
Operations on Hochschild
Complexes of Hopf-like Algebras

Espen Auseth Nielsen

Submitted: September 2018

Advisor: Nathalie Wahl
University of Copenhagen, Denmark

Assessment committee: Marcel Bökstedt
Aarhus University, Denmark

Birgit Richter
Universität Hamburg, Germany

Søren Galatius (chair)
University of Copenhagen, Denmark



2

Espen Auseth Nielsen
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 København Ø
Denmark
espen180@gmail.com

espen.sites.ku.dk

PhD thesis submitted to the PhD School of Science, Faculty of Science, University of
Copenhagen, Denmark in September 2018

ISBN: 978-87-7078-883-0
c© Espen Auseth Nielsen (according to the Danish legislation)



3

Abstract
This thesis has two main parts. The first part, consisting of two papers, concerns the

algebraic structure on Hochschild complexes of commutative Hopf algebras and their weaker
cousins, such as commutative quasi-Hopf algebras and commutative Hopfish algebras. For
any of the above, we equip the Hochschild complex with a natural Hopf algebra structure up
to coherent homotopy.

In the first paper, we study the interplay between the Hochschild complex and the
Dold-Kan equivalence between connective chain complexes and simplicial modules over a
commutative ring. As an application, we obtain a strictification of the coherent commutative
Hopf algebra structure on the Hochschild complex of a commutative Hopf algebra.

In the second paper we study the functoriality of the Hochschild complex with respect
to bimodules. This allows us to upgrade the Hochschild complex to a symmetric monoidal
functor of quasi-categories from a certain nerve of the (2,1)-category of bimodules between
algebras to the quasi-category of chain complexes. This is conditioned on the assumption
that the simplicial nerve of the category of non-negative chain complexes over a ring admits
a symmetric monoidal structure which on the homotopy category agrees with the derived
tensor product. Using the fact that certain families of Hopf-like algebras are special cases of
Hopfish algebras, we obtain as an application that the Hochschild complexes of such algebras
have a natural Hopf algebra structure up to coherent homotopy.

The second part of the thesis is a work in progress, generalizing the work of Wahl and
Westerland on operations on Hochschild complexes to construct operations on topological
Hochschild homology. Our main theorem, conditioned on a technical quasi-category-theoretical
conjecture, is the construction of an action of moduli spaces of Riemann surfaces on the
topological Hochschild homology of A∞-Frobenius algebras.

Resumé
Denne afhandling har to hoveddele. Den første, som best̊ar af to artikler, handler om

den algebraiske struktur besittet af Hochschild-komplekser af kommutative Hopf-algebraer of
deres svagere varianter, som for eksempel kommutative kvasi-Hopf-algebraer og kommutative
Hopfish-algebraer. For disse typer algebraer udstyrer vi Hochschild-komplexet med en naturlig
Hopf-algebrastruktur op til koherent homotopi.

I v̊ares første artikel studerer vi vekselvirkningen mellem Hochschild-komplekset og
Dold-Kan-ekvivalensen mellem konnektive kedekomplekser og simplisielle moduler over en
kommutativ ring. Som en anvendelse af dette opn̊ar vi en streng modell for den koherente
kommutative Hopf-algebrastrukturen p̊a Hochschild-komplekset til en kommutativ Hopf-
algebra.

I v̊ares andre artikel studerer vi funktorialiteten til Hochschild-komplekset med hensyn
til bimoduler og opgraderer Hochschild-komplekset til en symmetrisk monoidal funktor
af kvasikategorier fra en givet nerve af (2,1)-kategorien af bimoduler mellem algebraer til
kvasikategorien af kedekomplekse. Dette afhenger af antagelsen om, at den simplicielle nerven
til kategorien af kedekomplexe kan gives en symmetrisk monoidal struktur med det deriverte
tensorproduktet. Vi bruger at enkelte varianter af Hopf-algebraer er spesielle tilfelde af
Hopfish-algebraer til at konstruere koherente Hopf-algebrastrukterer p̊a Hochschild-komplexe
af disse.

Den andre del af denne afhandling best̊ar af p̊ag̊aende arbeid, der generaliserer resultater
af Wahl og Westerland om operationer p̊a Hochschild-komplexe til operationer p̊a topologisk
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Hochschild-homologi. V̊ares hovedresultat, betinget p̊a en kvasikategorisk formodning, kon-
struerer en virkning af modulirommet af Riemann-flader p̊a THH af
mathcalA∞-Frobenius-algebraer.
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Introduction



This thesis consists of the following two papers (A and B) and one work in progress (C):

A. Strictifying Homotopy Coherent Actions on Hochschild Complexes
B. On the Morita Functoriality of the Hochschild Complex
C. Formal Operations on Topological Hochschild Homology (in progress)

1. Overview and Background

We begin by giving an overview of the subject and putting the papers into a bigger
picture.

This thesis fits into the program laid out by Wahl-Westerland [12, 11]

1.1. The Dold-Kan Equivalence. The main technical tool for Paper A is the Dold-
Kan equivalence. Fix a commutative ring k. The Dold-Kan equivalence is an equivalence of
categories

M : sModk � Ch≥0
k : Γ

between simplicial k-modules and connective dg-k-modules. The functor M is called the
normalized Moore complex and is a symmetric monoidal functor. The inverse functor Γ,
however, is not symmetric monoidal, but Richter [9] showed that Γ is symmetric monoidal up
to coherent homotopy. The failure of the Dold-Kan equivalence to be a symmetric monoidal
equivalence is the main technical obstacle in Paper A.

The structure maps which witness the symmetric monoidal structure of M are the shuffle
maps

sh : M(A)⊗M(B)→M(A⊗̂B).

The shuffle maps satisfy associativity: sh ◦ (id⊗ sh) = sh(sh⊗ id) as maps

M(A)⊗M(B)⊗M(C)→M(A⊗̂B⊗̂C),

and commutativity, namely the following diagram commutes, where τ is the twist map.

M(A)⊗M(B) M(B)⊗M(A)

M(A⊗̂B) M(B⊗̂A)

τ

shsh

τ∗

The shuffle maps are also homotopy equivalences. A homotopy inverse which also satisfies
associativity is given by the Alexander-Whitney maps

AW : M(A⊗̂B)→M(A)⊗̂M(B)

However, the Alexander-Whitney maps do not satisfy commutativity. Instead, they satisfy
E∞-commutativity, as proven by Richter in [9]. In the language of that paper, the functor M
is E∞-comonoidal.
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1.2. Hochschild Homology. Throughout, fix a commutative ring k. Let A be an
associative dg-algebra over k. The simplicial chain complex Bcyc(A) is given in simplicial
degree n by the chain complex Bcyc(A)n := A⊗n+1, and with simplicial face maps

di(a0, ..., an) =

{
(a0, ..., aiai+1, ..., an) , 0 ≤ i < n
(ana0, a1, ..., an−1) , i = n

Applying the Dold-Kan equivalence at each differential degree, we get a bicomplexMBcyc(A)∗,∗
with first differential given by the alternating sum of the di’s, and second differential given
by the differential of A. The Hochschild complex C(A) of A is the sum totalization of
MBcyc(A)∗,∗. The homology of C(A) is denoted by HH(A) and is called the Hochschild
homology of A.

This definition admits an extension from dg-algebras to dg-categories, which we make use
of in Paper B.

The Hochschild complex plays diverse roles in algebra and geometry. In algebra, Hochschild
homology admits a trace map from algebraic K-theory

K∗(A)→ HH∗(A).

In geometry, HH(A) gives an algebraic model of differential forms and deRham cohomology,
with the deRham differential given by Connes’ B-operator.

1.3. Operads and Props. An operad O in a symmetric monoidal category C is a
collection of objects {O(n)}n∈N equipped with morphisms

O(k)⊗ (O(j1)⊗ ...⊗O(jk))→ O(j1 + ...+ jk)

satisfying certain associativity, unitality and equivariance constraints. An algebra over O is
an object A ∈ Ob C equipped with morphisms

O(k)⊗ A⊗k → A

satisfying associativity, unitality an equivariance.
Operads are well suited to describing algebraic or coalgebraic structures and admit a

convenient homotopy theory, but cannot describe bialgebraic structures - the case when the
algebraic and coalgebraic structures interact, for example Hopf algebras.

A prop [1, 8] in C is a symmetric monoidal category P enriched in C such that the objects
ObP are in bijection with the natural numbers N, and the symmetric monoidal structure is
addition on objects. An algebra over P is an object A ∈ Ob C equipped with morphisms

P (n,m)⊗ A⊗n → A⊗m

satisfying associativity and unitality. The notion of prop is well suited to describing bialgebraic
structures, at the cost of being a less well behaved theory than the theory of operads. In
particular, the category of props does not admit the structure of a model category.

Operads are a special case of props, as given an operad O, we can build a prop PO for
which

PO(n,m) =
⊕

n1+...+nm=n

O(n1)⊗ ...⊗O(nm).

In particular, O and PO have the same algebras.

Example: Let Ass be the prop generated by the associative operad. In particular,
Ass(n, 1) = Σn, the symmetric group on n letters.
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Example: The commutative Hopf prop CHopf is generated as a symmetric monoidal
category by the morphisms

m : 2→ 1 η : 0→ 1 S : 1→ 1
∆ : 1→ 2 ε : 1→ 0

such that (m, η) define a commutative algebra, (∆, ε) define an associative coalgebra, ∆ and
ε are algebra homomorphisms and the relations

m ◦ (1⊗ S) ◦∆ = η ◦ ε = m ◦ (S ⊗ 1) ◦∆

hold. In particular, for any symmetric monoidal category C, the category of symmetric
monoidal functors Fun⊗(CHopf, C) is equivalent to the category of commutative Hopf algebra
objects in C.

1.4. The Morita (2,1)-category. In Paper B we make use of a generalization of
categories called (2,1)-categories. A (2,1)-category C is a category where instead of a set of
morphisms between any two objects, we have a groupoid C(a, b) of morphisms, such that
composition of morphisms is associative and unital up to coherent isomorphism. We also make
use of notions of symmetric monoidal (2,1)-categories and 2-functor between (2,1)-categories.

Example: Any ordinary category can be viewed as a (2,1)-category with discrete morphisms
groupoids. The notions of symmetric monoidal (2,1)-category and 2-functor reduce to the
ordinary notions of symmetric monoidal category and functor in this case.

Example: For a commutative ring k, the Morita (2,1)-category has objects given by
associative dg-k-algebras, and for each pair A,B of algebras, the groupoid Mork(A,B)
is given by the groupoid of (B,A)-bimodules and bimodule isomorphisms. Composition
Mork(B,C)×Mork(A,B)→ Mork(A,C) is given by tensor product (Q,P ) 7→ Q⊗B P . The
Morita (2,1)-category is also symmetric monoidal and admits a symmetric monoidal functor
m : dgAlgk → Mork.

A commutative Hopfish algebra over k [10] is defined as a symmetric monoidal functor
CHopf → Mork. This notion encompasses commutative Hopf algebras up to Morita equiva-
lence, as well as weaker variants of Hopf algebras such as quasi-Hopf algebras [2], in which
the co-associativity condition is relaxed.

1.5. Quasi-categories. In Paper B, we make use of the theory of quasi-categories to
handle algebraic structures which are defined up to coherent homotopy. Originally defined
in [1], the theory was developed in [6, 7] and is now the standard framework for homotopy
theoretical category theory.

The theory is remarkably similar to the theory of ordinary categories, with just about any
commonly occurring category theoretical statement generalizing to an analogous statement
in quasi-category theory.

A quasi-category is a simplicial set X which admits inner horn fillers. Namely, for each
n ∈ N and each 0 < i < n, let Λn

i be the boundary of the n-simplex minus the face opposite
the i’th vertex. Then given the solid arrows below, the dotted arrow exists such that the
diagram commutes.
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Λn
i X

∆n

If X and Y are quasi-categories, then a functor X → Y is just a morphism of simplicial sets.

Example: Let C be a category. Then the nerve NC, given by NCn = Fun([n], C), where
[n] is the poset 0→ ...→ n, is a quasi-category.

Example: In Paper B, we also consider a nerve construction for (2,1)-categories, called the
Duskin nerve ND [3]. If C is a (2,1)-category, then ND(C) is a quasi-category.

Example: There is also a nerve construction N∆ for simplicial categories, i.e. categories
enriched in simplicial sets, called the coherent nerve. If C is a simplicial category such that
for any pair of objects x, y ∈ Ob C, the hom-space C(x, y) is a Kan complex, then N∆C is a
quasi-category.

1.6. Operations on Hochschild Homology. This thesis fits into the general program
laid out by Wahl and Westerland in [12, 11] on the algebraic structure of Hochschild
complexes. Let Ass denote the associative prop, i.e. the prop associated to the associative
operad in Chk, and let P be a prop in Chk such that there is a symmetric monoidal functor
Ass→ P inducing a bijection on objects. Then one can define the Hochschild complex of a
P -algebra by restricting to its associative algebra structure. The goal of the program laid
out in [12, 11] is to find, and classify, operations

C(A)⊗n1 ⊗ A⊗m1 → C(A)⊗n2 ⊗ A⊗m2

which are natural in algebras over P . Examples of previous work include symmetric Frobenius
algebras [12], commutative algebras [5] and commutative Frobenius algebras [4].

In Paper A we address the case when P is given by the Boardman-Vogt tensor product
Ass⊗ P ′ for some prop P . In particular, this covers the case of commutative Hopf algebras.

In Paper B we consider algebraic structures which are more general than algebras over
props, and so it does not fit directly into the framework of Wahl-Westerland. Instead, we make
use of Hochschild complexes of dg-categories to define a Hochschild complex functor from the
Morita (2,1)-category, constructed as a symmetric monoidal functor of quasi-categories, and
use this to examine operations on Hochschild complexes of some variants of commutative
Hopf algebras, such as commutative quasi-Hopf algebras.

1.7. Open and Open-Closed Field Theories. In Paper C we are concerned with
operations on topological Hochschild homology of open conformal field theories. We describe
the idea below.

The open-closed cobordism category OC is the quasi-category whose objects are one-
dimensional manifolds with boundary, and whose space of morphisms OC(M,N) is the moduli
space

OC(M,N) =
⊔

[Γ]

M̄tN↪→∂Γ

BDiff(Γ; M̄ tN)



12

i.e. the moduli space of Riemannian cobordisms with corners from M to N , and composition
is given by gluing cobordisms. It can be constructed as the coherent nerve of a simplicial
category. The open cobordism category is the full subcategory of OC on the objects tnR.
O and OC are both symmetric monoidal quasi-categories under disjoint union. An open
(resp. open-closed) conformal field theory is a symmetric monoidal functor O → Sp (resp.
OC → Sp).
O is an example of a quasi-categorical prop, and algebras over O are homotopy coherent

associative symmetric Frobenius algebras.

2. Summary of Paper A

The motivating question for Paper A is the following: For a commutative Hopf algebra A,
what are the operations on the Hochschild complex C(A) which are natural in homomorphisms
of Hopf algebras?

The Dold-Kan equivalence is an E∞-monoidal equivalence [9], and this implies that C(A)
carries a commutative Hopf algebra structure up to coherent homotopy. In this paper we give
a strict model for this structure. Its ingredients are the commutative Hopf algebra structure
on A and the structure maps of the Dold-Kan equivalence.

3. Summary of Paper B

Paper B generalizes the motivating question of Paper A by replacing the class of Hopf
algebras with variants of Hopf algebras, such as quasi-Hopf algebras and Hopfish algebras.

For these types of algebras, we construct a natural Hopf algebra structure on their
Hochschild complexes by realizing the Hochschild complex as a symmetric monoidal functor
of quasi-categories from the Duskin nerve of the Morita (2,1)-category to the quasi-category
of chain complexes. This is conditioned on the assumption that the simplicial nerve of the
category of non-negative chain complexes over a ring admits a symmetric monoidal structure
which on the homotopy category agrees with the derived tensor product.

4. Summary of Paper C

In this work in progress, we extend program laid out in [12, 11] for operations on
Hochschild complexes to a quasi-categorical context in order to investigate operations on
topological Hochschild homology.

We consider in particular the case of operations on THH of open conformal field theories,
obtaining an extension of a theorem of Wahl-Westerland [12, Theorem 6.2] conditioned on a
technical conjecture concerning homotopy coends in quasi-categories.

5. Perspectives

Throughout the papers A-C there are conjectures indicating possible lines of future
research. In this section we give a broad overview.

First of all, the Hochschild complex on any associative algebra admits an operation called
Connes’ B-operator, which is a natural degree 1 operation

B : C∗(A)→ C∗+1(A)

satisfying B ◦ B = 0. The Hochschild differential and Connes’ B-operator can be used to
define the mixed complex CC∗(A), which computes cyclic homology. An immediate question
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is weather the operations we find on Hochschild complexes generalize to operations on the
mixed complex.

Question 1: How does the homotopy coherent Hopf algebra structure carried by the
Hochschild complex in the various situations in Papers A and B interact with Connes’
B-operator?

Paper C itself can be read as a plan for future research, and the following questions are
attractive directions that would follow its completion.

Question 2a: Can the OC-module structure on THH of open conformal field theories be
generalized to higher dimensional field theories?

Question 2b: Can we use the operations constructed in Paper C to lift the string topology
operations constructed in [12, 11] to the level of spectra?
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Paper A



STRICTIFYING HOMOTOPY COHERENT ACTIONS
ON HOCHSCHILD COMPLEXES

ESPEN AUSETH NIELSEN

Abstract. If P is a dg-operad acting on a dg-algebra A via algebra homomorphisms, then
P acts on the Hochschild complex of A. In the more general case when P is a dg-prop, we
show that P still acts on the Hochschild complex, but only up to coherent homotopy. We
moreover give a functorial dg-replacement of P that strictifies the action. As an application,
we obtain an explicit strictification of the homotopy coherent commutative Hopf algebra
structure on the Hochschild complex of a commutative Hopf algebra.

1. Introduction

A dg-prop [9, Section 24] is a symmetric monoidal dg-category P whose monoid of objects
is isomorphic to (N,+). If P is a dg-prop and C a symmetric monoidal dg-category, then
a P -algebra in C is a symmetric monoidal functor P → C. A morphism of dg-props is a
symmetric monoidal dg-functor which induces an isomorphism of object monoids, and such a
morphism is called a quasi-equivalence if it induces quasi-isomorphisms on Hom-complexes.
Let dgprop be the subcategory of dgCat generated by the dg-props and morphisms of dg-props.
Examples of dg-props arise from dg-operads O (see e.g. [10, Example 60]) by the formula

P (n,m) =
⊕

n1+...+nm=n

O(n1)⊗ ...⊗O(nm)

and composition defined using the composition product of O. With this definition, an algebra
over an operad is precisely an algebra over the dg-prop it generates (see e.g. [6, p.10]. In the
following, we will therefore not distinguish between a dg-operad and the dg-prop it generates.

The Hochschild complex is a functor from A∞-algebras to chain complexes. If P is a prop
equipped with a morphism of props A∞ → P , the Hochschild complex restricts to a functor
from P -algebras. It is an open problem to compute the operations on the Hochschild complex
of algebras over such props P . Partial results have been obtained in many cases, see e.g.
[14, 15]. One such case is the following.

If P is a dg-operad (or a dg-prop) the Boardman-Vogt tensor product Ass ⊗ P (see [1,
Section II.3]) is the dg-prop characterized by the equivalence

Fun⊗(Ass⊗ P, C) ' Fun⊗(P,Alg(C))
for any symmetric monoidal dg-category C. Evaluating the right hand side at 1 ∈ P , we
obtain a functor from Ass ⊗ P -algebras to Ass-algebras. The Hochschild complex of an
Ass⊗ P -algebra is by definition the Hochschild complex of the associated Ass-algebra. The
Hochschild complex functor is lax monoidal. The structure morphisms may be used to prove
that for a dg-operad P and an algebra A over the tensor product Ass⊗ P , the Hochschild

2010 Mathematics Subject Classification. 13D03, 16E35, 18D05, 18D10.
1
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complex of A admits a P -algebra structure (see [2] and [14, Section 6.9]). On the other hand,
this fails if P is a more general dg-prop. This is due to the failure of the Dold-Kan equivalence
to be a symmetric monoidal equivalence. It is however true up to coherent homotopy, as the
Dold-Kan equivalence is an E∞-monoidal equivalence [12, Section 5]. In this paper, we give
an explicit functorial strictification of the natural homotopy coherent P -algebra structure on
the Hochschild complex of a (P ⊗Ass)-algebra. Formally this is encoded in the following
result.

Theorem A. Let κ be an inaccessible cardinal and let k be a commutative ring with cardinality
less than κ. Let Chk be the category of chain complexes over k with cardinality less than κ
and let dgprop be the category of dg-props over k. There is a functor

(̃−) : dgprop→ dgprop

equipped with a natural quasi-equivalence (̃−)→ id and a natural transformation

α̃ : Fun⊗(Ass⊗−,Chk)→ Fun⊗((̃−),Chk)

of functors dgpropop → Cat such that for a dg-prop P and an Ass⊗ P -algebra

Φ: Ass⊗ P → Chk

the value α̃P (Φ)(1) is equal to the Hochschild complex of Φ(1).

We use explicit generators and relations to construct the functor (̃−), fattening the input

prop with the structure maps of the Dold-Kan equivalence. The functor (̃−) also admits the
structure of a non-unital monad.

Example. (Example 3.14) If Φ: CHopf → dgAlgk is a commutative Hopf algebra over any
ring k, then

α̃CHopf (Φ) : C̃Hopf → Chk
gives an explicit strict model for the coherent commutative Hopf algebra structure of the
Hochschild complex of Φ(1).

Given a dg-prop P , one may ask whether P̃ is cofibrant in a model structure on dg-
props. In [7], Fresse constructs a model structure on the category of props over a field of
characteristic zero, and a semi-model structure on certain sub-families of props in positive
characteristic. However, for example Hopf algebras in positive characteristic cannot be treated

in his framework. Additionally, in characteristic zero, our replacement P̃ will not be cofibrant.
For example, our replacement of the commutative prop still has a strictly commutative
multiplication.

Further Questions. Theorem A displays P̃ as a sub-prop of the prop of natural operations
on the Hochschild complex. On the other hand, it leaves open the interaction of the P -action
with Connes’ B-operator. The determination of the total prop of natural operations on C(A)
is still an interesting open problem with a view toward operations on cyclic homology.

The structure of the paper is as follows. In Section 2 we define the Dold-Kan structure
maps and their action on Hochschild complexes, and establish necessary properties. In Section

3 we define the fattening functor (̃−) for dg-props and prove the main theorem.
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2. The cyclic bar construction and the Dold-Kan equivalence

In this section we will build a dg-category ÑΣ from the structure maps of the Dold-Kan

correspondence and establish the action of ÑΣ on Hochschild complexes of dg-algebras. This
dg-category is a key ingredient for the fattening functor we will construct in Section 3.

Convention 2.1. Throughout, we fix a commutative base ring k. All algebras are assumed
to be algebras over k. We employ the Kozul sign convention for chain complexes. In particu-
lar, our convention for bicomplexes are that the differentials anti-commute. Furthermore,
throughout the paper we fix an inaccessible cardinal κ. All abelian groups (in particular, all
simplicial modules and chain complexes over k) are assumed to have cardinality less than κ.

We begin by recalling some basic notions from homological algebra.

We will work with the categories sModk of simplicial k-modules and Chk of non-negatively
graded chain complexes over k with k-linear chain maps, where we consider Chk as a category
enriched in itself. sModk is a symmetric monoidal simplicial category with tensor product
given by the degreewise tensor product of k-modules. We denote this tensor product by ⊗̂.
Similarly, Chk is a symmetric monoidal category with tensor product denoted by ⊗ and given
by (A⊗ B)∗ = ⊕p+q=∗Ap ⊗ Bq and differential dA⊗B(a⊗ b) = dA(a)⊗ b+ (−1)|a|a⊗ dB(b).
The category of monoids in sModk is denoted by sAlgk, and is a symmetric monoidal category
with the levelwise tensor product.

For a simplicial chain complex A = A∗,• over k, call ∗ the differential degree and • the

simplicial degree. Write da,bA : Aa,b → Aa−1,b for the differential and da,bi : Aa,b → Aa,b−1 for the
simplicial face maps. Write sChk for the category of simplicial chain complexes over k.

The Dold-Kan equivalence

N : sModk � Chk : Γ

gives an equivalence of categories between simplicial k-modules and connective chain complexes
over k. The functor N : sModk → Chk, is called the normalized Moore complex functor,
and takes a simplicial k-module M• to the chain complex NM∗ with NMp = Mp/sMp−1,
the quotient of Mp by the degenerate simplices, and d : NMp → NMp−1 given by the
alternating sum d =

∑p
i=0(−1)idi. The inverse functor Γ: Chk → sModk is called the

Dold-Kan construction. We can also apply N degreewise to a simplicial chain complex as
follows:

Definition 2.2. (1) For A ∈ sChk, the bicomplex associated to A∗,• is denoted by
Nε(A∗,•)∗ and is obtained by applying the Moore complex functor levelwise and
shifting the differentials by the differential degree of A. Writing this out, we have
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Nε(Aa,•)b = Aa,b/sAa,b−1, the horizontal differential is dh = dA, and the vertical
differential is

da,bv = (−1)a
b∑

i=0

(−1)ida,bi

We write
Nδ(A) : = Tot (Nε(A∗,•)∗) .

(2) Let A and B be simplicial chain complexes over k and denote by A⊗̂B the simplicial
chain complex which in simplicial degree p is given by A∗,p ⊗B∗,p. The differential of
A⊗̂B is given by

dn,p
A⊗̂B(a⊗ b) = d

|a|,p
A a⊗ b+ (−1)|a|+pa⊗ d|b|,pB b.

Definition 2.3. [8, Section 5.3.2]

(1) The cyclic bar construction is the functor Bcy : dgAlgk → sChk given in simplicial
degree p by Bcy

p (A) = A⊗p+1. The face maps di : B
cy
p (A)→ Bcy

p−1(A) are given by

di : a0 ⊗ ...⊗ ap 7→
{
a0 ⊗ ...⊗ aiai+1 ⊗ ...⊗ ap , i = 0, ..., p− 1
(−1)|ap|(|a0|+...+|ap−1|)apa0 ⊗ a1 ⊗ ...⊗ ap−1 , i = p

and the degeneracies si : B
cy
p (A)→ Bcy

p+1(A) are given by

si : a0 ⊗ ...⊗ ap 7→ a0 ⊗ ...⊗ ai ⊗ 1⊗ ai+1 ⊗ ...⊗ ap
making Bcy

• (A) into a simplicial chain complex, called the cyclic bar construction of
A.

(2) For a dg-algebra A, the complex

C(A) : = NδB
cy
∗ (A)

is called the Hochschild complex of A.

Note: The following lemma is doubtlessly well known, but the author was unable to find a
reference which proves the result, so we give a proof here.

Lemma 2.4. The cyclic bar construction

Bcy : dgAlgk → sChk

is symmetric monoidal.

Proof. LetA andB be dg-algebras over k. Define the natural transformationBcy(A)⊗̂Bcy(B)→
Bcy(A⊗B) is given in simplicial degree p by permuting tensor factors:

A⊗p+1 ⊗B⊗p+1 σ−→ (A⊗B)⊗p+1

a0 ⊗ ...⊗ ap ⊗ b0 ⊗ ...⊗ bp 7→ (−1)sgn(a,b,σ)a0 ⊗ b0 ⊗ ...⊗ ap ⊗ bp
where sgn(a, b, σ) ∈ Z/2 is the sign of σ weighted by the elements ai, bj, which can be
computed as

sgn(a, b, σ) ≡
p−1∑

i=0

|bi|
(

p∑

j=i+1

|aj|
)

(mod 2)

To check that this defines a chain map in simplicial degree p, we must verify that there are
no sign issues. It is sufficient to consider each summand of the differential separately. For the
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differential acting on ak for 1 ≤ k ≤ p+ 1, the sign we get by permuting first (i.e. the sign
associated to dA⊗B ◦ σ) is

sgn(a, b, σ) +

(
k−1∑

i=0

|ai|+ |bi|
)

where the second term comes from the placement of ak after permuting. The sign we get by
permuting second is (

k−1∑

i=0

|ai|
)

+ sgn(a, b, σ) +
k−1∑

j=0

|bj|

where the third term is the correction to sgna,bσ when the degree of ak is decreased by one.
We see that the two are equal. For the differential acting on bk, the sign we get by permuting
first is

sgn(a, b, σ) +

(
k−1∑

i=0

|ai|+ |bi|
)

+ |ak|

and the sign we get by permuting second is
(

p∑

i=0

|ai|
)

+

(
k−1∑

j=0

|bj|
)

+ sgn(a, b, σ) +

p∑

j=k+1

|aj|

where the fourth term is the correction to sgna,bσ when the degree of bk is decreased by one.
Again we see that the two expressions are equal mod 2, hence we have a chain map.

We now verify that σ is a symmetric monoidal transformation. Let τ be the symmetric
monoidal twist map of Chk, given by A⊗B → B ⊗A, a⊗ b 7→ (−1)|a||b|b⊗ a. We check that
σ ◦ τp+1,p+1 = (τ⊗p+1) ◦ σ. The left hand side has sign

sgnL =

(
p∑

i=0

|ai|
)(

p∑

j=0

|bj|
)

+

p−1∑

i=0

|ai|
(

p∑

j=i+1

|bj|
)

=

p∑

i=0

|ai|
(

i∑

j=0

|bj|
)

and the right hand side has sign

sgnR =

p−1∑

i=0

|bi|
(

p∑

j=i+1

|aj|
)

+

(
p∑

i=0

|ai||bi|
)

=

p∑

i=0

|bi|
(

p∑

j=i

|aj|
)

Rearranging the order of summation shows that sgnL = sgnR, and we conclude that Bcy is
symmetric monoidal as claimed. �

Before discussing the monoidality properties of the cyclic bar construction and the
Hochschild complex, we recall some of the monoidality properties of the Dold-Kan equivalence.

Definition 2.5. [4, 5.3] Let A and B be simplicial k-modules. The shuffle map (also called
the Eilenberg-Zilber map):

shA,B : N(A)⊗N(B)→ N(A⊗̂B)

is defined on elementary tensors a⊗ b ∈ Ap ⊗Bq as

shA,B(a⊗ b) =
∑

σ∈Σ(p,q)

sgn(σ)sσ(p+q)...sσ(p+1)a⊗ sσ(p)...sσ(1)b
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When there is no risk of confusion, we will omit A and B from the notation and simply write
sh for the shuffle map.

Definition 2.6. [5, 2.9] Let A and B be simplicial k-modules. The Alexander-Whitney map

AWA,B : N(A⊗̂B)→ N(A)⊗N(B)

is defined on elementary tensors a⊗ b ∈ An ⊗Bn as

AWA,B : (a⊗ b) 7→
n∑

i=0

di+1...dn−1dna⊗ (d0)ib

As with the shuffle map, we omit A,B from the notation AWA,B when there is no risk of
confusion.

Lemma 2.7. [4, Theorem 5.4] Let A,B and C simplicial k-modules. Then
• shA⊗B,C ◦ (shA,B ⊗ id) = shA,B⊗C ◦ (id⊗ shB,C), i.e. the shuffle maps are associative.
• For a ∈ Ap and b ∈ Bq and τ denoting the twist morphism, we have shA,B(a ⊗ b) =

(−1)pqτ∗shB,A(b⊗ a)τ−1, i.e. the shuffle maps are graded symmetric.

Lemma 2.8. [5, Theorem 2.1] The shuffle and Alexander-Whitney maps are mutually inverse
natural homotopy equivalences.

Lemma 2.9. [5, Corollary 2.2] The Alexander-Whitney map is associative, i.e. for A,B and
C simplicial k-modules, the morphisms (id⊗AWB,C)◦AWA,B⊗̂C and (AWA,B⊗ id)◦AWA⊗̂B,C
from N(A⊗̂B⊗̂C) to N(A)⊗N(B)⊗N(C) are equal.

Proof. Let a⊗ b⊗ c ∈ An⊗Bn⊗Cn. For brevity, we write d̃ni = di+1...dn−1dn. Then the two
compositions

N(A⊗̂B⊗̂C)→ N(A)⊗N(B)⊗N(C)

are

(a⊗ b⊗ c)
AWA,B⊗̂C7−−−−−−→

n∑

p=0

d̃npa⊗ dp0b⊗ dp0c

id⊗AWB,C7−−−−−−→
n∑

p=0

n−p∑

s=0

d̃npa⊗ d̃n−ps dp0b⊗ dp+s0 c

and

(a⊗ b⊗ c)
AWA⊗̂B,C7−−−−−−→

n∑

q=0

d̃nq a⊗ d̃nq b⊗ dq0c

AWB,C⊗id7−−−−−−→
n∑

q=0

q∑

t=0

d̃qt d̃
n
q a⊗ dt0d̃nq b⊗ dq0c.

Note that d̃qt d̃
n
q = d̃nt . Using the simplicial identity didj = dj−1di when i < j, observe that

dt0d̃
n
q = d̃n−tq−td

t
0. Writing (q, t) = (p+ s, p), we now see that the two expressions are equal. �

To summarize the above theorems, the shuffle and Alexander-Whitney maps are mutually
inverse quasi-isomorphisms. In particular, AW ◦ sh = id and sh ◦ AW ' id. The shuffle map
is a lax symmetric monoidal transformation witnessing that the normalized Moore complex
functor N : sModk → Chk, and hence also the Hochschild chains functor C : sAlgk → Chk is
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lax symmetric monoidal. The Alexander-Whitney map is an oplax monoidal transformation
witnessing that N , and hence C is oplax monoidal. However, the Alexander-Whitney map is
not symmetric. Still, it is E∞ in the following sense (see Lemma 2.13).

Definition 2.10. ([11, p.552]) A functor F : C → D between symmetric monoidal categories
is E∞-monoidal if there is an E∞ operad O in D and maps

µn : O(n)⊗ (F (A1)⊗ ...⊗ F (An))→ F (A1 ⊗ ...⊗ An)

such that

(1) the action is unital, i.e. if I denotes the monoidal unit of D and η : I → O(1) is the
unit of the operad, then the following diagram commutes:

I ⊗ F (A) O(1)⊗ F (A)

F (A)

η ⊗ id

µ1'

(2) The action is equivariant: for each σ ∈ Σn, the action µn is compatible with the
action of Σn on O(n) and by permuting indices of the Ai. I.e. the following diagram
commutes:

O(n)⊗ F (A1)⊗ ...⊗ F (An) F (A1 ⊗ ...⊗ An)

O(n)⊗ F (Aσ−1(1))⊗ ...⊗ F (Aσ−1(n)) F (Aσ−1(1) ⊗ ...⊗ Aσ−1(n))

µn

σ ⊗ σ F (σ)

µn

(3) The action is associative, i.e. is compatible with the operad multiplication.

E∞-comonoidal functors are similarly defined by using structure maps

νn : O(n)⊗ F (A1 ⊗ ...⊗ An)→ F (A1)⊗ ...⊗ F (An).

We will now define chain complexes which assemble into a dg-operad (and later a symmetric
monoidal dg-category) witnessing that AW is an E∞-comonoidal transformation.

Definition 2.11. Define the functors

N ⊗̂n, N⊗n : sMod×nk → Chk

given by

N ⊗̂n(A1, ..., An) = N(A1⊗̂...⊗̂An)

N⊗n(A1, ..., An) = N(A1)⊗ ...⊗N(An)

and let
O(n) := NatsMod×nk

(N ⊗̂n, N⊗n)

Notation 2.12. Since the elements of O(n), and of the complex ÑΣ((n), (n)) which we
define below, are natural transformations, we can in particular view them as 2-morphisms in
the 2-category of categories, and so 2-categorical constructions, like horizontal composition,
can be applied to them. For a 4-tuple of morphisms f, f ′ : a→ b and g, g′ : b→ c and a pair
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of 2-morphisms α : f → f ′ and β : g → g′, we write β ∗ α for their horizontal composition
β ∗ α : gf → g′f ′.

Lemma 2.13. The complexes O(n) assemble into an E∞ operad witnessing that N⊗n

and N ⊗̂n are E∞-comonoidal functors and that AW : N⊗2 → N ⊗̂2 is an E∞-comonoidal
transformation.

Proof. Let n1 + ...+ ni = n be natural numbers. The operad structure on O is given by the
maps

O(i)⊗ (O(n1)⊗ ...⊗O(ni))→ O(n)

given by (φ, γ1, ..., γi) 7→ φ ◦ (γ1 ∗ ... ∗ γi). The Σn-action is given by conjugation, i.e. for
χ ∈ Σn and ψ ∈ O(n) we have χ · ψ = χ ◦ ψ ◦ χ−1. It is known (see [3, Satz 1.6]) that the
complex of natural transformations

O(n) = NatsMod×nk
(N ⊗̂n, N⊗n)

is acyclic with zero’th homology k. It follows (see [11, Section 7] and [12, Section 5]) that the

functors N is an E∞-comonoidal functor and that AW : N⊗2 → N ⊗̂2 is an E∞-comonoidal
transformation. �

We will look at the complex

Ñ((n), (n)) := NatsMod×nk
(N ⊗̂n, N ⊗̂n)

which is homotopy equivalent to NatsMod×nk
(N ⊗̂n, N⊗n), seen by post-composing with shuffle

and Alexander-Whitney maps, but with the difference that maps in Ñ((n), (n)) may be
composed, giving rise to an algebra structure. In the rest of this section, we will construct a
dg-category with morphism complexes built from NatsMod×nk

(N ⊗̂n, N ⊗̂n), and the notation is

chosen with this in mind.

Definition 2.14. The symmetric group Σn acts on sMod×nk by

χ(A1, ..., An) = (Aχ−1(1), ..., Aχ−1(n)).

Let ÑΣ((n), (n)) be the complex

ÑΣ((n), (n)) =
⊕

χ∈Σn

NatsMod×n(N ⊗̂n, N ⊗̂n ◦ χ) =:
⊕

χ∈Σn

ÑΣ
χ ((n), (n)).

Lemma 2.15. The chain complex ÑΣ((n), (n)) admits a Σn-graded algebra structure and
contracts to kΣn in degree 0.

Proof. Let f ∈ ÑΣ
χ ((n), (n)) and g ∈ ÑΣ

χ′((n), (n)). We treat f and g as 2-morphisms in
the 2-category of dg-categories as in Remark 2.12. The product of g and f is given by
(g ∗ idχ) ◦ f : N ⊗̂n → N ⊗̂n ◦ (χ′χ), which may also be visualized by the pasting diagram
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sMod×nk

ChksMod×nk

sMod×nk

⇒

f

⇒

g

N ⊗̂nχ

N ⊗̂n

χ′

N ⊗̂n

This gives the graded algebra structure. As for the contraction, the components ÑΣ
χ ((n), (n))

are isomorphic to Ñ((n), (n)) by pre-composition by χ and χ−1. As Ñ((n), (n)) contracts

onto idN⊗̂n , ÑΣ
χ ((n), (n)) contracts similarly to χ. �

Definition 2.16. • For A1, ..., Ak simplicial k-modules, we introduce the shorthand

N (k1,...,kn)(A1, ..., Ak) = N(A1⊗̂...⊗̂Ak1)⊗ ...⊗N(Ak1+...+kn−1+1⊗̂...⊗̂Ak)
where k = k1 + ...+ kn. Let m1 + ...+ml = k. Writing ~k = (k1, ..., kn) and similarly for ~m,
define the complex

Ñ(~k, ~m) := NatsMod×kk
(N

~k, N ~m)

Its symmetrized version ÑΣ(~k, ~m) is defined as before by

ÑΣ(~k, ~m) =
⊕

χ∈Σk

NatsMod×kk
(N

~k, N ~m ◦ χ) =:
⊕

χ∈Σk

ÑΣ
χ (~k, ~m)

• We will refer to a finite sequence of integers ~k = (k1, ..., kn) as a vector. The sum of the

entries of a vector is called its length and denoted by |~k| := k1 + ...+ kn.

• We write ÑΣ for the dg-category whose objects are vectors ~k, and whose morphism

complexes are given by the ÑΣ(~k, ~m) defined above.

Notation 2.17. For any ~k = (k1, ..., kn) with |~k| = k, by Lemma 2.7 composing shuffle maps

gives rise to a well-defined shuffle map which we denote by sh~k : N
~k → N (k) = N ⊗̂k. Similarly,

the Alexander-Whitney map is associative by Lemma 2.9, so composing AW-maps gives rise

to a well-defined map AW~k : N (k) → N
~k. Note that AW~k ◦ sh~k ' id

N~k
and sh~k ◦AW~k ' idN(k) .

Lemma 2.18. For every pair ~k = (k1, ..., kn), ~m = (m1, ...,ml), the assignment

φ : f 7→ AW~m ◦ f ◦ sh~k
defines a homotopy equivalence ÑΣ((n), (n))→ ÑΣ(~k, ~m) with homotopy inverse

ψ : g 7→ sh~m ◦ g ◦ AW~k

In particular, ÑΣ(~k, ~m) contracts onto the degree zero subcomplex of elements of the form
AW~m ◦ χ∗ ◦ sh~k for some χ ∈ Σk.

Proof. Fix homotopies α~k : AW~ksh~k → id and β~k : sh~kAW~k → id. Then we get homotopies

β~m ∗ id ∗ β~k : ψ ◦ φ→ id

α~m ∗ id ∗ α~k : φ ◦ ψ → id
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so that φ and ψ are mutually inverse homotopy equivalences. Now the composition

kΣn ↪→ ÑΣ((n), (n))→ ÑΣ(~k, ~m)

takes χ to AW~m ◦ χ∗ ◦ sh~k and is a homotopy equivalence since kΣn ↪→ ÑΣ((n), (n)) is by
Lemma 2.15. The inverse

ÑΣ(~k, ~m)→ ÑΣ((n), (n))→ kΣn

sends AW~m ◦ χ∗ ◦ sh~k to χ, so ÑΣ(~k, ~m) contracts as claimed. �

We now turn to establishing the action of ÑΣ on Hochschild complexes of dg-algebras. We
begin by constructing a way of differentially extending functors between additive categories.

Construction 2.19. Let A and B be additive categories and let Funpt(A,B) be the category
of pointed functors between them, that is, functors F : A → B such that there is an
isomorphism F (0) ' 0. Note that Funpt(A,B) is itself an additive category. Denote by
m-Ch(B) the additive category of m-fold chain complexes in B. We will produce an additive
functor

(−)ε : Funpt(A×n,m-Ch(B))→ Funpt(Ch(A)×n, (n+m)-Ch(B)).

Let F : A×n → m-Ch(B) be a ponited functor. Then Fε sends an n-tuple of chain com-
plexes (A1, ..., An) in A to the (n + m)-fold chain complex in B given in multidegree
(p1, ..., pn, q1, ..., qm) by F (A1

p1
, ..., Anpn)q1,...,qm . In the same multidegree, the differentials are

given by

di =

{
(−1)p1+...+pi−1dA

i
, 1 ≤ i ≤ n

(−1)p1+...+pn+q1+...+qi−n−1d
F (A1,...,An)
i−n , n+ 1 ≤ i ≤ n+m

Since F is a pointed functor, this does indeed define an (n + m)-fold chain complex in B.
Similarly, Fε sends an n-tuple of morphisms (f i : Ai → Bi)1≤i≤n to the morphism given on
the first n multidegrees (p1, ..., pn) by the morphism

F (f 1
p1
, ..., fnpn) : F (A1

p1
, ..., Anpn)→ F (B1

p1
, ..., Bn

pn)

Hence Fε is indeed a functor.
Now let F,G : A×n → m-Ch(B) be pointed functors and let α : F → G be a natural

transformation. Then αε is the natural transformation given by applying α levelwise, i.e. for
an n-tuple of chain complexes (A1, ..., An) in A, the morphism

(αε)(A1,...,An) : Fε(A
1, ..., An)→ Gε(A

1, ..., An)

is given in the first n multidegrees (p1, ..., pn) by the morphism

α(A1
p1
,...,Anpn ) : F (A1

p1
, ..., Anpn)→ G(A1

p1
, ..., Anpn).

With this definition it is clear that (−)ε is an additive functor.

Definition 2.20. Building on Construction 2.19 we define the functor

(−)δ : Funpt(A×n,m-Ch(B))→ Funpt(Ch(A)×n,Ch(B))

as the composition of (−)ε with the totalization functor (n+m)-Ch(B)→ Ch(B).

Before considering the monoidality properties of the functor (−)δ, we need an observation
about totalizations of n-fold chain complexes.
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Observation 2.21. Let A be an additive category. The symmetric group on n letters acts
on the category of n-fold chain complexes in A by reordering the differentials. Specifically, if
A is an n-fold chain complex in A and χ ∈ Σn, we have

(χ · A)p1,...,pn = Apχ−1(1),...,pχ−1(n)

and the differentials are similarly reordered. Let χ(p1,...,pn) be the image of χ under the blow-up
homomorphism Σn → Σp1+...+pn . There is a natural transformation gχ : Tot→ Tot ◦ χ given
in multidegree (p1, ..., pn) by the sign of χ(p1,...,pn). Composition of these transformations has
the same effect as applying the sign associated to the composite permutation, such that
(gχ′ ∗ idχ) ◦ gχ = gχ′χ for any pair χ, χ′ ∈ Σn.

Lemma 2.22. Let the pointed functor F : A×n → Ch(B) be given by F (A1, ..., An) =
F ′(A1, ..., Ai)⊗F ′′(Ai+1, ..., An) for a pair of pointed functors F ′ : A×i → Ch(B) and F ′′ : A×n−i →
Ch(B). Then there is a natural isomorphism

Fδ(A
1, ..., An) ' F ′δ(A

1, ..., Ai)⊗ F ′′δ (Ai+1, ..., An).

Furthermore, this isomorphism is associative.

Proof. The tensor product F ′(A1, ..., Ai)⊗F ′′(Ai+1, ..., An) is the totalization of a bicomplex,
so we can lift Fδ to a functor Fε : sCh

×n
k → (n+ 2)-Chk such that Tot ◦ Fε = Fδ. As before,

the differentials in multidegree (p1, ..., pn, q1, q2) are given by

di =





(−1)p1+...+pi−1dA
i

, 1 ≤ i ≤ n

(−1)p1+...+pndF
′(A1,...,Ai) , i = n+ 1

(−1)p1+...+pn+q1dF
′′(Ai+1,...,An) , i = n+ 2

Now the tensor product F ′δ(A
1, ..., Ai)⊗ F ′′δ (Ai+1, ..., An) is obtained by reordering the differ-

entials and totalizing. Specifically, we must pass dn+1 past di+1, ..., dn, which in multidegree
(p1, ..., pn, q1, q2) incurs a sign (−1)q1(pi+1+...+pn). The natural isomorphism in the statement
of the lemma is thus obtained as the transformation gχi of Observation 2.21 where χi is the
cycle (i+ 1, ..., n, n+ 1) ∈ Σn+2.

The above recipe generalizes readily to a version with more than two tensor factors by
replacing χi with the permutation χi1,...,im ∈ Σn+m given by the composition of cycles

χi1,...,im = (i1 + ...+ im + 1, ..., n+m) ◦ ... ◦ (i1 + 1, ..., n+ 1)

To see that this is associative, it is sufficient to look at the case of three factors:

F (A1, ..., An) = F 1(A1, ..., Ai)⊗ F 2(Ai+1, ..., Ai+j)⊗ F 3(Ai+j+1, ..., An)

Associativity of the natural isomorphism above now follows from the identity

(i+ j + 2, ..., n+ 1, n+ 2) ◦ (i+ 1, ..., n, n+ 1)

= (i+ 1, ..., n+ 1, n+ 2) ◦ (i+ j + 1, ..., n+ 1, n+ 2)

in Σn+2. �

Definition 2.23. Write ζn for the natural isomorphism

ζn : (F 1 ⊗ ...⊗ F n)δ
∼−→ F 1

δ ⊗ ...⊗ F n
δ

of functors A×i → Ch(B) given by Lemma 2.22.
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Notation 2.24. Recall the cyclic bar construction from Definition 2.3 (2). We extend this

definiton to the functor C
~k : dgAlgk → Chk by

A 7→ C
~k(A) = C(A⊗k1)⊗ ...⊗ C(A⊗kn)

i.e. C
~k(A) = NδB

cy(A⊗k1)⊗ ...⊗NδB
cy(A⊗kn).

Definition 2.25. Recall that the cyclic bar construction Bcy : dgAlgk → sChk is a symmetric
monoidal functor. We denote the natural structure isomorphism by

θn : Bcy(A1)⊗̂...⊗̂Bcy(An)→ Bcy(A1 ⊗ ...⊗ An)

The isomorphism is given in simplicial degree k − 1 (in which we have nk tensor factors) by
the permutation χn,k ∈ Σnk sending i+ dk to d+ 1 + (i− 1)n for 0 < i ≤ k and 0 ≤ d < n,
with a sign like that in the proof of Lemma 2.4.

Proposition 2.26. The dg-category ÑΣ acts on Hochschild complexes of dg-algebras. That
is, we have natural transformations

ÑΣ(~k, ~m)⊗ C~k → C ~m

of functors dgAlgk → Chk compatible with composition. This action exhibits C : dgAlgk → Chk
as a symmetric monoidal, E∞-comonoidal functor.

Proof. For ~k = (k1, ..., kn) denoting

Nδθ~k = (Nδ(θk1)⊗ ...⊗Nδ(θkn)) ◦ ζn :

N
~k
δ (∆kB

cy(A))→ NδB
cy(A⊗k1)⊗ ...⊗NδB

cy(Akn) = C
~k(A)

where ∆k : sCh → sCh×k is the diagonal functor. If f ∈ ÑΣ, we write (fδ)(A1,...,An) for the
component of fδ at the n-tuple (A1, ..., An) of simplicial chain complexes over k. We now
have a composite morphism

C
~k(A) N

~k
δ (Bcy(A), ..., Bcy(A))

N ~m
δ (Bcy(A), ..., Bcy(A))C ~m(A)

Nδ(θ~k)−1

(fδ)(Bcy(A),...,Bcy(A))

Nδ(θ~m)

We therefore get a morphism

i~k,~m : ÑΣ(~k, ~m)→ Nat(C
~k(A), C ~m(A))

f 7→ Nδθ~m ◦ (fδ ∗ id∆k◦Bcy) ◦ (Nδθ~k)
−1

whose adjoint is the morphism in the statement of the proposition. The contractibility of Ñ
(see Lemma 2.18) now implies that C : dgAlgk → Chk is E∞-monoidal and E∞-comonoidal.
However, since the shuffle maps are strictly symmetric, it is in fact symmetric monoidal as
claimed.

�
Lemma 2.27. The images of ÑΣ

χ ((n), (n)) and ÑΣ
χ′((n), (n)) in EndChk(C((−)⊗n)) are disjoint

for χ 6= χ′.
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Proof. Note that for A a commutative algebra we have

H0(C((−)⊗n)) = HH0((−)⊗n) = (−)⊗n

so the induced action of f ∈ ÑΣ((n), (n)) on H0(C((−)⊗n)) is given by permuting tensor

factors. Namely, ÑΣ
e ((n), (n)) = Ñ((n), (n)) acts as the identity since each f ∈ Ñ((n), (n)) is

homotopic to the identity map. Now each ÑΣ
χ ((n), (n)) is isomorphic to Ñ((n), (n)), the map

given by postcomposition by χ∗, and it follows that each f ∈ ÑΣ
χ ((n), (n)) is homotopic to

χ∗. In particular, for A = k[x] we see that χ and χ′ act differently on k[x]⊗n ' k[x1, ..., xn].
This proves the claim. �

3. DG-fattening of props

In this section we will build the fattening functor for dg-props and prove Theorem A.
The fattening functor will associate to a dg-prop P a certain full subcategory of the free

symmetric monoidal dg-category on P and ÑΣ, modulo relations expressing that the Dold-Kan
morphisms are natural with respect to the morphisms of P .

Remark 3.1. To spell out what Theorem A means, to each dg-prop P , there is a natural
homotopy-coherent P -action on the Hochschild complex of Ass⊗P -algebras. The homotopies

that make up the coherencies are encoded in a replacement dg-prop P̃ which strictify the
homotopy-coherent P -action. This strictification is moreover functorial in the prop.

In order to produce the functor (̃−), we first construct an auxiliary functor Q : dgprop→
dgCat⊗ landing in symmetric monoidal dg-categories. Q is constructed using a natural family

of generators and relations and will contain (̃−) as a full subfunctor, i.e. there will be a

natural transformation (̃−)→ Q whose components are inclusions of full subcategories.

Construction 3.2. • Let C be a dg-category. We define a symmetric monoidal dg-category
C⊗ given as follows. The objects of C⊗ is the free monoid on the objects of C. Given two
words a = a1⊗ ...⊗ an and b = b1⊗ ...⊗ bn in ObC⊗, the morphism complex a→ b in C⊗ is
given by

HomC⊗(a, b) =
⊕

σ∈Σn

n⊗

i=1

HomC(ai, bσ(i)).

We write (f1 ⊗ ...⊗ fn)σ for an elementary tensor in the summand of σ ∈ Σn. Note that for
the empty product ∅ ∈ ObC⊗, the tensor product is indexed over the empty set, which by
convention means that HomC⊗(∅, ∅) = k concentrated in degree 0.

If a and b are words of different lengths, i.e. a = a1 ⊗ ...⊗ an and b = g1 ⊗ ...⊗ bm with
n 6= m, then HomC⊗(a, b) = 0.

The composition

HomC⊗(b, c)⊗ HomC⊗(a, b)→ HomC⊗(a, c)

is given on elementary tensors by sending f : a→ b and g : b→ c, where f = (f1 ⊗ ...⊗ fn)σ
and g = (g1 ⊗ ...⊗ gn)σ′ , to

g ◦ f = (−1)sgn(f,g,χ)(gσ(1) ◦ f1 ⊗ ...⊗ gσ(n) ◦ fn)σ′σ

where χ is the permutation of

(g1 ⊗ ...⊗ gn ⊗ f1 ⊗ ...⊗ fn)
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into

(gσ(1) ⊗ f1 ⊗ gσ(2) ⊗ f2 ⊗ ...⊗ gσ(n) ⊗ fn)

and sgn(f, g, χ) is the weighted sign of χ.
The symmetric monoidal structure on C⊗ is given on objects by multiplication in the free

monoid on ObC and on morphisms by the inclusion

HomC⊗(a, b)⊗ HomC⊗(a′, b′)→ HomC⊗(a⊗ a′, b⊗ b′)
(⊕

σ∈Σn

n⊗

i=1

HomC(ai, bσ(i))

)
⊗
( ⊕

σ′∈Σm

m⊗

j=1

HomC(a′j, b
′
σ′(j))

)
→


 ⊕

σ′′∈Σn+m

n+m⊗

l=1

HomC(a′′l , b
′′
σ′′(l))




where the summand of σ ∈ Σn, σ
′ ∈ Σm lands in the summand of

σ′′ = σ × σ′ ∈ Σn × Σm ↪→ Σn+m

through the canonical inclusion, and an elementary tensor

f1 ⊗ ...⊗ fn ⊗ f ′1 ⊗ ...⊗ f ′m
is sent to

f ′′1 ⊗ ...⊗ f ′′n+m,

where f ′′l : a′′l → b′′σ′′(l) is given by

fl : al → bσ(l) , if 1 ≤ l ≤ n
f ′l−n : a′l−n → b′σ′(l−n) , if n+ 1 ≤ l ≤ n+m

We check that the monoidal product is functorial, i.e. we wish to verify that the following
diagram commutes . Consider morphisms

ai
f i−→ bi

gi−→ ci , i = 0, 1

such that each f i, gi is an elementary tensor

f i = (f i1 ⊗ ...⊗ f in)σi

gi = (gi1 ⊗ ...⊗ gin)σ′i
and compare the operations

H0(g0, g1, f 0, f 1) := (g0 ⊗ g1) ◦ (f 0 ⊗ f 1)

and

H1(g0, g1, f 0, f 1) := (g0 ◦ f 0)⊗ (g1 ◦ f 1).

From the recipes given for composition and monoidal product, we see that H0 and H1 are
at least equal up to sign on elementary tensors. The signs are in both cases the weighted
sign of the same permutation, so they are equal. It follows that the monoidal product is
functorial. Note that the monoidal product is strictly associative and unital, where the unit
for the monoidal structure is given by the empty product ∅.

For a = a1 ⊗ ...⊗ an and b = b1 ⊗ ...⊗ bm, the twist map τ : a⊗ b→ b⊗ a is given by the
elementary tensor

(ida1 ⊗ ...⊗ idan ⊗ idb1 ⊗ ...⊗ idbm)τn,m
where τn,m ∈ Σn+m is the block permutation permuting the first n letters past the latter m
letters.
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Observe that for any elementary tensor f = f1 ⊗ ...⊗ fn ∈ HomC⊗(a, b) and any σ ∈ Σn,
conjugation of f by σ produces the elementary tensor

fσ(1) ⊗ ...⊗ fσ(n) ∈ HomC⊗(σ · a, σ · b).
In particular, for morphisms f : a→ b and f ′ : a′ → b′ in C⊗, the conjugation of f ⊗ f ′ by
τn,m is precisely f ′ ⊗ f , such that the twist morphism τ is a symmetry for the monoidal
structure.

• Let ~Σ be the category whose objects are vectors, and whose morphisms are permutations
of the entries of vectors. Note that ~Σ is concentrated in degree 0, and can also be defined as
N⊗, the free symmetric monoidal dg-category on the discrete dg-category N. Here by discrete
we mean that HomN(n,m) = k in degree 0 if n = m, and zero otherwise. Then there are

symmetric monoidal functors ~Σ→ ÑΣ and ~Σ→ P⊗ which are the identity on objects.

• By viewing the morphism complexes of P⊗ as being concentrated in horizontal degrees,

we give P⊗ an enrichment in bicomplexes. Similarly, we view ÑΣ as being enriched in
bicomplexes, concentrated in vertical degrees. We define a category enriched in bicomplexes
Q0(P ) as follows.

The objects of Q0(P ) are vectors ~k = (k1, ..., kn). To give a description of the morphism

complexes Q0(P )(~k, ~m), we define the following auxiliary notation. For ~k, ~m ∈ Ob Q0(P )

and j ∈ N, let Cj,l(~k, ~m) be given by

Cj(~k, ~m) =

{
P⊗(~k, ~m) , if j even,

ÑΣ(~k, ~m) , if j odd.

Then Q0(P )(~k, ~m) is given by the direct sum

Q0(P )(~k, ~m) =




⊕

i∈N
~x1,...,~xi∈ObQ0(P )

l=0,1

Ci+l(~xi, ~m)⊗Σ Ci−1+l(~xi−1, ~xi)⊗Σ ...⊗Σ Cl(~k, ~x1)




/
∼red,

where the tensor product ⊗Σ means taking the colimit of the diagrams

Cj+l(~xj, ~xj+1)⊗ ~Σ(~xj, ~xj)⊗ Cj−1+l(~xj−1, ~xj)
−→
−→ Cj+l(~xj, ~xj+1)⊗ Cj−1+l(~xj−1, ~xj),

where ~Σ acts via its inclusions into P⊗ and ÑΣ described above. The equivalence relation
∼red is generated as an equivalence relation by the following relations:

(1) Permutation morphisms on the ends are absorbed into their neighbour. For example,
the word

~k0
χ−→ ~k1

φ−→ ~k2

where χ ∈ ~Σ and φ ∈ ÑΣ is equivalent to the word

k0
χ◦φ−−→ ~k2

using the inclusion ~Σ→ ÑΣ.
(2) If a morphism in the middle of a word is a permutation morphism, then it is absorbed

into either its left or right hand neighbour.
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(3) If two adjacent morphisms are either both from P⊗ of both from ÑΣ, then they are
composed.

In other words a morphism in P is a reduced word composed of morphisms in P⊗ and

ÑΣ, where the subcategories ~Σ ⊂ P⊗ and ~Σ ⊂ ÑΣ are identified. Composition is given by
concatenating words and reducing, similarly to the case of free products of algebras. Note that
when we consider a general morphism in Q0(P ) which can be represented by an elementary
tensor, we can add identity arrows at the ends as needed to ensure that the first arrow is from

P⊗ and the last is from ÑΣ. When we work with such morphisms later, we will implicitly
choose a representative of this form.

As for the enrichment in bicomplexes, (f) ∈ P (n,m) has bidegree (|f |, 0) and ψ ∈ ÑΣ(~n, ~m)

has bidegree (0, |ψ|). The horizontal and vertical differentials act on P and ÑΣ respectively.
To be precise, the horizontal differential of a word

~k0
φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γm−1

−−−→ ~k2m

where φi ∈ P⊗ni(~k2i, ~k2i+1) and γi ∈ ÑΣ(~k2i+1, ~k2i+2), is the sum of applications of the

differential to each φi, with sign (−1)|φ
0|+|γ0|+...+|γi−i|, and the vertical differential is defined

similarly.
There is one exceptional object in Q0(P ), the empty vector ~0 = (). The morphism space

HomQ0(~0,~0) is declared to be the ground ring k in bidegree (0, 0). Note that ~0 does not admit

any morphism to or from a non-empty vector, as generators in ÑΣ cannot change the length
of a vector and generators in P⊗ cannot change the number of entries.

• We write ∗ for the concatenation of vectors. For a morphism f : ~k0 → ~k1 in P⊗, and a
vector ~m, let

f ⊗P id : ~k0 ∗ ~m→ ~k1 ∗ ~m
be the tensor product of f and id~m using the symmetric monoidal structure of P⊗. The

morphisms id⊗P f is defined similarly. For a morphism ψ : ~k0 → ~k1 in ÑΣ, we also define

ψ ⊗N id : ~k0 ∗ ~m→ ~k1 ∗ ~m
and similarly id⊗N ψ using the symmetric monoidal structure of ÑΣ.

Let Q1(P ) be the quotient of Q0(P ) with respect to the following relations. For each pair

of morphisms f : ~k0 → ~k1 in P⊗ and ψ : ~m0 → ~m1 in ÑΣ, we impose an interchange relation,
i.e. that the following diagrams commute.

~k0 ∗ ~m0
~k0 ∗ ~m1 ~m0 ∗ ~k0 ~m1 ∗ ~k0

~k1 ∗ ~m0
~k1 ∗ ~m1 ~m0 ∗ ~k1 ~m1 ∗ ~k1

id⊗N ψ

f ⊗P idf ⊗P id

id⊗N ψ

ψ ⊗N id

id⊗P fid⊗P f

ψ ⊗N id

To be precise, Q1(P ) is the quotient of Q0(P ) with respect to the ideal

I =
(
(f ⊗P id) ◦ (id⊗N ψ)− (id⊗N ψ) ◦ (f ⊗P id),

(f ⊗P id) ◦ (id⊗N ψ)− (id⊗N ψ) ◦ (f ⊗P id)
∣∣∣ f ∈ P⊗, ψ ∈ ÑΣ

)
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Note that this relation is an identification of generators which respects bidegrees of
morphisms and is compatible with concatenation of words. It also respects the differentials of
morphisms, hence the result is a well-defined category enriched in bicomplexes. We expand

this notation to general morphisms. Given a morphism f : ~k → ~m in Q1(P ) represented by a
word

~k = ~k0
φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γm−1

−−−→ ~k2m = ~m

where φi ∈ P⊗ni(~k2i, ~k2i+1) and γi ∈ ÑΣ(~k2i+1, ~k2i+2), and a vector ~l, we write f ⊗1 id for the
morphism represented by the word

(~k0 ∗~l) φ0⊗P id−−−−→ (~k1 ∗~l) γ0⊗N id−−−−→ ...
γm−1⊗N id−−−−−−→ (~k2m ∗~l)

We also define id⊗1 f similarly. Note that if ~l = ~0 then

f ⊗1 id = f = id⊗ f.
To see that this construction is well-defined, take morphisms φ : ~k0 → ~k1 and φ′ : ~k1 → ~k2 in
P⊗ and vectors ~m0, ~m1. Then the following properties of the operation −⊗P id are immediate.

(1) id⊗P (φ′ ◦ φ) = (id⊗P φ′) ◦ (id⊗P φ) and similarly for (φ′ ◦ φ)⊗P id),

(2) for the identity morphism id~k : ~k → ~k in P⊗, we have id⊗ id~k = id~m∗~k and id~k ⊗ id =
id~k∗~m in P⊗,

(3) ((φ⊗P id)⊗P id) = φ⊗P id : ~k0 ∗ ~m0 ∗ ~m1 → ~k1 ∗ ~m0 ∗ ~m1,

(4) (id⊗P (φ⊗P id)) = ((id⊗P φ)⊗P id) : ~m0 ∗ ~k0 ∗ ~m1 → ~m0 ∗ ~k1 ∗ ~m1,
(5) d(id⊗P f) = id⊗P df and d(f ⊗P id) = (df)⊗P id.

Similar identities hold for morphisms in ÑΣ. We regard property (2) as a definition if ~k = ~0.

Together these properties imply that if f, g are morphisms ~k0 → ~k1 in Q0(P ) such that f ∼ g
according to the interchange relation, then also (f ⊗1 id) ∼ (g⊗1 id) and (id⊗1 f) ∼ (id⊗1 g),

and that the operations f 7→ f ⊗P id and f 7→ id⊗P f , and the same operations for ÑΣ are
well-defined morphisms of bicomplexes.

The interchange relation now implies that

(id⊗1 f) ◦ (g ⊗1 id) = (g ⊗1 id) ◦ (id⊗1 f)

for any pair of morphisms f : ~k0 → ~k1 and g : ~m0 → ~m1 in Q1(P ).
Finally, observe that for a pair of morphisms

~k0
f0−→ ~k1

f1−→ ~k2

in Q1(P ) and a vector ~m, we have

(f1 ◦ f0)⊗1 id = (f1 ⊗1 id) ◦ (f0 ⊗1 id)

and

id⊗1 (f1 ◦ f0) = (id⊗1 f1) ◦ (id⊗1 f0),

such that (−⊗1 id) and (id⊗1 −) are endofunctors on Q1(P ).

• Recall that for a pair of categories C and D enriched in bicomplexes, their tensor product
C ⊗ D has objects Ob (C ⊗ D) = Ob C ×ObD and morphisms

HomC⊗D((a, b), (a′, b′)) = HomC(a, a
′)⊗ HomD(b, b′).
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We define a symmetric monoidal structure on Q1(P ) as follows. The functor

⊗1 : Q1(P )⊗Q1(P )→ Q1(P )

is given on objects by concatenating vectors. Given two morphisms f : ~k0 → ~k1 and g : ~m0 →
~m1 in Q1(P ), we define the monoidal product

f ⊗1 g : ~k0 ∗ ~m0 → ~k1 ∗ ~m1

by the formula
f ⊗1 g := (id⊗1 g) ◦ (f ⊗1 id).

Since (−⊗1 id) is a well defined operation on morphisms in Q1(P ), this gives rise to a well
defined morphism of bicomplexes

HomQ1(P )(~k0, ~k1)⊗ HomQ1(P )(~m0, ~m1)
−⊗1−−−−→ HomQ1(P )(~k0 ∗ ~m0, ~k1 ∗ ~m1).

We check that ⊗1 is a functor. Given morphisms

~k0
f0−→ ~k1

f1−→ ~k2

and
~m0

g0−→ ~m1
g1−→ ~m2,

we have
(f1 ◦ f0)⊗1 (g1 ◦ g0) = (id⊗1 (g1 ◦ g0) ◦ ((f1 ◦ f0)⊗1 id)

= (id⊗1 g1) ◦ (id⊗1 g1) ◦ (f1 ⊗1 id) ◦ (f0 ⊗ id).

Now the interchange relation implies that

(id⊗1 g1) ◦ (f1 ⊗1 id) = (f1 ⊗1 id) ◦ (id⊗1 g1)

as morphisms in Q1(P ), so that

(f1 ◦ f0)⊗1 (g1 ◦ g0) = (id⊗1 g1) ◦ (f1 ⊗1 id) ◦ (id⊗1 g1) ◦ (f0 ⊗ id)

= (f1 ⊗1 g1) ◦ (f0 ⊗1 g0)

as claimed.
The unit for the monoidal structure is given by the empty vector ~0 = ().
Note also by properties (3) and (4) above that ⊗1 is strictly associative, so ⊗1 defines a

strict monoidal structure on Q1(P ).
To give a symmetry for ⊗1, we first describe how the symmetric group Σn acts on Q1(P )⊗n.

Given an n-tuple of vectors (~k1, ..., ~kn), the permutation

(σ,~k1, ..., ~kn) : ~k1 ∗ ... ∗ ~kn → ~kσ(1) ∗ ... ∗ ~kσ(n)

is given by acting on the source by the block permutation σ|~k1|,...,|~kn| ∈ Σ|~k1|+...+|~kn|, i.e. if

σ(i) = j, then for all 1 ≤ l ≤ |~ki|, we have

σ|~k1|,...,|~kn|

(
|~k1|+ ...+ |~ki−1|+ l

)
= |~k1|+ ...+ |~kj−1|+ l.

If φ : ~k0 → ~k1 is a morphism in P⊗, ~m is a vector, and τ ∈ Σ2 is the twist permutation, then
in P⊗ we have

(id⊗P φ) ◦ τ|~k0|,|~m| = τ|~k1|,|~m| ◦ (φ⊗P id)

and
(φ⊗P id) ◦ τ|~m|,|~k0| = τ|~m|,|~k1| ◦ (id⊗P φ)
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and similarly for γ : ~k0 → ~k1 in ÑΣ. This implies that for any morphism f : ~k0 → ~k1 in Q1(P ),
we have

(id⊗1 f) ◦ τ|~k0|,|~m| = τ|~k1|,|~m| ◦ (f ⊗1 id)

and

(f ⊗1 id) ◦ τ|~m|,|~k0| = τ|~m|,|~k1| ◦ (id⊗1 f).

In particular, for g : ~m0 → ~m1 another morphism in Q1(P ) we have

(g ⊗1 f) ◦ τ|~k0|,|~m0| = τ|~k1|,|~m1| ◦ (f ⊗1 g)

such that τ is a symmetry for ⊗1.

Notation 3.3. • We write (1)n for the vector (1, ..., 1) of length n.

• For a vector ~a = (a1, ..., an), we write l(~a) = n for its number of elements.

Remark 3.4. The following definition describes a way of functorially arranging the en-

tries of a vector ~k = (k1, ..., kn) (in particular, l(~k) = n) according to the entries of a
vector ~a of length n, which we use to define the functor Q. Informally one should think

of Par~k(~a) as given by arranging the entries of ~k according to the entries of ~a. Simi-

larly, for a morphism γ : ~a → ~b, one may think of Par~k(γ) as the natural transformation

NPar~k(~a) → NPar~k(~b) of functors sMod×k → Chk whose (A1, ..., Ak)-component equals the
(A1⊗̂...⊗̂Ak1 , ... , Ak1+...+kn−1+1⊗̂...⊗̂Ak)-component of γ.

Definition 3.5. For each vector ~k = (k1, ..., kn), k = |~k|, let ι~k : sMod×k → sMod×n be the
functor taking a k-tuple (A1, ..., Ak) to the n-tuple (B1, ..., Bn) where

Bi = Ak1+...+ki−1+1⊗̂...⊗̂Ak1+...+ki .

Writing Nn for the full subcategory of Ñ on the objects ~a with |~a| = n, let

Par~k : Nn → Nk

be the functor taking ~a = (a1, ..., al) to

Par~k(~a) := (k1 + ...+ ka1 , ka1+1 + ...+ ka1+a2 , ... , ka1+...+al−1+1 + ...+ kn)

i.e. the unique vector such that N~a ◦ ι~k = NPar~k(~a). In particular we have |Par~k(~a)| = |~k| and

l(Par~k(~a)) = l(~a). For a morphism γ : ~a→ ~b, Par~k(γ) is given by γ ∗ idι~k . In particular, the
following diagram commutes.

sMod×k sMod×n

Chk

Par~k(γ)=⇒ γ=⇒

ι~k

N
~b

N~aNPar~k(~a)

NPar~k(~b)

In particular, for any vector ~a, we have Par~a((1)l(~a)) = ~a.
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Construction 3.6. • Let ~a = (a1, ..., al) be an object of Nn (i.e. |~a| = n) and f =

f1 ⊗ ...⊗ fn : ~k → ~m a morphism in P⊗, where l(~k) = l(~m) = n. For each | ≤ i ≤ l we have
a morphism

(ka1+...ai+1 + ...+ ka1+...ai+1
)

(fa1+...ai+1⊗...⊗fa1+...ai+1 )
−−−−−−−−−−−−−−−−→ (ma1+...ai+1 + ...+ma1+...ai+1

)

in P , and we write Parf(~a) : Par~k(~a) → Par~m(~a) for the tensor product in P⊗ of these
morphisms for 1 ≤ i ≤ l. Similarly to Definition 3.5, one can think of this as grouping the
factors of f according to the entries of ~a. Below is an example where ~a = (1, 3). In this
example,

Parf (~a) = Parf (~a)1 ⊗P Parf (~a)2

with

a1 = 1 {

a2 = 3





f1 : k1 → m1

f2 : k2 → m2

f3 : k3 → m3

f4 : k4 → m4

} Parf (~a)1 = f1 : k1 → m1

 Parf (~a)2 =

⊗4
i=2 fi :

∑4
i=2 ki →

∑4
i=2mi.

Let Q(P ) be the quotient of Q1(P ) with respect to the ideal generated by the following

relations. For each morphism γ : ~a → ~b in Nn and each morphism f : ~k → ~m in P⊗ with

l(~k) = l(~m) = n, the following diagram commutes:

Par~k(~a) Par~m(~a)

Par~k(
~b) Par~m(~b)

Parf (~a)

Par~m(γ)Par~k(γ)

Parf (~b)

We call this the partition relation. If two morphisms f, g are equivalent under the partition
relation, we write f ∼Par g. The partition relation captures in a more general manner the
naturality of shuffle and Alexander-Whitney maps with respect to algebra homomorphisms,
see Observation 3.8.

These relations are compatible with concatenations of words and respect bidegrees of
morphisms. They are also compatible with horizontal and vertical differentials as the relation
only depends on the source and target of morphisms, hence the result is a well-defined
category enriched in bicomplexes.

To see that the symmetric monoidal structure is compatible with these relations, observe
that

Par~k(~a) ∗ ~r = Par~k∗~r(~a ∗ (1)l(~r)),

which implies that the following diagrams are equal and commute.
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Par~k(~a) ∗ ~r Par~m(~a) ∗ ~r

Par~k(
~b) ∗ ~r Par~m(~b) ∗ ~r

Parf (~a) ⊗P id

Par~k(γ) ⊗N id Par~m(γ) ⊗N id

Parf (~b) ⊗P id

Par~k∗~r(~a ∗ (1)l(~r)) Par~m∗~r(~a ∗ (1)l(~r))

Par~k∗~r(
~b ∗ (1)l(~r)) Par~m∗~r(~b ∗ (1)l(~r))

Parf⊗P id(~a ∗ (1)l(~r))

Par~k∗~r(γ ⊗N id) Par~m∗~r(γ ⊗N id)

Parf⊗P id(~b ∗ (1)l(~r))

The same statement also holds for tensoring with id on the left.

In particular this implies that if f, g : ~k0 → ~k1 are morphisms in Q1(P ) such that f ∼Par g,
and ~m is a vector, then

(f ⊗1 id) ∼Par (g ⊗1 id)

and

(id⊗1 f) ∼Par (id⊗1 g),

which in turn implies that the monoidal product respects the partition relation. It follows
that the symmetric monoidal structure on Q1(P ) descends to a symmetric monoidal structure
on Q(P ).

• Let P, P ′ be dg-props and let g : P → P ′ be a morphism of dg-props. The functor g
induces a symmetric monoidal functor g⊗ : P⊗ → P ′⊗. Define Q0(g) : Q0(P ) → Q0(P

′) to

be the induced functor.It is the identity on objects and on generators coming from ÑΣ,
and acts by g⊗ on generators coming from P⊗. This functor induces a symmetric monoidal
functor Q(P ) → Q(P ′). To see this, observe that since g is a prop morphism, we have
Q0(g)(f ⊗1 id) = Q0(g)(f)⊗1 id for any morphism in Q0(P ) and Q(Parf(~a)) = Parg⊗(f)(~a)
for any morphism in P⊗. This implies that Q0(g) descends to a functor Q(g) : Q(P )→ Q(P ′).
Symmetric monoidality of this functor can be seen by observing that

Q(g)(f0)⊗1 Q(g)(f1) = (id⊗1 Q(g)(f1)) ◦ (Q(g)(f0)⊗1 id)

= Q(g)(id⊗1 f1) ◦Q(g)(f0 ⊗1 id) = Q(g) ((id⊗1 f1) ◦ (f0 ⊗1 id)) = Q(g)(f0 ⊗1 f1)

and that since Q(g) is the identity on ÑΣ, the image of the twist morphism in Q(P ) is the
twist morphism in Q(P ′).

Lemma 3.7. The canonical functors P⊗ → Q(P ) and ÑΣ → Q(P ) are symmetric monoidal.

Proof. Let F : P⊗ → Q(P ) be the canonical functor taking a morphism f : ~k → ~m to the

morphism represented by the singleton word f . Note that for g : ~m→ ~l another morphism in
P⊗, we have

F (g) ◦ F (f) ∼red F (g ◦ f)

such that this is indeed a functor. Since the twist morphism in Q(P ) lives in ~Sigma, the
functor F takes the twist morphism of P⊗ to the twist morphism of Q(P ). To see that
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F is symmetric monoidal, it is therefore sufficient to observe that for a pair of morphisms

fi : ~k0,i → ~mi, i = 0, 1 in P⊗, we have

(id⊗P f1) ◦ (f0 ⊗P id) ∼red f0 ⊗P f1,

such that F (f0)⊗1 F (f1) = F (f0 ⊗P f1) in Q(P ). The case for ÑΣ is identical. �

Observation 3.8. The shuffle and Alexander-Whitney maps introduced in Notation 2.17

are special cases of the partition construction. In particular, if ~k has l(~k) = n, then

sh~k = Par~k(shn) : ~k → (|~k|)
and similarly

AW~k = Par~k(AWn) : (|~k|)→ ~k.

The partition relations imply that if ~k0 and ~k1 are vectors with l(~k0) = l(~k1) = n and

f = (f1, ..., fn) : ~k0 → ~k1 is a morphism in P⊗, then the following squares commute.

~k0
~k1

(|~k0|) (|~k1|)

(|~k0|) (|~k1|)

~k0
~k1

f

Par~k0(shn) = sh~k0 sh~k1

Parf ((n))

Parf ((n))

AW~k0
AW~k1

= Par~k1(AWn)

f

Observation 3.9. • For any n-tuple f = (f1, ..., fn) of morphisms in P , we have Parf ((1)n) =
f .
• For a sequence

~k0
f−→ ~k1

g−→ ~k2

of morphisms in P⊗, where the l(~ki) = n and ~a ∈ Nn we have Parg(~a) ◦ Parf (~a) = Parg◦f (~a).

Definition 3.10. For C a category enriched in bicomplexes, let Tot(C) be the dg-category
whose morphism complexes are the ⊕-totalization of the morphism bicomplexes in C.
Lemma 3.11. There is a natural symmetric monoidal functor F : Tot(Q(P ))→ P defined on

objects by taking ~k to |~k|, and on morphisms by taking f = (f1, ..., fn) : ~k → ~m in P⊗(~k, ~m)

to Parf ((n)) : |~k| → |~m| in P , and γ : ~k → ~m in Ñ(~k, ~m)i to id|~k| if i = 0 and 0 otherwise.

Proof. It is clear that the assignment is natural in P if it is well-defined, which we now verify.

Given a morphism γ : ~a→ ~b in Nn and f = (f1, ..., fn) : ~k → ~m in P⊗, we must verify that
the diagram

Par~k(~a) Par~m(~a)

Par~k(
~b) Par~m(~b)

Parf (~a)

Par~m(γ)Par~k(γ)

Parf (~b)
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remains commutative after applying F . It is sufficient to assume that γ ∈ Ñ(~a,~b)0. But F
takes Par~k(γ) to the identity and we have in general that

ParParf (~a)((l(~a)) = Parf ((n))

such that
F (Parf (~a)) = Parf ((n)) = F (Parf (~b)),

so F is well defined. To see that F preserves the differentials on each morphism complex,
note that for a morphism

f =

{
~k0

φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γm−→ ~k2m

}

where φi ∈ P⊗(~k2i, ~k2i+1) and γi ∈ Ñ(~k2i+1, ~k2i+2), the differential is given by

df = (dvγ
m) ◦ φm ◦ ... ◦ γ0 ◦ φ0 + (−1)|γ

m|γm ◦ (dhφ
m) ◦ ... ◦ γ0 ◦ φ0 + ...

+(−1)|γ
m|+|φm|+...+|γ0|γm ◦ φm ◦ ... ◦ γ0 ◦ dhφ0

In the case that Ff is non-zero (i.e. each |γi| = 0) this differential is identical to the
differential in P . �
Lemma 3.12. Let P be a dg-prop and let ~k, ~m ∈ ObQ(P ). The map

HomTot(Q(P ))(~k, ~m)→ HomP (|~k|, |~m|)
induced by F is a quasi-isomorphism.

Proof. Denote by cvHomP (|~k|, |~m|) the bicomplex which has HomP (|~k|, |~m|) concentrated in
vertical degree 0, and consider the map of bicomplexes

A : cvHomP (|~k|, |~m|) ' Ñ((|~m|), (|~m|))⊗ HomP (|~k|, |~m|)→ HomQ(P )(~k, ~m)

where the left map is the homotopy equivalence taking f ∈ HomP (|~k|, |~m|) to id ⊗ f , and
the right map takes γ ⊗ f to AW~m ◦ γ ◦ f ◦ sh~k. We will show that the totalization of A is a
quasi-isomorphism and a quasi-inverse to the map induced by F on Hom-complexes.

Let f : ~k → ~m with |f | = (d, d′) in Q(P ) be a composition of generators of Q(P ), i.e. f is
represented by an elementary tensor

~k0
φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γm−1

−−−→ ~k2m

in Q0(P )(~k, ~m), where φi ∈ P⊗(~k2i, ~k2i+1) and γi ∈ Ñ(~k2i+1, ~k2i+2)0. We write

ni := l(~k2i) = l(~k2i+1).

For such an f , we write G(f) ∈ HomP (|~k0|, |~k2m|) for the morphism

G(f) = Parφm−1((nm−1)) ◦ ... ◦ Parφ0((n0)).

Note that G(f) does not depend on the representative of f . In particular, well-definedness
with respect to ∼Par can be seen by the identity

ParParφ(~a)((l(~a)) = Parφ((n)).

for any φ : ~k → ~m in P⊗ with l(~k) = n.
If for any φ which is represented by an elementary tensor, the homology class of φ is

represented by a composition AW~m ◦ γ̃ ◦ (G(φ)) ◦ sh~k, where γ̃ ∈ Ñ((|~m|), (|~m|))d′ , then the
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map A above is a quasi-isomorphism after totalizing. Indeed, assume that f ∈ HomQ(P )(~k, ~m)
is a cycle with respect to the vertical differential. It is given by a sum

f = f1 + ...+ fn ∈ HomQ(P )(~k, ~m)d,n.

where each fi is represented by an elementary tensor. We may assume that each fi has the

form AW~m ◦ γi ◦ (G(fi)) ◦ sh~k. Using the contractibility of Ñ , we may in fact assume that
the γi are identical, such that f represents the same vertical homology class as

AW~m ◦ γ ◦ (G(f)) ◦ sh~k
for some γ ∈ Ñ((|~m|), (|~m|)). Now the vertical differential acts only on γ, which must be a

cycle, hence a boundary in Ñ((|~m|), (|~m|)) unless d = 0, hence this cycle represents a trivial
homology class if d > 0. In the case d = 0, γ = id is a cycle which is not a boundary. It
follows that on homology,

H∗(HomQ(P )(~k, ~m); dv) ' HomP (|~k|, |~m|).
We get an isomorphism of E1-pages of the spectral sequence for a double complex:

H∗(Ñ((|~m|), (|~m|))⊗ HomP (|~k|, |~m|), dv) ∼−→ H∗(HomQ(P )(~k, ~m); dv)

hence A is a quasi-isomorphism after totalizing. Now, for any f ∈ HomP (k,m) we have

F ◦ Tot(A)(f) = F (AW~m ◦ (f) ◦ sh~k) = f

such that F ◦ Tot(A) is the identity. By the 2-out-of-3 property for quasi-isomorphisms, F
induced quasi-isomorphisms on Hom-complexes.

In the following, for a, b elements of a bicomplex C with |a| = |b| = (d, d′), a vertical
homotopy h : a ' b means an element h of C with |h| = (d, d′ + 1) such that dvh = b− a.

We are left to show that each morphism f ∈ HomQ(P )(~k, ~m) which is a composition of
generators admits a homotopy to the desired form. This is done by performing (strong)
induction on the vertical degree d′. For d′ = 0, the morphism f is given a priori by a sequence
of generators

~k0
φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γm−1

−−−→ ~k2m

where φi ∈ P⊗(~k2i, ~k2i+1) and γi ∈ Ñ(~k2i+1, ~k2i+2)0. Write ni := l(~k2i) = l(~k2i+1). To begin,
we may fix for each γi a vertical homotopy c(γi) : γi ' AW~k2i+2

◦ sh~k2i+1
. Applying the c(γi)

we obtain a new morphism

g = ~k0
φ0

−→ ~k1

AW~k2
◦sh~k1−−−−−−→ ~k2

φ1

−→ ...
AW~k2m

◦sh~k2m−1−−−−−−−−−−→ ~k2m

equipped with a vertical homotopy f ' g. Now repeated application of the relations

~k2i
~k2i+1

(|~k2i|) (|~k2i+1|)

(|~k2i|) (|~k2i+1|)

~k2i
~k2i+1

φi

sh~k2i sh~k2i+1

Parφi((ni))

Parφi((ni))

AW~k2i
AW~k2i+1

φi
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allows us to rewrite g as the composition

g = AW~k2m
◦ Parφm−1((nm−1)) ◦ (AW~k2m−2

◦ sh~k2m−2
) ◦ ...

... ◦ Parφ1((n1)) ◦ (AW~k2
◦ sh~k2

) ◦ Parφ0((n0)) ◦ sh~k0

Now choose vertical homotopies β~k2i
: (AW~k2i

◦ sh~k2i
)→ id(|~k2i|), giving us a composition of

the desired form. This completes the base case.
For d′ > 0, we may again write f as a sequence of generators

~k0
φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γm−1

−−−→ ~k2m

where φi ∈ P⊗(~k2i, ~k2i+1) with ni := l(~k2i) = l(~k2i+1) and now γi ∈ Ñ(~k2i+1, ~ki+1,0)d′i . We
now consider two cases. Assume first that d′i < d′ for each i. Let j be the least i such that
|γi| > 0. By our assumption on the d′i, j < m− 1. Write f ′ for the composition

~k2j+2
φj+1

−−→ ~k2j+3
γj+1

−−→ ~kj+2,0
φj+2

−−→ ...
γm−1

−−−→ ~k2m

and write f ′′ for the composition

~k0
φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γj−→ ~k2j+2.

By induction, we may rewrite f ′ and f ′′ up to homotopy as

f ′ ' AW~k2m
◦ γ̃′ ◦ (G(f ′)) ◦ sh~k2j+2

where γ̃′ ∈ Ñ((m), (m))d′j+1+...+d′m−1
, and

f ′′ ' AW~k2j+2
◦ γ̃′′ ◦ (G(f ′′)) ◦ sh~k0

where γ̃′′ ∈ Ñ((|~k2j+2|), (|~k2j+2|))d′0+...+d′j . Hence we get a vertical homotopy

f ' AW~k2m
◦ γ̃′ ◦ (G(f ′)) ◦ γ̃′′ ◦ (G(f ′′)) ◦ sh~k0

By induction, we may now rewrite

(G(f ′)) ◦ γ̃′′ ◦ (G(f ′′)) ' γ̃′′′ ◦ (G(f ′)) ◦ (G(f ′′)) = γ̃′′′ ◦ (G(f))

for some γ̃′′′ ∈ Ñ((|~k2m|), (|~k2m|))d′0+...+d′j to obtain a composition of the desired form. This

completes the case when d′i < d′ for all i.
Finally, assume that there is a j such that d′j = d′. If j = m− 1, then the result follows

from the base case and contractibility of Ñ((|~m|), (|~m|)). Namely, for a morphism f in Q(P )
represented by a sequence of generators

~k0
φ0

−→ ~k1
γ0

−→ ~k2
φ1

−→ ...
γm−1

−−−→ ~k2m

as above, where |γm−1| = d′, we get vertical homotopies

f ' γm−1 ◦ AW~k2m−1
◦ γ′ ◦ (G(f)) ◦ sh~k0

' AW~k2m
◦ γ ◦ (G(f)) ◦ sh~k0

for some γ′ ∈ Ñ((|~k2m−1|), (|~k2m−1|))0 and γ ∈ Ñ((|~k2m|), (|~k2m|))d′ , where the first homotopy

comes from the base case, and the second by contractibility of Ñ((|~m|), (|~m|)).
If j < m − 1, we will provide a vertical homotopy between f and another morphism f ′

for which d′j+1 = d′. By the above, this will finish the argument. We apply a homotopy

γj ' AW~k2j+2
◦ γ̄j ◦ sh~k2j+1

where γ̄j ∈ Ñ((|~k2j+2|), (|~k2j+2|))d′ . By contractibility, we may
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assume that γ̄j is of the form Par~k2j+2
(γ′j) for some γ′j ∈ Ñ((nj+1), (nj+1))d′ . To name a

concrete such element, one can use the (higher) homotopies witnessing sh and AW as mutual
homotopy inverses. Now using the relations

(|~k2j+2|) (|~k2j+3|)

(|~k2j+2|) (|~k2j+3|)

Parφj+1((nj))

Par~k2j+2
(γ′j) Par~k2j+3

(γ′j)

Parφj+1((nj))

we obtain a composition

f ' f ′ =

{
~k′0

φ′0−→ ~k′1
γ′0−→ ~k′2

φ′1−→ ...
γ′m−1

−−−→ ~k′2m

}

where for i 6= j+ 1 we have ~k′2i = ~k2i and ~k′2i+1 = ~k2i+1, for i 6= j+ 1 we have φ′i = φi, and for

i 6= j+1, j we have γi = γ′i. Finally, ~k′2j+2 = (|~k2j|), ~k′2j+3 = (|~k2j+3|), φ′j+1 = Parφj+1((nj+1)),

γ′j = sh~k2j+1
and γ′j+1 = γj+1 ◦ AW~k2j+3

◦ Par~k2j+3
(γ′j). Collecting the differences between f

and f ′ in a diagram, we have

~k2j+1
~k2j+2

~k2j+3
~k2j+4

(|~k2j+1|) (|~k2j+1|)

(|~k2j+3|) (|~k2j+3|)

(∼)

γj

γ′j = sh~k2j+1

φj+1 γj+1

Par~k2j+2
(γ′j)

φ′j+1 = Parφj+1((nj+1))

AW~k2j+2

Parφj+1((nj+1))

Par~k2j+2
(γ′j)

AW~k2j+3

γ′j+1

where the square marked (∼) commutes up to vertical homotopy.
We see now that for the composition f ′, |γ′j+1| = d′, and this finishes the argument. �
Recall that for a prop P , a P -algebra is a symmetric monoidal functor Φ: P → Chk and a
Ass⊗ P -algebra is the same as a symmetric monoidal functor P → dgAlgk.

Lemma 3.13. The functor Tot(Q(−)) : dgprop→ dgCat⊗ has the property that there is a
natural transformation of functors dgpropop → Cat

α : Fun⊗(−, dgAlgk)→ Fun⊗(Tot(Q(−)),Chk)

such that αP (Φ)(1) = C(Φ(1)).

Proof. We divide the proof into several steps. First we construct the functors αP (Φ). Then
we show functoriality in Φ. Finally we will show naturality in P .

Step 1: Constructing αP (Φ).
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Let P be a dg-prop, and let Φ: P → dgAlgk be a symmetric monoidal functor. Throughout
this section of the proof, we write A = Φ(1) for ease of notation. We will produce a symmetric

monoidal functor αP (Φ): Tot(Q(P )) → Chk that sends ~k to C
~k(A) (recall Notation 2.24).

We describe the action of αP (Φ) on morphisms in terms of the generators of Tot(Q(P )). If
f : n→ m is in P , then (f) acts by

C(n)(A) ' C(Φ(n))
C(f)−−→ C(Φ(m)) ' C(m)(A).

This determines the action of morphisms in P⊗. Furthermore, Ñ acts according to (the proof
of) Proposition 2.26. This determines how the generators of Tot(Q(P )) act. Note that the

relations ∼red are preserved by this assignment. Furthermore, if f : ~k0 → ~k1 is in P⊗ and

ψ : ~m0 → ~m1 is in ÑΣ, we have isomorphisms C
~k0∗~m0(A) = C

~k0(A)⊗ C ~m0(A), and modulo
these isomorphisms, we have

αP (Φ)(id~m0 ⊗P f) = idC ~m0 (A) ⊗ αP (Φ)(f)

and

αP (Φ)(φ⊗N id~k0
) = αP (Φ)(ψ)⊗ id

C
~k0 (A)

such that the interchange relation is preserved. Since

(
idC ~m0 (A) ⊗ αP (Φ)(f)

)
◦
(
αP (Φ)(ψ)⊗ id

C
~k0 (A)

)
= (αP (Φ)(f)⊗ αP (Φ)(ψ))

we have

αP (Φ)(f ⊗1 g) = αP (Φ)(f)⊗ αP (Φ)(g)

such that αP (Φ) defines a symmetric monoidal functor Tot(Q1(P ))→ Chk.
To see that this assignment descends to a symmetric monoidal functor Tot(Q(P ))→ Chk,

we are left to verify that the partition relations are preserved. Let f = (f1, ..., fn) : ~k → ~m be

an n-tuple of morphisms in P and let γ : ~a→ ~b be a morphism in Nn. We are will verify that
the relations

Par~k(~a) Par~m(~a)

Par~k(
~b) Par~m(~b)

Parf (~a)

Par~m(γ)Par~k(γ)

Parf (~b)

are preserved under the assignment αP (Φ). There is an isomorphism (see Definition 2.25 and
the proof of Proposition 2.26)

αP (Φ)(Par~k(~a)) = CPar~k(~a)(A)
Nθ−1

~a→ N~a(Bcy(A⊗k1), ..., Bcy(A⊗kn)).

Write N~a(Bcy(A
~k)) for the latter. Consider the following diagrams:
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N~a(Bcy(A
~k)) N~a(Bcy(A~m))

N
~b(Bcy(A

~k)) N
~b(Bcy(A~m))

CPar~k(~a)(A) CPar~m(~a)(A)

N~a(Bcy(A
~k)) N~a(Bcy(A~m))

N~a(Bcy(f))

γBcy(A~m)γ
Bcy(A

~k)

N
~b(Bcy(f))

αP (Φ)(Parf (~a))

Nθ−1
~a

Nθ−1
~a

N~a(Bcy(f))

The left diagram commutes by the definition of Ñ , while the right diagram commutes by the
naturality of the symmetric monoidal structure maps of Bcy. Finally, observe that

αP (Φ)(Par~k(γ)) = Nθ~b ◦ γBcy(A~k)
◦Nθ−1

~a

Together these facts imply that the relations in Tot(Q(P )) are preserved by the action. To
be precise, we have a commutative diagram

CPar~k(~a)(A) CPar~m(~a)(A)

N~a(Bcy(A
~k)) N~a(Bcy(A~m))

N
~b(Bcy(A

~k)) N
~b(Bcy(A~m))

CPar~k(~b)(A) CPar~m(~b)(A)

αP (Φ)(Parf (~a))

Nθ−1
~a Nθ−1

~a

N~a(Bcy(f))

γ
Bcy(A

~k)
γBcy(A~m)

N
~b(Bcy(f))

Nθ~b Nθ~b

αP (Φ)(Parf (~b))

αP (Φ)(Par~k(γ) αP (Φ)(Par~m(γ)

Thus αP (Φ) is a functor from Tot(Q(P )) as claimed.

Step 2: Showing that αP is a functor.

We will notationally identify an object in Fun⊗(Ass⊗P,Chk) with its value at 1. Let φ : A→
B be a morphism in Fun⊗(P, dgAlgk). We will produce a natural transformation αP (A)→
αP (B). The component at ~l ∈ Q(P ) is given by applying φ1 : A → B componentwise,

i.e. αP (φ)~l = C
~l(φ1) : C

~l(A) → C
~l(B). It is sufficient to check naturality against the

generators of Q(P ). If f : n→ m is a morphism in P , then the following diagram commutes
because it commutes before applying C(−).

C(A⊗n) C(B⊗n)

C(A⊗m) C(B⊗m)

C(φn)

C(fB)C(fA)

C(φm)
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Let γ : ~k → ~m be a morphism in Ñ and consider the following diagrams:

C
~k(A) N

~k(Bcy(A))

C
~k(B) N

~k(Bcy(B))

N
~k(Bcy(A)) N ~m(Bcy(A))

N
~k(Bcy(B)) N ~m(Bcy(B))

Nθ−1
~k

N
~k(Bcy(φ))C

~k(φ)

Nθ−1
~k

Nγ(Bcy(A))

N ~m(Bcy(φ))N
~k(Bcy(φ))

Nγ(Bcy(B))

The left diagram commutes by naturality of the symmetric monoidal structure maps of Bcy

and the right diagram commutes by the definition of Ñ . Since γ acts by

αP (A)(γ) = Nθm ◦Nγ(Bcy(A)) ◦Nθ−1
~k

the commutativity of these two families of diagrams implies naturality with respect to the

morphisms in ÑΣ.

Step 3: Showing that α is natural in P .

Let i : P → P ′ be a morphism of dg-props. We need to check commutativity of the diagram

Fun⊗(P ′, dgAlgk) Fun⊗(Tot(Q(P ′)),Chk)

Fun⊗(P, dgAlgk) Fun⊗(Tot(Q(P )),Chk)

αP ′

i∗ Tot(Q(i))∗

αP

Let Φ: P ′ → dgAlgk be a symmetric monoidal functor. We first show that the functors
αP (i∗Φ) and Tot(Q(i))∗αP ′(Φ) are equal. Since i and Tot(Q(i)) are isomorphisms on objects,
we have

αP (i∗Φ)(~k) = C
~k(i∗Φ(1)) = C

~k(Φ(1))

and
Tot(Q(i))∗αP ′(Φ)(~k) = αP ′(Φ)(~k) = C

~k(Φ(1))

so they are equal on objects. Let γ : ~k → ~m be a morphism in ÑΣ. Since Tot(Q(i)) is the

identity on ÑΣ, we similarly have

Tot(Q(i))∗αP ′(Φ)(γ) = αP ′(Φ)(γ) = Nθm ◦Nγ(Bcy(Φ(1))) ◦Nθ−1
~k

and

αP (i∗Φ)(γ) = Nθm ◦Nγ(Bcy(i∗Φ(1))) ◦Nθ−1
~k

= Nθm ◦Nγ(Bcy(Φ(1))) ◦Nθ−1
~k

so the action of ÑΣ coincides as well. We now compare the action by a morphism f : k → m
in P . We have

αP (i∗Φ)(f) : C(k)(Φ(1)) ' C(Φ(k))
C(i(f))−−−−→ C(Φ(m)) ' C(m)(Φ(1)).

Notice that αP (i∗Φ)(f) = αP ′(Φ)(i(f)). Now since Tot(Q(i))(f) = i(f) in Tot(Q(P ′)), we
have

Tot(Q(i))∗αP ′(Φ)(f) = αP ′(Φ)(i(f))



30 ESPEN AUSETH NIELSEN

so the two functors coincide on objects.
Before we verify that the functors also agree on morphisms, we recall a basic fact about

compositions of natural transformations. If C, C ′,D are categories, j : C → C ′ is a functor
and α : F ⇒ G : C ′ → D is a natural transformation, then the pullback of α along j is given
componentwise by (α ∗ idj)c = αj(c).

For a morphism ψ : Φ→ Ψ, we have the natural transformations

αP (i∗ψ) : αP (i∗Φ)→ αP (i∗Ψ)

and

Tot(Q(i))∗αP ′(ψ) : Tot(Q(i))∗αP ′(Φ)→ Tot(Q(i))∗αP ′(Ψ)

of functors Tot(Q(P ))→ Chk. It is sufficient to check that they coincide on components. Let
~k be an object of Tot(Q(P )). Then since i is the identity on objects, we get

αP (i∗ψ)(~k) = C
~k(i∗ψ(1)) = C

~k(ψ(1))

and

Tot(Q(i))∗αP ′(ψ)(~k) = αP ′(ψ)(~k) = C
~k(ψ(1))

so they are equal. �

Proof of Theorem A: Define (̃−) : dgprop → dgprop to be the functor taking a dg-prop P
to the full subcategory of Tot(Q(P )) generated by the objects {(1)n}n≥0. To see that this
defines a functor, recall from Construction 3.6 that for a morphism of dg-props P → P ′,
the induced symmetric monoidal functor Tot(Q(P ))→ Tot(Q(P ′)) is the identity on object

monoids, hence it restricts to a prop morphism P̃ → P̃ ′.

The natural quasi-equivalence (̃−)→ id.

Let F |P̃ : P̃ → P be the composition

P̃ ↪→ Tot(Q(P ))
F−→ P

It is clear that F |P̃ induces an isomorphism on object monoids. By Lemma 3.12, F |P̃ also
induces quasi-isomorphisms on Hom-complexes, hence it is a quasi-equivalence. Naturality of

F and the inclusion P̃ → Tot(Q(P )) imply that F |P̃ is a natural quasi-equivalence.

The natural transformation α̃.

To produce the natural transformation α̃, we use the transformation α from Lemma 3.13.
Recall that there is an equivalence of categories

Fun⊗(Ass⊗ P,Chk) ' Fun⊗(P, dgAlgk).

The natural inclusion i : (̃−)→ Tot(Q(−)) gives us a natural transformation

i∗ : Fun⊗(Tot(Q(−)),Chk)→ Fun⊗((̃−),Chk)

and we define α̃ to be the composition

α̃ = i∗ ◦ α : Fun⊗(Ass⊗−,Chk)→ Fun⊗((̃−),Chk).
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Because α̃ is a restriction of α, we have that for any prop P , and symmetric monoidal functor
Φ: Ass⊗ P → Chk, there is an equality α̃P (Φ)(1) = αP (Φ)(1) = C(Φ(1)), hence α̃ has the
stated properties.

�

Example 3.14. Consider the example P = CHopf , the prop encoding a commutative Hopf
algebra structure. Note that every morphism in CHopf is an algebra homomorphism, hence
we have an equivalence Ass⊗CHopf ' CHopf and Theorem A gives a recipe for the natural
coherent commutative Hopf algebra structure on Hochschild chains of commutative Hopf

algebras. In particular, C̃Hopf is generated in degree 0 by the morphisms

()
η−→ (1)

(1, 1)
sh−→ (2)

m−→ (1)

(1)
ε−→ ()

(1)
∆−→ (2)

AW−−→ (1, 1)

(1)
S−→ (1)

An example of a generator in degree 1 is the bialgebra relation, in which we need the homotopy

θ ∈ ÑΣ((2, 2), (2, 2))1 to interpolate between the upper and lower legs of the diagram. Here
F ∈ Σ4 is the transposition (2, 3).

(1, 1) (2, 2) (1, 1, 1, 1)

(2) (4) (2, 2)

(1) (2) (1, 1)

θ =⇒

(∆,∆)

sh

F ◦ (AW,AW )

Par(2,2)(sh) (sh, sh)

Par(∆,∆)((2))

m

Par(2,2)(AW ) ◦ F∗

Par(m,m)((2)) ◦ F∗ (m,m)

(∆) AW

In a similar way, we need the contraction α(1,1) : AW ◦ sh ' id ∈ ÑΣ((1, 1), (1, 1)) for the
antipode diagrams.

Note that C̃Hopf still has a strictly commutative multiplication. If CEnHopf encodes

commutative and En-cocommutative Hopf algebras, then ˜CEnHopf will also be En cocom-
mutative for n ≤ ∞, but if CCHopf is the prop encoding a Hopf algebra structure which

is both commutative and cocommutative, then ˜CCHopf is strictly commutative but only
E∞-cocommutative, since AW is not a symmetric monoidal transformation.
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[3] Albrecht Dold, Über die Steenrodschen Kohomologieoperationen, Ann. of Math. 73, 1961, 258–294.
[4] Samuel Eilenberg and Saunders Mac Lane, On the Groups H(Π, n), I, Annals of Mathematics, Vol. 58,

No. 1 (Jul., 1953), pp. 55–106.
[5] Samuel Eilenberg and Saunders MacLane, On the Groups H(Π, n), II: Methods of Computation, Annals

of Mathematics, Vol. 60, No. 1 (Jul., 1954), pp. 49–139.
[6] D. Fiorenza, An introduction to the Language of Operads, www.mat.uniroma1.it/ fiorenza/ilo.ps.gz,

2006.
[7] Benoit Fresse, Props in model categories and homotopy invariance of structures, arXiv:0812.2738v4, 5

Dec 2008.
[8] Jean-Louis Loday, Cyclic Homology, Springer Verlag, 1992.
[9] Saunders MacLane, Categorical Algebra Bull. Amer. Math. Soc., Volume 71, Number 1 (1965), 40–106.
[10] Martin Markl, Operads and PROPs, arXiv:math/0601129v3, 6 Jan 2006.
[11] Birgit Richter, E∞-structure for Q∗(R), Math. Ann. 316, 547–564 (2000).
[12] Birgit Richter, Symmetry Properties of the Dold-Kan Correspondence, Mathematical Proceedings of the

Cambridge Philosophical Society, 134(1), pp. 95-–102, 2003.
[13] Stefan Schwede and Brooke Shipley, Equivalences of monoidal model categories, Algebr. Geom. Topol.,

Volume 3, Number 1 (2003), 287–334.
[14] Nathalie Wahl and Craig Westerland, Hochschild homology of structured algebras, Advances in Math.

288 (2016), 240–307.
[15] Nathalie Wahl, Universal operations in Hochschild homology, J. Reine Angew. Math. 720 (2016), 81–127

2016.
[16] Harvey Wolff, V-cat and V-graph, J. Pure Appl. Algebra 4 (1974), 123-–135.





Part 3

Paper B



ON THE MORITA FUNCTORIALITY OF THE HOCHSCHILD
COMPLEX

ESPEN AUSETH NIELSEN

Abstract. We construct the Hochschild complex as a symmetric monoidal functor of
quasi-categories from the Morita (2,1)-category to the quasi-category of chain complexes,
conditioned on the existence of a certain symmetric monoidal structure on the latter. As
an application, the Hochschild complex on a commutative Hopfish algebra, of which a
commutative quasi-Hopf algebra is an example, obtains a the structure of a commutative
Hopf algebra object in the quasi-category of chain complexes.

Note: The main theorem of this paper depends on the statement that the simplicial nerve
of the category of connective chain complexes, whose simplicial structure comes from the
Dold-Kan equivalence, can be given the structure of a symmetric monoidal quasi-category
which on the homotopy category agrees with the derived tensor product. Although probably
true, this statement does not appear in the literature to the knowledge of the author, and
should be taken as an additional assumption in the theorem.

1. Introduction

In this paper we will prove that the Hochschild chain functor extends to a “weak symmetric
monoidal functor” from the Morita (2,1)-category to chain complexes. To make this precise,
we employ the theory of quasi-categories. As an application, we obtain a natural homotopy
coherent Hopf algebra structure on the Hochschild complex of several variations of Hopf
algebras, such as quasi-Hopf algebras and Hopfish algebras.

The Hochschild complex of an algebra (also called the cyclic bar complex) takes a k-algebra
A to the chain complex C(A)∗ where C(A)n = A⊗n+1 and the differential is the alternating
sum of multiplying the i’th and i + 1’st coordinates modulo n + 1. This definition has a
natural extension to dg-algebras and dg-categories which we give in Definition 5.1.

Fixing an inaccessible cardinal κ, let k be a commutative ring, dgAlgk the category of
dg-algebras over k. We write Chk for the dg-category of chain complexes over k. We require
that the ring k and all k-modules we consider are smaller than κ. It is known by the work of
Richter [27] that the Hochschild complex dgAlgk → Chk is a so-called E∞-monoidal functor.
In other words, the nerve of the Hochschild complex functor,

N(dgAlgk)→ N∆(Chk),

can be given the structure of a symmetric monoidal functor of quasi-categories.
The Morita (2,1)-category Mork of k is the (2,1)-category of k-algebras and their bimodules.

It is defined in Definition 3.1 and admits a symmetric monoidal 2-functor of (2,1)-categories

m : dgAlgk → Mork,

2010 Mathematics Subject Classification. 13D03, 16E35, 18D05, 18D10.
1
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where dgAlgk is considered as a (2,1)-category with only identity 2-morphisms. Our main
theorem is that the symmetric monoidal of quasi-categories N(dgAlgk)→ N∆(Chk), factors
through m.

Main Theorem: (Conditioned on Assumption 2.32) Let k be a commutative ring.
• (Theorem 5.22) The Hochschild complex gives rise to a functor of quasi-categories

NDMork → N∆Chk such that the following diagram of quasi-categories commutes up to
homotopy.

N(dgAlgk) ND(Mork)

N∆(Chk)

ND(m)

C(−)
C(−)

• (Theorem 6.7) The above diagram upgrades to a homotopy commutative diagram of
symmetric monoidal functors of quasi-categories which fits into a homotopy commutative
diagram in the category of symmetric monoidal quasi-categories:

N(dgAlgk)
⊗ ND(Mork)

⊗

N∆(Chk)
⊗

ND(m)

C(−)
C(−)

The functor NDMork → N∆Chk will be constructed as a composition:

C(−) : ND(Mork)→ ND(dgCat
(2,1)
k ) ∼= N∆(dgCat

(2,1)
k,∆ )→ N∆(Chk)

where the first map is induced on the level of (2,1)-categories and the last map is induced on
the level of simplicial categories. The compatibilities of the symmetric monoidal structures is
Theorem 6.7.

As an application of the theorem, we obtain a homotopy coherent Hopf algebra structure
on the Hochschild chains on commutative Hopfish algebras in the sense of [30], of which
commutative quasi-Hopf algebras are examples, see Section 7, in particular Proposition 7.6.

The paper is structured as follows. In Section 2, we review the theory of (2,1)-categories
and quasi-categories. In Section 3, we construct the (2,1)-category of algebras, bimodules
and bimodule isomorphisms associated to a ground ring k. In Section 4, we review some
material on the Dold-Kan equivalence and its monoidality properties which we need to
compare symmetric monoidal structures. In Section 5 we construct the vertical functor in
the Main Theorem. In Section 6, we finish the proof of the Main Theorem by showing that
the vertical functor is symmetric monoidal comparing the symmetric monoidal structures
in the diagram. In Section 7 we explore some consequences for the algebraic structure on
Hochschild complexes of Hopf-like algebras.
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2. Some categorical notions

In this section we introduce some elementary notions of the theory of (2,1)-categories and
quasi-categories which we need in the coming sections. We will define nerve constructions
ND (Definition 2.10) and N∆ (Definition 2.12) which take (2,1)-categories, resp. simplicial
categories, to their associated quasi-categories. Furthermore, ND and N∆ are equivalent
for strict 2-categories whose 2-morphisms are invertible (Lemma 2.21). We also review
basic theory about symmetric monoidal quasi-categories. When applying the functor N∆

to a dg-category, we implicitly treat the dg-category as a simplicial category by using the
Dold-Kan equivalence. For a more thorough introduction to quasi-category theory, see [15],
and for a detailed account, see [22] and [23].

Convention 2.1. We fix an inaccessible cardinal κ. We call a set, category, algebra etc. small
if it has cardinality less than κ, and large otherwise. Unless stated otherwise, all introduced
objects are assumed to be small.

2.1. (2,1)-categories and their nerves.

Definition 2.2. [1, Definition 1.1] A (2,1)-category C is the data of

• a set of objects Ob C,
• for each pair a, b ∈ Ob C, a groupoid of morphisms C(a, b),
• for each object a ∈ Ob C, an identity object 1a ∈ C(a, a),
• for each triple a, b, c ∈ Ob C, a functor ◦a,b,c : C(b, c)× C(a, b)→ C(a, c),
• for each 4-tuple a, b, c, d ∈ Ob C, a natural isomorphism called an associator

αa,b,c,d : ◦a,b,d (◦b,c,d × id)→ ◦a,c,d(id× ◦a,b,c),
• and for each pair a, b ∈ Ob C, isomorphisms called left and right unitors

λa,b : ◦a,b,b (1b,−)→ idC(a,b)

ρa,b : ◦a,a,b (−, 1a)→ idC(a,b)
such that the associators satisfy MacLane’s pentagram relation, and the unitors satisfy the
triangle relations.

We call the objects of the morphism groupoids C(a, b) the morphisms of C, and the
morphisms of C(a, b) are called the 2-morphisms of C.
Notation 2.3. For a (2,1)-category C and a pair of morphisms f : a → b and g : b → c of
C, we may denote the composition ◦a,b,c(g, f) by g ∗ f when the sources and targets are
understood.

Remark 2.4. The cited definition for Definition 2.2 allows arbitrary categories C(a, b) instead
of just groupoids. We would then obtain the definition of a bicategory. In [1] a (2,1)-category
is called a bicategory which is locally a groupoid. The theory of bicategories is quite exotic
when compared to ordinary category theory, but we will only have need for the simpler notion
of (2,1)-categories, which behave much closer to ordinary categories.

Definition 2.5. Let C be a (2,1)-category. A morphism f : a→ b in C is called an equivalence
if there exists a morphism g : b→ a and 2-morphisms g ◦ f → 1a and f ◦ g → 1b.
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Definition 2.6. [1, Definition 2.1] A (2,1)-category C for which the associators and unitors
are identity morphisms is called a strict (2,1)-category.

Examples 2.7. • Any (small) ordinary category can be considered a (2,1)-category whose
morphism groupoids are discrete.
• There is a large (2,1)-category Cat whose objects are categories, morphisms are functors

and 2-morphisms are natural isomorphisms.

• Similarly to the above, let k be a commutative ring and let dgCat
(2,1)
k be the (2,1)-category

whose objects are k-linear dg-categories, morphisms are degree-preserving dg-functors and
2-morphisms are natural isomorphisms.

The above examples are all strict (2,1)-categories. In the next section, we will see an
example of a non-strict (2,1)-category, namely the Morita category Mork. We now discuss
the notion of 2-functor between (2,1)-categories.

Definition 2.8. [1, Definition 4.1] Let C and D be (2,1)-categories. A 2-functor F : C → D
is the data of

• A function F : Ob C → ObD,
• for each pair a, b ∈ Ob C, a functor Fa,b : C(a, b)→ D(Fa, Fb),
• for each a ∈ Ob C, a 2-morphism F1a : 1Fa → Fa,a(1a),
• and for each triple a, b, c ∈ Ob C, a 2-morphism, natural in f : a→ b and g : b→ c,

Fa,b,c(g, f) : ◦Fa,Fb,Fc (Fb,cg, Fa,bf)→ Fa,c(◦a,b,c(g, f)),

such that

• for each a, b ∈ C, and each f ∈ C(a, b) the following diagrams commute in D(Fa, Fb),

1Fb ∗ Fa,bf Fa,bf

Fb,b(1b) ∗ Fa,bf Fa,b(1b ∗ f)

λFa(Fa,bf)

F1b ∗ id

Fa,b,b(1b, f)

Fa,b(λa,b(f))

Fa,bf ∗ 1Fa Fa,bf

Fa,bf ∗ Fa,a(1a) Fa,b(f ∗ 1a)

ρFa(Fa,bf)

id ∗ F1a

Fa,a,b(f, 1a)

Fa,b(ρa,b(f))

and
• for each 4-tuple a, b, c, d ∈ Ob C, and morphisms f : a → b, g : b → c and h : c → d,

the following diagram commutes in D(Fa, Fd):
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(Fc,dh ∗ Fb,cg) ∗ Fa,bf Fc,dh ∗ (Fb,cg ∗ Fa,bf)

Fb,d(h ∗ g) ∗ Fa,bf Fc,dh ∗ Fa,c(g ∗ f)

Fa,d((h ∗ g) ∗ f) Fa,d(h ∗ (g ∗ f))

αFa,Fb,Fc,Fd

Fb,c,d(h, g) ∗ id

Fa,b,d(h ∗ g, f)

id ∗ Fa,b,c(g, f)

Fa,c,d(h, g ∗ f)

Fa,d(αa,b,c,d(h, g, f))

Definition 2.9. [1, Remark 4.2 (”strictly unitary morphisms”)] A 2-functor F : C → D
between (2,1)-categories is called normal if for each a ∈ Ob C the morphisms F1a : 1Fa →
Fa,a(1a) are identity morphisms. We denote by HomN

(2,1)Cat(C,D) the set of normal 2-functors
between a pair of (2,1)-categories.

We write ∆ for the standard simplicial category. It has as objects the finite linear posets
[n] = {0→ ...→ n} and as morphisms poset maps between these.

Definition 2.10. [10, Section 6] Let C be a (2,1)-category. Considering the linear posets [n]
as (2,1)-categories with only identity 2-morphisms, the Duskin nerve of C is the simplicial set
ND(C) whose set of n-simplices is given by the set HomN

(2,1)Cat([n], C) of normal 2-functors
[n]→ C. The assignment

[n] 7→ HomN
(2,1)Cat([n], C)

defines a functor ∆op → Set, where the simplicial structure maps are given by precomposition:
for any φ : [m]→ [n] in ∆ and F ∈ HomN

(2,1)Cat([n], C), we have φ∗(F ) = F ◦ φ.

Spelling out this definition, an n-simplex F ∈ ND(C)n is given by the data of

(1) for each 0 ≤ i ≤ n, an object F (i),
(2) for each pair 0 ≤ i ≤ j ≤ n, a morphism F (fi,j) : F (i)→ F (j) in C, and
(3) for each triple 0 ≤ i ≤ j ≤ k ≤ n, a 2-morphism αi,j,k : F (fj,k) ◦ F (fi,j)→ F (fi,k),

such that for each 4-tuple 0 ≤ i ≤ j ≤ k ≤ l ≤ n, we have an equality

αi,k,l ◦ (idfk,l ∗ αi,j,k) = αi,j,l ◦ (αj,k,l ∗ idfi,j).

The face maps di : ND(C)n → ND(C) act by forgetting all pieces of data where the number
i appears. For example, (diα)j,k,l = αj′,k′,l′ , where

j′ =

{
j , if 0 ≤ j < i
j + 1 , if i ≤ j ≤ n

and so on. Let F ∈ ND(C)n be as above. The degeneracy maps si : ND(C)n → ND(C)n+1 take
F to the element siF whose data is given by shifting the indices similarly to the above, i.e.

j′ =

{
j , if 0 ≤ j ≤ i
j − 1 , if i < j ≤ n+ 1

with the implicit assumption that F (fj,k) and αj,k,l are identity (2-)morphisms if an index is
repeated.
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2.2. Simplicial categories and their nerves. We recall some quasi-categorical notions.
Recall that a simplicial set X is a quasi-category if it admits internal horn fillers. That
is, if Λn

k denotes the boundary of the representable n-simplex, minus the face opposite the
k-th vertex (explicitly, Λn

k is the subset of ∆n generated by those simplices i : [k]→ [n] such
that the image of i does not contain {1, ..., k − 1, k + 1, ..., n}) then for each simplicial map
Λn
k → X, where 0 < k < n, the dashed arrow exists in the diagram below, such that the

below diagram commutes.

Λn
k X

∆n

A functor between quasi-categories is just a map of simplicial sets. Quasi-categories were
originally introduced in [4].

Definition 2.11. A morphism of simplicial sets f : X → Y is an inner fibration, if it has
the right lifting property with respect to inner horn inclusions. That is, if the solid part of
the below diagram commutes and 0 < k < n, then the dashed arrow exists and the whole
diagram commutes.

Λn
k X

∆n Y

f

Definition 2.12. [22, Section 1.1.5] Let n ≥ 0. The simplicial category C[∆n] has objects
ObC[∆n] = Ob [n] = {0, ..., n} and morphisms given as follows. For 0 ≤ i ≤ j ≤ n, define a
poset Pi,j = {I ⊆ {i, ..., j} | i, j ∈ I} ordered by set inclusion, and define

HomC[∆n](i, j) =

{
NPi,j , i ≤ j
∅ , i > j

and composition given by taking unions of subsets.
The assignment [n] 7→ C[∆n] extends to a cosimplicial object ∆→ sCat as follows:
if f : [n]→ [m] is a morphism in ∆, the induced simplicial functor

f∗ : C[∆n]→ C[∆m]

takes the object i to f(i), and for i ≤ j in [n], the map

HomC[∆n](i, j)→ HomC[∆m](f(i), f(j))

is induced by the functor Pi,j → Pf(i),f(j) taking I ⊆ {i, ..., j} to f(I) = {f(k)|k ∈ I}.
The coherent nerve functor N∆ : sCat→ sSet is given by taking C ∈ sCat to

N∆(C)• = HomsCat(C[∆•], C)
Example 2.13. Let M be a simplicial model category. Writing Mcf for the subcategory
of fibrant-cofibrant objects, the underlying quasi-category of M is given by N∆(Mcf). In
this paper we make use of the category of connective chain complexes over a ring k with the
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projective model structure, whose simplicial structure is obtained by passing its dg-structure
through the Dold-Kan equivalence. See also [23, Proposition 1.3.1.17].

Remark 2.14. If C is a simplicial category, then another method of producing a quasi-
category from C is to first take its levelwise nerve, producing a bisimplicial set, followed by
taking its diagonal simplicial set. This is equivalent to taking the coherent nerve up to weak
equivalence. To be precise, [2, Theorem 8.6] states that the levelwise nerve is a right Quillen
equivalence from simplicial categories to Segal categories, and [17, Theorem 5.7] states that
the diagonal is a left Quillen equivalence from Segal categories to quasi-categories.

Definition 2.15. Let C be a strict (2,1)-category. The simplicial category C∆ has the
same objects as C and morphism spaces given by the nerve of the morphism category in C:
HomC∆(c, c′) := NHomC(c, c′).

Recollection 2.16. ([13, Section IV.3.2]) The truncated simplex category ∆≤n is the full
subcategory of ∆ on the objects {[i]}i≤n. The inclusion in : ∆≤n ↪→ ∆ gives rise to a truncation

functor trn : sSet→ Set∆
op
≤n . This functor admits both left and right adjoints. The left adjoint

is writen skn and called the n-skeleton. The right adjoint is written coskn and called the
n-coskeleton. A simplicial set which is in the image of coskn is called n-coskeletal. We
denote the compositions coskn ◦ trn =: coskn and skn ◦ trn =: skn. These are idempotent
endofunctors on sSet, i.e. there are isomorphisms coskn(cosknX) ∼= cosknX. An n-coskeletal
simplicial set X can hence be thought of as a simplicial set for which any map of truncated
simplicial sets trnS → trnX admits a unique extension to a simplicial map S → X.

Since trn and coskn are both right adjoints, we have in particular isomorphisms

trn(X × Y ) ∼= trn(X)× trn(Y )

for all X, Y ∈ sSet and

coskn(X × Y ) ∼= coskn(X)× coskn(Y )

for all X, Y ∈ Set∆
op
≤n , and so the following definition makes sense.

Definition 2.17. • Let C be a simplicially enriched category. trnC is the Set∆
op
≤n-

enriched category for which Ob trnC = Ob C and

HomtrnC(c, c
′) = trnHomC(c, c

′)

is the n-truncation of C(c, c′). The composition of morphisms is given by

trn(HomC(c
′, c′′))× trn(HomC(c, c

′)) ∼= trn(HomC(c
′, c′′)× HomC(c, c

′))

→ trnHomC(c, c
′′)

where the arrow is induced by the composition in C.
• Let D be a Set∆

op
≤n-enriched category. cosknD is the simplicially enriched category for

which Ob cosknD = ObD and

HomcosknD(d, d′) = cosknHomD(d, d′)

is the n-coskeleton of D(d, d′). The composition is defined as above.

Lemma 2.18. The functors trn and coskn form an adjunction between Set∆
op
≤n-enriched

categories and simplicially enriched categories.
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Proof. Let C be a simplicially enriched category and let D be a category enriched in Set∆
op
≤n .

A functor F : trnC → D is given by a function f : Ob C → ObD and for each pair of objects
c, c′ ∈ Ob C a morphism

Fc,c′ : trnHomC(c, c
′)→ HomD(fc, fc′)

in Set∆
op
≤n .

The adjunction isomorphism is given levelwise on morphism spaces. �
Recollection 2.19. Recall that nerves of categories are characterized as those quasi-categories
which have unique inner horn filling in dimensions n ≥ 2 ([22, Proposition 1.1.2.2]). In
contrast, nerves of (2,1)-categories are characterized as those quasi-categories which have
unique inner horn filling in dimensions n ≥ 3 ([10, Theorem 8.6]). The following lemma is
not new, but the author was unable to find a reference in the literature.

Lemma 2.20. Let X be a simplicial set which has unique inner horn filling in dimensions
k ≥ n. Then X is n-coskeletal.

Proof. By the adjunction, X is n-coskeletal if and only if the morphism

Xk = HomsSet(∆
k, X)

trn−→ Hom
Set

∆
op
≤n

(trn∆k, trnX) ∼= HomsSet(skn∆k, X)

is an isomorphism for every k > n.
Consider a morphism f : skn∆k → X. We proceed by induction, and prove that f extends

uniquely to a morphism fn+1 : skn+1∆k → X. Since skk∆
k ∼= ∆k, this will finish the proof.

Now, since

skn+1∆k ∼=




⊔

Hom
Set

∆
op
≤n

(∂∆n+1,skn∆k)

∆n+1


 / ∼

where ∼ glues the faces appropriately, it is sufficient to prove that any morphism g : ∂∆k → X
uniquely extends to a morphism ḡ : ∆k → X when k > n. To show this, let Λk

i denote the
boundary of the k-simplex, minus the face opposite the i’th vertex. By unique inner horn
filling in dimension k − 1, there is an isomorphism

HomsSet(∂∆k, X) ∼= HomsSet(Λ
k
i , X)

for 0 < i < k. To see this, let h : ∆k−1 → X be the restriction of g to the i’th face of ∂∆k.
Then h is a filler for the the restriction h|Λk−1

j
: Λk−1

j → X for any 0 < j < k − 1, which by

assumption is unique, so h can be reconstructed from h|∂∆k−1 and so g can be reconstructed
from g|Λki . Now g|Λki admits a unique filler ḡ : ∆k → X, and by uniqueness of inner horn

fillers in dimension k − 1, we have ḡ|∂∆k = g. It follows that the map

Xk
trn−→ Hom

Set
∆
op
≤n

(trn∆k, trnX)

is an isomorphism and that X is n-coskeletal as claimed. �
Lemma 2.21. Let C be a strict (2,1)-category. Then there is an isomorphism ND(C) ∼=
N∆(C∆).

Proof. We will construct a bijection between the set of normal 2-functors [n]→ C and the
set of simplicially enriched functors C[∆n]→ C∆. There is a forgetful map

U : HomsCat(C[∆n], C∆)→ HomN
(2,1)Cat([n], C)
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taking a simplicially enriched functor f : C[∆n]→ C∆ to the normal 2-functor Uf : [n]→ C
given as follows.

• The object i is taken to Uf(i) = f(i).
• A morphism i→ j is taken to Uf(i→ j) = f({i, j}).
• Let φi,j,k = f ({i, k} ⊂ {i, j, k}) ∈ C(f(i), f(k). In other words, φi,j,k is a morphism

in C(f(i), f(k)) with source and target

pi,j,k : f({i, k})→ f({j, k}) ∗ f({i, j})

The composition 2-morphisms of Uf are given by (Uf)i,j,k = φ−1
i,j,k.

• Let i, j, k, l ∈ [n]. Since the pair of 2-morphisms

(Uf)i,j,l ◦ (id ∗ (Uf)j,k,l) : f({k, l}) ∗ f({j, k}) ∗ f({i, j})→ f({i, l})

and

(Uf)i,k,l ◦ ((Uf)i,j,k ∗ id) : f({k, l}) ∗ f({j, k}) ∗ f({i, j})→ f({i, l})

both are in the image of {i, l} ⊂ {i, j, k, l}, they are equal, such that Uf satisfies the
conditions of Definition 2.8.

Conversely, given a normal 2-functor F : [n] → C, we construct a functor of categories

enriched in Set∆
op
≤2

RF : tr2C[∆n]→ tr2C∆

as follows.

• the object i ∈ {0, ..., n} is taken to RF (i) = F (i).
• On morphisms, the morphism of simplicial sets

tr2NP0,n → tr2N(C(F (0), F (n))

is given by sending
{0, n} to F (0→ n),
{0, i, n} to F (i→ n) ∗ F (0→ i), and
{0, i, j, n} to F (j → n) ∗ F (i→ j) ∗ F (0→ i).
Inclusions of subsets {0, n} ⊂ {0, i, n} is taken to F−1

0,i,n etc.

For a monoidal category V and V -enriched cateogries C and D, we write FunV (C,D) for
the set of V -enriched functors from C to D.

By Recollection 2.19 and Lemma 2.20, nerves of categories are 2-coskeletal, the forgetful
map of sets

FunsSet(C[∆n], C∆)
tr2−→ Fun

Set
∆
op
≤2

(tr2C[∆n], tr2C∆)

is a bijection by the adjunction in Lemma 2.18. The map U also factors through tr2. It
follows that U and tr−1

2 (R−) are mutually inverse maps of sets. Since all of the maps defined
are also natural with respect to the cosimplicial structure maps of C[∆•], we are done. �

Corollary 2.22. Let C be an ordinary category and let C∆ be C considered as a simplicial
category with discrete morphism spaces. Then N(C) ∼= N∆(C∆)
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2.3. Symmetric monoidal quasi-categories.

Notation 2.23. Write Fin∗ for the category of finite pointed sets and basepoint preserving
set maps, and let 〈n〉 be the pointed set {∗, 1, ..., n}.

We will now briefly recall some aspects of symmetric monoidal categories in order to
motivate the definitions below, in particular Definition 2.27. A symmetric monoidal structure
on a category C can be defined [28, Section 2] as a 2-functor from the category of finite
pointed sets to the (2,1)-category of categories:

Fin∗ → Cat

S 7→ C×|S|

where |S| denotes the number of non-basepoint elements of S. Using the Grothendieck
construction, this is equivalently a so-called Grothendieck opfibration (in the sense of [14])

p : C⊗ → Fin∗
where C⊗ is the category defined as follows: an object of C⊗ consists of a pair ((c1, ..., cn), 〈n〉),
where the ci are objects of C. A morphism

((c1, ..., cn), 〈n〉)→ ((c′1, ..., c
′
m), 〈m〉)

in C⊗ is a pair ((f1, ..., fm), α) where α : 〈n〉 → 〈m〉 is a map of pointed sets and fj :
⊗

i∈α−1(j) ci →
c′j are morphisms in C.

The structure of a Grothendieck opfibration p : D → Fin∗ can be summarized as a functor
such that for each morphism α : 〈n〉 → 〈m〉 in Fin∗, and each object c ∈ ObD such that
p(c) = 〈n〉, there exists a morphism f : c → c′ in D such that p(f) = α and such that the
induced functor of slice categories

Df/ → Dc′/ ×Fin∗ p(c′)/ Fin∗ p(f)/

is an equivalence of categories. To spell out what this equivalence means, for every morphism
of finite pointed sets β : 〈m〉 → 〈l〉 and every morphism h : c→ c′′ in C⊗ such that p(h) = β◦α,
there exists a unique morphism g : c′ → c′′ in C⊗ such that p(g) = β and g ◦ f = h. This
situation is depicted in the below diagram.

c c′

〈n〉 〈m〉

c′′

〈l〉

f

∀h

α

γ

∀β

∃!g

Such a morphism f is called a coCartesian morphism. The existence of coCartesian
morphisms encodes the fact that the fibers of a Grothendieck opfibration p : D → Fin∗ are
functorial in the base category.
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The remarkable fact is that given such a Grothendieck opfibration such that

p−1(〈n〉) ' p−1({∗, 1})×n,
the category p−1(〈1〉) is a symmetric monoidal category, and so this is an equally good
definition of symmetric monoidal categories. It turns out that this definition, using a
version of Grothendieck opfibrations adapted to quasi-categories, is a robust generalization of
symmetric monoidal categories to the quasi-categorical setting.

The join [22, Definition 1.2.8.1] of two simplicial sets S and T is denoted S ? T and has
n-simplices given by

(S ? T )n = Sn t Tn t
⊔

i+j=n−1

Si × Tj

where the face maps di : (S ? T )n → (S ? T )n−1 are defined using the i’th face map on Sn and
Tn. To define di : Sj × Tk → (S ? T )n−1, let σ ∈ Sj and τ ∈ Tk. Then di(σ, τ) is given by

di(σ, τ) = (diσ, τ) ∈ Sj−1 × Tk , if i ≤ j, j 6= 0,
di(σ, τ) = (σ, di−j−1τ) ∈ Sj × Tk−1 , if i > j, k 6= 0,
d0(σ, τ) = τ ∈ Tn−1 , if j = 0,
dn(σ, τ) = σ ∈ Sn−1 , if k = 0.

If X is a simplicial set and f : K → X is a simplicial subset, we denote the slice of X
under f to be the simplicial set written Xf/ with n-simplices the subset

HomsSet(∆
n, Xf/) ⊂ HomsSet(K ?∆n, X)

consisting of those maps g : K ?∆n → X such that g|K = f . The simplicial structure comes
from the cosimplicial structure of {∆•}. In particular, if C is a quasi-category and f : c0 → c1

is an edge in C, then the slice Cf/ is defined as the slice over a morphism ∆1 → C hitting f .
Similarly, the slice over an object C/c0 is defined using a morphism ∆0 → C hitting c0.

Definition 2.24. Let p : C → D be an inner fibration between quasi-categories.

(1) [22, Definition 2.4.1.1] An edge f : c0 → c1 of C is p-coCartesian if the canonical map

Cf/ → Cc0/ ×Dp(c0)/
Dp(f)/

is an acyclic Kan fibration.
(2) [22, Definition 2.4.2.1] p is called a coCartesian fibration if for each edge g : d0 → d1

of D and every object c0 in C such that p(c0) = d1, there exists a p-coCartesian edge
f : c0 → c1 of C such that p(f) = g.

Observation 2.25. • The structure of a coCartesian fibration implies that the fibers
of p depend covariantly on the base. This is encapsulated in the straightening-
unstraightening theorem [22, Theorem 3.2.0.1].
• Given a coCartesian fibration p : C → D, an object c0 ∈ Ob C and an edge g : p(c0)→
p(c1) in D, the space of coCartesian lifts of g with fixed starting point c0 is contractible.
Namely, in the language of [22, Section 3.1], p : C\ → D is a fibrant marked simplicial
set over D and {0} → (∆1)] is a marked anodyne morphism. Let (∆1)] → D be a
marked simplicial set over D picking out g. Using using [22, Remark 3.1.3.4], the
restriction map

r : Hom[
D((∆1)], C\)→ Hom[

D({0}, C\) ' Cp(c0)
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where Cp(c0) is the fiber over p(c) in C, is a trivial fibration. In particular, each fiber of
r is contractible. In this map, the source simplicial set is the space of all coCartesian
morphisms in C.
• An edge f : c0 → c1 of C is equivalently p-coCartesian if the diagram

C(c1, c2) C(c0, c2)

D(p(c1), p(c2)) D(p(c0), p(c2))

f ∗

p∗p∗

f ∗

is a homotopy pullback square for all objects c2 of C [22, Proposition 2.4.4.3]. See [22,
Section 2.4] or [15, Section 4] for more details on coCartesian fibrations.

Definition 2.26. [28, Definition 2.1] Let p : C → NFin∗ be a coCartesian fibration. We
denote the fiber over 〈n〉 by C〈n〉.

For 1 ≤ i ≤ n, let rn,i be the map of pointed sets rn,i : 〈n〉 → 〈1〉 such that r−1
n,i(1) = {i}.

Choosing coCartesian lifts of rn,i gives a functor ρn,i : C〈n〉 → C〈1〉.
The Segal map ρn : C〈n〉 → (C〈1〉)×n is given by the product

∏
i ρn,i.

Definition 2.27. [23, Definition 2.0.0.7] Let C be a quasi-category. A symmetric monoidal
structure on C is a coCartesian fibration p : C⊗ → NFin∗ such that the fiber C〈1〉 is equivalent
to C and the Segal maps ρn : C⊗〈n〉 → (C⊗〈1〉)×n are equivalences for each n. A functor of
quasi-categories over NFin∗

C⊗ D⊗

NFin∗

f

q
p

is symmetric monoidal if it takes p-coCartesian morphisms to q-coCartesian morphisms.

Observation 2.28. By straightening-unstraightening [22, Theorem 3.2.0.1], a symmetric
monoidal category is equivalently a functor of quasi-categories F : NFin∗ → Cat∞ satisfying
the Segal condition (i.e., the canonical maps F (〈n〉) → (F (〈1〉)×n are equivalences, and a
symmetric monoidal functor is a natural transformation.

Using the equivalences F (〈n〉) → (F (〈1〉)×n, every object of C⊗ corresponds to a tuple
(C1, ..., Cn, 〈n〉) [23, Remark 2.1.1.5].

The existence of coCartesian morphisms allow us to define the tensor product of the objects
Ci by choosing a coCartesian lift of the map α : 〈n〉 → 〈1〉 where α−1(∗) = {∗}:

(C1, ..., Cn, 〈n〉)→ (D, 〈1〉)
and defining

⊗
1≤i≤nCi := D. This determines the tensor product up to a contractible space

of choices.

The following description of morphisms in C⊗ is not new, but the author could not find a
detailed treatment in the literature and so we include a proof for completeness.
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Lemma 2.29. Let p : C⊗ → NFin∗ be a symmetric monoidal quasi-category and let C be
the fiber at 〈1〉. Let C and D be a pair of objects of C⊗ corresponding under the Segal
condition to tuples (C1, ..., Cn, 〈n〉) and (D1, ..., Dm, 〈m〉) respectively. Let α : 〈n〉 → 〈m〉 be
a map of pointed sets and write Homα(C,D) ⊆ HomC⊗(C,D) for the space of morphisms
lying over α. Then there is a homotopy equivalence

Homα(C,D) '
∏

1≤j≤m
HomC

(
⊗i∈α−1(j)Ci, Dj

)
.

Proof. Choosing for 1 ≤ j ≤ m coCartesian lifts rm,j,! : D → Dj, by [23, Definition 2.1.1.10],
these morphisms induce a homotopy equivalence

Homα(C,D) '
∏

1≤j≤m
Homαj(C,Dj)

where αj = rm,j ◦ α. A coCartesian lift of αj takes (C1, ..., Cn, 〈n〉) to αj,!C := ⊗i∈α−1(j)Ci,
and by definition of coCartesian morphisms, we have an equivalence

C⊗αj,!C/
∼−→ C⊗f/

∼−→ CC/ ×NFin∗,〈n〉/ NFin∗,αj/.
Considering the maximal Kan-subcomplex containing {Dj} × {id}, we get a homotopy
equivalence of spaces

HomC(⊗i∈α−1(j)Ci, Dj) ' Homαj(C,Dj).

�
Notation 2.30. Let p : C⊗ → NFin∗ be a symmetric monoidal quasi-category. To simplify
the notation, we may write an object (C1, ..., Cn, 〈n〉) of C⊗ simply as (C1, ..., Cn).

Examples 2.31. • Let C be a symmetric monoidal category. Then applying the nerve
to the Grothendieck construction C⊗ → Fin∗ exhibits NC as a symmetric monoidal
quasi-category.
• [20, Proposition 4.3.13] Let M be a simplicial symmetric monoidal model category

and let M⊗
cf denote the full subcategory of M⊗ on the objects (C1, ..., Cn) such that

each Ci is fibrant-cofibrant. Then M⊗
cf is a simplicial category, and applying N∆ to

the Grothendieck opfibration M⊗
cf → Fin∗ gives a symmetric monoidal structure for

N∆Mcf where the coCartesian lifts of a morphism α : 〈n〉 → 〈m〉 are the morphisms
(C1, ..., Cn) → (D1, ..., Dm) in M⊗

cf such that each ⊗i∈α−1(j)Ci → Dj is a homotopy
equivalence.

Assumption 2.32. The quasi-category N∆(Chk) carries a symmetric monoidal structure
given by the derived tensor product of chain complexes.

The results [23, Remark 7.1.2.12 and Theorem 7.1.2.13] prove a similar result for the
hammock localization of the subcategory Chck of cofibrant objects.

There is a notion of symmetric monoidal (2,1)-category, but the definition is technical. For
the conventional definition, see [16, Section 1.1]. For our purposes, we use the following proxy
definition. The compatibility of this definition with the conventional one is Lemma 2.34.

Definition 2.33. A (2,1)-category is called symmetric monoidal if its Duskin nerve ND(C)
is a symmetric monoidal quasi-category. A symmetric monoidal functor of (2,1)-categories
C → D is given by a symmetric monoidal functor of quasi-categories ND(C)→ ND(D).
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The following lemma concerns the compatibility of our proxy definition of symmetric
monoidal (2,1)-categories (Definition 2.33) and the conventional definition given in [16]. In
order to keep the length of this paper reasonable, we omit the definitions of (3,1)-category
and Segal nerve used in the proof, which can be found in [5].

Lemma 2.34. Let C be a symmetric monoidal (2,1)-category in the sense of [16, Section
1.1]. Then ND(C) is a symmetric monoidal quasi-category. If f : C → D is a symmetric
monoidal functor between (2,1)-categories, then ND(f) extends to a symmetric monoidal
functor ND(C)⊗ → ND(D)⊗.

Proof. Denote by BiCat the (3,1)-category of (2,1)-categories. By [16, Theorem 2.3], there
is a functorial assignment of a pseudo-functor f : Fin∗ → BiCat such that f(〈n〉) ' C×n.
Passing to nerves, we get a functor of quasi-categories NFin∗ → ∆(BiCat)→ Cat∞, where
∆(BiCat) denotes the Segal nerve of the (3,1)-category of (2,1)-categories, see [5]. �

Remark 2.35. As stated, the definition of symmetric monoidal (2,1)-category in [16, Section
1.1] is potentially stronger than that of Definition 2.33. Henceforth a ”symmetric monoidal
(2,1)-category” will mean in the sense of Definition 2.33, unless stated otherwise.

Observation 2.36. By [3, Theorem 3.3.12], a (2,1)-category C which is symmetric monoidal
in the sense of [16] corresponds to a ”fibered (2,1)-category” p : C⊗ → Fin∗ such that for
each fiber we have C〈n〉 ' C×n. In that case, like in the case for ordinary categories, there is
an isomorphism ND(C)⊗ ∼= ND(C⊗).

Lemma 2.37. Let C be a symmetric monoidal (2,1)-category, and let p : ND(C)⊗ → NFin∗
be the associated coCartesian fibration. Let α : 〈n〉 → 〈m〉 be a map of pointed finite sets.
Then the coCartesian lifts of α are those morphisms f : (A1, ..., An)→ (B1, ..., Bm) in ND(C)⊗

such that each of the morphisms ⊗i∈α−1(j)Ai → Bj is an equivalence in C (see Definition 2.5).

Proof. Recall from Observation 2.25 that the space of coCartesian lifts of α : 〈n〉 → 〈m〉 start-
ing at (A1, ..., An) is contractible. Since the property of being an equivalence on components
is preserved by homotopies, to prove the result it is sufficient to show that morphisms of the
stated type are coCartesian lifts of α.

Let f be a morphism in ND(C)⊗ as in the statement. We have to show that the diagram

ND(C)⊗((B1, ..., Bm), (C1, ..., Cl)) ND(C)⊗((A1, ..., An), (C1, ..., Cl))

NFin∗(〈m〉, 〈l〉) NFin∗(〈n〉, 〈l〉)

f∗

p∗ p∗

α∗

is a homotopy pullback square for each object (C1, ..., Cl) in ND(C)⊗. In other words, for
each β ∈ Fin∗(〈m〉, 〈l〉), we need to show that

ND(C)⊗((B1, ..., Bm), (C1, ..., Cl))×NFin∗(〈n〉,〈l〉) {β} → ND(C)⊗((A1, ..., An), (C1, ..., Cl))

is a homotopy equivalence onto the component of ND(C)⊗((A1, ..., An), (C1, ..., Cl)) lying over
β ◦ α in Fin∗(〈n〉, 〈l〉). This means that for each k ∈ 〈l〉 \ ∗, the induced map

f ∗ : ND(C)
(
⊗j∈β−1(k)Bj, Ek

)
→ ND(C)

(
⊗i∈(β◦α)−1(k)Ai, Ek

)
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is a homotopy equivalence, which is equivalent to saying that

f ∗ : C
(
⊗j∈β−1(k)Bj, Ek

)
→ C

(
⊗i∈(β◦α)−1(k)Ai, Ek

)

is an equivalence of categories, which holds by assumption. �
Definition 2.38. • [22, Definition 3.1.0.1] Let sSet+ be the category of marked simlicial sets.
The objects of sSet+ are pairs (X, E), where sX0 ⊆ E ⊆ X1 is a subset of X1 containing the
degenerate edges. The morphisms (X, E)→ (Y, E ′) in sSet+ are morphisms of simplicial sets
f : X → Y such that f(E) ⊆ E ′.
• Given a simplicial set X, define the marked simplicial sets

X[ = (X, sX0) and X] = (X,X1)

with markings given by the degenerate and all edges respectively.
• [22, Notation 3.1.0.2] Let sSet+/S be the over-category of sSet+ with respect to S].

• [22, Definition 3.1.1.8] Given a morphism of simplicial sets p : X → S, let X\ = (X, E , p) ∈
sSet+/S be the marked simplicial set over S where E is the set of p-coCartesian edges in X.

Definition 2.39. [22, Section 3.1.3] If X → S and Y → S are simplicial sets over S, define
the mapping space Hom](X, Y ) ⊆ HomsSet+/S(X, Y ) to be the subspace of the simplicial
mapping space defined by

HomsSet(K,Hom](X, Y )) ∼= HomsSet+
/S

(K] ×X, Y ).

Lemma 2.40. [22, Proposition 3.1.3.7] There is a simplicial model structure on sSet+/S, called
the coCartesian model structure, for which the equivalences are the Joyal equivalences and
cofibrations are monomorphisms. In this model structure, the fibrant objects are the marked
simplicial sets X\ where p : X → S is a coCartesian fibration.

Lemma 2.41. [22, Lemma 3.1.3.6] Consider the morphism F in Set+/S

X Y

S

F

q
p

such that F is an inclusion of simplicial sets and let C → S be a coCartesian fibration. Then
the induced map F ∗ : Hom](Y,C\)→ Hom](X, C\) is a Kan fibration.

Definition 2.42. Let p : C⊗ → NFin∗ be a symmetric monoidal quasi-category. We define
its object monoid Ob C⊗ by fixing one coCartesian lift f! for each pair

(〈n〉 f−→ 〈m〉 ∈ NFin∗, (C1, ..., Cn) ∈ Ob C×n)

such that id! = id, and taking the full subcategory of C⊗ on these morphisms. We obtain an
inclusion i : Ob C⊗ → C⊗ over NFin∗.
Lemma 2.43. Let p : C⊗ → NFin∗ and q : D⊗ → NFin∗ be symmetric monoidal quasi-
categories and let i : Ob C⊗ → C⊗ be the inclusion of the monoid of objects. If F : C⊗ → D⊗
and G : Ob C⊗ → D⊗ are symmetric monoidal functors and γ : G → F |Ob C⊗ is a natural
equivalence, then F can be pulled back along γ to produce a new symmetric monoidal
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functor F ′ : C⊗ → D⊗ which equals G on objects and on morphisms sends f : x → y to
F ′(f) ∼ γ−1

y ◦ F (f) ◦ γx.
Proof. Let I be the groupoid with objects 0, 1 and an isomorphism 0→ 1. The Kan complex
NI classifies homotopy equivalences in quasi-categories [9, Proposition 2.2]. We apply Lemma
2.41 to the inclusion i : Ob C⊗ → C⊗ and the symmetric monoidal quasi-category D⊗, then
the induced map of simplicial sets Hom](C⊗,D⊗)→ Hom](Ob C⊗,D⊗) is a Kan fibration by
Lemma 2.41. As such, we can find a lift in the square

∆0 Hom](C⊗,D⊗)

NI Hom](Ob C⊗,D⊗)

f

i∗i0

h

h̃

The image of 1 under h̃ then has the desired property. It follows that h̃(1) also preserves
coCartesian edges and so is a symmetric monoidal functor. �

Replacing NFin∗ with the point ∆0 as the base simplicial set and using the same argument
results in the following result:

Lemma 2.44. Let C and D be quasi-cateogries and let i : Ob C → C be the inclusion of the
set of objects. If F : C → D and G : Ob C → D are functors and γ : G→ F |Ob C is a natural
equivalence, then F can be pulled back along γ to produce a new functor F ′ : C → D which
equals G on objects and on morphisms sends f : x→ y to F ′(f) ∼ γ−1

y ◦ F (f) ◦ γx.

3. The Morita category

Throughout, fix a commutative ring k. We denote by dgAlgk the (large) category of
dg-k-algebras and algebra homomorphisms.

In this section we introduce the (large) Morita (2,1)-category, which is a 2-categorical
version of [18, Section 2.4] and study its properties and relation to the category of algebras
over k. In the following, by Morita functoriality we will mean a functor out of the Morita
(2,1)-category.

Definition 3.1. Fix a commutative ground ring k. We define the Morita category Mork as
the following (2,1)-category.

• The objects are dg-k-algebras.
• For a pair of dg-algebras A,B, Mork(A,B) is the groupoid of (B,A)-bimodules and

(B,A)-bimodule isomorphisms.
• For a triple A,B,C ∈ ObMork, the composition functor

Mork(B,C)×Mork(A,B)→ Mork(A,C)

is given by tensor product over B: (P,Q) 7→ P ⊗B Q.
• The unit of a dg-algebra A in Mork is given by A considered as an (A,A)-bimodule.
• The associators and unitors are given by the associators and unitors for the tensor

product, that is

αA,B,C,D(P,Q,R) : P ⊗C (Q⊗B R)
∼−→ (P ⊗C Q)⊗B R
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λA,B(P ) : B ⊗B P ∼−→ P

Lemma 3.2. The following defines a 2-functor m : dgAlgk → Mork.

• m is the identity on objects.
• A homomorphism of dg-algebras f : A→ B is sent to the (B,A)-bimodule Bf = B,

with left structure map the multiplication m : B ⊗B → B and right structure map
m ◦ (id⊗ f) : B ⊗ A→ B.
• The 2-morphism m1a : 1m(A) → mA,A(idA) is given by the identity morphism A→ A

in the category of (A,A)-bimodules.

• For dg-algebra homomorphisms A
f−→ B

g−→ C, the 2-morphism

mA,B,C : Cg ⊗B Bf → Cg◦f

is given by the natural isomorphism c⊗ b 7→ c · g(b), where · is the product in C.

Proof. We need to verify the commutativity of the diagrams in Definition 2.8. The vertical
arrows in the unitor diagrams are identity morphisms, so it is sufficient to observe that for
an algebra homomorphism f : A→ B, the structure maps

mA,B,B(idB, f) : BidB ⊗B Bf → Bf

and
mA,A,B(f, idA) : Bf ⊗A AidA → Bf

are exactly the unitor maps in Mork. For the associator diagram, we need to show that for
dg-algebra homomorphisms

A
f−→ B

g−→ C
h−→ D,

the following diagram commutes:

(Dh ⊗C Cg)⊗B Bf Dh ⊗C (Cg ⊗B Bf )

Dh◦g ⊗B Bf Dh ⊗C Cg◦f

Dh◦g◦f Dh◦g◦f

αA,B,C,D

mB,C,D(h, g)⊗B Bf

mA,B,D(h ◦ g, f)

Dh ⊗C mA,B,C(g, f)

mA,C,D(h, g ◦ f)

id

this follows from a calculation on elementary tensors. Namely, for d ∈ Dh, c ∈ Cg and b ∈ Bf ,
both sides of the diagram yield the composition

d⊗ c⊗ b 7→ d · h(c) · (g ◦ h)(b) = d · h(c · g(b))

�
Definition 3.3. The 2-functor m : dgAlgk → Mork constructed in Lemma 3.2 is called the
modulation 2-functor.

Remark 3.4. Note that modulation is not a strict 2-functor as for homomorphisms of

k-algebras A
f−→ B

g−→ C, the (C,A)-bimodule Cg ⊗B Bf is only isomorphic and not equal to
Cg◦f .
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The reason we restrict the 2-morphisms in Mork to be isomorphisms is because Lemma
5.11 does not hold for arbitrary bimodule homomorphisms.

Lemma 3.5. ([29, Example 2.10]) Mork is a symmetric monoidal (2,1)-category, in the sense
of [16], under tensor product over k.

Lemma 3.6. The modulation functor m : dgAlgk → Mork induces a symmetric monoidal
functor of quasi-categories

N(dgAlgk)
⊗ ND(Mork)

⊗

NFin∗

m⊗

q
p

where m⊗ is defined as follows: it is given by the identity on objects, and for a morphism
f : (A1, ..., An)→ (B1, ..., Bm) lying over a map α : 〈n〉 → 〈m〉, the image

m⊗(f) : (A1, ..., An)→ (B1, ..., Bm)

is the morphism given on components by m(f)j = m(fj) = (Bj)fj .

Proof. We first show that m⊗ is indeed a functor. We will construct a map Fun([2], dgAlg⊗k )→
HomN

(2,1)Cat([2],Mor⊗k ). From the construction it will be clear that the general case follows
similarly.

Given a finite set I and algebra homomorphisms gi : A
i → Bi for i ∈ I, the (⊗i∈IBi,⊗i∈IAi)-

bimodules ⊗i∈IBi
gi

and (⊗i∈IBi)⊗i∈Igi are in fact equal.

An element of Fun([2], dgAlg⊗k ) is given by a pair of maps of finite pointed sets

〈n〉 α−→ 〈m〉 β−→ 〈r〉
and morphisms

(A1, ..., An)
f−→ (B1, ..., Bm)

g−→ (C1, ..., Cr)

lying over these. The composition m⊗(g)m⊗(f), given componentwise by

(m⊗(g)m⊗(f))k :
⊗

j∈β−1(k)

⊗

i∈α−1(j)

Ai

⊗
j∈β−1(k) m(fj)−−−−−−−−−−→

⊗

j∈β−1(k)

Bj
m(gk)−−−→ Ck

as a (Ck,⊗iAi)-bimodule, this is given by

(Ck)gk ⊗⊗j∈β−1(k)Bj

(
⊗j∈β−1(k)(Bj)fj

)
= (Ck)gk ⊗⊗j∈β−1(k)Bj

(
⊗j∈β−1(k)Bj

)
⊗j∈β−1(k)fj

such that the composition 2-morphism m⊗(g)m⊗(f)→ m⊗(g ◦ f) is given componentwise by
the canonical isomorphism m⊗iA,⊗jB,C .

In summary, the normal 2-functor [2]→ Mor⊗k obtained from (f, g) takes (0→ 1) to m⊗(f),
(1→ 2) to m⊗(g) and (0→ 2) to m⊗(g◦f), with structure map m⊗(g)m⊗(f)→ m⊗(g◦f) given
componentwise by m⊗iA,⊗jB,C . The functoriality of m⊗ therefore reduces to the functoriality
of m, and the general case follows similarly.
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Let α : 〈n〉 → 〈m〉 be a map of finite pointed sets. By Lemma 2.37, the coCartesian lifts of
α in N(dgAlgk) are precisely those morphisms f : (A1, ..., An)→ (B1, ..., Bm) such that each
component

fj :
⊗

i∈α−1(j)

Ai → Bj

is an isomorphism. Such an edge is sent by m to an edge where each component is a
Morita equivalence, which is coCartesian by Lemma 2.37). It we conclude that m⊗ preserves
coCartesian morphisms and is a symmetric monoidal functor. �
Definition 3.7. Let dgCatk be the (large) category of dg-categories over k. We consider it
as a dg-category. Given a pair of dg-categories A and B, the complex of functors Funk(A,B)
is given in degree n by Chk-enriched functors A → B such that for each pair of objects
a0, a1 ∈ ObA, the chain map

A(a0, a1)→ B(Fa0, Fa1)

has degree n.

We denote the underlying (strict, large) (2,1)-category of dgCatk by dgCat
(2,1)
k . It is given

as follows:

• dgCat
(2,1)
k has the same objects as dgCatk.

• Given as pair of dg-categories A,B, the category dgCat
(2,1)
k (A,B) has objects given

by Z0Funk(A,B), and for a pair of such functors F,G : A → B, the two-morphisms
F → G are given by natural transformations.

Definition 3.8. Define a functor P− : Mork → dgCat
(2,1)
k by sending an algebra A to the

dg-category PA of finitely generated projective left dg-A-modules and dg-A-module homomor-
phisms. Given a (B,A)-bimodule P , assign the functor P ⊗A − : PA → PB. To a bimodule
isomorphism λ : P → P ′, assign the transformation λ⊗A id : P ⊗A − → P ′ ⊗A −.

4. The Dold-Kan Equivalence

In this section we briefly recall some material on the Dold-Kan equivalence.
The Dold-Kan equivalence is an equivalence of categories

M : sModk � Ch≥0
k : Γ

between simplicial k-modules and connective dg-k-modules.

Definition 4.1. The functor M takes a simplicial k-module A• to the chain complex MA∗
where MAp = Ap/sAp−1, the quotient of Ap by the degenerate simplices. The differential
d : MAp →MAp−1 is given by the alternating sum of face maps d =

∑p
i=0(−1)idi.

sModk and Ch≥0
k are symmetric monoidal categories under the degreewise tensor product

⊗̂ over k and the usual tensor product ⊗ of complexes, respectively. M is an equivalence of
monoidal categories, but not of symmetric monoidal categories, as the inverse functor is only
an E∞-monoidal (we will not need this notion in the present paper; see [27] for a definition).

Definition 4.2. A (p, q)-shuffle, is a permutation σ of (1, ..., p+ q) such that

σ(1) < σ(2) < ... < σ(p)

and
σ(p+ 1) < σ(p+ 2) < ... < σ(p+ q).
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Let Σ(p,q) ⊆ Σp+q denote the subset of (p, q)-shuffles.

Definition 4.3. [11, 5.3] Let A1 and A2 be simplicial k-modules. The shuffle map is the
natural transformation M(A1)⊗M(A2)→M(A1⊗̂A2) given by

sh(a1 ⊗ a2) =
∑

σ∈Σ(p,q)

sgn(σ)sσ(p+q)...sσ(p+1)a1 ⊗ sσ(p)...sσ(1)a2.

Definition 4.4. [12, 2.9] Let A and B be simplicial k-modules. The Alexander-Whitney map

AWA,B : N(A⊗̂B)→ N(A)⊗N(B)

is defined on elementary tensors a⊗ b ∈ An ⊗Bn as

AWA,B : (a⊗ b) 7→
n∑

i=0

di+1...dn−1dna⊗ (d0)ib

As with the shuffle map, we omit A,B from the notation AWA,B when there is no risk of
confusion.

The shuffle and Alexander-Whitney maps are associative (see [11, Theorem 5.4] and [12,
Corollary 2.2]) and mutual homotopy inverses [12, Theorem 2.1].

Notation 4.5. Write shn for the natural transformation

shn : M(A1)⊗ ...⊗M(An)→M(A1⊗̂...⊗̂An)

of functors sMod×nk → Chk.

5. Hochschild chains on dg-categories

We first remind the reader of some standard constructions.

Definition 5.1. [18, Section 5.4] The cyclic bar construction on a dg-category A is given by
the simplicial chain complex

C∆(A)n =
⊕

a0,...,an∈ObA
A(an, a0)⊗A(a0, a1)⊗ ...⊗A(an−1, an)

with simplicial face maps

di(f0 ⊗ ...⊗ fn) =

{
f0 ⊗ ...⊗ fi+1fi ⊗ ...⊗ fn , i < n
f0fn ⊗ f1 ⊗ ...⊗ fn−1 , i = n

.

The Hochschild boundary operator is given by b =
∑n

i=0(−1)idi and makes C∆(A) into a
double complex Cε(A). We define the Hochschild complex C(A) of A to be the ⊕-total
complex of Cε(A).

If F : A → B is a functor between dg-categories, let C(F ) : C(A)→ C(B) be given on the
level of the cyclic bar construction by

A(an, a0)⊗ ...⊗A(an−1, an)
Fan,a0⊗...⊗Fan−1,an−−−−−−−−−−−−→ B(Fan, Fa0)⊗ ...⊗ B(Fan−1, Fan).

Definition 5.2. Let sp,q : [p+ q]→ [p]× [q] be the embedding given by

s(a) =

{
(a, 0) , 0 ≤ a ≤ p
(p, a− p) , p+ 1 ≤ a ≤ p+ q

Thinking of sp,q as a sequence of moves either vertically or horizontally, the set of (p, q)-shuffles
acts on s by permuting the moves.
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Definition 5.3. • Let A,B be dg-categories over k. Define the dg-category A ⊗ B with
objects ObA×ObB and morphisms (A⊗ B)((a, b), (a′, b′)) = A(a, a′)⊗ B(b, b′).
• Given a Hochschild chain

(an
f0−→ a0

f1−→ ...
fp−1−−→ ap−1

fp−→ ap)

in A, write f : k[p]→ A for the restriction to the latter p morphisms.
The external shuffle map

shA,B : C(A)⊗ C(B)→ C(A⊗ B)

is defined as

(an
f0→ a0

f1→ ...
fp−1−−→ ap−1

fp→ ap)⊗ (bn
f0→ b0

g1→ ...
gp−1−−→ bq−1

gq→ bq) 7→∑

σ∈(p,q)

sgn(σ)(f0 ⊗ g0, ((f ⊗ g)(σ · sp,q)(0→ 1)) , ..., ((f ⊗ g)(σ · sp,q)(p+ q − 1→ p+ q))).

• Define the external Alexander-Whitney map

AWA,B : C(A⊗ B)→ C(A)⊗ C(B)

taking

(an, bn)
f0⊗g0→ (a0, b0)→ ...→ (an−1, bn−1)

fn⊗gn→ (an, bn)

to
n∑

p=0

(f0fn...fp+1 ⊗ f1 ⊗ ...⊗ fp)⊗ (gp...g0 ⊗ gp+1 ⊗ ...⊗ gn)

As in the case for algebras, sh and AW are mutually inverse quasi-isomorphisms.

Lemma 5.4. Let A and B be dgas over k, considered as dg-categories with one object. Then
shA,B = shA,B and AWA,B = AWA,B.

Proof. That the Alexander-Whitney maps agree is immediate from the simplicial structure
of the cyclic bar construction.

To see that the shuffle maps agree, fix a (p, q)-shuffle σ. Given a degree p Hochschild chain

of a = a0 ⊗ ã of A, where ã ∈ A⊗p, and a degree q Hochschild chain b = b0 ⊗ b̃ of B, we have

σ · (ã⊗ b̃)sp,q(r → r + 1) =
(
σ · (ã⊗ 1)sp,q(r → r + 1)

)
⊗
(
σ · (1⊗ b̃)sp,q(r → r + 1)

)

where σ · (ã⊗ 1)sp,q(r → r + 1) = 1 if an only if σ−1(r) > p. In ohter words,

a0 ⊗
(
σ · (ã⊗ 1)sp,q(0→ 1), ..., σ · (ã⊗ 1)sp,q(p+ q → p+ q + 1)

)
= sσ(p+q)...sσ(p+1)a,

and similarly

b0 ⊗
(
σ · (̃b⊗ 1)sp,q(0→ 1), ..., σ · (̃b⊗ 1)sp,q(p+ q → p+ q + 1)

)
= sσ(p)...sσ(1)b.

�
Lemma 5.5. ([18, Section 5.5]) Let A be a dga over k, and regard A as a category with one
object ∗. The inclusion iA : A→ PA sending ∗ to A induces a natural homotopy equivalence

eA : C(A)→ C(PA).

Definition 5.6. For each dga A over k, let fA : C(PA) → C(A) be a homotopy inverse to
eA.
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Remark 5.7. We do not know if fA can be chosen to be strictly natural in A, but we
expect it to be impossible. For ordinary algebras, the known construction corresponds to
realizing each projective A-module as a direct summand of a free module, see the proof of
[24, Proposition 2.4.3].

By the above, using a non-symmetric monoidal version of Lemma 2.43, a functor F : PA →
PB induces a morphism fB ◦ F ◦ eA : C(A)→ C(B), which is compatible with composition
up to coherent homotopy in the sense of Lemma 2.44, and this morphism is a homotopy
equivalence if the functor is an equivalence. In particular, such a map is induced by a
(B,A)-bimodule P , and is a homotopy equivalence when P witnesses a Morita equivalence.

Remark 5.8. It is well known (see [19, Section 4.1.1]) that conjugation by an invertible
element induces the identity morphism on Hochschild homology. The same is true for the
modulation functor landing in the Morita category, see [18, Section 2.4].

Lemma 5.9. Let f : A → B be a map of dga’s. The following diagram commutes up to
natural isomorphism:

C(A) C(PA)

C(B) C(PB)

eA

Bff

eB

and hence the maps HH(A)→ HH(B) induced by f and the (B,A)-bimodule Bf are equal.

Proof. We examine the two compositions at the level of the cyclic bar construction. The
lower part of the diagram takes a Hochschild chain (a0, ..., an) ∈ A⊗n+1 to

(f(a0), ..., f(an)) ∈ B⊗n.
The upper part takes a Hochschild chain (a0, ..., an) ∈ A⊗n+1 to the chain

(1⊗ a0, ..., 1⊗ an) ∈ (Bf ⊗A A)⊗n

where the natural isomorphism is the unitor ρB,A : Bf ⊗A A ∼= B taking (1⊗ a) to f(a). �
Lemma 5.10. Let M and N be a pair of (B,A)-bimodules and let φ : M → N be a bimodule
isomorphism. We obtain a natural isomorphism M ⊗A − → N ⊗A − of functors PA → PB
given componentwise by φ⊗ id : M ⊗A P → N ⊗A P .

Proof. Given a morphism ψ : P → Q of perfect A-modules, the naturality squares are of the
form

M ⊗A P N ⊗A P

M ⊗A Q N ⊗A Q

φ⊗ id

id⊗ ψid⊗ ψ

φ⊗ id

and so they commute. �
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Lemma 5.11. Let A and B be a pair of dg-categories, F,G : A → B a pair of dg-functors and
φ : F → G a natural isomorphism. Then φ induces a homotopy h : C(F )→ C(G) between
the induced morphisms C(F ), C(G) : C(A)→ C(B).

Proof. We construct a presimplicial homotopy in the sense of [19, 1.0.8] at the level of the
cyclic bar constructions. This will imply the statement. For a Hochschild chain

an
f0−→ a0

f1−→ ...
fn−1−−→ an−1

fn−→ an

in C∆(A)n, let hi : C∆(A)n → C∆(B)n+1 be given by

hi : (f0, ..., fn) 7→ (F (f0) ◦ φ−1
an , F (f1), ..., F (fi), φai , G(fi+1), ..., G(fn))

We are left to verify the relations

(1) dihj = hj−1di for i < j,
(2) dihj = dihj−1 for 0 < i ≤ n and i = j or i = j + 1,
(3) dihj = hjdi−1 for i > j + 1,
(4) d0h0 = C(G), dn+1hn = C(F )

Note that since φ is a natural transformation, the below diagram commutes, and hi(f0, ..., fn)
can be viewed as the Hochschild chain starting at G(an), traversing the upper part of the
diagram for the first i morphisms and then goind down to the lower part.

F (an) ... F (ai) ... F (an)

G(an) ... G(ai) ... G(an)

F (f0)

φan

F (fi) F (fi+1)

φai

F (fn)

φan
G(f0) G(fi) G(fi+1) G(fn)

Relations (1) and (3) clearly hold. Relation (2) boils down to the commutativity of the
following diagram:

F (al−1) F (al)

G(al−1) G(al)

F (fl)

φalφal−1

G(fl)

for i = l or i = l + 1, which holds by naturality. Relation (4) is checked by hand:

d0h0(f0, ..., fn) = (φa0 ◦ F (f0) ◦ φ−1
an , G(f1), ..., G(fn)) = (G(f0), ..., G(fn))

by the naturality of φ. Similarly,

dn+1hn(f0, ..., fn) = (F (f0) ◦ φ−1
an ◦ φan , F (f1), ..., F (fn)) = (F (f0), ..., F (fn)).

Then h =
∑n

i=0(−1)ihi is a homotopy between C(F ) and C(G) by [19, Lemma 1.0.9]. �

Corollary 5.12. If A and B are dg-categories over k and F : A → B is an equivalence of
categories, then F induces a homotopy equivalence C(F ) : C(A)→ C(B).
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Definition 5.13. Let ∆n be the groupoid 0 � 1 � ... � n. and let k∆n ∈ dgCatk be
the free k-linear category on ∆n. In other words, for every 0 ≤ i, j ≤ n, k∆n(i, j) = k
concentrated in degree 0.

Lemma 5.14. The Hochshcild complex C(k∆n) is acyclic.

Proof. This follows from Corollary 5.12 since k∆n is equivalent to its full subcategory on
0. �

Definition 5.15. Let S∗∆n be the reduced simplicial chain complex of the n-simplex, i.e. it
has a generator in degree k for each functor f : [k]→ [n] such that f is injective on objects,

and the differential d : Sk∆n → Sk−1∆n is given by d =
∑k

i=0 δ
∗
i , where δi : [k − 1] → [k] is

the injection omitting the i’th object.

Definition 5.16. Let m,n ≥ 0. There is a map im : S∗(∆×mn ) → C((k∆n)⊗m) given by
sending a functor f : [p]→ [n]×m to the Hochschild chain

im(f) =
(
f(0→ p)−1, f(0→ 1), ..., f((p− 1)→ p)

)

For ease of notation, we simply write i := i1.

Lemma 5.17. Let ∆: ∆n → ∆×mn be the diagonal embedding, and write also ∆: k∆n →
(k∆n)⊗m for the diagonal functor. Then the diagram

S∗(∆n) C(k∆n)

S∗(∆×mn ) C((k∆n)⊗m)

i

∆∗∆∗

im

commutes.

Proof. The diagonal map ∆∗ : C(k∆n)→ C((k∆n)⊗m) takes a Hochschild chain (f0, ..., fp)
to the diagonal chain (∆f0, ...,∆fp), such that the upper part of the diagram takes a functor
f : [p]→ [n] to

∆∗i(f) =
(
∆f(0→ p)−1,∆f(0→ 1), ...,∆f((p− 1)→ p)

)
.

On the other hand, the diagonal map ∆∗ : S∗(∆n)→ S∗(∆×mn ) takes a functor f : [p]→ [n]
to the composition

[p]
f−→ [n]

∆−→ [n]×m.

such that

im ◦∆∗(f) = im(∆ ◦ f) =
(
∆f(0→ p)−1,∆f(0→ 1), ...,∆f((p− 1)→ p)

)
= ∆∗i(f).

So the diagram commutes. �

Lemma 5.18. The following diagram commutes.
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S∗(∆n)⊗m C(k∆n)⊗m

S∗(∆×mn ) C((k∆n)⊗m)

i⊗m

shsh

im

Proof. We give a proof for the case k = 2. The general case is similar. We have to prove that
the following diagram commutes.

S∗(∆n)⊗ S∗(∆n) C(k∆n)⊗ C(k∆n)

S∗(∆n ×∆n) C(k∆n ⊗ k∆n)

i⊗ i

shsh

i2

Recall the functors sp,q : [p] × [q] → [p + q] from Definition 5.2 and the action on sp,q by
shuffle maps. Then given a pair of functors f : [p]→ [n] and g : [q]→ [n], the lower part of
the diagram evaluates to

i2 ◦ sh(f, g) = i2


 ∑

σ∈Σp,q

(sgnσ)(f × g) ◦ (σ · sp,q)




=
∑

σ∈Σp,q

(sgnσ)
(
f(0→ p)−1 ⊗ g(0→ q)−1, (f × g) ◦ (σ · sp,q)(0→ 1), ...

..., (f × g) ◦ (σ · sp,q)((p+ q − 1)→ (p+ q)))

However, this action of the (p, q)-shuffles is precisely the action on Hochschild chains, so this
is equal to ∑

σ∈Σp,q

(sgnσ)σ ·
(
f(0→ p)−1 ⊗ g(0→ q)−1, f ⊗ id, id⊗ g

)

= sh(i(f), i(g))

so the diagram commutes. �
Observation 5.19. • By the Dold-Kan equivalence, we can consider Chk as a simplicial
category with morphism spaces

HomChk(A,B)n := Z0HomChk(S∗∆n ⊗ A,B)

i.e. chain maps S∗∆n⊗A→ B. The composition of two degree n morphisms S∗∆n⊗A f−→ B

and S∗∆n ⊗B g−→ C is given by the composition

S∗∆n ⊗ A ∆∗⊗id−−−→ S∗(∆n ×∆n)⊗ A AW⊗id−−−−→ S∗∆n ⊗ S∗∆n ⊗ A id⊗f−−→ S∗∆n ⊗B g−→ C.

• Since dgCat
(2,1)
k is a strict (2,1)-category, it has an associated simplicial category dgCat

(2,1)
k,∆

(see Definition 2.15). A degree n morphism in dgCat
(2,1)
k,∆ is given by a chain

F0
φ1−→ F1

φ2−→ ...
φn−→ Fn



26 ESPEN AUSETH NIELSEN

of natural isomorphisms of functors Fi : A → B in Z0(Fun(A,B)). This can equivalently be
expressed as a functor k∆n ⊗ A → B in Z0(Fun(k∆n ⊗ A,B)). In other words, there is a
natural isomorphism

dgCat
(2,1)
k,∆ (A,B)n ∼= Z0(Fun(k∆n ⊗A,B)).

Lemma 5.20. Let A and B be a pair of dg-categories, F,G : A → B a pair of dg-functors
and φ : F → G a natural isomorphism. We get an induced morphism

S∗∆1 ⊗ C(A)
i1⊗id−−−→ C(k∆1)⊗ C(A)

sh−→ C(k∆1 ⊗A)
φ∗−→ C(B).

This map is equal to the homotopy constructed in the proof of Lemma 5.11 when evaluated

at the top non-degenerate simplex [1]
id−→ [1] in S∗∆1.

Proof. Write u : 0→ 1 for the morphism in ∆1 and let

an
f0−→ a0...an−1

fn−→ an

be a Hochschild chain of A. Then the above composition evaluates to(
[1]

id−→ [1]
)
⊗ (f0, ..., fn)

i⊗id7→ (u−1, u)⊗ (f0, ..., fn)

sh7→
∑

σ∈Σ1,n

(sgnσ)σ · ((f0 ⊗ u−1), (a0 ⊗ u), (1⊗ f1), ..., (1⊗ fn))

=
n∑

i=0

(−1)i((f0 ⊗ u−1), (f1 ⊗ 0), ..., (fi ⊗ 0), (ai ⊗ u), (fi+1 ⊗ 1), ..., (fn ⊗ 1))

φ∗7→
n∑

i=0

(−1)i(F (f0) ◦ φ−1
an , F (f1), ..., F (fi), φai , G(fi+1), ..., G(fn))

which agrees with the homotopy h constructed in the proof of Lemma 5.11. �
Lemma 5.21. By the Dold-Kan equivalence, consider Chk as a simplicial category. Let A
and B be a pair of dg-categories. There is a simplicial map NFun(A,B)→ Hom(C(A), C(B))

extending to a functor of quasi-categories C(−) : N∆dgCat
(2,1)
k,∆ → N∆Chk.

Proof. We will construct a simplicial functor up to coherent homotopy dgCat
(2,1)
k,∆ → Chk.

Then such a functor gives rise to a simplicial map between their simplicial nerves.

Let F0, ..., Fn : A → B be a collection of dg-functors and let F0
φ1−→ ...

φn−→ Fn be a chain of
natural isomorphisms, and let φ : k∆n ⊗A → B be the associated functor sending i⊗ a to
Fi(a) and ui ⊗ a to φi,a : Fi−1(a)→ Fi(a).

We precompose the induced chain map of φ with the external shuffle map (see Definition
5.3) to obtain a chain map

C(φ) : S∗∆n ⊗ C(A)
i⊗id−−→ C(k∆n)⊗ C(A)

sh−→ C(k∆n ⊗A)
φ∗−→ C(B).

We now verify that this assignment is compatible with composition. If we in addition have

dg-functors G0, ..., Gn : B → C and natural isomorphisms G0
ψ1−→ ...

ψn−→ Gn, we get an induced
functor ψ : k∆n ⊗ B → C as above. We can also horizontally compose the ψi’s and φi’s to
obtain a chain

G0F0
ψ1∗φ1−−−→ ...

ψn∗φn−−−→ GnFn
and an associated functor ψ ∗ φ : k∆n ⊗A → C. These chains fit into commutative diagram
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k∆n ⊗A

k∆n ⊗ k∆n ⊗A k∆n ⊗ B C

ψ ∗ φ
∆⊗ id

id⊗ φ ψ

where ∆: ∆n → ∆n ⊗∆n is the diagonal functor, and ψ ∗ φ is the composition of φ and ψ in

dgCat
(2,1)
k,∆ .

Similar to the map i : S∗(∆n)→ C(k∆n), the Hochschild complex C(k∆n ⊗ k∆n) contains
a product of two n-simplices there is a map

i2 : S∗(∆n ×∆n)→ C(k∆n ⊗ k∆n)

The composition C(ψ) ◦C(φ) is given by the upper part of the below large diagram, which
the lower part is given by C(ψ ∗φ). The only squares that need to be checked are the leftmost
ones. The lower leftmost square commutes by Lemma 5.17, while the upper leftmost square
commutes up to homotopy by Lemma 5.18.

S∗(∆n)⊗ S∗(∆n)⊗ C(A) S∗(∆n)⊗ C(k∆n)⊗ C(A) S∗(∆n)⊗ C(k∆n ⊗A) S∗(∆n)⊗ C(B)

C(k∆n)⊗ C(k∆n)⊗ C(A) C(k∆n)⊗ C(k∆n ⊗A) C(k∆n)⊗ C(B)

S∗(∆n ×∆n)⊗ C(A) C(k∆n ⊗ k∆n)⊗ C(A) C(k∆n ⊗ k∆n ⊗A) C(k∆n ⊗ B)

S∗(∆n)⊗ C(A) C(k∆n)⊗ C(A) C(k∆n ⊗A) C(C)

1⊗ i⊗ 1 1⊗ sh

i⊗ 1⊗ 1

1⊗ φ∗

i⊗ 1 i⊗ 1

1⊗ sh

sh⊗ 1

1⊗ φ∗

sh sh

i2 ⊗ 1

AW

sh (1⊗ φ)∗

ψ∗

i⊗ 1

∆∗ ⊗ 1

sh

∆∗ ⊗ 1

(ψ ∗ φ)∗

(∆⊗ 1)∗

The general case for an m-fold composition in degree n is similar, with the homotopies
parameterizing the m-fold composition contained in the complex

NatsSet×m (S∗(−× ...×−), S∗(−× ...×−))

which is contractible by [6, Satz 1.6]. In other words, we have obtained a functor up to
coherent homotopy

dgCat
(2,1)
k,∆ → Chk.

Now, let A0, ...,Am be dg-categories, and for each 1 ≤ i ≤ m, let

F0,i
φ1,i−−→ F1,i...

φn,i−−→ Fn,i

be a sequence of natural isomorphisms defining a functor φi : k∆n ⊗ Ai−1 → Ai. By the
contractibility of the above complex, there is a morphism of simplicial sets

NP0,m → HomChk(A0,Am)
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(recall Definition 2.12) sending the subset I = {0, i1, ..., ik,m} to the composition

C(φn ∗ ... ∗ φik+1) ◦ C(φik ∗ ... ∗ φik−1+1) ◦ ... ◦ C(φ1 ∗ ...φi1)

and the inclusion I \ {ij} ⊂ I applies the homotopy corresponding to the square

S∗(∆
×ij+1−ij
n )⊗ S∗(∆×ij−ij−1

n ) C((k∆n)⊗ij+1−ij)⊗ C((k∆n)⊗ij−ij−1)

S∗(∆
×ij+1−ij−1
n ) C((k∆n)⊗ij+1−ij−1)

iij+1−ij ⊗ iij−ij−1

sh

iij+1−ij−1

AW

Finally, given a natural isomorphism H : ψ → φ2 ∗ φ1 in N∆dgCat
(2,1)
k,∆ , the homotopy C(H)

is contained in the lower right corner of the big diagram above, so that it does not interact
with the homotopies relating the different composites. Indeed, we may extend the assignment
above such that NP0,2 takes {0, 1, 2} to C(φ2)◦C(φ1) and {0, 2} to C(ψ), where the inclusion
{0, 2} ⊆ {0, 1, 2} applies the homotopies C(H) and sh ◦ AW → id in any order. The general
case is identical, so the above assignment extends to a morphism of simplicial sets

N∆dgCat
(2,1)
k,∆ → N∆Chk

as claimed.
�

Theorem 5.22. The functor dgAlgk → Chk taking A to C(A) factors through the modulation
functor dgAlgk → Mork. Furthermore, C(−) takes equivalences of dg-categories to homotopy
equivalences of chain complexes. We obtain the below diagram, which commutes up to
coherent homotopy.

N(dgAlgk) ND(Mork) ND(dgCat
(2,1)
k )

N∆(Chk)

m

C(−)
C(−)

P−

C(−)

Proof. The middle and right vertical functors exist by Lemma 5.21. The right triangle
commutes by definition, while the left triangle commutes by Lemma 5.9. �

6. Symmetric monoidal structure

In this section we will prove that the left triangle of Theorem 5.22 can be upgraded to a
homotopy-commutative diagram of symmetric monoidal quasi-categories. This will complete
the proof of the main theorem.

We begin by discussing shuffle maps of Hochschild complexes of dg-categories of finitely
generated projective modules.

Notation 6.1. For an n-tuple of simplicial k-algebras ~A = (A1, ..., An), we write

C(P( ~A)) = C(PA1)⊗ ...⊗ C(PAn)

We apply the maps eA, fA, hA of Definition 5.6 componentwise to obtain maps

e ~A : C( ~A)→ C(P( ~A))
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f ~A : C(P( ~A))→ C( ~A)

h ~A : e ~Af ~A → idC(P( ~A))

Construction 6.2. Consider an n-tuple of dg-algebras ~A = (A1, ..., An) and write

A = A1 ⊗ ...⊗ An.
We define a map sh′n : C(P( ~A))→ C(PA) by

sh′n = eA ◦ shn ◦ f ~A.
Then the following square commutes:

C( ~A) C(P( ~A))

C(A) C(PA)

e ~A

sh′nshn

eA

A homotopy inverse to sh′n is given by AW ′
n := e ~A ◦ AWn ◦ fA.

Since f , the homotopy inverse of e, is not a strict natural transformation, the following
alternative choice of shuffle maps will be needed to produce a strictly natural shuffle map for
dg-categories.

Definition 6.3. • Let
(−⊗−) : PA ⊗ PB → PA⊗B

be the natural functor given on objects by (M,N) 7→ M ⊗ N and on morphisms by the
canonical map

HomA(M,M ′)⊗ HomB(N,N ′)→ HomA⊗B(M ⊗N,M ′ ⊗N ′)
induced by the symmetric monoidal structure of Chk.
• For A and B dga’s over k, we define the internal shuffle map as the composition

sh : C(PA)⊗ C(PB)
sh→ C(PA ⊗ PB)

(−⊗−)∗−−−−→ C(PA⊗B).

Lemma 6.4. The square

C(A)⊗ C(B) C(PA)⊗ C(PB)

C(A⊗B) C(PA⊗B)

eA ⊗ eB

shsh

eA⊗B

commutes. It follows that sh and sh′ are homotopic maps. In particular, sh is a homotopy
equivalence with inverse AW ′.

Proof. This is a consequence of Lemma 5.4. In particular, the image of sh under eA ⊗ eB �
Remark 6.5. One can in fact observe that sh′ = sh ◦ (eA ⊗ eB) ◦ (fA ⊗ fB). Indeed,
sh ◦ (eA ⊗ eB) ◦ (fA ⊗ fB) = (eA⊗B) ◦ sh ◦ (fA ⊗ fB) = sh′, and the homotopy relating sh and
sh′ is simply the homotopy hA ⊗ hB : (eA ⊗ eB) ◦ (fA ⊗ fB) ∼ id.
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Lemma 6.6. Let ~P = (P1, ..., Pn) : (A1, ..., An)→ (B1, ..., Bn) be an n-tuple of morphisms in
Mork, i.e. for each i, Pi is a (Bi, Ai)-bimodule. We write A = A1⊗ ...⊗An, B = B1⊗ ...⊗Bn

and P = P1 ⊗ ...⊗ Pn : A→ B. Denote the induced maps on Hochschild complexes by

~P∗ : C(P( ~A))→ C(P( ~B))

and

P∗ : C(PA)→ C(PB).

Then the following diagram commutes up to homotopy.

C(P( ~A)) C(P( ~B))

C(PA) C(PB)

~P∗

shnshn

P∗

Proof. We give the computation for the case n = 2 and at simplicial level 1. The general case
is similar.

We begin by factoring shn as (−⊗−)∗ ◦ shn to expend the diagram as follows

C(P( ~A)) C(P( ~B))

C(PA1 ⊗ PA2) C(PB1 ⊗ PB2)

C(PA) C(PB)

~P∗

sh sh

(P1 ⊗ P2)∗

(−⊗−)∗ (−⊗−)∗

(P1 ⊗ P2)∗

Now the upper square commutes by naturality of sh, and we will produce a homotopy for the
bottom square. The legs of the bottom square are both induced by functors

PA1 ⊗ PA2 → PB.
By exhibiting a natural isomorphism between them, we will obtain a homotopy by Lemma
5.11. Now the upper leg of the bottom diagram is induced by the functor

(M1,M2) 7→ (P1 ⊗A1 M1)⊗ (P2 ⊗A2 M2)

and the lower leg is induced by the functor

(M1,M2) 7→ (P1 ⊗ P2)⊗A1⊗A2 (M1 ⊗M2).

There is a canonical isomorphism

(P1 ⊗A1 M1)⊗ (P2 ⊗A2 M2)→ (P1 ⊗ P2)⊗A1⊗A2 (M1 ⊗M2).

This isomorphism is natural, such that given homomorphisms f1 : M1 → N1 of left A1-modules
and f2 : M2 → N2 of left A2-modules, there is a commutative diagram
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(P1 ⊗A1 M1)⊗ (P2 ⊗A2 M2) (P1 ⊗A1 N1)⊗ (P2 ⊗A2 N2)

(P1 ⊗ P2)⊗A1⊗A2 (M1 ⊗M2) (P1 ⊗ P2)⊗A1⊗A2 (N1 ⊗N2)

(id⊗ f1)⊗ (id⊗ f2)

∼ ∼

(id⊗ id)⊗ (f1 ⊗ f2)

which finishes the proof. �

Theorem 6.7. The Hochschild complex functor C(−) : NDMork → N∆Chk of Theorem 5.22
extends to a symmetric monoidal functor of quasi-categories

NDMor⊗k N∆Ch
⊗
k

NFin∗

C(−)

q
p

such that the diagram

NdgAlg⊗k NDMor⊗k

N∆Ch
⊗
k

NDm

C(−)
C(−)

is a homotopy commutative diagram of symmetric monoidal quasi-categories.

Proof. The component over 〈n〉 ∈ NFin∗ is given by applying the functor C(−) : NDMork →
N∆Chk of Theorem 5.22 componentwise, sending an n-tuple (A1, ..., An) in NDMor⊗k to
(C(PA1), ..., C(PAn)) ∈ N∆Ch

⊗
k . Using the description of morphisms of Lemma 2.29, a

morphism P : (A1, ..., An)→ (B1, ..., Bm) lying over a map g : 〈n〉 → 〈m〉 with components

(Pj : ⊗i∈g−1(j) Ai → Bj)j=1,...,m

is sent to the morphism

C(P ) : (C(PA1), ..., C(PAn))→ (C(PB1), ..., C(PBm))

whose components are given by

C(P )j : ⊗i∈g−1(j) C(PAi)
sh−→ C(P⊗iAi)

C(Pj)−−−→ C(PBj)

We extend this assignment to a simplicial map C(−) : NDMor⊗k → N∆Ch
⊗
k . In simplicial

degree 2, this looks as follows. The general case is similar. Let [2] → Mor⊗k be a normal
2-functor, corresponding to a diagram
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(A1, ..., An) (B1, ..., Bm) 〈n〉 〈m〉

(C1, ..., Cl) 〈l〉

P

R
Q

α

γ
β

where the left triangle lies over the right triangle and commutes up to an isomorphism
φ : Q ◦ P → R. In N∆Ch

⊗
k , we then have a diagram for each non-basepoint element k ∈ 〈l〉,

in which the upper triangle commutes by associativity of shuffle maps, the square commutes
up to homotopy by Lemma 6.6, and the lower triangle commutes up to homotopy as given
by Lemma 5.11.

⊗
i∈α−1(j)

⊗
j∈β−1(k) C(PAi)

⊗
j∈β−1(k) C(P⊗i∈α−1(j)Ai

)
⊗

j∈β−1(k) C(PBj)

C(P⊗i∈γ−1(k)Ai
) C(P⊗j∈β−1(k)Bj

)

C(PCk)

sh

sh
sh

⊗j∈β−1(k)(fj)∗

sh

(gk)∗

(⊗j∈β−1(k)fj)∗

(hk)∗

In this way, the functoriality of C(−) : NDMor⊗k → N∆Ch
⊗
k reduces to the functoriality of

C(−) : NDMork → N∆Chk, which we know by Theorem 5.22.
Now, P is p-coCartesian if and only if each Pj is an equivalence in Mork (see Lemma

2.37), i.e. the (B, j,⊗i∈g−1(j)Ai)-bimodule Pj is a Morita equivalence, such that the functor
(Pj ⊗A −) : P⊗i∈g−1(j)Ai

→ PBj induced by tensoring with Pj is an equivalence of categories,

and finally this implies that the induced morphism C(fj) is a homotopy equivalence by
Lemma 5.11. Since sh is a homotopy equivalence by Lemma 6.4, this implies that each C(P )j
is a homotopy equivalence, hence C(P ) is coCartesian (ref. Example 2.31). We conclude that
C(−) preserves coCartesian edges, such that C(−) is a symmetric monoidal functor.

Consider now the following diagram of categories over NFin∗

NdgAlg⊗k NDMor⊗k

N∆Ch
⊗
k

NDm

C(−)
C(−)

This diagram commutes over each 〈n〉 ∈ NFin∗ by Theorem 5.22. Let g : 〈n〉 → 〈m〉 be a
map of finite pointed sets and let f : (A1, ..., An)→ (B1, ..., Bm) be a morphism in NdgAlg⊗k
lying over g with components

(Pj : ⊗i∈g−1(j) Ai → Bj)j=1,...,m.

Now by Lemma 6.4 there is a commutative diagram where the upper and lower horizontal
morphisms are the images of the fj under the lower and upper legs of the diagram respectively.
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⊗i∈g−1(j)C(Ai) C(⊗iAi) C(Bj)

⊗i∈g−1(j)C(PAi) C(P⊗iAi) C(PBj)

sh

⊗i∈g−1(j)eAi

C(fj)

e(⊗
i∈g−1(j)

Ai

)
eBj

sh C(Bj,fj )

We conclude that e defined as natural equivalence between the upper and lower legs of the
triangle, which finishes the proof.

�

7. Hochschild complexes of Hopf-like structures

Definition 7.1. Let CHopf be the prop of commutative Hopf algebras. A commutative
Hopfish algebra over k is a symmetric monoidal 2-functor

Φ: CHopf → Mork

To expand on this definition, a commutative Hopfish algebra is the data of

• A k-algebra A,
• An (A,A⊗ A)-bimodule M ,
• A left A-module η,
• An (A⊗ A,A)-bimodule ∆,
• A right A-module ε, and
• An (A,A)-bimodule S,

together with structure given by

• An isomorphism of (A,A⊗ A⊗ A)-bimodules

M ⊗A⊗A (A⊗M) ∼= M ⊗A⊗A (M ⊗ A)

• An isomorphism of (A⊗ A⊗ A,A)-bimodules

(A⊗∆)⊗A⊗A ∆ ∼= (∆⊗ A)⊗A⊗A ∆

• Isomorphisms of (A,A)-bimodules

M ⊗A⊗A (η ⊗ A) ∼= A ∼= M ⊗A⊗A (A⊗ η)

(A⊗ ε)⊗A⊗A ∆ ∼= A ∼= (ε⊗ A)⊗A⊗A ∆

M ⊗A⊗A (A⊗ S)⊗A⊗A ∆ ∼= η ⊗ ε ∼= M ⊗A⊗A (S ⊗ A)⊗A⊗A ∆

• An isomorphism of (A⊗A,A⊗A)-bimodules (where τ : A⊗A→ A⊗A is the twist
map)

(M ⊗M)⊗A⊗4 (A⊗m(τ)⊗ A)⊗A⊗4 (∆⊗∆) ∼= ∆⊗AM
• An isomorphism of right A⊗ A-modules

ε⊗AM ∼= ε⊗ ε
• An isomorphism of k-modules

k ∼= ε⊗A η
such that these isomorphisms are compatible with one another in the sense defined by the
2-functoriality of Φ, to the effect that any pair of compositions built from these isomorphisms
with the same source and target are equal.
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Remark 7.2. Let Φ be a commutative Hopfish algebra and let A = Φ(1). In [30], a
commutative Hopfish algebra is required to send the multiplication 2 → 1 in CHopf to

m(A⊗ A mult.−−−→ A), the image of the algebra multiplication under the modulation 2-functor.

Example 7.3. • If A is a commutative Hopf dg-algebra, then A arises as the image of 1 of a
symmetric monoidal functor Φ: CHopf → dgAlgk, so the composition by the modulation

CHopf Φ−→ dgAlgk
m−→ Mork

is a commutative Hopfish algebra.
• For an example of a commutative Hopfish algebra which is not Morita equivalent to a

Hopf algebra, see [30, Section 6], in particular [30, Example 6.11].

There is a variation on Hopf algebras called quasi-Hopf algebras, where the co-associativity
of the coalgebra structure is weakened.

Definition 7.4. • [8, Page 116] A quasi-bialgebra is a unital associative algebra (A,m, η)
equipped with algebra homomorphisms ∆: A → A ⊗ A and ε : A → k, and an invertible
element φ ∈ A⊗ A⊗ A such that

(1) for all a ∈ A, (∆⊗ id)∆(a) = φ(id⊗∆)∆(a)φ−1,
(2) (id⊗ id⊗∆)(φ)(∆⊗ id⊗ id)(φ) = (id⊗ φ)(id⊗∆⊗ id)(φ⊗ id),
(3) (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆,
(4) (id⊗ ε⊗ id)(φ) = 1 ∈ k.

• [8, Page 119] A quasi-bialgebra (A,m, η,∆, ε, φ) is a quasi-Hopf algebra if there is an
anti-homomorphism S : A→ A and elements α, β ∈ A such that for all a ∈ A,

∑
S(a1)αa2 = ε(a)α

∑
a1βS(a2) = ε(a)β

where we use Sweedler notation ∆(a) =
∑
a1 ⊗ a2.

The following is a special case of a theorem of Tang-Weinstein-Zhu.

Theorem 7.5. ([30, Theorem 4.5] If (A,m, η,∆, ε, φ, S, α, β) is a commutative quasi-Hopf
algebra, then the modulation (A,m(m),m(η),m(∆),m(ε),m(S)) is a commutative Hopfish
algebra.

We now have some examples of algebraic structures on Hochschild complexes of Hopf-like
algebras.

Proposition 7.6. (1) Let A be a commutative Hopfish algebra, then C(A) carries a
commutative Hopf algebra structure up to coherent homotopy. In particular this is
the case if A is a commutative (quasi-)Hopf algebra.

(2) Let A be a (commutative) quasi-bialgebra, then C(A) carries a coalgebra structure
(resp. bialgebra structure) up to coherent homotopy.

Proof. (1) Since A is a commutative Hopfish algebra, there is a symmetric monoidal 2-functor
Φ: CHopf → Modk such that A = Φ(1). Then post-composition with the Hochschild chain
functor gives a symmetric monoidal functor of quasi-categories

C(Φ) : NCHopf → N∆Chk
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such that C(Φ)(1) ' C(Φ(1)) ' C(A). In other words, C(A) is a Hopf algebra object in
N∆Chk, which is precisely a Hopf algebra up to coherent homotopy.

(2) Let f, g : A→ B be algebra homomorphisms. Then m(f) = Bf and m(g) = Bg if and
only if are isomorphic there exists an invertible element ψ ∈ B such that f(a) = ψg(a)ψ−1

for all a ∈ A (see [30, Lemma 2.1]). For a quasi-bialgebra (A,m, η,∆, ε, φ), let

γ : (A⊗ A)φ(id⊗∆)∆(a)φ−1 → (A⊗ A)(id⊗∆)∆(a)

be the canonical isomorphism. Then (A,m(∆),m(ε), γ) define a symmetric monoidal 2-functor

Assop → Mork

from the opposite category of the prop of associative algebras to the Morita (2,1)-category.
Post-composing with the Hochschild complex functor gives a symmetric monoidal functor of
quasi-categories

Φ: NAssop → N∆Chk
for which Φ(1) ' C(A).

If A is a commutative algebra, then we get a coherent bialgebra structure on C(A) be a
similar argument. �
Remark 7.7. A special case of Proposition 7.6 is when the Hopfish algebra is the modu-
lation of a commutative Hopf algebra. In this case, the author gave a strictification of the
commutative Hopf algebra structure on C(A) in [25].

In some cases we do not need to demand that our algebras are commutative to obtain
product structures on Hochschild complexes.

Definition 7.8. • For any dg-k-module A, let p12, p23, p13 : A⊗2 → A⊗3 be given by
– p12(a⊗ b) = a⊗ b⊗ 1,
– p23(a⊗ b) = 1⊗ a⊗ b,
– p13(a⊗ b) = a⊗ 1⊗ b.

For any element R ∈ A⊗ A, write Rij := pij(R). Also, write τ : A⊗ A→ A⊗ A for
the twist morphism a⊗ b 7→ (−1)|a||b|b⊗ a.
• A bialgebra (or Hopf algebra) A is called quasi-triangular if there is an invertible

element R ∈ A⊗ A such that for any a ∈ A,
– τ ◦∆(a) = R∆(a)R−1,
– (∆⊗ id)(R) = R13R23,
– (id⊗∆)(R) = R13R12.

A is called triangular if in addition τ(R) = R−1.

Proposition 7.9. ([7, Section 10]) If A is a quasitriangular (resp. triangular) Hopf algebra,
then the module category PA is braided monoidal (resp. symmetric monoidal).

Corollary 7.10. If A is a quasi-triangular (resp. triangular) bialgebra or Hopf algebra, then
the Hochschild complex C(A) is an E2-algebra (resp. an E∞-algebra) in Chk.

Proof. We prove the quasi-triangular case. The triangular case is similar, replacing all
instances of E2 by E∞. Writing Cat∞ for the quasi-category of quasi-categories, the full
subcategory on nerves of ordinary categories is equivalent, as a quasi-category, to the Duskin
nerve of the (2,1)-category Cat. By [21, Example 1.2.4], the braided monoidal structure on
PA can therefore be expressed as a symmetric monoidal 2-functor

E2 → N∆dgCat
(2,1)
k,∆
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which gives a E2-algebra structure on C(PA). The E2-structure on C(A) then follows by
Lemma 2.43. �

Conjecture 7.11. If A is a bialgebra, then C(A) carries a coalgebra structure. How does the
algebraic structure of Corollary 7.10 interact with this coalgebraic structure? In particular:
• If A is a quasi-triangular (resp. triangular) bialgebra, is the Hochschild complex C(A)

an E2-commutative bialgebra (resp. an E∞-commutative bialgebra) in Chk?
• If A is a quasi-triangular (resp. triangular) Hopf algebra, is the Hochschild complex

C(A) an E2-commutative Hopf algebra (resp. an E∞-commutative Hopf algebra) in Chk?
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[14] John W. Gray, Fibred and Cofibred Categories, pp.21-83 in Eilenberg, Harrison, MacLane, Röhrl (eds.),
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1. Introduction

In this paper we define formal operations on topological Hochschild homology and more
generally on factorization homology of structured ring spectra. We use this to obtain exten-
sion results for 2D topological quantum field theories generalizing results of Costello [5] and
Wahl-Westerland [21].

This work is an extension of the program of Wahl [20] to the setting of∞-categories. This
also extends the results of Klamt [12], who generalized the framework of formal operations to
a model categorical setting and obtained a special case of Theorem 2.28 for chain complexes.

Our main tool is the theory of ∞-categories, which is necessary to define and analyze the
formal operations. When performing calculations on TQFTs in Section 3, we will relate the
homotopy theory of Hochschild functors to moduli spaces of manifolds, which is our second
technical tool.

1
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The open-closed cobordism categoryOC is the∞-category whose objects are one-dimensional
manifolds with boundary, and whose space of morphisms OC(M,N) is the moduli space

OC(M,N) =
⊔

[Γ]

M̄tN↪→∂Γ

BDiff(Γ; M̄ tN)

i.e. the moduli space of Riemannian cobordisms with corners from M to N , and composition
is given by gluing cobordisms. The open cobordism category is the full subcategory of OC
on the objects tnR. O and OC are both symmetric monoidal ∞-categories under disjoint
union.

Let Sp be the ∞-category of spectra. An open (resp. open-closed) conformal field theory
is a symmetric monoidal functor O → Sp (resp. OC → Sp).

The main goal of this paper is to prove the following claim, which is a spectral version of
[21, Theorem 6.2].

Main Claim: (Theorem (3.26) Let Φ : O → Sp be an open conformal field theory. Then

there is a natural open-closed conformal field theory Φ̃ : OC → Sp such that Φ̃|O ' Φ and

Φ̃(S1) ' THH(Φ(1)).

In order to prove this claim, we introduce an ∞-categorical version of Wahl’s notion of
formal operations on Hochschild homology [20]. For a symmetric monoidal ∞-category P
admitting a symmetric monoidal functor A∞ → P , we can consider THH of P -algebras by
restricting the P -algebra structure to the A∞-algebra structure and applying the cyclic bar
construction. This gives rise to a functor

THH : Fun⊗(P, Sp)→ Sp

Natural operations on THH of P -algebras are then defined to be morphisms of the form

THH(Φ)⊗n1 ⊗ (Φ(1))⊗m1 → THH(Φ)⊗n2 ⊗ (Φ(1))⊗m2

which are natural in Φ ∈ Fun⊗(P, Sp). In fact the above procedure does not require the
functor P → Sp to be symmetric monoidal, and se can still define THH of functors Φ : P →
Sp which are not symmetric monoidal. Roughly speaking, operations on this kind of THH
are called formal operations.

The paper is structured as follows. In Section 2 we recall some ∞-categorical machinery
and define Hochschild functors and their formal operations. We then give a technical result
on how to compute formal operations. Finally, we relate the formal operations to natural
operations of Hochschild functors. In Section 3, we relate our Hochschild functors to factor-
ization homology and apply the results of Section 2 to the problem of universally extending
open conformal field theories to open-closed conformal field theories.

2. Hochschild functors and their formal operations

2.1. Review of ends and coends. We follow [10].

Assumption 2.1. Throughout this section, let C be a presentable closed symmetric monoidal
∞-category in the sense of [13, Definition 5.5.0.1],[14, Definition 2.0.0.7].
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Definition 2.2. Given a small ∞-category I, the twisted arrow category ÕI is given by

(ÕI)n = I2n+1 with face and degeneracy maps

d̃ix = dn−idn+1+ix

s̃ix = sn−isn+1+ix

The opposite category (ÕI)op is given the special notation ÕI . We define the forgetful functor

HI : ÕI → Iop × I taking x ∈ (ÕI)n to x|[0,n] × x|[n+1,2n+1], and write HI := (HI)
op.

Definition 2.3. Let T : I × Iop → C be a functor. The coend of T is the colimit∫ I

T := colim
ÕI

T ◦ HI

Dually, let T ′ : Iop × I → C be a functor. The end of T ′ is the limit∫

I

T := lim
ÕI

T ′ ◦ HI

Definition 2.4. Given a pair of functors F : I → C and G : Iop → C, we obtain a functor
F �G by the composition

I × Iop F×G→ C × C ⊗→ C
and we write

F ⊗I G :=

∫ I

F �G

Notation 2.5. To eliminate confusion, we distinguish between two Hom-space notations.
Let F,G : C → D be functors. Denote the Hom-space functor HomD(−,−) : Dop ×D → S.
We write HomD(F,G) : Cop × C → S for the composition HomD ◦ F op × G. On the other
hand, by NatC(F,G) we mean the space of natural transformations from F to G.

Proposition 2.6. ([10, Proposition 2.3], [7, Proposition 5.1]) Let D be an ∞-category and
let F,G : I → D be functors. Then there is a natural equivalence∫

I

Hom(F (−), G(−)) ' NatI(F,G)

Lemma 2.7. Let C be a small ∞-category, let D be a presentable ∞-category and let
F : C → D and G : Cop → D be functors. Let S(F,G) be the colimit of the simplicial
diagram given by

[n] 7→ colim
α∈Map([n],C)

F (α(0))⊗G(α(n))

where Map([n], C) is the maximal sub-∞-groupoid of Fun([n], C). Then there is a homotopy
equivalence

F ⊗C G ' S(F,G)

Proof. See Appendix A. �
Definition 2.8. Let C be an ∞-category, let D be a presentable ∞-category and let F :
C → D and G : Cop → D be functors. Let B(F, C, G)• be the simplicial object given by

[n] 7→
⊕

c0,...,cn∈π0C
F (c0)⊗ C(c0, c1)⊗ ...⊗ C(cn−1, cn)⊗G(cn)

Write B(F, C, G) for the colimit of this simplicial diagram.
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Lemma 2.9. Let C be the nerve of an ordinary category, let D be a presentable∞-category
and let F : C → D and G : Cop → D be functors. Then there is a natural equivalence

S(F,G)
∼−→ B(F, C, G)

Proof. Since C has unique horn fillers above dimension 1, the indexing space Map([n], C)
decomposes as

Map([n], C) '
⊔

c0,...,cn∈π0C
C(c0, c1)× ...× C(cn−1, cn)

such that S(F,G)n splits as

S(F,G)n '
⊕

c0,...,cn∈π0C
colim

fi∈C(ci,ci+1)

i=0,...,n−1

F (c0)⊗G(cn).

Since the latter colimit is over a constant object, it is equivalent to tensoring by the indexing
space C(c0, c1)× ...× C(cn−1, cn), such that

S(F,G)n '
⊕

c0,...,cn∈π0C
F (c0)⊗ C(c0, c1)⊗ ...⊗ C(cn−1, cn)⊗G(cn)

and the claim follows. �

Lemma 2.10. [13, Proposition 5.1.2.3] Let F : C → D be a functor of ∞-categories and let
X be an object of D. Then whenever F admits a (co)limit, there are equivalences, natural
in X and F , such that

HomD(X, lim
C
F ) ' lim

C
HomD(X,F (−))

HomD(colim
C

F,X) ' lim
Cop

HomD(F (−), X)

2.2. The Stable Yoneda Lemma.

Remark 2.11. Despite the literature on spectral ∞-categories being lacking at the time
of writing, there is a rich theory of stable ∞-categories, which carry a natural spectral
enrichment as a result of their internal structure, analogous to the natural enrichment in
abelian groups of ordinary additive categories. In this framework, a spectrally enriched
functor corresponds to a functor preserving finite limits. Recall that a functor C → D of
stable ∞-categories preserves finite limits if and only if they preserve finite colimits ([14,
Proposition 1.1.4.1]). In particular this implies that for B : Eop → Sp a functor, the coend
functor (−)⊗E B : Fun(E , Sp)→ Sp preserves finite limits.

Recollection 2.12. Let C be a stable ∞-category. Recall that then Cop is also stable, and
the functor

Funlex(Cop, Sp)
Ω∞−−→ Funlex(Cop,S)

is an equivalence of ∞-categories ([14, Corollary 1.4.2.23]).

Definition 2.13. ([18, Definition 6.1]) Let C be a stable∞-category. A functor F : Cop → Sp

is called representable if it preserves finite limits and the composite Cop F−→ Sp
Ω∞−−→ S is

representable. If c is a representing object of Ω∞F , we say that c represents F .
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Lemma 2.14. (Stable Yoneda Lemma, [18, Proposition 6.3 and Remark 6.4]) Let C be a
stable ∞-category. The Yoneda embedding j : C → Fun(Cop,S) lifts through Ω∞ to a fully
faithful embedding C → Funlex(Cop, Sp). Let F,G : C → Sp be functors such that F is
represented by c ∈ C and G preserves finite limits. Then

NatCop(F,G) ' G(c)

Corollary 2.15. Let C be a stable∞-category and let F,G : C → Sp be functors preserving
finite limits. Viewing Hom(F,G) and a functor Cop × C → Sp, we have

∫

OC
Hom(F,G) ' NatC(F,G) ∈ Sp

Proof. This follows because the two functors Funlex(C, Sp)op × Funlex(C, Sp)→ Sp both pre-
serve finite limits and are equivalent under Ω∞. �
Observation 2.16. Let K(n) denote the n’th Morava K-theory at an implicit prime, and
let LK(n)Sp denote the category of spectra localized at K(n) and let i : LK(n)Sp→ Sp be the
(fully faithful) right adjoint of the localization functor. Representable functors LK(n)Spop →
Sp factor through LK(n)Sp, so in the stable Yoneda lemma for LK(n)Sp, we may replace Sp
by LK(n)Sp as follows.

Lemma 2.17. The Yoneda embedding j : LK(n)Sp→ Fun(LK(n)Spop,S) lifts through Ω∞ ◦ i
to a fully faithful embedding LK(n)Sp → Funlex(LK(n)Spop, LK(n)Sp). Let F,G : LK(n)Sp →
LK(n)Sp be functors such that F is represented by c ∈ C and G preserves finite limits. Then

NatLK(n)Sp
op(F,G) ' G(c)

2.3. Hochschild and coHochschild functors. In this section we lay out the general
framework of Hochschild and coHochschild functors, which will be the object of study for the
remainder of the paper. For technical reasons, the treatment of the topological and spectral
cases need to be separated. The structure of this section will be such that each statement
about topological (co)Hochschild functors will be immediately followed by its spectral ana-
logue. The proofs of the latter will only be given at the points where the argument differs
from the topological proof.

Notation 2.18. Let S be the ∞-category of spaces, i.e. the underlying ∞-category of sSet
with the Kan-Quillen model structure.

Notation 2.19. In the following, C will refer to one of S, Sp or LK(n)Sp (or in general any
presentably closed symmetric monoidal ∞-category for which the Yoneda lemma holds). If
C is fixed and E is an ∞-category, then by the functor E(−,−) : Eop × E → C we mean the
representable bifunctor composed with the functor C → S given by





id , if C = S
Σ∞(infinite suspension) , if C = Sp
Σ∞K(n) , if C = LK(n)Sp

.

Definition 2.20. Let E and E ′ be ∞-categories equipped with a functor i : E → E ′. Let
B : Eop → C be a functor. The Hochschild functor CB(−) : Fun(E ′, C) → C sends a functor
Φ : E ′ → C to

CB(Φ) := i∗Φ⊗E B
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Definition 2.21. Let B,B′ : Eop → C be functors. The formal operations from B to B′ are
given by the mapping object

HochE ′(B,B
′) := NatFun(E ′,C)(CB(−), CB′(−))

Lemma 2.22. Let E be a small ∞-category, let D be a closed symmetric monoidal ∞-
category and let F : E → D and G : Eop → D be functors such that the coend F ⊗E G exists
in D. Then for every object X in D, we have

HomD(F ⊗E G,X) ' NatE(F,Hom(G,X))

where Hom(G,X) : E → D takes Y ∈ E to HomD(G(Y ), X).

Proof. We have a sequence of natural equivalences

HomD(F ⊗E G,X)'HomD(colimOE (F �G ◦ HE), X)
'limOE HomD(F �G ◦ HE , X)
'limOE HomD(F �G,X) ◦ HE
'limOE HomD(G,Hom(F,X)) ◦ HE
'NatEop(G,Hom(F,X))

�
Corollary 2.23. Let E and E ′ be a small ∞-categories equipped with a functor i : E → E ′.
Moreover, let B : Eop → C and H : Fun(E ,S)→ C be functors. Then we have an equivalence

Nat((−)⊗E B,H(−))
∼→ Nat(B,Hom(−, H(−)))

of functors Fun(E , C)op × Fun(E , C) → C. Here Hom(−, H(−)) : Eop → C takes e ∈ E to
NatFun(E,C)(−(e), H(−)).

Proof. This follows since each equivalence in the proof of Lemma 2.22 is natural in F,G and
X. �
Lemma 2.24. Let E and E ′ be a small∞-categories equipped with a functor i : E → E ′ and
let B : Eop → S be a functor. Let e′ be an object of E ′. Then there is an equivalence

NatFun(E ′,S)(−(e′), i∗(−)⊗E B) ' E ′(e′, i(−))⊗E B
Proof. Let Φ : E ′ → S. Then, by the universal property of mapping objects, we obtain a
map

E ′(e′, i(−))⊗E B ⊗ Φ(e′) ' colim
OE

(
E ′(e′, i(−)) �B ◦ HE

)
⊗ Φ(e′)

' colim
OE

((E ′(e′, i(−))⊗ Φ(e′)) �B) ◦ HE F̄Φ−→ colim
OE

(i∗Φ(−) �B) ◦ HE

' i∗Φ⊗E B
Taking the adjoint of this map, we get a map

FΦ : E ′(e′, i(−))⊗E B → Hom(Φ(e′), i∗Φ⊗E B)

Since all the maps involved are natural with respect to Φ, this assembles into a map

F : E ′(e′, i(−))⊗E B → NatFun(E ′,S)(−(e′), i∗(−)⊗E B)

Going the other way, evaluating at E ′(e′,−) we get a map

evalE ′(e′,−) : NatFun(E ′,S)(−(e′), i∗(−)⊗E B)→ HomS(E ′(e′, e′), E ′(e′, i(−))⊗E B)
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Denote by Id the unit map ∆0 Id−→ E ′(e′, e′) picking out the identity of e′. Evaluating at ide′
gives a map

HomS(E ′(e′, e′), E ′(e′, i(−))⊗E B) ' HomS(E ′(e′, e′), E ′(e′, i(−))⊗E B)⊗∆0

id⊗Id−−−→ HomS(E ′(e′, e′), E ′(e′, i(−))⊗E B)⊗ E ′(e′, e′) ev−→ E ′(e′, i(−))⊗E B
We call G the composition

G = ev ◦ (evalE ′(e′,−) ⊗ Id) : NatFun(E ′,S)(−(e′), i∗(−)⊗E B)→ E ′(e′, i(−))⊗E B
We now show that F and G are mutually inverse equivalences. The composition G ◦ F is
given by the right side of the following commutative diagram:

(E ′(e′, i(−))⊗E B)⊗∆0 Nat(−(e′), i∗(−)⊗E B)⊗∆0

(E ′(e′, i(−))⊗E B)⊗ E ′(e′, e′) Hom(E ′(e′, e′), E ′(e′, i(−))⊗E B)⊗ E ′(e′, e′)

E ′(e′, i(−))⊗E B

F ⊗ id

id ⊗ Id

FE(e′,−) ⊗ id

F̄E′(e′,−)

evalE′(e′,−) ⊗ Id

ev

so it is sufficient to show that the left side is homotopic to the identity. But on components,
the left side is equivalent to

colim
OE

(E ′(e′, i(−)) �B) ◦ HE ⊗∆0

id⊗Id−−−→ colim
OE

(E ′(e′, i(−)) �B) ◦ HE ⊗ E ′(e′, e′)

' colim
OE

((E ′(e′, i(−))⊗ E ′(e′, e′)) �B) ◦ HE

comp�id−−−−−→ E ′(e′, i(−)) �B) ◦ HE
where comp is composition in E ′, and this is homotopic to the identity because comp ◦ Id '
idE ′(e′,−). To investigate the composition F ◦G, consider the following commutative diagram:

Nat(−(e′), i∗(−)⊗E B)⊗∆0 ⊗−(e′)

Nat(−(e′), i∗(−)⊗E B)⊗ E ′(e′, e′)⊗−(e′) E ′(e′, i(−))⊗E B ⊗−(e′)

Nat(−(e′), i∗(−)⊗E B)⊗−(e′) i∗(−)⊗E B

G⊗ id

id ⊗ Id ⊗ id

ev ◦ evalE′(e′,−) ◦ ⊗id

id ⊗ comp F̄(−)
F(−) ⊗ id

ev

from which it follows that (F ⊗ id) ◦ (G ⊗ id) ∼ id. But by the universal property of
Hom-objects, this implies that F ◦G ∼ id, so we are done. �



8 ESPEN AUSETH NIELSEN

Lemma 2.25. Let E and E ′ be a small∞-categories equipped with a functor i : E → E ′ and
let B : Eop → Sp be a functor. Let e′ be an object of E ′. Then there is an equivalence

NatFun(E ′,Sp)(−(e′), i∗(−)⊗E B) ' Σ∞E ′(e′, i(−))⊗E B
Proof. In the proof of Lemma 2.24, replace every instance of E ′(−,−) with Σ∞E ′(−,−).
The map F̄Φ is obtained from the adjoint of the evaluation map on spaces E ′(−,−) →
Ω∞HomSp(Φ(−),Φ(−)). The equivalences in the proof are all consequences of universal
properties which also hold in Sp, so the proof carries over. �

A completely analogous argument also gives the following, replacing Σ∞ by Σ∞K(n) :=

LK(n) ◦ Σ∞, the infinite suspension composed with the K(n)-localization functor.

Lemma 2.26. Let E and E ′ be a small∞-categories equipped with a functor i : E → E ′ and
let B : Eop → LK(n)Sp be a functor. Let e′ be an object of E ′. Then there is an equivalence

NatFun(E ′,LK(n)Sp)(−(e′), i∗(−)⊗E B) ' Σ∞K(n)E ′(e′, i(−))⊗E B
Theorem 2.27. Let E and E ′ be small ∞-categories equipped with a functor E → E ′ and
let B,B′ : Eop → S be functors. Then there is a homotopy equivalence

HochE ′(B,B
′)
∼→ DBCB′(E ′(−,−))

Proof. By Corollary 2.23, putting H = −⊗E B′, we have

Nat(−⊗E B,−⊗E B′) ' Nat(B,Hom(−,−⊗E B′))
By Lemma 2.24, we further have Nat(−(e′),−⊗EB′) ' E ′(e′,−)⊗EB′. Since this equivalence
is natural in e′, we moreover get

Nat(B,Hom(−,−⊗E B′)) ' Nat(B, E ′(−,−)⊗E B′) ' DBCB′((E ′(−,−))

where the last equivalence is by the definition of the Hochschild and coHochschild functors.
�

Theorem 2.28. • Let E and E ′ be small∞-categories equipped with a functor E → E ′
and let B,B′ : Eop → Sp be functors. Then there is a homotopy equivalence

HochE ′(B,B
′)
∼→ DBCB′(Σ

∞E ′(−,−))

• Let E and E ′ be small ∞-categories equipped with a functor E → E ′ and let B,B′ :
Eop → LK(n)Sp be functors. Then there is a homotopy equivalence

HochE ′(B,B
′)
∼→ DBCB′(Σ

∞
K(n)E ′(−,−))

2.4. Formal vs. natural operations.

Assumption 2.29. We now assume that E⊗ and E ′⊗ are symmetric monoidal∞-categories
and i : E⊗ → E ′⊗ is a symmetric monoidal functor.

Definition 2.30. Let Fun⊗(E ′⊗,S⊗) be the category of symmetric monoidal functors from
E ′⊗ to S⊗ and let B,B′ : Eop → S be functors. The natural operations from B to B′ is the
space

Hoch⊗E ′(B,B
′) := NatFun⊗(E ′⊗,S⊗)(CB(−), CB′(−))

Observation 2.31. There is a forgetful functor Fun⊗(E ′⊗,S⊗)→ Fun(E ′,S), and this gives
rise to a restriction map

r : HochE ′(B,B
′)→ Hoch⊗E ′(B,B

′)
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Conjecture 2.32. If i : E → E ′ is the symmetric monoidal envelope of a morphism of
∞-operads j : O → O′, then the restriction map r is an embedding.

3. Operations on Factorization Homology

Definition 3.1. Let M be a framed n-dimensional manifold and let En be the symmetric
monoidal envelope of the framed n-disk ∞-operad. Then for Φ : En → S a functor, the
chiral homology of Φ over M is given by

∫

M

Φ := Φ⊗En LM

where LS1 is the configuration functor of M , which we will define in the next section.

3.1. Configuration Functors. In this section we define the functors LM : Eopn → S param-
eterizing factorization homology and study some of their properties. We begin by recalling
some facts about the ∞-categorical Day convolution due to Glasman [9].

Recollection 3.2. Let C and D be symmetric monoidal ∞-categories such that the tensor
product in D preserves colimits in each variable. Then the functor category Fun(C,D)
attains a symmetric monoidal structure such that E∞-monoids correspond to lax symmetric
monoidal functors C → D. Given an s-tuple of functors (Fs), the tensor product is given by
the point-set formula 

⊗

i∈〈s〉
Fi


 (X) ' colim

(Ys)∈C⊗〈s〉/X
m∗(Fs(Ys))

where m is the active map 〈s〉 → 〈1〉 and m∗ denotes the coCartesian pushforward.

Definition 3.3. Let Mfldfrn be the ∞-category of framed n-dimensional manifolds without
boundary, and framed embeddings between them.

Observation 3.4. Disjoint union of manifolds gives Mfldfrn the structure of a symmetric
monoidal ∞-category, and En embeds into Mfldfrn as a symmetric monoidal subcategory by
sending 1 to Rn with the standard framing.

Remark 3.5. The∞-category Mfldfrn arises naturally as a topological category, but becomes
an ∞-category by passing through suitable Quillen equivalences. We will not need point-
set level information about it, so we do not concern ourselves with its model-categorical
presentation.

Definition 3.6. Let M be a connected framed n-manifold without boundary. Define the
configuration functor ofM to be the restriction to Eopn of the representable functor Mfldfr,opn →
S associated to M . In other words, LM(m) = Embfr(tmRn,M).

Proposition 3.7. [6] The assignment Mfldn × AlgEn(C)→ C given by (M,A) 7→ LM ⊗En A
corresponds to factorization homology. In particular, for a ring spectrum A, LS1 ⊗A∞ A is
topological Hochschild homology.

Lemma 3.8. The assignment M 7→ LM gives a symmetric monoidal functor Mfldfrn →
Fun(Eopn , C).
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Proof. Let Mi be framed n-manifolds for i = 1, ..., s. Let P(n, s) be the set of partitions of
the set {1, ..., n} into s disjoint subsets. Using the point-set formula of Recollection 3.2 in
the case C = Eopn , we get that

colim
(ns)∈C⊗〈s〉/n

m∗((LMi
(ni))i∈〈s〉) '

⊕

(a1,...,as)∈P(n,s)

⊗

i∈〈s〉
Embfr(taiRn,Mi)

On the other hand, LtiMi
(n) ' Embfr(tnRn,tni=1Mi) splits into components according to

which copies of Rn lands in which Mi, such that the functors LtiMi
and ⊗iLMi

are objectwise
equivalent. Now since the functoriality in both cases is given by precomposition, the result
follows. �
Lemma 3.9. There is a homotopy equivalence

(LM ⊗ LN)⊗A∞ A ' (LM ⊗A∞ A)⊗ (LN ⊗A∞ A).

Definition 3.10. Let Mfldfrn , s be the∞-category of n−s-dimensional manifolds P equipped
with a framing of P × Rs, and morphisms the embeddings P → P ′ such that P × Rs →
P ′ → Rs becomes a framed embedding.

Lemma 3.11. Let N = P × Rs be a framed manifold. Then the maps

Es(n, 1)→ Embfr((tni=1P × Rs, P × Rs)

sending f : n→ 1 to id× f gives P × Rs an Es-algebra structure.

Proof. We construct an operad morphism E⊗s → Mfldfr⊗n witnessing the algebra structure as

follows. The unique object of E⊗s,〈t〉 is sent to (N, ..., N)t ∈ Mfldfr⊗n,〈t〉. Let φ : 〈t〉 → 〈r〉 be a

map of finite sets and f = (f1, ..., fr) : (1, ..., 1)t → (1, ..., 1)r a morphism in E⊗s lying over φ,
such that fi : (1, ..., 1)ti → (1). In other words, for each 1 ≤ i ≤ r, fi is an element of Es(ti).
We sent f to the morphism (g1, ..., gr) : (N, ..., N)t → (N, ..., N)r where gi = id× fi. �

3.2. Examples of non-trivial formal operations.

3.2.1. Product structures. As an example of non-trivial formal operations, we may observe
that the En−1-product structure on THH of En-algebras is formal. Namely, it arises from
maps L(tkS1)⊗Rn−1 → LS1⊗Rn−1 given by realizing the fold maps

∇k : tkS1 → S1

as embeddings of n-dimensional manifolds. More precisely, we have maps

En−1(k)→ Embfr((tkS1)× Rn−1, S1 × Rn−1)

given by γ 7→ ∇k × γ. By the same method we obtain formal En−d-algebra structures on
factorization homology of En-algebras over a d-dimensional Lie group.

3.2.2. Adams operations. For factorization homology of E∞-algebras, the p-fold covers S1 →
S1 can be realized as embeddings

S1 × R∞ ↪→ S1 × R∞

giving a formal action of the multiplicative monoid (N, ·, 1) on THH of commutative algebras.
Note that the coherence of the action requires appending an infinite-dimensional euclidean
space. However, the embeddings themselves exist with only two extra dimensions, so that
we still have the action of (N, ·, 1) on the homotopy groups of THH of E3-algebras.
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3.3. Open conformal field theories.

Definition 3.12. Let M and N be one-dimensional compact manifolds with boundary. We
define a cobordism M → N to be a Riemann surface Γ with corners, whose boundary is a
union ∂Γ = ∂inΓt ∂freeΓt ∂outΓ and equipped with orientation preserving diffeomorphisms
M → ∂inΓ and N → ∂outΓ. We call ∂inΓ the incoming boundary, ∂outΓ the outgoing
boundary and ∂freeΓ the free boundary.

Definition 3.13. Let OC the open-closed ∞-category of Riemann surfaces. Its objects are
one-dimensional manifolds with boundary. If M and N are two such manifolds, then the
space of morphisms is given by

OC(M,N) =
⊔

[Γ]

∂iΓ=M,∂oΓ=N

BDiff(Γ; ∂inΓ, ∂outΓ)

That is, the moduli space of Riemannian cobordisms with corners relative to the incoming
and outgoing boundary. For technical reasons, we will only allow those connected compo-
nents for which Γ has a non-empty incoming or free boundary.

Definition 3.14. Given an open-closed cobordism (Γ, ∂inΓ, ∂outΓ), define the embedding
space

Embε(Γ,R∞) ⊆
Emb((Γ, ∂inΓ, ∂outΓ), (R∞, {0} × R∞−1, {1} × R∞−1))

as the subspace of embeddings e : Γ → R∞ which are orthogonal to the first coordinate in
an ε-neighbourhood of the boundary. That is,

e(Γ) ∩
(
[0, ε)× R∞−1

)
= [0, ε)× e(∂inΓ)

e(Γ) ∩
(
(1− ε, 1]× R∞−1

)
= (1− ε, 1]× e(∂outΓ)

We write

Emb∂(Γ) ' colim
ε→0

Embε(Γ,R∞)

Note that the diffeomorphism group Diff(Γ, ∂inΓ, ∂outΓ) acts freely on Emb∂(Γ). We write

I(Γ, ∂inΓ, ∂outΓ) := Emb∂(Γ)/Diff(Γ, ∂inΓ, ∂outΓ)

Observation 3.15. This space is equivalent to BDiff(Γ; ∂inΓ, ∂outΓ), hence a model for OC
can be given by

OC(M,N) '
⊔

[Γ]

∂iΓ=M,∂oΓ=N

I(Γ, ∂inΓ, ∂outΓ)

We will use this model heavily throughout this section.

Definition 3.16. Let O be Segal’s∞-category of Riemann surfaces, i.e. the full subcategory
of OC on disjoint unions of intervals.

Lemma 3.17. There is an inclusion A∞ → O whose essential image consists of those open
cobordisms which are disjoint unions of disks with exactly one outgoing boundary component.
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Proof. The inclusion is given by sending a linear ordering on {1, ..., n} to a disk with one
outgoing boundary component and n incoming boundary components corresponding to the
linear order. Since a disk with a single outgoing boundary component is determined up to
contractible choice by the ordering of its incoming boundary components, and since such a
disk has a contractible diffeomorphism group, the inclusion is an equivalence onto its essential
image. �

Definition 3.18. Let C be a symmetric monoidal ∞-category

• An open topological conformal field theory (OTCFT) is a symmetric monoidal functor
O → C.
• An open-closed topological conformal field theory (OCTCFT) is a symmetric monoidal

functor OC → C.
Terminology 3.19. Because of the restrictions we put on the connected components of the
morphism spaces ofOC, our OCTCFTs may also be called non-positive boundary OCTCFTs.

3.4. Operations on THH of Open Field Theories. In this section we apply the frame-
work of formal operations to prove Theorem 3.26.

To prove this result, it is sufficient to produce a symmetric monoidal functor

OC → Hoch⊗O

Below we will use geometric methods to obtain a functor OC → NatO. Composing by the
restriction map we obtain the desired functor. In order to see that the resulting action
on THH is nontrivial, we compare it on rational homology to the action constructed by
Wahl-Westerland in [21].

For f ∈ LS1(n) = Embfr(tnR, S1), let fi be the restriction of f to the i’th copy of R. We
assume that for each such f , the closures of the images of the fi are disjoint. Note that this
does not change the homotopy type of LS1(n).

Definition 3.20. (Open-closed cylinders) Let

Cyl : LS1 → OC ([0
−] , [10])

be the map taking f ∈ Embfr(tnR, S1) to the cylinder Cyl(f) = S1 × [0, 1] with ∂out =

S1 × {1} and ∂in = tni=1Im(fi), the closures of the images of the fi. The morphisms in Aop∞
act compatibly on both objects, such that Cyl is a natural transformation.

Lemma 3.21. The transformation Cyl is a natural equivalence onto the connected compo-
nent of S1 × [0, 1].

Proof. Let Cyl(n) be the subspace of OC ([0n] , [
1
0]) of open-closed cobordisms equivalent to

Cyl(f) for some f ∈ LS1(n). The spaces LS1(n) and Cyl(n) both contain one copy of the
circle for each cylic ordering of the n copies of R. A full rotation of the copies of R in LS1(n)
corresponds to a Dehn twist in Cyl(n). �

Definition 3.22. Let n1, n2,m1,m2 be non-negative integers with n1 +m1 ≥ 1. Define the
map

R : OC ([n1
m1] , [

n2
m2])→ NatAop∞

(
LS1 ,OC

([
n1−1

m1+(−)

]
, [n2
m2]
))

which takes Γ to f 7→ Γ ◦
(

id[n1−1
m1

] t Cyl(f)
)

.
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Lemma 3.23. The maps defined in Definition 3.22 give rise to a map

OC ([n1
m1] , [

n2
m2])→ NatAop∞

(
L[n1

m1]
,OC ([0

−] , [n2
m2])

)
.

Proof. Use the map defined in Definition 3.22 and Corollary 2.23 and Lemma 3.8. �
Lemma 3.24. There is a map

F : OC ([ 0
m1

] , [n2
m2])→ O(m1,−)⊗ L[n2

m2]

which is a right inverse to composition.

Proof. See Section 3.4.1. �
The two lemmas imply the following calculation of the formal operations on THH of
O-algebras, and via the restriction map we obtain the following calculation.

Lemma 3.25. The maps from Lemmas 3.23 and 3.24 give rise to a map

j : OC ([n1
m1] , [

n2
m2])→ NatO

(
L[n1

m1]
,L[n2

m2]

)

Since the map j of Lemma 3.25 is defined on connected components, it takes disjoint
unions to tensor products:

j : Γ t Γ′ 7→ j(Γ)⊗ j(Γ)

We may now combine this with the composition structure and deduce the following theorem,
generalizing [21, Theorem 6.2].

Theorem 3.26. There is a symmetric monoidal functor of ∞-categories

F : OC → HochO

The following conjecture concerns the compatibility of our computation in spectra with
the work of Wahl-Westerland [21, 20] in chain complexes.

Conjecture 3.27. Given a functor f : C → Sp, write HQ ⊗ f : C → ModHQ for the
composition

C f−→ Sp
HQ⊗−−−−−→ ModHQ .

The morphism

HQ⊗OC ([n1
m1] , [

n2
m2])

HQ⊗F−−−−→ HQ⊗ HochO
(
L[n1

m1]
,L[n2

m2]

)

(HQ⊗−)∗−−−−−→ NatAop∞

(
(HQ⊗ L[n1

m1]
), (HQ⊗O(−,−))⊗A∞ (HQ⊗ L[n2

m2]
)
)
,

is homotopic to the map described by Wahl-Westerland [21, 20].

The following conjecture is a generalization of [20, Theorem B].

Conjecture 3.28. The functor of Theorem 3.26 is an equivalence of symmetric monoidal
∞-categories.

The following conjecture is the spectral version of [5, Theorem A].

Conjecture 3.29. The assignment L : Fun⊗(O, Sp) → Fun⊗(OC, Sp) induced by the map
F in Theorem 3.26 is a left adjoint to the restriction functor

Fun⊗(OC, Sp)→ Fun⊗(O, Sp).
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3.4.1. Decompositions of surfaces. In this section we prove Lemma 3.24.

Idea 3.30. The idea of the proof is to decorate the open-closed cobordisms with arcs connect-
ing the free boundary to each closed outgoing boundary. Pushing the free boundary along
these arcs allow us to decompose the cobordism into an open cobordism composed with a
disjoint union of cylinders, providing an inverse to the composition map. The arc complex
Arc0(S) on a surface S is a contractible space carrying a free action by the mapping class
groups of S. We can use this to produce an alternative model for OC admitting a vertical
map as pictured in the below diagram. The meat of the proof will therefore be in providing
a diagonal map, as in the diagram, that commutes with the action of the diffeomorphism
group on each component.

ÕC ([ 0
m1

] , [n2
m2])

OC ([ 0
m1

] , [n2
m2]) O(m1,−)⊗A∞ L[n2

m2]

∼ ∼

comp

We begin by defining ÕC. For this we need some preliminary definitions.

Observation 3.31. We may assume that an open-closed cobordism comes equipped with
a marked point on each open and each closed boundary component, corresponding to the
point 0 on S1 and (−1, 1). Doing so does not change the homotopy type of the moduli space.

Definition 3.32. Let e : S ↪→ R∞ be an embedded orientable surface representing a mor-
phism in OC ([n1

m1] , [
n2
m2]) and let Υ = {x1, ..., xn1+n2+m1+m2} be the set of marked points

described above. We assign a second set ∆ of marked points in S as follows. On each closed
boundary component choose a point yi 6= xi, where xi is the point ”marking” the closed
boundary component. On the boundary components of S containing open boundary com-
ponents, choose a point yi on each free section of the boundary component. Note that these
choices are unique up to homotopy and reordering. We now make the following definitions.

• An essential arc α0 in S is an embedded interval

α0 : (I, ∂I)→ (S,∆ ∪ ∂freeS)

such that α0 only intersects ∂S ∪ ∆ at its endpoints, and such that α0 does not
separate S into two components one of which is disk that intersects ∆ only at the
endpoints of α0.
• An arc set is a collection of arcs α = {α0, ..., αk} such that if i 6= j, then αi and αj

have disjoint interiors and are not isotopic rel V .
• An arc system [α] is an isotopy class of arc sets rel ∆.
• An arc system is filling if it cuts S into contractible subspaces which do not contain

elements of ∆ in their interior.

Definition 3.33. Let S be an embedded surface representing a morphism in OC ([n1
m1] , [

n2
m2])

where n1+n2+m1+m2 ≥ 1 and let ∂1S, ..., ∂n2S be the outgoing closed boundary components
of S. We say that α is an admissible arc set if the following conditions hold.

• α either contains or can be expanded to contain arcs which cut S into n2 components
such that for each 1 ≤ j ≤ n2, the j’th component contains the interiors of all arcs
in α starting or ending at ∂jS.



FORMAL OPERATIONS ON TOPOLOGICAL HOCHSCHILD HOMOLOGY (WORK IN PROGRESS) 15

• α does not contain an arc starting and ending at ∂jS for and 1 ≤ j ≤ n2.
• For all 1 ≤ j ≤ n2, let yj be the marked point of ∆ on ∂jS, and let αj1 , ..., αjr be the

arcs in α which start or end at yj. The arc set α also contains arcs βj1 , ..., βjs such
that the subspace ((∪lαl) ∪ (∪lβl)) \ yj is connected.

Let B(S,∆) be the topological poset of admissible arc sets, and let B0(S,∆) be the sub-
poset of the filling admissible arc sets.

Observation 3.34. Note that the first condition in the definition of admissible arc systems
implies that no arc can connect two closed outgoing boundary components, and the filling
condition implies that there is at least one arc connecting each outgoing closed boundary
component to the free boundary.

Lemma 3.35. ([19, Cor. 2.23, Cor. 3.25]) Let S be an open-closed cobordism whose
boundary is not completely outgoing closed, then B0(S,∆) is contractible and admits a free
action of the diffeomorphism group
Diff(S; ∂inS, ∂outS).

We describe the action of the diffeomorphism group on B0(S,∆). Let Diff(S; ∆) be the
subgroup of Diff(S; ∂inS, ∂outS) which preserves the marked points ∆. Note that the in-
clusion Diff(S; ∆) ⊆ Diff(S; ∂inS, ∂outS) is a homotopy equivalence. Let f ∈ Diff(S; ∆)
and let α = {α0, ..., αk} be an arc system. The action of f on α is given by

f · α := {f ◦ α0, ..., f ◦ αk}.
If f ∈ Diff(S; ∂inS, ∂outS), there is an essentially unique f ′ ∈ Diff(S; ∆) such that f ' f ′,
and we define f · α := f ′ · α.

Observation 3.36. In Definition 3.32, we may remove the condition that the arcs are
pairwise non-isotopic by considering arcs with multiplicity. This can be thought of as adding
degeneracies to a semi-simplicial set and does not change the homotopy type of the arc
complex.

Definition 3.37. LetArc0 ([ 0
m1

] , [n2
m2]) be the space of pairs (e, α), where e : Γ→ R∞ is an ele-

ment of colimε→0 Embε(Γ,R∞) is an embedded surface representing an open-closed cobordism
and α ∈ B0(e(Γ),∆) a filling admissible arc set on e(Γ). We denote by Arc0 ([ 0

m1
] , [n2

m2]) |Γ
the component corresponding to a fixed cobordism type Γ. On this component, the diffeo-
morphism group of Γ acts by

f · (e, α) = (e ◦ f, f · α)

Observation 3.38. Since B0(Γ,∆) is contractible, the quotient of Arc0 by the diffeomor-
phism group action is another model for BDiff(Γ, ∂inΓ, ∂outΓ).

Lemma 3.39. Let Γ ∈ OC ([ 0
m1

] , [n2
m2]). There is an equivalence

Arc0 ([ 0
m1

] , [n2
m2]) |Γ ' Emb∂(Γ)×B0(Γ)

which is compatible with the action of the mapping class group of Γ.

Proof. The leftward map is given by taking a pair ([e], α) of the equivalence class of a
representative embedding e ∈ Embε((Γ,R∞) and an arc set on Γ to the pair ([e], e(γ)). Note
that e(γ) depends only on the equivalence class [e] and not on the representative e, hence this
map is well-defined. The rightward map is constructed similarly, taking a pair ([e], α′), of an
equivalence class of a representative embedding e ∈ Embε((Γ,R∞) and an arc set on e(Γ),
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to the pair ([e], e−1(α)). The arc set e−1(α) on Γ is uniquely determined by the requirement
that e(e−1(α)) = α. These maps are actually mutually inverse homeomorphisms. �

Definition 3.40. Define the space

ÔC ([ 0
m1

] , [n2
m2]) = t

[Γ]∈OC([ 0
m1

],[n2
m2])
Arc0 ([ 0

m1
] , [n2

m2]) |Γ/Diff(Γ, ∂inΓ, ∂outΓ)

Observation 3.41. Arc0 ([ 0
m1

] , [n2
m2]) defines the total space of a fiber bundle overOC ([ 0

m1
] , [n2

m2])

whose fiber over the component corresponding to Γ is B0(Γ). Hence the projection ÔC → OC
is fully faithful.

The decoration of surfaces by arc sets is sufficient to define an inverse to the composition
morphism. The below construction produces a morphism

OC ([ 0
m1

] , [n2
m2])→ B

(
O(m1,m2 +−),A∞,L[n2

0 ]

)

and by Lemma 2.7 this gives a map to O(m1,m2 +−)⊗A∞ L[n2
0 ].

Construction 3.42. For an open-closed cobordism Γ ∈ OC ([ 0
m1

] , [n2
m2]), with marking ∆

as in Definition 3.32, let α ∈ B0(Γ,∆) and let e ∈ Emb∂(Γ). For 1 ≤ i ≤ n2, let ∂iΓ
be the i’th outgoing closed boundary component of Γ, let yi ∈ ∆ be the marked point on
∂iΓ, and let Ji = {αi,1, ..., αi,ri} be the cyclically ordered finite set of arcs intersecting yi.
By perturbing the arcs αi,j in a sufficiently small neighborhood of their endpoints, we may
assume that the arcs as a whole are disjoint, not just their interiors. We may then choose
tubular neighborhoods Ui,j of the arcs such that the closures in Γ are disjoint: Ui,j∩Ui′,j′ = ∅
unless i = i′ and j = j′. For each (i, j), let Vi,j = Ui,j ∩ ∂iΓ. and let Wi,j be the components

of ∂iΓ \
(⋃ri

j=1 Vi,j

)
, cyclically ordered according to the orientation on ∂iΓ such that Wi,j

separates Vi,j and Vi,j+1. Define the surface

Γα := Γ \
(

n2⋃

i=1

ri⋃

j=1

Ui,j

)

viewed as an open cobordism in O(m1,m2 +
∑n2

i=1 ri), and define the restricted embedding

eα := e|Γα ∈ Emb∂(Γα).

Finally, let fα ∈ Embfr(tΣriR,tn2S
1) be the the map sending the (i, j)’th copy of R to Wi,j,

where we have identified the i’th copy of S1 with ∂iΓ. We now produce an assignment

FΓ : B0(Γ,∆)→ O(m1,m2 +−)⊗A∞ L[n2
0 ]

sending α to Γα ⊗ fα. Let α′ ∈ B0(Γ,∆) be another filling admissible arc system such that
α′ ⊆ α. Assuming for simplicity of exposition that Γ has a single outgoing boundary, this
inclusion overlies an inclusion of cyclically ordered finite sets θ : J ′ ↪→ J . We associate to
the inclusion α′ ⊆ α an element of A∞(|J |, |J ′|), defined up to a cyclic permutation of tensor
factors, as follows. Write s′ : J ′ → J ′ for the successor function on J ′. For each j′ ∈ J ′,
let Jj′ ⊆ J be the subset {θ(j′), ..., θ(s′(j′)) − 1} and define mθ,j′ ∈ A∞(|Jj′ |, 1) to be the
inclusion

mθ,j′ : tj∈Jj′Wi,j ↪→ Wi,θ(j′) ∪ Vi,θ(j′)+1 ∪ ... ∪Wi,θ(s(j′))−1 ' R
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We now write mα′,α for the tensor product

mα′,α :=
⊗

j′∈J ′
mθ,j′ ∈ A∞(|J |, |J ′|)

Then we have Γα′ ∼ mα′,α ◦ Γα and fα ∼ fα′ ◦mα′,α. By realizing the coend as a two-sided
bar construction, we then send a sequence of p composable inclusions α0 ⊆ ... ⊆ αp to the
p+ 1-simplex

Γαp ⊗mαp−1,αp ⊗ ...⊗mα0,α1 ⊗ fα0

It is then clear that the assignment FΓ is compatible with the poset structure on B0(Γ,∆),
i.e. up to coherent homotopy, the image of FΓ does not depend on α.

We describe how FΓ behaves with respect to the Diff(Γ; ∂inΓ, ∂outΓ)-action on B0(Γ,∆).
For a diffeomorphism g ∈ Diff(Γ; ∂inΓ, ∂outΓ), we have FΓ(g ◦α) = Γg·α⊗fg·α = g(Γα)⊗fα,
where g(Γα) is the image of Γα under g as a subspace of Γ. The identity fg·α ' fα is due to
g preserving the outgoing boundary pointwise.

From the above, we conclude the following lemma.

Lemma 3.43. The functors

FΓ : B0(Γ,∆)→ O(m1,m2 +−)⊗A∞ L[n2
0 ]

induce a morphism

F̃ : OC ([ 0
m1

] , [n2
m2])→ O(m1,m2 +−)⊗A∞ L[n2

0 ]

which admits a homotopy

comp ◦ F̃ ' id.

Proof. Let Arc0 := tΓB0(Γ,∆) and

F := tΓFΓ : Arc0 → O(m1,m2 +−)⊗A∞ L[n2
0 ]

By the universal property of quotients, this induces the morphism F̃ of the statement. From
Construction 3.42, for each Γ the composition comp ◦ FΓ is homotopic to the projection
B0(Γ,∆)→ OC ([ 0

m1
] , [n2

m2]) onto the connected component of Γ. This implies that comp ◦ F
is homotopic to the projection. By the universal property of quotients, we then have that

comp ◦ F̃ ' id. �
A similar argument to the above, using arcs connecting the free boundary to the open

outgoing boundary, can be used to construct a natural transformation

O(m1,m2 +−)→ O(m1,−)⊗A∞ L[ 0
m2

]

3.4.2. CoHochschild Reduction of Open-Closed Cobordisms. In this section we will prove the
following statement.

Lemma 3.44. The map R of Lemma 3.23 is a homotopy equivalence.

Lemma 3.45. Let F ∈ NatAop∞
(
LS1 ,OC

([
n1−1

m1+(−)

]
, [n2
m2]
))

. There is a unique open-closed
cobordism Γ associated to F such that for f ∈ LS1(n), the last n incoming open boundary
components of F (n)(f) are the sole open boundary components on a boundary component
of Γ, and appear on that component in the same cyclic order as they do in f .
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Proof. Any f ∈ LS1(n) can be written as a composition f̃ ◦ mn, where mn ∈ A∞(n, 1)

and f̃ ∈ LS1(1). This implies that the last n open boundary components must lie on the
same boundary component. To see that these are the only open boundary components
on that boundary component of the surface, observe that F must also preserve the cyclic
permutations of the inputs, which cannot happen if there are additional open boundary
components. Finally, the cyclic order is preserved, otherwise A∞-functoriality cannot be
preserved. �
Construction 3.46. We will produce a map

S : NatAop∞
(
LS1 ,OC

([
n1−1

m1+(−)

]
, [n2
m2]
))
→ OC ([n1

m1] , [
n2
m2])

which we will later show is inverse to the map R described in Lemma 3.23. By Lemma 3.45,
any F ∈ NatAop∞

(
LS1 ,OC

([
n1−1

m1+(−)

]
, [n2
m2]
))

, is determined up to contractible choice by the

restriction to F (1) : LS1(1)→ OC
([

n1−1
m1+1

]
, [n2
m2]
)
. To construct S, it is therefore sufficient to

consider the connected component of a single open-closed cobordism Γ ∈ OC
([

n1−1
m1+1

]
, [n2
m2]
)
.

Let ∂1Γ be the boundary component of Γ which contains the last open boundary component.
Let C1Γ be a collar of ∂1Γ. The space of collars is contractible, hence C1Γ may be extended
to a compatible choice of collar for each surface in the connected component of Γ. By
interpreting C1Γ ⊂ Γ as an element of OC ([01] , [

1
0]), we can realize Γ as the composition of

C1Γ ⊂ Γ and a surface Γ̃F = Γ \ C1Γ ∈ OC ([n1
m1] , [

n2
m2]). Since the choice of collar is global

and we may assume that diffeomorphisms of Γ restrict to the identity in a neighborhood of

C1Γ, we deduce that the assignment F 7→ Γ̃F is compatible with diffeomorphisms.
In summary, we have produced a decomposition

F (n)(f) ' Γ̃F ◦
(

id[n1−1
m1

] t Cyl(f)
)

where Γ̃F ∈ OC ([n1
m1] , [

n2
m2]) depends only on F . This gives a map

NatAop∞
(
LS1 ,OC

([
n1−1

m1+(−)

]
, [n2
m2]
))
→

OC ([n1
m1] , [

n2
m2])×S1 NatAop∞

(
LS1 ,OC

([
0

(−)

]
, [10]
))
→

OC ([n1
m1] , [

n2
m2])

taking F to Γ̃F

From the construction, it is clear that R adds a sequence of cylinders to Γ, and S simply
cuts out the same cylinders, such that S ◦ R ' id. To see that also R ◦ S ' id, note again
that a natural transformation

F ∈ NatAop∞
(
LS1 ,OC

([
n1−1

m1+(−)

]
, [n2
m2]
))

is determined by its value at 1 ∈ A∞, and it is easy to see that F (1) ' S ◦R(F )(1).

3.4.3. Gluing and Cutting Surfaces. In this section we give an idea for how to prove that the
map F of 3.43 is a homotopy equivalence.

Lemma 3.47. Let Γ ∈ OC ([ 0
m1

] , [n2
m2]) and let I be a set of arcs connecting the outgoing

closed boundary to the free boundary. Assume that there is at least one arc intersecting
each outgoing closed boundary component. Then I can be extended to an admissible filling
arc set.
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Proof. We assume that no pair of arcs are isotopic relative to their endpoints, and that no
two arcs end at the same point on the free boundary. Let {∂iΓ}0≤i≤n2 be the list of outgoing
closed boundary components. For each i, let {αi,j}j∈Ii be the cyclically ordered set of arcs
intersecting ∂iΓ. By the assumption that the αi,j connect the outgoing closed boundary to
the free boundary, the second condition of admissibility is automatically satisfied. For each
pair (i, j) with 0 ≤ i ≤ n2 and j ∈ Ii, let xi,j be the point at which αi,j intersects the free
boundary, and let Ai,j be the closure of an open subset of Γ containing αi,j, such that the
Ai,j are pairwise disjoint away from the endpoints of the αi,j. For each i, let Ci be a closed
collar of ∂iΓ such that each of the subspaces αi,j ∩ Ci and Ai,j ∩ Ci are connected for j ∈ Ij
and Ci does not intersect any αi′,j′ such that i 6= i′. Finally, let Bi = Ci ∪

⋃
j∈Ii Ai. The

points xi,j divide the boundary of Bi into one component for each arc αi,j, namely there will
be a component of the boundary of Bi connecting xi,j to xi,j+1 according to the cyclic order
of Ij. Call this component βi,j. It follows that the set {βi,j}j∈Ii cut Γ into two pieces, one
of which containing the interiors of exactly the arcs intersecting ∂iΓ. Furthermore, if yi is
the marked point on ∂iΓ, then ∪j∈Ii(αi,j ∪ βi,j) \ yi is connected. Applying this procedure
to each outgoing closed boundary component, we see that the first and third conditions of
admissibility are satisfied. Thus the arcs βi,j and αi,j cut Γ into a set of subspaces, only
for each αi,j as well as one piece containing the part of the boundary which is not outgoing
closed. By adding more arcs, this subspace can be cut into contractible pieces. Thus we have
proved that the αi,j can be extended to a filling admissible arc set, finishing the proof. �

Conjecture 3.48. The composition map

OC ([ 0
m1

] , [n2
m2])

comp←−−− O(m1,m2 +−)⊗A∞ L[n2
0 ]

is a homotopy equivalence.

Proof idea: Let Õ be the full subcategory of ÕC on copies of intervals, and let L̃[n2
m2]

be the

A∞-submodule of ÕC ([0
−] , [n2

m2]) taking a natural number n to the arc complex of open-closed
cylinders with n incoming open boundary components. Observe that if Γ is an open closed
cobordism and α is an admissible filling arc set on Γ, then when cutting along arcs as in
Construction 3.42, we can remember the remaining arcs in the arc set to obtain an admissible
filling arc set on Γα. We write α̃ ∈ Arc0(Γα) for this arc set. Let CylΓ(α) ∈ Arc0(Cyl(fα))
be the arc set on Cyl(fα) given by connecting each free boundary component to the outgoing
circle along the shortest path. The map F lifts to the map cut in the below diagram, taking
an admissible filling arc set α to the element

cut(α) = α̃⊗ CylΓ(α).

Similarly, the contractibility of the arc complex implies that the composition map also lifts:

ÕC ([ 0
m1

] , [n2
m2]) Õ(m1,−)⊗A∞ L̃[n2

m2]

OC ([ 0
m1

] , [n2
m2]) O(m1,−)⊗A∞ L[n2

m2]

F

cut

comp

comp
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Fix an open-closed cobordism type Γ and an element a ∈ Arc0 ([ 0
m1

] , [n2
m2]) |Γ. Contractibil-

ity of the arc complex implies that
(
Õ(m1,−)⊗A∞ L̃[n2

m2]

)
|Γ

contracts onto cut(a). Specifically, for any

x ∈
(
Õ(m1,−)⊗A∞ L̃[n2

m2]

)
|Γ

there is a a′ = (f ′, α′) ∈ Emb∂(Γ)×B0(Γ) such that x = cut(f, α). The space of zig-zags con-
necting a and a′ in Arc0 ([ 0

m1
] , [n2

m2]) |Γ is contractible, such that there is a contractible space
of homotopies between x and cut(a). Thus, cut and comp are mutually inverse homotopy
equivalences.

It remains to see that they respect the Diff(Γ, ∂inΓ ∪ ∂outΓ)-action. The only thing that
needs to be checked is the compatibility of the cut map with Dehn twists at the outgoing

closed boundary. This generator of the mapping class group can be realized both in Õ(m1,−)

by acting on the image of Γα in Γ, and in L̃[n2
m2]

by acting on the arc system on Cyl(fα). We

now show that these actions are in fact identified in the tensor product.
We give the details for n2 = 1. The argument in the general case is identical. As the below

diagram shows, there is an element T ∈ A∞(1, 1) such that composing by T and acting by
the Dehn twist produce identical results up to homotopy, and transporting T across the
tensor product one sees that the two Dehn twists are identified.

It now remains to prove that forgetting the arc sets in
(
Õ(m1,−)⊗A∞ L̃[n2

m2]

)
|Γ

corresponds to quotienting by the Diff(Γ, ∂inΓ ∪ ∂outΓ)-action.

Appendix A. Coends and Bar Constructions

In this appendix we prove Lemma 2.7. Most of the argument is reproduced verbatim from
private communication with Rune Haugseng.

Definition A.1. Given∞-categories C and D, the space Map(C,D) is the maximal sub-∞-
groupoid of the functor ∞-category Fun(C,D).

Definition A.2. Let C be an ∞-category. The category of simplices ∆/C is defined as the
pullback of ∞-categories
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∆/C Cat∞/C

∆ Cat∞

where the lower functor is the embedding ∆ ↪→ Cat
N
↪→ Cat∞. Since Cat∞/C → Cat∞ is a

right fibration, so is ∆/C → ∆.

Remark A.3. The functor ∆op → S corresponding to the right fibration ∆/C → ∆ is given
by

[n] 7→ Map([n], C)
such that this simplicial space is the ∞-category C viewed as a complete Segal space.

Lemma A.4. The colimit of the composite functor

∆/C → ∆→ Cat∞

is equivalent to C.
Proof. This follows from the description of Cat∞ as complete Segal spaces. �
Definition A.5. Let ∆∗ be the category with objects given by pairs ([n], i), where [n] ∈ ∆
and i ∈ [n], and a morphism ([n], i) → ([m], j) is given by a functor φ : [n] → [m] and a
morphism φ(i)→ j in [m].

Observation A.6. The projection π : ∆∗ → ∆ is the coCartesian fibration for the inclusion
∆ → Cat∞. The coCartesian morphisms over φ : [n] → [m] are the morphisms of the form
([n], i)→ ([m], φ(i)).

It follows that the coCartesian fibration for the composite ∆/C → ∆→ Cat∞ is given by

πC : ∆/C,∗ := ∆/C ×∆ ∆∗ → ∆/C.

Corollary A.7. There is an equivalence of ∞-categories

∆/C,∗[coCart−1] ' C.
Proof. This follows from the description of colimits in Cat∞ in [13, Section 3.3.4]. �
Definition A.8. • Let l : ∆→ ∆∗ be the section of π defined on objects by l([n]) = ([n], n),
which makes sense because any functor φ : [n]→ [m] admits a unique morphism φ(n)→ m
in [m].
• Let λ : ∆∗ → ∆ be the functor given on objects by ([n], i) 7→ [i]. Given a functor

φ : [n] → [m] and a morphism φ(i) → j, then φ restricts to a functor [i] → [j], which we
define to be λ(φ).

Observation A.9. • There is a natural isomorphism

Hom∆∗(([n], i), l([m])) ' Hom∆([n], [m])

such that π is left adjoint to l.
• A morphism ([n], n) → ([m], i) in ∆∗ is determined by a morphism [n] → λ(([m], i)) in

∆, i.e. we have a natural isomorphism

Hom∆∗(l([n], ([m], i)) ' Hom∆([n], λ([m], i))

such that l is left adjoint to λ.
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Definition A.10. Let LV be the set of last vertex morphisms of ∆, i.e. functors φ : [n]→ [m]
such that φ(n) = m.

Lemma A.11. • λ takes the π-coCartesian morphisms to morphisms in LV.
• l takes morphisms in LV to π-coCartesian morphisms.
• the unit map [n]→ λl([n]) is in LV (being in fact the identity map on [n]).
• the counit map lλ([n], i) = ([i], i)→ ([n], i) in π-coCartesian.

Therefore the adjunction l a λ induces an equivalence of ∞-categories

∆[LV−1] ' ∆∗[coCart−1].

Lemma A.12. The adjoint triple π ` l ` λ induces for all ∞-categories C an adjoint triple
of functors

πC ` lC ` λC
between ∆/C,∗ and ∆/C. The observations of the previous lemma also hold here, so we get
an adjoint equivalence

∆/C[LV−1] ' ∆/C,∗[coCart−1].

Corollary A.13. There is a natural equivalence of ∞-categories

∆/C[LV−1] ' C.
Proof. This follows from Corollary A.7 and Lemma A.12. �
Definition A.14. Let textrev : ∆→ ∆ be the order-reversing automorphism of ∆, given on
objects by [n] 7→ [n] and on morphisms by sending φ : [n]→ [m] to rev(φ)(i) = m−φ(n− i).
Lemma A.15. There is a natural pullback square

∆/Cop ∆C

∆ ∆

revC

rev

Since rev is an equivalence, so is revC.

Proof. The pullback of ∆/C → ∆ along rev is the right fibration for the composite

∆op revop−−−→ ∆op C−→ S
and this composite is precisely the complete Segal space corresponding to Cop. �
Definition A.16. Let IV be the set of initial-vertex morphisms in ∆, i.e. functors φ : [n]→
[m] such that φ(0) = 0.

Lemma A.17. The automorphism revC sends morphisms in LV to morphisms in IV, such
that there is a natural equivalence of ∞-categories

∆/C[IV
−1] ' Cop.

Proof. This follow from Corollary A.7 and Lemma A.15. �
Proposition A.18. The canonical functor ∆/C → ∆/C[LV−1] is coinitial and cofinal.
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Proof. By definition of ∆/C[LV−1] there is a pushout square

LV LV[LV−1]

∆/C ∆/C[LV−1]

By [13, Corollary 4.1.2.6] the map LV → LV[LV−1] is cofinal, so by [13, Corollary 4.1.2.7]
the pushout ∆/C → ∆/C[LV−1] is also cofinal. Applying the same argument on opposite
∞-categories, this map is also coinitial. �
Corollary A.19. The four functors

∆/C → C, ∆/C → Cop, ∆op
/C → C, ∆op

/C → Cop

are all coinitial and cofinal.

Corollary A.20. (Bousfield-Kan) Let D be a cocomplete ∞-category. The colimit of a
functor F : C → D is equivalent to the colimit of a simplicial object ∆op → D given by

[n] 7→ colim
α∈Map([n],C)

F (α(0)).

Proof. We can compute the colimit of F after composing with the cofinal map ∆op
/C → C,

which takes α : [n]→ C to α(0). This colimit we can inturn compute in two stages, by first
taking the left Kan extension along the projection ∆op

/C → ∆op, which produces a simplicial

object of the given form, and then taking the colimit of this simplicial object. �
Remark A.21. This derivation of the Bousfield-Kan formula is credited to Moritz Groth.

Definition A.22. Given a functor F : C×Cop → D, its bar construction B(F ) is the colimit
of the composite functor

∆op
/C → C × Cop → D,

where the first functor is induced by the functors ∆op
/C → C and ∆op

/C → Cop constructed

above.

Lemma A.23. If D is a cocomplete ∞-category, then the bar construction of a functor
F : C × Cop → D can be computed as the colimit of a simplicial object ∆op → D given by

[n] 7→ colim
α∈Map([n],C)

F (α(0), α(n)).

Proof. The colimit over ∆op
/C can be computed in two steps by first taking the left Kan

extension along the projection ∆op
/C → ∆op, which gives the desired simplicial object, and

then taking the colimit of this simplicial object. �
Definition A.24. Let ε : ∆→ ∆ be the subdivision endofunctor, given by [n] 7→ [n] ? [n]op.

Lemma A.25. The functor ε∗ : Fun(∆op,S)→ Fun(∆op,S) takes complete Segal spaces to
complete Segal spaces.

Definition A.26. The twisted arrow category Tw(C) of an∞-category C is the∞-category
escribed by the complete Segal space ε∗C (with C viewed as a complete Segal space).
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Lemma A.27. There is a natural pullback square

∆/Tw(C) ∆/C

∆ ∆ε

Proof. The pullback of ∆/C → ∆ along ε is the right fibration for the composite

∆
ε−→ ∆

C−→ S,
which by definition is ∆/Tw(C). �
Lemma A.28. There is a commutative diagram

∆op
/Tw(C) ∆op

/C

Tw(C) C × Cop

Lemma A.29. εop : ∆op → ∆op induces homotopy equivalences on colimits valued in spaces.

Proof. This is [2, Lemma 1.1]. In short, the statement is proven for representable simplicial
spaces and extending by colimits. �
Lemma A.30. εop : ∆op → ∆op induces homotopy equivalences on colimits valued in spectra.

Proof. Let X be a simplicial spectrum. Then there is an equivalence

X ' colim
α:Σ∞y[n]→X

Σ∞y[n] ⊗ Eα

Here is colimit is taken over the comma-∞-category Σ∞y ↓ X, which is defined as the
pullback

Σ∞y ↓ X Sp∆op

/X

∆ Sp∆op

Σ∞y

and Eα is a spectrum.
By [2, Lemma 1.1], pulling back along ε induces a homeomorphism, in particular a homo-

topy equivalence, between geometric realizations. In ∞-categorical terms, the realization is
precisely the colimit, such that εop : ∆op → ∆op preserves colimits, hence εop is cofinal, hence
ε is coinitial. �
Corollary A.31. ∆/Tw(C) → ∆/C is coinitial.
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Proof. The (the dual of) [13, Proposition 4.1.2.15], the pullback of a coinitial map along a
Cartesian fibration is coinitial. �
Proposition A.32. Given a functor F : C ×Cop → D, its coend, given by the colimit of the
composite

Tw(C)→ C × Cop → D,
is equivalent to the bar construction B(F ).

Proof. We have a commutative square

∆op
/Tw(C) ∆op

/C

Tw(C) C × Cop

where the top horizontal and left vertical maps are cofinal by Corollaries A.19 and A.31. �
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