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Abstract

This thesis contains three contributions on inference from stochastic processes. The first article,

which originates from research conducted at Lund University, has a signal processing spirit. The

stochastic processes are bird songs and we approach inference from their time-frequency domain

representation. We suggest an algorithm for the automated structural analysis of bird songs, which

is particularly suitable for noisy recordings and complex song structures. The novel way of assessing

similarity between syllables is based on a particular feature representation, which is derived from

the syllables’ Ambiguity spectra. The other two articles, which present research carried out at the

University of Copenhagen, base inference on time-domain representations of stochastic processes.

Focus lies on deterministic and stochastic differential equations models with random effects and

applications to biomedical data. In Paper II we employ a delay differential equations model with

random effects to gain hitherto unknown insights on the initial distribution and metabolism of

selenomethionine in the human body. Paper III considers inference for multivariate stochastic

differential mixed effects models and has a stronger theoretical spirit. By allowing the inclusion

of subject-specific covariate information in the drift, we leave the setting of identically distributed

processes. We derive the Maximum-Likelihood estimator from the continuous-time likelihood,

prove its consistency and asymptotic normality, and study the bias arising from time-discretization.

The method is applied to the statistical analysis of a data set containing EEG recordings from

epileptic patients.
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Dansk resumé

Denne afhandling består af tre bidrag, der omhandler inferens i stokastiske processer. Den første

artikel, der stammer fra forskning udført på Lund Universitet, er indenfor digital signalbehan-

dling. De stokastiske processer er fuglesang, og vores tilgang er baseret på analyser i tids- og

frekvensdomænet. Vi foreslår en algoritme til automatisk analyse af strukturen i fuglesang, som er

særligt velegnet til støjfyldte optagelser og komplekse sangstrukturer. Den nye måde at kvantifi-

cere similariteten mellem stavelser er baseret på en bestemt repræsentation af egenskaber, der er

afledt af stavelsernes Ambiguity Spectra. De to andre artikler, der stammer fra forskning udført

på Københavns Universitet, baserer den statistisk inferens på stokastiske processer repræsenteret

i tidsdomænet. Fokus ligger på deterministiske og stokastiske differentialligningsmodeller med til-

fældige effekter og anvendelser på biomedicinske data. I artikel II anvender vi en Delay Differential

Equation model med tilfældige effekter for at få indsigt i metabolismen under de første to timer

efter injektion af selenomethionin i menneskekroppen. Artikel III omhandler inferens for multi-

variate stokastiske differentialligningsmodeller med tilfældige effekter, og har en stærkere teoretisk

fundering. Ved at tillade subjektspecifikke kovariater i driften af diffusionsmodellen, har vi ikke

længere gentagne målinger af identisk fordelte processer. Vi udleder Maximum Likelihood estima-

toren fra den kontinuerte-tids likelihood, beviser konsistens og asymptotisk normalitet, og studerer

den bias, der opstår fra tidsdiskretiseringen. Metoden anvendes til den statistiske analyse af et

datasæt bestående af EEG-målinger fra patienter med epilepsi.
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Summary

This thesis contains three research papers (two published, one submitted for publication), which

are summarized below and attached at the end of the thesis. Chapter 1 motivates the three

research projects and summarizes our main contribution. Chapter 2 reviews essentials of frequency

and time-frequency analysis of stochastic signals, which constitute useful background information

for methods used in the first paper. While the knowledge of facts presented in Chapter 2 is

not required for Paper 1, they do enhance the understanding of a reader who is not too familiar

with frequency- and time-frequency domain analyses. The first part of Chapter 3 motivates the

inclusion of various sources of noise in differential equation models, and discusses the challenges

for parameter estimation that come with the resulting model complexity. We provide additional

material on Paper II, including a motivation for the kinetic model from the article, a description of

parameter estimation with Monolix (2016), and individual model fits. The last section in Chapter 3

contains supplementary material on the third research article. We embed the stochastic differential

mixed effects model (SDMEM) into a rigorous formal setting, elaborate on regularity assumptions

and provide detailed proofs on asymptotic properties of the MLE.

I - Automated analysis of song structure in complex birdsongs

In the first project, we introduce an algorithm for the automated detection and clustering of

bird song syllables. The three-step method is fully self-contained and thereby enables a time-

efficient analysis of birdsongs without observer bias. Objectiveness is particularly important to

ensure comparability of results between different studies. A compelling feature of the method is

its trade-off between noise robustness on the one hand, and detail focus on the other. This makes

it particularly suitable for noisy field recordings of complex songs. The algorithm’s performance is

demonstrated on field recordings of Great Reed Warbler songs and benchmarked against human

expert analysis and other established methods.
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xii SUMMARY

II - Absorption and initial metabolism of 75Se-L-selenomethionine: a kinetic model based on

dynamic scintigraphic data

Paper II is concerned with statistical inference in pharmacokinetics. It provides a thorough statisti-

cal analysis of high-frequency imaging data in order to gain insights on absorption and metabolism

of Selenomethionine during the first two hours after oral intake. Inference is based on a three-layer

kinetic model. The first layer describes the underlying dynamics by means of a multidimensional

delay differential equation, the second accounts for bias arising from overlapping tissues in the

images, and the third layer incorporates measurement uncertainties. Subject-specific variations in

both dynamics and measurement variances are captured through the inclusion of random effects.

The model that achieved the best fit to the data was considerably simpler than compartmental

models on Selenium metabolism suggested by literature. This can partly be explained by the dif-

ferent nature of data. Previous studies merely focused on long-term dynamics, whereas the current

study aimed at gaining insights on the initial dynamics based on high-frequency measurements.

Due to the high temporal resolution, a hitherto unknown plasma plateau could be discovered,

and explained by the model. The obtained rate and delay parameters can be useful for assessing

intestinal absorption capacity or liver function in patients.

III - Inference for biomedical data using diffusion models with covariates and mixed effects

In Paper III we consider more generally the statistical inference for longitudinal biomedical data.

Some features are characteristic for many of these data sets, (i) a high sampling frequency, which

makes them very suitable for continuous-time modeling approaches, (ii) inter-subject variability

that can be explained by covariates, (iii) complex dynamics of an often multivariate data generating

process, and (iv) a substantial amount of unexplained variation (noise), which calls for models

that incorporate different types of stochasticity. These properties lead naturally to stochastic

differential mixed effects models (SDMEMs), which allow for non-linear dynamics, multivariate

states and the inclusion of covariates. We investigate likelihood-based parameter inference for this

model class. In particular, we study the asymptotic behavior of the continuous-time Maximum

Likelihood estimator theoretically and in simulations, and analyze the bias caused by its time

discretization. Hypothesis testing is discussed as well, and explored in simulations. We finally

apply the model framework to the statistical analysis of EEG data from epileptic patients.
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Chapter 1

Introduction

1.1 Bird song - What is it and why do people study it?

Bird songs are among the most fascinating sounds we hear in everyday life, and are often associated

with the anticipation of an upcoming spring. Even urban areas can be scenes for a variety of avian

vocalizations, e.g., the curring of pigeons (Columbidae) or the song of a house sparrow (Passer

domesticus) sitting on the balcony or in the garden. These vocalizations are, however, profoundly

different, even for the ornithologically untrained ear. The pigeon’s sounds are non-melodic, of

very simple structure and can hardly be called a song, whereas the sparrow pleases our ears with

much more melodic, song-like performances. The trained ear may even detect differences between

the songs of birds from the same species. But when exactly can a vocalization be called a song?

Is the curring of the pigeon a song, only a very simplistic one? Surprisingly enough, despite a

several decades long interest of researchers in avian singing, there exists, really, no clear definition

of the term song. However, a common understanding is to think about a song as a rather complex

and often melodious sequence of 50− 300ms long elements, the so-called syllables (Catchpole and

Slater, 2008). With this definition, pigeon sounds are not songs, but instead considered as simple

calls. Whereas the sparrow, the common blackbird (Turdus merula), the nightingale (Luscinia

megarhynchos), or the warblers, are examples of songbirds (Passeri), a class of birds comprising

several thousands of species, which are able to produce complex vocalizations such as songs.

Three scientific reasons for the interest in bird songs

The song’s complexity is understood as the number of different syllable types that occur in the

song, which is also referred to as the syllable repertoire. In the first part of this thesis, we investigate

1
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the syllable repertoire of the Great Reed Warbler (Acrocephalus arundinaceus, GRW for short),

one of which is shown in the left hand side of Figure 1.1. The right hand side illustrates a part of

its song with the visually clearly separated syllables. The two somewhat broader syllables in the

middle, e.g., are realizations of the same syllable type, and so are the following four syllables of

high amplitude.

Beyond the magic that humans associate with bird songs, there are (at least) three more key reasons

why researchers from all over the world engaged in investigations of complex bird vocalizations.

The first one goes almost 150 years back to Charles Darwin (1871), who postulated that the "sounds

uttered by birds offer in several respects the nearest analogy to language". In fact, modern research

confirms that he was on the right track, and this has wide-range implications. Bird song is in

structure indeed very similar to human language. Both consist of syllables which are combined to

larger entities (motives or strophes for birds, words for humans), and which themselves build a bird’s

song or a sentence. Most important, however, is that the avian language is learned by the young

bird through imitation, just like humans learn to speak by imitating their parents. Current studies

have shown that this comes with considerable behavioral, neural and genetic parallels between bird

and humans (Berwick et al., 2011; Brainard and Doupe, 2002, 2013; Elemans et al., 2015). Thus,

the songbird can be used as a model system for how humans learn and vocalize language, or more

generally, how they learn and execute any sequence of actions. The rich existing knowledge on the

neural mechanisms which drive learning and vocalization in birds can thus be used to gain a better

understanding on the corresponding mechanisms in the human brain.

Figure 1.1: The Great Reed Warbler (left) got its name from its preferred breeding habitat, the
reed beds. A section of its song is displayed in the right figure.

Another aspect that made researchers focus their attention on the study of bird songs is species
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recognition (Miller, 1997; Somervuo et al., 2006; Potamitis et al., 2014). This is useful for an

automated and objective assessment and continued monitoring of bird diversity (e.g., to examine

the quality of an ecosystem). Songs can differ considerably between species and are therefore a

good characterizing feature. Moreover, audio-based recognition techniques are especially useful in

densely vegetated areas, where difficult visual conditions make it impossible to spot and visually

identify the singing birds.

Thirdly, and at least for this thesis most importantly, there is the ecological role of the song for the

bird itself, which has since long spurred ornithologists’ interest and which builds the motivational

ground for song analysis in this thesis. During mating season, male birds spend remarkable energy

on broadcasting their songs (Miller and Kroodsma, 1996; Catchpole and Slater, 2008). The purpose

is to attract female mating partners and to defend territory. Certainly, a melodic, complex song

appears more appealing to the human ear than a repetitive sequence of a few simple calls. That this

impression can to some extend be transferred to the perceptions of female birds (even though with

a possibly different motivation) was indicated in several studies. Researchers could show that the

complexity of a bird song is positively correlated with the vocalist’s reproduction success (harem

size, number of offspring and the offspring’s survival probability) and the quality of its territory

(Catchpole, 1986; Hasselquist, 1998; Nowicki et al., 2000). Thus, a bird’s syllable repertoire size

is a helpful metric in avian studies and an objective way for the qualitative and quantitative

investigation of syllable repertoires is sought for.

Research contribution

The underlying ecological research questions for the first thesis project were investigations of how

song repertoires of GRWs differ (i) within one individual over time, (ii) between individuals of the

same population, and (iii) between individuals of different populations. The data, comprising song

recordings of GRWs from more than 30 years, has been collected by our collaborators Dennis Has-

selquist, Bengt Hansson and Maja Tarka. Despite the existence of various bird analysis tools, they

lacked one that had the resolution and noise suppression required to reliably, and objectively, anal-

yse noisy recordings of complex GRW songs. This initiated the research on a suitable automated

analysis tool, the result of which is presented in Paper I.

In this article, we suggest an algorithm which enables an objective and automated investigation

of a bird’s syllable repertoire. The algorithm comprises three steps, (i) the syllable extraction, (ii)

their representation and comparison based on selected features, and (iii) the clustering of syllables.

The extraction step was already presented in a preliminary work (Hansson-Sandsten et al., 2011),
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which was also the first literature source to investigate an SVD-based feature representation of

syllables in the ambiguity domain. We build upon their ideas in order to obtain a fully self-

contained clustering method with benchmarked and validated performance1. More specifically, we

keep the ambiguity feature space, but use a different similarity measure, and we provide a profound

investigation of the algorithm’s performance by benchmarking it against human expert analysis

and other state-of-the-art methods. We append a clustering process and compare the results to

human expert analysis, based on a data set containing more than 400 syllables. To facilitate

straightforward application for the practitioner, we provide ready-to-use code upon request.

The available data consists of field recordings of GRW songs, which are typically very noisy. This

may be due to vocalizations of neighboring birds or other animals close by, or to unfortunate weather

conditions such as wind or rain. On the other hand, the songs of GRWs are fairly complex, such

that it is not immediate to determine, whether two syllables are merely noisy realizations of the

same syllable type, or if their differences are systematic and the syllables are examples of two

different types. A good feature representation has to manage the balance of keeping characterizing

details, while disregarding unimportant syllable information. It is shown that the combination of

(a) feature selection, which is based on a noise-robust and low-dimensional syllable representation

in the Ambiguity domain, and (b) similarity assessment, which simultaneously investigates syllable

resemblance in time- and frequency dimension, succeeds in exactly that.

Possible extensions

The algorithm was only applied to song recordings from the GRW. It would be interesting to

investigate its performance for song data of other bird species. Even though our method is fully

self-contained, it does require the practitioner to calibrate a few parameters prior to analysis (such

as the number and the specific choice of tapers for the multitaper spectrogram). It is of interest

to see whether parameters that were chosen optimally for the GRW have to be adjusted to also

ensure a high performance for songs from other species.

One popular application of song analysis tools which we have not touched upon in our work is

bird species recognition. Song-based species classification is important in monitoring the state of

ecosystems, but it has also gained much popularity in leisure context as a result of the increasing

interest of people in bird watching. Literature has suggested a compelling variety of possible

1A further exploration of different syllable representations, parameter settings and similarity measures was
conducted in our later work (Sandsten et al., 2016).
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feature representations, but features derived from the Ambiguity spectrum of a syllable have not

been considered in this application area.

1.2 Inference for biomedical data

Typical characteristics of data in biomedical applications

Rapidly advancing technology has rendered massive data collection and storage inexpensive and

feasible for institutions as well as individuals. In healthcare, hospitals and medical clinics make

increasingly use of electronic devices, such as wearable sensors, smartphones, or dynamic imaging

apparatus to monitor health-related variables in patients (Xie et al., 2017). Examples of such

intensive longitudinal data (ILD) are the passive tracking of a patient’s blood pressure or glucose

level (Walls and Schafer, 2006), dynamic gamma imaging in pharmacokinetic studies (Paper II),

or long-term measurements of electrical activity in the brain (electroencephalography, EEG) on

epileptic patients (Paper III).

Since devices can easily monitor several variables simultaneously, and measure them at high fre-

quency (compared to the typical time scale of the observed system), ILD naturally lend themselves

for multidimensional, continuous-time modeling. Differential equation models have become a pop-

ular tool for describing the continuous-time dynamics of a multidimensional system. As Walls

and Schafer (2006) point out, however, those dynamics are often complex and characterized by a

considerable "variety of individual trajectories". This heterogeneity between subjects can typically

not solely be explained by covariate information. Therefore, the inclusion of random effects which

account for unexplained inter-subject variability becomes a necessity (Timms et al., 2014; Dziak

et al., 2015).

Drawbacks of ordinary differential equation models with random effects

Ordinary differential equations (ODEs) with random effects have frequently been applied to model

biomedical data, (Ribba et al., 2014; Jarne et al., 2017). Their formulation is intuitive, the ran-

dom effects capture inter-individual deviations from the population dynamics, and today’s com-

putational power renders parameter estimation feasible. Well-known applications of this model

framework are pharmacokinetic compartment models (Tornøe et al., 2004; Lavielle, 2014), which

are used to describe the flow of a substance between multiple spatially separated entities (different

organs in the human body). A drawback of ODE-based models is the deterministic nature of ODEs

themselves, which mirrors the implicit assumption that the system’s dynamics is entirely captured
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by the model equations. Biological systems are, however, incredibly complex. Their variability is

driven by the interplay of numerous internal (genetic variations, metabolic fluctuations, etc.) and

external factors (stress factors, room temperature, time of day, etc.). The bulk of them can not be

measured directly, or can not be included in the model, because it would prohibitively scale up the

model’s complexity. However, ignoring those inadequacies or uncertainties in the model structure

lead, if they are substantial, to biased estimates and false inference (Donnet et al., 2010).

Challenges of stochastic differential equation models with random effects

In those cases one can achieve a more robust estimation by replacing ODEs with stochastic dif-

ferential equations (SDEs), which account for unexplained system-intern fluctuations through the

incorporation of a stochastic term (Møller et al., 2010; Leander et al., 2014). As compared to the

vast amount of literature that exists on parameter estimation for standard SDE models, statisti-

cal inference for SDEs with random effects (so-called stochastic differential mixed effects models,

SDMEMs) has caught researchers’ attention only about a decade ago. Since their introduction,

research on SDMEMs has quickly gained momentum. This is particularly due to two factors.

The first one is application-driven. Especially in biomedicine, SDMEMs have and will continue to

have wide applicability (with examples mentioned above). They allow modeling of complex longi-

tudinal data and, at the same time, enable robust statistical inference. The other factor triggers

the theoretical and computational enthusiasts in the statistical community. Also in statistics there

is nothing like a free lunch. The certainly powerful merging of random effects and SDEs into one

single model comes with a considerable challenge for inference based on the data likelihood: its

intractability. This now has two sources. First of all, the likelihood for the SDE part, assuming

the random effects were observed, is typically unknown. But even if it was known, this likelihood

has to be marginalized over the distribution of the random effects, because the random effects are

practically not observed. The marginalization is an (often multidimensional) integral, which rarely

has a closed-form solution. This makes explicit likelihood inference impossible and leaves many re-

search opportunities for finding well-performing numerical or analytical approximation techniques.

In fact, numerous ways of tackling this challenge have been explored. In section 3.2 we provide a

short literature overview of the main approaches.

Research contribution

A substantial amount of fluctuation in biomedical data can not explicitly be explained by the

model. This calls for model frameworks which capture unexplained variability by the inclusion of



1.2. INFERENCE FOR BIOMEDICAL DATA 7

measurement noise, intrinsic stochasticity and/or unexplained subject-specific fluctuations. How-

ever, likelihood-based parameter inference in differential equation models that account for all three

noise sources is intractable, and one has to revert to numerical or model approximations. If some

of the noise sources are negligible as compared to others, models with fewer noise terms are more

tractable and can often still facilitate reliable inference.

In a pharmacological study presented in Paper II we trade model complexity against tractability

by reverting to ODE-based models. We provide a comprehensive statistical analysis of data on the

initial metabolism of 75Se-L-selenomethionine (SeMet) in humans. Unexplained data variability is

captured by the inclusion of measurement noise and random effects, where the optimal types of

measurement noise (additive versus multiplicative) and distributions of random effects are carefully

explored and selected. We also investigated various models that were previously suggested in

literature, most of which were considerably more complex. However, model selection criteria and

the spirit of Occam’s Razor let us to conclude that a fairly parsimonious, and at the same time

intuitive, model yields the best fit for the data at hand. This resulted in new insights on the

pharmacokinetic properties of SeMet in the body within the first 2h after administration.

In the third project we pursued an alternative way of model approximation, which is motivated by

the high-frequency nature of many biomedical data sets. In the framework of multidimensional SD-

MEMs with covariates, we base parameter inference on the continuous-time likelihood. In contrast

to transition densities, which are mostly unknown for SDE models, the continuous-time likelihood

is readily available via absolute continuity of measures in the space of continuous functions. The

asymptotic properties of the Maximum Likelihood estimator (MLE) (when the number of subjects

grows to infinity), and the bias that is introduced when the likelihood is discretized in time, are

studied theoretically and in simulations. The promising performance motivates the application of

this method to real data, where we provide a statistical investigation of EEG data from epileptic

patients using SDMEMs with covariates.





Chapter 2

Time-frequency analysis of signals

To assess the complexity of a bird song, its building blocks, the syllables, have to be compared

and classified. To this end, every syllable is represented by a collection of characterizing features,

which could be its duration, its frequency range, or more involved attributes (see Paper I). Syllable

comparison (and clustering) is then performed based on the selected features. The quality of any

clustering or classification algorithm therefore depends crucially on how one chooses to represent the

syllables. A good feature set separates the signal from the noise in an efficient manner, highlighting

the most important distinguishing characteristics and disregarding irrelevant information.

Features should include information on a syllable’s frequency content

A song syllable, being an auditive signal, is composed of a variety of waveforms at different frequen-

cies, which are produced in the the avian vocal organ (syrinx) by pressing air from the lungs over

vibrating membranes (Catchpole and Slater, 2008). The waveforms are therefore the elementary

units in a syllable. This indicates that a syllable is well characterized by its frequency content and

that a good feature set for song syllables should include some form of frequency information. The

frequency content, or spectrum, quantifies how much of a syllable’s variations is due to oscillations

at particular frequencies. Frequencies are usually measured in Hertz (Hz), the number of cycles

per second (s), and for a bird song they typically lie between 100 to 500 Hz (though the range

differs substantially across bird species and is usually more narrow for a specific species).

Frequencies do not carry temporal information

The standard way to represent an auditive signal is via its amplitude over time (cf. the upper two

panels in Figure 2.1). To analyze a syllable’s spectrum, it has to be Fourier transformed into the

9



10 CHAPTER 2. TIME-FREQUENCY ANALYSIS OF SIGNALS

frequency domain. Since this operation is an integration of the (exponentially weighted) syllable

signal over the whole time course, the frequency content is an inherently global property and does

not contain temporal information. In other words, it does not reveal when in time a syllable contains

a significant contribution at a particular frequency. This is illustrated in Figure 2.1. The stochastic

process displayed in the upper left panel consists of two Gaussian-envelope-type components with

frequencies 30 Hz and 100 Hz (sampled at frequency Fs = 1000 and observed during a time interval

of 1s), respectively. The upper right panel shows a signal with the same Gaussian components,

but in reversed order. The estimated spectra (obtained by a Welch periodogram, see section 2.1)

shown in the lower two panels do not reveal the different occurrence times of these two components,

because time information has been lost by applying the Fourier transform.

The frequency content of a song syllable is time-dependent

The inherent global property of a standard frequency is not an issue when the underlying signal

is stationary, i.e., when its frequency content does not change over time. However, bird songs

are not stationary, a time-varying frequency content is very common. As one may imagine, a

male bird’s song that exclusively contains syllables with time-constant spectral content has a less

advertising character than a song with more temporal variations. Where courtship and mating

success rely heavily on auditive advertisement, an inspiring complex song is therefore an advantage

in the competition for potential female mating partners. To capture the time-dependency of a syl-

lable’s spectral content, one therefore migrates from frequency representations to time-frequency

representations. These are two-dimensional transformations of the signal and can be interpreted

as time-dependent Fourier transforms. To set notations and render the concept of time-frequency

distributions more accessible, we start with a short review on spectral analysis of stationary sig-

nals in section 2.1, before diving more deeply into the field of time-frequency representations for

non-stationary signals in section 2.2.

In this thesis, we treat a signal such as a bird song as a stochastic process X = (Xt)t∈T, i.e.,

Xt is a random variable and T is an index set, usually representing time, and is commonly cho-

sen as the whole real line, a finite interval [0, T ], or a discrete set of measurement time points

{t1, . . . , tn}. The process X is called (wide-sense / second-order) stationary, if its expectation

E(Xt) does not change as a function of t ∈ T, and if the autocorrelation function (ACF) of X,

rX(t, s) = E
(
[Xt − E(Xt)] [Xs − E(Xs)]′

)
only depends on the time lag t − s, but not on the

temporal location, i.e., rX(t, s) = rX(t− s). We assume that E(Xt) = 0 whenever X is stationary.
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(a) Stochastic process with two Gaussian-
envelope-type contributions, at 30 Hz centered at
time t = 0.3s and at 100 Hz centered at t = 0.7s.

(b) Stochastic process as in 2.1(a), but with fre-
quency components in reversed order.

(c) Welch periodogram of Signal 1 (d) Welch periodogram of Signal 2

Figure 2.1: Two stochastic signals in their time representation in the upper panels and their
corresponding estimated spectra (Welch periodogram with 50% overlap and Hanning window of
length 0.25s) in the lower panels. The signals have the same frequency content, but at different
times. This is clearly visible in the time representation, but the temporal information is completely
lost in the spectral representation.
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2.1 Frequency analysis of stationary signals

The power spectrum of a stationary stochastic process

For a stationary stochastic process X = (Xt)t∈T, the variance rX(0) = E(|Xt|2) is also called the

power of X. This is the statistical variation of the process at any given point in time. If the covari-

ance function of X is integrable, it can be obtained via the integration rX(τ) =
∫∞
−∞ PX(f)ei2πfτdf ,

where

PX(f) = Fτ→f [rX(τ)] =
∫ ∞
−∞

rX(τ)e−i2πfτdτ

is the Fourier transform of rX . Since the power of X can therefore be written as rX(0) =∫∞
−∞ PX(f)df , the function PX basically describes how power of X is distributed over different

frequencies. Therefore, PX is called the power spectral density (PSD) of rX (or X). Sometimes,

PX is also simply called the spectrum. This is the quantity the frequency-domain analysis of a

signal X is interested in and aims to estimate.

The periodogram and a heuristic motivation

The periodogram is the simplest estimator of the PSD and the basis for more advanced spectral

estimators. It relies on finitely many discrete-time observations of a single realization of the signal

X. More specifically, we assume to measure X during some time interval [0, T ] at a sampling

frequency Fs = 1/∆t, where ∆t is a positive time interval. The measurement time points are

tk = k ·∆t for k = 1, . . . , n, with n = T/∆t as the total number of samples. Based on the obtained

data xk := Xtk , k = 1, . . . , n, the periodogram is defined as

P̂ per
X (f) = 1

Fsn

∣∣∣∣∣
n∑
k=1

xke−i2π
f
Fs
k

∣∣∣∣∣
2

, −Fs2 < f ≤ Fs
2 . (2.1)

The frequency resolution of the periodogram, that is, the minimum distance between two frequen-

cies required in order to be resolved by the periodogram, is 1
T = 1

n∆t . In particular, we can only

increase the resolution by measuring for a longer time (increasing T ), not by sampling more fre-

quently. To avoid aliasing (introducing false frequency content to lower frequencies), the sampling

frequency must be larger than twice the maximum frequency that is present in the signal (Lindgren

et al., 2013).

The connection of the PSD estimate (2.1) to the PSD itself might not be immediate. Therefore, and

because of the periodogram’s basic importance, we give a heuristic motivation of the periodogram

instead of just leaving the reader with its definition. To start with, note that for large T (and
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sufficiently quickly decaying rX) we can approximate PX(f) reasonably well by

PX(f) =
∫ ∞
−∞

rX(τ)e−i2πfτdτ ≈
∫ T

−T
rX(τ)e−i2πfτdτ.

This can be rewritten as

= 1
T

∫ T

−T
rX(τ)

(∫ τ

τ−T
1 dt
)
e−i2πfτdτ = 1

T

∫ T

−T

∫ τ

τ−T
rX(τ)e−i2πfτdtdτ

= 1
T

∫ T

0

∫ t

t−T
rX(τ)e−i2πfτdτdt = 1

T

∫ T

0

∫ T

0
rX(t− s)e−i2πf(t−s)dsdt.

We estimate rX(t− s) = E(XtX
′
s) by XtX

′
s and obtain the approximation

≈ 1
T

∫ T

0

∫ T

0
XtX

′
se−i2πf(t−s)dsdt

= 1
T

∣∣∣∣ ∫ T

0
Xte−i2πftdt

∣∣∣∣2 =: P̂X(f). (2.2)

P̂X(f) is a continuous-time estimate of the PSD, based on the observation of a single trajectory

during the time interval [0, T ]. The periodogram is simply the time-discretization of P̂X(f) (using
1
Fsn

= 1
T (∆t)2).

Improving the periodogram: Welch’s method and Multitapers

The periodogram suffers from two drawbacks, bias, i.e., E(P̂ per
X (f)) 6= PX(f), and a high variance.

The bias has two sources, leakage and limited resolution, and can be altered by windowing (also

called tapering). The periodogram can be rewritten as P̂ per
X (f) = 1

Fs
|
∑n
k=1 xkhke

−i2π f
Fs
k|2, with

hk = h(k∆t) and h(t) = 1√
TFs

1[0,T ](t). This operation of multiplying the data sequence by another

sequence (hk)1≤k≤n is called windowing and h is the window function (or taper). Leakage refers

to the fact that power from frequency bands with high signal power leaks into other frequency

bands. This can be addressed by replacing the rectangular window with a smoother window

function. A common choice is the Hanning window h(t) = 0.5 − 0.5 cos(2πt/T ). The resulting

PSD estimate is called windowed periodogram. However, the reduced leakage of the windowed

periodogram comes at the expense of decreased resolution. Various windows have been suggested

in literature that balance this trade-off in different ways. The variance is addressed by averaging

several periodograms, and two approaches can be distinguished. TheWelch method relies on cutting

the data into M (often overlapping) smaller segments, windowing them (for bias reduction), and

calculating windowed periodograms for every data segment. Finally, the obtained M windowed

periodograms are averaged. The segmentation, however, comes with a loss in resolution, because
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every windowed periodogram is now based on a shorter data sequence. Thus, another trade-off has

to be faced, this time between resolution (the longer the segment, the better the resolution) and

variance reduction (the shorter the segments, the more segments one obtains and thus the higher

is the variance reduction).

(a) Standard periodogram estimate. (b) Welch periodogram estimate

Figure 2.2: Comparison of spectral estimates for the signal displayed in Figure 2.1(a). The standard
periodogram (left) is more wiggly than the estimate obtained by the Welch approach (right). The
Welch periodogram was computed with a Hanning window of length 0.25s and a 50% overlap.

Like the Welch method, also the Multitaper (MT) approach (Thomson, 1982) averages windowed

periodograms. The difference is that every windowed periodogram of the MT estimate (i) relies on

the entire data sequence, and (ii) has its own taper. As orthogonal tapers give maximal variance

reduction, the tapers are designed to be orthogonal while reducing bias. Popular multitapers are

the Slepian sequences (Slepian and Pollak, 1961) or Hermite windows.

A more detailed review on the PSD and its non-parametric (via the Welch estimator) and para-

metric (via autoregressive modeling) estimation can be found in our work Stucke et al. (2015),

where we apply spectral analysis to heart rate variability data from horses.

2.2 Time-frequency analysis of non-stationary signals

A song syllable is a non-stationary signal, but it can be considered stationary on a short time scale.

The time-frequency approach is tailor-made for this type of locally stationary (quasi-stationary)

data. It transforms the signal into a two-dimensional representation, with one temporal dimension

and the other dimension being related to frequency. Thereby, one obtains a time-dependent repre-

sentation of a signal’s frequency content. In this section, we will cover two types of time-frequency
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representations, the spectrogram and the Ambiguity spectrum. The spectrogram is a function of

time and frequency, and can be seen as a time-dependent periodogram. Since its introduction to

bird songs in the 50’s, it has become one of the most widely used tools for bird song analysis (Has-

selquist et al., 1996; Tchernichovski et al., 2004; Wȩgrzyn and Leniowski, 2010). On the contrary,

the Ambiguity spectrum, which has its origin and name from a radar context (Woodward, 1953),

has first been applied to bird songs only recently (Hansson-Sandsten et al., 2011). Being a function

of time- and frequency-lags, it has inherently different properties than the spectrogram and proves

to be very well-suited for syllable characterizations. Despite being rather different in nature, the

spectrogram and the Ambiguity spectrum are closely connected via Fourier transformations.

Spectrogram

The spectrogram is an extension of the periodogram to non-stationary processes and relies on

the reasoning that short segments of a non-stationary signal can be considered stationary. In

continuous time, it is defined as

P̂X(t, f) =
∣∣∣∣ ∫ ∞
−∞

Xsg(t− s)e−i2πfsds
∣∣∣∣2. (2.3)

The window function g is centered at 0, and acts as a sliding window, extracting shorter segments

Figure 2.3: Three representations of a signal. The upper panel shows the standard time-domain
representation. Its spectrogram (calculated using a Hanning window of length 0.25s) is displayed
in the lower left panel, clearly indicating the location of frequency content in the time dimension.
The lower right plot shows the Welch periodogram estimate, which does not reveal temporal
information.

from the process that are stationary. In that way, the spectrogram can really be seen as a sliding
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(in time t) extension of P̂X(f) in (2.2) to non-stationary processes. The length of the window g

is chosen such that the windowed data segments are stationary. However, a trade-off has to be

found between achieving a suitable resolution in frequency (long window), assuring stationarity of

the windowed data (short window), and obtaining a sufficient resolution in time (short window).

The spectrogram reveals the "local" spectrum of a non-stationary signal at any given time t, and

can thereby provide information on temporal changes in a signal’s frequency content. This is

illustrated in Figure 2.3 by means of a stochastic signal with three time-limited Gaussian-envelope

components, two of them (with frequencies 30 and 100 Hz, respectively) are centered at time 0.3s,

and one 100 Hz frequency component is centered at time 0.7s. The upper panel shows the signal’s

time-representation, the lower left the spectrogram1 and the lower right the Welch periodogram.

While the spectrogram clearly reveals the three components and their time of occurrence, the

Welch estimate is not able to provide temporal information.

Being locally like a periodogram, the (time-discretized) spectrogram suffers from the same draw-

backs as the periodogram, which can be addressed in the previously presented manners (tapering,

averaging). In Paper I, we work with spectrograms for which bias and variance are reduced by the

MT approach. In Figure 2.4 we illustrate the effect of the number of MTs on the resulting MT

spectrogram. The second panel displays the spectrogram obtained from using a single Hermite

window. The third plot shows the MT spectrogram with two Hermite tapers and the bottom panel

illustrates an MT spectrogram with four Hermite tapers. The resolution in time- and frequency

domain is much better with fewer tapers. This gain comes, however, at the expense of a larger

variance.

Ambiguity spectrum

The Ambiguity spectrum2 (AS) is at the heart of our chosen feature representation for syllables

and is therefore a key ingredient to the automated bird song analysis method. It is defined as the

Fourier transform (in t) of the centered autocorrelation,

AX(ν, τ) =
∫ ∞
−∞

rX(t− τ
2 , t+ τ

2 )e−i2πνtdt. (2.4)

The argument ν is the Doppler lag and τ is the time lag. Characteristic for the AS is the invariance

(of its absolute value) to time- and frequency shifts of the signal. This is illustrated in Figure 2.5,

where we consider three Gaussian-envelope-type stochastic signals (first column). The first one

1Unless plotted otherwise, the colorbar in this figure is representative for all subsequent spectrogram figures.
2The term "Ambiguity" in this context has its justification from a radar context in Woodward (1953).
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Figure 2.4: Comparison of spectral estimates for the random signal displayed in the top panel. The
second panel shows a spectrogram with one Hermite taper. Below there is the MT spectrogram
with two Hermite windows. In the bottom we show an MT spectrogram with four Hermite windows.
The resolution in time and frequency gets worse with the use of more tapers.

serves as a reference. It has a spectral component at f = 30 Hz and is centered at t = 0.3s. The

second signal (middle) is obtained from the reference process by a frequency shift (from f = 30

Hz to f = 100 Hz). The signal displayed at the bottom is generated by time-shifting the reference

process. The spectrogram (middle column) uncovers clearly the time-frequency locations of the

signals’ spectral contents. The absolute value of the AS in the right column is the same for all

three signals.

More generally, one can consider the filtered Ambiguity spectrum (Boashash, 2003), which is given

by Afilt
X (ν, τ) = AX(ν, τ) ·φ(ν, τ). The Ambiguity kernel φ(ν, τ) is designed to filter out crossterms.

Crossterms are an unwanted artefact, which appear when a signal has more than one frequency

component. Since they use to appear far from the origin (ν, τ) = (0, 0), they can be suppressed
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Figure 2.5: The left column displays a reference stochastic process (upper), its frequency shifted
version (middle), and its time-shifted version. The middle column shows the spectra estimated by
the spectrogram. The right column illustrates the absolute values of the Ambiguity spectra, which
are the same for all three signals.

by multiplication with a kernel that is zero for larger values of ν and τ . The effect of filtering is

illustrated in Figure 2.6. The stochastic signal displayed in the upper left has frequency components

at t = 0.3s and t = 0.7s. The lower left panel shows the non-filtered AS, with the desired central

term in the origin and the two crossterms on the diagonal. These are eliminated by filtering with

the kernel, as illustrated in the lower right panel of Figure 2.6 (with the kernel being displayed in

the upper right).
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Figure 2.6: Comparison of the (absolute values of the) non-filtered and the filtered AS of a stochastic
process shown in the upper left panel. It is the same signal as displayed in Figure 2.1(a), consisting
of two Gaussian components. The second component is a time- and frequency-shifted version of
the first. The filtered AS in the lower right panel is obtained by multiplication of the non-filtered
AS, shown in the lower left, with the Ambiguity kernel as displayed in upper right plot.





Chapter 3

Deterministic and stochastic differential

equation models with random effects

This chapter provides background information on likelihood-based inference in deterministic and

stochastic differential equation models with random effects for biomedical applications. We start in

section 3.1 by reviewing the three sources of noise that are prevalent in biomedical data and discuss

how they can be accounted for in the model structure. In section 3.2 we discuss the gains and costs

of including different types of random fluctuations in the model, and provide a literature overview

on how arising challenges have been addressed. Section 3.3 presents additional information on

Paper II, where we motivate the kinetic model, and give some background information on model

fitting in Monolix (2016). Section 3.4 embeds the model framework treated in Paper III into a

more formal setting and provides a detailed proof on asymptotic properties of the MLE for affine

mixed effects, and investigates discretization bias in a simulation study for a non-Lipschitz model.

3.1 Random fluctuations in biomedical data has three main sources

Variability is at the heart of biological systems. It exists on all scales, from the molecular level, over

cell processes to organisms and populations, and arises from the complex interplay of numerous

system-intern and extern (environmental) factors. Due to the complexity, it is impossible to isolate

and explicitly explain all sources of variability. The residual fluctuations in the data, that is,

the variability which is not explained by a mechanistic model, are called noise. In biomedical

applications, measurements are often conducted over time and on several individuals. This design

gives rise to three main sources of noise.

21
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Measurement noise, inter-subject variability and intrinsic noise

First of all, there is always some amount of measurement noise. This can be caused by improper

measurement procedures, changing experimental conditions or observer bias. Measurement noise

blurs the signal without changing its dynamics and can be accounted for by appending an additive

or multiplicative error term to the model structure.

The second source is the inter-subject fluctuation, that is, the unexplained systematic differences of

data dynamics between subjects. Individuals share an overall model structure, or base model, but

the values of the model parameters differ between subjects. Parts of that inter-subject variability

can generally be captured by including subject-specific covariate information in the model, such as

adjustments for gender, age, body weight or treatment group. However, due to the sheer complexity

of real systems, a certain amount of unexplained inter-subject variations will remain. The common

way to account for them is by imposing random effects on some (or all) parameters. Models that

contain both fixed (parameters that are the same across subjects) and random effects are known

as mixed-effects models (Sheiner and Beal, 1980; Laird and Ware, 1982; Pinheiro and Bates, 2006).

The inference goal is generally the estimation of the fixed parameters (by the distribution mean,

mode or median), and the quantification of the extent of random fluctuations (by the variance of

the random effects’ distribution) using the whole data set. The underlying reasoning is that every

subject contributes valuable information on the common base model, and by pooling the data

one utilizes the entire information in the data to infer the base model (the fixed effects) and to

quantify the deviations from it. This approach leads to increased power and robustness of statistical

procedures. The challenge in mixed-effects models is that explicit likelihood-based inference is not

feasible, because the data likelihood is not explicitly available and has to be approximated.

Lastly, there is the intrinsic noise, the unexplained variability within the system itself, such as

fluctuations in blood pressure, metabolic processes, or varying stress levels. This type of noise

can be substantial in biomedical data, because the underlying data generating process is often

too complex to be modeled exactly or is not understood well enough. Such internal random

fluctuations can be accounted for by including stochasticity in the dynamical model itself. The

dynamics of biological data can often be described by systems of differential equations, and for

this the mathematical toolbox offers two kinds of models, (i) the deterministic ordinary differential

equations (ODEs) and (ii) their stochastic extension, the stochastic differential equations (SDEs).

The driving noise component in SDEs explicitly represents intrinsic system noise and accounts

for prevalent model uncertainty or misspecification. As for mixed-effects models, exact maximum
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likelihood estimation of parameters is not possible in SDE models (with few exceptions), because

the state likelihood is a product of transition densities which are generally unknown. Therefore,

also here approximation methods, analytical or numerical, are asked for.

Example 3.1 (The three sources of noise in the data from Paper II).

We exemplify the three types of noise by means of the data set described in Paper II (see also section

3.3), which also is illustrated in Figure 3.1 on page 28. The first to be noticed is that the trajectories

show a fairly erratic behavior. This may reflect both measurement noise, e.g., caused by movements

of the subjects while images were taken, and system noise, such as unexplained fluctuations in

metabolic processes or breathing rhythm. Another striking observation is the common pattern, i.e.,

the common base dynamics, that all subjects seem to share. For instance, the counts for the liver

compartment have a similar pattern across all participants, with an initial monotone increase up

to about 30min after administration followed by a monotone, somewhat flatter decrease. However,

the trajectories still differ quite substantially across subjects. This inter-subject variability may be

caused (i) externally, by differences in the subjects’ gamma ray attenuations which have not been

taken into account properly, or improper identification of the compartments, or (ii) internally,

by differences in the subjects’ metabolisms, due to factors such as diet, age, weight, or genetic

differences.

3.2 Maximum Likelihood inference in ODE and SDE models with

random effects

The Maximum Likelihood Estimator (MLE) has a number of desirable properties, such as consis-

tency, asymptotic normality and efficiency. However, as appealing the properties of the MLE may

be, it comes with the challenge of an often intractable likelihood.

Balancing model complexity and tractability

When modeling biomedical data, one may easily be tempted to write down a complex system of

differential equations, incorporating subject-specific covariate information and, just to be on the

safe side, including all possible noise sources, which explain everything that is left unexplained.

One may then be carried away by how well the model provides for all contingencies of the real

world. While looking good on paper, the model’s complexity leads to likelihood intractability and

parameter estimation has to be based on (sometimes several) approximations. The sheer appeal of
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a complex model which captures "everything", however, bears the pitfall of an overoptimistic faith

in the results and subsequent false inference. A reasonable trade-off has to be found between a

parsimonious model with reliable and efficient estimation procedures and a complex model, which

may capture the data dynamics better, but relies on crude approximations or heavy computations

for parameter inference.

When a data set contains a substantial amount of unexplained variability of various types, it

undoubtedly is essential to explicitly include these different noise sources. For instance, prevalent

intrinsic noise in systems with non-linear dynamics can change the qualitative behavior of the

deterministic patterns significantly. In such cases, modeling the dynamics with a deterministic

ODE can lead to biased estimates and false inference (Donnet et al., 2010; Bachar et al., 2012;

Leander et al., 2014). However, probably more often than not, one source of noise can be assumed

to be negligible as compared to others. This observation justifies a simpler model, which dispenses

with crude approximations or high computational costs while still allowing for reliable inference.

Illustration: The likelihood in SDMEMs is intractable

For illustration, assume the data generating process Xi for subject i is modeled by a system of dif-

ferential equations and all three sources of noise are included in the model. We take measurements

for subject i at time points tk = k
n for k = 1, . . . , n, and collect all observations in the vector y.

More specifically, we consider the model

dXi
t = F i(t,Xi

t , µ, φ
i)dt+ Σ(t,Xi

t)dW i
t , 0 ≤ t ≤ 1, Xi

0 = xi0,

yik = gi(Xi
tk
, εik), k = 1, . . . , n.

The dynamics of the underlying signal Xi is thus described by an SDMEM with fixed effect µ,

random effect φi and a Wiener processW i = (W i
t )t∈R to model the intrinsic (subject-specific) noise

(see section 3.4 for a more formal description of an SDMEM). At time tk we observe yik, which is

a function of the underlying signal Xi
tk

and measurement noise εik (if g(x, ε) = x, we observe the

state directly). The distributions of φi and εik are parameterized by ϑ and ξ, respectively, and we

assume independence of all noise variables. The target of statistical inference is the estimation of

θ = (µ, ϑ, ξ). While the postulated model may in fact account for many contingencies of reality,

inference for θ is challenging. The reason is the two-layer intractability of the likelihood

p(y|θ) =
N∏
i=1

∫ [ n∏
k=1

∫
pi(yik|Xi

tk
, φi, θ)pi(Xi

tk
|Xi

tk−1
, φi, θ)dXi

tk

]
p(φi|θ)dφi.
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In its inner layer, we find the transition density of the state pi(Xi
tk
|Xi

tk−1
, φi, θ), which is unknown

for most SDE models. But even if it was known, the integrals over state and random effects in the

outer layer are often high-dimensional and lack a closed-form solution.

How likelihood intractability in SDMEMs has been addressed in literature

The unavailability of the transition density in SDE models has spurred much research over the last

decades, and neat overviews are Sørensen (2004) and Phillips and Yu (2009). Poulsen (1999) obtains

approximate transition densities by employing the result that transition densities are given as

solutions to the Kolmogorov forward equations, which are solved numerically. If time steps between

observations are small, the transition density is approximately Gaussian. This idea underlies the

approaches of Pedersen (1995), Elerian et al. (2001), Eraker (2001), Durham and Gallant (2002)

and Golightly and Wilkinson (2008), who use an Euler-Maruyama approximation and combine it

with simulation-based data augmentation techniques to ensure closely spaced observation times.

Even though this approximation can, in theory, be made arbitrarily exact, it has a fixed discrete-

time bias. This drawback is overcome by the so-called exact simulation-based methods considered

by Beskos et al. (2006) and Sermaidis et al. (2013). A simulation-free approach is proposed by

Aït-Sahalia (2002), who approximates the transition density by a closed-form Hermite expansion.

If high-frequency observations are available, one can avoid the transition density altogether by

reverting to the continuous-time likelihood (Phillips and Yu, 2009). Asymptotic properties for the

resulting estimator have been studied by Yoshida (1992) and Florens-Zmirou (1989).

Several of the methods above have been applied to the SDMEM context. In models with observation

noise, the state process Xi is unobserved and has to be estimated. One approach for dealing with

latent random variables in maximum-likelihood estimation is the expectation-maximization (EM)

algorithm (Dempster et al., 1977). To avoid the marginalization over state and random effects,

Donnet and Samson (2008) employ the stochastic approximation EM (SAEM) algorithm (Delyon

et al., 1999), a stochastic approximation extension of the EM when the E-step is intractable. An

alternative and popular approach for recovering the hidden state in SDMEMs with measurement

noise is the extended Kalman filter (EKF) (Tornøe et al., 2005; Overgaard et al., 2005; Mortensen

et al., 2007; Klim et al., 2009; Delattre and Lavielle, 2013; Leander et al., 2014, 2015). To avoid

marginalization over the random effects, Delattre and Lavielle (2013) couple the EKF with the

SAEM. A drawback of the EKF is, however, that no theoretical results on its convergence properties

are available.

The inclusion of measurement noise adds an extra layer of latency, and thus complexity, to the
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model, because it implies that the state itself is unobserved. However, when the measurement

noise is small compared to the system noise, it may be excluded from the model for the sake of

improved tractability. Nevertheless, key challenges remain: the marginalization over often high-

dimensional random effects and the lack of an analytical expression for the transition density. In

an SDMEM without measurement noise, Picchini et al. (2010) approximate the transition density

with Hermite polynomials (Aït-Sahalia, 2002) and the integral over the random effects by Gaussian

quadrature. In a subsequent work, they replaced the Gaussian quadrature approach by Laplace

approximation to handle multidimensional random effects more efficiently (Picchini and Ditlevsen,

2011). Random effects in the diffusion coefficient are studied by Delattre et al. (2015). They derive

the asymptotic normality of the MLE when random effects have an inverse Gamma distribution,

given the sampling interval and the number of subjects grow beyond bounds. Delattre et al. (2013)

place their work in the frame of high-frequency observations by investigating parameter estimation

based on the continuous-time likelihood. For univariate SDMEMs with linear Gaussian mixed

effects, they derive the closed-form expression for the continuous-time likelihood, investigate the

asymptotic properties of the MLE and quantify the discrete-time bias. Our work in Paper III was

motivated by their approach and extends it to a multivariate state process and the inclusion of

covariates.

3.3 Supplementary material for Paper II

In Paper II, we use an ODE-based multi-compartment model with random effects and measurement

noise for the statistical analysis of pharmacokinetic data. This section presents additional material

for the published work, consisting of a heuristic motivation for the chosen model and a short

documentation of the estimation process with the software Monolix (2016).

3.3.1 Modeling the data dynamics

Compartmental models

Pharmacokinetics (PK) is the study of drug absorption, distribution and elimination (i.e., metabolism

and excretion). An important model class in PK are compartmental models. They describe the

concentration of a drug in different compartments of the human body (plasma, or organs such as

liver, heart, kidneys) and how it changes over time. The change is characterized by two factors,

(i) the order of elimination (zero order, first order, etc.), i.e., in which manner the drug leaves the

compartment, and (ii) the elimination (outflow) rate. Most drug elimination processes follow first-
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order kinetics. That is, the amount of drug leaving a compartment is proportional to the amount

of drug present in that compartment, at that time. Because elimination rates usually depend on a

large number of factors (such as body temperature, blood pressure, genetic disposition), many of

which can not be identified or modeled, random effects are standard ingredients in PK models.

The data and dynamical model from Paper II

In the study considered in Paper II, eight participants were asked to swallow a liquid containing

radio-labeled 75Se-L-selenomethionine (SeMet), after which its amount in stomach, intestine and

liver was traced for 2h by dynamic camera imaging. On the obtained images, the regions of interest

(stomach, intestine, liver) were manually determined by the physicians. The pixels within each of

the three compartments were transformed into counts corresponding to the SeMet levels. Addition-

ally, repeated blood samples were taken to trace SeMet counts (transformed from concentration)

in the plasma. Figure 3.1 shows the (normalized) data, with colors encoding different subjects.

Let XS(t), XI(t), XL(t), XP (t) denote the underlying SeMet levels in stomach, intestine, liver and

plasma, respectively, given in counts. The mathematical model for their dynamics is (cf. Table 1

in Paper II)

XS(t) = kake
Cl(ka − ke)

(
e−ket − e−kat

)
d

dt
XI(t) = k1XS(t)− k3XI(t)

d

dt
XL(t) = k3XI(t)− k4XL(t)

d

dt
XP (t) = k2XS(t) + k4XL(t− τ),

(3.1)

with k1, . . . , k4 being unknown rate parameters and τ an unknown delay.

Heuristic motivation of the model kinetics

We provide a short motivation for the dynamics in (3.1). The statistical model in the article

consists of two additional layers, one observational stage, which accounts for overlapping tissues,

and one that represents the measurement error model. These are further described in the article

and not revisited here.

We first motivate the equation for XS . In the study, every subject was asked to swallow a liquid

containing 29 µg of SeMet, which corresponds to an unknown amount D of counts (the units of

the data). We take a simplistic view and imagine that at the start of the experiment, t = 0,

the whole liquid is located in the mouth and reaches the stomach directly after swallowing. Let
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Figure 3.1: The measured data for all participating subjects, with different colors encoding different
subjects. The displayed counts were normalized by the total amount of counts present in the body
(see Paper II for more information).

XM (t) be the counts of SeMet in the mouth at time t, and ka the rate by which they leave the

mouth and enter the stomach compartment. Then we have the dynamics d
dtXM (t) = −kaXM (t)

with XM (0) = D, or XM (t) = D e−kat. We write XS(t) for the counts of SeMet which are

present in the stomach at time t and assume that SeMet leaves the stomach at rate ke. Then

XS is governed by the differential equation d
dtXS(t) = kaXM (t)− keXS(t), which has the solution

XS(t) = ka·D
ka−ke

[
e−ket − e−kat

]
(assuming XS(0) = 0). The variable Cl in model system (3.1)

represents the proportion of dose counts in the stomach that is cleared per hour, Cl = ke/D, such

that XS(t) = ka·ke
Cl(ka−ke)

[
e−ket − e−kat

]
. Note that standard PK models are typically formulated in

terms of drug concentrations, instead of counts. In that case, D is the total amount of administered

dose (29 µg), and Cl is the typical clearance constant, that is, the rate of drug elimination divided by

the drug concentration in the stomach compartment, Cl = ke/D/V (with V being the compartment

volume).

The plots in Figure 3.1 reveal that the SeMet level in the stomach reaches its peak immediately

after intake. SeMet counts in the intestine compartment do so with a few minutes delay and those
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in liver peak thereafter, around 30min after administration. This observation is what motivates

the cascade-like structure of the proposed model dynamics in (3.1). The plasma compartment is

particularly interesting and the delay in (3.1) is crucial for capturing the dynamics in plasma. We

observe an initial increase in SeMet levels in plasma during the first 20min, followed by a 30min

period of plateauing behavior, after which SeMet levels increase again and steadily. An inflow

from the stomach compartment can explain not only the initial increase, but also the plateau,

which occurs right about the time when SeMet levels in the stomach have decreased to zero. The

post-plateau increase in the plasma data requires therefore an additional source of SeMet inflow,

here modeled by a delayed (estimated to ca. 40min) flow from the liver compartment.

It is noteworthy that this surprisingly simple model provides the best fit among a vast amount of

explored models. As pointed out in the article, previous studies have suggested far more complex

models. For an illustration, Figure 3.2 shows one version of the models in existing literature. This is

an adaptation of the Selenite model from Patterson and Zech (1992, Figure 4), where compartments

explicitly related to time courses long after 2h (the duration of the study) were omitted. For more

information on explored models, how those studies compare to ours, and the conclusions that can

be drawn, we kindly refer to our article.

Gastric
input

Stomach I1 I2 I3

E
bile

liver P1 P2

Figure 3.2: Existing literature suggests more complex models. This plot illustrates one of them,
adapted to dynamics during the first few hours after drug administration.

3.3.2 Estimation of model parameters with Monolix

For a comprehensive treatment of the practical and theoretical aspects regarding inference with

Monolix for PK models, we refer to the book of Lavielle (2014), research articles referenced therein
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and to the Monolix website1. To assist readers in smoothly getting started with similar models,

we give a short description of the key ingredients.

The underlying state dynamics, that is, the hidden and the observational layers of the article

model (cf. Table 1 in Paper II) can be specified in Monolix by loading the .txt-file shown in

Figure 3.3. The measurement error model can easily be chosen in the Monolix GUI. Here one can

also indicate which parameters should be equipped with random effects and choose their probability

distribution. Because of the substantial (unexplained) variations in the data dynamics between

INPUT:
parameter = {a_I, a_L, ka, ke, Cl, k1, k2, k3, k4, tau}

EQUATION:
fL = 1/10 ; fraction of hidden liver out of whole liver
fI = 1/10 ; fraction of hidden intestine out of whole intestine
fPl_S = 1/100 ; fraction of plasma that falls into stomach
fPl_L = 1/10 ; fraction of plasma that falls into liver (hidden & non-hidden)
fPl_I = 1/100 ; fraction of plasma that falls into intestine (hidden & non-hidden)

t0 = 0.00833 ; unit: hours (first measurement taken after 30sec)
XS = ka*ke / (Cl*(ka-ke))*(exp(-ke*t) - exp(-ka*t))
ddt_XI = k1*XS - k3*XI
ddt_XL = k3*XI - k4*XL
ddt_Pl = k2*XS + k4*delay(XL, tau)

S = XS + fL*XL + fI* XI + fPl_S*Pl
L = a_L + (1-fL)*(XL + fPl_L*Pl)
I = a_I + (1-fI)*(XI + fPl_I*Pl)

OUTPUT:
output = {L, Pl, I, S}

Figure 3.3: Monolix model file that specifies the (hidden layer) of the delay differential equation
model equations (hidden stage and observational stage) from Paper II.

participants, parameters of the state dynamics are allowed to vary across subjects and therefore

equipped with random effects. We exemplify the random effects modeling and estimation procedure

by means of the absorption parameter ka.

Individual parameters are modeled as transformed Gaussians

Let ψika , i = 1, . . . , N, denote the subject-specific absorption parameters, which are independent

and identically distributed. In Monolix, it is assumed that a (strictly monotone) transformation

of ψika is Gaussian distributed, φika := h(ψika) ∼ N (µpopka
, σ2
ka

). The user specifies the distribution
1http://monolix.lixoft.com/

http://monolix.lixoft.com/
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of the individual parameters by providing the inverse function h−1 to Monolix. In the article,

we assumed a log-normal distribution for ψika to ensure its positivity. In that case, h−1 is the

exponential function.

Population parameters are estimated with SAEM

Focusing on ka, the target of inference is the estimation of the population parameter θka =

(µpopka
, σka) by Maximum Likelihood. This is achieved with the SAEM algorithm. Being an itera-

tive algorithm, initial values have to be provided, which is easily done in the GUI. After estimation

of θka the MLE for the population rate parameter kpopa is obtained by k̂popa = h−1(µ̂popka
). One can

show that h−1(µpopka
) is the median of the distribution of ψika .

The SAEM version which is implemented in Monolix has two stages (simulated annealing), in

order to increase the chances of converging to a global maximum. The fast stage, comprising K1

iterations, is characterized by erratic estimate trajectories and is used to converge quickly into the

area of interest. In the second stage with K2 iterations, the convergence behavior is much more

deterministic. The traces of parameter estimates for the SAEM are plotted and saved in a file

saem.png (the algorithm convergence graph), and the vector of population estimates together with

their covariance structure (given by the estimated Fisher information) are saved in a file named

pop_parameters.txt.

Some caution is recommended for the interpretation of the standard deviations of the φi. Since

this is the standard deviation on the transformed scale, it is not immediate how it translates to a

variation measure on the scale of ψika . This, however, is important for quantifying how strongly

parameters vary across subjects. For log-normal distributions, as in the case of ψika , the coefficient

of variation satisfies CV =
√
eσ

2
ka − 1. If σ2

ka
is small, one has σka ≈ CV , such that σka can indeed

be used to give a reasonable sense of variation.

The estimated standard deviations of all random effects from the article model are shown in Table

3.1 (excluded from the actual article). In an initial fit, the standard deviation corresponding to ψik4

was not significantly different from 0. Therefore, the model was re-fitted with k4 as fixed effect.

The standard deviations corresponding to the other parameters are significantly larger than zero,

justifying the inclusion of random effects for them.
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σaI σaL σka σke σCl σk1 σk2 σk3 σk4 στ
estimate 0.184 1.582 0.814 0.138 0.286 0.307 0.199 0.490 0 0.138
sd 0.046 0.481 0.220 0.036 0.072 0.079 0.056 0.125 0 0.038

Table 3.1: Estimated standard deviations (and their standard deviations) of the transformed indi-
vidual parameters φi = h(ψi).

Individual parameters are estimated with the Metropolis-Hastings algorithm

After an estimate of θka has been obtained, the individual parameters are estimated with the

Metropolis-Hastings (MH) algorithm. For every subject, the MH generates a Markov chain {ψi,(m)
ka

,m =

1, . . . ,M}, whose stationary distribution is the conditional distribution p(ψika |y
i; θ̂ka). The indi-

vidual parameter is then estimated by the conditional mean ψ̂i,mean
ka

= 1
M

∑M
m=1 ψ

i,(m)
ka

or the

conditional mode ψ̂i,mode
ka

= arg maxψi
ka
p(ψika |y

i, θ̂ka) of that distribution. By default, Monolix

uses the conditional mode.

Figures 3.4 - 3.7 display the observed data (solid green) for every subject and compartment. The

dotted black lines represent the population fits, i.e., the values obtained when setting the random

effects φi to zero. The individual fits are obtained by using the estimated individual parameters

ψ̂i in the model and are plotted as dashed red lines. It is evident that by allowing parameters to

vary across individuals, the subject-specific dynamics are much better captured.
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Figure 3.4: Stomach: Observed data (solid green), individual fits (dashed red) and the population
fit (dotted black).
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Figure 3.5: Intestine: Observed data (solid green), individual fits (dashed red) and the population
fit (dotted black).
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Figure 3.6: Liver: Observed data (solid green), individual fits (dashed red) and the population fit
(dotted black).
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Figure 3.7: Plasma: Observed data (solid green), individual fits (dashed red) and the population
fit (dotted black).
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3.4 Supplementary material for Paper III

This section embeds the SDMEM framework considered in Paper III into a rigid theoretical setting.

We give details on regularity assumptions for the model and provide detailed proofs for asymptotic

properties of the MLE when observations are identically distributed and the model is affine in the

mixed effects (cf. Section 2.2 in Paper III). This is an extension of the setting considered in Delattre

et al. (2013). The proofs, which were excluded from the paper because of fairly cumbersome, but

still standard, derivations, follow their ideas. To enable a more convenient reading, we restate

the theorems from the article and apologize for some resulting redundancy. The last part of this

section is devoted to auxiliary theorems. Some results stated there are adjustments of established

theorems to the particular setting considered here and undermined by proofs, while others are

well-known results that are presented only for convenience of the reader and left without proof.

Notation We use the symbol ‖·‖ for the Euclidean vector norm. The d × d unity matrix is

written as Id. For a (r ×m) matrix A we write A′ for its transpose. If A is a square matrix, we

write tr(A) for its trace and det(A) for its determinant, and if A is invertible, A−1 denotes the

inverse of A. We will use J·K to denote a matrix norm that is (i) sub-multiplicative, i.e., for any two

square matrices A1, A2 of same dimension one has JA1A2K ≤ JA1KJA2K, and (ii) compatible with

the Euclidean norm, i.e., ‖Ax‖ ≤ JAK ‖x‖. An example is the spectral norm, which is the matrix

norm induced by the Euclidean norm, and is defined as JAKS :=
√

max{λ1, . . . , λm; }, where the

λi in this definition are the eigenvalues of A′A.

3.4.1 Formal definition of SDMEMs

Let Θ ⊂ Rq be a given parameter set, which we assume to be convex and compact. We consider

estimation of the population parameter θ = (µ, ϑ) ∈ Θ for r-dimensional SDMEMs based on data

from N independent subjects. In this kind of models it is assumed that the data-generating process

for individual i is the solution to an SDE with unknown p-dimensional fixed effect µ and unobserved

d-dimensional random effect φi,

dXi
t = F i(t,Xi

t , µ, φ
i)dt+ Σ(t,Xi

t)dW i
t , 0 ≤ t ≤ T i, Xi

0 = xi0. (3.2)

More formally, we assume that (Ω,F) is a measure space, on which a family of probability measures

P = {Pθ; θ ∈ Θ} is defined, which is dominated by the probability measure P. The independent r-

dimensional Wiener processesW i = (W i
t )t≥0 are defined on (Ω,F , (Ft)t≥0,P), with Ft being the P-

completion of the σ-algebra generated by the (W i
s)0≤s≤t and φi, i = 1, . . . , N . The initial conditions
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xi0 ∈ Rr and the positive time horizons T i are known, and we set T = max{T i, i = 1, . . . , N}. The

random effects φi are independent and identically distributed (i.i.d.) according to a Lebesgue

density g(·;ϑ), with unknown ϑ ∈ Rq−p, and are independent of the driving Wiener processes. The

continuous drift functions F i : [0, T ]×Rr+p+d → Rr and the diffusion coefficient Σ : [0, T ]×Rr → Rr

are known and measurable, and Σ(t, x) is invertible for all 0 ≤ t ≤ T, x ∈ Rr. By allowing the F i

to vary across individuals, we include the case of not necessarily identically distributed Xi.

The target of statistical inference is Maximum Likelihood estimation of θ from observations of

Xi at time points 0 ≤ ti0 < ti1 < . . . < tini ≤ T i, i = 1, . . . , N . We address the inference task

from a continuous-time angle, through studying the MLE derived from the continuous-time likeli-

hood. This is motivated by the high-frequency nature of many data sets that arise in biomedical

applications, cf. section 1.2.

Remark 3.2. A useful interpretation of the subject-specific drift functions in the SDMEM frame-

work can be obtained when they are written in the form F i(t,Xi
t , µ, φ

i) = F (Di
t, X

i
t , µ, φ

i), with

measurable, deterministic functions Di : [0, T ]→ Rs and F : Rs+r+d+p → Rr. The function Di can

then be interpreted as a covariate for subject i.

3.4.2 Regularity assumptions for SDMEMs

We need to impose a few regularity assumptions to ensure that the inference problem is well-defined.

For better readability, we omit the index i, but it is assumed that the subsequent assumptions hold

for all subjects. Under a solution to the SDE

dXt = F (t,Xt, µ, φ)dt+ Σ(t,Xt)dWt, 0 ≤ t ≤ T, X0 = x0, (3.3)

we understand an (Ft)t-adapted, continuous process X = (Xt)t≥0, which is of the form

Xt = x0 +
∫ t

0
F (s,Xs, µ, φ)ds+

∫ t

0
Σ(s,Xs)dWs,

and has for all 0 ≤ t ≤ T the property P
(∫ t

0 ‖F (s,Xs, µ, φ)‖+ JΣ(s,Xs)K2ds <∞
)

= 1. Occa-

sionally, we will also consider an SDE where we assume that we actually have observed the value

of the random effect, which we may call ϕ. That is, we will consider a solution to

dXϕ
t = F (t,Xϕ

t , µ, ϕ)dt+ Σ(t,Xϕ
t )dWt, 0 ≤ t ≤ T, Xϕ

0 = x0. (3.4)

We now state two kinds of assumptions, both of which guarantee the existence of a unique solution

to (3.3) (and to (3.4)), which is so well-behaved that certain Radon-Nikodym densities exist. In the
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following, generic vectors in Rr,Rp,Rd are denoted by x, µ and ϕ, respectively, and we let µ0, ϕ0

be fixed.

(A) (i) φ has finite moments of any order and there is a positive constant K (that may depend

on µ) such that

‖F (t, x, µ, ϕ)‖+ JΣ(t, x)K ≤ K (1 + ‖x‖+ ‖ϕ‖) ∀t, x, ϕ

‖F (t, x, µ, ϕ)− F (t, y, µ, ϕ)‖+ JΣ(t, x)− Σ(t, y)K ≤ K ‖x− y‖ ∀t, x, y, ϕ.

(ii) Let Γ = ΣΣ′. Any solution Xϕ to (3.4) satisfies

P
(∫ T

0 F (t,Xϕ
t , µ0, ϕ0)′Γ(t,Xϕ

t )−1
F (t,Xϕ

t , µ0, ϕ0)dt <∞
)

= 1.

(iii) There are constants Kµ,Kϕ, κµ, κϕ > 0, such that∥∥∥[F (t, x, µ, ϕ)− F (t, x, µ, ϕ̃)]′Γ(t, x)−1
∥∥∥ ≤Kµ (1 + ‖x‖κµ) ‖ϕ− ϕ̃‖ ∀t, x, ϕ, ϕ̃,∥∥∥[F (t, x, µ, ϕ)− F (t, x, µ̃, ϕ)]′Γ(t, x)−1
∥∥∥ ≤Kϕ (1 + ‖x‖κϕ) ‖µ− µ̃‖ ∀t, x, µ, µ̃.

(B) (i) For all θ ∈ Θ, ‖φ‖ has a finite moment generating function with respect to Pθ. The

drift function is of the form F (t, x, µ, ϕ) = G(t, x, µ) + C(t, x) · ϕ, with

G : [0, T ]× Rr+p → Rr, C : [0, T ]× Rr → Rr×d. The functions G,C and Σ are

uniformly in t Lipschitz-continuous and of sublinear growth in x.

(ii) Assumption (A)(ii) holds.

(iii) There are constants K,κ > 0, such that for all t, x, µ, µ̃,∥∥∥[G(t, x, µ)−G(t, x, µ̃)]′Γ(t, x)−1
∥∥∥ ≤K(1 + ‖x‖κ) ‖µ− µ̃‖ .

Assumption (A)(i) is a standard condition for the existence of a unique solution to (3.3). Condition

(A)(ii) ensures the existence of a particular Radon-Nikodym density (cf. Theorem 3.4), and (A)(iii)

guarantees that this density is product-measurable. This last condition is only needed to ensure

continuity of the stochastic integral term in the conditional likelihood in the proof of Theorem 3.5.

Note that, when the random effect enters in a multiplicative way as in (B), a sublinear growth

condition (cf. (A)(i)) is not necessarily satisfied. A drift function as in (B) is therefore not a special

case of (A). However, existence and uniqueness in this case follow from standard SDE theory (cf.

Theorem 3.3).
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3.4.3 Continuous-time likelihood for general SDMEMs

Theorem 3.3 (Existence and uniqueness of an integrable solution).

Assume that (A)(i) or (B)(i) is satisfied. For every θ ∈ Θ there exists a unique Pθ-a.s. continuous

solution X to (3.3). As a consequence, there is also a unique solution Xϕ to (3.4). Moreover, X

and Xϕ satisfy sup0≤t≤T EPθ
(
‖Xt‖2k

)
<∞ and sup0≤t≤T EPθ

(
‖Xϕ

t ‖
2k
)
<∞ for all k ∈ N.

Proof of Theorem 3.3. Under (A)(i), the statement is standard and not further considered here.

Under (B)(i), the existence of a unique solution follows from Theorem A.1 with α(t, x, ω) :=

F (t, x, µ, φ(ω)). It only remains to verify the existence of moments. The Lipschitz-continuity and

sublinear growth of the functions G and C (cf. condition (B)(i)) assure that there is a constant

K > 0 (which may depend on µ), such that F satisfies

‖F (t, x, µ, ϕ)− F (t, z, µ, ϕ)‖ ≤ K (1 + ‖ϕ‖) ‖x− z‖ ,

‖F (t, x, µ, ϕ)‖ ≤ K (1 + ‖ϕ‖) (1 + ‖x‖),

i.e., the standard (deterministic) Lipschitz and linear growth conditions with Lipschitz constant

L̃(ϕ) = K (1 + ‖ϕ‖). Let L(ϕ) = max{1, L̃(ϕ)} and denote by Xϕ the unique solution to (3.4).

Theorem A.2 gives for any m = 2k the bound

hm(ϕ) := EPθ
(
‖Xϕ

t ‖
m) ≤ 2

m−1
2 (1 + ‖x0‖m) em(

√
L̃(ϕ)+L̃(ϕ)m−1

2 )t ≤ Dm e(m+1)2L(ϕ)t.

Let Mθ be the moment-generating function of ‖φ‖ under Pθ. We deduce with Corollary 3.23

in Karatzas and Shreve (1991) (which implies that X|φ = ϕ has the same distribution as Xϕ),

that EPθ (‖Xt‖m) = EPθ (hm(φ)) ≤ DmMθ

(
(m+ 1)2Kt

)
< ∞. As log-convex function, Mθ is

continuous, such that we even have sup0≤t≤T EPθ (‖Xt‖m) <∞.

Heuristically, if X is the solution to (3.3) and q(µ, ϕ;X) the conditional likelihood of X, given that

we have observed φ = ϕ, the unconditional likelihood should then be obtainable by marginalizing

over the random effect, p(θ;X) =
∫
q(µ, ϕ;X) g(ϕ;ϑ)dϕ. For this to yield a well-defined density

p, q should, first of all, exist and secondly, be product-measurable. This will be established in the

following.

We denote by (CT , CT ) the Borel space of continuous Rr-valued functions defined on [0, T ], which

is associated with the topology of uniform convergence. We write Qµ,ϕ for the measure on (CT , CT )

induced by the solution to (3.4), and Qθ for the one induced by the solution to (3.3). Expectations
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with respect to these two measures are indicated by Eµ,ϕ and Eθ, respectively. We from now on

assume that (φ,X) is the canonical process on Rd × CT .

Theorem 3.4 (Conditional likelihood). Assume that (A) or (B) holds. Then the family

{Qµ,ϕ; µ ∈ Rp, ϕ ∈ Rd} of measures is dominated by Qµ0,ϕ0 and the Radon-Nikodym derivative is

Qµ0,ϕ0-a.s. given by

q(µ, ϕ;X) = exp
(∫ T

0
[F (s,Xs, µ, ϕ)− F (s,Xs, µ0, ϕ0)]′Γ(s,Xs)−1

dXs

− 1
2

∫ T

0
[F (s,Xs, µ, ϕ)− F (s,Xs, µ0, ϕ0)]′Γ(s,Xs)−1 [F (s,Xs, µ, ϕ) + F (s,Xs, µ0, ϕ0)] ds

)
.

Theorem 3.5 (Product-measurability of the conditional likelihood).

In the setting of Theorem 3.4 there exists Qµ0,ϕ0-a.s. a continuous version of (µ, ϕ) 7→ q(µ, ϕ;X).

In particular, q(µ, ϕ;X) is product-measurable.

Proof of Theorem 3.5. We provide the proof under the assumption that (A) holds. The function

f(t,Xt, µ, ϕ) := [F (t,Xt, µ, ϕ)− F (t,Xt, µ0, ϕ0)]′Γ(t,Xt)−1 [F (t,Xt, µ, ϕ) + F (t,Xt, µ0, ϕ0)]

is Qµ0,ϕ0 -a.s. continuous in (µ, ϕ). We therefore conclude from Theorem A.9 the Qµ0,ϕ0-a.s.

continuity of (µ, ϕ) 7→
∫ T

0 f(t,Xt, µ, ϕ)dt, which corresponds to the Lebesgue integral term in

log q(µ, ϕ;X). In verifying continuity in (µ, ϕ) of the stochastic integral term in the conditional like-

lihood, we restrict ourselves to showing the continuity in ϕ. We write ϕ 7→
∫ T

0 F (t,Xt, µ, ϕ)′Γ(t,Xt)−1
dXt =

IT (ϕ) + JT (ϕ), with

IT (ϕ) =
∫ T

0
F (t,Xt, µ, ϕ)′Γ(t,Xt)−1

F (t,Xt, µ0, ϕ0)dt,

JT (ϕ) =
∫ T

0
F (t,Xt, µ, ϕ)′Γ(t,Xt)−1 [dXt − F (t,Xt, µ0, ϕ0)dt] ,

and note that continuity of ϕ 7→ IT (ϕ) follows as above from Theorem A.9. To prove continuity of

ϕ 7→ JT (ϕ), we first observe that under Qµ0,ϕ0 , Jt(ϕ), 0 ≤ t ≤ T , is a continuous local martingale.

The same holds for the difference process Jt(ϕ)− Jt(ϕ̃) and its quadratic variation is given by

〈J(ϕ)− J(ϕ̃)〉T =
∫ T

0
[F (t,Xt, µ, ϕ)− F (t,Xt, µ, ϕ̃)]′Γ(t,Xt)−1 [F (t,Xt, µ, ϕ)− F (t,Xt, µ, ϕ̃)] dt.
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The Burkholder-Davis-Gundy inequality gives the existence of a constant K such that for any

m ∈ N

Eµ0,ϕ0

(
|JT (ϕ)− JT (ϕ̃)|2m

)
≤ KEµ0,ϕ0 (〈J(ϕ)− J(ϕ̃)〉mT ) .

Furthermore, due to the sublinear growth condition on Σ in (A)(i) and the sub-multiplicativity of

the matrix norm, assumption (A)(iii) implies that there are Kµ, κµ > 0, s.t.∥∥∥[F (t, x, µ, ϕ)− F (t, x, µ, ϕ̃)]′Γ(t, x)−1 [F (t, x, µ, ϕ)− F (t, x, µ, ϕ̃)]
∥∥∥

is bounded from above by Kµ (1 + ‖x‖κµ) ‖ϕ− ϕ̃‖2 . Applying this bound to the above gives (we

see K in the following as a generic constant and allow it to change from one line to another)

Eµ0,ϕ0

(
|JT (ϕ)− JT (ϕ̃)|2m

)
≤ KEµ0,ϕ0 (〈J(ϕ)− J(ϕ̃)〉mT )

= K Eµ0,ϕ0

([∫ T

0
[F (s,Xs, µ, ϕ)− F (s,Xs, µ, ϕ̃)]′Γ(s,Xi

s)
−1 [F (s,Xs, µ, ϕ)− F (s,Xs, µ, ϕ̃)] ds

]m)

≤ K ‖ϕ̃− ϕ‖2m Eµ0,ϕ0

(∫ T

0

(
1 + ‖Xs‖2m(κµ+1)

)
ds

)

= K ‖ϕ̃− ϕ‖2m
(

1 +
∫ T

0
Eµ0,ϕ0

(
‖Xs‖2m(κµ+1)

)
ds

)
≤ K ‖ϕ̃− ϕ‖2m .

Choosing 2m > d, the Kolmogorov criterion (Theorem A.5) assures that ϕ 7→ JT (ϕ) admits a

continuous version Qµ0,ϕ0 -a.s. Being continuous in (µ, ϕ) and measurable in the other argument,

the joint measurability of the conditional likelihood follows.

The unconditional likelihood is a consequence of Corollary 3.23 in Karatzas and Shreve (1991) and

Fubini’s theorem.

Theorem 3.6 (Unconditional likelihood).

Assume that (A) or (B) is satisfied. Then Qθ admits a density with respect to Qµ0,ϕ0 , which is

Qµ0,ϕ0-a.s. given by

p(θ;X) = dQθ
dQµ0,ϕ0

(X) =
∫
Rd
q(µ, ϕ;X) g(ϕ;ϑ) dϕ. (3.5)
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Proof. The measures Qθ,Qϕ0 are probability measures on the space (CT , CT ). With 1A as the

indicator function of a set A ∈ CT one has to show that Eθ (1A) = Eµ0,ϕ0 (p(θ;X)1A). This,

however, follows immediately. Because of Corollary 3.23 in Karatzas and Shreve (1991), we have

Eθ (1A) =
∫
Rd

Qµ,ϕ(A)g(ϕ; θ)dϕ

and by definition of q (cf. Theorem 3.4),

=
∫
Rd

[∫
CT

1A(X)q(µ, ϕ;X)dQµ0,ϕ0(X)
]
g(ϕ;ϑ)dϕ.

Fubini allows us to change integration order,

=
∫
CT

1A(X)
∫
Rd
q(µ, ϕ;X)g(ϕ;ϑ)dϕ dQµ0,ϕ0(X),

and we obtain the result

=
∫
CT

1A(X) p(θ;X) dQµ0,ϕ0(X) = Eµ0,ϕ0 (p(θ;X)1A) .

The extension to the N -sample likelihood is now a direct consequence of Theorem 3.6. We denote

by Qiθ the distribution on (CT i , CT i) induced by the solution to (3.2) and by Qiµ,ϕ the one given

φi = ϕ. We let (φi, Xi) be the canonical processes on Rd × CT i .

Theorem 3.7 (Unconditional N -sample likelihood).

For every i = 1, . . . , N , we assume that F i and Σ are such that (A) or (B) is satisfied. Then the

product measure Q⊗Nθ =
⊗N

i=1 Q
i
θ has a density with respect to Q⊗Nµ0,ϕ0

=
⊗N

i=1 Q
i
µ0,ϕ0

, which is

Q⊗Nµ0,ϕ0
-a.s. given by

pN (θ;X1, . . . , XN ) =
dQ⊗Nθ
dQ⊗Nµ0,ϕ0

(X1, . . . , XN ) =
N∏
i=1

pi(θ;Xi) =
N∏
i=1

∫ T i

0
qi(µ, ϕ;Xi)g(ϕ;ϑ)dϕ.

(3.6)

3.4.4 Continuous-time likelihood and MLE for affine Gaussian SDMEMs

Assume the individual drifts are as in (B), that is, the random effects enter the drift in an affine
manner. Note that the dependence of the drift on the fixed effect does not need to be affine. Then
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the conditional likelihood is qi(µ, ϕ;Xi) = eU1i(µ)+ϕ′U2i− 1
2V1i(µ)− 1

2ϕ
′V2iϕ−ϕ′Zi(µ), with

U1i(µ) =
∫ T i

0

[
Gi(t,Xi

t , µ) −Gi(t,Xi
t , µ0)

]′Γ(t,Xi
t)−1 [

dXi
t −Gi(t,Xi

t , µ0)dt
]
,

V1i(µ) =
∫ T i

0

[
Gi(t,Xi

t , µ) −Gi(t,Xi
t , µ0)

]′Γ(t,Xi
t)−1 [

Gi(t,Xi
t , µ) −Gi(t,Xi

t , µ0)
]
dt,

Zi(µ) =
∫ T i

0
Ci(t,Xi

t)′Γ(t,Xi
t)−1 [

Gi(t,Xi
t , µ) −Gi(t,Xi

t , µ0)
]
dt.

U2i =
∫ T i

0
Ci(t,Xi

t)′Γ(t,Xi
t)−1 [

dXi
t −Gi(t,Xi

t , µ0)dt
]
,

V2i =
∫ T i

0
Ci(t,Xi

t)′Γ(t,Xi
t)−1

Ci(t,Xi
t)dt.

If we further assume that the random effects are Gaussian, g(ϕ; Ω) = N (0,Ω), the particular form

of the qi implies that (3.6) turns into an explicit expression

pi(θ;Xi) = 1√
det(Id + V2iΩ)

eU1i(µ)− 1
2V1i(µ)+[Zi(µ)+U2i(µ)]′(V2i+Ω−1)−1[Zi(µ)+U2i(µ)] Qiµ0,0-a.s.

If we even further assume that also the fixed effect enters the drift in an affine manner, the individual

log-likelihoods are quadratic in µ and the MLE µ̂N becomes explicit.

Theorem 3.8 (Unconditional likelihood for affine Gaussian SDMEMs). Let the drift functions in
(3.2) be affine in the fixed and the random effect, F i(t, x, µ, φi) = Ai(t, x) +Bi(t, x)µ+Ci(t, x)φi,
and satisfy (B). Assume additionally that the random effects are Gaussian distributed,
g(ϕ; Ω) = N (0,Ω)(ϕ). Then the conditional likelihood for subject i is Qi0,0-a.s. given by
qi
(
µ, ϕ;Xi

)
= eµ′U1i− 1

2µ
′V1iµ+ϕ′U2i− 1

2ϕ
′V2iϕ−ϕ′Ziµ, with sufficient statistics

U1i =
∫ T i

0
Bi(t,Xi

t)′Γ(t,Xi
t)−1 [

dXi
t −Ai(t,Xi

t)dt
]
,

V1i =
∫ T i

0
Bi(t,Xi

t)′Γ(t,Xi
t)−1

Bi(t,Xi
t)dt,

U2i =
∫ T i

0
Ci(t,Xi

t)′Γ(t,Xi
t)−1 [

dXi
t −A(t,Xi

t)dt
]
, (3.7)

V2i =
∫ T i

0
Ci(t,Xi

t)′Γ(t,Xi
t)−1

Ci(t,Xi
t)dt,

Zi =
∫ T i

0
Ci(t,Xi

t)′Γ(t,Xi
t)−1

Bi(t,Xi
t)dt.
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Integration over ϕ yields the unconditional likelihood for subject i, which is Qi
0,0-a.s. equal to

pi(θ;Xi) = 1√
det(Id + V2iΩ)

exp
([
U ′1i − U ′2iR

i(Ω)Zi

]
µ− 1

2µ
′ [V1i − Z′iR

i(Ω)Zi

]
µ+ 1

2U
′
2iR

i(Ω)U2i

)
,

(3.8)

with Ri(Ω) = (V2i + Ω−1)−1.

Remark 3.9 (Only fixed effects). If the model contains only fixed effects, one has pi(θ;Xi) =

eµ′U1i− 1
2µ
′V1iµ and the MLE is given by µ̂N =

[∑N
i=1 V1i

]−1∑N
i=1 U1i.

Theorem 3.10 (Maximum Likelihood estimator). Assume that V2i is strictly positive definite

and let `N (θ; X) = log pN (θ; X) denote the log-likelihood and X = (X1, . . . , XN ). The score

equations are

d

dµ
`N (θ; X) =

N∑
i=1

[
U ′1i − U ′2iRi(Ω)Zi − µ′

[
V1i − Z ′iRi(Ω)Zi

] ]
d

dΩ`N (θ; X) = −1
2

N∑
i=1

[
Gi(Ω)− γi(θ̂N )γi(θ̂N )′

]
,

with Ri(Ω) =
(
V2i + Ω−1)−1 as defined above, Gi(Ω) = (Id + V2iΩ)−1

V2i, and

γi(θ) = Gi(Ω)V −1
2i (U2i − Ziµ). The MLE θ̂N = (µ̂N , Ω̂N ) of the population parameters is given by

the system

µ̂N =
[
N∑
i=1

[
V1i − Z ′iRi(Ω̂N )Zi

]]−1 [ N∑
i=1

[
U1i − Z ′iRi(Ω̂N )U2i

]]
N∑
i=1

[
Gi(Ω̂N )− γi(θ̂N )γi(θ̂N )′

]
= 0.

(3.9)

Remark 3.11. Note that, as Ω is strictly positive definite, the positive definiteness of V2i implies

the positive definiteness of V2i + Ω−1 and positive semi-definiteness of V2iΩ. This ensures that

Id + V2iΩ is invertible, such that Gi(Ω) is indeed well-defined. Moreover, Gi(Ω) is symmetric,

which can be seen from the identity Gi(Ω) = V2i + V2i(Ω−1 + V2i)
−1
V2i.
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Proof of Theorem 3.10. The log-likelihood is given by

`(θ;Xi) = 1
2 log

(
[det(Id + V2iΩ)]−1

)
+ U ′1iµ− U ′2iRi(Ω)Ziµ

− 1
2µ
′V1iµ+ 1

2µ
′Z ′iR

i(Ω)Ziµ+ 1
2U
′
2iR

i(Ω)U2i

and we observe that

log
(

[det(Id + V2iΩ)]−1
)

= log
(
det([Id + V2iΩ]−1)

)
= log

(
det(Ω−1Ri(Ω))

)
.

Differentiation of `(θ;Xi) with respect to µ is straightforward. To compute the derivative with

respect to Ω, we recall a few facts from matrix calculus (Petersen and Pedersen, 2008).

(a) The trace is invariant to cyclic permutations.

(b) For two matrices A, Y of suitable dimensions, we have

∂tr(Y ) = tr(∂Y ), ∂(AY ) = A∂Y, ∂ log det(Y ) = tr(Y −1∂Y ), ∂Y −1 = −Y −1(∂Y )Y −1.

(c) Let f be a scalar-valued function with matrix argument. Then = f(Ω) = tr (f(Ω)), and its

differential and derivative are related via ∂f(Ω) = tr
(
d
dΩf(Ω)(∂Ω)

)
.

We first consider differentiation with respect to Ω of the logarithmic term. With (b) we have

∂ log
(
det(Ω−1Ri(Ω))

)
= tr

(
Ri(Ω)−1Ω ∂(Ω−1Ri(Ω))

)
.

The product rule gives ∂(Ω−1Ri(Ω)) = Ω−1(∂Ri(Ω)) + (∂Ω−1)Ri(Ω) and (b) implies

(∂Ω−1) = −Ω−1(∂Ω)Ω−1 and ∂Ri(Ω) = Ri(Ω)Ω−1(∂Ω)Ω−1Ri(Ω).

Combining these yields

∂(Ω−1Ri(Ω)) = Ω−1(∂Ri(Ω)) + (∂Ω−1)Ri(Ω) = −
[
Ω−1 − Ω−1Ri(Ω)Ω−1] (∂Ω)Ω−1Ri(Ω)

= −Gi(Ω)(∂Ω)Ω−1Ri(Ω),

such that we arrive at

∂ log
(
det(Ω−1Ri(Ω))

)
= −tr

(
Ri(Ω)−1Ω Gi(Ω)(∂Ω)Ω−1Ri(Ω)

)
= −tr

(
Gi(Ω) ∂Ω

)
,
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and (c) gives us d
dΩ log

(
det(Ω−1Ri(Ω))

)
= −Gi(Ω). The remaining terms can be treated similarly

(using the invariance of the trace to cyclic permutations),

∂
(
U ′2iR

i(Ω)Ziµ
)

= 1
2∂
(
U ′2iR

i(Ω)Ziµ
)

+ 1
2∂
(
µ′Z ′iR

i(Ω)U2i
)

= 1
2
[
tr
(
U ′2i
(
∂Ri(Ω)

)
Ziµ

)
tr
(
µ′Z ′i

(
∂Ri(Ω)

)
U2i
)]

= 1
2tr
(
Ω−1Ri(Ω) [ZiµU ′2i + U2iµ

′Z ′i]Ri(Ω)Ω−1(∂Ω)
)

∂
(
µ′Z ′iR

i(Ω)Ziµ
)

= tr
(
Ω−1Ri(Ω)Ziµµ′Z ′iRi(Ω)Ω−1(∂Ω)

)
∂
(
U ′2iR

i(Ω)U2i
)

= tr
(
Ω−1Ri(Ω)U2iU

′
2iR

i(Ω)Ω−1(∂Ω)
)
.

We apply (c) to these equalities, use Ω−1Ri(Ω) = Gi(Ω)V −1
2i and Ri(Ω)Ω−1 = V −1

2i G
i(Ω), and

obtain
d

dΩ`(θ;X
i) = −1

2G
i(Ω)− 1

2G
i(Ω)V −1

2i [(ZiµU ′2i + U2iµ
′Z ′i)− Ziµµ′Z ′i − U2iU

′
2i]V −1

2i Gi(Ω).

The bracket term in the middle can be written as −(U2i − Ziµ)(U2i − Ziµ)′, giving

= −1
2G

i(Ω) + 1
2G

i(Ω)V −1
2i (U2i − Ziµ)(U2i − Ziµ)′V −1

2i G
i(Ω).

With γi(θ) = Gi(Ω)V −1
2i (U2i − Ziµ) as introduced above, we arrive at the neat expression

d

dΩ`(θ;X
i) = −1

2
[
Gi(Ω)− γi(θ)γi(θ)′

]
.

Discrete data

The high-frequency nature of many biomedical data sets justifies a continuous-time approach.

However, the assumption to observe the entire paths (Xi
t)0≤t≤T is still an approximation. Theorem

1 in Paper III states a result on the approximation error, when we observe Xi,(n) := (Xi
t0 , . . . , X

i
tn)

at time points tk = k
nT and the integrals in qi are replaced by finite sums. A Lebesgue integral is

approximated by Riemann sums and a stochastic integral of the form
∫ tk+1
tk

h(s,Xi
s)dXi

s is replaced

h(tk, Xi
k)∆Xi

k.

Theorem 3.12 (Negligibility of discretization error).

Assume that A,B′Γ−1B,B′Γ−1C,C ′Γ−1C,B′Γ−1, C ′Γ−1 are globally Lipschitz-continuous in (t, x)

and that in addition to A,B,C and Σ also B′Γ−1, C ′Γ−1 is of sublinear growth in x, uniformly in

t. Then, for all p ≥ 1 and all i = 1, . . . , N , there is a constant K such that

Eθ (JV1i − V n1iKp + ‖U1i − Un1i‖
p + JV2i − V n2iKp + ‖U2i − Un2i‖

p + ‖Zi − Zni ‖
p) ≤ K

(
T

n

)p/2
.
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Proof of Theorem 3.12. We will restrict ourselves to verifying the bounds on U2i, V2i, Eθ0 (JU2i − Un2iKp)+
Eθ (JV2i − V n2iKp) ≤ Kn−p/2. For simplicity, we have included the factor T p/2 in the constant K,

and in the following will allow K to change from line to line. The bounds for the discretization

error in U1i, V1i and Zi can be derived analogously.

To start with, we verify that Eθ
(∥∥Xi

t+h −Xi
t

∥∥p) ≤ Khp/2 holds for any 0 ≤ t ≤ t+ h ≤ T, 0 <

h < 1.

∥∥Xi
t+h −Xi

t

∥∥p =

∥∥∥∥∥
∫ t+h

t

[
A(s,Xi

s) +B(s,Xi
s)µ+ C(s,Xi

s) · φi
]
ds+

∫ t+h

t

Σ(s,Xi
s)dW i

s

∥∥∥∥∥
p

≤ K

(∫ t+h

t

∥∥A(s,Xi
s)
∥∥ ds)p +K

(∫ t+h

t

∥∥B(s,Xi
s) · µ

∥∥ ds)p

+K

(∫ t+h

t

∥∥C(s,Xi
s) · φi

∥∥ ds)p +K

∥∥∥∥∥
∫ t+h

t

Σ(s,Xi
s)dW i

s

∥∥∥∥∥
p

.

We use the general relation ‖Ax‖ ≤ K
(
JAK2 + ‖x‖2

)
for a matrix A and a vector x together with

the sublinear growth conditions on A,B,C and the Hölder inequality to get

(∫ t+h

t

∥∥A(s,Xi
s)
∥∥ ds)p ≤ Khp−1

∫ t+h

t

(
1 +

∥∥Xi
s

∥∥p) ds(∫ t+h

t

∥∥B(s,Xi
s) · µ

∥∥ ds)p ≤ Khp−1
∫ t+h

t

(
1 +

∥∥Xi
s

∥∥2p)
ds+Kh ‖µ‖2p .(∫ t+h

t

∥∥C(s,Xi
s) · φi

∥∥ ds)p ≤ Khp−1
∫ t+h

t

(
1 +

∥∥Xi
s

∥∥2p)
ds+Kh

∥∥φi∥∥2p
.

For l ∈ N we define Ml = sup0≤s≤T Eθ
(∥∥Xi

s

∥∥l) and use the sublinear growth of Σ and the

Burkholder-Davis-Gundy (BDG) inequality to get

Eθ

(∥∥∥∥∥
∫ t+h

t

Σ(s,Xi
s)dW i

s

∥∥∥∥∥
p)
≤ Kh

p−2
2

r∑
l,j=1

Eθ0

(∫ t+h

t

∣∣Σlj(s,Xi
s)
∣∣p ds)

≤ Kh
p−2

2 Eθ0

(∫ t+h

t

(
1 +

∥∥Xi
s

∥∥p) ds)
≤ Kh

p−2
2 h (1 +Mp) ≤ Khp/2.

Taking expectations yields

Eθ
(∥∥Xi

t+h −Xi
t

∥∥p) ≤ Khp/2. (3.10)



3.4. SUPPLEMENTARY MATERIAL FOR PAPER III 49

By assumption, the function h = B′Γ−1B is Lipschitz-continuous, such that

Eθ0 (JV2i − V n2iKp) ≤ Eθ0

(
n−1∑
k=0

∫ tk+1

tk

Jh(s,Xi
s)− h(tk, Xi

tk
)Kpds

)

≤ K
n−1∑
k=0

∫ tk+1

tk

Eθ0
(∥∥Xi

s −Xi
tk

∥∥p) ds+K
1
np

≤ K 1
np/2

.

The difference U2i − Un2i can be written as U2i − Un2i = A1 +A2 +A3 +A4 with

A1 =
n−1∑
k=0

∫ tk+1

tk

C(tk, Xi
tk

)′Γ(tk, Xi
tk

)−1 [
A(tk, Xi

tk
)−A(s,Xi

s)
]
ds

A2 =
n−1∑
k=0

∫ tk+1

tk

[
C(s,Xi

s)
′Γ(s,Xi

s)
−1 − C(tk, Xi

tk
)′Γ(tk, Xi

tk
)−1]

C(s,Xi
s)ds · φi

A3 =
n−1∑
k=0

∫ tk+1

tk

[
C(s,Xi

s)
′Γ(s,Xi

s)
−1 − C(tk, Xi

tk
)′Γ(tk, Xi

tk
)−1]Σ(s,Xi

s)dW i
s

A4 =
n−1∑
k=0

∫ tk+1

tk

[
C(s,Xi

s)
′Γ(s,Xi

s)
−1 − C(tk, Xi

tk
)′Γ(tk, Xi

tk
)−1]

B(s,Xi
s)ds · µ.

For the first term we have

‖A1‖p ≤
n−1∑
k=0

∥∥∥C(tk, Xi
tk

)′Γ(tk, Xi
tk

)−1
∥∥∥p ∫ tk+1

tk

∥∥A(tk, Xi
tk

)−A(s,Xi
s)
∥∥p ds

≤ K
n−1∑
k=0

(
1 +

∥∥Xi
tk

∥∥p)( 1
np+1 +

∫ tk+1

tk

∥∥Xi
tk
−Xi

s

∥∥p ds) .
Taking expectation, recalling the definition Ml = sup0≤s≤T Eθ

(∥∥Xi
s

∥∥l), and applying (3.10) and

the Hölder inequality give

Eθ (‖A1‖p) ≤
K

np
(1 +Mp) + K

np/2
+K

n−1∑
k=0

∫ tk+1

tk

Eθ
(∥∥Xi

tk

∥∥2p)1/2
Eθ
(∥∥Xi

tk
−Xi

s

∥∥2p)1/2
ds

≤ K

np
[1 +Mp] + K

np/2
+KM

1/2
2p

1
np/2

≤ K

np/2
.

For the second term we use Lipschitz-continuity of C ′Γ−1 and sublinear growth of C to get

JA2Kp ≤
n−1∑
k=0

∫ tk+1

tk

JC(s,Xi
s)
′Γ(s,Xi

s)
−1 − C(tk, Xi

tk
)′Γ(tk, Xi

tk
)−1KpJC(s,Xi

s)Kpds ·
∥∥φi∥∥p

≤ K
∥∥φi∥∥p n−1∑

k=0

∫ tk+1

tk

(
1
np

+
∥∥Xi

s −Xi
tk

∥∥p (1 +
∥∥Xi

s

∥∥p) ds) .
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We apply (3.10) and the general inequality E (‖X‖ ‖Y ‖ ‖Z‖) ≤ E
(
‖X‖2

)1/2
E
(
‖Y ‖4

)1/4
E
(
‖Z‖4

)1/4

yield

Eθ (JA2Kp) ≤
K

np
Eθ
(∥∥φi∥∥p)+ K

np
Eθ
(∥∥φi∥∥2p)1/2 n−1∑

k=0

∫ tk+1

tk

Eθ
(∥∥Xi

s

∥∥2p)1/2
ds

+KEθ
(∥∥φi∥∥2p)1/2 n−1∑

k=0

∫ tk+1

tk

Eθ
(∥∥Xi

s −Xi
tk

∥∥4p)1/4
Eθ
(

1 +
∥∥Xi

s

∥∥4p)1/4
ds

≤ K

np

[
Eθ
(∥∥φi∥∥p)+ Eθ

(∥∥φi∥∥2p)1/2
M

1/2
2p

]
+KEθ

(∥∥φi∥∥2p)1/2 (
1 +M

1/4
4p

) 1
np/2

≤ K

np/2
.

For the A3-term we introduce gk(s) =
[
C(s,Xi

s)
′Γ(s,Xi

s)
−1 − C(tk, Xi

tk
)′Γ(tk, Xi

tk
)−1
]

Σ(s,Xi
s)

and the (d × r)-valued process Hn
s =

∑n−1
k=0 I(tk,tk+1](s)gk(s) and define the martingale N i

t =∫ t
0 H

n
s dW

i
s . Observe that we then have A3 = N i

T , such that the BDG and Hölder inequalities

together with the Lipschitz-continuity of C ′Γ−1 and the growth condition on Σ give

Eθ0 (‖A3‖p) = Eθ0
(∥∥N i

T

∥∥p) ≤ K n−1∑
k=0

∫ tk+1

tk

Eθ0 (Jgk(s)Kp) ds

≤ K
n−1∑
k=0

∫ tk+1

tk

Eθ0
(∥∥Xi

s −Xi
tk

∥∥p JΣ(s,Xi
s)Kp

)
ds.

≤ K

np/2
.

The term A4 satisfies

‖A4‖p ≤
n−1∑
k=0

∫ tk+1

tk

JC(s,Xi
s)
′Γ(s,Xi

s)
−1 − C(tk, Xi

tk
)′Γ(tk, Xi

tk
)−1KpJB(s,Xi

s)Kpds ‖µ‖p

and can be treated as A2 to get Eθ (‖A4‖p) ≤ K
np/2 .

Remark 3.13. A better result can often be obtained with a higher-order approximation. For the

stochastic integral, this is obtained by using Ito’s formula,∫ tk+1

tk

h(s,Xi
s)dXi

s ≈ H(tk+1, X
i
k+1)−H(tk, Xi

k)− ∆t
2

∫ tk+1

tk

r∑
j,l=1

(Hxj ,xlΣjΣ′l)(tk, Xi
k),

with h(t, x) = ∇xH(t, x). This, however, requires h to be of gradient-type, i.e., there should exist

a differentiable function H such that h can be obtained as h(t, x) = ∇xH(t, x). A higher-order

approximation scheme is preferable, if the time step is not sufficiently small (non-high-frequency

data) and/or the dynamics are highly non-linear.
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Remark 3.14 (Likelihood discretization and Euler approximation). The log-likelihood of the

Euler-Maruyama approximation of the continuous-time model is proportional to

qEuler(µ, ϕ;Xi,(n)) ∝
n−1∑
k=0

F (tk, Xi
tk
, µ, ϕ)′Γ(tk, Xi

tk
)−1∆Xi

tk

− 1
2

n−1∑
k=0

F (tk, Xi
tk
, µ, ϕ)′Γ(tk, Xi

tk
)−1

F i(tk, Xi
tk
, µ, ϕ)∆t.

So the first-order discrete-time approximation of the conditional likelihood q(µ, ϕ;Xi) considered

in Theorem 3.12 coincides (up to proportionality) with qEuler(µ, ϕ;Xi,(n)), such that the exact

MLE of the approximating discrete-time Euler model coincides with the time-discretized MLE of

the exact continuous-time model. This holds true more generally for arbitrary F (not necessarily

affine in the mixed affects), if we choose as dominating measure measure for Qµ,ϕ the one that is

induced by the diffusion with zero drift. If we call that measure Q0, the conditional density reads

log dQµ,ϕ
dQ0

(Xi) =
∫ T

0
F (s,Xi

s, µ, ϕ)′Γ(s,Xi
s)
−1
dXi

s −
1
2

∫ T

0
F (s,Xi

s, µ, ϕ)′Γ(s,Xi
s)
−1
F (s,Xi

s, µ, ϕ)ds,

and the connection to the Euler-Maruyama log-likelihood is immediately visible. Since the MLE

does not depend on the particular choice of the dominating measure, the MLE obtained from

discretizing the continuous-time likelihood coincides with the one obtained from the Euler approx-

imation.

Simulation study: Discretization bias for a non-Lipschitz drift

The derivations above assumed Lipschitz-continuity of the drift. A popular model which falls into

the class of affine (in the parameter) drifts, but does not satisfy the Lipschitz requirements is the

Fitzhugh-Nagumo (FHN) model (FitzHugh, 1955; Nagumo et al., 1962). We investigate how the

discretization bias behaves as a function of the time discretization n−1 in this case. To provide

some more background information, the FHN is a two-dimensional approximation of the well-

known four-dimensional Hodgkin-Huxley neuronal model (Hodgkin and Huxley, 1952) and models

the regenerative firing mechanism in an excitable neuron. However, since neural firing is a complex

interplay of numerous cell processes, a stochastic extension which accounts for various unexplained

noise sources is more suitable (Jensen et al., 2012),

dYt = 1
ε

(
Yt − Y 3

t − Zt + s
)
dt+ σ1dW1,t,

dZt = (γYt − Zt + η) dt+ σ2dW2,t.

(3.11)
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The variable Y represents the membrane potential of a neuron, while the Z coordinate represents

the recovery. The time scale separation ε is commonly � 1, such that Y lives on a much faster

time scale than Z. The variable s is the input current. If γ > 1, the system has exactly one

fixed point, which may be stable or unstable, depending on the specific parameter values. Under

the reparametrization µ = (1/ε, s/ε, γ, η)′, (3.11) can be written with drift as in Theorem 3.8.

We assume to study a collection of N excitable neurons and model their membrane potentials Y i

via dXi
t = A(Xi

t) + C(Xi
t)(µ + φi)dt + Σ dW i

t , 0 ≤ t ≤ T , where Xi = (Y i, Zi)′ and the φi are

the i.i.d. N (0,Ω)-distributed random effects. Observe that despite being nonlinear in the state

variable, the model equations are linear in the random effects and therefore an explicit likelihood

is available. We assume here that both coordinates of Xi are observed. For all simulations, we

let σ1 = 0.5, σ2 = 0.3 (assumed known), we fix T = 20 and choose the values of the unknown

parameters as ε = 0.1, s = 0.5, γ = 1.5 and η = 1.2. With this choice of η the fixed point of the

deterministic FHN system is stable, but small noise levels will suffice to induce large excursions

through state space (spikes).
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Figure 3.8: Trace plots of four realizations of the stochastic FHN model with random effects.
The black traces correspond to the Y -coordinate, the red traces to the Z-coordinate. The cor-
responding realized parameter values of µ + φi are (8.86,4.29,1.50,1.39), (10.16,7.49,1.73,1.40),
(9.98,5.49,1.10,1.07) and (9.26,5.17, 1.84, 1.01).

The covariance matrix of the random effects is fixed as Ω = diag
(
1.52, 12, 0.22, 0.22). The sim-

ulation settings are as follows. We simulate each trajectory (X1
t , . . . , X

N
t )0≤t≤T with the Euler-

Maruyama scheme and a simulation time step of δ = 10−4. The estimation is carried out on the
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Table 3.2: FHN model. Shown are estimated relative bias and RMSE of µ̂ and diag(Ω̂). The sample
size is fixed to N = 50, but different sampling intervals are considered (∆t = 0.001, 0.01, 0.1). For
each value of ∆t, the estimation was repeated on M = 500 generated data sets.

∆t = 0.001 ∆t = 0.01 ∆t = 0.1

true value rel. bias RMSE rel. bias RMSE rel. bias RMSE

ε 0.10 0.003 0.022 0.030 0.037 0.356 0.356
s 0.50 0.001 0.033 0.002 0.033 0.009 0.035
γ 1.50 -0.000 0.031 -0.006 0.032 -0.079 0.121
η 1.20 -0.001 0.031 -0.005 0.032 -0.051 0.067

1/ε 10.00 -0.003 0.216 -0.028 0.349 -0.262 2.624
s/ε 5.00 -0.002 0.135 -0.026 0.188 -0.256 1.283

2.25 -0.048 0.469 -0.155 0.539 -0.690 1.563
diag(Ω) 1.00 -0.025 0.197 -0.044 0.197 -0.281 0.318

0.04 -0.035 0.010 -0.044 0.010 -0.212 0.012
0.04 -0.007 0.010 -0.028 0.009 -0.218 0.012

thinned trajectory. We choose the sample size N = 50 and to illustrate how the discrete-time

bias evolves, we repeat estimation for thinning factors b = 10, 100, 1000, which results in sampling

intervals of ∆t = δ · b = 0.001, 0.01, 0.1, respectively (note that the observation horizon is always

fixed to T = 20). For all values of ∆t, the estimation is repeated on M = 500 generated data sets.

Figure 3.8 displays example trace plots of four realizations, which illustrate qualitatively different

behaviors of the state process, depending on the realized values of the random effects. The black

traces correspond to the Y -coordinate, the red traces to the Z-coordinate.

The estimation was done under the reparametrization µ = (1/ε, s/ε, γ, η). Estimates for the

parameter ε and s on the original scale are obtained by transformation. Table 3.2 shows the sample

estimates of the relative bias, 1
M

∑M
m=1

θ̂
(m)
j
−θj
θj

, and of the root mean squared errors (RMSE),(
1
M

∑M
m=1(θ̂(m)

j − θj)2
)1/2

. Their estimation was based on samples with fixed sample size N = 50,

but repeated for different sampling intervals ∆t. The upper six rows in Table 3.2 show estimated

bias and RSME for the fixed effects (on the original and on the transformed µ-scale) and the

subsequent four rows correspond to results for the estimation of the diagonal of Ω. Despite the non-

linearity of the model and the violation of standard assumptions on the diffusion drift for regularity

of the model, the parameter estimation for high-frequency data and the chosen moderate sample

size is very convincing (Table 3.2, first two columns), while still being satisfactory for observations
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sampled at medium frequency (middle two columns). If observations are sampled at low frequency

(last two columns in Table 3.2), the bias for the estimation of s, γ, η is still rather low (with 1%,

8% and 5% bias, respectively, as compared to the true parameter value). The estimation of ε is,

however, highly biased. The variances of the random effects are all estimated with an error of about

21-28%, except for the variance of the random effect that adds to ε, which has an error of as high

as 69%. This comes to no surprise, since non-linearity in the state requires denser observations.

For ε we estimate the inverse of a small number, making the estimator unstable.

3.4.5 Asymptotic properties of the MLE for affine Gaussian SDMEMs

In this section we consider the setting of Theorem 3.8 and provide worked out proofs for consistency

and asymptotic normality of the MLE θ̂N . To maintain a fair degree of readability, we restrict

ourselves to the case when all fixed effects are endowed with random effects, i.e., when B(t, x) =

C(t, x) in Theorem 3.8. In that case, we have Ui := U1i = U2i and Vi := V1i = V2i = Zi and the

likelihood (3.8) can be written as

p(θ;Xi) = 1√
det(Id + ViΩ)

e− 1
2 (µ−V −1

i
Ui)
′
Gi(Ω)(µ−V −1

i
Ui)+ 1

2U
′
iV
−1
i

Ui ,

and the Score function Si(θ) =
[
d
dµ`(θ;X

i), d
dΩ`(θ;X

i)
]
in Theorem 3.10 simplifies to

d

dµ
`(θ;Xi) = γi(θ)′ and d

dΩ`(θ;X
i) = −1

2

[
Gi(Ω)− γi(θ)γi(θ)′

]
,

with γi(θ) = Gi(Ω)V −1
i (Ui − Viµ).

In the proofs we follow a standard road. After verifying certain integrability requirements, we show

asymptotic normality of the (normalized) score function2. The normalized negative log-likelihood

is a contrast process and the Kullback-Leibler distance is the corresponding contrast function,

which is shown to possess a unique minimum in the true parameter, which we may denote by

θ0. The consistency of the MLE follows from investigations of the continuity modulus. A Taylor

expansion of the score function around the true parameter, together with its asymptotic normality

and the consistency of the MLE, assures asymptotic normality of the MLE. In the sequel we assume

that Θ is compact and convex and that the random matrix Vi is (Qi0,0-a.s.) positive definite. In

well-defined models this is not a restriction.

2We mean by asymptotic normality of a matrix A that its column-stacked linear transformation vec(A) is
asymptotically normal.
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Lemma 3.15 (Moment properties). For all θ ∈ Θ the following statements hold.

(i) For all u ∈ Rd, Eθ
(
eu′(Id+ViΩ)−1Ui

)
<∞.

(ii) The score function is centered, Eθ
(
d
dµ`

i(θ;Xi)
)

= 0 and Eθ
(
d
dΩ`

i(θ;Xi)
)

= 0.

(iii) The score function has finite second moments.

Proof of Lemma 3.15. We begin with (i). First of all we recall that Gi(Ω) and (Ω + ΩViΩ)−1

are positive definite, such that the identity Gi(Ω) = Ω−1 − (Ω + ΩViΩ)−1 assures the bound

u′Gi(Ω)u ≤ u′Ω−1u for any u ∈ Rd. Let us now fix u ∈ Rd and define τ = (µ + u,Ω). The

likelihoods then satisfy the identity p(θ;Xi)eu′γi(θ) = p(τ ;Xi)e 1
2u
′Gi(Ω)u, such that

Eθ
(
eu
′γi(θ)

)
= E0,0

(
eu
′γi(θ)p(θ;Xi)

)
= E0,0

(
e 1

2u
′Gi(Ω)up(τ ;Xi)

)
= Eτ

(
e 1

2u
′Gi(Ω)u

)
≤ e 1

2u
′Ω−1u,

which is finite. Note that for arbitrary u ∈ Rd we further have the bound

u′Gi(Ω)µ ≤ u′Gi(Ω)µ+ 1
2u
′Gi(Ω)u+ 1

2µ
′Gi(Ω)µ = 1

2(u+ µ)′Gi(Ω)(u+ µ) ≤ 1
2(u+ µ)′Ω−1(u+ µ),

and therefore,

Eθ
(
eu
′(Id+ViΩ)−1Ui

)
= Eθ

(
eu
′γi(θ)eu

′(Id+ViΩ)−1Viµ
)

= Eθ
(
eu
′γi(θ)eu

′Gi(Ω)µ
)

≤ Eθ
(
eu
′γi(θ)

)
e 1

2 (u+µ)′Ω−1(u+µ) <∞,

completing the proof of (i).

For (ii) we restrict ourselves to only showing the first identity (the second identity in (ii) can

be shown in the same spirit, but with choosing τ = (µ,Ω0) below instead). In general, for any

τ = (µ0,Ω) we have[
d

dµ
`(θ;Xi)

]
p(θ;Xi)
p(τ ;Xi) =

d
dµp(θ;X

i)
p(θ;Xi)

p(θ;Xi)
p(τ ;Xi) =

d
dµp(θ;X

i)
p(τ ;Xi) = d

dµ

[
p(θ;Xi)
p(τ ;Xi)

]
.

Taking expectations gives

Eθ

(
d

dµ
`(θ;Xi)

)
= Eτ

([
d

dµ
`(θ;Xi)

]
p(θ;Xi)
p(τ ;Xi)

)
= Eτ

(
d

dµ

[
p(θ;Xi)
p(τ ;Xi)

])
.

If expectation and integration can be interchanged, the claim follows. The validity of interchanging

these two limit operations is shown below. For convenience, we use µ0 = 0 and introduce the short-

hand notation

αi(θ) = pi(θ;Xi)
pi(τ ;Xi) = dQiθ

dQiτ
= eµ

′Gi(Ω)Vi−1Ui− 1
2µ
′Gi(Ω)µ.
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Let µ∗, h ∈ Rd, and (εn)n∈N a zero sequence in R>0, and define θ∗ = (µ∗,Ω) and θ∗n =

(µ∗ + εnh,Ω). We study the function fn(Xi) = αi(θ∗n)−αi(θ∗)
‖h‖εn . Then, as n goes to infinity,

fn(Xi) → d
dµα

i(θ)
∣∣
θ=θ∗ . To prove that this pointwise convergence implies the convergence of

the integrals,

lim
n→∞

∫
CT

fn(Xi)dQiτ (Xi) =
∫
CT

lim
n→∞

fn(Xi)dQiτ (Xi),

we show the existence of a non-negative, Qiτ -integrable random variable M(Ω) : (CT , CT )→ (R,B),

such that
∥∥∥ d
dµα

i(θ)|θ=θ∗
∥∥∥ ≤M(Ω) Qiτ -a.s. Without loss of generality assume that there is R > 0

such that for all n ∈ N, the vectors µ∗−εnh and µ∗+εnh are contained in Bd(R), the closure of the

ball in Rd with center 0 and radius R. By the mean value theorem there is for each n a cn ∈ [0, 1]

such that |fn| =
∥∥∥ ∂
∂µα

i(η∗n,h)
∥∥∥ with η∗n,h =

(
µ∗n,h,Ω

)
and µ∗n,h = (1 − cn) (µ∗ + εnh) + cnµ

∗. In

particular, due to the convexity of Bd(R), we have µ∗n,h ∈ Bd(R) for all n and thus

|fn| ≤ sup
n∈N

∥∥∥∥ ∂∂µαi(η∗n,h)
∥∥∥∥ ≤ sup

µ∈Bd(R)

∥∥∥∥ ∂∂µαi(θ)
∥∥∥∥ = sup

µ∈Bd(R)

∥∥∥γi(θ)′αi(θ)∥∥∥ .
In the proof of (i) we showed that Gi(Ω)− Ω−1 is negative semi-definite and therefore

∥∥γi(θ)∥∥ ≤ ∥∥∥(Id + ViΩ)−1
Ui

∥∥∥+
∥∥Gi(Ω)µ

∥∥ ≤ ∥∥∥(Id + ViΩ)−1
Ui

∥∥∥+ JΩ−1K ‖µ‖

≤
∥∥∥(Id + ViΩ)−1

Ui

∥∥∥+R JΩ−1K

and since Gi(Ω) is positive definite, αi(θ) ≤ eµ′Gi(Ω)V −1
i

Ui = eµ′(Id+ViΩ)−1Ui . For any u ∈

Bd(R), z ∈ Rd one has eu′z ≤
[
eRzi + e−Rzi

]
e
∑d

j=2
ujzj , which generalizes to

eu′z ≤
∏d
j=1

[
eRzj + e−Rzj

]
=
∑
β∈K eRβ′z, with K = {u ∈ Rd : uj ∈ {−1, 1}, j = 1, . . . , d}.

Therefore, for any µ ∈ Bd(R),

αi(θ) ≤ eµ
′Gi(Ω)V −1

i
Ui ≤

∑
β∈K

eRβ
′(Id+ViΩ)−1Ui =: M̃(Ω).

such that |fn| can be bounded by

|fn| ≤ sup
µ∈Bd(R)

(∥∥∥(Id + ViΩ)−1
Ui

∥∥∥+RJΩ−1K
)
M̃(Ω) =

(∥∥∥(Id + ViΩ)−1
Ui

∥∥∥+RJΩ−1K
)
M̃(Ω)

=: M(Ω),

which is Qiτ -integrable by (i), since Eτ
(

(Id + ViΩ)−1
Ui · eu

′(Id+ViΩ)−1Ui
)
< ∞ for any u ∈ Rd.

Thus, integration and differentiation can be interchanged. For the proof of (iii) we refer to section

2.3.1. in Paper III.
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The asymptotic normality of the normalized score function is now a consequence of the law of large

numbers (LLN), together with the standard multivariate central limit theorem (CLT).

Theorem 3.16 (Asymptotic normality of the normalized score function).

Let Si(θ;Xi) =
(
d
dµ`

i(θ;Xi), vec
[
d
dΩ`

i(θ;Xi)
]′)′ and SN (θ; X) =

∑N
i=1 Si(θ;Xi) denote the vec-

torized score function. For all θ ∈ Θ, under Qθ and as N tends to infinity, we have

1√
N
SN (θ; X)→ N (0, I(θ))

where I(θ) = Covθ
(
Si(θ;Xi)

)
.

To show the consistency and asymptotic normality of the MLE θ̂N , we distinguish two cases,

depending on whether B(t, x)′Γ(t, x)−1
B(t, x) is constant as a function of x. We let m = d +

d2, denote by �m the Lebesgue measure on Rm and identify Rd×d with Rd
2 (by considering the

vectorized versions of matrices in Rd×d). We make the following additional assumptions.

(C) (i) The function B(t, x)′Γ(t, x)−1
B(t, x) is not constant in x, and under Qi0,0, the

(vectorized) Rm-valued random vector (Ui, Vi) admits a continuous density function

f(u, v) (w.r.t. the Lebesgue measure �m), which is positive on an open ball of Rm ⊃ Θ.

(ii) We assume that θ ∈ Θ can be bounded via: ‖µ‖ ≤M1 and M2,1 ≤ JΩK ≤M2,2, where

M1,M2,1,M2,2 are positive constants (which exists because Θ is bounded).

(ii) The true value θ0 belongs to int(Θ) and the matrix I(θ0) is invertible.

Theorem 3.17 (Continuity of KL information and uniqueness of its minimum).

Under (C) the Kullback-Leibler (KL) information of Qθ0 w.r.t. Qθ, denoted by K(Qθ0 ,Qθ), is

continuous on Rm and has a unique minimum at θ = θ0.

Proof of Theorem 3.17. Recall that in general KL(Qθ0 ,Qθ) ≥ 0 and equality holds if and only if

Qθ0 = Qθ. To show the uniqueness of the minimum at θ0 we show that Qθ0 = Qθ implies θ0 = θ.

Note that p(θ;Xi) can be written as a function of only the sufficient statistics and with slight

abuse of notation we write therefore p(θ;Xi) = p(θ;Ui, Vi). By (C)(i), the distribution Q(Ui,Vi)
0,0

of (Ui, Vi) under Q0,0 admits the �m-density dQ
(Ui,Vi)
0,0
d�m (u, v) = f(u, v) and by Lemma A.3 we have
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Q(Ui,Vi)
θ � Q(Ui,Vi)

0,0 with density

dQ(Ui,Vi)
θ

dQ(Ui,Vi)
0,0

(u, v) = E0,0

[
dQθ
dQ0,0

|(Ui, Vi) = (u, v)
]

= E0,0 [p(θ;Ui, Vi)|(Ui, Vi) = (u, v)] = p(θ;u, v).

Hence, the distribution Q(Ui,Vi)
θ of the random vector (Ui, Vi) under Qθ has �m-density

fθ(u, v) =
dQ(Ui,Vi)

θ

d�m
(u, v) =

dQ(Ui,Vi)
θ

dQ(Ui,Vi)
0,0

(u, v)
dQ(Ui,Vi)

0,0

d�m
(u, v) = p(θ;u, v)f(u, v).

Equality of the distributions Qθ, Qθ0 implies Q(Ui,Vi)
θ = Q(Ui,Vi)

θ0
and due to the (�m-a.s.) uniqueness

of the Radon-Nikodym densities fθ, fθ0 , one therefore has fθ = fθ0 �m-almost everywhere. The

continuity of fθ and fθ0 assures that equality even holds everywhere, i.e. fθ = fθ0 . By assumption,

f(u, v) is positive on an open ball B of Rm. Let FB = B∩(Rd×Sd(R)) and GB = B∩(Rd×Sd(R))c.

Here Sd(R) is the set of symmetric, positive definite (d× d)-matrices and the superscript c denotes

the set complement, such that B = FB ∪GB . Then FB is open and as such �m(FB) > 0. On GB
we have that p(θ;u, v) = p(θ0;u, v) = 0 (which does not help us for deducing equality of θ and

θ0), whereas on FB it holds that p(θ;u, v) = p(θ0;u, v) > 0 or, equivalently, that (note that for

(u, v) ∈ FB the inverse v−1 exists)(
det(Id + vΩ0)
det(Id + vΩ)

)1/2
= e− 1

2 (µ0−v−1u)′Gi(Ω0)((µ0−v−1u)+ 1
2 (µ−v−1u)′Gi(Ω)(µ−v−1u).

This implies Ω = Ω0 and µ = µ0, i.e., θ = θ0. To establish continuity of θ 7→ K(Qθ0 ,Qθ), we recall

that

K(Qθ0 ,Qθ) =
∫
Rm

fθ0(u, v) log fθ0(u, v)
fθ(u, v) d�(u, v) =

∫
Rm

fθ0(u, v) [`(θ0;u, v)− `(θ;u, v)] d�(u, v)

= Eθ0 (h(θ;Ui, Vi)) ,

with h(θ;u, v) = `(θ0;u, v) − `(θ;u, v). Obviously, µ 7→ h(θ;Ui, Vi) is Q(Ui,Vi)
θ0

-a.s. continuous.

Continuity of matrix multiplication and addition, of taking the inverse, of the determinant and of

the logarithm assure a.s. continuity of Ω 7→ h(θ;Ui, Vi). Thus, θ 7→ h(θ;Ui, Vi) is (a.s.) continuous.

The continuity of θ 7→ K(Qθ0 ,Qθ) follows from dominated convergence. That the limit operations

in fact may be interchanged is justified by the fact that there is a Qθ0-integrable random variable

M such that h(θ;x) ≤ M(x) for all x ∈ CT . We verify the existence of M below. We can write

2h(θ;Ui, Vi) as the sum A1 + . . .+A5, with

A1= log
(

det (Id + ViΩ)
det (Id + ViΩ0)

)
A2=U ′iV −1

i

[
Gi(Ω)−Gi(Ω0)

]
V −1
i Ui

A3=µ′Gi(Ω)µ, A4=µ′Gi(Ω)V −1
i Ui

A5=
[
µ′0G

i(Ω0)µ0 − µ′0Gi(Ω0)V −1
i Ui

]
.
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A5 does not depend on θ and its Qθ0 -integrability is straightforward by Theorem 3.15(i). With

arguments as used previously we can bound A3 by ‖A3‖ ≤ ‖µ‖2 JGi(Ω)K ≤ M2
1

M2,1
. For A4 we note

that

Gi(Ω)V −1
i Ui = (Id + ViΩ)−1

Ui = (Id + ViΩ)−1(Id + ViΩ− ViΩ + ViΩ0)(Id + ViΩ0)−1
Ui

=
[
Id +Gi(Ω) (Ω0 − Ω)

]
(Id + ViΩ0)−1

Ui.

This, together with JId +Gi(Ω)(Ω0 − Ω)K ≤ CM2,2
M2,1

, yields

|A4| ≤ ‖µ‖
∥∥Gi(Ω)V −1

i Ui
∥∥ ≤ CM1

∥∥∥(Id + ViΩ0)−1
Ui

∥∥∥ ≤ C ∥∥∥(Id + ViΩ0)−1
Ui

∥∥∥ ,
which is Qθ0-integrable by Theorem 3.15(i). For A2 we observe that

A2 =
[
(Id + ViΩ0)−1

Ui

]′
(Id + ViΩ0)V −1

i

[
(Id + ViΩ)−1 − (Id + ViΩ0)−1

]
(Id + ViΩ0)︸ ︷︷ ︸

=:Ã2

[
(Id + ViΩ0)−1

Ui

]
,

such that |A2| ≤
∥∥∥(Id + ViΩ0)−1

Ui

∥∥∥2
JÃ2K. For Ã2 we have

Ã2 = (Id + ViΩ0)V −1
i

[
(Id + ViΩ)−1 − (Id + ViΩ0)−1

]
(Id + ViΩ0)

= (Id + ViΩ0)V −1
i

[
(Id + ViΩ)−1 (Id + ViΩ0)− (Id + ViΩ)−1 (Id + ViΩ)

]
= (Id + ViΩ0)V −1

i (Id + ViΩ)−1 [(Id + ViΩ0)− (Id + ViΩ)]

= (Id + ViΩ0)V −1
i (Id + ViΩ)−1

Vi (Ω− Ω0) ,

such that (K is a generic constant and may vary from line to line)

JÃ2K ≤ JId + ViΩ0KJViK−1JId + V ΩKJViKJΩ0 − ΩK = JId + ViΩ0K
JId + ViΩK JΩ0 − ΩK

≤ K

JId + ViΩK + JViΩ0K
JId + ViΩK + 2M2,2 ≤ K · 1 +M2,2

JViK
JId + ViΩK + 2M2,2

≤ K + M2,2

M2,1

JViΩK
JId + ViΩK ≤ K + M2,2

M2,1
.

Therefore we get as a bound

|A2| ≤
∥∥∥(Id + ViΩ0)−1

Ui

∥∥∥2
JÃ2K ≤ K

∥∥∥(Id + ViΩ0)−1
Ui

∥∥∥2
,

which is Qiθ0 -integrable by Theorem 3.15(i). It remains to check the first term A1. For this, note

that for a (d× d)- matrix A we have det(A) =
∏d
i=1 λi(A), where λi(A) are the eigenvalues of A.

Since the spectral norm of A is JAKS = maxi=1,...,d |λi(A)|, one has det(A) ≤ JAKdS ≤ CJAKd. We

can bound the argument of the logarithm from above by

det (Id + ViΩ)
det (Id + ViΩ0) = det

(
(Id + ViΩ) (Id + ViΩ0)−1

)
≤ KJId + ViΩKdJ(Id + ViΩ0)−1Kd ≤ K

( JId + ViΩK
JId + ViΩ0K

)d
.
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As before, this random quantity can itself be bounded by a constant,

JId + ViΩK
JId + ViΩ0K

≤ K 1
JId + ViΩ0K

+ JViΩ0Ω−1
0 KJΩK

JId + ViΩ0K
≤ K + 1

‖Id + ViΩ0‖
≤ K,

such that the monotonicity of log implies A1 = log
(

det(Id+ViΩ)
det(Id+ViΩ0)

)
≤ logK. The term−A1 is treated

analogously, such that we conclude |A1| ≤ K. We have hence shown that 2 |h(θ;Ui, Vi)| ≤M and

M is integrable with respect to Qθ0 . This completes the continuity proof.

Theorem 3.18 (Weak consistency and asymptotic normality of the MLE). Assume (C) and let θ̂N
be an MLE defined as any solution of `N (θ̂N ; X) = supθ∈Θ `N (θ; X). Then the following assertions

hold.

(i) θ̂N converges in Qθ0- probability to θ0.

(ii) As N tends to infinity,
√
Nvec

(
θ̂N − θ0

)
→ N

(
0, I−1(θ0)

)
under Qθ0 .

Proof of Theorem 3.18. We start by showing (i), the weak consistency of the MLE. Recall that

`N (θ; X) is the N -sample log-likelihood and that the `(θ;Xi), i = 1, . . . , N, are i.i.d. random

variables with Eθ0
(
`(θ0;Xi)− `(θ;Xi)

)
= K(Qθ0 ,Qθ). The LLN therefore implies

1
N

(`N (θ0; X)− `N (θ; X))
Qθ0−→ K(Qθ0 ,Qθ).

Hence, KN (θ) = − 1
N `N (θ; X) is a contrast process with contrast function θ 7→ K(Qθ0 ,Qθ). It

therefore remains to study the continuity modulus of KN (θ), given by

ωN (η) = sup
‖θ−θ∗‖≤η,θ∗∈Θ

|KN (θ)−KN (θ∗)| = sup
‖θ−θ∗‖≤η,θ∗∈Θ

1
N
|`N (θ; X)− `N (θ∗; X)| .

The mean value theorem and the convexity of Θ assure

|`N (θ; X)− `N (θ0; X)| ≤
∫ 1

0
‖SN (θ0 + t(θ − θ0); X)‖ dt · ‖θ − θ0‖ ≤ sup

θ̃∈Θ

∥∥SN (θ̃; X)
∥∥ ‖θ − θ0‖

and therefore ωN (η) ≤ Kη 1
N supθ̃∈Θ

∥∥SN (θ̃; X)
∥∥ . We now verify that the right hand side of this

inequality has finite expectation under Qθ0 . To this end, we will show the existence of a Qθ0-

integrable random variable M(θ0) such that ‖SN (θ; X)‖ ≤ M(θ0) a.s. for any θ ∈ Θ. Obviously,

the score function can be bounded by

‖SN (θ; X)‖ ≤
N∑
i=1

(∥∥∥∥ ddµ`(θ;Xi)
∥∥∥∥+

s
d

dΩ`(θ;X
i)

{)
≤ K

N∑
i=1

(∥∥γi(θ)∥∥+
∥∥γi(θ)∥∥2 + JGi(Ω)K

)
.
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In the following, we find bounds on
∥∥γi(θ)∥∥ and JGi(Ω)K that are uniform in θ ∈ Θ. We start by

noting the identities

γi(θ) = (Id + ViΩ)−1
Ui −Gi(Ω)µ,

(Id + ViΩ)−1
Ui =

[
(Id + ViΩ)−1 (Id + ViΩ0)

]
(Id + ViΩ0)−1

Ui,

(Id + ViΩ)−1 (Id + ViΩ0) = (Id + ViΩ)−1 [Id + ViΩ− ViΩ0 + ViΩ] = Id +Gi(Ω)(Ω0 − Ω),

(3.12)

which imply (Id + ViΩ)−1
Ui =

[
Id +Gi(Ω)(Ω0 − Ω)

]
Bi(Ω0), with Bi(Ω0) := (Id + ViΩ0)−1

Ui.

Moreover, we have JGi(Ω)K ≤ KJΩ−1K ≤ K 1
M2,1

. Combining this bound with (3.12), we get

∥∥γi(θ)∥∥ ≤ JId +Gi(Ω)(Ω0 − Ω)KJBi(Ω0)K +K
M2,2

M2,1
≤ K

(
1 + JΩK−1 (JΩ0K + JΩK)

)
JBi(Ω0)K

≤ K
(
1 + JBi(Ω0)K

)
=: κi(Ω0),

and conclude, with M(θ0) =
∑N
i=1M

i(θ0) and M i(θ0) =
(
1 + κi(Ω0) + κi(Ω0)2), that

supθ∈Θ
∥∥ d
dθ `N (θ; X)

∥∥ ≤ KM(θ0) and therefore

Eθ0

(
sup
θ∈Θ

∥∥∥∥ ddθ `N (θ; X)
∥∥∥∥) ≤ KEθ0 (M(θ0)) = KNEθ0

(
M i(θ0)

)
<∞,

where the integrability of M i(θ0) follows from Theorem 3.15 above. Hence,

Eθ0 (ωN (η)) ≤ η

N
Eθ0

(
sup
θ∈Θ

∥∥∥∥ ddθ `N (θ; X)
∥∥∥∥) ≤ K η

N
NEθ0

(
M i(θ0)

)
= Kη,

which assures the weak consistency of θ̂N . Now we will verify the asymptotic normality of θ̂N ,

i.e.,
√
Nvec

(
θ̂N − θ0

)
−→ N

(
0, I(θ0)−1), with I(θ0) as the covariance matrix of the vectorized

(one-sample) Score function. By the consistency of θ̂N and since the true value θ0 is an inner point

of Θ, Qθ0
(
θ̂N ∈ int(Θ)

)
→ 1. Let KN (θ) = − 1

N `N (θ; X) and denote by KN,µ the gradient of KN

w.r.t µ, similar for KN,Ω. The mean value theorem for vector-valued functions of several variables

assures that

KN,µ(θ̂N )−KN,µ(θ0) =
∫ 1

0
JKN,µ(θ0 + t(θ̂N − θ0))dt (θ̂N − θ0) =: JKN,µ(θ̂N , θ0)(θ̂N − θ0)

with JKN,µ(θ) =
(
d
dµKN,µ(θ)′, d

dvec(Ω)KN,µ(θ)′
)
being the Jacobian of KN,µ(θ). Analogously,

KN,Ω(θ̂N )−KN,Ω(θ0) =
∫ 1

0
JKN,Ω(θ0 + t(θ̂N − θ0))dt (θ̂N − θ0) =: JKN,Ω(θ̂N , θ0)(θ̂N − θ0),

with JKN,Ω(θ) =
(
d
dµKN,Ω(θ)′, d

dvec(Ω)KN,Ω(θ)′
)
. Let

IN (θ, θ0) :=

JKN,µ(θ, θ0)

JKN,Ω(θ, θ0)

 =
∫ 1

0
HKN (θ0 + t(θ − θ0))dt,
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where HKN (θ) is the Hessian of KN (θ). Then

d

dθ
KN (θ̂N )− d

dθ
KN (θ0) = IN (θ̂N , θ0)(θ̂N − θ0). (3.13)

The law of large numbers (see also Theorem 3.16 and its proof) assures the convergence HKN (θ0) =

IN (θ0, θ0)
Qθ0−→ I(θ0). In the following we prove that IN (θ̂N , θ0) converges to I(θ0) in Qθ0-

probability, as N →∞, by showing that each entry of the difference matrix

IN (θ̂N , θ0)− IN (θ0, θ0) =
∫ 1

0
HKN (θ0 + t(θ̂N − θ0))dt−HKN (θ0)

converges to 0 in Qθ0 -probability. This will only be verified for the first (upper left) entry

rN :=
∫ 1

0

d2

dµ2
1
KN (θ0 + t(θ̂N − θ0))dt− d2

dµ2
1
KN (θ0),

the remaining ones can be treated analogously. We define for δ > 0 the set

Bδ,N = {x ∈ CT : max
0≤t≤1

(∥∥∥θ0 + t(θ̂N − θ0)
∥∥∥) < δ}

and note that the consistency of θ̂N implies limδ→0 limN→∞ Qθ0(Bδ,N ) = 1.

Eθ0
(
|rN | · 1Bδ,N

)
≤ 1
N
Eθ0

(∫ 1

0

∣∣∣∣ d2

dµ2
1
`N (θ0 + t(θ̂N − θ0); X)− d2

dµ2
1
`N (θ0; X)dt

∣∣∣∣ · 1Bδ,N)
≤ Eθ0

(∫ 1

0

∣∣∣∣ d2

dµ2
1
`(θ0 + t(θ̂N − θ0);Xi)− d2

dµ2
1
`(θ0;Xi)dt

∣∣∣∣ · 1Bδ,N)
≤ Eθ0

(
sup

0≤t≤1

∣∣∣∣ d2

dµ2
1
`(θ0 + t(θ̂N − θ0);Xi)− d2

dµ2
1
`(θ0;Xi)

∣∣∣∣ · 1Bδ,N)
≤ Eθ0 (fθ0(δ)) ,

with fθ0(δ) = sup‖θ−θ0‖<δ
∣∣∣ d2

dµ2
1
`(θ;Xi)− d2

dµ2
1
`(θ0;Xi)

∣∣∣, which is independent of N . The continuity

of θ 7→ d2

dµ2
1
`(θ;Xi) assures that fθ0(δ) converges to 0 as δ → 0. Moreover, fθ0(δ) can be bounded

uniformly, since d2

dµdµ′ `(θ;X
i) = Gi(Ω), JGi(Ω)K ≤ 1

M2,1
and thus,

sup
‖θ−θ0‖<δ

∣∣∣∣ d2

dµ2
1
`(θ;Xi)

∣∣∣∣ ≤ K sup
‖θ−θ0‖<δ

JGi(Ω)K ≤ K.

Hence, dominated convergence applies and we get

lim
δ→0

lim sup
N→∞

Eθ0
(
|rN | · 1Bδ,N

)
= 0.

The convergence of |rN | to 0 in Qθ0 -probability can now be concluded from limδ→0 limN→∞ Qθ0(Bδ,N ) = 1.

This completes the proof of the Qθ0 -convergence of IN (θ̂N , θ0) to I(θ0). We introduce the sets

B1
N = {x ∈ CT : θ̂N ∈ int(Θ)}, B2

N = {x ∈ CT : IN (θ0, θ0)−1 exists }.
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Note that - by definition of the MLE - we have d
dθKN (θ̂N ) = 0 on B1

N . The consistency of the MLE

θ̂N assures limN→∞ Qθ0(B1
N ) = 1. As IN (θ̂N , θ0) converges to I(θ0), one can moreover conclude

that limN→∞ Qθ0(B2
N ) = 1 and the continuous mapping theorem gives

IN (θ̂N , θ0)
−1
1B1

N
∩B2

N

Qθ0−→ I(θ0)−1
.

From identity (3.13) and the fact that d
dθKN (θ̂N ) = 0 on B1

N we conclude that

IN (θ̂N , θ0)
−1 (
−
√
N
) d

dθ
KN (θ0) · 1B1

N
∩B2

N
=
√
N
(
θ̂N − θ0

)
· 1B1

N
∩B2

N
.

Theorem 3.16 assures that −
√
N d
dθKN (θ0) converges in distribution to N (0, I(θ0)) and application

of Slutsky’s lemma finally gives
√
N
(
θ̂N − θ0

)
= −IN (θ̂N , θ0)

−1√
N
d

dθ
KN (θ0) d−→ N (0, I(θ0)−1).

If B(t, x)′Γ(t, x)−1
B(t, x) = b(t) is constant as a function of x, we have Vi =

∫ T
0 b(t)dt =: V .

Previously, we derived that the MLEs µ̂N and Ω̂N are implicitly given by the system (3.9). We set

UN = 1
N

∑N
i=1 Ui and we obtain the explicit expressions

µ̂N = V −1UN

Ω̂N = V −1

(
1
N

N∑
i=1

(Ui − UN )(Ui − UN )′V −1 − Id

)
.

To study the asymptotic behavior of these estimators, we observe that

Ui =
∫ T

0
B(s,Xi

s)
′Γ(s,Xi

s)
−1 [

dXi
s −A(s,Xi

s)ds
]

=
∫ T

0
B(s,Xi

s)
′Γ(s,Xi

s)
−1
B(s,Xi

s)ds · φi +
∫ T

0
B(s,Xi

s)
′Γ(s,Xi

s)
−1Σ(s,Xi

s)dW i
s

= V · φi +
∫ T

0
B(s,Xi

s)
′Γ(s,Xi

s)
−1Σ(s,Xi

s)dW i
s︸ ︷︷ ︸

=:Mi

= V · φi +M i.

Using that Eθ (Ui) = V µ, strong consistency of µ̂N follows immediately from the LLN. To study the

consistency of Ω̂N , we note that 1
N

∑N
i=1(Ui−UN )(Ui − UN )′ converges almost surely to Covθ(Ui)

according to the LLN. We further observe that Covθ(M i) = V and Covθ(φi,M i) = Eθ
(
φi(M i)′

)
=

Eθ
(
φiEθ[(M i)′|φi]

)
= 0, such that Covθ(Ui) is given by

Covθ(Ui) = Covθ(V φi +M i)

= V ΩV + Covθ(M i) + V Covθ(φi,M i) + Cov(ψi,M i)′V

= V ΩV + V.
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Therefore, the MLE Ω̂N converges a.s. to V −1 ([V ΩV + V ]V −1 − Id
)

= Ω and is thus strongly con-

sistent. As µ̂N is an average of the independent and identically distributed random vectors V −1Ui

with mean vector µ, the standard multivariate central limit theorem assures that
√
N (µ̂N − µ) is

asymptotically centered Gaussian distributed. For asymptotic normality of (the vectorized version

of)
√
N
(

Ω̂N − Ω
)
it is enough to establish asymptotic normality of

√
N
(

1
N

∑N
i=1(Ui − UN )(Ui − UN )′

)
,

which follows from standard theory.

3.4.6 Auxiliary theorems

This section provides auxiliary results that are employed in proofs of this chapter. Most are well-

known and stated without proof, as they can be found in standard literature, such as Gikhman

and Skorokhod (1979), Karatzas and Shreve (1991), or Lipster and Shiryaev (2001).

Theorem A.1 (SDE solutions in case of random global Lipschitz constants). For

0 ≤ t ≤ T, ω ∈ Ω, consider the r-dimensional SDE

dXt(ω) = α(t,Xt(ω), ω)dt+ Σ(t,Xt(ω))dWt(ω), X0(ω) = Y (ω), (3.14)

with r-dimensional standard Brownian motion (W, (Ft)0≤t≤T ), Y ∈ L2(P), and measurable

functions α : [0, T ]× Rr × Ω→ Rr and Σ : [0, T ]× Rr → Rr×r. Assume that for all x ∈ Rr the

process (t, ω) 7→ α(t, x, ω) is adapted to (Ft)0≤t≤T . Assume moreover that∫ T
0 ‖α(t, x, ω)‖2 + JΣ(t, x)K2dt <∞ for P-a.a. ω. Let K1,K2 be finite F0-measurable random

variables and suppose that for P-a.a. ω ∈ Ω the following holds:

‖α(t, x, ω)‖+ JΣ(t, x)K ≤ K1(ω) (1 + ‖x‖)

‖α(t, x, ω)− α(t, z, ω)‖+ JΣ(t, x)− Σ(t, z)K ≤ K2(ω) ‖x− z‖ .

Then there exists a unique (a.s.) continuous, adapted process solution X = (Xt)0≤t≤T to the SDE

above.

Proof. We start with the existence proof. Let K = K1 + K2. For M ∈ N introduce the sets

ΩM = {ω ∈ Ω : K(ω) ≤ M}. Then ΩM ⊂ ΩM+1 ⊂ . . . and P(ΩM ) → 1, since K < ∞

a.s. Let us define the truncated function αM := α1ΩM . Then αM (·, x, ·) is adapted (since K is

F0-measurable) for every x ∈ Rr and it satisfies the standard non-random Lipschitz conditions

with Lipschitz constant M . Moreover, FM = FM+1 = . . . = F on ΩM . Standard existence and
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uniqueness results assure the existence of a unique continuous, adapted process X(M) defined on

[0, T ] and satisfying for almost all ω ∈ Ω

X
(M)
t (ω) = Y (ω) +

∫ t

0
αM (s,X(M)

s (ω), ω)ds+
∫ t

0
ΣM (s,X(M)

s (ω)))dWs(ω).

Due to the uniqueness of solutions, we have X(M) = X(M+1) = X(M+2) = . . . on ΩM . Since

P(K < ∞) = 1, there is Ω0 ⊂ Ω,P(Ω0) = 1, such that for all ω ∈ Ω0 there is an integer M0(ω)

such that for all M ≥M0(ω) one has K(ω) ≤M . We define

X(ω) := X(M0(ω))(ω)1Ω0(ω).

Then for any M ∈ N we have X = X(M) on ΩM and since αM = α on ΩM , the process X satisfies

(3.14) on ΩM . Now let M → ∞ and use that P(ΩM ) → 1 to conclude that (3.14) holds a.s. on

Ω. Since for almost all ω ∈ Ω there is an M(ω) such that X(ω) = X(M(ω))(ω), continuity and

adaptedness of X follows from the corresponding properties of X(M). To verify uniqueness, assume

that X, X̃ are continuous, adapted solutions to (3.14). Then on ΩM we have X = X̃ = X(M) (due

to uniqueness of solutions). Since P(ΩM )→ 1 we conclude that X = X̃ a.s.

The following result is a Corollary to Theorem 2.4.1 in Mao (2007).

Theorem A.2 (Existence of moments of the unique solution). Assume the setting of Theorem

A.1 and let X be the unique, continuous and adapted solution to (3.14). Let p ≥ 2 and suppose

that the initial condition Y in (3.14) satisfies Y ∈ Lp(Ω). If K1 is deterministic, X satisfies

E (‖Xt‖p) ≤ 2
p−1

2 (1 + E(‖Y ‖p)) ep[
√
K1+K1(p−1)/2]t.

Lemma A.3. Let Qθ,Q0 be two probability measures on (CT , CT ) and assume that Qθ � Q0. Let

U : CT → S be a measurable mapping into some measure space (S,S) and let X : CT → CT be

a random variable whose distribution is Qθ. Then the distribution QU(X)
θ of U(X) has a density

w.r.t. QU(X)
0 and this density is given by

dQU(X)
θ

dQU(X)
0

(u) = EQ0

[
dQθ
dQ0

(X)|U(X) = u

]
.
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Theorem A.4. Let X be a random variable and MX(t) = E
(
etX
)
∈ R+ its moment generating

function. Assume there exist t0 < 0 < t1 such that MX(t0) < ∞ and MX(t1) < ∞. Then the

moments of all orders of X exist and are finite.

Theorem A.5 (Kolmogorov’s continuity criterion, Revuz-Yor Th.2.1). Let X = (Xt)t∈[0,1]d be a

Banach-valued process for which there exist constants γ, κ,K > 0 such that

E (‖Xt −Xs‖γ) ≤ K|t− s|d+κ.

Then there exists a (everywhere) continuous modification X̃ of X, i.e. X̃(ω) is a continuous

function on [0, T ] for each ω ∈ Ω. Even more, X̃ is Hölder continuous of order α for all α ∈

[0, κ/γ).

Theorem A.6 (Burkholder-Davis-Gundy). Let (Mt)0≤t≤T be a continuous real-valued local mar-

tingale with M0 = 0. For every 0 < p <∞ there are constants kp,Kp such that

kpE
(
〈M〉p/2T

)
≤ E

(
sup

0≤t≤T
|Mt|p

)
≤ KpE

(
〈M〉p/2T

)
.

Theorem A.7 (Multidimensional Burkholder-Davis-Gundy). Let W be a m-dimensional Wiener

process, H = (Hij) a matrix-valued (d×m)-dimensional stochastic process s.t. each component is

adapted to the filtration generated byW . Denote by Hi the i-th row of H and defineM i
t =

∫ t
0 H

i
sdWs

for i = 1, . . . , d. Then 〈M i〉t =
∫ t

0
∥∥Hi

s

∥∥2
ds is the quadratic variation and M = (M1, . . . ,Md)′ is

a d-dimensional martingale. Let p ≥ 2. There are constants cp, c̃p such that

cpE

[ d∑
i=1

∣∣M i
t

∣∣2]p/2 ≤ E

[ d∑
i=1
〈M i〉t

]p/2 ≤ c̃pE
[ d∑

i=1

∣∣M i
t

∣∣2]p/2 .

Theorem A.8 (Differentiability of parameter integrals (Amann and Escher, 2009)). Let

E = (E, ‖·‖) be a Banach space and (X,A, µ) a complete σ-finite measure space. Let U ⊆ Rn be

open and f : X × U → E such that

• x 7→ f(x, ϕ) is integrable for each ϕ

• ϕ 7→ f(x, ϕ) is continuously differentiable for µ-a.a. x ∈ X
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•
∥∥∥ d
dϕj

f(x, ϕ)
∥∥∥ ≤ g(x) for all (x, ϕ) and all j = 1, . . . , d

Then ϕ 7→
∫
X
f(x, ϕ)dµ(x) is continuously differentiable and one can differentiate under the

integral sign.

Theorem A.9. Let f : [0, T ]× Rd → R be continuous in both arguments. Then for any R > 0 the

function F : [−R,R]d → R defined by F (ϕ) =
∫ T

0 f(s, ϕ)ds is continuous.

Proof. Let ε > 0 be arbitrary. Since f is continuous on [0, T ] × [−R,R]d, it is uniformly con-

tinuous, i.e. for all ε̃ > 0 there is a δ > 0 such that whenever ‖(s, ϕ)− (s̃, ϕ̃)‖ < δ we have

that |f(s, ϕ)− f(s̃, ϕ̃)| < ε̃. Let ε̃ = ε
T . By uniform continuity there is a δ > 0 such that

|f(s, ϕ)− f(s, ϕ+ h)| < ε̃ = ε
T whenever ‖h‖ < δ. Hence, for h such that ‖h‖ < δ we get

|F (ϕ+ h)− F (ϕ)| ≤
∫ T

0
|f(s, ϕ)− f(s, ϕ+ h)| ds < T

ε

T
= ε.
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Understanding communication and signalling has long been strived for in studies of animal behaviour.
Many songbirds have a variable and complex song, closely connected to territory defence and repro-
ductive success. However, the quantification of such variable song is challenging. In this paper, we
present a novel, automated method for detection and classification of syllables in birdsong. The method
provides a tool for pairwise comparison of syllables with the aim of grouping them in terms of their
similarity. This allows analyses such as (1) determining repertoire size within an individual, (2)
comparing song similarity between individuals within as well as between populations of a species and
(3) comparing songs of different species (e.g. for species recognition). Our method is based on a
particular feature representation of song units (syllables) which ensures invariance to shifts in time,
frequency and amplitude. Using a single song from a great reed warbler, Acrocephalus arundinaceus,
recorded in the wild, the proposed algorithm is evaluated by means of comparison to manual auditory
and visual (spectrogram) song investigation by a human expert and to standard song analysis methods.
Our birdsong analysis approach conforms well to manual classification and, moreover, outperforms the
hitherto widely used methods based on mel-frequency cepstral coefficients and spectrogram cross-
correlation. Thus, our algorithm is a methodological step forward for analyses of song (syllable) reper-
toires of birds singing with high complexity.
© 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Birdsong is among the most prominent and widespread avian
behaviours, dominating the audial environment in spring and early
summer. Considerable research effort has been devoted to ques-
tions such as how birds sing and why birds have such elaborate
songs (Catchpole & Slater, 1995; Miller & Kroodsma, 1996). Central
to most research questions involving birdsong is the need for
classifying, comparing and quantifying sounds in the song within
and among individuals. Typical questions include how song
repertoire size or song variability influence mate choice and mal-
eemale competition (e.g. Hasselquist, Bensch,& von Schantz, 1996;
Horn & Falls, 1996; Searcy & Yasukawa, 1996). This involves com-
parisons of songs within an individual to estimate song complexity
(Catchpole, 1976), comparing song similarity among individuals
within a species (e.g. neighbour song matching, Falls, 1985; Horn &
Falls, 1988) and variation between individuals within a population

(Slater, Clements, & Goodfellow, 1984) and over time (Lehtonen,
1983), investigating geographical variation (Catchpole & Rowell,
1993) and song dialects (Espmark, Lampe, & Bjerke, 1989;
McGregor, 1980; Mundinger, 1980), as well as variation between
species, allowing species recognition (Kreutzer & Güttinger, 1991;
Martens, 1996; Miller, 1996). Studies assessing vocal development
and song learning endeavour to quantify similarities (imitation)
between the song of a young bird and its tutor (Kroodsma &
Konishi, 1991; Nottebohm, 1991; Slater & Ince, 1982). Classifica-
tion of song sounds and estimation of song complexity (i.e. song
repertoire size) can be conducted either (1) onwhole song strophes
in species with low to medium song complexity such as the chaf-
finch, Fringilla coelebs (Slater, 1983) and the American redstart,
Setophaga ruticilla (Lemon, Cotter, MacNally, & Monette, 1985) or
(2) on smaller sound entities, such as syllables, which are discrete
sound units that build up (often a large number of different) song
strophes in species with higher song complexity such as the great
reed warbler (GRW), Acrocephalus arundinaceus (Hasselquist, 1998;
Hasselquist et al., 1996; Węgrzyn & Leniowski, 2010) and the pied* Correspondence: M. Große Ruse, Department of Mathematical Sciences,

University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
E-mail address: mareile@math.ku.dk (M. Große Ruse).
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flycatcher, Ficedula hypoleuca (Eriksen, Slagsvold, & Lampe, 2011;
Lampe & Espmark, 2003).

The hitherto standard methods to classify song entities (sylla-
bles) has been by means of the audial and visual comparison of
syllables (see e.g. Catchpole, 1976; Hasselquist et al., 1996;
Węgrzyn, Leniowski, & Osiejuk, 2010), where the latter is often
conducted based on syllable spectrograms (Adret, Meliza, &
Margoliash, 2012; Węgrzyn & Leniowski, 2010). Unfortunately,
these approaches are often time consuming, prone to observer bias
and subjectivity, non-numerical (making statistical analyses prob-
lematic) and perform less well on songs with large syllable reper-
toires or with complex structures of song strophes/syllables (Clark,
Marler, & Beeman, 1987; Williams, 1993; Williams & Slater, 1991).
The algorithm we propose enables an automated objective classi-
fication of birdsongs and thereby facilitates the assessment of the
song repertoire of an individual bird and its temporal development,
as well as comparisons of song structures among birds within and
between different populations.

Automated song analysis is typically conducted by subdividing a
song into smaller entities (e.g. syllables or even larger song sections
as in Tchernichovski, Nottebohm, Ho, Pesaran, & Mitra, 2000) and
representing them in terms of features, i.e. a collection of charac-
terizing properties. These features can be intuitive parameters such
as the time length of a unit, its power or pitch or more involved
quantities, such as mel-frequency cepstral coefficients (MFCC) or
wavelet coefficients (see below). The selection of features, however,
should be guided by the purpose of the study, properties of the data
and not least by available computational resources. The feature
representation summarizes important characteristics of the song
units, which facilitates a comparative analysis in terms of a simi-
larity measure that operates on the feature basis. If the differences
of interest between syllables are known in advance and are suffi-
ciently pronounced, the representing features should be chosen
such that they are able to reflect these differences prominently. If,
for example, one factor of interest is a syllable's length, the time
duration will be the natural choice and should be included in the
feature representation. However, if there is no prior knowledge of
the underlying factors for classification or if syllable characteristics
are very complex and not straightforward to capture, the purported
feature space should be sufficiently rich in order to facilitate
detection of various syllable characteristics. Methods for song
analysis that have been proposed in the literature differ mainly in
the way song units are chosen, which features are extracted and
how similarity between features of song units is assessed. The
choice of small entities such as single syllables as the basic building
blocks facilitates song complexity analysis of songs with highly
variable strophes, such as those of most European and Asian war-
blers, flycatchers, thrushes, wrens and chats. Moreover, sections of
a recording that are affected by substantial background noise can
easily be discarded, which proves beneficial if only field recordings
are available. If, however, the whole recording is confounded by
noise, it may be hard to tell subsequent syllables apart, which
hampers an unambiguous definition/detection of syllables.

The most well-known technique in the context of birdsong
analysis is the cross-correlation approach applied to the spectro-
gram (SPCC; Keen, Ross, Griffiths, Lanzone, & Farnsworth, 2014).
This method, however, suffers from sensitivity to natural jitters of
components at time and frequency locations as well as sensitivity
to noise. Tchernichovski, Lints, Mitra, and Nottebohm (1999)
therefore applied the more robust multitaper (MT) spectrograms
for syllable-based feature extraction. Kogan and Margoliash (1998)
showed that spectrogram-based features are inferior to a syllable
representation by means of MFCC when recordings are substan-
tially affected by background noise. Syllable representation by
time-varying sinusoids was applied to recognition of bird species

with relatively simplistic songs by H€arm€a (2003), while Somervuo
and H€arm€a (2004) combined this approach with a clustering of
syllables in terms of the k-means algorithm. In a comparative study,
Somervuo, H€arm€a, and Fagerlund (2006) found that the sinusoidal
model approach was clearly outperformed by the more complex
MFCC-based syllable representation. A combination of the latter
and some descriptive parameters for syllable representation was
investigated by Fagerlund (2007) and by Trifa, Kirschel, Taylor, and
Vallejo (2008) in the context of species recognition. For more
complex birdsong syllables the comparably simple models such as
the sinusoidal approach and the MFCC representation may fail to
capture central information of the signals and more sophisticated
representations such as wavelet decompositions have been
considered (Selin, Turunen, & Tanttu, 2007). (For a recent com-
parison of various methods, such as SPCC, dynamic time warping
and pitch-frequency analysis, see Keen et al., 2014; Meliza, Keen, &
Rubenstein, 2013.) Algorithms employing some of the previously
mentioned techniques have been implemented and made available
as ready-to-use programs, among them Sound Analysis Pro
(Tchernichovski & Mitra, 2004), Luscinia (Lachlan, 2007), Avisoft-
SASLab Pro (Specht, 2004) or Praat (Boersma & Weenink, 2001).

For the within-species analysis of songs with elaborate
complexity (e.g. such as those of the GRW), however, techniques
with an additional level of sensitivity are required.

In this paper, we propose a fully automated method tailored to
syllable-based, within-species analysis of field recordings of com-
plex birdsongs. The algorithm, which allows an unbiased, repro-
ducible and reliable song analysis, is a three-step procedure,
comprising syllable detection, representation and comparison
(with further clustering, if required). The novelties in our approach
are the usage of the ambiguity spectrum (a transformation of the
spectrogram and also called the Doppler-lag spectrum) for feature
extraction and a novel similarity measure for subsequent syllable
comparison.

The advantage of the ambiguity spectrum as opposed to the
popular standard spectrogram is its invariance to time and fre-
quency shifts of syllables, as the ambiguity spectrum is always
centred at zero Doppler frequency and time lag (Boashash, 2003). It
therefore focuses solely on the relations between different time and
frequency components in a syllable. As already successfully
employed by, for example, Meliza et al. (2013) and Tchernichovski
et al. (1999), as well as in our preliminary study (Sandsten, Tarka,
Caissy-Martineau, Hansson, & Hasselquist, 2011), we used MTs for
noise-robust spectrogram estimation. Syllable clustering is ach-
ieved by means of a hierarchical clustering algorithm where the
number of clusters is objectively estimated by the Silhouette
quality criterion. The proposed method, as well as comparative
established approaches based on MFCC and SPCC, is evaluated on a
real data set by comparison to a ‘ground truth’ given by a human
expert (D.H.) with long experience in GRW song syllable analysis
(Hasselquist, 1998; Hasselquist et al., 1996). All computations were
conducted in MATLAB (MATLAB and Statistics Toolbox Release
2012b, TheMathWorks, Inc., Natick, MA, U.S.A.) and we can provide
a ready-to-use code upon request.

METHODS

Evaluation of the algorithm by comparison to human expert
clustering and tomethods based onMFCC and SPCC is conducted by
means of three examples of increasing complexity. The underlying
data represent the type of data typically obtained in the challenging
setting of field recordings of complex birdsongs. In a first example,
we use our algorithm and two alternative approaches (MFCC and
SPCC) to recover a classification of syllables into two visually well-
separated groups. The second example generalizes this setting to a
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more realistic scenario by dropping the assumption that the syl-
lable set is composed of exactly two classes. Instead, a clustering
algorithm is applied which estimates the number of classes from
the data and which will then group the syllables accordingly. The
third example extends the previous clustering problem to the
highly nontrivial and biologically very interesting task of clustering
the syllables of a whole sequence of song strophes of a male GRW
(236 s long and comprising 433 syllables).

Key Terms

Song strophe
A recording (referred to as a song in this text) is usually

3e10 min long and includes typically 25e40 song strophes, each of
which is composed of approximately 10e20 smaller sound units,
the syllables. Subsequent strophes are separated by a period of
silence/no singing in which only noise is perceptible.

Song syllable
Syllables are more or less continuous sound sections separated

by short silent periods and are the building blocks of a song strophe.
A syllable in a GRW song has a duration of about 50e300 ms.
Within a song strophe of the GRW, a syllable of certain type is
usually repeated 1e10 times in a row. Syllables are the units of
interest in the proposed song analysis tool and their clustering/
classification is conducted by means of pairwise syllable
comparisons.

Double syllable
A double syllable is a syllable containing two (usually repeated)

or three parts (kack-a-kack) and is a common phenomenon in the
song structure of GRWs.

Feature vector
To facilitate clustering analysis of a set of syllables, each syllable

is represented by a feature vector, i.e. a collection of characterizing
numbers (features). The quality of a feature vector is determined
by its ability to discriminate between syllables from different
groups.

Song Recording and Ethical Note

Each year within the period 1987e2010, songs were recorded of
almost all GRWmales that held a territory (for more than 7 days) in
Lake Kvismaren (Hasselquist, 1998; Hasselquist et al., 1996). Re-
cordings were done using a Telinga parabola with an attached
Telinga Stereo DAT microphone used in mono mode (Telinga Mi-
crophones, Sweden) and a SONY cassette tape recorder (SONY TC-
D5M). Sounds were later digitalized using a Tascam 322 cassette
deck and a Lynx Aurora 16 soundcard. The sampling rate was
44.1 kHz and the bit depth 16 bits. The field recordings were made
at a distance of about 10e60 m on males singing intensive (mate
attraction) long songs (Catchpole, 1983; Hasselquist & Bensch,
1991). We avoided windy and rainy conditions and allowed males
to recover a high song intensity after the initial approach of the
human observer.

Wewere always cautious to approach a singing male slowly and
carefully, to avoid having the male stop singing or fly off. In most
cases, a singing male resumed intensive long song within a few
minutes after our approach. Recordings were usually made from a
small boat or canoe, which further reduced the disturbance when
approaching the singing bird.

Syllable Detection

Syllable detection is conducted by means of two power-
smoothing filters (moving averages). A longer (default 360 ms)
filter Plong(t) is responsible for noise reduction and determines a
time-varying threshold, while a shorter (default 90 ms) filter
Pshort(t) is used for detection of those samples that build up to a
syllable. The syllable detection decision at each sample (time value)
is based on whether

PshortðtÞ> PlongðtÞ þ
�
1� lsens

100

�
maxPlong: (1)

Here maxPlong is the maximum value of Plong(t) when t varies
between 1 and L, where L is the strophe length (number of samples)
and lsens is the sensitivity of the detector as a percentage (default
99), constraining the power of the short filter to be somewhat
above the power of the long filter. With lsens ¼ 100, all small
changes in the level of the recorded signal at the beginning and end
of the strophe will be erroneously detected as syllables of weak
power and short duration. When using a sensitivity of 99%, all
syllables in a strophe with small disturbances, e.g. Fig. 1a, will be
detected. Further lowering the sensitivity to, for example, lsens ¼ 90,
creates an even less sensitive detector, where the low-level sylla-
bles especially in the beginning of the strophe as well as low-level
disturbances will be discarded, for example that seen between
syllables 7 and 8 in Fig. 1b. For recordings including a lot of noise,
such as wind disturbance and songs from other individuals, a lower
detection level is recommended, although this may lead to exclu-
sion of less strongly pronounced syllables. If the time distance be-
tween consecutive, detected samples is smaller than a minimum
allowed distance between syllables (default 60 ms), the detected
samples are assumed to belong to the same syllable. The start and
end time points of a detected syllable are extended backwards and
forwards to include the weaker start and end of the signal (default
±60 ms). Choosing the extension to be less than or equal to the
minimum allowed distance between syllables will ensure that no
parts of neighbouring syllables will be included.

Syllable Representation

The basis of the syllable representation is a frequency and time
shift-invariant transformation of the MT spectrogram, the filtered
ambiguity spectrum. The spectrogram based on MTs is an
improvement of the traditional spectrogram in terms of robustness
as the variance of the resulting estimate of a syllable's time-
frequency image is typically lower. Here we first recall the defini-
tion of the MT spectrogram and then explain the filtered ambiguity
spectrum and describe how the filtered ambiguity spectrum of each
syllable is used for feature extraction and how we assess the sim-
ilarity of two syllables, based on their respective feature
representation.

Multitaper spectrogram
Birdsong syllables are typically visualized by means of a spec-

trogram, based on a single (Hanning) window. Such a representa-
tion is depicted in Fig. 2aed, in which two syllables are shown
along with their corresponding Hanning window spectrograms
(the colours are in logarithmic (dB) scale). This windowed spec-
trogram has a good time and frequency resolution, but suffers from
noise sensitivity. The Welch spectrogram (Welch, 1967) achieves
increased robustness by averaging spectra of partly overlapping
data sequences, and an overlap of 50% has been shown to be
appropriate from resolution and variance aspects. A further
improvement in terms of leakage, resolution in frequency and
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variance (Bronez, 1992) is achieved by using multiple windows, so-
called multitapers (MTs), as introduced by Thomson (1982). In this
approach all tapers make use of the information from the whole
data set, and, provided certain properties are satisfied, the aver-
aging of M different windowed spectrograms reduces the variance
of the resulting estimate by up to a factor M, compared to a single-
window spectrogram. Hermite function multitapers (Daubechies,
1988) give an additional improvement of the Thomson MTs in
terms of resolution in time and frequency (Bayram & Baraniuk,
1996; Hansson-Sandsten, 2011; Xu, Haykin, & Racine, 1999), and
is the method of choice for our proposed algorithm.

Examples of the Hermite function MT spectrograms usingM ¼ 8
multitapers are shown in Fig. 2e, f. When comparing these to the
corresponding standard spectrograms (single Hanning window)
shown in Fig. 2c, d, one can see that multitapering leads to a lower
resolution but gives a clearer view of the signal components with
better noise suppression (lower variance). The Hanning window
has by definition a certain length and a frequency bandwidth that is
sometimes measured as the frequency main lobe of the window
(which is known to be 4/T for the Hanning window, where T is the
actual length of thewindow). For the Hermite functionMTs, it is not
possible to define the time width in the same way, as the Hermite
functions are of infinite length and the main lobe width does not
necessarily relate to the Hanning main lobe. Instead, we define the
time width of a single Hermite window as the time interval in
which 99% of the energy is located. A corresponding definition of
frequency width is to use the frequency interval that contains 99%
of thewindow spectrum energy. As each of theMHermitewindows
has different time and frequency widths, the time and frequency
width of an M window Hermite MT spectrogram is then defined as
the corresponding width of the Mth Hermite window as this win-
dow has the largest values. With a larger value of M, that is with
more tapers, the time and frequency resolution of the corre-
sponding final estimate will decrease. The time and frequency
widths for the results shown in Fig. 2e, f are 13.4 ms and 883 Hz.
The corresponding time width of the Hanning window in Fig. 2c,
d is 4.17 ms and the frequency width is 474 Hz.

Filtered ambiguity spectrum
Even though the MT spectrogram is more robust to noise than

the standard spectrogram and thus smooths out small jitters that
could lead to misclassification of syllables, SPCC based on these
improved spectrograms may still fail. For illustration of a prob-
lematic setting in this context, two syllables and their MT spec-
trograms are depicted in Fig. 3aed. It can be seen that the general
syllable structures are highly similar, suggesting that both syllables
are realizations of the same syllable type (and thus should be
classified as being equal). However, their spectrograms reveal an
unequal number of strong components in the syllables (five in
syllable C and six in syllable D). Thus, correlating the corresponding
two single Hanning window spectrograms (Keen et al., 2014) will
give a result of 0.67, which is far from being close to one (exact
similarity). The reason is that, because of the different number of
strong components, there are several possible positions in which
the correlation is fairly high but none in which the two images
match totally.

To circumvent those problematic phenomena, we instead
concentrate on the filtered ambiguity spectrum (exemplified in
Fig. 3e, f), which arises from the spectrogram by application of the
Fourier transform (FT) in the two different directions. The trans-
formation causes an invariance with respect to time and frequency
shifts (Boashash, 2003) such that only time and frequency differ-
ences between syllable components are visible; the component's
exact position in the time-frequency plane and the number of
components are disregarded. This explains the close resemblance
of the ambiguity spectra depicted in Fig. 3e, f.

Feature extraction
A song's syllable repertoire can be assessed by arranging sylla-

bles in clusters, where similar syllables are grouped together and
distinct ones are divided into distinct clusters. A more effective and
robust clustering can be facilitated by representing syllables by
features. A first step to enhanced robustness was taken by appli-
cation of MT techniques to spectrogram estimation. Transformation
to the ambiguity domain eliminates the influence of time or
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Figure 1. Strophes with detected syllables (marked with purple lines bordered with crosses and numbered). (a) Song strophe with small disturbances, lsens ¼ 99%; (b) song strophe
with large disturbances, lsens ¼ 90%.
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frequency shifts. To further reduce the influence of small jitters,
such as the small frequency differences in Fig. 3c, d, and to
compress information, we apply the singular value decomposition
(SVD) to the ambiguity matrix. A syllable will be represented by
only the first pair of singular vectors (a left and a right singular
vector) of its ambiguity spectrum. Note that the syllable's ampli-
tude information is found in the singular value, which will be dis-
regarded. In that way, the information is normalized and the
original syllable amplitudes will not influence the result.

The similarity between two syllables, both represented by their
first left and right ambiguity singular vectors, is assessed by means
of a similarity measure. Commonly used similarity measures are
the cosine similarity, Pearson correlation or the extended Jaccard
measure (Maimon & Rokach, 2005). Distance measures can also be
used to define similarity measures and among the distances
commonly used in clustering context are the Euclidean distance, L1
(or Manhattan) distance, maximum distance, the binary distance or
the Canberra distance. The similarity measure we propose in this
work is related to the cosine similarity (for a definition of cosine
similarity see e.g. Zaki & Meira, 2014).

For (column) vectors x; y; 〈x; y〉 ¼ xTy denotes their inner
product and the superscript T indicates the transpose of a vector.
For a syllable s we write bu, bv for first left and right singular vectors
obtained from the SVD of the estimated filtered ambiguity matrix.

The similarity of two syllables s(i), s(j) in frequency and time struc-
ture is calculated as bðsðiÞ; sðjÞÞ ¼ minðhbuðiÞ

; buðjÞi; h bvðiÞ; bvðjÞiÞ and
syllables are considered as similar if b(s(i), s(j))z 1, while non-
similarity is inferred from b(s(i), s(j))z 0. The intuition behind this
definition is the following. Singular vectors always have length one,
i.e. 〈bu ; bu〉 ¼ 〈bv ;bv〉 ¼ 1. Now if a vector eu is very similar to bu, then
one would expect that 〈eu; bu〉z1. On the other hand, if eu is very
different, say even perpendicular to bu, then their inner product
would approximately be zero, 〈eu; bu〉z0. Taking the minimum of
both quantities in the definition of the similarity measure corre-
sponds to considering the worst case scenario: Two syllables are
only declared similar if they are similar in both time and frequency
direction. Deviation in one direction yields nonsimilarity.

An example is seen in Fig. 4, in which the left and right singular
vectors are depicted for the two syllables C and D of Fig. 3, with blue
and red colours, respectively. It is seen that not only are the lag
shapes very similar (close to one) but also the basic Doppler shapes
resemble each other closely. The similarity measure in this case is
b(s(C), s(D))z 0.96.

Syllable Clustering

Partitioning objects into different groups is usually referred to as
classification or clustering, depending on whether the groups are
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Figure 2. (a, b) Example of two similar syllables from one song. (a) Syllable A; (b) syllable B. (c, d) The corresponding spectrograms (dB scale) with time and frequency width
4.17 ms and 474 Hz for (c) syllable A and (d) syllable B. (e, f) The multitaper spectrograms (dB scale) with time and frequency width 13.4 ms and 883 Hz and M ¼ 8 windows for (e)
syllable A and (f) syllable B.
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specified beforehand (see Hastie, Tibshirani, & Friedman, 2009;
Manning, Raghavan, & Schütze, 2008; Micheli-Tzanakou, 2000).
Syllable-based birdsong analysis is a typical case of a clustering
problem as the syllable groups are generally not known in advance,
and nor are the number of groups into which the syllables can be
partitioned. Among numerous available clustering algorithms, the
hierarchical clustering approach is one that does not require the
knowledge of the number of clusters and is therefore chosen for our
application.

Hierarchical clustering
Hierarchical methods return a ranked structure, which is

generally more informative than a fixed output of clusters. The
partitions obtained by a hierarchical clustering method can be
visualized by a dendrogram, a tree structure plot, which shows how
the groups are nested at different levels (see e.g. Fig. 11a in example
3 of the section on evaluation and results below). Using different
cutoff thresholds for pruning the cluster tree, the user can refine or
coarsen the clusters and therefore achieve different levels of
granularities. This is especially useful in application to birdsong
analysis as researchers may choose the level of resolution
depending on whether a fine-grained clustering is desirable or a
grouping with less attention to details is sufficient. The interested
reader may learn about the advantages and disadvantages of
different hierarchical clustering algorithms in Manning et al.
(2008). In our study we apply the agglomerative approach (i.e.
the algorithm starts with defining each data point as its own cluster

and successively merges clusters until only a single cluster, con-
taining all data, remains) and similarity between clusters is calcu-
lated as the average of all pairwise similarities betweenmembers of
the two clusters (the so-called average link method).

Optimal thresholding
To obtain a final partition of syllables into clusters, a cutoff

threshold r for the syllable dendrogram has to be selected. The
choice depends on the required resolution and deciding on an
appropriate value of r (or, equivalently, for the number K of clus-
ters) is generally not obvious. The literature proposes a variety of
approaches for ‘optimal’ threshold selection, most of which are
based on measuring the quality of a clustering for different values
of K by means of internal or external quality criteria and the most
common criteria for cluster evaluation are described in Maimon
and Rokach (2005) and Zaki and Meira (2014).

External quality criteria use additional information that cannot
be derived from the data, for instance external expert knowledge.
This, however, is not always available. Internal quality criteria, in
contrast, are exclusively based on information inherent in the data.
They assess the quality of a clustering by measuring intracluster
(which should be small) and intercluster variability (which is
supposed to be large compared to intercluster spread). A neat and
informative overview of most internal quality indices, their defi-
nition, references and implementations in the software R (R Core
Team, 2014) can be found in Charrad, Ghazzali, Boiteau, and
Niknafs (2014). In several comparative studies (see e.g. Arbelaitz,
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Gurrutxaga, Muguerza, P�erez, & Perona, 2013; Guerra, Robles,
Bielza, & Larranga, 2012) the Silhouette quality measure
(Rousseeuw, 1987; Zaki & Meira, 2014) was found to perform well
in our context of hierarchical clustering with average link and is the
criterion of choice in the following. The Silhouette index takes
values between �1 and 1 and the higher the Silhouette value, the
better is the clustering. In particular, this criterion does not require
any subjective decisions by the user such as finding a ‘knee’ in a plot
or a tuning of parameters. It therefore facilitates our goal to provide
a fully objective approach for birdsong analysis.

EVALUATION AND RESULTS

In this section, we assess the performance of our proposed
filtered ambiguity MT spectrum algorithm when applied to real
data and compare it to both an MFCC-based method and to a
method relying on SPCC. Thus, this section presents three examples
that serve as a demonstration of the method's applicability.

Example 1: Separating two Syllable Classes

In this first example the methods are applied to classify a set of
39 syllables into two classes, which can easily be distinguished by

eye and ear (Fig. 5). The within-class variability of the syllables is,
however, very high (suggesting several subclasses, see example 2),
which provides an extra challenge for the algorithms. Class 1
contains 17 well-aligned similar syllables, although of somewhat
different amplitudes. The two syllables marked A and B are those
exemplified in Fig. 2. Class 2 consists of 22 syllables, which are
similar in structure, but not necessarily in time-frequency patterns.
The two syllables marked C and D are exemplified in Fig. 3. The
syllables of each class are time aligned using pairwise time
correlation.

To put the performance of our technique into perspective, we
additionally compare the results of our approach to those one
would obtain if a single Hanning window spectrogram were used
for calculation of the filtered ambiguity spectrum. All methods are
evaluated in terms of a receiver operating characteristics (ROC)
curve. The resolutions of the spectrogram-based methods are
chosen optimally and are the same as those in Figs 2 and 3, i.e.
13.4 ms and 883 Hz for the MT spectrogram using M ¼ 8 windows
and 4.17 ms and 474 Hz for the single Hanning window spectro-
gram. For the MFCC method, the often used implementation by
Slaney (1998) is chosen with eight cepstral coefficients, a 25 ms
Hamming window and 90% overlap between frames. For the SPCC
method the single window Hanning spectrogram with time and
frequency resolutions of 4.17 ms and 474 Hz as defined above is
employed. For the method-specific similarity measures, different
thresholds are applied to find the ROC curves for all methods. The
results are shown in Fig. 6 with the true positive rate (correctly
classified as similar) on the y-axis and the false positive rate
(erroneously classified as similar) on the x-axis.

The filtered ambiguity MT spectrum (blue line) clearly out-
performs the other three methods with 90% correct classifications,
accepting 5% false positives (Fig. 6). In contrast, the filtered ambi-
guity spectrum based on the noise-sensitive single Hanning win-
dow spectrogram (cyan line) achieves only 80% correct
classifications (accepting 5% false positives). The well-knownMFCC
method (red line) and the SPCC approach (green line) fail markedly
with only about 60% and 55% correct classifications, respectively.

Example 2: Clustering of the Syllable Set in Example 1

Typically, the researcher is faced with a large number of sylla-
bles and the question of how many different syllable types they
represent. In this view, the setting of the first example with an a
priori known number of classes is too simplistic for many appli-
cations. We now examine how a hierarchical clustering algorithm
groups the syllable set from example 1, in which the number of
clusters is determined via the Silhouette statistic.

The blue line in Fig. 7 shows the Silhouette values evaluated for a
range of possible threshold values (between 0.033 and 0.2). The
black numbers on top of the line denote the number of clusters
corresponding to each threshold. The Silhouette statistic is in fact
maximized for all threshold values within the interval [0.0620,
0.1130], all of them yielding the same clustering result. The
dendrogram for this data set is depicted in Fig. 8. Applying (one of)
the optimal threshold(s), the resulting first (purple) cluster con-
tains syllables 1 up to 17 and therefore corresponds exactly to Class
1 in the manual classification. However, optimal thresholding splits
Class 2 into four distinct groups, as illustrated in Fig. 9 (and denoted
by Cluster 2 to Cluster 5). Examples of syllables from each of these
four groups are shown in Appendix Fig. A1, using more common
grey-scale spectrograms. For evaluation of this result a human
expert (D.H.) conducted clustering of this syllable set. The expert-
based result not only yielded the same number of clusters, the
separation of the 39 syllables into the four groupswas also identical
to the algorithm-based classification.
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Example 3: Clustering of a Whole Song

As a third application, we extend the previous clustering prob-
lem to a more complex setting of clustering the syllables of a whole
song, which illustrates an interesting, nontrivial application of our
method. The data are from a nearly 4 min field recording of a song
of a GRW, comprising 433 syllables. As previously, we evaluate the
Silhouette criterion for a range of threshold values, determine the

value that maximizes the Silhouette statistic and use this threshold
as the optimal cutoff for the dendrogram.

The Silhouette statistic, calculated for threshold values within
the interval [0.033, 0.1], is displayed in Fig. 10a with a black circle
marking the optimal threshold ropt ¼ 0.0450. The dendrogram
from the hierarchical clustering algorithm is shown in Fig. 11a.
Different colours illustrate the resulting syllable clusters and the
black dashed horizontal line marks the optimal threshold. If more
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resolution is desired, the user may want to lower the threshold and
thus obtainmore clusters. Theway the number of clusters is related
to the different thresholds can be seen in Fig. 10b. The chosen cutoff
corresponds to grouping the syllables into 57 distinct clusters. For
this clustering choice, the median number of syllables in each

cluster is 7 and the largest cluster contains 35 syllables. It should,
however, be noted that the Silhouette statistic can only be a guid-
ance for the selection of a threshold. As can be seen in Fig. 10, the
Silhouette optimum is not very pronounced, implying that clus-
tering results for other threshold choices are nearly as good (when
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quality is measured in terms of the Silhouette statistic). It is always
recommendable to conduct a manual postanalysis and compare
clusterings for different thresholds. This comparison is facilitated
by the dendrogram, which easily visualizes how clusterings change
depending on the chosen thresholds. Figure 11b shows a zoom-in of
the dendrogram in Fig. 11a and the syllables occurring in the three
different clusters highlighted there are displayed in Fig. 11c. Sylla-
bles within the same cluster are in fact (visually) very similar, while
being rather distinct between different clusters. To further inves-
tigate the clustering obtained by the Silhouette-optimal threshold
choice, the 433 syllables have also been classified by a human
expert, based on visual inspection, which resulted in 37 distinct
clusters. The analysis in example 2 was conducted on a smaller part
of the data considered here. It is therefore interesting how syllables
are clustered when the optimal threshold is estimated based on
only a partial data set. Applying the threshold r ¼ 0.0620, which
was an optimal choice in Example 2 and, moreover, resulted in a
clustering that exactly coincided with the result obtained by a
human expert, gives a separation of the 433 syllables into a
somewhat coarser clustering with 45 distinct clusters.

DISCUSSION

There is a need for a noise-insensitive automated analysis tool
that allows detailed investigations of more complex birdsongs
recorded under natural outdoor conditions. This is because stan-
dard previous approaches are highly time consuming and subjec-
tive (manual visual/audial inspection) or very sensitive to sound
noise and time/frequency shifts (spectrogram-based, single-
domain cross-correlations). The unavailability of reliable and fast
birdsong analysis tools has hampered research on birdsong, in
particular in wild species with moderate to high song complexity.
Hence, much of what we know today about birdsong is based on
information from species with low variation in their song. This can
bias our understanding of the meaning and functions of birdsong,
as well as the evolution of song repertoires and song complexity in
general (Catchpole, 1989; Kroodsma, 1989).

The method we propose here serves as a new tool for the
objective analysis of complex birdsongs. It is worth mentioning,
though, that the performance of an algorithm for birdsong analysis
depends heavily on theway syllables are determined (e.g. the tricky

issue of whether closely spaced syllables are considered to be two
single syllables or one double syllable), on the selection of repre-
senting features and on the similarity measure. Therefore, results
always have to be viewed in the light of the (subjectively) chosen
syllable representation and classification method. However, a fully
automated analysis procedure does not add further subjectivity to
the song investigation. Therefore, after a researcher has decided on
an automated analysis procedure, the results obtained are not
influenced by subjectivity, ensuring reproducibility and
comparability.

To provide an objective method of threshold determination, we
evaluate the quality of a clustering in terms of the Silhouette index.
This criterion favours clusterings with a Silhouette-optimal trade-
off between high intracluster similarity and high intercluster dif-
ferences, offering reasonable guidance for the threshold choice.
One should, however, always keep in mind that a Silhouette-
optimal clustering result can never be more than an initial guide.
A Silhouette-optimal threshold might not coincide with the desired
coarseness of the clustering and therefore other, nearly optimal,
thresholds might fit the specific research question better. In-
vestigations that focus on song-based species recognition, for
instance, may require a lower level of resolution than within-
individual song analyses. Moreover, one should bear in mind that
the clustering algorithm itself will always be prone to mis-
classifications, independent of the final choice of the cutoff level.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Figure 9. Syllable clusters. Cluster 1 coincides with Class 1 from example 1. The
remaining syllable columns constitute Class 2 but are here (using the optimal
threshold) grouped into four distinct classes.
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Figure 10. (a) Evaluation of the Silhouette statistic (the quality index) as a function of
the threshold r. The optimal threshold ropt and the corresponding Silhouette value are
marked as a black circle. (b) Number K of clusters as a function of the threshold value r.
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Figure 11. Clustering result for example 3. (a) Illustration of the hierarchical clustering result as a dendrogram. The horizontal dotted line marks the cutoff at the optimal threshold
ropt ¼ 0.0450. (b) Zoom-in of the dendrogram in (a). (c) The syllables in the three clusters from (b).

M. Große Ruse et al. / Animal Behaviour 112 (2016) 39e51 49



The researcher is therefore always advised to conduct a manual
postanalysis by inspecting the clusters in more detail (e.g. by going
back to the time and/or the time-frequency representation of the
syllables) and to thereby correct possible misclassifications of the
algorithm. However, despite the need for manual inspection/
adjustment, an automated preclustering will save researchers a
considerable amount of time and will serve as a useful guide in the
analysis of birdsong. For situations in which a researcher is not
interested in a final clustering or dendrogram, but solely in the
pairwise similarity scores, the algorithm can be adjusted to return
only the matrix of similarity scores. The novelty in our approach is
the combination of multitapering and the ambiguity spectrum,
including SVD-based feature extraction. The chosen syllable rep-
resentation, along with the specific similarity measure, captures
key properties of birdsong syllables and thereby leads to a powerful
algorithm. Themethod, applied to real data, is evaluated in terms of
comparison to human expert evaluation and gives very promising
results in the context of clustering of GRW syllables. It, moreover,
clearly outperforms existing approaches based on MFCC or SPCC.
Additional improvements could be achieved by (1) expanding the
chosen feature set by some additional features and (2) weighting
features according to their importance. In this way a syllable s
would be represented by a feature matrix F ¼ [u, v, b], where u, v are
the first left and right singular vectors obtained from the SVD of the
estimated filtered ambiguity matrix and b contains additional
features, such as the time length of a unit, its power or pitch fre-
quency. If að$; $Þ is another similarity measure suitable for assess-
ing the similarity of two vectors b(i), b(j) (for instance in terms of the
Euclidean distance), one could investigate alikeness of two syllables
s(i), s(j) by means of the (weighted) similarity measure gðsðiÞ; sðjÞÞ ¼
lbðsðiÞ; sðjÞÞ þ ð1� lÞaðsðiÞ; sðjÞÞ for some l between 0 and 1.
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Figure A1. Spectrogram of four syllables, labels from Fig. 5, one from each of clusters 2e5 in Fig. 9. (a) Syllable 23; (b) syllable 24; (c) syllable 26; (d) syllable 30.
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Abstract
Selenomethionine (SeMet) is an important organic nutritional source of Se, but the uptake and metabolism of SeMet are poorly characterised in
humans. Dynamic gamma camera images of the abdominal region were acquired from eight healthy young men after the ingestion of
radioactive 75Se-L-SeMet (75Se-SeMet). Scanning started simultaneously to the ingestion of 75Se-SeMet and lasted 120 min. We generated time-
activity curves from two-dimensional regions of interest in the stomach, small intestine and liver. During scanning, blood samples were
collected at 10-min intervals to generate plasma time-activity curves. A four-compartment model, augmented with a delay between the liver
and plasma, was fitted to individual participants’ data. The mean rate constant for 75Se-SeMet transport was 2·63 h–1 from the stomach to the
small intestine, 13·2 h–1 from the small intestine to the liver, 0·261 h–1 from the liver to the plasma and 0·267 h–1 from the stomach to the
plasma. The delay in the liver was 0·714 h. Gamma camera imaging provides data for use in compartmental modelling of 75Se-SeMet
absorption and metabolism in humans. In clinical settings, the obtained rate constants and the delay in the liver may be useful variables for
quantifying reduced intestinal absorption capacity or liver function.

Key words: Selenomethionine: 75Se-L-selenomethionine: Absorption capacity: Metabolism: Gamma camera imaging: Compart-
mental modelling

Selenomethionine (SeMet) is an important organic nutritional
source of Se(1,2). Absorption of various Se compounds occurs
via different routes and mechanisms. Membrane transport of
selenoamino acids, including SeMet, involves a specific suite
of amino acid transporters(3). The subsequent incorporation of
dietary Se into selenoproteins occurs through a series of inter-
conversions, of which many details remain unknown. Se
metabolites are excreted in the urine and faeces and in exhaled
air, mainly as selenosugars and methylated compounds(4).
The initial metabolism of Se in humans is poorly char-

acterised. Estimates of Se absorption, whole-body retention and
excretion have been made predominantly on whole-body
counting(5) or the recovery of ingested tracers in the blood,
urine and faeces(6). Compartmental analyses of kinetic data
from tracer studies have also been used to create a more inte-
grated picture of whole-body Se utilisation in humans(7,8).
These studies characterised the long-term kinetics by the
investigation of urine and faecal data collected over 12 d and
blood samples drawn over 4 months. Through detailed

mathematical modelling including several plasma pools,
they were able to provide new insights into the long-run Se
metabolism. However, because the study data only comprised
hourly observations after dose administration, the initial Se
kinetics could not be investigated and therefore still remained
unclear. Our study tries to fill this gap and to provide deeper
insight into the initial Se kinetics by focusing on frequent data
collection within the first 2 h after administration. However,
it should be noticed that the doses used in the previously
mentioned studies(7,8) were considerably larger (150–200 µg)
than those administered in the present study (29 µg), which
might affect the kinetics and thus hamper the comparability of
our study to the previous studies. In an earlier study(9), we
had employed gamma camera imaging after oral intake of
radio-labelled SeMet to quantify the gastrointestinal absorption
capacity for SeMet and followed its postprandial distribution
within the body. In the present study, we focused on dynamic
gamma camera imaging with high temporal resolution to obtain
data on both the intestinal absorption and the initial distribution

* Corresponding author: J. L. Madsen, fax +45 3862 3750, email jan.lysgaard.madsen@regionh.dk

Abbreviations: 75Se-L-SeMet, 75Se-SeMet; ROI, region of interest; SeMet, selenomethionine.
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of SeMet in humans. We developed a compartmental model
that was able to capture the behaviour of the high-resolution
data and thus shed more light on the initial SeMet kinetics in
humans. For the development of a suitable mathematical
model, we followed two approaches. The first one used the
simplest model, – the model with the fewest compartments
and parameters – to explain the observed data by adding
components to the model until an acceptable fit was
achieved. In a second approach, we investigated the previously
reported models(7,8) focusing solely on those model parts that
corresponded to kinetics during the first 2 h after SeMet
administration. Here, we subsequently eliminated terms until
the parameters could be identified and an acceptable fit was
achieved. Both approaches resulted in the same model.

Methods

Eight healthy men (age 24 (SD 3) years, weight 80·2 (SD 9·4) kg,
height 1·81 (SD 0·05) m, BMI 24·6 (SD 3·0) kg/m2 and plasma
volume 3·37 (SD 0·23) litres) participated in the study. All
participants exhibited normal plasma Se levels before
commencement of the study (1·00 (SD 0·10) μmol/l). None of
the participants had undergone previous abdominal surgery
(other than appendectomy) or was receiving any medication.
This study was conducted according to the guidelines laid
down by the Declaration of Helsinki, and all procedures
involving participants were approved by the scientific ethics
committees of the Capital Region of Denmark (Protocol
No. H-3-2009-092) and Danish Data Protection Agency (Journal
No. 2009-41-3751). Written informed consent was obtained
from all participants.

75Se-L-selenomethionine
75Se-L-SeMet (75Se-SeMet) was produced and delivered by
Hevesy Laboratory, DTU Nutec, Technical University of
Denmark, Roskilde, Denmark, as described previously(9).

Procedure

Each participant arrived at the laboratory after having fasted for
at least 10 h. A cannula was inserted into the cubital vein for
blood sampling. Lying supine on the gamma camera couch, the
participants then ingested 3·6 (SD 0·3) MBq of 75Se-SeMet,
comprising 29 μg Se dissolved in 350ml of water. The solution
was ingested in <15 s. The distribution of 75Se-SeMet was
investigated for the following 2 h using dynamic gamma camera
imaging. Thus, 120 1-min images of the abdominal region were
acquired in both anterior and posterior projections. Imaging
was performed with a dual-head gamma camera equipped with
medium-energy, all-purpose collimators (Infinia VC HawkEye;
GE Medical Systems Inc.) and connected to a dedicated image
processing system (Xeleris; GE Medical Systems Inc.). The
images were acquired in a 128× 128 matrix, with each pixel
measuring 4·4× 4·4mm and using 136 keV (± 10 %) and
272 keV (± 12·5 %) energy windows.
During gamma camera imaging, 10-ml blood samples were

collected at 10-min intervals to monitor the plasma concentra-
tion of 75Se.

Processing of gamma camera data

To correct for 75Se gamma ray attenuation caused by the
gamma camera couch, a couch transmission factor was deter-
mined from an in vitro study with an approximated point
source of 0·4 MBq of 75Se placed in the centre of the gamma
camera detection field, with one detector above (anterior) and
one detector below (posterior) the couch. For both 75Se energy
windows, we found that the counts in a small region of interest
(ROI) in the posterior-view image were about 90 % of the
counts in the anterior-view image. In human studies, therefore,
posterior-view counts were scaled up by a factor of 10/9= 1·11.
To compensate for gamma ray attenuation within participants’
bodies, pixel-by-pixel geometric mean images were generated
from conjugate anterior and adjusted posterior images. Finally,
the geometric mean images were analysed for activity in
the stomach, small intestine and liver using ROI delineated
manually by the same observer. Because of the small number of
counts in each 1 min image, it was necessary to summarise the
images to obtain a resolution that permitted reliable delineation
of the ROI. Hence, the images were summarised in periods over
0–30min for drawing the stomach ROI and over 30–120min for
drawing the small intestine and liver ROI (Fig. 1).

Plasma analysis

Blood samples were centrifuged immediately for 10 min at
1000 g, and the plasma was stored at −20°C until further
analysis. To measure 75Se activity, 3-ml aliquots of plasma and
an appropriate dilution of stock solution of 75Se-SeMet were
counted for 30 min in a gamma well counter (Wizard 1480;
Wallac Oy). For conversion into counts for total plasma volume,
the total plasma volume of each participant was estimated
from their height and weight data, according to tabulated
references(10). All counts were corrected for physical decay and
expressed as a percentage of the administered activity.

Kinetic modelling

The kinetic model was developed to simultaneously capture the
dynamics of data for stomach, liver, small intestine and
plasma(11). Parameter estimation and simulation of the com-
partmental models were carried out using Monolix(12). The way
in which data were collected gives rise to specific difficulties
such as overlapping tissues. In Fig. 1, for instance, it is clearly

Fig. 1. Representative regions of interest for sampling of scintigraphic data
(subject A): stomach (red), small intestine (blue) and liver (black). Left image
summarised over 0–30min. Right image summarised over 30–120min.
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visible that the stomach ROI covered parts of both liver ROI and
small intestine ROI. Moreover, all three organs had underlying
blood flow that contributed to the counts. Both phenomena had
to be accounted for by the model. Additionally, we incorpo-
rated uncertainties in the data collection procedure itself
(observation error) into our model. Hence, the final model
consists of three parts. The first stage describes the hidden
states, assumed to be the actual tissues under study, but not
directly observable due to overlapping tissues and measure-
ment uncertainties. The second part consists of the observa-
tional states. Here the stomach counts contain additional
contributions from the liver, small intestine and plasma, and the
liver and small intestine contain – apart from the tissues them-
selves (except those fractions that were erroneously interpreted
as stomach counts) – additional contributions from plasma.
Plasma is assumed to be directly observed, as these data were
obtained from blood samples. The third stage of the model is
given by the observation equations, which model measurement
uncertainties. In this last part, both additive and multiplicative
errors as well as combinations thereof were considered.
Moreover, a random subject-specific component was intro-
duced that allowed model parameters to vary across subjects
and, therefore, to account for inter-individual variations in the
model. This was achieved by fitting the data from all subjects
to one overall model and at the same time assuming that
the model parameters were drawn from a population (the
population of subjects). That is, across different subjects, the
parameters were assumed to vary randomly around their
respective median value (the population estimate), and the
extent of variation (i.e. their variances) quantifed the variability
among subjects. This modelling approach improves population
estimates compared with averages of individual estimates. The
specific distributions used for the random effects were also part
of the model building. Several models were tried to describe
the data until a suitable model was found that provided
an adequate fit with no systematic deviations. The Akaike
information criterion and Bayesian information criterion were
used to choose among the models. These are measures of the
relative quality of the considered statistical models for a given
set of data and can be viewed as measures that combine the
goodness of fit and the complexity of a model. Finally, models
developed in previous studies(7,8) also were tried, even though
they were developed for a different timescale and for other
SeMet doses. However, neither these models nor similar
versions thereof were able to describe the data. This might be
attributed to the fact that those models were, on the one hand,
initially developed for longer time scales and, on the other
hand, were originally fitted to rather different types of data
(plasma, urine and faeces) and were without data from the
stomach, small intestine and liver. As these previous models
seem to be inadequate to account for the present type of data
(frequent recordings of initial SeMet distribution in the stomach,
small intestine, liver and plasma), we opted for the most
parsimonious model that was able to explain the data. The final
model consists of four compartments, one for each of the
observed tissues, including a delay between the liver and
plasma. The dose arrived to the stomach with a short distributed
delay, and all flows between the compartments were best

modelled with first order kinetics. All random effects were
best modelled with log-normal distributions, except for
two parameters (aL and ke), which were better fitted with
their square root being normally distributed. Finally, the
observation error for all compartments had a multiplicative
component, with an additional additive component for liver
and stomach data. The model is illustrated in Fig. 2, and
model equations can be found in Table 1.

For each participant, the activity in each compartment was
normalised by the maximum value over time of the sum of all
four compartments. This normalising value corresponds to
the initial dose in counts, and numbers can be interpreted as
percentage of initial dose.

The disappearance half-life of 75Se-SeMet in the liver (t1/2)
was calculated using t1/2= ln(2)/k4 where k4 is the outflow of
75Se-SeMet from the liver into the plasma.

Results

The measured time-activity curves for all participants are shown
in Fig. 3. The black thick curve is the population fit of the model
to data. An example of measured and fitted data from one
individual is shown in Fig. 4.

All estimated values are given in Table 2. Thus, Table 2
shows the estimated rate parameters for the transport of
75Se-SeMet between the compartments and further model

Gastric
input Stomach Plasma

Intestine Liver

k2

k1

k3

k4

Fig. 2. The final kinetic model for the compartmental analysis. Arrows
represent pathways of fractional transport between the compartments. Delay
is indicated with a jagged arrow.

Table 1. Model definition

Model equations (hidden stage)
XS tð Þ ¼ kake

Cl ka$keð Þ e$ke t$e$ka t
! "

d
dt XI tð Þ ¼ k1XS tð Þ$k3XI tð Þ
d
dt XL tð Þ ¼ k3XI tð Þ$k4XL tð Þ
d
dt XP tð Þ ¼ k2XS tð Þ + k4XL t$τð Þ

Model equations (observational stage)
SðtÞ ¼ XSðtÞ + 0:1XLðtÞ + 0:1XI ðtÞ + 0:01XP ðtÞ
L tð Þ ¼ aL + 0:9 XL tð Þ+ 0:1XP tð Þð Þ
IðtÞ ¼ aI + 0:9ðXI ðtÞ + 0:01XP ðtÞÞ
PðtÞ ¼ XP ðtÞ

Observation equations
ySi ¼ SðtiÞ + ðbS + cSSðtiÞÞϵSi
yIi ¼ IðtiÞ + cI IðtiÞϵIi
yLi ¼ LðtiÞ + ðbL þ cLLðtiÞÞεLi
yPi ¼ PðtiÞ + cPPðtiÞϵPi
ϵSi ; ϵ

I
i ; ϵ

L
i ; ϵ

P
i & N ð0; 1Þ
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parameters along with their respective standard errors.
Moreover, Table 2 depicts estimates of the measurement
error parameters. The parameters indicated with c are
proportions, and thus the largest measurement error was
estimated to be in plasma, where it was 15·7 %. This is
plausible, as the entire plasma count was extracted from
a blood sample and prone to error due to estimation of
blood volume and a possible heterogeneous distribution of
SeMet in blood.
The mean disappearance half-life of 75Se-SeMet in the liver

was estimated to 2·65 (95 % CI 2·56, 2·76) h and the delay in the
liver was 0·714 (95 % CI 0·640, 0·790) h.

Discussion

Although Se is recognised as a nutrient essential to human
health, initial Se metabolism is poorly characterised. Currently,
our understanding of Se absorption, whole-body retention and
excretion is based on whole-body counting(5) or balance and
tracer studies(6–8). Data from previous studies(13–15) indicate a
fundamental complexity of Se metabolism that can be
explained by several factors. SeMet, the predominant form
of Se in plant foods, is more easily absorbed compared with
inorganic Se; however, both forms of Se are incorporated as
selenocysteine into a variety of different selenoproteins, and Se
is excreted in the urine in several forms.

Through compartmental analysis, it is possible to reduce the
complexity of Se metabolism and to obtain an integrated picture
of whole-body Se utilisation. On the basis of urine and faecal
collection for 12 d and blood sampling for 120 d after oral
ingestion of radio-labelled Se compounds, Wastney et al.(8)

used compartmental modelling to provide new insight into
human metabolism of Se: specifically, the number of metabolic
pools and their sizes, relationships and turnover rates. To attain
an acceptable fit of the raw data, they constructed a complex,
multi-pool model. This may be consistent with the fact that
the human selenoproteome contains at least twenty-five
selenoproteins, which can be expected to have different
turnover rates(14).

In this study, we focused on the intestinal absorption of
ingested SeMet and its movements between a restricted number
of pools over the subsequent 2 h. The overall strength of the
study was that the compartmental analysis was based on data
sampled with high temporal resolution directly from each tissue
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Fig. 3. Measured data for all participating subjects. , Subject A; , Subject B; , Subject C; , Subject D; , Subject E; , Subject F;
, Subject G; , Subject H; , population fit. ROI, region of interest.
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of the model: three abdominal pools defined by the imaging
technique and a plasma pool. We found that when restricting
the investigation of kinetics to the first 2 h after SeMet
administration, the dynamics of the data can be captured by a
considerably simpler model as compared with the more
complex models, which previously have been employed to
describe Se metabolism(7,8). The reason for this may be 2-fold.
First, the measurements are taken on different time scales.
Although measurements in the present study were taken every
minute during the first 2 h after dose administration, the
previous studies focused primarily on long-term dynamics, with
data collection only at 30, 60 and 120 min during the first 2 h.
These models, being designed for long-term behaviour, were
therefore not able to describe the initial Se kinetics. Second, the
previously applied doses of Se (150–200 µg) were considerably
higher than those administered in the present study (29 µg).
This difference in administered dose might result in a change of
the kinetics.
According to our model, the initial amounts of radioactivity in

the small intestine and liver compartments were on average
14·7 and 2·1 %, respectively, of the total dose of 75Se-SeMet.
These findings indicate the rapid flow of the first part of the
tracer from the stomach to the small intestine and from the small
intestine to the liver, which is additionally implied by the
rate parameter estimates of k1 and k3. The parameter aI was
introduced to account for the final level of radioactivity
remaining in the small intestine. This level was reached after
about 60 min in all participants and comprised on average
14·7 % of the dose of 75Se-SeMet and might reflect use of SeMet
in the protein synthesis of the enterocytes. Lathrop et al.(16)

determined the concentration of 75Se-SeMet in the liver 2·4 h
after ingestion to be about 13 % of the dose/kg, corresponding

to a total of about 24 %. In agreement with this, our model
predicted that, on average, 33 % of the total dose of 75Se-SeMet
was located in the liver 2 h after oral intake.

Consistent with previous observations(7), our raw data
showed an almost monotone increase in the plasma con-
centration of 75Se for the first 2 h after oral intake of 75Se-SeMet
in all participants. Between 20 and 40min after ingestion,
however, the concentration of 75Se in the plasma reached a
temporary plateau. This phenomenon, which has not been
reported previously and most likely was exposed by the high
temporal resolution of our data sampling, could actually be
explained by our model. The model indicated that the first rise
of Se level in plasma was due to inflow from the stomach,
whereas the second rise was caused by inflow from the liver.
The plateau originates from a delay in the flow from liver to
plasma. Most likely, this delay could be explained by metabolic
processes involving SeMet within the liver.

Note that the model proposed in the present analysis did not
include any outflow from plasma. This assumption is certainly
not in line with the true kinetics as the tracer will leave the body
after a while. However, for the observed 2 h of study, this is in
agreement with the findings of Swanson et al.(7) and Wastney
et al.(8). In their studies, the level of the tracer in plasma was
consistently rising during the first couple of hours, and it did not
start to decrease before approximately 3 h after administration.

The purpose of our study was to model a natural state in
the kinetics of the underlying system. If the rates at which
75Se-SeMet moves through the system are not constant, the
findings reflect not only the rate at which 75Se-SeMet itself
moves from one compartment to another but also the changes
in rate. To meet the requirements of a natural state, the dose of
75Se-SeMet should be small relative to the amount of SeMet in

Table 2. Definition of variables and parameters and estimated parameter values
(Estimates with their standard errors)

System variables
XSðtÞ; SðtÞ; ySi Count Tracer in the stomach (in tissue, in ROI, observed)
XI ðtÞ; IðtÞ; yIi Count Tracer in the intestine (in tissue, in ROI, observed)
XL ðtÞ; LðtÞ; yLi Count Tracer in the liver (in tissue, in ROI, observed)
XP ðtÞ; PðtÞ; yPi Count Tracer in the plasma (in tissue, in tissue, observed)

Parameters Units Explanation Estimate SE

Population parameters
aI Count Residual level in the intestine 32·572 2·120
aL Count Residual level in the liver 4·670 2·842
ka 1/h Absorption rate in the stomach 109·014 32·665
ke 1/h Total elimination rate from the stomach 4·894 0·225
Cl 1/h/count Clearance/dose 0·025 0·002
k1 1/h Rate from the stomach to the intestine 2·630 0·291
k2 1/h Rate from the stomach to plasma 0·267 0·020
k3 1/h Rate from the intestine to the liver 13·199 2·313
k4 1/h Rate from the liver to plasma 0·261 0·005
τ h Delay in flow from the liver to plasma 0·714 0·037

Parameters of observation error model
bS Counts Additive component in observation error for the stomach 5·042 0·187
cS 1 Multiplicative component in observation error for the stomach 0·069 0·008
cI 1 Multiplicative component in observation error for the intestine 0·084 0·002
bL Counts Additive component in observation error for the liver 6·291 0·314
cL 1 Multiplicative component in observation error for the liver –0·036 0·003
cP 1 Multiplicative component in observation error for plasma 0·157 0·012

ROI, region of interest.
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the diet, so as not to change the natural metabolism in the
system during the study. In the present study, all participating
volunteers had normal plasma Se levels, and, apart from a short
fast before data sampling, the study did not interfere with their
usual diet regimen. Given that the normal daily dietary intake
of Se in men is 60–120 μg(17), it is unlikely that our test dose of
SeMet, which contained about 30 μg of Se, had a significant
influence on the absorption and metabolism of SeMet per se.
Consequently, it is reasonable to assume that all participants
were in a natural state of SeMet turnover during data sampling.
In this study, fast dynamic imaging captured a relatively low

count in each image. Inevitably, therefore, our procedure for
defining the ROI was not perfect. Thus, a normal overlapping of
parts of various organs in the anterior–posterior projections or
movements of the participants during image acquisition could
have caused some of the registered counts to be allocated to the
incorrect ROI. However, we accounted for these deficiencies by
explicitly including them in our final model.
The gamma camera technique is capable of tracing small

quantities of γ ray emitting substances in vivo. Thus, the present
dynamic approach provides an opportunity to explore the effects
of food composition, gastrointestinal motility and gastrointestinal
resection or bypass on the gastrointestinal absorption and initial
turnover of physiological amounts of SeMet or other
radio-labelled nutrients or food elements non-invasively. Thus,
radio-labelled SeMet as a component of normal dietary protein
could have yielded temporal information about the gastric
emptying and the gastrointestinal breakdown of the dietary
selenoproteins. Such data could have been incorporated into a
kinetic model of the absorption and initial metabolism of dietary
SeMet. However, the rate constants k1 and k3 derived using our
imaging technique and modelling procedure may prove useful in
clinical settings specifically focusing on the small intestine
absorption capacity or aspects of the liver function.
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Summary. Neurobiological data such as EEG measurements pose a statistical challenge
due to low spatial resolution and poor signal-to-noise ratio, as well as large variability
from subject to subject. We propose a new modeling framework for this type of data
based on stochastic processes. Stochastic differential equations with mixed effects are a
popular framework for modeling biomedical data, e.g., in pharmacological studies. While
the inherent stochasticity of diffusion models accounts for prevalent model uncertainty or
misspecification, random effects models inter-subject variability. The 2-layer stochasticity,
however, renders parameter inference challenging. This is especially true for more com-
plex model dynamics, and only few theoretical investigations on the asymptotic behavior
of estimates exist. This article adds to filling this gap by examining asymptotics (number of
subjects going to infinity) of Maximum Likelihood estimators in multidimensional, nonlinear
and non-homogeneous stochastic differential equations with random effects and included
covariates. Estimates are based on the discretized continuous-time likelihood and we in-
vestigate finite-sample and discretization bias. In applications, the comparison of, e.g.,
treatment effects, is often of interest. We discuss hypothesis testing and evaluate by sim-
ulations. Finally, we apply the framework to a statistical investigation of EEG recordings
from epileptic patients.

Keywords: Approximate maximum likelihood, asymptotic normality, consistency, co-
variates, LAN, mixed effects, non-homogeneous observations, random effects, stochas-
tic differential equations, EEG

1. Introduction

Many biomedical studies are based on image data, which is characterized by a high time
resolution, but also a low signal-to-noise ratio. The same happens with EEG data, which
are measurements of electrical activitity measured from electrodes on the scalp, and are
proxies of underlying brain activity. This high frequency and noisy nature of the data
lends itself naturally to be modeled by continous-time stochastic processes. Moreover,
data are often multi-dimensional and repeated on a collection of subjects. The noise may
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be due to factors such as internal and external fluctuations, difficult experimental condi-
tions, or a collection of multiple unmeasured effects, for example non-specified feedback
mechanisms or genetic variation. The intra-subject variability in longitudinal data asks
for a model that incorporates system noise. Any systematic inter-subject variability is
usually well explained by the inclusion of covariate information, e.g., treatment regime,
gender or specifics of experimental conditions. The remaining inter-subject variability
can then be taken care of by random effects. The motivating examples for our work are
EEG measurements from multiple channels, and a compartment model arising in a recent
pharmacological study based on image data. Both types of data are measured at high
frequency, i.e., the sampling frequency is fast compared to the typical time scales of the
observed system. This allows us to employ techniques facilitating the use of continuous-
time stochastic processes. We therefore propose a new modeling framework where the
observed time series are assumed to be generated from a multi-dimensional stochastic
differential equation (SDE), which accounts for systematic and random inter-subject
variability through covariates and random effects.

Models that combine SDEs and random effects (i.e., so-called stochastic differential
mixed-effects models, SDMEMs) have become a popular framework for modeling bio-
logical data (Guy et al., 2015; Donnet et al., 2010; Møller et al., 2010; Leander et al.,
2014; Picchini et al., 2008). They come with three advantages: Firstly, they capture
inter-subject variations by incorporation of random effects. Secondly, they account for
model uncertainty or environmental fluctuations by their inherent stochasticity. Lastly,
they remedy the otherwise omnipresent issue of the inconsistent drift estimator (Kessler
et al., 2012) in plain SDEs (only fixed effects), when the observation time horizon is
finite. The latter is due to the fact that the mixed-effects approach facilitates pooling of
data across subjects, which leads to unbiasedness of the drift estimator as the number
of subjects approaches infinity.

However, the flexibility and robustness of SDMEMs come at a price and bear partic-
ular challenges in terms of statistical inference. The data likelihood in these models is
generally intractable, for two reasons: On the one hand, the likelihood for (nonlinear)
SDE models is analytically not available, rendering parameter inference for standard
SDE models a nontrivial problem in itself. On the other hand, the likelihood has to
be integrated over the distribution of the random effects. Thus, numerical or analytical
approximations are inevitable. The likelihood for SDE models can be approximated in
various ways. Given discrete-time observations, the likelihood is expressed in terms of the
transition density. Approximation methods for the latter reach from solving the Fokker-
Planck equation numerically (Lo, 1988), over standard first-order (Euler-Maruyama) or
higher-order approximation schemes and simulation-based approaches (Pedersen, 1995;
Durham and Gallant, 2002) to a closed-form approximation via Hermite polynomial ex-
pansion (Aït-Sahalia, 2002). If continuous-time observations are assumed (e.g., if high-
frequency data is available), transition densities are not needed and the likelihood can be
obtained from the Girsanov formula (Phillips and Yu, 2009). Popular analytical approx-
imation techniques for general nonlinear mixed-effects models are first-order conditional
estimation (FOCE) (Beal and Sheiner, 1981) and Laplace approximation (Wolfinger,
1993). A computational alternative is the expectation-maximization (EM) algorithm, or
stochastic versions thereof (Delyon et al., 1999).
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In the context of SDMEMs, the above mentioned approximation methods have been
combined in various ways, depending on whether observations are modeled in discrete
or in continuous time (here we do not consider measurement noise). For discrete-time
observations, Hermite expansion of the transition density has been combined with Gaus-
sian quadrature algorithms and Laplace’s approximation (Picchini et al., 2010; Picchini
and Ditlevsen, 2011). Mixed effects that enter the diffusion coefficient are investigated
in Delattre et al. (2015, 2017). The case of continuous-time observations of a univariate
SDMEM with Gaussian mixed effects entering the drift linearly is considered in Delattre
et al. (2013).

Two aspects that are important in modeling biomedical data are not covered by these
works: On the one hand, the theoretical investigations of estimators when the state
process is modeled by a multivariate, time-inhomogeneous and nonlinear SDE, and on
the other hand, the inclusion of covariate information. The lack of both in a model
implies considerable restrictions for practitioners and the purpose of this article is to fill
this gap.

If the drift function is linear in the parameters, the standard asymptotic proper-
ties of the MLE in multidimensional, time-homogeneous, nonlinear SDMEMs can be
shown by a natural extension of the proofs in Delattre et al. (2013). In particular,
the model likelihood turns into a neat expression, and all remaining model complexi-
ties (multidimensionality of the state, nonlinearity, covariates) are conveniently hidden
in the sufficient statistics. The results in Delattre et al. (2013) on the discretization
error which arises when continuous-time statistics are replaced by their discrete-time
versions hold as well in the more complex model setup. Their approach has, however,
two drawbacks. The first one is model-related: It is assumed that observations are iden-
tically distributed, which impairs the inclusion of subject-specific covariate information.
The other drawback is proof-related: The imposed regularity assumptions are rather
restrictive, for instance, the density of the random effects may not be smooth. If, for
instance, random effects are supposed to have a double exponential distribution, those
regularity conditions are not met. However, the Laplace density, e.g., is "almost" regu-
lar, satisfying a particular type of first-order differentiability. This almost regularity can
be treated by the more general approach which builds upon L2-differentiability and the
local asymptotic normality (LAN) property of a sequence of statistical models (Le Cam,
2012; Ibragimov and Has’minskii, 2013). Therefore, we approach the theoretical investi-
gations from the more general LAN perspective.

In regression models, the convergence of the average Fisher information is a standard
assumption which facilitates the verification of MLE asymptotics considerably. We ad-
dress this condition in the SDMEM setup and point out the difficulties that arise here,
when observations are not identically distributed.

The article is structured as follows. Section 2 introduces the model framework, investi-
gates asymptotic properties of the MLE and applies the asymptotic results to hypothesis
testing. Moreover, we exemplify the framework with covariates for affine mixed effects.
Section 3 is devoted to a simulation study in a model which is common in pharmacokinet-
ics and is motivated by a recent study on Selenium metabolism in humans (Große Ruse
et al., 2015). Here, we study finite sample and discretization bias of the estimation
procedure and properties regarding hypothesis testing, where we investigate the effect
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of a drug treatment (as encoded by a covariate with levels treatment and placebo). We
then apply the SDMEM framework to EEG recordings of epileptic patients in section
4, with the purpose of investigating how channel interactions differ between non-seizure
and seizure states. Finally, we conclude with a discussion.

2. Maximum likelihood estimation for SDMEMs with covariates

This section considers parameter inference when observations are independent, but not
necessarily identically distributed, a setting that naturally occurs when covariate infor-
mation is included in the model formulation.

2.1. Model formulation
We consider N r-dimensional stochastic processes Xi = (Xi

t)0≤t≤T i whose dynamics are
governed by the stochastic differential equations

dXi
t = F (Xi

t , D
i
t, µ, φ

i)dt+ Σ(t,Xi
t)dW

i
t , 0 ≤ t ≤ T i, Xi

0 = xi0, i = 1, . . . , N. (1)

The r-dimensional Wiener processes W i = (W i
t )t≥0 and the d-dimensional random vec-

tors φi are defined on a filtered probability space (Ω,F , (Ft)t≥0,P), which is rich enough
to ensure independence of all random objects W i, φi, i = 1, . . . , N . The d-dimensional
vectors φi, i = 1, . . . , N , are the so-called random effects. They are assumed to be F0-
measurable and have a common (usually centered) distribution which is specified by a
(parametrized) Lebesgue density g(ϕ;ϑ)dϕ. The parameter ϑ ∈ Rq−p is unknown, as
well as the fixed effect µ ∈ Rp. The combined parameter θ = (µ, ϑ) is the object of
statistical inference and is assumed to lie in the parameter space Θ, which is a bounded
subset of Rq. The Di : [0, T i] → Rs encode subject-specific covariate information and
are assumed to be known. They can also encode a general time dependency, which not
necessarily is subject specific. The functions F : Rr+s+p+d → Rr,Σ : [0, T ]× Rr → Rr×r,
with T = max1≤i≤N T i, are deterministic and known and the initial conditions xi0 are
r-dimensional random vectors. We assume standard regularity assumptions on the drift
(including the Di) and diffusion functions to assure (i) existence and uniqueness of the
solution to (1) and (ii) existence and good behaviour of the Radon-Nikodym derivative

qi(µ, ϕ) := qi(µ, ϕ;Xi) =
dQiµ,ϕ
dQiµ0,ϕ0

(Xi)

= exp

(∫ T i

0

[
F (Xi

s, D
i
s, µ, ϕ)− F (Xi

s, D
i
s, µ0, ϕ0)

]′
Γ−1(s,Xi

s)dX
i
s

− 1

2

∫ T i

0

[
F (Xi

s, D
i
s, µ, ϕ)−F (Xi

s, D
i
s, µ0, ϕ0)

]′
Γ−1(s,Xi

s)
[
F (Xi

s, D
i
s, µ, ϕ)+F (Xi

s, D
i
s, µ0, ϕ0)

]
ds

)
,

where Γ = ΣΣ′ and Qiµ,ϕ is the distribution of Xi conditioned on an observed φi = ϕ

(and µ0, ϕ0 are fixed). The function qi is the conditional likelihood for subject i given
we have observed the random effect φi = ϕ. Therefore, the unconditional likelihood for
subject i is pi(θ) := pi(θ;Xi) =

∫
Rd q

i(µ, ϕ) · g(ϕ;ϑ) dϕ.
We observe Xi at time points 0 ≤ ti0 < ti1 < . . . < tini

= T i and the inference task
consists in recovering the "true" underlying θ based on observations Xi

ti0
, . . . , Xi

tin
, i =
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1, . . . , N . We approach this inference task by first supposing to have the entire paths
(Xi

t)0≤t≤T i , i = 1, . . . , N, at our disposal. Based on these we derive the continuous-time
MLE and discretize it in a second step. The bias introduced by the discretization is
investigated theoretically and by simulations.

2.2. Affine Gaussian mixed effects
In many applications the fixed and random effects enter the drift in an affine manner,

F (Xi
t , D

i
t, µ, φ

i) = A(Xi
t , D

i
t) +B(Xi

t , D
i
t)µ+ C(Xi

t , D
i
t)φ

i. (2)

An example of (2) is a widely used class of compartment models, which we illustrate
in a simulation study in Section 3, and in our main application in section 4, where
we analyze EEG data from epileptic patients. Likelihood-based inference then becomes
explicit if the random effects are Gaussian distributed, g(ϕ; Ω) = N (0,Ω)(ϕ). The
separation of µ and φi in (2) enables the modeler to impose random effects on only a
selection of fixed effects. The conditional likelihood turns into the compact expression
qi (µ, ϕ) = eµ

′U1i− 1

2
µ′V1iµ+ϕ′U2i− 1

2
ϕ′V2iϕ−ϕ′Ziµ with the sufficient statistics

U1i =

∫ T i

0

B(Xi
s, D

i
s)
′
Γ−1(s,Xi

s)
[
dXi

s −A(Xi
s, D

i
s)ds

]
,

V1i =

∫ T i

0

B(Xi
s, D

i
s)
′
Γ−1(s,Xi

s)B(Xi
s, D

i
s)ds,

U2i =

∫ T i

0

C(Xi
s, D

i
s)
′
Γ−1(s,Xi

s)
[
dXi

s −A(Xi
s, D

i
s)ds

]
, (3)

V2i =

∫ T i

0

C(Xi
s, D

i
s)
′
Γ−1(s,Xi

s)C(Xi
s, D

i
s)ds,

Zi =

∫ T i

0

C(Xi
s, D

i
s)
′
Γ−1(s,Xi

s)B(Xi
s, D

i
s)ds.

Integration over ϕ gives the unconditional likelihood for subject i,

pi(θ) =
1√

det(I + V2iΩ)
exp

([
U ′1i − U ′2iRi(Ω)Zi

]
µ− 1

2
µ′
[
V1i − Z ′iRi(Ω)Zi

]
µ+

1

2
U ′2iR

i(Ω)U2i

)
,

(4)

with Ri(Ω) = (V2i + Ω−1)
−1. In particular, the MLE µ̂N of the fixed effect (given Ω) is explicit,

µ̂N (Ω) =

[
N∑

i=1

[
V1i − Z ′iRi(Ω)Zi

]
]−1 [ N∑

i=1

[
U1i − Z ′iRi(Ω)U2i

]
]
. (5)

Remark 1. The likelihood pi is explicit even if the fixed effect enters the drift nonlinearly.
However, only a linear fixed effect µ leads to an explicit expression for its MLE.

Discrete data
Above we assumed to observe the entire paths (Xi

t)0≤t≤T . In practice, observations are only
available at discrete time points t0, . . . , tn. A natural approach is to replace the continuous-time
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integrals in qi(θ) by discrete-time approximations and to derive an approximate MLE based on
the resulting approximate likelihood. For instance, an expression of the form

∫ tk+1

tk
h(s,Xi

s)dX
i
s

may be replaced by a first-order approximation h(tk, X
i
k)∆Xi

k. In the linear model (2), the
approximation of the continuous-time likelihood corresponds to the exact likelihood of its Euler
scheme approximation. In particular, if we observe all individuals at time points tk = T k

n and
denote by Un1i, V

n
1i , U

n
2i, V

n
2i , Z

n
i the first-order discrete-time approximations to the continuous-

time statistics U1i, V1i, U2i, V2i, Zi in eq. (3), one has the following result:

Theorem 1 (Negligibility of discretization error).
Assume model (2) and suppose that A,B′Γ−1B,B′Γ−1C,C ′Γ−1C,B′Γ−1, C ′Γ−1 are globally
Lipschitz-continuous in (t, x) and that in addition to A,B,C and Σ also B′Γ−1, C ′Γ−1 is of
sublinear growth in x, uniformly in t. Then, for all p ≥ 1 and all i = 1, . . . , N , there is a
constant K such that

Eθ0 (JV1i − V n1iKp + ‖U1i − Un1i‖p + JV2i − V n2iKp + ‖U2i − Un2i‖p + ‖Zi − Zni ‖p) ≤ K
(
T

n

)p/2
.

The discretization error is investigated numerically in section 3.

2.3. Asymptotic properties of the MLE
If the drift is as in (2) and observations are identically distributed (in particular, the model does
not contain subject-specific covariate information), consistency and asymptotic normality of the
MLE can be proved using the ideas in Delattre et al. (2013). The proofs are a natural extension
of their setting to the multidimensional, affine, non-homogeneous case, but become more tedious
to work out in detail and to write down and will therefore be omitted here. We will get back to
the affine model with i.i.d. observations in subsection 2.3.1 and in section 3.

The classical proof of asymptotic normality of the MLE imposes strong smoothness conditions
on the subject-specific density functions, such as third-order differentiability and boundedness of
the derivatives. A Taylor expansion argument together with a required asymptotic normality of
the N -sample Score function and a convergence of the average Fisher Information (FI) (see, e.g.,
Bradley and Gart (1962, equation (13)), or Hoadley (1971, condition N7)) then yield the result.
If observations are not identically distributed (e.g., if subject-specific covariate information is
included in (1)) and the standard central limit theorem for i.i.d. variables can not be applied
to the Score function, one can revert to the Lindeberg-Feller central limit theorem, given the
family of individual score functions {Si(θ); i ∈ N} satisfies the Lindeberg condition (a condition
which limits the variation of each Si in relation to the overall N -sample score variation). The
convergence of the average FI, which is naturally given in i.i.d. models, often breaks down to
requiring that covariate averages converge (Fahrmeir and Kaufmann, 1985).

The more general LAN approach which we pursue here dispenses with the differentiability
conditions by building upon L2-derivatives. An L2-Score function and L2-Fisher information
are defined, which then are required to meet the above mentioned Lindeberg and convergence
conditions (cf. assumption (e) below and Theorem 3). The first part of this section adapts results
developed in Ibragimov and Has’minskii (2013), on consistency and asymptotic normality of the
MLE for θ = (µ, ϑ) in models that do not necessarily meet the differentiability conditions, to the
current framework of SDMEMs with covariates. In a second part, we illustrate the verification
of regularity conditions for an SDMEM with covariates and with dynamics that are frequently
encountered in biomedical modeling. While the L2-based approach opens up for the inclusion
of irregular densities into our framework, it still requires one to verify the convergence of the
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average FI. We will discuss the complications of the latter within the SDMEM framework at the
end of this section.

We write νi = Qiµ0,ϕ0
(see beginning of section 2). For simplicity, we assume that Θ ⊆ Rq is

open, bounded and convex and that in all what follows, K ⊂ Θ is compact.
We start by stating general assumptions which the statistical model is required to satisfy and

adapt them more closely to the SDMEM framework, by pointing out sufficient conditions for
this particular framework which may be verified more easily. Afterwards, we establish results on
asymptotic properties of the MLE for SDMEMs.

(a) θ 7→pi(θ) is νi-a.s. continuous.
(b) θ 7→

√
pi(θ) is L2(νi)-differentiable† with L2(νi)-derivative ψi(θ) (in other words: pi(θ) is

Hellinger differentiable).
(c) ψi(θ) is continuous in L2(νi).

As a consequence, the matrix Ii(θ) = 4
∫
ψi(θ;x)′ψi(θ;x)dνi(x) exists and is continuous

and will be called the FI matrix. The N -sample FI is then IN (θ) =
∑N
i=1 I

i(θ).
(d) The FI is bounded away from 0 and finite: 0 < infθ∈ΘJ 1

N IN (θ)K ≤ supθ∈ΘJ 1
N IN (θ)K <∞.

(e) There is a symmetric, positive definite limiting matrix I(θ) such that
limN→∞ supθ∈KJ 1

N IN (θ)− I(θ)K = 0 and limN→∞ supθ∈KJ
(

1
N IN (θ)

)−1/2− I(θ)−1/2K = 0.

Analogously to the traditional setting, we call Si(θ) = 2pi(θ)−1/2ψi(θ) the score function of
sample i and set SN (θ) =

∑N
i=1 S

i(θ) for the N -sample score function. One can show that also
in this more general setting the score function is centered (Ibragimov and Has’minskii, 2013, p.
115).

Sufficient conditions for the a.s. continuity of pi(θ) in θ are continuity of µ 7→ qi(µ, ϕ)
and of ϑ 7→ g(ϕ;ϑ), together with the existence of an integrable function of ϕ dominating
qi(µ, ϕ)g(ϕ;ϑ). Continuity of g holds for instance in the common case where g is a Gaus-
sian density N (0, ϑ) and ϑ is bounded away from 0. For conditions on the continuity of qi,
suppose F is continuous and assume for simplicity Σ(t, x) ≡ I is the identity matrix. If
µ 7→ F (Xi

s, D
i
s, µ, ϕ) is uniformly continuous (for instance differentiable with bounded Jacobian),

then µ 7→
∫ T i

0
F (Xi

s, D
i
s, µ, ϕ)′F (Xi

s, D
i
s, µ, ϕ)ds is continuous. If F moreover has the property∥∥F (Xi, Di

s, µ, ϕ)− F (Xi, Di
s, µ0, ϕ)

∥∥ ≤ K(1 +
∥∥Xi

∥∥κ) ‖µ− µ0‖ for some κ > 0, Kolmogorov’s
continuity criterion guarantees continuity of qi.

The L2-differentiability is neither stronger nor weaker than standard (point-wise) differ-
entiability. Generally, none implies the other, but under certain conditions, the limits are
identical. Of course, if pi is L2-differentiable and differentiable in the ordinary sense, then
ψi(θ;x) = d

dθ

[
pi(θ;x)1/2

]
.

To point out the connection between the FI and score functions defined via L2-derivatives and
their counterparts based on "standard" differentiability, we recall the following result (Van der
Vaart, 2000, Lemma 7.6). If θ 7→

√
pi(θ) is continuously differentiable, the quantity S̃i(θ) :=

2pi(θ)−1/2 d
dθp

i(θ) is well-defined (since pi > 0). If Ĩi(θ) = Eθ(S̃i(θ)S̃i(θ)′) is finite and continu-
ous, θ 7→

√
pi(θ) is L2-differentiable, the L2-derivative coincides with the point-wise derivative

and in fact, S̃i(θ) = Si(θ) and Ĩi(θ) = Ii(θ).
Note as well that the assumption on the (norm of the) Fisher information matrix to grow

beyond bounds (cf. condition (e)) corresponds to the requirement of infinite flow of information.
This is naturally connected to the consistency of estimators.

†For each θ,
∫
‖ψi(θ;x)‖2dνi(x) < ∞ and lim‖h‖→0‖h‖−2

∫
‖
√
pi(θ + h;x) −

√
pi(θ;x) −

ψi(θ;x)h‖2dνi(x) = 0.
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In the sequel, we write shortly and somewhat sloppily θN if it is of the form θN = θ +
IN (θ)−1/2h for some θ ∈ K and h ∈ ΘN,θ = {h ∈ Rq : θ + IN (θ)−1/2h ∈ Θ}.

We are now in the position to state results on the asymptotic behavior of the MLE in SDMEMs
with covariates. These are consequences of theorems in Ibragimov and Has’minskii (2013), and
proofs are only shortly outlined.

Theorem 2 (Consistency). The MLE of model (1) is uniformly on K consistent, if

(A.1) There is a constant m > q such that supθ∈K Eθ (‖SN (θ)‖m) <∞.
(A.2) There is a positive constant a(K) such that for (sufficiently large N and) all θ ∈ K (and all

h ∈ ΘN,θ) H2
i (θ, θN ) ≥ a(K) ‖θN−θ‖

2

1+‖θN−θ‖2 , where H
2
i (θ1, θ2) :=

∫ (√
pi(θ1)−

√
pi(θ2)

)2

dνi

is the squared Hellinger distance between Qiθ1 and Qiθ2 .

Proof. (A.1) is an extension of Lemma III.3.2. in Ibragimov and Has’minskii (2013) to non-
homogeneous observations. (A.2) is adapted from (Ibragimov and Has’minskii, 2013, Lemma
I.5.3).

Remark 2. If the dimension of the parameter set is 1, (A.1) can be replaced by a sub-
quadratic growth condition on the Hellinger distance (for i.i.d. observations, see Ibragimov and
Has’minskii (2013, Theorem I.5.3)), namely that H2(θ1, θ2) ≤ A‖θ2−θ1‖2, such that consistency
here reduces to H2(θ1, θ2) behaving asymptotically as ‖θ2 − θ1‖2.

The following theorem establishes the so-called uniform asymptotic normality of the model,
which in turn implies the asymptotic normality of the MLE (Thms II.6.2. and III.1.1, Ibragimov
and Has’minskii (2013)).

Theorem 3 (Asymptotic normality). Assume (A.1) and (A.2) from Theorem 2 and ad-
ditionally

(B.1) The family {Si(θ), i = 1, . . . , N} satisfies the Lyapunov condition uniformly in K, i.e.,
there is δ > 0 such that limN→∞ supθ∈K

∑N
i=1 Eθ

(∥∥IN (θ)−1/2Si(θ)
∥∥2+δ

)
= 0.

(B.2) ∀R > 0 : limN→∞ supθ∈K sup‖h‖<R
∑N
i=1

∫ ([
ψi(θN )− ψi(θ)

]
IN (θ)−1/2h

)2
dνi = 0.

Then {θ̂N}N∈N is uniformly in K consistent, asymptotically Gaussian distributed with param-
eters (θ, IN (θ)−1) and all moments of {IN (θ)1/2(θ̂N − θ)}N∈N converge uniformly in K to the
corresponding moments of the N (0, I) distribution.

Condition (B.1) can be generalized to the Lindeberg condition. If the densities
√
pi(θ) are

twice continuously differentiable with second derivative J i(θ), (B.2) can be replaced by requir-
ing that limN→∞ supθ∈K sup‖h‖≤R JIN (θ)−1/2K4

∑N
i=1

∫
JJ i(θN )K2dνi = 0. As pointed out in

the introduction, for a general SDMEM the pi are not explicitly available. One can, however,
formulate conditions for the drift function F and the random effects density g, which implicitly
guarantee the differentiability of log pi(θ) = log

(∫
qi(µ, ϕ)g(ϕ;ϑ)dϕ

)
. This can, for example, be

done by assuring that differentiation can be passed under the integral sign: Sufficient conditions
for the differentiability of log pi(θ) with respect to µ would, e.g., include differentiability of qi
w.r.t. µ and a uniform in µ domination of d

dµq
i(µ, ϕ)(

∫
qi(µ, ϕ)g(ϕ;ϑ)dϕ)−1. However, explicitly

formulating these conditions for a generic SDMEM is not illustrative, suitable conditions should
be formulated and checked for the specific application at hand. One particular case in which the
pi(θ) are explicitly available is the affine model (2), which we consider in more detail below.
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2.3.1. SDMEM with covariates and affine mixed effects
We illustrate the verification of the assumptions for Theorems 2 and 3 for the affine SDMEM (2).
This model, which certainly is more regular than required, will be revisited in section 3, where
we study estimation performance and hypothesis testing for different sample sizes and sampling
frequencies, and will be revisited in section 4 for the statistical investigation of EEG data. For
simplicity we assume B = C, such that Ui := U1i = U2i and Vi = V1i = V2i = Zi. The likelihood
(4) can be written as

pi(θ) =
1√

det(I + ViΩ)
exp

(
−1

2
(µ− V −1

i Ui)
′
Gi(Ω)(µ− V −1

i Ui)

)
exp

(
1

2
U ′iV

−1
i Ui

)
.

with Gi(Ω) = (I + ViΩ)
−1
Vi. Defining γi(θ) = Gi(Ω)(V −1

i Ui − µ) (we assume that Vi is a.s.
invertible), the score function for subject i is thus given by Si(θ) =

[
d
dµ log pi(θ), d

dΩ log pi(Ω)′
]
,

with
d

dµ
log pi(θ) = γi(θ)

′ and
d

dΩ
log pi(θ) =

1

2

[
−Gi(Ω) + γi(θ)γi(θ)

′]
.

We start by verifying condition (A.1). Since the set K ⊂ Θ is compact, there are positive con-
stants AK , BK , CK such that ‖µ‖ ≤ AK , BK ≤ JΩK ≤ CK . One can show that JGi(Ω)K ≤ JΩ−1K,
which gives the upper bound ‖Si(θ)‖ ≤

(
‖γi(θ)‖+ JΩ−1K + ‖γi(θ)‖2

)
. Moreover, the moment-

generating function Φθ,γi(θ)(a) of γi(θ) can be bounded from above by e
1
2a
′Ω−1a, for a ∈ Rd.

This can be used to find that Eθ (‖γi(θ)‖m) ≤ C1 for some constant C1 that may depend on
K, d,m. Therefore, there is another constant C2, which may depend on K, d,m,N, such that
Eθ (‖SN (θ)‖m) ≤ C2, proving (A.1).

To verify (A.2), note that the regularity of pN (θ) =
∏N
i=1 p

i(θ) and its derivatives implies
that

H2(θ, θN ) =

∫ [
−ψN (θ)(θN − θ) +

(√
pN (θN )−

√
pN (θ)

)
+ ψN (θ)(θN − θ)

]2
dν

=

∫
[−ψN (θ)(θN − θ)]2 dν + o(‖θN − θ‖2)

= (θN − θ)′IN (θ)(θN − θ) + o(‖θN − θ‖2)− 2O(‖θN − θ‖2)o(‖θN − θ‖2)

≥ ‖(θN − θ)‖2λN,min(θ) + o(‖θN − θ‖2).

where λN,min(θ) denotes the smallest eigenvalue of IN (θ). Therefore, for N sufficiently large,
there is a constant AK such that H2(θ, θN ) ≥ AK‖(θN −θ)‖2. Since Θ is bounded, we even have
‖(θN − θ)‖2 ≥ C ‖(θN−θ)‖2

1+‖(θN−θ)‖2 for some positive constant C, which shows that (A.2) holds.

The Lyapunov condition (B.1) follows in a straightforward way. According to the above,
Eθ
(
‖Si(θ)‖3

)
≤ C for some C and therefore

sup
θ∈K

N∑

i=1

Eθ
(
‖IN (θ)−1/2Si(θ)‖3

)
≤ N−3/2 sup

θ∈K
J
√
NIN (θ)−1/2 − I(θ)−1/2K

N∑

i=1

Eθ
(∥∥Si(θ)

∥∥3
)

+N−3/2 sup
θ∈K

JI(θ)−1/2K
N∑

i=1

Eθ
(
‖Si(θ)‖3

)

≤ CN−1/2

[
sup
θ∈K

J
√
NIN (θ)−1/2 − I(θ)−1/2K + sup

θ∈K
JI(θ)−1/2K

]
,
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which converges to 0 as N →∞.

To verify (B.2), we show that (recall that J i(θ) denotes the second derivative of
√
pi(θ))

sup
‖h‖≤R

1

N

[
1

N

N∑

i=1

Eνi

(s
J i(θN )− J i(θ)

{2
)]

and
1

N

[
1

N

N∑

i=1

Eνi

(s
J i(θ)

{2
)]

(6)

converge to 0 uniformly in K. As J i(θ) is continuous, it is uniformly continuous on compacta,

such that for all i ∈ N, ai,N = sup‖h‖≤R

s
J i(θN ) − J i(θ)

{
converges a.s. to 0 as N → ∞.

One can show that ai,N ≤ Ai(θ,R) and Eνi

(
Ai(θ,R)2

)
≤ DK . Dominated convergence implies

Eθ(ai,N ) → 0, and the uniform (in i) bound DK implies uniform in K convergence of the left
term in (6) to 0. For the right term in (6) we note that Eνi

(
JJ i(θ)K2

)
≤ Eθ

(
J ddθSi(θ)K2

)
+

Eθ
(
JSi(θ)′Si(θ)K2

)
< CK , where CK is a constant that only depends on K and we conclude

uniform in θ ∈ K convergence to 0, completing the verification of (B.2).

2.3.2. On the convergence of the average Fisher information in SDMEMs
As seen above, a key condition for establishing the asymptotic normality of the MLEs was the con-
vergence of the scaled N -sample Fisher information 1

N IN (θ) = 1
N

∑N
i=1 I

i(θ) to a deterministic
limit I(θ). This is difficult to check when the drift contains subject-specific covariate information
Di and these covariates are not identical across subjects, because the processesXi do not have the
same distributions, since the drift function F varies across subjects, F i(x, µ, φi) = F (x,Di, µ, φi).

In a linear regression model with random effects, the asymptotic behavior of the averaged
FI is deduced from a comparable asymptotic behavior of the averaged covariates, such that the
verification of conditions can conveniently be accomplished on covariate level. Also in SDMEMs
with covariates, it would be desirable to be able to break down the convergence of 1

N IN (θ) to an
average covariate behavior. This, however, is not possible, not even if we assume the simplest
case where the drift function F is linear in state, covariates, fixed and random effects and if the
latter are Gaussian distributed with known covariance matrix.

We illustrate this in the simplest non-trivial example that includes covariates. We look at a
one-dimensional state process Xi governed by dXi

t =
[
Xi
t(µ

1 + φi,1) +Di
t(µ

2 + φi,2)
]
dt+ dW i

t ,
with fixed effects vector µ = (µ1, µ2)′, i.i.d. N (0,Ω)-distributed random effects φi = (φi,1, φi,2)′,
and known covariate process Di. We assume Ω is known, such that θ = µ is the only un-
known parameter. This setup is a special case of (2) with A = 0, B = C and therefore
Ui := U1i = U2i, Vi := V1i = V2i = Zi. More specifically,

Ui =

(∫ T
0
Xi
tdX

i
t∫ T

0
Di
tdX

i
t

)
and Vi =

(∫ T i

0
(Xi

t)
2dt

∫ T i

0
Xi
tD

i
tdt∫ T i

0
Xi
tD

i
tdt

∫ T i

0
(Di

t)
2dt

)
.

The FI is by definition Ii(µ) = Eµ
(
− d2

dµ2 log pi(θ)
)

= Eµ
(
(I + ViΩ)−1Vi

)
, see eq. (4). The ma-

trix (I + ViΩ)
−1
Vi is, however, a non-linear function of Vi and thus finding an explicit expression

for Ii(µ) is generally impossible - even in the simple linear case, where Xi is nothing but a Gaus-
sian process. For comparison, in the linear mixed effects model, the log-likelihood for observation
yi with covariate vectors xi, zi is proportional to − 1

2 (yi− (xi)′µ)′(I + z′iΩzi)
−1(yi− (xi)′µ), and

therefore the FI is Eµ
(
xi(I + z′iΩzi)

−1(xi)′
)

= xi(I + z′iΩzi)
−1(xi)′. The crucial difference, as

compared to the linear SDMEM case, is that the matrix (I+z′iΩzi)
−1 is deterministic. Therefore,

convergence of 1
N

∑N
i=1 I

i(θ) is implied by a limiting behavior of averages. This is particularly at-
tractive as one can often design the experiment in such a way that the required limiting behavior
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holds. In the SDMEM case, however, it will generally not be possible to determine from an ana-
lytical expression of IN (θ), whether the condition 1

N IN (θ)→ I(θ) holds, due to the combination
of non-linearity and stochasticity.

2.4. Hypothesis testing
It is commonly of interest to test whether an applied treatment has a significant effect on the
treated subjects, i.e., to test whether an underlying treatment effect β, an `-dimensional sub-
parameter of the fixed effect µ, 1 ≤ ` ≤ p, is significantly different from 0. The asymptotic
normality of the MLE for the SDMEMs lends itself naturally to the application of Wald tests,
which can be used to investigate two-sided null hypotheses such as H0 : β = 0 (no treatment
effect) or more generally, any k-dimensional, 1 ≤ k ≤ `, linear null hypothesis H0 : Lβ = η0,
where L is a k × ` matrix of rank k, specifying the linear hypotheses of interest, and η0 ∈ Rk.

The Wald test statistic is
(
Lβ̂N − η0

)′ (
LV̂NL

′
)−1 (

Lβ̂N − η0

)
, where β̂N is the MLE of β and

V̂N = Ĉov(β̂N ) denotes its estimated variance-covariance matrix of β̂N . Under the null hypoth-
esis the test statistic is asymptotically χ2-distributed with k degrees of freedom (Lehmann and
Romano, 2006). Alternatively, the Likelihood-Ratio (LR) test can be applied. Let p0 and pa de-
note the likelihoods under the null and under the alternative, then the test statistic −2 log(p0/pa)
is asymptotically χ2-distributed with degrees of freedom equal to the difference in number of pa-
rameters. Hypothesis testing in the present SDMEM framework will be further illustrated in the
following two sections.

3. Simulation study on the linear transfer model

The model under investigation is inspired from a study on the selenomethionine metabolism in
humans (Große Ruse et al., 2015). This multidimensional linear transfer model finds frequent
applicability in pharmacokinetics. Each component of the model’s state vector represents the
concentration of a substance in a certain compartment (e.g., in an organ of the human body),
such that the model describes the flow between several compartments. We consider a flow in
form of a cascade-shaped transfer structure, illustrated in Fig. 1. The transfer rates between
compartments are mostly subject-specific, which we account for by inclusion of random effects.
Additionally, dynamics may depend on covariates Di. Here, the Di ∈ {0, 1} encodes the affinity
of subject i to one of two treatment groups. For simplicity we assume a unit diffusion matrix,
such that we consider the model

dXi
t = F (Xi

t , D
i, µ, φi)dt+ dW i

t = −G(α+ φi)Xi
t +Diβdt+ dW i

t ,

for 0 ≤ t ≤ T and Xi
0 = 0, where µ′ = (α′, β′) is the fixed parameter and

G(α) =




α1 0 0 0 −α5

−α1 α2 0 0 0
0 −α2 α3 + α6 0 0
0 0 −α3 α4 0
0 0 0 −α4 α5



.

This is a special case of the affine model (2). The (unknown) fixed effect µ has the 6-dimensional
component α, which is shared across both groups (placebo and treatment) and an additional 5-
dimensional component β, which describes the effect of the covariate (treatment) on a subject’s
dynamics. We let β′ = (1, 2, 3, 1,−2). The random effects φi are i.i.d. N (0,Ω)-distributed with
unknown Ω, which we assume to be diagonal with entries diag(Ω) =

(
0.52, 12, 12, 0.52, 0.32, 0.32

)
.
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With α′ = (α1, . . . , α6) = (2, 4, 3, 2, 1, 1), all eigenvalues of G(α) have positive real parts, imply-
ing that the model has a stationary solution. The processes Xi for individuals without treatment,
Di = 0, are (on average) mean-reverting to 0, while those for individuals in the treatment group
have average long-term mean (G(α))−1β = (7.50, 4.25, 5.00, 8.00, 14.00)′, see also Fig. 2. The
observation horizon is fixed to T = 15. A trajectory of (X1

t , . . . , X
N
t )0≤t≤T is simulated with

the Euler-Maruyama scheme with simulation step size δ = 10−4. Fig. 2 shows four realized
trajectories of the 5-dim. process Xi. The upper two panels show trajectories for Di = 0 and
the lower two correspond to Di = 1.

3.1. Parameter estimation
To mitigate simulation errors, the simulated trajectories are thinned by a factor b (taking only
every b-th observation). We explore the expected time-discretization bias of the estimators by
repeating estimation for different thinning factors, b ∈ {10, 100}, which results in sampling in-
tervals ∆t = δ · b = 0.001, 0.01. To investigate estimation performance as a function of sample
size, we used N = 20 and N = 50. Estimation for the considered (∆t,N)-combinations was
repeated on M = 500 simulated data sets. Table 1 reports the sample estimates of relative
biases and root mean squared errors (RMSE) of the fixed effects and of the variances of the

random effects. The relative bias of α̂j is computed as 1
M

∑M
m=1

α̂
(m)
j −αj

αj
and the RMSE as

(
1
M

∑M
m=1(α̂

(m)
j − αj)2

)1/2

, j = 1, . . . , 6, with an analogous definition for the other parameters.
The first six rows in the table correspond to estimated biases and RMSEs of the shared fixed
effects αj , j = 1, . . . , 6. The subsequent five rows show these metrics for the treatment effects βj ,
j = 1, . . . , 5, and the last six rows correspond to the metrics for the diagonal elements of Ω (i.e.,
the variances of the random effects). The estimation is very accurate already at sample sizes as
small as N = 20, when the data is sampled at high frequency (here 1/0.001). Increasing the sam-
ple size to N = 50 does not add much to the accuracy of the estimation of the fixed effects. But it
does, and not surprisingly, improve the estimation of the variances of the random effects, by up to
14 percentage points. For a lower sampling frequency of 1/0.01, estimates of the fixed effects α, β
are on average biased by only about 1-2%, which is still very accurate. The variances of the ran-
dom effects are estimated with an average bias of 5-9% for N = 50 and ∆t = 0.01. Not displayed
here are simulation results for low frequency observations with ∆t = 0.1. Simulations have shown
that estimation becomes fairly unreliable in this case. The bias due to the time-discretization of
the continuous-time estimator is pronounced, with values of up to 25% for the fixed effects and
up to almost 50% for the variances of the random effects. The RMSEs rise by more than 100%, as
compared to the results obtained for a 10 times higher sampling frequency. If only low-frequency
data are available, caution is therefore recommended and estimation should only be done on a
data set that has been enlarged by imputing data in between the observation time points.

3.2. Hypothesis testing
A natural step is to test whether the treatment effect β, or a subparameter, is significantly
different from 0. We estimate the false-positive rate of the Wald test (see subsection 2.4) for
this model and investigate the test’s power under different non-zero treatment effects. The esti-
mated variance-covariance matrix V̂N = Ĉov(β̂N ) of β̂N is obtained from M = 500 (separately)
computed MLEs β̂(m)

N ,m = 1, . . . ,M , where underlying data sets have been simulated under
the true hypothesis (under H0 for estimation of the false positive rate and under H1 for power
estimation). Table 1 shows that the estimation was accurate for high- and medium-frequency
observations. Diagnostic plots (not shown here) reveal that the asymptotic distribution of the
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Table 1. Linear transfer model. Shown are estimated relative bias and RMSE of α̂, β̂ and diag(Ω̂).
The sample sizes are N = 20, 50, and sampling intervals are ∆t = 0.001, 0.01. For every combina-
tion (N,∆t), the estimation was repeated on M = 500 generated data sets.

(N , ∆t) (20, 0.001) (50, 0.001) (50, 0.01)

true value rel. bias RMSE rel. bias RMSE rel. bias RMSE

2.00 0.003 0.116 0.001 0.079 -0.018 0.086
4.00 0.001 0.232 -0.002 0.149 -0.024 0.172

α 3.00 0.003 0.253 0.001 0.163 -0.021 0.170
2.00 -0.003 0.126 -0.001 0.083 -0.017 0.088
1.00 0.003 0.074 0.001 0.047 -0.016 0.049
1.00 -0.003 0.146 0.002 0.091 -0.008 0.091

1.00 0.000 0.157 -0.002 0.099 -0.020 0.099
2.00 -0.001 0.174 -0.002 0.114 -0.024 0.121

β 3.00 0.002 0.233 0.002 0.152 -0.010 0.152
1.00 0.010 0.231 -0.001 0.148 0.014 0.146
-2.00 0.006 0.203 0.002 0.124 -0.024 0.131

0.25 -0.091 0.093 -0.037 0.062 -0.079 0.062
1.00 -0.046 0.355 -0.035 0.208 -0.095 0.216

diag(Ω) 1.00 -0.073 0.343 -0.035 0.215 -0.085 0.219
0.25 -0.035 0.097 -0.026 0.061 -0.065 0.060
0.09 -0.045 0.035 -0.009 0.022 -0.047 0.021
0.09 -0.181 0.055 -0.040 0.036 -0.065 0.035
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Fig. 1. Illustration of the 5-dimensional linear
transfer model used in the simulation example.
The state Xj = (Xj,t)0≤t≤T gives the concen-
tration (over time) of a substance in compart-
ment j, j = 1, . . . , 5. The αj , j = 1, . . . , 5, are
the unknown flow rates between compartments
and α6 represents the outflow rate of the sys-
tem.

Fig. 2. Linear transfer model:
Four realizations of the 5-
dimensional state process. The
upper two panels show realiza-
tions when the covariate is 0
(reference group) and the lower
two panels display trajectories for
Di = 1 (treatment group). Note
the clearly visible difference in
the long-term means between
the two groups.
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MLE is close to normal already for N = 20 subjects, such that even for a rather small data
set and a medium sampling frequency, test results are reliable. The choice (N,∆t) = (20, 0.01)
provides a simulation setting which is sufficiently reliable, but at the same time not trivial and
will challenge the hypothesis test, in particular for small treatment effects. The estimated false
positive rate (based on M under H0 generated data sets) is 0.074, revealing a slightly liberal
finite-sample test behavior. The power of detecting a treatment effect (rejecting H0 : β = 0)
was computed for different values of β. For β = (1, 2, 3, 1,−2)′ (values as above), the estimated
power was 1. This comes to no surprise as the long-term mean (7.5, 4.25, 5, 8, 14)′ of the state
process in the treatment group is considerably different from the zero long-term mean of the
control group. The power, estimated to 0.956, was still convincing for a much smaller treatment
effect β = (0.1, 0.2, 0.3, 0.1,−0.2)′, which gives a long-term mean of (0.75, 0.425, 0.5, 0.8, 1.4)′.
This is especially impressive as the state process’ standard deviation (from its long-term mean
0) under H0 is about (0.66, 0.49, 0.59, 0.72, 1.21)′. More challenging is the rejection of H0 when
the treatment has a small effect on, e.g., only one coordinate, β = (0.1, 0, 0, 0, 0)′. In this case
(long-term mean (0.2, 0.1, 0.1, 0.15, 0.3)′), and for N = 20 the chance of rejecting H0 is as small
as 16% and it is thus hardly possible to detect a difference between groups. However, while
being only slightly conservative, the asymptotic Wald test is able to detect a treatment effect for
a rather small data set, even if it causes only a little change of the long-term mean as compared
to the standard deviation of the process.
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4. Analysis of EEG data

Scalp electroencephalography (EEG) is a non-invasive method to measure electrical activity in the
brain over time, recorded by electrodes placed on the scalp. Abnormal patterns in the recorded
brain waves are used as possible indicators for diseases such as epilepsy and can help determining
a suitable treatment for the patient. The data set was collected during a study conducted by
the Children’s Hospital Boston and is described in Shoeb (2009). It consists of continuous EEG
recordings on 23 epilepsy patients. The electrodes were arranged on the scalp according to
the international 10-20 system (see Fig. 3) and the EEG signal was recorded with a sampling

Fig. 3. Location of scalp electrodes accord-
ing to the international 10-20 system

frequency of 256 Hz. This is high frequency
compared to the typical time scales of the sys-
tem, and thus, for this type of data, the dis-
cretization error will be negligible. During time
of recording, every patient experienced one or
more periods of abnormal activity that have
been classified as epileptic seizures by Shoeb
(2009).

Part of this data set was also analyzed in
Østergaard et al. (2017). Their results, which
were obtained using a different modeling ap-
proach, indicated increased channel interaction
strength during seizure. However, their findings
were based on data from a single subject only.
It is therefore of interest whether one can infer
an increased interaction when combining data
from several subjects within a dynamical mixed-effects framework. We focus our analysis on
recordings from four channels in the frontal lobe, FP1_F7, FP1_F3, FP2_F4 and FP2_F8, as
done in Østergaard et al. (2017). Thus, responses are four-dimensional time series for every pa-
tient. The first two channels are located on the left hemisphere and the latter two are, mirrored,
on the right. For every patient we extracted two 5s periods of recording, one of them reflecting
normal brain activity and the other reflecting abnormal activity classified as epileptic seizure.
Fig. 4 shows data for the selected periods of an 11-year old boy. The rows in the plot correspond
to the four selected channels and the color indicates pre-seizure (red) and seizure (blue) sections.

The dynamics of the signals during seizure differ clearly from pre-seizure behavior and the
objective of this analysis is to better understand, quantitatively and qualitatively, how they differ.
From a neurophysiological viewpoint the interaction structure between brain regions or different
channels is of interest and, in particular, if and how this network structure changes under different
conditions, e.g., when patients enter an epileptic seizure state. A hint on possible interactions
can be obtained by investigating the correlation structure between channels. Under a sufficiently
short time window, the otherwise non-stationary behavior of spontaneous brain activity can
be considered stationary. We model the 5s sections of EEG recordings from the four selected
channels by a stationary four-dimensional Ornstein-Uhlenbeck (OU) process. This is a process
with dynamics dXt = AXtdt + ΣdWt and explicit solution Xt = eAtx0 +

∫ t
0
eA(t−s)ΣdWs. In

particular, Xt (given x0) is Gaussian with mean E(Xt) = eAtx0 and covariance matrix V(Xt) =∫ t
0
eAsΣΣ′eA

′sds. If all eigenvalues of the rate matrix A have negative real parts, X has a
stationary solution and the stationary distribution is a centered Gaussian with covariance matrix
V =

∫∞
0

eAuΣΣ′eA
′udu and autocorrelation function (ACF) rX(τ) = V 1/2eA

′τV −1/2.
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Fig. 4. Sections of 5s of the EEG-recording during pre-seizure activity and during an epileptic
seizure for the four channels FP1_F7, FP1_F3, FP2_F4 and FP2_F8 and a single subject, an
11-year old boy. The pre-seizure time series is plotted in red and the signal during a subsequent
seizure is given in blue.
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The statistical model
The prevalent inter-subject variability for EEG data is one of the greater challenges for any
inference procedure (Shoeb, 2009), and we account for such subject-specific deviations from mean
OU dynamics by the inclusion of random effects. We present the subject-specific SDMEM model
for the EEG data first and afterwards give a motivation for our choice. We denote the pre-seizure
process of subject i by Y i,1 and the seizure process by Y i,2. During seizure, the signal is amplified
considerably (Fig. 4). As structural differences are easier to analyze when pre-seizure and seizure
data are of comparable magnitude, we re-scale the data to Xi,k

t = diag(1/σi,k11 , . . . , 1/σ
i,k
44 )Y i,kt ,

with σi,kjj being the infinitesimal standard deviation (square root of the quadratic variation) of
channel j. Normalizing by a diagonal matrix does not introduce changes to the inherent channel
structure, but only affects the scaling. The specific choice of the scaling renders the quadratic
variation of the obtained processesXi,k to be a correlation-matrix type. Taking the OU-dynamics
as base model, we then model the (normalized) data for subject i by

dXi,k
t =

[
A+ Φi,pre +Di,k(M + Φi,δ)

]
Xi,k
t dt+ ΣdW i,k

t , (7)

where W i,k are independent Brownian motions, A,M,Φi,pre,Φi,δ are 4 × 4 matrices and the
entries of Φi,pre,Φi,δ are independent centered Gaussian random variables (the random effects).
The covariate Di,k encodes whether the data belongs to pre-seizure (Di,1 = 0) or seizure state
(Di,2 = 1). Thus, for a pre-seizure state, population dynamics are driven by the rate matrix A,
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whereas M represents the covariate (or seizure) effect. Rewriting equation (7) as

dXi,k
t =

[
B(Xi,k

t , Di,k)µ+ C(Xi,k
t , Di,k)

(
φi,pre

φi,δ

)]
dt+ ΣdW i,k

t , (8)

(with φi,pre and φi,δ being the vectorized versions of Φi,pre and Φi,δ, respectively) reveals that this
model belongs to the class of affine SDMEMs with covariates, model (2), and thus has explicit
likelihood and fixed-effects estimators.

Motivation for the model approach
The processes W i,1 and W i,2 represent the noise within the system on a short time scale. Their
independence is supported by the fact that data sections Xi,1, Xi,2 are temporally (on a larger
time scale) clearly separated. In general, behavior during seizures is more variable, and, in
particular, show a stronger amplification.

Fig. 5. Diagonal plots: Infinitesimal standard deviation for every channel, estimated by the
square root of the quadratic variation, used to normalize the data records. Off-diagonal plots:
Infinitesimal correlation between channels. The gray lines correspond to individual estimates
for pre-seizure (red) and seizure (blue) data. The black line is the mean correlation, averaged
over individuals and states.
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Fig. 5 shows that the average structure of the infinitesimal correlations between channels
(off-diagonal plots) does not differ considerably between pre-seizure (red) and seizure states
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(blue). The estimated infinitesimal standard deviations σ̂i,kjj of the channels (diagonal plots)
reveal, however, that in most subjects and channels (80%) the standard deviation increases, in
the most extreme case it increases 14-fold, and in 78% of the cases it more than doubles. Because
of the shared infinitesimal correlation structure we model the normalized pre-seizure and seizure
processes with the same diffusion matrix, denoted above by Σ. This implies that any further
changes apart from the scaling in the dynamics between states are captured by changes in the
drift. The transition from pre-seizure to seizure state is modeled in terms of the drift matrix
M+Φi,δ. The structural change in the population dynamics is represented byM , and the change
in the subject-specific variation due to seizure is represented by the random effect Φi,δ.

Results
The statistical conclusions are based on the population rate matrices A,M , which are estimated
by their MLEs as outlined in section 2.2. The estimates of the population-based rate matrices
are

Â =




−10.52 −3.59 −0.42 2.47
3.24 −17.72 4.76 1.70
1.98 0.14 −12.60 3.94
0.74 −1.75 −1.52 −12.87


 ; M̂ =




−3.22 2.65 0.80 −0.16
0.83 4.60 −1.51 2.81
−0.82 −0.27 0.74 0.00

3.27 0.59 1.30 −3.36


 .

The eigenvalues of Â and Â+ M̂ have negative real parts, such that stationary distributions on
the population level for pre-seizure and seizure states indeed exist.

Fig. 6. Confidence intervals for the estimated entries of the covariate effect matrix M . The blue
lines are for the full model, whereas the 16 black lines are derived from 16 reduced models
where all but one entry of M are set to 0.

F
P

1_
F

7

FP1_F7

−10 0 10

F
P

1_
F

7

FP1_F7 FP1_F3 FP2_F4 FP2_F8

F
P

1_
F

3
F

P
2_

F
4

−10 0 10

F
P

2_
F

8

−10 0 10 −10 0 10 −10 0 10



Diffusion models with mixed effects and covariates 19

Table 2. Stationary correlations between channels, for pre-seizure state
and seizure state (columns 4,5). The last column shows the change in
correlation for seizure epochs as compared to non-seizure periods.

channel 1 channel 2 correlation change (%)
pre-seizure seizure

FP1_F7 FP1_F3 0.42 0.52 23.81
FP1_F7 FP2_F4 0.22 0.26 18.18
FP1_F7 FP2_F8 0.32 0.43 34.37
FP1_F3 FP2_F4 0.60 0.59 -1.67
FP1_F3 FP2_F8 0.23 0.36 56.52
FP2_F4 FP2_F8 0.43 0.47 9.30

In a first step we assess whether the overall covariate effect M is significant by testing H0 :
M = 0 versus H0 : M 6= 0 with a likelihood ratio test. The likelihood ratio statistic, which under
H0 is asymptotically χ2

32−16-distributed, has a realized value of 13.71, with a p-value of 0.62.
We conclude that the null hypothesis H0 : M = 0 cannot be rejected on a 5%-level. However,
the data set consists of observations from only 23 subjects and the number of fixed effects alone
(32 parameters) is considerably higher. Therefore, a possible prevalent covariate effect is hard
to detect and statistical results have to be interpreted with caution. More insight into where
changes might be present in the rate matrix between pre-seizure and seizure states is provided
in Fig. 6. It shows the 95%-confidence intervals (CIs) for every entry of M in blue. Only one
element ofM has a CI that does not include 0. A way to increase statistical power is to cut down
on the number of unknown parameters. Considering only one element of M active instead of all
16, the number of unknown fixed effects is reduced from 32 to 17. Each of the black CIs in Fig.
6 is derived from a reduced model in which all but one elements of M are set to 0. As expected,
most CIs are more narrow, however, only few elements appear to have an effect. The lower left
plot, e.g., suggests an increased influence of channel FP2_F8 on FP1_F7 under seizure.

It is not straightforward to interpret a covariate effect by looking at the matrix M in an
entry-by-entry manner. Insights about structural changes in the underlying dynamics can more
easily be gained by looking at interactions in the system. Interactions can be assessed by the cor-
relations between components of Xi,k

t . To analyze this, we compare the (population) stationary
covariance matrices of pre-seizure and seizure state, which will reveal differences in the long-run
correlation structure between channels. The population estimates of the correlation matrices of
the stationary distributions for pre-seizure and seizure states are shown in Table 2. In line with
the findings in Østergaard et al. (2017), channel-correlations increase during seizure, most of
them by at least around 20%.

Other quantities of interest are the ACFs shown in Fig. 7. The diagonal panels in Fig. 7
show the univariate autocorrelation for every channel, i.e., the correlations between a channel
and its time-lagged version, as a function of the time lag. The autocorrelations show no marked
difference between pre-seizure and seizure states. This can also be summarized by the eigenvalues
of matrices Â and Â+ M̂ . The absolute values of the real parts provide the rates of decay, and
thus, their inverse indicate the typical time constants in the system. For the pre-seizure state
the absolute values of the real parts vary between 11.4 and 17.7, whereas during seizure these
vary between 11.6 and 18.0.

To summarize, despite not being statistically significant, there are indications of changes in
the correlation structures during epileptic seizures, where correlations between channels increase.
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Fig. 7. Theoretical multivariate ACFs rkX(τ) = V̂
1/2
k eÂ

′
kτ V̂

−1/2
k , k = 1, 2, for the stationary

distributions, where Â1 = Â is the estimated population rate matrix for pre-seizure states (in
blue), Â2 = Â + M̂ is for seizure states (red), and V̂k is the estimated stationary (population)
covariance matrix.
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Nonetheless, the main effect of an epileptic seizure seems to be captured by increased variance
addressed in the rescaling of the data, more than structural changes. However, with only 23
patients finer effects might be difficult to unravel. An analysis of all channels would be of
interest, but is only possible with much larger sample sizes due to the many parameters a full
analysis would imply.

5. Discussion

SDMEMs constitute an attractive class of statistical models for biomedical data. We suggested
an approach for parameter inference in this framework, which even comprises more complex
dynamics such as time-inhomogeneity and multivariate and nonlinear states. The inclusion of
(deterministic) subject-specific covariate information, which causes the modeler to leave the
world of identically distributed observations, is addressed as well. The presented conditions
for consistency and asymptotic normality of the MLE along the lines of L2-differentiability do
not require the typical strong smoothness properties of densities and thereby open doors to
irregular models. To make abstract formulations graspable, conditions are illustrated for the
special case of Gaussian random effects and linear parameters (but possible non-linearity in the
state). This model is a multidimensional extension of the one studied in Delattre et al. (2013)
and is, in its multidimensional version, particularly interesting as it comprises numerous well-



Diffusion models with mixed effects and covariates 21

known models. Among them are the predator-prey (or Lotka-Volterra) model (Murray, 2002), the
Lorenz equations introduced by Lorenz (1963), which have been used to model, e.g., temperature,
wind speed and humidity, the Brusselator model (Kondepudi and Prigogine, 2014, 19.4), the
Fitzhugh-Nagumo model (FitzHugh, 1955; Nagumo et al., 1962; Jensen et al., 2012), which is used
to describe the regenerative firing mechanism in an excitable neuron, and the SIR (susceptible-
infected-removed) model introduced by Kermack and McKendrick (1927), an epidemic model
which has been widely studied and applied (Keeling and Rohani, 2008; Guy et al., 2015).

The estimation quality in terms of sample size and sampling frequency was investigated in
a simulation study for a popular model in pharmacokinetics, which was motivated by a recent
study (Große Ruse et al., 2015). It includes subject-specific covariate information and is linear
in parameters and state. When observations are sampled at high frequency, estimation results
were convincing already for small sample sizes (N = 20), despite the comparably large number
(11 fixed effects and 6 variances) of unknown parameters. A moderate sampling interval (of
∆t = 0.01) still gave good results for the considered sample size. However, when sampling at low
frequency (∆t = 0.1), the discrete-time bias makes itself felt (not included here). The asymptotic
normality of the MLE lends itself naturally to hypothesis tests by means of the Wald or the LR
test. Based on the simulated data, we estimate the false-positive rate, revealing a slight liberalism
of the test procedure, and compute the test’s power for different true values of parameters.

Finally, we apply the framework to the statistical analysis of epileptic EEG data to assess
differences between dynamics for non-seizure and seizure periods. The population voltage dy-
namics during non-seizure and seizure states are modeled as Ornstein-Uhlenbeck processes, while
the prevalent inter-subject variability was accounted for by the inclusion of random effects in the
drift. After having adjusted for the subject-specific deviations, systematic differences between
pre-seizure and seizure recordings are assessed by comparing the population correlation structure
of the corresponding stationary distributions. Our findings support those in Østergaard et al.
(2017), which indicate increased state (channel) correlation for seizure epochs as compared to
non-seizure states.

A few comments are in order concerning the simulation study and the presented application.
Regarding the EEG data analysis, it should be noted that a physiological interpretation of our
results in terms of an underlying network structure has to be taken with a grain of salt for
two key reasons. One is that EEG recordings are only proxies for underlying brain activity.
Secondly, correlation is only one way to assess signal interaction. Non-linear interactions, which
are undetectable by correlation-based measures, may still exist. In terms of our simulation
settings, we have only studied the method’s applicability to models with up to 17 parameters.
Even in the case of an explicit likelihood, the MLE of the (unknown) covariance matrix of the
random effects vector is implicit and estimation requires numerical optimization, which may
hamper estimation when the parameter space has a high dimension.

A drawback of the presented approach is the already mentioned inherent discrete-time bias
of the estimation procedure. It is negligible if observations are sampled at sufficiently high fre-
quency, such as for EEG recordings, but for low-frequency observations, which sometimes occur
in pharmacological applications, a severe bias is introduced, which is to bear in mind in appli-
cations. A possible solution is to impute data at time points in between observation times, and
conduct the estimation on the enlarged data set (Bladt et al., 2016). Related to that is the
problem of incomplete observations, where only some of the coordinates in the state space are
observed, and an entire path of a completely unobserved (latent) coordinate should be inferred
(Berg and Ditlevsen, 2013; Ditlevsen and Samson, 2014). Missing observations of one or more
coordinates is not untypical for biological data. This, at a first step, prohibits application of
the proposed estimation procedure, as it relies on the assumption of complete data observations.
Such statistical recovery of hidden state coordinates remains a topic for future research.
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