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Abstract

The present thesis investigates higher monotonicity properties in function theory. It
consists of three manuscripts. The first one focuses in the beta distribution and its
guantiles. Logarithmic concavity of the quantiles with respect to the first parameter is
proved. The second manuscript computes asymptotic expansions of the quantiles for
the first parameter going to zero or to infinity. The third manuscript is a generalisation of

a complete monotonicity result on ratios of gamma functions to entire functions.

Abstrakt

Den foreliggende afhandling undersgger hgjere monotonicitetsegenskaber i
funktionsteori. Den bestar af tre manuskripter. Det fgrste fokuserer pa beta fordelingen
og dens fraktiler. In dette bevises, at fraktilerne er logaritmisk konkave i forhold til den
forste parameter. Det andet manuskript beregner asymptotiske udviklinger af fraktilerne
for den fgrste parameter gadende mod nul eller mod uendelig. Det tredje manuscript
generaliserer resultater om fuldstaendig

monotonicitet af kvotienter mellem gammafunktioner til hele funktioner.
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Preface

Higher monotonicity is an essential tool in approximation theory and special functions. Beta and
gamma functions are two of the most important special functions, with a wide range of applications.

This thesis investigates instances of higher monotonicity in functions that are related to the beta
and gamma functions. We have two main results. One is about the logarithmic concavity of the
inverse incomplete beta function, as well as asymptotic expansions. The second is the logarithmic
complete monotonicity of ratios of entire functions, generalising results on ratios of gamma functions
and applying it to multiple gamma functions. Finally, we provide asymptotic expansions for the inverse
incomplete beta function wrt its first parameter.

We shall start presenting some general introductory material. In the first chapter, we review two of
the most important notions of higher monotonicity: convexity/concavity, and complete monotonicity,
as well as their logarithmic analogues. In the second chapter, we review the basic facts on beta and
gamma functions and functions related to these. These include the incomplete beta function and its
inverse, and multiple gamma functions. In the third chapter, we present some basic facts from the
theory of entire functions.

In the appendix, we attach three manuscripts that constitute the main body of the present thesis.
The first one focuses in the beta distribution and its quantiles. It proves logarithmic concavity of the
quantiles with respect to the first parameters. The second manuscript computes asymptotic expansions
for the quantiles for the first parameter going to 0 or to infinity. The third manuscript is a generalisation
of a complete monotonicity result on ratios of gamma functions to entire functions. It also gives a
different point of view to previously known results, which were shown only using dedicated properties
of the gamma and digamma functions.






CHAPTER 1

Higher order monotonicity

1. Logarithmic convexity and concavity

The usual notion of monotonicity refers to the property of a real valued function on R being
increasing or decreasing. Extending this, we have higher monotonicity properties referring to how
fast or slow a function grows or decreases. Such properties are important in function theory and
applications. A common example of a higher monotonicity property is concavity/convexity. A convex
function is one for which, whenever we chose two points in the graph of a function f, the line segment
connecting these points lies above or on the graph of the function. A concave function is the one for
which the line segment lies below or on the graph. In case of twice differentiable functions, this is
equivalent to f” > 0 for a function f to be convex (f” < 0 to be concave).

One of the reasons that convexity is important is the following its role in optimisation. Assume a
continuously differentiable function f on an interval (a, b) is convex. The definition of convexity for
the case of f implies that the graph of the function must lie above its tangent at any point. This is clear
by considering two points, as in the definition, and taking the limit as the second approaches the first
one. This fact can be expressed analytically as

f@) > fly) + fy)(z—y)

whenever x,y € (a,b). Assume, now, that f obtains a local minimum at y € (a, b), hence f'(y) = 0.
The previous inequality then implies that for all z € (a,b), f(x) > f(y), hence f obtains a global
minimum at x. This means that if we know that a function is convex, computing a local minimum with
a numerical method (for example with Newton’s method) finds a minimum that is guaranteed to also
be global. In a similar way, concavity guarantees the globality of local maxima.

Convex and concave functions are not the only ones which guarantee the globality of local min-
ima/maxima. As composition with increasing functions preserve global extrema, the following classes
have importance in analysis.

DEFINITION 1.1. A function f : [0,00) — (0, 00) is called logarithmically convex (concave) if
log f is convex (concave).

By the previous observation we easily deduce that if a logarithmically convex/concave function
has a local minimum/maximum, then this is a global one. The further advantage that we get in the
logarithmic case is that, because of the fact that convexity/concavity is closed under addition and the
properties of the logarithm, logarithmic convexity/concavity is preserved when we consider products
of such functions. This has important applications for examples in optimisation problems where such
products may occur. For example in [S, Proposition 4] a problem of finding the probability of lottery
players legitimately claim winning a number of prizes resulted in an optimisation problem involving
a product of incomplete beta functions (which we will define later). For the solution of this problem,
logarithmic concavity with respect to parameters was crucial.

It is clear, as the exponential function is convex, that a logarithmically convex function is also
convex, i.e. logarithmic convexity is a stronger property than convexity. In the same way, a con-
cave function is also logarithmically concave, hence logarithmic concavity is a weaker property than
concavity.



In this thesis, all the functions studied are going to be infinitely many times differentiable, hence
these properties are going to be investigated through investigating signs of second logarithmic deriva-
tives.

2. Complete monotonicity

Of course, one may continue investigating higher order derivatives to reveal even higher mono-
tonicity properties of functions. An important category of higher order monotonicity is complete
monotonicity, where all orders of the derivatives of a function are involved. For an account of com-
pletely monotonic and related functions (Bernstein, Stjeltjes etc) we refer to [11] and [23].

DEFINITION 1.2. A function f : (0,00) — (0, 00) is called completely monotonic (f € CM) if
(=) f™(x) > 0Vn € N,x € (0,00) .

Completely monotonic functions have a famous characterisation as Laplace transforms of Borel
measures on the half-line, what is known as Bernstein-Widder theorem.

THEOREM 1.3. A function f € C*(0,00) is completely monotonic if and only if it is the Laplace
transform of a non-negative Borel measure on |0, 0|, i.e. if and only if

f(x):/o e tdut

for a non-negative measure ji on [0, 00| such that

/ e tdut < oo.
0

REMARK 1.4. Another way to see completely monotonic functions is in terms of positive defi-
niteness. If we see the closed half-line [0, 00) as an additive semigroup, the (bounded) completely
monotonic functions are exactly the ones that are bounded positive definite. By using shift opera-
tors, we may characterise all (also the possibly unbounded, as the shifted functions will necessarily be
bounded) completely monotonic functions on (0, co) in terms of these operators and positive definite-
ness. See [8, Theorem 6.13].

3. Logarithmic complete monotonicity
A stronger form of complete monotonicity involves composing with the logarithm.

DEFINITION 1.5. A function f : (0,00) — (0, 00) is called logarithmically completely monotonic
(f € LCM) if —(log f)’ is completely monotone.

Though, in first glance, the two notions do not seem to be directly related, it turns out that logarith-
mically completely monotonic functions form a subclass of CM. In particular, we have the following
classical result.

THEOREM 1.6. A function f : (0,00) — (0,00) is logarithmically completely monotonic if and
only if f' is completely monotone for all t > 0.

The property that f* is completely monotonic for all ¢ > 0 is called infinite divisibility. It is
an important notion in probability because they represent Laplace transforms of infinitely divisible
probability distributions, and arises in relation to variations of the central limit theorem and Lévy
processes. See for instance [22].



CHAPTER 2

Entire functions of finite genus

1. Hadamard representation

An entire function is a complex-valued function analytic in the whole complex plane. Entire
functions are classically studied according to their order of growth. In particular, we categorise entire
functions according to whether their growth is comparable to e*I“ for some @ > 0. Entire functions
that grow faster than that tend to contain pathogenic cases, so the growth restriction provides a nice
structure and theory of entire functions to work with. A very nice exposition of the classical theory of
entire functions is contained in [18].

We shall make the above concept of ”growth” more rigorous.

Let f be an entire function. We define

My (r) := max{[f(2)] : |2 = r}
DEFINITION 2.1. The order p of an entire function f is defined by

log log M
» = limsup 28108 My (r)
r—00 In r

We say that f is of finite order if p < oo. Else, f is of infinite order.
DEFINITION 2.2. The type of an entire function f of finite order p is defined by

In M
o = limsup n—f(T)

r—o00 rP

It is a simple application of Cauchy’s and Liouville’s theorems that if an entire function of finite
order has no roots, then it must be in the form e”®*) where P is a polynomial. On the other hand,
an entire function f may only have at most countably many roots, whose only possible accumulation
point is at infinity, by the identity principle. Hence, dividing f by a converging Weirstrass product
whose factors contain exactly these roots, counting multiplicities, we get an entire function with no
roots on the complex plane. This shows that an entire function may be uniquely, up to multiplication
by some exponential factor, determined by its roots. This sketches the proof of the following formula,
called Hadamard’s representation theorem.

THEOREM 2.3. An entire function f of finite order p has a Hadamard representation in terms of a

canonical product
i 1/ 2\"
_ m P(2) 1- = AT (s
f(z) =2z"e H< Zn> exp (zn+ —i—p (Zn) )

n=1

where 2, cy is the sequence of non-zero roots of [, typically ordered by increasing order of magnitude,
m is the order of a possible root at 0, P is a polynomial of degree at most p, and p < p.

This representation is not unique, in fact one may choose any p smaller or equal to p to get a
different representation every time. It is however standard in literature in complex analysis to choose
p = | p]. This number is called the genus of the entire function f.

7



There is a strong connection between the order of growth of an entire function and the growth of
the sequence of its roots. For this we should distinguish between cases where the order is integer and
non-integer.

THEOREM 2.4. Let [ be an entire function of order p. Let (z,)nen be the sequence of its zeros,
having order py. Then, we have that py < p. In particular, if p is non-integer, then p = py.

One could be let to think that the difference between the integer and non-integer cases is due to
the exponential factor. Indeed, if we multiply an entire function of order p = py, the same order as its
zeros, with an exponential factor e*", where n > p, we get an entire function of order n with zeros of
order p < n.

2. Entire functions and complete monotonicity

A class of entire functions with a distinct interest is the one consisting of the entire functions with
negative zeros. In [20], Pedersen studied logarithmic derivatives of entire functions with respect to
complete monotonicity. One of the main results in this paper is the following proposition:

PROPOSITION 2.5. Let [ be an entire function of finite genus p having only real, non-positive
zeros. Assume that f has a root of rth order at 0 and its negative roots are {—M\; }ren where N\, > 0.
Then, (—1)P(2™(log f(x))")™*P) is a completely monotonic function for all m > 0 and it has the
representation

(=1)P(z™(log f(z))) ™) = / e_sxstrpZ)\Z‘e_’\’“sds, m > 1,
k=1

0

(=17 (log £ (@) = [ e ( - fj) ds.
0 k=1

We are mostly interested in the case where m = 0 above.(—1)?(log f(x))®*V is completely mono-
tonic, as it is the Laplace transform of a positive measure on the positive half-line. We denote

h(s) = Z e~
k=1

Sumability of this quantity for a given sequence { — ) } xen implies a concrete form of the representing
measure in the above Laplace representation. An example is given if we consider f = 1/I", the
reciprocal of the gamma function (see Chapter 3). It is an entire function with simple zeros on exactly
all the non-positive integers, and hence in this case
= e
— —sk _

hl/r(s)_ge = 1—6_5

hence



CHAPTER 3

Beta and Gamma functions

1. The gamma and beta functions

The history of the gamma function runs back to Euler, and to the problem of interpolating the
factorial with a continuous function, i.e. finding a function of a continuous variable x that equals
n! when x is equal to an integer n. This problem was allegedly suggested by Daniel Bernoulli and
Goldbach. To illustrate Euler’s construction, assume z,n > 0 are integers. We follow the exposition
from [4], which is also the standard reference in gamma and beta functions. We may write

(x+n)  nln+1),! aln® (n+1),

A P e e R SR

We notice that

hmwz1

n—00 n<*
nin® n \” AN 1\*
x!zlim—zlim( ) <1+—_) <1+_')
r OO —1 x
n T
= 14— 14+ =
<n+1> E< +j> ( +j)

where the latter infinite product converges for all complex numbers x that are not negative integers

because . .
(Hﬁ) (1+1,) :HW—;%O(%).
J J 2] J

DEFINITION 3.1. Forz € C\ {0,—1,—2, ...} the gamma function I'(x) is defined by

ket
2 rle) = fim

hence

—_

By the definition we immediately derive the most basic property of the gamma function,
(x4 1) =2(x).
Moreover, I'(1) = 1, hence these two properties give us that
Fn+1)=n!

Due to the convergence of the infinite product above, we see that [' is a meromorphic function with
simple poles on the non-positive integers. The function 1/T" is entire, hence it has the following
Hadamard product representation.

THEOREM 3.2. We have

1 ZOO —zZ/n
(2) mzZ@”H(l—i—%)e /

n=1
where v = lim,,_, (Zzzl % — log n) is Euler’s constant.

9



Probably its most standard representation is the Euler integral for the gamma function.

THEOREM 3.3. For %z > 0, we have

(3) [(z) = / h t*~te~tdt
0

All these representations form alternative, standard ways to define the gamma function. Another
equivalent, standard definition of the gamma function is following characterisation.

THEOREM 3.4 (Bohr-Mollerup theorem). The gamma function is the only function f on (0, 00)
for which the three following properties simultaneously hold:

L f(l)=1
i. flx+1)=xzf(x), x>0
iii. f is logarithmically convex

One important property of the gamma function is the Euler’s reflection formula.
THEOREM 3.5.

4) [(2)l(1 - =) =

T

sin rx

We denote the logarithmic derivative of I /I" of the gamma function by ). Sometimes this is called
the digamma function, and it has the following representations.

= 1 1
® w0 =1+ % (=1 1)

oo e—t e—zt 1 1 _82—1
(6) ¢(z):/0 (T_l—et) dtz—’y—l—/o <—1—s )ds

A function closely related to the gamma function is the beta function. The beta function is defined
for Rz, Ry > 0 by the beta integral of Euler,

1
(7) B(z,y) :/ "1 =) dt
0
It can be extended (meromorphically) to the whole complex plane as
['(=)C(y)
8 B :L"’ = —

A generalisation of the gamma function is the multiple gamma function of order /N. There are
many related kinds of multiple gamma functions in the literature. In this thesis, we specifically deal
with the N-multiple gamma function with parameters (1,1). See [21] and [7]. The definition of
multiple gamma function that we use here is the following:

DEFINITION 3.6. The function I'y(z) is called multiple gamma function and is defined by the
following recurrence relations:

() y(1) =1
(2) I'1(2) =T'(2)
Cnia(2)

(3) I'vja(z +1) = Twlz)



2. Ratios of gamma functions and complete monotonicity

The study of ratios of gamma functions with respect to complete monotonicity stems back at
Bustoz and Ismail [12] who showed that the ratio

I'(@)(z+a+0b)
[(z+a)l(z+0b)
is logarithmically completely monotonic. Several extensions of this result for ratios of the form

?:1 I'(z + a;)

i1 D@+ ;)

J=1

were found by Ismail and Muldoon [16], Alzer [3], and Grinshpan and Ismail [15].
Karp and Prilepkina in [KarpPril] extended the previous results by including weights, i.e. studying
the following ratio:

P T(Agz + a)
Z:l ['(Byr + bk)

This ratio appears in the context of probability, as it is the representing measure in the Laplace trans-
form integral representation of some special cases of the Mejer’s G function, a special function that
generalises hypergeometric and several other hypergeometric functions. Their results rely on the inte-
gral representations of gamma and digamma functions.

Their main results are:

9 W(z) =

LEMMA 3.7. The function (log W)" is completely monotonic if and only if

P e—ait/A; g e—biu/B;
(10) P(u)zz;m_z;mz()fomuu>o.
In the affirmative case,
(11) (log W)" :/ e " uP(u)du
0

THEOREM 3.8. The function W is logarithmically completely monotonic if

q q P p

w ST SRS | 07| P
j=1 i=1 i=1 i=1

and condition holds. In the affirmative case,

(13) —(logW)' = /Oc> e " P(u)du + log(1/p)
0

3. The median of the gamma distribution

In probability theory, there is an important probability distribution that is closely related to the
gamma function, the gamma distribution. It is defined by considering the incomplete integral in (3):

DEFINITION 3.9. The gamma distribution with parameter = > 0 is the probability distribution on
[0, 00) having cumulative distribution function defined by

1 S
(14) sy 1 / gy
F(ﬂf) 0



Its median m is defined implicitly through the equation

1 m() 1
15 - g = =
(15) () /0 ¢ 2

or equivalently

(16) / e 't idt = = / e ‘1At
0 2 0

So, one can consider the median as a function of the parameter = and study its analytic properties.
The median of the gamma distribution has been studied in several occasions. In [13], Chen and Rubin
proved that

(17) r—1/3<m(z) <z

and further conjectured that m(n) — n is decreasing. This conjecture was proved by Alm in [2]. In
[14], Alzer further proved that m(n+ 1) — an decreases for all n > 0 if and only if @ > 1 and increases
if and only if a < m(2) — log2. In [1], Adell and Jodra explore a very interesting connection with a
sequence due to Ramanujan.

In [9], Berg and Pedersen prove the following result

THEOREM 3.10. Let x > 0. Then, 0 < m/(x) < 1.

which is in fact the continuous version of the Chen-Rubin conjecture.
First, they prove that m is increasing, by showing a more general result on convolution semigroups
of measure on the positive half-line.

DEFINITION 3.11. A family {, },~¢ of probabilities on [0, c0) is called a convolution semigroup
if it has the properties

i. p12([0,00)) = 1forallz >0
. fig * fly = gy Torall z,y >0
iii. p, — 9o for z — 0 in the vague topology

where 0y is the Dirac mass at zero.

A probability measure i on [0, 00) has median m if p([0,m]) = 1/2. A probability distribution
may not have a median, or even if it has, it does not have to be unique. To guarantee existence it
is enough to require that its density is absolutely continuous with respect to the Lebesgue measure.
To further guarantee uniqueness, the density is enough to be a.e. strictly positive. The following
proposition gives a monotonicity result for probability semigroups with strictly positive density with
respect to Lebesgue measure:

PROPOSITION 3.12. Let {jiy }2~0 be a conolution semigroup of probabilities on [0, 00) having
a.e. strictly positive densities with respect to Lebesgue measure. Then, the median m(x) of j,
is a continuous and strictly increasing function on (0,00). Furthermore, lim,_,om(x) = 0 and

lim, o, m(z) = oo

The gamma distribution indeed forms a convolution semigroup. Property i. holds trivially. To
show that ii. holds, denote the density of the gamma distribution with parameter x by f,. Let x,y > 0.
Then, the density of the convolution of the gamma measures with parameters x and y is



s s pr—lo=t (o _ y—le—(s—t)
[ s —na= [EEEEN

by substituting © = t¢/s in the prelast equality. The third property is also easy to check, by
considering a compactly supported function g and taking limits to zero. Hence, Proposition (3.12
can be applied to show that m is increasing and continuous.

Further, they show that (13) implies that m is a real analytic function of z, as differentiating it
(using the implicit function theorem) gives a differential equation of the form m/(z) = G(z, m(x)),
where G is real analytic in both variables.

In particular, they study the median m through the function

x
= log ——
¢(z) := log — @
and prove that for z > 0,
1 —x¢'(x) < e®@,

from which the above theorem follows. They also show that
1
3 < zp(x) < log?2

from which it follows that

—log2/x —1/3z

xe <m(z) < ze

improving the inequality (T7). For example, using e™® < 1 — a + a*/2 for a > 0, it gives

(z) < 1 n 1
m(r) <x— -+ —
3 18z
Moreover, asymptotically at 0
m(z)
6_72_1/1: _>I~>O 1

while at infinity, the authors give the fallowing asymptotic expansion

YRS S B | B
TR T G05e T 2551502 ¢ O

Both expressions can be differentiated to give asymptotic expressions for m/’.

Subsequently in [10], the authors prove that m is a convex function. These analytic results on
the median of the gamma distribution were the main motivation for the first two articles attached,
investigating the analytic properties of the quantiles of the beta distribution.



4. Beta distribution and inverse incomplete beta function

The beta distribution is another important parametrised family of probability distributions. It is
defined similarly to the gamma distribution, by “cutting out” the Euler’s beta integral.

DEFINITION 3.13. The beta distribution with parameters a, b > 0 is the probability distribution on
[0, 1] having cumulative distribution function

! /pt“_l(l—t)b_ldt
B(a'7b) 0

The function [ is called regularised incomplete beta function. In [17], Karp and Prilepkina show
logarithmic convexity/concavity with respect to parameters by analytic methods.

Its inverse with respect to the p variable is the inverse (regularised) incomplete beta function and
is usually denoted by I~!(p; a, b). This quantity is exactly the p-quantile of the beta distribution with
parameters a and 0. Quantiles have great importance in statistics and probability, in particular in
computing confindence intervals. For a standard reference on the beta distribution see [6, Chapter 2].

In [24], Temme gives asymptotic expansions of p-quantiles when the parameters a and b are large.
In particular, these approximations hold with high enough accuracy when a + b > 5 and they are
implemented in several programming language packages that compute the inverse incomplete beta
function. For lower values, though, the method commonly used is a variation of Newton’s method,
which is slow for many practical needs like optimisation tasks where several instances of this function
have to be repeatedly computed. See also [19] for some interesting inequalities for the median.

Our purpose in the first two manuscripts is to study the behaviour the inverse incomplete beta
function when we fix p and the parameter b, as a function of a.

(18) I(p;a,b) =
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LOGARITHMIC CONCAVITY OF THE INVERSE INCOMPLETE
BETA FUNCTION WITH RESPECT TO THE FIRST
PARAMETER

DIMITRIS ASKITIS

ABSTRACT. The beta distribution is a two-parameter family of probability
distributions whose distribution function is the (regularised) incomplete beta
function. In this paper, the inverse incomplete beta function is studied analyt-
ically as univariate function of the first parameter. Monotonicity, limit results
and convexity properties are provided. In particular, logarithmic concavity of
the inverse incomplete beta function is established. In addition, we provide
monotonicity results on inverses of a larger class of parametrised distributions
that may be of independent interest.

1. INTRODUCTION

Let a probability distribution on I < R have a cumulative distribution function
(CDF) F. Its median is defined as a point on I that leaves half of the “mass” on
the left and half on the right, i.e. a value m € I such that F(m) = 1/2. In a similar
way, we consider the more general notion of a p-quantile:

DEFINITION 1.1. Let a probability distribution on I ¢ IR have cumulative dis-
tribution function F', and let p € (0,1). A value ¢, € I is a p-quantile of it if

F(q) =p.

In this notation, the 1/2-quantile is exactly the median. It is not always the case
that a p-quantile exists for a probability distribution, or that it is unique. However,
existence and uniqueness are guaranteed in the case of a.e. positive density wrt
Lebesgue measure. Then, we may consider the inverse distribution function of F.
The median and p-quantiles have importance in statistics as measures of position
less affected by extreme values than e.g. the mean, and they have further uses
considering levels of significance.

We are interested in parametrised families of probability distributions and the
behaviour of the p-quantile with respect to the parameter, with p being fixed. In
case we have a family of cumulative distribution functions F,, a being the parameter
of the family, such that for each a the corresponding p-quantile exists and is unique,
we may define it as a function of a implicitly through the functional equation
Fu(gy(a)) = p.

On the case of the median of the gamma distribution, such studies have been
done in several occasions, e.g. in [2], [7] and [8]. In [1], Adell and Jodra explore a
very interesting connection with a sequence due to Ramanujan. In [5] and [6], Berg
and Pedersen give a proof of the continuous version of the Chen-Rubin conjecture,
originally stated in [7], and they moreover prove convexity and find asymptotic
expansions.

In the present article, the main focus is on the p-quantile of the beta distribution,
or equivalently the inverse of the (regularised) incomplete beta function (3), as a
function of the parameter a. For a standard reference on the beta distribution see
[4, Chapter 2]. This inverse has also been considered by Temme [15] who studied

1
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its uniform asymptotic behaviour. In particular, his results give a very accurate
approximation for the inverse for a + b > 5. This is used in computer algorithms
approximating the inverse incomplete beta function. Also, see [14] for some inter-
esting inequalities for the median. In [10], logarithmic convexity/concavity results
are proved for the regularised incomplete beta function wrt to parameters, though
the methods employed there are quite different, and there does not seem to be any
direct connection with the results in the present article. In applications, (strict)
logarithmic concavity is an important property, as it ensures the uniqueness of
minimum and it is invariant under taking products.
The beta function is defined for Ra, b > 0 as the integral

B(a,b) = Ll 11— )b lde. (1)

It also has the following representation as ratio of gamma functions
B(a,b) = =——= (2)

which gives a meromorphic continuation of the beta function in C2. More in-
formation on the beta function can be found on [3]. The beta distribution is the
2-parameter family of probability distributions, whose cumulative distribution func-
tion is the regularised incomplete beta function

§o t 1 (1 —t)>tde

I(z;a,b) := B(a.b)

3)

We fix p € (0,1) and b > 0, and we consider the first parameter a as a variable.
We shall see in the Appendix that, due to a reflection formula for the regularised
incomplete beta function, we can translate the results to the case when we fix
the other parameter instead. We consider the p-quantile of the beta distribution,
which in the literature is often also called the inverse incomplete beta function, as
a function of a. We denote it by ¢ : (0,00) — (0,1) and define it implicitly by the
equation I(g(a);a,b) = p, or equivalently by

q(a) 1
f t2 1 — )P lde = pf t2 11 —¢)>dt. (4)
0 0

In the literature this value is often denoted by I Y(a,b), and in our case ¢ is the
function a + I, (a,b). Moreover, we consider the function

¢(a) := —alogg(a), ()

which turns out to be containing further information on ¢. In the following plots
we can get an idea on how the median of the beta distribution behaves wrt a.
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FIGURE 1. Plot of ¢ for p = 1/2

FIGURE 2. Plot of log ¢ for p = 1/2

FIGURE 3. Plot of ¢ for p = 1/2
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In the rest of the paper we fix p € (0,1). We first get the following two proposi-
tions, regarding monotonicity and first order asymptotics:

PROPOSITION 1.2. The function q in (4) is a real analytic and increasing function
on (0,00). It has limits

lin%) g(a) =0
and
9l =1

PROPOSITION 1.3. The function ¢ in (5) is real analytic on (0,00). It is decreas-
ing if b < 1, constant if b =1 and increasing if b > 1. It has limits

lim ¢(a) = —logp
and
lim ¢(a) =,

a— L

where ~yp, is the (1 — p)-quantile of the gamma distribution with parameter b.

Then, we investigate the analytic properties of the inverse incomplete beta func-
tion deeper. In particular, investigating its logarithm, we obtain the following two
results, which constitute the main contribution of this paper:

THEOREM 1.4. For fized b€ (0,1), ¢ in (5) is (strictly) convex.
THEOREM 1.5. For fized b € (0,00), q in (4) is (strictly) log-concave.

REMARK 1.6. One can infer from Figure 1 that ¢ is neither concave nor convex;
its reciprocal 1/q, though, is logarithmically convex by Theorem 1.5, hence also
convex. Moreover, based on Figure 3, as well as numerical results, for b > 1 we
conjecture that ¢ is concave.

The article is organised in the following way. In section 2 we present some general
results regarding p-quantiles of more general probability distributions, that may be
of independent interest. For instance, Lemma 2.2 is a generalisation of results
concerning monotonicity properties of ratios of power series and polynomials to
ratios of integrals. In section 3 we study the monotonicity and limit properties of
q and ¢ and prove Propositions 1.2 and 1.3. In section 4 we prove convexity of ¢
for b < 1, while in section 5 we prove logarithmic concavity of ¢q. In the Appendix,
we look into the dependence on the parameter b with a being fixed and translate
some of the results to this case.

2. GENERAL RESULTS ON pP-QUANTILES OF PROBABILITY DISTRIBUTIONS

The following lemma is a standard result in measure theory, that lets us inter-
change integration and differentiation [11, Theorem 6.28]. In the rest of the paper,
0, denotes differentiation with respect to the variable x.

LEMMA 2.1. Let (2,B,u) be a measure space, I < R an open interval and
f:IxQ—> 1R a function such that:

i. a— f(a,t) is differentiable for u-a.e. t € Q

1. t— f(a,t) is p-integrable for all a € I
i, g € LY(Q, dp) such that |0, f(a,t)| < g(t) for alla € I and p-a.e. t € Q
Then, the function a — SQ f(a,t)du(t) is differentiable and

a fwwww=jadwﬂww.
Q Q
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LEMMA 2.2. Let I < R be an open interval, A € R a non-empty Borel set, p
a o-finite Borel measure on A and u,v : A — [0,400) measurable functions, not
stmultaneously 0. Let f : I x A — (0,4+00) be such that
i. a— f(a,t) is differentiable for p-a.e. t€ A
ii. t— u(t)f(a,t) and t — v(t)f(a,t) are p-integrable for all a € 1.
iii. For each compact subset K c I, there exists a function gk : A — [0, +00) such
that ugk,vgi are p-integrable and |0, f(a,t)| < gk (t) for all a € K and p-a.e.
te A.

Let F : I — R be defined by:
§4 f(a,t)u(t)dp(t)

P =¥ Fa nulan)

Then, the following hold:

L If for all a € T and for p-a.e. t € A, dq.f(a,t)/f(a,t) and u(t)/v(t) both
increase or both decrease wrt t, then F is increasing.

II. If for all a € I and for p-a.e. t€ A, 0,f(a,t)/f(a,t) increases (decreases) wrt
t and u(t )/v( ) decreases (increases) then F is decreasing

Proof. Let U(a) = §, f( (t)du(t), =, f( (t)du(t). By the fact
that u(t)0, f(a t) and v(t )6 f(a t) are dommated on compact subsets of I by a
p-integrable function of ¢, Lemma 2.1 gives that both U and V are differentiable,
and the derivatives can be given by differentiating the integrands. Then, F’ also
exists and hence we need to investigate the derivative

U'(a)V(a) - U(a)V'(a)

Fla) = V(a)

We find
a)V(a) = U(a)V'(a) =

J J )(0af(a,s)f(a,t) = 0af(a,t) f(a, s))dp(s)du(t)
J L { <t} v(t)(0af(a,s)f(a,t) — 0af(a,t)f(a,s))du(s)du(t)
J L { >t} v(t)(0af(a, s)f(a,t) — duf(a,t)f(a,s))du(s)du(t)
= f f u(s)v(t)(0af(a,s)f(a,t) — 0af(a,t) f(a,s))du(s)dpu(t)
A JAN{s<t}
J jA { <t} )(a f(a t)f( ) - aaf(av S)f(Cl,t))d,u(S)dM(t)
— J JA . <t}(u(s)v(t) —u(t)v(s))(0af(a,s)f(a,t) — daf(a,t) f(a,s))dpu(s)du(t)

where in the pre-last equality we have made use of Fubini’s theorem. The last
integrand, as s < t, is non-negative (non-positive) if d, f/f and u/v have the same
(opposite) monotonicity properties, which proves the lemma. O

REMARK 2.3. In the proceeding Lemma, the same conclusion holds we allow u,
v to assume the value zero at the same time, as then, without loss of generality, we
can just integrate over the set A" = A\({u(t) = 0} n {v(t) = 0}), which is again a
Borel set, and we consider the condition u/v being increasing (or decreasing) in A’.
REMARK 2.4. Lemma 2.2 is a general case of results concerning monotonicity

properties of ratios of power series and polynomials. For instance, it gives [12,
Lemma 2.2], if we set p to be the counting measure on N.
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LEMMA 2.5. Let I,J be two open intervals. Let f: I x J — (0,00) be such that:
i. a— f(a,x) is differentiable for a.e. x € J
1. x — f(a,x) is integrable for all a € I
1i. For each compact subset K < I, there exists an integrable function gx : J —
[0, 4+00) such that |0qf(a,t)| < gr(t) for alla € K and p-a.e. t€ A.
iv. The logarithmic derivative of f wrt a is increasing (decreasing) wrt x for a.e.
T, i.e.
Gell0t) 4 (1.
f(a,z)
Then, the p-quantile q(a) of the probability distribution with density f(a,x)/ SJ fla,t)dt
is increasing (decreasing) wrt a.

Proof. We will deal with the case that the logarithmic derivative of f is increasing,
and the other case, that it is decreasing, is analogous. Let = € J = (¢, d), where
—0 £ ¢ < d < +00. Then the cumulative distribution function is

_ e fla)dt 7 F(ast) 1 ()dt
§ f(a,)dt “fatdt

We set u(t) = [ ,1(t) and v(t) = 1. As u/v = u decreases and 0, f/f increases wrt
t, by Lemma 2.2 we get that F' decreases pointwise wrt a. This means

M faydt SR fa+ byde 5 fa
 fandt S fla+h,t)dt §7 f(a, t)dt
so that g(a + h) = ¢(a) and hence that the p-quantile is increasing. O

F(a;x)

=D

REMARK 2.6. In Lemma 2.2, if the logarithmic derivative 0, f/f is strictly mono-
tone (and u = v), it is easy to see from the proof that the ratio of the integrals in
the conclusion should also be strictly monotone. Hence, also in Lemma 2.5, if the
logarithmic derivative is strictly increasing (decreasing), then the p-quantile is also
strictly increasing (decreasing).

The following Lemma deals with the question of convergence of p-quantiles of a
convergent sequence of probability distributions. We denote the extended real line
R U {£w} by R, with its usual topology.

LEMMA 2.7. Let F, : R — [0,1] be a sequence of cumulative distribution func-
tions on R, extended by F,(—0) :=0 and F,(+w) := 1. Let g, be a p-quantile of
F,, i.e. Fo(qn) =p€(0,1), Yne N. Assume the following conditions:

i. The sequence (Fp,(x))nen converges pointwise to a limit Fop () 1= lim, . F,(x)
1. The sequence of p-quantiles converges to a limit qy 1= limy, - g, € R
Then,
4 € [sup{z € R|F,(z) < p},inf{z € R|F,(z) > p}]. (6)
Thus, if Fy. is continuous, q, s a p-quantile of Fy..

Proof. Let some w € R be such that F..(w) < p. By condition (i) we have that
there is some ng € N such that Vn > ng : F,,(w) < p = F,(¢n). As each F, is
non-decreasing, we have that Vn > ng : w < ¢, and hence ¢, = w. As this holds
Vw € {z € R|F,.(x) < p}, we get that ¢, > sup{z € R|F,.(z) < p}. In a similar
way we may prove that q,, < inf{z € R|F,(z) > p}. In case F is continuous, we
have [sup{z € R|F.,.(z) < p},inf{z € R|Fy(z) > p}] = {z € R|F,(z) = p}, hence
then ¢, is a p-quantile of F.. O
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REMARK 2.8. As IR is compact, p-quantiles always have limit points, and the
above Lemma shows that convergence of distribution functions for which p-quantiles
exist implies that all their limit points lie in the interval in (6). This interval either
consists of the closure of F,;1({p}), or, if this set is empty, it degenerates to a point,
which is a point of discontinuity of Fl..

LEMMA 2.9. Let I,J c R be open intervals, and (F(a;x))qer be a family of
cumulative probability distribution functions of © on J, having positive densities
f(a;t) with respect to Lebesque measure. Moreover assume that the corresponding
densities are real analytic in both variables. Denote the respective p-quantiles by
q(a). Then, q is a real analytic function of a.

Proof. As the densities are positive functions, the p-quantile exists and is unique for
each a. Hence, the function ¢(a) is well defined implicitly as the solution y = ¢(a) to
the equation F'(a;y)—p = 0. Let some yo € J and ag € I such that F'(ag;yo)—p = 0.
As F is real analytic and 0,F(a;y) = f(a;y) # 0, by [13, Theorem 6.1.2] the
equation F'(a;y) —p = 0 has a real analytic solution y = y(a) in a neighbourhood
of ag such that F(ag;y(ag)) —p = 0. By uniqueness of the p-quantile this solution
must be exactly ¢(a), and hence ¢ is real analytic. O

3. MONOTONICITY AND LIMITS

Proof of Proposition 1.2 Fix b > 0. As the regularised incomplete beta function
I(z;a,b) is real analytic in z and a, Lemma 2.9 gives real analyticity of ¢q. Let
B(a; ) := x~1(1 — x)*~1. Its logarithmic derivative wrt a is
Oaf(a,b;x) _ v Y1 —2)b llogx ~logz
B(a, b; ) zo—1(1 — z)b-1 ’
which is an increasing function of x, and Lemma 2.5 gives us that ¢ is also increasing.
Its limits at 0 and oo are classical results. They can also be obtained by considering
limits of the incomplete beta function and using Lemma 2.7. Let, for instance,
some limit point lim, . g(a,) = ¢s € [0, 1] for a sequence a,, — 00. Then, the fact
that lim,—,+, I(z;a,b) vanishes for z € [0,1) and is a unit at z = 1 gives ¢, = 1,

hence lim,—, 4 g(a) = 1. A similar argument shows lim,_,q ¢(a) = 0. O
Proof of Proposition 1.3 By Proposition 1.2 already, ¢ can be seen to be a real
analytic function. Regarding monotonicity, if b = 1 then ¢(a) = —logp. Assume
b > 1. By using a change of variables in (4) we get
J e (1 —e /) "1ds = pf e (1 —e /) 1ds (7
#(a) 0

and hence the function ¢ is the (1 — p)-quantile of the distribution with density
function
e—w(l _ e—x/a)b—l

Sroo e 5(1 —es/a)b-1ds .

We set f(a;z) := e #(1 — e /%)’ The logarithmic derivative of f wrt a is
Oaf(a;z) — (b— 1)ze=*/a

flasz) — a?(L—eo/a)’

The derivative of this wrt z is

Oaf(a;x) b—1 = o o\ —2
Op | = e e (ae”e —a+x)(-1+e =) =0
(BHE) Do (e E —aka) (14 )
as the function x — ae™ @ — a + 2 has positive derivative for 2 > 0 and vanishes at
0. Thus, by Lemma 2.5 we have that ¢ is increasing. The case b < 1 is similar.
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For the asymptotic results, we notice that for a — 0, we have that

—x _ ,—z/a\b—1 —x
i € (1 —e %) e

a—0 S(;L e—s(l _ e—s/a)b—lds - SS‘/ e—sds =

—x

e

The corresponding distributions, whose p-quantiles are equal to ¢(a), converge to
the gamma distribution with parameter 1, and hence by Lemma 2.7 lim,—,0 ¢(a) =
—logp. Similarly, for a — o

i e—:c(l _ e—x/a)b—l ) P e—Tpb—1
11m

o) = 11m =
- : —s/ayb—1 53]
oxO —5(1 — ¢—s/a)b—1 o (L _g{(1—e—s/ —sab—1
ass So e 5(1—e-s/a)b-1ds  a— So e Swds So e—ssb—1ds

hence the distribution converges to the gamma distribution with parameter b and
lim, 5 ¢(a) = p, the (1 — p)-quantile of the gamma distribution with parameter

b. O

4. CONVEXITY OF ¢ FOR b < 1

We rewrite (7) as

#(a) o0
J e—s(l _ e—s/a)b—lds _ (1 _p)J e—s(l i e—s/a)b—lds' (8)
0 0

We denote f(a;s) = e (1 — e~ ¥*)1 and differentiating the above equation we
have
b(a)

S@fo)+ [ astwoi=a-p [ "o flasar (9)

0

Differentiating again,

o(a

x )
¢"(a)(a; é(a)) =(1 — p) j &% f(a; t)dt — p j 02 f(a; )t

o(a) 0
— (¢/(a))?02f(a; ¢(a)) — 2 (a) 01 f (a; (a)) (10)

where 05, j € N, denotes differentiation wrt to the jth variable.

Proof of Theorem 1.4 Let be (0,1). By Proposition 1.3 ¢’ < 0, and as

b—-1

0sf(a;s) = —e~*(1— e /)"~" 4 e (1— e/ 23 <

and

—1
Ouf(a;s) = —sb e (1— e~ =2 50
a

we see that ¢'(a)202 f(a; ¢(a)) < 0 and ¢'(a)01 f(a; #(a)) < 0. In order to show that
@" > 0, using (10) what is left is to show that

- b(a)
(1 —p)f &2 f(a; t)dt — p j 02 f(a: t)dt > 0 (11)
o(a) 0
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We shall rewrite the above integrals in another way. We have

[ @

¢(a)
- 1 o 2t t t - 1
b J ote” e e (1l —ea)P3 <<a - t) es + (b=t _ a) dt
a* 2 2
o(a)
_2(b B 1) ” —as _—2s —s5\b—3 S s b—1
== fq&(a)se e *(1—e”) (1—2>e+ 5 s—1)ds
_ 2(b — 1) * —at
= JM e~ “n(t)dt
where
n(z) = ze (1 — e %)"73 (e”” 1- g T+ b; 1m) (12)
and similarly
#(a) 2Ab—1 e
J 0% f(a;t)dt = (b—1) J’ e~ n(t)dt
0 a 0
Hence we can rewrite
e d(a)
(-9 | flanae—p| st -
d(a) 0
_ o0 é(a)/a
=D (a-n | emwa—p[ emmma) 03
“ é(a)/a 0

We now proceed to show (11). We see in Lemma 4.1 below that the function
b—1

w(z) = (1 - g) e’ +

has a unique root p on (0,+00), and it is positive on (0,p) and negative on
(p,0). Assume that ¢(a) = pa. As w and n have the same sign, we have that
S;’&a)/a e “'n(t)dt < 0. For the other integral, we have

®(a)/a P o(a)/a
J e n(t)dt = J e “n(t)dt + f e (t)dt
0 0

p

>e 0P (Jp n(t)dt + Jd)(a)/a n(t)dt)
0 p

>eaﬂ(fpn@yﬁ4-fwnuyﬁ>::eaPJq}nndt:o

0 P 0

z—1 (14)

by Lemma 4.2 below. Hence
2b — 1 x° #(a)/a
-y ((1 o femwap [ i) 2o

and by (13), (11) is proved for ¢(a) = pa.
Now, assume that ¢(a) < pa. We define

03 f(ast)  2t((a—1t/2)e/* + (b—1)t/2 — a)

M) = ) et A — 12 "
We further denote
ho(s) = “h(a;as) = s(1—s/2)e+(b—-1)s/2—-1)  sw(s) (16)

2 (es —1)2 (es —1)2



10 DIMITRIS ASKITIS

By Lemma 4.3, hg is decreasing on (0, p), hence h(a;s) is also decreasing wrt s
on (0, pa). Hence, for t € (0,¢(a)) © (0,pa) we have h(a;t) > h(a;¢(a)). For
t € (¢(a), pa), we analogously have h(a;@(a)) > h(a;t), and if t € (pa, ), then
h(a; ¢(a)) > 0 > h(a;t). Hence,

0 ¢(a)
1—- 0% f(a;t)dt — 03 f(a;t)dt =
( p>L(a) flast)dt=p | 3% ety
- $(a)
—b-1) ((1 -0 [ Manfa-p [ b t)dt)
#(a) 0

ge #(a)
=(b—1)h(a; ¢(a)) ((1 —p) L( )f(a;t)dt —pf f(a;t)dt> =0

0
by (8). Thus (11) is proved. As the RHS of (10) is positive, then ¢” > 0. O
LEMMA 4.1. Fiz b > 0. The function w in (14) has a unique root p on (0, 0).
We have that w(z) > 0 for x < p and w(x) <0 for xz > p.

Proof. We have

1l—x b—-1
! x
= +
w'(x) 5 € 5
and
” _ T g
w (w)——ge <0 forz>0
Hence w' is strictly decreasing, and as w’(0) = b/2 and limy,_, 4 w'(x) = —o0, it
changes its sign exactly once and we get that w is initially increasing and then
decreasing, concave function. As w(0) = 0 and lim,_, 5, w(z) = —o0, we get that

w has a unique root p € (0,00), and w(z) > 0 for x < p and w(x) < 0 for z > p. O
LEMMA 4.2. For b > 0, it holds that

oo L b1
J 86_2‘5(1 i e—a)b—S (eb N feb + S) ds=0
0 2 2

Proof. In the course of the proof we assume that b # 1,2, which may be lifted in
the end by taking limits. We split the integral into 3 parts. The first one is

v el
I =f se (1 —e ®)P3(e® —1)ds

0
=J se™5(1 —e™%)2ds
0

58]
=— f log(1 — e *)e~(0=1tqt

0 1 — e—(=1)t\’
_ ot
= Jo log(1 —e™) < ] > dt
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where ¢ :=I"/T is the digamma function (see [3, Chapter 1]). For the second part,

_1(*
Iy :L 826725(1 _ eis)bigds
2 Jo
_ b—1 <J7v 826—5(1 _e—s)b—st _ 2JI 86_8(1 _e—s)b—2d8>
2(b—2) \ Uy 0
b—1 (' b2y _ V() +7
b—1 () +v
= B(1,b—-1) = ———
2(b—2)61 L A

using that d7B(a,b) = Sé to=1(1 — t)*~"!log™ tdt for b > —n, which is derived by
differentiating the integral representation of the beta function for b > 0 and using
the identity principle. Finally,

1 (™
Is = — fj s2e™5(1 —e™*)03ds

1
:—-EL(bgw%l—n““&

=— %6%B(1, b—2)

1., a+b—2
—_56(1 (B(a,b_l)H>

b1 2B(Lb—1)
b—1 v +9(b)
BT KL R oy

where we have used that & B(1,b— 1) = 7721 We see that I; + Io + I3 = 0, and
the Lemma is proved. 0

LEMMA 4.3. Fiz b > 0. The function hg in (16) is decreasing between 0 and its
root p € (0, 00).

Proof. Tt is easy to see that x/(e* — 1) is decreasing. The rest is also decreasing as

(1—g)ez+b*71x—1:§ T gL+
e’ —1 2er —1 2 e —1

and

=0

z(e® +1)\ €2 —2er—1
er —1 (e —1)2

as (e*® —2e"x — 1)’ = 2¢"(e® —x — 1) = 0 and the numerator vanishes at 0.
Hence, on (0,p), ho is the product of two decreasing, positive functions, hence
decreasing. O

5. LOGARITHMIC CONCAVITY OF ¢

In this section, we shall prove Theorem 1.5. In order to have a more concise
notation, we shall often omit the argument a from the notation of the functions of
a (g, ¢ and &), without their argument. Using [9, 8.17.7], we can rewrite (4), as

¢ ['(a)T'(b)

L oR(a1-ba+1lq) =pet? 1
a2 l(a‘a b7a+ 7q) pI‘(a—i—b) (7)
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and expanding the hypergeometric sum,

DI e L (18)

(a +n)n! I'(a+0b)

Of course, if b € N, the sum above terminates at b — 1, as (1 — b), = 0. Using that

(1-0), _ (b—1)(b—1—1)---(b—1—n—1)(_1)n: (b—1>(_1)n

n! n! n

and denoting
§:=—logg (19)

we can rewrite (18) further as

- b—1\ (=1)re™™ I'(a)
52 ( ) (a+n) _pr(b)F(a+b)
that is

i s (b n 1) (—1)"e= ("8 = pI'(b) (20)

a+n n

We shall show that & is convex, which shall imply the logarithmic concavity. The
following lemma will be the key to this proof.

LEMMA 5.1. We have that

’ = # B = 1
¢ _§Oa+b+nyn+b(5) Z:: a+nYn(§) <21>
where
S ct(l t)b 1dt
Yel©) = e ey (22)

Proof. Differentiating (20) we get

— b—1 ne—(n+a)§ F(a+b) I_ n4a)e F(CL-{-b)
Z( )i l(na)(am)) SR )f)na(am)]

)
. o (b—1 _qynene T(a+0b) \ ~ aT(a+d) I'(a + b)
2 (" e l(r(axa 2) €t St n)]

Using the fact that > (b 1)(—1)"6_”5 = (1 —e$)b1, we get
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(=
—

e (<P<F(><++b)n)> / (M) - in)
I e e e =)
)

3 |

k=0

S

3 |

D-aremex

1 1 1 13
((k+a)(a+n) _(k—l—a—i—b)(a—i—n))  (n+a+b)(a+n) a+n

)(—1)"e”€x

SN
3 |
—

1 1 1 1 1 1
. a+n a+k/)k—n a+n a+k+b/) k+b—n

o ([(b—1 nome [ 1 1 1 13
_;0<< n >(_1) ¢ (a+n_a+n+b)b_a+n>

e (2 ()
— (b R 1) (—1)emE¢ + Z::O (b - 1) .

1 1 _ 1 1 n 1 _ 1 1
a+k+bk+b—n a+kk—-—n a+n+b a+n)b

SO (3 ()

+
1 1 b—1 1 & 1 [b-1
_ _1\yn,mnéE _1\n,—né
(a+n+b a—i—n)( n >( e b a—i—n( n )( e ™

n=0

= b—1 1 1 1 1
_1)e—né _
+§0k¢ < n >( Jre (a+k+bk+b—n a+kk—n>

Fl)n*ngi 1 I S 4
‘ k+a k4+a+b)a+n (a+n)?> a+n

)

)

13
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_Z’: 1 (b—l n_n§< 1 >>

at+n\ n =, k—n k+b—n

= 1 b— 1 & 1 [b—-1

nfn.f _1”*”5

+/ (a—l—n—i—b a—l—n)( n ) b ,Z_loa—i-n( n >( Jre e
- k a+n+bn+b k a+nn—k
_2 <b—1 n—ﬂf( 1 >_1>

—at+n\ n =, k—n k+b—n b

| b—1\ (—1)ke k¢ b—1

A _1n7n£

+n:Oa+n<I§n<k) kE—n (n)( e 5)

= 1 b—1\ (=1)ke* & 1 b—1 1

—1)remEZ

D Tt n< k >n+b—k +n20a+n+b< n >( ey
= 1<b—1) _ 1 1 1
= (=1)"e "¢ <Z( — )—)

atn\ n = k—n k+b—n b

| b—1\ (=1)ke *  /b—1

N —1)reE

+;Oa+n<l§1(k> k—n <n>( )heT™e

= b—1\ (=1)ke ke

g +n+b2( k )n-i—b—k;

Thus we have

and

By Lemma 5.2 and

0 i b—1 (_1)k (n+b—Ek)¢ 1 _ (n+b)£(1_ —§)b—1
A\ k ¢ ntb—k) © ¢

we have that
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and hence we get
20
b — 1 1
Z” —(n+b)¢ Z ke(n+b7k)§ > /(1 _ e*{)bfl

:0 n+b—k

—(n+b)¢ 6 (n+b)t )b 1dt/( )bfl
0

S‘ (n+b) t(l )b 1dt
e(nFD)E(] — e—€)b-1 = Yo4s(¢)

Similarly, Lemma 5.2 and

S S A

k#n
give
SS e™(1 —e )b 1dt
Xn(g) - 6”5(1 — e_g)b_l = _Yn(g)
hence (21) is proved. O
LEMMA 5.2. Forne N and b > 0, we have
& (b— 1) (—1)*
> — 7 _—90 (23)
= ( kE Jn+b—k
and
b— 1> L1 b—1 1 1 1
(7)ot () (3 eet=))
k;ﬁn( k k—n n = E—=n k+b-—n b
(24)
Proof. For z € C\{0, —1, } we have, applying [3, Theorem 2.2.2],
i (b — 1> (=D 1T U=bk(z)r  2F(1=bzz+11)
SNk Jk+z 22 k(2 + 1)y z
_TP+1)(0b)  T(2)(b)
(2 +b) T(z40b)
Hence, we get
S (b—1\ (=1)F b—1\ (=1)* L'(b)T(—z —b)
SV i 2
Z( k >n+b—kz 13%};0( k )z—i—b—k ST (=) 0
C\N and let

proving (23). For (24), assume z €

e (5 () )+ £ ()

bnl ( ( iz_k+z_z>_niz)+§0 b;l)(}f—j)j_(
S e

-
(W’_Z) v +2) - T T n-z) To-9

cos(nz) 1 ) L TON(=2) (b—l
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where we have used the reflection formula for the digamma function. We have,
using that Res (22572 p) = 1, that

sinmwz ?

cos(mz) 1
- -
sin(mz) n-—z

lim <1/)(b —z)—¢Y(1l+2z)—

z—=n

) = v - w1+ n)
Furthermore, using de L’Hopital’s rule, we get
) L()I(—2) b—1\ (=)™ _
gg}b(l"(b—z) _< n >n—z)_
. I'(d) ™ b—1\ (=1)"
—iﬂ(— I'(b—2)I'(1+ 2)sinmz < n >n—z>

N UEENEEE) (7 (—1ynsinnz
n—2)

(n—=z2
= lim
r(b ! r(b b—1 .
. (F(bfz)(F)(lJrz)) (n—2)+ F(bfz)(F)(lJrz) + (7, ) (=1)" cos 7z
= lim

sinmz

) —
SIHTFZ(

zon —(n—2z)cosmz

s

n 7
. (%) (n—2)+ (%) + w(bzl)(—l)”sinwz

z—n cosmz + (n — z)wsinmz + coswz
_ i (0 ) — (b —n))
2cosmn

=" )@ m - v - m)
hence getting (24). O

LEMMA 5.3. Let b > 1 and ¢ > 0. Then, Y. is increasing on (0,0). Moreover,

Y.(z), Y, (x) are decreasing wrt ¢ for fized x.

Proof. We rewrite

g’ ct(l_e b 1dt J-

ecs(l —e®)

Differentiating, we get
- ot _ g\ b1 ! = N
<J e ( ) dt> :J e Y0, ( ) dv
0 et — 1 0 et — 1

v e® —e?\"% v 1
— —cv+tx _ 1
J, e (G2T) G

and this completes the proof. O
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Proof of Theorem 1.5 We shall show the convexity of £ = — log ¢, which is equivalent
to logarithmic concavity of g. The case b < 1 is given by Theorem 1.4, as af” =
¢"—2¢ > 0. For b = 1, we have £ = 18 1/p) hence £” = 0. For b > 1, differentiating
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(21) we get
[ 0] o
e
g CL + n HZ::O 2 +b(§)+
S Y — Y/ ">0
(nZ:Oa—f-b—i-n n+b(£) T;Oa+n n(&)) € >
using that £’ < 0 and Lemma 5.3. O

REMARK 5.4. We notice that (21) also gives

_ i 1 S; tfnfbfl(l )b 1dt %) Sl tfnfl(l_ )bfldt
q n:Oa+b+n q—n—b—l(l a+n q —n— 1(1 q)b—l

n=0

APPENDIX

Finally, we want to see how the p-quantile depends on the second parameter of
the beta distribution. For clarity, from now on we denote the p-quantile of the beta
distribution with parameters ¢ and b by g,(a,b). We shall consider a constant, and
try to relate ¢ as a function of b with the previous results.

A simple change of variables s =1 —t in (3) gives the functional relation

I(z;a,b) =1 —1(1 — x;b,a) (26)
which implies
p = I(gy(a,b);a,b) = 1-I(gp(a,b);b,a) = I(gy(a,b);b,a) = 1—p = I(q1—p(a,b); b, a)

and, using the uniqueness of the p-quantile, we get

4p(a.0) = 1 — qu_y (b, ) (27)
Hence, by Proposition 1.2, we get that g, is decreasing in b and

lim g, (a,b) =1

lim g,(a,b) =0

b—x

Moreover, we have
(1= gp(a,0)’ = q_p(b,a)" = e#1=2 (") (28)

where ¢1_,(b) = —blog g1, (b, a), hence the behaviour of g,(a,b) as a function of
b can again be studied similarly through the function ¢,. We also easily see that
b — 1—gq(a,b) is log-concave. We remark that numerical evidence shows that
b — ¢y(a,b) itself is not (log-)concave/convex. However, the function b — ¢, (b)
seems to be convex.

ACKNOWLEDGEMENTS. I would like to thank H.L.Pedersen for careful reading of
the original manuscript and useful suggestions.
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ASYMPTOTIC EXPANSIONS OF THE INVERSE INCOMPLETE
BETA FUNCTION WITH RESPECT TO THE FIRST
PARAMETER

DIMITRIS ASKITIS

ABSTRACT. In this work in progress, we study the asymptotic behaviour of
the p-quantile of the Beta distribution, i.e. the quantity ¢ defined implicitly
by Sg t*=1(1 — t)b=1dt = pB(a,b), as a function of the first parameter a. In
particular, we derive asymptotic expansions of and ¢ and its logarithm at
0 and o0. Moreover, we provide some relations between Bell and Ngrlund
Polynomials, a generalisation of Bernoulli numbers. Finally, we provide Maple
and Sage algorithms for computing the terms of the asymptotic expansions.
2010 Mathematics Subject Classification: Primary 41A60; Secondary 33B15, 60E05,
11B68

Keywords: median, beta distribution, asymptotic expansion

1. INTRODUCTION

1.1. Background. Granted a probability distribution on R, its median is defined
as the value m € R that leaves exactly half of the “mass” of the distribution on its
left and half on its right. Instead of requiring that m splits the mass exactly in two
equal parts, one may choose a p € [0,1] and define the more general notion of the
p-quantile value of the probability distribution:[4]

DEFINITION 1. Let F' be a cumulative distribution function on some subset
I c R. Let pe[0,1]. A p-quantile of F' is a point ¢ € I such that F(q) = p. If
p = 1/2, a 1/2-quantile is called median.

For an arbitrary probability distribution on R, not always do p-quantiles ex-
ist, neither do they have to be unique, but for a distribution with density wrt to
Lebesgue measure p-quantile values always exist, as then the distribution function
is continuous and increasing, and if furthermore the density is a.e. non-zero, they
are also unique, as the distribution function shall be strictly increasing.

One point of interest has been the study of the p-quantiles, including medians, of
a parametrised family of probability distributions as a function of the parameter,
given a fixed value of p. Such a function is well defined if the distribution has
density wrt to the Lebesgue measure which is a.e. non-zero. Questions that may
arise in this context have to do with analyticity, monotonicity, geometric properties
and approximations, in particular asymptotic expansions, of the implicit function
g(a) defined by an equation of the form Fj(g(a)) = p, where F, is a family of
commulative distribution functions. Because of the implicit definition, the study
of its properties can be challenging. An example is the median of the gamma
distribution, which has been studied in several occasions, for example in [7], [5],
and many connections have been found, for example with the Ramanujan’s rational
approximation of e, see [2], [8] and [1], while in [6] it was also proved that it is is
a convex function.

In this paper, considering p fixed in (0,1), we focus on studying the p-quantile
of the beta distribution, i.e. the distribution on [0,1] with the density function

1
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t — t971(1 — ¢)*~1, as a function of the parameter a considering b fixed. The p-
quantile of the beta distribution has been considered by Temme in [12], who studied
the asymptotic behaviour of the p-quantile (or in his notation, the inverse of the
normalised beta incomplete function) under restrictions over relations between the
two parameters of the beta distribution. Also, see [11] for some inequalities on the
median. This preprint is to be a continuation of our work in [4], which deals with
convexity /concavity properties.

The p-quantile of the beta distribution, as a function of the first parameter, is
defined as:

DEFINITION 2. Fix p € (0,1) and b € (0, +o0). The function ¢ : (0, +o0) — (0,1)
defined implicitly by

q(a) 1
f tv N1 — 1) tdt = pf t2 1 =) tat (1.1)
0 0

is called the p-quantile of the beta distribution with parameters a and b.

As in [5] for the case of the median of the gamma distribution, to study the
p-quantile we consider and study an auxilliary function related to its logarithm

¢(a) := —alogq(a) (1.2)

and it will become clear that studying the logarithm gives more information on the
behaviour of the p-quantile. One may also consider ¢ itself as the (1 — p)-quantile
of some distribution. Indeed, using change of variables in (1.1)

e(a) £

J e~ (1 — e=s/yP=1ds — (1 —p)J, (1 — e=y=lds  (1.3)
0 0

Later, Bernoulli numbers and a generalisation of them known as Ngrlund polyno-
mials will become useful. The Bernoulli numbers B,, are classically defined through
their generating function

ea:

© n
T T
-1 = ZOBnH (1-4)

They can be generalised to the Bernoulli polynomials B, (t), defined similarily
through the generating function

g (1.5)

Another generalisation of Bernoulli numbers are the Ngrlund polynomials B de-
fined through the generating function

T S 0 . mn
<ez_1> - > B (1.6)

n=0

They are polynomials in s. If s € N, then BT(,,S) is the s-fold convolution of Bernoulli

numbers. An account on Ngrlund polynomials can be found in [9, 24.16] and
references within. Bernoulli and Ngrlund appear often when we consider asymptotic
expansions of the gamma and related functions (see e.g. [13].

1.2. Main results. We state the following propositions regarding first order asymp-
totics. They are proved in [4]. In the rest, v, denotes the (1 — p)-quantile of the
gamma distribution with parameter b.
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PROPOSITION 1. [4, Proposition 1.2] The p-quantile of the beta distribution q(a)
is a real analytic, increasing function of a. It has limits

lim g(a) =0
a—0
and
A, ale) =1
PROPOSITION 2. [4, Proposition 1.3] The function p(a) = —alogq(a) is real

analytic and increasing for b > 1, constant for b = 1 and decreasing for b < 1. It
has limits

liII(l) p(a) =logp (1.7)
a—
and

Jim p(a) =7 (1.8)

To study the asymptotic behaviour of ¢ and ¢ in more depth, we shall try to find
the asymptotic expansions of ¢ at 0 and oco. Studying asymptotic expansions of
implicit functions can be highly non-trivial, as the method and the obstacles arising
depend much on the form of the defining implicit relation. For the p-quantile of
the beta distribution, we consider the cases of asymptotic expansions of ¢ centered
at 0 and at co. In both cases, we shall combine differentiation and Faa di Bruno’s
formula (2.10), and the existence of the expansion has to be proved inductively.

For the case of 0, we shall compute the limits of the derivatives. For the case of
o0, for the same purpose, we shall introduce the differential operator D defined by

Df(z) = 2?0 f ()
where 0 denotes the common differentiation operator. The calculus of D is studied
in subsection 3.1.
This operator has the importance that it can give, under certain conditions, the
asymptotic expansion of a suitably smooth function at infinity, which is summarized
in the following lemma, which is proved in subsection 3.1:

LEMMA 1.1. Let f € C™(0,00) for some n € N. Then, the following hold:
i. Iflim, o, D™ f(x) exists in R for allm < n, we have the asymptotic expansion

n—1

Ck 1

fl@) ~ ] zk+0<xn>
k=0

where

cp = (-1)* lim D¥f(a), m<n

! a— AL
it. Assume, conversely, that f has asymptotic expansion of order n, i.e. f(x) ~
Yo Z*+0 (ﬁ) .as well as that its derivatives f(™ admit asymptotic expansions
of orders m+n, for m < n. Then, we have
—1)*
cr = (=1) lim D* f(a)

k! a>x

We note that, if conditions in i. hold, we may apply the lemma to D*f and
get asymptotic expansions of higher derivatives, hence the expansion in 4. can be
differentiated. Also, if in the previous lemma f € C*(0,00) and its conditions hold
for all n, then we may get the whole asymptotic expansion of f.

Regarding the functions ¢ and ¢, we have the following two pairs of theorems
and Corollaries on their asymptotic expansions, which are proved in sections 2 and
3 respectively. In the following, ¥(n, z) := 0"*! LogI'(z) denotes the polygamma
function. Also, (m), denotes the Pochhammer symbol of m, i.e. (m), = m(m +
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1)...(m+n—1). If m € N, then we have (m), = %, and (—m), =
(—1)"( m! 7 if n < m, and (=m), = 0 if n > m. These identities will be widely
used in this paper.

THEOREM 1. The function ¢ admits the asymptotic expansion p(a) ~ 3. c,a™
at 0, with ¢y = logp and

U(n—1,0)—V¥(n—1,1) (=1)"** J’ il <e_“ —e~bu
0

n! n!

Cp =

For be N, we have in particular
b—1

n 1 1
en = (=1)"F Zzl y (1.9)

COROLLARY 1. An approzimation for ¢ for values of a close to 0 is
I'(a +b)
~log ——F— —1
¢(a) ~ log Tatr@) 87

g(a) Tla+b) \"
ple <r(a + 1>r<b>>

each having a remainder term vanishing faster than a™ at 0, Vn € N. Hence, we
have the asymptotic expansion

2(1?3 ~ 6_7—\1’(0717) (Z Bn(C1,C2, c 7cn)an> (1.10)

|
ne=0 n.
¥(n—1,b)—¥(n—1,1)
n!

and for q

where v s the Euler constant, ¢, = and B,, denotes the nth

complete Bell polynomial (see Remark 2.1).

THEOREM 2. The function ¢ admits the asymptotic expansion

o~ Y e EL e

n=0
at 00, with ¢, satisfying the system of recursive relations

n—1 n—2 k
n—1
Pn = — Z ( . >(Pn j 0 7,0 Z Z ( )@k j+16(0 j,n _k_l)
j=1 J k=0 35=0
2 (b+n— k)" (L.11)

m—1
-1
8(kym,n) = 8k, — Ln+1) + 3, (mj >gom_ja<k+17j,n> (112)
7=0

and the initial conditions
©o = Vb (1.13)

6(k,0,n) = B{I7Y) 2 < > “I(b+n—j) vy = (1.14)

The recursive relations (1.11) and (1.12) in the foregoing lemma work inductively.
We know ¢y and once we have computed ¢y, ..., ¥n—1, in order to compute ¢, we
use (1.11), where the maximum of the second argument of § that is at most n — 1,
and we can compute these terms using (1.12) and the initial conditions, as @y
appears there in orders at most equal to the second argument of §, and that we



ASYMPTOTIC EXPANSIONS OF THE INVERSE INCOMPLETE BETA FUNCTION WITH RESPECT TO THE FIRST PARAM

already have computed. This algorithm can give us the first terms of the asymptotic
expansion:

oa) =y — Wb =1)  w(=1+b)(Tb+y —5)

2a 24a2
(=1 +b)%(3b+ — 1) 1
_ ol — 1.15
16a3 + a* (1.15)
Also, for ¢ we then get:
COROLLARY 2. For a — o, an asymptotic expansion for q is
o8]

Bn(_QDOa 2<pla _3§027 R (_1)nn§0n—1) 1

aa)~ Y & = (1.16)
n=0 '

where @, is the sequence defined in Theorem 2.

In section 4 we state some relations between Ngrlund, Bernoulli and Bell poly-
nomials that we came upon and we could not find in the literature. These relations
come out by considering the coefficients of Bernoulli generating functions as taylor
coefficients, i.e. as limits of derivatives, and using Faa di Bruno’s formula, and its
relation to Bell polynomials, to compute these derivatives. Finally, in the appendix
we implement the recursive relations of Theorem 2 as Maple and Sage algorithms
and give coeflicients of asymptotic expansions for some specific values.

2. ASYMPTOTICS AT 0

For computing the asymptotic expansion of ¢ at 0, our method consists of iter-
ated differentiation of relations that implicitely contain the p-quantile and use Faa
di Bruno’s formula. Then, taking limits for a — 0 and computing the limits of all
the terms, we compute the limits of the derivatives which then wields the asymp-
totic expansion, as, if f € C*(0,¢), for some € > 0, and lim,_,o f(" () exists in R

for all n, denoting this limit by £ (0) we have f ~ 3/, w:z:" The converse
is not necessarily valid: if f admits asymptotic expansion at 0 it is not necessary
that the limits of the derivatives exist, as there may be oscillations. The limits of
the derivatives of ¢ will be computed then inductively.

First, we use integration by parts in (1.1) getting

—pla)r1 _ b—1 _ ate) a(q _\b—2 34 _ F(b)r(a)

e (I—q(a))”"+( 1)J0 t*(1—1t)°"“dt = apif‘(a—i—b)

where W(a) = I'(a + 1)/T'(a + b). This function W is studied in [3, C4], and in a
generalised form in [10], where several properties, such as complete monotonicity,
are proved. We consider the logarithmic derivative of W and we note that, as
logW(a) =logT'(a+1)—logT'(a+b), by the integral representation of the digamma
function ¥(0, z) (see [3, Theorem 1.6.1]), we get that

(log W(a))' = ¥(0,a +b) — ¥(0,a+ 1) = — L e <e__e_bu) du  (2.2)

= pl'(0)W(a) (2.1)

We define the function ¢ by

=2

which implies that e~ %(*) = pI'(b)W (a) and (2.1) can be rewritten as

—logpI'(b) = —log W (a) — log pI'(b) (2.3)

q(a)
e (1 = q(a))"" + (b - 1)J (1 —t)"72dt = e (2.4)
0
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Hence, as ¢ € C*(—1, ), denoting the limit of the kth derivative of ¢ at 0 by
»*)(0), by (2.2) we have

o —u —bu
P (0) = Uk —1,b) — (k- 1,1) = (—1)’Hf uk1 <61€_> du (2.5

0 —e
Let denote by cp(”)(O) the right limit of ¢(™) at 0, supposing it exists. We already
have, combining (1.7) and (2.3), that ¢(0) = ¥(0) = —logp. Our goal is to prove
that for the limits of all the derivatives of ¢ and v at 0 are the same, i.e. we have
©®)(0) = *)(0). Differentiating (2.4) we get

q(a)

—¢'(a)e " + Y (a)e P D1 = g(a)’ "t = (b—1) fo (1 — )’ 2 logtdt

We define the functions

pla) == (1 —q(a))"~ (2.6)
q(a)
o(a) := f (1 — t)*~? log tdt (2.7)
0
and hence the last equation can be rewritten as
—¢!(a)e™ " + ¢ (a)e”?Wp(a) = (b—1)o(a) (2.8)

We will use this equality to find the limits of the derivatives of . This will be
done inductively, differentiating (2.8) at each step. Our strategy is, at the kth step,
where we will want to compute the limit of the k 4+ 1 derivative, that we use the
results from the previous steps about the asymptotic behaviour of ¢ up to the kth
derivative to find the asymptotic behaviour of the derivatives of g up to k, and then
use this result to find the behaviour of the derivatives of g and h up to k, so that
we finally compute the limit of the k 4+ 1 derivative of . The first part will be done
in the next lemmas, and the inductive proof will be given in the end of the section.

We state the following well known differentiation formulas that we will be con-
stantly using, see (1.4.12) and (1.4.13) in [9]: The product formula for derivation,

k (n) n koo
(H fz-(x)) = > ( ) [1799 @) (2.9)
=1

(GeNkIZE jy=ny PIT IR i

and the Faa di Bruno formula, for the derivatives of composite functions,

n! " D (H\™
(FogW@= 3 ) [T ()

mylma!..m,! ,
(meNn | jmy=n} L2l =1

The latter, in case f(x) = log(z), can take the simpler form

) () \ ™
(g™ = ¥ cal[ (51 (2.11)

{meN"[}"_, jm;j=n} j=1 9 :E)

where

mylmal..my,! o jlmi

Co = (_1)1+Z_?=1 m;

and for f(z) =e*,

()M _ ¢ole) 3 n! ﬁ <g(j)(x)>mj (2.12)
=1

milms!..m,! 1 j!
{meNn [T, jmy=n} 120 J
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REMARK 2.1. Faa di Bruno formula (2.10) is related to the polynomials that are
known as Bell polynomials. The (complete) Bell polynomials are defined by the
relation

n! T
Bn(x17x27"')x7l) = Z K}l!KJQ!"'FJ | H <]|> (213)
n o !

{ReNT 2T, jrj=n}

We can express the special case (2.12) of Faa di Bruno’s formula for the exponential
in terms of these Bell polynomials

(n)
() = e/ @B.(g/ @), 9" @), .. g™ (@)
LEMMA 2.1. Let k,l € N. Then,

o 0(0)1og" g(@)
a—0 al

-0 (2.14)

Proof. We have

log (q(“)> =log q(a) — mloga — —a0

am
for a — 0, as, by (1.7),
a(log g(a) —mloga) = alogq(a) — maloga — logp

This implies that

Also (1.7) gives

Hence

a(@)log* gla) _ . a(a) log" g(a)

=0
a—0 al a—0 gl—F ak

LEMMA 2.2. Let N € N* and assume that lim,_o p*¥)(a) exists in R, Vk < N.
Then, Vk < N,

2%k (k)
lim wemists in R (2.15)
a—0 q(a)
In particular, we have that
(k)
im @ o 0 (2.16)

a—0 a™

Proof. For k =1, as ¢'(a) = —logq(a) — aq’(a)/q(a), we have that

= —ay'(a) — alogg(a) —» —logp

so (2.15) holds. Assume that 1 < n < N and that (2.15) holds Vk < n. We
will prove that (2.15) holds for k¥ = n + 1. Indeed, using (2.11), we get, for some
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coefficients ¢z, and dg,

(kIS jkj=n+1}

+(n+1) l
{’%‘\Z?:ljkj=n} j=1

But one can write

n o wfl) =T B ()

(kI hy=nt1}  I=1 {klX]_, jkj=n+1}  j=1

kj

2n+1

hence, rearranging the equation above and multiplying each side by a , we get

(n+1)(a)

nt1) 4 nt1 (n a*¢"9) (a
g2\ 2 HQD( H)(a)— Z CkH( @ )

a() (kIZT_, jhy=n+1) =1

—a(n+1) > dkﬁ(M>

ey TR L)

k;

and the right hand side converges in R as a — 0 by our induction hypothesis,
proving (2.15). To prove (2.16), we see that combining this result with Lemma 2.1
gives

(k) 2k (k)
i 4@ _ e a(a) g(a)
a—0 q™ a—0 q(a) am—2k

=0

LEMMA 2.3. Let N € N* and assume that lim,_,0 ¢'® (a) exists in R, Yk < N
Then, Vk < N

lim p* (a) =0, k#0

a—0

lim p(a) =1

a—0

Proof. As g(a) — 0, then p(a) — 1. The nth derivative of p can be expressed using
(2.10) as

n

P = N al—g@) b ]9 a)

(k|3 dkj=n} j=1
which, by Lemma 2.2 tends to 0 as a — 0, as ¢'/)(a) — 0. O

LEMMA 2.4. Let N € N* and assume that lim,_,o <p(k)(a) erists in R, Vk < N
Then, Vk < N

lim 0¥ (a) = 0

a—0

Proof. We have

qa(a)
J t9(1 — )" 2log™ tdt — 0
0
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as q(a) — 0 and (1 —t)*=21og™ t is integrable near 0. Hence, o(a) — 0. For n > 0
we have

o™ (a) = J’q(a) t9(1 — )2 log™ M tdt + i [e‘*"(“)(l — ¢(a))*2¢(a) log" q(a )](n—k)
0 - (2.17)
So, it suffices to prove that
[ (1 — q(a))" "¢/ (a) log" g(@)] ¥ — 0. Vk,I<N
By (2.9) we can write

[e=#19 (1 - q(a)"2q'(a) log" g(a)]") =

Y eml[eHOII( — g(a))" ][ (a) log" g(a)] )
{m[S_, m;=1}

By our assumptions, lim,_,o[e~#(®]("1) € R, and as in Lemma 2.3, ((1—¢(a))®~2)(™2)
also converges. Finally, by (2.9), (2.10) and Lemma 2.2

+
[d'(@)log" g(a)]™ = > cng™ TV (a ]_[ [log g(a)] ™) =

(|2t nj=m}

e ol

{nI272 lnj—m} I=2 {rXLy sra=nyy =
’I’L1+1 k+1 a Ts
I IS [0 Y
{nZ54) n,.:m} I=2 IS Ly sre=nyy o=t
which completes the proof of the Lemma. O

Proof of theorem 1. By Proposition 2 we have that ¢(0) = —logp. For the first
derivative, as p(0) = 1 and ¢(0) = 0, and ¢(0) = ¥(0) = —logp, we get from
(2.8) that the limit lim,—,0 ¢'(a) = ¢’(0) exists and ¢'(0) = ¢’(0). We proceed
inductively. Let n € N* and assume that lim, o ¢ (a) exists and o*)(0) = 1) (0)
VEk < n. Differentiating (2.8) n times we get

n—1
(e~ V(@) (D) _ (g=w(a))(n+1) 5(q) — Z (e=?l)) =+ 5 () ("=F) = (b — 1)6(™) (a)
k=0
and by Lemmas 2.3 and 2.4 we get

im (e~ (@) (n+1) _ iy (e=P(a))(n+1)
AT = (e

which, by formula (2.10) and the induction hypothesis, gives that the limit lim,_o " *t")(a) =:
o™ +1)(0) exists in R and

S e (0)”

|
. - J!
(RIS jmy=n+1} =1

B > cpe PO ﬁ (go(j?(0)>mj

n = ‘7!
(ISt jmy=n+1} =1

and as by the induction hypothesis ¢/ (0) = 1) (0) for j < n, it gives
(p("H)(O) _ w(n+1)(0)
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which completes the induction. To prove (1.9), the fact that
logT(z + 1) — log'(x) = log x

gives the functional relation for the polygamma function

U(k,o + 1) — (k) = (_x%)ff' (2.18)
hence
k+1 o 'S (—1)kE!
PMV(0) = Wk b) = W(k 1) = D (W(kn+1) = W(kn)) = 3} 5
n=1 n=1
O

Proof of Corollary 1. The fact that ¢ and vy have the same asymptotic expansion
at 0 implies that an approximation of ¢ is

r b
(a+b) )—logp asa — 0

wla) ~ o8 5 T

and the error decreases faster than any positive power of a. This also implies that

a 1/a

in the sense that ¥n € N,e > 0,3a, . > 0 such that Ya < a,,

eor (Tla+ DL\ 1, cor (Ta+ DL\ 1,
€ < I'(a +b) ) p/ <dqla)<e < I(a+b) ) p/

hence

lim 2(1‘/13 _ ¢ T(00) (2.19)

~ being the Euler’s constant. The RHS of the above inequality may be rewritten
as

gla) _ (Tla+1DT®\* ., . (Tla+1)rEH)\"
pl/a<( T(a +b) ) *”( T(a +b) )

close to 0 and for an &’ > ¢, and the LHS

Ta+ DB\ (Tla+ DTG\ qla)
i) = () <o

Hence

g(a)  (T(a+1)T®)\"
pl/a”< T(a+b) >

with a remainder term vanishing faster than any power of a at 0. The rest comes
from considering

(M) e (e )

along with Faa di Bruno formula. O
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3. ASYMPTOTICS AT o0

3.1. The operator D. To find the asymptotic expansion at infinity, the previ-
ous technique has to be adjusted accordingly. First, we introduce the differential
operator D defined by

Df(a) = a*0f (a) (3.1)
It satisfies the product rule
D(fg)(a) = g(a)Df(a) + f(a)Dg(a) (3.2)
and the composition rule
D(fog)(a) = f'(g(a))Dg(a)
The last two relations combined give us the Faa di Bruno formula for D

D"(f o g)(a) = > ) T (Dﬂgw)) ’

1l
{meN IS, jmy=n} j=r N

(3.3)

where |m| = Y, j—1 M. Also, we have the two-arguments composition rule

Df(a,p(a)) = D1f(a, p(a)) + Dp(a)d2f(a, p(a)) (34)

where D f(a,b) = a®(d1f)(a,b), 1 denoting differentiation wrt the first variable of
a multivariate function, i.e. in our case D; f(a, p(a)) = a®(d1f)(a, ¢(a)). Further-
more, we remark that it acts on monomials, for m € Z, by

Da™ = naerl
and by induction
D"qg™ = (m)nam+n

The operator D can be used to deal with asymptotic expansions at infinity. To see
this, intuitively, starting from the formal power series

one can get

~ k! Ck

D (@) = 3

k=n

If certain conditions apply and it is possible to take limits to oo, all but the first
term of the sum vanish and we get
lim D" f(z) = (—1)"nlc,

T—00

This is rigorously treated in Lemma 1.1, which is proved below:

Proof of Lemma 1.1. To show i), we notice that if for a function f we have
lim,_,, f(x) = ap € Rand Df(z) = a1 +az/x +as/x?+... +aps1/2F +O(1/zF 1),
then by integrating we get that f(z) = ag — a1/r — az/22% — a3/3z3 + ... +
apy1/kz Tt + O(1/2%+2). Next, we see that, under the assumptions of the first
part of the lemma, we have that lim,_,., D" ! f(z) = a € R and lim,_,, D" f(z) =
b € R. This implies that D"~!f(x) = a + O(1/z). Applying this observation in-
ductively to find the asymptotic expansions of lower powers of D proves the first
part of the Lemma. For the second part, we notice that as the derivatives admit
asymptotic expansions, these can be obtained by differentiating the asymptotic ex-
pansion of the original function. In the same way, we may apply the operator D
to the original asymptotic expansion, as D can be expressed as a combination of
operators ¢! for | < k, and take limits to oo to prove the second part. O
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In the following subsections we shall compute the asymptotic expansion of ¢ using
the operator D. We start with the equation

¢la) ) _ I'(b)I'(a)a®
L (s )ds = (1= p) b (3.5)
Where
m(a;s) = e~ (a — ae~¥/*)P~1 (3.6)

Our method consists of acting and iterating the operator D on (3.5) and taking
the limits to oo on both sides. So we have to see how D acts on 7 and on the right
hand side.

3.2. Asymptotics of the RHS. To study the right hand side of the equation
(3.5), we study the asymptotics of the ratio

I'(a)a®
I'(a +b)
In [13], Tricomi and Erdelyi derived an asymptotic expansion for such ratios of

Gamma functions, in terms of a generalisation of Ngrlund Polynomials, which in
our special case it may be expressed as

T'(a)a’ 3 r(1-b BY™Y e
I'(a +b) ~ T(1—(b+n)) nlan’

(3.7)

which by the reflection formula for the Gamma function can be rewritten as

(a)a® i (—nn  BUY

—_— b)n .
We shall prove the following Lemma:
LEMMA 3.1. For n e N, we have
. n F(b)F(a)ab _ (1-b)
Jim D ((1 - P)m =1 =p)I'+n)B, (3.9)

Proof. The coefficients of the asymptotic expansion (3.8), by Lemma 1.1, can be
used to give the limit in (3.9), if the derivatives of the ratio also admit asymptotic
expansions. Hence we shall find these asymptotic expansions of the derivatives,
and also a different expression for the coefficients in the asymptotic expansion of
the ratio (3.7) on the way.

The tool we shall work with is the operator D and its Faa di Bruno formula
eq3.3. We denote the logarithmic derivative of the ratio (3.7) by

I'(a)a®
I'(a+b)

A classic result on the asymptotic expansion of log I is the following, see [9, 5.11.8],
for fixed h € C,

V(a) :=log =bloga +logT'(a) —logT'(a + b) (3.10)

1 B, (h
logT(x + h) ~log\2r+ [z +h— = logx—x—i-z #xk”, T — 400
2 = n(n —1)

(3.11)
which has the nice property that it can also be differentiated, and give us asymptotic
expansions of polygamma functions. This implies also that the derivatives of V'
admit asymptotic expansions. We have, asymptotically,

-~ Bn—Bn(b) 1 Bnt+1—=Bn+1(b) 1
V(CL) Zn?Q n(n—1) an—1 _ZnZl n(n+1) an
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We have, then, by Lemma 1.1, that
Bui1 — Buya (b)

lim D" =(-1)"n! 12
lim D"V () = (<1)"a (312)
Acting D n times on ratio (3.7) we get
I'(a)ab v
pr | =227 ) = pn (a)
(Ha+w> ‘
! e (DIV "
=" Z m lmT'L my! 1_[ ( 'I(a)> (3.13)
{melN”\Z_?;ljmj:n} 1:M2:...Mp. j=1 J]:

and taking limits we end up with

g D" (F()) = X Chm (B;-H—Bm(b))m-f

11125 ! i(j
I'(a + b) (meN S my=ny TUT2E Tt JiG+1)

Hence, by Lemma 1.1, the derivatives of the ratio (3.7) admit asymptotic expansions
at infinity, and these can be given by differentiating the asymptotic expansion
(3.8). O

REMARK 3.1. In the proceeding proof, we find two different ways to express
the asymptotic expansion of the ratio of gamma functions, which implies a rela-
tion between Ngrlund, Bernoulli and Bell polynomials we could not trace in the

literature,
(b)n B~ = B, (By(b) — Ba, B3(b) — Bs, ..., Bny1(b) — Bpy1) (3.14)

n

and using the fact that

Jj+1 .
G- 5
kZ::l Bj- k+1mb = Bj11(b) — Bj+1

n Jj+1 mj
b, B = B Y b
(b)n By Z m1'm2' Sy H Z IR G =k + 1) k+1)

{melN® 37, jm;=n} J=1

3.3. Asymptotics of the LHS. We shall first study the asymptotic behaviour of
7, defined in (3.6), through the following Lemma.

LEMMA 3.2. We have the limits
lim D"7(a;s) = Bl ™Wemsg0~1+n (3.15)

a—>xw0

Proof. We have that

1 _s 1-b
o) = €7t (a -0 — e (1 - Z—s/a) men (e—s/aa_ 1)

We may write, in terms of Ngrlund polynomials, by (1.6),

( )_ sblZBlb)( )kk (316)
T (a; S e 7k'a)k .
k=0
and
(_1)k+nsk

o
—5 b— 1-b
D"7(a;s) = e *s"7! Z B,(c )

— k—n
= (k—n)la
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and thus we get

hrn DnT(a; 5) — Bv(mlfb)efssbfl«kn
a—> o0

Acting D on the left hand side of (3.5) gives the expression

#(a) ¢(a)
DJ 7(a; s)ds = Dp(a)T(a; s) +J Dr(a;s)ds
0 0

and hence by induction, iterating D totally n times,

p(a) n—1 w(a)
" :8)ds = k a)D" "1 (a; o(a "r(a;s)ds (3.
D[ s 3, P Del@n} *rlase(a) + | pretasgas @)

We shall study the terms

DH(Dp(a) Dy (a; pla)) = 3 (f) DFI+ (@) DD} (a: p(a))]
j=0

and as
DI[DY 1 (as 0(a))] = DIHDY "7 (a; ¢(a)) + D(a) DY+ 1 0a7(a; p(a))]
it is important to study the terms defined as

d(k,m,n) := (}er}r D™D 057 (a; ¢(a))] (3.18)

In other words, we will compute, recursively, the limits of these terms for a — oo.
We note that, as D™7(a; s) is an analytic function of s in some disc around 0, as
seen by its power series, we can interchange differentiation wrt the second variable
and the limit for @ — 00, as we know that ¢(a) converges to a finite limit, provided
that the convergence for a — oo is locally uniform, which indeed is (an argument: as
a — o0, the radius of convergence of the power series increase, so taking a compact
set and assuming a large enough, we can use the convergence of the sequence of
power series to prove this result). We have

D™ [Dyd57(a; p(a))] = D™ DI 105 7(a; p(a)) + Dyp(a) DY05 7 (as p(a))]

hence we get the recursive relation

m—1

-1
d(k,m,n) = d(k,m—1n+1)+ ). (mj )cpm_jd(k +1,j,n) (3.19)
3=0
where ¢; = lim,_,,. D'¢(a), assuming that the limit is already known, and the

boundary conditions

d(k,0,n) = lim DY057(a; p(a)) = lim 05D77(a; p(a))

a—xL
ok ,
— —q . — —1+n—j
N ) R P
j=0
As for the integral term, we have
v(a) Yo
lim ,[ D"7(a; s)ds = B{1 7Y ,[ e s 1tnds (3.20)
a— L 0 0

and

Yo n—1
f e SstTIt s = — Z (b+n—k)pe a7 E 4 (1), (1 —p)T(D)  (3.21)
0 k=0
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by repeated integrations by parts and the fact that §)* e=*s*='ds = (1 — p)['(b).
We have got, then, for the left hand side that

#(a)
lim D" J 7(a; s)ds

a—>0 0

a—>%0 0

n—1
= lim > D*(Dp(a)Di " f(a;p(a))) + lim | D" f(a: 5)ds
" k=0

n—1 k
= Jin 3 % (§) 0 te@p oy flasean)

3
—

d(0,0,0) + nZ <n ; 1) ¢n—4d(0,4,0)

+§ 2 (5 pesmdion ==

DS b e T (1= )T+ ) B
k=0

We notice that the term (1 — p)I'(b + n)B,(llfb) cancels exactly with the right hand

side.

3.4. Conclusion. Proof of Theorem 2. Summing up, using the normalisation

o= %, we are left with
e b’yb

n—2

_ _ 9k i
Z (nj 1>90n —j 0 7,0 Z Z;) <j>80k—j+15(0,j,n—k—l)

-|-B1 b) Z (b4+n—k)ry ™~ k

and ¢ and ¢ also satisfying the recursive relation, by (3.19),

m—1

-1
5(k,myn) = S(kym —Ln+1)+ ) (m , ><pm 0k +1,4,m)
— J
7=0
We have the initial conditions
Yo = "b

k
500 = 500 3 () 004 m =g
j=o
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To prove Corollary 2 we need the following lemma.

LEMMA 3.3. Let f have asymptotic expansion
N
= Z — +r(x)
k
= klx
where r(z) = O(1/zN*1). Then,

N B (a1,a ay)
ef(ac) = %0 4 g0 Z k 1’]{:'2;"" k +O(1/SEN+1)
) '

Proof. We have

N
f(z) = Z kaik +r(zx) = @00 E = or@) Z 1 4 O(1/zN+1)
N
= /) = BT 4 O(1/a ) = e [ i + 01/ )

k=1

N N+1 a

1_[ — k,,’;x,m +O(1/zN ) |+ O(1/zN Y

N

B (l ,02,...,Q
e B 1W ") 4 o(1/a"+)

where the last equality is derived by a combinatorial argument, the coefficient of
M

1/z" being the sum of products of the form [ [} _, W such that > )_, kmy, =

n, which defines the complete Bell polynomials. O

Proof of Corollary 2. The proof is an immediate consequence of Theorem 2 and
the foregoing Lemma. O

4. RELATIONS BETWEEN BELL, BERNOULLI AND N@RLUND POLYNOMIALS

In the course of trying to find the asymptotic expansion of ¢ at oo, using Faa di
Bruno formulas, we encountered identities between Bell polynomials and Ngrlund
polynomials, that we have not been able to trace in the literature, hence we state
them in this section as a separate result.

PROPOSITION 3. Let c € C. Then, the Norlund polynomial B,(f) can be expressed

as
j+1CB mj
Bl — 4.1
{ Y m.H( e S

{meN" 37| jm;=n}
or, phrased in terms of Bell polynomials B,,,
B9 = B, (¢By,—¢B3/2,0,—¢B4/4,0,...,—cB,/n), n>1 (4.2)
Moreover, we have that

(¢ —n)nB) = (=1)"B,,(By(¢) — By, —Bs(c) — Bs,...,(=1)""' B, 1(¢) — Bny1
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Proof. The last equation is derived by Remark 3.1, and the symmetries B, (1—2x) =
(-=1)"B,(x) and (1 — ¢),, = (—1)"(¢ — n),. For the rest, by (1.6) we have

B,<f>=1ima"[< : >]
z—0 ez —1

By using Faa di Bruno formula we get

n z ¢ _an clog =%
() |- ()
z € n! " (c .. z i
= — faj 1
(ez—1> {me]anZ ml!mgl...m”!H<]! (Ogez—1>)

Sy jmy=n} =1

and we have the limit

lim < : ) —1
z>0\e? —1
and
e —1Y) ze? i ntlp Z
—z | log =— +1= (-1)"*B, =~
z e? — = n!
e
- B, z"
=] — n+l—-n~
08 er —1 7;1( ) n n!
hence

z—0

lim ¢ <1og _c 1) = (—1)7"'1—;7
eZ —

and thus, summing up,

C
B = lim6"[< 2 > ]
a—0 ez —1

|
{meNn |37, jm;=n} =1 J=

which concludes the proposition. O

APPENDIX

In this appendix, we provide code in Maple and Sage for computing the terms
of asymptotic expansion of ¢ and ¢ at infinity recursively.

APPENDIX A. MAPLE CODE

In the first algorithm, the procedure phiinf (n) computes what we define as @,
in Theorem 2.

Algorithm A.1:

norl:=proc(n,c);
if n=0 then
return 1;
else
return (-1) "n*CompleteBellB(
n,seq(-c*bernoulli(j)/j,j=1..n)
)

end if;
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end proc;
phiinf:=proc(n) option remember;
if n=0 then
return gamma[b];
end if;
for k from 1 to n-1 do
phiinf (k) ;
od;
return expand (
-add(binomial (n-1,j)*phiinf (n-j)*delta(0,j,0),j=1..n-1)
-add (add (binomial (k, j)*phiinf (k-j+1)*delta(0,j,n-k-1)
,j=0..k),k=0..n-2)+norl(n,1-b)*add(pochhammer (b+n-k,k)
*phiinf (0) " (n-k),k=0..n-1);
end proc;
delta:=proc(k,m,n) option remember;
if m=0 then
return simplify(
norl(n,1-b)*add(binomial (k,j)*(-1)"(k-j)*
pochhammer (b+n-j,j)*phiinf (0) " (n-j),j=0..k)
);
end if;
return simplify(delta(k,m-1,n+1)+
add(binomial (m-1,j)*phiinf (m-j)*delta(k+1l,j,n),j=0..m-1));
end proc;

In the second algorithm, the procedure qinf (n) computes the nth coefficient of
the asymptotic expansion of ¢ in Corollary 2.

Algorithm A.2:

ginf :=proc(b,n);
if n=0 then
return 1;
else
return CompleteBellB(
n,seq((-1)"(k+1)*phiinf (k),k=0..n-1))/n';
end if;
end proc;

APPENDIX B. SAGE CODE

The function phiinf (n) computes what we define as ¢,, in Theorem 2.
Algorithm B.1:

gamma_b=var (’gamma_b ’)
b=var(’b’)
def norlund(n,c):
if n==0:
return 1
else:
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return
(-1) "n*sum(bell_polynomial (n,k) ([-c*bernoulli(j)/j for j in
[1..n-k+1]]) for k in [1..n])
@CachedFunction
def phiinf(n):

if n==0:
return gamma_b
else:

return expand(-sum(binomial(n-1,j)*phiinf(n-j)x*
delta(0,j,0) for j in [1..n-1])-sum(sum(binomial (k, j)*
phiinf (k-j+1)*delta(0,j,n-k-1) for j in [0..k]) for k
in [0..n-2])+norlund(n,1-b)*sum(rising_factorial (b+n-k,k)*
phiinf (0) " (n-k) for k in [0..n-11))
@CachedFunction
def delta(k,m,n):

if m==

return
simplify (norlund(n,1-b)*sum(binomial (k,j)*(-1)"(k-j)*
rising_factorial (b+n-j,j)*phiinf (0)"(n-j) for j in [0..k]))

else:

return
simplify (delta(k,m-1,n+1)+sum(binomial (m-1,j)
*phiinf (m-j)*delta(k+1,j,n)
for j in [0..m-11))

The function qinf (n) computes the nth coefficient of the asymptotic expansion
of ¢ in Corollary 2.

Algorithm B.2:

def qinf(n):
return sum(bell_polynomial(m, j)(
[(-1)"(k+1)*phiinf (k)

for k¥ in [0..n-3j]]) for j in [1..n])/factorial(n)
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COMPLETE MONOTONICITY IN RATIOS OF PRODUCTS OF
ENTIRE FUNCTIONS

DIMITRIS ASKITIS

ABSTRACT. Ratios of gamma functions have been studied with respect to com-
plete monotonicity in several occasions. Here, we extend these results to ratios
of entire functions of finite genus. To do so, we have to take into account the
exact order of the entire function, as well as the order and the density of its
zero sequence. We apply these results to multiple gamma functions.

1. INTRODUCTION

Complete monotonicity properties of ratios of gamma functions in the form
?:1 I(z + aj )
p F(.’E + bj)

j=1

have attracted extensive interest in literature. A function f: R, — R is said to
be completely monotonic when for all > 0 and n € N we have (—1)"f(")(z) > 0.
A function f: Ry — Ry is said to be logarithmically completely monotonic when
(—log f)" is completely monotonic. Logarithmic completely monotonic functions
are an important subset of the class of completely monotonic functions. Completely
monotonic functions are characterised as the Laplace transforms of non-negative
Borel measures on the positive half-line, what is known as Bernstein-Widder theo-
rem.

Bernstein’s representation. A function f € C°°(0,00) is completely monotonic
if and only if it is the Laplace transform of a non-negative Borel measure on [0, 00],
i.e. if and only if

f(x):/o e~ “tdut

for a non-negative measure p on [0,00] such that

o0
/ e tdut < oo
0

The first result in this direction was by Bustoz and Ismail [3] who showed that
the above ratio is logarithmically completely monotonic for p = 2, a; = 0 and
as = b1 + by. Several extensions of this result were found by Ismail and Muldoon
[5], Alzer [1], and Grinshpan and Ismail [4]. Karp and Prilepkina [6] consider the
more general, weighted case

H;L:1 L'(A;z + a;)
[1;2, D(Bjz + ;)
and, using properties specific to the gamma function, they prove that the above

ration is logarithmically completely monotonic if and only if 3, B; =3, A;, 0 =

e aiu/A; o—bju/Bj

[ B I A < 1and 3o, £ — 30, =503 > 0,Yu > 0.
1

W(z) =
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In a different context, Pedersen [8] had showed the representation

(=1)PoP ! log f(z) = /OO e *TsPh(s) ds,
0

where f entire function of finite genus with exclusively non-positive zeros, and
(o)
h(s) = Z e MRS (1)
k=1
This generalised prior results on gamma function, as 1/T" is entire of genus 1 with
zeros on the non-positive integers. In particular, in the case where 1/f is Eulers
gamma function, the function i can be rewritten as
1
h(s) = et
A question then arises if one can also generalise the previous results of Karp and
Prelepkina to ratios of entire functions. The present manuscript proceeds as follows.
In the second section, we state the definitions we need and the basic setting. In the
second section, we study the case where the order of growth of the entire function
is integer. The main results are Theorems 1,2 and 3. In the fourth section we study
the case when the order it is non-integer. In general, we always shall assume that
the sequence of zeros has asymptotic density. In the fifth section, we apply the

results of the third section to multiple gamma functions.

2. ENTIRE FUNCTIONS OF FINITE ORDER p WITH ONLY NON-POSITIVE ZEROS

Let f be an entire function of finite order p, having only non-positive zeros, the
negative ones being {—MA;}. Setting p = |p], i.e. having p € [p,p + 1), we can
represent f by the Hadamard theorem as

oo Z
f(z) = 27eQ%) | I (1 + ;) e
k
k=1

where @) is a polynomial of degree less or equal to |p| and & is the multiplicity of
the (possible) root at 0. The logarithm of f on (0, 00) is

P _1yi 2
j:l( 1) Mi

(2)

o0 P ) _]

log f(z) = klogz + Q(z) + log (1 + x) + Z(—l)ﬁﬂ

Ak , N

k=1 j=1 k

Differentiating p times we get
(—1)p~t K . > ( 1 1 )

-———0P1 =— 4 (=1)? — - . 3
G e f@ = 5+ (1) ap ; VRS wY (3)

The following lemma will be useful.

LEMMA 2.1. Suppose that g : (0,00) — R is a C*°-function and that its derivative
is a completely monotonic function. Then there exists a positive measure (1 on [0, 00)
such that fooo e~ " du(s) converges for all x > 0, and such that, for a,b >0,

dleta) =gt )= [ - ) duts),

S

Proof. This follows immediately by combining

g<x+a>—g<x+b>=/bag'<t+x>dt

and Bernstein’s representation of ¢’. ]



From [8, Proposition 2.1] we have the representation

oo
(~170r g f(a) = [ et sPh(s) s ()
0
where
o0
(s) =K+ Z e NS (5)
k=1
DEFINITION 2.1. For f as above and for sequences a1, ...,an, b1,...,by of non-
negative numbers, Ai,...,An, B1,..., By of positive numbers define Wy as the
function

15, f(Ajz +a;)
Hj]vil f(Bjil' + bj) ’

PROPOSITION 2.2. The function (—1)PT10P 1 log Wy(x) is completely monotonic
if and only if

x> 0. (6)

Wi(z) =

N M
> etth(s/By) =Y e h(s/A;) > 0 (7)
Jj=1 j=1

Proof. Relation (4) gives us that

(—1)PHort2log f(z) = / e *TsPHp(s) ds,
0
and hence we get, using Lemma 2.1,

(=1 F1on+ (log f)(Aj + a;)

/ / At Pt p(5) ds dt + (—1)PT 08+ (log f)(A;)
_ o—sAT g, e ds — o0 —sAjT P h(s) d
/O PHE)(1 = e ds = [ An(s)ds

(o)
= —/ e SAiTsPh(s)e™ % ds.
0

Therefore,

(=1)PTLop+ log Wy (x Z APFY—1)P T or T (log f)(Ajz + aj)
Z BYFH(—1)PTor T (log f)(Bjx + by)
= - ZA§+1 / e AT sPh(s)e™ % ds
j=1 0
M 50
+ Z Bf“ / e *Bi®sPh(s)e™%bi ds
i=1 0

:/ e s h(s/B;)e~"* Zhs/A a5 | ds.
0 =1

This completes the proof. U
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Taking logarithms and differentiating (6) p times, and using (3) we get

(1,
[FER (®)
=K - J Tk )4 (,1)17*1 AP — BP
= (Ajz + az)P = (Bjx 4 bj)P e
e N
- AP | = B (-
/c§::1 32:21 J(Ai (Ajz +aj + Ap)P ) Z (/\p Bw—|—bj—|—/\k)p>

Our goal is to find necessary and sufficient conditions so that the function (—1)P9? log W (z)
is completely monotonic, and for this it suffices to find when it is non-negative, re-
spectively. We will see that much depends on the density of the zeros of f. Let
n(t) be the counting function of the negative zeros, counting also multiplicities, i.e.

n(t) = #{\, <t |k €N}

The order of the zero counting function is denoted by pg. We have that py < p and
p > |po|. Moreover, pg is the convergence exponent of the sequence {Ag }ren, i.e.

/\“OO

We call such a sequence { A\ }ren of divergent type if

pozinf{aeR

=R
We can have pg < p only if p is an integer, i.e. p = p. Else, pg = p. Also, if py = p,
then also p = py = p. In general, we have p = max{pg,p}. Also, a quantity that
will play an important role is

N M
> A= B )
j=1 j=1

Our purpose is to find analogues of Thereom 4 in [Karp], for more general entire
functions. In particular, we are more interested to find, for a given order p, neces-
sary/sufficient conditions such that for entire functions of that order, (—1)P9” log W (x)
is completely monotonic, and the conditions are indepedent of the specific choice
of the function. We manage it in the case of integer order, that p = pg € N. In
the cases that the order is non-integer or the order of the zeros is smaller than the
order of the functions, we prove that only such sufficient conditions exist, but not
necessary. Our strategy can be summarized as: In Proposition 2.2, we have seen
than

00 N M
(=1)PHLoP+ log W () :/0 e 5P | Y h(s/Bj)e = h(s/A;)e”* | ds.
j=1 j=1

This gives that

oo N
(—1)p8p10ng(a:):/0 e s Zh (s/Bj)eb* Zh (s/Aj)e” %% | ds+ A
Jj=1

j=1



5

where A = BI}: (—1)P9P log We(x). Hence, if (—1)PT19PT1 log We(x) is com-
xT o0

pletely monotonic, then (—1)?9” log Wy (z) is completely monotonic if and only if
A > 0, and then we have the representation

(—1)POPlog Wy(x) = / e du(s) (10)
0
where
N M
du(s) = Addo(s) + s Z h(s/Bj)e b — Z h(s/Aj;)e” %% | ds (11)

Hence, our strategy is to investigate the value of the limit A := lim (—1)?9” log W;(x).

T—r+00
3. THE CASE p=p

The equality p = p may happen in two cases: if pg = p or if pg < p. In the
course of this chapter, we shall treat the two cases separately.
It can be useful to write part of (8) in the following way:

0o N M
S(z) .:Z Z ﬁ _ A? _ Z if _ Bf
' M (Ajz+aj + AP A (Bjz+bj+ AP

k=1 \j=1 j=1

S-S g P e mare
A I At A (Bjz + bj + Ar)P

< :
()
<\ (@ AP

—

Jj=1

NE

C

k=
N o0

+ZA§Z(($+1)\)17_(A, 1, p>
j=1 k=1 k T i+ )
M oo

S5 (Grag ~ wrnur)
j=1 k=1 k 5T+ b+ k)

hence
A = lim (—1)P0%log W (z)
Tr—r00

N M
=(p— DI(=1)? ZAﬁ’fZBf gp+ (p—1)! lim S(x) (12)

hence the asymptotic behaviour of S determines the value of A. To study the
asymptotic behaviour of S, it becomes clear that we have to study the function

9ga,a(x) ;Z <(m+)\k)p Az +a+ )\k)p>

k=1

) /000 ((x i tyy  (Az +1a n t)p) dn(t).

Under some assumptions on the zero counting function having asymptotic density,
we have the following lemma.

LEMMA 3.1. Assume that

lim % =A € 0,+00)

t—o0
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Then,
lim ga,(z) =pAlogA.

Tr—00

Proof. We have that

94.0(2) /0"" ((:c i H  (Az +1¢z ¥ t)P> dn(t)

= /00 ! = ! n(t)dt
) \@roprT T Az +a+tpH
We have that Ve > 0,3R > 0:Vt > R, (A — €)t? < n(t) < (A + €)tP. Hence we can

write
(A —¢) /00 ! — ! tPdt
P r \(z+)ptl  (Az+a+t)pt!
° 1 1
=7 /R ((w TP (Arta+t t>p+1) nle)de

o0 1 1
A . tPdt
< ( + €)p/R ((x + t)p+1 (AJZ +a+ t)p+1)

Hence we shall study the function

h(z) = / N : ! tPdt
= \Gror T (Az +a+ tptl '
After repeated integrations by parts we reach
i 1 1
h(x) = — dt
(z) u(w)—l—/R (m—i—t Ax—i—a—i—t)

Az +a+ R

where u(z) = O(1/x). Finally, as (A — €)ph(z) < gao(z) < (A + €)ph(z),

ILm ga.a(r) =pAlogA.

We can derive the following Lemma about S(z):

LEMMA 3.2. Assume that po = p and the sequence of zeros is of divergent type.
Moreover, assume

.o n(t
lim %:AG [0, 4+00)

t—o0
Then, the limit of S(x) at infinity exists if and only if C, = 0. In this case,

N M
Jim S(x) = pA > APlog A; — > BYlog B, (13)

=1 =1

Proof. By the previous Lemma, we have

> /1 1
C e
pkz::l (Aﬁ ($+)\k)”>

and by monotone convergence,

= /1 1
li —_ | =

N M
+pA | ) APlog A; — Y BPlog B;

j=1 j=1

lim S(z) = lim
Tr—0o0 Tr—r 00



e

as {M\g}ren is of divergent type, which gives that the limit exists if and only if
C =0, and the result. O

We proceed to the main results, which depend on the density of the zeros.
THEOREM 1. Assume that

t
lim % = A € (0,00)

and the sequence of zeros is of divergent type. Then, the function (—1)P9P log W (x)
is completely monotonic if and only if condition (7) holds, C, =0 and

N M
> APlog A; — > BFlogB; >0 (14)

i=1 j=1

In the affirmative case, we have

0o N M
(—1)POPlog Wy(x) = /0 e wsP ! Z h(s/Bj;)e %% — Z h(s/Aj)e” %% ] ds+ A
j=1 j=1
where
N M
A =pA ZAé-’logAj —ZBflogBj (15)
j=1 j=1

Proof. Relation (7) is necessary and sufficient for (—1)P*197+11og W (z) to be com-
pletely monotonic. Then, (—1)P9OP log W (x) is completely monotonic if and only if
li_>m (=1)PoPlog W (zx) > 0, and by the previous lemma this happens if and only if
the conditions C, = 0 and (14) are satisfied. O

THEOREM 2. Assume that po = p and n(t) has zero density w.r.t. p, i.e.

t—oo P

and the sequence of zeros is of divergent type. Then, the function (—1)POP log W (x)
is completely monotonic if and only if condition (7) holds and C, = 0. In the
affirmative case,

oo N M
(—1)paplOng(aj) = / e—;cssp—l Zh(S/Bj)e—bjs _Zh(S/Aj)e—ajs ds
0 ~

j=1

i.e. in this case A = 0.

Proof. The proof is in the same spirit. As A =0, lim (—1)P9?log W (z) = 0 if and
Tr—r 00

only if C = 0, and the limit is infinite if and only if C, # 0. (|

REMARK 3.3. In case the sequence of zeros is not of divergent type, i.e.

k=1

then A =0 by [7, 3.2 Lemma 1]. In case pg < p, we again have A = 0. In these
cases, the conditions involve a possibly non-zero value of C,.
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THEOREM 3. Assume pg = p and the sequence of zeros is not of divergent type,
or po < p . Then, the function (—1)POPlog W (x) is completely monotonic if and
only if condition (7) holds and

%) 1 -
Cp (Z 7 U7 1qp> >0.
k=1 "k

In the affirmative case,
oo N
(—=1)POPlog Wy(x) = / e Tsgp! Z h(s/B;)e %% — Z h(s/Aj)e” %% ] ds+ A
0 =

where

e’} 1 -

A=C, <Z 37— (-1 1qp> . (16)
k=1"k

Proof. By the previous remark, the sum ZZ’;l )\% converges. Hence, C' = 0 is
k
no longer required for the whole limit to converge. Rather, now, by dominated
convergence we have that lim ga ,(x) =0 and
Tr—r0o0

= 1
ILm (—=1)POPlogW(z) = C, <Z S (1)p1qp>
T—00 =1 "k
hence, the result. O

4. THE CASE p>1p

If p > p, then p € (p,p+1) and p = pg. We shall study the asymptotic behaviour
of S(z). We denote

N M N M
SR DECHSS ST 3
=1 =1 j=1 j=1
We assume

limﬁzAER.
P

t—o0

We set
haale) = [ (j - M) an(t) (17)

Then, the sum S becomes
N M
S(z) = ZA?hAj,aj (z) — ZB?thbJ (x) (18)
j=1 j=1

We prove the following Lemma:

LEMMA 4.1. Let

4
lim nit) =A€[0,00)
t—oo tP
and r = p —p. Then,
T GO N N Ul WL
z—oo (p—1)! sinzr

(19)
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Proof. We have, choosing R and € such that for t > R, (A—e€)t? < n(t) < (A+e)t?,
> 71 1
hao(z) = —— — | dn(¢
wo@ = [ (5 o) 400

= - L 1 t)dt
- o \tPtl (Az+a+ t)pHt n(t)

I AYAR! 1 q > /1 1 q
P\ T Azt a1 ot n(t)dt +p r \tPtl (Az +a+t)ptl n(t)dt

with the bounds

SN 1
(&= e)p/R <tp+1 C (Az+a+ t)pH) thdt <
/o 1
p/R <t1’+1 T Az ta+ t)P+1) n{t)dt <

& 1 1
A — tPdt .
(& +ep /R <tp+1 (Am+a+t>p+1>

Hence we need to study the integral

I:= /Oo L L tPdt
=P R tp+1 (AZL‘—I—CL-i-t)p""l .

By repeated integrations by parts, and as r = p — p € (0, 1), we get

I'=ue)+ (7;;—1)11))!1 /: C T Az +1a+t> fdi

where u(z) = O(1) and the integral on the right hand side, after some changes of
variables, becomes

/1 1 > /1 1
S N dt = — - = ¢RIt
/R (t A:Jc+a+t) /1 (tR Ax+a+tR>
> (1 1
:/ - — W tTert
1 t T—Ft
1
1 R"
= S — dS
/O < Aﬂ;ﬁ-aJri) grt2

1 Az+a R
= / Ax-‘rlz de
0o S +1s

R
Ax+ta
: R 1 ds
=(A ! —.
(Az + a) /0 T5s s
Hence we end up with
> /1 1 1 d
s
———— | t"dt= (4 " —. 20
/R (t Ax—|—a—|—t> (Az +a) /0 14+ ss” (20)
Note that by contour integration we have
Az+a
) R 1 dt /°° 1 dt T
lim — = — = — .
z—o00 J 1+ss" o l4+ss" sinnr

Summarizing, we have for ha ,(z):

r+1l)p-1 W . ha,q(x)

( (r+1)p1 =«
(A—¢) (p—1)! sinmr ~ e—oo (Az + a)"

(p—1)! sinmr’

<(A+¢
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Hence the asymptotic result

tim 140@ _ AT Doy T
zooo T (p—1)! sinmr
U
For the asymptotic behaviour of S(z) we get
S (D), 7 (& M
1 =A £ AP - B?
e (p—1)! sinar Z J Z J
j=1 j=1
1),—
PN U N (21)

(p—1)! sinmr’
This shows the following result.

PROPOSITION 4.2. A necessary condition for the limit of S to exist in R, is C,
or A to be 0.

To get sufficient conditions, we need some more restrictions on the growth of the
zero counting function n:

PROPOSITION 4.3. Let A € (0,+00) and, for some € > 0,
[n(t) — AtP| = o(t"™°)
Then, (—1)P0Plog W (f) is c.m. if and only if C, =0, (7) holds and

c, (A (Z/\l,f — i) + /: %dt + (—1)p_1qp> >0. (22)

In this case,

A=C, <A (Z)\l]f — i) + /:0 %dt + (—1)”_1qp> . (23)

k=1

Proof. The condition C, = 0 is obtained by the proceeding proposition, as A # 0.
If we set ¢(t) = n(t) — At?, we have

/:o (f”lﬂ  (Az+ a1+ t)”“) (n(t) — At?)dt = /: (tff’l“ Az + a1+ t)p+1) o(t)dt

and ¢(t) = o(t?~¢). We have

/1 1
/A (tp+1 C (Azta+ t)”“) Pt = Taalm) + al)
where
/1 1
1 = — AtP
Aa() /M (tp+1 (Az +a+ t)p+1> thdt,
/1 1
Baalr) = /)\1 (tPH T (Azta+ t)p+1> (t)dt
We have
lim @4 ,4(x) = o(t) dt

T—00 A tp+1
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and

P R 1 ds
IAa(x)AZ)\]f+u(x)+A(Az+a)/o T
k=1
/4 [ee}
1 s - - 1 ds
_A;r,fw(xHAsimr(AHa) — A(Az +a) /AMHSE
= 1

where

We furthermore have

& 1 ds 1
lim (Az + a)" ©_C
er{:o( z+ a) /4$+a 1+ss" r’

A1
P
. T e\ 1 A
xlggo (IA’a(x) B Asin7r7’A v ) N A; )7{ 7
Hence
D e3¢}
) 1 1 n(t) — AtP
leH;OS(QT) = Cp (A (;)\]f - T') +/}\1 Wdﬁ)
which completes the proof. O

5. MULTIPLE GAMMA FUNCTIONS

We shall investigate ratios of the form
[T, T (Bjx + b))
[T/ Tv(Ajz +ay)

j=1

WN (.23) =

for non-negative parameters ai,b1,...,a,,b,. Here I'y denotes the so-called N-
multiple gamma function with parameters (1,1). See [9] and [2]. They can be
defined through the recursive relations:

(1) Tn(1) =1

(2) T1(2) = I(2)

Pny(2)

3) T 1) = ——+
It is easy to see by the above definition that the reciprocal of I'y(z) is an entire
function of genus N, having zeros exactly at z = —k, k € {0,1,...}. The third
property gives I'y11(2) = T'nys1(z + 1)T'n(2) and, as multiplication of the zeros
implies addition of the multiplicities, we can see that the multiplicities of the zeros
form a Pascal triangle, and the sequence of the multiplicities of the zeros of the
N-multiple gamma function are its diagonals. Thus, the multiplicity of the zero at
—k for the N-multiple gamma function is (k;r\,lizl)
COROLLARY 1. For
[T}, T (Bjx + b))
[Ij—1 T (Ajz + ay)

ON log W is completely monotonic if and only if

m n n m
ZBj - ZAi , ZA?logAj — ZB;)lOgBj =0
j=1 i=1 =1 =1

WN (x) =
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and . " . -
;M—;m >0,Yu >0
In the affirmative case, we have
0o n —aiu/A; m —bju/B,
(—1)N TN log Wi () = /0 e srgN—1 ; (166u//Ai)N - ; M ds+A
where
A= ﬁ ;A;logAj - ;BflogBj

Proof. This is a straightforward application of Theorem 1. First of all, the corre-
sponding h function for I'y as in that theorem is summable, and in particular

N s S~ (E+N-T1\ 1
3 (F ) I

k=1 k=0
We have for t > 0 that

=3 (AT = (W)

k=0

and
lim @ = lim 7(“%—]\[) -! = lim 7(\‘“ +N)! = L
t—o00 tN t—00 tN t—o0 N'(I_tJ)'tN N!

using Sterling’s formula. Hence, we get

1 n m
A= T ZIA§1ogAj - ZlelogBj
J= J=

and hence the result by Theorem 1. O
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