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ABSTRACT. This thesis consists of three articles in which we make several contributions
to the study of characteristic classes of manifold bundles and closely related topics.

In Article A, we compare the ring of characteristic classes of smooth bundles with
fibre a closed simply connected manifold M of dimension 2n # 4 to the respective ring
resulting from replacing M by the connected sum M#3 with an exotic sphere . We show
that, after inverting the order of ¥ in the group of homotopy spheres, the two rings in
question are isomorphic in a range of degrees. Furthermore, we construct infinite families
of examples witnessing that inverting the order of ¥ is necessary.

In Article B, which is joint with Jens Reinhold, we study smooth bundles over surfaces
with highly connected almost parallelisable fibre M of even dimension. We provide
necessary conditions for a manifold to be bordant to the total space of such a bundle and
show that, in most cases, these conditions are also sufficient. Using this, we determine the
characteristic numbers realised by total spaces of bundles of this type, deduce divisibility
constraints on their signatures and A-genera, and compute the second integral cohomology
of BDiff*(M) up to torsion in terms of generalised Miller-Morita-Mumford classes.

In Article C, we introduce a framework to study homological stability properties of
E,-algebras and their modules, generalising work of Randal-Williams and Wahl in the
case of discrete groups. As an application, we prove twisted homological stability results
for various families of topological moduli spaces, such as configuration spaces and moduli
spaces of manifolds, and explain how these results imply representation stability for related
sequences of spaces.






ResuME. Denne athandling bestar af tre artikler hver med bidrag til studiet af karakteri-
stiske klasser af mangfoldighedsbundter og teet relaterede emner.

I Article A sammenligner vi ringen af karakteristiske klasser af glatte bundter hvis fiber
er en lukket enkeltsammenheengende mangfoldighed M af dimension 2n # 4, med ringen
der fas ved at erstatte M med den sammenhengende sum MY hvor 3 er en eksotisk
sfeere. Vi viser, at hvis ordnen af X inverteres som element i gruppen af homotopisfeerer,
sa er de to ringe isomorfe i et interval af grader. Desuden konstruerer vi uendelige familier
af eksempler som bevidner af det er nedvendigt at inverterer ordnen af >.

I Article B, udfert sammen med Jens Reinhold, studerer vi glatte bundter pa flader
med fiber M af hgj konnektivitet, neesten paralleliserbar og af lige dimension. Vi giver
nedvendige betingelser for at en mangfoldighed er kobordent med totalrummet for et
sadan bundt, og viser, at i de fleste tilfeelde, er disse betingelser ogsa tilstreekkelige. Ved
brug af dette, bestemmer vi de karakteristiske tal som realiseres af totalrummet for bundter
af denne type, deducerer divisibilitetsbegraensninger pa deres signaturer og A-genera
og beregner den anden heltallige kohomologi af BDiff*(M) op til torsion i termer af
generaliserede Miller-Morita-Mumford klasser.

I Article C introducerer vi et framework for studiet af homologisk stabilitetsegenskaber
for Ez-algebraer og deres moduler. Dette generaliserer arbejde af Randal-Williams og Wahl
i tilfeeldet af diskrete grupper. Som anvendelse bevises homologisk stabilitet med twistede
koefficienter for en raekke familier af topologiske modulirum, sa som konfigurationsrum,
og modulirum af mangfoldigheder, og vi forklarer hvorledes disse resultater implicerer
repraesentationsstabilitet for relaterede folger af rum.
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Introduction

Overview
This thesis consists of the following three articles.

Article A. On characteristic classes of exotic manifold bundles

Article B. Characteristic numbers of manifold bundles over surfaces with highly con-
nected fibers (joint with Jens Reinhold)

Article C. Homological stability of topological moduli spaces

After providing some background, we briefly summarise each of them.

Background

The classifying space BDiff (M) of the topological group of diffeomorphisms of a closed
manifold M classifies smooth fibre bundles with fibre M, so it is hardly surprising that
its homotopy type has been a longstanding object of interest to algebraic and geometric
topologists. Over time, two predominant approaches to studying BDiff (M) have emerged.

The first and more classical strategy stems from the deep connections between geomet-
ric topology and algebraic K- and L-theory. It is based on the idea of introducing a larger
space ISIFE(M) of so-called block diffeomorphisms whose deviation from the space of diffeo-
morphisms Diff (M) is measured in terms of Waldhausen’s algebraic K-theory of spaces,
at least in a range depending only on the dimension of M (see e.g. [WW388|). Studying the
space of block diffeomorphisms instead of Diff (M) is advantageous, since the difference
between lifgf(M ) and the more accessible space hAut(M) of homotopy equivalences can
be understood by means of surgery theory (see e.g. [Qui7o]).

In the course of the last two decades, a new approach for the investigation of BDiff(M)
arose, grounded in Madsen, Tillmann, and Weiss’ [Tilo7; MTo1; MWo7] work on Mum-
ford’s conjecture [Muma83|| on the moduli space of Riemann surfaces. This new strategy
primarily targets the ring H*(BDiff (M)) of characteristic classes of smooth bundles with
fibre M and has so far been developed the furthest for manifolds of even dimension 2n.
At first sight, this set of techniques is, like the previous method, restricted to a range of
degreed}-the so-called stable range—but instead of the dimension, this range depends on
the genus of M, defined as

g(M) = max{g > 0 | there exists a manifold N such that M = N#(S" x S")ﬁ-"}.

Turning towards the trailblazing achievement of this line of investigation, we assume M to
be oriented, restrict to the subgroup Diff "(M) of orientation-preserving diffeomorphisms,
and define MTSO(2n) as the Thom spectrum Th(—yz,) of the inverse of the universal
bundle over BSO(2n). A parametrised version of the Pontryagin-Thom collapse map
results in a canonical homotopy class of maps

BDIff*(M) — Q5 MTSO(2n)
!By way of an insight due to Weiss [Wei15|]| based on comparing diffeomorphisms to self-embeddings, one
can obtain information outside the stable range as well. This was recently taken up by Kupers [Kup16].
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2 INTRODUCTION

to a certain path component Q3 MTSO(2n) of the infinite loop space of MTSO(2n). Despite
the purely homotopy theoretical nature of its target, it turns out that the parametrised
Pontryagin-Thom map knows a surprising amount about BDiff*(M) when M is a surface:
it induces an isomorphism in homology in a range of degrees growing with the genus.
This remarkable fact for surfaces is a combination of a classical stability result of Harer
[Har8s|], saying that the homology of BDiff (M) is independent of g(M) in small degrees
relative to g(M), and the celebrated theorem of Madsen—-Weiss [MWo7], showing that
the parametrised Pontryagin-Thom map becomes an isomorphism in homology in the
limit g(M) — oo. The latter statement was formerly known as the generalised Mumford
conjecture, as it has the classical formulation as a direct consequence, since the rational
cohomology ring of Q;MTSO(2) can, by fairly standard methods, be computed as a
polynomial ring in the so-called Miller—Morita—Mumford classes x; of degrees 2i > 0.

It is thanks to Galatius and Randal-Williams that the success of parametrised Pontryagin—
Thom theory is by no means restricted to the case of surfaces anymore. Their seminal
sequence of articles [GR14}GR17;|GR18]], building on earlier work of Galatius—-Madsen-
Tillmann-Weiss [GMTWog], culminated in a homotopy theoretical formula for the ring of
characteristic classes H*(BDiff*(M)) in a range of degrees growing with the genus g(M)
for any simply connected manifold M of dimension 2n > 6. More specifically, after estab-
lishing higher dimensional analogues of Harer’s stability result and the Madsen-Weiss
theorem, they proved that the parametrised Pontryagin—-Thom map induces an isomor-
phism on homology in a range of degrees for any manifold of the described type, after
replacing its target QMTSO(2n) with a certain refinement depending on M. Since this
refinement is still defined entirely in homotopy theoretical terms and is thus amenable to
calculation, their work has paved the way for a variety of applications, for instance, to the
study of spaces of homotopy equivalences [BM14], topological Pontryagin classes [Wei1s|],
mapping class groups [GR16]|], finiteness properties of automorphism spaces [Kup16], and
spaces of metrics of positive scalar curvature [BER17; ER17].

Articles A and B of the present thesis join the ranks of applications of Galatius and
Randal-Williams’ programme. In Article A, we use their work to investigate the behaviour
of the ring of characteristic classes H*(BDiff "(M)) under changes to the smooth structure
of M, whereas in Article B, we study bundles over surfaces with highly connected fibres.
Article C, on the other hand, is more foundational in nature and focusses on extending
and conceptualising stability results such as Harer’s.

Article A. On characteristic classes of exotic manifold bundles

In Article A, we study the question of how the ring H*(BDift"(M)) of characteristic
classes of smooth oriented bundles with fibre a closed oriented d-manifold M behaves
under changes to the smooth structure of M on an embedded d-disc, or, equivalently, when
replacing M by the connected sum M}¥ with an exotic sphere ¥ in ©,. Here ©4 denotes
the finite group of homotopy spheres up to h-cobordism, classically studied by Kervaire
and Milnor [KM63]. In the first part of the article, we utilise the work of Galatius and
Randal-Williams to provide an answer to this question for simply connected manifolds M
of dimension 2n # 4 in a range of degrees.

Theorem (Article A, Thm A). Let M be a closed, oriented, simply connected manifold of
dimension 2n # 4 and X € ©y,,. There is a zig-zag of maps of spaces inducing an isomorphism

H..(BDiff*(M); Z[1]) = H.(BDiff"(M#Z); Z[ 1 ])
in degrees * < w, where k denotes the order of X € ©g,.

In the second part of Article A, we focus on the family of manifolds W, = #¢ (59 %x 5% to
examine whether inverting the order of X is necessary for the previous theorem to be valid.
Inspired by work of Kreck [Kre79|], we show that, in small degrees, the possible difference
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between the homology of BDiff*(W,) and BDiff"(W,#3) can be detected in a suitable
bordism theory. Combining this with known computations in stable homotopy theory,
we find families of homotopy spheres ¥ for which the integral homology of BDiff* (W)
differs from that of BDiff"(W,#2) for all g > 0. We refer the reader to Article A for details,
but state two particular consequences of our considerations.

Theorem (Article A, Cor. C, E). There are X € Oy, for infinitely many values of n such that
H,(BDiff"(W,);Z) and H;(BDiff*(W,4X); Z)
are not isomorphic for g > 0. Furthermore, for every 3 € ©19 = Z/6Z of order 3 or 6,
H3(BDiff"(W,); Z[3]) and Hs(BDiff" (W, 4%); Z[5])
are not isomorphic forg > 0.

Remark. It would be interesting to know whether the rings of characteristic classes
H*(BDiff*(M); Z[%]) and H*(BDiff " (M§X); Z[%]) are isomorphic without assumptions on
the degree. It follows from work by Dwyer—Szczarba [DS83] that this is indeed the case
if one restricts to the unit component Diffy(M) of Diff "(M). Passing from BDift" (M) to
BDiffy(M), however, usually changes the (co)homology significantly, so one might hope
to find an example for which H*(BDiff*(M);Z[%]) and H*(BDiff*(MﬂZ);Z[%]) are not
isomorphic in all degrees. In the light of the theorem above, such a difference can only
occur outside the stable range of Galatius—Randal-Williams.

Article B. Characteristic numbers of manifold bundles over surfaces with
highly connected fibres (joint with Jens Reinhold)

Article B is concerned with the problem of determining which manifolds arise, up to
bordism, as total spaces of bundles of oriented closed manifolds over surfaces with fibre a
fixed manifold M of dimension d. Equivalently, this asks for the image of the morphism

(1) Q;°(BDIff* (M) — Q5°,,

defined on the bordism group of oriented M-bundles over oriented closed surfaces, which
assigns to a bundle its total space. Work of Meyer [Mey72; Mey73]| shows that the signature
o: Q39 — Z of classes in this image has to be divisible by 4. Refining Meyer’s result, we
provide a complete answer to the posed question in the case of highly connected, almost
parallelisable fibres M of even dimension, assuming a mild additional condition on M
(see Article B, Prop. 1.9). Our results in particular apply to the iterated connected sums
Wy = #(S" x 5™)#9 to which we restrict our attention in this summary. Using parametrised
Pontryagin-Thom theory, we show that, for this family of manifolds, classes in the image
of the morphism (1) lift to the bordism group 952’12 of highly connected (i.e. n-connected)
manifolds, and that this property, when combined with the divisibility of the signature by
4, detects such bordism classes for g > 5.

Theorem (Article B, Thm A). The image of the morphism
Q3° (BDIff*(W,)) — Q39

2n+2

is contained in the subgroup

im(Q{", — 0, )no"\(4-2).

Moreover, equality holds if g > 5. For 2n = 2, requiring g > 3 is sufficient.
This reduces the initial problem to understanding the image of the canonical morphism

(2) Q(") N QSO

2n+2 2n+2°
a task to which the second part of Article B is devoted. We combine work of Kervaire—
Milnor [KM63[] and Wall [Wal62]] with enhancements due to Brumfiel [Bru68|]] and Stolz
[Sto8s5;|Sto87]] to describe this image concretely, both, in terms of explicitly constructed
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manifolds, as well as expressed in characteristic numbers (see Article B, Sect. 2). These
descriptions, however, depend on one unknown: the order ord([Xo]) of the class [Xp] in
coker(J)4m-1 of a certain homotopy sphere X in ©4p,_1. Although key to the classification
of highly connected manifolds, this class is still only known in very special cases (see
Article B, Sect. 2.3). Combining our computations of the image of (2) with the previous
theorem, we derive divisibility constraints on the characteristic numbers, signatures, and
A-genera of total spaces of Wy-bundles over surfaces, and determine these invariants
completely for g > 5. We point the reader to Article B for the statements of the general
results, but mention one concrete consequence for the divisibility of the signature. In
order to do so, we denote the 2-adic evaluation of an integer by v,(-).

Theorem (Article B, Cor. C). There is an oriented Wy-bundle over a closed oriented surface
with 4m-dimensional total space of signature 4 if and only if m = 1,2,4. Form # 1,2,4, the
signature of such a total space is divisible by 2°™*? for m odd and by 22203 for m even.

In the final part of the work, we explain how our results can be used to derive a basis
of the torsion free quotient H2(BDiff*(M); Z)fc. for most closed, highly connected, almost
parallelisable manifolds in terms of generalised Miller—-Morita—Mumford classes k. in
H?(BDiff*(M)) associated to classes ¢ in H**2"(BSO) (see Article B, Thm 3.5). This extends
the corresponding rational computation, which can be obtained by a direct application
of the work of Galatius-Randal-Williams (see Article B, Sect. 3.2). To state our integral
refinement in the case of W, we denote the ith Bernoulli number by B; and refer the
reader to the introduction of Article B for the definition of the other variables appearing
in the statement; all of them are explicit, aside from the order ord([>¢]) discussed earlier.

Theorem (Article B, Thm D). Let 2n > 6 and g > 7. The group H*(BDiff*(W,); Z)free is
trivial for 2n = 0 (mod 4); of rank 1 generated by

Kpm
202m — 1)!jim
for 2n = 2 (mod 8), where m = (n + 1)/2; and of rank 2 generated by
Kp2 p 2Kpyy — Kp2 ‘ﬁzlfl (Czk% + 2dzk(_l)k) Kplzc
an - ,
Z,ukai ord([Zp])(2k — 1)!2 2(4k — 1)jox 2(2k — 1)12

for2n = 6 (mod 8), wherek = (n + 1)/4.

Remark. Article B leaves open the question of whether the additional assumption on
a highly connected almost parallelisable 2n-manifold M that we impose (see Article B,
Prop. 1.9) is necessary. This is equivalent to asking whether the images of the bordism
groups QgO(BDiff*(M, D?")) and QgO(BDiff*(M)) in Qgr?” agree, which is, in turn, closely
related to the torsion in Hy(BDiff*(M); Z) (see Article B, Rem. 1.11). It would be desirable
to understand this torsion subgroup better; to date, very little is known about it, even in

the presence of high genus.

Article C. Homological stability of topological moduli spaces

Harer’s stability theorem [Har8s] and Galatius—Randal-Williams’ higher dimensional
analogue [GR18]] are special instances of a general phenomenon known as homological
stability—the topic of Article C. A sequence of spaces

Mg o Mg - Mg —

is said to satisfy homological stability if the induced maps in homology are isomorphisms
in a range of degrees increasing with g. Most proofs of homological stability trace back to
a classical argument of Quillen, and in Article C, we conceptualise this pattern to provide
a general framework for homological stability results. It is based on the observation that
the majority of the families My known to stabilise homologically assemble into a graded
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Ey-module M =[] ;50 Mgy over an E;-algebra A—the homotopy theoretical analogue of a
graded module over a braided monoidal category (see Article C, Sect. 2.1). In particular,
they come equipped with a homotopy associative multiplication &: M X A — M and a
grading gp: M — Ny. We introduce the canonical resolution R(M) — M associated
to such a module M with a stabilising object X € A, i.e. an element of degree 1. Vaguely
speaking, this is an augmented semi-simplicial space up to higher coherent homotopy
whose connectivity controls the stability behaviour of the sequence (- ®X): My — Mgy,
of subspaces M, = g/‘vll({g}) of fixed degree. To state one of the results we prove in this
direction, we call M graded (g )-connected for a function ¢: N — Q if its realisation
[Re(M)|g — My, restricted to degree g, is [ ¢(g)|-connected for all g > 1.

Theorem (Article C, Thm A). If the canonical resolution of a graded E,-module over an

E;-algebra with stabilising object X is graded (@)—connectedfor some k > 2, then

(- ®X).: Hi(Mg) — Hi(Mg+1)
is an isomorphism fori < ngl and an epimorphism for i < #.
Furthermore, we show that under the same conditions as in the preceding theorem, the
sequence M, stabilises in a stronger, twisted sense, namely with respect to abelian and
finite degree coefficients (see Article C, Thms A and C).

Examples. In many cases, the canonical resolution recovers semi-simplicial spaces of
geometric nature that have been studied before and are known to be sufficiently connected
for the previous theorem to apply. As a consequence, we derive various new homological
stability results and improve many known ones by means of more general coefficients,
better ranges, or fewer assumptions. The following is a selection of the examples presented
in Article C, generalising results contained in [GR18; | McD75} Pal18; |Seg73; [Til16] and
confirming a conjecture by Palmer [Pal18].

Theorem (Article C, Thms D and H, Cor. F). The following sequences of spaces satisfy
homological stability with abelian as well as finite degree coefficients.

(i) BDiff 5(MH(S™ x S™)#9), the moduli space of manifolds diffeomorphic to M(S™ x S™)#9
relative to the boundary, for a compact simply connected manifold M of dimension
2n > 6 with non-empty boundary.

(ii) C7(M), the unordered configuration space of g points in a manifold M with labels in a
fibration w: E — M with path connected fibres, where M is connected, has dimension
at least 2, and has non-empty boundary.

(iii) C’g‘(M), the configuration space of g unordered embedded k-discs for a fixedk > 0 in a
manifold M satisfying the assumptions of (ii).

(iv) BDiﬁ“lgc’a(M), the moduli space of manifolds diffeomorphic to a manifold M relative to
the boundary, together with g unordered embedded k-discs for a fixed k > 0, where M
satisfies the assumptions of (ii).

Representation stability. By relating twisted homological stability and representation sta-
bility in the sense of Church and Farb [CF13]], we also conclude that our twisted stability
results imply representation stability for related families of moduli spaces equipped with
compatible group actions (see Article C, Sect. 5.3.2).

Applications to group homology. The classifying space of a module over a braided monoidal
category forms an E;-module over an E,-algebra, so our theory can be applied to the
study of homological stability for families of groups or monoids as well. This enhances
prior work by Randal-Williams and Wahl [RW17]] on the stability behaviour of families
of discrete groups forming a braided monoidal category in various ways (see Article C,
Sect. 7). In particular, we improve their ranges and remove all assumptions that they
impose on the braided monoidal groupoid.
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ON CHARACTERISTIC CLASSES OF EXOTIC MANIFOLD BUNDLES

MANUEL KRANNICH

ABSTRACT. Given a closed simply connected manifold M of dimension 2n # 4, we
compare the ring of characteristic classes of smooth oriented bundles with fibre M to the
respective ring resulting from replacing M by the connected sum M#3 with an exotic
sphere X. We show that, after inverting the order of ¥ in the group of homotopy spheres,
the two rings in question are isomorphic in a range of degrees. Furthermore, we construct
infinite families of examples witnessing that inverting the order of X is necessary.

The classifying space BDiff"(M) of the topological group of orientation-preserving dif-
feomorphisms of a closed oriented manifold M in the smooth Whitney-topology classifies
smooth oriented fibre bundles with fibre M. Its cohomology H*(BDiff"(M)) is the ring of
characteristic classes of such bundles and is thus of great interest from the point of view
of geometric topology. Initiated by Madsen-Weiss’ solution of the Mumford conjecture
on the moduli space of Riemann surfaces , there has been significant progress in
the study of H*(BDiff*(M)) in recent years, including in high dimensions. A programme
of Galatius—Randal-Williams [GR14/GR17|/GR18] culminated in an identification of the
cohomology in consideration in a range of degrees in purely homotopy theoretical terms
for all simply connected manifolds M of dimension 2n > 6. Analogous to the case of
surfaces, this range depends on the genus of M, defined as

g(M) = max{g > 0 | there exists a manifold N such that M = N§(S" x S™)h9y,

The present work is concerned with the behaviour of the cohomology H*(BDiff"(M))
when changing the smooth structure of the underlying d-manifold M on an embedded
disc of codimension zero; that is, when replacing M by the connected sum M§> with an
exotic sphere ¥ in ©4. Here ©, denotes the finite abelian group of oriented homotopy
spheres, classically studied by Kervaire-Milnor . In the first part, we use the work
of Galatius—-Randal-Williams to show that for closed simply connected manifolds M of
dimension 2n # 4, the cohomology H*(BDiff*(M)) is insensitive to replacing M by M#i>.
in a range of degrees, at least after inverting the order of =. As our methods of proof are
more of homological than of cohomological nature, we state our results in homology.

Theorem A. Let M be a closed, oriented, simply connected manifold of dimension 2n # 4
and 3 € Oy, an exotic sphere. There is a zig-zag of maps of spaces inducing an isomorphism

H..(BDiff*(M); Z[ 1]) = H.(BDiff* (M§3); Z[ 1])

. g(M)-3
in degrees x < ==

, where k denotes the order of ¥ € Osy,.

Remark. Using recent work of Friedrich , one can enhance Theoreto all oriented,
closed, connected manifolds M of dimension 2n # 4 whose associated group ring Z[;(M)]
has finite unitary stable rank, as defined e.g. in IKMozl Def. 6.3]. This applies for instance
if the fundamental group is finite or finitely generated and abelian.

Remark. By means of parametrized smoothing theory, Dwyer-Szczarba compared
the homotopy types of the unit components Diffy(M) C Diftf*(M) for different smooth
structures of M. In particular, their work implies that for a closed manifold M of dimension
d # 4 and a homotopy sphere ¥ € @, the spaces BDiff((M) and BDiffo(M#X) have the
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same Z[ +]-homotopy type for k the order of 3 in ®4, which results in an analogue of
Theoremfor BDiffo(M) without assumptions on the degree. However, the homology of
BDiff" (M) and BDiffo(M) is usually very different and we do not know whether Theore
holds outside the stable range of Galatius—Randal-Williams, except in a very special case:
specialised to degree 1, the assumption on degree in Theoremis g(M) = 5 and from work
of Kreck , one can conclude that Theoremholds in this case without assuming
g(M) > 5if M is (n — 1)-connected, n-parallelisable, and of dimension 2n # 4.

In the second part of this work, we focus on the family of manifolds W, = §9(S" x S™)
to address the question of whether Theoremfails without inverting the order of the
homotopy sphere, i.e. with integral coefficients. To state our first result in that direction,
we denote by MO(n) the Thom-spectrum of the n-connected cover BO(n) — BO By
the classical theorem of Pontryagin-Thom, the ring of homotopy groups 7.MO(n) is

isomorphic to the ring in of bordism classes of closed manifolds equipped with a lift
of their stable normal bundle along BO(n) — BO. An oriented homotopy sphere X of
dimension 2n has, up to homotopy, a unique such lift that is compatible with its orientation

and hence defines a canonical class [X] in the bordism group Q§Z>. As is common, we

denote by n € 1S the generator of the first stable homotopy group of the sphere spectrum.

Theorem B. Forg > 0 and an exotic sphere X € ©g, with 2n # 4, there is an exact sequence
Z/2 —> Hy(BDiff*(W,); Z) — H; (BDiff* (W, #5); Z) —> 0.

Ifthe product - [2] € 72n+1MO(n) does not vanish, then the first map is nontrivial. Moreover,

the converse holds for g > 5.

Note that the first homology group H;(BDiff*(W,); Z) agrees with the abelianisation
of the group o Diff*(W,) of isotopy classes of diffeomorphisms of M. It follows from
a result of Kreck Thm. 2] that this group is finitely generated for 2n > 6, so
the previous theorem implies that H; (BDiff*(W})); Z) and H;(BDiff*(W,§{X); Z) cannot be
isomorphic if the product 7 - [3] is nontrivial in 75,11 MO(n). From computations in stable
homotopy theory, we derive the existence of infinite families of homotopy spheres for
which this product does not vanish, hence for which the integral version of Theorem
fails in degree 1. Such examples exist already in dimension 8—the first possible dimension.
Combining Theoremwith work of Kreck , we also find % such that 7, Diff*(W)
and o Diff"(W,#X) are nonisomorphic, but become isomorphic after abelianisation.

Corollary C. There are exotic spheres 3 € Oy, in infinitely many dimensions 2n such that
H, (BDiff*(W,); Z) and H,(BDiff*(W,4X);Z)
are not isomorphic for g > 0. Furthermore, there are Y. € Ogy., for allk > 1 such that
7y BDiff"(W,) and m BDiff"(W,§X)
are not isomorphic for g > 0, but become isomorphic after abelianisation for g > 5.

By Theorem the first homology BDiff*(W,) and BDiff*(W,#X) is isomorphic after
inverting 2. More generally, this holds with W; replaced by any simply connected manifold
M, which raises the question of whether the failure for Theoremto hold integrally is
only 2-primary. We answer this question in the negative by proving the following.

Theorem D. Forg > 0 and an exotic sphere 3 € Oy, with 2n # 4, there is an isomorphism
H..(BDIff*(W,); Z[4]) = H.(BDiff*(W,#2); Z[1])
in degrees » < 2 and furthermore an exact sequence
Z[3] — Hs(BDiff*(W,); Z[ 5]) — Hs(BDiff*(W,#%); Z[3]) — 0.
If2n = 10 and the order of X is a positive multiple of 3, then the leftmost map is nontrivial.

!Note that, instead of X (n), some authors write X (n + 1) for the n-connected cover of a space X.
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It follows from a recent result of Kupers m Cor. C] that H3(BDiff"(W,); Z) is
finitely generated for 2n # 4, so we conclude that the two groups H3(BDiff " (W,); Z[%]) and
H;(BDiff " (W, §2); Z[%]) cannot be isomorphic if the first morphism in the exact sequence
of Theorem|D|is nontrivial. As ©1 is cyclic of order 6, this holds for four of the six
homotopy spheres in dimension 10 by the second part of Theorem@

Corollary E. Forg > 0 and 3 € Oy with order a positive multiple of 3, the groups
H3(BDiff"(W,); Z[3]) and Hs(BDiff" (W, 4); Z[1])
are not isomorphic.

Remark. Our methods of proof also show that the analogous statements of of Corollary
and the first part of Corollaryhold for homotopy groups instead of homology groups as
well. This implies the existence of homotopy spheres X € ©,, for which 7;(BDiff " (W, #5"))
and 7;(BDiff " (W, %)) are not isomorphic for some i and all g. In the case of g = 0, such
examples have been constructed earlier by Habegger—Szczarba .

Acknowledgements. Iwould like thank Oscar Randal-Williams for asking me a question
that led to this work, as well as for many enlightening discussions and his hospitality at
the University of Cambridge. Furthermore, I am grateful to Seren Galatius, Alexander
Kupers, and Jens Reinhold for valuable comments and to Mauricio Bustamante for making
me aware of the work of Dwyer—Szczarba and Habegger—Szczarba. I was supported by the
Danish National Research Foundation through the Centre for Symmetry and Deformation
(DNRFg2) and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 682922).

1. EXOTIC SPHERES AND PARAMETRISED PONTRYAGIN-THOM THEORY

We recall high-dimensional parametrised Pontryagin-Thom theory a la Galatius—
Randal-Williams and prove Theorem

1.1. Recollection on bordism theory. Let §: B — BO be a fibration. A tangential,

respectively normal, 6-structure of a manifold M is a lift £4s: M — B of its stable tangent,

respectively normal, bundle M — BO along 6, up to homotopy over BO. The collection

of bordism classes of closed d-manifolds equipped with a normal 6-structure forms an
S ]

abelian group QZ under disjoint union (see e.g. [Sto68] Ch. 2] for details). By the classical
Pontryagin-Thom theorem, this group is isomorphic to the dth homotopy group 7, M6 of
the Thom spectrum M6 associated to 6. Normal -structures of a manifold are in natural
bijection to tangential 8+ -structures, where 6+ : B~ — BO is the pullback of 6 along the
canonical involution —1: BO — BO. Justified by this, we do not distinguish between
normal -structures and tangential 6*-structures.

1.2. Parametrised Pontryagin-Thom theory. Let M be a closed, connected, oriented
manifold of dimension 2n. Choose a Moore-Postnikov n-factorisation

4 0
M -2 B — BSO

of its stable oriented tangent bundle; that is, a factorisation into an n-connected cofibration
€y followed by an n-co-connected fibration 0. This factorisation is unique up to weak
equivalence under M and over BSO, and we call it the tangential n-type of M. Using this,
the manifold M naturally defines a class [M, €] in the bordism group 929; associated to
its tangential n-type. We denote by 6;: By — BSO(d) the pullback of 8: B — BSO along
the canonical map BSO(d) — BSO. For d = 2n, this pullback induces a factorisation

02n
M — B,, — BSO(2n)

of the unstable oriented tangent bundle of M, which can be seen to again be a Moore-
Postnikov n-factorisation. We define MT, to be the Thom spectrum Th(—6;"y4) of the
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inverse of the pullback of the canonical vector bundle y,; over BSO(d) along 6;. The
topological monoid hAut(6,) of weak equivalences B; — B, over BSO(d) acts on 6%y,
by bundle automorphisms, inducing an action on the spectrum MT8; and hence on its
associated infinite loop space. The homotopy quotient Q*MT6,; /hAut(6;) of this action
is the target of the parametrised Pontryagin-Thom map with which the following result
of Galatius-Randal-Williams deals (see Cor. 1.9]).

Theorem 1.1 (Galatius-Randal-Williams). Let M be a simply connected, closed, oriented
manifold of dimension 2n > 6. There is a parametrised Pontryagin—-Thom map

BDiff* (M) —> Q®MT8, /hAut(6;,)
inducing an isomorphism on homology in degrees * < w onto the path component hit.
Here g(M) denotes the genus of the manifold M, as defined in the introduction.

Remark 1.2. Theoremis the higher-dimensional analogue of a pioneering result for
surfaces obtained by combining a classical homological stability result due to Harer
with the celebrated theorem of Madsen-Weiss .

Remark 1.3. Recent work of Friedrich can be used to strengthen Theoremuto
manifolds that are not simply connected, but whose associated group ring Z[m;(M)] has
finite unitary stable rank (compare the remark in the introduction).

1.3. The path components of MT6;,. Recall from [GTMWoo| Ch. 5] that there is a

cofibre sequence of spectra
MT0,,1 — 27 By — MTO,.

The induced maps 7oMT8s,, — 123 B, = Z and moMT6,, — 7_1MT0,,,; assemble into
an isomorphism of groups

(1) ToMT6p — {(x,y) € Z X 11 MT041 | x mod 2 = wan ()},

where w,(y) denotes the value of the cup product 8], , w2, U u_g,,,, of the 2nth Stiefel-
Whitney class of 0}, y2,+1 with the Thom class of —8}, , ;y2n+1 on the Hurewicz image of

Y € 1_1MT0zp4; (see Ch. 10]). There is a stabilisation map
(2) S HIMT 0,01 — MO*,

which is (2n + 1)-connected (cf. [GTMWog| Ch. 3]) and hence identifies 7_;MT0,,.; with

the bordism group Qz‘9 ; . Using this, together with the equivalence , we regard 1oMT0,,
ei
2n’

moMT0,, by changing the 0-structure of the Qg; -coordinate while fixing the Z-coordinate.
The path components of Q*°MT6,,, /hAut(6,,) are given by the quotient

ToMT0y,, /7 hAut(02,) € Z X QY /7 hAut(62,),

as a subgroup of Z x Q7 ', and with respect to this identification, 7y hAut(6,,) acts on

and the path component hit by the parametrised Pontryagin-Thom map of Theorem
BDiff " (M) — Q*MT6b,, /hAut(6,,)

is the class represented by (y(M), [M,{pm]) € moMT0,,, where y(M) € Z is the Euler
characterstictic of M (cf. Ch. 3]). We denote this path component of the
homotopy quotient by (Q‘X’MTGZ” //hAut(@z,l)) » and the one of Q*MT6;, corresponding
to (y(M), [M, €p]) by Q7 MTO0,,,. Note that the inclusion Q% MT6,,, € Q°MT6,,

(M, Em) (M, Em)
induces a weak equivalence
(3) Q. 23y MT 020 [Stab(M, Lar) = (Q°MT0o, [hAUt(020)) 5

where Stab(M, €ar) € hAut(6,,) is the submonoid defined as the union of the path compo-
nents of hAut(6,,,) that fix [M, ;] € QI .
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1.4. Exotic spheres and Theorem Recall from that taking connected sum
turns the collection @, of h-cobordism classes of closed oriented d-manifolds with the
homotopy type of a d-sphere into a finite abelian group. For d # 4, this group can be
described equivalently as the group of exotic spheres, i.e. the group of oriented d-manifolds
homeomorphic to the d-sphere, modulo orientation-preserving diffeomorphism.

By obstruction theory, the tangential n-type of a closed oriented 2n-manifold M depends
only on the manifold M\ int(D?") obtained by cutting out an embedded disc D** € M
This implies that the tangential n-type of the connected sum M#3. of M with an oriented
homotopy sphere X has the form

4 0
Mz 25 B 25 BSO

for the same B and 6 as for M. Here {45 is the unique (up to homotopy) extension to M#3.
of the restriction of £3; to M\ int(D?"), where D?" C M is the disc at which the connected
sum was taken. Consequently, the targets of the two parametrised Pontryagin-Thom
maps of Theoremfor M and MHY agree,

BDIff* (M) —> Q®MT0s,, /hAut(6,,) «— BDiff*(MAX),

and both maps induce an isomorphism on homology in a range of degrees onto the
respective path components hit. However, different path components of the target space
will usually have non-isomorphic homology groups; nonetheless, we have the following
lemma comparing the two components in question.

Lemma 1.4. For a closed, oriented 2n-manifold M and ¥ € ©y,, there is a zig-zag between

(QOOMTQZH //hAut(an))M and (QwMTezn//hAUt(HZH))MﬂE

inducing a homology isomorphism with Z[%]-coeﬂ?cients, k being the order of .

Proof. The stable oriented tangent bundle ¥ — BSO of ¥ lifts to a unique tangential
0-structure {5 of X since 6 is n-co-connected. By obstruction theory, the standard bordism
between the connected sum M#Y and the disjoint union of M and ¥ extends to a bordism
that respects the f-structure. This gives the relation [M§X, £y ] = [M, €p] + [2, 6] in
the group QZ‘Q; . By the same argument, we obtain a morphism 0, — Qg; by sending
3 € Oy, to [2, f3], from which we conclude that the order of [2, {5] in Qg; divides k. As
the Euler characteristics of M and M§3 evidently agree, we have the relation

k- (x(MEZ), [MBZ, EntZ]) = k - (x(M), [M, Eum])

in the abelian group myMT0;,, using the identification . Consequently, multiplication
by k in the infinite loop space Q*MT¥6,, maps the path components (y(M), [M, £p1]) and
(Y(MEX), [MEZ, £pr45]) to the same component, denoted by Q?(M’[M)MTOZ,I. As observed
above, the homotopy sphere ¥ has a unique 8-structure compatible with its orientation,
hence the class [3, 5] in Qg; is fixed by the action of hAut(#), which in turn implies
Stab(M, £yr) = Stab(MYX, £py5) € hAut(6,,). Since multiplication by k in Q*MT6;, is
hAut(6,,)-equivariant, we obtain an induced zig-zag of homotopy quotients

Qe MT0,, /Stab(M, £xr)

k-(M, )
Q% ;. \MT0y, [Stab(M, u1) Q545 10 MT Oz /StaD(MES. L),

The corresponding zig-zag between the respective path components of Q*MT0,, before
taking homotopy quotients is given by multiplication by k, so induces an isomorphism on

?In fact, it only depends on the n-skeleton of the manifold.
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homology with Z[ 1 ]-coefficients. The claim now follows from a comparison of the Serre
spectral sequences of the homotopy quotients, together with the equivalences . O

By taking connected sums with the homotopy sphere X and its inverse, one sees that
the genera of M and M3 agree. Since the group Oy is trivial in dimensions d < 7 by

, Theoremnow follows from Theoremand Lemma

2. THE COLLAR TWISTING

In this section, we examine the homotopy fibre sequence

(4) SO(d) — BDiff(M, DY) — BDiff*(M, )

for a closed oriented d-manifold M, induced by the inclusion Diff (M, Dd) C Dift" (M, =)
of the subgroups of diffeomorphisms that pointwise fix an embedded disc D¢ € M or
its centre * € D?, respectively. In particular, we study the effect of the fibre inclusion
t on homotopy groups. After fixing a collar c: [0,1] x 1 — M\int(D9) satisfying
¢ 1(0D%) = {1} x S97!, the map ¢ can be described geometrically as the delooping of the
map Q SO(d) — Diff(M, D) sending a smooth loop y € Q SO(d) to the diffeomorphism
of M that is the identity on D4 as well as outside the collar, and the twist

[0,1] x ST — [0,1] x §¢!
(t,x) +— (ty()x)
on the collar. Inspired by this geometric description, we call the map
t: SO(d) — BDiff(M, D?)
the collar twisting of M.

Remark 2.1. In dimension d = 2, the collar twisting SO(2) — BDiff(M, D?) is trivial
on homotopy groups, except on fundamental groups, on which the induced map Z —
7o BDIff(M, D?) is given by a Dehn twist on [0,1] x S? € M.

2.1. Triviality of the collar twisting. As indicated by the following lemma, the collar
twisting serves as a measure for the degree of linear symmetry of the underlying manifold.

Lemma 2.2. Let M be a closed oriented d-manifold that admits a smooth orientation-
preserving action of SO(k) with k < d. If the action has a fixed point whose tangential
representation is the restriction of the standard representation of SO(d) to SO(k), then the
long exact sequence induced by the fibre sequence (4) reduces to split short exact sequences

0 —> ; BDiff(M, D%) —> 7; BDiff*(M, ) — ;1 SO(d) — 0
fori < k — 1. In particular, the collar twisting is trivial on homotopy groups in this range.

Proof. The map d: Diff (M, %) — SO(d) resulting from looping the fibre sequence (4) once
is induced by taking the differential at * € M. On the subgroup SO(k) € SO(d), the action
on M provides a left-inverse to d. As the inclusion SO(k) C SO(d) is (k — 1)-connected,
we conclude that the map d is surjective on homotopy groups in degree k — 1 and split
surjective in lower degrees, which implies the result. O

The action of SO(d) on the standard sphere S¢ by rotation along an axis satisfies the
assumption of the lemma, so the collar twisting of S¢ is trivial on homotopy groups up to
degree d — 1. In fact, one can show that, in this case, it is even nullhomotopic. Another
family of manifolds that admit a smooth action of SO(k) as in the lemma is given by the
g-fold connected sums

Wy = #9(8" x S™).
Indeed, by Prop. 4.3], there is a smooth SO(n) x SO(n)-action on W, whose
restriction to a factor can be seen to provide an action of SO(n) as in the lemma. However,
we give an alternative description of this action, kindly pointed out to us by Jens Reinhold.
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Consider the action of SO(n) on S™ X S™ by rotating the first factor around the vertical axis.
Both, the product of the two upper hemispheres of the two factors and the product of the
two lower ones are preserved by the action and are, after smoothing corners, diffeomorphic
to a disc D?" acted upon by SO(n) via the inclusion SO(n) € SO(2n), followed by the
standard action of SO(2n) on D?". Taking the g-fold equivariant connected sum of 5 x S”
using these discs results in an action of SO(n) on W as in Lemmaand thus has the
following as a consequence.

Corollary 2.3. The collar twisting 7; SO(2n) — 7; BDiff(W,, D*") is trivial fori < n — 1.

2.2. Detecting the collar twisting in bordism. Recall that a manifold M is (stably) n-
parallelisable if it admits a tangential (n)-structure for the n-connected cover BO{n) — BO.
This map factors for n > 1 over BSO and obstruction theory shows that there is a unique
(up to homotopy) equivalence BO(n)* =~ BO(n) over BSO, so tangential and normal (n)-
structures of a manifold M are naturally equivalent. For oriented manifolds M, we require
that (n)-structures on M are compatible with the orientation; that is, they lift the oriented
stable tangent bundle M — BSO of M. Another application of obstruction theory shows
that the map BSO X BSO — BSO classifying the external sum of oriented stable vector
bundles is, up to homotopy, uniquely covered by a map BO(n) X BO(n) — BO(n) turning
MO(n) into a homotopy commutative ring spectrum.

In the following, we describe a method to detect the nontriviality of certain collar
twistings. For this, we restrict our attention to oriented manifolds M that are (n — 1)-
connected, n-parallelisable, and 2n-dimensional. These manifolds have by obstruction
theory a unique (n)-structure {y: M — BO(n), so they naturally determine a class
[M, £p] in the bordism group Q;:?. The examples we have in mind are the connected
sums Wy #> of the manifolds W, = #9(S" x ") with homotopy spheres X.

Remark 2.4. In fact, all (n — 1)-connected n-parallelisable 2n-manifolds M with positive
genus and vanishing signature are of the form W,#> for a homotopy sphere 3, except
possibly those in the Kervaire invariant one dimensions and in dimension 4. Indeed, the
vanishing of the signature implies that M is stably parallelisable and therefore by the
work of Kervaire—Milnor IKM63I framed bordant to a homotopy sphere. From this, an
application of Kreck’s modified surgery [Kregg| Thm. C-D] shows the claim.

For an oriented (n — 1)-connected n-parallelisable 2n-manifold M, we define morphisms

(5) ®;: 7; BDiff(M, D*") — Q™

2n+i
as follows. A homotopy class ¢ in 7; BDiff (M, D?") classifies a smooth fibre bundle
M—-E, > S,
together with the choice of a trivialised D*"-subbundle S’ x D*" C E,,. The latter induces a
trivialisation of the normal bundle of ' = S x {0} in E,. Using this, a given (n)-structure
on E, induces an (n)-structure on the embedded S’. Conversely, obstruction theory
shows that every (n)-structure on S’ is induced by a unique (n)-structure on E,, in this
manner. We can hence define ®; by sending a homotopy class ¢ to the total space E,, of

the associated bundle, together with the unique (n)-structure extending the canonical
(ny-structure on S’ induced by the standard stable framing of S’.

Remark 2.5. The morphisms ®; are induced by a map of spaces
BDiff(M, D?") — Q*Z2"MO(n),

which results from composing the parametrised Pontryagin-Thom map BDiff(M, D?") —
Q®MTO(2n)(n) (see e.g. Thm. 1.2]) with the 2n-fold desuspension MTO(2n){n) —
72"MO(n) of the stabilisation map (2) for MTO(2n){n).

Lemma 2.6. The following diagram is commutative
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7 SO(2n) —=—% 7; BDiff(M, D?")

| It

-X[M, ¢
aln AL g
the left vertical map being the J-homomorphism followed by the natural morphism from
framed to (n)-bordism, and the bottom map the multiplication by [M, €j] € Q§Z>.

Proof. Recall from the beginning of the chapter that the map ¢ is given by twisting a collar
[0,1] x S2"~1 c M\ int(D?*"). The composition of t, with ®; maps a class in 7; SO(2n),
represented by a smooth map ¢: S* — SO(2n), to the bordism class of a certain manifold
Ey(y), equipped with a particular (n)-structure. The manifold E;(,) is constructed using a
clutching function that twists the collar using ¢ and is constant outside of it. Its associ-
ated (n)-structure is the unique one that extends the canonical one on S via the given
trivialisation of its normal bundle. Untwisting the collar using the standard SO(2n)-action
on the disc D*" yields a diffeomorphism E;(,) = S* X M, which coincides with the twist

D" xS — D™x§

(1) = (e(t)x.1)
on the canonically embedded S X D?" and is the identity on the other component of the
complement of the twisted collar S'X([0, 1] x $?*"!) C E,. Hence, the (n)-structure on
S' x M induced from the one on E,(, via this diffeomorphism coincides with the product

of the twist of the canonical (n)-structure on S’ by ¢ with the unique one £); on M. By
the bordism theoretic description of the J-homomorphism, this implies the claim. O

Lemmaserves us to detect the nontriviality of the collar twisting
SO(2n) — BDiff(M, D?").

Indeed, if there is a nontrivial element in the subgroup im(J); - [M, {p] of m2,+:MO(n),
then Lemmaimplies that the collar twisting of M is nontrivial on homotopy groups in
degree i. The g-fold connected sum W, = #9(S" x ") is the boundary of the parallelisable
handlebody §9D"*! x S" and is thus trivial in framed bordism, and so also in {(n)-bordism.
From this, we obtain the relation

[WolZ, bw, ps] = Wy, Cw, ] + [Z, 6] = [, 65]
in Qé? for all ¥ in ©,,. This proves the first part of the following proposition.
Proposition 2.7. Let g > 0 and let X € ©y, be a homotopy sphere. If the subgroup
im()); - [Z, €] € 72n+iMO(n)
is nontrivial for some i > 1, then the abelianisation of the morphism
t.: m; SO(2n) — m; BDIff(W, =, D*")
is nontrivial. Assuming 2n # 4, the converse holds fori =1 andg > 5.

Proof. We are left to prove the second claim. For i = 1, the group m; BDiff (W, #=, D*") is
the group of isotopy classes of orientation-preserving diffeomorphisms of W, #3 that fix the
embedded disc D*" pointwise. Letting such diffeomorphisms act on the middle-dimensional
homology group H,(W,#%; Z) provides a morphism ; BDiff (W, X, D*") — Aut(Qw, 45)
to the subgroup Aut(Qyy, 45) € GL(H,(W,#3; Z)) of automorphisms that preserve Wall’s

quadratic form Qw, t associated to the (n—1)-connected 2n-manifold W, X (see )
Together with the morphism (5) in degree 1, this combines to a morphism

1y BDIff (W%, D*") —> Aut(Qy, ¢5) ® Qi)

2n+1°
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which is the abelianisation of 7y BDiff(W, #3, D*) by Thm. 1.3], assuming g > 5
and 2n # 4 The isotopy classes in the image of m; SO(2n) — 1 BDiff(W,§X, D*")
are supported in a disc and hence act on homology as the identity. Consequently, on

fundamental groups, the collar twisting is for g > 5 nontrivial in the abelianisation if and
(n)

only if it is nontrivial after composition with 7; BDiff(W, 4%, D*") — Q,"’ . The claim
hence follows from Lemmaand the discussion before Proposition|2.7} O

Remark 2.8. (i) Since the image of the J-homomorphism is cyclic, the condition in
Propositionis equivalent to the nonvanishing of a single element, e.g. 11 - [Z, {5]
in 75,411 MO(n) fori = 1 or v - [2, {3] in m2,+3MO(n) for i = 3.

(ii) By obstruction theory, the sphere S has a unique (n)-structure for i > n + 1, so the
left vertical morphism in the diagram of Lemmais trivial in this range. Hence,
the morphism x; BDiff(M, D*") — Q;;’i ; can only detect the possible nontriviality
of the collar twisting in low degrees relative to the dimension. Another consequence
of this uniqueness is that the image im(J); of the J-homomorphism is contained in

the kernel of the canonical morphism from framed to (n)-bordism for i > n + 1.

Remark 2.9. (i) Combining Lemmaand we see that the subgroups im(J); - [M]
of 73n+:MO(n) obstruct smooth SO(k)-actions on M with a certain fixed point.

(if) In the case g = 0, the first part of Propositionis closely related to a result
obtained by Schultz Thm. 1.2]. In combination with methods developed by
Hsiang-Hsiang (see e), Schultz used this to bound the degree of symmetry
of certain homotopy spheres, i.e. the maximum of the dimensions of compact Lie
groups which act effectively.

In the following, we attempt to detect nontrivial elements in the subgroup
(6) 1m(])l . [2, fz] - ﬂzn.H'MO(n)

for homotopy spheres X in ©2, by mapping MO(n) to ring spectra whose rings of homotopy
groups are better understood. A natural choice of such spectra are MO(m) for smallm < n
via the canonical map MO(n) — MO(m). As homotopy spheres are stably parallelisable,
the elements [, {5] are in the image of the unit S — MO(n). Conversely, outside of the
Kervaire invariant one dimensions, the work of Kervaire-Milnor implies that
all elements in this image are represented by homotopy spheres. Since the image of the
unit S — MO(2) = MSpin lies in degrees 8k + 1 and 8k + 2 for k > 0 Cor. 2.7],
we cannot detect nontrivial elements in @ by relying on spin bordism. Consequently,
since MO(2) = MO(3), the smallest value of m such that MO({m) might possibly detect
nontrivial such elements is 4. Via the string orientation MString — tmf (see e.g.
Ch. 10]), the Thom spectrum MO(4) = MString maps to the spectrum tmf of topological
modular forms, whose ring of homotopy groups has been computed (see e.g.
Ch. 13]). It is concentrated at the primes 2 and 3 and has a certain periodicity of degree
192 at the prime 2 and of degree 72 at the prime 3. The Hurewicz image of tmf, i.e. the
image of the composition

S — MSO(n) — MString — tmf
on homotopy groups, is known at the prime 3 (see e.g. [DFHH14/ Ch. 13]) and determined
in work in progress by Behrens—Mahowald at the prime 2. It is known to contain many
periodic families of nontrivial products with n € m;S and v € n3S, which thus provide

infinite families of homotopy spheres ¥ for which the subgroup @ is nontrivial. The
following lemma carries out this strategy in the lowest dimensions possible.

Proposition 2.10. In the following cases, there exists a homotopy sphere X in ©3, for which
the subgroup im(J); - [2, {3] of m2,+iMO(n) is nontrivial at the prime p:

3Although Theorem 1.3 of is stated for Wy, the given proof goes through for W, #X and even more
generally for all (n — 1)-connected n-parallelisable 2n-manifolds M, replacing g with the genus g(M) of M.
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(i) forp =2 in degree i = 1 and all dimensions 2n = 8 (mod 192),
(ii) forp = 2 in degree i = 3 and all dimensions 2n = 14 (mod 192), and
(iii) forp = 3 in degree i = 3 and all dimensions 2n = 10 (mod 72).

Consequently, in the respective cases, the abelianisation of the morphism
t.: m; SO(2n) — ; BDIff(W, =, D*")
is nontrivial at the prime p for all g > 0.

Proof. By work of Browder , all Kervaire invariant one dimensions have the form
2k — 2 for k > 0, so all elements in 73,5 for 2n as in one of the three cases can be
represented by homotopy spheres. The elements ¢ € x5S and x € m14S give rise to two
192-periodic families in .S at the prime 2 whose elements are nontrivial when multiplied
with n € im(J); and v € im(J)s, respectively (see e.g. Ch. 11]). All of these products
are detected in tmf and hence are also nontrivial in MO(n). This proves the first and the
second case. To prove the third one, we make use of a 72-periodic family in .S at the
prime 3 generated by € m10S. The products of the elements in this family with v € 73S
are nontrivial and are detected in tmf (see e.g. Ch. 13]). This proves the first part
of the proposition. The second part is implied by the first by means of Proposition O

From work of Kreck , we also derive the existence of homotopy spheres ¥ for
which the morphism ¢, : 7, SO(2n) — m; BDiff(W,§X, D?*") induced by the collar twisting
is nontrivial, but becomes trivial in the abelianisation.

Proposition 2.11. Forallk > 1, there are homotopy spheres X in Ogj.. for which
t,: m SO(8k + 2) —> m; BDiff(W, =, D*+?)
is nontrivial for g > 0, but vanishes in the abelianisation for g > 5.

Proof. Let ¥ be the homotopy sphere that maps via the canonical morphism Ogy., —
coker(J)sk+2 to the class of Adams’ element pgy.o in 7mgx12S (see Thm. 1.8]). By
Lem. 4], the morphism in question is trivial if and only if a certain homotopy
sphere ngﬂz vanishes in Ogy3. Combining Cor. 3] with the fact that W, bounds
the parallelisable manifold §9D**2 x §*+1 it follows that the element w45 does not
vanish. However, the product 5 - pgk+2 is known to be contained in the image of J (see
e.g. Thm. 5.3.7]), so the class 1 - [2, 5] is trivial in 7rg,3sMT(4k + 1) by the second
part of Remark The claim now follows from the second part of Proposition O

Remark 2.12. Note that, since 7; (BDiff(Z, D?")) is abelian, the conclusion of the second
part of Propositionfails forg = 0.

Remark 2.13. Recall that the fundamental group m; BDiff(W, 4%, D*") is the group of
isotopy classes of diffeomorphisms of W, #X that fix an embedded disc D*" pointwise. The
image of 7r; SO(2n) — 7; BDiff(W,#, D?") is generated by a single diffeomorphism (1),
which is the higher-dimensional analogue of a Dehn twist for surfaces. It twists a collar
around D?" by a generator in 7, SO(2n) and is the identity elsewhere. Consequently, the
morphism in consideration is trivial if and only if #(y) is isotopic to the identity, and it is
trivial in the abelianisation if and only ¢(n) is isotopic to a product of commutators.

3. DETECTING EXOTIC SMOOTH STRUCTURES IN DIFFEOMORPHISM GROUPS

Evaluating diffeomorphisms of a closed oriented d-manifold M at a fixed point induces
a homotopy fibre sequence

M —> BDiff*(M, *) —> BDiff* (M),
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from which we see that for highly connected manifolds M, the map BDiff*(M, *) —
BDiff" (M) is also highly connected. Studying the space BDiff" (M, %) instead of BDiff (M)
is advantageous as BDift " (M, «) fits into a homotopy fibre sequence

(7) BDiff(M, D?) —> BDIff* (M, ) —> BSO(d),

obtained by delooping the sequence . Evidently, the rightmost space in (7) is not affected
by replacing M by M#X. for homotopy spheres ¥, and the following lemma shows that the
same holds for the leftmost space as well.

Lemma 3.1. For an oriented manifold M of dimension d # 4 and a homotopy sphere ¥ in
Oy, there is an isomorphism of topological groups of the form

Diff(M, D) = Diff(M§=, D?).

Proof. The group Diff(M#%, D) can be equivalently described as the group of diffeomor-
phisms of M§X\ int(D?) that extend over the disc D? C M#Z by the identity. Manifolds
of dimension d # 4 with nonempty boundary are insensitive to taking the connected
sum with a homotopy sphere, so there is a diffeomorphism M#Z\int(D¢) = M\ int(D?).
This diffeomorphism does not necessarily preserve the boundary, but conjugation with it
nevertheless induces an isomorphism of topological groups as claimed. O

Remark 3.2. By Lemma the total space of the homotopy fibre sequence
Fr*(M) —> BDiff(M, D) — BDiff*(M)

involving the frame bundle Fr*(M) of M does not change when replacing M by M#X. for
homotopy spheres ¥ and surprisingly, the same holds for Fr*(M) (see e.g. the proof of
Thm. 1.2]). However, we will not make use of this fact.

Proof of Theorem and Corollary Since the group ©y is trivial for d < 7, we may restrict
our attention to dimensions 2n > 8. The fibration (7) induces an exact sequence

Z/2 = m SO(2n) —> 7 BDIff(W, 4%, D**) —> m BDiff (W, #5) — 0.

The first map is trivial in the case of the standard sphere ¥ = 52" by Corollarya fact
which, when combined with Lemma gives isomorphisms

1 BDiff(Wy§S, D*") = m; BDiff(W,, D*") = m; BDiff*(W,).
We arrive at an exact sequence of the shape
Z/2 — m; BDiff(W,;) — m BDiff"(W,#%) — 0,

whose first map agrees with the collar twisting of W, #3 on fundamental groups. Abelian-
ising this exact sequence implies Theoremby virtue of Proposition From a result
of Sullivan Thm. 13.3], we know that the mapping class group my Diff*(W,) is
commensurable to an arithmetic group and hence finitely generated and residually finite.
This implies that it is Hopfian; that is, every surjective endomorphism is an isomor-
phism. Therefore, the two groups ; BDiff(W,) and 7, BDiff(W,#3) are isomorphic if and
only if the morphism m; SO(2n) — ; BDiff (W, %, D*") is trivial, and the two respective
abelianisations are isomorphic if and only if the morphism in consideration is trivial after
abelianisation. Thus, combining Propositionandproves Corollary O

Remark. It follows from Corollarythat there are infinitely many dimensions in which
the inertia group I(W,) of W}, is a proper subgroup of ©3,. Results of Kosinski
Thm. 3.1] and Wall [Wal62b] show that I(W,) is in fact trivial in all dimensions.

Proof of Theorem@] As in the foregoing proof, we may assume 2n > 8. In this range, the
table below displays the homology of BSO(2n) in low degrees (see e.g. ).
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li=1]i=2]i=3] i=4
Hi(BSO@n:Z) | 0 | Z/2| 0 |zez)2

Consequently, the homology H..(BSO(2n); Z[%]) vanishes in degrees * < 3 and is isomor-
phic to Z[%] in degree 4. From the Serre exact sequence with Z[%]-coeﬂ’icients of the
homotopy fibre sequence , one sees that the induced map

H..(BDiff(W, =, D*"); Z[1]) — H.(BDiff"(W,#=); Z[1])

is an isomorphism in degrees * < 2, which, together with Lemma proves the first part
of the theorem. To show the second, we use the Hurewicz homomorphism to map the
long exact sequence on homotopy groups of the homotopy fibre sequence in consideration
to its Serre exact sequence. This yields a commutative diagram with exact rows as follows.

74 BSO(2n) ® Z[1] Iy o BDIff(W, {2, D*") ® Z[1] — 73 BDiff"(W,#2) ® Z[1] — 0

=) XS XS

H4(BSO(2n); Z[3]) — Hs(BDiff(W, =, D*"); Z[1]) — H3(BDiff" (W, #2); Z[1]) — 0

The groups in the left column are isomorphic to Z[%] and the upper left morphism t,
identifies with the induced map 73 SO(2n) — 73 BDiff(W, %, D?") of the collar twisting,
tensored with Z[%]. By Corollary this morphism is trivial in the case of the standard
sphere ¥ = $?". We therefore obtain an isomorphism of the form

H;(BDiff(W,); Z[$]) = H3(BDiff(W,, D*"); Z[1]).

The latter group is in turn isomorphic to H3(BDiff (W, §%, D?my; Z[%]) by Lemma so the
lower row of the diagram provides an exact sequence as claimed. To prove the second
part of the theorem, we use the stabilised Pontryagin-Thom map BDiff(W, 4%, D*") —
QE>72"MO(n) with a path component of Q> 2"MO(n) as its target (see Remark.
Using this map, we arrive at a commutative diagram of the form

74 BSO(2n) ® Z[1] 55 73 BDIff(W, 4%, D*) ® Z[1] — mQPS2"MO(n) ® Z[ 1]

| ! l

H,(BSO(2n); Z[$]) — Hs(BDIff (W, D*"); Z[1]) — H3(QC="2"MO(n); Z[]).

By the discussion leading to Proposition the upper composition is nontrivial for all
homotopy spheres ¥ in ©,, for which the subgroup im(J); - [Z, 5] of m2,+3MO(n) is
nontrivial away from the prime 2. In the case 2n = 10, the group ©j is cyclic of order 6, so
by Proposition the upper composition is nontrivial for all 10-dimensional homotopy
spheres ¥ with order a positive multiple of 3. Consequently, in order to finish the proof, it
suffices to show that the Hurewicz homomorphism

m QY% OMString ® Z[ 3] — Hs(QPS"MString; Z) ® Z[3]

of the desuspended Thom spectrum X~ °MString = Z1’MO(5) is injective. This follows
from the subsequent lemma, which concludes the proof. O

Lemma 3.3. The Hurewicz homomorphism
1300 "MString —s Hs(Q S °MString; Z)
is an isomorphism.

Proof. The component Q°>~°MString is the infinite loop space of the 0-connected cover
of the spectrum X~ 1"MString. By , its first homotopy groups are given by the table
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li=1|i=12]i=13
nMstring | 0 | Z | z/3,

from which we see that the first possibly nontrivial k-invariant of the 0-connected cover
of 2 1"MString lies in H%(HZ; Z/3). But this group is isomorphic to the unstable group
H>(K(Z,3);Z/3), which can be seen to vanish by employing the Serre spectral sequence
of the homotopy fibre sequence K(Z, 2) — * — K(Z, 3). Consequently, the 3-truncation
of the 0-connected cover of %~ 1°MString splits into S?HZ and >*HZ/3. The result is now
implied by combining the induced splitting of the associated infinite loop space with the
classical Hurewicz theorem for spaces. O

Remark 3.4. By Corollary the groups
H3(BDiff"(W,); Z[1]) and Hs(BDiff"(W,#2); Z[1])

are not isomorphic for g > 0 and any homotopy sphere ¥ in ©;y with order a positive
multiple of 3. In fact, in this dimension, one can explicitly calculate the homology of
BDiff (W, %) in low degrees for large g, at least after inverting 2. One starts by computing
H., (BDiff(W,, D'°); Z[%]) in low degrees for large g. This can be achieved by combining

computations of the homotopy groups of MString HRgs5| with a calculation of
the first possibly nontrivial k-invariant of the 0-connected cover of MTString(10) and an

extension of a method of Galatius—Randal-Williams Ch. 5]. From this, the groups
in question can be derived using the ideas of the proof of Theorem@ The following table
describes the ith homology with Z[%]—coefﬁcients of BDiff (W, #§X) for g > 2i + 3. The first
row displays the respective homology groups for the two homotopy spheres ¥ of order 0
and 2 in ©;y = Z/6, whereas the second row shows the respective groups for the other
four homotopy spheres in ©1,.

i=1|i=2|1i=3
Hi(BDiff* (We): Z[3]) | 0 | Z[3] | (Z/3)°
Hi(BDff " (Wot2): Z[3D) | 0 | Z[3]1| Z/3
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Characteristic numbers of manifold bundles over

surfaces with highly connected fibers






CHARACTERISTIC NUMBERS OF MANIFOLD BUNDLES OVER SURFACES
WITH HIGHLY CONNECTED FIBERS

MANUEL KRANNICH AND JENS REINHOLD

ABSTRACT. We study smooth bundles over surfaces with highly connected almost par-
allelizable fiber M of even dimension, providing necessary conditions for a manifold to
be bordant to the total space of such a bundle and showing that, in most cases, these
conditions are also sufficient. Using this, we determine the characteristic numbers realized
by total spaces of bundles of this type, deduce divisibility constraints on their signatures
and A-genera, and compute the second integral cohomology of BDiff*(M) up to torsion
in terms of generalized Miller—-Morita-Mumford classes. Along the way, we identify the
lattices of characteristic numbers of highly connected manifolds and give an alternative
proof of a result of Meyer on the divisibility of the signature.

By work of Chern-Hirzebruch-Serre , the signature of a closed oriented
manifold is multiplicative in fiber bundles as long as the fundamental group of the base
acts trivially on the rational cohomology of the fiber. The necessity of this assumption was
illustrated by Kodaira , Atiyah , and Hirzebruch [Hir69|, who constructed
manifolds of nontrivial signature fibering over surfaces, whereupon Meyer lMey72] Mey73|
computed the minimal positive signature arising in this way to be 4. This is in line with a
more recent result of Hambleton-Korzeniewski-Ranicki , which establishes the
multiplicativity of the signature modulo 4 for bundles over general bases. The divisibility
of the signature o: Q3° — Z by 4 is therefore a necessary condition for a manifold to
fiber over a surface up to bordism, which, when combined with the vanishing of a certain
Stiefel-Whitney number, is also sufficient (see |AK80 Thm 3]).

A more refined problem is to decide which manifolds fiber over a surface up to bordism
with prescribed d-dimensional fiber M, or equivalently, to determine the image of the map

Q;° (BDff*(M)) — Q50,,

defined on the bordism group of oriented M-bundles over oriented surfaces, which assigns
to a bundle its total space. The main objective of this work is to provide a solution to
this problem for highly connected, almost parallelizable, even dimensional manifolds M
satisfying a mild additional condition (see Proposition. Although we prove versions of
all our results for this class of manifolds, for simplicity’s sake we restrict our attention in this
introduction to the family of examples given by the g-fold connected sums W, = #7(5" xS™).
In the first part of this work, we use parametrized Pontryagin-Thom theory as developed
by Galatius, Madsen, Randal-Williams, Tillmann, and Weiss to show that the bordism class
of a manifold fibering over a surface with fiber W, lifts to the bordism group Qé:iz of
highly-connected (i.e. n-connected) manifolds, and that this property, together with the
divisibility of the signature by 4, detects such bordism classes for g > 5.
Theorem A. The image of the morphism
050 (BDIT" (W) — 252,

is contained in the subgroup

; (n) SO
1m(QZZ+2 - Q5

YyNnol(4-2Z).
Moreover, equality holds if g > 5. For 2n = 2, requiring g > 3 is sufficient.
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We refer to Theoremfor the more general version of Theorem

Remark. For 4m # 4,8, 16, the intersection form of a highly connected 4m-manifold is
even. Therefore, in these cases, the signature is divisible by 8, so the second condition in
the definition of the subgroup in Theoremis vacuous. This is in contrast to the other
three cases in which there exist manifolds of signature 1, such as CP?, HP?, and OP?.

Remark. Theoremwas already known for small dimensions. For 2n = 2, it follows from
Meyer’s aforementioned results; for 2n = 4 the statement is trivial since QO is trivial; and
for 2n = 6, it was observed by Randal-Williams in an unpublished note .

Highly connected bordism. Sectionis devoted to a closer study of the image of the

morphism QM s appearing in Theorem Note that this morphism factors over

2n+2 2n+2
the quotient of Q,", by Kervaire-Milnor’s [KM63| group ©3,» of homotopy spheres.
A characteristic class argument shows furthermore that the morphism is trivial unless

2n + 2 = 4m, leaving us with the need to understand the image of the morphism
(1) QM 10,4, — Q50

To this end, we combine Wall’s work on the classification of highly connected manifolds

m Wal67| with a theorem due to Brumfiel and enhancements by Stolz

to derive a concrete description of Qifn'w /Oum (see Theorem, which, however,
depends on one unknown: the order ord([Z¢]) of the class

[2o] € coker(J)am-1

of a certain homotopy sphere X € O4p,_1. Although central to the classification of highly
connected manifolds, this class is only known in special cases (see Theorem; Galatius—
Randal-Williams Conj. A] conjectured it to be trivial. Nevertheless, our description
of Qifnm_n /©4pm is explicit enough to compute the Pontryagin numbers, signatures, and A-
genera realized by highly connected manifolds in terms of ord([Z¢]) (see Proposition
and|2.14), resulting in various descriptions of the image of (1) expressed in these invariants.

Divisibility of the signature. Combining these computations with ’Iheoremin Sec-
tion we derive divisibility constraints for characteristic numbers of total spaces of
W,-bundles over surfaces and we determine these numbers completely for g > 5. To state
the consequences for the signature, we remind the reader of the minimal positive signature

B
Om = am22m+1(22m—1 _ 1) num (| 2m|)
4m

realized by an almost parallelizable 4m-manifold (see ). Here B; is the ith Bernoulli

number, and a,, is 1 if m is even and 2 otherwise. The 2-adic valuation is denoted by v,(-).

Theorem B. Let & : E — S be a smooth oriented bundle over a closed oriented surface S
with (4m — 2)-dimensional fiber W,. The signature of E is divisible by

4 form=1,2,4
Om form # 1 odd
2im ged(o? ,0m) form # 2,4 even,

m/2’°
where
im = min (0, vz(ord([Zg])) — 2va(m) — 4 + 2va(am/2)) -

Form > 2, the A-genus of E is integral and divisible by

2 num(liz—"’:" form odd
gcd(num(%), num(%)z) for m even.

Moreover, ifg > 5, then these numbers are realized as signatures and A-genera of total spaces
of bundles of the above type. For m = 1, requiring g > 3 is sufficient.
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Corollary C. There exists a smooth oriented Wy-bundle over a closed oriented surface with
4m-dimensional total space of signature 4 if and only if 4m = 4,8, 16. For 4m # 4, 8, 16, the
signature of such a total space is divisible by 2°™** for m odd and by 2>™~2":("™3 for m even.

Theoremand Corollaryare special cases of more general results, stated as Theo-
remand Corollary These generalizations imply in particular that the divisibility
statements of Theorem|B|and Corollary|C|remain valid if Wj is replaced by any closed
highly connected almost parallelizable manifold, but at the cost of losing a factor of 2.

Remark. Rovi identified the non-multiplicativity of the signature modulo 8 as an
Arf-Kervaire invariant. As a consequence of Corollaryand its generalization Corol-
lary her invariant vanishes for bundles over surfaces with highly connected almost
parallelizable fibers, except possibly for those with total space of dimensions 4, 8, or 16.

Riemark. Hanke-Schick-Steimle Thm 1.4] constructed manifoldsA of nontrivial
A-genus that fiber over spheres, illustrating the non-multiplicativity of the A-genus. Their
construction does not yield an explicit description of the fiber, whereas Theorerovides
bundles of nontrivial A-genus with fiber Wy, but over (non simply connected) surfaces.

Generalized Miller-Morita—-Mumford classes. Recall the vertical tangent bundle T, E
of a smooth oriented bundle 7: E — B with closed d-dimensional fiber M over an I-
dimensional base, defined as the kernel T, E = ker(dz: TE — 7*TB) of the differential.
The generalized Miller—-Morita—Mumford class k. associated to a class ¢ € H**¢(BSO; k)
with coefficients in an abelian group k is obtained by integrating c¢(T,E) along the fibers,

Ke(m) = /M o(T,E) € H*(B; k).

In the universal case, this gives rise to x, € H*(BDift"(M); k). If B is stably parallelizable,
the bundles TE and T, E are stably isomorphic, so for ¢ € HA+! (BSO; k), the two charac-
teristic numbers obtained by integrating () € H (B; k) over B and ¢(TE) € H*!(E; k)
over E coincide. For B a surface, this is expressed in the commutativity of the diagram

Q3° (BDIff*(M)) — Q52,

x i‘:

k.
All our results on characteristic numbers of total spaces of bundles over surfaces with a
fixed fiber M can thus be expressed in terms of values of classes k. € H*(BDiff*(M); k) for
various c. To exemplify this, note that Theoremcomputes the divisibility of the classes

K £, and k 4, in the torsion free quotient H?(BDiff*(Wy); Z)free for g > 5.

Exploiting this alternative viewpoint, we conclude this work in Sectioby determining
an explicit basis of H*(BDiff*(M); Z)fee for most highly connected almost parallelizable

2n-manifolds M (see Theorem. To explain this result in the special case of W, we
recall that H*(BDiff* (W, ); Z) was identified by Galatius-Randal-Williams

in a range of degrees growing with g, which for 2n > 6 and g > 7 in particular gives
0 if 2n = 0 (mod 4)
H? (BDiff"(W,); Q) = { QKpey if 2n = 2 (mod 8)
QKprye © Qlcp(zmw4 if 2n = 6 (mod 8).

Having computed the values of these classes on bundles over surfaces enables us to lift
this rational basis to a basis of H*(BDiff*(W,); Z)free. To state the outcome, we define

. d | Baym | 2 for m odd d 2 ifm=1,2
=denom|——|, a, = an =
Jm 4m " 1 for m even, Hm 1 else,
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, . . B .
and fix Bézout coefficients ¢,, and d,,, for the numerator and denominator of %, ie.,

B B
¢, NUM (M) + d,,, denom (M) =1.
4m 4m

Theorem D. Let 2n > 6 and g > 7. The group H*(BDiff*(W,); Z)fce is generated by

Kpm
2(2m — 1)!jm

for2n = 2 (mod 8), wherem = (n + 1)/2, and by

Kp2 . 2Kpy — Ky ‘?k'{l (Czk lﬁzkkl + 2dzk(—1)k) Kp?
an -
2ural ord([Zo])(2k — 1)!2 2(4k — 1)!jox 2(2k — 1)!12

for2n = 6 (mod 8), wherek = (n + 1)/4.

Remark.

(i) Inthe case 2n = 2, the group H*(BDiff*(W,); Z) is torsion-free forg > 3 (see )
and generated by (1/12) - k, for g > 5 (see [Har8 ]MT01 p-537]). Since x,, = 3k r,,
we recover the computation of the divisibility of k,, as part of Theorem

(if) For 2n > 6,g > 5, the torsion in HZ(BDifF(Wg) Z) has been computed by Galatius—
Randal-Williams . It is nontrivial, except when 2n = 6. Therefore, in this case,
the basis of H*(BDiff (W, ); Z)free in Theorem|D|is also a basis of H*(BDiff* (W,); Z).
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Union’s Horizon 2020 research and innovation programme (grant agreement No 682922).
JR: I am thankful that my studies at Stanford University are supported by the E. K. Potter
Stanford Graduate Fellowship. I was also supported by the NSF grant DMS-1405001.

1. BORDISM CLASSES OF MANIFOLDS FIBERING OVER SURFACES

Let M be an oriented closed 2n-manifold. As noted in the introduction, assigning to an
M-bundle over a surface its total space yields a morphism of the form

(2) Q3°(BDiff*(M)) — Q3.

This section begins our study of its image. After a recollection on parametrized Pontryagin—
Thom theory, we give an alternative proof of the fact that the signature of classes in
the image of (2] E is divisible by 4—a result originally due to Meyer M W
This is then used to identify the image of (2) precomposed with the natural morphism
QSO(BDHT(M D)) — QSO(BDﬂ”F(M)) for highly connected, almost parallelizable mani-
folds M satisfying an assumption on their genus

g(M) = max{g > 0 | there is a manifold N such that M = #9(S" x S")iN}.

Here Diff(M, D*") C Diff*(M) denotes the subgroup of diffeomorphisms of M that fix
an embedded disc D** C M. Hence, the homology group Q3°(BDiff(M, D*")) can be
described as the bordism group of oriented M-bundles over closed oriented surfaces
together with a trivialized D?"-subbundle. We finish this section by arguing that, in our
situation, the images of Q5°(BDiff*(M, D)) and QSO(Blef+(M)) in an ., agree in most
cases, proving Theorem|Alas part of the main result of the sectlon—Theorem
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1.1. Parametrized Pontryagin-Thom theory. Given a fibration 8: B — BSO(2n), a
0-structure on an oriented vector bundle E — BSO(2n) is a lift E — B along 6. Define
the spectrum MT6 as the Thom spectrum Th(—8"y,,) of the pullback of the canonical
bundle y,, over BSO(2n). These spectra—in particular the case 6 = id, commonly denoted
as MT6O = MTSO(2n)—are natural recipients of parametrized Pontryagin-Thom construc-
tions. More precisely, for a smooth bundle 7: E — W with closed 2n-dimensional fibers
and a 0-structure on its vertical tangent bundle, a parametrized version of the Pontryagin—
Thom collapse map gives a canonical homotopy class W — Q*MT¥ (see e.g. GMTWogl).
In particular, for an oriented closed 2n-manifold M, this results in a map of the form

(3) BDiff*(M) — Q®MTSO(2n),

called the parametrized Pontryagin—Thom map. For M a surface, the celebrated theorem
of Madsen-Weiss , combined with classical stability results of Harer
(improved by Boldsen and Randal-Williams Ran16|), implies that, depending on
the genus of M, the map (3) provides a good homological approximation of BDiff*(M).
It follows from recent work by Galatius—Randal-Williams |[GR14}|GR18{[GR17| that this
holds for simply connected manifolds M in higher dimensions as well, after replacing
Q®MTSO(2n) with a refinement depending on M. To explain their program in the special
case needed for our purposes, we assume that M is (n — 1)-connected and n-parallelizable;
that is, its tangent bundle M — BSO(2n) admits a 6,,-structure for the n-connected cover

0,,: BSO(2n){n) — BSO(2n).

Fix an embedded disc D?® C M and note that the orientation on D*" extends uniquely to
a 0,-structure {pzn on the tangent bundle of D*". For every smooth M-bundle 7: E — W
with a trivialized D?"-subbundle, the 0,-structure on the vertical tangent bundle of the
D?"-subbundle induced by €p:» extends uniquely to a ,-structure on the vertical tangent
bundle of 7 by obstruction theory. In the universal case, this results in a map of the form

BDiff(M, D?*") — Q°MT6,,
which hits a particular component of Q*MT0,, denoted by Qfj MT6,,.

Theorem 1.1 (Boldsen, Galatius—Randal-Williams, Harer, Madsen—-Weiss). For a closed,
(n — 1)-connected, n-parallelizable 2n-manifold M, the parametrized Pontryagin-Thom map

BDiff(M, D*") — Q§MT0,

induces an isomorphism on homology in degrees 3% < 2g(M) — 2 if 2n
g(M) =3 if2n > 6. Furthermore, it induces an epimorphism in degrees 3
and for 2% < g(M) — 1 if2n > 6.

2, and for 2% <
2g(M) if2n = 2,

IA I

1.2. Signatures of bundles over surfaces. Using the theory recalled above, we give an
alternative proof of the following result of Meyer, more in the spirit of this work.

Theorem 1.2 (Meyer). The signature of the total space of a smooth bundle of oriented closed
manifolds over a surface is divisible by 4.

There is a stabilization map MTSO(2n) — Z2"MSO (cf. [GMTWog| Ch. 3]), which—
combined with the parametrized Pontryagin-Thom map , the counit 25 Q*MTSO(2n) —

MTSO(2n), and the multiplication MSO A MSO — MSO—induces a factorization
(4) Q3° (BDIff* (M) — Q3° (Q®MTSO(2n)) — Q3° (MTSO(2n)) — Q32,,

of . To prove Theore it is thus sufficient to show that the signatures of classes in the
image of QgO(Q‘X’MTSO(Zn)) are divisible by 4. As a result of the lemma below, it is enough
to test the image of the Hurewicz homomorphism 7,MTSO(2n) — QEO(Q‘X’MTSO(Zn)).
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Lemma 1.3. Let QCMTSO(2n) € Q°MTSO(2n) be a path component. The images of
MTSO(2n) — Q3°

2n+2

and  Q° (QCMTSO(2n)) — Q59

2n+2

agree.

Proof. We first show that the image of the second morphism does not depend on the chosen
path component. For this, note that for an oriented surface S, the composition of the natural
map from the group of homotopy classes [S, Q°MTSO(2n)] to QEO(Q‘”MTSO(Zn)) with
QgO(Q""MTSO(Zn)) — Qggﬁ is myMTSO(2n)-equivariant, where 1oMTSO(2n) acts on
the domain in the obvious way and on the codomain via the composition 7MTSO(2n) —
Q“;’S — Q§S+2, the first map being induced by the stabilization map MTSO(2n) —
372" MSO and the second one by taking products with S. This equivariance can, for instance,
be seen by using the geometric description of [S, Q®MTSO(2n)] provided by classical
Pontryagin-Thom theory. Since Q3 is trivial, the action of 7pMTSO(2n) on Q3°,, is triv-
ial, which implies that it suffices to show the claim for the unit component Q’MTSO(2n).
By comparing MTSO(2n) to its connected cover and using that the unit S — MSO is
1-connected, one concludes that the images of 7,MTSO(2n) and QgO(Q?MTSO(Zn)) in

Q‘;’O(MTSO(Zn)) agree, which, given the factorization , implies the claim. O

In the light of Lemma Theoremfollows from the computation of the signatures
realized by classes in 7,MTSO(2n), which we learnt from W. Gollinger Thm 2.0.10].

Theorem 1.4 (Gollinger). The composition of ;MTSO(4m — 2) — Qig with the signature
o: Qig — Z has image 4 - Z.

Proof sketch. By classical Pontryagin-Thom theory, the group 7, MTSO(4m — 2) can be
described geometrically as the bordism group of closed 4m-manifolds N together with an
oriented (4m —2)-dimensional vector bundle E — N and a stable isomorphism ¢: E®e? =
TN. The morphism 7,MTSO(4m — 2) — Q3 is given by assigning to such a triple
the bordism class of N. Since stably, a trivial plane bundle splits off from TN, the top-
dimensional Stiefel-Whitney class of N vanishes, so the Euler characteristic y(N) is even.
Therefore, by taking connected sums with suitable products of spheres, we can assume
that y(N) vanishes. In this case, both of the bundles E @ ¢? =; TN have trivial Euler class
and hence, they are (unstably) isomorphic. Consequently, N admits two pointwise linearly
independent vector fields from which the classical relation between the signature and the
vector field problem implies that the signature of N is a multiple of 4 (see e.g. Thm
IV.2.7]). We are left to show that there is a class in 7,(MTSO(4m — 2)) with signature 4.
Using K-theory, one can show that a trivial plane bundle splits off stably from T§*CP?
W Cor. 2.2.10], which gives a class as desired for m = 1. But this also provides suitable
classes for all m by taking products with CP?, finishing the proof. O

Remark 1.5. Theoremimplies that the signature of the total space of a surface bundle
over a surface is divisible by 4. Meyer proved in addition that there exist such
bundles of signature 4 for any fiber genus g > 3. This can also be derived from our proof
of Theorem|1.2] since the Madsen-Weiss theorem (see Theorem implies that, in this
case, the first morphism in (4) is surjective onto QgO(Q;'jIMTSO(Z)).

1.3. Formal bundles with highly connected fibers. We now specialize to the case of
M being (n — 1)-connected and n-parallelizable. For such M, the factorization (4) can with
the help of the natural map MT6, — MTSO(2n) be extended to a commutative diagram

Q30 (BDiff(M, D*")) —— Q50 (Q®MT0,) — Q3°(MTH,)

(5) 1 1 N

Q30 (BDIff*(M)) —— Q3° (QMTSO(2n)) — Q3° (MTSO(2n)) —» Q30

2n+2°
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Analogous to MTSO(2n), there is a stabilization map s: MT6,, — % 2"MSO(n) for MT0,,.
The induced morphism on second homotopy groups fits into a commutative square

mMTE, — QlM

1 +

Q30(Q*MTH,) — Q30

2n+2°

Its cokernel can be derived from work of Galatius—Randal-Williams Lem. 5.2,5.5,5.6].
Lemma 1.6 (Galatius—Randal-Williams). Let n > 2. The cokernel of the morphism

s.: mMTE, — Q™

2n+2

is trivial for n # 3,7 and isomorphic to Z/4 otherwise.

Remark 1.7. Since the signature o: Q3° — Z is an isomorphism in dimension * = 4, the
cokernel considered in Lemmais by Theoremfor n = 1 isomorphic to Z/4 as well.

Lemmaleads to a description of the image of QgO(Q‘X’MTQn) — Q30 as follows.

2n+2

Proposition 1.8. Let Q°MT0O, € Q”MTE, be a path component. The image of the mor-
phism ng(Qf"MTﬁn) — Q3O agrees with the subgroup

2n+2

im (Qggiz o Q§S+2) nol(4-2).

Proof. By the same argument as in the proof of Lemma the image of the map in
consideration coincides with the image of the composition 7,MT6, — Qézzrz — Q§S+Z'
From this, one inclusion follows by observing that the latter composition factors through
1, MTSO(2n) — Q30 which has image in 6~!(4 - Z) by Theorem Since 1, MT0,, —

2n+2°
Qégiz is surjective if n # 1,3, 7 by Lemma|1.6/ there is nothing left to prove in these cases.
For n = 1,3,7, the group Q;Ziz contains a class of signature 1, such as CP2, HP?, and

OP?—a fact which, together with Lemmaand Remark implies that the sequence
BMTE, — QM — 7/4 — 0,

2n+2

where the last map is induced by the signature, is exact. The assertion follows. O

By virtue of Theore Propositioas an analogue of Theoreor bundles over
surfaces with a trivialized disc-subbundle and fixed highly connected almost parallelizable
fiber of even dimension as a corollary. This is stated as part of Theorem|1.14|below.

1.4. A reduction of the structure group. To discuss conditions on M for which the
images of QSO (BDiff*(M)) and QSC(BDiff(M, D*")) in Q5©_, agree, we recall the canonical

2n+2

ring isomorphisms between Qff and 7, and between Q" and 7,MSO(n), given by the
Pontryagin-Thom construction. Here Qf is the bordism ring of stably framed manifolds,
7 the stable homotopy groups of spheres, MSO(n) the Thom ring spectrum of BSO(n),
and Qi ") the bordism ring of oriented manifolds equipped with a BSO(n)-structure on their
stable normal bundle. By standard surgery techniques, the group Q ,i"> isfork > 2n+2
canonically isomorphic to the bordism group of oriented n-connected k-manifolds, and we
use these two descriptions interchangeably. The stable normal bundle of an oriented (n—1)-
connected n-parallelizable manifold M admits a unique BSO({n)-structure by obstruction
theory, so M canonically defines a class [M] in 7., MSO(n). Note furthermore that the chain
of inclusions Diff(M, D?") C Diff*(M, ) C Diff*(M) of subgroups of diffeomorphisms
fixing a chosen point or disc, respectively, induces homotopy fiber sequences

(6) M — BDIff*(M, %) — BDiff"(M) and BDiff(M, D?") — BDiff*(M, =) <> BSO(2n),

where d is the delooping of the map given by taking the differential at the fixed point.
Finally, as is common, 17 € 7] = Z/2 denotes the nontrivial element in the first stable stem.
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Proposition 1.9. Let M be a closed, oriented, (n — 1)-connected, n-parallelizable manifold.
If M satisfies one of the two conditions

(i) n-[M] € 12,1 MSO(n) is not trivial,

(ii)) n-[M,a] € ., istrivial for a stable framing a of M,
then the images ongo(BDiff(M, D?")) and QEO(BDiff*(M)) in Q30 agree.

2n+2

Proof. For 2n = 2, the conclusion of the statement is always valid by Theoremand Re-
mark Since ng is trivial, we can assume 2n > 6, so M is in particular 2-connected. The
first fiber sequence of @ implies that Q;O(BDifF(M, %)) — QgO(BDiﬂ”(M)) is surjective.
It therefore suffices to show the claim for QgO(BDiff*(M, x)) instead of Q;O(BDiﬁ’*(M)).
Mapping the long exact sequence in homotopy groups of the second fiber sequence of

to the corresponding Serre exact sequence yields a commutative ladder with exact rows

7, BDiff(M, D**) —— 7, BDiff*(M, ) — Z/2 SRGIONN m1(BDiff (M, D*"))

o | ! ! |

SO
Q30 (BDiff(M, D*™)) - Q3° (BDIff"(M, %)) > Z/2 Q—(ti Q3° (BDiff(M, D*")),

once. By Lem. 2.6], the first condition implies that Q?O(t) is nontrivial, so the
morphism QP (BDiff(M, D*")) — QgO(BDifF(M)) is surjective, which proves the claim.
The second condition implies that (t) is trivial Lem. 4,Thm 3 ¢)], so there is
an oriented bundle z: E — S? with fiber M whose class maps nontrivially to Z/2. The
argument at the beginning of the proof of Prop. 1.9] shows that the Pontryagin
and Stiefel-Whitney numbers of E vanish, so E is nullbordant. Since Q‘EO(BDif‘f+ (M, %)) is
generated by the class of this bundle and the image of QgO(BDiﬁ(M, D?m)), the images of

these two groups in Q30 , agree, as claimed. O

where t: SOiZni — BDIff*(M, D?") is the map obtained by looping the fiber sequence

Remark 1.10. Propositionleaves open the cases where 7 - [M, ] defines a nontrivial
element in the kernel of the Hurewicz map n;, ., — m2,41MSO(n). This morphism
naturally factors over the cokernel of the J-homomorphism,

i1 = COKer())ani1 — Mans1MSO(n),

and work by Stolz implies that the second morphism in this composition is often bijective
(see e.g. Thm 1.4]). This can be used to further narrow down the manifolds for
which the images of QSO(BDiff(M, D?")) and QgO(BDifF(M)) in Q§S+2 might disagree,
but some cases remain, for instance, g2 H(S**1 x 1) for g, k > 1, where Sgp; is

the homotopy sphere corresponding to Adams’ element pigi+2 € 75, , , (see ). This
is because 7 - pgk+2 is nontrivial and contained in im(J)sk+3 (see e.g. m 5.3.7]).
Remark 1.11. Assuming g(M) > 7, one can show that the images of Q3°(BDiff(M, D*"))
and QgO(BDiff*(M)) in Qggﬁ agree if and only if 1 - [M] € m2,+1MSO(n) vanishes or
d*wy: Tor(ng(BDiﬂ”(M, x))) — Z/2 is nontrivial. Here d*w is induced by the pullback
of w, € HA(BSO(2n);Z/2) along d: BDiff*(M, ) — BSO(2n).

Remark 1.12. From the exactness of the second row of , we see that every 2-divisible
class in QgO(BDifF(M)) is contained in the image of Qg(BDiff(M, D?my).

Remark 1.13. For a homotopy d-sphere %, the image of QEO(BDiH*(Z)) in QZ?Z is trivial.
More generally, the total space of any X-bundle is nullbordant. Indeed, coning off the
fibers shows that there exists a topological nullbordism and hence, by the topological
invariance of Stiefel-Whitney and Pontryagin numbers, also a smooth one.

Propositions and together with Theorem imply the following result. It
includes Theorem since W, satisfies the second condition of Proposition being the
boundary of the parallelizable handlebody h9(D"*! x S™).
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Theorem 1.14. Let M be a closed, (n — 1)-connected, n-parallelizable 2n-manifold. The
image of the morphism Q‘;’O(BDiff(M, D)) — Q30 , is contained in the subgroup

2n+

im (0, - 030,) nol(4-2).
Moreover, equality holdsﬁg(M) > 5, and for g(M) > 3 if 2n = 2. If M satisfies one of the

conditions of Proposition then the same conclusions apply to Q3°(BDIff"(M)).

2. BORDISM CLASSES OF HIGHLY CONNECTED MANIFOLDS
This section is concerned with the image of the natural map

(8) M, — 03

2n+2 2n+2

from highly connected to oriented bordism, which is by Theoremclosely related
to smooth bundles over surfaces with highly connected almost parallelizable fibers. As
noted in the introduction, this morphism is trivial unless 2n + 2 = 4m, and factors over
the quotient anm_1> /®um by the group of homotopy spheres. In the first part of this
section, we combine work of Brumfiel, Kervaire-Milnor, Stolz, and Wall to give an explicit
description of this quotient, which we use thereafter to describe the image of (8) in terms
of characteristic numbers and to derive divisibility constraints for the signature and the
A-genera of highly connected manifolds. We assume m > 2 throughout the section.

2.1. Wall’s classification of highly connected almost closed manifolds. A compact
manifold is almost closed if its boundary is a homotopy sphere. We denote by Agnm_w
the group of oriented, almost closed, (2m — 1)-connected 4m-manifolds, up to (2m — 1)-
connected oriented bordism restricting to an h-cobordism on the boundary; the group
structure is induced by boundary connected sum. This group receives a map from Qifnm_”
given by cutting out the interior of an embedded 4m-disk. This fits into an exact sequence

_ _ o
(9) Oym — anm R Afjn’" QI O4m-1.

The first morphism maps a homotopy sphere to its bordism class, and the last one assigns
to an almost closed manifold its boundary. From his pioneering work on the classification
of highly connected manifolds, Wall derived a complete description of the groups
Agnm—ﬂ_ For us, the outcome is most conveniently phrased in terms of two particular
manifolds P and Q, which play a key role in the remainder of this section.

Milnor’s Eg-plumbing P. We denote by P Milnor’s Eg-plumbing, i.e., the parallelizable man-
ifold of dimension 4m arising from plumbing eight copies of the disk bundle of the tangent
bundle of the 2m-sphere, such that the intersection form of P is isomorphic to the Eg-form
(see e.g. Ch. V.2]). Since the latter has signature 8, so does the manifold P.

The plumbing Q. Let Q be the plumbing of two copies of a 2m-dimensional linear disk
bundle over the 2m-sphere that generates the image of 1, BSO(2m — 1) in 7, BSO(2m).
This bundle can be characterized equivalently as having vanishing Euler number and
representing a generator of m,,, BSO for m # 2,4, and twice a generator for m = 2,4
(cf. §1A)]). Via the isomorphism H?*™(5?™) @ H*™(5?™) = H?™(Q) induced by
the inclusion of the 2m-skeleton, the intersection form of Q is given by (‘1) (1)) so it has
vanishing signature. For m = 2k even, the kth Pontryagin class of a generator of r,,, BSO
is ap(2k — 1)![S**]* € H¥*(5%) (see e.g. Thm 3.8]), where a; equals 1 for k even and
2 otherwise, and [S*]* denotes the Poincaré dual to 1 € Hy(S**) . From this, we compute
the square of the kth Pontryagin class of Q as

(10) pi(Q.0Q) = 2347 (2k — 1)!* - [Q, Q] € H*(Q,0Q),
with Ay being 1 if k # 1,2 and 2 elsewise.
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The boundaries of both plumbings P and Q are homotopy spheres (see e.g.
p. V.2.7]). We denote them by Xp and X, respectively.

1)

Theorem 2.1 (Wall). The bordism group Agnm_ satisfies

Z&Z/2 ifm=1(mod4)
AP 217 ifm = 3 (mod 4)
VA Y4 ifm = 0 (mod 2),

where the first summand is generated by P, except for m = 2,4 where it is generated by HP?
and OP?, respectively. The second summand in the cases m % 3 (mod 4) is generated by Q.

Wal62| Thm 2; Thm 11]. Denoting by (Q) < Afjﬂ"ﬁl> the subgroup generated by
Q, it follows from the discussion in p. 295] that there is an exact sequence

Prooi. The statement regarding the isomorphism type of the group Afjnm_w follows from

0—(Q) - AP 7
in which the last morphism is induced by the signature. As HP? and OP? have signature 1,
the cases m = 2, 4 follow. The other cases are concluded by observing that the intersection

form associated to a manifold representing a class in Aifnmﬂ) is even for m # 2,4, so it has
signature divisible by 8—the signature of the Es-plumbing. O

To treat the different cases for m even in a uniform manner, it is convenient to use a
basis of Agnm_w that is different from the one described in the previous theorem.

Lemma 2.2.
(i) Two almost closed 8k-manifolds M and N define the same class in Aé}tk_w if and only
ifa(M) = o(N) and p?(M) = p2(N).
(ii) The classes 8 - HP? and 8 - OP? in A;ik_1> equal P+ Q fork = 1,2, respectively.
(iii) The group Aé}tk_” =~ Z @ Z is generated by P and Q for k # 1,2, by P and HP? for
k =1, and by P and OP? fork = 2.
Proof. As opposed to the plumbing Q, the manifolds HP?, OP?, and P have nontrivial
signature. Since we computed the Pontryagin number p,zC (Q) to be nontrivial in , the
first claim follows from Theorem as A;ik_n is free abelian of rank 2. The Pontryagin
numbers pIZC(HPZ) and pi(OPZ) can be computed as ai(zk —1)!% for k = 1, 2, respectively,
which agrees with 1/8- pi(Q) by . The second claim follows from the first, remembering
that o(P) = 8 and o(Q) = 0. The third claim follows from the second using Theore O

2.2. Homotopy (4m—1)-spheres. Recall from that the group ©4,—; of h-cobordism
classes of oriented homotopy spheres fits into an exact sequence

(11) 0 — bPyy — Oym—1 — coker(J)am-1 — 0

involving the subgroup bPy,, C O4,-1 of homotopy spheres bounding parallelizable
manifolds and the cokernel of the stable J-homomorphism in degree (4m — 1). The
subgroup bPy,, is generated by the Milnor sphere Xp = 0P. It is of order o,,/8 with

B
Om = am2°™1(22™71 — 1) num (M)
4m

as defined in the introduction (see e.g. Cor. 3.20, Lem. 3.5(2)]). Brumfiel has
shown that every homotopy sphere 3 € ©y4,,—; bounds a spin manifold W5, with vanishing
decomposable Pontryagin numbers and that the signature o(Ws) of such a manifold is
divisible by 8. This enabled him to establish a decomposition

(12) Oym-1 = bPyp, @ COker(J)4m—1
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via a splitting sg: ©4p-1 — bPy,, of the exact sequence , defined by mapping a
homotopy sphere X to (6(W5)/8) - Xp. Refining Brumfiel’s definition, Stolz gave
a formula for sg(2) in terms of invariants of any spin manifold that bounds X, without
assumptions on its characteristic numbers. To state his result, fix integers c,, and d,,, with

Bom Bom
B, |)+dmden0m(| 2 |)
m 4m

’

¢ UM (

and define a rational polynomial S,,, € H*™(BSO; Q) in Pontryagin classes as
lof . .
Sm=Ln+ a_m (Cmﬂm +(=1)"dp(A ph)m) s

which involves the £- and ﬁ-class, as well as product of the A-class with the reduced
Pontryagin character ph. Here reduced refers to the triviality of ph in degree 0. The
polynomial S,, has no contributions from the mth Pontryagin class (see p-2]), so
its evaluation on an oriented almost closed manifold M can be considered as a relative
class S,,(M) € H*™(M, dM; Q).

Theorem 2.3 (Stolz). For an almost closed spin manifold M of dimension 4m, the invariant
1
s(M) = = (M) = (Sm(M). [M. OMD))
is integral and computes the value of Brumfiel’s splitting on the boundary of M, i.e.,
sg(OM) = s(M) - Zp.

2.3. Closing almost closed manifolds. By the exactness of the sequence @, the bor-
dism group Qifnm_” /®4p, is naturally isomorphic to the kernel of the morphism

0: Agnm_n — ®4m—1’

which leads us to identify these two groups henceforth. Since Afjnm_n is generated by the

classes of P and Q for m # 2,4 by Theorem we need to examine their boundaries X p
and X in @y, in order to determine the kernel in question. As mentioned earlier, the
Milnor sphere Xp is well understood; it generates the subgroup bPy,,. Regarding 3¢, we
use Stolz’s invariant to compute its image under the projection onto bP4,, with respect to
the decomposition (see Lemma. Concerning its image [X¢] in coker(J)4m-1, there
are partial results due to Anderson and Stolz. To state the ones relevant for us, denote by

B
Jjn = denom (—l 2"')
4n

the size of the image of the stable J-homomorphism in degree 4n — 1 (see ).

Theorem 2.4 (Anderson, Stolz). The class [Xg] in coker(J)4m-1 satisfies
(i) jfn/Z -[Zo] = 0 form # 2,4 even, and
(ii) [Zp] =0 form # 5 odd.
Proof. The first claim follows from the beginning of the proof of And69] Lem. 1.5]. To

prove the second, observe that the homotopy sphere 3¢ is trivial if m = 3 (mod 4) by
Theorem A result by Stolz Thm B (i)] settles the remaining case. O

Despite Anderson’s bound on its order, very little is known about the class [Z¢p] in
coker(J)4m—1 for m even. Galatius-Randal-Williams Conj. A] conjectured that
it is trivial. A weaker version of this conjecture appeared independently in work of

Bowden-Crowley-Stipsicz Conj. 5.9].

Conjecture 2.5 (Galatius-Randal-Williams). For m even, [2¢] is trivial in coker(J)sm-1.

Remark 2.6. The conjecture is known in the first two cases m = 2, 4 (cf. Ch. 6]) and
is, to the author’s knowledge, already unknown for m = 6.
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To state our formula for the image of X under the projection onto bPy,,, we denote by

|BZn|
2n
the nth tangent number, which is known to be integral (see e.g. |AIK14] Rem. 1.18]).

T, = 22"(2*" - 1)

Lemma 2.7. Stolz’ invariant s(Q) of Q vanishes if m is odd. For m = 2k even, it satisfies
2

A |Ba | | Bak|
k 2k 2k kg -
s(Q) = —@ (013 + aiGZk num( K ) (Czk num (T) +2(-1) dzk]k)),

as well as

4 4k \|Byk| 4
where A, = 1 ifk # 1,2 and Ay = 2 otherwise.

Aa? T?
s@=kkkmfmﬂhhewﬂ—iy

We postpone the proof of this lemma to the next subsection and continue by elaborating
on some of its consequences instead.

Corollary 2.8. For m even, the homotopy spheres Xp and X¢ in ©4m_1 satisfy
(i) jfn/z 3o = (afn/z/s) -Zp form # 2,4, and
(ii) ¥p = —=Zp form = 2,4.

Proof. We write m = 2k. By Theorem the homotopy sphere j12< - X lies in bPgy for
2k # 2,4, s0 Theoremgives the relation j% - £¢ = jZs(Q) - £p. From the first formula
of Lemma we see that jlzcs(Q) is congruent to cr,f /8 modulo oy. This has the first claim
as a consequence. Since num(|B,|/8) = num(|Bs|/16) = 1, we conclude d; = dy = 0. Thus,
the second formula of the lemma gives s(Q) = —T? for k = 1 and s(Q) = —T2/4 for k = 2.
As Ty =1and T, = 2, we have s(Q) = —1 for k = 1, 2, which, together with Theorem
and Remark implies the second claim. O

Combining Wall’s classification, Stolz’ invariant, and Theorem we determine the
kernel of the boundary map in the sequence @, and hence the bordism group anm_w /®uam,
as follows. The order of the class [X¢] in coker(J)sm—1 is denoted by ord([2o]).

Theorem 2.9. The bordism group Q1 /9, satisfies

4m
Zo7Z/2 ifm=1(mod4),m#+5
_ Z ifm =3 (mod 4
QU O = fn =3 modd)
(Z®Z/2)orZ ifm=5
ZoZ ifm = 0 (mod 2).

The first summand is generated by (o, /8) - P in all cases. The Z/2-summands in the respective
cases are generated by Q. For m even, the second summand is generated by HP? if m = 2, by

OP? if m = 4, and by ord([20])(Q — s(Q) - P) otherwise.

Proof. By Theoremand Lemmathe group Agnm_” is isomorphic to a direct sum
Z & C for a cyclic group C, where the first summand is generated by P, and the second
summand by Q for m # 2,4, by HP? for m = 2, and by OP? for m = 4. Recall that the
Milnor sphere Xp generates the cyclic group bPy,, of order o, /8. By exactness of , the
homotopy sphere ord([2p])-2¢ is contained in bPy,, so it coincides with ord([Zo])s(Q)-2p
by Theorem Using this, it follows from elementary algebraic considerations that the
classes (0,,/8) - P and ord([ZQ])(Q —s(Q) - P) generate the kernel for m # 2,4. As Q has
infinite order for m even, this settles the case for m # 2,4 even. The class of Q has order 2
for m = 1 (mod 4) and is trivial for m = 3 (mod 4) by Theorem Together with the fact
that, for m odd, we have s(Q) = 0 by Lemmaand ord([2p]) = 1 as long as m # 5 by
Theorem this concludes the proof for m odd. The cases m = 2, 4 are immediate. |
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Remark 2.10. The preceding proof also shows that for m = 5, the kernel in question is
isomorphic to Z @ Z/2 if and only if the class [X¢] € coker(J)yo is trivial.

Remark 2.11. Note that, for m = 2k # 2, 4, Corollaryimplies that (67/8) - P —j2 - Q is
contained in the kernel under consideration.

Remark 2.12. After replacing HP? by 4 - HP? and OP? by 4 - OP?, the statement of Theo-
reremains valid if Q ifnm_l ) /@4ym is replaced by the subgroup Qifnm_w /@smNo(4-Z).
This is because the signatures of P and Q are divisible by 8, whereas c(HP?) = o(OP?) = 1.

2.4. Characteristic numbers of highly connected manifolds. This subsection serves
to prove Lemmaand to use it in combination with Theoremto compute the lattices
of characteristic numbers realized by closed (2m — 1)-connected 4m-manifolds. Note that
for such manifolds, all Pontryagin classes vanish, except possibly for pp,, and p,,/, if m is
even. As a result of this, the £-class, the A-class, the reduced Pontryagin character ph,
and the product (A ph) of the latter two, have the form (cf. Ch. 1,3])

L = SmPm if mis odd
" %(SIZC - SZk)PIZC + Sokpar if m = 2k is even,
s | SmpPm if m is odd
" 5 (8% = Sp)pZ + Sarpar  if m = 2k is even,
o if m is odd
ph,, = (zml_l)‘ 2 1 . . and
a—DiPr — ar-miPec  if m = 2k is even,
_1\ym+1 . )
Avh), = 22,1,,)_1)ng if m is odd
( P )m - (_1)k+1§k 9 1 9 1 f B Zk ]
k=1 Px t 2@k-01Pk ~ Gr-niP2k  1Lm =2k 1s even,
where $, and s, are given by
. -1 | Ba | , ~ R o,
- —_ d =2 n+1 22n 1_1 —
0 S M ( Sn = aaen- 0

for n > 1. Solving L, for p,x and expressing Aoy in terms of Lo and plzc, we obtain

2 2 _ a2 R
Sy — S2k X S2kS;. — S2kS S
k 2 k k 2 2k

P and Ay = ———p; + — L.
282k 282k S2k

Substituting the variables with their values, the last equation becomes
2

_ Tk 2 _ 1

T (2k — 1)1224Kk+3(24k-1 _ l)pk 24k+1(8k=1 _ 1)

Proof of Lemma As Q is (2m — 1)-connected, all its decomposable Pontryagin numbers

vanish for m odd, and hence so does the characteristic number (S,,(Q), [Q, dQ]), since S,

does not involve p,, (see p- 2]). The first part of the lemma follows therefore from
the triviality of the signature of Q. For m = 2k, we use the formulas above to calculate

1
(14) ok = — Lok -
S2k

A

(15) Ak

Lok.

k+1
Sak(Q) = (%(si = Sak) + ozkczk%(s“i = Sok) + UzkdszAkﬁ + ook dok m) Pi(Q)-
Using the second description of sy in , one obtains the identity
1 1 .
ESZk = szdzkm - O'chzkészk,

which simplifies the above formula for Sy, (Q) to

k+1

1 1 -1
S (Q) = (5312‘ + Ok Cak Es}zc + UzkdzksAkﬁ)Pi(Q)-
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Substituting §; with its value and using as well as the last identity in ﬂ, we arrive at

2

/12
Sor(Q) = ( k7

Ji

b 2o atear P 4 o0t 2"'))[@ a0,

from which we obtain the first formula of the statement, since s(Q) = —1/8(Sx,(Q), [Q, IQ])
as 0(Q) = 0. The second formula follows from the first together with the identity

B
oocar = 28K (281 1) (1 — denom (%) dzk)

by combining two of the summands to —a; A T/ /16 and simplifying the expressions. O

To determine the combinations of Pontryagin numbers, signatures, and A-genera that
are realized by closed highly connected 4m-manifolds, we recall that, even for almost
closed 4m-manifolds M, these invariants are additive bordism invariants, where the top-
dimensional Pontryagin number p,,(M) is defined such that the Hirzebruch signature
formula o(M) = (L,,(M),[M]) holds. Using this description of p,,, the A-genus of an
almost closed 4m-manifold is defined by A(M) = (A,,(M), [M]).

For m odd, Theoremshows that the torsion free quotient of Q, is generated by
the class (0, /8) - P, whose invariants can be easily computed from O'(P) =8 and pi(P) =0
using the formulas recalled at the beginning of this subsection.

<m1>

Proposition 2.13. For m # 1 odd, the torsion free quotient of§2<2m Vs generated by
(01 /8) - P, whose signature, A-genus and Pontryagin numbers are

o((om/8) - P) = 6m, A((0m/8) - P) = —2num (%) , and

m
Pm((om/8) - P) = 2(2m = 1)!jpm.
For m even, we compute the occurring characteristic numbers as follows.

Proposition 2.14. The torsion free quotient onéik_ ) agrees with Q<4k 1>/®8k, and the
morphisms induced by the respective characteristic numbers

0. A, P2k Pk Q<4k 1>/®8k —Z
are, with respect to the ordered basis described in Theorem given by

O2k

h (ord([z ]) ( — 209k dzk 4k| (}?:I +(= 1)k+1)))

. (|B4k|)

20rd([3o]) & num ( IBM)

| Bak | ’
i (fef + 0)
(4k — 1)z p
Pk = ord([2 0 2 ((2k = 1)1 + (ak = 1) B! (o B! + 20 -1)¥)) | "
0
pi = ( ai '2) 5
2o0rd([Zo]) 7 (2k — 1))
where i = 2 ifk = 1,2 and px = 1 otherwise. Furthermore, after replacing py with its

reciprocal, the same formulas hold for the subgroup Q;ik_w/@gk N o~ 14 - Z) using the
ordered basis described in Remark|2.12
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Proof. The first statement follows from Theoremand the computation of the invariants
for (o,,/8) - P, analogous to Proposition using the fact that pIZC(P) vanishes since P is
parallelizable. The second part of Corollaryand Lemmaimply that ord([Zo])(Q —
s(Q) - P) equals 8 - HP? for k = 1 and 8 - OP” for k = 2. Since #k/li is8ifk=1,2and 1
otherwise, it is sufficient to show that the invariants of the class ord([£¢])(Q —s(Q)- P) are
in all cases given by the product of ,uk/li with the claimed invariants of the second basis
vector. For pi, this is implied byplzc (P) = 0 and (10). The signature of ord([Z0])(Q—s(Q)-P)
is obtained using the second formula in Lemma|2.7] together with o(P) = 8 and ¢(Q) = 0.
Using , the values of these signatures, together with plz< (P) =0and , result in

. /12 ZTZ
A (ord([Z0]) (Q - 5(Q) - P)) = ord([Zg]) (24k+2("2°1’;_i‘ — 24k_2(32(4%31 5/

which, using the second formula of Lemma gives the desired value. The calculation of
pam 1s obtained by combining with the first formula for s(Q) of Lemmaand

22 2 2
s Ao
FEa(2k - 11F = K
S2k 2k
The last part of the statement follows from Remark O

We proceed by computing the signatures and A-genera realized by highly connected
4m-manifolds. The following consequences of the von Staudt-Clausen theorem will be

useful. A proof of the latter can be derived, for instance, from [AIK14/ Ch. 3].
Theorem 2.15 (von Staudt-Clausen). The prime factor decomposition of denom(%) is
|BZn| 1
denom | —= | = +p(n)
)= 1L
p-1{2n
In particular, jo, = denom(%) is divisible by j, = denom(%), and v»(jn) = vo(n) + 3.

Proposition 2.16. There exists a closed (2m — 1)-connected 4m-manifold with signature

Om ifm# 1 is odd
2im ged(opm, O-rzn/Z) ifm # 2,4 is even
1 ifm=1,2,4,

where
im = min (0, v2(ord([Z0])) — 2va(m) — 4 + 2va(am2)) ,

and the signature of any closed (2m — 1)-connected 4m-manifold is a multiple of this number.
Remark 2.17. Note that we obtain vy(ord([2¢])) < 2v5(m) + 4 from Theoremand

Remark 2.18. Propositionshould be compared with the analogous result for (2m — 1)-
connected 4m-manifolds that are assumed to be almost parallelizable. It follows from work
of Milnor-Kervaire p- 457] that, under this additional assumption, the minimal
positive signature that occurs is o,,, independent of the parity of m. Since i,,, < 0, one gets
Om

im 2
Zl ng(Gm’ Gm/Z) < W

by |ABK72]| Thm 1.5.2(c)], so the minimal positive signature becomes, for m even, signifi-
cantly larger if one restricts to manifolds that are almost parallelizable.

The proof of Propositionowes a significant intellectual debt to a computation due
to Lampe Satz 1.3], to whom the authors would like to express their gratitude for
sending them a copy of his diploma thesis.
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Proof of Proposition For m # 1 odd, the claim is a consequence of Proposition
and for m = 1, 2, 4, it follows from the existence of the manifolds CP?, HP?, and OP? of
signature 1. For m = 2k # 2,4, itis, by Proposition sufficient to show that the integer
described in the statement is the greatest common divisor of

o ((02k/8) - P) = oy and o (ord([Z0])(Q - 5(Q) - P)) = =8 ord([Zo])s(Q)-

From the first formula of Lemma one sees that there is an odd integer b such that
1
-8 ord([Zo])s(Q) = 7 (ord([Z0])(0} + oararh)) .
k

Using vo(o) = va2(ag) + 2k + 1 and v2(ji) = v2(k) + 3, we compute

vz (ged (o2k, 8 ord([Z0])s(Q))) = min (4k + 1, v; (ord([Z0])) + 4k + 2va(ax) — 2v2(k) — 5) .
To determine the odd part ged(ok, 8 ord([20])s(Q))oda of the greatest common divisor,
we note that, since Ty is an even integer for k > 1, the number ji divides 22k71(2%F — 1),
This, together with the fact that (22 — 1) and (2**~! - 1) are coprime, implies that j; and
(2*%=1 — 1) are coprime. But since ji. is also coprime to num(%) by the von Staudten-—
Clausen theorem, it cannot share odd prime divisors with o2,,. As ord([2¢]) divides j12< by
Theoremﬂ the conclusion also holds for ord([2¢]) and o3,,. This leads to

ged (02k, 8 0rd([S0])s(Q))  gg = ged (02k, ord([So]) (a7 + azkaib))odd = ged(ok, 07)odds

which implies the statement, because v,(gcd(oax, 0'13)) =4k + 1. O

result for the signature as an immediate corollary of Proposition

Since vz(op,) = 2m+1+v,(ay,) and i, > —2v,(m)—4, we obtain the following divisibility

Corollary 2.19. The signature of a closed (2m — 1)-connected manifold of dimension 4m for
m # 1,2, 4 is divisible by 2*™*% if m is odd and by 22™~2"2(")=3 ifm is even.

For m > 2, closed (2m — 1)-connected 4m-manifolds admit a spin structure, so their
A-genus is integral. We compute it as follows.

Proposition 2.20. There exists a closed (2m — 1)-connected 4m-manifold with A-genus

Znum(%) ifm#1isodd
gcd(num(%), num(%)z) if m is even,

and the A-genus of any closed (2m — 1)-connected 4m-manifold is a multiple of this number.

Proof. Arguing similarly as in the proof of Proposition the claim for m odd follows
from Proposition To prove the remaining case of m even using Proposition we

need to compute the greatest common divisor of num(%) and

a Barl\ , 1Bkl [ Bzl
2ord([Z —knum( 4k )d 2k ( 2kl 4 (-1 k“)
(o rl C vl IRl

1 Y N ()

AS jis jok» Aks P, and dog are coprime to num( ‘g‘}f l ), the number in question agrees with

ged (num (%) ,ord([2p]) num (%) ) .

But ord([2¢]) divides j,zC by Theorem so the von Staudt-Clausen theorem implies that

it has no common divisors with num( ). This yields the result. O
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Remark 2.21. Computer calculations show that for m < 2678 even, the greatest common
divisor of o, and G,Zn/z is a power of 2, whereas it is 22'2678%1 . 34511 for m = 2678.
Since vz(gcd(om,ofn /2)) = 2m + 1, the minimal positive signature of a closed highly
connected 4m-manifold for m # 2,4 even, m < 2678, equals 2im+2m+1 by Proposition
Similar computations show that num(%) and num(%)2 are coprime for m < 44000
even, and hence Propositionimplies that in these dimensions, there exists a closed
(2m — 1)-connected 4m-manifold of A-genus 1. We do not know whether num(%) and

B .
num(%)2 are coprime for all m even.

3. CHARACTERISTIC NUMBERS OF BUNDLES OVER SURFACES WITH HIGHLY CONNECTED FIBER

Harvesting the fruits of our labor, we derive consequences for characteristic numbers of
bundles over surfaces, as well as for H?(BDiff*(M); Z). This leads to proofs of Theorem
Corollary and Theorem@ Throughout the section, we require M to be closed, (n — 1)-
connected, 2n-dimensional, and almost parallelizable (or, equivalently, n-parallelizable).

3.1. Characteristic numbers of total spaces. To treat various cases in a uniform man-
ner, the following auxiliary definition turns out to be convenient.

Definition 3.1. A smooth oriented M-bundle over an oriented surface is called admissible

if its image under Qg’o(BDiff*(M)) — QZ’% is contained in the subgroup

2n+2 2n+2

Theoreand Remashow that most bundles are admissible, as summarized in

the following. See Remark|1.10(for a discussion of which bundles might not be admissible.

(16) im(o<"> 5 Q%0 )ncfl(4~z>.

Lemma 3.2. Let w: E — S an oriented M-bundle over an oriented closed surface. If one of
the following conditions is satisfied, then m is admissible.
(i) M satisfies one of the conditions ofProposition for instance, if M = W,.
(ii) 7 admits a trivial D" -subbundle for an embedded disc D*" C M.
(iii) The class of 7 in QSO(BDifF(M)) is divisible by 2.
For g(M) > 5, every class in the subgroup is represented by a bundle of type (ii).

In Propositionand we determined the lattices of Pontryagin numbers, signa-
tures and A-genera realized by classes in the subgroup , which hence also computes
the respective invariants for total spaces of admissible M-bundles over surfaces. As an
example, note that Propositionand CorollaryEimply the following two results.
They include Theoremand Corollaryas special cases.

Theorem 3.3. Let M be a closed, highly connected, almost parallelizable (4m — 2)-manifold.
For an admissible M-bundle : E — S over a closed oriented surface, o(E) is divisible by

4 form=1,2,4
Om form # 1 odd
2im ged(o? | om) form # 2,4 even,

m/2’°
where

i;m = min (0, va(ord([Zp]) — 2vo(m) — 4 + 2vz(am/2)) .
Form > 2, the A-genus of E is integral and divisible by

2 num(% form odd
gcd(num(liz—”’fl), num('?—r’;’l‘)z) for m even.

Moreover, if g(M) > 5, then these numbers are realized as signatures and A-genera of total
spaces of bundles of the above type. For m = 1, requiring g > 3 is sufficient.
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Corollary 3.4. Let M be a closed, highly connected, almost parallelizable (4m — 2)-manifold.
There exists a smooth M-bundle over a closed oriented surface with total space of signature 4
ifand only if m = 1,2,4. If m # 1, 2,4, then the signature of the total space of an admissible
M-bundle over a surface is divisible by 2™+ for m odd and by 2°™=2":(™)=3 for m even.

Since every 2-divisible class in QSO(BDiﬁ:+ (M)) is admissible, the admissibility assump-
tion in the divisibility statements of ’Iheoremand Corollarycan be dropped, but at

the cost of losing a factor of 2.

3.2. Generalized Miller—-Morita—Mumford classes. We conclude with a computation
of the torsion free quotient H?(BDiff"(M, D?*"); Z)gc for g(M) > 7 and 2n > 6 in terms
of generalized Miller-Miller-Mumford classes (as recalled in the introduction). This also
applies to H*(BDiff " (M); Z)fiee as long as M satisfies one of the conditions of Propositio
The root of the computation is the analogous result for rational cohomology due to Galatius—
Randal-Williams: their high dimensional analogue of the Madsen-Weiss theorem (see
Theorem provides an isomorphism

H* (BDiff(M, D*"); Z) = H*(QMT0,;Z)

for 2n > 6, g(M) > 7, and * < 2. The cohomology groups H*(Q};MT0,;Z) are finitely
generated and can be computed rationally to be the free graded commutative algebra

H'(QMT6,; Q) = A (H™*"°(BSO(2n)(n); Q) ,
see Ch. 2.5]. As H*(BSO(2n)(n); Q) is a polynomial ring in the Pontryagin classes

p; of degree 4i > n, we arrive at

0 if 2n = 0 (mod 4)
H? (BDiff(M, D*"); Q) = { QKp(,..) if 2n = 2 (mod 8)
QKP(nH)/z @ QKP(2n+1)/4 if2n=6 (l'l'lOd 8)

for 2n > 6 and g > 7. Making use of the Serre exact sequences of the two homotopy
fiber sequences in @, one sees that this formula, as well as the finite generation prop-
erty, holds equally well for BDiff"(M) instead of BDiff(M, D?"), an observation which
incidentally yields the description of H*(BDiff*(W,); Q) mentioned in the introduction.

Excluding the trivial case, we assume 4m = 2n + 2. Since classes in Qifnm_w have van-
ishing Stiefel-Whitney numbers and are, up to torsion, detected by Pontryagin numbers
3

(see e.g. Proposition|2.1 and, the induced morphism (Qifnm_1>)free — Qi?ﬂ, defined
on the torsion free quotient, is injective, and the rank of its image agrees with that of
QgO(BDiff(M, D?™))gce. From this, using Theorem we conclude that the morphism

Q5O(BDIff* (M, D*™~?)) — Q39 induces an isomorphism of the form

Q3° (BDiff* (M, D*™2))

free

=im (@ > 0i0) no7a - 2).

In view of the commutative diagram displayed in the introduction, the functional on the
left hand side induced by a class k.. for ¢ € H*™(BSO; Z) corresponds via this isomorphism
to the usual characteristic number defined by ¢ on the right hand side. Propositions
andprovide an explicit basis for the right hand side and represent the functionals
induced by Pontryagin numbers in terms of this basis. Computing the appropriate change
of basis matrix, the integral dual of this basis can be expressed in terms of Pontryagin
numbers. Ultimately, this results in the following basis of H*(BDiff *(M, D*™~2); Z)fee, and
in particular proves Theorem@ The various variables are defined as in the introduction.
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Theorem 3.5. Let M a closed, highly connected, almost parallelizable (4m — 2)-manifold. If
m > 2 and g(M) > 7, then the group HA(BDiff* (M, D*™2); Z)gcc is generated by

Kpm
2(2m — 1)!jim
for m odd, and by
K 2 _ |Ba | (C 1Bokl | 94 (—1)k)K )
L Kpae = Kp? ak \“2k T4k 2k L
and - —
2ural ord([Zo])(2k - 1)!? 2(4k — 1)!jox 2(2k — 1)!12

for m = 2k even. Moreover, if M satisfies one of the assumptions of Proposition then the
same conclusions apply to the group H*(BDiff*(M); Z)gree.
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HOMOLOGICAL STABILITY OF TOPOLOGICAL MODULI SPACES

MANUEL KRANNICH

ABSTRACT. Given a graded Ej-module over an Ej-algebra in spaces, we construct an augmented semi-
simplicial space up to higher coherent homotopy over it, called its canonical resolution, whose graded
connectivity yields homological stability for the graded pieces of the module with respect to constant and
abelian coefficients. We furthermore introduce a notion of coefficient systems of finite degree in this context
and show that, without further assumptions, the corresponding twisted homology groups stabilise as well.
This generalises a framework of Randal-Williams and Wahl for families of discrete groups.

In many examples, the canonical resolution recovers geometric resolutions with known connectivity
bounds. As a consequence, we derive new twisted homological stability results for e.g. moduli spaces of
high-dimensional manifolds, unordered configuration spaces of manifolds with labels in a fibration, and moduli
spaces of manifolds equipped with unordered embedded discs. This in turn implies representation stability for
the ordered variants of the latter examples.

A sequence of spaces
eI My — My — My —

is said to satisfy homological stability if the induced maps in homology are isomorphisms in degrees that are
small relative to n. There is a well-established strategy for proving homological stability that traces back to
an argument by Quillen for the classifying spaces of a sequence of inclusions of groups G,. Given simplicial
complexes whose connectivity increases with n and on which the groups G, act simplicially, transitively
on simplices, and with stabilisers isomorphic to groups G, prior in the sequence, stability can often be
derived by employing a spectral sequence relating the different stabilisers. In , Randal-Williams
and Wahl axiomatised this strategy of proof, resulting in a convenient categorical framework for proving
homological stability for families of discrete groups that form a braided monoidal groupoid. Their work
unifies and improves many classical stability results and has led to a number of applications since its
introduction [Fri17{[GW16}[PW16|[Ran18{[SW14).

However, homological stability phenomena have been proved to occur not only in the context of
discrete groups, but also in numerous non-aspherical situations, many of them of a moduli space flavor,
such as unordered configuration spaces of manifolds McD75"Seg73"Seg79], the most classical example, or
moduli spaces of high-dimensional manifolds lGRl 7]lGR18| to emphasise a more recent one. The majority
of the stability proofs in this context resemble the original line of argument for discrete groups, and one of
the objectives of the present work is to provide a conceptualisation of this pattern.

Instead of considering the single spaces M,, and the maps M, — M, between them one at a time,
it is beneficial to treat them as a single space M = [, .o M, together with a grading gy: M — Ny
to the nonnegative integers, capturing the decomposition of M into the pieces M,,, and a stabilisation
map s: M — M that restricts to the maps M, — M1, so it increases the degree by one. From
the perspective of homotopy theory, such M that result from families M, that are known to stabilise
homologically usually share the characteristic of forming a (graded) E;-module over an E,-algebra—the
homotopy theoretical analogue of a module over a braided monoidal category. This observation is the
driving force behind the present work.

Referring to Sectionfor a precise definition, we encourage the reader to think of a graded E;-
module M over an E;-algebra A as a pair of spaces (M, A) together with gradings gps: M — Ny and
ga: A — Ny, a homotopy-commutative multiplication ®: A X A — A, and a homotopy-associative
action-map &: M X A — M. These are required to satisfy various axioms, among them additivity with
respect to g and g4 (see Deﬁnition. Given such M and A, the choice of a stabilising object X € A,
meaning an element of degree 1, results in a stabilisation map

s=-eX): M- M

2010 Mathematics Subject Classification. 55P48, 55R40, 55R80, 57R19.
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that increases the degree by 1 and hence gives rise to a sequence

S S
eI My — My — My —

of the subspaces M,, = g/_\/ll(n) of a fixed degree. The sequences of spaces arising in this fashion are the
ones whose homological stability behaviour the present work is concerned with.
The key construction of this work is introduced in Section We assign to M its canonical resolution

(1) R\(M)— M,

which is an augmented semi-simplicial space up to higher coherent homotopy—a notion made precise in
Section but which can be thought of as an augmented semi-simplicial space in the usual sense. The fibre
Wa(A) of the canonical resolution at a point A € M is an analogue of the simplicial complex in Quillen’s
argument; it is a semi-simplicial space up to higher coherent homotopy whose space of p-simplices W,(A)
is the homotopy fibre at A of the (p + 1)st iterated stabilisation map s?*!: M — M. Thus W, (A) should be
thought of as the space of destabilisations of A—a terminology that suggests that the canonical resolution
controls the stability behaviour of M, justified by Theoremand

To state our main theorems, we call the canonical resolution of M graded ¢(ga1)-connected in degrees
> m for a function ¢: Ny — Q if the restriction |R.(M)|, — M, of the geometric realisation of (1) to
the preimage of M, is | ¢(n)]|-connected in the usual sense for all n > m. The first theorem, proved in
Section treats homological stability with constant and abelian coefficients, the latter being local systems
on which the commutator subgroups of the fundamental groups at all basepoints act trivially.

Theorem A. Let M be a graded E;-module over an E;-algebra with stabilising object X and L a local system
gm—2+k

on M. If the canonical resolution of M is graded (**7—)-connected in degrees > 1 for some k > 2, then
s«: Hi(Mp;s"L) — H;(M,4q; L)
(i) is an isomorphism fori < ”T_l and an epimorphism fori < "_TH, if L is constant, and
and an epimorphism fori < Z, if L is abelian and k > 3.

sy . . . n+l-k
(i) is an isomorphism fori < ==

Remark. In certain cases, discussed in Remark the ranges of Theoremcan be improved marginally.
Restricting to homological degree 0, the theorem has the following cancellation result as a consequence.

Corollary B. Let M be a graded E,-module over an E,-algebra with stabilising object X. If the connectivity
assumption of Theoremis satisfied, then the fundamental groupoid of M is X -cancellative for objects of
positive degree, i.e. for objects A and A’ of M of positive degree, A® X = A’ @ X inII(M) implies A = A’.

To cover more general coefficients, we note that the fundamental groupoid of an E;-algebra A naturally
carries the structure of a braided monoidal category (II(A), ®, b, 0) and the fundamental groupoid of an
E;{-module M over A becomes a right-module (II(M), ®) over it (see Section. In terms of this, we
define in Sectiona coefficient system F for M with stabilising object X as an abelian group-valued
functor F on II(M), together with a natural transformation o : F — F(— & X) for which the image of the
canonical morphism B,,, — Autg(X®™) from the braid group on m strands acts trivially on the image of
(cF)m™: F — F(— ® X®™) for all n and m. Such a coefficient system enhances the stabilisation map to a
map of spaces with local systems

(s:07): (Mp; F) = (Mpsi; F)

by restricting F to subspaces of homogenous degree. A coefficient system F induces a new one XF =
F(— & X), called its suspension, which comes with a morphism F — XF, named the suspension map (see
Deﬁnition. The coefficient system F is inductively said to be of degree r if the kernel of the suspension
map vanishes and the cokernel has degree (r — 1); the zero coefficient system having degree —1. In fact,
we define a more general notion of being of (split) degree r at N such that F is of degree r in the sense
just described if it is of degree r at 0 (see Deﬁnition. This notion of a coefficient system of finite
(split) degree generalises the one introduced by Randal-Williams and Wahl for braided monoidal
groupoids (see Remarksand, which was itself inspired by work of Dwyer and van der
Kallen on general linear groups, and work of Ivanov on mapping class groups of surfaces.

Remark. There is an alternative point of view on coefficient systems for M, namely as abelian-group
valued functors on a category (M, B) constructed from the action of II(A) on II(M) (see Remark|4.12).
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Our second main theorem, demonstrated in Section addresses homological stability of M with
coefficients in a coefficient system of finite degree.

Theorem C. Let M be a graded E;-module over an E;-algebra with stabilising object X and F a coefficient

system for M of degree r at N > 0. If the canonical resolution of M is graded (ngJrk )-connected in degrees

> 1 for some k > 2, then the map induced by stabilisation
(s;07)t Hi(My; F) — Hi(Mpi1; F)

is an isomorphism fori < ”_rkﬂ and an epimorphism fori < "_k’k, when n > N. IfF is of split degree r at

N > 0 then (s;oF), is an isomorphism fori < "_]C_k and an epimorphism fori < *z*, whenn > N.

As a proof of concept, we apply the developed theory to three main classes of examples to which we
devote the remainder of this introduction.

Configuration spaces. The unordered configuration space Cf(W) of a manifold with boundary W with
labels in a Serre fibration 7: E — W is the quotient of the ordered configuration space

Fi(W)={(e1,...,en) € E" | m(e;) # n(e;) for i # j and n(e;) € W\OW}

by the apparent action of the symmetric group X,,. If W is of dimension d > 2 and has nonempty boundary,
then the union of its configuration spaces M = [],,5, Cr (W) admits the structure of an E;-module over
the E,-algebra A = [[,,5o Cn(D?) of configurations in a d-disc, graded by the number of points (see
Lemma. In Section we identify its canonical resolution with the resolution by arcs—an augmented
semi-simplicial space of geometric nature that has already been considered in the context of homological

stability (see e.g. ) and is known to be sufficiently connected to apply Theoremand

Theorem D. Let W be a connected manifold of dimension at least 2 with nonempty boundary and let
: E — W be a Serre fibration with path-connected fibres.

(i) For a local system L on CT,_ (W), the stabilisation map

n+1

s«t Hi(CF(W);s"L) — H;(CT, (W); L)

n+1
is an isomorphism fori < "T_l and an epimorphism fori < %, if L is constant. It is an isomorphism for
i < 222 and an epimorphism fori < %, if L is abelian.
(ii) IfF is a coefficient system of degreer at N > 0, then the stabilisation map

(s;o"): Hy(CF(W); F) — H;(CF, (W); F)

is an isomorphism for i < =2"=% and an epimorphism fori < "S2, whenn > N. IfF is of split degree

2
r at N > 0, then it is an isomorphism for i <

“—=2 and an epimorphism fori < "3, whenn > N.

2

Remark. Employing the improvement of Remark one obtains a slightly better isomorphism range of
i < 7 than the one stated in Theorem

work of Arnold [Arn68], who established stability for C,,(D?) with constant coefficients. McDuff and Segal
[McD75[Seg73]|Seg79] observed that this behaviour is not restricted to the 2-disc and proved stability for
more general C;; (W) with constant coefficients and 7 = idyy, which can be extended to general =, e.g. by
adapting the proof for a trivial fibration presented in [Ran13] (see [CP15”KM14] for alternative proofs).

As proved for example in , the stabilisation map for configuration spaces is in fact split injective
in homology with constant coefficients in all degrees—a phenomenon special to configuration spaces, not
captured by our general approach.

For a trivial fibration, stability of C;7 (W) with respect to a nontrivial coefficient system F was studied by
Palmer , building on work of Betley on symmetric groups. The second part of Theorem@
extends his result to nontrivial fibrations and a significantly larger class of coefficient systems, partly
conjectured by Palmer Rem. 1.5] (see Remarkfor a more detailed comparison to his work). In
the case of surfaces and a trivial fibration, a result similar to Theorem@ but with respect to a slightly
smaller class of coefficient systems, is contained in work by Randal-Williams and Wahl Thm D].

In Section we provide a discussion of coefficient systems for configuration spaces by relating them,
for instance, to the theory of #7-modules as introduced by Church, Ellenberg, and Farb or to

Configuration spaces have a longstanding history in the context of homological stability, starting with
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coefficient systems studied in . These considerations provide numerous nontrivial coefficient
systems F with respect to which the homology of C7 (W) stabilises.

To our knowledge, stability with abelian coefficients for configuration spaces of manifolds of dimensions
greater than two has not been considered so far. We next discuss a direct consequence of stability with
respect to this class of coefficients as the first item in a series of applications exploiting Theorem@

Oriented configuration spaces. The oriented configuration space C;;"*" (W) with labels in a Serre fibration 7
over W is the double cover of CF (W) given as the quotient of the ordered configuration space F) (W) by
the action of the alternating group A,, or equivalently, the space of labelled configurations ordered up to
even permutations. By the space version of Shapiro’s lemma, the homology of C;;"* (W) is isomorphic
to H.(C (W); Z[Z/2Z]), with the action of 7;(C; (W)) on the group ring Z[Z/2Z] being induced by the
composition of the sign homomorphism with the morphism m;(C} (W)) — X,, obtained by choosing an
ordering of a basepoint. These local systems are abelian and are preserved by pulling back along the

stabilisation map, hence homological stability for C;;"*" (W) follows as a by-product of Theorem@

Corollary E. Let W and  be as in Theorem@] The map induced by stabilisation
so: Hi(Cro'(W); Z) — Hi(CiY (W): 2)

n+1

. . . . n—2 . . . n
is an isomorphism for i < "== and an epimorphism fori < Z.

Stability for oriented configuration spaces of connected orientable surfaces with nonempty boundary
and without labels was proved by Guest, Kozlowsky, and Yamaguchi using computations due to
Bodigheimer, Cohen, Taylor, and Milgram . Palmer extended this to manifolds
of higher dimensions with nonempty boundary and labels in a trivial fibration. Corollarygives an
alternative proof of his result and enhances it by means of general labels and an improved stability range.

Configuration spaces of embedded discs. The configuration space CX(W) of unordered k-discs in a connected
d-manifold W is the quotient by the action of %,, on the configuration space of ordered k-discs

FK(W) = Emb([[" D*, W\oW),

equipped with the C*-topology. For k = d and oriented W, there are variants Fff’Jr(W) and cﬁ’*(W)
by restricting to orientation preserving embeddings. Mapping an embedding of a k-disc to its centre
point, labelled with the k-frame induced by standard framing of D¥ at the origin, results in a map
Cﬁ(W) — Cyp*(W), where i is the bundle of k-frames in M. This map can be seen to be a weak
equivalence by choosing a metric and exponentiating frames. For k < d, the fibre of 7 is path-connected
so the homological stability results of Theorem@carry over to CX(W), comprising part of Corollary
below. Using the bundle 7 of oriented d-framings, the argument for C,‘f’J'(W) is analogous, since the
orientability condition ensures that the fibres of 7 are path-connected.

The topological group of diffeomorphisms Diff 53(W) fixing a neighbourhood of the boundary in the
C™-topology naturally acts on the configuration spaces F¥(W) and CX(W), and the resulting homotopy
quotients FK(W) /Diff (W) and CX(W) /Diff 5(W) model the classifying spaces of the subgroups

PDiffy (W) C Diff§, (W) C Diff5(W),

where PDiffg’n(W) are the diffeomorphisms that fix n chosen embedded k-discs in W and Diffg’n(W) are
the ones permuting them (see Lemma. If W is orientable, the (sub)groups of orientation preserving
diffeomorphisms are denoted with a (+)-superscript. In Example@ we explain how the canonical
resolution of a graded E;-module M over an E,-algebra A relates to that of the E;-module EG X M
over A in the presence of a graded action of a group G on M that commutes with the action of A. An
application of this consideration to the situation at hand implies the following, carried out in Section(s.3.1]

Corollary F. Let W be a d-dimensional manifold as in Theorem@]and let0 <k <d.

(i) For a local system L, the stabilisation maps

H;(CR(W);s°L) = Hy(Ck, (W);L) and  H;(BDiff}y ,(W);s"L) — H;(BDiff} ., ,(W); L)

n+1 d,n+1

. . . n—-1 . . . n o . . .
are isomorphisms for i SZT and epimorphisms fori < %, if L is constant. If L is abelian, then they are
; : . on- ; : . n
isomorphisms for i < "= and epimorphisms fori < 3.
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(ii) IfF is a coefficient system of degree r at N > 0, then the maps induced by the stabilisation (s; oF')
H;(CRN(W): F) — Hy(Ck,;(W);F) and H;(BDiff} (W);F) — H;(BDiff} (W) F)

n+1 d,n+1

< =272 gnd epimorphisms fori < 22, whenn > N. IfF is of split degree r

2
n—r—2 ; ; ; n—r
>— and epimorphisms fori < ==, whenn > N.

IfW is oriented, then the analogous statements hold for the variants C,’f’+(W) and B Diffg’:;(W).

are isomorphisms for i
at N > 0, then they are isomorphisms fori <

Remark. The isomorphism range for constant coefficients in the previous theorem can be improved to
i < 4§ by virtue of Remark

For compact manifolds W, Tillrnann has proved homological stability with constant coefficients
for variants of B Diﬁ%’n(W) and B Diff”;(W) involving diffeomorphisms that are only required to fix a
disc in the boundary instead of the whole boundary. A Serre spectral sequence argument shows that
stability for these variants follows from stability of the spaces B Diff%,n(W) and B Diff Z;(W) Hatcher
and Wahl Prop. 1.5] have shown stability with constant coefficients for the mapping class groups
o (Diff%, »(W)), which can be seen to be equivalent to Diff%’ (W) for compact 2-dimensional W' as a result
of the homotopy discreteness of the space of diffeomorphisms of a compact surface . In this

case, stability with respect to some of the twisted coefficients systems Corollarydeals with is contained
in work by Randal-Williams and Wahl Thm 5.22].

Representation stability. The first rational homology group of the ordered configuration space of the 2-disc

H, (Fo(D*); Q) = Q(%),

as e.g. computed in , exemplifies that—in contrast to unordered configuration spaces—the homology
of the ordered variant does not stabilise. However, by incorporating the action of the symmetric groups
3n, it does stabilise in a more refined, representation theoretic sense. To make this precise, recall the
correspondence between irreducible representations of X, and partitions of n Ch. 4]. We denote
the irreducible 3|, -module corresponding to a partition A = (A; > ... > Ai) + |A] of length |A| by V; and
define for n > |A| + A4, the padded partition A[n] = (n—|A| > A; > ... > Ax) + n. Using the Totaro spectral
sequence , Church has shown that for a connected orientable manifold of dimension at least
two with finite-dimensional rational cohomology, the groups H'(F,(W); Q) are uniformly representation
stable—a concept introduced by Church and Farb . This implies the existence of a constant N(i),
depending solely on i, such that the multiplicity of V;,) in the X ,-module H'(F,(W); Q) is independent of
n for n > N(i). Church’s result has been extended in several directions [CEF15”MW16“Pet17] Tos16].

A twisted Serre spectral sequence argument (see LemmaM shows that the multiplicity of an irre-
ducible X,,-module V} in H*(F (W); Q) agrees with the dimension of H;(CF (W); V), where 7, (CJ (W)) acts
on V via the morphism m;(C;; (W)) — X,. This fact allows us to derive the stability of these multiplicities
from Theorem@ at least for all manifolds to which the latter theorem applies (see Section.

Corollary G. Let W and x be as in Theorem@]and let Z,, be one of the following sequences of X, -spaces:
(i) F*(W), (iv) BPDiffy (W) for0 < k <d,
(i) Fy(W) for0 < k < d, (v) BPDiffg’;(W) if W is orientable.
(i) F*(W) if W is oriented, ’
The Vyn)-multiplicity in H'(Z,,; Q) for a fixed partition A is independent of n for n large relative to i.

In Remark we discuss explicit ranges for Corollaryand compare them to Church’s. Let us at
this juncture record that our approach leads to ranges that depend on |1|, so we do not recover uniform
representation stability. On the other hand, in contrast to Church’s result, we neither require W to be
orientable nor to have finite dimensional rational cohomology or 7 to be the identity.

Jiménez Rolland has shown uniform representation stability for the cohomology groups
Hi(B PDiff%’ »(W); Q) for compact orientable surfaces and for compact connected manifolds W of dimension
d > 3, assuming that B Diff 3(W) has the homotopy type of a CW-complex of finite type. Furthermore, she
proved uniform representation stability for 7 (PDiﬂ“%, (W) for compact orientable surfaces, as well as for
higher-dimensional manifolds under some further assumptions.
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Moduli spaces of manifolds. The moduli space M of compact d-dimensional smooth manifolds with
a fixed boundary P forms an E;-module over the E;-algebra A given by the moduli space of compact
d-manifolds with a sphere as boundary (see Lemma. The homotopy types of M and A are

M = 1w BDiff(W) and A = [[jy; BDiffs(N),

where [W] runs over diffeomorphism classes relative to P of compact d-manifolds with P-boundary and
[N] over the ones of compact d-manifolds with a sphere as boundary. Acting with a manifold X € A on
M corresponds to taking the boundary connected sum (—hX) with X, so the resulting stabilisation map
thus restricts on path components to a map of the form

(2) s: BDiff5(W) — BDiff5(WhX),

which models the map on classifying spaces induced by extending diffeomorphisms by the identity.

As shown in Section the canonical resolution of M with respect to a choice of a stabilising manifold
X is equivalent to the resolution by embeddings—an augmented semi-simplicial space of submanifolds
W € M, together with embeddings of X with a fixed behaviour near their boundary. For specific manifolds
X and W, this resolution and its connectivity has been studied to prove homological stability of , first
by Galatius and Randal-Williams in their work m for X = D?}(S? x SP) and simply-connected
2p-dimensional W with p > 3. Their results extend the classical stability result for mapping class groups
of surfaces by Harer to higher dimensions. As in Harer’s theorem, the known connectivity of the
resolution by embeddings, and hence the resulting stability ranges, depend on the X-genus of W,

g (W) = max{k > 0 | there exists M € M such that MEX* = W relative to P},

which incidentally provides a method of grading E;-modules M in general (see Section. Perlmutter
succeeded in carrying out this strategy for X = DP*94(SP x S7) with certain p # q depending on
which W is required to satisfy a connectivity assumption. Recently, Friedrich extended the work of
Galatius and Randal-Williams to manifolds W with nontrivial fundamental group in terms of the unitary
stable rank Def. 6.3] of the group ring Z[x;(W)]. These connectivity results can be restated in our
context as graded connectivity for the canonical resolution of M with respect to different gradings (see
Corollary, allowing us to apply Theorand

Employing the improvement of Remark|3.3| the ranges with constant and abelian coefficients obtained
from Theoremagree with the ones established in [Fri17{|GR18||Per16a| (after extending to
abelian coefficients by adapting the methods of IGR18|). The cancellation result for connected sums of
manifolds that we derive from Corollarycoincides with their cancellation results as well. Our main
contribution with respect moduli spaces of manifolds lies in the application of Theorem i.e. homological
stability with respect to a large class of nontrivial coefficient systems, which has not yet been considered
in the context of moduli spaces of high-dimensional manifolds. On path components, it reads as follows.

Theorem H. Let W be a compact (p + q)-manifold with nonempty boundary and F a coefficient system of
degree r. Denote by g(W) the (S? x S7)-genus of W, and set u to be 1 if W is simply connected and to be the
unitary stable rank of Z[ w1 (W)] otherwise. The stabilisation map

(s,0F).: Hi(BDiff5(W); F) —> H;(BDiff 5(WH#(S? x $9)); F)
(i) is an isomorphism fori < gW)-ar-u-3
< g(W)-2r-m—4
= 2

and an epimorphism fori < M, ifp=q>3,and

.. . . . . . . W)-2r-m-2 . .
(ii) an isomorphism for i and an epimorphism fori < W, ifw is (g—p+2)-
connected and 0 < p < q < 2p — 2 withm = min{i € N | there exists an epimorphism Z' — m4(S”)}.

If F is (split) of degree r at a number N > 0, the ranges in Theoremchange as per Theorem

Remark. The unitary stable rank Def. 6.3] of a group ring Z[G] need not be finite. To provide a
class of examples of finite unitary stable rank, recall that G is called virtually polycyclic if there is a series
1=Gyp € Gy C...C Gy =G such that G; is normal in G;;1 and the quotients G;41/G; are either finite or
cyclic. Its Hirsch length h(G) is the number of infinite cyclic factors. Crowley and Sixt Thm 7.3]
showed usr(Z[G]) < h(G) + 3 for virtually polycyclic groups G. In particular, we have usr(Z[G]) < 3 for
finite groups and usr(Z[G]) < rank(G) + 3 for finitely generated abelian groups.



HOMOLOGICAL STABILITY OF TOPOLOGICAL MODULI SPACES 7

In Remark we briefly elaborate on how to include the case of orientable surfaces in this picture by
utilising high-connectivity of the complex of tethered chains—a result of Hatcher and Vogtmann HV17|.
For constant coefficients, this implies Harer’s classical stability theorem IHarSsl with a better, but not
optimal range (see ). For twisted coefficients, it extends a result by Ivanov [Ivag3] to more

general coefficient systems. However, in the case of surfaces, stability with respect to most of these more
general coefficient systems was already known by .

In Section we show that coefficient systems for M are equivalent to certain families of modules
over the mapping class groups 7y (Diff 5(W)) = 7;(B Diff 3(W)) and explain how the action of the mapping
class groups on the homology of the manifolds gives rise to a coefficient system of degree 1 for M. This
yields the following corollary.

Corollary I. Let W be a compact (p + q)-manifold with nonempty boundary and k > 0. The stabilisation
H; (BDiff (W ); He(W)) — Hi(BDiffo(WH(S? x $7)); Hi(WH(S? x 57)))
is an epi- and isomorphism for the same W as in Theorem@and with the same ranges, after replacing r by 1.

Furthermore, in Section we provide a short discussion of how our methods can be applied to the
case of certain stably parallelisable (2n — 1)-connected (4n + 1)-manifolds X and 2-connected W, extending
stability results by Perlmutter . Similarly, we also briefly explain how to enhance work of Kupers
on homeomorphisms of topological manifolds and automorphisms of piecewise linear manifolds.

Modules over braided monoidal categories. We close in Sectionby explaining applicability of our
results to discrete situations, such as groups or monoids, and by drawing a comparison to .

The classifying space BM of a graded module M over a braided monoidal category is a graded E;-
module over an E,-algebra (see Lemma, so forms a suitable input for Theoremand In Lemma
we identify the space of destabilisations W,(A) of A € M with a semi-simplicial set WXV (A) in the case of
M being a groupoid satisfying an injectivity condition. This identification gives rise to a framework for
homological stability for modules over braided monoidal categories, phrased entirely in terms of M and
semi-simplicial sets instead of semi-simplicial spaces up to higher coherent homotopy (see Remark.

Using this, it can, for instance, be concluded that work of Hepworth on homological stability for Coxeter
groups with constant coefficients implies their stability with respect to a large class of nontrivial
coeflicient systems without further effort, as well as stability of their commutator subgroups.

In the case of a braided monoidal groupoid acting on itself, the semi-simplicial sets WXV (A) were
introduced by Randal-Williams-Wahl in as part of their stability results for the automorphisms of
a braided monoidal groupoid, which this work enhances in various ways. We generalise from braided
monoidal groupoids to modules over such, remove all hypotheses on the categories they impose, improve
the stability ranges in certain cases (see Remark, and enlarge the class of coefficients systems (see
Remark. We refer to Sectionfor a more detailed comparison of our results in the discrete setting to
and also for an analysis of their assumptions on the braided monoidal groupoid.
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1. PRELIMINARIES

This section is devoted to fix conventions and collect general techniques. We work in the category of
compactly generated spaces, use Moore paths throughout, and denote the endpoint of a path u by w(u).

1.1. Graded spaces and categories. We denote by (N, +) the discrete abelian monoid obtained by
extending the non-negative integers (Ny, +) by an element oo satisfying k + co = oo for all k > 0.

A graded space is a space X together with a continuous map gx : X — N. A map of graded spaces is a
map that preserves the grading and a map of degree k between graded spaces for a number k > 0 is a map
that increases the degree by k. The category of graded spaces is symmetric monoidal with the monoidal
product of two graded spaces (X, gx) and (Y, gy) given by (X X Y, gx + gy). The subspace of elements of
degree n € N is denoted by X,, = g3/’ ({n}) C X. By restricting the grading, subspaces of graded spaces
are implicitly considered as being graded. A graded space (X, gx), or amap (Y, gy) — (X, gx) of graded
spaces, is ¢(gx )-connected in degrees > m for a function ¢: N — Q U {oo} satisfying ¢(c0) = oo if X, or
Y, — Z,, respectively, is | ¢(n)|-connected for all m < n < oo in the usual sense. Note that we do not
require anything on X or Yoo — Xeo.

A graded set X is a graded space that is discrete. A graded category C is a category internal to graded sets,
i.e. a category C with a function gc: ob C — N whose value on objects that are connected by morphisms is
constant. This is equivalent to a grading on the classifying space BC. A graded monoidal category is a monoid
internal to graded categories with the monoidal product (C, g¢)X(D, gp) = (CXD, gc+9gp), i.e. amonoidal
category (A, @, 0) together with a grading g.# on A that satisfies g #(0) = 0 and ga(X®Y) = ga(X)+ga(Y).
A graded right-module (M, ®) over a graded monoidal category (A, @, 0) is a graded category M together
with a right-action of (A, ®,0) on D internal to graded categories, i.e. a functor ®: M x A — M which
is unital and associative up to coherent isomorphisms, and satisfies g((A & X) = gm(A) + gm(X).
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1.2. Homology with local coefficients. We adopt the convention of Ch. VI]: for points x and y
in a space X, a morphism in the fundamental groupoid II(X) from x to y is a homotopy class of paths from
y to x, resulting in the fundamental group (X, x) being a subgroupoid of II(X). A local system on a pair
of spaces (X, A) with A C X is a functor F from the fundamental groupoid II(X) of X to the category of
abelian groups. It is constant if it is constant as a functor. For a path-connected space X, local systems can
equivalently be described as modules over (X, x), since the fundamental groupoid II(X) is equivalent to
the one-object groupoid 71(X, x). Subspaces of spaces with local systems are implicitly equipped with
the local system obtained by restriction along the inclusion. When we write (X, A) for a map A — X that
is not necessarily an inclusion, we implicitly replace X by the mapping cylinder of A — X. A morphism
(fn) between pairs with local systems (X, A; F) and (Y, B; G) is a map of pairs f: (X,A) — (Y,B) with a
natural transformation : F — f*G of functors on II(X). A homotopy between (fo; 7o) and (fi; 1) from
(X,A; F) to (Y, B; G) consists of a homotopy of pairs H;: (X, A) — (Y, B) from f; and f; such that

m G(fi(-))
— NICAS):

F()
T G(A)

commutes. Taking singular chains with coefficients in a local system provides a homotopy invariant
functor C,.(—) from pairs with local systems to chain complexes. The homology H..(X, A; F) of C.(X, A; F) is
the homology of the pair (X, A) with coefficients in the local system F. A grading on X results in an additional
grading @nEN H..(Xy, An; F) on Hy(X, A; F). For a morphism (X, A; F) — (Y, B; G), the homology of the
mapping cone of C.(X, A; F) — C.(Y, B; G) is denoted by H.((Y, B; G), (X, A; F)). If X and Y are graded
and the underlying map X — Y is of degree k, then H.((Y, B; G), (X, A; F)) inherits an extra grading

H, ((Y,B;G), (X, A F)) = B, cx He ((YVnsks Busk; G), (X, An F)).

We refer to Ch. VI] for more details on homology with local coefficients.

1.3. Augmented semi-simplicial spaces. Denoting by [p] the ordered set {0, 1,. .., p}, the semi-simplicial
category is the category Aj,; with objects [0],[1], ... and order-preserving injections between them. A
semi-simplicial space X, is a space-valued functor on Aiorg, or equivalently, a collection of spaces X, for
p = 0, together with face maps d;: X;, — X, for 0 < i < p that satisfy the face relations d;d; = d;_,d; for
i < j. An augmented semi-simplicial space X, — X_ is a semi-simplicial space X, with maps X, — X_;
for p > 0 that commute with the face maps. As for simplicial spaces, augmented semi-simplicial spaces
Xo — X_1 have a geometric realisation—a space over X_i, denoted by |Xo| — X_; (see Sect. 1.2]).

Given an augmented semi-simplicial space X, — X_; and a local system F on X_;, we obtain local
systems on the spaces of p-simplices X, and on the realisation | X, | by pulling back F along the augmentation.
Filtering | X,| by skeleta induces a strongly convergent homologically graded spectral sequence

(3) Ezlhq = Hq(XP;F) o Hp+q+l(X—1, |Xel; F),

defined for ¢ > 0 and p > —1 (see Sect. 1.4; Lem. 2.7]). The differential d': Hy(X,; F) —
Hy(Xp-1; F) is the alternating sum 3 =0(—l)i(di; id).. of the morphisms induced by the face maps for p > 0,
and induced by the augmentation for p = 0. Given a morphism of augmented semi-simplicial spaces
(fo, f1): Xe — X_1) = (Yo — Y_4), local systems F on X_; and G on Y_4, and a morphism of local
systems F — f_;"G, we obtain a morphism of augmented semi-simplicial objects in spaces with local
systems, resulting in a relative version of the spectral sequence ,

(4) Elly,q = Hq ((Yp§ G)’ (XpiF)) = Hp+q+1 ((Y—la |Y-|§ G), (X,l, |X-|’F))

If X_; is graded, all spaces X, and |X,| inherit a grading by pulling back gx_, along the augmentation. This
results in a third grading of the spectral sequence , but since the differentials preserve the additional
grading, it is just a sum of spectral sequences, one for each n € N. Analogously, if the map f_; of
(fo, f-1): Xe = X_4) — (Yo — Y_,) is a map of degree k for gradings on X_; and Y_;, the spectral
sequence (4) splits as a sum, with the nth summand of the E;-page being E}J’ gn = Hy((Yp, n4k3 G), (Xp,n3 F)).
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1.4. C-spaces and their rectification. We set up an ad-hoc theory of spaces parametrised by a topolog-
ically enriched category, serving us as a convenient language in the body of this work.

We call an enriched space-valued functor X, on a topologically enriched category C a C-space, and
write X¢ for its value at an object C. An augmentation f,: X, — X_; of a C-space X, over a space X_; is a
lift of X, to a functor with values in the overcategory Zop/X_;, and an augmented C-space is a C-space
together with an augmentation. We denote the value of an augmented C-space fo: Xo — X_; at an
object C by fc: Xc — X_1. A morphism of augmented C-spaces is a natural transformation of functors
C — Jop/X_1, and it is called a weak equivalence if it is a weak equivalence objectwise. A morphism
between a C-space X, augmented over X_; and a C-space Y, over Y_; consists of amap h: X_; — Y4
and a morphism A, : h.(X,) — Y, of C-spaces augmented over Y_;, where h.(X,) denotes X, considered
augmented over Y_; via h. Such a morphism is a weak equivalence if h is a weak equivalence of spaces and
h. is one of C-spaces over Y_;. An augmented C-space f, is fibrant if all maps fc are Serre fibrations.

Example 1.1. For C being the opposite of the semi-simplicial category, the notion of a C-space agrees with
the one of a semi-simplicial spaces (see Section. This example motivated our choice of notation.

Definition 1.2. The fibrant replacement of an augmented C-space X, — X_; is the augmented C-space
X — X_; obtained by applying the path-space construction objectwise,

X8 = {(x, ) € Xc x Path X_; | w(p) = fe(x)},

considered as a space over X_; by evaluating paths at zero. It is fibrant and admits a canonical weak
equivalence X, — X! of augmented C-spaces, given by mapping x € X¢ to (x, consts,.(x)) € ng.

The fibre X, o of an augmented C-space f,: Xo — X_; at x € X_; is the C-space that assigns to an
object C the fibre Xy.c = f='(x). Its homotopy fibre hofib,(X,) at x is the fibre of Xi* — X_; at x. If
X. — X_; is fibrant, then the weak equivalence X, — X% induces a weak equivalence X, . — hofib,(X,).

Definition 1.3. Let C be a small topologically enriched category.

(i) The bar construction B(Ys, C, Xs) of a pair of C-spaces (X, Ys ), where X, is co- and Y, is contravariant,
is the realisation of the semi-simplicial space Ba(Ys, C, X,) with p-simplices

]—[C(),...,CPEObCXCO X C(CO, Cl) X...X C(Cp_l, Cp) X YCP'

The ith face map is induced by composing morphisms in C(C;_1, C;) and C(C;, Cjq)for1 <i < p-—1,
and by the evaluations X¢, X C(Co, C1) = X¢, and C(Cp-1,Cp) X Yc, — Xc, , fori =p—1and
i = p, respectively. An augmentation X, — X_; naturally induces a map B(Y,, C, X.) — X_;.

(if) The homotopy colimit

hocolime X, — X_4

of an augmented C-space X, — X_; is the bar construction B(x, C, X,) — X_;.

A C-space is k-connected for a number k > 0 if its homotopy colimit is so. If the base X_; of an
augmented C-space X, — X_; is graded, then its values X¢ and its homotopy colimit inherit gradings
by pulling back gx , from X_;. It is graded ¢(gx ,)-connected in degrees > m for ¢: N — Q U {oo} if
hocolim¢ Xo — X_; is. A functor between topologically enriched categories is a weak equivalence if it
induces weak equivalences on morphism spaces and a bijection on the set of objects. Note that this notion
of weak equivalence is slightly stronger than the usual one. With this choice, it is immediate to see that the
map on bar constructions induced by a weak equivalence (X,, C, Ys) — (X, C’, Y,) of triples, defined in
the appropriate sense, is a weak equivalence, since levelwise weak equivalences of semi-simplicial spaces
realise to weak equivalences (see e.g. Thm 2.2]). In particular, taking homotopy colimits turns weak
equivalences of C-spaces augmented over X_; into weak equivalences of spaces over X_;.

Lemma 1.4. Let Xo — X_; be an augmented C-space and x € X_y. The canonical map
hocolim¢(hofib, (X, — X_;)) — hofib,(hocolim¢e X, — X_1)

is a weak equivalence.
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Proof. We show that the map in consideration is even a homeomorphism, provided X_; is a weak Hausdorff
space. This implies the claim, since the two functors in comparison both preserve weak equivalences of
augmented C-spaces and every augmented C-space X, — X_; can be replaced, up to weak equivalence,
by one over a weak Hausdorff space, for instance by pulling back the fibrant replacement of X, — X_;
along a CW-approximation of X_;. We have hocolim¢ (hofib,(Xe — X_1)) = |Ba(, C, hofib,(Xe — X_1))|
and hofib, (hocolim¢e Xo — X_1) = hofib,(|Ba(*, C, Xe — X_1)|), so the statement follows from proving
that both the bar construction Ba(*, C, —) as well as the geometric realisation | — | commute with taking
homotopy fibres hofib,(—). Unwrapping the definitions of Ba(*,C,—) and | — |, these two claims are
implied by the fact that the functor hofib,(—): Zop/X_y — Top commutes with colimits and also with
taking products — X Z with a fixed space Z. The latter is clear, and the former follows from the fact that the
functor w*: Top/X_; — Top/(Path, X_;) given by pulling back the path fibration w: Path, X_; — X_; is
a left adjoint Prop. 2.1.3], so preserves colimits, together with the observation that the forgetful
functor from Zop/X_; to Top is colimit-preserving as well. ]

For an augmented C-space X, — X_;, the composition in C and the evaluation maps X/. x C(C’,C) —
X combine to augmentations B (C(w, C), C, Xa) — X for each C in C, which realise to weak equivalences
as they admit extra degeneracies by inserting the identity (see e.g. Thm 2.2]). These equivalences
are natural in C and compatible with the augmentation to X_;, so assemble to a weak equivalence

B(C(m,e),C,Xa) — X
of augmented C-spaces—the bar resolution of Xo — X_;.
Lemma 1.5. Letp: C — D be a weak equivalence of topologically enriched categories. There is a functor
pe: (Top/X_1)¢ —> (Top/X_1)"
that fits into a zig-zag of natural transformations between endofunctors on (Top/X_1)C,
PP — - — (g x )05

where p*: (Top/X_1)? — (Top/X_1)C is given by precomposition with p. When evaluated at an augmented
C-space, the zig-zag consists of weak equivalences of augmented C-spaces.

Proof. The value p,X, for X, € (Top/X_1)€ is the homotopy left Kan-extension of X, along p, mapping an
object D in D to B(D(p(w), D), C, Xa). Its pullback p*p, X, fits into a zig-zag of augmented C-spaces

p*p*X' = B(D(p(.)’p(.))’ C’X') — B(C(.’ .)7 C’XI) — X-,

in which the left arrow is induced by p and the right one is the bar resolution of X,, so both are weak
equivalences and compatible with the augmentation. As the zig-zag is natural in X,, the claim follows. O

Lemma 1.6. The homotopy colimit of an augmented semi-simplicial space Xo — X_; and its geometric
realisation are weakly equivalent as spaces over X_1.

Proof. The classifying space of the overcategory Ajyj/[p] is isomorphic to the pth topological standard
simplex AP, since the nerve of Ayj/[p] is the barycentric subdivision of the pth simplicial standard
simplex. This extends to an isomorphism A® = B(Aj,;/e) of co-semi-simplicial spaces from which
Thm 6.6.1] implies that, given an augmented semi-simplicial space X, — X_;, the thin realisation (see
Sect. 1.2]) of Ba(x, A;fj,X.), considered as a simplicial space, is homeomorphic over X_; to the
realisation of X,. But for augmented C-spaces X, — X_; on a discrete category C, the fat and the thin
geometric realisation of B,(*, C, X) are weakly equivalent over X_;, because B,(*, C, X) is good in the

sense of Prop. A.1]. ]

1.5. Semi-simplicial spaces up to higher coherent homotopy. In the course of this work, a number
of constructions that are key to the theory require choices of contractible ambiguity. To deal with such,
we are led to consider objects that are as good as semi-simplicial spaces, but only in a homotopical sense.
To model those, let us define an (augmented) semi-simplicial space up to higher coherent homotopy as an
(augmented) ij—space X, defined on any topologically enriched category ij that comes with a weak
equivalence Zinj — Ajnj. Roughly speaking, these are categories with the same objects as Ay, and a
(weakly) contractible space of choices for all morphisms in Aj,j. In particular, a Zinj-space X, includes
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spaces X, for p > 0, together with face maps d;: Xp — X,_1, unique up to homotopy. By precomposmg
with AmJ — Ajyj, every semi-simplicial space is a Amj-space and in the light of Lemma every Amj-space
is equivalent to one arising in this way. By virtue of this rectification result and Lemma)1.6] all homotopy
invariant constructions for semi-simplicial spaces carry over to Ajj-spaces, so in particular, we have
analogues of the spectral sequences (3 . 3) and (4] . the differentials being the alternatmg sum Z o= 1)i(d;), of

morphisms induced by (weakly) contractible choices d; of face maps. A Amj-space X mduces a simplicial
set 7y(X.) by taking path components, together with a morphism X, — 79(X,) of Amj-spaces, which is a
weak equivalence if and only if X, is homotopy discrete, i.e. takes values in homotopy discrete spaces. To
emphasise similarities and by abuse of notation justified by Lemma- we call the homotopy colimit of
an augmented Amj-space Xo — X_; its realisation, and denote it by |X.| — X_;.

2. THE CANONICAL RESOLUTION OF AN E{-MODULE OVER AN E;-ALGEBRA

2.1. E;-modules over E,-algebras and their fundamental groupoids. We recall the notion of an
E;-module over an E,-algebra and explain its relation to modules over monoidal categories.

By an operad, we mean a symmetric coloured operad in spaces (see e.g. Sect. 1.1]), and an
algebra over such is understood in the usual sense (see e.g. W Sect. 1.1]). For a subspace X € R”, we
let D¥(X) be the space of tuples of k embeddings of the closed disc D" into X that have disjoint interiors
and are compositions of scalings and translations. Recall the one-coloured operad D*(D") of little n-discs
m with k-operations D*(D") and operadic composition induced by composing embeddings.

Definition 2.1. Let SC, be the coloured operad with colours m and a whose space of operations
SCp(mk, al;m) is empty for k # 1 and for k = 1 the space of pairs (s, §) € [0, 00) x D!(R") such that
¢ € D'(0,5) X (=1,1)""1), allowing (0,0) € [0, 0) x D°(R") as a valid element of SC,(m*,a% m). The
space SCn(mF, al, ) is empty for k # 0 and equals D!(D") otherwise. The composition restricted to the
a-colour is given by the composition in D*(D") and the composition

i SCn(m,at;m) x (.SCn(m, aksm) X SCa(asa) X ... X SCn(all; a)) — SCn(m, ak*;m)

for i = };i; by mapping an element ((s, ¢), ((s", ), (@%,...,¢")) in the codomain to (s’ + s, (¢, (¢; o
P +s',.. ., (¢ 0 @l) +5) € SCp(m,a*;m), where (- + s’) denotes the translation by s’ in the first
coordinate. In words, it is defined by adding the parameters, putting the discs of SC,(m, a*; m) to the left
of the ones of SC,,(m, al; m), and composing the embeddings of discs of the SCn(a¥; a)-factors with the
ones of SC,(m, a’; m) as in the operad of little n-discs. See Figurefor an illustration.

T
I PR

N
I ’ \
@0
| | Il
I \ /
I S o 4
1

(0,s) (0 s’) 0,8y (s',s"+5s)

e € SCo(m, a;m) d € SCa2(m, a;m) f € 5C2(a?;0) y(e;d, f) € SC2(m,a3;m)

FIGURE 1. The operadic composition of SC,,

The canonical embedding D*(D") — D*(D"*!) of little discs operads (see e.g. Sect. 4.1.5]),
extends to an embedding of two-coloured operads SC,, — SCp+1 by taking products with (-1, 1) from the
right. Consequently, any algebra over SC,+1 is also one over SCp,.

We call two coloured operads weakly equivalent if there is a zig-zag between them that consists of
morphisms of operads that are weak homotopy equivalences on all spaces of operations.

Remark 2.2. The operad SC, is weakly equivalent to a suboperad of the n-dimensional version of the
Swiss-Cheese operad of , motivating the notation.
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Definition 2.3. An E; ,-operad is an operad O that is weakly equivalent to SC,. A graded E;-module
M over an E,,-algebra A is an algebra (M, A) over an E; ,-operad O, considered as an operad in graded
spaces, where M corresponds to the m- and A to the a-colour. That is, it consists of two graded spaces
(M, gm) and (A, g#), together with multiplication maps for [ > 0 of the form

0: O(m,al; M) x Mx AL — M and 6: O(a!;0) x Al — A,

which are graded, where O(m, als m) and O(al; a) are equipped with the grading that is constant at 0,
i.e. the degree of a multiplication of points is the sum of their degrees. These structure maps are required to
satisfy the usual associativity, unitality, and equivariance axioms for an algebra over an coloured operad.

The fundamental groupoid of an algebra over the little 2-discs operad has a braided monoidal groupoid
structure; the multiplication is induced by the choice of a 2-operation m Fre17| Ch. 5-6]. Similarly, for
a graded algebra (M, A) over an E; ,-operad O and operations ¢ € O(m,a;m) and d € O(a?;a), the
fundamental groupoid II(A) is a graded braided monoidal groupoid with multiplication induced by d,
and II(M) becomes a graded right-module over II(A) with the action induced by c. In other words, the
functor &: II(M) x II(A) — II(M) induced by 0(c; —, —) is associative, unital up to coherent natural
isomorphisms, and compatible with the grading on II(M) and II(A) induced by the grading on M and A.

Remark 2.4. Since the path components of a space coincide with the path components of its fundamental
groupoid in the categorical sense, a grading on an E;-module over an E, -algebra is equivalent to a grading
of the induced right-module (II( M), ®) over the braided monoidal groupoid (II(A), @, b, 0).

2.2. The canonical resolution. Let M be a graded E;-module over an E;-algebra A with underlying
E; ;-operad O and structure maps 6. We call a point X € A of degree 1 a stabilising object for M, and
define the stabilisation map with respect to a stabilising point X,

ssM— M,

as the multiplication 0(c; —, X) by X, using an operation ¢ € O(in, a, m), which we fix once and for all. As
X has degree 1, so does the stabilisation map, which hence restricts to maps s: M, — M,+; between the
subspaces of consecutive degrees for all n > 0. It will be convenient to denote the stabilisation map also
by (- @ X): M — M and we use the two notations interchangeably.

Remark 2.5. We chose to restrict to stabilising objects of degree 1 to simplify the exposition. However, by
keeping track of the gradings, the developed theory generalises to stabilising objects of arbitrary degree.

In the following, we assign to a graded E;-module M over an E;-algebra with stabilising object X an
augmented semi-simplicial space R,(M) — M up to higher coherent homotopy, called the canonical
resolution. It will be defined as an augmented AmJ space for a topologically enriched category AmJ weakly
equivalent to the semi-simplicial category, constructed from the underlying E; ;-operad O. We begin by
recalling the braided analogue of the category of finite sets and injections, as introduced in .

Definition 2.6. Define the category U$ with objects [0], [1], ... as in Ay, no morphisms from [g] to [p]
for ¢ > p and UB([q], [p]) for q < p given by the cosets B,1/B,_4, where B; denotes the braid group on i
strands and B, acts on B,y from the right as the first (p — g) strands. The composition is defined as

UB([1.[g) xUB(gql.[p]) — UB(L.[p])
[b].[b'] +— [T e D),
where 1779 @ b is the braid obtained by inserting (p — g) trivial strands to the left of b (see Figure.

e s

FIGURE 2. The categorical composition of UB
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The category U$B admits a canonical functor to the category 77 of finite sets and injections by sending
a class in By, /Bp_q to the injection obtained by following the last (g + 1) strands of a representing braid.
Visualising U8 as indicated by Figure two braids represent the same morphism if and only if they differ
by a braid of the o-ends. Following the braids of the upper e-ends to the lower ends gives the induced
injections. This functor admits a section on the subcategory A;,; C #1, as shown by the following lemma.

Lemma 2.7. There is a unique functor Aip; — UB that maps the face map d; € Ainj([p — 1], [p]) to
[bxer x ® X7 € UB([p — 11, [p]),

where [1,,5¢ Bn is considered as the free braided monoidal category on one object X. The composition of this
functor with the functor UB — FI described above agrees with the inclusion Ajn; C 1.

Proof. To prove the first part, it is sufficient to check the face relations

[bxerx ® X 0 [byb: @ X7 = [byai  ® X7 0 [bieyn i

fori <jinUB([p — 1,p + 1]). The left hand side agrees with the class of the braid

(b x & XX @ bis; o & X7,

® X$p—j+1]

which, by applying braid relations, can be seen to agree with the braid

(bxoi x ® XX @ bl ® XT3 © XP),

whose class in UB([p — 1,p + 1]) = By42/B; coincides with the right hand side of the claimed equation.
The proof is concluded by observing that the two functors A;;; — #1 in question agree on the face maps
by construction, and thus on all of Ajy;. |

Remark 2.8. In the language of , the category U8 is the free pre-braided monoidal category on
one object Sect. 1.2]. Unwinding the definitions, their semi-simplicial set W,,(A, X) associated to
objects A and X of a pre-braided monoidal category D (see Sect. 2]) agrees with the composition

AP — UB®P —s D — Sets,

inj
in which the first arrow is the described section, the second is induced by X, and the third is D(—, A® X®").

In the following, we introduce topological analogues of UB and Ayyj for any E; -operad O. To that end,
we denote by O(k) the space obtained from O(m, ak; m) by quotienting out the action of the symmetric
group X on the a-inputs. To simplify the construction, we assume that the quotient maps O(m, a¥; m) —
O(k) are covering spaces, although this is not strictly necessary (see Remark. As the operadic
composition y on O is equivariant, it induces composition maps y(—; —, 1¥): O(k) x O(I) — O(k + I). The
fixed operation ¢ € O(1), used to define the stabilisation map, yields iterated operations ¢, € O(k) by
setting co as the unit 1,, and ¢ inductively as y(c; ck, 1,). As a last preparotary step before defining the
category U8B, we recall that we denote the endpoint of a Moore path p by w(p).

Definition 2.9. Define a topologically enriched category UO = U(O, c¢) with objects [0],[1],... and
U0(ql[p)) = {(d. 1) € O(p — q) X Path,,, Op + 1) | w(p) = y(cqer:d: 17},
O(p + 1) is the space of Moore paths in O(p + 1) starting at c,4;. The composition is
vo([ll.[gh) xUO(gl.[p]) — UO(1].[p])

-1
(@ @p) — (red 1)y 1l™),
as visualised by Figure Since we are using Moore paths, associativity and unitality follow from the
respective properties of the operadic composition.

where Path

Cp+1

The construction U(—) is functorial in (O, c) and preserves weak equivalences, since UO([q], [p]) agrees
with the homotopy fibre at ¢, of the map y(cq+1; -, 13”): Op-q) — O+1).

Remark 2.10. Using Quillen’s bracket-construction (—, —) for modules over monoidal categories (see
p.219]), the category U8B is given by (8, B), where B = [[,,»( Bn is the free braided monoidal
category acting on itself. Similarly, UO can be obtained via an analogue of Quillen’s construction for
monoidal categories internal to spaces, applied to the path-category of the monoid [],,5, O(n).
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AP YWy ?/0/0\/0//0 P V%

e £ =

Y Pl
\o/ /f/f/%/

(e,{) € UO([0] (d.p) e UO(2] (d, (e, §) e UO([0]

FIGURE 3. The categorical composition of UO

Lemma 2.11. The category UO is homotopy discrete and satisfies m)(UO) = UB.
Before turning to the proof of Lemma we suggest the reader to compare Figurewith Figure

Proof. As U(-) preserves weak equivalences, it suffices to prove the claim for O = $C;. Mapping embed-
dings of discs to their centre yields a homotopy equivalence from the space of operations SC,(n) to the
unordered configuration space C,,(R?) of the plane, which is an Eilenberg—MacLane space K(B,, 1) for the
braid group Bj,. On fundamental groups, the map y(cg+1; —, 13”): O(p — q) — O(p + 1) is injective, since
it is given by including Bj,_4 in By as the first (p — q) strands. From this, one concludes that its homotopy
fibre hofibc,., (y(cq+1; — 1qu )) = UO([ql. [p]) is homotopy discrete with path components By1/B)—4 and
that, via this equivalence, the composition coincides with that of U8 proving the claim. |

Equipped with Lemma we fix an isomorphism 7,(UQ) = UB once and for all, which we use, for
instance, to identify 71(O(p + 1), ¢p41) = m(UO([p], [p])) with the braid group Bp1.

Definition 2.12. The thickening of the semisimplicial category associated to an E; ;-operad O is the
subcategory Ajp; C UO obtained by restricting UO to the path components hit by the section Ajp; —
UB = my(UO) of Lemma It comes with a weak equivalence to Ayyj, induced by the functor UO — 71.

Before proceeding to the central definitions of this section, we remind the reader of the theory of
augmented C-spaces for a topologically enriched category C, set up in Section

Definition 2.13. Let M be a graded E;-module over an Ej-algebra with structure maps ¢ and stabilising
object X. Define the contravariant UQ-space B.(M) by sending [p] to the path-space construction of s?*1,

By(M) = {(A.0) € Mx Path M | o(() = s*1(A)},
and by
UO([ql. [pD) X By(M)  — Bg(M)
((d.p).(A0) — (0(d;AXP9),0 - 0(u; A, XP*T)).
Functoriality follows from the associativity of the module-structure 8 and the composition of Moore paths.
Evaluating paths at zero defines an augmentation B,(M) — M, which is a levelwise fibration.

Definition 2.14. Let M be a graded E;-module over an E,-algebra with stabilising object X.

(i) The canonical resolution of M is the fibrant augmented Zinj—space

obtained by restricting the augmented UO-space Bo(M) to the semi-simplicial thickening Zinj cUo.
(if) The space of destabilisations of a point A € M is the Zinj-space W.(A) defined as the fibre of the
canonical resolution Ry(M) — M at A.

Unwrapping the definition, the canonical resolution R,(M) — M is an augmented semi-simplicial
space up to higher coherent homotopy with p-simplices

R,(M) = {(A,{) € M xPath M | () = sP*'(A)},

augmented over M by evaluating paths at zero. There is a contractible space of ith face maps, but

the following lemma provides a particularly convenient one after choosing a loop y; € Q,,, O(p + 1)
corresponding to the braid b)_(e,, @ X®P~! via the fixed isomorphism Bpi1 = m(O(p + 1), cpy1).
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Lemma 2.15. The morphism (c, pi;) € UO([p — 1], [p]) lies in the path component of the image of the ith face
map d; € Api([p — 11, [p]) in UB([p — 1], [p]) = mUO([p — 1], [p]) via the section ofLemma so the map
SR Re(M)

(A > (s(A),§ - 0ui A XPT))
is an ith face map of the canonical resolution Ry(M) — M.

Proof. The choice of y; ensures that, via the isomorphism 7w (UO([p — 1], [p])) = UB([p — 1], [p]), the
element (c, y;) is in the component of the class [b;(g,. <@ X®P~11in UB([p — 1], [p]). This is exactly the

image of d; € Awj([p — 1], [p]) in UB([p — 1], [p]), as claimed. O

Remark 2.16. We borrowed the term space of destabilisations from , where it stands for certain
semi-simplicial sets W;,(A, X) associated to a braided monoidal groupoid. In Section it is explained
that these semi-simplicial sets are special cases of the spaces of destabilisations in our sense.

Remark 2.17. As Re(M) — M is fibrant, its fibre W, (A) is equivalent to its homotopy fibre hofib 4(R.(M)),
so by virtue of Lemma the homotopy fibre at A of the realisation |Re(M)| — M is equivalent to
|We(A)|. In particular, the canonical resolution of M is graded ¢(g)-connected in degree > m for a
function ¢: N — Q U {0} satisfying ¢(c0) = oo if and only if the spaces of destabilisations W,(A) are
(Le(gm(A))] — 1)-connected for all points A € M with finite degree gp((A) > m. As points in the same
component have equivalent homotopy fibres, it is sufficient to check one point in each component.

Example 2.18. Recall the free E;-algebra on a point O* = [[,,5, O(a";a)/2,, graded in the evident way, with
the free E1-module on a point O™ = [],5, O(in;a”;m)/X, as a graded E;-module over it. Choosing the unit
1, € O(a;a) as the stabilising object, the space of destabilisations W,(cp+1) is the Zinj-space obtained by
restricting the UO-space UO(e, [p]) to Zinj. As the category UO is homotopy discrete with 7,(UOQ) = UB
by Lemma the Einj-space Wa(cp+1) is equivalent to the semi-simplicial set given as the composition
of the section Agfj — UBP of Lemmawith UB(e,[p]). Using Prop. 3.2], the realisation of this
semi-simplicial set can be seen to be contractible, but we do not go into details, since the consequences of
Theoremandregarding the twisted homological stability of K(B,,1) =~ O(m;a™;m)/X, correspond to
the case M = D and 7 = id of Theorem@ which is proved in Section

Remark 2.19. The choice of a stabilising object X € A for a graded E;-module M over an E,-algebra A
induces a graded E;-module structure on M over O°. The two canonical resolutions of M when considered
as an module over A or over O are identical. In fact, all our constructions and results solely depend on
the induced module structure of M over O° and are in that sense independent of A.

Remark 2.20. Let M be a graded E;-module over an E,-algebra with stabilising object X and consider M
as a graded E;-module over O° (see Remark. For a union of path components M’ C M that is closed
under the multiplication by X, we define a new grading on M as an E;-module over O® by modifying the
original grading on M’ by assigning the complement of M’ degree oo and leaving the grading on M’
unchanged. We call M with this new grading the localisation at M’. An example for such a subspace
M’ is given by the objects stably isomorphic to an object A € M by which we mean the union of the path
components of objects B for which B & X®" is in the component of A ® X®™ for some n,m > 0.

Example 2.21. Let M be a graded E;-module over an E;-algebra A and let G be a group acting on M,
preserving the grading. If the actions of A and G on M commute, then the Borel construction EG Xg M
inherits a graded E;-module structure. The choice of a point in EG induces a morphism

Re(M) —— RJ(EG xg M)

4 4

M — EGxXg M

of augmented Zinj—spaces, which induces weak equivalences on homotopy fibres. An application of
Lemmaimplies that the respective canonical resolutions have the same connectivity.

Remark 2.22. Some constructions of this section work in greater generality. The category UO and the
augmented UO-space B,(M) can be defined for any coloured operad. UQ then still admits a functor to
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#1, but might not be homotopy discrete nor admit a section on Aj,; € #1. The point-set assumption on the
action of 3 on O(m, a¥;m) can be avoided by constructing UQ using O(m, ak; m) instead of O(k), which
involves taking care of permutations corresponding to preimages of the quotient map O(m, a*; m) — O(k).

2.3. The stable genus. We extend the notion of the stable genus of a manifold, as introduced in ,
to our context, providing us with a general way of grading modules over braided monoidal categories and,
by Remark also of grading E;-modules over E,-algebras.

Let (M, ®) be a right-module over a braided monoidal category (A, ®, b, 0). Recall the free braided
monoidal category on one object 8 = [],,( By, consisting of the the braid groups B,. A choice of an
object X in A induces a functor 8 — A and hence a right-module structure on M over 8. With respect
to this module structure, a grading of M that is compatible with the canonical grading on 8 is equivalent
to a grading g on M as a category such that gr((A ® X) = gm(A) + 1 holds for all objetcs A in M.

Definition 2.23. Let X be an object of A and A an object of M.
(i) The X-genus of A is defined as

g% (A) = sup{k > 0 | there exists an object B in M with B® X® = A} € N.
(ii) The stable X-genus of A is defined as
7(A) = sup{g*(A® X®*) —k | k > 0} € N.

As 7X(A® X) = g%X(A) + 1 holds by definition, the stable X-genus provides a grading of M when
considered as a module over 8 via X. This stands in contrast with the (unstable) X-genus, which does
in general not define a grading, because the inequality gX(A) + 1 < g%X(A @ X) might be strict. For an
E;-module M over an E,-algebra A, the choice of a point X € A induces an E;-module structure on M
over the free E;-algebra on a point O (see Remark. After taking fundamental groupoids, this results
in the module structure of II(M) over B discussed above, so the stable X-genus provides a grading for M
as an E;-module over O°.

Remark 2.24. If the connectivity assumption of Theorem(Alis satisfied for an E;-module M, graded with
the stable X-genus, then the cancellation result Corollaryimplies gX(A® X) = gX(A) + 1 for objects A
of positive stable genus, which, in turn, implies that for such A, the genus and the stable genus coincide.

3. STABILITY WITH CONSTANT AND ABELIAN COEFFICIENTS

Let M be a graded E;-module over an E,-algebra with stabilising object X and structure maps 6. We
prove Theoremvia a spectral sequence obtained from the canonical resolution R.(M) — M. All spaces

R,(M) and |R,(M)| are considered graded by pulling back the grading from M along the augmentation.

3.1. The spectral sequence. Given a local system L on M, the canonical resolution R,(M) — M (see
Section gives rise to a tri-graded spectral sequence

H,(R,(M)n;L ifp>0
(5) E! e{ aReMwil) Hp20 oy M ReM)IsL),

Pam T\ Hy(Mp; L) ifp=-1
with differential d': E}l,’ an E11>—1, g induced by the augmentation for p = 0 and the alternating sum

Zfzo(—l)i(z;i; id). for p > 0, where d; is any choice of ith face map of Rs(M) (see Sectionsand. As
the differentials do not change the n-grading, it is a sum of spectral sequences, one for each n € N. To
identify the E'-page in terms of the stabilisation s: M — M, recall from Sectionathat the fundamental
groupoid (II(M), ®) is a graded module over the graded braided monoidal groupoid (II(A), &, b, 0).

L 2 HgMy—p; (sP*1)*L) and d*: Ell) — E! identifies with

1
Lemma 3.1. We have Ep o b1, n+1

,q,n+
Zf:o(_l)i(S; Ni)e: Heg (Mnpi (sP*1)°L) = Hg (Mn—ps13 (sP)°L),
where n; denotes the natural transformation
L(= & bysi x @ X®7'): L(- @ X*P*!) — L(- @ X*F*),.

In particular, d* corresponds for p = 0 to the stabilisation (s;id).: Hg(My;s*L) = Hg(Mp1; L). Thus, if L
is constant, d* identifies with s,: Hg(Mp—p; L) = Hq(Mp—p+1; L) for p even and vanishes for p odd.
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Proof. Using the choice of face maps d;: Ry(M)ni1 — Rp_1(M)p1 of Lemma we consider the square

(1psid)
(Mo—p; (sPH1)* L) —— (Rp(M)ps1; L)

()|, _ Jediiay
(Mn—p+1; (s?)'L) — (Rp—l(M)nH; L),
where 14 denotes the canonical equivalence My,_g — Rq(M)n+1, mapping A to (A, constsq+1(4)). A point
A € M,_, is mapped by the two compositions in the square to (s(A), O(u;; A, XP*1)) and (s(A), constsp+1 4)),
respectively, which are connected by a preferred homotopy following the path y; chosen in Lemma
to its endpoint. The commutativity of the triangle ensuring that this homotopy extends to one of spaces
with local systems (see Section is equivalent to L(8(u;; —, XP*1))n; = id. But, by the choice of y;, the
path 0(y;; —, XP*') corresponds to the braid — @ b, , @ X®P~1 50 the required relation holds and the
square commutes up to homotopy. Taking vertical mepping cones and homology results in the claimed
identification. If L is constant, the #; coincide for all i, so the terms in the alternating sum cancel out. O

Lemma 3.2. If the local system L is abelian, then the following compositions are homotopic for all0 < i < p

M: (72D 5 M (7)) 2 M3 ().

The proof of Lemmauses a self-homotopy of s*: M — M which is crucial for various other
arguments. Using the notation of Section it is given by
[0,1]xM — M
(t,A) > O(u(t); A X?),
where p is a choice of loop of length 1, based at c; € O(2), such that [(1,n, pr)] € m(UO([1], [1])) corresponds
to the class [b)‘(lx] € UB([1],[1]) via the isomorphism 7,(UQ) = USB fixed in Section Since p is
unique up to homotopy, this describes the homotopy of s? uniquely up to homotopy of homotopies.

(6)

Proof of Lemma By the recollection of Section the selthomotopy @ of s? extends to a homotopy
of maps of spaces with local systems between the ith and (i + 1)st composition in question if the triangle

L(-0X®byoin _x®XPI)

L(— ®X$p+2) ) L(— ) XEBp+2)

_ iL(—eab;;Xeaxﬂ?P)
L(-@X®byei x®XP") ’

L(— & X®P*2)

commutes. The braid relations give (- ® X @ byer x @ X®P7!) = (- @ by!, @ X®™)(— @ byein x @ XP7),
so the claim follows if we show that [bxeit1 x @ X] = [X @ byei+1 x] holds in the abelianisation. But
the braid relation (bx x ® X)(X ® bx x)(bx x ® X) = (X @ bx x)(bx.x ® X)(X & bx x) abelianises to

[bx.x ® X] = [X ® bx,x] from which the claimed identity follows by induction on i. O

3.2. The proof of Theorem We prove Theoremby induction on n, using the spectral sequence
. As |Re(M)|n+1 — My is assumed to be ("_kik)-connected for a k > 2 in the constant or a k > 3
in the abelian coefficients case, the summand of degree (n + 1) of the spectral sequence converges to
zero in the range p + g < %%, By Lemma the differential d*: E] — E! identifies with the

0,i,n+1 1,i,n+1
stabilisation map (s;id).: H;(My;s*L) — H;(M+1; L). Since there are no differentials targeting E’fl 0.n+1
for k > 1, the stabilisation has to be surjective for i = 0 if EZ, , ., vanishes, which is the case, since
we have -1 < "T_l for all n > 0. In particular, this implies the case n = 0 for both constant and abelian

coeflicients, because the isomorphism claims for n = 0 are vacuous.

Constant coefficients. Assume the claim for constant coefficients holds in degrees smaller than n. By

Lemma the differential d*: Ellj, g1 = Ella—l,q,n+1 identifies with s,: Hg(M,_p; L) = Hg(Mp—p11;L)

for p even and is zero for p odd. From the induction assumption, we draw the conclusion that EIZ7 —

vanishes for (p, qlz ifpiseven with0 < p < mandgq < n_ﬁ_l, and for (p,q) if pis odd with 0 < p < n
n—p-3+
k

and q¢ < . So in particular, E;ZJ,q,n+1 vanishes if both 0 < p < nand q < %ﬂ hold. As
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— E}

0,i,n+1
= 0 hold for p + g = i + 1 with q < i. This is the case for i <

d': E!

1,i,n+1
and EIZJ
from the established vanishing ranges of E* and E?. Similarly, the map in question is surjective in degree

IifEY ., =0and E;’q’nﬂ = 0 hold for p + q = i with q < i, which is true for i < "_}C—Jrk ]

is zero for all i, injectivity of s,: H;(M,;L) — H;(M41; L) holds if E;° =0

0,i,n+1
n-1

o n+1 #=, as claimed, which follows

Abelian coefficients. Assume the statement holds for degrees smaller than n. The differential d* : E;) qnil

E},_Lq’nﬂ identifies with X;(=1)(s, i)« : Hg(Mp_p; (s**1)*L) = Hq(Mp—p+1; (s?)*L). By Lemma in
the range where (s, id)..: Hg(Mp_p_1;(s?**)*L) — Hq(Mp_p; (sP*1)*L) is surjective, d' identifies with the
stabilisation map (s,1d).: Hg(Mn_p; (sP™1)*L) — Hg(My—p+1; (s?)*L) for p even and vanishes for p odd.
By induction, this happens for (p,q) with0 < p < n—-1andgq < n—£—1’ so by using the induction again,

we conclude Ef, = 0 for (p,q) if p is even satisfying 0 < p < n—1land g < #, and for (p, q)

,q,n+1
with p odd satisfying 0 <p <n—-1landg < "_f_z. The rest of the argument proceeds as in the constant

case, adapting the ranges and using that d': E! — E} is zero for i < "T_l |

1,i,n+1 0,i,n+1

Remark 3.3. If gaq is a grading of M, then so is g + m for any fixed number m > 0. Consequently, if the
canonical resolution of M is graded (w)-connected for an m > 2, then we can apply Theorem|Aand
to M, graded by g + (m — 2), which results in a shift in the stability range. By adapting the ranges in
the previous proof appropriately, requiring more specific connectivity assumptions improve the stability
ranges in Theoremas follows.

(i) If the canonical resolution is graded (M)-connected for an m > 3, the surjectivity range in

and the one

Theoremfor constant coefficients can be improved from i < "_',z”k toi < =L k+l

n-m+2 . n-m+3
< T toi < =

for abelian coefficients from i

(ii) If the canonical resolution is graded (g — 1)-connected in degrees > 1, then the isomorphism range
in Theoremfor constant coefficients can be improved from i < ”T_l toi < 7, similar to the proof
of m 5.1] for symmetric groups.

4. STABILITY WITH TWISTED COEFFICIENTS

This section serves to introduce a notion of twisted coefficient systems and to prove Theorem Many
ideas in this section are inspired by [RW17] Sect. 4], which is itself a generalisation of work by Dwyer, van
der Kallen, and Ivanov [Dwy80”1va93”Ka180]. We use similar notation to to emphasise analogies
and refer to Remarks@and[ﬂ]for a comparison of their notion of coefficient systems to ours.

4.1. Coefficient systems of finite degree. We define coefficients system of finite degree for graded
modules over graded braided monoidal categories, such as fundamental groupoids of graded E;-modules
over E,-algebras, as described in Section

Let (M, ®) be a graded right-module over a braided monoidal category (A, ®, b, 0) in the sense of
Section We fix a stabilising object X, i.e. an object of A of degree 1, and recall the free braided monoidal
category 8 = [[,,~¢ Bn on one object, built from the braid groups B,,. The choice of X induces a functor
B — A, so in particular homomorphisms B, — Aut#(X®") and a module-structure on M over B.

Definition 4.1. A coefficient system F for M is a functor
F: M — 4
to the category of abelian groups, together with a natural transformation
of: F— F(- @ X),

called the structure map of F, such the image of the canonical morphism B,,, — Aut#(X®™) acts trivially
on the image of (cF)™: F — F(— & X®™) for all m > 0. A morphism between coefficient systems F and G
for M is a natural transformation F — G that commutes with the structure maps o and ¢©.

Remark 4.2. The category of coefficient systems for M is abelian, so in particular has (co)kernels. More
concretely, it is a category of abelian group-valued functors on a category (M, B) (see Remark.
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Definition 4.3. Define the suspension XF of a coefficient system F for M as
SF=F(- & X),
together with the structure map o> : XF — XF(- & X), defined as the composition

Fl-ex F(-ob
SF = Fi— @ X) 202, po @ xo2) 2009, p g xe2) - sp(- @ X),
The structure map o of F induces a morphism F — XF, called the suspension map, whose (co)kernel is
the kernel ker(F) respectively cokernel coker(F) of F. We call F split if the suspension map is split injective
in the category of coefficient systems.

Lemma 4.4. The suspension XF and the suspension map F — XF are well-defined.

Proof. The triviality condition for XF is implied by the one for F, since (¢>F)™ agrees with F(— &
byem x)of (- @ X)™, which follows by induction on m, using the braid relation (X & by, yem-1)(bx,x ®
X®m=1) = byem_ x. The fact that the suspension map is a morphism of coefficient system is a consequence
of the triviality condition on F, more specifically of F(— & bx.x)(cF)? = (¢F)2. |

Remark 4.5. The suspension map gives rise to a natural transformation id — X of endofunctors on the
category of coefficient systems for M.

For the remainder of the section, we fix a coefficient system F for the module M.

Definition 4.6. We denote by F,, for n > 0 the restriction of F to the full subcategory M,, € M of objects
of degree n and define the degree and split degree of F at an integer N inductively by saying that F has
(i) (split) degree < —1at Nif F, = 0forn > N,
(ii) degree r at N for ar > 0 if ker(F) has degree —1 at N and coker(F) has degree (r — 1) at (N — 1), and
(iii) split degree r at N for a r > 0 if F is split and coker(F) is of split degree (r — 1) at (N — 1).

Remark 4.7. Note that for all N < 0, F is of (split) degree r at 0 if and only if it is of (split) degree r at
N, and that the property of being of (split) degree r at 0 is independent of the chosen grading. However,
being of degree r at N depends on the grading if N is positive. If g ( is a grading for M, then sois gpq + k
for any k > 0 and by induction on r, one proves that for k > 0, F is of (split) degree r at N with respect to
a grading g if and only if it is of (split) degree r at (N — k) with respect to the grading g + k

Lemma 4.8. The iterated suspension 'F fori > 0 is given by £'F = F(— & X®') with structure map

F(_@)bxeaiyx)

of (—ex®) ; . .
F-oX%eX)— > F-eXoX®) =3F(-oX).

S'F=F(-eX®)
Proof. This follows by induction on i, using the braid relation (bx, x ® X® )(X ® bxei x) = byeigyx.x. O

Lemma 4.9. Let F be a coefficient system for M.
(i) Foralli > 0, 2! (ker(F)) and %*(coker(F)) are isomorphic to ker(2'F) and coker(Z'F), respectively.

(ii) IfF is split, then 3'F is split for all i > 0.

(iii) IfF is of (split) degreer at N, then 2'F is of (split) degree r at (N — i) fori > 0.
Proof. Using Lemmaand Xe b;(;i’x)(bxaah-l’x) = (bx®f+1,x)(l’;ﬁi,x ® X), the natural transformation

F(-eb; )
2i+1F(—) — F(— ®X®i+l) X=X ; F(— ®X®i+l) — zi+1F(_)

can be seen to commute with the structure map of Z*!F, so defines an automorphism ®: X*!F — »*1F,
Lemma also implies the relation 2(¢¥) = ®¢>'F and therefore ((co) ker(c¥)) = (co) ker(®o>T).
Hence, the coefficient systems in comparison are (co)kernels of morphisms that differ by an automorphism.
This proves the first claim. Given a splitting s: XF — F for F, the composition 2!(s)® splits 2'F, which
shows the second. Finally, the third follows from the first two by induction on r. ]

Remark 4.10. If M is a groupoid such that all subcategories M,, are connected, then a coefficient system
for M is equivalently given as a sequence of Aut(A & X®"9(4))-modules F, for an element A of minimal
degree g(A), together with (— @ X)-equivariant morphisms F, — Fp4; such that the image of B, in
Aut(X®™) acts via (A @ X®"9(4) @ —) trivially on the image of F,, in F,,,, for all n and m.
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Remark 4.11. A pre-braided monoidal category in the sense of is a monoidal category (C, ®, b, 0)
whose unit 0 is initial and whose underlying groupoid C~ is braided monoidal satisfying a certain condition
(see Def. 1.5]). In their work, a coefficient system for C at a pair of objects (A, X) is an abelian group
valued functor F*W defined on the full subcategory Ca x C D generated by A®X®" for n > 0. Considering
C, x as amodule over the braided monoidal groupoid Cj s, such a functor FRW gives a coefficient system
F in our sense by restricting FRV to C; x and defining the structure map as of (=) = F*W(- @ 1), where
1x: 0 — X is the unique morphism. In the transformation — @ 1x: id¢ — — @ X is denoted by
oX, so we have the suggestive identity FX" (6%X) = o'. Assigning a coefficient system for C at (4, X) in
the sense of [RW17] to one for C; , in our sense yields a functor between the respective categories of
coefficient systems, which can be seen to preserve the suspension and degree in the sense of and in
ours, at least up to isomorphism. See Sectionfor a general comparison between and our work.

Remark 4.12. The category of coefficient systems for M is isomorphic to the category of abelian group-
valued functors on a category (M, B). To construct this category, recall Quillen’s bracket construction
(&, F) of a monoidal category F that acts via ®: & X ¥ — & on a category & p-219]. It has the
same objects as &, and a morphism from C to C’ is an equivalence class of pairs (D, ) with D € ob ¥
and f € &(C @ D,C’), where (D, f) and (D’, f’) are equivalent if there is an isomorphism g € ¥(D, D’)
satisfying f’ = f(C @ g). Using this construction, we obtain the category (M, B) encoding coefficient
systems by letting the free braided monoidal category on one object B act on M via the functor 8 —» A
induced by X, followed by the action of A on M. The multiplication by X on M induces an endofunctor
(M, B)y — (M, B)

by mapping a morphism [D, f]: C — C’ to [D,(f ® X)(C @ bx.p)]: C® X — C’ @ X. This functor
comes together with a natural transformation o: id — X given by [X, id], such that the suspension of a
coefficient system F, seen as a functor on (M, B), is the composition (F o ¥) and its suspension map is
F(o): F — (F o %). From this point of view and using the notation of the previous remark, the functor
from coefficient systems in the sense of to ones in ours, described in the previous remark, is given
by precomposition with a functor (C} ., 8) — Ca x that is the identity on objects and maps a morphism
[X®K, f]in (Cix»B) from Cto C" to f(C & ixex).

4.2. Twisted stability of E;-modules over E;-algebras. We fix a graded E;-module M over an E,-

algebra A with stabilising object X for the rest of the section. Recall from Sectionthat its fundamental
groupoid (II(M), ®) is a graded right-module over the graded braided monoidal category (II(A), @, b, 0).

Definition 4.13. A coefficient system for M is a coefficient system for II(M) in the sense of Deﬁnition

The structure map of a coefficient system F for M enhance the stabilisation map s: M — M to a map
(s;05): (M;F) — (M F)

of spaces with local systems, which stabilises homologically by Theoremif the canonical resolution is
sufficiently connected and F is of finite degree. This remainder of this section is devoted to the proof.

Remark 4.14. In the course of the proof of Theorem it will be convenient to have fixed a notion of a
homotopy commutative square of spaces with local systems, by which we mean a square

X;F) ——— (Y;6)
\ 1
(X/;F/) H (Y/; Gl),
together with a specified homotopy between the two compositions, which might be nontrivial, even if the

diagram is strictly commutative. Taking singular chains results in a homotopy commutative square of
chain complexes (see Section, and taking vertical mapping cones of the square induces a morphism

(7) H. ((X;F'),(X; F)) = H. (Y;G), (Y; G)),
which depends on the homotopy. However, homotopies that are homotopic as homotopies give homotopic
morphisms on mapping cones, hence they induce the same morphism . Horizontal composition of such

squares, including the homotopies, induces the respective composition of . Even though (7) depends on
the homotopy, the long exact sequences of the mapping cones still fit into a commutative ladder.
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We denote by Rel.(F) = H.((M; F), (M; F)) the relative groups with respect to the stabilisation (s; o),
equipped with the additional grading Rel.(F) = @, .y H:((Mp41; F), (My; F)). Although the square

S;UF
M:F) —7) 5 (M. F)
(8) (s;0F) (s;0F)
\L (s;0%) J/

M F) ————— (M F),

commutes strictly, we consider it as homotopy commutative via the homotopy @ of Section which
extends one of spaces with local systems (see Section, since the triviality condition on coefficient
systems gives F(—&by ' X)(O'F )2 = (¢F')%. This homotopy commutative square induces a relative stabilisation

(s;07)7: Rel(F) — Rel.(F)
of degree 1, where the superscript ~ indicates the twist by the homotopy. The homotopy commutative
square (8) admits a factorisation into a composition of homotopy commutative squares

M;F) — 870 Mz — 9 o

(S;GF)J/ J/(S;UZF) J/(S;GF)

id;a ¥ ;id

M) — s (MszF) — s (MF)),

in which the square on the left strictly commutes because of the triviality condition, and we equip it with
the trivial homotopy. The square on the right is homotopy commutative using the same homotopy as for
. This induces a factorisation of the relative stabilisation map as

(id;o F). (s;id)y
(9) Rel,(F) — Rel.(XF) — Rel.(F),
with the first map being of degree 0 and the second of degree 1.

(s;07); (s;aF):
Lemma 4.15. The composition Rel,(F) —— Rel.(F) —— Rel..(F) is trivial.

Proof. The mapping cones defining Rel..(F) induce a commutative diagram of long exact sequences

C. — HA(M;F) — H,(M;F) — Rel(F) —23 H,_,(M;F) -3 ..

{ { diu s
o HUM:F) — H(M:F) = Rel(F) =5 Ho (M F) — ...
{ s s {
= HMGF) =% Ho(MiF) =5 Rel.(F) — Hoa(M:F) — ..
in which h;h4 agrees with the composition in consideration. As h; and h; both equal (s; o¥)., we conclude
0 = hyhs = hyhs = hshy, so the image of h4 is in the kernel of hs, which is the image of hs. Hence it is
enough to show h;he = 0. Since hg = hj, for the same reason as hy = h,, we obtain the claim from the
identity hyhg = hohg = hohyp = 0. O

4.3. The relative spectral sequence. We prove ”Iheoremvia a relative analogue of the spectral se-
quence (5) of Section which we derive from a map of augmented Aj,j-spaces

Re(M) > Re(M)

1 1

M ——— M
covering the stabilisation map s. Indicated by the dotted arrow, this morphism will only be defined up to
up to higher coherent homotopy, and we obtain it from replacing the canonical resolution R,(M) with an
equivalent bar construction B(UB(e,m), UO, B.(M)) which admits a strict morphism of the desired form.
To this end, recall from Sectionthe homotopy discrete category UO, the isomorphism 7o(UO) =
U8, and the augmented UO-space B,(M) whose restriction to the subcategory Aj,j € UO is RJ(M),
where Kinj is the union of components hit by the section Ay, — USB. Define the (Z?IS x UQ)-space
UO(e, m) and the (A?rg x UB)-space UB(e, m) by restricting the hom-functors of UO and U8B appropriately.
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Taking components gives a weak equivalence ZI’; xUO — A?rg x U8B of enriched categories and one

UO(e,m) — UB(e,m) of (Ziﬂ x UQ)-spaces, which fits into a chain of weak equivalences of Zinj-spaces

(10) Ro(M) < B(UO(s,m),UO, B.(M)) = B(UB(s,n), U0, B.(M)),

augmented over M, the left arrow being the restriction of the bar resolution of B.(M) to Kinj (see
Section. Consider the functor t: UO — UQO that maps [p] to [p + 1] and is on morphisms defined as

UO(lql.[p]) — UO(t(gD.t(p))
(d,p) +— (dy(c;p, 1a))s

using the operadic composition y and the element ¢ with which we defined the iterated operations
¢y € O(p) in Section Accompanying this functor, there is a morphism of augmented UO-spaces

Bu(M) —> Biw(M)
(11) 4 4
M —5) M,

defined by making use of the module structure 6 of M to assign to a p-simplex (A, {) in B,(M) the element
(A, 0(c; {, X)) in Bp+1(M). Last but not least, we define a morphism of (A;¥ x UO)-spaces

inj
(12) UB(e,m) — UB(e,t(m))
by consider the braid groups ][, Bn as the free braided monoidal category in one object X to define

UB([C]]’ [P]) = Bp+1/Bp—q — Bp+2/Bp—q+1 = UB([Q], f([P]))

b] — [beX)X* bl I

Lemma 4.16. The assignment defines indeed a morphism of (A x UO)-spaces.

inj

Proof. Recall that UB(e, m) is induced from a (A?rﬂ x UB)-space via the equivalence Zf{i xUO — A;’fj xU8B.
The semi-simplicial direction of U$B(e, m) comes from the section Aj,j — USB of Lemma which maps a
face map d; in Ajnj([g — 1], [g]) to the class [b;Bi,X ® X% in UB([p — 1], [p]), so is natural in the
semi-simplicial direction if the two braids

(X I @bye;  @XT @ X)X @blhy ) and (X I@biogn (XTI @b, @ X®IT)

define the same class in UB([q — 1], [p + 1]) = Bp+2/Bp—g+2. An application of braid relations shows that
these two braids agree up to right-multiplication with (X%~ @ by, & X7), so coincide in Bp2/By_g+2,
which shows the claim since the naturality in the U$B-direction is immediate. ]

The functor t: UO — UO, together with the morphisms and , induces a map

B(UB(s,m),UO, B.(M)) — B(UB(s,n),UQ, B.(M))
1 4
M : > M.
of augmented Zinj—spaces. Pulling back a coefficient system F for the graded module M along the

augmentations, this morphism enhances to one of graded Zinj-spaces with local coefficients that covers
the stabilization map (s; oF): (M; F) — (M; F). Identifying R.(M) with B{UB(e,m), UQ, B.(M)) via
the zig-zag by abuse of notation, we get a tri-graded spectral sequence of the form

(3 .= {Hq (Rp(M)nsri ). (Rp (M) ) iEp 2 0
Hy ((Mas1; F), (M3 F)) ifp=-1
= Hprgit (Masts IRAOM)lnss; ), (Mo, [Re(M)las F)).
which is a sum of spectral sequences, one for each n € N (see Sectionsand. Using Lemmaand
(bx'x ® X)X @ byei x & X ™) (byepn1 x) = (X ® bxep, x)(byei x & XZP71),
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one checks that selfhomotopy @ of s? witnesses homotopy commutativity of the square

s;F(—®byoi x ®X®P7T))

(M; 5P F) s (M;3PF)

(s;azp+1F)J/ J/(S;O’XpF)
(s:F(-®byai x©X®P71))
(M;ZPHIF) : > (M;3PF),

which thus induces a morphism (s; 7;); : Rel.(3P*!F) — Rel.(3PF) of degree 1; the superscript ~ indicates
the twist by the homotopy @ This morphism serves us to identify the spectral sequence as follows.

Lemma 4.17. We have E;J | = Rely(3P*'F),_,, and the E'-differential identifies with

, g, n+
Zf:o(_l)i(& i) Relq(ZPHF)n—p - Relq(ZpF)n_pH.

In particular, the differentiald": E} , ., — E, | corresponds to the second map of (o) in degree n.

Proof. On p-simplices, the first equivalence of has a preferred homotopy inverse induced by the extra
degeneracy given by inserting the identity of UO([p], [p]) (see Section. Composing it with the second
equivalence of yields an equivalence that forms the vertical arrows of a square

R,(M) L s Ry(M)

- =
B(UB([p),®),UO, B.(M)) ——> BUB([p],=),UO, Bs(M)),

where 7 is defined by mapping (4, {) to (s(A), s({) - 0(ap; A, XP*?)). Here a, € Q,,,O(p + 2) is any loop
;(1Bp+l’X
of a;, guarantees that the previous square commutes, which is why it is sufficient to show that

that corresponds to b under the equivalence 71 (O(p + 2); ¢pr2) = Bpyz (see Section|2.2). This choice

1
(s:027"F)

(Mn—p§ ZPHF) — (Mn—p+1§zp+lF)

(l;id)l o J/(:;id)

Rp(M)ns1; F) ——> (Rp(M)n42; F)

homotopy commutes in order to prove E}z, ani = Relg(3P*'F),_p, where 1 denotes the canonical equiv-
alence mapping A to (A, constgp+1(4)). On the space-level, the two compositions are given by assign-
ing to A € M,,_, the elements (s(A), constgp+z(4)) and (s(A), O(ay; A, XP*2)), respectively. As we have
o™ "'F(=) = F(- ® X®*)oF (- @ X®P*1) by Lemma the homotopy induced by following aj, to its
endpoint is one of maps with local cofficients, which implies the first claim of the lemma. A relative version

of the proof of Lemmaestablishes the identification of the differentials and finishes the proof. ]

Lemma 4.18. The following composition is zero forn > 1,

‘d; > F
047 Rel.(32F),_; = E!

1,*,n+1

d! 1
EO,*,n+1

o
Rel,(F)n_s 2% Rel,(SF),_, = Rel,(ZF),.

Proof. Using Lemma the composition in question is the difference between the morphisms in degree
(n — 1) induced by the compositions of the two homotopy commutative squares

(id;o*F o F) (S§F(_®bx$i,x®x$lii))\

(M;F) s (M;X2F) > (M;2F)

(s;dF)\L J,(S;GZZF) \L(s;o”)

id:o2F o F (s;F(~@byei ©X®171)
(M.F) (o 0]  y (M;32F) Xorx s> (M;3F),

for i = 0 and i = 1, where the homotopy of the left square is trivial. The nontrivial homotopy of the
right square becomes trivial after composing with the left square by the triviality condition for coefficient
systems, so the composition in question is the difference of the morphisms induced by the two strictly
commutative outer squares. But, again by the triviality condition, we have F(— & bx x)o>f o = c*F ¥,

so the two outer squares coincide and hence the difference of the induced morphisms vanishes. ]
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4.4. The proof of Theorem The long exact sequence

(s;0F),

. — Rel,41(F) — H.(M;F) — H.(M;F) — Rel.(F) — H._{(M;F) — ...
exhibits Theoremas a consequence of the next result.

Theorem 4.19. Let F be a coefficient system for M of degree r at N > 0. If the canonical resolution of M is
graded (9M;2+k)—connected in degrees > 1 for ak > 2, then

(i) the group Rel;(F), vanishes forn > max(N + 1,k(i + r)), and

(ii) if F is of degree split r at N > 0, then Rel;(F),, vanishes forn > max(N + 1, ki + r).

We prove Theoremvia a double induction on r and i > 0 by considering the following statement.
(H,,;) The vanishing ranges of Theoremhold for all F of degree < r at any N > 0 in all homological
degrees i, and for all F of degree r at any N > 0 in homological degrees < i.
The claim (H, ;) holds trivially if » < 0 or if (r, i) = (0,0). If (H, ;) holds for a fixed r and all i, then (H,+1,¢)
follows, since there is no requirement on coefficient systems of degree (r + 1). Hence, to prove the theorem,
it is sufficient to show that (H, ;) implies (H, j11) for i, 7 > 0. As the composition

(5077 (s;o)y
Reli(F)n — Reli(F)nH — Reli(F)n+2

is zero by Lemma it is enough to show injectivity of both maps in the claimed range. Using the
factorisation @ this is implied by the following lemma.

Lemma 4.20. Letr > 0 andi > 0 satisfying (H, ;), and let F be of degree r at some N > 0.
(i) The morphism (id, ox).: Rel.(F), — Rel.(2F), is injective for n > max(N, k(i + r)) and surjective
forn = max(N, k(i + r — 1)). If F is of split degreer at N > 0, then the map is split injective for all n
and surjective forn > max(N, ki +r — 1).
(ii) The morphism (s,id); : Rel;(2F),, — Rel;(F)n+1 is injective in degrees n > max(N + 1, k(i + r)). IfF
is of split degree r at N > 0, then the map is injective forn > max(N + 1,ki + ).

Proof. We begin by proving the first part of the statement. As Rel, (—) is functorial in the coefficient
system, injectivity of the split case is clear. The remaining claims of the first statement follow from the
long exact sequences in Rel, (—) induced by the short exact sequences

0 —> ker(F) > F > im(F - XF) -0 and 0 — im(F — XF) — XF — coker(F) — 0

by applying (H,,;), using that ker(F) has degree —1 at N and that coker(F) has (split) degree (r — 1) at
(N —1). To prove (ii), we use the spectral sequence and Lemma Since |Re(M)|m, = My, is
assumed to be (’"—T“k)—connected for m > 1, the groups H,.(M, |Re(M)|m; F) vanish for * < ”‘T_Z, from
which we conclude Epni1 =0 for p + q < 1. We claim that the differential Ei ins1 Eé’ i.n+1 vanishes
for n > max(N + 1, k(i + r)) in the nonsplit case, and for n > max(N + 1,ki + r) in the split one. By
Lemmal4.18] this is the case if the maps Rel,(F),_; — Rel.(2F),_; — Rel.(2?F),_; are surjective in that

range, which holds by (i). Since the map we want to prove injectivity of identifies with the differential

E(l)’ ine1 Eil’ in+1 DY Lemma it is therefore enough to show that, in the ranges of the statement,
ES: py = 0and thq,nﬂ = 0 holds for (p,q) with p + ¢ = i + 1 and q < i. By the vanishing range of E~

00

noted above, we have E = 0 in the required range. The claimed vanishing of E? follows from the

0,i,n+1 ‘
vanishing even on the E'-page, which is proved by observing that, by (H,,;) and Lemma 4.17] the groups
E;,, anil = Relq(Zf’“F)n,p vanish for (p, q) with ¢ < i and n > max(N — p, k(q + r)) in the nonsplit, and

for (p, q) satisfying q¢ < i and n > max(N — p, kq + r) in the split case, since Z?*'F has (split) degree r at
(N-p—-1)by Lemma ]
5. CONFIGURATION SPACES
The ordered configuration space of a manifold W with labels in a Serre fibration z: E — W is given by
Fr(W)={(e1,...,en) € E" | m(e;) # n(e;) for i # j and n(e;) € W\OW},
and the unordered configuration space is the quotient by the canonical action of the symmetric group,
Cr(W) = Fi(W)/Zy.
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To establish an E;-module structure on the unordered configuration spaces of W, we assume that W has
nonempty boundary, fix a collar (—c0, 0] X W — W, and attach an infinite cylinder to the boundary,

W = W Uoyxaw [0, 00) X OW.

Collar and cylinder assemble to an embedding R x W C W of which we make frequent use henceforth.
We extend the fibration 7 over W by pulling it back along the retraction W — W and define the space

CE(W) = {(s,€) € [0,00) X CZ(W) | 7(e) € W U (—o0,5) X W},

which is an equivalent model for C} (W), since the inclusion in C~,’f (W) as the subspace with s = 0
can be seen to be an equivalence by choosing an isotopy of W that pushes [0, c0) x W into (—0,0) X
OW. We furthermore fix an embedded cube (-1, l)d’1 C OW of codimension 0, together with a section
I: (=1,1)*! — E of 7, which we extend canonically to a section [ on [0, c0) x (=1,1)¢"1 CRx W C W.

Lemma 5.1. Configurations |, >, Cn(D?) in a disc form a graded Eq-algebra with configurations | [ ;5o CZ (W)
in a d-manifold W with nonempty boundary as an E;-module over it, graded by the number of points.

Proof. The operad D*(D?) of little d-discs acts on [[,,5o Cn(D?) by
DD % (2o CuD)* = Lz Ca(D)
(P10, ({dl}, . 4dED)  — UKL, ¢i({d])),
and this action extends to one of SC; (see Deﬁnition on the pair ([, Cff(W), o Cn(DY)) via
SCam,akim) x 1z CEW) X (Lnzg CaD) — Lazo CHW)
((5:f1s o i) (" {eD) Adl Y {dEY) > (57 + s, {ei} U (U 1, ({d]}) + 7)),

using the section [ and the translation (— + s”) by s’ in the [0, co)-coordinate, as illustrated in Flgurea O

-@
0 s
0 s’

d € SCo(m,a;m) CeCrW) D € C3(D?) 0(d;C, D) € CF(W)

FIGURE 4. The E;-module structure on unordered configuration spaces

5.1. The resolution by arcs. Let W be a smooth connected manifold of dimension d > 2 with nonempty
boundary and 7: E — W a Serre fibration with path-connected fibre. By Lemma the configuration
spaces M = [[,,5o CZ(W) form a graded E;-module over A = [[,,5o C,(D?) considered as an E,-algebra
via the canonical morphlsm SCy — SCq (see SectlonH The stabilisation map s: M — M with respect

to a chosen stabilising object X € C;(D?), restricted to the subspace of elements of degree n, has the form
s: CT(W) — CT, (W).

n+l1

Remark 5.2. With respect to the described equivalence CJ (W) ~ ”(W) the stabilisation map corresponds
to the map C;; (W) — C7_ (W) that adds a point “near infinity” Wm

We prove high-connectivity of the canonical resolution of M (see Sectlon by identifying it with the
resolution by arcs—an augmented semi-simplicial space of geometric nature, known to be highly connected.

Definition 5.3. The resolution by arcs is the augmented semi-simplicial space R} (M) — M with
RY (M) € M x (Emb([~1,0], W) x Maps([-1,0], E))"*",
consisting of tuples ((s, {e;}), (0, M0) - - - » (¢p, 71p)) such that
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(i) the arcs ¢; are pairwise disjoint and connect points in the configuration ¢;(~1) € z({e;}) € W to
points ¢(0) € {s} x (=1,1) X {0}972 C [0, c0) x AW in the order ¢o(0) < ... < ©5(0),
(ii) the interior of the arcs lie in W U [0, s) X W and are disjoint from the configuration 7({e;}),

(iii) the path oflabels n; satisfies (ron;) = ¢; and connects the label of ¢;(—1) € 7 ({e;}) to ;(0) = I(¢;(0)),
(iv) there exists ¢ € (0, 1) with ;(t) = (s + £, 9;(0),0, ...,0) € (—co,s] x (=1,1)%"1 C W for t € (~¢,0].
The space R}, (M) is topologised using the compact-open topology on Maps([-1, 0], E) and the C*-topology
on Emb([—1, 0], W). The ith face map forgets (¢;, ;). The rightmost graphic of Figuredepicts an example.

Theorem 5.4. The resolution by arcs R, (M) — M is graded (g1 — 1)-connected.

Proof. Setting s = 0 in the definition of R; (M) yields a sub-semi-simplicial space R (M) € Ry (M),
augmented over M = [[,,5o CF(W). As the inclusion is a weak equivalence by the same argument as for
CT(W) C CX(W), the augmented semi-simplicial space RT (M) — M is as connected as RS (M) — M
is. The latter is the standard resolution by arcs for configurations of unordered points with labels in W,
which is known to have the claimed connectivity (see e.g. the proof of Thm A.1]). o

Theorem 5.5. The canonical resolution and the one by arcs are weakly equivalent as augmented ij -spaces.

Assuming Theorem|s.5| Theoremensures graded (g — 1)-connectivity of the canonical resolution
Ro(M) — M (see Section|2.2), which in turn implies Theorem@by an application of Theoremand

We prove Theorem|5.5[by constructing a zig-zag of weak equivalences of augmented Ajyj-spaces
(:) <:) - <:> - fib
(14) Ro(M) < B(UO(e,m), U0, Bs(M)) = B(UO;,,UO, Bs(M)) — R (M)
between the canonical resolution R.(M) and the fibrant replacement R (M) of the resolution by arcs,

which is weakly equivalent to the resolution by arcs itself (see Section. The remainder of this subsection
serves to explain the weak equivalences (D-(3). We abbreviate the E; »-operad SC, by O.

@. Recall from Sectionthi category UO and the contravariant UO-space B,(M) over M whose
restriction to the subcategory Ajy; € UQ is R,(M). Using the (Affj x UQ)-space UO(e, m) obtained by
restricting the hom-functor of UQ, the equivalence (D is defined as the restriction of the bar resolution
of Bs(M) to Zinj (see Section. For the other parts of the zig-zag , we define an analogue of the
resolution by arcs for the free graded E;-module O™ = [],5,O(m,a”; m)/%, (see Example|2.18). For
simplification, we choose the centre X = {0} € C;(D?) as stabilising object and write s4 for the parameter
of elements d = (sg, {¢;}) € O™ and g(d) for their degree, i.e. the cardinality of the set of embeddings {¢;}.

Definition 5.6. Define the augmented semi-simplicial space R; (O™) — O™ with p-simplices
R (O™) € O™ x Emb ([-1,0],(0,00) x (-1, 1))"*",

consisting of tuples ((s, {$;}), ¢o, - - ., ¢p) such that

(i) the arcs ¢; are pairwise disjoint and connect centre points ¢;(—1) € {¢;(0)} of the discs to ¢;(0) €
{s} X (~=1,1) in the order ¢,(0) < ... < ¢,(0),
(ii) the interior of the arcs lie in (0, s) X (=1, 1) and are disjoint from the centre points {¢;(0)}, and
(iii) there exists an ¢ € (0, s) such that ¢;(t) = (s + t, 9;(0)) € (0,s] X (—=1,1) holds for all t € (—¢,0].

The third graphic of Figureexempliﬁes a 0-simplex in Ry (O™).
. To explain the second equivalence of (14}, we note that O™ becomes a topological monoid by multi-
plying elements d and e in O™ by y(e; d, 19'¢). The multiplication map is covered by a simplicial action
O™ xR,y (O™) — R, (O™)
(d.(e.00,-...0p) +— (y(e:d, 199, 9o + 54, . . ., Op +Sd)

where (— + sy) is the translation in the (0, c0)-coordinate. This action leads to a (Zﬁg x UO)-space UO,,,
serving us as mediator between the canonical resolution and the one by arcs. On objects ([p], [k]), it is

UO;:k = hofib,, ,, (R;(Om) — O™) ={(e, @0, . ... ¢p. pt) € R;(Om) X Path., . O™ | w(y) = e},

Chk+1
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where w(—) denotes the endpoint of a Moore path and the elements ¢; € O™ are defined as in Sectio The
Aﬁs-direction of U O,': . is induced by the semi-simplicial structure of Ry (O™) via the functor Ainj = Ainj
(see Section. The UO-direction is defined by

UO([kl.lIDx U0y, — U0,

((d ). (e @0, - 0p.0)) (¥, (€00, 0p)), pt - y({3d, 15D)).

The claimed functoriality of O;, follows directly from the associativity of the operadic composition y.
Having introduced the objects involved, the following lemma provides the weak equivalence ().

Lemma 5.7. The (A% x UO)-spaces UO;, and UO(e,m) are weakly equivalent.

inj

Proof. Choose arcs ¢f = ((pg, e, (pﬁ) € Emb([-1,0], (0, ) x (—1,1))?*! such that (cp+1, ¢”) forms an
element of R;(O'") for which the order of the embeddings {¢;} in cp+1 = (sc,,,» {#i}), induced by the
order of the arcs (p‘f they are connected to, agrees with the order of {¢;} induced by the (0, c0)-coordinate.
Acting on (cp+1, @7, conste,,,,) € UO;p, the (A x UO)-space U0, , induces a morphism of UO-spaces

inj
(15) UO(lpl.m) = UO,,.
agreeing on [k] € ob(UQ) with the induced map on diagonal homotopy fibres of the commuting triangle

om s R;(Om)
apurimo) T om &

at cx41, where the right diagonal map is the augmentation and the horizontal arrow is given by acting on
(cp+1, ¢P) via ¥. There is a map R;(Om) — O™ that forgets the arcs and the discs attached to them using
which the horizontal map can be seen to be an equivalence by following discs along arcs they are attached
to. Hence, is an equivalence of UO-spaces, which in particular shows that UO,, is homotopy discrete,
as UO(e,m) is so by Lemma Therefore, to prove the claim, it is sufficient to show that the equivalence
is natural in [p] up to homotopy, which would follow from the homotopy commutativity of

volpl, [k) — U0y,

(‘ii)*l J/(di)*

UO(lp - 1], [k]) —> U0, .

using the choice of face maps d; = (c, j1;) € Zinj([p —1], [p]) provided by Lemma The two compositions
of the latter diagram map an element (d, ) in UO([p], [k]) to

(w(d,(cpﬂ,w",...,;f,...,gag)),g) and (ty(d,(c,,ﬂ,gog‘l+sc,...,¢§j+sc)),g.y(ui;d,1p+1)),

respectively, where (—A) indicates that the element is omitted. Recalling that, via the isomorphism

(O™, ¢ps1) = Bpyq fixed in SeCﬁOn the loop y; € Qc,,,O™ corresponds to the braid b;ei’x @ Xop-i

in B,41, we see that our choice of the arcs qui ensures the existence of a path in R;_l(()m) between

(cp+1,(pp,...,guf,...,(p£) and (cp+1,(p€_1+sc,...,<p§j+sc)

that maps via the augmentation R;”,(O™) — O™ to p;, or at least to its homotopy class. Such a path
induces a homotopy between the two compositions of the square, which finishes the proof. O

®. For the rightmost equivalence of , we use the module structure 0 to define the simplicial map
RI(O™)xM — RI(M)
((e’ ®os - - - (Pp)a A) — (Q(C,A, 19(8))5 ((PO + 54, l((PO + SA)), sy ((PO + 54, l((Pp + SA)))’

using the embedding [0, 00) X (=1, 1) x {0}972 C [0, c0) x AW, the section I: [0, ) X (—=1,1)%"! — E, and
the translation in the [0, co0)-coordinate, as illustrated in Figure This yields simplicial maps for k > 0,

U0y, X BlM) —  RT(M)®
((es @0, 0p ), (AD) = (@((es 0o, - - 0p), AN L - O AL XF),

(16) @

(17)
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which induce a morphism B(UO;,,UO, Bs(M)) — RY (M), since they equalise the diagram

. id xf* .
Urevoqrrim VO, X BiM) ﬁ; Lk VO, X Bk(M).

This explains the morphism (3), which is a weak equivalence by the following lemma that completes the
proof of Theorem as the morphisms -(3) are all compatible with the augmentation to M.

Lemma 5.8. The morphism () is a weak equivalence.

Proof. On p-simplices, the weak equivalence () and the morphism (3) fit into a commutative square

-l 5 1=
B(UO;.,.UO, B M)) —=— R (M),

in which the left morphism is induced by the equivalence which has the form UO([p],®) — UO,
and was defined via the action of UO;, on a certain element (cp+1, ¢, constc,,,) € UO;,'P. The right map
is induced by the same element, but using , and it is a weak equivalence by an analogous argument as
for . Consequently, the arrow () is a weak equivalence as well and we conclude the assertion. ]

Remark 5.9. The right vertical arrow of the previous square can be enhanced to a weak equivalence up to
higher coherent homotopy between R.(M) and RY (M), leading to an alternative proof of Theorem|s.5

CWan

0 S - -
0 SaA € 0 saA SA + Se

AeM XeA (e,p) € Ry (O™) ((e, ), A) € Ry (M)

FIGURE 5. The resolution by arcs and the map ®

5.2. Coeflicient systems for configuration spaces. Recall from Sectionthat the E;-module struc-
tureon M = [1,,5 ¢ T(W)over A = [1,59Cn (D?) induces a right-module structure & on the fundamental
groupoid II(M) over the braided monoidal category (II(A), ®, b, 0) and hence, after fixing a stabilising
object X € C;(D"), also one over the free braided monoidal category B on one object. Denoting by
A € CJ (W) the empty configuration, a coefficient system for [ [, CT(W) is by Remarkspeciﬁed by

(i) a m(CTF (W), A® X®")-module M, for each n > 0, together with
(i) (- ® X)-equivariant morphisms o : M,, — Mp; such that B,, acts via (A ® X®" & —) trivially on
the image of 6™ : M;,, = Mpim.

Equivalently, a coefficient system is an abelian group-valued functor on Quillen’s bracket construction
C"(W) = (Unzo m(CF(W)), B),

compare Remark Using the ordering of A@® X ®" induced by the [0, c)-coordinate, a loop y in CZ (W)
induces a permutation in n letters, as well as n ordered loops in E by connecting the paths in E forming y to
a basepoint in E via paths in the image of the section I: [0, 00) X (—1,1)%~! — E. This induces a morphism

(18) m(Cr(W)) — m(E) %,
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to the wreath product, which we use to relate C” (W) to other categories via a commutative diagram

C™(W) —— (m(E)3,%)

< <
(19) BTW) —— Flpp —— FI
N N N

BWY ——— g1t ——— it

on which we elaborate in the following,.

The category (m1(E) ¢ £, 2) results from the action of £ = [[,5¢ 2, on m(E) 2 = [{,50 m(E) L 2.
It receives a functor from C”(W), induced by the morphisms . The category 1, (g of finite sets
and injective 7 (E)-maps [Ca516”GL15”Ram17 ISSléa] is isomorphic to (m1(E) 1 X, m1(E) ¢ 2), so is the
target of a functor from (1(E) ¢ 2, 2), induced by the inclusion ¥ C 7;(E) ¢ X. By forgetting 7;(E), the
category FI,,(g) maps to the category 71 of finite sets and injections, on which functors are studied in the

context of representation stability (see e.g. [CEF15||CEFN14]). Both #7 and ¥I,, () are subcategories of
larger categories #1% and 71 il ) of partially defined (7;(E)-)-injections |[CEF15/|SS16a]. The category of

partial braids B7(W)¥ has the nonnegative integers as its objects and a morphism from n to m is a pair
(k, p) with k < min(n, m) and g a morphism in H(C~]’;(W)) from a subset of A ® X®" to one of A ® X®™.
For trivial 7, the category 87 (W)¥ was studied by Palmer , who also introduced the subcategory
B™(W) € B™(W)¥ of full braids, consisting of morphisms (k, y1): n — m with k = n. There is a functor
C™(W) — B7(W) which is the identity on objects and maps a morphism

[yl € C"(W)(n,m) = m(C (W), A® X®™)/Bpn_p

to the path in C7 (W) that forms the first n paths in E of y, i.e. the ones starting at A ® X®" C A @ X®™,
For W = D? and 7 = idp, the category B” (W) was considered by Schlichtkrull and Solberg .

Remark 5.10. If W is of dimension d > 3, then the morphisms are isomorphisms Lem. 4.1],
from which it follows that the three left horizontal functors in the diagram are isomorphisms. If E is
in addition simply connected, then all functors except for the lower vertical inclusions are isomorphisms.

We call an abelian group valued functor on a category C of the diagram a coefficient system on
C. There is a notion of being of (split) degree r at an integer N for coefficient systems on any of the
categories C, defined analogously to Deﬁnitionby using an endofunctor ¥ on C together with a natural
transformation o : id — X, similar to C” (W) (see Remark. Most categories of the diagram are of the
form (N, G) for a braided monoidal groupoid G acting on a category N and for such, ¥ and o are defined
asin Remark For 87 (W), the functor % maps a morphism (k, z1) to (k + 1, s(1)) using the stabilisation,
and o consists of the constant paths at A @ X®". For 87 (W), we obtain ¥ and o by restriction from

BT (W)ﬁ For #1 # and FI il (E)’ the definition is analogous. Note that the morphisms o of the categories
with a §-superscript admit left-inverses, which results in all coefficient systems on them being split.

As all functors in the diagram are compatible with ¥ and o, the property of being of (split) degree r at
N is preserved by pulling back coefficient systems along them. In conclusion, by pulling back to C*(W),
all coefficient systems of finite degree on any of the categories in the diagram induce coefficient systems
for which the homology of CZ (W) stabilises by Theorem|D] The degree of coefficient systems on some of

the categories has been examined before, providing us with a wealth of examples.

Example 5.11. (i) In [RW17], the (split) degree of coefficient systems on prebraided monoidal categories

was introduced. This includes (71(E) ¢ 3, %), FI z,(E)» Tlfn(E)’ FI, and g,

(ii) A finitely generated coefficient system F on #1,,(g) in the sense of is of finite degree, provided
that 71 (E) is finite (see Prop. 3.4.2]). By Rem. 3.4.3], this implication remains valid if
m1(E) is virtually polycyclic (see the introduction for a definition) and even holds for arbitrary ;(E)

if F is presented in finite degree or if F extends to TIiI(E).

(iii) More quantitatively, coefficient systems on 7 that are generated in degree < k and related in degree

< d, as defined in Def. 4.1], are of degree k at d + min(k, d) by Prop. 4.18].
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(iv) The degree of a coefficient system on B” (W)¥ has been studied by Palmer , who also provides
examples of finite degree coefficient systems on F1¥ (see Sect. 4]). Note that the degree and
the split degree of coefficient systems on these categories coincide.

(v) For W = D? and 7 = idpe, the category C™(W) is isomorphic to the category UB as recalled in

Deﬁnition The Burau representation gives rise to an example of a coefficient system of degree 1
at0onUB Ex. 3.14]. On the basis of this example, Soulié has constructed coefficient

systems on U8 of arbitrary degree, using the so-called Long-Moody construction.

Remark 5.12. Inspired by work of Betley , Palmer proved homological stability for CF (W)
for trivial fibrations 7 and coefficient systems of finite degree on 87 (W)¥. His a surjectivity range agreeing
with ours, but his result includes split injectivity in all degrees—a phenomenon special to configuration
spaces and not captured by our general approach. In Remark 1.13, Palmer suspects stability for coefficient
systems of finite degree on 87 (W). Theorem@conﬁrms this and extends his result to a larger class of
coefficient systems and nontrivial labels.

5.3. Applications. We complete the proofs of Corollaryandsketched in the introduction. Unless
stated otherwise, W denotes a manifold satisfying the assumptions of Theorem@

5.3.1. Configuration spaces of embedded discs. Recall from the introduction the configuration spaces
of (un)ordered k-discs Cﬁ(W) and F,’f(W) of W, the related subgroups PDiffg’n(W) c Diffg’n(W) c
Diff (W) of diffeomorphisms fixing or permuting n chosen k-discs in W, respectively, and the orientation-
preserving variants denoted with a (+)-superscript for k = d and oriented W. The action of Diff (W) on
Cp¥(W) extends to one on [[ 5 C*(W) by extending diffeomorphisms of W to W via the identity. This
action commutes with the E4-action of [[,, C,(D?), so the Borel construction E Diff 5(W) Xpiff 5 (w) M
inherits a graded E;-module structure whose canonical resolution is highly-connected by Example
Consequently, Theoremandimply (twisted) stability for E Diff o(W) Xpigr, (w) Crx(W) for k < d and,
as the equivalence CK(W) — C2¥(W) C CF¥(W) (see the introduction for the first map) is equivariant,
also for EDiffg(W) Xpigr,(w) Ck(W). The same argument applies to EDiff (W) Xpifft (W) Cg’J'(W). As
announced in the introduction, we identify these homotopy quotients with classifying spaces of certain
diffeomorphism groups. This proves Corollary

Lemma 5.13. Fork < d, the Borel constructions E Dlﬁa(W)XDiﬁa(W)FrI;(W) andE Diffa(W)xDiﬁra(W)C’,;(W)
are models for the classifying spaces B PDiff(];’n(W) and B Diffg’n(W), respectively. Fork = d and W being
oriented, the analogue identifications for the variants with (+)-superscripts hold.

Proof. Tt suffices to show that Diff 5(W) acts transitively on FX(W) and CX(W), since the stabilisers of these
actions are precisely the subgroups PDiff I(f)n(W) and Diff S,H(W), respectively. The required transitivity
follows from the fact that the map Diff 5(W) — Emb([[" DX, W\dW), given by acting on n fixed disjoint
parametrised k-discs, is by a fibre bundle with path-connected base space Emb([ [" DX, W\oW) ~
F7*(W). This same argument applies to PDiffg”;(W) and Diffg:;(W) by using orientation preserving
diffeomorphisms and embeddings, as the fibre of the bundle 7 of oriented d-frames is path-connected. O

5.3.2. Representation stability. We prove Corollary using the notation of the introduction.

Lemma 5.14. Let W and  be as in Theorem@andl v n a partition. The V) -multiplicity in H (FZ(W); Q)
is the dimension of H;(CZ (W); V), where 1 (Cl(W)) acts on V) via the morphism m1(CF(W)) — Z,.
Proof. Delooping the covering space X, — FJ (W) — CZ(W) once results in a fibration sequence with
base space BY,. We consider the induced Serre spectral sequence, twisted by the local system V) on BY,,
E} , = H, (BSp; Hy(Ff(W); Vi) = Hpeg (CR(W);V2).
Since the action of 71 (F]f (W)) on Vj is trivial, we conclude
H, (B,; Hg(F; (W); V3)) = Hy (BEn; Hg(F (W);Q) ® Vy).
These groups vanishes for p # 0 as ¥, has no rational cohomology in positive degree. Hence, the E,-page

is trivial, except for the Oth column, which is isomorphic to the coinvariants (Hq(F; (W); Q) ® V)5 ,, which
are in turn isomorphic to the invariants (Hq(F; (W); Q) ® V3)*n. As a result of this, the spectral sequence
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collapses and we can identify Hq(C; (W); V) with (Hg(FJ (W); Q) ® V3)*n, whose dimension equals the
Vy-multiplicity in Hq(F] (W); Q), since V, ® V, for a partition y + n contains a trivial representation if and
only if 4 = A and, in that case, it is 1-dimensional (see Ex. 4.51]). This proves the claim, because the
V,-multiplicity in H*(F); (W); Q) equals the one in H;(F7 (W); Q) by the universal coefficient theorem. O

Corollary 5.15. For W and r as in Theorem@ the Vy[n)-multiplicity in H(FZT(W); Q) is independent of n
for n large relative to i.

Proof. By Prop. 3.4.1], the 3,-representations V), assemble into a finitely generated #7-module
V(A) with V(A), = Vyjp), which pulls back along C*(W) — 41 of to a coefficient system of finite

degree for [[,,59 Cn(M) by Exampleii). Combining Theoremwith Lemmagives the claim. O

Proof of Corollar Corollarysettles the statement for F7(W). To derive the claim about FK(W),
observe that the equivalence C ,’j (W) — C*(W) discussed in the introduction is covered by a ¥ ,-equivariant
equivalence FK(W) — F;*(W), so we have H'(FK(W); Q) = H!(F;*(W); Q) as % ,-modules. The remaining
part concerning B PDiff ,(W) is shown by using the model B PDiff (W) = EDiff 5(W) Xpif,(w) Fk(w)
provided by Lemma and adapting the argument of Lemmaandby replacing the covering
space X, — FT(W) — CJ(W) with
Sn — EDiff5(W) Xpifr,(w) FX(W) — EDiff o(W) Xpige,(w) Ck(W).

The statements about the variants F,‘f *(W) and PDil:fflI’+(W) are proved in the same way. O

The following ranges resulted from a discussion with Peter Patzt whom the author would like to thank.

Remark 5.16. To obtain explicit ranges for Corollary one can show that the #7-module V(1), used in the
proof of Corollary is generated in degree |A| + A; and related in degree |A|+A; +1, so the corresponding
coefficient system has degree |A| + A; at 2|A| + 2A; + 1 by Example|s.11iii). Consequently, one deduces that
the V),-multiplicities in the cohomology groups of Corollary are constant for i < 7 — (|A] + 4, + 1).
Note that our range is not uniform, i.e. is dependent on the partition. In contrast, the range for H(F(W); Q)
obtained by Church is i < % if the dimension is d > 3 and i < § for d = 2, at least for the
manifolds W to which his result applies.

6. MODULI SPACES OF MANIFOLDS

Throughout the section, we fix a closed manifold P of dimension (d — 1), together with an embedding
P CRT! xR
which contains the open unit cube (—1,1)%7! x {0} € R%"! x R® and satisfies P € R%™! x [0, c0)®. We
consider compact manifolds W with a specified identification 9W = P and denote by Diff (W) the group
of diffeomorphisms fixing a neighbourhood of the boundary, equipped with the C*-topology. To construct
our preferred model of its classifying space, we choose a collar ¢: (—o0,0] X P — W and denote by
Emb, (W, (—00,0] x R? x R®) for ¢ > 0 the space of embeddings e satisfying (e o ¢)(t,x) = (t,x) for
t € (—¢,0], using the C*-topology.
We define the moduli space of W-manifolds M(W) as the space of submanifolds
W’ C (=00,0] x R“! xR
such that
(i) thereisan e > 0 with W’ N (—¢,0] x R x R® = (—¢,0] x P and
(ii) there is a diffeomorphism ¢: W — W’ that satisfies ¢ o c|_.,0)xp = inc(_¢ oJxp,
where inc denotes the inclusion ensured by (i). The space M(W) is topologised as the quotient of

Embg(W, (=00, 0] X R*! X R®) = colim,_,o Emb, (W, (o0, 0] x R¥™ x R™)

by the action of Diff5(W) via precomposition. The space Emba(W, (—0,0] x R%™! x R®) is weakly
contractible by Whitney’s embedding theorem, and as the action of Diff 5(W) is free and admits slices by
, the moduli space M(W) provides a model for the classifying space BDiff 5(W). In the case of P
being the sphere S%7!, we define a weakly equivalent variant M*(W) of M(W), consisting of submanifolds

W’ ¢ D? x R®
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such that
(i) the interior of W’ lies in (D%\@D?) x (—c0, 0],
(i) there exists an ¢ > 0 for which ¢’: (—¢, 0] x S%~1 — W’, mapping (t, x) to ((1+ t)x, 0), is a collar, and
(iii) there is a diffeomorphism ¢: W — W’ satisfying ¢ o c|, ojxp = ¢|(=¢,01xP-
We call M = [[[y) M(W) the moduli space of manifolds with P-boundary, the union taken over compact
manifolds W with an identification W = P, one in each diffeomorphism class relative to P. Analogously,
the moduli space of manifolds with sphere boundary is A = [[[5) M*(N) for N with N = sd-1,

Lemma 6.1. The moduli space A of manifolds with sphere boundary forms an E;-algebra with the moduli
space M of manifolds with P-boundary as an E,-module over it.

Proof. The operad D*(D?) of little d-discs acts on [n) M*(N) by gluing manifolds along their sphere
boundary into a disc, instructed by little d-discs. Formally, define

DD x (U MEN)E — [ jpy ME(N)
((¢17""¢k)’(Nl""’Nk)) L ((Dd\ Uli<=1 1m¢l)x{0}) U (Ui'czl riNi+bi)’

where r; is the radius and b; the centre of ¢;: D¢ — D9 and r;N; + b; is obtained from N; by scal-
ing by r; and translating by b;, both in the D?-coordinate. The conditions (i) and (ii) in the definition
of M*(N) ensure that 0 is well-defined. This action extends to an action of SCy (see Section on

(LI pwy) MW), L[Ny MP(N)) via
s k

0: SCa(m,a®,m) x [y MW) x ( LIiny ME(N))© — L M(W),
mapping ((s, @1, - . ., k), M, N1, ..., Ni) to the submanifold obtained from
(20) MU (([0,s] x P)\(UK_, im ¢; x {0})) U (UK, r;iN; + b))
by translating in the first coordinate by s to the left, where r;N; + b; is obtained from N; by scaling by the
radius r; of ¢;: D? — (0,1) x (=1, 1)?"! and translating by the centre b; of ¢;, both in the R?-coordinate.
Loosely speaking, we attach a cylinder to the boundary of W, glue in the N; via the little d-discs, and
shift everything to the left, as in Figure@ This yields indeed a smooth submanifold, since the threefold
union is one: our conditions on P € R"! x [0, c0)® and on the manifolds N; € D¢ X (=0, 0]® in
M?(N) ensure that [0, s] X P and UleriNi + b; intersect only in (0, s) X (=1, 1)%"! x {0}, which, together
with properties (i)—(ii) of M*(N), implies that the second union of is a smooth submanifold. This
manifold intersects with M only in {0} X P, so the whole union forms by property (i) of M(W) and

(ii) of M*(N) a smooth submanifold as well. O
Q - 26
0 .'..‘ 4444444444444444444444444
0 s
0 -s
d € 5C2(m, a;m) M e M(W) N; € M5(N) 0(d; M, Ny)

FIGURE 6. The E;-module structure on the moduli space of manifolds

6.1. The resolution by embeddings. By virtue of Lemma the moduli space M of manifolds with
P-boundary forms in dimensions d > 2 an E;-module over the one of manifolds with sphere boundary
A, considered as an E,-algebra via the embedding SC; — SCg4 of Section For A€ M and X € A, the
stabilised manifold A @ X is a model for the boundary connected sum AjX of A and X. But in contrast to
the usual construction of the boundary connected sum, the manifold A @ X contains A as a canonically
embedded submanifold, and the boundary of A @ X is canonically identified with the boundary of X
(cf. Figure@. On components, the stabilisation takes the form s: M(A) — M(AbX), modeling the map

s: BDiff5(A) —> BDiff 5(A4X)
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induced by extending diffeomorphisms by the identity.
As we did for configuration spaces in Section we identify the canonical resolution of M with an

augmented semi-simplicial space R?= (M) of geometric nature, which is a generalisation of one introduced
by Galatius and Randal-Williams in |GR18l. To that end, denote by Hy for X € A the manifold obtained
from X by gluing in [~1, 0] x D4"! along the embedding

{-1}xD¥! — 9x =51

x +— (W1 —|x],x).

The resulting manifolds is, after smoothing corners, diffeomorphic to X, but contains a canonically
embedded strip [~1,0] x D! C Hx. When considering embeddings of Hx into a manifold with boundary,
we always implicitly require that {0} x D¢ is sent to the boundary and the rest of Hx to the interior.

Definition 6.2. Let W be a d-manifold, equipped with an embedding e: (—¢,0] x R¢™! — W for an ¢ > 0,
satisfying e 1(dW) = {0} x R?"!. Define a semi-simplicial space KX (W) with the space of p-simplices
given by tuples (9o, fo), - - ., (¢p. tp)) € (Emb(Hx, W) X R)?*! of embeddings with parameters, such that
(i) the embeddings ¢; are pairwise disjoint,
(i) there exists an § € (0, ¢) such that ¢;(s,p) = e(s,p + tie;) holds for (s, p) € (=8,0] x D?~' C Hy,
where e; € R4! is the first basis vector, and
(iii) the parameters are ordered by fy < ... < ,.

The embedding space is topologised in the C*-topology. The ith face map forgets (¢;, t;).

For submanifolds W € M, we use the embedding e: (—¢, 0] X R4"1 — W that is obtained from the
canonically embedded cube (~¢, 0] x (=1,1)4"! C (=¢,0] Xx P C W by use of the diffeomorphism

R — (-1,1)

x %arctan(x).

(21)

The group Diff5(W) acts simplicially on KX (W) by precomposition, so the levelwise Borel construction
results in an augmented semi-simplicial space

(22) Embgs(W, (=00, 0] X R X R™) Xpifr,,(w) K& (W) — M(W)
in terms of which we define the resolution by embeddings as the augmented semi-simplicial space
RT(M) - M

obtained by taking coproducts of the semi-simplicial spaces over compact manifolds W with P-
boundary, one in each diffeomorphism class relative P. This is the analogue of the resolution by arcs for
configuration spaces. A point in R?= (M) consists of a manifold W € M and (p + 1) embeddings of Hx
into W that form an element of Kif (W) (see the rightmost graphic of Figureﬁfor an example). Since
the augmentation is by construction a levelwise fibre bundle, the resolution by embeddings is fibrant. In
particular, its fibre KX(A) at A € M is equivalent to the respective homotopy fibre.

Theorem 6.3. The canonical resolution and the resolution by embeddings are weakly equivalent as augmented
Ainj-spaces. In particular, KX (A) for A € M is weakly equivalent to the space of destabilisations Wa(A) of A.

We closely follow the proof of Theoremfor configuration spaces to prove Theorem adopting
the notation of Section More specifically, we construct a zig-zag of weak equivalences

(23) RM) & BUOe. ). U0, B.M) € B0 U0, BUM) S RS M

of augmented Zinj—spaces between the canonical resolution and the fibrant replacement of the resolution
by embeddings—analogous to the one for configuration spaces, labelled by . The first equivalence @
of carries over to verbatim. To construct ), we replace the semi-simplicial space Ry (O™) with
an equivalent variant R;”(O™), essentially by including a contractible choice of tubular neighbourhoods

of the arcs. To this end, consider for s > 0 the simplicial space K d((O, s] x (=1,1)%1) for which we use
the embedding e: (—s,0] x R¥™ — (0, 5] x (-1, 1)4! obtained from and the translation by s. Call a
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0-simplex (¢, t) therein a little d-disc with thickened tether if the restriction ¢|pa: D¢ — (0,s) X (—1,1)41
is a composition of a scaling and a translation. The embedding ¢: Hpa — (0,s] x (=1, 1)%"! induces an arc

0" = pli-soixqoy : [=1,0] = (0,8) x (-1, )47,

called the tether of ¢, which connects the little d-disc to the boundary. The embedding ¢ furthermore
induces a trivialisation of the normal bundle of the tether, which we consider as a map [-1,0] — V,;_;(R%)
to the space of (d — 1)-frames in R?. We call a little d-disc with thickened tether (¢, t) two-dimensional, if
(i) the little d-disc ¢|pa is the image of a little 2-disc in (0, s) X (-1, 1) under SC2 — SCq4 (see Section,

(ii) the induced tether ¢* lies in the slice (0,s) X (=1,1) x {0}%72, and
(iii) the induced trivialisation [—1,0] — Vy_;(R?) equals, up to scaling by a smooth function [~1,0] —
(0, 00), the parallel transport of the frame (e, . . ., e4) € Vy_1(R?) at ¢* (0) along the tether ¢*, where

e; € R? denotes the ith basis vector.

Definition 6.4. Define the augmented semi-simplicial space R?= (O™) — O™ with p-simplices
R(O™) € O™ x (Emb(Hpa, (0,0) X (-1, 1)) x R)"*!

consisting of ((s, {$;}), (@0, to) - - -, (¢p, tp)) such that (¢;, t;) € K;,)d((o, s] X (-1, 1)d‘1) and all (¢;, t;) are
two-dimensional little d-discs with thickened tethers whose induced little 2-disc is one of the ¢;. The third
graphic of Figureillustrates a 0-simplex of this semi-simplicial space.

As a two-dimensional little 2-disc with thickened tether is, up to a contractible choice of a thickening,
determined by the associated little 2-disc and its tether, the Zinj—spaces R?= (O™) and Ry (O™) are weakly
equivalent. The (Eii x UQ)-space UOS: in is defined in the same way as UQ, ., but using R?= oM
instead of Ry (O™). Making use of the equivalence between R,O_' (O™) and Ry (O™), the proof of Lemma|s.7
carries over to the manifold case and shows that UO,(?: and UO(e, m) weakly equivalent (Zﬁi x UQ)-spaces,
which establishes the equivalence (2). Finally, we construct the remaining equivalence (3) via an analogue

(24) O: MXRT(O™) — RT(M),

of the simplicial map , mapping (4, (e, (9o, to), - - -, (¢p, tp))) to the manifold 0(e; A, XP*'), equipped
with the embeddings of Hy obtained from the ¢; by replacing D by X (see Figure. Using instead
of in the definition of , we obtain simplicial maps UOSZ X Br(M) — R?= (M)® which induce a
morphism of the form B(UOS:, UO, Bs(M)) — Rf} (M)B®, as in the case of configuration spaces. This

is the last morphism () in the zig-zag , and it is a weak equivalence by the argument of the proof of
Lemma minorly modified using the following lemma, which completes the proof of Theorem

Lemma 6.5. Forallp > 0 and elements of the form (cp41, (@o. to - - -, @p, tp)) € Rl?z(()m), the simplicial map
® induces a weak equivalence M — Rl?:(M).

Proof. The line of argument of Lem. 6.10] for X = D?P§SP x SP generalises verbatim. |
C C=
AeM XeA (e(t ) € Ry (SC2(m)) D(A, (e, (£, 9))) € Ry (M)

FIGURE 7. The resolution by embeddings and the map @

Galatius and Randal-Williams proved high-connectivity of KX(A) if A is simply connected
ﬁ ﬁ

and X = D?P§(SP x SP) for p > 3. On the basis of this, Friedrich [Fri17]| and Perlmutter [Per16a] proved
connectivity results for other choices of A and X. To state their results, recall the stable X-genus §*, as
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introduced in Section and denote by usr(Z[G]) for a group G the unitary stable rank Def. 6.3]
of its group ring Z[G], considered as a ring with an anti-involution.

Theorem 6.6. The realisation of KX(A) for a connected manifold A € M is
(i) %(g‘X(A) — 4)-connected if X = D*P§(SP x SP), p > 3, and A is simply connected,
(ii) %(g'X(A) —usr(Z[m(A)]) — 3)-connected if X = D*P§(S? x SP) and p > 3, and
(iii) %(g‘X(A) — 4 —m)-connected if X = DP*I4(SP X S9),0 < p < q < 2p—2, and A is (q — p + 2)-connected,
where m is the smallest number such that there exists an epimorphism of the form Z™ — mq(SP).

Proof. The first two parts are Thm 4.7; Cor.5.10]. Corollary 7.3.1 of proves the

third claim for the genus g*(B) instead of its stable variant gX (B). However, the proof given therein goes
through for g% (B) if one replaces the relation between the genus of a manifold B satisfying the assumption
in (ii) and the rank of its associated Wall form (see Prop. 6.1]) with the analogous statement
relating the stable genus to the stable rank. ]

We denote by g% for a manifold A € M the grading of M obtained by localising the stable X-genus at

objects stably isomorphic to A (see Remark. Combining Theoremwithimplies the following.

Corollary 6.7. The canonical resolution Re(M) — M is graded
(i) 3(g — 2)-connected for X = D*’§(SP x SP), p > 3, and any simply-connected A € M.
(ii) %(g‘f —usr(Z[m,(A)]) — 1)-connected for X = D*’§(SP x SP), p > 3, and any connected A € M.
(iii) %(g'f — 2 — m)-connected for X = DPYI4(SP x §9),0 < p < q < 2p — 2, and any (q — p + 2)-connected
A € M with m defined as in Theorem

Remark 6.8. In the case d = 2, one can use Prop. 5.1] to show that KX (A) is %(g‘x (A) —3)-connected
for X = D§(S! x S') and A € M an orientable surface, which implies stability results for diffeomorphism

groups of surfaces. Their homotopy discreteness |EE67 ensures their equivalence to their mapping
class group for which stability has a longstanding history, going back to a breakthrough result by Harer

, improved in manifold ways since then [BollzﬂCMoglllvaggﬂRam6”RW17"Wah08].
By Remark Theoremandapply to M when graded by 9'2, by g% + usr(Z[m;(A)]) + 1, or by

g’f + m + 2 for X and A as in the respective three cases of Corollary|6.7] On path components, this implies
Theorem noting that in the relevant ranges, the genus and the stable genus agree (see Remark.

6.2. Coeflicient systems for moduli spaces of manifolds. Recall from Sectionthat coefficient
systems for the moduli space of manifolds with P-boundary M are defined in terms of the module
structure of the fundamental groupoid (II(M), @) over the braided monoidal category (II(A), ®, b, 0),
induced by the E;-module structure of M over the moduli space of manifolds with sphere boundary A. In
the following, we provide an alternative description for the fundamental groupoids II(M) and II(A) that
is more suitable to construct coefficient systems on M.

Define the categories mcg(M) and mcg(A) having the same objects as II(M) and II(A), respectively,
and the set of mapping classes my(Diff 9(M, N)) as morphisms between M and N, where Diff (M, N) is the
space of diffeomorphisms that preserve a germ of the canonical collars of M and N ensured by condition i)
in the definition of M(W). The composition in mcg(M) and mcg(A) is the evident one.

Lemma 6.9. The category mcg(M) is canonically isomorphic to II(M), and mcg(A) to II(M).
Proof. Recall the fibre bundle from the construction of M(A) in the beginning of the chapter,
Diff 5(A) — Embg(A, (o0, 0] x R x R*) — M(A).

Lifting a path from A to B in M to a path in the total space starting at the inclusion A C (=0c0, 0] x R x R®
gives a path of embeddings that ends at an embedding with image B and hence provides a diffeomorphism
from A to B by restricting to the image. This provides a functor from mcg(M) to II(M), whose inverse
is induced by considering a diffeomorphism as an embedding, choosing a path in the contractible space
Embg(A, (—o0,0] X R? x R™) from the inclusion A C (=0, 0] X R? x R™ to the embedding obtained from
the diffeomorphism, and mapping this path to M(A). The argument for meg(A) = II(A) is analogous. O
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The module structure of II(M) over II(A) can be transported via the identification of the preceding
lemma to one of mcg(M) over meg(A), considered as a braided monoidal category by making use of the
isomorphism mcg(A) = II(A). In concrete terms, the monoidal structure on mcg(A) is on objects given
by the one of II(A) induced by the E;-multiplication and on morphisms by multiplying f € Diff5(A, B)
and g € Diff5(A’, X") as f ® g € Diff 5(A® A’, B® B’), defined by extending f and g via the identity. The
description of the module structure on meg(M) is analogous. Coefficient systems for M are then given
by coeflicient systems for the module mcg(M) over mcg(A) in the sense of Deﬁnition

To illustrate how this identification can be used to construct coefficient systems on M, we discuss
one example in detail. Consider for i > 0 the functor H;: mcg(M) — 456 that assigns a manifold A € M
its ith singular homology group H;(A). The inclusions A € A @ X induce a natural transformation
ofli: H;(-) — H;(- ® X) that satisifies the triviality condition for coefficient systems (see Deﬁnition.
To calculate the degree of H;, we consider the commutative diagram with exact rows

0 — H;(A) ——— H;(A® X) —— H;(Cone(P)hX) — 0

J/O’Hi J/O'ZHi \J/id

0 — H;(A® X) — H;(A® X & X) — H;(Cone(P)hX) — 0

induced by the long exact sequence of pairs together with the equivalences H;(A ® X®, A @ X®k1) =
H;(Cone(P)1X) obtained by collapsing A @ X®*~1, The leftmost vertical map is induced by the inclusion
and the second one by the inclusion followed by A @ bx x. Naturality of the diagram in A implies triviality
of the kernel of H;, and also that its cokernel is constant, so of degree 0 if H;(Cone(P)hX) # 0 and of degree
—1 else wise. Hence, H; is of degree 1 at 0 if H;(Cone(P)1X) # 0 and of degree 0 at 0 if H;(Cone(P)jX) = 0,
from which Corollaryis implied by an application of Theorem

6.3. Extensions.

6.3.1. Stabilisation by (2n—1)-connected (4n+1)-manifolds. Perlmutter established high-connectivity
of the semi-simplicial spaces KX (A) for 2-connected manifolds A of dimension (4n + 1) with n > 2 and
certain specific (2n — 1)-connected stably-parallelisable manifolds X with finite H,,(X;Z) and trivial
H,,(X,Z/2Z). From this, he derived homological stability with constant coefficients of

(25) BDiff3(A) — BDiff 5(AsX)

for these specific A and X. By using classification results of closed (2n — 1)-connected stably parallelisable
(4n + 1)-manifolds due to Wall and De Sapio |De 70', he furthermore concluded that stabilises
in fact for all X with X having the properties described above and not just the specific ones considered

before. The methods of this section can be used to extend his homological stability result to abelian
coeflicients and coefficient systems of finite degree.

6.3.2. Automorphisms of topological and piecewise linear manifolds. In , Kupers explains how one
can adapt the methods of Galatius and Randal-Williams to prove high-connectivity of the relevant
semi-simplicial spaces of locally flat embeddings to prove homological stability for classifying spaces
of homeomorphisms of topological manifolds and PL-automorphisms of piecewise linear manifolds. By
extending the ideas of this section, our framework applies also to these examples, resulting in an extension
of Kupers’ stability results to coefficients systems of finite degree.

7. HOMOLOGICAL STABILITY FOR MODULES OVER BRAIDED MONOIDAL CATEGORIES

We explain the applicability of our framework to modules over braided monoidal categories, and make
a comparison to the theory for braided monoidal groupoids developed by Randal-Williams-Wahl .

7.1. E;-modules over E;-algebras from modules over braided monoidal categories. Recall the cat-
egorical operad of coloured braids CoB (see e.g. Ch. 5]). The category of n-operations is the groupoid
CoB(n) with linear orderings of {1, ..., n} as objects and braids connecting the spots as prescribed by the
orderings as morphisms. The operadic composition is given by “cabling”. Algebras over CoB are exactly
strict braided monoidal categories, and the topological operad obtained by taking classifying spaces is E;
(seee.g. Thm 5.2.12;[FSV13] Ch. 8]). Extending this, we construct a two-coloured operad whose
algebras are modules over braided monoidal categories and whose classifying space is Ey » (see Section.
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Definition 7.1. Define a categorical operad CoBM with colours m and a whose operations CoBM (¥, a!; m)
are empty for k # 1 and equal CoB(l) otherwise. The operations CoBM (m*, a’;a) are empty for k # 0 and
equal CoB(l) elsewise. Restricted to the a-colour, CoBM is defined as CoB. Requiring commutativity of

CoBM(m, al;m) x (CoBM(m, ak;m) X CoBM (a’t;a) X ... X CoBM (all;a)) —Temt o comar(m, akti;m)

g H

CoB(Kk) x CoB(l) x CoB(iy) X . .. x CoB(ir) 2" com(k) x CoB(L, i) 25 CoB(k + 3, ij)

defines the remaining composition yzqs, Where 7 interchanges the first two factors, y s is the composition
of CoB, and @ is yos(idf1<2); —, —), i.e. puts braids next to each other (see Figurefor an example).

A Y

d e CoBM(m,a®;m) e € CoBM(m,a3;m) f e CoBM(a%a) ge CoBM(al;a) y(dse, f,g) € CoBM(m,ab; m)
FiGUre 8. The operadic composition in CoBM

Recall the notion of a right-module (M, @) over a monoidal category (A, @, 0): a category M with a
functor ®: M X A — M that is unital and associative up to coherent isomorphism (see Section.

Lemma 7.2. The structure of a (graded) CoBM -algebra on a pair of categories (M, A) is equivalent to a
strict (graded) braided monoidal structure on A and a strict (graded) right-module structure on M over it.
Furthermore, the topological operad obtained from CoBM by taking levelwise classifying spaces is E 5.

Proof. The proof of the corresponding result for CoB in Ch. 5] carries over mutatis mutandis. O

As a consequence of the previous lemma, the classifying space of a graded module over a braided
monoidal category carries the structure of a graded E;-module over an E;-algebra.

Remark 7.3. The operad of parenthesised coloured braids encodes non-strict braided monoidal categories,
and its classifying space operad is E; as well Ch. 6]. By considering a parenthesised version of
CoBM, this extends in a similar fashion to non-strict right-modules over non-strict braided monoidal
categories, whose classifying spaces hence also give E;-modules over E,-algebras.

7.2. Homological stability for groups and monoids. Let (M, ®) be a graded right-module over a
braided monoidal category (A, &, b, 0) with a stabilising object X, i.e. an object of A of degree 1. Taking
classifying spaces results by Lemmin a graded E;-module BM over the E;-algebra BA with stabilising
object X € BA, hence provides a suitable input for Theoremand In the following, we introduce a
condition on M that ensures a simplification of the canonical resolution of BM.

Definition 7.4. The module (M, ®) is called injective at an object A of M if the stabilisation
(- ® X®*1): Aut(B) — Aut(B @ X®P)

is injective for all objects B for which B @ X®” is isomorphic to A for a p > 0.
Definition 7.5. Define for an object A of M a semi-simplicial set WXW(A) with p-simplices given as
equivalence classes of pairs (B, f) of an object B of M and a morphism f € M(B ® X®*! A), where
(B, f) and (B’, f’) are equivalent if there is an isomorphism g € M(B, B’) satisfying f” o (g ® X®*1) = f.
The ith face of a p-simplex [B, f] is defined as [B® X, f o (B® b;si ¥ ® Xer-hy].

Recall the spaces of destabilisations W, (A), i.e. the fibres of the canonical resolution (see Deﬁnition.

Lemma 7.6. If M is a groupoid, then the semi-simplicial set of path components mo(W,(A)) for an object A
of M is isomorphic to WEW(A). Moreover, W.(A) is homotopy discrete if and only if M is injective at A.
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Proof. The inclusion of the 0-simplices ob M C BM, together with the natural map mor M — Path M,
induces a preferred bijection %RW(A) — my(W,(A)) for all p > 0, since every path in BM between
0-simplices is homotopic relative to its endpoints to a one simplex, i.e. to a path in the image of mor M —
Path M. By the definition of the respective face maps, these bijections assemble to an isomorphism of
simplicial sets, which proves the first claim. The homotopy fibre W,,(A) of the map B(— & X®/*!): BM —
BM at A is homotopy discrete if and only if the induced morphisms on ; based at all objects B with
B @ X®*! = Afor p > 0 are injective, which is clearly equivalent to M being locally injective at A. O

Remark 7.7. If M and A are groupoids, then M =~ II(BM) holds naturally as a module over A =~ II(BA),
so coefficient systems for BM (see Deﬁnition are coeflicient systems for M as in Section

Remark 7.8. Since the connectivity of the canonical resolution can be tested on the spaces of destabilisations
We(A) (see Remark, Lemmaandimply a version of Theoremandthat is phrased entirely
in terms of (discrete) categories and semi-simplicial sets. This provides a simplified toolkit for proving
homological stability for graded modules over braided monoidal categories with a stabilising object X for
which the multiplication (— @ X): Aut(B) — Aut(B @ X) is injective for all objects B of finite degree.

7.3. Comparison with the work of Randal-Williams and Wahl. Let (G, ®, b, 0) be a braided monoidal
groupoid. In , it is shown that, for objects A and X in G, the maps

(26) B(- ® X): BAutg(A® X®") — B Autg(A ® X®"*1)

satisfy homological stability with constant, abelian, and a class of coefficient systems if a certain family of
associated semi-simplicial sets W,,(A, X). (see Def. 2.1]) is sufficiently connected and G satisfies

(i) injectivity of the stabilisation map (— & X): Autg(A® X®") — Autg(A @ X®"*!) foralln > 0,

(ii) local cancellation at (A, X),i.e. Y®&X®™ = A@X®" forY € Gand1 < m < nimplies Y = AgX®m™",
(iii) no zero-divisors, i.e. U @ V = 0 implies U = 0, and
(iv) the unit 0 has no nontrivial automorphisms.

As indicated by our choice of notation, if we consider G as a module over itself, the simplicial set W, (A, X).
of equals WEW(A @ X ") as specified in Deﬁnition To compare with our work, define
the module G4 x = [1,50 Autg(A & X®") over the braided monoidal category Gx = [],5 Autg(X®"),
both graded in the evident way. By Theoremand the maps stabilise homologically—without
assumptions on G—if the canonical resolution of BG4 x is sufficiently connected, or equivalently, if the
spaces of destabilisations W, (A @ X®") associated to BG4 x are (see Remarkﬁ.

The semi-simplicial sets W, (A, X), of are equivalent to the spaces of destabilisations W, (A®X ®™")
of BG4 x if conditions (i) and (ii) hold. Indeed, assumption (ii) implies that W;,(A, X). agrees with the
semi-simplicial set WXV (A @ X ®") associated to G4 x and hence also with 7o(W.(A® X®")) by Lemmal7.6
The first condition imposes injectivity of G4 x at all objects A & X®", which is by Lemmaequivalent
to the homotopy discreteness of the space of destabilisations W, (A & X®") of BG4 x.

Hence, if one prefers to work in a discrete setting as in lRW17I, i.e. using semi-simplicial sets, condition
(i) is necessary. Condition (ii) ensures that the semi-simplicial sets of [RW17] agree with our spaces of
destabilisations W, (A & X®"), whose high-connectivity always imply stability by Theoremandn The
last two conditions are redundant, i.e. imposing (i) and (ii) already implies (twisted) homological stability
of under the connectivity assumptions of . The presence of these additional assumptions in
is due to their usage of Quillen’s construction (G, G) since the conditions (iii) and (iv) guarantee
that the automorphism groups Aut(g gy(A & X®") and Autg(A & X®") coincide. If (i)—(iii) are satisfied
and the W,,(A, X) are highly-conected, then implies stability for Aut(g g,(A & X®"). Hence, in
this case, high-connectivity of W,,(A, X) shows stability for both Autg(A & X®") and Aut(g gy(A & X®").
The reason for this is that, although these automorphism groups might differ, their quotients Aut(A &
X™)/Aut(A @ X® P71 = WPRW(A ® X®), forming the corresponding semi-simplicial sets, agree.

Remark 7.9. The coefficient systems deals with are functors of finite degree on the subcategory
Ca.x C (G, G) generated by the objects A® X®". In contrast, Theoremis applicable to functors of finite
degree on (Ga x, B) (see Remarksand. As the canonical functors G4 x — G and 8 — G induce
(Ga.x,B) — Ca x, every coefficient system of gives one in ours (cf. Remarksand.



40

MANUEL KRANNICH

Remark 7.10. The ranges for coefficient systems of finite degree provided by Theoremagree with the

ones of

in the situations in which their work is applicable. The ranges for abelian coefficients

of Theorem|Alimprove the ones of marginally, and so does the surjectivity range for constant
coefficients in the case k > 2. Note that, by Remark these ranges can in some cases be further improved.
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