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Summary

In this thesis, the Born-Oppenheimer curves for diatomic molecules are investigated in
the Hartree-Fock model excluding the exchange term. It is exhibited that the curves
have a universal behaviour at small internuclear distances which can be understood from
the simpler Thomas-Fermi theory. Notably, we show that the atomic screenings in these
two theories are comparable up to a distance from the nuclei which is independent of
the atomic number. This is proven iteratively, by relating to suitable Thomas-Fermi
models at different length scales. We in particular study solutions to the Thomas-Fermi
partial differential equation with two singularities and demonstrate that their asymp-
totic behaviour is universal. This thesis also contains a numerical investigation of the
homonuclear Born-Oppenheimer curve in Thomas-Fermi theory which supports the an-

alytic result.

Resumé

I denne afhandling undersgges Born-Oppenheimer-kurverne for diatomiske mo-
lekyler i Hartree-Fock-modellen eksklusiv udvekslingsleddet. Det er vist, at kur-
verne har en universel adfeerd pa sma indre kerneafstande, som kan forstas fra
den enklere Thomas-Fermi-teori. Isaer viser vi, at de atomiske screeninger i dis-
se to teorier er sammenlignelige op til en afstand fra kernerne, der er uatheengig
af atomnummeret. Dette er pavist iterativt ved at sammenligne med relevante
Thomas- Fermi modeller pa forskellige leengdeskalaer. Vi studerer isser lgsninger
til den Thomas-Fermi partielle differentialligning med to singulariteter og demon-
strerer, at deres asymptotiske adfserd er universel. Denne afhandling indeholder
ogsa en numerisk undersggelse af den homonuklezre Born-Oppenheimer-kurve i

Thomas- Fermi-teorien, der understgtter det analytiske resultat.
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CHAPTER 1

Introduction

Finding an accurate description of atoms and molecules has been a driving force in
physics and chemistry over the past century, leading to the development of mod-
ern quantum mechanics. Experimental data agrees to astonishing accuracy with
the predictions of quantum mechanics, calculated in computational chemistry and
physics. The numerical calculations are necessary since there is usually no known,
explicit solution to a quantum mechanical many-body systems. This leads to the
peculiar situation where although the quantitative predictions are highly accurate,

it is hard to obtain ab initio qualitative explanations of experimental observations.

Approximate models can help us gain a better qualitative understanding. This
thesis studies the Born-Oppenheimer potential for two such approximations, called
Thomas-Fermi (TF) and Hartree-Fock (HF) model. We introduce and discuss

these three concepts one by one before we state our results more precisely.

1. Born-Oppenheimer potentials

Throughout this thesis, we consider neutral molecules of M nuclei with nuclear
charges Z = (Zy, ..., Zy) at positions R = (Ry,, ..., Ry;). Furthermore, we assume
that relativistic effects, the nuclear spin and the kinetic energy of the nuclei can
be neglected. The latter is the Born-Oppenheimer approximation [1], a standard
assumption used in computational chemistry. The nuclear charges and positions
Z. R then enter as a parameter into the remaining electronic problem. We write
E(Z,R) for the energy of this system, and compare it to the energies F(Z;) of the
corresponding neutral single-atom systems. This leads to the Born-Oppenheimer

potential energy surface
R+— D(Z,R)=E(Z,R)— (E(Z1)+ ...+ E(Zy)). (1.1)

It describes the cost or gain in energy when bringing the M atoms together to
the positions R, or breaking them completely apart. It can also be regarded as
the potential for the adiabatic movement of the nuclei in the Born-Oppenheimer
approximation. Its shape and the position of its local minima (if they exist) are

important properties: Minima allow one to extract bond distances and D(Z,R) at



CHAPTER 1. INTRODUCTION

these points equals the dissociation energy.

We will mainly consider diatomic molecules, that is M = 2. The energy of such a
system only depends on the relative distance R = |R; — Rs| > 0 instead of the two
coordinates R and we denote it by Ez r. The Born-Oppenheimer energy surface
is then just a curve, which we denote by Dz r and a schematic example is depicted

in Figure 1.

Dzr

R

NB—

FIGURE 1. Schematic of a diatomic Born-Oppenheimer curve Dz g
with minimum at the (binding) distance Rj.

2. The Thomas-Fermi model

In 1927, L. H. Thomas and E. Fermi independently proposed [2, 3| a semi-classical
statistical model to describe the distribution of non-relativistic electrons in an
atom. It treats N such electrons with mass m and charge e as a gas, self-interacting
via the Coulomb repulsion and subject to a nuclear potential V. Together with
the semi-classical postulate that a phase-space volume of size k3 can hold up to 2

electrons, one is lead to minimize

1 / pdpde / . dpdx / / e?  dpdx dpdx
om oV w5 t lz — 2| h3/2 73/2
dpdx __

2 T
p can be carried out explicitly and one finds that this problem is equivalent to

over all phase-space volumes Q@ C R? x R? with [ N. The integration in

determining the density of electrons p(x) = [ 1q(a, p)hz—gdp which minimizes

?Zﬁf/5W)M_/W®M@M+§//%%%%mj (1.2)



3. THE HARTREE-FOCK MODEL

under the constraint [ p = N. This model accounts for the kinetic energy (the
p®/3-integral), the nuclear attraction and the Coulomb self-energy of the electrons,
but it neglects any ‘exchange correlation’. It is understood [4, p. 624] that TF
theory correctly describes the inner part of the electron density in heavy atoms,
up to a distance from the nucleus of the order Z % . This is the critical length scale

in TF theory and it in particular appears in the TF scaling relation
E™(Z,R) = N"ET"(\*Z,AR), A\ > 0. (1.3)

This relation has important consequences, among them that for the atomic (M = 1)
energies, ETF(Z,0) = Z"/*E™(1,0). Now Lieb and Simon showed in 1977 in their
seminal work about TF theory [5] that it correctly describes the leading order of

the quantum mechanical energy,
EOM(7.0) = ZTBPE™(1,0) + 0o(Z7?), Z — .

Moreover, the scaling relation (1.3) implies Dy, = R~ D75, | and Brezis and Lieb

[6] proved the existence of the limit
tim DI = BB, (1)

We note that finding the value of the constant DIF, is still an open problem.
It is only known to be upper bounded (in units where h = 27 and m = 1) by
7r42538% ~ 2.51258 x 10”. The exactness of TF theory as Z — oo and the existence
of limiting quantities is part of the mathematical appeal of TF theory. Nonetheless,
TF theory has severe limitations which became apparent when Teller [7] proved
the no-binding theorem in 1962, saying that D™ is strictly positive. Or in simpler

words:

There are no molecules in TF theory.

3. The Hartree-Fock model

Fock and Slater [8, 9] independently proposed in 1930 to improve Hartree’s method
[10] by including the antisymmetry of electronic wave functions. The resulting
Hartree-Fock theory can be regarded as the restriction of the variational principle
for the quantum mechanical Hamiltonian to pure wedge products, called Slater-
determinants. We give a concrete description of the involved energy functional and

mathematical details in Chapter 2 and continue with more general remarks here.

The HF variational problem is more complex than that of TF theory, but still

3



CHAPTER 1. INTRODUCTION

accessible with modern computers.! The model does in particular include some
‘exchange correlations’ and it depends, in contrast to TF theory, not simply on the

density, but on the one-particle reduced density matrix of the electronic state.

Although binding distances in HF theory have been computed numerically, a math-
ematical proof of binding in HF theory is still an open problem. This situation
reflects our opening remarks: The better the theory and its numerical predictions,

the harder it is to prove simple qualitative features.

4. Results

It has been conjectured by Solovej [11] that the Born-Oppenheimer curve of large
homonuclear diatomic molecules has the universal behaviour DIFR™" for small
nuclear separations R, or more precisely:
limsup |Dzz),r — R Dyy| =0o(R7), asR— 0. (1.5)
Z—00
In view of (1.4), this can be informally rephrased as ‘TF-universality of Born-

Oppenheimer curves’ or, with Teller’s no-binding result in mind:

Although molecules do not exist in Thomas-Fermi theory, it does describe the

Born-Oppenheimer curve of large atoms for small nuclear separations.

We sought to prove this conjecture in HF theory but did not succeed because of
the so-called exchange term in HF theory. We instead proved the conjecture for
a HF model without the exchange term, which we call the reduced Hartree-Fock

(rHF) model.? The main result is:

limsup  |D{yf 4, — R DI =0o(R7"), asR—0. (16)

min{Z1,Z2}—o00

Our proof of (1.6) is heavily inspired by Solovej’s work on the ionization conjecture
in HF theory [12], where he showed that atomic screened potentials in HF and TF
theory are comparable. This was known up to the TF length scale Z~'/3, but [12]
used an iteration scheme that allows to reach a length scale which is independent of
Z. We use this technique and extend it to the case of a diatomic system. Moreover

since this is joint work with Solovej, parts of this thesis closely follow his work.

Tt took several decades after its invention, until the development of powerful computers, for the
HF model to really shine.
2This is not the Hartree model, since we still require fermionic states

4



5. STRUCTURE OF THE THESIS

0
~0.1
r « He (HF) + Li(HF)
< -02
N
) g N(HF) - Na (HF)
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g _oa < Ar(HF)  Rb (HF)
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FiGure 2. Comparison of rescaled Born-Oppenheimer curves in
Thomas-Fermi (TF) and Hartree-Fock (HF) theory. TF values have
been computed for this thesis, HF values are from [13]. The nuclear
repulsion, a constant in this scaling, has been excluded.

Our extension to diatomic systems is in many places straightforward but overall
non-trivial. It in particular involves an analysis of the diatomic TF potential in

the region between the nuclei.

Solovej’s conjecture is still open, both in HF theory and in full quantum mechanics.
In Chapter 7 we provide numerical calculations which both support the conjecture
for HF theory and complement our analytic result (1.6): We computed DEFZF 2R
and compare it to the values of D?;ZL  obtained in [13], which appear as coloured
symbols in figure 2. The astonishing agreement of the curves indicates that the TF-
universality of Born-Oppenheimer potentials extends to smaller atoms. In other

words, the limiting behaviour (1.5) is already reached for reasonable values of Z.

5. Structure of the thesis

We now describe the structure of the thesis. After this introduction, we first give
an overview of our notation and the mathematical prerequisites. It ends with Table

1 on page 12, where we collect notation which will be introduced later in this thesis.

Chapter 3 is by far the largest and starts with an overview of the basics in TF
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theory, followed by the bounds on atomic TF theory that we will need. It then con-
tinues with the study of outside TF models, which are defined for a certain class of
potentials supported outside of balls centred at the nuclei. We in particular derive
bounds on the Thomas-Fermi potential in outside TF models (Lemmas 3.11 and
3.12) as well as conditions under which the minimizers are neutral (Lemma 3.17).
The Chapter ends with a discussion of the TF Born-Oppenheimer curve, where
we in particular show in Lemma 3.22 that it can be (to leading order in R — 0)

determined from neutral outside TF models.

In Chapter 4, we first introduce the notion of a density matrix and give an overview
of classical bounds for the negative eigenvalue of Schrodinger operators before in-
troducing (reduced) HF theory. We then recall in Lemma 4.6 that the molecular
energies in THF and TF theory agree to leading order in Z, since this will provide
the starting point for the iteration. Finally, we study the outside part of the den-
sity in rHF theory (Lemma 4.9).

Chapter 5 presents the iterative proof of Theorem 5.1, which from a technical
point of view is our main result: The screened potentials of rHF and TF theory

are comparable far beyond the TF length scale Z 3

Then in Chapter 6 we combine results from all the previous Chapters to prove
Theorem 6.1, which implies (1.6), settling Solovej’s conjecture in tHF theory. We
in particular derive in Lemma 6.4 that the rHF Born-Oppenheimer curve can be
computed from appropriately chosen outside TF models. This ends the analytic

part of the thesis.

Chapter 7 describes our numerical investigation of the Born-Oppenheimer curve in
TF theory, comparing it to results from HF theory. We in particular describe how
one easily obtains a highly accurate solution to the atomic Thomas-Fermi ODE.
And for the diatomic case, we outline the solution process for the (nonlinear)
Thomas-Fermi PDE with the finite element method, using the FEniCS platform.

Appendix A contains a short discussion of outside harmonic functions and the
Kelvin transform. Straightforward but slightly technical calculations are given in
appendix B and for the numerical work, the scripts and some computer output are

provided in appendix C.



6. FURTHER REMARKS

6. Further remarks

1) Both the HF and TF model are common starting points in computational
chemistry, in the sense that a plethora of different corrections are added to overcome
their shortcomings. This leads either to post-Hartree-Fock methods or density
functional theory. These corrected models give better predictions but are usually
based on heuristics, whereas the ‘pure’ models which we consider are both derived
from basic principles.

2) We said that the HF model arises from a restriction of quantum mechanics
to special states. We thereby implicitly considered the non-relativistic Schrodinger
Hamiltonian in the Born-Oppenheimer approximation. This neglects many lower-
order effects, among them the fine structure corrections, which have to be included
for the mentioned accuracy of quantum mechanics. This is achieved by the use
of perturbation theory and is discussed in many physics text books and to some
extent also in [14, Chapter XIII.2].

3) The limit Z — oo is of course unphysical, since atoms with Z > 118 have
never been observed. It is more of a necessity to make a rigorous mathematical
statement about an asymptotic behaviour and it stems from the fact that TF the-
ory has a limit as Z — oo: Not only the energy and Born-Oppenheimer curve,
but also the electron density converges. We can make (1.6) more precise by ex-
plicitly computing constants for the upper and lower bound, but these will be
too large to be of any practical use. On the other hand, our numerical investi-
gation (somewhat unexpectedly) indicates that this limiting behaviour is actually
reached very quickly. It complements the analytic statement and suggests that the
TF-universality of Born-Oppenheimer curves (at small internuclear distances) also

holds for lighter atoms.






CHAPTER 2

Notation and mathematical preliminaries

We write N for the set of positive natural numbers and R, for (0,00). By I, we
denote the ¢ x ¢ identity matrix. For a € R, we define [a]; := max{0,a} and
la] := max{0, —a}. The open ball with radius r and centre p in R* will be de-
noted by B(0,7). For any  C R3, we write Q¢ for its complement and 1 will
denote the indicator function of €2, while |2| denotes its Lebesgue measure (if it is

Lebesgue-measurable).

For a system of M atoms at positions R = (Ry, ..., Ry) € (R*)M and with charges
Z=(Z,...,Zy) € RY, we define the corresponding Coulomb-potential

VZ R(x) = i/[: i
’ = v = Ry

We will focus on diatomic systems, where M = 2. These depend only on the
relative distance

R :=|Ry — Ry
and the nuclear charges Z = (7, Z3). We therefore assume without loss of general-
ity that R; = 0 and Ry = Rv for some v € S%, which we assume is fixed throughout
this thesis. By a slight abuse of notation we then identify Z, := Z;, Zg, := Z5 so
that

Z
Va.r() = Voo (@) = ) o
pe{0,Rv} p

and hope that this will not bring any confusion. For brevity, we will use the
notation mgz := min{Z;, Z»} and |Z| := Z]J\il Z;. Furthermore, we define the open

inside and outside of two balls,
7, := B(0,r)UB(Rv,r) and O, :=(Z,)"

We set LP(Q) = LP(;R) and if Q = R3, we just write LP. Whereas whenever
complex-valued LP-spaces are used, we use the explicit notation LP(R3;CY). Here
q will denote the number of spin states, which is usually 2 for electrons but our
analysis will be valid for any ¢ € N and we chose to keep it as a fixed free parameter

throughout this thesis. We will identify f € LP as a multiplication operator on L”
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or LP(R?* C%) that acts by f: ¢ = (p1,...,0) = (for,.. foq)-

We introduce an important quantity that will appear in the TF and rHF func-

tional.

Definition 2.1. The direct Coulomb energy of two functions f, g € L5/°(R3; C)

1= |

Note that this is well-defined because of the Hardy-Littlewood-Sobolev inequality
[15], [16], [17],
D(f,9) < cuws|| fllessllglless, (2.1)

1
where the constant curs = 3 (2)? is sharp and due to Lieb [18]. We will also use

the notation D(f) := D(f, f).

A locally integrable function f is in LP + L7 with p, g € [0, oo iff it can be written
as f = f,+ f, with f, € L?, f, € LY. And f e LP+ L2 iff f € LP + L9 and || f,]|,
can be chosen arbitrarily small. Our main example is Vzr € L2(R?) + L>(R?).
We define the mean of f over a bounded set Q as f, f = Q7" [ f.

As usual, the Sobolev space H'(Q) consists of L?*(2)-functions with weak de-
rivative in L*(Q). For I' C 0Q and g € L*(T'), we define H,(2) as the set of
H'(Q)-functions that equal g on I'. The symbol 9, denotes the partial derivative
in direction of the outward unit normal n of some boundary 02 and it appears in
the context of the classical formula [,V fVg= [,,0.fg— |, Afg.

The space of smooth functions with compact support on an open subset €2 of
R™ will be denoted by C2°(2). Whereas if Q C R" is unbounded (and not nec-
essarily open), we denote by Cy(£2) the set of continuous functions f such that

lim f(xz)=0. By T[¢] we denote the action of a distribution 7" on a test function

|z| =00

¢, then in particular 0, [¢] = ¢(x) for any ¢ € C°(R").

For the Fourier transform F of f, we use the convention Ff (k) := [g4 f(x)e > *dx.

We recall that = denotes the convolution operator, that is f % g(z) = [ f(y)g(x —

f)
|z—y|

y)dy and we frequently will use the notation f x |z|™* = [ dy. For this we

observe:
Proposition 2.2. If p € L' N L%/3 then px* |z|™! € Co(R3).

10



Proof. Repeating the argument from [5, Lemma II.25], we use Young’s inequality
£ *9lleo < Ifllpllgllq, the fact that |z|~' € L3/24 L9 for any ¢ > 3 and that Cp(IR?)
is the closure of C°(R3) with respect to || - ||oo- O

Let 7 be a placeholder for one of the three molecular theories we will consider
— either TF, rHF or HF. Then ¢ and o7, will denote atomic and diatomic
neutral electron densities in the theory 7 (see (3.4), (4.8) and (4.9) for precise
definitions). Quite generally, while p will be some non-negative L!-function, o will

denote minimizers of a functional. We define the 7-screened atomic potential at

o5, () ::%_/B o7\y) ,

(0,r) |‘T - y|
and the 7-screened diatomic potential at radius » > 0
0z.r(Y)
7.1 (@) == Vzr(x) —/ —==dy.
ot 7, [T =yl

Note that in general, ®7, (z)+ @3 (v — Rv) # &7, (z).

ZRI./7T

radius r > 0

We define the constant cy = ZW)Q as the one appearing in front of the kinetic

(P
part of a Hamiltonian H = —cgA — V. A common choice in physics are atomic
units h = 2w, m = 1, whereas in operator theory, one usually considers cyg = 1.
We keep it arbitrary but fixed. The constant crp appears in the TF functional
(see Definition 3.1) and is for the purpose of the mathematical treatment of TF
theory arbitrary. Only when comparing to a theory that arises from a physical
Hamiltonian, one has to choose crp = cz(672/q)%3, which is clear by inspection

of the kinetic term in (1.2) and Definition 3.1.

Universal constants that appear in classic inequalities will be given names that
refer to the name of the inequality, like in (2.1). Many other constants appear in
this thesis and might depend on ¢ and ¢y but not on R, Z, R, Z or r, unless explic-
itly stated. They can all be computed in principle, if not mentioned otherwise. We
will sometimes just write (cst.) for such a constant. Some will be named after the
statement they appear in, for example cx.yq, Cx.ys, ... if these appear in ‘Lemma
X.Y’. This makes it more transparent regarding which parts of a proof use earlier
statements. We denote by C, CY, (s, ... constants that are only used within a proof

and whose value may therefore differ between proofs.

11



CHAPTER 2. NOTATION AND MATHEMATICAL PRELIMINARIES

TABLE 1. We here provide a list of symbols,

Symbol Page
n, & 15
07, 0z'n 16
vz vz 16
ESF, BLL 16
a™® 17

i, € 18
H() 21
N(V) 21
H,, H, HY 24
a, A 34
DEFR 40
Q[V;(O), %(RV)] 49
Y, pys DM, 47
Hy, 48
ngF 50
gxr 49
W ek 50
9¢ 51
{w.},z € {0, Rv,0, Ry, O} | 56
Voo 56

A 60
V;(]}p)’ ‘/r(j) 69
DY 69

whic

h we did not in-

troduce yet, together with the page where they are defined or ex-

plained.

12



CHAPTER 3

Thomas-Fermi theory

This Chapter develops the mathematical framework of Thomas-Fermi (TF) theory
that we require, though there is much more that can be said about TF theory than
we provide here. A very detailed analysis of the TF theory of Coulomb systems
to which we refer in several places has been given by Lieb and Simon [5]. For a
concise review of molecular TF theory and its extensions, we refer to Lieb’s review

[4] from 1981.
1. The TF functional and its Euler-Lagrange equation
We start by introducing the set of admissible TF densities with mass at most A,
C(A) = {pe L'R)NLR)|p >0, [lplh <A}

and write C = C(oc0) for the set of all admissible TF densities. The value of the
constant cpp > 0 is arbitrary for the purpose of this Chapter.

Definition 3.1. The Thomas-Fermi energy functional corresponding to the
potential V' € L%/2(R3) 4+ L*(R?) is the map &Y : C — R defined by

3 5
£l = erre / of — / Vo +D(p).

This functional admits a simple scaling relation, which can be expressed as follows:
If Ve L°2(R?) + L>(R®) is such that V(z/t) = tV(z),t > 0, then for any
T.U € Ry and p € C, we have that

7 [ 55 -0 [Vor Do) = U3 el (3.1)
with ALU?p(A\pUY3z) = p(x) and A\p = 2ZE. This leads in particular to the

mentioned scaling relation (1.3).

13



CHAPTER 3. THOMAS-FERMI THEORY

A proof of the following fundamental results about the TF minimization problem

has been essentially given in [5].!

Theorem 3.2 (The TF minimization problem). Let V € L>?(R3) + L>®(R?) and

E\ := inf &Y. Then:
4oy

a) Ey is finite, convexr and nonincreasing in A > 0 and equals
inf{&F" [llp € C, [Ipll = A}

b) For all X > 0 exists a unique gy € C(N\) such that EFF[0\] = E).
c) For all A > 0 exists a unique py € R, called the chemical potential, such that
Ex+uy [ oy = in(fz {EFF ol + pn [ p} . Moreover, E, is differentiable in \ with
peE

aa% = —p and py € [0,sup V). If uy > 0, then [ o\ = .

d) The minimizer oy is the unique solution in C to the TF equation
e = [V —ox e[ =]y in R,

and the corresponding TF potential o) :=V — oy x |z| satisfies the distribu-

tional TF differential equation
Apy = 47rc}g/2[go)\ — ;/J,\]i/Q + AV in R
The TF equation is the Euler-Lagrange equation for £ and has important con-
sequences: If the chemical potential (the Lagrange-multiplier) vanishes, then the
TF equation becomes
o(z) = & fp(@))” (3.2)
This means that the minimizing density with p = 0 is completely determined by

the TF potential ¢, which solves the distributional partial differential equation

Ap(z) = 4#0}5/2 [@]1/2(33) Vo € supp(AV)~. (3.3)

The prime example for this situation is the Coulomb potential Vz g: It is harmonic
in {Ry, .., Ry }¢ and the chemical potential for the minimization problem over C(\)

vanishes for any A > |Z| due to the following result by Lieb and Simon:

Theorem 3.3. [5, Theorems I1.17 and I11.18] 5553 has an absolute minimizer QEFR,

which is neutral, that is [ 03’ = | Z].

The study of the partial differential equation (3.3) plays a central role in this thesis,

not only because it allows us to deduce properties of the TF minimizers, but in

'Lieb and Simon use that V is in qu(%yoo)([ﬁ/? + L9), which is a strict subset of L%/2 + L. If

V is from the latter set, we note that EFF [p,] — E¢¥[p] if pn — p in L5/3 and ||p|1, ||pnll1 are
uniformly bounded. This in particular replaces [5, Theorem II.2 b)] and is proven along the same
lines.
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1. THE TF FUNCTIONAL AND ITS EULER-LAGRANGE EQUATION

particular because solutions to (3.3) have a certain universal behaviour. We give

a short explanation of the underlying principle:

The only solution of the simple form |z|P is p = —4, but TF potentials arising
from a nuclear potential have a |x|~'-behaviour at the origin since ¢ * |x|~! is con-
tinuous. In this case, |z|™* can at most be valid for large |z|. This had already
been noted by Sommerfeld in 1932 [19] when he studied the atomic TF problem

and we speak of the Sommerfeld asymptotic when
p(r) = esla|™,  as |z = oo

with

cs = (3/7)2Chp.
Looking for the next order in |z|, that is a function of the form |z|~%(1 + a|x|?),
one computes Alz|~*(1 + alz|P) = 12|z|75(1 + a/12(12 + p* — 7p)|z|P). Since
(Jz|~4(1 + a\x|p))3/2 ~ |z|75(1 + 2a|z|?) to first order in the correction a|z|?, this
ansatz leads to p> — 7p = 6. We use the notation introduced by Sommerfeld and

denote the solutions of this quadratic equation by n and —¢, that is

7+/73 7—V73
=Ty 2

~TTT2, Ei=— ~ 0.772.

Now the interesting part is the Sommerfeld universality: Positive solutions to (3.3)
that vanish at infinity indeed satisfy the Sommerfeld asymptotic and hence have

also the same correction terms |z|~~¢ for large |z|.2

We note if ¢ is a radial solution of (3.3), then it reduces to an ordinary differ-

ential equation
& ()
dr? N

via f(|z]) = (47)%crp|r|@(x). This equation has been studied, amongst others by

r>0

Hille in [20]. However, since we seek to investigate the dissociation energy, which
in particular involves the nonradial system of two nuclei, we need to go beyond the
radial case, treating the (fully) partial differential equation. This case has already
been investigated (for example in [5]) and we in particular note that the behaviour
of solutions ¢ to (3.3) with a singularity at p € R?® has been characterized by Veron
[21]: Either ilg}) o(z)|z — p|* = cg, which is the unique ‘strong’ singularity, or we
have a ‘weak’ singularity 31612;) o(z)|x — p| = C for some C > 0. Any TF potential
that corresponds to Vz g clearly falls into the latter category. Hence all C' > 0 are

2compare Lemmas 3.6, 3.10 and 3.11

15



CHAPTER 3. THOMAS-FERMI THEORY

possible and the strong singularity can be understood as the limiting case C' — 0.

The main technique for the study of the PDE (3.3) is the subharmonic comparison

argument, a variation of the maximum principle for subharmonic functions.

Theorem 3.4 (Maximum principle). Let €2 be an open, bounded subset of R™ and

assume u € C(Q), as a distribution, satisfies Au > 0 in Q. Then maxu = max u.
Q

The maximum principle is a well-known cornerstone in harmonic analysis. For
a proof of this generalization to subharmonic (continuous) distributions, see for
example [22, Part 3, Chapter 3.2].

Corollary 3.5 (Subharmonic comparison). Let §2 be an open subset of R" and
assume u € C(Q) satisfies u < 0 on IQ and, as a distribution, Au > 0 in
QN {u > 0}. Further assume limsup u(x) < 0 if Q is unbounded. Then

z€Q, |z|—o0

u(z) <0 for all x € Q.

Proof. Let U, = B(0,7) N {x € Q : u(xr) > 0} and assume there exists 7 with

Z € Uz. Then 0 < u(Z) < maxu = maxwu for all » > 7. But limsupmaxu < 0 due
U, U, r—oo OUr

to the assumptions. Hence U, must be empty for all r. U

2. Atomic and diatomic TF theory

To discuss (neutral) atomic and diatomic TF theory, we recall that Vz g(x) =
> peio.rwy Zplx —p|~" for some arbitrary but fixed v € S?. Using Theorems 3.2 and

3.3 we then define the atomic and diatomic global minimizers
oy = arg mcin SE/FM and g = arg mln SVZ N (3.4)

and denote by E}" and E7'; the minimal values of the TF functional. The mini-
mizing densities are neutral, that is [ 03" = Z, [ 025 " = |Z| and the corresponding

chemical potential vanishes. The corresponding TF potentials
A _
by () = i o7 *|z[7h and  pgzip(x) = Var(z) — ozp * x|
therefore satisfy the distributional differential equations
3/2 (

ALY = dre )2 (OEF)3? —4nZ5y  in R®

16



2. ATOMIC AND DIATOMIC TF THEORY

and
Apgp = 4WC%§/2(SOE,FJ%)3/2 — 47 (Zo0o + Zr,Ory)  in R
We have already announced that these equations imply the Sommerfeld asymptotic:

£/3
s

Lemma 3.6 (Atomic Sommerfeld bounds). Let Z > 0 and a™ := 2(44v/11-1) %~

Then
cslz|™ > o3 (x) > csla| (1 — a2 )0,
and

3 _ 3 _ _ _
sl > 037 () > Seslal (1 - 3T 2 5a ),

Proof. Tt is well known that ¢LF < cg|z|™ for all x € R3, see for example [12,
Theorem 5.2]. A proof of the bound p}F () > cslz| (1 +aZ~¢/3|z|~%)72, Vz € R®
with the constant @ = (44y/11 — 1)c{/*227¢ can be found in [12, Thm 5.4].* From

this and with o™ = 2a we infer that for all z € R3:*
gt al* e} (2) > 1= a2 a5

For the bound on the TF density, we use that (cs/crr)*? = 2cg together with the
TF equation (3.2). Then the upper bound is trivial. And the lower bound also
follows immediately:

3

el o3 (2) = (e 'R (@) = (L4 2] )

>1—3a" 2783 z| ¢

Remark: Positivity of the atomic TF potential

The lower bounds that we give in Lemma 3.6 are far from optimal, because they
are just the asymptotic behaviour (for large |z|) of the better lower bound [12,
Thm 5.4]. We note that the latter implies

0t (r) >0, VrecR

The TF scaling relation (1.3), rephrased for the TF potentials, reads ¢}F (z) =
M, (Ax) and pglh(x) = Ny p(Ax) for any A > 0. It implies that the
atomic potential is, for all Z > 0, fully determined by one single radial function
©1¥. The diatomic potential on the other hand is already more complicated. It
can only be reduced to a two-parameter family, depending on mi R and the ratio

max(Z1, Z3)/mz. The same holds for the diatomic Born-Oppenheimer curve Dz';.

3using that £y = cé/3/22 .
4By strict convexity of f(t) = (1+1t)~? on (—1,00), f(t) > f(0) + t%(O) =1-pt

17



CHAPTER 3. THOMAS-FERMI THEORY

A classical result due to Teller [7] describes an important relation between the
atomic and diatomic TF potentials. Lieb and Simon provided a rigorous proof (see
[5, Thm. V.5], which contains an even sharper result not needed here). We repeat

it here to showcase an application of the subharmonic comparison argument.

Lemma 3.7 (Teller). For all positive Zy, Zo, R and all v € R3,

max {31 (z), ¢} (v — Rv)} < 0plp(x) < @7F (2) + @3} (v — Rv).

Proof. Note that by Proposition 2.2, x = 3 (x) — pgip(z) + is continuous

Z3
=—Rv
on all of R®. Hence ¢3! < @'z on B(R, ) for all § sufﬁcient{y snlall We apply
Corollary 3.5 with u = ¢y — ¢z and Q = B(R, %) and obtain on < oz
everywhere. Interchanging the roles of ¢ and ¢3! in this argument proves the
first inequality. While for the second inequality, we apply Corollary 3.5 with u =
$z.r — 7 — P (- — Rv) and Q =R, O

Combining Teller’s Lemma and the atomic Sommerfeld bound gives a Sommer-
feld type lower bound for gOE’FR and an upper bound by twice the Sommerfeld
asymptotic. A better upper bound for large |x| which actually proves the Sommer-
feld asymptotic for the diatomic potential will be provided later and follows from
Lemma 3.10.

We improve Teller’s bound close to the origin, where both ¢! (x) and ¢z (z)
have the same leading term Z; /|z|. We have control on the growth of their differ-
ence, independent of the value of Z5. For this we introduce more notation, defining

the constants
s §+4

—, 77 .
n+¢ n+¢

1/3

~ N\ 1/
Lemma 3.8. Let p € {0, Rv}, assume RZ," > 2 (a”f/f]) . Then for all

x € B(p,R/2) :
. 2
0 (o) = o2 (0 =) < conaest (B2 e =l (L)
And for all x € B(p,r)¢ with r € (0, R/2):

_ r _ 1\ —1€ B n
(ng( —p) — Q},E;%)]IB(p,T) * |z 1‘ < m <03A8bR * (RZ;’) + czger (E) ) :

Proof. Without loss of generality we may assume p = 0.
Step 1 (A preliminary bound in B(0,7))
Consider the function ¥(z) := cs|z|™* (1 + (R/r — 1)*(|z|/r)"), which is smooth

18



2. ATOMIC AND DIATOMIC TF THEORY

away from the origin. Since 7 is a solution to n(n — 7) = 6 and since (1 + 3t) <
(1+1)3/2 for t > 0, we compute for |z| > 0:

AV (z) = 12¢cg|z| ™6 (1 + (1 + @) (R/r—1)~* <|—|>n> < 12¢5 P (2)?2

r

By Proposition 2.2, we have ;"% — Zi|z|™' € C(B(0,R)). Hence there exists a

0 > 0 such that ¢y < ¥ in B(0,0). Let us assume for now that r € (0, R). By
Lemmas 3.6 and 3.7 we find that for all |z| =r

et < o (L4 ) <o (10 Gy ) < v

We now apply Corollary 3.5 with u = ¢z, — ¥ and Q = B(0,7) \ B(0,6) and find

ez r(@) < cslz|™ (1 +(R/r —1)* <|jf—|)n) ., VYzxeB(0,r). (35)

Then using Lemma 3.6 again, we conclude that for all z € B(0,r) and Z;, Zy > 0,

PBhe) = 5 0) < aslol (a2 < (0 (HD)) e

Step 2 (Improving the bound for small x)

1

For |z] = rg :=r (%:aTF (R/r —1)* (R/r)g(Rle/:S)_g)m, the right hand side of

(3.6) is minimal in |z| € [0,7]. So if |z| = r¢ < r, which is equivalent to

7 1/¢
R2,”* > Ci(r/R) = = (:aTF(R/r - 1>4> :
rA\"N
then @z':(z) — @71 (z) < csa™ Z7B3 (4 ) /(n = 4)rg ™% As the right hand side
is a constant, we can extend the bound to all |z| < ry by Corollary 3.5 (with
U=y — ¢y — (cst.) and Q = B(0,r0)). Hence if RZ® > Ci(r/R) > 0, then

ro € (0,7] and we have improved (3.6) for small z:
Ppp(a) — o3 (@) < esa ™IS ZT g Ya| < (3.7)
We choose r = R/2, which fixes the constant Cy(r/R). Then ry = (cst.)(Rle/g)n;f&.

Inserting this in (3.7) and combining it with (3.6), we have deduced the first bound,
that if RZ,"® > C1(1/2) = 2(a™ ¢ /7)V%, then for all |z| < R/2:

o NE B
PET() — 3 () < cslal ™ (Ll /R)" + es (77 (217/€) 2 R(RZ)

.

N~
—:C3.8a

(3.8)
Step 3 (Integrating the first bound to obtain the second)
With the TF equation and the fact that (14 ¢)%2? —1 < %t + %t?’/Q for any t > 0,
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CHAPTER 3. THOMAS-FERMI THEORY

we have

3/2

crr 0z — 020 ) =032 (L + (pgfh — 030 /s — 1)

3 1 3
5 (92)" (pzr = vz) + 5 (van — 22))

Njw

IN

N3 _ _
Let r € (0,R/2). We abbreviate Cy := <2”ﬁ/§> (aTF)”/f)(Rle/g’)*“75 and use
Lemma 3.6 with (3.8) to estimate for x € B(0,r):
0 <ci¥ (oginl(®) = 07, (+))

§§C3/2 (]x\ 2p—4 (02 + o Hxl/R]”_4) + R (02 + 27 Hx\/R]’?—4)3/2>

§
2

3
< (|x|—2R—402 P[5 [zl /R + ROCY? + R02% [Ja] /B30
(22 — 200 ] /R0 4>Rﬁ).

Here we used that (a + b)%/? < a3/% 4 b3/2 4 (23/2 — 2)a3/*b3/* for all a,b > 0. This

bound being radial, we use Newton’s theorem and obtain for |z| > r € (0, R/2):

0 <(0z.r — 02, ) LB * |2

905
<
27|z | B(0,r)

<|yr 2RCy + 2y~ [|y|/R)" + R~°C3* + R°27 [ly|/R] 2"~

3
(292 = D)2 [yl R ) ay
By integration and since ab < a?/2 + b?/2, we find that

(0z.r — 02, ) LB(0 * |27

<18csr 18cgr (02R

]

1 s\ 2
1+ 5021/2(T/R)2 +0y? (%) ]

+ (2r/R)"r " [n—ig + %,7{3(27«/}%)"/2 + (2r/R)"/2+2D. (3.9)

Note that the assumption RZ® > 2(a™F&/i)V/¢ is equivalent to Cp < 2*/€ and
that /R < 1/2. We use this in (3.9) and end the proof by defining

3 3 /2 _
s 1= cs18(a™") 72757 E (1/3+£ v (uw))

(3n
1Y QI
C38c .= C .
B8\ =3 T 3p/2—3
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3. OUTSIDE TF MODELS

3. Outside TF models

The term outside Thomas-Fermi (oTF) model was used in [12] for the TF model
with respect to the HF-screened atomic potential, restricted to the outside of a
ball. We generalize the idea in two ways: Firstly by formulating it for a whole
class of outside harmonic potentials. Secondly by showing that the same ideas

apply to the diatomic case.

Before going into the details we motivate the further discussion with the sim-
plest nontrivial outside model. It arises naturally when splitting the atomic TF
energy into inside and outside energies with respect to the ball B = B(0,r). By

this we mean the decomposition
E}F SZ/|ac\ [QZF]IB] + gq;.TF [QZF]IBC] (3.10)

One might object that the second summand in (3 10) does not really depend solely
on the outside, since ®3%(z) = Z/|z| — [ 05" (y)/|z — y|dy. However, we could
also consider the restriction of this potentlal to the outside, V, = @} 15, and

notice that Sq)TF [0z 1 ge] = EFF 05" 1 5c]. The minimization problem

=argmin &Y, N, =27 — P
Or gC(NT 7 /BQZ

is an example of an outside TF model.> The TF equation crp gr = [V, —op*|z| ™t —

fr]+ implies that the minimizing density has support outside of B. The restriction

to densities with L'-norm of at most mass N, = lim tf V,. is natural, since
i JOB(0,1)

this is the total inside charge, seen from the outside. With this example in mind,

we now present the more general framework.

Definition 3.9. Let Q C R3 be the complement of a compact set. Then H () shall
denote the space of functions V' : R? — R which vanish in R3\ ©, are continuous
in Q and satisfy AV =0in Q as well as lim V(z) = 0.

|x|—o00

For any V € H(Q), with Q C R3 being the complement of a compact set, we

introduce the total inside charge

N(V) := lim t][ V(w)dw.
8B(0,)

t—o00

Swe use Theorem 3.2 here
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This limit exists because ¢ — tfaB(O,t) V(w)dw is constant for all ¢ such that Q¢ C
B(0,t).° Note that H(Q) € L3 + L>®. Hence by Theorem 3.2, there exists

=8 iy
for any V' € H(Q2) and we call this minimization problem the outside Thomas-
Fermi model corresponding to the potential V. The minimizer satisfies the TF
equation, which implies that supp o C suppV C Q. We will treat two particular

cases of oTF models,

o if Ve H(WC), we speak of an atomic oTF model.

o if V€ H(O,), we speak of a diatomic oTF model.”
The maximum principle implies that any V' € H(2) decays at least like the har-
monic function |z|~'. More precisely, if Ve H(B(0,r)"), then

V()| < — sup |V|, V]z|>r (3.11)
| |BB(07~
and if V € H(O,), then
V) < B qup VI, Wl > B4 (3.12)
[z o0,

Let us have a closer look at our example V, = @' 15, € H(B(0, B(0,7)") with the
minimizer o, € C(N(V,)). The atomic density QZ is (see Theorem 3.3) a global
minimizer, hence by inserting the trial density oL"1p + o, in (3.10), we obtain
E3F < &) loz" ]IB]+E¢TF [o,]. On the other hand, EZ" > &35 [07" ]IB]—i—cS'cpTF [0/]
by minimality of o,. Then EL 07 1 pe] = ELF o,]). However, since TF minimizers
are unique, g, = o, 1ge, which is not too surprising. This implies that the cor-
responding chemical potential vanishes, so o, is the global minimizer of E‘EF. The
corresponding TF potential equals, by definition, ¢ ¥, which satisfies the Sommer-

feld asymptotic.

But what about other oTF models, are the minimizers global and does the cor-
responding TF potential satisfy the Sommerfeld asymptotic? In the following
Sections, we generalize the perturbation argument from [12] and show that these
two questions can be answered affirmatively, provided ||V — ®3F1p0)ells (or

|V — ®2': 15|l in the diatomic case) is sufficiently small.

6See Proposition A.3 in the appendix for details.
"We recall that O, = (B(O, r)uU B(Rl/,’l“)) .
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Remark: Other outside models in TF theory

There exist other formulations which are quite similar to what we call oTF here.
Lieb and Simon considered for example [5, Ch. VII] TF minimizers with respect
to a (radial) uniform screening Z/|z| — [, py/|x — yldy, py € R4. Since V was
not restricted to A, their potentials are not directly covered by our approach here.
Another similar formulation are what Solovej in [23] calls exterior TF models:
He studied (radial) atomic potentials 7/|x| and restricted the TF minimization
problem to densities supported outside of a ball. We stress that we here allow far
more general potentials, which in particular are not necessarily radial, both in the

atomic and diatomic case.

3.1. Sommerfeld bounds. The following result is a fairly general statement
about the Sommerfeld behaviour of solutions to the TF differential equation and

has been proven in [12, Theorem 4.6]:

Lemma 3.10 (atomic oTF Sommerfeld asymptotic). Let ¢ € Co(B(0,7)¢). As-
sume it satisfies Ap = 47rc;g/2[g0 - M]iﬂ distributionally in B(0,1)¢ for some u > 0
as well as liminf inf ¢ > u. Then

s\ 9B(0,s)

max {w, (), v(p,7)|z| '} < p(z) Swh(z)+p Vo e B(0,r)",

where v(p,r) = B%nf) max{y|z|,w, (z)|x|} and
0,r)¢
a(r) := lim\‘inf sup (x/css—‘lcp—l - 1) o wy (@) = sl (L4 a(r)(r/|2])) -
ST 9B(0,s)

Alr) = lim\‘inf sup (cg's’(p—p)—1),  wh(z):=cslz|™ (1+ A(r)(r/]z])).
SN 9B(0,s)

Remark: Sommerfeld asymptotic for gOEFR

The conditions of Lemma 3.10 are satisfied for the diatomic TF potential, because
it is strictly positive and the corresponding chemical potential vanishes. Moreover,
it is clear that we can chose any centre for the ball in Lemma 3.10. Applying it
with ¢z', on B(Rv/2,2R), we conclude that the diatomic TF potential satisfies

the Sommerfeld asymptotic.

We now provide the analogue of Lemma 3.10 for the diatomic case:

Lemma 3.11 (Diatomic oTF Sommerfeld asymptotic). Let r € (0, R/2) and as-

sume that ¢ € Co(O,) satisfies Ap = 47‘('6;;)\/2 [ — ,u]i/2 distributionally in O, for
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some constant (1 > 0 as well as liminfg, g)%f @ > . Then for all x € O, holds

v(p,r)  vip,r)
lz| |z — Ry

max{w;m w, (x - Rv), } < plx) < wile) + wile - Rv) + p,

where v(p,r) = B%nf) max{y|z|,w, (z)|x|} and
0,r)c

a(r) := liminf sup <\/css*4<,0*1 — 1) , wy (2) =gl (1 + a(r)(r/\x|)£)_2,

s\ 90,

A(r) = lim\inf sup (cg's* (o —p) — 1),  wi(z) = cslz|™* (1 + A@r)(r/|z])F) .
SN 90

Notation: Half spaces
We introduce at this point some notation for the discussion of reflection symmetric
functions: For p € R\ {0}, let

H, :={z € R | (z —p)-p =0}

and
+ . 3
HS = {r e R* [ £(z —p) - p> 0}

so that R? is the disjoint union of the open half spaces H;;, H,, and the plane Hi,.

Proof. Step 1 (Reduction to continuous expressions)

By assumption on ¢ there exists 7 € (r, R/2) such that infgo, ¢ > p > 0 for all
s € (r,7). This also implies that a(s) is well defined for any s € (r,7) and as ¢
is continuous on 00, the suprema are actually achieved. It suffices to prove the
statement with r replaced by an arbitrary s € (r,7), since the claim then follows

by taking liminfg\,.

Step 2 (Lower bound)

We consider f(z) = max{w, (z),w, (z — Rv), o ﬁ} on O,. This is the maxi-
mum of the radial function z — max{w; (z), v|z|~'} and its shift to Rv, hence f is
reflection symmetric across the plane Hp, ». We also note that a(s) > —1 because

of the assumption infsp, ¢ > p. It is then easily verified that:
—(x)|z| is positive and radially decreasing for |z| > s,
(b) w, (x) = infse, ¢ > u for all |z| = s,

(0) Awy (z) > dmep? (wy ()32 for all |z] > s.

a

From (a), (b) and the fact that p|z| is increasing, we deduce that v = ury with rg

being the unique radius in (s,00) such that w, (|x| = ro) = p. Moreover, for any
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r € Oy we can write

max{w, (z),w, (x — Rv)} if f(z) > p
fla) = (313)
vmax{|z|7! |z — Rv|7'} if f(z) < p,
which together with (b) implies f|so,= infgo, . To use Corollary 3.5 with u =
f— ¢ and Q = O, we need to verify that Au > 0in Os N {u > 0}. Because Au =
Af — 47?0{1? [ — ,u]i/ ?. it suffices to show Af > 4#0;}?;/ [f — u]i/ ? distributionally
in O;,. For any nonnegative ¢ € C°({x € O, | f(x) > p}), we first compute (see
Lemma B.1 for details)
/ fAp = ((Aw;)]le + (Aw, (- — Rv)) 1y ) ¢ — 2/ (0w, )odo.
R3 R3 Rv/2 Hry /2

Rv/2

Due to (3.13), (c) and since (d,w, ) < 0 on Hpg, /s, we find

[ 180z aney® [ oz anll [ (1 ulo

and conclude that
Af > dre*[f = pY? i {f > p}N O, (3.14)

Now w; is due to (¢) and (a) subharmonic, while |z|~! is harmonic. The maximum
of finitely many subharmonic functions is a subharmonic function,® hence f is

subharmonic in O, which implies’
Af>0 inO,. (3.15)

Now pick any nonnegative ¢ € C°(QOy) and a nonnegative sequence &, € C°({f >
p}) such that &, 1y, pointwise in supp ¢. Writing

[s0= [ a0+ [ £a0-g)e

we then use (3.14) for the first summand and (3.15) for the second summand
to deduce that [ fA¢ > 47rc;g/ 2 [If = ,u]ip(fn(b) By monotone convergence,
lim [[f — w?(€n0) = [[f — 1)?¢. As outlined earlier, the lower bound now
n—oo

follows from Corollary 3.5.

Step 3 (upper bound)

We consider g(x) := w} (x)+w} (z— Rv)+u, a continuous function on R*\ {0, Rv}.

8see [22, Part 3, Proposition 3.2.1]
9Isee [22, Part 3, Corollary 3.2.16)
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Because Aw’ < 4rcrt/?(w})3/2 in B(0, s), it satisfies
Ag < dmegd? ((wh)*? + (wi(- — Rv)*?) < dmey, g —u?? im0,
Since w} |ap(0,5)= SUPgo, ¢ — K, we observe that
9(2) > w} lon,s) +1 = Sup Vo € 00;.

Corollary 3.5 with u = ¢ — g and 2 = O now yields the upper bound. O
If ¢ satisfies the assumptions of Lemma 3.11, then it in particular also satisfies
the assumptions of Lemma 3.6 in B(Rv/2, R/2 + r)¢ and we see that ¢ & cg|x|™*
for large |z|. Hence the lower bound of Lemma 3.11 has the correct asymptotic

behaviour, whereas the upper bound is too large by a factor two, similar to how

Teller’s Lemma yields a bad upper bound for 3"

The next Lemma improves the upper bound from Lemma 3.11 for x close to 9O,.

Lemma 3.12. Let r € (0,R/2),n > 0 and assume that ¢ € Co(O,) satisfies

Ap = Amery /Q[w “]3/ distributionally in O,. Then

wh o (x)+ ifreH, ., NO,
SO(,:C) S A17A2( ) ILL f Rl//2
Wi, a,(x = Rv) +p if v € Hy, ,NO,

where Wk 4 (x) == csla] (1 +A(r) (2z]/R)" + As(r) (r/|x|)f), with
A;(r) == liminf,, Bj(s),7 = 1,2 and

s s/R)E
By(s) = 4 + By )7(74_+4§)(2 /R) |
Ba(s) i= | 200 le5'st (e — 1) — 1] — =45 (2s/R)"
2(s) = 1+ 2 (2s/R)s+ .

Proof. We prove the upper bound with r replaced by s € (r, R/2), since A;(s) =
B,(s),j = 1,2 by continuity of ¢ in O,. The claimed bound follows then by taking
the liminf on both sides. We want to apply Corollary 3.5 with 2 = O, to the

s\
function

ule) = o) = (5, ) g (0) + By~ By (@) 41

Rv /2

By definition of By, for all x € 00,:

o(x) —u(x) = cgs™ <1 + 77%(23/}%) + Bs(s) (1 + %(28/}%)”4‘5)) + 1.
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3. OUTSIDE TF MODELS

Then ¢ — u > supyp, ¢ in 0O, by definition of B, and this implies v < 0 on 00;.
It remains to show that Au > 0 in O; N {u > 0}. We assume without loss of
generality that v = e3 to compute that, in the distributional sense in O,

Au(x) =Ap(x) — Awp, g, (2)1g-

Reg/2

() — AwEhBQ (x — Rv)lyg+ (o)

Reg/2

+ 23z3w§1’32 (l’l, 9, R/2)5R/2(ZE3)

A simple computation shows that Awy, 5 < drepy! 2(w§17 5,2 in R*\{0}."! Hence
Au(x) > 204w} g, (71,72, R/2)0g2(2x3) in Oy N {u > 0} and we compute that

Orarf i (2) = wscsla ™ (Bi(n = 4) (2lal /R)" = Ba(d +€) (r/lal)* — 4) .

Now observe that Ou,wj p,(2) > Opwh, p,(Res/2) = 0 for all z € Hge, by
the defining relation of B; and because By > 0. We therefore conclude Au > 0
distributionally in Os N {u > 0}, which finishes the proof. O

3.2. Controlling the chemical potential. In the same way as Lemma 3.10
allows us to control the chemical potential for atomic oTF models (see [12, Corol-
lary 4.7]), we have that Lemma 3.11 implies control on the chemical potential for

diatomic oTF models:

Lemma 3.13. Let V € H(O,) and assume the corresponding TF potential ¢
satisfies info, o > p and Ap = [p — ,u]i/2 in O, for some u>0. Then

WAL 1 a(r) TV < N(V) — / GG,

R3
with a(r) = supgp, v/ css 4ot — 1.

Proof. We repeat the proof of [12, Corollary 4.7], with the only difference that we
start by applying Lemma 3.11 to the function ¢(z) = V(z) — c}§/2¢3/2 * x|t
Then
v v

0 <v(w,r) <liminf || maxqw, (z),w, (r — Rv), —, ——=— ¢ < liminf |z|p(z).

< () < iminf ol max{ s (o) o= ), 3 | < timinf (o)
We bound v(p, ) > pinf g e max{|z|, |z| 3cs/p(l + a) 2} > P (1 4 a) V2,
Next we note that ¢ (according to Lemma 3.11) is nonnegative so that by Fatou’s
Lemma

lim inf |z[p(x) < lim inf ][ (tv (tw) — teps ¥ « |t wy—l) dw.
S2

|z|—o00 —00

056 Lemma B.1 in the appendix for details

UHere we use that both  and —¢ solve a(a — 7) = 6 and that (1 4 3t) < (1+1)%2 for all t > 0.
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The right hand side converges because f,, tV (tw)dw = N (V) for all t > R+r and
because lim fo (tc;f?/ 232 x|t w|_1> — [ 2032 due to Newton’s theorem and
—00

Lebesgue’s dominated convergence. O

3.3. Neutrality. We now provide sufficient conditions for oTF models to be
neutral, meaning the corresponding chemical potential vanishes. The main tech-
nique is the perturbation analysis from [12, Lemma 12.3] around the screened po-
tential " (or @7, . in the diatomic case). Once neutrality has been established,

Sommerfeld type bounds follow readily from our results in Chapter 3.1.

Lemma 3.14 (Atomic oTF neutrality). Let V € H(B(0,7) ) and assume there
exist o,€ > 0 such that

sup |V — <I>r§12| < gr e
B(0,r)c

Then N (V) < (est.)(1 + or®)r=3. Moreover, if (%CLTF)Ug 73 <r < (csim/o)e,

then o, = arg mine(nvy) Ey" satisfies [ 0, < c314a7> and the corresponding chem-

ical potential vanishes, p,. = 0.

We do not give a proof because it has been proven for the special choice
V - q)gfn]lB(Oﬂn)c

in [12] and because we present the proof for the diatomic case below. Repeating
it for the atomic case largely amounts to replacing the symbol O, by B(0, r)c and

changing some constants. This would needlessly overload this part of the thesis.

If V e H(B(0,r)), then |[N(V)| < 7||[V]w by (3.11). But if we use (3.12) for
the diatomic case V € H(O,), we find |[N(V)| < (R + r)||V|l which is a bad
bound for R — oo. To improve this, we decompose the diatomic outside potential

into two atomic outside potentials:

Lemma 3.15. Assume V € H(O,) with r € (0, R/2). Then there exist two unique
functions V,, € H(B(p, r)), p € {0, Rv}, such that

V(z) = Volx) + Vi, (z), Vze€O,.
Moreover,

1
NV <214+ ——— V.

Proof. Step 1 (Existence)
In the following, let p € {0Rv}. We set B, = B(p,r) and for g € C(0B,), let u,[g]
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3. OUTSIDE TF MODELS

be the unique element in H(ch) such that u,[g] = g on 0B,. For any g € C(9By),

we consider

T(g)(z) == V() — uo[ur,[V]](%) + uolur,[uo[g]]](x), € IBo.

Clearly, T" maps from the Banach space (C'(0By), || - ||oo) into itself. We use (3.11)

several times to estimate

IT(9) = T(H)lloe = lluolursluolg = fllllloc < Z—IIf = gllec-

Note that r/(R — r) < 1, hence by the Banach ﬁxed—point theorem, there ex-
ists a unique v € C(0Bp) such that T'(v) = v. We define Vj = wuplv] and
Vry = ugy[V —Vp]. Then for all x € 0By, ug[V —Vg,|(z) = T(v)(x) = v(z) = Vo(z)
and the maximum principle then implies uy[V — Vg,] = V4 in (By)¢. Overall, we
have obtained V,, € H(B,") which satisfy Vy + Vg, = V on 90,. Invoking the

maximum principle one more time, we obtain Vy + Vg, =V in O,.

Step 2 (Uniqueness)
Any decomposition V' =V + Vg, implies Vg, = ug, [V — Vo] and Vy = ug[V — Vg, ].
The restriction v = V; |95, must satisfy T'(v) = v and is unique by the previous

step. Hence Vy = ug[v] and Vg, =V — Vj are unique.

Step 3 (The bound on N(V))

We start with [N(V)| = [N(Vo) + N(Vry)| < rsupyp, [Vo| + rsupyp,, |Vr,| and
show that the right hand side can be bounded by supgy_|V|. The triangle inequal-
ity, the maximum principle and (3.11) imply

sup |Vo| < sup]V| + —— sup |Vl (3.16)
8B(0,r) 00 R T 9B(Rv,r)

We switch the roles of V and Vg, in (3.16) and use the resulting inequality to
bound the last summand on the right hand side of (3.16). Once more invoking
(3.11), we find

r

R —
Vhlo)l <
Pl
and use this to bound N(V'), which ends the proof. O

sup V|, pe{0,Rv} (3.17)

Next, we give a preliminary result, deriving some seemingly weak consequences

from the perturbation assumption supge, @%FR,T — V(x){ < or—tte,
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Lemma 3.16. Letr < min {R/4,07V/} for some e,0 > 0 and assume V € H(O,)
satisfies supyp, |<I>E’FR7T — V(z)| < or=4*c. Then for g, = arg cr(r]l\i[n) ELY it holds that
v

CTF 3crr

i 3/2
or < <ﬂ + 16&) r=%  and D(Qgﬂor —0,) < cz1600T (3.18)

1 3
Moreover, if additionally (%aTF)5m}1/3 <r<o= min{(éﬁfg))?’ ,(1/3)585}
holds, then

N(V) > éffg) r® and  p < czaeVororT? (3.19)

where p, 1s the chemical potential corresponding to o,.

Proof. The proof is divided into five steps. The first two are of preliminary nature
and deal with the simple bounds on N(V) and g,. The third step develops the
perturbation argument, from which the bounds on D(pz% rlo, — o) and p, will be
derived in the last two steps. We write W := @%FR]IOT — V for the perturbation
potential and note that W € H(O,).

Step 1 (Nonnegativity of N(V))
Applying Lemma 3.15 for W and since r < R/4,

/ Q%FR = NW)+N(V) <3arr =3+ N(V). (3.20)

T

Due to Lemma 3.7 and the lower bound from Lemma 3.6, we have [, 07" >

1 1 — 3 £/3 3
QfB(mt)c 0z + §fB(Ru,t)c 07, = Acst™ (1 attt tmy, 3+g> for any ¢ > 0.
Hence

1
/QZR >t vt > (30 mg! (3.21)
O
1 —1
with O} = éﬁfz However, if (24™")¢ m£1/3 <r < o= min {(01/2)% , (1/3)5%},
we have 307 < < so that (3.20) and (3.21) for ¢ = r imply
C
N(V) = 5,

the first bound in (3.19). On the other hand, if N(V) < 0 then C(N(V)) = 0
and there is nothing to prove for (3.18). We may therefore assume without loss of
generality that N(V) > 0.

Step 2 (A bound on the density)
We use the TF equation (3.2) and the perturbation assumption to bound

TR (Qr(l‘))2/3 =[V(z) — s < %up V| <rtore + sup |(I>ZRT| )
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3. OUTSIDE TF MODELS

Lemmas 3.7 and 3.6 imply 0 < &% () < dcsr™3(|z[™' 4 |2 — Rv|™!) for z € O,
so that sup }(IJZRT| < degr™ (1 + m) < 16/3cgr~*. This proves the bound on
80

the densfcy

Step 3 (Perturbation argument)

We will insert p[r, ] := 07"zl 0,10, as a trial density for p — EJF[p] + p, [ p, Which
is minimal at p = g,. Since [ g, < N(V), we know p, #0< [ 9. = N(V), or in
other words, u, f or = 1 N(V'). Hence for any ¢t > r,

0 < s, (N(V) —/p[ﬁt]) < & plr 1l = &V [ozirlo,] + EvF lozirlo,] — EvF [or]-
(3.22)
We use that

W(z) = go%FR(a:) + Q%E‘%]IOT x|zt =V(z), x€0, (3.23)

to estimate the two differences on the right hand side of (3.22). For the first,

(323) 3 5/3
55F[P[T7 t]] _ggF[Q%,FR]lOr] = - gCTF/O (Qz R) - o WQ%FR

= [ ettt + Dlogiito)
t
dte 2
<ortte [ gft 2 [ oAb+ DicHito)
Ot Ot
While for the second,
EF o3l - EFlod]

(3.23) 3

2 Zore [ (0827 - (00)”") + Dlefinto,) - Ple)

+ [ Wl —or) — / vr. 1027 — 0r) — 2D(0z' R0, 0z rlo, — 0r)
Oy T

=/ W(og'% — 0r) — D(0g o, — or)
3 5/3 3
v [ ([Gore (@820 - e - e (00" - e )
/ W QZR r) D(Qz R]]‘OT Or )

here the last inequality is due to the fact that the function t — 2erpt®® — o (y)t
is minimal at ¢ = g (gog’F}z(g/)):))/2 22 07.%(y), for all y € R®. We use these
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bounds to estimate the right hand side of (3.22) and find that
2
o< (V)= [or)) <o [ g D [ g+ Do)
/W 0z R]IO,« o) — Dloz; rlo, — or)

4
(O’T_4+€ + gcst_4 + 23/230575_4) / Q%"l}
Ot

/W Qz R]]‘Or or) — D(Q;,FR]I(% —0r).

IN

Here, in the last inequality, we used Lemmas 3.6 and 3.7, which imply @%FR(QC) <
2cs|z|™* and for x € O,

—6 — R —6
/ 9z R( )1d < \/_ ‘y| + ’y ‘ dy S 23/23081:—4.
o |z =yl O |z =y

To control [ W (e, — 0z'r10,), we proceed as in [12, p. 559] (adjusted to the case
of two balls): Consider for r € (0, R/2) the cut-off function

(
0, for x € Iy,

lzl=2r for x € (I3, \ Zo,) N H,
F(z):={ " (Lo \ Tor) O Hlgy (3.24)
= RvZ2r - for € (T, \ Tny) NHE

r Y

Rv/2
1, for z € Os,.

\
and write W = (1 — F)W + FW. We note that F' € H'(R?) with'?

152
HV(FW)H%:/\VH L4k <SUp|W] |0y, \ O |r2da < 37 o2 TH2

A crucial ingredient at this point is the Coulomb-norm estimate from [12, Lemma
9.2], saying that | [ fg| < /(27)"'D(g)||Vfll2 if f € H'(R3),g € L5°. We use it

to bound
‘/FW QZR \/ 07"_7+6\/D QzR )

1256¢ Lemma B.2 in the appendix for details
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3. OUTSIDE TF MODELS

While for the other term, we use supy, |(1—F)W| < supp, |W| < or~** to bound

‘/(1_F) QZR]IO Q)
3 € 16cs\Y?
§0r4+€/ {\/ﬁ—cs (|| %+ |z — R|™°) + <£ + CS) r6}dx
O, \O3; n CTF 3cTE

22 1/ 1 16cs\*?
<208 - —T+e —. C —7+E.
< < 33 + = 3 (CTF + 3CTF> or 20T

Collecting all the bounds that we have derived since (3.22), for any ¢ > r:

4
0 <y (N (V) - / plr, t]) < (or‘”e + oot 2%/ 230st4) / ozrlo,

76

+ er—7+e + \/?D (Qz R]lo _ Qr) —7/2+€

—D(egrlo, — o). (3.25)

< 07’4+€/ (or + Qz R]IO )
Ov \037‘

From this inequality, we will derive the bound on D(QZ »lo, — o0-) and pu, by ap-

propriate choices of t > r.

Step 4 We choose t1(r) := sup{t > 0| [ 0z'z1o,\0, < N(V)}. Since N(V) > 0,
we have t; > r and with (3.20),

/Qz rlo, = [/ oz rlo, — N(V)} < 3or 3t (3.26)
+

Hence we obtain from (3.25) with ¢t = ¢; that

76
D(gz rlo, — or) <Csor T 4 (—) VU?“_7+€\/D QZR - 0r)

3
where C3 = 3 (1 + 4% + 23/2305) + (5. This implies'®

D0y rlo, —or) < 316407 €

Witth_lﬁa: <\/Cg—|—%+\/l—??> .

1
Step 5 We choose t5(r) := ()® (or¢)~"/*r and assume for the remaining proof
that also

: L
(%aTF) m;/?’ <r<oe min{(C’l/Q)% : (1/3)8/5} .

13Note that for a,b,z positive, D < ax? + 2bxv/D < (VD — bz)? < (a + b*)z? which implies

VD —bx < \/(a + b?)z.
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Then ty > r and we may apply (3.21) with ¢ = ¢, so that

O,

5

Since (07°)F > 3 we deduce with (3.26) that [, o0z > 2, o0z% Hence,
to ’ t1 ’

N(V) > [plr,ta] > [ plr ta] + 5 [ 0z'r10,,- We use this in (3.25) for t = t, and

find that

1 4 -
0< u,i / 07, R]lotQ < (\/ ore + %CS <Cl1> 3 —+ 23/2308 <021> ) 4,/ /QZ R]l(gt2

76
+ Chor T + \/ ?\/D QZ R]l@r — op)or” 7/24e
<r~*ore Cg;b /g}“ﬂ%n%, (3.28)

where the last inequality is due to (3.27) and

4 2\ "3 2 \*? 76¢
=237 4 + 23/23¢g [ = + 0y37 16 4 | 80
C3.16b ( C (Cl) Cs o 5 7

According to (3.27), we may divide by [, 0z’ in (3.28) to end the proof. O

Lemma 3.16 says that the perturbation assumption implies that o, and Q%FR]IOT
are close in Coulomb norm || - || = \/D(-). Surprisingly, this is sufficient to obtain
the crucial condition g, < liminfg, é%f ©r, provided r is sufficiently small. It
immediately implies the neutrality and Sommerfeld type bounds, as we will see

NnOow.

Lemma 3.17 (Diatomic oTF neutrality). Let V € H(O,) and ¢,0 > 0 such that

sup ‘V @ZRT‘ < grtte

and )
£ -1
(gaTF) my; <r <min {(c3 17/0) R/4}

Consider o, = arg min EX with corresponding chemical potential y1, and TF po-

(Nv)
tential p,.. Then u, = 0, and there exist constants A = % + % > 0 and
a= m —1> —1 such that [ o, <272(1+ A)*%csr=3 and for allx € O, :
cslz| ™ cslr — Ru|™ < o0(2)
max (T
(1t ala/r[-9% (T +al (@ — Ru)/r[ 62 f =7

< cs|a:|_4(1 + A|m/r|_5) + cs|lr — RI/|_4(1 + Al(x — RV)/T|_§).

34



3. OUTSIDE TF MODELS

Proof. The proof is divided into three steps. First we show that

li finf o, > u,.
e >

Then we can apply Lemma 3.13 to deduce neutrality. Last, we use Lemma 3.11 to
deduce the claimed bounds and estimate the constants a(r), A(r). With Cy given
below in (3.30) we define

€317 = min {3—8/5, (@%TCZ)) 3 ’ % max {t >0 Cyt) > \/7_503,161)}}

and may therefore apply Lemma 3.16.

Step 1 Since ¢, € C(O,), we have lim \inf infyo, @, = infse, .. Moreover,

inf ¢, = inf (o2 — Vzr — 0z rlz, *|z| " = V] + (0gglo, — o) * x| ")

cs _ _ _
_38 t—or 4+6—SUP’QZRHOT or) * |z| 1’-

r

where we have used Lemma 3.6 and r_fm;/ P < s to estimate ¢z, on 9O,. For

the last summand, we use [12, Cor. 9.3], so that with Lemma 3.16 and ¢ € (0, c0) :

2/5
52
‘(QZR]IOr or) * ||~ 1‘ <t1/5( 4 ) ||QZR O, — Qr||L5/3(B(z,t))

—|—t_1/2\/2D 0% R]l(gr or)

5
<t'/5 577\
4

+ 712/ 23 16,0 (3.29)

s lorl Lo/ (B o)) }

We infer from Lemma 3.7 and Lemma 3.6 that

3/2 3/5
_ 3 4
L3/3(B(ag) < (2 r 4) \B(:z;,t)]?’/S =r 6159/523/2%03 (—3 ) :

CTF

lezirTo,|

CTF 3crF

3/2
Similar, using (3.18), |lorlls/spsy < vt/ (ﬁ - 16&) (4?”)3/5. We first
insert these bounds in (3.29) and then optimize over ¢ € (0,00), so that

_ 2 _ 2
(05 R Lo, — 0,) * 2| '] Sosr*t5eCy

. 527/25,7/25 ,2/5 . 16¢ 3/10
with C1 = ——/msgs51% (% + ﬁ) . We then collect the bounds we have

derived so far and obtain

Cs

4 o o €\2/5 _. €
r é%{ ©op > <3 or® — (or9) Cl) : Cy(ore). (3.30)
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Recall that or¢ < c317 < max{t > 0| Cy(t) > V/tc3165} and note that Cy is strictly

decreasing, hence

é%f ©r > 1 Colesar) > 1/ CaarCsa60 = pir (3.31)

where we have used Lemma 3.16.

Step 2 (Neutrality)

We have just verified that we may use Lemma 3.13 so that
(1) e (14 a(ryr=$) 2 < N(V) = / or- (3.32)

Note that infse, ¢, > p, and thus 1+ a(r) > 0 by definition of a(r). Now, if we
had i, > 0, then [ o, = N(V) (compare Theorem 3.2) and the right hand side of
(3.32) were zero, while the left hand side is positive. Thus p, = 0.

Step 3 (Sommerfeld bounds)
We apply Lemma 3.11 for a vanishing chemical potential. To obtain the claimed

inequalities, it remains to bound the constants A(r) and a(r) by expressions that

are uniform in r € [(B/QaTF)l/fm;/?’, (03.17/0)% . With (3.18),
< 16 : 13
A(r):r4such—Fgf/3—1§UT +——1§@+—::A.
80, Cs Cs 3 Cs 3

We use (3.31) to deduce

c c
4,—8 —1< B 1=:a.
r*infao, @r \/€3.17C3.16b

Last, we use the upper bound from Lemma 3.11 together with the TF equation
(3.2) to bound

/Qr < §Cs(l + A)3/2/ V2(|z% + |z — Rv| %) dx < 27%cq(1 + A)*/ 3.
T Or

g

Next, we show how the Sommerfeld bounds allow us to compare the diatomic TF

potential and density to diatomic oTF potentials and densities.

Lemma 3.18. Assume V € H(O,) satisfies sup |05, — V| < or=t* for some

€, 0 >0 and

3 & =1 1
(§aTF) m,; <r <min {(03,17/0)? ,03.18bR/2} )
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£
Let 7 = 03_18arﬁ(R/2)$ and consider p, = arg Cl}}\i[n) ELY with corresponding TF
Vv

potential p,. Then 7 € (r,R/2) and for all s € [r,7]|:
TF _ < reg—h m\¢
sup [z — ¢rl < 058 caa8e (3.33)
00, S

and

sauE) ((0z'r — 0r)Lo,  |2|7"| < css ™ e384 (£>g (3.34)
Proof. The proof is divided into four steps. We start with (3.33), a straightforward
consequence of the Sommerfeld type bounds and neutrality of the TF potentials.
In the second (and third) step we bound the densities in Zg/, (and O;) sufficiently
well to derive (3.34) by integration in the last step.

Step 1 (Proof of (3.33)) Let r be as in the Lemma and ¢35, < 1/2, so Lemma
3.17 applies. We combine it with Lemma 3.12 and note that Ay(r) < A and
Ai(r) < 45+ A%i.” Hence if |z| € [r, R/2], then
- 44+ A(E+4)
o) < el (14 Al ol + 2 D oty
As aTFZ;€/3 < r¢2/3, we infer that ¢z (x) > cslz|™*(1-2/3(r/|x])*) from Lemma
3.6 and obtain for |z| € [r, R/2]:

r \¢ s\
1 (x) — Bhe(a) < cslal ((2/3+A> (&) + 22 (%) ) (3.35)

On the other hand, we know (by using (3.5) with r = R/2) that @z';(z) <
cs|lz|7*(1 + (2|z|/R)") for any z € B(0, R/2) and according to Lemma 3.17 also
or(®) = esla| ™1+ alr/|2])*) ™ 2 eslo[*(1 = 2a(r/|a])%) if |2] € [r, R/2]. Al
together, we obtain for all |z| € [r, R/2]:

TF _ < —4 [ 4+AE+4) % ! 21 4.9 o ‘
|pz,r(2) = ¢r(@)] < cslz] i\ ) Tmax {5+ A 2a} :

]

The same arguments apply if |x — Rv| € [r, R/2] and since s < 7 is equivalent to
(25/R)" < IS (r/s)E, we conclude (3.33) with

C3.18c = (cgjéa‘”;‘fj‘“ + max {% + A, 2a}> )

Step 2 (A bound on the densities in O, N Zg/,)
We use the TF equation for ¢,, 90%5% and repeat the arguments that led to (3.35)

566 Lemmas 3.12 and 3.17 for the definition of A, Ay, A,.
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to deduce that for all |x| € [r, R/2]:"

or(z) — 07'p(x) < %cs|m|_6 <(A01 1) (L)f . OI4+A(€ + 4) <2|x|)77>

|| n—4 R

3/2
with a constant C7 = #54#1) (( + A+ %) — 1), as well as

or(x) — oz.p(x) > —%Cs|$| -0 <3a (| |)£+ (232 — 1) <%)n> ,

All together we find

0(2) — 0B (@) < Sesla (ce (1) +a (%)) - Vel € R/

(3.36)
where Cy = max{3a, AC} + 1} and C3 = max{(23/2 - 1),C'14+‘2(+:4)} and the
analogous bound holds for |x — Rv| € [r, R/2].

Step 3 (A bound on the densities in O;)

Let r,7 be as in the statement, then CLTFZI_Q?’|$|”E < 2(r/|z])¢. According to the
proof of Lemma 3.6 or [12, Theorem 5.4], p%¥ > cgla| (1 + %= Z~¢/3|z[~€)~2
Hence we then find with Lemma 3.7 that cs|z|™ < @75 (x) (1+7/9(r/|2])*) for
all |z| > r. This, together with p, = 0, Lemma 3.17 and Lemma 3.12 implies

or(x) < gp%l}(x) [1 + Cs(2|x|/R)" + C’g(r/|x|)5} Vo € B(0,7)N Hé/g, (3.37)

where Cy := 1964%2# and Cy := [16A4/9 4+ 7/9]. The term in square brack-

_1
ets in (3.37) is minimal in |z| at ry = (%) e rn&TE(R/Z)# where it equals

C’"Jr'fC'"+£ (7} +§)£n+€m+€ (27‘/R)§T Note that to ensure 0B(0,79) C B(0,7)° N

_C4
Hy/y, it is sufficient to require ro € [r, R/2] which is equivalent to 2r/R <

1

1
min { (77_08)5 , (@)’7} = (5. Repeating these steps for € B(R,r)° N HT

§C9 nCs R/2
we obtain (with 7y defined above) that if 2r/R < min{C}5,1/2}, then

#r(@) < p3T(@) (1+ Cal2r/R)7 ) (3.39)

for all € dO,,. We infer from Corollary 3.5, with u = ¢, — (1 + (cst.)) and
Q= 0O,,, that (3.38) is true for all x € O,,. Next, we prove a corresponding lower
bound. Combining (3.5) for » = R/2 with the lower bound from Lemma 3.11 we

15We use that (14 t)%/2 <1+ t% for all ¢t € [0, T] by convexity.
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3. OUTSIDE TF MODELS

find

or(x) > oz (1= (22| /R)" = 2a(r/|z|)*)  Va € B(0,7)°N B(0, R/2).
We proceed as before, minimizing (2|z|/R)"+2a(r/|x|)¢ in |z| € (r, R/2) to obtain
a bound on the sphere |z| =r; = (2a§/77)#57“n%§(R/2)#, provided r; € [r, R/2].
Repeating the argument for z € H}, ,, we deduce that u = @77 (1— (est.)) —¢, <0
on 00,,. We then extend this bound to O,, by applying Corollary 3.5 again, this

time with 2 = O,,. The conclusion is that

orl(r) > PBF(2) | 1= (20)85 (n + )¢mennie(2r/R)wie | | Ve € O, (3.39)

=Cj

as long as r; € [r, R/2], which is equivalent to 2r/R < min{(%ia)l/f, (257“)1/’7}. We

chose 7 = max(rg,r1), which means c315, := (£/nmax{2a, Cg/Cg})ﬁ, and set
C3.1g8p = min < 2 (25(1)1/5’ (257“)1/77, (2%)1/5, (g%:)l/”}. Then it is a straightforward

consequence of the TF equation, (3.38) and (3.39) that
&
|0r () — 07(2)| < 0zip(x)Cr (2r/ R) 7+

3/2
for all x € O, with C; = max{ 067Cg§787£ ) {(1 +C c§n1/8;’+§)) — 1] }.16
Hence with Lemmas 3.6 and 3.7:

&n
3 2r \ e
lor (%) — 0" p(2)] < \/5;0307 (%) (|| °+ |z — Rv|™®), Vz e O (3.40)

Step 4 (Proof of (3.34))

Let s, 7,7 be as in the statement and |z| = s, then

(65— oo, < la | < 3 / 220 )~ ol

pe{0, RV}B (P, \B(p
0 — Or
N / | z,R(y) (y)l .
Or |33' - y|
We use (3.36), (3.40) and Newton’s theorem to bound the integrands on the right
hand side: For the first two,

/ Ie%(y)—@r(y)ldy<§CS / Colr/ Iy + Co2lyl/R)"

lz — | Iy ly|”
B(p,)\B(p,s) B(0,7)\B(0,5)

£ ~\ "
(S (0 4 B (2)).

16Here we use the bound (1 +¢)3/2 <1+ t% for all t € [0,T] and 2r/R < cgﬁl/é:%).
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while for the last integral,

TF _ 5/2 L
r 2°/23 2 +¢
/ |QZ,R(y) o <y)|dy < CsC7 ( 7"> K / |y‘f7dy
- |z — y s R

B(0,7)°NHp,

&n

2 n+¢
< 25/23¢4C (};) 7l

Finally note that (27/R)" = ¢l 15,(2r/R)n+€ e and s < 7 o (27”/R) e < & 150 (1/5)8

so that we have proven (3.34) with c3 159 = 12 <4€f£ + 0303 18a 4 21/2Ch 5 18a> O

4. The Born-Oppenheimer curve

The diatomic TF energy E 1 describes only the electronic part of the energy in
the Born-Oppenheimer approxnnatlon and does not include the repulsion between
the nuclei. The diatomic Born-Oppenheimer potential (1.1) in TF theory therefore

equals

AV

TF TF TF TF
DZ7R = EZ,R - E21 - EZz + R
We collect several properties of this function:

(1) Dy > 0 for all Z, R, due to Teller’s no-binding result.

) aZpD%% = lim (som )= 3z —p)) > 0 for p € {0, R}
(3) Dz = DIT%EZ | by the usual TF scaling relation.
(4) Dz'p < 2115’;;)131% " was shown by Brezis and Lieb in [6]. This, together

with (2) and (3), allows them to conclude the existence of the limit
lim Dy =D R (3.41)
mz—»00 ’
Remark: The value of the constant
The exact value of D[} is not known and the only bound on it that we are aware

of is the one from [6] mentioned previously. The TF equation and the identity

(lzz.m = 22)0) = [(07" () — 0% 2 W)yl dy + % imply

1 5 5
1003/2 / ((90?;%) -2 (‘PEF) 2) +7Z (SO(TZF,Z),R - QDEF) (0). (3.42)
TF

Dizzr=
We have used this formula to compute D(TZF 7),r humerically for relatively small
values of Z, R (see Chapter 7) but it was not possible to obtain a meaningful
extrapolation of the Born-Oppenheimer potential for large ZR? or a guess for

the value ijl. We also note that by an argument due to Laurent Bétermin,'®

see [5, Theorem V.6.b)]
18unpublished7 private communications, January 2018
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4. THE BORN-OPPENHEIMER CURVE

Z <g0(TZF7Z)7R — @}F) (0) —— 0. Hence

Z—00
pr = gy (0% )3—2( TF)% (3.43)
00,1 — 1003/2 Joo ()O(Z,Z),l Yz :
TF

and it is tempting to compute DEOFJ from this identity. For the atomic TF poten-
tial, we have the pointwise convergence ¢LF (z) P cs|z|™*. Unfortunately, we
—00

do not have an exact expression for the limiting function in the diatomic case.

The main goal of the present work is to show that (3.41) is, to leading order
as R — 0, also the correct description for DrHF An important ingredient in our
proof is that Da " can be determined from outside TF models,'? if they are ap-
propriately chosen. Before making this statement rigorous, we need to introduce

more notation.

For p1,pa € C, we will abuse notation and denote by 2D (Z10¢ — p1, Zo0r, — p2)

the expression

77
}2 —Zl/ /| 5 |dx+2D(p1,p2) (3.44)

because it is shorter to write and because it emphasizes that this is the Coulomb

interaction of two screened charge distributions. If these charge distributions have
disjoint and compact supports, then (3.44) can be computed solely from their

potentials, evaluated outside of the supports:

Proposition 3.19. Let r < R/2 and assume p, € C with p € {0, Rv} satisfy

supp p, C B(p,r). With ®,(x) := ‘prp‘ - ‘w y‘dy, we then have

1
D(Zodo — po, ZruOry — Prv) = —/ (0,P0P R, — 00, Pry)
o0

4m
for any Q C B(R,r)° such that B(0,r) C .

Proof. Note that ®, € L} (R?®). The distribution —A®y = 4m(Zydy — po) has

support in B(0,r), where ®g, is smooth. Hence

—(47) PADY [ @R, ] = 2D(Zs00 — po, ZruORy — PRY),

where the right hand side is to be read in the sense of (3.44). Assume for now
that dist(Q, B(Rv,r)) > 0 and pick x € C®(B(Rv,r)’) with y = 1 in €, where

Y46 the relevant order o(R~7) as R — 0
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—A®g, = 0. Then, by definition of the distributional derivative,

CAG[Bpy] = —ADy[x D] = / Bo(—Ax®p) — / Bo(—Ax®p,). (3.45)
(B(Ry)UQ)

Both ®y and ®p, are harmonic in O, D (B(Rv,r) U Q)°. We integrate by parts
twice on the right hand side of (3.45) and find (using the properties of x) that it
equals [, (0,PoPr, — Po0n®Pr,). The case dist(Q, B(Rv,r)) = 01is easily obtained

as a limit of what we have proved. Il

Green’s identity, [,,(Auv—u Av) = [, (Opu v—u J,v), ensures that the following

definition does indeed not depend on the exact choice of {2:

Definition 3.20. The Coulomb interaction energy corresponding to two po-
tentials V;”) € H(B(p,7)%),p € {0, Rv} with r < R/2 is

-L/WW%WM—&M@WM)

(0) 1/ (Rv)] _
QV.W Vi =

r

o0

with Q such that B(0,r) C Q C B(R,7) .
Lemma 3.21. Let r < R/2 and V;”) € H(B(p,r)°),p € {0, Rv}. Then

om r
OV, V] < sup (VO sup V)]
44/1 = (2r/R)2 aB(0,) OB(Rv.r) R

Proof. We consider P,.(z,§) = ﬁﬁ:zl;, the Poisson kernel for the ball of radius r

and write P¢(z, &) = —P.(x,¢). Then®

VO (2) = / Poe —pé — pVP(E)dE Y]z —p| > r.
OB(p,r)

We infer from VP, (z,§) = P.(x,§) (2—‘” - 3(175)>, together with a standard

ZP =2~ To—gP

application of the mean value theorem and Lebesgue’s dominated convergence,

that if |z — p| > r,

Vi@l =| | w<p><s>P:<x—p,g—p>( 2z —p) 3@;_@)

o —p> =12 ¢
B(p,r)
2 _ ‘/T(P) 3 pP¢ _ _
|x—p\ =T 9B(p,r) !$—5|
OB(p,r)

For the last summand, we note that faB(o " Pé(x, &)z — &|71dE = f.(z), where f,
(with |y| > r) solves Af, = 0 in B(0,r)°, vanishes at infinity and equals gy(z) =

20For details, see Lemma A.2 and the examples thereafter.
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4. THE BORN-OPPENHEIMER CURVE

ly — x|~ on the sphere dB(0,r). Since g, is harmonic in B(0,r), we may conclude
that f, is the Kelvin transform of g, with respect to 0B(0,r), that is f,(z) =

2
ad(Th) = o PN

Hence fBB(O,r) (2, &) |x—&|71dE = ez and since W(p)( ) < g SUPoB(p.r) |W( )|

we find

(See Definition A.1 and Lemma A.2 in the appendix.)

5
VP (2)] < sup [V | —— —
B(p,r) |517—p| -Tr

Together with the choice {2 = Hpg, /» in Definition 3.20, this bound implies

Y|z —p| > (3.46)

4w QVO, V) <72 sup VO] sup [V [ L (e
0B(0,r) OB(R,r) Hpgy /2

where I, g, (z) = ((\xlzfr%lfvaVI + (leRVFLTQ)‘xl) and we easily compute

52

L. g (x)dx =
/HRV/Q (@) = Ba= @r/R)?

to obtain the result. O

We now make our previous remark, that D%E% is to leading order (in small R)

determined by oTF models, more precise.

Lemma 3.22. Let V® € H(B(0,r)) with p € {0, Rv} and V = (V© + V15
Assume there exist positive €,€*,0,0* such that supy |V — @Eﬂwl < or~*¢ and
SUPp(p |V(p @}fﬁ < o*r~* for p € {0, Rv}. Furthermore assume that

1 =1 .
(3/2a™)emy7 <r <min{R/4, (cs10/0")", (c317/0) "}

Then with ELF = C(Ijl\}%n)) &yt and Ef) = C(]\I[r(l‘i/%))) Exl

ESF — EYG) — Bl + QIVO, V)] — DIF <y 900" 1< (3.47)
and

ESF — BN — Efte, + QVO, VI — DIR > —c a0 o0 (3.48)

Proof. Step 1 (Preliminary bounds)

We recall that both supp . [®7)] and supe, [Pz .| are bounded by (cst.)r™*
The assumptions therefore imply ||[V®| < (est.)r™ and ||V < (cst.)r™*
They also allow us to use Lemmas 3.14 and 3.17 to infer that the minimizers

, = arg min ETF and o) = arg min &Y are neutral and their L'-norm is
or = 218 It Y 4 gcuv(vw)) v

bounded by (cst.)r=*. The L'-norm of 03" 59 and o'l o, is (due to Lemmas
3.7 and 3.6) also bounded by (cst.)r=3. We will use all these bounds freely in the

upper and lower bound we are about to derive next. For this we start with two
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identities: For any p € C, V € L%?(R3) it holds that
EE/F\;N[P] :gg/Fm[P]lB(o,r)] + SgF[P]IB(o,T)c] (3.49)
e[ (V= 2l 4 ptmn el ).
B(0,r)c
and
Evy 0V + 2122/ R =E 1[0 0] + €210 ru[PLB(Run)] + €5 [plo,]  (3.50)
+/ 1% (‘7 — VZ,R + p]lIT * |{E|_1>
Or
+2D (2150 - p]lB(O,r)y Z25R - p]lB(RV,T)) .

Step 2 (Proof of (3.48) )
We insert p = oy I, + 0z (- — RV)Lprur) + 0r, V =V in (3.50) and p =
o8 (- = p), V.=V® in (3.49). Then

D%E% SE\?F - g‘l/“g)) [QEE]IB(O,T)C] - S\T(FI‘%W [Qgiy(' - RV)]lB(RV,T)C]
ssuwp|V - aff — o (-~ )| [ o
ve e (—p)| [ o

B(p,r)e

+ 21)<ZO(50 - QE};‘]IB(O,T% ZleéRI/ - Qggy( - Rl/)]lB(Rl/,T'))‘ (351>

+ Z sup
pe{0,Rv} B(pr)e

By neutrality, £, [gg]l Bpr)e] = EJf,. Due to the maximum principle, we have
the bound

sup ‘V — CDEEJ — (I)g:w(' — Ru)| < Z sup
Oy pe{0,Rv} B(p,r)°

v _ @Ej‘ < 9ot

in the second line of (3.51). Using Proposition 3.19, we observe that last line of
(3.51) equals Q[®,F  ®ZF (- — Rv)]. We rewrite it and use Lemma 3.21 together

ZRy,T
with the assumptions to estimate

Q[(I)TF (I)TF ( . RV)] . Q[V(O), V(Ru)]

20,77 = ZRu,T

= Q[dyF,, 7" (- — Rv) — V)] 4 Q[a7F — v v

Z0,m) F ZRy,T

< (est.)or "t (3.52)

The claimed upper bound on D%E% follows from our preliminary bounds and the

assumptions. We can choose

20
coam =2 (20 + )14 2 (14322 )),

V3 23cg

44



4. THE BORN-OPPENHEIMER CURVE

Step 3 (Proof of (3.47))
We insert 0731 pgp. + 0PV =V® into (3. 49) and p = 07", V =V in (3.50).
Then

TF TF; TF TF TF TF
Dz r 2&y" loz.rlo.] — By — Eyn) — SUP’V q’zm‘/@ 0z.r

Y
pe{0,Rv} B(p,r)°

VO - zle=pl+ [ offafle- ol
B(p.r)

B(p,r)°

+2D(Zobo — 0z g1 B0.r), ZrvORy — 0% 1L B(RY))-

Again, by neutrality, 0" [0z 10,] > EV". We apply (3.17) with

Vy(a) = (VO (z) — Zy/le — p| + /B e ) (o)
p,T

Then supp, e ~4+¢ (since r < R/4) and via the triangle inequality,

Sup |Zy/ |2 = p| — 0z p B * 2|7 < S V@[ 430", pe{0,Rv}.
p,T)¢ B(p,r)c

We use these bounds together with Proposition 3.19 and Lemma 3.21 to deduce
(with the same arguments as for (3.52)) that

D(Zybo — Q%F}%ﬂB(O,r)a ZRuORy — Q%EﬂB(Ru,r)) — QIV O VIEI] > _(est)otr T

This proves, together with the preliminary bounds and the assumptions, the lower

bound on D7, and we choose

40
C3.920 = 27%cg + 6¢3140 + —= (8cs + 2¢3.145 + 3c3.17) -

V3
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CHAPTER 4

Reduced Hartree-Fock theory

Before we discuss the (reduced) Hartree-Fock functional, we need to introduce the

1

notion of a density matrix® and collect some classical inequalities about density

matrices and eigenvalues of Schrodinger operators.

1. Density matrices and classical inequalities

Definition 4.1. An operator v : L*(R?;C?) — L*(R3;CY) is a density matrix
iff it satisfies 0 <y < 1 and has finite trace.

We will denote by DM, the set of density matrices on L?(R3; C?). Note that any
v € DM, is in particular a compact, self-adjoint operator and therefore has a spec-
tral decomposition: There exist orthonormal eigenvectors u; with corresponding

eigenvalues \; € [0, 1], which converge to zero, and such that
v = Ailug, . (4.1)
j=1

Moreover, any trace-class operator is Hilbert-Schmidt and thus v € DM, can be
rewritten as an integral operator. By a slight abuse of notation, we write (z, y) for
its integral kernel, which is a ¢ X g-matrix at each point (z,y). With the spectral
decomposition (4.1) of v € DM, we define the corresponding density p, € L*(R?)
by?

py(T) = ZM%‘(%NQ,

and the (possibly infinite) value

wl-Aq] = 3 / (2mp)%/ Ty (p) 2dp.

A >0
Here, abusing notation, we defined the left hand side by the right hand side. If

tr[—Ay] < oo, as will be the case for the concrete density matrices we consider

later, then all eigenfunctions that correspond to non-zero eigenvalues are in H'(R?)

! Another frequently used (and more accurate) name would be one-particle reduced density matriz.
2This is well-defined since two decompositions of the form (4.1) can only differ for eigenvectors
corresponding to the eigenvalue A; = 0.
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and then -
tr[=Ay] =) AV l3.
)\j >0
If the eigenfunctions are in H?(IR3), then this is actually an identity where the left
hand side has the usual meaning. Furthermore, if V € L3/2(R?) + L>(R?), then

tr[Vy] = Z)\j/\/|uj|2 = /va < 00.
j=1

We will consider one-particle, spin-diagonal Schrodinger operators,
Hy = (—cgA—-V)®1, on L*R*CY

for potentials V' € L32(R3) + L>(R?). Then Hy is bounded from below and there-

fore realized via the Friedrich’s extension.?

The min-max principle implies that if v € DM, with tr[y] < N, then tr[—(cgA —
V)v] is bounded from below by the sum of the N lowest nonpositive eigenvalues
of Hy.* The Lieb-Thirring inequality [25] bounds the sum of all such eigenvalues
i V], € L32(R9),

Sl <L [ (4.2)

e<0 eigenvalue
of H v

Here the best-known constant is Ly = Z=L* (see [20]) and L* = = is the
5

corresponding semiclassical value.” The Lieb-Thirring inequality is dual to the

kinetic energy inequality (see for example [27]), which is the statement

ul-2q) 2 ¢ K [ vy e DM, (4.3)

5
(4.2). Note that this bound, together with the Hardy-Littlewood-Sobolev bound

(2.1) implies

2/3
Here K; = 2 (%) is the best constant if and only if L; is the best known for

D(py) < o0, VyeDM, with tr[—Ay] < . (4.4)

3For the Friedrich’s extension, see for example [24, Theorem X.23].

4For the min-max principle, see for example [14, Theorem XIILI].

°L*¢ is obtained by summing the classical Hamiltonian function Hy(z,p) = p?/(2m) — V(z)
over the phase space region with negative energy and postulating that a phase-space volume of
size h? can only hold g states: [ [[He(z,p)]- 5% = —(v2m/h)* s [V (2)]%/*dz. Note that
cg = h?/(2m).
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The CLR inequality (derived independently by Cwikel [28], Lieb[29], and Rozen-
blum [30], [31]) bounds N(Hy ), the number of nonpositive eigenvalues of Hy, by

N(Hy) < ¢ 3/2qL0/[V}i/2. (4.5)
The best known constant, Ly < 0.116, is due to Lieb [29].
The Lieb-Ozford inequality [32] gives a lower bound on the indirect part of the

Coulomb energy. That is for any normalized N-particle wave function ¥ with

density py,

W(xy, ...
/ IRl dxy...dxy — D(py) > —CL0/ pé,/g. (4.6)
R3N R3

1<k<I<N |2k — xl’

The best-known constant is c,o = 1.64, due to Chan and Handy [33]. Also note
that this bound holds for any ¢ > 1.

2. The reduced Hartree Fock minimization problem

We will primarily consider the reduced Hartree-Fock (rHF) theory, a simplification
of Hartree-Fock (HF) theory. The latter is more natural since it arises as the
restriction of Schrodinger quantum mechanics to pure wedge products: Consider
the Hamiltonian H‘%\V/[ of N electrons interacting with a single-particle potential
V', that is

Hy = (Z(_CHAJ —Vig)+ Y. ;> ® Igw

j=1 1<k<I<N |2 — ]
One computes that the indirect part of the Coulomb energy (the left hand side
n (4.6)) of a N-particle Slater determinant ¥g = u; A ... A uy only depends on
the corresponding density matrix s (the orthogonal projection onto the subspace

spanned by wuy, ..., uy). It is called the exchange term of v5 and equals

//trcq Ivs(z,y)[? ]]dxdy (47)

|z — 9

where trea[|y(z, y)[?] = 225, [[v(%, y)]u|?. Hence, by restricting the min-max prin-
ciple for H‘?]]\V/[ to normalized N-particle Slater determinants Vg = u; A ... Auy, we
find that the energy only depends on ~s. This defines the Hartree-Fock functional
EFY by

(Us, HPN Us) = tr[(—cgA — V)s] + Dlpag) — X[rs] =2 EF s

49



CHAPTER 4. REDUCED HARTREE-FOCK THEORY

This definition, and in particular (4.7), extends to any v € DM, and due to a re-
sult by Lieb [34], this extension does not lower the infimum for Coulomb-potentials
V(z) = Vzgr(x). In particular, molecular HF minimizers under the constraint

tr[y] < |Z| exist (see [35]) and are orthogonal projections.

There is much more that can be said about HF theory but for this we refer to
the mentioned literature and make just one more remark: The exchange-energy X
is quite challenging, it for example causes the HF functional to be non-convex. It
is also the reason why we did not prove Theorems 5.1 and 6.1 for (full) HF the-
ory. Hence we consider reduced Hartree-Fock theory, which is basically HF theory

without the exchange term:

Definition 4.2. The reduced Hartree-Fock functional corresponding to a po-
tential V € L*2(R?) + L>=(R?) is the map &Y : DM, — R defined by

EFT ] = tr[(—cud = V)] + D(p,).

Theorem 4.3 (The rHF minimization problem). Let Z € RY, R € (R*)M. Then
for all N > 0 there exists a v € DM, such that

E‘T/IZ{I;[ ] = 7eig/fvlq 5{/3}; [v] and  tr[y] < N.
trfy]<N

Moreover, there exists N.(Z) > |Z| such that for all N < N,, tr[y] = N.

Proof. The minimization problem for the atomic case (which is M = 1) was studied
in [23] via the direct method.® Radial symmetry of the minimizing candidate, which
obviously does not hold for M > 1, was used to prove that its direct Coulomb
energy is finite. But we can replace this argument by (4.4). Hence the same proof

applies in the general case M > 1. U

Note that the minimizer in Theorem 4.3 need not be unique. We therefore denote

by vF an arbitrary neutral atomic minimizer, that is

€z = min, 5Z/|w\[] and let o4 = p . (4.8)

tr['y}<Z

Similar, we denote by Y4 an arbitrary diatomic neutral minimizer, meaning

Exr gl = yé%% Eynl]  andlet  op'p = Pogis (4.9)
trp]<IZ|

%Developed around 1900 and refined later, a modern and detailed discussion can be found in [36].
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3. RELATION TO TF THEORY

They both depend on the number of spin states ¢, which we suppress in the nota-
tion, since it as a fixed parameter. We denote by S and E%H};: the corresponding
minima and note that the latter does not contain the nuclear repulsion %. If
|Z| € N, then we use a similar notation for atomic and diatomic HF minimizers

HF . HF : HF pHF
Yz s7z.r and energies Ey, L.

3. Relation to TF theory

The purpose of this Chapter is twofold: We introduce Lemma 4.4 which will be
very useful in the remainder of this thesis when comparing TF and HF type mod-
els. We immediately demonstrate its use by comparing the molecular rHF energy
to the molecular TF energy, showing that they agree to leading order in |Z| — oc.

Neither the results nor the proofs that we present in this Section are new.

Since we will compare TF theory to rHF theory, we need to fix the TF constant
crr according to the chosen physical units (compare (1.2)). From here until the
end of Chapter 6, we set

crp = e (6m/q)%3.

For ¢ € (0,00), we define

e itk <<

ge(x) = .
0, if |z| > 0.

In other words, g¢ is the normalized eigenvector of the Dirichlet-Laplacian on
B(0,¢), corresponding to the lowest eigenvalue ||[Vg¢|> = m%/¢* and vanishing
on the complement of B(0, ().

Lemma 4.4 ([12, Thm. 8.2]). Let ¢ € (0,00). Assume [V]y,[V * gc]y € L>2(R3)
and 0 € (0,1). Then the sum of the N lowest negative eigenvalues of Hy is bounded

from below by

2 _ w2
— e (1=0) 52 [V —en(1-8) SN ~(end) gLV =V g2l |33 (4.10)

<2 5/2°
Moreover, if also [V], € L3*(R®), then there exists a v € DM, such that p, =
et PV « g9¢ and
_ 3 3 5/2 73/27T2 3/2
tr[—cyAy] = = CTF VIZ" + cueqr o V]~ (4.11)

For a proof, see [12, Thm. 8.2] and note that the operator Hy we consider here has

a g-fold degenerate spectrum and that Solovej defines the Lieb-Thirring constant
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CHAPTER 4. REDUCED HARTREE-FOCK THEORY

Ly for —3A — V. The only real difference is the term ¢y (1 — 5)2—2]\7 which is due
to a hardly relevant mistake in [12, Thm. 8.2].

Lemma 4.5 ([12, Lemma 11.1)). Let Z € R¥, R € (R*)™ and assume p € C
satisfies o [ p*3 < [Vizgp for some a > 0. Then

o 1/3 M
5/3 -5 2
/ P2 (/ p> ; z2.

Proof. The proof is a part of [12, Lemma 11.1] and we repeat it here for convenience:
First we use that ab < £(8a)?3 + 2(b/6)>/? for any § > 0 to estimate that

Zj/ p(x)dx ” :Zj/ p(x)dx N Zj/ p(x)dx
RS [T — Rj’ B(R;,r) |z — Rj| B(Rjr)e | — Rj‘

2
§§/ (6p(x))* dz + —/ (Zjle — R;| ™" /0)*dx
) B(R;j,r) 5 B(R;,r)

+ Tﬁlzj /p

:3/555/3/p5/3 +16/5mr!2 727257502 —i—?"le/p.

We use this bound on the right hand side of the assumption a [ p*/% < [Vzgrp and
minimize over r € (0,00). Then we solve for [ p*?% and find for 0 < M25°? < a,
that

[oe< (o) " (fj 22) (0~ M) 4 g,

We conclude the Lemma with c45 = % (16?”)2/3 (21/3 + 2*2/3) and the optimal

choice, M26%% = o /2. O

Remark: Since ming £} . < 0, the assumptions of Lemma 4.5 are satisfied for
the minimizing TF density with a = %CTF. By nonpositivity of the HF and rHF
energies and due to (4.3), they are also satisfied for densities corresponding to
minimizers of &Y and £ over DM, N {tr[y] < |Z]}, with a = cug **K, =

(ﬁ/w)%écw-7

Lemma 4.6. Let R € (R*)M and Z € RY with |Z] > 1. Then

Dloyn — o4w) + BV), — crsal 2175 < B < BYS, + ca|2]57 5

Vzr Vzr

"In the HF case, we implicitly assume here that |Z| € N.
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3. RELATION TO TF THEORY

and if |Z| € N,

D(ozr — 07r) + Evy, — Ca 6c| Z)3 5 < By, < By

Vz,r

Proof. Step 1 (Preliminaries)
The existence of minimizers is known (see [35] and Theorems 3.3 and 4.3). If
1Z| € N, then Eyf < EWF[yHF] = EHF [y I — X[ < EYIF - To derive the

Vz,r
other bounds, we use Lemma 4.4 with V' = @'z and begin with a check that the
assumptions are satisfied: Since g, is radial, we have that for all z € R? and all

¢ € (0, 00),
Gel) = |a| ™ — gt || ' = /B o W () dy 20

due to Newton’s theorem. This implies that [V/(z) — V * g¢(x)]; < Zj\il Z,G(x —
R;). Using Jensen’s inequality, we find with ¢, = [(G;(x))*?dz that
5/2
[ W) =V =) e < 277 [ (Geta) = 127 ey < 0. (412

2/3

Finally, (3.2) implies V = ¢2'; = crr (05m)”" € LY2(R?).

Step 2 (The upper bound)
According to Lemma 4.4, there exists a v € DM, with p, = c}g/ 2 [V]i/ 2 % gC =
0z * 9%, so that tr[y] < [pz's = |Z] and Ep" < & [7]. Using (4.11), w

Vzr — “Vzr
obtain

i 3 5/3
B <Serr / (QEZFR) w12~ [ (ehi s @) Van+ Dokl )
<E‘1/;FR+CH ‘Z‘ ""/(Q;,FR QZR*QC)VZR (4.13)

Here we once more used the TF equation and that D(oy's * g2) < D(0z'g)." We

use Holder’s inequality to bound

[ (€8~ o3t x 2 Vam = Z 2 [ efin@Gele ~ Ry)do < 2l offallssng e

plug this back into (4.13) and optimize in ¢ € (0, 00), so that

B <B4 |Z]]| ogh |yglc;c;;7ri11.(1o)%°

Vzr = Vzr

8see Proposition B.3 in the appendix for details
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CHAPTER 4. REDUCED HARTREE-FOCK THEORY

Using Lemma 4.5 with a = %cTF, we obtain the claimed upper bound

1 6

4
rHF TF -2 1112 11 (3 -1z —1
Evyn < Bvgp + 12375 S cpmiiegs(5ere) 1110 D

~~
=:1C4.6b

Step 3 (The HF-lower bound)
We begin with

By, = t[H e viR] + D(0pr — dir) — D(ehr) — X (14 R)- (4.14)

Vzr

Since v, is a projection onto a |Z|-dimensional space, tr[H, (p%FRvg%] is, according
to the min-max principle, bounded from below by the sum of the |Z| lowest negative
eigenvalues of Hepr . We may therefore use (4.10) together with (4.12) in (4.14)
and optimize over ¢ € (0,00) to find that for all 6 € (0,1) :

B 2B, + DU, - ) - X0l

Vzr =Vzr

_ ((1 —8)7T — 1) gcTF/ (@5ZF,R>5/3

2R 0 g ega L) P4 1 4).
—C
Lemma 4.5 with ¢ = 2crp bounds the L3*-norm of off . With the Lieb-Oxford

and Hélder inequalities and Lemma 4.5 for ¢ = (3/m?)'/32cqp,

1/2 5/6 5r23cr0v/Cus
X" <ol (6™) 7 Izl (™) |l2 < BT |Z [,

=4

So far we have for all € (0, 1) the lower bound

BV 2Ev, .+ Dlony, — o y) — CalZ?
1004'5

(a7 ) e

We choose 0 = | ZJ? with « € (0,1). Because |Z| > 1, we indeed have ¢ € (0, 1)
for any p < 0. Then (1 —§)732 < 1+ |Z ((1 —a) - 1) by convexity and
p = —= is optimal for large |Z|. Thus, for all o € (0, 1),

—|Z|5 6755y,

7 2
By > Biy + Doy, — 0, ) = G527 = Cy(a)|Z]57 5

with Cy(a) = ((l—a)*3/2—1)%+01/a6/5. Now choose ¢4 6. = C3+ Ie%nl) Cy(a).

Step 4 (The rHF-lower bound)
The proof of the lower bound on the rHF energy is nearly the same, up to two

modifications: First, the exchange term is not present, which simplifies the proof.
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4. THE OUTSIDE IN RHF THEORY

Second, 7{};1; is not necessarily an orthogonal projection and thus we may only
bound tr[H e Yzl from below by the sum of all its negative eigenvalues. For-

tunately, (4.5) allows us to bound the number of these by qLoc;f/ 2 [@%’FR]EF/ 2 =

qLo(ctr/cr)?/?|Z|. From here, the proof remains the same, up to a change in the

constants so that

: 10 L )A/52/5 7 1/5 3/10
C460 = MIN (((1—a)‘5/2_1) s +a—6/5q(cg )PP Ly " g .

ae(0,1) 9err Cll[?/lO

Remark (The large-Z limit of Quantum Mechanics)
Consider the Hamiltonian of N electrons subject to a nuclear potential Vz g in
the Born-Oppenheimer approximation, H‘C/?ZZTQN = E;VZI (—culdj —Vzr(z;)) +

> |z — xj|7'. Then for any normalized N-electron wave function ¥, we
1<i<j<N
have

(W, Hy' v) > te[Hyy o] + D(pw) — cro /Pf‘p/?’

due to the Lieb-Oxford inequality (4.6).” Similar to the proof of the lower bound
in Lemma 4.6, one can therefore show (see [35, Theorem 5.1]) that for |Z| € N,

B3 — (cst.)|Z]57% < Egy < EY%..

Together with the TF scaling (1.3), one concludes that TF, rHF and HF theory
agree with the quantum mechanical energy to leading order in |Z| — oo and the

leading order term is given by Thomas-Fermi theory.

Also the next-order term, called Scott-correction, is known [37]: E% = E7r +
522127 4+ o(|Z]?) as |Z] — oo. For atoms, even the Z%3-correction has been
proven in [38]. These expansions in Z and their predictions have a large history
and literature which we do not cover here. Both of the two mentioned results

contain an overview of these.

4. The outside in rHF theory

We extend the results of [12, Chapter 6] to the diatomic case, studying the rHF
density on the outside O, by splitting the rHF energy into an inside and an outside
part. We begin with the well-known IMS-formula, which achieves such a splitting

for the Laplace operator.

9Here ~y is the density matrix obtained by tracing out |¥)(¥| and py the corresponding density.
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CHAPTER 4. REDUCED HARTREE-FOCK THEORY

Lemma 4.7 (IMS - formula). If {w;}}_; € C'(R?,[0,1]) with bounded gradients
and Y77 wi(z) = 1, then for all v € DM, with tr[~Ay] < oo:

tr[—Aq] = Ztr[—A(Wﬂwj)] - Ztr[IijIZ’V]-

The proof is a straightforward computation, see for example [12, Lemma 2.4]. It
can also be found in [39, Chapter 3.1], together with references of its origin. A
set {w;}7 satisfying the hypothesis of Lemma 4.7 is called a quadratic partition of

unity. We will use a special choice of such a partition with n = 5:

Definition 4.8. Let 6,7 > 0. A family of functions {w,} € C*(R3,[0,1]) indexed
by z € {0, Rv,0, Rv, O} is a é-partition at radius r iff

(1) [Vw,| < & forall z, 3 w?(z) =1 for all z,
(2) suppw. C B(z,r) and w.|p(,—s = 1 for z € {0, Rv},

(3) suppwo C O, and wolo,,s = 1.

Note that 0, Rv and O are only labels, whereas 0 and Ry also denote points in R3.
A §-partition at radius r exists for any § € (0, min{r, % —r}), see for example [12,
p. 532].

Let w € L®(R?), then w is a bounded operator on L*(R?; C?) and for any v € DM,,

we define
Voo 1= WYW
which is also a density matrix if ||w|. < 1. Using the cyclicity of the trace, we

find [ p,. ¢ = tr[y.¢] = tr[y(wow)] = [ p,w?e for any ¢ € C2°(R?). This implies

that

Py = pw?  ae. in R

Now comes the the main result of this section: vng almost minimizes 5&;{{{; over

Z,R,r

density matrices supported in O, and with trace bounded by the trace of wpoy™ ¥ w

HF, 215/3
w3)™,

O-
This then implies a bound on [ (Q

Lemma 4.9. Assume 6 € (0,min{r, & —r}), let v be a neutral minimizer of
EWY and {w.} a d-partition at radius r < R/2. Then

S D) ZEL DT A b [Fagy 0] D@ ()
—3/2 tHF 5/2 7’ rHF
—cy gl / [Pz rr—sli — CHY52 / e
Trs\Tr—s Zr+5\Ir—s
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4. THE OUTSIDE IN RHF THEORY

and for any v € DM, with tr[—A7] < oo, tr[y] < fOT o™ and supp ps C O,

EVE [YHF) < EE AT ) + tr [ Hage 7] + D(ps). (4.16)
Moreover, with K, defined in (4.3),
2/3,2/3 | ;7 TF 7/3
w053 _ A4 | BT rHF

/(Q wp) " < 3Ky | oo Pz Ry . (4.17)

72(]2/3/ HF 2L1q5/3 5/2

4+ oM+ / [P sy

02K, Trys\Ir—s chi{Q Zrys\Ir—s

Proof. All we do is rewrite the proof of [12, Theorem 6.2] and [12, Corollary 6.3] for
the diatomic case. For the upper bound, we take the trial state v = ’yLIgF +7£§ +7.
Then vHF5 = 0 = AHEAMHE 1y the support properties of the d-partition. Hence

wo wo rYwRu

v? =~ and in particular v € DM,. Moreover,

) < [ M d +why + 10) < 2],

so 7y is a trial density matrix for the diatomic rHF minimization problem and we

obtain

EYF < &0 7] =0 F 450+ tr [Hagy 3] +D(ps)

Vz,r — “Vz r Vz.r
+2D(ps, 0" (wy + wh, — 11,)).

Here, the last term is clearly nonpositive. We simply drop it to obtain (4.16). For
the lower bound, we first use the IMS-formula (Lemma 4.7) and properties of the

d-partition to deduce that
2
rHF rHF m rHF
tr[—cg Ay ] > Ztr[—cHA’ywz ] — CHW / o
N Ir+6\Ir—5

Next, we use that (Wi + wh, + w2 +w? ) > 17, and (w§ + wk,) > 1z,_; to bound
D) = Z D (gFw?, g HF 2 )

>D(0"" (wh + wh,)) + D™ wp)
_|_ ZD(QI‘HF]]-IT7 QIHFW?O) _|_ 2D(QrHF]].I

r

L 0T (W W),
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CHAPTER 4. REDUCED HARTREE-FOCK THEORY

Since tr [Vz py™] = 3 tr [Vz,r7iHF] we find, by collecting the bounds we de-
duced so far, that

VZR VZR

ngF[ rHF] >ngF[ LI;IF _}_,YLII{{F] Ttr |:Hq>rZHF 7Llfjlg)F] +D(o HF ?9)
( HF HF s HF
bt [Hagy P 4920 —engs [ o
Zar 0 v 252 r+6\Ir 5

Applying the Lieb-Thirring inequality (4.2) with V = ®3'F 17 \7,_, now yields
(4.15).

sup ®y's . for all z € O,

00,

Finally, we prove (4.17). We use that ®y'; (z) <

le

together with the kinetic energy-inequality (4.3):
tr{Hyggy 0]+ D(0MFB) >

rHE 2
_ . 5/3 . o (2)wgy (x .
14 2/3K1/(@ M) [T%%p‘1>zl?5,r]+/—(|£| o) gy 4 D).

This is lower bounded by the atomic TF energy, with [rsupy,, ®3'% .+ as the
nuclear charge and constant cyq 23K, = (/3/7)% 32¢rp instead of Zerp in front
of the kinetic term. We take only half the kinetic term (which is optimal, since
1/2 is the minimum of 1/[¢(1 — €)]) and use the scaling relation (3.1) with U =
[rsupgo, P55, 1+ and T = Lcpq 23Ky, Then

tr{Hag 121F] + D(e ™)
cp K : 5/3 . 1/3
> 20 [ (@) — rsup @ 112 (=2/3) BT
On the other hand, (4.15) and (4.16) for 4 = 0 imply that
[H(I,rHF WYHF] +D( rHF ?’))
qLy rHF  15/2 m rHF
Sg / [@z,R,r—5]+ + CH@ o .

I’r+5\z—'r75 7'+6\IT7(5

(4.17). O
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CHAPTER 5

Comparing screened potentials

The screened potentials for a homonuclear diatomic system in Thomas-Fermi and
reduced Hartree-Fock theory are (independently of 71, Z, > 0) comparable. The

precise statement and our main result (from a technical point of view) is

Theorem 5.1. There exist constants 5.1, C5.14, C5.1 > 0 such that for all R > 0,
6 € (0,0541) and all Z € R2 with |Z] > 1: Ifr < 05.1bmin{1,(R/2)1+%},
then

—4+5¢

sup
z€dO,

dy

/ ozr(¥) = dar(Y) | _
= Cs.14T

|z — y|

We give the proof on page 62. The corresponding result for atomic rHF theory is:

Theorem 5.2. There exist constants €52, C5.0q, 5.2 > 0 such that for all |x| < c5.9
and all Z > 1:

/ 07 W)~ 7" W), | s |52,
B(0,]z|) [z —y|

We do not give a proof of Theorem 5.2, since Solovej proved it for the ‘full’ HF
case in [12]. The same proof applies for the rHF model, with minor modifications:
The lack of the exchange term makes the proof easier and it is not important that
a minimizing density is an orthogonal projection. These modifications can also be
observed by comparison to our proof of Theorem 5.1, because we adapt the proof
from [12] to the diatomic rHF model. Moreover, another proof of Theorem 5.2
has essentially been given in [23], where it is shown that for any 6 > 0 there exist

a, D > 0 such that | [, 05" — 4csr™| < 6r7? for any r € [az=1/3 D).

1. The iterative proof

The proof in [23] proposed an astute iteration scheme but it relied on spherical

symmetry and can therefore not be generalized to the diatomic case. Going beyond

TAccording to Lemma 3.6, we have fB(o,r)c oLF ~ 4cgr=3, hence with Newton’s theorem and the

choice § = (cst.)r®, one easily deduces the claimed bound for (cst.)Z~'/3 < r < D. The case
r < (cst.)Z 1/3 follows from Lemma 4.6 by the same arguments as we provide in Lemma 5.3.
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CHAPTER 5. COMPARING SCREENED POTENTIALS

the spherical case in [12] was a major improvement and is the main reason that
we can treat the diatomic case. We will prove Theorem 5.1 by iteration of the

statement

A(r,e o) = dy| < (or¥)r™*, Vr € O,.

/ 077 (y) — oz k()
: |z —y

Remarks

e A priori, the statement A(r,e,0) does depend on Z and R. The strong
claim behind Theorem 5.1 is that if 7 and 2r /R~ are sufficiently small,
then A(r,e,0) holds for all Z and R.

e It is no coincidence that if A, then V = ®%'; 15- satisfies the perturba-
tion assumption of Lemmas 3.16, 3.17 and 3.18: The universality of the
Sommerfeld asymptotic, or more precisely the fact that any neutral oTF
potential has the second order term (cst.)|z|~4~¢ for large |z|, with a uni-
versal £ ~ 0.77, is the heart of the iterative technique we will develop in
Lemma 5.4.

e When we consider the Born-Oppenheimer curve in Chapter 6, it will be

5&
n—=o

important that Theorem 5.1 holds up to r of order R'T7-% because it

(n—
implies that r~7"% = R=r%(r/R)™7 RTR™™% << R for small R.
e Note that
TF rHF
QZ,R(?J) - QZ,R(y) r
/ ey W= P (1) — Py ()

and due to Lemmas 3.7 and 3.6,

csr (1 —a ™ (r mlz/?’)’g) < sup (I)%,FR,T < Begr™

Or
Hence A(r, e, o) implies that supy, |®3': | < (cst.)r~*(1 4 or¢) and The-
orem 5.1 therefore says that the diatomic screening in rHF theory is, for

fixed Z, to leading order in r the same as in TF theory.

Any iteration needs to start from somewhere.

Lemma 5.3 (The first step). Let Z € R% with |Z] > 1 Then

1 1
A (TJ %705.3644_434) ’ vr S 6|Z|_§

Proof. Let f,(y) = (Q%FR(y) — glefg(y)) 15, (y) and note that by (3.11),

sup|(fo + fro) * [2] | < sup [fox |z + sup [ fryx || 7.
00, oB(0,r

) OB(Rv,r)
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1. THE ITERATIVE PROOF

We minimize [12, (83)] over x > 0 and apply it to f,, so that

_ 1,2 -5_ 1 5 5 1
o 17y ol < 2857 srt ma {1 Ik} (PUL) .
p,r

We use Lemma 4.6 and Lemma 4.5 (it applies with a = (3/7?2)1/3 2erp) to bound
the right hand side and conclude with

C5.3 1= 241/12371/351/67(6’}1{‘(04.5)1/2(04.611 + C4.6b>1/12-

g

Next we present the iterative step, which allows us to boot strap the result of

Lemma 5.3 to even larger values of r which are independent of Z.
Lemma 5.4 (The iteration step). There exists a universal constant d54 > 0 such
that for all § € (0,654]: If A(s,e,0) for some o, >0 and all s € (0,r] with
1o 1
(%aTF) tmy <r<D(oe R):=min {1/2, c3aspR/2, (03.17/0)?}
then A(s, 0&, c5.4) for all s € [rﬁlé,min{r%, 7}, with 7 = 03,18(17“&(}3/2)# and

a universal constant cs4 > 0.

Proof. Analogously to [12, Lemma 10.3], we consider the outside TF model with
respect to the potential V,(z) = &35 15-(x). Let g, = arg I]%fl(i‘l/l)) &Y and denote

by ¢,(z) the corresponding TF potential. We then write for x € 00, with s > r:

TF rHF TF

027 (v) — 07 R () - / or(y) — 0z.r(v)
: ——dy =p,(x) — gz, p(T) + ——dy
/ |z —y] (#) = 22.r(®) |z —y|
ZS S
rHF
Qr -
N / (y) — 0z r(Y) a.
|z —y
I\,

The assumptions on r are such that we may apply Lemma 3.18 and Corollary 5.7.
We therefore deduce that

TF rHF 2
- 3 3 d+35
/ QZ’R(y) QZ’R(y) dy| < s~ (CSC3.18c (g) + CsC3.184 (g) + 05.783716 (;) 36) )

lz —yl

S

1-6

for all z € 00; and s € [r,7]. Note that s € [Tﬁﬂ”ﬁ} is equivalent to s1-5 <

r/s < s° and that r < ris because D(o,e,R) < 1. Hence with

o
£(d) := min {55, % - 12—_5 <4 + %)}
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and Cs4 :— Cs(Cg.lgc -+ C3.18d> + C57 We conclude
1 1-§
A(s,8(0),¢c54), Vs€ [rm,min{rm,f}} .

Choosing d5 4 := max{d | £(6) = d£} finishes the proof. O
We are now in a position to prove Theorem 5.1.

Proof. The proof combines Lemma 5.3 and Lemma 5.4. It is divided in three
steps. Note that Lemma 5.4 assumes A for s < r and concludes A for s €
[rﬁ,min{ﬂr%} , but it does not tell us whether A is true for s € (r,'r’%ﬂ).
Hence we reformulate Lemma 5.3, the starting point of the iteration procedure in
the first step, such that A holds up to s of order Z 5+ Only then can we use
Lemma 5.4 to successfully iterate the statement in the second step, where one also
observes that there are two conditions which limit how far we can iterate. In the

last step, we define the constants and conclude.

Step 1 (Reformulating the first step)
Let R > 0 and (later to be fixed) § > 0. We define Bz (3aTF)€(1+5>m3(1+6 which

1/3)1+6 (3 TF)

=1
is chosen such that rz := (Szm ¢m, . Lemma 5.3 then implies

<r 1/66, c5. 3549/12 1/66> for all r < 7““5. Further observe that if ¢y € (0,1/66]

and r < 7““5.

4+1/66 o5 . —dte | S\
- 12 66 0 12 66 3
r cs.30y <r cs.30 <5zmz )

49 1 5(%—60) 1
_ 1Z=% 3( s (gg—<0)
=T 4+EOC5.3 (%&TF) &(1+49) mz
To cancel the mz-factor, we choose €¢(8) := gz — (33 — g5) and assume from now

on that d < 2/537, which is equlvalent to 60(5) > 0. Hence A(r,£0(0), 0¢(9)) for all
49/12
r< r”‘g with 0¢(d) 1= ¢53 (;’aTF) G . To ensure that the conclusion of Lemma

5.4 implies its assumptions (so that we may actually iterate), we define (9) :=

min {g(8),5¢} and fix o0y ;= max {00(0),cs54}. Hence o(8)r® < 751 for
5€[0,2/537)
all » <1 and
_1
v € (0,2/537), VZ € R . A(r,e1(8),01)Vr < min {m;é} . (5.1)

Step 2 (Iteration)
We define for any R >0, Z € R% and § € (0, =) N (0, d5.4]

1

M(R,Z,6) := sup {r eR: A(s,e1(0),01), Vs < rﬁ}
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1. THE ITERATIVE PROOF

and assume (for a contradiction) the existence of a triple R, Z,0 (for which M is
defined) and such that both
(A) M < D(0y,¢e1, R), with D from Lemma 5.4, and
(B) (M7, min{ M1, M}) # 0, with M = ¢35, M &7 (R/2) 7.
If rz < M, we may take r, / M and notice that by (A), rz < r,
1 -
large enough. This implies A(s,e1,01), Vs € {rﬁ*‘;,min {Tﬁ+5,7‘~71}:| by Lemma

5.4. However, for large n, (B) implies

. 1 15
Mt (7“ﬁJr , min {rn+ ,Fn}) #

and this contradicts M being the supremum. If rz = M, then rz < D < 1/2

-

by (A) and according to (5.1), we may apply Lemma 5.4 with » = rz so that
A(s,e1,01), Vs < min{M%, MY}. This together with (B) again contradicts M
being the supremum. Finally, if rz > M, then we find M’ € (M, min{1,rz}) since
M < 1 due to (A). Now (5.1) yields a contradiction. We therefore conclude that
for any triple of R, Z, for which we defined M, at least one of the two properties
(A) and (B) can not hold. If (A) is true, then M < 1 and (B) is equivalent to
Mt < M = 03_18aMﬁ(R/2)#. We therefore deduce that

1 (n+£)(1+9) n(148)
inf2 M(R, Z,(S) > min {1/2, (03.17/01)51 703.18bR/2763.1g;65 (R/2> o } <5'2)
ZeR?

Step 3 (Conclusion)

Since § < (537/2 + 66£)7! & ¢(8) > 6¢, we choose 05 := min{ds.4, (537/2 +
66£)~1} so that &1(d) = 6¢ for any § € (0,051]. Also note that as a function of R/2,
the right hand side in (5.2) is constant for R/2 > (est.) or equals (cst.)(R/Z)nfgl—g?
for R/2 < (cst.). More precisely, we infer from (5.2) that for all R > 0 and

5 S (0,65.1]22

T
< inf M(R,Z,5)>

ZeR%
1
) c3.17 ) 60+ B (njf) . g
zmm{l/z, (%) sy, pin {1, (727}

01
1 1 (n+¢)
We now define c5, := 561[{)1%{11] 1/2, (c3.17/01) %0+ | (c518) T, ¢4 18 ¢ > 0, and
note that this, by definition of M, ends the proof. O

2We use that if a,b, ¢,z > 0 then min{axﬁ,bml—gﬂv,c} > min{a, b, c} Inin{l,xl—;f/"}. Note
that this is not optimal.
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CHAPTER 5. COMPARING SCREENED POTENTIALS

2. Comparing rHF to its oTF model

Before comparing the outside part of the rHF density to the density of the outside
TF model corresponding to the rHF-screened diatomic potential, we collect some

simple bounds.

Lemma 5.5. Let cither Q, = B(0,s) or Q, = O,. Assume V € H(SY,) satisfies
[V < Cyr= and consider o, = arg (%1(1‘1/1)) EVY. Then, for any 6,¢ > 0, it holds
that:
o [ W< mﬂcé”«l +0/r)* = T
QT\QT+§

b)) | erxgi< 2515 2 (L 8/r) = (1= §/r))r,

Qr—s\Qrys

¢) [ o(Vi = Vy % g2) < 210510y 2y 2 (1 + ¢/r)? = 1)r T,
d) [ [or —prxg2)7? < 19510V ) ((L + ¢ fr)* = (1= ¢ fr))r T

Proof. For each bound, we use [, f < [|f]|s|©2| and note that [Q¢] = r3|Q¢|. Then
a) follows immediately from the assumptions. For b), we note that g, *g(x) < o,(x)
and by the TF equation (3.2), o,(z) < cpd >V, ()22 < (Cy /err)¥*r—5. To prove
c) and d), we first note that V,, — V, % gC vanishes in (Q,_¢)¢. Next, if z € Q,4¢,
then B(z,() C €2, and the mean value property applied to V,.(- + x), together with

g¢ being radial and normalized, implies

¢

V,x gi(z) = / ge()? | Vi(tw + z)dwdt = V().
SQ

Hence we conclude that V. — V. x g has support in Q,_¢ ¢\ Q,4¢ and is bounded by

2Cyr~*. This, together with the TF equation, proves c¢). We also use this argument

for d), where we in particular note that [, — ¢, * gﬂ L < [V, =V, % gﬂ . because

2|71 * gg — ||~ <0. O

Lemma 5.6. Let V, = 3% 15 and o, = arg (m(m)) EVY. There exist constants
C5.6a; Cs.60 > 0 such that if

1
(gaTF) ¢ m;Tl <r< min{; (cs. 17/0) R/4}
and if A(t,o,¢e) for allt <r, then
D(o, — d3hlo,) < csgar 3 (5.3)
and

rHF 9/3 _
/ (QZI,{};)/ < cs.epr (5.4)
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2. COMPARING RHF TO ITS OTF MODEL

Moreover, if wo is from a d-partition at radius r with § < 7“%, then

7l
£ (o Ewo] 2 EFF[o,] — s . (5.5)

Proof. All we do is rewrite the proof of [12, Lemma 12.6] for the diatomic case.
Note that pu, = 0 by Lemma 3.17 and that V, = @%ng on the support of any we.
We drop the subscripts Z, R in this proof to simplify the notation.

Step 1 (An upper bound)

We use the second part of Lemma 4.4 with V (z) = ¢, (z) to obtain a density matrix
¥ with p5 = o, * g7 and such that by (4.11),

~ 7T2

Newton’s theorem for the radial, normalized function g, implies D(p, * gC) < D(or),

hence

C7T
tr[Hy, 3] + D(ps) < &5 o] + —15— /Qr /QTV Vx g2).

To bound the left hand side, we would like to use Lemma 4.9, but ¥ is not
necessarily supported on O,. We therefore pick a J-partition {w,} at radius r
with 6 € (0,7) and consider 4,, = woJwe which has support in O,. Moreover,
Vo) < [0r < N(V,) = |, o, 07 k> hence 7, satisfies the assumptions of Lemma
4.9. Since g5 > Q%O = 05wp pointwise, we have D(05) > D(ps,,,). The IMS-
formula (Lemma 4.7) together with the Lieb-Thirring inequality (4.2) then implies

i) 2 nlti ] - gt [ 2= [ (ongd)
Trys Tr+6\Lr+s
We use Lemma 4.9 and collect all the bounds we have derived so far. Then, for
any ¢ € (0, min{r, R/2}) and ¢ € (0, c0),

tr [Hy7hg' ] + D™ wp) <& [or] /@r /Qr (V. =Vixg)  (56)
2
+c 3/2qu / [Vr—é]iﬂ + CH2—52 / ot
Trys\Ir—s Tr+6\Ir—s
cHT?
+c?qL /[Vr]i/%r% / (or * 9).
Ir+<$ Ir76\1r+6

Step 2 (The lower bound)

To prove a lower bound on the left hand side of (5.6), we write
tr[Hy, 5o |+ D(e™ W) = tr[Hy, 755"+ D@ wg — or) — Dley).
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CHAPTER 5. COMPARING SCREENED POTENTIALS

The first part of Lemma 4.4, applied to the potential V' = ¢,, together with the
CLR-bound (4.5) on the number of nonpositive eigenvalues of H, and the TF
equation tell us that for any §' € (0,1),¢ € (0,00) and § € (0,7):

3/2 2

/ 2 /
lH, ) 2 = (1= ) e [ = S - 9)Fako [ o
5/2
AR (G N

And D(oFwd — 0.) > D(0F 1o, — 0,) — D(0"™F (wd — 10,)) simply because
D(o,, ngF(]lor —wd)) > 0. Moreover, —2crp [ 0* —D(o,) = EvFlor], so that for
any & € (0,1),¢ € (0,00) and § € (0,7):

>
>

tr[Hy, v'2F] + D0 wg) >EE [0,] + D0 1o, — o/) (5.7)

r’}/wo
/ 2
- ((1 —0 )73/2 - 1) SCTF / Qi/g
C ’ 7T2
T [
5/2

— (cud ) 3PqLy||[pr — 1 g§]+||5/2
— D" (wp — 1o,))-

Step 3 (Bounds on the error terms)

We now bound all terms on the right hand sides of (5.6) and (5.7), except for
é’TF[gr] and D(0"Fwg — o). Using that r < R/4, we have supp, ', < des(1+
Jt=* < Begt™ for all ¢ < 7. Hence

R/t 1
16 —4 —4
||‘/t||oo S C3.17 —I— 305 t = Clt s Vt S r, (58)

and we may use the bounds from Lemma 5.5 for Qy, = O,V =V, and any t < r.

Due to neutrality, Lemma 3.15 and the assumptions, we have

/gt / N(®z',) + N(Vi — ®775,) < (Bes + 3csa7)t >, VE<r.
oF
(5.9)

Since p, = 0, we infer from the TF equation and Lemma 3.17 that

5/2 59/2

2

/ 03 < (C—Su +A)) iy (5.10)
CTF 7

Let wo be from a d-partition at 7 := r — §, then [, (¢™F)** < [(0™Fwg)?/?.
To bound the right hand side, we use (4.17) for § = Ar? and X\ € (0,1) to be
chosen later. Note that indeed 0 < min{r, R/2 — 7}. Together with (5.8), (5.9)
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2. COMPARING RHF TO ITS OTF MODEL

and Lemma 5.5 a) we obtain

7/3
/ (QrHF)5/3 <4q2/37r2/3 ’ErlrF‘ [7; sup P11 } /
o, — 31/3CHK1 20, 0+R,7

+

+ . / oM+ 2Ly / (5T, )Y
=01+
02K Trys\Ti—s [(1051’42 Trys\Ti—s "

42/3 2/3 ETF 7
<q ™ ’ 1 ‘07/3( 2)\) T

31/3CHK1 ! 2 —

7.{.2(]2/3 1
8 3c: —_

+ @ ( cs + 03.17) )\2(1 — )\)37”
2L1q5/3 27 5/2 -7 -3 -7
P =G (1= (Q=N"=1r

H
- CQ()\)’/’_7

This proves (5.4) with c56, := min{C2(A)|0 < A < 1}. We combine it with the
Hardy-Littlewood-Sobolev and Hélder inequalities to deduce that for any § € (0, 7):

D(o™ (wp — 10,)) <cuislle™ o0, 185
SCHLS”QTHF]IOT H§/3|Or \ Or+5‘7/15

6/5 81 718 3 /15 _7
<CHLSC5. 6 5 (Q+0/r)*=1)""r " (5.11)

Step 4 (Conclusion)

Let 6 = '+ ¢ = v and § = P for some d,s € (0,1) and p € (0,00). Note
that since 7 < 1/2, we have §,¢ € (0,7) and § € (0,1). We use this choice
of 6,¢,8 in (5.6) and (5.7), together with (5.8) - (5.11) and Lemma 5.5. Since
(1+1t4)3—1) <29((1+27%)3 —1)t* for any ¢ € [0,1/2],a > 0, we obtain the lower
bound

&y [worzrwol >
D¢ 1o, — 0,) + EXF o] — Calp, 5, d)r~" <,rp 4 p20-8) 4 ps=3p r%d)
and the upper bound
EFF wongwo] < EXFlor] + Cals, )™ (19 4+ 1% 47219 4 y2(1-0)

Note that the left hand side in both bounds depends on d via the smooth cutoff
woe. Optimizing these bounds in d, s € (0,1) and p € (0, 00) proves (5.3) and (5.5).
OJ
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CHAPTER 5. COMPARING SCREENED POTENTIALS

Corollary 5.7. Let V, = ®Y'p 15~ and o, = argc(%l(iél))&?. There exists a
constant cs7 > 0 such that if

; 1
(;aTF) mZ31 <r§min{2 (0317/0) R/4}
and if A(t,o,¢) for allt <r, then for any s € [r, R/2) :

— oHF 1/12
/ or(y) — 07k (W) < ea (f) / |
AV lz =y r

sup dy

€00

Proof. We assume that |z| = s and apply [12, Cor. 9.3] twice, first with f =

Or Q%Hgﬂo and then with f = QrHF 1o, —o,. After optimizing in the free parameter

r of [12, Cor. 9.3], we obtain
lor — Qrzl?g]}‘(')r“lB(O,s) * x|t < 929/125-5/63 71/ 1/12,),5/6 (D(QT — rHF]IOT))l/12

with m = max{||or |53, [|0% k1o, |l5/3}. According to (5.10) and (5.4), we have

99/4.1/2 5/4
m®% < max Vs 60, ———— (1 + A) T2 = O,
\/_ CTF

With this bound and (5.3) we find |0, — F]lo L0, *|2| 7 < %c5,7r’4+§ (§)1/12
for any |z| = s and ¢57 := 2125~ 5/637730105 ... The same proof applies for |z —

Rv| = s. Since

0:(y) — 051 (Y)
sup / dy| < > sup o, — ogplo, [Mpp.s * 27",
90s |/ I\ [z =yl pe{0, R} OB(P:3)
this completes the proof. U
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CHAPTER 6

The Born-Oppenheimer curve in rHF theory

We now turn our attention to our main result about the asymptotic of
Z1Zy
R Y

the Born-Oppenheimer curve in reduced Hartree-Fock theory.

HF ._ poHF _ pHF _ poHF
Dy p=FEzr — Lz —Ez +

Theorem 6.1. There exists €51 > 0 and an increasing 6 : R, — R, such that
for all R € (0,2] and all Z € R with |Z] > 1 :

AN
D3~ D] <0 (—maX{ L 2}) R,

mz

We give the proof on page 75. It is by upper and lower bounds, choosing ap-
propriate trial states for the atomic and diatomic tHF energies. Since D%% can
be determined from oTF models (Lemma 3.22), we compare DYZIE to such oTF
models. ‘Appropriate’ therefore means we try to cancel those terms in the rHF
functional, that correspond to the regions close to the nuclei (the inside Z,. for some
r). This approach leads to rHF functionals with respect to four different screened

potentials.

Definition 6.2 (The rHF screenings). For p € {0, Rv} and r > 0 we define

Z o7 1Y)
W“m@):zﬁxfm_lé ———dy | Lpgp)-(z)

(p,r) |l’ - yl

and

Vr(z’p)(l') - < P / Zp—dy ]lB(p,r)C(x)'
B(p,r)

o —p [z —y]
For r € (0, R/2) we define

V(@) = (VO (2) + VO (@) T ()

and
VO (z) = (VO (@) + VE (1)) 1g,(2).

T T
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CHAPTER 6. THE BORN-OPPENHEIMER CURVE IN RHF THEORY

By construction, we have V;'? V;*? ¢ %(B(p,r)) and V', V') € H(0O,). We
use Theorem 3.2 to define the corresponding TF minimizers
Q’E‘jm) ‘= arg Il’llIl EV(J p)>» ] € {17 2}a pE {O7RV}7
(Vi)
and

oY) :=arg min €77 v j € {34}
ey Vi
Furthermore, let E(j’p ) E(j) denote the minimum values; 309 ),cpg) the TF po-
tentials and ,u,(aj ), w’ ) the chemical potentials of the corresponding minimization
problems. With the tools developed in Chapter 3, we find that the latter actually

vanish, provided r is chosen sufficiently small:

Lemma 6.3. (Controlling the outside models) Let Z € N* with |Z] > 1. Assume
i : 1 -1

that 2 > R > 2 (aTFé/ﬁ>€ mjp and v = ceap(R/2) i< > (%CLTF)é m, with

e € (0,051&]. Then for all s <r and p € {0, Rv}:

. N 4ied 3
i) Sup (@%{E — oz (- —p)) Ip(p,s) * |2] 1’ < a8 T + Beg a5
p7s €
i) sup (ngHF QZ >]lBos x|~ ‘ < C59n8 ATE52
B(0,s)¢

ZZZ) S(lolp ‘ (QrZH}I; - QZR) ]11'5 * |'T|_ ‘ < C5.1aS

> (Qrzlf( —p)— Q%) Lpps * |2
p

44-¢

. —4t4E _
iv) sup < 206308 TH 4 205908 TE5 2,

S

Furthermore (under the same assumptions),

v) Mﬁf'@ =0 and fg&j’p) < cgq4ar 3 for j € {1,2}, p € {0, Rv},
vi) pd =0 and fgq(nj) < 272(1 + A)*2cqr™ for j € {3,4}.

Proof. We will choose c¢g.3, < min{cs 15, ¢5.95} and recall that ¢51, < 1/2. Then ii)
and iii) follow from Theorem 5.1 and Theorem 5.2. For i) and iv), we first note

that since s < r < (2s/R)" < ¢l 5; 5%, Lemma 3.8 implies

sup (sz( —p)—QZR> Lpp,s) * ||~ ‘<063 s p e {0, Ry},  (6.1)

B(p,s)°

1

— : 7 e/n n+1—e(1+4/n)
where cg3, 1= ee(%%?lg) <03.8b <2§aTF£) <c6 3b /2) + €3.8¢C4 31 ) Next, we

combine Lemma 3.15 for u,(x) = (04 — 02'r) LB(p.s) * [2| 7 together with iii):

Cs5.108 TTE <

sup |u,| < 5105 TE (6.2)

B(p,s)¢ - R—2s

l\DIO»D
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The triangle inequality, (6.1) and (6.2) prove i). Statement iv) follows by the

triangle inequality from (6.1) and ii). Let us further choose

o 1
. C3.14b 518 [ C34p | 752

< 1 . 6.3

_m{ (e ) () } (6.3

This means that due to i) and ii), the assumptions of Lemma 3.14 are satisfied for

V) and V,*?)| which proves v). Similar, we also choose

1

1
Cg « < mln 1 @ %5.1¢ L max{ 4(;5"'1‘57@} (6 4)
0:30 = "\ 514 "\ 2¢6.30 + 2¢5.94 '

so vi) is a consequence of iii), iv) and Lemma 3.17 for the potentials V;'*) and V;\*
U

Lemma 6.3 tells us that the assumptions of Lemma 3.22 are satisfied for the po-
tentials of Definition 6.2. The next result establishes the analogue of Lemma 3.22

for the Born-Oppenheimer potential in rHF theory.

Lemma 6.4 (Dy'y is determined by oTF models). Let Z € N* with |Z] > 1.

1

1 £
Assume that 2 > R > 2 (aTFf/n> mp andr = cgap(R/2) T > (%aTF) my
with € € (0,051&]. Then

E® — EMY - BRI L Qv VLRI (est)r T < DR (6.5)

T s

and
E® — BPO — FPR) 1 QIR0 VAR 4 (est)r T > DS (66)

Proof. Step 1 (Proof of (6.5))

Let {w,} be a d-partition at r < R/2 with § € (0, min{r, R/2 —r}). We consider,
for p € {0, Rv}, any 5, € DM, with tr[%,] < Z, — [, opr = N(V') and
supp ps, C B(p,r)°. Then wyyy hw, + 7, is a trial state for the rHF minimization
problem with potential Z,/|z — p|. Together with Lemma 4.9 we find

Dy'p >E% e S wog rwol — Z el e ) + QI VLR
pe{0,Rv}
2

3/2 3)1%/2 T r
—ci*qln / [VT(—ZSL ~CH55 0%k (6.7)
Trts Zrys\Zr—s
Note that V;*) equals V, from Lemma 5.6. We pick & = 72 in (6.7), and use (5.9),
Lemma 5.5 a) and r < 1/2 to bound the last line in (6.7) by (cst.)r=7+/3. Since

IThis is not optimal, we could use r < cg.3 instead of r < 1.
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CHAPTER 6. THE BORN-OPPENHEIMER CURVE IN RHF THEORY

ri/3 < r12/7 e may apply (5.5) to bound 55(15) [wog Ewo] from below and arrive

at:

Dylp 2 BY — Y & [l + QVEY VI — (est)r T (6.8)
pe{0,Rv}

for any 4, € DM, with support in B(p,r)¢ and such that tr[7,] < N (V ) We
now construct appropriate 4, to bound Er}(llF » 7] from above by EM) . Without
loss of generality, we only give the details “for p = 0. With ¢ € (0,00), let v be
given by Lemma 4.4 for V = 807(}70) and let w, be a d-partition at radius r. We set
wg = 4/1 —wi —w? and choose 7§y := wyywy as a trial state in oy b0 We then
combine the IMS- formula (Lemma 4.7) with (4.11), so that

2

tr[—cgAJg] < tr [CHA\/OJ(% + wgﬁy\/wg + wgJ + cH27T—52 tr[y]

3 (1,0)15/3 m (1,0)
TEorr (&) JFCHC2 0

We use the Lieb-Thirring inequality (4.2) with V' = [‘/}(1’0)} . 15(0,r+5) to bound

[CHA\/WO -+ wofy\/wo + W~J <c 3/2qL1 / [Vr(l,o)]i/z

B(0,r+9)

- [ L e

B(0,r+96)

Further note that ps, < ,07 = (oM « gg) hence D(ps,) < D(0"”) by Newton’s

Theorem and tr[y] < tr[y] = [ o0 ) Here the last equality is due to

,ug 0 — 0. All together, we arrive at

2 2
r - CHT CHT
EVIglFO)[ o] < E(lo < 252 (2 )/QSO)

5/2
i cH3/2qL1 / [VT(I,O)} +/
B(0,r+96)

for any ¢ € (0,00), 6 € (0,min{r, R/2 —r}). Since ||®7" T ppelle < dest™ for
all ¢ > 0, Lemma 6.3 1) implies

Vo < (est )™, V<7 (6.10)

We may therefore use Lemma 5.5 for V = V;(l’o) to bound the terms on the right
hand side of (6.9). We also use Lemma 6.3 v) in the first line of (6.9) and choose
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§ = ¢ =r*3 so that &MF, 100 [7o] < < pM0 — (cst.)r~7t3. Repeating these arguments
for p = Rv and rev151t1ng (6.8) proves (6.5).

Step 2 (Proof of (6.6))
We begin with a lower bound on the atomic rHF energies. Let {w,} be any J-
partition at radius r (with § € (0, min{r, R/2 —r})) and ws = /1 — wi — w?. The

support properties of {w,} and D being nonnegative imply

rHF
I T T Q (y)
Dlow) 2D(ehfe) + Dlfied) + [ o) [ po iy
B(0,r

rHF
9% (Y)
+ / o F 2 (2 / =0 " dydzx.
2 @5 (@) BOr—s) 1T — Y
From this bound and the IMS-formula (Lemma 4.7) we infer

2

s
rHF rHF rHF rHF rHF
EY, >Szo/|;c|[WOVZO wo) +8VT(2”’) [wovz, wal — o5 0z,

B(0,r+6)\B(0,r—4)
+tl—cn i - [ EFAVED,

V(20 ]5/2 due to

where the last line is bounded from below by —cH qu i) B(or +5)
the Lieb-Thirring inequality (4.2) and as usual, we have an analogous lower bound
on ErHF For an upper bound on the diatomic rHF energy, we consider the
trial state woy wo + WrYY e Wry + 7. Here 4 € DM, has to satisfy tr[3] <

T 0r)° (oFF + o) =N (1/}(4)) and supp p5 C O,. All together we obtain

Dy SEFSR = Y & lupwl + QB0 V)]
pe{0,Rv}

+ Z i 3/2 v (2P 5/2+ cym? ( tHE | rHF)
r—o 4 262 QZO QZRV )

pe{0,Rv} B(p.r+9) B(0,r+8)\B(0,r—6)

(6.11)

We bound €r p) [waTZHpr] (uniformly in ¢) from below. For any v € DM, with
supp p, C B(p, r)¢, we write

Entin ] = trl(—cud — o*P)y] = 2D (0", p,) + D(p,).

73



CHAPTER 6. THE BORN-OPPENHEIMER CURVE IN RHF THEORY

The CLR-bound (4.5), (4.10) for V = ©*” and the TF equation for ¢\**) then
imply that for any & € (0,1),¢ € (0,00),

Eren ] >EY) + Do — p,)
- 0 =) Taladi? [ o

- (CH(S/)_?’/Qqu ” [4107(«2’]3) g0£,2 ) 9§]+H5/2

5/2

(1= 8)2 = 1) Jere / (2P, (6.12)

Next, we bound last three lines in (6.12) and the last line in (6.11). As before we
note that [|®7", 1 yello < 4est™ together with Lemma 6.3 ii) implies

V2P| < (est)t™, Wt <, (6.13)

so that we may use Lemma 5.5 for V' = Vt(g’p). Moreover, (6.13) and r < 1/2 im-
ply fB 0r+6) V(Zp)]i/2 < (est.)r=7(8/r) as well as crp f(@(?’p))5/3 < fg?’p)w@’p) <
(est.)r=7, where we used the TF equation and Lemma 6.3 v). We combine Lemma
6.3 ii) and Lemma 3.14 to deduce that

rHF rHF (2.p) -3
s [N < st -0
B(0,r+46)\B(0,r—4) B(0,r—6)¢
All together, we choose § = /3, ¢ = r1/6 § = r1/3 and conclude the last two
terms in (6.11) are bounded by (cst.)r~"t3 whereas the last three terms of (6.12)
are bounded from below by —(cst.)r_”%. We have therefore derived that

DR <EMHI - Y EPP 4 Qv V)4 (cst)r™ s (6.14)
pe{0,Rv}

for any ¥ € DM, with supp p5 € O, and tr[y] < N(W(4)). Let {w,} be a é-partition

at radius r (as usual, § € (0, min{r, R/2 — r}) but may possibly be different than

before) and let v be the density matrix from Lemma 4.4 for the potential V' = g0$4),

i.e. such that p, = 97(«4) * gg, with ¢ € (0,00) and also (4.11) holds. We now choose
3 = woywoe in (6.14) and proceed as usual: Combining the Thomas-Fermi equation
for @54), the IMS-formula, the Lieb-Thirring inequality and (4.11) we derive the
upper bound

ENE <BY + / o (VI = Vi« g2) + ¢ gLy / v

Ir+5

7T2 7T2 4 2
+CHC2/ ()+cH252/ ot x gZ. (6.15)
Zris\Ir—s
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According to (6.13), HVT(4)HOO < (est)t™4 vVt < r. Lemma 5.5 for V = VY and
Lemma 6.3 vi), together with the choice § = ¢ = 73, then imply that the terms
on the right hand side of (6.15) can be bounded such that

& (4>[ | < EW 4 (est.)r ™5,
Plugging this bound into (6.14) proves (6.6). O

We are now ready to prove Theorem 5.1 by a combination of Lemma 6.3, Lemma
6.4 and Lemma 3.22.

Proof of Theorem 6.1.
Let gy := min {85 2,051&, 3} We choose r = ¢ 3b(R/2) 7% and assume that
2>R> C’mzg with C' = 2max{( TFf/n) , ((a TF3/2)€C6 3b)@}. This implies

r o> (3/2aTF)%m;% and Rm% > Q(ﬁ/faTF)f so that the assumptions of Lemma
6.3 and 6.4 are satisfied. This means that both (6.3) and (6.4) hold. Hence we
see that the assumptions of Lemma 3.22 are (using Lemma 6.3 1), iii)) satisfied for
Ve = V) ag well as (using Lemma 6.3 ii), iv)) for V® = V;*?). Combining
(3.47) with (6.6) and (3.48) with (6.5), we thus find

RT| DY — DIF | < (cst)R™7 =, VR € [Cmy®,2). (6.16)
Let us now consider the case R < Cmy,?®. If we choose Vo(z) = Vzr(z) in

Lemma 4.6, then |Ez'; — Ef:| < max{cyga, caat|Z]37 3, and if Vo(z) = Z|z| ™,

7 2 . .
then |ETY — BHF| < max{cy¢q, crep} 23 3. We combine these bounds and write

1
3

Cz = max{Zy, Zy}/mz so that for all R < Cm,>:

2

7_2
R7|D’rHF D;FR| < Ot max{ 464, C1.66} (1 +C3 B +(1+ Cz)%_%> RiT.

This bound, together with (6.16) and ¢ := 50:—_570 < 1—21, completes the proof.
O

It is evident from the proof, or more specifically (6.16), that we do not require
the quotient max{Z1, Z3} /mz to be bounded if we consider the behaviour of Dy,
as mgz — oo. From (6.16) and (3.41) we therefore obtain the following Corollary,

which confirms the conjecture (1.5) in reduced Hartree-Fock theory:
Corollary 6.5.

lim sup }DrHF DEOFJR_?‘ =o(R™"), asR—0.

mz—ro0
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CHAPTER 7

Numerics

In the previous Chapters we looked at the Born-Oppenheimer potential in the limit
myz — 00, because it is a way to make a mathematically rigorous statement about
the behaviour of Dz r and since TF theory has a limit as mz — oco. Now how
fast is the asymptotic behaviour in (1.6) (or Corollary 6.5) reached? The honest
answer is that the constants from Theorem 6.1 are immense, so this result gives

no quantitative insight for reasonable values of Z < 100.

To obtain a better understanding about the validity of (1.6) for finite |Z|, we
have compared numerical values for homonuclear diatomic Born-Oppenheimer po-
tentials. Numbers for different homonuclear diatomics in HF' theory had been
computed in [13] and we were given their data. For TF theory, we computed
D(TZF 7),r Via the identity (3.42). This means that we had to determine the values
[ ¢*? and lal}g()(go(x) — Z|z|™') for both the atomic and diatomic TF potentials.

These functions satisfy the nonlinear Thomas-Fermi partial differential equation
(3.3) and by choosing cr?’r/lf = 4m in this chapter, the PDE is free of constants and
reads

Ap = ¢*? | lim @(x)|z|* = 144.

x|—00

We solve this equation both in the atomic and diatomic case numerically.

Remark: (Correctness of numerical values)

As this is not a thesis in numerical analysis, we do not derive any error estimates.
In the atomic case, the correctness of our results relies on the internal capabilities
of Wolfram Mathematica to carry out numerical computation with prescribed pre-
cision. Whereas for the diatomic case, we have no claim on the exactness of the
computations. We only deduce a posteriori, that our values are sufficiently exact
for our qualitative comparison of Born-Oppenheimer potentials. This is based on
two observations: Firstly, the values are consistent when computed with different
software platforms and slightly different approaches. Secondly, and most impor-
tantly, the TF values show a good agreement with the HF values, which have been

obtained by completely different methods.
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CHAPTER 7. NUMERICS

Before presenting the results for the Born-Oppenheimer curve, we describe the
solution process. We do this separately for the atomic and diatomic case, because

the former reduces to an ODE.

1. Solving the atomic ODE

The atomic TF potential is radial and due to the TF scaling (1.3) fully determined
by a single function i (z) = f(|z|)|x|~'. Here f € C*((0,00)) N C([0,00)) is the

unique solution to the nonlinear ordinary differential equation

f”(?“) _ (f(T))S/Z’ Vr > 0,

\/;
f(0) =1, (7.1)
li_>m f(r)r® = 144.

Since ;" > 0, we in particular have f > 0. This ODE has been studied many
times by physicists and mathematicians, both numerically and analytically. We do

not give a full account and instead refer to the references of authors mentioned here.

One can attempt to solve this problem numerically on a finite domain [0, r],
varying the guessed initial slope cg = f/(0) until the solution is sufficiently close to
the Sommerfeld asymptotic at ro. This assumes 7., is chosen large enough that
the 122r—3-asymptotic is valid. Furthermore, it typically requires a high number
of correct digits of ¢y. The importance of the value ¢y has been noted by many
authors and it has been computed to higher and higher accuracy over the past
decades. Among them is the result ¢y ~ —1.588071022611375312718684508 from
[40] and this agrees, with the exception of the last digit, with the 30-digit result
that has been reported 2014 in [41].!

We propose an iterative approach that allows one to compute ¢y to a much higher
accuracy with relatively few computational resources. It is based on the following

observation: For any ¢ € R, let y. be the (maximal) solution to the initial value

problem
ney ()32
y (’F) - \/; )
y'(0)=c

1See also the Table 1 in [41] for an overview of computed values since Fermi in 1928.
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1. SOLVING THE ATOMIC ODE

r

2 4 6 8 10

FIGURE 1. Numerical solution to (7.1). It describes the integral over
(r,00) of a single-electron density in atomic TF theory.

Then y., = f, where f solves (7.1), and it is defined on all of [0, 00). According to
Hille [20, 42], if ¢ < ¢ then y.(a) = 0 at some a > 0 and if ¢ > ¢y, then y’ will be
positive at some point. This leads to the following algorithm: We guess an initial
¢ and solve for y,, starting at » = 0 until 7, the first » where either y. or y.. vanish,
is reached. Then we adjust ¢ accordingly and repeat the process. This yields two

sequences ¢,, 7, and we expect that r,, — oo and ¢, — ¢.

Implementing this in Mathematica (see the appendix C.1), one observes that r,, is
increasing and ¢, is strictly decreasing when starting from an initial guess ¢ > ¢y.

Stopping at the 815 correct digit, we obtain

co = — 1.588071022611375312718684509423950109452....
...74662167482561676567741816655196115430926..., (7.2)

which in particular confirms the mentioned 30-digit result. The corresponding
distance up to where this system was solved is about 7 ~ 10'°. The execution time
to get the next digit reached up to 30 minutes and we therefore stopped here. Note
that this was performed on a single desktop computer, so it is in principle possible
to obtain far more digits with only a moderate use of computational resources. For
our purposes, (7.2) is sufficient. Using this 81-digit approximation, we computed a
numerical solution fy to (7.1) up to ro, = 10'% in Mathematica, which is displayed
in Figure 1. Note that the graph describes the integral over the outside part of
the electron density, because fy(r) = [, 01" (y)dy. ~We also give a plot of
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CHAPTER 7. NUMERICS

— 1272r%y(r)

0.999999

5.0x10° 1.0x101 1.5%101 20x101

FIGURE 2. Relative deviation from the Sommerfeld asymptotic at .

the the relative distance of fy to the Sommerfeld-asymptotic in Figure 2. For the

normalization integral we have
1= /QlTF ~ / Fa(r)¥2r?dr =14 6.65211 x 10718
0

so that we can confirm this solution to be highly accurate. With the goal of

computing D(TZF 2).; I mind, we also determined

/ (o7 (1)) du ~ / (F ()2 r™2dr = 1.134336444722410938475456. (7.3)

All these calculations for the atomic ODE where performed in Mathematica, ver-
sion 11.1.1.0, in particular by use of the NDSolve and NIntegrate commands and

suitably increasing the WorkingPrecision. Details are given in the appendix C.1
and C.2.

2. Solving the diatomic homonuclear PDE

2.1. The problem and its reformulations. We are interested in a (nu-
merical) approximation to the homonuclear diatomic TF potential, the positive
solution go(TZFZ) r € C=(R*\ {0, Rv}) of the problem

AT = () inR3\ {0, Ru},
o(z)|z|* = 144  as |z| — oo, (7.4)
ox)|lr —p| = Z asxz — pe {0, Rv}.

From a mathematical point of view, this problem is well-posed (the solution ex-
ists and is unique). But it is not suited to be solved numerically because, a) the

solution is singular at {0, Rv}, b) solving a three-dimensional problem is usually
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2. SOLVING THE DIATOMIC HOMONUCLEAR PDE

computationally expensive and c¢) the ‘Dirichlet condition at infinity’ is not directly

implementable on a computer.

To deal with a), we regularize the problem by solving for
u(z) = <,0(TZF72)7R(33) —Zlx|™t = Z|r — Rv| ™t = —Q(TZFZ)’R * |z

instead. Note that by Proposition 2.2, u € C(R*)NC*>(R?*\{0, Rv}). Furthermore,
since @y z).r 18 rotationally invariant with respect to the axis v and reflection
symmetric across Hpg, /2, so is u. Using cylindrical coordinates (p, z,0) with origin
at * = Rr/2 and z-axis in direction v, we reduce the PDE to a 2-dimensional

problem in the quadrant p > 0,z > 0, thus dealing with b). Finally, for c),

we truncate the quadrant at |(p, z)| = 7o and impose the approximate Dirichlet
condition

144 Z A
R (S [ 723 B e 7o G e

Let © = {(p,2) € B2 : [(p,2)] < roc} and Tp = {(p,2) € B2 : |(p,2)] = rac),
Iy = 002\ I'p. These sets all depend on 7, which we omit in the notation.
We arrive at the following reformulation of (7.4) for a bounded domain: Given
R, Z 1y >0, find u(p, z) such that

VpVu =n(p,u) in §,
u=yg on I'p, (7.5)
O,u=20 on 'y,

with the nonlinearity n(p,u) := p(u + Z|(p, z + R/2)|™* + Z|(p, z — R/2)|71)%/2.

To compute approximations via the finite element method, we note that (7.5) is

equivalent to the variational problem of finding u € H, () such that
0= F(u,v) := (pVu, Vo) 12(q) + (n(u),v) 20 Yv € H&FD(Q). (7.6)

2.2. Solution via the finite element method. We use the FEniCS plat-
form to compute an approximate solution @ € V(M, k) to the discrete version of
(7.6), obtained by restricting to V(M, k) N Hyy .*> Here Vi(M, k) denotes the
finite-dimensional vector space of continuous functions over €2, whose restriction

to any simplex of the triangular mesh M is a polynomial of degree at most k.

2Note that F is not linear in the first argument. The solution to the discrete problem is therefore
approximated by a Newton iteration.
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The mesh M is generated by the automated adaptive algorithm that was pro-
posed in [43] and has been implemented in FEniCS. The algorithm takes as an
input a goal function M and determines an a posteriori error indicator n,;, which

is assumed to approximate
(@) ~ [M(u) — M(a),

where u solves (7.6) and @ is its approximation in V' (M, k). The initial mesh is
then successively refined and @ recomputed for this mesh, until 7,,(@) is less than
the chosen tolerance.® Since our goal is to compute D(TZF 2R via (3.42), we chose
M to be the 5/2-integral of the TF-potential, so

M(u) = / (u(p, ) + Z|(p, 2 + R/2)[™ + Zl(p, = = R/2)| )" pdpdz.

A commented and relatively short example of code that computes the solution
with R = 10,7 = 1 and ro = 30 can be found in the appendix C.3. We in
particular chose quartic Lagrange elements (polynomials of degree k = 4 on a tri-
angular mesh). The initial mesh was uniform with 11037 cells. The final mesh
was reached after 20 adaptations and had 33158 cells, clustered at the singularity
(p,2) = (0, R/2). The chosen tolerance for the goal function was 10712 and at each
adaptation step, the Newton algorithm for F'(u;v) = 0 converged to a relative or
absolute tolerance of 1071%. Varying the cutoff radius 7., had only a negligible ef-
fect. The solution has been visualized in Figures 3, 4 and 5 using ParaView 5.4.1.4
We recall that we actually solved for u(x) = —o(} ;) p * [2|~", hence these Figures

show the electric potential generated by the diatomic electron density in TF theory.

The L'-mean-deviation of the computed @ to g on I'p is 3 x 107!7 and the nor-
malization integral over the region equals 1.9946668775417533. This is reasonably
close to the expected value 2 — 52733 = 1.9786..., which itself is an approximation, as-
suming that the Sommerfeld asymptotic holds at ro, = 30. For the goal functional,
we find

/ (@8F 10(2)) ™" da ~ 2.2705744545803682.

These values seem to be consistent with the ones obtained by other FEM calcula-

tions we carried out:

3The refinement uses the Dérfler marking strategy: The cells c; of M are ordered such that
n (Ul ) decreases. Then the first k cells such that Z?:l nu(ale,) > $nar(@) are refined.
4The Figures actually only show a linear fit between the vertices of the mesh. The actual solution
is much more regular and built up from quartic functions.
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2. SOLVING THE DIATOMIC HOMONUCLEAR PDE

FIGURE 4. Final mesh and solution of the goal-oriented adaptive method.

(1) In FEniCS, we computed solutions without adaptation by specifying a
(non-uniform) mesh, refined around (p, z) = (0, R/2). Details are in the
appendix C.4.

(2) In Mathematica, we iterated the solution to the linearised PDE, that is
we computed A, 1 = ©pi14/Pn, starting from ¢y = 0 on a mesh with
refinement around (p, z) = (0, R/2). Details are in the appendix C.5.

(3) We thank Guillaume Legendre from Paris-Dauphine who kindly helped us
to compute a solution in FreeFem++ by an adaptive method. Details are

in the appendix C.6.

The best argument for the correctness of our computation is the agreement of
our computed values for the Thomas-Fermi Born-Oppenheimer curve with the HF

values, which we discuss below
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F1GURE 5. Final mesh and solution, zoomed to the singularity.

3. Comparison to HF values

Numerical HF-calculations for Hydrogen, Helium, Nitrogen, Neon, Argon, Lithium,
Sodium, Potassium and Rubidium have been reported in [13]. They show, with
the exception of hydrogen, an astonishing agreement of the electronic part of the
rescaled Born-Oppenheimer curves (22)75 (D%{Z}TZ)’ R— %) at small (22)Y3R for
different values of Z. The nuclear repulsion Z?/R has been taken out because in
this scaling, it is the same for all elements and dominates the electronic contribution

at small r. In TF theory these curves are really just a single function in r =
(22)'/3R, since by the TF scaling (1.3),

2
_7 TF Z _ TF .

In order to compute this function via (3.42), we used the atomic values (7.2) and
(7.3). The corresponding diatomic values [l¢(} 4 plls/2 and ({7 2z — Z/] - [)(0)
were obtained via the goal-oriented adaptation in FEniCS. Note that we expect
the diatomic values to be close to (7.2) and (7.3) and since we are interested in
their difference (see (3.42)), we need to compute fairly accurate values also in the

diatomic case.

We computed the solution of @[y, p in atomic units, that is cre = 1(37%)%/3
for Z € {0.5,1,2} and for 130 values of r = R(22)'/3 between 0.001 and 12. We
chose ro, = 30 and quartic Lagrange elements on an initial mesh with about 2 cells

per unit length. The Newton algorithm at each iteration of the adaptive algorithm
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3. COMPARISON TO HF VALUES

converged to relative or absolute precision 107!, which was also the chosen tol-
erance for the goal function.® Most of the computations have been carried out in
the first half of 2018 on a cluster at Paris-Dauphine and the code can be found in
the appendix C.7. We provide Tables of the computed values in the appendix C.8.
We see that the relative and absolute deviations between the three datasets with
respect to Z € {0.5, 1,2}, displayed in Figure 2 on page 129 and Figure 1 on page
129, are small.

Since (E’EFZFZ) r— Z%/R) Y EJY the TF scaling (1.3) implies
) —

“{{} D™ (r) = ET¥(1 — 27%/3) = —0.4636

and this seems to hold for our numerical values.® We display D™ (), the electronic
part of the rescaled potential, together with the HF values from [13] in Figures 6,7
and 8. The absolute and relative deviations to the HF values, computed from an

interpolation of DT¥(r), are shown in Figures 9 and 10.

The agreement of these curves is astonishing and far better than what we hoped
for at the start of our numerical investigation and implies that our TF computa-
tions must be correct.” We conclude: Our computations indicate that the universal
behaviour of the Born-Oppenheimer curve for the region of small internuclear dis-

tances, which we understand for heavy atoms, also holds for lighter atoms:

The small-R regime of Born-Oppenheimer curves is truly universal.

SWith the exception of a few values, for which we chose 1071 as the tolerance of M. They are
marked with a * in tables 1, 4 and 7. See also the comments in the appendix C.7.

6We obtained the value EfF = —3.67874523/ctr from the solution fy that we computed in
Chapter 1. It is consistent with the value given in [4].

"We do not claim exactness or any concrete degree of accuracy.
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F1GURE 6. Comparison of numerically obtained Born-Oppenheimer
curves in Thomas-Fermi (TF) and Hartree-Fock (HF) theory for
(2Z)Y3R = r € [0.001, 12] and for small values of  in [0.001,0.1].
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~0.05/
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FiGure 7. Comparison of numerically obtained Born-Oppenheimer
curves in Thomas-Fermi (TF) and Hartree-Fock (HF) theory for
(2Z)YPR=1r € [1,4].
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FiGURE 8. Comparison of numerically obtained Born-Oppenheimer
curves in Thomas-Fermi (TF) and Hartree-Fock (HF) theory for
(2Z)Y*R =1 € [4,10].
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Absolute deviation to (interpolated) TF values
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FIGURE 9. Absolute deviation of the (interpolated) TF Born-
Oppenheimer curve to HF values.
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Relative deviation to (interpolated) TF values
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FIGURE 10. Relative deviation of the (interpolated) TF Born-
Oppenheimer curve to HF values.
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CHAPTER 8

Conclusions and perspectives

1. Summary

We have proven the conjectured [11] universality of diatomic Born-Oppenheimer
curves for the Hartree-Fock model without the exchange term in Theorem 6.1. To
do this, we showed in Lemmas 3.22 and 6.4 that the Born-Oppenheimer curves of
TF theory and rHF theory can be determined from appropriate outside TF models.
These are appropriate in the sense that the corresponding outside potentials agree,
to leading order in the separation distance r, with TF-screened potentials. It is
crucial that this holds for all r less than a constant, independent of the nuclear
charge. In the atomic case, this was already known [12]. We have proved it for the
diatomic case in Theorem 5.1, using the universality of positive solutions to the
TF differential equation, which we studied in Chapter 3.3.1.

We also provided a numerical investigation of the TF Born-Oppenheimer curve
at small nuclear charges and separations by solving the nonlinear TF differential
equation. For the well-studied atomic ODE, we presented an algorithm that allows
to compute the initial slope accurately. To solve the more complicated (homonu-
clear) diatomic PDE, we used the finite element method. The resulting agreement
between the repulsive part of the TF and HF Born-Oppenheimer curves exceeds
our expectations. This both strengthens the conjectured universality (1.5) for (full)

HF theory and suggests that it is already valid for lighter atoms.

2. Perspectives for future research
We end this thesis by listing possible future research projects:

(1) The conjecture (1.5) for quantum mechanics is a major open problem. By
the results of this thesis, it would suffice to show that the Born-Oppenheimer
curves (of infinitely large atoms) in quantum mechanics and rHF theory agree
to leading order in R — 0.

(2) The conjecture (1.5) is still open in HF theory and a proof by the methods we

outlined in this thesis might be possible. The exchange term between electrons
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localized to the balls B(0,r) and B(Rv, )

/ / Iw—yl et

B(0,r) B(Rv,r)

is the main obstacle we encountered. However, we did not find a suitable bound
on |Xp [z k]| to show that it can be controlled independently of Z € N to the
relevant order o(R™7) for r << R.

Our main result (1.6) can certainly be improved or extended:

(a) One can try to optimize the constants, but we do not believe that this
leads to a substantial improvement as long as the proof is based on the
iteration coupled with the asymptotic of TF potentials.

(b) Obtaining the next order in R — 0 would certainly be of interest.

(¢) Going beyond the diatomic case and extending the universality to any
Born-Oppenheimer surface. This should in most places be a straightfor-
ward (but notationally expensive) generalization of this thesis. Though we
note that it might be difficult to obtain suitable Sommerfeld type bounds
in the ‘multi-atomic outside’, which are needed to replace Lemma 3.12.

There are still open problems in the TF theory of infinitely large atoms. For
example, we do not know the value of D1¥|. One could try to probe it numer-
ically or analytically via the formula (3.43). The latter is related to another
problem: While we have pointwise convergence of ¢ (z) towards cg|z|~ for

Z — o0, there is no known analytic expression of the limiting function ¢},

in the diatomic case. We only know that it is the unique positive solution to

the TF PDE with strong singularities cg|z|™* both at 0 and Rw.
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APPENDIX A

Outside harmonic functions and the Kelvin transform

We assume the reader is familiar with the basic theory of harmonic functions, in
particular on bounded sets of R?. The Kelvin transform is a useful tool that allows
one to translate the study of harmonic functions on unbounded sets which vanish
at infinity to the study of harmonic functions on a bounded set. Most, if not all,

of what we discuss here can be found in textbooks like [22, Vol. 3].

Definition A.1. Let I7 : R*\ {0} — R3\ {0} be the inversion at the sphere
0B(0,T), given by Ir(z) = x% The Kelvin transform K;u with respect to
the sphere OB(0,T) of a real-valued function u with domain 2 C R? is defined on
I (Q2\{0}) by .

Kru(z) = mu(IT(:B))

Lemma A.2. Let Q C R? be open. Then KrKru(z) = u(x) for all z € Q\ {0}
and
u is harmonic in Q\ {0} < Kru is harmonic in Ir(2\ {0}).

Moreover, if 0 € Q, then

u s harmonic in Q < Kru is harmonic in I7(Q) and |llim Kru(z) = 0.
T|—00

Proof. That KrKyu(x) = u(x) is checked by computation. Another straightfor-

ward computation shows that

AlKyu(z)] = ‘%AU(IT(I)) vz € Ip(Q\ {0}),

which proves the first equivalence. For the second, we first note that if 0 € €2, then
Ir(©2\ {0}) contains the complement of a ball. Hence lim Kpu(x) = 0. On the

|z| =00

other hand, if Kru is given, then we set u = KprKru on Q \ {0} and note that
0€Qand lim Kpu(x)=0 imply

|z|—o00

ilir(l) |zju(z) = 0. (A.1)
x#0
According to the first equivalence, it remains to verify that if u(z) is harmonic in
O\ {0} and satisfies (A.1), then it can be extended to x = 0 such that it is harmonic

in all of Q: Abbreviating B(0,r) by B,, we fix some r > 0 such that B, C {2 and
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consider the unique v that is harmonic in all of B, and equals v on 0B,. By
(A.1), we can find for any € > 0 some § € (0,r) such that |u(z) — v(z)| < e|z|™!

in Bs \ {0}. Since u,v,e|x|™! are harmonic in B, \ {0}, the maximum principle
implies that also |u(z) — v(x)| < €|z|~! in B, \ Bs and thus (by the former bound)
also in B, \ {0}. Taking ¢ — 0, we obtain u = v in B, \ {0} and end the proof by
defining u(0) = v(0). O

Examples
(1) The constant function f(x) = c is the basic example of a harmonic function
on a ball B(0,7T). Its Kelvin transform Krf(z) = % is the basic example of a
nontrivial harmonic function that vanishes at infinity.
(2) We recall that the Poisson kernel for the ball of radius r = [¢],
1 r?—|x?
P(w,€) = o2

Cdmr [z — P

is harmonic in = € B(0,7). We use the formula ‘x% - f‘ = % |z — & to

compute for its Kelvin transform in « with respect to 0B(0, r):
1 73 |z|? — r?

A [ e /a2 = €

This implies that — P, is the Poisson kernel for the outside B(0, )¢ in the follow-

ing sense: For any g € C(9B(0,r)), the function . — — [ P.(z,£)g(§)d¢
2B(0,r)

K, P(z,§) =

- _Pr(‘r7€>‘

is the unique solution to

Au=0 in B(0,r)°
u=gq on 0B(0,r)
lim wu(z) = 0.

|z|—o0

The mean value-property for harmonic functions on a ball has a reformulation for

outside harmonic functions:

Proposition A.3. Assume u is a harmonic function on an open set Q O B(0,T)¢
that satisfies lim w(x) = 0. Then

|x|—o00
t][ u=TKru(0) Vt>T.
aB(0,1)

Proof. We use Lemma A.2 to write u = KpKpu and compute by a change of

t][ u="T ][ Kru.
8B(0,t) 8B(0,T2/t)
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Since Kpu is harmonic in B(0,7"), the claim then follows from the mean value

property for Kru. O

95






APPENDIX B

Computations

Lemma B.1. Let Q C R? be open, w™,w™ € C*(Q) and assume that there erists
an open set S C Q, containing R? x {0} N Q, and such that

W (11, 29, 03) = W (21,29, —13)  V(21,79,73) €S. (B.1)
Let H* := R? X RE and 6(x3)[¢] := [po d(21, 22, 0)dardas, Vo € C(R?). Then
Alw Ty +wly) = (Aw )y + (Aw) g+ + 2(05w™)d(x3)
distributionally in €.

Proof. We pick ¢ € C°(Q2) and note that simply by definition,

3

Alw g+ lge)[@] = Y (w lp- +w iy, 070) -
k=1

Integrating by parts and noting that the due to (B.1), the boundary terms cancel,
we find that this equals — 25, (Opw g + (w) Ly, Opd) o - Integrating by

parts once more, we conclude

Alw Ty +w lg+)[9]

=S (@ )+ (Pw) e 6),, + / (Dot — Do )b

R2% {0}

= (Aw™ ) 1g-[¢] + (Aw ") lg+ [¢] + (5w — Osw™)d(x3)[¢)]-

3
k=1

We note (B.1) implies dsw* = —03w™ on R? x {0} N, which ends the proof. O

Lemma B.2. Let r < R/2, F be given by (3.24) and assume W € H(O,). Then
F e HY(R®), FW € LS(R?), VEW € L*(R?) and

IVEW||2 = /(VF)2W2.

Proof. Let Ag denote B(0,3r) \ B(0,2r) N Hy, , and Ag, denote B(Rv,3r) \
B(Rv,2r) QH;V/Q. We consider f(x) = >_ c (o ru 7l—p L4, and show that it equals
VF in the weak sense. Note that(z — p)/(r|z — p|) is smooth in a neighbourhood

of A,. Hence we may integrate by parts to deduce that for any ¢ € C2(R3),
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k=123

|z| — 2r

/RS F8k¢: 50s. nk(I)gb—l—/aAO nk(x) , g25
ke oz, [ fo

As w =0 on 0A,NOB(p,2r), and w =1on 0A,N0B(p,3r) = JA,N
00s3,., while fa@sr ne(x)p = — faIgr ng(z)o,

B |z| — 2r |z — Rv| —2r
/R3 Fop = —/fk¢+ / L / () ——— ¢

DAoNHL,, 9 AR, NH,

Rv/2
Here the last two summands either cancel each other (if » > R/6) or vanish (if
r < R/6). Hence f = VF weakly and since f € L*(R3), we conclude F' € H'(R?).
We now consider the function F'WW. Note that W is smooth on a neighbourhood
of the support of F', hence V(FW) = (VF)W + F(VW) weakly. We integrate by
parts

/ OF(FWO,W) = — / (FWORFOLW + F*(0,W)* + FPWO;W)
AoUAR,
+ Z / nkFQWGkW
pe{0,Rw} 94
Here the last line actually equals > [ nyWo,W = — [ n,29,(W)?, since
p€{0,Rw}dZ3, 003,

the contributions from the integrals over dHRg, » N Zs, cancel each other, and since

F =0 on 00,,. Moreover we have (3.11) and from (3.46) with VISZV ﬁ W on

B(Rv/2, R/2 + r)° we deduce that [0:W ()| < [|W|lemmoataizme for v —

Rv/2| > R/2+r. These decay properties are sufficient to integrate by parts (using

a cut-off at T > R/2 4 r and taking 7" — oo with dominated convergence). We
therefore deduce that

> / n F2W oW = — / nklﬁk(W)Q:—E/ani(W)Q.
04, 2 2

pe{0,Rw} 003, Os,

Overall, we find (after summing over k = 1,2, 3) that
2/FWVFVW = —/F2(VW)2 — /FZWAW = —/F2(VW)2.
This immediately implies the claimed identity

IVEW)2 = / WA(VF)?.
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With the right hand side being bounded by |[W|%||VF||3 < oo, we conclude
FW € H'(R?). 0

Proposition B.3. If p € LY/°(R3) and g € L*(R?) is normalized and radial, then
D(p+g°) < D(p)-

Proof. We have g2 * |x|_1 < |z|™! by Newton’s theorem. This implies

// y_>dd</ SN
|x—y| lw — z + x| lw — z|
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APPENDIX C

Numerical scripts

We now give the source code and selected parts of the resulting output of the

scripts we used for the numerical investigation.

1. Mathematica - atomic TF ODE, computing initial slope

TestUpperBound[c_, ndsolveOpts_, bvprec_] :=
(flag = {0, 0};

NDSolve[{y''[x] == (y[x]1~(3/2))/Sqrt[x], y[10~(-bvprec)] == 1,
y'[10"(-bvprec)] == c}, y, {x, 10" (-bvprec), Infinity},
Method -> {"EventLocator", "Event" -> {Rely[x]], Rely'[x11},
"EventAction" :> {Throw[flag = {False, x}, "StopIntegration"],
Throw[flag = {True, x}, "StopIntegration"]l}}, ndsolveOpts,
AccuracyGoal -> Infinityl];

flag)

ComputeDigits[cStart_, digitStart_, digitGoal_, ndsolveOpts_, bvprec_: 1000] :=
Block[{c = cStart, currentDigit = digitStart},
Print["loopcount | correct digits (after decimal point) |[",
" ¢ | critical x | TestUpperBound execution time"];

For[i = 0, currentDigit <= digitGoal, i++,
timedFlag = Flatten[Timing[TestUpperBound[c, ndsolveOpts, bvprecl]l];
Switch[timedFlag[[2]],
0, Print["ERROR: TestUpperBound returned the flag zero"];,

True, ¢ -= 10" -currentDigit;,

False, ¢ += 10"-currentDigit; currentDigit++;

Print[i, " | ", currentDigit - 1, " | ", N[c, currentDigit], " ",
N[timedFlag[[3]], 31, " | ", timedFlag[[1]]1];

]

]
1;

ComputeDigits[-15/15, 1, 80, {MaxSteps->Infinity,WorkingPrecision->currentDigit+*2 + 50}]

This code computes the first 81 digits of the initial slope for the atomic TF PDE
(7.1). We already announced the result in (7.2). To compute more digits, the
setting WorkingPrecision -> currentDigit*2 + 50 might need to be increased

accordingly.

2. Mathematica - atomic TF ODE, computing integrals of the solution

(* 81-digit approzimation to the initial velocity *)

c = -15880710226113753127186845094239501094527466216748256167656774181\
6655196115430926 *107-80;

(* boundary value prectision: 10 -buprec as approzimation to zero *)
bvprec = 1000;
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* compute a solution *)

Timing[f =

NDSolveValue [{f''[x] == (£[x]°(3/2))/Sqrtlx], £[10" (-bvprec)] == 1,
f£'[10" (-bvprec)] == c}, £, {x, 10" (-bvprec), Infinity},

Method -> {"EventLocator", "Event" -> {Rel[f[x]], Relf'[x]]},
"EventAction" :> {Throw[Print["solution becomes negative"],
"StopIntegration"],

Throw[Print ["derivative becomes positive"],

"StopIntegration"]}}, MaxSteps -> Infinity,

WorkingPrecision -> 200, AccuracyGoal -> Infinity] ]

* Normalization : 3/2 - integral *)
NIntegrate[( ulr]l/ r )~ (3/2)*r"2, {r, 0, 1079},
WorkingPrecision -> 100, MaxRecursion -> 200,
Method -> {"DuffyCoordinates"}]

(* The 5/2-integral *)

NIntegrate[( f[r]/ r )~ (5/2)*r"2, {r, 0, 1079},
WorkingPrecision -> 100, MaxRecursion -> 200,
Method -> {"DuffyCoordinates"}]

3. FEniCS - diatomic TF PDE, adaptive mesh refinement

from fenics import *

from mshr import *

# Parameters

R, Z, r_max, mesh_res, deg_FSpace, adapt_tol = 10.0, 1.0, 30.0, 2.0, 4, 1E-12

DualVariationalSolverParameters = {'linear_solver':'mumps', 'preconditioner': 'none'}

NewtonSolverParameters = {'linear_solver':'mumps', 'preconditioner':'none',\
'maximum_iterations':25, 'relative_tolerance':1E-10, \
'absolute_tolerance':1E-10}

# Create mesh

domain = Rectangle(Point(0, 0),Point(r_max, r_max)) * Circle(Point(0, 0), r_max)
mesh = generate_mesh(domain, mesh_res*r_max)

x = SpatialCoordinate (mesh)

# Choose function space
V = FunctionSpace(mesh, 'P', deg_FSpace)

# Define Dirichlet BC
class Boundary_arc(SubDomain) :
def inside(self, x, on_boundary):
return on_boundary and near(x[1]*x[1]+x[0]*x[0], r_max*r_max, 1/(mesh_res*mesh_res))
bnd_arc = Boundary_arc()
dbc_function = Expression('144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \
- Zxpow(x[0]*x[0]+(x[1]1-R/2)*(x[1]1-R/2), -0.5) \
- Zxpow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5)"',\
degree=deg_FSpace+3, Z=Z, R=R)
dbc = DirichletBC(V, dbc_function, bnd_arc)

# Define wariational problem
u = Function(V)
v = TestFunction(V)
def nl(u): # the nonlinearity
return x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[11-R/2), -0.5) \
+ Zxpow(x[0]*x[0]+(x[1]1+R/2)*(x[11+R/2), -0.5), 1.5)
F = (x[0]#Dx(u, 0)*Dx(v, 0) + x[0]*Dx(u, 1)*Dx(v, 1) + nl(u)*v)=*dx

102



3. FENICS - DIATOMIC TF PDE, ADAPTIVE MESH REFINEMENT

NLproblem = NonlinearVariationalProblem(F, u, dbc, derivative(F, u))

# Choose goal function
def I(u): # integrand of the goal functional
return x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]1-R/2)*(x[1]-R/2), -0.5) \
+ Zxpow(x[0]*x[0]+(x[1]+R/2) *(x[1]+R/2), -0.5), 2.5)
goalFunctional = I(u)*dx()

# Load parameters for the solver
solver = AdaptiveNonlinearVariationalSolver (NLproblem, goalFunctional)
for key in DualVariationalSolverParameters.keys():
solver.parameters["error_control"] ["dual_variational_solver"] [key] \
=DualVariationalSolverParameters [key]
for key in NewtonSolverParameters.keys():
solver.parameters["nonlinear_variational_solver"] ["newton_solver"] [key] \
=NewtonSolverParameters [key]
# Solve to chosen tolerance
solver.solve(adapt_tol)
solver. summary ()

# Post-processing: computing key wvalues
u0, ul = u.root_node(), u.leaf_node()
meshO, meshl = mesh.root_node(), mesh.leaf_node()

def computeDBCdeviation(u, mesh): # L1-mean-deviation from [z|~{-4} at [(r,2z)/[=r_maz
x = SpatialCoordinate (mesh)
class Boundary_arc(SubDomain) :
def inside(self, x, on_boundary):
return on_boundary and near(x[1]*x[1]+x[0]+*x[0],,r_max*r_max,1/(mesh_res*mesh_res))
bnd_arc = Boundary_arc()
boundary_marker = MeshFunction('size_t', mesh, 1)
boundary_marker.set_all(0)
bnd_arc.mark (boundary_marker, 1)
ds = Measure('ds', domain=mesh, subdomain_data=boundary_marker)
integrand = abs( 144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \
- Zxpow(x[0]*x[0]+(x[1]-R/2)*(x[1]1-R/2), -0.5) \
- Z¥pow(x [0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5) - wu )*ds(1)
return assemble(integrand)/assemble(1.0*ds(1))

def computeN(u, mesh): # computes the 3/2-integral of the TF potential
x = SpatialCoordinate (mesh)
return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]1-R/2)*(x[1]1-R/2), -0.5) \
+ Zxpow(x [0]1*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 1.5))*dx(mesh))

def computeI(u, mesh): # computes the 5/2-integral of the TF potential
x = SpatialCoordinate (mesh)
return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]1-R/2)*(x[1]-R/2), -0.5) \
+ Zxpow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 2.5))*dx(mesh))

print('* checking solution:')

print('+ the mesh has ', meshl.num_cells(), ' cells')

print('*  u(0,R/2) =', u1l(0, R/2))

print('* other values for reference: u(0,0) =', ul(0, 0),'u(R/2,R/2) =', ul(R/2,R/2))
print('* DBC L"1-mean - error = ', computeDBCdeviation(ul, meshl))

print('* norm integral =', computeN(ul,meshi))

print('*  5/2-integral =', computeI(ul,meshl))

# Save initital and final solution
File("./initialSolution.pvd")<<u0
File("./initialMesh.pvd")<<meshO
File("./finalSolution.pvd")<<ul
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File("./finalMesh.pvd")<<meshl
print('* files saved')

The output, computed with FEniCS (version 2017.2.0) is

Generating forms required for error control,
Solving variational problem adaptively
Adaptive iteration O
Solving nonlinear variational

Newton
Newton
Newton
Newton
Newton
Newton
Newton
Newton
Newton

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

solver finished in 7

0: r
r

DU W N
R R R R K

T: r

(abs)
(abs)
(abs)
(abs)
(abs)
(abs)
(abs)
(abs)

N = = 00 01 W o

problem.

.783e+01
.023e-01
.070e-02
.663e-03
.291e-03
.174e-04
.098e-06
7.802e-10

(tol

this may take some time...

(tol =

(tol
(tol
(tol

(tol =

(tol
(tol

iterations and 7
Value of goal functional is 3.26416.
Solving linear variational problem.

Solving linear variational problem.
Interpolate from parent to child

Adaptive iteration 19
Solving nonlinear variational
Newton iteration 0: r (abs)
Newton iteration 1: r (abs)

Newton solver finished in 1

problem.
8.593e-07
4.051e-13

.000e-10)
.000e-10)
.000e-10)
.000e-10)
.000e-10)
.000e-10)
.000e-10)
1.000e-10)

e

r
r
r
r
r
r
r
r

(rel)
(rel)
(rel)
(rel)
(rel)
(rel)
(rel)
(rel)

.000e+00
.456e-03
.475e-04
.277e-04
.903e-05
.731e-06
.093e-08
.150e-11

[}
S I e e e T S

linear solver iteratioms.

[...shortened...]

(tol
(tol

iterations and 1

Value of goal functional is 2.2703.
Solving linear variational problem.
Interpolate from parent to child

Adaptive iteration 20
Solving nonlinear variational
Newton iteration O: r (abs)
Newton iteration 1: r (abs)

Newton solver finished in 1

problem.
5.606e-07
4.417e-13

(tol
(tol

iterations and 1
Value of goal functional is 2.27057.
Solving linear variational problem.
Error estimate (-9.57088e-13) is less than tolerance (le-12), returning.

Parameters used for adaptive solve:

1.000e-10) r (rel)
1.000e-10) r (rel)
linear solver iterations.

1.000e-10) r (rel)
1.000e-10) r (rel)
linear solver iterations.

1.000e+00
4.714e-07

1.000e+00
7.879e-07

(tol =

(tol

(tol =

(tol

(tol =

(tol

(tol =

(tol

(tol

(tol =

(tol

(tol =

<Parameter set "adaptive_solver" containing 9 parameter(s) and parameter set(s)>

Summary of adaptive data:

Level | functional_value error_estimate tolerance num_cells num_dofs
0 | 3.264162 -0.010129 0.000000 11037 88911
1 | 3.158429 -0.000427 0.000000 11053 89043
2 | 2.777008 -0.001792 0.000000 11075 89223
3 | 2.721439 0.000053 0.000000 11093 89375
4 | 2.491673 -0.000335 0.000000 11112 89529
5 | 2.468215 0.000071 0.000000 11160 89917
6 | 2.303986 -0.000094 0.000000 11249 90635
7 | 2.266971 0.000046 0.000000 11381 91699
8 | 2.222136 0.000000 0.000000 11474 92449
9 | 2.230807 -0.000003 0.000000 11683 94131
10 | 2.259771 0.000000 0.000000 11852 95493
11 | 2.258466 -0.000000 0.000000 12103 97511
12 | 2.265862 0.000000 0.000000 12539 101015
13 | 2.272983 -0.000000 0.000000 13180 106157
14 | 2.263525 0.000000 0.000000 13970 112493
15 | 2.264986 -0.000000 0.000000 15182 122205
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.000e-10)
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16 | 2.268548 -0.000000  0.000000 16908 136041

17 | 2.269340 -0.000000 0.000000 19260 154961

18 | 2.269900 -0.000000  0.000000 22795 183431

19 | 2.270295 -0.000000 0.000000 27348 220153

20 | 2.270574 -0.000000  0.000000 33158 266997

Time spent for adaptive solve (in seconds):

Level | solve_primal estimate_error compute_indicators mark_mesh adapt_mesh update
0 | 9.208241 23.663189 5.363592  0.002125 0.010022 1.179448
1 | 4.221241 23.319697 5.386556 0.002444 0.010720 1.200100
2 | 3.046274 23.369060 5.373303 0.001891 0.010764 1.214095
3 | 3.066056 23.385281 5.409247 0.002444 0.010016 1.201023
4 | 3.080649 23.478264 5.400889  0.002252 0.010484 1.203576
5 | 3.075266 24.371523 5.576660 0.002003 0.011696 1.235868
6 | 1.984070 24.360442 5.471968  0.004134 0.012544 1.224390
7 | 1.913949 24.179397 5.501364 0.002064 0.010569 1.255297
8 | 1.906317 24.524191 5.589666  0.002178 0.011523 1.234173
9 | 1.933703 25.288347 5.659840 0.002085 0.010918 1.300461
10 | 1.995260 24.789270 5.737451  0.003315 0.011784 1.319455
11 | 2.008165 25.536868 5.748632 0.002243 0.014242 1.304454
12 | 2.029139 26.240016 6.027200  0.002287 0.013032 1.417212
13 | 2.138478 27.699916 6.229285 0.002393 0.015441 1.497606
14 | 2.355474 29.730266 6.754882  0.002459 0.017526 1.601863
15 | 2.479236 32.282786 7.504119 0.002746 0.018254 1.868430
16 | 2.868611 36.474745 8.236986  0.004338 0.024493 2.117345
17 | 3.6325638 42.187332 9.212110 0.003844 0.035564 2.640248
18 | 4.050414 50.285739 11.194264  0.005411 0.036573 2.971103
19 | 5.172756 60.524524 13.252918  0.006073 0.045058 3.665315
20 | 6.041358 72.943783 0 0 0 0

* checking solution:

* the mesh has 33158 cells

* u(0,R/2) = -1.6876006141
other values for reference: u(0,0) = -0.372222749099 u(R/2,R/2) = -0.273224691014
DBC L"1-mean - error = 3.06702236293715e-17

5/2-integral = 2.2705744545893682

*
*
* norm integral = 1.9946668775417533
*
*

files saved

4. FEniCS - diatomic TF PDE, manual mesh refinement

from fenics import *
from mshr import *
import numpy

# Parameters
R, Z, r_max, mesh_res, deg_FSpace = 10.0, 1.0, 30.0, 1.0, 4
NewtonSolverParameters = {'linear_solver':'cg', 'preconditioner':'petsc_amg',\

'maximum_iterations':25, 'relative_tolerance':1E-14,\
'absolute_tolerance':1E-14}

refinewidth, refinepower, refinesteps = 1.5, 4.0, 15

# Create mesh and refine at singularity

domain

Rectangle(Point (0, 0),Point(r_max, r_max)) * Circle(Point(0, 0), r_max)

mesh = generate_mesh(domain, mesh_res*r_max)
for width in numpy.linspace(pow(refinewidth, 1/refinepower), 0, refinesteps,\

endpoint=False):

class singRegion(SubDomain) : #the region which ts to be refined
def inside(self, x, on_boundary):

return x[0]*x[0] +(x[1]1-R/2)*(x[1]1-R/2)<= pow(width, 2.0*refinepower)
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sing_region = singRegion()
refinefct_sing = MeshFunction('bool', mesh, 1)
refinefct_sing.set_all(False)
sing_region.mark(refinefct_sing, True)
mesh = refine(mesh, refinefct_sing)

x = SpatialCoordinate(mesh)

# Choose function space
V = FunctionSpace(mesh, 'P', deg_FSpace)

# Define Dirichlet BC
class Boundary_arc(SubDomain) :
def inside(self, x, on_boundary):
return on_boundary and near(x[1]*x[1]+x[0]+*x[0] ,r_max*r_max,1/(mesh_res*mesh_res))
bnd_arc = Boundary_arc()
dbc_function = Expression('144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \
- Zxpow(x[0]*x[0]+(x[1]-R/2)*(x[1]1-R/2), -0.5) \
- Zxpow(x[0]*x [0]+(x[1]+R/2) *(x[1]+R/2), -0.5)',\
degree=deg_FSpace+3, Z=Z, R=R)
dbc = DirichletBC(V, dbc_function, bnd_arc)

# Define wariational problem
u = Function(V)
TestFunction (V)
def nl(u): # the nonlinearity

return x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]1-R/2)*(x[1]-R/2), -0.5) \

+ Zxpow(x[0]*x[0]+(x[1]+R/2) *(x[1]+R/2), -0.5), 1.5)

F = (x[0]*Dx(u, 0)*Dx(v, 0) + x[0]*Dx(u, 1)*Dx(v, 1) + nl(u)x*v)*dx
NLproblem = NonlinearVariationalProblem(F, u, dbc, derivative(F, u))

v

# Load parameters for the solver

solver = NonlinearVariationalSolver (NLproblem)

for key in NewtonSolverParameters.keys():
solver.parameters["newton_solver"] [key]l = NewtonSolverParameters[key]

# Solve to chosen tolerance
solver.solve()

# Post-processing: computing key values
def computeDBCdeviation(u, mesh): # L1-mean-deviation to [z/ {-4} at [(r,2z)/[=r_maz
x = SpatialCoordinate (mesh)
class Boundary_arc(SubDomain) :
def inside(self, x, on_boundary):
return on_boundary and near(x[1]*x[1]+x[0]*x[0],r_max*r_max,\
1/ (mesh_res*mesh_res))
bnd_arc = Boundary_arc()
boundary_marker = MeshFunction('size_t', mesh, 1)
boundary_marker.set_all(0)
bnd_arc.mark (boundary_marker, 1)
ds = Measure('ds', domain=mesh, subdomain_data=boundary_marker)
integrand = abs( 144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \
-Z*pow (x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \
- Zxpow(x[0]*x[0]+(x[1]+R/2) *(x[1]+R/2), -0.5) - wu )*ds(1)
return assemble(integrand)/assemble(1.0*ds(1))

def computeN(u, mesh): # computes the 3/2-integral of the TF potential
x = SpatialCoordinate (mesh)
return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]1-R/2)*(x[1]1-R/2), -0.5) \
+ Z#pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 1.5))*dx(mesh))
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def computeI(u, mesh): # computes the 5/2-integral of the TF potential
x = SpatialCoordinate (mesh)
return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]1-R/2), -0.5) \
+ Zxpow(x[0]*x[0]+(x[1]+R/2)*(x[1]1+R/2), -0.5), 2.5))*dx(mesh))

print('* checking solution:')

print('* the mesh has ', mesh.num_cells(), ' cells')

print('* u(0,R/2) ="', u(0, R/2))

print('* other values for reference: u(0,0) =', u(0, 0),'u(R/2,R/2) =', u(R/2,R/2))
print('* DBC L"1-mean - error = ', computeDBCdeviation(u, mesh))

print('* norm integral =', computeN(u,mesh))
print('*  5/2-integral =', computel(u,mesh))

# Save wnitital and final solution
File("./Solution.pvd")<<u
File("./Mesh.pvd")<<mesh

print('x files saved')

The output, computed with FEniCS (version 2017.2.0) is

Solving nonlinear variational problem.

Newton iteration O: r (abs) = 5.709e+01 (tol = 1.000e-14) r (rel) = 1.000e+00 (tol = 1.000e-14)
Newton iteration 1: r (abs) = 6.035e-01 (tol = 1.000e-14) r (rel) = 1.057e-02 (tol = 1.000e-14)
Newton iteration 2: r (abs) = 1.010e-01 (tol = 1.000e-14) r (rel) = 1.768e-03 (tol = 1.000e-14)
Newton iteration 3: r (abs) = 1.723e-02 (tol = 1.000e-14) r (rel) = 3.017e-04 (tol = 1.000e-14)
Newton iteration 4: r (abs) = 2.560e-03 (tol = 1.000e-14) r (rel) = 4.483e-05 (tol = 1.000e-14)
Newton iteration 5: r (abs) = 2.321e-04 (tol = 1.000e-14) r (rel) = 4.066e-06 (tol = 1.000e-14)
Newton iteration 6: r (abs) = 4.136e-06 (tol = 1.000e-14) r (rel) = 7.245e-08 (tol = 1.000e-14)
Newton iteration 7: r (abs) = 1.536e-09 (tol = 1.000e-14) r (rel) = 2.690e-11 (tol = 1.000e-14)
Newton iteration 8: r (abs) = 1.699e-13 (tol = 1.000e-14) r (rel) = 2.977e-15 (tol = 1.000e-14)

Newton solver finished in 8 iterations and 194 linear solver iterations.

* checking solution:

* the mesh has 52126 cells

u(0,R/2) = -1.68593974737

* other values for reference: u(0,0) = -0.372222745936 u(R/2,R/2) = -0.273224677036
* DBC L"1-mean - error = 4.582810113789804e-13

* norm integral = 1.9946662046282755
*
*

*

5/2-integral = 2.268624708287004
files saved

5. Mathematica - diatomic TF PDE, iteration of a linearised PDE

Needs["NDSolve FEM™ "]

rmax = 30;

R = 10;

Z=1;

(* nuclear potential *)

V[Z_, R_, r_, z_] :=

Z/Sqrt[r~2 + (z - R/2)°2] + Z/Sqrt[r"2 + (z + R/2)"2];
Options[mesh] = {meshres -> 1, refineMeshres -> 10, refineWidth -> 1,
refineScaling > 1};

(* create a mesh *)

mesh[R_, OptionsPattern[]] :=

ToElementMesh [

ImplicitRegion[

0 <= Sqrt[r~2 + z"°2] <= rmax, {{r, 0, rmax}, {z, O, rmax}}],
MeshRefinementFunction ->

Function[{vertices, area},

Block[{r, z}, {r, z} = Mean[vertices];

If[Sqrt[r~2 + (R/2 - z)~2] <= OptionValue[refineWidth],

107



CHAPTER C. NUMERICAL SCRIPTS

area > 1/OptionValue[refineMeshres]*(Sqrt[r~"2 + (R/2 - z)7°2]/
OptionValue[refineWidth]) "OptionValue[refineScaling],
area > 1/OptionValue[meshres]]]]];

(* solving linearised PDE with given guess 'ulnit' *)

solveLinear[Z_, R_, ulnit_, mesh_] :=

Assuming[{u \[Element] Reals, r \[Element] Reals,

z \[Element] Reals},

NDSolveValue[{r D[ulr, z], {r, 2}] + Dlulr, z], {r, 1}] +

r Dlulr, z], {z, 2}] -

r+x (V[Z, R, r, z] + ulr, z])*Abs[V[Z, R, r, z] + ulnit] ~(1/2) ==
0, DirichletCondition[

ulr, z] == 12°2 (r"2 + z°2)"-2 - V[Z, R, r, z],

r'2 + z°2 == (rmax) 2]}, u, {r, z} \[Element] mesh]]

(* iterating the initial guess *)

iterationSolve[Z_, R_, mesh_, iMax_] :=

Module[{sol = solvelLinear[Z, R, O, mesh]},

Do[sol = solvelLinear[Z, R, sol[r, z], mesh];
Print["u(0,R/2)=", FullForm[ sol[10°-10, R/2]1], iMax];

Print["u(0,R/2)=", FullForm[ sol[10°-10, R/2]1]1, " | u(0,0)=",
FullForm[ sol[10°-10, 10°-10]1, " | u(R/2,R/2)=",

FullForm[ sol[R/2, R/2]], " | 5/2-Integral: ",

FullForm[

NIntegrate[

r*xAbs[sol[r, z] + V[Z, R, r, z]11°(5/2), {r, z} \[Element] mesh]],
" | Norm Integral: ",

FullForm[

NIntegrate[

r*Abs[sol[r, z] + V[Z, R, r, z]11°(3/2), {r, z} \[Element] mesh]]l];
sol]

(* compute solution with keyvalues and visualise it *)

m = mesh[R, meshres -> 2, refineMeshres -> 10000, refineWidth -> 2.0,
refineScaling -> 1.3];

m["Wireframe"]

Timing[fct = iterationSolve[Z, R, m, 10];]

Plot3D[fct[r, z], {r, z} \[Element] m, PlotRange -> All]

Running this code in Mathematica 11.1.1.0 yields:
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out[27]=

u(@,R/2)=-1.6471782708093052"
u(@,R/2)=-1.6993489792365883"
u(@,R/2)=-1.6833254246589233"
u(@,R/2)=-1.6890169263567612"
u(@,R/2)=-1.686888508913609"
u(@,R/2)=-1.6877232623840073"
u(8,R/2)=-1.6873878945110405
u(@,R/2)=-1.68752514475297"
u(@,R/2)=-1.687468355407517"
u(@,R/2)=-1.6874920358980305"

u(8,R/2)=-1.6874920358980305" | u(0,0)=-0.3722092604038237" | u(R/2,R/2)=
~0.2732143239122185" | 5/2-Integral: 2.270568100129982° | Norm Integral: 1.99402605246405

outigl= {806.572, Null}

out[29]=
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6. FreeFem++ - diatomic TF PDE, adaptive mesh refinement

Console output of a FreeFem++ script (including the source code), mainly written
by Guillaume Legendre from Paris-Dauphine.

-- FreeFem++ v 3.590000 (date jeu. 22 févr. 2018 13:41:54)
Load: 1lg_fem lg_mesh lg_mesh3 eigenvalue

1 : load "medit"(load: loadLibary C:\Program Files (x86)\FreeFem++\\.\medit = 0);

2 : load "Element_P4"(load: loadLibary C:\Program Files (x86)\FreeFem++\\.\Element_P4 = 0);
3

4 : // Parameters

5 : real R=10; // distance between the nuclei

6 : real Z=1; // nuclear charge

7 : real rmax=30;

8 : real meshres=2;

9 : int maxiter=30;

10 : real reltol=le-13,abstol=1e-13;

11

12 : // Create mesh

13 : border bndbot(t=0,rmax){x=t;y=0;label=0;3}

14 : border bndarc(t=0,pi/2){x=rmax*cos(t);y=rmax*sin(t);label=1;}

15 : border bndleft(t=0,rmax){x=0;y=rmax-t;label=2;}

16 : mesh themesh=buildmesh(bndbot (rmax*meshres)+bndarc(floor (pi*rmax*meshres/2)) \

+bndleft (rmax*meshres)) ;
17 : plot(themesh,wait=1);
18 :
19 : // Choose function space
20 : fespace V(themesh,P4);
21 : V u,v,delta;
22
23 : // Function of the Dirichlet BC
24 : func g=144*pow (x*x+y*y,-2)-Z* (pow (x*x+(y-R/2)*(y-R/2),-0.5) + pow(x*x+(y+R/2)*(y+R/2),-0.5));
25 :
26 : // Obtain a first crude approximation and use it to refine adaptively the mesh
27 : // Initialize Newton algorithm
28 : solve Newtoninitl(u,v)=int2d(themesh) (x* (dx (u)*dx(v)+dy (u)*dy(v)))+on(l,u=g);
29 : int n;
30 : for (n=1;n<6;n++) // Newton loop

31 : {
32 : cout << "Newton loop - iter " << n+l << endl;
33 : solve Newtonloop(delta,v)=
34 : int2d (themesh) (x* (dx(delta)*dx(v)+dy(delta)*dy(v) \
+ 1.5%pow (u+Z* (pow (x*x+(y-R/2)*(y-R/2) ,-0.5)
35 : + pow(x*x+(y+R/2)*(y+R/2),-0.5)),0.5)*deltaxv))\
-int2d (themesh) (x* (dx (u) *dx (v) +dy (u) *dy (v)
36 : + pow(u+Z* (pow (x*x+(y-R/2)*(y-R/2) ,-0.5) + pow(x*x+(y+R/2)*(y+R/2),-0.5)),1.5)*v))
37 : +on(1,delta=0);
38 : ull-=deltall;
39 : }
40 :
41 : cout << "x Checking the crude computed solution " << endl;
42 : cout << " - value at the singular point: u(0,R/2)=" << u(0,R/2) << endl;
43 : cout << " - other values for reference: u(0,0)=" << u(0,0) << " and u(R/2,R/2)=" \
<< u(R/2,R/2) << endl;
44 : cout << " - L71-mean error of the DBC: " \
<< int1ld(themesh,1) (abs(g(x,y)-u))/intld (themesh,1) (1.) << endl;
45 : cout << " - norm integral: "<<int2d(themesh,qforder=10) (x*pow(u+Z*pow (x*x+(y-R/2)*(y-R/2),-0.5)
46 : + Zxpow (x*x+(y+R/2) *(y+R/2),-0.5),1.5)) << endl;
47 : cout << " - 5/2-integral: "<<int2d(themesh,qforder=10) (x*pow(ut+Z*pow (x*x+(y-R/2)*(y-R/2),-0.5)
48 : + Zxpow (x*x+(y+R/2) *(y+R/2) ,-0.5) ,2.5) )<<endl;
49 :

50 : // Using the crude approximation, compute an adaptive solution
51 : int nAdapt;

52 : for (nAdapt=1; nAdapt<5; nAdapt++)

53 : {

54 : cout << "* Adaptive solve Nr"<< nAdapt << endl;
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55 : themesh=adaptmesh(themesh, u*u, err=0.00001, nbvx=100000) ;
56 : u=u; // to delete the old mesh
57 :
58 : //plot (themesh,wait=1);
59 :
60 : // Initialize Newton algorithm
61 : solve Newtoninit2(u,v)=int2d(themesh) (x* (dx (u)*dx(v)+dy (u)*dy(v)))+on(l,u=g);
62 : real err=0.;
63 : for (n=0;n<maxiter;n++) // Newton loop
64 : {
65 : cout << "Newton loop - iter " << n+l1 << endl;
66 : solve Newtonloop(delta,v)=
67 : int2d (themesh) (x* (dx(delta)*dx(v)+dy(delta)*dy(v) \
+ 1.5%pow (u+Z* (pow (x*x+(y-R/2) *(y-R/2) ,-0.5)
68 : + pow(x*x+(y+R/2)*(y+R/2) ,-0.5)),0.5) *delta*v)) \
- int2d(themesh) (x* (dx (u) *dx (v) +dy (u) *dy (v)
69 : + pow (u+Z* (pow (x*x+(y-R/2) *(y-R/2) ,-0.5) + pow(x*x+(y+R/2)*(y+R/2),-0.5)),1.5)%*v))
70 : + on(1,delta=0);
71 err=deltal[].linfty/ul].linfty;
72 : cout << err << endl;
73 : if (err<reltol) break;
74 : u[]-=deltal];
75 }
76
77 cout << "* Checking the solution after "<< nAdapt << " adaptive refinements" << endl;
78 : cout << " - value at the singular point: u(0,R/2)=" << u(0,R/2) << endl;
79 cout << " - other values for reference: u(0,0)=" << u(0,0) << " and u(R/2,R/2)=" \
<< u(R/2,R/2) << endl;
80 : cout << " - L~1-mean error of the DBC: " \
<< intid(themesh,1) (abs(g(x,y)-u))/intid(themesh,1) (1.) << endl;
81 : cout << " - norm integral: " \
<< int2d(themesh,gforder=10) (x*pow (u+Z*pow (x*x+(y-R/2) *(y-R/2) ,-0.5)
82 : + Zxpow (x*x+(y+R/2)*(y+R/2),-0.5),1.5)) << endl;
83 : cout << " - 5/2-integral: " \
<< int2d(themesh,qforder=10) (x*pow (u+Z*pow (x*x+(y-R/2) * (y-R/2) ,-0.5)
84 : + Zxpow (x*x+(y+R/2)*(y+R/2) ,-0.5) ,2.5) )<<endl;
85 : }
86 :

87 : plot(u,wait=1);
88 : sizestack + 1024 =12696 ( 11672 )

-- mesh: Nb of Triangles = 6486, Nb of Vertices 3351
-- Solve :

min -0.0683959 max -0.0655818

Newton loop - iter 2

-- Solve :

min -2.51652e-038 max 1.18275

Newton loop - iter 3

-- Solve :

min -9.61846e-039 max 0.0855815

Newton loop - iter 4

-- Solve :

min -3.41291e-039 max 0.0152144

Newton loop - iter 5

-- Solve :

min -1.3211e-039 max 0.00201599

Newton loop - iter 6

-- Solve :

min -3.42002e-040 max 0.000190066

* Checking the crude computed solution

- value at the singular point: u(0,R/2)=-1.33176
- other values for reference: u(0,0)=-0.371801 and u(R/2,R/2)=-0.273268
- L”1-mean error of the DBC: 1.94856e-014

- norm integral: 1.99573

- b/2-integral: 1.87149

* Adaptive solve Nril
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[...shortened...|

* Adaptive solve Nr4

number of required edges : O

Warning not enough vertices to split all internal edges

we lost 8 Edges Sorry

-- adaptmesh Regulary: Nb triangles 197935 , h min 3.7191e-005 , h max 8.76814
area = 706.849 , M area = 267814 , M area/( |Khat| nt) 3.12471
infiny-regulaty: min 0.20914 max 56.6738

anisomax 37.8286, beta max = 1.63733 min 0.0382142

-- mesh: Nb of Triangles = 197935, Nb of Vertices 100000

-- Solve :

min -0.0683942 max -0.0655818

Newton loop - iter 1

-- Solve :

min 2.66596e-039 max 1.53406
22.4296

Newton loop - iter 2

-- Solve :

min -1.41009e-041 max 0.0850776
0.0531537

Newton loop - iter 3

-- Solve :

min -1.34967e-040 max 0.0151762
0.00903394

Newton loop - iter 4

-- Solve :

min -7.37165e-041 max 0.0020098
0.00119188

Newton loop - iter 5

-- Solve :

min -1.83554e-041 max 0.00018934

0.000112259

Newton loop - iter 6

-- Solve :

min -7.76166e-043 max 4.83639e-006

2.86745e-006

Newton loop - iter 7

-- Solve :

min -8.65091e-046 max 4.59061e-009

2.72173e-009

Newton loop - iter 8

-- Solve :

min -2.78027e-015 max 4.55294e-015

2.6994e-015

* Checking the solution after 4 adaptive refinements
- value at the singular point: u(0,R/2)=-1.6898

- other values for reference: u(0,0)=-0.372208 and u(R/2,R/2)=-0.2732
- L71-mean error of the DBC: 8.33542e-016

- norm integral: 1.99467

- 5/2-integral: 2.26341

times: compile 0.052s, execution 1012.82s, mpirank:0
#A#####A# We forget of deleting 766 Nb pointer, OBytes , mpirank 0, memory leak =0
CodeAlloc : nb ptr 3779, size :414704 mpirank: O
Ok: Normal End

7. Collecting data for the comparison of Born-Oppenheimer curves

For the computation of the values that lead to Figure 6, we ran the following script.
It imports the custom file 1ibr_DTF, which we provide below after some comments
about the execution.



7. COLLECTING DATA FOR THE COMPARISON OF
BORN-OPPENHEIMER CURVES

# Computes a solution of the diatomic TF PDE

# in atomic units, that is cD=2"{7/2}/(3*pi))

# for several choices of R, Z, running over a

# range of R*(2Z) {1/3} to compare with the

# HF values from GILKA/SOLOVEJ/TAYLOR.

# Results are saved to a .csv-file.

# ______________________________________________________________________________________
# ______________________________________________________________________________________

from fenics import *
import time

import datetime
import csv

import math

import numpy

import libr_DTF

# —-—-- default wvalues for parameters
Prm = libr_DTF.param(R=2.0, Z=1.0, r_max=30.0, cD=pow(2.0,3.5)/(3.0*math.pi), \
mesh_res=2.0, deg_FSpace=4, adapt_tol=1E-11 )
DualVariationalSolverParameters = {'linear_solver':'mumps', 'preconditioner': 'none'}
NewtonSolverParameters = {'linear_solver':'mumps', 'preconditioner':'none',\
'maximum_iterations':25, 'relative_tolerance':1E-11, \
'absolute_tolerance':1E-11}

CSVFilePath = './logs/sweep.csv'
set_log_level (ERROR)

# --— start of program —--
t0 = time.time()

print('")

e D)

print ('*x------- start of FEniCS program ------- D)

print('* on the',str(datetime.datetime.now().strftime(")d.%m.%y")), 'at',libr_DTF.tStamp())
i G D)

print('")

# —-—— write header for the .csv file —-—-—

print (1ibr_DTF.tStamp(),'* write information of the current session into \
the current logfile at',CSVFilePath)
comment = " you find a copy of the corresponding source files at " + \
libr_DTF.logSourceFiles([__file__,"libr_DTF.py"],"./logs/")

csv.register_dialect('comma_separated', delimiter=',')

with open(CSVFilePath, 'a', newline='') as f:

writer = csv.writer(f,dialect='comma_separated')

writer .writerow([datetime.datetime.now().strftime("’d.%m.%y"), \
datetime.datetime.now() .strftime("}H:%M:%S"), comment])

writer.writerow(["R","Z","D(R,Z)","Z*R"3","R"7*D(R,Z)","u(0,R/2)", "I(W", \
"I(u) deg = 100", "N(u)", "L"1-mean deviation", "rmax", \

"solve time (s)", "computing time for values (s)", "nr of cells", \
"initital mesh resolution", "adaptive tolerance","FE degree","cD", \
"Newton solver parameters", "Dual solver parameters"])
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# —--- start loop —-—-
libr_DTF.printParameters (Prm,NewtonSolverParameters,DualVariationalSolverParameters)

RHOvalues = numpy.linspace(0.001, 0.1, num = 20, endpoint = False)
Zvalues = [0.5, 1.0, 2.0]

print (1ibr_DTF.tStamp(),'* Executing a nested loop: \
Within each value of R(2Z)"{1/3} from ', RHOvalues)
print (1ibr_DTF.tStamp(), '* Z runs over ', Zvalues)

for Rho in RHOvalues:
for Z in Zvalues:
PrmLoop = Prm._replace(R=Rho*pow(2%Z,-1.0/3.0), Z=Z)
print (1ibr_DTF.tStamp(),'* R(2Z)"{1/3} = ', Rho, 'Z =',PrmLoop.Z, 'R =', \
PrmLoop.R, ' | Solving...'")
t0 = time.time()
(u,mesh) = 1libr_DTF.computeSolution_adaptive(PrmLoop, NewtonSolverParameters, \
DualVariationalSolverParameters)
tl = time.time()
print (libr_DTF.tStamp(),'* computing values...')
Nu = assemble( libr_DTF.N(u, PrmLoop)*dx(mesh))
Iu = assemble( 1libr_DTF.I(u, PrmLoop)*dx(mesh))
Iu_100 = assemble( libr_DTF.I(u, PrmLoop)*dx(mesh,\
metadata={'quadrature_degree': 100}))
Lidev = libr_DTF.L1MeanError_DBC(u, mesh, PrmLoop)
DissEn = libr_DTF.dissocEnergy(u(0,PrmLoop.R/2), Iu_100, PrmLoop)
t2 = time.time()
with open(CSVFilePath, 'a', newline='') as f:
writer = csv.writer(f,dialect='comma_separated')
writer.writerow([PrmLoop.R, PrmLoop.Z, DissEn, PrmLoop.Z*pow(PrmLoop.R,3.0),\
pow (PrmLoop.R,7.0)*DissEn, u(0,PrmLoop.R/2), Iu, Iu_100 , \
Nu, Lidev, PrmLoop.r_max, round(t1-t0,2), round(t2-t1,2), \
mesh.num_cells(), PrmLoop.mesh_res, PrmLoop.adapt_tol, \
DualVariationalSolverParameters])

print(libr_DTF.tStamp(), '* ...values saved to',CSVFilePath)
print('")
print (' #——————m D)
print (' *x—------ end of FEniCS program ------- D)
print('* runtime:', round(time.time()-t0, 2), 's')
print (' #—————m e D)
print('")

During the execution of this code, an error occurred, ending in:

17:30:43 * R(22)"{1/3} = 0.0703 Z = 0.5 R = 0.0703 | Solving...
17:30:44 * solving adaptively...
17:43:12 * finished solving in 748.02 s
17:43:12 * computing values...
17:43:21 *  ...values saved to ./logs/sweep.csv
17:43:21 * R(22)"{1/3} = 0.0703 Z = 1.0 R = 0.05579714697668221 | Solving...
17:43:22 * solving adaptively...
18:04:54 * finished solving in 1292.56 s
18:04:54 * computing values...
*

18:05:21 ...values saved to ./logs/sweep.csv

18:05:21 * R(2Z2)"{1/3} = 0.0703 Z = 2.0 R = 0.044286224903804794 | Solving...
Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.
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Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

18:05:34 * solving adaptively...

Traceback (most recent call last):

File "/home/users/samojlow/sweep.py", line 74, in <module>

(u,mesh) = libr_DTF.computeSolution_adaptive(PrmLoop, NewtonSolverParameters, \
DualVariationalSolverParameters)

File "/mnt/nfs/users-data/users/samojlow/1libr_DTF.py", line 185, in computeSolution_adaptive

solver.solve(p.adapt_tol)

File "/usr/lib/python3/dist-packages/dolfin/fem/adaptivesolving.py", line 124, in solve

cpp.AdaptiveNonlinearVariationalSolver.solve(self, tol)

RuntimeError:

*xx DOLFIN encountered an error. If you are not able to resolve this issue
*** using the information listed below, you can ask for help at

*kok

*okok fenics-support@googlegroups.com

*kok

*** Remember to include the error message listed below and, if possible,
*** include a *minimal* running example to reproduce the error.

*kok

Rk

***k Error: Unable to solve linear system using PETSc Krylov solver.

*x* Reason: Solution failed to converge in O iterations (PETSc reason DIVERGED_PCSETUP_FAILED, \
residual norm ||r|| = 0.000000e+00) .

*** Where: This error was encountered inside PETScKrylovSolver.cpp.

*** Process: 0

*okok

*** DOLFIN version: 2017.2.0
*** Git changeset: unknown

/var/spool/torque/mom_priv/jobs/2720.cluster.ceremade.dauphine.fr.SC: line 30: \
171634 Aborted (core dumped) python3 ~/sweep.py

We continued the calculation for the remaining values R(22)/% € {..} with a
lower goal tolerance of 107! in the script above. Moreover, we also also ran the
script (for the initial goal tolerance of 107! and without any errors) three more

times with the line
RHOvalues = numpy.linspace(0.001, 0.1, num = 20, endpoint = False)
replaced by
RHOvalues = numpy.linspace(0.1, 1, num = 40, endpoint = False),
RHOvalues = numpy.linspace(l, 4, num = 40, endpoint = False)
and

RHOvalues = numpy.linspace(4, 12, num = 30, endpoint = True).

The content of 1ibr_DTF which was called in the previous script:

# ______________________________________________________________________________________
# ______________________________________________________________________________________
# Collection of methods used to compute

# a solution of the diatomic TF PDE
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from fenics import *

from mshr import *

import numpy

import time

import datetime

import math

from collections import namedtuple

# —--— parameter 'struct' to be used —--—-—
param = namedtuple('param',['R','Z','r_max', 'mesh_res','cD','deg_FSpace','adapt_tol'])
refine_param = namedtuple('refine_param', ['steps','width', 'power', 'meshres'])

# —--- collection of methods ---
r = Expression('x[0]', degree=1) # coordinate function, used in some methods below
z = Expression('x[1]', degree=1) # coordinate function, used in some methods below

def logSourceFiles(fileList, subfolder= "./"): # save scripts (fileList) to a subfolder
LogFileName = subfolder + datetime.datetime.now().strftime("/y’%m’.d_%Hh%Mn)Ss.sourcecode")
for file in fileList:

with open(LogFileName,'a') as f:

f.write('sourcecode of '+file+':\n')

f.write(open(file).read())

f.write('sourcecode of '+file+' ends here.\n')

return LogFileName

def printParameters(param, NewtonSolverParameters, DualVariationalSolverParameters, \
refineP=None) :
print (tStamp(),'* parameters are currently:')

if (refineP != None):
print(tStamp(),'* refine_steps=', refineP.steps,'| refine_width=', \
refineP.width, '| refine_power=', refineP.power, '| refine_meshres=', \
refineP.meshres)
print(tStamp(),'* R=', param.R,'| Z=', param.Z, "| r_max=", param.r_max, \
"| cD=', param.cD, '| mesh_res =', param.mesh_res,'| degFSPace=', \
param.deg_FSpace, '| adapt_tol=', param.adapt_tol)
print(tStamp(),'* NewtonSolverParameters=', NewtonSolverParameters)
print(tStamp(),'* DualVariationalSolverParameters=', \

DualVariationalSolverParameters)

def tStamp():
return str(datetime.datetime.now().strftime("%H:%M:%S"))

def N(u, p):
return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \
p.Z*pow (r*r+(z+p.R/2)*(z+p.R/2), -0.5), 1.5)

+

def I(u, p):
return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \
p.Z*xpow (r*r+(z+p.R/2)*(z+p.R/2), -0.5), 2.5)

+

def dissocEnergy(u0, kinInt, p):
uOAtomic = -1.793738623165210568576124990031006513754290266429542050207003066029928
kinIntAtomic = 1.2812418736894361212823553262361613505
return 1/10*(kinInt - 2*pow(p.Z, 7.0/3.0)*kinIntAtomic) + p.Z*(u0 + p.Z/(p.R) \
- pow(p.Z,(4.0/3.0))*uOAtomic)
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def

def

def

LiMeanError_DBC(u, mesh, p): # L1-mean-devtation to [z {4} at [(r,z)/=r_maz
class Boundary_arc(SubDomain) :
def inside(self, x, on_boundary):
return on_boundary and near(x[1]*x[1]+x[0]*x[0],p.r_max*p.r_max, \
1/(p.mesh_res*p.mesh_res))
bnd_arc = Boundary_arc()
boundary_marker = MeshFunction('size_t', mesh, 1)
boundary_marker.set_all(0)
bnd_arc.mark (boundary_marker, 1)
ds = Measure('ds', domain=mesh, subdomain_data=boundary_marker)
integrand = abs( 144.0%pow(p.cD, -0.5)*pow(r*r+z*z, -2.0) \
- p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \
- p.Zxpow(r*r+(z+p.R/2)*(z+p.R/2), -0.5) - wu )*ds(1)
return assemble(integrand)/assemble(1.0*ds(1))

checkSolution(u, mesh, p): # computes and outputs some nummbers
print (tStamp(),'* checking solution:')

print(tStamp(),'*  computing values...')

Norm = assemble(N(u, p)*dx(mesh))

Idefault = assemble(I(u, p)*dx(mesh))

I50 = assemble(I(u, p)*dx(mesh,metadata={'quadrature_degree': 503}))
I100 = assemble(I(u, p)*dx(mesh,metadata={'quadrature_degree': 100}))
DissocEn = dissocEnergy(u(0, p.R/2), I100, p)

Llerror = Li1MeanError_DBC(u, mesh, p)

print (tStamp(), '* ...finished:")

print (tStamp(),'* u(0,R/2) =', u(0, p.R/2))

print (tStamp(),'* N(u) =', Norm)

print (tStamp(), '* I(u) =', Idefault, 'computed with degree = auto/default')
print (tStamp(),'* I(u) =', IO, 'computed with degree = 50')
print(tStamp(),'* I(u) =', I100, 'computed with degree = 100')

print (tStamp(),'* D(Z,R) = ', DissocEn, 'with I(u) for degree = 100')

print(tStamp(),'* ZR"3 = ', p.Z*pow(p.R,3.0))

print(tStamp(),'* D(ZR"3,1) = ', pow(p.R,7.0)*DissocEn)

print (tStamp(),'*  other values for reference: u(0,0) =', u(0, 0),'u(R/2,R/2) ="', \
u(p.R/2,p.R/2))

print(tStamp(),'* DBC L"1-mean - error = ', Llerror)

computeSolution_refinemesh(p, refine_p, NewtonSolverParameters): #solves w. manually
#refined mesh

# -—- create the mesh, define (and initialize) the boundary at r_maz ---—

domain = Rectangle(Point(0, 0), Point(p.r_max, p.r_max))*Circle(Point(0, 0), p.r_max)

mesh = generate_mesh(domain, refine_p.meshres*p.r_max)

class Boundary_arc(SubDomain) :

def inside(self, x, on_boundary):
return on_boundary and near(x[1]*x[1]+x[0]*x[0], p.r_max*p.r_max, \

1/(p.mesh_res*p.mesh_res))

bnd_arc = Boundary_arc()

# —-—— refine at the singularity
print(tStamp(),'* refining mesh...')
for width in numpy.linspace(pow( refine_p.width,1/refine_p.power ) , 0, \
refine_p.steps, endpoint=False ):
class singRegion(SubDomain) : #the region which s to be refined
def inside(self, x, on_boundary):
return x[0]*x[0]+(x[1]-p.R/2)*(x[1]-p.R/2)<=pow(width,2.0*refine_p.power)
sing_region = singRegion()
refinefct_sing = MeshFunction('bool', mesh, 1)
refinefct_sing.set_all(False)
sing_region.mark(refinefct_sing, True)
mesh = refine(mesh, refinefct_sing)
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def

print (tStamp(),'*  finished refining mesh')

# —-—-— Choose functionspace and define the Dirichlet BC ——-
V = FunctionSpace(mesh, 'P', p.deg_FSpace)
dbc_function = Expression('144.0%pow(cD, -0.5)*pow(x[0]*x[0]+x[1]*x[1], -2.0) \
- Zxpow(x[0]*x[0]+(x[1]-R/2)*(x[1]1-R/2), -0.5) \
- Zxpow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5)',\
degree=p.deg_FSpace+3, Z=p.Z, R=p.R, cD=p.cD)

dbc = DirichletBC(V, dbc_function, bnd_arc)

# —-—— define functions, wvariational form and goal functional —-—-
u = Function(V)
v = TestFunction(V)
def nl(u): #nonlinear term of the problem

return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \

+ p.Z*pow(r*r+(z+p.R/2)*(z+p.R/2), -0.5), 1.5)

F = (r#Dx(u, 0)*Dx(v, 0) + r*Dx(u, 1)*Dx(v, 1) + nl(u)*v)*dx
dF = derivative(F, u)
NLproblem = NonlinearVariationalProblem(F, u, dbc, dF)

# —-—— Create a solver and load its parameters —--

solver = NonlinearVariationalSolver (NLproblem)

for key in NewtonSolverParameters.keys():
solver.parameters["newton_solver"] [key] = NewtonSolverParameters [key]

# —-—— run the solwver, return BOTH solution and final mesh ——-

print (tStamp(),'#* solving over a refined mesh...')

t0_solve = time.time()

solver.solve()

print (tStamp(), '* finished solving in ',round(time.time()-tO_solve,2),' s')
return (u, mesh)

computeSolution_adaptive(p, NewtonSolverParameters, DualVariationalSolverParameters,\
show_solver_summary=False, starting_mesh=None): # solves w. adaptive mesh refinement
# -—- create the mesh, define (and initialize) the boundary at r_mazr —---—
if (starting_mesh==None) :
domain = Rectangle(Point(0, 0), Point(p.r_max, p.r_max)) * Circle(Point(0, 0), \
p.r_max)
mesh = generate_mesh(domain, p.mesh_res*p.r_max)
else:
mesh = starting_mesh
class Boundary_arc(SubDomain) :
def inside(self, x, on_boundary):
return on_boundary and near( x[1]*x[1]+x[0]*x[0], p.r_max*p.r_max, \
1/(p.mesh_res*p.mesh_res))
bnd_arc = Boundary_arc()

# —-—— Choose functionspace and define the Dirichlet BC —---
V = FunctionSpace(mesh, 'P', p.deg_FSpace)
dbc_function = Expression('144.0*pow(cD, -0.5)*pow(x[0]*x[0]+x[1]*x[1], -2.0) \
- Zxpow(x[0]*x[0]+(x[1]1-R/2)*(x[1]1-R/2), -0.5) \
- Zxpow (x[0]*x [0]+(x[1]+R/2)*(x[1]+R/2), -0.5)"',\
degree=p.deg_FSpace+3, Z=p.Z, R=p.R, cD=p.cD)

dbc = DirichletBC(V, dbc_function, bnd_arc)
# --- define functions, wariational form and goal functional ---
u = Function(V)

v = TestFunction(V)
def nl(u): #nonlinear term of the problem
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return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \
+ p.Zxpow(r*r+(z+p.R/2)*(z+p.R/2), -0.5), 1.5)
F = (r#Dx(u, 0)*Dx(v, 0) + r*Dx(u, 1)*Dx(v, 1) + nl(u)*v)*dx
dF = derivative(F, u)
NLproblem = NonlinearVariationalProblem(F, u, dbc, dF)
goalFunctional = I(u, p)*dx()

# —-—-- Create a solver and load its parameters —---—
solver = AdaptiveNonlinearVariationalSolver (NLproblem, goalFunctional)
for key in DualVariationalSolverParameters.keys():
solver.parameters["error_control"] ["dual_variational_solver"] [key] \
= DualVariationalSolverParameters [key]
for key in NewtonSolverParameters.keys():
solver.parameters["nonlinear_variational_solver"] ["newton_solver"] [key] \
= NewtonSolverParameters [key]

# —-—— run the solwver, return BOTH solution and final mesh —---
print (tStamp(),'* solving adaptively...')
tO_solve = time.time()
solver.solve(p.adapt_tol)
print (tStamp(), '* finished solving in ',round(time.time()-tO_solve,2),' s')
if (show_solver_summary) :
print(tStamp(),'* the solver summary is (needs log level INFO or less):')
solver.summary ()
return (u.leaf_node(), mesh.leaf_node())

8. Values for the comparison of Born-Oppenheimer curves

We here only give a selection of the data that the script C.7 gathered. In particular
because the solving time is machine dependent and because the L!'-mean deviation
at I'p was always less than 10716 with the precise value being of little interest.
The relative deviation for D(r), computed from (7.3), (7.2) and these values, is
shown in Figure 2 on page 129 and the absolute deviation is displayed in Figure 1
on page 129.
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(2Z)3R | u(0,R/2) | L [ 02| (22)F (D(TZ’TZ),R—%> [o | #cells
0.001 | -1.76141 | 1.24905 20.450725 1.00472 | 22738
0.00595 | -1.71554 | 1.20315 -0.43238 1.00472 | 52740
0.0109 | -1.68793 | 1.17591 -0.421299 1.00472 | 16151
0.01585 | -1.66662 | 1.15475 -0.41276 1.00472 | 25998
0.0208 | -1.64863 | 1.13692 -0.405549 1.00472 | 31781
0.02575 | -1.63263 | 1.12127 -0.399114 1.00472 | 27035
0.0307 | -1.61824 | 1.10715 -0.393331 1.00472 | 27155
0.03565 | -1.60525 | 1.09434 -0.388114 1.00472 | 46185
0.0406 | -1.59296 | 1.08247 -0.383158 1.00472 | 22457
0.04555 | -1.58157 | 1.07142 -0.378567 1.00472 | 26012
0.0505 | -1.57099 | 1.0611 -0.374309 1.00472 | 30961
0.05545 | -1.56081 | 1.05135 -0.370192 1.00472 | 23770
0.0604 | -1.55117 | 1.04207 -0.366303 1.00472 | 25150
0.06535 | -1.54215 | 1.03335 -0.362661 1.00472 | 49004
0.0703 | -1.53326 | 1.02492 -0.359061 1.00472 | 18941
0.07525% | -1.52456* | 1.01709* -0.355496* 1.00472* | 16574*
0.0802* | -1.51673* | 1.00935* -0.352352* 1.00472* | 18059*
0.08515% | -1.5089% | 1.00178* -0.349195* 1.00472* | 17739%
0.0901% | -1.50157% | 0.994724% -0.346236* 1.00472* | 21789%
0.09505% | -1.49429% | 0.987889* -0.343277* 1.00472% | 23112*
0.1 | -1.48729 | 0.981314 -0.340435 1.00472 | 27466
0.1225 | -1.45778 | 0.953811 -0.328435 1.00471 | 24332
0.145 | -1.43185 | 0.929842 -0.317862 1.00471 | 30829
0.1675 | -1.40812 | 0.908586 -0.308125 1.00471 | 18909
0.19 | -1.3867 | 0.888971 -0.299375 1.00471 | 27119
0.2125 | -1.36711 | 0.871402 20.291338 1.0047 | 35299
0.235 | -1.34881 | 0.855406 -0.28379 1.0047 | 22923
0.2575 | -1.33177 | 0.840551 -0.276754 1.0047 | 25331
0.28 | -1.31566 | 0.826711 -0.27008 1.00469 | 15014
0.3025 | -1.30088 | 0.814039 -0.263962 1.00469 | 15931
0.325 | -1.28695 | 0.802496 -0.258146 1.00468 | 29536
0.3475 | -1.27374 | 0.791427 -0.252652 1.00468 | 31426
0.37 | -1.2611 | 0.780679 -0.247407 1.00468 | 34415
0.3925 | -1.24915 | 0.770887 20.242412 1.00467 | 27145
0.415 | -1.23784 | 0.761638 -0.237679 1.00467 | 35431
0.4375 | -1.22643 | 0.752919 10.232846 1.00466 | 16142
0.46 | -1.21659 | 0.74463 -0.228757 1.00466 | 23802
0.4825 | -1.20673 | 0.736871 -0.224601 1.00466 | 35817
0.505 | -1.19719 | 0.729722 -0.220546 1.00465 | 29121
0.5275 | -1.18809 | 0.722317 -0.216738 1.00465 | 27036
0.55 | -1.17931 | 0.715781 -0.212999 1.00464 | 26416
0.5725 | -1.17074 | 0.709187 -0.209376 1.00464 | 14390
0.595 | -1.16285 | 0.703097 20.206036 1.00463 | 26314

TABLE 1. Values are for Z = 0.5 and those with * are computed to
tolerance 1071 of the goal functional (instead of 107'1).
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(22)5R | u(0,R/2) | 2 [ | 22)F (D(T;Z),R—Zg) [o | #cells
0.6175 | -1.15504 | 0.697332 20.20271 1.00463 | 27585
0.64 | -1.1475 | 0.691713 20.199504 1.00462 | 29471
0.6625 | -1.14026 | 0.686381 20.196417 1.00462 | 27303
0.685 | -1.13323 | 0.681257 20.193413 1.00461 | 27479
0.7075 | -1.1264 | 0.676326 -0.190492 1.00461 | 21358
0.73 | -1.11991 | 0.671798 -0.187701 1.0046 | 26739
0.7525 | -1.1134 | 0.667071 20.184916 1.0046 | 21347
0.775 | -1.10736 | 0.662806 -0.182325 1.00459 | 30231
0.7975 | -1.10143 | 0.658688 -0.179771 1.00459 | 30007
0.82 | -1.0956 | 0.65461 -0.177263 1.00458 | 26493
0.8425 | -1.08988 | 0.650806 20.174784 1.00458 | 19028
0.865 | -1.08458 | 0.647053 20.172506 1.00457 | 26409
0.8875 | -1.07928 | 0.643504 20.170213 1.00457 | 33852
0.91 | -1.07406 | 0.64003 -0.167951 1.00456 | 22770
0.9325 | -1.06912 | 0.636692 -0.165814 1.00456 | 25962
0.955 | -1.06415 | 0.633518 -0.163647 1.00455 | 22696
0.9775 | -1.05937 | 0.63047 -0.161563 1.00455 | 17616
1. | -1.05493 | 0.627425 -0.159647 1.00454 | 33821
1.075 | -1.04027 | 0.618127 20.153246 1.00452 | 34747
115 | -1.02681 | 0.609803 20.147346 1.0045 | 19509
1.225 | -1.01436 | 0.602288 -0.141877 1.00448 | 19925
1.3 | -1.00305 | 0.595582 -0.136889 1.00446 | 26535
1.375 | -0.992414 | 0.589459 -0.132185 1.00444 | 27986
145 | -0.98236 | 0.583858 -0.127717 1.00442 | 21947
1.525 | -0.973206 | 0.578876 -0.123639 1.0044 | 27687
1.6 |-0.964277 | 0.574292 20.119633 1.00438 | 17313
1.675 | -0.956342 | 0.56993 -0.116101 1.00436 | 23577
175 | -0.948702 | 0.566068 20.112667 1.00434 | 38170
1.825 |-0.941272 | 0.562457 20.109313 1.00432 | 17108
1.9 | -0.93448 | 0.5598 20.106184 1.0043 | 24239
1.975 |-0.928111 | 0.556132 -0.103365 1.00428 | 25330
2.05 |-0.922066 | 0.553318 -0.100624 1.00426 | 35993
2.125 |-0.916153 | 0.550696 -0.0979302 1.00424 | 20513
2.2 [-0.910739 | 0.548944 -0.0953984 1.00421 | 25907
2.275 | -0.90561 | 0.546079 -0.0931204 1.00419 | 33345
2.35 |-0.900491 | 0.544231 -0.0907456 1.00417 | 23534
2.425 |-0.895768 | 0.542018 -0.0886057 1.00415 | 21664
25 |-0.891321 | 0.540258 -0.0865578 1.00413 | 20400
2.575 | -0.836962 | 0.538528 20.0845513 1.0041 | 20905
2.65 |-0.882845| 0.53801 -0.0825446 1.00408 | 20958
2.725 |-0.878919 | 0.535426 -0.0808401 1.00406 | 21109
2.8 |-0.875215 | 0.534238 -0.0791069 1.00404 | 23670
2.875 |-0.871559 | 0.532783 -0.0774244 1.00401 | 23681
2.95 |-0.868186 | 0.531581 -0.0758582 1.00399 | 25710

TABLE 2. Values are for Z = 0.5.
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CHAPTER C. NUMERICAL SCRIPTS

(22)5R | u(0,R/2) | 2 [ | 22)F (D(T;Z),R ZV | o | #cells
3.025 |-0.864854 | 0.53045 20.0743054 1.00397 | 26050
3.1 |-0.861586 | 0.529615 -0.0727547 1.00395 | 23150
3.175 |-0.858516 | 0.528351 -0.0713464 1.00392 | 19585
3.25 | -0.85549 | 0.527366 -0.0699316 1.0039 | 20803
3.325 |-0.852529 | 0.526875 -0.0685004 1.00388 | 18045
3.4 |-0.850043 | 0.525682 -0.0673767 1.00385 | 29352
3.475 | -0.846986 | 0.525009 -0.0659152 1.00383 | 16847
3.55 | -0.844574 | 0.524279 -0.0647825 1.00381 | 16700
3.625 | -0.842541 | 0.523468 -0.063847 1.00378 | 31202
3.7 [-0.840139 | 0.522774 -0.0627151 1.00376 | 31189
3.775 | -0.837889 | 0.522196 -0.0616484 1.00374 | 31062
3.85 |-0.835541 | 0.521609 20.060533 1.00371 | 18187
3.925 |-0.833271| 0.521 -0.0594587 1.00369 | 19399
4| -0.83148 | 0.520446 -0.0586185 1.00367 | 30167
4.27586 | -0.824414 | 0.51869 -0.0552612 1.00358 | 37287
455172 | -0.818139 | 0.517245 -0.0522681 1.00349 | 30710
4.82759 | -0.812214 | 0.516023 -0.0494281 1.0034 | 17450
5.10345 | -0.807341 | 0.514994 -0.0470944 1.00331 | 39313
5.37931 | -0.802693 | 0.514119 -0.0448579 1.00322 | 28327
5.65517 | -0.798484 | 0.513406 -0.0428248 1.00313 | 28621
5.93103 | -0.794668 | 0.512823 -0.0409753 1.00304 | 38601
6.2069 | -0.790882 | 0.512272 -0.0391373 1.00294 | 17041
6.48276 | -0.787852 | 0.511817 -0.0376676 1.00285 | 38571
6.75862 | -0.784852 | 0.51141 -0.0362084 1.00276 | 33414
7.03448 | -0.78209 | 0.511089 -0.0348593 1.00266 | 29722
7.31034 | -0.779544 | 0.510837 -0.0336117 1.00256 | 32472
7.58621 | -0.776931 | 0.510557 -0.0323333 1.00247 | 17149
7.86207 | -0.774877 | 0.510308 -0.031331 1.00237 | 32460
8.13793 | -0.772767 | 0.510091 -0.0302977 1.00227 | 27037
8.41379 | -0.770898 | 0.509932 -0.0293793 1.00217 | 30578
8.68966 | -0.76903 | 0.509854 -0.028453 1.00207 | 31140
8.96552 | -0.766834 | 0.509637 -0.0273765 1.00197 | 13928
9.24138 | -0.765617 | 0.509537 20.026778 1.00186 | 30388
0.51724 | -0.764045 | 0.509402 -0.0260056 1.00176 | 30609
9.7931 | -0.76266 | 0.509369 -0.0253165 1.00165 | 30509
10.069 | -0.761323 | 0.509376 -0.0246475 1.00155 | 31464
10.3448 | -0.759663 | 0.509177 -0.0238372 1.00144 | 15475
10.6207 | -0.758578 | 0.509051 -0.0233073 1.00133 | 24192
10.8966 | -0.757509 | 0.509028 20.0227749 1.00122 | 30394
11.1724 | -0.756421 | 0.509024 -0.0222316 1.00111 | 30195
11.4483 | -0.755292 | 0.508913 -0.021678 1.001 | 26644
11.7241 | -0.75407 | 0.508905 -0.0210677 1.00088 | 15736
12 |-0.753335 | 0.508899 -0.0207008 1.00077 | 32731

TABLE 3. Values are for Z = 0.5.
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8. VALUES FOR THE COMPARISON OF BORN-OPPENHEIMER CURVES

(22)3R | u(0,R/2) | L [ 02| (22)F (D(TZPjZ),R—%ﬁ [o | #cells
0.001 | -4.43871 | 6.20491 20.450768 2.00336 | 43544
0.00595 | -4.32277 | 6.06371 -0.43235 2.00336 | 78294
0.0109 | -4.25382 | 5.92651 20.421391 2.00336 | 49055
0.01585 | -4.19992 | 5.81997 -0.41281 2.00336 | 60682
0.0208 | -4.15436 | 5.73018 -0.405551 2.00336 | 41828
0.02575 | -4.11396 | 5.65067 -0.399114 2.00336 | 18731
0.0307 | -4.07806 | 5.57997 -0.393393 2.00336 | 46151
0.03565 | -4.04485 | 5.5152 -0.388088 2.00336 | 34757
0.0406 | -4.01429 | 5.45549 -0.383208 2.00336 | 83900
0.04555 | -3.98539 | 5.39989 -0.378578 2.00336 | 22484
0.0505 | -3.95822 | 5.34738 20.374228 2.00336 | 21073
0.05545 | -3.93302 | 5.29835 -0.370201 2.00336 | 25144
0.0604 | -3.90901 | 5.252 -0.366357 2.00336 | 59127
0.06535 | -3.88593 | 5.20773 -0.362655 2.00336 | 55936
0.0703 | -3.86388 | 5.16547 20.359118 2.00336 | 56864
0.07525% | -3.84271% | 5.12652* -0.355691* 2.00336* | 32829*
0.0802* | -3.82203* | 5.08634* -0.352384* 2.00336* | 31657*
0.08515% | -3.80254* | 5.04912% -0.349255* 2.00336* | 23561*
0.0901* | -3.78367* | 5.01335* -0.346221% 2.00336* | 21133*
0.09505% | -3.76545* | 4.97869* -0.343294% 2.00335% | 25240*
0.1 | -3.74755 | 4.94554 -0.3404 2.00335 | 26841
0.1225 | -3.67371 | 4.80712 -0.328494 2.00335 | 69627
0.145 | -3.60779 | 4.68574 -0.317824 2.00335 | 33782
0.1675 | -3.54838 | 4.57756 -0.30818 2.00335 | 29720
0.19 | -3.49431 | 4.48007 -0.299387 2.00334 | 21366
0.2125 | -3.44481 | 4.39159 -0.291321 2.00334 | 30962
0.235 | -3.39881 | 4.31061 20.283799 2.00334 | 34621
0.2575 | -3.35608 | 4.23613 -0.276799 2.00333 | 40705
0.28 | -3.31602 | 4.16881 20.270186 2.00333 | 43725
0.3025 | -3.27845 | 4.10331 -0.264031 2.00333 | 27064
0.325 | -3.24316 | 4.04298 -0.258224 2.00332 | 56235
0.3475 | -3.20972 | 3.98691 -0.252702 2.00332 | 44449
0.37 | -3.17803 | 3.93441 -0.247455 2.00331 | 50732
0.3925 | -3.14794 | 3.88505 -0.242465 2.00331 | 46174
0.415 | -3.11896 | 3.8384 -0.23764 2.00331 | 19241
0.4375 | -3.09194 | 3.79537 -0.233133 2.0033 | 57522
0.46 | -3.06584 | 3.75295 20.228796 2.0033 | 33599
0.4825 | -3.04042 | 3.71331 20.224538 2.00329 | 20966
0.505 | -3.01688 | 3.67604 20.220607 2.00329 | 33511
0.5275 | -2.99387 | 3.64061 -0.216744 2.00328 | 24513
0.55 | -2.97203 | 3.60669 -0.213083 2.00328 | 83648
0.5725 | -2.95072 | 3.57432 20.209496 2.00327 | 49768
0.595 | -2.93025 | 3.54342 20.206048 2.00327 | 33825

TABLE 4. Values are for Z = 1.0 and those with * are computed to
tolerance 1071 of the goal functional (instead of 107'1).
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CHAPTER C. NUMERICAL SCRIPTS

(22)5R | u(0,R/2) | 1 [ 72| (22)F (DE‘FZ’TZ)’R ZV| o | cells
0.6175 | -2.91062 | 3.51421 20.202732 2.00326 | 40334
0.64 | -2.89162 | 3.48699 20.199503 2.00326 | 28708
0.6625 | -2.87328 | 3.45914 -0.196415 2.00325 | 27829
0.685 | -2.85579 | 3.43342 20.193455 2.00325 | 37302
0.7075 | -2.83826 | 3.40841 -0.190473 2.00324 | 25161
0.73 | -2.82198 | 3.38509 -0.187706 2.00324 | 32440
0.7525 | -2.80597 | 3.36223 -0.184983 2.00323 | 30443
0.775 | -2.79066 | 3.34047 -0.182376 2.00323 | 53533
0.7975 | -2.7756 | 3.31953 -0.179804 2.00322 | 38963
0.82 | -2.76047 | 3.29886 L0.177212 2.00322 | 20859
0.8425 | -2.74668 | 3.27974 L0.174855 2.00321 | 30013
0.865 | -2.73296 | 3.26105 20.172504 2.00321 | 41178
0.8875 | -2.71966 | 3.24301 20.170222 2.0032 | 37254
0.91 | -2.70669 | 3.22591 -0.167988 2.0032 | 42662
0.9325 | -2.694 | 3.20887 -0.165808 2.00319 | 51718
0.955 | -2.68173 | 3.19306 -0.163687 2.00319 | 45845
0.9775 | -2.6696 | 3.1771 20.161598 2.00318 | 25997
1. | -2.65806 | 3.16205 -0.159607 2.00318 | 28412
1.075 | -2.62153 | 3.11531 20.153286 2.00316 | 48282
115 | -2.58761 | 3.07412 -0.147372 2.00314 | 28913
1.225 | -2.55653 | 3.03568 -0.141968 2.00312 | 43102
1.3 | -2.52746 | 3.0015 -0.136879 2.0031 | 26789
1.375 | -2.50069 | 2.97075 -0.132176 2.00308 | 36525
145 | -2.47572 | 2.94273 L0.127777 2.00306 | 42059
1525 | -2.45233 | 2.91718 -0.123643 2.00304 | 38010
1.6 | -2.43013 | 2.89474 -0.119683 2.00302 | 21590
1.675 | -2.40989 | 2.87245 20.116109 2.003 | 31766
175 | -2.30043 | 2.85284 20.112638 2.00298 | 31619
1.825 | -2.37215 | 2.83467 -0.10937 2.00295 | 26670
1.9 | -2.35479 | 2.81778 -0.106261 2.00293 | 18346
1.975 | -2.33882 | 2.80282 -0.103389 2.00291 | 31662
2.05 | -2.32356 | 2.7887 -0.100641 2.00289 | 42343
2.125 | -2.30888 | 2.77559 -0.0979889 2.00287 | 39181
22 | -2.2051 | 2.76339 -0.0954954 2.00285 | 26945
2.275 | -2.28193 | 2.75212 -0.0931067 2.00283 | 32708
2.35 | -2.26908 | 2.74134 -0.090771 2.0028 | 20670
2.425 | -2.25757 | 2.7319 -0.0886747 2.00278 | 31887
925 | -2.24626 | 2.72264 20.086614 2.00276 | 31590
2.575 | -2.23522 | 2.71401 20.084595 2.00274 | 31490
2.65 | -2.22489 | 2.70612 -0.0827006 2.00271 | 27795
2.725 | -2.21495 | 2.6986 -0.0808772 2.00269 | 31921
2.8 | -2.20569 | 2.69214 -0.0791696 2.00267 | 55510
2.875 | -2.19653 | 2.68517 20.077489 2.00265 | 26946
2.95 | -2.18751 | 2.67887 -0.0758252 2.00262 | 22396

TABLE 5. Values are for Z7 = 1.0.
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8. VALUES FOR THE COMPARISON OF BORN-OPPENHEIMER CURVES

(22)5R | u(0,R/2) | 1 [ 72| (22)F (D(TZ’TZ),R—%> [o | #cells
3.025 | -2.17925 | 2.67401 20.0742818 2.0026 | 27084
31 | -2.17142 | 2.66793 -0.0728498 2.00258 | 32312
3.175 | -2.16356 | 2.66334 -0.0713811 2.00256 | 28331
395 | -2.15547 | 2.65814 -0.0698782 2.00253 | 15318
3.325 | -2.14903 | 2.65391 -0.0686851 2.00251 | 34245
3.4 | -2.14183 | 2.64918 -0.0673491 2.00249 | 20794
3475 | -2.13541 | 2.64618 -0.0661357 2.00246 | 22598
355 | -2.12916 | 2.64173 -0.0649838 2.00244 | 36281
3.625 | -2.12268 | 2.64022 -0.0637269 2.00242 | 19140
3.7 | -2.1167 | 2.63472 -0.0626501 2.00239 | 19076
3.775 | -2.1102 | 2.63677 -0.0613194 2.00237 | 15862
3.85 | -2.10558 | 2.62864 -0.0605641 2.00235 | 31569
3.925 | -2.10013 | 2.62552 20.0595457 2.00232 | 21907
4 2095 | 2.62284 -0.0585798 2.0023 | 30562
4.27586 | -2.07723 | 2.6139 -0.0552306 2.00221 | 36306
455172 | -2.06138 | 2.60699 20.0522232 2.00213 | 28791
4.82759 | -2.04735 | 2.60064 -0.0495657 2.00204 | 43091
5.10345 | -2.03425 | 2.59539 -0.0470696 2.00195 | 31264
5.37931 | -2.02273 | 2.59114 -0.0448685 2.00186 | 33978
5.65517 | -2.01201 | 2.58757 -0.0428125 2.00177 | 34961
5.93103 | -2.00224 | 2.58428 20.0409388 2.00168 | 29398
6.2069 | -1.99345 | 2.58207 -0.0392401 2.00159 | 35001
6.48276 | -1.98504 | 2.57939 -0.0376229 2.0015 | 24791
6.75862 | -1.97746 | 2.57748 -0.0361565 2.00141 | 29134
7.03448 | -1.97094 | 2.57582 -0.0348967 2.00132 | 48547
7.31034 | -1.96395 | 2.57408 -0.0335436 2.00122 | 25374
7.58621 | -1.95833 | 2.57299 -0.0324504 2.00113 | 48089
7.86207 | -1.9525 | 2.57182 -0.0313176 2.00104 | 40833
8.13793 | -1.94709 | 2.57087 -0.0302622 2.00094 | 23486
8.41379 | -1.94222 | 2.57004 20.0293132 2.00085 | 35758
8.68966 | -1.93767 | 2.56921 -0.0284253 2.00075 | 38872
8.96552 | -1.93328 | 2.56851 -0.0275687 2.00065 | 33970
0.24138 | -1.92934 | 2.56823 -0.0267919 2.00056 | 69246
0.51724 | -1.92532 | 2.56742 -0.0260112 2.00046 | 46955
9.7931 | -1.92148 | 2.56705 -0.0252561 2.00036 | 26842
10.069 | -1.91797 | 2.56637 20.024574 2.00026 | 23937
10.3448 | -1.91493 | 2.56751 -0.0239485 2.00016 | 51526
10.6207 | -1.91171 | 2.56566 20.0233452 2.00006 | 29533
10.8966 | -1.90874 | 2.56547 20.0227609 1.99996 | 29585
11.1724 | -1.90599 | 2.56525 -0.0222194 1.99985 | 41918
11.4483 | -1.90293 | 2.56471 -0.0216219 1.99975 | 20081
11.7241 | -1.90072 | 2.56524 -0.0211727 1.99965 | 29287
12. | -1.89847 | 2.56461 -0.0207391 1.99954 | 51467

TABLE 6. Values are for Z = 1.0.

125




CHAPTER C. NUMERICAL SCRIPTS

(2Z)3R | u(0,R/2) | L [ 02| (22)F (D(TZ’TZ),R 2V o | feels
0.001 | -11.1848 | 31.7249 20.450759 4002 | 29573
0.00595 | -10.8927 | 30.5595 -0.432351 4002 | 34112
0.0109 | -10.7189 | 29.8676 20.421391 4002 | 68778
0.01585 | -10.5832 | 29.3299 20.412819 4002 | 47617
0.0208 | -10.4684 | 28.8769 -0.405566 4002 | 236518
0.02575 | -10.3672 | 28.4785 -0.399164 4002 | 128261
0.0307 | -10.276 | 28.1208 -0.393389 4002 | 45867
0.03565 | -10.1927 | 27.7952 -0.388115 4002 | 80789
0.0406 | -10.1154 | 27.4951 -0.383206 4.00199 | 275505
0.04555 | -10.0434 | 27.2138 -0.378641 400199 | 212755
0.0505 | -9.97518 | 26.9526 -0.3743 4.00199 | 46055
0.05545 | -9.9113 | 26.7033 -0.370252 4.00199 | 2288576
0.0604 | -9.85027 | 26.4698 -0.366365 4.00199 | 121643
0.06535 | -9.79217 | 26.2455 -0.362673 4.00199 | 426588
0.0703* | -9.73632* | 26.0339* -0.359109* 4.00199 | 27929%
0.07525% | -9.68029% | 25.8304* -0.355497* 4.00199 | 15002%
0.0802* | -9.6312* | 25.6332* -0.352409* 4.00199 | 27673*
0.08515% | -9.58244% | 25.4461% -0.349305* 4.00199 | 55738*
0.0901% | -9.53382% | 25.2702% -0.34617* 4.00199 | 21087*
0.09505% | -9.48831* | 25.0948* -0.343276* 4.00199 | 41286*
0.1 | -0.44349 | 24.925 20.340415 4.00199 | 23914
0.1225 | -9.2572 | 24.2268 -0.328495 400199 | 41831
0.145 | -9.09135 | 23.6153 -0.317843 4.00198 | 50850
0.1675 | -8.94196 | 23.0701 -0.308226 4.00198 | 45708
0.19 | -8.80571 | 22.5799 -0.299427 400198 | 52087
0.2125 | -8.68025 | 22.1323 -0.29131 400198 | 32628
0.235 | -8.56466 | 21.7246 -0.283813 400197 | 36291
0.2575 | -8.45685 | 21.3484 -0.276804 4.00197 | 63468
0.28 | -8.35611 | 21.0004 -0.270242 4.00197 | 97665
0.3025 | -8.26177 | 20.677 -0.264086 4.00196 | 148209
0.325 | -8.17233 | 20.3753 -0.258231 4.00196 | 61513
0.3475 | -8.08816 | 20.0937 -0.252712 4.00195 | 136594
0.37 | -8.00821 | 19.8285 -0.24746 400195 | 70827
0.3925 | -7.93242 | 19.5803 -0.24247 4.00195 | 935877
0.415 | -7.85996 | 19.3449 -0.23769 400194 | 57361
0.4375 | -7.79126 | 19.1238 -0.233151 4.00194 | 89164
0.46 | -7.72565 | 18.914 20.228811 4.00193 | 660962
0.4825 | -7.66275 | 18.7152 -0.224641 4.00193 | 147933
0.505 | -7.60233 | 18.5286 20.220617 400192 | 72445
0.5275 | -7.54471 | 18.3473 -0.216794 4.00192 | 2121982
0.55 | -7.48893 | 18.1789 -0.213065 400192 | 62732
0.5725 | -7.43418 | 18.0222 -0.20937 4.00191 | 19629
0.595 | -7.38437 | 17.8589 -0.206091 4.00191 | 77952

TABLE 7. Values are for Z = 2.0 and those with * are computed to
tolerance 1071 of the goal functional (instead of 107'1).

126




8. VALUES FOR THE COMPARISON OF BORN-OPPENHEIMER CURVES

(22)5R | u(0,R/2) | 1 [ 72| (22)F (D(TZ’TZ),R—%> [o | #cells
0.6175 | -7.33469 | 17.7103 20.202764 40019 | 69499
0.64 | -7.28687 | 17.5688 -0.199555 40019 | 77793
0.6625 | -7.2404 | 17.4342 20.196426 4.00189 | 33089
0.685 | -7.19635 | 17.3037 20.193471 4.00189 | 66682
0.7075 | -7.15326 | 17.1793 -0.190568 4.00188 | 186711
0.73 | -7.11154 | 17.0598 -0.187753 4.00188 | 162601
0.7525 | -7.07092 | 16.9447 20.185008 4.00187 | 44535
0.775 | -7.03198 | 16.835 -0.182373 4.00187 | 60691
0.7975 | -6.99419 | 16.7292 -0.179814 4.00186 | 67368
0.82 | -6.95751 | 16.6281 -0.177324 4.00186 | 69853
0.8425 | -6.92165 | 16.5294 20.174889 4.00185 | 56066
0.865 | -6.88694 | 16.4349 20.172527 4.00185 | 39891
0.8875 | -6.85366 | 16.3452 -0.17026 4.00184 | 203572
0.91 | -6.8205 | 16.2563 -0.167999 4.00183 | 31321
0.9325 | -6.78893 | 16.1724 -0.165843 4.00183 | 170723
0.955 | -6.75783 | 16.0905 -0.163717 4.00182 | 92091
0.9775 | -6.72756 | 16.0135 -0.161636 400182 | 67838
1. | -6.69854 | 15.9362 20.159656 4.00181 | 391732
1.075 | -6.6055 | 15.7017 20.153253 4.00179 | 33916
115 | -6.52072 | 15.4889 20.147414 4.00178 | 73216
1.225 | -6.44212 | 15.2987 -0.141973 4.00176 | 45259
1.3 | -6.36899 | 15.1265 -0.136893 4.00174 | 34320
1.375 | -6.30077 | 14.9721 20.132129 4.00172 | 25607
145 | -6.23787 | 14.8298 20.127736 40017 | 30186
1525 | -6.17949 | 14.7018 -0.123643 400168 | 52233
1.6 | -6.12448 | 14.5841 -0.119775 4.00166 | 70971
1.675 | -6.07255 | 14.4764 20.116109 4.00164 | 50872
175 | -6.02389 | 14.3777 -0.112666 400162 | 61188
1.825 | -5.97833 | 14.287 20.109436 4.0016 | 103916
1.9 | -5.93484 | 14.2033 -0.106341 4.00158 | 54233
1.975 | -5.80361 | 14.1254 -0.103401 4.00155 | 46226
2.05 | -5.85443 | 14.0549 -0.100593 4.00153 | 19951
2.125 | -5.81835 | 13.9885 -0.0980136 4.00151 | 85519
2.2 | -5.78334 | 13.9264 20.0955014 4.00149 | 40224
2.275 | -5.75009 | 13.8697 20.093106 4.00147 | 39486
2.35 | -5.71883 | 13.8168 -0.0908526 4.00145 | 48088
2425 | -5.6891 | 13.7688 -0.0887004 4.00143 | 89144
25 | -5.66028 | 13.7223 -0.086614 40014 | 65476
2575 | -5.6326 | 13.6786 -0.0846067 4.00138 | 37704
2.65 | -5.60687 | 13.6402 -0.0827315 4.00136 | 75030
2.725 | -5.58195 | 13.6023 -0.0809188 4.00134 | 52692
2.8 | -5.55812 | 13.5668 -0.0791822 400132 | 69742
2.875 | -5.53501 | 13.533 -0.0774951 40013 | 37465
2.95 | -5.51299 | 13.502 -0.0758835 4.00127 | 48955

TABLE 8. Values are for Z = 2.0.
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(22)5R | u(0,R/2) | 1 [ 72| (22)F (D(TZ’TZ)’R—%> [o | #cells
3.025 | -5.49213 | 134733 20.0743517 4.00125 | 55820
31 | -5.47168 | 13.4458 -0.0728519 4.00123 | 38956
3175 | -5.45243 | 13.4205 -0.0714353 4.00121 | 50048
3.25 | -5.43308 | 13.3958 -0.0700087 4.00118 | 25566
3.325 | -5.41569 | 13.3738 -0.0687262 400116 | 55423
34 | -5.39822 | 13.3522 -0.067435 4.00114 | 53374
3475 | -5.3812 | 13.3316 -0.0661761 400112 | 24726
3.55 | -5.36487 | 13.3126 -0.064965 4.00109 | 26228
3.625 | -5.34976 | 13.2981 -0.0638328 4.00107 | 69959
3.7 | -5.33456 | 13.278 -0.0627145 4.00105 | 31274
3.775 | -5.32036 | 13.2622 -0.0616587 4.00103 | 69651
3.85 | -5.30605 | 13.2463 -0.0605946 4001 | 37130
3.925 | -5.29265 | 13.2322 20.0595948 4.00098 | 65864
4| 527891 | 13.2178 -0.0585696 4.00096 | 26749
497586 | -5.23491 | 13.174 -0.0552771 4.00088 | 79650
455172 | -5.19447 | 13.1369 -0.0522395 4.00079 | 36520
482759 | -5.1582 | 13.1102 -0.0494876 4.00071 | 28419
5.10345 | -5.12621 | 13.0835 -0.0470738 4.00062 | 29835
5.37931 | -5.09699 | 13.0591 -0.0448693 4.00054 | 42539
5.65517 | -5.06993 | 13.0399 -0.0428142 4.00045 | 41616
5.93103 | -5.04545 | 13.0243 -0.0409479 4.00036 | 24343
6.2069 | -5.02348 | 13.0115 -0.039268 4.00028 | 110392
6.48276 | -5.00274 | 13.0007 -0.0376769 4.00019 | 49742
6.75862 | -4.98394 | 12.9917 -0.0362324 4.0001 | 95280
7.03448 | -4.96595 | 12.9834 -0.0348489 4.00002 | 43567
7.31034 | -4.94954 | 12.9737 -0.0335945 3.99993 | 26060
7.58621 | -4.93456 | 12.9677 -0.0324385 3.99984 | 63394
7.86207 | -4.92043 | 12.9621 20.031348 3.99975 | 105070
8.13793 | -4.90702 | 12.958 -0.0303079 3.99966 | 86990
8.41379 | -4.89452 | 12.9549 20.0293359 3.99957 | 101737
8.68066 | -4.88245 | 12.948 -0.0284126 3.99948 | 23053
8.96552 | -4.87156 | 12.9443 -0.0275693 3.99939 | 43222
0.24138 | -4.86141 | 12.9435 -0.026773 3.9993 | 55523
0.51724 | -4.85181 | 12.9391 -0.0260346 3.99921 | 72386
0.7931 | -4.84248 | 12.937 -0.0253087 3.99912 | 37578
10.069 | -4.83364 | 12.9351 -0.0246201 3.99903 | 30938
10.3448 | -4.82534 | 12.9332 -0.023974 3.99893 | 60966
10.6207 | -4.81765 | 12.9319 -0.0233731 3.99884 | 109972
10.8966 | -4.81013 | 12.9296 20.0227903 3.99875 | 100712
11.1724 | -4.80275 | 12.9281 -0.0222152 3.99865 | 38828
11.4483 | -4.79597 | 12.9266 -0.0216871 3.99856 | 44337
117241 | -479 | 12.9258 -0.0212198 3.99847 | 57890
12. | -4.7837 | 12.9249 -0.0207272 3.09837 | 44632

TABLE 9. Values are for Z = 2.0.
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8. VALUES FOR THE COMPARISON OF BORN-OPPENHEIMER CURVES
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FIGURE 1. Absolute deviation of D(r) between different choices of
Z €{0.5,1,2} and r ranging from 0.001 to 12. The vertical lines are
at r = (22)'*R =0.1,1 and 4.
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FIGURE 2. Relative deviation of D(r) between different choices of
Z € {0.5,1,2} and r ranging from 0.001 to 12. The vertical lines are
at r = (22)*R =0.1,1,4.
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8. SOFTWARE USED

Software used

(1) FEniCS, version 2017.2. This is an open-source computing platform we
used to solve the diatomic TF equation, and in particular for the scripts in
appendix C.3, C.4 and C.7. A description of version 1.5 is in [44] and the
goal-oriented adaptation has been proposed in [43]. It is freely available
under https://fenicsproject.org/.

(2) ParaView, version 5.4.1. For the visualization of solutions computed via
FEniCS, in particular Figures 3, 4 and 5. It is freely available under
https://www.paraview.org/. See also [45].

(3) FreeFem++, version 3.59. Another software for the FEM. We used it to
cross-check the results from FEniCS, see the appendix C.6. It is freely
available at http://www.freefem.org/. See also [46].

(4) (Wolfram) Mathematica, version 11.1.1.0 [47] was used to solve the atomic
ODE and a linearisation of the diatomic PDE (in appendix C.1, C.5, C.2).
All Figures (except 3, 4 and 5) have been created within Mathematica.
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Errata

The present thesis differs from the submitted version only by typos and minor
corrections. More substantial mistakes which we are aware of are listed here,

followed by corrected proofs of Theorem 5.1 and 6.1.

i) Page 4: Equation (1.6) holds only for sequences with bounded ratio, meaning
71 < Zy < (est.)Zy. See also viii) and xv) below.
ii) Page 27: In the statement and proof of Lemma 3.13, all appearances of

<. =3/2 3/2
Crp ¥

iii) Page 32: After (3.24), we erroneously claim that F € H' but only have
FW € L% and VFW € L?. The latter is still sufficient to apply [12, Lemma
9.2]. Similar, Lemma B.2 only proves FW € L% and VFW € L%

iv) Pages 41 and 42: An assumption on the regularity of 92 in Proposition 3.19

should be replaced by p, the corresponding TF density.

and Definition 3.20 is missing (C' suffices).

v) Page 42: At the end of the proof of Lemma 3.21, the value for fH I, py is
false. It equals 22T arsinh(r/ V/(R/2)? — 72) and since arsinh(z) < for x>0,
Lemma 3.21 holds with ” replaced by 10 on the right hand side. Note that
C3.92¢ and c3.99p are now given with this corrected value.

vi) Page 43: The roles of 0,¢ and o*,&* in the second and third sentence of
Lemma 3.22 have erroneously been swapped. Instead, it should read ‘As-
sume there exist positive €, e*,0,0* such that supy, [V — ®zf, | < o*r 4t
and sup g, . [V® — ®7F | < or=**< for p € {0, Rv}. Furthermore assume
that (3/2aTF)£mZ3 <r <min{R/4, (c314/0)", (c317/0*)/<}." As a conse-
quence, the proofs of Theorem 6.1 and Lemma 6.3 need to be changed (see
xii) below).

vii) Page 57: The first summand on the right hand side of (4.17) should read

8(]2/37'['2/3 ‘E;FF‘ |cI)rHF | - 1 7/3
313cy Ky T%%IT) 2R R/2 -2 '

This is due to the incorrect argument ‘CIDTZHE,,(x) < ‘;—| sup cbfZng’ in the proof,
80

which is repaired by using Lemma 3.15 with (3.17) and ETZFZ) r > 2E7F. This

mistake mainly changes the value of c5gp.
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viii) Page 59 and thereafter: The proof of Theorem 5.1 requires the ratio of the
nuclear charges to be bounded. Furthermore, the constant c5 1, we give is ill-
defined. It should instead depend on 0. Below we give a proof of the corrected

version, which is:

Theorem (5.1, corrected). There exist 051 > 0 and c514(N\), ¢5.15(X, ) > 0
such that for all R,X > 0, § € (0,051] and Z € R with 1 < |Z| < Amyg: If
r < ¢5.15(A, 0) min {1, (R/2)1+%}, then

sup < ey a( AL (E.1)

€O,

/ 07 r(Y) — 05 % W) p
y

|z — |

ix) Page 64: The set Qs = Oy in Lemma 5.5 actually depends on R > 2s. A better
notation would be €2, r, in particular for the identity [QS 5| = 33|Q§7R/5|.

x) Page 66: The bound D(¢"™*w3 — 0,) > D(0" 1, — 0,) — D(¢™ (Wd — 10,))
is false. Instead, D(0™™Fwd — 0,) > i D(0™ 1o, — 0,) — D(¢™F (W} — 10,)).
This only changes constants.

xi) Page 69: Theorem 6.1 requires the stronger assumption Z € [1,00)? instead
of Ze R%,|Z| > 1.

xii) Page 70: Due to viii), we fix € in Lemma 6.3, so that c¢51,(\, £/£) only depends
on A. Moreover, because of vi), we need to keep the factor (Rmy*)~ for
the corrected proof of Theorem 6.1. With these changes and by defining
C6.30 = C3.8p (2faTF§/ﬁ> a2 4 C3.80.2%/"7" the same proof yields:

IN

Amyz. There exist
-1
m,; and if v =

Lemma (6.3, corrected). Let Z € [1,00)* with |Z]
C6.3a; Co.30(A) > 0 such that if 2 > R > 2<aTF§~/ﬁ>

s

o.M\ (R/2) 77 > (%aTF)é m;Tl with e = min{ds1§,e52}, then for alls <r
and p € {0, Rv}:

9 v |(625— 57— 9) T | £ (e + o)
B(p,s)¢

i) sup (QrZHF - Q§F> 15(0,) * !x\‘1’ < Cpoa8HTE
B(0,s)° P v

rHF

1) Sup | (04 — 0Z'%) 1z, * 2] 7| < c50a87

iv) sup < s2(fzrs + C5.245%)

Os

ol (o5 = p) = 035 Ty * 2!
pE0,Rv

where fzps = cssp(s/R)* (lez/?’) n§+03,8c(23/R)” < o345 . Furthermore
(under the same assumptions),

v) 9 =0 and fgﬁj”’) < cgqaar? for j € {1,2}, p € {0, Rv},

vi) 1 =0 and [ 0% < 272(1 + A)¥2csr3 for j € {3,4}.
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xiii) Page 71 and thereafter: The bounds (6.7) and (6.11) are missing the difference
o]\ 7AC R VAL Q[WM ,WT(](;RV ], where W(“’ is basically V;"” but with
a smooth cut-off wg instead of 1p(,,). To bound it, we note that (5.4) can
be proven to hold with r replaced by ¢, for all ¢ < r and the analogue holds
for the atomic rHF density (see also [12, Lemma 12.6]). Hence, via Holder’s
inequality and [, s, i<pa |z —y|~%2dx < 875, we have HWT(,{;’p) V)| <
(est.)(r — 8)75(5/r)1/>. We also note that V""" < W:;’p) < VU 5o that

overall, by using Lemma 3.21, one deduces

|Q[VT(J}0)7 VT(j’RV)] _ Q[W({S’O), Wr]&Ry)H < (est)(r — )—7(5/7“)1/5.

Ty

We then chose § = r2'/11 in (6.7) and (6.11) which together with the changes

from xii) leads to:

Lemma (6.4, corrected). Let Z € [1,00)* with |Z] < Amgz. There ex-
l —1

ist C6.3a,C635(A) > 0 such that if 2 > R > 2 (aTFf/n) m, and if r =

Com(N)(R/2)T7F > (3a™)Em7 with € = min{d5.1€, e52}, then

E®) _ po) _ Eﬁl,RV) + Q[‘/T(LO)’V(I,RV)] _ 66.4a()\)7a_7+% < Drzlfg (E.2)

T T T

E@ _ Eﬁ?,o) _ E(2 Rv) 4 Q[V(” V! @B 4 co (W)™ T+ > DrZIjI]b; (E.3)

xiv) Page 75: Due to vi), the proof of Theorem 6.1 does not work and we provide
a corrected version below.

xv) Page 75: Corollary 6.5 and the remarks before it are false. We only have

limsup |Dy'i — D iR | =0(R™"), as R—0.

mz—r00
|Z|<(cst.)ymz

xvi) Page 79: In the text and in Figure 1, ‘fx(r) = [, 5, 01" (y)dy’ is wrong since
In(r) = f s, 01" W)L = r/lyl))dy.

Corrected proof of Theorem 5.1. Here we prove (E.1).

Proof. We begin by defining the constant d5; = min{ds 4, Wl%’%} and introduce
the set Py := (0,051] x Ry x {Z € R% : 1 < |Z] < Mmgz}. Furthermore, let

91
C5.14(A) = max {05,3 (%(aTF)%)\%> e ,05.4}_

Step 1 (Reformulating the first step)

—1 1
Let /BZ((S) = (%aTF)T(ll-HS)m;(uré)|Z|§ then re = (5Z|Z|71/3>1+6 = (%aTF)

s
3
N“‘L

139



ERRATA

1
Since 4—}—% %_%7 Lemma 5.3 implies A (r, 56 C5. 3512 66) for all r < rl” Not-
ing that 6 < 51 < 2/537 we have 5(5) = &= —0({5—55) > 0 and observe that if r <
1 5 49
TZ+6 then 7“1/66612 66 < gt €(0) 4112 66 <6Z|Z| ) —e(d) < rg(a) <%(CLTF)E)\§> E 66

Here the last inequality used the deﬁn1t1ons of Bz,&(9) and the bound |Z| < Amy.
Hence A(r,£(6), cs1a(N)) for all r < r;‘s. The inequality § < (2T + 66¢)~" is
equivalent to 66 < £(8) so that if » < 1 then r°©®) < %, Overall, we find that

V(0,R,Z) € Pyr: A(r,68, ¢c514(A)) Vr < min {1,7’;5} .
Step 2 (Iteration) For (0, R,Z) € Py we define
M(6, R, Z) := sup {r ER: A(s, 08, ¢5.14(N)), Vs < rﬁ} .

By the same arguments as in Step 2 of the original proof on page 63, we deduce that
(1+8)(145)

M(57 Ra Z) 2 min {D(C5.1a()‘>7 65: R) Cs. 1ga ” (R/ ) n 55 } for any (67 R> Z) € P)\

and with D from Lemma 5.4. From here we continue as in Step 3 on page 63 except

(n+8&)
that we chose ¢5.15(A, d) := min {1/2, (e317/¢51a(N)) D) , (c3.185) TH e L3 1ae } O

Corrected proof of Theorem 6.1
Here we prove: There exists €51 > 0 and an increasing 6 : R, — R, such that for
all R € (0,2] and all Z € [1,00)%, we have | DL, — DYIF| < e(ﬂ) RTHeer,

) ) myz

Proof. Let ¢ = min{d51&,e52}, A = |Z|/mz and r = 06_31,()\)(}%/2)1*%. We
1 —Q
079 ith o € (¢/n,1) and

assume first that 2 > R > Cy(\)my?
C1(\) = 2max { (a™E/i) ¢, (a™8/2)¢ feom(N)' T

Then Rm% > 2(aTF€/ﬁ)% and, because an > ¢, also r > (aTF3/2)%m;% so that
the assumptions of the corrected Lemmas 6.3 and 6.4 are satisfied. This means
that both (6.3) and (6.4) hold, with €55 and d51¢ replaced by €. Hence we see
that the assumptions of Lemma 3.22 are (using the corrected Lemma 6.3 1), iii))
satisfied for V® = V") as well as (using the corrected Lemma 6.3 ii), iv)) for
V® = V,®?) Note also that e < 2/537 < 2/11. Combining (3.47) with (E.3) and
the corrected Lemma 6.3 iv), and (3.48) with (E.2) and the corrected Lemma 6.3
i), we thus find

| D — DES| < Co VR ((2r/R) ™" + (2r/R)" + 20/ R) > (Rmyf*) 7€) .
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ERRATA

We use the definition of r and the inequality lez/ °> RTa C’l(/\)ﬁ to conclude
l-a
that if 2 > R > Cl()\)mz3(1 ), then

| D' — Dg'a| < Cs(A, o) R~ (E.4)

with €3(0) = min { <950, 2% — 2 ).

—1ll-a .
Let us now assume that R < Cl()\)mz3(1 ), According to Lemma 4.6, we have

|E%%—E%Hg| < max{cy.6q, c4_6b}|Z|%_% and |ETF — B | < max{cy 64, 04.617}25_%.

We combine these bounds so that for all R < C’l(/\)m;%(lfa):

|DrZP,III; — D%Eﬂ < max{c4_6a, c4.6b} (1 + ()\ — 1)% + A%) C’1<)\) 11(Z5_a) R_7+62(a),

N J/
-

=Cy(\, )

(E.5)

with eg(a) = 121(’173). Note that ex(c) > 0 for any a < 2/77 and €;(a)) > 0 for

all a > C5 := (1 + %ﬁ(% —1))7" because € < ==& We also have C5 > ¢/n

and since C5 < 2/77, there exists oy = arg [Cma/xﬂ min{e; (a), e2(a)} such that
5,2/7

g61 = min{e1(),e2(g)} > 0. We combine (E.4) and (E.5) for a = «ap and
complete the proof with 6(t) := %gi max{C3(\, ap), Cs(A, ap) } O
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