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Summary

In this thesis, the Born-Oppenheimer curves for diatomic molecules are investigated in

the Hartree-Fock model excluding the exchange term. It is exhibited that the curves

have a universal behaviour at small internuclear distances which can be understood from

the simpler Thomas-Fermi theory. Notably, we show that the atomic screenings in these

two theories are comparable up to a distance from the nuclei which is independent of

the atomic number. This is proven iteratively, by relating to suitable Thomas-Fermi

models at different length scales. We in particular study solutions to the Thomas-Fermi

partial differential equation with two singularities and demonstrate that their asymp-

totic behaviour is universal. This thesis also contains a numerical investigation of the

homonuclear Born-Oppenheimer curve in Thomas-Fermi theory which supports the an-

alytic result.

Resumé

I denne afhandling undersøges Born-Oppenheimer-kurverne for diatomiske mo-

lekyler i Hartree-Fock-modellen eksklusiv udvekslingsleddet. Det er vist, at kur-

verne har en universel adfærd p̊a små indre kerneafstande, som kan forst̊as fra

den enklere Thomas-Fermi-teori. Især viser vi, at de atomiske screeninger i dis-

se to teorier er sammenlignelige op til en afstand fra kernerne, der er uafhængig

af atomnummeret. Dette er p̊avist iterativt ved at sammenligne med relevante

Thomas- Fermi modeller p̊a forskellige længdeskalaer. Vi studerer især løsninger

til den Thomas-Fermi partielle differentialligning med to singulariteter og demon-

strerer, at deres asymptotiske adfærd er universel. Denne afhandling indeholder

ogs̊a en numerisk undersøgelse af den homonukleære Born-Oppenheimer-kurve i

Thomas- Fermi-teorien, der understøtter det analytiske resultat.
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Resumé iii

Acknowledgements iv

Chapter 1. Introduction 1

1. Born-Oppenheimer potentials 1

2. The Thomas-Fermi model 2

3. The Hartree-Fock model 3

4. Results 4

5. Structure of the thesis 5

6. Further remarks 7

Chapter 2. Notation and mathematical preliminaries 9

Chapter 3. Thomas-Fermi theory 13

1. The TF functional and its Euler-Lagrange equation 13

2. Atomic and diatomic TF theory 16

3. Outside TF models 21

3.1. Sommerfeld bounds 23

3.2. Controlling the chemical potential 27

3.3. Neutrality 28

4. The Born-Oppenheimer curve 40

Chapter 4. Reduced Hartree-Fock theory 47

1. Density matrices and classical inequalities 47

2. The reduced Hartree Fock minimization problem 49

3. Relation to TF theory 51

4. The outside in rHF theory 55

Chapter 5. Comparing screened potentials 59

1. The iterative proof 59

2. Comparing rHF to its oTF model 64

Chapter 6. The Born-Oppenheimer curve in rHF theory 69



CONTENTS

Chapter 7. Numerics 77

1. Solving the atomic ODE 78

2. Solving the diatomic homonuclear PDE 80

2.1. The problem and its reformulations 80

2.2. Solution via the finite element method 81

3. Comparison to HF values 84

Chapter 8. Conclusions and perspectives 91

1. Summary 91

2. Perspectives for future research 91

Appendix A. Outside harmonic functions and the Kelvin transform 93

Appendix B. Computations 97

Appendix C. Numerical scripts 101

1. Mathematica - atomic TF ODE, computing initial slope 101

2. Mathematica - atomic TF ODE, computing integrals of the solution 101

3. FEniCS - diatomic TF PDE, adaptive mesh refinement 102

4. FEniCS - diatomic TF PDE, manual mesh refinement 105

5. Mathematica - diatomic TF PDE, iteration of a linearised PDE 107

6. FreeFem++ - diatomic TF PDE, adaptive mesh refinement 110

7. Collecting data for the comparison of Born-Oppenheimer curves 112

8. Values for the comparison of Born-Oppenheimer curves 119

Bibliography 131

Software used 135

Errata 137



This thesis is dedicated to the memory of Helena.





CHAPTER 1

Introduction

Finding an accurate description of atoms and molecules has been a driving force in

physics and chemistry over the past century, leading to the development of mod-

ern quantum mechanics. Experimental data agrees to astonishing accuracy with

the predictions of quantum mechanics, calculated in computational chemistry and

physics. The numerical calculations are necessary since there is usually no known,

explicit solution to a quantum mechanical many-body systems. This leads to the

peculiar situation where although the quantitative predictions are highly accurate,

it is hard to obtain ab initio qualitative explanations of experimental observations.

Approximate models can help us gain a better qualitative understanding. This

thesis studies the Born-Oppenheimer potential for two such approximations, called

Thomas-Fermi (TF) and Hartree-Fock (HF) model. We introduce and discuss

these three concepts one by one before we state our results more precisely.

1. Born-Oppenheimer potentials

Throughout this thesis, we consider neutral molecules of M nuclei with nuclear

charges Z = (Z1, ..., ZM) at positions R = (R1, , ..., RM). Furthermore, we assume

that relativistic effects, the nuclear spin and the kinetic energy of the nuclei can

be neglected. The latter is the Born-Oppenheimer approximation [1], a standard

assumption used in computational chemistry. The nuclear charges and positions

Z,R then enter as a parameter into the remaining electronic problem. We write

E(Z,R) for the energy of this system, and compare it to the energies E(Zi) of the

corresponding neutral single-atom systems. This leads to the Born-Oppenheimer

potential energy surface

R 7→ D(Z,R) = E(Z,R)− (E(Z1) + ...+ E(ZM)). (1.1)

It describes the cost or gain in energy when bringing the M atoms together to

the positions R, or breaking them completely apart. It can also be regarded as

the potential for the adiabatic movement of the nuclei in the Born-Oppenheimer

approximation. Its shape and the position of its local minima (if they exist) are

important properties: Minima allow one to extract bond distances and D(Z,R) at

1



CHAPTER 1. INTRODUCTION

these points equals the dissociation energy.

We will mainly consider diatomic molecules, that is M = 2. The energy of such a

system only depends on the relative distance R = |R1−R2| > 0 instead of the two

coordinates R and we denote it by EZ,R. The Born-Oppenheimer energy surface

is then just a curve, which we denote by DZ,R and a schematic example is depicted

in Figure 1.

Figure 1. Schematic of a diatomic Born-Oppenheimer curve DZ,R

with minimum at the (binding) distance R0.

2. The Thomas-Fermi model

In 1927, L. H. Thomas and E. Fermi independently proposed [2, 3] a semi-classical

statistical model to describe the distribution of non-relativistic electrons in an

atom. It treats N such electrons with mass m and charge e as a gas, self-interacting

via the Coulomb repulsion and subject to a nuclear potential V . Together with

the semi-classical postulate that a phase-space volume of size h3 can hold up to 2

electrons, one is lead to minimize

1

2m

∫
Ω

p2dpdx

h3/2
−
∫

Ω

eV (x)
dpdx

h3/2
+

1

2

∫
Ω

∫
Ω

e2

|x− x̃|
dpdx

h3/2

dp̃dx̃

h3/2

over all phase-space volumes Ω ⊂ R3 × R3 with
∫

Ω
dpdx
h3/2

= N . The integration in

p can be carried out explicitly and one finds that this problem is equivalent to

determining the density of electrons ρ(x) =
∫
1Ω(x, p) 2

h3
dp which minimizes

3

5

(3π2)
2
3h2

8π2m

∫
ρ5/3(x)dx−

∫
eV (x)ρ(x)dx+

e2

2

∫ ∫
ρ(x)ρ(x̃)

|x− x̃|
dxdx̃ (1.2)

2



3. THE HARTREE-FOCK MODEL

under the constraint
∫
ρ = N . This model accounts for the kinetic energy (the

ρ5/3-integral), the nuclear attraction and the Coulomb self-energy of the electrons,

but it neglects any ‘exchange correlation’. It is understood [4, p. 624] that TF

theory correctly describes the inner part of the electron density in heavy atoms,

up to a distance from the nucleus of the order Z
−1
3 . This is the critical length scale

in TF theory and it in particular appears in the TF scaling relation

ETF(Z,R) = λ7ETF(λ−3Z, λR), λ > 0. (1.3)

This relation has important consequences, among them that for the atomic (M = 1)

energies, ETF(Z, 0) = Z7/3ETF(1, 0). Now Lieb and Simon showed in 1977 in their

seminal work about TF theory [5] that it correctly describes the leading order of

the quantum mechanical energy,

EQM(Z, 0) = Z7/3ETF(1, 0) + o(Z7/3), Z →∞.

Moreover, the scaling relation (1.3) implies DTF
Z,R = R−7DTF

R3Z,1 and Brezis and Lieb

[6] proved the existence of the limit

lim
λ→∞

DTF
λZ,R = R−7DTF

∞,1. (1.4)

We note that finding the value of the constant DTF
∞,1 is still an open problem.

It is only known to be upper bounded (in units where h = 2π and m = 1) by

π42538 43
35
≈ 2.51258×107. The exactness of TF theory as Z →∞ and the existence

of limiting quantities is part of the mathematical appeal of TF theory. Nonetheless,

TF theory has severe limitations which became apparent when Teller [7] proved

the no-binding theorem in 1962, saying that DTF is strictly positive. Or in simpler

words:

There are no molecules in TF theory.

3. The Hartree-Fock model

Fock and Slater [8, 9] independently proposed in 1930 to improve Hartree’s method

[10] by including the antisymmetry of electronic wave functions. The resulting

Hartree-Fock theory can be regarded as the restriction of the variational principle

for the quantum mechanical Hamiltonian to pure wedge products, called Slater-

determinants. We give a concrete description of the involved energy functional and

mathematical details in Chapter 2 and continue with more general remarks here.

The HF variational problem is more complex than that of TF theory, but still

3



CHAPTER 1. INTRODUCTION

accessible with modern computers.1 The model does in particular include some

‘exchange correlations’ and it depends, in contrast to TF theory, not simply on the

density, but on the one-particle reduced density matrix of the electronic state.

Although binding distances in HF theory have been computed numerically, a math-

ematical proof of binding in HF theory is still an open problem. This situation

reflects our opening remarks: The better the theory and its numerical predictions,

the harder it is to prove simple qualitative features.

4. Results

It has been conjectured by Solovej [11] that the Born-Oppenheimer curve of large

homonuclear diatomic molecules has the universal behaviour DTF
∞ R−7 for small

nuclear separations R, or more precisely:

lim sup
Z→∞

∣∣D(Z,Z),R −R−7DTF
∞,1
∣∣ = o(R−7), as R→ 0. (1.5)

In view of (1.4), this can be informally rephrased as ‘TF-universality of Born-

Oppenheimer curves’ or, with Teller’s no-binding result in mind:

Although molecules do not exist in Thomas-Fermi theory, it does describe the

Born-Oppenheimer curve of large atoms for small nuclear separations.

We sought to prove this conjecture in HF theory but did not succeed because of

the so-called exchange term in HF theory. We instead proved the conjecture for

a HF model without the exchange term, which we call the reduced Hartree-Fock

(rHF) model.2 The main result is:

lim sup
min{Z1,Z2}→∞

∣∣DrHF
(Z1,Z2),R −R−7DTF

∞,1
∣∣ = o(R−7), as R→ 0. (1.6)

Our proof of (1.6) is heavily inspired by Solovej’s work on the ionization conjecture

in HF theory [12], where he showed that atomic screened potentials in HF and TF

theory are comparable. This was known up to the TF length scale Z−1/3, but [12]

used an iteration scheme that allows to reach a length scale which is independent of

Z. We use this technique and extend it to the case of a diatomic system. Moreover

since this is joint work with Solovej, parts of this thesis closely follow his work.

1It took several decades after its invention, until the development of powerful computers, for the
HF model to really shine.
2This is not the Hartree model, since we still require fermionic states
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5. STRUCTURE OF THE THESIS

Figure 2. Comparison of rescaled Born-Oppenheimer curves in
Thomas-Fermi (TF) and Hartree-Fock (HF) theory. TF values have
been computed for this thesis, HF values are from [13]. The nuclear
repulsion, a constant in this scaling, has been excluded.

Our extension to diatomic systems is in many places straightforward but overall

non-trivial. It in particular involves an analysis of the diatomic TF potential in

the region between the nuclei.

Solovej’s conjecture is still open, both in HF theory and in full quantum mechanics.

In Chapter 7 we provide numerical calculations which both support the conjecture

for HF theory and complement our analytic result (1.6): We computed DTF
(Z,Z),R

and compare it to the values of DHF
(Z,Z),R obtained in [13], which appear as coloured

symbols in figure 2. The astonishing agreement of the curves indicates that the TF-

universality of Born-Oppenheimer potentials extends to smaller atoms. In other

words, the limiting behaviour (1.5) is already reached for reasonable values of Z.

5. Structure of the thesis

We now describe the structure of the thesis. After this introduction, we first give

an overview of our notation and the mathematical prerequisites. It ends with Table

1 on page 12, where we collect notation which will be introduced later in this thesis.

Chapter 3 is by far the largest and starts with an overview of the basics in TF

5



CHAPTER 1. INTRODUCTION

theory, followed by the bounds on atomic TF theory that we will need. It then con-

tinues with the study of outside TF models, which are defined for a certain class of

potentials supported outside of balls centred at the nuclei. We in particular derive

bounds on the Thomas-Fermi potential in outside TF models (Lemmas 3.11 and

3.12) as well as conditions under which the minimizers are neutral (Lemma 3.17).

The Chapter ends with a discussion of the TF Born-Oppenheimer curve, where

we in particular show in Lemma 3.22 that it can be (to leading order in R → 0)

determined from neutral outside TF models.

In Chapter 4, we first introduce the notion of a density matrix and give an overview

of classical bounds for the negative eigenvalue of Schrödinger operators before in-

troducing (reduced) HF theory. We then recall in Lemma 4.6 that the molecular

energies in rHF and TF theory agree to leading order in Z, since this will provide

the starting point for the iteration. Finally, we study the outside part of the den-

sity in rHF theory (Lemma 4.9).

Chapter 5 presents the iterative proof of Theorem 5.1, which from a technical

point of view is our main result: The screened potentials of rHF and TF theory

are comparable far beyond the TF length scale Z
−1
3 .

Then in Chapter 6 we combine results from all the previous Chapters to prove

Theorem 6.1, which implies (1.6), settling Solovej’s conjecture in rHF theory. We

in particular derive in Lemma 6.4 that the rHF Born-Oppenheimer curve can be

computed from appropriately chosen outside TF models. This ends the analytic

part of the thesis.

Chapter 7 describes our numerical investigation of the Born-Oppenheimer curve in

TF theory, comparing it to results from HF theory. We in particular describe how

one easily obtains a highly accurate solution to the atomic Thomas-Fermi ODE.

And for the diatomic case, we outline the solution process for the (nonlinear)

Thomas-Fermi PDE with the finite element method, using the FEniCS platform.

Appendix A contains a short discussion of outside harmonic functions and the

Kelvin transform. Straightforward but slightly technical calculations are given in

appendix B and for the numerical work, the scripts and some computer output are

provided in appendix C.

6



6. FURTHER REMARKS

6. Further remarks

1) Both the HF and TF model are common starting points in computational

chemistry, in the sense that a plethora of different corrections are added to overcome

their shortcomings. This leads either to post-Hartree-Fock methods or density

functional theory. These corrected models give better predictions but are usually

based on heuristics, whereas the ‘pure’ models which we consider are both derived

from basic principles.

2) We said that the HF model arises from a restriction of quantum mechanics

to special states. We thereby implicitly considered the non-relativistic Schrödinger

Hamiltonian in the Born-Oppenheimer approximation. This neglects many lower-

order effects, among them the fine structure corrections, which have to be included

for the mentioned accuracy of quantum mechanics. This is achieved by the use

of perturbation theory and is discussed in many physics text books and to some

extent also in [14, Chapter XIII.2].

3) The limit Z → ∞ is of course unphysical, since atoms with Z > 118 have

never been observed. It is more of a necessity to make a rigorous mathematical

statement about an asymptotic behaviour and it stems from the fact that TF the-

ory has a limit as Z → ∞: Not only the energy and Born-Oppenheimer curve,

but also the electron density converges. We can make (1.6) more precise by ex-

plicitly computing constants for the upper and lower bound, but these will be

too large to be of any practical use. On the other hand, our numerical investi-

gation (somewhat unexpectedly) indicates that this limiting behaviour is actually

reached very quickly. It complements the analytic statement and suggests that the

TF-universality of Born-Oppenheimer curves (at small internuclear distances) also

holds for lighter atoms.

7





CHAPTER 2

Notation and mathematical preliminaries

We write N for the set of positive natural numbers and R+ for (0,∞). By Iq we

denote the q × q identity matrix. For a ∈ R, we define [a]+ := max{0, a} and

[a]− := max{0,−a}. The open ball with radius r and centre p in R3 will be de-

noted by B(0, r). For any Ω ⊂ R3, we write Ωc for its complement and 1Ω will

denote the indicator function of Ω, while |Ω| denotes its Lebesgue measure (if it is

Lebesgue-measurable).

For a system of M atoms at positions R = (R1, ..., RM) ∈ (R3)M and with charges

Z = (Z1, ..., ZM) ∈ RM
+ , we define the corresponding Coulomb-potential

VZ,R(x) :=
M∑
j=1

Zj
|x−Rj|

.

We will focus on diatomic systems, where M = 2. These depend only on the

relative distance

R := |R1 −R2|

and the nuclear charges Z = (Z1, Z2). We therefore assume without loss of general-

ity that R1 = 0 and R2 = Rν for some ν ∈ S2, which we assume is fixed throughout

this thesis. By a slight abuse of notation we then identify Z0 := Z1, ZRν := Z2 so

that

VZ,R(x) := VZ,(0,Rν)(x) =
∑

p∈{0,Rν}

Zp
|x− p|

and hope that this will not bring any confusion. For brevity, we will use the

notation mZ := min{Z1, Z2} and |Z| :=
∑M

j=1 Zj. Furthermore, we define the open

inside and outside of two balls,

Ir := B(0, r) ∪B(Rν, r) and Or := (Ir)c.

We set Lp(Ω) = Lp(Ω;R) and if Ω = R3, we just write Lp. Whereas whenever

complex-valued Lp-spaces are used, we use the explicit notation Lp(R3;Cq). Here

q will denote the number of spin states, which is usually 2 for electrons but our

analysis will be valid for any q ∈ N and we chose to keep it as a fixed free parameter

throughout this thesis. We will identify f ∈ Lp as a multiplication operator on Lp

9



CHAPTER 2. NOTATION AND MATHEMATICAL PRELIMINARIES

or Lp(R3;Cq) that acts by f : ϕ = (ϕ1, ..., ϕq) 7→ (fϕ1, ..., fϕq).

We introduce an important quantity that will appear in the TF and rHF func-

tional.

Definition 2.1. The direct Coulomb energy of two functions f, g ∈ L6/5(R3;C)

is

D(f, g) =
1

2

∫ ∫
f(x)g(y)

|x− y|
dxdy.

Note that this is well-defined because of the Hardy-Littlewood-Sobolev inequality

[15], [16], [17],

D(f, g) ≤ cHLS‖f‖6/5‖g‖6/5, (2.1)

where the constant cHLS = 4
3

(
2
π

) 1
3 is sharp and due to Lieb [18]. We will also use

the notation D(f) := D(f, f).

A locally integrable function f is in Lp +Lq with p, q ∈ [0,∞] iff it can be written

as f = fp + fq with fp ∈ Lp, fq ∈ Lq. And f ∈ Lp + Lqε iff f ∈ Lp + Lq and ‖fq‖q
can be chosen arbitrarily small. Our main example is VZ,R ∈ L5/2(R3) + L∞ε (R3).

We define the mean of f over a bounded set Ω as −
∫

Ω
f := |Ω|−1

∫
f .

As usual, the Sobolev space H1(Ω) consists of L2(Ω)-functions with weak de-

rivative in L2(Ω). For Γ ⊂ ∂Ω and g ∈ L2(Γ), we define H1
g,Γ(Ω) as the set of

H1(Ω)-functions that equal g on Γ. The symbol ∂n denotes the partial derivative

in direction of the outward unit normal n of some boundary ∂Ω and it appears in

the context of the classical formula
∫

Ω
∇f∇g =

∫
∂Ω
∂nfg −

∫
Ω

∆fg.

The space of smooth functions with compact support on an open subset Ω of

Rn will be denoted by C∞c (Ω). Whereas if Ω ⊂ Rn is unbounded (and not nec-

essarily open), we denote by C0(Ω) the set of continuous functions f such that

lim
|x|→∞

f(x) = 0. By T [φ] we denote the action of a distribution T on a test function

φ, then in particular δx[φ] = φ(x) for any φ ∈ C∞c (Rn).

For the Fourier transform F of f , we use the convention Ff(k) :=
∫
R3 f(x)e−2πikxdx.

We recall that ∗ denotes the convolution operator, that is f ∗ g(x) =
∫
f(y)g(x−

y)dy and we frequently will use the notation f ∗ |x|−1 =
∫ f(y)
|x−y|dy. For this we

observe:

Proposition 2.2. If ρ ∈ L1 ∩ L5/3 then ρ ∗ |x|−1 ∈ C0(R3).

10



Proof. Repeating the argument from [5, Lemma II.25], we use Young’s inequality

‖f ∗g‖∞ ≤ ‖f‖p‖g‖q, the fact that |x|−1 ∈ L5/2 +Lq for any q > 3 and that C0(R3)

is the closure of C∞c (R3) with respect to ‖ · ‖∞. �

Let τ be a placeholder for one of the three molecular theories we will consider

– either TF, rHF or HF. Then %τZ and %τZ,Rν will denote atomic and diatomic

neutral electron densities in the theory τ (see (3.4), (4.8) and (4.9) for precise

definitions). Quite generally, while ρ will be some non-negative L1-function, % will

denote minimizers of a functional. We define the τ -screened atomic potential at

radius r > 0

Φτ
Z,r(x) :=

Z

|x|
−
∫
B(0,r)

%τZ(y)

|x− y|
dy

and the τ -screened diatomic potential at radius r > 0

Φτ
Z,R,r(x) := VZ,R(x)−

∫
Ir

%τZ,R(y)

|x− y|
dy.

Note that in general, Φτ
Z0,r

(x) + Φτ
ZRν ,r

(x−Rν) 6= Φτ
Z,R,r(x).

We define the constant cH = h2

2m(2π)2
as the one appearing in front of the kinetic

part of a Hamiltonian H = −cH∆ − V . A common choice in physics are atomic

units h = 2π,m = 1, whereas in operator theory, one usually considers cH = 1.

We keep it arbitrary but fixed. The constant cTF appears in the TF functional

(see Definition 3.1) and is for the purpose of the mathematical treatment of TF

theory arbitrary. Only when comparing to a theory that arises from a physical

Hamiltonian, one has to choose cTF = cH(6π2/q)2/3, which is clear by inspection

of the kinetic term in (1.2) and Definition 3.1.

Universal constants that appear in classic inequalities will be given names that

refer to the name of the inequality, like in (2.1). Many other constants appear in

this thesis and might depend on q and cH but not on R,Z, R, Z or r, unless explic-

itly stated. They can all be computed in principle, if not mentioned otherwise. We

will sometimes just write (cst.) for such a constant. Some will be named after the

statement they appear in, for example cX.Y a, cX.Y b, ... if these appear in ‘Lemma

X.Y’. This makes it more transparent regarding which parts of a proof use earlier

statements. We denote by C,C1, C2, ... constants that are only used within a proof

and whose value may therefore differ between proofs.

11



CHAPTER 2. NOTATION AND MATHEMATICAL PRELIMINARIES

Symbol Page
η, ξ 15

%TF
Z , %TF

Z,R 16
ϕTF
Z , ϕTF

Z,R 16
ETF
Z , ETF

Z,R 16
aTF 17

η̃, ξ̃ 18
H(Ω) 21
N(V ) 21

Hp, H−p , H+
p 24

a,A 34
DTF

Z,R 40

Q[V
(0)
r , V

(Rν)
r ] 42

γ, ργ, DMq 47
HV 48
E rHF 50
EHF 49

γrHF
Z , γrHF

Z,R 50
gζ 51

{ωz}, z ∈ {0, Rν, 0̃, R̃ν,O} 56
γω 56
A 60

V
(j,p)
r , V

(j)
r 69

DrHF
Z,R 69

Table 1. We here provide a list of symbols, which we did not in-
troduce yet, together with the page where they are defined or ex-
plained.

12



CHAPTER 3

Thomas-Fermi theory

This Chapter develops the mathematical framework of Thomas-Fermi (TF) theory

that we require, though there is much more that can be said about TF theory than

we provide here. A very detailed analysis of the TF theory of Coulomb systems

to which we refer in several places has been given by Lieb and Simon [5]. For a

concise review of molecular TF theory and its extensions, we refer to Lieb’s review

[4] from 1981.

1. The TF functional and its Euler-Lagrange equation

We start by introducing the set of admissible TF densities with mass at most λ,

C(λ) =
{
ρ ∈ L1(R3) ∩ L5/3(R3)

∣∣ρ ≥ 0, ‖ρ‖1 ≤ λ
}

and write C = C(∞) for the set of all admissible TF densities. The value of the

constant cTF > 0 is arbitrary for the purpose of this Chapter.

Definition 3.1. The Thomas-Fermi energy functional corresponding to the

potential V ∈ L5/2(R3) + L∞ε (R3) is the map ETF
V : C → R defined by

ETF
V [ρ] = cTF

3

5

∫
ρ

5
3 −

∫
V ρ+D(ρ).

This functional admits a simple scaling relation, which can be expressed as follows:

If V ∈ L5/2(R3) + L∞ε (R3) is such that V (x/t) = tV (x), t > 0, then for any

T, U ∈ R+ and ρ ∈ C, we have that

T

∫
ρ5/3 − U

∫
V ρ+D(ρ) = U

7
3

3cTF

5T
ETF
V [ρ̃] (3.1)

with λ3
TU

2ρ̃(λTU
1/3x) = ρ(x) and λT = 3cTF

5T
. This leads in particular to the

mentioned scaling relation (1.3).

13



CHAPTER 3. THOMAS-FERMI THEORY

A proof of the following fundamental results about the TF minimization problem

has been essentially given in [5].1

Theorem 3.2 (The TF minimization problem). Let V ∈ L5/2(R3) + L∞ε (R3) and

Eλ := inf
C(λ)
ETF
V . Then:

a) Eλ is finite, convex and nonincreasing in λ ≥ 0 and equals

inf{ETF
V [ρ]|ρ ∈ C, ‖ρ‖1 = λ}.

b) For all λ ≥ 0 exists a unique %λ ∈ C(λ) such that ETF
V [%λ] = Eλ.

c) For all λ ≥ 0 exists a unique µλ ∈ R, called the chemical potential, such that

Eλ +µλ
∫
%λ = inf

ρ∈C

{
ETF
V [ρ] + µλ

∫
ρ
}

. Moreover, Eλ is differentiable in λ with

∂Eλ
∂λ

= −µλ and µλ ∈ [0, supV ]. If µλ > 0, then
∫
%λ = λ.

d) The minimizer %λ is the unique solution in C to the TF equation

cTF%
2/3 = [V − % ∗ |x|−1 − µλ]+ in R3,

and the corresponding TF potential ϕλ := V − %λ ∗ |x| satisfies the distribu-

tional TF differential equation

∆ϕλ = 4πc
−3/2
TF [ϕλ − µλ]3/2+ + ∆V in R3.

The TF equation is the Euler-Lagrange equation for ETF
V and has important con-

sequences: If the chemical potential (the Lagrange-multiplier) vanishes, then the

TF equation becomes

%(x) = c
3/2
TF [ϕ(x)]

3/2
+ . (3.2)

This means that the minimizing density with µ = 0 is completely determined by

the TF potential ϕ, which solves the distributional partial differential equation

∆ϕ(x) = 4πc
−3/2
TF [ϕ]

3/2
+ (x) ∀x ∈ supp(∆V )c. (3.3)

The prime example for this situation is the Coulomb potential VZ,R: It is harmonic

in {R1, .., RM}c and the chemical potential for the minimization problem over C(λ)

vanishes for any λ ≥ |Z| due to the following result by Lieb and Simon:

Theorem 3.3. [5, Theorems II.17 and II.18] ETF
VZ,R

has an absolute minimizer %TF
Z,R,

which is neutral, that is
∫
%TF

Z,R = |Z|.

The study of the partial differential equation (3.3) plays a central role in this thesis,

not only because it allows us to deduce properties of the TF minimizers, but in
1Lieb and Simon use that V is in ∪q∈( 5

2 ,∞)(L
5/2 + Lq), which is a strict subset of L5/2 + L∞ε . If

V is from the latter set, we note that ETF
V [ρn] → ETF

V [ρ] if ρn → ρ in L5/3 and ‖ρ‖1, ‖ρn‖1 are
uniformly bounded. This in particular replaces [5, Theorem II.2 b)] and is proven along the same
lines.
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1. THE TF FUNCTIONAL AND ITS EULER-LAGRANGE EQUATION

particular because solutions to (3.3) have a certain universal behaviour. We give

a short explanation of the underlying principle:

The only solution of the simple form |x|p is p = −4, but TF potentials arising

from a nuclear potential have a |x|−1-behaviour at the origin since % ∗ |x|−1 is con-

tinuous. In this case, |x|−4 can at most be valid for large |x|. This had already

been noted by Sommerfeld in 1932 [19] when he studied the atomic TF problem

and we speak of the Sommerfeld asymptotic when

ϕ(x) ≈ cS|x|−4, as |x| → ∞

with

cS := (3/π)2c3
TF.

Looking for the next order in |x|, that is a function of the form |x|−4(1 + a|x|p),
one computes ∆|x|−4(1 + a|x|p) = 12|x|−6(1 + a/12(12 + p2 − 7p)|x|p). Since

(|x|−4(1 + a|x|p))3/2 ≈ |x|−6(1 + 3
2
a|x|p) to first order in the correction a|x|p, this

ansatz leads to p2 − 7p = 6. We use the notation introduced by Sommerfeld and

denote the solutions of this quadratic equation by η and −ξ, that is

η :=
7 +
√

73

2
≈ 7.772, ξ := −7−

√
73

2
≈ 0.772.

Now the interesting part is the Sommerfeld universality : Positive solutions to (3.3)

that vanish at infinity indeed satisfy the Sommerfeld asymptotic and hence have

also the same correction terms |x|−4−ξ for large |x|.2

We note if ϕ is a radial solution of (3.3), then it reduces to an ordinary differ-

ential equation
df

dr2
=

(f(r))3/2

√
r

, r > 0

via f(|x|) = (4π)2c−3
TF|x|ϕ(x). This equation has been studied, amongst others by

Hille in [20]. However, since we seek to investigate the dissociation energy, which

in particular involves the nonradial system of two nuclei, we need to go beyond the

radial case, treating the (fully) partial differential equation. This case has already

been investigated (for example in [5]) and we in particular note that the behaviour

of solutions ϕ to (3.3) with a singularity at p ∈ R3 has been characterized by Veron

[21]: Either lim
x→p

ϕ(x)|x − p|4 = cS, which is the unique ‘strong’ singularity, or we

have a ‘weak’ singularity lim
x→p

ϕ(x)|x − p| = C for some C > 0. Any TF potential

that corresponds to VZ,R clearly falls into the latter category. Hence all C > 0 are

2compare Lemmas 3.6, 3.10 and 3.11
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CHAPTER 3. THOMAS-FERMI THEORY

possible and the strong singularity can be understood as the limiting case C →∞.

The main technique for the study of the PDE (3.3) is the subharmonic comparison

argument, a variation of the maximum principle for subharmonic functions.

Theorem 3.4 (Maximum principle). Let Ω be an open, bounded subset of Rn and

assume u ∈ C(Ω), as a distribution, satisfies ∆u ≥ 0 in Ω. Then max
Ω

u = max
∂Ω

u.

The maximum principle is a well-known cornerstone in harmonic analysis. For

a proof of this generalization to subharmonic (continuous) distributions, see for

example [22, Part 3, Chapter 3.2].

Corollary 3.5 (Subharmonic comparison). Let Ω be an open subset of Rn and

assume u ∈ C(Ω) satisfies u ≤ 0 on ∂Ω and, as a distribution, ∆u ≥ 0 in

Ω ∩ {u > 0}. Further assume lim sup
x∈Ω, |x|→∞

u(x) ≤ 0 if Ω is unbounded. Then

u(x) ≤ 0 for all x ∈ Ω.

Proof. Let Ur = B(0, r) ∩ {x ∈ Ω : u(x) > 0} and assume there exists r̃ with

x̃ ∈ Ur̃. Then 0 < u(x̃) ≤ max
Ur

u = max
∂Ur

u for all r ≥ r̃. But lim sup
r→∞

max
∂Ur

u ≤ 0 due

to the assumptions. Hence Ur must be empty for all r. �

2. Atomic and diatomic TF theory

To discuss (neutral) atomic and diatomic TF theory, we recall that VZ,R(x) =∑
p∈{0,Rν} Zp|x−p|−1 for some arbitrary but fixed ν ∈ S2. Using Theorems 3.2 and

3.3 we then define the atomic and diatomic global minimizers

%TF
Z := arg min

C
ETF
Z/|x| and %TF

Z,R := arg min
C
ETF
VZ,R

(3.4)

and denote by ETF
Z and ETF

Z,R the minimal values of the TF functional. The mini-

mizing densities are neutral, that is
∫
%TF
Z = Z,

∫
%TF
Z,R = |Z| and the corresponding

chemical potential vanishes. The corresponding TF potentials

ϕTF
Z (x) :=

Z

|x|
− %TF

Z ∗ |x|−1 and ϕTF
Z,R(x) := VZ,R(x)− %TF

Z,R ∗ |x|−1

therefore satisfy the distributional differential equations

∆ϕTF
Z = 4πc

−3/2
TF (ϕTF

Z )3/2 − 4πZδ0 in R3

16



2. ATOMIC AND DIATOMIC TF THEORY

and

∆ϕTF
Z,R = 4πc

−3/2
TF (ϕTF

Z,R)3/2 − 4π (Z0δ0 + ZRνδRν) in R3.

We have already announced that these equations imply the Sommerfeld asymptotic:

Lemma 3.6 (Atomic Sommerfeld bounds). Let Z > 0 and aTF := 2(44
√

11−1)
c
ξ/3
S

22ξ
.

Then

cS|x|−4 ≥ ϕTF
Z (x) ≥ cS|x|−4(1− aTFZ−ξ/3|x|−ξ),

and
3

π
cS|x|−6 ≥ %TF

Z (x) ≥ 3

π
cS|x|−6(1− 3

2
aTFZ−ξ/3|x|−ξ).

Proof. It is well known that ϕTF
Z ≤ cS|x|−4 for all x ∈ R3, see for example [12,

Theorem 5.2]. A proof of the bound ϕTF
Z (x) ≥ cS|x|−4(1+aZ−ξ/3|x|−ξ)−2, ∀x ∈ R3

with the constant a = (44
√

11− 1)c
ξ/3
S 22−ξ can be found in [12, Thm 5.4].3 From

this and with aTF = 2a we infer that for all x ∈ R3:4

c−1
S |x|

4ϕTF
Z (x) ≥ 1− aTFZ−ξ/3|x|−ξ.

For the bound on the TF density, we use that (cS/cTF)3/2 = 3
π
cS together with the

TF equation (3.2). Then the upper bound is trivial. And the lower bound also

follows immediately:

3

π
c−1

S |x|
6%TF
Z (x) =

(
c−1

S |x|
4ϕTF

Z (x)
)3/2 ≥ (1 + aTFZ−ξ/3|x|−ξ)−3

≥ 1− 3aTFZ−ξ/3|x|−ξ.

�

Remark: Positivity of the atomic TF potential

The lower bounds that we give in Lemma 3.6 are far from optimal, because they

are just the asymptotic behaviour (for large |x|) of the better lower bound [12,

Thm 5.4]. We note that the latter implies

ϕTF
Z (x) > 0, ∀x ∈ R3.

The TF scaling relation (1.3), rephrased for the TF potentials, reads ϕTF
Z (x) =

λ4ϕTF
λ3Z(λx) and ϕTF

Z,R(x) = λ4ϕTF
λ3Z,λR(λx) for any λ > 0. It implies that the

atomic potential is, for all Z > 0, fully determined by one single radial function

ϕTF
1 . The diatomic potential on the other hand is already more complicated. It

can only be reduced to a two-parameter family, depending on m3
ZR and the ratio

max(Z1, Z2)/mZ. The same holds for the diatomic Born-Oppenheimer curve DTF
Z,R.

3using that β0 = c
1/3
S /22

4By strict convexity of f(t) = (1 + t)−p on (−1,∞), f(t) ≥ f(0) + tdfdt (0) = 1− pt.
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CHAPTER 3. THOMAS-FERMI THEORY

A classical result due to Teller [7] describes an important relation between the

atomic and diatomic TF potentials. Lieb and Simon provided a rigorous proof (see

[5, Thm. V.5], which contains an even sharper result not needed here). We repeat

it here to showcase an application of the subharmonic comparison argument.

Lemma 3.7 (Teller). For all positive Z1, Z2, R and all x ∈ R3,

max
{
ϕTF
Z1

(x), ϕTF
Z2

(x−Rν)
}
≤ ϕTF

Z,R(x) ≤ ϕTF
Z1

(x) + ϕTF
Z2

(x−Rν).

Proof. Note that by Proposition 2.2, x 7→ ϕTF
Z1

(x)− ϕTF
Z,R(x) + Z2

|x−Rν| is continuous

on all of R3. Hence ϕTF
Z1
≤ ϕTF

Z,R on B(R, δ) for all δ sufficiently small. We apply

Corollary 3.5 with u = ϕTF
Z1
− ϕTF

Z,R and Ω = B(R, δ)
c

and obtain ϕTF
Z1
≤ ϕTF

Z,R

everywhere. Interchanging the roles of ϕTF
Z1

and ϕTF
Z2

in this argument proves the

first inequality. While for the second inequality, we apply Corollary 3.5 with u =

ϕTF
Z,R − ϕTF

Z1
− ϕTF

Z2
(· −Rν) and Ω = R3. �

Combining Teller’s Lemma and the atomic Sommerfeld bound gives a Sommer-

feld type lower bound for ϕTF
Z,R and an upper bound by twice the Sommerfeld

asymptotic. A better upper bound for large |x| which actually proves the Sommer-

feld asymptotic for the diatomic potential will be provided later and follows from

Lemma 3.10.

We improve Teller’s bound close to the origin, where both ϕTF
Z1

(x) and ϕTF
Z,R(x)

have the same leading term Z1/|x|. We have control on the growth of their differ-

ence, independent of the value of Z2. For this we introduce more notation, defining

the constants

ξ̃ :=
ξ + 4

η + ξ
, η̃ := 1− ξ̃ =

η − 4

η + ξ
.

Lemma 3.8. Let p ∈ {0, Rν}, assume RZ
1/3
p ≥ 2

(
aTF ξ̃/η̃

)1/ξ

. Then for all

x ∈ B(p,R/2) :

0 ≤ ϕTF
Z,R(x)− ϕTF

Zp (x− p) ≤ c3.8acSR
−4(RZ1/3

p )−η̃ξ + cS|x− p|−4

(
2|x− p|

R

)η
.

And for all x ∈ B(p, r)c with r ∈ (0, R/2):∣∣∣(%TF
Zp (· − p)− %TF

Z,R)1B(p,r) ∗ |x|−1
∣∣∣ ≤ r

|x|

(
c3.8bR

−4
(
RZ

1
3
p

)−η̃ξ
+ c3.8cr

−4

(
2r

R

)η)
.

Proof. Without loss of generality we may assume p = 0.

Step 1 (A preliminary bound in B(0, r))

Consider the function Ψ(x) := cS|x|−4 (1 + (R/r − 1)−4 (|x|/r)η), which is smooth

18



2. ATOMIC AND DIATOMIC TF THEORY

away from the origin. Since η is a solution to η(η − 7) = 6 and since (1 + 3
2
t) ≤

(1 + t)3/2 for t ≥ 0, we compute for |x| > 0:

∆Ψ(x) = 12cS|x|−6

(
1 +

(
1 + η(η−7)

12

)
(R/r − 1)−4

(
|x|
r

)η)
≤ 12c

−1/2
S Ψ(x)3/2.

By Proposition 2.2, we have ϕTF
Z,R − Z1|x|−1 ∈ C(B(0, R)). Hence there exists a

δ > 0 such that ϕTF
Z,R ≤ Ψ in B(0, δ). Let us assume for now that r ∈ (0, R). By

Lemmas 3.6 and 3.7 we find that for all |x| = r

ϕTF
Z,R(x) ≤ cSr

−4

(
1 +

r4

|x−Rν|4

)
≤ cSr

−4

(
1 +

r4

(R− r)4

)
≤ Ψ(x).

We now apply Corollary 3.5 with u = ϕTF
Z,R −Ψ and Ω = B(0, r) \B(0, δ) and find

ϕTF
Z,R(x) ≤ cS|x|−4

(
1 + (R/r − 1)−4

(
|x|
r

)η)
, ∀x ∈ B(0, r). (3.5)

Then using Lemma 3.6 again, we conclude that for all x ∈ B(0, r) and Z1, Z2 > 0,

ϕTF
Z,R(x)− ϕTF

Z1
(x) ≤ cS|x|−4

(
aTFZ

−ξ/3
1 |x|−ξ + (R/r − 1)−4

(
|x|
r

)η)
. (3.6)

Step 2 (Improving the bound for small x)

For |x| = r0 := r
(
ξ̃
η̃
aTF (R/r − 1)4 (R/r)ξ(RZ

1/3
1 )−ξ

) 1
η+ξ

, the right hand side of

(3.6) is minimal in |x| ∈ [0, r]. So if |x| = r0 ≤ r, which is equivalent to

RZ
1/3
1 ≥ C1(r/R) :=

R

r

(
ξ̃

η̃
aTF(R/r − 1)4

)1/ξ

,

then ϕTF
Z,R(x)− ϕTF

Z1
(x) ≤ cSa

TFZ
−ξ/3
1 (η + ξ)/(η − 4)r−ξ−4

0 . As the right hand side

is a constant, we can extend the bound to all |x| ≤ r0 by Corollary 3.5 (with

u = ϕTF
Z,R − ϕTF

Z1
− (cst.) and Ω = B(0, r0)). Hence if RZ

1/3
1 ≥ C1(r/R) > 0, then

r0 ∈ (0, r] and we have improved (3.6) for small x:

ϕTF
Z,R(x)− ϕTF

Z1
(x) ≤ cSa

TF η+ξ
η−4

Z
−ξ/3
1 r−ξ−4

0 , ∀|x| ≤ r0. (3.7)

We choose r = R/2, which fixes the constant C1(r/R). Then r0 = (cst.)(RZ
1/3
1 )

−ξ
η+ξ .

Inserting this in (3.7) and combining it with (3.6), we have deduced the first bound,

that if RZ
1/3
1 ≥ C1(1/2) = 2(aTFξ̃/η̃)1/ξ, then for all |x| ≤ R/2:

ϕTF
Z,R(x)− ϕTF

Z1
(x) ≤ cS|x|−4 (2|x|/R)η + cS (aTF)η̃

(
2ηη̃/ξ̃

)ξ̃
η+ξ
η−4︸ ︷︷ ︸

=:c3.8a

R−4(RZ
1/3
1 )−η̃ξ.

(3.8)

Step 3 (Integrating the first bound to obtain the second)

With the TF equation and the fact that (1 + t)3/2 − 1 ≤ 3
2
t + 3

2
t3/2 for any t ≥ 0,
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CHAPTER 3. THOMAS-FERMI THEORY

we have

c
3/2
TF (%TF

Z,R − %TF
Z1

) =(ϕTF
Z1

)3/2
(
(1 + (ϕTF

Z,R − ϕTF
Z1

)/ϕTF
Z1

)3/2 − 1
)

≤3

2

(
ϕTF
Z1

) 1
2
(
ϕTF
Z,R − ϕTF

Z1

)
+

3

2

(
ϕTF
Z,R − ϕTF

Z1

) 3
2 .

Let r ∈ (0, R/2). We abbreviate C2 :=
(

2ηη̃/ξ̃
)ξ̃

(aTF)η̃/η̃(RZ
1/3
1 )−η̃ξ and use

Lemma 3.6 with (3.8) to estimate for x ∈ B(0, r):

0 ≤c3/2
TF (%TF

Z,R(x)− %TF
Z1

(x))

≤3

2
c

3/2
S

(
|x|−2R−4

(
C2 + 2η [|x|/R]η−4)+R−6

(
C2 + 2η [|x|/R]η−4)3/2

)
≤3

2
c

3/2
S

(
|x|−2R−4C2 + 2η|x|−6 [|x|/R]η +R−6C

3/2
2 +R−62

3η
2 [|x|/R]

3
2

(η−4)

+ (23/2 − 2)C
3
4
2 2

3η
4 [|x|/R]

3
4

(η−4)R−6

)
.

Here we used that (a+ b)3/2 ≤ a3/2 + b3/2 + (23/2 − 2)a3/4b3/4 for all a, b ≥ 0. This

bound being radial, we use Newton’s theorem and obtain for |x| ≥ r ∈ (0, R/2):

0 ≤(%TF
Z,R − %TF

Z1
)1B(0,r) ∗ |x|−1

≤ 9cS

2π|x|

∫
B(0,r)

(
|y|−2R−4C2 + 2η|y|−6 [|y|/R]η +R−6C

3/2
2 +R−62

3η
2 [|y|/R]

3
2

(η−4)

+ (23/2 − 2)C
3
4
2 2

3η
4 [|y|/R]

3
4

(η−4)R−6

)
dy.

By integration and since ab ≤ a2/2 + b2/2, we find that

(%TF
Z,R − %TF

Z1
)1B(0,r) ∗ |x|−1

≤18cSr

|x|

(
C2R

−4

[
1 +

1

3
C

1/2
2 (r/R)2 + C

1/2
2

(
2
3
2−2
3η

)2
]

+ (2r/R)ηr−4
[

1
η−3

+ 1
3η
2
−3

(2r/R)η/2 + (2r/R)η/2+2
])
. (3.9)

Note that the assumption RZ
1/3
1 ≥ 2(aTFξ̃/η̃)1/ξ is equivalent to C2 ≤ 24/ξ̃ and

that r/R < 1/2. We use this in (3.9) and end the proof by defining

c3.8b := cS18(aTF)η̃2ηξ̃η̃−η̃ ξ̃−ξ̃
(

1/3 + ξ̃−1/2

(
1 +

4(23/2 − 2)2

(3η)2

))
,

c3.8c := cS18

(
1

η − 3
+

1

3η/2− 3
+ 1

)
.

�
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3. OUTSIDE TF MODELS

3. Outside TF models

The term outside Thomas-Fermi (oTF) model was used in [12] for the TF model

with respect to the HF-screened atomic potential, restricted to the outside of a

ball. We generalize the idea in two ways: Firstly by formulating it for a whole

class of outside harmonic potentials. Secondly by showing that the same ideas

apply to the diatomic case.

Before going into the details we motivate the further discussion with the sim-

plest nontrivial outside model. It arises naturally when splitting the atomic TF

energy into inside and outside energies with respect to the ball B = B(0, r). By

this we mean the decomposition

ETF
Z = ETF

Z/|x|[%
TF
Z 1B] + ETF

ΦTF
Z,r

[%TF
Z 1Bc ]. (3.10)

One might object that the second summand in (3.10) does not really depend solely

on the outside, since ΦTF
Z,r(x) = Z/|x| −

∫
B
%TF
Z (y)/|x − y|dy. However, we could

also consider the restriction of this potential to the outside, Vr = ΦTF
Z,r1Bc , and

notice that ETF
ΦTF
Z,r

[%TF
Z 1Bc ] = ETF

Vr
[%TF
Z 1Bc ]. The minimization problem

%r = arg min
C(Nr)

ETF
Vr , Nr = Z −

∫
B

%TF
Z

is an example of an outside TF model.5 The TF equation cTF%
2/3
r = [Vr−%r∗|x|−1−

µr]+ implies that the minimizing density has support outside of B. The restriction

to densities with L1-norm of at most mass Nr = lim
t→∞

t−
∫
∂B(0,t)

Vr is natural, since

this is the total inside charge, seen from the outside. With this example in mind,

we now present the more general framework.

Definition 3.9. Let Ω ⊂ R3 be the complement of a compact set. ThenH(Ω) shall

denote the space of functions V : R3 → R which vanish in R3 \ Ω, are continuous

in Ω and satisfy ∆V = 0 in Ω as well as lim
|x|→∞

V (x) = 0.

For any V ∈ H(Ω), with Ω ⊂ R3 being the complement of a compact set, we

introduce the total inside charge

N(V ) := lim
t→∞

t−
∫
∂B(0,t)

V (ω)dω.

5we use Theorem 3.2 here
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CHAPTER 3. THOMAS-FERMI THEORY

This limit exists because t 7→ t−
∫
∂B(0,t)

V (ω)dω is constant for all t such that Ωc ⊂
B(0, t).6 Note that H(Ω) ⊂ L5/3 + L∞ε . Hence by Theorem 3.2, there exists

% = arg min
C(N(V ))

ETF
V

for any V ∈ H(Ω) and we call this minimization problem the outside Thomas-

Fermi model corresponding to the potential V . The minimizer satisfies the TF

equation, which implies that supp % ⊂ suppV ⊂ Ω. We will treat two particular

cases of oTF models,

• if V ∈ H(B(0, r)
c
), we speak of an atomic oTF model.

• if V ∈ H(Or), we speak of a diatomic oTF model.7

The maximum principle implies that any V ∈ H(Ω) decays at least like the har-

monic function |x|−1. More precisely, if V ∈ H(B(0, r)
c
), then

|V (x)| ≤ r

|x|
sup

∂B(0,r)

|V |, ∀|x| ≥ r (3.11)

and if V ∈ H(Or), then

|V (x)| ≤ R + r

|x|
sup
∂Or
|V |, ∀|x| ≥ R + r. (3.12)

Let us have a closer look at our example Vr = ΦTF
Z,r1B(0,r)c ∈ H(B(0, r)

c
) with the

minimizer %r ∈ C(N(Vr)). The atomic density %TF
Z is (see Theorem 3.3) a global

minimizer, hence by inserting the trial density %TFZ 1B + %r in (3.10), we obtain

ETF
Z ≤ ETF

Z/|x|[%
TF
Z 1B]+ETF

ΦTF
Z,r

[%r]. On the other hand, ETF
Z ≥ ETF

Z/|x|[%
TF
Z 1B]+ETF

ΦTF
Z,r

[%r]

by minimality of %r. Then ETFVr [%TF
Z 1Bc ] = ETFVr [%r]. However, since TF minimizers

are unique, %r = %TF
Z 1Bc , which is not too surprising. This implies that the cor-

responding chemical potential vanishes, so %r is the global minimizer of ETF
Vr

. The

corresponding TF potential equals, by definition, ϕTF
Z , which satisfies the Sommer-

feld asymptotic.

But what about other oTF models, are the minimizers global and does the cor-

responding TF potential satisfy the Sommerfeld asymptotic? In the following

Sections, we generalize the perturbation argument from [12] and show that these

two questions can be answered affirmatively, provided ‖V − ΦTF
Z,r1B(0,r)c‖∞ (or

‖V − ΦTF
Z,R,r1Or‖∞ in the diatomic case) is sufficiently small.

6See Proposition A.3 in the appendix for details.
7We recall that Or =

(
B(0, r) ∪B(Rν, r)

)c
.
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Remark: Other outside models in TF theory

There exist other formulations which are quite similar to what we call oTF here.

Lieb and Simon considered for example [5, Ch. VII] TF minimizers with respect

to a (radial) uniform screening Z/|x| −
∫

Λ
ρb/|x − y|dy, ρb ∈ R+. Since V was

not restricted to Λ, their potentials are not directly covered by our approach here.

Another similar formulation are what Solovej in [23] calls exterior TF models:

He studied (radial) atomic potentials ν/|x| and restricted the TF minimization

problem to densities supported outside of a ball. We stress that we here allow far

more general potentials, which in particular are not necessarily radial, both in the

atomic and diatomic case.

3.1. Sommerfeld bounds. The following result is a fairly general statement

about the Sommerfeld behaviour of solutions to the TF differential equation and

has been proven in [12, Theorem 4.6]:

Lemma 3.10 (atomic oTF Sommerfeld asymptotic). Let ϕ ∈ C0(B(0, r)c). As-

sume it satisfies ∆ϕ = 4πc
−3/2
TF [ϕ−µ]

3/2
+ distributionally in B(0, r)c for some µ ≥ 0

as well as lim inf
s↘r

inf
∂B(0,s)

ϕ > µ. Then

max
{
ω−a (x), ν(µ, r)|x|−1

}
≤ ϕ(x) ≤ ω+

A(x) + µ ∀x ∈ B(0, r)c,

where ν(µ, r) := inf
B(0,r)c

max{µ|x|, ω−a (x)|x|} and

a(r) := lim inf
s↘r

sup
∂B(0,s)

(√
cSs−4ϕ−1 − 1

)
, ω−a (x) := cS|x|−4

(
1 + a(r)(r/|x|)ξ

)−2
,

A(r) := lim inf
s↘r

sup
∂B(0,s)

(
c−1

S s4(ϕ− µ)− 1
)
, ω+

A(x) := cS|x|−4
(
1 + A(r)(r/|x|)ξ

)
.

Remark: Sommerfeld asymptotic for ϕTF
Z,R

The conditions of Lemma 3.10 are satisfied for the diatomic TF potential, because

it is strictly positive and the corresponding chemical potential vanishes. Moreover,

it is clear that we can chose any centre for the ball in Lemma 3.10. Applying it

with ϕTF
Z,R on B(Rν/2, 2R)c, we conclude that the diatomic TF potential satisfies

the Sommerfeld asymptotic.

We now provide the analogue of Lemma 3.10 for the diatomic case:

Lemma 3.11 (Diatomic oTF Sommerfeld asymptotic). Let r ∈ (0, R/2) and as-

sume that ϕ ∈ C0(Or) satisfies ∆ϕ = 4πc
−3/2
TF [ϕ − µ]

3/2
+ distributionally in Or for
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some constant µ ≥ 0 as well as lim infs↘r inf
∂Os

ϕ > µ. Then for all x ∈ Or holds

max

{
ω−a (x), ω−a (x−Rν),

ν(µ, r)

|x|
,
ν(µ, r)

|x−Rν|

}
≤ ϕ(x) ≤ ω+

A(x) + ω+
A(x−Rν) + µ,

where ν(µ, r) := inf
B(0,r)c

max{µ|x|, ω−a (x)|x|} and

a(r) := lim inf
s↘r

sup
∂Os

(√
cSs−4ϕ−1 − 1

)
, ω−a (x) := cS|x|−4

(
1 + a(r)(r/|x|)ξ

)−2
,

A(r) := lim inf
s↘r

sup
∂Os

(
c−1

S s4(ϕ− µ)− 1
)
, ω+

A(x) := cS|x|−4
(
1 + A(r)(r/|x|)ξ

)
.

Notation: Half spaces

We introduce at this point some notation for the discussion of reflection symmetric

functions: For p ∈ R3 \ {0}, let

Hp := {x ∈ R3 | (x− p) · p = 0}

and

H±p := {x ∈ R3 | ±(x− p) · p > 0}

so that R3 is the disjoint union of the open half spaces H+
p , H−p and the plane Hp.

Proof. Step 1 (Reduction to continuous expressions)

By assumption on ϕ there exists r̃ ∈ (r, R/2) such that inf∂Os ϕ > µ ≥ 0 for all

s ∈ (r, r̃). This also implies that a(s) is well defined for any s ∈ (r, r̃) and as ϕ

is continuous on ∂Os, the suprema are actually achieved. It suffices to prove the

statement with r replaced by an arbitrary s ∈ (r, r̃), since the claim then follows

by taking lim infs↘r.

Step 2 (Lower bound)

We consider f(x) = max
{
ω−a (x), ω−a (x−Rν), ν

|x| ,
ν

|x−Rν|

}
on Os. This is the maxi-

mum of the radial function x 7→ max{ω−a (x), ν|x|−1} and its shift to Rν, hence f is

reflection symmetric across the plane HRν/2. We also note that a(s) > −1 because

of the assumption inf∂Os ϕ > µ. It is then easily verified that:

(a) ω−a (x)|x| is positive and radially decreasing for |x| ≥ s,

(b) ω−a (x) = inf∂Os ϕ > µ for all |x| = s,

(c) ∆ω−a (x) ≥ 4πc
−3/2
TF (ω−a (x))3/2 for all |x| > s.

From (a), (b) and the fact that µ|x| is increasing, we deduce that ν = µr0 with r0

being the unique radius in (s,∞) such that ω−a (|x| = r0) = µ. Moreover, for any
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3. OUTSIDE TF MODELS

x ∈ Os we can write

f(x) =

max{ω−a (x), ω−a (x−Rν)} if f(x) > µ

ν max{|x|−1, |x−Rν|−1} if f(x) ≤ µ,
(3.13)

which together with (b) implies f |∂Os= inf∂Os ϕ. To use Corollary 3.5 with u =

f −ϕ and Ω = Os, we need to verify that ∆u ≥ 0 in Os ∩ {u > 0}. Because ∆u =

∆f − 4πc
−3/2
TF [ϕ− µ]

3/2
+ , it suffices to show ∆f ≥ 4πc

−3/2
TF [f − µ]

3/2
+ distributionally

in Os. For any nonnegative φ ∈ C∞c ({x ∈ Os | f(x) > µ}), we first compute (see

Lemma B.1 for details)∫
R3

f∆φ =

∫
R3

(
(∆ω−a )1H−

Rν/2
+ (∆ω−a (· −Rν))1H+

Rν/2

)
φ− 2

∫
HRν/2

(∂νω
−
a )φdσ.

Due to (3.13), (c) and since (∂νω
−
a ) ≤ 0 on HRν/2, we find∫

R3

f∆φ ≥ 4πc
−3/2
TF

∫
R3

f 3/2φ ≥ 4πc
−3/2
TF

∫
R3

[f − µ]
3/2
+ φ

and conclude that

∆f ≥ 4πc
−3/2
TF [f − µ]

3/2
+ in {f > µ} ∩ Os. (3.14)

Now ω−a is due to (c) and (a) subharmonic, while |x|−1 is harmonic. The maximum

of finitely many subharmonic functions is a subharmonic function,8 hence f is

subharmonic in Os, which implies9

∆f ≥ 0 in Os. (3.15)

Now pick any nonnegative φ ∈ C∞c (Os) and a nonnegative sequence ξn ∈ C∞c ({f >
µ}) such that ξn ↗ 1{f>µ} pointwise in suppφ. Writing∫

f∆φ =

∫
f∆(ξnφ) +

∫
f∆(1− ξn)φ,

we then use (3.14) for the first summand and (3.15) for the second summand

to deduce that
∫
f∆φ ≥ 4πc

−3/2
TF

∫
[f − µ]

3/2
+ (ξnφ). By monotone convergence,

lim
n→∞

∫
[f − µ]

3/2
+ (ξnφ) =

∫
[f − µ]

3/2
+ φ. As outlined earlier, the lower bound now

follows from Corollary 3.5.

Step 3 (upper bound)

We consider g(x) := ω+
A(x)+ω+

A(x−Rν)+µ, a continuous function on R3\{0, Rν}.

8see [22, Part 3, Proposition 3.2.1]
9see [22, Part 3, Corollary 3.2.16]
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Because ∆ω+
A ≤ 4πc

−3/2
TF (ω+

A)3/2 in B(0, s)
c
, it satisfies

∆g ≤ 4πc
−3/2
TF

(
(ω+

A)3/2 + (ω+
A(· −Rν)3/2

)
≤ 4πc

−3/2
TF [g − µ]

3/2
+ in Os.

Since ω+
A |∂B(0,s)= sup∂Os ϕ− µ, we observe that

g(x) ≥ ω+
A |∂B(0,s) +µ = sup

∂Os
ϕ ∀x ∈ ∂Os.

Corollary 3.5 with u = ϕ− g and Ω = Os now yields the upper bound. �

If ϕ satisfies the assumptions of Lemma 3.11, then it in particular also satisfies

the assumptions of Lemma 3.6 in B(Rν/2, R/2 + r)c and we see that ϕ ≈ cS|x|−4

for large |x|. Hence the lower bound of Lemma 3.11 has the correct asymptotic

behaviour, whereas the upper bound is too large by a factor two, similar to how

Teller’s Lemma yields a bad upper bound for ϕTF
Z,R.

The next Lemma improves the upper bound from Lemma 3.11 for x close to ∂Or.

Lemma 3.12. Let r ∈ (0, R/2), µ ≥ 0 and assume that ϕ ∈ C0(Or) satisfies

∆ϕ = 4πc
−3/2
TF [ϕ− µ]

3/2
+ distributionally in Or. Then

ϕ(x) ≤

ω+
A1,A2

(x) + µ if x ∈ H−Rν/2 ∩ Or
ω+
A1,A2

(x−Rν) + µ if x ∈ H+
Rν/2 ∩ Or

where ω+
A1,A2

(x) := cS|x|−4
(

1 + A1(r) (2|x|/R)η + A2(r) (r/|x|)ξ
)

, with

Aj(r) := lim infs↘r Bj(s), j = 1, 2 and

B1(s) :=
4 +B2(s)(4 + ξ)(2s/R)ξ

η − 4
,

B2(s) :=

[
sup∂Os [c

−1
S s4(ϕ− µ)− 1]− 4

η−4
(2s/R)η

1 + 4+ξ
η−4

(2s/R)ξ+η

]
+

.

Proof. We prove the upper bound with r replaced by s ∈ (r, R/2), since Aj(s) =

Bj(s), j = 1, 2 by continuity of ϕ in Or. The claimed bound follows then by taking

the lim inf
s↘r

on both sides. We want to apply Corollary 3.5 with Ω = Os to the

function

u(x) = ϕ(x)−
(
ω+
B1,B2

(x)1H−
Rν/2

(x) + ω+
B1,B2

(x−Rν)1H+
Rν/2

(x) + µ

)
.

By definition of B1, for all x ∈ ∂Os:

ϕ(x)− u(x) = cSs
−4

(
1 +

4

η − 4
(2s/R)η +B2(s)

(
1 + ξ+4

η−4
(2s/R)η+ξ

))
+ µ.
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3. OUTSIDE TF MODELS

Then ϕ− u ≥ sup∂Os ϕ in ∂Os by definition of B2 and this implies u ≤ 0 on ∂Os.
It remains to show that ∆u ≥ 0 in Os ∩ {u > 0}. We assume without loss of

generality that ν = e3 to compute that, in the distributional sense in Os,10

∆u(x) =∆ϕ(x)−∆ω+
B1,B2

(x)1H−
Re3/2

(x)−∆ω+
B1,B2

(x−Rν)1H+
Re3/2

(x)

+ 2∂x3ω
+
B1,B2

(x1, x2, R/2)δR/2(x3).

A simple computation shows that ∆ω+
B1,B2

≤ 4πc
−3/2
TF (ω+

B1,B2
)3/2 in R3\{0}.11 Hence

∆u(x) ≥ 2∂x3ω
+
B1,B2

(x1, x2, R/2)δR/2(x3) in Os ∩ {u > 0} and we compute that

∂x3ω
+
B1,B2

(x) = x3cS|x|−6
(
B1(η − 4) (2|x|/R)η −B2(4 + ξ) (r/|x|)ξ − 4

)
.

Now observe that ∂x3ω
+
B1,B2

(x) ≥ ∂x3ω
+
B1,B2

(Re3/2) = 0 for all x ∈ HRe3/2 by

the defining relation of B1 and because B2 ≥ 0. We therefore conclude ∆u ≥ 0

distributionally in Os ∩ {u > 0}, which finishes the proof. �

3.2. Controlling the chemical potential. In the same way as Lemma 3.10

allows us to control the chemical potential for atomic oTF models (see [12, Corol-

lary 4.7]), we have that Lemma 3.11 implies control on the chemical potential for

diatomic oTF models:

Lemma 3.13. Let V ∈ H(Or) and assume the corresponding TF potential ϕ

satisfies infOr ϕ > µ and ∆ϕ = [ϕ− µ]
3/2
+ in Or for some µ ≥ 0. Then

µ3/4c
1/4
S (1 + a(r))−1/2 ≤ N(V )−

∫
R3

c
−3/2
TF ϕ3/2,

with a(r) = sup∂Or
√
cSs−4ϕ−1 − 1.

Proof. We repeat the proof of [12, Corollary 4.7], with the only difference that we

start by applying Lemma 3.11 to the function ϕ(x) = V (x) − c
−3/2
TF ϕ3/2 ∗ |x|−1.

Then

0 ≤ ν(µ, r) ≤ lim inf
|x|→∞

|x|max

{
ω−a (x), ω−a (x−Rν),

ν

|x|
,

ν

|x−Rν|

}
≤ lim inf
|x|→∞

|x|ϕ(x).

We bound ν(µ, r) ≥ µ infB(0,r)c max{|x|, |x|−3cS/µ(1 + a)−2} ≥ µ3/4c
1/4
S (1 + a)−1/2.

Next we note that ϕ (according to Lemma 3.11) is nonnegative so that by Fatou’s

Lemma

lim inf
|x|→∞

|x|ϕ(x) ≤ lim inf
t→∞

−
∫
S2

(
tV (tω)− tc−3/2

TF ϕ3/2 ∗ |t ω|−1
)
dω.

10see Lemma B.1 in the appendix for details
11Here we use that both η and −ξ solve a(a− 7) = 6 and that (1 + 3

2 t) ≤ (1 + t)3/2 for all t ≥ 0.
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The right hand side converges because −
∫
S2 tV (tω)dω = N(V ) for all t > R+ r and

because lim
t→∞

−
∫
S2

(
tc
−3/2
TF ϕ3/2 ∗ |t ω|−1

)
=
∫
c
−3/2
TF ϕ3/2 due to Newton’s theorem and

Lebesgue’s dominated convergence. �

3.3. Neutrality. We now provide sufficient conditions for oTF models to be

neutral, meaning the corresponding chemical potential vanishes. The main tech-

nique is the perturbation analysis from [12, Lemma 12.3] around the screened po-

tential ΦTF
Z,r (or ΦTF

Z,R,r in the diatomic case). Once neutrality has been established,

Sommerfeld type bounds follow readily from our results in Chapter 3.1.

Lemma 3.14 (Atomic oTF neutrality). Let V ∈ H(B(0, r)
c
) and assume there

exist σ, ε > 0 such that

sup
B(0,r)c

∣∣V − ΦTF
Z,r

∣∣ ≤ σr−4+ε.

Then N(V ) ≤ (cst.)(1 + σrε)r−3. Moreover, if
(

3
2
aTF
)1/ξ

Z
−1
3 ≤ r ≤ (c3.14b/σ)1/ε,

then %r = arg minC(N(V )) ETF
V satisfies

∫
%r ≤ c3.14ar

−3 and the corresponding chem-

ical potential vanishes, µr = 0.

We do not give a proof because it has been proven for the special choice

V = ΦHF
Z,r1B(0,r)c

in [12] and because we present the proof for the diatomic case below. Repeating

it for the atomic case largely amounts to replacing the symbol Or by B(0, r)
c

and

changing some constants. This would needlessly overload this part of the thesis.

If V ∈ H(B(0, r)
c
), then |N(V )| ≤ r‖V ‖∞ by (3.11). But if we use (3.12) for

the diatomic case V ∈ H(Or), we find |N(V )| ≤ (R + r)‖V ‖∞ which is a bad

bound for R→∞. To improve this, we decompose the diatomic outside potential

into two atomic outside potentials:

Lemma 3.15. Assume V ∈ H(Or) with r ∈ (0, R/2). Then there exist two unique

functions Vp ∈ H(B(p, r)
c
), p ∈ {0, Rν}, such that

V (x) = V0(x) + VRν(x), ∀x ∈ Or.

Moreover,

|N(V )| ≤ 2

(
1 +

1

R/r − 2

)
r sup
∂Or
|V | .

Proof. Step 1 (Existence)

In the following, let p ∈ {0Rν}. We set Bp = B(p, r) and for g ∈ C(∂Bp), let up[g]
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be the unique element in H(Bp
c
) such that up[g] = g on ∂Bp. For any g ∈ C(∂B0),

we consider

T (g)(x) := V (x)− u0[uRν [V ]](x) + u0[uRν [u0[g]]](x), x ∈ ∂B0.

Clearly, T maps from the Banach space (C(∂B0), ‖ · ‖∞) into itself. We use (3.11)

several times to estimate

‖T (g)− T (f)‖∞ = ‖u0[uRν [u0[g − f ]]]‖∞ ≤
r

R− r
‖f − g‖∞.

Note that r/(R − r) < 1, hence by the Banach fixed-point theorem, there ex-

ists a unique v ∈ C(∂B0) such that T (v) = v. We define V0 = u0[v] and

VRν = uRν [V −V0]. Then for all x ∈ ∂B0, u0[V −VRν ](x) = T (v)(x) = v(x) = V0(x)

and the maximum principle then implies u0[V − VRν ] = V0 in (B0)c. Overall, we

have obtained Vp ∈ H(Bp
c
) which satisfy V0 + VRν = V on ∂Or. Invoking the

maximum principle one more time, we obtain V0 + VRν = V in Or.

Step 2 (Uniqueness)

Any decomposition V = V0 +VRν implies VRν = uRν [V −V0] and V0 = u0[V −VRν ].
The restriction v = V0 |∂B0 must satisfy T (v) = v and is unique by the previous

step. Hence V0 = u0[v] and VRν = V − V0 are unique.

Step 3 (The bound on N(V ))

We start with |N(V )| = |N(V0) + N(VRν)| ≤ r sup∂B0
|V0| + r sup∂BRν |VRν | and

show that the right hand side can be bounded by sup∂Or |V |. The triangle inequal-

ity, the maximum principle and (3.11) imply

sup
∂B(0,r)

|V0| ≤ sup
∂Or
|V |+ r

R− r
sup

∂B(Rν,r)

|VRν |. (3.16)

We switch the roles of V0 and VRν in (3.16) and use the resulting inequality to

bound the last summand on the right hand side of (3.16). Once more invoking

(3.11), we find

|Vp(x)| ≤ r

|x− p|
R− r
R− 2r

sup
∂Or
|V |, p ∈ {0, Rν} (3.17)

and use this to bound N(V ), which ends the proof. �

Next, we give a preliminary result, deriving some seemingly weak consequences

from the perturbation assumption sup∂Or
∣∣ΦTF

Z,R,r − V (x)
∣∣ ≤ σr−4+ε.
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Lemma 3.16. Let r ≤ min
{
R/4, σ−1/ε

}
for some ε, σ > 0 and assume V ∈ H(Or)

satisfies sup∂Or
∣∣ΦTF

Z,R,r − V (x)
∣∣ ≤ σr−4+ε. Then for %r = arg min

C(NV )
ETF
V it holds that

%r ≤
(
σrε

cTF
+ 16cS

3cTF

)3/2

r−6 and D(%TF
Z,R1Or − %r) ≤ c3.16aσr

−7+ε. (3.18)

Moreover, if additionally
(

3
2
aTF
) 1
ξ m

−1/3
Z ≤ r ≤ σ

−1
ε min

{(
2ξcS

(3+ξ)

) 8
3ε
, (1/3)

8
5ε

}
holds, then

N(V ) ≥ 2ξcS
(3+ξ)

r−3 and µr ≤ c3.16b

√
σrεr−4, (3.19)

where µr is the chemical potential corresponding to %r.

Proof. The proof is divided into five steps. The first two are of preliminary nature

and deal with the simple bounds on N(V ) and %r. The third step develops the

perturbation argument, from which the bounds on D(%TF
Z,R1Or − %r) and µr will be

derived in the last two steps. We write W := ΦTF
Z,R1Or − V for the perturbation

potential and note that W ∈ H(Or).

Step 1 (Nonnegativity of N(V ))

Applying Lemma 3.15 for W and since r ≤ R/4,∫
Or
%TF
Z,R = N(W ) +N(V ) ≤ 3σrεr−3 +N(V ). (3.20)

Due to Lemma 3.7 and the lower bound from Lemma 3.6, we have
∫
Ot %

TF
Z,R ≥

1
2

∫
B(0,t)c

%TF
Z0

+ 1
2

∫
B(Rν,t)c

%TF
ZRν
≥ 4cSt

−3
(

1− 3
2
aTFt−ξm

−ξ/3
Z

3
3+ξ

)
for any t > 0.

Hence ∫
Ot

%TF
Z,R ≥ C1t

−3 ∀t ≥
(

3
2
aTF
) 1
ξ m

−1/3
Z (3.21)

with C1 = 4ξcS
(3+ξ)

. However, if
(

3
2
aTF
) 1
ξ m

−1/3
Z ≤ r ≤ σ

−1
ε min

{
(C1/2)

8
3ε , (1/3)

8
5ε

}
,

we have 3σrε ≤ C1

2
so that (3.20) and (3.21) for t = r imply

N(V ) ≥ C1

2
r−3,

the first bound in (3.19). On the other hand, if N(V ) < 0 then C(N(V )) = ∅
and there is nothing to prove for (3.18). We may therefore assume without loss of

generality that N(V ) ≥ 0.

Step 2 (A bound on the density)

We use the TF equation (3.2) and the perturbation assumption to bound

cTF (%r(x))2/3 = [V (x)− µr]+ ≤ sup
∂Or
|V | ≤ r−4σrε + sup

∂Or

∣∣ΦTF
Z,R,r

∣∣ .
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Lemmas 3.7 and 3.6 imply 0 ≤ ΦTF
Z,R,r(x) ≤ 4cSr

−3(|x|−1 + |x− Rν|−1) for x ∈ Or
so that sup

∂Or

∣∣ΦTF
Z,R,r

∣∣ ≤ 4cSr
−4
(
1 + r

R−r

)
≤ 16/3cSr

−4. This proves the bound on

the density.

Step 3 (Perturbation argument)

We will insert ρ[r, t] := %TF
Z,R1Or\Ot as a trial density for ρ 7→ ETF

V [ρ] +µr
∫
ρ, which

is minimal at ρ = %r. Since
∫
%r ≤ N(V ), we know µr 6= 0 ⇔

∫
%r = N(V ), or in

other words, µr
∫
%r = µrN(V ). Hence for any t ≥ r,

0 ≤ µr

(
N(V )−

∫
ρ[r, t]

)
≤ ETF

V [ρ[r, t]]−ETF
V [%TF

Z,R1Or ] + ETF
V [%TF

Z,R1Or ]−ETF
V [%r].

(3.22)

We use that

W (x) = ϕTF
Z,R(x) + %TF

Z,R1Or ∗ |x|−1 − V (x), x ∈ Or (3.23)

to estimate the two differences on the right hand side of (3.22). For the first,

ETF
V [ρ[r, t]]− ETF

V [%TF
Z,R1Or ]

(3.23)
= − 3

5
cTF

∫
Ot

(
%TF
Z,R

)5/3 −
∫
Ot
W%TF

Z,R

+

∫
Ot
ϕTF
Z,R%

TF
Z,R +D(%TF

Z,R1Ot)

≤σr−4+ε

∫
Ot
%TF
Z,R +

2

5

∫
Ot
ϕTFZ,R%

TF
Z,R +D(%TF

Z,R1Ot).

While for the second,

ETF
V [%TF

Z,R1Or ]− ETF
V [%r]

(3.23)
=

3

5
cTF

∫
Or

((
%TF
Z,R

)5/3 − (%r)
5/3
)

+D(%TF
Z,R1Or)−D(%r)

+

∫
Or
W (%TF

Z,R − %r)−
∫
Or
ϕTF
Z,R(%TF

Z,R − %r)− 2D(%TF
Z,R1Or , %

TF
Z,R1Or − %r)

=

∫
Or
W (%TF

Z,R − %r)−D(%TF
Z,R1Or − %r)

+

∫
Or

([
3

5
cTF

(
%TF
Z,R

)5/3 − ϕTF
Z,R%

TF
Z,R

]
−
[

3

5
cTF (%r)

5/3 − ϕTF
Z,R%r

])
≤
∫
Or
W (%TF

Z,R − %r)−D(%TF
Z,R1Or − %r).

here the last inequality is due to the fact that the function t 7→ 3
5
cTFt

5/3−ϕTF
Z,R(y)t

is minimal at t = c
−3/2
TF

(
ϕTF
Z,R(y)

)3/2 (3.2)
= %TF

Z,R(y), for all y ∈ R3. We use these
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bounds to estimate the right hand side of (3.22) and find that

0 ≤ µr

(
N(V )−

∫
ρ[r, t]

)
≤ σr−4+ε

∫
Ot
%TF
Z,R +

2

5

∫
Ot
ϕTF
Z,R%

TF
Z,R +D(%TF

Z,R1Ot)

+

∫
W (%TF

Z,R1Or − %r)−D(%TF
Z,R1Or − %r)

≤
(
σr−4+ε +

4

5
cSt
−4 + 23/23cSt

−4

)∫
Ot
%TF
Z,R

+

∫
W (%TF

Z,R1Or − %r)−D(%TF
Z,R1Or − %r).

Here, in the last inequality, we used Lemmas 3.6 and 3.7, which imply ϕTF
Z,R(x) ≤

2cS|x|−4 and for x ∈ Ot,∫
Ot

%TF
Z,R(y)

|x− y|−1
dy ≤

√
2

3

π
cS

∫
Ot

|y|−6 + |y −R|−6

|x− y|
dy ≤ 23/23cSt

−4.

To control
∫
W (%r − %TF

Z,R1Or), we proceed as in [12, p. 559] (adjusted to the case

of two balls): Consider for r ∈ (0, R/2) the cut-off function

F (x) :=



0, for x ∈ I2r

|x|−2r
r

, for x ∈ (I3r \ I2r) ∩H−Rν/2
|x−Rν|−2r

r
, for x ∈ (I3r \ I2r) ∩H+

Rν/2

1, for x ∈ O3r.

(3.24)

and write W = (1− F )W + FW . We note that F ∈ H1(R3) with12

‖∇(FW )‖2
2 =

∫
|∇F |2|W |2 ≤ sup

Or
|W |2|O2r \ O3r|r−2dx ≤ 152π

3
σ2r−7+2ε.

A crucial ingredient at this point is the Coulomb-norm estimate from [12, Lemma

9.2], saying that |
∫
fg| ≤

√
(2π)−1D(g)‖∇f‖2 if f ∈ H1(R3), g ∈ L6/5. We use it

to bound ∣∣∣∣∫ FW (%TF
Z,R1Or − %r)

∣∣∣∣ ≤
√

76

3
σr−7+ε

√
D
(
%r − %TF

Z,R1Or
)
.

12see Lemma B.2 in the appendix for details
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While for the other term, we use supOr |(1−F )W | ≤ supOr |W | ≤ σr−4+ε to bound∣∣∣∣∫ (1− F )W (%TF
Z,R1Or − %r)

∣∣∣∣ ≤ σr−4+ε

∫
Or\O3r

(%r + %TF
Z,R1Or)

≤σr−4+ε

∫
Or\O3r

{√
2

3

π
cS

(
|x|−6 + |x−R|−6

)
+

(
σrε

cTF

+
16cS

3cTF

)3/2

r−6

}
dx

≤208

(
23/2

33
+
π

3

(
1

cTF

+
16cS

3cTF

)3/2
)
σr−7+ε =: C2σr

−7+ε.

Collecting all the bounds that we have derived since (3.22), for any t ≥ r:

0 ≤ µr

(
N(V )−

∫
ρ[r, t]

)
≤
(
σr−4+ε +

4

5
cSt
−4 + 23/23cSt

−4

)∫
%TF
Z,R1Ot

+ C2σr
−7+ε +

√
76

3
D
(
%TF
Z,R1Or − %r

)
σr−7/2+ε

−D(%TF
Z,R1Or − %r). (3.25)

From this inequality, we will derive the bound on D(%TF
Z,R1Or − %r) and µr by ap-

propriate choices of t ≥ r.

Step 4 We choose t1(r) := sup{t > 0 |
∫
%TF
Z,R1Or\Ot ≤ N(V )}. Since N(V ) ≥ 0,

we have t1 ≥ r and with (3.20),∫
%TF
Z,R1Ot1 =

[∫
%TF
Z,R1Or −N(V )

]
+

≤ 3σr−3+ε. (3.26)

Hence we obtain from (3.25) with t = t1 that

D(%TF
Z,R1Or − %r) ≤C3σr

−7+ε +

(
76

3

)1/2√
σr−7+ε

√
D(%TF

Z,R1Or − %r)

where C3 = 3
(
1 + 4cS

5
+ 23/23cS

)
+ C2. This implies13

D(%TF
Z,R1Or − %r) ≤ c3.16aσr

−7+ε

with c3.16a =
(√

C3 + 19
3

+
√

19
3

)2

.

Step 5 We choose t2(r) :=
(
C1

2

) 1
3 (σrε)−1/8r and assume for the remaining proof

that also (
3

2
aTF

) 1
ξ

m
−1/3
Z ≤ r ≤ σ

−1
ε min

{
(C1/2)

8
3ε , (1/3)8/5

}
.

13Note that for a, b, x positive, D ≤ ax2 + 2bx
√
D ⇔ (

√
D − bx)2 ≤ (a + b2)x2 which implies√

D − bx ≤
√

(a+ b2)x.
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Then t2 ≥ r and we may apply (3.21) with t = t2, so that∫
Ot2

%TF
Z,R ≥ C1t

−3
2 = 2r−3(σrε)

3
8 . (3.27)

Since (σrε)
−5
8 ≥ 3 we deduce with (3.26) that

∫
Ot2

%TF
Z,R ≥ 2

∫
Ot1

%TF
Z,R. Hence,

N(V ) ≥
∫
ρ[r, t1] ≥

∫
ρ[r, t2] + 1

2

∫
%TF
Z,R1Ot2 . We use this in (3.25) for t = t2 and

find that

0 ≤ µr
1

2

∫
%TF
Z,R1Ot2 ≤

(√
σrε + 4

5
cS

(
2
C1

) 4
3

+ 23/23cS

(
2
C1

) 4
3

)
r−4
√
σrε
∫
%TF
Z,R1Ot2

+ C2σr
−7+ε +

√
76

3

√
D(%TF

Z,R1Or − %r)σr
−7/2+ε

≤r−4
√
σrε

c3.16b

2

∫
%TF
Z,R1Ot2 , (3.28)

where the last inequality is due to (3.27) and

c3.16b = 2

(
3−4/5 +

4

5
cS

(
2

C1

)4/3

+ 23/23cS

(
2

C1

)4/3
)

+ C23−1/5 +

√
76c3.16a

33
.

According to (3.27), we may divide by
∫
Ot2

%TF
Z,R in (3.28) to end the proof. �

Lemma 3.16 says that the perturbation assumption implies that %r and %TF
Z,R1Or

are close in Coulomb norm ‖ · ‖ =
√
D(·). Surprisingly, this is sufficient to obtain

the crucial condition µr < lim infs↘r inf
∂Os

ϕr, provided r is sufficiently small. It

immediately implies the neutrality and Sommerfeld type bounds, as we will see

now.

Lemma 3.17 (Diatomic oTF neutrality). Let V ∈ H(Or) and ε, σ > 0 such that

sup
Or

∣∣V − ΦTF
Z,R,r

∣∣ ≤ σr−4+ε

and (
3

2
aTF

) 1
ξ

m
−1
3

Z ≤ r ≤ min
{

(c3.17/σ)
1
ε , R/4

}
.

Consider %r = arg min
C(NV )

ETF
V with corresponding chemical potential µr and TF po-

tential ϕr. Then µr = 0, and there exist constants A = c3.17
cS

+ 13
3
> 0 and

a =
√

cS√
c3.17c3.16b

− 1 > −1 such that
∫
%r ≤ 27/2(1 +A)3/2cSr

−3 and for all x ∈ Or:

max

{
cS|x|−4

(1 + a|x/r|−ξ)2
,

cS|x−Rν|−4

(1 + a|(x−Rν)/r|−ξ)2

}
≤ ϕr(x)

≤ cS|x|−4(1 + A|x/r|−ξ) + cS|x−Rν|−4(1 + A|(x−Rν)/r|−ξ).
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Proof. The proof is divided into three steps. First we show that

lim inf
s↘r

inf
∂Os

ϕr > µr.

Then we can apply Lemma 3.13 to deduce neutrality. Last, we use Lemma 3.11 to

deduce the claimed bounds and estimate the constants a(r), A(r). With C2 given

below in (3.30) we define

c3.17 = min

{
3−8/5,

(
2ξcS

(3 + ξ)

) 8
3

, 1
2

max
{
t > 0 | C2(t) ≥

√
tc3.16b

}}
and may therefore apply Lemma 3.16.

Step 1 Since ϕr ∈ C(Or), we have lim inf
s↘r

inf∂Os ϕr = inf∂Or ϕr. Moreover,

inf
∂Or

ϕr = inf
∂Or

(
ϕTF
Z,R − [VZ,R − %TF

Z,R1Ir ∗ |x|−1 − V ] + (%TF
Z,R1Or − %r) ∗ |x|−1

)
≥cS

3
r−4 − σr−4+ε − sup

∂Or

∣∣(%TF
Z,R1Or − %r) ∗ |x|−1

∣∣ .
where we have used Lemma 3.6 and r−ξm

−ξ/3
Z ≤ 2

3aTF to estimate ϕTF
Z,R on ∂Or. For

the last summand, we use [12, Cor. 9.3], so that with Lemma 3.16 and t ∈ (0,∞) :

∣∣(%TF
Z,R1Or − %r) ∗ |x|−1

∣∣ ≤t1/5(5π2

4

)2/5

‖%TF
Z,R1Or − %r‖L5/3(B(x,t))

+ t−1/2
√

2D(%TF
Z,R1Or − %r)

≤t1/5
(

5π2

4

)2/5

max
{
‖%TF

Z,R1Or‖L5/3(B(x,t)), ‖%r‖L5/3(B(x,t))

}
+ t−1/2

√
2c3.16aσr−7+ε. (3.29)

We infer from Lemma 3.7 and Lemma 3.6 that

‖%TF
Z,R1Or‖L5/3(B(x,t)) ≤

(
2
cS

cTF

r−4

)3/2

|B(x, t)|3/5 = r−6t9/523/2 3

π
cS

(
4π

3

)3/5

.

Similar, using (3.18), ‖%r‖L5/3(B(x,t)) ≤ r−6t9/5
(
c3.17
cTF

+ 16cS
3cTF

)3/2 (
4π
3

)3/5
. We first

insert these bounds in (3.29) and then optimize over t ∈ (0,∞), so that∣∣(%TF
Z,R1Or − %r) ∗ |x|−1

∣∣ ≤σ 2
5 r−4+ 2

5
εC1

with C1 =
527/25π7/25c

2/5
3.16a

228/2533/25

(
c3.17
cTF

+ 16cS
3cTF

)3/10

. We then collect the bounds we have

derived so far and obtain

r4 inf
∂Or

ϕr ≥
(cS

3
− σrε − (σrε)2/5C1

)
=: C2(σrε). (3.30)
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Recall that σrε ≤ c3.17 < max{t > 0 | C2(t) ≥
√
tc3.16b} and note that C2 is strictly

decreasing, hence

inf
∂Or

ϕr ≥ r−4C2(c3.17) > r−4√c3.17c3.16b ≥ µr (3.31)

where we have used Lemma 3.16.

Step 2 (Neutrality)

We have just verified that we may use Lemma 3.13 so that

(µr)
3/4c

1/2
S (1 + a(r)r−ξ)−1/2 ≤ N(V )−

∫
%r. (3.32)

Note that inf∂Or ϕr > µr and thus 1 + a(r) > 0 by definition of a(r). Now, if we

had µr > 0, then
∫
%r = N(V ) (compare Theorem 3.2) and the right hand side of

(3.32) were zero, while the left hand side is positive. Thus µr = 0.

Step 3 (Sommerfeld bounds)

We apply Lemma 3.11 for a vanishing chemical potential. To obtain the claimed

inequalities, it remains to bound the constants A(r) and a(r) by expressions that

are uniform in r ∈
[
(3/2aTF)1/ξm

−1/3
Z , (c3.17/σ)

1
ε

]
. With (3.18),

A(r) = r4 sup
∂Or

cTF

cS

%2/3
r − 1 ≤ σrε

cS

+
16

3
− 1 ≤ c3.17

cS

+
13

3
=: A.

We use (3.31) to deduce

a(r) =

√
cS

r4 inf∂Or ϕr
− 1 ≤

√
cS√

c3.17c3.16b

− 1 =: a.

Last, we use the upper bound from Lemma 3.11 together with the TF equation

(3.2) to bound∫
%r ≤

3

π
cS(1 + A)3/2

∫
Or

√
2(|x|6 + |x−Rν|−6)dx ≤ 27/2cS(1 + A)3/2r−3.

�

Next, we show how the Sommerfeld bounds allow us to compare the diatomic TF

potential and density to diatomic oTF potentials and densities.

Lemma 3.18. Assume V ∈ H(Or) satisfies sup
Or

∣∣ΦTF
Z,R,r − V

∣∣ ≤ σr−4+ε for some

ε, σ > 0 and (
3

2
aTF

) 1
ξ

m
−1
3

Z ≤ r ≤ min
{

(c3.17/σ)
1
ε , c3.18bR/2

}
.
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Let r̃ = c3.18ar
ξ
ξ+η (R/2)

η
ξ+η and consider %r = arg min

C(NV )
ETF
V with corresponding TF

potential ϕr. Then r̃ ∈ (r, R/2) and for all s ∈ [r, r̃]:

sup
∂Os
|ϕTF

Z,R − ϕr| ≤ cSs
−4c3.18c

(r
s

)ξ
(3.33)

and

sup
∂Os

∣∣(%TF
Z,R − %r)1Os ∗ |x|−1

∣∣ ≤ cSs
−4c3.18d

(r
s

)ξ
. (3.34)

Proof. The proof is divided into four steps. We start with (3.33), a straightforward

consequence of the Sommerfeld type bounds and neutrality of the TF potentials.

In the second (and third) step we bound the densities in IR/2 (and Or̃) sufficiently

well to derive (3.34) by integration in the last step.

Step 1 (Proof of (3.33)) Let r be as in the Lemma and c3.18b ≤ 1/2, so Lemma

3.17 applies. We combine it with Lemma 3.12 and note that A2(r) ≤ A and

A1(r) ≤ 4
η−4

+ A 4+ξ
η−4

.14 Hence if |x| ∈ [r, R/2], then

ϕr(x) ≤ cS|x|−4

(
1 + A(r/|x|)ξ +

4 + A(ξ + 4)

η − 4
(2|x|/R)η

)
.

As aTFZ
−ξ/3
1 ≤ rξ2/3, we infer that ϕTF

Z,R(x) ≥ cS|x|−4(1−2/3(r/|x|)ξ) from Lemma

3.6 and obtain for |x| ∈ [r, R/2]:

ϕr(x)− ϕTF
Z,R(x) ≤ cS|x|−4

(
(2/3 + A)

(
r

|x|

)ξ
+

4 + A(ξ + 4)

η − 4

(
2s

R

)η)
. (3.35)

On the other hand, we know (by using (3.5) with r = R/2) that ϕTF
Z,R(x) ≤

cS|x|−4(1 + (2|x|/R)η) for any x ∈ B(0, R/2) and according to Lemma 3.17 also

ϕr(x) ≥ cS|x|−4(1 + a(r/|x|)ξ)−2 ≥ cS|x|−4(1 − 2a(r/|x|)ξ) if |x| ∈ [r, R/2]. All

together, we obtain for all |x| ∈ [r, R/2]:

|ϕTF
Z,R(x)− ϕr(x)| ≤ cS|x|−4

(
4+A(ξ+4)

η−4

(
2|x|
R

)η
+ max

{
2
3

+ A, 2a
}( r

|x|

)ξ)
.

The same arguments apply if |x − Rν| ∈ [r, R/2] and since s ≤ r̃ is equivalent to

(2s/R)η ≤ cη+ξ
3.18a(r/s)

ξ, we conclude (3.33) with

c3.18c =
(
cη+ξ

3.18a
4+A(ξ+4)

η−4
+ max

{
2
3

+ A, 2a
})

.

Step 2 (A bound on the densities in Or ∩ IR/2)

We use the TF equation for ϕr, ϕ
TF
Z,R and repeat the arguments that led to (3.35)

14see Lemmas 3.12 and 3.17 for the definition of A,A1, A2.
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to deduce that for all |x| ∈ [r, R/2]:15

%r(x)− %TF
Z,R(x) ≤ 3

π
cS|x|−6

(
(AC1 + 1)

(
r

|x|

)ξ
+ C1

4 + A(ξ + 4)

η − 4

(
2|x|
R

)η)

with a constant C1 = η−4
4+A(ξ+4)

((
1 + A+ 4+A(ξ+4)

η−4

)3/2

− 1

)
, as well as

%r(x)− %TF
Z,R(x) ≥ − 3

π
cS|x|−6

(
3a

(
r

|x|

)ξ
+ (23/2 − 1)

(
2|x|
R

)η)
.

All together we find

|%r(x)− %TF
Z,R(x)| ≤ 3

π
cS|x|−6

(
C2

(
r

|x|

)ξ
+ C3

(
2|x|
R

)η)
, ∀|x| ∈ [r, R/2]

(3.36)

where C2 = max{3a,AC1 + 1} and C3 = max
{

(23/2 − 1), C1
4+A(ξ+4)

η−4

}
and the

analogous bound holds for |x−Rν| ∈ [r, R/2].

Step 3 (A bound on the densities in Or̃)
Let r, r̃ be as in the statement, then aTFZ

−ξ/3
1 |x|−ξ ≤ 2

3
(r/|x|)ξ. According to the

proof of Lemma 3.6 or [12, Theorem 5.4], ϕTF
Z ≥ cS|x|−4(1 + aTF

2
Z−ξ/3|x|−ξ)−2.

Hence we then find with Lemma 3.7 that cS|x|−4 ≤ ϕTF
Z,R(x)

(
1 + 7/9(r/|x|)ξ

)
for

all |x| ≥ r. This, together with µr = 0, Lemma 3.17 and Lemma 3.12 implies

ϕr(x) ≤ ϕTF
Z,R(x)

[
1 + C8(2|x|/R)η + C9(r/|x|)ξ

]
∀x ∈ B(0, r)c ∩H−R/2, (3.37)

where C8 := 16
9

4+A(ξ+4)
η−4

and C9 := [16A/9 + 7/9]. The term in square brack-

ets in (3.37) is minimal in |x| at r0 :=
(
ξC9

ηC8

) 1
η+ξ

r
ξ
η+ξ (R/2)

η
η+ξ where it equals

C
ξ
η+ξ

8 C
η
η+ξ

9 (η + ξ)ξ
−ξ
η+ξ η

−η
η+ξ︸ ︷︷ ︸

=:C4

(2r/R)
ξη
η+ξ . Note that to ensure ∂B(0, r0) ⊂ B(0, r)c ∩

H−R/2, it is sufficient to require r0 ∈ [r, R/2] which is equivalent to 2r/R ≤

min

{(
ηC8

ξC9

) 1
ξ
,
(
ξC9

ηC8

) 1
η

}
= C5. Repeating these steps for x ∈ B(R, r)c ∩ H+

R/2,

we obtain (with r0 defined above) that if 2r/R ≤ min{C5, 1/2}, then

ϕr(x) ≤ ϕTF
Z,R(x)

(
1 + C4(2r/R)

ξη
η+ξ

)
(3.38)

for all x ∈ ∂Or0 . We infer from Corollary 3.5, with u = ϕr − ϕTF
Z,R(1 + (cst.)) and

Ω = Or0 , that (3.38) is true for all x ∈ Or0 . Next, we prove a corresponding lower

bound. Combining (3.5) for r = R/2 with the lower bound from Lemma 3.11 we

15We use that (1 + t)3/2 ≤ 1 + t (1+T )3/2−1
T for all t ∈ [0, T ] by convexity.
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find

ϕr(x) ≥ ϕTF
Z,R

(
1− (2|x|/R)η − 2a(r/|x|)ξ

)
∀x ∈ B(0, r)c ∩B(0, R/2).

We proceed as before, minimizing (2|x|/R)η +2a(r/|x|)ξ in |x| ∈ (r, R/2) to obtain

a bound on the sphere |x| = r1 := (2aξ/η)
1
η+ξ r

ξ
η+ξ (R/2)

η
η+ξ , provided r1 ∈ [r, R/2].

Repeating the argument for x ∈ H+
R/2, we deduce that u = ϕTF

Z,R(1−(cst.))−ϕr ≤ 0

on ∂Or1 . We then extend this bound to Or1 by applying Corollary 3.5 again, this

time with Ω = Or1 . The conclusion is that

ϕr(x) ≥ ϕTF
Z,R(x)

1− (2a)
ξ
ξ+η (η + ξ)ξ

−ξ
η+ξ η

−η
η+ξ︸ ︷︷ ︸

=C6

(2r/R)
ξη
η+ξ

 , ∀x ∈ Or1 , (3.39)

as long as r1 ∈ [r, R/2], which is equivalent to 2r/R ≤ min{( η
2ξa

)1/ξ, (2ξa
η

)1/η}. We

chose r̃ = max(r0, r1), which means c3.18a := (ξ/ηmax{2a, C9/C8})
1
ξ+η , and set

c3.18b := min
{

1
2
, ( η

2ξa
)1/ξ, (2ξa

η
)1/η, (ηC8

ξC9
)1/ξ, ( ξC9

ηC8
)1/η
}

. Then it is a straightforward

consequence of the TF equation, (3.38) and (3.39) that

|%r(x)− %TF
Z,R(x)| ≤ %TF

Z,R(x)C7 (2r/R)
ξη
η+ξ

for all x ∈ Or̃, with C7 := max

{
3
2
C6, c

−ξη/(η+ξ)
3.18b

[(
1 + C4c

ξη/(η+ξ)
3.18b

)3/2

− 1

]}
.16

Hence with Lemmas 3.6 and 3.7:

|%r(x)− %TF
Z,R(x)| ≤

√
2

3

π
cSC7

(
2r

R

) ξη
η+ξ (
|x|−6 + |x−Rν|−6

)
, ∀x ∈ Or̃. (3.40)

Step 4 (Proof of (3.34))

Let s, r, r̃ be as in the statement and |x| = s, then∣∣(%TF
Z,R − %r)1Os ∗ |x|−1

∣∣ ≤ ∑
p∈{0,Rν}

∫
B(p,r̃)\B(p,s)

|%TF
Z,R(y)− %r(y)|
|x− y|

dy

+

∫
Or̃

|%TF
Z,R(y)− %r(y)|
|x− y|

dy.

We use (3.36), (3.40) and Newton’s theorem to bound the integrands on the right

hand side: For the first two,∫
B(p,r̃)\B(p,s)

|%TF
Z,R(y)− %r(y)|
|x− y|

dy ≤ 3

π
cS

∫
B(0,r̃)\B(0,s)

C2(r/|y|)ξ + C3(2|y|/R)η

|y|7
dy

≤ 12cS

(
C2

4 + ξ
s−4
(r
s

)ξ
+

C3

η − 4
r̃−4

(
2r̃

R

)η)
,

16Here we use the bound (1 + t)3/2 ≤ 1 + t (1+T )3/2−1
T for all t ∈ [0, T ] and 2r/R ≤ cξη/(η+ξ)

3.18b .
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while for the last integral,∫
Or̃

|%TF
Z,R(y)− %r(y)|
|x− y|

dy ≤ 25/23

π
cSC7

(
2r

R

) ξη
η+ξ

∫
B(0,r̃)c∩H−

Rν/2

|y|−7dy

≤ 25/23cSC7

(
2r

R

) ξη
η+ξ

r̃−4.

Finally note that (2r̃/R)η = cη3.18a(2r/R)
ξη
η+ξ and s ≤ r̃ ⇔ (2r/R)

ξη
η+ξ ≤ cξ3.18a(r/s)

ξ

so that we have proven (3.34) with c3.18d = 12
(
C2

4+ξ
+

C3c
η+ξ
3.18a

η−4
+ 21/2C7c

ξ
3.18a

)
. �

4. The Born-Oppenheimer curve

The diatomic TF energy ETF
Z,R describes only the electronic part of the energy in

the Born-Oppenheimer approximation and does not include the repulsion between

the nuclei. The diatomic Born-Oppenheimer potential (1.1) in TF theory therefore

equals

DTF
Z,R = ETF

Z,R − ETF
Z1
− ETF

Z2
+
Z1Z2

R
.

We collect several properties of this function:

(1) DTF
Z,R > 0 for all Z, R, due to Teller’s no-binding result.

(2) ∂ZpD
TF
Z,R = lim

x→p

(
ϕTF
Z,R(x)− ϕTF

Zp
(x− p)

)
> 0 for p ∈ {0, Rν}.17

(3) DTF
Z,R = R−7DTF

R3Z,1 by the usual TF scaling relation.

(4) DTF
Z,R ≤ c6

TF
2113443
π435

R−7 was shown by Brezis and Lieb in [6]. This, together

with (2) and (3), allows them to conclude the existence of the limit

lim
mZ→∞

DTF
Z,R = DTF

∞,1R
−7. (3.41)

Remark: The value of the constant

The exact value of DTF
∞,1 is not known and the only bound on it that we are aware

of is the one from [6] mentioned previously. The TF equation and the identity

(ϕTF
(Z,Z),R − ϕTF

Z )(0) =
∫

(%TF
Z (y)− %TF

(Z,Z),R(y))|y|−1dy + Z
R

imply

DTF
(Z,Z),R =

1

10c
3/2
TF

∫ ((
ϕTF
Z,R

) 5
2 − 2

(
ϕTF
Z

) 5
2

)
+ Z

(
ϕTF

(Z,Z),R − ϕTF
Z

)
(0). (3.42)

We have used this formula to compute DTF
(Z,Z),R numerically for relatively small

values of Z,R (see Chapter 7) but it was not possible to obtain a meaningful

extrapolation of the Born-Oppenheimer potential for large ZR3 or a guess for

the value DTF
∞,1. We also note that by an argument due to Laurent Bétermin,18

17see [5, Theorem V.6.b)]
18unpublished, private communications, January 2018

40



4. THE BORN-OPPENHEIMER CURVE

Z
(
ϕTF

(Z,Z),R − ϕTF
Z

)
(0) −−−→

Z→∞
0. Hence

DTF
∞,1 =

1

10c
3/2
TF

lim
Z→∞

∫ ((
ϕTF

(Z,Z),1

) 5
2 − 2

(
ϕTF
Z

) 5
2

)
(3.43)

and it is tempting to compute DTF
∞,1 from this identity. For the atomic TF poten-

tial, we have the pointwise convergence ϕTF
Z (x) −−−→

Z→∞
cS|x|−4. Unfortunately, we

do not have an exact expression for the limiting function in the diatomic case.

The main goal of the present work is to show that (3.41) is, to leading order

as R → 0, also the correct description for DrHF
Z,R . An important ingredient in our

proof is that DTF
Z,R can be determined from outside TF models,19 if they are ap-

propriately chosen. Before making this statement rigorous, we need to introduce

more notation.

For ρ1, ρ2 ∈ C, we will abuse notation and denote by 2D (Z1δ0 − ρ1, Z2δRν − ρ2)

the expression

Z1Z2

R
− Z1

∫
ρ2(x)

|x|
dx− Z2

∫
ρ1(x)

|x−Rν|
dx+ 2D(ρ1, ρ2) (3.44)

because it is shorter to write and because it emphasizes that this is the Coulomb

interaction of two screened charge distributions. If these charge distributions have

disjoint and compact supports, then (3.44) can be computed solely from their

potentials, evaluated outside of the supports:

Proposition 3.19. Let r < R/2 and assume ρp ∈ C with p ∈ {0, Rν} satisfy

supp ρp ⊂ B(p, r). With Φp(x) := Zp
|x−p| −

∫ ρp(y)

|x−y|dy, we then have

2D(Z0δ0 − ρ0, ZRνδRν − ρRν) =
1

4π

∫
∂Ω

(∂nΦ0ΦRν − Φ0∂nΦRν)

for any Ω ⊂ B(R, r)c such that B(0, r) ⊂ Ω.

Proof. Note that Φp ∈ L1
loc(R3). The distribution −∆Φ0 = 4π(Z0δ0 − ρ0) has

support in B(0, r), where ΦRν is smooth. Hence

−(4π)−1∆Φ0[ΦRν ] = 2D(Z0δ0 − ρ0, ZRνδRν − ρRν),

where the right hand side is to be read in the sense of (3.44). Assume for now

that dist(Ω, B(Rν, r)) > 0 and pick χ ∈ C∞c (B(Rν, r)
c
) with χ = 1 in Ω, where

19to the relevant order o(R−7) as R→ 0
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−∆ΦRν = 0. Then, by definition of the distributional derivative,

−∆Φ0[ΦRν ] = −∆Φ0[χΦRν ] =

∫
Φ0(−∆χΦRν) =

∫
(B(Rν)∪Ω)c

Φ0(−∆χΦRν). (3.45)

Both Φ0 and ΦRν are harmonic in Or ⊃ (B(Rν, r) ∪ Ω)c. We integrate by parts

twice on the right hand side of (3.45) and find (using the properties of χ) that it

equals
∫
∂Ω

(∂nΦ0ΦRν − Φ0∂nΦRν). The case dist(Ω, B(Rν, r)) = 0 is easily obtained

as a limit of what we have proved. �

Green’s identity,
∫

Ω
(∆u v−u ∆v) =

∫
∂Ω

(∂nu v−u ∂nv), ensures that the following

definition does indeed not depend on the exact choice of Ω:

Definition 3.20. The Coulomb interaction energy corresponding to two po-

tentials V
(p)
r ∈ H(B(p, r)c), p ∈ {0, Rν} with r < R/2 is

Q[V (0)
r , V (Rν)

r ] =
1

4π

∫
∂Ω

(
V (0)
r ∂nV

(Rν)
r − ∂nV (0)

r V (Rν)
r

)
with Ω such that B(0, r) ⊂ Ω ⊂ B(R, r)

c
.

Lemma 3.21. Let r < R/2 and V
(p)
r ∈ H(B(p, r)c), p ∈ {0, Rν}. Then

Q[V (0)
r , V (Rν)

r ] ≤ 5π

4
√

1− (2r/R)2
sup

∂B(0,r)

|V (0)
r | sup

∂B(Rν,r)

|V (Rν)
r |r

2

R
.

Proof. We consider Pr(x, ξ) = 1
4π

r2−|x|2
|x−ξ|3 , the Poisson kernel for the ball of radius r

and write P c
r (x, ξ) = −Pr(x, ξ). Then20

V (p)
r (x) =

∫
∂B(p,r)

P c
r (x− p, ξ − p)V (p)

r (ξ)dξ ∀|x− p| > r.

We infer from ∇Pr(x, ξ) = Pr(x, ξ)
(

2x
|x|2−r2 −

3(x−ξ)
|x−ξ|2

)
, together with a standard

application of the mean value theorem and Lebesgue’s dominated convergence,

that if |x− p| > r,

∣∣∇V (p)
r (x)

∣∣ =

∣∣∣∣∣∣∣
∫

∂B(p,r)

V (p)
r (ξ)P c

r (x− p, ξ − p)
(

2(x− p)
|x− p|2 − r2

− 3(x− ξ)
|x− ξ|2

)∣∣∣∣∣∣∣
≤2|(x− p)V (p)

r (x)|
|x− p|2 − r2

+ sup
∂B(p,r)

|V (p)
r |

∫
∂B(p,r)

3P c
r (x− p, ξ − p)
|x− ξ|

dξ.

For the last summand, we note that
∫
∂B(0,r)

P c
r (x, ξ)|x− ξ|−1dξ = fx(x), where fy

(with |y| > r) solves ∆fy = 0 in B(0, r)
c
, vanishes at infinity and equals gy(x) =

20For details, see Lemma A.2 and the examples thereafter.
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|y−x|−1 on the sphere ∂B(0, r). Since gy is harmonic in B(0, r), we may conclude

that fy is the Kelvin transform of gy with respect to ∂B(0, r), that is fy(x) =
r
|x|gy(x

r2

|x|) = r

|x||y−x r2

|x|2
|
. (See Definition A.1 and Lemma A.2 in the appendix.)

Hence
∫
∂B(0,r)

Pr(x, ξ)|x−ξ|−1dξ = r
|x|2−r2 and since V

(p)
r (x) ≤ r

|x−p| sup∂B(p,r) |V
(p)
r |,

we find

|∇V (p)
r (x)| ≤ sup

∂B(p,r)

|V (p)
r |

5r

|x− p|2 − r2
∀|x− p| > r. (3.46)

Together with the choice Ω = HRν/2 in Definition 3.20, this bound implies

4πQ[V (0)
r , V (Rν)

r ] ≤ r2 sup
∂B(0,r)

|V (0)
r | sup

∂B(R,r)

|V (Rν)
r |

∫
HRν/2

Ir,Rν(x)dx

where Ir,Rν(x) :=
(

5
(|x|2−r2)|x−Rν| + 5

(|x−Rν|2−r2)|x|

)
and we easily compute∫

HRν/2
Ir,Rν(x)dx =

5π2

R
√

1− (2r/R)2

to obtain the result. �

We now make our previous remark, that DTF
Z,R is to leading order (in small R)

determined by oTF models, more precise.

Lemma 3.22. Let V (p) ∈ H(B(0, r)
c
) with p ∈ {0, Rν} and V = (V (0) +V Rν)1Or .

Assume there exist positive ε, ε∗, σ, σ∗ such that supOr |V − ΦTF
Z,R,r| ≤ σr−4+ε and

supB(p,r)c |V (p) − ΦTF
Zp,r
| ≤ σ∗r−4+ε∗ for p ∈ {0, Rν}. Furthermore assume that

(3/2aTF)
1
ξm

−1
3

Z ≤ r ≤ min{R/4, (c3.14b/σ
∗)1/ε∗ , (c3.17/σ)1/ε}.

Then with ETF
V = min

C(N(V ))
ETF
V and ETF

V (p) = min
C(N(V (p)))

ETF
V (p),

ETF
V − ETF

V (0) − ETF
V (Rν) +Q[V (0), V (Rν)]−DTF

Z,R ≤ c3.22ar
−7σ∗rε

∗
(3.47)

and

ETF
V − ETF

V (0) − ETF
V (Rν) +Q[V (0), V (Rν)]−DTF

Z,R ≥ −c3.22br
−7σrε. (3.48)

Proof. Step 1 (Preliminary bounds)

We recall that both supB(0,r)c |ΦTF
Z,r| and supOr |ΦTF

Z,R,r| are bounded by (cst.)r−4.

The assumptions therefore imply ‖V (p)‖∞ ≤ (cst.)r−4 and ‖V ‖∞ ≤ (cst.)r−4.

They also allow us to use Lemmas 3.14 and 3.17 to infer that the minimizers

%r = arg min
C(N(V ))

ETF
V and %

(p)
r = arg min

C(N(V (p)))
ETF
V (p) are neutral and their L1-norm is

bounded by (cst.)r−3. The L1-norm of %TF
Zp
1B(0,r)c and %TF

Z,R1Or is (due to Lemmas

3.7 and 3.6) also bounded by (cst.)r−3. We will use all these bounds freely in the

upper and lower bound we are about to derive next. For this we start with two
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identities: For any ρ ∈ C, Ṽ ∈ L5/2(R3) it holds that

ETF
Z/|x|[ρ] =ETF

Z/|x|[ρ1B(0,r)] + ETF
Ṽ

[ρ1B(0,r)c ] (3.49)

+

∫
B(0,r)c

ρ
(
Ṽ − Z|x|−1 + ρ1B(0,r) ∗ |x|−1

)
,

and

ETF
VZ,R

[ρ] + Z1Z2/R =ETF
Z1/|x|[ρ1B(0,r)] + ETF

Z2/|x−Rν|[ρ1B(Rν,r)] + ETF
Ṽ

[ρ1Or ] (3.50)

+

∫
Or
ρ
(
Ṽ − VZ,R + ρ1Ir ∗ |x|−1

)
+ 2D

(
Z1δ0 − ρ1B(0,r), Z2δR − ρ1B(Rν,r)

)
.

Step 2 (Proof of (3.48) )

We insert ρ = %TF
Z0
1B(0,r) + %TF

ZRν
(· − Rν)1B(Rν,r) + %r, Ṽ = V in (3.50) and ρ =

%TF
Zp

(· − p), Ṽ = V (p) in (3.49). Then

DTF
Z,R ≤ETF

V − ETF
V (0) [%

TF
Z0
1B(0,r)c ]− ETF

V (Rν) [%
TF
ZRν

(· −Rν)1B(Rν,r)c ]

+ sup
Or

∣∣V − ΦTF
Z0,r
− ΦTF

ZRν ,r
(· −Rν)

∣∣ ∫ %r

+
∑

p∈{0,Rν}

sup
B(p,r)c

∣∣∣V (p) − ΦTF
Zp,r(· − p)

∣∣∣ ∫
B(p,r)c

%TF
Zp

+ 2D(Z0δ0 − %TF
Z0
1B(0,r), ZRνδRν − %TF

ZRν
(· −Rν)1B(Rν,r)). (3.51)

By neutrality, ETF
V (p) [%

TF
Zp
1B(p,r)c ] ≥ ETF

V (p) . Due to the maximum principle, we have

the bound

sup
Or

∣∣V − ΦTF
Z0,r
− ΦTF

ZRν ,r
(· −Rν)

∣∣ ≤ ∑
p∈{0,Rν}

sup
B(p,r)c

∣∣∣V (p) − ΦTF
Zp

∣∣∣ ≤ 2σr−4+ε

in the second line of (3.51). Using Proposition 3.19, we observe that last line of

(3.51) equals Q[ΦTF
Z0,r

,ΦTF
ZRν ,r

(· −Rν)]. We rewrite it and use Lemma 3.21 together

with the assumptions to estimate

Q[ΦTF
Z0,r

,ΦTF
ZRν ,r

(· −Rν)]−Q[V (0), V (Rν)]

= Q[ΦTF
Z0,r

,ΦTF
ZRν ,r

(· −Rν)− V (Rν)] +Q[ΦTF
Z0,r
− V (0), V (Rν)]

≤ (cst.)σr−7+ε. (3.52)

The claimed upper bound on DTF
Z,R follows from our preliminary bounds and the

assumptions. We can choose

c3.22b = 23cS

(
(2(1 + A))3/2 + 1 +

20√
3

(
1 +

c3.14b

23cS

))
.

44



4. THE BORN-OPPENHEIMER CURVE

Step 3 (Proof of (3.47))

We insert %TF
Z,R1B(p,r) + %

(p)
r , Ṽ = V (p) into (3.49) and ρ = %TF

Z,R, Ṽ = V in (3.50).

Then

DTF
Z,R ≥ETF

V [%TF
Z,R1Or ]− ETF

V (0) − ETF
V (Rν) − sup

Or

∣∣V − ΦTF
Z,R,r

∣∣ ∫
Or
%TF
Z,R

−
∑

p∈{0,Rν}

sup
B(p,r)c

∣∣∣∣V (p) − Z/|x− p|+
∫
B(p,r)

%TF
Z,R/|x− y|

∣∣∣∣ ∫
B(p,r)c

%(p)
r

+ 2D(Z0δ0 − %TF
Z,R1B(0,r), ZRνδRν − %TF

Z,R1B(Rν,r)).

Again, by neutrality, ETF
V [%TF

Z,R1Or ] ≥ ETF
V . We apply (3.17) with

Vp(x) := (V (p)(x)− Zp/|x− p|+
∫
B(p,r)

%TF
Z,R/|x− y|)1B(p,r)c(x).

Then supB(p,r)c |Vp| ≤ 3σ∗r−4+ε∗ (since r ≤ R/4) and via the triangle inequality,

sup
B(p,r)c

|Zp/|x− p| − %TF
Z,R1B(p,r) ∗ |x|−1| ≤ sup

B(p,r)c
|V (p)|+ 3σ∗r−4+ε∗ , p ∈ {0, Rν}.

We use these bounds together with Proposition 3.19 and Lemma 3.21 to deduce

(with the same arguments as for (3.52)) that

2D(Z0δ0 − %TF
Z,R1B(0,r), ZRνδRν − %TF

Z,R1B(Rν,r))−Q[V (0), V (Rν)] ≥ −(cst.)σ∗r−7+ε∗ .

This proves, together with the preliminary bounds and the assumptions, the lower

bound on DTF
Z,R and we choose

c3.22a = 27/2cS + 6c3.14a +
40√

3
(8cS + 2c3.14b + 3c3.17) .

�
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CHAPTER 4

Reduced Hartree-Fock theory

Before we discuss the (reduced) Hartree-Fock functional, we need to introduce the

notion of a density matrix1 and collect some classical inequalities about density

matrices and eigenvalues of Schrödinger operators.

1. Density matrices and classical inequalities

Definition 4.1. An operator γ : L2(R3;Cq) → L2(R3;Cq) is a density matrix

iff it satisfies 0 ≤ γ ≤ 1 and has finite trace.

We will denote by DMq the set of density matrices on L2(R3;Cq). Note that any

γ ∈ DMq is in particular a compact, self-adjoint operator and therefore has a spec-

tral decomposition: There exist orthonormal eigenvectors uj with corresponding

eigenvalues λj ∈ [0, 1], which converge to zero, and such that

γ =
∞∑
j=1

λj〈uj, ·〉uj. (4.1)

Moreover, any trace-class operator is Hilbert-Schmidt and thus γ ∈ DMq can be

rewritten as an integral operator. By a slight abuse of notation, we write γ(x, y) for

its integral kernel, which is a q × q-matrix at each point (x, y). With the spectral

decomposition (4.1) of γ ∈ DMq we define the corresponding density ργ ∈ L1(R3)

by2

ργ(x) :=
∞∑
j=1

λj|uj(x)|2,

and the (possibly infinite) value

tr[−∆γ] :=
∞∑

λj>0

λj

∫
(2πp)2|Fuj(p)|2dp.

Here, abusing notation, we defined the left hand side by the right hand side. If

tr[−∆γ] < ∞, as will be the case for the concrete density matrices we consider

later, then all eigenfunctions that correspond to non-zero eigenvalues are in H1(R3)

1Another frequently used (and more accurate) name would be one-particle reduced density matrix.
2This is well-defined since two decompositions of the form (4.1) can only differ for eigenvectors
corresponding to the eigenvalue λj = 0.
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CHAPTER 4. REDUCED HARTREE-FOCK THEORY

and then

tr[−∆γ] =
∞∑

λj>0

λj‖∇uj‖2
2.

If the eigenfunctions are in H2(R3), then this is actually an identity where the left

hand side has the usual meaning. Furthermore, if V ∈ L3/2(R3) + L∞(R3), then

tr[V γ] =
∞∑
j=1

λj

∫
V |uj|2 =

∫
V ργ <∞.

We will consider one-particle, spin-diagonal Schrödinger operators,

HV = (−cH∆− V )⊗ Iq on L2(R3;Cq)

for potentials V ∈ L3/2(R3)+L∞(R3). Then HV is bounded from below and there-

fore realized via the Friedrich’s extension.3

The min-max principle implies that if γ ∈ DMq with tr[γ] ≤ N , then tr[−(cH∆−
V )γ] is bounded from below by the sum of the N lowest nonpositive eigenvalues

of HV .4 The Lieb-Thirring inequality [25] bounds the sum of all such eigenvalues

if [V ]+ ∈ L5/2(R3), ∑
e≤0 eigenvalue

of HV

|e| ≤ c
−3/2
H qL1

∫
[V ]

5/2
+ . (4.2)

Here the best-known constant is L1 = π√
3
Lsc (see [26]) and Lsc = 1

15π2 is the

corresponding semiclassical value.5 The Lieb-Thirring inequality is dual to the

kinetic energy inequality (see for example [27]), which is the statement

tr[−∆γ] ≥ q−2/3K1

∫
ρ

5/3
ψ , ∀γ ∈ DMq. (4.3)

Here K1 = 3
5

(
2

5L1

)2/3

is the best constant if and only if L1 is the best known for

(4.2). Note that this bound, together with the Hardy-Littlewood-Sobolev bound

(2.1) implies

D(ργ) <∞, ∀γ ∈ DMq with tr[−∆γ] <∞. (4.4)

3For the Friedrich’s extension, see for example [24, Theorem X.23].
4For the min-max principle, see for example [14, Theorem XIII.I].
5Lsc is obtained by summing the classical Hamiltonian function Hcl(x, p) = p2/(2m) − V (x)
over the phase space region with negative energy and postulating that a phase-space volume of

size h3 can only hold q states:
∫ ∫

[Hcl(x, p)]−
dpdx
h3/q = −(

√
2m/~)3 q

15π2

∫
[V (x)]

5/2
+ dx. Note that

cH = ~2/(2m).
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2. THE REDUCED HARTREE FOCK MINIMIZATION PROBLEM

The CLR inequality (derived independently by Cwikel [28], Lieb[29], and Rozen-

blum [30], [31]) bounds N(HV ), the number of nonpositive eigenvalues of HV , by

N(HV ) ≤ c
−3/2
H qL0

∫
[V ]

3/2
+ . (4.5)

The best known constant, L0 ≤ 0.116, is due to Lieb [29].

The Lieb-Oxford inequality [32] gives a lower bound on the indirect part of the

Coulomb energy. That is for any normalized N -particle wave function Ψ with

density ρΨ,∑
1≤k<l≤N

∫
R3N

|Ψ(x1, ..., xN)|2

|xk − xl|
dx1...dxN −D(ρΨ) ≥ −cLO

∫
R3

ρ
4/3
Ψ . (4.6)

The best-known constant is cLO = 1.64, due to Chan and Handy [33]. Also note

that this bound holds for any q ≥ 1.

2. The reduced Hartree Fock minimization problem

We will primarily consider the reduced Hartree-Fock (rHF) theory, a simplification

of Hartree-Fock (HF) theory. The latter is more natural since it arises as the

restriction of Schrödinger quantum mechanics to pure wedge products: Consider

the Hamiltonian HQM
V,N of N electrons interacting with a single-particle potential

V , that is

HQM
V,N =

(
N∑
j=1

(−cH∆j − V (xj)) +
∑

1≤k<l≤N

1

|xk − xl|

)
⊗ IqN .

One computes that the indirect part of the Coulomb energy (the left hand side

in (4.6)) of a N -particle Slater determinant ΨS = u1 ∧ ... ∧ uN only depends on

the corresponding density matrix γS (the orthogonal projection onto the subspace

spanned by u1, ..., uN). It is called the exchange term of γS and equals

X [γS] :=
1

2

∫ ∫
trCq [|γS(x, y)|2]

|x− y|
]dxdy (4.7)

where trCq [|γ(x, y)|2] =
∑

k,l |[γ(x, y)]kl|2. Hence, by restricting the min-max prin-

ciple for HQM
V,N to normalized N -particle Slater determinants ΨS = u1∧ ...∧uN , we

find that the energy only depends on γS. This defines the Hartree-Fock functional

EHF
V by

〈ΨS, H
QM
V,N ΨS〉 = tr[(−cH∆− V )γS] +D(ργS)−X [γS] =: EHF

V [γS].
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CHAPTER 4. REDUCED HARTREE-FOCK THEORY

This definition, and in particular (4.7), extends to any γ ∈ DMq and due to a re-

sult by Lieb [34], this extension does not lower the infimum for Coulomb-potentials

V (x) = VZ,R(x). In particular, molecular HF minimizers under the constraint

tr[γ] ≤ |Z| exist (see [35]) and are orthogonal projections.

There is much more that can be said about HF theory but for this we refer to

the mentioned literature and make just one more remark: The exchange-energy X
is quite challenging, it for example causes the HF functional to be non-convex. It

is also the reason why we did not prove Theorems 5.1 and 6.1 for (full) HF the-

ory. Hence we consider reduced Hartree-Fock theory, which is basically HF theory

without the exchange term:

Definition 4.2. The reduced Hartree-Fock functional corresponding to a po-

tential V ∈ L3/2(R3) + L∞(R3) is the map E rHF
V : DMq → R defined by

E rHF
V [γ] := tr[(−cH∆− V )γ] +D(ργ).

Theorem 4.3 (The rHF minimization problem). Let Z ∈ RM
+ , R ∈ (R3)M . Then

for all N > 0 there exists a γ ∈ DMq such that

E rHF
VZ,R

[γ] = inf
γ∈DMq

tr[γ]≤N

E rHF
VZ,R

[γ] and tr[γ] ≤ N.

Moreover, there exists Nc(Z) ≥ |Z| such that for all N ≤ Nc, tr[γ] = N .

Proof. The minimization problem for the atomic case (which is M = 1) was studied

in [23] via the direct method.6 Radial symmetry of the minimizing candidate, which

obviously does not hold for M > 1, was used to prove that its direct Coulomb

energy is finite. But we can replace this argument by (4.4). Hence the same proof

applies in the general case M ≥ 1. �

Note that the minimizer in Theorem 4.3 need not be unique. We therefore denote

by γrHF
Z an arbitrary neutral atomic minimizer, that is

E rHF
Z/|x|[γ

rHF
Z ] = min

γ∈DMq

tr[γ]≤Z

E rHF
Z/|x|[γ] and let %rHF

Z = ργrHF
Z
. (4.8)

Similar, we denote by γrHF
Z an arbitrary diatomic neutral minimizer, meaning

E rHF
Z,R [γrHF

Z,R ] = min
γ∈DMq

tr[γ]≤|Z|

E rHF
VZ,R

[γ] and let %rHF
Z,R = ργrHF

Z,R
. (4.9)

6Developed around 1900 and refined later, a modern and detailed discussion can be found in [36].

50



3. RELATION TO TF THEORY

They both depend on the number of spin states q, which we suppress in the nota-

tion, since it as a fixed parameter. We denote by ErHF
Z and ErHF

Z,R the corresponding

minima and note that the latter does not contain the nuclear repulsion Z1Z2

R
. If

|Z| ∈ N, then we use a similar notation for atomic and diatomic HF minimizers

γHF
Z , γHF

Z,R and energies EHF
Z , EHF

Z,R.

3. Relation to TF theory

The purpose of this Chapter is twofold: We introduce Lemma 4.4 which will be

very useful in the remainder of this thesis when comparing TF and HF type mod-

els. We immediately demonstrate its use by comparing the molecular rHF energy

to the molecular TF energy, showing that they agree to leading order in |Z| → ∞.

Neither the results nor the proofs that we present in this Section are new.

Since we will compare TF theory to rHF theory, we need to fix the TF constant

cTF according to the chosen physical units (compare (1.2)). From here until the

end of Chapter 6, we set

cTF = cH(6π/q)2/3.

For ζ ∈ (0,∞), we define

gζ(x) =


sin(π|x|/ζ)√

2πζ |x| , if |x| < ζ

0, if |x| ≥ 0.

In other words, gζ is the normalized eigenvector of the Dirichlet-Laplacian on

B(0, ζ), corresponding to the lowest eigenvalue ‖∇gζ‖2 = π2/ζ2 and vanishing

on the complement of B(0, ζ).

Lemma 4.4 ([12, Thm. 8.2]). Let ζ ∈ (0,∞). Assume [V ]+, [V ∗ gζ ]+ ∈ L5/2(R3)

and δ ∈ (0, 1). Then the sum of the N lowest negative eigenvalues of HV is bounded

from below by

−2

5
c
−3/2
TF (1−δ)−3/2

∫
[V ]

5/2
+ −cH(1−δ)π

2

ζ2
N−(cHδ)

−3/2qL1‖[V−V ∗g2
ζ ]+‖

5/2
5/2. (4.10)

Moreover, if also [V ]+ ∈ L3/2(R3), then there exists a γ ∈ DMq such that ργ =

c
−3/2
TF [V ]

3/2
+ ∗ g2

ζ and

tr[−cH∆γ] =
3

5
c
−3/2
TF

∫
[V ]

5/2
+ + cHc

−3/2
TF

π2

ζ2

∫
[V ]

3/2
+ . (4.11)

For a proof, see [12, Thm. 8.2] and note that the operator HV we consider here has

a q-fold degenerate spectrum and that Solovej defines the Lieb-Thirring constant
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L1 for −1
2
∆− V . The only real difference is the term cH(1− δ)π2

ζ2
N which is due

to a hardly relevant mistake in [12, Thm. 8.2].

Lemma 4.5 ([12, Lemma 11.1]). Let Z ∈ RM
+ ,R ∈ (R3)M and assume ρ ∈ C

satisfies α
∫
ρ5/3 ≤

∫
VZ,Rρ for some α > 0. Then∫

ρ5/3 ≤ c4.5

α2

(∫
ρ

)1/3 M∑
j=1

Z2
j .

Proof. The proof is a part of [12, Lemma 11.1] and we repeat it here for convenience:

First we use that ab ≤ 3
5
(δa)5/3 + 2

5
(b/δ)5/2 for any δ > 0 to estimate that

Zj

∫
R3

ρ(x)dx

|x−Rj|
dx =Zj

∫
B(Rj ,r)

ρ(x)dx

|x−Rj|
+ Zj

∫
B(Rj ,r)c

ρ(x)dx

|x−Rj|

≤3

5

∫
B(Rj ,r)

(δρ(x))5/3dx+
2

5

∫
B(Rj ,r)

(Zj|x−Rj|−1/δ)5/2dx

+ r−1Zj

∫
ρ

=3/5δ5/3

∫
ρ5/3 + 16/5πr1/2Z

5/2
j δ−5/2 + r−1Zj

∫
ρ.

We use this bound on the right hand side of the assumption α
∫
ρ5/3 ≤

∫
VZ,Rρ and

minimize over r ∈ (0,∞). Then we solve for
∫
ρ5/3 and find for 0 < M 3

5
δ5/3 < α,

that ∫
ρ5/3 ≤

(∫
ρ

)1/3( M∑
j=1

Z2
j

)
(δ5/3(α−M 3

5
δ5/3))−1(21/3 + 2−2/3)(16π

5
)2/3.

We conclude the Lemma with c4.5 = 12M
5

(
16π
5

)2/3 (
21/3 + 2−2/3

)
and the optimal

choice, M 3
5
δ5/3 = α/2. �

Remark: Since minC ETF
VZ,R

< 0, the assumptions of Lemma 4.5 are satisfied for

the minimizing TF density with α = 3
5
cTF. By nonpositivity of the HF and rHF

energies and due to (4.3), they are also satisfied for densities corresponding to

minimizers of E rHF
VZ,R

and EHF
VZ,R

over DMq ∩ {tr[γ] ≤ |Z|}, with α = cHq
−2/3K1 =

(
√

3/π)
2
3

3
5
cTF.7

Lemma 4.6. Let R ∈ (R3)M and Z ∈ RM
+ with |Z| ≥ 1. Then

D(%TF
Z,R − %rHF

Z,R) + ETF
VZ,R
− c4.6a|Z|

7
3
− 2

33 ≤ ErHF
VZ,R
≤ ETF

VZ,R
+ c4.6b|Z|

7
3
− 2

33

7In the HF case, we implicitly assume here that |Z| ∈ N.
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and if |Z| ∈ N,

D(%TF
Z,R − %HF

Z,R) + ETF
VZ,R
− c4.6c|Z|

7
3
− 2

33 ≤ EHF
VZ,R
≤ ErHF

VZ,R
.

Proof. Step 1 (Preliminaries)

The existence of minimizers is known (see [35] and Theorems 3.3 and 4.3). If

|Z| ∈ N, then EHF
VZ,R
≤ EHF[γrHF] = E rHF[γrHF] − X [γrHF

Z,R] ≤ ErHF
VZ,R

. To derive the

other bounds, we use Lemma 4.4 with V = ϕTF
Z,R and begin with a check that the

assumptions are satisfied: Since gζ is radial, we have that for all x ∈ R3 and all

ζ ∈ (0,∞),

Gζ(x) = |x|−1 − g2
ζ ∗ |x|−1 =

∫
B(0,|x|)c

g2
ζ (y)

(
|x|−1 − |y|−1

)
dy ≥ 0

due to Newton’s theorem. This implies that [V (x)− V ∗ g2
ζ (x)]+ ≤

∑M
j=1 ZjG(x−

Rj). Using Jensen’s inequality, we find with cg =
∫

(G1(x))5/2dx that∫ [
V (x)− V ∗ g2

ζ (x)
]5/2

+
dx ≤ |Z|5/2

∫
(Gζ(x))5/2 = |Z|5/2

√
ζcg <∞. (4.12)

Finally, (3.2) implies V = ϕTF
Z,R = cTF

(
%TF
Z,R

)2/3 ∈ L5/2(R3).

Step 2 (The upper bound)

According to Lemma 4.4, there exists a γ ∈ DMq with ργ = c
−3/2
TF [V ]

3/2
+ ∗ g2

ζ =

%TF
Z,R ∗ g2

ζ , so that tr[γ] ≤
∫
ρTF
Z,R = |Z| and ErHF

VZ,R
≤ E rHF

VZ,R
[γ]. Using (4.11), we

obtain

ErHF
VZ,R
≤3

5
cTF

∫ (
%TF
VZ,R

)5/3

+ cH
π2

ζ2
|Z| −

∫
(%TF

Z,R ∗ g2
ζ )VZ,R +D(%TF

Z,R ∗ g2
ζ )

≤ETF
VZ,R

+ cH
π2

ζ2
|Z|+

∫
(%TF

Z,R − %TF
Z,R ∗ g2

ζ )VZ,R. (4.13)

Here we once more used the TF equation and that D(%TF
Z,R ∗ g2

ζ ) ≤ D(%TF
Z,R).8 We

use Hölder’s inequality to bound∫
(%TF

Z,R − %TF
Z,R ∗ g2

ζ )VZ,R =
M∑
j=1

Zj

∫
%TF
Z,R(x)Gζ(x−Rj)dx ≤ |Z|‖%TF

Z,R‖5/3ζ
1/5c2/5

g ,

plug this back into (4.13) and optimize in ζ ∈ (0,∞), so that

ErHF
VZ,R
≤ETF

VZ,R
+ |Z|‖%TF

Z,R‖
10
11
5
3

c
4
11
g c

1
11
H π

2
11 11 · (10)

−10
11 .

8see Proposition B.3 in the appendix for details
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Using Lemma 4.5 with α = 3
5
cTF, we obtain the claimed upper bound

ErHF
VZ,R
≤ ETF

VZ,R
+ |Z|

7
3
− 2

33 c
4
11
g c

1
11
H π

2
11 c

6
11
4.5(3

5
cTF)−

12
11 11 · 10−

10
11︸ ︷︷ ︸

=:c4.6b

.

Step 3 (The HF-lower bound)

We begin with

EHF
VZ,R

= tr[HϕTF
Z,R
γHF
Z,R] +D(%TF

Z,R − %HF
Z,R)−D(%TF

Z,R)−X (γHF
Z,R). (4.14)

Since γHF
Z,R is a projection onto a |Z|-dimensional space, tr[HϕTF

Z,R
γHF
Z,R] is, according

to the min-max principle, bounded from below by the sum of the |Z| lowest negative

eigenvalues of HϕTF
Z,R

. We may therefore use (4.10) together with (4.12) in (4.14)

and optimize over ζ ∈ (0,∞) to find that for all δ ∈ (0, 1) :

EHF
VZ,R
≥ETF

VZ,R
+D(%TF

VZ,R
− %HF

VZ,R
)−X (γHF

VZ,R
)

−
(

(1− δ)
−3
2 − 1

) 2

5
cTF

∫ (
%TF
VZ,R

)5/3

− |Z|
11
5 δ−6/5(1− δ)1/5 c−1

H (cgqL1)4/5π2/5(41/5 + 4−4/5)︸ ︷︷ ︸
=:C1

.

Lemma 4.5 with c = 3
5
cTF bounds the L5/3-norm of %TF

VZ,R
. With the Lieb-Oxford

and Hölder inequalities and Lemma 4.5 for c = (3/π2)1/3 3
5
cTF,

X (γHF) ≤ cLO‖
(
%HF
)1/2 ‖2‖

(
%HF
)5/6 ‖2 ≤

5π2/3cLO
√
c4.5

cTF34/3︸ ︷︷ ︸
=C3

|Z|5/3.

So far we have for all δ ∈ (0, 1) the lower bound

EHF
VZ,R
≥ETF

VZ,R
+D(%TF

VZ,R
− %HF

VZ,R
)− C3|Z|5/3

− |Z|7/3
(

(1− δ)
−3
2 − 1

) 10c4.5

9cTF

− |Z|
11
5 δ−6/5C1.

We choose δ = α|Z|p with α ∈ (0, 1). Because |Z| ≥ 1, we indeed have δ ∈ (0, 1)

for any p < 0. Then (1 − δ)−3/2 ≤ 1 + |Z|p
(

(1− α)−3/2 − 1
)

by convexity and

p = − 2
33

is optimal for large |Z|. Thus, for all α ∈ (0, 1),

EHF
VZ,R
≥ ETF

VZ,R
+D(%TF

VZ,R
− %HF

VZ,R
)− C3|Z|5/3 − C2(α)|Z|

7
3
− 2

33

with C2(α) = ((1−α)−3/2−1)10c4.5
9cTF

+C1/α
6/5. Now choose c4.6c = C3+ min

α∈(0,1)
C2(α).

Step 4 (The rHF-lower bound)

The proof of the lower bound on the rHF energy is nearly the same, up to two

modifications: First, the exchange term is not present, which simplifies the proof.
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Second, γrHF
VZ,R

is not necessarily an orthogonal projection and thus we may only

bound tr[HϕTF
Z,R
γrHF
Z,R] from below by the sum of all its negative eigenvalues. For-

tunately, (4.5) allows us to bound the number of these by qL0c
−3/2
H

∫
[ϕTF

Z,R]
3/2
+ =

qL0(cTF/cH)3/2|Z|. From here, the proof remains the same, up to a change in the

constants so that

c4.6a = min
α∈(0,1)

((
(1− α)−3/2 − 1

) 10c4.5

9cTF

+ α−6/5 q(cgL1)4/5π2/5L
1/5
0 c

3/10
TF

c
13/10
H

)
.

�

Remark (The large-Z limit of Quantum Mechanics)

Consider the Hamiltonian of N electrons subject to a nuclear potential VZ,R in

the Born-Oppenheimer approximation, HQM
VZ,R,N

=
∑N

j=1 (−cH∆j − VZ,R(xj)) +∑
1≤i<j≤N

|xi − xj|−1. Then for any normalized N -electron wave function Ψ, we

have

〈Ψ, HQM
VZ,R,N

Ψ〉 ≥ tr[HVZ,RγΨ] +D(ρΨ)− cLO

∫
ρ

4/3
Ψ

due to the Lieb-Oxford inequality (4.6).9 Similar to the proof of the lower bound

in Lemma 4.6, one can therefore show (see [35, Theorem 5.1]) that for |Z| ∈ N,

ETF
Z,R − (cst.)|Z|

7
3
− 1

30 ≤ EQM
Z,R ≤ EHF

Z,R.

Together with the TF scaling (1.3), one concludes that TF, rHF and HF theory

agree with the quantum mechanical energy to leading order in |Z| → ∞ and the

leading order term is given by Thomas-Fermi theory.

Also the next-order term, called Scott-correction, is known [37]: EQM
Z,R = ETF

Z,R +
1
2

∑
j=1 Z

2
j + o(|Z|2) as |Z| → ∞. For atoms, even the Z5/3-correction has been

proven in [38]. These expansions in Z and their predictions have a large history

and literature which we do not cover here. Both of the two mentioned results

contain an overview of these.

4. The outside in rHF theory

We extend the results of [12, Chapter 6] to the diatomic case, studying the rHF

density on the outside Or by splitting the rHF energy into an inside and an outside

part. We begin with the well-known IMS-formula, which achieves such a splitting

for the Laplace operator.

9Here γΨ is the density matrix obtained by tracing out |Ψ〉〈Ψ| and ρΨ the corresponding density.
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Lemma 4.7 (IMS - formula). If {ωj}nj=1 ⊂ C1(R3, [0, 1]) with bounded gradients

and
∑n

j=1 ωj(x) = 1, then for all γ ∈ DMq with tr[−∆γ] <∞:

tr[−∆γ] =
n∑
j=1

tr[−∆(ωjγωj)]−
n∑
j=1

tr[|∇ωj|2γ].

The proof is a straightforward computation, see for example [12, Lemma 2.4]. It

can also be found in [39, Chapter 3.1], together with references of its origin. A

set {ωj}nj satisfying the hypothesis of Lemma 4.7 is called a quadratic partition of

unity. We will use a special choice of such a partition with n = 5:

Definition 4.8. Let δ, r > 0. A family of functions {ωz} ⊂ C1(R3, [0, 1]) indexed

by z ∈ {0, Rν, 0̃, R̃ν,O} is a δ-partition at radius r iff

(1) |∇ωz| ≤ π
2δ

for all z,
∑

z ω
2
z(x) = 1 for all x,

(2) suppωz ⊂ B(z, r) and ωz|B(z,r−δ) = 1 for z ∈ {0, Rν},
(3) suppωO ⊂ Or and ωO|Or+δ = 1.

Note that 0̃, R̃ν and O are only labels, whereas 0 and Rν also denote points in R3.

A δ-partition at radius r exists for any δ ∈ (0,min{r, R
2
− r}), see for example [12,

p. 532].

Let ω ∈ L∞(R3), then ω is a bounded operator on L2(R3;Cq) and for any γ ∈ DMq,

we define

γω := ωγω

which is also a density matrix if ‖ω‖∞ ≤ 1. Using the cyclicity of the trace, we

find
∫
ργωφ = tr[γωφ] = tr[γ(ωφω)] =

∫
ργω

2φ for any φ ∈ C∞c (R3). This implies

that

ργω = ργω
2 a.e. in R3.

Now comes the the main result of this section: γrHF
ωO

almost minimizes ErHF
ΦrHF

Z,R,r
over

density matrices supported inOr and with trace bounded by the trace of ωOγ
rHFωO.

This then implies a bound on
∫ (

%rHFω2
O
)5/3

.

Lemma 4.9. Assume δ ∈ (0,min{r, R
2
− r}), let γrHF be a neutral minimizer of

E rHF
VZ,R

and {ωz} a δ-partition at radius r < R/2. Then

E rHF
VZ,R

[γrHF] ≥E rHF
VZ,R

[γrHF
ω0

+ γrHF
ωRν

] + tr
[
HΦrHF

Z,R,r
γrHF
ωO

]
+D(%rHFω2

O) (4.15)

− c−3/2
H qL1

∫
Ir+δ\Ir−δ

[ΦrHF
Z,R,r−δ]

5/2
+ − cH

π2

2δ2

∫
Ir+δ\Ir−δ

%rHF
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and for any γ̃ ∈ DMq with tr[−∆γ̃] <∞, tr[γ̃] ≤
∫
Or %

rHF and supp ργ̃ ⊂ Or:

E rHF
VZ,R

[γrHF] ≤ E rHF
VZ,R

[γrHF
ω0

+ γrHF
ωRν

] + tr
[
HΦrHF

Z,R,r
γ̃
]

+D(ργ̃). (4.16)

Moreover, with K1 defined in (4.3),∫ (
%rHFω2

O
)5/3 ≤

4q2/3π2/3
∣∣ETF

1

∣∣
31/3cHK1

[
r sup
∂Or

ΦrHF
Z,R,r

]7/3

+

(4.17)

+
π2q2/3

δ2K1

∫
Ir+δ\Ir−δ

%rHF +
2L1q

5/3

K1c
5/2
H

∫
Ir+δ\Ir−δ

[ΦrHF
Z,R,r−δ]

5/2
+ .

Proof. All we do is rewrite the proof of [12, Theorem 6.2] and [12, Corollary 6.3] for

the diatomic case. For the upper bound, we take the trial state γ = γrHF
ω0

+γrHF
ωRν

+ γ̃.

Then γrHF
ω0

γ̃ = 0 = γrHF
ω0

γrHF
ωRν

by the support properties of the δ-partition. Hence

γ2 = γ and in particular γ ∈ DMq. Moreover,

tr[γ] ≤
∫
%rHF(ω2

0 + ω2
Rν + 1Or) ≤ |Z|,

so γ is a trial density matrix for the diatomic rHF minimization problem and we

obtain

ErHF
VZ,R
≤ E rHF

VZ,R
[γ] =E rHF

VZ,R
[γrHF
ω0

+ γrHF
ωRν

] + tr
[
HΦrHF

Z,R,r
γ̃
]

+D(ργ̃)

+ 2D(ργ̃, %
rHF(ω2

0 + ω2
Rν − 1Ir)).

Here, the last term is clearly nonpositive. We simply drop it to obtain (4.16). For

the lower bound, we first use the IMS-formula (Lemma 4.7) and properties of the

δ-partition to deduce that

tr[−cH∆γrHF] ≥
∑
z

tr[−cH∆γrHF
ωz ]− cH

π2

2δ2

∫
Ir+δ\Ir−δ

%rHF.

Next, we use that (ω2
0 + ω2

Rν + ω2
0̃

+ ω2
R̃ν

) ≥ 1Ir and (ω2
0 + ω2

Rν) ≥ 1Ir−δ to bound

D(%rHF) =
∑
z,z′

D
(
%rHFω2

z , %
rHFω2

z′
)

≥D(%rHF(ω2
0 + ω2

Rν)) +D(%rHFω2
O)

+ 2D(%rHF
1Ir , %

rHFω2
O) + 2D(%rHF

1Ir−δ , %
rHF(ω2

0̃
+ ω2

R̃ν
)).
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Since tr
[
VZ,Rγ

rHF
]

=
∑

z tr
[
VZ,Rγ

rHF
ωz

]
we find, by collecting the bounds we de-

duced so far, that

E rHF
VZ,R

[γrHF] ≥E rHF
VZ,R

[γrHF
ω0

+ γrHF
ωRν

] + tr
[
HΦrHF

Z,R,r
γrHF
ωO

]
+D(%rHFω2

O)

+ tr
[
HΦrHF

Z,R,r−δ
(γrHF
ω0̃

+ γrHF
ωR̃ν

)
]
− cH

π2

2δ2

∫
Ir+δ\Ir−δ

%rHF.

Applying the Lieb-Thirring inequality (4.2) with V = ΦrHF
Z,R,r−δ1Ir+δ\Ir−δ now yields

(4.15).

Finally, we prove (4.17). We use that ΦrHF
Z,R,r(x) ≤ r

|x| sup
∂Or

ΦrHF
Z,R,r for all x ∈ Or

together with the kinetic energy-inequality (4.3):

tr[HΦrHF
Z,R,r

γrHF
ωO

] +D(%rHFω2
O) ≥

cHq
−2/3K1

∫ (
%rHFω2

O
)5/3 − [r sup

∂Or
ΦrHF

Z,R,r]+

∫
%rHF(x)ω2

O(x)

|x|
dx+D(%rHFω2

O).

This is lower bounded by the atomic TF energy, with [r sup∂Or ΦrHF
Z,R,r]+ as the

nuclear charge and constant cHq
−2/3K1 = (

√
3/π)2/3 3

5
cTF instead of 3

5
cTF in front

of the kinetic term. We take only half the kinetic term (which is optimal, since

1/2 is the minimum of 1/[ε(1 − ε)]) and use the scaling relation (3.1) with U =

[r sup∂Or ΦrHF
Z,R,r]+ and T = 1

2
cHq

−2/3K1. Then

tr[HΦrHF
Z,R,r

γrHF
ωO

] +D(%rHFω2
O)

≥ cHK1

2q2/3

∫ (
%rHFω2

O
)5/3 − [r sup

∂Or
ΦrHF

Z,R,r]
7/3
+ 2

(
π2/3

)1/3 |ETF
1 |.

On the other hand, (4.15) and (4.16) for γ̃ = 0 imply that

tr[HΦrHF
Z,R,r

γrHF
ωO

] +D(%rHFω2
O)

≤qL1

c
3/2
H

∫
Ir+δ\Ir−δ

[ΦrHF
Z,R,r−δ]

5/2
+ + cH

π2

2δ2

∫
Ir+δ\Ir−δ

%rHF.

Combining the last two inequalities and multiplying by 2q2/3

cHK1
proves (4.17). �
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CHAPTER 5

Comparing screened potentials

The screened potentials for a homonuclear diatomic system in Thomas-Fermi and

reduced Hartree-Fock theory are (independently of Z1, Z2 > 0) comparable. The

precise statement and our main result (from a technical point of view) is

Theorem 5.1. There exist constants δ5.1, c5.1a, c5.1b > 0 such that for all R > 0,

δ ∈ (0, δ5.1] and all Z ∈ R2
+ with |Z| ≥ 1: If r ≤ c5.1b min

{
1, (R/2)1+ δξ

η−δξ

}
,

then

sup
x∈∂Or

∣∣∣∣∣
∫
Ir

%TF
Z,R(y)− %rHF

Z,R(y)

|x− y|
dy

∣∣∣∣∣ ≤ c5.1ar
−4+δξ.

We give the proof on page 62. The corresponding result for atomic rHF theory is:

Theorem 5.2. There exist constants ε5.2, c5.2a, c5.2b > 0 such that for all |x| ≤ c5.2b

and all Z ≥ 1: ∣∣∣∣∫
B(0,|x|)

%TF
Z (y)− %rHF

Z (y)

|x− y|
dy

∣∣∣∣ ≤ c5.2a|x|−4+ε5.2 .

We do not give a proof of Theorem 5.2, since Solovej proved it for the ‘full’ HF

case in [12]. The same proof applies for the rHF model, with minor modifications:

The lack of the exchange term makes the proof easier and it is not important that

a minimizing density is an orthogonal projection. These modifications can also be

observed by comparison to our proof of Theorem 5.1, because we adapt the proof

from [12] to the diatomic rHF model. Moreover, another proof of Theorem 5.2

has essentially been given in [23], where it is shown that for any δ > 0 there exist

α,D > 0 such that |
∫
B(0,r)c

%rHF
Z − 4cSr

−3| ≤ δr−3 for any r ∈ [αZ−1/3, D].1

1. The iterative proof

The proof in [23] proposed an astute iteration scheme but it relied on spherical

symmetry and can therefore not be generalized to the diatomic case. Going beyond

1According to Lemma 3.6, we have
∫
B(0,r)c

%TF
Z ≈ 4cSr

−3, hence with Newton’s theorem and the

choice δ = (cst.)rε, one easily deduces the claimed bound for (cst.)Z−1/3 ≤ r ≤ D. The case
r ≤ (cst.)Z1/3 follows from Lemma 4.6 by the same arguments as we provide in Lemma 5.3.
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CHAPTER 5. COMPARING SCREENED POTENTIALS

the spherical case in [12] was a major improvement and is the main reason that

we can treat the diatomic case. We will prove Theorem 5.1 by iteration of the

statement

A(r, ε, σ) :⇔

∣∣∣∣∣
∫
Ir

%TF
Z,R(y)− %rHF

Z,R(y)

|x− y|
dy

∣∣∣∣∣ ≤ (σrε) r−4, ∀x ∈ Or.

Remarks

• A priori, the statement A(r, ε, σ) does depend on Z and R. The strong

claim behind Theorem 5.1 is that if r and 2r/R1+ ε
η−ε are sufficiently small,

then A(r, ε, σ) holds for all Z and R.

• It is no coincidence that if A, then V = ΦrHF
Z,R,r1Or satisfies the perturba-

tion assumption of Lemmas 3.16, 3.17 and 3.18: The universality of the

Sommerfeld asymptotic, or more precisely the fact that any neutral oTF

potential has the second order term (cst.)|x|−4−ξ for large |x|, with a uni-

versal ξ ≈ 0.77, is the heart of the iterative technique we will develop in

Lemma 5.4.

• When we consider the Born-Oppenheimer curve in Chapter 6, it will be

important that Theorem 5.1 holds up to r of order R1+ δξ
η−δξ , because it

implies that r−7+δξ = R−7rδξ(r/R)−7 ≈ R−7R
δξ(η−7)
η−δξ << R−7 for small R.

• Note that∫
Ir

%TF
Z,R(y)− %rHF

Z,R(y)

|x− y|
dy = ΦrHF

Z,R,r(x)− ΦTF
Z,R,r(x)

and due to Lemmas 3.7 and 3.6,

cSr
−4(1− aTF(r m

1/3
Z )−ξ) ≤ sup

Or
ΦTF

Z,R,r ≤ 23cSr
−4.

Hence A(r, ε, σ) implies that supOr |ΦrHF
Z,R,r| ≤ (cst.)r−4(1 + σrε) and The-

orem 5.1 therefore says that the diatomic screening in rHF theory is, for

fixed Z, to leading order in r the same as in TF theory.

Any iteration needs to start from somewhere.

Lemma 5.3 (The first step). Let Z ∈ R2
+ with |Z| ≥ 1 Then

A
(
r,

1

66
, c5.3β

4+ 3
44

)
, ∀r ≤ β|Z|−

1
3 .

Proof. Let fp(y) =
(
%TF
Z,R(y)− %rHF

Z,R(y)
)
1B(p,r)(y) and note that by (3.11),

sup
∂Or
|(f0 + fRν) ∗ |x|−1| ≤ sup

∂B(0,r)

|f0 ∗ |x|−1|+ sup
∂B(Rν,r)

|fRν ∗ |x|−1|.
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1. THE ITERATIVE PROOF

We minimize [12, (83)] over κ > 0 and apply it to fp, so that

sup
∂B(p,r)

|fp ∗ |x|−1| ≤ r
1
12 2

29
12 5

−5
6 3π

1
3 max

{
‖[−fp]+‖

5
6

5/3, ‖[fp]+‖
5
6

5/3

}
(D(fp))

1
12 .

We use Lemma 4.6 and Lemma 4.5 (it applies with α = (3/π2)
1/3 3

5
cTF) to bound

the right hand side and conclude with

c5.3 := 241/123−1/351/6πc−1
TF(c4.5)1/2(c4.6a + c4.6b)

1/12.

�

Next we present the iterative step, which allows us to boot strap the result of

Lemma 5.3 to even larger values of r which are independent of Z.

Lemma 5.4 (The iteration step). There exists a universal constant δ5.4 > 0 such

that for all δ ∈ (0, δ5.4]: If A(s, ε, σ) for some σ, ε > 0 and all s ∈ (0, r] with(
3
2
aTF
) 1
ξ m

−1
3

Z ≤ r ≤ D(σ, ε, R) := min
{

1/2, c3.18bR/2, (c3.17/σ)
1
ε

}
then A(s, δξ, c5.4) for all s ∈ [r

1
1+δ ,min{r

1−δ
1+δ , r̃}], with r̃ := c3.18ar

ξ
ξ+η (R/2)

η
η+ξ and

a universal constant c5.4 > 0.

Proof. Analogously to [12, Lemma 10.3], we consider the outside TF model with

respect to the potential Vr(x) = ΦrHF
Z,R,r1Or(x). Let %r = arg min

C(N(Vr))
ETF
Vr

and denote

by ϕr(x) the corresponding TF potential. We then write for x ∈ ∂Os with s ≥ r:∫
Is

%TF
Z,R(y)− %rHF

Z,R(y)

|x− y|
dy =ϕr(x)− ϕTF

Z,R(x) +

∫
Os

%r(y)− %TF
Z,R(y)

|x− y|
dy

+

∫
Is\Ir

%r(y)− %rHF
Z,R(y)

|x− y|
dy.

The assumptions on r are such that we may apply Lemma 3.18 and Corollary 5.7.

We therefore deduce that∣∣∣∣∣∣
∫
Is

%TF
Z,R(y)− %rHF

Z,R(y)

|x− y|
dy

∣∣∣∣∣∣ ≤ s−4

(
cSc3.18c

(r
s

)ξ
+ cSc3.18d

(r
s

)ξ
+ c5.7s

1
36

(s
r

)4+ 2
36

)
,

for all x ∈ ∂Os and s ∈ [r, r̃]. Note that s ∈
[
r

1
1+δ , r

1−δ
1+δ

]
is equivalent to s

2δ
1−δ ≤

r/s ≤ sδ and that r ≤ r
1

1−δ because D(σ, ε, R) ≤ 1. Hence with

ε̃(δ) := min

{
δξ,

1

36
− 2δ

1− δ

(
4 +

2

36

)}
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and c5.4 := cS(c3.18c + c3.18d) + c5.7 we conclude

A(s, ε̃(δ), c5.4), ∀s ∈
[
r

1
1+δ ,min

{
r

1−δ
1+δ , r̃

}]
.

Choosing δ5.4 := max{δ | ε̃(δ) = δξ} finishes the proof. �

We are now in a position to prove Theorem 5.1.

Proof. The proof combines Lemma 5.3 and Lemma 5.4. It is divided in three

steps. Note that Lemma 5.4 assumes A for s ≤ r and concludes A for s ∈[
r

1
1+δ ,min{r̃, r

1−δ
1+δ }

]
, but it does not tell us whether A is true for s ∈ (r, r

1
1+δ ).

Hence we reformulate Lemma 5.3, the starting point of the iteration procedure in

the first step, such that A holds up to s of order Z
−1

3(1+δ) . Only then can we use

Lemma 5.4 to successfully iterate the statement in the second step, where one also

observes that there are two conditions which limit how far we can iterate. In the

last step, we define the constants and conclude.

Step 1 (Reformulating the first step)

Let R > 0 and (later to be fixed) δ > 0. We define βZ := (3
2
aTF)

1
ξ(1+δ)m

δ
3(1+δ)

Z which

is chosen such that rZ := (βZm
−1/3
Z )1+δ = (3

2
aTF)

1
ξm

−1
3

Z . Lemma 5.3 then implies

A
(
r, 1/66, c5.3β

49/12−1/66
Z

)
for all r ≤ r

1
1+δ

Z . Further observe that if ε0 ∈ (0, 1/66]

and r ≤ r
1

1+δ

Z :

r−4+1/66c5.3β
49
12
− 1

66
Z ≤r−4+ε0c5.3β

49
12
− 1

66
Z

(
βZm

−1
3

Z

) 1
66
−ε0

=r−4+ε0c5.3

(
3
2
aTF
) 49

12−ε0
ξ(1+δ) m

1
3

(
δ( 4912−ε0)

1+δ
−( 1

66
−ε0)

)
Z .

To cancel the mZ-factor, we choose ε0(δ) := 1
66
− δ(49

12
− 1

66
) and assume from now

on that δ < 2/537, which is equivalent to ε0(δ) > 0. Hence A(r, ε0(δ), σ0(δ)) for all

r ≤ r
1

1+δ

Z with σ0(δ) := c5.3

(
3
2
aTF
) 49/12−ε0

ξ(1+δ) . To ensure that the conclusion of Lemma

5.4 implies its assumptions (so that we may actually iterate), we define ε1(δ) :=

min {ε0(δ), δξ} and fix σ1 := max
δ∈[0,2/537]

{σ0(δ), c5.4}. Hence σ0(δ)rε0(δ) ≤ σ1r
ε1(δ) for

all r ≤ 1 and

∀δ ∈ (0, 2/537), ∀Z ∈ R2
+ : A (r, ε1(δ), σ1)∀r ≤ min

{
1, r

1
1+δ

Z

}
. (5.1)

Step 2 (Iteration)

We define for any R > 0, Z ∈ R2
+ and δ ∈ (0, 2

537
) ∩ (0, δ5.4]

M(R,Z, δ) := sup
{
r ∈ R : A(s, ε1(δ), σ1), ∀s ≤ r

1
1+δ

}
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and assume (for a contradiction) the existence of a triple R,Z, δ (for which M is

defined) and such that both

(A) M < D(σ1, ε1, R), with D from Lemma 5.4, and

(B) (M
1

1+δ ,min{M
1−δ
1+δ , M̃}) 6= ∅, with M̃ = c3.18aM

ξ
ξ+η (R/2)

η
η+ξ .

If rZ < M , we may take rn ↗ M and notice that by (A), rZ ≤ rn ≤ D for n

large enough. This implies A(s, ε1, σ1), ∀s ∈
[
r

1
1+δ
n ,min

{
r

1−δ
1+δ
n , r̃n

}]
by Lemma

5.4. However, for large n, (B) implies

M
1

1+δ ∈
(
r

1
1+δ
n ,min

{
r

1−δ
1+δ
n , r̃n

})
6= ∅

and this contradicts M being the supremum. If rZ = M , then rZ ≤ D ≤ 1/2

by (A) and according to (5.1), we may apply Lemma 5.4 with r = rZ so that

A(s, ε1, σ1), ∀s ≤ min{M
1−δ
1+δ , M̃}. This together with (B) again contradicts M

being the supremum. Finally, if rZ > M , then we find M
′ ∈ (M,min{1, rZ}) since

M < 1 due to (A). Now (5.1) yields a contradiction. We therefore conclude that

for any triple of R,Z, δ for which we defined M , at least one of the two properties

(A) and (B) can not hold. If (A) is true, then M < 1 and (B) is equivalent to

M
1

1+δ < M̃ = c3.18aM
ξ
η+ξ (R/2)

η
η+ξ . We therefore deduce that

inf
Z∈R2

+

M(R,Z, δ) ≥ min

{
1/2, (c3.17/σ1)

1
ε1 , c3.18bR/2, c

(η+ξ)(1+δ)
η−δξ

3.18a (R/2)
η(1+δ)
η−δξ

}
. (5.2)

Step 3 (Conclusion)

Since δ ≤ (537/2 + 66ξ)−1 ⇔ ε0(δ) ≥ δξ, we choose δ5.1 := min{δ5.4, (537/2 +

66ξ)−1} so that ε1(δ) = δξ for any δ ∈ (0, δ5.1]. Also note that as a function of R/2,

the right hand side in (5.2) is constant for R/2 > (cst.) or equals (cst.)(R/2)
η(1+δ)
η−δξ

for R/2 < (cst.). More precisely, we infer from (5.2) that for all R > 0 and

δ ∈ (0, δ5.1]:2(
inf

Z∈R2
+

M(R,Z, δ)

) 1
1+δ

≥ min

{
1/2,

(
c3.17

σ1

) 1
δξ(1+δ)

, (c3.18b)
1

1+δ , c
(η+ξ)
η−δξ
3.18a

}
min

{
1, (R/2)

η
η−δξ

}
.

We now define c5.1b := min
δ∈[0,δ5.1]

{
1/2, (c3.17/σ1)

1
δξ(1+δ) , (c3.18b)

1
1+δ , c

(η+ξ)
η−δξ
3.18a

}
> 0, and

note that this, by definition of M , ends the proof. �

2We use that if a, b, c, x > 0 then min{ax
1

1+δ , bx
1

1−δξ/η , c} ≥ min{a, b, c}min{1, x
1

1−δξ/η }. Note
that this is not optimal.
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2. Comparing rHF to its oTF model

Before comparing the outside part of the rHF density to the density of the outside

TF model corresponding to the rHF-screened diatomic potential, we collect some

simple bounds.

Lemma 5.5. Let either Ωs = B(0, s)
c

or Ωs = Os. Assume V ∈ H(Ωr) satisfies

‖V ‖∞ ≤ CV r
−4 and consider %r = arg min

C(N(Vr))
ETF
Vr

. Then, for any δ, ζ > 0, it holds

that:

a)
∫

Ωr\Ωr+δ
[Vr]

5/2
+ ≤ |Ωc

1|C
5/2
V ((1 + δ/r)3 − 1)r−7,

b)
∫

Ωr−δ\Ωr+δ
%r ∗ g2

ζ ≤ |Ωc
1|
C

3/2
V

c
3/2
TF

((1 + δ/r)3 − (1− δ/r)3)r−3,

c)
∫
%r(Vr − Vr ∗ g2

ζ ) ≤ 2|Ωc
1|C

5/2
V c

−3/2
TF ((1 + ζ/r)3 − 1)r−7,

d)
∫ [
ϕr − ϕr ∗ g2

ζ

]5/2
+
≤ |Ωc

1|(2CV )5/2((1 + ζ/r)3 − (1− ζ/r)3)r−7.

Proof. For each bound, we use
∫

Ω
f ≤ ‖f‖∞|Ω| and note that |Ωc

r| = r3|Ωc
1|. Then

a) follows immediately from the assumptions. For b), we note that %r∗gζ(x) ≤ %r(x)

and by the TF equation (3.2), %r(x) ≤ c
−3/2
TF |Vr(x)|3/2 ≤ (CV /cTF)3/2r−6. To prove

c) and d), we first note that Vr − Vr ∗ g2
ζ vanishes in (Ωr−ζ)

c. Next, if x ∈ Ωr+ζ ,

then B(x, ζ) ⊂ Ωr and the mean value property applied to Vr(·+x), together with

gζ being radial and normalized, implies

Vr ∗ g2
ζ (x) =

∫ ζ

0

g2
ζ (t)t

2

∫
S2
Vr(tω + x)dωdt = Vr(x).

Hence we conclude that Vr − Vr ∗ g2
ζ has support in Ωr−ζ \Ωr+ζ and is bounded by

2CV r
−4. This, together with the TF equation, proves c). We also use this argument

for d), where we in particular note that
[
ϕr − ϕr ∗ g2

ζ

]
+
≤
[
Vr − Vr ∗ g2

ζ

]
+

because

|x|−1 ∗ g2
ζ − |x|−1 ≤ 0. �

Lemma 5.6. Let Vr = ΦrHF
Z,R,r1Or and %r = arg min

C(N(Vr))
ETF
Vr

. There exist constants

c5.6a, c5.6b > 0 such that if(
3

2
aTF

) 1
ξ

m
−1
3

Z ≤ r ≤ min

{
1

2
, (c3.17/σ)

1
ε , R/4

}
and if A(t, σ, ε) for all t ≤ r, then

D(%r − %rHF
Z,R1Or) ≤ c5.6ar

−7+ 1
3 (5.3)

and ∫
Or

(
%rHF

Z,R

)5/3 ≤ c5.6br
−7. (5.4)
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Moreover, if ωO is from a δ-partition at radius r with δ ≤ r
12
7 , then

E rHF
Vr [ωOγ

rHF
Z,RωO] ≥ ETF

Vr [%r]− c5.6cr
−7+ 1

3 . (5.5)

Proof. All we do is rewrite the proof of [12, Lemma 12.6] for the diatomic case.

Note that µr = 0 by Lemma 3.17 and that Vr = ΦrHF
Z,R,r on the support of any ωO.

We drop the subscripts Z, R in this proof to simplify the notation.

Step 1 (An upper bound)

We use the second part of Lemma 4.4 with V (x) = ϕr(x) to obtain a density matrix

γ̃ with ργ̃ = %r ∗ g2
ζ and such that by (4.11),

tr[HVr γ̃] +D(ργ̃) =
3

5
cTF

∫
%5/3
r −

∫
Vr(%r ∗ g2

ζ ) +D(%r ∗ g2
ζ ) +

cHπ
2

ζ2

∫
%r.

Newton’s theorem for the radial, normalized function gζ implies D(%r∗g2
ζ ) ≤ D(%r),

hence

tr[HVr γ̃] +D(ργ̃) ≤ ETF
Vr [%r] +

cHπ
2

ζ2

∫
%r +

∫
%r(Vr − Vr ∗ g2

ζ ).

To bound the left hand side, we would like to use Lemma 4.9, but γ̃ is not

necessarily supported on Or. We therefore pick a δ-partition {ωz} at radius r

with δ ∈ (0, r) and consider γ̃ωO = ωOγ̃ωO which has support in Or. Moreover,

tr[γ̃ωO ] ≤
∫
%r ≤ N(Vr) =

∫
Or %

rHF
Z,R, hence γ̃ωO satisfies the assumptions of Lemma

4.9. Since %γ̃ ≥ %γ̃ωO = %γ̃ω
2
O pointwise, we have D(%γ̃) ≥ D(%γ̃ωO ). The IMS-

formula (Lemma 4.7) together with the Lieb-Thirring inequality (4.2) then implies

tr[HVr γ̃] ≥ tr[HVr γ̃ωO ]− c−3/2
H qL1

∫
Ir+δ

[Vr]
5/2
+ − cHπ

2

2δ2

∫
Ir+δ\Ir+δ

(%r ∗ g2
ζ ).

We use Lemma 4.9 and collect all the bounds we have derived so far. Then, for

any δ ∈ (0,min{r, R/2}) and ζ ∈ (0,∞),

tr
[
HVrγ

rHF
ωO

]
+D(%rHFω2

O) ≤ETF
Vr [%r] +

cHπ
2

ζ2

∫
%r +

∫
%r(Vr − Vr ∗ g2

ζ ) (5.6)

+ c
−3/2
H qL1

∫
Ir+δ\Ir−δ

[Vr−δ]
5/2
+ + cH

π2

2δ2

∫
Ir+δ\Ir−δ

%rHF

+ c
−3/2
H qL1

∫
Ir+δ

[Vr]
5/2
+ +

cHπ
2

2δ2

∫
Ir−δ\Ir+δ

(%r ∗ g2
ζ ).

Step 2 (The lower bound)

To prove a lower bound on the left hand side of (5.6), we write

tr[HVrγ
rHF
ωO

] +D(%rHFω2
O) = tr[Hϕrγ

rHF
ωO

] +D(%rHFω2
O − %r)−D(%r).
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The first part of Lemma 4.4, applied to the potential V = ϕr, together with the

CLR-bound (4.5) on the number of nonpositive eigenvalues of Hϕr and the TF

equation tell us that for any δ
′ ∈ (0, 1), ζ ∈ (0,∞) and δ ∈ (0, r):

tr[Hϕrγ
rHF
ωO

] ≥− (1− δ′)−3/2 2

5
cTF

∫
%5/3
r −

c
3/2
TF√
cH

(1− δ′)π
2

ζ2
qL0

∫
%r

− (cHδ
′
)−3/2qL1

∥∥∥[ϕr − ϕr ∗ g2
ζ

]
+

∥∥∥5/2

5/2
.

And D(%rHFω2
O − %r) ≥ D(%rHF

1Or − %r) − D(%rHF(ω2
O − 1Or)) simply because

D(%r, %
rHF(1Or − ω2

O)) ≥ 0. Moreover, −2
5
cTF

∫
%

5/3
r −D(%r) = ETF

Vr
[%r], so that for

any δ
′ ∈ (0, 1), ζ ∈ (0,∞) and δ ∈ (0, r):

tr[HVrγ
rHF
ωO

] +D(%rHFω2
O) ≥ETF

Vr [%r] +D(%rHF
1Or − %r) (5.7)

−
(

(1− δ′)−3/2 − 1
) 2

5
cTF

∫
%5/3
r

− cTF√
cH

(1− δ′)π
2

ζ2
qL0

∫
%r

− (cHδ
′
)−3/2qL1‖[ϕr − ϕr ∗ g2

ζ ]+‖
5/2
5/2

−D(%rHF(ω2
O − 1Or)).

Step 3 (Bounds on the error terms)

We now bound all terms on the right hand sides of (5.6) and (5.7), except for

ETF
Vr

[%r] and D(%rHFω2
O − %r). Using that r ≤ R/4, we have supOt ΦTF

Z,R,t ≤ 4cS(1 +
1

R/t−1
)t−4 ≤ 16

3
cSt
−4 for all t ≤ r. Hence

‖Vt‖∞ ≤
(
c3.17 +

16

3
cS

)
t−4 =: C1t

−4, ∀t ≤ r, (5.8)

and we may use the bounds from Lemma 5.5 for Ωs = Ot, V = Vt and any t ≤ r.

Due to neutrality, Lemma 3.15 and the assumptions, we have∫
%t =

∫
Ot
%rHF = N(ΦTF

Z,R,t) +N(Vt − ΦTF
Z,R,t) ≤ (8cS + 3c3.17) t−3, ∀t ≤ r.

(5.9)

Since µr = 0, we infer from the TF equation and Lemma 3.17 that∫
%5/3
r ≤

(
cS

cTF

(1 + A)

)5/2
29/2π

7
r−7. (5.10)

Let ωO be from a δ-partition at r̃ := r − δ, then
∫
Or(%

rHF)5/3 ≤
∫

(%rHFω2
O)5/3.

To bound the right hand side, we use (4.17) for δ = λr2 and λ ∈ (0, 1) to be

chosen later. Note that indeed δ < min{r̃, R/2 − r̃}. Together with (5.8), (5.9)
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and Lemma 5.5 a) we obtain∫
Or

(
%rHF

)5/3 ≤
4q2/3π2/3

∣∣ETF
1

∣∣
31/3cHK1

[
r̃ sup
∂Or̃

ΦrHF
0+R,r̃

]7/3

+

+
π2q2/3

δ2K1

∫
Ir̃+δ\Ir̃−δ

%rHF +
2L1q

5/3

K1c
5/2
H

∫
Ir̃+δ\Ir̃−δ

[ΦrHF
0+R,r̃−δ]

5/2
+

≤
4q2/3π2/3

∣∣ETF
1

∣∣
31/3cHK1

C
7/3
1

(
2

2− λ

)7

r−7

+
π2q2/3

K1

(8cS + 3c3.17)
1

λ2(1− λ)3
r−7

+
2L1q

5/3

K1c
5/2
H

23π

3
C

5/2
1 (1− λ)−7

(
(1− λ)−3 − 1

)
r−7

=:C2(λ)r−7.

This proves (5.4) with c5.6b := min{C2(λ)|0 < λ < 1}. We combine it with the

Hardy-Littlewood-Sobolev and Hölder inequalities to deduce that for any δ ∈ (0, r):

D(%rHF(ω2
O − 1Or)) ≤cHLS‖%rHF

1Or\Or+δ‖
2
6/5

≤cHLS‖%rHF
1Or‖2

5/3|Or \ Or+δ|7/15

≤cHLSc
6/5
5.6b

(
8π

3

)7/15 (
(1 + δ/r)3 − 1

)7/15
r−7. (5.11)

Step 4 (Conclusion)

Let δ = r1+d, ζ = r1+s and δ
′

= rp for some d, s ∈ (0, 1) and p ∈ (0,∞). Note

that since r ≤ 1/2, we have δ, ζ ∈ (0, r) and δ
′ ∈ (0, 1). We use this choice

of δ, ζ, δ
′

in (5.6) and (5.7), together with (5.8) - (5.11) and Lemma 5.5. Since

((1 + ta)3− 1) ≤ 2a((1 + 2−a)3− 1)ta for any t ∈ [0, 1/2], a > 0, we obtain the lower

bound

E rHF
Vr [ωOγ

rHF
Z,RωO] ≥

D(%rHF
1Or − %r) + ETF

Vr [%r]− C2(p, s, d)r−7
(
rp + r2(1−s) + rs−

3
2
p + r

7
15
d
)

and the upper bound

E rHF
Vr [ωOγ

rHF
Z,RωO] ≤ ETF

Vr [%r] + C3(s, d)r−7
(
rd + rs + r2(1−s) + r2(1−d)

)
.

Note that the left hand side in both bounds depends on d via the smooth cutoff

ωO. Optimizing these bounds in d, s ∈ (0, 1) and p ∈ (0,∞) proves (5.3) and (5.5).

�
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Corollary 5.7. Let Vr = ΦrHF
Z,R,r1Or and %r = arg min

C(N(Vr))
ETF
Vr

. There exists a

constant c5.7 > 0 such that if(
3

2
aTF

) 1
ξ

m
−1
3

Z ≤ r ≤ min

{
1

2
, (c3.17/σ)

1
ε , R/4

}
and if A(t, σ, ε) for all t ≤ r, then for any s ∈ [r, R/2) :

sup
x∈∂Os

∣∣∣∣∣
∫
Is\Ir

%r(y)− %rHF
Z,R(y)

|x− y|
dy

∣∣∣∣∣ ≤ c5.7r
−4+ 1

36

(s
r

)1/12

.

Proof. We assume that |x| = s and apply [12, Cor. 9.3] twice, first with f =

%r−%rHF
Z,R1Or and then with f = %rHF

Z,R1Or−%r. After optimizing in the free parameter

κ of [12, Cor. 9.3], we obtain

|%r − %rHF
Z,R1Or |1B(0,s) ∗ |x|−1 ≤ 229/125−5/63π1/3s1/12m5/6

(
D(%r − %rHF

Z,R1Or)
)1/12

with m = max{‖%r‖5/3, ‖%rHF
Z,R1Or‖5/3}. According to (5.10) and (5.4), we have

m5/6 ≤ max

{
√
c5.6b,

29/4π1/2

√
7

(
cS

cTF

(1 + A)

)5/4
}
r−7/2 =: C1r

−7/2.

With this bound and (5.3) we find |%r−%rHF
Z,R1Or |1B(0,s)∗|x|−1 ≤ 1

2
c5.7r

−4+ 1
36

(
s
r

)1/12

for any |x| = s and c5.7 := 2
41
12 5−5/63π

1
3C1c

1
12
5.6a. The same proof applies for |x −

Rν| = s. Since

sup
∂Os

∣∣∣∣∣
∫
Is\Ir

%r(y)− %rHF
Z,R(y)

|x− y|
dy

∣∣∣∣∣ ≤ ∑
p∈{0,Rν}

sup
∂B(p,s)

|%r − %rHF
Z,R1Or |1B(p,s) ∗ |x|−1,

this completes the proof. �
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CHAPTER 6

The Born-Oppenheimer curve in rHF theory

We now turn our attention to our main result about the asymptotic of

DrHF
Z,R := ErHF

Z,R − ErHF
Z1
− ErHF

Z2
+
Z1Z2

R
,

the Born-Oppenheimer curve in reduced Hartree-Fock theory.

Theorem 6.1. There exists ε6.1 > 0 and an increasing θ : R+ → R+ such that

for all R ∈ (0, 2] and all Z ∈ R2
+ with |Z| ≥ 1 :∣∣DTF

Z,R −DrHF
Z,R

∣∣ ≤ θ

(
max{Z1, Z2}

mZ

)
R−7+ε6.1 .

We give the proof on page 75. It is by upper and lower bounds, choosing ap-

propriate trial states for the atomic and diatomic rHF energies. Since DTF
Z,R can

be determined from oTF models (Lemma 3.22), we compare DrHF
Z,R to such oTF

models. ‘Appropriate’ therefore means we try to cancel those terms in the rHF

functional, that correspond to the regions close to the nuclei (the inside Ir for some

r). This approach leads to rHF functionals with respect to four different screened

potentials.

Definition 6.2 (The rHF screenings). For p ∈ {0, Rν} and r > 0 we define

V (1,p)
r (x) :=

(
Zp
|x− p|

−
∫
B(p,r)

%rHF
Z,R(y)

|x− y|
dy

)
1B(p,r)c(x)

and

V (2,p)
r (x) :=

(
Zp
|x− p|

−
∫
B(p,r)

%rHF
Zp

(y − p)
|x− y|

dy

)
1B(p,r)c(x).

For r ∈ (0, R/2) we define

V (3)
r (x) :=

(
V (1,0)
r (x) + V (1,Rν)

r (x)
)
1Or(x)

and

V (4)
r (x) :=

(
V (2,0)
r (x) + V (2,Rν)

r (x)
)
1Or(x).
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By construction, we have V
(1,p)
r , V

(2,p)
r ∈ H(B(p, r)

c
) and V

(3)
r , V

(4)
r ∈ H(Or). We

use Theorem 3.2 to define the corresponding TF minimizers

%(j,p)
r := arg min

C(V (j,p)
r )

ETF

V
(j,p)
r

, j ∈ {1, 2}, p ∈ {0, Rν},

and

%(j)
r := arg min

C(V (j)
r )

ETF

V
(j)
r
, j ∈ {3, 4}.

Furthermore, let E
(j,p)
r , E

(j)
r denote the minimum values; ϕ

(j,p)
r , ϕ

(j)
r the TF po-

tentials and µ
(j,p)
r , µ

(j)
r the chemical potentials of the corresponding minimization

problems. With the tools developed in Chapter 3, we find that the latter actually

vanish, provided r is chosen sufficiently small:

Lemma 6.3. (Controlling the outside models) Let Z ∈ N2 with |Z| ≥ 1. Assume

that 2 ≥ R ≥ 2
(
aTFξ̃/η̃

) 1
ξ
m
−1
3

Z and r := c6.3b(R/2)1+ ε
η−ε ≥

(
3
2
aTF
) 1
ξ m

−1
3

Z with

ε ∈ (0, δ5.1ξ]. Then for all s ≤ r and p ∈ {0, Rν}:

i) sup
B(p,s)c

∣∣∣(%rHF
Z,R − %TF

Zp
(· − p)

)
1B(p,s) ∗ |x|−1

∣∣∣ ≤ c6.3as
−4+ε 4

η + 3
2
c5.1as

−4+ε

ii) sup
B(0,s)c

∣∣∣(%rHF
Zp
− %TF

Zp

)
1B(0,s) ∗ |x|−1

∣∣∣ ≤ c5.2as
−4+ε5.2

iii) sup
Os

∣∣(%rHF
Z,R − %TF

Z,R

)
1Is ∗ |x|−1

∣∣ ≤ c5.1as
−4+ε

iv) sup
Os

∣∣∣∣∑
p

(
%rHF
Zp

(· − p)− %TF
Z,R

)
1B(p,s) ∗ |x|−1

∣∣∣∣ ≤ 2c6.3as
−4+4 ε

η + 2c5.2as
−4+ε5.2 .

Furthermore (under the same assumptions),

v) µ
(j,p)
r = 0 and

∫
%

(j,p)
r ≤ c3.14ar

−3 for j ∈ {1, 2}, p ∈ {0, Rν},
vi) µ

(j)
r = 0 and

∫
%

(j)
r ≤ 27/2(1 + A)3/2cSr

−3 for j ∈ {3, 4}.

Proof. We will choose c6.3b ≤ min{c5.1b, c5.2b} and recall that c5.1b ≤ 1/2. Then ii)

and iii) follow from Theorem 5.1 and Theorem 5.2. For i) and iv), we first note

that since s ≤ r ⇔ (2s/R)η ≤ cη−ε6.3bs
ε, Lemma 3.8 implies

sup
B(p,s)c

∣∣∣(%TF
Zp (· − p)− %TF

Z,R

)
1B(p,s) ∗ |x|−1

∣∣∣ ≤ c6.3as
−4+ε4/η, p ∈ {0, Rν}, (6.1)

where c6.3a := min
ε∈(0,δ5.1ξ)

(
c3.8b

(
η̃

2ξaTFξ̃

)η̃ (
c

1−ε/η
6.3b /2

)4

+ c3.8cc
η+1−ε(1+4/η)
6.3b

)
. Next, we

combine Lemma 3.15 for up(x) =
(
%rHF
Z,R − %TF

Z,R

)
1B(p,s) ∗ |x|−1 together with iii):

sup
B(p,s)c

|up| ≤
R− s
R− 2s

c5.1as
−4+ε ≤ 3

2
c5.1as

−4+ε. (6.2)
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The triangle inequality, (6.1) and (6.2) prove i). Statement iv) follows by the

triangle inequality from (6.1) and ii). Let us further choose1

c6.3b ≤ min

{
1,

(
c3.14b

c6.3a + 3/2c5.1a

) η
4δ5.1ξ

,

(
c3.14b

c5.2a

) 1
ε5.2

}
. (6.3)

This means that due to i) and ii), the assumptions of Lemma 3.14 are satisfied for

V
(1,p)
r and V

(2,p)
r , which proves v). Similar, we also choose

c6.3b ≤ min

{
1,

(
c3.17

c5.1a

) 1
δ5.1ξ

,

(
c3.17

2c6.3a + 2c5.2a

)max{ η
4δ5.1ξ

, 1
ε5.2
}
}

(6.4)

so vi) is a consequence of iii), iv) and Lemma 3.17 for the potentials V
(3)
r and V

(4)
r .

�

Lemma 6.3 tells us that the assumptions of Lemma 3.22 are satisfied for the po-

tentials of Definition 6.2. The next result establishes the analogue of Lemma 3.22

for the Born-Oppenheimer potential in rHF theory.

Lemma 6.4 (DrHF
Z,R is determined by oTF models). Let Z ∈ N2 with |Z| ≥ 1.

Assume that 2 ≥ R ≥ 2
(
aTFξ̃/η̃

) 1
ξ
m
−1
3

Z and r = c6.3b(R/2)1+ ε
η−ε ≥

(
3
2
aTF
) 1
ξ m

−1
3

Z

with ε ∈ (0, δ5.1ξ]. Then

E(3)
r − E(1,0)

r − E(1,Rν)
r +Q[V (1,0)

r , V (1,Rν)
r ]− (cst.)r−7+ 1

3 ≤ DrHF
Z,R (6.5)

and

E(4)
r − E(2,0)

r − E(2,Rν)
r +Q[V (2,0)

r , V (2,Rν)
r ] + (cst.)r−7+ 1

3 ≥ DrHF
Z,R . (6.6)

Proof. Step 1 (Proof of (6.5))

Let {ωz} be a δ-partition at r < R/2 with δ ∈ (0,min{r, R/2− r}). We consider,

for p ∈ {0, Rν}, any γ̃p ∈ DMq with tr[γ̃p] ≤ Zp −
∫
B(p,r)

%rHF
Z,R = N(V

(1,p)
r ) and

supp ργ̃p ⊂ B(p, r)c. Then ωpγ
rHF
Z,Rωp + γ̃p is a trial state for the rHF minimization

problem with potential Zp/|x− p|. Together with Lemma 4.9 we find

DrHF
Z,R ≥E rHF

V
(3)
r

[ωOγ
rHF
Z,RωO]−

∑
p∈{0,Rν}

E rHF

V
(1,p)
r

[γ̃p] +Q[V (1,0)
r , V (1,Rν)

r ]

− c−3/2
H qL1

∫
Ir+δ

[
V

(3)
r−δ

]5/2

+
− cH

π2

2δ2

∫
Ir+δ\Ir−δ

%rHF
Z,R. (6.7)

Note that V
(3)
r equals Vr from Lemma 5.6. We pick δ = r4/3 in (6.7), and use (5.9),

Lemma 5.5 a) and r ≤ 1/2 to bound the last line in (6.7) by (cst.)r−7+1/3. Since

1This is not optimal, we could use r ≤ c6.3b instead of r ≤ 1.
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r4/3 ≤ r12/7, we may apply (5.5) to bound E rHF

V
(3)
r

[ωOγ
rHF
Z,RωO] from below and arrive

at:

DrHF
Z,R ≥ E(3)

r −
∑

p∈{0,Rν}

E rHF

V
(1,p)
r

[γ̃p] +Q[V (1,0)
r , V (1,Rν)

r ]− (cst.)r−7+1/3, (6.8)

for any γ̃p ∈ DMq with support in B(p, r)c and such that tr[γ̃p] ≤ N(V
(1,p)
r ). We

now construct appropriate γ̃p to bound E rHF

V
(1,p)
r

[γ̃p] from above by E
(1,p)
r . Without

loss of generality, we only give the details for p = 0. With ζ ∈ (0,∞), let γ be

given by Lemma 4.4 for V = ϕ
(1,0)
r and let ωz be a δ-partition at radius r. We set

ω0 :=
√

1− ω2
0 − ω2

0̃
and choose γ̃0 := ω0γω0 as a trial state in E rHF

V
(1,0)
r

. We then

combine the IMS-formula (Lemma 4.7) with (4.11), so that

tr[−cH∆γ̃0] ≤ tr
[
cH∆

√
ω2

0 + ω2
0̃
γ
√
ω2

0 + ω2
0̃

]
+ cH

π2

2δ2
tr[γ]

+
3

5
cTF

∫
(%(1,0)
r )5/3 + cH

π2

ζ2

∫
%(1,0)
r .

We use the Lieb-Thirring inequality (4.2) with V =
[
V

(1,0)
r

]
+
1B(0,r+δ) to bound

tr
[
cH∆

√
ω2

0 + ω2
0̃
γ
√
ω2

0 + ω2
0̃

]
≤c−3/2

H qL1

∫
B(0,r+δ)

[
V (1,0)
r

]5/2
+

−
∫

B(0,r+δ)

[
V (1,0)
r

]
+
ργ(1− ω2

0).

Further note that ργ̃0 ≤ ργ = (%
(1,0)
r ∗ g2

ζ ), hence D(ργ̃0) ≤ D(%
(1,0)
r ) by Newton’s

Theorem and tr[γ̃0] ≤ tr[γ] =
∫
%

(1,0)
r = N(V

(1,p)
r ). Here the last equality is due to

µ
(1,0)
r = 0. All together, we arrive at

E rHF

V
(1,0)
r

[γ̃0] ≤E(1,0)
r +

(
cHπ

2

2δ2
+
cHπ

2

ζ2

)∫
%(1,0)
r

+ c
−3/2
H qL1

∫
B(0,r+δ)

[
V (1,0)
r

]5/2
+

+

∫
V (1,0)
r

(
%(1,0)
r − %(1,0)

r ∗ g2
ζ

)
, (6.9)

for any ζ ∈ (0,∞), δ ∈ (0,min{r, R/2 − r}). Since ‖ΦTF
Zp,t

1B(0,t)c‖∞ ≤ 4cSt
−4 for

all t > 0, Lemma 6.3 i) implies

‖V (1,p)
t ‖∞ ≤ (cst.)t−4, ∀t ≤ r (6.10)

We may therefore use Lemma 5.5 for V = V
(1,0)
t to bound the terms on the right

hand side of (6.9). We also use Lemma 6.3 v) in the first line of (6.9) and choose
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δ = ζ = r4/3, so that E rHF

V
(1,0)
r

[γ̃0] ≤ E
(1,0)
r − (cst.)r−7+ 1

3 . Repeating these arguments

for p = Rν and revisiting (6.8) proves (6.5).

Step 2 (Proof of (6.6))

We begin with a lower bound on the atomic rHF energies. Let {ωz} be any δ-

partition at radius r (with δ ∈ (0,min{r, R/2− r})) and ω0 =
√

1− ω2
0 − ω2

0̃
. The

support properties of {ωz} and D being nonnegative imply

D(%Z0) ≥D(%rHF
Z0

ω2
0) +D(%rHF

Z0
ω2

0) +

∫
%rHF
Z0

ω2
0(x)

∫
B(0,r)

%rHF
Z0

(y)

|x− y|
dydx

+

∫
%rHF
Z0

ω2
0̃
(x)

∫
B(0,r−δ)

%rHF
Z0

(y)

|x− y|
dydx.

From this bound and the IMS-formula (Lemma 4.7) we infer

ErHF
Z0
≥E rHF

Z0/|x|[ω0γ
rHF
Z0

ω0] + E rHF

V
(2,p)
r

[ω0γ
rHF
Z0

ω0]− cH
π2

2δ2

∫
B(0,r+δ)\B(0,r−δ)

%rHF
Z0

+ tr[−cH∆ω0̃γ
rHF
Z0

ω0̃]−
∫
%rHF
Z0

ω2
0̃
V

(2,0)
r−δ ,

where the last line is bounded from below by −c3/2
H qL1

∫
B(0,r+δ)

[V
(2,0)
r−δ ]

5/2
+ due to

the Lieb-Thirring inequality (4.2) and as usual, we have an analogous lower bound

on ErHF
ZRν

. For an upper bound on the diatomic rHF energy, we consider the

trial state ω0γ
rHF
Z0

ω0 + ωRνγ
rHF
ZRν

ωRν + γ̃. Here γ̃ ∈ DMq has to satisfy tr[γ̃] ≤∫
B(0,r)c

(
%rHF
Z0

+ %rHF
ZRν

)
= N(V

(4)
r ) and supp ργ̃ ⊂ Or. All together we obtain

DrHF
Z,R ≤E rHF

V
(4)
r

[γ̃]−
∑

p∈{0,Rν}

E rHF

V
(2,p)
r

[ωpγ
rHF
Zp ωp] +Q[V (2,0)

r , V (2,Rν)
r ]

+
∑

p∈{0,Rν}

c
−3/2
H qL1

∫
B(p,r+δ)

[
V

(2,p)
r−δ

]5/2

+
+
cHπ

2

2δ2

∫
B(0,r+δ)\B(0,r−δ)

(
%rHF
Z0

+ %rHF
ZRν

)
,

(6.11)

We bound E rHF

V
(2,p)
r

[ωpγ
rHF
Zp

ωp] (uniformly in δ) from below. For any γ ∈ DMq with

supp ργ ⊂ B(p, r)c, we write

E rHF

V
(2,p)
r

[γ] = tr[(−cH∆− ϕ(2,p)
r )γ]− 2D(%(2,p)

r , ργ) +D(ργ).
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The CLR-bound (4.5), (4.10) for V = ϕ
(2,p)
r and the TF equation for ϕ

(2,p)
r then

imply that for any δ
′ ∈ (0, 1), ζ ∈ (0,∞),

E rHF

V
(2,p)
r

[γ] ≥E(2,p)
r +D(%(2,p)

r − ργ)

− c−1/2
H (1− δ′)π

2

ζ2
qL0c

3/2
TF

∫
%(2,p)
r

− (cHδ
′
)−3/2qL1

∥∥∥[ϕ(2,p)
r − ϕ(2,p)

r ∗ g2
ζ

]
+

∥∥∥5/2

5/2

− ((1− δ′)−3/2 − 1)
2

5
cTF

∫
(%(2,p)
r )5/3. (6.12)

Next, we bound last three lines in (6.12) and the last line in (6.11). As before we

note that ‖ΦTF
Z0,t

1B(0,t)c‖∞ ≤ 4cSt
−4 together with Lemma 6.3 ii) implies

‖V (2,p)
t ‖∞ ≤ (cst.)t−4, ∀t ≤ r, (6.13)

so that we may use Lemma 5.5 for V = V
(2,p)
t . Moreover, (6.13) and r ≤ 1/2 im-

ply
∫
B(0,r+δ)

[V
(2,p)
r−δ ]

5/2
+ ≤ (cst.)r−7(δ/r) as well as cTF

∫
(%

(2,p)
r )5/3 ≤

∫
%

(2,p)
r V

(2,p)
r ≤

(cst.)r−7, where we used the TF equation and Lemma 6.3 v). We combine Lemma

6.3 ii) and Lemma 3.14 to deduce that∫
B(0,r+δ)\B(0,r−δ)

%rHF
Zp ≤

∫
B(0,r−δ)c

%rHF
Zp = N(V

(2,p)
r−δ ) ≤ (cst.)(r − δ)−3.

All together, we choose δ = r5/3, ζ = r11/6, δ
′

= r1/3 and conclude the last two

terms in (6.11) are bounded by (cst.)r−7+ 2
3 whereas the last three terms of (6.12)

are bounded from below by −(cst.)r−7+ 1
3 . We have therefore derived that

DrHF
Z,R ≤ E rHF

V
(4)
r

[γ̃]−
∑

p∈{0,Rν}

E(2,p)
r +Q[V (2,0)

r , V (2,Rν)
r ] + (cst.)r−7+ 1

3 (6.14)

for any γ̃ ∈ DMq with supp ργ̃ ∈ Or and tr[γ̃] ≤ N(V
(4)
r ). Let {ωz} be a δ-partition

at radius r (as usual, δ ∈ (0,min{r, R/2− r}) but may possibly be different than

before) and let γ be the density matrix from Lemma 4.4 for the potential V = ϕ
(4)
r ,

i.e. such that ργ = %
(4)
r ∗ g2

ζ , with ζ ∈ (0,∞) and also (4.11) holds. We now choose

γ̃ = ωOγωO in (6.14) and proceed as usual: Combining the Thomas-Fermi equation

for ϕ
(4)
r , the IMS-formula, the Lieb-Thirring inequality and (4.11) we derive the

upper bound

E rHF

V
(4)
r

[γ̃] ≤E(4)
r +

∫
%(4)
r

(
V (4)
r − V (4)

r ∗ g2
ζ

)
+ c
−3/2
H qL1

∫
Ir+δ

[
V (4)
r

]5/2
+

+ cH
π2

ζ2

∫
%(4)
r + cH

π2

2δ2

∫
Ir+δ\Ir−δ

%(4)
r ∗ g2

ζ . (6.15)
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According to (6.13), ‖V (4)
r ‖∞ ≤ (cst.)t−4,∀t ≤ r. Lemma 5.5 for V = V

(4)
t and

Lemma 6.3 vi), together with the choice δ = ζ = r5/3, then imply that the terms

on the right hand side of (6.15) can be bounded such that

E rHF

V
(4)
r

[γ̃] ≤ E(4)
r + (cst.)r−7+ 2

3 .

Plugging this bound into (6.14) proves (6.6). �

We are now ready to prove Theorem 5.1 by a combination of Lemma 6.3, Lemma

6.4 and Lemma 3.22.

Proof of Theorem 6.1.

Let ε0 := min
{
ε5.2, δ5.1ξ,

1
3

}
. We choose r = c6.3b(R/2)

1+
ε0

η−ε0 and assume that

2 ≥ R ≥ Cm
− 1

3
Z with C = 2 max

{
(aTFξ̃/η̃)

1
ξ , ((aTF3/2)

1
ξ c6.3b)

η−ε0
η

}
. This implies

r ≥ (3/2aTF)
1
ξm
− 1

3
Z and Rm

1
3
Z ≥ 2(η̃/ξ̃aTF)

1
ξ so that the assumptions of Lemma

6.3 and 6.4 are satisfied. This means that both (6.3) and (6.4) hold. Hence we

see that the assumptions of Lemma 3.22 are (using Lemma 6.3 i), iii)) satisfied for

V (p) = V
(1,p)
r , as well as (using Lemma 6.3 ii), iv)) for V (p) = V

(2,p)
r . Combining

(3.47) with (6.6) and (3.48) with (6.5), we thus find

R7
∣∣DrHF

Z,R −DTF
Z,R

∣∣ ≤ (cst.)R
ε0

η−7
η−ε0 , ∀R ∈ [Cm

− 1
3

Z , 2]. (6.16)

Let us now consider the case R ≤ Cm
− 1

3
Z . If we choose VC(x) = VZ,R(x) in

Lemma 4.6, then |ETF
Z,R − ErHF

Z,R | ≤ max{c4.6a, c4.6b}|Z|
7
3
− 2

33 , and if VC(x) = Z|x|−1,

then |ETF
Z − ErHF

Z | ≤ max{c4.6a, c4.6b}Z
7
3
− 2

33 . We combine these bounds and write

CZ = max{Z1, Z2}/mZ so that for all R ≤ Cm
− 1

3
Z :

R7|DrHF
Z,R −DTF

Z,R| ≤ C
75
11 max{c4.6a, c4.6b}

(
1 + C

7
3
− 2

33
Z + (1 + CZ)

7
3
− 2

33

)
R

2
11 .

This bound, together with (6.16) and ε6.1 := ε0
η−7
η−ε0 < 2

11
, completes the proof.

�

It is evident from the proof, or more specifically (6.16), that we do not require

the quotient max{Z1, Z2}/mZ to be bounded if we consider the behaviour of DrHF
Z,R

as mZ → ∞. From (6.16) and (3.41) we therefore obtain the following Corollary,

which confirms the conjecture (1.5) in reduced Hartree-Fock theory:

Corollary 6.5.

lim sup
mZ→∞

∣∣DrHF
Z,R −DTF

∞,1R
−7
∣∣ = o(R−7), as R→ 0.
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CHAPTER 7

Numerics

In the previous Chapters we looked at the Born-Oppenheimer potential in the limit

mZ →∞, because it is a way to make a mathematically rigorous statement about

the behaviour of DZ,R and since TF theory has a limit as mZ → ∞. Now how

fast is the asymptotic behaviour in (1.6) (or Corollary 6.5) reached? The honest

answer is that the constants from Theorem 6.1 are immense, so this result gives

no quantitative insight for reasonable values of Z < 100.

To obtain a better understanding about the validity of (1.6) for finite |Z|, we

have compared numerical values for homonuclear diatomic Born-Oppenheimer po-

tentials. Numbers for different homonuclear diatomics in HF theory had been

computed in [13] and we were given their data. For TF theory, we computed

DTF
(Z,Z),R via the identity (3.42). This means that we had to determine the values∫
ϕ5/2 and lim

|x|→0
(ϕ(x) − Z|x|−1) for both the atomic and diatomic TF potentials.

These functions satisfy the nonlinear Thomas-Fermi partial differential equation

(3.3) and by choosing c
3/2
TF = 4π in this chapter, the PDE is free of constants and

reads

∆ϕ = ϕ3/2, lim
|x|→∞

ϕ(x)|x|4 = 144.

We solve this equation both in the atomic and diatomic case numerically.

Remark: (Correctness of numerical values)

As this is not a thesis in numerical analysis, we do not derive any error estimates.

In the atomic case, the correctness of our results relies on the internal capabilities

of Wolfram Mathematica to carry out numerical computation with prescribed pre-

cision. Whereas for the diatomic case, we have no claim on the exactness of the

computations. We only deduce a posteriori, that our values are sufficiently exact

for our qualitative comparison of Born-Oppenheimer potentials. This is based on

two observations: Firstly, the values are consistent when computed with different

software platforms and slightly different approaches. Secondly, and most impor-

tantly, the TF values show a good agreement with the HF values, which have been

obtained by completely different methods.
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Before presenting the results for the Born-Oppenheimer curve, we describe the

solution process. We do this separately for the atomic and diatomic case, because

the former reduces to an ODE.

1. Solving the atomic ODE

The atomic TF potential is radial and due to the TF scaling (1.3) fully determined

by a single function ϕTF
1 (x) = f(|x|)|x|−1. Here f ∈ C∞((0,∞))∩C([0,∞)) is the

unique solution to the nonlinear ordinary differential equation
f ′′(r) = (f(r))3/2√

r
, ∀r > 0,

f(0) = 1,

lim
r→∞

f(r)r3 = 144.

(7.1)

Since ϕTF
1 > 0, we in particular have f > 0. This ODE has been studied many

times by physicists and mathematicians, both numerically and analytically. We do

not give a full account and instead refer to the references of authors mentioned here.

One can attempt to solve this problem numerically on a finite domain [0, r∞],

varying the guessed initial slope c0 = f ′(0) until the solution is sufficiently close to

the Sommerfeld asymptotic at r∞. This assumes r∞ is chosen large enough that

the 122r−3-asymptotic is valid. Furthermore, it typically requires a high number

of correct digits of c0. The importance of the value c0 has been noted by many

authors and it has been computed to higher and higher accuracy over the past

decades. Among them is the result c0 ≈ −1.588071022611375312718684508 from

[40] and this agrees, with the exception of the last digit, with the 30-digit result

that has been reported 2014 in [41].1

We propose an iterative approach that allows one to compute c0 to a much higher

accuracy with relatively few computational resources. It is based on the following

observation: For any c ∈ R, let yc be the (maximal) solution to the initial value

problem 
y′′(r) = (y(r))3/2√

r
,

y(0) = 1,

y′(0) = c.

1See also the Table 1 in [41] for an overview of computed values since Fermi in 1928.
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Figure 1. Numerical solution to (7.1). It describes the integral over
(r,∞) of a single-electron density in atomic TF theory.

Then yc0 = f , where f solves (7.1), and it is defined on all of [0,∞). According to

Hille [20, 42], if c < c0 then yc(a) = 0 at some a > 0 and if c > c0, then y′ will be

positive at some point. This leads to the following algorithm: We guess an initial

c and solve for yc, starting at r = 0 until r̃, the first r where either yc or y′c vanish,

is reached. Then we adjust c accordingly and repeat the process. This yields two

sequences cn, r̃n and we expect that r̃n →∞ and cn → c0.

Implementing this in Mathematica (see the appendix C.1), one observes that rn is

increasing and cn is strictly decreasing when starting from an initial guess c > c0.

Stopping at the 81st correct digit, we obtain

c0 =− 1.588071022611375312718684509423950109452...

...74662167482561676567741816655196115430926..., (7.2)

which in particular confirms the mentioned 30-digit result. The corresponding

distance up to where this system was solved is about r̃ ≈ 1010. The execution time

to get the next digit reached up to 30 minutes and we therefore stopped here. Note

that this was performed on a single desktop computer, so it is in principle possible

to obtain far more digits with only a moderate use of computational resources. For

our purposes, (7.2) is sufficient. Using this 81-digit approximation, we computed a

numerical solution fN to (7.1) up to r∞ = 1010 in Mathematica, which is displayed

in Figure 1. Note that the graph describes the integral over the outside part of

the electron density, because fN(r) =
∫
|y|≥r %

TF
1 (y)dy. We also give a plot of
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Figure 2. Relative deviation from the Sommerfeld asymptotic at r∞.

the the relative distance of fN to the Sommerfeld-asymptotic in Figure 2. For the

normalization integral we have

1 =

∫
%TF

1 ≈
∫ r∞

0

fN(r)3/2r1/2dr = 1 + 6.65211× 10−18

so that we can confirm this solution to be highly accurate. With the goal of

computing DTF
(Z,Z),R in mind, we also determined∫ (

ϕTF
1 (x)

)5/2
dx ≈

∫
(fN(r))5/2 r−1/2dr = 1.134336444722410938475456. (7.3)

All these calculations for the atomic ODE where performed in Mathematica, ver-

sion 11.1.1.0, in particular by use of the NDSolve and NIntegrate commands and

suitably increasing the WorkingPrecision. Details are given in the appendix C.1

and C.2.

2. Solving the diatomic homonuclear PDE

2.1. The problem and its reformulations. We are interested in a (nu-

merical) approximation to the homonuclear diatomic TF potential, the positive

solution ϕTF
(Z,Z),R ∈ C∞(R3 \ {0, Rν}) of the problem

∆ϕTF = (ϕ)3/2 in R3 \ {0, Rν},

ϕ(x)|x|4 → 144 as |x| → ∞,

ϕ(x)|x− p| → Z as x→ p ∈ {0, Rν}.

(7.4)

From a mathematical point of view, this problem is well-posed (the solution ex-

ists and is unique). But it is not suited to be solved numerically because, a) the

solution is singular at {0, Rν}, b) solving a three-dimensional problem is usually
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2. SOLVING THE DIATOMIC HOMONUCLEAR PDE

computationally expensive and c) the ‘Dirichlet condition at infinity’ is not directly

implementable on a computer.

To deal with a), we regularize the problem by solving for

u(x) = ϕTF
(Z,Z),R(x)− Z|x|−1 − Z|x−Rν|−1 = −%TF

(Z,Z),R ∗ |x|−1

instead. Note that by Proposition 2.2, u ∈ C(R3)∩C∞(R3\{0, Rν}). Furthermore,

since ϕTF
(Z,Z),R is rotationally invariant with respect to the axis ν and reflection

symmetric across HRν/2, so is u. Using cylindrical coordinates (ρ, z, θ) with origin

at x = Rν/2 and z-axis in direction ν, we reduce the PDE to a 2-dimensional

problem in the quadrant ρ > 0, z > 0, thus dealing with b). Finally, for c),

we truncate the quadrant at |(ρ, z)| = r∞ and impose the approximate Dirichlet

condition

u(ρ, z) = g(ρ, z) :=
144

|(ρ, z)|4
− Z

|(ρ, z +R/2)|
− Z

|(ρ, z −R/2)|
on |(ρ, z)| = r∞.

Let Ω = {(ρ, z) ∈ R2
+ : |(ρ, z)| ≤ r∞} and ΓD = {(ρ, z) ∈ R2

+ : |(ρ, z)| = r∞},
ΓN = ∂Ω \ ΓD. These sets all depend on r∞, which we omit in the notation.

We arrive at the following reformulation of (7.4) for a bounded domain: Given

R,Z, r∞ > 0, find u(ρ, z) such that
∇ρ∇u = n(ρ, u) in Ω,

u = g on ΓD,

∂nu = 0 on ΓN ,

(7.5)

with the nonlinearity n(ρ, u) := ρ(u + Z|(ρ, z + R/2)|−1 + Z|(ρ, z − R/2)|−1)3/2.

To compute approximations via the finite element method, we note that (7.5) is

equivalent to the variational problem of finding u ∈ H1
g,ΓD

(Ω) such that

0 = F (u, v) := 〈ρ∇u,∇v〉L2(Ω) + 〈n(u), v〉L2(Ω) ∀v ∈ H1
0,ΓD

(Ω). (7.6)

2.2. Solution via the finite element method. We use the FEniCS plat-

form to compute an approximate solution ũ ∈ V (M, k) to the discrete version of

(7.6), obtained by restricting to V (M, k) ∩ H1
0,ΓD

.2 Here Vk(M, k) denotes the

finite-dimensional vector space of continuous functions over Ω, whose restriction

to any simplex of the triangular mesh M is a polynomial of degree at most k.

2Note that F is not linear in the first argument. The solution to the discrete problem is therefore
approximated by a Newton iteration.
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The mesh M is generated by the automated adaptive algorithm that was pro-

posed in [43] and has been implemented in FEniCS. The algorithm takes as an

input a goal function M and determines an a posteriori error indicator ηM , which

is assumed to approximate

ηM(ũ) ≈ |M(u)−M(ũ)|,

where u solves (7.6) and ũ is its approximation in V (M, k). The initial mesh is

then successively refined and ũ recomputed for this mesh, until ηM(ũ) is less than

the chosen tolerance.3 Since our goal is to compute DTF
(Z,Z),R via (3.42), we chose

M to be the 5/2-integral of the TF-potential, so

M(u) =

∫
Ω

(
u(ρ, z) + Z|(ρ, z +R/2)|−1 + Z|(ρ, z −R/2)|−1

)5/2
ρdρdz.

A commented and relatively short example of code that computes the solution

with R = 10, Z = 1 and r∞ = 30 can be found in the appendix C.3. We in

particular chose quartic Lagrange elements (polynomials of degree k = 4 on a tri-

angular mesh). The initial mesh was uniform with 11037 cells. The final mesh

was reached after 20 adaptations and had 33158 cells, clustered at the singularity

(ρ, z) = (0, R/2). The chosen tolerance for the goal function was 10−12 and at each

adaptation step, the Newton algorithm for F (u; v) = 0 converged to a relative or

absolute tolerance of 10−10. Varying the cutoff radius r∞ had only a negligible ef-

fect. The solution has been visualized in Figures 3, 4 and 5 using ParaView 5.4.1.4

We recall that we actually solved for u(x) = −%TF
(Z,Z),R ∗ |x|−1, hence these Figures

show the electric potential generated by the diatomic electron density in TF theory.

The L1-mean-deviation of the computed ũ to g on ΓD is 3 × 10−17 and the nor-

malization integral over the region equals 1.9946668775417533. This is reasonably

close to the expected value 2− 23

533
= 1.9786..., which itself is an approximation, as-

suming that the Sommerfeld asymptotic holds at r∞ = 30. For the goal functional,

we find ∫ (
ϕTF

(1,1),10(x)
)5/2

dx ≈ 2.2705744545893682.

These values seem to be consistent with the ones obtained by other FEM calcula-

tions we carried out:

3The refinement uses the Dörfler marking strategy: The cells cj of M are ordered such that

ηM (ũ1cj ) decreases. Then the first k cells such that
∑k
j=1 ηM (ũ1cj ) ≥ 1

2ηM (ũ) are refined.
4The Figures actually only show a linear fit between the vertices of the mesh. The actual solution
is much more regular and built up from quartic functions.
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Figure 3. Initial mesh and solution of the goal-oriented adaptive method.

Figure 4. Final mesh and solution of the goal-oriented adaptive method.

(1) In FEniCS, we computed solutions without adaptation by specifying a

(non-uniform) mesh, refined around (ρ, z) = (0, R/2). Details are in the

appendix C.4.

(2) In Mathematica, we iterated the solution to the linearised PDE, that is

we computed ∆ϕn+1 = ϕn+1
√
ϕn, starting from ϕ0 = 0 on a mesh with

refinement around (ρ, z) = (0, R/2). Details are in the appendix C.5.

(3) We thank Guillaume Legendre from Paris-Dauphine who kindly helped us

to compute a solution in FreeFem++ by an adaptive method. Details are

in the appendix C.6.

The best argument for the correctness of our computation is the agreement of

our computed values for the Thomas-Fermi Born-Oppenheimer curve with the HF

values, which we discuss below
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Figure 5. Final mesh and solution, zoomed to the singularity.

3. Comparison to HF values

Numerical HF-calculations for Hydrogen, Helium, Nitrogen, Neon, Argon, Lithium,

Sodium, Potassium and Rubidium have been reported in [13]. They show, with

the exception of hydrogen, an astonishing agreement of the electronic part of the

rescaled Born-Oppenheimer curves (2Z)−
7
3

(
DHF

(Z,Z),R −
Z2

R

)
at small (2Z)1/3R for

different values of Z. The nuclear repulsion Z2/R has been taken out because in

this scaling, it is the same for all elements and dominates the electronic contribution

at small r. In TF theory these curves are really just a single function in r =

(2Z)1/3R, since by the TF scaling (1.3),

(2Z)−
7
3

(
DTF

(Z,Z),R −
Z2

R

)
= DTF

( 1
2
, 1
2

),r
− 1

4r
=: D(r).

In order to compute this function via (3.42), we used the atomic values (7.2) and

(7.3). The corresponding diatomic values ‖ϕTF
(Z,Z),R‖5/2 and (ϕTF

(Z,Z),R − Z/| · |)(0)

were obtained via the goal-oriented adaptation in FEniCS. Note that we expect

the diatomic values to be close to (7.2) and (7.3) and since we are interested in

their difference (see (3.42)), we need to compute fairly accurate values also in the

diatomic case.

We computed the solution of ϕTF
(Z,Z),R in atomic units, that is cTF = 1

2
(3π2)2/3

for Z ∈ {0.5, 1, 2} and for 130 values of r = R(2Z)1/3 between 0.001 and 12. We

chose r∞ = 30 and quartic Lagrange elements on an initial mesh with about 2 cells

per unit length. The Newton algorithm at each iteration of the adaptive algorithm
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converged to relative or absolute precision 10−11, which was also the chosen tol-

erance for the goal function.5 Most of the computations have been carried out in

the first half of 2018 on a cluster at Paris-Dauphine and the code can be found in

the appendix C.7. We provide Tables of the computed values in the appendix C.8.

We see that the relative and absolute deviations between the three datasets with

respect to Z ∈ {0.5, 1, 2}, displayed in Figure 2 on page 129 and Figure 1 on page

129, are small.

Since (ETF
(Z,Z),R − Z2/R) −−−→

R→0
ETF

2Z , the TF scaling (1.3) implies

lim
r↓0

DTF(r) = ETF
1 (1− 2−4/3) ≈ −0.4636

and this seems to hold for our numerical values.6 We display DTF(r), the electronic

part of the rescaled potential, together with the HF values from [13] in Figures 6,7

and 8. The absolute and relative deviations to the HF values, computed from an

interpolation of DTF(r), are shown in Figures 9 and 10.

The agreement of these curves is astonishing and far better than what we hoped

for at the start of our numerical investigation and implies that our TF computa-

tions must be correct.7 We conclude: Our computations indicate that the universal

behaviour of the Born-Oppenheimer curve for the region of small internuclear dis-

tances, which we understand for heavy atoms, also holds for lighter atoms:

The small-R regime of Born-Oppenheimer curves is truly universal.

5With the exception of a few values, for which we chose 10−10 as the tolerance of M . They are
marked with a * in tables 1, 4 and 7. See also the comments in the appendix C.7.
6We obtained the value ETF

1 = −3.67874523/cTF from the solution fN that we computed in
Chapter 1. It is consistent with the value given in [4].
7We do not claim exactness or any concrete degree of accuracy.
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Figure 6. Comparison of numerically obtained Born-Oppenheimer
curves in Thomas-Fermi (TF) and Hartree-Fock (HF) theory for
(2Z)1/3R = r ∈ [0.001, 12] and for small values of r in [0.001, 0.1].
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Figure 7. Comparison of numerically obtained Born-Oppenheimer
curves in Thomas-Fermi (TF) and Hartree-Fock (HF) theory for
(2Z)1/3R = r ∈ [1, 4].
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Figure 8. Comparison of numerically obtained Born-Oppenheimer
curves in Thomas-Fermi (TF) and Hartree-Fock (HF) theory for
(2Z)1/3R = r ∈ [4, 10].
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Figure 9. Absolute deviation of the (interpolated) TF Born-
Oppenheimer curve to HF values.
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Figure 10. Relative deviation of the (interpolated) TF Born-
Oppenheimer curve to HF values.
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CHAPTER 8

Conclusions and perspectives

1. Summary

We have proven the conjectured [11] universality of diatomic Born-Oppenheimer

curves for the Hartree-Fock model without the exchange term in Theorem 6.1. To

do this, we showed in Lemmas 3.22 and 6.4 that the Born-Oppenheimer curves of

TF theory and rHF theory can be determined from appropriate outside TF models.

These are appropriate in the sense that the corresponding outside potentials agree,

to leading order in the separation distance r, with TF-screened potentials. It is

crucial that this holds for all r less than a constant, independent of the nuclear

charge. In the atomic case, this was already known [12]. We have proved it for the

diatomic case in Theorem 5.1, using the universality of positive solutions to the

TF differential equation, which we studied in Chapter 3.3.1.

We also provided a numerical investigation of the TF Born-Oppenheimer curve

at small nuclear charges and separations by solving the nonlinear TF differential

equation. For the well-studied atomic ODE, we presented an algorithm that allows

to compute the initial slope accurately. To solve the more complicated (homonu-

clear) diatomic PDE, we used the finite element method. The resulting agreement

between the repulsive part of the TF and HF Born-Oppenheimer curves exceeds

our expectations. This both strengthens the conjectured universality (1.5) for (full)

HF theory and suggests that it is already valid for lighter atoms.

2. Perspectives for future research

We end this thesis by listing possible future research projects:

(1) The conjecture (1.5) for quantum mechanics is a major open problem. By

the results of this thesis, it would suffice to show that the Born-Oppenheimer

curves (of infinitely large atoms) in quantum mechanics and rHF theory agree

to leading order in R→ 0.

(2) The conjecture (1.5) is still open in HF theory and a proof by the methods we

outlined in this thesis might be possible. The exchange term between electrons
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localized to the balls B(0, r) and B(Rν, r),

XR,r[γ] :=
1

2

∫
B(0,r)

∫
B(Rν,r)

|γ(x, y)|2

|x− y|
dxdy,

is the main obstacle we encountered. However, we did not find a suitable bound

on |XR,r[γHFZ,R]| to show that it can be controlled independently of Z ∈ N to the

relevant order o(R−7) for r << R.

(3) Our main result (1.6) can certainly be improved or extended:

(a) One can try to optimize the constants, but we do not believe that this

leads to a substantial improvement as long as the proof is based on the

iteration coupled with the asymptotic of TF potentials.

(b) Obtaining the next order in R→ 0 would certainly be of interest.

(c) Going beyond the diatomic case and extending the universality to any

Born-Oppenheimer surface. This should in most places be a straightfor-

ward (but notationally expensive) generalization of this thesis. Though we

note that it might be difficult to obtain suitable Sommerfeld type bounds

in the ‘multi-atomic outside’, which are needed to replace Lemma 3.12.

(4) There are still open problems in the TF theory of infinitely large atoms. For

example, we do not know the value of DTF
∞,1. One could try to probe it numer-

ically or analytically via the formula (3.43). The latter is related to another

problem: While we have pointwise convergence of ϕTF
Z (x) towards cS|x|−4 for

Z → ∞, there is no known analytic expression of the limiting function ϕTF
∞,R

in the diatomic case. We only know that it is the unique positive solution to

the TF PDE with strong singularities cS|x|−4 both at 0 and Rν.
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APPENDIX A

Outside harmonic functions and the Kelvin transform

We assume the reader is familiar with the basic theory of harmonic functions, in

particular on bounded sets of R3. The Kelvin transform is a useful tool that allows

one to translate the study of harmonic functions on unbounded sets which vanish

at infinity to the study of harmonic functions on a bounded set. Most, if not all,

of what we discuss here can be found in textbooks like [22, Vol. 3].

Definition A.1. Let IT : R3 \ {0} → R3 \ {0} be the inversion at the sphere

∂B(0, T ), given by IT (x) = x T 2

|x|2 . The Kelvin transform KTu with respect to

the sphere ∂B(0, T ) of a real-valued function u with domain Ω ⊂ R3 is defined on

IT (Ω \ {0}) by

KTu(x) =
T

|x|
u(IT (x)).

Lemma A.2. Let Ω ⊂ R3 be open. Then KTKTu(x) = u(x) for all x ∈ Ω \ {0}
and

u is harmonic in Ω \ {0} ⇔ KTu is harmonic in IT (Ω \ {0}).

Moreover, if 0 ∈ Ω, then

u is harmonic in Ω⇔ KTu is harmonic in IT (Ω) and lim
|x|→∞

KTu(x) = 0.

Proof. That KTKTu(x) = u(x) is checked by computation. Another straightfor-

ward computation shows that

∆[KTu(x)] =
T 5

|x|5
∆u(IT (x)) ∀x ∈ IT (Ω \ {0}),

which proves the first equivalence. For the second, we first note that if 0 ∈ Ω, then

IT (Ω \ {0}) contains the complement of a ball. Hence lim
|x|→∞

KTu(x) = 0. On the

other hand, if KTu is given, then we set u = KTKTu on Ω \ {0} and note that

0 ∈ Ω and lim
|x|→∞

KTu(x) = 0 imply

lim
x→0
x 6=0

|x|u(x) = 0. (A.1)

According to the first equivalence, it remains to verify that if u(x) is harmonic in

Ω\{0} and satisfies (A.1), then it can be extended to x = 0 such that it is harmonic

in all of Ω: Abbreviating B(0, r) by Br, we fix some r > 0 such that Br ⊂ Ω and
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consider the unique v that is harmonic in all of Br and equals u on ∂Br. By

(A.1), we can find for any ε > 0 some δ ∈ (0, r) such that |u(x) − v(x)| ≤ ε|x|−1

in Bδ \ {0}. Since u, v, ε|x|−1 are harmonic in Br \ {0}, the maximum principle

implies that also |u(x)− v(x)| ≤ ε|x|−1 in Br \Bδ and thus (by the former bound)

also in Br \ {0}. Taking ε→ 0, we obtain u = v in Br \ {0} and end the proof by

defining u(0) = v(0). �

Examples

(1) The constant function f(x) = c is the basic example of a harmonic function

on a ball B(0, T ). Its Kelvin transform KTf(x) = Tc
|x| is the basic example of a

nontrivial harmonic function that vanishes at infinity.

(2) We recall that the Poisson kernel for the ball of radius r = |ξ|,

Pr(x, ξ) =
1

4πr

r2 − |x|2

|x− ξ|3
,

is harmonic in x ∈ B(0, r). We use the formula
∣∣∣x |ξ|2|x|2 − ξ∣∣∣ = |ξ|

|x| |x− ξ| to

compute for its Kelvin transform in x with respect to ∂B(0, r):

KrPr(x, ξ) =
1

4πr

r3

|x|3
|x|2 − r2

|xr2/|x|2 − ξ|3
= −Pr(x, ξ).

This implies that−Pr is the Poisson kernel for the outside B(0, r)c in the follow-

ing sense: For any g ∈ C(∂B(0, r)), the function x 7→ −
∫

∂B(0,r)

Pr(x, ξ)g(ξ)dξ

is the unique solution to
∆u = 0 in B(0, r)

c

u = g on ∂B(0, r)

lim
|x|→∞

u(x) = 0.

The mean value-property for harmonic functions on a ball has a reformulation for

outside harmonic functions:

Proposition A.3. Assume u is a harmonic function on an open set Ω ⊃ B(0, T )c

that satisfies lim
|x|→∞

u(x) = 0. Then

t−
∫
∂B(0,t)

u = TKTu(0) ∀t > T.

Proof. We use Lemma A.2 to write u = KTKTu and compute by a change of

coordinates that

t−
∫
∂B(0,t)

u = T−
∫
∂B(0,T 2/t)

KTu.
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Since KTu is harmonic in B(0, T ), the claim then follows from the mean value

property for KTu. �
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Computations

Lemma B.1. Let Ω ⊂ R3 be open, ω−, ω+ ∈ C∞(Ω) and assume that there exists

an open set S ⊂ Ω, containing R2 × {0} ∩ Ω, and such that

ω−(x1, x2, x3) = ω+(x1, x2,−x3) ∀(x1, x2, x3) ∈ S. (B.1)

Let H± := R2 × R± and δ(x3)[φ] :=
∫
R2 φ(x1, x2, 0)dx1dx2, ∀φ ∈ C∞c (R3). Then

∆(ω−1H− + ω+
1H+) = (∆ω−)1H− + (∆ω+)1H+ + 2(∂3ω

+)δ(x3)

distributionally in Ω.

Proof. We pick φ ∈ C∞c (Ω) and note that simply by definition,

∆(ω−1H− + ω+
1H+)[φ] =

3∑
k=1

〈
ω−1H− + ω+

1H+ , ∂2
kφ
〉
L2 .

Integrating by parts and noting that the due to (B.1), the boundary terms cancel,

we find that this equals −
∑3

k=1 〈(∂kω−)1H− + (∂kω)+
1H+ , ∂kφ〉L2 . Integrating by

parts once more, we conclude

∆(ω−1H− + ω+
1H+)[φ]

=
3∑

k=1

〈
(∂2
kω
−)1H− + (∂2

kω)+
1H+ , φ

〉
L2 +

∫
R2×{0}

(∂3ω
+ − ∂3ω

−)φdσ

= (∆ω−)1H− [φ] + (∆ω+)1H+ [φ] + (∂3ω
+ − ∂3ω

−)δ(x3)[φ].

We note (B.1) implies ∂3ω
+ = −∂3ω

− on R2×{0}∩Ω, which ends the proof. �

Lemma B.2. Let r < R/2, F be given by (3.24) and assume W ∈ H(Or). Then

F ∈ H1(R3), FW ∈ L6(R3),∇FW ∈ L2(R3) and

‖∇FW‖2
2 =

∫
(∇F )2W 2.

Proof. Let A0 denote B(0, 3r) \ B(0, 2r) ∩ H−Rν/2 and ARν denote B(Rν, 3r) \
B(Rν, 2r)∩H+

Rν/2. We consider f(x) =
∑

p∈{0,Rω}
x−p
r|x−p|1Ap and show that it equals

∇F in the weak sense. Note that(x− p)/(r|x− p|) is smooth in a neighbourhood

of Ap. Hence we may integrate by parts to deduce that for any φ ∈ C∞c (R3),
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k = 1, 2, 3:∫
R3

F∂kφ =

∫
∂O3r

nk(x)φ+

∫
∂A0

nk(x)
|x| − 2r

r
φ

+

∫
∂ARν

nk(x)
|x−Rν| − 2r

r
φ−

∫
fkφ.

As |x−p|−2r
r

= 0 on ∂Ap ∩ ∂B(p, 2r), and |x−p|−2r
r

= 1 on ∂Ap ∩ ∂B(p, 3r) = ∂Ap ∩
∂O3r, while

∫
∂O3r

nk(x)φ = −
∫
∂I3r nk(x)φ,∫

R3

F∂kφ = −
∫
fkφ+

∫
∂A0∩H−Rν/2

nk(x)
|x| − 2r

r
φ+

∫
∂ARν∩H−Rν/2

nk(x)
|x−Rν| − 2r

r
φ.

Here the last two summands either cancel each other (if r ≥ R/6) or vanish (if

r < R/6). Hence f = ∇F weakly and since f ∈ L2(R3), we conclude F ∈ H1(R3).

We now consider the function FW . Note that W is smooth on a neighbourhood

of the support of F , hence ∇(FW ) = (∇F )W + F (∇W ) weakly. We integrate by

parts ∫
∂kF (FW∂kW ) =−

∫
A0∪ARν

(
FW∂kF∂kW + F 2(∂kW )2 + F 2W∂2

kW
)

+
∑

p∈{0,Rω}

∫
∂Ap

nkF
2W∂kW.

Here the last line actually equals
∑

p∈{0,Rω}

∫
∂I3r

nkW∂kW = −
∫

∂O3r

nk
1
2
∂k(W )2, since

the contributions from the integrals over ∂HRν/2 ∩I3r cancel each other, and since

F = 0 on ∂O2r. Moreover we have (3.11) and from (3.46) with V
(Rν/2)
R/2+r = W on

B(Rν/2, R/2 + r)c we deduce that |∂kW (x)| ≤ ‖W‖∞ 5(R/2+r)
|x−Rν/2|2−(R/2+r)2

for |x −
Rν/2| > R/2+r. These decay properties are sufficient to integrate by parts (using

a cut-off at T > R/2 + r and taking T → ∞ with dominated convergence). We

therefore deduce that∑
p∈{0,Rω}

∫
∂Ap

nkF
2W∂kW = −

∫
∂O3r

nk
1

2
∂k(W )2 = −1

2

∫
O3r

F 2∂2
k(W )2.

Overall, we find (after summing over k = 1, 2, 3) that

2

∫
FW∇F∇W = −

∫
F 2(∇W )2 −

∫
F 2W∆W = −

∫
F 2(∇W )2.

This immediately implies the claimed identity

‖∇(FW )‖2
2 =

∫
W 2(∇F )2.
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With the right hand side being bounded by ‖W‖2
∞‖∇F‖2

2 < ∞, we conclude

FW ∈ H1(R3). �

Proposition B.3. If ρ ∈ L6/5(R3) and g ∈ L2(R3) is normalized and radial, then

D(ρ ∗ g2) ≤ D(ρ).

Proof. We have g2 ∗ |x|−1 ≤ |x|−1 by Newton’s theorem. This implies∫ ∫
g2(x− w)g2(y − z)

|x− y|
dxdy ≤

∫
g2(x)

|w − z + x|
dx ≤ 1

|w − z|
.

�
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Numerical scripts

We now give the source code and selected parts of the resulting output of the

scripts we used for the numerical investigation.

1. Mathematica - atomic TF ODE, computing initial slope

TestUpperBound[c_, ndsolveOpts_, bvprec_] :=

(flag = {0, 0};

NDSolve[{y''[x] == (y[x]^(3/2))/Sqrt[x], y[10^(-bvprec)] == 1,

y'[10^(-bvprec)] == c}, y, {x, 10^(-bvprec), Infinity},

Method -> {"EventLocator", "Event" -> {Re[y[x]], Re[y'[x]]},

"EventAction" :> {Throw[flag = {False, x}, "StopIntegration"],

Throw[flag = {True, x}, "StopIntegration"]}}, ndsolveOpts,

AccuracyGoal -> Infinity];

flag)

ComputeDigits[cStart_, digitStart_, digitGoal_, ndsolveOpts_, bvprec_: 1000] :=

Block[{c = cStart, currentDigit = digitStart},

Print["loopcount | correct digits (after decimal point) |",

" c | critical x | TestUpperBound execution time"];

For[i = 0, currentDigit <= digitGoal, i++,

timedFlag = Flatten[Timing[TestUpperBound[c, ndsolveOpts, bvprec]]];

Switch[timedFlag[[2]],

0, Print["ERROR: TestUpperBound returned the flag zero"];,

True, c -= 10^-currentDigit;,

False, c += 10^-currentDigit; currentDigit++;

Print[i, " | ", currentDigit - 1, " | ", N[c, currentDigit], " | ",

N[timedFlag[[3]], 3], " | ", timedFlag[[1]]];

]

]

];

ComputeDigits[-15/15, 1, 80, {MaxSteps->Infinity,WorkingPrecision->currentDigit*2 + 50}]

This code computes the first 81 digits of the initial slope for the atomic TF PDE

(7.1). We already announced the result in (7.2). To compute more digits, the

setting WorkingPrecision -> currentDigit*2 + 50 might need to be increased

accordingly.

2. Mathematica - atomic TF ODE, computing integrals of the solution

(* 81-digit approximation to the initial velocity *)

c = -15880710226113753127186845094239501094527466216748256167656774181\

6655196115430926 *10^-80;

(* boundary value precision: 10^-bvprec as approximation to zero *)

bvprec = 1000;
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* compute a solution *)

Timing[f =

NDSolveValue[{f''[x] == (f[x]^(3/2))/Sqrt[x], f[10^(-bvprec)] == 1,

f'[10^(-bvprec)] == c}, f, {x, 10^(-bvprec), Infinity},

Method -> {"EventLocator", "Event" -> {Re[f[x]], Re[f'[x]]},

"EventAction" :> {Throw[Print["solution becomes negative"],

"StopIntegration"],

Throw[Print["derivative becomes positive"],

"StopIntegration"]}}, MaxSteps -> Infinity,

WorkingPrecision -> 200, AccuracyGoal -> Infinity] ]

* Normalization : 3/2 - integral *)

NIntegrate[( u[r]/ r )^(3/2)*r^2, {r, 0, 10^9},

WorkingPrecision -> 100, MaxRecursion -> 200,

Method -> {"DuffyCoordinates"}]

(* The 5/2-integral *)

NIntegrate[( f[r]/ r )^(5/2)*r^2, {r, 0, 10^9},

WorkingPrecision -> 100, MaxRecursion -> 200,

Method -> {"DuffyCoordinates"}]

3. FEniCS - diatomic TF PDE, adaptive mesh refinement

from fenics import *

from mshr import *

# Parameters

R, Z, r_max, mesh_res, deg_FSpace, adapt_tol = 10.0, 1.0, 30.0, 2.0, 4, 1E-12

DualVariationalSolverParameters = {'linear_solver':'mumps', 'preconditioner':'none'}

NewtonSolverParameters = {'linear_solver':'mumps', 'preconditioner':'none',\

'maximum_iterations':25, 'relative_tolerance':1E-10, \

'absolute_tolerance':1E-10}

# Create mesh

domain = Rectangle(Point(0, 0),Point(r_max, r_max)) * Circle(Point(0, 0), r_max)

mesh = generate_mesh(domain, mesh_res*r_max)

x = SpatialCoordinate(mesh)

# Choose function space

V = FunctionSpace(mesh, 'P', deg_FSpace)

# Define Dirichlet BC

class Boundary_arc(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1]*x[1]+x[0]*x[0], r_max*r_max, 1/(mesh_res*mesh_res))

bnd_arc = Boundary_arc()

dbc_function = Expression('144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \

- Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

- Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5)',\

degree=deg_FSpace+3, Z=Z, R=R)

dbc = DirichletBC(V, dbc_function, bnd_arc)

# Define variational problem

u = Function(V)

v = TestFunction(V)

def nl(u): # the nonlinearity

return x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

+ Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 1.5)

F = (x[0]*Dx(u, 0)*Dx(v, 0) + x[0]*Dx(u, 1)*Dx(v, 1) + nl(u)*v)*dx
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NLproblem = NonlinearVariationalProblem(F, u, dbc, derivative(F, u))

# Choose goal function

def I(u): # integrand of the goal functional

return x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

+ Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 2.5)

goalFunctional = I(u)*dx()

# Load parameters for the solver

solver = AdaptiveNonlinearVariationalSolver(NLproblem, goalFunctional)

for key in DualVariationalSolverParameters.keys():

solver.parameters["error_control"]["dual_variational_solver"][key] \

=DualVariationalSolverParameters[key]

for key in NewtonSolverParameters.keys():

solver.parameters["nonlinear_variational_solver"]["newton_solver"][key] \

=NewtonSolverParameters[key]

# Solve to chosen tolerance

solver.solve(adapt_tol)

solver.summary()

# Post-processing: computing key values

u0, u1 = u.root_node(), u.leaf_node()

mesh0, mesh1 = mesh.root_node(), mesh.leaf_node()

def computeDBCdeviation(u, mesh): # L1-mean-deviation from |x|^{-4} at |(r,z)|=r_max

x = SpatialCoordinate(mesh)

class Boundary_arc(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1]*x[1]+x[0]*x[0],r_max*r_max,1/(mesh_res*mesh_res))

bnd_arc = Boundary_arc()

boundary_marker = MeshFunction('size_t', mesh, 1)

boundary_marker.set_all(0)

bnd_arc.mark(boundary_marker, 1)

ds = Measure('ds', domain=mesh, subdomain_data=boundary_marker)

integrand = abs( 144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \

- Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

- Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5) - u )*ds(1)

return assemble(integrand)/assemble(1.0*ds(1))

def computeN(u, mesh): # computes the 3/2-integral of the TF potential

x = SpatialCoordinate(mesh)

return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

+ Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 1.5))*dx(mesh))

def computeI(u, mesh): # computes the 5/2-integral of the TF potential

x = SpatialCoordinate(mesh)

return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

+ Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 2.5))*dx(mesh))

print('* checking solution:')

print('* the mesh has ', mesh1.num_cells(), ' cells')

print('* u(0,R/2) =', u1(0, R/2))

print('* other values for reference: u(0,0) =', u1(0, 0),'u(R/2,R/2) =', u1(R/2,R/2))

print('* DBC L^1-mean - error = ', computeDBCdeviation(u1, mesh1))

print('* norm integral =', computeN(u1,mesh1))

print('* 5/2-integral =', computeI(u1,mesh1))

# Save initital and final solution

File("./initialSolution.pvd")<<u0

File("./initialMesh.pvd")<<mesh0

File("./finalSolution.pvd")<<u1
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File("./finalMesh.pvd")<<mesh1

print('* files saved')

The output, computed with FEniCS (version 2017.2.0) is

Generating forms required for error control, this may take some time...

Solving variational problem adaptively

Adaptive iteration 0

Solving nonlinear variational problem.

Newton iteration 0: r (abs) = 6.783e+01 (tol = 1.000e-10) r (rel) = 1.000e+00 (tol = 1.000e-10)

Newton iteration 1: r (abs) = 3.023e-01 (tol = 1.000e-10) r (rel) = 4.456e-03 (tol = 1.000e-10)

Newton iteration 2: r (abs) = 5.070e-02 (tol = 1.000e-10) r (rel) = 7.475e-04 (tol = 1.000e-10)

Newton iteration 3: r (abs) = 8.663e-03 (tol = 1.000e-10) r (rel) = 1.277e-04 (tol = 1.000e-10)

Newton iteration 4: r (abs) = 1.291e-03 (tol = 1.000e-10) r (rel) = 1.903e-05 (tol = 1.000e-10)

Newton iteration 5: r (abs) = 1.174e-04 (tol = 1.000e-10) r (rel) = 1.731e-06 (tol = 1.000e-10)

Newton iteration 6: r (abs) = 2.098e-06 (tol = 1.000e-10) r (rel) = 3.093e-08 (tol = 1.000e-10)

Newton iteration 7: r (abs) = 7.802e-10 (tol = 1.000e-10) r (rel) = 1.150e-11 (tol = 1.000e-10)

Newton solver finished in 7 iterations and 7 linear solver iterations.

Value of goal functional is 3.26416.

Solving linear variational problem.

[...shortened...]
Solving linear variational problem.

Interpolate from parent to child

Adaptive iteration 19

Solving nonlinear variational problem.

Newton iteration 0: r (abs) = 8.593e-07 (tol = 1.000e-10) r (rel) = 1.000e+00 (tol = 1.000e-10)

Newton iteration 1: r (abs) = 4.051e-13 (tol = 1.000e-10) r (rel) = 4.714e-07 (tol = 1.000e-10)

Newton solver finished in 1 iterations and 1 linear solver iterations.

Value of goal functional is 2.2703.

Solving linear variational problem.

Interpolate from parent to child

Adaptive iteration 20

Solving nonlinear variational problem.

Newton iteration 0: r (abs) = 5.606e-07 (tol = 1.000e-10) r (rel) = 1.000e+00 (tol = 1.000e-10)

Newton iteration 1: r (abs) = 4.417e-13 (tol = 1.000e-10) r (rel) = 7.879e-07 (tol = 1.000e-10)

Newton solver finished in 1 iterations and 1 linear solver iterations.

Value of goal functional is 2.27057.

Solving linear variational problem.

Error estimate (-9.57088e-13) is less than tolerance (1e-12), returning.

Parameters used for adaptive solve:

<Parameter set "adaptive_solver" containing 9 parameter(s) and parameter set(s)>

Summary of adaptive data:

Level | functional_value error_estimate tolerance num_cells num_dofs

--------------------------------------------------------------------------

0 | 3.264162 -0.010129 0.000000 11037 88911

1 | 3.158429 -0.000427 0.000000 11053 89043

2 | 2.777008 -0.001792 0.000000 11075 89223

3 | 2.721439 0.000053 0.000000 11093 89375

4 | 2.491673 -0.000335 0.000000 11112 89529

5 | 2.468215 0.000071 0.000000 11160 89917

6 | 2.303986 -0.000094 0.000000 11249 90635

7 | 2.266971 0.000046 0.000000 11381 91699

8 | 2.222136 0.000000 0.000000 11474 92449

9 | 2.230807 -0.000003 0.000000 11683 94131

10 | 2.259771 0.000000 0.000000 11852 95493

11 | 2.258466 -0.000000 0.000000 12103 97511

12 | 2.265862 0.000000 0.000000 12539 101015

13 | 2.272983 -0.000000 0.000000 13180 106157

14 | 2.263525 0.000000 0.000000 13970 112493

15 | 2.264986 -0.000000 0.000000 15182 122205
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16 | 2.268548 -0.000000 0.000000 16908 136041

17 | 2.269340 -0.000000 0.000000 19260 154961

18 | 2.269900 -0.000000 0.000000 22795 183431

19 | 2.270295 -0.000000 0.000000 27348 220153

20 | 2.270574 -0.000000 0.000000 33158 266997

Time spent for adaptive solve (in seconds):

Level | solve_primal estimate_error compute_indicators mark_mesh adapt_mesh update

-------------------------------------------------------------------------------------------

0 | 9.208241 23.663189 5.363592 0.002125 0.010022 1.179448

1 | 4.221241 23.319697 5.386556 0.002444 0.010720 1.200100

2 | 3.046274 23.369060 5.373303 0.001891 0.010764 1.214095

3 | 3.066056 23.385281 5.409247 0.002444 0.010016 1.201023

4 | 3.080649 23.478264 5.400889 0.002252 0.010484 1.203576

5 | 3.075266 24.371523 5.576660 0.002003 0.011696 1.235868

6 | 1.984070 24.360442 5.471968 0.004134 0.012544 1.224390

7 | 1.913949 24.179397 5.501364 0.002064 0.010569 1.255297

8 | 1.906317 24.524191 5.589666 0.002178 0.011523 1.234173

9 | 1.933703 25.288347 5.659840 0.002085 0.010918 1.300461

10 | 1.995260 24.789270 5.737451 0.003315 0.011784 1.319455

11 | 2.008165 25.536868 5.748632 0.002243 0.014242 1.304454

12 | 2.029139 26.240016 6.027200 0.002287 0.013032 1.417212

13 | 2.138478 27.699916 6.229285 0.002393 0.015441 1.497606

14 | 2.355474 29.730266 6.754882 0.002459 0.017526 1.601863

15 | 2.479236 32.282786 7.504119 0.002746 0.018254 1.868430

16 | 2.868611 36.474745 8.236986 0.004338 0.024493 2.117345

17 | 3.632538 42.187332 9.212110 0.003844 0.035564 2.640248

18 | 4.050414 50.285739 11.194264 0.005411 0.036573 2.971103

19 | 5.172756 60.524524 13.252918 0.006073 0.045058 3.665315

20 | 6.041358 72.943783 0 0 0 0

* checking solution:

* the mesh has 33158 cells

* u(0,R/2) = -1.6876006141

* other values for reference: u(0,0) = -0.372222749099 u(R/2,R/2) = -0.273224691014

* DBC L^1-mean - error = 3.06702236293715e-17

* norm integral = 1.9946668775417533

* 5/2-integral = 2.2705744545893682

* files saved

4. FEniCS - diatomic TF PDE, manual mesh refinement

from fenics import *

from mshr import *

import numpy

# Parameters

R, Z, r_max, mesh_res, deg_FSpace = 10.0, 1.0, 30.0, 1.0, 4

NewtonSolverParameters = {'linear_solver':'cg', 'preconditioner':'petsc_amg',\

'maximum_iterations':25, 'relative_tolerance':1E-14,\

'absolute_tolerance':1E-14}

refinewidth, refinepower, refinesteps = 1.5, 4.0, 15

# Create mesh and refine at singularity

domain = Rectangle(Point(0, 0),Point(r_max, r_max)) * Circle(Point(0, 0), r_max)

mesh = generate_mesh(domain, mesh_res*r_max)

for width in numpy.linspace(pow(refinewidth, 1/refinepower), 0, refinesteps,\

endpoint=False):

class singRegion(SubDomain): #the region which is to be refined

def inside(self, x, on_boundary):

return x[0]*x[0] +(x[1]-R/2)*(x[1]-R/2)<= pow(width, 2.0*refinepower)
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sing_region = singRegion()

refinefct_sing = MeshFunction('bool', mesh, 1)

refinefct_sing.set_all(False)

sing_region.mark(refinefct_sing, True)

mesh = refine(mesh, refinefct_sing)

x = SpatialCoordinate(mesh)

# Choose function space

V = FunctionSpace(mesh, 'P', deg_FSpace)

# Define Dirichlet BC

class Boundary_arc(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1]*x[1]+x[0]*x[0],r_max*r_max,1/(mesh_res*mesh_res))

bnd_arc = Boundary_arc()

dbc_function = Expression('144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \

- Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

- Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5)',\

degree=deg_FSpace+3, Z=Z, R=R)

dbc = DirichletBC(V, dbc_function, bnd_arc)

# Define variational problem

u = Function(V)

v = TestFunction(V)

def nl(u): # the nonlinearity

return x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

+ Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 1.5)

F = (x[0]*Dx(u, 0)*Dx(v, 0) + x[0]*Dx(u, 1)*Dx(v, 1) + nl(u)*v)*dx

NLproblem = NonlinearVariationalProblem(F, u, dbc, derivative(F, u))

# Load parameters for the solver

solver = NonlinearVariationalSolver(NLproblem)

for key in NewtonSolverParameters.keys():

solver.parameters["newton_solver"][key] = NewtonSolverParameters[key]

# Solve to chosen tolerance

solver.solve()

# Post-processing: computing key values

def computeDBCdeviation(u, mesh): # L1-mean-deviation to |x|^{-4} at |(r,z)|=r_max

x = SpatialCoordinate(mesh)

class Boundary_arc(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1]*x[1]+x[0]*x[0],r_max*r_max,\

1/(mesh_res*mesh_res))

bnd_arc = Boundary_arc()

boundary_marker = MeshFunction('size_t', mesh, 1)

boundary_marker.set_all(0)

bnd_arc.mark(boundary_marker, 1)

ds = Measure('ds', domain=mesh, subdomain_data=boundary_marker)

integrand = abs( 144.0*pow(x[0]*x[0]+x[1]*x[1], -2.0) \

-Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

- Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5) - u )*ds(1)

return assemble(integrand)/assemble(1.0*ds(1))

def computeN(u, mesh): # computes the 3/2-integral of the TF potential

x = SpatialCoordinate(mesh)

return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

+ Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 1.5))*dx(mesh))
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def computeI(u, mesh): # computes the 5/2-integral of the TF potential

x = SpatialCoordinate(mesh)

return assemble( (x[0]*pow(u + Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

+ Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5), 2.5))*dx(mesh))

print('* checking solution:')

print('* the mesh has ', mesh.num_cells(), ' cells')

print('* u(0,R/2) =', u(0, R/2))

print('* other values for reference: u(0,0) =', u(0, 0),'u(R/2,R/2) =', u(R/2,R/2))

print('* DBC L^1-mean - error = ', computeDBCdeviation(u, mesh))

print('* norm integral =', computeN(u,mesh))

print('* 5/2-integral =', computeI(u,mesh))

# Save initital and final solution

File("./Solution.pvd")<<u

File("./Mesh.pvd")<<mesh

print('* files saved')

The output, computed with FEniCS (version 2017.2.0) is

Solving nonlinear variational problem.

Newton iteration 0: r (abs) = 5.709e+01 (tol = 1.000e-14) r (rel) = 1.000e+00 (tol = 1.000e-14)

Newton iteration 1: r (abs) = 6.035e-01 (tol = 1.000e-14) r (rel) = 1.057e-02 (tol = 1.000e-14)

Newton iteration 2: r (abs) = 1.010e-01 (tol = 1.000e-14) r (rel) = 1.768e-03 (tol = 1.000e-14)

Newton iteration 3: r (abs) = 1.723e-02 (tol = 1.000e-14) r (rel) = 3.017e-04 (tol = 1.000e-14)

Newton iteration 4: r (abs) = 2.560e-03 (tol = 1.000e-14) r (rel) = 4.483e-05 (tol = 1.000e-14)

Newton iteration 5: r (abs) = 2.321e-04 (tol = 1.000e-14) r (rel) = 4.066e-06 (tol = 1.000e-14)

Newton iteration 6: r (abs) = 4.136e-06 (tol = 1.000e-14) r (rel) = 7.245e-08 (tol = 1.000e-14)

Newton iteration 7: r (abs) = 1.536e-09 (tol = 1.000e-14) r (rel) = 2.690e-11 (tol = 1.000e-14)

Newton iteration 8: r (abs) = 1.699e-13 (tol = 1.000e-14) r (rel) = 2.977e-15 (tol = 1.000e-14)

Newton solver finished in 8 iterations and 194 linear solver iterations.

* checking solution:

* the mesh has 52126 cells

* u(0,R/2) = -1.68593974737

* other values for reference: u(0,0) = -0.372222745936 u(R/2,R/2) = -0.273224677036

* DBC L^1-mean - error = 4.582810113789804e-13

* norm integral = 1.9946662046282755

* 5/2-integral = 2.268624708287004

* files saved

5. Mathematica - diatomic TF PDE, iteration of a linearised PDE

Needs["NDSolve`FEM`"]

rmax = 30;

R = 10;

Z = 1;

(* nuclear potential *)

V[Z_, R_, r_, z_] :=

Z/Sqrt[r^2 + (z - R/2)^2] + Z/Sqrt[r^2 + (z + R/2)^2];

Options[mesh] = {meshres -> 1, refineMeshres -> 10, refineWidth -> 1,

refineScaling -> 1};

(* create a mesh *)

mesh[R_, OptionsPattern[]] :=

ToElementMesh[

ImplicitRegion[

0 <= Sqrt[r^2 + z^2] <= rmax, {{r, 0, rmax}, {z, 0, rmax}}],

MeshRefinementFunction ->

Function[{vertices, area},

Block[{r, z}, {r, z} = Mean[vertices];

If[Sqrt[r^2 + (R/2 - z)^2] <= OptionValue[refineWidth],
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area > 1/OptionValue[refineMeshres]*(Sqrt[r^2 + (R/2 - z)^2]/

OptionValue[refineWidth])^OptionValue[refineScaling],

area > 1/OptionValue[meshres]]]]];

(* solving linearised PDE with given guess 'uInit' *)

solveLinear[Z_, R_, uInit_, mesh_] :=

Assuming[{u \[Element] Reals, r \[Element] Reals,

z \[Element] Reals},

NDSolveValue[{r D[u[r, z], {r, 2}] + D[u[r, z], {r, 1}] +

r D[u[r, z], {z, 2}] -

r* (V[Z, R, r, z] + u[r, z])*Abs[V[Z, R, r, z] + uInit]^(1/2) ==

0, DirichletCondition[

u[r, z] == 12^2 (r^2 + z^2)^-2 - V[Z, R, r, z],

r^2 + z^2 == (rmax)^2]}, u, {r, z} \[Element] mesh]]

(* iterating the initial guess *)

iterationSolve[Z_, R_, mesh_, iMax_] :=

Module[{sol = solveLinear[Z, R, 0, mesh]},

Do[sol = solveLinear[Z, R, sol[r, z], mesh];

Print["u(0,R/2)=", FullForm[ sol[10^-10, R/2]]], iMax];

Print["u(0,R/2)=", FullForm[ sol[10^-10, R/2]], " | u(0,0)=",

FullForm[ sol[10^-10, 10^-10]], " | u(R/2,R/2)=",

FullForm[ sol[R/2, R/2]], " | 5/2-Integral: ",

FullForm[

NIntegrate[

r*Abs[sol[r, z] + V[Z, R, r, z]]^(5/2), {r, z} \[Element] mesh]],

" | Norm Integral: ",

FullForm[

NIntegrate[

r*Abs[sol[r, z] + V[Z, R, r, z]]^(3/2), {r, z} \[Element] mesh]]];

sol]

(* compute solution with keyvalues and visualise it *)

m = mesh[R, meshres -> 2, refineMeshres -> 10000, refineWidth -> 2.0,

refineScaling -> 1.3];

m["Wireframe"]

Timing[fct = iterationSolve[Z, R, m, 10];]

Plot3D[fct[r, z], {r, z} \[Element] m, PlotRange -> All]

Running this code in Mathematica 11.1.1.0 yields:
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Out[27]=

u(0,R/2)=-1.6471782708093052`

u(0,R/2)=-1.6993489792365883`

u(0,R/2)=-1.6833254246589233`

u(0,R/2)=-1.6890169263567612`

u(0,R/2)=-1.686888508913609`

u(0,R/2)=-1.6877232623840073`

u(0,R/2)=-1.6873878945110405`

u(0,R/2)=-1.68752514475297`

u(0,R/2)=-1.687468355407517`

u(0,R/2)=-1.6874920358980305`

u(0,R/2)=-1.6874920358980305` | u(0,0)=-0.3722092604038237` | u(R/2,R/2)=

-0.2732143239122185` | 5/2-Integral: 2.270568100129982` | Norm Integral: 1.99402605246405`

Out[28]= {806.572, Null}

Out[29]=
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6. FreeFem++ - diatomic TF PDE, adaptive mesh refinement

Console output of a FreeFem++ script (including the source code), mainly written
by Guillaume Legendre from Paris-Dauphine.

-- FreeFem++ v 3.590000 (date jeu. 22 févr. 2018 13:41:54)

Load: lg_fem lg_mesh lg_mesh3 eigenvalue

1 : load "medit"(load: loadLibary C:\Program Files (x86)\FreeFem++\\.\medit = 0);

2 : load "Element_P4"(load: loadLibary C:\Program Files (x86)\FreeFem++\\.\Element_P4 = 0);

3 :

4 : // Parameters

5 : real R=10; // distance between the nuclei

6 : real Z=1; // nuclear charge

7 : real rmax=30;

8 : real meshres=2;

9 : int maxiter=30;

10 : real reltol=1e-13,abstol=1e-13;

11 :

12 : // Create mesh

13 : border bndbot(t=0,rmax){x=t;y=0;label=0;}

14 : border bndarc(t=0,pi/2){x=rmax*cos(t);y=rmax*sin(t);label=1;}

15 : border bndleft(t=0,rmax){x=0;y=rmax-t;label=2;}

16 : mesh themesh=buildmesh(bndbot(rmax*meshres)+bndarc(floor(pi*rmax*meshres/2)) \

+bndleft(rmax*meshres));

17 : plot(themesh,wait=1);

18 :

19 : // Choose function space

20 : fespace V(themesh,P4);

21 : V u,v,delta;

22 :

23 : // Function of the Dirichlet BC

24 : func g=144*pow(x*x+y*y,-2)-Z*(pow(x*x+(y-R/2)*(y-R/2),-0.5) + pow(x*x+(y+R/2)*(y+R/2),-0.5));

25 :

26 : // Obtain a first crude approximation and use it to refine adaptively the mesh

27 : // Initialize Newton algorithm

28 : solve Newtoninit1(u,v)=int2d(themesh)(x*(dx(u)*dx(v)+dy(u)*dy(v)))+on(1,u=g);

29 : int n;

30 : for (n=1;n<6;n++) // Newton loop

31 : {

32 : cout << "Newton loop - iter " << n+1 << endl;

33 : solve Newtonloop(delta,v)=

34 : int2d(themesh)(x*(dx(delta)*dx(v)+dy(delta)*dy(v) \

+ 1.5*pow(u+Z*(pow(x*x+(y-R/2)*(y-R/2),-0.5)

35 : + pow(x*x+(y+R/2)*(y+R/2),-0.5)),0.5)*delta*v))\

-int2d(themesh)(x*(dx(u)*dx(v)+dy(u)*dy(v)

36 : + pow(u+Z*(pow(x*x+(y-R/2)*(y-R/2),-0.5) + pow(x*x+(y+R/2)*(y+R/2),-0.5)),1.5)*v))

37 : +on(1,delta=0);

38 : u[]-=delta[];

39 : }

40 :

41 : cout << "* Checking the crude computed solution " << endl;

42 : cout << " - value at the singular point: u(0,R/2)=" << u(0,R/2) << endl;

43 : cout << " - other values for reference: u(0,0)=" << u(0,0) << " and u(R/2,R/2)=" \

<< u(R/2,R/2) << endl;

44 : cout << " - L^1-mean error of the DBC: " \

<< int1d(themesh,1)(abs(g(x,y)-u))/int1d(themesh,1)(1.) << endl;

45 : cout << " - norm integral: "<<int2d(themesh,qforder=10)(x*pow(u+Z*pow(x*x+(y-R/2)*(y-R/2),-0.5)

46 : + Z*pow(x*x+(y+R/2)*(y+R/2),-0.5),1.5)) << endl;

47 : cout << " - 5/2-integral: "<<int2d(themesh,qforder=10)(x*pow(u+Z*pow(x*x+(y-R/2)*(y-R/2),-0.5)

48 : + Z*pow(x*x+(y+R/2)*(y+R/2),-0.5),2.5))<<endl;

49 :

50 : // Using the crude approximation, compute an adaptive solution

51 : int nAdapt;

52 : for (nAdapt=1; nAdapt<5; nAdapt++)

53 : {

54 : cout << "* Adaptive solve Nr"<< nAdapt << endl;
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55 : themesh=adaptmesh(themesh, u*u, err=0.00001, nbvx=100000);

56 : u=u; // to delete the old mesh

57 :

58 : //plot(themesh,wait=1);

59 :

60 : // Initialize Newton algorithm

61 : solve Newtoninit2(u,v)=int2d(themesh)(x*(dx(u)*dx(v)+dy(u)*dy(v)))+on(1,u=g);

62 : real err=0.;

63 : for (n=0;n<maxiter;n++) // Newton loop

64 : {

65 : cout << "Newton loop - iter " << n+1 << endl;

66 : solve Newtonloop(delta,v)=

67 : int2d(themesh)(x*(dx(delta)*dx(v)+dy(delta)*dy(v) \

+ 1.5*pow(u+Z*(pow(x*x+(y-R/2)*(y-R/2),-0.5)

68 : + pow(x*x+(y+R/2)*(y+R/2),-0.5)),0.5)*delta*v)) \

- int2d(themesh)(x*(dx(u)*dx(v)+dy(u)*dy(v)

69 : + pow(u+Z*(pow(x*x+(y-R/2)*(y-R/2),-0.5) + pow(x*x+(y+R/2)*(y+R/2),-0.5)),1.5)*v))

70 : + on(1,delta=0);

71 : err=delta[].linfty/u[].linfty;

72 : cout << err << endl;

73 : if (err<reltol) break;

74 : u[]-=delta[];

75 : }

76 :

77 : cout << "* Checking the solution after "<< nAdapt << " adaptive refinements" << endl;

78 : cout << " - value at the singular point: u(0,R/2)=" << u(0,R/2) << endl;

79 : cout << " - other values for reference: u(0,0)=" << u(0,0) << " and u(R/2,R/2)=" \

<< u(R/2,R/2) << endl;

80 : cout << " - L^1-mean error of the DBC: " \

<< int1d(themesh,1)(abs(g(x,y)-u))/int1d(themesh,1)(1.) << endl;

81 : cout << " - norm integral: " \

<< int2d(themesh,qforder=10)(x*pow(u+Z*pow(x*x+(y-R/2)*(y-R/2),-0.5)

82 : + Z*pow(x*x+(y+R/2)*(y+R/2),-0.5),1.5)) << endl;

83 : cout << " - 5/2-integral: " \

<< int2d(themesh,qforder=10)(x*pow(u+Z*pow(x*x+(y-R/2)*(y-R/2),-0.5)

84 : + Z*pow(x*x+(y+R/2)*(y+R/2),-0.5),2.5))<<endl;

85 : }

86 :

87 : plot(u,wait=1);

88 : sizestack + 1024 =12696 ( 11672 )

-- mesh: Nb of Triangles = 6486, Nb of Vertices 3351

-- Solve :

min -0.0683959 max -0.0655818

Newton loop - iter 2

-- Solve :

min -2.51652e-038 max 1.18275

Newton loop - iter 3

-- Solve :

min -9.61846e-039 max 0.0855815

Newton loop - iter 4

-- Solve :

min -3.41291e-039 max 0.0152144

Newton loop - iter 5

-- Solve :

min -1.3211e-039 max 0.00201599

Newton loop - iter 6

-- Solve :

min -3.42002e-040 max 0.000190066

* Checking the crude computed solution

- value at the singular point: u(0,R/2)=-1.33176

- other values for reference: u(0,0)=-0.371801 and u(R/2,R/2)=-0.273268

- L^1-mean error of the DBC: 1.94856e-014

- norm integral: 1.99573

- 5/2-integral: 1.87149

* Adaptive solve Nr1
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[...shortened...]

* Adaptive solve Nr4

number of required edges : 0

Warning not enough vertices to split all internal edges

we lost 8 Edges Sorry

-- adaptmesh Regulary: Nb triangles 197935 , h min 3.7191e-005 , h max 8.76814

area = 706.849 , M area = 267814 , M area/( |Khat| nt) 3.12471

infiny-regulaty: min 0.20914 max 56.6738

anisomax 37.8286, beta max = 1.63733 min 0.0382142

-- mesh: Nb of Triangles = 197935, Nb of Vertices 100000

-- Solve :

min -0.0683942 max -0.0655818

Newton loop - iter 1

-- Solve :

min 2.66596e-039 max 1.53406

22.4296

Newton loop - iter 2

-- Solve :

min -1.41009e-041 max 0.0850776

0.0531537

Newton loop - iter 3

-- Solve :

min -1.34967e-040 max 0.0151762

0.00903394

Newton loop - iter 4

-- Solve :

min -7.37165e-041 max 0.0020098

0.00119188

Newton loop - iter 5

-- Solve :

min -1.83554e-041 max 0.00018934

0.000112259

Newton loop - iter 6

-- Solve :

min -7.76166e-043 max 4.83639e-006

2.86745e-006

Newton loop - iter 7

-- Solve :

min -8.65091e-046 max 4.59061e-009

2.72173e-009

Newton loop - iter 8

-- Solve :

min -2.78027e-015 max 4.55294e-015

2.6994e-015

* Checking the solution after 4 adaptive refinements

- value at the singular point: u(0,R/2)=-1.6898

- other values for reference: u(0,0)=-0.372208 and u(R/2,R/2)=-0.2732

- L^1-mean error of the DBC: 8.33542e-016

- norm integral: 1.99467

- 5/2-integral: 2.26341

times: compile 0.052s, execution 1012.82s, mpirank:0

######## We forget of deleting 766 Nb pointer, 0Bytes , mpirank 0, memory leak =0

CodeAlloc : nb ptr 3779, size :414704 mpirank: 0

Ok: Normal End

7. Collecting data for the comparison of Born-Oppenheimer curves

For the computation of the values that lead to Figure 6, we ran the following script.
It imports the custom file libr_DTF, which we provide below after some comments
about the execution.

#--------------------------------------------------------------------------------------

#--------------------------------------------------------------------------------------
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# Computes a solution of the diatomic TF PDE

# in atomic units, that is cD=2^{7/2}/(3*pi))

# for several choices of R, Z, running over a

# range of R*(2Z)^{1/3} to compare with the

# HF values from GILKA/SOLOVEJ/TAYLOR.

# Results are saved to a .csv-file.

#--------------------------------------------------------------------------------------

#--------------------------------------------------------------------------------------

from fenics import *

import time

import datetime

import csv

import math

import numpy

import libr_DTF

# --- default values for parameters

Prm = libr_DTF.param(R=2.0, Z=1.0, r_max=30.0, cD=pow(2.0,3.5)/(3.0*math.pi), \

mesh_res=2.0, deg_FSpace=4, adapt_tol=1E-11 )

DualVariationalSolverParameters = {'linear_solver':'mumps', 'preconditioner':'none'}

NewtonSolverParameters = {'linear_solver':'mumps', 'preconditioner':'none',\

'maximum_iterations':25, 'relative_tolerance':1E-11, \

'absolute_tolerance':1E-11}

CSVFilePath = './logs/sweep.csv'

set_log_level(ERROR)

# --- start of program ---

t0 = time.time()

print('')

print('*---------------------------------------')

print('*------- start of FEniCS program -------')

print('* on the',str(datetime.datetime.now().strftime("%d.%m.%y")),'at',libr_DTF.tStamp())

print('*---------------------------------------')

print('')

# --- write header for the .csv file ---

print(libr_DTF.tStamp(),'* write information of the current session into \

the current logfile at',CSVFilePath)

comment = " you find a copy of the corresponding source files at " + \

libr_DTF.logSourceFiles([__file__,"libr_DTF.py"],"./logs/")

csv.register_dialect('comma_separated', delimiter=',')

with open(CSVFilePath, 'a', newline='') as f:

writer = csv.writer(f,dialect='comma_separated')

writer.writerow([datetime.datetime.now().strftime("%d.%m.%y"), \

datetime.datetime.now().strftime("%H:%M:%S"), comment])

writer.writerow(["R","Z","D(R,Z)","Z*R^3","R^7*D(R,Z)","u(0,R/2)", "I(u)", \

"I(u) deg = 100", "N(u)", "L^1-mean deviation", "rmax", \

"solve time (s)", "computing time for values (s)", "nr of cells", \

"initital mesh resolution", "adaptive tolerance","FE degree","cD", \

"Newton solver parameters", "Dual solver parameters"])
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# --- start loop ---

libr_DTF.printParameters(Prm,NewtonSolverParameters,DualVariationalSolverParameters)

RHOvalues = numpy.linspace(0.001, 0.1, num = 20, endpoint = False)

Zvalues = [0.5, 1.0, 2.0]

print(libr_DTF.tStamp(),'* Executing a nested loop: \

Within each value of R(2Z)^{1/3} from ', RHOvalues)

print(libr_DTF.tStamp(),'* Z runs over ', Zvalues)

for Rho in RHOvalues:

for Z in Zvalues:

PrmLoop = Prm._replace(R=Rho*pow(2*Z,-1.0/3.0), Z=Z)

print(libr_DTF.tStamp(),'* R(2Z)^{1/3} = ', Rho, 'Z =',PrmLoop.Z, 'R =', \

PrmLoop.R, ' | Solving...')

t0 = time.time()

(u,mesh) = libr_DTF.computeSolution_adaptive(PrmLoop, NewtonSolverParameters, \

DualVariationalSolverParameters)

t1 = time.time()

print(libr_DTF.tStamp(),'* computing values...')

Nu = assemble( libr_DTF.N(u, PrmLoop)*dx(mesh))

Iu = assemble( libr_DTF.I(u, PrmLoop)*dx(mesh))

Iu_100 = assemble( libr_DTF.I(u, PrmLoop)*dx(mesh,\

metadata={'quadrature_degree': 100}))

L1dev = libr_DTF.L1MeanError_DBC(u, mesh, PrmLoop)

DissEn = libr_DTF.dissocEnergy(u(0,PrmLoop.R/2), Iu_100, PrmLoop)

t2 = time.time()

with open(CSVFilePath, 'a', newline='') as f:

writer = csv.writer(f,dialect='comma_separated')

writer.writerow([PrmLoop.R, PrmLoop.Z, DissEn, PrmLoop.Z*pow(PrmLoop.R,3.0),\

pow(PrmLoop.R,7.0)*DissEn, u(0,PrmLoop.R/2), Iu, Iu_100 , \

Nu, L1dev, PrmLoop.r_max, round(t1-t0,2), round(t2-t1,2), \

mesh.num_cells(), PrmLoop.mesh_res, PrmLoop.adapt_tol, \ PrmLoop.deg_FSpace, PrmLoop.cD, NewtonSolverParameters, \

DualVariationalSolverParameters])

print(libr_DTF.tStamp(),'* ...values saved to',CSVFilePath)

print('')

print('*-------------------------------------')

print('*------- end of FEniCS program -------')

print('* runtime:', round(time.time()-t0, 2), 's')

print('*-------------------------------------')

print('')

During the execution of this code, an error occurred, ending in:

17:30:43 * R(2Z)^{1/3} = 0.0703 Z = 0.5 R = 0.0703 | Solving...

17:30:44 * solving adaptively...

17:43:12 * finished solving in 748.02 s

17:43:12 * computing values...

17:43:21 * ...values saved to ./logs/sweep.csv

17:43:21 * R(2Z)^{1/3} = 0.0703 Z = 1.0 R = 0.05579714697668221 | Solving...

17:43:22 * solving adaptively...

18:04:54 * finished solving in 1292.56 s

18:04:54 * computing values...

18:05:21 * ...values saved to ./logs/sweep.csv

18:05:21 * R(2Z)^{1/3} = 0.0703 Z = 2.0 R = 0.044286224903804794 | Solving...

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.
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Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

Calling FFC just-in-time (JIT) compiler, this may take some time.

18:05:34 * solving adaptively...

Traceback (most recent call last):

File "/home/users/samojlow/sweep.py", line 74, in <module>

(u,mesh) = libr_DTF.computeSolution_adaptive(PrmLoop, NewtonSolverParameters, \

DualVariationalSolverParameters)

File "/mnt/nfs/users-data/users/samojlow/libr_DTF.py", line 185, in computeSolution_adaptive

solver.solve(p.adapt_tol)

File "/usr/lib/python3/dist-packages/dolfin/fem/adaptivesolving.py", line 124, in solve

cpp.AdaptiveNonlinearVariationalSolver.solve(self, tol)

RuntimeError:

*** -------------------------------------------------------------------------

*** DOLFIN encountered an error. If you are not able to resolve this issue

*** using the information listed below, you can ask for help at

***

*** fenics-support@googlegroups.com

***

*** Remember to include the error message listed below and, if possible,

*** include a *minimal* running example to reproduce the error.

***

*** -------------------------------------------------------------------------

*** Error: Unable to solve linear system using PETSc Krylov solver.

*** Reason: Solution failed to converge in 0 iterations (PETSc reason DIVERGED_PCSETUP_FAILED, \

residual norm ||r|| = 0.000000e+00).

*** Where: This error was encountered inside PETScKrylovSolver.cpp.

*** Process: 0

***

*** DOLFIN version: 2017.2.0

*** Git changeset: unknown

*** -------------------------------------------------------------------------

/var/spool/torque/mom_priv/jobs/2720.cluster.ceremade.dauphine.fr.SC: line 30: \

171634 Aborted (core dumped) python3 ~/sweep.py

We continued the calculation for the remaining values R(2Z)1/3 ∈ {...} with a

lower goal tolerance of 10−10 in the script above. Moreover, we also also ran the

script (for the initial goal tolerance of 10−11 and without any errors) three more

times with the line

RHOvalues = numpy.linspace(0.001, 0.1, num = 20, endpoint = False)

replaced by

RHOvalues = numpy.linspace(0.1, 1, num = 40, endpoint = False),

RHOvalues = numpy.linspace(1, 4, num = 40, endpoint = False)

and

RHOvalues = numpy.linspace(4, 12, num = 30, endpoint = True).

The content of libr_DTF which was called in the previous script:

#--------------------------------------------------------------------------------------

#--------------------------------------------------------------------------------------

# Collection of methods used to compute

# a solution of the diatomic TF PDE
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#--------------------------------------------------------------------------------------

#--------------------------------------------------------------------------------------

from fenics import *

from mshr import *

import numpy

import time

import datetime

import math

from collections import namedtuple

# --- parameter 'struct' to be used ---

param = namedtuple('param',['R','Z','r_max','mesh_res','cD','deg_FSpace','adapt_tol'])

refine_param = namedtuple('refine_param', ['steps','width','power','meshres'])

# --- collection of methods ---

r = Expression('x[0]', degree=1) # coordinate function, used in some methods below

z = Expression('x[1]', degree=1) # coordinate function, used in some methods below

def logSourceFiles(fileList, subfolder= "./"): # save scripts (fileList) to a subfolder

LogFileName = subfolder + datetime.datetime.now().strftime("%y%m%d_%Hh%Mm%Ss.sourcecode")

for file in fileList:

with open(LogFileName,'a') as f:

f.write('sourcecode of '+file+':\n')

f.write(open(file).read())

f.write('sourcecode of '+file+' ends here.\n')

return LogFileName

def printParameters(param, NewtonSolverParameters, DualVariationalSolverParameters, \

refineP=None):

print(tStamp(),'* parameters are currently:')

if(refineP != None):

print(tStamp(),'* refine_steps=', refineP.steps,'| refine_width=', \

refineP.width, '| refine_power=', refineP.power, '| refine_meshres=', \

refineP.meshres)

print(tStamp(),'* R=', param.R,'| Z=', param.Z, "| r_max=", param.r_max, \

'| cD=', param.cD, '| mesh_res =', param.mesh_res,'| degFSPace=', \

param.deg_FSpace, '| adapt_tol=', param.adapt_tol)

print(tStamp(),'* NewtonSolverParameters=', NewtonSolverParameters)

print(tStamp(),'* DualVariationalSolverParameters=', \

DualVariationalSolverParameters)

def tStamp():

return str(datetime.datetime.now().strftime("%H:%M:%S"))

def N(u, p):

return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \

+ p.Z*pow(r*r+(z+p.R/2)*(z+p.R/2), -0.5), 1.5)

def I(u, p):

return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \

+ p.Z*pow(r*r+(z+p.R/2)*(z+p.R/2), -0.5), 2.5)

def dissocEnergy(u0, kinInt, p):

u0Atomic = -1.793738623165210568576124990031006513754290266429542050207003066029928

kinIntAtomic = 1.2812418736894361212823553262361613505

return 1/10*(kinInt - 2*pow(p.Z, 7.0/3.0)*kinIntAtomic) + p.Z*(u0 + p.Z/(p.R) \

- pow(p.Z,(4.0/3.0))*u0Atomic)
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def L1MeanError_DBC(u, mesh, p): # L1-mean-deviation to |x|^{-4} at |(r,z)|=r_max

class Boundary_arc(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1]*x[1]+x[0]*x[0],p.r_max*p.r_max, \

1/(p.mesh_res*p.mesh_res))

bnd_arc = Boundary_arc()

boundary_marker = MeshFunction('size_t', mesh, 1)

boundary_marker.set_all(0)

bnd_arc.mark(boundary_marker, 1)

ds = Measure('ds', domain=mesh, subdomain_data=boundary_marker)

integrand = abs( 144.0*pow(p.cD, -0.5)*pow(r*r+z*z, -2.0) \

- p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \

- p.Z*pow(r*r+(z+p.R/2)*(z+p.R/2), -0.5) - u )*ds(1)

return assemble(integrand)/assemble(1.0*ds(1))

def checkSolution(u, mesh, p): # computes and outputs some nummbers

print(tStamp(),'* checking solution:')

print(tStamp(),'* computing values...')

Norm = assemble(N(u, p)*dx(mesh))

Idefault = assemble(I(u, p)*dx(mesh))

I50 = assemble(I(u, p)*dx(mesh,metadata={'quadrature_degree': 50}))

I100 = assemble(I(u, p)*dx(mesh,metadata={'quadrature_degree': 100}))

DissocEn = dissocEnergy(u(0, p.R/2), I100, p)

L1error = L1MeanError_DBC(u, mesh, p)

print(tStamp(),'* ...finished:')

print(tStamp(),'* u(0,R/2) =', u(0, p.R/2))

print(tStamp(),'* N(u) =', Norm)

print(tStamp(),'* I(u) =', Idefault, 'computed with degree = auto/default')

print(tStamp(),'* I(u) =', I50, 'computed with degree = 50')

print(tStamp(),'* I(u) =', I100, 'computed with degree = 100')

print(tStamp(),'* D(Z,R) = ', DissocEn, 'with I(u) for degree = 100')

print(tStamp(),'* ZR^3 = ', p.Z*pow(p.R,3.0))

print(tStamp(),'* D(ZR^3,1) = ', pow(p.R,7.0)*DissocEn)

print(tStamp(),'* other values for reference: u(0,0) =', u(0, 0),'u(R/2,R/2) =', \

u(p.R/2,p.R/2))

print(tStamp(),'* DBC L^1-mean - error = ', L1error)

def computeSolution_refinemesh(p, refine_p, NewtonSolverParameters): #solves w. manually

#refined mesh

# --- create the mesh, define (and initialize) the boundary at r_max ---

domain = Rectangle(Point(0, 0), Point(p.r_max, p.r_max))*Circle(Point(0, 0), p.r_max)

mesh = generate_mesh(domain, refine_p.meshres*p.r_max)

class Boundary_arc(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[1]*x[1]+x[0]*x[0], p.r_max*p.r_max, \

1/(p.mesh_res*p.mesh_res))

bnd_arc = Boundary_arc()

# --- refine at the singularity

print(tStamp(),'* refining mesh...')

for width in numpy.linspace(pow( refine_p.width,1/refine_p.power ) , 0, \

refine_p.steps, endpoint=False ):

class singRegion(SubDomain): #the region which is to be refined

def inside(self, x, on_boundary):

return x[0]*x[0]+(x[1]-p.R/2)*(x[1]-p.R/2)<=pow(width,2.0*refine_p.power)

sing_region = singRegion()

refinefct_sing = MeshFunction('bool', mesh, 1)

refinefct_sing.set_all(False)

sing_region.mark(refinefct_sing, True)

mesh = refine(mesh, refinefct_sing)
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print(tStamp(),'* finished refining mesh')

# --- Choose functionspace and define the Dirichlet BC ---

V = FunctionSpace(mesh, 'P', p.deg_FSpace)

dbc_function = Expression('144.0*pow(cD, -0.5)*pow(x[0]*x[0]+x[1]*x[1], -2.0) \

- Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

- Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5)',\

degree=p.deg_FSpace+3, Z=p.Z, R=p.R, cD=p.cD)

dbc = DirichletBC(V, dbc_function, bnd_arc)

# --- define functions, variational form and goal functional ---

u = Function(V)

v = TestFunction(V)

def nl(u): #nonlinear term of the problem

return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \

+ p.Z*pow(r*r+(z+p.R/2)*(z+p.R/2), -0.5), 1.5)

F = (r*Dx(u, 0)*Dx(v, 0) + r*Dx(u, 1)*Dx(v, 1) + nl(u)*v)*dx

dF = derivative(F, u)

NLproblem = NonlinearVariationalProblem(F, u, dbc, dF)

# --- Create a solver and load its parameters ---

solver = NonlinearVariationalSolver(NLproblem)

for key in NewtonSolverParameters.keys():

solver.parameters["newton_solver"][key] = NewtonSolverParameters[key]

# --- run the solver, return BOTH solution and final mesh ---

print(tStamp(),'* solving over a refined mesh...')

t0_solve = time.time()

solver.solve()

print(tStamp(),'* finished solving in ',round(time.time()-t0_solve,2),' s')

return (u, mesh)

def computeSolution_adaptive(p, NewtonSolverParameters, DualVariationalSolverParameters,\

show_solver_summary=False, starting_mesh=None): # solves w. adaptive mesh refinement

# --- create the mesh, define (and initialize) the boundary at r_max ---

if(starting_mesh==None):

domain = Rectangle(Point(0, 0), Point(p.r_max, p.r_max)) * Circle(Point(0, 0), \

p.r_max)

mesh = generate_mesh(domain, p.mesh_res*p.r_max)

else:

mesh = starting_mesh

class Boundary_arc(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near( x[1]*x[1]+x[0]*x[0], p.r_max*p.r_max, \

1/(p.mesh_res*p.mesh_res))

bnd_arc = Boundary_arc()

# --- Choose functionspace and define the Dirichlet BC ---

V = FunctionSpace(mesh, 'P', p.deg_FSpace)

dbc_function = Expression('144.0*pow(cD, -0.5)*pow(x[0]*x[0]+x[1]*x[1], -2.0) \

- Z*pow(x[0]*x[0]+(x[1]-R/2)*(x[1]-R/2), -0.5) \

- Z*pow(x[0]*x[0]+(x[1]+R/2)*(x[1]+R/2), -0.5)',\

degree=p.deg_FSpace+3, Z=p.Z, R=p.R, cD=p.cD)

dbc = DirichletBC(V, dbc_function, bnd_arc)

# --- define functions, variational form and goal functional ---

u = Function(V)

v = TestFunction(V)

def nl(u): #nonlinear term of the problem
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return p.cD*r*pow(u + p.Z*pow(r*r+(z-p.R/2)*(z-p.R/2), -0.5) \

+ p.Z*pow(r*r+(z+p.R/2)*(z+p.R/2), -0.5), 1.5)

F = (r*Dx(u, 0)*Dx(v, 0) + r*Dx(u, 1)*Dx(v, 1) + nl(u)*v)*dx

dF = derivative(F, u)

NLproblem = NonlinearVariationalProblem(F, u, dbc, dF)

goalFunctional = I(u, p)*dx()

# --- Create a solver and load its parameters ---

solver = AdaptiveNonlinearVariationalSolver(NLproblem, goalFunctional)

for key in DualVariationalSolverParameters.keys():

solver.parameters["error_control"]["dual_variational_solver"][key] \

= DualVariationalSolverParameters[key]

for key in NewtonSolverParameters.keys():

solver.parameters["nonlinear_variational_solver"]["newton_solver"][key] \

= NewtonSolverParameters[key]

# --- run the solver, return BOTH solution and final mesh ---

print(tStamp(),'* solving adaptively...')

t0_solve = time.time()

solver.solve(p.adapt_tol)

print(tStamp(),'* finished solving in ',round(time.time()-t0_solve,2),' s')

if(show_solver_summary):

print(tStamp(),'* the solver summary is (needs log level INFO or less):')

solver.summary()

return (u.leaf_node(), mesh.leaf_node())

8. Values for the comparison of Born-Oppenheimer curves

We here only give a selection of the data that the script C.7 gathered. In particular
because the solving time is machine dependent and because the L1-mean deviation
at ΓD was always less than 10−16, with the precise value being of little interest.
The relative deviation for D(r), computed from (7.3), (7.2) and these values, is
shown in Figure 2 on page 129 and the absolute deviation is displayed in Figure 1
on page 129.
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

0.001 -1.76141 1.24905 -0.450725 1.00472 22738
0.00595 -1.71554 1.20315 -0.43238 1.00472 52740
0.0109 -1.68793 1.17591 -0.421299 1.00472 16151
0.01585 -1.66662 1.15475 -0.41276 1.00472 25998
0.0208 -1.64863 1.13692 -0.405549 1.00472 31781
0.02575 -1.63263 1.12127 -0.399114 1.00472 27035
0.0307 -1.61824 1.10715 -0.393331 1.00472 27155
0.03565 -1.60525 1.09434 -0.388114 1.00472 46185
0.0406 -1.59296 1.08247 -0.383158 1.00472 22457
0.04555 -1.58157 1.07142 -0.378567 1.00472 26012
0.0505 -1.57099 1.0611 -0.374309 1.00472 30961
0.05545 -1.56081 1.05135 -0.370192 1.00472 23770
0.0604 -1.55117 1.04207 -0.366303 1.00472 25150
0.06535 -1.54215 1.03335 -0.362661 1.00472 49004
0.0703 -1.53326 1.02492 -0.359061 1.00472 18941

0.07525* -1.52456* 1.01709* -0.355496* 1.00472* 16574*
0.0802* -1.51673* 1.00935* -0.352352* 1.00472* 18059*
0.08515* -1.5089* 1.00178* -0.349195* 1.00472* 17739*
0.0901* -1.50157* 0.994724* -0.346236* 1.00472* 21789*
0.09505* -1.49429* 0.987889* -0.343277* 1.00472* 23112*

0.1 -1.48729 0.981314 -0.340435 1.00472 27466
0.1225 -1.45778 0.953811 -0.328435 1.00471 24332
0.145 -1.43185 0.929842 -0.317862 1.00471 30829
0.1675 -1.40812 0.908586 -0.308125 1.00471 18909
0.19 -1.3867 0.888971 -0.299375 1.00471 27119

0.2125 -1.36711 0.871402 -0.291338 1.0047 35299
0.235 -1.34881 0.855406 -0.28379 1.0047 22923
0.2575 -1.33177 0.840551 -0.276754 1.0047 25331
0.28 -1.31566 0.826711 -0.27008 1.00469 15014

0.3025 -1.30088 0.814039 -0.263962 1.00469 15931
0.325 -1.28695 0.802496 -0.258146 1.00468 29536
0.3475 -1.27374 0.791427 -0.252652 1.00468 31426
0.37 -1.2611 0.780679 -0.247407 1.00468 34415

0.3925 -1.24915 0.770887 -0.242412 1.00467 27145
0.415 -1.23784 0.761638 -0.237679 1.00467 35431
0.4375 -1.22643 0.752919 -0.232846 1.00466 16142
0.46 -1.21659 0.74463 -0.228757 1.00466 23802

0.4825 -1.20673 0.736871 -0.224601 1.00466 35817
0.505 -1.19719 0.729722 -0.220546 1.00465 29121
0.5275 -1.18809 0.722317 -0.216738 1.00465 27036
0.55 -1.17931 0.715781 -0.212999 1.00464 26416

0.5725 -1.17074 0.709187 -0.209376 1.00464 14390
0.595 -1.16285 0.703097 -0.206036 1.00463 26314

Table 1. Values are for Z = 0.5 and those with * are computed to
tolerance 10−10 of the goal functional (instead of 10−11).
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

0.6175 -1.15504 0.697332 -0.20271 1.00463 27585
0.64 -1.1475 0.691713 -0.199504 1.00462 29471

0.6625 -1.14026 0.686381 -0.196417 1.00462 27303
0.685 -1.13323 0.681257 -0.193413 1.00461 27479
0.7075 -1.1264 0.676326 -0.190492 1.00461 21358
0.73 -1.11991 0.671798 -0.187701 1.0046 26739

0.7525 -1.1134 0.667071 -0.184916 1.0046 21347
0.775 -1.10736 0.662806 -0.182325 1.00459 30231
0.7975 -1.10143 0.658688 -0.179771 1.00459 30007
0.82 -1.0956 0.65461 -0.177263 1.00458 26493

0.8425 -1.08988 0.650806 -0.174784 1.00458 19028
0.865 -1.08458 0.647053 -0.172506 1.00457 26409
0.8875 -1.07928 0.643504 -0.170213 1.00457 33852
0.91 -1.07406 0.64003 -0.167951 1.00456 22770

0.9325 -1.06912 0.636692 -0.165814 1.00456 25962
0.955 -1.06415 0.633518 -0.163647 1.00455 22696
0.9775 -1.05937 0.63047 -0.161563 1.00455 17616

1. -1.05493 0.627425 -0.159647 1.00454 33821
1.075 -1.04027 0.618127 -0.153246 1.00452 34747
1.15 -1.02681 0.609803 -0.147346 1.0045 19509
1.225 -1.01436 0.602288 -0.141877 1.00448 19925
1.3 -1.00305 0.595582 -0.136889 1.00446 26535

1.375 -0.992414 0.589459 -0.132185 1.00444 27986
1.45 -0.98236 0.583858 -0.127717 1.00442 21947
1.525 -0.973206 0.578876 -0.123639 1.0044 27687
1.6 -0.964277 0.574292 -0.119633 1.00438 17313

1.675 -0.956342 0.56993 -0.116101 1.00436 23577
1.75 -0.948702 0.566068 -0.112667 1.00434 38170
1.825 -0.941272 0.562457 -0.109313 1.00432 17108
1.9 -0.93448 0.5598 -0.106184 1.0043 24239

1.975 -0.928111 0.556132 -0.103365 1.00428 25330
2.05 -0.922066 0.553318 -0.100624 1.00426 35993
2.125 -0.916153 0.550696 -0.0979302 1.00424 20513
2.2 -0.910739 0.548944 -0.0953984 1.00421 25907

2.275 -0.90561 0.546079 -0.0931204 1.00419 33345
2.35 -0.900491 0.544231 -0.0907456 1.00417 23534
2.425 -0.895768 0.542018 -0.0886057 1.00415 21664
2.5 -0.891321 0.540258 -0.0865578 1.00413 20400

2.575 -0.886962 0.538528 -0.0845513 1.0041 20905
2.65 -0.882845 0.53801 -0.0825446 1.00408 20958
2.725 -0.878919 0.535426 -0.0808401 1.00406 21109
2.8 -0.875215 0.534238 -0.0791069 1.00404 23670

2.875 -0.871559 0.532783 -0.0774244 1.00401 23681
2.95 -0.868186 0.531581 -0.0758582 1.00399 25710

Table 2. Values are for Z = 0.5.
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

3.025 -0.864854 0.53045 -0.0743054 1.00397 26050
3.1 -0.861586 0.529615 -0.0727547 1.00395 23150

3.175 -0.858516 0.528351 -0.0713464 1.00392 19585
3.25 -0.85549 0.527366 -0.0699316 1.0039 20803
3.325 -0.852529 0.526875 -0.0685004 1.00388 18045
3.4 -0.850043 0.525682 -0.0673767 1.00385 29352

3.475 -0.846986 0.525009 -0.0659152 1.00383 16847
3.55 -0.844574 0.524279 -0.0647825 1.00381 16700
3.625 -0.842541 0.523468 -0.063847 1.00378 31202
3.7 -0.840139 0.522774 -0.0627151 1.00376 31189

3.775 -0.837889 0.522196 -0.0616484 1.00374 31062
3.85 -0.835541 0.521609 -0.060533 1.00371 18187
3.925 -0.833271 0.521 -0.0594587 1.00369 19399

4. -0.83148 0.520446 -0.0586185 1.00367 30167
4.27586 -0.824414 0.51869 -0.0552612 1.00358 37287
4.55172 -0.818139 0.517245 -0.0522681 1.00349 30710
4.82759 -0.812214 0.516023 -0.0494281 1.0034 17450
5.10345 -0.807341 0.514994 -0.0470944 1.00331 39313
5.37931 -0.802693 0.514119 -0.0448579 1.00322 28327
5.65517 -0.798484 0.513406 -0.0428248 1.00313 28621
5.93103 -0.794668 0.512823 -0.0409753 1.00304 38601
6.2069 -0.790882 0.512272 -0.0391373 1.00294 17041
6.48276 -0.787852 0.511817 -0.0376676 1.00285 38571
6.75862 -0.784852 0.51141 -0.0362084 1.00276 33414
7.03448 -0.78209 0.511089 -0.0348593 1.00266 29722
7.31034 -0.779544 0.510837 -0.0336117 1.00256 32472
7.58621 -0.776931 0.510557 -0.0323333 1.00247 17149
7.86207 -0.774877 0.510308 -0.031331 1.00237 32460
8.13793 -0.772767 0.510091 -0.0302977 1.00227 27037
8.41379 -0.770898 0.509932 -0.0293793 1.00217 30578
8.68966 -0.76903 0.509854 -0.028453 1.00207 31140
8.96552 -0.766834 0.509637 -0.0273765 1.00197 13928
9.24138 -0.765617 0.509537 -0.026778 1.00186 30388
9.51724 -0.764045 0.509402 -0.0260056 1.00176 30609
9.7931 -0.76266 0.509369 -0.0253165 1.00165 30509
10.069 -0.761323 0.509376 -0.0246475 1.00155 31464
10.3448 -0.759663 0.509177 -0.0238372 1.00144 15475
10.6207 -0.758578 0.509051 -0.0233073 1.00133 24192
10.8966 -0.757509 0.509028 -0.0227749 1.00122 30394
11.1724 -0.756421 0.509024 -0.0222316 1.00111 30195
11.4483 -0.755292 0.508913 -0.021678 1.001 26644
11.7241 -0.75407 0.508905 -0.0210677 1.00088 15736

12. -0.753335 0.508899 -0.0207008 1.00077 32731
Table 3. Values are for Z = 0.5.
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

0.001 -4.43871 6.29491 -0.450768 2.00336 43544
0.00595 -4.32277 6.06371 -0.43235 2.00336 78294
0.0109 -4.25382 5.92651 -0.421391 2.00336 49055
0.01585 -4.19992 5.81997 -0.41281 2.00336 60682
0.0208 -4.15436 5.73018 -0.405551 2.00336 41828
0.02575 -4.11396 5.65067 -0.399114 2.00336 18731
0.0307 -4.07806 5.57997 -0.393393 2.00336 46151
0.03565 -4.04485 5.5152 -0.388088 2.00336 34757
0.0406 -4.01429 5.45549 -0.383208 2.00336 88900
0.04555 -3.98539 5.39989 -0.378578 2.00336 22484
0.0505 -3.95822 5.34738 -0.374228 2.00336 21073
0.05545 -3.93302 5.29835 -0.370201 2.00336 25144
0.0604 -3.90901 5.252 -0.366357 2.00336 59127
0.06535 -3.88593 5.20773 -0.362655 2.00336 55936
0.0703 -3.86388 5.16547 -0.359118 2.00336 56864

0.07525* -3.84271* 5.12652* -0.355691* 2.00336* 32829*
0.0802* -3.82203* 5.08634* -0.352384* 2.00336* 31657*
0.08515* -3.80254* 5.04912* -0.349255* 2.00336* 23561*
0.0901* -3.78367* 5.01335* -0.346221* 2.00336* 21133*
0.09505* -3.76545* 4.97869* -0.343294* 2.00335* 25240*

0.1 -3.74755 4.94554 -0.3404 2.00335 26841
0.1225 -3.67371 4.80712 -0.328494 2.00335 69627
0.145 -3.60779 4.68574 -0.317824 2.00335 33782
0.1675 -3.54838 4.57756 -0.30818 2.00335 29720
0.19 -3.49431 4.48007 -0.299387 2.00334 21366

0.2125 -3.44481 4.39159 -0.291321 2.00334 30962
0.235 -3.39881 4.31061 -0.283799 2.00334 34621
0.2575 -3.35608 4.23613 -0.276799 2.00333 40705
0.28 -3.31602 4.16881 -0.270186 2.00333 43725

0.3025 -3.27845 4.10331 -0.264031 2.00333 27064
0.325 -3.24316 4.04298 -0.258224 2.00332 56235
0.3475 -3.20972 3.98691 -0.252702 2.00332 44449
0.37 -3.17803 3.93441 -0.247455 2.00331 50732

0.3925 -3.14794 3.88505 -0.242465 2.00331 46174
0.415 -3.11896 3.8384 -0.23764 2.00331 19241
0.4375 -3.09194 3.79537 -0.233133 2.0033 57522
0.46 -3.06584 3.75295 -0.228796 2.0033 33599

0.4825 -3.04042 3.71331 -0.224538 2.00329 20966
0.505 -3.01688 3.67604 -0.220607 2.00329 33511
0.5275 -2.99387 3.64061 -0.216744 2.00328 24513
0.55 -2.97203 3.60669 -0.213083 2.00328 83648

0.5725 -2.95072 3.57432 -0.209496 2.00327 49768
0.595 -2.93025 3.54342 -0.206048 2.00327 33825

Table 4. Values are for Z = 1.0 and those with * are computed to
tolerance 10−10 of the goal functional (instead of 10−11).
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

0.6175 -2.91062 3.51421 -0.202732 2.00326 40334
0.64 -2.89162 3.48699 -0.199503 2.00326 28708

0.6625 -2.87328 3.45914 -0.196415 2.00325 27829
0.685 -2.85579 3.43342 -0.193455 2.00325 37302
0.7075 -2.83826 3.40841 -0.190473 2.00324 25161
0.73 -2.82198 3.38509 -0.187706 2.00324 32440

0.7525 -2.80597 3.36223 -0.184983 2.00323 30443
0.775 -2.79066 3.34047 -0.182376 2.00323 53533
0.7975 -2.7756 3.31953 -0.179804 2.00322 38963
0.82 -2.76047 3.29886 -0.177212 2.00322 20859

0.8425 -2.74668 3.27974 -0.174855 2.00321 30013
0.865 -2.73296 3.26105 -0.172504 2.00321 41178
0.8875 -2.71966 3.24301 -0.170222 2.0032 37254
0.91 -2.70669 3.22591 -0.167988 2.0032 42662

0.9325 -2.694 3.20887 -0.165808 2.00319 51718
0.955 -2.68173 3.19306 -0.163687 2.00319 45845
0.9775 -2.6696 3.1771 -0.161598 2.00318 25997

1. -2.65806 3.16205 -0.159607 2.00318 28412
1.075 -2.62153 3.11531 -0.153286 2.00316 48282
1.15 -2.58761 3.07412 -0.147372 2.00314 28913
1.225 -2.55653 3.03568 -0.141968 2.00312 43102
1.3 -2.52746 3.0015 -0.136879 2.0031 26789

1.375 -2.50069 2.97075 -0.132176 2.00308 36525
1.45 -2.47572 2.94273 -0.127777 2.00306 42059
1.525 -2.45233 2.91718 -0.123643 2.00304 38010
1.6 -2.43013 2.89474 -0.119683 2.00302 21590

1.675 -2.40989 2.87245 -0.116109 2.003 31766
1.75 -2.39043 2.85284 -0.112638 2.00298 31619
1.825 -2.37215 2.83467 -0.10937 2.00295 26670
1.9 -2.35479 2.81778 -0.106261 2.00293 18346

1.975 -2.33882 2.80282 -0.103389 2.00291 31662
2.05 -2.32356 2.7887 -0.100641 2.00289 42343
2.125 -2.30888 2.77559 -0.0979889 2.00287 39181
2.2 -2.2951 2.76339 -0.0954954 2.00285 26945

2.275 -2.28193 2.75212 -0.0931067 2.00283 32708
2.35 -2.26908 2.74134 -0.090771 2.0028 20670
2.425 -2.25757 2.7319 -0.0886747 2.00278 31887
2.5 -2.24626 2.72264 -0.086614 2.00276 31590

2.575 -2.23522 2.71401 -0.084595 2.00274 31490
2.65 -2.22489 2.70612 -0.0827006 2.00271 27795
2.725 -2.21495 2.6986 -0.0808772 2.00269 31921
2.8 -2.20569 2.69214 -0.0791696 2.00267 55510

2.875 -2.19653 2.68517 -0.077489 2.00265 26946
2.95 -2.18751 2.67887 -0.0758252 2.00262 22396

Table 5. Values are for Z = 1.0.
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

3.025 -2.17925 2.67401 -0.0742818 2.0026 27084
3.1 -2.17142 2.66793 -0.0728498 2.00258 32312

3.175 -2.16356 2.66334 -0.0713811 2.00256 28331
3.25 -2.15547 2.65814 -0.0698782 2.00253 15318
3.325 -2.14903 2.65391 -0.0686851 2.00251 34245
3.4 -2.14183 2.64918 -0.0673491 2.00249 20794

3.475 -2.13541 2.64618 -0.0661357 2.00246 22598
3.55 -2.12916 2.64173 -0.0649838 2.00244 36281
3.625 -2.12268 2.64022 -0.0637269 2.00242 19140
3.7 -2.1167 2.63472 -0.0626501 2.00239 19076

3.775 -2.1102 2.63677 -0.0613194 2.00237 15862
3.85 -2.10558 2.62864 -0.0605641 2.00235 31569
3.925 -2.10013 2.62552 -0.0595457 2.00232 21907

4. -2.095 2.62284 -0.0585798 2.0023 30562
4.27586 -2.07723 2.6139 -0.0552306 2.00221 36306
4.55172 -2.06138 2.60699 -0.0522232 2.00213 28791
4.82759 -2.04735 2.60064 -0.0495657 2.00204 43091
5.10345 -2.03425 2.59539 -0.0470696 2.00195 31264
5.37931 -2.02273 2.59114 -0.0448685 2.00186 33978
5.65517 -2.01201 2.58757 -0.0428125 2.00177 34961
5.93103 -2.00224 2.58428 -0.0409388 2.00168 29398
6.2069 -1.99345 2.58207 -0.0392401 2.00159 35001
6.48276 -1.98504 2.57939 -0.0376229 2.0015 24791
6.75862 -1.97746 2.57748 -0.0361565 2.00141 29134
7.03448 -1.97094 2.57582 -0.0348967 2.00132 48547
7.31034 -1.96395 2.57408 -0.0335436 2.00122 25374
7.58621 -1.95833 2.57299 -0.0324504 2.00113 48089
7.86207 -1.9525 2.57182 -0.0313176 2.00104 40833
8.13793 -1.94709 2.57087 -0.0302622 2.00094 23486
8.41379 -1.94222 2.57004 -0.0293132 2.00085 35758
8.68966 -1.93767 2.56921 -0.0284253 2.00075 38872
8.96552 -1.93328 2.56851 -0.0275687 2.00065 33970
9.24138 -1.92934 2.56823 -0.0267919 2.00056 69246
9.51724 -1.92532 2.56742 -0.0260112 2.00046 46955
9.7931 -1.92148 2.56705 -0.0252561 2.00036 26842
10.069 -1.91797 2.56637 -0.024574 2.00026 23937
10.3448 -1.91493 2.56751 -0.0239485 2.00016 51526
10.6207 -1.91171 2.56566 -0.0233452 2.00006 29533
10.8966 -1.90874 2.56547 -0.0227609 1.99996 29585
11.1724 -1.90599 2.56525 -0.0222194 1.99985 41918
11.4483 -1.90293 2.56471 -0.0216219 1.99975 20081
11.7241 -1.90072 2.56524 -0.0211727 1.99965 29287

12. -1.89847 2.56461 -0.0207391 1.99954 51467
Table 6. Values are for Z = 1.0.
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

0.001 -11.1848 31.7249 -0.450759 4.002 29573
0.00595 -10.8927 30.5595 -0.432351 4.002 34112
0.0109 -10.7189 29.8676 -0.421391 4.002 68778
0.01585 -10.5832 29.3299 -0.412819 4.002 47617
0.0208 -10.4684 28.8769 -0.405566 4.002 236518
0.02575 -10.3672 28.4785 -0.399164 4.002 128261
0.0307 -10.276 28.1208 -0.393389 4.002 45867
0.03565 -10.1927 27.7952 -0.388115 4.002 80789
0.0406 -10.1154 27.4951 -0.383206 4.00199 275505
0.04555 -10.0434 27.2138 -0.378641 4.00199 212755
0.0505 -9.97518 26.9526 -0.3743 4.00199 46055
0.05545 -9.9113 26.7033 -0.370252 4.00199 2288576
0.0604 -9.85027 26.4698 -0.366365 4.00199 121643
0.06535 -9.79217 26.2455 -0.362673 4.00199 426588
0.0703* -9.73632* 26.0339* -0.359109* 4.00199 27929*
0.07525* -9.68029* 25.8304* -0.355497* 4.00199 15002*
0.0802* -9.6312* 25.6332* -0.352409* 4.00199 27673*
0.08515* -9.58244* 25.4461* -0.349305* 4.00199 55738*
0.0901* -9.53382* 25.2702* -0.34617* 4.00199 21087*
0.09505* -9.48831* 25.0948* -0.343276* 4.00199 41286*

0.1 -9.44349 24.925 -0.340415 4.00199 23914
0.1225 -9.2572 24.2268 -0.328495 4.00199 41831
0.145 -9.09135 23.6153 -0.317843 4.00198 50850
0.1675 -8.94196 23.0701 -0.308226 4.00198 45708
0.19 -8.80571 22.5799 -0.299427 4.00198 52087

0.2125 -8.68025 22.1323 -0.29131 4.00198 32628
0.235 -8.56466 21.7246 -0.283813 4.00197 36291
0.2575 -8.45685 21.3484 -0.276804 4.00197 63468
0.28 -8.35611 21.0004 -0.270242 4.00197 97665

0.3025 -8.26177 20.677 -0.264086 4.00196 148209
0.325 -8.17233 20.3753 -0.258231 4.00196 61513
0.3475 -8.08816 20.0937 -0.252712 4.00195 136594
0.37 -8.00821 19.8285 -0.24746 4.00195 70827

0.3925 -7.93242 19.5803 -0.24247 4.00195 935877
0.415 -7.85996 19.3449 -0.23769 4.00194 57361
0.4375 -7.79126 19.1238 -0.233151 4.00194 89164
0.46 -7.72565 18.914 -0.228811 4.00193 660962

0.4825 -7.66275 18.7152 -0.224641 4.00193 147933
0.505 -7.60233 18.5286 -0.220617 4.00192 72445
0.5275 -7.54471 18.3473 -0.216794 4.00192 2121982
0.55 -7.48893 18.1789 -0.213065 4.00192 62732

0.5725 -7.43418 18.0222 -0.20937 4.00191 19629
0.595 -7.38437 17.8589 -0.206091 4.00191 77952

Table 7. Values are for Z = 2.0 and those with * are computed to
tolerance 10−10 of the goal functional (instead of 10−11).
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

0.6175 -7.33469 17.7103 -0.202764 4.0019 69499
0.64 -7.28687 17.5688 -0.199555 4.0019 77793

0.6625 -7.2404 17.4342 -0.196426 4.00189 33089
0.685 -7.19635 17.3037 -0.193471 4.00189 66682
0.7075 -7.15326 17.1793 -0.190568 4.00188 186711
0.73 -7.11154 17.0598 -0.187753 4.00188 162601

0.7525 -7.07092 16.9447 -0.185008 4.00187 44535
0.775 -7.03198 16.835 -0.182373 4.00187 60691
0.7975 -6.99419 16.7292 -0.179814 4.00186 67368
0.82 -6.95751 16.6281 -0.177324 4.00186 69853

0.8425 -6.92165 16.5294 -0.174889 4.00185 56066
0.865 -6.88694 16.4349 -0.172527 4.00185 39891
0.8875 -6.85366 16.3452 -0.17026 4.00184 203572
0.91 -6.8205 16.2563 -0.167999 4.00183 31321

0.9325 -6.78893 16.1724 -0.165843 4.00183 170723
0.955 -6.75783 16.0905 -0.163717 4.00182 92091
0.9775 -6.72756 16.0135 -0.161636 4.00182 67838

1. -6.69854 15.9362 -0.159656 4.00181 391732
1.075 -6.6055 15.7017 -0.153253 4.00179 33916
1.15 -6.52072 15.4889 -0.147414 4.00178 73216
1.225 -6.44212 15.2987 -0.141973 4.00176 45259
1.3 -6.36899 15.1265 -0.136893 4.00174 34320

1.375 -6.30077 14.9721 -0.132129 4.00172 25607
1.45 -6.23787 14.8298 -0.127736 4.0017 30186
1.525 -6.17949 14.7018 -0.123643 4.00168 52233
1.6 -6.12448 14.5841 -0.119775 4.00166 70971

1.675 -6.07255 14.4764 -0.116109 4.00164 50872
1.75 -6.02389 14.3777 -0.112666 4.00162 61188
1.825 -5.97833 14.287 -0.109436 4.0016 103916
1.9 -5.93484 14.2033 -0.106341 4.00158 54233

1.975 -5.89361 14.1254 -0.103401 4.00155 46226
2.05 -5.85443 14.0549 -0.100593 4.00153 19951
2.125 -5.81835 13.9885 -0.0980136 4.00151 85519
2.2 -5.78334 13.9264 -0.0955014 4.00149 40224

2.275 -5.75009 13.8697 -0.093106 4.00147 39486
2.35 -5.71883 13.8168 -0.0908526 4.00145 48088
2.425 -5.6891 13.7688 -0.0887004 4.00143 89144
2.5 -5.66028 13.7223 -0.086614 4.0014 65476

2.575 -5.6326 13.6786 -0.0846067 4.00138 37704
2.65 -5.60687 13.6402 -0.0827315 4.00136 75030
2.725 -5.58195 13.6023 -0.0809188 4.00134 52692
2.8 -5.55812 13.5668 -0.0791822 4.00132 69742

2.875 -5.53501 13.533 -0.0774951 4.0013 37465
2.95 -5.51299 13.502 -0.0758835 4.00127 48955

Table 8. Values are for Z = 2.0.
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(2Z)
1
3R u(0, R/2) 1

cTF

∫
ϕ5/2 (2Z)

−7
3

(
DTF

(Z,Z),R −
Z2

R

) ∫
% #cells

3.025 -5.49213 13.4738 -0.0743517 4.00125 55820
3.1 -5.47168 13.4458 -0.0728519 4.00123 38956

3.175 -5.45243 13.4205 -0.0714353 4.00121 50048
3.25 -5.43308 13.3958 -0.0700087 4.00118 25566
3.325 -5.41569 13.3738 -0.0687262 4.00116 55423
3.4 -5.39822 13.3522 -0.067435 4.00114 53374

3.475 -5.3812 13.3316 -0.0661761 4.00112 24726
3.55 -5.36487 13.3126 -0.064965 4.00109 26228
3.625 -5.34976 13.2981 -0.0638328 4.00107 69959
3.7 -5.33456 13.278 -0.0627145 4.00105 31274

3.775 -5.32036 13.2622 -0.0616587 4.00103 69651
3.85 -5.30605 13.2463 -0.0605946 4.001 37130
3.925 -5.29265 13.2322 -0.0595948 4.00098 65864

4. -5.27891 13.2178 -0.0585696 4.00096 26749
4.27586 -5.23491 13.174 -0.0552771 4.00088 79650
4.55172 -5.19447 13.1369 -0.0522395 4.00079 36520
4.82759 -5.1582 13.1102 -0.0494876 4.00071 28419
5.10345 -5.12621 13.0835 -0.0470738 4.00062 29835
5.37931 -5.09699 13.0591 -0.0448693 4.00054 42539
5.65517 -5.06993 13.0399 -0.0428142 4.00045 41616
5.93103 -5.04545 13.0243 -0.0409479 4.00036 24343
6.2069 -5.02348 13.0115 -0.039268 4.00028 110392
6.48276 -5.00274 13.0007 -0.0376769 4.00019 49742
6.75862 -4.98394 12.9917 -0.0362324 4.0001 95280
7.03448 -4.96595 12.9834 -0.0348489 4.00002 43567
7.31034 -4.94954 12.9737 -0.0335945 3.99993 26060
7.58621 -4.93456 12.9677 -0.0324385 3.99984 68394
7.86207 -4.92043 12.9621 -0.031348 3.99975 105070
8.13793 -4.90702 12.958 -0.0303079 3.99966 86990
8.41379 -4.89452 12.9549 -0.0293359 3.99957 101737
8.68966 -4.88245 12.948 -0.0284126 3.99948 23053
8.96552 -4.87156 12.9443 -0.0275693 3.99939 43222
9.24138 -4.86141 12.9435 -0.026773 3.9993 55523
9.51724 -4.85181 12.9391 -0.0260346 3.99921 72386
9.7931 -4.84248 12.937 -0.0253087 3.99912 37578
10.069 -4.83364 12.9351 -0.0246201 3.99903 30938
10.3448 -4.82534 12.9332 -0.023974 3.99893 60966
10.6207 -4.81765 12.9319 -0.0233731 3.99884 109972
10.8966 -4.81013 12.9296 -0.0227903 3.99875 100712
11.1724 -4.80275 12.9281 -0.0222152 3.99865 38828
11.4483 -4.79597 12.9266 -0.0216871 3.99856 44337
11.7241 -4.79 12.9258 -0.0212198 3.99847 57890

12. -4.7837 12.9249 -0.0207272 3.99837 44632
Table 9. Values are for Z = 2.0.
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Figure 1. Absolute deviation of D(r) between different choices of
Z ∈ {0.5, 1, 2} and r ranging from 0.001 to 12. The vertical lines are
at r = (2Z)1/3R = 0.1, 1 and 4.

Figure 2. Relative deviation of D(r) between different choices of
Z ∈ {0.5, 1, 2} and r ranging from 0.001 to 12. The vertical lines are
at r = (2Z)1/3R = 0.1, 1, 4.
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Mathématique 23.1 (1970), pp. 147–170.

[43] M. E. Rognes and A. Logg. Automated goal-oriented error control I: Station-

ary variational problems , SIAM Journal on Scientific Computing 35.3 (2013),

pp. C173–C193.

[44] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richard-

son, J. Ring, M. E. Rognes, and G. N. Wells. The FEniCS project version

1.5 , Archive of Numerical Software 3.100 (2015), pp. 9–23.

[45] U. Ayachit. The paraview guide: a parallel visualization application, (2015).

[46] F. Hecht. New development in FreeFem++, Journal of Numerical Mathemat-

ics 20.3-4 (2012), pp. 251–266.

[47] W. R. Inc. Mathematica, Version 11.1.1.0. Champaign, IL, 2017.

134



8. SOFTWARE USED

Software used

(1) FEniCS, version 2017.2. This is an open-source computing platform we

used to solve the diatomic TF equation, and in particular for the scripts in

appendix C.3, C.4 and C.7. A description of version 1.5 is in [44] and the

goal-oriented adaptation has been proposed in [43]. It is freely available

under https://fenicsproject.org/.

(2) ParaView, version 5.4.1. For the visualization of solutions computed via

FEniCS, in particular Figures 3, 4 and 5. It is freely available under

https://www.paraview.org/. See also [45].

(3) FreeFem++, version 3.59. Another software for the FEM. We used it to

cross-check the results from FEniCS, see the appendix C.6. It is freely

available at http://www.freefem.org/. See also [46].

(4) (Wolfram) Mathematica, version 11.1.1.0 [47] was used to solve the atomic

ODE and a linearisation of the diatomic PDE (in appendix C.1, C.5, C.2).

All Figures (except 3, 4 and 5) have been created within Mathematica.
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Errata

The present thesis differs from the submitted version only by typos and minor

corrections. More substantial mistakes which we are aware of are listed here,

followed by corrected proofs of Theorem 5.1 and 6.1.

i) Page 4: Equation (1.6) holds only for sequences with bounded ratio, meaning

Z1 ≤ Z2 ≤ (cst.)Z1. See also viii) and xv) below.

ii) Page 27: In the statement and proof of Lemma 3.13, all appearances of

‘c
−3/2
TF ϕ3/2’ should be replaced by %, the corresponding TF density.

iii) Page 32: After (3.24), we erroneously claim that F ∈ H1 but only have

FW ∈ L6 and ∇FW ∈ L2. The latter is still sufficient to apply [12, Lemma

9.2]. Similar, Lemma B.2 only proves FW ∈ L6 and ∇FW ∈ L2.

iv) Pages 41 and 42: An assumption on the regularity of ∂Ω in Proposition 3.19

and Definition 3.20 is missing (C1 suffices).

v) Page 42: At the end of the proof of Lemma 3.21, the value for
∫
HRν/2

Ir,Rν is

false. It equals 20π
r

arsinh(r/
√

(R/2)2 − r2) and since arsinh(x) ≤ x for x ≥ 0,

Lemma 3.21 holds with 5π
4

replaced by 10 on the right hand side. Note that

c3.22a and c3.22b are now given with this corrected value.

vi) Page 43: The roles of σ, ε and σ∗, ε∗ in the second and third sentence of

Lemma 3.22 have erroneously been swapped. Instead, it should read ‘As-

sume there exist positive ε, ε∗, σ, σ∗ such that supOr |V − ΦTF
Z,R,r| ≤ σ∗r−4+ε∗

and supB(p,r)c |V (p) − ΦTF
Zp,r
| ≤ σr−4+ε for p ∈ {0, Rν}. Furthermore assume

that (3/2aTF)
1
ξm

−1
3

Z ≤ r ≤ min{R/4, (c3.14b/σ)1/ε, (c3.17/σ
∗)1/ε∗}.’ As a conse-

quence, the proofs of Theorem 6.1 and Lemma 6.3 need to be changed (see

xii) below).

vii) Page 57: The first summand on the right hand side of (4.17) should read

8q2/3π2/3
∣∣ETF

1

∣∣
31/3cHK1

(
r sup
∂Or
|ΦrHF

Z,R,r|
(

1 +
1

R/2− 2

))7/3

.

This is due to the incorrect argument ‘ΦrHF
Z,R,r(x) ≤ r

|x| sup
∂Or

ΦrHF
Z,R,r’ in the proof,

which is repaired by using Lemma 3.15 with (3.17) and ETF
(Z,Z),R ≥ 2ETF

Z . This

mistake mainly changes the value of c5.6b.
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viii) Page 59 and thereafter: The proof of Theorem 5.1 requires the ratio of the

nuclear charges to be bounded. Furthermore, the constant c5.1b we give is ill-

defined. It should instead depend on δ. Below we give a proof of the corrected

version, which is:

Theorem (5.1, corrected). There exist δ5.1 > 0 and c5.1a(λ), c5.1b(λ, δ) > 0

such that for all R, λ > 0, δ ∈ (0, δ5.1] and Z ∈ R2
+ with 1 ≤ |Z| ≤ λmZ: If

r ≤ c5.1b(λ, δ) min
{

1, (R/2)1+ δξ
η−δξ

}
, then

sup
x∈∂Or

∣∣∣∣∣
∫
Ir

%TF
Z,R(y)− %rHF

Z,R(y)

|x− y|
dy

∣∣∣∣∣ ≤ c5.1a(λ)r−4+δξ. (E.1)

ix) Page 64: The set Ωs = Os in Lemma 5.5 actually depends on R > 2s. A better

notation would be Ωs,R, in particular for the identity |Ωc
s,R| = s3|Ωc

1,R/s|.
x) Page 66: The bound D(%rHFω2

O− %r) ≥ D(%rHF
1Or − %r)−D(%rHF(ω2

O−1Or))
is false. Instead, D(%rHFω2

O − %r) ≥ 1
2
D(%rHF

1Or − %r) − D(%rHF(ω2
O − 1Or)).

This only changes constants.

xi) Page 69: Theorem 6.1 requires the stronger assumption Z ∈ [1,∞)2 instead

of Z ∈ R2
+, |Z| ≥ 1.

xii) Page 70: Due to viii), we fix ε in Lemma 6.3, so that c5.1b(λ, ε/ξ) only depends

on λ. Moreover, because of vi), we need to keep the factor (Rm
1/3
Z )−η̃ξ for

the corrected proof of Theorem 6.1. With these changes and by defining

c6.3a := c3.8b

(
2ξaTFξ̃/η̃

)−η̃
24(ε/η−2) + c3.8c2

4ε/η−η, the same proof yields:

Lemma (6.3, corrected). Let Z ∈ [1,∞)2 with |Z| ≤ λmZ. There exist

c6.3a, c6.3b(λ) > 0 such that if 2 ≥ R ≥ 2
(
aTFξ̃/η̃

) 1
ξ
m
−1
3

Z and if r :=

c6.3b(λ)(R/2)1+ ε
η−ε ≥

(
3
2
aTF
) 1
ξ m

−1
3

Z with ε = min{δ5.1ξ, ε5.2}, then for all s ≤ r

and p ∈ {0, Rν}:
i) sup

B(p,s)c

∣∣∣(%rHF
Z,R − %TF

Zp
(· − p)

)
1B(p,s) ∗ |x|−1

∣∣∣ ≤ s−4
(
fZ,R,s + 3

2
c5.1as

ε
)

ii) sup
B(0,s)c

∣∣∣(%rHF
Zp
− %TF

Zp

)
1B(0,s) ∗ |x|−1

∣∣∣ ≤ c5.2as
−4+ε

iii) sup
Os

∣∣(%rHF
Z,R − %TF

Z,R

)
1Is ∗ |x|−1

∣∣ ≤ c5.1as
−4+ε

iv) sup
Os

∣∣∣∣∣ ∑
p∈{0,Rν}

(
%rHF
Zp

(· − p)− %TF
Z,R

)
1B(p,s) ∗ |x|−1

∣∣∣∣∣ ≤ s−42 (fZ,R,s + c5.2as
ε) ,

where fZ,R,s := c3.8b(s/R)4
(
Rm

1/3
Z

)−η̃ξ
+c3.8c(2s/R)η ≤ c6.3as

4ε
η . Furthermore

(under the same assumptions),

v) µ
(j,p)
r = 0 and

∫
%

(j,p)
r ≤ c3.14ar

−3 for j ∈ {1, 2}, p ∈ {0, Rν},
vi) µ

(j)
r = 0 and

∫
%

(j)
r ≤ 27/2(1 + A)3/2cSr

−3 for j ∈ {3, 4}.
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xiii) Page 71 and thereafter: The bounds (6.7) and (6.11) are missing the difference

Q[V
(j,0)
r , V

(j,Rν)
r ]−Q[W

(j,0)
r,δ ,W

(j,Rν)
r,δ ], where W

(j,p)
r,δ is basically V

(j,p)
r but with

a smooth cut-off ω2
p instead of 1B(p,r). To bound it, we note that (5.4) can

be proven to hold with r replaced by t, for all t ≤ r and the analogue holds

for the atomic rHF density (see also [12, Lemma 12.6]). Hence, via Hölder’s

inequality and
∫
|x|−δ≤|y|≤|x| |x−y|

−5/2dx ≤ 8π
√
δ, we have ‖W (j,p)

r,δ −V
(j,p)
r ‖∞ ≤

(cst.)(r − δ)−5(δ/r)1/5. We also note that V
(1,p)
r ≤ W

(1,p)
r,δ ≤ V

(1,p)
r−δ so that

overall, by using Lemma 3.21, one deduces

|Q[V (j,0)
r , V (j,Rν)

r ]−Q[W
(j,0)
r,δ ,W

(j,Rν)
r,δ ]| ≤ (cst.)(r − δ)−7(δ/r)1/5.

We then chose δ = r21/11 in (6.7) and (6.11) which together with the changes

from xii) leads to:

Lemma (6.4, corrected). Let Z ∈ [1,∞)2 with |Z| ≤ λmZ. There ex-

ist c6.3a,c6.3b(λ) > 0 such that if 2 ≥ R ≥ 2
(
aTFξ̃/η̃

) 1
ξ
m
−1
3

Z and if r :=

c6.3b(λ)(R/2)1+ ε
η−ε ≥

(
3
2
aTF
) 1
ξ m

−1
3

Z with ε = min{δ5.1ξ, ε5.2}, then

E(3)
r − E(1,0)

r − E(1,Rν)
r +Q[V (1,0)

r , V (1,Rν)
r ]− c6.4a(λ)r−7+ 2

11 ≤ DrHF
Z,R (E.2)

and

E(4)
r − E(2,0)

r − E(2,Rν)
r +Q[V (2,0)

r , V (2,Rν)
r ] + c6.4b(λ)r−7+ 2

11 ≥ DrHF
Z,R . (E.3)

xiv) Page 75: Due to vi), the proof of Theorem 6.1 does not work and we provide

a corrected version below.

xv) Page 75: Corollary 6.5 and the remarks before it are false. We only have

lim sup
mZ→∞

|Z|≤(cst.)mZ

∣∣DrHF
Z,R −DTF

∞,1R
−7
∣∣ = o(R−7), as R→ 0.

xvi) Page 79: In the text and in Figure 1, ‘fN(r) =
∫
|y|≥r %

TF
1 (y)dy’ is wrong since

fN(r) =
∫
|y|≥r %

TF
1 (y)(1− r/|y|))dy.

Corrected proof of Theorem 5.1. Here we prove (E.1).

Proof. We begin by defining the constant δ5.1 = min{δ5.4,
1

537/2+66ξ
} and introduce

the set Pλ := (0, δ5.1] × R+ × {Z ∈ R2
+ : 1 ≤ |Z| ≤ λmZ}. Furthermore, let

c5.1a(λ) = max

{
c5.3

(
3
2
(aTF)

1
ξλ

1
3

) 49
12
− 1

66
, c5.4

}
.

Step 1 (Reformulating the first step)

Let βZ(δ) := (3
2
aTF)

1
ξ(1+δ)m

−1
3(1+δ)

Z |Z| 13 then rZ := (βZ|Z|−1/3)1+δ = (3
2
aTF)

1
ξm

−1
3

Z .
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Since 4+ 3
44

= 49
12
− 1

66
, Lemma 5.3 impliesA

(
r, 1

66
, c5.3β

49
12
− 1

66
Z

)
for all r ≤ r

1
1+δ

Z . Not-

ing that δ ≤ δ5.1 < 2/537, we have ε(δ) := 1
66
−δ(49

12
− 1

66
) > 0 and observe that if r ≤

r
1

1+δ

Z then r1/66β
49
12
− 1

66
Z ≤ rε(δ)β

49
12
− 1

66
Z

(
βZ|Z|

−1
3

) 1
66
−ε(δ)

≤ rε(δ)
(

3
2
(aTF)

1
ξλ

1
3

) 49
12
− 1

66
.

Here the last inequality used the definitions of βZ, ε(δ) and the bound |Z| ≤ λmZ.

Hence A(r, ε(δ), c5.1a(λ)) for all r ≤ r
1

1+δ

Z . The inequality δ ≤ (537
2

+ 66ξ)−1 is

equivalent to δξ ≤ ε(δ) so that if r ≤ 1 then rε(δ) ≤ rδξ. Overall, we find that

∀(δ, R,Z) ∈ Pλ : A (r, δξ, c5.1a(λ)) ∀r ≤ min

{
1, r

1
1+δ

Z

}
.

Step 2 (Iteration) For (δ, R,Z) ∈ Pλ we define

M(δ, R,Z) := sup
{
r ∈ R : A(s, δξ, c5.1a(λ)), ∀s ≤ r

1
1+δ

}
.

By the same arguments as in Step 2 of the original proof on page 63, we deduce that

M(δ, R,Z) ≥ min

{
D(c5.1a(λ), δξ, R) , c

(η+ξ)(1+δ)
η−δξ

3.18a (R/2)
η(1+δ)
η−δξ

}
for any (δ, R,Z) ∈ Pλ

and with D from Lemma 5.4. From here we continue as in Step 3 on page 63 except

that we chose c5.1b(λ, δ) := min

{
1/2, (c3.17/c5.1a(λ))

1
δξ(1+δ) , (c3.18b)

1
1+δ , c

(η+ξ)
η−δξ
3.18a

}
. �

Corrected proof of Theorem 6.1

Here we prove: There exists ε6.1 > 0 and an increasing θ : R+ → R+ such that for

all R ∈ (0, 2] and all Z ∈ [1,∞)2, we have
∣∣DTF

Z,R −DrHF
Z,R

∣∣ ≤ θ
(
|Z|
mZ

)
R−7+ε6.1 .

Proof. Let ε = min{δ5.1ξ, ε5.2}, λ = |Z|/mZ and r = c6.3b(λ)(R/2)1+ ε
η−ε . We

assume first that 2 ≥ R ≥ C1(λ)m
− 1

3
(1−α)

Z with α ∈ (ε/η, 1) and

C1(λ) = 2 max
{

(aTFξ̃/η̃)
1
ξ , ((aTF3/2)

1
ξ /c6.3b(λ))1− ε

η

}
.

Then Rm
1
3
Z ≥ 2(aTFξ̃/η̃)

1
ξ and, because αη > ε, also r ≥ (aTF3/2)

1
ξm
− 1

3
Z so that

the assumptions of the corrected Lemmas 6.3 and 6.4 are satisfied. This means

that both (6.3) and (6.4) hold, with ε5.2 and δ5.1ξ replaced by ε. Hence we see

that the assumptions of Lemma 3.22 are (using the corrected Lemma 6.3 i), iii))

satisfied for V (p) = V
(1,p)
r , as well as (using the corrected Lemma 6.3 ii), iv)) for

V (p) = V
(2,p)
r . Note also that ε < 2/537 < 2/11. Combining (3.47) with (E.3) and

the corrected Lemma 6.3 iv), and (3.48) with (E.2) and the corrected Lemma 6.3

i), we thus find∣∣DrHF
Z,R −DTF

Z,R

∣∣ ≤ C2(λ)R−7
(

(2r/R)−7rε + (2r/R)η−7 + (2r/R)−3(Rm
1/3
Z )−η̃ξ

)
.
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We use the definition of r and the inequality Rm
1/3
Z ≥ R

−α
1−αC1(λ)

1
1−α to conclude

that if 2 ≥ R ≥ C1(λ)m
− 1

3
(1−α)

Z , then∣∣DrHF
Z,R −DTF

Z,R

∣∣ ≤ C3(λ, α)R−7+ε1(α), (E.4)

with ε1(α) = min
{
ε(η−7)
η−ε ,

αη̃ξ
1−α −

3ε
η−ε

}
.

Let us now assume that R ≤ C1(λ)m
− 1

3
(1−α)

Z . According to Lemma 4.6, we have

|ETF
Z,R−ErHF

Z,R | ≤ max{c4.6a, c4.6b}|Z|
7
3
− 2

33 and |ETF
Z −ErHF

Z | ≤ max{c4.6a, c4.6b}Z
7
3
− 2

33 .

We combine these bounds so that for all R ≤ C1(λ)m
− 1

3
(1−α)

Z :

|DrHF
Z,R −DTF

Z,R| ≤ max{c4.6a, c4.6b}
(

1 + (λ− 1)
75
33 + λ

75
33

)
C1(λ)

75
11(1−α)︸ ︷︷ ︸

=C4(λ,α)

R−7+ε2(α),

(E.5)

with ε2(α) = 2−77α
11(1−α)

. Note that ε2(α) > 0 for any α < 2/77 and ε1(α) > 0 for

all α > C5 := (1 + η̃ξ
3

(537η
2ξ
− 1))−1 because ε < 2

537
ξ. We also have C5 > ε/η

and since C5 < 2/77, there exists α0 = arg max
[C5,2/77]

min{ε1(α), ε2(α)} such that

ε6.1 := min{ε1(α0), ε2(α0)} > 0. We combine (E.4) and (E.5) for α = α0 and

complete the proof with θ(t) := inf
t≤λ

max{C3(λ, α0), C4(λ, α0)}. �
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