
Statistical Methods for Neural Data

Cointegration Analysis of Coupled Neurons &
Generalized Linear Models for Spike Train Data

PhD thesis by
Jacob Østergaard

Department of Mathematical Sciences
University of Copenhagen
Denmark

The PhD School of Science - The Faculty of Science - University of Copenhagen



Jacob Østergaard

Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 København Ø
Denmark

ostergaard@math.ku.dk

This thesis has been submitted to the PhD School of The Faculty of Science, Univer-
sity of Copenhagen, December 2017.

ACADEMIC ADVISORS: Susanne Ditlevsen
University of Copenhagen, Denmark

Anders Rahbek
University of Copenhagen, Denmark

ASSESSMENT COMMITTEE: Niels Richard Hansen (chair)
University of Copenhagen, Denmark

Rainer Dahlhaus
Universität Heidelberg, Germany

Vincent Rivoirard
Université Paris Dauphine, France

ISBN 978-87-7078-903-5



iii

ABSTRACT

Some of the most captivating questions in the history of science concerns the
functions of the human brain and the subject has attracted researchers and philoso-
phers for centuries. Recent advances in laboratory technology has enabled us to
look further into the internal microscopic components of the brain than ever be-
fore. Neuroscience, as a purely scientific discipline, is relatively new compared to
it’s basic components of mathematics, physics, chemistry, and physiology. How-
ever, the current rate of experimental discoveries in neuroscience calls for new ad-
vances in analytical tools to better understand the biological processes that occur in
the brain.

This thesis aims to explore new statistical models for neural data and their use-
fulness in analyzing experimental data. The thesis consist of two parts, one that con-
cerns neural networks and how these can be interpreted as a cointegrated system and
one that examines how the class of Generalized Linear Models can be used to decode
specific behaviors of simulated neurons. Part one introduces the concept of cointe-
gration and demonstrates how a network can be analyzed by interpreting the system
as a cointegrated process. This work is then extended from a small 3-dimensional
system to a high-dimensional setting and includes a discussion of future possibilities
for network analysis using these techniques. Part two opens with a demonstration
of how Generalized Linear Models can be designed for spike train data and how
varying patterns of different neurons are captured by this class of statistical models.
Part two then continues with a specialized model aimed at capturing a specific type
of behavior known as "bursting".

In the age of big data and artificial intelligence, two major themes related to neu-
roscience present themselves. The first is how to cope with the rapidly increasing
data collection from laboratory experiments and (very) high-dimensional interact-
ing systems. This occurs partially due to an increased interest in neuroscience, as
well as the introduction of new measuring equipment. The second is the motivation
for a continuously deeper understandning of the human brain. There are still count-
less unanswered questions regarding this biological mechanism. In order to further
understand causes of neural diseases as well as continued development of artificial
intelligence, these questions are important to study. Ultimately, they should lead us
to a better intuition regarding the question: "how does intelligence work"?
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RESUME PÅ DANSK

Nogle af de mest fascinerende spørgsmål gennem videnskabens historie handler
om hvordan den menneskelige hjerne fungerer, og emnet har optaget forskere og
filosoffer i århundreder. Den teknologiske udvikling af laboratorie udstyr har gjort
det muligt at vi idag kan se helt ind i hjernens inderste mikroskopiske dele. Neu-
roscience er et relativt nyt område indenfor videnskaben, når man sammenligner
med de klassiske videnskaber det bygger på: matematik, fysik, kemi og fysiologi.
Ikke desto mindre gør det nuværende tempo af eksperimentelle opdagelser inden-
for feltet, at der er et øget behov for nye værktøjer til at hjælpe os med at forstå de
biologiske processer der foregår i hjernen.

Denne afhandling undersøger nye statistiske modeller for neurale data og deres
anvendelse til at analysere eksperimentelle data. Afhandlingen består af to dele hvo-
raf den første del handler om hvordan neurale netværk kan fortolkes som et koin-
tegreret system, og den anden del undersøger hvordan modelklassen Generaliserede
Lineære Modeller kan udnyttes til at afkode specifikke mønstre i simulerede neuroner.
Første del introducerer konceptet kointegration og demonstrerer herefter hvordan
et netværk kan analyseres som en kointegreret process. Derefter udvides ideen fra
at se på et mindre 3-dimensionelt system til et høj-dimensionalt, sammen med en
diskussion af nye muligheder for at analysere netværk med disse værktøjer. Anden
del starter med en demonstration af hvordan Generaliserede Lineære Modeller kan
bruges til at analysere "spike train" data og hvordan disse modeller kan beskrive
varierende mønstre fra forskellige typer af neuroner. Anden del fortsætter derefter
med en specialiseret model der har til formål at beskrive et specifik mønster, kendt
som "bursting".

I en tidsalder med stor interesse for big data og kunstig intelligens, er der særligt
to spørgsmål der relaterer sig til neuroscience. Det første drejer sig om at håndtere
de hurtigt voksende mængder af data af (meget) høj-dimensional karakter. Dette er
en konsekvens af både nyt laboratorie udstyr, samt en voksende interesse i neuro-
science fra forskere. Det andet berører motivationen for en gradvis dybere forståelse
af den menneskelige hjerne. Der er stadig utallige ubesvarede spørgsmål omkring
hjernens biologiske funktioner, og for bedre at kunne forstå årsagen til fejl i nervesys-
temet samt videreudvikling af kunstig intelligens er disse spørgsmål vigtige at stud-
ere. I sidste ende vil det forhåbentligt lede os til en bedre forståelse for spørgsmålet:
"hvordan fungerer intelligens"?
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CHAPTER 1
Introduction

1.1 Background

My exploration of statistical methods for neural data came about rather coinciden-
tally when I stumbled upon Susanne Ditlevsen a warm July afternoon in 2014. At the
time I was employed as a quantitative researcher in a financial institution, but felt
that it was time for a change. Looking back, I had no perspective on neuroscience,
but I had set up a meeting with Susanne regarding a possible return to academia as
a PhD student at the University of Copenhagen. I had no clear expectations regard-
ing the outcome of the meeting, but recall that I managed to mention both dynamical
systems and cointegration in a sentence outlining my research interests. From then
on the gears were in motion and 6 months later I started a project with the aim of
researching cointegration analysis of dynamical systems.

I have now spent the past three years investigating the idea of, analyzing multivari-
ate interacting dynamical processes, of a physiologically meaningful nature, using
cointegration theory. This journey has been partially successful in establishing some
connections, but it also led me to a series of new interesting questions regarding the
application of cointegration analysis within neuroscience. Transitioning from the
financial industry with a head dive into statistical neuroscience was a challenging
move, but it rewarded me with fruitful experiences, including a seven month excur-
sion to Boston where I had a chance to work with professors Uri Eden and Mark
Kramer. This research stay gave me an opportunity to expand my horizon of statis-
tical methods for neural data and work in a different environment than I was used
to. Here I worked on analysis of spike train data with generalized linear models,
a subject almost orthogonal to my work in Copenhagen. However, it helped me
form some inspiring ideas on future directions of cointegration research as a valu-
able toolset for neuroscience.

I hope that my efforts over these years, which have only scratched the surface, will
aid in an increased interest in cointegration applied outside of econometrics and that
researchers will discover it as valuable theory to help explain more of one of the most
fascinating biological organisms we know, the brain.
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1.2 Foundations

The age of exploration was one of the great periods of enlightenment in human his-
tory. As the globe became charted and remote areas were discovered, humankind
gradually increased their understanding of the world they were living in. In a simi-
lar manner today, we are discovering more and more areas of the brain, an organism
which has fascinated researchers for centuries. New laboratory technologies and
methods enable researchers to measure brain activity in animals and humans on a
much more detailed level than ever before, much like advancements in ship con-
struction enabled circumnavigations in the 16th century. However, also crucial to
these explorations were theoretical discoveries in astronomy and navigation, and to
fully explore the potentials of our brain, advancing the theoretical understanding of
the fundamental building blocks, the neurons, is of undeniable importance. Fortu-
nately, neuroscience have already been a subject of interest for more than a century
and modern ideas and conclusions build upon decades of considerations and prac-
tical experiments on how the brain actually work.

In the following we briefly review some of the most fundmental concepts in math-
ematical neuroscience to set the stage for the theoretical introductions in this the-
sis.

1.2.1 What is a Neuron

The brain is in essence, a coupled network of billions of neurons1. Each of these con-
sist of a cell body, the soma, which contains dendrites that pick up signals, electrical
impulses, from other neurons. These signals are propagated through the axon to the
"tail" of the neuron which ends in synapses that connect to other nearby neurons
dendrites, creating a connected network of neurons. A single neuron cell is drawn
in Figure 1.1.

FIGURE 1.1: A neuron, image from interactive-biology.com. The den-
drites receive input from nearby cells, propagate through the axon to
the synapses, here termed axon terminals, which distribute the signal

further in the information chain, to nearby cells.

1Some uncertainty persist in the community on exactly how many billions of neurons. A commonly
cited number is 100 billion, such as in Izhikevich (2010), but Herculano-Houzel (2009) argue that it is
more accurately around 86 billion. Still quite a few neurons!



1.2. Foundations 3

1.2.2 The Action Potential

Neurons receive and transmit signals as electrical impulses which are controlled by
ionic currents on both sides of the cell membrane. When the neuron is resting it has
a charge of around −65 mV (Izhikevich, 2010) termed the membrane potential, but
when the ion channels open, the currents flow in and out of the cell, thereby depolariz-
ing it by increasing the charge inside the cell. When the depolarization hits a neuron
specific threshold, the neuron fires by propagating a signal called the action potential,
through the axon to the synapses. Immediately following this, the neuron begins to
repolarize itself, potentially leading to a charge below −65 mV, termed hyperpolariza-
tion. The interval of repolarization is known as the refractory period, where the neuron
is inhibited from firing, thus suppressing any distribution of signals. After hyper-
polarization, the neuron will slowly return to the resting state of −65 mV, thereby
ending the whole firing sequence. Figure 1.2 displays this sequence of information
processing within a neuron. The numbers point to the events outlined above: 1) the
neuron receive stimulus input, 2) the neuron fires when the threshold is reached,
3) after firing the neuron might become hyperpolarized, 4) after repolarization, the
neuron is once again at it’s resting charge. If the membrane potentials threshold is
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FIGURE 1.2: Propagation of an electrical impulse in a neuron. 1) Stim-
ulus (signal) is received. 2) Threshold is reached and the neuron fires.

3) Neuron is hyperpolarized. 4) Neuron is repolarized.

not reached, the neuron will not fire and subthreshold oscillations may occur.

1.2.3 Spike Trains

When recording neurons, the full action potential, and thus subthreshold behav-
ior, is available when recordings are intra-cellular. This is opposed to extra-cellular
recordings where only the spike times, the time of firing, is available. Since the action
potential has a positive width, it crosses the threshold twice, up and down. For this
reason, spike times are typically defined as the upcrossing of the threshold, which
would correspond to time 2) in Figure 1.2. Since the width of an action potential
is very narrow, this definition does not lead to practical issues, but it is nonetheless
important for a well defined mathematical description. A spike train(s) is then a se-
quence of recorded spike times from the same neuron(s). In Chapter 3 we introduce
various representations of this type of data.
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1.2.4 Neurons are Dynamical Systems

Conductance based mathematical models of neurons describe a neuron as a dynam-
ical system, which implies that they model the evolution of the membrane potential,
along with auxiliary variables, in the temporal dimension. The actual equations
are then given as a set of differential equations, one for each variable/dimension
of the model, with the most important variable being the membrane potential de-
scribed above. Depending on whether a neuron is recorded intra-cellularly or extra-
cellularly, we may or may not have a recording of the actual action potential. Since
it is easier to record extra-cellularly, spike trains are often the only available data for
analysis. However, conductance based models describe the complete shape of the
action potential, replicating observations from intra-cellular recordings. Needless to
say, this can obviously lead to identification issues, if multiple parameter settings
produce similar spike times, when this is the only available information.

In Figure 1.2 we can interpret the mechanism initiating the firing, as integrating
information. As the ion concentration become more positive, due to multiple in-
puts received at various dendrites, the neuron suddenly fires when reaching it’s
threshold. This understanding has lead to a simple class of one-dimensional neu-
ron models termed Integrate-and-Fire, first presented by Lapicque (1907) (see Brunel
and Rossum, 2007). A well-known version of this model type is the leaky integrate-
and-fire model, where the membrane potential is described by a single differential
equation on the temporal change in voltage (V ) scaled by the constant capacitance
of the neuron (C), controlled by the input current (I) and a function of the voltage
and a voltage leak (Eleak), (see Izhikevich, 2010)

C
dV

dt
= I − g(V − Eleak). (1.1)

This model is a simple construction, where the neuron fires an action potential once
V = Ethreshold and instantly resets to a value EK . Due to it’s simplicity, (1.1) is
not very accurate in replicating an observed action potentials, as it is simply mod-
eling the spike time and not the shape of the action potential. Therefore more ad-
vanced (higher dimensional) models exist, some well known examples are Hodgkin
and Huxley (1952), FitzHugh (1961), Nagumo, Arimoto, and Yoshizawa (1962), and
Izhikevich (2003). All of these aim to improve the shortcomings of the integrate-and-
fire model in various ways. However, common to all conductance based models is
the modeling of the membrane potential V , through a temporal differential equa-
tion dV/dt, with added equations describing, excitatory-, inhibitory-, adaptive- and
refractoriness features of the neuron. The Hodgkin-Huxley model is still consid-
ered one of the most physiologically realistic and meaningful models (Izhikevich,
2004), but it is very expensive computationally and parameter estimation is a cum-
bersome process. Regardless, it is considered a pinnacle of neuroscience models
and the inventors, Alan Lloyd Hodgkin and Andrew Fielding Huxley received the
Nobel prize in 1963 for their work and new models are often benchmarked to the
Hodgkin-Huxley model or a simplification of it.

1.2.5 The Phase of a Neuron

Membrane potentials, and therefore action potentials, are most commonly described
in terms of time and voltage, as in Figure 1.2. However, we can change focus and
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instead look at the phase of the neuron. The waveform of the action potential has
a beginning and an end. As such, we can interpret the membrane potential in this
interval as rotation where the time of reset is 0 and the next spike/reset is at time
T . By normalizing the interval such that the length becomes 2π, we can interpret
the angle θ as the phase of the neuron. Figure 1.3 displays this relation where the
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FIGURE 1.3: Membrane potential with spike times 0T, 1T, 2T, . . . .
The corresponding phase below shows the relationship between the

membrane potential and the angular interpretation of this.

membrane potential (top) is related to the phase (bottom). Each time a spike oc-
curs, the potential is reset and so is the phase. It then grows linearly until the next
spike, thus completing one revolution at T (or 2π). If we unwrap the phase process
in Figure 1.3 we obtain a straight monotonically increasing line. The monotonicity
is due to the regular spike intervals in the membrane potential, but if we include
noise in the model, the corresponding phase process would start to wiggle, though
overall it would still have a linear appearance, depending of course on the amount
of noise added to the system. The type of continued spiking behavior in Figure 1.3
is termed tonic spiking. When a neuron exhibits continued spiking, we also refer to it
as an oscillator, due to the repetitive spiking at (more or less) regular intervals with a
monotonically (in the noiseless case) increasing phase process. In this case, model-
ing the phase process rather than the membrane potential, makes sense, since we are
interested in modeling the spike times which depend directly on the phase: θ = 0 or
2π when spiking.

1.2.6 Synchronization

When observing more than one oscillator, a certain phenomenon can present itself.
This happens when the oscillators begin to adapt to each other, thus synchronizing
their spike times. This behavior was first described by the Dutch mathematician
Christiaan Huygens in the seventeenth century, when he discovered this peculiarity
in two suspended pendulums. It is evident, that this event cannot appear unless
there exist some form of coupling between the oscillators. A classic experiment dis-
plays this with a large number of metronomes on a platform. Each metronome is
started, independently of the others with a certain beat. If the platform is fixed, no
movement may travel between the metronomes and they never synchronize. How-
ever, if the platform is allowed to vibrate, even slightly, the metronomes will start
to synchronize and after a while, all of them will beat in unison. A similar effect
can take place in the theater when the audience applause. Initially, the applause will
sound like random noise, every member of the audience is an individual oscillator,
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but after a while one can observe a steadfast beat in clapping. Hence, the audi-
ence have synchronized their clapping. The phenomenon have also been observed
in numerous places in nature, such as when fireflies synchronize their emission of
bright flashes, or in physiological systems when neurons synchronize around a task.
Chapter I presents a new approach to modeling coupled oscillators that adapt to
each other, using cointegration analysis.

1.3 Previous Work

This thesis does not present the first attempt at bringing cointegration into the realm
of neuroscience. Cointegration has been extensively studied in the econometrics
community and major advancements have been with economic applications in mind.
However, the work on cointegration in this thesis was inspired partially by the work-
ing paper by Dahlhaus and Neddermeyer (2012). This work made a strong attempt
in analyzing a coupled chaotic Rössler/Lorenz system with an interpretation toward
the phase process mentioned above. The paper linearly approximated the nonlinear
Kuramoto (1984) system, which is only valid when the oscillators are closely phase-
coupled, and thus, does not solve a more general system of oscillators. Dahlhaus
and Neddermeyer (2012) also references other previous works that has attempted
this bridging, without full success, but the ideas brought to light in this thesis have
mainly been sparked by Dahlhaus and Neddermeyer (2012).

In regard to the second part of this thesis, generalized linear models are not new
to neuroscience, but the idea of statistical models, as opposed to the conductance
based models introduced above, is relatively new. Previous work has sought to de-
scribe the use of stochastic processes and the generalized linear model framework
in the context of spike train analysis (Kass and Ventura, 2001; Truccolo et al., 2005).
Newer work have looked into the generalized linear model frameworks capability
in modeling various spike behaviors (Weber and Pillow, 2017), but where the gener-
ating model was without noisy input. The work on generalized models in this thesis
attempts to demonstrate other aspects of this model class in terms of capturing vari-
ability in spike train data.

1.4 Overview

This thesis consist of two main parts. The first addresses the question of using coin-
tegration analysis as a novel approach to analyze coupled networks of oscillators
and detect the network structure. The second concentrate on analyzing spike trains
(point processes) using generalized linear models and extensions of these. Each part
open with an introductory chapter to establish a theoretical background for the in-
cluded manuscripts.

1.4.1 Contributions

The contributions of this thesis consist of 4 manuscripts, 2 in each part. Two of these
have been published in peer reviewed journals.

» Part 1 contain a published manuscript, Oscillating systems with cointegrated phase
processes, on inferring the network coupling structure of a multivariate system
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of oscillators. This paper describes the theoretical background for classical,
discrete time, cointegration and the setting in continuous time. Then it is pre-
sented how a system of linearly coupled phase oscillators can be interpreted
as a continuous time cointegrated system and it is demonstrated how to apply
cointegration analysis to a coupled multivariate system. Finally a practical ap-
plication is presented, where the technique is applied to EEG data for epileptic
patients.

» The second paper of Part 1 is a working paper titled Cointegration analysis of
High-Dimensional linear Kuramoto networks. This project explores cointegration
analysis in a high-dimensional setting. Where as cointegration, historically,
have been applied to systems up to dimension 10, in this paper we look at a
stylized system: a linear version of the Kuramoto (1984) model, of coupled
clusters and deal with rank testing in high dimensions and ways of detecting
the inherent cluster structure.

» The first paper of Part 2 is the published work: Capturing spike variability in
noisy Izhikevich neurons using point process Generalized Linear Models. This fo-
cuses on the use of generalized linear models as a statistical framework for
analyzing point processes, more precisely spike trains. The purpose here is
to demonstrate how these models capture essential features encoded in spike
trains, by including the spike history, and performing model control by goodness-
of-fit assessments. The paper addresses some of the shortcomings of the gen-
eralized linear model framework and discusses some possible extensions to
overcome these.

» The second paper of Part 2 is titled A state space model for bursting neurons. It
is a working paper which specifically deals with one of the shortcomings dis-
cussed in the previous manuscript, namely the bimodal distribution of inter-
vals between spike times for bursting neurons, i.e. neurons that exhibit rapid
firing (bursting) in a short period and then behave quiescent for a while before
returning to a bursting sequence. The generalized linear model is extended
with a latent state controlling this behavior and a point process version of the
marginalized particle filter is applied for parameter estimation and determin-
ing latent states, simultaneously.

1.4.2 Further ideas

The work in this thesis has also inspired questions for future exploration. These
include extensions to the current framework of cointegration to account for non-
linear components and sparsity constraints. Another direction is the investigation of
bootstrapping methods for misspecified models. Finally a completely new direction
is the idea of cointegrated generalized linear models. A more specific presentation
of these ideas is presented in Chapter 4.
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CHAPTER 2
Cointegration

2.1 Introduction

The first part of this thesis present cointegration analysis in a neuroscience context
as a novel approach to identifying connections in neural networks. This part con-
tributes with two manuscripts

• Oscillating systems with cointegrated phase processes (Østergaard, Rahbek,
and Ditlevsen, 2017b)

• High-Dimensional cointegration in neural networks. (Østergaard, Rahbek,
and Ditlevsen, 2017a)

The first paper, published in Journal of Mathematical Biology (Østergaard, Rahbek,
and Ditlevsen, 2017b), presents a new approach to modeling connectivity of neurons
and applies continuous time cointegration analysis to the phase processes of cou-
pled oscillators. The paper defines the model class of linearly phase coupled oscilla-
tors as a multivariate stochastic differential equation and presents simulations based
on various specifications from this class in the analyses. The paper also reviews
important concepts of cointegration and places them in a continuous time setting,
relevant to phase processes of neurons. Then it is demonstrated how a simulated
network of coupled continuous oscillating processes can be analyzed using coin-
tegration techniques. These oscillating processes are interpreted in a neuroscience
context as neural processes from a multivariate system of connected neurons and it
is shown that both independent, bi-directional as well as uni-directional couplings
can be inferred. The paper also includes a short analysis on EEG data to illustrate the
potential of cointegration, as a tool for neural data analysis. The research idea of the
paper was to point out similarities between synchronized oscillators and the inter-
pretation of cointegration for multivariate stochastic processes. In a synchronization
context, the processes adapt to each other based on some common feedback within
the system, referred to as trends. In a cointegration setting, the same can be stated.
Here processes evolve individually with random walk like properties, but taken as
a whole, the system exhibits common trends that are in fact stationary. The idea was
to establish this connection by explaining the intuition behind cointegration and,
by interpreting the constructed simulated processes in a neuroscience setting, thus
demonstrating the capability of cointegration analysis in recovering the underlying
network structure.
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The second manuscript, which is still a working paper at this stage, adresses the fact
that neural networks are often of a much higher dimension than currently tractable
for cointegration analysis. In the classic setting, cointegration has been used with
succes up to about 10 dimensions, but newer research studies are attempting to un-
cover feasible asymptotical distributions and estimation methods for a high-dimensional
setting. Given the contemporary interest in high-dimensional statistics, this is an
area of interest, not only for larger networks of connected neurons, but also in the
area of econometrics where cointegration analysis is more common. As such, this
paper pursues the quest of exploring the limits of classic cointegration techniques
set in a high-dimensional context.

Both of these papers have been written in collaboration with Susanne Ditlevsen and
Anders Rahbek, as projects in the research group Dynamical Systems Interdisciplinary
Network (DSIN) at the University of Copenhagen.

2.2 Cointegration in Discrete Time

We begin by introducing classical results on cointegration in discrete time, including
integrated processes, maximum likelihood estimation and inference. Then expand-
ing to newer theory on bootstrap tests and continuous time models. The following
section is based on Johansen (1996) and Lütkepohl (2005).

We start by introducing a multivariate version of a discrete time autoregressive (AR)
stochastic process termed the vector autoregressive (VAR) process and a criterion for
stationarity of such processes. Consider the process yn ∈ Rp

yn =

k∑
i=1

Πiyn−i + µ+ εn, for n ∈ Z (2.1)

where Πi ∈ Rp×p and εn is a p-dimensional white noise process such that E[εn] =
0, E[εnε

′
n] = Ω and E[εnε

′
m] = 0 for n 6= m. We also assume that the εn process

is Gaussian, i.e. εn ∼ Np(0,Ω). The term µ is a fixed p-dimensional vector, thus
implying the possibility of a non-zero mean of the process yn.

For a VAR(1) process, we have that

yn = Π1yn−1 + µ+ εn

= Π1(Π1yn−2 + µ+ εn−1) + µ+ εn

= Π2
1yn−2 + (Ip + Π1)µ+

1∑
i=0

Πi
1εn−i

...

= Πj+1
1 yn−j−1 +

j∑
i=0

Πi
1µ+

j∑
i=0

Πi
1εn−i.
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This implies that if all eigenvalues of Π1 have modulus less than 1, then limj→∞Πj
1 =

0 and the following limit exist

lim
j→∞

j∑
i=0

Πi
1µ = (Ip −Π1)−1µ.

Furthermore,
∑∞

i=0 Πi
1εn−i exists inL2 and combining these statements we find that

yn = (Ip −Π1)−1µ+
∞∑
i=0

Πi
1εn−i, for n ∈ Z, (2.2)

i.e. yn can be represented as a vector moving average process. The eigenvalue crite-
ria can be stated equivalently using the characteristic polynomial

All eigenvalues of Π1 have modulus less than 1

m
|Ip −Π1z| 6= 0 for |z| ≤ 1, z ∈ C, (2.3)

that is, the (complex) roots of the characteristic polynomial are outside the (complex)
unit circle. A process satisfying (2.3) is said to be stable. Since a VAR(k) process can
be represented as a VAR(1) process by defining

Yn = (yn, yn−1, . . . , yn−p+1)′

µ = (µ, 0, . . . , 0)′

Π =


Π1 Π2 . . . Πp−1 Πp

Ip 0 . . . 0 0
0 Ip . . . 0 0
...

...
. . .

...
...

0 0 . . . Ip 0


εn = (εn, 0, . . . , 0)′,

we can use the arguments above to state that if

|A(z)| = |Ip −Πz| = |Ip −Π1z −Π2z
2 − · · · −Πkz

k| 6= 0 for |z| ≤ 1, z ∈ C, (2.4)

the VAR(k) process yn is stable. Since a stable VAR(k) is asymptotically stationary
we also refer to yn as asymptotically stationary, if the k-order VAR process satisfies
(2.4). An asymptotically stationary process is strictly speaking not stationary, but
the first and second order moments approach limit values as n → ∞. For a stable,
and thus asymptotically stationary, process without deterministic terms, the initial
value can be given a distribution such that the process becomes stationary. For this
reason the term "asymptotically" is often omitted in the literature on cointegration
and we shall do so here as well. We therefore refer to a stable process as stationary,
while in fact referring to asymptotically stationary with finite first and second order
moments (also known as wide sense stationarity). Furthermore, we assume that a
process is started at some time n = 0, such that time is positive n = 0, 1, 2, . . . . This
does not affect the results above, other than for the VAR(k) process we must include
initial values y−1, . . . , y−k+1 to define yn in (2.1).
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2.2.1 Integrated Processes

Assume the univariate random walk

xn = xn−1 + εn, for n ∈ Z (2.5)

with εn ∼ N (0, σ2). The condition (2.4) is not satisfied by this process as the charac-
teristic polynomial

1− z = 0 (2.6)

clearly has a root at z = 1. Such a root for the characteristic polynomial is referred to
as a unit root and we say that xn is a unit root process. If the process starts at n = 0
with value x0, then

xn = x0 +
n∑
i=1

εi

and we find the mean and variance of xn

E[xn] = x0

Var(xn) = Var(
n∑
i=1

εi) = nσ2 −→
n→∞

∞

and the autocorrelation

Cor(xn, xn+h) =
n√

n2 + nh
−→
n→∞

1.

Hence, xn and xn+h will be highly correlated as n grows. This type of trending
behavior is termed stochastic trending, since the trend of the process xn is the cumu-
lated random variables εn. If we include a constant term µ in (2.5) this becomes a
random walk with drift, where the constant enters in the mean of the process as
E[xn] = x0 + nµ, but the process is still stochastically trending with

∑n
i=1 εi. How-

ever, if we look at the differenced process (excluding the constant drift µ), this is
stationary, since

∆xn = xn − xn−1 = εn (2.7)

with

E[∆xn] = 0

Var(∆xn) = σ2.

For this reason, xn is called integrated of order 1, denoted I(1). For a general univariate
AR(k) process, the characteristic polynomial can have multiple unit roots. For a unit
root of order d, the d order differenced process

∆dxn = ∆(∆d−1xn) = ∆d−1xn −∆d−1xn−1 = εn

is stationary and therefore such a process is referred to as integrated of order d,
denoted I(d). With these definitions, it makes sense to denote a stationary process
I(0). In this thesis we only consider processes that are I(1), hence when referring
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to an integrated process, it is implicitly understood that the process is I(1) and thus
have a stochastic trend similar to the random walk (2.5).

Extending the concept of integrated processes to multivariate processes is straight-
forward and we will refer to multivariate integrated processes as above, in the fol-
lowing text. Note that processes where |z| = 1, z ∈ C other than z = 1, corresponds
to seasonal stochastic trends. This type of trend is out of the scope of this thesis, but
see Johansen and Schaumburg (1999) for details on likelihood analysis for seasonal
stochastic trends. Furthermore, if there are roots of the characteristic polynomial in-
side the complex unit circle the variance will tend to infinity at an exponential rate
and hence the process is said to be explosive. Such processes are also not treated in
this thesis and we will not discuss these concepts further.

2.2.2 Cointegrated VAR models

For a p-dimensional VAR(k) process yn as in (2.1), where |A(z)| = 0 for z = 1 such
that the process has a unit root and thus is I(1), we can rewrite the VAR model as a
differenced, and therefore I(0), process

∆yn = yn − yn−1

= Π1yn−1 + · · ·+ Πkyn−k + εn − yn−1

= −(Ip −Π1)yn−1 + Π2yn−2 + · · ·+ Πkyn−k + εn

= −(Ip −Π1 −Π2)yn−1 −Π2yn−1 + Π2yn−2 + · · ·+ Πkyn−k + εn

= −(Ip −Π1 −Π2)yn−1 −Π2∆yn−1 + Π3yn−3 + · · ·+ Πkyn−k + εn

= −(Ip −Π1 −Π2 −Π3)yn−1 −Π3yn−1

−Π2∆yn−1 + Π3yn−2 −Π3yn−2 + Π3yn−3 + · · ·+ Πkyn−k + εn

= −(Ip −Π1 −Π2 −Π3)yn−1 − (Π2 + Π3)∆yn−1

−Π3∆yn−2 + Π4yn−4 + · · ·+ Πkyn−k + εn

...
= −(Ip −Π1 − · · · −Πk)yn−1 − (Π2 + · · ·+ Πk)∆yn−1

− (Π3 + · · ·+ Πk)∆yn−2 + · · · −Πk∆yn−k+1 + εn.

Collecting terms we find that

∆yn = Πyn−1 +

k−1∑
i=1

Γi∆yn−i + εn, for n = 0, 1, 2, . . . (2.8)

where

Π = −(Ip −Π1 − · · · −Πk),

Γj = −(Πj+1 + · · ·+ Πk), j = 1, . . . , k − 1.

Equation (2.8) is known as the vector error correction model (VECM) or the error cor-
rection form, of the VAR(k) process (2.1). Note here, that since yn is I(1), then ∆yn
is I(0) and since both sides of (2.8) are I(0), the individual terms on the right hand
side of (2.8) must all be I(0). This especially implies that the term Πyn−1 is I(0), but
since yn itself is I(1), then the linear transformation Π must be a transformation of
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the integrated process, such that it becomes I(0), i.e., stationary. For the k-order VAR
process above, we have that

|A(z)| = |Ip −Π1z −Π2z
2 − · · · −Πkz

k| = 0, for z = 1,

implying that

|Π| = −|A(1)| = −|Ip −Π1 −Π2 − · · · −Πk| = 0. (2.9)

Thus, Π ∈ Rp×p is singular and therefore not of full rank r < p. In general, we can
write three exhaustive possibilities for the rank of a matrix M ∈ Rp×p, either

1. rank(M) = 0⇒M = 0, or

2. rank(M) = p⇒M is non-singular and hence invertible, or

3. rank(M) ∈ (0, p)⇒M is singular, i.e., non-invertible.

If Π = 0, then (2.8) is a stationary VAR(k) for xn = ∆yn. If Π is non-singular, then it
has full rank and |A(z)| 6= 0 for z = 1, meaning that the one-to-one transformation
Πyn is I(0) and hence Π−1Πyn = yn is I(0). However, if we consider the singular
case, then rank(Π) = r with 0 < r < p and |Π| = 0, and as such we are in the
regime of integrated processes with stationary linear combinations, also known as
cointegrated processes.

Assume therefore, that Π is singular with rank(Π) = r < p. We can then write Π as
the product of two matrices α, β ∈ Rp×r of full rank r

Π = αβ′. (2.10)

Since α′α ∈ Rr×r has full rank r, the inverse exist, and from the discussion above,
order of integration is preserved when performing a non-singular transformation,
hence

(α′α)−1α′Πyn−1 = (α′α)−1α′αβ′yn−1 = β′yn−1

is I(0), or in other words, the r-dimensional column space of β determine the sub-
space sp(β) ⊂ Rp containing the cointegration relations. For this reason, β is some-
times termed the cointegration matrix and α the loading matrix. It is important to note
that the decomposition αβ′ is not unique, since we can simply multiply either matrix
with a non-singular matrix M ∈ Rr×r and obtain another stationary transformation
Π̃yn of yn.

In order to present a fundamental result in cointegration theory, we define the or-
thogonal complement to a full rank matrix M ∈ Rp×r, r ≤ p as M⊥ ∈ Rp×(p−r), such
that M⊥ has rank p− r and M ′M⊥ = 0. If r = p we define M⊥ = 0 and if r = 0 then
M⊥ = Ip. With this definition we can state an important theorem on cointegrated
VAR models, known as the Granger Representation Theorem.

Granger Representation Theorem (Engle and Granger, 1987)

Given the p-dimensional process yn on error correction form (2.8) and assuming that

• |A(z)| = 0 implies that |z| > 1 or z = 1

• rank(Π) = r < p
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• Π = αβ′ for matrices α, β ∈ Rp×r of rank r,

then a necessary and sufficient condition, such that ∆yn − E[∆yn] and β′yn − E[β′yn] can
be given initial distributions so that they are I(0) is that

|α′⊥Γβ⊥| 6= 0, (2.11)

where Γ = Ip −
∑k−1

i=1 Γi. Furthermore, if (2.11) is true, then

yn = C
n∑
i=1

εn + C1(L)εn + y∗0, (2.12)

where

• C = β⊥(α′⊥Γβ⊥)−1α′⊥,

• C1(z) is a matrix polynomial satisfying

A−1(z) = C
1

1− z
+ C1(z), for z 6= 1,

• y∗0 contains initial values such that β′y∗0 = 0.

In the above, L denotes the lag operator such that Lyn = yn−1. For a proof of the
theorem, see Johansen (1996).

Equation (2.12) splits the process yn into I(0) and I(1) components, since

C

n∑
i=1

εn is I(1)

C1(L)εn is I(0),

and since β′y∗0 = β′C = 0, then β′yn is I(0). Thus, even though yn is I(1) and a
pure moving average representation does not exist, then under the assumptions of
the Granger Representation Theorem we can decompose the solution to (2.8) into a
part related to stationary trends and a part related to stochastic trends. The matrix
C has rank p − r and explains how the common stochastic trends α′⊥

∑n
i=1 εi affect

the system through the matrix β⊥. Furthermore, the so callled long run variance of yn
is given by the singular composition CΩC ′.

As a consequence of the discussion above we find that, whereas the concept of in-
tegrated processes applies to both univariate and multivariate processes, cointegra-
tion is a concept present only in multivariate settings. The decomposition in the
Granger Representation Theorem especially tells us, that for a p-dimensional cointe-
grated process, with rank(Π) = r, then there are exactly r cointegrating relations, or
stationary trends and p− r common stochastic (random walk type) trends. The dis-
cussion related to cointegrated processes can be extended to include deterministic
terms in the error correction form (2.8) or the VAR form (2.1). The Granger Repre-
sentation is then slightly modified to account for these terms. In the above, we have
omitted these terms for added clarity, but for a complete discussion on the more
general theorem including deterministic terms, see Johansen (1996).

In the bivariate setting we can visualize cointegration as a process revolving around
an attractor, given by the span of β⊥. This is shown in Figure 2.1 for the system
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yn = (y
(1)
n , y

(2)
n )′, where the common stochastic trends α′⊥

∑
i=1 εn push the process

along the attractor set sp(β⊥), while the cointegration relations pull the process to-

y
(2)
n

y
(1)
n

α

yn−1 yn

β′yn

sp(β⊥)

α′⊥
∑n

i=1 εi

FIGURE 2.1: The process yn is pushed towards the attractor sp(β⊥),
while the common stochastic trends α′⊥

∑n
i=1 εi pushes along the at-

tractor. Reproduced from Johansen (1996).

wards the attractor. Note that β′yn corresponds to the projection of yn onto the at-
tractor set. Another intuitive interpretation is that the relation β′yn can be viewed as
a kind of long run "equilibrium" relation that the process yn will adhere to, but it is
not something that is eventually reached, such that the process stays in equilibrium
after a certain period. Instead we can think of it as a rubber constraint. When the
disequilibrium is larger, the process will experience a stronger pull towards sp(β),
whereas for smaller disequilibriums the process is not as strongly pulled towards
the attractor. Also, in regard to the stochasticity, even minor shocks to parts of the
system will eventually be propagated into the full system, but the total effect will
die out as time progresses and the cumulative effect of the stochastic trend eventu-
ally dominates any short term randomness. Hence, the major effects on yn can be
summed up as the r β′yn trends and p− r α′⊥

∑n
i=1 εi trends.

2.2.3 Maximum Likelihood Estimation

We review maximum likelihood estimation for cointegrated VAR models with i.i.d
Gaussian errors (white noise) using reduced rank regression. This is popularly re-
ferred to as the "Johansen Procedure" in the literature. While other estimation pro-
cedures exist, maximum likelihood estimation provides both parameter estimates
and determines rank(Π) simultaneously. Because of this it is a popular method for
cointegrated processes.

We will assume the VAR(k) process yn and that the assumptions for the Granger
Representation Theorem are satisfied, such that yn is I(1) with rank(Π) = r. We omit
the inclusion of deterministic trends in the model, but the generalization to include
these is straightforward with respect to estimation (see Johansen, 1996). However,
in order to determine the rank of Π, this is not the case. This task requires a precise
model specification with any deterministic terms and the corresponding restrictions,
if any, for these terms. This is necessary in order to obtain the correct asymptotic
distribution for the rank test. But for now we simply assume that rank(Π) = r is
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known and yn is on the form (2.8) which we repeat here,

∆yn = αβ′yn−1 +
k−1∑
i=1

Γi∆yn−i + εn, for n = 1, . . . , N.

Note that the only difference with (2.8) is that here we have assumed a total of N
observations from the process rather than n ∈ N0 as in (2.8) and explicitly decom-
posed Π = αβ′. Given initial values y−k+1, . . . , y0, the parameters of the model
are (α, β,Γ1, . . . ,Γk−1,Ω). Define now z0n = ∆yn and z1n = yn−1. Furthermore
let z2n = (∆yn−1, . . . ,∆yn−k+1) denote the p(k − 1)-dimensional stacked vector of
lagged variables. Finally let Θ = (Γ1, . . . ,Γk−1)′ denote the corresponding p×p(k−1)
matrix of parameters for z2n. Then (2.8) becomes

z0n = αβ′z1n + Θz2n + εn, for n = 1, . . . , N. (2.13)

Since εn ∼ N (0,Ω) we can write the log-likelihood function of (2.13) as

logL(Yn, α, β,Θ,Ω)

= −N
2

log(2π)− N

2
log |Ω| − 1

2

N∑
n=1

(z0n − αβ′z1n −Θz2n)′Ω−1(z0n − αβ′z1n −Θz2n).

(2.14)

Differentiating with respect to Θ and equating to 0 yields the estimation equation
for Θ

N∑
n=1

z0nz
′
2n − αβ′z1nz

′
2n = Θ̂

N∑
n=1

z2nz
′
2n. (2.15)

By introducing the notation for product moment matrices of zin, i = 0, 1, 2

Mij = N−1
N∑
n=1

zinz
′
jn, for i, j = 0, 1, 2 (2.16)

then for α, β fixed, we obtain the estimate of Θ

Θ̂ = M02M
−1
22 − αβ

′M12M
−1
22 .

Defining the residuals from regressing z0n and z1n on z2n as

R0n = z0n −M02M
−1
22 z2n

R1n = z1n −M12M
−1
22 z2n

and ignoring constant terms, we obtain the profile log-likelihood

logL(α, β,Ω) = −N
2

log |Ω| − 1

2

N∑
n=1

(R0n − αβ′R1n)′Ω−1(R0n − αβ′R1n). (2.17)

corresponding to a reduced rank regression of R0n on R1n since αβ′ has rank r < p.
Note that with this construction, we have effectively removed the influence of the
lagged differences in z2n and what remains is a regression problem concerning only
the reduced matrix αβ′. For this we need to solve an eigenvalue problem to obtain
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an estimate of β. Then given β, estimates α̂ and Ω̂ are obtained by regressing R0n on
β′R1n. Define yet another set of moment matrices with respect to the residuals R0n

and R1n

Sij = N−1
N∑
n=1

RinR
′
jn,

then differentiating (2.17) with respect toα, equating to zero and solving we find

S01β = N−1
N∑
n=1

R0nR
′
1nβ = N−1

N∑
n=1

α̂β′R1nR
′
1nβ = α̂β′S11β

such that

α̂ = S01β(β′S11β)−1. (2.18)

Similarly, for β fixed, an estimate of the covariance matrix is obtained as

Ω̂ = N−1
N∑
n=1

(R0n − α̂β′R1n)(R0n − α̂β′R1n)′

= N−1
N∑
n=1

R0nR
′
0n − α̂β′R1nR

′
1nβα̂

′

= S00 − α̂β′S11βα̂
′

= S00 − S01β(β′S11β)−1β′S10, (2.19)

where we used that Sij = S′ji. The only remainder now, is the estimate of β. From
estimation of α,Ω and Θ, the likelihood is proportional to

L(α̂, β, Ω̂, Θ̂) ∝ |Ω̂|,

where Ω̂ depends on β. Writing |Ω̂| by exploiting the Schur complement as

|S00 − S01β(β′S11β)−1β′S10| = |S00||β′S11β − β′S10S
−1
00 S01)β|/|β′S11β|

= |S00||β′(S11 − S10S
−1
00 S01)β|/|β′S11β|, (2.20)

the likelihood is maximized with respect to β′ by solving for eigenvalues λ of

|λS11 − S10S
−1
00 S01| = 0, (2.21)

such that for eigenvalues λi and corresponding eigenvectors vi

λiS11vi = S10S
−1
00 S01vi for i = 1, . . . , p, (2.22)

where the eigenvectors are normalized with

v′jS11vi =

{
1 for i = j

0 for i 6= j.
(2.23)

With the assumption of rank(Π) = r, the estimated cointegration relations, i.e. the
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column space of β̂, is the space spanned by the eigenvectors (v1, . . . , vr) correspond-
ing to the r largest eigenvalues: λ1 > · · · > λr > · · · > λp. As noted above, the
estimation of α̂β̂′ is not unique. Hence, for identifiability of α and β it is common
to impose a normalization on β̂. Let c = (Ir, 0p−r×r)

′ denote a p × r matrix with
the identity stacked on a zero matrix, then for any version β̃ of v1, . . . , vr we can
use

β̂ = β̃(c′β̃)−1 (2.24)

as a normalizing factor such that

β̂ =

(
Ir

β̃p−r×r

)
, (2.25)

where β̃p−r×r refers to the last p− r rows of β̃.

2.2.4 Estimation of the cointegration rank

Having established the maximum likelihood estimation of parametersα, β,Γ1, . . . ,Γk−1,Ω,
we are left with the question of the rank of Π. Obviously this is a crucial initial step in
cointegration analysis, since rank(Π) determines the number of cointegration trends
and stochastic trends, i.e. I(0) and I(1) trends.

From (2.23) we have

v′jS10S
−1
00 S01vi = λiv

′
jS11vi =

{
λi for i = j

0 for i 6= j.

Hence, the eigenvectors vi simultaneously diagonalize S10S
−1
00 S01 and S11. This

means that the likelihood, apart from a constant, is maximized as

Lmax = |S00|
|β̂′(S11 − S10S

−1
00 S01)β̂|

|β̂′S11β̂|

= |S00|
r∏
i=1

(1− λ̂i), r = 0, . . . , p. (2.26)

For r = 0 we set β̂ = 0, i.e. Π̂ = 0 and for r = p, β̂ = Ip and hence Π̂ = α̂ = S01S
−1
11 .

As a result, (2.26) maximizes the likelihood function for all possible choices of r,
since we have already solved for all p eigenvalues in (2.22).

To form a likelihood ratio test of r, first note that defining the hypothesis H(r) as
rank(Π) ≤ r, then the sequence of hypothesis for r = 0, . . . , p are nested as

H(0) ⊂ H(1) ⊂ · · · ⊂ H(p), (2.27)

since any model of rank r is included in a model of rank r + 1. The extremes,
H(0), H(p) corresponds to the restriction Π = 0 and an unrestricted VAR(k) model.
That is a pure I(1) model with p stochastic trends, versus a pure I(0) model with no
stochastic trends. Using the nested sequence (2.27) we can form a likelihood ratio
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test of H(r) versus H(p)

Q
(
H(r)|H(p)

)−2/N
=
|S00|

∏r
i=1(1− λ̂i)

|S00|
∏p
i=1(1− λ̂i)

which, expressed in log form, is equivalent to

−2 logQ
(
H(r)|H(p)

)
= −N

p∑
i=r+1

log(1− λ̂). (2.28)

Testing for H(r) versus H(r + 1) is also a possible strategy, by reformulating (2.28)
as

−2 logQ
(
H(r)|H(r + 1)

)
= −N log(1− λ̂r+1). (2.29)

The statistics (2.28) and (2.29) are referred to as the trace statistic and maximum eigen-
value statistic respectively. The names are based on the non-standard asymptotical
distribution of the statistics under the null hypotheses,

−2 logQ
(
H(r)|H(p)

) d−→ Tr(D)

−2 logQ
(
H(r)|H(r + 1)

) d−→ λmax(D),

where Tr(D) and λmax(D) refer to the trace and the maximum eigenvalue, respec-
tively, of the matrix

D =

(∫ 1

0
FdW ′

)′(∫ 1

0
FF ′ds

)−1(∫ 1

0
FdW ′

)
.

Here W denote a p − r-dimensional Wiener process and F depends on the form
and restrictions of any deterministic terms included in the model, as mentioned in
the beginning of this section. In the case here of no deterministic terms, then F =
W . Due to the non-standard asymptotical distributions for (2.28) and (2.29), critical
values can be found by simulation. Tabulated values for various combinations of
dimension and model specifications are available in Johansen (1996).

Determining r̂ = rank(Π) using the trace statistic (2.28) is then performed as a se-
quential procedure starting from H(0) versus H(p) and the continuing until the null
cannot be rejected. That is, starting with r = 0, do the following

1. Calculate Λ(r) = −2 logQ
(
H(r)|H(p)

)
and evaluate.

2. If Λ(r) is rejected, set r = r + 1 and go to 1, otherwise set r̂ = r.

3. If r = p, then set r̂ = p.

2.2.5 Bootstrap testing for cointegration rank

Another possibility for evaluating the critical thresholds for the statistics (2.28) and
(2.29), is to use bootstrapping techniques (see Cavaliere, Rahbek, and Taylor, 2012),
which also improves the small sample properties of the test.

The intuition stems from the fact that the innovations in (2.8) are i.i.d. Gaussian.
This implies that given estimates α̂, β̂, Θ̂, Ω̂, we can simulate data from the estimated
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model by simulating Gaussian innovations. Then for each such sample, we calculate
the relevant statistic and evaluate our original statistic to the empirical distribution
of bootstrap sampled values.

In Cavaliere, Rahbek, and Taylor (2012) the bootstrap algorithm for rank estimation
of the model (2.8) is presented as follows. GivenN observations, set r = 0, α̂ = β̂ = 0
and do

1. Estimate the parameters of (2.8) by MLE as presented in the previous section.
Denote the estimates α̂(r), β̂(r), Θ̂(r), Ω̂(r).

2. GenerateN bootstrap innovations, denoted ε∗n from the residuals ε̂n, n = 1, . . . , N
from (2.8) by either

(a) The i.i.d. bootstrap: ε∗n = ε̂un , n = 1, . . . , N for an i.i.d sequence of discrete
uniform variables un on (1, . . . , N).

(b) The wild bootstrap: ε∗n = ε̂nwn, n = 1, . . . , N for an i.i.d. sequence of vari-
ables wn ∼ N (0, 1).

3. Using the bootstrap innovations ε∗n and initial values y∗−k+1 = · · · = y0 = 0,
sample recursively from

∆y∗n = α̂(r)β̂(r)y∗n−1 +

k∑
i=1

Γ̂
(r)
i ∆y∗n−i + ε∗n, for n = 1, . . . , N.

4. Use the bootstrap sample {y∗n}Nn=1 to find the eigenvalues λ∗1 > · · · > λ∗p as in
(2.22) and construct either the trace statistic (2.28) or the maximum eigenvalue
statistic (2.29) denoted here by Q∗r .

5. Evaluate the p∗r-value for the bootstrap sample with the (unknown) distribu-
tion G∗r . If p∗r exceeds the significance level, set r̂ = r, otherwise set r=r+1 and
go to 1. If r + 1 = p set r̂ = p.

The distribution G∗r in step 5 is unknown, but it can be approximated from inde-
pendent bootstrap samples. By repeating steps 1-4 above for B bootstrap samples
and denoting each sampled statistic as Q(b)

r for b = 1, . . . , B, we obtain an empirical
distribution G̃∗r for the statistic, approximating G∗r . We can then evaluate the origi-
nal statistic Qr, as calculated from the original data, with the empirical G̃∗r . For the
B bootstrap samples of Q(b)

r , b = 1, . . . , B, the p-value of Qr is evaluated with G̃∗r
as

p̃∗r = B−1
B∑
i=1

1{Q(b)
r > Qr}. (2.30)

The fact that p̃∗r → p∗r with asymptotical standard error
√
p̃∗r(1− p̃∗r)/B → 0 as

B → ∞, where p∗r denotes the true p-value for Qr evaluated by the distribution
G∗r , assures us that for a large enough bootstrap sample, B, the p-values from the
empirical distribution are valid for rank estimation.
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2.2.6 Inference for α and β

We now consider restrictions for the parameters α and β in (2.8). Recall that the
estimate of Π̂ = α̂β̂′ was not unique, since we are actually identifying the subspaces
sp(α), sp(β) and it was necessary to impose a normalization such as (2.24) on β̂ to
identify parameters.

These considerations also apply to the possible inference on the cointegration pa-
rameters. We can extend the intuition behind the normalization (2.24) to more gen-
eral linear restrictions on either α or β. To keep things simple, we will illustrate ex-
amples for a p = 3 dimensional system of (possibly) coupled neurons, where r = 1, 2.
Denote the process as yn = (y1n, y2n, y3n)′ and likewise for ∆yn. For simplicity we
also assume that no deterministic terms or lagged differences ∆yn−i are present.
Hence, the model is simply

∆yn =

∆y1n

∆y2n

∆y3n

 = αβ′

y1n

y2n

y3n

+

ε1n

ε2n

ε3n

 . (2.31)

The case of r = 1 implies that there is 1 cointegration relation, i.e., α, β are col-
umn vectors in R3, and two stochastic trends. If we have reason to assume that
y1n and y2n are coupled independently of y3n, we could think of this as stating that
y1n, y2n cointegrate and share a common stochastic trend, whereas y3n has it’s own
stochastic trend, independent of y1n, y2n. In a cointegration context, this would im-
ply that

H0 : Π =

π11 π12 0
π21 π22 0
0 0 0

 . (2.32)

If we allowed for y3n to influence y1n and y2n, but not the other way around, then
we would be interested in whether

H0 : Π =

π11 π12 π13

π21 π22 π23

0 0 0

 (2.33)

is a plausible explanation of the data. These hypothesis can be tested by restrictions
on α and/or β on the form

R′αα = 0

R′ββ = 0
⇔

α = Hαψ

β = Hβφ
(2.34)

for matrices H = R⊥ of size p × si and ψ, φ are matrices of size si × r for i = α, β.
The hypothesis (2.33) would then be specified as

H0 : α = Hαψ

Hα =

1 0
0 1
0 0


ψ = (ψ1, ψ2)′
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such that α = (ψ1, ψ2, 0)′ and therefore

Π = αβ′ =

ψ1β1 ψ1β2 ψ1β3

ψ2β1 ψ2β2 ψ2β3

0 0 0

 .

Note that the restriction in this case would be Rα = (0, 0, 1)′. A similar restriction on
β would amount to

H0 : β = Hβφ

Hβ =

1 0
0 1
0 0


φ = (φ1, φ2)′

and thus β = (φ1, φ2, 0)′

Π = αβ′ =

α1φ1 α1φ2 0
α2φ1 α2φ2 0
α3φ1 α3φ2 0

 ,

with a restriction similar to the previous case,Rβ = (0, 0, 1)′. Evident from the Π ma-
trix above, the cointegration relation β′yn would ensure that y3n does not influence
either y1n or y2n, but if α3 6= 0, then y3n would be influenced by any disequilib-
rium between y1n and y2n and therefore not independent. Hence, in order to obtain
full independence for y3n, then simultaneous restrictions on α and β must be im-
posed

H0 : α = Hαψ ∧ β = Hβφ

Hα =

1 0
0 1
0 0


ψ = (ψ1, ψ2)′

Hβ =

1 0
0 1
0 0


φ = (φ1, φ2)′

implying that

Π = αβ′ =

ψ1φ1 ψ1φ2 0
ψ2φ1 ψ2φ2 0

0 0 0

 .

As a final example, assume that one process, say y1n is a random walk that influences
both y2n and y3n, such that

∆yn =

∆y1n

∆y2n

∆y3n

 =

 0
α2β1

α3β1

 y1n +

ε1n

ε2n

ε3n

 . (2.35)
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For r = 1 this would have α = (0, α2, α3)′ and β = (β1, 0, 0)′, corresponding to the α
restriction

H0 : α = Hαψ

Hα =

0 0
1 0
0 1


ψ = (ψ2, ψ3)′.

Since r = 1 there are p− r = 2 common stochastic trends given by α′⊥
∑n

i=1 εi. From
the form of α we find that

α⊥ =

 α̃1 α̃2

−α3 −α3

α2 α2

 ,

such that α′⊥α = 0. This implies that

α′⊥

n∑
i=1

εn =

(
α̃1
∑n

i=1 ε1n − α3
∑n

i=1 ε2n + α2
∑n

i=1 ε3n

α̃2
∑n

i=1 ε1n − α3
∑n

i=1 ε2n + α2
∑n

i=1 ε3n

)
=

(
α̃1
∑n

i=1 ε1n + α̃
∑n

i=1 ε̃n
α̃2
∑n

i=1 ε1n + α̃
∑n

i=1 ε̃n

)
,

where α̃
∑n

i=1 ε̃n = α2
∑n

i=1 ε3n−α3
∑n

i=1 ε2n. Hence, the two stochastic trends arise
from y1n and a composition of the trends from y2n and y3n. Had we assumed r = 2
instead, then there would only be one stochastic trend. From the form of α in this
case

α =

 0 0
α21 α22

α31 α32

 ,

we find that α′⊥ = (α̃1, 0, 0) and thus

α′⊥

n∑
i=1

εn = α̃1

∑
i=1

ε1n,

implying that for the constructed model of two coupled processes y2n and y3n to-
gether with an independent random walk process y1n, the latter provide the stochas-
tic trend of the full I(1) system when r = 2.

In the same manner we can construct hypotheses on one-way or bi-directional inter-
action as well as independence of individual processes in higher dimensional sys-
tems and for r > 1 by appropriate restrictions on the matrices α and β. Although the
restrictions are essentially that R′αα = 0 and/or R′ββ = 0, as seen above, it is often
tractable to think of linear restrictions in terms of the matrices Hα, Hβ instead. The
interpretation of these linear matrices are, that they restrict the span of the columns
in α, β to the column space of Hα and Hβ respectively,

sp(α) ⊂ sp(Hα)

sp(β) ⊂ sp(Hβ).
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The discussion regarding stochastic trends generalize to p > 3 as well and by form-
ing various hypotheses we can attempt to analyze the origins of any stochastic I(1)
trends in the system.

The likelihood ratio tests for the linear restrictions (2.34) for α and β conveniently
have χ2

r(p−s) asymptotical distributions, where r(p − s) denote the degrees of free-
dom. Here s is the dimension of either ψ or φ in (2.34). The likelihood ratio test com-
pares the null against the unrestricted, both under the assumption rank(Π) = r, i.e.
the test becomesH0 versusH(r). For restrictions β = Hφ (omitting here theHβ nota-
tion to simplify), the likelihood is maximized as in (2.26), but the estimated eigenval-
ues differ. Instead of the (unrestricted β) reduced rank regressionR0n = αβ′R1n+ε̂n,
this becomes R0n = αφ′H ′R1n + ε̂n which is in turn solved by the eigenvalue prob-
lem

|λ∗H ′S11H −H ′S10S
−1
00 S01H| = 0.

Denoting the estimated eigenvalues under the restricted reduced rank regression by
λ∗i , the likelihood is maximized by Lmax = |S00|

∏r
i=1(1−λ∗i ) and the likelihood ratio

test becomes

−2 logQ
(
H0|H(r)

)
= N

r∑
i=1

log
(1− λ∗i

1− λ̂i

)
∼ χ2

r(p−s), (2.36)

where λ̂i denotes the eigenvalues solving (2.21). The unrestricted β (and α) model
have 2pr−r2 free parameters whereas underH0 the model has pr+rs−r2 for the χ2

distribution (Johansen, 1996). This implies a difference of pr− rs = r(p− s) degrees
of freedom. For restrictions on α = Hψ (omitting again the notation Hα to simplify)
the end result is similar, but more work is required to obtain the correct form of the
eigenvalue problem (2.21). Here we state the result, but refer to Johansen (1996) for
the full derivation. For a given matrix M ∈ Rp×s, define M̄ = M(M ′M)−1 such that
M ′M̄ = Is. Then, with the restriction α = Hψ, H ∈ Rp×s, considering the corrected
residuals

R̃0n = R0n − S00H⊥(H ′⊥S00H⊥)−1H ′⊥R0n

R̃1n = R1n − S00H⊥(H ′⊥S00H⊥)−1H ′⊥R1n

and defining

Sij.H⊥ = N−1
N∑
n=1

R̃inR̃jn, for i, j = 0, 1,

the revised eigenvalue problem becomes

|λ̃S11.H⊥ − S10.H⊥H̄(H̄ ′S00.H⊥H̄)−1H̄ ′S01.H⊥ | = 0.

Denoting the eigenvalues solving this equation by λ̃i, the likelihood ratio test for H0

versus H(r) is given, analogously to (2.36), as

−2 logQ
(
H0|H(r)

)
= N

r∑
i=1

log
(1− λ̃i

1− λ̂i

)
∼ χ2

r(p−s), (2.37)

where again λ̂i denotes the eigenvalues solving (2.21). For a combination of Hα ∈
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Rp×m and Hβ ∈ Rp×s the eigenvalue problem is revised accordingly, but the degrees
of freedom become r(p−m) + r(p− s).

2.3 Cointegration for Continuous Time Diffusions

So far, the theory on cointegration has only dealt with discrete time autoregres-
sive processes. In Kessler and Rahbek (2004) the authors derive a cointegration
framework for multivariate continuous time Gaussian diffusion processes. The p-
dimensional Ornstein-Uhlenbeck (OU) process

dyt = Πytdt+DdWt, t ≥ 0 (2.38)

for y0 given, can be considered as a continuous time version of the VAR(1) process,
where Π ∈ Rp×p as before, and D ∈ Rp×k, k ≤ p is such that Ω = D′D is a positive
definite covariance matrix and Wt is a k-dimensional Wiener process.

Kessler and Rahbek (2004) discuss cointegration in the context of the OU process
(2.38) with respect to the identifiability of the matrices Π and Ω given discrete time
observations in equidistant time intervals, tiδ, for i = 0, 1, . . . , T , of length δ. The
solution to (2.38) is given by

yt = exp(tΠ)
(
y0 +

∫ t

0
exp(−sΠ)DdWs

)
, (2.39)

where exp(·) refer to the matrix exponential function for a matrix M

exp(M) =
∞∑
i=0

M i

i!
. (2.40)

If the matrix Π have full rank p and the real part of the eigenvalues are strictly neg-
ative, then the solution (2.39) is stationary and ergodic, but if rank(Π) = r < p, then
this is not so. However, in this case we can factor Π = αβ′ for matrices α, β ∈ Rp×r as
in the discrete time case. Given further assumptions that |β′α| 6= 0 and the real part
of the eigenvalues of β′α are negative, we obtain a stationary and ergodic process
β′yt.

The process (2.39) is only observed at discrete times 0, δ, 2δ, . . . and the correspond-
ing discrete time VAR formulation of the solution is

yti = Ayti−1 + εti , i = 1, . . . , T, (2.41)

where εti ∼ Np(0,Σ) is an i.i.d. sequence and

A = exp(δΠ) (2.42)

Σ = fΠ(Ω) =

∫ δ

0
exp(sΠ)Ω exp(sΠ′)ds. (2.43)

Rewriting (2.41) in the error correction form (2.8), then

∆yti = (A− Ip)yti−1 + εti = Pyti−1 + εti , (2.44)
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for P = A−Ip = exp(δΠ)−Ip. Note that sinceA is defined by the matrix exponential
of δΠ, identification of Π depends on the uniqueness of the solution to the matrix
exponential function. In Kessler and Rahbek (2004) this is referred to as the aliasing
problem and an example of the bivariate rotating Brownian motion presents a case
of a non-unique solution such that the two solutions Π and Π̃ are indistinguishable
and thus non-identifiable from discrete observations. However, Kessler and Rahbek
(2004) (Lemma 1) state a simple condition on the uniqueness of Π. The eigenvalues
of Π are real and no elementary divisor of Π occur more than once, if and only if
the Π̃ = Π is the unique solution to exp δΠ̃ = exp δΠ for all real p × p matrices.
Furthermore, a unique solution to the equation A = exp(δΠ) is ensured if |A| 6= 0
and A has no negative eigenvalues.

Kessler and Rahbek (2004) state that if Π ∈ Rp×p has rank r such that Π = αβ′ where
|β′α| 6= 0 and all eigenvalues of β′α have negative real parts, then the continuous
process (2.38) is cointegrated of order 1 and can be split analogous to the Granger
Representation Theorem for discrete time models. In this case, the discrete time
version (2.41) of the diffusion has

P = exp(δαβ′)− Ip = ακβ,

for the nonsingular matrix κ ∈ Rr×r, composed of α, β and δ. Theorem 1 in Kessler
and Rahbek (2004) then states that

rank(P ) = rank(Π) = rank(αβ) = r,

and equally important, for P = ab′, with a, b ∈ Rp×r of full rank r, then

sp(a) = sp(α)

sp(b) = sp(β),

that is, the subspaces for the discrete time matrices a, b coincide with their con-
tinuous time counterparts α, β. Although the cointegration matrix Π may not be
uniquely identifiable, it is still possible to infer about the rank and the subspaces
for α and β in the decomposition of Π and considering the hypotheses in Section
2.2.6, this implies that it is possible to derive meaningful conclusions from discrete
observations of the continuous time cointegrated diffusion process (2.38). Given the
discrete observations, the procedures for estimation and inference are exactly the
discrete time estimation and restrictions outlined above, but conclusions must be
transformed between the discrete and continuous time model using the matrix log-
arithm/exponential function.
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Abstract

We present cointegration analysis as a method to infer the network structure of a
linearly phase coupled oscillating system. By defining a class of oscillating systems
with interacting phases, we derive a data generating process where we can specify
the coupling structure of a network that resembles biological processes. In particular
we study a network of Winfree oscillators, for which we present a statistical analysis
of various simulated networks, where we conclude on the coupling structure: the
direction of feedback in the phase processes and proportional coupling strength be-
tween individual components of the system. We show that we can correctly classify
the network structure for such a system by cointegration analysis, for various types
of coupling, including uni-/bi-directional and all-to-all coupling. Finally, we ana-
lyze a set of EEG recordings and discuss the current applicability of cointegration
analysis in the field of neuroscience.

1 Introduction

Since the first scientific discovery of two pendulums synchronizing by Christiaan
Huygens in the 17th century, this naturally occurring phenomenon has now been
observed in diverse areas such as fireflies synchronizing their flashing behavior, a
theatre audience applauding after a show and also in chemical and biological sys-
tems, such as the brain and the heart beats of a mother and her fetus, where coupled
oscillators appear, see also Pikovsy, Rosenblum, and Kurths (2001). Due to it’s per-
vasive presence, understanding synchronization is of key interest for researchers
to understand biological networks, such as the connectivity of the nervous system,
circadian rhythms or the cardiovascular system. To a statistician this presents a fas-
cinating challenge of modelling complex behavior in large scale systems and how to

https://doi.org/10.1007/s00285-017-1100-2
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infer the data-generating mechanisms. To this day, synchronization is not fully un-
derstood, but has been the centre of research for decades as evident in (Ermentrout,
1985; Kuramoto, 1984; Strogatz, 1987; Strogatz, 2000; Taylor and Holmes, 1998; Win-
free, 1967), even the phenomenon of synchronizing pendulums as observed by Huy-
gens, still attracts attention today, see Martens (2013) and Oliveira and Melo (2015).
Many innovative ideas have been presented since Winfree (1967) began a mathe-
matical treatment of the subject. When Kuramoto (1984) first presented his model of
coupled oscillators, this made a huge impact in the field and spawned a new genera-
tion of research on synchronization. Kuramotos model is still considered among one
of the most significant advancements in the study of synchronization in oscillating
systems as acknowledged by Strogatz (2000), and the study of coupled oscillators
still attracts a fair interest from researchers (Ashwin, Coombes, and Nicks, 2016;
Burton, Ermentrout, and Urban, 2012; Fernandez and Tsimring, 2014; Ly, 2014; Ly
and Ermentrout, 2011).

A long standing problem in neuroscience is to recover the network structure in a
coupled system. This could for example be to infer the functional connectivity be-
tween units in a network of neurons from multiple extracellularly recorded spike
trains, or how traces of EEG signals from different locations on the scalp affect each
other, which we will treat in this paper. To the authors knowledge, this challenge is
still lacking a sound statistical framework to model and test for interaction in a sys-
tem, as well as impose statistical hypotheses on the network structure. For this task,
cointegration analysis offers a refined statistical toolbox, where detailed information
on the connections can be inferred, such as the direction and proportional strength
of the coupling. The theory of cointegration was originally conceived by Granger
(1981), and has since then also been the subject of intense research, most notably
within the field of econometrics. In the monograph by Johansen (1996), the full like-
lihood theory for linear cointegration models with Gaussian i.i.d. errors is derived,
and a framework for estimation and inference on parameters using the quotient test
is presented. This well acknowledged framework is popularly termed the Johansen
procedure. Even though cointegration analysis has developed from within the field
of econometrics, it may potentially be used for different models outside economics,
such as biological models in continuous time as we explore here. It has also been
applied in climate analysis, see Schmidt, Johansen, and Thejll (2012).

In this paper, we demonstrate how to apply cointegration analysis to a system of lin-
early phase coupled oscillating processes. To display the applicability of the method,
we present a simulation experiment, where we present a statistical analysis of phase
coupled systems with varying network structures, including uni-/ bi-directional
and all-to-all couplings. We show that we can identify the proportional coupling
strengths and directions given by the estimated cointegration matrix parameter. Our
work is inspired by Dahlhaus and Neddermeyer (2012), which also introduces coin-
tegration analysis as a statistical toolbox to neuroscientists and new challenges for
researchers in cointegration theory. However, in contrast to Dahlhaus and Nedder-
meyer (2012), we incorporate the fact that we are dealing with continuous systems
and also ensure that the cointegration property of the system is well posed as a linear
structure. This approach assures that the conclusion on the interaction in the data is
accurate in terms of cointegration.

The paper is composed as follows. In Section 2 we define a class of phase coupled
oscillators, in Section 3 we highlight some cointegration theory for the analysis in-
cluding an extension to discretely observed, continuous time models. In Section 4
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we present a statistical analysis of linearly phase coupled oscillating systems and
in Section 5 we analyze EEG recordings from an epileptic subject experiencing a
seizure, previously analyzed by Shoeb (2009). We discuss the model and findings,
conclude on the research and give an outlook of the future direction of the research
in Section 6. Technical details are presented in the appendix.

Throughout we use the following notation and conventions: unless explicitly stated
otherwise, time t ∈ [0,∞) is assumed continuous, and the process (xt, yt)

′ is as-
sumed observed with corresponding polar coordinates (φt, γt)

′. Here ′ denotes trans-
position. For a p × r matrix M , with r ≤ p, we denote the orthogonal complement
M⊥, a p× (p− r) matrix such that M ′⊥M = 0 (zero matrix). Also denote by sp(A) the
subspace spanned by the columns of a matrix A, and let rank(A) denote the rank of
the matrix, i.e., the dimension of sp(A).

2 Oscillating systems

Studying biological rythms corresponds to studying systems of periodical processes.
Intuitively we define a single oscillator as a continuous time bi-variate process zt =
(xt, yt)

′ ∈ R2, t ∈ [0,∞), such that zt revolve around some arbitrary center. Such
a process can be derived from an equivalent process in polar coordiantes (φt, γt)

′,
where φt ∈ R is the phase process and γt ∈ R is the amplitude process, such that

xt = γt cos(φt)

yt = γt sin(φt).
(I.1)

We then define the process zt to be an oscillator if the phase process has a monotonic
trend.

2.1 Defining a class of coupled oscillators

Definition (I.1) naturally extends to a system of coupled stochastic oscillators, where
we observe p oscillators that interact, i.e., zt ∈ R2p. Define a class of oscillators
with phase (φt ∈ Rp) and amplitude (γt ∈ Rp) processes given by the multivariate
stochastic differential equations (SDE)

dφt = f(φt, γt)dt+ ΣφdW
φ
t (I.2)

dγt = g(φt, γt)dt+ ΣγdW
γ
t , (I.3)

where f, g : R2p → Rp are real valued vector functions, possibly depending on
both φt, γt or constant, dW φ

t , dW
γ
t are multivariate standard Wiener processes and

Σφ,Σγ ∈ Rp×p such that ΣiΣ
′
i is a positive semi-definite covariance matrix for i =

φ, γ. Assume the properties of (I.2) and (I.3) are such that

γt ∈ Rp+ for t ∈ [0,∞) (I.4)

and

E[φkt] is monotonically increasing as a function of t for each k = 1, . . . , p, (I.5)
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where E[·] denotes the mean. Since γt = (γ1t, . . . , γpt)
′ are interpreted as the am-

plitudes of the individual oscillators, eq. (I.4) is a natural assumption and eq. (I.5)
ensures that the individual oscillators actually revolve (anti-clockwise) around the
center and that they are not "stuck" in some part of the phase space, i.e., their an-
gular velocities are positive. Note that we have defined the phase-trend as positive,
corresponding to counter-clockwise rotation in accordance with the standard inter-
pretation of the phase. However, for a negative trending process, one can either look
at −φt or simply interpret rotations as clockwise.

To emphasize the implication of inducing interaction in a system, for the data gen-
erating process (DGP) in the xy-plane, we derive a DGP from (I.2)-(I.3), see ap-
pendix A. Assuming that Σφ = diag(σφ1 , . . . , σ

φ
p ) and Σγ = diag(σγ1 , . . . , σ

γ
p ) we find

that

d

(
xkt
ykt

)
=

(
−1

2(σφk )2 −fk(φt, γt)
fk(φt, γt) −1

2(σφk )2

)(
xkt
ykt

)
dt+

(
0 −σφk
σφk 0

)(
xkt
ykt

)
dW φ

kt

+
gk(φt, γt) + σγkσ

φ
k√

x2
kt + y2

kt

(
xkt
ykt

)
dt+

σγk√
x2
kt + y2

kt

(
xkt
ykt

)
dW γ

kt.

(I.6)

Hence, with the definitions (I.2)-(I.5) we have introduced a general class of coupled
oscillators, where the specifications of f and g define the properties of the system,
such as interaction. This broad definition of oscillating systems covers among oth-
ers the Kuramoto model, see Example 2.5 below and other standard oscillators such
as the FitzHugh-Nagumo and the Duffing oscillator. In this paper we will analyze
phase coupled oscillators, and therefore we assume that gk(φt, γt) = gk(γkt), such that
there is no feedback from the phase process φt into the amplitude and the k’th ampli-
tude is not dependent on the rest. Hence, interaction in the system is solely through
f(φt, γt), such that the phase processes are attracted by some interdependent rela-
tion.

2.2 Linear coupling

The arbitrary function f enables us to choose any transformation of the variables
to obtain a coupled system, including unidirectional coupling between phases or
periodic forcing of the system if we extend f to depend on t as well, intermittent
synchronization dependent on a threshold in process differences, etc.

Studying the general case where f(φt, γt) is nonlinear in φt and γt is a complex ex-
ercise. In this paper we restrict ourselves to models where f is composed of a linear
mapping of φt and a function of γt, with components,

fk(φt, γt) =

p∑
j=1

Πkj(φjt − ωj) + h(γkt), for k = 1, . . . , p (I.7)

for a real matrix Π ∈ Rp×p and constant vector ω = (ω1, . . . , ωp)
′ ∈ Rp. With this

restriction, the interaction between oscillators is linear in the phase, and the k’th
oscillator is only dependent on the intrinsic amplitude γkt through h(γkt). We will
refer to such a system as linearly phase coupled.
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Although we impose the linear restriction Π on the interaction between phases, we
can still model a broad set of coupling structures as we show with examples below.
Since the interaction is given by Πφt, we note that the coupling strength in the system
is given as the absolute values of the entries of Π and that row k of Π define how
oscillator k depends on the rest. Note also that ω defines the attracting state for the
phase relations, see Example 2.3 below. Normally h(γkt) is restricted to a constant,
but in Section 4 we will relax this and investigate systems where h(γkt) is only ap-
proximately linear and has a sufficiently low variance. This implies a misspecified
model, but as we will show, we can still identify the coupling structure, although
inference on h(γkt) itself is less meaningful.

2.3 Example: Linearly phase coupled system with a degenerate γt pro-
cess

Let f be defined as in (I.7) and assume that γt is a constant (positive) process such
that h(γkt) = µk > 0. Then f is of the form

f(φt) = Π(φt − ω) + µ, (I.8)

where ω, µ ∈ Rp are constant vectors. For reduced rank matrices Π (I.2) is a continu-
ous time cointegrated process (see Section 3) and f admits a linearly phase coupled
system with intrinsic rotating frequencies µ. Note that if Π = 0 then there is no in-
teraction in the system, and the individual oscillators will rotate according to their
own µk > 0, and we refer to the system as independent.

The linear specification Π(φt−ω) implies that at most one attracting point can exist.
As an illustration of this, assume a system composed of two coupled oscillators,
with

Π(φt − ω) =

(
−α1 α1

α2 −α2

)(
φ1t − ω1

φ2t − ω2

)
=

(
−α1

α2

)(
(φ1t − φ2t)− (ω1 − ω2)

)
.

where 0 < α1 + α2 < 2. Since ω∗ = ω1 − ω2 define an attracting state of the phase
difference φ1t − φ2t, then with ω∗ = 0 the system is attracted towards being in-phase,
whereas ω∗ = π would imply that the system is attracted towards being in anti-phase.
Considering that neither α1, α2 or ω∗ depend on time, the system cannot switch to a
different attracting regime.

To illustrate possible coupling structures, consider again the system of two oscilla-
tors and assume that ω = 0. Then with α2 = 0 and α1 6= 0 the coupling between
φ1t, φ2t is uni-directional φ2t → φ1t where the arrow→ denote the direction of inter-
action. Likewise, if α1 = 0 and α2 6= 0 then φ1t → φ2t. However, if both α1, α2 6= 0
then φ2t ↔ φ1t and the coupling is bi-directional. In general, if φkt appears in the
expression fl(φt) for oscillator l 6= k, then φkt → φlt. If the opposite is true, then
φlt → φkt and if both directions exist, then φlt ↔ φkt. For fk(φt) = 0 oscillator k is
(oneway) independent from the rest, but it can still possibly influence others.

For systems where γt is a degenerate process, then Σγ = 0 and g(φt, γt) = 0. With
σφk = σk then (I.6) simplifies to

d

(
xkt
ykt

)
=

(
−1

2σ
2
k −fk(φt)

fk(φt) −1
2σ

2
k

)(
xkt
ykt

)
dt+

(
0 −σk
σk 0

)(
xkt
ykt

)
dWk, (I.9)
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where fk(φt) =
∑

j Πkjφjt + µk. Note that if Π = 0 then (I.8) is simply a constant
trend and hence (I.9) is a rotating process. One can show that the eigenvalues of the
deterministic drift matrix in (I.9) in this case are complex conjugates,−σ2

2 ±iµ, where
i =
√
−1, implying that the solutions to (I.9) oscillate for µ 6= 0. The oscillations are

damped by the negative real part, but sustained by the noise term.

When γt is a constant vector process the properties of the system are fully identified
by (I.2). Furthermore, if the noise level of the phases Σφ is sufficiently small, we
can use the Hilbert transform1 to derive the phase process φt from observations of
either xt or yt. This is a commonly used technique in signal processing and has been
applied to oscillating systems as well, see Dahlhaus and Neddermeyer (2012) and
Pikovsy, Rosenblum, and Kurths (2001). For systems where φt is very noisy, this
method is less applicable.

2.4 Example: Winfree oscillator

Let gk(φ, γ) = (κk − γk)γ2
k for a vector κ ∈ Rp+ and fk(φ, γ) =

∑p
j=1 Πkjφj + γk for

Π ∈ Rp×p such that

dγkt = (κk − γkt)γ2
ktdt+ σγkdW

γ
kt

dφkt =
( p∑
j=1

Πkjφj + γkt

)
dt+ σφkdW

φ
kt.

With these definitions (I.6) becomes

d

(
xkt
ykt

)
=

(κk − γkt)γkt + γ−1
kt σ

γ
kσ

φ
k −

1
2(σφk )2 −

(∑p
j=1 Πkjφj + γkt

)(∑p
j=1 Πkjφj + γkt

)
(κk − γkt)γkt + γ−1

kt σ
γ
kσ

φ
k −

1
2(σφk )2

(xkt
ykt

)
dt

+

(
0 −σφk
σφk 0

)(
xkt
ykt

)
dW φ

kt +

(
γ−1
kt σ

γ
k 0

0 γ−1
kt σ

γ
k

)(
xkt
ykt

)
dW γ

kt.

(I.10)

This example is taken from Winfree (2001) and extended with noise and phase in-
teraction, and therefore we will refer to (I.10) as the (noisy) Winfree oscillator. Note
that the formulation of dγkt implies that the amplitude fluctuates around κk. Due
to this, we can for sufficiently small noise Σγ insist that γkt ≈ κk for k = 1, . . . , p
and therefore analyze the Winfree oscillator using the cointegration toolbox, assum-
ing a constant γt in dφt. In Section 4 we analyze the range of noise, Σγ , where the
cointegration analysis still performs well.

2.5 Example: Kuramoto model

Choose f(φt, γt) such that

fk(φt, γt) = fk(φt) =
1

p

p∑
j=1

Kkj sin(φjt − φkt) + µi, k = 1, . . . , p, (I.11)

1The Hilbert transform of a signal xt is defined as H(xt) = π−1p.v.
∫∞
−∞

xτ
t−τ dτ =

−π−1 limε→0

∫∞
ε

xt+τ−xt−τ
τ

dτ , where p.v.
∫∞
−∞ denotes the principal value integral.
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then (I.2) is the Kuramoto model extended with a stochastic noise term, for phase
coupled oscillators, where Kkj denotes the coupling strength between the k’th and
j’th oscillators. In the classic version, Kkj = K ∀k, j, such that for a certain thresh-
old Kc, then with K > Kc the oscillators exhibit synchronization. For an arbitrary
γt process we cannot simplify (I.6), but with a degenerate γt we obtain the same
expression as in (I.9) with fk(φt) as in (I.11).

For the Kuramoto model f is a nonlinear function, hence it is not directly applica-
ble to a standard cointegration analysis where f is assumed linear. To emphasize
this fact, consider the special case p = 2, where the Kuramoto model is particularly
simple and (I.11) can be written explicitly as,

f(φt) =
1

2

(
α1 sin(φ2t − φ1t)
α2 sin(φ1t − φ2t)

)
+ µ =

1

2

(
−α1

α2

)
sin(φ1t − φ2t) + µ

=
1

2

(
−α1

α2

)
sin(β′φt) + µ.

where β′ = (1,−1) and (α1, α2) = (K12,K21). If φ1t ≈ φ2t at t = 0 and the values
of α1, α2 are large enough, then φ1t ≈ φ2t ∀t, such that β′φt ≈ 0 and we can write a
crude linear approximation of the sine function: sin(β′φt) ≈ β′φt, such that

f(φt) ≈
1

2

(
−α1

α2

)
β′φt + µ =

1

2

(
−α1 α1

α2 −α2

)
φt + µ. (I.12)

This is a coarse, but linear, approximation of the Kuramoto model and we can per-
form a cointegration analysis assuming this approximation is satisfactory. However,
one must be cautious with this approximation. Consider sin(β′φt), when β′φt =
φ1t − φ2t ≈ π. In this case sin(β′φt) ≈ π − β′φt, and hence

f(φt) ≈
1

2

(
−α1

α2

)
(π − β′φt) + µ =

1

2

(
α1 −α1

−α2 α2

)
φt + µ+

(
−α1

α2

)
π, (I.13)

and we see that not only do we add a term with π, but the interaction also reverses
sign. Recall that 0 < α1 + α2 < 2 which implies a stationary relation in the sys-
tem in (I.12), see Section 3.2. In (I.13) this condition is reversed, in the sense that
−2 < α1 + α2 < 0 will imply stationarity. If 0 < α1 + α2 < 2, (I.13) leads to an
explosive system, which is not covered in this paper. Therefore, an essential require-
ment for an approximation of the Kuramoto model is a regime switching ability of
(I.2). For a model with this property, we propose that cointegration analysis on a
piecewise linear approximation of the Kuramoto model does make sense and can
lead to correct conclusions regarding the network structure. In this paper we will
not deal with non-linear cointegration of oscillating systems, but leave this direction
open for future research. For a statistical analysis of nonlinear cointegrated systems
of the form αtβ

′, i.e. time varying, or regime switching α coefficients, see Bec and
Rahbek (2004) and Kristensen and Rahbek (2013).

Note that with a general coupling constant Kkj = K, then the simple linear approx-
imation to the Kuramoto model around φjt − φkt ≈ 0 is

K

p

p∑
j=1

sin(φjt − φ1t)
...

sin(φjt − φpt)

 ≈ K

p

−(p− 1) . . . 1
...

. . .
...

1 . . . −(p− 1)

φt. (I.14)
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3 Cointegration

Cointegration theory was originally developed for discrete time processes, however
the ubiquitous use of continuous time models has inspired development of con-
tinuous time cointegration theory, see Kessler and Rahbek (2004) and Kessler and
Rahbek (2001). In order to present cointegration analysis as a framework for phase-
processes, we therefore review some background on discrete time processes before
entering into continuous time cointegrated models. The first part of this section is
based on Johansen (1996) and Lütkepohl (2005).

3.1 Integrated process

Assume that φn is a discrete time vector autoregressive process,

φn = Aφn−1 + µ+ εn, (I.15)

where A ∈ Rp×p, εn is a Gaussian white noise and µ ∈ Rp is a deterministic term.
The characteristic polynomial for (I.15) is the determinant of Ip − Aζ for ζ ∈ C, where
Ip is the p-dimensional identity matrix. If the roots of the characteristic polynomial
are all outside the unit circle, then the initial values of φn can be given a distribution
such that φn is stationary, see Johansen (1996).

If the characteristic polynomial of (I.15) contains one or more roots at ζ = 1, then
there is no stationary solution of φn, and we say that the process is integrated. In
particular, see Johansen (1996), P = A − Ip will have reduced rank r < p and can
be written as P = ab′ with a, b (p × r) matrices of rank r. Moreover, the process φn
is integrated of order one, I(1) with r cointegrating relations b′φn under regularity
conditions presented in Section 3.2. Note that the order of integration is a stochastic
property and hence including deterministic terms in a model does not change the
order of integration.

In this paper we will only deal with I(1) processes, so when we refer to φn as inte-
grated, we implicitly mean that φn is integrated of order 1.

3.2 Cointegrated process

Let φn = (φ1n, ..., φpn)′ ∈ Rp and rewrite (I.15) with P = A− Ip as

∆φn = Pφn−1 + µ+ εn. (I.16)

As already noted if det(I−Aζ) = 0 implies |ζ| > 1 then φn has a stationary represen-
tation (as an I(0) process). In particular, P has full rank p and all linear combinations
of φn are stationary. If the (p× p)-dimensional matrix P has reduced rank r < p then
P = ab′ with a, b, p× r dimensional matrices of rank r. Moreover, the process φn is
integrated of order one, I(1) with r cointegrating stationary relations b′φn provided
ρ(Ir + b′a) < 1 with ρ (·) denoting the spectral radius. This we refer to as the I(1)
conditions in the following.



3. Cointegration 39

Note that if r = 0 the process φn is I(1) with no cointegration, while if r = p (and
ρ(A) < 1) then φn is I(0), or p stationary linear combinations exist. Under the re-
duced rank r, the system is written as,

∆φn = ab′φn−1 + µ+ ε,

with b containing the r cointegration vectors and a the loadings or adjustment coeffi-
cients. Note that the entries of a and b are not uniquely identified, since we can use
any non-singular transformation to obtain similar results. Rather we identify the
subspaces sp(a), sp(b) ∈ Rr, that is, the subspaces spanned by the columns of a, b,
where we use the normalization

b∗ = b(c′b)−1, with c = (Ir, 0p−r×r)
′

of b in order to identify parameters uniquely. Furthermore, let m⊥ denote the ma-
trix such that sp(m⊥) is orthogonal to sp(m), then a necessary condition for an I(1)
process is that |a′⊥b⊥| 6= 0. For more on estimation and inference in cointegration
models, see Appendix B.

3.3 Continuous time cointegrated models

Kessler and Rahbek (2004) and Kessler and Rahbek (2001) derive a cointegration the-
ory for continuous time models, and conclude that for a discretely observed process,
using conventional methods for discrete time generally apply to inference on con-
tinuous time parameters. Consider (I.2) with f as in (I.8) and for simplicity ω = 0.
This is a p-dimensional Ornstein-Uhlenbeck process. The exact solution is

φt = exp(tΠ)
[
φ0 +

∫ t

0
exp(−sΠ)µds+

∫ t

0
exp(−sΠ)ΣdWs

]
. (I.17)

Note that for the solution (I.17) to be stationary, then Π must be a full rank matrix,
and all eigenvalues must have a strictly negative real part. This implies that if Π is
not of full rank, then φt is necessarily not stationary.

Assuming discrete observations of (I.17) at equidistant timepoints t1 = 0 < t2 <
· · · < tN = T with timestep δ = tn − tn−1, the corresponding vector autoregressive
process is

φtn = exp(δΠ)φtn−1 + δµ+ εtn , (I.18)

such that the difference process can be written as

∆φtn = φtn − φtn−1 = δPφtn−1 + δµ+ εtn ,

where ε ∼ N (0,Ω) and

P = δ−1(exp(δΠ)− Ip)

Ω =

∫ δ

0
exp(sΠ)ΣΣ′ exp(sΠ′)ds.

(I.19)

Results (I.18) and (I.19) hold in general for multivariate processes. Thus, to obtain
an estimate for the continuous time matrix, Π̂, from the discrete time estimate P̂ , a
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logarithmic transformation involving P̂ is required

Π̂ = δ−1 log
(
δP̂ + Ip

)
. (I.20)

For a univariate process (I.20) is unique, however this is not the case for a multivari-
ate process, due to the non-uniqueness of the multivariate logarithm. Because of this,
we cannot uniquely identify Π̂, even though we have a unique estimate P̂ .

For a continuous time process φt, however, Kessler and Rahbek (2004) and Kessler
and Rahbek (2001) conclude that this is cointegrated if and only if the discretely
observed process (I.18) is cointegrated. In this case P is of reduced rank, and can
be decomposed P = ab′ with a, b ∈ Rp×r of full rank r ≤ p. However, it also holds
that

P = ab′ = αξβ′ (I.21)

for a non-singular matrix ξ = (β′α)−1
(

exp(δβ′α) − Ir
)
∈ Rr×r and matrices α, β ∈

Rp×r, such that given weak conditions on the sampling timestep δ (see below), the
following relations hold

rank(P ) = rank(Π) = r

sp(α) = sp(a)

sp(β) = sp(b),

see Kessler and Rahbek (2001) and Kessler and Rahbek (2004). Hence, for continu-
ous time cointegrated processes, we can infer on the number of cointegration rela-
tions (rank(Π) = r) from discrete time observations, and also identify the subspaces
spanned by the columns of α and β. Note however that due to the unidentified scal-
ing ξ, we can only identify the subspaces, but not the parameters α, β themselves.
They are only unique up to a scaling (ξ), even though we have imposed the normal-
ization (I.23) and thus uniquely identified a and b.

In the numerical part, we will refer to estimates of α and β, implicitly referring to
the discrete time estimates. In terms of subspaces, there is no difference between the
discrete and continuous time, but in order to interpret the continuous time Π matrix,
one must translate the discrete estimate to a continuous estimate using (I.19).

It is important to note that when working with continuous time models, one must
be careful with regard to the relation (I.19) between discrete and continuous time
and the sampling timestep δ. Kessler and Rahbek (2004) refer to this issue as the
embedding problem, and to ensure that the continuous time model is appropriate, one
must check for exp(δΠ) in (I.18) that it is non-singular, i.e., | exp(δΠ)| 6= 0, and that it
has no negative eigenvalues. If this is the case and the underlying process is in fact
cointegrated, the results above hold.

3.4 Likelihood ratio test for rank(Π) = r

Consider discrete observations (φt1 , . . . , φtN ) from the continuous process (I.17) and
denote by Hr the hypothesis Hr : rank(Π) ≤ r for r = 0, . . . , p. Then the set of
hypotheses H0, . . . ,Hr is nested,

H0 ⊆ H1 ⊆ · · · ⊆ Hp,
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and Hp correspond to the unrestricted model. The likelihood ratio test (LRT) that
compareHr andHp is applied sequentially for r = 0, 1, . . . , p−1 and continued until
Hr against Hp cannot be rejected, and thus determine the number of cointegrating
relations for φt. The LRT statistic is given by

−2 logQ(Hr|Hp) =

p∑
i=r+1

λ̂i, (I.22)

where λ̂i are the solutions to the eigenvalue problem (I.49), see Appendix B. The
asymptotic distribution of (I.22) is non-standard and therefore it must be simulated.
Here, to also improve on small-sample performance we perform bootstrap simula-
tions as presented by Cavaliere, Rahbek, and Taylor (2012), in order to determine
critical values. Specifically, given the data {φtn}Nn=1 bootstrap sequences {φ∗(m)

tn }Nn=1

for m = 1, . . . ,M are simulated and for each sequence the LRT statistic LRT∗(m) is
re-computed. The empirical quantiles of {LRT∗(m)}Mm=1 are then used for testing.
With r determined, β̂ is given by the r eigenvectors corresponding to λ̂i, i = 1, . . . , r
and the parameter estimates α̂, µ̂, Σ̂ follow by ordinary least squares estimation as
outlined in Appendix B.

3.5 Inference for α and β

Since we identify subspaces for α and β, then a normalization is necessary to identify
the parameters uniquely. If β̂ is known, then α̂ follows by OLS. Hence, if we impose
a normalization on β̂, we can identify all parameters. A common normalization, see
Johansen (1996), is

β̂ = β̃(c′β̃)−1,

where c = (Ir, 0p−r×r)
′ is a p × r matrix and β̃ is any version of the r eigenvectors

corresponding to the r largest eigenvalues. This ensures that

β̂ =

(
Ir

β̃p−r,r

)
. (I.23)

Extending the idea of normalization to restrictions for α, β, we can impose such
under the hypothesis Hr. Assume that rank(Π) = r and that the parameters α ∈
Rp×r, β ∈ Rp×r, µ ∈ Rp and Σ ∈ Rp×p are all unrestricted within their corresponding
subspaces, except for normalization (I.23). Possible hypotheses for α, β are linear
restrictions as given by

Hα : α = Aψ

Hβ : β = Bξ,

where A ∈ Rp×m, ψ ∈ Rm×r, B ∈ Rp×s, ξ ∈ Rs×r. The known matrices A and B
represent the linear hypotheses and ψ and ξ are parameters to be estimated. It is
also possible to combine the hypotheses for α and β and we denote this Hα,β .
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As an example, assume a system of 3 oscillators φt = (φ1t, φ2t, φ3t)
′ with r = 1. If we

believe that φ3t is independent of φ1t and φ2t, we can specify the hypothesis

Hα : A =

1 0
0 1
0 0

 , (I.24)

such that

ΠA = αAβ
′ =

ψ1

ψ2

0

 (β1, β2, β3) =

ψ1β1 ψ1β2 ψ1β3

ψ2β1 ψ2β2 ψ2β3

0 0 0

 .

This restriction imply that φ1t and φ2t do not contribute to the dynamics of φ3t, and
hence that the latter is independent.

If we want to investigate a possible 1:1 coupling between φ1t and φ2t, we can spec-
ify

Hβ : B =

 1
−1

0

 , (I.25)

and obtain

ΠB = αβ′B =

α1

α2

α3

 (η,−η, 0) =

α1η −α1η 0
α2η −α2η 0
α3η −α3η 0

 .

Note however, that under Hβ the interaction between φ1t and φ2t also influence
φ3t if α3 6= 0. Hence, the system admits the relations φ1t ↔ φ2t, φ1t → φ3t and
φ2t → φ3t, where the restriction β3 = 0 implies that the last two relations are uni-
directional.

If we believe that φ1t and φ2t are bi-directionally coupled, φ1t ↔ φ2t, but φ3t is inde-
pendent and does not contribute to either φ1t nor φ2t, we can phrase this hypothesis
as a combination of (I.24) and (I.25). This leads to the restricted matrix

ΠA,B = αAβ
′
B =

ψ1

ψ2

0

 (η,−η, 0) =

ψ1η −ψ1η 0
ψ2η −ψ2η 0

0 0 0

 .

Other hypotheses, such as equal or proportional coupling strength or l : n coupling,
can be specified by appropriately designing the matrices A and B. Thus, a broad
variety of linear hypotheses on the parameter Π = αβ′ can be investigated, notably
inference on the coupling directions and the effect of system disequilibrium on indi-
vidual oscillators.

Evaluation of the hypotheses Hα, Hβ , and Hα,β all lead to similar likelihood ratio
tests. To calculate the test statistic, solve again the eigenvalue problem (I.49) for the
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unrestricted model, and dependent on the restrictions A and/or B obtain eigenval-
ues λ∗i for the restricted model. The LRT statistic is then given by

−2 logQ
(
H0|Hr

)
= T

r∑
i=1

log
(1− λ∗i

1− λ̂i

)
, (I.26)

where H0 is a generic substitute for any of Hα, Hβ, Hα,β . Each of these statistics has
an asymptotic χ2 distribution with varying degrees of freedom (df),

−2 logQ
(
Hα|H(p)

)
has r(p−m) df

−2 logQ
(
Hβ|H(p)

)
has r(p− s) df

−2 logQ
(
Hα,β|H(p)

)
has r(p−m) + r(p− s) df,

where m and s are the column dimensions of the matrices A and B, respectively.
This shows that once rank(Π) is determined, statistical inference for α and β can be
carried out, relatively straightforward. As for the rank determination, an alternative
to the χ2 approximation for inference on α and β is to perform bootstrapping for the
test (I.26), see Boswijk et al. (2016).

4 Numerical simulations

4.1 General setup

We perform a series of experiments with a system of p = 3 linearly coupled Winfree
oscillators such that zt ∈ R6 and f(φt) = αβ′φt. Hence, for i = 1, 2, 3, we have a DGP
with

g(zt)i = f(φt)i = (αβ′φt)i = αi

3∑
j=1

βjφjt. (I.27)

Since we examine simulations from the Winfree oscillator, our cointegration model
will be misspecified since the amplitude is not deterministic and linear, but rather
stochastic and fluctuating. However, since the amplitude of the Winfree oscillator
has a relatively steady level (of course this also depends on the noise level), due
to the squared multiplicative term in the amplitude process, we can approximate
it as a constant. Hence we will do so in terms of analyzing the phase process as
a cointegrating system. This also implies in terms of parameter estimation for the
phase process, the estimate of the constant µ is a pseudo estimate of the κ parameter
for the amplitude process, and hence we will compare the estimates to the true value
of κ.

For each experiment we simulate 1.000.000 iterations of the oscillator (I.10) using
the Euler-Maruyama scheme with timestep ∆̃t = 0.0002 and then subsample for
∆t = 0.1, thus obtaining N = 2000 (equidistant and discrete) observations of zt for
t ∈ [0, 200). Subsampling every 5000th values diminishes the discretization error of
the simulation scheme.

We use the same initial conditions,

z0 = (1, 0, 0, 1,−1, 0)′,
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and parameters

κ = (0.75, 1, 1)′

Σφ = diag(1, 1, 1)

Σγ = diag(0.1, 0.1, 0.1)

(I.28)

for all the experiments so that the only varying parameter is the coupling struc-
ture.

Note that the κ parameter for φ2t is set equal to φ3t to obtain similar simulated out-
comes for some experiments to investigate whether we can distinguish between in-
teraction and independence between these two. We set the cointegration parameters
for each experiment individually to impose different coupling structures, and will
refer to the relevant model by it’s Πk, k = 0, 1, 2, 3 matrix, where k defines the model
structure (see Fig. I.1).

The discrete time model fitted to the data is specified as

∆φn = Pφn−1 − µ+ εn, (I.29)

where the estimate P̂ is used to obtain Π̂ through (I.20). The reported estimate for µ̂
is scaled by the timestep ∆t. Note that µ is not time-dependent and hence this model
will fit a constant parameter µ to a varying quantity γt and thus it is misspecified as
mentioned above. Model (I.29) is estimated for all 4 systems of three oscillators and
we report the parameters Π̂ and µ̂ for each system. The latter is compared to κ,
which is the level parameter of the γt process.

In addition to a cointegration analysis we apply the mean phase coherence measure,
see Mormann et al. (2000), bilaterally to the wrapped phases (i.e., φit ∈ [0, 2π) for
i = 1, 2, 3)

R(φit, φjt) =

∣∣∣∣ 1

N

N∑
n=1

ei(φi,tn−φj,tn )

∣∣∣∣, (I.30)

as an initial measure of synchronization between the phases in the system. If R ≈
1 this implies synchronization (R = 1 means that oscillators are perfectly phase
locked). On the contrary, R ≈ 0 implies that the distribution of phase differences is
approximately uniformly distributed on the unit circle. Note that the mean phase
coherence measure is symmetrical, like correlation, and therefore it cannot reveal
uni-directional coupling. In order to determine the significance of the R measures,
we bootstrapped critical values for the hypothesisR = 0. Hence, these values are the
same for all experiments and presented along with the measured R values. We com-
pare the resulting value of R to the conclusion of the cointegration analysis.

We use the same seed for all experiments so that the outcomes are fully comparable
in terms of stochastic noise dW . First we run a simulation with uncoupled oscillators
as a benchmark, and then continue with coupled systems as presented in Fig. I.1.
Fig. I.2 display the x-coordinates for t ∈ [100, 150] from a simulation of these four
systems.

The data analysis is carried out using the free software package R, R Core Team
(2017). The source code for simulation and bootstrapping procedures are written
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FIGURE I.1: Graphical representation of the four systems, represented
by the Πi, i = 0, 1, 2, 3 matrix. The arrows define the direction of
interaction, hence φ2t → φ1t implies that φ2t is influencing φ1t (uni-
directional coupling), and φ2t ↔ φ1t denotes bi-directional coupling,

i.e. φ1t, φ2t influence eachother.

in C++ to decrease the runtime, utilizing the interface package Rcpp for R and lin-
ear algebra package RcppArmadillo for C++. The source code is available in the
package cods as supplementary material.
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FIGURE I.2: 50 observations (x-coordinates only) from numerical sim-
ulation of the Winfree oscillator: the Π0 column displays the indepen-
dent model (I.31), the Π1 column displays the uni-directional coupled
model (I.32), the Π2 column displays the bi-directional coupled model

(I.33) and the Π3 column displays the fully coupled model (I.34).

4.2 Independent oscillators

This experiment is used as a reference example. We set

Π0 =

0 0 0
0 0 0
0 0 0

 , (I.31)
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so rank(Π0) = 0 and there is no interaction in the system.

Simulating the model and unwrapping the phases, we obtain the top-left plot of
Fig. I.3. Visual inspection of the plot could lead to the conclusion that φ2t and φ3t

Π0

0π

20π

40π

60π

80π

Π1

Π2

0π

20π

40π

60π

80π

0 50 100 150 200

Π3

0 50 100 150 200

t

φt

φ1t φ2t φ3t

FIGURE I.3: Unwrapped phase processes from numerical simulation
of the Winfree oscillator: Π0 displays the independent model (I.31),
Π1 displays the uni-directional coupled model (I.32), Π2 displays the
bi-directional coupled model (I.33) and Π3 displays the fully coupled
model (I.34). The dotted lines represent the corresponding phases

from the independent model in Π0.

are coupled, however the mean phase coherence measure R for the phases indicates
that this is not the case.

R(φ1t, φ2t) = 0.025 (0.170)

R(φ1t, φ3t) = 0.073 (0.168)

R(φ2t, φ3t) = 0.078 (0.176).

The distribution of the mean phase coherence measure is unknown, but can be ap-
proximated by bootstrapping for H0 : R = 0, that is for no synchronization present.
1000 bootstrap samples yield the reported 5% critical values in parentheses above
≈ 0.17, thus the mean phase coherence measure suggest no synchronization present,
which is the case.

Performing now a rank test for the rank of Π0 in the system, we obtain the first part
of Table I.1.

The test does not reject the hypothesis Hr : r = 0, thus suggesting that there is
no cointegration present in the system. This in turn implies that the oscillators are
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Model Hr Test values p-value

Π0 r = 0 16.47 0.663
r ≤ 1 3.94 0.753
r ≤ 2 0.05 0.812

Π1 r = 0 118.39 0.000
r ≤ 1 4.30 0.568
r ≤ 2 0.00 0.958

Π2 r = 0 104.48 0.000
r ≤ 1 3.84 0.707
r ≤ 2 0.03 0.843

Π3 r = 0 157.81 0.000
r ≤ 1 63.82 0.000
r ≤ 2 0.00 0.947

TABLE I.1: Rank tests for models Πi, i = 0, 1, 2, 3 with the selected
models indicated in bold. The test values are given by eq. (I.22) and

p-values are determined by bootstrapping.

independent in terms of synchronization, in accordance with the DGP for Π0, and
with the mean phase coherence measure.

4.3 Uni-directional coupling

In this experiment we analyze a system with a uni-directional coupling. Let

α = (−0.5, 0, 0)′

β = (1,−1, 0)′
(I.32)

such that rank(Π1) = rank(αβ′) = 1, and we have the stationary relation φ1t −
φ2t. Since α2 = α3 = 0, then φ2t and φ3t are acting independently, whereas φ1t is
influenced by φ2t. Hence, the only coupling is φ2t → φ1t.

The unwrapped phases for the simulation of model Π1 are seen in the top-right of
Fig. I.3. The dashed lines indicate the independent phases from the top-left of Fig.
I.3, and we see that phases φ2t, φ3t are equal to their independent versions, whereas
we now clearly find that φ1t is attracted towards φ2t due to the coupling structure in
the system.

Examining the mean phase coherence in equation (I.30) for the system (note that
R(φ2t, φ3t) is equal to the value in the previous section),

R(φ1t, φ2t) = 0.321 (0.170)

R(φ1t, φ3t) = 0.049 (0.168)

R(φ2t, φ3t) = 0.078 (0.176),

we find indications of some synchronization between the phases φ1t and φ2t in the
system compared to R(φ1t, φ2t) in the independent model. The value is significant
on a 5% level as seen by the reported critical values, whereas for R(φ1t, φ3t) and
R(φ2t, φ3t) the reported values are not. However, the mean phase coherence measure
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Para-
meter

True
value

Unrestricted estimates Restricted α and β
Estimate Std. Error p value Estimate Std. Error p value

α1 -0.5 -0.527 0.049 < 0.001 -0.514 0.048 < 0.001
α2 0 -0.050 0.049 0.307 0
α3 0 0.059 0.048 0.223 0
β1 1 1 1
β2 -1 -0.981 -1
β3 0 -0.016 0
κ1 0.75 0.765 0.076 < 0.001 0.638 0.081 < 0.001
κ2 1 1.035 0.075 < 0.001 1.063 0.080 < 0.001
κ3 1 1.119 0.074 < 0.001 1.086 0.080 < 0.001

TABLE I.2: Fitted model Π1

does not recognize the uni-directional coupling as is the case here. Thus, it cannot
distinguish between φ1t → φ2t, φ1t ← φ2t and φ1t ↔ φ2t.

Results from the rank test are in the second part of Table I.1. Here we see that r =
rank(Π1) = 0 is clearly rejected, whereas r = 1 cannot be rejected with a p-value of
0.568. This indicates the presence of a single cointegration relation, in accordance
with the construction of the model.

Fitting the model with r = 1, we obtain the unrestricted MLE regression estimates
in Table I.2. The cointegration relations are close to their true values (approximately
within 1 standard error), and both α2 and α3 are statistically insignificant. Moreover,
the estimates of β suggests a 1 : 1 coupling between φ1 and φ2. Therefore, we per-
form a likelihood test for reducing the unrestricted model, with restrictions for both
α and β

Hα,β : α = Aψ, with A = (1, 0, 0)′

β = Bξ, with B = (1,−1, 0)′,

so that A fix α2 = α3 = 0 and B restricts to a 1:1 coupling. This yields the test
statistic 3.617 which is χ2 distributed with 4 degrees of freedom and hence implies a
p-value of 0.460. Thus, we recover the true uni-directional coupling structure of the
simulated phases. The fitted model is presented in the right of Table I.2.

The conclusion is that we have successfully identified the coupling structure of uni-
directional coupled phases in a three dimensional system, with two independent
phases, and one dependent. Since φ3t is completely independent of φ1t and φ2t and
r = 1 we can discard φ3t when interpreting the cointegration in the system. Then
we can interpret the cointegration parameter α as the coupling strength and β as
the coupling scheme, here 1:1. If we had analyzed different data, with a β estimate
close to β̂ = (1,−n, 0)′, we could then identify a n : 1 coupling between φ1t and φ2t.
This can be seen from the fact that in this case αk(φ1t − nφ2t) would be a stationary
relation, and thus φ2t would rotate ≈ n times slower than φ1t.
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4.4 A bi-directional coupling with one independent oscillator

We now look at a system with

α = (−0.5, 0.5, 0)′

β = (1,−1, 0)′.
(I.33)

Hence, rank(Π2) = 1 and again we have 1 stationary relation φ1t−φ2t, but now with
only φ3t independent, and a bidirectional coupling φ1t ↔ φ2t.

Simulating the Π2-model we obtain the bottom-left of Fig. I.3. We have included
the dashed lines again, as references for the independent system. If we contrast
the bottom-left of Fig. I.3 with the top-right Fig. I.3, we now find that φ1t and φ2t

are attracting each other, and hence they are both different from their independent
versions. Since |α1| = |α2|, their coupling strength is equal, and the coupled phases
lies roughly in the middle between the independent ones. If we look at the mean
phase coherence measure for the pairwise interactions,

R(φ1t, φ2t) = 0.590 (0.170)

R(φ1t, φ3t) = 0.144 (0.168)

R(φ2t, φ3t) = 0.126 (0.176),

we find relatively strong evidence of a coupling between the phases φ1t and φ2t, the
value is higher than in the uni-directional case and it is (again) significant given the
bootstrapped critical values. However, again we cannot distinguish between types
of coupling structures.

Performing a rank test for cointegration in the system with Π2, we see in the third
part of Table I.1 that Hr : r = 0 is clearly rejected, and we find that the rank of Π2 is
estimated to 1 with a p-value of 0.707. Hence, we recover the correct dimension of
the column space of β, and fitting a model with r = 1 yields the parameters in the
left of Table I.3.

The only insignificant parameter for the model is α3, which is in accordance with the
construction of the Π2 model. Specifying the hypothesis

Hα,β : α = Aψ, with A =

1 0
0 1
0 0


β = Bξ, with B = (1,−1, 0)′,

and performing a likelihood ratio test for the reduction yields a test statistic of 3.340,
which follows a χ2 with 3 degrees of freedom, and result in a p-value of 0.342. The
fitted model is given in the middle of Table I.3. If we instead of Hα,β specify

H∗α,β : α = Aψ, with A = (1,−1, 0)′

β = Bξ, with B = (1,−1, 0)′,

implying that α1 = −α2, we obtain a test statistic of 3.880, with 4 degrees of freedom,
and a p-value of 0.423. Thus, we can also restrict the model to one where the coupling
strengths are equal in magnitude. The fitted model is presented in the right part of
Table I.3.
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Summing up, in a system of bi-directional coupled oscillators plus one independent,
we can identify the correct coupling between them, including identifying the pro-
portionally equal coupling strength between the coupled phases. Again we identify
r = 1, and hence we can interpret the cointegration parameters as before, hence α is
the coupling strength, and β the interaction, again 1:1 coupling.

4.5 Fully coupled system

We specify a system with full interaction between all phases.

α =

−0.50 0.25
0.25 −0.50
0.25 0.25


β =

 1 0
0 1
−1 −1

 .

(I.34)

The α and β matrix are chosen, such that

Π3 = αβ′ =

−0.50 0.25 0.25
0.25 −0.50 0.25
0.25 0.25 −0.50


inspired by the simplistic linearization of the Kuramoto model, as presented in eq.
(I.14). Note that rank(Π3) = 2.

The simulated phases are shown in the bottom-right of Fig. I.3. Comparing to the
dashed (independent) versions, we now find that all phases are different from their
independent versions. It appears as if φ2t, φ3t dominate the system, since φ1t is
attracted closer to their independent versions than otherwise, but it is also a two-
against one (κ2 = κ3 6= κ1) scheme, and we roughly observe that φ1t is attracted
2/3 towards φ2t, φ3t, whereas φ2t, φ3t are attracted 1/3 towards φ1t. So by the con-
struction of the system, this behavior seems natural. We find that the mean phase
coherence measure

R(φ1t, φ2t) = 0.487 (0.170)

R(φ1t, φ3t) = 0.574 (0.168)

R(φ2t, φ3t) = 0.488 (0.176),

indicates bilateral synchronization for all phases, and all values are significant. The
rank test also gives clear evidence of cointegration and we identify r = 2, as seen in
the bottom part of Table I.1, where both the hypotheses r = 0 and r = 1 are rejected.
Fitting a model with r = 2 yields the left half of Table I.4. The estimated κ’s are close
to their respective values, whereas some of the α parameters deviate (more than 1
standard error) from their true values. If we inspect the estimated Π̂3

Π̂3 =

−0.611 0.231 0.378
0.241 −0.437 0.196
0.343 0.207 −0.549


and compare with the true Π3 it looks better. The row sums are close to zero as they
should be, and the signs are correct. The proportional coupling strengths are off



52 Manuscript I. Oscillating systems with cointegrated phase processes

Para-
meter

True
value

Unrestricted estimates Restricted α and β
Estimate Std. Error p value Estimate Std. Error p value

α11 -0.50 -0.584 0.075 < 0.001 -0.569 0.075 < 0.001
α21 0.25 0.232 0.073 < 0.001 0.241 0.072 < 0.001
α31 0.25 0.326 0.072 < 0.001 0.328 0.072 < 0.001
α12 0.25 0.223 0.067 < 0.001 0.224 0.067 < 0.001
α22 -0.50 -0.423 0.064 < 0.001 -0.423 0.064 < 0.001
α32 0.25 0.201 0.064 < 0.001 0.199 0.064 < 0.001
β11 1 1 1
β21 0 0 0
β31 -1 -0.997 -1
β12 0 0 0
β22 1 1 1
β32 -1 -0.999 -1
κ1 0.75 0.712 0.076 < 0.001 0.607 0.083 < 0.001
κ2 1 1.054 0.074 < 0.001 1.061 0.080 < 0.001
κ2 1 1.023 0.073 < 0.001 1.130 0.080 < 0.001

TABLE I.4: Fitted model Π3

though, especially between φ1t, φ3t, but it seems that Π3 is relatively well estimated
considering the identification issues. Recall that we can determine the subspaces
sp(α) and sp(β) for continuous time cointegration models, see Kessler and Rahbek
(2004), but that we have problems regarding the scaling of Π (see Section (3.3)).

Inspired by the fitted values, we restrict both matrices α and β

Hα,β : α = Aψ, with A =

−0.50 0.25
0.25 −0.50
0.25 0.25


β = Bξ, with B =

 1 0
0 1
−1 −1


we find that the test statistic is 1.73, χ2 distributed with 4 degrees of freedom, and
thus a p-value of 0.785. Hence, we can reduce the model to one with restrictions that
generates the true structure of Π. The estimated model parameters are presented in
Table I.4, and the corresponding Π̂ is

Π̂∗3 =

−0.595 0.232 0.363
0.250 −0.438 0.188
0.345 0.205 −0.550

 .

Concluding on the fully coupled system, we find that we can correctly identify the
dimension of the cointegration relations. We can also determine the coupling struc-
ture as given by the parameters α and β. However, interpretation in this experiment
is more informative in terms of Π̂, since with r ≥ 2, the interpretation of cointegra-
tion parameters is not as intuitive as in the case of r = 1. We obtain a Π estimate
that is reminiscent of the true matrix, with the true directions of the coupling, and
strengths somewhat close to the actual values. Thus, we can interpret the system as
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fully coupled, in a simplistic (linear) Kuramoto type model.

4.6 Strength of coupling and identification of interaction

In this section, we compare the mean phase coherence measure to the cointegration
analysis with respect to interactions in the system. More specifically, we look at how
strong the coupling constants in Π must be in order for the two methods to conclude
correctly on interaction in the system. We reuse the parameter settings (I.34) from
the fully coupled experiment, but use a scaled Π matrix Π → εΠ, for ε ∈ [0, 1],
where ε controls the coupling strength. The higher ε is, the stronger the coupling,
and hence the attraction between phases. Note that ε = 0 corresponds to the model
Π0 and ε = 1 corresponds to Π3. The p-values are calculated using bootstrapping
as presented by Cavaliere, Rahbek, and Taylor (2012) to obtain an estimate of the
asymptotic distribution of the trace test statistics.

The aim is to investigate the rank test for varying ε compared to identification of in-
teraction in the system using the mean phase coherence measure. Since low values of
ε implies weak interaction, the expectation is that both methods will produce doubt-
ful results in a low value regime. From the previous experiment on the fully coupled
oscillators, the mean phase coherence measure produced low values on identifying
the interaction of the system, hence we expect that the rank test will outperform for
low values of ε.

The experimental setup is 100 repetitions for each value of ε, and in each repe-
tition perform 500 bootstrap samples to estimate the p-value for the hypotheses
Hr : r = 0, 1, 2. Fig. I.4 presents the median p-values for the rank test and me-
dian mean phase coherence measures against ε. The top row of the figure shows
the p-values for Hr : r = 0, 1, 2 respectively, and the bottom row shows the mean
phase coherence (R) measures for pairs of φ1t, φ2t and φ3t. The dotted lines indi-
cate the p = 0.05 value, under which we reject the hypotehsis. For the mean phase
coherence measure, the 95% significance level for the hypothesis R = 0 has been
determined numerically using bootstrapping and is indicated by the dotted lines. If
the R-measure falls below this line, independence cannot be rejected.

Seen in the top row of Fig. I.4, at least half the simulations reject Hr : r = 0 for
ε > 0.12, and at least half the simulations reject Hr : r = 1 for ε > 0.11. The test does
not reject Hr : r = 2 for around 88% of the simulated samples for any values of ε.
Thus, for ε > 0.11, we can conclude that there is interaction present in the system,
and in most of the simulations we also recognize the true rank(Π) = 2.

If we turn to the bottom row of Fig. 4, where the mean phase coherence measures
are shown, we find that half the simulations does not reject the hypothesis R = 0 for
ε < 0.34, 0.36 and 0.35, respectively, for R(φ1t, φ2t),R(φ1t, φ3t) and R(φ2t, φ3t), thus
clearly indicating an inferior detection of interaction for small values of ε equivalent
to weak couplings.

Concluding on this experiment, we find that the rank test detects interaction in the
system already at relatively weak coupling strengths. In contrast to this, the coupling
must be significantly stronger for a sound conclusion on interaction in the system
when using mean phase coherence as a measure of interaction. Furthermore, when
detecting interaction in the system, the rank test is also very capable of identifying
the true rank of the system, despite a misspecified model. Higher sample sizes will
of course improve the inference results.
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5% confidence levels. Dashed lines in the bottom row show the 95%

quantile for H0 : R(i, j) = 0 at ε = 0, found by bootstrapping.
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4.7 Consistency of the rank estimation

To investigate the consistency of the cointegration algorithm, we performed an ex-
periment with 1000 repetitions of simulations for Winfree oscillators, the uni-directional
coupling, the bi-directional and the fully coupled systems, respectively, and evalu-
ating the rank test, using the same setup as in Section 4.1. Table I.5 present the
percentages of conclusions regarding hypotheses Hr : r = 0, r ≤ 1, 2, 3, for each
model. Comparing with critical values at a 5% level, obtained by bootstrapping, see
Cavaliere, Rahbek, and Taylor (2012), we find that comparing the percentage of sim-
ulations where the test correctly identifies the cointegration rank of 1 for uni- and
bi-directional coupling are 76.8% and 69.8%, respectively, at a 5% significance level.
For the fully coupled system the percentage is 85.5%, and for an independent system
the percentage is 96.2%. These results show that identification of interaction in a sys-

Model r = 0 r ≤ 1 r ≤ 2 r ≤ 3

Independent 96.2% 2.2% 1.3% 0.3%
Uni-directional 1.7% 76.8% 19.0% 2.5%
Bi-directional 2.4% 69.8% 24.7% 3.1%
Fully coupled 0.0% 1.3% 85.5% 13.2%

TABLE I.5: Percentage of conclusions on rank(Π), at a 5% significance
level for a sample size of 2000. Note that the conclusion r ≤ 3 means
that Π is of full rank and therefore invertible, hence β = I3. Correct

conclusions in bold.

Model Rank test R(φ1t, φ2t) R(φ1t, φ3t) R(φ2t, φ3t)

Independent 3.8% 4.7% 4.4% 5.7%
Uni-directional 98.3% 99.8% 5.6% 4.4%
Bi-directional 97.6% 100.0% 7.2% 7.0%
Fully coupled 100% 100.0% 100% 100.0%

TABLE I.6: Percentage of conclusions on interaction indicated by the
rank test and the mean phase coherence measures, at a 5% signifi-

cance level for a sample size of 2000.

tem of coupled oscillators is quite precise, and the rank is underestimated in ≤ 2.5%
of the simulations for any model. In the case of independent or full interaction, the
method is very good, whereas for systems with directed interaction, or interaction
among some oscillators the frequency of overestimating the rank is≈ 20−25%. This
discrepancy seems intuitively correct, since for the latter systems the true model is
a subset of the model of higher rank. As before higher sample sizes will of course
improve the inference results.

In Table I.6 we compare, in percentages, the conclusions on interaction in the sys-
tems, for each model. The values for the rank test presented here, are the summed
values from Table I.5 for r 6= 0. We find that both methods are very adept in iden-
tifying interaction in these systems. The results, however, should be held against
the previous section, where the rank test outperformed the mean phase coherence
measure for weak coupling strength. Also noting the fact, that the mean phase co-
herence measure cannot account for uni-directional coupling, our overall conclusion
is that in terms of identifying interaction in the system, the methods seem to perform
equally well for stronger coupling, whereas in explaining the system architecture, a
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cointegration analysis leaves us with more information on how the network is con-
structed.

5 Analysis of EEG data

Electroencephalography (EEG) signals are recordings from electrodes distributed on
the scalp of subjects. The recorded brainwave patterns are, among others, used for
diagnosing sleep disorders, coma or epilepsy. A study on 22 subjects experiencing
epileptic seizures from the Children’s Hospital Boston is presented by Shoeb (2009)
with the aim of detecting seizures based on multiple hours of recordings for each
individual. Fig. I.5 displays an EEG recording of a single subject during a period
that include a seizure identified by Shoeb (2009) between 2996 seconds and 3036
seconds. The seizure is marked by two red dashed lines in Fig. I.5. The labels for the

EEG signals

Seconds
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FT10−T8

FT9−FT10
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P7−T7
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FZ−CZ
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FP2−F8
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C4−P4
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FIGURE I.5: EEG recording leading op to a seizure and afterwards
for a 11 year old female subject. The interval [2996;3036] seconds, as
indicated by the vertical red dashed lines, is defined by Shoeb (2009)
as a seizure. We analyze the four blue signals, FP1-F7, FP1-F3, FP2-F4

and FP2-F8.

signals refer to the individual electrodes on the scalp. We analyze the four signals
FP1-F7, FP1-F3, FP2-F4 and FP2-F8, where FP refer to the frontal lobes and F refer to
a row of electrodes placed behind these. Even numbered electrodes are on the right
side and odd numbered electrodes are on the left side. Smaller (larger) numberings
imply that the electrode is placed closer to (further from) the center of the scalp.
Hence FP1-F7, FP1-F3 are measurements from the left side, with F3 placed closer
to the center than F7, and likewise for right side signals FP2-F4 and FP2-F8. The
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Prior to seizure During seizure

R(FP1-F3; FP2-F4) 0.480 0.542
R(FP1-F3; FP1-F7) 0.535 0.644
R(FP1-F3; FP2-F8) 0.295 0.184
R(FP2-F4; FP1-F7) 0.321 0.350
R(FP2-F4; FP2-F8) 0.486 0.342
R(FP1-F7; FP2-F8) 0.525 0.379

Average 0.440 0.407

TABLE I.7: Mean Phase Coherence measures for EEG phases prior to
and during the seizure.

electrodes for these four signals mirror each other on the left/right side of the scalp.
We analyze the seizure period of 40 seconds and the 40 seconds leading up to the
seizure, i.e. we analyze the two intervals [2956; 2996] and [2996; 3036] respectively,
and refer to these as prior to seizure and during seizure. With a sample frequency of 256
measurements each second there are a total of 10240 measurements for each of the
four signals during the 40 seconds intervals. For more details on the data, see Shoeb
(2009). The objective is to compare two fitted cointegration models with interaction
as in eq. (I.8) for each period:

dφt = αβ′


φt,FP1-F3
φt,FP1-F7
φt,FP2-F4
φt,FP2-F8

 dt+ µdt+ ΣdWt,

discretely observed for t = 1, . . . , 10240 in each of the two intervals.

The phase processes of the four signals are estimated using the Hilbert transform
(see section 2.3). Fig. I.6 shows the four signals in the two periods and their cor-
responding estimated unwrapped phase processes. Hence the offsets are in [0, 2π)
for the individual phase processes in each period. If we had not split the measure-
ments at 2996 seconds, the phases in the bottom right of Fig. I.6 would be con-
tinuations of the phases in the bottom left. A visual inspection of Fig. I.6 shows
that when transitioning to the seizure period, the phases change to a slower pace
(the slopes decrease). Also, prior to the seizure all four phases are closer with no
clear distinction between right side and left side phases. During the seizure, the
phases split in two groups: right and left side respectively. This indicates that the
model regime changes when transitioning into the seizure period. Table I.7 shows
the mean phase coherence measures bilaterally for the 4 phase processes and the av-
erage of these. Comparing the columns we find no clear indication of a change in
the phase regime when transitioning into the seizure period based on this measure,
the average change is only 7.5%. However, the measure does indicate interaction in
the system among all phases. Table I.8 displays the results of a rank test procedure
for the system of the four EEG phase processes. In accordance with the indications
from the mean phase coherence measure, the conclusion is a clear presence of coin-
tegration during both periods. Prior to the seizure the rank test of r ≤ 2 is close
to the usual 5% significance level, hence the p-value here is determined using 5000
bootstrap samples, in contrast to the 2000 bootstrap samples used in the other in-
terval, as the conclusion here is quite clear with a p-value ≈ 0.62. In both cases
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FIGURE I.6: FP1-F7, FP1-F3, FP2-F4 EEG signals and estimated phase
processes for a 11 year old female subject. Top left: EEG signals prior
to a seizure. Top right: EEG signals during a seizure. Bottom left:
estimated phase processes prior to a seizure. Bottom right estimated

phase processes during a seizure.

Prior to seizure During seizure
Hr Test values p-value Test values p-value

r = 0 105.87 0.000 1132.64 0.000
r ≤ 1 42.82 0.000 41.68 0.008
r ≤ 2 9.98 0.053 7.19 0.618
r ≤ 3 0.46 0.439 0.72 0.786

TABLE I.8: Rank tests for EEG phases in the bottom of Fig. I.6. The
rank is determined to r = 2 in both periods, although the conclusion
is far stronger during the seizure. The significance of the statistics
are found using 5000 bootstrap samples prior to the seizure due the
border limit case of around 5%, during the seizure the p-value is de-

termined from 2000 bootstrap samples.
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Para-
meter

Prior to seizure During seizure
Estimate Std. Error p value Estimate Std. Error p value

αFP1-F3,1 -0.100 0.018 < 0.001 -0.462 0.028 < 0.001
αFP1-F7,1 -0.002 0.019 0.930 -0.308 0.032 < 0.001
αFP2-F4,1 -0.035 0.017 0.044 -0.722 0.035 < 0.001
αFP2-F8,1 -0.115 0.030 < 0.001 -0.648 0.042 < 0.001
αFP1-F3,2 -0.117 0.016 < 0.001 0.041 0.033 0.212
αFP1-F7,2 -0.024 0.016 0.147 0.071 0.037 0.057
αFP2-F4,2 -0.026 0.015 0.084 0.173 0.041 < 0.001
αFP2-F8,2 -0.049 0.026 0.063 0.468 0.049 < 0.001
βFP1-F3,1 1 1
βFP1-F7,1 0 0
βFP2-F4,1 -3.424 -0.036
βFP2-F8,1 2.610 -0.573
βFP1-F3,2 0 0
βFP1-F7,2 1 1
βFP2-F4,2 2.486 -0.840
βFP2-F8,2 -3.631 0.188
µFP1-F3 25.210 2.162 < 0.001 39.647 1.307 < 0.001
µFP1-F7 30.648 2.252 < 0.001 36.499 1.473 < 0.001
µFP2-F4 39.058 2.107 < 0.001 58.268 1.608 < 0.001
µFP2-F8 48.853 3.615 < 0.001 54.765 1.947 < 0.001

TABLE I.9: Fitted model for EEG phases F7-T7, T7-P7 and FP1-F7.

we choose the rank r = 2 for the system. The fitted models are presented in Ta-
ble I.9 with the model fit prior to the seizure on the left side and the fit during the
seizure on the right side. If we first note the estimated µi’s, these are larger during
the seizure and significantly so for FP1-F3 and FP2-F4, implying that these phase
processes exhibit significantly higher intrinsic linear trends during the seizure. On
the other hand, directly interpreting the cointegration parameters is not clear. Recall
that these parameters specify subspaces, in this case within R4. We therefore look at
the estimated Π̂ matrices in Table I.10 to compare the models for each period. Here
we can determine an all-to-all coupling during both periods and the estimated coin-
tegration matrices show a clear difference for the two intervals. Prior to the seizure
the right side signals FP2-F4 and FP2-F8 are much less influenced by the feedback
in the system, whereas during the seizure both experience a much larger feedback
from the left side signals FP1-F3 and FP1-F7 respectively. Surprisingly, the FP2-F8

Π̂ prior to seizure Π̂ during seizure
FP1-F3 FP1-F7 FP2-F4 FP2-F8 FP1-F3 FP1-F7 FP2-F4 FP2-F8

FP1-F3 4.388 1.572 -11.120 5.743 -5.305 -11.021 9.447 0.971
FP1-F7 1.519 0.892 -2.985 0.725 -4.335 -7.285 6.275 1.116
FP2-F4 0.540 -0.050 -1.971 1.589 -10.265 -17.047 14.686 2.681
FP2-F8 -0.733 -1.658 -1.613 4.108 -14.907 -14.729 12.909 5.776

TABLE I.10: Fitted Π̂ matrices for the two periods. On the left side
is the estimated matrix prior to the seizure, on the right side is the

estimated matrix during the seizure.
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signal does not seem to impose a large influence in the system in either interval. It is
also interesting to note the changing signs in the two matrices. The two left side sig-
nals exhibit a positive feedback on themselves prior to the seizure, whereas during
the seizure they impose a negative feedback both on themselves and the right side
signals. This could possibly be part of an explanation of the slight kink seen in the
phases around 3015-3020 seconds halfway through the seizure.

Concluding on this analysis we find, not surprisingly, a fully coupled 4 dimensional
system with a clear change in the trends prior to and during the seizure. We find
that during the seizure the interaction in the system is much stronger, suggesting the
more distinctive phases shown in this interval. Including this temporal effect into
a single cointegration model covering the full period by utilizing regime switching
cointegration models, would be an interesting pursuit for future work.

6 Discussion

In this paper we have investigated the use of cointegration analysis to determine
coupling structures in linearly phase coupled systems. Using these techniques we
can with a good precision identify the coupling structure as a subspace for this type
of model. A standard measure to identify synchronization in the literature is the
mean phase coherence measure. Contrary to this standard measure, we can detect
uni-directional coupling, and we can construct and test hypotheses on the model
in form of linear restrictions in the estimated subspace. Furthermore, comparing
the mean phase coherence measure with the cointegration analysis in Section 4.6,
we found that cointegration detects interaction in a system more robustly and for
weaker coupling strength than does the mean phase coherence measure. Combined
with the fact that cointegration does not just provide a level of synchronization, but
rather the structure of the synchronization mechanism, this technique can be used to
infer system structures in a much more detailed manner. Of course this higher level
of information comes at a cost, since the mean phase coherence measure is easily
implemented for any system, whereas the cointegration analysis is more involved
and time consuming.

Due to the linear nature of the cointegration theory used, we are not able to cover
more complex models, such as the Kuramoto model. Thus, an important extension
for future work would be to allow for nonlinear coupling functions. However, the
linear structure appears naturally when considering a linearization around some
phase-locked state, such as for systems showing synchrony or asynchrony. Another
interesting pursuit is to extend the model framework to include nonlinear determin-
istic trends, such that also models like the FitzHugh-Nagumo or the van der Pol
oscillator would be covered. The model considered in this paper was constructed
from the starting point of the phase process in the spirit of the Kuramoto model, and
noise was added on this level. Another approach would be to start from a biological
model or a reduction thereof and introduce the noise on the DGP. This would also
lead to non-linearities both in drift and diffusion of the phase process. Finally, high
dimensional systems are a major challenge in the area of coupled oscillators, hence
it would only be natural to investigate cointegration properties of high dimensional
systems. A system of more than two synchronizing oscillators that are nonlinearly
phase coupled, facilitate chaotic behavior since phases can then bilaterally attract
and repel each other. When the number of oscillators increase, one quickly ends
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up with intuitive shortcomings. The number of parameters rapidly increase with
the dimension of the system, possibly leading to a desirable reduction to a sparse
interaction structure. This is a key issue with the cointegration framework, which
take into account all individual oscillators, as opposed to a mean-field approach that
does not run into the same curse of dimensionality. The quality of the estimators
will rapidly decrease with increasing dimension of the parameter space or numer-
ical problems may arise. This problem might be alleviated by imposing a sparse
interaction structure through a LASSO L1 penalization.

Cointegration to identify coupling of oscillators has been attempted before in a neu-
roscience context by Dahlhaus and Neddermeyer (2012). There, the Kuramoto model
is approximated for strongly phase coupled oscillators by setting sin(φj − φi) ≈
φj − φi, since the phase differences are assumed to be small. We have used the
idea from Dahlhaus and Neddermeyer (2012) of analyzing the unwrapped multi-
variate phase process. Contrary to Dahlhaus and Neddermeyer (2012), however, we
have not linearized the sine function to replicate Kuramoto, since this will cause a
discrepancy when the phase difference of two oscillators is closer to π than 0 (or 2π).
To mitigate this problem, we have instead taken the approach of designing a DGP
with the properties we are interested in, and which allows for any phase differences.
Furthermore, this DGP enables us to specify a cointegration model that comply with
data from this DGP. Although it may not fully comply with a biological model, it
can point to where necessary flexibility is needed in order to develop more realistic
cointegration models for biological processes. A first attempt to analyze EEG signals
with cointegration analysis with linear coupling structures has been presented. The
results are promising, and reveal a finer dependence structure characterizing states
of seizure and non-seizure in epileptic patients, which in this example was not pos-
sible from the simple Mean Phase Coherence measure. To fully explore the potential
of the cointegration analysis for EEG signals, it would be useful to extend the model
and analysis tools to allow for non-linearities and simultaneous treatment of many
traces, as well as time varying coupling strengths.

Summing up, by applying cointegration as a technique to the field of coupled oscil-
lators in biology, we open up for a whole new area of applications for this statistical
theory. On the other hand, using cointegration methods, biologists can gain new
insights into network structures, being able to fit models and carry out statistical
hypothesis testing. If the cointegration framework presented in this paper can be
extended to include the standard models currently used in the field, cointegration
would prove a powerful analysis tool for researchers.
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A Derivation of an oscillating process with cointegrated phases

Using a transformation from polar to Cartesian coordinates coordinates, we can use
Itô calculus to derive a data generating process zt = (x1t, y1t, . . . , xpt, ypt)

′, which
will yield a phase process, φt, and amplitude process, γt, that comply with (I.2) and
(I.3).

Assume a system of p oscillators, such that φt ∈ Rp, γt ∈ Rp and zt ∈ R2p. Let ζt =
(γ1t, φ1t, . . . , γpt, φpt)

′ denote the 2p-dimensional process in the polar coordinates.
For notational purposes, we omit the time index t for zt, ζt, xkt, ykt, φkt and γkt, where
k = 1, . . . , p, then we have the following relations

z = (x1, y1, . . . , xp, yp)
′ = h(ζ) =


γ1 cos(φ1)
γ1 sin(φ1)

...
γp cos(φp)
γp sin(φp)

 ∈ R2p.

For k = 1, . . . , p, we find that the k’th coordinate pair (xk, yk)
′ are given as the

2k − 1 and 2k entries in z = h(ζ), i.e., (xk, yk)
′ = (z2k−1, z2k)

′ = (hk−1(ζ), hk(ζ))′ =
(γk cos(φk), γk sin(φk))

′. Using the multivariate version of Itô’s Lemma, we find that
for k = 1, . . . , p

dz2k−1 =
∑
i

∂γk cos(φk)

∂ζi
dζi +

1

2

∑
i,j

∂2γk cos(φk)

∂ζi∂ζj
dζidζj

=
∂γk cos(φk)

∂γk
dγk +

∂γk cos(φk)

∂φk
dφk

+
1

2

(
∂2γk cos(φk)

∂γ2
k

(dγk)
2 +

∂2γk cos(φk)

∂φ2
k

(dφk)
2 + 2

∂2γk cos(φk)

∂γk∂φk
(dγkdφk)

)
= cos(φk)dγk − γk sin(φk)dφk −

1

2
γk cos(φk)(dφk)

2 − sin(φk)(dγkdφk)

= xkγ
−1
k dγk − ykdφk −

1

2
xk(dφk)

2 − ykγ−1
k dγkdφk

dz2k =
∑
i

∂γk sin(φk)

∂ζi
dζi +

1

2

∑
i,j

∂2γk sin(φk)

∂ζi∂ζj
dζidζj

= . . .

= sin(φk)dγk + γk cos(φk)dφk −
1

2
γk sin(φk)(dφk)

2 + cos(φk)(dγkdφk)

= ykγ
−1
k dγk + xkdφk −

1

2
yk(dφk)

2 + xkγ
−1
k dγkdφk.

Note that γk, φk are both uni-variate processes. Combining the expressions for xk
and yk, we find

d

(
xk
yk

)
=

(
xk
yk

)
γ−1
k dγk +

(
−yk
xk

)
dφk −

1

2

(
xk
yk

)
(dφk)

2 +

(
xk
yk

)
γ−1
k dγkdφk

=

(
(1 + dφk)γ

−1
k dγk − 1

2(dφk)
2 −dφk

dφk (1 + dφk)γ
−1
k dγk − 1

2(dφk)
2

)(
xk
yk

)
(I.35)
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Insert the relations

dγk = gk(φ, γ)dt+ σγkdW
γ
k

dφk = fk(φ, γ)dt+ σφkdW
φ
k

(dφk)
2 = (σφk )2dt

dγkdφk = σγkσ
φ
kdt

γk =
√
x2
k + y2

k

into (I.35) and obtain

d

(
xk
yk

)
=

(
−1

2(σφk )2 −fk(φ, γ)

fk(φ, γ) −1
2(σφk )2

)(
xk
yk

)
dt+

(
0 −σφk
σφk 0

)(
xk
yk

)
dW φ

k︸ ︷︷ ︸
"Phase related"

+
gk(φ, γ) + σγkσ

φ
k√

x2
k + y2

k

(
xk
yk

)
dt+

σγk√
x2
k + y2

k

(
xk
yk

)
dW γ

k︸ ︷︷ ︸
"Amplitude related"

(I.36)

The quotation marks in the description in (I.36) imply that one can intuitively in-
terpret the system in this way, but the system is not mathematically split into these
parts, as clearly f and g both depends on φ and γ, and σφk enters in the "amplitude"
part.

Generalizing (I.36) we find

dzt = (Rt +Qt)ztdt+ a(zt,Σφ)dW φ + b(zt,Σγ)dW γ , (I.37)

where Rt is a block diagonal matrix of 2 × 2 rotation matrices and Qt is a diagonal
matrix of amplitude dependent adjustments. The noise is composed of a sum of two
state dependent multivariate processes, where the functions a, b define the noise as
given in (I.36). The time index t has been added in (I.37) to emphasize the time
dependency of the matrices Rt and Qt.

B Rank test for Π and estimation of cointegrated models

Here we outline the procedure for determining the cointegration rank and estimat-
ing parameters in model (I.2). For a thorough presentation of this method, see Jo-
hansen (1996).

We refer to model (I.16) with rank(P ) = r and µt = µ as Hr. Using this categoriza-
tion, we have a nested sequence of models

H0 ⊂ · · · ⊂ Hr ⊂ · · · ⊂ Hr,

which enables us to specify likelihood-ratio tests for the hypothesisHr givenHr+1 or
Hr given Hp, where Hp is the unrestricted model. The first critical step for analyzing
(I.2), is to determine the cointegration space dimension r. Given r, we can estimate
the parameters in the model using reduced rank regression and ordinary least squares
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(OLS). The first step is to remove the deterministic trend by regression, then reduced
rank regression is used to estimate b by solving an eigenvalue problem, and finally
the remaining parameters are estimated by OLS, using the estimated b̂.

To describe the regression procedure, some convenient notation needs to be es-
tablished. Define for n = 1, . . . , N , the following functions of the data, Υ0tn =
∆φtn ,Υ1tn = φtn−1 and let εtn ∼ Np(0,Ω).

The log-likelihood function is then (up to a constant)

logL(a, b, µ,Ω) = −1

2
N log |Ω| − 1

2

N∑
n=1

(Υ0tn − ab′Υ1tn − µ)′Ω−1(Υ0tn − ab′Υ1tn − µ).

(I.38)

Define

Rp×p 3Mij = N−1
N∑
n=1

ΥitnΥ′jtn , for i, j = 0, 1

Rp 3Mi2 = N−1
N∑
n=1

Υitn , for i = 0, 1

R 3M22 = 1.

(I.39)

Note that Mij = M ′ji. Then the estimate of µ given a and b is

µ̂(a, b) = M02 − ab12

= N−1
N∑
n=1

(
∆φtn − ab′φtn−1

)
(I.40)

Define the residuals

R0tn = Υ0tn −M02 = ∆φtn −N−1
N∑
n=1

∆φtn

R1tn = Υ1tn −M12 = φtn−1 −N−1
N∑
n=1

φtn−1

(I.41)

With these preliminary steps, we obtain the profiled likelihood function

logL(a, b,Ω) = −1

2
N log |Ω| − 1

2

N∑
n=1

(R0tn − ab′R1tn)′Ω−1(R0tn − ab′R1tn), (I.42)

equivalent to the regression equation

R0tn = ab′R1tn + ε̂tn . (I.43)

Equation (I.43) is estimated as a reduced rank regression, by solving for eigenvalues.
Define

Sij = N−1
N∑
n=1

RitnR
′
jtn = Mij −Mi2M2j , for i, j = 0, 1. (I.44)
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Then for a fixed b, we obtain estimates for a and Ω by OLS with b′R1tn as the inde-
pendent variable,

â(b) = S01b(b
′S11b)

−1, (I.45)

Ω̂(b) = S00 − S01b(b
′S11b)

−1b′S10, (I.46)

and the likelihood is then maximized as

L
−2/N
max (b) = |S00 − S01b(b

′S11b)
−1b′S10|.

Using the Schur complement for the matrix∣∣∣∣ S00 S01b
b′S10 b′S11b

∣∣∣∣ , (I.47)

we find

|S00 − S01b(b
′S11b)

−1b′S10| = |S00|||b′(S11 − S10S
−1
00 S01)b|/|b′S11b|. (I.48)

Equation (I.48) is maximized for all p × r matrices by solving for the p eigenvalues
λi in

|λS11 − S10S
−1
00 S01| = 0, (I.49)

such that

λiS11vi = S10S
−1
00 S01vi,

and the p× 1 eigenvectors vi, i = 1, . . . , p are normalized,

v′jS11vi =

{
1, for i = j

0, for i 6= j.
(I.50)

Then for a given r, b̂ (p× r) is given by the r eigenvectors, v1, . . . , vr, corresponding
to the r largest eigenvalues λ̂1 > · · · > λ̂r, and the maximum value of the likelihood
function with this b̂ is

L
−2/N
max = |S00|

r∏
i=1

(1− λ̂i). (I.51)

Since (I.51) holds for r = 0, . . . , p, where for r = 0 we set sp(b̂) = {0} and for r = p
we set sp(b̂) = Rp, we have solved for all possible ranks r once and for all, and we
can form the likelihood ratio test

−2 logQ
(
Hr|Hp

)
= −N

p∑
i=r+1

log(1− λ̂i), (I.52)

for the model Hr versus the model Hp. Equation (I.52) is known as the trace statistic,
whereas

−2 logQ
(
Hr|Hr+1

)
= −N log(1− λ̂r+1), (I.53)
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is known as the maximum eigenvalue statistic. The asymptotic distributions of (I.52)
and (I.53) are both non-standard mixed Gaussian. Critical values for these can be
found via simulation of a p − r dimensional Brownian motion and using either the
trace or maximum eigenvalue of a specially constructed (p− r)× (p− r) matrix, where
the construction of the matrix depends on the structure of the deterministic terms
in the model. Another possibility is to use bootstrapping as presented by Cavaliere,
Rahbek, and Taylor (2012).

Using the trace test (I.52), the rank r is then determined by proceeding as follows

1. Initialize with r = 0.

2. For r = 0, . . . , p − 1, if Hr versus Hp is rejected, set r → r + 1 and calculate
(I.52).

3. Repeat step 2 until Hr versus Hp cannot be rejected, and set rank(Π) = r.

4. If r + 1 = p, set r = p.

When the rank r is determined, then b̂ is used for estimating the remaining parame-
ters which follows from equations (I.40),(I.45) and (I.46).

Observe some conveniences of Johansens procedure. First, all the p eigenvalues are
determined at the same time. Thus, the eigenvalue problem only needs to be solved
once through the whole procedure. Secondly, with tabulated or simulated values for
the likelihood ratio tests, determining r follows a simple procedure. Finally with b
fixed, the remaining parameters are estimated using OLS.
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MANUSCRIPT II
Cointegration analysis of high-dimensional
linear Kuramoto networks

Jacob Østergaard, Anders Rahbek and Susanne Ditlevsen

Working paper.

1 Introduction

High-dimensional data is becoming ubiquitous in contemporary statistics and this
development is also recognized in neuroscience where laboratory techniques facili-
tate recording an ever increasing number of neurons simultaneously. In Østergaard,
Rahbek, and Ditlevsen (2017b) we explored a novel approach to infer network struc-
ture. By studying a system of coupled processes and using cointegration analysis
to infer the coupling structure it was demonstrated how both uni-directional, bi-
directional and all-to-all coupling was concluded based on observed oscillating pro-
cesses. However, in Østergaard, Rahbek, and Ditlevsen (2017b) the studied systems
only included three-dimensional processes which does not agree well with the inter-
est in analysis tools for high-dimensional data series. In this paper we explore how
cointegration analysis performs in high-dimensions in terms of both rank and pa-
rameter estimation. We assume a system of cointegrated processes with i.i.d. Gaus-
sian innovations and perform likelihood estimation, given the rank. In regard to
determining the rank, we demonstrate the performance of bootstrapping in a high-
dimensional setting for simulated processes. We also define a linear version of the
classic Kuramoto (1984) model which implies a symmetric design of the system. To
include this in the estimation procedure, we define a new low-rank estimator of the
system matrix, under the restriction of symmetry. This estimator diverge from the
standard maximum likelihood estimation using reduced rank regression.

In the following, Ip denotes the p-dimensional identity matrix. For a real matrix
M ∈ Rp×r, M⊥ denote the orthogonal complement, such that M ′⊥M = 0. The ma-
trix determinant operator is denoted | · |. Also, an integrated process is implicitly
assumed I(1) (integrated of order 1) and I(0) denote a process that can be given ini-
tial values such that it is stationary. Finally, time is assumed discrete (with positive
index) throughout unless otherwise noted. Initial values are either assumed known
or explicitly stated.



68
Manuscript II. Cointegration analysis of high-dimensional linear Kuramoto

networks

2 Cointegration

Assume the p-dimensional process

yn = Ayn−1 + µ+ εn, for n = 0, 1, . . . (II.1)

where A ∈ Rp×p, µ ∈ Rp and εn ∼ Np(0,Ω). Assume also that (II.1) is integrated and
let Π = A− Ip. The I(1) assumption implies that rank(Π) = r < p such that Π = αβ′.
If yn satisfy the following criteria

• the characteristic polynomial for (II.1) has p− r roots at z = 1 (unit roots) and
all other roots lie outside the unit circle,

• the matrices α, β ∈ Rp×r have full column rank r < p,

• |α′⊥β⊥| 6= 0,

then (II.1) is integrated of order 1. We therefore refer to the above criteria as the
I(1)-conditions. These ensure that yn is cointegrated with r cointegrating relations
and p − r stochastic (random walk type) trends. We will assume that µ = 0, since
deterministic trends are removed by regression to obtain a reduced rank regression
model based on the residuals from this initial step. Hence, givenN observations and
writing (II.1) in the error correction form

∆yn = Πyn−1 + εn, for n = 0, 1, . . . , N, (II.2)

where ∆yn = yn−yn−1, the log-likelihood function, omitting constant terms, is given
by

logL(Π,Ω) = −N
2

log |Ω| − 1

2

N∑
n=1

(∆yn −Πyn−1)Ω−1(∆yn − yn−1)′. (II.3)

Let Hr denote the hypothesis rank Π = r. Then, under Hr, the maximum likelihood
estimate of Π is given by a reduced rank regression (Johansen, 1996), for the decom-
position Π = αβ′. Thus, under Hr, we denote the reduced rank estimator Π̂ = α̂β̂′

as the unrestricted estimator with α, β ∈ Rp×r.

Omitting the restriction to a reduced rank Π matrix for now, define the p×pmoment
matrices Sij , i, j = 0, 1

S00 =
1

N

N∑
i=1

∆yi(∆yi)
′

S01 =
1

N

N∑
i=1

∆yiy
′
i−1

S10 =
1

N

N∑
i=1

yi−1(∆yi)
′

S11 =
1

N

N∑
i=1

yi−1y
′
i−1.

(II.4)
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The likelihood (II.3) can then be written with the Sij , i, j = 0, 1 notation

logL(Π,Ω) = −N
2

log |Ω| − 1

2
Tr
{ 1

N

N∑
n=1

(∆yn −Πyn−1)(∆yn −Πyn−1)′Ω−1
}

= −N
2

log |Ω| − 1

2
Tr
{(
S00 −ΠS10 − S01Π′ + ΠS11Π′

)
Ω−1

}
.

2.1 Estimation under restriction to symmetry

Under Hr, Johansen (1996) derives a likelihood ratio test for linear restrictions on
α, β. These are formulated as sp(α) ⊂ sp(A) and sp(β) ⊂ sp(H), for given matrices
A,H . However, in this paper we will concentrate on the restriction

Π ∈ Sp = {M ∈ Rp×p|M = M ′, rankM = r}, (II.5)

i.e., Π must lie in Sp, the subset of symmetric p × p matrices with rank r. As such,
the restrictions using matrices A,H from Johansen (1996) do not suffice for our pur-
pose. The symmetry condition leads to the non-trivial problem of maximizing the
likelihood of (II.2), under the two conditions rank(Π) = r and Π = Π′.

For the general case of approximating the p × p matrix Π with another, under the
restriction of low rank and some given structure is known as structured low rank
approximation (Chu, Funderlic, and Plemmons, 2003). For a symmetry restriction,
the problem can be stated as

min
M
||Π−M ||F , subject to rank(M) = r and M ∈ Sp ⊂ Rp×p, (II.6)

where || · ||F denote the Frobenius norm and M is a generic matrix restricted to the
structured subspace of real symmetric p× p matrices.

Under the rank condition only, Eckart and Young (1936) shows that the optimal so-
lution to (II.6) is given by the singular value decomposition (SVD), a result which is
known as the Eckart-Young-Mirsky theorem. Let Π = UΛV ′ denote the SVD of Π
and assume that the diagonal entries of Λ = diag(λ1, . . . , λp) are ordered such that
λ1 > λ2 > · · · > λp. Partition U, V and Λ as

U = (Ur, Up−r)

V = (Vr, Vp−r)

Λ = diag(λ1, . . . , λr, λr+1, . . . , λp),

such that Ur, Vr ∈ Rp×r corresponds to the r largest entries of Λ and Up−r, Vp−r ∈
Rp×(p−r) corresponds to the last p − r entries of Λ. Then, ignoring the symmetry
constraint, the optimal solution to (II.6) is given by

M̃ = UrΛrV
′
r . (II.7)

However, once the symmetry is included the problem becomes much more difficult.
Chu, Funderlic, and Plemmons (2003) notes that (II.6) may not have an optimal solu-
tion, whereas relaxing the rank constraint to rank(M) ≤ r ensures a solution, given
that the restricted subspace, which is Sp in this case, is non-empty.
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Solving (II.6) can be done by numerical methods such as the Lift-and-Project algo-
rithm:

1. Initialize M (1) = Π. Then for i = 1, 2, . . . , do

2. Lift: compute a rank k approximation of M (i).

3. Project: find the projection M (i) of M (i−1) onto Sp, using P (M) = M+M ′

2

4. Repeat steps 2 and 3 until convergence.

Another approach is penalized optimization:∣∣∣∣Π−M + κ
∑
ij

|Mij −Mji|
∣∣∣∣
F
, κ ∈ R+ (II.8)

where | · | denotes the absolute value and Mij refers to the ij’th element of M . For
positive values of κ, non-symmetry is penalized and we obtain a near-symmetric
approximation of M . Since the penalized optimization in (II.8) only optimize for
the symmetry constraint, then in order to find a low-rank approximation of M , (II.7)
must then be applied in turn after the penalized optimization, similar to the lift-and-
project algorithm.

Opting for yet another approach, we first note that for the log-likelihood (II.3) the
unrestricted OLS estimator for Π is found by solving for Π in the following matrix
equation

−∂ΠS10 − S01∂Π′ + ∂ΠS11Π′ + ΠS11∂Π′ = 0, (II.9)

which holds for

Π̂OLS = S01S
−1
11 . (II.10)

For an arbitrary fixed Π, the covariance estimator is given as a function of Π

Ω(Π) = S00 −ΠS10 − S01Π′ + ΠS11Π′. (II.11)

Inserting (II.11) in the likelihood, implies that the profile likelihood for Π, up to a
constant, is given by

logL(Π) = −N
2

log |Ω(Π)|

= −N
2

log |S00 −ΠS10 − S01Π′ + ΠS11Π′|. (II.12)

Note that if Π is symmetric and has reduced rank r it can be written as Π = ββ′, for
β ∈ Rp×r. Writing up the likelihood (II.12) and differentiating, then

∂ log |Ω(∂β)| = Tr{Ω(β)−1(− ∂ββ′S10 − β∂β′S10 − S01∂ββ
′ − S01β∂β

′

+ ∂ββ′S11ββ
′ + β∂β′S11ββ

′ + ββ′S11∂ββ
′ + ββ′S11β∂β

′)}
= Tr{Ω(β)−1

(
2(∂ββ′ + β∂β′)(S11ββ

′ − S10)
)
}.

Thus, in the case β = 0 (yn is a p-dimensional Brownian motion), the score is 0. This
suggest that deriving a symmetric estimator of Π through β might not be ideal.
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Instead we can examine how the profile likelihood can be maximized under the
restriction of Π = Π′. We focus on the symmetry constraint to obtain an estima-
tor which can be approximated by a reduced rank version using the Eckart-Young-
Mirsky theorem, since it does not seem possible to find a solution including both
restrictions simultaneously. Maximizing (II.12) corresponds to minimizing the log
determinant of log |Ω(Π)|

max
Π

logL(Π) = min
Π

log |Ω(Π)|, subject to Π = Π′

Considering the OLS estimator Π̂OLS = S01S
−1
11 , Fan and Hoffman (1955) prove that

the nearest symmetric matrix to this, is the Hermitian part of Π̂OLS

Π̃ =
1

2
(S01S

−1
11 + S−1

11 S10) =
1

2
(Π̂OLS + Π̂′OLS), (II.13)

in the sense that ||Π̂OLS−Π̃||F ≤ ||Π̂OLS−M ||F , for any matrixM ∈ Sp, with equality
if and only if M = Π̃. Note that the Hermitian part of a p × p matrix corresponds
to the projection onto Sp. From this, we claim that (II.13) is the optimal choice of an
otherwise unrestricted estimator of a symmetric Π, since Π̂OLS is the optimal unre-
stricted estimator for Π and (II.13) is the optimal symmetric approximation of this
estimator. These arguments are of course without any regard to the rank condition.
Therefore, to obtain an estimate of rank r, we then invoke the SVD approximation
from above to obtain

Π̂sym = Ur(Π̃)Λr(Π̃)(V ′r (Π̃), (II.14)

where the notation Ur(·),Λr(·), Vr(·) refer to the SVD matrices of rank r with respect
to the argument.

The maximized log-likehood is then given by (II.12), where

Ω̂(Π̂sym) = S00 − Π̂symS10 − S01Π̂′sym + Π̂symS11Π̂′sym.

3 Linear Kuramoto type system

The classic Kuramoto (1984) model defines a system of p coupled processes through
the differential equations

dθi
dt

= ωi +
K

p

p∑
j=1

sin(θj − θi), for i = 1, . . . , p. (II.15)

The variables θi are interpreted as the phases of limit cycle oscillators, with intrinsic
frequencies ωi andK denotes the strength of the coupling between the oscillators. By
linearizing the sine function on [0, π2 ) we can write the linearized Kuramoto model
as

dθ

dt
= ω +

K

p
Πθ,
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where θ = (θ1, . . . , θp)
′, ω = (ω1, . . . , ωp)

′ and Π ∈ Rp×p with the following simple
structure

Π =


p− 1 1 . . . 1

1 p− 1 . . . 1
...

...
. . .

...
1 1 . . . p− 1

 (II.16)

and rank(Π) = p− 1. Note that this linearization only holds when θj − θi ≤ π
2 for all

i, j = 1, . . . , p.

Consider now the following network structure inspired by the linearized version of
(II.15), let Π denote a symmetric matrix with a block structure

Π =


Π1 0 . . . 0
0 Π2 . . . 0
...

...
. . .

...
0 0 . . . Πk

 , (II.17)

where Πi ∈ Rpi×pi , i = 1, . . . , k are symmetric, reduced rank matrices with rank(Πi) =
ri = pi − 1, i = 1, . . . , k. Hence, (II.17) implicitly defines a network of clusters. Note
that the pi’s (and hence the ri’s) do not necessarily need to be identical. The net-
work structure in (II.17) allows for cointegration since each Πi has reduced rank,
and rank(Π) =

∑k
i=1 rank(Πi) =

∑k
i=1(pi− 1). This implies that rank(Π) = p−k. In-

terpreting this as a cointegrated system means that each cluster in (II.17) is driven by
a stochastic I(1) trend and hence the number of stochastic trends equals the number
of independent clusters in the system.

The structure of Π in (II.17) implies that

Π = diag(Π1, . . . ,Πk)

= diag(α1β
′
1, . . . , αkβ

′
k)

where diag(·) refers to block diagonalization. The rows/columns of Π must sum to
0, thus further restricting the possible structure of α, β. A possible construction of
(II.17) from α, β with these restrictions, is to choose α, β such that

α =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αk

 (II.18)

β =


β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βk

 , (II.19)
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where

αi =


−riai ai . . . ai

ai −riai . . . ai
...

...
. . .

...
ai ai . . . −riai
ai ai . . . ai

 = ai


−ri 1 . . . 1

1 −ri . . . 1
...

...
. . .

...
1 1 . . . −ri
1 1 . . . 1

 (II.20)

βi =


bi 0 . . . 0
0 bi . . . 0
...

...
. . .

...
0 0 . . . bi

−bi −bi . . . −bi

 = bi


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−1 −1 . . . −1

 . (II.21)

These choices of αi, βi implies that

αiβ
′
i =


−riaibi aibi . . . aibi

aibi −riaibi . . . aibi
...

...
. . .

...
aibi aibi . . . −riaibi

 = aibi


−ri 1 . . . 1

1 −ri . . . 1
...

...
. . .

...
1 1 . . . −ri

 , (II.22)

which is symmetric, rows/columns sum to 0 (since it is ri × ri) and couplings are
equal within cluster i. Furthermore, note that within each cluster, the only two pa-
rameters are necessary to describe the interaction

1. pi = ri + 1, the size of the cluster, and

2. ci = aibi, the strength of coupling.

Each cluster i now corresponds to (II.16), where K
p = aibi. Here ai and bi are not

individually identifiable. As such, the usual normalization of βi is imposed, such
that the upper ri × ri matrix is the identity. The αi matrix is adjusted accordingly,
i.e. estimating the aibi level, rather than ai by itself. We will refer to a cluster of
size pi as a pi-cluster, hence a 2-cluster consist only of two coupled neurons. Note
that this definition of a cluster does not exclude 1-clusters, since this is just a single
independent neuron. In order to include this in the full α, β defintions (II.18) and
(II.19), simply define αi = βi = 0 when pi = 1.

We now define a linear Kuramoto type system as a set of k clusters of sizes pi, i =
1, . . . , k, such that the coupling matrix is on the form (II.17), where each cluster has
a coupling structure equivalent to (II.22). This is the type of system which will be
analyzed below.

4 High-dimensional estimation

Concerning the model (II.2), there are two crucial steps in obtaining estimates, as
both the rank of the system as well as Π must be determined. As the dimension, p,
of the model (II.2) increases to a high-dimensional setting, estimating r̂ close to the
true rank becomes progressively difficult as the rank test is prone to underestimate
the rank. This is due to the construction of the test sequence, which starts with Hr

against Hp for r = 0. If this is rejected, then r increases by 1 and this continues
until Hr against Hp cannot be rejected or if r + 1 = p, such that r̂ = p. For some
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true rank r < p, this sequence is bound to reach a conclusion. However, since Hr

is evaluated in some distribution then, if the data is sufficient, it will eventually fall
within a confidence region of this distribution, thus not rejecting Hr. This can occur
prior to testing at the true rank r as shown in Figure II.1, for N = 2000 observations
of a linear Kuramoto-type system as described above. Here the distribution of each
test statistic was found by bootstrapping (Cavaliere, Rahbek, and Taylor, 2012). The
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FIGURE II.1: Bootstrapped likelihood ratio test distribution ofHr ver-
sus Hp for N = 2000. 95% confidence bounds for the bootstrap test
(gray) and the test values from the data (red). The test values enters
the 95% region at r̂ = 82 (blue dashed line), whereas the true value is
r = 84 (gray dashed line). The bootstrap test is based on 300 samples,

increasing to 1000 does not change the conclusion of r̂ = 82.

figure demonstrates the 95% confidence bounds (gray) for the distribution of the
likelihood ratio test under Hr, r = 78, . . . , 88, using 300 bootstrap samples, when
the true rank of the system is 84. The likelihood ratio test for the observed data
(red) approaches the 95% confidence area from above, and is rejected up to, and
including, Hr : r = 81. At r = 82, the test for the test falls within the 95% region and
therefore it is not rejected. The bootstrap test therefore concludes that r̂ = 82 (blue
dashed line), when in fact the true rank is r = 84 (gray dashed line). Inspecting
Figure II.1 closely, the red curve displays a kink right at r = 84, indicating that
at the true value there is a notable change in the likelihood ratio test trend. For a
lower number of observations this is less visible, whereas for a higher number of
observations, the kink is more pronounced. In the latter case, this implies that the
numerical magnitude of the derivative of the likelihood ratio test curve, up to the
true value of r, will increase with the number of observations and thus the test is
more likely to find the true value of r, as the trend of the red curve will cut into the
grey region at a larger angle. For the data used to produce Figure II.1, the conclusion
was the same when using 1000 bootstrap samples, thus supporting the intuition
that more observations will increase the accuracy, rather than just increasing the
bootstrap sample, since this will only improve on the empirical distribution of the
test, but not the trend of the test curve.

Following the discussion above on estimating the rank of a high dimensional system,
it is of interest to asses how the estimates of (II.2) will perform, in regard to modeling
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the true underlying structure of Π when the rank is underestimated. Intuitively
we are approximating a subspace of dimension rank(Π) = r with a subspace of
dimension rank(Π̂) = r̂, thus whenever r̂ ≤ r then sp(Π̂) ⊆ sp(Π) and whenever
r̂ ≥ r then sp(Π) ⊆ sp(Π̂). Therefore, underestimating the rank implies that the
basis of the estimation space will be a linear combination of combinations of the
basis for the true Π-space. To see the effect of this, assume a linear Kuramoto-type
system of just two clusters Π1,Π2, and define

α10 =

(
α1

0

)
α20 =

(
0
α2

)
β10 =

(
β1

0

)
β20 =

(
0
β2

)
such that α = (α10, α20) and β = (β10, β20), then

αβ′ = α10β
′
10 + α20β

′
20 =

(
α1β

′
1 0

0 α2β
′
2

)
.

Assuming that the rank is underestimated, such that the estimated α̂, β̂ are linear
combinations of αi0 and βi0, respectively,

α̂ = να10 + (1− ν)α20

β̂ = νβ10 + (1− ν)β20,

for ν ∈ [0, 1], then these are estimates in lower dimensional spaces than the true α, β.
From this,

α̂β̂′ = ν2α10β
′
10 + (1− ν)2α20β

′
20 + ν(1− ν)

(
α10β

′
20 + α20β

′
10

)
=

(
ν2α1β

′
1 ν(1− ν)α1β

′
2

ν(1− ν)α2β
′
1 (1− ν)2α2β

′
2

)
,

which means that there exists no ν that will result in linear combinations of α10, α20

and β10, β20, respectively, which will provide a reasonable estimate of αβ′, since
we cannot exclude the α2β

′
1, α1β

′
2 products without eliminating either α1β

′
1 or α2β

′
2.

Thus, in the case of two clusters with a misspecified rank, equal to half of the true
rank, it is not possible to obtain a reasonable estimate of the block diagonal structure
of Π. However, if we consider at higher dimensional model and try to reproduce the
structure, we can allow for a rank estimate that is nearer, as a ratio, to the true value.
Assume therefore, a system where

α =

α1 0 0
0 α2 0
0 0 α3


β =

β1 0 0
0 β2 0
0 0 β3

 ,
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and define

α10 =

α1 0

0 γ1/2α2

0 0

 α20 =

 0 0

(1− γ)1/2α2 0
0 α3


β10 =

β1 0

0 γ1/2β2

0 0

 β20 =

 0 0

(1− γ)1/2β2 0
0 β3

 ,

where γ ∈ [0, 1], such that

α10β
′
10 + α20β

′
20 =

α1β
′
1 0 0

0 γα2β
′
2 0

0 0 0

+

0 0 0
0 (1− γ)α2β

′
2 0

0 0 α3β
′
3


= αβ′.

Defining as before, the estimates α̂, β̂ as linear combinations α̂ = να10 + (1 − ν)α20

and β̂ = νβ10 + (1− ν)β20, respectively, we find that

α̂β̂′ = ν2α10β
′
10 + (1− ν)2α20β

′
20 + ν(1− ν)(α10β

′
20 + α20β

′
10)

=

ν2α1β
′
1 0 0

0
(
ν2γ + (1− ν)2(1− γ)

)
α2β

′
2 0

0 0 (1− ν)2α3β
′
3


+ ν(1− ν)

 0 (1− γ)1/2α1β
′
2 0

(1− γ)1/2α2β
′
1 0 γ1/2α2β

′
3

0 γ1/2α3β
′
2 0


If ν = 0.5, then α̂β̂′ = 1

4αβ
′ + "something", and since α, β are only determined up to

a scaling constant, we see that it is possible to recover the structure of Π = αβ′, with
the addition of some errors due to the lower dimensional approximation of α and
β. However, note that, besides the block diagonal, the upper-right and lower-left
corners of this error term are exactly zero, hence we find the estimated Π as

Π̂ =

 Π̂11 (1− γ)1/2Π̂12 0

(1− γ)1/2Π̂21 Π̂22 γ1/2Π̂23

0 γ1/2Π̂32 Π̂33

 ,

where the magnitude of the entries of Π̂ij for i 6= j are scaled by γ1/2 or (1 − γ)1/2

compared to Π̂ii, i = 1, . . . , 3. Continuing this path of reasoning for examples with
more than three clusters, it is evident, that due to the orthogonal structure between
clusters, we can reasonably well estimate Π with Π̂, when the estimation rank is
lower than the true rank. The quality of the estimation is of course dependent on
how close the estimation rank is to the true rank, the closer the better. This can
be visualized by defining measure of "closeness" for two subspaces as defined by
the matrices Π and Π̂. For this purpose, one can use a generalized version of the
vector angle, using the Frobenius inner product 〈U, V 〉F = Tr(U ′V ) for matrices
U, V ∈ Rp×p, where Tr(·) denote the trace operator. The angle between the matrices
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U and V is then defined as

Θ(U, V ) = arccos

(
〈U, V 〉F√

〈U,U〉F 〈V, V 〉F

)
. (II.23)

For U = 0 and/or V = 0 we define Θ(U, V ) = π/2, i.e., the 0 matrix is always or-
thogonal to itself and any other. Figure II.2 displays Θ(Π̂,Π) for varying estimation
rank r̂, based on the same data as was used to produce Figure II.1. It is clear, that

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

A
ng

le
 b

et
w

ee
n 

 Π̂
  a

nd
  Π

78 80 82 84 86 88

0.
60

0.
62

0.
64

0.
66

0.
68

0.
70

rank (Π̂)

FIGURE II.2: Left: decreasing angle (blue) between Π̂ and Π as the
rank of Π̂ approaches the true rank (red dashed line) of Π. When
rank(Π) < rank(Π̂), the angle appears close to an an asymptotic

value. Right: same plot as the left, but focused on r = 78, . . . , 88.

as r̂ increases, Θ(Π̂,Π) decreases from orthogonality to an asymptotic limit, which is
reached at r̂ = r. Thus, overestimating r̂, such that r ≤ r̂, implies that sp(Π) ⊆ sp(Π̂)
and in this case we cannot obtain a much better estimate, as measured by the matrix
angle, of Π, than for r̂ = r. However, more importantly, Figure II.2 demonstrates that
severely underestimation of the rank may have critical impact on reproducing the
structure of Π, as described with the examples above, but in higher dimensions we
can obtain fair estimates of Π, even if the rank is somewhat underestimated.

5 Simulation

Consider a system with p = 100 with twelve 8-clusters and four 1-clusters, i.e., a
system of 12 coupled clusters each of size 8 and 4 independent processes. We let
each cluster be coupled with strength ci = aibi = 49−1 and assume that Ω = Ip. A
simulation of N = 2000 observations with initial condition y0 = 0 is presented in
Figure II.3, where the coloring is for easy identification of the 8-clusters (blue), the 1-
clusters (red) and a pure 100-dimensional random walk for reference. It is noticeable
how each cluster, as a whole, behave like a random walk. It is hard to tell from Figure
II.3, but it might seem like there are only a few blue processes represented by thick
lines. This is actually due to the overlapping of the individual processes intrinsic
to each cluster. Here the coupling strength is strong enough that the internal cluster
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FIGURE II.3: Simulation of a linear Kuramoto system with 12 8-
clusters (blue) and 4 1-clusters (red). A multivariate random walk

(black) is superimposed for reference.

processes never stray far from the cluster, and as a whole they behave as a stationary
process. The random walk reference shows how tightly the cointegrated processes
are knitted.

5.1 Estimation of Π

The rank estimation of Π was performed with bootstrapping. From 300 bootstrap
samples, the rank was determined as r̂ = 82. As such, the bootstrap test under-
estimates the rank, although by a small amount. Figure II.4 display the true Π
matrix along with the maximum likelihood estimate Π̂, under the assumption of
r̂ = 82 < r = 84. Blue colors indicate positive values whereas red indicate negative
values. As such, the diagonals are red and the blue squares represent the individ-
ual clusters. Note the lower right corner, where the 4 1-clusters are represented as 0
entries in Π.

As discussed in Section 4, for high-dimensional systems it is of less importance to
hit the true rank exactly, compared to low-dimensional systems. The estimate Π̂ in
Figure II.4, given r̂ = 82 < r = 84 visually reproduces much of the structure of Π,
and as was shown in Figure II.2, the angle between Π and Π̂ is only slightly reduced
for r̂ = 84 versus r̂ = 82. However, it is somewhat surprising, that Π̂ visually
captures much the true structure even if the rank is severely under-/overestimated.
Figure II.5 shows Π̂ given r̂ = 74 = r − 10, r̂ = 84 = r and r̂ = 94 = r + 10, i.e., for
estimation rank at the true value r = 84 against rank(Π̂) = r ± 10. In all three cases,
the cluster structure of Π is reproduced quite well with noticeable distinct 8-clusters
and 1-clusters.

5.2 Estimation under structural restrictions

We compare 4 different estimations of Π for the 2000 simulated observations of (II.1)
(see Section 5). All estimators are under the assumption of Hr : rank(Π) = r = 84,
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FIGURE II.4: Estimating Π with r̂ = 82, given that the true rank is
rtrue = 84.

FIGURE II.5: Estimation of Π. Left: Π̂ for r̂ = 74 = rtrue − 10. Middle:
Π̂ for r̂ = 84 = rtrue. Right: Π̂ for r̂ = 94 = rtrue + 10

i.e., we assume that the rank is known and equals the true rank of the simulated
system.

The first estimator is the unrestricted maximum likelihood estimate Π̂ = α̂β̂′, as
derived by Johansen (1996). Note that this is not restricted to be symmetric. The
second estimator will be the penalized OLS estimator

Π̂pen : min
Π

∣∣∣∣S01S
−1
11 −Π + κ

∑
ij

|Πij −Πji|
∣∣∣∣
F
,

where κ = 20. The third estimator is the projection of Π̂ = α̂β̂′ onto Sp

Π̂proj =
1

2
(α̂β̂′ + β̂α̂′),

and the final estimator is the symmetric OLS

Π̂sym =
1

2
(S01S

−1
11 + S−1

11 S10).

The estimators Π̂pen, Π̂proj and Π̂sym are transformed to their corresponding low rank
approximations using (II.7) and r = 84. Note that Π̂proj is similar to he lift-and-
project algorithm.
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We compare the estimates with four measures: i) symmetry, by ||M −M ′||F , ii) the
matrix angle (II.23) between the true Π and a given estimator, iii) the norm distance
||Π −M ||F and iv) the standard deviation of the entries outside the block diagonal
of the true Π. The last measure gauges the size of the entries in the estimates that are
precisely zero in the true Π.

Estimator Symmetry Angle Distance Std.Dev −2 logQ(Π̂est, Π̂)

Π̂ 1.9663 0.6352 1.5631 0.0147
Π̂pen 0.0083 0.5020 1.2251 0.0109 16018.96
Π̂proj 0 0.4966 1.2049 0.0107 14215.74
Π̂sym 0 0.4927 1.2009 0.0107 13618.04

TABLE II.1: Comparison of various estimators of Π, based on N =
2000 observations from a p = 100 dimensional system.

It is evident from Table II.1 that Π̂proj and Π̂sym are the best choices among the esti-
mators here, with Π̂sym slightly superior to Π̂proj. The angle between these two esti-
mators is Θ(Π̂proj, Π̂sym) = 0.0251 and the norm distance is ||Π̂proj−Π̂sym||F = 0.0575,
hence the estimators are near each other in the context of the measures considered
here. However, considering the likelihood ratio test statistics (−2 logQ(Π̂est, Π̂)), the
Π̂sym has a lower test statistic compared to both of the others. Figure II.6 presents
a histogram based on 1000 simulations of the difference of the −2 logQ statistics
−2 logQ(Π̂proj, Π̂)−

(
−2 logQ(Π̂sym, Π̂)

)
, from which it is evident that the Π̂sym esti-

400 600 800 1000 1200

−2logQ difference

FIGURE II.6: Histogram.

mator has a lower likelihood ratio test statistic, compared to the Π̂proj estimator. This
implies that the symmetric projection of the OLS estimator is the optimal choice
among the three estimators considered here, when compared to the unrestricted Π̂
estimator.

Figure II.7 displays the true Π matrix versus the unrestricted maximum likelihood
estimator Π̂ (top right) and the two symmetric estimators Π̂proj (bottom left) and
Π̂sym (bottom right). By eyeballing Figure II.7, it is evident that the symmetric esti-
mators exhibit much less noise in the values away from the block diagonal, which
is also clear from the standard deviation measure in Table II.1. The structure of Π is
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FIGURE II.7: True, unrestricted and symmetric Π estimates under
Hr : rank(Π) = r = 84. Topleft: True Π matrix. Topright: unrestricted
Π̂. Bottomleft: Π̂proj. Bottomright: Π̂sym. The bottom estimators look

very similar.

much more clearly defined in the symmetric estimators, thus a likelihood ratio test
for the linear Kuramoto type system with Π as in (II.17) should utilize these for the
restriction of the model to Hs

r ⊂ Hr, i.e., symmetry under Hr.

The system considered here relies heavily on the fact, that the observed processes
have been ordered according to the cluster structure of true Π matrix. This might not
be so in actual observations, hence it is necessary to perform some form of clustering
before testing any symmetry in the system. Fortunately, having determined the rank
r of the system, then p − r is precisely the number of clusters (including 1-clusters)
and thus running a cluster algorithm can be done with this input.

6 Discussion

With this manuscript we have examined cointegration in a high-dimensional set-
ting. By defining a linear cluster version of the Kuramoto (1984) model, we have
assessed the capability of the bootstrap determination of the rank in such a system
as well as new estimators in restrictions to a symmetric cointegration matrix. The
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bootstrap procedure was found to be efficient in approximating the rank in a high-
dimensional setting, although it is prone to underestimate the rank due to the stan-
dard procedure of starting with the hypothesis of no cointegration (r = 0) and then
going through hypotheses where the rank is increased until the hypothesis cannot be
rejected. However, it was demonstrated that as the dimension increased, determin-
ing the precise rank became less important than in low-dimensional settings. This
was due to the fact that in high-dimensional settings, determining the rank up to
some relative proportion of the true rank admitted a representation in a lower (than
the true model) dimensional space that approximated the original structure quite
well (Figure II.2), when measured in terms of the matrix angle (II.23). Using a rank
lower than the true rank, the usual reduced rank estimator was found to visually
reproduce most of the true structure from the simulated model. In extension to this
we also demonstrated various symmetric estimators for the system, which produced
superior results to the unrestricted reduced rank estimator. From theoretical consid-
erations and numerical results, the symmetric projection of the standard OLS estima-
tor, approximated with a low rank matrix using singular value decomposition, was
found to be the optimal choice among the estimators considered here, according to
the measures used in Table II.1 and it is our conjecture that this is indeed the best es-
timator, given a symmetric low rank system, with respect to these measures. One of
the deficiencies highlighted in the results, was the fact that the simulated data were
ordered correctly when used as input for the estimation. However, in a real data
context the order is unknown. As such, the work presented here should be extended
with efficient methods to first order data, such that the symmetric estimator may be
applied. As mentioned above, one way is to perform a clustering of the processes,
prior to symmetric estimation. Due to the fact that the rank can be assumed known
before clustering, the number of clusters are already known. This would be an im-
portant prior knowledge in order to pick an efficient clustering algorithm. The full
analysis of a symmetric system would then be as follows: i) determine the rank, ii)
cluster the data and iii) test for symmetry. Other interesting extensions to this work
is the unused fact that given a certain cluster structure, the remaining entries of an
estimator should be zeros. Hence, there is a large amount of sparsity in the linear
systems considered here. Therefore, including sparsity constraints would be of in-
terest to further improve the estimation procedure. Finally, testing for the complete
indepence among clusters in a high-dimensional system would also be of interest,
since this would basically allow the problem to be split into a number of lower di-
mensional settings. This would require indepence among the stochastic trends in the
system, or in other words sparsity constraints for the full covariance matrix.
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CHAPTER 3
Spike train modeling

1 Introduction

This part will focus on the analysis of binary spike train data using Generalized Lin-
ear Models (GLMs). The contributions in this part consist of two manuscripts

• Capturing spike variability in noisy Izhikevich neurons using point process
Generalized Linear Models. (Østergaard, Kramer, and Eden, 2018)

• A GLM State Space Model for Bursting Neurons. (Østergaard et al., 2017)

The first paper, accepted for publication in Neural Computation (Østergaard, Kramer,
and Eden, 2018), describes how well GLMs capture intrinsic information as well as
variability within observed spike trains, for simulated Izhikevich neurons of vari-
ous types, injected with noisy currents. The research idea was to pick a wellknown
generative neuron model that was easy to implement and could produce various
complex behaviors observed in both in vitro and in vivo recordings of neurons. This
model was not initially constructed with a stochastic component, but by augmenting
it with a noise component through the injected current, we were able to control the
amount of randomness in the model. Then, for each type of neuron and noise set-
ting, we investigated the fitted statistical GLM in terms of a goodness-of-fit analysis,
to assess how well the GLM actually captured both the neuron-specific properties,
such as refractoriness, as well as variability in the spike trains. We designed a his-
tory dependent multiplicatively separable GLM, using indicator basis functions, to
include the history of the observed spike train as explanatory variables. We found
this model to be very flexible in terms of describing the various types of neurons as
well as the varying noise, but in the deterministic or near deterministic setting, the
random component of the GLM is not captured properly, thus resulting in a poor
model fit in a statistical sense. Hence, the model might still be able to capture intrin-
sic information in the spike train, but the generalization properties would be quite
restricted. In addition, we found that capturing bursting was, not surprisingly, more
complex than capturing tonic spiking, i.e., spike trains with a unimodal InterSpike-
Interval (ISI) distribution.

The second manuscript is a working paper, to be submitted shortly. This paper deals
explicitly with modeling the bimodal ISI distributions of bursting neurons. Here
the idea is to augment the simple history dependent and multiplicatively separa-
ble GLM from Østergaard, Kramer, and Eden (2018) with a latent state to control
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for the dual behavior of bursting and resting (in between bursts) respectively. The
model’s capability of explicitly modeling the dual behavior enables it to capture the
two differing refractory periods between spikes when resting and when bursting,
producing the bimodal ISI distribution. On a more abstract level, there is nothing
which inhibits a different interpretation of the latent state and thus the modeling of
ISI distributions with more than two modes. As such, the model can also easily be
extended to include other features, such as adaptive spiking behavior. The paper
demonstrates how a multiplicatively separable and history dependent GLM model
can be enhanced with a latent state and how to apply a marginalized particle filter
for point process observations to simultaneously estimate the GLM parameters and
decode the latent state of bursting. The results in the paper display the models abil-
ities for simulated Izhikevich neurons with injected noise as in Østergaard, Kramer,
and Eden (2018). Furthermore a preliminary connection to the Izhikevich phase
space is established by showing how the decoded bursting state identifies when the
Izhikevich variables crosses the separatrix of stable/unstable regions.

The first paper was written in collaboration with Uri Eden and Mark Kramer, as
part of a research stay in Boston from November 2016 to May 2017. The second
paper is an extension of this work in collaboration with Uri Eden and Susanne
Ditlevsen.

2 GLMs for spike train data

This overview of GLMs and point processes is based on Truccolo et al. (2005) and
Kass, Eden, and Brown (2014).

The Generalized Linear Model (GLM) is a fundamental part of any statisticians tool-
box. This model framework consist of a broad class of models which are very flexible
and can be adapted to many different settings. Here we review GLMs particularly
suited for binary spike train analysis, leading to the class of history dependent, mul-
tiplicatively separable GLMs with a Poisson random component.

The GLM describes the relation between an observation Y ∈ R and explanatory
variables x ∈ Rp as

g(EP [y]) = xβ, (3.1)

with three main components

1. link function g(·),

2. systematic component: the linear predictor xβ,

3. random component: a relevant distribution P from the exponential family.

In Truccolo et al. (2005) the authors derive a GLM framework for point processes
with applications to spike train data. Particularly, the authors show that a Binomial
or Poisson distribution can be used for this task.

Assuming that we observe a neuron in some interval ∆t, we can interpret the neu-
rons firing rate as

FR =
# of observed spikes

∆t
. (3.2)
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However, (3.2) is a vague interpretation of the firing rate, so instead we could ask:
what is the expected number of spikes in the next observation period? A spike train is a
0-1 valued time series, so if we let ∆t → 0 we either observe 0 or 1 for ∆t small
enough. Hence the expected number of spikes is equal to the probability parameter
of a Bernoulli variable and can be formalized as P (spike in t, t+ ∆t). Scaling by ∆t
such that the interpretation is not dependent on the size of ∆t, and letting ∆t → 0,
the instantaneous firing rate is obtained

λ(t) = lim
∆t→0

P (spike in t, t+ ∆t)

∆t
. (3.3)

The probability in (3.3) may be time dependent, but it does not account for any other
factors and hence it is of little practical use. Hence, conditioning on other factors,
denoted here by xt, and a set of parameters θ, we get the conditional firing rate

λ(t|xt, θ) = lim
∆t→0

P (spike in t, t+ ∆t|xt, θ)
∆t

. (3.4)

2.1 Point process Representations

In order to model the probability in the numerator of (3.4), we turn to the theory of
point processes which is the class of stochastic processes that deal with events (points)
in continuous time t. Biological processes, such as membrane potentials, are rightly
interpreted as continuous time processes. We can therefore interpret spike trains,
which is a set of spike times for a neuron (s1, . . . , sn), where s1 < s2 < · · · < sn, as
the jumptimes for a continuous time process. Notice that with the strict inequalities
we implicitly assume that we observe at most one spike at any given time. If we
assume that these observations, or events, originate from the underlying process
N(t), which we here define as the number of spikes counted up to time t. Hence,
N(t) is a counting process with increments at each spike time sk, k = 1, . . . , n. The
process N(t) called orderly if

lim
∆t→0

P (N(t+ ∆t)−N(t) > 1|xt, θ)
∆t

= 0,

implying that for sufficiently small ∆t, the probability of observing more than one
spike in the interval (t, t + ∆] is negligible. Another continuous representation of
the spike times is the waiting time between two spike times wk = sk − sk−1. These
waiting times are also termed Inter-Spike Intervals (ISI), and the distribution of these
will often clearly reveal intrinsic neuron features such as refractoriness. However,
since it is practically impossible to observe any process continuously, spike trains
are instead recorded at some frequency of observation times which implies that the
time variable is binned in equidistant intervals of size ∆t = tk − tk−1. Assuming
that the time resolution ∆t is sufficiently small, such that we observe at most one
spike in any timebin, then we can represent the spike train as a binary time series
with observations at times t1 < t2 < · · · < tn. The representations mentioned above
are visualized in Figure 3.1 which is reproduced from Kass, Eden, and Brown (2014).
The binary time series representation is modeled by the discretized process ∆Nk =
N(tk) − N(tk−1) and is often the form of recordings with ∆t = 1 ms or similarly
in the order of ms. Denoting Yk = ∆Nk, then within each time bin, Yk follows
a Bernoulli distribution with some corresponding probability parameter pk. Thus,
the binary time series Yk, k = 1, . . . , n can be viewed as a sequence of Bernoulli
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FIGURE 3.1: Various representations of spike train data. Reproduced
from Kass, Eden, and Brown (2014).

random variables where pk can vary across time bins. In this case the point process
is called inhomogeneous, whereas if pk is constant across time bins, the point process
is homogeneous.

2.2 Poisson GLM for spike trains

Given an orderly counting process N(t), t ∈ (0, T ], approximated by the discrete
sequence of Bernoulli variables, Yk, k = 1, . . . ,K, we define the likelihood function
of K i.i.d. observations as the joint probability mass function of the observations
{yk}Kk=1

p(y1, . . . , yK) =

K∏
k=1

pykk (1− pk)1−yk , (3.5)

where each probability pk can be interpreted in terms of the conditional instanta-
neous firing rate (3.4) for ∆t small

pk ≈ λ(k| xk, θ)∆t, (3.6)

where λ(k| xk, θ) = λ(tk|xtk , θ). Also, when ∆t is small then 1− pk ≈ exp(−pk) and
log(pk(1− pk)−1) ≈ log(pk) such that

K∏
k=1

pykk (1− pk)1−yk =
K∏
k=1

( pk
1− pk

)yk
(1− pk)

≈
K∏
k=1

exp

[
yk log

( pk
1− pk

)]
exp(−pk)

= exp

[
K∑
k=1

(
yk log

( pk
1− pk

)
− pk

)]

≈ exp

[
K∑
k=1

(
yk log(pk)− pk

)]
.

Assuming J observed spikes in (0, T ] and using the relation (3.6), this leads to a
discrete approximation of the continuous time likelihood for the Poisson process
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with (continuous) intensity function λ(t|xt, θ) (see Truccolo et al., 2005)

1

(∆t)J
exp

[
K∑
k=1

(
yk log(pk)− pk

)]
≈ 1

(∆t)J
exp

[
K∑
k=1

(
yk log

(
λ(k|xk, θ)∆t

)
− λ(k|xk, θ)∆t

)]

= exp

[
K∑
k=1

(
yk log λ(k|xk, θ)− λ(k|xk, θ)∆t

)]

−→
∆t→0

exp

[∫ T

0
log λ(t| xt, θ)dN(t)−

∫ T

0
λ(t|xt, θ)dt

]
.

Note that in the above we exploit that
∑K

k=1 yk log λ(k|xk, θ)∆t =
∑J

k=1 yk log λ(k|xk, θ)∆t,
due to the defintion of yk. Hence, we obtain a discrete approximation of the log-
likelihood function

L(y1, . . . , yK) =

K∑
k=1

(
yk log λ(k|xk, θ)− λ(k|xk, θ)∆t

)
, (3.7)

for the binary time series observations {yk}Kk=1.

For members of the exponential family the distribution function have the general
form

f(y, θ, φ) = exp

(
θy − b(θ)
a(φ)

+ c(y, φ)

)
, (3.8)

with canonical parameter θ, dispersion parameter φ and a(·), b(·) are functions deter-
mined by the specific distribution class. For a Poisson distribution with parameter λ,
the canonical parameter is log λ, a(φ) = 1, b(θ) = exp(θ) = λ and c(y, φ) = − log(y!),
sucht that (3.8) takes the well known form

f(y, θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
= λy

e−λ

y!

This reveals that the canonical link for the Poisson GLM is the log function, and
hence that interpreting the linear predictors xβ in (3.1) under the multiplicatively
separable assumption, means that for each parameter βj , j = 1, . . . , p, then exp(βj)
denotes the multiplicative adjustment of λ, or for some given baseline β0, then
exp(βj) is the modulation of the baseline firing rate expβ0, given the correspond-
ing predictor in x. This interpretation seem much more intuitive than using the
Bernoulli interpretation. In this case, the components in (3.8) are θ = log p

1−p , b(θ) =
log(1 + exp(θ)), a(φ) = c(y, φ) = 1 such that

f(y, θ, φ) = py(1− p)1−y.

and the canonical link is then the logit function

logit(p) = log

(
p

1− p

)
.

As such the interpretation of the linear predictors becomes in terms of log-odds,
rather than multiplicative adjustments. Fortunately, we can rely on either model
due to the convergence of the Bernoulli and Poisson distributions when ∆t → 0 as
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explained above.

2.3 History dependent GLM

By choosing a relevant set of explanatory variables in (3.1), we can design a GLM
to capture relevant features in spike train data. One such feature is refractoriness
of the neuron, i.e., the suppression of any spike activity in the membrane potential
following immediately after an observed spike. This implies that it is necessary
to include information on when the last spike was observed or simply the trailing
history of the spike train back to and including the last spike. If we write up the log
of the conditional intensity function as

log λ(k|{yj}k−pj=k−1, θ) = β0 +

p∑
j=1

βjyk−j , (3.9)

we include the trailing history of yk−1, yk−2, . . . , yk−p as predictors for the intensity
of yk with the corresponding parameter θ = (β0, β1, . . . , βp)

′ ∈ Rp+1. From (3.9) it is
evident that since yk−j ∈ {0, 1}, each βj , j = 1, . . . , p correspond to the modulation
of the baseline firing rate exp(β0) as mentioned above, given the past spiking history.
Thus, for a neuron, the refractoriness should effectively amount to low βj estimates,
for low values of j, since this will suppress the firing rate following a spike (yk = 1),
and gradually as the previous spike is further and further away, the βj ’s should
increase to indicate an increased firing probability. It is of course straight forward to
include other factors in (3.9), such as stimulus effects and other spatial, temporal or
ensemble effects, revealing the flexibility of the GLM framework to capture multiple
features of spike trains.

2.4 Basis functions for GLM regression

An unfortunate consequence of (3.9) is, that in order to capture any historical de-
pendencies, such as refractoriness, it is necessary to include a fair amount of history.
This leads to a considerable amount of parameters included in the model, many of
which are possibly redundant, or at the very least highly correlated. Hence, in order
to obtain a tractable model, it is necessary to reduce the dimension, while keeping
the amount of trailing history fixed. Assuming that we want to include the last m
observations (y1, . . . , ym)′ as explanatory variables in (3.9), we can reduce the di-
mensionality of the model by utilizing basis functions to model the structure of the
history. More formally, if we let B ∈ Rm×p denote a linear transformation from an
m-dimensional space into a p-dimensional space, then we can rewrite (3.9) as

log λ(k|{yj}k−mj=k−1, θ) = β0 +

p∑
j=1

βj

m∑
i=1

Bijyk−i, (3.10)

where Bij denote the i’th row and j’th column of B. Given the representation in
(3.10), the model dimension becomes p+1 at the expense of underlying assumptions
for the basis functions. Trivially, for B = Im, then (3.9) and (3.10) coincide, thus
choosing a proper basis amounts to choosing the right transformation B such that
the dimension is reduced, while keeping assumptions realistic. The intuition behind
basis functions is, that if we assume the trailing history of the spike train yk has a
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functional form f(τ), τ ≤ tk, we may represent f in terms of the basis B, much like
a basis in a vector space

f(τ) =

p∑
j=1

βjB·j(τ), (3.11)

with B·j denoting the j′th column of B and βj act as the weight for basis function
j. Thus, using a basis in (3.10) implicitly assumes a functional form such as (3.11) of
the past information in yk.

A popular choice of basis functions for (3.11) are spline functions, which in exten-
sion to the functional form also assumes a continuous structure. Given the contin-
uous nature of the underlying physiological process generating a spike train, this
assumption does not seem unreasonable. Also, given the possibility of significantly
reducing the number of parameters, this assumption is usually highly rewarding.
The construction of the matrix B in terms of spline basis functions can be done from
various choices of splines. General spline functions use a set of polynomials de-
fined such that the tangents at the endpoints match to obtain a continuous curve
composed of combinations of these basis functions. For canonical splines, these poly-
nomials are cubic and the tangents at the endpoints are calculated with a tension
parameter s

(1− s)yk+1 − yk−1

tk+1 − tk−1
, (3.12)

where s ∈ [0, 1]. Note that if s = 1, then (3.12) is 0 and thus the connecting endpoints
for the spline basis functions are restricted to horizontal tangents. When s = 0, (3.12)
corresponds to the tangents for Catmul-Rom splines.
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FIGURE 3.2: Example of spline basis functions and a random curve.
The 6 basis functions (blue curves) make up the columns of the matrix
B of size 1000× 6. Given 6 weights (gray dots), these basis functions

will construct a continuous curve (red).

To use splines in a regression context we must choose a set of control points C =
(c1, . . . , cr). These can be chosen based on an ISI histogram for a given spike train,
but other means of choosing the set of points exist. We will, however, not pursue
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these techniques here. To ensure a low dimensional representation of the trailing
history, the number of basis functions should be kept to a minimum as there will
be one parameter (weight) per basis function. Hence, by choosing control points
around the areas of the ISI histogram where there is structure of interest, we capture
the essential features of the neuron with respect to these areas of the trailing history.
Figure 3.2 present a toy example of unequally spaced spline basis functions (blue)
on the interval [0, 1000] with control points (gray) C = (0, 100, 200, 300, 500, 1000)
and β̄ = (−0.77, 0.25, 0.22, 0.25, 0.72, 0.28) as arbitrary weights to construct a curve
(red). The flexible positioning of control points and the number of basis curve to
use provide a simple framework to capture features such as refractoriness of spike
trains.

Compared to splines, a simpler choice of indicator basis functions can be used to
represent the trailing history of a spike train. With these functions B becomes a
binary matrix of 1-0 entries

Bij = 1[
(j−1)w+1,jw

](i) =

{
1 for i = (j − 1)w + 1, . . . , jw

0 else
, (3.13)

for some predetermined width w of each indicator. Plugging this into (3.10) we
observe that each column j represent the total spike activity in each timebin which
the basis covers [(j − 1)w, jw]. As an example, if ∆t = 0.1 ms and w = 10, then each
indicator function covers 1 ms. The full matrix B will the simple structure

B =



1 0 . . . 0
...

...
...

1 0 . . . 0
0 1 . . . 0
...

...
...

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
...

...
...

0 0 . . . 1



.

where each column represent the cumulative spike activity in the corresponding
time bin.

Using indicator basis functions is a simple choice that only requires setting the width
w as opposed to the set of control points C for spline basis functions. While the
reduction of the parameter dimension is not as effective as for splines, it allows for a
more flexible model to represent the history than splines as it is closer to choosing the
full GLM form (3.9) without any basis, while still reducing the number of parameters
to some extend by a factor equal to w. However this also introduces the statistical
dilemma regarding fewer/more parameters and estimation.

For spike trains recorded at high frequencies, this implies that multiple bins will
most likely be zero and hence the time series will be very sparse. In this case, choos-
ing an indicator basis might be more adequate than splines, if the interspike interval
distribution resembles a delta function. It will reduce the need for individual param-
eters at each time bin at the cost of precision regarding when the past spikes actually
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occurred. One can only say which bin, but not where in the bin the spike occurred.
The use of indicator basis functions contrary to spline basis functions are also dis-
cussed in Østergaard, Kramer, and Eden (2018) with respect to approximating delta
functions.

2.5 LASSO estimation

LASSO regression (Tibshirani, 1996) have become a popular choice of penalized re-
gression to balance the number of parameters against model fit. Any given log-
likelihood function L(θ) can be penalized by subtracting a term

Lκ(θ) = L(θ)− κ
p∑
j=0

||βj ||q, (3.14)

such that L(θ) is restricted by the magnitude of parameters βj . For q = 1 this is
LASSO regression or L1 penalization. Another popular choice is q = 2 which corre-
sponds to an L2 penalization termed ridge regression. The main difference between
these methods is the emphasis on sparsity. Whereas an L2 penalty will shrink pa-
rameters towards 0, the L1 penalty will shrink (some of) them to precisely 0, effec-
tively reducing the model dimension.

Besides imposing sparsity (when using L1 penalization) another reason to introduce
penalization of the parameters is to keep the magnitude of parameters under con-
trol. Contrary to an unrestricted likelihood optimization where the parameters may
diverge or grow out of proportions such that numerical routines collapse, penalized
likelihood optimization will ensure that this is kept under control. When some re-
gions of a likelihood surface are almost flat in one or more directions, the reason why
optimization algorithms fail is, that increasing a single parameter may continuously
increase the likelihood. Although the marginal increase is insignificant, this will still
cause a numerical optimization to break and return errors since it does not converge
to an optimum. Introducing any penalization such as (3.14) will help to avoid this
problem regardless of the choice of q.

Besides choosing q, the choice of the penalization parameter κ is crucial for this
type of regression. The value of κ can be chosen by cross validation or by other
means. In Østergaard, Kramer, and Eden (2018) the value is chosen with respect to
the Kolmogorov Smirnov statistic (see Section 2.5) to emphasize model performance
in a goodness-of-fit setting. Hence, the choice of κ can be modified with a certain
perspective in mind, although cross validation is most commonly used.

3 State Space Models

State space models, also known as hidden Markov models, refer to a class of models,
where the underlying dynamics (continuous or discrete) are controlled by a latent
process xt. While presenting the relevant theory for this thesis, we will assume that
time is discrete (or discretized). Thus, the subscript k refers to the k’th observation
at time tk, tk−1 < tk, and we refer only to these discrete time observations of ytk = yk
and latent states xtk = xk. Given the state of xk, the distribution of observation yk,
also known as the emission probability, is known and the observations yk, k = 1, . . . ,
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are assumed independent conditionally on xk. Furthermore, the latent process is as-
sumed to be a Markov process, i.e., using the notation x1:k = (x1, . . . , xk) then the
transition probability of the latent process is p(xk|x1:k) = p(xk|xk−1). The dependence
structure between xk, yk and xk−1 is visualized in Figure 3.3 where the arrows note
the direction of the dependence, i.e., yk depends on xk, but not the other way around.
The set of possible values of xk is termed the state space, which we denote here as X .

x0 x1 . . . xk−1 xk

y1 . . . yk−1 yk

FIGURE 3.3: Graphical representation of a standard State Space
Model with observation process yk and latent process xt.

Assume that the parameters θ is given, such that the model is fully specified. Also,
given the transition probabilities for xk along with either an initial distribution for
x0, p(x0), or x0 itself, as well as the emission probabilities p(yk|xk), then inference
for a state space model amounts to answering the following question: given observa-
tions y1:s what is the most probable state of xk for k = 0, . . . , s? Depending on whether
s = k (filtering), s > k (smoothing) or s < k (forecasting), the problem is termed
differently, but is solved similarly. The core of the issue is basically: we want to
know something about xk, which is unobserved and only known through the model
design, by observing yk. For a spike train model, we could let yk denote the ob-
served binary spike activity at time tk and let xk denote a process that influences the
neurons behavior according to some dynamical evolution. Assuming for now that
k = s, we can formulate the filtering problem using Bayes formula and exploiting
the conditional independence of the observations yk

p(xk|y1:k) =
p(xk, y1:k)

p(y1:k)

=
p(y1:k|xk, y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)

∝ p(yk|xk)p(xk|y1:k−1). (3.15)

To see the proportionality in the last line, note that the denominator p(yk|y1:k−1) is
redundant with regard to xk, since it is simply a normalization constant and thus it
does not include any information related to xk. In the last line, the first probability
is simply the observation likehood and the second is the one-step prediction of xk
given the past observations, also known as the (one-step) Chapman-Kolmogorov
equation

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (3.16)
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Starting with p(x0) and using (3.15) and (3.16) iteratively we end up with a recur-
sive estimation scheme of the states xk, k = 0, 1, . . . ,, alternating between predicting
p(xk|y1:k−1) and updating p(xk|y1:k).

3.1 The Kalman Filter

While it is conceptually relatively straightforward to exploit the recursiveness of
(3.15) and (3.16), evaluating and optimizing the prediction p(xk|y1:k−1) in practice
is another thing entirely. Fortunately, for a particular subset of state space models,
analytical solutions exist. If we assume that both xk and yk have linear Gaussian
dynamics

xk = Fkxk−1 + wk

yk = Hkxk + vk,
(3.17)

where wk ∼ N (0, Qk) and vk ∼ N (0, Rk) are both (multivariate) Gaussian with
covariance Qk and Rk respectively, then the Kalman filter provide an analytical so-
lution to the filtering question, which is optimal in terms of the mean squared error.
Since everything involves linear combinations of Gaussian densities, then both the
prediction density for p(xk|y1:k−1) and the posterior density for p(xk|y1:k) will be
Gaussian. Let xk|k−1 and Wk|k−1 denote the mean and variance of the prediction
density and xk|k and Wk|k denote the mean and variance of the posterior density.
The Kalman filter then consist of the following recursions

predict:
xk|k−1 = Fkxk−1|k−1

Wk|k−1 = FkWk−1|k−1F
′
k +Qk

(3.18)

update:
xk|k = xk|k−1 +Kk

(
yk −Hkxk|k−1

)
Wk|k = Wk|k−1 −KkHkWk|k−1,

(3.19)

whereKk = Wk|k−1H
′
k

(
HkWk|k−1H

′
k+Rk

)−1 is known as the Kalman gain. Equations
(3.18) and (3.19) provide intuitive insight into the filtering mechanism. First a pre-
diction is suggested by the model design (prediction from the prior) and secondly
this prediction is corrected by the deviation from the actual observation (update of
the posterior).

If the dynamics in (3.17) are nonlinear, but still Gaussian, i.e.

xk = f(xk−1) + wk

yk = g(xk) + vk,
(3.20)

then a version of the Kalman filter known as the extended Kalman filter can be applied.
This essentially works by linearizing the dynamics around the current estimates, by
calculating the Jacobian matrices for f and g and evaluating at xk|k and yk. These
linear approximations are then used as substitutes for Fk and Hk in (3.17). However,
due to these approximations, the extended Kalman filter does not ensure optimality
of the solution, as was the case for the standard Kalman filter. Below we review how
filtering can be solved for non-Gaussian processes and an analogue of the Kalman
filter for point processes.
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3.2 Stochastic State Point Process Filter

For non-Gaussian processes the Kalman filter cannot be directly applied, but in Eden
et al. (2004) an analogue of the Kalman filter is derived for point processes observa-
tions by using a Gaussian approximation. The authors denote this the stochastic state
point process filter. This can be applied to spike train observations yk, with condi-
tional intensity λ(k| Hk, θk), where Hk = (y1:k−1, θ1:k−1, x1:k−1) includes all relevant
preceding history y1:k−1 and a sequence of parameters θk as well as other auxiliary
information (stimulus or other) in x1:k−1. Here, the latent process is assumed to be
the sequence of parameter estimates θk and as such the filter is used for parame-
ter estimation for the point process model. The model dynamics for the latent state
(parameter), analogue to (3.17), are assumed as

θk = Fkθk + wk, (3.21)

where wk ∼ N (0, Qk) withQk as the covariance matrix. As in the case of the Kalman
filter, the quest is to find the posterior density for the parameter θk

p(θk|yk, Hk) =
p(yk|θk, Hk)p(θk|Hk)

p(yk| Hk)
(3.22)

Approximating (3.22) by a Gaussian density with mean θk|k and covariance Wk|k
implies that the one-step prediction

p(θk| Hk) =

∫
p(θk|θk−1, Hk)p(θk−1|yk−1, Hk−1)dθk−1. (3.23)

must be Gaussian, since the dynamics for θ in (3.21) were Gaussian, and thus (3.23) is
a convolution of Gaussian densities and hence Gaussian itself. Denote by θk|k−1 and
Wk|k−1 the mean and covariance of the Gaussian density in (3.23) such that

p(θk| Hk) ∝ exp
(
−1

2
(θk − θk|k−1)′W−1

k|k−1(θk − θk|k−1)
)
.

Then from (3.22) we find that

p(θk|yk, Hk) ∝ p(yk|θk, Hk) exp
(
−1

2
(θk − θk|k−1)′W−1

k|k−1(θk − θk|k−1)
)

∝ exp
(
−1

2
(θk − θk|k)′W−1

k|k (θk − θk|k)
)
,

such that by applying the log at each side and using (3.7) to express the log-likelihood
of the observation density p(yk|θk, Hk), we end up with

log p(yk|θk, Hk)−
1

2
(θk − θk|k−1)′W−1

k|k−1(θk − θk|k−1)

= yk log λk − λk∆t−
1

2
(θk − θk|k−1)′W−1

k|k−1(θk − θk|k−1)

= −1

2
(θk − θk|k)′W−1

k|k (θk − θk|k) + C,
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for some constant C and λk = λ(k|θk, Hk). Finally by differentiating with respect to
θk, then

−
(
∂ log λk
∂θk

)′
(yk − λk∆t) +W−1

k|k−1(θk − θk|k−1) = W−1
k|k (θk − θk|k). (3.24)

Now evaluating (3.24) at θk = θk|k−1 presents the equation[(
∂ log λk
∂θk

)′
(yk − λk∆t)

]
θk|k−1

= −W−1
k|k (θk|k−1 − θk|k) (3.25)

which in turn provide the update of the posterier mean

θk|k = θk|k−1 +Wk|k

[(
∂ log λk
∂θk

)′
(yk − λk∆t)

]
θk|k−1

(3.26)

and by differentiating (3.24) and evaluating again at θk = θk|k−1 we find that

W−1
k|k = W−1

k|k−1 +

[(
∂ log λk
∂θk

)′
(λk∆t)

(
∂ log λk
∂θ′k

)
− (yk − λk∆t)

(
∂2 log λk
∂θk∂θ

′
k

)]
θk|k−1

(3.27)

as the update equation for the posterior covariance. Putting all of it together, the
algorithm is analogue to the Kalman filter where the prediction step is completely
identical, due to (3.21), but the update is replaced by (3.26) and (3.27)

predict:
θk|k−1 = Fkθk−1|k−1

Wk|k−1 = FkWk−1|k−1F
′
k +Qk

(3.28)

update:

W−1
k|k = W−1

k|k−1 +

[(
∂ log λk
∂θk

)′
(λk∆t)

(
∂ log λk
∂θ′k

)

− (yk − λk∆t)
(
∂2 log λk
∂θk∂θ

′
k

)]
θk|k−1

θk|k = θk|k−1 +Wk|k

[(
∂ log λk
∂θk

)′
(yk − λk∆t)

]
θk|k−1

.

(3.29)

3.3 Particle Filter for State Space Models

For general state space models with nonlinear dynamics

xk ∼ p(xk|xk−1)

yk ∼ p(yk|xk)
(3.30)

and/or non-Gaussian distributions, the evaluation of (3.16) can be intractable and
thus making it impossible or at least practically unfeasible to evaluate (3.15). In this
case we need a different strategy to obtain an estimate of xk.
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For the general model (3.30) we can use a particle filter to approximate p(xk|y1:k) from
a sample of M particles from p(xk| y1:k−1). Exploiting the technique of Monte Carlo
integration then

p(xk|y1:k) ≈
1

M

M∑
i=1

δ(xk)(i), (3.31)

where δ(xt(i) denote the Dirac measure and M is the number of particles. The intu-
ition is, that if we sample enough particles from p(xk|y1:k) and use (3.31) for these,
we effectively obtain a good estimate of the filtering density. However, sampling
directly from p(xk|y1:k) is usually not feasible, or even possible. Hence, we need a
way to obtain an approximate sample from p(xk|y1:k).

Consider (3.15) and (3.16) and note that in fact we need to approximate p(xk|y1:k−1)
by the particles {xk}Mm=1. The strategy is then as follows: choose a tractable distri-
bution to sample particles from, i.e. xmk ∼ q(xk). The density q(·) is interchangeably
termed the importance-, proposal- or instrumental density in the literature (Doucet
and Johansen, 2009). The relation (3.31) then becomes

p(xk|y1:k) ≈
M∑
m=1

wmk x
m
k ,

where

wmk ∝ wmk−1p(yk|xmk )
p(xmk |y1:k−1)

q(xmk )
. (3.32)

However, choosing the transition density q(xk) = p(xk|xk−1) as the importance den-
sity, then (3.32) simplifies to just evaluating the observation likelihood and normal-
izing the weights

w̃mk = wmk−1p(yk|xmk )

wmk = wmk−1

w̃mk∑M
m=1 w̃

m
k

.

This version of a particle filter is termed the bootstrap filter and is straightforward
to implement whenever it is feasible to sample directly from the transition density.
However, since the most extreme particles, sampled in the tails of p(xk|xk−1) will
have low weights, which are then carried over to the next time step by the scaling of
wmk−1 in (3.32), it is inevitable that these particles become degenerate. To overcome
this problem a resampling step is often included in the algorithm (Cappé, Moulines,
and Ryden, 2005). Basically this resets the weights of the particles to 1/M , by resam-
pling at time k using the weights {wmk }Mm=1. This step removes most of the particles
sampled in the tail, i.e., particles with low weights (and hence importance) in ap-
proximating the distribution, but duplicates particles that are in the regions of the
density with more mass, and thus importance. Figure 3.4 shows a visual represen-
tation of the effects of resampling. There are various schemes for resampling, for
instance multinomial sampling, but common to all is the computational cost of re-
sampling. Therefore, if it is not necessary to resample at every step, a threshold can
be used to determine when to resample. A simple choice is the effective sample size
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(Cappé, Moulines, and Ryden, 2005)

Neff =

[
M∑
m=1

( wmk∑M
n=1w

n
k

)2
]−1

∈ [0,M ],

which can be interpreted as the number of effective particles at time k. Thus, when-
everNeff < cM , for some scaling c ∈ (0, 1), resampling is performed and the weights
are reset such that Neff = M .

seq(−5, 5, 0.01)

FIGURE 3.4: Resampling of particles. Top: Particles are sampled from
a proposal distribution q(xk) and weighted according to the model
density p(xk|xk−1). Bottom: After resampling, weights are uniform

and particles with larger weights pre-resampling are duplicated.

The steps of the bootstrap filter algorithm, including resampling, is simply the fol-
lowing

1. Initialize particles at x0 and sample xm1 ∼ p(x1|x0) and evaluate p(y1|xm1 ).

2. For k ≥ 2, sample xk ∼ p(xk|xk−1) and calculate weights (3.32).

3. If Neff < cM , resample particles x0:k and reset weights wmk = 1/M and con-
tinue from step 2.

3.4 Marginalized Particle Filter

When the state space model is nonlinear and at the same time high-dimensional, it
becomes increasingly computationally expensive to obtain a good approximation of
the posterior density from a particle filter, due to the increasing number of particles
that are needed to keep up the quality of this approximation. However, if a sub-
space of the state space can be linearized conditionally on the remaining nonlinear
subspace, one can exploit this linearization such that it is only necessary to use a par-
ticle filter on the remaining part of the state space. By conditioning on this particle
approximation, the Kalman filter can then be applied for the linearized state space
and thus simplifying calculations. This approach is termed the marginalized particle
filter or Rao-Blackwellized particle filter.



100 Chapter 3. Spike train modeling

In (Schon, Gustafsson, and Nordlund, 2005) the authors derive the marginalized
filter by splitting the multi-dimensional state space xk into the linear and non-linear
parts

xk = (xlin
k , x

non
k ).

The Kalman filter is applied to the linear state conditioned on the non-linear state,
which is in turn handled by a particle filter, given by the relation

p(xk|y1:k) = p(xlin
k , x

non
k |y1:k) = p(xlin

k |xnon
k , y1:k)︸ ︷︷ ︸

Kalman Filter

p(xnon
k |y1:k)︸ ︷︷ ︸

Particle Filter

. (3.33)

By utilizing a combination of the Kalman filter, which is optimal for linear Gaussian
state space models, and particle filter methods, the computational cost of a high-
dimensional state space model is considerably reduced while the precision remain
valid when linearization is a good approximation (see Schon, Gustafsson, and Nord-
lund, 2005). The marginalized particle filter algorithm is a revised version of the
particle filter, where the Kalman optimization is included. Using the notation from
Sections 3.1 and 3.3 it works as follows.

Initialize xm,lin0|0 = x0, Wm
0|0 = W0 for m = 1, . . . ,M and sample particles {xm,non

0 }Mm=1

from an initial distribution xm,non
0 ∼ p(x0) and set all weights wm0 = M−1. Then for

k = 1, . . . ,K and each m = 1, . . . ,M proceed with

1. Sample xm,non
k ∼ p(xk|xm,non

k−1 , yk−1).

2. Predict xm,link|k−1 and Wm
k|k−1 as in (3.18).

3. Update importance weightswmk according to (3.32) and normalize w̃mk =
wmk∑
m wmk

.

4. Resample the full particles xm1:k = (xm,lin1:k|0:k−1, x
m,non
1:k ) according to the normal-

ized weights w̃mk and reset weights wmk = M−1.

5. Update the linear posteriors Wm
k|k and xm,link|k using (3.19).

6. Set k = k + 1 and go to step 1.
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Abstract

To understand neural activity, two broad categories of models exist: statistical and
dynamical. While statistical models possess rigorous methods for parameter estima-
tion and goodness-of-fit assessment, dynamical models provide mechanistic insight.
In general, these two categories of models are separately applied; understanding the
relationships between these modeling approaches remains an area of active research.
In this manuscript, we examine this relationship using simulation. To do so, we first
generate spike train data from a well-known dynamical model - the Izhikevich neu-
ron - with a noisy input current. We then fit these spike train data with a statistical
model (a generalized linear model, or GLM with multiplicative influences of past
spiking). For different levels of noise, we show how the GLM captures both the de-
terministic features of the Izhikevich neuron, and the variability driven by the noise.
We conclude that the GLM captures essential features of the simulated spike trains,
but for near deterministic spike trains, goodness-of-fit analyses reveal that the model
does not fit very well in a statistical sense: the essential random part of the GLM is
not captured.

1 Introduction

As recordings of neural activity become increasingly sophisticated, the resulting
data become increasingly complex. Making sense of these data often requires more
sophisticated approaches than visualization and simple summary statistics. One
more advanced approach is the development and application of a model. Mod-
els serve both to characterize observed data and summarize the collective scientific

https://doi.org/10.1162/neco_a_01030
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knowledge of the brain. In neuroscience - as in many other fields - these models
are typically segregated into two categories: dynamical or mechanistic models, and
statistical models. Dynamical models arise as an application of mathematical rules
motivated by biophysical laws. These models tend to be deterministic - if not in
practice, at least in spirit - and provide a mechanistic explanation for many dynamic
brain activities. Statistical models are typically designed to capture data structure;
these models often do not rely on neuronal biophysics.

The Generalized Linear Model (GLM) has been an essential part of modern statis-
tics since its introduction by Nelder and Wedderburn (1972) and today these models
are ubiquitous in statistical analyses in many differing fields. This includes bio-
logical processes, where in recent years GLMs have been used to describe coding
properties and history dependence in neural spiking data (Kass and Ventura, 2001;
Pillow et al., 2008; Sarma et al., 2012; Truccolo et al., 2005). The popularity of GLMs
stems from the many advantageous features of this model class. The model defines
a link function between the predictors and responses that ensures that the negative
log likelihood is convex, allowing for fast optimal estimation of parameters, while
still admitting flexible model capabilities, by utilizing general basis functions (Mc-
Cullagh and Nelder, 1989). As with statistical models in general, the GLM quan-
tifies both predictable and unpredictable structure in data and possesses efficient
procedures for parameter estimation and model diagnostics and powerful tools to
assess goodness-of-fit. An advantage of including uncertainty as an intrinsic model
component in the design stage is that this random component can, to some extent,
compensate for an incomplete specification of the factors influencing the observed
data.

Dynamical models have been a pillar in data modeling for neuroscientists since
Lapicque’s 1907 integrate and fire model (Brunel and Rossum, 2007). Contrary to
statistical models, these models typically focus on deterministic processes and are
often built to explicitly represent mechanistic features of the data of interest. As
such, dynamical models are often biophysically meaningful by construction, which
may not be the case for a statistical model. Dynamical models are diverse, ranging
from the biophysically realistic model of Hodgkin and Huxley (1952) to the more
abstract model of Izhikevich (2003). The latter implements a simple mathematical
design, while still producing realistic neural behaviors, such as bursting. Because
of these properties, the Izhikevich model is a common choice, for example in large
scale simulations of neurons with different behavior (Izhikevich and Edelman, 2008)
and to simulate the impact of current input to large cortical networks (Ali, Sellers,
and Fröhlich, 2013).

Historically, dynamical models have been used to examine deterministic or aggre-
gate features of observed neuronal behavior. While dynamical models are often in-
terpretable in terms of biophysical features, estimating parameters from individual
spike trains is a complicated task. Most mechanistic models possess multiple pa-
rameters, which typically remain experimentally unconstrained. For example, the
Hodgkin-Huxley model possesses at least seven parameters (e.g., capacitance, re-
versal potentials, and maximal conductances for the sodium, potassium, and leak
currents) with wide ranges of possible values (Hodgkin and Huxley, 1952). In com-
putational neuroscience, a common procedure for estimating these parameters is
"hand-tuning" to produce simulated model dynamics that qualitatively match the
desired neuronal activity (Prinz, Billimoria, and Marder, 2003). Hand-tuning ap-
proaches usually require a great deal of time and expertise (Traub et al., 1991; Nadim
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et al., 1995; Vanier and Bower, 1999). Moreover, once a set of suitable parameters is
found, it is often unclear whether the solution is unique or whether other model for-
mulations exist that are compatible with the data (Prinz, Bucher, and Marder, 2004).
On the other hand, statistical models are often used to estimate features and describe
associations, but may not be directly physically interpretable.

Both modeling paradigms - dynamical and statistical - provide distinct advantages
and disadvantages. Ideally, methods would exist to leverage the advantages of both
appraoches, while mitigating their weaknesses. For example, a unified approach
would allow researchers to better interpret statistical model results in terms of mech-
anistic features, while exploiting the mathematical theory of statistical models. This
theory includes tools of parameter estimation, but also rigorous procedures to val-
idate the model against data. The aim of this paper is to investigate how simple
GLMs perform when used to describe the spiking patterns obtained from simulated
Izhikevich neurons with noisy input. The noise is included to both resemble realistic
physical observations, but more importantly to introduce and control variability of
the data.

Previous work has analyzed the relationship between integrate-and-fire models and
statistical techniques (Brunel and Latham, 2003; Paninski, 2006; Hertäg, Durstewitz,
and Brunel, 2014). In these approaches, integrate-and-fire dynamical models were
augmented by a stochastic component and a statistical approach was used to esti-
mate the firing rate. Here we pursue a different strategy, starting with a well known,
class of history dependent statistical models and analyzing the models’ capabilities
in capturing general features of various spike train patterns, generated from a dy-
namical model. The class of GLMs in this exposition is very flexible and, contrary to
a dynamical model, there are no model assumptions regarding the specific mech-
anisms related to the physical processes that generate the spike train data, such
as refractoriness. Recently, in Weber and Pillow (2017), the GLM framework has
been shown to replicate multiple spiking patterns from the Izhikevich model, but
to the authors’ knowledge, no work has been presented that analyzes how well the
GLM class captures features of different spike patterns under the varying influence
of noise.

In this paper we show that the performance of the particular class of multiplica-
tively separable, history dependent GLMs varies with the amount of noise added to
the input and with the large scale firing properties of the Izhikevich neuron. This
class of GLMs is commonly used in spike train modeling (Pillow et al., 2008; Macke
et al., 2011; Ahmadian, Pillow, and Paninski, 2011; Latimer et al., 2014). We examine
how well the GLMs capture the intrinsic features of the individual neuron types,
such as tonic spiking and bursting, as well as the variability in the individual spike
trains originating from the noisy input. We first present the simulation model and
define how variation is injected through both the input and the model parameters.
Then the GLM design is outlined along with tools used for model assessment. In
a series of numerical analyses, we demonstrate how GLMs behave for various lev-
els of noise and different deterministic model features. We discuss in what ways
the noise may affect interpretation of the GLM and the usage of this model class
for spike train modeling by evaluating the goodness-of-fit of the models in terms of
capturing both predictable and unpredictable structure. Finally, we highlight some
of the shortcomings of simple multiplicatively separable GLMs and discuss exten-
sions to the standard model that can mitigate some of the limitations identified in
this paper.
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2 Methods

2.1 Simulation of neuron activity

In this manuscript, we implement the Izhikevich neuron to simulate neural spiking
activity (Izhikevich, 2003). The Izhikevich neuron is a relatively simple, dynamical
model capable of reproducing many types of neural spiking behavior. We note that
mechanistic models of neuron spiking can often be reduced to two-dimensional sys-
tems having a fast voltage variable and a slower recovery variable. For the neuron
model considered here, we may interpret v as a voltage, and u as a recovery cur-
rent, a phenomenological variable that represents the sum of all slow currents that
modulate the spike generation mechanism (Izhikevich, 2010, chapter 8). The model
includes 4 parameters a, b, c and d and a further input current It. Eq. (IV.20) shows
the deterministic dynamical model for t ≥ 0.

dvt
dt

= 0.04v2
t + 5vt + 140− ut + It

dut
dt

= a(bvt − ut)

if vt ≥ 30 then

{
vt+ = c

ut+ = ut + d.

(III.1)

The dynamics in equation (IV.20) generates spikes whenever vt passes a fixed thresh-
old of 30. Immediately following a spike at time t (where vt ≥ 30), both variables
are reset at time t+; vt is reset to a fixed value given by the parameter c, and ut
is increased by an amount d. The parameters a, b, c, d determine the spike behav-
ior; the parameters a and b act as a decay rate and a sensitivity parameter, respec-
tively, and the parameters c and d determine how the variables are reset following a
spike.

In order to introduce variation in simulations of (1), we let It = I0 +σWt, where I0, σ
are constants andWt denotes a standard white noise process (Øksendahl, 2007). The
σ parameter controls the level of noise in the process, and in turn the variability of
spiking behavior. We may interpret σ as the noise in the input driving the neu-
ron. Another source of variability comes from the different parameter values used
to simulate the spike trains. In this paper we model 6 types of neurons that pro-
duce distinct firing patterns (Izhikevich, 2003) when the input is constant. When
σ = 0, the simulation model (IV.20) is deterministic and the neurons behave com-
pletely regularly, while for σ > 0 the model evolves stochastically. Assuming an Itô
interpretation, model (IV.20) was simulated using a Euler-Maruyama scheme with
timestep ∆t = 0.1 ms, initial conditions v0 = −70, u0 = bv0 and varying parameters
a, b, c, d and I0. We note that the 0.1 ms discretization is less than that used in Izhike-
vich (2003), and ensures that at most one spike occurs per discrete time bin. These
simulations where then used to obtain spike trains. Although the Izhikevich neu-
ron lacks the detailed biophysical mechanisms of more complex neuron models, this
simple model serves as an excellent testbed for fitting the GLMs to diverse, realistic
spike train behaviors, and exemplifying the issues in interpreting the results.
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2.2 Model design

Let N(t) denote the cumulative number of spikes observed up to time t ∈ R. Define
λ(t|Ht, θ) as the conditional intensity of N(t), where Ht indicates the spiking history
up to time t, and θ the model parameters. This conditional intensity defines the
instantaneous probability of a spike given past spiking,

λ(t
∣∣Ht, θ) = lim

∆t→0

P
(
spike in (t, t+ ∆t]

∣∣Ht, θ
)

∆t
.

Given a set of observed spike times {sj}nj=1 in an interval [0, T ], the log-likelihood

logL(s1, . . . , sn; θ) =

∫ T

0
log λ(t|Ht, θ)dN(t)−

∫ T

0
λ(t|Ht, θ)dt, (III.2)

can be approximated as a discrete sum over individual time bins, by assuming that
the number of spikes in each bin is Poisson distributed with a rate parameter that
depends on past spiking for sufficiently small ∆t, see Truccolo et al. (2005). The
discrete likelihood approximation is

logL(s1, . . . , sn; θ) ≈
∑
k

log λ(tk|Htk , θ)∆N(tk)−
∑
k

λ(tk|Htk , θ)∆t, (III.3)

where ∆N(tk) counts the spike activity in (tk, tk + ∆t]. Since the Poisson and bino-
mial distribution converge in the limit ∆t→ 0, either could be assumed in the indi-
vidual time bins. However, choosing the Poisson distribution leads to the canonical
log-link function (McCullagh and Nelder, 1989).

The approximate log-likelihood (III.3) shows that choosing the form of the intensity
λ(tk|Htk , θ) is a crucial step of the model design. To include history dependence, we
include a trailing history of the m past spike times, and in order to reduce the di-
mensionality of the model, we also introduce indicator basis functions that account
for the spike windows in preceding time bins, wider than the observation bins of
width ∆t. In order to simplify the model formulation, we will assume that the influ-
ence of the previous spikes on the intensity is multiplicatively separable, which is a
common model assumption when working with GLMs. Thus, when modelling the
log intensity process we deal with a sum of components.

Defining the (m× p) matrix B with the (i, j)’th entry

bij = 1[
(j−1)w+1,jw

](i) =

{
1 for i ∈ {(j − 1)w + 1, . . . , jw}
0 else

, (III.4)

where the parameter w denotes the number of ∆t-wide time bins grouped, the
model becomes

log
(
λ(tk

∣∣Htk)
)

= β0 +

p∑
j=1

βj

m∑
i=1

yk−ibij . (III.5)

Here yk =
∑n

j=1 1(tk,tk+∆t](sj) = ∆N(tk) and the parameter vector is θ = (β0, β1, . . . , βp).
With ∆t = 0.1 ms and w = 10, each βj in (III.5) relates to the total spiking activity in
1 ms time bins.
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Defining the (exponential) filter F(τ) = exp
(∑p

j=1 βj1
(

(j−1)w,jw
](τ)

)
, this acts as the

modulation of λ0 = exp(β0) at lagged time bins tk−τ .

As the randomness of the input vanishes, the yk series becomes increasingly deter-
ministic and tends to produce spiking at only a small set of interspike intervals.
In this case only a few of the yk−i’s in (5) are nonzero at regularly lagged time
bins. Since λ(t

∣∣Ht, θ)∆t ≈ P
(
spike in (t, t + ∆t]

∣∣Ht, θ
)
, then λ(tk|Htk) = exp

(
β0 +∑p

j=1 βj
∑m

i=1 yk−ibij
)
→ 0 in intervals with no spike activity. Denoting the esti-

mate of βj by β̂j , this implies some estimates β̂j , must diverge to −∞. On the other
hand in bins of spike activity, P

(
spike in (t, t + ∆t]

∣∣Ht, θ
)
→ 1, when the spiking is

deterministic. Hence, the estimated β̂j ’s in these bins will amplify the model’s prob-
ability of spiking in (t, t + ∆t] in order to match the observations and approximate
the relation λ(t|Ht)→ 1

∆t . To summarize, for a given interval (t, t+ ∆t]

lim
∆t→0

λ(t|Ht) =

{
∞ given spike activity
0 given no spike activity,

implies that lim∆t→0 λ(t
∣∣Ht) describes a set of Dirac delta functions centered at the

spike times. We note that an example of this finding will be illustrated in Figure
III.4, which displays approximate delta functions at the periodic interval of spiking,
when the data generating process is nearly deterministic.

2.3 Penalized GLM regression

Data with negligible variability can lead to convergence issues of parameter esti-
mates in (III.5). If there is little or no variation in the data, the is a high chance of
including perfect predictors in the model that will cause instability in the estimation
of model parameters since the likelihood surface will be close to flat in certain di-
rections, see Wedderburn (1976). Using a penalized regression is one way to handle
these convergence issues and keep the parameter estimates finite.

Given a log-likelihood function L(θ) with parameters θ = (β0, β1, . . . , βp), a penal-
ized regression will maximize L(θ) subject to a constraint

Lκ(θ) = L(θ)− κ
p∑
j=0

||βj ||q, (III.6)

where || · ||q denotes the q-norm. For q > 0 the penalization in (6) will shrink the
parameters towards 0. The choice of q = 1, corresponding to an L1 penalization
(LASSO regression) will, in addition to shrinkage, promote sparsity (Hastie, Tibshi-
rani, and Friedman, 2001). The penalization parameter1 κ determines how strong
the shrinkage effect is, and Lκ(θ) implies that the optimization depends on some
fixed κ. Choosing κ is a crucial part of using penalized regression, and therefore the
choice should agree with the aim of the analysis. For the purposes presented in this
exposition, we settled on two options that both depend on a goodness-of-fit test of
an estimated model (see Section 2.5 below). The first choice was simply to chose κ
such that the KS statistic was minimized; we will refer to this choice as optimal KS,
where KS denotes the Kolmogorov-Smirnov test presented in Section 2.5 below. The

1We choose here to denote the penalization by κ, rather than the standard λ, in order not to confuse
the penalization factor in the model fitting procedure with the intensity process, denoted λ(·).
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other choice was to choose the maximum penalization, κ, such that the goodness-of-
fit p-value was insignificant with respect to a predetermined threshold denoting the
significance level. In what follows, we chose a threshold significance level of 0.05.
We will refer to the second choice for κ as maximum κ. Obviously the two differ in
behavior. The first choice of κ selects models with a better goodness-of-fit, whereas
the second selects more sparse models due to the choice of L1 penalization in (III.6).
We use the second choice (maximum κ) as the default to impose sparsity. However,
to illustrate certain points, we also refer to models chosen by optimal KS in some
parts. In the case that no p-values were above the threshold, or if an optimal value
could not be determined, the value of κ was set as the smallest values tried in the
model estimation procedure, i.e. κ ≈ 0. This occurred for 66% of the simulations
for non-bursting neurons, and 12% of bursting neurons. We note that κ ≈ 0 still
includes a small penalty so that the divergence of βj estimates is avoided, but less
parameters are set to zero with the LASSO regression.

2.4 Approximate covariance matrix

The observed Fisher information matrix F̂ was used to estimate the covariance ma-
trix for the penalized GLM. The observed Fisher information for an unrestricted
GLM model is given as

F̂ = X ′WX,

where X is the so called "design matrix" of the GLM that contain the predictors of
the model and Ŵ is a model specific diagonal matrix that is computed as part of
the estimation procedure (McCullagh and Nelder, 1989). For the models considered
here, X = HB, where B is the matrix of indicator basis vectors described in Sec-
tion 2.2, and H is the matrix of m lagged observations, such that the kth row of H is
H(k) = (yk−1, . . . , yk−m). For a Poisson GLM, the diagonal matrix Ŵ consists of the
predicted intensities λ̂(tk

∣∣Htk). The inverse of the observed Fisher information, F̂−1,
was then used as an estimate of the covariance matrix of β̂. Due to the penalization in
(III.6), parameters were restricted from converging toward ±∞, but because of this
convergence issue, the unrestricted model would not admit a sensible covariance es-
timates. The estimate F̂−1 does not account for a penalization of the likelihood, and
therefore the matrix Ĉov(β̂) = F̂−1 should only be interpreted as a rough approxi-
mation for the penalized model. Recent work addresses the bias in the covariance
estimator due to inclusion of a penalization term in the model formulation (Geer
et al., 2014; Taylor and Tibshirani, 2015); however, standard software packages for
LASSO estimation (e.g., glmnet, used here (Friedman, Hastie, and Tibshirani, 2010))
have not yet implemented a correction for this bias. In this manuscript, we focus on
the sign of the covariance estimate and not the specific value. Thus, although biased,

F̂−1 can still reveal trends in the parameters. Defining Λ =

√
diag(F̂−1), then

Ĉor(β̂) = Λ−1F̂−1Λ−1 (III.7)

is an estimate of the correlation matrix for β̂. In the results section we present corre-
lation matrix estimates based on (III.7).
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2.5 Goodness-of-fit

In order to evaluate a statistical model, one must take into account both the struc-
tural and the random components of the model. Intuitively one can think of this
as measuring the model’s ability to capture both the structure of the observed data
(structural component) as well as generalizability, by compensating for features that
are not accounted for in the structural component through the statistical distribution
(random component). Thus, with deterministic input, it is possible that a statistical
model can describe the observed features to near perfection. However, such a model
will rarely predict the features of some other data with only slight variations to the
first. This lack of generalizability, caused by a inadequate fit of the random compo-
nent in deterministic settings, will lead to poor statistical model diagnostics.

To assess the models’ goodness-of-fit, the time rescaling theorem (Brown et al., 2002),
was applied to the observed spike times {sj}nj=1, using the estimated intensity pro-
cess λ̂, in order to obtain rescaled spike times {zj}nj=1. The empirical distribution of
the zj ’s was then compared to the theoretical Exp(1) distribution using the Kolmogorov-
Smirnov (KS) test statistic (Kass, Eden, and Brown, 2014). This statistic is given
by

Dn = sup |F̂n(x)− F0(x)|, (III.8)

where F̂n(x) and F0(x) denote the empirical and theoretical cumulative distribution
functions (CDFs) respectively. Plotting F̂n(x) against F0(x) with approximate 95%
confidence bounds ±1.36√

n
, as suggested by Kass, Eden, and Brown (2014), provides

a visual assessment of the KS test. For a detailed discussion of these goodness-of-fit
procedures, we refer the reader to Brown et al. (2002) and Kass, Eden, and Brown
(2014).

In addition to the KS statistic (III.8), the relative deviance was used to evaluate the
model fit. While the statistic Dn measures how the empirical model deviates from
a theoretical model, the relative deviance can reveal the amount of structure that is
present in the data. The relative deviance measures how an estimated model cap-
tures data features. The "smallest" model deviance for a given data set occurs with
the saturated model, where the number of parameters equals the number of data
points. Due to the equal number of parameters and data points, there is no data left
to estimate variability of the data. Therefore, the saturated model will completely
describe the observed data set, but will not generalize well to another dataset. As
such, we could say that the saturated model is the "most structural" we can define
for a specific data set, as it is purely descriptive. The other extreme is the null model,
which is the 1 parameter model including an intercept, β0, only. For the null model,
only a single parameter is estimated, in this case defining a homogeneous Poisson
process with no influence of past spiking. It is thus an example of the "most stochas-
tic" model we can define, in the sense that it maximizes the entropy of the spike
counting process. The relative deviance measures where an estimated model lies in
the spectrum between these two extremes, with a relative deviance of 0 correspond-
ing to a fit equal to the saturated model and a relative deviance of 1 corresponding
to a fit equal to the null model.

It is important to note that for a traditional deviance analysis, the goodness-of-fit
of multiple models is compared by assessing their deviance on the same dataset.
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Here, we examine for one particular class of GLMs the relative deviance across dif-
ferent datasets with different levels of input current noise. As such, a lower rela-
tive deviance of a different noise level should not be interpreted as an improved fit,
but as one whose description of the data structure is closer to that of a saturated
model.

3 Results

Spike trains for six types of Izhikevich neurons were simulated with parameters
displayed in Table III.1. We note that the six types of neurons considered here mimic
spiking behavior observed in in vivo and in vitro neural recordings (Izhikevich, 2004).

Neuron Type a b c d I0

Tonic Spiking 0.02 0.20 -65 6 14
Phasic Spiking 0.02 0.25 -65 6 1
Tonic Bursting 0.02 0.20 -50 2 10
Phasic Bursting 0.02 0.25 -55 0.05 1
Mixed Mode 0.02 0.20 -55 4 10
Spike Frequency Adaptation 0.01 0.20 -65 8 20

TABLE III.1: Model parameters a, b, c, d used to simulate the 6 types
of neurons and the mean input I0. Parameter values and neuron type

from Izhikevich (2004).

For each type of neuron, 10 spike trains were simulated for 29 values of σ evenly
distributed in the interval (0, 20]. Hence, the simulations ranged from almost de-
terministic (σ = 0.1) to almost completely random spiking (σ = 20). As σ is in-
creased, the intrinsic features of the individual neuron types become progressively
noise driven and indistinguishable. When σ >> 0 the spiking activity is based more
on the randomness of the input than the model parameters. Each simulation con-
sisted of 2 ·105 observations at times tk, k = 1, . . . , 2 ·105, with timestep ∆t = 0.1 ms,
corresponding to 20 seconds of observations for each simulation. The spike trains
were derived from the simulated voltage trajectories by determining when vtk ≥ 30.
Figure III.1 presents the simulated spike trains for each type of neuron for varying σ
values. An L1 penalized regression for a Poisson GLM of the form (III.5) was fitted
for each simulated spike train, where the value of κ in (III.6) was based on either
optimal KS or maximum κ (see Section 2.3), depending on the analysis.

The history dependence of the GLM was set to 100 ms, corresponding to m = 1000
timesteps for a discretization step of ∆t = 0.1 ms. With the indicator width set to
1 ms (w = 10), the model (III.5) had a maximum of 100+1 parameters. Some of the
parameters are shrunk to zero by the penalized regression procedure, and as such
the resulting filters consisted of less than 101 nonzero parameters.

The numerical analysis was carried out with the statistical programming environ-
ment R, R Core Team (2017), using the package glmnet to perform penalized re-
gression for GLMs.
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FIGURE III.1: Simulated spike trains for various neuron types and
values of σ. Each type displays nearly regular behavior as σ ap-
proaches 0 and almost completely random patterns as σ approaches
20. Distortion of the individual neuron type behavior varies from
rapid (Phasic Spiking and Mixed Mode) to gradual (Tonic Spiking
and Spike Frequency Adaption). Burst periods remain present at high
levels of noise, and the Spike Frequency Adaption neuron retains fea-

tures of its spike pattern for σ as high as 15.
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3.1 Tonic spiking and bursting with intermediate noise

We first present a more detailed analysis of the Tonic Spiking and Tonic Bursting
neurons for a single value of σ to illustrate the model fitting and the goodness-of-fit
analyses. These neuron types were chosen specifically to investigate how the GLM
handles the regular behavior of a tonic spiking neuron, which possess a uni-modal
interspike-interval (ISI) distribution, versus the switching behavior of a bursting
neuron, which produces a bi-modal ISI distribution. The value of σ = 5 was cho-
sen such that the neurons display both predictable structure of interest as well as
variability, as evident from Figures III.1a and III.1c. The analyses for the two types
of neurons are presented in Figures III.2 and III.3 for the Tonic Spiking and Tonic
Bursting neurons, respectively. These figures display an interval of simulated spik-
ing activity for the neuron, with the estimated intensity function λ̂(t|Ht) below, the
corresponding histogram of ISIs, the histogram of rescaled spike times, the estimated
filter, a KS plot of F̂n(x) vs. F0(x) with approximate 95% confidence bounds, and a
plot of the residual process N(t)−

∫ t
0 λ̂(t|Ht)dt. Penalization was set by maximum κ

with KS statistic significance threshold above 0.05 for both analyses.

The estimated intensity for the Tonic Spiking neuron (Figure III.2b) displays peaks
that coincide with the spikes of the potential (Figure III.2a). There is a rise in the
intensity prior to spiking and a instantaneous drop immediately following an ob-
served spike, which implies that the model captures the predictable structure well.
The ISI histogram for the Tonic Spiking neuron (Figure III.2d) is unimodal with a
mean of 26.6 ms, and the width of the histogram implies some variability between
spike times, which is expected for the choice of σ = 5. The estimated filter (Figure
III.2e) displays a refractory period up to 20 ms and shows peaks around multiples
of 26.6 ms, indicating that the model captures the regularity of spiking; this result
agrees well with the type of neuron considered. The multiple peaks in the filter sug-
gest that at this level of σ, the current probability of spiking is well predicted by the
most recent spike as well as the previous two spikes. The rescaled spike time his-
togram (Figure III.2f), overlaid with an Exp(1) distribution (red line), shows that the
model agrees well with the theoretical distribution, which is further supported by
the KS plot (Figure III.2g). Furthermore, the KS statistic, Dspiking

n = 0.046, yields a
p-value of 0.088, in accordance with the choice of κ such that the p-value is > 0.05.
For reference, using optimal KS instead to set κ, the KS statistic was 0.022 with a
p-value of 0.88. Inspection of the residuals (first quarter of the total residual process
is shown in Figure III.2c) does not give rise to concerns regarding time-dependent
trends.

For the Tonic Bursting model in Figure III.3, the estimated intensity (Figure III.3b)
shows that bursting is well captured; we note that increases in the estimated inten-
sity occur just before the times of action potential bursts (Figure III.3a). The rise of
the intensity before a burst varies slightly between individual bursts and the drop
after a period of bursting is not as sharp as for the case for Tonic Spiking. These
observations suggest that it is more complicated to capture the beginnings and ends
of bursts than single spikes. We note that the filter (Figure III.3e) does not possess a
second peak between 40-50 ms, as seen in the ISI histogram (Figure III.3d). Instead,
there is an inflection in the inhibitory trough of the filter starting around 40 ms.
When convolved with the past bursting activity this inflection leads to a rapid rise
in intensity approximately 40 ms after the final spike in the previous burst. The KS
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FIGURE III.2: At a moderate level of noise, the GLM captures fea-
tures of the Tonic Spiking neuron. Example of the simulated volt-
age activity (a) and the corresponding estimated intensity process (b).
The residual plot (c) does not show any trending behavior. The ISI
histogram (d) possesses a broad peak and the peaks in the estimated
filter (e) are consistent with the approximate interval between spikes.
The rescaled spike time histogram (f) is well approximated by an
Exp(1) probability density function (red curve) and the KS plot (g)

indicates a decent fit.
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FIGURE III.3: At a moderate level of noise, the GLM captures fea-
tures of the Tonic Bursting neuron. Example of the simulated volt-
age activity (a) and the corresponding estimated intensity process (b).
The residual process (c) does not display trends, and the bi-modal ISI
histogram (d) is approximated by the filter (e). The rescaled spike
time histogram (f) is well approximated by an Exp(1) probability den-
sity function (red curve), while the KS plot (g) shows slight overesti-

mation of short ISIs and underestimation of longer ISIs.
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plot in Figure III.3g and the residual process in Figure III.3c provide further evidence
that the GLM captures the structure in the bursting data well.

The rescaled ISI histogram in Figure III.3d agrees with the Exp(1) distribution, and
the KS statistic is Dburst

n = 0.041, which is less than the value for the Tonic Spiking
neuron: Dspiking

n = 0.046. However, the corresponding p-value is significantly lower
at 0.008, because for the Tonic Bursting neuron, the number of observed spikes is
Nbursting(T ) = 1668 compared to N spiking(T ) = 757 for the Tonic Spiking neuron.
The larger number of spikes results in a much lower p-value for Tonic Bursting,
since the KS test is sensitive to the number of observed spikes. Using optimal KS to
set κ for the Tonic Bursting did not improve the model fit; the KS statistic was 0.040
with a p-value of 0.009.

3.2 Spike history filters

We now turn to a more general analysis of the models, across a wider range of firing
properties and noise levels, σ. Figure III.4 presents the estimated GLM filters for
combinations of simulated neuron types and σ values. The penalization parameter
κ was set by maximum κ with a threshold of 0.05; see Section 2.3. Filters for regu-
larly spiking neurons, such as the Tonic Spiking neuron, Figure III.4a, and the Spike
Frequency Adaption neuron, Figure III.4f, display peaks in the filters for low to in-
termediate values of σ. For σ → 0 the filters approach collections of delta functions,
with mass concentrated around multiples of the deterministic (ISI) period. For ex-
ample, for the deterministic Tonic Spiking neuron, the ISI is≈ 27 ms, hence the peaks
in the filter F appear near 27, 54 and 81 ms in agreement with the regular ISIs of the
Tonic Spiking neuron. For the bursting neurons, Figures III.4c and III.4d, there is a
narrow peak approximately at 2-5 ms, except for very small σ. Decreases in the filter
follow the peaks at short times, indicating that refractory periods are captured by
the model, for all combinations of type and σ. However, the refractory period varies
as σ increases: either increasing (for Tonic Spiking) or decreasing (Phasic Spiking),
or remaining approximately unchanged (for Tonic Bursting). This indicates a mini-
mal absolute refractory period for bursting neurons, that is independent of the input
noise. Common to all filters, is a flattening of F as σ increases, most visibly for reg-
ularly spiking neurons (Tonic Spiking and Spike Frequency Adaption).

This implies that, by increasing the injected noise σ, the spiking approaches a homo-
geneous Poisson process and it becomes progressively difficult to extract mechanis-
tic structure, such as the interval of regular spiking (Figure III.4a) or inter-bursting
activity.

3.3 Goodness-of-Fit

KS tests were performed for combinations of neuron type and σ to assess each
model’s goodness-of-fit. Figure III.5 presents an overview of these results. The
plot displays the − log(Dn), where Dn is the KS statistic (III.8), and the relative de-
viance respectively. The statistics, Dn, were log-transformed to emphasize trends as
σ varies. Furthermore, in order to present implications of changing σ, the penaliza-
tion parameter κwas set by optimal KS, such that different σ’s could lead to different
penalizations. Had we instead chosen penalization by maximum κ, the KS statistics
would not reveal an optimal range of σ.
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FIGURE III.4: Estimated filters F using maximum κ penalization
with threshold 0.05, as functions of lagged time (in ms) and σ. Blue
colors indicate refractory periods (F < 1) and red colors indicate exci-
tatory effects (F > 1). White indicates F ≈ 1. Peaks are clear for tonic
spiking and spike frequency adaption neurons in (a) and (f), as well
as for bursting neurons in (c) and (d). Refractory periods are present
for all types and vary with σ. Note that the F ’s converge towards

collections of delta functions as σ approaches 0.
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The − log(Dn) for all simulated neuron types in Figure III.5 increases quickly as σ
increases from 0 to 2, suggesting that for low values of σ, the GLM has difficulty
in capturing the near deterministic spiking distribution, but does well at capturing
this distribution once there is some variability present. The corresponding p-values
are above 0.05 for σ > 1 for all neuron types, except Phasic Bursting and Tonic
Bursting. For Phasic Bursting, the p-values exceed 0.05 for σ ∈ [5, 6], where as for
Tonic Bursting the p-values never exceed 0.05. Except for Mixed Mode and Spike
Frequency Adaption, all types display optimal values in a range of σ’s, where as the
mentioned types seem to settle at a plateau for σ ≥ 4. The optimal range, both the
width and location, of σ depends on the type of neuron.
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FIGURE III.5: Two methods to assess goodness-of-fit for varying σ.
Top: For the log-transformed KS statistics Dn, larger values corre-
spond to smaller KS statistics. Bottom: Relative deviance of the esti-
mated model. A value of 0 indicates a fit equal to the saturated model,

and a value of 1 indicates a fit equal to the null model.

For the relative deviances, we chose to use maximum κ. The increasing trend in the
relative deviance suggests that, for low values of σ, there is more predictable struc-
ture captured by the model, whereas for higher noise levels, the estimated model
approaches a homogeneous Poisson model, which includes only a baseline firing
parameter. This general trend is consistent with our intuition for the model behav-
ior; as the randomness of the input overshadows features of the Izhikevich model
dynamics, the spike trains become better described by a homogeneous Poisson pro-
cess.

We conclude from these two assessments that an optimal range for σ exists in which
the GLM captures both the variability and predictable structure of the spike trains
simulated using the noisy Izhikevich neurons. For very low values of σ, there is little
variability to be captured by the GLM, while for very high values of σ, there is little
predictable structure beyond the baseline firing rate. However, a general optimal
range of σ cannot be explicitly defined as it depends on the type of neuron. Thus,
when analyzing data, multiple goodness-of-fit measures should be used to assess
the degree to which the model fits the variability (eg. KS test) and the predictable
structure in the model (eg. relative deviance).
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3.4 Model structure for extreme σ values

The results in Figure III.4 display the estimated filter parameters as σ → 0. We note
that the maximum estimated filter values are capped at a value of 3 in Figure III.4, so
that the full extent of the peak values is not directly visualized. The peaks, increas-
ing in height and decreasing in width, resemble delta functions as the noise level
approach 0. In the other extreme of large σ, most of the visible structure in the filter
vanishes, except for a refractory period. Except in the case of bursting neurons, the
filters flatten (i.e., approach 1) for large σ, implying that less neuron specific struc-
ture is captured by the models. This finding is consistent with the results in Figure
III.5, where the relative deviances approach 1 (the null model) with low values of
the corresponding KS statistics, indicating that the simulated spike trains are well
approximated by a GLM with an intercept (baseline) term only, which corresponds
to a homogeneous Poisson process.

σ = 0.1 σ = 1 σ = 5

σ = 10 σ = 15 σ = 20

−1.0 −0.5 0.0 0.5 1.0

FIGURE III.6: Estimated correlation matrices of the Tonic Spiking
neuron with σ = 0.1, 1, 5, 10, 15, 20. Notice how the correlation struc-
ture vanishes as σ increases. The case σ = 5 (top, right) displays three
noticeable bumps, corresponding to the three peaks of the filter in
Figure III.2. There are clear positive correlation among lags close to

each other, and negative correlation among lags further apart.

The estimated correlation matrices (see Section 2.4) for the Tonic Spiking neuron in
Figure III.6, reveal that for low σ values there is positive correlation (red) between
parameters that are close to each other in the temporal dimension along the diag-
onal, but at the three peaks the positive correlation extends further in time. There
is negative correlation (blue) among variables that are far apart in the temporal di-
mension, but most interestingly the clusters of variables associated with each peak
exhibit negative correlation.
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The negative correlation between peak variables suggests that past spiking at these
lags is highly correlated and that, as predictors they are largely redundant. We note
that the neuron spike probability can be impacted by the first, second or third last
recorded spike, but it is the total accumulated effect of the past 100 ms that deter-
mines the current spike probability. As such, the filter should be evaluated as a
whole, rather than at individual points in time.

As σ > 5, the correlation structure starts to disappear and for higher values of σ the
correlation structure in the model is greatly reduced. Once more, this is in line with
the findings in Figure III.5 as models for very noisy data capture mostly baseline
activity.

For the Tonic Bursting neuron, the correlation matrices (not shown) showed little or
no structure beyond a few milliseconds off-diagonal. Based on Figure III.4, this lack
of correlation structure is not surprising. For higher values of σ the filter only cap-
tured the increased probability of a spike with short delay, but as the remaining part
of the filter approaches 1, the (irregular) inter-burst periods were not captured. Thus,
any relatively strong dependence beyond the intra-burst interval is not expected as
σ increases. As in the case of the Tonic Spiking filters, the entire filter should be
interpreted for Tonic Bursting. Thus, it is not only the time of the last spike that
determines the current probability, but rather the 100 ms history of spikes, which in
the case of bursting can include multiple spikes in a burst or multiple burst periods,
that impacts the probability of spiking.

4 Discussion

In this paper we have examined how well a commonly used class of GLMs performs,
when used to capture both predictable structure and variability of spike trains de-
rived from simulated, noisy Izhikevich neurons. A useful model is one that allows
for clear, simple interpretations, which depends critically on the form of the model.
When referring to GLMs in this paper, we implicitly mean the specific class of multi-
plicatively separable history dependent GLMs. These GLMs were designed to cap-
ture the influence of past spiking on the current firing intensity using a simple set
of indicator basis functions, and assuming that the influences of previous spikes are
multiplicatively separable. This indicator basis is well suited to display the approxi-
mation of delta functions, when the noise level converges to 0 and the spike trains be-
come increasingly deterministic. However, using indicator basis functions increases
the number of parameters compared to other choices such as splines bases, and can
lead to the problem of perfect separation. Therefore, it was necessary to use a penal-
ized regression to fit the models with indicator basis functions for low noise levels
where only a few parameters suffice to describe the structure. For this reason, we
opted for an L1 penalization, corresponding to LASSO regression, which shrinks re-
dundant parameters to 0 by promoting sparsity. The implementation of the LASSO
regression we used here utilized cyclical coordinate descent (Friedman, Hastie, and
Tibshirani, 2010), when optimizing the likelihood, where as the standard GLM rou-
tine in R uses Fisher scoring to find maxima. Even when the penalization parameter
was set to zero, i.e. unconstrained regression, these two methods can yield rather
different results when the likelihood surface is nearly flat. However, even in such
cases, the overall model predictions and diagnostics were indistinguishable.
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As expected, the estimated filters resembled delta functions for low values of σ, see
Figure III.4. In general, the GLMs captured both predictable structure and variabil-
ity from the input data. For near deterministic spike trains, the variation is neg-
ligible, and as such the interpretation and quality of the fit becomes highly sensi-
tive to the choice of basis functions. Other commonly used basis functions, such
as splines, which impose smoothness of the influence of past spikes, are likely to
lead to poorly fit models and incorrect interpretations, when the spiking process is
exactly or nearly deterministic. Although we focus here on simulations, we expect
to encounter similar issues when applying the GLM (III.5) to analyze regular spike
train activity recorded from a real neuron.

In contrast to low noise regimes, spike trains simulated with a strong, noisy input
signal produced spike patterns consistent with a homogeneous Poisson process, cf.
Figure III.1. In the corresponding filters for these highly stochastic spike trains, any
structure besides a refractory period following an observed spike vanished. For
Tonic Spiking there was no positive modulation in very noisy regimes, whereas for
Tonic Bursting the intra-burst interval at short delay was captured, while the inter-
burst interval at longer delays was missing. This loss of structure was also evident
from the relative deviance in Figure III.5 which approached 1 as σ increased.

Our analyses suggest that multiple goodness-of-fit diagnostics are necessary to de-
termine the extent to which statistical models capture the predictable structure and
variability of neural spiking. For very low noise regimes, measures that relate pri-
marily to variability, such as the KS statistic, may indicate lack of fit, even for models
that capture the predictable structure of the data well. When the random compo-
nent is ill-fitting, the model does not generalize well to data of similar- but slightly
mismatching- structure, thus resulting in poor values of the KS measure. In gen-
eral, goodness-of-fit measures should account for how well a model captures both
the variability (eg. KS test) and predictable structure (e.g. relative deviance) in the
data.

Analyzing Tonic Spiking and Tonic Bursting neurons, we found that the GLM cap-
tures both types quite well, although the KS statistic remained significant for Tonic
Bursting. This was despite the fact that the KS statistics for both types were of equal
magnitude, and driven by the higher number of observed spikes for the Tonic Burst-
ing neuron compared to the Tonic Spiking neuron. However, by interpreting the
estimated filters, we found that both exhibited a clear structure inherent to the neu-
ron type with features that are intuitively understandable.

There are a number of ways we might extend the models discussed here to better
capture structure and variability in the data or to allow for more interpretable pa-
rameter estimates. A straightforward model restriction would be to replace the mul-
tiplicatively separable effects of multiple previous spikes in the GLM with a renewal
model structure,

log
(
λ(t
∣∣Ht)

)
= β0 + g(s∗, t), (III.9)

where g(s∗, t) is a function of the previous observed spike-time,

s∗ = max
j
{sj |sj < t},

and time t. With this formulation, estimating a filter F for (III.9) of a Tonic Spiking
neuron would not produce three peaks as in Figures III.2 and III.4, but only a single



120
Manuscript III. Capturing spike variability in noisy Izhikevich neurons using point

process Generalized Linear Models

peak around the mean ISI at 26.6 ms, since it would only take into account the time
since the previous spike. Besides only a single peak for Tonic Spiking, the estimated
filter for (III.9) is expected to display similar behavior with regard to convergence
and dependence, as the filters for Tonic Spiking examined in this paper. We found
that a history dependent filter for Tonic Bursting does not repeat itself, for filters
accounting for only 100 ms of past spiking history. However, an estimated filter
for (III.9) would not integrate the past history, as was the case in Figure III.3e. This
might lead to a more intuitive filter that would display peaks at both bursting and
inter-bursting ISIs.

It was clear from the analysis of Tonic Bursting that the estimated filter should be
interpreted as a whole and not at individual time points. For the Tonic Bursting
neuron, the ISI histogram was bi-modal due to the two time scales involved. This
was well captured by the model, as evident from the estimated intensity (Figure
III.3b), however the separation of the timescales were not clear from the filter (Figure
III.3e). A possible way to extend the model to explicitly account for this separation
is to include a latent state that determines when the neuron is bursting. This could
be formulated as,

log
(
λ(t
∣∣Xt, Ht)

)
= β0 + 1{Xt=1}

[
log
(
µ(t
∣∣Ht)

)]
+ 1{Xt=0}

[
log
(
γ(t
∣∣Ht)

)]
, (III.10)

where

Xt =

{
1 neuron is bursting at time t
0 else

and µ(·|·), γ(·|·) are individual intensities describing intra-burst and inter-burst times,
respectively. A model such as (III.10) could potentially capture both intra-bursting
and inter-bursting better than the models considered here, due to the explicit mod-
eling of the dual timescales present. Estimation of the state Xt could also possibly
link parameters of such a model to the parameters of the Izhikevich model that con-
trols bursting behavior. The goal in this presentation was to examine a commonly
used class of GLMs and analyze their performance in relation to simulated Izhike-
vich neurons. As such, we leave an analysis of the described model extensions to
future work.

In conclusion, the results of this paper suggest that for the commonly used GLM
for spike train data with multiplicatively separable history dependence, there is a
range of input noise values for the Izhikevich neurons in which the GLM optimally
captures both predictable structure and variability. This range depends on which
properties are intrinsic to the spike train: intra-burst intervals are captured even
at high noise levels, while regular spiking and inter-burst spiking intervals are not
captured at high noise levels. At low noise levels, the basis functions implemented
here are delta functions, which can predict data structure, but do not generalize well
to data from slightly altered generative models. Thus, the choice of basis functions
becomes crucial to the credibility of the model for spike trains with little or no vari-
ation. However, even though an optimal range is evident from the results in this
paper, extensions to the model formulation (III.5), such as (III.9) and (III.10), could
possibly lead to improved model descriptions of specific neuron properties, such as
bursting and thus extend the optimal range. Expanding the optimal working range
of the GLMs would be of interest, for instance in order to classify neurons according
to both type and noise level.
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1 Introduction

Bursting is a complex behavior observed in neural spike dynamics that is charac-
terized by a cluster of rapid successive spikes followed by a longer period of qui-
escence. It is well known that some classical neuron models such as the FitzHugh-
Nagumo model (FitzHugh, 1961) and the Morris-Lecar model (Morris and Lecar,
1981) among others, cannot produce this behavior (Izhikevich, 2004). The duality
of this behavior requires a model that can account for dual time scales to handle a
fast and slow subsystem such as Izhikevich (2004). However, while the Izhikevich
model is capable of producing bursting behavior in simulations, it is cumbersome to
fit model parameters to observed data. In contrast, a statistical model class such as
the Generalized Linear Model (GLM) is capable of capturing the features of a variety
of spike train behaviors as shown in Østergaard, Kramer, and Eden (2018). The flex-
ibility of the GLM is illustrated by the broad applications of this model class (Kass,
Eden, and Brown, 2014; McCullagh and Nelder, 1989). However, the interpretation
of a GLM is not always intuitive and in Østergaard, Kramer, and Eden (2018) this
was indeed the case for a bursting neuron. Although the model was capable of cap-
turing bursting, evident from the estimated intensity, the model itself had a more
complex interpretation. In this paper, we show how the GLM can be extended to a
State Space GLM (SSGLM) to explicitly account for the dual behavior observed for a
bursting neuron. We demonstrate how the model can be fitted to an observed spike
train by utilizing a marginalized particle filter to simultaneously decode the state of
the neuron (bursting/resting) and estimate history dependent kernels that modulate
the baseline firing rate, dependent on the behavior.

The paper is structured as follows. In Section 2 we describe the extended, history
dependent and multiplicatively separable GLM, where the state space model for-
mulation includes a latent state controlling bursting. In Section 3 we introduce a
marginalized particle filter adapted for point process observations, which is used to
simultaneously estimate parameters and decode the latent state process. In Section 4
we present some statistical features of a noisy, bursting Izhikevich neuron and how
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these are adapted to the state space GLM. Section 5 presents a simulation study and
an analysis of a bursting Izhikevich neuron. Finally Section 6 discuss and conclude
the paper.

2 Model description

2.1 Point Process GLM

LetNt, t ≥ 0 denote an (arbitrary) counting process of neuron spikes, i.e.,Nt denotes
the number of spikes fired in the interval [0, t) where the firing rate is given by a,
possibly stochastic, time dependent process λ(t|Ht, θ), where Ht denotes the history
of past spiking and θ the model parameter. The intensity process is defined by

λ(t|Ht, θ) = lim
∆t→0

P
(
spike in (t, t+ ∆t]

∣∣Ht, θ
)

∆t
. (IV.1)

Let Yt = ∆Nt = Nt+∆t − Nt denote the number of the jumps of Nt in (t, t + ∆t].
For sufficiently small ∆t, P (Yt > 0) ≈ λ(t|Ht, θ)∆t and P (Yt > 1) ≈ 0, hence the
binomial distribution can describe the spike distribution in each time bin of size
∆t. However, since the binomial and Poisson distribution converge in the limit of
∆t → 0, the Poisson distribution is another valid choice to model the probability
of spiking in each time bin. Since the Poisson distribution leads to a more intuitive
interpretation of the model parameters due to the canonical link function, this choice
of distribution is preferable to the binomial.

Given observations {yk}Kk=1, where yk ∈ {0, 1}, of Yt, for t ∈ [0, T ], at a given sec-
tioning of the observation interval, 0 < t1 < · · · < tK = T , where tk − tk−1 = ∆t, the
firing rate can be modeled as

f
(
λ(tk|Htk , θ)

)
= β0 +

∑
i∈N

h(k − i)yk−i, (IV.2)

where f is a possibly nonlinear link function, f−1(β0) specifies the baseline firing
rate and the kernel h(k−i) characterizes the influence of past spikes. In the following
we shall refer to (IV.2) as the Point-Process GLM (PPGLM). The Poisson distribution
choice leads to f(·) = log(·), the canonical link function for the Poisson GLM. Hence,
expβ0 becomes the baseline firing rate and h(k − i) controls the influence of the
past observations, yk−i, on the modulation of the baseline firing rate. The history
dependency in (IV.2) implies that Yt is a non-homogeneous Poisson process which is
necessary to include effects such as refractoriness in the behavior of Yt. The simplest
kernel h(k−i) is h(k−i) = βi ∈ R, i = 1, 2, . . . . However, this choice is not feasible for
a model where the length of the memory is substantial, since a parameter is needed
at each past timepoint. In the case of long memory, it is advantageous to reduce the
dimension of (IV.2) by modeling h(k− i) with basis functions. Significantly reducing
the number of parameters can then improve the estimation of the model. Splines
are a common choice of basis functions that impose a continuity assumption on the
effect of the past history.
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2.2 State space model for bimodal ISI distributions

Although the PPGLM model is very flexible despite the simple construction (IV.2)
and can capture multiple neuron behaviors as shown in Østergaard, Kramer, and
Eden (2018), it does not seem to be able to account for the dual behavior of burst-
ing neurons. We therefore propose an extended version of (IV.2) where the model
is augmented with a latent state, controlling the current behavior by switching be-
tween a "burst" mode and a "resting" mode. If the neuron behavior can be split into
two behavioral states, defined by a latent process Xt, we can reformulate the model
as

f
(
λ(tk|Htk , θ,Xtk)

)
=1{rest| Xtk}

(
βr0 +

l∑
i=1

hr(k − i)yk−i
)

+ 1{burst| Xtk}
(
βb0 +

l∑
i=1

hb(k − i)yk−i
)
,

(IV.3)

where the superscripts r and b refer to resting and bursting, respectively, and 1{·}
denotes the indicator function. The summation to l implies that the model only
includes the past history up to this lag, and past history beyond this point, i.e. yk−i,
i > l, does not influence the intensity at time k. We will refer to model (IV.3) as a State
Space GLM (SSGLM). The latent process determines whether the neuron is bursting
or resting such that the model includes separate kernels for these modes and thus
explicitly reveal the structure of each mode. We opt for a spline representation of
h(k − i) to keep the number of parameters tractable, while enabling a flexible form.
For a given set of p basis functions (splines), stored as columns in l× p matrix S, the
corresponding parameters are given as a vector of weights (β1, . . . , βp)

′, such that
each kernel (superscript suppressed) is represented as

h(k − i) =

p∑
j=1

Sijβj for i = 1, . . . , l, (IV.4)

where Sij denotes the j’th element of row i. Using superscripts r, b, the total number
of parameters of the model is then pr+pb+2, where the 2 extra dimensions represents
the baselines. Note that if hr(k − i) = 0, i.e., pr = 0, then the model assumes that
the neuron only spikes according to some baseline firing rate, possibly also 0, when
resting.

In this paper we use cardinal splines to represent the kernels hr, hb in (IV.3) and
(IV.4). As the kernel superscripts r and b refer to resting and bursting kernels, respec-
tively, we use the same notation for the spline basis Sr, Sb and parameters βrj , β

b
j . In

order to pick a suitable set of basis functions for each kernel, we used a histogram
of the interspike intervals for a specific neuron (Figure IV.3) to set the knot loca-
tions. Other methods exist to estimate knot locations, such as BARS (see Dimatteo,
Genovese, and Kass, 2001), but here we focus primarily on decoding the latent pro-
cess controlling bursting as well as the kernel weights. Thus, more sophisticated
strategies of selecting knots for this model is left for future research. The simple
representation of the kernels in this manuscript ensures a simple, yet flexible, model
structure capable of capturing the bimodal ISI distribution.

To construct a latent process Xk that determines the neuron behavior, we define
Xk ∈ Z as "the length of a current bursting or resting period at time tk", where the
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sign of Xk determines whether the neuron is resting (Xk ≤ 0) or bursting (Xk > 0),
such that

1{resting} = 1{Xk ≤ 0}
1{bursting} = 1{Xk > 0}.

This definition of Xk allows for a time dependent structure in the mode switch,
which is necessary for a realistic model. As the length of a burst/rest period in-
creases, the probability of switching should increase. Thus,

P
(
Xk = x− 1

∣∣Xk−1 = x ≤ 0
)

= gr(x) = 1− P
(
Xk = 1

∣∣Xk−1 = x ≤ 0
)

P
(
Xk = x+ 1

∣∣Xk−1 = x > 0
)

= gb(x) = 1− P
(
Xk = 0

∣∣Xk−1 = x > 0
)
,

(IV.5)

for some, possibly nonlinear, decreasing functions gr, gb. Had we opted for a binary
state where Xk = 0, 1 denotes resting and bursting, respectively, then realistically
Xk and Xs for s < k − 1 should not be assumed independent. In that case it would
be necessary to include a higher order Markov structure in the latent process, thus
complicating estimation. However, by including the time memory in the definition
of Xk, we can assume that Xk is a Markov process. In both cases of (IV.5), Xk the re-
setting is defined such that Xk either increase/decrease or switch to the other mode.
Hence, the probability of switching is 1 − gr(x) and 1 − gb(x), respectively. At each
timepoint, given Xk, we define the probability of spiking for the observed process
Yk as

P (Yk = 1|Xk ≤ 0, Hk) = pr(Hk) ≈ λ(tk|Hk, θ,Xk ≤ 0)∆t

P (Yk = 1|Xk > 0, Hk) = pb(Hk) ≈ λ(tk|Hk, θ,Xk > 0)∆t
, (IV.6)

where the two probabilities pr and pb treat the history of Yk differently, as measured
by the two distinct kernels in (IV.3). If we let pr(Hk) = 0, this implies that the neuron
cannot spike when resting. The dependence graph of the model is displayed in
Figure IV.1.

3 Filtering and estimation of the SSGLM

For a general state space model with observations yk dependent on a latent state
xk, the problem of decoding the current state xk given observations has applications
in many fields (Cappé, Moulines, and Ryden, 2005). Given a set of observations
y1:s = (y1, . . . , ys) what is the best estimate x̂k of xk, for k = 1, . . . ,K? Depending
on the phrasing of the problem, this estimate is known as either filtering (s = k),
smoothing (s = K), fixed lag smoothing (s = k + n for some fixed n ∈ N) or prediction
(s = k − 1). When s = k and both xk and yk have linear dynamics and Gaussian
errors, the Kalman filter (Kalman, 1960) provides an exact solution for the posterior
density of xk conditional on the observations. Let θ denote the model parameter.
Decomposing the posterior density of the state process as

pθ(xk|y1:k) =
pθ(yk| xk)pθ(xk| y1:k−1)

pθ(yk|y1:k−1)
, (IV.7)
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Xk−1 Xk Xk+1

Yk−1 Yk Yk+1. . .Yk−l

FIGURE IV.1: State Space Model of neurons with multimodal ISI dis-
tributions and history dependent intensities. The process Yk = Ytk
depends on past values of itself as well as the current state Xk. The
latent states control the multiple behaviors that cause the multimodal

ISI distribution.

with

pθ(xk| y1:k−1) =

∫
pθ(xk|xk−1)pθ(xk−1|y1:k−1)dxk−1, (IV.8)

then for a Gaussian prior pθ(xk|xk−1) and Gaussian observation density pθ(yk| xk),
the posterior is Gaussian and there exist an analytical expression for (IV.7) which
is the Kalman filter. However, when the distribution of either xk, yk are nonlinear
and/or non-Gaussian, the Kalman filter is not directly applicable. If the errors are
Gaussian, or can be adequately approximated as Gaussian, then by linearizing the
dynamics of the model, the Kalman filter can be applied. This approach is termed
the extended Kalman filter, but contrary to the standard Kalman filter, it does not
imply an exact posterior distribution, due to the approximation. Another approach
is to use a particle filter (Cappé, Moulines, and Ryden, 2005) to approximate the pos-
terior density (IV.7). The standard particle filter samples particles from a proposal
(or importance) distribution q(xk) and weigh these according to the observation like-
lihood, thus providing an approximation of the posterior density (IV.7).

3.1 Marginal Particle Filter for Point Process observations

The particle filter is feasible, although computationally much more expensive than
the (extended) Kalman filter. In order to obtain an adequate performance when
the dimension of the latent state increases, the number of particles must also be in-
creased, thus improving the numerical performance of the filtering. While this might
not be a problem theoretically, it can lead to problems in the practical evaluation.
When θ in (IV.7) and (IV.8) is unknown, then besides decoding the latent process,
parameter estimation is necessary. A strategy for this is to include the parameter θ
as a latent process, thus augmenting the model to simultaneously estimate xk and
θ. This further increases the dimension of the number of latent states, and hence a
pure particle filter might be impractical due to the number of particles required for
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satisfactory performance. A way to cope with this issue is to marginalize the parti-
cle filter, which means that the latent state is split into two parts. One that can be
linearized and thus a version of the Kalman filter can be applied, and another where
a linearization is not feasible and thus a particle filter must be applied.

For model (IV.3) the parameter consists of the baselines βr0, β
b
0 and the weights for

the kernels (IV.4)

θ = (βr0, β
r
1, . . . , β

r
pr , β

b
0, β

b
1, . . . , β

b
pb)
′ ∈ Rp

r+pb+2. (IV.9)

The augmented state is thus,

ξk = (Xk, θk)
′, for k = 1, . . . ,K, (IV.10)

where we have implicitly assumed a temporal evolution of the parameter estimate
θk. Assuming that we can partition ξk as

ξk = (ξnon
k , ξlin

k )′, (IV.11)

where the superscripts ’non’ and ’lin’ refer to the non-linear and linear parts of ξk,
respectively, we can exploit that ξk has a linear subspace by applying a marginalized
particle filter, thus keeping the dimensionality under control. This solution is, of
course, mostly tractable when the majority of the state space can be linearized, but
this is precisely the case if we assign a Gaussian prior and a random walk evolution
for the parameter θ.

Computationally, we split the joint posterior density of ξk,

p(ξnon
k , ξlin

k | y1:k) = p(ξlin
k | ξnon

k , y1:k)p(ξ
non
k |y1:k). (IV.12)

From a sample of particles ξnon,m
k ,m = 1, . . . ,M we apply a version of the Kalman

filter to p(ξlin,m
k | ξnon,m

k , y1:k) for each particle. From the weights

wmk = p(yk| ξnon,m
k , ξlin,m

k , y1:k−1),m = 1, . . . ,M, (IV.13)

we obtain the estimate

p( ξlin
k | ξnon

k , y1:k) ≈
M∑
m=1

wmk p( ξ
lin,m
k | ξnon,m

k , y1:k) (IV.14)

as a weighted mixture of the linear posteriors conditional on each particle.

3.2 Stochastic State Point Process Filter

Since the observed process Yk is modeled as a point process, then in order to exploit
the partial linearization of ξk in (IV.11), it is necessary to define an analogue version
of the Kalman filter for point processes. Consider the PPGLM (IV.2) with corre-
sponding parameter θ = (β0, β1, . . . , βp)

′ ∈ Rp+1. We then redefine the parameter θ
as an evolving process

θk+1 = Fkθk + εk, for k = 1, . . . ,K (IV.15)
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where Fk is a matrix chosen specifically to reflect the evolution of θ. If no correla-
tion structure between the elements of θ is assumed, choosing Fk = Ip+1, where Id
denote the d-dimensional identity matrix, is a valid choice to initially omit any inter-
dependence in θ. The εk is chosen as a multivariate zero-mean white noise process
with (known) covariance matrix Q which is also chosen initially. As in the case of
Fk, choosingQ = σ2Ip+1 for some σ > 0, assumes that the elements in θ does not de-
pend on each other in the prior distribution. Note that choosing these settings for the
prior, does not necessarily lead to independent elements in the posterior distribution
of θ, which is the prior updated with information from the observations.

Let θk|k−1 and Wk|k−1 denote the mean and covariance of the prior distribution at
time k. Likewise, let θk|k, Wk|k denote the mean and variance of the posterior distri-
bution at time k.

Using this notation for the prior and posterier estimates of θ, Eden et al. (2004) de-
rives the stochastic state point process filter

θk|k−1 = Fkθk−1|k−1 (IV.16a)

Wk|k−1 = FkWk−1|k−1F
′
k +Qk (IV.16b)

W−1
k|k = W−1

k|k−1 +

[(
∂ log λ

∂θk

)′
[λ∆t]

(
∂ log λ

∂θk

)
− (yk − λ∆t)

∂2 log λ

∂θk∂θ
′
k

]
θk|k−1

(IV.16c)

θk|k = θk|k−1 +Wk|k

[(
∂ log λ

∂θk

)′
(yk − λ∆t)

]
θk|k−1

, (IV.16d)

where λ is shorthand notation for λ(tk|θk) in (IV.2). Equations (IV.16a) and (IV.16b)
show the (time) prediction step which is given by the prior distribution defined by
(IV.15). Equations (IV.16c) and (IV.16d) define the (observation) update step, defined
by the posterior, which is assumed Gaussian. Starting from initial values θ0|0,W0|0
the algorithm iterates through the observations yk, for k = 1, . . . ,K alternating be-
tween predicting and updating the parameter estimate θk. Thus, the SSPPF can be
viewed as a version of the extended Kalman filter for point processes where the ob-
servation density is approximated with a Gaussian.

3.3 The Marginal Particle Filter for Point Process observations

We use the point process version of the extended Kalman filter for the linearized
part of ξk and a particle filter for the non-linear part of ξk and term this version of
a marginalized particle filter the Marginal Particle Filter for Point Process observations
(MPFPP). Let θmk|k−1, θ

m
k|k,W

m
k|k−1,W

m
k|k, F

m
k , Q

m
k and λm denote the variables in equa-

tions (IV.16a)-(IV.16d) for the m’th particle ξnon,m
k = xmk . For a general importance

density q(x1:k), updating importance weights is given as

wmk = wmk−1

p(yk| xmk , y1:k−1)p(xmk | xmk−1)

q(xm1:k)
, (IV.17)
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but when using the bootstrap particle filter, the proposal distribution for the particle
samples is exactly the transition density, therefore (IV.17) simplifies to

wmk = wmk−1p(yk| xmk , y1:k−1). (IV.18)

The algorithm, adapted from Schon, Gustafsson, and Nordlund (2005), is then as
follows.

Initialize θm0|0 = θ0, Wm
0|0 = W0 for m = 1, . . . ,M and sample particles {xm0 }Mm=1 from

an initial distribution xm0 ∼ p(x0), set all weights wm0 = M−1. Then for k = 1, . . . ,K
and each m = 1, . . . ,M proceed with

1. Sample xmk ∼ p(xk|xmk−1, yk−1).

2. Predict θmk|k−1,W
m
k|k−1 by (IV.16a) and (IV.16b).

3. Update importance weightswmk according to (IV.18) and normalize w̃mk =
wmk∑
m wmk

.

4. Resample the full particles ξm1:k = (xm1:k, θ
m
1:k|0:k−1) according to the normalized

weights w̃mk and reset weights wmk = M−1.

5. Update the linear posteriors Wm
k|k and θmk|k using (IV.16c) and (IV.16d).

6. Set k = k + 1 and go to step 1.

The resampling step is optional and can be omitted. It ensures that the weights
wmk are not degenerate, but may not be necessary at each step. A commonly used
measure for degeneracy is the efficient sample size (Cappé, Moulines, and Ryden,
2005)

Neff =
( M∑
m=1

(wmk )2
)−1

, (IV.19)

ranging from 1 (only one effective particle) to M (all particles are equally weighted
and effective). Hence, the resampling step can be modified, such that resampling is
only performed whenever Neff is below a chosen threshold.

4 Bursting model for Izhikevich neurons

We adapt model (IV.3) to the specific task of modeling Izhikevich neurons. The
Izhikevich (2003) model is a well known model capable of replicating multiple types
of behavior observed in real neurons.

The model is a simple two-dimensional dynamical system, where the two variables
vt and ut evolve according to

dvt
dt

= 0.04v2
t + 5vt + 140− ut + It

dut
dt

= a(bvt − ut)

if vt ≥ 30 then
vt+ = c
ut+ = ut + d,

(IV.20)
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for given parameters a, b, c, d and input current It, t ≥ 0 (see Izhikevich, 2003), with
the timescale interpreted in ms. A spike is defined as occurring whenever vt ≥ 30,
hence the resetting mechanism in (IV.20). Here we introduce noise by letting It =
I0 +σεt, where εt is a standard 1-dimensional white noise process. The two variables
vt and ut allow for the dual behavior of bursting neurons and as such it is an easy
model to generate a realistic sample from a bursting neuron.

4.1 Features of a noisy bursting Izhikevich neuron

In order to define realistic transition functions gr, gb in (IV.5), we use (IV.20) to gen-
erate 20 s of observations, with a 500 ms burn-in period, from a bursting neuron
and characterize the features related to bursting, such as the maximal burst length
and the speed of decay for the probability of continued bursting. To reduce the
discretization error when simulating the model with stochastic noise in It, the time
discretization was set to 10−3 ms for simulation, but with a subsequent subsampling
we obtained a discretized time step of ∆t = 0.1 ms. The parameters were set to
a = 0.02, b = 0.2, c = −50, d = 2 and I0 = 10, taken from Izhikevich (2004). The
noise amplitude was set at σ = 100 to create a noisy spike train and the initial con-
ditions were v0 = −70, u0 = bv0.

Figure IV.2 presents the first 5000 ms of a simulated spike train from (IV.20) using an
Euler-Maruyama scheme.
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FIGURE IV.2: First 5000ms (50 000 observations) from a bursting
Izhikevich neuron. To be read left to right from the top, like lines
in a book. The bursts are clearly identified as the spike clusters with
varying ISIs between and within bursts. Note that some bursts con-

sist only of one spike, due to the stochastic input.

Figure IV.3 shows the histogram of ISIs of the entire spike train, partly shown in
Figure IV.2. The bi-modal structure indicates the dual time scales involved, with
the left peak representing the bursting periods of short ISIs and fast spiking and the
right peak representing the resting period in between bursts. Figure IV.4a presents
a histogram of the length of the bursts from the simulated neuron. It is evident that
most bursts are around 4-15 ms in length, with a few longer/shorter bursts. The dis-
tribution of resting intervals, between bursts, is shown in Figure IV.4b and reveals a
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ms
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FIGURE IV.3: Interspike-interval histogram for the bursting neuron,
partly shown in Figure IV.2.
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FIGURE IV.4: Descriptive histograms of the bursting neuron, partly
shown in Fig. IV.2. (A) Distribution of the length of bursting periods.
(B) Distribution of the length of resting periods. Both empirical distri-
butions are approximated with parametrized functions (red curves),

see text.
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slightly skewed distribution with the mode around 40 ms. The empirical distribu-
tion of burst/rest lengths where derived from the spike train by setting a maximum
ISI of 20 ms within a burst. By splitting the observed ISIs, it is possible to extract the
length of bursts and resting periods respectively. From the ISI histogram in Figure
IV.3 20 ms does not seem unreasonable when splitting between bursting/resting to
identify the bursting/resting length distributions.

The transition probabilities (IV.5) were modeled using a log-logistic function

g(x, α, κ) =
xκ

ακ + xκ
, for x = 1, 2, . . . , (IV.21)

fitted to empirical values of a bursting Izhikevich neuron. Parameter values α > 0
and κ < 0 implies, that the function is decreasing as a function of x, which denotes
the length of the current burst or resting period. The log-logistic function is suit-
able to capture some of the skewness apparent in the distributions in Figure IV.4,
apparent by the fitted densities (IV.25) with parameters

αr = 1480

κr = −3.45

αb = 2541

κb = −1.13

(IV.22)

The parameters of the transition probabilities gr(x, αr, κr), gb(x, αb, κb) were fitted
by minimizing the squared difference between the empirical distributions in Figure
IV.4 and (IV.25), see Appendix A. The approximating distributions in Figure (IV.4)
capture some of the skewness in the empirical distributions.

5 Results

We opted for a model where hr(·) = βr0 = 0, i.e., no spikes can occur when the
neuron is resting. This was to facilitate a simpler parameter estimation when spikes
only occur during bursting, implying that the hr kernel is in fact redundant.

For the propagation model, equations (IV.16a)-(IV.16d), we set Fk = Ip, where p =
pb + 1 is the dimension of the parameter θ consisting of weights for the bursting
kernels and a baseline parameter. The covariance of the propagation model was set
to Q = 10−7 · diag(1, . . . , 1). From (IV.3)-(IV.4) and (IV.9) the derivative of log λk is
given as

∂ log λk
∂θk

=1{Xk > 0}


1∑l

i=1 S
b
i1yt−i

...∑l
i=1 S

b
ipb
yt−i

 ∈ Rp, (IV.23)

and from (IV.23) it is clear that

∂2 log λk
∂θk∂θ

′
k

= 0 ∈ Rd×d. (IV.24)
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The lag length was set to 10 ms (l = 100 for ∆t = 0.1ms) and two spline knots were
set at 2 ms and 5 ms. An auxiliary boundary knot was set at 0 ms, with fixed weight
of -10, to impose a refractory period. Hence,

h(k − i) =
3∑
j=1

Sijβj , for i = 1, . . . , l,

where β1 = −10. The dimension of θ is thus p = 2 + 1 = 3, since β1 is fixed. The
spline weights β2 = 1.17 and β3 = −0.49 along with β0 = 0.88 were tuned1 to mimic
the properties of a bursting Izhikevich neuron. The simulation kernel hb is shown
in Figure IV.5. For the numerical analysis, we fixed the parameters α and κ in the
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FIGURE IV.5: Bursting kernel used for simulation of a SSGLM neu-
ron, in the exponential domain, i.e., exp(hb). The resting kernel hr

and βr
0 was set to 0, thus no spikes occurred while the neuron was

resting.

log-logistic functions corresponding to the values in Figure IV.4, thus treating the
transition probability parameters as known. This leaves the latent state Xk as the
only nonlinear component for the marginalized particle filter. For the particle filter,
the number of particles was set to M = 50.

5.1 Simulation model

A time period of 20 s was simulated from the SSGLM model, with a time step of
∆t = 0.1 ms. Figure IV.6 compares the resulting ISI distribution (red) with the one
in Figure IV.3 from the Izhikevich neuron (gray). The ISI histograms compares well
and the features regarding bursting and resting are close. Figure IV.6 shows that the
SSGLM neuron (red) have a few large observed ISIs (> 70 ms), but the majority of
the distribution compares well to the Izhikevich ISI distribution (gray). Figures IV.7a
and IV.7b compares the distribution of the bursting and resting periods, respectively.
The distributions of burst lengths (Figure IV.7a) shows that the SSGLM neuron (red)
captures the Izhikevich neuron (gray) well. This is also evident from the medians of
7.60 ms (SSGLM) and 7.60 ms (Izhikevich) respectively. Comparing the distributions
of rest lengths for the SSGLM neuron (red) and the Izhikevich neuron (gray) they
agree to some extend, except for the few very long resting periods above 80 ms. The
mode of the Izhikevich resting length distribution appears slightly to the right of the
SSGLM resting length distribution. The medians of the rest period distributions are
41.40 (SSGLM) and 41.80 (Izhikevich), respectively, and thus comparable although
the tails of the empirical SSGLM resting length distribution are thicker. Overall these

1By applying the MPFPP algorithm in an initial exploratory study of an Izhikevich spike train.
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FIGURE IV.6: Comparison of ISI distributions. The histogram in Fig-
ure IV.3 of a bursting Izhikevich neuron (gray) is superimposed with
a histogram from an SSGLM neuron (red). The bimodal structure is
well captured, although the SSGLM neuron exhibit more very long

ISIs.
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FIGURE IV.7: Comparing simulations of a bursting Izhikevich neu-
ron (gray) and a SSGLM neuron (red). (A) Burst length distributions.
(B) Rest length distributions. The Izhikevich histograms correspond
to the ones in Figure IV.4, superimposed with the corresponding his-
tograms of the SSGLM simulation, hence observed burst lengths> 80

ms of the SSGLM neuron are not visible in (B).
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findings show that the SSGLM neuron is capable of displaying similar qualitative
behavior as the bursting Izhikevich neuron.

5.2 Parameter estimation and decoding

We compare the performance of the MPFPP algorithm using observations from a
simulated SSGLM neuron where both the true baseline and kernel, as well as the
true latent process, are known. As above, 20 s of observations where used for the
MPFPP algorithm, but the data was repeated twice to obtain 40 s in total. This was
to observe whether the parameter convergence was sufficient at 20 s. The parameter
estimates where set as the average of the final 10 s corresponding to the last quarter
of the values from the MPFPP algorithm. As mentioned above, β1 was fixed at -10,
whereas the estimated parameters β0, β2 and β3 were initiated at 0 to reflect no prior
knowledge on their levels.
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FIGURE IV.8: Convergence of parameters using 20 s of observations
repeated once. Parameter estimates in red, true values as horizontal
black dashed lines. Convergence seems to be decent already at 20 s,
hence the recycling of input data is not necessary. The baseline pa-
rameter β0 is underestimated, but this is partially offset by the over-
estimation of β2. The β3 parameter show less consistent convergence.
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Figure IV.8 displays the convergence of parameters βj , j = 0, 2, 3 for the total 40 s
of data. The baseline parameter β0 converges to a level below the true value and β2

converges to a level above the true value. The imprecise convergence of these two
parameters partially offset each other as seen in Figure IV.9 below. The β3 parameter
displays less steady convergence as evident from the low dip around both 10 s and
30 s, both times correspond to halfway through the original data, since 30 s compares
to 10 s when the data is copied onto itself. However, the parameter estimation of β3

fluctuates close to the true level, although slightly below. All three parameters seem
to reach convergence at 20 s, only β3 is marginally closer to the true value at the end
of the second period of the data, at 40 s. Therefore, recycling the data doesn’t appear
necessary in this case.

Figure IV.9 shows the estimated kernel (red) in the exponential domain, without the
baseline (top) and with the baseline added (bottom). These were based on parameter
estimates (true values) β̂0 = −1.53 (−0.88), β̂2 = 1.65 (1.17) and β̂3 = −0.58 (−0.49).
Comparing to the true kernel (black) without the baseline addon, the overestimation
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FIGURE IV.9: Estimated kernel (red) in the exponential domain,
based on the last 10 s versus simulation kernel (black). Top: esti-
mated kernel without baseline effect. Bottom: estimated kernel with

baseline effect.

of β2 (spline weight at 2 ms) is evident around 2-4 ms, whereas the right tail of
the kernel is well approximated due to a relatively precise estimate of β3 (spline
weight at 5 ms). However, the imprecise parameter estimates of β0 and β2 partially
offset each other as seen in the bottom of Figure IV.9 where the estimated kernel
(red) is only slightly below the true kernel (black) when accounting for the baseline
effect. This indicates some correlation effect between β0 and β2 when estimating the
levels.
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Figure IV.10 displays the decoding of the true states (black) by the mean of the 50
particles (red), for the last 250 ms of the data. The true burst periods are captured
relatively precise, but some errors especially around exiting bursts.
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FIGURE IV.10: The last 250 ms of the decode Xk process (red) versus
the true simulated process (black). The overall decoding of burst-

ing/resting is relatively precise with 50 particles.

Figure IV.11 shows the last 250 ms of the estimated intensity (orange) with the ob-
served spikes (black) and the probability of the neuron bursting (red). The latter was
defined as the proportion of the 50 particles with positive state at time tk. As in Fig-
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FIGURE IV.11: Last 250 ms of the estimated intensity (orange) com-
pared to observed spikes (black) and the estimated probability of

bursting (red), based on M = 50 particles.

ure IV.10, it is evident that the particle filter decodes the bursts quite well, but with
some uncertainty, not surprisingly, when entering/exiting bursts. Nevertheless the
intensity exhibits rapid increase/decrease at the time of spikes. Especially around
the endpoints of bursts, this is much more pronounced than what was observed in
Østergaard, Kramer, and Eden (2018) which use a GLM without a latent state pro-
cess controlling bursting behavior. Thus, including the process Xk in the model, has
a very positive effect concerning the estimation of the intensity process. It should be
noted, that the model specification used here, where the neuron was assumed not to
spike when resting by setting hr = βr0 = 0, ensured a simpler identification of the
latent state. With this assumption, when a spike is observed, the neuron must be in
bursting mode and whenever there is a longer delay between spikes, the filter inter-
prets this as a resting period. This implies that one can view the latent process Xk
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as partially observed, which is easily seen when plotting the spike train as in Figure
IV.2. Here is it relatively obvious when the neuron is bursting and when it is not.
However, more complex cases, where it would be difficult to assess by eyeballing,
exist of course, also making it more difficult for the particle filter to decode the burst-
ing/resting periods. One such case could be to determine whether two spikes belong
to the same burst or not, when the period between is longer than, say, 20 ms at the
right tail of the burst length distribution. In this case, with the transition probabili-
ties in Figure IV.4, the decision on bursting/resting becomes ambiguous.

To determine how well the overall model fit the data, we also performed a Kolmogorov-
Smirnov (KS) test on the rescaled spike times versus an Exp(1) distribution (see Kass,
Eden, and Brown, 2014). With a KS statistic of 0.036 and a corresponding p-value of
0.085, these values implied that the estimated model explains the data well. Fig-
ure IV.12 displays the corresponding Kolmogorov-Smirnov plot, which shows that
empirical distribution of rescaled spike times versus the theoretical Exp(1) (in red)
agrees and the discrepancy is within approximate 95% error bounds (blue).
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FIGURE IV.12: Kolmogorov-Smirnov plot for the SSGLM neuron.
The Kolmogorov-Smirnov statistic is 0.036 with a p-value 0.085, in-
dicating a good fit of the model. This is also evident from the com-
parison of the empirical and theoretical distributions (red), which is

within the approximate 95% boundaries (blue).

5.3 Analysis of a bursting Izhikevich neuron

We performed an analysis for a bursting Izhikevich neuron, analogously to the one
above for the SSGLM neuron, with the similar spline knots and transition proba-
bilites. The parameter convergence is shown in Figure IV.13, where it is clear that the
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baseline parameter β0 converges to around -1 and β2 converges to a level between 1
and 1.5. As for the SSGLM neuron, the β3 parameter exhibits a less steady conver-
gence, but fluctuates somewhat around -0.5. The data was also recycled to obtain
a total of 40 s of observations, but it does not appear to be necessary as parame-
ters β0 and β2 converge already at 20 s, and β3 does not show a much more stable
convergence after 20 s. Figure IV.14 presents the estimated kernel without the base-
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FIGURE IV.13: Convergence of parameters for the Izhikevich neuron.
Parameter estimates in red. Note that the data has been repeated 2x.

line effect (in the exponential domain), based on parameter estimates β̂0 = −0.90,
β̂2 = 1.18 and β̂3 = −0.47. The simulation kernel for the SSGLM neuron was tuned
to mimic a bursting Izhikevich neuron, hence the very similar shapes. The absolute
refractory period of the (Izhikevich) neuron at 0-1.5 ms is clearly visible in Figure
IV.14, due to the fixed parameter β1 = −10. The probability of spiking then increases
when a spike is observed up to ≈ 4 ms in the past, and for spikes between 4-10 ms
in the past implies a slightly suppressed spiking probability. Since the kernel ends
at 0 (1 in the exponential domain), this implies that there is not more influence from
past spikes at 10 ms and beyond.

Figure IV.15 shows the estimated intensity (orange) with observed spikes (black)
and the estimated probability of whether the neuron is bursting or not (red). As
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FIGURE IV.14: Estimated bursting kernel for the Izhikevich neuron in
the exponential domain, based on the last 10 s.

in the case of the SSGLM neuron, the intensity increase/decrease fast when enter-
ing/exiting a burst. The decoding of the latent state shows a tendency to overesti-
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FIGURE IV.15: Last 250 ms of the estimated intensity (orange) for
the Izhikevich neuron, compared to observed spikes (black) and the

estimated probability of bursting (red), based on M = 50 particles.

mate the length bursts, but taking the estimated intensity into account, the peaks of
the intensity agrees with the observed spike times. Hence, considering the combined
decoding and parameter estimation of the MPFPP algorithm, the overall estimation
is very good. This is also evident from the Kolmogorov-Smirnov statistic of 0.031,
with a corresponding p-value of 0.078. The complementary KS plot is presented in
Figure IV.16. Both the statistic and Figure IV.16 indicates that the model fits the data
very well. This is in contrast to the findings in Østergaard, Kramer, and Eden (2018),
where the KS statistic was found to be significant when comparing the rescaled spike
times to the Exp(1) distribution. In that paper, the model formulation used only the
GLM part, including a kernel, whereas here, we have also included the latent process
Xk. Figure IV.16 supports the need for such a latent state in the model formulation,
in order to better capture the dual behavior of bursting (Izhikevich) neurons.

5.4 Probability of bursting versus Izhikevich variables

As a final interesting comparison, we investigated the connection between the ut, vt
variables of the Izhikevich model (IV.20) and the decoding property of the SSGLM.
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FIGURE IV.16: KS plot for the Izhikevich neuron. The KS statistic is
0.031 with a p-value 0.078, indicating a good fit of the model.

Figure IV.17 displays the simulated Izhikevich model in the ut, vt-plane as dots, but
colored with the decoded probability of bursting based on the estimated SSGLM,
using the MPFPP algorithm. It is clear that when vt < −50mV (the resetting level
c) the probability of bursting is close to 0 (blue) whereas for vt > −50 the proba-
bility approaches 1 (red). As the neuron enters bursting, the probability of bursting
changes quickly to 1, and stays at 1 until the ut, vt variables cross the separatrix
(black) of the deterministic Izhikevich neuron (orange). This indicate a link between
the Izhikevich variables, and the latent state of the SSGLM and could be of interest
to study this link in detail also for other higher dimensional dynamical models with
more than two variables, capable of bursting. In relation to the Izhikevich model, the
resetting parameter d, which bumps the ut variable when a spike is observed, con-
trols the number of spikes in a burst. As such, there must be an intrinsic association
between the transition probabilities of the SSGLM and the d parameter. This pa-
rameter is also of interest in relation to the level of noise (σ) in the simulation of the
Izhikevich model. Since changing the noise level impacts the ut variable indirectly,
it is apparent from Figure IV.17 that the number of spikes becomes more varied as
the uncertainty in crossing the separatrix increases. In the deterministic model, the
number of spikes is always five, but adding a bit of noise will only influence whether
the fifth spike is included or not, hence a bimodal burst length distribution becomes
visible. If σ is then increased, the noise begins to affect whether both the fourth and
the fifth spike is included in a burst. Hence, the noise level controls the variability in
the burst lengths, in terms of the number of spikes present.
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FIGURE IV.17: The (ut, vt)-plane of the simulated bursting Izhike-
vich neuron. Observations are represented as colored dots, where
the color corresponds to the MPFPP decoded latent state of burst-
ing/resting. The separatrix show the stable (black) and unstable
(black dashed) boundaries for the deterministic Izhikevich model (or-

ange).

6 Discussion

This paper addressed the fact that a bursting neuron exhibit two modes: bursting
and resting. As highlighted in Østergaard, Kramer, and Eden (2018) this prop-
erty was not adequately captured by a multiplicatively separable history dependent
GLM. Here, we have proposed a possible remedy for this issue, by including a sep-
arate mechanism that controls for bursting behavior. Specifically we extended the
GLM from Østergaard, Kramer, and Eden (2018) with a latent state that switches be-
tween bursting and resting, thus explicitly accounting for this property. In addition
to this, the history dependency was modeled using spline basis functions, to reduce
the number of parameters, ultimately leading to a simple, yet flexible model for-
mulation using only a few parameters. In essence, our model formulation includes
three main components:

• Two baseline firing rates.

• Two kernels that modulates the baseline firing rates, based on previous ob-
served spikes.

• A latent state controlling which of the baselines/kernels are effective, at a
given timepoint.
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By assuming the resting baseline and kernel parameters to be zero, the estimation
only concerned parameters for the bursting mode, as the transition probabilities that
models the switching behavior were kept fixed. The latter were estimated in a pre-
liminary study on a bursting Izhikevich neuron. However, including these in the
estimation is possible and would make an interesting study on various noise levels
for the Izhikevich neuron, as well as other generating models and real data. The
simple structure of the model ensures a straightforward interpretation of the com-
ponents, evident from the two analyses in this paper.

The estimation was performed with a sequential Monte Carlo approach by adapt-
ing a marginalized particle filter algorithm for use on point process observations.
The algorithm was shown to be very effective in partitioning the state space into a
linear and nonlinear part, requiring fewer particles at each timestep. As mentioned
above, the estimation did not include the parameters of the transition probabilities,
but including these in the marginalized particle filter would make this model suit-
able for a bursting Izhikevich neuron with varying noise input. In this case, the
model presented in this paper would also be applicable for real time observations,
as the estimation of transition probabilities would imply a necessary adaptive prop-
erty. However, for a given data set of bursting neurons, performing an exploratory
analysis would enable fixation of these parameters, but never the less, this leaves
the overall solution less generic. As such, analyzing an estimation where the transi-
tion probabilities can adapt over time would make an interesting project. A possible
extension to the model presented here would be to account for the adaptiveness of
spiking observed in neurons. If the latent state is known (decoded), one can formu-
late a modified kernel, which depends directly on value of the latent state, not only
the sign.

Previous work has shown that the GLM class is capable of modeling a wide variety
of neuron types (Weber and Pillow, 2017; Østergaard, Kramer, and Eden, 2018) as
is the case for the Izhikevich model. The model presented here included relatively
few parameters, similar to the Izhikevich model. However, contrary to the (deter-
ministic) Izhikevich model, the model proposed here is a stochastic model which
can quantify the variability in (real) observed data and proper methods exist to as-
sess how an estimated model fits the observations, such as the Kolmogorov-Smirnov
statistic and plot, used here. As the model was shown capable of replicating the be-
havior of an Izhikevich model as well as fitting well to Izhikevich observations, the
capabilities of the SSGLM, compared to the Izhikevich model, are suitable for experi-
mental use such as in classifying neurons based on their intrinsic properties. Various
types of bursting could be identified not only through the bursting kernel, but also
the transition probabilities. Non-bursting neurons, such as tonic spiking, could be
identified by having "bursts" with only a single spike.

In conclusion, the SSGLM can be seen as a flexible model, capable of capturing com-
plex spike train pattern such as bursting, while at the same time keeping the num-
ber of parameters at a minimum and the estimated model is easily interpreted. This
could be of interest for experimental researchers in need of a model that can decode
dual behavior in observed neurons, and possibly classify neurons according to some
pre-specified criteria, such as bursting.
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A Estimation of transition probabilites

To estimate the transition probabilities from the observed Izhikevich neuron, define
Z as either the length of a burst or a resting period. Here we let Z be the length of a
burst, but the following arguments can be applied analogously to the resting period.
Defining Z as the length of a burst implies that

P (Z = z) = P (Xk+1 = 0| Xk = z,Xk−1 = z − 1, . . . , Xk−z+1 = 1)

= P (Xk+1 = 0| Xk = z)P (Xk = z| Xk−1 = z − 1) · · ·P (Xk−z+1 = 1)

= P (Xk+1 = 0| Xk = z)
z∏
i=2

P (Xk−z+i = i| Xk−z+i−1 = i− 1)P (Xk−z+1 = 1)

=
(
1− gb(z;α, κ)

) z∏
i=2

gb(i− 1;α, κ)

=
(
1− gb(z;α, κ)

) z−1∏
i=1

gb(i;α, κ)

=
ακ

ακ + zκ

z−1∏
i=1

iκ

ακ + iκ
(IV.25)

where we have defined P (Xk−m+1 = 1) = 1 as it is assumed that the neuron is
bursting and

gb(z;α, κ) =
zκ

ακ + zκ
= P (Xk+1 = z + 1|Xk = z)

are the transition probabilities modeled as log-logistic functions. Parameters α and
κ were then fitted using (IV.25) by least squares to the empirical log-proportions of
observed burst lengths using optimization in R, R Core Team (2017).





147

Conclusion and Outlook
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CHAPTER 4
Conclusion

1 Discussion

With this thesis we have investigated two different areas concerning the model-
ing of neural data. Part one examined a new way of inferring the network struc-
ture of coupled neurons. Although the applied methodology is not new it appears
that Manuscript I is the first succesful application of cointegration analysis in a
neuroscience context. Here a network structure was analyzed through the phase
processes of the neurons and it was demonstrated that cointegration analysis is a
promising area for future research possibilities for coupled neurons. Continuing
down the cointegration path, Manuscript II addressed the question of how cointe-
gration analysis may be applied for high dimensional data. This work is not yet
finalized, but it shows supportive evidence of using cointegration for this type of
data as well. Presently a major outstanding task is to develop a solid theoretical
framework, where the classical linear restrictions for the parameters of cointegration
models may be extended to include information on sparseness structure, as well as
other structured couplings. In the working paper we have only demonstrated the
potential for a linear coupling, inspired by the Kuramoto model, with a symmetric
structure. However, it was shown that even such a simple specification is not trivial
to impose in a cointegration estimation procedure when considering both symmetry
and reduced rank constraints. This also calls for new results in cointegration, such
as theoretically based numerical methods for penalization in cointegration models.
A current drawback for cointegration analysis is the lack of an intuitive understand-
ing of how cointegration influences the neurons, besides showing that the structure
changes when the couplings in a network change. If this is to become a popular
technique in the neuroscience community, a clearcut interpretation of cointegration
parameters in connection to the network coupling is necessary. In order to obtain
this goal it would require analyzing more experimental data of real neurons. How-
ever, since more and more data is becoming available this should be a realizable
task.

Part two of this thesis examined the applicability of Generalized Linear Models
(GLM) for spike train data analysis. Manuscript III investigated the flexibility of
a simple GLM, when used to capture various types of spike patterns also for vary-
ing noise levels of the data generating process. The paper showed that the GLM is
a suitable choice for different spike patterns, but also that a certain amount of noise
is preferable when fitting a model of a stochastic nature, such as the GLM. One of
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the shortcomings of the GLM that were highlighted in this paper was addressed in
Manuscript IV, where the GLM formulation of the previous paper was extended to
a state space model, thus accounting for the specific behavior of bursting neurons.
This demonstrated that extending the GLM for specific purposes further increases
the flexibility of this model class, and that it is possible to construct a statistical model
that is very capable of similar behavior as the well accepted Izhikevich model. These
two papers can be seen as making a case for statistical modeling of neural data. The
usefulness of specific statistical models have been demonstrated with emphasis on
estimation procedures based on well known results. As in the case of cointegra-
tion analysis, a shortcoming for statistical models is the explanation of model pa-
rameters. By developing a stronger link between well understood and researched
models, such as the Izhikevich, but also other classical models of neurons, statistical
models such as the GLM and it’s extensions could be further accepted as the de facto
standard concerning analysis of neural data.

2 Extensions

There are a number of possibilities to extend the work presented here. As mentioned
in the discussion above an interesting extension to the work on cointegration would
be to expand the high dimensional framework to include sparsity constraints, as
well as structured restrictions other than symmetry. This could be useful for ana-
lyzing data of coupled clusters where the clusters are coupled not only internally,
but couplings also exist externally between clusters. Another new direction would
be to work on models with non-linear phase coupling. This could include a switch
that turns cointegration on/off or reverse the effect. The latter is necessary in or-
der to build a cointegration model that approximates the actual Kuramoto model,
and not just a linear version of it. It is evident from the fact that linearizing the sine
function amounts to a sign of ±1, depending on where the function is linearized. It
would be an interesting problem to overcome, but would require some theoretical
work to expand the framework presented here. Finally, a compelling idea would be
to investigate any possible connections between point process models, such as the
ones analyzed in the second part of this thesis, and cointegration. A vague direction
of this objective could be to look into multivariate point processes where the inten-
sity was allowed to cointegrate. However, it is not currently clear how, or whether
this is at all sensible, to write such a model, but being able to apply cointegration
techniques for point processes would be a very attractive extension.

3 Conclusion

The aim of the research projects presented here concerned the analysis of neural data
from different perspectives. As we have shown, using analysis techniques common
to the realm of econometrics can help to gain insight into the structures of neural net-
works, and modeling event times with various patterns could help to classify types
of observed neurons. While statistical modeling is gaining acceptance in the com-
munity of neuroscience researchers, the models considered here are not only useful
in this context. Investigating the use of cointegration in a high dimensional context
is useful in relation to big data, where the dimension of data increases and the quest
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to find relational structure becomes increasingly difficult. By researching new sta-
tistical tools for this type of analysis, which are applicable to high dimensional data,
we can increase our understanding of the mechanisms in the brain, such as the con-
nectivity of it’s internal components. Although we might never completely unveil
the enigmas of the brain we can certainly attempt to construct a continuously better
explanation of it’s capabilities. Hopefully this thesis has assisted in this quest by
suggesting new statistical models that may be of use for experimental researchers to
answer some of their questions.
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APPENDIX A
Programming

1 Overview

This appendix contain information on the programs used in the thesis. The code is
distributed in three R packages, R Core Team, 2017.

Package name Usage

cods Used in the manuscript on cointegrated oscillators
BU Used in the manuscript on GLMs for Izhikevich neurons
particleGLM Used for parameter estimation of the bursting neuron model

These packages are currently1 not publicly available, but they are planned for future
publication. As such, they are available upon request.

2 R package: cods

This package was created to meet the requirements for a continuous time cointegra-
tion analysis. As such it performs standard cointegration estimation, but with the
inclusion of a time observation frequency. Core elements are implemented in C++
with wrapper functions in R scripts.

Main functions include johansen and bootstrap which performs estimation and
rank test respectively, both are written as wrappers to the C++ implementations.
Auxiliary functions include calculation of standard errors (getSE), Hilbert trans-
form (hilbert), likelihood ratio test (LRtest) and the mean phase coherence mea-
sure (meanPhaseCoherence).

3 R package: BU

This package was created as a collection of scripts and C++ functions for the study on
Generalized Linear Models and Izhikevich neurons. Main elements include simula-
tion of Izhikevich neurons (izhikevich) and fitting GLMs (doFit). Auxiliary ele-
ments include setting up spline basis functions (make_splines) and applying the

1At the time of writing, December 2017.
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filter to the spike trains (filter) as well as calculating the input to the Kolmogorov-
Smirnov plot (doKS).

4 R package: particleGLM

This package implements the marginalized particle filter for point processes (MPFPP).
The MPFPP is implemented in C++ (mpfpp). Some auxiliary elements include cal-
culating burst lengths (burst_length), the transition probabilites (px_x) and the
emission probabilities (py_xy).
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