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Abstract  

 

The present thesis investigates higher monotonicity properties in function theory. It 

consists of three manuscripts. The first one focuses in the beta distribution and its 

quantiles. Logarithmic concavity of the quantiles with respect to the first parameter is 

proved. The second manuscript computes asymptotic expansions of the quantiles for 

the first parameter going to zero or to infinity. The third manuscript is a generalisation of 

a complete monotonicity result on ratios of gamma functions to entire functions. 

 

 

Abstrakt 

 

Den foreliggende afhandling undersøger højere monotonicitetsegenskaber i 

funktionsteori. Den består af tre manuskripter. Det første fokuserer på beta fordelingen 

og dens fraktiler. In dette bevises, at fraktilerne er logaritmisk konkave i forhold til den 

første parameter. Det andet manuskript beregner asymptotiske udviklinger af fraktilerne 

for den første parameter gående mod nul eller mod uendelig. Det tredje manuscript 

generaliserer resultater om fuldstaendig 

monotonicitet af kvotienter mellem gammafunktioner til hele funktioner. 
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Preface

Higher monotonicity is an essential tool in approximation theory and special functions. Beta and
gamma functions are two of the most important special functions, with a wide range of applications.

This thesis investigates instances of higher monotonicity in functions that are related to the beta
and gamma functions. We have two main results. One is about the logarithmic concavity of the
inverse incomplete beta function, as well as asymptotic expansions. The second is the logarithmic
complete monotonicity of ratios of entire functions, generalising results on ratios of gamma functions
and applying it to multiple gamma functions. Finally, we provide asymptotic expansions for the inverse
incomplete beta function wrt its first parameter.

We shall start presenting some general introductory material. In the first chapter, we review two of
the most important notions of higher monotonicity: convexity/concavity, and complete monotonicity,
as well as their logarithmic analogues. In the second chapter, we review the basic facts on beta and
gamma functions and functions related to these. These include the incomplete beta function and its
inverse, and multiple gamma functions. In the third chapter, we present some basic facts from the
theory of entire functions.

In the appendix, we attach three manuscripts that constitute the main body of the present thesis.
The first one focuses in the beta distribution and its quantiles. It proves logarithmic concavity of the
quantiles with respect to the first parameters. The second manuscript computes asymptotic expansions
for the quantiles for the first parameter going to 0 or to infinity. The third manuscript is a generalisation
of a complete monotonicity result on ratios of gamma functions to entire functions. It also gives a
different point of view to previously known results, which were shown only using dedicated properties
of the gamma and digamma functions.
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CHAPTER 1

Higher order monotonicity

1. Logarithmic convexity and concavity

The usual notion of monotonicity refers to the property of a real valued function on R being
increasing or decreasing. Extending this, we have higher monotonicity properties referring to how
fast or slow a function grows or decreases. Such properties are important in function theory and
applications. A common example of a higher monotonicity property is concavity/convexity. A convex
function is one for which, whenever we chose two points in the graph of a function f , the line segment
connecting these points lies above or on the graph of the function. A concave function is the one for
which the line segment lies below or on the graph. In case of twice differentiable functions, this is
equivalent to f” ≥ 0 for a function f to be convex (f” ≤ 0 to be concave).

One of the reasons that convexity is important is the following its role in optimisation. Assume a
continuously differentiable function f on an interval (a, b) is convex. The definition of convexity for
the case of f implies that the graph of the function must lie above its tangent at any point. This is clear
by considering two points, as in the definition, and taking the limit as the second approaches the first
one. This fact can be expressed analytically as

f(x) ≥ f(y) + f ′(y)(x− y)

whenever x, y ∈ (a, b). Assume, now, that f obtains a local minimum at y ∈ (a, b), hence f ′(y) = 0.
The previous inequality then implies that for all x ∈ (a, b), f(x) ≥ f(y), hence f obtains a global
minimum at x. This means that if we know that a function is convex, computing a local minimum with
a numerical method (for example with Newton’s method) finds a minimum that is guaranteed to also
be global. In a similar way, concavity guarantees the globality of local maxima.

Convex and concave functions are not the only ones which guarantee the globality of local min-
ima/maxima. As composition with increasing functions preserve global extrema, the following classes
have importance in analysis.

DEFINITION 1.1. A function f : [0,∞) → (0,∞) is called logarithmically convex (concave) if
log f is convex (concave).

By the previous observation we easily deduce that if a logarithmically convex/concave function
has a local minimum/maximum, then this is a global one. The further advantage that we get in the
logarithmic case is that, because of the fact that convexity/concavity is closed under addition and the
properties of the logarithm, logarithmic convexity/concavity is preserved when we consider products
of such functions. This has important applications for examples in optimisation problems where such
products may occur. For example in [5, Proposition 4] a problem of finding the probability of lottery
players legitimately claim winning a number of prizes resulted in an optimisation problem involving
a product of incomplete beta functions (which we will define later). For the solution of this problem,
logarithmic concavity with respect to parameters was crucial.

It is clear, as the exponential function is convex, that a logarithmically convex function is also
convex, i.e. logarithmic convexity is a stronger property than convexity. In the same way, a con-
cave function is also logarithmically concave, hence logarithmic concavity is a weaker property than
concavity.
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In this thesis, all the functions studied are going to be infinitely many times differentiable, hence
these properties are going to be investigated through investigating signs of second logarithmic deriva-
tives.

2. Complete monotonicity

Of course, one may continue investigating higher order derivatives to reveal even higher mono-
tonicity properties of functions. An important category of higher order monotonicity is complete
monotonicity, where all orders of the derivatives of a function are involved. For an account of com-
pletely monotonic and related functions (Bernstein, Stjeltjes etc) we refer to [11] and [23].

DEFINITION 1.2. A function f : (0,∞) → (0,∞) is called completely monotonic (f ∈ CM) if
(−1)nf (n)(x) ≥ 0 ∀n ∈ N, x ∈ (0,∞) .

Completely monotonic functions have a famous characterisation as Laplace transforms of Borel
measures on the half-line, what is known as Bernstein-Widder theorem.

THEOREM 1.3. A function f ∈ C∞(0,∞) is completely monotonic if and only if it is the Laplace
transform of a non-negative Borel measure on [0,∞], i.e. if and only if

f(x) =

∫ ∞

0

e−xtdµt

for a non-negative measure µ on [0,∞] such that∫ ∞

0

e−tdµt <∞ .

REMARK 1.4. Another way to see completely monotonic functions is in terms of positive defi-
niteness. If we see the closed half-line [0,∞) as an additive semigroup, the (bounded) completely
monotonic functions are exactly the ones that are bounded positive definite. By using shift opera-
tors, we may characterise all (also the possibly unbounded, as the shifted functions will necessarily be
bounded) completely monotonic functions on (0,∞) in terms of these operators and positive definite-
ness. See [8, Theorem 6.13].

3. Logarithmic complete monotonicity

A stronger form of complete monotonicity involves composing with the logarithm.

DEFINITION 1.5. A function f : (0,∞)→ (0,∞) is called logarithmically completely monotonic
(f ∈ LCM) if −(log f)′ is completely monotone.

Though, in first glance, the two notions do not seem to be directly related, it turns out that logarith-
mically completely monotonic functions form a subclass of CM . In particular, we have the following
classical result.

THEOREM 1.6. A function f : (0,∞) → (0,∞) is logarithmically completely monotonic if and
only if f t is completely monotone for all t > 0.

The property that f t is completely monotonic for all t > 0 is called infinite divisibility. It is
an important notion in probability because they represent Laplace transforms of infinitely divisible
probability distributions, and arises in relation to variations of the central limit theorem and Lévy
processes. See for instance [22].



CHAPTER 2

Entire functions of finite genus

1. Hadamard representation

An entire function is a complex-valued function analytic in the whole complex plane. Entire
functions are classically studied according to their order of growth. In particular, we categorise entire
functions according to whether their growth is comparable to e|z|a for some a > 0. Entire functions
that grow faster than that tend to contain pathogenic cases, so the growth restriction provides a nice
structure and theory of entire functions to work with. A very nice exposition of the classical theory of
entire functions is contained in [18].

We shall make the above concept of ”growth” more rigorous.
Let f be an entire function. We define

Mf (r) := max{|f(z)| : |z| = r}
DEFINITION 2.1. The order ρ of an entire function f is defined by

ρ = lim sup
r→∞

log logMf (r)

ln r

We say that f is of finite order if ρ <∞. Else, f is of infinite order.

DEFINITION 2.2. The type of an entire function f of finite order ρ is defined by

σ := lim sup
r→∞

lnMf (r)

rρ

It is a simple application of Cauchy’s and Liouville’s theorems that if an entire function of finite
order has no roots, then it must be in the form eP (z) where P is a polynomial. On the other hand,
an entire function f may only have at most countably many roots, whose only possible accumulation
point is at infinity, by the identity principle. Hence, dividing f by a converging Weirstrass product
whose factors contain exactly these roots, counting multiplicities, we get an entire function with no
roots on the complex plane. This shows that an entire function may be uniquely, up to multiplication
by some exponential factor, determined by its roots. This sketches the proof of the following formula,
called Hadamard’s representation theorem.

THEOREM 2.3. An entire function f of finite order ρ has a Hadamard representation in terms of a
canonical product

f(z) = zmeP (z)

∞∏

n=1

(
1− z

zn

)
exp

(
z

zn
+ · · ·+ 1

p

(
z

zn

)p)

where znn∈N is the sequence of non-zero roots of f , typically ordered by increasing order of magnitude,
m is the order of a possible root at 0, P is a polynomial of degree at most ρ, and p ≤ ρ.

This representation is not unique, in fact one may choose any p smaller or equal to ρ to get a
different representation every time. It is however standard in literature in complex analysis to choose
p = bρc. This number is called the genus of the entire function f .
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There is a strong connection between the order of growth of an entire function and the growth of
the sequence of its roots. For this we should distinguish between cases where the order is integer and
non-integer.

THEOREM 2.4. Let f be an entire function of order ρ. Let (zn)n∈N be the sequence of its zeros,
having order ρ0. Then, we have that ρ0 ≤ ρ. In particular, if ρ is non-integer, then ρ = ρ0.

One could be let to think that the difference between the integer and non-integer cases is due to
the exponential factor. Indeed, if we multiply an entire function of order ρ = ρ0, the same order as its
zeros, with an exponential factor ezn , where n > ρ, we get an entire function of order n with zeros of
order ρ < n.

2. Entire functions and complete monotonicity

A class of entire functions with a distinct interest is the one consisting of the entire functions with
negative zeros. In [20], Pedersen studied logarithmic derivatives of entire functions with respect to
complete monotonicity. One of the main results in this paper is the following proposition:

PROPOSITION 2.5. Let f be an entire function of finite genus p having only real, non-positive
zeros. Assume that f has a root of rth order at 0 and its negative roots are {−λk}k∈N where λk > 0.
Then, (−1)p(xm(log f(x))′)(m+p) is a completely monotonic function for all m ≥ 0 and it has the
representation

(−1)p(xm(log f(x))′)(m+p) =

∫ ∞

0

e−sxsm+p

∞∑

k=1

λmk e
−λksds, m ≥ 1,

(−1)p(log f(x))(p+1) =

∫ ∞

0

e−sxsp

(
r +

∞∑

k=1

e−λks

)
ds .

We are mostly interested in the case wherem = 0 above.(−1)p(log f(x))(p+1) is completely mono-
tonic, as it is the Laplace transform of a positive measure on the positive half-line. We denote

h(s) =
∞∑

k=1

e−sλk .

Sumability of this quantity for a given sequence {−λk}k∈N implies a concrete form of the representing
measure in the above Laplace representation. An example is given if we consider f = 1/Γ, the
reciprocal of the gamma function (see Chapter 3). It is an entire function with simple zeros on exactly
all the non-positive integers, and hence in this case

h1/Γ(s) =
∞∑

k=1

e−sk =
e−s

1− e−s

hence
−ψ(x)′ =

∫ ∞

0

e−sx
s

1− e−sds .



CHAPTER 3

Beta and Gamma functions

1. The gamma and beta functions

The history of the gamma function runs back to Euler, and to the problem of interpolating the
factorial with a continuous function, i.e. finding a function of a continuous variable x that equals
n! when x is equal to an integer n. This problem was allegedly suggested by Daniel Bernoulli and
Goldbach. To illustrate Euler’s construction, assume x, n ≥ 0 are integers. We follow the exposition
from [4], which is also the standard reference in gamma and beta functions. We may write

x! =
(x+ n)!

(x+ 1)n
=
n!(n+ 1)x!

(x+ 1)n
=

n!nx

(x+ 1)n

(n+ 1)x
nx

We notice that

lim
n→∞

(n+ 1)x
nx

= 1

hence

x! = lim
n→∞

n!nx

(x+ 1)n
= lim

n→∞

(
n

n+ 1

)x n∏

j=1

(
1 +

x

j

)−1(
1 +

1

j

)x

=

(
n

n+ 1

)x ∞∏

j=1

(
1 +

x

j

)−1(
1 +

1

j

)x

where the latter infinite product converges for all complex numbers x that are not negative integers
because (

1 +
x

j

)−1(
1 +

1

j

)x
= 1 +

x(x− 1)

2j2
+O

(
1

j3

)
.

DEFINITION 3.1. For x ∈ C \ {0,−1,−2, . . . } the gamma function Γ(x) is defined by

Γ(x) = lim
k→∞

k!kx−1

(x)k
(1)

By the definition we immediately derive the most basic property of the gamma function,

Γ(x+ 1) = xΓ(x) .

Moreover, Γ(1) = 1, hence these two properties give us that

Γ(n+ 1) = n!

Due to the convergence of the infinite product above, we see that Γ is a meromorphic function with
simple poles on the non-positive integers. The function 1/Γ is entire, hence it has the following
Hadamard product representation.

THEOREM 3.2. We have
1

Γ(z)
= zeγz

∞∏

n=1

(
1 +

z

n

)
e−z/n(2)

where γ = limn→∞
(∑n

k=1
1
k
− log n

)
is Euler’s constant.
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Probably its most standard representation is the Euler integral for the gamma function.

THEOREM 3.3. For <z > 0, we have

Γ(z) =

∫ ∞

0

tz−1e−tdt(3)

All these representations form alternative, standard ways to define the gamma function. Another
equivalent, standard definition of the gamma function is following characterisation.

THEOREM 3.4 (Bohr–Mollerup theorem). The gamma function is the only function f on (0,∞)
for which the three following properties simultaneously hold:

i. f(1) = 1
ii. f(x+ 1) = xf(x), x > 0

iii. f is logarithmically convex

One important property of the gamma function is the Euler’s reflection formula.

THEOREM 3.5.

Γ(x)Γ(1− x) =
π

sin πx
(4)

We denote the logarithmic derivative of Γ′/Γ of the gamma function by ψ. Sometimes this is called
the digamma function, and it has the following representations.

ψ(z) = γ +
∞∑

k=1

(
1

z + k − 1
− 1

k

)
(5)

ψ(z) =

∫ ∞

0

(
e−t

t
− e−zt

1− e−t
)
dt = −γ +

∫ 1

0

(
1− sz−1

1− s

)
ds(6)

A function closely related to the gamma function is the beta function. The beta function is defined
for <x,<y > 0 by the beta integral of Euler,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt(7)

It can be extended (meromorphically) to the whole complex plane as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(8)

A generalisation of the gamma function is the multiple gamma function of order N . There are
many related kinds of multiple gamma functions in the literature. In this thesis, we specifically deal
with the N -multiple gamma function with parameters (1, 1). See [21] and [7]. The definition of
multiple gamma function that we use here is the following:

DEFINITION 3.6. The function ΓN(z) is called multiple gamma function and is defined by the
following recurrence relations:

(1) ΓN(1) = 1
(2) Γ1(z) = Γ(z)

(3) ΓN+1(z + 1) =
ΓN+1(z)

ΓN(z)



2. Ratios of gamma functions and complete monotonicity

The study of ratios of gamma functions with respect to complete monotonicity stems back at
Bustoz and Ismail [12] who showed that the ratio

Γ(x)Γ(x+ a+ b)

Γ(x+ a)Γ(x+ b)

is logarithmically completely monotonic. Several extensions of this result for ratios of the form
∏p

j=1 Γ(x+ aj)∏p
j=1 Γ(x+ bj)

were found by Ismail and Muldoon [16], Alzer [3], and Grinshpan and Ismail [15].
Karp and Prilepkina in [KarpPril] extended the previous results by including weights, i.e. studying

the following ratio:

W (x) =

∏p
k=1 Γ(Akx+ ak)∏q
k=1 Γ(Bkx+ bk)

(9)

This ratio appears in the context of probability, as it is the representing measure in the Laplace trans-
form integral representation of some special cases of the Mejer’s G function, a special function that
generalises hypergeometric and several other hypergeometric functions. Their results rely on the inte-
gral representations of gamma and digamma functions.

Their main results are:

LEMMA 3.7. The function (logW )′′ is completely monotonic if and only if

P (u) =

p∑

i=1

e−aiu/Ai

1− e−u/Ai
−

q∑

i=1

e−bju/Bj

1− e−u/Bj
≥ 0 for all u > 0.(10)

In the affirmative case,

(logW )′′ =

∫ ∞

0

e−xuuP (u)du(11)

THEOREM 3.8. The function W is logarithmically completely monotonic if
q∑

j=1

Bj =

q∑

i=1

Ai, ρ =

p∏

i=1

AAi
i

p∏

i=1

B
Bj

j ≤ 1(12)

and condition (10) holds. In the affirmative case,

−(logW )′ =

∫ ∞

0

e−xuP (u)du+ log(1/ρ)(13)

3. The median of the gamma distribution

In probability theory, there is an important probability distribution that is closely related to the
gamma function, the gamma distribution. It is defined by considering the incomplete integral in (3):

DEFINITION 3.9. The gamma distribution with parameter x > 0 is the probability distribution on
[0,∞) having cumulative distribution function defined by

s 7→ 1

Γ(x)

∫ s

0

e−ttx−1dt(14)



Its median m is defined implicitly through the equation

1

Γ(x)

∫ m(x)

0

e−ttx−1dt =
1

2
(15)

or equivalently

∫ m(x)

0

e−ttx−1dt =
1

2

∫ ∞

0

e−ttx−1dt(16)

So, one can consider the median as a function of the parameter x and study its analytic properties.
The median of the gamma distribution has been studied in several occasions. In [13], Chen and Rubin
proved that

x− 1/3 < m(x) < x(17)

and further conjectured that m(n) − n is decreasing. This conjecture was proved by Alm in [2]. In
[14], Alzer further proved thatm(n+1)−an decreases for all n ≥ 0 if and only if a ≥ 1 and increases
if and only if a ≤ m(2) − log 2. In [1], Adell and Jodrá explore a very interesting connection with a
sequence due to Ramanujan.

In [9], Berg and Pedersen prove the following result

THEOREM 3.10. Let x > 0. Then, 0 < m′(x) < 1.

which is in fact the continuous version of the Chen-Rubin conjecture.
First, they prove that m is increasing, by showing a more general result on convolution semigroups

of measure on the positive half-line.

DEFINITION 3.11. A family {µx}x>0 of probabilities on [0,∞) is called a convolution semigroup
if it has the properties

i. µx([0,∞)) = 1 for all x > 0
ii. µx ∗ µy = µx+y for all x, y > 0

iii. µx → δ0 for x→ 0 in the vague topology

where δ0 is the Dirac mass at zero.

A probability measure µ on [0,∞) has median m if µ([0,m]) = 1/2. A probability distribution
may not have a median, or even if it has, it does not have to be unique. To guarantee existence it
is enough to require that its density is absolutely continuous with respect to the Lebesgue measure.
To further guarantee uniqueness, the density is enough to be a.e. strictly positive. The following
proposition gives a monotonicity result for probability semigroups with strictly positive density with
respect to Lebesgue measure:

PROPOSITION 3.12. Let {µx}x>0 be a conolution semigroup of probabilities on [0,∞) having
a.e. strictly positive densities with respect to Lebesgue measure. Then, the median m(x) of µx
is a continuous and strictly increasing function on (0,∞). Furthermore, limx→0m(x) = 0 and
limx→∞m(x) =∞

The gamma distribution indeed forms a convolution semigroup. Property i. holds trivially. To
show that ii. holds, denote the density of the gamma distribution with parameter x by fx. Let x, y > 0.
Then, the density of the convolution of the gamma measures with parameters x and y is



∫ s

0

fx(t)fy(s− t) dt =

∫ s

0

tx−1e−t

Γ(x)

(s− t)y−1e−(s−t)

Γ(y)
dt

= e−s
∫ s

0

tx−1(s− t)y−1

Γ(x)Γ(y)
dt

= e−ssx+y−1

∫ 1

0

ux−1(1− u)y−1

Γ(x)Γ(y)
du

= e−ssx+y−1 B(x, y)

Γ(x)Γ(y)

=
e−ssx+y−1

Γ(x+ y)

by substituting u = t/s in the prelast equality. The third property is also easy to check, by
considering a compactly supported function g and taking limits to zero. Hence, Proposition 3.12
can be applied to show that m is increasing and continuous.

Further, they show that (15) implies that m is a real analytic function of x, as differentiating it
(using the implicit function theorem) gives a differential equation of the form m′(x) = G(x,m(x)),
where G is real analytic in both variables.

In particular, they study the median m through the function

φ(x) := log
x

m(x)

and prove that for x > 0,

1− xφ′(x) < eφ(x) ,

from which the above theorem follows. They also show that

1

3
< xφ(x) < log 2

from which it follows that

xe− log 2/x < m(x) < xe−1/3x

improving the inequality (17). For example, using e−a < 1− a+ a2/2 for a > 0, it gives

m(x) < x− 1

3
+

1

18x

Moreover, asymptotically at 0

m(x)

e−γ2−1/x
→x→0 1

while at infinity, the authors give the fallowing asymptotic expansion

m(x) = x− 1

3
+

8

405x
+

184

25515x2
+ o(x−2)

Both expressions can be differentiated to give asymptotic expressions for m′.
Subsequently in [10], the authors prove that m is a convex function. These analytic results on

the median of the gamma distribution were the main motivation for the first two articles attached,
investigating the analytic properties of the quantiles of the beta distribution.



4. Beta distribution and inverse incomplete beta function

The beta distribution is another important parametrised family of probability distributions. It is
defined similarly to the gamma distribution, by ”cutting out” the Euler’s beta integral.

DEFINITION 3.13. The beta distribution with parameters a, b > 0 is the probability distribution on
[0, 1] having cumulative distribution function

I(p; a, b) :=
1

B(a, b)

∫ p

0

ta−1(1− t)b−1dt(18)

The function I is called regularised incomplete beta function. In [17], Karp and Prilepkina show
logarithmic convexity/concavity with respect to parameters by analytic methods.

Its inverse with respect to the p variable is the inverse (regularised) incomplete beta function and
is usually denoted by I−1(p; a, b). This quantity is exactly the p-quantile of the beta distribution with
parameters a and b. Quantiles have great importance in statistics and probability, in particular in
computing confindence intervals. For a standard reference on the beta distribution see [6, Chapter 2].

In [24], Temme gives asymptotic expansions of p-quantiles when the parameters a and b are large.
In particular, these approximations hold with high enough accuracy when a + b > 5 and they are
implemented in several programming language packages that compute the inverse incomplete beta
function. For lower values, though, the method commonly used is a variation of Newton’s method,
which is slow for many practical needs like optimisation tasks where several instances of this function
have to be repeatedly computed. See also [19] for some interesting inequalities for the median.

Our purpose in the first two manuscripts is to study the behaviour the inverse incomplete beta
function when we fix p and the parameter b, as a function of a.
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LOGARITHMIC CONCAVITY OF THE INVERSE INCOMPLETE

BETA FUNCTION WITH RESPECT TO THE FIRST

PARAMETER

DIMITRIS ASKITIS

Abstract. The beta distribution is a two-parameter family of probability

distributions whose distribution function is the (regularised) incomplete beta

function. In this paper, the inverse incomplete beta function is studied analyt-
ically as univariate function of the first parameter. Monotonicity, limit results

and convexity properties are provided. In particular, logarithmic concavity of

the inverse incomplete beta function is established. In addition, we provide
monotonicity results on inverses of a larger class of parametrised distributions

that may be of independent interest.

1. Introduction

Let a probability distribution on I � R have a cumulative distribution function
(CDF) F . Its median is defined as a point on I that leaves half of the “mass” on
the left and half on the right, i.e. a value m P I such that F pmq � 1{2. In a similar
way, we consider the more general notion of a p-quantile:

Definition 1.1. Let a probability distribution on I � R have cumulative dis-
tribution function F , and let p P p0, 1q. A value qp P I is a p-quantile of it if
F pqq � p.

In this notation, the 1{2-quantile is exactly the median. It is not always the case
that a p-quantile exists for a probability distribution, or that it is unique. However,
existence and uniqueness are guaranteed in the case of a.e. positive density wrt
Lebesgue measure. Then, we may consider the inverse distribution function of F .
The median and p-quantiles have importance in statistics as measures of position
less affected by extreme values than e.g. the mean, and they have further uses
considering levels of significance.

We are interested in parametrised families of probability distributions and the
behaviour of the p-quantile with respect to the parameter, with p being fixed. In
case we have a family of cumulative distribution functions Fa, a being the parameter
of the family, such that for each a the corresponding p-quantile exists and is unique,
we may define it as a function of a implicitly through the functional equation
Fapqppaqq � p.

On the case of the median of the gamma distribution, such studies have been
done in several occasions, e.g. in [2], [7] and [8]. In [1], Adell and Jodrá explore a
very interesting connection with a sequence due to Ramanujan. In [5] and [6], Berg
and Pedersen give a proof of the continuous version of the Chen-Rubin conjecture,
originally stated in [7], and they moreover prove convexity and find asymptotic
expansions.

In the present article, the main focus is on the p-quantile of the beta distribution,
or equivalently the inverse of the (regularised) incomplete beta function (3), as a
function of the parameter a. For a standard reference on the beta distribution see
[4, Chapter 2]. This inverse has also been considered by Temme [15] who studied

1



2 DIMITRIS ASKITIS

its uniform asymptotic behaviour. In particular, his results give a very accurate
approximation for the inverse for a � b ¡ 5. This is used in computer algorithms
approximating the inverse incomplete beta function. Also, see [14] for some inter-
esting inequalities for the median. In [10], logarithmic convexity/concavity results
are proved for the regularised incomplete beta function wrt to parameters, though
the methods employed there are quite different, and there does not seem to be any
direct connection with the results in the present article. In applications, (strict)
logarithmic concavity is an important property, as it ensures the uniqueness of
minimum and it is invariant under taking products.

The beta function is defined for <a,<b ¡ 0 as the integral

Bpa, bq :�

» 1

0

ta�1p1� tqb�1dt . (1)

It also has the following representation as ratio of gamma functions

Bpa, bq �
ΓpaqΓpbq

Γpa� bq
(2)

which gives a meromorphic continuation of the beta function in C2. More in-
formation on the beta function can be found on [3]. The beta distribution is the
2-parameter family of probability distributions, whose cumulative distribution func-
tion is the regularised incomplete beta function

Ipx; a, bq :�

³x
0
ta�1p1� tqb�1dt

Bpa, bq
. (3)

We fix p P p0, 1q and b ¡ 0, and we consider the first parameter a as a variable.
We shall see in the Appendix that, due to a reflection formula for the regularised
incomplete beta function, we can translate the results to the case when we fix
the other parameter instead. We consider the p-quantile of the beta distribution,
which in the literature is often also called the inverse incomplete beta function, as
a function of a. We denote it by q : p0,8q Ñ p0, 1q and define it implicitly by the
equation Ipqpaq; a, bq � p, or equivalently by

» qpaq
0

ta�1p1� tqb�1dt � p

» 1

0

ta�1p1� tqb�1dt . (4)

In the literature this value is often denoted by I�1
p pa, bq, and in our case q is the

function a ÞÑ I�1
p pa, bq. Moreover, we consider the function

φpaq :� �a log qpaq , (5)

which turns out to be containing further information on q. In the following plots
we can get an idea on how the median of the beta distribution behaves wrt a.
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In the rest of the paper we fix p P p0, 1q. We first get the following two proposi-
tions, regarding monotonicity and first order asymptotics:

Proposition 1.2. The function q in (4) is a real analytic and increasing function
on p0,8q. It has limits

lim
aÑ0

qpaq � 0

and

lim
aÑ8

qpaq � 1 .

Proposition 1.3. The function φ in (5) is real analytic on p0,8q. It is decreas-
ing if b   1, constant if b � 1 and increasing if b ¡ 1. It has limits

lim
aÑ0

φpaq � � log p

and

lim
aÑ8

φpaq � γb ,

where γb is the p1� pq-quantile of the gamma distribution with parameter b.

Then, we investigate the analytic properties of the inverse incomplete beta func-
tion deeper. In particular, investigating its logarithm, we obtain the following two
results, which constitute the main contribution of this paper:

Theorem 1.4. For fixed b P p0, 1q, φ in (5) is (strictly) convex.

Theorem 1.5. For fixed b P p0,8q, q in (4) is (strictly) log-concave.

Remark 1.6. One can infer from Figure 1 that q is neither concave nor convex;
its reciprocal 1{q, though, is logarithmically convex by Theorem 1.5, hence also
convex. Moreover, based on Figure 3, as well as numerical results, for b ¡ 1 we
conjecture that φ is concave.

The article is organised in the following way. In section 2 we present some general
results regarding p-quantiles of more general probability distributions, that may be
of independent interest. For instance, Lemma 2.2 is a generalisation of results
concerning monotonicity properties of ratios of power series and polynomials to
ratios of integrals. In section 3 we study the monotonicity and limit properties of
q and φ and prove Propositions 1.2 and 1.3. In section 4 we prove convexity of φ
for b   1, while in section 5 we prove logarithmic concavity of q. In the Appendix,
we look into the dependence on the parameter b with a being fixed and translate
some of the results to this case.

2. General results on p-quantiles of probability distributions

The following lemma is a standard result in measure theory, that lets us inter-
change integration and differentiation [11, Theorem 6.28]. In the rest of the paper,
Bx denotes differentiation with respect to the variable x.

Lemma 2.1. Let pΩ,B, µq be a measure space, I � R an open interval and
f : I � Ω Ñ R a function such that:

i. a ÞÑ fpa, tq is differentiable for µ-a.e. t P Ω
ii. t ÞÑ fpa, tq is µ-integrable for all a P I

iii. Dg P L1pΩ,dµq such that |Bafpa, tq| ¤ gptq for all a P I and µ-a.e. t P Ω

Then, the function a ÞÑ
³
Ω
fpa, tqdµptq is differentiable and

Ba

»
Ω

fpa, tqdµptq �

»
Ω

Bafpa, tqdµptq .
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Lemma 2.2. Let I � R be an open interval, A � R a non-empty Borel set, µ
a σ-finite Borel measure on A and u, v : A Ñ r0,�8q measurable functions, not
simultaneously 0. Let f : I �AÑ p0,�8q be such that

i. a ÞÑ fpa, tq is differentiable for µ-a.e. t P A
ii. t ÞÑ uptqfpa, tq and t ÞÑ vptqfpa, tq are µ-integrable for all a P I.

iii. For each compact subset K � I, there exists a function gK : AÑ r0,�8q such
that ugK , vgK are µ-integrable and |Bafpa, tq| ¤ gKptq for all a P K and µ-a.e.
t P A.

Let F : I Ñ R be defined by:

F paq :�

³
A
fpa, tquptqdµptq³

A
fpa, tqvptqdµptq

.

Then, the following hold:

I. If for all a P I and for µ-a.e. t P A, Bafpa, tq{fpa, tq and uptq{vptq both
increase or both decrease wrt t, then F is increasing.

II. If for all a P I and for µ-a.e. t P A, Bafpa, tq{fpa, tq increases (decreases) wrt
t and uptq{vptq decreases (increases), then F is decreasing.

Proof. Let Upaq �
³
A
fpa, tquptqdµptq, V paq �

³
A
fpa, tqvptqdµptq. By the fact

that uptqBafpa, tq and vptqBafpa, tq are dominated on compact subsets of I by a
µ-integrable function of t, Lemma 2.1 gives that both U and V are differentiable,
and the derivatives can be given by differentiating the integrands. Then, F 1 also
exists and hence we need to investigate the derivative

F 1paq �
U 1paqV paq � UpaqV 1paq

V 2paq
.

We find

U 1paqV paq � UpaqV 1paq �

�

»
A

»
A

upsqvptqpBafpa, sqfpa, tq � Bafpa, tqfpa, sqqdµpsqdµptq

�

»
A

»
AXts tu

upsqvptqpBafpa, sqfpa, tq � Bafpa, tqfpa, sqqdµpsqdµptq

�

»
A

»
AXts¡tu

upsqvptqpBafpa, sqfpa, tq � Bafpa, tqfpa, sqqdµpsqdµptq

�

»
A

»
AXts tu

upsqvptqpBafpa, sqfpa, tq � Bafpa, tqfpa, sqqdµpsqdµptq

�

»
A

»
AXts tu

uptqvpsqpBafpa, tqfpa, sq � Bafpa, sqfpa, tqqdµpsqdµptq

�

»
A

»
AXts tu

pupsqvptq � uptqvpsqqpBafpa, sqfpa, tq � Bafpa, tqfpa, sqqdµpsqdµptq

where in the pre-last equality we have made use of Fubini’s theorem. The last
integrand, as s   t, is non-negative (non-positive) if Baf{f and u{v have the same
(opposite) monotonicity properties, which proves the lemma. �

Remark 2.3. In the proceeding Lemma, the same conclusion holds we allow u,
v to assume the value zero at the same time, as then, without loss of generality, we
can just integrate over the set A1 � Azptuptq � 0u X tvptq � 0uq, which is again a
Borel set, and we consider the condition u{v being increasing (or decreasing) in A1.

Remark 2.4. Lemma 2.2 is a general case of results concerning monotonicity
properties of ratios of power series and polynomials. For instance, it gives [12,
Lemma 2.2], if we set µ to be the counting measure on N.
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Lemma 2.5. Let I, J be two open intervals. Let f : I � J Ñ p0,8q be such that:

i. a ÞÑ fpa, xq is differentiable for a.e. x P J
ii. x ÞÑ fpa, xq is integrable for all a P I

iii. For each compact subset K � I, there exists an integrable function gK : J Ñ
r0,�8q such that |Bafpa, tq| ¤ gKptq for all a P K and µ-a.e. t P A.

iv. The logarithmic derivative of f wrt a is increasing (decreasing) wrt x for a.e.
x, i.e.

Bafpa, xq

fpa, xq
Òx pÓxq .

Then, the p-quantile qpaq of the probability distribution with density fpa, xq{
³
J
fpa, tqdt

is increasing (decreasing) wrt a.

Proof. We will deal with the case that the logarithmic derivative of f is increasing,
and the other case, that it is decreasing, is analogous. Let x P J � pc, dq, where
�8 ¤ c   d ¤ �8. Then the cumulative distribution function is

F pa;xq �

³x
c
fpa, tqdt³d

c
fpa, tqdt

�

³d
c
fpa, tq1rc,xsptqdt³d
c
fpa, tqdt

.

We set uptq � 1rc,xsptq and vptq � 1. As u{v � u decreases and Baf{f increases wrt
t, by Lemma 2.2 we get that F decreases pointwise wrt a. This means³qpa�hq

c
fpa, tqdt³d

c
fpa, tqdt

¥

³qpa�hq
c

fpa� h, tqdt³d
c
fpa� h, tqdt

� p �

³qpaq
c

fpa, tqdt³d
c
fpa, tqdt

so that qpa� hq ¥ qpaq and hence that the p-quantile is increasing. �

Remark 2.6. In Lemma 2.2, if the logarithmic derivative Baf{f is strictly mono-
tone (and u � v), it is easy to see from the proof that the ratio of the integrals in
the conclusion should also be strictly monotone. Hence, also in Lemma 2.5, if the
logarithmic derivative is strictly increasing (decreasing), then the p-quantile is also
strictly increasing (decreasing).

The following Lemma deals with the question of convergence of p-quantiles of a
convergent sequence of probability distributions. We denote the extended real line
RY t�8u by R̂, with its usual topology.

Lemma 2.7. Let Fn : R̂ Ñ r0, 1s be a sequence of cumulative distribution func-
tions on R, extended by Fnp�8q :� 0 and Fnp�8q :� 1. Let qn be a p-quantile of
Fn, i.e. Fnpqnq � p P p0, 1q, @n P N. Assume the following conditions:

i. The sequence pFnpxqqnPN converges pointwise to a limit F8pxq :� limnÑ8 Fnpxq

ii. The sequence of p-quantiles converges to a limit q8 :� limnÑ8 qn P R̂

Then,

q8 P rsuptx P R̂|F8pxq   pu, inftx P R̂|F8pxq ¡ pus . (6)

Thus, if F8 is continuous, q8 is a p-quantile of F8.

Proof. Let some w P R̂ be such that F8pwq   p. By condition (i) we have that
there is some n0 P N such that @n ¡ n0 : Fnpwq   p � Fnpqnq. As each Fn is
non-decreasing, we have that @n ¡ n0 : w   qn and hence q8 ¥ w. As this holds
@w P tx P R̂|F8pxq   pu, we get that q8 ¥ suptx P R̂|F8pxq   pu. In a similar

way we may prove that q8 ¤ inftx P R̂|F8pxq ¡ pu. In case F8 is continuous, we

have rsuptx P R̂|F8pxq   pu, inftx P R̂|F8pxq ¡ pus � tx P R|F8pxq � pu, hence
then q8 is a p-quantile of F8. �
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Remark 2.8. As R̂ is compact, p-quantiles always have limit points, and the
above Lemma shows that convergence of distribution functions for which p-quantiles
exist implies that all their limit points lie in the interval in (6). This interval either
consists of the closure of F�1

8 ptpuq, or, if this set is empty, it degenerates to a point,
which is a point of discontinuity of F8.

Lemma 2.9. Let I, J � R be open intervals, and pF pa;xqqaPI be a family of
cumulative probability distribution functions of x on J , having positive densities
fpa; tq with respect to Lebesgue measure. Moreover assume that the corresponding
densities are real analytic in both variables. Denote the respective p-quantiles by
qpaq. Then, q is a real analytic function of a.

Proof. As the densities are positive functions, the p-quantile exists and is unique for
each a. Hence, the function qpaq is well defined implicitly as the solution y � qpaq to
the equation F pa; yq�p � 0. Let some y0 P J and a0 P I such that F pa0; y0q�p � 0.
As F is real analytic and ByF pa; yq � fpa; yq � 0, by [13, Theorem 6.1.2] the
equation F pa; yq � p � 0 has a real analytic solution y � ypaq in a neighbourhood
of a0 such that F pa0; ypa0qq � p � 0. By uniqueness of the p-quantile this solution
must be exactly qpaq, and hence q is real analytic. �

3. Monotonicity and limits

Proof of Proposition 1.2 Fix b ¡ 0. As the regularised incomplete beta function
Ipx; a, bq is real analytic in x and a, Lemma 2.9 gives real analyticity of q. Let
βpa;xq :� xa�1p1� xqb�1. Its logarithmic derivative wrt a is

Baβpa, b;xq

βpa, b;xq
�
xa�1p1� xqb�1 log x

xa�1p1� xqb�1
� log x ,

which is an increasing function of x, and Lemma 2.5 gives us that q is also increasing.
Its limits at 0 and 8 are classical results. They can also be obtained by considering
limits of the incomplete beta function and using Lemma 2.7. Let, for instance,
some limit point limnÑ8 qpanq � q8 P r0, 1s for a sequence an Ñ8. Then, the fact
that limaÑ8 Ipx; a, bq vanishes for x P r0, 1q and is a unit at x � 1 gives q8 � 1,
hence limaÑ8 qpaq � 1. A similar argument shows limaÑ0 qpaq � 0. l

Proof of Proposition 1.3 By Proposition 1.2 already, φ can be seen to be a real
analytic function. Regarding monotonicity, if b � 1 then φpaq � � log p. Assume
b ¡ 1. By using a change of variables in (4) we get» 8

φpaq

e�sp1� e�s{aqb�1ds � p

» 8
0

e�sp1� e�s{aqb�1ds (7)

and hence the function φ is the p1 � pq-quantile of the distribution with density
function

x ÞÑ
e�xp1� e�x{aqb�1³�8

0
e�sp1� e�s{aqb�1ds

.

We set fpa;xq :� e�xp1� e�x{aqb�1. The logarithmic derivative of f wrt a is

Bafpa;xq

fpa;xq
� �

pb� 1qxe�x{a

a2p1� e�x{aq
.

The derivative of this wrt x is

Bx

�
Bafpa;xq

fpa;xq



�
b� 1

a3
e�

x
a

�
ae�

x
a � a� x

� �
�1� e�

x
a

��2
¥ 0

as the function x ÞÑ ae�
x
a � a� x has positive derivative for x ¡ 0 and vanishes at

0. Thus, by Lemma 2.5 we have that φ is increasing. The case b   1 is similar.
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For the asymptotic results, we notice that for aÑ 0, we have that

lim
aÑ0

e�xp1� e�x{aqb�1³8
0
e�sp1� e�s{aqb�1ds

�
e�x³8

0
e�sds

� e�x .

The corresponding distributions, whose p-quantiles are equal to φpaq, converge to
the gamma distribution with parameter 1, and hence by Lemma 2.7 limaÑ0 φpaq �
� log p. Similarly, for aÑ8

lim
aÑ8

e�xp1� e�x{aqb�1³8
0
e�sp1� e�s{aqb�1ds

� lim
aÑ8

e�x³8
0
e�s p1�e

�s{aqb�1

p1�e�x{aqb�1 ds
�

e�xxb�1³8
0
e�ssb�1ds

hence the distribution converges to the gamma distribution with parameter b and
limaÑ8 φpaq � γb, the p1 � pq-quantile of the gamma distribution with parameter
b. l

4. Convexity of φ for b   1

We rewrite (7) as

» φpaq
0

e�sp1� e�s{aqb�1ds � p1� pq

» 8
0

e�sp1� e�s{aqb�1ds . (8)

We denote fpa; sq � e�sp1 � e�s{aqb�1 and differentiating the above equation we
have

φ1paqfpa;φpaqq �

» φpaq
0

B1fpa; tqdt � p1� pq

» 8
0

B1fpa; tqdt (9)

Differentiating again,

φ2paqfpa;φpaqq �p1� pq

» 8
φpaq

B2
1fpa; tqdt� p

» φpaq
0

B2
1fpa; tqdt

� pφ1paqq2B2fpa;φpaqq � 2φ1paqB1fpa;φpaqq (10)

where Bj , j P N, denotes differentiation wrt to the jth variable.

Proof of Theorem 1.4 Let b P p0, 1q. By Proposition 1.3 φ1   0, and as

Bsfpa; sq � �e�sp1� e�s{aqb�1 �
b� 1

a
e�sp1� e�s{aqb�2e�s{a   0

and

Bafpa; sq � �s
b� 1

a2
e�sp1� e�s{aqb�2 ¡ 0

we see that φ1paq2B2fpa;φpaqq   0 and φ1paqB1fpa;φpaqq   0. In order to show that
φ2 ¡ 0, using (10) what is left is to show that

p1� pq

» 8
φpaq

B2
1fpa; tqdt� p

» φpaq
0

B2
1fpa; tqdt ¥ 0 (11)
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We shall rewrite the above integrals in another way. We have» 8
φpaq

B2
1fpa; tqdt �

�
b� 1

a4

» 8
φpaq

2te�
2t
a e�tp1� e�

t
a qb�3

��
a�

t

2



e
t
a �

pb� 1qt

2
� a



dt

�
2pb� 1q

a

» 8
φpaq
a

se�ase�2sp1� e�sqb�3

��
1�

s

2

	
es �

b� 1

2
s� 1



ds

�
2pb� 1q

a

» 8
φpaq
a

e�atηptqdt

where

ηpxq :� xe�2xp1� e�xqb�3

�
ex � 1�

x

2
ex �

b� 1

2
x



(12)

and similarly » φpaq
0

B2
1fpa; tqdt �

2pb� 1q

a

» φpaq
a

0

e�atηptqdt

Hence we can rewrite

p1� pq

» 8
φpaq

B2
1fpa; tqdt� p

» φpaq
0

B2
1fpa; tqdt �

2pb� 1q

a

�
p1� pq

» 8
φpaq{a

e�atηptqdt� p

» φpaq{a
0

e�atηptqdt

�
(13)

We now proceed to show (11). We see in Lemma 4.1 below that the function

wpxq :�
�

1�
x

2

	
ex �

b� 1

2
x� 1 (14)

has a unique root ρ on p0,�8q, and it is positive on p0, ρq and negative on
pρ,8q. Assume that φpaq ¥ ρa. As w and η have the same sign, we have that³8
φpaq{a

e�atηptqdt   0. For the other integral, we have» φpaq{a
0

e�atηptqdt �

» ρ
0

e�atηptqdt�

» φpaq{a
ρ

e�atηptqdt

¥e�aρ

�» ρ
0

ηptqdt�

» φpaq{a
ρ

ηptqdt

�

¥e�aρ
�» ρ

0

ηptqdt�

» 8
ρ

ηptqdt



� e�aρ

» 8
0

ηptqdt � 0

by Lemma 4.2 below. Hence

2pb� 1q

a

�
p1� pq

» 8
φpaq{a

e�atηptqdt� p

» φpaq{a
0

e�atηptqdt

�
¥ 0

and by (13), (11) is proved for φpaq ¥ ρa.
Now, assume that φpaq   ρa. We define

hpa; tq :�
B2

1fpa; tq

pb� 1qfpa; tq
�

2tppa� t{2qet{a � pb� 1qt{2� aq

a4pet{a � 1q2
(15)

We further denote

h0psq :�
a2

2
hpa; asq �

spp1� s{2qes � pb� 1qs{2� 1q

pes � 1q2
�

swpsq

pes � 1q2
(16)
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By Lemma 4.3, h0 is decreasing on p0, ρq, hence hpa; sq is also decreasing wrt s
on p0, ρaq. Hence, for t P p0, φpaqq � p0, ρaq we have hpa; tq ¡ hpa;φpaqq. For
t P pφpaq, ρaq, we analogously have hpa;φpaqq ¡ hpa; tq, and if t P pρa,8q, then
hpa;φpaqq ¡ 0 ¡ hpa; tq. Hence,

p1� pq

» 8
φpaq

B2
1fpa; tqdt� p

» φpaq
0

B2
1fpa; tqdt �

�pb� 1q

�
p1� pq

» 8
φpaq

hpa; tqfpa; tqdt� p

» φpaq
0

hpa; tqfpa; tqdt

�

¥pb� 1qhpa;φpaqq

�
p1� pq

» 8
φpaq

fpa; tqdt� p

» φpaq
0

fpa; tqdt

�
� 0

by (8). Thus (11) is proved. As the RHS of (10) is positive, then φ2 ¡ 0. l

Lemma 4.1. Fix b ¡ 0. The function w in (14) has a unique root ρ on p0,8q.
We have that wpxq ¡ 0 for x   ρ and wpxq   0 for x ¡ ρ.

Proof. We have

w1pxq �
1� x

2
ex �

b� 1

2

and

w2pxq � �
x

2
ex   0 forx ¡ 0

Hence w1 is strictly decreasing, and as w1p0q � b{2 and limxÑ�8 w
1pxq � �8, it

changes its sign exactly once and we get that w is initially increasing and then
decreasing, concave function. As wp0q � 0 and limxÑ�8 wpxq � �8, we get that
w has a unique root ρ P p0,8q, and wpxq ¡ 0 for x   ρ and wpxq   0 for x ¡ ρ. �

Lemma 4.2. For b ¡ 0, it holds that» 8
0

se�2sp1� e�sqb�3

�
es � 1�

s

2
es �

b� 1

2
s



ds � 0

Proof. In the course of the proof we assume that b � 1, 2, which may be lifted in
the end by taking limits. We split the integral into 3 parts. The first one is

I1 �

» 8
0

se�2sp1� e�sqb�3pes � 1qds

�

» 8
0

se�sp1� e�sqb�2ds

��

» 8
0

logp1� e�tqe�pb�1qtdt

��

» 8
0

logp1� e�tq

�
1� e�pb�1qt

b� 1


1
dt

�
1

b� 1

» 8
0

e�t � e�bt

1� e�t
dt

�
ψpbq � γ

b� 1
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where ψ :� Γ1{Γ is the digamma function (see [3, Chapter 1]). For the second part,

I2 �
b� 1

2

» 8
0

s2e�2sp1� e�sqb�3ds

�
b� 1

2pb� 2q

�» 8
0

s2e�sp1� e�sqb�2ds� 2

» 8
0

se�sp1� e�sqb�2ds




�
b� 1

2pb� 2q

» 1

0

log2 tp1� tqb�2dt�
ψpbq � γ

b� 2

�
b� 1

2pb� 2q
B2

1Bp1, b� 1q �
ψpbq � γ

b� 2

using that Bn1 Bpa, bq �
³1
0
ta�1p1 � tqb�1 logn tdt for b ¡ �n, which is derived by

differentiating the integral representation of the beta function for b ¡ 0 and using
the identity principle. Finally,

I3 ��
1

2

» 8
0

s2e�sp1� e�sqb�3ds

��
1

2

» 1

0

plog tq2p1� tqb�3dt

��
1

2
B2

1Bp1, b� 2q

� �
1

2
B2
a

�
Bpa, b� 1q

a� b� 2

b� 2


 ����
a�1

��
b� 1

2pb� 2q
B2

1Bp1, b� 1q �
B1Bp1, b� 1q

b� 2

��
b� 1

2pb� 2q
B2

1Bp1, b� 1q �
γ � ψpbq

pb� 2qpb� 1q

where we have used that B1Bp1, b� 1q � γ�ψpbq
b�1 . We see that I1 � I2 � I3 � 0, and

the Lemma is proved. �

Lemma 4.3. Fix b ¡ 0. The function h0 in (16) is decreasing between 0 and its
root ρ P p0,8q.

Proof. It is easy to see that x{pex � 1q is decreasing. The rest is also decreasing as�
1� x

2

�
ex � b�1

2 x� 1

ex � 1
�
b

2

x

ex � 1
� 1�

1

2

xpex � 1q

ex � 1

and �
xpex � 1q

ex � 1


1
�
e2 x � 2 exx� 1

pex � 1q2
¥ 0

as
�
e2 x � 2 exx� 1

�1
� 2expex � x � 1q ¥ 0 and the numerator vanishes at 0.

Hence, on p0, ρq, h0 is the product of two decreasing, positive functions, hence
decreasing. �

5. Logarithmic concavity of q

In this section, we shall prove Theorem 1.5. In order to have a more concise
notation, we shall often omit the argument a from the notation of the functions of
a (q, φ and ξ), without their argument. Using [9, 8.17.7], we can rewrite (4), as

qa

a
2F1pa, 1� b; a� 1; qq � p

ΓpaqΓpbq

Γpa� bq
(17)
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and expanding the hypergeometric sum,

qa
8̧

n�0

p1� bqnq
n

pa� nqn!
� pΓpbq

Γpaq

Γpa� bq
(18)

Of course, if b P N, the sum above terminates at b� 1, as p1� bqb � 0. Using that

p1� bqn
n!

�
pb� 1qpb� 1� 1q � � � pb� 1� n� 1q

n!
p�1qn �

�
b� 1

n



p�1qn

and denoting

ξ :� � log q (19)

we can rewrite (18) further as

e�aξ
8̧

n�0

�
b� 1

n



p�1qne�nξ

pa� nq
� pΓpbq

Γpaq

Γpa� bq

that is

8̧

n�0

Γpa� bq

Γpaqpa� nq

�
b� 1

n



p�1qne�pn�aqξ � pΓpbq (20)

We shall show that ξ is convex, which shall imply the logarithmic concavity. The
following lemma will be the key to this proof.

Lemma 5.1. We have that

ξ1 �
8̧

n�0

1

a� b� n
Yn�bpξq �

8̧

n�0

1

a� n
Ynpξq (21)

where

Ycpξq :�

³ξ
0
ectp1� e�tqb�1dt

ecξp1� e�ξqb�1
(22)

Proof. Differentiating (20) we get

0 �
8̧

n�0

�
b� 1

n



p�1qne�pn�aqξ

��
Γpa� bq

Γpaqpa� nq


1
� pξ � pn� aqξ1q

Γpa� bq

Γpaqpa� nq

�

�e�aξ
8̧

n�0

�
b� 1

n



p�1qne�nξ

��
Γpa� bq

Γpaqpa� nq


1
� ξ1

Γpa� bq

Γpaq
� ξ

Γpa� bq

Γpaqpa� nq

�

Using the fact that
°8
n�0

�
b�1
n

�
p�1qne�nξ � p1� e�ξqb�1, we get
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ξ1p1� e�ξqb�1 �

�
8̧

n�0

�
b� 1

n



p�1qne�nξ

��
Γpa� bq

Γpaqpa� nq


1O�
Γpa� bq

Γpaq



�

ξ

a� n

�

�
8̧

n�0

�
b� 1

n



p�1qne�nξ

�
ψpa� bq � ψpaq

a� n
�

1

pa� nq2
�

ξ

a� n




�
8̧

n�0

�
b� 1

n



p�1qne�nξ

�
8̧

k�0

�
1

k � a
�

1

k � a� b



1

a� n
�

1

pa� nq2
�

ξ

a� n

�

�
8̧

n�0

�
b� 1

n



p�1qne�nξ�

�¸
k�n

�
1

pk � aqpa� nq
�

1

pk � a� bqpa� nq



�

1

pn� a� bqpa� nq
�

ξ

a� n

�

�
8̧

n�0

�
b� 1

n



p�1qne�nξ�

¸
k�n

��
1

a� n
�

1

a� k



1

k � n
�

�
1

a� n
�

1

a� k � b



1

k � b� n




�
8̧

n�0

��
b� 1

n



p�1qne�nξ

�
1

a� n
�

1

a� n� b



1

b
�

ξ

a� n




�
8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξ

�¸
k�n

�
1

k � n
�

1

k � b� n


�

�
8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξξ �

8̧

n�0

�
b� 1

n



p�1qne�nξ�

�¸
k�n

�
1

a� k � b

1

k � b� n
�

1

a� k

1

k � n



�

�
1

a� n� b
�

1

a� n



1

b

�

�
8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξ

�¸
k�n

�
1

k � n
�

1

k � b� n


�

�
8̧

n�0

�
1

a� n� b
�

1

a� n


�
b� 1

n



p�1qne�nξ

1

b
�

8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξξ

�
8̧

n�0

¸
k�n

�
b� 1

n



p�1qne�nξ

�
1

a� k � b

1

k � b� n
�

1

a� k

1

k � n
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�
8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξ

�¸
k�n

�
1

k � n
�

1

k � b� n


�

�
8̧

n�0

�
1

a� n� b
�

1

a� n


�
b� 1

n



p�1qne�nξ

1

b
�

8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξξ

�
8̧

n�0

¸
k�n

�
b� 1

k



p�1qke�kξ

�
1

a� n� b

1

n� b� k
�

1

a� n

1

n� k




�
8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξ

�¸
k�n

�
1

k � n
�

1

k � b� n



�

1

b

�

�
8̧

n�0

1

a� n

�¸
k�n

�
b� 1

k



p�1qke�kξ

k � n
�

�
b� 1

n



p�1qne�nξξ

�

�
8̧

n�0

1

a� n� b

¸
k�n

�
b� 1

k



p�1qke�kξ

n� b� k
�

8̧

n�0

1

a� n� b

�
b� 1

n



p�1qne�nξ

1

b

�
8̧

n�0

1

a� n

�
b� 1

n



p�1qne�nξ

�¸
k�n

�
1

k � n
�

1

k � b� n



�

1

b

�

�
8̧

n�0

1

a� n

�¸
k�n

�
b� 1

k



p�1qke�kξ

k � n
�

�
b� 1

n



p�1qne�nξξ

�

�
8̧

n�0

1

a� n� b

8̧

k�0

�
b� 1

k



p�1qke�kξ

n� b� k

Thus we have

ξ1 �
8̧

n�0

1

a� n
Xnpξq �

8̧

n�0

1

a� b� n
Znpξq

where

Xnpξq :�

��
b� 1

n



p�1qne�nξ

�¸
k�n

�
1

k � n
�

1

k � b� n



�

1

b

�

�
¸
k�n

�
b� 1

k



p�1qke�kξ

1

k � n
�

�
b� 1

n



p�1qne�nξξ

�
{p1� e�ξqb�1

and

Znpξq :�

�
8̧

k�0

�
b� 1

k



p�1qke�kξ

1

n� b� k

�
{p1� e�ξqb�1

By Lemma 5.2 and

Bξ

�
8̧

k�0

�
b� 1

k



p�1qkepn�b�kqξ

1

n� b� k

�
� epn�bqξp1� e�ξqb�1

we have that

8̧

k�0

�
b� 1

k



p�1qkepn�b�kqξ

1

n� b� k
�

» ξ
0

epn�bqtp1� e�tqb�1dt
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and hence we get

Znpξq �e
�pn�bqξ

�
8̧

k�0

�
b� 1

k



p�1qkepn�b�kqξ

1

n� b� k

�
{p1� e�ξqb�1

�e�pn�bqξ
» ξ

0

epn�bqtp1� e�tqb�1dt{p1� e�ξqb�1

�

³ξ
0
epn�bqtp1� e�tqb�1dt

epn�bqξp1� e�ξqb�1
� Yn�bpξq

Similarly, Lemma 5.2 and

Bξ

�¸
k�n

�
b� 1

k



p�1qke�pk�nqξ

1

k � n
�

�
b� 1

n



p�1qnξ

�
� �enξp1� e�ξqb�1

give

Xnpξq � �

³ξ
0
entp1� e�tqb�1dt

enξp1� e�ξqb�1
� �Ynpξq

hence (21) is proved. �

Lemma 5.2. For n P N and b ¡ 0, we have

8̧

k�0

�
b� 1

k



p�1qk

n� b� k
� 0 (23)

and

¸
k�n

�
b� 1

k



p�1qk

1

k � n
� �

�
b� 1

n



p�1qn

�¸
k�n

�
1

k � n
�

1

k � b� n



�

1

b

�

(24)

Proof. For z P Czt0,�1,�2, . . .u we have, applying [3, Theorem 2.2.2],

8̧

k�0

�
b� 1

k



p�1qk

k � z
�

1

z

8̧

k�0

p1� bqkpzqk
k!pz � 1qk

�
2F1p1� b, z; z � 1; 1q

z

�
Γpz � 1qΓpbq

zΓpz � bq
�

ΓpzqΓpbq

Γpz � bq

Hence, we get

8̧

k�0

�
b� 1

k



p�1qk

n� b� k
� lim
zÑn

8̧

k�0

�
b� 1

k



p�1qk

z � b� k
� � lim

zÑn

ΓpbqΓp�z � bq

Γp�zq
� 0

proving (23). For (24), assume z P CzN and let�
b� 1

n



p�1qn

�¸
k�n

�
1

k � z
�

1

k � b� z



�

1

n� b� z

�
�
¸
k�n

�
b� 1

k



p�1qk

k � z

�

�
b� 1

n



p�1qn

�
8̧

k�0

�
1

k � z
�

1

k � b� z



�

1

n� z

�
�

8̧

k�0

�
b� 1

k



p�1qk

k � z
�

�
b� 1

n



p�1qn

n� z

�

�
b� 1

n



p�1qn

�
ψpb� zq � ψp�zq �

1

n� z



�

ΓpbqΓp�zq

Γpb� zq
�

�
b� 1

n



p�1qn

n� z

�

�
b� 1

n



p�1qn

�
ψpb� zq � ψp1� zq � π

cospπzq

sinpπzq
�

1

n� z



�

ΓpbqΓp�zq

Γpb� zq
�

�
b� 1

n



p�1qn

n� z
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where we have used the reflection formula for the digamma function. We have,
using that Res

�
π cosπz
sinπz , n

�
� 1, that

lim
zÑn

�
ψpb� zq � ψp1� zq � π

cospπzq

sinpπzq
�

1

n� z



� ψpb� nq � ψp1� nq

Furthermore, using de L’Hôpital’s rule, we get

lim
zÑn

�
ΓpbqΓp�zq

Γpb� zq
�

�
b� 1

n



p�1qn

n� z



�

� lim
zÑn

�
�

Γpbq

Γpb� zqΓp1� zq

π

sinπz
�

�
b� 1

n



p�1qn

n� z




� lim
zÑn

Γpbq
Γpb�zqΓp1�zq pn� zq �

�
b�1
n

�
p�1qn sinπz

π

sinπz
π pn� zq

� lim
zÑn

�
Γpbq

Γpb�zqΓp1�zq

	1
pn� zq � Γpbq

Γpb�zqΓp1�zq �
�
b�1
n

�
p�1qn cosπz

sinπz
π � pn� zq cosπz

� lim
zÑn

�
Γpbq

Γpb�zqΓp1�zq

	2
pn� zq �

�
Γpbq

Γpb�zqΓp1�zq

	1
� π

�
b�1
n

�
p�1qn sinπz

cosπz � pn� zqπ sinπz � cosπz

�

Γpbq
Γpb�nqΓp1�nq pψp1� nq � ψpb� nqq

2 cosπn

�p�1qn
�
b� 1

n



pψp1� nq � ψpb� nqq

hence getting (24). �

Lemma 5.3. Let b ¡ 1 and c ¡ 0. Then, Yc is increasing on p0,8q. Moreover,

Ycpxq, Y
1

c pxq are decreasing wrt c for fixed x.

Proof. We rewrite³x
0
ectp1� e�tqb�1dt

ecxp1� e�xqb�1
�

» x
0

ecpt�xq
�

1� e�t

1� e�x


b�1

dt

�

» x
0

ecpt�xq
�
ex � ex�t

ex � 1


b�1

dt

�

» x
0

e�cv
�
ex � ev

ex � 1


b�1

dv

Differentiating, we get�» x
0

e�cv
�
ex � ev

ex � 1


b�1

dt

�1

�

» x
0

e�cvBx

�
ex � ev

ex � 1


b�1

dv

�

» x
0

e�cv�xpb� 1q

�
ex � ev

ex � 1


b�2
ev � 1

pex � 1q2
dv

and this completes the proof. �

Proof of Theorem 1.5 We shall show the convexity of ξ � � log q, which is equivalent
to logarithmic concavity of q. The case b   1 is given by Theorem 1.4, as aξ2 �

φ2�2ξ1 ¡ 0. For b � 1, we have ξ � logp1{pq
a hence ξ2 � 0. For b ¡ 1, differentiating
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(21) we get

ξ2 �
8̧

n�0

1

pa� nq2
Ynpξq �

8̧

n�0

1

pa� b� nq2
Yn�bpξq��

8̧

n�0

1

a� b� n
Y 1
n�bpξq �

8̧

n�0

1

a� n
Y 1
npξq

�
ξ1 ¡ 0

using that ξ1   0 and Lemma 5.3. l

Remark 5.4. We notice that (21) also gives

q1 �
8̧

n�0

1

a� b� n

³1
q
t�n�b�1p1� tqb�1dt

q�n�b�1p1� qqb�1
�

8̧

n�0

1

a� n

³1
q
t�n�1p1� tqb�1dt

q�n�1p1� qqb�1
(25)

Appendix

Finally, we want to see how the p-quantile depends on the second parameter of
the beta distribution. For clarity, from now on we denote the p-quantile of the beta
distribution with parameters a and b by qppa, bq. We shall consider a constant, and
try to relate q as a function of b with the previous results.

A simple change of variables s � 1� t in (3) gives the functional relation

Ipx; a, bq � 1� Ip1� x; b, aq (26)

which implies

p � Ipqppa, bq; a, bq � 1�Ipqppa, bq; b, aq ñ Ipqppa, bq; b, aq � 1�p � Ipq1�ppa, bq; b, aq

and, using the uniqueness of the p-quantile, we get

qppa, bq � 1� q1�ppb, aq (27)

Hence, by Proposition 1.2, we get that qp is decreasing in b and

lim
bÑ0

qppa, bq � 1

lim
bÑ8

qppa, bq � 0

Moreover, we have

p1� qppa, bqq
b � q1�ppb, aq

b � e�ϕ1�ppbq (28)

where ϕ1�ppbq � �b log q1�ppb, aq, hence the behaviour of qppa, bq as a function of
b can again be studied similarly through the function ϕp. We also easily see that
b ÞÑ 1 � qppa, bq is log-concave. We remark that numerical evidence shows that
b ÞÑ qppa, bq itself is not (log-)concave/convex. However, the function b ÞÑ ϕppbq
seems to be convex.

Acknowledgements. I would like to thank H.L.Pedersen for careful reading of
the original manuscript and useful suggestions.
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ASYMPTOTIC EXPANSIONS OF THE INVERSE INCOMPLETE

BETA FUNCTION WITH RESPECT TO THE FIRST

PARAMETER

DIMITRIS ASKITIS

Abstract. In this work in progress, we study the asymptotic behaviour of

the p-quantile of the Beta distribution, i.e. the quantity q defined implicitly
by

³q
0 ta�1p1 � tqb�1dt � pBpa, bq, as a function of the first parameter a. In

particular, we derive asymptotic expansions of and q and its logarithm at

0 and 8. Moreover, we provide some relations between Bell and Nørlund
Polynomials, a generalisation of Bernoulli numbers. Finally, we provide Maple

and Sage algorithms for computing the terms of the asymptotic expansions.

2010 Mathematics Subject Classification: Primary 41A60; Secondary 33B15, 60E05,
11B68
Keywords: median, beta distribution, asymptotic expansion

1. Introduction

1.1. Background. Granted a probability distribution on R, its median is defined
as the value m P R that leaves exactly half of the “mass” of the distribution on its
left and half on its right. Instead of requiring that m splits the mass exactly in two
equal parts, one may choose a p P r0, 1s and define the more general notion of the
p-quantile value of the probability distribution:[4]

Definition 1. Let F be a cumulative distribution function on some subset
I � R. Let p P r0, 1s. A p-quantile of F is a point q P I such that F pqq � p. If
p � 1{2, a 1{2-quantile is called median.

For an arbitrary probability distribution on R, not always do p-quantiles ex-
ist, neither do they have to be unique, but for a distribution with density wrt to
Lebesgue measure p-quantile values always exist, as then the distribution function
is continuous and increasing, and if furthermore the density is a.e. non-zero, they
are also unique, as the distribution function shall be strictly increasing.

One point of interest has been the study of the p-quantiles, including medians, of
a parametrised family of probability distributions as a function of the parameter,
given a fixed value of p. Such a function is well defined if the distribution has
density wrt to the Lebesgue measure which is a.e. non-zero. Questions that may
arise in this context have to do with analyticity, monotonicity, geometric properties
and approximations, in particular asymptotic expansions, of the implicit function
qpaq defined by an equation of the form Fapqpaqq � p, where Fa is a family of
commulative distribution functions. Because of the implicit definition, the study
of its properties can be challenging. An example is the median of the gamma
distribution, which has been studied in several occasions, for example in [7], [5],
and many connections have been found, for example with the Ramanujan’s rational
approximation of ex, see [2], [8] and [1], while in [6] it was also proved that it is is
a convex function.

In this paper, considering p fixed in p0, 1q, we focus on studying the p-quantile
of the beta distribution, i.e. the distribution on r0, 1s with the density function

1
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t ÞÑ ta�1p1 � tqb�1, as a function of the parameter a considering b fixed. The p-
quantile of the beta distribution has been considered by Temme in [12], who studied
the asymptotic behaviour of the p-quantile (or in his notation, the inverse of the
normalised beta incomplete function) under restrictions over relations between the
two parameters of the beta distribution. Also, see [11] for some inequalities on the
median. This preprint is to be a continuation of our work in [4], which deals with
convexity/concavity properties.

The p-quantile of the beta distribution, as a function of the first parameter, is
defined as:

Definition 2. Fix p P p0, 1q and b P p0,�8q. The function q : p0,�8q Ñ p0, 1q
defined implicitly by» qpaq

0

ta�1p1� tqb�1dt � p

» 1

0

ta�1p1� tqb�1dt (1.1)

is called the p-quantile of the beta distribution with parameters a and b.

As in [5] for the case of the median of the gamma distribution, to study the
p-quantile we consider and study an auxilliary function related to its logarithm

ϕpaq :� �a log qpaq (1.2)

and it will become clear that studying the logarithm gives more information on the
behaviour of the p-quantile. One may also consider ϕ itself as the p1� pq-quantile
of some distribution. Indeed, using change of variables in (1.1)» ϕpaq

0

e�sp1� e�s{aqb�1ds � p1� pq
» 8

0

e�sp1� e�s{aqb�1ds (1.3)

Later, Bernoulli numbers and a generalisation of them known as Nørlund polyno-
mials will become useful. The Bernoulli numbers Bn are classically defined through
their generating function

x

ex � 1
�

8̧

n�0

Bn
xn

n!
(1.4)

They can be generalised to the Bernoulli polynomials Bnptq, defined similarily
through the generating function

xetx

ex � 1
�

8̧

n�0

Bnptqx
n

n!
(1.5)

Another generalisation of Bernoulli numbers are the Nørlund polynomials B
psq
n de-

fined through the generating function�
x

ex � 1


s
�

8̧

n�0

Bpsq
n

xn

n!
(1.6)

They are polynomials in s. If s P N, then B
psq
n is the s-fold convolution of Bernoulli

numbers. An account on Nørlund polynomials can be found in [9, 24.16] and
references within. Bernoulli and Nørlund appear often when we consider asymptotic
expansions of the gamma and related functions (see e.g. [13].

1.2. Main results. We state the following propositions regarding first order asymp-
totics. They are proved in [4]. In the rest, γb denotes the p1 � pq-quantile of the
gamma distribution with parameter b.
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Proposition 1. [4, Proposition 1.2] The p-quantile of the beta distribution qpaq
is a real analytic, increasing function of a. It has limits

lim
aÑ0

qpaq � 0

and

lim
aÑ8

qpaq � 1

Proposition 2. [4, Proposition 1.3] The function ϕpaq � �a log qpaq is real
analytic and increasing for b ¡ 1, constant for b � 1 and decreasing for b   1. It
has limits

lim
aÑ0

ϕpaq � log p (1.7)

and
lim
aÑ8

ϕpaq � γb (1.8)

To study the asymptotic behaviour of q and ϕ in more depth, we shall try to find
the asymptotic expansions of ϕ at 0 and 8. Studying asymptotic expansions of
implicit functions can be highly non-trivial, as the method and the obstacles arising
depend much on the form of the defining implicit relation. For the p-quantile of
the beta distribution, we consider the cases of asymptotic expansions of ϕ centered
at 0 and at 8. In both cases, we shall combine differentiation and Faà di Bruno’s
formula (2.10), and the existence of the expansion has to be proved inductively.

For the case of 0, we shall compute the limits of the derivatives. For the case of
8, for the same purpose, we shall introduce the differential operator D defined by

Dfpxq � x2Bfpxq
where B denotes the common differentiation operator. The calculus of D is studied
in subsection 3.1.

This operator has the importance that it can give, under certain conditions, the
asymptotic expansion of a suitably smooth function at infinity, which is summarized
in the following lemma, which is proved in subsection 3.1:

Lemma 1.1. Let f P Cnp0,8q for some n P N. Then, the following hold:
i. If limxÑ8D

mfpxq exists in R for all m ¤ n, we have the asymptotic expansion

fpxq �
n�1̧

k�0

ck
xk

�O
�

1

xn




where

ck � p�1qk
k!

lim
aÑ8

Dkfpaq, m   n

ii. Assume, conversely, that f has asymptotic expansion of order n, i.e. fpxq �°n
k�0

ck
xk
�O

�
1

xn�1

�
,as well as that its derivatives f pmq admit asymptotic expansions

of orders m+n, for m ¤ n. Then, we have

ck � p�1qk
k!

lim
aÑ8

Dkfpaq

We note that, if conditions in i. hold, we may apply the lemma to Dkf and
get asymptotic expansions of higher derivatives, hence the expansion in i. can be
differentiated. Also, if in the previous lemma f P C8p0,8q and its conditions hold
for all n, then we may get the whole asymptotic expansion of f .

Regarding the functions ϕ and q, we have the following two pairs of theorems
and Corollaries on their asymptotic expansions, which are proved in sections 2 and
3 respectively. In the following, Ψpn, zq :� Bn�1 Log Γpzq denotes the polygamma
function. Also, pmqn denotes the Pochhammer symbol of m, i.e. pmqn � mpm �
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1q . . . pm � n � 1q. If m P N, then we have pmqn � pm�n�1q!
pm�1q! , and p�mqn �

p�1qn m!
pm�nq! if n ¤ m, and p�mqn � 0 if n ¡ m. These identities will be widely

used in this paper.

Theorem 1. The function ϕ admits the asymptotic expansion ϕpaq � °8
n�0 cna

n

at 0, with c0 � log p and

cn � Ψpn� 1, bq �Ψpn� 1, 1q
n!

� p�1qn�1

n!

» 8
0

un�1

�
e�u � e�bu

1� e�u



du, n ¥ 1

For b P N, we have in particular

cn � p�1qn�1pn� 1q!
b�1̧

k�1

1

kn
(1.9)

Corollary 1. An approximation for ϕ for values of a close to 0 is

ϕpaq � log
Γpa� bq

Γpa� 1qΓpbq � log p

and for q

qpaq
p1{a

�
�

Γpa� bq
Γpa� 1qΓpbq


1{a

each having a remainder term vanishing faster than an at 0, @n P N. Hence, we
have the asymptotic expansion

qpaq
p1{a

� e�γ�Ψp0,bq

�
8̧

n�0

Bnpc1, c2, . . . , cnq
n!

an

�
(1.10)

where γ is the Euler constant, cn � Ψpn�1,bq�Ψpn�1,1q
n! and Bn denotes the nth

complete Bell polynomial (see Remark 2.1).

Theorem 2. The function ϕ admits the asymptotic expansion

ϕpaq �
8̧

n�0

ϕn
p�1qn
n!an

, aÑ8

at 8, with ϕn satisfying the system of recursive relations

ϕn ��
n�1̧

j�1

�
n� 1

j



ϕn�jδp0, j, 0q �

n�2̧

k�0

ķ

j�0

�
k

j



ϕk�j�1δp0, j, n� k � 1q

�Bp1�bq
n

n�1̧

k�0

pb� n� kqkγn�kb (1.11)

δpk,m, nq � δpk,m� 1, n� 1q �
m�1̧

j�0

�
m� 1

j



ϕm�jδpk � 1, j, nq (1.12)

and the initial conditions
ϕ0 � γb (1.13)

δpk, 0, nq � Bp1�bq
n

ķ

j�0

�
k

j



p�1qk�jpb� n� jqjγn�jb (1.14)

The recursive relations (1.11) and (1.12) in the foregoing lemma work inductively.
We know ϕ0 and once we have computed ϕ0, . . . , ϕn�1, in order to compute ϕn we
use (1.11), where the maximum of the second argument of δ that is at most n� 1,
and we can compute these terms using (1.12) and the initial conditions, as ϕk
appears there in orders at most equal to the second argument of δ, and that we
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already have computed. This algorithm can give us the first terms of the asymptotic
expansion:

ϕpaq �γb � γbpb� 1q
2a

� γbp�1� bq p7 b� γb � 5q
24a2

� γbp�1� bq2 p3 b� γb � 1q
16a3

�O
�

1

a4



(1.15)

Also, for q we then get:

Corollary 2. For aÑ8, an asymptotic expansion for q is

qpaq �
8̧

n�0

Bnp�ϕ0, 2ϕ1,�3ϕ2, . . . , p�1qnnϕn�1q
n!

1

an
(1.16)

where ϕn is the sequence defined in Theorem 2.

In section 4 we state some relations between Nørlund, Bernoulli and Bell poly-
nomials that we came upon and we could not find in the literature. These relations
come out by considering the coefficients of Bernoulli generating functions as taylor
coefficients, i.e. as limits of derivatives, and using Faà di Bruno’s formula, and its
relation to Bell polynomials, to compute these derivatives. Finally, in the appendix
we implement the recursive relations of Theorem 2 as Maple and Sage algorithms
and give coefficients of asymptotic expansions for some specific values.

2. Asymptotics at 0

For computing the asymptotic expansion of ϕ at 0, our method consists of iter-
ated differentiation of relations that implicitely contain the p-quantile and use Faà
di Bruno’s formula. Then, taking limits for a Ñ 0 and computing the limits of all
the terms, we compute the limits of the derivatives which then wields the asymp-
totic expansion, as, if f P C8p0, εq, for some ε ¡ 0, and limxÑ0 f

pnqpxq exists in R

for all n, denoting this limit by f pnqp0q we have f � °8
k�0

fpnqp0q
n! xn. The converse

is not necessarily valid: if f admits asymptotic expansion at 0 it is not necessary
that the limits of the derivatives exist, as there may be oscillations. The limits of
the derivatives of ϕ will be computed then inductively.

First, we use integration by parts in (1.1) getting

e�ϕpaqp1� qpaqqb�1�pb�1q
» qpaq

0

tap1� tqb�2dt � ap
ΓpbqΓpaq
Γpa� bq � pΓpbqW paq (2.1)

where W paq � Γpa � 1q{Γpa � bq. This function W is studied in [3, C4], and in a
generalised form in [10], where several properties, such as complete monotonicity,
are proved. We consider the logarithmic derivative of W and we note that, as
logW paq � log Γpa�1q�log Γpa�bq, by the integral representation of the digamma
function Ψp0, zq (see [3, Theorem 1.6.1]), we get that

plogW paqq1 � Ψp0, a� bq �Ψp0, a� 1q � �
» 8

0

e�au
�
e�u � e�bu

1� e�u



du (2.2)

We define the function ψ by

ψpaq :� � log
Γpa� 1q
Γpa� bq � log pΓpbq � � logW paq � log pΓpbq (2.3)

which implies that e�ψpaq � pΓpbqW paq and (2.1) can be rewritten as

e�ϕpaqp1� qpaqqb�1 � pb� 1q
» qpaq

0

tap1� tqb�2dt � e�ψpaq (2.4)
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Hence, as ψ P C8p�1,8q, denoting the limit of the kth derivative of ψ at 0 by
ψpkqp0q, by (2.2) we have

ψpkqp0q � Ψpk � 1, bq �Ψpk � 1, 1q � p�1qk�1

» 8
0

uk�1

�
e�u � e�bu

1� e�u



du (2.5)

Let denote by ϕpnqp0q the right limit of ϕpnq at 0, supposing it exists. We already
have, combining (1.7) and (2.3), that ϕp0q � ψp0q � � log p. Our goal is to prove
that for the limits of all the derivatives of ϕ and ψ at 0 are the same, i.e. we have
ϕpkqp0q � ψpkqp0q. Differentiating (2.4) we get

�ψ1paqe�ψpaq � ϕ1paqe�ϕpaqp1� qpaqqb�1 � pb� 1q
» qpaq

0

tap1� tqb�2 log tdt

We define the functions

ρpaq :� p1� qpaqqb�1 (2.6)

σpaq :�
» qpaq

0

tap1� tqb�2 log tdt (2.7)

and hence the last equation can be rewritten as

�ψ1paqe�ψpaq � ϕ1paqe�ϕpaqρpaq � pb� 1qσpaq (2.8)

We will use this equality to find the limits of the derivatives of ϕ. This will be
done inductively, differentiating (2.8) at each step. Our strategy is, at the kth step,
where we will want to compute the limit of the k � 1 derivative, that we use the
results from the previous steps about the asymptotic behaviour of ϕ up to the kth
derivative to find the asymptotic behaviour of the derivatives of q up to k, and then
use this result to find the behaviour of the derivatives of g and h up to k, so that
we finally compute the limit of the k�1 derivative of ϕ. The first part will be done
in the next lemmas, and the inductive proof will be given in the end of the section.

We state the following well known differentiation formulas that we will be con-
stantly using, see (1.4.12) and (1.4.13) in [9]: The product formula for derivation,�

k¹
i�1

fipxq
�pnq

�
¸

tjPNk|°ki�1 ji�nu

�
n

j1, j2, ..., jk


 k¹
i�1

f
pjiq
i pxq (2.9)

and the Faà di Bruno formula, for the derivatives of composite functions,

pf � gqpnqpxq �
¸

tmPNn|°nj�1 jmj�nu

n!

m1!m2!...mn!
f p
°n
j�1mjqpgpxqq

n¹
j�1

�
gpjqpxq
j!


mj
(2.10)

The latter, in case fpxq � logpxq, can take the simpler form

plog gpxqqpnq �
¸

tmPNn|°nj�1 jmj�nu

Cm

n¹
j�1

�
gpjqpxq
gpxq


mj
(2.11)

where

Cm � p�1q1�
°n
j�1mj

n!
�°n

j�1mj � 1
	

!

m1!m2!...mn!

n¹
j�1

1

j!mj

and for fpxq � ex,

pegpxqqpnq � egpxq
¸

tmPNn|°nj�1 jmj�nu

n!

m1!m2!...mn!

n¹
j�1

�
gpjqpxq
j!


mj
(2.12)
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Remark 2.1. Faà di Bruno formula (2.10) is related to the polynomials that are
known as Bell polynomials. The (complete) Bell polynomials are defined by the
relation

Bnpx1, x2, . . . , xnq �
¸

tκPNn|
°n
j�1 jκj�nu

n!

κ1!κ2! � � �κn!

n¹
j�1

�
xj
j!


κj
(2.13)

We can express the special case (2.12) of Faà di Bruno’s formula for the exponential
in terms of these Bell polynomials�

egpxq
	pnq

� egpxqBnpg1pxq, g2pxq, . . . , gpnqpxqq

Lemma 2.1. Let k, l P N. Then,

lim
aÑ0

qpaq logk qpaq
al

� 0 (2.14)

Proof. We have

log

�
qpaq
am



� log qpaq �m log aÑ �8

for aÑ 0, as, by (1.7),

aplog qpaq �m log aq � a log qpaq �ma log aÑ log p

This implies that

lim
aÑ0

qpaq
am

� 0

Also (1.7) gives

lim
aÑ0

ak logk qpaq � logk p

Hence

lim
aÑ0

qpaq logk qpaq
al

� lim
aÑ0

qpaq
al�k

logk qpaq
ak

� 0

�

Lemma 2.2. Let N P N� and assume that limaÑ0 ϕ
pkqpaq exists in R, @k ¤ N .

Then, @k ¤ N ,

lim
aÑ0

a2kqpkqpaq
qpaq exists in R (2.15)

In particular, we have that

lim
aÑ0

qpkqpaq
am

� 0, m ¥ 0 (2.16)

Proof. For k � 1, as ϕ1paq � � log qpaq � aq1paq{qpaq, we have that

a2q1paq
qpaq � �aϕ1paq � a log qpaq Ñ � log p

so (2.15) holds. Assume that 1 ¤ n   N and that (2.15) holds @k ¤ n. We
will prove that (2.15) holds for k � n � 1. Indeed, using (2.11), we get, for some
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coefficients ck and dk,

�ϕpn�1qpaq �aplog qpaqqpn�1q � pn� 1qplog qpaqqpnq

�a
¸

tk|
°n�1
j�1 jkj�n�1u

�
ck

n�1¹
j�1

�
qpjqpaq
qpaq


kj�

� pn� 1q
¸

tk|
°n
j�1 jkj�nu

�
dk

n¹
j�1

�
qpjqpaq
qpaq


kj�

But one can write

¸
tk|
°n�1
j�1 jkj�n�1u

ck

n�1¹
j�1

�
qpjqpaq
qpaq


kj
� qpn�1qpaq

qpaq �
¸

tk|
°n
j�1 jkj�n�1u

ck

n¹
j�1

�
a2jqpjqpaq
qpaq


kj

hence, rearranging the equation above and multiplying each side by a2n�1, we get

a2pn�1q q
pn�1qpaq
qpaq � � a2n�1ϕpn�1qpaq �

¸
tk|
°n
j�1 jkj�n�1u

ck

n¹
j�1

�
a2jqpjqpaq
qpaq


kj

� apn� 1q
¸

tk|
°n
j�1 jkj�nu

dk

n¹
j�1

�
a2jqpjqpaq
qpaq


kj

and the right hand side converges in R as a Ñ 0 by our induction hypothesis,
proving (2.15). To prove (2.16), we see that combining this result with Lemma 2.1
gives

lim
aÑ0

qpkqpaq
am

� lim
aÑ0

a2kqpkqpaq
qpaq

qpaq
am�2k

� 0

�

Lemma 2.3. Let N P N� and assume that limaÑ0 ϕ
pkqpaq exists in R, @k ¤ N .

Then, @k ¤ N ,

lim
aÑ0

ρpkqpaq � 0, k � 0

lim
aÑ0

ρpaq � 1

Proof. As qpaq Ñ 0, then ρpaq Ñ 1. The nth derivative of ρ can be expressed using
(2.10) as

ρpnqpaq �
¸

tk|
°n
j�1 jkj�nu

ckp1� qpaqqb�1�
°n
j�1 kj

n¹
j�1

pqpjqpaqqkj

which, by Lemma 2.2 tends to 0 as aÑ 0, as qpjqpaq Ñ 0. �

Lemma 2.4. Let N P N� and assume that limaÑ0 ϕ
pkqpaq exists in R, @k ¤ N .

Then, @k ¤ N ,

lim
aÑ0

σpkqpaq � 0

Proof. We have » qpaq
0

tap1� tqb�2 logm tdtÑ 0
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as qpaq Ñ 0 and p1� tqb�2 logm t is integrable near 0. Hence, σpaq Ñ 0. For n ¡ 0
we have

σpnqpaq �
» qpaq

0

tap1� tqb�2 logn�1 tdt�
ņ

k�1

re�ϕpaqp1� qpaqqb�2q1paq logk qpaqspn�kq

(2.17)

So, it suffices to prove that

re�ϕpaqp1� qpaqqb�2q1paq logk qpaqsplq Ñ 0, @k, l ¤ N

By (2.9) we can write

re�ϕpaqp1� qpaqqb�2q1paq logk qpaqsplq �¸
tm|

°3
j�1mj�lu

cmre�ϕpaqspm1qrp1� qpaqqb�2spm2qrq1paq logk qpaqspm3q

By our assumptions, limaÑ0re�ϕpaqspm1q P R, and as in Lemma 2.3, pp1�qpaqqb�2qpm2q

also converges. Finally, by (2.9), (2.10) and Lemma 2.2

rq1paq logk qpaqspmq �
¸

tn|
°k�1
j�1 nj�mu

cnq
pn1�1qpaq

k�1¹
j�2

rlog qpaqspnjq �

¸
tn|
°k�1
j�1 nj�mu

cnq
pn1�1qpaq

k�1¹
j�2

¸
tr|
°nj
s�1 srs�nju

dr

nj¹
s�1

�
qpsqpaq
qpaq


rs
�

¸
tn|
°k�1
j�1 nj�mu

cn
qpn1�1qpaq
a2k

±k�1
j�2 nj

k�1¹
j�2

¸
tr|
°nj
s�1 srs�nju

dr

nj¹
s�1

�
qpsqpaqa2s

qpaq

rs

Ñ 0

which completes the proof of the Lemma. �

Proof of theorem 1. By Proposition 2 we have that ϕp0q � � log p. For the first
derivative, as ρp0q � 1 and σp0q � 0, and ϕp0q � ψp0q � � log p, we get from
(2.8) that the limit limaÑ0 ϕ

1paq � ϕ1p0q exists and ϕ1p0q � ψ1p0q. We proceed
inductively. Let n P N� and assume that limaÑ0 ϕ

pkqpaq exists and ϕpkqp0q � ψpkqp0q
@k ¤ n. Differentiating (2.8) n times we get

pe�ψpaqqpn�1q � pe�ϕpaqqpn�1qρpaq �
n�1̧

k�0

pe�ϕpaqqpk�1qρpaqpn�kq � pb� 1qσpnqpaq

and by Lemmas 2.3 and 2.4 we get

lim
aÑ0

pe�ψpaqqpn�1q � lim
aÑ0

pe�ϕpaqqpn�1q

which, by formula (2.10) and the induction hypothesis, gives that the limit limaÑ0 ϕ
pn�1qpaq �:

ϕpn�1qp0q exists in R and

¸
tk|
°n�1
j�1 jmj�n�1u

c
k
e�ψp0q

n�1¹
j�1

�
ψpjqp0q
j!


mj

�
¸

tk|
°n�1
j�1 jmj�n�1u

cke
�ϕp0q

n�1¹
j�1

�
ϕpjqp0q
j!


mj

and as by the induction hypothesis ϕpjqp0q � ψpjqp0q for j ¤ n, it gives

ϕpn�1qp0q � ψpn�1qp0q
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which completes the induction. To prove (1.9), the fact that

log Γpx� 1q � log Γpxq � log x

gives the functional relation for the polygamma function

Ψpk, x� 1q �Ψpk, xq � p�1qkk!

xk�1
(2.18)

hence

ϕpk�1qp0q � Ψpk, bq �Ψpk, 1q �
b�1̧

n�1

pΨpk, n� 1q �Ψpk, nqq �
b�1̧

n�1

p�1qkk!

nk�1

l

Proof of Corollary 1. The fact that ϕ and ψ have the same asymptotic expansion
at 0 implies that an approximation of ϕ is

ϕpaq � log
Γpa� bq

Γpa� 1qΓpbq � log p as aÑ 0

and the error decreases faster than any positive power of a. This also implies that

qpaq �
�

Γpa� 1qΓpbq
Γpa� bq


1{a

p1{a as aÑ 0

in the sense that @n P N, ε ¡ 0, Dan,ε ¡ 0 such that @a   an,ε

e�εa
n

�
Γpa� 1qΓpbq

Γpa� bq

1{a

p1{a   qpaq   eεa
n

�
Γpa� 1qΓpbq

Γpa� bq

1{a

p1{a

hence

lim
aÑ0

qpaq
p1{a

� e�γ�Ψp0,bq (2.19)

γ being the Euler’s constant. The RHS of the above inequality may be rewritten
as

qpaq
p1{a

 
�

Γpa� 1qΓpbq
Γpa� bq


1{a

� ε1an
�

Γpa� 1qΓpbq
Γpa� bq


1{a

close to 0 and for an ε1 ¡ ε, and the LHS�
Γpa� 1qΓpbq

Γpa� bq

1{a

� εan
�

Γpa� 1qΓpbq
Γpa� bq


1{a

  qpaq
p1{a

Hence

qpaq
p1{a

�
�

Γpa� 1qΓpbq
Γpa� bq


1{a

with a remainder term vanishing faster than any power of a at 0. The rest comes
from considering �

Γpa� 1qΓpbq
Γpa� bq


1{a

� exp

�
1

a
log

Γpa� 1qΓpbq
Γpa� bq




along with Faà di Bruno formula. l
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3. Asymptotics at 8
3.1. The operator D. To find the asymptotic expansion at infinity, the previ-
ous technique has to be adjusted accordingly. First, we introduce the differential
operator D defined by

Dfpaq � a2Bfpaq (3.1)

It satisfies the product rule

Dpfgqpaq � gpaqDfpaq � fpaqDgpaq (3.2)

and the composition rule

Dpf � gqpaq � f 1pgpaqqDgpaq
The last two relations combined give us the Faa di Bruno formula for D

Dnpf � gqpaq �
¸

tmPNn|
°n
j�1 jmj�nu

n!

m1!m2! . . .mn!
f p|m|qpgpaqq

n¹
j�1

�
Djgpaq
j!


mj
(3.3)

where |m| � °n
j�1mj . Also, we have the two-arguments composition rule

Dfpa, ϕpaqq � D1fpa, ϕpaqq �DϕpaqB2fpa, ϕpaqq (3.4)

where D1fpa, bq � a2pB1fqpa, bq, B1 denoting differentiation wrt the first variable of
a multivariate function, i.e. in our case D1fpa, ϕpaqq � a2pB1fqpa, ϕpaqq. Further-
more, we remark that it acts on monomials, for m P Z, by

Dam � nam�1

and by induction

Dnam � pmqnam�n

The operator D can be used to deal with asymptotic expansions at infinity. To see
this, intuitively, starting from the formal power series

fpxq � c0 � c1
x
� c2
x2

� c3
x3

� . . .

one can get

Dnfpxq �
8̧

k�n

p�1qn k!

pn� kq!
ck
xk�n

If certain conditions apply and it is possible to take limits to 8, all but the first
term of the sum vanish and we get

lim
xÑ8

Dnfpxq � p�1qnn!cn

This is rigorously treated in Lemma 1.1, which is proved below:
Proof of Lemma 1.1. To show i), we notice that if for a function f we have
limxÑ8 fpxq � a0 P R and Dfpxq � a1�a2{x�a3{x2� . . .�ak�1{xk�Op1{xk�1q,
then by integrating we get that fpxq � a0 � a1{x � a2{2x2 � a3{3x3 � . . . �
ak�1{kxk�1 � Op1{xk�2q. Next, we see that, under the assumptions of the first
part of the lemma, we have that limxÑ8D

n�1fpxq � a P R and limxÑ8D
nfpxq �

b P R. This implies that Dn�1fpxq � a � Op1{xq. Applying this observation in-
ductively to find the asymptotic expansions of lower powers of D proves the first
part of the Lemma. For the second part, we notice that as the derivatives admit
asymptotic expansions, these can be obtained by differentiating the asymptotic ex-
pansion of the original function. In the same way, we may apply the operator D
to the original asymptotic expansion, as Dk can be expressed as a combination of
operators Bl for l ¤ k, and take limits to 8 to prove the second part. l
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In the following subsections we shall compute the asymptotic expansion of ϕ using
the operator D. We start with the equation» ϕpaq

0

τpa; sqds � p1� pqΓpbqΓpaqab
Γpa� bq (3.5)

Where

τpa; sq � e�spa� ae�s{aqb�1 (3.6)

Our method consists of acting and iterating the operator D on (3.5) and taking
the limits to 8 on both sides. So we have to see how D acts on τ and on the right
hand side.

3.2. Asymptotics of the RHS. To study the right hand side of the equation
(3.5), we study the asymptotics of the ratio

Γpaqab
Γpa� bq (3.7)

In [13], Tricomi and Erdelyi derived an asymptotic expansion for such ratios of
Gamma functions, in terms of a generalisation of Nørlund Polynomials, which in
our special case it may be expressed as

Γpaqab
Γpa� bq �

¸
n¥0

Γp1� bq
Γp1� pb� nqq

B
p1�bq
n

n!an
, xÑ8

which by the reflection formula for the Gamma function can be rewritten as

Γpaqab
Γpa� bq �

8̧

n�0

p�1qn
n!

pbqnB
p1�bq
n

an
(3.8)

We shall prove the following Lemma:

Lemma 3.1. For n P N, we have

lim
aÑ8

Dn

�
p1� pqΓpbqΓpaqab

Γpa� bq


� p1� pqΓpb� nqBp1�bq

n (3.9)

Proof. The coefficients of the asymptotic expansion (3.8), by Lemma 1.1, can be
used to give the limit in (3.9), if the derivatives of the ratio also admit asymptotic
expansions. Hence we shall find these asymptotic expansions of the derivatives,
and also a different expression for the coefficients in the asymptotic expansion of
the ratio (3.7) on the way.

The tool we shall work with is the operator D and its Faà di Bruno formula
eq3.3. We denote the logarithmic derivative of the ratio (3.7) by

V paq :� log
Γpaqab

Γpa� bq � b log a� log Γpaq � log Γpa� bq (3.10)

A classic result on the asymptotic expansion of log Γ is the following, see [9, 5.11.8],
for fixed h P C,

log Γpx� hq � log
?

2π �
�
x� h� 1

2



log x� x�

¸
n¥2

Bnphq
npn� 1qx

1�n, xÑ �8
(3.11)

which has the nice property that it can also be differentiated, and give us asymptotic
expansions of polygamma functions. This implies also that the derivatives of V
admit asymptotic expansions. We have, asymptotically,

V paq � °n¥2
Bn�Bnpbq
npn�1q

1
an�1 �

°
n¥1

Bn�1�Bn�1pbq
npn�1q

1
an
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We have, then, by Lemma 1.1, that

lim
aÑ8

DnV paq � p�1qnn!
Bn�1 �Bn�1pbq

npn� 1q (3.12)

Acting D n times on ratio (3.7) we get

Dn

�
Γpaqab

Γpa� bq


� DneV paq

� eV paq
¸

tmPNn|
°n
j�1 jmj�nu

n!

m1!m2! . . .mn!

n¹
j�1

�
DjV paq

j!


mj
(3.13)

and taking limits we end up with

lim
aÑ8

Dn

�
Γpaqab

Γpa� bq


�

¸
tmPNn|

°n
j�1 jmj�nu

p�1qnn!

m1!m2! . . .mn!

n¹
j�1

�
Bj�1 �Bj�1pbq

jpj � 1q

mj

Hence, by Lemma 1.1, the derivatives of the ratio (3.7) admit asymptotic expansions
at infinity, and these can be given by differentiating the asymptotic expansion
(3.8). �

Remark 3.1. In the proceeding proof, we find two different ways to express
the asymptotic expansion of the ratio of gamma functions, which implies a rela-
tion between Nørlund, Bernoulli and Bell polynomials we could not trace in the
literature,

pbqnBp1�bq
n � BnpB2pbq �B2, B3pbq �B3, . . . , Bn�1pbq �Bn�1q (3.14)

and using the fact that

j�1̧

k�1

Bj�k�1
pj � 1q!

k!pj � 1� kq!b
k � Bj�1pbq �Bj�1

we get

pbqnBp1�bq
n �

¸
tmPNn|

°n
j�1 jmj�nu

n!

m1!m2! . . .mn!

n¹
j�1

�
j�1̧

k�1

Bj�k�1
pj � 1q!

k!pj � k � 1q!b
k

�mj

3.3. Asymptotics of the LHS. We shall first study the asymptotic behaviour of
τ , defined in (3.6), through the following Lemma.

Lemma 3.2. We have the limits

lim
aÑ8

Dnτpa; sq � Bp1�bq
n e�ssb�1�n (3.15)

Proof. We have that

τpa; sq � e�spa� ae�s{aqb�1 � e�s
� 1

a

1� e�s{a


1�b

� e�ssb�1

� � s
a

e�s{a � 1


1�b

We may write, in terms of Nørlund polynomials, by (1.6),

τpa; sq � e�ssb�1
8̧

k�0

B
p1�bq
k

p�1qksk
k!ak

(3.16)

and

Dnτpa; sq � e�ssb�1
8̧

k�n

B
p1�bq
k

p�1qk�nsk
pk � nq!ak�n
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and thus we get

lim
aÑ8

Dnτpa; sq � Bp1�bq
n e�ssb�1�n

�

Acting D on the left hand side of (3.5) gives the expression

D

» ϕpaq
0

τpa; sqds � Dϕpaqτpa; sq �
» ϕpaq

0

Dτpa; sqds

and hence by induction, iterating D totally n times,

Dn

» ϕpaq
0

τpa; sqds �
n�1̧

k�0

DkpDϕpaqDn�k�1
1 τpa;ϕpaqqq�

» ϕpaq
0

Dnτpa; sqds (3.17)

We shall study the terms

DkpDϕpaqDn�k�1
1 τpa;ϕpaqqq �

ķ

j�0

�
k

j



Dk�j�1ϕpaqDjrDn�k�1

1 τpa;ϕpaqqs

and as

DjrDn�k�1
1 τpa;ϕpaqqs � Dj�1rDn�k

1 τpa;ϕpaqq �DϕpaqDn�k�1
1 B2τpa;ϕpaqqs

it is important to study the terms defined as

dpk,m, nq :� lim
aÑ8

DmrDn
1 Bk2τpa;ϕpaqqs (3.18)

In other words, we will compute, recursively, the limits of these terms for a Ñ 8.
We note that, as Dnτpa; sq is an analytic function of s in some disc around 0, as
seen by its power series, we can interchange differentiation wrt the second variable
and the limit for aÑ8, as we know that ϕpaq converges to a finite limit, provided
that the convergence for aÑ8 is locally uniform, which indeed is (an argument: as
aÑ8, the radius of convergence of the power series increase, so taking a compact
set and assuming a large enough, we can use the convergence of the sequence of
power series to prove this result). We have

DmrDn
1 Bk2τpa;ϕpaqqs � Dm�1rDn�1

1 Bk2τpa;ϕpaqq �DϕpaqDn
1 Bk�1

2 τpa;ϕpaqqs
hence we get the recursive relation

dpk,m, nq � dpk,m� 1, n� 1q �
m�1̧

j�0

�
m� 1

j



ϕm�jdpk � 1, j, nq (3.19)

where ϕl � limaÑ8D
lϕpaq, assuming that the limit is already known, and the

boundary conditions

dpk, 0, nq � lim
aÑ8

Dn
1 Bk2τpa;ϕpaqq � lim

aÑ8
Bk2Dn

1 τpa;ϕpaqq

� Bp1�bq
n

ķ

j�0

�
k

j



p�1qk�jpb� n� jqje�γbγb�1�n�j

b

As for the integral term, we have

lim
aÑ8

» ϕpaq
0

Dnτpa; sqds � Bp1�bq
n

» γb
0

e�ssb�1�nds (3.20)

and» γb
0

e�ssb�1�nds � �
n�1̧

k�0

pb� n� kqke�γbγb�1�n�k
b � pbqnp1� pqΓpbq (3.21)
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by repeated integrations by parts and the fact that
³γb
0
e�ssb�1ds � p1 � pqΓpbq.

We have got, then, for the left hand side that

lim
aÑ8

Dn

» ϕpaq
0

τpa; sqds

� lim
aÑ8

n�1̧

k�0

DkpDϕpaqDn�k�1
1 fpa;ϕpaqqq � lim

aÑ8

» ϕpaq
0

Dnfpa; sqds

� lim
aÑ8

n�1̧

k�0

ķ

j�0

�
k

j



Dk�j�1ϕpaqDjrDn�k�1

1 fpa;ϕpaqqs

�Bp1�bq
n

n�1̧

k�0

pb� n� kqke�γbγb�1�n�k
b � pbqnp1� pqΓpbqBp1�bq

n

�
n�1̧

k�0

ķ

j�0

�
k

j



ϕk�j�1dp0, j, n� k � 1q

�Bp1�bq
n

n�1̧

k�0

pb� n� kqke�γbγb�1�n�k
b � p1� pqΓpb� nqBp1�bq

n

� ϕndp0, 0, 0q �
n�1̧

j�1

�
n� 1

j



ϕn�jdp0, j, 0q

�
n�2̧

k�0

ķ

j�0

�
k

j



ϕk�j�1dp0, j, n� k � 1q

�Bp1�bq
n

n�1̧

k�0

pb� n� kqke�γbγb�1�n�k
b � p1� pqΓpb� nqBp1�bq

n

We notice that the term p1� pqΓpb� nqBp1�bq
n cancels exactly with the right hand

side.

3.4. Conclusion. Proof of Theorem 2. Summing up, using the normalisation
δ � d

e�γbγb�1
b

, we are left with

ϕn � �
n�1̧

j�1

�
n� 1

j



ϕn�jδp0, j, 0q �

n�2̧

k�0

ķ

j�0

�
k

j



ϕk�j�1δp0, j, n� k � 1q

�Bp1�bq
n

n�1̧

k�0

pb� n� kqkγn�kb

and δ and ϕ also satisfying the recursive relation, by (3.19),

δpk,m, nq � δpk,m� 1, n� 1q �
m�1̧

j�0

�
m� 1

j



ϕm�jδpk � 1, j, nq

We have the initial conditions

ϕ0 � γb

δpk, 0, nq � Bp1�bq
n

ķ

j�0

�
k

j



p�1qk�jpb� n� jqjγn�jb
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l

To prove Corollary 2 we need the following lemma.

Lemma 3.3. Let f have asymptotic expansion

fpxq �
Ņ

k�0

ak
k!xk

� rpxq

where rpxq � Op1{xN�1q. Then,

efpxq � ea0 � ea0
Ņ

k�1

Bkpa1, a2, ..., akq
k!xk

�Op1{xN�1q

Proof. We have

fpxq �
Ņ

k�0

ak
k!xk

� rpxq ñ efpxq�
°N
k�0

ak
k!xk � erpxq � 1�Op1{xN�1q

ñ efpxq � e
°N
k�0

ak
k!xk �Op1{xN�1q � ea0

N¹
k�1

e
ak
k!xk �Op1{xN�1q

� ea0
N¹
k�1

�
�1�

rN�1
k �1s¸
m�1

amk
m!k!mxkm

�Op1{xN�1q
�

�Op1{xN�1q

� ea0
Ņ

n�0

Bnpa1, a2, ..., anq
n!xn

�Op1{xN�1q

where the last equality is derived by a combinatorial argument, the coefficient of

1{xn being the sum of products of the form
±n
k�1

a
mk
k

pk!qmkmk! such that
°n
k�1 kmk �

n, which defines the complete Bell polynomials. �

Proof of Corollary 2. The proof is an immediate consequence of Theorem 2 and
the foregoing Lemma. l

4. Relations between Bell, Bernoulli and Nørlund Polynomials

In the course of trying to find the asymptotic expansion of ϕ at 8, using Faà di
Bruno formulas, we encountered identities between Bell polynomials and Nørlund
polynomials, that we have not been able to trace in the literature, hence we state
them in this section as a separate result.

Proposition 3. Let c P C. Then, the Nørlund polynomial B
pcq
n can be expressed

as

Bpcq
n �

¸
tmPNn|

°n
j�1 jmj�nu

n!

m1!m2! . . .mn!

n¹
j�1

� p�1qj�1cBj
j!j


mj
(4.1)

or, phrased in terms of Bell polynomials Bn,

Bpcq
n � BnpcB1,�cB2{2, 0,�cB4{4, 0, . . . ,�cBn{nq, n ¡ 1 (4.2)

Moreover, we have that

pc� nqnBpcq
n � p�1qnBnpB2pcq �B2,�B3pcq �B3, . . . , p�1qn�1Bn�1pcq �Bn�1q

(4.3)
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Proof. The last equation is derived by Remark 3.1, and the symmetries Bnp1�xq �
p�1qnBnpxq and p1� cqn � p�1qnpc� nqn. For the rest, by (1.6) we have

Bpcq
n � lim

zÑ0
Bn
��

z

ez � 1


c�
By using Faà di Bruno formula we get

Bn
��

z

ez � 1


c�
� Bn

�
ec log z

ez�1

	

�
�

z

ez � 1


c ¸
tmPNn|

°n
j�1 jmj�nu

n!

m1!m2! . . .mn!

n¹
j�1

�
c

j!
Bj
�

log
z

ez � 1



mj

and we have the limit

lim
zÑ0

�
z

ez � 1


c
� 1

and

�z
�

log
ez � 1

z


1
� � zez

ez � 1
� 1 �

8̧

n�1

p�1qn�1Bn
zn

n!

ñ log
z

ez � 1
�

8̧

n�1

p�1qn�1Bn
n

zn

n!

hence

lim
zÑ0

Bj
�

log
z

ez � 1



� p�1qj�1Bj

j

and thus, summing up,

Bpcq
n � lim

aÑ0
Bn
��

z

ez � 1


c�

�
¸

tmPNn|
°n
j�1 jmj�nu

n!

m1!m2! . . .mn!

n¹
j�1

� p�1qj�1cBj
j!j


mj

which concludes the proposition. �

Appendix

In this appendix, we provide code in Maple and Sage for computing the terms
of asymptotic expansion of ϕ and q at infinity recursively.

Appendix A. Maple code

In the first algorithm, the procedure phiinf(n) computes what we define as ϕn
in Theorem 2.

Algorithm A.1:

norl:=proc(n,c);

if n=0 then

return 1;

else

return (-1)^n*CompleteBellB(

n,seq(-c*bernoulli(j)/j,j=1..n)

);

end if;
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end proc;

phiinf :=proc(n) option remember;

if n=0 then

return gamma[b];

end if;

for k from 1 to n-1 do

phiinf(k);

od;

return expand(

-add(binomial(n-1,j)* phiinf(n-j)* delta(0,j,0),j=1..n-1)

-add(add(binomial(k,j)* phiinf(k-j+1)* delta(0,j,n-k-1)

,j=0..k),k=0..n-2)+ norl(n,1-b)*add(pochhammer(b+n-k,k)

*phiinf (0)^(n-k),k=0..n-1);

end proc;

delta:=proc(k,m,n) option remember;

if m=0 then

return simplify(

norl(n,1-b)*add(binomial(k,j)*( -1)^(k-j)*

pochhammer(b+n-j,j)* phiinf (0)^(n-j),j=0..k)

);

end if;

return simplify(delta(k,m-1,n+1)+

add(binomial(m-1,j)* phiinf(m-j)* delta(k+1,j,n),j=0..m -1));

end proc;

In the second algorithm, the procedure qinf(n) computes the nth coefficient of
the asymptotic expansion of q in Corollary 2.

Algorithm A.2:

qinf:=proc(b,n);

if n=0 then

return 1;

else

return CompleteBellB(

n,seq (( -1)^(k+1)* phiinf(k),k=0..n -1))/n!;

end if;

end proc;

Appendix B. Sage code

The function phiinf(n) computes what we define as ϕn in Theorem 2.

Algorithm B.1:

gamma_b=var(’gamma_b ’)

b=var(’b’)

def norlund(n,c):

if n==0:

return 1

else:
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return

(-1)^n*sum(bell_polynomial(n,k)([-c*bernoulli(j)/j for j in

[1..n-k+1]]) for k in [1..n])

@CachedFunction

def phiinf(n):

if n==0:

return gamma_b

else:

return expand(-sum(binomial(n-1,j)* phiinf(n-j)*

delta(0,j,0) for j in [1..n-1])-sum(sum(binomial(k,j)*

phiinf(k-j+1)* delta(0,j,n-k-1) for j in [0..k]) for k

in [0..n-2])+ norlund(n,1-b)*sum(rising_factorial(b+n-k,k)*

phiinf (0)^(n-k) for k in [0..n -1]))

@CachedFunction

def delta(k,m,n):

if m==0:

return

simplify(norlund(n,1-b)*sum(binomial(k,j)*( -1)^(k-j)*

rising_factorial(b+n-j,j)* phiinf (0)^(n-j) for j in [0..k]))

else:

return

simplify(delta(k,m-1,n+1)+ sum(binomial(m-1,j)

*phiinf(m-j)*delta(k+1,j,n)

for j in [0..m -1]))

The function qinf(n) computes the nth coefficient of the asymptotic expansion
of q in Corollary 2.

Algorithm B.2:

def qinf(n):

return sum(bell_polynomial(n,j)(

[( -1)^(k+1)* phiinf(k)

for k in [0..n-j]]) for j in [1..n])/ factorial(n)
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COMPLETE MONOTONICITY IN RATIOS OF PRODUCTS OF

ENTIRE FUNCTIONS

DIMITRIS ASKITIS

Abstract. Ratios of gamma functions have been studied with respect to com-

plete monotonicity in several occasions. Here, we extend these results to ratios

of entire functions of finite genus. To do so, we have to take into account the

exact order of the entire function, as well as the order and the density of its

zero sequence. We apply these results to multiple gamma functions.

1. Introduction

Complete monotonicity properties of ratios of gamma functions in the form
∏p
j=1 Γ(x+ aj)∏p
j=1 Γ(x+ bj)

have attracted extensive interest in literature. A function f : R+ → R+ is said to

be completely monotonic when for all x > 0 and n ∈ N we have (−1)nf (n)(x) ≥ 0.

A function f : R+ → R+ is said to be logarithmically completely monotonic when

(− log f)′ is completely monotonic. Logarithmic completely monotonic functions

are an important subset of the class of completely monotonic functions. Completely

monotonic functions are characterised as the Laplace transforms of non-negative

Borel measures on the positive half-line, what is known as Bernstein-Widder theo-

rem.

Bernstein’s representation. A function f ∈ C∞(0,∞) is completely monotonic

if and only if it is the Laplace transform of a non-negative Borel measure on [0,∞],

i.e. if and only if

f(x) =

∫ ∞

0

e−xtdµt

for a non-negative measure µ on [0,∞] such that
∫ ∞

0

e−tdµt <∞
.

The first result in this direction was by Bustoz and Ismail [3] who showed that

the above ratio is logarithmically completely monotonic for p = 2, a1 = 0 and

a2 = b1 + b2. Several extensions of this result were found by Ismail and Muldoon

[5], Alzer [1], and Grinshpan and Ismail [4]. Karp and Prilepkina [6] consider the

more general, weighted case

W (x) =

∏n
j=1 Γ(Ajx+ aj)∏m
j=1 Γ(Bjx+ bj)

and, using properties specific to the gamma function, they prove that the above

ration is logarithmically completely monotonic if and only if
∑
j Bj =

∑
iAi, σ =

∏
j B

Bj
j

∏
iA

Ai
i ≤ 1 and

∑
i
e−aiu/Ai
1−e−u/Ai −

∑
j
e−bju/Bj

1−e−u/Bj ≥ 0,∀u > 0.

1
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In a different context, Pedersen [8] had showed the representation

(−1)p∂p+1
x log f(x) =

∫ ∞

0

e−sxsph(s) ds,

where f entire function of finite genus with exclusively non-positive zeros, and

h(s) =
∞∑

k=1

e−λks . (1)

This generalised prior results on gamma function, as 1/Γ is entire of genus 1 with

zeros on the non-positive integers. In particular, in the case where 1/f is Eulers

gamma function, the function h can be rewritten as

h(s) =
1

1− e−s .

A question then arises if one can also generalise the previous results of Karp and

Prelepkina to ratios of entire functions. The present manuscript proceeds as follows.

In the second section, we state the definitions we need and the basic setting. In the

second section, we study the case where the order of growth of the entire function

is integer. The main results are Theorems 1,2 and 3. In the fourth section we study

the case when the order it is non-integer. In general, we always shall assume that

the sequence of zeros has asymptotic density. In the fifth section, we apply the

results of the third section to multiple gamma functions.

2. Entire functions of finite order ρ with only non-positive zeros

Let f be an entire function of finite order ρ, having only non-positive zeros, the

negative ones being {−λk}. Setting p = bρc, i.e. having ρ ∈ [p, p + 1), we can

represent f by the Hadamard theorem as

f(z) = zκeQ(z)
∞∏

k=1

(
1 +

z

λk

)
e

∑p
j=1(−1)j zj

jλ
j
k (2)

where Q is a polynomial of degree less or equal to bρc and κ is the multiplicity of

the (possible) root at 0. The logarithm of f on (0,∞) is

log f(x) = κ log x+Q(x) +

∞∑

k=1


log

(
1 +

x

λk

)
+

p∑

j=1

(−1)j
xj

jλjk


 .

Differentiating p times we get

(−1)p−1

(p− 1)!
∂p log f(x) =

κ

xp
+ (−1)p−1qp−

∞∑

k=1

(
1

λpk
− 1

(x+ λk)p

)
. (3)

The following lemma will be useful.

Lemma 2.1. Suppose that g : (0,∞)→ R is a C∞-function and that its derivative

is a completely monotonic function. Then there exists a positive measure µ on [0,∞)

such that
∫∞
0
e−xs dµ(s) converges for all x > 0, and such that, for a, b ≥ 0,

g(x+ a)− g(x+ b) =

∫ ∞

0

e−xs
1

s

(
e−bs − e−as

)
dµ(s).

Proof. This follows immediately by combining

g(x+ a)− g(x+ b) =

∫ a

b

g′(t+ x) dt

and Bernstein’s representation of g′. �
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From [8, Proposition 2.1] we have the representation

(−1)p∂p+1
x log f(x) =

∫ ∞

0

e−sxsph(s) ds, (4)

where

h(s) = κ+
∞∑

k=1

e−λks . (5)

Definition 2.1. For f as above and for sequences a1, . . . , aN , b1, . . . , bM of non-

negative numbers, A1, . . . , AN , B1, . . . , BM of positive numbers define Wf as the

function

Wf (x) =

∏N
j=1 f(Ajx+ aj)

∏M
j=1 f(Bjx+ bj)

, x > 0. (6)

Proposition 2.2. The function (−1)p+1∂p+1
x logWf (x) is completely monotonic

if and only if

N∑

j=1

e−bjsh(s/Bj)−
M∑

j=1

e−ajsh(s/Aj) ≥ 0 (7)

Proof. Relation (4) gives us that

(−1)p+1∂p+2
x log f(x) =

∫ ∞

0

e−sxsp+1h(s) ds,

and hence we get, using Lemma 2.1,

(−1)p+1∂p+1
x (log f)(Ajx+ aj)

=

∫ aj

0

∫ ∞

0

e−s(Ajx+t)sp+1h(s) dsdt+ (−1)p+1∂p+1
x (log f)(Ajx)

=

∫ ∞

0

e−sAjxsph(s)(1− e−saj ) ds−
∫ ∞

0

e−sAjxsph(s) ds

= −
∫ ∞

0

e−sAjxsph(s)e−saj ds.

Therefore,

(−1)p+1∂p+1
x logWf (x) =

N∑

j=1

Ap+1
j (−1)p+1∂p+1

x (log f)(Ajx+ aj)

−
M∑

j=1

Bp+1
j (−1)p+1∂p+1

x (log f)(Bjx+ bj)

= −
N∑

j=1

Ap+1
j

∫ ∞

0

e−sAjxsph(s)e−saj ds

+

M∑

j=1

Bp+1
j

∫ ∞

0

e−sBjxsph(s)e−sbj ds

=

∫ ∞

0

e−xssp




N∑

j=1

h(s/Bj)e
−bjs −

M∑

j=1

h(s/Aj)e
−ajs


 ds.

This completes the proof. �
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Taking logarithms and differentiating (6) p times, and using (3) we get

(−1)p−1

(p− 1)!
∂p logW (x) = (8)

=κ




N∑

j=1

Apj
(Ajx+ aj)p

−
M∑

j=1

Bpk
(Bjx+ bj)p


+ (−1)p−1




N∑

j=1

Apj −
M∑

j=1

Bpj


 qp

−
∞∑

k=1




N∑

j=1

Apj

(
1

λpk
− 1

(Ajx+ aj + λk)p

)
−

M∑

j=1

Bpj

(
1

λpk
− 1

(Bjx+ bj + λk)p

)


Our goal is to find necessary and sufficient conditions so that the function (−1)p∂p logW (x)

is completely monotonic, and for this it suffices to find when it is non-negative, re-

spectively. We will see that much depends on the density of the zeros of f . Let

n(t) be the counting function of the negative zeros, counting also multiplicities, i.e.

n(t) = #{λk ≤ t | k ∈ N}
The order of the zero counting function is denoted by ρ0. We have that ρ0 ≤ ρ and

p ≥ bρ0c. Moreover, ρ0 is the convergence exponent of the sequence {λk}k∈N, i.e.

ρ0 = inf

{
a ∈ R

∣∣∣∣∣
∞∑

k=1

1

λak
<∞

}

We call such a sequence {λk}k∈N of divergent type if

∞∑

k=1

1

λρ0k
=∞ .

We can have ρ0 < ρ only if ρ is an integer, i.e. ρ = p. Else, ρ0 = ρ. Also, if ρ0 = p,

then also ρ = ρ0 = p. In general, we have ρ = max{ρ0, p}. Also, a quantity that

will play an important role is

Cρ :=




N∑

j=1

Aρj −
M∑

j=1

Bρj


 (9)

Our purpose is to find analogues of Thereom 4 in [Karp], for more general entire

functions. In particular, we are more interested to find, for a given order ρ, neces-

sary/sufficient conditions such that for entire functions of that order, (−1)p∂p logW (x)

is completely monotonic, and the conditions are indepedent of the specific choice

of the function. We manage it in the case of integer order, that ρ = ρ0 ∈ N. In

the cases that the order is non-integer or the order of the zeros is smaller than the

order of the functions, we prove that only such sufficient conditions exist, but not

necessary. Our strategy can be summarized as: In Proposition 2.2, we have seen

than

(−1)p+1∂p+1 logWf (x) =

∫ ∞

0

e−xssp




N∑

j=1

h(s/Bj)e
−bjs −

M∑

j=1

h(s/Aj)e
−ajs


 ds.

This gives that

(−1)p∂p logWf (x) =

∫ ∞

0

e−xssp−1




N∑

j=1

h(s/Bj)e
−bjs −

M∑

j=1

h(s/Aj)e
−ajs


 ds+ Λ
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where Λ := lim
x→+∞

(−1)p∂p logWf (x). Hence, if (−1)p+1∂p+1 logWf (x) is com-

pletely monotonic, then (−1)p∂p logWf (x) is completely monotonic if and only if

Λ ≥ 0, and then we have the representation

(−1)p∂p logWf (x) =

∫ ∞

0

e−xsdµ(s) (10)

where

dµ(s) = Λdδ0(s) + sp−1




N∑

j=1

h(s/Bj)e
−bjs −

M∑

j=1

h(s/Aj)e
−ajs


ds (11)

Hence, our strategy is to investigate the value of the limit Λ := lim
x→+∞

(−1)p∂p logWf (x).

3. The case ρ = p

The equality ρ = p may happen in two cases: if ρ0 = p or if ρ0 < p. In the

course of this chapter, we shall treat the two cases separately.

It can be useful to write part of (8) in the following way:

S(x) :=

∞∑

k=1




N∑

j=1

(
Apj
λpk
−

Apj
(Ajx+ aj + λk)p

)
−

M∑

j=1

(
Bpj
λpk
−

Bpj
(Bjx+ bj + λk)p

)


=

∞∑

k=1


 C

λpk
−

N∑

j=1

Apj
(Ajx+ aj + λk)p

+
M∑

j=1

Bpj
(Bjx+ bj + λk)p




=C
∞∑

k=1

(
1

λpk
− 1

(x+ λk)p

)

+

N∑

j=1

Apj

∞∑

k=1

(
1

(x+ λk)p
− 1

(Ajx+ aj + λk)p

)

−
M∑

j=1

Bpj

∞∑

k=1

(
1

(x+ λk)p
− 1

(Bjx+ bj + λk)p

)

hence

Λ = lim
x→∞

(−1)p∂p logW (x)

=(p− 1)!(−1)p




N∑

j=1

Apj −
M∑

j=1

Bpj


 qp+ (p− 1)! lim

x→∞
S(x) (12)

hence the asymptotic behaviour of S determines the value of Λ. To study the

asymptotic behaviour of S, it becomes clear that we have to study the function

gA,a(x) :=
∞∑

k=1

(
1

(x+ λk)p
− 1

(Ax+ a+ λk)p

)

=

∫ ∞

0

(
1

(x+ t)p
− 1

(Ax+ a+ t)p

)
dn(t) .

Under some assumptions on the zero counting function having asymptotic density,

we have the following lemma.

Lemma 3.1. Assume that

lim
t→∞

n(t)

tp
= ∆ ∈ [0,+∞)
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Then,

lim
x→∞

gA,a(x) = p∆ logA .

Proof. We have that

gA,a(x) =

∫ ∞

0

(
1

(x+ t)p
− 1

(Ax+ a+ t)p

)
dn(t)

=p

∫ ∞

0

(
1

(x+ t)p+1
− 1

(Ax+ a+ t)p+1

)
n(t)dt

We have that ∀ε > 0,∃R > 0 : ∀t > R, (∆− ε)tp < n(t) < (∆ + ε)tp. Hence we can

write

(∆− ε)p
∫ ∞

R

(
1

(x+ t)p+1
− 1

(Ax+ a+ t)p+1

)
tpdt

< p

∫ ∞

R

(
1

(x+ t)p+1
− 1

(Ax+ a+ t)p+1

)
n(t)dt

< (∆ + ε)p

∫ ∞

R

(
1

(x+ t)p+1
− 1

(Ax+ a+ t)p+1

)
tpdt

Hence we shall study the function

h(x) :=

∫ ∞

R

(
1

(x+ t)p+1
− 1

(Ax+ a+ t)p+1

)
tpdt .

After repeated integrations by parts we reach

h(x) =u(x) +

∫ ∞

R

(
1

x+ t
− 1

Ax+ a+ t

)
dt

=u(x) + log

(
Ax+ a+R

x+R

)

where u(x) = O(1/x). Finally, as (∆− ε)ph(x) < gA,a(x) < (∆ + ε)ph(x),

lim
x→∞

gA,a(x) = p∆ logA .

�

We can derive the following Lemma about S(x):

Lemma 3.2. Assume that ρ0 = p and the sequence of zeros is of divergent type.

Moreover, assume

lim
t→∞

n(t)

tp
= ∆ ∈ [0,+∞)

Then, the limit of S(x) at infinity exists if and only if Cρ = 0. In this case,

lim
x→∞

S(x) = p∆




N∑

j=1

Apj logAj −
M∑

j=1

Bpj logBj


 (13)

Proof. By the previous Lemma, we have

lim
x→∞

S(x) = lim
x→∞

[
Cρ

∞∑

k=1

(
1

λpk
− 1

(x+ λk)p

)]
+ p∆




N∑

j=1

Apj logAj −
M∑

j=1

Bpj logBj




and by monotone convergence,

lim
x→∞

∞∑

k=1

(
1

λpk
− 1

(x+ λk)p

)
= +∞
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as {λk}k∈N is of divergent type, which gives that the limit exists if and only if

C = 0, and the result. �

We proceed to the main results, which depend on the density of the zeros.

Theorem 1. Assume that

lim
t→∞

n(t)

tp
= ∆ ∈ (0,∞)

and the sequence of zeros is of divergent type. Then, the function (−1)p∂p logW (x)

is completely monotonic if and only if condition (7) holds, Cρ = 0 and

N∑

i=1

Api logAi −
M∑

j=1

Bpj logBj ≥ 0 (14)

In the affirmative case, we have

(−1)p∂p logWf (x) =

∫ ∞

0

e−xssp−1




N∑

j=1

h(s/Bj)e
−bjs −

M∑

j=1

h(s/Aj)e
−ajs


 ds+ Λ

where

Λ = p∆




N∑

j=1

Apj logAj −
M∑

j=1

Bpj logBj


 (15)

Proof. Relation (7) is necessary and sufficient for (−1)p+1∂p+1 logW (x) to be com-

pletely monotonic. Then, (−1)p∂p logW (x) is completely monotonic if and only if

lim
x→∞

(−1)p∂p logW (x) ≥ 0, and by the previous lemma this happens if and only if

the conditions Cρ = 0 and (14) are satisfied. �

Theorem 2. Assume that ρ0 = p and n(t) has zero density w.r.t. p, i.e.

lim
t→∞

n(t)

tp
= 0

and the sequence of zeros is of divergent type. Then, the function (−1)p∂p logW (x)

is completely monotonic if and only if condition (7) holds and Cρ = 0. In the

affirmative case,

(−1)p∂p logWf (x) =

∫ ∞

0

e−xssp−1




N∑

j=1

h(s/Bj)e
−bjs −

M∑

j=1

h(s/Aj)e
−ajs


 ds

i.e. in this case Λ = 0.

Proof. The proof is in the same spirit. As ∆ = 0, lim
x→∞

(−1)p∂p logW (x) = 0 if and

only if C = 0, and the limit is infinite if and only if Cρ 6= 0. �

Remark 3.3. In case the sequence of zeros is not of divergent type, i.e.

∞∑

k=1

1

λk
<∞

then ∆ = 0 by [7, 3.2 Lemma 1]. In case ρ0 < p, we again have ∆ = 0. In these

cases, the conditions involve a possibly non-zero value of Cρ.
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Theorem 3. Assume ρ0 = p and the sequence of zeros is not of divergent type,

or ρ0 < p . Then, the function (−1)p∂p logW (x) is completely monotonic if and

only if condition (7) holds and

Cρ

( ∞∑

k=1

1

λpk
− (−1)p−1qp

)
≥ 0 .

In the affirmative case,

(−1)p∂p logWf (x) =

∫ ∞

0

e−xssp−1




N∑

j=1

h(s/Bj)e
−bjs −

M∑

j=1

h(s/Aj)e
−ajs


 ds+ Λ

where

Λ = Cρ

( ∞∑

k=1

1

λpk
− (−1)p−1qp

)
. (16)

Proof. By the previous remark, the sum
∑∞
k=1

1
λpk

converges. Hence, C = 0 is

no longer required for the whole limit to converge. Rather, now, by dominated

convergence we have that lim
x→∞

gA,a(x) = 0 and

lim
x→∞

(−1)p∂p logW (x) = Cρ

( ∞∑

k=1

1

λpk
− (−1)p−1qp

)

hence, the result. �

4. The case ρ > p

If ρ > p, then ρ ∈ (p, p+1) and ρ = ρ0. We shall study the asymptotic behaviour

of S(x). We denote

Cp :=
N∑

j=1

Apj −
M∑

j=1

Bpj , Cρ :=
N∑

j=1

Aρj −
M∑

j=1

Bρj .

We assume

lim
t→∞

n(t)

tρ
= ∆ ∈ R .

We set

hA,a(x) :=

∫ ∞

0

(
1

tp
− 1

(Ax+ a+ t)p

)
dn(t) . (17)

Then, the sum S becomes

S(x) =

N∑

j=1

ApjhAj ,aj (x)−
M∑

j=1

Bpj hBj ,bj (x) (18)

We prove the following Lemma:

Lemma 4.1. Let

lim
t→∞

n(t)

tρ
= ∆ ∈ [0,∞)

and r := ρ− p. Then,

lim
x→∞

hA,a(x)

xr
= Ar∆

(r + 1)p−1
(p− 1)!

π

sinπr
. (19)
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Proof. We have, choosing R and ε such that for t ≥ R, (∆−ε)tρ ≤ n(t) ≤ (∆+ε)tρ,

hA,a(x) =

∫ ∞

0

(
1

tp
− 1

(Ax+ a+ t)p

)
dn(t)

=p

∫ ∞

0

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
n(t)dt

=p

∫ R

0

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
n(t)dt+ p

∫ ∞

R

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
n(t)dt

with the bounds

(∆− ε)p
∫ ∞

R

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
tρdt ≤

p

∫ ∞

R

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
n(t)dt ≤

(∆ + ε)p

∫ ∞

R

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
tρdt .

Hence we need to study the integral

I := p

∫ ∞

R

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
tρdt .

By repeated integrations by parts, and as r = ρ− p ∈ (0, 1), we get

I = u(x) +
(r + 1)p−1

(p− 1)!

∫ ∞

R

(
1

t
− 1

Ax+ a+ t

)
trdt

where u(x) = O(1) and the integral on the right hand side, after some changes of

variables, becomes
∫ ∞

R

(
1

t
− 1

Ax+ a+ t

)
trdt =

∫ ∞

1

(
1

tR
− 1

Ax+ a+ tR

)
trRr+1dt

=

∫ ∞

1

(
1

t
− 1

Ax+a
R + t

)
trRrdt

=

∫ 1

0

(
s− 1

Ax+a
R + 1

s

)
Rr

sr+2
ds

=

∫ 1

0

Ax+a
R

sAx+aR + 1

Rr

sr
ds

=(Ax+ a)r
∫ Ax+a

R

0

1

1 + s

ds

sr
.

Hence we end up with

∫ ∞

R

(
1

t
− 1

Ax+ a+ t

)
trdt = (Ax+ a)r

∫ Ax+a
R

0

1

1 + s

ds

sr
. (20)

Note that by contour integration we have

lim
x→∞

∫ Ax+a
R

0

1

1 + s

dt

sr
=

∫ ∞

0

1

1 + s

dt

sr
=

π

sinπr
.

Summarizing, we have for hA,a(x):

(∆− ε) (r + 1)p−1
(p− 1)!

π

sinπr
≤ lim
x→∞

hA,a(x)

(Ax+ a)r
≤ (∆ + ε)

(r + 1)p−1
(p− 1)!

π

sinπr
.
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Hence the asymptotic result

lim
x→∞

hA,a(x)

xr
= Ar∆

(r + 1)p−1
(p− 1)!

π

sinπr
.

�

For the asymptotic behaviour of S(x) we get

lim
x→∞

S(x)

xr
=∆

(r + 1)p−1
(p− 1)!

π

sinπr




N∑

j=1

Aρj −
M∑

j=1

Bρj




=Cρ∆
(r + 1)p−1

(p− 1)!

π

sinπr
. (21)

This shows the following result.

Proposition 4.2. A necessary condition for the limit of S to exist in R, is Cρ
or ∆ to be 0.

To get sufficient conditions, we need some more restrictions on the growth of the

zero counting function n:

Proposition 4.3. Let ∆ ∈ (0,+∞) and, for some ε > 0,

|n(t)−∆tρ| = o(tp−ε)

Then, (−1)p∂p logW (f) is c.m. if and only if Cρ = 0, (7) holds and

Cp

(
∆

(
p∑

k=1

1

λk1
− 1

r

)
+

∫ ∞

λ1

n(t)−∆tρ

tp+1
dt+ (−1)p−1qp

)
≥ 0 . (22)

In this case,

Λ = Cp

(
∆

(
p∑

k=1

1

λk1
− 1

r

)
+

∫ ∞

λ1

n(t)−∆tρ

tp+1
dt+ (−1)p−1qp

)
. (23)

Proof. The condition Cρ = 0 is obtained by the proceeding proposition, as ∆ 6= 0.

If we set φ(t) = n(t)−∆tρ, we have
∫ ∞

λ1

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
(n(t)−∆tρ)dt =

∫ ∞

λ1

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
φ(t)dt

and φ(t) = o(tp−ε). We have
∫ ∞

λ1

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
n(t)dt = IA,a(x) + ΦA,a(x)

where

IA,a(x) :=

∫ ∞

λ1

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
∆tρdt ,

ΦA,a(x) :=

∫ ∞

λ1

(
1

tp+1
− 1

(Ax+ a+ t)p+1

)
φ(t)dt .

We have

lim
x→∞

ΦA,a(x) =

∫ ∞

λ1

φ(t)

tp+1
dt
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and

IA,a(x) = ∆

p∑

k=1

1

λk1
+ u(x) + ∆(Ax+ a)r

∫ Ax+a
λ1

0

1

1 + s

ds

sr

= ∆

p∑

k=1

1

λk1
+ u(x) + ∆

π

sinπr
(Ax+ a)r −∆(Ax+ a)r

∫ ∞
Ax+a
λ1

1

1 + s

ds

sr

where

u(x) = O
(

1

x

)
.

We furthermore have

lim
x→∞

(Ax+ a)r
∫ ∞
Ax+a
λ1

1

1 + s

ds

sr
=

1

r
,

lim
x→∞

(
IA,a(x)−∆

π

sinπr
Arxr

)
= ∆

p∑

k=1

1

λk1
− ∆

r
.

Hence

lim
x→∞

S(x) = Cp

(
∆

(
p∑

k=1

1

λk1
− 1

r

)
+

∫ ∞

λ1

n(t)−∆tρ

tp+1
dt

)

which completes the proof. �

5. Multiple gamma functions

We shall investigate ratios of the form

WN (x) =

∏m
j=1 ΓN (Bjx+ bj)∏n
j=1 ΓN (Ajx+ aj)

for non-negative parameters a1, b1, . . . , an, bm. Here ΓN denotes the so-called N -

multiple gamma function with parameters (1, 1). See [9] and [2]. They can be

defined through the recursive relations:

(1) ΓN (1) = 1

(2) Γ1(z) = Γ(z)

(3) ΓN+1(z + 1) =
ΓN+1(z)

ΓN (z)

It is easy to see by the above definition that the reciprocal of ΓN (z) is an entire

function of genus N , having zeros exactly at z = −k, k ∈ {0, 1, . . .}. The third

property gives ΓN+1(z) = ΓN+1(z + 1)ΓN (z) and, as multiplication of the zeros

implies addition of the multiplicities, we can see that the multiplicities of the zeros

form a Pascal triangle, and the sequence of the multiplicities of the zeros of the

N -multiple gamma function are its diagonals. Thus, the multiplicity of the zero at

−k for the N -multiple gamma function is
(
k+N−1
N−1

)
.

Corollary 1. For

WN (x) =

∏m
j=1 ΓN (Bjx+ bj)∏n
j=1 ΓN (Ajx+ aj)

∂N logWN is completely monotonic if and only if

m∑

j=1

Bj =

n∑

i=1

Ai ,

n∑

j=1

Apj logAj −
m∑

j=1

Bpj logBj ≥ 0
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and
n∑

i=1

e−aiu/Ai

(1− e−u/Ai)N −
m∑

j=1

e−bju/Bj

(1− e−u/Bj )N ≥ 0,∀u > 0

In the affirmative case, we have

(−1)N+1∂N logWN (x) =

∫ ∞

0

e−sxsN−1




n∑

i=1

e−aiu/Ai

(1− e−u/Ai)N −
m∑

j=1

e−bju/Bj

(1− e−u/Bj )N


 ds+Λ

where

Λ =
1

(N − 1)!




n∑

j=1

Apj logAj −
m∑

j=1

Bpj logBj




Proof. This is a straightforward application of Theorem 1. First of all, the corre-

sponding h function for ΓN as in that theorem is summable, and in particular

h(s) =

∞∑

k=1

e−λks =

∞∑

k=0

(
k +N − 1

N − 1

)
e−ks =

1

(1− e−s)N

We have for t > 0 that

n(t) =

btc∑

k=0

(
k +N − 1

N − 1

)
=

(btc+N

N

)

and

lim
t→∞

n(t)

tN
= lim
t→∞

(btc+N
N

)
− 1

tN
= lim
t→∞

(btc+N)!

N !(btc)!tN =
1

N !

using Sterling’s formula. Hence, we get

Λ =
1

(N − 1)!




n∑

j=1

Apj logAj −
m∑

j=1

Bpj logBj




and hence the result by Theorem 1. �
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