tuples ((s, {ei }), (φ0,η0), . . . , (φp ,ηp )) such that
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(i) the arcs φi are pairwise disjoint and connect points in the con�guration φi (−1) ∈ π ({ei }) ⊆ W̃ to
points φ(0) ∈ {s} × (−1, 1) × {0}d−2 ⊆ [0,∞) × ∂W in the order φ0(0) < . . . < φp (0),

(ii) the interior of the arcs lie inW ∪ [0, s) × ∂W and are disjoint from the con�guration π ({ei }),
(iii) the path of labelsηi satis�es (π◦ηi ) = φi and connects the label ofφi (−1) ∈ π ({ei }) toηi (0) = l(φi (0)),
(iv) there exists ε ∈ (0, 1) with φi (t) = (s + t ,φi (0), 0, . . . , 0) ∈ (−∞, s] × (−1, 1)d−1 ⊆ W̃ for t ∈ (−ε, 0].

�e spaceR−•p (M) is topologised using the compact-open topology on Maps([−1, 0],E) and the C∞-topology
on Emb([−1, 0],W̃ ). �e ith face map forgets (φi ,ηi ). �e rightmost graphic of Figure 5 depicts an example.

�eorem 5.4. �e resolution by arcs R−•• (M) → M is graded (дM − 1)-connected.

Proof. Se�ing s = 0 in the de�nition of R−•p (M) yields a sub-semi-simplicial space R̄−•• (M) ⊆ R−•• (M),
augmented over M̄ =∐

n≥0C
π
n (W ). As the inclusion is a weak equivalence by the same argument as for

Cπn (W ) ⊆ C̃πn (W ), the augmented semi-simplicial space R−•• (M) → M is as connected as R̄−•• (M) → M̄
is. �e la�er is the standard resolution by arcs for con�gurations of unordered points with labels inW ,
which is known to have the claimed connectivity (see e.g. the proof of [KM14, �m A.1]). �

�eorem 5.5. �e canonical resolution and the one by arcs are weakly equivalent as augmented ∆̃inj-spaces.

Assuming Theorem 5.5, Theorem 5.4 ensures graded (дM − 1)-connectivity of the canonical resolution
R•(M) → M (see Section 2.2), which in turn implies Theorem D by an application of Theorem A and C.

We prove Theorem 5.5 by constructing a zig-zag of weak equivalences of augmented ∆̃inj-spaces

(14) R•(M)
1©←− B

(
UO(•, �),UO,B�(M)

) 2©' B
(
UO−••,�,UO,B�(M)

) 3©−→ R−•• (M)�b

between the canonical resolution R•(M) and the �brant replacement R−•• (M)�b of the resolution by arcs,
which is weakly equivalent to the resolution by arcs itself (see Section 1.4). �e remainder of this subsection
serves to explain the weak equivalences 1©– 3©. We abbreviate the E1,2-operad SC 2 by O.

1©. Recall from Section 2.2 the category UO and the contravariant UO-space B•(M) overM whose
restriction to the subcategory ∆̃inj ⊆ UO is R•(M). Using the (∆̃op

inj × UO)-space UO(•, �) obtained by
restricting the hom-functor of UO, the equivalence 1© is de�ned as the restriction of the bar resolution
of B•(M) to ∆̃inj (see Section 1.4). For the other parts of the zig-zag (14), we de�ne an analogue of the
resolution by arcs for the free graded E1-module Om = ∐

n≥0 O(m, an ;m)/Σn (see Example 2.18). For
simpli�cation, we choose the centre X = {0} ∈ C1(Dd ) as stabilising object and write sd for the parameter
of elements d = (sd , {ϕi }) ∈ Om and д(d) for their degree, i.e. the cardinality of the set of embeddings {ϕi }.
De�nition 5.6. De�ne the augmented semi-simplicial space R−•• (Om) → Om with p-simplices

R−•p (Om) ⊆ Om × Emb
([−1, 0], (0,∞) × (−1, 1))p+1

,

consisting of tuples ((s, {ϕ j }),φ0, . . . ,φp ) such that
(i) the arcs φi are pairwise disjoint and connect centre points φi (−1) ∈ {ϕ j (0)} of the discs to φi (0) ∈
{s} × (−1, 1) in the order φ0(0) < . . . < φp (0),

(ii) the interior of the arcs lie in (0, s) × (−1, 1) and are disjoint from the centre points {ϕ j (0)}, and
(iii) there exists an ε ∈ (0, s) such that φi (t) = (s + t ,φi (0)) ∈ (0, s] × (−1, 1) holds for all t ∈ (−ε, 0].

�e third graphic of Figure 5 exempli�es a 0-simplex in R−•• (Om).
2©. To explain the second equivalence of (14), we note that Om becomes a topological monoid by multi-

plying elements d and e in Om by γ (e;d, 1д(e)). �e multiplication map is covered by a simplicial action

Ψ :
Om × R−•• (Om) −→ R−•• (Om)(

d, (e,φ0, . . . ,φp )
) 7−→ (

γ (e;d, 1д(e)),φ0 + sd , . . . ,φp + sd
)
,

where (− + sd ) is the translation in the (0,∞)-coordinate. �is action leads to a (∆̃op
inj ×UO)-space UO−••,�,

serving us as mediator between the canonical resolution and the one by arcs. On objects ([p], [k]), it is

UO−•p,k = ho�bck+1

(
R−•p (Om) → Om

)
= {(e,φ0, . . . ,φp , µ) ∈ R−•p (Om) × Pathck+1 Om | ω(µ) = e},
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whereω(−) denotes the endpoint of a Moore path and the elements ci ∈ Om are de�ned as in Section 2.2. �e
∆̃

op
inj-direction of UO−••,� is induced by the semi-simplicial structure of R−•• (Om) via the functor ∆̃inj → ∆inj

(see Section 2.2). �e UO-direction is de�ned by
UO([k], [l]) ×UO−••,k −→ UO−••,l((d, µ), (e,φ0, . . . ,φp , ζ )

) 7−→ (
Ψ(d, (e,φ0, . . . ,φp )), µ · γ (ζ ;d, 1k+1)) .

�e claimed functoriality of O−••,� follows directly from the associativity of the operadic composition γ .
Having introduced the objects involved, the following lemma provides the weak equivalence 2©.

Lemma 5.7. �e (∆̃op
inj ×UO)-spaces UO−••,� and UO(•, �) are weakly equivalent.

Proof. Choose arcs φp = (φp0 , . . . ,φ
p
p ) ∈ Emb([−1, 0], (0,∞) × (−1, 1))p+1 such that (cp+1,φ

p ) forms an
element of R−•p (Om) for which the order of the embeddings {ϕi } in cp+1 = (scp+1 , {ϕi }), induced by the
order of the arcs φpi they are connected to, agrees with the order of {ϕi } induced by the (0,∞)-coordinate.
Acting on (cp+1,φ

p , constcp+1 ) ∈ UO−•p,p , the (∆̃op
inj ×UO)-space UO−••,� induces a morphism of UO-spaces

(15) UO([p], �) → UO−•p,�,
agreeing on [k] ∈ ob(UO) with the induced map on diagonal homotopy �bres of the commuting triangle

Om R−•p (Om)
Omγ (cp+1;−,1p+1)

at ck+1, where the right diagonal map is the augmentation and the horizontal arrow is given by acting on
(cp+1,φ

p ) via Ψ. �ere is a map R−•p (Om) → Om that forgets the arcs and the discs a�ached to them using
which the horizontal map can be seen to be an equivalence by following discs along arcs they are a�ached
to. Hence, (15) is an equivalence ofUO-spaces, which in particular shows thatUO−••,� is homotopy discrete,
asUO(•, �) is so by Lemma 2.11. �erefore, to prove the claim, it is su�cient to show that the equivalence
(15) is natural in [p] up to homotopy, which would follow from the homotopy commutativity of

UO([p], [k]) UO−•p,k

UO([p − 1], [k]) UO−•p−1,k ,

(d̃i )∗ (di )∗

using the choice of face maps d̃i = (c, µi ) ∈ ∆̃inj([p−1], [p]) provided by Lemma 2.15. �e two compositions
of the la�er diagram map an element (d, ζ ) in UO([p], [k]) to(

Ψ
(
d, (cp+1,φ

p
0 , . . . , φ̂

p
i , . . . ,φ

p
p )

)
, ζ

)
and

(
Ψ

(
d, (cp+1,φ

p−1
0 + sc , . . . ,φ

p−1
p−1 + sc )

)
, ζ · γ (µi ;d, 1p+1)

)
,

respectively, where (̂−) indicates that the element is omi�ed. Recalling that, via the isomorphism
π1(Om, cp+1) � Bp+1 �xed in Section 2.2, the loop µi ∈ Ωcp+1Om corresponds to the braid b−1

X ⊕i ,X ⊕ X ⊕p−i
in Bp+1, we see that our choice of the arcs φ ji ensures the existence of a path in R−•p−1(Om) between

(cp+1,φ
p
0 , . . . , φ̂

p
i , . . . ,φ

p
p ) and (cp+1,φ

p−1
0 + sc , . . . ,φ

p−1
p−1 + sc )

that maps via the augmentation R−•p−1(Om) → Om to µi , or at least to its homotopy class. Such a path
induces a homotopy between the two compositions of the square, which �nishes the proof. �

3©. For the rightmost equivalence of (14), we use the module structure θ to de�ne the simplicial map

(16) Φ :
R−•• (Om) ×M −→ R−•• (M)((e,φ0, . . . ,φp ),A

) 7−→ (
θ (e,A, 1д(e)), (φ0 + sA, l(φ0 + sA)), . . . , (φ0 + sA, l(φp + sA))

)
,

using the embedding [0,∞) × (−1, 1) × {0}d−2 ⊆ [0,∞) × ∂W , the section l : [0,∞) × (−1, 1)d−1 → E, and
the translation in the [0,∞)-coordinate, as illustrated in Figure 5. �is yields simplicial maps for k ≥ 0,

(17)
UO−••,k × Bk (M) −→ R−•• (M)�b((e,φ0, . . . ,φp , µ), (A, ζ )

) 7−→ (
Φ((e,φ0, . . . ,φp ),A), ζ · θ (µ;A,X k+1)),
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which induce a morphism B
(
UO−••,�,UO,B�(M)

) → R−•• (M)�b, since they equalise the diagram

∐
f ∈U O([k ],[l ])UO−••,k × Bl (M)

∐
[k]UO−••,k × Bk (M).

id×f ∗

f∗×id

�is explains the morphism 3©, which is a weak equivalence by the following lemma that completes the
proof of Theorem 5.5, as the morphisms 1©– 3© are all compatible with the augmentation toM.

Lemma 5.8. �e morphism 3© is a weak equivalence.

Proof. On p-simplices, the weak equivalence 1© and the morphism 3© �t into a commutative square

B
(
UO([p], �),UO,B�(M)

)
Rp (M)

B
(
UO−•p,�,UO,B�(M)

)
R−•p (M)�b,

1©

' '
3©

in which the le� morphism is induced by the equivalence (15) which has the form UO([p], �) → UO−•p,�
and was de�ned via the action of UO−••,� on a certain element (cp+1,φ

p , constcp+1 ) ∈ UO−•p,p . �e right map
is induced by the same element, but using (17), and it is a weak equivalence by an analogous argument as
for (15). Consequently, the arrow 3© is a weak equivalence as well and we conclude the assertion. �

Remark 5.9. �e right vertical arrow of the previous square can be enhanced to a weak equivalence up to
higher coherent homotopy between R•(M) and R−•• (M)�b, leading to an alternative proof of Theorem 5.5.

A ∈ M X ∈ A Φ((e,φ),A) ∈ R−•0 (M)(e,φ) ∈ R−•0 (Om)
0 sA 0 sA sA + se

0 se

Figure 5. �e resolution by arcs and the map Φ

5.2. Coe�cient systems for con�guration spaces. Recall from Section 2.1 that the E1-module struc-
ture onM =∐

n≥0 C̃
π
n (W ) overA =∐

n≥0Cn(Dd ) induces a right-module structure ⊕ on the fundamental
groupoid Π(M) over the braided monoidal category (Π(A), ⊕,b, 0) and hence, a�er �xing a stabilising
object X ∈ C1(Dn), also one over the free braided monoidal category B on one object. Denoting by
A ∈ Cπ0 (W ) the empty con�guration, a coe�cient system for

∐
n≥0 C̃

π
n (W ) is by Remark 4.10 speci�ed by

(i) a π1(C̃πn (W ),A ⊕ X ⊕n)-module Mn for each n ≥ 0, together with
(ii) (− ⊕ X )-equivariant morphisms σ : Mn → Mn+1 such that Bm acts via (A ⊕ X ⊕n ⊕ −) trivially on

the image of σm : Mn → Mn+m .
Equivalently, a coe�cient system is an abelian group-valued functor on �illen’s bracket construction

Cπ (W ) B 〈∐n≥0 π1(C̃πn (W )),B〉,

compare Remark 4.12. Using the ordering of A ⊕X ⊕n induced by the [0,∞)-coordinate, a loop γ in C̃πn (W )
induces a permutation in n le�ers, as well as n ordered loops in E by connecting the paths in E forming γ to
a basepoint in E via paths in the image of the section l : [0,∞) × (−1, 1)d−1 → E. �is induces a morphism

(18) π1(C̃πn (W )) −→ π1(E) o Σn
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to the wreath product, which we use to relate Cπ (W ) to other categories via a commutative diagram

(19)

Cπ (W ) 〈π1(E) o Σ, Σ〉

Bπ (W ) FI π1(E) FI

Bπ (W )] FI ]
π1(E) FI ]

⊆ ⊆ ⊆
on which we elaborate in the following.

�e category 〈π1(E) o Σ, Σ〉 results from the action of Σ =
∐

n≥0 Σn on π1(E) o Σ =
∐

n≥0 π1(E) o Σn .
It receives a functor from Cπ (W ), induced by the morphisms (18). �e category FI π1(E) of �nite sets
and injective π1(E)-maps [Cas16; GL15; Ram17; SS16a] is isomorphic to 〈π1(E) o Σ,π1(E) o Σ〉, so is the
target of a functor from 〈π1(E) o Σ, Σ〉, induced by the inclusion Σ ⊆ π1(E) o Σ. By forge�ing π1(E), the
category FI π1(E) maps to the category FI of �nite sets and injections, on which functors are studied in the
context of representation stability (see e.g. [CEF15; CEFN14]). Both FI and FI π1(E) are subcategories of
larger categories FI ] and FI ]

π1(E) of partially de�ned (π1(E)-)-injections [CEF15; SS16a]. �e category of
partial braids Bπ (W )] has the nonnegative integers as its objects and a morphism from n tom is a pair
(k, µ) with k ≤ min(n,m) and µ a morphism in Π(C̃πk (W )) from a subset of A ⊕ X ⊕n to one of A ⊕ X ⊕m .
For trivial π , the category Bπ (W )] was studied by Palmer [Pal18], who also introduced the subcategory
Bπ (W ) ⊆ Bπ (W )] of full braids, consisting of morphisms (k, µ) : n → m with k = n. �ere is a functor
Cπ (W ) → Bπ (W ) which is the identity on objects and maps a morphism

[γ ] ∈ Cπ (W )(n,m) = π1(C̃πm(W ),A ⊕ X ⊕m)/Bm−n
to the path in C̃πn (W ) that forms the �rst n paths in E of γ , i.e. the ones starting at A ⊕ X ⊕n ⊆ A ⊕ X ⊕m .
ForW = D2 and π = idD2 , the category Bπ (W ) was considered by Schlichtkrull and Solberg [SS16b].

Remark 5.10. IfW is of dimension d ≥ 3, then the morphisms (18) are isomorphisms [Til16, Lem. 4.1],
from which it follows that the three le� horizontal functors in the diagram (19) are isomorphisms. If E is
in addition simply connected, then all functors except for the lower vertical inclusions are isomorphisms.

We call an abelian group valued functor on a category C of the diagram (19) a coe�cient system on
C. �ere is a notion of being of (split) degree r at an integer N for coe�cient systems on any of the
categories C, de�ned analogously to De�nition 4.6 by using an endofunctor Σ on C together with a natural
transformation σ : id→ Σ, similar to Cπ (W ) (see Remark 4.12). Most categories of the diagram are of the
form 〈N ,G〉 for a braided monoidal groupoid G acting on a categoryN and for such, Σ and σ are de�ned
as in Remark 4.12. For Bπ (W )] , the functor Σ maps a morphism (k, µ) to (k+1, s(µ)) using the stabilisation,
and σ consists of the constant paths at A ⊕ X ⊕n . For Bπ (W ), we obtain Σ and σ by restriction from
Bπ (W )] . For FI ] and FI ]

π1(E), the de�nition is analogous. Note that the morphisms σ of the categories
with a ]-superscript admit le�-inverses, which results in all coe�cient systems on them being split.

As all functors in the diagram are compatible with Σ and σ , the property of being of (split) degree r at
N is preserved by pulling back coe�cient systems along them. In conclusion, by pulling back to Cπ (W ),
all coe�cient systems of �nite degree on any of the categories in the diagram induce coe�cient systems
for which the homology of C̃πn (W ) stabilises by Theorem D. �e degree of coe�cient systems on some of
the categories has been examined before, providing us with a wealth of examples.

Example 5.11. (i) In [RW17], the (split) degree of coe�cient systems on prebraided monoidal categories
was introduced. �is includes 〈π1(E) o Σ, Σ〉, FI π1(E),FI ]

π1(E),FI , and FI ] .
(ii) A �nitely generated coe�cient system F on FI π1(E) in the sense of [SS16a] is of �nite degree, provided

that π1(E) is �nite (see [SS16a, Prop. 3.4.2]). By [SS16a, Rem. 3.4.3], this implication remains valid if
π1(E) is virtually polycyclic (see the introduction for a de�nition) and even holds for arbitrary π1(E)
if F is presented in �nite degree or if F extends to FI ]

π1(E).
(iii) More quantitatively, coe�cient systems on FI that are generated in degree ≤ k and related in degree
≤ d , as de�ned in [CE17, Def. 4.1], are of degree k at d +min(k,d) by [RW17, Prop. 4.18].
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(iv) �e degree of a coe�cient system on Bπ (W )] has been studied by Palmer [Pal18], who also provides
examples of �nite degree coe�cient systems on FI ] (see [Pal18, Sect. 4]). Note that the degree and
the split degree of coe�cient systems on these categories coincide.

(v) For W = D2 and π = idD2 , the category Cπ (W ) is isomorphic to the category UB as recalled in
De�nition 2.6. �e Burau representation gives rise to an example of a coe�cient system of degree 1
at 0 onUB [RW17, Ex. 3.14]. On the basis of this example, Soulié [Sou17] has constructed coe�cient
systems on UB of arbitrary degree, using the so-called Long-Moody construction.

Remark 5.12. Inspired by work of Betley [Bet02], Palmer [Pal18] proved homological stability for Cπn (W )
for trivial �brations π and coe�cient systems of �nite degree on Bπ (W )] . His a surjectivity range agreeing
with ours, but his result includes split injectivity in all degrees—a phenomenon special to con�guration
spaces and not captured by our general approach. In Remark 1.13, Palmer suspects stability for coe�cient
systems of �nite degree on Bπ (W ). Theorem D con�rms this and extends his result to a larger class of
coe�cient systems and nontrivial labels.

5.3. Applications. We complete the proofs of Corollary F and G sketched in the introduction. Unless
stated otherwise,W denotes a manifold satisfying the assumptions of Theorem D.

5.3.1. Con�guration spaces of embedded discs. Recall from the introduction the con�guration spaces
of (un)ordered k-discs Ck

n (W ) and Fkn (W ) of W , the related subgroups PDi�k
∂,n(W ) ⊆ Di�k

∂,n(W ) ⊆
Di�∂(W ) of di�eomorphisms �xing or permuting n chosen k-discs inW , respectively, and the orientation-
preserving variants denoted with a (+)-superscript for k = d and orientedW . �e action of Di�∂(W ) on
Cπkn (W ) extends to one on

∐
n≥0 C̃

πk
n (W ) by extending di�eomorphisms ofW to W̃ via the identity. �is

action commutes with the Ed -action of
∐

n Cn(Dd ), so the Borel construction E Di�∂(W ) ×Di�∂(W )M
inherits a graded E1-module structure whose canonical resolution is highly-connected by Example 2.21.
Consequently, Theorem A and C imply (twisted) stability for E Di�∂(W ) ×Di�∂(W ) C̃

πk
n (W ) for k < d and,

as the equivalence Ck
n (W ) → Cπkn (W ) ⊆ C̃πkn (W ) (see the introduction for the �rst map) is equivariant,

also for E Di�∂(W ) ×Di�∂(W ) C
k
n (W ). �e same argument applies to E Di�+∂(W ) ×Di�+∂(W ) C

d,+
n (W ). As

announced in the introduction, we identify these homotopy quotients with classifying spaces of certain
di�eomorphism groups. �is proves Corollary F.

Lemma 5.13. Fork < d , the Borel constructions E Di�∂(W )×Di�∂(W )F
k
n (W ) and E Di�∂(W )×Di�∂(W )C

k
n (W )

are models for the classifying spaces B PDi�k
∂,n(W ) and B Di�k

∂,n(W ), respectively. For k = d andW being
oriented, the analogue identi�cations for the variants with (+)-superscripts hold.

Proof. It su�ces to show that Di�∂(W ) acts transitively on Fkn (W ) andCk
n (W ), since the stabilisers of these

actions are precisely the subgroups PDi�k
∂,n(W ) and Di�k

∂,n(W ), respectively. �e required transitivity
follows from the fact that the map Di�∂(W ) → Emb(∐n Dk ,W \∂W ), given by acting on n �xed disjoint
parametrised k-discs, is by [Pal60] a �bre bundle with path-connected base space Emb(∐n Dk ,W \∂W ) '
F πkn (W ). �is same argument applies to PDi�d,+

∂,n(W ) and Di�d,+
∂,n(W ) by using orientation preserving

di�eomorphisms and embeddings, as the �bre of the bundle π+d of oriented d-frames is path-connected. �

5.3.2. Representation stability. We prove Corollary G, using the notation of the introduction.

Lemma 5.14. LetW and π be as in Theorem D and λ ` n a partition. �e Vλ-multiplicity in Hi (F πn (W );Q)
is the dimension of Hi (Cπn (W );Vλ), where π1(Cπn (W )) acts on Vλ via the morphism π1(Cπn (W )) → Σn .

Proof. Delooping the covering space Σn → F πn (W ) → Cπn (W ) once results in a �bration sequence with
base space BΣn . We consider the induced Serre spectral sequence, twisted by the local system Vλ on BΣn ,

E2
p,q � Hp

(
BΣn ; Hq(F πn (W );Vλ)

)
=⇒ Hp+q

(
Cπn (W );Vλ

)
.

Since the action of π1(F πn (W )) on Vλ is trivial, we conclude
Hp

(
BΣn ; Hq(F πn (W );Vλ)

)
� Hp

(
BΣn ; Hq(F πn (W );Q) ⊗ Vλ

)
.

�ese groups vanishes for p , 0 as Σn has no rational cohomology in positive degree. Hence, the E2-page
is trivial, except for the 0th column, which is isomorphic to the coinvariants (Hq(F πn (W );Q) ⊗Vλ)Σn , which
are in turn isomorphic to the invariants (Hq(F πn (W );Q) ⊗ Vλ)Σn . As a result of this, the spectral sequence
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collapses and we can identify Hq(Cπn (W );Vλ) with (Hq(F πn (W );Q) ⊗ Vλ)Σn , whose dimension equals the
Vλ-multiplicity in Hq(F πn (W );Q), sinceVµ ⊗Vλ for a partition µ ` n contains a trivial representation if and
only if µ = λ and, in that case, it is 1-dimensional (see [FH91, Ex. 4.51]). �is proves the claim, because the
Vλ-multiplicity in Hi (F πn (W );Q) equals the one in Hi (F πn (W );Q) by the universal coe�cient theorem. �

Corollary 5.15. ForW and π as in Theorem D, the Vλ[n]-multiplicity in Hi (F πn (W );Q) is independent of n
for n large relative to i .

Proof. By [CEF15, Prop. 3.4.1], the Σn-representations Vλ[n] assemble into a �nitely generated FI -module
V (λ) with V (λ)n � Vλ[n], which pulls back along Cπ (W ) → FI of (19) to a coe�cient system of �nite
degree for

∐
n≥0 C̃n(M) by Example 5.11 ii). Combining Theorem C with Lemma 5.14 gives the claim. �

Proof of Corollary G. Corollary 5.15 se�les the statement for F πn (W ). To derive the claim about Fkn (W ),
observe that the equivalenceCk

n (W ) → Cπkn (W ) discussed in the introduction is covered by a Σn-equivariant
equivalence Fkn (W ) → F πkn (W ), so we have Hi (Fkn (W );Q) � Hi (F πkn (W );Q) as Σn-modules. �e remaining
part concerning B PDi�k

∂,n(W ) is shown by using the model B PDi�k
∂,n(W ) ' E Di�∂(W ) ×Di�∂(W ) F

k
n (W )

provided by Lemma 5.13, and adapting the argument of Lemma 5.14 and 5.15 by replacing the covering
space Σn → F πn (W ) → Cπn (W ) with

Σn → E Di�∂(W ) ×Di�∂(W ) F
k
n (W ) → E Di�∂(W ) ×Di�∂(W ) C

k
n (W ).

�e statements about the variants Fd,+n (W ) and PDi�d,+
n (W ) are proved in the same way. �

�e following ranges resulted from a discussion with Peter Patzt whom the author would like to thank.

Remark 5.16. To obtain explicit ranges for Corollary G, one can show that the FI -moduleV (λ), used in the
proof of Corollary 5.15, is generated in degree |λ |+λ1 and related in degree |λ |+λ1+1, so the corresponding
coe�cient system has degree |λ | +λ1 at 2|λ | + 2λ1 + 1 by Example 5.11 iii). Consequently, one deduces that
the Vλ[n]-multiplicities in the cohomology groups of Corollary G are constant for i ≤ n

2 − (|λ | + λ1 + 1).
Note that our range is not uniform, i.e. is dependent on the partition. In contrast, the range for Hi (F (W );Q)
obtained by Church [Chu12] is i ≤ n

2 if the dimension is d ≥ 3 and i ≤ n
4 for d = 2, at least for the

manifoldsW to which his result applies.

6. Moduli spaces of manifolds

�roughout the section, we �x a closed manifold P of dimension (d − 1), together with an embedding
P ⊆ Rd−1 × R∞

which contains the open unit cube (−1, 1)d−1 × {0} ⊆ Rd−1 × R∞ and satis�es P ⊆ Rd−1 × [0,∞)∞. We
consider compact manifoldsW with a speci�ed identi�cation ∂W = P and denote by Di�∂(W ) the group
of di�eomorphisms �xing a neighbourhood of the boundary, equipped with theC∞-topology. To construct
our preferred model of its classifying space, we choose a collar c : (−∞, 0] × P → W and denote by
Embε (W , (−∞, 0] × Rd × R∞) for ε > 0 the space of embeddings e satisfying (e ◦ c)(t ,x) = (t ,x) for
t ∈ (−ε, 0], using the C∞-topology.

We de�ne the moduli space ofW -manifoldsM(W ) as the space of submanifolds
W ′ ⊆ (−∞, 0] × Rd−1 × R∞

such that
(i) there is an ε > 0 withW ′ ∩ (−ε, 0] × Rd−1 × R∞ = (−ε, 0] × P and

(ii) there is a di�eomorphism ϕ : W →W ′ that satis�es ϕ ◦ c |(−ε,0]×P = inc(−ε,0]×P ,
where inc denotes the inclusion ensured by (i). �e spaceM(W ) is topologised as the quotient of

Emb∂(W , (−∞, 0] × Rd−1 × R∞) = colimε→0 Embε (W , (−∞, 0] × Rd−1 × R∞)
by the action of Di�∂(W ) via precomposition. �e space Emb∂(W , (−∞, 0] × Rd−1 × R∞) is weakly
contractible by Whitney’s embedding theorem, and as the action of Di�∂(W ) is free and admits slices by
[BF81], the moduli spaceM(W ) provides a model for the classifying space B Di�∂(W ). In the case of P
being the sphere Sd−1, we de�ne a weakly equivalent variantMs (W ) ofM(W ), consisting of submanifolds

W ′ ⊆ Dd × R∞
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such that
(i) the interior ofW ′ lies in (Dd\∂Dd ) × (−∞, 0]∞,

(ii) there exists an ε > 0 for which c ′ : (−ε, 0] ×Sd−1 →W ′, mapping (t ,x) to ((1+ t)x , 0), is a collar, and
(iii) there is a di�eomorphism ϕ : W →W ′ satisfying ϕ ◦ c |(−ε,0]×P = c ′ |(−ε,0]×P .

We callM =∐
[W ]M(W ) the moduli space of manifolds with P-boundary, the union taken over compact

manifoldsW with an identi�cation ∂W = P , one in each di�eomorphism class relative to P . Analogously,
the moduli space of manifolds with sphere boundary is A =∐

[N ]Ms (N ) for N with ∂N = Sd−1.

Lemma 6.1. �e moduli space A of manifolds with sphere boundary forms an Ed -algebra with the moduli
spaceM of manifolds with P-boundary as an E1-module over it.

Proof. �e operad D•(Dd ) of li�le d-discs acts on
∐
[N ]Ms (N ) by gluing manifolds along their sphere

boundary into a disc, instructed by li�le d-discs. Formally, de�ne

θ :
Dk (Dd ) × (∐[N ]Ms (N ))k −→ ∐

[N ]Ms (N )((ϕ1, . . . ,ϕk ), (N1, . . . ,Nk )
) 7−→ ((Dd\ ∪ki=1 imϕi ) × {0}

) ∪ ( ∪ki=1 riNi + bi
)
,

where ri is the radius and bi the centre of ϕi : Dd → Dd , and riNi + bi is obtained from Ni by scal-
ing by ri and translating by bi , both in the Dd -coordinate. �e conditions (i) and (ii) in the de�nition
of Ms (N ) ensure that θ is well-de�ned. �is action extends to an action of SCd (see Section 2.1) on
(∐[W ]M(W ),∐[N ]Ms (N )) via

θ : SCd (m, ak ,m) ×
∐
[W ]M(W ) ×

( ∐
[N ]Ms (N ))k −→∐

[W ]M(W ),
mapping ((s,ϕ1, . . . ,ϕk ),M,N1, . . . ,Nk ) to the submanifold obtained from
(20) M ∪ (([0, s] × P)\(∪ki=1 imϕi × {0})

) ∪ ( ∪ki=1 riNi + bi
)

by translating in the �rst coordinate by s to the le�, where riNi + bi is obtained from Ni by scaling by the
radius ri of ϕi : Dd → (0, 1) × (−1, 1)d−1 and translating by the centre bi of ϕi , both in the Rd -coordinate.
Loosely speaking, we a�ach a cylinder to the boundary of W , glue in the Ni via the li�le d-discs, and
shi� everything to the le�, as in Figure 6. �is yields indeed a smooth submanifold, since the threefold
union (20) is one: our conditions on P ⊆ Rd−1 × [0,∞)∞ and on the manifolds Ni ⊆ Dd × (−∞, 0]∞ in
Ms (N ) ensure that [0, s] × P and ∪ki=1riNi + bi intersect only in (0, s) × (−1, 1)d−1 × {0}, which, together
with properties (i)–(ii) ofMs (N ), implies that the second union of (20) is a smooth submanifold. �is
manifold intersects with M only in {0} × P , so the whole union (20) forms by property (i) ofM(W ) and
(ii) ofMs (N ) a smooth submanifold as well. �

0 s
0−s

d ∈ SC 2(m, a;m) M ∈ M(W ) N1 ∈ Ms (N )
0

θ (d ;M,N1)

Figure 6. �e E1-module structure on the moduli space of manifolds

6.1. �e resolution by embeddings. By virtue of Lemma 6.1, the moduli spaceM of manifolds with
P-boundary forms in dimensions d ≥ 2 an E1-module over the one of manifolds with sphere boundary
A, considered as an E2-algebra via the embedding SC 2 → SCd of Section 2.1. For A ∈ M and X ∈ A, the
stabilised manifold A ⊕ X is a model for the boundary connected sum A\X of A and X . But in contrast to
the usual construction of the boundary connected sum, the manifold A ⊕ X contains A as a canonically
embedded submanifold, and the boundary of A ⊕ X is canonically identi�ed with the boundary of X
(cf. Figure 6). On components, the stabilisation takes the form s : M(A) → M(A\X ), modeling the map

s : B Di�∂(A) −→ B Di�∂(A\X )
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induced by extending di�eomorphisms by the identity.
As we did for con�guration spaces in Section 5.1, we identify the canonical resolution ofM with an

augmented semi-simplicial space R◦• (M) of geometric nature, which is a generalisation of one introduced
by Galatius and Randal-Williams in [GR18]. To that end, denote by HX for X ∈ A the manifold obtained
from X by gluing in [−1, 0] × Dd−1 along the embedding

{−1} × Dd−1 −→ ∂X = Sd−1

x 7−→ (
√

1 − |x |,x).
�e resulting manifolds is, a�er smoothing corners, di�eomorphic to X , but contains a canonically
embedded strip [−1, 0] ×Dd−1 ⊆ HX . When considering embeddings of HX into a manifold with boundary,
we always implicitly require that {0} × Dd is sent to the boundary and the rest of HX to the interior.

De�nition 6.2. LetW be a d-manifold, equipped with an embedding e : (−ε, 0] × Rd−1 →W for an ε > 0,
satisfying e−1(∂W ) = {0} × Rd−1. De�ne a semi-simplicial space KX• (W ) with the space of p-simplices
given by tuples ((φ0, t0), . . . , (φp , tp )) ∈ (Emb(HX ,W ) × R)p+1 of embeddings with parameters, such that

(i) the embeddings φi are pairwise disjoint,
(ii) there exists an δ ∈ (0, ε) such that ϕi (s,p) = e(s,p + tie1) holds for (s,p) ∈ (−δ , 0] × Dd−1 ⊆ HX ,

where e1 ∈ Rd−1 is the �rst basis vector, and
(iii) the parameters are ordered by t0 < . . . < tp .

�e embedding space is topologised in the C∞-topology. �e ith face map forgets (φi , ti ).
For submanifolds W ∈ M, we use the embedding e : (−ε, 0] × Rd−1 → W that is obtained from the

canonically embedded cube (−ε, 0] × (−1, 1)d−1 ⊆ (−ε, 0] × P ⊆W by use of the di�eomorphism

(21)
R −→ (−1, 1)
x 7−→ 2

π arctan(x).
�e group Di�∂(W ) acts simplicially on KX• (W ) by precomposition, so the levelwise Borel construction
results in an augmented semi-simplicial space

(22) Emb∂(W , (−∞, 0] × Rd × R∞) ×Di�∂(W ) K
X
• (W ) −→ M(W )

in terms of which we de�ne the resolution by embeddings as the augmented semi-simplicial space

R◦• (M) → M
obtained by taking coproducts of the semi-simplicial spaces (22) over compact manifolds W with P-
boundary, one in each di�eomorphism class relative P . �is is the analogue of the resolution by arcs for
con�guration spaces. A point in R◦• (M) consists of a manifoldW ∈ M and (p + 1) embeddings of HX
into W that form an element of KX

p (W ) (see the rightmost graphic of Figure 7 for an example). Since
the augmentation is by construction a levelwise �bre bundle, the resolution by embeddings is �brant. In
particular, its �bre KX• (A) at A ∈ M is equivalent to the respective homotopy �bre.

�eorem 6.3. �e canonical resolution and the resolution by embeddings are weakly equivalent as augmented
∆̃inj-spaces. In particular, KX• (A) for A ∈ M is weakly equivalent to the space of destabilisationsW•(A) of A.

We closely follow the proof of Theorem 5.5 for con�guration spaces to prove Theorem 6.3, adopting
the notation of Section 5.1. More speci�cally, we construct a zig-zag of weak equivalences

(23) R•(M)
1©←− B

(
UO(•, �),UO,B�(M)

) 2©' B
(
UO◦•,�,UO,B�(M)) 3©−→ R◦• (M)�b

of augmented ∆̃inj-spaces between the canonical resolution and the �brant replacement of the resolution
by embeddings—analogous to the one for con�guration spaces, labelled by (14). �e �rst equivalence 1©
of (14) carries over to (23) verbatim. To construct 2©, we replace the semi-simplicial space R−•• (Om) with
an equivalent variant R◦• (Om), essentially by including a contractible choice of tubular neighbourhoods
of the arcs. To this end, consider for s > 0 the simplicial space KDd

• ((0, s] × (−1, 1)d−1) for which we use
the embedding e : (−s, 0] × Rd−1 → (0, s] × (−1, 1)d−1 obtained from (21) and the translation by s . Call a



HOMOLOGICAL STABILITY OF TOPOLOGICAL MODULI SPACES 35

0-simplex (φ, t) therein a li�le d-disc with thickened tether if the restriction φ |Dd : Dd → (0, s) × (−1, 1)d−1

is a composition of a scaling and a translation. �e embedding φ : HDd → (0, s] × (−1, 1)d−1 induces an arc

φ−• B φ |[−1,0]×{0} : [−1, 0] → (0, s) × (−1, 1)d−1,

called the tether of φ, which connects the li�le d-disc to the boundary. �e embedding φ furthermore
induces a trivialisation of the normal bundle of the tether, which we consider as a map [−1, 0] → Vd−1(Rd )
to the space of (d − 1)-frames in Rd . We call a li�le d-disc with thickened tether (φ, t) two-dimensional, if

(i) the li�le d-disc φ |Dd is the image of a li�le 2-disc in (0, s)× (−1, 1) under SC 2 → SCd (see Section 2.1),
(ii) the induced tether φ−• lies in the slice (0, s) × (−1, 1) × {0}d−2, and

(iii) the induced trivialisation [−1, 0] → Vd−1(Rd ) equals, up to scaling by a smooth function [−1, 0] →
(0,∞), the parallel transport of the frame (e2, . . . , ed ) ∈ Vd−1(Rd ) at φ−• (0) along the tether φ−• , where
ei ∈ Rd denotes the ith basis vector.

De�nition 6.4. De�ne the augmented semi-simplicial space R◦• (Om) → Om with p-simplices

R◦p (Om) ⊆ Om × (
Emb(HDd , (0,∞) × (−1, 1)) × R)p+1

consisting of ((s, {ϕ j }), (φ0, t0), . . . , (φp , tp )) such that (φi , ti ) ∈ KDd

p ((0, s] × (−1, 1)d−1) and all (φi , ti ) are
two-dimensional li�le d-discs with thickened tethers whose induced li�le 2-disc is one of the ϕ j . �e third
graphic of Figure 7 illustrates a 0-simplex of this semi-simplicial space.

As a two-dimensional li�le 2-disc with thickened tether is, up to a contractible choice of a thickening,
determined by the associated li�le 2-disc and its tether, the ∆̃inj-spaces R◦• (Om) and R−•• (Om) are weakly
equivalent. �e (∆̃op

inj ×UO)-space UO◦•,� in (23) is de�ned in the same way as UO−••,�, but using R◦• (Om)
instead of R−•• (Om). Making use of the equivalence between R◦• (Om) and R−•• (Om), the proof of Lemma 5.7
carries over to the manifold case and shows thatUO◦•,� andUO(•, �)weakly equivalent (∆̃op

inj×UO)-spaces,
which establishes the equivalence 2©. Finally, we construct the remaining equivalence 3© via an analogue

(24) Φ : M × R◦• (Om) −→ R◦• (M),
of the simplicial map (16), mapping (A, (e, (φ0, t0), . . . , (φp , tp ))) to the manifold θ (e;A,Xp+1), equipped
with the embeddings of HX obtained from the φi by replacing Dd by X (see Figure 7). Using (24) instead
of (16) in the de�nition of (17), we obtain simplicial maps UO◦•,k × Bk (M) → R◦• (M)�b, which induce a
morphism of the form B

(
UO◦•,�,UO,B�(M)) → R◦• (M)�b, as in the case of con�guration spaces. �is

is the last morphism 3© in the zig-zag (23), and it is a weak equivalence by the argument of the proof of
Lemma 5.8, minorly modi�ed using the following lemma, which completes the proof of Theorem 6.3.

Lemma 6.5. For all p ≥ 0 and elements of the form (cp+1, (φ0, t0 . . . ,φp , tp )) ∈ R◦p (Om), the simplicial map

Φ induces a weak equivalenceM → R◦p (M).
Proof. �e line of argument of [GR18, Lem. 6.10] for X = D2p]Sp × Sp generalises verbatim. �

A ∈ M X ∈ A Φ(A, (e, (t ,φ))) ∈ R◦0 (M)(e, (t ,φ)) ∈ R◦0 (SC 2(m))

Figure 7. �e resolution by embeddings and the map Φ

Galatius and Randal-Williams [GR18] proved high-connectivity of KX• (A) if A is simply connected
and X � D2p](Sp × Sp ) for p ≥ 3. On the basis of this, Friedrich [Fri17] and Perlmu�er [Per16a] proved
connectivity results for other choices of A and X . To state their results, recall the stable X -genus д̄X , as
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introduced in Section 2.3, and denote by usr(Z[G]) for a group G the unitary stable rank [KM02, Def. 6.3]
of its group ring Z[G], considered as a ring with an anti-involution.

�eorem 6.6. �e realisation of KX• (A) for a connected manifold A ∈ M is

(i) 1
2 (д̄X (A) − 4)-connected if X � D2p](Sp × Sp ), p ≥ 3, and A is simply connected,

(ii) 1
2 (д̄X (A) − usr(Z[π1(A)]) − 3)-connected if X � D2p](Sp × Sp ) and p ≥ 3, and

(iii) 1
2 (д̄X (A) − 4−m)-connected if X � Dp+q](Sp ×Sq), 0 < p < q < 2p − 2, and A is (q −p + 2)-connected,
wherem is the smallest number such that there exists an epimorphism of the form Zm → πq(Sp ).

Proof. �e �rst two parts are [Fri17, �m 4.7; GR18, Cor. 5.10]. Corollary 7.3.1 of [Per16a] proves the
third claim for the genus дX (B) instead of its stable variant д̄X (B). However, the proof given therein goes
through for д̄X (B) if one replaces the relation between the genus of a manifold B satisfying the assumption
in (ii) and the rank of its associated Wall form (see [Per16a, Prop. 6.1]) with the analogous statement
relating the stable genus to the stable rank. �

We denote by д̄XA for a manifold A ∈ M the grading ofM obtained by localising the stable X -genus at
objects stably isomorphic to A (see Remark 2.20). Combining Theorem 6.3 with 6.6 implies the following.

Corollary 6.7. �e canonical resolution R•(M) → M is graded

(i) 1
2 (д̄XA − 2)-connected for X � D2p](Sp × Sp ), p ≥ 3, and any simply-connected A ∈ M.

(ii) 1
2 (д̄XA − usr(Z[π1(A)]) − 1)-connected for X � D2p](Sp × Sp ), p ≥ 3, and any connected A ∈ M.

(iii) 1
2 (д̄XA − 2 −m)-connected for X � Dp+q](Sp × Sq), 0 < p < q < 2p − 2, and any (q − p + 2)-connected
A ∈ M withm de�ned as in Theorem 6.6.

Remark 6.8. In the case d = 2, one can use [HV17, Prop. 5.1] to show that KX• (A) is 1
2 (д̄X (A) − 3)-connected

for X � D2](S1 × S1) and A ∈ M an orientable surface, which implies stability results for di�eomorphism
groups of surfaces. �eir homotopy discreteness [EE67; Gra73] ensures their equivalence to their mapping
class group for which stability has a longstanding history, going back to a breakthrough result by Harer
[Har85], improved in manifold ways since then [Bol12; CM09; Iva93; Ran16; RW17; Wah08].

By Remark 3.3, �eorem A and C apply toM when graded by д̄XA + 2, by д̄XA + usr(Z[π1(A)]) + 1, or by
д̄XA +m + 2 for X and A as in the respective three cases of Corollary 6.7. On path components, this implies
Theorem H, noting that in the relevant ranges, the genus and the stable genus agree (see Remark 2.24).

6.2. Coe�cient systems for moduli spaces of manifolds. Recall from Section 4.2 that coe�cient
systems for the moduli space of manifolds with P-boundary M are de�ned in terms of the module
structure of the fundamental groupoid (Π(M), ⊕) over the braided monoidal category (Π(A), ⊕,b, 0),
induced by the E1-module structure ofM over the moduli space of manifolds with sphere boundaryA. In
the following, we provide an alternative description for the fundamental groupoids Π(M) and Π(A) that
is more suitable to construct coe�cient systems onM.

De�ne the categories mcg(M) and mcg(A) having the same objects as Π(M) and Π(A), respectively,
and the set of mapping classes π0(Di�∂(M,N )) as morphisms between M and N , where Di�∂(M,N ) is the
space of di�eomorphisms that preserve a germ of the canonical collars of M and N ensured by condition i)
in the de�nition ofM(W ). �e composition in mcg(M) and mcg(A) is the evident one.

Lemma 6.9. �e category mcg(M) is canonically isomorphic to Π(M), and mcg(A) to Π(M).
Proof. Recall the �bre bundle from the construction ofM(A) in the beginning of the chapter,

Di�∂(A) → Emb∂(A, (−∞, 0] × Rd × R∞) → M(A).
Li�ing a path from A to B inM to a path in the total space starting at the inclusion A ⊆ (−∞, 0] ×Rd ×R∞
gives a path of embeddings that ends at an embedding with image B and hence provides a di�eomorphism
from A to B by restricting to the image. �is provides a functor from mcg(M) to Π(M), whose inverse
is induced by considering a di�eomorphism as an embedding, choosing a path in the contractible space
Emb∂(A, (−∞, 0] × Rd × R∞) from the inclusion A ⊆ (−∞, 0] × Rd × R∞ to the embedding obtained from
the di�eomorphism, and mapping this path toM(A). �e argument for mcg(A) � Π(A) is analogous. �
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�e module structure of Π(M) over Π(A) can be transported via the identi�cation of the preceding
lemma to one of mcg(M) over mcg(A), considered as a braided monoidal category by making use of the
isomorphism mcg(A) � Π(A). In concrete terms, the monoidal structure on mcg(A) is on objects given
by the one of Π(A) induced by the E2-multiplication and on morphisms by multiplying f ∈ Di�∂(A,B)
and д ∈ Di�∂(A′,X ′) as f ⊕ д ∈ Di�∂(A ⊕ A′,B ⊕ B′), de�ned by extending f and д via the identity. �e
description of the module structure on mcg(M) is analogous. Coe�cient systems forM are then given
by coe�cient systems for the module mcg(M) over mcg(A) in the sense of De�nition 4.1.

To illustrate how this identi�cation can be used to construct coe�cient systems onM, we discuss
one example in detail. Consider for i ≥ 0 the functor Hi : mcg(M) → Ab that assigns a manifold A ∈ M
its ith singular homology group Hi (A). �e inclusions A ⊆ A ⊕ X induce a natural transformation
σHi : Hi (−) → Hi (− ⊕ X ) that satisi�es the triviality condition for coe�cient systems (see De�nition 4.1).
To calculate the degree of Hi , we consider the commutative diagram with exact rows

0 Hi (A) Hi (A ⊕ X ) H̃i (Cone(P)\X ) 0

0 Hi (A ⊕ X ) Hi (A ⊕ X ⊕ X ) H̃i (Cone(P)\X ) 0
σHi σ ΣHi id

induced by the long exact sequence of pairs together with the equivalences Hi (A ⊕ X ⊕k ,A ⊕ X ⊕k−1) �
H̃i (Cone(P)\X ) obtained by collapsing A ⊕ X ⊕k−1. �e le�most vertical map is induced by the inclusion
and the second one by the inclusion followed by A ⊕ bX ,X . Naturality of the diagram in A implies triviality
of the kernel of Hi , and also that its cokernel is constant, so of degree 0 if H̃i (Cone(P)\X ) , 0 and of degree
−1 else wise. Hence, Hi is of degree 1 at 0 if H̃i (Cone(P)\X ) , 0 and of degree 0 at 0 if H̃i (Cone(P)\X ) = 0,
from which Corollary I is implied by an application of Theorem H.

6.3. Extensions.

6.3.1. Stabilisation by (2n−1)-connected (4n+1)-manifolds. Perlmu�er [Per16b] established high-connectivity
of the semi-simplicial spaces KX• (A) for 2-connected manifolds A of dimension (4n + 1) with n ≥ 2 and
certain speci�c (2n − 1)-connected stably-parallelisable manifolds X with �nite H2n(X ;Z) and trivial
H2n(X ,Z/2Z). From this, he derived homological stability with constant coe�cients of
(25) B Di�∂(A) → B Di�∂(A\X )
for these speci�c A and X . By using classi�cation results of closed (2n − 1)-connected stably parallelisable
(4n + 1)-manifolds due to Wall [Wal67] and De Sapio [De 70], he furthermore concluded that (25) stabilises
in fact for all X with X having the properties described above and not just the speci�c ones considered
before. �e methods of this section can be used to extend his homological stability result to abelian
coe�cients and coe�cient systems of �nite degree.

6.3.2. Automorphisms of topological and piecewise linear manifolds. In [Kup15], Kupers explains how one
can adapt the methods of Galatius and Randal-Williams [GR18] to prove high-connectivity of the relevant
semi-simplicial spaces of locally �at embeddings to prove homological stability for classifying spaces
of homeomorphisms of topological manifolds and PL-automorphisms of piecewise linear manifolds. By
extending the ideas of this section, our framework applies also to these examples, resulting in an extension
of Kupers’ stability results to coe�cients systems of �nite degree.

7. Homological stability for modules over braided monoidal categories

We explain the applicability of our framework to modules over braided monoidal categories, and make
a comparison to the theory for braided monoidal groupoids developed by Randal-Williams–Wahl [RW17].

7.1. E1-modules over E2-algebras frommodules over braided monoidal categories. Recall the cat-
egorical operad of coloured braids CoB (see e.g. [Fre17, Ch. 5]). �e category of n-operations is the groupoid
CoB(n) with linear orderings of {1, . . . ,n} as objects and braids connecting the spots as prescribed by the
orderings as morphisms. �e operadic composition is given by “cabling”. Algebras over CoB are exactly
strict braided monoidal categories, and the topological operad obtained by taking classifying spaces is E2
(see e.g. [Fre17, �m 5.2.12; FSV13, Ch. 8]). Extending this, we construct a two-coloured operad whose
algebras are modules over braided monoidal categories and whose classifying space is E1,2 (see Section 2.1).
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De�nition 7.1. De�ne a categorical operad CoBM with coloursm and awhose operations CoBM (mk , al ;m)
are empty for k , 1 and equal CoB(l) otherwise. �e operations CoBM (mk , al ; a) are empty for k , 0 and
equal CoB(l) elsewise. Restricted to the a-colour, CoBM is de�ned as CoB . Requiring commutativity of

CoBM (m, al ;m) × (
CoBM (m, ak ;m) × CoBM (ai1 ; a) × . . . × CoBM (ail ; a)) CoBM (m, ak+i ;m)

CoB(k) × CoB(l) × CoB(i1) × . . . × CoB(il ) CoB(k) × CoB(∑j i j ) CoB(k +∑
j i j )

γCoBM

τ

id×γCoB ⊕

de�nes the remaining compositionγCoBM , where τ interchanges the �rst two factors,γCoB is the composition
of CoB , and ⊕ is γCoB (id{1<2};−,−), i.e. puts braids next to each other (see Figure 8 for an example).

d ∈ CoBM (m, a2;m) e ∈ CoBM (m, a3;m) f ∈ CoBM (a2; a) д ∈ CoBM (a1; a) γ (d ; e, f ,д) ∈ CoBM (m, a6;m)

Figure 8. �e operadic composition in CoBM

Recall the notion of a right-module (M, ⊕) over a monoidal category (A, ⊕, 0): a categoryM with a
functor ⊕ : M ×A →M that is unital and associative up to coherent isomorphism (see Section 1.1).

Lemma 7.2. �e structure of a (graded) CoBM -algebra on a pair of categories (M,A) is equivalent to a
strict (graded) braided monoidal structure on A and a strict (graded) right-module structure onM over it.
Furthermore, the topological operad obtained from CoBM by taking levelwise classifying spaces is E1,2.

Proof. �e proof of the corresponding result for CoB in [Fre17, Ch. 5] carries over mutatis mutandis. �

As a consequence of the previous lemma, the classifying space of a graded module over a braided
monoidal category carries the structure of a graded E1-module over an E2-algebra.

Remark 7.3. �e operad of parenthesised coloured braids encodes non-strict braided monoidal categories,
and its classifying space operad is E2 as well [Fre17, Ch. 6]. By considering a parenthesised version of
CoBM , this extends in a similar fashion to non-strict right-modules over non-strict braided monoidal
categories, whose classifying spaces hence also give E1-modules over E2-algebras.

7.2. Homological stability for groups and monoids. Let (M, ⊕) be a graded right-module over a
braided monoidal category (A, ⊕,b, 0) with a stabilising object X , i.e. an object of A of degree 1. Taking
classifying spaces results by Lemma 7.2 in a graded E1-module BM over the E2-algebra BA with stabilising
object X ∈ BA, hence provides a suitable input for Theorem A and C. In the following, we introduce a
condition onM that ensures a simpli�cation of the canonical resolution of BM.

De�nition 7.4. �e module (M, ⊕) is called injective at an object A ofM if the stabilisation
(− ⊕ X ⊕p+1) : Aut(B) → Aut(B ⊕ X ⊕p )

is injective for all objects B for which B ⊕ X ⊕p is isomorphic to A for a p ≥ 0.

De�nition 7.5. De�ne for an object A ofM a semi-simplicial set W RW• (A) with p-simplices given as
equivalence classes of pairs (B, f ) of an object B ofM and a morphism f ∈ M(B ⊕ X ⊕p+1,A), where
(B, f ) and (B′, f ′) are equivalent if there is an isomorphism д ∈ M(B,B′) satisfying f ′ ◦ (д ⊕ X ⊕p+1) = f .
�e ith face of a p-simplex [B, f ] is de�ned as [B ⊕ X , f ◦ (B ⊕ b−1

X ⊕i ,X ⊕ X ⊕p−i )].
Recall the spaces of destabilisationsW•(A), i.e. the �bres of the canonical resolution (see De�nition 2.14).

Lemma 7.6. IfM is a groupoid, then the semi-simplicial set of path components π0(W•(A)) for an object A
ofM is isomorphic toW RW• (A). Moreover,W•(A) is homotopy discrete if and only ifM is injective at A.
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Proof. �e inclusion of the 0-simplices obM ⊆ BM, together with the natural map morM → PathM,
induces a preferred bijection W RW

p (A) → π0(Wp (A)) for all p ≥ 0, since every path in BM between
0-simplices is homotopic relative to its endpoints to a one simplex, i.e. to a path in the image of morM →
PathM. By the de�nition of the respective face maps, these bijections assemble to an isomorphism of
simplicial sets, which proves the �rst claim. �e homotopy �breWp (A) of the map B(− ⊕ X ⊕p+1) : BM →
BM at A is homotopy discrete if and only if the induced morphisms on π1 based at all objects B with
B ⊕ X ⊕p+1 � A for p ≥ 0 are injective, which is clearly equivalent toM being locally injective at A. �

Remark 7.7. IfM and A are groupoids, thenM ' Π(BM) holds naturally as a module over A ' Π(BA),
so coe�cient systems for BM (see De�nition 4.13) are coe�cient systems forM as in Section 4.1.

Remark 7.8. Since the connectivity of the canonical resolution can be tested on the spaces of destabilisations
W•(A) (see Remark 2.17), Lemma 7.6 and 7.7 imply a version of Theorem A and C that is phrased entirely
in terms of (discrete) categories and semi-simplicial sets. �is provides a simpli�ed toolkit for proving
homological stability for graded modules over braided monoidal categories with a stabilising object X for
which the multiplication (− ⊕ X ) : Aut(B) → Aut(B ⊕ X ) is injective for all objects B of �nite degree.

7.3. Comparisonwith theworkofRandal-Williams andWahl. Let (G, ⊕,b, 0) be a braided monoidal
groupoid. In [RW17], it is shown that, for objects A and X in G, the maps

(26) B(− ⊕ X ) : B AutG(A ⊕ X ⊕n) −→ B AutG(A ⊕ X ⊕n+1)
satisfy homological stability with constant, abelian, and a class of coe�cient systems if a certain family of
associated semi-simplicial setsWn(A,X )• (see [RW17, Def. 2.1]) is su�ciently connected and G satis�es

(i) injectivity of the stabilisation map (− ⊕ X ) : AutG(A ⊕ X ⊕n) → AutG(A ⊕ X ⊕n+1) for all n ≥ 0,
(ii) local cancellation at (A,X ), i.e.Y ⊕X ⊕m � A⊕X ⊕n forY ∈ G and 1 ≤ m ≤ n impliesY � A⊕X ⊕m−n ,

(iii) no zero-divisors, i.e. U ⊕ V � 0 implies U � 0, and
(iv) the unit 0 has no nontrivial automorphisms.

As indicated by our choice of notation, if we consider G as a module over itself, the simplicial setWn(A,X )•
of [RW17] equalsW RW• (A ⊕ X ⊕n) as speci�ed in De�nition 7.5. To compare [RW17] with our work, de�ne
the module GA,X =

∐
n≥0 AutG(A ⊕ X ⊕n) over the braided monoidal category GX =

∐
n≥0 AutG(X ⊕n),

both graded in the evident way. By Theorem A and C, the maps (26) stabilise homologically—without
assumptions on G—if the canonical resolution of BGA,X is su�ciently connected, or equivalently, if the
spaces of destabilisationsW•(A ⊕ X ⊕n) associated to BGA,X are (see Remark 2.17).

�e semi-simplicial setsWn(A,X )• of [RW17] are equivalent to the spaces of destabilisationsW•(A⊕X ⊕n)
of BGA,X if conditions (i) and (ii) hold. Indeed, assumption (ii) implies that Wn(A,X )• agrees with the
semi-simplicial setW RW• (A⊕X ⊕n) associated to GA,X and hence also with π0(W•(A⊕X ⊕n)) by Lemma 7.6.
�e �rst condition imposes injectivity of GA,X at all objects A ⊕ X ⊕n , which is by Lemma 7.6 equivalent
to the homotopy discreteness of the space of destabilisationsW•(A ⊕ X ⊕n) of BGA,X .

Hence, if one prefers to work in a discrete se�ing as in [RW17], i.e. using semi-simplicial sets, condition
(i) is necessary. Condition (ii) ensures that the semi-simplicial sets of [RW17] agree with our spaces of
destabilisationsW•(A ⊕ X ⊕n), whose high-connectivity always imply stability by Theorem A and C. �e
last two conditions are redundant, i.e. imposing (i) and (ii) already implies (twisted) homological stability
of (26) under the connectivity assumptions of [RW17]. �e presence of these additional assumptions in
[RW17] is due to their usage of �illen’s construction 〈G,G〉 since the conditions (iii) and (iv) guarantee
that the automorphism groups Aut〈G,G〉(A ⊕ X ⊕n) and AutG(A ⊕ X ⊕n) coincide. If (i)–(iii) are satis�ed
and theWn(A,X ) are highly-conected, then [RW17] implies stability for Aut〈G,G〉(A ⊕ X ⊕n). Hence, in
this case, high-connectivity ofWn(A,X ) shows stability for both AutG(A ⊕ X ⊕n) and Aut〈G,G〉(A ⊕ X ⊕n).
�e reason for this is that, although these automorphism groups might di�er, their quotients Aut(A ⊕
Xn)/Aut(A ⊕ X ⊕n−p−1) �W RW

p (A ⊕ X ⊕n), forming the corresponding semi-simplicial sets, agree.

Remark 7.9. �e coe�cient systems [RW17] deals with are functors of �nite degree on the subcategory
CA,X ⊆ 〈G,G〉 generated by the objects A⊕X ⊕n . In contrast, Theorem C is applicable to functors of �nite
degree on 〈GA,X ,B〉 (see Remarks 4.12 and 7.7). As the canonical functors GA,X → G and B → G induce
〈GA,X ,B〉 → CA,X , every coe�cient system of [RW17] gives one in ours (cf. Remarks 4.11 and 4.12).
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Remark 7.10. �e ranges for coe�cient systems of �nite degree provided by Theorem C agree with the
ones of [RW17] in the situations in which their work is applicable. �e ranges for abelian coe�cients
of Theorem A improve the ones of [RW17] marginally, and so does the surjectivity range for constant
coe�cients in the case k > 2. Note that, by Remark 3.3, these ranges can in some cases be further improved.
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