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Abstract

Stochastic reaction networks compose a broad class of applicable continuous-time Markov
processes with a particularly rich structure defined through a corresponding graph. As such,
they pose a general and natural framework for representing non-linear stochastic dynamical
systems where the interactions among types of entities are themselves of transformational
form. Many such systems, in particular when they model real world phenomena, are certain
to go “extinct” eventually, yet appear to be stationary over any reasonable time scale. This
phenomenon is termed quasi-stationarity. A stationary measure for the stochastic process
conditioned on non-extinction, called a quasi-stationary distribution, assigns mass to states
in a way that mirrors this observed quasi-stationarity.

In the paper (Hansen and Wiuf, 2018a), we are concerned with providing sufficient condi-
tions for the existence and uniqueness of quasi-stationary distributions in reaction networks.
Specifically, for any reaction network we introduce the inferred notion of an absorbing set,
and prove through the use of Foster-Lyapunov theory, sufficient conditions for the associated
Markov process to have a globally attracting quasi-stationary distribution in the space of all
probability measures on the complement of the absorbing set.

The manuscript (Hansen and Schreiber, 2018) deals with connections to the correspond-
ing deterministic system, where qualitative information about the dynamics is often much
easier to obtain. Through the use of Morse-decompositions, we show that under the classi-
cal scaling, the limit of quasi-stationary measures converges weakly to a probability measure
whose support is contained in the attractors of the deterministic system lying entirely within
the strictly positive orthant.

Having shown that a specific network at hand has a unique quasi-stationary distribution,
the manuscript (Hansen and Wiuf, 2018b) provides an inductive procedure to analytically
determine this. Exploiting a center manifold structure, we show that, when one considers
the full system as a linear perturbation of a particular sub-network and the coupling to
the absorbing set is sufficiently weak, the quasi-stationary distribution may be written as a
formal sum with the stationary distribution of the sub-network as a first approximation. We
furthermore characterize such stationary distributions for one-species networks.
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Resumé

Stokastiske reaktionsnetværk udgør en alsidig klasse af anvendelige kontinuert-tids Markov-
processer, som besidder en særlig rig struktur defineret gennem en tilhørende graf. Disse
danner s̊aledes en generel og intuitiv ramme for modelleringen af ikke-lineære stokastiske
dynamiske systemer, hvori interaktionerne mellem forskellige typer af entiteter i sig selv
er af foranderlig karakter. Omend mange s̊adanne systemer, særligt n̊ar de beskriver pro-
cesser fra den virkelige verden, med sikkerhed vil ”uddø” til sidst, synes disse ofte at opføre
sig stationært over enhver rimelig tidshorisont. Dette fænomen kaldes quasi-stationaritet.
Et stationært m̊al for den stokastiske process betinget p̊a ikke-absorption, kaldet en quasi-
stationær fordeling, tildeler sandsynlighedsmasse til tilstande p̊a en m̊ade, der afspejler
denne observerede quasi-stationaritet.

I artiklen (Hansen and Wiuf, 2018a) beskæftiger vi os med at opn̊a tilstrækkelige beting-
elser for eksistensen og entydigheden af quasi-stationære distributioner i reaktions-netværk.
Mere nøjagtigt introducerer vi for ethvert reaktionsnetværk den afledte definition af en ab-
sorberende mængde, og fastlægger, ved brug af Foster-Lyapunov-teori, tilstrækkelige betingel-
ser for at den tilhørende Markov-proces har en globalt tiltrækkende quasi-stationær fordeling
i rummet af sandsynlighedsm̊al p̊a komplementet af den absorberende mængde.

Manuskriptet (Hansen and Schreiber, 2018) omhandler forbindelser til det tilsvarende
deterministiske system, hvor kvalitative oplysninger om dynamikken ofte er lettere at opn̊a.
Gennem brugen af Morse-dekompositioner viser vi, at under den klassiske skalering, kon-
vergerer den tilhørende følge af quasi-stationære fordelinger svagt til et sandsynlighedsm̊al,
hvis støtte er indeholdt i foreningen af de af det deterministiske systems attraktorer, der er
helt indeholdt i den strengt positive kvadrant.

Efter at have vist, at et givet netværk har en unik quasi-stationær fordeling, fremføres
i manuskriptet (Hansen and Wiuf, 2018b) en induktiv procedure til analytisk at bestemme
denne. Ved udnyttelse af en center-mangfoldighedsstruktur, viser vi, at n̊ar det fulde system
betragtes som en lineær perturbation af et bestemt del-netværk, og koblingen til den ab-
sorberende mængde er tilstrækkelig svag, kan den quasi-stationære fordeling skrives som en
formel sum, hvori den stationære distribution for del-netværket optræder som en første ap-
proksimation. Vi karakteriserer desuden s̊adanne stationære distributioner for en-dimension-
elle netværk.
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1
Introduction

This work falls within the interdisciplinary field of probability theory, graph theory and
dynamical systems commonly referred to as stochastic reaction network theory (Anderson
and Kurtz, 2015; Erdi and Toth, 1989). We may think of reaction networks in generality
as a natural framework for representing systems where the interactions among entities are
of transformational form (Veloz and Razeto-Barry, 2017). The set of entities (species) may
in principle be of any nature, and specifying not just which ones interact (reactions) but
also quantifying how fast they interact (kinetics), we obtain the dynamical system of a
reaction network. The aim of reaction network theory is in a nutshell to exploit the graphical
properties of an underlying network to infer some qualitative properties of the system’s
associated dynamics. One may argue that the foundation of reaction networks, as it is known
today, was laid in the seminal papers (Horn and Jackson, 1972; Horn, 1972; Feinberg, 1972).
Examples abound in biochemistry, where the language originated, however the true power
of this approach is the ability to model a range of diverse real world processes as dynamical
systems on networks (Newman, 2010). To wit, examples are found in biological (Turing,
1952; Arkin et al., 1998; Barkai and Leibler, 2000), medical (Anderson et al., 2006), political
(Dittrich and Winter, 2008), sociological (Weidlich and Haag, 2012), computational (Cook
et al., 2009), economical (Veloz et al., 2014), ecological (Shakil et al., 2015) or epidemiological
(N̊asell, 2011; Kermack and McKendrick, 1927) contexts.

The complexity of systems modeled by reaction networks is illustrated by the fact that
changes or actions of some of the entities may have implications spreading across the graph,
effecting other entities and vice versa, thus causing feedback effects and thereby non-linearity.
One therefore needs to consider the system as a whole. This line of thought has broadly been
dubbed systems theory (Emery, 1969) and more specifically synergetics when one considers
a unifying mathematical framework within which quantitative descriptions of complex, self-
organizing systems can be made (Haken, 1983). Indeed, we may think of reaction networks
as the prototype of nonlinear systems, capable of exhibiting bifurcations, fluctuations and
chaos (Erdi and Toth, 1989).

Many real world systems are certain to “die out” eventually, yet appear to be stationary over
any reasonable time scale. This phenomenon is termed quasi-stationarity (van Doorn and
Pollett, 2013; Collet et al., 2013). If the system that we are studying has been running for a
long time, and if the only information available to us is that it has not reached extinction,
then the so called quasi-stationary distribution (QSD), if it exists, is the likely distribution of
the state variable (N̊asell, 2011; Méléard and Villemonais, 2012; Renshaw, 2011; Collet et al.,
2013). Thus, while the limiting distribution necessarily assigns all of its probability mass to
the extinction states, the quasi-stationary distribution assigns mass to states in a way that
mirrors the quasi-stationarity observed (van Doorn and Pollett, 2013). As such, when the
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time to extinction is large, this effectively ultimate distribution, rather than the degenerate
limit distribution, is the natural object of study. The term quasi-stationary distribution was
coined by Bartlett (1960), although thoughts roaming around the same general idea can be
found decades before in various scientific fields, bearing testimony to the universal relevance
of quasi-stationarity (van Doorn and Pollett, 2013).

During the last couple of decades, the interest in reaction networks and quasi-stationary
distributions have independently acquired much attention (For general references see Angeli,
2009; Pollett, 2015). However, beyond a few special cases, not much work has been done in
trying to understand quasi-stationarity in reaction networks (Anderson et al., 2014). The
papers and manuscripts constituting this thesis is an attempt to fill in some of this gap.

1.1 Motivation

Whether the universe is inherently deterministic or stochastic in nature, the lack of complete
information in complex systems inevitably introduces some degree of stochasticity. Thus,
a stochastic description is not an alternative to the deterministic approach, but a more
complete one (Qian, 2011; Anishchenko et al., 2007). From a modeling standpoint, when
the population of interacting entities are small and reaction rates are slow, it is important
to recognize that the individual reaction steps occur discretely and are separated by time
intervals of random length (Arkin et al., 1998). This is for example the case at the cellular
level (Elowitz et al., 2002), where stochastic effects resulting from these small numbers may
be physiologically significant (Cook et al., 2009), or at the level of populations describing
the spread of disease or opinions. Such models are often referred to as individual- or agent-
based models. In this inherently discrete domain of individuals (the microscale), stochastic
models are ubiquitous. In contrast, large populations are traditionally modeled by ordinary
differential equations, when the spatial structure, the age-structure, the fluctuations of the
environment, etc, are ignored. These population-level models are supposed to account for
the deterministic trends of large populations (the macroscale), and are inherently incapable
of describing extinction phenomena (Chazottes et al., 2017; Johnston et al., 2017). Indeed,
given a reaction network of interest, the associated deterministic model solution is an approx-
imation of the corresponding solution for the stochastic model, improving with the system
size, and in general only remaining valid on finite time intervals (Kurtz, 1970, 1972, 1978).
Thus, the long-term behavior of a given reaction network may depend crucially on whether
it is modeled deterministically or stochastically (Gupta et al., 2014).

One of the indisputable facts about life, as we know it, is that it has an end. In this light,
the notion of extinction would appear to be a very natural and widely occurring phenomenon.
Generally, the finite nature of the resources available prevents the system from growing with-
out limit. Thus, provided we wait sufficiently long, a downward fluctuation in population
size that is sufficiently violent to drive the species extinct is bound to occur (Renshaw, 2011).
Therefore, given that the model under consideration is sufficiently accurate, the stationary
measure (if it exists) would not provide us with any new information. As a consequence, the
counterpart to a stable stationary solution in the associated deterministically modeled sys-
tem is not generally a stationary distribution of the corresponding stochastic model. Instead,
when it exists and the time to extinction is sufficiently long, the quasi-stationary distribu-
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tion, which is the stationary measure when we condition on the process not going extinct,
has shown to be the natural object of study (van Doorn and Pollett, 2013; Collet et al., 2013).

Luckily, extinction is often a rare event in the sense that the expected time until its oc-
currence is exceedingly large compared to the timeframe of interest. When this is the case,
one may view the dynamics on different timescales. In the short term, the stochastic dynam-
ical system undergoes a quick transformation from its initial state to a seemingly stationary
behavior. In the long term, the process keeps wandering around the state space according to
this seemingly stationary behavior; this is the fluctuation captured by the QSD. Finally, in
the very long term, t → ∞, the system reaches extinction. Note that this quasi-stationary
behavior might well reflect a more complex dynamics in the deterministic reaction network
such as limit cycles or even chaos. For example a multimodal QSD generally occurs when
there are multiple stationary states in the deterministic system, a property referred to as
multistationarity and well studied in the reaction network literature (Joshi and Shiu, 2015;
Wiuf and Feliu, 2013). In the corresponding stochastic system, fluctuations allow switch-
ing from one stable stationary state to another, which again is an inherently stochastic
phenomenon. These noise-induced effects are often paramount in understanding nonlinear
dynamics, and may give rise to stochastic resonance, sustained oscillations or, contrary to
intuition, a more ordered temporal behavior (Anishchenko et al., 2007).
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Figure 1.1: Two sample paths of stochastic reaction networks exhibiting quasi-stationary
behavior (grey). The deterministic dynamics is included for comparison (red).

Results on quasi-stationary distributions are not only of theoretical interest. Real world
processes are often described through complex reaction networks with a large number of
species and reactions. In order to gain information of such systems, it is of great importance
to find suitable model reductions. This is in itself an active area of research (Cappelletti and
Wiuf, 2016). Often the reactions involved in biochemical processes occur at very different
time-scales (Kang and Kurtz, 2013), which poses several problems. In particular, numerical
simulations of the systems may become infeasible (Cotter, 2016). However, quasi-stationary
distributions are exactly the objects required in order to perform the multi-scale reduction
methods for stochastic reaction networks currently being explored in the probability litera-



4 Chapter 1. Introduction

ture (Kang and Kurtz, 2013; Anderson et al., 2014). For example, in order to determine the
behavior of species operating on a timescale that is slower than other species, it is necessary
to first understand the long-term dynamics of the species on the fast timescale, which may
be described by a suitable quasi-stationary distribution, in order to perform either the neces-
sary stochastic averaging, or to recognize that some species will have gone extinct (Anderson
et al., 2014).

As with all types of mathematical modeling, the aim is to make predictions about the
behavior of real world phenomena, and to design ways to interact with them. To give some
examples, suppose one considers a reaction network modeling an endemic disease in a pop-
ulation, say ebola (Nieddu et al., 2017). Then the quasi-stationary distribution answers the
question of how likely it is to see n people infected. Further, one may use the QSD to esti-
mate parameters in the model based on observations, determining how infectious the disease
is. Knowing the QSD in terms of the model parameters would in turn allow governments to
determine the degree of action needed. This example underlines the value of having analytic
mathematical results rather than just computational simulations, although the latter may in
itself greatly reduce the time and resources needed for experiments. Likewise, suppose one
considers a stochastic reaction network describing the political opinions of a population, to
the degree of determining which political party an individual votes for. Provided the model
is sufficiently accurate, the only possible long term outcome corresponds to extinction of
some or all parties (species). However, if one wishes to predict the behavior and variability
of the system until the next election, the quasi-stationary distribution is of interest. Similar
considerations could be made for market crashes in economics or the extinction of species
in ecology (Schreiber, 2016). Although such events are rare, it is a general trait of complex
systems that they have a fat-tailed distribution (Holland, 2014).

Stochastic reaction networks seem especially well suited for modeling systems in biochem-
istry where the language originated, and where quasi-stationary behavior naturally occurs.
A better description of their behavior can thus aid the understanding of the functioning of
the cell, including gene regulatory systems, signaling systems and metabolic systems which
in itself may have far reaching consequences in the long run. It has been suggested that re-
action networks provide the language for constructing new technology such as bio-computers
which need no electricity to run and can function in a hydrous environment such as our bod-
ies (Cappelletti, 2015). Indeed, stochastic reaction networks are essentially Turing universal,
meaning they can compute any computable function with arbitrarily small error (Cook et al.,
2009). Furthermore, with the rise of synthetic biology these networks are being implemented
through DNA computing (Shin et al., 2017). Reaction network theory may thus provide the
theoretical framework for designing controlled interventions which for example could cure
or ease a disease by prescribing targeted drugs (Cappelletti, 2015). In order to aid this
development, solid mathematical insights are needed. This thesis can be seen as a small
theoretical contribution towards such an understanding.
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1.2 Contribution

The papers and manuscripts contained in this thesis provide my contribution to the field
of stochastic reaction networks, developed at the University of Copenhagen, from October
2015 to September 2018. Generally speaking, the papers are concerned with examining
quasi-stationarity in stochastic reaction networks from three different angles. Existence and
uniqueness (Hansen and Wiuf, 2018a), analytic computability (Hansen and Wiuf, 2018b)
and the relationship between deterministic and stochastic models (Hansen and Schreiber,
2018). In the following, we will describe in more detail the content of this work as well
as its relation to the international state-of-the-art. The reader may advantageously consult
Chapter 2 where the relevant mathematical theory is introduced.

When considering quasi-stationarity, one is interested in the long-term behavior before entry
to a particular absorbing set A. Thus, given a reaction network, the first natural step is to
give a characterization of this set. In the paper (Hansen and Wiuf, 2018a), we introduce the
inferred notion of an endorsed set , E, and provide an automated way of decomposing the
state space, D, of the Markov process corresponding to a reaction network into the disjoint
union D = A t E.

The questions of sufficient and necessary conditions for the existence of QSDs are funda-
mental and have been extensively studied (Ferrari et al., 1995; van Doorn, 1991; van Doorn
and Pollett, 2013). Unfortunately, the current results are rather intractable, preventing any
swift application but in a few special situations. Recently it was shown that a couple of
abstract conditions was equivalent to the existence and uniqueness of a globally attracting
QSD in the space of probability distributions on E (Champagnat and Villemonais, 2016,
Theorem 2.1). Using Foster-Lyapunov theory (Meyn and Tweedie, 1993, 2009), a series of
assumptions on the process (Xt : t ≥ 0) has been shown to be sufficient for these conditions
to hold (Champagnat and Villemonais, 2017). This approach has been applied to a par-
ticular case of multidimensional birth-death processes, giving sufficient conditions, in terms
of the parameters of the process, for the existence and uniqueness of a QSD. In the paper
(Hansen and Wiuf, 2018a), we extend this result, not just to a larger set of parameter val-
ues in the birth-death process case, but to the much broader class of stochastic processes
associated to stochastic reaction networks. In proving the main theorem, we also provide a
sufficient condition for a reaction network to go extinct almost surely, as this has attracted
much attention on its own (Johnston et al., 2017). In the process, we gain more intuition of
the importance of “coming down from infinity in finite time”, which has been studied in the
QSD literature (Martinez et al., 2014).

Acknowledging that an exact analytical description of the QSD remains a utopian dream,
the aim of the manuscript (Hansen and Schreiber, 2018) is to gain qualitative information
about the QSD by analyzing the corresponding deterministic system, which is often a much
easier task. The seminal work of Kurtz (Kurtz, 1972, 1978; Ethier and Kurtz, 1986) allows
one to obtain a tight connection between the two descriptions through the so called classical
scaling . When increasing a system parameter, ε, usually related to the system size, the
stochastic process converges in probability to the deterministic solution on compact time
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intervals. With this at our disposal, we may consider the stochastic dynamical system as a
random perturbation of the corresponding deterministic system, a notion originally due to
Kifer (1988). Under the assumption of an attractor contained strictly inside the positive
orthant, we show that the expected time to extinction scales exponentially with system size,
ε. This in particular implies that for any rate constants, if the system is sufficiently large,
quasi-stationarity is to be expected. Further, for a decreasing series of ε, we show that the
corresponding series of QSDs converge to an invariant measure of the deterministic flow.
This work builds directly on Faure and Schreiber (2014) and Marmet (2013) which studied
quasi-stationary distributions of randomly perturbed dynamical system in discrete time and
continuous time on compact sets respectively. These papers furthermore required a series
of assumptions which may in general be difficult to check. In particular, one needs a large
deviation principle, which we show is always satisfied for sufficiently large reaction networks.

We exploit the notion of Morse decompositions to show, following the ideas of Marmet
(2013) extended to the general case of reaction networks, that the weak limit of the QSDs
has support contained in the union of those attractors for the deterministic system that are
contained strictly inside the positive orthant, whenever a minimal such Morse decomposi-
tion exists. We illustrate this result through a series of examples with varying deterministic
dynamics.

Once we know that the stochastic process associated to a particular reaction network has a
unique QSD, the natural question is how to determine it, or at least its form, analytically.
This question is of course even harder than just guaranteeing existence, and the positive
cases where the form of the QSD can be given may be counted on a single hand. Another
fact bearing testimony to the delicate nature of the question is that in reaction network the-
ory, the results pertaining to ordinary stationary distributions exploit the notion of complex
balanced - a property which eventual absorption precludes. For these reasons, one is usually
forced to make some kind of approximation. In the manuscript (Hansen and Wiuf, 2018b)
we try to circumvent this and at the same time exploit some of the theory available to us in
reaction network theory, by means of separation of time-scales and a center manifold (Childs
and Keener, 2012; Pollett and Roberts, 1990).

We prove, under certain conditions, that the usual stationary distribution of a reduced
reaction network may be used as a first approximation of the QSD, and provide an explicit
iterative expression for the exact QSD through certain rate matrices, using results from
Pollett and Roberts (1990). For one-species reaction networks, we provide another iterative
procedure determining the stationary distribution. Together, these in principle determine
analytically the QSD of a substantial class of reaction networks. However, the formulas are
so involved that an implementation on a computer is necessary. In particular, one has to
truncate the matrices whereby only an approximate solution may be found. We examine
the performance of the method by comparing it to other means of calculating the QSD
approximately and find excellent agreement.
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1.3 Thesis Structure

The overall structure of the thesis is as follows. In Chapter 2 the necessary mathematical
background on the fields of reaction networks and quasi-stationary distributions are given.
Some smaller new results are also included. The purpose is to familiarize the reader with the
notation and context of the subjects and provide an overview of the most essential results
needed for the understanding of the subsequent papers. Chapters 3-5 each contain a research
paper constituting the main contributions of the thesis. More specifically, Chapter 3 con-
tains the foundational paper on existence and uniqueness of quasi-stationary distributions
in reaction networks. This provides a natural starting point for further investigation of the
properties of such a guaranteed quasi-stationary distribution. In Chapter 4 we examine in
a manuscript, by using random perturbations, the question of what can be inferred about
the quasi-stationary distribution from the dynamical properties of the corresponding deter-
ministic system. The last and least developed manuscript is contained in Chapter 5. It is
concerned with the question of how one may describe a quasi-stationary distribution through
a slow manifold reduction when there exists a separation of time-scales. Finally, Chapter 6
contains some interesting perspectives for further research as well as an overall outlook of
future directions within the field.
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2
Dynamics of Reaction Networks

In this chapter the necessary definitions and results of classical reaction network theory
and the field of quasi-stationary distributions are introduced (for general expositions, see
Anderson and Kurtz, 2015; Feinberg, 1979; Erdi and Toth, 1989; Gunawardena, 2003; Collet
et al., 2013; Méléard and Villemonais, 2012; van Doorn and Pollett, 2013; Champagnat and
Villemonais, 2018). A few new results are also presented. All used notation and definitions
are also employed in the papers and manuscripts collected in this work. This chapter may
therefore be used as a consistent reference for the remaining parts of the thesis.

2.1 Notation and Prerequisites

Let Z, N, R denote the integers, natural numbers and real numbers respectively. Let

N0 = {0, 1, 2, . . . }, R0 = [0,∞).

For two real numbers c1, c2 ∈ R, we let c1∧c2 and c1∨c2 denote min{c1, c2} and max{c1, c2}
respectively. The transpose of a matrix Q is denoted Q′. Let d ∈ N. For any vector v ∈ Rd,
we denote by vi the ith component of v and by ‖v‖1 its L1-norm. Further, by [v] we denote
the vector of the floor functions of the entries of v, that is [v]i = bvic. For two vectors
v, w ∈ Rd, we write v < w and v ≤ w if the inequality holds component wise. Furthermore,
〈v, w〉 denotes the usual inner product. For v, w ∈ Rd define

vw =

d∏
i=1

vwii , and v! =

d∏
i=1

vi! (2.1.1)

with the conventions that 0! = 1 and 00 = 1. Finally, for any set B we denote its cardinality
by |B| and by 1B : D → {0, 1} the indicator function of a subset B ⊆ D.

We shall tacitly assume that the reader is familiar with the standard results of continuous
time stochastic processes on countable spaces (Norris, 2009; Ethier and Kurtz, 1986; Rogers
and Williams, 2000). Of particular use will be the Poisson process, birth-death processes and
stationary distributions. When a sequence of probability measures (µn)n∈N converges weakly
to µ, we will use the notation µn ⇒ µ. Further, we will assume familiarity with basic notions
from graph theory which may be found in (van Lint and Wilson, 2006), as well as some
continuous time dynamical systems theory (Brin and Stuck, 2002; Katok and Hasselblatt,
1995). In particular we assume familiarity with attractors, vector fields, Lyapunov functions
and the classical results of existence and uniqueness of ordinary differential equations (See
Taylor, 2011).
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2.2 Reaction Network Theory

A reaction network is a triple N = (S, C,R), where S is a finite ordered set of species, C is a
finite ordered set of complexes, consisting of linear combinations over N0 of the species and
R is a non-empty irreflexive relation on C, referred to as the set of reactions (Anderson and
Kurtz, 2015; Feinberg, 1979; Gunawardena, 2003).

We define the dimension of the reaction network, d = |S|. Any species Si ∈ S can be
identified with the unit vector ei ∈ Nd0, thus any complex y ∈ C will be identified with a
vector in Nd0. One may then regard the zero vector as a complex, and we denote it by ∅.
It is customary to denote an element (yk, y

′
k) ∈ R by yk → y′k ∈ R in which case we refer

to yk as the source complex and to y′k as the product complex of reaction k. We may thus
write R = {yk → y′k : yk, y

′
k ∈ C, yk 6= y′k, k = 1, . . . , r}. Employing a standard, although

slight abuse of, notation, we identify S = {S1, . . . , Sd} with the set {1, . . . , d}, C with the set
{1, . . . ,m} and R with {1, . . . , r}. In particular, r = |R|. We write the kth reaction with
the notation ∑

i∈S
ykiSi →

∑
i∈S

y′kiSi,

where yki = (yk)i and y′ki = (y′k)i are the stoichiometric coefficients associated with the
source and product complexes of reaction k, respectively. One may completely describe a
reaction network N (without kinetics) in terms of its reaction graph G, whose nodes is the
set of complexes, C, and whose directed edges are given by the set of reactions, R. This
concise description will be employed in the rest of this thesis.

The connected components of G are called the linkage classes of the reaction network.
We say that a reaction network is weakly reversible if and only if the linkage classes are
strongly connected. Such strongly connected linkage classes are simply called strong linkage
classes. A strong linkage class is called terminal if no path out of the linkage class exists,
that is any path starting in a terminal strong linkage class is confined to that strong linkage
class.

∅ S1

  

oo

��

S3

||

��

S1 + S2
//

vv

S3 + 2S4

``

2S4

2S1

77

3S2

KK

Figure 2.1: The reaction graph of a reaction network with species S = {S1, S2, S3, S4} and
complexes C = {∅, S1, S1 +S2, 2S1, S3 + 2S4, S3, 2S4, 3S2}. There are two linkage classes and
four strong linkage classes. {2S4} and {∅} are terminal.
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Define the reaction vectors ξk = y′k−yk corresponding to the net gain of species obtained
by the occurrence of the reaction yk → y′k. The stoichiometric subspace of a reaction network,
N , is the linear subspace of Rd given by

Ψ ={y′k − yk | yk → y′k ∈ R} ={ξk | k ∈ R}.

For x ∈ Rd, the sets (x + Ψ) ∩ Rd0 are called the stoichiometric compatibility classes of N .
If there exists a positive vector orthogonal to Ψ, then the network is called conservative.
Equivalently, a reaction network is conservative if every stoichiometric compatibility class is
bounded. Defining the stoichiometric matrix as

Ξ =
(
ξ1 . . . ξr

)
∈ Nd×r0 .

Thus, a sufficient condition for a network to be non-conservative is for Ξ to have full rank.
The order of reaction k is the sum of the stoichiometric coefficients of the source complex,∑

i∈S yki. Finally, we define the maximum of a vector over the set R, x = maxk∈R yk, as the
entry-wise maximum, xi = maxk∈R yki.

One of the most well studied graphical properties is the deficiency of a reaction network
N (Horn and Jackson, 1972; Feinberg, 1979). It is the non-negative integer given by

δ = |C| − `− s,

where |C| is the number of complexes, ` is the number of linkage classes, and s is the di-
mension of the stoichiometric subspace Ψ (Anderson and Kurtz, 2015). One may view it as
a specialized measure of the linear independence of the reaction vectors, or more informa-
tively and surprisingly, as being closely related to the dimension of a linear subspace, upon
which the associated dynamical system is in equilibrium (Gunawardena, 2003). This way of
inferring information on the dynamics based solely on graphical properties lies, as we shall
see, at the heart of modern reaction network theory.

S2

S1

Figure 2.2: S1+S2 → 2S1+2S2 → ∅, 2S1 → S1+2S2, endotactic but not strongly endotactic.

Another graphical property, which has attracted much interest in both the deterministic
and the stochastic descriptions is endotacticity . As there exist endotactic networks which
admit extinction events, these might pose a sufficiently well behaved class of systems for
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which quasi-stationarity may be explored. As the definition of endotacticity is rather tech-
nical and as we will only touch upon this class in passing, we shall only give the geometric
interpretation and refer the reader to Craciun et al. (2013); Johnston et al. (2016) for details.
Suffice it to say that a reaction network is endotactic if, roughly speaking, every reaction
vector points “inward” relative to the polytope in Rd0 consisting of the convex hull of the
source complexes. Adding the requirement that each proper face of the polytope contains at
least one reactant in a reaction that points out of that face, one obtain the class of strongly
endotactic networks (Gopalkrishnan et al., 2014).

2.2.1 Associated Deterministic and Stochastic Dynamical Systems

Given a reaction network N , we may consider either its corresponding continuous time
deterministic dynamical system on the continuous state space Rd0 or its continuous time
stochastic dynamical system on the discrete state space Nd0. To obtain either of the dynamical
systems, one has to endow the graphical structure with a kinetics.

Deterministic Reaction Systems. When all species are present in large abundances, the
concentration of each species is considered, instead of the exact counts. The state space is Rd0,
and each point herein is a state. A unique solution ϕt(x) to an ordinary differential equation
with initial condition ϕ0(x) = x defines a flow or continuous time dynamical system. We
denote by xt := ϕt(x) the non-negative real vector of Rd0 whose entries are the concentrations
of interest at time t, when the initial concentration is x0 ∈ Rd. The evolution of xt is modeled
as the solution to the ordinary differential equation (ODE)

ẋt =
∑
k∈R

(y′k − yk)λk(xt) =
∑
k∈R

λk(xt)ξk =: F (xt) (2.2.1)

for some so called rate functions λk : Rd0 → R0 and an initial condition x0 ∈ Rd0 (Gu-
nawardena, 2003). We require that the functions λk are continuously differentiable and that
λk(x) > 0 if and only if supp y ⊆ suppx. When integrating, we may write this as

xt = x0 +
∑
k∈R

(∫ t

0
λk(xs) ds

)
ξk. (2.2.2)

The rate functions determine a deterministic kinetics λ = (λ1, . . . , λr) for N , and the pair
(N , λ) is called a deterministic reaction system (Cappelletti, 2015). The rate functions may
in general be highly non-linear, yielding interesting and complex dynamical behavior and
thus preventing a straight forward solution to the ODE system. In the most common case,
the rate functions take the form

λk(x) = αkx
yk , k ∈ R,

where αk > 0 are called rate constants. The model is then referred to as deterministic
mass-action kinetics, and the pair (N , α) as a mass-action system. With this choice of
kinetics, one obtains a polynomial dynamical system. As such, reaction network theory
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is closely connected to a classical branch of dynamical systems. Indeed, Hilbert’s 16th
problem concerns the determination of an upper bound for the number of limit cycles in
two-dimensional polynomial vector fields of degree n and their relative positions. This is
still unresolved for any n > 1 (Ilyashenko, 2002).

What aids reaction network theory is a hidden linearity stemming from the stoichiometry.
Let Y ∈ Nd×m0 be the matrix of stoichiometric coefficients, that is, Yi,j is the ith entry in
the vector representing complex j. Note that some refer to Y as the stoichiometric matrix,
whereas we use that terminology for Ξ. The Laplacian matrix Lα ∈ Rm×m is given by

(Lα)i,j =

{
−
∑m

l=1 α(i, l), i = j
α(j, i), otherwise

where α(i, j) > 0 is the rate constant associated to the reaction from complex i to complex j.
Finally, ψ(x) ∈ Rm0 is the vector with ψj(x) =

∏d
i=1 x

yji
i where yj is the vector corresponding

to the jth complex. Then the following diagram commutes

R Lα // R

Y
��

Rd
F
//

ψ

OO

Rd

that is, one may represent the vector field as

ẋ = Y Lαψ(x).

Note that the non-linearity only comes from the term ψ(x), which is just a bookkeeping
function. What carries the dynamics is Lα which depends both on the network structure
and the kinetics Gunawardena (2003). The fact that this is a linear function is key to the
insights of deterministic reaction network theory.

Stochastic Reaction Systems. When the copy-numbers of interacting species are low,
one needs to track the exact species counts. This microscopic view has an inherent dis-
creetness of the state space, which is Nd0. We specify the stochastic process (Xt : t ≥ 0)
associated to the reaction network as follows. Let Xt be the vector in Nd0 whose entries are
the species counts at time t. If reaction yk → y′k occurs at time t, then the new state is
Xt = Xt− + y′k − yk = Xt− + ξk, where Xt− denotes the previous state. The stochastic
process then follows

Xt = X0 +
∑
k∈R

Yk

(∫ t

0
λk(Xs) ds

)
ξk, (2.2.3)

where Yk are independent and identically distributed unit-rate Poisson processes and for
each reaction k ∈ R, we specify an intensity function λk : Nd0 → [0,∞)(Anderson and Kurtz,
2015; Ethier and Kurtz, 1986; Norris, 2009). This is sometimes referred to as a random time
change representation. Here, the random variable Yk(

∫ t
0 λk(Xs) ds) counts the number of
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times the reaction k ∈ R has occurred up to time t. Note the similarity to the deterministic
case of (2.2.2). We require that the rate functions satisfy the stoichiometric admissibility
condition,

λk(x) > 0 ⇔ x ≥ yk,

where we use the usual vector inequality notation; x ≥ y if xi ≥ yi for all i ∈ S. Thus,
reactions are only allowed to take place whenever the copy-numbers of each species in the
current state is at least as great as those of the corresponding source complex. A widely
used example is stochastic mass-action kinetics given by

λk(x) = αk
x!

(x− yk)!
1Nd0

(x− yk) = αk

d∏
i=1

yki!

(
xi
yki

)
1N0(xi − yki),

for some reaction rate constants αk > 0 (Anderson and Kurtz, 2015). The idea is that the
rate is proportional to the number of distinct subsets of the molecules present that can form
the inputs for the reaction. Again, it reflects the assumption that the system is well-stirred
(Anderson and Kurtz, 2015), but note the slight difference from the deterministic case, due
to the combinatorics of the discrete nature of the copy-numbers. Other examples include
power law kinetics or generalized mass action kinetics (Horn and Jackson, 1972; Müller and
Regensburger, 2012). A particular choice of such rate functions constitute a stochastic ki-
netics λ = (λ1, . . . , λr) for the reaction network N , and the pair (N , λ) is again referred to
as a stochastic reaction network, or simply a network.

The generator, L, for the Markov process (Xt : t ≥ 0) associated to a reaction network
is given by

Lf(x) =
∑
k∈R

λk(x) (f(x+ ξk)− f(x))

for functions f : Nd0 → R (Anderson and Kurtz, 2015). Assuming that the solution of (2.2.3)
exists for all times, that is (Xt : t ≥ 0) jumps only finitely many times in a finite time interval,
then

f(Xt)− f(X0)−
∫ t

0
Lf(Xs) ds (2.2.4)

is at least a local martingale for all functions f : Nd0 → R (Kang and Kurtz, 2013). In fact,
for the reaction networks we will consider, it is a true martingale (Anderson and Kurtz, 2015,
Cond. 1.20). In particular its expectation is zero hence letting px(t) = P(Xt = x) we obtain

∑
x

f(x)px(t) =
∑
x

f(x)px(0) +

∫ t

0

∑
x

Lf(x)px(s) ds.

Choosing f(x) = 1{y}(x) it follows that
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py(t) = py(0) +

∫ t

0

∑
k∈R

(λk(y − ξk)py−ξk(s)− λk(y)py(s)) ds,

which it the integral form of the Kolmogorov forward equation, also known as the master
equation, describing the rate of change of the probability of being in state y as the probability
of coming into state y minus the probability of jumping out of that state

ṗy(t) =
∑
k∈R

λk(y − ξk)py−ξk(t)−
∑
k∈R

λk(y)py(t). (2.2.5)

The random time-change formula (2.2.3), the martingale description (2.2.4) and the master
equation (2.2.5) provide three different ways of specifying the same model (Kang and Kurtz,
2013; Anderson and Kurtz, 2015).

Results from Reaction Network Theory. In either description of the reaction network,
one is interested in determining the qualitative properties of the associated dynamics. It
follows from (2.2.2) and (2.2.3) that xt andXt are confined to the stoichiometric compatibility
classes

xt ∈ (x0 + Ψ) ∩ Rd0, Xt ∈ (X0 + Ψ) ∩ Nd0, t ≥ 0 (2.2.6)

respectively. Therefore, questions of existence and uniqueness of steady states or multista-
tionarity as well as (quasi)stationary distributions are considered within each stoichiometric
compatibility class. Similarly, one is interested in the stability of a given equilibrium relative
to the stoichiometric compatibility class (Feinberg, 2015). Note that in the case of conser-
vative reaction networks, the solution xt is bounded, as it is confined within the compact
stoichiometric compatibility class. In the stochastic case, the state space becomes finite,
which, as we shall see, implies that questions of long-term behavior has been resolved. For
this reason, we shall mostly be concerned with non-conservative systems.

x1

x2

x3

x0

S1

S2

S3

X0

Figure 2.3: A stoichiometric compatibility class in the deterministic (left) and stochastic
(right) case. The questions of interest
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Central to the analysis of deterministic reaction networks are the following properties of
the long-term dynamics, which may be seen as various degrees of stability and thus required
for the corresponding stochastic system to display quasi-stationarity (Craciun et al., 2013;
Schreiber, 2000).

Definition 2.2.7. A d-dimensional dynamical system is persistent if for any forward tra-
jectory ϕt(x) = x(t) with positive initial condition x ∈ Rd0,

lim inf
t→∞

xi(t) > 0, ∀1 ≤ i ≤ d.

It is called permanent on Rd0 if there exists ε > 0 such that for any forward trajectory
ϕt(x) = x(t) with positive initial condition x ∈ Rd0,

ε < lim inf
t→∞

xi(t), lim sup
t→∞

xi(t) < 1/ε, ∀1 ≤ i ≤ d

Thus, persistence means that no forward trajectory with positive initial condition ap-
proaches the coordinate axes arbitrarily close. Permanence is a stronger property and means
that there exists a compact set K ⊂ Rd0 not intersecting ∂Rd0 such that any forward trajectory
with positive initial condition eventually enters K. It is natural to suspect that endotactic
mass-action systems are indeed both persistent and permanent, although a formal proof only
exists for d ≤ 2 (Craciun et al., 2013). On the other hand, strongly endotactic networks
are known to be both persistent and permanent in general (Gopalkrishnan et al., 2014). Al-
though the strongly endotactic deterministic reaction networks are well behaved, this does
not carry over to the corresponding stochastic reaction networks. Indeed, these are not nec-
essarily positive recurrent, and both transitive and explosive examples are known (Anderson
et al., 2018a).

To get a flavor for the type of results available in the theory of reaction networks, we first
introduce the following central property. An equilibrium point c ∈ Rd0 is said to be complex
balanced if and only if for each complex z ∈ C, the total inflow equals the total outflow∑

k∈R : y′=z

αkc
yk =

∑
k∈R : y=z

= αkc
yk . (2.2.8)

This condition may be traced back to Boltzmann. Note that a necessary condition for having
complex balance is weak reversibility of the network. A mass-action system with complex
balancing states is also called a toric dynamical system. We may now state the following
classical theorem (Horn and Jackson, 1972; Feinberg, 1979).

Theorem 2.2.9 (Deficiency Zero Theorem). Consider a mass action system (N , α) for
which the underlying reaction network has deficiency zero.

(i) If the network is weakly reversible, then for all choices of rate constants, the system
has exactly one equilibrium concentration in each positive stoichiometric compatibility
class and that equilibrium concentration is locally asymptotically stable.
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(ii) If the network is not weakly reversible then no equilibrium nor limit cycles intersecting
the positive orthant exist.

Thus, from the reaction graph alone, one is capable of inferring strong implications for
the dynamics. In fact, more is believed to hold. The Global Attractor Conjecture states
that the unique positive steady state in every stoichiometric compatibility class of a toric
dynamical system is the global attractor for its stoichiometric compatibility class (Craciun,
2015). The proof of the deficiency zero theorem is based on the Lyapunov function

V (x) =
∑
i∈S

xi(ln(xi)− ln(ci)− 1) + ci,

with c ∈ Rd0 being a complex balanced equilibrium. This function originates from clas-
sical thermodynamics, where it is known as the Helmholtz or Gibbs free energy function
(Anderson et al., 2015). Although V is strictly convex in the interior of the first orthant,
it is bounded along ∂Rd0, which is what causes problems in concluding global attraction.
Naturally, one would like to obtain other Lyapunov functions, getting rid of the restriction
of complex balanced. This is an active area of research (Ke et al., 2017; Al-Radhawi and
Angeli, 2016). Results in the same vein exist for higher deficiency systems. We include the
following (Feinberg, 1995).

Theorem 2.2.10 (Deficiency One Theorem). Consider a mass-action system, (N , λ), with
deficiency δ and ` linkage classes. Assume that it satisfies

(i) δj ∈ {0, 1}, 1 ≤ j ≤ `

(ii) δ =
∑`

j=1 δj

(iii) each linkage class contains a single terminal strong linkage class.

Then, if there exists a positive equilibrium, each positive stoichiometric compatibility class
contains exactly one equilibrium. Furthermore, if the network is weakly reversible, it has a
positive equilibrium.

There are few general results available about the form of even the stationary distribution
in a general reaction network. Exceptions are the class of monomolecular reaction networks
(Jahnke and Huisinga, 2007) and more remarkably the following (Anderson et al., 2010).

Theorem 2.2.11. Let (N , λ) be a reaction system endowed with mass-action kinetics.
Suppose that, modeled deterministically, the system is complex balanced with a complex
balanced equilibrium c ∈ Rd0. Then, the stochastically modeled system has a stationary
distribution πI on each irreducible component I ⊆ Nd0 given by

πI(x) =
1

ZI

d∏
i=1

cxii
xi!
e−ci , x ∈ I, (2.2.12)

and πI(x) = 0 otherwise, where ZI is a positive normalizing constant.
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As we shall see, in the setting of quasi-stationarity, a reaction network can never be
complex balanced due to eventual absorption. Needless to say, even fewer results for quasi-
stationary distributions exist. However, one particular class of systems which has been of
interest in the intersection of quasi-stationarity and reaction network theory is the following
(Anderson et al., 2014).

Definition 2.2.13. Consider a deterministic mass-action system (N , λ). The system is
Absolute Concentration Robust (ACR) if there exists an index 1 ≤ i ≤ d and a real number
u ∈ (0,∞) such that all x > 0 with F (x) = 0 satisfy xi = u. In this case, the ith species is
called an ACR species.

S2

S1

Figure 2.4: The reaction network S1 + S2 → 2S2, S2 → S1 exhibiting ACR in species S1.

Absolute concentration robustness is interesting from a biological perspective, as it states
that whenever the system is at a positive equilibrium (and there could be many such positive
equilibria), some special species are always expressed at the same level, and are therefore
“robust” to environmental changes (Anderson and Cappelletti, 2018). One may determine
ACR purely from the network structure. The following theorem is due to Shinar and Feinberg
(2010).

Theorem 2.2.14. Let a deterministic mass action system (N , λ) with deficiency δ = 1 be
given and suppose there exists at least one positive equilibrium and that there exists two
non-terminal complexes y 6= y′ such that only the ith entry of y′ − y is different from 0.
Then the ith species is ACR.

In the stochastic description, this property is connected to extinction events. More
precisely we have the following theorem (Anderson et al., 2014; Anderson and Cappelletti,
2018).

Theorem 2.2.15. Let a stochastic mass action system (N , λ) be given and suppose there
exists at least one positive equilibrium, the deficiency δ = 1 and there exists two non-terminal
complexes y 6= y′ such that only the ith entry of y′ − y is different from 0. Furthermore,
assume that the network is conservative. Then the associated stochastic process (Xt : t ≥ 0)
goes extinct almost surely. In particular, with probability 1, the process enters a closed set
A ⊆ Nd0 such that λk(x) = 0 for all x ∈ A and all yk → y′k ∈ R with yk being a non-terminal
complex.
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It has recently been proven (Anderson and Cappelletti, 2018) that one cannot remove
any of the assumptions made in Theorem 2.2.15. In particular, this guarantee of extinction
is confined to the case of conservative systems, which, as we shall see, is less interesting
for quasi-stationary distributions. Only few other results connecting graphical conditions to
extinction events in reaction networks exist (Johnston et al., 2017).

2.2.2 Connection Through Classical Scaling

There is a strong link between the stochastic and deterministic models, as would be ex-
pected since they both describe the same underlying phenomenon. This relationship was
first described in the seminal papers by Kurtz (1970, 1972, 1978).

As this construction is essential to the development in (Hansen and Schreiber, 2018), we
shall provide the details. Let ε denote some scaling parameter, say the inverse of the volume
in which the system evolves. Since the concentration is given by the copy-number of the
species divided by the volume of the system, we may track the concentrations of the system
by considering the scaled process Xε

t = εXt. Consequently, using (2.2.3) we arrive at the
stochastic equation for the concentrations

Xε
t = Xε

0 +
∑
k∈R

εYk

(
ε−1

∫ t

0
λk(X

ε
s) ds

)
ξk.

Recall from the deterministic setting the vector field F (x) =
∑

k∈R λk(x)ξk and let Ỹk(u) =
Yk(u)− u be the centered process. Then it follows that

Xε
t = Xε

0 +
∑
k∈R

εỸk

(
ε−1

∫ t

0
λk(X

ε
s) ds

)
ξk +

∫ t

0

∑
k∈R

λk(X
ε
s)ξk ds

= Xε
0 +M ε

t +

∫ t

0
F (Xε

s) ds, (2.2.16)

where M ε
t defined as the middle term is a martingale, cf. Watanabe’s characterization of

Poisson processes (Watanabe, 1964). Using ẋ(t) = F (x(t)) we find upon integration that

x(t) = x(0) +

∫ t

0
F (x(s)) ds. (2.2.17)

Here we have implicitly assumed global existence of this solution. Now, suppose we have the
local Lipshitz condition

|F (x)− F (y)| ≤ Kc|x− y|, |x|, |y| ≤ c (2.2.18)

for some constant c > 0 and define the first exit time

τ εc = inf{t ≥ 0 : |Xε
t | ∨ |x(t)| ≥ c}

Using in turn (2.2.17), the triangle inequality and the Lipschitz condition (2.2.18), we find
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by Gronwall’s inequality (Ethier and Kurtz, 1986, p.498),

|Xε
t∧τεc − x(t ∧ γεa)| =

∣∣∣∣Xε
0 +M ε

t∧τεc +

∫ t∧γεa

0
F (Xε

s) ds− x(0)−
∫ t∧τεc

0
F (x(s)) ds

∣∣∣∣
≤ |Xε

0 − x(0)|+ |M ε
t∧τεc |+

∫ t∧τεc

0
|F (Xε

s)− F (x(s))| ds

≤ |Xε(0)− x(0)|+ |M ε
t∧τεc |+

∫ t∧τεc

0
Kc|Xε

s − x(s)| ds

≤

(
|Xε

0 − x(0)|+ sup
s≤t∧τεc

|M ε
s |

)
eKct.

Our aim is to have the terms in the parenthesis tend to 0 as ε → 0. The first is implied by
imposing the assumption, Xε

0 → x(0) for ε → 0. To show that sups≤t∧τεc |M
ε
s | → 0 almost

surely, as ε→ 0, we note that M ε
t is a martingale where, by the Poisson property,

E(|M ε
t∧τεc |

2) = εE

(∫ t∧τεc

0

∑
k∈R

λk(X
ε
s)|ξk|2

)
. (2.2.19)

By Doob’s inequality (Ethier and Kurtz, 1986, p. 64) we then find

E
(

sup
s≤t
|M ε

s∧τεc |
2

)
≤ 4E((M ε

t∧τεc )2) ≤ 4εt sup
|x|≤c

∑
k∈R

λk(x)|ξk|2 → 0 (2.2.20)

for ε → 0. Thus we have convergence in mean square and in particular convergence in
probability. We arrive at the following essential theorem (Kurtz, 1972, 1978; Ethier and
Kurtz, 1986).

Theorem 2.2.21 (Kurtz). Suppose that for each c > 0, the Lipshitz condition

|F (x)− F (y)| ≤ Kc|x− y|, |x|, |y| ≤ c

holds, and that the solution of the deterministic equation holds for all time. If Xε
0 → x(0)

as ε→ 0 then for each δ > 0 and each T > 0,

lim
ε→0

P

(
sup
t≤T
|Xε

t − x(t)| ≥ δ

)
= 0.

One may view this result as a Law of Large Numbers. When it holds, one often refers
to x(t) as the fluid limit or thermodynamic limit of Xε

t . The following figure illustrates the
convergence for a three species reaction network.
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Figure 2.5: Stochastic simulation of the reaction network S1
1→ S2

2→ S3
3→ S1 with X0 =

(10, 20, 30) and ε = 1, 0.1, 0.01 (solid). The solution to the ODE included for comparison
(dotted).

Returning to (2.3.23), and using that by the functional central limit theorem, W ε
k(u) =

Ỹk(ε
−1u)
√
ε converges in distribution to the standard Brownian motion Wk as ε → 0

(Øksendal, 2010), we obtain

Xε
t = Xε

0 +
∑
k∈R

εỸk

(
ε−1

∫ t

0
λk(X

ε
s) ds

)
ξk +

∫ t

0

∑
k∈R

λk(X
ε
s)ξk ds

≈ Xε
0 +

∫ t

0

∑
k∈R

λk(X
ε
s)ξk ds+

∑
k∈R

√
εWk

(∫ t

0
λk(X

ε
s) ds

)
ξk,

where Wk are independent Brownian motions. Using that the Itô integral
∫ t

0 g(s, ω)dW (s)

is distributional equivalent to W (
∫ t

0 g(s, ω)2 , ds) we conclude that a good approximation to
Xε
t is in differential form given by

dZεt = F (Zεt ) dt+
∑
k∈R

ξk

√
ελk(Z

ε
t ) dWk

This is the diffusion approximation or Langevin equation. In the same vein as Theorem
2.2.21 one may prove (Ethier and Kurtz, 1986), under further regularity assumptions, that
for fixed T > 0, there exists a random variable ΓTε such that

sup
t∈[0,T∧τε]

|Xε
t − Zεt | ≤ −ΓTε ε log ε,

where τε = inf{t ≥ t : Zεt ∈ ∂Rd0}. Thus, the diffusion approximation is only valid away from
the boundary of the orthant. Recently, several suggestions to overcome this issue have been
proposed (Bibbona and Sirovich, 2017; Anderson et al., 2018b)

2.2.3 Approximations to the Markov Process

Having the classic scaling, one could be tempted to use the deterministic approach, at least
as an approximation, to the behavior of the corresponding stochastic system. However, this
näıve approach may fail in many non-trivial ways. Even for very simple reaction networks
endowed with mass-action kinetics, the deterministic ordinary differential equations and the
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stochastic formulation given by the master equation may predict qualitatively different long
term outcomes (Keizer, 1987; Anderson and Cappelletti, 2018). This phenomenon is referred
to as Keizer’s paradox , as it seemingly contradicts Theorem 2.2.21.

Surely, when the copy-numbers of the interacting species are low, the scaling parameter
ε is large, implying that the system is far from thermodynamic equilibrium. In this non-
equilibrium regime, stochastic effects, as illustrated by the leftmost diagram of Figure 2.5, are
clearly significant. Surprisingly, even in large systems close to equilibrium, in the long time
limit, stochastic fluctuations can still play an important role, and deterministic equilibria
may be perturbed in significant ways (Childs and Keener, 2012). In particular, one may
find reaction networks having extinction events for any value of ε > 0. As ε decreases,
these become increasingly rare events. Formally, there is no paradox however. Note that
Theorem 2.2.21 is a statement about the behavior of the stochastic system over a compact
time interval. As such, it stands silent on the (very) long time limit, t→∞.
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Figure 2.6: Two reaction networks with corresponding sample paths computed by Gillespie’s
algorithm below.

The diffusion approximation often shows good agreement with the Markov process in the
bulk of the positive orthant, even for moderate values of ε (Beccuti et al., 2018). However, it
may also fail to capture the exact stochastic dynamics of the reaction network, although for
more subtle reasons. Indeed, it was shown in (Pakdaman et al., 2010) that one may choose
parameters in the network ∅ ← S → 2S such that the escape points from a domain depends
on whether one studies Xε

t or its diffusion approximation Zεt . Further, it is known that the
escape times from a domain differs asymptotically (Pollett, 2001). As we shall be concerned
with such rare events, we will in the study of quasi-stationary distributions only examine
the exact stochastic equation.
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2.3 Quasi-Stationary Distributions

Consider a right-continuous time-homogenous Markov process (Xt : t ≥ 0) (Rogers and
Williams, 2000), that evolves in a domain D, where there is a set of absorbing states, a
“trap”, A ⊂ D. The process is absorbed, also referred to as being killed, when it hits the
absorbing set, meaning Xt ∈ A for all t ≥ τA, where τA = inf{t ≥ 0 : Xt ∈ A} is the hitting
time of A. We refer to the complement,

E := D\A,

as the set of endorsed states. For any probability distribution on E, we let Pµ and Eµ be the
probability and expectation respectively, associated with the process (Xt : t ≥ 0), initially
distributed with respect to µ. For any x ∈ E, we let Px = Pδx and Ex = Eδx . Assuming the
process hits the absorbing set a.s., that is Px(τA <∞) = 1 for all x ∈ E, we investigate the
behavior of the process before being absorbed (Collet et al., 2013).

Definition 2.3.1. A probability measure ν on E is called a quasi-stationary distribution
(QSD) for the process (Xt : t ≥ 0) absorbed at A, if for every measurable set B ⊆ E

Pν(Xt ∈ B | t < τA) = ν(B), t ≥ 0,

Note that if the absorbing set A is empty, this reduces to the standard definition of a
stationary measure. However, when A is non-empty, the possibility for the network of being
weakly reversible is ruled out. In turn, the reaction networks of interest to us will initially
not be complex balanced, thus much of the known machinery from reaction network theory
is not readily available to us.

Definition 2.3.2. A probability measure, ν, on E is a quasi-limiting distribution (QLD)
for (Xt : t ≥ 0) if there exists a probability measure µ on E such that for any measurable set
B ⊆ E,

lim
t→∞

Pµ(Xt ∈ B | t < τA) = ν(B)

The QLD is sometimes referred to as a limiting conditional distribution (van Doorn and
Pollett, 2013). We may advantageously consider the QSD as the long time behavior of the
conditioned distribution. Indeed it is a classical result of (Vere-Jones, 1969) that the two
terms are equivalent for countable state spaces. A more recent proof, which we include for
completeness, extends the equivalence to the general case (Méléard and Villemonais, 2012).

Proposition 2.3.3. A probability measure ν on E is a QLD if and only if it is a QSD.

Proof. If ν is a QSD for (Xt : t ≥ 0) then in particular, it is a QLD with initial distribution
ν. To prove the reverse direction, assume ν is a QLD for (Xt : t ≥ 0) with initial distribution
µ. For any measurable and bounded function f on E,∫

E
f(x)ν(dx) = lim

t→∞
Eµ(f(Xt) | t < τA) = lim

t→∞

Eµ(f(Xt), t < τA)

Pµ(t < τA)
(2.3.4)
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Letting f(x) = Px(s < τA), it follows from (2.3.4) and the Markov property that

Pν(s < τA) = lim
t→∞

Eµ(PXt(s < τA), t < τA)

Pµ(t < τA)
= lim

t→∞

Pµ(t+ s < τA)

Pµ(t < τA)
. (2.3.5)

Now, letting f(x) = Px(Xs ∈ B, s < τA) it follows from (2.3.4) and the Markov property
again that

Pν(Xs ∈ B, s < τA) = lim
t→∞

Pµ(Xt+s ∈ B, t+ s < τA)

Pµ(t < τA)

= lim
t→∞

Pµ(Xt+s ∈ B, t+ s < τA)

Pµ(t+ s < τA)

Pµ(t+ s < τA)

Pµ(t < τA)

= ν(B)Pν(s < τA),

where we in the last equality have used the property of ν being a QLD and (2.3.5) for the
two factors respectively. Dividing by Pν(s < τA) we obtain

Pν(Xs ∈ B | s < τA) = ν(B),

thus ν is a QSD as desired.

Definition 2.3.6. The process (Xt : t ≥ 0) has a Yaglom limit if there exists a probability
measure ν on E such that for any x ∈ E and any measurable set B ⊆ E,

lim
t→∞

Px(Xt ∈ B | t < τA) = ν(B). (2.3.7)

Note that a Yaglom limit is in particular a QLD, and thus a QSD. The reverse is not
generally the case. Indeed, starting from different initial distributions δx1 and δx2 may lead
to different quasi-limiting distributions. This raises the question of the domain of attraction
for a quasi-stationary distribution, ν, which we define as follows

D(ν) =
{
µ ∈ P(E) : lim

t→∞
Pµ(Xt ∈ · | t < τA) = ν(·)

}
. (2.3.8)

Thus, the Yaglom limit, when it exists, is the unique quasi-stationary distribution whose
domain of attraction contains {δx : x ∈ E} (Villemonais, 2015). In general, the rate of
convergence to a QSD, ν, may depend greatly upon its domain of attraction D(ν).

2.3.1 Countably Infinite State Space

The stochastic processes associated to reaction networks will, unless they are conservative,
take place on countably infinite state spaces. These will therefore be our focus. Furthermore
the questions of existence and uniqueness of a QSD on a finite state space is well known
(Collet et al., 2013, Chapter 3), and a complete descriptions of the QSD is given by the
normalized left Perron-Frobenius eigenvector of the transition rates matrix restricted to E.
This characterization will be of importance to us only for computational purposes where a
truncation of the full state space is required. For the infinite dimensional case, most work has
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been carried out for birth-death processes in one dimension (van Doorn and Pollett, 2013),
where classification results yielding information about the set of QSDs exist (van Doorn,
1991). Indeed, as we shall see, a birth-death process can have no quasi-stationary distri-
bution, one unique quasi-stationary distribution or a whole continuum of quasi-stationary
distributions.

To set notation, we consider a continuous time Markov process (Xt : t ≥ 0) on a state
space D = A tE where A is absorbing and E is a countably infinite set of transient states.
Without loss of generality, we may make the identification D = {0} t N by collapsing A to
a single state {0}. The jump-rate matrix is then given by

Q̃ =

(
0 0′

a Q

)
(2.3.9)

where we assume that a = −Q · 1 ≥ 0, a 6= 0, such that absorption is possible. We have the
following fundamental theorem in the QSD literature (Méléard and Villemonais, 2012; van
Doorn and Pollett, 2013; Collet et al., 2013).

Theorem 2.3.10. A probability measure ν is a QSD if and only if

ν ′Q = −θ(ν)ν ′, θ(ν) =
∑
x∈E

ν(x)a(x) > 0. (2.3.11)

Thus, to find the QSD, one has to solve this non-linear eigenvalue problem. Unfortu-
nately, for countably infinite state spaces, this is in general a very hard problem. In fact, for
stochastic reaction networks, the shape of a corresponding QSD is only known for a small
handful of the most trivial cases.

The Decay Parameter and Minimal QSD. By means of the following proposition, one
may interpret θ(ν) as the exponential rate of survival (Méléard and Villemonais, 2012).

Theorem 2.3.12. If ν is a QSD then

Pν(τA > t) = e−θ(ν)t, ∀t ≥ 0. (2.3.13)

Hence, starting from ν, the time to absorption τA is exponentially distributed with parameter
θ(ν) ∈ (0.∞).

It follows from the form of the moment generating function of the exponential distribution
that if ν is a QSD then for any 0 < θ < θ(ν),

Eν(eθτA) =
θ(ν)

θ(ν)− θ
<∞. (2.3.14)

In particular, ν-a.s. in x, Ex(eθτA) < ∞. This suggests that if the population can escape
extinction for too long times with positive probability, then the process has no QSD.

Assume for simplicity that E is irreducible. As the reaction vectors in a reaction network
are finite, the set of states from which one may jump to the absorbing set is finite as well.
Thus, the exponential rate of survival equals the exponential rate of transition probabilities
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(Collet et al., 2013), and we shall refer to this quantity simply as the decay parameter of
(Xt : t ≥ 0). It characterizes the time-scale on which absorption takes place and is given by

θ∗ = sup
{
θ ≥ 0: Ex(eθτA) <∞

}
= lim inf

t→∞
−1

t
logPx(τA > t) = lim

t→∞
−1

t
logPx(Xt = y),

independent of x, y ∈ E. A necessary condition for the existence of a QSD is thus that
θ∗ > 0, and any QSD, ν satisfies 0 < θ(ν) ≤ θ∗. A QSD satisfying θ(ν) = θ∗ is called an
extremal or minimal QSD.

Few sufficient conditions for the existence of a QSD exist, and these are rather intangible
for general reaction networks. In the case where absorption happens almost surely, and the
process satisfies the condition of asymptotic remoteness, that is

lim
x→∞

Px(τA ≤ t) = 0, ∀t > 0 (2.3.15)

then θ∗ > 0 is a necessary and sufficient condition for the existence of a QSD (Ferrari et al.,
1995). In general, as we shall discover in the next section for birth-death processes, obtaining
information about θ∗ is a delicate matter. However, finding sufficient conditions in terms of
the rate matrix Q is still largely an open problem. One exception is when Q is uniformizable,
that is the rates satisfy −qii = ai +

∑
j∈E,j 6=i qij ≤ C, for all i ∈ E where C is some constant

and furthermore skip-free to the left , that is qij = 0 for j < i − 1. Then the existence of
a QSD is guaranteed (van Doorn and Pollett, 2013). Unfortunately, uniformizability does
not occur for reaction networks, and being skip-free to the left greatly narrows the class of
such networks. Curiously, there exists more tangible conditions ensuring both existence and
uniqueness (Martinez et al., 2014; Champagnat and Villemonais, 2016, 2017). In particular,
we have the following theorem (Champagnat and Villemonais, 2016).

Theorem 2.3.16. There exists a probability measure ν on E such that

(A1) there exists t0, c1 > 0 such that for all x ∈ E,

Px(Xt0 ∈ · | t0 < τA) ≥ c1ν(·),

(A2) there exists c2 > 0 such that for all x ∈ E and t ≥ 0,

Pν(t < τA) ≥ c2Px(t < τA),

if and only if there exists a probability measure ν on E and two constants C, γ > 0 such
that, for all initial distributions µ on E,

‖Pµ(Xt ∈ · | t < τA)− ν(·)‖TV ≤ Ce−γt, ∀t ≥ 0.

Condition (A1) says, in the case where ν = 1K for some compact set K ⊂ E, that the
process must come down from infinity and go away from 0 conditionally on non-absorption.
(A2) is a Harnack type inequality stating that no matter where the process starts, it will
behave essentially as starting from ν. We shall exploit this results in the paper Hansen and
Wiuf (2018a).
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2.3.2 Birth-Death Processes

When the associated stochastic process of a reaction network can be characterized as a
birth-death process, that is, each reaction vector ξk, k ∈ R is a one-step jump in the sense
that ξk = ±ei for some i = 1, . . . , d, the QSD literature is much richer (Cavender, 1978; van
Doorn, 1991; Champagnat and Villemonais, 2015; Villemonais, 2015). We shall use this as
a guiding example of the type of behavior one may expect for general reaction networks.

In one dimension, the description of QSDs is best understood, and this shall serve as a
guideline for the type of behavior one may observe. Furthermore, we hope to illustrate how
the angle of attack hinges fundamentally on the birth-death structure, making a generaliza-
tion to larger classes of networks a difficult task. Thus, suppose the associated stochastic
process (Xt : t ≥ 0) is a one-dimensional birth-death process taking values in D = N0.
Without loss of generality, we may take the absorbing set to be A = {0} and E = N. Its
jump rate matrix Q may then be characterized by q(i, i − 1) = µi and q(i, i + 1) = λi,
q(i, i) = −(λi + µi) and all other coefficients vanish.

∅ S
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jj

The study of birth-death processes relevant to our presentation goes back to the work of
Karlin and McGregor (1957). Define the sequence σ = (σx)x∈N where

σ1 = 1, σx =
x−1∏
i=1

λi
µi+1

, x > 1. (2.3.17)

One may completely describe when the birth-death process goes extinct almost surely
through consideration of a tangible series (Anderson, 1991; Méléard and Villemonais, 2012,
Prop. 12)

Lemma 2.3.18. The birth-death process is absorbed almost surely, that is Px(τA <∞) = 1
for all x ∈ N, if and only if

∑
x≥1

1

λxσx
=
∞∑
x=1

µ1 . . . µx
λ1 . . . λx

=∞. (2.3.19)

From the characterization in Theorem 2.3.10, it follows that θ(ν) = µ1ν1, thus, in the
setting of birth-death processes, one may obtain the following lemma.

Proposition 2.3.20. The sequence (νx)x∈N is a QSD if and only if

1. νx ≥ 0, ∀x ≥ 1 and
∑

x≥1 νx = 1

2. ∀x ≥ 1,

λx−1νx−1 − (λx + µx)νx + µx+1νx+1 = −µ1ν1νi (2.3.21)

−(λ1 + µ1)ν1 + µ2ν2 = −µ1ν
2
1
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Polynomials. We now study the set of sequences which fulfills the above criteria. Let the
polynomials (ψi(θ) : i ≥ 0) be defined by ψ0 ≡ 0, ψ1 ≡ 1 and the following recurrence
relation

λiψi+1(θ)− (λi + µi − θ)ψi(θ) + µiψi−1(θ) = 0, i ∈ N. (2.3.22)

By definition the polynomials verify Qψ(θ) = −θψ(θ). These polynomials have been well
studied and provide a spectral representation of the transition probabilities (Karlin and
McGregor, 1957; van Doorn, 1991). Letting θn,x denote the nth root of the polynomial
ψx(θ), we may write

ζ1 = lim
x→∞

θ1,x = sup{θ ≥ 0: ψx(θ) > 0 ∀x ≥ 1}. (2.3.23)

It has been shown that, in fact, θ∗ = ζ1 (Collet et al., 2013). Looking at the spectral
properties of the semigroup (Pt) and the polynomials ψx yields a tractable necessary and
sufficient condition for the existence of a QSD based on the birth and death rates only.
Indeed, define the quantity

D := sup
x≥1

Ex(τA) =

∞∑
x=1

1

λxσx

∞∑
i=x+1

σi.

where the last equality is only possible as we are concerned with birth-death processes. When
D is finite, this implies that the process comes down from infinity in finite time, which is
closely related to the existence and uniqueness of a QSD (Martinez et al., 2014). We then
have the following classification theorem (van Doorn, 1991, Theorems 3.2, 4.1).

Theorem 2.3.24. We have the convergence to the Yaglom limit

lim
t→∞

Pi(Xt = j | τA > t) =
1

µ1
σjθ
∗ψj(θ

∗), (2.3.25)

and the classification

(i) If θ∗ = 0, there is no QSD.

(ii) If D converges, then θ∗ > 0 and the Yaglom limit is the unique QSD.

(iii) If D diverges and θ∗ > 0 then there is a continuum of QSDs, given by the one parameter
family (ν̂x(θ))0<θ≤θ∗

ν̂x(θ) =
1

µ1
σxθψx(θ)

Note that in the last case, the Yaglom limit is the extremal distribution, explaining this
terminology for θ∗. One may even compare the QSDs in the case where there are infinitely
many. Given two probability measures, µ1, µ2 on N we say that µ1 is stochastically smaller
than µ2, written µ1 � µ2, if for all j ∈ N,

∑j
i=1 µ1(i) ≥

∑j
i=1 µ2(i). We refer to (Cavender,

1978; Collet et al., 2013, Proposition 5.16) for a proof of the following proposition.
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Proposition 2.3.26. Let θ1, θ2 ∈ (0, θ∗] with θ1 < θ2. Then νθ2 � νθ1.

In this sense, the extremal QSD ν(θ∗) is indeed minimal, explaining the common notion
for Yaglom limits as the minimal quasi-stationary distribution. The classification of Theorem
2.3.24 further provides a way to compute the QSD. Indeed, if we can find the polynomials
(ψx)x∈N and then from these θ∗ = ζ1, we may provide a calculation of the QSD. If fact, we
may write the polynomials explicitly, rather than inductively, in the following way.

Proposition 2.3.27. Define the polynomials

h1(θ) = −µ2 + (λ2 + µ2 − θ)
(

1 +
µ1

λ1
− θ

λ1

)
,

h2(θ) = −µ3

(
1 +

µ1

λ1
− θ

λ1

)
,

and the matrix

M(θ) =


h1(θ) λ2 0 0 0 . . .
h2(θ) −(λ3 + µ3 − θ) λ3 0 0 . . .

0 µ4 −(λ4 + µ4 − θ) λ4 0 . . .
0 0 µ5 −(λ5 + µ5 − θ) λ5

. . .
. . .

. . .
. . .

 .

Then we have the following explicit expression for the polynomials

ψ2+i(θ) =
(−1)i−1∏i
k=1 λk+1

detMi(θ), i ≥ 1, (2.3.28)

where Mi(θ) is the matrix M(θ) restricted to the first i rows and i columns.

Proof. We apply (Kittappa, 1993, Theorem 2). In this notation, we find from comparing
(2.3.22) with (Kittappa, 1993, (2a)) that n = 2 and

q(i, i+ 2) = λi+1, q(i, i+ 1) = −(λi+1 + µi+1 − θ), q(i, i) = µi+1,

and the initial values c1 = ψ1(θ) = 1, c2 = ψ2(θ) = 1 + µ1
λ1
− θ

λ1
. Further, g(k) = 0 for all

k ∈ N. Then as

h(k) = g(k)−
n−k∑
i=0

q(k, i+ k)ci+k,

we obtain the expressions

h(2) = −
0∑
i=0

q(2, i+ 2)ci+2 = −q(2, 2)c2 = −µ3

(
1 +

µ1

λ1
− θ

λ1

)
,
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h(1) = −
1∑
i=0

q(1, i+ 1)ci+1 = −q(1, 1)c1 − q(1, 2)c2 = −µ2 + (λ2 + µ2 − θ)
(

1 +
µ1

λ1
− θ

λ1

)
.

The result now follows directly from (Kittappa, 1993, Theorem 2).

We may now implement a suitable numerical algorithm to find the first root of the
polynomials (ψi)i and see whether it converges, thus giving us θ∗. If indeed θ∗ > 0 we may
obtain the Yaglom limit by Theorem 2.3.24.

2.3.3 A Dynamical Systems Perspective

Given that a QSD exists, one may not necessarily observe any quasi-stationary behavior.
From a dynamical viewpoint, this behavior is characterized by having a fast convergence to
the quasi-limiting distribution followed by a very slow convergence to extinction. In other
words, if given an initial distribution µ on N0, we let p′ = (p0, p1, . . . ) denote the total
probabilities,

pj(t) = Pµ(Xt = j), j ≥ 0, t ≥ 0,

then one needs to have a separation of the time-scale on which the conditional probabilities

νj(t) := Pµ(Xt = j | t < τA),

converge to the QLD, νj , and the time-scale on with absorption occurs. The last is charac-
terized through θ∗ while the former may be connected to a generalization of the notion of the
spectral gap, σ(Q), with the aid of operator theory. Unfortunately, not much is known about
this object for general absorbing Markov processes. However, other methods considering a
truncation of Q to a finite space and then taking the limit exist (Childs and Keener, 2012).

Note that p′ = (p0, p1, . . . ) satisfies the Kolmogorov forward equation

dp′

dt
= p′Q̃, p(0) = µ.

Further, we have the following representation which is often found in earlier or more applied
work on quasi-stationary distributions

νj(t) =
Pµ(Xt = j, t < τA)

Pµ(t < τA)
=

pj(t)

1− p0(t)
, j > 0, t ≥ 0.

It then follows that ν(t) converges to a QLD, (and thus a QSD), ν, for t → ∞, where
ν ′ = (ν1, ν2, . . . ). Following Pollett and Roberts (1990), substituting this into the forward
equation we find

dp0(t)

dt
= ν ′(t)a(1− p0(t)),

and, letting pE = (p1, p2, . . . ) one obtains
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dν ′

dt
(1− p0(t))− ν ′(t)dp0

dt
=
dp′E
dt

= p′EQ = ν ′(t)Q(1− p0(t)).

Thus we find the non-linear Riccati system of differential equations for ν(t),

dν ′

dt
= ν ′Q+ (ν ′a)ν ′. (2.3.29)

One should therefore expect that potential QLDs are stationary points for (2.3.29). As QLDs
are QSDs, we rediscover the condition for being a QSD,

ν ′Q = −(ν ′a)ν ′ = −θ(ν)ν ′.

We shall exploit this dynamical view on the QSD in the manuscript Hansen and Wiuf
(2018b), by considering a slow manifold.

2.3.4 The Inverse Problem

Suppose we have a given QSD, ν, and wish to determine whether there exists a reaction
network whose associated stochastic process admits ν as a QSD. Following (O’neill, 2007),
when (Xt : t ≥ 0) is a birth-death process, then (2.3.21) is satisfied for some birth and death
rates, which we wish to determine.

Lemma 2.3.30. For x ≥ 2

µxνx = λx−1νx−1 + µ1ν1

(
1−

x−1∑
i=1

νi

)
(2.3.31)

To illustrate how Lemma 2.3.30 may be applied, suppose we wish to examine whether
there exists a reaction network whose QSD is the geometric distribution, νx = (1 − p)px−1

with parameter p ∈ (0, 1). Inserting in (2.3.31) we obtain

µx(1− p)px−1 = λx−1(1− p)px−2 + µ1(1− p)px−1.

Dividing through, we arrive at

µx = λx−1p
−1 + µ1

As the geometric distribution is supported on N, there must be a reaction with S as source
complex. Letting λx = α2x and using that all rates must be a function of x, we arrive at
p = α2/µ1, and thus in turn µx = µ1x. Letting α1 = µ1 we find the linear reaction network

∅ α1← S
α2→ 2S



32 Chapter 2. Dynamics of Reaction Networks

and may conclude that it has the quasi-stationary distribution given by

νx =

(
1− α2

α1

)(
α2

α1

)x−1

, x ∈ N,

whenever α1 > α2. This was also obtained in (O’neill, 2007) and in (Méléard and Ville-
monais, 2012) by other means. Had we imposed a higher order on the birth rates, say
λx = α2x+ α3x(x− 1) one would arrive at the following network,

∅ S1

α2 ++α1oo 2S1
α4

jj
α3 // 3S1

However, now the rates are no longer free. Choosing α1, α2, α3 arbitrarily forces α4 = α1α3
α2−2α3

under the further constraint α2−2α3 < α1. Thus, one may argue that the degree of freedom
in the geometric distribution is only sufficient to capture the simple linear network. The
argument does suggest, though, that one should look for a generalization of the geomet-
ric distribution to provide further examples of QSDs for reaction networks. What makes
the geometric distribution especially well suited for examination is the simple form of the
cumulative density function, yielding the approach of Lemma 2.3.30 tractable.

2.3.5 Approximations and Computational Aspects

In order to numerically compute a QSD, there are various approaches (see Blanchet et al.,
2016). Whenever E is finite, we may calculate the QSD as the normalized left eigenvector ν
of the rate matrix Q corresponding to the eigenvalue of maximal real part −θ(ν). Ways to
implement a numerical algorithm for this is well known (van Doorn and Pollett, 2013). One
of the only existing overlaps between reaction networks and quasi-stationary distributions is
for the class of conservative ACR networks. For a specific network, which could be reduced
to a 1-dimensional birth-death process, it was shown (Anderson et al., 2014) that when
the conserved quantity M → ∞ the quasi-stationary distribution converged to a poisson
distribution with mean equal to the deterministic ACR value. This was later generalized by
means of a variable freezing method to a whole class of conservative systems (Enciso, 2016).

However, for non-conservative reaction networks, the state space is countably infinite,
which poses several problems. The standard approach in this case is to employ a truncation
procedure, whereby one approximates the full rate matrix Q with a sequence of square
n × n matrices {Q(n)}. When n is chosen sufficiently large, one would anticipate that the
corresponding left eigenvector, ν(n), is close to a true quasi-stationary distribution ν. While
this is generally the case, and certainly when there is a unique globally attracting QSD,
it has been proven that the method does not work in generality (Breyer and Hart, 2000).
Further, as the complexity of this method is O(n3) the approach quickly becomes infeasible,
especially for high-dimensional systems.

For the special case of one-dimensional birth-death processes, we may apply the result
of Proposition 2.3.27. As an example, consider the logistic network ∅ α1← S

α2→ 2S, 2S
α3→ S,

which has been well studied in the literature, which we shall return to several times in the
sequel. Let α1 = 1, α2 = 5, α3 = 1. By means of Proposition 2.3.27, we may find the
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polynomials (ψx)x, and by exploiting a simple Newton algorithm to find the first root θ1,x

for each x, we see that the sequence (θ1,x) converges rapidly. By (2.3.23) we conclude that
θ∗ ≈ 0.1081 > 0. It follows from Proposition 2.3.24 that the Yaglom limit is given by
(2.3.25). This is illustrated in Figure 2.7. We shall later see that the Yaglom limit is indeed
unique for this reaction network without calculating the series D.
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Figure 2.7: Left: The sequence θ1,x converging to a positive number θ∗. Right: The QSD or
Yaglom limit.

A different approach would be to simulate the stochastic system using the Doob-Gillespie
algorithm (Gillespie, 1977; Erban et al., 2007; Wilkinson, 2012). However, unlike for station-
ary distributions, it is challenging to simulate from QSDs due to the fact that the absorption
event becomes increasingly likely through time but, to be representative of the QSD, any
sample paths must survive long enough to have forgotten their starting state (Griffin et al.,
2017). For this reason several variants of a renewal process have been considered. One
well studied approach is the Fleming-Viot method. Here, N particles evolves according to
the defining stochastic equation, (X1

t , . . . , X
N
t ) ∈ Nd0. When a (unique) particle reaches the

absorbing set, it jumps instantaneously to the position of a particle chosen uniformly among
the remaining N − 1 ones. As both t and N tends to infinity, the empirical measure

νNt =
1

N

N∑
i=1

δXi
t

converges almost surely to the underlying quasi-stationary distribution (Villemonais, 2015;
Blanchet et al., 2016). In another approach (Groisman and Jonckheere, 2012) particles are
redrawn from a given distribution over E once the process hits the absorbing set. The sta-
tionary distribution of this resurrected process, sometimes referred to as a pseudo-transient
distribution, may then be connected with the QSD of the original system (Barbour and
Pollett, 2010).
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3.1 Introduction

We may think of reaction networks in generality as a natural framework for representing
systems of transformational interactions of entities (Veloz and Razeto-Barry, 2017). The
set of entities (species) may in principle be of any nature, and specifying not just which
ones interact (stoichiometry and reactions) but also quantifying how frequent they interact
(kinetics), we obtain the dynamical system of a reaction network. Examples abound in
biochemistry, where the language originated, however the true power of this approach is
the ability to model diverse processes such as found in biological (Arkin et al., 1998; Barkai
and Leibler, 2000), medical (Anderson et al., 2006), social (Dittrich and Winter, 2008),
computational (Cook et al., 2009), economical (Veloz et al., 2014), ecological (Shakil et al.,
2015) or epidemiological (N̊asell, 2011) contexts.

Whether the universe is inherently deterministic or stochastic in nature, the lack of
complete information in complex systems inevitably introduces some degree of stochasticity.
Thus, a stochastic description is not an alternative to the deterministic approach, but a more
complete one (Qian, 2011). Indeed, the deterministic model solution is an approximation
of the solution for the stochastic model, improving with the system size, and in general
only remaining valid on finite time intervals (Kurtz, 1970). Thus, the long-term behavior of
a given reaction network may depend crucially on whether it is modeled deterministically
or stochastically (Gupta et al., 2014). In particular, the possibility of extinction, which is
a widely occurring phenomenon in nature, may sometimes only be captured by the latter
(Johnston et al., 2017). As a consequence, the counterpart to a stable stationary solution
in the deterministically modeled system is not generally a stationary distribution of the
corresponding stochastic model. Instead, a so-called quasi-stationary distribution, which is
a stationary measure when conditioned on the process not going extinct, has shown to be
the natural object of study. A concise overview of the history and current state of this field
can be found in van Doorn and Pollett (2013), while Pollett (2015) contains a comprehensive
bibliography on quasi-stationary distributions and related work.

From a modeling standpoint, when the copy-numbers of interacting entities are low and
reaction rates are slow, it is important to recognize that the individual reaction steps occur
discretely and are separated by time intervals of random length (Arkin et al., 1998). This
is for example the case at the cellular level (Elowitz et al., 2002), where stochastic effects
resulting from these small numbers may be physiologically significant (Cook et al., 2009).
Furthermore, stochastic variations inherent to the system may in general be beneficial for
identifying system parameters (Munsky et al., 2009). The quasi-stationary distribution
possesses several desirable properties in this domain. Most importantly, if the system under
study has been running for a long time, and if the only available knowledge about the
system is that it has not reached extinction, then we can conclude that the quasi-stationary
distribution, if it exists and is unique, is the likely distribution of the state variable (N̊asell,
2011).

Consider a right-continuous time-homogenous Markov process (Xt : t ≥ 0) (Rogers and
Williams, 2000), that evolves in a domain D ⊆ Rd, wherein there is a set of absorbing states,
a “trap”, A ⊂ D. The process is absorbed, also referred to as being killed, when it hits the
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set of absorbing states, implying Xt ∈ A for all t ≥ τA, where τA = inf{t ≥ 0 : Xt ∈ A} is
the hitting time of A. As we are interested in the process before reaching A, there is no loss
of generality in assuming Xt = Xt∧τA . We refer to the complement,

E := D\A,

as the set of endorsed states. For any probability distribution, µ, on E, we let Pµ and Eµ
be the probability and expectation respectively, associated with the process (Xt : t ≥ 0),
initially distributed with respect to µ. For any x ∈ E, we let Px = Pδx and Ex = Eδx .
Under suitable conditions, the process hits the absorbing set almost surely (a.s.), that is
Px(τA < ∞) = 1 for all x ∈ E, and we investigate the behavior of the process before being
absorbed (Collet et al., 2013).

Definition 3.1.1. A probability measure ν on E is called a quasi-stationary distribution
(QSD) for the process (Xt : t ≥ 0) absorbed at A, if for every measurable set B ⊆ E

Pν(Xt ∈ B | t < τA) = ν(B), t ≥ 0,

or equivalently, if there exists a probability measure µ on E such that

lim
t→∞

Pµ(Xt ∈ B | t < τA) = ν(B),

in which case we also say that ν is a quasi-limiting distribution.
We refer to Méléard and Villemonais (2012) for a proof of the equivalence of quasi-

limiting and quasi-stationary distributions. Existence and uniqueness of a QSD on a finite
state space is well known (Collet et al., 2013, Chapter 3), and it is given by the normalized
left Perron-Frobenius eigenvector of the transition rates matrix restricted to E. For the
infinite dimensional case, most work has been carried out for birth-death processes in one
dimension (van Doorn and Pollett, 2013), where classification results yielding information
about the set of QSDs exist (van Doorn, 1991).

In the present paper, we will focus on a special case of multidimensional processes on
countable infinite state spaces which can be viewed as reaction networks. We will prove as
the main result in Theorem 4.5.5 and Corollary 3.5.2 sufficient conditions for the existence
of a unique globally attracting QSD in the space of probability distributions on E, equipped
with the total variation norm, ‖ · ‖TV . Recall that this norm may be defined as (Pollard,
2005)

‖µ‖TV = 2 sup
B⊆E

|µ(B)|.

Thus, informally, the metric associated to this norm is the largest possible difference between
the probabilities that two probability distributions can assign to the same event. Our result
is based on the following recent result (Champagnat and Villemonais, 2016, Theorem 2.1).
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Theorem 3.1.2. The following are equivalent

• There exists a probability measure ν on E and two constants C, γ > 0 such that, for
all initial distributions µ on E,

‖Pµ(Xt ∈ · | t < τA)− ν(·)‖TV ≤ Ce−γt, ∀t ≥ 0.

• There exists a probability measure ν on E such that

(A1) there exists t0, c1 > 0 such that for all x ∈ E,

Px(Xt0 ∈ · | t0 < τA) ≥ c1ν(·),

(A2) there exists c2 > 0 such that for all x ∈ E and t ≥ 0,

Pν(t < τA) ≥ c2Px(t < τA).

Now, using Foster-Lyapunov theory (Meyn and Tweedie, 1993, 2009), a series of assump-
tions on the process (Xt : t ≥ 0) has been shown to be sufficient for (A1) and (A2) to hold
(Champagnat and Villemonais, 2017). This approach has been applied to a particular case
of multidimensional birth-death processes, giving sufficient conditions, in terms of the pa-
rameters of the process, for the existence and uniqueness of a QSD. Here, we extend this
result, not just to a larger set of parameter values in the birth-death process case, but to
the much broader class of stochastic processes known as stochastic reaction networks.

The outset of the paper is as follows. In section 2, we introduce the setup and notation
of reaction network theory, and define the central inferred notions of endorsed and absorbing
states for this class of processes. Section 3 contains the terminology and main assumptions
that we shall use throughout the paper. We then move on in section 4, to prove that
the processes associated with stochastic reaction networks do indeed satisfy all the required
assumptions made by (Champagnat and Villemonais, 2017, Corollary 2.8). Section 5 contains
the main result, Theorem 4.5.5. Finally, we give some examples in section 6, illustrating the
applicability of the results.

3.2 Reaction Network Setup

Denote the real numbers by R, the integers by Z, the natural numbers by N = {1, 2, . . . }
and the nonnegative integers by N0 = {0, 1, 2, . . . }. Further, for any set, B, let |B| denote
its cardinality and denote by 1B : D → {0, 1} the indicator function of a subset B ⊆ D.

A reaction network is a triple N = (S, C,R), where S is a finite ordered set of species1,
C is a finite set of complexes, consisting of linear combinations over N0 of the species, and
R ⊂ C × C is an irreflexive relation on C, referred to as the set of reactions (Anderson and
Kurtz, 2015; Feinberg, 1979; Gunawardena, 2003). Furthermore, R is assumed to be ordered.

1The terminology “species” is standard, although one may equally think of them as general entities or
agents.
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We define the dimension of the reaction network, d = |S|. Any species Si ∈ S can be
identified with the unit vector ei ∈ Nd0, thus any complex y ∈ C can be identified with a
vector in Nd0. It is customary to denote an element (yk, y

′
k) ∈ R by yk → y′k ∈ R in which

case we refer to yk as the source complex and to y′k as the product complex of reaction k. We
may thus write R = {yk → y′k : k = 1, . . . , r}. Employing a standard, although slight abuse
of, notation, we identify S = {S1, . . . , Sd} with the set {1, . . . , d} and R with {1, . . . , r}. We
write the k’th reaction with the notation∑

i∈S
ykiSi →

∑
i∈S

y′kiSi,

where yki = (yk)i and y′ki = (y′k)i are the stoichiometric coefficients associated with the source
and product complexes of reaction k, respectively. Define the reaction vectors ξk = y′k − yk
and the stoichiometric matrix

Ξ = (ξ1 ξ2 . . . ξr) ∈ Nd×r0 .

The order of reaction k is the sum of the stoichiometric coefficients of the source complex,∑
i∈S yki. Finally, we define the maximum of a vector over the set R, x = maxk∈R yk, as the

entry-wise maximum, xi = maxk∈R yki.

A set of reactions R induces a set of complexes and a set of species, namely the complexes
and species that appear in the reactions. We will assume that a reaction network is always
given in this way by R, and one may then completely describe a reaction network in terms of
its reaction graph, whose nodes are the complexes and whose directed edges are the reactions.
This concise description will be employed in the rest of the paper. To avoid trivialities, we
assume R 6= ∅.

For each reaction we specify an intensity function λk : Nd0 → [0,∞), k ∈ R, which satisfies
the stoichiometric admissibility condition:

λk(x) > 0 ⇔ x ≥ yk,

where we use the usual vector inequality notation; x ≥ y if xi ≥ yi for all i ∈ S. Thus,
reactions are only allowed to take place whenever the copy-numbers of each species in the
current state is at least as great as those of the corresponding source complex. A widely
used example is stochastic mass action kinetics given by

λk(x) = αk

d∏
i=1

yki!

(
x

yk

)
= αk

d∏
i=1

xi!

(xi − yki)!
,

for some reaction rate constants αk > 0 (Anderson and Kurtz, 2015). The idea is that
the rate is proportional to the number of distinct subsets of the molecules present that
can form the input of the reaction. It reflects the assumption that the system is well-stirred
(Anderson and Kurtz, 2015). Other examples include power law kinetics or generalized mass
action kinetics (Anderson, 2008; Horn and Jackson, 1972; Müller and Regensburger, 2012).
A particular choice of such rate functions constitute a stochastic kinetics λ = (λ1, . . . , λr) for
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the reaction network N , and the pair (N , λ) is referred to as a stochastic reaction system,
or simply a reaction network with kinetics λ.

We may then specify the stochastic process (Xt : t ≥ 0) on the state space D := Nd0
related to the reaction system (N , λ). Let Xt be the vector in Nd0 whose entries are the
species counts at time t. If reaction yk → y′k occurs at time t, then the new state is
Xt = Xt− + y′k − yk = Xt− + ξk, where Xt− denotes the previous state. The stochastic
process then follows,

Xt = X0 +
∑
k∈R

Yk

(∫ t

0
λk(Xs) ds

)
ξk, (3.2.1)

where Yk are independent and identically distributed unit-rate Poisson processes (Anderson
and Kurtz, 2015; Ethier and Kurtz, 1986; Norris, 2009). This stochastic equation is referred
to as a random time change representation. We assume throughout the paper that the
process is non-explosive, so that the process is well defined. Assumption 2, though, will
imply non-explosiveness.

3.2.1 The State Space

To define the set of endorsed states and absorbing states in the setting of stochastic reaction
networks, we recall some terminology from stochastic processes. We say that there is a path
from x to y, denoted x 7→ y, if there exists t ≥ 0 such that Px(Xt = y) > 0. We extend
this notion to sets as follows; B1 7→ B2 if there exists x ∈ B1 and y ∈ B2 such that x 7→ y.
Finally, we introduce the region of large copy numbers, where all reactions may take place,
defined as

R = {x ∈ Nd0 |λk(x) > 0 ∀ k ∈ R}.

Any network satisfies R 6= ∅. Indeed, by the stoichiometric compatibility condition, {x ∈
D |x ≥ M} ⊆ R where M = maxk∈R yk ∈ Nd0. Letting DE = {x ∈ D |x 7→ R}, we may
decompose the state space into a disjoint union

D = DE tDA.

A state spaceD is irreducible if for all x, y ∈ D we have Px(Xt1 = y) > 0 and Py(Xt2 = x) > 0
for some t1, t2 > 0 (Gupta et al., 2014). Thus, D is irreducible if for all x, y ∈ D there exists
a path x 7→ y. Irreducibility induces a class structure on the state space (Norris, 2009), and
we denote the classes by I1, I2, . . . (potentially infinitely many). Let I denote the set of
irreducible classes. Obviously, either Ii ⊆ DE or Ii ⊆ DA, i ≥ 1.

Lemma 3.2.2. The pair (I ,�), where � is given by

Ij � Ii ⇔ Ii 7→ Ij , i, j ≥ 1,

is a well defined poset. The irreflexive kernel (I ,≺) gives a well defined strict poset.
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Proof. Since all elements I ∈ I are irreducible, there exists a path between any two points
in I hence I � I yielding the relation reflexive.

Suppose Ii � Ij and Ij � Ii for some i, j ≥ 1. Let x ∈ Ii and y ∈ Ij be given. By
assumption, we may find a path from x to some z2 ∈ Ij , and by irreducibility of Ij there is
a path from z2 to y. Similarly, we may by assumption find a path from y to some z1 ∈ Ii
and by irreducibility of Ii a path from z1 to x. As x, y were arbitrary, we conclude that
there exists a path between any two points in Ii ∪ Ij hence Ii = Ij , yielding the relation
antisymmetric.

Finally, suppose Ik � Ij and Ij � Ii for some i, j, k ≥ 1. Then there exists a path from
some x ∈ Ii to some z1 ∈ Ij and a path from some z2 ∈ Ij to some y ∈ Ik. By irreducibility
of Ij there is a path from z1 to z2, and concatenation of the three paths yield one from x to
y. We conclude that Ik � Ii, hence the relation is transitive.

A similar ordering has been considered in van Doorn and Pollett (2009). However, their
further analysis rests on the setting of discrete time, rendering the approach insufficient for
stochastic reaction networks. To exploit the graphical structure induced by �, define the
marked directed acyclic graph D = (I ,E ) as follows. The set of directed edges is

E = {(Ii, Ij) ∈ I 2 | Ij ≺ Ii, i, j ≥ 1},

while the marking I = IA tIE is given by

IE = {I ∈ I | I ⊆ DE}, IA = {I ∈ I | I ⊆ DA}.

Let V1,V2, . . . denote the vertex set of the respective connected components of the induced
subgraph D[IE ], the graph with vertex set IE and edges from E with start and end nodes
in IE .

Definition 3.2.3. The endorsed sets and absorbing sets are defined, respectively, by

En =
⋃
I∈Vn

I, An =
⋃

I∈IA : En 7→I
I, n ≥ 1.

The corresponding state space is defined by Dn = En tAn.

2S1

S1 + 2S2

&&

88

3S2

S2

S1

R

Figure 3.1: Left: The reaction graph of a stochastic reaction network. Right: The state
space with the region R in shaded grey. Points in DA are marked red.
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As DE is non-empty, the existence of at least one endorsed set is guaranteed. By con-
struction, the endorsed sets are disjoint, their union is DE and their number, NE , may in
general be countable infinite. Furthermore, any absorbing set is confined to a subset of
{x ∈ Nd0 |x � M}, lying “close” to the boundary of Nd0. If extinction is possible from an
endorsed class En then this absorption will take place in An. Note, however, that the set
IA may in general be empty, in which case no absorbing set exist. To further illuminate the
structure of the endorsed sets, we provide the following classification result.

Proposition 3.2.4. For M ∈ Nd sufficiently large, the set {x ∈ DE |x ≥M} intersects

(i) finitely many endorsed sets if and only if rank Ξ = d.

(ii) a single endorsed set if and only if spanZ Ξ = Zd.

Proof. Suppose first that rank Ξ < d. Let x ∈ DE . Then x ∈ E1, say and there exists a
y ∈ DE such that y /∈ (x+ spanR Ξ). In particular, y ∈ E2 where E1 6= E2. This procedure
can be repeated indefinitely, yielding infinitely many endorsed sets.

Now, suppose rank Ξ = d. Then one may choose a linear combination of the reaction
vectors yielding a strictly positive point,∑

k∈R
akξk > 0, ak ∈ Z.

Let a =
∑

k∈R |ak| and a0 = 0. Define the sequence (w`)`=1,...,a by

w` = ξk, ` = 1 +

k−1∑
j=0

|aj |, . . . ,
k∑
j=1

|aj |, k ∈ R.

As the reaction vectors are finite, the partial sums Pj =
∑j

`=1w` are finite for each j ≤ a.
Let

m = min
i∈S,j≤a

(Pj)i.

Choosing each coordinate Mi > |m| + maxk∈R yk for each i ∈ S, it follows that any point
x ∈ DE with x ≥ M satisfies x + Pj ∈ R for any j ≤ a. We say that a sequence of states
(x1, . . . , xn) is an undirected walk from x1 to xn if for all 1 ≤ i ≤ n− 1 there exists k(i) ∈ R
such that xi+1 = xi ± ξk(i). As all reactions may occur in R, we conclude that x has an
undirected walk to the point

x′ := x+ Pa = x+
∑
k∈R

akξk > x.

Thus, by definition, x and x′ belong to the same endorsed set, say E1. To determine the
number of endorsed sets, let B = (bi) denote the basis matrix of the free Z-module generated
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by the stoichiometric matrix Ξ, and define the lattice generated by Ξ to be

L(Ξ) =

{
rank Ξ∑
i=1

zibi : zi ∈ Z

}
.

By the construction in the previous paragraph, it follows that all points in the region {y ∈
E1 : y ≥ M} belong to the same translated lattice x+ L(Ξ). By assumption, spanR Ξ = Rd
hence the lattice L(Ξ) has rank d. The number of ways one may translate a rank d lattice
in Rd to an integer lattice point without any points intersecting is given by considering the
number of integer lattice points inside the fundamental parallelotope,

P(Ξ) =
{∑d

i=1 θibi | θi ∈ [0, 1), bi ∈ spanZ Ξ,det(B) 6= 0
}
.

Indeed, as P(Ξ) tiles Rd, that is for any point z ∈ Rd there exists a unique z′ ∈ L(Ξ)
such that z ∈ z′ + P(Ξ), the problem is reduced to a single fundamental parallelotope,
which by definition contains exactly one point from each translated lattice (Dadush, 2013).
Further, the number of integer lattice points inside P(Ξ) is exactly equal to the volume of
the parallelotope (Cohen et al., 1993, p. 97), hence, by finiteness of the reaction vectors,

NE(M) = |det(B)| <∞,

for M sufficiently large, where NE(M) is the number of endorsed sets intersecting {x ∈
DE |x ≥M}. This proves (i) of the proposition.

Finally, if spanZ Ξ = Zd then L(Ξ) = Zd and the unit vectors e1, . . . , ed ∈ L(Ξ). As
P(Id)∩L(Ξ) = {0} we conclude from Dadush (2013) that e1, . . . , ed is a basis for L(Ξ) hence
NE(M) = 1 as desired.

Note that, in particular, a reaction network whose associated stochastic process is a
birth-death process, that is, a process where for each i = 1, . . . , d either ei ∈ R or −ei ∈ R,
have a single endorsed set for x sufficiently large. In practice, one may find the endorsed
sets by picking x ∈ R and adding states by a backtracking algorithm (Paulevé et al., 2014).
Verification of spanZ Ξ = Zd can be done by calculation of the Hermite normal form (Paulevé
et al., 2014).

One may suspect that Proposition 3.2.4 could be strengthened to hold on the entire set
DE . This is only partially true. Consider as an example the three-dimensional reaction
network given by the reaction graph

3S1

S1 + S2 + S3
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2S3

It follows that rank Ξ = 3. However, DE = N3, DA = N3
0 \N3, and each singleton {(1,m, 1)},
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m ≥ 1, constitutes its own endorsed set. Thus, in the generic picture, close to the absorbing
set, there may be infinitely many endorsed sets. We do, however, have the following corollary.

Corollary 3.2.5. If d ≤ 2, there are finitely many endorsed sets if and only if rank Ξ = d.

Proof. We only need to prove that if rank Ξ = d then there are finitely many endorsed sets.
For this, it suffices to prove that at most finitely many x ∈ DE do not have an undirected
walk (as introduced in the proof of Proposition 3.2.4) to a point z ≥ M . Indeed, by the
proof of Proposition 3.2.4, if such a path exists, then by definition x belongs to one of finitely
many endorsed sets. With the remaining set being finite, the total number of endorsed sets
is therefore finite.

Now, let x ∈ DE be given. By the definition of endorsed sets, there exists a path x 7→ y
with λk(y) > 0 for all k ∈ R. As rank Ξ = d, for each 1 ≤ j ≤ d, there exists k(j) ∈ R such
that 〈ej , ξk(j)〉 6= 0. Keeping the jth coordinate fixed and increasing the possible other if
necessary, thus arriving at a point y′ with yj = y′j and yi ≤ y′i for i 6= j, by the stoichiometric
compatibility condition we may by repeated use of reaction k(j) find a path y′ 7→ z or z 7→ y′

with z ≥ M . Repeating the argument for the possible remaining coordinate, we conclude
that there exists an M ′ ∈ Nd such that if x ≮M ′ then x has an undirected walk to a point
z ≥M . As the set {x ∈ DE |x < M ′} is finite, this concludes the proof.

One may easily verify, that the second part of Proposition 3.2.4 can also be extended for
d = 1. Indeed, for any point x ∈ DE there exists a reaction k ∈ R such that λk(x) > 0 and
either x + ξk > x or x + ξk < x. Otherwise x ∈ DA. Consequently, there is a point z ≥ M
for any M ∈ DE such that either x 7→ z or z 7→ x. However, note that the network in Figure
3.1 shows that this result does not hold in the case d = 2.

An endorsed set, En, n ≥ 1, is only irreducible if it consists of a single irreducible class.
If there is more than one irreducible class in En, then we need that there is a smallest one
to ensure uniqueness of a QSD.

Assumption 1. For a given endorsed class En, n ≥ 1, we assume:

(i) En contains a unique minimal irreducible class, Inmin.

(ii) if An 6= ∅ then Inmin 7→ An.

We shall see that Assumption 1(i) is equivalent to a more technical property of the
state space, which is necessary for our results to hold. Thus no generality is lost in having
Assumption 1(i).

Networks without any minimal class exists, for example ∅ → S1, which does not have an
absorbing set either. Furthermore, networks with more than one minimal class also exist,
for example, S1 + S2 → ∅, S2 → ∅. Thus Assumption 1(i) is indeed not superfluous. We
believe Assumption 1(ii) is always met if Assumption 1(i) is. It ensures that one may always
reach the absorbing set, if it is non-empty.

Definition 3.2.3 accommodates the general case where uniqueness of a QSD does not
necessarily hold, in which case the support of the QSD may stretch the entire endorsed set
rather than, as we shall see, the unique minimal irreducible class. We remark that rather
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than investigating an entire endorsed set, one may be interested in a particular irreducible
component, say I. Letting the state space be D = E tA where

E = I, A =
⋃

J∈IA : E 7→J
J ,

the theory to be developed in this paper applies to this case as well.

As an illuminating example consider the generalized death process mS1 → ∅ with m ∈ N,
where each point in the state space D = N0 constitutes its own irreducible class. Here, the
endorsed and absorbing sets are En = {n+ pm− 1 | p ∈ N} and An = {n− 1} respectively,
for n = 1, . . . ,m, and Assumption 1 is satisfied for all n. Thus, DE = {m,m + 1, . . . } and
DA = {0, . . . ,m− 1}. It is known that in the simple death case, m = 1, uniqueness does not
hold on DE = N. Indeed, there is a continuum of QSDs with support larger than {1}, the
unique minimal class (Griffin, 2016).

S1

Figure 3.2: State space of the reaction network 2S1 → ∅. There are two endorsed sets.

In the setting of birth-death processes in one dimension, which has an infinite state space,
it is known that there will be either none, a unique or a continuum of QSDs (van Doorn,
1991). Consider the two reaction networks

∅
α1← S1

α2→ 2S1, ∅
α1← S1

α2


α3

2S1, (3.2.6)

endowed with mass action kinetics. In both cases we conclude, according to Definition 3.2.3,
that the set of absorbing states and the set of endorsed states are

DA = A1 = {0}, DE = E1 = {1, 2, . . . },

respectively. For the network on the left in (3.2.6), assuming α1 > α2, there is a continuum
of QSDs on E1, while for the network on the right, there is a unique QSD on E1, for all
parameter values (Méléard and Villemonais, 2012). This fits well with our result – the
necessity of having reactions of order higher than one to ensure uniqueness permeates to
higher dimensions.

3.3 Extension of Arguments

In this and the following sections, we shall simply use the notation E to refer to a single
endorsed set, with corresponding non-empty absorbing set A, when there is no ambiguity.
Further, as existence and uniqueness is known on finite state spaces, we shall assume without
loss of generality that E is countably infinite. We make the following definitions inspired by
Champagnat and Villemonais (2017) and Meyn and Tweedie (1993).
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Definition 3.3.1. For any vector v ∈ Nd, we define a corresponding function 〈v, ·〉 : Zd → Z
given by the standard inner product

〈v, x〉 = x · v.

This function may in general take negative values, however, when restricting 〈v, ·〉 to
E, one obtains a norm-like function, (Meyn and Tweedie, 1993). Choosing v = (1, . . . , 1)
we recover the function used in (Champagnat and Villemonais, 2017). In general, we shall
choose v ∈ Nd based on the particular reaction network at hand, and will in the following
consider it fixed. For n ∈ N, define the sets

On = {x ∈ E : 〈v, x〉 ≤ n}.

which, irrespectively of v, are compact subsets of E, satisfying On ⊆ On+1 and E =
⋃
n∈NOn.

We denote the first hitting time of A, the first hitting time of On and the first exit time of
On by

τA = inf{t ≥ 0: Xt ∈ A}, τn = inf{t ≥ 0: Xt ∈ On}, Tn = inf{t ≥ 0: Xt /∈ On},

respectively. Note that all of these are stopping times and might be infinite. As we will
be concerned with the application of unbounded functions serving the purpose of a Lya-
punov function, we introduce the weakened generator, L, for the Markov process (Meyn and
Tweedie, 1993; Champagnat and Villemonais, 2016).

Definition 3.3.2. A measurable function W : D → R belongs to the domain D(L) of the
weakened generator L of (Xt : t ≥ 0) if there exists a measurable function U : E → R such
that, for all n ∈ N, t ≥ 0 and x ∈ E

ExW (Xt∧Tn) = W (x) + Ex
(∫ t∧Tn

0
U(Xs) ds

)
,

and

Ex
∣∣∣∣∫ t∧Tn

0
U(Xs) ds

∣∣∣∣ <∞, (3.3.3)

and we define LW = U on E and LW ≡ 0 on A.
As the state space of interest is always countable, all functions f : D → R are measurable.

Moreover, as the state space is discrete and On is finite for all n ∈ N, all functions f : D → R
are in the domain of the weakened generator, D(L) (Meyn and Tweedie, 1993). In partic-
ular, ExW (Xt∧Tn) is well-defined and finite. Generally, the weakened and the infinitesimal
generator need not agree, and the infinitesimal generator may not exist (Meyn and Tweedie,
1993).
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However, if f is bounded, then they do agree. In particular, Ex|f(Xt)| < ∞ and it
follows that as t→ 0,

Exf(Xt) =

(∑
k∈R

f(x+ ξk)Px(Xt = x+ ξk)

)
+ f(x)Px(Xt = x) + o(t)

=

(∑
k∈R

f(x+ ξk)λk(x)t+ o(t)

)
+ f(x)

(
1−

∑
k∈R

λk(x)t+ o(t)

)
+ o(t)

=
∑
k∈R

λk(x)(f(x+ ξk)− f(x))t+ f(x) + o(t).

Hence Exf(Xt) is differentiable and from the fundamental theorem of calculus we conclude
that the weakened generator coincides with the (weak) infinitesimal generator (Meyn and
Tweedie, 1993),

L̂f(x) = lim
t→0

Exf(Xt)− f(x)

t
=
∑
k∈R

λk(x)(f(x+ ξk)− f(x)),

for x ∈ E.

Moreover, setting W (x) = 〈v, x〉 as in Definition 3.3.1, it follows from the Poisson char-
acterization of the process (5.2.1), that

ExW (Xt∧Tn) = Ex〈v,Xt∧Tn〉 = Ex〈v,X0〉+ Ex〈v,
∑
k∈R

Yk

(∫ t∧Tn

0
λk(Xs) ds

)
ξk〉

= W (x) + Ex

(∫ t∧Tn

0

∑
k∈R

λk(Xs)〈v, ξk〉 ds

)
,

such that

LW (x) =
∑
k∈R

λk(x)〈v, ξk〉, x ∈ E. (3.3.4)

Note that (3.3.3) is fulfilled as On is finite.

Definition 3.3.5. Define the functions dv, d
v : N→ R by

dv(n) = − max
x∈E,〈v,x〉=n

r∑
k=1

λk(x)〈v, ξk〉1E(x+ ξk),

dv(n) = max
x∈E,〈v,x〉=n

n
r∑

k=1

λk(x)1A(x+ ξk).

All networks, for which extinction is possible, have the property that there exists a v ∈ Nd
such that 〈v, ξk〉 ≤ 0 for some reaction k ∈ R. Indeed, suppose that 〈v, ξk〉 > 0 for all v ∈ Nd
and k ∈ R. Then ξk ∈ Nd0 for all k ∈ R, hence x + ξk ≥ x for any x ∈ D. In particular,
if x ∈ E then x + ξk ∈ E and we conclude, from the observation that any absorbing set is
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confined to a subset of {x ∈ Nd0 |x � M} for some M sufficiently large, that the process is
not absorbed. By contraposition the desired claim holds. Note that for fixed n ∈ N, the set
{x ∈ E, 〈v, x〉 = n} might be empty, thus we define

N = {n ∈ N | ∃x ∈ E : 〈v, x〉 = n},

and make the following central assumption.

Assumption 2. There exists v ∈ Nd and η > 0, N ∈ N, such that, for n ≥ N ,

dv(n) ≥ η dv(n),

and, with the limit being taken over N ⊆ N,

lim
n→∞

dv(n)

n1+η
=∞.

We note that, as dv(n) is always non-negative, this assumption assures that dv(n) is
non-negative for n sufficiently large. We shall see that this assumption further ensures the
ability to “come down from infinity” in finite time. In the case where there is no absorbing
set, the empty sum in Definition 3.3.5 yields dv(n) = 0, and we may reformulate a result of
Gupta et al. (2014) (see below). In this paper, we will extend the result to the case where
E is not necessarily irreducible, but satisfies Assumption 1(i), and where there may exist a
non-empty absorbing set of states (see Theorem 3.5.3).

Theorem 3.3.6. For a reaction network satisfying Assumption 2, with A = ∅ and E ir-
reducible, the associated stochastic process (Xt : t ≥ 0) is exponentially ergodic and thus
admits a unique stationary distribution π. Further, there exist constants C, γ > 0 such that,
for all probability measures µ on E,

‖Pµ(Xt ∈ ·)− π(·)‖TV ≤ Ce−γt, t ≥ 0.

Proof. For x ∈ D, let n = 〈v, x〉. Thus, by Assumption 2(ii), for any constant c > 0,

−
r∑

k=1

λk(x)〈v, ξk〉 ≥ − max
x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)〈v, ξk〉 = dv(n) ≥ cn1+η ≥ c〈v, x〉,

for n larger than some N ∈ N. The set of x′ ∈ D such that 〈v, x′〉 = n ≤ N is compact,
hence there is c1 > 0 such that

dv(n) ≥ cn− c1 = c〈v, x〉 − c1.

We conclude that for all x ∈ D,

r∑
k=1

λk(x)〈v, ξk〉 ≤ c1 − c〈v, x〉,

hence from (Gupta et al., 2014, Proposition 4) it follows, due to irreducibility of E, that
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there exist constants C, γ > 0 such that for all x0 ∈ E,

‖Px0(Xt ∈ ·)− π(·)‖TV ≤ Ce−γt

for all t ≥ 0. Finally, if we consider the random starting point X0 ∼ µ, we find

‖Pµ(Xt ∈ ·)− π(·)‖TV =

∥∥∥∥∥∥
∑
x0∈E

µ(x0)(Px0(Xt ∈ ·)− π(·))

∥∥∥∥∥∥
TV

≤
∑
x0∈E

µ(x0)‖Px0(Xt ∈ ·)− π(·)‖TV ≤
∑
x0∈E

µ(x0)Ce−γt = Ce−γt,

as required.

It is sufficient to have η = 0 for Theorem 3.3.6 to hold. However, as we shall see, if A 6= ∅
then η > 0 is required. The intuitive meaning is that the quasi-stationary distribution
exists on the long-time, but not infinite time horizon, where the process will be absorbed.
Thus if the process does not “come down from infinity in finite time”, that is if η = 0,
starting close to A will almost surely result in absorption while starting at “infinity” will
not, contradicting uniqueness of the QSD. When no absorbing set exist, however, the quasi-
stationary distribution reduces to the stationary distribution which exists on the infinite
time horizon.

3.4 Verifying Assumptions

We start by introducing some notation and definitions from Champagnat and Villemonais
(2017) for ease of reference.

Definition 3.4.1. A couple (V, ϕ) of measurable functions V and ϕ from D = E ∪ A to R
is an admissible couple of functions if

(i) V and ϕ are bounded and nonnegative on D, positive on E, satisfy V (x) = ϕ(x) = 0
for all x ∈ A, and further

inf
x∈E

V (x)

ϕ(x)
> 0.

(ii) For all sequences (xp)p≥1 in E such that {p ∈ N : xp ∈ On} is finite for all n ≥ 1,

lim
p→∞

V (xp)

ϕ(xp)
=∞, and lim

n→∞
V (XTn) = 0 Px-a.s. for all x ∈ E.

(iii) LV is bounded from above and Lϕ is bounded from below.

The definition of a couple of admissible functions in Champagnat and Villemonais (2017)
further requires that V and ϕ belong to the domain of the weakened infinitesimal generator
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of (Xt : t ≥ 0). However, since any function f : Nd0 → R is in this domain for discrete state
spaces (Meyn and Tweedie, 1993), the requirement is automatically satisfied. Furthermore,
as V, ϕ are bounded, the infinitesimal generator L̂ is defined hereon and agrees with the
weakened generator L.

The question of extinction has recently attracted much attention on its own (Johnston
et al., 2017). Therefore, we provide the following proposition which renders an explicit
criterion for when the stochastic process associated to a stochastic reaction network goes
extinct almost surely. The assumption in the proposition is weaker than Assumption 2.

Proposition 3.4.2. Under Assumption 1, with A 6= ∅, the process (Xt : t ≥ 0) is absorbed

Px-a.s. for all x ∈ E if dv(n) > ζ d
v(n)
n for n sufficiently large, where

ζ = max
k∈RA

〈v, ξk〉, RA = {k ∈ R : (E + ξk) ∩A 6= ∅}.

Proof. Define the norm-like function W (x) = 〈v, x〉 on Nd0 as in Definition 3.3.1, and let
L be the weakened infinitesimal generator of (Xt : t ≥ 0). It follows from (3.3.4) and the

assumption that dv(n) > C dv(n)
n for n sufficiently large that for each x ∈ E with 〈v, x〉 = n,

LW (x) =
r∑

k=1

λk(x)〈v, ξk〉

=
r∑

k=1

λk(x)〈v, ξk〉1E(x+ ξk) +
r∑

k=1

λk(x)〈v, ξk〉1A(x+ ξk)

≤ max
x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)〈v, ξk〉1E(x′ + ξk) + max

x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)〈v, ξk〉1A(x′ + ξk)

≤− dv(n) + ζ max
x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)1A(x′ + ξk) = −dv(n) +

ζ

n
dv(n) < 0, (3.4.3)

for n sufficiently large. In particular, there exists an N ∈ N such that for n = 〈v, x〉 ≥ N ,
we have LW (x) < 0, hence, setting M = maxx∈E : 1≤〈v,x〉≤N{0, LW (x)}, yields

LW (x) ≤M · 1ON (x), x ∈ E.

Since ON is compact, we may apply (Meyn and Tweedie, 1993, Theorem 3.1) to conclude
that the process (Xt : t ≥ 0) is non-evanescent, that is,

Px
(
〈v,Xt〉

t→∞−−−→∞
)

= 0, x ∈ E. (3.4.4)

Define the discrete time jump chain (Yn : n ∈ N0) by Yn = XJn , where J0, J1, . . . denote
the jump times of (Xt : t ≥ 0) given by

J0 = 0, Jn+1 = inf{t ≥ Jn : Xt 6= XJn}.

Let Bm = {Yn ∈ Om i.o.} and F = {Yn ∈ A i.o.} = {Yn ∈ A for some n}, where the last
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equality follows from A being an absorbing set. By Assumption 1, all states in Om ⊆ E
have a shortest path to A (there is a path to the minimal irreducible class, and then to A,
for any x ∈ Om), which has some positive probability. For each state x ∈ Om, let bx be the
probability of this shortest path, and define βm = minx∈Om bx. As Om is compact, βm > 0.
It follows that for each n ∈ N0 the conditioned process fulfils

P

( ∞⋃
k=1

(Yn+k ∈ A)
∣∣∣Yn ∈ Om) ≥ βm > 0.

By (Durrett, 1996, Theorem 2.3) we get

Py (Bm\F ) = 0, (3.4.5)

with y = Y0 = X0 = x, for any m ∈ N. Now, the complement of the event
⋃∞
m=0Bm is the

event G ∪ F , where G =
{
〈v, Yn〉

n→∞−−−→∞
}

. As Bm is an increasing sequence of events in

m, we obtain by monotone convergence and (3.4.5) that

1 = Py

(
G ∪ F ∪

⋃
m

Bm

)
= lim

m→∞
Py(G ∪ F ∪Bm) = lim

m→∞
Py(G ∪ F ) = Py(G ∪ F ).

Thus, (Yn : n ∈ N0) either tends to infinity or is eventually absorbed in A. The same
holds for the full process (Xt : t ≥ 0), and by (3.4.4) we conclude that Px(G) = 0 hence
Px(τA <∞) = Px(Xt ∈ A for some t) = 1. In particular, we also have that

lim
n→∞

Tn = τA,

thus the process is regularly absorbed, by definition.

Note that ζ in Proposition 3.4.2 may be negative thus Assumption 2(i) is stronger and
immediately provides the same conclusion of almost sure absorption of the process. Further,
as we shall see in the next proposition, Assumption 2(ii) assures that the expected magnitude
of Xt, in the form of 〈v,Xt〉 given X0 = x, is uniformly bounded in x ∈ E for any t > 0.
This, in turn, implies that the time of “coming down from infinity” is finite, which is closely
related to the uniqueness of QSDs. This is where η > 0 is required.

Proposition 3.4.6. Under Assumptions 1-2 with A 6= ∅, the process (Xt, t ≥ 0) satisfies

τA = lim
n→∞

Tn <∞ Px-a.s. for all x ∈ E,

in particular, the process is absorbed Px-a.s. Further, supx∈E Ex〈v,Xt〉 <∞ for any t > 0.

Proof. By Assumption 2(i), it follows, applying the same notation as in Proposition 3.4.2,
that

dv(n) ≥ ηdv(n) > ζ
dv(n)

n
,
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for n sufficiently large and ζ as in the proposition. Thus by Proposition 3.4.2, the process
(Xt : t ≥ 0) satisfies

τA = lim
n→∞

Tn <∞,

Px-a.s. for all x ∈ E. Hence the process is regularly absorbed.

The second claim is apparently a ‘classical result’ (Champagnat and Villemonais, 2016)
but we are not aware of a proof in the literature, hence we provide one here. Let W (x) =
〈v, x〉 on Nd0 as in Definition 3.3.1. It follows from (3.4.3) of Proposition 3.4.2 and Assumption
2(i) that with 〈v, x〉 = n,

LW (x) ≤ −dv(n) + ζ max
x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)1A(x′ + ξk)

≤ −dv(n) + ζ
1

n
dv(n) ≤ −dv(n) +

ζ

nη
dv(n) = −

(
1− ζ

nη

)
dv(n).

It follows, under Assumption 2(ii), that

LW (x)

W (x)1+η
≤ −

(
1− ζ

nη

)
dv(n)

n1+η
→ −∞,

as n = 〈v, x〉 → ∞ in N , in which case 1 − ζ/(nη) becomes positive. Hence, there exist
constants D1, D2 > 0 such that

LW (x) ≤ D2 −D1W (x)1+η, for all x ∈ E. (3.4.7)

Since we have
∑

k∈R λk(x) <∞ for each x ∈ D, it follows from (Anderson and Kurtz, 2015,
p. 12) and the equivalence of the weakened and infinitesimal generators on W that

W (Xt)−W (0)−
∫ t

0
LW (Xs) ds

is a martingale. Thus, by the martingale property we find

ExW (Xt) = W (x) +

∫ t

0
Ex(LW (Xs)) ds, (3.4.8)

which is a form of Dynkin’s formula (Kallenberg, 2001). Using the bound (3.4.7) combined
with Jensen’s inequality we obtain, upon differentiation of (3.4.8),

d

dt
ExW (Xt) = Ex(LW (Xt)) ≤ Ex(D2 −D1W (Xt)

1+η) ≤ D2 −D1(ExW (Xt))
1+η.

Define fx(t) = ExW (Xt) and choose D3 > D2. Consider the associated differential equations

g′x,ε(t) = D3 −D1gx,ε(t)
1+η, gx,ε(0) = W (x) + ε (3.4.9)

h′x(t) = −D1hx(t)1+η, hx(0) = W (x). (3.4.10)
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Define F (t, z) = D3 −D1z
1+η. It then follows that

f ′x(t) < F (t, fx(t)), fx(0) = W (x),

h′x(t) < F (t, hx(t)), hx(0) = W (x),

g′x,ε(t) = F (t, gx,ε(t)), gx,ε(0) = W (x) + ε.

By Petrovitsch’ theorem (Mitrinovic et al., 1991, p. 316) applied twice and the fact that
solutions to the ordinary differential equations are continuous in the initial value, we conclude
that

fx(t) ≤ gx(t), hx(t) ≤ gx(t) t ∈ [0, T ], (3.4.11)

where gx(t) = limε→0 gx,ε(t). The solution to the initial value problem (3.4.9) cannot be
given in explicit form, however, the associated simpler differential equation (3.4.10) does
have an explicit solution for η > 0, given by

hx(t) =
1

(D1ηt+W (x)−η)1/η
, t ≥ 0.

In order to use this to bound fx(t), define the function

kt(x) = D3t+ hx(t).

Then, using (3.4.11), we have

g′x(t) = D3 −D1gx(t)1+η ≤ D3 −D1hx(t)1+η = D3 + h′x(t) = k′x(t).

Since gx(0) = W (x) = kx(0) it follows that gx(t) ≤ kx(t) and we infer that

sup
x∈E

ExW (Xt) = sup
x∈E

fx(t) ≤ sup
x∈E

gx(t) ≤ sup
x∈E

kx(t) <∞,

for all fixed t > 0 as desired.

Definition 3.4.12. Let v ∈ Nd and α, β > 1. Define V : Nd0 → R and ϕ : Nd0 → R by

V (x) = 1E(x)

〈v,x〉∑
j=1

1

jα
, ϕ(x) = 1E(x)

∞∑
j=〈v,x〉+1

1

jβ
.

Lemma 3.4.13. Under Assumption 2, for suitable choices of α, β > 1, the pair (V, ϕ)
satisfies

(a) V, ϕ are bounded.

(b) There exists an integer n and a constant C ≥ 0, such that

−Lϕ ≤ C1On .
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(c) There exists constants ε, C ′ > 0 and C ′′ ≥ 0, such that

LV + C ′
V 1+ε

ϕε
≤ C ′′ϕ.

Proof. As v ∈ Nd, it follows that 〈v, x〉 ∈ N0 for all x ∈ E. In particular, V (x), ϕ(x) ≤∑∞
j=1

1
j

p
with p > 1 which is a convergent hyperharmonic series. This proves (a). Thinking

in terms of Riemann sums, using that j 7→ j−β is decreasing in j for β > 1, we obtain the
bound

∞∑
j=〈v,x〉+1

1

jβ
≤
∫ ∞
〈v,x〉

1

yβ
dy =

〈v, x〉1−β

β − 1
.

Exploiting the linearity of 〈v, ·〉, we consider, for x ∈ E with n = 〈v, x〉, and L the weakened
generator which coincides with the infinitesimal generator since ϕ is bounded,

Lϕ(x) =

r∑
k=1

λk(x) (ϕ(x+ ξk)− ϕ(x))

=

r∑
k=1

λk(x)1E(x+ ξk) (ϕ(x+ ξk)− ϕ(x)) +

r∑
k=1

λk(x)1A(x+ ξk) (ϕ(x+ ξk)− ϕ(x))

=

r∑
k=1

λk(x)1E(x+ ξk)

 ∞∑
j=〈v,x+ξk〉+1

1

jβ
−

∞∑
j=〈v,x〉+1

1

jβ


−

r∑
k=1

λk(x)1A(x+ ξk)

∞∑
j=〈v,x〉+1

1

jβ

=−
r∑

k=1

λk(x)1E(x+ ξk)1(0,∞)(〈v, ξk〉)
〈v,ξk〉∑
i=1

1

(〈v, x〉+ i)β

+
r∑

k=1

λk(x)1E(x+ ξk)1(−∞,0)(〈v, ξk〉)
−1∑

i=〈v,ξk〉

1

(〈v, x〉+ i+ 1)β

−
r∑

k=1

λk(x)1A(x+ ξk)

∞∑
j=〈v,x〉+1

1

jβ

≥ 1

〈v, x〉β

(
−

r∑
k=1

λk(x)1E(x+ ξk)1(0,∞)(〈v, ξk〉)〈v, ξk〉

−
r∑

k=1

λk(x)1E(x+ ξk)1(−∞,0)(〈v, ξk〉)〈v, ξk〉

)
−

r∑
k=1

λk(x)1A(x+ ξk)
〈v, x〉1−β

β − 1
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=
1

〈v, x〉β

(
−

r∑
k=1

λk(x)1E(x+ ξk)〈v, ξk〉 −
r∑

k=1

λk(x)1A(x+ ξk)
〈v, x〉
β − 1

)

≥ 1

〈v, x〉β

(
− max
x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)〈v, ξk〉1E(x′ + ξk)

− max
x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)1A(x′ + ξk)

〈v, x′〉
β − 1

)

=
1

nβ

(
dv(n)− dv(n)

β − 1

)
.

Using Assumption 2(i), we can choose β > 1 large enough such that Lϕ(x) ≥ 0 for all
n = 〈v, x〉 sufficiently large. In particular, condition (b) is satisfied.

Similarly, as V is bounded, we find for x ∈ E with 〈x, v〉 = n,

LV (x) =

r∑
k=1

λk(x) (V (x+ ξk)− V (x))

=

r∑
k=1

λk(x)1E(x+ ξk)

〈v,x+ξk〉∑
j=1

1

jα
−
〈v,x〉∑
j=1

1

jα

− r∑
k=1

λk(x)1A(x+ ξk)

〈v,x〉∑
j=1

1

jα

≤
r∑

k=1

λk(x)1E(x+ ξk)1(0,∞)(〈v, ξk〉)
〈v,x+ξk〉∑
j=〈v,x〉+1

1

jα

−
r∑

k=1

λk(x)1E(x+ ξk)1(−∞,0)(〈v, ξk〉)
〈v,x〉∑

j=〈v,x+ξk〉+1

1

jα

=

r∑
k=1

λk(x)1E(x+ ξk)1(0,∞)(〈v, ξk〉)
〈v,ξk〉∑
j=1

1

(j + 〈v, x〉)α

−
r∑

k=1

λk(x)1E(x+ ξk)1(−∞,0)(〈v, ξk〉)
−1∑

j=〈v,ξk〉

1

(j + 〈v, x〉+ 1)α

≤
r∑

k=1

λk(x)1E(x+ ξk)1(0,∞)(〈v, ξk〉)
〈v, ξk〉
〈v, x〉α

+

r∑
k=1

λk(x)1E(x+ ξk)1(−∞,0)(〈v, ξk〉)
〈v, ξk〉
〈v, x〉α

≤ 1

〈v, x〉α
r∑

k=1

λk(x)〈v, ξk〉1E(x+ ξk)

≤ 1

〈v, x〉α
max

x′∈E,〈v,x′〉=n

r∑
k=1

λk(x
′)〈v, ξk〉1E(x′ + ξk) = −dv(n)

nα
.
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Note that by treating V (x) as a lower Riemann sum, for x ∈ E,

V (x) ≤
∞∑
j=1

1

jα
= 1 +

∞∑
j=2

1

jα
≤ 1 +

∫ ∞
1

1

xα
dx =

α

α− 1
,

and similarly, treating ϕ(x) as an upper Riemann sum,

ϕ(x) =

∞∑
j=〈v,x〉+1

1

jβ
≥
∫ ∞
〈v,x〉+1

1

xβ
dx =

(1 + 〈v, x〉)1−β

β − 1
≥ 〈v, x〉

1−β

2(β − 1)
,

with the last inequality holding for 〈v, x〉 sufficiently large, using that for β > 1,

(1 + 〈v, x〉)1−β

〈v, x〉1−β
=

(
1

〈v, x〉
+ 1

)1−β
→ 1 >

1

2
, for n = 〈v, x〉 → ∞.

We infer that

LV (x) +
V 1+ε(x)

ϕε(x)
≤ −dv(n)

nα
+ Cnε(β−1),

where C = [α/(α − 1)]1+ε[2(β − 1)]ε. Note that by definition ϕ(x) > 0 for x ∈ E hence,
choosing α = 1 + η/2 and ε = η/[2(β − 1)], we get

LV (x) +
V 1+ε(x)

ϕε(x)
≤ − dv(n)

n1+η/2
+ Cnη/2 =

(
C − dv(n)

n1+η

)
nη/2.

Using Assumption 2(ii), the first term becomes negative for 〈v, x〉 sufficiently large. In other

words LV (x)+ V 1+ε(x)
ϕε(x) ≤ 0 for x /∈ On with n sufficiently large. Since by definition ϕ(x) ≥ 0,

condition (c) holds.

Lemma 3.4.14. Under Assumpstions 1-2, the pair (V, ϕ) is an admissible couple of func-
tions.

Proof. Choose α, β ∈ R such that the conclusions of Lemma 4.3.5 hold. In particular,
α, β > 1 hence the functions V and ϕ are bounded, non-negative on E ∪ A and positive on
E, and by definition V (x) = ϕ(x) = 0 for x ∈ A. Furthermore, infx∈E V (x) > 0, hence by
non-negativity of ϕ,

inf
x∈E

V (x)

ϕ(x)
> 0,

and Definition 3.4.1(1) is fulfilled. Let (xp)p≥1 be any sequence in E such that the set
{p ∈ N : xp ∈ On} is finite for all n ≥ 1. Then 〈v, xp〉 → ∞ as p→∞, hence

lim
p→∞

V (xp)

ϕ(xp)
= lim

p→∞

∑〈v,xp〉
j=1

1
jα∑∞

j=〈v,xp〉+1
1
jβ

=∞.
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Furthermore, since the process is regularly absorbed by Proposition 3.4.6, we have

lim
n→∞

V (XTn) = V (XτA) = 0 Px-a.s,

hence Definition 3.4.1(2) is fulfilled. Finally, from Lemma 4.3.5 and the fact that V and ϕ
are both bounded functions, it follows that LV is bounded from above and Lϕ is bounded
from below. This concludes the proof.

3.4.1 Lemmas

Lemma 3.4.15. Assumption 1(i) is equivalent to the following: There exists n0 ∈ N,
θ0, θ1, a1 > 0 and a probability measure ν on E such that, for all x ∈ On0 and all s ∈
[θ0, θ0 + θ1],

Px(Xs ∈ ·) ≥ a1ν, (3.4.16)

and in addition, for all n ≥ n0, there exists sn ≥ 0 such that

inf
x∈On

Px(Xsn ∈ On0) > 0. (3.4.17)

Proof. We first prove that Assumption 1 implies the existence of such constants and proba-
bility measure. Let Imin be the unique minimal irreducible class contained in E. Set

n0 = inf{n ∈ N : On ∩ Imin 6= ∅} <∞.

Pick z ∈ Imin ∩On0 arbitrarily and let ν = δz. Pick arbitrary θ0, θ1 > 0 and let

a1 = inf
s∈[θ0,θ0+θ1],x∈On0

Px(Xs = z).

Note that for all n ∈ N the set On is finite and any x ∈ On ⊂ E has a path to Imin and thus,
by irreducibility, to z. By continuity of Px(X· = z), we conclude that a1 > 0 and choosing
sn = θ0 > 0 for all n, the desired holds.

For the reverse direction, we first prove uniqueness of the minimal irreducible class in the
endorsed set E. Suppose for contradiction that Ii 6= Ij are irreducible minimal classes in E.
Let x1 ∈ Ii and x2 ∈ Ij . Then there is a path x1 7→ y1 and a path x2 7→ y2 with y1, y2 ∈ On0 .
Indeed, if I` ∩On0 6= ∅ for l = i, j we may simply choose y` = x`, ` = 1, 2. Otherwise, x1, x2

are in some On1 and On2 respectively with n1, n2 > n0, hence by (3.4.17), there exist paths
as described. By (3.4.16), there exist θ0, θ1, a1 > 0 and a probability measure ν on E such
that, for all y ∈ On0 and all s ∈ [θ1, θ1 + θ0],

Py(Xs ∈ ·) ≥ a1ν.

As ν is a probability measure on a countable space, there exists some z ∈ E such that
ν({z}) > 0. But then Py(Xs = z) > 0 for all y ∈ On0 . We conclude that there exist paths
y1 7→ z and y2 7→ z. By minimality of Ii and Ij , we conclude that z ∈ Ii ∩ Ij which is a
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contradiction. This proves the uniqueness in Assumption 1(i).

We now prove existence. Suppose for contradiction that no minimal class exists. Then,
for all I ⊆ E there exists J ⊆ E such that I → J . Repeating the argument results in an
infinite path

J1 → J2 → J3 → . . . (3.4.18)

In the case where there are only finitely many irreducible classes in E, there must exist an
i ∈ N such that J1 → Ji = J1 which contradicts the lack of cycles in D.

Suppose therefore that there are infinitely many classes. Given n0, the set On0 is finite.
Thus it intersects at most finitely many irreducible classes. We conclude that in the infinite
path (3.4.18), there are infinitely many i ∈ N such that

Ii ∩On0 = ∅, Ii ∩Oni 6= ∅,

for some ni > n0. However, by (3.4.17) each of these classes have a path to On0 . This implies
the existence of at least one irreducible class intersecting On0 which appears more than once
in the infinite path (3.4.18). This creates a cycle in D which is a contradiction.

Lemma 3.4.19. Under Assumpstions 1-2, for all λ > 0, there exists n ≥ 1 such that

sup
x∈E

Ex
(
eλ(τn∧τA)

)
<∞. (3.4.20)

Proof. It follows from Proposition 3.4.6 that supx∈E Ex〈v,Xt〉 < M for all t > 0 and some
constant M > 0. Let τn,A = τn ∧ τA. Then, for ε > 0

Ex〈v,Xε〉 =
∞∑
n=0

Px(〈v,Xε〉 > n) ≥
∞∑
n=0

Px(τn,A > ε).

Suppose for contradiction that Px(τn,A > ε) does not converge uniformly in x to 0 as n→∞.
Then for any δ > 0, supx∈E Px(τn,A > ε) > δ for infinitely many n ∈ N. Thus, choosing
δ = ε, there exists a sequence (xi, ni)i≥1 with 〈v, xi〉 > ni such that Pxi(τni,A > ε) > ε and
ni > ni−1. But then, noting that Px(τn−1,A > ε) > Px(τn,A > ε) for all n ∈ N, we obtain

Exi〈v,Xε〉 ≥
∞∑
n=0

Pxi(τn,A > ε) ≥
ni∑
n=0

Pxi(τn,A > ε) ≥ niPxi(τni,A > ε) > niε.

Letting i → ∞ we would have M > limi→∞ Exi〈v,Xε〉 > limi→∞ niε = ∞, which is a
contradiction. We conclude that supx∈E Px(τn,A > ε) ≤ ε for n ≥ N(ε).

Now, given t > 0 we can choose 0 < ε < 1 such that t = pε for some p ∈ N. Applying
the Markov property we get, for n ≥ N(ε),
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Px(τn,A ≥ t) = Px(τn,A ≥ pε)

=
∑
y∈D

Px(τn,A > pε | τn,A > (p− 1)ε,X(p−1)ε = y)Px(τn,A > (p− 1)ε,X(p−1)ε = y)

=
∑
y∈D

Py(τn,A > ε)Px(τn,A > (p− 1)ε,X(p−1)ε = y) ≤ εPx(τn,A > (p− 1)ε) ≤ εp,

hence we conclude, as t < p, that

sup
x∈E

Px(τn,A ≥ t) ≤ εt.

Since eλ(τn∧τA) is non-negative, by choosing ε < e−λ < 1 we get

sup
x∈E

Ex
(
eλ(τn∧τA)

)
= sup

x∈E

∫ ∞
0
Px
(
eλ(τn∧τA) ≥ t

)
dt ≤ 1 + sup

x∈E

∫ ∞
1
Px
(
τn,A ≥

ln t

λ

)
dt

≤ 1 +

∫ ∞
1

εln t/λ dt = 1 +

∫ ∞
0

(eε1/λ)u du = 1 +
1

1 + ln(ε)/λ
<∞,

thus (3.4.20) holds as desired.

Lemma 3.4.21. For all n ≥ 0, there exists a constant Cn such that, for all t ≥ 0,

sup
x∈On

Px(t < τA) ≤ Cn inf
x∈On

Px(t < τA).

Further, with V from Definition 3.4.12, there exist constants r0, p0 > 0 such that for n
sufficiently large,

Px(r0 < τA) ≤ p0V (x), for all x ∈ E\On.

Proof. Let n ≥ 0 be given. If On is empty, then the statement is vacuously true for any Cn.
If On is non-empty, then as supx∈On Px(t < τA) ≤ 1 and infx∈On Px(t < τA) > 0 since On is
finite, we may simply choose

Cn =
supx∈On Px(t < τA)

infx∈On Px(t < τA)
<∞.

To see the second claim, note that letting

p0 =
1

infx∈E V (x)
> 0,

we have for any r0 > 0,

Px(r0 < τA) ≤ 1 = p0 inf
x∈E

V (x) ≤ p0V (x),

for all x ∈ E, and the desired holds.
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3.5 The Main Result

We are now ready to state and prove the main result of the paper. In the case where only a
single endorsed set, E, is considered, we find that the unique QSD hereon is in fact globally
attracting in the space of probability measures on E.

Theorem 3.5.1. A reaction network (N , λ) with associated stochastic process (Xt : t ≥ 0)
on D = E tA, with A 6= ∅ and satisfying Assumption 1-2, admits a unique quasi-stationary
distribution ν. Further, there exist constants C, γ > 0 such that, for all probability measures
µ on E,

‖Pµ(Xt ∈ · | t < τA)− ν‖TV ≤ Ce−γt, t ≥ 0.

Proof. By Proposition 3.4.6, the process is regularly absorbed, and by Lemma 3.4.14 the
pair (V, ϕ) given in Definition 3.4.12 is admissible, satisfying conditions (a) and (b) from
Lemma 4.3.5. The result now follows from Lemma 5.3.14-3.4.21 together with (Champagnat
and Villemonais, 2017, Cor. 2.8).

Corollary 3.5.2. Let ν be the unique quasi-stationary distribution on E and Imin the
unique minimal class of E. Then supp ν = Imin.

Proof. Suppose for contradiction that supp ν 6⊆ Imin. Then there exists a point y ∈ I 6= Imin

for which ν({y}) > 0, where I is an irreducible class of E. As ν is globally attracting in
P(E), the space of probability distributions on E, it follows by definition that

lim
t→∞

Pµ(Xt ∈ B | t < τA) = ν(B),

for any µ ∈ P(E) and any measurable set B ⊆ E. In particular, letting µ = δz with z ∈ Imin

yields, by minimality

0 = lim
t→∞

Pδz(Xt = y | t < τA) = ν({y}) > 0,

which is a contradiction. We conclude that supp ν ⊆ Imin. In particular, there exists
x′ ∈ Imin such that ν({x′}) > 0. Further, since Imin is irreducible, Px(Xt = y) > 0 for all
x, y ∈ Imin. As ν is a QSD, it follows from (Collet et al., 2013, p. 48) that

e−θtν(y) =
∑
x∈E

ν(x)Px(Xt = y) =
∑

x∈Imin

ν(x)Px(Xt = y) > ν(x′)Px′(Xt = y) > 0.

for some θ > 0 and all t ≥ 0, y ∈ Imin. Consequently, supp ν ⊇ Imin which in turn implies
supp ν = Imin as desired.

We now examine the general holistic setting with state space D = DE ∪DA, where DE

consists of possibly several endorsed sets, each with or without a corresponding non-empty
absorbing set. As one might in practice not have complete information about the starting-
point of the process, one may in general not know exactly which endorsed set the process
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evolves in. However, one may have a qualitative guess in the form of an initial distribution,
µ on DE .

The following theorem shows that we may consider the problem of finding a unique QSD
on each endorsed set independently and then piecing these together to form a unique limiting
measure up to a choice of the initial distribution, µ, on DE .

Theorem 3.5.3. Let (N , λ) be a reaction network and U = E1 ∪ · · · ∪ Em a finite union
of endorsed sets. If Assumption 1-2 are satisfied, then the associated stochastic process
(Xt : t ≥ 0) admits a unique quasi-stationary distribution, νn, on each endorsed set En ⊆ U ,
n = 1, . . . ,m. Furthermore, given an initial distribution µ on U , the measure νµ defined by

νµ(B) =
m∑
n=1

µ(En)νn(B ∩ En),

is well defined and there exist constants C, γ > 0 such that,

‖Pµ(Xt ∈ · | t < τA)− νµ‖TV ≤ Ce−γt, t ≥ 0.

Proof. That (Xt : t ≥ 0) admits a unique quasi-stationary distribution, νn, on each endorsed
set En ⊆ U with An 6= ∅ follows from Theorem 4.5.5. Now, suppose An = ∅ for some n.
Then the definitions of quasi-stationary distribution and stationary distribution on En are
equal, τAn = ∞ and all the previous proofs go through without changes. In particular, it
follows from Corollary 3.5.2 that any stationary distribution, πn, is supported by the unique
minimal irreducible class as well. Furthermore, by Theorem 4.5.5, for any µ ∈ P(En) there
exists C1, γ1 > 0 such that for any B ⊆ En

‖Pµ(Xt ∈ B)− πn(B)‖TV = ‖Pµ(Xt ∈ B | t < τA)− νn(B)‖TV ≤ C1e
−γ1t.

Clearly, νµ is a well defined probability measure. Finally, we may let

C = max
n∈{1,...,m}

Cn > 0, γ = min
n∈{1,...,m}

γn > 0,

where Cn, γn > 0 for n ∈ {1, . . . ,m} are given through Theorem 4.5.5 and the above argu-
ment, for each class En. This proves the desired.

Corollary 3.5.4. A one-species reaction network (N , λ) has gcd(ξ1, . . . , ξr) < ∞ endorsed
sets. If in addition the kinetics λ is stochastic mass-action, up to a choice of the initial
distribution µ on DE , there is a unique QSD on DE if the highest order of a reaction is at
least 2 and ∑

k∈R∗
λk(x)ξk < 0, for 〈v, x〉 sufficiently large,

where R∗ is the set of reactions of highest order.

Proof. Note first that by Corollary 3.2.5, any one-species reaction network has a finite num-
ber of endorsed sets, as rank Ξ = 1. In fact, the number is given by gcd(ξ1, . . . , ξr). Indeed,
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as gcd(ξ1, . . . , ξr) ≤ |ξk| it follows that P(gcd(ξ1, . . . , ξr))∩L(Ξ) = ∅ where P(B) is the fun-
damental parallelepiped generated by B and L(Ξ) is the lattice generated by Ξ as introduced
in the proof of Proposition 3.2.4. Therefore, b1 = gcd(ξ1, . . . , ξr) is a basis for L(Ξ) and we
conclude that the number of endorsed sets is | det(b1)| = b1 (Dadush, 2013).

As there is only one species, we may without loss of generality take v = 1. It follows
that dv(n) = −

∑
k∈R λk(n)ξk > 0 for n sufficiently large and dv(n) = O(na) with a ≥ 2 by

assumption. Furthermore, dv(n) = 0 for n sufficiently large. Thus Assumption 2 is satisfied.
We infer the desired by Theorem 3.5.3.

3.6 Examples

In this section, the main theorems and their applicability are illustrated through a series of
examples. In particular, we show explicitly how the results of Champagnat and Villemonais
(2017) are extended.

Example 3.6.1.

mS1
α1→ ∅

S1

As discussed in Section 2, the endorsed sets and corresponding absorbing sets are

Ei = {i+ pm− 1 | p ∈ N}, Ai = {i− 1}, for i = 1, . . . ,m,

respectively. These endorsed sets are evidently not irreducible. However, {i + m − 1} is
the unique minimal irreducible class in Ei from which one may jump directly to Ai, thus
Assumption 1 is satisfied. Further, assuming mass-action kinetics,

dv(n) = α1n(n− 1) . . . (n−m+ 1)m1E(n−m) = O(nm),

dv(n) = O(1),

for n sufficiently large, hence we conclude by Theorem 3.5.3 that there exists a unique QSD
on each Ei if m ≥ 2. Further, in this case, for any initial distribution, µ, on the full set
of endorsed states, DE = {m,m + 1, . . . }, the measure Pµ(Xt ∈ · | t < τA) tends to νµ
exponentially fast for t→∞. 4
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Example 3.6.2 (Lotka-Volterra).

S1
α1→ 2S1

S1 + S2
α2→ 2S2

S2
α3→ ∅

S2

S1

The Lotka-Volterra system describing competitive and predator-prey interactions has been
of interest for approximately a century (Lotka, 1925; Volterra, 1926). In the stochastic
description of the model, we find R = N2 hence it follows that the state space can be divided
into the endorsed and absorbing sets given by

DE = E = N2, DA = A = N2
0\N2,

respectively. Using mass-action kinetics, it follows that for v = (v1, v2) ∈ N2,

dv(n) = − max
x∈E,〈v,x〉=n

r∑
k=1

λk(x)〈v, ξk〉1E(x+ ξk)

= − max
x∈E,〈v,x〉=n

(α1v1x1 + (v2 − v1)α2x1x21{2,3,... }(x1)− v2α3x21{2,3,... }(x2)).

Letting (v1, v2) = (`, 1) yields dv(n) = −`α1(n − 1) + (` − 1)α2(n − 1). Thus, choosing `
sufficiently large, dv(n) = O(n) and dv(n) > 0 for n sufficiently large, provided that α2 > α1.
Note also that maxk∈RA〈v, ξk〉 < 0 hence by Proposition 3.4.2 the process is Px-a.s. absorbed
for all x ∈ E if α2 > α1. However, dv(n) = O(n2), hence Assumption 2(i) is not satisfied,
and one can not apply Theorem 4.5.5.

Using generalized mass-action (Müller and Regensburger, 2012) for the same standard
Lotka-Volterra network, we may obtain a different result. Suppose for example that

λ1(x) = α1x1x2, λ2(x) = α2x
4
1x

2
2, λ3(x) = α3x

3
2.

Choosing v = (2, 1), say, we find

dv(n) = − max
x∈E,〈v,x〉=n

(
2α1x1x2 − α2x

4
1x

2
21{2,3,... }(x2)− α3x

3
21{2,3,... }(x2)

)
= O(n3),

and likewise

dv(n) = max
x∈E,〈v,x〉=n

n
(
α2x

4
1x

2
21{1}(x1) + α3x

3
21{1}

)
(x2) = O(n3).

Thus Assumption 2 is satisfied. As E is irreducible, Assumption 1 is also satisfied and we
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conclude by Theorem 4.5.5 that there is a unique QSD on E.

S1
α1


α2

2S1

S1 + S2
α3


α4

2S2 (3.6.3)

S2
α5→ ∅

S2

S1

Let us now consider the slightly altered version of the original Lotka-Volterra system using
mass-action kinetics, obtained by addition of the reactions 2S1 → S1 and 2S2 → S1 +S2. In
this case, there is still one endorsed set with corresponding absorbing set given by

E = N0 × N\{(0, 1)}, A = N2
0\E,

respectively.
For a general v = (v1, v2) ∈ N2 it follows that dv(n) = O(n) and

dv(n) = − max
x∈E,〈v,x〉=n

r∑
k=1

λk(x)〈v, ξk〉1E(x+ ξk)

= min
x∈E,〈v,x〉=n

(−α1x1v1 + v1α2x1(x1 − 1)− (v2 − v1)α3x1x2

+ (v2 − v1)α4x2(x2 − 1) + v2α5x21{2,3,... }(x2)).

We need v2 > v1 for the coefficient of the 4th reaction to be positive. Further, by the second
derivative test, dv(n) = O(n2) exactly when

4v1α2(v2 − v1)α4 > (v2 − v1)2α2
3.

The set of possible v-vectors, V, is therefore

V =

{
v ∈ N2

∣∣∣∣ v1 < v2 < v1

(
1 +

4α2α4

α2
3

)}
,

which is non-empty for any positive reaction rates. A particular choice would be v = (`, `+1),
for ` sufficiently large. As E is irreducible, Assumption 1 is satisfied and we conclude by
Theorem 4.5.5 that the modified Lotka-Volterra system has a unique QSD on E for any
reaction rates. 4
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Figure 3.3: Two realizations of the process (Xt : t ≥ 0), associated with the reaction network
(3.6.3), with differing X0. Left: α1 = 30, α2 = 0.3, α3 = 2, α4 = 0.7, α5 = 1. Right:
α1 = 20, α2 = 0.7, α3 = 1, α4 = 0.7, α5 = 1.

Example 3.6.4.

S1
α1→ 3S1

2S2
α2→ ∅

2S1 + S2
α3→ 2S2

S2

S1

There are two endorsed sets given by

E1 = {x ∈ N2 : x1 = 1 mod 2},
E2 = {x ∈ N2 : x1 = 0 mod 2}.

The corresponding set of absorbing sets are given by

A1 = {x ∈ Nd0 : x2 = 0, x1 = 1 mod 2}
A2 = {x ∈ Nd0 : x2 = 0, x1 = 0 mod 2} ∪ {x ∈ Nd0 : x1 = 0}.

Assuming mass action kinetics, it follows that for a general v = (v1, v2) ∈ N2 we obtain for
E1 and E2 respectively,

dv(n) = − max
x∈E,〈v,x〉=n

(
2v1α1x1 − 2v2α2x2(x2 − 1)1{3,4,... }(x2)

+(−2v1 + v2)α3x1(x1 − 1)x2) ,

dv(n) = − max
x∈E,〈v,x〉=n

(
2v1α1x1 − 2v2α2x2(x2 − 1)1{3,4,... }(x2)

+(−2v1 + v2)α3x1(x1 − 1)x21{3,4,... }(x1)
)
,
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which are both O(n2) exactly if v2 < 2v1. A particular choice would be v = (1, 1). Further,

dv(n) = max
x∈E,〈v,x〉=n

n
(
α2x2(x2 − 1)1{2}(x2) + α3x1(x1 − 1)x21{2}(x1)

)
= 2α3n

2 = O(n2).

We conclude that there exists an 0 < η < 1 such that Assumption 2 holds. Since both E1 and
E2 are irreducible, Assumption 1 is satisfied hence Theorem 3.5.3 applies regardless of the
rate constants – there exists a unique QSD, νn, on each En, and given an initial distribution,
µ, on DE , the measure Px(Xt ∈ · | t < τA) approaches

νµ = µ(E1)ν1(· ∩ E1) + µ(E2)ν1(· ∩ E2)

exponentially fast in t.

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

Figure 3.4: Left: Two realizations of (Xt : t ≥ 0) with α1 = 300, α2 = 1, α3 = 0.5. X0 =
(70, 200) in grey and X0 = (100, 100) in red. Right: Approximate density of the QSD on
one of the two endorsed sets.

Note that if we had modeled the network using deterministic mass action (Gunawardena,
2003), we would have found the attracting2 fixed point

(x, y) =

(
(2α1α2)1/3

α
2/3
3

,
α

2/3
1

(2α2α3)1/3

)
,

which seems to lie near the peak of the quasi-stationary distribution for the parameter values
used in Figure 4.4. Indeed, we find the fixed point (13.39, 44.81) which is a stable spiral. 4

Example 3.6.5 (Birth-death).

S2
α1← S1 + S2

α2→ 2S1 + S2 S1
α3← S1 + S2

α4→ S1 + 2S2

S1
α5←2S1

α6→ 3S1 S2
α7← 2S2

α8→ 3S2

2One can calculate the trace of the Jacobin matrix to be −2α1 − (2α1α2)2/3α
−1/3
3 < 0, making the fixed

point attracting for all parameter values.
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S2

S1

The full set of endorsed states is found to be DE = N2 which is irreducible, and the full set
of absorbing states is DA = N2

0\N2. Thus Assumption 1 is satisfied. For a general v ∈ N2

we have, with α5 − α6 = ρ1, α7 − α8 = ρ2, α1 − α2 = ρ3 and α3 − α4 = ρ4,

dv(n) = min
x∈E,〈v,x〉=n

(v1ρ3 + v2ρ4)x1x2 − v1ρ1x1(x1 − 1)− v2ρ2x2(x2 − 1).

The second derivative test gives the sufficient and necessary criteria for dv(n) to be O(n2),

4v1v2ρ1ρ2 − (v1ρ3 + v2ρ4)2 > 0.

Solving for v2 we find the set of possible v-vectors,

V =

{
v ∈ N2

∣∣∣∣ 2ρ1ρ2 − ρ3ρ4 − 2
√
ρ21ρ

2
2 − ρ1ρ2ρ3ρ4

ρ24
v1 < v2 <

2ρ1ρ2 − ρ3ρ4 + 2
√
ρ21ρ

2
2 − ρ1ρ2ρ3ρ4

ρ24
v1

}
,

which is non-empty exactly when ρ1ρ2 > ρ3ρ4. Choosing parameter values as, say,

X2
1← X1 +X2

3→ 2X1 +X2 X1
0.75← X1 +X2

1→ X1 + 2X2

X1
2←2X1

1→ 3X1 X2
2← 2X2

1→ 3X2

we find

V ≈ {v ∈ N2 | 1.373v1 < v2 < 46.627v1}.

Note that v = (1, 1) /∈ V, and Theorem 4.5.5 would not be applicable with this choice. We
have therefore extended the result of Champagnat and Villemonais (2017). 4

Example 3.6.6.

S1
α1→ 3S1

S1 + 3S2
α2→ 2S2

3S1
α3→ 2S1 + 3S2

S2

S1
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The stoichiometric matrix is in this example given by

Ξ =

(
2 −1 −1
0 −1 3

)
.

It follows that rank Ξ = 2 = d hence by Proposition 3.2.4, there is a finite number endorsed
sets for x sufficiently large. Indeed, upon inspection, we find two endorsed sets given by

E1 = {x ∈ N2 : x2 ≥ 0, x1 + x2 = 0 mod 2},
E2 = {x ∈ N2 : x2 ≥ 0, x1 + x2 = 1 mod 2},

and these each have a unique minimal irreducible class hence Assumption 1 is satisfied. Note,
however, that the sets E1 and E2 are not irreducible. Here DE = {x ∈ N2

0 : x1 ≥ 1} and
DA = {x ∈ N2

0 : x1 = 0}. Taking v = (4, 1), it follows that for both classes

dv(n) = − max
x∈E,〈v,x〉=n

(8α1x1 − 5α2x1x2(x2 − 1)(x2 − 2)1{2,3,... }(x1)− α3x1(x1 − 1)(x1 − 2)),

which is O(1). Furthermore,

dv(n) = max
x∈E,〈v,x〉=n

nx1x2(x2 − 1)(x2 − 2)1{1}(x1) = O(n4).

Thus, Assumption 2 is not satisfied and we can not apply Theorem 3.5.3. 4

Example 3.6.7.

S1 + S2
α1→ ∅

S1
α2→ 2S1 + S2

2S1 + 2S2
α3→ S1 + S2

S2

S1

As rank Ξ = 1 < d, there are infinitely many endorsed sets. These are each irreducible.
Indeed, upon inspection, we find the endorsed sets

Ei = {x ∈ N2
0 : x1 ≥ 1, x2 = x1 + (−1)i bi/2c}, i ≥ 1,

and the full set of absorbing states DA = {x ∈ N2
0 : x1 = 0}. Furthermore, some sets (Ei

with i ≡ 1 mod 2) have no corresponding absorbing set while all others do. For all classes
however, we find

dv(n) = O(n2), dv(n) = O(n),

hence, by Theorem 3.5.3, we conclude that for any initial distribution µ with support con-
tained in a finite subset of the endorsed sets, the measure Pµ(Xt ∈ · | t < τA) converges
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exponentially fast in t to νµ. Had we instead looked at the slightly altered network

S1 + S2
α1→ ∅

S1
α2→ 2S1 + S2

2S1 + 2S2
α3→ S1 + S2

3S1 + S2
α4→ 3S1

S2

S1

then Assumption 1 would no longer be satisfied as no minimal irreducible class exists. 4

3.7 Conclusions

In this paper, we have provided sufficient conditions for the existence and uniqueness of a
quasi-stationary distribution, within each endorsed set, for general stochastic reaction net-
works. In particular, we have provided sufficient conditions for the existence and uniqueness
of a globally attracting quasi-stationary distribution in the space of probability distributions.

The requirement that for mass-action reaction systems there exists a stoichiometric co-
efficient strictly greater than one for each species is strong, however, it seems to be intrinsic
to the problem of guaranteeing uniqueness of the QSD. Indeed, this can be seen already in
1-dimensional systems, and one can imagine that getting stuck near one of the axes would
approximately reduce the multi-dimensional system to such a 1-dimensional case. It is an
important question to determine sufficient conditions for just the existence of a QSD, in
which case one would expect much weaker conditions to be satisfied. This is still an open
problem.

The application of our results depends on the existence of a vector v ∈ Nd, such that As-
sumption 2 holds. One would like to have easy graphical ways of guaranteeing this existence
or an explicit algorithmic way of constructing such a vector. This may not be possible in
general, since the problem is equivalent to determining the sign of a multivariate polynomial
in a certain region of the positive orthant. However, the specific network at hand is often
prone to analytical ad hoc methods, and even in lack of this, one may rely on numerical
methods to find a suitable candidate for v. Another caveat is the exact calculation of the
endorsed sets. Methods for finding these numerically, in the case where the intensity func-
tions are positive in the positive orthant, exist (Gupta and Khammash, 2013; Paulevé et al.,
2014). However, the problem becomes more complicated in the general case (Gupta et al.,
2014).

Knowing the existence of a unique QSD, one would of course like to know the explicit
analytical expression for this distribution on each endorsed set. However, this seems to be a
very hard problem to solve in general, and even for 1-dimensional systems it has not yet been
fully resolved. Thus, so far, one is forced to apply numerical methods or rely on analytical
approximations, see Groisman and Jonckheere (2012); Villemonais (2015).
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Another problem which is important for applications, is the question of observability.
Indeed, the relative sizes of the time to extinction, τA, versus the time to reach the mean of
the QSD, τν , determines whether we are likely to observe the QSD or not. Only if τA � τν
would we expect the process to behave according to the QSD (Vellela and Qian, 2007). Few
recent results on this matter exist for limited scenarios (Gupta et al., 2014), while methods
exploiting the WKB approximation (Assaf and Meerson, 2017) are more general although
not yet fully rigorous (Chazottes et al., 2017).

Finally, numerical evidence seems to suggest a strong connection between the determinis-
tic and stochastic models of the same underlying reaction network. Indeed, for systems close
to thermodynamic equilibrium, also referred to as the fluid limit (Kurtz, 1970), the modes
of the QSD appear to be located near the deterministic steady states. However, far from
equilibrium, the picture may be radically different. Our result can be seen as a stochastic
analogue to the deterministic case of having an equilibrium point within each stoichiometric
compatibility class. In this light, the QSD bridges the gap between the knowledge of ex-
tinction in the stochastic description and the existence of a stationary steady state in the
deterministic setting. Future work lies in analyzing what can be inferred about the QSD
from the corresponding deterministic dynamical system.
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4.1 Introduction

The long-term behavior of a given reaction network (section 4.2.1) may depend crucially
on whether it is modeled deterministically or stochastically (Gupta et al., 2014). This is
unfortunate as the analysis is often much easier for the deterministic case where graphical
properties of the network may yield valuable information of the dynamics (Craciun et al.,
2013), while our true interest lies in the stochastic description which is more complete (Qian,
2011). To illustrate, consider the following logistic network,

∅ S
α1oo

α2 **
2S

α3

ii

endowed with mass-action. The corresponding deterministic rate equation has, when α2 > α1

a unique positive stable equilibrium point. However, modeled stochastically, the associated
Markov process goes extinct almost surely. This discrepancy is known as Keizer’s para-
dox (Keizer, 1987; Vellela and Qian, 2007). The resolution comes partially from looking at
the time scales. Although extinction is inevitable, the expected time to extinction may be
extremely large compared to the time it takes the process to reach the (deterministically)
stable equilibrium point. Thus, up until extinction the stochastic process will wander about
the stable equilibrium point. It is therefore natural to introduce the quasi-stationary dis-
tribution, which is exactly the stationary distribution when we condition the process not
to have gone extinct. In other words, the quasi-stationary distribution is supported in a
neighborhood of the positive equilibrium point, and we have restored the link between the
two descriptions of the underlying network, at least on a not too long time horizon.

To obtain a mathematically sound foundation for the above intuition, yielding a complete
resolution to the paradox, we apply the classical results of Kurtz (1972, 1978) allowing us
to view the stochastic model as a random perturbation of the deterministic system with
absorbing states. In this setting, we show that for sufficiently large system size, the quasi-
stationary distributions concentrate on the positive attractors for the unperturbed system.
This idea was first developed in Faure and Schreiber (2014) for discrete time homogeneous
Markov chains and in Marmet (2013) for stochastic approximation algorithms of continuous
time dynamical systems on compact state spaces. Here, we review some of this theory
and extend it to the class of continuous-time Markov processes on countable state spaces
which can be associated to a reaction network, and show that the analog of the series of
assumptions prescribed in Faure and Schreiber (2014) and Marmet (2013) are automatically
satisfied. Furthermore, we rephrase the main theorem in terms of Morse-decompositions,
providing a more tractable approach. For this reason, our results are very applicable, which
we underline through a series of examples where the underlying deterministic system displays
a variety of different dynamics.

From a modeling point of view, the concept of quasi-stationarity is very natural. Indeed,
the metastable behavior captured hereby could correspond to persistence of an endemic
disease in epidemiology, coexistence of interacting species in ecology or of opinions in political
science or maintenance of a genetic polymorphism (Faure and Schreiber, 2014). Reaction
networks may be seen as a natural framework for modeling these kinds of dynamical systems
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where the interactions among species are themselves of transformational form. However, as
the complex nature of most reaction networks prevents an explicit analytical description
of a corresponding quasi-stationary distribution, it is of great interest to infer qualitative
properties through the corresponding deterministic system (Anderson and Kurtz, 2015).

The structure of the paper is as follows. In Section 4.2 we introduce the central notion
of random perturbations with absorbing states and define the deterministic and stochastic
dynamical systems associated to a reaction network. We then introduce quasi-stationary
distributions and show how one may reconcile the different views through the so called
“classical scaling”. In Section 4.3 we derive some preliminary results under the assumption
of a positive attractor. In particular, we show that the expected time to extinction grows
exponentially with system size. Section 4.4 is devoted to showing the main result; the support
of the limiting measure concentrates on the union of positive attractors. The argument goes
through a sample path large deviations result as well as so called absorption preserving
chain recurrence, which for completeness are introduced in the appendix. A more applicable
version of the main result is provided through Morse decompositions introduced in subsection
4.5.2. Examples and numerical calculations illustrating the main theorem is given in Section
4.6. Finally, in the last section contains a discussion of possible extensions to the field of
Freidlin-Wentzell theory.

4.2 Random Perturbations

A reaction network may be considered as a deterministic dynamical system on the state
space D ⊆ Rd0, in which the evolution of species concentrations x = x(t) ∈ D at time t is
described by the, possibly highly non-linear, first order system of ODEs,

dx

dt
= F (x). (4.2.1)

When a solution exists, it determines a semi-flow ϕt(x) = x(t) for t ≥ 0. However, mathe-
matical models are derived from experimental data and thus only describe real phenomena
approximately. In particular, as physical processes are being affected by a huge amount
of small external fluctuations, by naturally considering these as random, the stability of
dynamical systems under random perturbations is to be considered. For each ε > 0, let

pε(t, x,B) = P(Xε
t ∈ B |Xε

0 = x) = Px(Xε
t ∈ B), t ≥ 0, x ∈ D,B ∈ B(D),

denote the transition kernels of a homogeneous Markov process (Xε
t : t ≥ 0). We shall

interpret ε as the inverse of the system size. The models we consider allow the possibility
of a set of absorbing states D0 ⊆ Rd0, corresponding to the loss of one or more species. We
thus suppose that we can write the state space as the disjoint union

D = D0 tD1,
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where D0, D1 are positively ϕ-invariant and D0 is a closed and absorbing subset of D,

pε(t, x,D1) = 0 ∀ε > 0, t > 0, x ∈ D0.

Thus, once the Markov process hits the set D0 it stays there forever. Let N δ(B) = {x ∈
D : infy∈B ‖x− y‖ < δ} denote a δ-neighborhood of the set B.

Definition 4.2.2. A random perturbation of a semi-flow ϕt is a family of homogeneous
Markov processes {(Xε

t : t ≥ 0)}ε>0 on D ⊆ Rd0 whose transition kernels, pε(t, x,B), satisfy
that for any δ > 0, T > 0 and K ⊂ D1 compact,

βδ,K(ε) := sup
t∈[0,T ]

sup
x∈K

pε
(
t, x,D\N δ(ϕt(x))

)
→ 0 for ε→ 0.

Note that this in particular implies that pε(t, x, ·) converges uniformly to the Dirac measure
δϕt(x) at ϕt(x) for any continuous function g : M → R with compact support as ε→ 0,

lim
ε→0

sup
x∈K

∣∣∣∣∫
M
g(y)pε(t, x, dy)− g(ϕt(x))

∣∣∣∣ = 0.

The meaning is that due to a random error, the particle starting at x misses the point ϕt(x)
and ends up at a random point whose distribution is close to the Dirac δ-function at ϕt(x).
Thus, for small ε > 0, the asymptotic behavior of the Markov process (Xε

t : t ≥ 0) should be
closely related to the dynamics of ϕt (Kifer, 1988).

Due to the seminal work of Kurtz (1970, 1972, 1978), the usual stochastic description
of a reaction network can, as we shall make explicit, under the so called “classical scaling”,
be seen as a random perturbation of the deterministic system. This has several interesting
consequences. Indeed, many real world systems will exhibit eventual extinction, which is only
possible to capture by the stochastic models (Chazottes et al., 2017). Looking at the quasi-
stationary distributions, we are able to bridge the gap between the eventual outcomes of the
two descriptions. We find that – under suitable assumptions – in this fluid or thermodynamic
limit, the weak∗ limit of quasi-stationary distributions are supported by a subset of the
attractors prescribed by the deterministic system.

4.2.1 Reaction Network Setup

A reaction network, stochastic or deterministic, is a triple N = (S, C,R), where S is a finite
ordered set of species, C is a finite ordered set of complexes, consisting of linear combinations
over N0 of the species and R is a non-empty irreflexive relation on C, referred to as the set
of reactions (Anderson and Kurtz, 2015; Feinberg, 1979; Gunawardena, 2003). Furthermore,
R is ordered.

We define the dimension of the reaction network, d = |S|. Any species Si ∈ S can be
identified with the unit vector ei ∈ Nd0, thus any complex y ∈ C will be identified with a
vector in Nd0. It is customary to denote an element (yk, y

′
k) ∈ R by yk → y′k ∈ R in which

case we refer to yk as the source complex and to y′k as the product complex of reaction k.
We may thus write R = {yk → y′k : yk, y

′
k ∈ C, yk 6= y′k, k = 1, . . . , r}. Employing a standard,
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although slight abuse of, notation, we identify S = {S1, . . . , Sd} with the set {1, . . . , d} and
R with {1, . . . , r}. In particular, r = |R|. We write the k’th reaction with the notation∑

i∈S
ykiSi →

∑
i∈S

y′kiSi,

where yki = (yk)i and y′ki = (y′k)i are the stoichiometric coefficients associated with the source
and product complexes of reaction k, respectively. Define the reaction vectors ξk = y′k − yk.
One may completely describe a reaction network (without kinetics) in terms of its reaction
graph, whose nodes is the set of complexes, C, and whose directed edges are given by the set
of reactions, R. This concise description will be employed in the rest of the paper.

When all species are present in large abundances, it is natural to consider the concentration
of each species, instead of the exact counts. This leads to the state space D ⊆ Rd0. We
denote by xt the non-negative real vector in Rd0 whose entries are the concentrations of the
species at time t. The evolution of xt is modeled as the solution to the ordinary differential
equation (4.2.1), where the vector field is given by

F (x) =
∑
k∈R

λk(x)ξk,

for some functions λk : [0,∞)d → [0,∞) called rate functions (Gunawardena, 2003). Here,
we shall use the most common case of deterministic mass-action kinetics, which is given by

λk(x) = αk

d∏
i=1

xykii = αkx
yk ,

where αk > 0 are referred to as rate constants. This represents the idea that the system
is well stirred. A unique solution ϕt(x) = xt with initial condition x0 of (4.2.1) defines a
continuous time dynamical system. When integrating, we may write this as

ϕt(x) = ϕ0(x) +
∑
k∈R

(∫ t

0
λk(ϕs(x)) ds

)
ξk. (4.2.3)

The rate functions determine a deterministic kinetics λ = (λ1, . . . , λr) for N , and the pair
(N , λ) is called a deterministic reaction system (Cappelletti, 2015).

In the stochastic description of the same underlying reaction network, N , we may spec-
ify the related continuous-time Markov process (Xt : t ≥ 0). Here, Xt is the vector in Nd0
whose entries are the species counts at time t, with the process taking place in a space of
unit volume, ε = 1. We are interested in the connection to the deterministic description,
which follows the densities of each species, thus letting 1/ε be the volume of the system, we
are led to consider the scaled process

Xε
t := εXt, t ≥ 0.
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In particular, we examine the case where ε → 0, keeping the concentrations constant - the
so called thermodynamic limit . Specifying the volume-normalized mass-action jump rates
λεk : εNd0 → [0,∞) by

λεk(x) = αkε
‖yk‖1−1

d∏
i=1

(
xi/ε

yki

)
yki!,

the stochastic process (Xε
t : t ≥ 0) then satisfies the stochastic equation

Xε
t = Xε

0 +
∑
k∈R

Yk

(
1/ε

∫ t

0
Λεk(X

ε
s) ds

)
εξk,

where Λεk = ελεk and Yk are independent and identically distributed unit-rate Poisson pro-
cesses (Anderson and Kurtz, 2015; Ethier and Kurtz, 1986; Norris, 2009). This stochastic
equation is referred to as a random time change representation of the classically scaled pro-
cess. If reaction yk → y′k occurs at time t, then the new state is Xε

t = Xε
t− + εξk, where

Xε
t− denotes the previous state. Thus (Xε

t : t ≥ 0) is a continuous time pure jump Markov
process with generator

Lεf(x) =
1

ε

∑
k∈R

Λεk(x)(f(x+ εξk)− f(x)), (4.2.4)

for all bounded f : (εN0)d → R (Anderson and Kurtz, 2015). Note that Λεk is independent of
ε to first order and Λεk → λk for ε→ 0. Let Dε ⊆ εNd0 denote the state space upon which the
process (Xε

t : t ≥ 0) takes its values. We may formally embed this process into D ⊆ [0,∞)d

by allowing Xε
0 to be any point in D and update with the jump rates

λεk(x) = αkε
‖yk‖1−1

d∏
i=1

(
bxi/εc
yki

)
yki!,

for the same set of jump directions ξk. Note that if ξk is a possible jump direction then, for
all 1 ≤ i ≤ d,

xi + εξki ≥ εbxi/εc+ εξki ≥ ε(yki + ξki) ≥ 0,

hence the embedded process is well defined on D.

4.2.2 Quasi-stationary Distribution

The stochastic description is more detailed than the deterministic one (Qian, 2011). In
particular, absorbing sets, or extinctions, corresponding to the loss of one or several species
may be captured. These kinds of systems appear naturally in many models in ecology,
epidemiology and chemical processes (N̊asell, 2011; Méléard and Villemonais, 2012). Let D ⊆
Rd0 be a closed subset. Given a reaction network with corresponding embedded stochastic
process (Xε

t : t ≥ 0), we may divide the state space D into the endorsed set Dε
E ⊆ Rd0 and
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absorbing set Dε
A ⊂ Rd0 (Hansen and Wiuf, 2018a). Note that the absorbing set is just a

“fattening” of the absorbing set for the corresponding non-embedded process. Further, in
this continuous setting, Dε

E has a continuum of endorsed sets. For each ε > 0, we restrict
attention to the unique endorsed set, Eε, containing Xε

0 and assume for simplicity, that this
set is irreducible for each ε > 0. The corresponding absorbing set is denoted Aε. The next
lemma shows that this decomposition in turn will define a corresponding absorbing set for
the deterministic dynamical system. Let {εn}n≥1 be a sequence converging to 0.

Lemma 4.2.5. The state space can be written D = D0 tD1 ⊆ [0,∞)d where

(i) D0 = limn→∞D
εn
A is a closed subset of D;

(ii) D1 = limn→∞D
εn
E is an open subset of D;

(iii) D0 and D1 are positively ϕ-invariant;

(iv) D0 is absorbing for the random perturbations,

pε(t, x,D1) = 0 ∀ε > 0, t > 0, x ∈ D0.

Proof. First note that if ε2 < ε1 and λε1k (x) > 0 then λε2k (x) > 0. By definition of endorsed
and absorbing sets, we then have the monotone sequences of sets

Dε1
A ⊃ D

ε2
A ⊃ . . . , Dε1

E ⊂ D
ε2
E ⊂ . . . .

Clearly, it follows that D0 ⊆ ∂[0,∞)d. Indeed, let x ∈ (0,∞)d. Then as εn → 0, there
exists an n large enough such that all reactions may fire, that is λk(x) > 0 for all k ∈ R. In
particular, x /∈ Dεn

A . As D0 ⊂ Dεn
A we conclude that x /∈ D0. In fact, we claim that

lim
n→∞

Dεn
A =

⋃
1≤i≤d

span[0,∞){ei : pi(D1
A) = [0,∞)},

where pi is the projection onto the ith axis. To see this, let ε > 0 be given and suppose first
that x ∈ span(0,∞){ei} for some 1 ≤ i ≤ d satisfying pi(D

ε
A) 6= [0,∞). As above, there exists

an ε1 sufficiently small such that λε1k (x) > 0 for all k ∈ R. Thus x ∈ Dε1
E . In particular

x /∈ D0. On the other hand, if pi(D
ε
A) = [0,∞) then x has no path to a point where all

reactions may fire. As x was arbitrary, the same conclusion holds for all points x/ε and
any ε > 0. Thus x ∈ D0. As the union of rays from origo is closed this proves (i). The
disjointness of absorbing and endorsed sets then immediately implies (ii).

Suppose there exists ε > 0, t > 0 and x ∈ D0 such that pε(t, x,D1) > 0. Then there is a
path from x ∈ D0 to y ∈ D1. However, as x ∈ Dε

A for all ε > 0 and y ∈ Dε
E this contradicts

the fact that Dε
A is absorbing. Thus, D0 is indeed absorbing for the random perturbations,

proving (iv).
To prove (iii), suppose for contradiction that ϕt(D0) ⊆ D0 does not hold for all t.

Then there exists a t > 0 and y ∈ ϕt(D0) ∩ D1, that is, there exists x ∈ D0 such that
ϕt(x) = y ∈ D1. In particular, we have pε(t, x,D1) > 0 for ε sufficiently small contradicting
(iv). Finally, by uniqueness of the orbits of an ODE system, we conclude that D1 is positive
ϕ-invariant as well. This completes the proof.
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We are interested in examining the process before it is absorbed. In particular, whether
the process exhibits stationarity in this time domain. For this purpose, we introduce the
quasi-stationary distribution (Collet et al., 2013; Méléard and Villemonais, 2012; van Doorn
and Pollett, 2013).

Definition 4.2.6. A probability measure ν on E is called a quasi-stationary distribution
(QSD) for the process (Xt : t ≥ 0) absorbed at A, if for every measurable set B ⊆ E

Pν(Xt ∈ B | τA > t) = ν(B), t ≥ 0,

or equivalently, if there exists θ ∈ (0,∞) such that∫
E
p(t, x,B)ν(dx) = e−θtν(B), t ≥ 0.

We shall refer to the last equality as the QSD property .

Note 4.2.7. The equivalence between the two definitions follows from the general property
of QSDs that Pν(t < τA) = e−θt (Collet et al., 2013). Thus, on the one hand∫

E
p(t, x,B)ν(dx) =

∫
E
Px(Xt ∈ B)ν(dx) = Pν(Xt ∈ B),

while on the other

µ(B) = Pµ(Xt ∈ B | t < τA) =
Pµ(Xt ∈ B, t < τA)

Pµ(t < τA)
=
Pµ(Xt ∈ B)

e−θt
,

establishing the equivalence. Note furthermore that as Eε ⊂ D1 for all ε > 0, we may
consider all νε as measures on the same space, D1. In particular, it makes sense to look at
the weak limit of νε.

One may refine the law of large numbers theorem of Kurtz (1972) to a large deviations
type result, telling us the rate at which the probability of deviation from the fluid limit
decreases with system size (Kurtz, 1978).

Theorem 4.2.8 (Kurtz). For every T > 0, there exist C1, C2 > 0 such that for every δ > 0
and ε > 0 sufficiently small,

Px

(
sup

0≤t≤T
|Xε

t − ϕt(x)| ≥ δ

)
≤ C1e

−C2δ2/ε.

Proof. Note that once Xε
0 is specified, there exists a γ ∈ [0, ε] such that one may write

λεk(x) = αkε
‖yk‖1−1

∏d
i=1

(
xi/ε
yki

)
yki! − γ. Thus, for ε > 0 sufficiently small we may consider

the rate functions to be Lipschitz continuous and bounded on the compact set

Kδ =

{
y : inf

0≤s≤T
|y − ϕs(x)| ≤ δ

}
⊂ D1,
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for δ sufficiently small and some finite T > 0. As Px
(
sup0≤t≤T |Xε

t − ϕt(x)| ≥ δ
)

depends
only on λεk(x) for x ∈ Kδ, we may assume without loss of generality that λεk are uniformly
bounded and Lipschitz continuous. The result may now be obtained directly from Theorem
5.3 Shwartz and Weiss (1995), which contains all details.

This result is the backbone to all what follows. Note that, for any t ∈ [0, T ], we have

|Xε
t − ϕt(x)| ≤ sup

t∈[0,T ]
|Xε

t − ϕt(x)|,

yielding the inequality

Px(|Xε
t − ϕt(x)| ≥ δ) ≤ Px

(
sup
t∈[0,T ]

|Xε
t − ϕt(x)| ≥ δ

)
.

Therefore, by taking supremum on both sides,

sup
t∈[0,T ]

Px(|Xε
t − ϕt(x)| ≥ δ) ≤ Px

(
sup
t∈[0,T ]

|Xε
t − ϕt(x)| ≥ δ

)
≤ C1e

−C2δ2/ε.

It follows by taking supremum over x ∈ K that

βδ,K(ε) = sup
t∈[0,T ]

sup
x∈K

pε(t, x,D\N δ(ϕt(x))) ≤ C1e
−C2δ2/ε → 0, (4.2.9)

for ε → 0. We may therefore consider {(Xε
t : t ≥ 0)}ε>0 as a random perturbation of the

semi-flow {ϕt} arising from the deterministic description of the underlying network.

4.3 Assuming a Positive Attractor

In this section, we derive some preliminary results based solely on the assumption of the
existence of a positive attractor and that the dynamics of ϕt(x) is not too wild. In particular,
we make the very weak assumption that for each x ∈ D1, either limt→∞ ϕt(x) ∈ D0 or
inft≥0 d(ϕt(x), D0) > 0. Recall the following terminology from dynamical systems theory
(Katok and Hasselblatt, 1995; Brin and Stuck, 2002).

Definition 4.3.1. A compact set Γ is an attractor for the semi-flow {ϕt}t≥0 if there exists
an open set U containing Γ such that

⋂
t≥0 ϕt(U) = Γ and for any open set V ⊃ Γ, there

exists T > 0 such that ϕt(U) ⊂ V for all t ≥ T . We shall use the term positive attractor if
furthermore Γ ⊂ D1. The set U is referred to as a fundamental neighborhood of Γ.
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4.3.1 Mean Time to Extinction

Upon existence of a positive attractor, we may find the asymptotic behavior of the mean
time to extinction starting from a QSD. The proof follows (Marmet, 2013).

Theorem 4.3.2. Assume that the semi-flow {ϕt}t≥0 admits an attractor Γ ⊂ D1. Then,
starting according to the QSD, νε, the probability of being absorbed by time t > 0 is
O(εe−γ/ε) while the mean time to extinction is O(εec/ε), where γ, c > 0.

Proof. Let V ⊂ D1. For ε > 0 sufficiently small, we have V ⊂ Dε
E . By the QSD property, it

follows for t ≥ 0 that

e−θεtνε(V ) =

∫
Eε
pε(t, x, V )νε(dx) ≥

∫
V
pε(t, x, V )νε(dx) ≥ inf

x∈V
pε(t, x, V )νε(V ).

By irreducibility of Eε, it follows that νε(V ) > 0 for all ε > 0 thus we find

e−θεt ≥ inf
x∈V

pε(t, x, V ).

Let U ⊂ D1 be a fundamental neighborhood of the attractor Γ. Then for all η > 0 there
exist T > 0 such that for all t ≥ T and x ∈ U we have d(ϕt(x),Γ) < η. Let α = d(Γ, U c)
and η < α, δ < α− η. Then for all x ∈ U , we have for given t > T

pε(t, x, U c) ≤ Px(d(Xε
t ,Γ) > α)

≤ Px(d(Xε
t , ϕt(x)) + d(ϕt(x),Γ) > α)

≤ Px(d(Xε
t , ϕt(x)) > α− η)

≤ Px(d(Xε
t , ϕt(x)) > δ)

≤ C1e
−C2δ2/ε,

for ε sufficiently small by Theorem 4.2.8. It follows, since for any t > 0 there exists ε > 0
sufficiently small such that t/ε > T ,

e−θεt/ε ≥ inf
x∈U

pε(t/ε, x, U) = 1− sup
x∈U

pε(t/ε, x, U c) ≥ 1− C1e
−C2δ2/ε.

Thus, we find that the probability of being absorbed by time t is

1− e−θεt ≤ 1− (1− C1e
−C2δ2/ε)ε = 1− exp(log((1− C1e

−C2δ2/ε)ε))

= 1− exp(ε log(1− C1e
−C2δ2/ε))

= 1− exp
(
ε(−C1e

−C2δ2/ε − o(e−C2δ2/ε))
)

= 1−
(

1 + ε(−C1e
−C2δ2/ε + o(e−C2δ2/ε))

)
= εC1e

−C2δ2/ε + o(εC1e
−C2δ2/ε) = O(εe−γ/ε)
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In particular, we see that the mean time to extinction, starting from the QSD is

Eνε(τAε) =
1

θε
≥ −1

ε log(1− C1e−C2δ2/ε)
= O(εec/ε), (4.3.3)

as desired.
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Figure 4.1: Stochastic simulation, using Gillespie’s algorithm, of the mean time to extinction
for the reaction system S

α1→ 2S
α2→ ∅ for α1 = 1 and α2 = 2, 3, 4.

4.3.2 Invariance of Limiting Measure

Theorem 4.3.4. Suppose the semi-flow {ϕt}t≥0 admits an attractor Γ ⊂ D1. Then the set
of limit points of {νε}ε>0 for the weak∗ topology is a subset of the set of invariant measures
for the semi-flow {ϕt}t≥0.

Proof. We follow Marmet (2013) and extend the arguments where necessary. Suppose the
sequence νε of QSDs converges weakly to a measure ν. We may view this convergence taking
place on D. Let t ≥ 0. By the Portemanteau theorem (Klenke, 2014), it suffices to prove
that

lim
ε→0

∣∣∣∣∫
D
f(x)νε(dx)−

∫
D
f(ϕt(x))νε(dx)

∣∣∣∣ = 0,

for every bounded Lipschitz function f . The QSD property implies that for all t ≥ 0∫
D
f(x)νε(dx) = Eνε(f(Xε

t )) = Eνε(f(Xε
t )|τAε > t) =

∫
D
Ex (f(Xε

t )|τAε > t) νε(dx).

Thus, for all t ≥ 0, one may choose ε > 0 sufficiently small such that

I :=

∣∣∣∣∫
D
f(x)νε(dx)−

∫
D
f(ϕt(x))νε(dx)

∣∣∣∣
=

∣∣∣∣∫
D
Ex(f(Xε

t )|τAε > t)νε(dx)−
∫
D
f(ϕt(x))νε(dx)

∣∣∣∣
=

∣∣∣∣∫
D
Ex(f(Xε

t )− f(ϕt(x))|τAε > t)νε(dx)

∣∣∣∣ ,



82 Chapter 4. QSDs for Randomly Perturbed Reaction Networks

where the last equality holds due to the assumptions on ϕt. By Theorem 4.2.8 we infer that

Ex

(
sup

0≤t≤T
|Xε

t − ϕt(x)| ≥ δ

)
=

∫ ∞
0
Px

(
sup

0≤t≤T
|Xε

t − ϕt(x)| ≥ δ

)
dδ

≤
∫ ∞

0
C1e

−C2δ2/ε dδ =
C1
√
π

2
√
C2

√
ε.

Further, by (the proof of) Theorem 4.3.2 we see that

1− exp(θεt) ≤ O(εec/ε),

for ε > 0 sufficiently small, hence 1 − exp(θεt) → 0 as ε → 0 which implies that exp(θεt) is
bounded. Let CL be the Lipschitz constant for f . Then we see that

I =

∣∣∣∣∫
D
Ex(f(Xε

t )− f(ϕt(x))|τAε > t)νε(dx)

∣∣∣∣
≤
∣∣∣∣∫
D

Ex(f(Xε
t )− f(ϕt(x)))

Px(τAε > t)
νε(dx)

∣∣∣∣
≤
∫
D

CL
C1
√
π

2
√
C2

√
ε

e−θεt
νε(dx) ≤ C3

√
εeθεt → 0,

for ε→ 0. We conclude that∫
D
f(x)ν(dx) =

∫
D
f(ϕt(x))ν(dx),

for all t ≥ 0 as desired.

Lemma 4.3.5. For all c > 0, there exists an open neighborhood Vc of D0 such that

lim
ε→0

inf
x∈Vc

ε log pε(1, x, Aε) ≥ −c

Proof. Given ε > 0, every point x ∈ Eε has a path to Aε. Let x ∈ Eε be given. There is a
fixed set of reactions, RA ⊆ R, which takes x to Aε. The number of jumps needed to take x
to Aε is then bounded by η1/ε for some η1 ∈ N. Let k′ ∈ R be the last reaction on the path
from x to Aε and let its order be m. We may without loss of generality assume that m is
the maximal order of a reaction in RA. Further, let n be the lowest order of any reaction in
the network. Define the following events

E1 = {Xε
t follows the path x 7→ Aε},

E2 = {Xε
t makes η1/ε jumps before time 1}.

Then we have the rough bound

ε log pε(t, x,Aε) ≥ ε logPx(E1E2) = ε logPx(E1) + ε logPx(E2).
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For ε > 0 sufficiently small there exists η2 < 1 such that with η = η1η2 < 1,

O(ε logPx(E1)) ≥ O

ε log

η/ε∏
i=1

εm−1im

εn−1in

 = O(ε

η/ε∑
i=1

log(εi)m−n) = O(η log(η)).

We further have for ε sufficiently small

ε logPx(E2) ≥ ε log

η/ε∏
i=1

(
1− e−C1(εi)m

) = ε

 η/ε∑
i=1

log
(

1− e−C1(iε)m
)

≥ ε
η/ε∑
i=1

−e−C1(iε)m ≥ −ηeηm .

Thus, we conclude that

ε log pε(1, x, Aε) > −c,

for all x in a sufficiently small neighborhood Vc of D0 as desired.

4.4 Support of the limiting measure

Assume that there exists a decreasing sequence εn → 0 such that for every n ∈ N, νn is a
quasi-stationary distribution for pεn with associated θn. Additionally, we assume that νn
converges weakly to a Borel probability measure ν. Under the assumption of a positive
attractor, the limit set of the sequence (νε)ε>0 in the weak∗ topology consists of invariant
measures. Thus, by the Poincaré Recurrence theorem (Walters, 1982), for any B ⊂ D, if
ν(B) > 0 then almost all points in B returns infinitely often to B under ϕt, that is almost
all points in B are recurrent, x ∈ ω(x). Recall that a point y ∈ D is called an ω-limit
point for x ∈ D is there exists a sequence of times (tn)n∈N going to infinity such that
limn→∞ ϕtn(x) = y. The set of all ω-limit points is (Katok and Hasselblatt, 1995),

ω(x) =

∞⋂
T=0

⋃
t≥T

ϕt(x)

 . (4.4.1)

Letting BC(ϕ) = {x ∈ D : x ∈ ω(x)} denote the Birkhoff center, we conclude that

supp ν ⊆ BC(ϕ).

In this section, we shall refine this result further. In particular, as the QSDs, νn have support
in D1, it is natural to ask whether this is true for the limit measure ν as well. Note that
in many cases 0 would be a fixed point for the flow thus 0 ∈ BC(ϕ) ∩ D0. An answer to
this question would therefore indeed be a refinement. To obtain this result, we shall assume
that there is only a finite number of positive attractors {Γi}i=1,...,`, and rely on the theory
of large deviations.
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4.4.1 Large Deviation Property

The theory of Large Deviations describes the rate at which rare events occur. More con-
cretely, in our setting, we need a sample path large deviations principle, in which the rare
events are given in terms of entire paths lying within certain sets (Dembo and Zeitouni,
1998). On the entire state space, D, we face two main obstacles, which hinders a direct
application of standard results - the rates of the jump process are neither bounded nor
uniformly Lipschitz continuous. Recently, an application of a general result on mean field
interacting particles from Dupuis et al. (2016) applied to reaction networks, was shown to
suffice for a large deviations principle (LDP) (Agazzi et al., 2017a,b). However, a pivotal
assumption in this work is that the process cannot “get stuck near the boundary” – it thus
rules out the possibility of absorbing sets. To circumvent these obstacles, we rely on an
assumption on the global dynamics of ϕt on D.

By assumption, there exists a convex compact set W ⊂ D1 containing all positive at-
tractors {Γi}i=1,...,`. Further, for ε > 0 sufficiently small, all reactions may fire in W . Let
D0,T (W ) denote the space of càdlàg functions z : [0, T ] → W equipped with the topology
induced from the Skorohod metric on D0,T (W ) given by

dd(z1, z2) = inf
τ

{
max

(
γ(τ), sup

0≤t≤T
|z1(t)− z2(τ(t))|

)}
,

where τ is a strictly increasing function on [0, T ] such that τ(0) = 0, τ(T ) = T and

γ(τ) := sup
0≤s≤t≤T

∣∣∣∣log
τ(s)− τ(t)

s− t

∣∣∣∣ <∞,
(Ethier and Kurtz, 1986). The induced topology is coarser than the topology of uniform
convergence (Dembo and Zeitouni, 1998). Further, let AC0,T (W ) denote the subspace of
absolutely continuous functions from [0, T ] to W .

Theorem 4.4.2. For each ε > 0, the sample paths {Xε
t : t ∈ [0, T ]} satisfy the LDP in

D0,T (W ) with speed 1/ε and the good rate function I : W × [0,∞) × D0,T (W ) → [0,∞]
given by

I(x, T, z) =

{∫ T
0 L(z(t), ż(t)) dt, z(0) = x, z ∈ AC0,T (W )

∞, otherwise

uniformly for x on compact subsets of W , where L is the Lagrangian

L(y, β) = sup
θ∈Rd

(
〈θ, β〉 −

∑
k∈R

λk(y)
[
e〈θ,ξk〉 − 1

])
.



4.4. Support of the limiting measure 85

That is, for any B ⊂ D0,T (W ) and K ⊂W compact,

lim sup
ε→0

ε log sup
x∈K

Px[Xε
· ∈ B] ≤ − inf

x∈K
inf
z∈B

I(x, T, z) (4.4.3)

lim inf
ε→0

ε log inf
x∈K

Px[Xε
· ∈ B◦] ≥ − sup

x∈K
inf
z∈B◦

I(x, T, z). (4.4.4)

Proof. In the limit ε→ 0, the generator (4.2.4) is identical to the expression (10.1) in Dupuis
and Ellis (2011) when letting a(x) ≡ 0 ∈Matd,d(R) and b(x) =

∑
k∈R ξkλk(x) ∈ Rd and the

family of measures µx(dy) =
∑

k∈R δξk(y)λk(x). We extend the kernel µx(dy) to all of Rd
by letting

σx(dy) = µpW (x)(dy),

where pW is the convex projection onto W . Condition 10.2.2 of Dupuis and Ellis (2011) is
then easily satisfied. The support of σx is the set {ξk : k ∈ R}. Letting Σ be the relative
interior of the smallest convex cone that contains the support of σx, we find

Σ = ri(conv{ξk : k ∈ R}),

which is evidently independent of x ∈ Rd. Finally, as there exists a positive attractor we
claim that we must have

0 ∈ Σ,

hence condition 10.2.4 Dupuis and Ellis (2011) would be satisfied as well. To see this,
note that as {0} and Σ are convex and 0 /∈ ∂Σ, it follows by the hyperplane separation
theorem that 0 /∈ Σ exactly when there exists a separating hyperplane. Suppose therefore
for contradiction that there exists a separating hyperplane with normal vector γ. We may
choose γ such that 〈γ, ξk〉 > 0 for all k ∈ R. Let U ⊂ D1 be a fundamental neighborhood of
the attractor K. Then, for all x ∈ U ,

〈γ, F (x)〉 =
∑
k∈R

λk(x)〈γ, ξk〉 > 0,

that is, the vector field F points towards the same half-space on U which contradicts K
being an attractor. We conclude that 0 ∈ Σ as desired.

Applying Theorem 10.2.6 of Dupuis and Ellis (2011) we find an LDP for σ on all of Rd
with speed 1/ε and good rate function

Iσ(x, T, z) =

{∫ T
0 Lσ(z(t), z′(t)) dt, z ∈ AC0,T (Rd)

0, otherwise.

Now, when z(·) ⊂ W we have σx(dy) = µx(dy) and Hσ(z, θ) = Hµ(z, θ) hence Lσ(z, u) =
Lµ(z, u) and Iσ(x, T, z) = Iµ(x, T, z) which proves the Laplace principle on compacts. Fi-
nally, Theorem 1.2.3 Dupuis and Ellis (2011) gives the desired.
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4.4.2 Metastability

Using the LDP, we immediately find that if there exists a positive attractor, then any limiting
distribution has support away from D0. That is, the system is metastable. Indeed, inspired
by Marmet (2013); Faure and Schreiber (2014) we obtain the following proposition.

Proposition 4.4.5. Suppose the semi-flow {ϕt}t≥0 admits an attractor Γ ⊂ D1. Then there
exists a neighborhood V0 of D0 such that ν(V0) = 0.

Proof. Let K ⊂ D1 be a compact neighborhood of the attractor Γ such that K ⊆ W .
We may by definition find a fundamental neighborhood U ⊂ K of Γ and δ > 0 such that
N δ(ϕ1(U)) ⊂ U . Note that for ε > 0 sufficiently small, Eεn ∩ U 6= ∅. Thus, with T ≥ 1,

e−θnνn(U) =

∫
D1

pεn(1, x, U)νn(dx) ≥ νn(U) inf
x∈U

pεn(1, x, U)

= νn(U)

(
1− sup

x∈U
pεn(1, x, U c)

)
≥ νn(U)

(
1− sup

x∈U
pεn(1, x,N δ(ϕ1(U))c)

)
≥ νn(U)

(
1− sup

t∈[0,T ]
sup
x∈K

pεn(t, x,N δ(ϕt(x))c)

)
= νn(U)(1− βδ,K(εn)).

As νn(U) > 0 for any n by irreducibility of Eεn , we conclude that

1− βδ,K(εn) ≤ e−θn . (4.4.6)

Now, for any neighborhood V0 of D0,

1− βδ,K(εn) ≤ e−θn =

∫
Eε
pεn(1, x, Eε)νn(dx) =

∫
Eε

(1− pεn(1, x, Aε))νn(dx)

=

∫
Eε\V0

(1− pεn(1, x, Aε))νn(dx) +

∫
V0

(1− pεn(1, x, Aε))νn(dx)

≤ νn(Eε\V0) + νn(V0)

(
1− inf

x∈V0
pεn(1, x, Aε)

)
= νn(Eε)− νn(V0) inf

x∈V0
pεn(1, x, Aε) = 1− νn(V0) inf

x∈V0
pεn(1, x, Aε),

thus we infer

νn(V0) ≤
βδ,K(εn)

infx∈V0 p
εn(1, x, Aε)

. (4.4.7)

As D1 is invariant under ϕt, we may choose δ0 > 0 such that

δ0 < inf
t∈[0,T ],x∈K

d(ϕt(x), D0).

Without loss of generality, we may assume sup(d(W,D0)) < δ0 hence ϕt(x) ∈ W for all
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t ∈ [0, T ] with x ∈ K. Define the quantity

c(K) :=
1

4
inf (I(x, T, z) : x ∈ K, d(z, ϕ·(x)) ≥ δ0) > 0.

Positivity comes from the fact that I(x, T, z) = 0 iff z solves the differential equation, that
is z(t) = ϕt(x) for all t ∈ [0, T ]. By the LDP from Theorem 4.4.2 we have, for x ∈ K

lim sup
ε→0

ε logPx(Xε
· ∈ D0,T (W ), d(Xε

· , ϕ·(x)) ≥ δ0) ≤ − inf
x∈K

inf
z∈D0,T (W ):d(z(·),ϕ·(x))≥δ0

I(x, T, z)

≤ −4c(K).

Thus, for ε > 0 sufficiently small and all x ∈ K,

βδ0,K(ε) = Px(Xε
· ∈ D0,T (W ), d(Xε

· , ϕ(x)) ≥ δ0) ≤ e−3c(K)/ε. (4.4.8)

By Lemma 4.3.5, there exists a neighborhood Vc(K) of D0 such that

lim
ε→0

inf
x∈Vc(K)

ε log pε(1, x, Aε) ≥ −2c(K).

Thus, for ε > 0 sufficiently small, we have for all x ∈ Vc(K)

pε(1, x, Aε) ≥ e−2c(K)/ε,

and we conclude from (4.4.7) that

ν
(
Vc(K)

)
≤ lim

ε→0

βδ,K(ε)

infx∈Vc(K)
pε(1, x, Aε)

≤ lim
ε→0

e−c(K)/ε = 0,

as desired.

4.5 The General Main Result

We need a few preliminary results before proving the main theorem. These rest on the large
deviation principle of Theorem 4.4.2.

Proposition 4.5.1. Let K be a compact subset of W . For all η, δ, T̃ > 0 there exists ε0 > 0
such that

Px(d(z,Xε
· ) < η) ≥ exp

(
−I(x, T, z) + δ

ε

)
for any x ∈ K, ε ∈ (0, ε0), T < T̃ and all z ∈ D[0,T ](K).

Proof. We follow (Kifer, 1988; Faure and Schreiber, 2014; Marmet, 2013) and define the
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quantity

∆K
γ,T = sup{|I(x, T, z)− I(x′, T, z′)| : x, x′ ∈ K, d(z, z′) < γ}.

As I is a good rate function, the lower level-sets {z ∈ D0,T (W ) : I(x, T, z) ≤ s} are compact
for every s ∈ (0,∞), T > 0 (Dembo and Zeitouni, 1998). In particular, I(x, T, z) is lower
semi-continuous in z. Therefore lim infz′→z I(x′, T, z′) ≥ I(x, T, z). Equivalently, this may
be written lim supz′→z I(x, T, z) − I(x′, T ′z′) ≤ 0. As x 7→ |x| is non-decreasing on [0,∞],
we find that

lim
γ→0

∆K
γ,T = lim sup

z′→z
|I(x, T, z)− I(x′, T, z′)| = 0.

Choose η > 0, δ > 0 and T̃ > 0 such that γ < η, ∆K
γ,T̃

< δ/2 and Nγ(K) ⊂ W . By the

uniform LDP lower bound (4.4.4) we conclude that for z ∈ D[0,T ](K),

lim inf
ε→0

ε log inf
x∈K

Px(Xε
· ∈ Nγ(z)) ≥ − sup

x′∈K
inf

z′∈Nγ(z)
I(x′, T, z′),

where Nγ(z) = {z′ ∈ D[0,T ](K) : d(z, z′) < γ}. We conclude that there exists a function
g : (0,∞)→ (0,∞) such that

lim
ε→0

g(ε) = 0, and ε log inf
x∈K

Px(Xε
· ∈ Nγ(z)) ≥ − sup

x′∈K
inf

z′∈Nγ(z)
I(x′, T, z′)− g(ε).

It follows that for any x ∈ K,

Px(d(z,Xε
· ) < η) ≥ Px(d(z,Xε

· ) < γ) ≥ inf
x∈K

Px(Xε
· ∈ Nγ(z))

≥ exp

(− supx′∈K infz′∈Nγ(z) I(x′, T, z′)− g(ε)

ε

)
= exp

(−I(x, T, z)− supx′∈K infz′∈Nγ(z)(I(x′, T, z′)− I(x, T, z))− g(ε)

ε

)
≥ exp

(
−I(x, T, z)−∆K

γ,T − g(ε)

ε

)
.

Choosing ε sufficiently small so that g(ε) < δ/2, we conclude that

Px(d(z,Xε
· ) < η) ≥ exp

(
−I(x, T, z) + δ

ε

)
,

as desired.

Proposition 4.5.2. Let K1, . . . ,Kb be compact non-attractors. Given any δ > 0, there exist
neighborhoods Vj ⊂ N δ(Kj) of Kj for 1 ≤ j ≤ b and δ1 ∈ (0, 1) such that

sup
x∈Vj

Px(τ εVj > h(ε)) ≤ ζ(ε), lim
ε→0

ζ(ε) = 0
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for a function h satisfying limε→0 h(ε)βδ1,K(ε) = 0.

Proof. The proof is given in Faure and Schreiber (2014); Marmet (2013), however, for
completeness we reformulate it to fit our notation. Let j ∈ {1, . . . , b}. As Kj is not

an attractor, there exists η > 0 such that N2η(Kj) ⊂ W and for any γ > 0 and any
x ∈ Nη(Kj) ⊂ U := N2η(Kj) there exists T γ and zγ such that

zγ(0) = x, zγ(T γ) = yγ /∈ U, I(x, T γ , zγ) < γ.

Let r > 0 such that N r(U) ⊂ K for some compact set in W . As zγ starts in U and ends
outside U , it must pass through K\U . Without loss of generality, we may assume that
yγ ∈ K\U and zγ is contained in K.

By Proposition 4.5.1 we find that for any η > 0, δ > 0 and T̃ > 0 there exists ε0 > 0 such
that for all ε ∈ (0, ε0) and x ∈ K,

Px(d(zγ , Xε
· ) < η) ≥ exp

(
−I(x, T γ , zγ) + δ

ε

)
≥ exp

(
−γ + δ

ε

)
.

Now, if d(zγ , Xε
· ) < η then Xε

· leaves Nη(Kj) before T γ thus

Px
(
τ εNη(Kj)

< T γ
)
≥ Px(d(zγ , Xε) < η) ≥ exp

(
−γ + δ

ε

)
.

In particular, for all x ∈ Nη(Kj) and ε sufficiently small, we find by the Markov property

Px
(
τ εNη(Kj)

> e2γ/ε
)

= Px

(
τ εNη(Kj)

> T γ
e2γ/ε

T γ

)
≤ Px

(
τ εNη(Kj)

> T γ
) e2γ/ε

Tγ

=
(

1− Px
(
τ εNη(Kj)

< T γ
)) e2γ/ε

Tγ ≤
(

1− exp

(
−γ + δ

ε

)) e2γ/ε

Tγ

= eln(1−exp(− γ+δ
ε

)) e
2γ/ε

Tγ < e−e
− γ+δε e2γ/ε

Tγ = e−
e
γ−δ
ε

Tγ .

Choosing δ < γ, the desired follows by taking h(ε) = e2γ/ε and ζ(ε) = exp(−e−
γ−δ
ε /T γ).

4.5.1 Absorption Preserving Chain Recurrence

In order to prove the main result, we need some theory on chain recurrence and pseudo orbits,
which can be traced back to Conley (1978). The generalization to absorption preserving chain
recurrence was introduced in Jacobs and Schreiber (2006).

Definition 4.5.3. Let {ϕt}t>0 be a semi-flow given by an ordinary differential equation on
D ⊂ Rd0 for which D0 is an invariant set. Given δ > 0, a piecewise continuous path from x
to y,

x = x1, {ϕt(x1) : t ∈ [0, t1]}, {ϕt(x2), t ∈ [0, t2]} . . . {ϕt(xk), t ∈ [0, tk]}, xk+1 = y
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which is uniquely defined by the sequence of points x1, . . . , xk+1 and times t1, . . . , tk such
that the following holds

d(ϕtj (xj), xj+1) < δ, ∀j = 1, . . . , k

ti ≥ T, ∀i = 1, . . . , k,

xj ∈ D0 ⇒ xj+1 ∈ D0, ∀j = 1, . . . , k,

is called an absorption preserving (δ, T )-pseudoorbit, or an ap (δ, T )-pseudoorbit for short.

If there exists an ap (δ, T )-pseudoorbit from x to y, we will write x <ap,δ,T y. If x <ap,δ,T y
holds for every δ > 0 and T > 0, we will write x <ap y. If x <ap y and y <ap x we write
x ∼ap y. If x ∼ap x then x is an ap-chain recurrent point. We denote by Rap the set
of ap-chain recurrent points. The relation ∼ap restricted to this set defines an equivalence
relation and the equivalence classes, [x]ap with x ∈ Rap are called ap-basic classes. We write
[x]ap <ap [y]ap if x <ap y. A maximal ap-basic class is called an ap-quasiattractor.

Figure 4.2: Schematic representation of a (δ, T )-pseudoorbit.

In the appendix, the theory of ap-chain-recurrence is developed in detail, under the
following dynamical assumption.

Assumption 3. There exists a T > 0 and a compact set KT such that for all x ∈ D and
all t ≥ T , the semi-flow {ϕt}t≥0 satisfies ϕt(x) ∈ KT .

Note that this is slightly different from the requirement for permanence. On one hand it
is stronger since we require a common time T after which all orbits must be in the compact
set KT . On the other hand, we don’t require this set to be strictly inside Rd0. Note, however,
that if the network is strongly endotactic, an assumption on the order of the reactions would
be sufficient for this strong dissipative behavior. In general, Assumption 3 holds for a much
larger class of networks, including those for which the existence of a unique quasi-stationary
distribution is guaranteed (see Hansen and Wiuf, 2018a). The second assumption is of
technical nature.

Assumption 4. There is only a finite number of ap-basic classes in D1: {Ki}i=1,...,v. These
are all closed sets with {Ki}i=1,...,` being attractors, ` ≥ 1, while {Ki}i=`+1,...,v are not
attractors.

With these assumptions, one may arrive at the following corollary crucial to proving the
general main theorem (Faure and Schreiber, 2014; Marmet, 2013).
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Corollary 4.5.4. Given δ, T > 0 there exists a family {Vi}i=1,...,v of isolating open neigh-
borhoods of the ap-basic classes {Ki}i=1,...,v, and positive constants δ1 and T1 such that

(i) N δ1(Ki) ⊂ Vi for 1 ≤ i ≤ v;

(ii) any ap (δ1, T1)-pseudoorbit starting in Vi remains in Vi for i = 1, . . . , `;

(iii) if there exists an ap (δ1, T1)-pseudoorbit (x, t1), . . . , (xn, tn), y with x ∈ N δ1(Ki) and
y ∈ N δ1(Ki′) such that

ϕs(xj) /∈ Vi, for some j ∈ {2, . . . , n− 1}, s ∈ [0, tj ]

then i 6= i′ and Ki <ap Ki′ .

(iv) Every ap (δ1, T1)-pseudoorbit intersects N δ(Rap).

Support Concentrated Away From Non-attractors. We are now in a position to
prove the general version of the main theorem. Once this is result is obtained, we shall
present a more tangible version getting rid of the absorption preserving chain recurrence all
together. Inspired by (Faure and Schreiber, 2014), we may prove the following.

Theorem 4.5.5 (Main). Under Assumption 4 the limiting measure ν is supported by the
union of positive attractors

⋃`
i=1 Γi.

Proof. By Assumption 4, there is at least one positive attractor. Thus, we already know from
(4.3.3) that θn → 0 for n → ∞, that ν is ϕ-invariant and has its support in BC(ϕ) ⊆ Rap.
Further, it follows from Proposition 4.4.5 that the support of ν is contained in D1. In
particular, ν(Rap ∩ D1) = 1 hence ν(K) = 1 where K =

⋃v
i=1Ki. We must show that for

every non ap-quasiattractor, Kj , j = `+1, . . . , v, there exists an open neighborhood Vj ⊃ Kj

such that ν(Vj) = 0.

Let j ∈ {`+ 1, . . . , v} be fixed and denote by b = v − ` the number of non-attractors in
D1. Further, we may choose sequences {mn}n≥1 and{m′n}n≥1 such that

lim
n→∞

mnβδ1,K(εn) = 0, lim
n→∞

m′n
mn

= 0, lim
n→∞

h(εn)

m′n
= 0 (4.5.6)

By the QSD property for µn, we have

νn(Vj) =
1

eθnt

∫
D1

Px(Xεn
t ∈ Vj)νn(dx), t ≥ 0.

For j = {1, . . . , b} let tjn = mn/j. Let δ1 be given such that Corollary 4.5.4 holds. Define
the events En and E ′n by

En = {(Xεn
t )t∈[0,mn] is an ap (δ1, T1)-pseudoorbit}

E ′n = {∀j ∈ {`+ 1, . . . , v},∀s ≥ m′n, Xεn
t ∈ N δ1(Kj)⇒ Xεn

t+s /∈ N δ1(Kj)}.



92 Chapter 4. QSDs for Randomly Perturbed Reaction Networks

Thus, on the event E ′n, after the first entry to N δ1(Ki) the Markov process will have escaped
from the set after spending at most m′n amounts of time there and will never come back. On
the event En ∩ E ′n, the process (Xεn

t )t∈[0,mn] is furthermore an ap (δ1, T1)-pseudoorbit hence

by Corollary 4.5.4 (i)-(ii) it gets trapped inside
⋃`
i=1N

δ1(Ki) if it enters this set. Further,
Corollary 4.5.4 (iii) and the property of E ′n, ensures that this pseudo orbit cannot spend more
than bm′n amounts of time in

⋃v
i=`+1N

δ1(Ki). We conclude that, for n sufficiently large so

that mn > bm′n, if Xεn
mn is in Vj then Xεn

tin
/∈ N δ1(K) for some i ∈ {1, . . . , b}. Therefore,

Px({Xεn
mn ∈ Vj} ∩ En ∩ E

′
n) ≤

b∑
i=1

Px(Xεn
tin
/∈ N δ1(K)).

On the other hand, it follows from Corollary 4.5.4 (iii) that on the event En, starting from
N δ1(Ki), the chain cannot enter back into N δ1(Ki) once it exited Vi. Let τnV = inf{t ≥
0: Xεn

t /∈ V }. Proposition 4.5.2 implies that, as m′n > h(εn) for n sufficiently large,

Px((E ′n)c ∩ En) ≤
v∑

i=`+1

sup
y∈Vi

Py(τnVi ≥ m
′
n) ≤

v∑
i=`+1

sup
y∈Vi

Py(τnVi ≥ h(εn)) ≤ bζ(εn).

By Lemma 4.8.12 we see, with {Xεn
mn ∈ Vj} = A1, En = A2 and E ′n = A3 that

Px({Xεn
mn ∈ Vj}) ≤ Px(Ecn) + Px((E ′n)c|En) + Px({Xεn

mn ∈ Vj}|En ∩ E
′
n)

≤ Px(Ecn) + Px((E ′n)c ∩ En) + Px({Xεn
mn ∈ Vj} ∩ En ∩ E

′
n)

≤ βδ1,K(εn) + bζ(εn) +

b∑
i=1

Px(Xεn
tin
/∈ N δ1(K)),

for n sufficiently large. By the QSD property of νn we find∫
D1

Px({Xεn
mn ∈ Vj})νn(dx) ≤ βδ1,K(εn) + bζ(εn) +

b∑
i=1

∫
D1

Px(Xεn
tin
∈ (N δ1(K))c)νn(dx)

= βδ1,K(εn) + bζ(εn) +
b∑
i=1

e−θnt
i
nνn(N δ1(K)c)

≤ βδ1,K(εn) + bζ(εn) + bνn(N δ1(K)c)→ 0,

for n → ∞. Here we have used the fact that νn → ν with ν(N δ1(K)c) = 1 − ν(N δ1(K)) ≤
1− ν(K) = 0. Finally,

lim
n→∞

νn(Vj) = lim
n→∞

1

eθnmn

∫
D1

Px(Xεn
mn ∈ Vj)νn(dx) = 0,
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as limn→∞ e
θnmn = 1. Indeed, by (4.4.6) and the choice of mn we find

lim inf
n→∞

e−θnmn ≥ lim inf
n→∞

(1− βδ1,K(εn))mn = exp
(

lim inf
n→∞

mn log(1− βδ1,K(εn))
)

= exp

(
− lim inf

n→∞
mnβδ1,K(εn) +mnβδ1,K(εn)

βδ1,K(εn)

2
+ . . .

)
= 1.

By the property of weak convergence we then have ν(Vj) ≤ lim infn→∞ νn(Vj) = 0 and the
desired follows - ν is not supported by the non-attractors.

In the paper Faure and Schreiber (2014), one furthermore has the very natural result
that if D0 is a global attractor, then ν is supported by D0. However, due to the restriction
to a compact set K in our definition of βδ,K , the proof is not readily generalizable, although
we strongly suspect it to hold. We furthermore note that the problem of determining the
support of ν in the case where there is no positive attractor in D1(and D0 is not globally
attracting) is still open (Schreiber, 2016).

4.5.2 Morse Decompositions

In order to state the main result in a more straightforward fashion which circumvents the
theory of ap-basic classes, we shall assert global restrictions on the semi-low ϕt by intro-
ducing the notion of Morse decompositions from dynamical systems theory (Conley, 1978;
Colonius and Kliemann, 2014).

It follows from Assumption 3 that the semi-flow {ϕt} on the state space D associated to the
deterministic reaction network satisfies that

G =
⋂
t≥0

ϕt(D)

is a global attractor. We introduce the following definition, which describes the global
structure of the flow by ordering invariant subsets of the state space capturing the limit
behavior forwards and backwards in time (Colonius and Kliemann, 2014).

Definition 4.5.7. A Morse decomposition of the dynamics of ϕt is a collection of non-empty
ϕ-invariant pairwise disjoint compact sets {M1, . . . ,Mm}, called Morse sets, such that

• Mi is isolated, 1 ≤ i ≤ m

• for every x ∈ G\
⋃m
i=1Mi, there exists i > j such that ω(x) ⊆Mi and α(x) ⊆Mj .

Note that the Morse sets contain all limit sets, and no cycles between the Morse sets
are allowed. A Morse decomposition thus describes the flow through movement from lower
to higher indexed Morse sets. A Morse decomposition {M1, . . . ,Mm} is called finer than a
Morse decomposition {M ′1, . . . ,M ′m′} if for all j ∈ {1, . . . ,m′} there is i ∈ {1, . . . ,m} with
Mi ⊂M ′j . There need not exist a finest Morse decomposition, but when it does, it is unique
Ayala et al. (2006).
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Proposition 4.5.8. There exists a finest Morse decomposition {Mi}i=1,...,m if and only if
Rap has only finitely many ap-basic classes. In this case, the ap-basic classes in D1 coincide
with the Morse sets Mi ⊂ D1. In particular, there is a finite number of ap-basic classes in
D1 and each of them is closed.

Proof. By (Ayala et al., 2006, Theorem 6.4), there exists a finest Morse decomposition
{M1, . . . ,Mm} if and only if the regular chain recurrent set R has only finitely many basic
classes. As Rap ⊆ R, there are only finitely many ap-basic classes. Furthermore, as the
Morse sets coincide with the basic classes by (Ayala et al., 2006, Theorem 6.4) whenever
Mi ⊂ D1, it must coincide with an ap-basic class. As the Morse sets are compact, they are
in particular closed.

One may now state the main theorem in terms completely eradicated from the complexi-
ties of absorption preserving chain recurrence. We note that if the system is gradient or more
generally Morse-Smale, then a Morse decomposition exists (Faure and Schreiber, 2014).

Corollary 4.5.9. LetM1, . . .Mm be the finest Morse decomposition for ϕt such thatMj , . . . ,Mm

are attractors. If

• Mi ⊂ D0 or Mi ⊂ D1,

• Mi ⊂ D1 for some i ≥ j.

then any weak∗-limit point of {νε}ε>0 is ϕt-invariant and is supported by the union of
attractors in D1.

Proof. As there exists a finest Morse decomposition, it follows by Proposition 4.5.8 that
there is a finite number of ap-basic classes in D1 and each of them is closed. Further, as the
Morse decomposition contains at least one positive attractor, Assumption 4 is satisfied. The
desired now follows from Theorem 4.5.5.

To examine the existence and structure of connecting orbits between the Morse sets, one
may apply the Conley index for which we refer the reader to Conley (1978). Further, the
connection between Morse-decompositions and Lyapunov functions could be of particular
interest in reaction network theory (Patrao, 2007).
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4.6 Examples

In this section, we apply the main result, in the form of Corollary 4.5.9, on reaction networks
displaying a range of different dynamical properties.

4.6.1 1D Reaction Networks

Example 4.6.1. The logistic network from the introduction, giving rise to Keizer’s paradox,

∅ S
α1oo

α2 **
2S

α3

ii

has the corresponding deterministic flow defined on the state space D = [0,∞) where

ẋ = (α2 − α1)x− α3x
2.

The set D0 = {0} is closed and absorbing and D1 = (0,∞) is open and invariant under ϕ.
Assuming α2 > α1, the flow may be written out explicitly,

ϕt(x) =
α2 − α1

−α3x+α2−α1
x e−(α2−α1)t + α3

,

for t ≥ 0. Thus we may explicitly see that Assumption 3 is satisfied. Note that the global
attractor is G = [0, x∗] where x∗ = α2−α1

α3
. It follows that the finest Morse decomposition of

the dynamics is given by

M1 = {0}, M2 = {x∗}

where M2 ⊂ D1 is an attractor. By Proposition 4.4.5, there is a neighborhood V0 of {0}
such that all weak∗ limit points ν of {νε}ε>0 have ν(V0) = 0. In other words: the stochastic
process exhibits quasi-stationary or metastable behavior for large volume size. In addition,
Corollary 4.5.9 implies that any weak∗ limit point of {νε}ε>0 is supported by the attractor
M2. This is indeed what happens numerically, as illustrated in Figure 4.3.
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Figure 4.3: Quasi-stationary distributions for the logistic network with α1 = 1, α2 = 3, α3 =
1. Darker colors correspond to smaller values of the scaling parameter ε.
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We have therefore resolved Keizer’s paradox in the sense that we may bridge the gap
between the deterministic and the stochastic descriptions of the underlying network which
predict fundamentally different outcomes. Note that the poisson-form of the distribution
should not come as a surprise. Indeed, when α2 > α1, the weakly reversible deficiency zero
network

S
α2−α1**

2S
α3

ii

has the same deterministic dynamics as the original network, and this related network has
a Poisson distribution with parameter α2−α1

α3
(Anderson et al., 2010). 4

Example 4.6.2. The previous example might seem obvious, as there are no non-positive
attractors. Consider now the reaction network

∅ α1← S1 2S1
α2


α3

3S1.

The deterministic rate equation under mass-action is given by

ẋ = α2x
2 − α1x− α3x

3,

defined on the state space D = [0,∞) where D0 = {0} is closed and absorbing and D1 =
(0,∞). A standard analysis of the dynamical system reveals that, under the assumption
that α2

2 > 4α1α3, a finest Morse decomposition is given by

M1 =

{
α2 −

√
α2

2 − 4α1α3

2α3

}
, M2 = {0}, M3 =

{
α2 +

√
α2

2 − 4α1α3

2α3

}
,

with G = [0,M3] being the global attractor. Here, M3 ⊂ D1 is the only positive attractor
hence by Corollary 4.5.9, the limit of the QSDs, guaranteed to exist and be unique by Hansen
and Wiuf (2018a), will be supported by this set. Again, this may be verified numerically as
seen in Figure 4.4. 4
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Figure 4.4: α1 = 8, α2 = 6 and α3 = 1. Thus M1 = {2},M2 = {0} and M3 = {4}.
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Example 4.6.3. Consider the reaction network

∅ S
α1 // 2S

α2

kk 3S
α3 **

4S
α4

jj

One may conclude by Hansen and Wiuf (2018a) that the associated stochastic process has
a unique QSD for each ε > 0 and all parameter values. The state space is D = {0} t (0,∞),
and one may readily verify that for the specific choice of parameter values α1 = 900, α2 =
320, α3 = 33, α4 = 1, the finest Morse decomposition is

M1 = {0}, M2 = {10}, M3 = {5}, M4 = {18}.

where M3 and M4 are positive attractors. As there are multiple positive attractors, we may
conclude by Corollary 4.5.9 that

supp ν ⊆ {5} ∪ {18}. (4.6.4)

Numerically, we obtain the interesting behavior of Figure 4.5. Initially, for from equilibrium,
the QSD is unimodal with a mode approaching the positive attractor {5} as ε is decreased.
For even smaller values of ε, the QSD becomes multimodal, with a second mode appearing
at the other positive attractor {18}. Continuing to decrease ε, we observe a shift and the
QSD is eventually only supported at the single positive attractor {18}. 4
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Figure 4.5: Quasi-stationary distributions for ε = 1/16, 1/32, 1/64, 1/128, 1/256, 1/512
(blue). Previous QSDs are included for comparison (grey).
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4.6.2 2D Reaction Networks

Example 4.6.5. We consider a slight alteration of the Bruxellator (Prigogine and Lefever,
1968), which was used to show the possibility of order originating from oscillations in a
system out of equilibrium (Luisi, 2006).

S1
α1→ 2S1

2S1
α2→ S1 + S2

3S1 + S2
α3→ 4S1

2S1
α4→ ∅

We may write the state space D = R2
0 as D = D0 ∪D1, where

D0 = {(x1, x2) ∈ R2
0 : x1 = 0},

D1 = {(x1, x2) ∈ R2
0 : x1 > 0}.

Thus D0 is a closed subset of D, D0 and D1 are positively ϕ-invariant and D0 is absorbing
for the random perturbations,

pε(t, x,D1) = 0,

for all ε > 0, t > 0, x ∈ D0. The deterministic rate equations are given by

ẋ1 = α1x1 − α2x
2
1 + α3x

3
1x2 − 2α4x

2
1,

ẋ2 = α2x
2
1 − α3x

3
1x2.

One may readily verify that the equilibrium points are

x∗ = (0, x2), x∗∗ =

(
α1

2α4
,
2α2α4

α1α3

)
.

where x2 ∈ R0. The linearized system is

Df(x) =

(
α1 − 2α2x1 + 2α3x

2
1x2 − 4α4x1 α3x

3
1

2α2x1 − 3α3x
2
1x2 −α3x

3
1

)
Evaluated at the equilibrium points one obtains

Df(x∗) =

(
α1 0
0 0

)
, Df(x∗∗) =

 −α1
α3α3

1

8α3
4

−α1α2
2α4

−α3α3
1

8α3
4

 . (4.6.6)

It follows that the second axis consists of repelling stationary points, and that x∗∗ is a stable
stationary point.

Note that we are not guaranteed by Hansen and Wiuf (2018a) to have a unique QSD
in this reaction network. Further, Assumption 3 is not satisfied hence we cannot conclude
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that the limit distribution ν has support contained in the positive attractor ( α1
2α4

, 2α2α4
α1α3

).
However, this behavior is exactly what is observed numerically. Figure 4.6 and 4.7 shows
QSDs corresponding to diminishing values of the scaling parameter ε for the same altered
Bruxellator, but with different rate parameters.
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Figure 4.6: α1 = 2, α2 = α3 = α4 = 1. ε = 0.075, 0.05, 0.025. Stable spiral.

Figure 4.7: α1 = α2 = 8, α3 = α4 = 1. ε = 0.25, 0.15, 0.1.

Based on the behavior for birth-death processes, one could take this as another indica-
tion of the conjecture that the weaker dissipativity allows a continuum of quasi-stationary
distributions. Note furthermore how the behavior of the QSDs νε change from large to small
values of ε. In Figure 4.6 the convergence appears regular while in Figure 4.7, the mode
switches from being close to the boundary to being at the stable stationary point. This
suggests that quasi-stationarity is only observed for vary large system size. 4

Example 4.6.7. Consider the reaction network

X
α1→ 2X

α2→ 2Y
α3→ ∅

The deficiency is δ = 4− 2− 1 = 1 and there is a single terminal strong linkage class hence
the deficiency one theorem applies and we may conclude that there is no multistationarity.
The deterministic rate equations are

ẋ1 = α1x1 − 2α2x
2
1,

ẋ2 = 2α2x
2
1 − 2α3x

2
2.
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One may readily find the equillibrium points

x∗ = (0, 0), x∗∗ =

(
α1

2α2
,

α1

2
√
α2α3

)
,

and a linearization shows that x∗ is unstable while x∗∗ is stable. In fact, it is globally stable.
It follows that the finest Morse decomposition is

M1 = {0}, M2 = {x∗∗}. (4.6.8)

It follows from Hansen and Wiuf (2018a) that for each ε > 0 there exists a unique QSD, νε
for the system hence one may apply Corollary 4.5.9 to conclude that the weak limit, ν, has
support on δx∗∗ . Note that in this case, for each ε > 0 there are two endorsed sets. 4

Figure 4.8: α1 = 10, α2 = 1, α3 = 1. x = (5, 5) is a stable equilibrium point (sink).

Example 4.6.9. To examine what happens for more complicated dynamics, we use the
following reaction network. One may readily verify that the sufficient conditions of Hansen
and Wiuf (2018a) are verified. Thus, for all ε > 0 and any choice of rate parameter, there
exists a unique quasi-stationary distribution.

2S1
// 3S1

  
S1 + 2S2

$$

∅

2S2
// 3S2

>>

The state space is given by

D = ∂R2
0 t (0,∞)2. (4.6.10)

One may, by a suitable choice of rate parameters obtain the following vector field for the
deterministic system. There is a unique positive attractor, x∗ as well as an attractor on the
second axis, x∗∗.
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Figure 4.9: The vector field of the deterministic system (blue) with orbits (red) from the
initial points (circles).

The minimal Morse-decomposition would therefore consists of the three sets

M1 = {0}, M2 = {x∗∗}, M3 = {x∗}.

As there is a unique positive attractor, it follows from Corollary 4.5.9 that νε ⇒ ν as ε→ 0,
where ν is supported by M3. In Figure 4.10, we are able to see this numerically.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 4.10: ε = 1/2, 1/4, 1/8, 1/16, 1/32, 1/64.

Choosing other rate constants, one may obtain an attracting limit cycle. However, we
are not able to display the convergence to the limit measure supported on such a limit cycle.
The problems arise due to the complexity in finding eigenvalues of a large matrix. Indeed,
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as can be seen from Figure 4.11, one would need ε ≈ 10−3 in order to capture the structure
of the limit cycle sufficiently well, which would correspond to a 108 × 108 matrix. 4
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Figure 4.11: Left: Three sample paths for the reaction network with ε = 0.1 (gray), ε = 0.01
(red) and ε = 0.001 (blue). Right: The QSD for ε = 0.083.

4.6.3 Competitive systems

The general class of dynamical systems known as competitive systems are defined by having
the off diagonal terms of the Jacobian matrix for the vector field F nonpositive. That is,
∂Fi/∂xj ≤ 0 for j 6= i, where ẋ = F (x) (Hirsch, 1982). The ecological Lotka-Volterra system
with three competing species is one such example, and one may view it as a reaction network
with underlying reaction graph as given below.

2S1
α2

##

S1 + S2

α6

{{

α3

##

2S2

α7
{{

S1

α1

cc

S2

α5

;;

S1 + S3

α10

;;

α4

// S3

α9

��

S2 + S3α8

oo

α11

cc

2S3

α12

OO

Indeed, the deterministic rate equations following mass-action is given by

ẋ1 = x1(α1 − α2x1 − α3x2 − α4x3),

ẋ2 = x2(α5 − α6x1 − α7x2 − α8x3),

ẋ3 = x3(α9 − α10x1 − α11x2 − α12x3).
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It is straightforward to verify that this system has a unique QSD for any set of rate param-
eters using Hansen and Wiuf (2018a). If in addition to Assumption 3, the set D1 contains
a unique equilibrium point x∗ and det(DF (x∗)) < 0, then as F is analytic in D1, it follows
from Theorem 1.2-1.3 Zhu and Smith (1994) that there is at least one but no more than
finitely many periodic orbits, and at least one of these is orbitally asymptotically stable.
Furthermore, from general results of Hirsch (1990), the system is Morse-Smale. In partic-
ular, by Corollary 4.5.9, the system displays quasi-stationarity and the QSDs νε converges
weakly to a measure ν supported on a union of limit cycles.

4.7 Conclusion

Using the classical scaling of Kurtz (1970, 1972, 1978), we were able to describe the stochas-
tic reaction system as a random perturbation of the corresponding deterministic reaction
system. Under the assumption of a strong dissipative flow, which also guarantees the exis-
tence of a unique QSD for all values of the scaling parameter ε (Hansen and Wiuf, 2018a),
and the existence of a minimal Morse decomposition of the dynamics, we proved that the
weak limit ν of the sequence of quasi-stationary measures νε has support contained in the
union of positive attractors for the deterministic flow. Furthermore, given the existence of a
positive attractor, the expected time to extinction scales exponentially with system size ε−1,
hence for sufficiently small ε all such systems display quasi-stationarity. This correspondence
between the stochastic and the deterministic descriptions in terms of the quasi-stationary
distributions resolves Keizer’s paradox (Keizer, 1987; Vellela and Qian, 2007).

4.7.1 Discussion of Freidlin-Wentzell Theory and Outlook

Far from equilibrium, that is for large values of the scaling parameter ε, the picture may be
radically different as illustrated in the examples. Furthermore, as this regime is what calls
for stochastic models in the first place, it would be of much interest to understand the extend
to which the limiting measure may be of use in this non-equilibrium domain. Further, as we
have seen in Example 4.6.3, when there are more than one positive attractor, the limiting
measure is believed generically to only be supported on a single one of these, and one would
like to know which of the attractors it is (Schreiber, 2016). To answer these questions, one
normally tends to Freidlin-Wentzell theory (Freidlin and Wentzell, 2012), where the large
deviation results are bootstrapped into estimates on the behavior of a process over very
long time intervals, by splitting time into finite time-intervals and exploiting the Markov
property (Shwartz and Weiss, 1995). However, this approach is developed for stationary
measures where it rests on a large-deviations principle holding on the entire state space. It
is therefore not directly applicable to quasi-stationary distributions where the absorbing set
poses challenges by essentially erasing the Markov property. Future work lies in developing
a conditional or reflecting large-deviations principle suitable for extending the main results
of Freidlin-Wentzell theory (Freidlin and Wentzell, 2012).

Indeed, under the assumptions made in this manuscript we conjecture the natural exten-
sions of Theorem 4.1, 4.2, 4.3 of Freidlin and Wentzell (2012) to hold for quasi-stationary
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measures νε. To be more specific, define the set of {i}-graphs over the set of attractors
{M1, . . . ,Mm} ' {1, . . . ,m}, denoted G{i}, to be graphs consisting of arrows m → n with
m ∈ {1, . . . ,m}\{i}, n ∈ {1, . . . ,m} such that every point m ∈ {1, . . . ,m}\{i} is the initial
point of exactly one arrow, there are no closed loops and from any point m ∈ {1, . . . ,m}\{i}
there is a path to {i}. Define the quantities

W (Mi) = min
g∈G{i}

∑
(m→n)∈g

Ṽ (Mn,Mm),

where we introduce the so called quasi-potential

Ṽ (Mi,Mj) = inf
z

I(x, T, z) : x ∈Mi, z(T ) ∈Mj , z(t) ∈ D1\
⋃
s 6=i,j

Ms, 0 < t < T

 ,

measuring how difficult a transition from the ith Morse set to the jth Morse set is (when
not passing through any others). Set Ṽ (Mi,Mj) = ∞ if no such path exists. Then for any
γ > 0 there exists a δ > 0 such that

exp(−ε(W (Mi)−min
i
W (Mi) + γ)) ≤ νε(N δ(Mi)) ≤ exp(−ε(W (Mi)−min

i
W (Mi)− γ))

In particular, as ε → 0 the QSDs νε converges weakly to a measure ν whose support is
concentrated in a small neighborhood of the union of Mi for which miniW (Mi) is attained.
In the generic case, there will be just a single such Mi. Similarly, for x ∈ D define

W (x) = min
M1,...,Mm

(W (Mi) + V (Mi, x)).

For any sufficiently small neighborhood N δ(x) of x there exists ε0 > 0 such that for ε ≤ ε0

exp(−ε(W (x)−min
i
W (Mi) + γ)) ≤ νε(N δ(x))) ≤ exp(−ε(W (x)−min

i
W (Mi)− γ))

Thus we should see exponential decay away from the support of the limiting distribution ν.
The numerical examples considered here supports this conjecture.

Birth-death processes. In the small subclass of reaction networks, that can be repre-
sented as birth-death processes, the problem of finding a large deviation principle has been
examined (Chan, 1998). However, the extension to Freidlin-Wentzell theory is still open
even for this case.

To illustrate, consider once again the logistic network, which in the stochastic case is
modeled by a birth-death process. In the deterministic case, there is a stable equilibrium at

x∗ =
α2 − α1

α3
,

provided α2 > α1, with domain of attraction (0,∞). In this simple case, one may explicitly
find the quasi-potential. Indeed, letting λ(x) denote the birth rates and µ(x) the death rates,
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then one has (Pakdaman et al., 2010)

Ṽ (x∗, x) =

∫ x

x∗
log

µ(z)

λ(z)
dz =

∫ x

x∗
log

α1z + α3z
2

α2z
dz.

We note that in the setting of stationary distributions, this function has previously been
characterized as the limit of the non-equilibrium potential under the classical scaling (An-
derson et al., 2015). This correspondence was also demonstrated (but not proved) for models
in the quasi-stationary regime, suggesting yet again that an extension should be possible.
The classical Freidlin-Wentzell theory applied to the domain (0,∞) now yields

lim
ε→0

ε logEx(τA) =
α1 log(α1/α2)− α1 + α2

α3
.

In accordance with Theorem 4.3.2, the expected time of extinction grows exponentially with
ε. However, here we obtain an analytic expression for the rate.

For the problem of determining which attractor ν is supported on in Example 4.6.3,
it is tempting to simply calculate and compare the quasi-potentials W (18) = Ṽ (5, 18) and
W (5) = Ṽ (18, 5) and conclude that the support is on the attractor with the smallest quantity.
However, this naive approach may contain a small error due to the lack of a large deviation
property all the way to 0. Furthermore, the network considered in Example 4.6.3 is not
birth-death yielding a much harder variational problem to find the quasi-potential. For
more complex reaction networks, an analytic solution is generally not be possible.
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4.8 Appendix

In this appendix, we take the opportunity to explain some of the more technical background
material. In particular, we review some of the results on chain recurrence. The purpose is to
keep the paper self contained, as equivalent results and their proofs may be found in Kifer
(1988); Faure and Schreiber (2014); Marmet (2013); Colonius and Kliemann (2014).

4.8.1 Absorption Preserving Chain Recurrence

To prove the main result, we introduced the following notion of chain recurrence, which we
repeat here for ease of reference.

Definition 4.8.1. Let {ϕt}t∈R be a flow given by an ordinary differential equation on X ⊂
Rd+ for which M0 is an invariant set. Given δ > 0, a piecewise continuous path from x to y,

x = x1, {ϕt(x1) : t ∈ [0, t1]}, {ϕt(x2), t ∈ [0, t2]} . . . {ϕt(xk), t ∈ [0, tk]}, xk+1 = y

which is uniquely defined by the sequence of points x1, . . . , xk+1 and times t1, . . . , tk such
that the following holds

d(ϕtj (xj), xj+1) < δ, ∀j = 1, . . . , k

ti ≥ T, ∀i = 1, . . . , k,

xj ∈M0 ⇒ xj+1 ∈M0, ∀j = 1, . . . , k,

is called an absorption preserving (δ, T )-pseudoorbit, or an ap (δ, T )-pseudoorbit for short.

If there exists an ap (δ, T )-pseudoorbit from x to y, we will write x <ap,δ,T y. If x <ap,δ,T y
holds for every δ > 0 and T > 0, we will write x <ap y. If x <ap y and y <ap x we write
x ∼ap y. If x ∼ap x then x is an ap-chain recurrent point. We denote by Rap the set
of ap-chain recurrent points. The relation ∼ap restricted to this set defines an equivalence
relation and the equivalence classes, [x]ap with x ∈ Rap are called ap-basic classes. We write
[x]ap <ap [y]ap if x <ap y. A maximal ap-basic class is called an ap-quasiattractor.

Lemma 4.8.2. Let x ∈ Rap. Then [x]ap ⊆ D0 ∪ [x]ap. Moreover, [x]ap is positively ϕ-
invariant (actually ϕ-invariant).

Proof. Let y ∈ [x]ap. Then there exists a sequence {yk} in [x]ap convergning to y. Thus, for
δ > 0, there exists k large enough such that d(yk, y) < δ. Let T > 0. As yk ∈ [x]ap, there
exists an ap (δ, T )-pseudoorbit (x1, t1), . . . , (xn, tn), yk linking x to yk. As we have

d(ϕtn(xn), y) ≤ d(ϕtn(xn), yk) + d(yk, y) < 2δ

The sequence (x1, t1), . . . , (xn, tn), y is an ap (2δ, T )-pseudoorbit linking x to y. Thus x <ap y.
On the other hand, assume y /∈M0 and consider an ap (δ, T )-pseudoorbit from yk to x. Then
by continuity of ϕt1 it follows that for k large enough

d(ϕt1(y), x2) ≤ d(ϕt1(y), ϕt1(yk)) + d(ϕt1(yk), x2) < 2δ
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hence y <ap x. Therefore y ∈ [x]ap and we conclude that [x]ap ⊆ D0 ∪ [x]ap as desired.

Let T, T ′, ε > 0. We may without loss of generality assume that T > T ′. As ϕt(D) is
bounded for some t > 0 sufficiently large by Assumption 3, we may assume that the map
ϕT ′ is uniformly continuous. Thus, we may find 0 < δ < ε such that d(x, y) < δ implies
d(ϕT ′(x), ϕT ′(y)) < ε. We know that there exists an ap (δ, T )-pseudoorbit (x, t1), . . . , (xn, tn), x
linking x to x. Hence d(ϕtn+T ′(xn), ϕT ′(x)) < ε and (x, t1), . . . , (xn, tn +T ′), ϕT ′(x) is an ap
(ε, T )-pseudoorbit linking x to ϕT ′(x).

For the converse, consider an ap (δ, T )-pseudoorbit given by (x, t1), . . . , (xn, tn), x linking
x to x. Note that, as t1, t2 > T , we have t1 + t2 − T ′ > T . Thus

(ϕT ′(x), t1 + t2 − T ′), (x3, t3), . . . , (xn, tn), x

is an ap (ε, T )-pseudoorbit linking ϕT ′(x) to x, as

d(ϕT ′+t1+t2−T ′(x), x3) = d(ϕt1+t2(x), x3) ≤ d(ϕt2(ϕt1(x)), ϕt2(x2)) + d(ϕt2(x2), x3) ≤ ε

for δ chosen sufficiently small. Thus x ∼ap ϕT ′(x). As T ′ > 0 was arbitrary, we conclude
that ϕt([x]ap) ⊆ [x]ap for t > 0 as desired.

Lemma 4.8.3. For x ∈ D, ω(x) ∩Rap 6= ∅

Proof. If x ∈ D0 or ω(x) ⊂ D1 then the classical result (Conley, 1978, p. 37) for chain
recurrence implies ω(x) ⊂ Rap. If x ∈ D1 and y ∈ ω(x) ∩ D0, then ω(y) ⊂ Rap and since
ω(y) ⊆ ω(x) we find ω(x) ∩Rap ⊇ ω(y) ∩Rap 6= ∅.

Lemma 4.8.4. If [x]ap is maximal, then x <ap z if and only if z ∈ [x]ap. In particular, any
ap-quasiattractor [x]ap is closed.

Proof. Let z be such that x <ap z. we must prove that z <ap x. By lemma 3.3, ω(z)∩Rap 6=
∅. Thus there exists z′ ∈ ω(z) ∩ Rap such that x <ap z <ap z

′. As z′ ∈ Rap, maximality of
[x]ap implies that z′ ∈ [x]ap. Thus z <ap x as desired. In particular, it follows from the proof

of Lemma 4.8.2 that if y ∈ [x]ap, then x <ap y hence from the above argument, y ∈ [x]ap
and thus [x]ap is closed.

Theorem 4.8.5. Let [x]ap be an isolated ap-quasiattractor in D1. Then [x]ap is an (irre-
ducible) attractor.

Proof. As [x]ap isolated, there exists an open neighborhood G ⊃ [x]ap whose closure G ⊂ D1

is compact and disjoint from other ap-basic classes. Further, as [x]ap is an ap-quasiattractor,
it follows from Lemma 4.8.4 that [x]ap is closed, and by Lemma 4.8.2 that ϕt([x]ap) ⊂ [x]ap.
As the family {ϕt, 0 ≤ t ≤ T} is equicontinuous onG, there exists another open neighborhood
W of [x]ap such that W ⊂ G and ϕt(W ) ⊂ G for all t ∈ [0, T ].

We claim that there exists δ0 > 0, T0 > 0 such that any ap (δ0, T0)-pseudoorbit starting
in a point y ∈ [x] is completely contained in W . Suppose for contradiction this was not
true. Then there would exist sequences of numbers δn → 0, Tn → ∞ and a sequence of ap
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(δn, Tn)-pseudoorbits starting at yn ∈ [x] and end at points zn ∈ G\W . As both sets [x] and
G\W are compact, we may choose converging subsequences

yni → y ∈ [x], zni → z ∈ G\W,

as i → ∞. Thus, for any δ > 0, T > 0 there is an ap (δ, T )-pseudoorbit from y to z hence
y <ap z. However, as [x] is an ap quasiattractor, we have from Lemma 4.8.4 that z ∈ [x],
which is impossible as [x] ∩G\W = ∅.

We now prove that

ϕt([x]) = [x] t ≥ 0. (4.8.6)

It suffices to get this for t = 1 since this by Lemma 4.8.2 would imply that [x] = ϕ1([x]) ⊂
ϕt([x]) for 0 ≤ t ≤ 1. Applying this result repeatedly, we would obtain [x] ⊂ ϕt([x]) for all
t ≥ 0 as required.

Thus for any y ∈ [x] we must find z ∈ [x] such that ϕ1(z) = y. If [x] consists of a
fixed point then we are done. Otherwise, we may choose ỹ ∈ [x], ỹ 6= y such that for any
sequences δn → 0, Tn →∞ there exists a sequence of ap (δn, Tn)-pseudoorbits beginning at
ỹ and ending at y which contains points vn, wn ∈W satisfying

d(ϕ1(vn), wn) < δn, ϕtk(n)(wn) = y,

for some tk(n) ≥ Tn. By compactness, we may choose a subsequence ni such that

tni → t0, vni → v, wni → w,

thus we have ỹ <ap v <ap w which, as [x] is an ap-quasiattractor, implies that v, w ∈ [x]. As
ϕt0(w) = y and ϕ1(v) = w we conclude that ϕ1+t0(v) = y. Thus, if we set

z := ϕt0(v)

we see that z ∈ [x] by Lemma 4.8.2 as v ∈ [x], and ϕ1(z) = ϕ1+t0(v) = y as desired.

Finally, we show that [x] is an attractor. By the above, we know that any ap (δ0, T0)-
pseudoorbit starting in [x] remains in W . Thus, we infer that

z ∈ U0 := {y : d(y, [x]) < δ0} ⇒ ϕt(z) ∈W, (4.8.7)

for all t ≥ 0. In the same way, we see that there exists δ1 > 0, δ1 < δ0 such that

z ∈ U1 := {y : d(y, [x]) < δ1} ⇒ ϕt(z) ∈ U0,

for all t ≥ 0. Take an arbitrary open set V ⊃ [x]. We must show that ϕt(U1) ⊂ V provided
t ≥ t(V ) is sufficiently large. Pick an open set V1 ⊃ [x] such that V 1 ⊂ V . We claim that

t(V ) := inf{t : ϕt(U0) ⊂ V1} <∞.

Indeed, otherwise there would exist a sequence zn ∈ U0 and numbers tn → ∞ such that
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ϕt(zn) /∈ V1 for all t ∈ [0, tn]. Choose a converging subsequence zni → z ∈ U0. Then
ϕt(z) /∈ V1 for all t ≥ 0. However, as ϕt(U0) ⊂ W by (4.8.7) we have ϕt(U0) ⊂ W hence
ϕt(z) ∈ W for all t ≥ 0. In other words the entire trajectory {ϕt(z), t ≥ 0} is contained
in the compact set W\V1 and thus admits a limit point and therefore an ap basic class.
However, this contradicts the fact that W\V1 is disjoint from any ap basic class. Finally, we
see that for t ≥ t(V ),

ϕt(U1) = ϕt(V )ϕt−t(V )(U1) ⊂ ϕt(V )(U0) ⊂ V1 ⊂ V.

From this and (4.8.6) it follows that
⋂
t≥0 ϕt(U0) = [x], thus [x] ia an attractor as desired.

4.8.2 Finiteness of the ap-basic Classes

In this section we prove that if the number of classes is finite, then they are isolated, and we
may use the previous subsection to conclude that ap-quasiattractors are attractors.

Assumption 5. The number of ap-basic classes in D1, {Ki}i=1,...,v, is finite. Moreover,
they are closed sets and {Ki}i=1,...,` with ` ≥ 1 are ap-quasiattractors while {Ki}i=`+1,...v

are not.

The following lemma shows that for δ small and T large, the ap (δ, T )-pseudoorbits
respect the partial order.

Lemma 4.8.8. For every θ > 0 small enough, there exists δθ ∈ (0, θ) and Tθ ∈ (1/θ,∞)
such that, if there exists an ap (δθ, Tθ)-pseudoorbit ξ0, . . . , ξn satisfying

d(ξ0,Ki) < δθ, d(ξn,Ki′) < δθ, d(ξj ,Ki) > θ,

for some i, i′ ∈ {1, . . . , v} and j ∈ {1, . . . , n}, then i 6= i′ and Ki <ap Ki′

Proof. Suppose that for every δ, T > 0, there exists an ap (δ, T )-pseudoorbit ξ0, . . . ξn such
that

d(ξ0,Ki) < δ, d(ξn,Ki′) < δ,

then we may construct an ap (δ, T )-pseudoorbit from Ki to Ki′ , hence Ki <ap Ki′ .

Hence, if Ki ≮ap Ki′ there exists δ̃ ≥ 0 and T̃ ∈ (0,∞] such that an ap (δ, T )-pseudoorbit
verifying

d(ξ0,Ki) < δ, d(ξn,Ki′) < δ,

may only exist if δ > δ̃ or T < T̃ .

Suppose now that i = i′. We will show that there exists δ̂ and T̂ such that every ap
(δ, T )-pseudoorbit ξ0, . . . , ξn verifying either δ < δ̂ or T > T̂ and

d(ξ0,Ki) < δ, d(ξn,Ki) < δ,
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doesn’t contain any point at a distance greater than θ from K1. Suppose this assertion
is false. Then we have real sequences δl → 0 and Tl → ∞ and a sequence of ap (δl, Tl)-
pseudoorbits ξl0, . . . , ξ

l
nl

satisfying

d(ξl0,Ki) < δθ, d(ξlnl ,Ki) < δθ, d(ξljl ,Ki) > θ.

Choosing θ sufficiently small, we have N θ(Ki) ⊂ D1, which is a compact set. Without loss
of generality, we may then assume that

lim
l→∞

ξl0 = x ∈ Ki, lim
l→∞

ξlnl = z ∈ Ki, lim
l→∞

ξljl = y ∈ K\N θ(Ki)

where K ⊂ M1 is a compact set. We see that x <ap y <ap z thus y ∈ Ki which contradicts
y ∈ K\N θ(Ki).

Lemma 4.8.9. For every δ0 > 0, there exists T0 > 0 such that every ap (δ0, T0)-pseudoorbit
intersects N δ0(Rap)

Proof. Let x ∈ D, γ > 0 and define

T γ(x) = inf{t ≥ 0: ϕt(x) ∈ Nγ(Rap)}.

By Lemma 4.8.3 we have ω(x) ∩Rap 6= ∅ hence T γ(x) <∞. For α > 0 denote the level sets
of T γ by

Lγα = {x ∈M : T γ(x) ≥ α}.

We wish to show that Lγα is closed. Let (xn)n∈N be a sequence of elements in Lγα converging
to y. By continuity of ϕt we see that for every t > 0, limn→∞ ϕt(xn) = ϕt(y). If t < α
then ϕt(xn) ∈ (Nγ(Rap))c which is closed. In particular, ϕt(y) /∈ Nγ(Rap) for t < α hence
y ∈ Lγα. Thus Lγα is closed. By definition, it follows that T γ is upper-semicontinuous. Thus
for any t > 0,

T γ := sup
x∈M

T γ(x) ≤ max
y∈ϕt(M)

T γ(x) + t <∞.

Taking T0 > T δ0 yields the desired.

We may now collect the results into the central Corollary used in the paper.

Corollary 4.8.10. Given δ, T > 0 there exists a family {Vi}i=1,...,v of isolating open neigh-
borhoods of the ap-basic classes {Ki}i=1,...,v, and positive constants δ1 and T1 such that

1. N δ1(Ki) ⊂ Vi for 1 ≤ i ≤ v;

2. any ap (δ1, T1)-pseudoorbit starting in Vi remains in Vi for i = 1, . . . , `.;
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3. if there exists an ap (δ1, T1)-pseudoorbit (x, t1), . . . , (xn, tn), y with x ∈ N δ1(Ki) and
y ∈ N δ1(Ki′) such that

ϕs(xj) /∈ Vi, for some j ∈ {2, . . . , n− 1}, s ∈ [0, tj ],

then i 6= i′ and Ki <ap Ki′ .

4. Every ap (δ1, T1)-pseudoorbit intersects N δ(Ras).

Proof. Choose θ ∈ (0, δ) sufficiently small so that Lemma 4.8.8 holds and let δθ be given
by this lemma. From Lemma 4.8.2 we see that the ap basic classes Ki are compact for
i = 1, . . . , v hence we may find neighborhoods Vi of Ki such that N θ(Ki) ⊂ Vi. Further, by
Theorem 4.8.5, Ki is an attractor for i = 1, . . . , ` thus we may choose the neighborhoods
such that ϕt(V i) ⊂ Vi for i = 1, . . . , `, t > 0. Now choose δ1 ∈ (0, δθ) ⊂ (0, θ) such that δ1 is
less than the δ given by Lemma 4.8.8.

Corollary 4.8.11. Under Assumption 5, there are only finitely many positive attractors.

Proof. By Corollary 4.8.10, the ap-basic classes are isolated thus by Theorem 4.8.5 the ap-
quasiattractors are attractors of which there are finitely many.

We include a small lemma on conditional probabilities.

Lemma 4.8.12. For three events A1, A2, A3 one has

P(A1) ≤ P(Ac3|A2) + P(A1|A2 ∩A3) + P(Ac2)

Proof. We simply calculate, using conditional probabilities,

P(A1) = P(A1 ∩A2) + P(A1 ∩Ac2)

= P(A1 ∩A2 ∩A3) + P(A1 ∩A2 ∩Ac3) + P(A1 ∩Ac2)

≤ P(A1 |A2 ∩A3)P(A2 ∩A3) + P(Ac3 ∩A2) + P(Ac2)

≤ P(A1 |A2 ∩A3) + P(Ac3|A2) + P(Ac2)

as desired.
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5.1 Introduction

The term quasi-stationarity is used for the phenomenon that although a system is certain to
die out eventually, it appears to be stationary over any reasonable time scale (van Doorn and
Pollett, 2013). The quasi-stationary distributions, which are stationary distributions when
we condition on the event that the process has not reached extinction, captures this vari-
ability (N̊asell, 2011). However, although a quasi-stationary distribution exists for a given
reaction network, this does not imply that quasi-stationarity is actually observed. Only
when the expected time to extinction is much longer than the expected time to reach the
quasi-stationary distribution, would the latter be of interest (Qian, 2011). In other words,
one needs to have a certain separation of time-scales (Kuehn, 2015).

The class of stochastic dynamical systems known as reaction networks, poses an intuitive
framework for modeling a range of natural phenomena where not only the entities under con-
sideration but also their interactions are of transformational form (Veloz and Razeto-Barry,
2017). The set of entities (species) may in principle be of any nature, and specifying not just
which ones interact (stoichiometry and reactions) but also quantifying how frequent they in-
teract (kinetics), we obtain the dynamical system of a reaction network. Examples abound
in biochemistry, where the language originated. Furthermore, at this cellular level, the
copy-numbers of interacting entities may be low (Elowitz et al., 2002) and stochastic effects
resulting from these small numbers may be physiologically significant (Cook et al., 2009).
In particular, extinction events occur naturally in this domain and the quasi-stationary dis-
tribution, rather than the usual stationary distribution, becomes the object of interest. We
underline that low copy-numbers occur in many other scientific disciplines where reaction
networks may be used, including social (Dittrich and Winter, 2008), economical (Veloz et al.,
2014), ecological (Shakil et al., 2015) or epidemiological (N̊asell, 2011) contexts.

Sufficient conditions for the existence and uniqueness of a quasi-stationary distribution in
stochastic reaction networks exist (Hansen and Wiuf, 2018a). However, the problem of
determining its form analytically is in general very hard, and one has to resort to either
approximations or numerical methods. Furthermore, as the state-space of the stochastic
process associated to a reaction network is in general countably infinite, even calculating
the quasi-stationary distribution numerically poses several challenges (van Doorn and Pol-
lett, 2013). Here, we present a formal way of obtaining the quasi-stationary distribution
specifically developed for reaction networks. Indeed, by a slight variation of the approach
in Pollett and Roberts (1990), we exploit a connection between a center manifold and the
quasi-stationary distribution. By splitting the reaction network into two suitably defined
sub-networks, one may apply existing knowledge about the ordinary stationary distribution
for such systems, to approximate the quasi-stationary distribution. In fact, one may consider
the stationary distribution on a subnetwork as a first approximation to the quasi-stationary
distribution on the full network. Hereby a more informative characterization is obtained,
compared to a purely numerical approach.
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The question of characterizing the stationary distribution therefore becomes of interest.
In general, the form of these distributions are only known for mono-molecular or complex
balanced networks (Jahnke and Huisinga, 2007; Anderson et al., 2010), although sufficient
conditions for their existence are satisfied for a large class of networks (Gupta et al., 2014).
It is still unknown precisely how large the class of networks having a stationary distribution
is. However, it is believed that all weakly reversible networks is contained herein. In the case
of single-species reaction networks, we provide an iterative analytic procedure for calculating
the stationary distribution.

To set notation, consider a right-continuous time-homogenous Markov process (Xt : t ≥ 0)
(Rogers and Williams, 2000), that evolves in a domain D ⊆ Rd, wherein there is a set
of absorbing states, a “trap”, A ⊂ D. The process is absorbed, also referred to as being
killed, when it hits the set of absorbing states, implying Xt ∈ A for all t ≥ τA, where
τA = inf{t ≥ 0 : Xt ∈ A} is the hitting time of A. As we are interested in the process
before reaching A, there is no loss of generality in assuming Xt = Xt∧τA . We refer to the
complement,

E := D\A,

as the set of endorsed states. For any probability distribution, µ, on E, we let Pµ and Eµ
be the probability and expectation respectively, associated with the process (Xt : t ≥ 0),
initially distributed with respect to µ. For any x ∈ E, we let Px = Pδx and Ex = Eδx .
Under suitable conditions, the process hits the absorbing set almost surely (a.s.), that is
Px(τA < ∞) = 1 for all x ∈ E, and we investigate the behavior of the process before being
absorbed (Collet et al., 2013).

Definition 5.1.1. A probability measure ν on E is called a quasi-stationary distribution
(QSD) for the process (Xt : t ≥ 0) absorbed at A, if for every measurable set B ⊆ E

Pν(Xt ∈ B | t < τA) = ν(B), t ≥ 0,

or equivalently, if there exists a probability measure µ on E such that

lim
t→∞

Pµ(Xt ∈ B | t < τA) = ν(B),

in which case we also say that ν is a quasi-limiting distribution.

We refer to Méléard and Villemonais (2012) for a proof of the equivalence of quasi-limiting
and quasi-stationary distributions.

The manuscsript is organized as follows. In section 5.2 we provide some background on
stochastic reaction network theory and introduce the decomposition of a reaction network
with a non-empty absorbing set into the inferred sub-networks, yielding a corresponding
decomposition of the rate-matrix. This allows viewing the Kolmogorov forward equation as
a linear perturbation. Section 5.3 provides a dynamical systems view on the quasi-stationary
distribution. In particular, we apply the center manifold theorem to obtain a geometrical
perspective on the QSD. This is in turn exploited to provide an iterative scheme for calcu-
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lating the QSD. Section 5.4 is devoted to finding the stationary distribution of one-species
reaction networks, where an iterative analytic procedure is provided. Finally, section 5.5 con-
tains a discussion of the assumptions needed to conclude a proper separation of time-scales
and thereby of the validity of the center manifold approach.

5.2 Reaction Network Setup

Denote the real numbers by R, the integers by Z, the natural numbers by N = {1, 2, . . . }
and the nonnegative integers by N0 = {0, 1, 2, . . . }. Further, for any set, B, let |B| denote
its cardinality and denote by 1B : D → {0, 1} the indicator function of a subset B ⊆ D.

A reaction network is a triple N = (S, C,R), where S is a finite ordered set of species1,
C is a finite set of complexes, consisting of linear combinations over N0 of the species, and
R ⊂ C × C is an irreflexive relation on C, referred to as the set of reactions (Anderson and
Kurtz, 2015; Feinberg, 1979; Gunawardena, 2003). Furthermore, R is assumed to be ordered.

We define the dimension of the reaction network, d = |S|. Any species Si ∈ S can be
identified with the unit vector ei ∈ Nd0, thus any complex y ∈ C can be identified with a
vector in Nd0. It is customary to denote an element (yk, y

′
k) ∈ R by yk → y′k ∈ R in which

case we refer to yk as the source complex and to y′k as the product complex of reaction k. We
may thus write R = {yk → y′k : k = 1, . . . , r}. Employing a standard, although slight abuse
of, notation, we identify S = {S1, . . . , Sd} with the set {1, . . . , d} and R with {1, . . . , r}. We
write the k’th reaction with the notation∑

i∈S
ykiSi →

∑
i∈S

y′kiSi,

where yki = (yk)i and y′ki = (y′k)i are the stoichiometric coefficients associated with the source
and product complexes of reaction k, respectively. Define the reaction vectors ξk = y′k − yk
and the stoichiometric matrix

Ξ = (ξ1 ξ2 . . . ξr) ∈ Nd×r0 .

The order of reaction k is the sum of the stoichiometric coefficients of the source complex,∑
i∈S yki. Finally, we define the maximum of a vector over the set R, x = maxk∈R yk, as the

entry-wise maximum, xi = maxk∈R yki.

A set of reactions R induces a set of complexes and a set of species, namely the complexes
and species that appear in the reactions. We will assume that a reaction network is always
given in this way by R, and one may then completely describe a reaction network in terms of
its reaction graph, whose nodes are the complexes and whose directed edges are the reactions.
This concise description will be employed in the rest of the paper. To avoid trivialities, we
assume R 6= ∅.

1The terminology “species” is standard. One may equally think of them as general entities or agents.
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For each reaction we specify an intensity function λk : Nd0 → [0,∞), k ∈ R, which satisfies
the stoichiometric admissibility condition:

λk(x) > 0 ⇔ x ≥ yk,

where we use the usual vector inequality notation; x ≥ y if xi ≥ yi for all i ∈ S. Thus,
reactions are only allowed to take place whenever the copy-numbers of each species in the
current state is at least as great as those of the corresponding source complex. A widely
used example is stochastic mass action kinetics given by

λk(x) = αk

d∏
i=1

yki!

(
x

yk

)
= αk

d∏
i=1

xi!

(xi − yki)!
,

for some reaction rate constants αk > 0 (Anderson and Kurtz, 2015). The idea is that
the rate is proportional to the number of distinct subsets of the molecules present that
can form the input of the reaction. It reflects the assumption that the system is well-stirred
(Anderson and Kurtz, 2015). Other examples include power law kinetics or generalized mass
action kinetics (Anderson, 2008; Horn and Jackson, 1972; Müller and Regensburger, 2012).
A particular choice of such rate functions constitute a stochastic kinetics λ = (λ1, . . . , λr) for
the reaction network N , and the pair (N , λ) is referred to as a stochastic reaction system,
or simply a reaction network with kinetics λ.

We may then specify the stochastic process (Xt : t ≥ 0) on the state space D := Nd0
related to the reaction system (N , λ). Let Xt be the vector in Nd0 whose entries are the
species counts at time t. If reaction yk → y′k occurs at time t, then the new state is
Xt = Xt− + y′k − yk = Xt− + ξk, where Xt− denotes the previous state. The stochastic
process then follows,

Xt = X0 +
∑
k∈R

Yk

(∫ t

0
λk(Xs) ds

)
ξk, (5.2.1)

where Yk are independent and identically distributed unit-rate Poisson processes (Anderson
and Kurtz, 2015; Ethier and Kurtz, 1986; Norris, 2009). This stochastic equation is referred
to as a random time change representation. We assume throughout the paper that the
process is non-explosive, so that the process is well defined.

Decomposing the Reaction Network. Let a reaction network with mass-action kinetics
(N , λ) be given. Following (Hansen and Wiuf, 2018a) we introduce the region of large copy
numbers, where all reactions may take place,

R = {x ∈ Nd0 |λk(x) > 0 ∀ k ∈ R}.

Letting DE = {x ∈ D |x 7→ R}, we may decompose the state space into a disjoint union
D = DE tDA. Here, we shall assume that DE is irreducible thus there is a single endorsed
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set, E, with corresponding absorbing set A and we may write the state space

D = A t E ⊆ Nd0.

We shall further assume A 6= ∅ and that E is a countably infinite set of transient states. We
define the set of reactions through which the stochastic process may reach the absorbing set,

RA = {k ∈ R | ∃x ∈ E : x+ ξk ∈ A},

and define the following sub-systems.

Definition 5.2.2. Given a reaction network N = (S, C,R), the sub-network with set of
reactions R′ ⊆ R is the reaction network

NR′ = (S ′, C′,R′)

where C′ = {yk, y′k ∈ C : k ∈ R′}, S ′ = {S ∈ S : S ∈ supp(C′)}. The endorsed and absorbing
networks are given, respectively, by

NE = NR\RA NA = NRA .

Without loss of generality, we may identify D = {0}tN by collapsing A to a single state
{0}. The jump-rate matrix is then given by

Q̃ =

(
0 0′

a Q

)
,

where by assumption a 6= 0, such that absorption is possible. Now, for all k ∈ R, one may
write the reaction rates αk = βkαk′ for some k′ ∈ RA and βk ∈ (0,∞). Set ε = αk′ and
let Q̃E and εQ̃A denote the rate matrices for the endorsed and absorbing reaction network
respectively. Then it is always possible to decompose the full rate-matrix Q̃ into the sum of
two conservative rate-matrices

Q̃ = Q̃E + εQ̃A, where Q̃E =

(
0 0′

0 QE

)
, εQ̃A = ε

(
0 0′

b QA

)
where QE , QA, b are constant in ε. We assume that E is positive-recurrent for QE . Then
there exists a unique invariant probability measure, ρ, for QE . Thus if we had ε = 0, any
stationary distribution π on D, would be a mixture of φ′ = (1, 0, . . . ) and ψ′ = (0, ρ′). Hence,
writing Kolmogorov’s forward equation as

dp′

dt
= p′(Q̃E + εQ̃A), (5.2.3)

we can interpret εQ̃A as a perturbation of the linear system (Kuehn, 2015). As φ and ψ
are the only stationary measures, and thus eigenvectors with corresponding eigenvalue 0, we
seek a two-dimensional centre manifold. The aim is to modify this, taking into account the
perturbation, to obtain the QSD.
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Example 5.2.4. Consider as an example the classical example of Keizer’s paradox.

∅ S
α1oo

α2 **
2S

α3

ii

It follows that the full rate matrix is

Q̃ =


0 0 0 0 0
α1 −α1 − α2 α2 0 0
0 2α1 + 2α3 −2α1 − 2α2 − 2α3 2α2 0
0 0 3α1 + 6α6 −3α1 − 3α2 − 6α3 3α2

0 0 0
. . .

. . .


The endorsed and absorbing set are

E = N, A = {0},

respectively, where E is irreducible. Thus RA = {S → ∅} and we find the endorsed and
absorbing networks

NE : S
α2 **

2S
α3

ii NA : S
α1 // ∅

Treating α1 as a small parameter ε one obtains the decomposition

Q̃ = Q̃E + εQ̃A

with the constant rate matrices given by

Q̃E =


0 0 0 0 0
0 −α2 α2 0 0
0 2α3 −2α2 − 2α3 2α2 0
0 0 6α6 −3α2 − 6α3 3α2

0 0 0
. . .

. . .

 Q̃A =


0 0 0 0 0
1 −1 0 0 0
0 2 −2 0 0
0 0 3 −3 0

0 0 0
. . .

. . .


for the endorsed and absorbing sub-networks, respectively. 4

5.3 A Dynamical Systems Perspective

Given an initial distribution µ on N0, let p′ = (p0, p1, . . . ) denote the probabilities given by

pj(t) = Pµ(Xt = j), j ≥ 0, t ≥ 0,

which then satisfy Kolmogorov’s forward equation

dp′

dt
= p′Q̃, p(0) = µ. (5.3.1)
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Following (Pollett and Roberts, 1990), define

νj(t) := Pµ(Xt = j | t < τA) =
Pµ(Xt = j, t < τA)

Pµ(t < τA)
=

pj(t)

1− p0(t)
, j > 0, t ≥ 0

It then follows that ν(t) converges to a QLD, (and thus a QSD), ν for t → ∞, where
ν ′ = (ν1, ν2, . . . ). Substituting this into the Kolmogorov forward equation we find

dp0(t)

dt
= ν ′(t)a(1− p0(t)),

and, letting pE = (p1, p2, . . . ) one obtains

dν ′

dt
(1− p0(t))− ν ′(t)dp0

dt
=
dp′E
dt

= p′EQ = ν ′(t)Q(1− p0(t)).

Thus we find the non-linear Riccati system of differential equations for ν(t),

dν ′

dt
= ν ′Q+ (ν ′a)ν ′. (5.3.2)

One should therefore expect that potential QLDs are stationary points for (5.3.2). As QLDs
are QSDs, we rediscover the condition for being a QSD

ν ′Q = −(ν ′a)ν ′ = −θ(ν)ν ′.

5.3.1 Center Manifold

In this section, to avoid subtle problems with the spectral theory of operators, and as we
are interested in a numerical scheme for calculating QSDs, we assume that one may consider
a sufficiently large truncated state space, to contain the dynamics. Thus we have D =
{0} ∪ {1, . . . , N} for some N ∈ N. We treat ε as a parameter and consider systems of the
canonical form

ẋ = Ax+ f(x, y, ε),

ẏ = By + g(x, y, ε), (5.3.3)

ε̇ = 0

where the functions f, g ∈ C2 satisfy that f(0, 0, 0) = 0, g(0, 0, 0) = 0 and ∇f(0, 0, 0) =
0,∇g(0, 0, 0) = 0. Further, A ∈ Rc×c is a matrix having eigenvalues with zero real parts and
B ∈ R(N+1−c)×(N+1−c) is a matrix having eigenvalues with negative real parts. We assume
that the functions f, g are sufficiently differentiable. Recall that a center manifold for (5.3.3)
is an invariant manifold which can locally be represented as follows

W c(0) = {(x, y, ε) ∈ Rc × RN+1−c × R | y = h(x, ε), |x| < δ, |ε| < δ̄, h(0, 0) = 0, Dh(0, 0) = 0}

for δ, δ̄ sufficiently small (Wiggins, 2003). The center manifold is also referred to as a slow
manifold , as the evolution on W c is slow due to the eigenvalues of A having zero real part
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(Pollett and Roberts, 1990). We have the following central theorem (Wiggins, 2003; Pollett
and Roberts, 1990)

Theorem 5.3.4 (Center Manifold Theorem). There exists a center manifold for (5.3.3).
Further, the dynamics of (5.3.3) restricted to the center manifold is, for u and ε sufficiently
small, given by the c+ 1-dimensional vector field

u̇ = Au+ f(u, h(u, ε), ε), (5.3.5)

ε̇ = 0.

If the zero solution of this system is stable, so is the zero solution of the full system, and
there exists a solution of (5.3.5) such that, as t→∞

x(t) = u(t) +O(exp(−γt)),
y(t) = h(u(t), ε) +O(exp(−γt)),

for some γ > 0, where (x, y, ε)′ is any solution of (5.3.3) with (x(0), y(0), ε) sufficiently close
to 0. In particular, the flow on W c is given by (5.3.5).

To apply the center manifold theorem, our first step is to put the forward equation,

dp′

dt
= p′(Q̃E + εQ̃A),

obtained in (5.2.3) into the canonical form of (5.3.3). It is known from the Perron-Frobenius
theorem that the eigenvalues of Q̃E lie in the negative half-plane, and that 0 is an eigen-
value of multiplicity 2. If Q̃E is diagonalizable (this will be the generic case as the set of
diagonalizable matrices is dense in the set of all complex matrices), one may obtain

UQ̃EU
−1 = D̃ (5.3.6)

where D̃ = diag[0, 0, d1, d2, . . . ] is a diagonal matrix. Let D = diag[d1, d2, . . . ] and p′ = z′N
with z′ = (x′, y′). It then follows that

dz′

dt
= p′(Q̃EN

−1 + εQ̃AU
−1) = z′D̃ + εz′UQ̃AU

−1, (5.3.7)

which we may then write in the canonical form,

dx′

dt
= f ′(x, y, ε),

dy′

dt
= y′D + g′(x, y, ε), (5.3.8)

dε

dt
= 0

It follows from the center manifold theorem, that there exists a center manifold, W c, consist-
ing of points (x, y, ε) such that y = h(x, ε). Solutions to (5.3.8) approach W c exponentially
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fast as t→∞ and, on W c, the flow u′ = (u0, u1) is governed by

du′

dt
= f(u, h(u, ε), ε).

Performing the transformation p′ = z′U , we obtain a center manifold in the space of total
probabilities (Pollett and Roberts, 1990).

The Center Manifold in p-space. To obtain the center manifold, we follow Pollett and
Roberts (1990). Here it was argued that one should look for a two-dimensional manifold
spanned by the limiting distribution φ and another distribution ϕ assigning positive prob-
ability to each state in E. Indeed, these are orthogonal eigenvectors with zero eigenvalues.
Further, the span of these vectors intersect the p-space in a line, yielding our effective center
manifold. Suppose therefore that one may write p(t) = f(x(t)) where x′ = (x0, x1) is a
non-negative vector such that x0 + x1 = 1 and

f(x) = x0φ+ x1ϕ,

where ϕ′ = (0,m′) is some probability distribution over E. Further, the exponential conver-
gence implies that the change in weights follows dx/dt = g(x) where

g′(x) = x′
(

0 0
η −η

)
, (5.3.9)

for η > 0. Inserting this in the Master equation (5.3.1), we arrive at the equation

f ′Q̃ = g′∇xf.

Substituting for Q̃, f and g we find

x1(m′a,m′Q) =
(
x0φ

′ + x1ϕ
′) Q̃ = f ′Q̃ = g′∇xf = x1

(
η −η

)(φ′
ϕ′

)
= x1(η,−ηm′).

Hence, in the non-trivial case where x1 6= 0 we arrive at the equations

m′a = η, m′Q = −µm′,

that is

m′Q = −(m′a)m′,

which is exactly the condition for being a QSD (Collet et al., 2013). We conclude that m = ν
and it follows that the center manifold, W c, is the line in p-space connecting the points φ
(the limiting distribution) and ν (a quasi-stationary distribution) depending on ε (Pollett
and Roberts, 1990). Further, on W c, the flow approximating that of p(t) is

p(t) = f(x(t)) = x0(t)

(
1
0

)
+ x1(t)

(
0
ν

)
(5.3.10)
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where x(t) satisfies the differential equation (5.3.9), that is, the probabilities over E decay
to 0 exponentially, although at a very slow rate. It was argued in Pollett and Roberts (1990)
that η is related to the decay parameter as η ≤ θ∗.

p0
p1

p2

ν

φ p0
p1

p2

ν

φ

Figure 5.1: Schematic presentation of the center manifold in p-space.

Observability of Quasi-stationarity. To justify the center manifold reduction, one needs
to argue that the convergence from any initial distribution onto the slow manifold happens
sufficiently quick. For this, one may employ a spectral gap analysis. Indeed, if the spectral
gap of Q̃E is much larger than 0, then we may observe quasi-stationarity for a range of
comparatively smaller values of the parameter ε (Childs and Keener, 2012). Note that as we
have assumed QE has a stationary distribution, results connected to the spectrum is more
readily available. Indeed, for birth-death processes, still on a truncated state space, one may
employ a general procedure whereby a lower bound for the spectral gap may be computed
(Granovsky and Zeifman, 1997). It was argued in Childs and Keener (2012) that this pro-
cedure can be bootstrapped to the non-truncated case by letting the size of the truncation
go to infinity.

An Iterative Scheme for the QSD. One may exploit the connection between the center
manifold and the QSD, ν. Indeed, if one can approximate the former through an approxi-
mation of f , one will as a byproduct have approximated the QSD. In fact, one may do so to
an arbitrarily small degree of error. We follow Pollett and Roberts (1990), where a method
avoiding the change of variable is explained. Substituting (5.3.10) into the master equation,
we find that

f ′Q̃E + εf ′Q̃A =
dp′

dt
=
df(x(t))′

dt
= g′∇xf,

that is

f ′Q̃E = g′∇xf − εf ′Q̃A, (5.3.11)
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where we may consider the terms on the right hand side small (Pollett and Roberts, 1990).
Using that the solution to the Kolmogorov forward equation my be written as an exponential
function, which is analytic, we can write f and g in the expansion

f(x) =
∞∑
n=0

fn(x), g(x) =
∞∑
n=1

gn(x),

where fn, gn are terms of order n in ε. Further, one may by Pollett and Roberts (1990)
obtain the following iterative scheme

f ′0Q̃E = 0,

f ′nQ̃E =

∞∑
m=1

g′m∇xfn−m − εf ′n−1Q̃A, n ≥ 1. (5.3.12)

In the setting of reaction networks introduced in Section 5.2, we then have the following
iterative scheme for the quasi-stationary distribution.

Theorem 5.3.13. Suppose the reaction network (N , λ) has a quasi-stationary distribution,
ν, and that the corresponding rate matrix allows a slow manifold reduction. Further, assume
that the endorsed reaction network NE has a stationary distribution ρ. Then

ν =
∞∑
n=0

ρnε
n,

where

ρ0 = ρ, ρn = (Q′E)−1

(
−Q′Aρn−1 −

n−1∑
m=0

(ρ′mb)ρn−m

)
, n ≥ 1

Proof. We prove the statement by induction on n. For n = 0 we have the equation f ′0Q̃E = 0
which has the solution

f0(x) = x0φ+ x1ρ.

With f0(x) = x0φ+ x1ψ and φ′ = (1, 0, . . . ) and ψ′ = (0, ρ′), we find

f ′1Q̃E = g′1∇xf0 − εf ′0Q̃A

= g′1

(
1 0′

0 ρ′

)
− ε(x0φ

′ + x1ψ
′)

(
0 0′

b QA

)
= g′1

(
1 0′

0 ρ′

)
− εx1(0, ρ′)

(
0 0′

b QA

)
(5.3.14)

Multiplying with the eigenvector of Q̃E , (1, 0′) (with eigenvalue 0), we get
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g′1

(
1
0

)
= g′1

(
1 0′

0 ρ′

)(
1
0

)
= εx1(0, ρ′)

(
0 0′

b QA

)(
1
0

)
= εx1(0, ρ′)

(
0
b

)
= εx1ρ

′b.

And if we multiply by the other eigenvector (0, 1′) (with eigenvalue 0) we get, using that the
row sums of QA is −b and ρ is a probability measure

g′1

(
0
1

)
= g′1

(
0

ρ′ · 1

)
= g′1

(
1 0′

0 ρ′

)(
0
1

)
= εx1(0, ρ′)

(
0 0′

b QA

)(
0
1

)
= εx1(0, ρ′)

(
0
−b

)
= εx1(−ρ′b).

We therefore see that

g′1 = εx′
(

0 0
ρ′b −ρ′b

)
. (5.3.15)

Substituting back into (5.3.14) one finds

f ′1Q̃E = g′1

(
1 0′

0 ρ′

)
− εx1(0, ρ′)

(
0 0′

b QA

)
= εx′

(
0 0
ρ′b −ρ′b

)(
1 0′

0 ρ′

)
− εx1(0, ρ′)

(
0 0′

b QA

)
= εx1

(
ρ′b (−ρ′b)ρ′

)
− εx1

(
ρ′b ρ′QA

)
= εx1

(
0 −ρ′QA − (ρ′b)ρ′

)
.

Setting ρ′1 = (−ρ′QA − (ρ′b)ρ′)(QE)−1, we may write this as

f ′1 = εx1

(
0 ρ′1

)
in agreement with the desired. We can then find ρ2 as follows

f ′2Q̃E = g′1∇xf1 + g′2∇xf0 − εf ′1Q̃A

= ε2x′
(

0 0
ρ′b −ρ′b

)(
0 0
0 ρ′1

)
+ g′2

(
1 0′

0 ρ′

)
− ε2x1

(
0 ρ′1

)(0 0
b QA

)
= ε2x1

(
0 −ρ′bρ′1

)
+ g′2

(
1 0′

0 ρ′

)
− ε2x1

(
ρ′1b ρ′1QA

)
.

Multiplying with the eigenvector of Q̃E , (1, 0′), we get

g′2

(
1
0

)
= ε2x1ρ

′
1b. (5.3.16)
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And multiplying by the other eigenvector (0, 1′) one finds, using that the row sums of QA is
−b and ρ is a probability measure and ‖ρ1‖1 = 0,

g′2

(
0
1

)
= g′2

(
1 0′

0 ρ′

)(
0
1

)
= ε2x1

(
ρ′1b ρ′1QA

)(0
1

)
= −ε2x1ρ

′
1b,

thus

g′2 = ε2x′
(

0 0
ρ′1b −ρ′1b

)
. (5.3.17)

We get

f ′2Q̃E = ε2x1

(
0 −ρ′bρ′1

)
+ g′2

(
1 0′

0 ρ′

)
− ε2x1

(
ρ′1b ρ′1QA

)
= ε2x1

(
0 −ρ′bρ′1

)
+ ε2x′

(
0 0
ρ′1b −ρ′1b

)(
1 0′

0 ρ′

)
− ε2x1

(
ρ′1b ρ′1QA

)
= ε2x1

(
0 −ρ′1QA − ρ′1bρ′ − ρ′bρ′1

)
.

Setting ρ′2 = (−ρ′1QA − ρ′1bρ′ − ρ′bρ′1)(Q′E)−1 it follows that one may write

f ′2 = ε2x1

(
0 ρ′2

)
,

as desired. In general suppose that the statement of the proposition holds for some n ≥ 2.
Then in particular f ′n = εnx1

(
0 ρ′n

)
hence

εf ′nQ̃A = εn+1x1

(
0 ρ′n

)
Q̃A, (5.3.18)

and multiplying with the two eigenvectors (1, 0′) and (0, 1′) respectively we infer that

g′n+1 = εn+1x′
(

0 0
ρ′nb −ρ′nb

)
. (5.3.19)

From the iterative scheme (5.3.12) one then finds

f ′n+1Q̃E =

∞∑
m=1

g′m∇xfn−m+1 − εf ′nQ̃A

=

∞∑
m=1

εmx′
(

0 0
ρ′m−1b −ρ′m−1b

)
∇xεn−m+1x1

(
0 ρ′n−m+1

)
− εf ′nQ̃A

= εn+1

( ∞∑
m=1

x1

(
ρ′m−1b −ρ′m−1b

)(1n+1(m) 0′

0 ρ′n−m+1

)
− x1

(
0 ρ′n

)
Q̃A

)
= εn+1x1

(
0 −

∑∞
m=0(ρ′mb)ρn−m − ρ′nQA

)
.

Thus we conclude that
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ρ′n+1 =

(
−ρ′nQA −

∞∑
m=0

(ρ′mb)ρn−m

)
(QE)−1, (5.3.20)

which is the desired upon transposing.

One may immediately obtain the following very natural result, when the leakage, by
means of ε, tends to zero.

Corollary 5.3.21. Let ν be the quasi-stationary distribution for N and ρ the stationary
distribution for NE . Then ‖ν − ρ‖TV → 0 as ε→ 0.

The way we have constructed the division of the original reaction network, N , into
the smaller sub-networks NE and NA allows us to exploit some of the existing results in
stochastic reaction network theory. In particular, using the result of Anderson et al. (2010),
we find that if the endorsed network NE is weakly reversible and has deficiency zero, then the
quasi-stationary distribution for N is approximated by a product-form poisson distribution.

Example 5.3.22. Returning to the logistic network giving rise to Keizer’s paradox,

∅ S
α1oo

α2 **
2S

α3

ii

The endorsed network, NE , is given by

S
α2 **

2S
α3

ii

which is weakly reversible and has deficiency 0. Thus it has a poisson-form distribution,

ρ0(x) =
1

Z

cx

x!
e−c, x ∈ N

where c = α2/α3 is the complex balanced equilibrium.
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Figure 5.2: Left: The first 6 approximations of the QSD. Right: The error compared to exact
eigenvalue computation in 1-norm. There is an exponential convergence, ε ≈ O(e−1.3n). Here
α1 = 1, α2 = 5, α3 = 1.
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This is a first approximation to the QSD ν by Theorem 5.3.13. Calculating further terms
in the sum, one may approximate ν to any degree desired, see Figure 5.2.

Example 5.3.23. Consider the semi-reversible Lotka-Volterra network,

S1
α1


α2

2S1

S1 + S2
α3


α4

2S2

S2
α5→ ∅

S2

S1

Only through the reaction S2 → ∅ may the absorbing set be reached hence the endorsed
and absorbing networks are given by

NE : S1

α1 ++
2S1

α2

jj

S1 + S2

α3 ++
2S2

α4

mm

NA : S2
α5 // ∅

The endorsed network is weakly reversible and has deficiency 0. Furthermore, the en-
dorsed set is irreducible. We conclude that for sufficiently small values of the rate α5, the
quasi-stationary distribution for the semi-reversible Lotka-Volterra network is approximated
by the product form poisson distribution

ρ(x) =
1

Z

(α1
α2

)x1(α1α3
α2α4

)x2

x1!x2!
e
−
(
α1
α2

+
α1α3
α2α4

)
, x ∈ E.

where Z is a normalizing constant.

5.4 Limit Distributions for One-species Reaction Networks

When the endorsed network is neither mono-molecular nor complex balanced, not much
is known about the form of the stationary distribution. Here, we present a scheme for
calculating it analytically, in the case of one-species mass-action reaction networks. These
may be seen as generalizations of birth-death processes. The first step is to have sufficient
conditions for the existence of a unique limit distribution. Define the total rate out of the
highest order complex, ymax, to be

α+ =
∑

k∈R:y=ymax

αkξk
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Then we have the following proposition.

Proposition 5.4.1. If α+ < 0 and each endorsed set contains a unique minimal irreducible
class, then the process is exponentially ergodic. In particular, it has a unique stationary
distribution.

Proof. By Gupta et al. (2014) and Hansen and Wiuf (2018a) it suffices to find constants
c1, c2 > 0 such that the following negative drift condition holds for all x ∈ N0∑

k∈R
λk(x)(V (x+ ξk)− V (x)) ≤ c1 − c2V (x), (5.4.2)

where V is a Lyapunov function. Simply take V : N0 → R0 to be the identity V (x) = x.
Then V (x)→∞ as x→∞ as required. The statement then reduces to

F (x) :=
∑
k∈R

λk(x)ξk ≤ c1 − c2x, (5.4.3)

for all x ∈ N0. As α+ < 0 it follows that F (x) < 0 for x sufficiently large. If F (x) < 0 for
all x ∈ N0 then the process would not be bounded in N0, thus we conclude that there exists
a zero of F . Let x∗ − 1 be the largest zero of F and define

c1 = max{F (x) : 0 ≤ x ≤ x∗} − x∗F ′(x∗), c2 = −F ′(x∗). (5.4.4)

Note that since x∗ − 1 is the largest zero and α+ < 0 we must have F ′(x∗) < 0. Therefore,
c1, c2 > 0 as required. Now, for x ≤ x∗ we see that

F (x) ≤ max{F (x) : 0 ≤ x ≤ x∗} − (x∗ − x)F ′(x∗) = c1 − c2x,

and for x > x∗ we find, as F is concave on this segment,

F (x) ≤ F (x∗) + F ′(x∗)(x− x∗) ≤ F ′(x∗)x− x∗F ′(x∗) (5.4.5)

≤ −x∗F ′(x∗) + max{F (x) : 0 ≤ x ≤ x∗}+ F ′(x∗)x = c1 − c2x.

We conclude that the process is exponentially ergodic.

Corollary 5.4.6. A weakly reversible one-species network with mass-action kinetics has a
unique non-degenerate stationary distribution.

Proof. As the network is weakly reversible, the highest order complex can have no reactions in
the positive direction. In particular α+ < 0 and there exists a unique stationary distribution.
Similarly, by weak reversibility, the complex of lowest order must have a reaction in the
positive direction and the stationary distribution cannot be degenerate.

The question of whether weak reversibility is a sufficient condition for a reaction network
of any dimension to have a stationary distribution is an active area of research, and it is
generally believed that this should be the case.
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5.4.1 Solving the Master Equation

To find the stationary distribution in one-species reaction networks, we devise a procedure
to solve the Master equation. Let Ω be the set of jump sizes,

Ω = {ω ∈ N | ∃k ∈ R : |ξk| = ω}.

For ω ∈ Ω divide the set of reactions into positive and negative jumps with jump-size ω

Rω− = {k ∈ R | ξk = −ω}, Rω+ = {k ∈ R | ξk = ω}.

Finally, define the following quantities coming from the mass-action rates

aωx =
∑
k∈Rω−

αkx
yk , bωx =

∑
k∈Rω+

αkx
yk .

where xy denotes the falling factorial. Note that when Ω = {1}, these quantities reduce to
variable death and birth rates respectively. Now, letting px(t) = P(X(t) = x), We may write
Kolmogorov’s forward equation, also referred to as the master equation, as

ṗx(t) =
∑
k∈R

λk(x− ξk)px−ξk(t)−
∑
k∈R

λk(x)px(t). (5.4.7)

The stationary distribution, π, is found at equilibrium hence

0 =
∑
k∈R

λk(x− ξk)πx−ξk −
∑
k∈R

λk(x)πx

=
∑
ω∈Ω

∑
k∈Rω−

αk(x+ ω)ykπx+ω(t) +
∑
ω∈Ω

∑
k∈Rω+

αk(x− ω)ykπx−ω

−
∑
ω∈Ω

∑
k∈Rω−

αkx
ykπx −

∑
ω∈Ω

∑
k∈Rω+

αkx
ykπx

=
∑
ω∈Ω

aωx+ωπx+ω +
∑
ω∈Ω

bωx−ωπx−ω −
∑
ω∈Ω

aωxπx −
∑
ω∈Ω

bωxπx.

We arrive at the following form of the master equation

∑
ω∈Ω

πx−ωb
ω
x−ω − πx

(∑
ω∈Ω

aωx + bωx

)
+
∑
ω∈Ω

πx+ωa
ω
x+ω = 0, x ≥ 0. (5.4.8)

Note that the sums are finite since the set of jump-sizes Ω is bounded.

Proposition 5.4.9. One may write the Master equations as

∞∑
i=1

πx−i

∑
ω≥i

bωx−i

 =
∞∑
i=1

∑
ω≥i

πx+ω−ia
ω
x+ω−i, x ≥ 0. (5.4.10)
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Proof. Inserting x = 0, the left hand side is readily seen to be zero, while the fact that
aωx = 0 for x < ω implies that the right hand side is zero. Now, suppose (5.4.10) holds for
some x ≥ 0. One may write this as

πx
∑
δ>0

aωx =
∞∑
i=1

πx−i

∑
ω≥i

bωx−i

− ∞∑
i=1

∑
ω>i

πx+ω−ia
ω
x+ω−i. (5.4.11)

From the Master equation (5.4.8) it follows that∑
ω>0

πx+ωa
ω
x+ω = πn

∑
ω>0

aωx + πx
∑
ω>0

bωx −
∑
ω>0

πx−ωb
ω
x−ω.

Inserting (5.4.11) and collecting the terms containing a on the left hand side and the terms
containing b on the right hand side one obtains

∑
ω>0

πx+ωa
ω
x+ω +

∞∑
i=1

∑
ω>i

πx+ω−ia
ω
x+ω−i =

∞∑
i=1

πx−i

∑
ω≥i

bωx−i

+ πx
∑
ω>0

bωx −
∑
ω>0

πx−ωb
ω
x−ω

which upon reshuffling of the indices, we may write as

∞∑
i=1

πx+1−i

∑
ω≥i

bωx+1−i

− ∞∑
i=1

∑
ω≥i

πx+1+ω−ia
ω
x+1+ω−i = 0.

The required now follows by the principle of simple induction.

Example 5.4.12.
S // 2S // 3Skk

The set of jump-sizes is Ω = {1, 2}, yielding the master equation

πx−1b
1
x−1 − πx(a2

x + b1x) + πx+2a
2
x+2 = 0, x ≥ 0

and we conclude that for x ≥ 0,

πx+1a
2
x+1 = πx−1b

1
x−1 − πxa2

x,

by Proposition 5.4.9. 4

5.4.2 The Stationary Distribution

Let λ∗ be the lowest order of a product complex in the network, and let λ∗ + 1 be the
minimal order of a reaction with largest possible jump, ω∗, in negative direction. We note
that λ∗ ≤ λ∗. Indeed, suppose for contradiction that λ∗ ≥ λ∗ + 1. As there is a reaction
in the negative direction from λ∗ + 1, the product complex is smaller than λ∗ which is a
contradiction. The next proposition shows that we can express πx in terms of πλ∗ , . . . , πλ∗ .
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Proposition 5.4.13. Let ω∗, ω
∗ ∈ Ω be the size of the largest jump in the negative and

positive directions respectively. Then

πxa
ω∗
x = πλ∗γ

(λ∗)
x + · · ·+ πλ∗γ

(λ∗)
x (5.4.14)

where for x ≥ ω∗ + λ∗

γ
(j)
x+ω∗ =

∞∑
i=0

γ
(j)
x−i

(∑
ω>i

bωx−i
aω∗x−i

)
−
∞∑
i=1

∑
ω>i

γ
(j)
x+ω−i

aωx+ω−i
aω∗x+ω−i

−
∑
ω 6=ω∗

γ
(j)
x+ω

aωx+ω

aω∗x+ω

for j = λ∗, . . . , λ
∗.

Proof. For x ≤ λ∗ the statement (5.4.14) is trivial. If x > λ∗ then in particular, we have
aω∗x 6= 0. Let x = λ∗ + 1. From the master equation (as x− ω∗ ≥ 0) we have

πxa
ω∗
x = −

∑
ω∈Ω

πx−ω∗−ωb
ω
x−ω + πx−ω∗

(∑
ω∈Ω

aωx−ω∗ + bωx−ω∗

)
−
∑
ω 6=ω∗

πx−ω∗+ωa
ω
x−ω∗+ω,

hence dividing by aω∗x it follows that πx is a linear combination of π0, . . . , πx−1, that is,
π0, . . . , πλ∗ . We may proceed inductively in the same manner, allowing us to write

πx =

λ∗∑
j=0

πjγ
(j)
x ,

for some value of γ
(j)
x , j = 0, . . . , λ∗, as desired. Now, the state space of the process is

confined to {λ∗, λ∗ + 1 . . . } since no reaction in negative direction can happen from λ∗ –
otherwise there would be a product complex of lower order. Therefore, we may view it as
π0 = · · · = πλ∗−1 = 0, yielding

πx =
λ∗∑
j=λ∗

πjγ
(j)
x ,

as required. Finally, since x > λ∗ was arbitrary, the result (5.4.14) follows. By Proposition
5.4.9 we have, for x ≥ 0

∞∑
i=1

πx−i

∑
ω≥i

bωx−i

 =
∞∑
i=1

∑
ω≥i

πx+ω−ia
ω
x+ω−i =

∞∑
i=2

∑
ω≥i

πx+ω−ia
ω
x+ω−i +

∑
ω≥i

πx+ω−1a
ω
x+ω−1

=
∞∑
i=2

∑
ω≥i

πx+ω−ia
ω
x+ω−i +

∑
ω 6=ω∗

πx+ω−1a
ω
x+ω−1 + πx+ω∗−1a

ω∗
x+ω∗−1.
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Shifting indices, we may rearrange this expression,

πx+ω∗a
ω∗
x+ω∗ =

∞∑
i=1

πx+1−i

∑
ω≥i

bωx+1−i

− ∞∑
i=2

∑
ω≥i

πx+1+ω−ia
ω
x+1+ω−i −

∑
ω 6=ω∗

πx+ωa
ω
x+ω

=

∞∑
i=0

πx−i

 ∑
ω≥i+1

bωx−i

− ∞∑
i=1

∑
ω≥i+1

πx+ω−ia
ω
x+ω−i −

∑
ω 6=ω∗

πx+ωa
ω
x+ω

=
∞∑
i=0

πx−i

(∑
ω>i

bωx−i

)
−
∞∑
i=1

∑
ω>i

πx+ω−ia
ω
x+ω−i −

∑
ω 6=ω∗

πx+ωa
ω
x+ω.

Note that all indices of π are smaller on the right-hand side than on the left-hand side.
Further, as aω∗x−i = 0 and ω > i holds if and only if x− i ≤ λ∗ and ω > i, that is if and only

if x−λ∗ < ω, we infer that the fraction
bωx−i
aω∗x−i

is well defined whenever x ≥ ω∗+λ∗. Applying

the representation (5.4.14), letting Λ = {λ∗, . . . , λ∗}, we obtain

πx+ω∗a
ω∗
x+ω∗ =

∞∑
i=0

∑
j∈Λ

πjγ
(j)
x−i

(∑
ω>i

bωx−i
aω∗x−i

)
−
∞∑
i=1

∑
ω>i

∑
j∈Λ

πjγ
(j)
x+ω−i

aωx+ω−i
aω∗x+ω−i

−
∑
ω 6=ω∗

∑
j∈Λ

πjγ
(j)
x+ω

aωx+ω

aω∗x+ω

=
∑
j∈Λ

πj

 ∞∑
i=0

γ
(j)
x−i

(∑
ω>i

bωx−i
aω∗x−i

)
−
∞∑
i=1

∑
ω>i

γ
(j)
x+ω−i

aωx+ω−i
aω∗x+ω−i

−
∑
ω 6=ω∗

γ
(j)
x+ω

aωx+ω

aω∗x+ω

 .

Thus, γ
(j)
x+ω∗ has the desired expression for all x ≥ ω∗ + λ∗.

Example 5.4.15.
A // 2A // 3Akk

We see that

ω∗ = 2, ω∗ = 1, λ∗ = 1, λ∗ = 2.

By Proposition 5.4.13 we can write πx as a combination of π1, π2

πxa
2
x = π1γ

(1)
x + π2γ

(2)
x

where for j = 1, 2

γ(j)
n = γ

(j)
n−2

b1n−2

a2
n−2

− γ(j)
n−1, n ≥ 5



134 Chapter 5. Description of QSDs in RNs using a Slow Manifold Reduction

By Proposition 5.4.9 we furthermore have γ
(1)
1 = 1, γ

(1)
2 = 0, γ

(2)
1 = 0, γ

(2)
2 = 1, γ

(1)
3 = b11 =

α1, γ
(2)
3 = −a2

2 = 0, γ
(1)
4 = −b11 = −α1 and γ

(2)
4 = b12 + a2

2 = b12 = 2(α1 + α2). 4

Example 5.4.16.

A
α1 **

3A
α2

ii

It follows that

ω∗ = 2, ω∗ = 2, λ∗ = 1, λ∗ = 2.

By Proposition 5.4.13 we can write πx as a combination of π1, π2,

πxa
2
x = π1γ

(1)
x + π2γ

(2)
x ,

where for j = 1, 2

γ(j)
x = γ

(j)
x−3

b2x−3

a2
x−3

+ γ
(j)
x−2

b2x−2

a2
x−2

− γ(j)
x−1, x ≥ 6.

Using Proposition 5.4.9 we can write the first terms γ
(1)
1 = γ

(2)
1 = γ

(1)
2 = γ

(2)
2 = 0, γ

(1)
3 =

b21 = α1, γ
(2)
3 = 0, γ

(1)
4 = 0, γ

(2)
4 = b22 = 2α1, γ

(1)
5 = b21

b23
a23

, γ
(2)
5 = 0. It follows that one may

obtain the expressions

γ(1)
x =

{
γ

(1)
x−2

b2x−2

a2x−2
x odd

0 x even
, γ(2)

x =

{
0 x odd

γ
(2)
x−2

b2x−2

a2x−2
x even

for x ≥ 5. This in turn yields the representation

πxa
2
x =

π1γ
(1)
x−2

b2x−2

a2x−2
x odd

π2γ
(2)
x−2

b2x−2

a2x−2
x even

for x ≥ 5. In fact, we can even write it explicitly in this case, for x ≥ 3,

πx =

π1
b21
a2x

∏(x−3)/2
i=1

b2x−2i

a2x−2i
, x odd

π2
b22
a2x

∏(x−4)/2
i=1

b2x−2i

a2x−2i
, x even

Of course, as the network is weakly reversible and has deficiency zero, we know for this
particular case that the stationary distribution has a poisson form for each of the irreducible
classes (Anderson et al., 2010). 4

It follows by Proposition 5.4.13 that we may characterize the entire distribution once
πλ∗ , . . . , πλ∗ are known. In some cases, one way to obtain these is through the probability
generating function, G(z) =

∑
x∈E πxz

x, which for one-species systems may be characterized
through an ODE of a particular simple form.
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Lemma 5.4.17. For simplicity, assume E = N0. The differential equation for the probability
generating function, G(z), of the stationary distribution of a one-species reaction network is
given by ∑

k∈R
αk(z

yk+ξk − zyk)G(yk)(z) = 0,

where G(n)(z) denotes the nth derivative of G.

Proof. The master equation (5.4.7) at equilibrium takes the form∑
k∈R

λk(x− ξk)πx−ξk −
∑
k∈R

λk(x)πx = 0.

Multiplying through by zx and summing over x ∈ N0 we obtain

∑
k∈R

∞∑
x=0

λk(x− ξk)πx−ξkz
x −

∑
k∈R

∞∑
x=0

λk(x)πxz
x = 0.

Using the form of mass action kinetics, and rearranging terms,

∑
k∈R

αkz
ξk+yk

∞∑
x=0

xykπxz
x−yk −

∑
k∈R

αkz
yk

∞∑
x=0

xykπxz
x−yk = 0.

As G(z) =
∑∞

x=0 πxz
x we may write this as∑
k∈R

αkz
ξk+ykG(yk)(z)−

∑
k∈R

αkz
ykG(yk)(z) = 0,

whence upon collecting terms yields the desired.

Example 5.4.18. To Illustrate the approach, consider the following reaction network

0
α1 // A

α2 // 2A
α3

kk

Applying Lemma 5.4.17, we can write down the governing differential equation of the prob-
ability generating function,

α3G
′′(z)(1− z2)− α2G

′(z)(z − z2)− α1G(z)(1− z) = 0.

Using that G(1) = 1, one may obtain the solution

G(z) =
1F1

(
α1
α2
, α2
α3
, α2(z+1)

α3

)
1F1

(
α1
α2
, α2
α3
, 2α2
α3

) ,
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where qFp is the generalized hypergeometric function (Riley et al., 2006). Now, using Propo-
sition 5.4.9 we find

a2
x+1πx+1 = πx−1b

1
x−1 − πxa2

x, x ≥ 0.

Thus,

π2 = π0
b10
a2

2

= π0
α1

2α3
, π3 =

π0b
1
0 + π1b

1
1

a2
3

= π0
−α1

6α3
+ π1

α2 + α1

6α3
,

and from Proposition 5.4.13 we get

πx = π0
γ

(0)
x

a2
x

+ π1
γ

(1)
x

a2
x

,

where γ
(0)
2 = α1, γ

(1)
2 = 0, γ

(0)
3 = −α1, γ

(1)
3 = α2 + α1 and for x ≥ 4,

γ(j)
x = γ

(j)
x−2

b1x−2

a2
x−2

− γ(j)
x−1 = γ

(j)
x−2

α1 + α2(x− 2)

α3(x− 2)(x− 3)
− γ(j)

x−1,

for j = 0, 1. Thus, knowing π0 and π1 is sufficient to characterize the limit distribution, and
these are given by G(0) and G′(0) respectively.

0 5 10 15 20 25 30

0

0.05

0.1

0.15

Figure 5.3: The stationary distribution π calculated in two ways. Blue cross is explicit while
orange line is through the recursions. They are identical. α = 10, β = 40, γ = 1.

In this particular example, it is in fact possible to calculate the explicit stationary dis-
tribution which is given as follows

πx =
1

x!

(
α2

α3

)x Γ(α2/α3)

Γ(α1/α2)

Γ(x+ α1/α2)

Γ(x+ α2/α3)

1F1

(
x+ α1

α2
, x+ α2

α3
, α2
α3

)
1F1

(
α1
α2
, α2
α3
, 2α2
α3

) , x ≥ 0.

Note that if α1/α2 = α2/α3 then π has is Pois(α2/α3). 4
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Example 5.4.19. Consider the following reaction network, which may exhibit multistation-
arity for certain parameter values.

0
α1 ))

A
α2

hh 2A
α3 **

3A
α4

jj

The governing differential equation for the probability generating function may be found by
Lemma 5.4.17. It is given by

α4G
′′′(z)− α3G

′′(z) + α2G
′(z)

1

z2
− α1G

′(z)
1

z2
= 0.

One may then find the general (real) solution,

G(z) = C · 2F2

([
−α3 +

√
α2

3 − 4α3α1

2α3
,
−α3 −

√
α2

3 − 4α3α1

2α3

]

,

[
−α4 +

√
α2

4 − 4α4α2

2α4
,
−α4 −

√
α2

4 − 4α4α2

2α4

]
,
α3z

α4

)
,

where C is the normalizing constant found by letting G(1) = 1. Note that if α1 = α2

and α3 = α4 then we obtain G(z) = ez−1 which is the probability generating function for
Pois(1), and x∗ = 1 is the only stable equilibrium. An explicit expression for πx is not
readily available. However, note that we immediately have

π0 = G(0) = C.

Further, from Proposition 5.4.9 and 5.4.13 we find that

π1 = π0
α1

α2
, πx = π0

γ
(0)
x

a1
x

,

where γ
(0)
x = γ

(0)
x−1

b1x−1

a1x−1
for x ≥ 2. Thus, we have completely characterized the stationary

distribution. As an example, taking the parameter values

α1 = 40, α2 = 62, α3 = 23, α4 = 1,

one obtains the following bimodal stationary distribution. 4
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Figure 5.4: The stationary distribution, π, calculated in two ways. Explicitly by differentiat-
ing the generating function and by the iterative method. α4 = 1, α3 = 23, α2 = 62, α1 = 40.

5.5 Discussion

We have devised a procedure by which one may split a reaction network, N , into two sub-
networks; the endorsed network NE , and the absorbing network NA containing all reactions
making absorption possible. Under the further assumption that there exists a stationary
measure for the stochastic process associated to NE a characterization of observability of
quasi-stationary behavior was discussed. Indeed, when the spectral gap of the generator
Q̃E is large compared to the parameter value ε, quasi-stationarity is observed. In this case,
the total probabilities p(t) will rapidly approach the center manifold, on which a very slow
convergence to the degenerate stationary measure takes place. Exploiting the relationship
between this slow manifold and the quasi-stationary distribution, we found a numerical
procedure to inductively describe this QSD.

A Numerical Procedure for One-species Reaction Networks. When the reaction
network is sufficiently complex, there may not exist an analytical solution to the probabil-
ity generating function. In such cases, one might find an estimate of the relative sizes of
πλ∗ , . . . πλ∗ , which in turn determines πx up to an unknown scaling constant. This constant
may then be found numerically by calculating the first N probabilities πx, x = λ∗, . . . , N .

Here, we sketch how on may proceed in practice. As π is a probability distribution, it
follows that limx→∞ πx = 0. Thus, form Proposition 5.4.13 we have the approximate linear
system

Gxπ :=


γ

(λ∗)
x . . . γ

(λ∗)
x

...
...

γ
(λ∗)
x+λ∗−λ∗+1 . . . γ

(λ∗)
x+λ∗−λ∗+1

π ≈ 0 (5.5.1)

with en error that can be made arbitrarily small by choosing x sufficiently large. These
λ∗−λ∗+ 1 equations define hyperplanes intersecting approximately in a straight line, giving
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the relative sizes of πλ∗ , . . . , πλ∗ . To obtain this line, we look only at the last λ∗ − λ∗
equations, which when put in reduced row echelon form yields

1 0 . . . 0 −rλ∗
0 1 . . . 0 −rλ∗+1
...

... . . .
...

...
0 0 . . . 1 −rλ∗−1

π = 0

Thus the stationary distribution approximately satisfies
πλ∗

...
πλ∗−1

πλ∗

 ≈ t


rλ∗
...

rλ∗−1

1

 (5.5.2)

for some t ∈ R. Now, choosing some t̂ > 0 at random, we find the measure π̂ through (5.5.2)
and apply Proposition 5.4.13, to numerically obtain π̂x, x = λ∗, . . . , N for some sufficiently
large N . Then

t ≈ 1∑N
x=λ∗

π̂x
. (5.5.3)

with a precision increasing with N .

Example 5.5.4. To illustrate the numerical scheme, consider the following reaction network

A
α1 // 2A

α2 // 4A
α3

kk

We find the constants

ω∗ = 3, ω∗ = 2, λ∗ = 1, λ∗ = 3.

By Proposition 5.4.13 we can write πx as a combination of π1, . . . , π3,

πxa
3
x = π1γ

(1)
x + π2γ

(2)
x + π3γ

(3)
x ,

where for j = 1, 2, 3

γ(j)
x = γ

(j)
x−4

b2x−4

a3
x−4

+ γ
(j)
x−3

b1x−3 + b2x−3

a3
x−3

− γ(j)
x−2 − γ

(j)
x−1, x ≥ 8.

Suppose we have the rate constants α1 = 10, α2 = 1, α3 = 1. Choosing x = 300, 301, 302, we
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find the approximative linear system −2.037 −41.0209 54.9297
44.1816 −4.0756 −45.8043
−42.1489 45.0969 −9.1260

π ≈ 0

These three equations define planes intersecting approximately in a straight line. Looking
only at the two last equations, we get using reduced row echelon form(

1 0 −1.15497291951308
0 1 −1.28183618136202

)
π = 0 (5.5.5)

Thus the distribution approximately satisfiesπ1

π2

π3

 ≈ t
1.15497

1.28183
1

 (5.5.6)

for some t > 0. An approximate value for t can now easily be found by truncating the space
at a sufficiently large point. 4

To provide more insight to the behavior of the sequences (γ
(j)
x )x∈N for j = λ∗, . . . , λ

∗,
one may construct the sequences of vectors for n = 0, λ∗ − λ∗,

Γnx =
(
γ

(λ∗)
n+x(λ∗−λ∗+1) . . . γ

(λ∗)
n+x(λ∗−λ∗+1)

)′
(5.5.7)

which by Proposition 5.4.13 may be seen as the normal vectors to the line defining the

stationary distribution, π. In general, there need not be a convergence of the individual γ
(j)
x

nor of Γnx or indeed their normed counterparts. However, considering Example 5.5.4, we find
three such sequences, whose behavior is depicted on Figure 5.5, and we observe a very fast
convergence to a common plane, rendering π well defined.
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Figure 5.5: α1 = 10, α2 = 10, α3 = 1. The three sequences (Γjx/‖Γjx‖)x∈N
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A proof of the convergence of Γnx to a common plane for x→∞ would not only make the
numerical procedure accurate, but also provide another route to prove existence of stationary
measures in general one-species reaction networks. There is strong numerical evidence in
favor of this convergence.

Future research lies in obtaining good bounds for the spectral gaps, of generators asso-
ciated with general reaction networks, whereby whole parameter regions for ε guaranteeing
quasi-stationarity, may be characterized. Furthermore, sufficient conditions suitable for re-
action networks guaranteeing an extension of the application of the center-manifold theorem
to infinite dimensions, whereby exact analytical results on quasi-stationary distributions on
countably infinite state space may be obtsined, is being investigated.
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6
Perspective

In this chapter we recall some of the questions raised by the previous chapters and discuss
general future directions of study in the intersection of stochastic reaction network theory
and quasi-stationarity.

In the paper by Hansen and Wiuf (2018a) we found sufficient conditions for both existence
and uniqueness of a quasi-stationary distribution for a given reaction network. The question
then becomes whether one can find weaker conditions guaranteeing only existence. Based on
the behavior of birth-death processes one should expect that Assumption 2 with η = 0 would
be sufficient for the existence of a QSD, however this problem remains open (van Doorn,
1991; van Doorn and Pollett, 2013). The conditions obtained by Hansen and Wiuf (2018a)
are both graphical and dynamical in the sense that they rely both on the reaction vectors
and the kinetics. In the spirit of reaction network theory, a more direct graphical condition
implying the existence and uniqueness of QSDs is sought for. In particular for the simplest
case of mass-action kinetics. However, the lack of complex balance in the reaction networks
under consideration poses a great obstacle. Strongly endotactic networks (Gopalkrishnan
et al., 2014), which is currently the most well studied class of reaction networks allowing
extinction events, do not entail sufficient regularity in the stochastic case. Indeed, some are
known to be explosive (Anderson et al., 2018a).

Through the work of Kurtz (1970, 1978) we established a correspondence between the
stochastic and the deterministic descriptions of the same underlying reaction network, in
terms of the quasi-stationary distributions. Again, even though strongly endotactic reac-
tion networks are both persistent and permanent, which implies that the system possesses
all the requirements needed for quasi-stationarity, the need for a strong dissipative system
reemerged in the conditions for the results of Hansen and Schreiber (2018). We believe that
if D0 is a global attractor for the semi-flow ϕt then the weak∗ limit, ν, of the quasi-stationary
distributions νε is supported on D0. As we only require the existence and not uniqueness of
the QSDs νε for each ε > 0, the question emerges of finding the weakest possible assumptions
on the flow for the results to hold.

A full extension of Freidlin-Wentzell theory to the quasi-stationary domain would allow
one, through the quasi-potential, to examine the transition times between positive attractors
and describe the extinction time in terms of rate parameters. Furthermore, it would extend
the results of Hansen and Schreiber (2018) by answering the question, in the generic case,
of which of the positive attractors the limit measure ν would be concentrated on, as well
as explain the exponential decay of νε away from the attractor, as verified by numerical
experiments (Freidlin and Wentzell, 2012; Shwartz and Weiss, 1995). However, this program
requires a conditioned or reflecting large deviations principle (Chan, 1998). Work towards
this goal has been initiated by the author.
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In computing the quasi-potential, connections to WKB theory (Assaf and Meerson, 2017;
Bender and Orszag, 1999) seems promising, as it reduces the variational problem to a Hamil-
tonian system. For this reason it is increasingly used in applications (Nieddu et al., 2017).
However, possible issues may arise from divergence of the WKB expansion (Agazzi et al.,
2017a), and the theory may not be verified with full mathematical rigor (Chazottes et al.,
2017). An examination of the method applied to reaction networks could nevertheless be of
great value in pointing towards hypothesis that can later be proven.

Although characterization of the deterministic flow is considerably more tangible than the
stochastic counterpart, the problem of determining a Morse decomposition still poses great
challenges for higher dimensional reaction networks (Hansen and Schreiber, 2018). It would
be interesting to see whether there is something general to be inferred from the graphical
structure to the Morse decomposition. In particular, as this relates to the development
of new Lyapunov functions, which in itself is one of the hottest topics of modern reaction
network theory (Al-Radhawi and Angeli, 2016).

When the limit of QSDs concentrate on a particular attractor, its type appears from
numerical examinations to have great qualitative impact on the QSDs corresponding to
the system away from equilibrium (Hansen and Schreiber, 2018). Whether one can find
general quantitative correspondences or improvements of approximations through such a
theory is another topic to investigate. In particular, with the new developments of diffusion
approximations in reaction network theory (Bibbona and Sirovich, 2017; Anderson et al.,
2018b), one should examine how this fits with the normal approximations to QSDs found in
the litterature (van Doorn and Pollett, 2013; N̊asell, 2011). This is closely connected to the
question of the behavior near bifurcation points. Consider for example the network

∅ α1← S1
α2→ 2S1

α3


α4

3S1

Treating the variable λ = 4α4(α2 − α1) + α2
3 as the bifurcation parameter, one may verify

that there is a supercritical saddle-node bifurcation at λ = 0. Fix the rates α1 = 100.2, α2 =
0.1, α4 = 1. Close to the bifurcation, we see a “ghost” where a new fixed point is emerging.
Further, after the bifurcation, the QSD is still monotone, implying that the existence of a
stable fixed point is not sufficient for the QSD to have a nearby mode. Moving further away
from the bifurcation point the correspondence between the positive stable fixed point and
the mode of the QSD is restored. This is illustrated in Figure 6.1

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.1: λ = −0.4, λ = 40.6, λ = 224.6, λ = 499.6.
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In turn, when considering the classical scaling, the speed of convergence may be depen-
dent on how close the system is to a bifurcation point. General scaling laws would be of
great interest.

The standard way of numerically calculating quasi-stationary distributions is by finding
the eigenvector corresponding to the second smallest eigenvalue of the generator. This is
computationally heavy, O(n3), posing problems for large systems. In particular, if the di-
mension of the reaction network is large, or the scaling ε is small, this procedure quickly
becomes infeasible. The method proposed by Hansen and Wiuf (2018b) relies on inverting
a matrix, hence this is also O(n3), although for some regimes computationally more stable
(Pollett and Roberts, 1990). A way of simulating the quasi-stationary distribution for re-
action networks could be advantageous, allowing one to visualize the weak∗ convergence to
more interesting attractors such as limit cycles.

In the paper by Hansen and Wiuf (2018a) we found that there is an exponential conver-
gence towards the QSD, however, one would like estimates on the convergence rate, γ, since
it tells one how likely it is to observe a process in quasi-stationarity. In general, there may
be multiple QSDs and hence multiple domains of attraction. In turn, the convergence rate
may depend greatly upon which domain of attraction the initial distribution belongs to.
Clarifying these domains is thus another case of interest, and only few current results are
available (Villemonais, 2015).

When there is just one unique QSD, the spectral gap is closely connected to the con-
vergence rate as demonstrated by Hansen and Wiuf (2018b). Sufficient conditions for the
application of the center manifold theorem in infinite dimensions would greatly improve the
theoretical understanding of the quasi-stationary distributions from a dynamical viewpoint.
In particular, it is the aim of future research to characterize parameter regions in which, for
any given reaction network, the system displays quasi-stationarity.
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J. R. Chazottes, P. Collet, and S. Méléard. On time scales and quasi-stationary distributions
for multitype birth-and-death processes. arXiv, 2017.

P. Childs and J. P. Keener. Slow manifold reduction of a stochastic chemical reaction:
Exploring keizers paradox. Discrete and Continuous Dynamical Systems Series B, 17(6):
1775–1794, 2012.

G. Cohen, T. Mora, and O. Moreno, editors. Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes. Number 673 in Lecture Notes in Computer Science. Springer,
1993.

P. Collet, S. Martinez, and J. S. Martin. Quasi-stationary distributions. Markov Chains,
Diffusions and Dynamical Systems. Probability and its applications. Springer, 2013.

F. Colonius and W. Kliemann. Dynamical Systems and Linear Algebra, volume 158 of
Graduate Studies in Mathematics. American Mathematical Society, 2014.

C. Conley. Isolated Invariant Sets and the Morse Index. Number 38 in Conference Board of
the Mathematical Sciences. American Mathematical Society, 1978.

M. Cook, D. Soloveichik, E. Winfree, and J. Bruck. Programmability of Chemical Reaction
Networks, Chapter in Algorithmic Bioprocesses. Springer, 2009.

S. L. Cotter. Constrained approximation of effective generators for multiscale stochastic
reaction networks and application to conditioned path sampling. Journal of Computational
Physics, 323:265–282, 2016.

G. Craciun. Toric differential inclusions and a proof of the global attractor conjecture. arXiv,
2015.

G. Craciun, F. Nazarov, and C. Pantea. Persistence and permanence of mass-action and
power-law dynamical systems. SIAM J. Appl. Math., 73(1):305–329, 2013.

D. Dadush. Lattices, Convexity & Algorithms. Lecture Notes, NYU, 2013.



150 Bibliography

A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Number 38 in
Applications of Mathematics. Springer, 2nd edition, 1998.

P. Dittrich and L. Winter. Chemical organizations in a toy model of the political system.
Adv. Complex Syst., 11:609–627, 2008.

P. Dupuis and R. S. Ellis. A Weak Convergence Approach to the Theory of Large Deviations.
Wiley Series in Probability and Statistics. Wiley, 2011.

P. Dupuis, K. Ramanan, and W. Wu. Large deviation principle for finite-state mean field
interacting particle systems. arXiv, 2016.

R. Durrett. Probability: Theory and Examples. Duxbury Press, 2nd edition, 1996.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene expression in a
single cell. Science, 297(5584):1183, 2002.

F. E. Emery, editor. Systems Thinking. Penguin, 1969.

G. A. Enciso. Transient absolute robustness in stochastic biochemical networks. Journal of
the royal society, 13, 2016.

R. Erban, S. J. Chapman, and P. K. Maini. A practical guide to stochastic simulations of
reaction-diffusion processes. arXiv, 2007.

P. Erdi and J. Toth. Mathematical models of chemical reactions. Manchester University
Press, 1989.

S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley Series in Probability and Mathe-
matical Statistics. Wiley, 1986.

M. Faure and S. J. Schreiber. Quasi-stationary distributions for randomly perturbed systems.
The Annals of Applied Probability, 24(2):553–598, 2014.

M. Feinberg. Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal., 49:
187–194, 1972.

M. Feinberg. Lectures on chemical reaction networks. delivered at the Mathematics Research
Center, Univ. Wisc.-Madison., 1979.

M. Feinberg. The existence and uniqueness of steady states for a class of chemical reaction
networks. Arch. Ration. Mech. Anal., 132:311–370, 1995.

M. Feinberg. The Princeton Companion to Applied Mathematics. Princeton University Press,
2015.

P. A. Ferrari, H. Kesten, S. Martinez, and S. Picco. Existence of quasistationary distribu-
tions. a renewal dynamical approach. Annals of Probability, 23:501–521, 1995.

M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems. Number
260 in Grundlehren der mathematischen Wissenschafften. Springer, 3rd edition, 2012.



Bibliography 151

D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical
Chemistry, 81(25):2340–2361, 1977.

M. Gopalkrishnan, E. Miller, and A. Shiu. A geometric approach to the global attractor
conjecture. SIAM J. Appl. Dyn. Syst., 13(2):758–797, 2014.

B. L. Granovsky and A. I. Zeifman. The decay function of nonhomogeneous birth-death
processes with application to mean-field models. Stoch. Process. Appl., 72:105–120, 1997.

A. Griffin. Quasi-Stationary Distributions for Evolving Epidemic Models: Simulation and
Characterisation. PhD thesis, Mathematics Institute, The University of Warwick, 2016.

A. Griffin, P. A. Jenkins, G. O. Roberts, and S. E. F. Spencer. Simulation from quasi-
stationary distributions on reducible state spaces. Advances in Applied Probability, 49(3):
960–980, 2017.

P. Groisman and M. Jonckheere. Simulation of quasi-stationary distributions on countable
spaces. arXiv, 2012.

J. Gunawardena. Chemical reaction network theory for in-silico biologists, 2003. URL
http://vcp.med.harvard.edu/papers/crnt.pdf.

A. Gupta and M. Khammash. Determining the long-term behavior of cell populations: A
new procedure for detecting ergodicity in large stochastic reaction networks. arXiv, 2013.

A. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing
long-term behavior of stochastic reaction networks. PLOS Computational Biology, 10(6),
2014.

H. Haken. Synergetics; An Introduction. Springer, 1983.

M. C. Hansen and S. J. Schreiber. Quasi-stationary distributions for randomly perturbed
reaction networks. Unpublished, 2018.

M. C. Hansen and C. Wiuf. Existence of a unique quasi-stationary distribution for stochastic
reaction networks. arXiv, 2018a.

M. C. Hansen and C. Wiuf. A description of quasi-stationary distributions in reaction
networks using a slow manifold reduction. Unpublished, 2018b.

M. W. Hirsch. Systems of differential equations that are competitive or cooperative. i: Limit
sets. SIAM J. Math. Anal., 13(2), 1982.

M. W. Hirsch. Systems of differential equations that are competitive or cooperative. iv:
Structural stability in three-dimensional systems. SIAM J. Math. Anal., 21(5):1225–1234,
1990.

J. H. Holland. Complexity; A very short introduction. Oxford University Press, 2014.

F. Horn. Necessary and sufficient conditions for complex balancing in chemical kinetics.
Arch. Ration. Mech. Anal., 49:172–186, 1972.

http://vcp.med.harvard.edu/papers/ crnt.pdf


152 Bibliography

F. J. M. Horn and R. Jackson. General mass action kinetics. Arch. Ration. Mech. Anal., 47:
81–116, 1972.

Y. Ilyashenko. Centennial history of Hilbert’s 16th problem. Bull. of the American Mathe-
matical Society, 39(3):301–354, 2002.

F. Jacobs and S. J. Schreiber. Random perturbations of dynamical systems with absorbing
states. SIAM J. Appl. Dyn. Syst., 5:293–312, 2006.

T. Jahnke and W. Huisinga. Solving the chemical master equation for monomolecular reac-
tion systems analytically. J. Math. Biol., 54(1):1–26, 2007.

M. D. Johnston, C. Pantea, and P. Donnell. A computational approach to persistence,
permanence, and endotacticity of biochemical reaction systems. Journal of Mathematical
Biology, 72(1-2):467–498, 2016.

M. D. Johnston, D. F. Anderson, G. Craciun, and R. Brijder. Conditions for extinction
events in chemical reaction networks with discrete state spaces. Journal of Mathematical
Biology, pages 1–24, 2017.

B. Joshi and A. Shiu. A survey of methods for deciding whether a reaction network is
multistationary. Math. Model. Nat. Phenom., 10(5):47–67, 2015.

O. Kallenberg. Foundations of Modern Probability. Probability and its applications. Springer,
2nd edition, 2001.

H.-W. Kang and T. G. Kurtz. Separation of time-scales and model reduction for stochastic
reaction networks. The Annals of Applied Probability, 23(2):529–583, 2013.

S. Karlin and J. L. McGregor. The differential equations of birth-death processes and the
stieltjes moment problem. Trans. Amer. Math. Soc., 85:489–546, 1957.

A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems.
Cambridge University Press, 1995.

M. Ke, Z. Fang, and C. Gao. Generalized Gibbs’ free energy for stability analysis of chemical
reaction networks. arXiv, August 2017.

J. Keizer. Statistical Thermodynamics of Nonequilibrium Processes. Springer, 1987.

W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of
epidemics. Proceedings of the Royal Society A, 115(772), 1927.

Y. Kifer. Random Perturbations of Dynamical Systems, volume 16 of Progress in Probability
and Statistics. Birkhäuser, 1988.
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